Zelig/0000755000176000001440000000000012217234503011353 5ustar ripleyusersZelig/po/0000755000176000001440000000000012061700507011770 5ustar ripleyusersZelig/po/R-en.po0000644000176000001440000003722412061700507013141 0ustar ripleyusersmsgid "describe canned" msgstr "describe.<> <- function () {\n" "package <- list(name=\"stats\",\n" "version=\".9\"\n" ")\n" "\n" "# edit the below line to add a description\n" "# to this zelig model\n" "description <- \"a zelig model\"\n" "\n" "# edit the below with information about\n" "# the model that this zelig module is based on\n" "# the citation year may differ than the auto-generated one\n" "list(category = \"\",\n" "authors = \"<>\",\n" "year = <>,\n" "description = description,\n" "package = package,\n" "parameters=list(list())\n" ")\n" "}" msgid "describe how-to" msgstr "# HOW-TO WRITE A DESCRIBE FUNCTION\n" "# ================================\n" "# 1. Fill in the \"description\" variable with a *short*\n" "# description of the model. e.g. \"multinomial probit model\"\n" "# 2. Fill in the return-value for \"category\"\n" "# 3. Fill in the return-value for \"authors\" with either:\n" "# i. <>, or\n" "# ii. c(<>, >, <>, ...)\n" "# 4. Fill in the return-value for \"year\"\n" "# 5. Fill in the package variable" msgid "describe credit" msgstr "# @author: <>\n" "# @date: <>\n" "# .<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: describe.<> generates citation information\n" "# for the zelig model <>" msgid "zelig2 canned" msgstr "zelig2<> <- function (formula, model, data, M, ...) {\n" "# this file acts as an interface to the original model\n" "# the return (\"mf\") is a function call that zelig will later invoke\n" "# in order to process the specified data set\n" "#\n" "# any parameters unnecessary to the model\n" "# should be set to NULL (e.g. mf$M, mf$robust, etc...)\n" "\n" "mf <- match.call(expand.dots=T)\n" "mf$M <- mf$robust <- NULL\n" "mf[[1]] <- <>\n" "mf$model <- NULL\n" "mf$data <- data\n" "mf$formula <- formula\n" "as.call(mf)\n" "}" msgid "zelig2 how-to" msgstr "# 0. the zelig2 function acts as an interface between\n" "# the existing model and the zelig module that is\n" "# being created.\n" "# 1. construct a call object containing all the parameters\n" "# passed into \"zelig2<>\"\n" "# 2. remove all parameters that will not make sense within\n" "# the original model (in the demo code, e.g. robust, M, etc.)\n" "# 3. re-assign the call object's first entry to the name of the\n" "# model that must be called.\n" "# This step is crucial, as it is how your model invokes the\n" "# pre-existing model's name\n" "# 4. attach the data frame (mf$data <- data)\n" "# 5. return the call (as a call)\n" "#\n" "# NOTE: the returned value is going to be evaluated, and -\n" "# as a result - call the pre-existing model. Any\n" "# parameters passed to the original zelig function\n" "# will be forwarded to the model unless set to NULL\n" "#\n" "#\n" "# NOTE: THIS FUNCTION IS INVOKED BY THE ZELIG FUNCTION\n" "# (NOT THE USER)\n" "#\n" "# call order: zelig -> zelig2<>\"" msgid "zelig2 credit" msgstr "# @author: <>\n" "# @date: <>\n" "# zelig2<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: re-interprets parameters passed into zelig as\n" "# legal parameters to pass into <>" msgid "zelig3 canned" msgstr "zelig3<> <- function (res, ...) {\n" "class(res) <- c(\"<>\", class(res))\n" "\n" "# give it a terms object\n" "if (is.null(res$terms))\n" "res$terms <- terms(res$call$formula)\n" "\n" "# return\n" "res\n" "}" msgid "zelig3 how-to" msgstr "# HOW-TO WRITE A ZELIG3 FUNCTION\n" "# ==============================\n" "# 0. zelig3 functions act as in-betweens between\n" "# the zelig2 function and the zelig and sim function.\n" "# That is, after the model runs its initial computations,\n" "# it is often important to cast the result as an object of\n" "# the class which it is named after. This is crucial to\n" "# ensure that setx invokes the correct method\n" "# 1. set the class of the res passed into with the line:\n" "# class(res) <- class(\"<>\", class(res))\n" "# 2. return the obj (with class newly extended)\n" "#\n" "# NOTE: if the class \"<>\" is not added, the function\n" "# setx.default will be used, which may have unexpected\n" "# results" msgid "zelig3 credit" msgstr "# @author: <>\n" "# @date: <>\n" "# zelig3<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: not always necessary, but is useful to cast data\n" "# the result of a zelig2* call into whatever data-type\n" "# we want our setx function to work with" msgid "setx canned" msgstr "setx.<> <- function(obj, data=NULL, ...) {\n" "# send to default\n" "res <- setx.default(obj, ...)\n" "\n" "# cast as appropriate data-type, then return\n" "class(res) <- \"setx.<>\"\n" "\n" "# attach data frame here, if the model\n" "# requires sophisticated number-crunching\n" "# after setx is called\n" "# if not, remove the below line\n" "if (!is.null(data)) {\n" "res$data <- data\n" "}\n" "\n" "res\n" "}" msgid "setx how-to" msgstr "# HOW-TO WRITE A SETX FUNCTION\n" "# ============================\n" "# 0. For most purposes setx.default will compute\n" "# correctly values of interest, which are needed\n" "# to compute the quantities of interest. However,\n" "# some models will not provide data in the correct\n" "# fashion, etc. (e.g. computing a covariance matrix\n" "# of the explanatory variables may not make sense\n" "# or be relevant for certain models)\n" "# 1. parameters are passed in as a zelig model and potentially\n" "# a new data-set. The new data-set is used in place of the\n" "# original one that was passed into zelig. This\n" "# 2. the result of the setx function should be of class\n" "# \"setx.<>\"\n" "# this is important, because it ensures that the correct\n" "# qi function and sim function are called\n" "# 3. the data frame used to compute this setx may\n" "# be attached with the line\n" "# res$data <- data\n" "# if the sim function needs to make further computations\n" "# if this is not the case, please omit that line" msgid "setx credit" msgstr "# @author: <>\n" "# @date: <>\n" "# setx.<>\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: produces data based on the explanatory variables\n" "# in the model (set by user, not developer)" msgid "sim canned" msgstr "sim.<> <- function(obj,\n" "x=NULL,\n" "x1=NULL,\n" "num=c(1000, 100),\n" "prev = NULL,\n" "cond.data = NULL, ...\n" ") {\n" "# error-catching\n" "if (is.null(x))\n" "stop(\"Error: x cannot be NULL\")\n" "\n" "# simulate qi's for x\n" "# invoke qi.\n" "res <- qi.<>(obj, x=x, x1=x1)\n" "\n" "# change call name\n" "obj$call[[1]] <- as.name(\"sim\")\n" "\n" "\n" "# append\n" "res$call <- match.call(expand.dots=T)\n" "res$zelig.call <- obj$call\n" "res$par <- NA\n" "res$obj <- obj\n" "\n" "# change class so correct summary/print function\n" "# can be called\n" "class(res) <- \"sim.<>\"\n" "\n" "res\n" "}" msgid "sim how-to" msgstr "# HOW-TO WRITE A SIM FUNCTION\n" "# ===========================\n" "# 0. The sim function invokes the qi function.\n" "# Then, returns the quantities of interests\n" "# alongside a host of other relevant data, that\n" "# is presented along with summary and print\n" "# 1. importantly, sim should always have the line:\n" "# res <- qi(obj, x=x, x1=x1)\n" "# this enesure that the qi's are computed with the\n" "# exact parameters that enter the sim function itself\n" "# 2. the call to sim and the call should be returned along\n" "# with the quantities of interest (qi.stat) and their\n" "# titles (qi.name)\n" "# 3. the returned object should have class type:\n" "# \"sim.<>:" msgid "sim credit" msgstr "# @author: <>\n" "# @date: <>\n" "# sim.<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: simulates quantities of interest, then arranges\n" "# the data in an easily interprettable manner.\n" "# invokes qi.<>.R" msgid "sim.setx canned" msgstr "sim.setx.<> <- function (obj, x, ...) {\n" "# this function exists so that if\n" "# sim(obj) and sim(obj, x) should have radically\n" "# different behavior, we will be able to place them\n" "# in seperate files easily\n" "sim.<>(obj, x, ...)\n" "}" msgid "sim.setx how-to" msgstr "# HOW-TO WRITE A SIM.SETX FILE\n" "# ============================\n" "# 0. sim.setx functions offer alternative ways\n" "# to simulate quantities of interest. That is,\n" "# sim functions are called in this fashion\n" "# sim(zelig.out)\n" "#\n" "# while sim.setx functs are called as:\n" "# sim(zelig.out, x)\n" "# or\n" "# sim(zelig.out, x, x1)\n" "#\n" "# this allows the developer to separate\n" "# the different types of simulation algorithms\n" "# that may exist for his or her model\n" "#\n" "# if the model simulates quantities of interest\n" "# identically to that of the standard sim function\n" "# it should then only contain the line:\n" "# sim.<>(obj, x, ...)\n" "#\n" "# 1. invoke qi with\n" "# qi(obj, x=x, x=x1)\n" "#\n" "# do relevant computation on the return quantities\n" "# of interest, and attach relevant data that needs\n" "# to be passed to print and summary functions" msgid "sim.setx credit" msgstr "# @author: <>\n" "# @date: <>\n" "# sim.setx.<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: simulates qi's when additional explanatory\n" "# information is provided. usually simply\n" "# invokes the method specified in sim.<>.R" msgid "summary.sim canned" msgstr "summary.sim.<> <- function(obj, ...) {\n" "# set important summary objects\n" "# zelig models always have qi.stat, and qi.name\n" "# elements\n" "res <- list(model=\"mprobit\",\n" "qi.stat = obj$qi.stat,\n" "qi.name = obj$qi.name,\n" "original = obj$obj,\n" "call = obj$call,\n" "zelig.call = obj$zelig.call\n" ")\n" "\n" "# cast as class\n" "class(res) <- \"summary.sim.<>\"\n" "\n" "res\n" "}" msgid "summary.sim how-to" msgstr "# HOW TO WRITE A SUMMARY.SIM FUNCTION\n" "# ===================================\n" "# 0. summary.sim functions exclusively return\n" "# a list of important data, *summarizing*\n" "# important features of the result of the sim\n" "# function\n" "# 1. like summaries of most objects, the result should\n" "# contain a reference to the call that created it,\n" "# information on the class-type, etc.:\n" "# list(call = obj$call,\n" "# zelig.call = obj$zelig.call,\n" "# ...)\n" "# 2. importantly, summary.sim must return a qi.stat\n" "# and a qi.name data object. the indices of these\n" "# objects must have the same values for consistency\n" "# that is, names(qi.stat) == names(qi.name)\n" "# the return should resemble:\n" "# list(\n" "# qi.stat = obj$qi.stat,\n" "# qi.name = obj$qi.name,\n" "# call = obj$call,\n" "# zelig.call = obj$zelig.call\n" "# ...)" msgid "summary.sim credit" msgstr "# @author: <>\n" "# @date: <>\n" "# summary.sim.<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: returns a list of data summarizing the sim object\n" "# should always include qi.stat, qi.name entry" msgid "print.summary.sim canned" msgstr "print.summary.sim.<> <- function (obj, digits=F, print.x=F, ...) {\n" "# prints typically have qi, and qi.names defined as part of the summary object\n" "if (is.null(obj$qi.stat) || is.null(obj$qi.name)) {\n" "stop(\"Error: \")\n" "}\n" "\n" "# warn if name lists do not match\n" "if (any(sort(names(obj$qi.stat)) != sort(names(obj$qi.name)))) {\n" "warning(\"warning: quantities of interest do not match its name list\")\n" "}\n" "\n" "print(obj$original)\n" "\n" "for (key in names(obj$qi.stat)) {\n" "# value\n" "val <- obj$qi.stat[[key]]\n" "\n" "# pass-by conditions\n" "if (is.na(val) || (is.list(val) && !length(val)) || is.null(val))\n" "next\n" "\n" "# print the title of the qi\n" "s <- gsub(\"\\\\s+$\", \"\", obj$qi.name[[key]])\n" "message(s)\n" "message(rep(\"=\", min(nchar(s), 30)))\n" "\n" "# print the qi (should be a simple data-type, such as matrix or float)\n" "print(val)\n" "\n" "# line-feed\n" "message()\n" "}\n" "\n" "# return invisibly\n" "invisible(obj)\n" "}" msgid "print.summary.sim how-to" msgstr "# HOW TO WRITE A PRINT.SUMMARY.SIM FUNCTION\n" "# =========================================\n" "# 0. print.summary functions typically display the result\n" "# from a summary object (a list) in an organized fashion\n" "# with various text-formatting.\n" "# 1. for most purpose the default print function (below) should\n" "# work, however, various formatting, etc. can be added typically\n" "# without any impact on the operation of the program" msgid "print.summary.sim credit" msgstr "# @author: <>\n" "# @date: <>\n" "# .<>.R\n" "# auto-generated by zkeleton, written by Matt Owen\n" "# info: print.summary.sim.<>.R outputs summary\n" "# information from the zelig model <>" msgid "qi canned" msgstr "# @obj: zelig object\n" "# @simpar: parameters passed to the qi\n" "# return: qi list (qi.stat) and qi.names list (qi.name)\n" "\n" "# NOTE THIS FILE MUST ALWAYS BE EDITED!!!!\n" "# IT IS THE MOST IMPORTANT COMPONENT TO\n" "# ANY ZELIG MODULE\n" "qi.<> <- function(obj, simpar=NULL, x, x1=NULL, y=NULL) {\n" "# initialize values that necessarily must be\n" "# returned.\n" "qi.stat <- list()\n" "qi.name <- list()\n" "\n" "\n" "# add entries to qi.stat and qi.name\n" "# in the end, names(qi.stat) should == names(qi.name)\n" "# so that printing can be handled by the auto-generated\n" "# function\n" "\n" "# ...\n" "\n" "\n" "# qi computation must be written by the developer,\n" "# as it is impossible to tell automatically what is\n" "# the statistic of interest (or how to compute it)\n" "\n" "# ...\n" "\n" "\n" "# compute the quantities of interest\n" "# of this model\n" "list(qi.stat=qi.stat,\n" "qi.name=qi.name\n" ")\n" "}" msgid "qi how-to" msgstr "# HOW-TO WRITE A QI FILE\n" "# ======================\n" "# qi functions are the heart of any zelig module.\n" "# The qi function is passed information from the setx\n" "# function (via x, x1), parameters (simpar), and the\n" "# original zelig model (obj or object)\n" "# The developer (you) then writes the software that he/she\n" "# believes produces a significant quantity of interest.\n" "# The result should always be returned in the fashion\n" "# list(qi.stat=qi.stat\n" "# qi.name=qi.name\n" "# )\n" "# where qi.stat is a list of qi.stat and qi.name have the form\n" "# qi.stat <- list(qi.1 = <>,\n" "# qi.2 = <>,\n" "# qi.3 = <>,\n" "# ...\n" "# )\n" "#\n" "# qi.name <- list(qi.1 = <>,\n" "# qi.2 = <>,\n" "# qi.3 = <>,\n" "# ...\n" "# )\n" "#\n" "# qi.1, qi.2, etc. should be named in an easy to comprehend manner\n" "# the indices of qi.stat and qi.name (qi.1, qi.2, etc.) should match,\n" "# otherwise a warning will be displayed during the print stage" msgid "qi credit" msgstr "# @author: <>\n" "# @date: <>\n" "# qi.<>, auto-generated by zkeleton, written by Matt Owen\n" "# ===========================\n" "# info: produced quantities of interest for zelig model <>" Zelig/COPYING0000644000176000001440000003536412061700507012420 0ustar ripleyusers GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Zelig/inst/0000755000176000001440000000000012217153457012340 5ustar ripleyusersZelig/inst/templates/0000755000176000001440000000000012061700507014325 5ustar ripleyusersZelig/inst/templates/zelig2.R0000644000176000001440000000056712061700507015654 0ustar ripleyusers#' Interface between the Zelig Model \\model\\ and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param ... additonal parameters #' @param data a data.frame #' @return a list specifying '.function' #' @export zelig2\\model\\ <- function (formula, ..., data) { list( .function = "", formula = formula, data = data ) } Zelig/inst/templates/param.R0000644000176000001440000000076612061700507015561 0ustar ripleyusers#' Extract Samples from a Distribution in Order to Pass Them to the \code{qi} Function #' (this is primarily a helper function for the \\model\\ model) #' @param obj a zelig object #' @param num an integer specifying the number of simulations to compute #' @param ... additional parameters #' @return a list specifying link, link-inverse, random samples, and ancillary parameters #' @export param.\\model\\ <- function(obj, num=1000, ...) { list( coef = NULL, linkinv = NULL ) } Zelig/inst/templates/ZELIG.README0000644000176000001440000000000012061700507016044 0ustar ripleyusersZelig/inst/templates/DESCRIPTION0000644000176000001440000000021312061700507016027 0ustar ripleyusersPackage: Version: .1 Date: Title: A Zelig Model Author: Maintainer: Depends: Description: A Zelig Model License: GPL (>=2) URL: Packaged: Zelig/inst/templates/PACKAGE.R0000644000176000001440000000063612061700507015510 0ustar ripleyusers#' \\package\\ #' #' \tabular{ll}{ #' Package: \tab \\package\\\cr #' Version: \tab 0.1\cr #' Date: \tab 2011-04-25\cr #' Depends: \\depends\\ #' License: \tab GPL version 2 or newer\cr #' } #' #' Edit this description #' #' @name \\package\\-package #' @aliases \\package\\-package \\package\\ #' @docType package #' @importFrom Zelig describe param qi #' @author \\author\\ #' @keywords package NULL Zelig/inst/templates/qi.R0000644000176000001440000000104712061700507015063 0ustar ripleyusers#' Compute Quantities of Interest for the Zelig Model \\model\\ #' @param obj a zelig object #' @param x a setx object #' @param x1 an optional setx object #' @param y ... #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of interest #' with their simulations #' @export qi.\\model\\ <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { list( "Expected Value: E(Y|X)" = NA ) } Zelig/inst/templates/describe.R0000644000176000001440000000035612061700507016234 0ustar ripleyusers#' Describe the \\model\\ Zelig Model #' @param ... ignored parameters #' @return a list specifying author, title, etc. information #' @export describe.\\model\\ <- function(...) { list( authors = "", text = "" ) } Zelig/inst/doc/0000755000176000001440000000000012217153457013105 5ustar ripleyusersZelig/inst/doc/gamma.pdf0000644000176000001440000057251712217234502014672 0ustar ripleyusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4748 /Filter /FlateDecode /N 97 /First 779 >> stream x[[s8~?okqښ*ljLΌy%FI JHʑ3Sul @_,I(Df61ICb,ġ'>Q^%!1OdXJ8cT&OSbpO:Mգ5C$#p=2Rd EZ\є)TbD{Š7&J(TЎ D+bSpI!K4T'(IL4@WСQuq$a+KC8]UAB/ td ƦdC1p4vG5u&N:I_Æg@[(M!Š.KD*SQ)"Q.$4 l"íHTJXԟp`fKiWhY?7=?eoȼw!ޑu3NͶꞰ=,݇o姭dwv|GtR>g ȫr:yWErX__n^MG;JGaAI6j<糛rH^/ٲ:Y*y#ҵ:~o黳#>z<v{wJa^#L8[#[ }L&r𤼺*ʎ,\Nb\\!.h423%$-|_Qn|:I @̇C 0bTۢ\$b0V*s&d4:/oI p9Â"WÚ|Z_uȼ \'lֆ>b%+GCপfK(c9h)UC|YY1xL+v ( 3hGY͌riMfc 5kGD^Mj/\k0įeh;prP+!$xKhN ONjܖDz[FѢmH.i5HԮ bā=t8HLdd.F4Ek3YéɍBv撇ՠU7arB(9D"NK%c4tjL-Ir;K6&H"*EOLF*}AZ0#WѬgR\GXQ#s Do9R%BhXEIrfbjH/-t 岽Bx'e%񸠭/b^.>M|vt74~8`8t{',u=,`|$}hI@ x|y'I$Nr~[cU-u}ߙT }G]"9GXKk KYb "PTPMRAz/91&뺷-/aOb=uƐԻu22%@vs Lj|OV*nNe뿰ۤ@ͦքj d~ {Өf2HCK㲄[bT1q\N4$VAlѼkML5zZ"nm"jm4 qN*6tP<[Vڒ{N3{@TFE\xꏖԔzmJjJ VF=z9| yq~dl((i[|~R"sq-b݋*#NUvUtc㕰Ei~ͱ̎L<ވw,ۥt Q QWZ܈b ~jɐdVAJ{ HhZZFDG3+ 66s9χqyoDw7y{9""8i/US #Kmin:/+ ) %e-)dzXHQq01'o/GfJU4k&վkR%:Ԕ#'Qˠ܋jn 57mv0gfS\5'{Rm0ˇSq,'+}x)NO{_Eh~**:_8Ee>BUX{I g;ΐq-"[ŢY13&]r*nH =b=> ֝u!o{{9Yt˙isu*1=ѡc|f,bX| pmz]nƂm6wl\M`vKF EѾlK--ŐFw[e>߄FLr\1xy[@-8Z}T<󸧟7`3Ѱh_lL?c[70kГN&:W'43 f8g.QHチяÁMWOg;!pu~Pc̒nHl?$m6o1޾oCџ'muJ%~Pަ:9R@1 ˪Orh<.+)Gmv ꐾi:!! [|{n$ͽ;ϟ~=Q)[m ըVP4byIAJd5ImI I!ȫS]I~Cvs}nc6DCʄuSł>&GJՔα_qb;-sѲ/V_%l=J͟OͯN"nb>/!eR:#ưoΟ^ N.Ʉ>y8) g+Ks1_j 4!@G!"4ɰ ai(s@Wq8|2Q;|gAy>#|ೳgzYendstream endobj 99 0 obj << /Filter /FlateDecode /Length 2383 >> stream xY[H~ϯpIj]X*n( e"<ȶ<6-dgơj;֭ɤ(xqKj;޽7:$YNVDkU$7J-'?~;sg4N'1o&QZ6\t",ͪ.;6-cG+\w~v?It]: 6&TQ7fxɌO1K Uϲ#h3]d,rl?G&"2]OݎaY]EK|[x4-dD6Ļ©Bx-|s Ah@}Z'NTerÓmΣ/o=l"'2X̙}? ] %~pӠ M87<3\Б{p,i*Ѡrx8`AV,HEK2Z_lA/1pD{^S6`ɒ^<7"MoK4;!)t,[<カF.>I9N,Eky)]HˁRn/:h21I{9+|$I^gڈ7gxE6?{g^*z)shj,).%)c.}QIk|F(׮`$aRY1tPYW(v~ ٗ˜!ux³0"IU(뱱 pVqpqEJG{+-J*ˑR>Mr(vbs>'+ttu]%>m//+b^3Ms bV!ȕq"wBT3^MG !34҃}&;Eml,صs[ٌQ&3c3܉Jp,lzXLPj1]K|̂.ڏdVqwСW$]>ћ3ƶW5AG4UFzO$#%ǗVIxCEf(TevqZ1sm%~yDAC*b/q=Ke野coR+Xh|:_X4t%9N\Et#ףË}=R(VDj,B[ƪ bMW ]\/`TQ$TjEޥgJ|0D@= r3(v܌D6Т ps;e7!XwPaۺ,T;рCQ/ZULQߓɘ~p{?Ce"ְ@nrGOᢧo&&ا5|& }uچBlmf/PUSFSɀw'*ϳD?;| dȈxʣkڨ^frT/Inm%I奨ٛ˚'1Ұt\S/ASe< T'G5nz rj*FlPY@k~@%F4C*늛RJ]B&Z8Z$qrqAzE3)̣ه %su= !p4B{2U!ht:}ѼL ((1*Uj';#mAK1@2@}h?{j7Fm99Hk 2}Ř}jo<@gTlڜBc^sQg\HR^<!+ob`#B3WF\UI^) ?yU}p{endstream endobj 100 0 obj << /Filter /FlateDecode /Length 1647 >> stream xko6{Q ՊH4ٺ[=ՖqGQ4h} LxaQFHq;Q5)Yf\ѤK/ %sic=a=5,qb),L_yl,o!8}ZC_!8qgAT܎T6CFE %U8X Oswiώ=0$#! # Y|B`Jf@rk2VU=Uyml@[q\.^?z1ndWT9t Rkh^MgDk[y(k^7V;a-dJUK*>` p姛RХO>VG5'>ٲec' >OcQJs*y0Z Rkl0V"&|AŘ.p ?P!k#56]3im:J΄1M釅wSK&ܥCʬԒok&N,n]Wt *u{8ͼ7oco|ia?D>:ϭ7~t܃)PJF.<nendstream endobj 101 0 obj << /Filter /FlateDecode /Length 630 >> stream xVK1 W t\ϸJОze6MJ,;Y?K{ Y}Ѓ$Kɏ׳ыKc S*Zx7BMMu]C@DiǍUpEë|RNTU 4ޢQ3X0n Ò˂ݶfE"hC (Q;1gEbh01\p-WR\p-W/29$}Pf(-<. L; M;L/<͕DrUVV8-Y%O-ec.qu:<1j!!5pFiD&z`!\>~cYx:)`hbȻ)6"xJ:JPA𝢩ai%Sʫ2ߊ=S90ET{ޘo 8;gR˪Nn>dd'_TtNH_^&'Gc N50 z^? } oXbY=xN͙v7B[[:TJ'Fb;Ă__i `b| ۓu?a_;M~H^|y"(MgR8endstream endobj 102 0 obj << /BBox [ 0 0 432 432 ] /FormType 1 /PTEX.FileName (./vigpics/gamma-ExamplePlot.pdf) /PTEX.InfoDict 38 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 41 0 R >> /ExtGState << >> /Font << /F2 39 0 R /F3 40 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 15138 /Filter /FlateDecode >> stream xgu=ҩۮ / ĂD v;S{=azsN[vN>GSƧ4?_|_O>_~O)t> ?H?&ɾǿOcO6>~MOi~X텽p _ 鸯0 ¥#/Kq}JKy @Kz w8x )+/bבqOGx ܉#D<#؉5tA_y[#.((('bY/TA9'/!Jllġ#97 8G.hRG.w P+QA\(MU*]~)Al<0%J\;2 M;zAC*蝽ED/h轳7FU^ƺ1nF4Bማz][%zzwjlD9Xx8"qλ{Zi{硞nwc3ƁNs#@mwՉ0;̺{]a$zA.!|F6*8ig6 w6:{ǹs.zwMtNz{/y l(opSEO%QތAtЩiN q xkB^C?{y&wٛ{y+̩Z^JMs(ϫawܛGpg{zἊ;o&</+*oL =MSy<ыIb]{?>. zro|9{_>5#ʹ3gsJ|Rwo*"}3߷ޥ ]4͕ǚ!n}׷ngcCwM=|?`yUm[(ՊfݿާhߝΘlx]y7nlr{;^~hX|^nb oy6{y";{W?(o=+ ;| WtÛ[{c)kX7/v6Tfmo,qlGcGP:{ N7O e;Wj6W#ǟjD{ه]Vlz1pc`=[>jab .׌.:׳8&cyrP{xsK2l#͘ZY^=f}<œK?9tk<8ve}OЃ}hг(/q 샃^7q<7W4|hw׶bHXϛQrFbykgXWsy3(d:h}<0Ӥ4$`fi}|1%Op>3\fٵ6s(}:w8j9Wno-+xr^Ҟ`3Og\ӞbsƘc>KF>h :`ο108u _Xw/X6 N%*Occ^` _x%z* gͩ}|,o`|?1>hO`gnj(8.ZP"(eb#v!-_:}78^!`Wu}|wFx6qhE_lj^h:s|6c-~{C%<A;z-;%X}%S(*< oXAē1XUDl1ܫ]~p<3p+߬>Q"?X}ٷ^}{`ߏ<'ExfC6WYw}ܞg@;?Ί~=l=ΣuHy[yVǵhֳbl!kEyg*\YrnYrY s^ZhT♳c{2"9,9GyIƳ=ƤE):,"扁YctYtͫ?+lQ0>9K>޼Y{>Qoo,:|@}soZ&(ꋣn^:Z g> $.k}asK-V2cgWY-짺̟{.?7oG} v 5׌6|пw߅o}}-swY9d_Jc2po翷#> ~'^wwx~ʿ/?y 6X@k}ww.KttSg[LFKx6\ǔK^aŻ5a$wz}E/~}__O~_?~_r߬-r_'_^FÊ_׿?C>@ןl?~ ×m;YÿndKO/Sq};BRK|;z'[%yr5O=zrSp}>Q>qH8O BBeq(p|3t-TK 58P<^9r*=C=qsH84Q&QoY,YTnb2żdQ5)SyT=5ĚG$ּx#kSyUq̣wͣ~yYabk:]l{XOUX< +Rčq]_a)9BԆ"ףg庘2Dk+PĝrZPR8ڣBK ֔"Kex)n,UߡܭBJ+=߬Z[iݺj+qO}JC}l"y:΋HՔ)JloשCv&=֥+j0Q3W5~gܓR2kqJUc{[Scy83Wɹs]QBx{vٝ*EuQŁjjXMq{!:lfV%D뾕I1V_gȱrL*Y8K(իɸ~͌{Ε|qϙ8tV׉PǐLܨcxyPعR4ب:F{N>?M 57*fθgN>(xfcyչQ7xH7ÜB]ƿF0G'T t>έ<:!!P/P?\'"Qu@UʫKŝ:#ޏR |=o= ョ<=(o?:Z:{se`|0,VOb:-eb|=+{.O'7gq9Wf.Y/0>XZqVy<3]D棋s9w]\u-?=1Fyl]'aQ+uZZq^j<|ӆ|x?+Ӥ%jeԜQ>;۷ċgeq>L`(}L{W~U&L3Xt>eF][MbL5tf_6YLkS~d֘95}c O/LCbXP40쩡x&*cQ?յug9T#ITCsL$;K=MachjF[Y_dy?~5SPc>_1KcJU1+$̪C .A&i:-D+k5tZ::6Ml-tZg{>NKi:-.iqb=tZc֕_cڕ72Z+_51tSJ8Ć:-+u%q>uN1'>X>)bڒ{$,S<(gV0QN_/b}%tZtbYGNOb}贊8tZY,go(#KSgu< o{??yY<%f 2F*M0qGWvVWߙ'/t*Ǭb}LjCpK]ǿIZ4 7ǃyZN3a+tRΕCU5n`VdbJUo|~no0qE{᫴8;*=s[trċDLnYtrW_t*xȄp4YK >و2ʅ ¼(qYm(4sE1zXYtrWx pc+~-# :|9q Op~×#Z$:|9fΗTR!/|^SXcWxEQas{יE^ijO×cWG,+ d8|y+씇W@ r_I>]tD: ~Ȑ#JtrĝW)˱/DNU||80f1?_hU2=_JpFu+uBApٱҫM B&:|9 bGj:fف- |Dy'$F>1c:|9fyx tC`ͱ;rBo? ./R%Ҵ+~ wj׌_ hVHת޹_X×#t>PPe3B/G*W2āy7: ̗_C_FPtrlN3+,t*9uuN$54iaXr列_>FZ؅qq:GF3JNȯs/qByK8×u.^^ ^:|aȗ(/2.\Ф| i:|9a _g9aH./2_-ue(dz:‘_xfƇsNq]8|htrC"9wI9|PtrF9a*p×sȯ3w,P_=MRRYYbr9||D~"%E>E<9OZ8 gq703er8~E؈NA_*^Q^G/lrVwtrf}8:h8_8 S_`9 _.q˙)2A/pc:>G/4m-TO:|9=r_=w:'S/ά^_)'%q- pB`_,o_yIi%/Xnp8x<{"__r8_ty CD/p__!f<>RxEx=|_u12^\֛oV._/.6<_LJ8Yt#ZlObd<)b7k$<9l Ӂ_ \ōC :|!B7ċѫzz8~K<͓5^ǟ^Yq_s?/:|_tz/5Orz:|=^:|='_M_tzI>i6Kr|'-&aユ48;!9ߧZユ *إ8^xU2- ke~ ZRYqxolz֢<95e\Wuq^}t 0c 묞| 5iA\5v їD;;y";yG޲=̗jܽ[/^a}~ϰa9ߙvz~'^}A| {c'RޕXԧm(/1iXb\o~_~__}M~QYyžD[bC:*ĊS=j^b,qLXJ1W Nh-CPơ Z Ze-Vd-nRjż!\V aCk1nXJ=ֲjqjlpV.s%m-"ZeZ BSJ|Nb%Rd-V. NI1XegZ7Zxh-v6;YABVbF MJZ9%1SEbX!Z̯:}[ -\KXtZk(Zc5Ek1ž 퓵t-C eLe-VkAm,e-buDy@,/V}FbjB$k1?K\>ZVZŞb.su\"RX]Z "nTx|A( /k1Yj̨kYfvYApuʃa5Ү4Z 94\b%,O Ts7Z9`xx`!\z`ArcJqaVwa-J;sKk#XaE3; ](h(JKk1e-bNkAC<((a*Kk1cKVbyzLkx^$}AbvʳKXusX jzLZp7іHb>b*% 0@k+)}bG k1 h}kXQ_e-\/MܴcZf(Ű}YlYa|Zf*pYYa|;C <^c72Z Yϼ^cy Xt2d-vd-1-kAkAVǛ<kp],kZ |YBYaqYao3hkXZ,/}LXbZ 0YYN^bgAHb'Db'.k@'kPIe Z,ZūOyVuXNwy#d:db-ȦV,Қbp 1JL ; ; ; ; ՘LY@Y@ؙZ lz-(Z,(Z Z'+>'?= Z^W@bgAbgAAb?Xd-vd-vd-vd-v d-v d-_bg@b/ 턕X/o^ׂ^G9kʧ؋WY[q={sh-vhd-oZ=σb؉'Zy{?΂ŞbDk7oM<̓5}q +x]ϊtssqi-Z=χb|i-<Zx}nzh-vq@ N{7Oq|pq+oklg\.s|pF,17ϻ=u?g,3cXoW,Zyh-{'ŞbLk}Sh-ZX g9X ]_i-vjL ]?i-v]łbXǂ_VcZg7bXn㔗Zh-uo{bZŵ^p,k+1>8\ͽy_Zbp[oi1>8. [1>88\֛myg}V:Wy{`PI/ $<ϲ3>3>1oZ=ŞbOIkZi-GW:\Z\ع;WbZ<Y'k|e-v^ܯ%k[y-؋o^| d-vǰrJXzMRG!:hk[-^>i0Xe&}kraƘ}ƌ"Cg -j-by{{ [.-n-t.}܏/߂W!>:0񑌝+zgn52V]!}sRRhN]}ߣgkਿǨwoϓ Cah~ \ESi0:efΖ1sB6A%M!XĮcy6&_Wj1H` /N rx.-d ˖8%9G7}]XZz[W vNo^j#L*LO|BxgU3Y .&W|sċ&ŌՇ}~ab!d\Cȶ<4|DmdMdF=ڡsW5::}j~ ( e1 LΙf&&g1-Q-Knj$.-y7`$ʃ@1/-rC@X{2-afZC@`0Ҁrr@g20eeIQmbI#؁[`7 ,+A7!ߣr63+/A3%ehMRL#SdEV8-W6[ ZnddK }RJi%ЭLh ȫLSl!QPjX+@b5n1by-Ue 4iVCVTom!Wx"rӇmozέ)yBeJ:.&zpcLL ȴIE]{-+d3fJb*s֕H[yq_1\@ۈj ~|ro ƓŦ|lFr6F60Ƕ1pi52iݠ2EAҋ.ߠiQ +=jAk$.ؠ qyjMiĽPx19~y?)XtGBqGGaѡNgzŐyBUEuG2W ፇydZǺgfnmFV46jـ&hq|ȀD {_+Oj%;lv=R煓Ⴒ0Ř;b'Bg| '"走v VqGKVP}$$qTG :ۑy &{Hk>qr.7P1W_ۀVvd@b{JR'8S'P|'XcJqXhICa Dž3#IwH;ٙ\1x̙+Irܟ+dd*4R"9+S0* w 'qɰv TzGhS|l79qDoa\M8<<~+)+)+a+`)2&*ICfGgL3V+ )IA_fIRQ9_TĺH EގHcZr0ۮRKf}r͎ܘ3JIJMtc$ܔA>: GvEk0- dFAo*bK6tvEToa|ӃͥdN3Ő2U 9`038:G /B 7ͦ âT츟݌ fC]3 3#v Kp-cIQ<ׯnڗ#:*zo!Oo;MG9Vz42BǛ~cU <{j]\Nkv}EP[71J))۞T1TcU%18 c5ĘxPA)hz4 25:r6.mLr]hbW&ǷaͼdXaT&WQO Wh} 49RP'ŷڑa O1t.Imk TK>YHZ DZio-^`c-6kU*e`N?"ixvokf86FB`zFG$; Ϝ%-b'H]@F'L(+Zh1w`E_s.PZ La*$g('F%~D\~ _wEfhzY(;*:xI̽c_ {M';-4Ntxg,q r_,b:R +Ba w御N Xh'`;:M-dYY*@)Dؗ9 Qvŷ)O)C<C\N#bwd<h]9̈8_~O6V\ˠ8[?#*K20NŊ"BdORo'. q*:.\ ׾=)@.u 9uNc 4Sivbѐtjgj >s}nl62 ޜ@XA䳞Z6I/,Z'bq cDB4{#WƄ=Is2.=ޱ<ƻ/{On* omEkd|F'c<K)`(Ϋ2ʨɚp>HY nuB/\Z-< !X~t˦GV.rJlj(skکƴxzTcwX@Cs!W.UCϢzqsA{~=H]Xm{a.<.cX=j!ğ|GCi׾_c5g///ߕ˿cl&+9|߅ݵoyCY=|::2_Iϯ3ˍ0v_IO8}=g^Y3W%VJzcl|lVC px,鈣/]>?|_mH7\#ui'|0+գ {6HZoE5s~ꉗo  7; endstream endobj 103 0 obj << /Filter /FlateDecode /Length 1245 >> stream xڭWKo7W졇ai)C$H9l]XZǒc+JA H"7 E *$Tٷ3άFG8>ͼpn%^k3P  VjRY_)kRΫϵqWO!&Kɗ7rI-Ly]HH҈̌"KR՚o&6Wlŗ&_͓neof{7-߮YnqLb`ު .Tpe/BvEdHeͻ5wn̠*YwtX5RK ES&]k:z{l#yWc: u%OYN0;C'v{]j/}gRnYi9&I]첌Cj _a3Ì2{)lglुHNCpolDAe#{iDNcm*zy:Vi#K[&)ˠ#=^O#es_x5%|uEWT3N^w }hX9JqT g!QNP D{+%o"_}>liNUAO>G3-{F7Q ʁnV)w`q2'} 1@d7%#R1ѡSXN6rxyKP ({Niendstream endobj 104 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 105 0 obj << /Filter /FlateDecode /Length 2667 >> stream xZKoGW Hg%@ ^vdFHf HV߾UlJ$E$Q]絛ߝ|JWE%*}qvY([l]ڸlY97)^BFs5k c\V;xgkxr.E:^ATΧE~O\d”BI*Zt-z3px,dpV;Bd3M\Bi++BHئYk Z 'iuCzEvӢR})|V/By YxQS /vlBѣAH7+X x8!<;_/sn!m)>tee"ZIP*yBYsA6ybN c<;6Ut#VUFFnjh[gjs@Р Sd"G2]RM#0:鑃K#JLT/VO-hj +7]`LBI:)~L3s3"qƒS0Gt2` Yd9*Rޣ^PbӠ0B^gE* ,d-r!32;Ѥfc[ b0ڌʤi+~R[JBSq(;үb0 B}@9,TuPѐo/X~#%MS\FS4'an&-tGIr쏛yQX_EH;U k[530H!a@j Ƶ=Ά.H"?eY@VٵZU23HZOci*HpULFBJP?6ti.'ˌqi=erCi61~eαsy_sE9S͕`( m/:3_>&ÑiZ-8-ڀ*yP7w$r$(nmCFn3J3C>/BgLB:c/—+[EuO8rXd]|{Fj0n;е32c00UgQzxn֝f,7$^Kcs4xUE.#EČ6Eʢ_w6ܶӪD\;GB" _O<KOWN彮W6Nn 俜% a ̴rH^Ӷ@]XL--2-Ae]&2b ~\ߥh)ǔ'W,Gj7K^]ml5\.Z>L66KpRfMWos#HwPvqGN0PکfJI~7O)M/мie,ڡ8A죍*th:DiMx7&\$mn8Ԉ9P9oEU|hw43$tNbPB?2T}M%:n'Wڨ2ހ H0Oȑ+ ISdឌECx3ӞE =Wbח$x9q7v.mG!ɺ}.8H@9iCl $t{=Х>endstream endobj 106 0 obj << /Filter /FlateDecode /Length 2458 >> stream xZYo~v_$ڻ^oJlj#M$9$󩪮&Cy죺Z8})g(sN3•fg&.fLs_6(E1s-<+x๢v6'-t BEr{EʗHr 98Z^?HൣORYhj;T;&v9I?,e&RDx&<$Tep㤻YHN #ipyKe4.2&"Cҋ0<˽$,$^5mk~9o ޝ-;Q*b&2k/5sv5͙cu8MDSQl\0 ~T΃͟u|QxeSyj"Ij˩^[h˻]wf$?Wx 7"!jD5%-Q( S÷ߝ8K3s' aFjCwKwQ!]K/;v[(F#o ,29f[Fxk^s*"q.iٛY|cKBThm3oP#[pag4hWm"A!pFA/'"}fYp9!UIiUQ˪]-I'9 2Tǒ7|#Br +&e%pt }q%n2'od P<3 `eCŠiץjZ ]U[H23;M,hy0Ԍ%ucdcp& >]tXy]/oozUY G)=DCl x}N6m d.X< '??L= ޷ʇl2 _\R=w,P;`4 :D Z+|7&X!d8Z Pzd՚i}fXZOo4=@$Գs0CHM&0V"}x~fey!&#fBOpC0vX@+AvHnEJSTaX&Hii1KWs!wc{, *- Wj=L|@v!kwc6QgfuOfx;5ѾD S]@ɛ}[,o@mK͍%߳kyG_7-S9j cρչ.e")[+}nka:=Lh=z$/ҀaҗE( mҸv%δ)w.)2yOկ՛Hu;9)^~,?#3+.X@jIzi-e&w'el5$JEh7DbjL7Y>%.|fJ+]SS%AA}nCQ"*D(KW\' z"d9z)SHuLN;P3j֎{#MWWv\]B3ҐفtI} i߃]ɷ>J!^qy^ p?=z_rnn;6A۷ɏ䁃rdrCQ٩t4_| ~ |O5k6޶v} 9pp; [rl;MPIedwv&qNKe*]LVt]/ޞ/h (endstream endobj 107 0 obj << /Filter /FlateDecode /Length 493 >> stream xڕSKo0 W(jl X;m;( vߏk=t Ιf@ʼ+MU̡ܵ"J-z|s[eAo<,\W *g{Lc&]:\E^uM)i?pH'|2֢@8*qG霈7״ua` , [:NY=̭5A~΋x<"C%p=6rc*ZIu0&Ms-N助8mE{O, z p~vV[ B&6WZMs)|mgon."=~>oMD^?{XW&~Odȸ;M]a r`-YHĻH'N{ԉLc*103eat%6T1 n_]¤K?ʀq?S2(tɕ>ݕֺ/VV۠ ě;"%Wendstream endobj 108 0 obj << /Filter /FlateDecode /Length1 1905 /Length2 13680 /Length3 0 /Length 14865 >> stream xڍP !w'@@H\$xpw n{pe̙սUlg~)ɔD& I= `ffcdffET؂+G99[ye!B^e@ȫ b `app23Xykv] Y=R dea y=翏jS ;)X^O4V 淄@xvΌ`' Az r9P(@QcD[Z9G6@W) x=&#PrX?􀿊`ad;_hj s{X[̭lA%IyF;7h ~l&H ldqft#a^,ao&CO dZwkcv/273 HF/W?2  9@LS`JcezAr'׿YXfV bkz̯`넙m=1L*JrtQ[)* vx1ppX9,,wO2Q _AE<>3%uoF.cYze:.Pn5gEfW'nerr)[AL-3Dkp[+{2 t;gjz8OuH {Swf ?gh^Nt$?$7b0L WK7P^A&ͿkLfq@@@Ζ2a0 9^-̭\C vq+CAn+:1 ھ^RD!9LJ5A*_oԯa!_3X:5e_%vW_ 㟜_ r r".́MkU1 Ph0x-8{SI'TP e V׆6k"<>e7nGr#ٞtT dJ;=#:.Kwc-P*o/;7r~s~G^}5N$Q;O$-"^O4{P6ey֤ʃ1>!ԙ%Scjg$T?ɱBܧF B<]=TCA`{2|`,DߗT+-Mc h6iZ1E|f\Jک0[$IIQ`5>ٗDn4ws3|??bZ,IG!AtL2Q(!_YM!|j2 5y.-uUq S L 5P|tM C%*@!sZ_:Px$˔͗lQu'eqmwrk+3by<C!(JpT:f/ݵGX}'b?o$&OhNjUQIQtqm#7GYCݷoJ\}6d$h}]fxbx.PF,^Xl;b-zqkJrlP"e;9a=6V߻ѡܫL] BgIO;"(~(R$3ȹg $jbҍfo?qf|u,LjgZx3foC3pY:tVv1to~{h0[6k*as~KF`Ek`z3g [)WFv >:^a-HQOnˆ~eu5taC($g8ӋLo#,A8-JpNҿxΞg%!v'X=yb֧ͅYK!{(,j%x=yv)9/biS Nix K  {vF O(CZ;}. `MC,qfb07٘U)>H qZV8 "hBogc|CaLt$ѣv \ȸjig!}`G ]C"dyStpSQ:eA?">ffDRQ0N!.zu3*cdFIWc$~_ޕU.sjF RF@9Gt *D*G?X]#go6vQJEp=-|^iT&Dd=y҃5'ROs'40Uʾ>idr*GSy΂0myE A1-x;$a:: aM!  !3Iq5V0d.ʧO94kKr9X[+vS<(Sd=τu^~۳ {Rlpy_ zq<ǰ"/~͗Np-_{;K=.50ق:ĒˉyiYЉR=x-TPTje%hDQ)jc[MݏG+St܌dCuBq}]夜HW}ӥ)=F9J4 tʗ |z){A\<5rIYp2Yz;ygM쁂 vR1gVz.z,L! ݤ0Ue npKF<Rm ۟,o_ ؟q8gi 8^ !av4Zr5@)en?fPk2e67~$_C}h{~X^:rw ov5|naDå8~7ְ+FNG^q#  xgQiήzZr=<FAfI;B㸱xAgR;^!>G ?s @9ܽb;j>;gU1[LLw}VNhhڴz?W 1ctRM7l*X62]|I*]F)4u& iÓe]'HF,*o.PYg_2?kO)|td՗ [OjY8#"f#A+rrՒ`*ޙ_0S:` QQytᅕhk%+h.TݓdXtS;\g=_)OlHg?ٝ'T+ڒQ,d|9S}!>=Ӏ!v[Ҝ{Di߸O]>LرS, g1_ib`hAY5V!xwõC-R~Vxz2Z"M[_8o*,0>Ka0+:s\/@ɓ^D0DCsY> %*s}ehش/0Unw0nR DF~}B,Pl hCX+5[+bjg,Cn9GZ ijޢEC52`iﳖ\>Rv? 8+)fcvHtwN#,\%?t6J\4Hfͤ=5k" s {x c%Nh{d,_[ɑ}.wv7]p4e汲![;o||4uj"׼ ?C axRmɆ9QՋW1@er tnJ\ΪEA1Ә9Y yu{TE>$ȃBEt7bca2,;T 7:MozB)T'JQZ Ke5/> |l_j01`+"&؇oڵh5bH!sjFF RڳwtR9FNRqKk@ǥhB;Yzo]kMJ1"6T e{46^< 7Z|]O3eߘ |;-"kzhoF,>f^"+|) \!V~y6>>ޟ.&0ίyB4~xC\ksg7Q76N^"mpy#ayU ֓˱…w/o#[XQ. OԡeisT4j蕲&eNe끌rȂbI\3,}żV/;.5(v]+ Ta>1Ω.u<"e,NhAmx+;G7?j; |'ԫuM1QрbG1g2j}-v]ƙeD)ەMCaFTKC ۺ×'n qGv4=6 g^DIW:2icNx ̻oȳy*Oz/9rb6P[B{6UH(4 'RUIdPHUu ^ZfRkgWN.(-BgU?8?+gPDWNh*D!I5P9܁C0vsh`m<_nNCmmIrO=<z]u虢cF Ck7C%anxu,cJ" 1Kewm+}VDm2m $`[,45v@a!ao irb W$r(jv T4A%OZ|}tL$_niލHR(' DgAa- M?[laΖ߄OrR[,):S$8Td\Bbsg_2"w%^fXжW"Y!)ADI7xujRӀ^nfjʩ 1D-Q\wHYO69%ͭTx^r1O}w7)6oA:4cCC.j,!k}Yu R*Qz`;ƻzY~yJ>'+|;@o&qA6M1룵Dc@7"3AQ*E3ɫSkpl'`8逷s=N{Mjx (Rr^堿xz-ܣ{)R*/-M״D'HrЩF*.YƩ|`l&"'mfKRFM)"Wu1W bo|)ME1gKT1812OOv\ëQ=Ow9a͆")!Ӏ'8J`{*-n$n/>5%eo6z0ѽ5pL‚'h6h>6uZxFA8 WMXFa /PZ"~ySs9q).%;rl,4u223 !1XvW<؃z=l|qv(X)fxVg[lEd\6Lj3mGt c6H7T:}wq_%ξ-AM eBfisgfo1[կD݃}6xL.]B QX- g\ҨI9Y6qwAtaBUy(vflfQ⽂8rt^E JKj$*MsFjMN@{,9 }=GU@"V@P>9Id wwqu(,~n]ʴScݶ"I=*o &PS&'gWըɷn0\fP9G9F6(6tw#A495=zԼEP;> 'ݩ CX@|@n~f/ϥڏ;ݳGÏ G ;^-ٸ)l% #JPQ)zƅpQM$,1:Z5 E/mo'#!@3Q:;~aT3 (^ҳ-Fzs[F hp)":@t!YݧXۥ7w)NLn0v?kM큶or6~7=x.ʾh{ʐdj9vCa}9-CR{W=dqpYdz]nK&WE:CXw̯> i wt3Ca/hw" ):N@@ʮFLtio-e[K$r(<[0 'E-Ў5OD !Sq~(`?'Tb @jχ5:SE[`'$=n㷜ːNNu8ZEu$~٫ qf]u[Wis)>#e`KW *d{H*$QJp;q3%J:Qf@?ƻ,}jGHm!5AUQy/W:m:Ր` 48V63*m&sfE!YQ#4.iЗQl ED/OOj+Ry;b~*>ul|78~Hޱf<O{2Ni{vt(#lv[63-s6=ڼW1cSQD:t&,gƴ5Ow~^95J1g6´VO9Seu|#jjy}7WTXL6`+~:3f7]PA 9w 7:.E^ >r8&:.qơK6/* L92ꔨp"Sԕ4Ʒ8!uxM0Ҁx.$Ɗ|re3A VE\Y|=Z~17BaS>lUy,s3za688FH410oZad_Oߘ4$A>AY<ްY5Ǽ\ 7?%Nz.VQk.~11}eB lE=J5p=JVvCZ\Ӑ6B/-o;^F HeV#V7ˑ4|U] #1+<{;}$m7"\X* 0ǻ}p SS%-@l5itC H-8Q&s4"{}#-8/RP0[&)g{\r9at 2 Kg 謸KUy$Nu+ۭں|5uLޓJM=W[ª!N`4]Be> E˷wko;9p {W^g؞;yĶo~aK$CbG k_}m&Yw9z>3at[3utj踅.|Zub+$~ upUo<| 6/qc}X6ER`18TA8_`Ο_DlE&8ax#W-ې|c';8;m1ӣ?@j}s+R,rBJ!RB:5\ce^:gXr]kT]]O-;qᣀER 744m׵1}1].V-m]H-~MKBnMC3]Eq$#eX SF+vo%c`؎q&7)IXs gxLfEQO,$LOCwByqA1 k_DC0!,iKd;,oXz~ypnה%,NNZ5j?A%^GawA28oM7م xDSIifg*\|6:hp>$MnF\ \/ByG|EZ! 92pct%9Bgg  Ϊ t?;X=hMdpT^cA?9nqJRċŜes3aS"w|/νQ C{`:[.*TĶO% `-^bM Y#s,ॸ@? Jb??]:IIJXPj(|T\tfG_*D5ź/gvʍWFgd[ ~2-=ӠVIEFʦP{RXu`j, L [!o=NĤJcb}c2psVԲ7#_<Gˁ 6.Lw޵k./a>H>{+13! /j G#5&0a5#m@sE:yp"W#Y9١XMqB_hPD 7e/ R@5bU`^抖RP/> 9zyN(*0㷶z;'2z̛o5NKln>툙eG?ok[({mKvRlMկҹ=-gp@U7ӹgxeZZْƙHmY)ߕeEw4֜;lD=5䊼OT7>IepL}~&,y qd"UV0c\񻍳rԈm_kb{(29~} mHo~?rNݧ5mbYv&8c϶DP񷊷|=m?:+rG_i|G6拽 $!:=nD܇jq3<$/P$U{=8ɦ2G-e߅?&KòxccMBYٿL0׮D< Eh 2olC}AdYY_8Gz\&q/#K@yQ'TL0V7uuPSYZ*C|4*E6 \*d2/˕?tna)|3ӷZۮ(LXpPk 7D?phSI Lx.t?xU.p-%`iM#vja0ҺR:JTG:7PFs8f(mZ5gk{(d2~杳tz Ie" M=SdH7,M[1bL!:lW#WƮq75E!)וuhB;cTѸO:yHP\@nMg?ssOFC'( tSY:U! )־Arb.h:mP%T\Ipn120ȧ;^,AOƂ qdEfm1pq#:u NZ _è}jCSZ0 2zF_@HMq[2hCuFw=ZSˎL/@M˜*vCoG/D@[ߪ "dK-lwEY5׿kXm"f0K>,ц⪶I"kjI`[u#rDoϯ#H=sׅ >׶tuP9T-|,J{knv!+,ܽnؚ^&ƀhX9,"=d}f*x(L )C2lnvn.M}t%g J1[w`s_ЗbHt"yvA B!N 7tb<&fP ftfreVOy *Ax.]'y-gDtB7Q8?4ǝ\#2mWREnk-dzӓqtkkwj\$ (xXANȀm5lb~J!*d5صo}16%àFfKWA^u9 MӾjdavUؒ\@rɔ]:&DM5LۂogmOP'+.p+]~(TD8꺹S-s:${1\%󯥺0m.cw5TkB7*U=~ix=BK Qor^g955Sah8^[E|']3̸[}MXU x:iTE0D9=Ae!a_9 v5(QB$s|sq› T|dJD)L}^`^#Yf9t)c ͛ͱͷM#-s3Iҡ9 m.omK:u׆}70]\'V̽@ߚEW|tc1$nܴ?$eaa]Ę=&(g#\X  <Д ޵:slugr4 EZ6Eb\x$ Ht;nêVhɸwKAJ1u(brZM *UFPTi!t:̓zPؕJRNWM, gDN2Lc;Kr n)VUuo͉>vG<4*+# Q3N̑մ,Y[")Rcs 턉``ͬ$7xdYII ϗT4~R8ϝ&$>yytI)M.S0¿8[7`-31φBZ@!$F`Prm U,hcxcvfٞWRX[C =XYYfQ?Ugq86+SdJr; ǻiS;8iޭ;i4ͫ7&naQnͭ2q endstream endobj 109 0 obj << /Filter /FlateDecode /Length1 1900 /Length2 12024 /Length3 0 /Length 13189 >> stream xڍTCqwJpwwww$@p(nš/š+K"ŝDZ{zZ$؞=av;Cٸ92j҆\NNvNNnT::]#9*>vf!ݟe@gC5g@psr c =5v3J'ڹ?OKHHOw Bj@w;V@G_!E]98؁NnP[q&V rA=Aր?J@ƎJеqqBAg# q{vX:J /cտ X7p{ he!#! B0:9?=`GRZsf0mX8;9 n' :@ ~ bmG.zHIog2[;S_r88@s ~..2@`pz~W7rqVK-og1/~(`<~\?>e#Mo7|7|ooo|ן_3e>n> 7 u~J$KXg)2/I-4&6yh-&r SՇUTJҦAc-rdSV{$fԹ1яR5(^Jn~p}ۮL!wգ]tq(bfKk_t-N/$h.2kɝkr7gR9gOwʹr.[ -18n2Ѭ_刘O6f3 X@WjyA=`R+ :=G6b.T7BߘP^CM/.%v#wSgH{ L0Ծ} Ls7zc \Ud:!pQ YfV>9ÒčéU*b>ugXJ,nHíͺnyY3셕;!*w4:|˒ĕ*W q"PU ~Lg i{^tI!|tfɱ`G ت iT1.|WdN;c-<"ISa1TM8. Qvm8`*wVEZ~?ǒ qĹ44- A_ 2!  8b@YYxUJQByT${D H :7qa M#XD$'xF&w7B<: {}#ԯӐHvfDW yKN e2>˽T/kk625'nJ}Y[y?ujLy8KeWզsFej;^\G6[s}RGm]a9Ah9(To`PPo˜PM :@Dzye^jDfE{/8AۈV.Wf+;/;@XH1VO߫mkZ{xc\^?_m=L@s%d'R)Cנc̆"Nr+[R/بYxkhW '?T$U Z䢪ٔ[}G),83N8)LM#~Xⲙ)QA5h^N,g9| 8fAYD u\䎟xˁ/~)XI`!;izص²[҄)\E`~&5J/yUpE\Q@sS: 0À`2@`ӚƇY2 l%Zu)kEf:éqI,2"f8ptoA&DIBW!".[QE\Pi@J$N鏈eA @i׹L/e#ySThSH v_XydN,ug5Mj?E%vb YU#qL 5QR;ъk΂ڜ+ݛEl{e"!TShF^iLP#5c/bZ>_NA3s0 ml!.B9+4/6 n b-L _0tO!$5ߪ>Y&.qAoWT4\ca5q|DG:b\`TKb=BsbO=е}bu ś־(NciF`w[շJ-2ZWXs>|;V J:F :"HF~Hf3Ȑ9p*w cCz7Ĥ(|6G:mq*4L欼W`1!4֨CsKll'hDf"0kD5 Ni.,CB^L.a"w!-+BJВunbrڠYSmgVݕsJ}JuՉS6:EZY3H3= ԊYUSXe#z Ռ3O+4ׯs`s5kQ}-+ VXT{۰R/qT] stV :hEoARɕ%!۰OR{]vBstgNhWI.Ԟ;vs~%=-QlA^;Vhc]ne.28?ֶ>*O{NC BÝv@eb3V[RE&W'Tt1J P A J:/WU3kZz' 1K&TT:nǦ@/~' Y؛M>~Bɫ 5K4E+ iKXӰD"'+xLg`_CFSy{[œ•|5>Y>;8/+pyQxÅzT5%"s`;#e1ZC qczy hAGtވƶS؇2hSKoߚ98|9jZ#dLWNǟ 83rm=,Y+~ʑd-fzWtN ΁u5LՇ2uڊ ֟IZиKha?6ұ)|5`' $ FCxze'p,;OwWHxsf yyO!62yӠjמ4|Xڒ~6Z2ˬ:Pf/65{TU9ͱ6 Aj,f iG~vsQC;5:ʑhn?g^fJhO2(.ۛe6%ӄX&'bB&ax}wg5J(bSk!DP{K ]ƌ'גN/@eYC}/Eq+|8XJS~#RR&>abtz/EaIg]iB`<\R0G?bF}T7/Pz}q4YRG&hM|RQ_uA-7{H1vrz &-K5nL͉~a}BF~(8Em9#90rsW`@/72?f@=+"U 0:؁sߩX,@dp bEkSG`@g` M "g5TNA&)3j+(Z^PY?`H-z axXE=%y 8r\k~('KIxQ Hn)}'ȁ[! RtH:wWIh~s PXC \]%?[F|>b'Yx}GŘ{סmsvj1`H[+ O@_BT^msr1=u&8P2:Ɋ17MY^śυS_Ja0rNS2<+,Y3KC_K6AU:n)y- d Y̷ڴi~HFˮXcR `XE\=A9$3A/џsIlQ`NH 'iݮMpW-_'b*T#e>6:Ow ;})/ / a?o pwsJaoEkIy7W̼FCc2*bXQ{d2ȥ^L/dV٨  GNu_h<5Nl fԅ{RvNS|Qz;!@LcERǥH^oWEͩ&gqiUSsr]0 x6E>Aƹ1{ָ Rw h2TAj*5hR F—$mIICZy+1: v:Ȅ# zX2Z~Sw'JC-ɡXڢ#(wu/ (GZy͌OOPR} :4ѥA :/-+"1 mG(=N5(:/eALz]&L 3 ; U"~/t/UV\֒X36!./U dY^ X(W~B,G6ETQ(Bs$03%N⥆`H*!S&ȪL.9})>k9 2pJh%{/~L/Ci6}b57zeV'PiMU'[n6;<ҩ*7Pu&߄D=[xr\Y4(ъcgϙ2M0Rc`T-3̌   lCD*^4$Bq䠖GDc|W龝rL_ʩtEWylZfއ?s\a bmꤚKP^{S8oQ`#ǐ%pucõ?>yB^i8"W0d Z) _,A>RLaH%a.]ZM G pr`B%bW TTf51Ӡ-Ŀ6n:N~zD`|F0Fk!+9wY=TY;|O3]kGQ6{l$F^L(^496kĒV*g!Xt r"Kcj"3bY`oUڗQC#/'^Dysvx4(*'M#tlXvNyYL⍏RJyr #MuWD7HRHkMɧw0(^ sz?{ TCHC sbΑRkϤfS,ߥ.3]?u7 w0g~\(ڦHy>o:Q#9#=M~E$])gĄt/eeNTo.fЋ< >Wf`nPPn#XfM{Z0g9EY |Ld/-*Tof_TW^IZa&yź&WFaVFvCf<^@O@rϻR{]f?E,T hE5"bƪ wѿ%)h :sq#+[ &UUtr0%SybcY D7F'a3@m&Nq6k{7ɅC?Nn}f#P&}ÛkFX Cgз Ɓ$B.ެMzM>$]4Ecmd5A}nȍ[XK΁?]y`}O wp_[]ypdm.:Xzb?ȗj'"l&,v'7&z| cgpg>2\}ٙؤϙ;BA@(/H <<1Q }8AC:sn&x8K",MOSKv )IȉXH$*\9R+~6M'j6ViTRnQ^.ehj4熘RdaLbʔp9 E0GCOujs7zmq3T).%vrT5ӨWĝ6^tN/&/KN:6R>6R*:JsŞLTPn.BXڥs 'U\Ɖ(9wIlp~'~ ,8=Z+ƃʲF.. Z_JfkPq>w:>XZ&95a:]2kOV:vsr 8L/2C M1CNaJj=?y_+ β Ak^ͽ- *olafKhF8^~-6ՆBoA64+ڕj+-+MQ𫲻ݶkB` Q>i6ݳsHZ574''3|OݘȆ W\Bۋ!I_ M<%TV+C*^S|JQRS r2FS.~>^`y| @]˖SYge=#޹*Pvn|-5|Vp2855I6o[&p7|_3ET Hf4/N4s~Tbq.[f-Yy+Ӟ{SeQa]*"CvbG Jֈg4k$`/b+1]`P&GAP^ LPK5^YU5ǚTSo9_5E &=m l'*?r鍆q7S.H7GCq5uCBqy֊26c<A؋lh0GG1ZDwG.u_`/h@giaw}Dw!ߪwq}eo-H0Eq#醿^:U[N>I du @U[ؚ@p)o}B{Q39g 涛t'R<Ìn"j! SIrʃc풾E>~k˂a4:|Rثfz~m]y)]uĬ_۱X?Sg kya)ECƾ#uY]BؾEcSXU1\"ǛlFb s,( äQMД%뚡.ܞ7 Rh w<0˻my W..UXi~vwO AP7{S9ܟ S-^ "oXl#:+l%Oln)_+J~[]U|$H$2{)9LZȊ1RSa\J% nԽVA~/i$ENp⪩K9x,oԕZ/Z7DU"aaD'<LA71w9~kCݘGe }tf1;'KK D &VBy!/Y 5)u- I?Q)3юh!mj[?y + SG&Q2|wg :bܝ%~i^*s|B?.vBTxxUwEyJr`P_~4%rzUN'Uu FU34;Ձu`J7O2#=oF%,Avn- ~A pN6wZ&!0izesZNڇWRUӗhP7sʸ OlV%Ga_`.o {_a{:#Ȑ+rǷ ^"?YAFm\D 7m4SG8jW] oglqQ!at́kbnjI`w8/4y"՛1 Q08> Nl [`IS4,mWP;jR'&ɎmtNI&FG::~9Ζ|2, X VPg.V='G`U#v rug;ΎdwFq'Eٳ Tiw;ړQ wbxDr`؉7aa"{TO/Y#4@OeHz0㳥ϟk眬,fcEX pmaWdu1_w474c2*4qOb@q4V}8}^̼BYv0Y!2Iޡphℬ uI:MDMjΎ U-B5I #uZ:\#wRتWG@6K0Ћ̓IzЃnV)Bi7L(@=2A3w:F]d ]LWpKmo_iYflu ;(h %z,Cp$P1Nͻ7>hXJ=ڣJ^gҬq[3&ZDOAYMڻL甽[$Ua^f$ԍQ8MT0,H'"՗h`|?UuEujCHa!hg+6-Dʝhik ƍ-xy/z@q*a$mXCIɚ$A:k\1\s J,K4&GLjǛZnvw ?6զ{k!?i4dW0F)|420dm?UN^Y蓡{+1m.jNx^!h6ꝗ5>Žso%aMH z%퍣|r>B *lhuP6,#2^EyRop.0bm*.(!>21psKzz{:UK;>^w3F]l?m.k yRqO7B_[|A>Tlrig _lNG3۳Qc%en(:\~w/m׏x |Ev{kߠAVH`L]^)#lƒ  E8a3D 4R=Ag/+عW!iE_EwZh3_T3 O:s4G -u :ʂ0ӨmI[ g%3'}XQV5<(B#SNYRo_ Oۦh>@+؈ x;- 55D]\O/~`L]ͬK$ Yt#>hl_Rjӊ V^^&v{V`"*j|XKʨɮV]Tqb7:|pR u/7.pΟ^aaB9" !ʮu*lhrlZT6L!X8~Xw6Чf5sP kuz˭hٰ-́pT)-NS*8d+YWƹ0l`#ZDh=ڼ bTFBQW VE`y0WRַ]p92蒂 KbkzbHG]]מendstream endobj 110 0 obj << /Filter /FlateDecode /Length1 1511 /Length2 6641 /Length3 0 /Length 7654 >> stream xڍ4[6B^Fޅ`eމ(I%JD D%zHB&99}k}z֚u}p+90(( $ PS D88L!Ov"s0J  Bm Qhy"4PBZH ,$$# . P!!=6 %Py!nt?\NpqAz  ] 09AuC @^0<7p}p$2@CM` 0 Ap0m8?3@Wh пur9PO?ѿAANN0/o4u@<u]D:ry $ rD;:dx#||!8 J>f5 Eڟ*vB{z@aP+ g?oA3(m" I K>p ! iC .` B8WD@ 8]!PdG.C6BhB sA=łZVZF(*+(~aQ(*& ;?G7VC+f# ?s w}Z`o+$&?O?H7yA<x@ ="u5z`gZzH$Wv6 }@@0_ȯ; =vN{ݭ=U.u9?a1q^P@:~ (!!4 N@ '' qAMިq"1KJ}~__oOP@Go}`'LF%F1Q.dY y+3}j\ ,?Q{q/u\_?0 |_|VO`vm"?I2s?4j!O1K(v̟gC3PO}*|â(d?Ee*z1Tk*.5=)ջ{(l[)T 3_!uF^r־2L(s9HC&i{V(vd-[@'KЕbH'"t7ec>.OXZd*XO="<(C?yM\1{zo&ꐆWB|`ue9дa~L)ͮ)>vʩԢ8CU4UJ5 ?fos\s6 ſpߧˁMN}'fVs wGQPĩmZKgD!Fwo=ї -aw%y2[u1UwsJqIG%Er)O?G"?_,]25-Ua )lc3&?{;c{rv'`mmqej +lҔgyF?d#Hf<*x'E&mPk 먼w4 Ԩel⭭|.j\`Xi8{UM>^NW+ZdnZ7Z&q IYʝX])B}{vH8$k ZRo/c 뱽Ӿ]tpm2`|mHV~` b&$'샄G~)w5-z6+ɮ{.6{=#AK;Eb8ʌp}7O*eCuX.?o] Guʮ]^FДYPt,~~;ڞ{gMDa}bC\@lE*bH(/YE"Ze]1)XU?82PӁK1ؤ6_mH315;~M쯏Uk٩=,I~0LU#poL|qٛ獡Gl;=@U: 5EHۖyw&c{]nXR.GrQU"B_o8UV;h:=@Ұcnb3yRpxlG&?AFWՇ!> y2.^̖^MVּb\#DOz?iHQ`6R-WwjKZcܧk i_@N-D/ PoaP0Z]դ:BǨgMэPo&|ŁOC 4MTz>gOy>aY=S16Kߐed%pHP}|>3AZ:KiǴ@ˇtf\ƌzI!-Λ_1HgiX~U9fFhВ2ta凴sϋ&Vp^AApRǔ)UV-Fx:C ]sEӧPǦt/۟eTN{?Nv¿A6R¸qK-y*N*}Hh=*O-bqӱŘA2XCLeEJN-SZZ!N3;6>*ᄐ޳Reṡƒ3E:ߧKĚyJdOIv説̘;c'#DIqHQm"6`̻^֪R@E6 ` e8W#)&6M }$y!gD[D͞\V?VDH&d*ee8*޽-Sb0'}" {u[:X,#'@V3t2N!~I,A\JƫH&xn-I `ӀJ;c7+[:,~ Q̦Y"k`cR|޶ee JvEj!UB:8dj)-3>19o',0@jd|N!) Z1f]g.~#C\}5ǹw^ ;'Ἀc0#:)]}mǐUQhb=MK,3tK?3^3~e nEzQ/x`n/щ۹=Ҋw䶃O,⫥F=t5d`ҼMy%oOߚഁAi K 6R3*һEdᠵj tA{\qBN3;FIMcgHXƿU}td+ڹS^4$Q:v t߄E;m\r,&&9յ :h}d[HzAz:Aj l ,)CQ7 =|=ף[a3${@fA˄6_P#!R^m)x53[Y<^(?h9(46_#ʼn srA2ENeT!>b9ٶ?^Nҥ|z6nE+1PLdt8ygzGj->q+QbT s3yx;ji>ֶf41*wyl4"80ES bOyfSJ*-I\SgwU[_^b[T:b9%]˲EFtq N9tKf4FY~xL⓴Hi=So^+~25qUgAbx@ c&˻K!Qp:̰3z3Ǟ<[;J/~pYYA}5dH=%!1 kK2!vACP c8[^#}XLTJw;&XDT2ˌH%z]w{J)`Ɖ`JC cu$t\כ5o` Xs*е]+k8Tj!+uCaki; =FjAɆJy$|la>/Sqz o4rjn{ƑHt6^wfX%F,*5[=5IqY,haIgFVo׋tO'z䒓o+gm;Þ&!K1'yqnozfj?K(U,liDLBs^jk$&T݊YzL}Sm&E]J5z#,|>c*tהbl[roOa'!rS:y24E?$&s>x(٧{iVCwkXWa~#f2:M^9Kc*JE\J39P8s}̅wzw { 3A**jIȡAP؃6Tcgt! `3O'C!5'- u6iGq靼8H:>:A(S,5i{%нK-T ĉyĉ`Q<.-wTuDR!%*R \-F8909BatAEf(3Lҁ(͋ sV8jʭFu'ӟivnV+"a?KE07Hϟu -Kv^}YeDjkRXN} yNqFȆ /W] |7 fHN'8#[:>ɎEzs۠V6)zp7SaG vz)P%6ޠb~}CeC{Eai~͓3/UГ0J 8UWyOY=OwouPb▘| i S nt>R5㔑hFk/ +'DI[RԨVF7wi3 [6T/R8yxn:zn3v@eeU`>Sw0RV$bJ'#k+X7c;11-ƾ jLy+NLә[R|ѕAxcF?Ga[Г'D0Y.n`Oy%-N',~&hى8e( JcύܰngQxY6Y(gqҴ%|w!"_\3%XaE\=G'SuH":,=,`Ov+foʠr]\ݶ$ Kud-Q^d|d8 u $3QfƈWRCsT`s}CѼE W ֎.T~|"L&sN"xC#g)зGΨJ1URI"ۑ37>Ed6=1wEM )y̥ܴ#ύIQr]T&Ǣml (a9`r*3ȼ+m+,kbVa:VXW)!E sֹ=]ط @f0}A\̹.?'aWc#b ݦT|Ih~j/lwnoAM+9n1',U3~1cBzendstream endobj 111 0 obj << /Filter /FlateDecode /Length1 1630 /Length2 8640 /Length3 0 /Length 9704 >> stream xڍT7tH#LJB`twI6ؤABSIQ$%z<9uHSSj V:#8y"Yuue yqu!G_r\f}+uC B er upxEx^ P/"U rXԹ*Pg0Y t!qzZx>mvB@u섌hr@ `\!0nnwww. j+Ap+e gj\];rG4yl v t``?j,owZrqm :@Ξg[  xƅ@<Ap(8,G drp.8Wܿ ,l- ur;#฿'q[!gs!ͯ4_!./rr"d`@(OHv=+y~9zà0 2 / E<<k` 8)wx~2EN5s?Ug+edoN>^'+RMˣ +į,+?GϽa79`?oZ!x= Gz?= '9/P"W?6Zl yZe$ζA! `kMag&u !wy=C#񻽿0j=N @ O\H `3r"&dξ+F ~#!$2!ǚ#p[{_ c7D"_7(P0 'K9O!$B_ A7_=>=Tꅫ+Yʿ [NCD_׾j?v\K97+0FOdf̩)(wiȸg-y{r+l[NߝޛL>a&lF5H)vGѤ$Ƒa&y\%DJpFgwuI97mD1oN1AQ&i bUD˃C}=*nL!by!9~*nɎd\C=~{x6pc>[j qzNs;;}ˁCkA[ gql0YGi$q"{53(G} .Ζ 2E]tKw=+cZC綸)v:My,/}I`6fմ9n?#Ѧry4X').$V{Hl>Q5^n!ᬀȓK72F+iQ H >/K\,y/[TX%ömZU_frhv<]d6?vb2%J^ YRyI5QS)sN,9oKݎv̐o?rzM찄uwf -_lX [2yE7.ܲ}޺IKCAyUN(bc0/ ղͥo7!tφI2WZe/{KLFsTT:Aցc{ۑKDD`K жAkqeIl}(MmL4-n>8[U s\c׺qv#0RLT1Ps>&!1#qo;+}ej4AVsWupDBNrt'G5k{lpw*|' }n\eEA`4X4R^_ Osj(ł~#C[ǟbߔ=H:H}8-6x9ii["D 24(O~H=^fO*a-.:PGJfAJWEŢ`w|{Q$9F#2x'ՒhJ*'J.p.?/72't}d߭x;\} PuUrL ]Ã3"|c>*Ե jJD7Sz"rbI~ntS;IM_ ~oA-4xf94EX۠ )a1`xܼ#LJ^;'g4H&Q_fB@h5ygU`/c/^57׭;׾a\p;gqs sv һoP~ԈU+s U!J( o2m#%Ey|֜-yѤ9H@_g%AvE*2/@4&K:%MF'mlZ  ^9֤Qڹ錯貏Qpo\htGƥh7M'A%^I1L2exjEeOӋ3,Yc6.G;E>r/lU-!qRpw\q!؄;BҞGZU ӝo Dn>c%vv^J^Ct}C-WZ]$w?NVVeLɎ=)n18L9` IΚQǚzX8q|TmՏEN,Czծf!!eTQneSAP0 t"1sUJ8Q DJ-l%zLs')?Nmӵ%VuS|WÅp9mV'q0`|TU=^e׺BlVZ% BݤhٗWN[ +c^p olVM/Y<΍Ydǟv&NAtBiMLCfz|U.i'{G wn]'(ђ)ٗ#Ҵ6J"ԢJ]Vd$k(gǏ_9 /VƐMco1~+G`kήUNr;{8jBRx5y/P|`SuVAT.S_ay$1.kM}՞tv`~՚c10  )jҸp!)xB-Th<v3:%OD g٨s_7n8& HRx>0)h^|j/3*$,F[4JcO7]XNE񖑠$w6bee·4Rԅ1 IKlxJu 93; }K<:%gڸ\K옂 ̿%H^W)dkCe kuO ArAPX+ҒV l#Kݺsv(ʛ.0Ӱ7{FXm.v{y//Fh*{>lNe8ŭJR~9SVʛ=x)>VjD诎uщz fQ]R<,|{$[&f)k[e4@iXƔ.wBk;TzrhX,}QO&$@Ǧp1VwA7g1 Aɜ%_._zA +Ј_&\ ~(.8% _ZӱV@^,fY!j',Bh&y0y{|'>x}nLS1b+HfX(`zUd?:4h8DOVkﺞEw^ w խ t>TK`10kOږ4YKDbK]M'lU'ȶ6m<~5jOٔ_cKy[^:h.ad!LMRީ׼@7xғET?2uqjJ]L ٵo(s ?d8(Mlb:OH3+Z|HT Pd^;5jzm3v)0Ch]QCoX ׳^W1eذ#eܱK-{Ou{Bol}^g#['M G%a[kSD%ޭ-y\ׇ@Ğ2)ɚ?!~TַTp= =5Ϩ0K?|o]%seN; 7PEv15p5Zf+Z:N#VuXp; "c̈́f[B'|ZA5ŇAQM+b,wr=BU$y!-|3CbA]gwn R?pHaDOġaJQ+ O~r(`͜?q<2z0j};%K"FBfN6wLM'LCSBbAAQ?t6Q&;Q1we[;v5J{.&a$[{ӨR$([mޖ`CɛvKB ,7Pՙueb=N Y?8}Eq4[54ҁ%[x\}Ang_d]AӪORl'@cP%U 1%F)4v zMAJnlhqnJ.$UB; mQ+gNhbT -lӝε(xt5B:;tK׵F u1ݥ E6p:e`r(vek5v[8,K+(z;N\`AG,g-h!v jGV|ȗ͂E%`-=i*.#iOAHvM5U.Lo7OĚޒ~' (_Bejl8?/%sNO8#JA}9w +:"21[Q[`L޸j2d$HEAzSmׯUJ&]pоgfys/B')525$xb{T0>Wi0kMnVC7ݪ){sKHr:X͞|#h44rrn9fژCn7B`ȿxe^/s~V^KlQ*j׮EaVGMyT*spzdzGA< &lQC'I3oR'3{DX|Ev] ~n`ln{dxv"%ۜeG tZr*8FGG Z#4p(.f6kFO3 ,^{Gc[scwn/^l=ۥ;nl^_P"Uk{Y,T qϩ2yzoIp.e|R胾s Ρ,_w쬺JM ;ءU\=<ep+=]VYA#+}Ng*5;8R<jH MP}! h |3#iokƹ.h 桏Ga|Auͦ<\s6̗l%XTV®w!LǰN|JEo.SyT]i5qRe%F'#7r)"Nkꎝ\(3B*c{ʞ0k$^ ޮ=k= 8Ih`xN;]H_<ߧk|Yƾl89Z8a Mlϋn?v]`N[ ; 6Tȭ})1PhJv'Rȷ5KW-nWFX>d`+wz=7!ٚRG})Ck؃e+bUz)]ar`ꐡR5aEՆ0fdc؜#nTf>hqjC f5W)c]xu~T*&֜gve{'yz v)إ7&+~xS+1Xd8bL=h<4os8ڮ 2],<;$mXm8mZ{ 絵OPk?DNM?b?)endstream endobj 112 0 obj << /Filter /FlateDecode /Length1 1407 /Length2 6193 /Length3 0 /Length 7147 >> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i?endstream endobj 113 0 obj << /Filter /FlateDecode /Length1 1456 /Length2 6674 /Length3 0 /Length 7660 >> stream xڍtT6)t 3t ҝ 0 14 Jtw#!%ҨHZ߷fg}uk?:pKjjJ afօ"!8W7(&0Ɂ858 @Bb a1 wȁ=52qa;{Bmc~Y@\NWP# NG 6 ;YӓwdxBvmb Evaƃ еu6O+V2f q (4!? W~'N`7f :B </ vt#`#s0@AZ F+uEW-ìeNN WrPWڽyLe@a6HX;.%Bο1[ @\/+;_u!_03`$@8n`O?-` B,!Pο#a9|Wכ)R^pϗ: 7  VF5пzp@^<<_+p!K(B>@*!wGn v:z;jpr;g Pw*!"%  n P/&aeGHy#фA}qY@[g!'vC py6 `o \[koxy`p23(~| #/T/?L!/F]]˿ b0  n;f?ڞDOba6d4{kڈ S 5ؗ_M"T$:.p<W>vE*{m2"h?_gy=|J,n<ŞXgV5j=OnuzZ! jN?) Qk?|h/X HS[[ys ݟ㋡/iG-#toHoڸyTmꩋdgR2%_L[pK窩ͷ3E+*D&4~r^M$st?I*.FϴZez.mSg%Q>j0 p7F#/pTb/mu^Y=D) EXSЎfSB}(N⑋E1I4I1Iި\z3,~˹ϙfQ=8 טD (oI\bYwqwI3pW^Kn3նdڳ!-%^5I"X3;Q-4k-aY,S\DPdu /3,e+Itƶ +tբsz<\٬W%EFAgP&0Fݛӹ\}b 3gvq7j=,՞6 ̽R5r>?'2CD|,H$CBuV}yTt^2~ua2L{lfux*ksf+;8ЀOf';K#>םgU6Eh?s-BZh)peI]H>Z`{s XNv6[,{s2qh#40ЌAQ.ZQ+hkvK=B7ϳ Y*_}P@3mU!ZCŏ[Y1y4Ug"0G;guAxȴ_5{ntrPAqP)IL$>Z_ȉK9^CǪ72)5(pu1s&&;Ϝrŏ*1ƀ 2f*V7(C@+Kŏax5 6T7UL1:%qvUxВ e"xc(qEz7ޯ} .j\nqxZ{9SQ;.1`}Ca]Y&|s&2!'jN@] dZu@L˯%'c`r)[lMRdYͲ9BZ]Ee=^{$Lt,]6_ %(\پJb} Aŕ2'Ns(xȴ4 QҳT=bs=XN7{E)z Rcg]xؽ>}Y)VL#GoiI[6k {݂Fp*S!}{,*(0a󦡛Ř6 Nt :Xb=bb=YWPVBw9Q-V8t,7%|#.xw.cVl&zԦfk aF1IvG$~Ms->r$f$WgJ-AhOߦm-B){W^Z$UͥSd~EО/G vތ.-h8As˞&8 l)d,s^i:}DQ{eGAPRW+!"miYBW}{4 MXbYs+]೽ywQ5ԓHt'f.&R4,D*Gt,H5ɭ꒨k6c~w|<tUMqbrc /P /pD8%73|_H:b.vdK7[yu;g@2gacQ%"-$X5>Spo zō_Bkkm}xg#~%ܯ罞 bڊ's-N ;?zA=V\"(Pdb`I4qlk܁$ )2۩Oo)Zgbec* ȾTD*R)P |{] a;L^{~#Q:(<yTs9_DKx ܝ'Q ׽h}A }e#XI=/#T_+O<!X^u*τ@<,$JoPϊ`QF^Tć:k~rm톖;sL0lXw+_{ʆirQC`8m݀k}rJQ뫶,B'Qu]v[I=e6|BaEQ%6ZEBt}7i}9M{DVtu,40M_Uu;F%[h>k|O)^\CeSy뢥F A#MDܵOI=[#.CQ -FȾdJChSD& Rq8x ]42D~rs*{ QED8yo޵ L$Ƞ|-|2bUy7/ ^T hAX#c*㺵?0'v=$3]ǻ\QX=j5plzz.;8۵.=ENm$ZaL*;1ɧzC44#89榭ʯqz_hN0`"$(xcsaTu:$ '2]7BrͰ bHz4(7T5#Gς;qcwn.щlL2Gj-8{ W{y(Kpob[NhIpg7}aq>f; 6IWV_u*XX +uKc_8<奤D|c9>Df$ޤq-+wk\jחj*h+MSwXo߳GhtjIHT"C;*p>$@X>JvH`r$B]®$mtbcg܇6 ER -!OUc3ّI Bl1w,3U*ff2<.aYx~4 ި*g恭wK9(F.R֯ #HhIۜjW_O1h<7'z*'cïZ{.$s8鞧fׇZr=ϟw$a%Kyfn>`bzl&O`VlH<=A]^< _6нV2J'Śnlu)rOF DΔ u%L^l_PGExEQ:Py˸v'N}uPaF÷[ߊԉ.;C"jδv99i ȡ::ODgSM>ے/%+_HΒIR>ûť4L:V`­}vG(d[ g&)x M[asoҘQUlHi6D@hh4plb[o>\yشU|u2KGX1P8KƔ+fo;uM,\ee(Ym ~DD;L|-LRR<Lj跲U-:ǭ }yc1>pXD<+)їox8 SHf;բh̶{u" l GgvzTϛ}ZWc\w}b8~E:43 _wz%mUg_:ƴ,q7T%ğd$B^Ws)˟~bs>`W 0Wڿ VίЉ2$@R-flsi{Α> stream xڌP]Y܃ݝw ={` nA==߫=1e )Pޕ `ffcdffEPv#F:X;a 4qM\Av Y7[ ?Cg^9@ `tAsprr#ڌE;@lmfbP0qځ2̬^ Aohbl)HCv]@s/E;(V.,\=L hp7:@j2%G px dm%Pgtt؛24uqXۚ : @RD`"=3gkGWFk_~UY\h|@3Pٽ;{{/nLNn@L@"2K+ t=ͬ~Wrd%1qtpXH}-?>.&@O ` G$ZAw1f'x;z6Lj"":t3W'* a`g0r0X~ a-%U6pDpTpg,Y3(:f=f_,/s+IK64nPp-5 @sk7q5ev+[Y=C(=Pe`5@ gtz ڧ7s0xgg/PAPs_ `bwp@|:`%q~#no`q1$#Կ23f0IFl&߈$#q#q#qEܠ (oʠ2hF oʧ/@,M#P1LMA r/ſ (-h 'ag%&J D Nno2ֿ/ߐt#/A&@P@߄@=ra? Fr.rzY߇9;G "[ zq,HIvЩA}6095(+?+,GY@t$qQwPwI@63Vn@Pksx1G ?{A]LP$oߩs陹9Jk t#zfBlB?{0 LSh0,8w="æd9ߊ .oIP/?4&|d:ӆ0?=0Qt$ROO.f;yNn}RKa;*5rOb4Kg(M¸2Ѣ{NN&!ǰ讳>^Tgu#%AOř)+^l/&ÈʸϚYce[>ɲN-o4r&Uªi3pe{$]i춰H0cuiexd.cpVVP ^o&G 1.- &*{ I(OЅ["ff]n^QSU犝3hs_?YIgQgJt_R6W0Wa3{'nr_ HUGy<2jVislG17ܚo~$jup^!:S5 E)]J$ nG/)ى;]SXWɓ}8UBy^nX:dRd.Au 7i^WS/ ^>EmjǶJi@I2q&@bټ!ҰHP93\;%`c?Sea&lzg ?5 T׭b~'_8}L)b? ?#oۺb69dn A V/'z؟$"T;l- lP]\*2D>Io-ˤ,J #B_8keLf_g97b` ҮUuSӾ^D/~fDkNgJ$zFw2kv͢2~T}Pas\Mտ@8: g A&gבc\=Ǒ1@ "ZF eUbX)LNn౲! g] h86u?Ont2ٴ;Nv/O{-1=/|6+5Bdl3ow疹UB[}?aԏ<:vŚ3ng'X=HͿWo;mh2E ^?0'v;x?nV[TelJMhqۗdqӛmA,K)B&*ϴ_}ʁQ!#RvmW u^^&. , ,Gu!OzHT_G-$mW΀Oyw&9pJ,GL`_ؼҷP&uW *_['%am+> V5ED |4i⡖ՆWKTѱ;$c!+:;䡦1^ĨnMi(7,2W@_`]TrQN^=gZBf`-euw?o:.G"Oc7U#eƱG\7u tQN3'gҿɤw ތb}_f#p_:Ao2` :QܰkV!v8ë^mpBnEvKḖ $p\;:^j~UIĩ$MAoVO%L",=Cj=5-Ib`^s,\=oHN҃gIO?1Ppdm}jta|`sU%ߧ*jH*jbȳ(oN'Cjmt ,# ߿'MQzB>q8APv 9ZʨLQU; y{OΩFˁ=pHJO[" HQV B,1rb>Oɉst/$4#&~UqL{+KCc%S ÖmW(ZCLOR#|XK*NԩZsPr]mXco?"8%9}/ڎfS"(Tf#C!}MUX In$#j09*rqk=#.ͯDJVLװh~.L|KI9>{ )œ7+i>&) 0*cr nEBS a Ss~2((H#⁊!0*Î H\Y~p 4,.m^乜#89[S?cmej bK`<Զwq`P4e*+t{)#0[2@KʤJ˫}b3nj:5tBe/Zjѷ-RT=* )bm-gߧƦfCĀ9 Aγ(%WXb/Q|u ud (KTbVB!jτm'>w_'UfgT60`E:h7(P_85-M,p'6n{_%ixʿV9I.I;w47D :Rzitxk2u* ̩ˏyG#}1}xkͮ5e^RhuP)PRi[mA7b;8'4SZW"N} i{whEf6juv;L{li;B9i@wͪG7TvTcj[=m ^Oĸ\Iotnf HqIe7.DqeA|Y!vd* y&g,0n(1N-8]:R!mPm"FE(R{jH)|B|ԕvl[dT:/JsE$#m;Đ+6AO<{tXAea<С.+M]qb$1@U}|DkY遏x*?BNIw<2׉YS?0J%KSQ7H&{IieԸujl)/˾ }]&U1ӽN%j㥧{B`Tw8Rt{.XR/ELN P÷V(D!o ‚64ZV sï~Mq?jN9G  #Z>C&&+AGNN'5!K=}3I$| ȗP $6I6Kx7=7NL=HꮩQYz9 )YiO*! z˫ڼPAKBft'mˢjZ1hQ}%?M߼PԞ#T4l6|aޕUrHg7.bi:|2X]=؇%}j|FFnUvwF bQoݕ`SSVSMp8}?Uj9i2m 2#/aiEW9ͮoA )^CD JsIQf~lyAz\Ʀ6x{&ܢ߈p /uf`sgr͕MFc͊]YuC+}!"x5w=[J_rW{el p g> /fdbES{(M>xj?,*22xyW~3u)fQF4"ܒ$s i+K\RPwʬ!DF2::>'{AG-@*Bčtl{ ||ѡ 7 ڏN--k?Є%X)~VHSG 1UGߒ(`RR@e?֔4}ހp2N%>0Е?1fQ2F1u!&8&꣕w0-31RQ:4,>Y[ @39X$LqHg%-0>2?+0]Eٓ6e/䲯bB.FŮ05vU.[3뢨∺кNjl)pe9QswsfWaXb3#O ?nTX4uL:0бs$sKs7z/Wut#3{zG zpe31Liy[AfZM=k82:Tkɶa=A՜Ipg>Dx6 &0@/;Էbc tԳ$[ *~ȦEP>oԑS$7 pf_sr A '"$02B'oȷ>Ib6,(="˱$.Yݰ> -" ]#y!O%>: 9"b*rhwPؕK/j"QiHtDWSY9IS R)<*;v%.*h~Y,)úr5-SGf]=m L׀&uk;DL^CC^jZ *޽RF_%J^43ԉ"l)mUeUGCw*(E2jRH"-a:Xgky9;%]@e@×"kl婟T;%)v)S-ln"=-"uSqS(&_oN,2LM"ț_:8Š t+a);T>Jrv=}p= atTW<Xi}vK77ӆJOܬ?+Mu&>fqlAgFRF$}2?vN/e͇*bWmZy!6*D1k*/؋8; #E B(qnubۛŽ|: 9ӑ!Kќ._t,V7ђTGɤfCfԤf*'ѡxigύI #oyg@4C5pNWLg3 qVy#gpAګJՏL'{uerSp jdg,EC(N޲1h̛}Lk}ѺkiwL$2əhR™ bX*93<I|d>+,nƳv JnY^xr٘=)w̳C{G\"78pdVQ|{cy_\ՌvbCޢYOSiv9U#EJZf8`s,E@0]J3OׯUoF|'7^3gqFP &ɿyyN9w&  QцTEs EP10UÒLf;Q<)8YKWFT KZq@ICur+Q;]b7mr l,MaApdL1^BYT\IbxC2~#8q൧cHbP&J:[Ve(#լ5+bf}O3֮b幏 ,xo[qC{!mǓ5#їDna^!SMW(g?2P;tX6B5D4Sـ#1L0xtАvǔfn̰IA5K!YAk6a8ٜ*2q,÷ :/?o9D++GhZ*c%.{ BAI?iB&CP4#[x82Gi˦>&u C{-Իe >2qP8>/^eX3 ? qC*B,)u{Z =]Rixk׽ ?%Ӻ\'U$e OtWUz;kEnAN Aw2[W^_Hb6~lif3F&#:?$h8&e90z ¬L,*0 ְh5^NXc5RGo5L!-3wl%$mɑo# ZEd0ș]'"II|mGH-=΅Po8B*,y8I6y4Ė(NTS\\|V3l-uB ;l KeK L!xOS!aAA3rYm;n܄ hlլKݨ} YM]\;^zX⨵n serY+RW ZsBd+6;-k*j+CЙiŽN&&QN U}8xKIf(,Ky8wl:1$ `}{l\uP0;F^8!Ebp 2x{Fsb!u,Tl d擝c# jn6ɏW9e> h /8kzr?젷&1_*kT,ڵL0;RC,pC=_܅tG[1xoj)< \Q'߮gJzHss-׹Оv~Cϣikaj>ɜ$1L:o!`T"Pk\Ku-a'TLAz$37hS^ QJ4AiØ-_֏g1ׂ!tV;Mvs >[WoπeU.[Dt}Zef;*9"g"S$/&9*R"i"_nM]_WݷZl!UٔL'KH]@E㴦^ʈZE:o3,.mH G(=DMT7\ Rb g*_kFwu\ox+31v 7fL7ɰ1up)gم|< {O#}}[_1(BRܗTb~vy`*}Q~5k^ڵ `.ʯK تYȦ"ʈT(]LׂfZE``M׎婠t~e'ٷTlHH{,Z0gxC3`.nb͒6GVv:+Cx~?'Yj2[WC'uS/hQ- W訮6ޓG*4¶_Ta Lݥ5/rJ@h~YdXn/le=; iS0`#]jMsVEFַ\si9;t:VxKփXopYIl(̦.;aζR}(モ6i Yz5+Ѳ DxA32IvOmZ$鮵Õ,yFs&pZZDn"F;~ p8Z$AL]d>I {3 &6 @|gC|{.^]1s4v.tvx(k% 9l{ȁ|1pjbϞ>5!P0»Cn @+`1OBkJGmܠ3X6Ȝ}N=Z |m(}P~CA۴#u3 a~^zAQ*{ z~ ]o"b:kpFe`±i sEL no9jds!*x"7Ғ9-Ի!Tv1ʾeZ^Z5]AힿWFjéZ[JJ-3:\IJ:fg z:) 48 s˵Y..:-:JQ sV\YVzj28 9]R 0hw2HRգq/¤yte<] 6az?jox'6ALKȃ'?=[q/[bkH4kiH׉i3f4oӓ@4+i;4ޝ=fDVYDVoP: ,XJd&N5y)عEnCz#>mXy,zo:&XJ)R%Km1FCٛFJxԠ0vNCl~.qZ\Wa8-FRwZă&V8+I˗*9ܥR؝RQez*ٛn?AH16!]}99,!-l:G ӻ^Uvo[L/vՆdС9(yXD==fw‰U,|sC`yzp"PέcJ>K麠Űڕ+MgJK;X+<)Ƴx(]j. t514=+/#F.;Jz9 @ S#"Aϻ`SjFDMdh+y(» 7Ңv| &hZ%4M/,=:GYDkGPHT^XUV['UYE'u284S:W!]ژk&mU-`Q`Ώw7Cn:ԗPv ZحpL#ŵQiG;Րs825' q=vk?#1F\I$ǭ݉ݯ 0Cr_1WN.5*fD&eMߓ_QMGtV2.uɉ6;j/-Вg?;.%^緗VTr>*Ż&RZN}NH$0 1!c#qn%U$ קt"j7:(2~-6,<9%yI4QiP5/uK Z7oѲBƀdL#TL'?|SUu2xboLH̥]A:% uXrx5,vⒾ '#bݭK\/6tQ14tumZg#?*{u4 x%Y>JT,@rcF;(fEw^ {mg06nzYMMdZTF9R#)ztw}ŠV-zН=d5I; Ϩ g~&1m{ZG2GQwЕ*=""4TZ=!j884^m/]KdSA#`H$դ5|7\%s}6b&z6GӐsP0r#%$CkHcF4Wr?{.ŧ)6uOOEjk}|_^EVڀ=٣X#mJuRO:"As<;'9t&iC*~۷rb,Mgh{յ1׿DYfgZ…Ը+"#*#r[=wC'J̈TN*Que<.O| aڄ=ψVRqd[]j:v nccd ɵ yt@,~7i:߹iC{RlDb AF:B&䋽jF8ukC [2:!erg;R;;bsDt' |j-<7Fݴ J੊<(GOb{s%SG4<i;avꇜ] \BE~IURnM؄nuܢD8m*a`qHB҄_d9nuG9n%FR֬4IbXae .(RY΅o` ͳ+8ZI{|iUmpGv\+|x&DiфٱT&J3y6Çao{X BP Aw떿#GwI&,~9|T2(H9{q͎և7{qECoSQ&lVX\Ik-)bW61֗1.{T1S״p~(bP(eGԥ$5lѻ^Hm}e145)o~R fj{3N3z>pmT]nj۵Tz)"Ą-1q|;|c-^ǰ;HiЄ诘QHߙl0jwwaYLhEFђ/c# DŔ}.FFʀݐlk [H7Լ>bxUp_[P ? K3|'鸻pDя{rHH6+.e;AQ MGx~+u~YIXPw'[AAE[Ew%HG6E>'grkESj)'{0R*b dՑňSuS uAHY1jJjymwS ȵ b9nIa9#hdr<\?{6eYT}ᝦs /QzV Z#q(tjNz˩߄bz$0ccހ_8RyD^ ىUx5,8 gF"p J 9oS/*OctwsGS|;Hq`2:IT0~#8PWʩ"wJئ@{bTWy۬s \Bpuy` S9Jr+2ϰ_mYĬG7\nb`(!5ӯcѥ:5_qPȪH&9)>KQZ%԰ y_`@FG1rI$/ L3Zq?YJgn8;~"Bw, I\>V5#qJMר;xvhV-sg`=Zzן]!}#Vox$|X /צUug!tZ/GĨ^.%ް0>=u窇et1XEԪ| (;/&ir3i|w) 0/A=VK;;qQ9FkeA5閚IR燹ǯѯ1g|-_:'3£ǐhMqG;V?x8f{Ýɚ1DzE3JI"$n]uY'IpAnٷuWMBxRm溹ˋ4tr$Lu=֠ÿ>9^?c"$?rQ.8j_3WّgNJ529˰rP&Njݚ܁a3he|ͤ.MӍRL<,zPw$HNdm ?``E᫇Siowhe̗U]&L7 cfq.ﺲ/acw+-_4va}|E LmfBe:w|DOhxTˈ7wo'Z~H-׺Sa^J +ɏB;OjA'6)RBCxj V#bfŋhZ\`)[I8z8ڟ =3m3 zB#tTCP- NZQ32zwXy(PTIʘR9ӋdՇ^6$ĨdxEbE0Y[Jr ?|T4e+7K[O>1f1HXzŊs,cK~?|0ƴ @Jk7Q/𢂳[LA;x) U-.#łx ܄)87wMmtc#֛ﰑ`k8Ō\Jgb=@}2?=*Sv٥v:@Qr{IQZ ًQT_ BTaMV~ =!gFdǟB2,dPm:)`R3 >HD-ia2l*2T- WO9%H< j3-kn ? H3sYW15#瑇qʽ]_C.7n9 thE.+(|s4)&LdYkKD$RÀ('ęs+Ϫ؜ =j .P􋡉0%5>!NՔřDBsW"mz?=1eNJX.!ƤzV:Gu{ TGp2d#'NLޤq,s)غ㡣C8h^P-z/OUw;cwְTEUM'UԆϟ 'Ɗk&*jXL~*goզ얲0 (:`6ASR^VwT[Ie )ƃ##^c3V:yXM2^xs8ׄgW|1'X5QX Y*ͯ?~??yuj79gej6CKY00ͨ:';yɠGASl}rRuY2% 6{nɧ)6hTͷ!0DP *8?RҀx(ϬuINwIu`,.xI*\nH9K2@)WuaaUM5?f³g̜G' !V r$؏ݪVi3$Bf@9D|÷+S_퉅15^-t^2gϾà@3Lj"!;n%( qQVРwG'4o(:&~7S#g pc&IF#r8A^EM&OO]*AXoj) Ĩdw/z~E9Ce}g{z^zPULʪc%2y2ȔOK Z j6B$Yy֐@EѩOnm3Ɓ]2S8b9Ck%jӏ p,gf',&d-B3R d_h9CN6lpӒ@SpPԝ)õv>N|O~!jA}B2X:.'Rc-.f$33SF]i^g lL5 5`(‹Zp>j`%Z,-q!cI $D8ga ǟ(ڳ!]FpyNMe/}^>= a&kDgq̂z#1YP n}@0wH9h|,cR/rOW (R%-iY y= vU eSm>ˢu+,\P2I޷v6MhEeRdk܃=!\Ǡ6}uK'@W5gb`Q}'(i?165k鄕> M ;mX[.LZuC ǣ+EDGrȴj&3ui&~ɇCPª |E <=֚5bLNH7oqUwRp'1ަ^KaCv!Ҹ2-N)YɀN`׿eךe:W>sf a=nó.0?8yP5c%&B G<ϲwe8 rAjvp{ߡ.qbP4koĭB5 x/z,JqL9jӰ:MxFH]YE/:2#5e]\ԕh Zv3v?7!Ѕn] ek;8g8.u{gZKGĖX)?PBSfu$N?Q%uDh\oH< $//I)WVΚ' AoNCYr+`?v8ӛU;Rv|3IHˆU-p ~ڋyXA?|5ð!p!_]=-5pXM} K֛@^Y4xƓj`pY]Q>PV15`j aL=;_ ^um5Z[4Kwmq7r _p8ïJ!OSKx}#^"]wi˙ӨX>Euxdm~kz)^9G6|[k|aQ na0ǺLϋ8|I29<H̳Q^dOKhlw4g-i7a A]MoL3 {O:+X*yGW./93}MaWi>xն˧=53h6uσ|aPy:mv{9!=DBau J*,V AZP^JQoeT' G7,8Ebh6-OĶAY7ɩ|~d-P#uOl贖8fMvM}0Q32Oc /i¬9:!=~q^)ּ䨅&;uX1u+WG7\-(.-d"$|xmAd_m+t5)+낥rs8{ [kal\llE3?flx  <ֵBfJ^0헠գ`uci3W}$sd^**_Cg@Ԓ0T MejvUrKe7tJu4\ <2םMU#n&HM&2H#9BIOVֲ`S4o(-ΰտfL$! ȌH?X͠YUO5oTa%1 S[䗺&G@W}?L;^3s2EFR qlW:WL( VЊ6O՝7qm}z3V8%<-0̾:+Z3Kc`I*6&sGUXwN21h3g.G y!"&<>zqeNL\3fk2!BɭSyk8-ص8!9W!+CVFбj0oDSjh_nj1y}* 4BL@緉g{1-U~{O0i;S֬vΡҷIyRH$Pб^ (NF4(`!⋒נ'MB%\TCGLTLJ AϱaJqdžI4!?(w7ơ`h>碱t%"զ] j=|3e,LҶWhr+ tU.seQQf]{wyͥQI[uوR`Br" Hu+1޻(:L8K@1NyZ{T4\6Gc+@ӄc$ wU?q( ^| j/qA.^.*!3^~i֞9hYdgKy6iԁ-δcTjC:jӚhQbSAC~#Y/58fdvywg '- P.&jM^L? #QnƨEHFf7cGbj9焥wC#MټCSn߶qw2#^0Ǣ`oatm(lP_RyL1o)GI@ zR~~J9 G"yeޘWB2Dy+9=GRB`8QQD8/Ur>fB$>uB.CGN}99}S#פj;n\bW6_3I&{_)F;SCD7Fa*d&^|)'wE{ rkN|U(6L`'Xc˯x6eJ1"Id oFZ.uBuy 95͸Q[1ڒng8`oӸ2\|{ZwP!:ck8ԯ%::톌HЕbe1tLZݛ SARIO]lsif=ssXBgﲨendstream endobj 115 0 obj << /Filter /FlateDecode /Length1 1415 /Length2 6362 /Length3 0 /Length 7322 >> stream xڍVT$F0 i -)!59@)QRZEnDB i %U@;=޳s{}L𲙥A$ `%< VH7 xCbJͮCqL#`@Co DS+@)0X/G V @M$4 "=p*-0 DQQ^w8P"aP4aPo%BXQ%(?I ]UDy-~pl .&& Zy -1\  o$ #X 6xqWHBNgDH`( A@H;Kp@(#C@PWC@(ߟ`XO!W%ݴ0(:6 n=^hL D!~QpYp?=ʂ`yE0 <@[!`> @D ?4aanݐ0DN?cA` @+G0h7dlag'&MML/!%!))4:~P#b┊T;r%Vdx@, pʻKIܑ N[3{(@ԺA=wB> jb[Ҵ+'I%RYOt*mI]ockxCwgṝMv;=)0lk+c.x9=o"iC&LQ/x^=9sR7Qpmlھ6 a* EјjДVGy{ۗGLtM<&}/#.Q 4XH[P] mO`||Z"?2Hgs ()QiLBefݨ/f*ytZѭ:+wu1W'.FY' KLyVڛ=3  ՠvF{h2rWdDQdž}rAsn=:*(%A|țw0zR'|:E z +ݟ^whz6ӭ6wZf$;8s?<+rv iy>ңЀ]k?en~\_q8S)g >[1Uuu08_= :Ǡ^YŗkÐ>%]㼃p)fn*Fgǜ4|Us4byp'XJ6v)`ځ z^+zj"PR^cx`G1[ʧLM1f2lu:'ON{ ;cJ`?1`Xb3 +mIT&xFͮ XK\P#g:$9%Ȱ歪MMB_-UlYO=WYC9DފLkgv0 W?^H "k<:$WZ!neVz,^,H,>[g?vCr"e*5"BȜ]- 69d('m͝^Yp!gH^Qfn6g80b|9kr -{L6-~8[wG׿VVz_:C~I7G6YWJ8%n]+r^˘MqKYŨ-ɔzヮ^5%D՚+oE=40zЍ$ \hQRBIJF|3} NZėeCOF3QCwQ$di6WE[[:(lo-PӊP}+gḹcb[n墦Tʯw1 K=&AeZWk?޸n&Yk~% ;V\oW 1U<<&x7 wɼy=m!oϻƌV>=vo| ica揕^ˉ\/ֳ5Oxp38m,P, fu>#֍0}FDI)&1<~4Wu(j %YϙZü6\w5$L@/)pIIԜxzy ߬BL4mz2n|}%0:&fO]íc nԍ?)C,hؐTBRwfnװXiY;c٤!sVW -PW[SCx oYƹ{рeYNȔ (ɘEN18!CGA2k[*rO1/J~?|2FWɍpNM[o TL7ـÉ ca?ᚅNAi4^:# Yd Ypԣ'U>qWYH"k7MK/-RkpK.J(dL6r.,ۛ6Z~C3VUzA+>|C(`aF)>jS|@5Kqj B0ޓN>(d ^6w znkt eKGƙ7x7\lLl9qvu6QSa?}wbhjvmQ${ͤ<@m#ElLNHO^E=S3ΜX)R qB!{F6[gi?lp? k3Bxo,kd}G"TZ er-i2۠|QL%yΊ3ԢEuj8 2-~: u`ۚ}S&Ԁ襨))HHu\f92Iy/<dP-{ HEGodez}Q@\\iZC hj'L{OS5yioKeQ-hNRhЮ|bu~jǪNភ'ڋ>G}Tb%ׄ=;?buQveᡦ>2SNqCsM9\>`-od)þLo͞Ĥ/-`nsuJniRSj;#)Sn5`QOb33gƼITg4[)u8ٚJ@=^#+XGM(;4nhG;=Bv#@PբĜ8$oCbs*:DMV砇$.t[DIֳE~𛢼ØF溜%tvU2u$H*_:T@Rǟ~wcǨq!|e 1A!}ϱ/o]opTkz&*>!zB]N\@۾pd 4OjD,a^糌Kh鋅1V;b"ۀRgnď^C$-IKK{OˊX}GFR9zvv*s$9Uwٮs<571C<{I;_JZ: NŒLD?%gyK K3Y.ʕ+Yx*X9qw餶;IZm S?y#hUciZ~T,&>i7} xK:νMgוƋ[SԢ:_e 7:aZSBBwSk%6/> stream xڍvuTz6-C- ҍ Ct7ݝ"]ҝ J}qk콟ώCO.ahuts9RʚJZZ\NN ''7:=jmABHAPNAnv.00''S?@Ga4bPRN^.+k(,>̙\BBl$.s@20B0=B98<<< {W3h].` /=_r@tz5o%vs+h*(Ti o8 27ww9xA;0@UV @ ;WG?J@00t5w8A]_,9~5ZBuEU4lǿ#upp-[B,,Qpsv8ATuV`(S6X3in+/#/5FOK\\ 9`8S-a[p– OF=pt kJzzj,) asBo C/OyTpt־0qg=fgPq5 98aϷ~E?\I/ d[l7(Ha𿡺o[lqV(v,VgB<j_q2Aj_?C@s[# _&0;ůK\\@^蜰UpNז8P `kB/_7?Lt5*p+$؅ ۛo7a3Zzma %]Lr=a0Q;#?@_mq-`#p=a%:6|`[[W kFwq<0nPMi|`qg 3ln0FCcZXc.e4wsхn6?_#`O9✣HM}HM8OG7*^h;- 2r޼k,ikjDeDq2B'oɎ U1P&9HRs>ʟRW|ӧ|H޾* 9eEAя_UՅQ>uIsڼMPneT||tv_/[9th~pX7Η/{؊"r.ي/*!&҉G>$KΝqVV5r"JupOޛJ˗ZGt?#} 296WT|+(zyW&f kѯwB@}WR,%6ՠ>ؕĖ`k6ۜ=^tuPd7?EҦrZvڏZGbX;ጆ\74jqF"WT9.壒 뱡X$}S_LxgA;;DrLj>QE'.rB 'f?ɢzDeAz`"퍬@tHN\[K4Uq~ )ʓo\8Q`J.ծ%Ri%tK̨#Sߏ,dO>Xp7ۏUюRk잖G+埯1DYQ/ݗnX+7 9a_eHI9EiǛd1!o Vo|Y'5*VDtżΩ",K oNwisY*tT;׌AqL\fc&)uR4/3>[NcVt4}rDOKR~#y8\"^16{k`հ=E4mvxQ6{ IkiݳWhɫWh,f%=/iX]'$զynuhF5{2W-}k 7Wn.s@jWIliB,ݷ|rWZ^R>xV(9sl%"!oPr0YE/"q/{"%1ϲ=m^`+>:S=c yڇ K~;Yt9=>>!6k XE'`= 1ЙѬ;M6jky'\N${xL-dB-aY3Z۩d^2l/xʗ<ɯp?PZǣhZe,VQرN ܌"aR/פ}n M<"|"RX[*NlZeٵ8_i`E`>rݖ{Z4ڬӊLwg/&Zt Q|"1?{e؝EUFկDTg*?}gߑ=f/P7aSDudתad|(jgEuOyc'xbd^/4҃2M{~#ФߖNA{sSzg٩$)80C2#ImP|MP.Z1 3,DYY(_tx+Bcf$dˇIvk=_>=֡i,ܖțcCpCqE^ r(xQAI&һ(s15XH>v`b\|* ֞=~uE6[şϠiuFšXВX WQMgS/Zw@Bd=qSg-xDB|JL2 .UyR%y v]m#eܟt:z-Dk 옗?^> e'D_f+toSP4q ]Nǵ `kG*@OI7ߛWaGdvs˖K7n<:+f#6$);RV$P[q󯴮&+͝#F* -6g6K<֙yQ◂H 4L=/ _p-(x̰'uL :ΒtabXϵr?7=KKdкWztDbyV4tMtwHq"ܮhџ3˔ZbίX%bw5bRZ_8 _v|Asu$fJXF Zf.'1d;r Uc 8uf5Fh_2Gcwԫ! ~/Ffy) H'J*屡!yVuP&ً_kWⰏ)Wuق牬_F؋_Jع%TP5E83)w}:lf #mBBYbTKm*MvhWL.kXH(fإfTFEӵiƑN-ZbƊh֏: }H͇dD&R1v/T$0d_ɕ/{YԜ>v8dIMDoaJ\{5BM&R7*2Jeցa"ir龡ۯkoXIg9]'nLK##*ƺ>%⢘d7"O'Z1FWpf;:"~.CEONE$ lOci~T0k-IBJYyi!% 0'qȜH-nOAº$s]{IZ3yrW{-M{ٙgXW[C?e.[wXK(֌(˟ٝ+>soʩ-X ERԝ5| ¿ovCd8o)ʊ}翨n"˕*hhOzjdPkã1&[u[_J["ukQ!C hi%KQ{|u$"ߩ=^J OAH UzC2pqL :ʟlF}N; B?JP*8<7dߏqrnqYQn' c@#fvmydc+=ע# fQVuө^*̥Z'cuӶe#M x?|\xXc$NW D3xDj>=ݥP!A\˱+\?m*:kfþ]VfQxUu?邚 4{ 23c[QјT< \`C4QZ٦ऴB|D*F$c׽8Zqͭ\@ՏQ,{ [V@"Hi rҁŪ:iْ0O<^Ƽz~n=Wc<|)<_bBj $x1k|ʶ[]{sNaRo:;Hf5*]=s9+/|zh85F%:mH^/Xp?Ǎx|Ht$VU\(<{=em3*7!M%)E)+QU?vzgIc]~#YV B7[V| Na[Hv;;Z WbYͩ6#xޖw?؉,ic\!bQjFq6c,^ YѝcJB 5G/J\[>pFr_\7џ\X>CC*A]FLG8eiPO#2AМ;g@w8C gʥIDD/һŸ@ڃe)Tލi85#]WҒ]|v0fdQH H[ՇI]sro7vÇ`fl#A+h=J8OsdMQsΘ^t.Vw$GqmCaF`msXhؕԍ`DgޖrVE~ [͋AǮ;O+MmA~|)Ei&dt]9( M,x(5-0ĮhHhCÇyH/EpWhr+u0IwY䟻1vL v?I[i1M~7q1ᑳ6@VvMy@lEm Lg ]YYhA?1-M1zoms6ߍx(s#xƥ]qx$A)Ի JsFӻmU>b#]Z#SϧOn."Ѯum=cKL97l;6=K},J;z,јUi%zh j6v[8aD(*hǭp!{#oUޝ_z,->iJnx|\KP]->;\ΜHr_BdBeOقyneL|rw (KǏEXrP.P.Jbλ/je-x3?}ܒЗ ;%D\;KM[@jXyEH9aH#kHWMDǹYߺh/dcu<}I}f鬁* Wg(h~15@_n/DI |'5P]ck6ZiF~. T'}rlBg1MjЊN׊;sTC_l"(\/ĽJX>BBwwJh 83 ( $g3Tɬ P2$:Al%`={arܴV,İDbXv'f,cf?JjRaAI حCzy ͜?#YM$5cgx޵“:}$"刣qG] hmIҔ%q# eW3}3P тHg/+qJ2uAitF Vz)T=8^ÎZ<`c 8R=c:tG؊獆3zDs.So|k%QupӆsZ 幠ѻF-.:xw~o, B_"ǩy%nrS"Y=,C"{7R*1mQqITOپZ ~dE>csq/N&O,66@8++uyӾOJ.Fzq~µ!N!!(͌[g#1z(#: d@'Cs$ySbJ柭DpVR=ŮfšfHDHcsĦrԲPJe*cל;C5mj_um+33~4~)~d|:DQ}3̏aJ#T W%P ) Q'Dc!г;b{/T7'Kz _A-众T!r|KܘPԕ=0v = xq `)(|Ӫ ?D 9&\[h=;2c@0 `4D ex!fՙc F]%I Axz:'?MN2ao5-Z \Kr;oᮎɲGrycYU0eOD#+I"F%4ۿ%UAtK/Whc&ш|﴿}K9Ygp‰|d2s5UAlZRkBTў4W=,|f(F{ѯS(2£|~9/&#[토z\=Fؗ6щL9@!h_Dx G3_% {0dϢ khm>uT7-_jmCP+D!t"b?3|l*QvuV_rM"zNڃ#1 5y~15rŰ8㚗Ȝ75g!~˜ /ͳ T~#A 4o=)*nyf |-5}2#CRLN=n<_H#Q"}]p֤.̕x/O{-!`T)3u|.P=5](Ee!=tP9}oTdXTa, OҒn(dkw.J*$ a3vv^5MI>`xVROX`SއjKHEsoYʤƤ Is(0=ʼnk(OWm)P}~p y~+{vѦC/R襊~> 0v諊*izv󑐞zuv1YvB\ugyڒ v "fs! Gt€s(ػ,#l='|Ju۶!l;M./\Grg!c`Rnio>O 4=>meS'y=p0wб[e9m|Qla~ŰQv8UJ0YIy[75v@bYPرqJC+ F#cW_?=*p +c@[yh~"|߲2 ܶL;sQ\PſK.MQKmWvxJ\!PCϒ58drl)̔iE\qB.u(pa=g8\7)Ch/MM&滆<"x)w"@aGɣ!5 J S( `dݎȯhsY=chlb>(`'y4:W# lLq 1,jn3[|=Pjh` 3^Uwl_P# ɼn!#mO6@3j*!ȨW9Z?ӭzS\^?l+}5\I@Q9চ&b kP~೎IZ'@i޺¶j9_Gx2ZQc#$TQ>ҠJ6Tc v&ݰv\Z0k+[ ??QCʿa 1,iz6vnki֧/ЄQvBq!^ #6P] vHڊΤL5D祴): 6qr(GLol'gP/:;)!%4=TBe"p OK>Ր*bt ;u',. M$J)2zJt+DPLjƇ:Ms\~C[Z]/{€ț3l³I4ΰ)ZXU픬(m:sQ{5UşMɁh5ÇBpCqlrL/Siښ1؃?VB.~nN\{!ouԙjTm'SڦTUw$S K*ѫ<،Fݳ? iȏ~Mwh՛*C7%aw]JYSZ 7_S9yI\ٝק[}x2i n׆jvXJgAe Zp7G9 J_&O=Jyܷ)O4Q4r}7L2}JLrm/smz=kk9)z}Ou8oV hJ.x/#ܦej!usИ/W F4Z2da|UjO%,_:X3O<dC/m yKPo xxLva5iU|6:HƋȤq&8Lp]ةfR2 ~g!Ό]JaX)r{-WKv?KQCJڑc,cܡɓQ:SrZטrcX^RT\u{98aX y%}_ nGy~M`:ɥ*C/=uЉc 7*\l؎PD ˖cht( E (_1Ui/xr97S{-`ACowD*rֶLUp,cYC)@'wL$ȳȢL6(,atiEyMItN+#>yu;𷛵R`)?Wa֘KQTtqg+l(Ruy{_[ǜ#)dCZԊMqHЬ36AS4rfDžCslFim R7>Fp/֧o8YH5sXn"ԺC9<#ТZ4H8pby^PYHjY,>x,AڱH"n taݹ螧zfIyU l"U!_tº,bgbeޞ o1!mX{BK 8d/#VZH\&m0} o3G/&rtg-ՒJךԻ_*WGf{ l8uendstream endobj 117 0 obj << /Filter /FlateDecode /Length1 1505 /Length2 6647 /Length3 0 /Length 7656 >> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|cendstream endobj 118 0 obj << /Filter /FlateDecode /Length1 1393 /Length2 5904 /Length3 0 /Length 6854 >> stream xڍtTk.]  H"!ݍt C0t7RJI!! tw"(9kz}|EKGaU@Q< ^>1OMre&bӇ"]a EB(MBǩ#7GH@0k:/@"0[;߯'i'(` v" 0(_%8P(g1 Ãʋ@Jr>xPv+ ;A %b\u6(0 @a("]e53'XOC_xA)WB0d0prý`p[  TPEyp_`GW:9o(Hkhs a(W^W/_eS["p+ѯPz^?u#<>l`pk_ ݜO07_!h?6[( HXXPu@=!v__f4?g3 |\P ߎ@ 5 XAmapP?g0O { ߯F _ <>< !#!ď~]?o A8_e( A~x}!7Gn v9z - uZ5:^e-i-< A^>?vjCAU{8P-+_> 诊+za]PWAXR0D$2z7 G)4F? Ik| J7$@[P'B43< m^!>,ި;R>N ⸋u)`cS \G?},񫬚&ɊnQ٠Tc+BPLvܻWrbiXڨWB7 ?ZAQBk.N5T3# gGjgOYs xM8" B6dعF~ OMHy' B^s(gEdp'2&j JUKiO~AG/¯zi|ڝJlúCYݤO>~&cl>+%L\:[l&xGTJ 6% d_gh.l1T-KHZ0d`a8N0WqPDJ HNiġ})I+VEġ>&@K@JB{wx/rSf)>S3)05@?/SiwǒW:T!Gi$O?87|-B zNGe80+nUX NL%vw QC&{[6̘X1^nCA>} |y!%WV}WaR6cl/YJAkQM\]+^n1Ǎ+vTg|vI1x302'r\l]0?_"mR[snT菍) \ȠYγoswsa]C{,So3't8sĩzP ,`,^ʪ OoQI^wyԸ3t$]S*aLZhJXD.؊>׳s} zIϓS3c{"JGb 1 zBXܟGdMNP+X3+`d_.ђwN yp Yҩ6 ;/+C"}e#b-"E1[8JT>^֪^~](11}ԭ#@yjRlGv+?0^$l6"K}.)yb ݴ{%' ܑM_[!ief?`=90~o7*<;rc5[yP z*D^ #~ iIU*!|d2D0k}w+De!=_Q).Vn|[aq0NI,$kfNqJ@wJ;C>?9ݐAK7uֿ+MUkǤzo5_\҄WXuE\LfS]k5^nM;OO*Gn8bFjxfM1G3TwNyJnjZ{yB"V,Z7LbN-7=)S8~*Z72YT廇CmsLt$K)X̢R+?a ;.OSnGs[\#ˣ[Hqťv5 Vߘ"u1I]oP7CXO#wk}45^~>3d݈=S:!)58EbÖ"x-Ŏ_$ &-󍶒ZXƯ+&xE&wDWHycgB LL.Rk&i>~l߹FwfԆsś2_v[,>5bê_ޛk)I.@9*r 껖v嵝nQk!/B|uK"KxT>*DbglzcƢ. Ҭc$%*7۷l45wL2WlV} dhzel1iݳ0,U8U4JVʂJۥ陛gOqV|fSeiX}IeMqmϸPs"d$ f ] m!g?50K⊪oE,h(V´z@Y Ibi?bu,V%ܣ]x࣌ƹ׫gkWS⊴Jy*_UP[$\ff;, Tgܯ^gTF i9[c}f+d"tIYqiPzYz8mޢO&!npMԉ搘"?WdK #zAPIj *<:\ZOXZsuNA_便ba_g>$:Z;ՠ<1a_KRemٻ=k޳[S"'1|:& 51?g9c|/3%\FAnDY9ό`3HN{Eysw"Ay~3&;{Jr0bWIN=HaSOpSWm_2!&f.(5͐ǔ F2 1^RsvC8j54?Up*ոu ?ƪGX@oē|F;8do =rw%ffEKȏg9? 13Q8|L…-N5L+F^VqOso\A $A4AzGǚ#P`7oGeeu#:+?5vɼ`\ ș p\g4=}M%:{(V1p]J9»$ʃ|GBHCe|/#>I<e&sN$618G}kl` 犌,Ou*m"Zb@I\#^=mVs.S˲X W{0[^`g s2椁F ߤñ7m"^#3Rܤ #m ghg" Y l+V fRz%g3j,.[WRruI?n.>kd#}cYk J1$uHt#Yn:`B)JYl}UFdWK63Pvrk=r?Kر,o1r|UBoɣ!Tr_زٜԺw]:+7´abd1ϰZꋼ~nbF:zC=$eϰ Uq|l|ʨ`!X;ӭ3~'ݏlԼ4!~D<2ܡC i7/f:?4 s|ٱ?9*+ຆ*6%0{NTd_[O㷌lr v:MRmkFlfGKԷ/_D 1R#eֺĽjj#%'\7Z|,CnɞzXPќ+J@ w?2ö,eGq 94K'bpSI< Vi&Z<[Ƚ'q4B"9u,*S1xbt.XqHkk(h~L'zy|kخ UC&^fR8c%Rܞ+f,&A^ȯ"LQTz$6F:}qW;iϾk|21օr--RZNȏYs<%fU='970(GTvy Ǻx7 " YOVd'555_[#Й܎ ~Br|fѹLfï}rֲD5 ;Jo)sW#l"+ٴTJB_F'~7䒗‡ķzTS ?w߼(`4)l {knbu-,gZ2P:>4PZ=3Klj:مxR{%Tl+FiNn<-ZobdZd],9o>.xk36#RO" Bo$tR"i|*6EHJ%;% /pnO>WWFiD4Z]S9!T@3> 7fTcVkY\5Ã-{e-=?+:lS&Y(Pendstream endobj 119 0 obj << /Filter /FlateDecode /Length1 1581 /Length2 9213 /Length3 0 /Length 10251 >> stream xڍTm6Nwwt4HtH( , )! J !))RJ4>>|w\3slL|v0 (j @8ll o;A%P[#lJֈ xJ I @a%k/@qanGC?\A 1?`5ep>Tvl!`|@I֮p~ /p`/wmkW_ !?0{`p؂OP` qC$kI5 ;G- :!.`&? &Za^kG:? C\~aP;E+>l0w__ yCF6<݀OwO_?60 " `[Gn?=m!8pk/0  b؀ P? s>H/Òa _!_PDAÃlF7u}8S0[pJyZoa0~q)2ז^3c/WH@ &-6$W{pMOwVBP;F/ާr\GY;+~}p<2I%..*ZP%?>Ѧ ?Ls3Y+EfifʼѰmt*S] =m i4eV=V;ވWwhT[AIGU\y|-džcB]SlaGigY* 6n ؏jwUcIށLz]i1[0B+z~xLiDՓ.B5\6&˜k=P|ёAU H.y5$ TOew<6T~[efjpW\DU8n^fO-5?˶V σAo"kDQTgdG?[8oa!WU3 t,ؠ5RzTѬ+=m,qYhg>rU Ig5$7X1mHǿ725x;d]iZ=LmP/g'7*T0  SNI/n8x.,M5I7 L -^vU3Tk78* D1u2-^y Bھ!Z[ۊD1z>̶疃?İ XE*}\Lp?Igi!}B~jW :4)2Ik?jFY Oʝ [z-!_B*l{r/s1|u8~ 8+|dvͶ 1 #TXfd^;޸Qf~i޶+bP6Ъ8U Ւf@1O r6)h廍n\sQU2EqIÙ(Vzo1+i_$X XJ[H|}r:HD/OGcީOo#ՋH&yΐ#xN|(Q7H xj<`B8=DdKIifqL,)v7) m#ɣp5܅+|+1'VH)e]ylwu )X03r^/&Ȗ~!+S!*D05..&nm ^7.us+;.|CfkA24ǹq'ĠڱuF\Ae,WxϚi;ayxH;!钁D@Ys&.Tf]\ycz@Н8|fs."}Hu?qcFD QyX ÁKk鎤Ye#;V&_DդG#mvu_i2z5\8n^;zS#cnV?s"rv̊ʕށ ߳zZ v**N"$=4^{@'ϧ055fԦTfÑAva-: _e18^mHtF jDa|;`"edgj(>T&z@Y5ǧȈ?OhWzά+iJ E.jeבLuOe0 HgDZQUSP֩w'=dɎ{N,M[Hqg:}; \_.HqdptaBWM\ธu+̄HO]FO R#CBsyty"PO%!^d7n< v~.RMoƢVv ^b#q8̊wIZt:{{Ux\Cw=R(K ZO}TM)Ё aMA]Wnh]6_.K<›4hV[~؈we({Ecci$D|jX}ޯj5|$CjS@$lTmW;x1Ic*ڞ UfW~ܦΗ`畧I6 &W5h@2K]EAjsaeV$5iMbx쓌̉W'D'eCOD5Y~9cH~]*y(8OdӀT(qK8b:AV4O!C<ʭb ;'N1s?Bb&g7"젣<#wZz#-fޅ/9FKTJ5b,ؙHa5`퓵VmWN0oƆ!X<3TfoON MI8 Ƽ*6&K..Ȋ]Ǭ샨jWa<3gFއ1U;pwɺx7G#4N^#~>bAZ3}/v={G6A|ʚn#7Sk}uJR9HN\|D꽾@! Ɂd;B5rѯ% eؤiuɛdvg1]AŪp/etCi)“Or?2&I; ?];M'&Yk[n(BOVl;|PVwלKQqS$WBF|O^\K(8pOPY%::14DhV5eY'fcg~VihtH/qE2L#g'R1,+PI$irг͞ߴ'=ZXqj.4,⇸Cr=H޵>2~(=_-jqIRS@-Y~5=D-`G'[1G"OPF2l]0AًIҊ oHґVj@½mEPx2òk煏||6o "s9}nmՄ E[IB-C`ӡimҲ*+L3b8wHA+Ww-`==McmB&I]ѻF~fܥNaB4.6$Ùgt/V( jyj#vs$ i$) I5PȏkdUleë%m{ /Q2 D{ ~ Ȑ݅߳0':OsTe]Q5﷦0\t]?>'8/uw OQ JhgeSiXXpP=ޜ73 5޹*K_s{5[ )m_'IEf.{D#@HIH&;m 5."M@h\ T1R){ǭ7[K-w)Uc]dg'9s ,Ao9\Hm:EW]E :A"2r"<4ck 5hr7"+y ;PvJ=;}~nM_R e;>N\,gmѐD%{+0?Mu 5Q65W"]nz4l%N:Iӡq拑EE3i?&x4نo+/oٛkÈ=ᕡżzk*eT]/ +4oe}|ol|FPjL4&/Ghx~g:EMo*؞ڻwU^{%Dst Qa/z\tȨ $G&}-: hY5gc/$;^%SHߡ {Qe8 5NM;st>q26I:05Ňk='ƕP%_387݁d# 3y M՛wkw{=WEb im0 Jm q0p*]MM\wȂ| -ߪS!v޴kJ!LF'6-hv; ~LHj *8er{ʷc.եُcm3GBErP";iW5ߢDvM4N mʪ&6c5+h+u r$gvv5O=#KvzbR^GKZ$}g^zۉl=M5I; c"mCn`nq`?[ Jӡ HeHB[W`pJMݾY'#Ce2s匜-i_"t(Thtë3b3oQWtGlgDS5I9.ůRry̞ъ_ )B ;,,/,blJ` w庵qs s0 hINL R/Wilz=MŞwL~7,?FNbL<%U#,los},uաw)8t~`Z2马6(UP7jEP$qZZb/dNa`v]4)~\eG,?{jTTUYڭz+8jْݠkkF (ٳ{lvu>=@-mR׹w<$.nBqUl i=l.v~ZP3$%YR8e[l0/Y4>dcP͒p,D\Tu9HͅK;ڪfskcq mUsKtTsdi%-oRS,WͤQ代7`*2r_v_ h&uw{}NW(ՆfxQ%V岙ln9kj`nNar35i:$c5]{-{3#b ynEL4jS2YÏ2GB]umI>ABm$,j~)48` <=>]8Ð+.%n vr4@A!UU5LIJ ޲5iv'Z$ٻG\X̆M[lo*NvjaP. 3K6Ʈ)նU0"ː[\j*TWu"6N.\?e^O9~&D:^:.AJ /|'0 ZچG{kM]Ti[kVwvJ]:Xwfkqd~ovTFel{Vzm !9le$C $wNIs!;(c,oq>\mɉNWZLk҉M%_ ǂuJ~Գڇ}̝Z XIٚp_'dpt"_́mhx)vim6{ OԴ^]nVW  ̺8UZ?q/XR"E0DoFt~hH8NzBˁ_ 2[M{ 38T*0udj+b 7] qRv^Y]v[]>,nnچk=Ht{Bn/O'i4~)} e|S,+r΀=6)#lX,{}[} hb|Ŋ;{Fbh[|#)|L.وDRy1/"Cc1 n@Q6zYG}Do#V9!Ķ)t{/kM"0SBpyW6ҋ*-5(ӊx R|7\-ˋn|Vow@S. ;+f 7QF_sSRS&2SU$junKvk;! !-0!XxNZ3?KO_p/~Nsܰ8;ˠJBL{iu`rW#nAZS$^=ہUZ)g:_fTyl((Կs*nG)PKjƇBPHҏ! I5ATIX}C/kR=Wk ZOr,i ~pf8|6?.[_tz@.8 wE@JQvEmr^jX?j8> stream xڌP w'ݝ4w]B!;ww3w$*`m_}N9*1P֙ *`bbe`bb''WpWOttBh 9 l2.fV33'v<1#W S<@O.jgha翿Lܜtm&Fy#O@PF#kBP}rvadtssc0qbs4Y8@S_ F61>Y8Gjgf&@[')P(mc,:?030Yldbbgcodaak0%ݝFY;ف\,AnVى/YThW}b@P=9\+[;7["3 [Sh3Z8́v&&&.Vt7W5{J >^v3 pvtx_ 00q-lGfwp2Ə׿&G(H""v/z6= ++(/JFG;kT[_?ƕ@0:@w v '-#K ~bDR۹db;"Hos o~aa hHfzDP3zPG8nE;6;(-hЃX.l?jjP0{Ѓn?0A,~ e.0}at/;g' TfP~G`  s'{oRPmNFN*w7#qwv:? nL) uwqH@kf_FН_ h8ggdY04f*5עc#2luUfp`ʖ8ՍQsl'g8ɝ #pjB/V2.\Jn=#!s;ʻUSQKffqIa߿A?wGF#9b-Yg~\ԁG}dKd?Ygޫ8r>lm{GWNq[ŗ_.sGОyMB2_Gw .̑T5VkwcFFf\sHl~kQdU%Szû2ګr~}]B0) 0|0#\w1NjA% eWT.'O77zbivcFbKit 9s<dM MHʇu=}0y ҟckEQ-J`38|J톾&ȹ|0*/uYTn?ZbXYy.] m)c>eF8өHm*R8`GӁDע/ϭ%m 6rp>LZtvC>Zhe]w!ܖ*>l ByKzRcGh5xrCcB *\^cQYvw^z M6wv=t%ƫtR ń\p w:=а.DsmםO3 v'izZ7~ 1Ok|Pdϼ' }P/3KJ]s-cI4(2-ݮBqJqB\E"[Pտ %7e`I:*^=  3 iS}D 4%~46j K,M!n5 2G_^V:\/k@:'Js.w9#U}Zf*\oh̄SD $I7O})6/`i c\Q1}:#a8׼uiPco[ > 49|jqTy/ϙƽ$nh6P}39F5;ӌx`ˀ3&Sp]Nl,;sg:p ~SF43d_޷~Xi8T?69nl mR@HcL+W [XCƉ!B5TNZ9leDSp7PQOxa]Ȩ螼C`,'@:6|v9@\ c1[EPJ]^ a z~SBgXG|E:lgޯ6ZGg"o7yo#ZA7Pd <8ƃ[u"cDs2*Tj4'l$Q`/TN1*?FB R^J(UzJYCz8/?QsQ`1&'` ?wFm덀ble^# jy[cܱ{!kcй婹(5^_.RebHhfE`jHfOIu[5y?4$]"`FV햱H<ʲxճ?m6`LX֪܉`0sIyֱ6КwP?uc 7O%u=s`>O)bLjz8\o<] c"z,LV );acb #1B_hRvUL@c'!ܫMHHSr?ϰ47ΖJ0}@߹yVI9B^h^~-U@ӝnK?~D1c[cH}MR j+/$E M=2LF0;9G$?/~d^@dGgS| QpOvϣ ]M@!K Bt-=c'Oq#M46\Zbv5~"0,pRFl&qjzﲝߦ|{KdkU7p>z bח\4v<sv}u Q!?|L{ɕZP }٦hٞҊmmiV?;T&?A]~|չ[.sq1UwcAF[Cn@7ødD̤qb:DZ sYJv8΅ޑ)PX,z V!揈+ U]mėSTJ6뤉vEfNqFX}(OzSQ\w$3GtNɹ鎻:լ-|O/#i+%w򪻺G= +I"Tɦ銈JsE 7)Sa:k2Rz2-C ךi zڴQq4Ytx᯾+:!]B#cx%+dGOA͸^ms:kF~)^.Li{š dd2hNvfoM )9A1NSݡ ͈KJl'rXW"RyTMKnЩ}QfWQ?&?l`uU+Rra >W~# }̌  Ļ2XN| 3SJ&U&HtJ|WKyS:]_7Nuv.فB55G 63MP#"nꨡ< &y/'S9c{KwɓiuKsSLe >Ұatmw©g*J#İJV|wj; HGacaJ}#1j^4FDvrrkSN^ꪑ~=%);dO{0m+OLsbǬ83Sm4WxsX֊z>3acᗾ+^Y%wأ)]:f~}]>r=-]e*2C9𴳝9j*LZQXX@XN8VƌyNqVs"s ZٖIܸRO%yS=kc 2LVH\B5\"vn~H5_Z| Ji8MA 4j>;dit[ DǻLt@w"|x0EzTNj-)v J(5*Q}@ 9iErZ3{O<3uuqD?.#n$F =|$3qMW]%qn"p F[2 BcϺ6 2y)m'1wħfjEܿG Gܶg#a-PRGJ|P|8UQ mPDZ1rv}_G bjM]iqw` 6h%Vyx [`1,ߥР2r?"Bņo!#*z[ c:SƘ])!'ݙ}>bfrФ^gOCM?dpRI@G5дӖVbHhښh+A6T[حbnN@~Y;y^? Aen5!΅(`hhhS7ybY< GŨ#+Zgȱ5uDS4" Lm=CuO%3\$ 4=rw_2eRd3wm'Ճf_wFyǩ9D;|,CW}g1f>kSoplB5R E>V5>|4iw#w\1ڰzuyvVFjn @׃c;4u+81BUTm޷`TOvS*rSIJ8^!UT4Wuȕ{VX}&(~w Q~%Gn%m9GCwd! "gpdk/ni {s:a"y``{n?iqsCP*D\1@O3knjF`u 2ƗXP$Q潎`_FbS߬Q Ώ0;AcIw>_a/wf4I~bhO]݆G%6cgL>1؋] 1\z%ikkFs!l췐@Ɇf'=X eJMuioG1T()<>tG9I=ikoJ׋ϦӺDh?<'ݶy'?q'Wh!r{e!fiarj>$spN ^QAڒL5kk efCxلG#?tIXuco XNROY ՎC8ݮ:wdc'G?Eޫ[<sbkrUd˙oIQ2kOgqgO-Vo#aL^_Nh;Ŕ%sM4~~W$7:vDSDLh;C'eRւ,X% @HexE.I/_0I~LҼH)+ݑ>C9;kU&h:dJ!w!T@*dt3oiYXgDa`L`%gPK.䝡ޫ{2&6Dw&2'<;'&o'; P7Cj*޹8bE A6#H0l*¹[f| 6o^X҂/CZ!6;z|a] pG:qI W|XE>( ''(NJ'6}BX7Ï׹ Ӄ/yA﯋[g}yII/yvs낥Ç)csj"c7Թ"+l>vQai.fO/衖( BpdCJ}GE"KBV;|/?-Xv|i "N;K"ҰL\ Z2,'tNZ!8 as|,"Hy}93#*ʦb ƏcSW:G`S'0 m$O/,+-} [g~F,$H{˨PWJGbCZC|wZ/* #x|s/]ۘ 2 LpVݔP֞/G…6jڇ>~57*+ DSet3чNlM߅umC|Euz3ȤLUn~``S/Vp\\-Qլ| %sVO =9ew]Kn%F Ukr".Ut,HI=: X6 EJqp]Q5nfĽk}7u|u!QNm|ˌ=kKBۦ7'm$St:C/[:Jc"Ʌ O?~ ~簪k([m+6ovE`n'dy>WC0NAXϢC8Tm1uHnFPDT(HB"c䜱qY~ &pSJ=tiDѾvA]_bzq"ۣx h>us* 8]9ֲɌ)1uӞ|MBsTr*->|cLP ?#ZڦSJxG}CH%:x%Tg "ߐ-,]%;tcP$%X>i$}fYHuIs\ӭ7R:H埁Nj6qC]UcHTiela< ފOUܦXzg]] L=Tz~y9s~Jf$_ oq &NʰbaO:aUviGBE&pD%@©޵Qo4QY;c-&('9g{?,ײ Y8&$+LataJ9wl0>IP^fC.:aI^sk3XC6( xXW 3_ cR֩\bML(D·g Y9"6 gсw{\$zi\PJt۪k iYf>zi?mUt5kl]&k;YndK_ǫM \7wu*(;V"[:dl`0 0|H AeٷuoKY-?/ZjF ,Js$})"V.Y&vI&%$ zS[Od` #0nJ͢w$n2.yfwHz:>Te G]m|dߗ-fP&!|):)rh.9ce(-Lz1g!NˣCo_=qkun[ d *}8pSj&psa`t+`l=3r,mQF<Kd H0_faJ%f|pd&at#1;  0*\\"Mh>G# B :,zQLJ'7},udv*Q$ʿpWdK#(m-Su=rXLT6I٧kx_0`!Y5)!DPSf뉫D/=vx6D<73*{+Q;FB8r0\h-39D˷ndHqaNr"694a23ţ&Z2_I mgEs٬BJtC)J\9whlҿ?C>Y%BT>"jgTcѝmiL TXIy|ߪmw* "-I^rBt$؜cWg&#Vl| ^d|W"V'I:]d1eε[d}b+bIT Lj *쓈puT6R#rV +T?U'' 4Ȏ9%ۤ#ݑprGz0KH]޸[ꥒ ʡ66"~e!TlmyYj#_rɔL*xm,&.o._6}Jial>1ϡΐd`B kX]"מz)mKՖ۸ݩ`%4[NhP%-q?"[miac[FiƐhQEb!w>~@(ӂi%+o]xOdO#Beءo60z]֯<쩠k0pշ&>jp vPUԭHJ ?k9 WF:[_\ !cԾ٩ a #r xǯ8nU[m3?/#n֘*R&+ jKƪ.Jq(O+B#-#?Jw%sɭ|x$X Wv5sa @dM;| }̡ixIcL7g":=Yjm}\zGI!B3LOiPF R%FA Mz+FoQ&jR|JY@^ Ņ΋:j4 iw!EiI:&ɼ? *uv87(9gk]#;&9…E>b1I=lqJ78jd;;s}oY#Ǽ{X9I]BCr>Ԃ׹J Odmюu' Ώ _h>{heŁ@5g ›_mRuElE.Y;ث:ba]iv(RG̖V%H[U( v|dᴥ=/&8:݄J ,9K义-vӆ$=HWIpw=kL}!ةWv=D #_bwtpIua\{5;+"dLME-+J} ;L ٞӯcD;;jѯ;:/(l<OFc7lHxC2m,9 mqއkF;Y gf6<C I˜]2mQiiwi1'ZàC9D}B7Yp.22aV'F ?n/;qpb!}L2|.]3lK-ʻ8R44&/VVi>k߷̏xI? #Mv㥀BL2Ը@~=*,o-G􈌯ocˣwڦ͕#r) JNp=\x_4Y~ Ii+9}1k\ 73Eт+R~>%M^Τfl©Vn`bU}G4#יz&Й/c3t$)SDfV; %1ά8 s5\X`}r%bpw'x "n~E)5,>17#l:pQdǔmyIAO|-Hdbh6ci;"d{U6~9ր?DRtV'hu'mGǠ9N◳%+_=^w 9:ӽ1U37Q^Uᡲմ6BY fq~{R],soz\P4a9+!T.,U)nw/ R i☏gxvD X 1) u:DH͏wA+S:p +jS]tx.dz~,aA2D?F B]U;ujCˠ[?\9eM(w|8ۄNM7?Cˢ5'N^h+ա d-%^Un˻w12#xzuq8\ֲ)]4R.ߵN}+ywt8l#)ӷjA4,:lLĪwuHź#HIqلiv7i"Y[_ص ^p提E':3VmMrs\B G!{^;B.h6ۊCuSGP1>8Ɯ.;ЎpA'9A rh@8+HZ[h[;4Dp({ <95;p;d *+[Pf$'wӫVװ40^9j|͉P{ n 0)TQ, N60-ϯ\5}Mx'8О8Q> gpOK\<|3ܛNߑ7M`-z*\v|(wȳT_!J;-Rќ"z_ ֓RbEC4L5,MI"E fPFQyC eXN`QەeDXpGv󎽿 @p¶-ݘ9J$ ifgfOAA[':Rlų?[Ƃf%Y$!Jo!%Fz '\ɇL(7p\kY+ޛ.ޭbpK~{# 3B`rRkOaC++>)q+#Z%~#|`C _Rh3bF.8s2DW;< EƯN)yȪ__ܽ QK$,f;V}ըb:z#ql=N8jy^YTY77a,?|O|pj@W7mfnx,TQ6_EtVztX$  LY|bw~/UGYYxC_[>dnSbc%8ZUI;|;_0S҄nE?NC+gor 0ji]+C}*Ч=<ЛkCicU(>Ɇ̮A:o%z|yYgbu}Aݔμ wɽ]lDX-*HgO+:2yP[WvmV4R1F(a%#~@HS\|3(aU429|]#P^IʱC^y}iڥP: k]8r\/JY`C/_nSOnlWbK|ƝԒXB:wr8cϲ,.`D-6t*Dʔ~ƻ~Hbvw_(<\2Ƌ!|h-o*ΉjeӲݳS%/RNotՍW2/ΜU .){ǻ}N_:VM)$t~F~GȿwcPɻp3 q$HIz.!/k6n2Zsa\\ Uw9#J"WÉH<0:&fi' !HqE_TbQkI7Łou\VE=5 FWBigяr`A0,Zcw/zgqzJ?WKBjʜAa?Ye:֠) %kub,s1:׆ibj4xOwDOZX8\)$Pݱi!Zu5oWcq)4ϻ3 q T^k0VsдC-N }$e[tjNރHAvjcKs5W$X6?/1||Ī|YELQG}Sc3\b+0q֪G9'p3G^WsS_1ɍ`}bO|UCZ(E fn83fn6/˩\Xˤ&~y(㊛eFمկ+2q%pO_ff Sȷm6>Vz{?`uQ9S*wd۽\PF +^JW8yrꨁؾ1/coGnx^|[v=^OJR|^_H]?1^4,oȐaɩGI$tCѺ^.jo< #k)G˲g҇j#\>t^³=:S[rU\@.[kPɬ\kD-):* -:;bb9'Œ v>֨\^nEHT16=ٺ7Rhh'vEo'rך(sSl$: NӸذL L()r/J* tFȀeWcdZ;J9{֣{߹̼\+E"DAp1[TL  MpnJ;6oOZX|"+D;|'X5n8v }qI*aOC]4FkSdUsÎY7 yn1g /uD\/Ow6_C.cH!npf~Y}/vclpq Ck/mҵzۃp[aT2@NF `o`Q6yq.礨O9mQ/cxXA!znvUgQ1ɻOe2J?'"ڴLo}jYM.{lyd<я<-E$ݴɐmNL3\A|tq CѐWx\IJJB*oܑ0.l2ʇB]>\?>6&8TGkԂ<ƛڞ}*F+'4n!="ZE(/Q[#vZ /4ʰM 6~e&}N_Xqo^ΛF))G=BF} ØKT"]KqYl薷H]28ZC"6r8Kn̴ř8qquo{=L^ '^H"OtPIF >g8J|b{>nCX5 k#Vbpٗ5pHI ~PC\BU~%V$gK,ND"rB$QN@AqWc&y]ۦ(i3e]=R.+)Ң'yqo[wXt{֡+&ɳ>BuD,oХ 14KE& )lr^*|;߯ZO'_+eQ@VCzA(lr u5 3vwJp]4=^dz VJtpzCn{A$dR8 VS:["q#=qgOܢ%(nUTU+ MO$Զvwے$Z<{`ޑ0\{<~cfyogqA.3S:WMԱ (sehf͛xs7'Jh&|k$cwWڝ=iU? A@$27x㡿QX/"W%yMvp-7 q[PbbJ+_԰=,%J|;DXj x SkSg?-8#ǜO#ZbZ6 _zǯyXukA,> ě9NT?_]Jߜ#hx Uv"w)Uj g^=砓2o[FCKeaV0"c5avQasp=Rː{ow)G^}ch J !=ƈK[E#=eMi*qQ_#9U, bB[&Zcendstream endobj 121 0 obj << /Filter /FlateDecode /Length1 1420 /Length2 1645 /Length3 0 /Length 2548 >> stream xڍT 8TyWꋉJ.j%smܵ;301gfXi-.KQlme#%b"")Q[ߙA{{yΜ}C}S;. 9ؔFZOFT*L ,X,f(b b@O%@c܊Jt*rbV s'lDHD0t@b08/̼",-It` a0OE9lG90$ц/GYQ(R̎Q,l1 Ha1A"@Nx#ijd!`aT剥l Cs DH.;wQ2t(Fb`$ `=bWd D(ώfv(P |g8O(,ry !bA~>G8PR$v'DQA`rs.G_$L*j`H O7`DA M9FQӀ`bEh1 is@.P( Fn7e`m 0.b>#lvw];MCXS03&}0dϫ|?]ag~P`9EӺ N/1ď2AW@ߔ/?剜%"NG b%b|3qs믯X~&a xث^E*>2ͦN;rk_emY[l`ȚSO4f5~8z#cCYs=l1y6jCFE] _}9jPQ̛GĿdsC7SyzdzRL~ ,icWԹnŀ7-i[e-ݷfo|t%/A_4\xtݡ֑{q?a5|5ѰoƔ/+SzU|wl+jt/n[t-yXYCh23D`;K[UIG ³5O\vn:׺ҡR)LYMBWnH_3t]|4Y{yw$g?]hj͉ 8ZOy=v!{-Qi8m/[CT5:8?Vm%q4OPj2ju}ktߩyٻ>gniRzVkLxɍ4 zd˓UE6ڹ(7:ć궫JnkWyFVzKz\z].]+c:2z흡g=,=Q*ʮz%{CJ:u<σƍHZ%SbL{ef:Z{ +ﮬ6׼_n4mN \۔S77Bp6<{ʼn[^u8\1uS]l?ч$ckt6.7Zip3bɐ[~Y[ۜBQTaٽM˶ig-"&x 絕nmuԥQW8`*29v9Gh+ݑy jvjnՓ ƱˋkFP6L t\ '+5o/^ >x}r{9hmC8͡^ő= 5P22!?^hvm^?m RJ%P9gΡ֧;GXI@nHKf,P3$igmZҷIQdYӶ!u6%;mׁ7/,|颯+3҉`_zn[Hu\fIu_ƣ=gst׋nOg }J[nhךF+=2TLOr{Rh[yXeeΣCjg?Y^qRݥeIZP8K]cA{9W{ϿRUL3]/U?Ь-ܯZsdl o,;q&j,Zv w.vpwenmӋ4,~yq)*YZ2Nb&U3;5CGnsntGCZendstream endobj 122 0 obj << /Filter /FlateDecode /Length1 721 /Length2 5149 /Length3 0 /Length 5742 >> stream xmrg4ju DDD3 {03e1De.z-%zQ[[ϟsg}sX )j|B (5D(Za#s@V G8 C'k("p=@C͝.wפ0- P1Q8Tv8!M8pql(? D@ir[B E!ZJr`}h޵#nwlv<U?!h  75-  uwt'NCNf{vwr[; Hgw4 BBa(@le wAaw?M wVZ;Y7n_`P?;?~D8yȻ5oV5.+! H(aCyi]ֱs=˵('LYK^  @aQ#B C O=BpZ<-qه>))z{􏙃n\$vKcR<=GRt}0/(.>{&*9!E颪%e@xN&Nl ZrēX$oЅeRMg?%ˏ\OK?Uk5` !T\(&^8|)> T^Kv2Ү#D.l-g{p;@ɭǸR~0Ԕ:nQR.@x X.,[L Z-z &Vdـ]i L'dß5O$ҥ.eg! gѢߛ}*w1"ftc[\x|mhޗJ$cCUkM)Jj ߓ}dΝ[-}\v҉k7w!{T/k;ϒgG"&->Mrhm,%f1mF];[}!(&\fy{9MUj7&6H?6Il],v}GF&GRh O zX=cMwi{n%_tEhFJwXbK롲y鷗MuC k>] 4_h *nR{[Z-|pyJطn3>+,N0qfY٥;䦌ga I>u5J (?J$d"<$x^fHLum;|%G͐˸Sy)|S lO&.j<ʌd:2FWmA?w^[mQkUX4=fj RڣOUPSc#j22" DV9$NUꞥڐm2_L&w\O E6~qi&\t?ndsp{QKjp블i螙_)(]J<uy;x5P5~Z""{[P]% 6 X%4̘Br%̦P N[Ui-ex*3z M{t_%Gk|X i_CUե馵Ȧ>z2 W<^`+|9Wb9cQ$k(O0Tzve7×K\֭6ؓ )߶,hD_,  WNHVv#Tr.@vaKP VqQ!QO1Kf+x}ۉi*{, Fm[[v؋&G]5esC +y&W5-I 'Vsc]KrLEnroL+_ (@=(ρcaa Qkv.%:,w†-? ȫmH\-q?_blvbNm9W31pXҐV@mx+fǏO-W-7UP xE?c9֛~).wd:t9YT?Nc_ΗL*HEO\|(x*!GI14 \f3OjmAD^USya7Br7P1e!h%ri+n׸t>ZB]E4#78[5 c 7Ia`qh3ͥjcA/WXhjhor+x]D]a|Љ7MA#)'@U#"bz]83Dٱpoc]\,Q2D'NV4zzNs_bWiN90RDgEd':T&^|{&{ ːDl3һ27Wݖ:d`[p>.VOo"Wр}Ȱ#lz k 7Yi<ܘo8 2Ss5?7(yPO*xVGz> ,d̃ S!Ij1W"O;Pؖ _w\; ,%Kz{n˜9%-?'s뉛bYt;:vY=OJ7j'G^/Pep}ڈLV3cˮ]a ׇ4LD'sDzTʗi@]υ[SE7s2/eX*lҡRNM 4i7 EBb Bޫ}-]N, I>CRʚ7*hOSSFE珎,F0_b4[gX3SK]=o3Qze&c ݆UAZ96Y`>ȑ"RSb҇:c Nv3=U_0z[s ;qnCoxVoI7#GVPo#eqAWk(?GZUosϼ^sґ5YC-z8\!/MF,2ZbnA8 {ZC3>O&ėXL\餢rv9uyռ2i7V% ov/Fjy]|#$cdlʶrrM6"eʋ׈L C^l=t0=1gGI4 7 KIvD[ŷ&eo b:.Z7{XwNݷm?9l m]Ëv d|2lN\Vk< f;b'k?]MbFB.2;/s5%UQޫl3 Rk=>wN­~D-l{P#,&|UEMU}yCl-lC ٫de=9ʤ-_̠|P^y#qRd^%ajNQ˖5tc^Aij'!82~F2)hlYq,R:Π]bhe*KU[ȑBV]9]rK @>cR";A=RLŔ; }o|9zg #f[7$@ zsW! <^hUvYpzGq~^uRjisO4-}9sThK&DzCc@].s,xe57!vCCm%M1" ?o25rm8tBht̿Ai;r '0U&Umn*R.O?? zg۸:DgдD^ۜUT`r%`g g<&|$#6iev^/ݜр:*\Pd{ F#:Hl^N,~=_FY#÷'ԭetL+wE~d?Sjʌ\6|DOIvբ!z5=@/ {9JGj~'E_Kh G҅QQn\WOn/(& cEjT; nۤw5,Ԇyt9L+ߒգ l2i!v S!dy2B lek4aKm kaU d7^Sׅɺ[zVWdC;@cE_gObӃK{ތD,yTw&#/o%[#R )V$A6uy0MId|Yx%E]/0w5zF,JZaPG-22Ga>nq"G[ҟ3/d>.48D2HQWϡ >"xh"HfTE'1KeZOtF8^*gMۗdNOѠB9(CI_uJ7s%߷TS‘-{:> /W [ 1 3 1 ] /Info 98 0 R /Root 97 0 R /Size 124 /ID [<25330c85931819cd7702c48cad5ab083>] >> stream xcb&F~0 $8Jdٜ3@i}'d"m@$:\[3i"M~IFp[=DĀHX3Dr<CԘHZlr*.d endstream endobj startxref 193472 %%EOF Zelig/inst/doc/ls.pdf0000644000176000001440000057032712217234502014223 0ustar ripleyusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4444 /Filter /FlateDecode /N 96 /First 768 >> stream x[[w8~_w" 0gNK.v'=@K͉,E*U(Rrhwf BU !D @H@@E:HZF@ Ip%+t Tb\Adp?@81"q*N5I %@5&값>qC8caLQ[zRrc?C{5s@MP\3zLt2 ɩLmTW1/WFUPЇ,-(-`o2BaQIbfwqq:mFaF50xF^]>,׋r(w2|6YVj%'y8oǸw0}8`-aߖ-–'"_ 77Mj>, *2g7%*8h IE3O H:f} 20tI^3t8$ G9V+"i9np΄ aq[Ln~.0qz;d2bO-긕{ʾƠǴʯF)آ+œVRykՓVEymz~JgΧ# /T}sޜޟ^^9œjNwCԩz&-o~jnm eMOԑa]Qwuԓky_N^xA\?kj*^kU ؁C }D:Q}Ӊ78GttBvZ6𹣇Jv󍌡B?1ޝ}<8ή'귫6-:՞ j\{"㛓K6l"ߞCP~h,g `,9h+緻lkXnBpgF308,KY =`5'Ӓ i?a7vaCLoN lVD `ӾzRz]sk`8qU}Z!]N{^wkY>D}`ذ"1xU81HV[kSkx^2IFP揁#'i5z|{[/Dd5ꇄ_]E<1ԣX˂}E^Zl[4WMo ׋o=*IU ү8 ImHҠ 3ŴDsk<z e "!pqlՂ N@ :b127EFohk+o)G =URs>J^%CA5ȐቃUD"FQmXX"$5K"QƎ4 DJ3ƄI̍]\Akz(zq8c# RedMw 0K#@4_RfJ _ i$%Dh؉&Mb!+gk8cȔ,Ɣی(%rfy<{f8hIr7 dk$2.k ̷+sYbsLo^`:IGC%Ù@O@+\7ߊߐ^?Á,(f]2d"4[`!ݳI?ae"TD׫Q}Pe0OR Gl!T=#b9p}ؔe6ϋOiy?]Z{eqs/$i)O`~_3бEtiͤ;Ѓ$q/2upxU<"8.*AYV3T9.F8?֏XVX.)[+8ˑo&\8.*Ee.\ XvmJ[C)s_X_?z*M"Lr跹s@p:Y8C 5/kX<4\_oῲtXDqzK M'ɥٙ~ JbĿi:.q>ܟev# ãex,u8 1DA o;Ķ,S"$BϜ ۖHfD@8f̙^䷷jNP|Y,(/fj̾M!:MQ2:%alIzaQ q]!(=PM9<1|2IO"ŝ(YDۮ,ߧ-yoNhG็ 0y/vTRq ,Dl[qg*+G!+m֏olaȊ~xaY<|uB-*]᧬$/p獝d/1CŻol}."䈒SFHYf}t=frRsOh}ƺŘRz~ rh)OBoIz{Xn?dt]ndF撧0G咹aoai1s>WQ%aox;fyql4qH7 o6^ #m$4fY%)z0@%jupZqĘHۍҤ`-Bf| n\1R|~C= ́fOh[ܛ6`["h0_|ګSJ Vq"촞6őNɏHbJѻZz S~崙xfo{7 ƶeuT m[u*n6{ĻfM{e:;6]Vnx nP,+a^f$]'{BXWy n\$B"cKMk%(]ݭ."x ):iȫNzdѲMR")$X&񶛠SlE (&Tn+pWu@Z<+-`XPP !vO׳lRIht$tJGsE9^Tb)\p> stream xY[o~_!j BrmS8{&Z qMhȢ#J{nÛƗ}lrxx\sW_L;e]nfW3m*r?˳B.V&zo|8eR3Kd;IdNE;W0_8'?rnZ^lrfϊ LM:6Gg P5,[y;_a[..ۼId[RQ`ag?|a C&a%:wG\aY!ᑼr@قMu=;u;_?&ȲeCu[a%/> 5G`P,g[0&x^?~+0 w]մ=V&u`y kĞ6ES'*?s~y rI{efN_GՈG\(V&3L;W FYuiO EWj= oHg5nE>dxk{j^hE{Q>'6uɺl3nC7XAEkdT!$yN7{yGޭZo@] 6Sd2U\\[~Gk:QO )ש]OB$^yc_ȉ|He\mD Oa:n% |07jԾjs δˣ4$I@IP҈iVҵI+<:HOr].I5k"G;@RK7T/(AdRuhmҤ/ Zڛέ ,Bg"D0>`OOqn*쁷{Ίm{]jOb+ *54,?:yIEQPK1alNAsT gf y ޴AM-QyF# _)X<7ԙ²c*4&V 0X_i2[9)&ux>u]x'mHu u͢-V>ҹ*XZDPNFsqj*kƻX69˥iBOPgt;C{YeC3fd^oG|F'웳XTyg?#(BBbOd:FlKEs݈A*Aa H54noCfC=yxݹonB&d%V\ )sLNvu⥓zƛb?R d;* Eɲ %A|i/ :qj -DfpTڞP؟20IdX<2@Y&gul_E7۫yD1l knG1/ aA)IltNiSMl ZJ] 6<'+6xoYn?JY1̪~rFg3>c"8EVy ryFor1fߟאm4DK(;̧1, zp?>1|Ɂ=3U K7ewKSB}LGwBkVdϠԃﰯ]8Cendstream endobj 99 0 obj << /BBox [ 0 0 396 288 ] /FormType 1 /PTEX.FileName (./vigpics/ls-ExamplesPlot.pdf) /PTEX.InfoDict 25 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 28 0 R >> /ExtGState << >> /Font << /F2 26 0 R /F3 27 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 7929 /Filter /FlateDecode >> stream x]77qϟOAn6ROxT" jPH 35KBP8 z=x|GW~s?]qڸroI/}~_/}^ɕRJW]zr~~Wyߵ1a/n\z`?[<uˁ3moVMu [Ok%q`+:i-y[=끓jX޲NkGiζa}vZWS6lo%N렵QJ>i>G9pVʁz nϫ˗8ofo87kOoEz?q`9_7,o)XNֱ^R9V9o{K[orZn[e([8oi{)7o n -:֙hwo ;Xi@U;6 `: k6ߑ7W`NZF(@t VVX[ҷb_\ +"NҷwCu %|+{ F[#fƎa14 ^p}]Vz,xC4 _"hNk7D,|AO·?p}䟿5=h"4~H3n`H_ 7z, 4 :͂Π3H΋'mTbQʱ::QEfPpcC/FoP>'G4+VovվyGguʦm54qlw=hVtoUTfnCSNea"h6[=h6Dl|H·=h6|7zlx 7NX}؜W7fF,>9 *ዻb!у`(Q`Fxnlx7z͎1GSpu\GJz=hscG#v9GXw͎88fGg:i;ot߁j*t́tWa z _dn9,8z|AsqrJ̘q{h.cBqF<+ހ؃SA+d}2'"*>9c8`,Ož- {U4QzAVwcJXL#hvMP}1/Ҹ.a/;VøJ;~.%WLro'+>{)aG;cD{sFݸ/w.{s}{?9ysEUL[9Î!W-7'.!yl;wDݍe/kn%ǒ6hKg}(g%? dPr}Kk-mBN_2BWLdޕ1~&}i<=I-7d`=x!i2$̓L?I |_/]%-g<* >s=`{7@{A쏶=;7 ߶A@;#^gs"@{Y`&>ȅB-j̃#~zl6ƳW:#d8֫,Lv"GN; qȈ{6Nqr]5 uU0=Y{G榄qm'îrrO'붉"o\O־D޸Ž_瑶-fp}~cxg6/~l66_/d o/x~xO,Bv_/+/!r__>:ʽǿ>?Α$ؽ!>ٗw<*Vv7j_v.^v?ߟHkW=ջojX OĊ{2~3#߆|SO?xmn~<@?{קwɇGCAj~|庾/~~"U+_Bڟ_|'U<_ _;@5fuY`4+_#Yh6r q~v2>2$m-`̵WX{J+52nJ̵Wd2[2 kB n̵8c*sĘk/}skUc7\_bՔ̵lkicSf ڳG&^C `l܄fkl\RdA. .e^ڋu!ƕIK%ӟg`U[4} Xa7= 6 IdAHYik\1>&&,0V|oXU잫1X]JVFڋ!ƕN+_FڋD g\+o+k5RȥBf5֒huRȕ%GOVk6dj\+ޯUK!*\k;ßk ^x?g;ۛ]r܌qc;rlV 7>f[ b0Xe_eÍQY72c#iBB *EaܙZ~ 3a__cfO䉽eqg{*;ZސYJܑK5n`kD ޿UUa/.7,x,(q=VYŽ8!7yx*5 7a*ա*+GUwj~ƬxbZc|ϸp;ky2>~X<r j?Y+b`1<<30?Y"^NfV%3{Ę#3Z 9}%3W"x;y06 2jfA>f^ؿ '̊fa,iɘO<#?W U\ȃˍ|GzXKb,677'_U)׍SX0w+Y|bb>\ȅ,?> <`W{9ڷX#^vs}-诵vN*>xhX̗$r_ jqO}jd%B}&Z:MTq)yh~r;9hyӍ#^ɑ/v'9ǩ_oo 8qz\xau78>YW)vuW_+b=VԾE=%mb{=Okb( +ʣ&j] ftoA+ζ+֝~s-xꬅݛQ=RzGkTo(>?~}4aSoSM [Nu/߻UߦRWT=*] k K7%b/VwCnoxGuzozZm{f#iK^{;6ZK; Iܭy+vzकJY _B~iljhW/8t0ҎyҎEvlhX_2A~iIU_Ćv7/rҎ ;_K;6ZK9 B#uW/٩%_B~1_!=?H%I@1 Z]W96!CK %?l2H1# rƐ_ʱ% _2,/%zR/9+ =%Ǘ#/eS!K~>\HC~Q_2hmW/9+K~ho7@K/J/ R_Q %y2_qhK jԐ__QT%;6 q\K~oxtcB~'B~ɰPo)'`B~D_ϴA~)!`/9aZV*B~)6 K~q\!2LaB~)B `4A/9KzKT2rA~)rA~)Ƕ2g!8r B~)ǖ!"$|)ܨ%C/A~ɑKW[_ʱ ې_ʱ %?iIq&%G15X=@~)#Kv2Q`ɃDKݐ_r8ӄP`#͉ iG/e$C~7" dE94'P%y"+P_2 4/S3 X =-nC!ZДDM,ߪiԐ_2O I)B~0'j^Jo#ZVB~) B~ɏ+ J4j_>0B~ɑL[JB7&\!d!ߖtt`-_KBE}_rW/9+ =xA~ɱ^!(W/9R)|%}'2 w !_z _EҎ2^7Fuߔ_ZEԔ_rnd6jR/z!_ZK|r8 {h:_|pd[Sp<Kΰ}Jncr8~ %g} V%75v=q2c y/aK>w]6% Bnq\K΅x덥<"o\v'y"^o\vyǶmC. 97k:Yv=_7w#k޹"o\vٶ(qC޸>+rHxq}a!uk;Yv=c'r{:Y"o\OVS}%a韏b/v=_b/6JdĞ,^8z\@3jfvnk(y=#z2-* OoI{VNYxC;Ew/-!Y=]#{)do䝢WSRw='՛ʑ6Ieq*j~?o?\׿!]|Og_\_UVt}kAy𛊗/^B7jA6ZPCo}b+\O / CQr~endstream endobj 100 0 obj << /Filter /FlateDecode /Length 1258 >> stream xnF (D8Ed4@$HE +4=0$ E[b~{6ТbP(8޼}7]8˕O _,?ܟ^Cr}X bOX- >q voA o_O'9">32@U ̅$"a EZj±a2ax*f]xކaHth\a-n9P EXdkdk/}~UBhh{t6GWHpMe3 V|uό>ݐ&OaKRҩ耪Ur^T {tq4LK&o$G9* 8ӎESԓI'YZ M@sSj\5πyQb!0H4͆%JŖ0=i$C |(]|6ꇾt_0E iahS6kCZUɛN^hiMDi8}n95FUq KoL}Cf^ѝ[&/VB=a ^y]|Ќؼ՚gDUtV_)[$QAVO2N6ZɳX8Snؕ5tE+,vְp'X|Ue,>P$$;:F ~EO8oZSMUb)ՙqsԻâ9”PfҮGç#V^/uʑ'GܐD=I(rpG3aA(NgPMo5 @endstream endobj 101 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 102 0 obj << /BBox [ 0 0 396 288 ] /FormType 1 /PTEX.FileName (./vigpics/ls-DummyPlot.pdf) /PTEX.InfoDict 40 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 43 0 R >> /ExtGState << >> /Font << /F2 41 0 R /F3 42 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 8105 /Filter /FlateDecode >> stream xO%q)z9Z蹋dld@AF$(pç)^=<9B~s޽MdCo?GOOُT_/~㗟tq.yq>z~W/b'I83- '澡j_Uc) lW=I0 O$uòCOTp,j=mX҆J5GZPf,zjpjzD4lIƆ#8)a Xd†&nJՈ ,h!6ް) #6[pa7]JT+ #VM75SBÎ,TjO)U`}Im*l(0Q@J9`X dl/Y8v`V9U5bs&4]9 [2QUk3dl`Eh꿷=PfUv4zt9-3ԦJ3 hX Vwۉ؄~ua 8]Ʊ: `?XjRkd뛆~.P+UJ|T`VG/T>_]ءzӵ>`/1.1p.P?Hp3zMI35I3[!if 3ZUz̖.Hf sʅ ' WH̅4 ;@, 3bv_Iӟ3=i~"i.H:#c^I؜I`hY.,P}n{Ҭ=#iVuҁ 5bfI$X4Mӎj5b5=iV =iV?tE­2W4+z셞4i7$M @lP ISy;_ؠ-$MpГڜؠ$\E3b}Гbt_IS1IS-\(H~!c)BOǏ4-yaCJu=aGFlHzl.P/lTOqt'͆ƈج@O GOǠ'2nG1f;cϛ'N2'gv=yv ٳc3y a9t~<Buy#w긾" w.cƗBVލqTdSK =52S"w2jÈq~B? 'OGVe/5#z'91V Qr-:ŌhSlA5.aԘy ,lFBVe-֗KGJ29rs'D*uC1f|NdE{<_Ⱥ͒P?Ɍ~=ߤ!6cƅ9ے"3{d_/~{"36%3ycˈx)*9rp'GΙ >3c3g1IsqgH$6x5I ٸr~L OAƍIx pœ擔+^jxܿT+燋BqREb.x2N['W7/NБ.1>F<Ԑ ƞ Ԑ :_Siy7\ K\?乒0NBS5!ƞL|"Yscc_{I _se~^\^xǜb;:u|qzqߟs_.\+k\,c~%Vx޸%XVr_Ēb6Xo72l/U 2/s,Bfbltx  {w 63w-:Y1+S1f<Nj>ȷwl yp1еƹ}#!o^ +to579I?cCg|kc:A7h YўoX3]4:MԕxOK܅UkBeO(}!_sGP`Ju|~\О?|t27r[BJ|ͭSB=#$'g _sָPoF]ߧ&kn 7ōz"~j'yݯ6nv-v4Pvx%7 Պ|͝vTw39|m};WBnr'ۦw{X3~r;@qq;כz"_/7r-;M3o\}ӌ<;M<2vi|1v7=hE^8z#*¹\oz6Or;s|p*;w7MכK;#fpzxَsfc}->maz?Ͽ]]wA~zp'Kni[tC%nćnk\\aY\ /Wl+W|4ӻ/߾ů!ǫ{lvkWzr|tŧ/P)>B|vl+ώ̀sN#lt.Y@}rݨ^: cA^W7q#бA}k=ZG;Y^O2v׿eY7}ǥ'| A e?9'`JY:zfGq߽߿+=Ûzwǧ_}ggW:Kt}'x՟61{{Aw|?쬧nǔ|]Sm,wcA׿³.QuK/ iy~w֛7˖=qkqnʷ ϕu+Qzך-ߦ]ʲ|G|r[cuyz4i1 y2J-g+돧gix,O, fVY嫝dE,+㶬ΌDzzKZIɬr1\->%V˧cɱ-XZ6AjWծkvZFAf}VkXr,,JߣH+'2+r%+*'%YU*e^2 |wʘerxZ/}2f&2Vܽ;,|cV|n1K0j:Ƨ(x"͠j:G"wCR?X&7[-r75jpح5S#W-vq6ݮswi =vCv>bwcD|ӘolkVqڀlhўj7c7.5j7c84$+tWh K)Ng&}l]ܡZMtbUiq=YZ+gi9ӝF<(`78C1c%{.8 NMK>Vf},.80f<ƛը (X]97gWǍ<3.8KrlѮ]NEڕƞ+Bm>:13ʿ/u1.Q1̵ Ƌձ4q5N1wxohEQ4yoqBgm8nm8yPG<'x)dV,H8A`E7|0$0 3!QdzV#EZ~4C~9JpGx?m3NnKL%͐Fz3ޝaY5םtȻG(:c{ՈG8KugYxVBg"bVgȟE۫G12ؾ#&׏̘cy<7cV1|>4f|EDW&2<|σ1Ƭ>K,!>Gt2%Y=v*=n6d!xXzҸ|o9~Y9~Q=;gY} g"^N2ǰeoCazօ+q^Je@~``mb>0.k!3 +[@H =x(V':?|8u")ˬdV| Lh?h?h??RըΕɬOx_bqۃxډ.Ƈ!<(boX?Βcc~:']ij`7.%V`[|1¸کߓUI|3Wb9yF1fWV35rcI9Giy5Ÿ͕JnV+׬V2N5+׃Jf<ߩJ?"_si\ܠc&x^+Nr{pC5F<[֨D֨>|5_s3"inQ=[Ty$>C>=sxǹG؉Q}GTa~#0^cY}cVa~)gTeƟdVM~:~:9~<ߒb?~2's?Ox<ߔ3tk޹mfYpQ=M7}z,8ςM﫮 2ςMmM,8M[Xse>3k2ς׭x3^όV}f{zx>ڶ3|YV}fo=~lL$ `%qN.G=¤KäKR&]5E08I_ .|IL$ʑ`%e.qI[L&]'0I8¤͕#LX+WA5zv)kP 7|$b}IDLdR%$M¤K,&]G0IA/LdTe$\]MdT$p*HtĀIaeSIN0(wI9L$<`%Q.G4Y. )t']aH.OIDL$`0< ID)L$|b`%Q.VI.UBlG0p"NbI3 2fL$=`%DTt9RhA ^a cID LztI10?L$j`%Q.C/1IDLwb ae{>I0&]#b ѓ.C?I4Mt0b4^IMtٻx&]x&].~rU4cSc?:L`e t9 ezD&]7ބI_z .%et9/&]Rvt9Iyaa.0dZÔ&]aڕ4a.Ť8/&]΍aB.0岬Z%L9tw4=O4?6u^L7LÔKt&]ӥ7ae^ gvYa.0*a:.N$[ &]Ν\z 4cS0T[t9gKkpYaz.g!|8l9täYz .Kv0rr|.yp~lY%WW4cSܤAf<:/&]&]-7aba?>ϏM+9Qr.a.?h֐MR`?d#KGIBnab.x0ɘ&]atFNIoބIg~!3_a _0u&Z0IDY5MdL¤Kl&]2M$a%4&]4_4g3|^jN4z4ŤK#Ld4¤A .4iLMTN.0随4x-&]@PrrzGF{t,5L:0{n դ˹5?F4uSp thӤK̘&]e4pI S+ZZôJ"&T +b S崆ITz:L>k94zIsr)wxI}Jޥeu#Ǻ:LF{ä9L u!3^k`_B.dtI&E.0b[]Ʈ5Mjl[ƞչs[ם{f|pl_up>w6Ms;8zӹMS3v'^o/M,MO|]6!>M#tm\}9mIכޗ32tmoz&]s}ی_L6s~|Uvhդk|48t{lG4XoztOy1M6^O 33Ftڤ69]'>t6>\赸\}Ƿ|\*"GX+65WH p}~eVޖ`K ,|}.FTĹf%x]Eͩ?>FW=~*R[E\luǸz1BSx)MQo?~__p/_/_߼=Wn:>]|CQN]l-!W,5%r[ MuT߷3ɨzϔ Kendstream endobj 103 0 obj << /Filter /FlateDecode /Length 1512 >> stream xڽXo6~_!{o҇b-V4{=8xvڤ'6-!P$ǻzqzUk_^V[Wy m\uzQU?4NnjpK~&=nq.I'*J,X ׺H4Bs$37Dtew-;U B3b9ѡ Sŧni@Ϸ(e^ 4l?KBelC8JXRGx7kUQnڈІ'(z;i;zyz@T.ʴR^Wч#)|&HLL~RW_7tZL LdkD6Ce!&)4^v aC^B.f_}6&dE&L+yfaIi b;1 )J鶋FsI{BjWX {[Qjm8' sc#"$͢u(Vw.rlQjIet5gR{m)/4uf兕dd C .0$?#eljs $v쀫=LA'p-П,hMX*l h(d #t0񗇨:+@Ve &[ȭ T&Oa-|C-7ڨ6_gt>J gh s>VM&4{V`F(TkA8~Xor>%uD'3D' Z/DLZ vW]Րfy]ip9OFuh;{xADiˈ]%q aZ?`VkmS,-HBqX}A=@KPsHKMZEτD"pОP8E8>EΙ߮?aCc25@94Q݈;IǠ7CP٘QxGΙ>Zamg]oJz”pOOo']L4ؑi*q=p|qxp\b8׌u<^G4v/etİe(w2#4@]gMa~|\N]hpx7NW *" >F-γ x+Zzsgr endstream endobj 104 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 105 0 obj << /Filter /FlateDecode /Length 2980 >> stream xZYo#~ׯ` ?N{d_ x؊s7,9:bRԒwꮞHԮ?굔5FŌ+,W3-RW7ok +>Ðoob,|u ۛv^ݮq̖nJ ukϵ!v~Y7v𴽤GUn3UX7ojW7!~0 X*YjM"PM"ɜQ-1?@Hn3)d E% erE^18m8Żl(ˤ6JL;gzgBX-7goֳQ0ٸ?t3y^~8hB$a8kö :hpX΅n(\ih۩;LP s }nzB]9&^Ӏ-XٮÛ 5\fF$̒1@V6Xp {ӫqdu&B&y]4q= wޠpX`.t mP-D's"7 8{,8Y@ܔ|CD}PΞrφrT:sH;Ʀrm;p:dDUWZ=CtE?*lHE eRsONsq{z=a~Uo7MjӓOhA=RLj&?k %R|PX2N/fj(%`g3iT,99mMYͿ#: ES d19k+z s+Ë(WV5ه$wlbDIyDkCO[ @QpOqh")f3hAٿD0USނ^[<.8P!R\VBo! 0`'ϗ%mj!翃*\JU SgH8ߋ4dC+ Z 0iDa1lV"8؋A%2rly$2B]҅ -4Fzxm`"FjX&Gw; 8a ,5C,>ߐ71S1=RfZ\!.M"DEGA4rb*G䙴$<*,UNϿ$2>xr.B0e\(\Ph\wdvu9GAA 8dԗW%Z$ Z})vd%Df@ևޏwnMb퓒\|4Cry?-b-}bl`~K @9kj ;죊&ibVƦ?ʔ söۨ>~ LN+ 2*[OF6^8,71?BW/K75 W_?(9¡O&TԩDg-w=bvsQ#!ԅ !^|?M>$\SpG(.ƩT&V *sƅ o:uZ0::.Pxvȷ?8:Fc Zp]  L aXl#&ȉ|qX& fDL uD+ycRŚ@R!v3.I +A,#҆x̤`~Ioپt: aQ%R,Qioɔ"iOߟWK9(XE+SSO xlb938ow&[F f(4B}]ƒ7 '˾QRW̠՛nEAoޗ޵X-yT CfCaynQ&o!b\d7kbGtxjDD <3ԣǪrCYBWRu7cXInٓCکg#Y)9 *W1mmFQ{b4ԯo TCjDS)&Doc|"%|msd4 oV5~hAPɠRPٖYsxĎJ :FϨ8 Iݔcm^\`y\}LJv]>m6x^)oH%=XGߊ5I1 U]!fF_?8V4@ 3z)PG1e'ȾYqJ'+Yqӓ_CspӮ?AxO{* ’P#(MdMba9Ԍ$0I7;yaRO x3TnC6{wXVY˚:$F?neTOJ]_Pe! _ ||Qi)H'%\#k-QS&e {e_AX{"M !ŀh,SJFa|?՝?ϊ1|(2>g >X| f d R;.9$&~8!SjO$2".;)@ִ^fM`el! $,)SQ^7endstream endobj 106 0 obj << /Filter /FlateDecode /Length 2073 >> stream xڭXYoF~ϯk=H.R8ihZF -ѶbITDG;#E(v3\W΍r&t+Qddt<3 ]Xe׋f|Gw xv2_-vi|Ɠh雉d<1iTM]yuQ┳ LRg#ARgFV:e/W&IFY ` Hh etUOp j8*V<HuVFmA8Vy"XwK=iDF)MT^E rW/I8Yaj%BbBDqx@T\ vrZ4XX܃&b9 Dr ʞ 86\htI ^$]]:YI$iy*MҎW& іtnS)#dt/t;Z4AsF%0!"OqKohr֩۵y&QL\;l󴻵0MSHq0@%'CV&4px-XS~_HPR'I,E0s53Ro (J3fנOO`8D0jbRSes}Ǎ^?QQ BSaLw$ !>&X{]L)&b[݅Y\Iފ!/σN% ,}6φ§(pr8A%J^>%I%tVBT2td:6kleg[Iuv䬳}́@z0kAS19qopv׻ZrsϻMLpAg&bLI44ޥ.C1գBC!rk\ir^Hc#Q C7},+09nu* x=7YblOl҉d:``pު$Ϳbv;(Kb*q)gL [M-Kt/X.$ws rp>K$" v#ie3-b5AtJlˊ@ G2P1dECg~B e.V~A򲤅7Id-}5LS" M f?n1p~&V$zq ubZwV.Fx+h=X1`oCL72t2gLPH(uH(Y[Zx%OoE[n|hڼR6MD9vdʡd$oF/pb]^R^?`E`5|idU }d.] HGnr8`hS}֚ ?gYxuGh8BGb;o\y/ h̠UM~ Ok[tTqۗI;4fۑWk:lۋĘeo֊&,-l\ns|`_$5^+ o 1=eA%Sۀ[xCfZN48\bQZ<@ pk5~j2H](7wbIhAcs {<45~kdu0g۰tqkFI`FIt&+ёZJ*RZfTLZŵ$v8\DsQ)љ.<(=%;@e,M'ih|3uHH>up-GKSf+|3LNpI%/W&Pq1$ J*"s??p{t_Q8 7uM|qpqv:zf%._:r2CWsCsL͕V r=Nnxn/q@)(sǔվII|jw,T8Mل+Z.7e{J10-nַ!Ru[m-l);qMp!sO2xNHUu)zGŲ`|\7c(c,cDfP+EpO^? rendstream endobj 107 0 obj << /Filter /FlateDecode /Length1 1905 /Length2 13680 /Length3 0 /Length 14865 >> stream xڍP !w'@@H\$xpw n{pe̙սUlg~)ɔD& I= `ffcdffET؂+G99[ye!B^e@ȫ b `app23Xykv] Y=R dea y=翏jS ;)X^O4V 淄@xvΌ`' Az r9P(@QcD[Z9G6@W) x=&#PrX?􀿊`ad;_hj s{X[̭lA%IyF;7h ~l&H ldqft#a^,ao&CO dZwkcv/273 HF/W?2  9@LS`JcezAr'׿YXfV bkz̯`넙m=1L*JrtQ[)* vx1ppX9,,wO2Q _AE<>3%uoF.cYze:.Pn5gEfW'nerr)[AL-3Dkp[+{2 t;gjz8OuH {Swf ?gh^Nt$?$7b0L WK7P^A&ͿkLfq@@@Ζ2a0 9^-̭\C vq+CAn+:1 ھ^RD!9LJ5A*_oԯa!_3X:5e_%vW_ 㟜_ r r".́MkU1 Ph0x-8{SI'TP e V׆6k"<>e7nGr#ٞtT dJ;=#:.Kwc-P*o/;7r~s~G^}5N$Q;O$-"^O4{P6ey֤ʃ1>!ԙ%Scjg$T?ɱBܧF B<]=TCA`{2|`,DߗT+-Mc h6iZ1E|f\Jک0[$IIQ`5>ٗDn4ws3|??bZ,IG!AtL2Q(!_YM!|j2 5y.-uUq S L 5P|tM C%*@!sZ_:Px$˔͗lQu'eqmwrk+3by<C!(JpT:f/ݵGX}'b?o$&OhNjUQIQtqm#7GYCݷoJ\}6d$h}]fxbx.PF,^Xl;b-zqkJrlP"e;9a=6V߻ѡܫL] BgIO;"(~(R$3ȹg $jbҍfo?qf|u,LjgZx3foC3pY:tVv1to~{h0[6k*as~KF`Ek`z3g [)WFv >:^a-HQOnˆ~eu5taC($g8ӋLo#,A8-JpNҿxΞg%!v'X=yb֧ͅYK!{(,j%x=yv)9/biS Nix K  {vF O(CZ;}. `MC,qfb07٘U)>H qZV8 "hBogc|CaLt$ѣv \ȸjig!}`G ]C"dyStpSQ:eA?">ffDRQ0N!.zu3*cdFIWc$~_ޕU.sjF RF@9Gt *D*G?X]#go6vQJEp=-|^iT&Dd=y҃5'ROs'40Uʾ>idr*GSy΂0myE A1-x;$a:: aM!  !3Iq5V0d.ʧO94kKr9X[+vS<(Sd=τu^~۳ {Rlpy_ zq<ǰ"/~͗Np-_{;K=.50ق:ĒˉyiYЉR=x-TPTje%hDQ)jc[MݏG+St܌dCuBq}]夜HW}ӥ)=F9J4 tʗ |z){A\<5rIYp2Yz;ygM쁂 vR1gVz.z,L! ݤ0Ue npKF<Rm ۟,o_ ؟q8gi 8^ !av4Zr5@)en?fPk2e67~$_C}h{~X^:rw ov5|naDå8~7ְ+FNG^q#  xgQiήzZr=<FAfI;B㸱xAgR;^!>G ?s @9ܽb;j>;gU1[LLw}VNhhڴz?W 1ctRM7l*X62]|I*]F)4u& iÓe]'HF,*o.PYg_2?kO)|td՗ [OjY8#"f#A+rrՒ`*ޙ_0S:` QQytᅕhk%+h.TݓdXtS;\g=_)OlHg?ٝ'T+ڒQ,d|9S}!>=Ӏ!v[Ҝ{Di߸O]>LرS, g1_ib`hAY5V!xwõC-R~Vxz2Z"M[_8o*,0>Ka0+:s\/@ɓ^D0DCsY> %*s}ehش/0Unw0nR DF~}B,Pl hCX+5[+bjg,Cn9GZ ijޢEC52`iﳖ\>Rv? 8+)fcvHtwN#,\%?t6J\4Hfͤ=5k" s {x c%Nh{d,_[ɑ}.wv7]p4e汲![;o||4uj"׼ ?C axRmɆ9QՋW1@er tnJ\ΪEA1Ә9Y yu{TE>$ȃBEt7bca2,;T 7:MozB)T'JQZ Ke5/> |l_j01`+"&؇oڵh5bH!sjFF RڳwtR9FNRqKk@ǥhB;Yzo]kMJ1"6T e{46^< 7Z|]O3eߘ |;-"kzhoF,>f^"+|) \!V~y6>>ޟ.&0ίyB4~xC\ksg7Q76N^"mpy#ayU ֓˱…w/o#[XQ. OԡeisT4j蕲&eNe끌rȂbI\3,}żV/;.5(v]+ Ta>1Ω.u<"e,NhAmx+;G7?j; |'ԫuM1QрbG1g2j}-v]ƙeD)ەMCaFTKC ۺ×'n qGv4=6 g^DIW:2icNx ̻oȳy*Oz/9rb6P[B{6UH(4 'RUIdPHUu ^ZfRkgWN.(-BgU?8?+gPDWNh*D!I5P9܁C0vsh`m<_nNCmmIrO=<z]u虢cF Ck7C%anxu,cJ" 1Kewm+}VDm2m $`[,45v@a!ao irb W$r(jv T4A%OZ|}tL$_niލHR(' DgAa- M?[laΖ߄OrR[,):S$8Td\Bbsg_2"w%^fXжW"Y!)ADI7xujRӀ^nfjʩ 1D-Q\wHYO69%ͭTx^r1O}w7)6oA:4cCC.j,!k}Yu R*Qz`;ƻzY~yJ>'+|;@o&qA6M1룵Dc@7"3AQ*E3ɫSkpl'`8逷s=N{Mjx (Rr^堿xz-ܣ{)R*/-M״D'HrЩF*.YƩ|`l&"'mfKRFM)"Wu1W bo|)ME1gKT1812OOv\ëQ=Ow9a͆")!Ӏ'8J`{*-n$n/>5%eo6z0ѽ5pL‚'h6h>6uZxFA8 WMXFa /PZ"~ySs9q).%;rl,4u223 !1XvW<؃z=l|qv(X)fxVg[lEd\6Lj3mGt c6H7T:}wq_%ξ-AM eBfisgfo1[կD݃}6xL.]B QX- g\ҨI9Y6qwAtaBUy(vflfQ⽂8rt^E JKj$*MsFjMN@{,9 }=GU@"V@P>9Id wwqu(,~n]ʴScݶ"I=*o &PS&'gWըɷn0\fP9G9F6(6tw#A495=zԼEP;> 'ݩ CX@|@n~f/ϥڏ;ݳGÏ G ;^-ٸ)l% #JPQ)zƅpQM$,1:Z5 E/mo'#!@3Q:;~aT3 (^ҳ-Fzs[F hp)":@t!YݧXۥ7w)NLn0v?kM큶or6~7=x.ʾh{ʐdj9vCa}9-CR{W=dqpYdz]nK&WE:CXw̯> i wt3Ca/hw" ):N@@ʮFLtio-e[K$r(<[0 'E-Ў5OD !Sq~(`?'Tb @jχ5:SE[`'$=n㷜ːNNu8ZEu$~٫ qf]u[Wis)>#e`KW *d{H*$QJp;q3%J:Qf@?ƻ,}jGHm!5AUQy/W:m:Ր` 48V63*m&sfE!YQ#4.iЗQl ED/OOj+Ry;b~*>ul|78~Hޱf<O{2Ni{vt(#lv[63-s6=ڼW1cSQD:t&,gƴ5Ow~^95J1g6´VO9Seu|#jjy}7WTXL6`+~:3f7]PA 9w 7:.E^ >r8&:.qơK6/* L92ꔨp"Sԕ4Ʒ8!uxM0Ҁx.$Ɗ|re3A VE\Y|=Z~17BaS>lUy,s3za688FH410oZad_Oߘ4$A>AY<ްY5Ǽ\ 7?%Nz.VQk.~11}eB lE=J5p=JVvCZ\Ӑ6B/-o;^F HeV#V7ˑ4|U] #1+<{;}$m7"\X* 0ǻ}p SS%-@l5itC H-8Q&s4"{}#-8/RP0[&)g{\r9at 2 Kg 謸KUy$Nu+ۭں|5uLޓJM=W[ª!N`4]Be> E˷wko;9p {W^g؞;yĶo~aK$CbG k_}m&Yw9z>3at[3utj踅.|Zub+$~ upUo<| 6/qc}X6ER`18TA8_`Ο_DlE&8ax#W-ې|c';8;m1ӣ?@j}s+R,rBJ!RB:5\ce^:gXr]kT]]O-;qᣀER 744m׵1}1].V-m]H-~MKBnMC3]Eq$#eX SF+vo%c`؎q&7)IXs gxLfEQO,$LOCwByqA1 k_DC0!,iKd;,oXz~ypnה%,NNZ5j?A%^GawA28oM7م xDSIifg*\|6:hp>$MnF\ \/ByG|EZ! 92pct%9Bgg  Ϊ t?;X=hMdpT^cA?9nqJRċŜes3aS"w|/νQ C{`:[.*TĶO% `-^bM Y#s,ॸ@? Jb??]:IIJXPj(|T\tfG_*D5ź/gvʍWFgd[ ~2-=ӠVIEFʦP{RXu`j, L [!o=NĤJcb}c2psVԲ7#_<Gˁ 6.Lw޵k./a>H>{+13! /j G#5&0a5#m@sE:yp"W#Y9١XMqB_hPD 7e/ R@5bU`^抖RP/> 9zyN(*0㷶z;'2z̛o5NKln>툙eG?ok[({mKvRlMկҹ=-gp@U7ӹgxeZZْƙHmY)ߕeEw4֜;lD=5䊼OT7>IepL}~&,y qd"UV0c\񻍳rԈm_kb{(29~} mHo~?rNݧ5mbYv&8c϶DP񷊷|=m?:+rG_i|G6拽 $!:=nD܇jq3<$/P$U{=8ɦ2G-e߅?&KòxccMBYٿL0׮D< Eh 2olC}AdYY_8Gz\&q/#K@yQ'TL0V7uuPSYZ*C|4*E6 \*d2/˕?tna)|3ӷZۮ(LXpPk 7D?phSI Lx.t?xU.p-%`iM#vja0ҺR:JTG:7PFs8f(mZ5gk{(d2~杳tz Ie" M=SdH7,M[1bL!:lW#WƮq75E!)וuhB;cTѸO:yHP\@nMg?ssOFC'( tSY:U! )־Arb.h:mP%T\Ipn120ȧ;^,AOƂ qdEfm1pq#:u NZ _è}jCSZ0 2zF_@HMq[2hCuFw=ZSˎL/@M˜*vCoG/D@[ߪ "dK-lwEY5׿kXm"f0K>,ц⪶I"kjI`[u#rDoϯ#H=sׅ >׶tuP9T-|,J{knv!+,ܽnؚ^&ƀhX9,"=d}f*x(L )C2lnvn.M}t%g J1[w`s_ЗbHt"yvA B!N 7tb<&fP ftfreVOy *Ax.]'y-gDtB7Q8?4ǝ\#2mWREnk-dzӓqtkkwj\$ (xXANȀm5lb~J!*d5صo}16%àFfKWA^u9 MӾjdavUؒ\@rɔ]:&DM5LۂogmOP'+.p+]~(TD8꺹S-s:${1\%󯥺0m.cw5TkB7*U=~ix=BK Qor^g955Sah8^[E|']3̸[}MXU x:iTE0D9=Ae!a_9 v5(QB$s|sq› T|dJD)L}^`^#Yf9t)c ͛ͱͷM#-s3Iҡ9 m.omK:u׆}70]\'V̽@ߚEW|tc1$nܴ?$eaa]Ę=&(g#\X  <Д ޵:slugr4 EZ6Eb\x$ Ht;nêVhɸwKAJ1u(brZM *UFPTi!t:̓zPؕJRNWM, gDN2Lc;Kr n)VUuo͉>vG<4*+# Q3N̑մ,Y[")Rcs 턉``ͬ$7xdYII ϗT4~R8ϝ&$>yytI)M.S0¿8[7`-31φBZ@!$F`Prm U,hcxcvfٞWRX[C =XYYfQ?Ugq86+SdJr; ǻiS;8iޭ;i4ͫ7&naQnͭ2q endstream endobj 108 0 obj << /Filter /FlateDecode /Length1 1848 /Length2 11477 /Length3 0 /Length 12619 >> stream xڍP R)Bp E (Zw-ŭsLgzߵJMM"!RpppsppiٸC#GӁ@]m~B@n2i۳#@ pqp *yXTNW4:)'gos0$ P0r8?;@ `Y'p헰dlcuӘ|m?SBCo$Rq7e_-R>6"G6So{0MԘnA x(QMՎߣN|l"]Z>^9K#;U|JSlqڱFEty3Hnl(̸g^7psƟ(Y } ָf|Vʵ\;IhI )qG&}%R|?UdIa2 ֆ rLձ R:<>Lo,U9A'9oN[_4iZ޾HS1 s;VLIv(Ծ:7OU0`6)UF36FZ]ݪQNLA߷HT(8 7|]Y6>.}W>2q١N7W9M!E2xD]'%f$)W 'J)``uc?Xǒ˳|6agbh]W]QgTug<ⴄ)kWJZm)z{wlڋ3Aw jUw,uILԀB^stI?qC#%bg4[6K݀MBOPmu!AJQIWs)aRRƌ\h ^o,>/8`:%y :3۹OMƘuY~`" ! F07$F$PY׽O(+ذ°aC ;,?b> CI`C~j1a5#.Lud<:ὣX\d-'@‰u ӇPIڙov|§]H֑6`JL]TJu8o r-<}}XIXNuLʤ<UeTGz_+)1} #JwPv]HÍjg?tY^a:hЄ `6Q^klZRxϵр_\93(<*KAS1*ُ%7b;ix)i(,37N ױ;ߤ4*7| 鷿.mH8* bGk[Rc9CUo`P SzcN)֦J""x3Yj8L<Ֆ,L߸xS jЊXJzQI%{Zwqb:ܦho(ԽbCm .* Խs~W `hm 5tl(BaϞp'ο8j/^bDdfᩡ]-j&JS yĬ *U`:Ȧؖ܏nN1VYpi`:25K^1/Uͷ🲛䔃^Z]|sv[M (|b6FIHrGOP,:×u2] %fAw׭c恣'+R! "煈Z>Ef*Aڿß\lEx^\$|0cz.ANΝDB_ `:ړ-MԲM)]af}3rQb(]J MA3֙l\Ƀ/od ax-.Җf ymcSz =}?ςt7.nxG`G/qe9O/ӂ(LtX)` y!& J-I_ 3"5_R2wsO9[c&:"y%\+kFZ*ZS40'C;VΞPa7Ud{h,[%`ew? =HwbuTĨ07cV"ڜ([^ZN `FpFLAT˘n>!FmDt(ýCBũ30s^xZNїssUj A1w ld_/Jco `Iv2:v ʝeelDZ ZZ+JU1mXgW/2}pj{WIb v:E؋%Z9KHK}UXع21IbQ~ό-`N5[v\iXAY:ۜbZ4ΓsϺA*,J aM}@*T| Wۮ]PΚc*d=+'> nN| YY |3 BWOoUl;ws0Ɏdtžm x4 i  )B5Fnf:_?D־>*p@2!;cGNqnj66g$C͓LNzV%lQ$ b+ t@({Fzْ% V["*q|UsӋ? Du-ff}0eн(<\G2 @^֨|}s*4*Dz+/'sp_ɞ[I,YH)QPmSx):,wIKM8epFUVflɂ5=^M{Ny)3<_]A;{ rS:і-W/Z G`E̚NO. 5i_0nם0N=3q{:rozZK$)5.-t=Fgs\0);sPH%'Y iHΪ%H]nϨ2JzݯUc6bü9i08xFsÈ+ X~`>:}_(XAn6'Gj/dIp s WcU痊srbυom$LOМdM'vת1?(z0qe,'mcM:Ey(ݨ7>ҥ@?AB49 (ĕB&XNJ2rݼLGiα^wF65_'ݻ"pz7dF!?@4*VAg=% 3"䣪 }],GI5:l&YEY7_kj@CQٷ="}ؓ^0/6ӯ |}CzV)È1 PkFMAtV- {Jeڹ>71C7 ȉ .Xn:x h/;~˶ޮK n"a5TFI"%}8%]KÃ#TTbd+@Xc10:$nͲ "XY , 2u'ÃrD ~ ; B]CE'Ȉd _F"ze}|)+MN X!y˫j3(b|V,>E m/\%?Gw|Lkȣ>հ:mY|3W[D!idePO_Ts.'IP`.HG%̿n߽6;dG,\F5wj۲TzATOnqP2ÀIBu|?.n^z #SqXpHM)t U:Uu$1ИLzX|;Qv>yd*K;B.F7 5vhl χQEƿE F=~KC#}HEE-{F|NqiU{M20r38SxXEޯ s1pb`-puZ%RTA*J5 B7$]N#yB1Ԭ5 v=3 lj`ʈOkMnFzZ߅c3ght}ب>b? KB_qP L*X# kE0֢=u}{ Z7Pl8Mѡ+,{m{TiDwB+yFDivXZBZYƢ7SidnK~0Q򾗳hV&/BRiy-5cѹr4됅_oNd2|d=D%/4'3lPBDjG1T\2uJaطJ3N!& <ͽ.[ Cºu)C}deZ9N <ѸcTfXLno?|m TXSjD;t፱yTm7F[YuM89.,)Ћb箘3\1Scx`3TL F{@[H%="A;M dT?":crNW =6]qUji}Ur.cy1LdЁYI6CTs\pu 73z ?,jxᮧI"w^0d Z )4A!“rLaH%^.]Je08F#>0ݲ9P::0LLJsj옃b*iP/VϷw]atgG$8_f )pZ x ̸9Ŝ+l-:P ~UD5̬y 9 ac+oh̳;ے,ANr^iHMDxIl;J8q ÁW!}Ua67w2Qd"ujNqYRBJU2DwVHHkngv1(e:WY8) 'u#4C23G:5-ؾiџ‡* d`Yxȼ5TLQ291C6>ӎ-#P&9(*K(vFyDY)ҠzS<'q4ha.)nR  C,o hNOXeqpRQ zB jN$FfvHH[";RP3 D:,M|̈́# PJQׄwkIfckvJ&t+/<ʹҬGao#:eEB4kwGςtz7p'%tb3nV3@M=2;OU`HѮZ4RuHKY@pgh_ǴGQm<_n l&*l D@G \v~mc%۱CaCʇuY!4OP2ڊX\11/潖 >wy-Am[dlXtEJ uJ6 dL $ *"+reR )]13](= LŕaUv&#1݇ne[ 5A{AmLQ-u8sV^ypJi{UB9V$(+/n1ܟ^۽{aOA0]hÐuY{[bD6V 8*7ia|e\m,ciZ[6>䭻eٖVi;MI_yv=yL")*&;,fihK:4_P$8j{M0O\͡k0eT\,Bӯkb&8TnM:q\tcN ئ't89}j생o. $;p@R>89hjlı=9{Y qNX"Ƿ8 zEln.$ʶ>*EĨ"f ,1yE{"_s $k4 $ZǛMIQےejb՟,ѓ󹗣B[u\7)HWd/䉨B^=X2g ڮDdиup_Hz=fP-SCܱlav_L{/e?H#DGc쭆+ɚzWM񫠙ASVc=ū6C<}n)VS?@'-n "> b aLzrDܦ=%:ʵ:IhĞ)vz n䜙kZ_Bws2X!u?"^Ea+jTL0Y/W_vziW~m2yBJ~?]zQHpRV1k:Dh*bKI*eƬ"Ph4!Y|إ ܇b H"Q6S iY^Q بe>=0*sB'lP.8E #cjd.؜dc8*6Uscdn!i{whv,lbI\=}Y~L_:a1 N3~Fh?H0 =97ͷm՟ŇBsETG'O*_?: (/r-l?"!7㢄]ȧ  3@q_+L7 qd:T"v:iXL`S%? j }iHd9x$kۭy~I-e#hZwlM|Bި ^k:a9'V_Bʀ\GaFb?J;Sssݐ/ih*m?R26XaIJīsFY(a,zҞNHȷ]\dmۂ *%M1}{6qichxwBLO2iNsXg: /t i ͓qVԐo4;01Rn om%$o<}o%/2^beC 2Y FSˆBjԢ53P@X<4N-mڍ3@&h tq' kpaAа8>l\F!;y 5I.Ru/_mǯ`%\[1 KO:j竱5eGBػ-  MF̱]n4N-_QD7m@-Wb 𑚞^a(ɓf٢ x3SԼiUPn33yETo̍Ün|y&b T҇h.;_ ?o4 i:uU݄TwfLalF>zPX: gfRiyadT{DE\pN<5p9iYsFOhNi3b1&Ă&+&XcfP(,ŴgB3AN?GeN2)> f$5MG})x[|ڛis!N*uW9A)XAlytS 't$Wx{Iwc?`w!H|f<;$q ߮ w#Eeq.1"<i}?[@{xn^+kcƊW*)yh\ն"=2\Rf|CRԳ$P{EdbN/1;8h5;'KO?+,lXj-TȢ>" ޔ4Es^_ ݖ+[<11i DV=Ż78 16q5Ktw3ejDg9ev`‹,'qw1 KiqF1j?!S-Wk؏x%au\ O `v,k$>q.a5أ=b >(2oU Tv~2 CAoM I\Banְ`ol|WmF؉B!Y?+EMϫ9- U?\2[9xkc |XÂDÔn|a8eOv^݃]"h`GԐ{*Ɋ%޾\)`~18D3~6gnfuq B+QYT ZՅ[F(å%€h",?F]@I_%bWs귷g/5ev^$jy}AZ G NpU ΧPk!8bxc1t6j,kٺ rˏr#nNAx8\-0ke\܉au6Ԏ!ELKӤU|-i.Yyۄ0 !X`^>PV,o?&ҝJh {0ۖûvW)2B~G.p\U8ΈDQHWRun8R<&(ZڐmO]u -\PfǤXrwS#Eqh% Gk F3 xi c -1nw D Yf6x-j¶І4endstream endobj 109 0 obj << /Filter /FlateDecode /Length1 1488 /Length2 6493 /Length3 0 /Length 7491 >> stream xڍuT]6]҂H ݝJw 030 9tK%H% JJHwԇ>>>}^k{ϰ1)!l8(i P$bc3\ۉ،H. %$)Q7D-D%Ab@ @@J^0;? bSB"a<8!\ow+ -0zv 0(!8Q(7Iooo~? P( j% vO0ty Q`$pcpApO 0A5"W?޿࿝ 0(@GUv`č? s~o PUoAP0_~9f Gyڟ2 ܜ:p+{ ;O7#8sc"%DEPw(+7evCod@`Л\@;:D~c?޴pX@[󡚚6>40OPB  #[o.g{RnHV58 7 p-"@<]+#UO8_\|0nu3Z7DkA`j7CwpAP;] W].08Tu@@a7cqWm*e 3_t7qnx)N[@ϫ޲"'WVE޺(7 )g˷͞eC1pS?>Dxb`لlG'}:sZchŵw>K Ǚݮ,N CPΞY"4:ĺ{-E0e1`OM*;wqC|zHvK3C4W{@+XZ|>1OEoqs8lIvO|+eP[EW^ݜߢ`h:s)apyW[[쓱F;T<ʕ& Ž 't} ٬E jU +?oORT ~%3;nsoQWԠͫĮL:$PMsh,Mn.K8wǼCM.uLgKi܂͞x^ IɡA=򳃢uHm/לF!B(b vA˥[]%Hƶz*n;>bZnqVxNT \q95b}_kH.ZWWk?U&'YRKUɣA S5 #qM 8 eY 󓽻v[T{4ˋˁWׅa27Cf@n;}ͷү>eOOIֲ=k{ih_jѾqoov7s I4)Xav[ԏ[[Xufryk^i`0Ⱦ9\ȤVYY`{kSONδ">xt^ 2,Il{$xZb+jt8=qf5ӹLmv+t%`י5Mm(D<"0//Gkhrt;)M^j@i=M >9~5P*I&WU-˞?<~X!91`tN!ԻJ $Cn w@)W7&rX-쟅RKG-4WOq.t?+fV JTP)ObsբDt3*!y ?CyZتII8nEGP?}rݣwG2+y{q]XNa;:7"5*@u9MYCx4z &X )[_I`KT_;+1SYVrDv $ -:/|SlQ@'[r*zw6KEj d1sճ}ۂ>YS^O;ȂحӔz,ekX)Oeq$?=QV2{w, ^Dx5{,9 8aUȢYv[(],#5'cۻ$kulrR}ޮAJyl!OXxFW\h؜׆HXC{maG!Yt2R9*VFjUVcjaߊC#sVlm'a?p'ƅS!`7[yK%t}b3o1WNŠ}Mz Eq`PJ[lvaU` /jk1* xEgz]/QMˎ}2 R6RDj Q'ϭo7aR4zYp0Mr[L$+#Z+\U2*=깕L%T'|ѸG ;* =2EÒZ:1cK/lyg\M1C15VE-a6hbQ^kSHAnj|K:^"ؽ]A/cC%Vͬ#טGߝbF1v  Kc#Qws j*-a7Hc9Hie$V{`{o}!beJxtq1 im6^Jל缒S׾пx/O#}ViHyz]f ܓ O0WUZ2lj$/>SŭX1|V=(%kiEbî=̻3u;̛r=H.CK`\XhaFPVOwh^e+{v[gctK&(0-7<ؗNSK;$nV;z *!.*w.: a;}R,ԻNQOjJHA% j ~U a;_77-;#DCT ©Qzu`M^ iYz7lki^hu1-ׇ3B$$fڅәD,h7+}Fsv[j@JQgU*][Le+H 佽lD/_4]`{GJO/zTa( hLig^VqhmzΑG^ u9;?&4F@ /|e*O\Vÿ́J6~bcoh %cPĦl&9ub bE][ϝq<ᱠBKw,m}_qF'^O5 Zy%Ȩ5x{ t˯gP7\|+[+hXM0]}|Ax<4\*qbocɑQUN]VB~7XR.#kS-HOy7O(%]3|YHɁZni9Y2I>M9)$k2 4xgaӏۻQNbVG9,Ep_jBIq9v!?)U$x $ I$oaD9QL;P9|"Arg 6TIHfX}dOs!aeiy@Cu,mPuP8d 틏UR8U]o3}#sIqy~( ُyPyakŎ0Wd-|-CdMAWě zǯ=5@͊c(bcK"e:QV~C0|6VlO{$%('7xȶ#J߿GNQWSU4~W:)xFmS?m0KV CG0.%S+ߗ绡zcz(dJ "z[yw\ xEz@E8/ b=PWvebU[m͊>mFjSLQ>t7qZ}2ѢmyX&'^B!c^ڜ`섫`U 9$c܇rPĩri,o-]bˎ/'im] ɋ\aA+GumLCaso~+h˳РmY^*tI0ygg+mb34es$x1YneT?1%X@>9lb#@R#2p6l>S=E^&d {Y;oLZ"U][tZcPHI $jSpH$ڼJz<#Rrr58V^SW0Ǻ* ݻsUB?D/L~cO4S?g,gTUԍyx.ȂiFGD>,vG':̜ITO7Z={W0ubc [R{5Go3`| }UX>pГע)7NiLP+W%bG'F1sB^=ʏv2l_K:ˎjMjAEYҀq6B%UuKM%k Α;a>[1+\IWM\+m 93wEZq168|U6YGgsi @ yMϢcsQZS[k.3颮 qP= womFZ{ (1JWSjT!ϥ"7L|4EHr<8:Eؔ\-J[)k# 655'&ܪy@QVk V'3cxe{񬺊G-AbKa( QZװ0kvҊGJQߊC*+ݍLbg+ sx UW#* 0μkOM%)a>On펼~b`5*Tͷ{&[s{c+{˟ݖЂWw5*9ݹ'|)Ih|*YI,{ge` WJ!])j+J3/o Ơ%.wDH3$l7.-ˤH-BugM+t:2qJe1dGbeh24gsx2c+n=8#D'MW_ͨ;'1ІCA&}I3VEIe'LF4CXG5V_Sv]Ÿ4S_] i6#+0k2l aƟ8#VWh`&& Z"2f@'Q˞6LMq]_U~e`'L:SK$ 09DYij-c"_A>6.rׇH(>S=*PO;z:q(sEA~Q먾c-Ro{*[h wjQ!M}TōG]hD ,~ DRa )a-[HrXAkjRäkd0Cީ>FUl;k1Zn|66zzYvR 'd`IGg3$ف KޘY4DcpVåy$`o\dg) (6?kDlhژtoFҊݷA=Lq%4oWB2׉FqTt Y`2LZ9۹H/޺k;X*~Ay?fֈ>fsKSY1%>|cڨHln6H.[70ق5v!=Fgj+N(M&Q:ތ[_r쐫r&Yj2Ҿ䑙^]-MwzX+ff֜mj ߅iY5 ,͸|dӲ@,z6c]LY¢G~n$KRd`yi?S~endstream endobj 110 0 obj << /Filter /FlateDecode /Length1 1650 /Length2 9229 /Length3 0 /Length 10310 >> stream xڍTk6H3( CwwH0P3Htttww4ҍt|oZskǽ}g lPs)VUUprsrrc@Xz`gQ_`aPG{O_)#Y rXTJPG 4 #``p t;C,@U쀨hhC- ``aBnnn v+ h]ή`Kj _ctl .P+ @!`GDGK3QPtVӁp\\IWD?APh ؃r*pw8+hdEă\A{9Ꮳrÿsp..=rN4w}>31w.78ZZn C(„ 9yna񻀎 ی m} V`  ;xoX`k#?f՟qw!'B~\ߟ<#f u+В֗אfRRPw7 #|;&wX5@NVP@N\_{jPo @ނ?B;U{"7:x/ˡ EhU%pbI$Bgeq-5 p ?m jCP"8Y!^..; `Ī9d-w9;<@ `?4`w!D>+3p6!8 .gc"h; BADտ ??A:Eȏ_A%@A-GdsX<#2 " ZqvF#7-gA5AmWUnlc"h)WM0qڙ %r}\r&jRNWY+s^[4ul4r41.)5!}O*tGҠצ~Y5ލH_)M(CRPpC l> <#}>p3(mksBΈhR勛}ae1HEj97g$6$,"ϻ4D㩰d5`n?6lDp5GI5gG2MUSLi+`,qpcMA~!ưÔj^@ 'i!o5dN\c-OݢZ˧e|`,f$>i^We"к z'yGsR ۬&-SA౅!mWHWXD)6dڍ ho}alV&)V?=鮣Z'i4X;)6Q(8n05]*Dݪ ϗrXM~x~na5B'B#\:fX zw__= fft [)^tۦi ErbomR<_-jβ3h.-h-yst B7/,3/ x~yUT%'YԪ[io+ZyL!X<>s+o V׻):&z3:cTMgv oɗSthpy;愿ɒ[2iiBS2yՅ5*SpsQ?VN!葖[ԺV(u:3e{P«~'N5.TmWE2\mM[pfyMGsUK;@W9|>Y~! xl&XI>bi0a&Y/ÁSK7KRooqP&+[baK:!LIG :]%__&P5if#ŐՃ"Y px_rA~{ zL5Xicܭ<_mt ܍\ /^R YUs>P[^O _1r 瑩^XkB.'vRqaGbnq+E6 P] ۉ|ҟ2{hjÅk7eao]O^.=J2YOjT`2~&ٿJW&Hf;*!|+$c3d|sQ|4){J[YEcI+u q͢7ל˗vq sOE3_1VU ^2|3bK"&;mWWCK%`nrE&@5FGrq#;0%Xu)#C3mL4Nڡl_V`H$O咨aDP|E3cWed9+>w*L7ZfED_Pۊd#z&g-YzJ d,4CvCϥj?9+EeC+2QdUB)&N% hFliȨz(5/b4youHU|8ƀvn$_a/(XsuMIT4cIWh^@gp | WϮz׷- P~|ć%z9=hfa+ā u{{ݏ7|F_OvbE5`(~]{n`H "_d:4]]L`\,kT,m@0ܷR&򡒢c˝wWEU综0B),GMatB::ْ89h$g+,d=7plH2qXulb)Ŀ|bF=~˸(Y'P6ʟ̓>v?m ]ДF"ۚGemvş*(37%#iSF* dc-8!ggKrK]6 xhr'pW;wBX顲Oo'Sx!Uy^̸}gވlDeK1ɚsmP6#XxwAcdvZ܇ =c.f.>1YQw.MĦ.mYraAxq=G+6Ff.@it+'C&KRM5ً\:)+k;j, 4 .hylpw_99cEBn9V&c9DAGP6  acmU M%8YhPiKZ8#6$i|d0^pRpJm_%j-#7Yz`pq|/Zp/]>b~yw)ן(D< Kgn=q; Ĥ ~~7^d{))>"P+q‰i,M(ǟ}W{a:kpt/@B\7?+}Z4zZ{``aXq3@'H1{:2Y ܂P~C̪d87wͺZvk(1_$!Am4s 7<}#{x #"\k[7x:}BL۰z+Yg"?=a1=eΙ=dyFTzns̄Y qS9#rg"Sy7Ppƕt$: S3 _QqetZ}Sq2݋8 o%l3#T tbքIW]q&IwG?6V ѐtvU/="Hx9T;_d!q솩!"׉͏6IXEqQ߾v1Ѕ۝oJlbL$=#~1\M93ܠNƁ LTs&yPfZuƗKc&g#牺E.~h/ǒ\9."3B{U4T}>uP[M`o2hHH>A7XoYyLKNGgχBmzJ&<Lͦ,nO.y|[TΡ"Wæ:a/S\+n5=lׂdzvcxUYdy gx!}XuI~XTx(t\[#m5!y$/Q>b芯0mMkO.@Rv"p7}R0J_G9^K-bq(vc7SwgQrC_&tNi00`Nqlv[فo45.g~'kj61z|$M5) \ V]QaGTpzgF7úVQ:\xeͱߕ U<0뤺z%^ a>mPl>bU H=4־`JXEmy7~ܸzP<@a(-dXIM>6yJ xq*%SZ'r_|$k'i,GuP8=(EY~IWf x`N zqxwbc*HW43^rG=r¥=_Ȩ+!nT K@|t+fl%'C]?{T1-@##Ac"]M=u[1%TrQ'TV.eV1>F]QO]H(F|DEBAo)yqyN`S4,i֬Ŗw ]Vpooj;!IP.0.9z9v^(y*41-ky2Zf|wIhwXlםs xjow\͞30X]kYtG)X_k67w_'1ve=ȵ6a?e^wPw8#y^m?04:SF>4a dx0vW. mê|fNHmB}>N~^Ӱ:*o#W(:6]f!,e>~*"ƹYO˜A,@cL.*+z78lY[do T\907&TOk?x*Ū9F3߷do@C&cBqDhst_.уJ v6zX0e%9mt2IՑ4o4H/93nRm+{xh!=;v]tH~d/E2(bط&gKN֠KMS#\LQycDZ{'2o71\=>b\s})H݀spY(7&`v06,k_f޽Cf)}o.#lӽ?Q2ҵ)%; '֧ -b4U#1Gh.tEOz{Y)l0ع)do1-d/7ᇬ6F9<}?ڻÿeZn3ܝ//C^֪!zӈeN'Hn &'Euy@;R]|Ja3,?anƫv> ;kҾ8tr&o xqmbn tFl>9N82#M/fdr^POJD+HڣY4d+L]V:-1(M^O:bҡ+I|וx{O@EqV+7旪o-N{4.'%y{̓8PɒTv^m1N;Vr;x xQ>tR03Ov0~пr܄Xv;eU˕:7>t>ת` !^A[Iq:DiKP]})Lk&z@\BYOQ,x }'Fvـ0wdzqLݳ;Y%UNq.{(w4f5JO cm)dהl6X$Η¼icVKPTSBޙU\L2ug֗ pLkǚ|'> fL49X|ThT"=%ԵǺX ]婭P~\R JO8WKtޔl^}.sw!I%Z'iXMSA2 (> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i?endstream endobj 112 0 obj << /Filter /FlateDecode /Length1 1437 /Length2 6532 /Length3 0 /Length 7507 >> stream xڍtT6)-C 3t7HwK 03 !(ҝ % 4(7sk}ߚw׾ zܲk*aHg_j= akm\7 ijxfǻlurZQU]d %kKӯ̢5_0It\%{W=?4DK~$RU2\#-yAoDN${JqzVVPdՐF܆`ǝҫlOatBV:#׿,QbiK?yp7H D[[F0XԻN^ܝ3g([iG/%Zg3f}Il}ʧɋt}[ @h+@ a(< |;qͼ9pؚ-^P4裹xb>g" U6$ol/M~+i*z15W+Zl<]9;ٽh uLdw%ëq`Fd\%z-S1"F/^Da}%ߺuX?I,wG'Ku(Y fiD>&kv_YR,g i2 ,˂(o -/5|ڰ@&vyGmloEq70ح=LEYtpޒQ`l{ў_Za_.Acyk.qBP%&jǛy-G;æ{k+'(X\fOݏGKIɗɷT2_͈-chD)7^,/3~\8 { :sXi.S,9Lx?"(>d7- +14UH{7w9S*ÂJ]e K,k.CvxbF^#K嵄'uڶJ^f6GNJ)i )jĹ<25°u\"0Ȝ1:myr vA]s۶ǣ)?1Ջ1MF1tt(@-_0.0 :G0uE2]G\UrPg[p*;'^\Gi؎T{!5Ydkxa͊Y$h B8ΣkGg c3ϣzաo}v:7sop^?0i쾷B~ _}j=⪤ʮ>YAQU@8_K !-e7<9G+ilzKPtW۸vBNMXkVv0Zc>' x!qh"jW?Z1)4)V>ϵxUӁB0| =dIx06E1jbfם0{}*C%N^ޯGtXÜtARse̊ȅjK>}&W14 >}dKᅹz=2"$F t%{mhcCt# ?99&`Q֢N.KS,OmI`OI-K(B%z]5*pĚ%zb;"13~X~ ![_~x!mg-لLZƉ]$czoKFl* '@[)郈lpSsٻ^nHdgZ57Ih,H4b0!5^cO3?@4IO+Y޶LREglC+͚/?xOl'){ZHp*!?p NT\!BȌ2*ZڤWO: ݰ́9's7',OI*_>7k72 dm$xп 뗓gkD)/^!|N'l"}UyÃǝ=/OTX0F˅ޥԳy1sBp(0HP!dE ajK-`]LnʸiIݲC aQzdgRAg ʼnԾѐ{?a$ $24ZGZ)7g/~5e. PH|iv?i$-,X7[{ Jv5"rM3vKElhuU:q_2}nڍB);3ږnWAOhotX <-wJ |~L}¾Rs!' ]idƲS$E ;@ې)SI{Ͷu E,Ն4= Zv*+`MP 5hst2 ׁmhSxZqFsѦ/Ë/ӆ?> E\iq/qX  sc7wi(_OqEnJ||oOc_SH|ʵ}Tu[_~XV*$ vDK@y$F `uݐ&.LL1VKZER'P12\chLm&|wKWs2+N}WNΙW+dj^׀aٖIٙ7[d@cRmf،8k FK eMި%f:'s3W cY,Q ޫRsʬ'2"O؞3ޘN^ vPcDTп9ƃgxR3D8+q9HTSmK5w :643  fr$ak1ƌCE@/>#C85)hm>x`U! Qdxo\4Hà{|Se$o Ɔ.?łIHE7}NOckB)^^}*OW ǝIpDS5ۍCmOV,TZw<7%]@[Y<u\Q6LYOK'l B{haT\xluғ-ϱGN wD K؞0m?K%-zpQPyvj:OhpqzoN:ʓ$m: C"MtAZw89i (`[zkz23fIU.f(^H`D($f4LaeM}y9.oxg}:6F<çe>|Bx2oݫ.U\U@m.7Pc5.[F"]YU$~mВ̵[r^f2|瞞&~gnu=]74ls&[ a -ת+ǷV٤LX ґ u˫ ^SkjJkGI-DZrJPjd9V/۶&aw+9̔< 'ri>5f?R M27T*O\ ,'MJ|{O(F=:[%@UӠq0N Aq D2"kY+OOT\ K;co9Fwο.NMz"Rkvuh'͛V6F tRW30YS5RRb[M%V)Lu.24)!o+b.:_>h}:[~H+1a!oz\k n΁lk9|/6"6W7#M_hመI=Ѯs/K،*v:v q`Rtf]K詹ҧ򼳉5A hcT1o!>9j4k$_2GGҌj'F蕂LK{yH+͊gqRu>& {HB?!bSamm t)S*xםO ?>3pI(9'μq9amlBbt1Ҭ $u^h:G$M<8'"@x.wbp?Fendstream endobj 113 0 obj << /Filter /FlateDecode /Length1 2608 /Length2 21721 /Length3 0 /Length 23201 >> stream xڌP\ #ڸwwwwn-ww-89ޛޫs1}톂DI^(aoBWaf01201QPY#:9[a 4vČ]@vvW3+ _C{'@ cotwtt#ڔa[@h hjlP7xŁݝ֙Bt:% P0@XA'\̀Ns@h? t9߇MMm<,V6@_6nV6& #7H+A '=gS'+gg+RdTeq;3Q{[[3_Y9MAeḓJՁQ(-`gbbf@SKƿ<+2vwZA_pn@+Oſ33`;Yyt@ `'}xx62JZbrtd? @`k8A_R%c=@on A P}=&v&S s߀$\mlVSQZx4ʮ.-5@3+Wv1h,a4Sr1gP@jс#BqoOv)ngjoⱰs=@!v73hC̀6tJ`nWG9AF߈(q~#n'Q7b0JF,F߈(f7"b@~#w!.wO7S@~#?O7? tƿ(2G c[???( q|ۀ A8F? (oPv9K ڸG@3 A@oot_z{W?A&@@Ͱta Ԇ@PTWAP0ƦNTtu2 6;o;> Jjj1Gq} ]]f&6bde7)+43շ? AV.ln Tgcg?@Iv],Tw?8\~A1\@TNh*/_o h 4oob]q_+N;?KJC3MMfк/#(ԷB/mۓ><&L~[,<n %WyqM"ѕ I)޽_ңa|e,l~WyC|>F=Z/d"$) =! -څY7b:8ߓ"o ؇^?+Xqqup!oƦ)ERdKV=s?|YGa8`ɨRks DI+k0t"UĬjRHxe.Fe7q@kSϑA/#-=%̴►+<_]!5(>s=Cy]<1o21pA\V5](tm̡.ظs(|rqQk*nF!)o-J4\xQ VI,žx9D^&-ٷP=i]pQ5@d$~)pX$8֯ C{*M5ΐO]*9ΊiQw?`MNDHl[5ǻ?KQP-,/a}m `TCDKIf9Ңq'vOַ03M}zۦJi@I~Ojٺ.ܸLP17\?{'B C`D PXF&WD6m%H_WqZ׭ N.&~;9gC2On?=wǪb>9daN N7;fȟ$5o|_᧍|`ڞ7<,fX^冬W45f ^scB~PccAx2y/ˑ$|. e(RU?=hϔBo<@}M͍D7N=sp4 iJ^A>Gr,͛c'y^8Nʊ6-˰*s4B[rT8BTGD2s)R*EiVK59ce+}n7p|$~Wvl"٤+Nf 7탫|%K?ךkbZnmWbā^Ċ7oX48'6.,r\(˶c'oՎ;:sD[3 'O ixp9șTo0k0F <0%h{=>L PW}t\dѷ/[TJ[~Gv==ibFYL1) ^^J ٱ^SdKzݗrS%PtH?[*<6{(R!LbBY5wSʟ h)]5`ZJ}4J?~ߟh~ۗeI$ΒC!L*"ǸWuƎ^.-\~e[}Q N:& ,,[e>_ zPD_^}~&+AB'G@EnA睱K61"qc%qr3'Yڶ)”O]Hʷvh hX4 ^jE 8M} w+VJUаZ:J Aw*e1tʽWc;=t}[voؚumDgsT72`œZW2vU4ԩ`&-A2qY>X̊u11VȠab(/,"_CTbQV^-)5K#0ֆƢ'kd*'IA6_ٔk[E%cEDgfvH^ =0 y 䲽pcQ/ʝ#˃ĺ%9ɥ^)-7l8^ ^|iZ9̔:?,1y6we`jy۴:EO10,!@)'rLVm*Q~r3!R. sQ๳GsI6 בEfOU(|yC!$EōB5-7:G)0&$:Q;IYY;OtbO5xNgo[̓2 5Rxϱh׻ G5yW$1PIYEnؗ7Hg+tS&NMX8e\793BE6[Pߔy`*@rЭOth !V!xjt9Y%ׯ"b@"blأ0wA;] y{دUMOօKy$kFgb;ZmR%c.҅U? .0+RP oNV{a]RBaX`$6ec Nʊ]p{VkZl);$Ut5g=4]1WťB0hqy'Sg-tQ,N$9;ю[6Q"7/nq5FN9I>1aq(Pp'jʋYT@Ϗ82Z!"<نr8h. [Y\3JiasQ6пwS &d\fN{t6WH)_diLZ?@@v=ێj4&gYMiWҖ,1K.@]46VT{@ij<1)|mgL' =^ɏ_my)Sjk4;^F-C-Ҧ`BR)|oPgnv`\YAzuU$D"u(32Kl{^?q埰%ꖇTJGyJR0=/DڞK*,tz4aȰC{MFy8h');mo#V7jv*i:Y|hs EcŏFY-gU\NW)??™:ѱx} %fϊG*K1xH(8%PzO/y!G~ F8m]$Ɠ"@AmZxCC&~5j{AJh5>|2c qU-ոvױ%gb$|yц&IWvCɌMKO.s1c[plꘫ" |-- K f$eW@}#x.\j.jZssdM PO\̲{"ȟ$aTc4[#[ܺs%o08ܲ!jeZ;#I͊[QC朗S:QJʥM|},Ķ'{ݿjuTLOd2j_v AA؋m6E!oí^OM Nܗ7} I_'w}fr1+%_ 7 [ލ@|x! +sB`g/ XiZwD-䏼m7N5d~|ioB.uT>7yH-HLV兊$5K6ۂ$qrg0I ϛsBrxSxJRf6 k%f&V)6A=]huIx(0vI褱؋_!@uӤ`n߅7%A ݪ,RNAGJjnf[PThQ{_ VO:JЁlmb-q+ j4PDv/#tZ1DojcTM^s.X;f]N__7ٍ% 3A(榕fŚm#^Ą9gU_qݑ4[* UZ/BzV/|t@8dzafMVVaq(M(NR3nGy*bqs[/Q='mGI0y*W53R3CuW{x-ب=U*vSM7ߟ`qvsLsz]y@j@TէUWFWLZ߈1" y%2S v嶽-=HKMñZ!!obB0G#b{nquo;JۧXjE *%w/ fUxB$ _ eWE[x)\VC2Bҵj 궢>NH2I>Ɩ S2#с}cf`9 ."Ūl 7a RKy *x.'_FgK>|X<%E`0g2lk: 񍴑K[mo_lіX&,6 \n^m`֔--rlPb]wݔ2KVڂq;8fK3kD".nby]4NJ`W*w^0*N8 1NkR~#7ҳ}7LbcσwˣH/Q=򞍲h69[[ӗ_`/(1T{51s4l2/>[ߏ(Fh;Vyo \T0d0 rz8ؾ+ƺ&ҩ 7.wDhմ/u `ۄg4C,ZԌݨ$ ӵOq۟؆X<'zZG@ CLqN0N*;I)&0o!|p'yo}g|ÙCFm7#$P鲩v_ԝL YhAnTc[P֢o-8ED=>ik}츂 ][!t14[U5>hx$.]38 > "шu|3r긖l1¥^Ɲ/T2ZD XJi'MEl27j6)j#0h>릗֢#}[q(s/dk,+5:BMv[6&vÚGTGE9l4?J_Ʀ]:E,7ϾF׏`FN0*f1_Տ;-W#I5v;MNgLGЄfwq!oUIfG *д4`QhwEj|j)I?WNp3>ؾ QCxx$k.W#6G=2JGhdC&GHd]ˌ}{4-!t: F&2C%|% d0㗠pE@/IJhS8 0AK$U恚d DǛ|M-0]Bf=%8 =,Mkfz;ڼAK?_`pStdp82F!^iڶx.+cy6?%Jm3| ;bv|p]4WXta6AE5Wg/ɽh}8H _1f DZY4첻 | OvlċHښDbYsXobtxݪoD=6 !>eE#m:<" ZǑ4VhX3FA*#÷U\uCH|F{HQQBN̒\ɐ=b_>cekHJA"܂k[u (7|[Mw.d/7{׀| IJ+A$FX%[Ɲ/]Vx)|USda>T.My _˅Xոo´59b ܩ+]'z_kз\>U1hPqIP6wwN@]Qԥ~Z?j3t7q.͋Gdv AK쾞#JBL2ZTuO{iRI'^c`%7V{pN,bzО,g9UQ$e+IR?R-mBfm=}8r]eօ)%xĎ"~ztS2A?#l \ >M,QY 7"#l!=W ?J6I{L@]1a G55Zy>Tes+sqB1ǵG[.'-=Ă&ar2tmoò_]jbN݉xem qlM~ rjZh2P5o"8,42PҐ& DN'|a?Zާ)歠 탳uyw8Q@, }DF=$ݟPs@ʶ?>k?Wl’z4ksNC\fr#s9hOŊ[x| Y "h\F!ƏjǐjGjvy_,K$.mtjyp38l9s':45| ¶sUjϵ77hlѢA="Е(&BL. 51`fvŅ[eY~]fâ;6؟G25;8VkR:4:dcqCAPLFZ꬯!m]t`R_tUo.GqyB栘Իs٪Rd;d1elTyW~@5֋>}lnJXC"akar>]e`NRX*!K_pϦ~AM@*d_tMVTOvY0r?S{ Gjf|\m./aWQSKLܻ)XLP1^7_(4|\ߩG5胟m,%Ƿ{lH^: -kS`ZPAwzP9 [=1=! ~؊k4BᏥκ0(bFv=X^\/ 00YUA (MܗTB=WQp,ڱe"ɏ?-PNZ]ӔKeJzsvZfC*f\^x6fe jR0kͺ{'m@Qtz$˼m#id87f:i;Raη'#=Q#OdM<寗S}ȯaEBq=769=а?+"FIUZ~d5R"܅8jxyԍڪp%Wf,6j}F(9TYt]AF%PJٻ<3%Lw>exh~ xU w1٩Rt,`!rx9n9[Зx?mQ62+Y$gQɛMy>Dя1;a&-~s,C$bu+H}#vBMۇH^|ш+ i &U](^+v'+yܠDpJka^$ʈY{iJc'.i,)T5'nhrwXB#$u½yI %DHXptf Gu`:ca$)mO.*{#i:k8Ye c5uqCY[m`1?*uŸr CRs9ph:)t^ƒsmVGJXTJ_ݍtpRC$}r>KFLZI0ə8fX8]f/Sodax cհ.{g>hq82w*SRY)=]&I)?MZDd忚¾,1 A ;_8Ԏc4GerQu m"7>tq3t9SחI~:KS;Bn 1TO`=8(WY9lnT^=p% V x`?ՔO nݕ䕑p[4G M I‘琍n iYUvX_=hQtpQ8b>:=\1#OG5(W*LA OU v 27!<]ݎrJwwDCI#%esNgJ'wC^r87OzR\U}@aЅ'FtW]x׍nW 4]é;BK;ʈL h&R1Thd(3ts0[_]mߣLI fp9h;N|Tj{wՈ{ps:nv(2fsnSczpD:?nNx"u C"nP"9=F[cU k 7Q3fEEbj_MԆ/5QMlI uěUaa P=U}fn};$l.M l-Ey#^vO<~(iҎj54\E*`^̓af>3l}IRq1q`b Z? V}U[$cÖht⋇?_OTK8ւ D<3>RxCzkaPTMؒ'3de tnNw6Em:3VR J)нg/u $$<zYɍK7}S;*uPbeh qt( dX)6+Z=M0n@#.BE?hLAPhq؉M^;xE9'-K'%= < R$-Mm\]1-Kc35]6ffZolobdF\ .è8l@~ќ=ZԅQѝ"/'ڄ7g{\`FҺ$^BIbCĄ@{&$M*f)$.uEiG̦7qQY.GL l`UB73\tL1%UE(D-qr#&1)V /](\k?UI§\_ļGRnH fQזxT\sIҊ2 ~6} N?hosg?Uk{<q~&6Њ9!p YP<ʴ="]3{My6m83עDR.|71w ߪ/B:v]ƘG[D>UCj= pmy"DFyo>6L;$b6 sbgۯ*BCC=!_F#2[[E%FfH ZV'82XJ8 ǡT (3)c2?@OA@rQ珬Am*'6, 2*~a GrU%00r kv1}jbX rߠ5dqG_8srʣýn[SǴ[Ū%I>h Mp->>W3 i0R\J =Z+J֒oB68p+2Yz:OZrӁ Bbղ=HK:#dy~)=vY^hn7ޡ}{Cfi(>n}ֵm焥%!/::z4}mpSI8!M}aOq7j.iJvH5)I})lk BǴ.;g ߇G$@PDu: =">V3tE,e]@";bt/!J024=s^mp'+lopKʁq 3!1AuDތ0Ր;ֈՖG@mvm/_򭧭xe1y;]Yu+7:KKP*g|P,:&M^^P6ꃄQ4qC,.E[XTǚ5(A9)Zf tb㨡ԗwódeuWVPV)o:n ZŦa1,*1^n]|n{j~XgaGMZܠDxV"/\z$>թ#)t@`E!fZǰ"ǫiˎ-}YrȬwJ=}pRr,4O@HI yn:NZGMQ|K|h@_gY%6 ѐ)DY?O]h:U"=Z*LH@)xcVkuE YԌԉP lOsCbQbUQq~4rni3kpPCG^&}:z6ds߈5Xe^ˌ YI9!b 6cpfiVdVz >DތHВ?޴.hOcP̬Sk$(#AiߡS~ҊGvy#ԋղ&mlGeاoõH]1j)J6Y>ltqcܴEZ2>ji~1]q0R_R7p"}:StS݃W' La1ab= yhE\Q6_nV]H9hpoIl'}Q=ϥR-yGQԹZ|ĈUlPR vYX1hs[~O O6{10>%B Μqq1/ی<5=Ey]N4c#]@V!>Okytm 0&gR< i:Xtħ#Vj/$VJ]f+,852GŘkfncTH A k!$s׻oTnPCOd74O~6TXS%Hlny_s>2-7x3Kٻ8зt\V38ĪplF*겫729Kv* |IJF21a11J#rM^LG0,F V"q)0Z6$kgbK2ys;Hxћikwn'c#_SvgJ&<^F Bf9W!A'}[fF%Z`$8dƘDwO'%'WԻ{G744bx7xx^rgYH}֘J:d>THv=<&$5b\ۗ]n[9狡^cBpƂ[.+&P,`.FvPCnZ14djۡvj.KH\nYr{lh~TvVU6@0탳H>|PHpBzz+Z,#[6/^$$*:6 C(u[ /$J' %O -I@*EWF?ADclU8D(y o?R%ĪB"ˏ۷C^弲S*z߉d D3"s<%pL̒Nrs:W3OxU:`+uVRrtrSo4")gGCAU ^ ͠F3WϢC˓OBeX%׌0Z"Mؾ͘hO;KWvsϢ(4-dGAj*lTo - Q{7ROU9m]Ƕ`CZL(&d10⟲P#WfIS`:H^$\ ZO1{bj0#)E^FBQwZhqfif8gY?{B w L>b0_M#2N(]gŗ :NL42*5OJ2suD S`i]yt=cB^7=c(ci{B_ܵ?OU}kr 6E-wXxT~?sA$/H嵜t=׹Pwąu޻ ]#h _[5 ɇ֔&k)iv!D}4rL%GA5eJںG0Z7EG*;bɀHdT4].5 &jhj>90 C͸dM B:J 0k=6FYQK+:.{!\%-qF7%>=:<7*Y.EwM7Z1I=cmpA b4ݛM!ɳ.}0n{8=S'H O;k"VQr8ɖyYY] Y<ḐOΰ>5Nj7@6~-l|%АlSÅ%_TV#+q!O%]W m#'4R68~S|| $C}G&d\#)ĆJަB!sjWU , =b:!$0G x "wU%kc/L]cfrjJfU„/\fb0=5*ܐd0Zs>QLi§Oq Y hk`{`Ír4qp+,/H>@K?U{ˁmP}Zx-Y}B׻MlM*[)"|UR$("SLFfݙUZh*ԲOC5QA= o[QOr]# M%hG>֬'ʼ{9ZU{2oGّ;em;5"c6I.7v%^_\6=Ul'i&c {6ؒf6w0l~8 7#DhNp ~A_|~-vfe_F"EPOe;*AqꪹV?eU= 2t+b]8FǠpR /%leZ5]ÒKK;ZYS +huбu *%\5wk_XΐĂC2 h%8)p3?`ASr/5C8#_!#~s` pBaȻX 0*pb3FG_9"j-K|ٽ2Jy"5Q {f\q>JBD-#f={(  \qY҃VCUSfJ%$q tmCCvYOHp^j7/J(x,Ō A"}J[Ra){#޲ŽOx6mA5j?=6|lB9uF=k lSLЙe)5Ƚ^m9 {Kj|WZF:' iĢjܪ^ql0+34xJ B= FE5eb% w%3yL=i^ycB0}ȹu[s lo/xOGSjt˳T …&]2]M`e~˗wFc~=c=0XWfDAZsЪtXJ&ݦsu&,4=sE7_m6gI*N3b8VdpբDi*=vdq{&vY U$Px]ۤ?9kXyE ?kLERvBE 1JTrL !wϻo͟@Q!sV =ۂ n/J$$,)w4|X`aR HJo!$\G"*GjKyJIve5aaJGs\tMK.-mjbpy6 SeqJ:vdc@Y (X^ miqW)$Cjٷ끻M -,FQMi:hZ%dz(_ɆGap#n%\N[;ʅA"*Թ" 9/&gW`ҫA Fj(]w򍃻xcGkht#n*5'}_';v(UZ(VLDZ@CxpQe> K4%{M) s[Z2À"c:1+-%[K[}-&Kp )py]Zfcܞ݀v}{xNcr|w[ٺtBF '˂?2M@ž~ZgU#|9 {0?WW%4w4ƙg ݶއh8+EZUFA4z_KYn GԌG}7k$ٵBgA,5ЛzӂH~{(A$[k jDFi-k>1mTX0sʰ$Ęq]Շu}uqu=6zfNr׈ܚ66u;z||Z ?9]έEDf<7l\U.(rbU3mMJص34VUtjBٵՂt@.&J=ޟ!)^@c xCMmFƋPWID|隗"ZEub4[7bP9|m53$yn{Sʪ`G*{yyW MSMrN7/(Xvhk6 /5⁴ȴ|tF,b*1X+5H}q:yΆ\R ٟ "Xq6S9_OŐ(QF=& c [ VposLô UڔI7M:{z*$RG[? `.? )GMp7|745]{ p075,+xU(N?MPBsǾ,nqSzv.}Zx1~19 M pT(X*(7VAAԨ K'!VԂ?Hlhw9  =ł\8yPFtsG C {EFv5]D8}mСMm6ȅ8 Q6S5sV4媁AnV=s#ױv knr- l57h+b炞CH'!ӑy#A8<bE`/AɂVs2p˗Ч 9g7_² m.= B=$ß %\ 'j4I ?R=胊 -5i RI`Qy:3Ǫzu륾_:h+t36_4W^dh5\M,P^uz,A],ȴu-ǧ)hi`5r KL„ |%/}]dZr:xkzWӊ+1 ,=ՇmbQ% $Sο3ZP[Csa! N B_%h[3.[z.NG_Aku1 ,7`!}G ᐻEpXʑ]K$C|PISPD]&Uwy󨽭}qFl.)t=ks2I;Nk3ƤEr[#Wcrl? P~Cv* svOmGZIt~esy.TܐV ѡ3VB^+paoԌybSJ;r&ڕdSn\(`qlݪt@8SS7#%Kd+30"ƛd9u=㋮^9VROJ+2ׁ@Jq(D _[ZcQw!GuH8>?yͪ+&V [}|n͓o9jBelTh& h }q\80aag߇ևQːo]c.]冠^{#v 7U)ְw7q0 ec (}f<DYEX<*Q_:QGyA#/5-sy*2^[/xÙm.@bc$Z!J)MH@"o`KmDUt>nntI.|F\?E)a=/ H$n&^bPllwtزzLq[*5nvq4ɽ[N)d >MOִ+O3+"%r~4V>z2O8Z0i 5?XII 8c J+/+>/T}|yjZ^Zv|O ʞDŽS]S3BQqۇ!䈠pKʯ7uML"4U%gk M$;ͶT1 G~q~m#k̈́ɓC1Ѧ5j/QN<&EB ˿kjI@kiPbeVڳ%c?wh:䢩j=?(1H?T_gQaإ0 M(Vqz'q R݄Ϲ:׊oXm T_,R˩B#&vi<#x&̉1wY@)ž|5kދm f } |}gs͠y`W*/tHL]P3u$ίӓ;%4˕JfA,1*mLK\xPs NB@Oi-k4#Uxkendstream endobj 114 0 obj << /Filter /FlateDecode /Length1 1431 /Length2 6506 /Length3 0 /Length 7475 >> stream xڍVT')LBm4HwKJH Q Ҋ( RR* )ws9{_51SsA;õ(D02`߄c|hk`P,^ ݌('" (@d`,#Ԅ#]F@}4 @{anX|@A"//+; aPu{+ @s4 +C|We!Q`41p/@c70q? @1p ^ቄQ? oxQ8 jq ^PT D =چ@(rEP'q(P[/ "=!Jd- ~a[ qF Q._\A(\OO J`Yy0@[y!Cqho D?/bࡸn@.H wEdǫ?d1@-0x =[.hg? 2U7 o::IHPw7?P4P s]`v`i0 w_Yg?~ Bzidz#4~/Pjc.H?aPCz}H_md AfODMо_ P  k0S⋟oJ.]~휄 @%i _Nxo^A(4 "yJA0'<^[#>~926[W30? ɂ/ka 4]wUq *X=MaNIӄ^fEc:h?-k Ns6ISMNCSFVomUu_!P] 9 yۃU?O$(K'l}ĊKb v󜟎`Ů Ҍ ]p마B% q ǃg[Hٲ^!>?r WR8W0fW+^'lb\V1"J⏭V~NLts o"յ3ANo8nJ}kֳgGՏdb#y+);eִk[ vXQ#gY$L4}:nоtaoJvfk\. X(j\1>Vg&2٠q:Yx|!Tħ?xDJ̈>uhf uG`ܛ,y}KJnjӕIh[ys`x9>M6aG^pjK`\7{>@ieVMeP3,ӒYq6DO|(f CI3Hf[=P} /{> m{6!H/sݗ:Yz?27|3*`+WY{g"jUoh:e[uzjD}߭s+NktnJ\pj@ިF*1dWCA)QHx7Md* U>pdUby%dZ;@O%o+Eڌq"'5C11JzO9;<ި\H9NDIlڽbH`ApFwxӫs.ɗ_T_R,$B6&CNdI\畁a^2$7 <o&xƣU(GC{E=ƽzM\#d;'"|nk :jp iYG4979uW]?"h:Ev/ncWg٧Jnxl:>SM ~Zg>WZPw1t4(]+p>{˷HsA r;\kc,ǾL;R\N-uL[Sh"YBPQĚfL=6+ypfV"qHZ9 <.{k~#fY-}8TXt1sݎ7cjDZM.X(zuVNv>HF= @wEuZK\< _ TqP!6Va\9+{O&{=^׵&\ە Y-Z[ǘ0<mȋ-C j>u85#TYvA*dxA[)Qc0OSaZ[7wċ/ߵbklr Y5Lw-)7$oHgc[-6gTag=ucd^a8XKo' om9t#2˜w%ڵ/IYnxޏ ~ēKڝWg.uaxPZYp3͍"-oOC/Cm]ekj-.7T+Bv㹚X(d1Q ]?N Xߔ<"!]xZ-=O;0^J=ȁ64JylT"Fp; <{?1z}a}}WI H.+mTK{KOJipz']^|֨ݺí&Ԧ~S,'V{G\+BʰTs~/ugv?hlpy-v t_"{&T;;M…W5BvmU޽o#|A)Lh w?]oa8J˝%@WFMNj]0:oA\Za, 'x/VFsev !)).2Lǧ9jTUѵ#7ν7c7'fE$fs2> Y^/:Η/ jy& #Ҏ0~A@N&6!4n,py,b#]~x#-̱au>ǐ /jYN8ӆ@Gܕ lC\}ՁosroEgӐ64e5Ϛ+UVv4?1}]#*ba1'xU<`r#\X4)OLٽh+ͨ~ܙyAx{"񨀗͜LjKYkٍqO9A/7<CgzyK) [cN夑M+ϧ]7 nPC@'WR_|d1+/ }DeVp:A1GE(k9 5p5 ꡻.g%08+Y@|7 r_:yMEc_TqpVcdVb^ua|Z/P xp:4{ڌeVj%ZMXӋKh#zt4` zf:jJRچ)-=B~^`4v(6!znT-Pu.IO 5CՂ[C6Yh4`egh>s} ,1+1񩭻Ё`ʙeʸ? ݉ZCR _1NyJ݅Jn'K磭6;,m螯FN-S֢S}h'3Q%??Pk{;O^bY%D!v54y+-!\w7FOY3o Xkد"z@'o jMI\<\ugwT4fxJ.>Lԟ:K͸Ql rSD{8V4sV)`f,Akgw1w3ӷksL8o𺻴i:z~  !>kE9{G|St>joW |"aIz;,ZܟW.âH@;?7Dp[KD<٘-Tg,Gw9aw$q-5j1PhΛ:~n{حa H<˄"'1j1'" =,f%{XZ>p(>a(~%&6\97P/v)Nkm&Iڻ4Xo;J~x9c 69Q # xx 6c7˼u6uҪZj5uZ*"}Xҭ )fvݢpo@.*oiiojD:(6SD: }y{2Ktj@z=v1k`z˳ϲeuKRpJҁMqtb٢ΥF8YE*EZL^] =&@kRaĨZeO}l%)'yG݊ب,iu/_O)ߎyң:u^րuiVr(%8COf@R;QJ 2ѯJ|;~6N]q16l-嗪1%lC=#wM;R$Q8#iΒ'Ш$=ge;fZzbrwB]ҤzgynBƃ%3el2Ӎb27F[OCSBVl,{~߼;OeF2=[A ɾga@g5l?[$$8_f1`!FHXEI*gy/d1`Z^VW/t\ש#טgJ/lR",O}G9܋V\I\1%QmCdyPf"Vh)d5wFmJ-: k^v;CB0cSX"2Bq] 3߾[a~ӦɶҲb Ԡ+iXtMn9O 3<\3Z(/GZZGN_B?UP rHm<^Vm tzor;=$?jδU("^K%qYFUdR_%s*OdEzC"||qz]3?[(r'L[GY1zmkCnV) 5kN̑Sn%ٔ H*wI?g2$tN[aD8unǶ+ %oc\r 8l RR]8\++&k.}c>5qxLB,ڞ<t6K\ *jԋfWLnH6&7nMxBNM+z}"C$g;De6V?L&ԫwwX'D8Ձ(v0MwYK%lmd#o(rjBْp8U )QTˮD i@U%.Kv/VG?ٷp~+.cơ%%+^މ{TËQ|:ܛUNz`x7 q&&KU- ))y\ţ2^G,1 rr| { RW"8a] #^e^endstream endobj 115 0 obj << /Filter /FlateDecode /Length1 2085 /Length2 12099 /Length3 0 /Length 13375 >> stream xڍeX.+E \C!@pZE-+n']kյ8W+#<3R3ALR{f ?@\Q]AC`c`accGְrRk ˆ;A.P U\m@`gc/YYr{3*8t _Q;)rA3lS+{ksf8Y3ܭ\,j`g 6@ d *5@o:@V`{g PU(;+ `= p/g)dieo0X\<\ {@3rYقLDU (0t6urpqfq͒wh%!vv`{gIX9Mdm!ds+{3T\X5]AAUt`/`%$࿌j(_oJkez;'W +3+S Otl '+>tߟB boA(J2C`fpy| O K/ ?+97 h?Ao%t?[`f ?_.+;5I/YzlW(BbC"ʺ"joxf>NVRV`3+S˿`keV8[?6@/geCJڛB~o";7De;]Y3_S`e@]PsV%rXH\V$>+ Mۚx&$>?'4W(cVDhL3-_ Ox(GֿvGWqaK-~_'VfN(oKOKYK)C`' } -mhsun@^?MwuWqЇ㟦C;B\f&!WPM')t6Y]!2CG_"& e/JO>{?oe݊=`)T غ.Fȝy{[ٕ5vM)g%orʰP>"bOuZMSn#|T/4O*L|^;rb_&D6~[;QlҀ`V.1 ^Y{X_@|8A1'>ORJC Hڤ](7r3;ة W2ƗxM6s$xB%)j81K0Ozw6-G$ĵ oMu⋝)>5 dA 䍴?}1010NF_'qG6՞*#0V&ZX>ܑͫ[s`01Zٮ~ciQW mD0ӴKpzf_ly@*#鄇|>({{Ǖ뤍‚A A3ȩ';  U/_OVNP\#)+A93*/y(!)" MwiU*kÔ%k\ͶQ}1{X\QQ]Rq4{[ܒw'XDfeJja#HBFG`򫼂=9&!cȓY1)C5Q\#8|*^u#*-]=dB8K马 (<ʙ2I5nwW#8u l|L !dDr* |d|8gj&$Ā++"BHN]u5œ^@cQ_[u JXɱ*b.db,TDU[ DӅ8+)oxWATš➂a0Lڿ( R|&pX8:_#{ZoXOS^^AE\I<<{}%@8.?nTg/V[K3fMCk,zMV%l ZłLxdcRNA 0U+[I?$}'5X;lߐFS 8=xi\#Բ9_|cAG_wVrӰpR:ԃ{Z=wMqt@ljQ#q 7U A4!Yr61΋3jX2ɫo4Ma05L~b)ɗEx7YaĥVݙa#HIU_!'qq=OT|"%ۻ͐U>4aXNs%m9Z4 >9GRاJjsq}Q10K!btwG7?Lny8`)jُ^"'H#>Mߎ|ͨe:<4i9٭/fU~\Bh[}I,9 'b;,ݳ͜48n]oQP ?hNl?7TP2'ӈOZC;9#i|6jO'~*z7G[Ly41Ejg\%C<'9./by)*pb-)[g3-2:~^=pxg<ޭ]#?VOkFw i|I-E*,E(7"[6a0~ ﮌD­+ο `4tj5镕;|p6w&c^0SP)XH4>!:^Bf'Ҹ G- ,!&cf1tsV_'aEhGw'4c9x 97 %Vz5G=[.LfqKnqnrCV-|s7rI> s4нh0K0 9468da'>hœY(Ddi7{$eE[E~-3ۙqv2L}7}joԺu c9Z?Pd9O4! {o֤SgJTүeoqXr/_.:n_8.͈I9 eŷ.WXq75c肖 /oAf=[|@L2WB' r<`H90/]e>EQ|4[ !e@651E$_NOR.CxHu&S@hg7 t<:]w o ÎYG=# %3+D,`&%ȃ˒׎`hQD5;!7꙯ 0-u+N?TA$OJY{kӝDi/艱 TM$dXB9|875*B뇿q>}^$r KxL=:JN)dR-=0+s{F-D ^S CO.?\һ=eђx\#nn.mɮzQO30=EφMxr኎ C4-zI 7e?}y`Fvc_|nS $i]y华N3bxR!sdl8JL^+&%`av=!e~3Q7"pBzu-R}|<3肰m#eǿ.N!KQ9K J}; *0h1O=+ej_9mZV,,|:g(<z3k] fL(5o>Wi6?Ttm!/Ն;KCf&iy ~Hm {t Ⴆzj8W#s|;Rgv=Cx]sKX\*Nmsx؇~@( ks׮a0[U *DbB&y @\_g8+gɭڹ#hmatf,IY-w,H M>NB5l51ɑNQfp%Ï2%Y6FI5!"ar|幚x{P괲`&%B1ط=".z9/#;u vxRna39ڏC&Y"`luO88sLR kT+ _8G1H+vZ^kxHtIη0T/-ۼ@pXg8j{N4]%h l=Nt~e\kn-?f,0)}dnP9c=#qiXS(,J2='T Oy\ȗ締j$ X{6@[FwK" a#[ѹh SUKWӱRK<BɩSX:C")Dĕ%%jPt:8c‘'Cw\K~:.PLtI!WG_Quq+\PiH2m-<_ZM 349 E@JF,h-F.{EU6"Eҿ? |w.vI ם VQ|FA|@6ɮXq ;zAW[ވWx5*6A k`Aak/A-W+n@#e8PWBgԏhъ%I ~٧Ywo) ,䦄u^ޤTKl3~-ɂA_ƻXM7l$ʥ\oE ZJԐ sLj|pj&;๯!(UZi6QoBq!9FyGճvPMʫ7Hd^E1Yo2֧*w Yϰ6q_i?`c-$k) H )(JgAD)Po ;.L֑"bsw"R#r?IO6K5\YP .: z |&+O+z4TN {y2Woveg ^wM6"m)1t«sPmK0}T ';㘤1ծTjwV/P:k f杌E5NIJijx)ȍXHKe&}H(fGf>!t_ݳo6I;b1Xpy3&[t{DI.;\K;GI1  Sc_P814ԔhӜW<6@-J#$2l۬Q#3P?Do+ST/* D -``z78RdLQ~PcFo}H(_zݩ;%({M;S•͏"u7IQzM xʵF{S| : Qĥq !ų%Qŀ/ ):.I#!o`Ұt&01e#nGd'q|"6:H8F#'2ZtC ]y:l.[ Gv ޮIx\(񍏑(:"oUԯl)Od=KGxw@׸&%k-Y\tr$pǝ[1]aze g0`ٕJ*p6H+40eiPq8+A, ¿ ߞa"n`T-4mBva|&lɓs)h|y9_~a i@>>rr\igH>DI9P9䢤X*XdP9d#QG~\%G˻eA6C7<{7QI6 Aj|b <[CE+I<+NJ"HR!GSR&$w=,qTAїϷtvr {կ3lm] {U!XB=>Vd*vcg!JРȦvce%F/c륚q5De,J}ܱ_Fp5 D\*ܬ_3_]\5c-;"dc0bv$m7>W I@qi h$ R (w[y85; )ƭK!mOA#gMZclRc#9uugkët_Bn49&L#z$O֑9(jZJQ)U?|⬻N T ◿NQ4جht Zt&OB7+ Szh]Xޣe2fLd#`ZK bs3k}*&66 H"tUiˆ]u1%wnAGӶq .& ^I-:P[ḵm1S[yhI=y#Q.QT  NΛ= f(K J 흿!̬L&'N0YV^D/Էgi>7mJ҉h+_2{:t[%z$1?nU9s͟؛׳`|m9=ƳO,&u%^Qu*Zpy 08p%C+_6;VҤfO3a6]PMUbxg C/7޷ЬHSt_u5>Cଶsۄ]4)ں^ɳZI)9O&s $-xjec ,9[rjEtR $͏3⩪q"w~,)'5@sY4ok:ME<΢N/||y%*Y@T퓥 ZL~*Ks~߹ȇ$3y4!Z!+$< W)B! q3"A.%qGyURǂh0"GǍCXv1w Br_r^`FY,|嫙\"J%ʢ )zF.ɋ紓b 4#ІGpW[qGl ,3Srj>dK5/ΔWKHm=Tut6XQL+:= }Qxuc+|fb_<貥5BpApmsY|~zY44|M!fZ2THJPTV\8:?==hF.]I% g\٘i:"fԪ1ꛍKܿru}+W]՟m<,yw LI߱/j֍zك'.(S$$s_7+F} "?_^"Ӗo)KbPɈ,!oݨe.c>P8W|wo[l@"X9P>^ԾX<ܢh)>WzQTVR 吴ZvYf>J/~)߼-HMU5PU~9XO8O6QǬ@=R@Վٙ i*t^KO 1D=JIY ^7&##,^>_(RCFZ Q" RGީy*kIa+!{M˞Sh!z+MJ0F,=#H>F MAc3iv7>P/i-JDT a_}}o)me?(|6,f-HCNyЅ@7Uٙu44PhHk$'IﴱɄYv/' Ȣ8,#[QoLw4xM} \y` ܇=PfȈބخ6s<$fxF+} &$:?[e&݈lQI&4rؼiA1'>ȟbjpLRk \RU[7 ׊$E99Bۛ_c8/GW<1#{n4$b8ֳrȝPuExZ KJ'_kc՗P˓5rr ,eBJĘwyf*{ ~̆❊\vP>/۠3)bW:!̑Ɗs)̠EowM:J^}U*zK dҰ`st/F-mt% 'Z\Mq~ 2`:a1D| 8eJꙷ^▜?&o0)}9| ?J씎HjPA'bᝌeVU}+cX4(;$uFؖZ6 CuɝldyF0 (1_X Ŵ2?> aRT`: ɜ1bT|/l9-[O1$>𙞷z0lf" )ŭA)h1zhK ,? ׫ݍ\'OZ{ۑ,=$u# J%/$YQ?[/JAKN Rjvk C,1^DWMd| ŭ\/^7޾:vK}m.p\ F29|,OvGV,COLd>wZg중1i~Z.oSV,ZtrWjw%~;f&;aH۰!E 蘜|Gڽ7~W{uyV-m aW:RHch2w!z.ƞB1J 1qH&,ɽh dy$c[T-g{\i<lh@*}G1^rb gp_$YE0c%bq39d@+WOn[]K5͚͒n|daN&-e ߍO><-l>tt@W[>Sd|z&B$КhpE0߭[΍dNڪ`Fva3Hw&;*wNIOXbOV˲qV(AJM':,j;"%0ҼwH*+vam\Vo_HBfcʆ:fY\8SƻN䟡$j16ٓ||}LKl?EuepfDF6וIbh4mBLe}Bc<endstream endobj 116 0 obj << /Filter /FlateDecode /Length1 1505 /Length2 6647 /Length3 0 /Length 7656 >> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|cendstream endobj 117 0 obj << /Filter /FlateDecode /Length1 1411 /Length2 5990 /Length3 0 /Length 6951 >> stream xڍtTk.(0HHw#]030 ݍtJH ")! {9kfw_6-]ikTGxF">>^>>~"66=LĦEp QhLB#7GH@0k:/@"0[;߯'i'(` ]v" 0(_)8P(g1 Ãʋ@Jr>xPv+" ;A0%b\ G wEGH8@WY qVWo ^+ ; p/`s4xQ0#a`+ 0_\!H3ʕ"Wtֲ''(J~r0$nd_ k7gS8 , "B|EPb^8#6hP? G vPH76Da j  CmG<&|h|~y3Cw|jz2&#<@?!"w4oQ-0Qn<ݼy% V o'A?@ ;_Y_ )9:6sf/PPG߮?9UF4-q /ZkP?B{08T AG uW=&(z]WAX>~!a{E/$[ /B6$ѯN0/7 CZ7$%kzB!D3SPo <_VuE ا_ةg(XZH&|lʗ۰i[VbR. CkM'lI}F~tAԏ0v򍂟ͮƏvNd,) X]h#T)Y$MOOhX܅Lc ݥךI\zBoVwW+ՎwetT*,9=t Y*u2B_e$ߣ+t g_v12u9aH*#5 c,?^I jD%k"2ȶWqBF3Ś/KÁ`#(ݞ;.GJ447$`fw˅ƌguԪH|1N7LeSPܑxl1x4% ϸkɊŕI@nլsΒU(yK@69b^pf{%Ib2߼9ptDZ?Q2Rwc_ƪY'g@y*b]NޚG8 X|' cks&邟]ǘ(%x\&ĴJ6\,E.UMc5 f* b|/ ʄK@V罰l׮yH]]K 8e5ۜJ}] iR폧 zU",7ROKFdgNMYdE? |]b!{ŕ!d&?Y]i~ep,,}+իzoV@"iԱPub*x s3VAF-|#}-HϢ 4Em2vvnZ d)2dp'r&j JU͜M?|'Ā#IۼPO?ʞɦyq=k;̩`rVbX T&Dšo8b^@uv3lOTfX#.kU(A81C' 㖋ى*T2?I'wLg 5OMI.Zz&R' 5v\zW5ǴWޛ KOVTLͤ:LgyK3tU!EG隂=O?:%B |'#*\T@ SX\ڙnt7gX-N\%v?Q}6{k.̘X ^~}A>}7K|y!e k0)m,eoKF h&IMުz/׏ ~(Ygh#]V ;L5 ɪDgZyM/D~6q-6H*_VƼ \ϢYܯ sa۝-{,So3';sĩ4 z 헮 }d,YΩ OկQI0$iqGIʧ&mU:˜.TwatOb+Rz_V(TZ|q8L|Ÿ=0qTv? sv߶UeQ’8'gr{|_KQǕ b;lvꃆe, JgB2oC:H_.)njIG4(QrFx=[ʸ3kQZyC"c7[/Ӷ0&h(\sq!\W`d=ɴlDP\LS, %_Rzꪟ)X3qGN7z7GfN{>0{+g=PAĕ"Ñ2P!\SxFiuEa J>[ݭR'K~~\in1$zY Y`Wޮͪ_e8h{i8=F LbJ1Dn ԩy}0̿n\A*nDOc XwGhQ7!-7Q Eqr2Brgj߬i24Dpz ^K?-.rbn)J]!F':gɓ&}&xU>¾;.%,YF4wj:䇺N&C7 p,&,F_=v:,bo֙ q=$\$>ɟ$'r!lKk.r|ihYӝeXUbf}ȼY 4e5$]7wkU2嗸UZ0J_lΆ "\B]y6J[dzo5\.$ j~BXn/gƓ)k.w~-U+qM6mS1"iyAW=K\Xʵz/oy$[zP!Sçqx}weӬW:_`F8{GڲJReuV wqizÿ^8C/EhBd%NUkLC u1I_oҔ/4CYOz("wk~F|@nĞ. ڢW1JK`K<bǯYQ}dc~}szFXί+&xC.wD Fފ4IUMImϸPs"՜d$ f ]͝DCϗ%k`ǽ&XњM* V´z@$B;FލbڵW%ܣ\x#T}y 9O*屪BMBg\ǔ;4)ϟ-Z(Df]GT'!Sp9#P^:kN -{;k{edJd$ f}MIJ9lg,w7pƠAk6ߍW7'Q/r{c(onV$/^}|fF׷KkJHF -mgJXk8|rQ..wog絤g1Kq*zFo20|uA7do_UQ \(uS0@xSWm[6!g&f.(5͐T Fr 1^2 vC8j%4O~X Sx}y yAu2`kPF(|Mvfig&i OϷW(H7 l)-m/?F_ 40Ozc 4j[}A?.n^w|i7du9F\*d {$~:'JA\3ykq_$nv`=Hҟ OvcٝABK葻+ 3 +XB~~,|ADqV.2YMK'o>~Z8[-"-ئ\>NkEJ'~^$wCrBs KrKWpI׭!i8U+$~zV5õf$ѻ!|Nf{yّ&U{OH=N8;E;Y-䁄-J[m>K֛IԖr_FR<ԻjY]O}W X4PUwsgiAc3zUVW16eJkJ&TG"HUR L;h U&Rf3xNܫa;"B2npz+ЮZ~gݒ>ENÂҎYTΒ~ ;jwSb3l2vĝ#A&I0P\;7p»=ǽ^Vo+AiOn<-ZobZf^,9| ȳۉ]f6>ܢ491C5^>ZSbvw0ۦݣXt`;?S`=B1F;(g*f ({G yHȀhgJ+O,}d.n> stream xڍ46މ0D'Atޣ`FK-"Jh!ZQ%z ES9Z߷fu?{?^ʤXn QÐyr*|>>^>>+> ێjqG@0EȹC{<yT='bb||߁pw1<j aja # qڀa 0r Ѓ@!H*!D^^^`/^E:t!'2@/+@ӡCz!{3Cܧxl!=u+g<re. a>P= h)"<0w {`?( ⇰q"oeYf+wqCl:^0fk+usofAD@"m@C+`wO!o#<~~- CaxT7Cˏl0gb_㔕{  A"fU kwD$qzK ';h p#3>!>/!#O_;Rpvgv:qglh'F?Zb p_ |?#20{?E(B!PßZ2{8Cam8ݹ8ݿ-+Aw{$㿟U[yap} cbE@oӟH⿗#/(: \>RA/x_ /DA>n~:sA IxcuXykC AØcUZu9#)Kd۠z'c*>'EX1&L;2mZk3+='ݯ^O8y&27$>U;a%@Ŧ @ kloQaA>I~y=Sʃ ]NEv%z `u]%GqSskĀ#,ՑC8]O=K]irK/pez[j/3_+ ^^VD.98+-zUh>"5k,?N[; nl{+qz'ûJ\ʴ+`;+Ypj2>ik9]&Tgv]z\\Dg^nXl:,#dkVX׉ӘGv%> U8O/:JQ .Qf#1Q6;NrO5bK8}x-$qFލ[k:l)]rP\2:H$vnJf.2(Ogq5_T"]aQAV2cџ_XԞWaUp܃~@ cr6pvSf/HA]jũvN>ɍzN"(5!biBF3lZfub@j6Цvw>i,yUIQ`i\M(\2oG<,  1ő]P'}"ӎ%9O](3>+pK'҆R1xkͳGrq%騱+9""!* picB_ DL#J&!,?{oWۺ)EĶBq3l#Eyww>;&ވs%pagcUxfrSKb/2!B|)'P!+E)+j4wy|yB0%R \LB,k:n@p{/xÛѨ%Uǭo>8+(쐼|(f[dH1m.![)T%\H]tuI.qA5mNhmihߧ MFV>5ޕ_"yr~1<ڔ;x-dSI-B HUf}N],W#֩PZK^Jl>BZy 塳VtC|)4C]lHs^܆gI eh2KmHh5,V"Cx28%;iӯij$&N_Z0}IbL&a1,%uܝ}8]Џ"dD@t7%'],\"h7$r2,B>R"2""-bүѹz}Z_ dwV?~hWY8R߯McEKT[3y$IߞꅲՄ SNKb%2i%L ;fz}ȃ^˺ FZG/z\-GY\8sx—@ˏrƠ~#6&/_kH< hv-k.8*飀Հ[ZƱO|کR$jW\fz];5޲aF/MeGhmj*m/˗ew9NRI*"*˫-}`Ŝ>0]ty%s2KnQod NO_k5FLW~CTRhEo(Yĉ,Q헽qN§{vZ>2ti>o?r8{SDW-Ҋ+KLSx(KػMWu=CY,JH!qbd˹rǯ _/mHH+,Wzw8s um7D.>\@/@3cOILyX2_T{1>̬7Жv<1P2&6l.?mN὇rwz @9 =t? lŽ oBQ eIz{Gn1U$ʞEj$Df\6W5si3GI:}z,gmIfK]x|'E}b]ޚ7CՌGx8H/)@pdyu@DR3< #s;e qM"e$L#fN;'=ޒ6 Wwv C-y9kؑr|tTar/)YwjzͯWU})ö8ʗdfYI-AsvgJ eV] y!W(VԈSYTnvћ'`8<%K~ZCJ=yM~;aSPSmI.l'&nE%MBprZaBOK^-fSvM8i^uW'$~`dt~2EWu"Pȍ 1 5d3|n@5e )|6^ӛfa˪Vz%vVvD\Xc Iܷ=:=!8R: $p*u뤫1Y&-FNM?/x" ,oiG֝O&;]{jF7Iq s&Nȧ-9AB^:6zA!  6ŝ崏X9ړsQN( >AK0渼_LsQ R)"-MyJI4(&"yt%.: m32'))j4rQ8Sr59]ɱo[xH DZ7UWdIe޵d$ڕz=6򷺻3ЫXW:[ɡjpMx $D= s}8{#&ׇwݎ1F?t1orz8?Qv>pFR[lNĊαҌ5߇9[-\T 2RZwOByz^! iv㣃J&MQwF674PW`ob/4dN6s|+ÎX%@ Hn,e\IF%P%Gq6Tv{Y58;+ìeEMsWuV;I|/("^tGt]zM:RԡP~inZɖrM=|Zװ*\f0Jǧ\o(DsHZ43i>/ʠĝo9q4j&.߽s6~&ibw5TPt5zJFH }Q5JeАBYwÑ M_{)>t y>`ǚ:ry|A% #яK ^_ yYًun DĔGp$\nؔ]9*|זX$4g>>QrҨswXЍ!zCErվyZdGI=뮤(xgxPgEsvfRv[fhげU*-,5,5 Lz(=O&oJk~/Q>d9|x3hd)~zܩ5Ux,9?lBYo8|sra6E*0Hm$i(S6pGqڎ @~oCאb &=n-w<,:3`=;(A^uSaK;=k <omp ˒Id/T+_sFZLN̳ł*:};ٛƸ>R}qh޸]rPћc(+u} $3;_x۽#3z7yםG{,x-na3*bZH++w䬟AO\@g N1%3~:To茡*Oug͌#% &A}Ja6hz9"G5c5Q#,\O\:\3H8 5۲5-]C؊V2t`33*?'.oЇ, 1;Y)=rYXo,<oJl/WR)"ePE~"fXn&Sנ2B(p2 E `ͽ*z/Ζ,nK7 !ޯʶbZ}:YM`s5r߉81q'v1 `5\FM.K)<J,# (7@= `?3F8W|Zn{'&-}o8l3΢~bS_X* 2lnw-,/ŕ o?w|U0}WkX#0!+.8c^+HW~sBXثTHr.+ oɄ%nhw9/ffT>B-+,鳘!9`c&&`90$(k(-DR8w4H/r4jMR [h22Gpv,lxz$@2;+tZegQla]E{\ ;O]{c^.Ie2~PR/2bЩdx  _)(Z.ףV?9y:kea}ZWj) 0^q,E[SqC0ZSB!\NFvQv{u S׹ntt+Ƣe \F!u#+xun@11Q4yg A|׃LNNJ1**\'E֍{>cRgɶ+HP:.cwrՓ1.upaBE:D%yEsg$zҗˉJ?:뗀Ji ,5~=Y(W/~9}n>[I7QYw[2 (ʋǥ JG9wa@7’z/"yߗ! 5~ڶ֙h>%w58"LË}{MYIk/-`Oyaݿٮ.~.,ۉm(K/:[?5I+{D,< !suk-獎V~'^oܾ}6boJ7@V+EDhex΍Ӥ1.vYOv>\O쥽>;g6unDXdeHwiHO1tWO\Tne[W^܋r,׎CiSWWڝDŴt{_`~N`R&T؈MWACϟChma5p6e˴\=ǂo= ew W]H57yB]$/Jb}C9L1ySam"vЄ ÛSݵ+_wƛt(OY(]rt VGC!~r’KZ C+ODIQal_Yaѧ\A\a'B/I] d?ǡUϕ-ֳn=q퟼fhTgS%'6ȑzI8!@"~w;Tjp,zcV~@=;ӻ^0't&CTljCCx=6eHE$cP!Xd6>HP| b7^ "6Vc$qrL[{2L)m/1`gL(NW (E @` "BUu0p#,4%EE;~Ņ2-\#~kDIendstream endobj 119 0 obj << /Filter /FlateDecode /Length1 2278 /Length2 15647 /Length3 0 /Length 16999 >> stream xڌp$Z ǙVǶmۚ8ۜ`&mvfbݜbսN?k]MNJ/ljo sgf`ʫ13XX`,]lÒk-xa!4r|d\m̬ffN&&  xbFny\#LܜtmN&Fvy# GF#%BPY8023:3; P-],*@gW#[[c%YX:Kjon|l,Mv.v@'Gv@h/cMW KLLm<-f6@ /C#g#7#K#K7H+>:w&N. Ζ6WLEmmv.ΰ'f4ݓ߇kmgndfigjWv@i|`́.v&&&.V0`+o%_|fm}-̀`܀'W?`&.cbٿ;Yzt>Ə}L󿏘QFXDJ\-W)"bgгY9R%#xvfp\P{iAc? o:" WT2Zxc]]>6Cc?&_,4tZi 3/@S%K'?dl}gfb?3S?oc7_0rr2e/vv7ǎ=m#ˇ ;__G`K/ `ELF?(Q0*q}AF? }T>hAujq`_cSG"ǑGq?Ί#?,>(/1 >7hϐuX O ?,>duY~pcz8>:k?h?aCр dg4s#e_U;|\f }ȌGW{?f>rD` s.Px~?Uv&Nl}~*4]^7 jsߟ%L^vp}BN tNE^Z!z>mmMPn{y1So]? W:yuo!qtBTC{p(]YW>␅{)I9h<<6 ='+ۻYw"8ZX߳(o-yr5n2l[ odEM,&j".s]9iT,&enq2߶:>x}UCZSElZ3ww <~P0'ZSyhOe[[)]Q]&uPG_ty(\>V%d5}VSgeIiHh鍜#q5hlaیA`>PH28^r>{7x$NJ6Yĝ`!%pf/< ɬV ʹINȇ>>7 C|5knJWEbf\ө? H(ȉe;C܃JF¶p6k SЭ$y4WI-6˧:S^[;ߗWM%u\gGgsc*6f(@BL7n$au-Xѷ3novu2*geLa Ja=fdViöy@2}\l i<̛IۇC0; cU4C0Hm͝?V7aSիD?e.X /Ҙ!BjkϊJ 뱑R!Z5YYVZ⋮eD?؇VcE sU/%9QlL&RislWg}YYu]&lFLFk:X`NP Ls]B]>s9XriX&֐ݏ1ŠR=smt&lLd1 W}mZ>9E|*gzL?3NߏZ }dIoz 13#hYs sYv>Wszy0SkbJ!M:\z&aogɲ1`~ 0~o-\=`[vr]\lf~FgyMHHE]3_;^z ̠{۩c>%/j;GӇړrS wN[=#h;Cs8a}=3_Vxn6Gcqk}G| &Q(!"l,nunIy޽JFh(~+7omZ!Sõ!Z"*M:P7RxzqܐyLmK :Ň~e$m[O%(3 TIPiOpH;([J tXCD"^5Qdž_wd޼s~3Pst1M?Y>ITY ͯˆrP.E1n- <¿ƿJ0HcHfuh8fߟ[ѥQ'݉ Wff*@G{ڹa-z°{"b̻cSeYзe%|AhO|Ur(}hG֣k__D|tޝۜzu޹K$+]ظW q;'#z$Ǩdq- vk]3xI0k>u`Y[6xCs}279)h(?lDcAZɱD_#tez]t$sda`t|I+- 'J$L&BqBow8IbAOHW&a-!@}߮a 0F[k௻%F,\ R$M' =Vu(JopdL1zCxyқ:M`{ v=rl,\?-v׫~/٥i95n(5V2e0d )p oWz8AksJ),]a`cΑHNx*WO]Ћ<}[J?]eaf pIO6|\>M/x^k|B!)?BZ6m]Lr<*37̷|IG1` ȫɁcS9&!̯n8FDD(Ihԡz ::4Uq0bwSVEFHC"7Eycŭ 2u=b~sBF]%piE%1\%/[03& t7$sԏ痑 x$w_P22^äUF¼}/m4d~#/vn AѤ>i M7%G*f^'X3Rim 3烳,7eвat©*JDJ֖|j [a.aJ61wj4&ɇEVsrk!SpkV6PpM;KSzݪNZ3فbf*M&J`eZq\osӶ髼Ur'zR> 5M.订1ARCZǴ]}M*"c09r* T/ZQdX`XvFƜyvaەVK"s. fꜸb/%屒E}SCsc4t0W"pl|Ml.>~pƣM?ufw`)a vGJӨaGOgkisQfvJ8(El }8jQI>85mPK}P:٘~K yhN$C4k$LYIEi۳? ;d}ɤܡU p~x_M$Ž_&Z~VpA!ls49pؓw5iA$֝! _^}Ir\9ȋ#%v /5*]uL_NY9q}p 9) y; [A1#An% =}%O 3FM 7~%snsvDۀ0Na6̻6 N0gًm/\&"ie m5#vnJEy3q Փ2NK7«:H5EϹݠ.r`Tڬl|*,Ϙ:`=@fwܼ3^Öb Ɓ%eUFW40Cm_"EE}LeI┎1*ZysYwyN].qCE^ s>Q9Ԕ4U"M:<05`hB&J[\&ig";fX~h"h`.oͮco_]YNs^Ӊ0l]s=0q.&A%C0FC"ɝcK'1*F~]^M=#'y[ f:vшpE̻ogߴ  e D-ѸyGnhˇ.3 eqRe3fԃ nX{|T: Q(J@U4>CY.GDl4YWxKdϯ*TrG#q % o-,N0*҆6F\^;oY: ؍gFǩ j 1dg*M okOUٔ;2<&Vf, <ȣn$|~u‚]sFOOcmwrv V5tǷh O\bO}Gf{Lf^2ך71ǽ~=M\'OXwn 4tiLM%<.]8i&c.rG/ߤIC#:2usTw?o8 T>tO- 2}O Vhe7pKpx@t%b'8\TT]"338F> p|Ai",ӔӒe^HCIob+rM}dk II`䓂nW*3_xG2p=g-˔:+PyFWNm¹si5n#n.H">^zP-9siT 2zL v){ oRג;Vә:N okꏆo `u`n;=~EJ͵_c] \ؑ/ vS%AYb1L.ڿɭ Dg= q2QZϴZ-;>rX2 54w̻-xVi/ Y-:$@E0JϘQ9+W~tGmE#?Eӗ?O^4KLltL;Kwj}Z?EC5r$kͣ%> (:hē2f65:ީ7ޝ@Q5uoLm QA/(?l|~Au8 ?uLCY;sͱl NmG(b*bEBn? 46#Wm{>!bpbK6j|LcSn&*Ol)C%,g{VYYϫGdANys@lǂ]6z ->SF7%Ϳ̰G%A!ɜ5#u.TfOl|ԹX`LWvRo{ruWz8!~rW^9:tZУa."[W;Q[eԟpտOJՍ~ | Sj\GZLEpϡu+_FvQ%~pRaOP:{`x]ng }~KlR":Md-HS i9(f,@OD׊/7ȗ͢e386َV ! sm'U$4򑄾d>/.X/<+4.Jf/B/*AKyp_dzFn ͼviWyZ/&9X` GGDE*4q(]}u"+-rA5`(cw9)XI-H@mnx&fɕR1O"yct2tfWYi+U0TɂI> 괓VsG@Uq3}0Ac+ >P|aV,3=0zKD0>LElڍ&M5իylUck=Q ̨W)w6)%})Bl(lm'䬧UM`R{{;*n$|zB͋B$#`SՓi$<4|o=bBUdoq5=?@^Y~ZoۯKh߅2H^RCcyb{4fĻ4UfIX2':}z[<J{Lz>VA<D[[Y7 GIs[ls2y"1 @:Z~; [T^v|pwoOUyy ;9U^GZd$}-;[cvuFa?+CS0xₘ+G~rYݓe&Gۉ$pM'nf0u/:Bc;XUt)2*OƝh#)]Vޭ![`CLnAmggUE/=T3G)i&bIv@uD2F}MГb!WłAd9z}:lFIpɌ(\n(fpw}Go\I%sVRby)7&%F?MD][[WdQ/& %Dg9w4;3ݙ7]wF 6`eCu$yty^Sq E\ [ŰƧv#a fea! ΏED]U,;YzCF> ^MoN--ZXn6õJwYŬ;U½?v]oAjIQ@qu9 vkU"rxK4yg.,WH.Vy[2wN>=RyqA9ZLUk.(&cƮ,$1C{F :U:BZ!_rha; ;/`t +h]hX% !Џއѻ)*e@POP|+`xO]Q?vRϾBȜ-`3pvE>궧ȧ+y9;(0~Cj ! O@8]qł_2D%vCC魎 }LtP ՆܯR0|,ȣel'M쁠1B]AL=KOGH/b糚O_AeX'X R cB7+A߂e9++F]/C|.ړo%*-g[ '6-p&TujzἊӧƕ0ͤs EI) 9(YMmKFOsNC?1')CgآpjؽF~-0rL}/kYπ9p(#EJicK \($FQ#u=L&OcɟDW_)5z2?g$nؑ[0~͔(DA_7S}4 ]}4f7 !H SƴǼzkm{5F"m" v{Mcyka5PH039{r`Ѻzqɥ,T՗"~aI'o&1MV[E3}j8GE sH+B-xe[]8&d7mF}E]YƉo2]t9sXV&@dև* Ω8S!80  S!O!.501{1-m^FJ߾vqc ON\BP#'H7w䍌G8ע/md]-%,rM젚7̴~Օf9^6b@_I u GXT1g}SI`PE m ,s'XiLnkq Hy~ [V@0B߸j%sM&Z L(T ^|(Cf776ι鶔f0Ն`gq!{0h^? B;64U`ٲ<:+ C}a ) %JZ.u5*IHivɀ" &''0k.:F`]pҾ+_u-މ/2ۡ@]*iYdSښdo \G!~(ha5CĄ8v\2!͸ M( o+ǔ5Č<_ج5v 3]C~K٤$ W۠hȐNcX ѻ &xD3(?Nbeù4SOFؖ7SzMR;jX=/MXtq߁783u1f޾ G?v գg܈GyjFpt;g;b1?|[pfc:=2$\ hw6npXNWi Ŕ81#LRfVg30N4<w0r5ar)~Ld-ܦwOž 8R)w'z_\$B2uH+0P+֢婭i[).mth(Cy/};/"9)\D_HTL2Y73roٴs"օ۫ӱRꥪ_|/&w1b5AM[{!ԅ3k^cvs=/}\-4J.1=cj} 5 JU_71K*>MY&OXmMhR Ճ߉rϰ eO\8!f%HDx, <${]ʸ !ѸH1q4?RiZnrq򊝘}؊[{̦1z]+KxCŬp}FQ=&\2x>xt=<> eRHk qZJWX*Hr+ï.qN|xX9V'Q#YS_In 7ИʮL"q xP, kjU]8Y:h, )3HAN9!8 a1cg Z#u~D"yUT#.d~ՇPQM#Q3l3@|FxquTm%} jcPp Iing7I1AmaศU.Dcן٦."G u6 E/<3{pӐ'0lV=URO-cH0s83yJR_xqCzIQ$44Bn eyg5zh*?苣'Ĺ| q:4tFի'\"cԆcMQx@)))7^ɛEL/5n¦tzlM 9taĮ(/86_OQAL&ie'EU7TЭv; {> yVHE0~[o[!h!FVo^.TʪV)]Xo$T|L`<6nDj>Ɵ\l?E?mw@/4~v3)Z};&k گc~ڎD!#h=i洠t660)MWM M4dM+?7d*:9,KzMF`~@k=H50+ 3͵6.f}k2ȒV Bt0nҍ5_{eG]) Qۂ-2Yy7aFjS:_XBcᘸBY#D똡CoUziՍF:gMM:DyXs(>뚭iϵpCsh]vs8V\@eRzkD:[5ѝ֭@Q Qzjx=?>~/@<>KQ~VIS mJCs+SFr:>X {uz_|RRY 0-ÃSWovҰܕF 3:ڥ3N1Z?L\ f=2SzEi&431T%cp`J wO%ZU ]O9CmN=켿2ntxuM [OϔbGhS.vvTg;門YU>Rܹ ziy[rзk:T"$9dRh^x- ve]=z7e+&=jGna6eMlE~ ~NȮcBI\$pd+}Fw^:;)oIߒ*}f" Ua$Km4 v4 nŦcKQ[ѿ Ί.v~br%W\ڶ-sG1)H_I Et>FðH9qD5/6  E NpdDaՐFDak}hE3^[F 9oם k38҂/O,~8^D,o*HM&wfx$l wʅSM˷, lJ| NSzWg^o.1& qqx=|iyrSUyMk6wkm(mgP*=z|)ԕȵ y3-YZ7ѝcb^v}+c8?Zendstream endobj 120 0 obj << /Filter /FlateDecode /Length1 1406 /Length2 1310 /Length3 0 /Length 2202 >> stream xڍT TAuB2IBD%; IfdBJEYl-TP*Q-T }*lMhs;9g2Yx$c5op0 À 64%%ȘfrxC8LR>8-A Ac@8_1DN3ueq%&>c.,{Vt"*1 bDJu PW &IT* X*gDj +DI1D2(5QH J@吠S) L<} F>#+0z9`/7)bdX 2C( B%wa* P%rʇcaTGRa_ `(?@e!G%LM]13.")i8p1\ŏY"44 s(OQ }E!$Bd$ *i'CAMqH2 h hr8$@oX, D$DP:FD#65U %?4o) qL1)%0`(A''\Yͱ\ U٠<1G(Pw7F#vTѥ;ᔚ@  ^mS'rSH$8}qXJF$8:"BT!8IԆ(Dn @UCp9k}VNM}S԰!ڨ]1.Ԭk `h/6 YԎ VڀpJD f,0%߈\kk#PZ%Pg *D@W V&o)bu{ ƠjpZo}ε;sSw5e\t(zㄜTޜ{%'"[jg(ޗ/Qs+Վusb=`VVG>ƴ 5R̳L /Ngu_\&ty"lnKSV蓜==2o]Wm?umW]ɠP_LNGod1=7IN"ʞqtup`ߊd˨ } /RE0kהmNQZ`yV5&| #go給ugWE4!!JeDIcyGV۫ytɓ/Ec7R컦_:]ݧgO;_BzF>G7$)Ч'KbWxY"< S&tn[0Ooww # Xe=(Zz1?ӏho[:|V8UMXv~/߸[.2{?SOc-`RxַսuQm\3/i9G|ʢ.X%8A7"ugE뮤m/êqr3gUOћ?WfVճ9sg, L-x0c3<*2\LJ7ީ97[;A;1}"K/Zt sKP]З"kj̊œtNB?\yIQwʟz|g]{{o"K+%c҄LQËk۫w(flpܸ[U{,avH`kN4yrtNE7vF Ńzg: VeMC%gVl:p5u7{_zLr}ѐ??GmxK^hR_5#O-\bqKga;}^5+$ Uqͨ.|*U`M~sB?e4n"6zkϔ>Zxtݢ|ifNλu~Ml[YÐrÂ2|"tlچ M[cendstream endobj 121 0 obj << /Filter /FlateDecode /Length1 721 /Length2 5043 /Length3 0 /Length 5634 >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> /W [ 1 3 1 ] /Info 97 0 R /Root 96 0 R /Size 123 /ID [<3fda3ce231df959b1377226f64861d2e>] >> stream xcb&F~0 $8J$/.9Rb(d5\`fny"9Au 4$eؚ;@L ;"E% 5H Rt Rd4 endstream endobj startxref 192331 %%EOF Zelig/inst/doc/normal.pdf0000644000176000001440000056676412217234503015110 0ustar ripleyusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3945 /Filter /FlateDecode /N 65 /First 514 >> stream x[Ys:~oc\ */q'qr<mD,k(J52e uA L1,$3LYf,Ue,M3IO1)1U-`6Ņe25ESqRٱDX*X"DDe(hT,1²LYkpєet3`EI8cȔ3J2en&LY@Z34 0e: N `Z9f@^0c +ŬZrjìvlFN 2 ˴0$LcY\! \B&) 1@P8@ڌY X%n4dĤaT :x<+LA Ɨ֗3~<T6My1(Wt0%D*^d> -ߦ0*O^Ǣe%>o=)r~+c{BҪr=%XJ sDR-YO3$zvb%>|RK¦= χC 83ӿ??erVw;'i=ѺFyX#䂷0rPUXa}m~Ň0\cr1iO:ӏGAɵؘ힓ݓ_}xq??kIlJlL.v| gOh8ړ C;Mn'?>|_ߜ^<ɠRS54 m~Ԏn~}xy%xs&/IsY9 W ȫ"DJO+T#τIA>mS R|ig#I~cgkR{DiYd|;)2$i*ݏ~'q0DɒT=˲xO~^ߴ'sQaI\{/i4xp4}_acx5t_N6>W᤼)oާ) l.  UU%㷳3&s ? pQޟMƌ_ "Dϼ'A٪b4(nyF0oǷl>stN"[?#WӼ_})ІSz:%(u8)m7 iJYis{/Dm[2+{#Fҵ(":ވ;.9?;9KúR\l ߿>zAÚPԶ55B.3+=?R.f`b7ZҰvE 0p~J͟c[?p?jkYYQ[w>]f~Ԇnka=ۋeߧPz7e<٠W _Ű6DnlC<3HYLOll%hm=3Z[m:ݽjۯ6v2"Z7ߠ5(ޠNXjk@L2I!1 V?q͖K(M{mƒIaP7]ۥݽu1ߪAPv& |,XC( aeЌ5k6R(NԚ`] xIk^y mKiG#-jJ3a%9IXAnA5JDQg%+&~EڏէQ^߅7ᰨ{02t;R&w|uoxaEZ.~feЖ;'O# a}kE[U -<Z|ޚCDpj(Ж2ӥe޹ø0&%' Wj4yzRCw-Ԓ%wB5~[9/F&h.f߮,7BA|(dhU8lY3 _OCvL&(N(3c ^&MiHh6# Dڵ%+TO }>^:#NuF=#T:p^٣ɕ_-) Yu)))p}iMVJ5s> ޢNvޡ~LВy$UH,^>q ?Eɪ=6(qI=^zfIt|M0!+\2mR!uX!rGh]9FNhqƧ}:PhjK݀U2Ti^o=Fs֖ )~ Jʛvb-jiV&Usiv`.8ظ"!¾ŷz a..pE mo=h4^? pJ,7=Jv,jQohϷ4YUa֩FҸhW6?ҷ/8>);\fH=o?KxxWwߔ ~3/Od\)szj3ONyQѓ.>ʯݬ(xe+U&.$>Omk8Xv|D{'Z֋:-k]a,|xǯ"Rsj( (_Wƒp^>O@O-H |ES$6Ѣ L@70<0}hr=%Qy.]^)0^G#qPVamP_&8wh|2f&-4dN4tC0&~]9"zi5Sh,@%qiuX@Җul) 5{`˝QiF.{VmioƉ+M?rR!n :p@|h^) vƟgћ]hOG*hI*jb=D vos)Ч5k>򏥗p;Ej|p=@BbTF3&`U  a'b\˞M[맩:wI:ZtbҫMi.pb!\ [e=Pq0(5[:R̚8tbg:W A=X6Jmz7dCv;9mqj͉_1#Rv3X bܰ.CDrTḾgpXRoZgm[8P0pk)? `## 1ȌFf:=2$|ˋeHB:ԱHcTH?=2]:uJaձPF.:`~{&|j7ۖVQ))^Y7`iNkP,D;N&7u>r|9/k!3M&}z6hH!ROK7Fy>DŽl%QSxFpy!h<2#1QIEj~MŸ$ɞ$@aqԷLl6_NqίN^ޕg:Mr"gcG 0b}[e,N?Vɿ&q_endstream endobj 67 0 obj << /Filter /FlateDecode /Length 2474 >> stream xڝY[o~ϯ0D,3K"&u<кXB,ѥN=Wr(ѷ}H Ϝ͹޻pbq>N'9SI N>>Wfdiv&M !i/x/yW$;|2v\H@nwf0vg0˘of !פ " yt#֮gFi"7;rxb+^'zH 'zHOMZedF@2-^WxB-O9q$fP_P. I#! ZjYd^c- +Cմ;9_jMخy#tX+j&tSUVY ?OaXّ!R!o5QVB|L{3as*dT?)وՆ9tmFyxѴ;2HK))&\-ۙ9wlI0# R[=)H&ZxD}I߭7DKJ˔wMhaQ_)4t+7xIAj^;_, ~}"K1F4I}09 +,{ nE`+"^ckԎTy}JPLL\ EUF#m5)!Yw 2>bVWO,<zyXX#/(UݎJ!nK}&30\阭 Ac*\Z9Ipߖ\J<7qWSH)xaي] )2*iѨ{ߦWki0yVRd+bK )ʮ.ѲZ~Eln.%j($2(Z䲹mb|x&$EAa3 ƉO'x,Tؓ]2Ho%/4UՏکxR & ?F Qh{"Z5 3%oLm[#/U]5LEOugb&i\qMUVQT]F< \#B/:r\9V Q碹ťd*MwŢ0%15R(Yvi|wۨ؊ u2Xs=%{FrcO슚FppLMa5SGGGAMۋ1D%cd`[[tYΔs"Њ~>i$[tYq[`dMs-b"͆R 労]Gbl+ \3jQ8L#;PaæVb1\box1FCnhfV1m݁6>Lκ6'йd\hht|D?Ojz\5WڢN݃?ĞQFo<@|fl?0%J) AfT0~"[+^&NO6s`gy24C)9Ui91Rk< >ۈ@;?MͲO[wwآs#ɻ@Byfx gr$ΐMR)N+@A1ķS8 "ln@2[$^=WZ!qEzXV^TP=|#.~53KKDfy0I_iv=d2i@9,{ i8P>-Q 3@?RVg4J"'2 i sx\CNh@'T>ڌ! c< pd+Om⁚ ҏdwZvgE ۝3Lk.Ӻ4?':B,7 Ҁt# H' wd{h3c0l4ZUUk^]ߏ({:Ͱj(!t0Qdٰ.}Qm3dm$o0B:hFcm=M󩺛{IJV~4(|)Ѯ=}+c!]eŻ3vPendstream endobj 68 0 obj << /Type /ObjStm /Length 1720 /Filter /FlateDecode /N 64 /First 520 >> stream xX[oF~8 { !T! ʃI`ucG }37]; DϜ936vyAOIޒW!IyOސǵSƂ2h"Y#(rRR4EWG",@)?E h%Z)*Qu!ZIEV;H 1x O=%/@d<ȻHJ%Oi3 )(@GeԞ@'0'@**x (d [gmԙO[oNzD rL??3֞s>P{^,t > ;f]@R~T-W-R^^^T8T{u,qy,W+ࣿ%6u[f'UY3wŲ*>/}r7?oPM&C=,8X=v8ROVj[#6e ~w/˯-;2❡gպcx5^%T`ƻxx_/6*mj&telar\t@F3uOd o,>&siiEw}v|A sZf{01K|pOqo!õ]x aW%l"F2RPO HP(J#ftDBnt0X"LSj)fOϣi4unXa"tb4iseuexE~//E~y/R5JjQ\tqʸ(?PڐEwnY=yY\{ٳXTgs[^#gרX?wtۺ8z^T5JyuYhe˧e]!0)üwS=.Lӏ0IiScJa;9|y@߇]hW-W݀ oy?ۃ P9rMbfeOO_ZI /G zendstream endobj 133 0 obj << /BBox [ 0 0 432 432 ] /FormType 1 /PTEX.FileName (./vigpics/normal-ExamplesPlot.pdf) /PTEX.InfoDict 18 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 21 0 R >> /ExtGState << >> /Font << /F2 19 0 R /F3 20 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 15436 /Filter /FlateDecode >> stream xI%u+޲`)c0&,&aS&LH[$ ـ~ 72_dWr|18dz+_?ƫWj5_ho^?/~Jz]?a׿|^?*fO_%_a}ׯ5?K{^pe9a]o-ྏ._^p=| -kݸ>\>sB®[Smׇ[YFkcL®3*\hCҙ%UCg^Uھq̝(p$a֙6©3OB}Y6V/ȂZ37o ['"dA gܸ+C!6cՙY6_ҙj!Z†3g8+1s]2QN$[YPVE%-DTjlXqTPQ4;%kވ|7W#bl،3YǾD\Ƃ[h>UVAͧڷ҉l6GQAWUPn/# j F;ԩMb3Adq5³ fuccDg"6clT7 6Ď[؉Ȃ^1.ldAn7΋8MR2_v@/Z {1-W{΋mNfDAͯU/n7iF~~4TP F߾Yf7F˛*1wnF;on\TeFYk3^|̎\s?'v[0ˋ1sUc3}sfg?ft\ ͥvӳ0| xchOQ~c7nonٌ=n?y MPgjU?`?<W]O0ޏd`a1>h>b9W*_/= Sbfy;僬ٞkg͔j2c|Њ'ųY9>iXq4XC̸;?T^-{yjύkY^rP3nQ*VOiI5ブ\4LYȚ*s+ؾ4YNiy`.4OfO5kY۲h'P(t{ >]Q.E/~"u~oL{(b0/ZSywTlEaax/}"<\Q{o%ؼMƁ.XlO6_\ɠ;`ټbF[E fyWc18տ@-GpQ|Ogg\b%tuNkG*/sWLTMgaO_T^r{ Whw5u>HF`(l<# ݱG\:Y9кwFKF4;:R}?D9BX|?|Wۇ$_쁂ShQBqEy/x~~p\|$ |2+t?z(O`\.O]'6u/WyzH8>$pz3 Dɼֽ5kaj.sӚG]T2=Y~``}``dijG3^EOݏƏ{t~շũ^554b婾Nv\d^Llg:]H^!gˑH] g\ֽ WB'^*Qq|(2Ϋ˸iOls}X"esyM\;{ #EW/8q~lsrq{s>8{}?﹉__Wz!$w _~O_Տy?z02G#H ,xhoh E?h)&3X\T\CKV􂫖.{O-Şgj)6)t R{)QX-K^$>\-/%-Zw ZZ^KMYIYy~I<0N)j_KڿJ*8k?]榥`iIMH:.TeΒ2OltJ~Jb4'3rkZ 7If0H,7~l6I{ɗZӳЧii7+9WI8wIT!TGZY&?eʅ-K?U&G]R#Hڤ3אN\t)-͍バ:˺R`:j{RQG͖jatjh wTK!RWHT~B*Q{Wz)בj+R-=BR-`Kt Tk+Y)/+"ak1S5oߪ_HeyAMާOԫJ[vKeKZ.5ߟC5yHjeT\fKfZ=>lTepf磜hVT;5y+;痞(G hQzL$5]JmyU9T9[ĉS4}MWlxRuϏ5Ll*Wh]Y"]f+TeThRBMMAL[n,14~n{%>^Ucus(xT./5Ư$nW{S^ռl |ZMV/jLDӜ%5R{ٔdբkʲ=51iYzL J<2gIR77e67%[5K)dgJ(xx$5x)Y +HtZ :z_ҮZxu<~kJG$ί+\צ쫐׼Sl94_5g`E}NR/*[p|X_wNòbtgb SݹX߃?;+ڷ^"~0 Yp"&);'˩lW;+x82~[K߯s,}7w|~ggYu'heo3,DCx{Wo(K&؝x'vJԊ'vi:)*ާc(Y 2K[ 4R PVHuNp|T+gF:j?WvU/[u^ja.%s@ڮU@:~pEEKy9?Y׻Ϝ_"Z"Z߼b}A{^sX_|v0̱94OPso)0z/`k~5#X^^/ib)P1u#GׇWKuyX (OTzWH}.Og*+>xv1GG*+>ئwtJq*ɳ?yky(]&RolaKt+Tp}H#S|Z9Z!# V2T+x=UT2OVYMC:5!GܞG)CUQ^6{)[Ӛ!Rd#ZNzבj sH9ZR-T\בjT<^\MR-S&t*8Z&?ZT jիIO)ժW{jR-pojիR!NQZ!jx;룔MEiÛd~\ϗkqXTH@,' R_7{\HbKcsi==C<{J]@wn|4SֻW_Ք[׊?wE[Z u[5\~pOO%4ϓu]~ϓ H/ʮOߴS ޤ][wҪO+c8X=qOsy=.(W8X=q2`1@,P7Ou+ "x;X+6EZ~;X+VaSKB\DZ A1JV +"/1Wzpߪ 9Xe' rj `u$'%g 8o `췃UK8X E\6g` 9g@VnS gvՆVmX-&`9;.+.1Μ +K9g .,K8X F@M`7ɹ,XF6sv$+ P9X<_TG#Hf8(Q VrLV`ogX38gX3 Z9X(\3f`VhU.rW8r+\V`e*0z€!+\"_V`9 <ñ*~F8~uVU,oÚ`9*GVU?|2`#MV^vUe&;X`n0WwCvX&̻Xr5y*Dz`2`XڻV`9n*j 9X ++ar,*G9XeMwsG8Z>?뗃}r_V_2Hv!ӷp}r8VUr1CVhzTb+֯f^Q`cVՌ^f??9X/3},{'3 9Xp!i'vʑb+P޿^qf| i=vB{EV8: ,9X ˄v/9X} * qtePJrd .j{pS{-9X}X?<pby5cSKqU. * -`8R]O}tۑKܳh8 *_cQP}:>|>ʾW?%Rzp~Iǣ?R:}\ߴR:}No߫3`*|B1%~$S sz {uP:,^}ξWgg߫3@P @{uXLkV۾Wˇ)if^q=|þWgBb+0{T΄(|\^e;V͇'0<5Mc߫,'<-uM&DJZWdmQ|e{ XSQ}&`=Ԅ!^ }f+4Xz_{VxG, tKOWSU%R9O4|0u} N:_Q־/b@60n_VU_^}NؾW (VS>|{}-|'e{ukHgkH8"  Z\u)5%~{o֒NY^WX sUsR|{@ V,/|:{V|[^qG7I0J`QT—Kd9^Q)p=WX igE6,BW`U hӕR`aA5G|`糤+&[s/+JY OD+,@G)<_GW\ .DXy|{EAT5W { Zp^a7p5%Sc k*/𝗳UւjDǪKpU+$߫m߫ n+.g3^y‚|\{5h^-+| 8>YK=/^'-߫|{O޺|ɓUR^gl_\y W`ϕA8RZ% :.+}WOW9|3{E47 *O}rd \[b߫||%{E0SU|rm36$ #^Q>XxYo+ vQU>kIy(o~ {k}QT^_K/{uLʵS kWy!R|^:-^mFy{ق+_o |@˾W|~exx*U^UsQ}xDk+/sURB9%U ߰%Wɠ^ l&6WhzZh{uJJ(X_Wh{Z]je*x|(]*/B/>U`$'lCK%`2s|zLA&oj|}^QKyAݾWਖ਼9>|O:(^1%{OZe /V{{E*>:"u^qE/b־WG e+zbM}}TZch_'*0޴g9Yl+WU{Ee E.+  z|DƂ}8^^Q SRM >XxE}/UFW7 W(/8? _^q1>=柺^^C&+fts %AT_+go^1AzFW}ϗDgE>[-z:^ -^Q5͎Wy-;v|!Ś=WiYk+ WiO|Y&AbFGps(%+ƃy)^|?x| *W_ݼ?Չ1}N|ҾWovsw|4x;j߫Iȴ+ת(>jOě{u:$^r&j3&sW\YW2W"ޯJWGd߫#@Չ*)1c^A}? 婾:&^a^qB篱+3 _{uN:'^:):"_f df #W{uև{uN:'^%^s^}}Nz}ʾWo\(^Wz_{xUBu8 K|\Cp# O;x/V/s}x s|xV)xg{u]:z˾WgվWGe߫>k߫~k߫7~ {uև{&?^:z˾Wo/^Se߫7~ {O}O]pINʰ< OU {>ڣc+T^7(Kn:/ęЏ|h# yJ}3b͎+#{ey졐cE{s̰ǽ?`豇'{=\YÙoŇf9YږϝߜZ|lq'wE۟l(nKLgKvR?.r"w;/dnvgq!>=h89 ݃85|F{N)]Xt0{qtLFяC@i4OD ~!\f[sDу`hx E ۥ~?7lx #a$?8ώil-mU'QG͙mi`Uk8iˠb%h2+ _It9{4H5ќ7ivBpk= [#J鑎W&ꑽظj(LzILw7G$B3;oz7**n(Eq̊>#Ik}FN8{X4Z&tɻ^opgU ]~GٰWɷ\K)rW)eaԹD3DB}rD^{7T;U" a>F/?5"ǯS4"eSpڹr8N.\ F!u7Ëv@e2w5 .yT {1Oy-%ǥۛ%[>w\^d˶ez*Gasq,++!i['9^7otrI9) ~4ޤ`e%^*’A uf!tyyT9EJ/u>RfҐf"^5L!4=OՍU*Dg|E4mjd Q` Wj]OS>¥e*AB(?pv _*|{zl*Gd| )U]kr[_f%zL(\%c%R0-lZ2cڸJ5W\=v?k+{G-H"i>o7rMKӾ33fM5VϪ17ȏaܷ6m9O+lŒXbܴZn\8{?_e ovwFA߱u* fbx;f U{iW$ӣWX} s_ Qy!܏̿-L~V3")nGU1`.]z'8:0$q[tHcbӰ;N cވ,eI_TQ`3mqʈA% i }K87'?>2U `I&f5 u'3)&4iYgUI[tAd}S~Az0ö"hx3iXN-#Q'~\1K`DBˋ  }mD -TZ|LK\oy|>)#<_f|3QBO.!`;fअzD%G+2liŚܘHc 3Ӱ:; Z|6Q}Jh9 Rxd  2J-A2Z2f8g4[ WEZH-GJ"^IW Y"^Wc2-&a¥vtL˴Y/ ZU]P,vgV]sO!=/s|=͚)_qokMG)nvRg[qw$-FXJ:r_'G2vE_\9RQ68Og+Cd{kg_l['ۡ*zP\AO>Oэ\@c燝%)6XA4+_Gl׿^g{/ o~ͯ/Vﭢfou,]w5z( hpY"|E2endstream endobj 134 0 obj << /Filter /FlateDecode /Length 772 >> stream xVKo@W USQ=oMdLbȫk 8v\+k~f֧|8D:rKGB' g63_8?c/=Vu X^N+UºuZb?@k|ˏ vRE}6|9@6c?}#qJ@#50#d* H&ؚW69{FhӃϕEK|jwQ\4oInflyz2뱎߱ b enRU/-h+~&<jԅ7!=`1)$Ez{7C3˕-mtBJKrT%]+1`h9T:RHlGn昷K H^XFFH"*z<\[!:h CkPn%g;l%߷-Ex9mE'ӡRgu|Mw#RA蝍}F̐@܊-;z' +1pd@??3s[1-e|F:H( V\Yްx]3:Yt,6#_ێ\%ZܗfgՓ dxFOqtHk VkwJm6ëqX-S>fxHl).6$㺗 }@rTa5 >qjt3 DT$'ecRY=?+,׃=ſx̛'N|i_B;endstream endobj 135 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 136 0 obj << /Filter /FlateDecode /Length 2050 >> stream xYY7~<ͣdO.`H $bekWXه}HT<6 uWEOZՕ&ˉ)T>(v1watVua55Μsŷ T32Z;$G#j@@ )4{ܭ{Kdu a붑-^z; @*|EK5 [4ً <[^<}:IquٽB z ICf-2z>:"9>m7'VŘG'.*!ZCr;Յ#.AŠbʞøY>_Og޺D28T(֗莪?*LGKJԿ+!Jo| kde瞸Zw#F^ uNxjVӿ6W& V!a>VH"Yj)KL,:O3>߈Xg=>f^x@ ʯb&˪!HRC-N^I'gQNk2n(g>rR]uqbNG 9 ReqFŞ1{Xƅ`ZLEA+j5Hz6]KZ$ew}&f_ *Ě56z)hYp)l"1fFΥ6/ГJ\N<(Hxeu)R+';v[|a$.W[N{nJ.|䋮{T:+*{_I/py } W&1}~jebM=놞~<܆J1#+mr'\]_a+vk[&rLpf]󛍠 -rC _Sg#)KAC&ugKmLWJk^>"݅{e2'G`tX?Xt޸ԮTـ&#l^f\l`SuWћK@LlĐmJ9(UhU"8\@:oC) BC: fJxVs>2rkFȁ>Clcѥ |:ʮdl7Ȕj(6tlfSq%{u\wv2Rg>xDRGD N7>t0վs2"P)L !}%]^Xoxjn~j`vx2!f7/?xFE[|$8x{cۧ8fdlޕ2=Ecr$ @j$4v^jd+e0 B%(* zӂh-wRfnPAc̀coK㇅rpF|Jvͮ<|u\DWގmk@\k )UN׹'+~:[~{ +HWi. :vPpdѦc;Bͅ*::ZٴiKLn44ߞuA*糹eUB>寸nJBe乫].ZCMn$Qo/`[z9rH;{tON{> YI$ۺLyt$\[h( a-yT'R> stream xZY~_10 =Dq`6$!K ߞ:{zȦV-gj}uy3VN򺒦^Y/z>Az/5T|USY'FlWۦ8g.9|g|&GG1LqQӛ7~ i|nλS|Z wpC-5NE*5R6A&QD:䦥JEO4PpYkwL;y(-aUxGJ_R^*'[Qjx0mW4sYi%L,/.rZ̸wB'<,YW YZ-D`i(y/Z8RTmSΉJ(`b۴%wP0f yI3%ids$MA5JEIJH,@$ɀ[O4xfx+ Km#p`'Ys siySJt6:m,Bȇs\ 9ɬB]@'0e 0C+ 62Ȧ$ ˭2`HfV 9AGK:9=dyuK9}ߏZ9tŏy0sɠpt/ZhYALC,G2W 8y UՉ8][fcCRV%ߔQkrCQΟQ%y0K1L4FCk߲5L%Džt:َy8ejMQJ  [~|lN6T}_ayZKgAY,>3$Dt y }3\^!"Q695=+e/2+kP)^b7];E\:ZӫEi2ni= @vAٚWAˠmcRN)6j,'CLEsIspZ˂KŞwmpO+A>t|}@LiAfu6iVðhXe%]%𕂥e&dt-_}r ||Rq-~J'5jI{r9aw, Z?/!xBks#HhY_|U:@ԒW.o472c1Q>١_݊^:AS zOjo{ȣ'e Z_JI`G"B"@ҍ]Xm_='#R`qVZ^FsߖV}͋K^bk1\u3= Kk}7!ms*}V'j\(~l738>HiŖ 6]yCZAL!!5蛿pdIb%hh. twl|>A9+SjP5?\(V 95-x}= +cUg3g | ᨩi1h3)зJ vt38\|U 7 װKh˔ZI*S%c KBƀ3KHG󇖀bơk3\9Mj($}.$ؾu./'󦲮5^7A<]OSGG6EI=e^R7\O) X\RuqL&|4 GeɤFȬ _n#>@ xYρfAn٩1PB~uJi:Ld+𽊕,;6wY(J*%^4M5bendstream endobj 138 0 obj << /Filter /FlateDecode /Length 2275 >> stream xYIsWR Xe ƤrplIfDcAJf-T |oOG(?/Dg"hHǚ7ʤii(c/ I6Zbxpu%\9]d&'0j|oUoBZj5{DaЈC7:S7}= <ɕM|'4ŭ< <,?UYz)=械*Y {\ܷgPr`D_M*5!e-Zn-etܨee&- WV(k"MQNؒG-9nyBeՑ< ^ ˀCBkUfY4U"ަEOZ6W,O Z&VSa{m?NX!1|mPIƫς`Wb1J TwV\샬pBwާo(+b5X) G:. !6bNMʗrxi%m#DN$'C0hLh o,cu9Fǂi7J{4]tSSLZ.<1d;\:]0kOB8ЫRbòۀgd8 -8,C8Ɋ[OCk BY݄4Wc>T 0``6q@L)iBjcr,I溻lr{S(V`\Wl\O/BZlln @d c ׅk? ?? ? F^=0FS!j0$!j$8}s"Q$M# r2j21}O>3o:^4z,ŔX.^x)?"] !U!0P."{8EӗDd(,'bY\)'n&HYe!uyDT  L;^As>L^NڄQ- }u0лR 1>f '''a" ##"4r< dnU=@Uf;ǥȐNl8i;r^TYb# $=wr{=3 WTVgL5{\Di˅2eJ4] Ǹa9[ FA'gʤ863&;UUKwĉ]E0I>p?p1HH ![\c=x:͘Ý\ylBB3sR`urxe7Y 4ٷYpYO$BZ>ѯMAL^Y/mTRl>nKI%-H5=6җU.En/PK?^˶ݙ'4SyWO Gi<Y߈EPC!FJT$bR0oQ#4)ܽ%F=66NikouM݄l8_b7?ܜ̻fMvL` hEnrK_g&t2o8hR'W!?}T]}^ܐО~G!a*Zz?@~ysv+<3n"g4~I ݠiji]݁ge J=c"]}Ծ% Xܚ,=^Z~x |C}Vo0uuG(2qT(%w&х idM1-mǗ!E)9:L5sc_E +Ք*Ӡ+g8ɓ_.endstream endobj 139 0 obj << /Filter /FlateDecode /Length1 1965 /Length2 14140 /Length3 0 /Length 15350 >> stream xڍPNFKpиӸ&{pwwww -3gf^սU{}')IUM퍁v Ff^& 3RdRlio/ Q']&fz7ȸX,,\Vff;Č\-M{;3=j a[@d}hbdP7<'5hdhdf (N@S F1"PT-,P79K󻋋) "- wdi9,!rL04q7r512~7F a%;ÿ98Y:-mG2ۙ@O h^wkmgf_dfigj S&5;KG_6"d@tM,HS l \>^V/B`aZ@sK;fwt0 ' 33hEo; `adp|7/?F_3{'?:`C`qA\&л7 I0xޣ`d/d}_&&!ǻ?>]`;aAnͿ;-v1 _onKkg4#eK[^$m';cygwk=?I޷ dWr{{\Հw±:!g;@E{@a7)y}eN'$ꌯNwI}hkԷB+$^' !m J/qʳ?fp N T_տXCwP8p(a> HN/+Ts"1DE~)NkGb ŸpG~{7=D&4K{5qsBչ_cbK WIQRWXJ@:>"S`)@\7&EOIɴ#I=WeYBhA&+9J&)]g/qZ7w| /K)[;̝L_ΗGrYI9$3 8s*>ʣQ ^:s B@ܸSƊ ^ c-Fuknf xBwg@ol M\Ҭ"(3GdR6l 4fL5OI gQ_3~ *a*GHE!͇3:L f|>?mVR c4b8vȞ hs>"H p31PuVOr :suT&{"5'=Bk)J]9Iߋ=l2*8Y7 ޴\eH:.prJ‹Ay:` 6>RK5H> ZZ =˻,j>˒0q?]͢J pu- ~"+~u㣝@F@{b R!&}(`m<%>iHͫFlKtލ[9ć x*ퟆ]5HΦR@8-s3_TMymD} Zщ0f^b {|HyZ:E |mni;*/9rbO샌InM{ފ"k n=5Y_*ͬMcm8Oˉ!boi7~%"bҫ(=WP},5S =DYoc6 븸?aZ))բCEM<|%R>)5t˶\N-Ѓ'"$΢ 5nJh:ꤛ4k:<7$kj4jHSBc-L7lgLT_j,%gTaE-`)tT*%~??QSq5io>C:ys$pF&:]9毉Jo6K;;$sg ,tZ>\&[ @5Xu 2[K{l|LC2?oEc`HJewqŐ쪥<4CĚ:rCo?Zfv-aaD ƏS[3={^Mڑ%MlJΧ=UDM!kJ82M{Ht!f4sFl̿CuZi,B9-Bs q mi.>[rt0R7]g2B#xh6[6Ϣ@8f\I*>QGFrU6F%K}AYÕѬW>G|Squ B+zOKWmx&XRBsKu!+~ "#Yq!± ʯ{xo j_4 <)c)X~ޛ9)Z&b۟~B0uV~8{OEN3y*SF)Gmf7FT%l"ñy YTq#>_ L?8hmoWCc5o9"MY3ȋ5 ?w0,R"hKr|Yb`L9 2{J/;۸o?Y"„6݁ syB5:"!]rm3:1D5$vl۾ku.<נ35>|,|%pM5dRJ"X=ak3Kݵy톭x:3Sq &(FeJtRth] xL0Űe ./G2qGnvٱY&B.݂trmCvGxY{m?sAHPrsv2Orm1~Zq@)(ˠbo]QnO`j %BD;iDtrK^n F<1hY%j8@tAvַ$;:hpOl (Q7'x" [BV (4V9CF! v\M~@+4,`:`<Ń"\޿JW6S-'מ4EWB #]tny(kZIϲP'̱1\s̞mރU1AcxX轌N84 V:K`y Qc"vV$0ĨNx,1VĻo'qQNXA! |QuC&$RiՄxyL+[[wcajMer_$aF?/hcLB䃸xaYmT0H P,HXw"Cpvx6ɝoe74Ä)Gp8zRk 'K%5rPա~5g/e;|]crPDM"Z% 'G9#c=ɧa3yNW33&ZjF G {XNzq+9гfk?zZfC㟹3av5P>Ǿb04kPRcLu_||1LW!V Z'pє "MfK)OZDkiٔmXV]T`g8jTS*ęǩ)*]-}'Pt܌!X q}'ForSME'sN%j ɅrKЀ⭟P!࿾^ӨLaRTџIber46L3Y%s$oN6G}ie^.*E/%7>5MsʾBgV[D$SoX3 ~ +('|"#lk~Nfr-rʼn~~k)7+ EoB;?|`gZEVũ&z~=B)lMV!_)y.(<}cz!>){h`I^h'y:2ؕXΣg5[['ȉQ = '\hOw(pl*?ahO(cLD. 8ft6c Wjv-ȊΙSi 1fH"IA*r='(ӵmnSgѐ4ꛮR6]D0eSys9-HHʢRUfc;Ȫ+췕ٶ6}Z@*dF3u(UO}tQVoqlОҙsTYף7LS#Y^}Gtdr<ӼԌ~D.jfv gYۆˢE]m )rsb Yz !{f4O]_ç{etxm BObQ H| sgk )GqV\Es0Kcm"~[{:{B-5w՘G`Ȫc'_8nH]9 \  ū[|idI4/:11{S@SDF;!]blޏ`l򨣘uRZglL}nYgZsc%Hl!$,|ytBcq2;X7@j$ XzIJ$5{5֚ 7e>6oc5}{fdByƎXzw]c+A+*pz9AU c tpfNzqFŶ zv\knV"LwΗ+V%dUQ<W+7niFnτzG@x ˘$+)? 9ڙRofx^5ًMɈ@]Kx* )Խ/%-e E&;LD1O  UobJu~ca&Au9/^tm.῝:ݟ._zW6C+Ċ|UD]20BEIhD1oD>S]pl4bMED/`1,~ep7m.}߅ٶw0 !y>>ѦK,lΰGEV^3үa@>޺ȗR,Ժc{]ڌk;_2#\Qٶp9' uQ=#l; 0z[T~?7a'ꉉպ0C#-(x*ʊ9[%Oc nAD,IL\3!LBuQ־668TsvL'4U:,xYzŨ]÷š1M7)&yt֑ZwjdTcn)}4cjXleFm~hxz{%$sdvp%2ܳ^7E:&h,fa`Iy^ݕ+Ay#c%̒=ۇky[%ֲ xy =Ե)a%7\Kzi,S5SJ|IZg￞HFn{ͷzI jUk! qYe7?W"Z ]C4~/AJZ]4dI[ n# aUgDay w$f3\m8a|Sk Ώ Nֵ[gJYv ˆSdo*˟:I'xy&V=h8 Ap26J+l:lF~)k>s/I0hcծ6=?YyC$X_SPZ=w1߲[ RQ\ %]n㓁% ٨ͫLډO_7rfX(+>W NΫVAj#G1U)u oI^M\#qG%[0j-P~ޛTcG*]KJGCVa}NqbLi&er$@b>;ɸdUe(RB,TNڸ狝-Jϕ::ы&e MjK|RNV`LXW'Y_-kSEIcDIZW )yrmdF/=I0n"[A#o^S-{$m i`Fx5vʾI-4#ȷ -FtH7 -LA6GEN"񲘫2|Ksp9$! 4H|8pрT&^6x) >eT@29;ع4>dpke߹䎰@Zd۵B90P4Z-Ҍd+L @ͰZ(plu:q!{rN RR4p.X(0[b;j`18}9)nڽrnˋ!B-hxR-so0"%ndV'^h<7<^o E"(ilDaƈU*vXHoF4+"C󍻤CLdK3r'[[IutdZCRfCRK㢠ތfX ^J Jy @-G}P)i>/XIn#x}j';ۉ|tO}zbԂ0}ÄAu_?]p5tz~(*saBCþI|4J@Z80y}P9͇YB&^}| J%8`. R4_$Qx '&jfh p=(j_ 2%[Y ů=m1ق3^#Ԡ)uCYf `JxhŤ_k~c=-;=2A7p2mgd 79` T蓧j@ lxgKsd{EC#$^$J4pCudkZ }\2,jcaihpLX>gDcJtu[9lh::4`N- N ~n{=f"C@I0A1è7.%@XЇ)EbΏE Pˬ5sB]M0'khb U"R42yAsI`W ?C#Μ>_hmhlF7T[_Jminz2>VP2qA; +S)/jqk湲LWO~Agn'Ö0i+ D\o<*yrP%d#d)Awcj Y)wJ`̊0NbCnEa]B ReFRpaD2n=^:|'9nCRAWVĕM!qhY?4'R|pȃeF~rJտ$51Tp|Eshۖ 7%bYK`~́' lv+@)69g"EH%lJC\_p u8fVɂӾ>R-4W C|\Snl3n¨)sXg%ʂCa]:~[$Ȓmg!OlvFBo ,?A1e9w7z,f[WcgM<+t>.p:%YRX@D7 Ba M0f)fL_Mir0&r(~C(# sM}066^oVOO7^W]Wz^V3QE2vרww+SkNjH%08c-43] bO-ekl)q^M ˣεU'?hmj+K^[K#u ^z|WzNiV@6BbarG)بg1H>Qbc(VNM%_`pqy/nw(k #wo 94>A/T[z9T;-^q#4+']nȡ !+ZeF2==>(͌Cl;v|13K,I5u#)C$ @af &E #ŽbvÕ pQHY؂:GL!xx%WTeĒnWW;K$|dNQxa7CS97 hҔo(::/}/y\~LX*$>̙ęx|@qna%7K0M;U~>Q9׵#I`.]^/([R'ϑmd,D%# t*Pש/N?"n_s$P8s_\6C v0"5a z~ 3D?7FbO2l (R"{|RIk=,γ~_LT) L7BN>{8<@-񫴺KI/ƗN\79ȧRN]~kɗ_?[a=K4TԐw QZKŅׯɮ6SPP3XrVN5gm^PRf\=)y!۷=sF\ U S;L4b~O@vv$ԛ }Wm G% 0*NT=$=Hls9~{O<˂ֹ?k _}& AH'``{RVa[ObED㰰~?vU/K)`w9sZJ=Wc)VX@8q7lxp$ ]V EE.I-{w8̭$o9S3%Ozۥ\yq\d In >aBX2le*WÑOS9IJ*tǔ^!sc,P-BSQOU`irɹzo}z,–Hʆ3 ΥqJ f % j G_&Z6 :u?oY6SGl9b\wnMW[rL5RS-Po1@FGcL ! R7VX~[exgwߥw:ѺI[!ɮmJnK([FFr-TyU_ƴG]Ͻ! w:韪=m,VCJ[8_;lDZ±5]=E;D*d=vh|E^!+` dRV/qC\5:K29nL⨢'mp~ꇱL.Kn,ӟA+cJ7$נU7n*~*a7hS]ؽ%a1C%$p 99n<ŤDa/XVc˽{H.ߤ"x 0(5X77XeS8ʳCnHFBűQ[6:ڟX `bKߦ3DQb 'ʿU' `V/RFb;sYƛH~AZU %7mW徆S0,谂 8劺gi)D.eu199U,$0}kc,σimҒw+ Wybj W#ebl~'`beoYi=ơ݊Vp77k腹$, gSc 'Ĩ;}pCAB-k3wd1 sz_KcČc$U0Z OF#~OյV;,VjͰp]p%wʣtmF"`o2$Th i+Z E{J;8P)uASP[.κz`$ .TMMuzR?Q_/~QGcQ<L s NLҍ~;e2NP̖r/n/R& *!ׇV!pY,QYC I=.5}=p'ҪK{b P-wZ v,%4ZT^~,,3X*n7u|'Î[E֟yqAtZ4/Y'JhFS0WD eP@G^eu^x=6=%%Pm}YejwXN$os)7^ ~NEskT+c$@qG|#?+V>bGfĮ@;ϗ :ӄhw x6咶,^<Vy(оdP/z]_ BsF9wZb=T@@]+#.gRT$_w;.O43_vd,~gLxcΞeM*=LLfisŭ?g^"ʏlEX*>y ,}"1Txq5HnJ4wNM}X酿PHgŒ\|93NחJ~~}ƚ\ L녒:f"䔃#c{RIMz`??ӯFǟ =57s⏷%Gh ,wMuUs}|BhwD܆8.Xn~d[$ B;a|NWNK}ZzxsH<5'Vſ#v'鑢dF݉E5c[ DЭ? U!FAybB]wU,<1-C/6 ^d>_/?K(J kDa{m칶Bm*Jy[?`,[ۯ̒%"Iȧ+цh#M%\}O<ۇNJɼE ˔9N8_2\IQND?3OtJß?+KM`qBh,QTMARi-bZ@X1ڋ{=2,1fUAɹ.q Pbi]UEFp:ZsHB:>g<'AMx:C4˼KڙB[?\:ӯc6\^_%y|ǖ/QRѨ"`ځC@ţ}[\UX=j3q$}te4[0;GK|`Wsþ(|Rq""D!-buRIҶդ09 .# 7&XX+ t ;ѝV)z?41P8=m~{#f_%! ,TE5v&z&{x~ӿ9lK!Q.w×`j ju/*( ])#.>Eo_綇f8"}j-ϻ\-/zJF^MM5 3~3,mh|,}JwN 䔹dhT~O;Hy iӧ6{HfI`qlIDapY嘏*!O1.CbR7fM']<@YwX=R!'0+G"nϋnU-1ƪ[O` >_=PnhCDaǝw p׿@HN uuϕOFd_߳[U^{[EJgq>:inJF<Ę],ɛ endstream endobj 140 0 obj << /Filter /FlateDecode /Length1 1867 /Length2 11772 /Length3 0 /Length 12925 >> stream xڍT E-! $/[q(.Ž=ZﭬE3:* mVI%D!V2pppqpp@!A\\0,] @' PPrpr8888\1tt=`*@qEvtvZ۸=O)(q @7SDBܼ;'Z uhA\!.0j@ߥtl)<. \St @ X/pq8< 0o(`TܼX@Cyj|23u @NR|\A.P'7W6W5Ͳ0G~2P_VvwbׅA!2m$6B]^ dCa GWtO;{zT\Oi;, cx@7Ӏq|9 sl0G#V.h(?]_$` ғd p5sZ7]_CO)$`CO:S#wߐ R r y6 y;@~$OOO:OQ`w7ؓӿO:OOyOt r |{52 wϥ~o78CmC[}$dOadwisBIbr)gq]Bbw%9Q;1Ѽ=ɚnd:[_!4w(e9 `i&U]}(|fSsOd5F7$p.45+9*c/쩋ɗJc}Vb}t\;i.^J$+)GX4ay:EJGWv̓K@ktRڙD/j '9s\5۷ |ʧ2\B{4"R&S^0#D$t OMx x7ef X_>BD%0:l΁K!iBJ]0AH.?JY*Sv ,"i>/ /x 'W,; S0|]Q: 9XʭmhCob\$EXN,ԅL-S2ZMXmץMNsg:]-mױ5U}56| #-//$Oq\U5JcVg:,W^ t'wX2è"nS;<'32ܥ1eVGH9Z44lr]!ߓ0gSSt?J %0q|Ws Aч"F"|siߧj'}^ȷes3v%F Vr 0f6ҵL12!;:FT+8R<"0!RHwAALj R菺4|^މ 0ja2CUU{>HCLJ=q|V vQhn;ZcD1j3h-(ѩ_qb)$H8u9 Ck;ӏz9jh-.J?Tr1ܤMTVr3]Tf%kb"b, f}b/^.3" &g♇2NE ݺ RT-fTz8,>;,aL8O+zL`lCw|گAmB0HβO R /.U1t:gY )Slt-( +18P) |#ƍqFVXLtvl<}%A"~Cp?P'"_J~طRa>/ *)LԆ]u` 7%Tg=¿Vf 88(kVmYo.B< "8>Ff*j?.3Z ޙ/)=V=GBq-=sWHV ,i>pxr$=={aHM&;{~+I6/wyj+;:-ybG–IǷ_t0@U(\BeLTk_h *kƴNt:/43HY73e&P7#5ܲ1{_yvt|#*D=+iTe ӗi8@~.;'@CY! *q.i:cT(5 Xbd&U攭Թ*V jS񕬵6Sw &h;{W+ ˂;nݫ:ݙk ׈D_:JBHe#$wa[o~E35c~VCXYM w2Se-bIt3 6i#LG*[~Ş“GzSL0 >+w}kzPkԩ1L;;[_R)ާ QI|Ŋ@ڍ6 Qx-O*m!;Ig&,n"kUkz#brܯvOUuJWAMڛ_Am: \z*\LޞbI,D~%eY=܊ 9sU@qk ; X5"S;J7}ĩzf9o/GgYQyc_QkBR2?\tБu[.0rkL$UO&ۂbӉ%'9Sg7!>GX|MEm6JQ&>]3BDž7k} B+{BJ'~_kpYK"WưbP&WWgB~tPCPD_NۑX-[f'EgW,$,Uk ]ɹ/z|CmkbpB2Sv>s:w0XĹ_v{'ѐv<"E߬ޣ'FY4'Y(h\XXO^3dz\ Ɗ;Jܛ`-^'_R pɽ^pZo9%&G8[c*[*6z o{p/G8t?M oM2- mq}ò63g>JT dۗtv'"ZΕ^f/)‹X4Ʋ^  iR_c\:b۹:Lǹ'3%tk-^S7?EZB)Q1o4u~xV/֒,eLC9'-YB#8@}ǡe+y2Bhu˦9KAPд8~UݐM+ˑț:O=ՄwYnEP!&S9n;k(UE}ܙ2v}61&.`'W&IR÷hr _0YiF 4|Gwk&rht^HֵS8a|/ѧ쥫(`rpx8xSgFm PŜ ڂLAt&nےdsJh&<Qzܔ Iw 귉ApЇ&S:gJ=YVu H@QAoXlTsxF=ZY}ppH8KB :mY7j)T-ݻ4$1(/՞_)xonݥf>s<%J#ױ CuK !9w}_~i?lk&"|]#7"Wgl -:KiM2F i+,yٚ}7>qBgLAF).YIA_pkGך#5jR;c[6 D0P g.imsC|;?HY}mΚ:yQ|f^S [ܩV 1QRBs#sӪѺ凭*LJHKRRK/0¢Ǐ8BJ #_J]uh} InNҪ _R!2e DR.a|YAIȄS3/tW|}q8Q\G.&F9./WyN-;{@>v|'*U2 {ܘ:̋=zꅑopeJP"WFḱt`Lxe=,S˜9,1!3{Uznx'3Tָ?OVzR>>>%n w7-ax=p pAV'@~@J[Z_!2b[ZX>x ,F+M $墹 Bx0PVk@g ?\sv;bW兞"CRI//_ C+aD}"bGk,ق-tC,>ק;\ž6|k"cq'EʢlzX|}2.cY~<r8,Ms@$u?fǯeO".׃c|ٳ< ן\NCdcΧNY2[ #_ypeM{[k?RϋݲY[\HoI%Q .b d2¶ /[w25qEA r"5$SwFKkjt˚f#DK!Q_}eˣrDowIOȤ_'eO/WZ)Cq>]uI;4\u=䅷 wFe%l]9"T6CӭKù f $#L:cR*:wHdOLbYzKgaD_kQ,Pb?B&]\DTUAl0"n|oBN3{Y(J; AF`dk>M7Z/PJpTgjvXqkkYb;vSH׏ӵz#!6=_u:é 2Gڀ7- hh.%6}[k :teA5wo͉&P` vMll^3q*x`O=a٪-X jp:S߻53/޷ B>j: ew,i0. }׮`}yjoNR<$ejoӬ.88xa#Jg/IV)d Ƅs=-ZBB;$}! vD'Ma:}lw57ze󩻝V;@qEE0;dep*fx]&ֱ=Lgfur.sƽtS۷Q)،*Aif a_툔ȹط{^ۯSKCBgx_ᶕtm'Pܤ82lbe5U Û9tjꠒE_V{?",_GNAW6ܜ?W'^cQ#w=n<)tbTN+T8C"Gw>ht1*?8 .Y5*܄=(F+6 ݪ9@&2 (OUg=f*xb+ZuW/9q8S419Z]+>oӏ^-Qgg*Jq%@z9s3zhPqs6k}CT68#HlC%i˜vSR0 q y@->/ur4mpty`e3u3EWc7ފo(}Fk_[!K!G}0%D$7bp)+C.wtWtڶfд(4#*_q}q@oMoGӹPb|>$$(q<^]h+@kU{Dݟ$S ԻGDIJ>B*uĆucAHnڠ?3v›"j%Í+zUTFۘ hz/w$S|^4E"Їs]*b/X}OUXh|xI#Oi7߾fan"{aoWcd+D9Ft!q9S21znj[{YP)dЍ_ۺ.(\Uzkt7 YqWطMnG P(Em8:WE%ٔTϝ4I  -|dӯlhϒ@Ck۫|U"ݞ?asX(6CbE̪٘ _OZ }io q0B_5Ƚ?q1̈{uJ A5]©SWLC-\EGLCNy\Q,x%Q+M3ppٓو?f ILJʋt)me#t|ƒm 2cyѯ^])\b9bbڅ@ZfdF‹QYjw%b~\\ ?pCL.1r?C<bmUөwe4\}'yp9S7g&KKP,xw̱u{D1͔PvgNn _~6K˻WՊpKLv7Wg}tm0dϘ|Ak##zCܴ]μ$BL7wr? sNvȯYz=roPGa#.!#R)~Sxt%piPXCU,&7K[J}vG*O|7%DX]IFor8Eq;Zڡ>P6v&a^@C',,2dkJIt&`w`[fKʛ^}R+e@B\41$O5ld-4쎾:nFN¬ѷF݅/':~,X9'%z &!m`iS:_c%\>oܣ5kL_RH]n=1x;kN>˽!|Nu56:# *H|>6NJZ+R?G 9_u^(FoBbfH WϮq-gy,n*9ވI˅:|_tW_2M)ҿI?&4,Pff?,P8JH\y't`VDjAݲ+وڠ "%((1bL2[}.R:D\J*Bh]Bs97,ۗ??FeZ!bZAڶppx: ܒ{q7@Lf Р&f2y 1ùe ÃA|^f5`nH|Cr2>| !eM$+4mv`,ɼNlvP4v͂OMldfvߕ?wPD*/zavY?ŀVQzH[] 7PX5;90|E2tG iV$^U0FVLV~|x~C[ S.~[N>[*4Bm/i=_KJ(UHps.[{a>$9knS*)&D:#jLbtc##Ń90 {M+nSV} ;q0`s਀rBh6sMK3h]Za\O`dlOvS)0qUkɄEErxz]ud:{=PDu[@;&nҀڠ=Sbo~C$ZqM/Py58 **6Nbj Ȁg]#l+~ եYʧY\ 3tW + vkqw(UXĺ -o*JCT቉$~:(G-58t?"$ bcs֐1.22Qg҈G2m/ %$-]#ڕ{kd9y.ӧYB-UPK ;xbk3g1hW׵t.oT|=B[0BDEƆf\ _9h\k_g*Eu٨qM|ϋ*j\nК1ە1{O2vgzah,r W8H~&{1[bpBua+L -oJm0a;+ߺpLi\,rP'ϥ^f߻*8FI2`V 9ƛuxfk'ZqG+{uYk!;ö)y{C LJtФ~oh?-~?u=Y h>b2* ^tp7$]@8ė⸞mk`ҹ~}wDksD_@~rgu_u1`Ay]S'::؂rPV>'8z"6" &,687Ê*n PW!DYpIRY2ӡX%ݤc}lS~߫-!wFiDL,Ӡ|C4^6J "@߇cܔLXH1ygI]A{hnS 2c)]4 0f|X}ZŜ]YZ#уui\xFNcyY!*Rb"LGI徇Lx}(CCSRƟ3- ,`?CF>|!;uV2 [;E>(BHT=q1/}yzƁ9oWYєn{xUzMA V@5 ]v.iaHγkZjՒΖZV=hk-44:4Ky3BYΔ8BP+ﲑ2Ib;I8LoR㟁GpKSjub<0BP#IWAv'q>ߡL 7Ġ;zz%wJcLeZ g,#} _~?F[PftCTqhWx flB2-OJc ď nȮ5-xC =GdK9 f Dij_'UPG͵Kݬ"  $"߮XN E;FOوgtu ?|[u0Ƞ^` uG1"t_%^pzAh "$ZKA:5Ի v ~L^2'!?i^5,Cҁ Fv,#+iZlK՛%(F8,g MfcY'ڿe;s%!yo#a4]/鄏/,&.x*S>;*.Q|@-[Bm6Hꔑɢ ivG3 &SA?brTY dL$eYj7$QHH?BzSeHBxɼS SdШfWnf tt b A}AĴ*e$l(l˳)9/"Bd闄W=zwH#HHiCbQ{}IQboMV`! 4k ?x9X|%?HHcFL}ƣs}'!k FзTv%{fQf59"Vj̳tϥ/`2}.rlӜxc8;9ܢOO#n&$i|]aL0XjFj{ %KfL`Ζ?L/_uATY0 J∢(*Xk_.>1uEn4rVfVEdgw8ngMfcg c> stream xڍ4[6B^Fޅ`eމ(I%JD D%zHB&99}k}z֚u}p+90(( $ PS D88L!Ov"s0J  Bm Qhy"4PBZH ,$$# . P!!=6 %Py!nt?\NpqAz  ] 09AuC @^0<7p}p$2@CM` 0 Ap0m8?3@Wh пur9PO?ѿAANN0/o4u@<u]D:ry $ rD;:dx#||!8 J>f5 Eڟ*vB{z@aP+ g?oA3(m" I K>p ! iC .` B8WD@ 8]!PdG.C6BhB sA=łZVZF(*+(~aQ(*& ;?G7VC+f# ?s w}Z`o+$&?O?H7yA<x@ ="u5z`gZzH$Wv6 }@@0_ȯ; =vN{ݭ=U.u9?a1q^P@:~ (!!4 N@ '' qAMިq"1KJ}~__oOP@Go}`'LF%F1Q.dY y+3}j\ ,?Q{q/u\_?0 |_|VO`vm"?I2s?4j!O1K(v̟gC3PO}*|â(d?Ee*z1Tk*.5=)ջ{(l[)T 3_!uF^r־2L(s9HC&i{V(vd-[@'KЕbH'"t7ec>.OXZd*XO="<(C?yM\1{zo&ꐆWB|`ue9дa~L)ͮ)>vʩԢ8CU4UJ5 ?fos\s6 ſpߧˁMN}'fVs wGQPĩmZKgD!Fwo=ї -aw%y2[u1UwsJqIG%Er)O?G"?_,]25-Ua )lc3&?{;c{rv'`mmqej +lҔgyF?d#Hf<*x'E&mPk 먼w4 Ԩel⭭|.j\`Xi8{UM>^NW+ZdnZ7Z&q IYʝX])B}{vH8$k ZRo/c 뱽Ӿ]tpm2`|mHV~` b&$'샄G~)w5-z6+ɮ{.6{=#AK;Eb8ʌp}7O*eCuX.?o] Guʮ]^FДYPt,~~;ڞ{gMDa}bC\@lE*bH(/YE"Ze]1)XU?82PӁK1ؤ6_mH315;~M쯏Uk٩=,I~0LU#poL|qٛ獡Gl;=@U: 5EHۖyw&c{]nXR.GrQU"B_o8UV;h:=@Ұcnb3yRpxlG&?AFWՇ!> y2.^̖^MVּb\#DOz?iHQ`6R-WwjKZcܧk i_@N-D/ PoaP0Z]դ:BǨgMэPo&|ŁOC 4MTz>gOy>aY=S16Kߐed%pHP}|>3AZ:KiǴ@ˇtf\ƌzI!-Λ_1HgiX~U9fFhВ2ta凴sϋ&Vp^AApRǔ)UV-Fx:C ]sEӧPǦt/۟eTN{?Nv¿A6R¸qK-y*N*}Hh=*O-bqӱŘA2XCLeEJN-SZZ!N3;6>*ᄐ޳Reṡƒ3E:ߧKĚyJdOIv説̘;c'#DIqHQm"6`̻^֪R@E6 ` e8W#)&6M }$y!gD[D͞\V?VDH&d*ee8*޽-Sb0'}" {u[:X,#'@V3t2N!~I,A\JƫH&xn-I `ӀJ;c7+[:,~ Q̦Y"k`cR|޶ee JvEj!UB:8dj)-3>19o',0@jd|N!) Z1f]g.~#C\}5ǹw^ ;'Ἀc0#:)]}mǐUQhb=MK,3tK?3^3~e nEzQ/x`n/щ۹=Ҋw䶃O,⫥F=t5d`ҼMy%oOߚഁAi K 6R3*һEdᠵj tA{\qBN3;FIMcgHXƿU}td+ڹS^4$Q:v t߄E;m\r,&&9յ :h}d[HzAz:Aj l ,)CQ7 =|=ף[a3${@fA˄6_P#!R^m)x53[Y<^(?h9(46_#ʼn srA2ENeT!>b9ٶ?^Nҥ|z6nE+1PLdt8ygzGj->q+QbT s3yx;ji>ֶf41*wyl4"80ES bOyfSJ*-I\SgwU[_^b[T:b9%]˲EFtq N9tKf4FY~xL⓴Hi=So^+~25qUgAbx@ c&˻K!Qp:̰3z3Ǟ<[;J/~pYYA}5dH=%!1 kK2!vACP c8[^#}XLTJw;&XDT2ˌH%z]w{J)`Ɖ`JC cu$t\כ5o` Xs*е]+k8Tj!+uCaki; =FjAɆJy$|la>/Sqz o4rjn{ƑHt6^wfX%F,*5[=5IqY,haIgFVo׋tO'z䒓o+gm;Þ&!K1'yqnozfj?K(U,liDLBs^jk$&T݊YzL}Sm&E]J5z#,|>c*tהbl[roOa'!rS:y24E?$&s>x(٧{iVCwkXWa~#f2:M^9Kc*JE\J39P8s}̅wzw { 3A**jIȡAP؃6Tcgt! `3O'C!5'- u6iGq靼8H:>:A(S,5i{%нK-T ĉyĉ`Q<.-wTuDR!%*R \-F8909BatAEf(3Lҁ(͋ sV8jʭFu'ӟivnV+"a?KE07Hϟu -Kv^}YeDjkRXN} yNqFȆ /W] |7 fHN'8#[:>ɎEzs۠V6)zp7SaG vz)P%6ޠb~}CeC{Eai~͓3/UГ0J 8UWyOY=OwouPb▘| i S nt>R5㔑hFk/ +'DI[RԨVF7wi3 [6T/R8yxn:zn3v@eeU`>Sw0RV$bJ'#k+X7c;11-ƾ jLy+NLә[R|ѕAxcF?Ga[Г'D0Y.n`Oy%-N',~&hى8e( JcύܰngQxY6Y(gqҴ%|w!"_\3%XaE\=G'SuH":,=,`Ov+foʠr]\ݶ$ Kud-Q^d|d8 u $3QfƈWRCsT`s}CѼE W ֎.T~|"L&sN"xC#g)зGΨJ1URI"ۑ37>Ed6=1wEM )y̥ܴ#ύIQr]T&Ǣml (a9`r*3ȼ+m+,kbVa:VXW)!E sֹ=]ط @f0}A\̹.?'aWc#b ݦT|Ih~j/lwnoAM+9n1',U3~1cBzendstream endobj 142 0 obj << /Filter /FlateDecode /Length1 1591 /Length2 8385 /Length3 0 /Length 9438 >> stream xڍTo7NKHԤ%9`mnF@J$%FBJ@B_<9{v\纷<疵EXCp7(T@ ?ȇY n0\?<ݠԝNsDj?$$|@ߎ71f !Pw|y f#͆# u@MrW G(J&B!xyx .<7{)v. ЃC<ߐZ_xY`} )a6P]Wh#?5tO' \ n9CJ<(oqvGCH pp!*n&]۾e_uZGG^v ;Xӑ" 6cls"0 {2`**9EM\y~cLX xi&t]"}'.4O)#>St6ThXk1)??',ʀ{E&?|n;:X\cdq+ /@l2j}\VW{k *}\̐>CrJw:cxZ+zN+0lJ/N)Fmh%q׻-|d/vCqÉN{> /\?ZӴ\d#z-~d0/׵e̳=' ! Nz&rҒ>YK3~[d0.h~{GْD  ַˇr!Sc7z9Fg_-J'egWMK,ԝ\꓂[ mU/ZIXå>%JFص4J:_=dvjvbylN!A~h<Q)#rx^9Js~6;*5&vY_ \]~0ΛDyeNGgA[y[h(|.7E6C[\Qa+v]d/k"D&S|($S-VC[IX0x'5ϛWQ]*XTFS~s!gP|(=%܁lM-Vd:J"iZd頗'1+m7-O>\㒅? _}aB>a0{/FfPDyPSMW4*6((tLk7Y)p|+y@7g[EKɬI׃4w 8x S2 AH&ۙ B|}KwqGxuG䒢ow$cy{?ZWfb̲&IAW%^?@Xʉ`]@$yr­,GDnYm[7]B0y֨y4Q6)[,~UyyUZV˓{vڸFK0JrK<΁gNIUՂ?L<\˽abzO8t1H!8TTظK#DYkH |'j{.g7gTgo/jU?yܤ<4|h{N#Yn*sckj ,փ5S@iLQr@/RZ}.li P\i٩eg5 wy  d{[x].2 `rфy"#m{8m&D̷= $}!+P1h$\bq=!c4qv?׈W(gn(Y <ضiZ3յg jp_Ш,'Ϸ&ܨ:>W$EK @o{YgnƠ嶢RYzqƹ|iz㶄[IhZʍYqݴwJZ۞­ xgeH@7&X)`zi5H&gb !4w O:IlMf]~ö}(WwM%?թh:}K̒e͙]d\zP<)Sxdaa4B쵈oXZT8I%嶟i啋><]"]>Zp%D{Z"ƠBlQns5y.QbhgC'XտՃ 焕, ʦrE}Ç[&ޣTw g+n k30+$^Wt|fS 3ytQf/Oo$7 ̊eIJ*.h˔Ke X33|X71wN2߾W'V(wawjXO&q|˓KK}4v߱zMrHoeCAᬙKQ˹ 7rds+[q' K5jAVT:[|_/+ϤV7[JǩlcqjK["#pCeHؾkSϐ㑐\HR$Ib\0/MȰ%ఓ~ E!7w(+lضeE)-釡ဂ+U4V)dDc#d4!4s=ogGg܊6“_;׫:^vH{|DN?n4,TLn}sgV_$F"UݚY>yb옯u@BNܗfrd6^50b$iKfV?!"MlKG]3N֎o=;cOoHs/e&6yJ:hU뤝;lotNCq wQ糼x%"R.y7q_"\+Qf!F}o!6r~lK#,)uN&qjc$gnݱr-vj$Ϸvg|['5UIE]o ɗ +?oI?@#F|.')|z.sGPŠP<h0QЄQOm P1}u pIX 1,s8\]d;P |y,{eF:gH⧸)E $+7ZS$+8N++ݪo̓म}ՐY|ULEX7;}x5il<}Z V0~) o3֙3lc]qlޣiCQ;(R4ĝjG͛Fl =Bǔep`W¶pSWacNFD[?P<~˶ !^X;tEuϝ.qR>B9yTK Ʀouƍ'bqMs yحrEq#lgJ6> -(+z=7HP#"V: ꋷҊ4YYnf|x̦3qHݯ&+\Cr`XJd * D H焊E?Xu9G9I|>#)¾4пRߞU72 7J&¯{ʛHy:d{w .ם+X}O@o :ZfGҊL?g);NL'I2yj'*fX48\/'< $؃S S&U|]V4@ڝ֔ fR)B!I_ɔ+i%;E`Li#a}ۂKI/.I<왯59t}Tf mqz,D3(}*%9P2ĺ+}}Fx-0m(N6= ^v.Fw]Qkvlfm25gZFlk3U b.Io˸rw/_ iF:ͭHK}P~HkG{.FŖLIֱT/vRUwoQ{F2ʰnȴ:‹ѕ5 sC@/]*vPK(~`EP['#ބ7 wg֕G}_0.lkF7ncĝ %p6oYhY5} L _Y5sz=T/?kV&f( 9EJ|d|YMw))pnt 0io ))F-ţᩢJeΧ]ùrq1;͸#`rg L+)E627;]6w9ZopPHhl&d}@禃Qw V/˳  /CҸKzI"Cm+0I%_)LGذymNJ>Z+YHFºD5-MԠFV(VUAn+]vilWR-ބ.k.W#p9G4KWzn>د=Av-c1o:AĶ-{wL5}]{dPG m?6]KP|دr R3%r?]% kټ5q1rf_~Գ(Dpi0X Z,)Z8 ;=rZwFڅ4{[2 i7^JGS.}ZynW&)(l֍}pg33*<2^!kAyO耔ݗ隋b:1¾ËD2Mj=ek=pi044>w1{HU衻$`޳.Tk-G7'363ϕqB0L&o"T| Jј5* zJAgu. sEKJo U٦ȩWc_Yљɐ"9aN9SzQ5|%{4#vȷŪ;7mI'+;Ӭx \m-:: }pY ?ʻ-W ;`P(|\8NNb7eOSQ~s;xa"f\goߞgФ =V’üm"ֲlpLRYm4)3I2ּW5Z?p_ ˌR2F@Irn8)bBˑa!8 h?vFa%YgQ Z`ҫc<;-&} ؽv,7,_}]ϟTnȅsLqf1AJ#A[$%2&;alG-Cw$@ѬFkP6m}o6~l&3r3U&K_FT@Osu)$/BOLbyfT8=q<(#kQ(Zn4Msv(?+ ԈPA$}`u6c{)t@:ĕ}#/>+(MTC~t}:J[1~eji)e P/0"y?O=ߖ sZĵG S}򕵫+H'bA57U9{[K/z&;|0p6꫆5I=>zBԼVK_VEsIye8޼NaM Wqm_]$fzqA6ʉbޠ*R'*Λ#VEg$o[/I/ 4endstream endobj 143 0 obj << /Filter /FlateDecode /Length1 1407 /Length2 6193 /Length3 0 /Length 7147 >> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i?endstream endobj 144 0 obj << /Filter /FlateDecode /Length1 1437 /Length2 6532 /Length3 0 /Length 7507 >> stream xڍtT6)-C 3t7HwK 03 !(ҝ % 4(7sk}ߚw׾ zܲk*aHg_j= akm\7 ijxfǻlurZQU]d %kKӯ̢5_0It\%{W=?4DK~$RU2\#-yAoDN${JqzVVPdՐF܆`ǝҫlOatBV:#׿,QbiK?yp7H D[[F0XԻN^ܝ3g([iG/%Zg3f}Il}ʧɋt}[ @h+@ a(< |;qͼ9pؚ-^P4裹xb>g" U6$ol/M~+i*z15W+Zl<]9;ٽh uLdw%ëq`Fd\%z-S1"F/^Da}%ߺuX?I,wG'Ku(Y fiD>&kv_YR,g i2 ,˂(o -/5|ڰ@&vyGmloEq70ح=LEYtpޒQ`l{ў_Za_.Acyk.qBP%&jǛy-G;æ{k+'(X\fOݏGKIɗɷT2_͈-chD)7^,/3~\8 { :sXi.S,9Lx?"(>d7- +14UH{7w9S*ÂJ]e K,k.CvxbF^#K嵄'uڶJ^f6GNJ)i )jĹ<25°u\"0Ȝ1:myr vA]s۶ǣ)?1Ջ1MF1tt(@-_0.0 :G0uE2]G\UrPg[p*;'^\Gi؎T{!5Ydkxa͊Y$h B8ΣkGg c3ϣzաo}v:7sop^?0i쾷B~ _}j=⪤ʮ>YAQU@8_K !-e7<9G+ilzKPtW۸vBNMXkVv0Zc>' x!qh"jW?Z1)4)V>ϵxUӁB0| =dIx06E1jbfם0{}*C%N^ޯGtXÜtARse̊ȅjK>}&W14 >}dKᅹz=2"$F t%{mhcCt# ?99&`Q֢N.KS,OmI`OI-K(B%z]5*pĚ%zb;"13~X~ ![_~x!mg-لLZƉ]$czoKFl* '@[)郈lpSsٻ^nHdgZ57Ih,H4b0!5^cO3?@4IO+Y޶LREglC+͚/?xOl'){ZHp*!?p NT\!BȌ2*ZڤWO: ݰ́9's7',OI*_>7k72 dm$xп 뗓gkD)/^!|N'l"}UyÃǝ=/OTX0F˅ޥԳy1sBp(0HP!dE ajK-`]LnʸiIݲC aQzdgRAg ʼnԾѐ{?a$ $24ZGZ)7g/~5e. PH|iv?i$-,X7[{ Jv5"rM3vKElhuU:q_2}nڍB);3ږnWAOhotX <-wJ |~L}¾Rs!' ]idƲS$E ;@ې)SI{Ͷu E,Ն4= Zv*+`MP 5hst2 ׁmhSxZqFsѦ/Ë/ӆ?> E\iq/qX  sc7wi(_OqEnJ||oOc_SH|ʵ}Tu[_~XV*$ vDK@y$F `uݐ&.LL1VKZER'P12\chLm&|wKWs2+N}WNΙW+dj^׀aٖIٙ7[d@cRmf،8k FK eMި%f:'s3W cY,Q ޫRsʬ'2"O؞3ޘN^ vPcDTп9ƃgxR3D8+q9HTSmK5w :643  fr$ak1ƌCE@/>#C85)hm>x`U! Qdxo\4Hà{|Se$o Ɔ.?łIHE7}NOckB)^^}*OW ǝIpDS5ۍCmOV,TZw<7%]@[Y<u\Q6LYOK'l B{haT\xluғ-ϱGN wD K؞0m?K%-zpQPyvj:OhpqzoN:ʓ$m: C"MtAZw89i (`[zkz23fIU.f(^H`D($f4LaeM}y9.oxg}:6F<çe>|Bx2oݫ.U\U@m.7Pc5.[F"]YU$~mВ̵[r^f2|瞞&~gnu=]74ls&[ a -ת+ǷV٤LX ґ u˫ ^SkjJkGI-DZrJPjd9V/۶&aw+9̔< 'ri>5f?R M27T*O\ ,'MJ|{O(F=:[%@UӠq0N Aq D2"kY+OOT\ K;co9Fwο.NMz"Rkvuh'͛V6F tRW30YS5RRb[M%V)Lu.24)!o+b.:_>h}:[~H+1a!oz\k n΁lk9|/6"6W7#M_hመI=Ѯs/K،*v:v q`Rtf]K詹ҧ򼳉5A hcT1o!>9j4k$_2GGҌj'F蕂LK{yH+͊gqRu>& {HB?!bSamm t)S*xםO ?>3pI(9'μq9amlBbt1Ҭ $u^h:G$M<8'"@x.wbp?Fendstream endobj 145 0 obj << /Filter /FlateDecode /Length1 2638 /Length2 22404 /Length3 0 /Length 23893 >> stream xڌt  Ǎmضm1wlN6vmil5vc583N;uZɾn\gTEQ(WTce3SRjXSj]\0wd&n ;EG`ca @stS;:yX[Z#ƌ;@bmfP4qڃ"ͬnrsscfd2wertexZYԀ@9W%{ߕ1S4];Zy `teN@6`+tx"v`am(K)0y1Lع:M\/ IK6nPt5}ʊ@skwu3ݿmvXYCja` @gf zf t0s4uxl\oxA Ps_ `frpt@,]M,K70Ff߈,%E,XҿY7b0FfoE7rQ@(x@Fj(okFZ(A7LEL@ Hjcbbf ,~}5*@8AdfvwV *lؠ2q=_>Mo2rpo z/ ? w:Xy;YԷ?k5Z@ ruzP9;G *Dz:gH;]P֠vc^ο"wvwt⿤h+f5?: jAN@{n/}^ZVꖫݟ *wXsArt y{A@P|~'b?N3w0zvo0@ ~iь?̦6ZqwBprW;wɥM mUvȆ˭hH/$͍2ɳqKdն~OFjSm؃ E5Dm![(yU>b{K{ GUq#n.~d(.ZR?[2X(ëi bPCF][$7iҺx#P׸H ַ0utlj׮B..ta;(jC]̋EL󺦧h2aM pdxJM; ĉ :{]u>9f'G$YUvF ~8ņpWJ޴tg* S l`85zhE,߆‚m QcƧ^aK1ՠQmL"ˡT1A/׊MɹQr$pkMMv$_2"K-XzIq~Pz vT؟HC@2h!fe)xh;Q>buQqP]%_*=(|0ps$c1#ϴ*{4BÀ#=*k%+&OLB#OǦ2V%BAaK3c2Φ^7,H>,*;q w/l>I\tmtHH^y&J7?6v]2ϭJl;[Ocώv|s%}‰eo"El^$<Τ ӕ;ZEjOIYzt }(N&(+F<g3p,T= ZٟI5".Ö {s݅t/Jp8/=gr}KypvhƟe}w鬐 fsX Td'G"Ms,Ktƙo 7-nr:(U$ Diʱ81sE?mWu#А.vI"K U[tLB1>0} sTD0˜IFx!L@Q(K`¡ʊS=̻U\2^Hr5=j~!{l?0j=OyM_?)a~B7Xc.6.Z5A_5@|Z蓢qha:FRg={ԉS3N{r'!6n6WfȳFK2/,Ud7!-Ү|$j\TQޕ x1#6ڥ jbDjb&v]^uF :9|%UP{g+?b`ĵU4d) X* _7pv,AM4\3FfdeM.pxiIBdK*jp/,RӶ4Cjl0:Q%fRC@.`<{cRys.`c*IUb3Ї.Ugh#s.QǣF4lq9\*I"=?ъ W6V<?W aq=NA5m?+~sBtQN:}7'־b:Wrˣa)v43 ĭ]f{'%Nynpg`mILjŦnL{MRLMXN,,nL}vBN_hӈMGmW,T=^oivTU˙՗Z),㦡&۲f`"2TIgP@0Bmr+ QRomz\3O^Щ!_棿3[ofmIUS[(N%ytԬ!hvLXeWؑq$F[rȵKoQVŭ93qNǪ{.D+ps2M1bfD9j+\ø5/L:ڬAxUR?n֐?̨~#YCp!xX8,k{2u*̹;y`.Y-vϚO2S9|H$< -`Q/EOhnx>eb71Ҥ϶!{o %FvAʷǛrI،3awD 2" Bm՘n=ЩoJ/y?r'cDԹ?l0lv4zs߰Zō,sM (BN0{喼VD"? [o9?zAȺ8-e AvԻw1d]H/9"5@1cy&VIyH7^WX}\^$0~ 2;#ɍʡz[^CdiR_mP9Je)}$04&x鼧x7c[@6ke]`^ jA}2sOcaTqO='&>{֗ &a86#"??zn~@\e'[s2+ԼsJĨ0E5'yc!q})eqdzrVACh$gJ+adpJ4},,%KOea}^k.2 H1ly!͠7T&ǬLÞIgcmvU]QR$ `UCB.Dki(7١D3۳nqO[^ٷIʲ ^=X*~+yR:t{NnE{Y "罨6XetT] .Zu| hJW},oԷ'w}R8Z خX__ 7 ˜Fn |yx%&Q&~D;P\ж2Qlz]8y%!7D%fgPcXt"S~vD&dG};dH"|H n#5~,׫d:u*)ys 8_) e\f׳l"^)K5^ou]@-!T-f ܩR۪:'o}hO\:C2XZ: ;O/X1 1H]*t|"p\Ee m\>cv(1t_ִwUbVKSc>MNK`[Q">aATL\0ʣ@3`Pm ؃2N}8~Ri|y׼s*%Ϙ?)vpt]UIHIM$NٱY[|{Bځ!~%ξ_*~tcBs{ِ {/U,xd -R!?V(zcj 4Y>zR9t;תKL9Ob&ټ]*`Iq Aqi ynRT|ebӘ*Aͭ+Gi>.a45ҌGֹL+!9pqcu`'wm,X#(`$ҍ, <GѿថP‡.WfIN.*CSI#ha%0C01\92raCvV$y}:gOϺ2!HYҫɀGoCcGXޣIj bfɾ7 % &ɊwԺ`߸M-qڎZUV0u7G9zonC,+|n&U Q0%bIvRʮ 1 un1`DcFgބ)Q73!Yϵft=vq_ԝLUh(QI? wo7 x Qo'kci6Юr΍l8: xf2BL.™Q<܈Z#T4*2DYueR[IHNfX:1nqFHeUwK ^8 `9)^.Gm`NE|U7¡1$ K{hnL>9l̡HPܫx/CIֶU! \Y"&/*U?y TC;:jUqSWQt8I|$֌x ƨ_iM !awEHO0 \ EMjUU-HML!~F6IP㌶'${"YC]dG}PUz /zjBT=C"Qվ05n]=SWEa1'z`?ҳufnSjgH.Y ]"QqؙE sbG%nTY)Q:Q}0q  <+ t7LQXjRR'2R^b5G.Sŕzԝxd{6蹂虢$ oN~`Rj/Bq8[$'\A7r+:"ۆ3+9V),)O>Q=hm5,= @Yp|ڲ(:~\7xN;!ehGMP,>k;薝x_<|UĮ+OgI̾\~j`aG^ % ^a9&BfD-ʴx K|d9xΠ_ Wyj!Dl7Eǝ' .?ݶD3V% ҫ~H9`&?O ̤6I_2S}\*rt|ɥD=M4ORm#LZƚzI[6P\G^(mq|f&$K#|6؈.IJs 5' /۰Bn-y*3k+_M-QCz4ؒzP'ሻkv{Ea6laVtC"HXr{ YR"8 :0۞Nq6F5h9HWժ׽ R PuQf.M*OAŻ@%,4A|b{ S>E~gYeJ ֳjgAZ;a0ʁ#Y,:-L~>Uqߺz,}1x1K;FEύpw;. ]|T3Y{Aq7++}4Moѓ~ѣ\/3.0[=I iEIa΂ 9dɣb~)2EEM#*` CVzWhխW϶dO8.8D߃)}Ѧ:c>ڳJLi[( (d48.9P9zSA@yw,3D?f鄐iF;.qzzqX.11ТVYRƏ8spgdoȽz%43cD2ݘʓ0$*ϣ.x"v[I8x7R-9j'+FlrF:jOmEW~Rqm83JR\IbK(&*fddk mFM)MMI*G'`K|S/.)_ Tzr|-sH>b a![?Wň-hC ^܁YBl|mp/ij,,Jl,ffT>#틏T@̊V`{ibEo8j.3r'-,Rc߯HΘG8}ي;m 'jk&NG.O(΄Ve,t# %QOlu3UKn{vCOXQ} _a_k_&aE(Hπ˝%48+8!k'7Dm.$a !nTZm$5x l<_p=EVz7 ֞ʋ&}^;>-3SNpw;׋JҊ,^OL.hVx]Pa0;aoX?/;Nt"үwTF7oZ R ?=ipF/f:l( e2U*bwyzؒzΪ!kVM370|>U> m~K٤X"ELl<V/Jo̒G hoN!ȫ* CD jB-ЋMؐT2!LwC8,My1!.TY`VкSXI,,gC: 򩎵[|2{!޶9^6J_^gH.€+=뼸I$ne۪\=2$E00b}:lAfʾ4q'W>~ar.Ľ؈Bb?:UgVzj| cpp\"kQtl6r6#wxCxp 4rHK$Ɛ=tmݝ-pz\(Wj:V|mC{i¼0@Isjultsuel5H |=*2aan@eꋔKD"b^]4HYR2+of]+06E!6I"][a-]"F&'@/z0fK|7$jrt@\8\ 9yД'TcxR1)D0oQjVͯ? LPH-ht"_ r}SW @TmB4q=AbCH[ U <ݏ_o k*etq{i^wMt3 I ^A!evf8hFkkZ\-Z"ayE5:멣3b-m'`w~b#ВϜIP!BkZzvfZaKA[CL$9T=]ܹ"3J4[!˓s~UҸ*]PG0(h"_prF9=ADϭgt+;8*BHZ~fة-;7A:b2w_8/|Uew *EhPp p|2)A[K:FByޚԋG1x7ujj<;5iʌ = l?⌆},J0g]j$FI*^L"P0-˽ |Qsڴz^;$2j[`,ZA>B8g8wgFPS̙6՞*|-]Y3 ?ΏC璃l+~#*,0} BFha52<"`Pw!eXɹLw:C6hd#59Z}e0duoa+F"u#u]y@ WNhGV*.|kv9@?pYPn/jQh=4|pGS`u":N9~rd ):Xh,ڿ0!܇o؈Y ؆Xsm2JHGr:ʚM;SML~[:L7C 2~DNC߈k]m3S6R#_$}T2ʥd !7KKylrʚ(4G֞0캅ɮtD-^gXA!m-ͮڏ=ie~DR sYG--F9fa{l\2HrY0 ]Ss"wTU?7ҭ¡LD1 SREͦn9oX ?Bp~|J_%Gb;EzAN~gxе}OrٮG(qYaO eAqx%yFf IC>&o,>rdw..;3xd=m~}4D5%8hxʑpVJӮqΰbZ1v"ܑH}6&\[gMedBkƮ~O%$`eث9M,7XCtCHq~b{\t+V]HG,6%4!E.6얱!;~'1w%%,գX^P,g#"y{y)!"c@n?gV3/S)4;>3#ee\sG\!V)&8Nq=f>9pṂvR׆afgy=\H{э"ԛ]K"LК\i1k_&^ZHn=ov~KL>P<T/#r]L2=ZĞ$6ɸDmNi'sp2Lc>D@6urK}3]}=+[Ei澪5zY#K -w '!hieԖ{ }s2Y`D; 2 57q!x uxkʂćtP8x^>tP1eOl`pFes/I{HY6ohue6V7$<=EqFeƞ*2ܰ!m ~*|ZX|tVBkPWfFٱlհHeSyS(_lҩB'J4u~M>'ke0zz;&.L@XyA%qV+Z?o:%p^u5[O.c ?BC)6?_tQݚAbTlg8gӱ6$OOp7 FyՇ{d)~Ȗ )KR^b_R2+<'l+'V47>*G*zeEr&5~j:D#C-g>exaɃ{-.cwSN5 O޼ӳFzIy k9哰|vYKXNRx"A]$ؼ%92S~4VwעQ ౤9c W}ǥzV+5Z5>.Z8I'yLCK1^|~]iy*1 eskiWoGKoH?S߶g%zO3孓&tT?38%Yr9|͌.GKX!Q7k0H*_!elnjq1*~:`D`Y9t^QNJST&4]s4 }XMEG12f'lTc0Suĭ{f'Od `bl -6ߦgNS0b\"b4`r-*$ܯU(z"ͥj[kG>]0Ow`Do驃K2bDtvjn6x+*FG{'Tt Iqd`K1[!|/r;3SCFuJ37C MmV%LNOX RP:TqxUr^ 'hIJpo6I;`~ x< şZ4‰R3[&Fճٳ@췩h}UFuL3`^jQS!͡T{\vM{i)֤ #. di?u48pZo.X·`ɴz;5θC]u ȽIgQdeEbk. 13C8Cߞd{=ZV~7YL#}ZODbC:L}MD^Ucs.߼>XM{^-Ć\i!hmA>_|SRl2= \Brz0|h#^Хb4Է4) <bTe@}4hcWEgj.h^A'1V.d`FEL:6,ͫhGuA9؈٬t!lݒ\FOջQ(qIfʀ4Y~`HLR\C˞»&A_kypDRw,ov FlKF;X2F=j[~։\2̱ i0VtRܼ#9"^`e@3B>z=f|5sl@>97PͼNamܽ2dY61oRؓI;W~׍\MlDJmmZL"In;=7||)݉W̟v&~NPyuh:PtEIgq5 8HLu{dȎola^dwyRC`zHke~W5Í8ÚvM 2cml ھ=yZ,$nOċrц[pda[ș) ے;OqGqϚ䖾"5NOVP̪'$:#pe´0"~e}H[Jtq6\]3xY=,J{0׈ V.S Q_^HM54N]QZ>} !h5c\3gL\w4 禖GXC^8ݻr@ޮM.D{fNFV'Ou]*ߙuw4k]f  QAU&&`O-E*_{[U[f[jv'H.4EիҸ⡀`ڮR' g.#u@kc♂`E- ԊWc*5WDiօZߘV[ juͭY+;ϚW<pۧ+D F=I_FPrYc%FKѩuE/bT@tbcWNG =L`\WdxX_0>~f|^){8^,e^b ?Vʦw'~]Et^/s:p[< $ a.HZ*{U*,$',1UZ`WӽH)n@Z.զC (&/z79O_VY=~kI7 ͛.{MWU0̄h:}[SD*2z3 vNb4ޤ Wi-s/ ,dځmsiUP?Sb|8" 86\58M^^_iRpZLJ{A>V>qmvDAGS !8*rU;(Gq9o &|35}hnڝGlU)+aYAad1ɛވx5w:Zb[6V竎[2d9ETu4p۝T:y/isD[aW4hEvԎ7^2We WUH(&AW/MTux]bXL騢FdBw+']c@_+0ʃ=kE'*{wdKvO?D[Qa\kRJͱp h")!4ݫ¨rpSx 9ȱϹOI1UD@*QټDߊB^nޜmܶw:zN^?7;8$H7c*KEWzUs5QT9_ WA_S%uڀ{ jTqR} pN"&$EZpۍ_b04l<vSq3+gQ TL BVCo$MXtKUEX^>P`;m!A@@?~HQ,cԳ N z8m]nne*eZ^kP(!&ɱ(o#,)UUȵKodã86g/>?$4LI_|9ֺ{/cEo}3P7Ǵ'|奺V)]c|>І]Ly Su=jn q ڙ!(ЋXMkV)KC7DpƘ?A~rh=].;:Θx7)}i`O(ᗖ m W*Qm"HA}~i>+J~Q&ߑ*keg,zXwTiZLuw]V|3CLBf` T0VD:H"(1_rsRʖ8@f.~n)1o%m-ߎ)dvq}{/hL\Ҭ"=,5~{`zhizNd%虠 BxP訹΂ "!j&u˴QanSɌܗ$Sƙ^ ^}F^fAS@[?y&C c:x4\CRSN%'F\MS?J&?H&<'.WHPGC++PZHjLE|K HoLpzߨpd:7Z(e3$A,2 N\,V&cd}Oy2 B2v71Y`~twy+3F2uլ)3whҗxG҆zpqύF,}<'ciy $v%1> eA0cšBF3d  nPھJMMkr81lcm3d<2ں}nj3b$ha,v X?,Y4:#i3I{5Lش ThA`2a4f{͌]a\`Vjսc0)IN`a'<H6wY,F:<<3hX3~Bs]V9AOwVuNvh'oE$%>KgAs9U'χh-$Wz [kwA S䓪]eS)s΅+/dxib;V&Ԧُ! 0 0rYN͟@eQȱ:4z %:z!K+ >!G{ރh=(6'>E \%[ĭE, FmڄV$)!fk oD`^<DڣY#mxE~_6HP:e 2*eQu).]xM>Xd LizHr‰ar &WQȧ {%.JLr8@)olD'r={\PxfNo>j猠 jIΞ)FܬYxf;5+d'2ʼ?x YTa1c7k/D532(=4~wXG>x/#O/P_%*?8*PzQPEa4M:dpD%R/&r%DԧB?&+MP)iXʲ!z>0+۷ij9,Mq2C\X +@Gr} 1َsncs2bd=PW^ҔE\#{Ǐ40yΞ ^ raV#1NUA=Y12Je;s $5=(99M4<Q_Pd%5RQKib6=ʒKOi}>K @ @ uB ),dNOhz+&`*Vw`in^-֠LeJ5f`lz:I.K|yE>U"-͹]ȜVEVDAL(ibPJ-^ B0;VAȋNw I3ur?O#@~)~ [E};$,49?[b2?M{9Tms\e؟t|=ԶzJG7w:)[ę^5D`P`a#w~|x@!yiF+Ho.yTBFsDjQkG8pʜ(ަn`K䜉K꨹Xyy@Ne= FTsH3ga%XG|:̧AӜ^X 9!^gj|ߡ+57x<֨q{_{9~b* 'rdc4Q11G=aDڂl6je'l/!YŒVfM5Im]D!'ZNKgћ6LMūȍg"Q7_7^yLܷב)W:Nޯ99֖lG:  w USATOf81yJqoc#< ?02BxWWjoSt6& mX/paOy+ ֭/JS3pO ytm9JE޶1*susjF'贿w:(̖e5ݡr/)4ՓdDD5S`BVRjHyݚ5mrs}!d%J ^p]gª+C]]PSDiPDAd0[P-Ol@YC /]a=m22E S.ǝw94ضjM: GLyֱ2<'ƉyD2:_3XDtu{ M;Omv`~8 >ARm(F!2UY1nCЈY$3Vi~`sf1+;&'S@e_q%rgS@z6V@ Ѻ@H'QF.y1( xfM[d$ck -T^1NJqNv@E j=D*Ц\Tkl'xO\5M0h:v"p7u4 ¡&lGsHʶ<$d_3SIɸ՛Nxi4QD}u[bR;p7=MR-pEQ"0jgƳiO;#h٤mT>unϜZf[^ ݥ~+E}I_R7lI@MigfjJ<ވ{"?l+wuv`?-9^QsM]e!x4J6"~Ⱦ)M"F{]m?7bFQB㴄KOWyx9ʯRDy럩l`xL~AH˧ջC^J4zXg}}*epi4%u7 Km8L^CPwfc`=78A~p'qڶe)Sq:{HN1&E{5/U; nޔ<Ʈ`痰"?>}zR== c -A}j7ĄOY['U* B} lSSNA <\0Q??SVud f~ /Ml #u7i^S0}c}EVuzhY8b["t!b9RI};3 -S!#WV@$ݦ;ۂr\mgJvG̜ZPIIF^3:Lhj:sFj4>:"Hd _.#b#y)-ӘH6+)sNanS 1 3lBo,S\iLoHt w}WM;+Rd{8[+at8xX1bD) [㶏oܡaPFBpR6ҌgߚߡHKM" ~zio= iœj)>"5wmg▴jendstream endobj 146 0 obj << /Filter /FlateDecode /Length1 1431 /Length2 6506 /Length3 0 /Length 7475 >> stream xڍVT')LBm4HwKJH Q Ҋ( RR* )ws9{_51SsA;õ(D02`߄c|hk`P,^ ݌('" (@d`,#Ԅ#]F@}4 @{anX|@A"//+; aPu{+ @s4 +C|We!Q`41p/@c70q? @1p ^ቄQ? oxQ8 jq ^PT D =چ@(rEP'q(P[/ "=!Jd- ~a[ qF Q._\A(\OO J`Yy0@[y!Cqho D?/bࡸn@.H wEdǫ?d1@-0x =[.hg? 2U7 o::IHPw7?P4P s]`v`i0 w_Yg?~ Bzidz#4~/Pjc.H?aPCz}H_md AfODMо_ P  k0S⋟oJ.]~휄 @%i _Nxo^A(4 "yJA0'<^[#>~926[W30? ɂ/ka 4]wUq *X=MaNIӄ^fEc:h?-k Ns6ISMNCSFVomUu_!P] 9 yۃU?O$(K'l}ĊKb v󜟎`Ů Ҍ ]p마B% q ǃg[Hٲ^!>?r WR8W0fW+^'lb\V1"J⏭V~NLts o"յ3ANo8nJ}kֳgGՏdb#y+);eִk[ vXQ#gY$L4}:nоtaoJvfk\. X(j\1>Vg&2٠q:Yx|!Tħ?xDJ̈>uhf uG`ܛ,y}KJnjӕIh[ys`x9>M6aG^pjK`\7{>@ieVMeP3,ӒYq6DO|(f CI3Hf[=P} /{> m{6!H/sݗ:Yz?27|3*`+WY{g"jUoh:e[uzjD}߭s+NktnJ\pj@ިF*1dWCA)QHx7Md* U>pdUby%dZ;@O%o+Eڌq"'5C11JzO9;<ި\H9NDIlڽbH`ApFwxӫs.ɗ_T_R,$B6&CNdI\畁a^2$7 <o&xƣU(GC{E=ƽzM\#d;'"|nk :jp iYG4979uW]?"h:Ev/ncWg٧Jnxl:>SM ~Zg>WZPw1t4(]+p>{˷HsA r;\kc,ǾL;R\N-uL[Sh"YBPQĚfL=6+ypfV"qHZ9 <.{k~#fY-}8TXt1sݎ7cjDZM.X(zuVNv>HF= @wEuZK\< _ TqP!6Va\9+{O&{=^׵&\ە Y-Z[ǘ0<mȋ-C j>u85#TYvA*dxA[)Qc0OSaZ[7wċ/ߵbklr Y5Lw-)7$oHgc[-6gTag=ucd^a8XKo' om9t#2˜w%ڵ/IYnxޏ ~ēKڝWg.uaxPZYp3͍"-oOC/Cm]ekj-.7T+Bv㹚X(d1Q ]?N Xߔ<"!]xZ-=O;0^J=ȁ64JylT"Fp; <{?1z}a}}WI H.+mTK{KOJipz']^|֨ݺí&Ԧ~S,'V{G\+BʰTs~/ugv?hlpy-v t_"{&T;;M…W5BvmU޽o#|A)Lh w?]oa8J˝%@WFMNj]0:oA\Za, 'x/VFsev !)).2Lǧ9jTUѵ#7ν7c7'fE$fs2> Y^/:Η/ jy& #Ҏ0~A@N&6!4n,py,b#]~x#-̱au>ǐ /jYN8ӆ@Gܕ lC\}ՁosroEgӐ64e5Ϛ+UVv4?1}]#*ba1'xU<`r#\X4)OLٽh+ͨ~ܙyAx{"񨀗͜LjKYkٍqO9A/7<CgzyK) [cN夑M+ϧ]7 nPC@'WR_|d1+/ }DeVp:A1GE(k9 5p5 ꡻.g%08+Y@|7 r_:yMEc_TqpVcdVb^ua|Z/P xp:4{ڌeVj%ZMXӋKh#zt4` zf:jJRچ)-=B~^`4v(6!znT-Pu.IO 5CՂ[C6Yh4`egh>s} ,1+1񩭻Ё`ʙeʸ? ݉ZCR _1NyJ݅Jn'K磭6;,m螯FN-S֢S}h'3Q%??Pk{;O^bY%D!v54y+-!\w7FOY3o Xkد"z@'o jMI\<\ugwT4fxJ.>Lԟ:K͸Ql rSD{8V4sV)`f,Akgw1w3ӷksL8o𺻴i:z~  !>kE9{G|St>joW |"aIz;,ZܟW.âH@;?7Dp[KD<٘-Tg,Gw9aw$q-5j1PhΛ:~n{حa H<˄"'1j1'" =,f%{XZ>p(>a(~%&6\97P/v)Nkm&Iڻ4Xo;J~x9c 69Q # xx 6c7˼u6uҪZj5uZ*"}Xҭ )fvݢpo@.*oiiojD:(6SD: }y{2Ktj@z=v1k`z˳ϲeuKRpJҁMqtb٢ΥF8YE*EZL^] =&@kRaĨZeO}l%)'yG݊ب,iu/_O)ߎyң:u^րuiVr(%8COf@R;QJ 2ѯJ|;~6N]q16l-嗪1%lC=#wM;R$Q8#iΒ'Ш$=ge;fZzbrwB]ҤzgynBƃ%3el2Ӎb27F[OCSBVl,{~߼;OeF2=[A ɾga@g5l?[$$8_f1`!FHXEI*gy/d1`Z^VW/t\ש#טgJ/lR",O}G9܋V\I\1%QmCdyPf"Vh)d5wFmJ-: k^v;CB0cSX"2Bq] 3߾[a~ӦɶҲb Ԡ+iXtMn9O 3<\3Z(/GZZGN_B?UP rHm<^Vm tzor;=$?jδU("^K%qYFUdR_%s*OdEzC"||qz]3?[(r'L[GY1zmkCnV) 5kN̑Sn%ٔ H*wI?g2$tN[aD8unǶ+ %oc\r 8l RR]8\++&k.}c>5qxLB,ڞ<t6K\ *jԋfWLnH6&7nMxBNM+z}"C$g;De6V?L&ԫwwX'D8Ձ(v0MwYK%lmd#o(rjBْp8U )QTˮD i@U%.Kv/VG?ٷp~+.cơ%%+^މ{TËQ|:ܛUNz`x7 q&&KU- ))y\ţ2^G,1 rr| { RW"8a] #^e^endstream endobj 147 0 obj << /Filter /FlateDecode /Length1 2043 /Length2 11620 /Length3 0 /Length 12872 >> stream xڍuX6L4RҰt HwRKwwwttttwHIHS{ݙ9'ιfPVc1%!6l,@~:r44VTMĆ=ՉP @ `g@ ߿@=?@laP`Bl4b[7{ 3sGhl||nK ?ؘB|_&?C Xt@4~?_.++5I:YYA-@$ P-߻6p2 貈ؘAo+D8,l_C@Kzh߬6_ ۃPQcxAWהXYl Pbhx_$6vn`lj['qrB%ʃ?be`Z9߭Wn.V?DoRuF$:<#]ro:a?1ݽ`*Qo 8}N,=aoRҷufEO|fwXh.==p{J$gbrؐj!G15~p u؜VپtHKՓUܶ$w;Dtg0Q}e5wLhJSr |cOq=꺼l- M~Ig;Unc lqG}Ȝ8E*ۨD`wnϦd]Xx{ _O{aZv< ӹ#UT2 D0Y}ePч^3l:qpSq kē5NB*"|Vtt*՛-;̔BL[2!VL"d ,7:^YV\'M+]9ou( Y\#c ^o s;HLtI-lTasK`X*70MW&!CȣI1.}5mQL30t2^3"-MdB4S񱬛 (4ҁ*^5Vϴz<^wddP܋@>& rYe퉯`B !6~Jl1ɿl*q6{L7{Ώ*Y)+/Ld؞GE7WQiGI0OK*^P k [J3\JC۳{KdžCcT0b \{ FF2ݭߠj)vP1A>{Հ&V!풴JJ[o ӎeniBR'FD]A[c1gTyF CN{"|9qq&(8~9MSܯ_z6v#AD B?z=mEilT%iw8cڔigʇ,V{{Tv-S_=U+MYL^ t?;)NGU/`kn3(ދr)I/|Md櫨KJ cg'+ӧVO3QH@B0 %R< =S%[ԕޱ2La創 R;>fzkմe:sd#N|^6a-E\d-P`d='dgˉiZ$ tM2QOVgW1'ˉV^=px<]7;ICy';6-R?hN)E,,)7Rl~Obh2^lq%_E`fLEG}=3vNi0!{33+B2qUZ\kψOiNbR9;Rxܦ"s V{d`ڰX%Cdy apTs‘ZSJrzL6AQLjD{eX]HcB,i.HV֟l96\h4$nJ39g1vRs }l]G3TyuJi s:#\V!0RQ|a#ZWsd2霋]r͠w53j敭)@@mF=:&_ =-Ә],Cޭ1s?vO&x2nV|!] O, ou -ȅXV'=pgT1 Gy3g]ZXn`2Kpw1 J"tt%H&X&ŖEX/*WN3*Ue8*nb|I=>Jhy]l1vrNEX-p ;G\*l{pz 2Ơt|`XX' C'ʹr`#IPp.cb^UFkhX% &`K0aq۳fhET}_ZIg2MN)I iP!̍"5Ǽbz6FxSN>Q#O<& VrLznG/ʶ\/8D mP- ϛ?G5Kw-vZ^GVYųX8` QCCADrk':IG,ӳ1q i 'kIDꅢ7G׎TxllS I#`[վ 3nN+ ?ݧk0|VT,@dm#~HHD QNJy q #u=u}f>N_[* \c$ PFc.wSX(K#oό+M '&9"2Cy ҧ4|BVg/rj EVY`vftȞ L^v'xB8\yE!n'0yKPGėA+~9E#l87Z:[re&(Vmj&&O%go`D:I$_cΚVQPA:S@k̾\ɠ{lrZK1';NJ9Ur8 {b0vY6sDrMq0L#^TTJfFKQ +b7^~-|;X&`bvZQjhD9 OwcW[,h `{$뙹oIAd$kG1ųqΣk=װROpJmwf%%åW>~AУwj?\9FO8B7S#~FOwG>zXzX/|X+ͤ1[ߑ=buUgVq=6>tp Z1ythv2M0Pym_blF g5uK2 ߉ýu m8X",B΋bc/5]ʣ(8kuv%,TyJ~]YAgz7oCNc8vY3"ErZżۅKhKꈊ3LҠ% ޚ|aL-R Ȓf)7RA* hmWϊn~J KT)ߞcXZӜ g2ɓ&UHj`lFĘ)u fI&x6̱0ӭFVqO;aoȥ~sw6T 6rqjF哮1FEa-ތ ]97-J_GS`,6;;[ɟ' ®@0`5>{rXjr-\=SHe%RސB5mòK<;SVf 2mmBYZ$)CKc T?#}}c-Y1Ժ#wB%莜sQҤXl55v0R,#e(/~zv\hfBm 7> ^%s̨.\mI3R늅qxxş; k%RŅ{kČan N[N6|7RNGfǵdT- ^;yU=%1MX~fnM?!isJx%8_ɜ1Jdřw~GW+0z(X=t%7<ns)32-g=Bo>hd(Ĕ5m婩3%wV)LB0'kԝM39#b'6v[=ǵ3gCXYoU| uk뷯YjM >yF8OԩȎ<&Zh&Ĝ, SA(ReݴG">)k7W!;799y>Y6+&Pv-+k1?Ujq5WeLgY+YWeF`(&c#׬s,LD#μ?{Q" ^9Gϑ3m~jtԃ:2 V9W GVPQu-u!gn'=ۆ+ݡ+-<} k{>zkT;o}؉G6T(6^Mf NK8ūXEZa3[Hܜb5Ng/G0GU}g!{Zu;߱y'yqcNxO *R΁3_ӱ(K@8 *& U|/oҺ6LTwiXQcQܕ;rW4vķ@@mᡚ@;qU( YKeD]K:X< quoxYR2_(H,2~tC8~C)Hlp<䝍X`\J6E:+'T&N%QHLbȁhneVzx(j4Yv Qh@v8SRTm2~xi(((rDGmDϵfo rg1ajp-/ְS]Uㅏ'O{pٞ_3&TV.1Kr>C\c'G宭8IOr|@={,_):=fl}={TG j%fPK2qrtX#Q1<٢M#ΡIڍu:mI"cQjH]^Hy'M Z6=\A"SpX}#rB[@OhJ0c m&8u$^zcч[&l6:%NY3Đ5Vy!,WVmȧa*י 3SP;ݤr_척)ױs99#`XgڋvB@*Hۭ ͱHleoWeĄYF^:v j}4ܟG[|ڀ*}\IgwAà@xlET6K 68e}X<ƍ*x"nBNO'ƴR$%i/lkO+(AO`} ;{ی6=4]:YЌ7Tjg"x%E &*H+2gd.>1#K>?=Ú:HvgHt#=d-kL\D`HNT }jLɭǻ!րҬ_]iaXgW.E_Q ٦:|kI؇L*uP&^3TT!nTXHz3ǖ0ocKW/AVY`M]9Ͳ6tbdLrKJl'Ud| ɜ+㾐I v &8Wz;ɢD2 rJvZrT]r'QecGqXQY l[$Gp'92]42'>3}ꚱ"@G U!bl&k7GȨ=t_M1JZ~INg)9e^q+ A + êtkjjR5[R:E&8ܝޛ0E=-fAЄYi/9Kܼ94>@  1 ,"h>Ȕ N"_JX&Zg!3] [ʑ+8ztaY1Eݕ*7Mr46Ӡ뼤CVqjpIet@pp*)!Upz{=>p΢D>cߥPa䷫Iip]$QzgH{tFH{̷d$qZ#sPb/ā7C`=#Pyyx4;3$_aYTJ*I(8}ZYbzsiXU2eJLo{onM|-|SH#'V/kL٤{ědmA*6,~5ǡsT3,ɖQw7fpW4r\h@fǫ/৾|ONr\舊Фo"ŀ)V_ Ůf.`75,m(~vvޑD!, vma솿yo!h wqV H_<HhF\$; s|vu\{Ƣ% 5ê-b>{/o`e|nm{~Q?P۫5]p.tcIx>SǑ02WArG[l+:"+]j,Tg-Xw+!AXR9r[ޢ% 0.DL ]GVdM,U5PJ{炩hZ^e^@lK?ӫUʺZx7"+D]4SlF0yҼX1zs2] 5<;<¨`j9]͓%^Qk6p#Ľ-Sl Yas,[>C7% ZQܯ5'Éw[OV^KFͺ=iq'7c6Yj~hsi*$2g-Q򫅎r `g9tUl؁']aTa֗)a3HG]-Eh1b7j2* +.ݹ!2B--bYOOc MnSTNd]#JTp@OMUˊ3\8W]eWyc֍) V|HGb{= wŨ'#x#N8mc(q]fY׵GMoiPeߒ{:yYSDO<PxU+6X~2fj.hDݦ/T} v::+c`>x+? aCY{S(f t[wmx8Ab\0K*2ɧܞHELGRG(Jl}8!vњa%C6e"hM86R2fz,e\Xx |}0'yGx))4& "[.ByL$ XJ<@Ujm]v6!%*6W~Ydؿf'NgRWT@U(6.\j0nJtBH?+x*c0phY> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|cendstream endobj 149 0 obj << /Filter /FlateDecode /Length1 1930 /Length2 14551 /Length3 0 /Length 15737 >> stream xڍp Ƕ5I6&mMtl;ę`mMl~sp9Z{avwU+ l"rRL&&V&&8rrU gkp@G' ;[Y8 ?drvik3+37?vQCW @G.bghaf?*cj3g?lƆ9CgsGDcCk\P;;s321819S,@'+GyCߥ1T-Rؙ::k c[##:@EJ`X/:ߛ`f`Wņv6fS k @A\ݙ`hk򇡡zCWC kC?S7 ) ?*>'cG {g'' ?jd6ٚmOh2L\l-\R|LLL,nlGU{J?5xL?X?>༜ ]gG׿Kp cgb_q/L `'ݏ3#fU*^zv&33 ǃ?g/RvؽwgP=6Ԁ o@?dy\7#qk?T m,=gِkk&.6W+l1#Bf}NIhhllW/0>bX[,w>V11[}-NG 1YWda::z}t?fgl?>j9qF?Dg? `b!?S)_d0*C,F}T/q}4>|Cy?tvh//H_ٿP"{؛Cf/_#Wca~df/H___a.n G G ?Z6NW?4[3 j{wgaC쿊uW }f-\݋|@;f)}ob[NZjh45ڦD{:vuaٓ6`51:oVtƦsܝg"!ZϘ.X{WX/uiκz[z:(t%xc.#>hu.um [)\=cr|Ц FhW3x~3Me';_fId ~?唧 ti:.rOi1xz%P0p4]h4!ޖl`5x >kLyB˥yKwn"'Z' c>L҃5*~rAƠاRl|@V8smnOD(F%^7 g:7*ZApv'NGniO7m _i{$dTsH Ig1_*0' 东(>8-4ސ' x&H  YLm\O0Uf]~ `(y'_OР `wZ^3)-4ըisM}ԅ8be!3:,ˆTG1p[V"|CIB~|9,dGhU椹ɤiЪy"fY?_Y}} ~]~M(a4uԝw"Ͳ#{G3)Tԭj,+*忠)J`176W2K/7vH"i!-$(oDr)xye) 0^N[ͧL/i`PGq$ei E=vR~Χ;:Xz` %gtc-FbE_^BNj3u>g&o}y$ DUD4eI.=?`⸃ڥ5iLOy#Lzɩ$I4ǹZa(D[ӱ@囲gBVP[b(kI0[NB ։A,B'(/#N]Dv ?E wd>r,s1-隞Bi.Y^?{/zBW8!J5,oֲ#Fua/CҞ͒IL.Y;*MvQZДf:59ZI-9sP㬃fUvt9(7(4\j7,{ꊣ`J-uz.Ɏ{ոeV1UR_)q |skuwɮN5C ҁeV!'~bcV0:dF9*P_o+`ՏR+RYB%4-e: ȚT;}T5R y hgbZsu^2}UFWcO.sZ*y,+G7+tQn9VP(%/0}Ș6ht%hyHۻU:B>J5ե*6ƀh, 8ja&YYvxO*Mo`Ƈ ]eJ X'& ̐r7aOv*m@"r \t=`s&s[~5&"`x8>m퍊PVXCFŢ i{?S;g+]IM?9 -I">OձNE**'H~egO%YZKCl@}oe8tiI ېfq4 B ̏d)=Bkw&jֵ Nkp:UWF) .K 9r0RZ'< 3hkyRi5ܼ(\ C$q>sb٫&ArANџ6ֻF/@F Ujٳ4giqi ,MMeبWW3vRruv& _3- obY׵Cj!WjC;F2ᵵB_{Րh7ldԪNqXx?`o3:5c6>:bh}yAK | fxi8y6Ũ QgD |xi6_y%K.̾BE`ԓXbpxGTʒV,Ls~a`hHjrfBƚ {@͍#sK H(^Vs滲SqH䘌3ڹ\'p3z:wdB6e"U'었R h'WBKD Ex3m z>y8}]5d#Ds:2).T˱e7(ٷ:֛JFFNҦ%6ϼ `K>ʂ`b#Syps qr!3<"Ք + " D&宷΁mī[9YMqy {]LSPxHAcf i<Hh`V??2z?)d"vJ=TT jR4ŭh8 쪂0A_M:4xZ+"Ko:t=88kV /_5֌~WU&i+=ܰZu#6&gsâ]:laV¦Gv$nӸXi*׊?AR^D_]|uX"yA.9c맏@ :G%69Ƣ =<'p%~jj/BpE_cL/s5]1GjSh#@޲d3rj;tY3{-mн' ANDw $}J` ;Y0 s'D~xf-)YjwcM3;}lwN]"bz]L8a>q>PD:{Sr-[),Mj핷ݐ甃W`+b]$%e'L!T=v?Ϯ~ia$Y.&76(fFƿ t jqqݛ+!e>]v}ZѦ+j#r-/y1a>wY؇2,Op01.nT/ϡ}u ۣE [HCl=tM%_x<$ WII ޝF˺'2,ݳp?y!xܬ"yGNvT£4n'FNL*z9Vaj#msU˩`$iDFS -Sd9+Ï}ҁ'PTm*no?i&̾L7uy)iŠS%z!!EhW qx!p U׶3򤧮$_ Sճ++_W)21•}c5܄ nmu9iݴt%]WyHnDt@\]eLҬByigqʒ<)Z]Q]|*jJ锶jī;$l 3!;V,6v<<^'Mհeb5P CV9ˇK-?i/5LqϚlGe7o[_紦d. =+%Rt)jS*@L"ec ~  8/J6Cݳu `xB%B*j} C0%V掷dI~:$/q({6ks2>v{X>h%n<­іw~ˈKV.elg7\$`S!j/}~w_!'1;y_ZH1JyNi[,Q@MqR@*WUvAN/)[٢vZua6|N\zKM"$`[a<VTXYIF4ObhSٮV^ 0m{O{B $]e5lOdfp2\_,p&byV -URWubs7&Ud+qݯN>R xtO<Ϛb,f`3lJBUb^#XvwdVZ Ŕ< ">qwP kd%Vl!b9D;R`F-7N=pO vZsK^U>X5e[Ge;ggXARζeЙ瘘\`P'\iX k2s^\bp}jW &a/'A[V9|,b)[B j.q:$dgq7٩|Mﴦ v^enui>c7#ʅKf֊F8:$qۿle4b];OK"bDYYK rޮ2r:% #Kc,[h|BZaz$GOd N17v&ԞG_0yXHbm5HϳЈb%;s`{dHni=g8p)C~}. S51<t h6zC[(`@Bjԡ,`f}lUM$o}KBa>҉ @%}EWWÊ 2oa ޫ]>Ҕ0CSF;b 9PL;JDB,0 D` UcUs G+'1‡58_}̫Ō¼bV23%/>Xd |R'? c٢ q<=`S+n#<̤ AyGttKrV`4˱4D-1?L >uxxԔh7}1.h>u8dsݭG@"WR̉q)º 5DЯ& >ڛ$z  >֪)#&JƏbʧt]_v:Hߞ)dhWh&Wz#4&be>T7E'߾akA`=]H~vݾw]gZM~p+p$4v<= ]=RlM13씜r:}oP6hUԕup/'п4;,Df0dU_*Y+ x%!xx^yū&1:gtuxBĴt4'*Q>;1"eȳR;,DC+]bSfH!ou?m ƍ#iL$i3u/%2,_X"Od&]e/}Ҹ!~O=&f\Dq٫wgVaRqsL;. &UM1smS*8c_̽pY\;ɝ`cj1SکKW79;F>aMGRL:dV]="2Am#hpd2nCN }*l7LPXl, 4 j#Qƅ $|z%3[ %{b$> 0 57$_":0Ii7 m_ Bʉǻev`@ PX ddʼ½EHҦ*#p)f'dn20Ot+\mF:"-S`&6jGP=wk;DJ,@[K3ﵹtа%,g0h$,AaGF@ }7$Kt$Ho 9,^MzQbn2Ditn ~'ŚoSRS#3hr;K0weXNaBr RtU%!Wu|oyPGMʦ92l-z4d7g"KɃ$ =_fT5$l<hKjy֎oP+vzˍұv-/{j˷p3jS9|g32}okql0 F)iEQ^2=cx' g"mi٘3aEP*7 ^8p"P{kهC>ds݊fLih.V<PbC[MTx͏8NJUs:8\m?/ϋ`z ׄ Ȗ4.]N5LkD`E]^ Y&$&Gp9Dg~hފt3ۙHno%Y?3MӜ 8+%xH"ETIjx۠V\ MVa|:Zece%#+#VAz }iP["fbXz7ZYwyAH-u%\"~_A_z6ըCIJCֹrGDW ESs7~xi$>M}4w( d9'Bgtƅʌܦ^obwTRj|:cڟ4W;Q[s-9d)'RASհ'x^5}'̕>(t"k̫T1LJ8х Zi>j;¼bzR(zy *+/%]t頽yC8a5!'Ϸe̿7V6+@Yavnf\P|"À~P!{954_&~0g*ڂflpo<ƩcJ5o$1>Tu~o5Pߎxu?#˜it">R> h1_V}vqV'Ֆ Gt<d.pRĽLyZsZe[ٗ7|fU "JC1 o79l|<33+ BiwlMP{wŻ @%ђΤ$]:f[ܙGw;P5״CF wez@)]sP*,B'f!e0'S9@dKod Bg %*M79Zwg:[법zNzbRKf>?ojCq rYQDhp{Nj ;BE]SmvK|so񹀳PJg:!+D>)l{R65O'b«Rh,F( 7y=97S0JTɪ05$:E>.WC1cyΒڦ+9WkFU!r\';)cz,==8Cfӻ snj)'6LjcdQpڦ(8W6p a|Pv{IAD#Uܛ@/=FK.)Gb*7尓?y n.9j#0E .YTnzŒ&&F.TgUT-Ҫn^3Y++ɓG;!yGe(j ~IU6z| R#P $Qu\5|\ %M0X<'l\ pw v0@v̫G {g:2Vcd.t=ϯYF?,9+4@aHݕ"3 X hk"o'М'C8!Y~}PJ6Хl {|1U4,6$Nd1mT< RQfEI%H.$A|޳ÿȷo5[:CedBq,׌*,N[OEwG(Be| TqDܽ]9Ī縵oeQf qR ^G]U4h=_ Ij]693/xyQfqre#Ĕq<#R>TO8c64}pAUe!R(V,8Q+=>t|V(먩,l$*:SS>Zs( ݝ ^QFL~ܶ߈K3HOTR>ί'qKmNFfËJ\h)Jui DJ}8L0Sv25IR*%N;MҠ}.@ww?Vo|"PJC}2LbZ=Wy,詎@i14 qW+`UrWj4wa5'mڒ/V#a<Aw4s;G慍 $Pz3dnYyz*E\+f&|&[wT F ta([+|Тňk,1Y(3.1{.Aoê\G-= :H_HpB$,{ɋ)p~WbRdv'ڴJ]<V#NGg۔֯M`- < ({^Z?}97H/%!{ARg6TBPc8 `}kHnOݝ3|9^}wrsiƫIeb.O E:rݩy[U7Ix\42 J%nYP![+nȋ9t񼘞 nF28R͚3e̎0!Ӟh ڒXЙv}qt0ҙ?.G5>1au{o}]}TRn|Gjn(xE>s|sq肪EbcGB0η*!$=ECƳ,fFY4Dm"qL]hn!QMyH`uegvܱkq@SgL ӆdk;u޴n@8 ɟOy"}9_9ւt˓IOm2~; V_ԿL]Z>^Jɢ[Rp.;;}Yŵ%4/[靻mpJO.m-GLFEObP !^ssꆶrW`K`0] xAsMY;#D^ʾf-DYsCCEDEjjsm#nOXsbḧ^*:UkKFCΕE\2G?\{n 8s! X X[N{o4Nwm{'4D-N1Q#.ٻd!ALHa)Cϒo&,TzWKF}{|=}sqyHHo~E]T#XҬS8endstream endobj 150 0 obj << /Filter /FlateDecode /Length1 2263 /Length2 15494 /Length3 0 /Length 16845 >> stream xڌT%lgd۶mMdۓkɜMM̯y1Zu}{wDYA(` SPWga03123QP[#:X9Bh!7v0TpȺX,,\Vff:8čݭ Y{ G|PXxxvL Ʈ@ƶ5S+tuueb`4satpxXZT.@gw௖vGPrBZ]>\̀΀5y#_2 #@V;:9{Y[̭l%IyFWOWz_ƶ.V&n Qt\L]]]l04K؛9]]Ohӿ?64쭜܀2Y]lijWu/GJ=8:8?Y?n@?*̬L]&@ +{??@w1 ~03{[?1ݿ[RT``ecpq8y8~VdVNq8Uߌf+' cX98>,;j{L.p)'I/ѿI0Iq1$  `>bAq?T 6`R>bjAQ:ux>z0/baHobjG?#LJH#agKbggd_Irr?ݛ~oCi gȏ:,T%22l?:SG  vß?;Q:~<9@s?RKu/WAmQ6mQ*\f&CX> [c|$Sǒ1z8CA?oV?9@'ne/ĺ>žV: ϊst MmvЖHH*i[#tx{Jdza~4TѩH !,䀘f xh,E7r!ǀg`xA-K,CFyR(WBZKOۻ9wb:8bm*uV\r\]B[JѣTY%-\fFAb߱n_z2h̶+;+:rGwav1[D7_Ý0n{||<<պ*%ݐࠋR2QЋ2(Fn?t~]Xct:xcU0-Ae+hqBLXvͬFxC tB!װ ̂TH4b^7'skKA-F4nPQQA`(D$e~ |bOTdKGEl ,їZ>! /jsA=qUzI+uzuF=k~jQ%dQ5/t*=}O1]f4|_&nڰ?18yShk]:ЩI<[GdtGw4a<;?an;5P*9Mn.`Rk=;jQK嫝E%aNcZ7B[ VX10:Ⱥ³2R$#_F|(Uv]._}C.ƁĒ[%qWk2%;j|.GvfSPK73DN=ّկэB7&;o+`pfCFPЬ/(AW43CPME(fi}UY;?7[sRZ aD3L;EiOKǷ$JLͶl #`4PJeIɹ+q 6&ye?d)`g*ke{dK v( IYwM1=Xb^ƏLdó#{Zyc"/D%\<[Qt;<[]+QS-ԏ!yT߯fwX&{%Db~@ASW!*H7|~.R\eEcfG^IUjVXA-+ٍȯ:?hNyKAD*p Rt CDmr)Q>OVJf]ul?]4RTQAe<Q!!R fKl++*DI" s~b\0Ҏ X;,dywld\Q1X8QjT]}SCbăd7 ae pT}6Z$hWˉDPGGQQ9t4~ѶTzLBԮ|#Ž􀻥 UcDK]|23'Hu8 #3jA^F3 9nOAt]yvOCR][*1 'T;FRҷ#XEE{kHh' u `oz-͘~tGb8>59 ȁQ^M( PrpQ|Ѯ@ fWKWY@_EI4!~p QfYx. sRzIBmIB+Ty*HU$Ո.md$1 s1m̈́١|<4 S[-3xy@{]@a" A!m.%f=6ߘKgfmCo[)ZN]>뿌1<}Bd߽Z뒇|YXV,)ڎE-wDפ@G9]g 9Pw(zcl}wݫ#Q8/Uγ*m})hs75N-7ۜxJGmX\DC94ÁXTFط?`Iaؘ<nwf3.3Е T-`,љ%ZCoe+nPt<\Q^R3}o[[e}=ޣHJ}ɾUoޢE-"=SMI'1S@GuzB/γX6BhJ 9B:NZF/O$]iqL-$yn~jxK~%⫹}*zN _6qk40$ZUcPN3bDJ _ SkTRYldʑCƵaDX3cRwm,& 3VT0Q e}l6,Uvpda=Ѽ%n5͍O|pC;P[ړP,$Bۘ;m(XdDXBm3)!j@=<H`t˒&I ܚ)&dL)ۭ(^$6jʳthy ҹI -7nP&ED g_<Ԉvfg2;UAMZRF2$W: w21z,ѩFs'A℩s.CMKXSmft Eoi7PëE4A1G 0G{LHTjR%mܑY!?y58a"7$@7qݟ2idǡ{+p%R~N.ioEycD|xu}S~9Kv,,lH^S%Xa3jOTzCqi>(LQ-j:5_ڦuwZ^]#oaڥ\aA3-!=w6t앎XwYK+< B:`IJ/6sӖ<ƮZx~ [Z)@+S38ሢChiu̡qM _ QmSk dڸp| ̜'p< ƉиdfBzr}pNMLmM`A J&dIBՃ[T+苉ΘDAv)%ҡ{2~(zhg-go[mubnh[r{75Ħt뷏mٹMr>)J04.gEj6C5ⳫbO7\ !!;ɦjRvcjR?LKÎOr)= qҊ 3Nƭ]uv'%U"J:^ڵQ>c))<5pTHTʴSĬ?AD1,P/ɜM1YquQW9f5oW1v]bHRJ#Upg-?[Ve}\O${T4qrwj;׎< hW-:-Vӂ[;\K.a終AE2"v1PvK, m~;6/ fFR"_U2j.#2- h+bXw[rj3f'.8Og=' wìK`{Qُq`}zP&U%&B(}1/5ɷ̳Ι.Yjb5`}^z$ %,87PQe߰eAXȲdy)3dCS[ͦte՘Zfa ~S:n&-AB 6? g~I ο,7NDWY،Ip-G(29B"NZ=R3 l;s-h"h҃uEE(a}Q9cTvh$k(ZMdY:tu΍@7x=v[^aIwrn\́FC+ǂ5[bBow'B!JrPEEOkVQ1z[Mga5_ߒ9j˨="($xݣ"GIC[*.?$xbM 5!Mc/.IM\tG ˲uC%3ǖ'<*]Y^S sV8&^61x>%QwRX "B<Ɖs8>OO cw~n9%q4Ʒ CMN]*YNFμr?_o^ J3 Hmڜ1Nu<]XyJ[ zXH4EPWld(+R)D-08`8=hrj_-c2K Co-vXMp[Hd`O\gj)xDD}zzkҔc-/IsGJ0i蚰`N) _I=2h8EqVciG޼Az~L'EƂC[/囕9=" Wv|3 <jgh>9 H 9:U6.mTtY\4!4[vQZ*{\I4 w-aK&I#z:(Yp߰Fxjo*HJ 1<1?+!οod)H$ `slj6h%O)_?Kvؼ̌9 FP17]QU$q[r͒4;)||QҟxFI-&fHy6-@B{zRW 6GM!$ W ?KqFҶB%/ӓK0K&fͦv;Z-l;(t[+a_jɩrQ=*v!|/!]GO[@/nf}>O 5^x.r>oT^+w,"@}KMAGc_=DHeхR}kwgXNT7NˢGe [Ao,F03 LɨS>ٓ~(HHܠKzF}~khׂiYfR(ctB,+9B(@7y&I6~T"2S~349-CɩP[n[@~Κ~6d=oo蝳̯ EKtE[ߪQށ> @H7s;qT~+sWViFHLK3mm[?P]`~N"? ,]Y7i&鷈$K#b )m[ĚQjwia?#=#aræcK5bi~`WiF#JjG UBg0XTXĊ]^."l b6/Z,r5Y˝|[vӉG`q[R%{8W ƾFln^Tw@d.1旭xP\w7NJ_{ʷFH"`>yz zУanR[W;1[YCoLN25Lg;GdQA#T[zmj%bP=kqn+%> vJTG9V]Na,lkС⤒ G- Oح+PY !a4d)׳O(a*}yZj=:=IPji&} dlڜ8Q% R&#}}qņx]ŤkSrU6 ?ecy02ޣ[{m?䌱:3r0* jA6uP߻u6>:FX UnPTQH|}B3Q5Zx3) )n>.O`GP?G3M>r~y3nRECD]Nb/{c( $ 8qs/GG3Zm+@e KRż5!m%f[DABR2Msվ.%5FW˴({V0Eή]#)=^0{kw=}`/{UY*k",\4xГr(hu,]zv]saj!KtZ4z s`^$VO$k4Y䗸t8PvM\{S$XЍ 7W`E4ūNpA#-^ 'W4O]8b>)i`DG()6##6)ȹnkMrҫd[$nQ~4}9s'9N(ʔ!uGCǏCl`O{v_(5ngifHt h@6lE~!4(>XB(Y/*qی՛!k \ xg8ϻęYt,Y9JD6,@ΕϤh)@˖ӜPP嚎r$Gc͹:-8/[ Cx@qU )2VW3!FFWOA*8h{AMm|L 0nvDY Kfx X JaJAZ#7G7>7dt!35B^wvJĤ0 Z;9_>%ֽ^@/2cn}J\gwrncJ WR R8Cܜ4Sꌛ KZBn`@hHeU>ɩذ6Ng״i uspd=d(ޭ,aWuK<*o-.Vn6XʠRDEǶ,'T~߶c(Y2zݛ){76G~W}to"W{(}pi{X_0>T)0`gD0*:ƪ7Up {:v۰Qj=^UQ2A0w.E#hy?gzBw^Txzc\{rяE)!P9tw@f'dro5+>DSxHea]s%lyU5/]cmQ+3 d16>^q;vM+TlǑdmB<&ӼVl*En)0v M#UIW<wӤ%2YWr$Ei(7ZEED.xeܳCsHJ[G]ʺ+LLFʊa1"nh둊I*!9䙊Ly чܙQvUh0P[{>i$CXMlQk +Osc 3ZuGPa+ ҆Eލf,AvWֱc}#gLZ@ %ghryr6{'aEoBup VgLḻCo-u 83Cw(V+Pڈ 'ƣcM*?ŝzӣm&P"[ZM˶+'Eϡ]nRw{09ʧ?7FI#'1SR lgӞ8¼pqQ3 uQK=ғn:a#Av޷e(Ŗ"cj"R+Z0D;$du>rmrX`RYj=|VaU9fhӬs4#0sRߙv6UCIQ*F\JEMmv= v>D&_-4~_17nᎌ("6*W;615&[Frpi>Q)![w;#ĵ~f4q&*Kaj _[BvCoEKH8 %ZQׯ~h:7-A(пR\4CIxwCb.@Ek3H@5 黣-ҙuu0ˬ*vÆB^tvL>B4&siiT([0 R M;Zvoqyzc{f:{\(R7 H_+'!,_139=H6QVʃ3lkl-6&*j :ʦ4XZ`vS2bʢUQ3a 3LtP yVK82?ds&]+$h68,_flT{5|SŜ=zg}rDLLq+ʄR3-,C]aIs'ODwU>6ys<}3K%b ~߳;]Pd$0SG%"D]bO:=sr=WT;RI|xÓƀl]L0 6#Ea1;7 teɋ$Ugk-'#-= qEg:dFCQ-! PHR1 W[5P塓7s Kػ[kg[Ij DoE[wj_ .$nR >ӔcՀ߽ƾU,xQ8;zBD MDqgJbn46r,tֶ4>ǘ܀_ ;w\6Г/u/)K9m*|jN YPRsM d,wg3.!xJ$17nx4,BośWy%p~[*K=wPJ~g >0PZ3I_vD 5=[y4k]3oGBz—CO$Y_дhe2hžx>y^ k0a3p^XnR?Hj\ څ@1nfV =oiYY4OFk\שM!6LcGs7nZUZЕtu3'~TI:)@2PJUo1 SJD\Zб,Ocbn(/+ZFJYEU-z YtǰZ[.Xx1R{5-UU1ֽ[iѧev~O^M&PԦ1n1~#MʴL,];ݰ)uC@Ay0&e%3V16vKʗe.d}:۩i'O@rG7u@?)-YoCZOAe5p <+=O#ʆ0&r8ynSzGۋ Tq祘*I})I]6LAVl]$ "!1g #o0l:9 {)]x#*7h?/f& 7׿BgRŒu,Od“3~¸,2lpk( .i/ቾ+6 |鋵֍İmO>[k?i/F$2кiAkK2\ 6nfgs|32jeM*5 k2;ЙG&޻ĉzT} Zn"{V.w(?Fh!g!4l;L`Nkt ?d#4C L !RCOYaqn^e|_bN\ V)%bgp Ğj̱/H#GM?ּr1wGd; (FΡСꌪ.҂y U;aA%j@y&^B]>DU: Z`S[ICI=Abմ-rD+ٞϔH SEb?R}xu؆8Iz!3j+0KM;׽+fjCN|ktۇ*T$vSEmzr$\W"[&;`3hfYq50P݅h> BZO4#.HE ǟM 6SUR9hVK:>q™v؉yTX0885vky*|CcJFu4m70UzO3&(:7:e(E΅m0F[& tʚϨtIfՂ z4$;qDՋpL*ޞ'R{L3oĄ6qRz)EƫW̛|U%ǿbR¡ Xys=$0_?̘fUԮ2|'d;O?gm\wJa9KnK-8oJr`ZCQQ?Pp!ԶǞ@`>Rrb(=T[FWi1^¬h, Ѱol'4%/7nrdkxMTd?+M>l2Õ6ӯr k>RJʆB,WF+ssr\1v% YX8ōIOu$/l 9|8X(!2b)$+'_?)n*Z~uyR)K7l.k4/r_p6M$҃g K.`yAmO9mz|Ђ4T?MMg ߋKs܁L2 R:}GLR=g뵡¾TD,j>A^MN1@@)|(a.4䜈%'u l:~6Wn|.g݁򊦞  YBPˇl꾸#ZqpD+?="(ఏKctUrYa m6#hPBgbt .g:]e}]-Hf5'?=/PRL៥ ~̈"z}gIԋ3ؿs]Q[},suw?QA4ڋH;j`0Izu!ARpyB9>7'ppw5[MΞ!3 ެ |+Ϻ q2v"ry]{|t\\d>%i.Kiwv2?t#*JL&8SegP?UaU-RV,_Z߳]B ֬#?wm,f7 SE7EDݵx8ZB5zӫUR_||> Ojֺ<OHxÑF /5Hxu2+E.S3+l8G.0,ȓc!"*S?_CwZw@5 iB0 <9 h.5}QoXJV.&b\ F n\ }ۤE屴{<*m=KYhuճx{dM0;8TeX.j%.Y: V)i(UԹ`ׄD4Tx 3zqdiXm x@cc01:aSW01 UlZk{kŦl|0}#yM FO]]K%ZNMms'1Gș.O sҞ0?)Gb'/S-0`Beq Cb}P[ mՓ{}w{Zx,oIľYObSirD~k^hexO'XI`g;acOپ;c BpOB5-Q`!KADd'EfaYȲ)/䱀[Ie?]~P<ݗ9Q5I\5iK0FDQ_$k^ ~Mb[Xp43G@ z@{h:9{Gu:I :;W$εs4_s3vKErw^YU~VvRHy7͸qaȀ^UPWF,: Eq(E8EҾ8q9#"Aj~ʇѴ$#q e> 1Yh ]f iw,^lhL`n]\CR,]L17+k ½,ZQuJ:XHO 7,9 ߵendstream endobj 151 0 obj << /Filter /FlateDecode /Length1 721 /Length2 5043 /Length3 0 /Length 5634 >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> stream xڝXnF}W ޸ܼνM@KZQ;(YF>D^mv93''(`t5Pd(󙆡d5thMT%~rPW惡*3S*^34XfIV>?ulҡ'H-O^W8ywnkVs_նb2N]TSy|LkzԺ to˫8{|(ү0?Y:%x[:j.ZpעŶ%t0>0|1-8ŸM/?R6ē2[?4Jג\B3qj'̕5ٸC y#&!\q0K„DOD +.#1Tr- 78β\cag/J/q}baR}x5N ўg@u]!U3CTɳRҕ2Ģ*%|Թ\ ~ {тեM@٩w(?%lз8묺D}6xi88=*\U2_߳tI>{ISx4Lrȃfnq ܰx瓗Bu~5-Nk7.6e\EVA q\Z.œLa'@! :Jf&$B}__d=s%` T$&ej㱈[6OޕT_B 2NX~xuH0\5HmF)Hgdmڕ ՐfQR(TD4Վ[d#!0x8;͵Vʜ ׼8Lԇ󐭴=QOoVdzCyieݶ]ˆ''Q;d\)NvtB՞,CVRR]8 J4f VA%ghyIV4c?!r4B$Aa 5Ο4ZrheDS\K@oEqy 8has:O?7AOzcMǿ)u}e!fθR,Bܸ]ӵsn1;GN|A2&N~;o#X!{\ǩ2BH ԗ0gbGd)@FhySDe%,\}Z9nHK%wS$#.}v %þӄ×txXz`i?P{yPI@|nn1*3Eq*jʣ{wnȜr|)8ɿS\!endstream endobj 153 0 obj << /Filter /FlateDecode /Length1 1465 /Length2 1875 /Length3 0 /Length 2803 >> stream xڍT XLyODjIv/ʔ9iSOt]L3gh:gKӨˢȭu)QL eRR! .{&}}<ϙwu=l,vP1[Woo) !|o|)}vL!tP, P)ftd>t`nj@8c(, b<  }_e(ft`Lawd1X("D(dXl `$ F!  䔁3 fB!sqb&`TP6xwpr< v ʗrcB:d0 h0 \;#$Dr +|f2pL` 81~ &+Hebaa0*!|曖+y-6]wd|?a( oklk_D4P4hZY:H^[J)oG8;)jPe??ě NN{9dӽ ms{p;Q2eE)/Mʥ+߈/>ٝ@:phhQs<[;o[c dK-lїTxolaMCst;M$˚5 &w+_ȦO웨2|پnա}Op G4)7v Ѭ|8Wd8jFvlؼ|(&p%Omg%2?W[]yeZ3SSydG=)i2-$WĺJ#(_\׆+6h/uq{;H)+Բan@VZdD⧢DLP=@Ovoθz@ǠB/~%uSh~hn}ɵ˱&Cz"j >]|NWǒʸ'Rj+E~)!զ+̲d<="ys ~o@jФHG6s5z\]oN7ܐ '&0enyk1Ź'R_1~ S(ۂ=6_K;[VUWXӦ~#=;7rO}}=;KUݜ{)翓۝_lC՝%=G.yg<^VoI0qm vgl-_HSV .+$^1r9֢xؓANeK575Ƒ^j$cOu־xgMϤ3Zݛ;Kt+2$Mʽg'=_+fW*VD#+`]CH{vpIEcV9ݓ<;U,HSf;YI;fo/LTtHEp(,1컭m5Gl_{ ԩ,p>nUAVR0 MDZS-=j؋==#4b0[{4;R'8_rn]Ry*sͽxKE7Y-f2&JY.N\(vY\6aϭ[w,|D?iW]1{B5(52,Bxeo0JPI_>9E/,/dMnDVeU擱E\O-N kskazRӚh;ᚬ  &+:Pc**1UÃw:֘oVX<=3m\EvrI:H%$" YTs[5 Č3.D쌣k>e]u%a.+9'8n.W*h25nV>4םD{9AJ1P_jԒ߮AYL֣td+~F`Rx*weo;~<^ۯp'19ZY9xZ=zsjl;zF I Ք&hsr4Y庆̍tf&SIendstream endobj 154 0 obj << /Type /XRef /Length 128 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 66 0 R /Root 65 0 R /Size 155 /ID [] >> stream xcb&F~0 $8J 3(F@ƅº@:P,0HNfH.]i "?IFp[DĀH# 2x7 "ހH')q 'XV endstream endobj startxref 191583 %%EOF Zelig/inst/doc/probit.pdf0000644000176000001440000051402712061700507015077 0ustar ripleyusers%PDF-1.5 % 37 0 obj << /Length 2205 /Filter /FlateDecode >> stream xڽYێ6}h̓fě.l &A]$ A2j[nӶ==*%Jf_,`::Us⳷ڞI#Lj-8l.4],~M75iSRu.73 ]noE`l^* "K|u66 _[,be=mgso.sQjf 0-yunfN*T~,\^E.Y)Leɜu+)p4HE2iZZ ؓT3OU]r]%}[Ln>|,8r ñYR/Tl^:α@mxp JQ߬Gp:{aKvm$b]`ʊ"ϽD?9u"dhquǒ$Y]H'K,O,a (·5k " -.- jYrXl0T W\]lqZ!p$ C+=k.z<~!wu;5?[`ՒQa=.twaeBFe<@״9юlKrzh إ;8 gG~@*oR}|@Zv / xB[sCB/\T {s8ϢJflsl1@+MRedK=KRhiJ:^8ȼY^xo+6pd7ǓL! 'UB2a{.@B1F ƅ#msG%DdPem*`Meگu xJ oF{Pر5^L\vK'w1"阢[VpAreU \k=25W k<YrPB= ۬,x"gsGŁމol'X\xC=Q =H`Z-(hTH|VWk D0"+|z֑>.g;kh]pqw6}n肠WaQ'0kAƽ.^eo?ZѻsU%׵k ^\99B4{yS QyDmtzcӱ+H|+nFK?K2( 1₩G2QfZ6iq#`q+ 'F;FGFӳN!!Ly!DpqZfN-㤨U>,Psc!Q :ČOyՆ tj(*bdf \ p2\dIcCov$N7jY!^5yu[5"F&h*4|4e`U>bMR䙞XQ7i|epR+2pxVsخ[wԿNEǀ{=!^)bxc~à8:kI{ ePMȦy_uM*ugoK(.It˚cM[+-q7#R 5Bo7iq9dIIȲy&rOC2=O,irٵ2/Hf!>PéAp;%͗a\QXTA&N1-oh)k/+DXn NZ>ԃ=G^V8f`1>A(Y"p&2OuKy H V *"Miq@ AL6 e_ yF+as"Ne|4!uu`\Ld^#cfCB4ZpdKEj?(GLjbpi?\>a۠'>7O&ah2k7w{1b|cɾCjHZ|=re>[!ȷc*x67>zm2-K]\uw!>7ùJQOZ'y k|h)jOׇ5]ă?ly<3ńrRhs H)O/\qϦ endstream endobj 53 0 obj << /Length 1640 /Filter /FlateDecode >> stream xXKsEWaUNERE(Pʒ%h8=}i$˦NV;==ug/^Gzr~5aBD+CP)+i)/>M.ߊ כk[U +Ը:bSiEM:GW.xRCG;10-scԷ8*?úsdZap$CJ()G"#``[o[Nlǰ Ѯ'.DФKN O1OH։#+C9ҵUl'ʇEcQcU#0MXJ(zkd1 b:̭C:.IV,M:}qI=%!(K9c'J7ie/гpW'd^BAi.^<3x> stream xZYo#~ׯ !=}lqH αއ9:<Z>g)QZűIsQ/_I9Xe_N*jbeBrz|U&CO 7l..o~vS[5"l.t ϚjҠk|䴞w3QN媇Ue9hO%/z ?<ԍƑ4h+V\if^f a(ScVK9I;_n݈lM{q w|+<{鰤!_F?nqC(ҸkKD fG#P;4!_0Hˆ9Ci>xnӐ< 6jP28^E'6OV+͓Poxjh26:ڨ4nE(mYQr 'K icm3_h#m4wbgŖX21rg7pC~Vi$q;ՇY<$+/#jj$OPpf>z{{@#5MUǹ6>3a,J? ͺӌ{(IFY aPuw4|\q/UHrWƤK@Fo!.T285<8 rURO{+.\z,g7¯~F$$}Mt# v(AMIOsAy&uk{&Y L7b ο9b RT渁rg@~x#LGlevMvr #@QjWL13ˌ[{̇}8Y3DG9pO?r||rSY$*qywK58nZ?Lʙ& RTT|gNW׹b o=*kSؾ{X U). PJJ J'.~hj*IOdn8#uc(,tjھ4sɋ?0A[!K= ˤ w l];_ bkE=ɼ%wM/ۗ,q7OAA5ihU.t_)]z:0 ȃ12Sk_,~zdюDmlPq]X V19|].=꫑k锬u,OCч2qfSף?Ѓk>oC2 Æ!9^^f >~4MrRPQ~8?KoJ>c\@[I,@q%ʲ(%B5M[2XnAOFV? endstream endobj 73 0 obj << /Length 2272 /Filter /FlateDecode >> stream xY[s~t:pFXc `77NI5}HH)"!d'綸 E;i@{s_._Ƌ\INsx&2q\-0ЍF*[DܿZ` k\wtѼ8U P&ZAcoe&hJxh+U;nƇr/ 8ܻ;VVohq)q24K% h ur{P :?s vvص?x@G!u ~M"r8T<9TbTj8px^]: CT?W+lʅຊ~2.},VK|Og'K?v~5s*2T ρ{#.x!goM舫'IJm2?1рmư 3K$seTnY 7Fl,:R@ke*O .~'ztĪx8, $ ;B ʴ0=w3G%y[z$1 *6Ne}{r< [!F!f2Q&{93l㽌cMQW"3 {m#F)fF=d,iwSsd.)?ʝ)m;Kt3DN|CJth_hϚ<Cg}A%~@l7hjr w`3myu &+Oǯ×ߊعD# >sѰs `<5WDZx f0:UN 7Zo؆ v7I@O%J{SQ~n&JUC ]q^! &0G;M"yy[7vSZ$V6TU8 ^x&il @:l287Y,g8Fd飒w)HŘCtumYw/QBUכ<% H/ O|YfH~ӠAUmxi*r(Ap&N_J;׉!:l}4\+?$nND0gEDf>6Vrv}P;`! j G^>TÙz U6;4GGBK!\χ/&nZ^sv\d"F 6e "h;{脢V} s+b;58^GHV9Xe֜PV t\`&է5,!|4~׸gՎzlσ6-Oֽ|ZUDԙݗf) /I{ĽTnpQ *1 g`IVsl,>tbE6DZiu G"jlc6%fj,B=d>Qy/33?wċgGE$gღfu^B ǫ܇6Ʊ=hcdt8Y0 zS jI,WmI>a]_VJi](1@O8#k& 8E8oo)k'ݛG?/wT+-gB2 @ Gƹ*j(y[LPCgCRv$0t]3*]`D1&,|d?YG|v79,3Dy*&z(~3j=5IM}?ckA2iLOYF].QR Y/wPH%Šh\o6k_(7 !nOh}!dVA9€tTZwL70x聘[7z2(.ɊY{ nW:j(PY )([V>xTU"i.ߴrv;#+^ʅz+/&و}yݯFJkJR%~[3wdli=|q`Pz nVG1A-C)_ކGޢ30fƟ{MNZ/ ycr'yC=n7oOr ]oY5[+l?xc:vy56ܠ`0;JZqkRhu!PRkIjis]sL e9o}.\nA*рj\/S" endstream endobj 80 0 obj << /Length 1891 /Filter /FlateDecode >> stream xڝXn9+tnnf.glcBLC[jKKnA-Z` ZUON^k;Rxk`|5Z W:`h<|.z8dPf _W惑,.%a,34ϖ;WHlZ܋nU -tkkG[4®C[d,p9TevV3[)'V`>-yu>0>C{ 2@dN@:%;<]^doAxWE!X+ $}"JD>![[ xr !0 0LgDL:8CU'W}#"O,L&CxvC0Pa` 2{VJP2$.(o |T9x ~# W-]XUh!msvяNgWqIktϿ7 옷P(LzCJ0Kab90i^sq͌9ϟEC%\2q#e(Nm(߲i @5 Sn硋.?iJQxeLFHHٛz0Z2w"CO  :x&  __R1U7@ 9*5c1j8Ì-nԕ~E,@hJt!GdrtG:ϮAro27펦Cܦ] :Ft|:.G9%M>*Ki k`&0x8z׷JYt+Ü עpL8 )ӣ.3&( |3A[7Y2Rq/Sd^4M9;Et O^ѩXbjX3Ne􀱐 0VJA{ZiJS ]f!g2"/ܹn)5 ͺNL*  KTvx(ԗGX ݚ+>Iƹ)HH鄏i@t1&d|"hx.PQ$vSbOyasҝIX1{UK0d5<җه2Yޑ6x, |;٧[~䭀e(AcM-RG.hfb;.>^97iyF*}/y 1"^?p 5q:1~[-@O*5ޔˊ^u8U_I8%>բFyXjFZJs.#nKybu"'896=Ew 0J(hiv_@^?$yݱ#b$ ;~> stream xڍPNFKpиӸ&{pwwww -3gf^սU{}')IUM퍁v Ff^& 3RdRlio/ Q']&fz7ȸX,,\Vff;Č\-M{;3=j a[@d}hbdP7<'5hdhdf (N@S F1"PT-,P79K󻋋) "- wdi9,!rL04q7r512~7F a%;ÿ98Y:-mG2ۙ@O h^wkmgf_dfigj S&5;KG_6"d@tM,HS l \>^V/B`aZ@sK;fwt0 ' 33hEo; `adp|7/?F_3{'?:`C`qA\&л7 I0xޣ`d/d}_&&!ǻ?>]`;aAnͿ;-v1 _onKkg4#eK[^$m';cygwk=?I޷ dWr{{\Հw±:!g;@E{@a7)y}eN'$ꌯNwI}hkԷB+$^' !m J/qʳ?fp N T_տXCwP8p(a> HN/+Ts"1DE~)NkGb ŸpG~{7=D&4K{5qsBչ_cbK WIQRWXJ@:>"S`)@\7&EOIɴ#I=WeYBhA&+9J&)]g/qZ7w| /K)[;̝L_ΗGrYI9$3 8s*>ʣQ ^:s B@ܸSƊ ^ c-Fuknf xBwg@ol M\Ҭ"(3GdR6l 4fL5OI gQ_3~ *a*GHE!͇3:L f|>?mVR c4b8vȞ hs>"H p31PuVOr :suT&{"5'=Bk)J]9Iߋ=l2*8Y7 ޴\eH:.prJ‹Ay:` 6>RK5H> ZZ =˻,j>˒0q?]͢J pu- ~"+~u㣝@F@{b R!&}(`m<%>iHͫFlKtލ[9ć x*ퟆ]5HΦR@8-s3_TMymD} Zщ0f^b {|HyZ:E |mni;*/9rbO샌InM{ފ"k n=5Y_*ͬMcm8Oˉ!boi7~%"bҫ(=WP},5S =DYoc6 븸?aZ))բCEM<|%R>)5t˶\N-Ѓ'"$΢ 5nJh:ꤛ4k:<7$kj4jHSBc-L7lgLT_j,%gTaE-`)tT*%~??QSq5io>C:ys$pF&:]9毉Jo6K;;$sg ,tZ>\&[ @5Xu 2[K{l|LC2?oEc`HJewqŐ쪥<4CĚ:rCo?Zfv-aaD ƏS[3={^Mڑ%MlJΧ=UDM!kJ82M{Ht!f4sFl̿CuZi,B9-Bs q mi.>[rt0R7]g2B#xh6[6Ϣ@8f\I*>QGFrU6F%K}AYÕѬW>G|Squ B+zOKWmx&XRBsKu!+~ "#Yq!± ʯ{xo j_4 <)c)X~ޛ9)Z&b۟~B0uV~8{OEN3y*SF)Gmf7FT%l"ñy YTq#>_ L?8hmoWCc5o9"MY3ȋ5 ?w0,R"hKr|Yb`L9 2{J/;۸o?Y"„6݁ syB5:"!]rm3:1D5$vl۾ku.<נ35>|,|%pM5dRJ"X=ak3Kݵy톭x:3Sq &(FeJtRth] xL0Űe ./G2qGnvٱY&B.݂trmCvGxY{m?sAHPrsv2Orm1~Zq@)(ˠbo]QnO`j %BD;iDtrK^n F<1hY%j8@tAvַ$;:hpOl (Q7'x" [BV (4V9CF! v\M~@+4,`:`<Ń"\޿JW6S-'מ4EWB #]tny(kZIϲP'̱1\s̞mރU1AcxX轌N84 V:K`y Qc"vV$0ĨNx,1VĻo'qQNXA! |QuC&$RiՄxyL+[[wcajMer_$aF?/hcLB䃸xaYmT0H P,HXw"Cpvx6ɝoe74Ä)Gp8zRk 'K%5rPա~5g/e;|]crPDM"Z% 'G9#c=ɧa3yNW33&ZjF G {XNzq+9гfk?zZfC㟹3av5P>Ǿb04kPRcLu_||1LW!V Z'pє "MfK)OZDkiٔmXV]T`g8jTS*ęǩ)*]-}'Pt܌!X q}'ForSME'sN%j ɅrKЀ⭟P!࿾^ӨLaRTџIber46L3Y%s$oN6G}ie^.*E/%7>5MsʾBgV[D$SoX3 ~ +('|"#lk~Nfr-rʼn~~k)7+ EoB;?|`gZEVũ&z~=B)lMV!_)y.(<}cz!>){h`I^h'y:2ؕXΣg5[['ȉQ = '\hOw(pl*?ahO(cLD. 8ft6c Wjv-ȊΙSi 1fH"IA*r='(ӵmnSgѐ4ꛮR6]D0eSys9-HHʢRUfc;Ȫ+췕ٶ6}Z@*dF3u(UO}tQVoqlОҙsTYף7LS#Y^}Gtdr<ӼԌ~D.jfv gYۆˢE]m )rsb Yz !{f4O]_ç{etxm BObQ H| sgk )GqV\Es0Kcm"~[{:{B-5w՘G`Ȫc'_8nH]9 \  ū[|idI4/:11{S@SDF;!]blޏ`l򨣘uRZglL}nYgZsc%Hl!$,|ytBcq2;X7@j$ XzIJ$5{5֚ 7e>6oc5}{fdByƎXzw]c+A+*pz9AU c tpfNzqFŶ zv\knV"LwΗ+V%dUQ<W+7niFnτzG@x ˘$+)? 9ڙRofx^5ًMɈ@]Kx* )Խ/%-e E&;LD1O  UobJu~ca&Au9/^tm.῝:ݟ._zW6C+Ċ|UD]20BEIhD1oD>S]pl4bMED/`1,~ep7m.}߅ٶw0 !y>>ѦK,lΰGEV^3үa@>޺ȗR,Ժc{]ڌk;_2#\Qٶp9' uQ=#l; 0z[T~?7a'ꉉպ0C#-(x*ʊ9[%Oc nAD,IL\3!LBuQ־668TsvL'4U:,xYzŨ]÷š1M7)&yt֑ZwjdTcn)}4cjXleFm~hxz{%$sdvp%2ܳ^7E:&h,fa`Iy^ݕ+Ay#c%̒=ۇky[%ֲ xy =Ե)a%7\Kzi,S5SJ|IZg￞HFn{ͷzI jUk! qYe7?W"Z ]C4~/AJZ]4dI[ n# aUgDay w$f3\m8a|Sk Ώ Nֵ[gJYv ˆSdo*˟:I'xy&V=h8 Ap26J+l:lF~)k>s/I0hcծ6=?YyC$X_SPZ=w1߲[ RQ\ %]n㓁% ٨ͫLډO_7rfX(+>W NΫVAj#G1U)u oI^M\#qG%[0j-P~ޛTcG*]KJGCVa}NqbLi&er$@b>;ɸdUe(RB,TNڸ狝-Jϕ::ы&e MjK|RNV`LXW'Y_-kSEIcDIZW )yrmdF/=I0n"[A#o^S-{$m i`Fx5vʾI-4#ȷ -FtH7 -LA6GEN"񲘫2|Ksp9$! 4H|8pрT&^6x) >eT@29;ع4>dpke߹䎰@Zd۵B90P4Z-Ҍd+L @ͰZ(plu:q!{rN RR4p.X(0[b;j`18}9)nڽrnˋ!B-hxR-so0"%ndV'^h<7<^o E"(ilDaƈU*vXHoF4+"C󍻤CLdK3r'[[IutdZCRfCRK㢠ތfX ^J Jy @-G}P)i>/XIn#x}j';ۉ|tO}zbԂ0}ÄAu_?]p5tz~(*saBCþI|4J@Z80y}P9͇YB&^}| J%8`. R4_$Qx '&jfh p=(j_ 2%[Y ů=m1ق3^#Ԡ)uCYf `JxhŤ_k~c=-;=2A7p2mgd 79` T蓧j@ lxgKsd{EC#$^$J4pCudkZ }\2,jcaihpLX>gDcJtu[9lh::4`N- N ~n{=f"C@I0A1è7.%@XЇ)EbΏE Pˬ5sB]M0'khb U"R42yAsI`W ?C#Μ>_hmhlF7T[_Jminz2>VP2qA; +S)/jqk湲LWO~Agn'Ö0i+ D\o<*yrP%d#d)Awcj Y)wJ`̊0NbCnEa]B ReFRpaD2n=^:|'9nCRAWVĕM!qhY?4'R|pȃeF~rJտ$51Tp|Eshۖ 7%bYK`~́' lv+@)69g"EH%lJC\_p u8fVɂӾ>R-4W C|\Snl3n¨)sXg%ʂCa]:~[$Ȓmg!OlvFBo ,?A1e9w7z,f[WcgM<+t>.p:%YRX@D7 Ba M0f)fL_Mir0&r(~C(# sM}066^oVOO7^W]Wz^V3QE2vרww+SkNjH%08c-43] bO-ekl)q^M ˣεU'?hmj+K^[K#u ^z|WzNiV@6BbarG)بg1H>Qbc(VNM%_`pqy/nw(k #wo 94>A/T[z9T;-^q#4+']nȡ !+ZeF2==>(͌Cl;v|13K,I5u#)C$ @af &E #ŽbvÕ pQHY؂:GL!xx%WTeĒnWW;K$|dNQxa7CS97 hҔo(::/}/y\~LX*$>̙ęx|@qna%7K0M;U~>Q9׵#I`.]^/([R'ϑmd,D%# t*Pש/N?"n_s$P8s_\6C v0"5a z~ 3D?7FbO2l (R"{|RIk=,γ~_LT) L7BN>{8<@-񫴺KI/ƗN\79ȧRN]~kɗ_?[a=K4TԐw QZKŅׯɮ6SPP3XrVN5gm^PRf\=)y!۷=sF\ U S;L4b~O@vv$ԛ }Wm G% 0*NT=$=Hls9~{O<˂ֹ?k _}& AH'``{RVa[ObED㰰~?vU/K)`w9sZJ=Wc)VX@8q7lxp$ ]V EE.I-{w8̭$o9S3%Ozۥ\yq\d In >aBX2le*WÑOS9IJ*tǔ^!sc,P-BSQOU`irɹzo}z,–Hʆ3 ΥqJ f % j G_&Z6 :u?oY6SGl9b\wnMW[rL5RS-Po1@FGcL ! R7VX~[exgwߥw:ѺI[!ɮmJnK([FFr-TyU_ƴG]Ͻ! w:韪=m,VCJ[8_;lDZ±5]=E;D*d=vh|E^!+` dRV/qC\5:K29nL⨢'mp~ꇱL.Kn,ӟA+cJ7$נU7n*~*a7hS]ؽ%a1C%$p 99n<ŤDa/XVc˽{H.ߤ"x 0(5X77XeS8ʳCnHFBűQ[6:ڟX `bKߦ3DQb 'ʿU' `V/RFb;sYƛH~AZU %7mW徆S0,谂 8劺gi)D.eu199U,$0}kc,σimҒw+ Wybj W#ebl~'`beoYi=ơ݊Vp77k腹$, gSc 'Ĩ;}pCAB-k3wd1 sz_KcČc$U0Z OF#~OյV;,VjͰp]p%wʣtmF"`o2$Th i+Z E{J;8P)uASP[.κz`$ .TMMuzR?Q_/~QGcQ<L s NLҍ~;e2NP̖r/n/R& *!ׇV!pY,QYC I=.5}=p'ҪK{b P-wZ v,%4ZT^~,,3X*n7u|'Î[E֟yqAtZ4/Y'JhFS0WD eP@G^eu^x=6=%%Pm}YejwXN$os)7^ ~NEskT+c$@qG|#?+V>bGfĮ@;ϗ :ӄhw x6咶,^<Vy(оdP/z]_ BsF9wZb=T@@]+#.gRT$_w;.O43_vd,~gLxcΞeM*=LLfisŭ?g^"ʏlEX*>y ,}"1Txq5HnJ4wNM}X酿PHgŒ\|93NחJ~~}ƚ\ L녒:f"䔃#c{RIMz`??ӯFǟ =57s⏷%Gh ,wMuUs}|BhwD܆8.Xn~d[$ B;a|NWNK}ZzxsH<5'Vſ#v'鑢dF݉E5c[ DЭ? U!FAybB]wU,<1-C/6 ^d>_/?K(J kDa{m칶Bm*Jy[?`,[ۯ̒%"Iȧ+цh#M%\}O<ۇNJɼE ˔9N8_2\IQND?3OtJß?+KM`qBh,QTMARi-bZ@X1ڋ{=2,1fUAɹ.q Pbi]UEFp:ZsHB:>g<'AMx:C4˼KڙB[?\:ӯc6\^_%y|ǖ/QRѨ"`ځC@ţ}[\UX=j3q$}te4[0;GK|`Wsþ(|Rq""D!-buRIҶդ09 .# 7&XX+ t ;ѝV)z?41P8=m~{#f_%! ,TE5v&z&{x~ӿ9lK!Q.w×`j ju/*( ])#.>Eo_綇f8"}j-ϻ\-/zJF^MM5 3~3,mh|,}JwN 䔹dhT~O;Hy iӧ6{HfI`qlIDapY嘏*!O1.CbR7fM']<@YwX=R!'0+G"nϋnU-1ƪ[O` >_=PnhCDaǝw p׿@HN uuϕOFd_߳[U^{[EJgq>:inJF<Ę],ɛ endstream endobj 104 0 obj << /Length1 1848 /Length2 11595 /Length3 0 /Length 12741 /Filter /FlateDecode >> stream xڍP荻 R) 5;bŽkq/nšP܋=szͼ7I[{Oh(TYMҎ.,l %qv'+ ?r-0A7 "*9:]vv^66 !I9@ vFptX[Zz3;??/1{0 PX_V4ͬ.^Itwwg;:B,E.V536Q2@d4V_ uG w xY_\\u9E['_Ɗ0;+?#ß 33G{'% x+ 9asv|@/H@/]řyf)s G{{3IZCf/ pmCat~ EfccfV?tdCR @\޿+Pf.Sʿ_`!}cK;:yk4ud.`gr|;?;Ύ߈rxٽwg=6 ^A߀yt?_3vSOG⥟]]^fCeBT@;ڙN2!bvl\&)v8:[qXG2sf/Y/)`hqp@8/Cj@VGKq G' J!@x@OcU?T^hC/~zKLпC/:3GM䏽 7|I7|7~Cn7|I7|Y7|I_dI㷬^n?bMo7|7|:%-%_a ܝNK`✣`͗j1wqo4;i ,ދv_) UCRzV,?z6!Wmy0NTiEY|(V Eͮ;@[fNyw|*y8}2_KGvTwxPJYb5c fhrMf )\XȐO=0gagO<'2,[爻Z-p"&#$O'... 3ki㪡\*!a(Q5oI#>N=;h8Yc+b#$XH#<7u(B~~<Q^W~ig7 . 3߉ OG"PCTav+lAOڃ϶"$%S0 65;0{?. ޽AY`^˰vQPϫO>%n-:Z򅷪GGnyYtB&0^7U2üJ+utSgrL(MHi'eH\9hS*f0UHMUP=S{Cuv2Dִ.iN{O+ 1s;c,0ƛRԎ8O u⍹NWc&dNq* ʮ9EaW٠Aܖnh"_&rmq/MƱל{~[^;0CscSxf-nJ3x2g2j1y=ief薿2˃G/Ӛ |~nT3DIfcF^8$g` 琞|svCf@h [Ki |쇴:vYх +B?LKۢ&X`!X2m:xZ?fqH8N\tg){IJ 50޹oǕCC/p(~021}=KuB\d-I=%T*㼦\? כӹxw~LZ^{1?V;"2 0jIr~!joO);(c>Zk}S4H?z,\` o.Q^cdR!O]yzEǘY rz$A/ 44$md|^`M$&y#;"WDhB"̲~FeК"U~ ReYpC&f>pܶ%gXލgCAjRJ~^~+;]TуO@K\NeG$& [Iu{&)ߦ!s p·rPğHd"TK+h2X1%lI}]Wh43J"KZ"B4{Ҥr_7i@¯v< <0w}76CuSБk7w(SY߰ E!Hic }Z._y]GUm1I8G-d#N~vϥ"ne/{i-TY`&E T7NhP rk`1X~R9][S"$֬9 6WRͼ;bS,L\k"͟ӄ*oaڤ"\XۓPM/OKSDx(9m;f5(,-{08 jI^TeT螇pǖ'n>A `"9ݭ~ طq4^tT(4,6ᧅB?e;E`El{u_b_1}7>8n$^P hωdT𽎴q5BlP sS%1RcS>P{qM;m\xUQ"HNTU˹U$Ui!B7T㛽U>Ϸh>9n& {X%HI9swSSp̜_2RW{$ Z׿=G/@o5A,L)iTJ_vT5m6 bq)Sd`B膧;Qǀ^`DZМ^DsG B7~j\#,B(jRUfX Ֆl3iu$,e:-[1ߨ$)>_S9St*b(|2( 3}j YA?p1 2h'Ȅ/_KVC>+*Nşʜv<suvo(T$B0ӱ|E0{Ur)[MGE5h$?3GÒ"}V#JY>mDWw7"}`ZG%GQbsL%ejy p  (e&0f0sMeXŚct5 'dSf*r 7v936C46*u(ǭ^C5kJL !̔+@N*T< ow#˞M@C*x]g1=V]jsh yiCF.:o╞mH~$Hhh7h t'XU<B֜z8^6c\#xk< A`3Tj/G0aZΔ92\Q4Dy4{͂Kh6{wL`)i͐,߸`J2b8+W0j5t̄=߸9S}2fK5t(䩙\ `-6Owax3[v$ j.LƺYĸ8Qx*J9s&$<,GFrz65:ݔ CfeەOm2cx}˺Pl ʤ$#[;/'-+4O 4 ڳp=+pg.޵,[RfKhd2z~5/Ke$ΆvLՂ1߉ }`@U%S39 fE 8,?:I.ƊO)kk_`kvvrG.dq޺e|Z8ԗYV>rsJ PU̷| ipoa R 1{*5B%߱(Ss11pYjald9q0jW;t$:5۰1gC\V畩NJmڊ!ZKY]^qՓS_@Y=tB?kiII=X1_*lA*~"~knݛFϔH :{$VA e/%4sn+n{\<׉Oʗ6yoȊq;LWw>7BJ{\ўx_3E'kBajxzeFABXMJN'V989K+Jİ8EWey=y1k.o!;@Ӽ-3 6 8\~\\(eLWc 4rcFxge#"W99zJTTsuӊJMRdB9SlPQӯb{/YCюFnjA4~ [ 3e9^ayYayrI5H^ņV~X<Nf!Z9$1P}4}i\KvYm]Wi+R[ i(X\~0$`Y^\ M9d(}DBm:]s'jlY˝璽.Ʌ@I_ΜeUDV2gxn b醾iL[*4v"0)㕈a2MPs1\3G﨣@c d tuiMPVMrXѝ:*U@s1Edu>HCk5c8Gm4LZ9gzӢXrQXGfqP<àqB=U\/Tǣ]6v~j #cqH`Pm1L2 *8jptw&TE@03YxqMOA JRfBG ث۾ b-Z>KU9u)rAhې Oϊai/Wjƹ8=ܫ+PtXԚʼo>npvT5еL,%35aQW&WG? +96OX̕<O,n7}+NIUQO:=1wRZ5wM Z=}:"[cfu-4_IMho[`WP 5 '~HaP$2~LvP.|X+}3J'gU.fC4 ʈGڦ'HLՌo:U߸0=,RS[|P#i͢.q]`ujp_E0'aHg^ƼJ k5D-n׊~ڒL>2<_<Mpud PNqβ@(R/IR6Y%fGV 'M=.)Bz)=Ý$]Nq% Q8fOxn&n>}S[Wh*$bX:SZ ahZllO ivc}=V!g;zdŗ1! ipИ vJFvxMcIm8r>_R<>Ae7}>hİP9tw!]ɲ^1`*$(W.K")\&ʟ`d)%`Y+y;D j1i/"$^!ⳞJtAP.9NMRE00V-?բ%_*?D$WgyV!%\é4\f]w7OWc0,/pdX(mx~&"Nߏ@6 HOիo:i3@O!rYs?fᜈl &p8m֧$ W}Y;?q!Ta^V;~ǞJT4G C}<܃BTsַ zX[T),Kzg tvLWRM0䣢]!ۙy;Ej[ × [lR qgi!ta3.kL/\ YPfe~^.3sӓ^.\+y8t`TځsE}Q1R&;.zf mP82${7WlN?R﷣䔳[c2ۃtceaݶUV>Hk;ǨX_uVBDCC̶4G|TUq`]'-B>rR0z"'2ڧ-MTtSџB<"I|ˀ'XFVߌ{cNbmmr"p#+ðڢCfk-6nUL0g{O2pr7x+tl=aR;q"^0h^r\MHC9AL]0 >] b'zj(-$E3.o1RI5~|Pa,}v`t1Sճ;"ƻ-GDe$DI3/C؎ q2&~<ƆR%JZ~Z.q)YSDUIe dzǎS в3A&2Ff_3=Ii.K3<T`Ge|.uww[O4+„! k4,QĶkBj(u.Ra. |pKgA/ ru)[≉)'O hI^4;it:bmʥ oٷ6`LeBU+){g씵T :g[M!As}.zMj&"gULu E tDhӒ xm­ <~le߁1 SOR98Jϖ^N6mo#}eekaS9h'eɏqsbsq_˅{so`guoݛ{}va\z.<2QY$2v|ݓG4e]bXhtPz%l/v49 >+x݅B"b0_2A93-\q#A%k`5 %Z='Z5D!;e'*"Յp8Iy+A2m3Z0[<9YˣBJs`LeV2B>2Fhuh(/5m/'e眏A1שdIs(vn&pS_rwJMF:bgnL/{sfLx2ãM 䑎e(fH.si6c@]hǤag]?9L&vޮF9J"vsj@zOL8AX+|ߴ|*-Kb7[{y)Zg z۰\*$1mH^EwjS),Vˬ7z~ٖ_KT4y%!I#UrQH`JJZ>c:D`2|KQ2y36EB[[Siߠ`߶s8FZ!ixv`-2DCC|AS#eR¹Z/͟pCrh"[bT15|R/&+œ.WH6 L0OGv i\?~b 8ͪ( w ԙO펖eѨlRZ`/Gn(8ݚ&\%?>#%#dsfԁ"LoCu0X{OܗKn:t4;=}dtX STBNf_Ǘ^ˀG?uC Su&9[QKdVy,6TaY(h)5+(zu5ԬfNqx46b2ЎM~EƲ}Q#Hhw|tOϛRiWmZri XA JpQC.984(ȓ[e`.o⒥zҚCMUʘ~Mdnѷ <3Qf&VBZOαǘ:bPEdϟK',eX'~(`<T퓁 *z8RPUj k5TOVvL%z?%ȚV2UKgװrD=[I@>[G[Xi$ͽj;R֜h&PO%l?r&[2H?Y_6.Z4G>YӘ[t~xO띏Tg8@[TgP26{'7X n=ly>Ԇ:,iÖg~ EXbZ^= c۶]}@|=gOy+*b֦0nLUK#pĽJէoܨU:"PB*XG@PvEY£y7t99qu1o2.{:V/٢Ȟ7R}=[dTvP+We~~&on.xܵܝ%&)2.npsDGNf`,BgyCm8.ŘK_Xș_9,}9o?O]-LQ!;GioVZz*20֏횃* 8u[s%R噽|j4t Io`4$@ʢMAA?hczl#38ц3jس˓=3&eڬ5k߱hWA=!f){bO鸢 Y`eqj%秀jU]AQvCŖ VOMC\|Rb yL Bm} ed&X?R33p\,PZMhla;&LѺ{U2:(_ BlT>'橕msU!.V3k?-rݦ*#ɶRVQ #W}ү,{УCg7dCggcFoH"ر~T툄S{R;=j82u/F~]pvnj̦X3Fd0`b:ՖJSl-dl@%۪d*\uCͯDGVo>L+= 8K,rql4=**U쨹2RfB M<ʀ74QϾF ]߅n%vdم '@Na@Skj!SP4NRM_K!۷nfo~+a<"| U2?؈b„Nx,$,h V`&xlQRD"a6,YWDb3Q}|3two<7 ȵZэ3TJ mܩsоx{)/X"ʛ"#g]X\؃U ɇ jp5^MrCgy0Vi]uLSi*_6JUbpڤde}r6ΖȔVyvLDNbQg[xw*Թ˝Z8.]ᗛX-rNv,w?|"NM9o(*3x7?6FBoMbPmLP|Lqb Or6ԝxWr] B ,I-H{MB‹3*6#b\F=+m'[P- Do}D:JKL XUuqO~zN7NjbEj ,`I+7 %hϿLj6&7y~a0dI1*g HFkDVE#:gW8eȉcvɈT^_#q5 Ϗ/2pkĤM7/mch[(d(w%#f- 799=ضŏrhb';ӣ 8 < endstream endobj 106 0 obj << /Length1 1511 /Length2 6641 /Length3 0 /Length 7654 /Filter /FlateDecode >> stream xڍ4[6B^Fޅ`eމ(I%JD D%zHB&99}k}z֚u}p+90(( $ PS D88L!Ov"s0J  Bm Qhy"4PBZH ,$$# . P!!=6 %Py!nt?\NpqAz  ] 09AuC @^0<7p}p$2@CM` 0 Ap0m8?3@Wh пur9PO?ѿAANN0/o4u@<u]D:ry $ rD;:dx#||!8 J>f5 Eڟ*vB{z@aP+ g?oA3(m" I K>p ! iC .` B8WD@ 8]!PdG.C6BhB sA=łZVZF(*+(~aQ(*& ;?G7VC+f# ?s w}Z`o+$&?O?H7yA<x@ ="u5z`gZzH$Wv6 }@@0_ȯ; =vN{ݭ=U.u9?a1q^P@:~ (!!4 N@ '' qAMިq"1KJ}~__oOP@Go}`'LF%F1Q.dY y+3}j\ ,?Q{q/u\_?0 |_|VO`vm"?I2s?4j!O1K(v̟gC3PO}*|â(d?Ee*z1Tk*.5=)ջ{(l[)T 3_!uF^r־2L(s9HC&i{V(vd-[@'KЕbH'"t7ec>.OXZd*XO="<(C?yM\1{zo&ꐆWB|`ue9дa~L)ͮ)>vʩԢ8CU4UJ5 ?fos\s6 ſpߧˁMN}'fVs wGQPĩmZKgD!Fwo=ї -aw%y2[u1UwsJqIG%Er)O?G"?_,]25-Ua )lc3&?{;c{rv'`mmqej +lҔgyF?d#Hf<*x'E&mPk 먼w4 Ԩel⭭|.j\`Xi8{UM>^NW+ZdnZ7Z&q IYʝX])B}{vH8$k ZRo/c 뱽Ӿ]tpm2`|mHV~` b&$'샄G~)w5-z6+ɮ{.6{=#AK;Eb8ʌp}7O*eCuX.?o] Guʮ]^FДYPt,~~;ڞ{gMDa}bC\@lE*bH(/YE"Ze]1)XU?82PӁK1ؤ6_mH315;~M쯏Uk٩=,I~0LU#poL|qٛ獡Gl;=@U: 5EHۖyw&c{]nXR.GrQU"B_o8UV;h:=@Ұcnb3yRpxlG&?AFWՇ!> y2.^̖^MVּb\#DOz?iHQ`6R-WwjKZcܧk i_@N-D/ PoaP0Z]դ:BǨgMэPo&|ŁOC 4MTz>gOy>aY=S16Kߐed%pHP}|>3AZ:KiǴ@ˇtf\ƌzI!-Λ_1HgiX~U9fFhВ2ta凴sϋ&Vp^AApRǔ)UV-Fx:C ]sEӧPǦt/۟eTN{?Nv¿A6R¸qK-y*N*}Hh=*O-bqӱŘA2XCLeEJN-SZZ!N3;6>*ᄐ޳Reṡƒ3E:ߧKĚyJdOIv説̘;c'#DIqHQm"6`̻^֪R@E6 ` e8W#)&6M }$y!gD[D͞\V?VDH&d*ee8*޽-Sb0'}" {u[:X,#'@V3t2N!~I,A\JƫH&xn-I `ӀJ;c7+[:,~ Q̦Y"k`cR|޶ee JvEj!UB:8dj)-3>19o',0@jd|N!) Z1f]g.~#C\}5ǹw^ ;'Ἀc0#:)]}mǐUQhb=MK,3tK?3^3~e nEzQ/x`n/щ۹=Ҋw䶃O,⫥F=t5d`ҼMy%oOߚഁAi K 6R3*һEdᠵj tA{\qBN3;FIMcgHXƿU}td+ڹS^4$Q:v t߄E;m\r,&&9յ :h}d[HzAz:Aj l ,)CQ7 =|=ף[a3${@fA˄6_P#!R^m)x53[Y<^(?h9(46_#ʼn srA2ENeT!>b9ٶ?^Nҥ|z6nE+1PLdt8ygzGj->q+QbT s3yx;ji>ֶf41*wyl4"80ES bOyfSJ*-I\SgwU[_^b[T:b9%]˲EFtq N9tKf4FY~xL⓴Hi=So^+~25qUgAbx@ c&˻K!Qp:̰3z3Ǟ<[;J/~pYYA}5dH=%!1 kK2!vACP c8[^#}XLTJw;&XDT2ˌH%z]w{J)`Ɖ`JC cu$t\כ5o` Xs*е]+k8Tj!+uCaki; =FjAɆJy$|la>/Sqz o4rjn{ƑHt6^wfX%F,*5[=5IqY,haIgFVo׋tO'z䒓o+gm;Þ&!K1'yqnozfj?K(U,liDLBs^jk$&T݊YzL}Sm&E]J5z#,|>c*tהbl[roOa'!rS:y24E?$&s>x(٧{iVCwkXWa~#f2:M^9Kc*JE\J39P8s}̅wzw { 3A**jIȡAP؃6Tcgt! `3O'C!5'- u6iGq靼8H:>:A(S,5i{%нK-T ĉyĉ`Q<.-wTuDR!%*R \-F8909BatAEf(3Lҁ(͋ sV8jʭFu'ӟivnV+"a?KE07Hϟu -Kv^}YeDjkRXN} yNqFȆ /W] |7 fHN'8#[:>ɎEzs۠V6)zp7SaG vz)P%6ޠb~}CeC{Eai~͓3/UГ0J 8UWyOY=OwouPb▘| i S nt>R5㔑hFk/ +'DI[RԨVF7wi3 [6T/R8yxn:zn3v@eeU`>Sw0RV$bJ'#k+X7c;11-ƾ jLy+NLә[R|ѕAxcF?Ga[Г'D0Y.n`Oy%-N',~&hى8e( JcύܰngQxY6Y(gqҴ%|w!"_\3%XaE\=G'SuH":,=,`Ov+foʠr]\ݶ$ Kud-Q^d|d8 u $3QfƈWRCsT`s}CѼE W ֎.T~|"L&sN"xC#g)зGΨJ1URI"ۑ37>Ed6=1wEM )y̥ܴ#ύIQr]T&Ǣml (a9`r*3ȼ+m+,kbVa:VXW)!E sֹ=]ط @f0}A\̹.?'aWc#b ݦT|Ih~j/lwnoAM+9n1',U3~1cBz endstream endobj 108 0 obj << /Length1 1606 /Length2 8516 /Length3 0 /Length 9575 /Filter /FlateDecode >> stream xڍT?(%Hmtww0`m twKwJI(!"H#|?;;gzuؘt x6Pe(hiAH'bc3]،H & H()BG-@ , EA ?$#)PxZ|uEĦGx#ahL9W(f qhAЎPWLF[ n CF|W P. qU`G{BPF0!OH&;@M| s#bk wE@ܼan{ ɇB nv!.(8&@l0P@0U CQ|(a0mVrSB(S!{ofg )TM/_  #wCo#S/cʀ졘"_ @#B} ٢6Pѿ5O3$ ` ~da_?F TS740p//?_E"WVtfN L/jp7N   !- 7{"..9t!0<0~,"njsvkUCC0K"!:/X$RyAtah[?409\`nP]8 D@c잭3rAaf ,"Us(~$0DB0HB_0fy^ps1!L{8@ߪ?$Qdmh? !s @"?"?߀D1p0h ra'^ۧH$mӲ?-( jKyn+yV/Gɻ1.qf;^=4id3Q XSYҧMނ'[6 37'}Oga3!tI{ e =jMd,WQ/Ѥ3n6:~5>d-"2];YC(ɳtehdx }_tGk8LIbNQv‹dJ dAf|^#Nt)ʸ?z zDtʯjC9x_uz؇cw+M ~YŅ`f̆O:UK!WxOзOdq1pqc^NOTh,5_G$sڛ vXUGATXDA1>WYm"D^} ҟyn~Hw ʁƮZfڹ(}_PunJYבK1GL7)rԞ9@;NgTXל#ڇ?s2w[1/_ n94afFޒzr I M)f۷?l~U3*}|@08`z[sqmC]Mw{z%Ϻ1gYȾ9;)Ḱ"ÑƠ5;3r5rƊhEx疛ϕzXl]_Zb Ul3n(3[> n%>>޹IMRցh;x4LJm|rp=1G6uޞF]kaj |QdXrﳐ8څ%F<ŒMc}H=!6Xq R0臏Rw[$4~M:,YZf )x }p<.CCJȸys6]c_FjN?%1[)]8rYZ&bnٰ`v]3kjU(!ھO<$آ룦v? 9g"Y$bK9Y.k?e\2s5NQnG؊t,Bg/D?H%(Eub,TlɊlK]c@=asё R\tmoG/? (Y3 Bzĩs[i%T&|g7j48VH-Ht]``bn8- z"Fj2|>U ~Gf/j p|!WY"V>YLvj埀#\ne\O5*L7`4t,|廴gҒUA\/. ue^llJ&>Ίz6hNmor׵iNk3n串&#* 9JJ1* lJ+`Aٕ9^ ;O8/EbE}: M6iC`{<9h41T^'t|dˏA ˚fƏ+mM@OǜLz5[ OZ.tnoF7Par 9Q0q?KF@e&O{Тv-{F`ٗ|@1l [;}RXKf8.셽W =UUM\l6u^Zj{5teXxt{ ӑgBp8L +0Yh$OdƵhnO#EN%04ٽEǂ1S Cޮz?*'R$%I3CjM3 k*_YhS?0ԕI|94@[v@#l#ɜt]7lbҟ#z8wԪ<2vp{N3Y^kKGZ0,5i9uR )OZpӗVO :<pLeo5[ѯ qȿmTNrQ]&R%+c8ΥܫWFlR߅30X_&NN1*9#B R5&M4|'͵o;mK|5Q4o~yQʣ 1elR}Œ]_Gbh V0͢+(,] z+Ǚ?Jw $%FB{VeBC^z2Z] h'hF˱WH s+hə-VA r\"ad^S}պw|w+<ȧ+m#YwogeDXUM0=P6orTd"J:JHh_.>o%s|՞7\ztJ5zQvɪXSڨBbgj\Άn +ǩ&wp۳ +_WNt :r_YF*9g)n^ odTKv_{n[r+zQF5L ;6Ϗۮ{ͬJIʪXlV3ӕBxWqW_U&Uzqvӹ.F(j3x&zK/1.ixNukʔ HxX!!/P)Eų`x3e>hZWjEك.oo\CIHӵu97T̴ §:+`$lN!)B“: .?xK?R au6Bw`;!Qa]ϭ%_;Gw(9No QZɊE3e-d5!h{>=urI*M<K2#^?[jO]d&{;߄'砢1MDٺ}'+Ȧ|zUj֜bӴDЧPWm/V}P(W6YJdT';=oMyO=$U.ߣ-Tmn@DZY9 PԹg5OTcn;v&ÊȿXj+Gw[J׆u5ʸ47R_c閜1A wxYCPdxj•%pw{"=^@ngmDT,1vwUTkV[]Z!ʤPjԗ90uE)Q; o~pK9(HlZ9s["2\ D"%P!מqV޹CԬ\‰Î{L!jѻ&|v* qB%YzKI>ʸNX[]UJ C-Ook< cv`e/IWwWحx9*I =/LD zI:_~_e!)ͼ0'O'dʻH?y'H$mջPNSmW_~m4W؏,[R,̆IVh%Az{ jzhi<3QG7J؇Քg}~G͆d}Ȱsnh5/LԨp?͗iXّj#b 2 x12Z~ c@Weki_  .*)?t -d2|Һ_%iU=L9-dbW 9L-o:'{ .Yj!Uz|9Oֈqߓo!`7ƶy.˅IuYY˱ɰ8oSBײ4/d^ۑs]G̀-E8:ĵ\t|ByQ&KMp>YƷOܭP>9xTֵM-=ܴ@ }4Œ9ek-ż[~248չGP#}]4ˣH[*/7M|M"2[6b+~޳C\'fwW`A9\)2w nQjkۖ 9 ,~<'i<;nP-]=702HwjAMHRIc\5IGы \'kk c1CZB'2{5مXmC] u͡Y0yx-rіwP,QS ~s0BuDPQEːfM KA ^']P>Ɗ/O9BWVUpo| `牼QH =ü|[6l_,nz;feht3#CͬMdt;hd.4RGq F.CkAw pL$g*qb,!jjYI D (eXS jG:mNW'TKO"QyqUd1[X4^e܍!0ڍtKzHGfSm-U:|DRqxFL+-'9jv-xgvNucĚ V/ N"F+\%ˁ^KUJK33+D=K鬁NNƷF.et^[ їj>FwwA(o]%#KŁLiR"VsN@ܘ~^ԫ>}c&9H#8r}Oq/?FnS)qnK(~%IiN9|oˬ3m\}1|kvyrm7=~U0fVU|tHrF6FbQ.']RX/Vu)_#7,31\ Q].B7ct!Yư>= ]!|ئ,쯏w~JE䃁ܟj(sPy̯2)v9?- l]~zqX\d| V@ul"O2^HFK AS_Nsvg h([cY/_Xj5߃߸)B̾Z6+vjDL)n5U? mVPx__T)=qۥl㌋BU{hbFr`m;HTe sa Of)xI9C*$|(WJnhV?[ąt0p.'c=ӗL)NlUwVHiC2u}}I $Yzg>䑪LJ&3ia]yko qm_.i%~E?^_BV4eG=6xq]]/w2!YB9`)G*o5k]+7Jdy8/ Z~䞕9SHG?}OG]'F)_]Avï a?2dWfU lCo*~C))~.}8[!mxdyjIӋ `coĠLux(2TXgqJl >1am9=ЙG\u{UQkO#cEѾ{: ">􊒀 LHW_Gt"~8}͘0+Pr-qF)EʗJe_~drk ZݩU<dåWM͗T^/~|ItS5?&,$_WͭZ+':{B}Iq׆f2D&(dO lyɧ1jkAmk ] _>O4'2b|'=NSB $].>_w1iK]b8O$Ӧsuͥ 4EmgQ޻yY[O&mtne L^~eśuk49{cAv} &5||3w oy\Cs^&=&K _}?nsp1Bcze=-Q(Y'Y$)wyKBCgڦ\IXByFk")2F!GyQ:p4 MmħYۧ'gsrjd^pJ'Ͷ&aޘ4 FdmP DEp?#Ps3qxZ˂jy9i+ סMf盏x<%;DK5׷^~t? H.lս|<>ppJ]<>{S@ `sg 6v7]+ts--]F *$7ųZ."z\w:eaL$_8L +ÆV|EkQ-vKSYԱf\7X1h>.9bHJcU`pJKQn78Xs Xsۯo<ŊV2F3vDN/M5 endstream endobj 110 0 obj << /Length1 1407 /Length2 6193 /Length3 0 /Length 7147 /Filter /FlateDecode >> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i? endstream endobj 112 0 obj << /Length1 1437 /Length2 6532 /Length3 0 /Length 7507 /Filter /FlateDecode >> stream xڍtT6)-C 3t7HwK 03 !(ҝ % 4(7sk}ߚw׾ zܲk*aHg_j= akm\7 ijxfǻlurZQU]d %kKӯ̢5_0It\%{W=?4DK~$RU2\#-yAoDN${JqzVVPdՐF܆`ǝҫlOatBV:#׿,QbiK?yp7H D[[F0XԻN^ܝ3g([iG/%Zg3f}Il}ʧɋt}[ @h+@ a(< |;qͼ9pؚ-^P4裹xb>g" U6$ol/M~+i*z15W+Zl<]9;ٽh uLdw%ëq`Fd\%z-S1"F/^Da}%ߺuX?I,wG'Ku(Y fiD>&kv_YR,g i2 ,˂(o -/5|ڰ@&vyGmloEq70ح=LEYtpޒQ`l{ў_Za_.Acyk.qBP%&jǛy-G;æ{k+'(X\fOݏGKIɗɷT2_͈-chD)7^,/3~\8 { :sXi.S,9Lx?"(>d7- +14UH{7w9S*ÂJ]e K,k.CvxbF^#K嵄'uڶJ^f6GNJ)i )jĹ<25°u\"0Ȝ1:myr vA]s۶ǣ)?1Ջ1MF1tt(@-_0.0 :G0uE2]G\UrPg[p*;'^\Gi؎T{!5Ydkxa͊Y$h B8ΣkGg c3ϣzաo}v:7sop^?0i쾷B~ _}j=⪤ʮ>YAQU@8_K !-e7<9G+ilzKPtW۸vBNMXkVv0Zc>' x!qh"jW?Z1)4)V>ϵxUӁB0| =dIx06E1jbfם0{}*C%N^ޯGtXÜtARse̊ȅjK>}&W14 >}dKᅹz=2"$F t%{mhcCt# ?99&`Q֢N.KS,OmI`OI-K(B%z]5*pĚ%zb;"13~X~ ![_~x!mg-لLZƉ]$czoKFl* '@[)郈lpSsٻ^nHdgZ57Ih,H4b0!5^cO3?@4IO+Y޶LREglC+͚/?xOl'){ZHp*!?p NT\!BȌ2*ZڤWO: ݰ́9's7',OI*_>7k72 dm$xп 뗓gkD)/^!|N'l"}UyÃǝ=/OTX0F˅ޥԳy1sBp(0HP!dE ajK-`]LnʸiIݲC aQzdgRAg ʼnԾѐ{?a$ $24ZGZ)7g/~5e. PH|iv?i$-,X7[{ Jv5"rM3vKElhuU:q_2}nڍB);3ږnWAOhotX <-wJ |~L}¾Rs!' ]idƲS$E ;@ې)SI{Ͷu E,Ն4= Zv*+`MP 5hst2 ׁmhSxZqFsѦ/Ë/ӆ?> E\iq/qX  sc7wi(_OqEnJ||oOc_SH|ʵ}Tu[_~XV*$ vDK@y$F `uݐ&.LL1VKZER'P12\chLm&|wKWs2+N}WNΙW+dj^׀aٖIٙ7[d@cRmf،8k FK eMި%f:'s3W cY,Q ޫRsʬ'2"O؞3ޘN^ vPcDTп9ƃgxR3D8+q9HTSmK5w :643  fr$ak1ƌCE@/>#C85)hm>x`U! Qdxo\4Hà{|Se$o Ɔ.?łIHE7}NOckB)^^}*OW ǝIpDS5ۍCmOV,TZw<7%]@[Y<u\Q6LYOK'l B{haT\xluғ-ϱGN wD K؞0m?K%-zpQPyvj:OhpqzoN:ʓ$m: C"MtAZw89i (`[zkz23fIU.f(^H`D($f4LaeM}y9.oxg}:6F<çe>|Bx2oݫ.U\U@m.7Pc5.[F"]YU$~mВ̵[r^f2|瞞&~gnu=]74ls&[ a -ת+ǷV٤LX ґ u˫ ^SkjJkGI-DZrJPjd9V/۶&aw+9̔< 'ri>5f?R M27T*O\ ,'MJ|{O(F=:[%@UӠq0N Aq D2"kY+OOT\ K;co9Fwο.NMz"Rkvuh'͛V6F tRW30YS5RRb[M%V)Lu.24)!o+b.:_>h}:[~H+1a!oz\k n΁lk9|/6"6W7#M_hመI=Ѯs/K،*v:v q`Rtf]K詹ҧ򼳉5A hcT1o!>9j4k$_2GGҌj'F蕂LK{yH+͊gqRu>& {HB?!bSamm t)S*xםO ?>3pI(9'μq9amlBbt1Ҭ $u^h:G$M<8'"@x.wbp?F endstream endobj 114 0 obj << /Length1 2653 /Length2 22670 /Length3 0 /Length 24165 /Filter /FlateDecode >> stream xڌP\ .ww Cx2MPi2.t?~ p0fuGZx]kJۣߓQ^$#~"xBFu~~-y<(w}R^+c{*k*c5Rf1ѡ{^̠~{%MG?e/dYڅGKy>6E+z*[V:"PLq [fjCSoWݼ0j&L#2%6 Zv[ W ѵn ˼YdnۈwM#;ZoZzIXEe}p`aXm.r!Ϻ]¢ >Fxʙw_xusm 5KմyqVM~DwTz< q6| IܛD>isbCFwoz8Z?枷TJ-Pt8q1xH44`R뇣ygpܖ:wX~Wՠ.Wt)۝^xSuQRxT-u'O qJ%~ ŋ{> cG]7u(р!eYIn1ܤy/J~W@ ֻ0=C::CkW_ |iHEq!H>"y]Sa6svq<4%J΂)4q, (*Z/|Oα~ ovկ[Ǽq?CT`%AF4ޮu |J<N^NNq -{p889j̡ U ev|0FZ4j͗IY&襾:1 0Y 0^_nZ`ɮy9KO2IΔx H `GS_YY_~؟54/f[mTkl90K#lD omΡAit+Z kY >QO{\Oc\)w\ 2v<[Ȕli9U9an9_H1]Qb"h9^6%͏\2v?>53&luLJc(-SLk|ʎ3;(|bYwOJ{7EFW߃\99QP.یwe[o}W0G)Ś3&n ky8ʛOW8j2z8!eIw8 Zb3pT=Eu??kdE[L5+ Z^I";p*g<\#sW{+8DK3.d0ﻫ@Ic0ǂn,"S8>nҚ-_5dYJ{08OHfͶT`#Ug.P}ʉQ!#Rqm_;څHC޺ D㫺蘄ݧCkua*(稀h1?Q m0{W+2ְ-NX(9L$ 71y¤TVo%a*+zdPZ PjC+x ggmLPSA^wP%Fzښh8W*y5ʯy$eP@dw싄vp@#a .v| e)*y5KNJI'q(>pUE|9>xqh._cy)d_E- 츼K*5;R/RH\+o[h^Z *` ae0[[/MÛ! H岃#x3j^scqFrƤQfBop+/:UZխ!Vs;yzlK!qJT$cJ5n!Ak˜:e5^qgt?Y"{?gnDplbIs ACbv:{q`b}ݸ6Mf@g7r6QDbb(oCXC[0mؤy3]v40/K7_><'Uyڠk(ӏQU+(,&ajcK%yBQo{ -4"lVwX7֕8N1˲=bJ`J0E(R!Z8'zwY63:ϵc%^=2\q^:It5c*)*z$*Vձ/b 7F ơEjr5pz.řOC:':@EBEwWǗ/gBPS5 O,mQfurQ}}ʳpFC=bEZ%pv#|>6"M0B~dBU"dʹmza|M܊IF>xKS$j+4@ {S=?t7 oG\31M}HHb|qugq@4u tUN3`ҿͤpBoF@k l9x`KBo11]JeT'S=.7l; e»^mpBR"{ԕwKpw{:jUv?>%Óf{4EK m6Z64 _Lj 5&H*,FInxG䈪er4zwnQakEAPn |poh8"%wY S9x+|&Rn!f)gmg4˛D7|İŐkd74#ƊLVVozpjrIxah}r&_B!bC dhR_mpʗVt5YwQ$och|IlӉx7q?g]`N1 jACƀ2)sԣy>zr^Dc9=&H>߭ʛی|~,B~6}k\/J[r˘#1B<'$NSTCgrB2Ԃӵa׊mOQtIX*#[e+_rcJ5}.--Mv$z1ך+>MB<еC Y޼rf3I(/\a=,tJ8 @-NJ:(LvHȁh-&+*?xuWh+}dQX5cD[4id/7Jײq  2ȁ,}Ζ68etT= .:5|u(jo3QJkJ3cb}z)4dn.wnzߏ^Ox0-=#3@aQXȆV@xW=Ru`5` y).;UT%zg@}Hd"0)Eٟ:l]f|"Q= EAp6?P ,>dEG~I6WacvB&,4zE䢹܃e]v, .II7 Te*2?gǯ&Iު/J+"ªiw |mԚ ho_aZW5Tb$wf@UlEAU6ޜO#|Yt;yy4Ǒ 0 Nj|&%1KQ$=lFoXbXhN{Qw ]cgb}W2rl(ZylV"!5I8#zyo܆f+ y8E8 AR;~Oe=OW>5b 9s5D>Ayz',zl*Ÿf˸AO~0n_mX2E]^_d=zH6֠.ѭG֌rDmUT7.<"w/@GڮiV? M'̧Z;ᆘ.U:>T8.Ee#m\>v?QǞ8ƃִcƫE*CVp'$'qjOtv$% 2Ds) .(TZo|2"1v9p|y׼s*%y\gԟKRPh;8QЮRW}XUd>U/L@g_zUmul>}V7^3F>vBZt$@Q?x(Jd;VծݽU7X4X.2\0\KWAN)|O-Du uK g͚RP)a_Կj=/ړEQ_VYq&[;DݷLhCE=XPDJm &F#j~Y Φn秊T%p|; =eC&hAvoTEbavyd $(}w{YkKǛ0o>V*ur+bu*SΓ y62K:dQ]ZS!S #oF%|Ujo\g TdžT1RsV{B>g6#CF}`SO3ni\E>H1أ">tѼd>'984gtKBV33! 9D,/?- r@yÍ*7Og׳Rgʧod2]а5h6b,/=؏,Aj=Q5_Pt(^0x~<ع-֭>h7*Hd r,sd Bd6 G.^yVx}ajܺ\,S[#B`?uFnSJH3Naȃ8bW9QVɭ#OsVoUX)ȗ:0q  <+ tׅ&rk,ztumv&ҽRU_b4$/R) uk9H h Ng:Kju۩,LxPf/BZ0JS젛nmީX4^`˥,L$BedHw*+~[uKpeą>3ԥ ܷ'-{~:R*\Wc|on5o_ӎ μ(C;jsc𑦌'^36ޣcVG쎿^D$daWΔg>u&1 Ȟ͎> JD&¬(E0$RV{pO%NӰ:Cn׀;O\B3{ *i%gI@~WII>`!?iAmdp\*tFo92} zQ$OM=5I6PG^H-13vE߾k 9 Q?Լ}@'8ǧ"[_Y1,(pnp1ZB8<լ1o!p7瞪t_JѶ(MZid.u=rx.}${Ĵ"a$?g `,hZ|C.EEU#2` CVKQy\c-Jjju{vGٖ, E hq+h҇o mZϹkt_Y=iꀨB𾠰/k%ٿfxj9_7A]gÕ4vTBE QhƎ<$M=Z,6Q /MzV&lh%gZZ5rY_)^ezr_7I)ėG`C$@֖9(ސ{q1/ce#CmhftWץW*lTD:O^:߃nȊ@!p)SM3j#WʐjNƵOҰSl)r%s>͏;Yq\HKY) #k;h\@f A] gZڳdzg7M[_F]⚓&,Ʒsњ2G0b9Pwmrq_0EYo|):bYJi3M3"U\@#6+2MgMZЩQWrlFVaD͖ISf;쌉p(sK`Ѧ q6 a03{=gk^ Q^aj0",5i*BvW#LTiimpoB a5:J<| }f{PT ִ?M6@v;Qg6bMD݆Dn|$Ҩ {WYI*NYhcg7eKk2QߺGl 4tv-ABfv!0J%yTۨ놘$y{jw>\Cy?Gǜ Z]|Q ԿhȠ|9oqj*" @0!rVMdD+ߺv smNHW+ #hzRB%`|O"M-2 vmE슝H3sitq+d " ,Luj( ~v{RcT6 ;][ZYPjH bck Ce}2|[]zH!PoD`ڡ}Xxa05L-8wNVzsz*^m6Xg=ni {tۭ8՞aeN.r7xe҇m:&_v899RiS j ǖqg@L(RƝ=@j[sl#ˣ!uLse+4y*vń4R[e^:XX⻁%:و[` [{|s7-u[ }bX%.u!Q/$,Ì]#{3 :,ّpS{\g2J)f '0y دYspIy`K:xixJȊVʅ{;ܟ蘿YKYa!cPj'c~}Ge 04Ӌ? <++cZL7h ռ47 uZWZb+EyҊTq4jm|e uS o85u~<F\1TrFN:R'W[>8V_QBb:#g簝h ج{}R0bŘ>cjG9|%\2D۲mB`^/)b;U'IOL0:aΒg\,McKC _v̙bUQ\ wGˡl̽-cM)y0d kSIvoI)0ߪ>0!0gy`b:憡 f8 Do 1XKPB,qz!]%(6/DO*,6oxf}}\D")V7:r8}^X%K";vŞi 'V"PB\ Cz#0b뤺ci%4ݙ|>i MRf*#Htp+^*CX4bt]xuVYa69k!ČbA'X,I2`gh'J؅caZҳdו" 8 t- Wub d,j41à-~tIEKؿCj8]a$vB(bةKlMaM !ھ Ȗ=8/u:-_5p}|DAݔD !X&1cD.r:Kk"n!No,/MTFi"ulr"Y΃P7jZj;}5G KwJizD<[mzCYl85buFf)rr^תj9scپrVL}$b?JȢ Nn6c~dq=VCa5r/C$'Fa9G֮AFL6&#F)54~NcB>5ڰbBH` OͶ=))>"LmCO@X G|wlq%(#ـ^#_dH}?5]hz˨dqjG(x : fg:(O{e$biI-ɚ !`v2X+s&j|ObT0lD{ ᪐9jc.[Lh\mj?WDAO/gc~EZP Ij[̮g {pw`VUJҳ <<#Pp[Ta߳ѧ  \q;Sg;wXsqzߥ D]iz>J3,js]w,ߥi0Ѹu"1yMO!il{+Jb0 Uln:C=\9 ׈FN-`F6 Zx$?pT Ԅx6NQ^aZ,/`eN6%Ug\cVG ,tUu o1c-"޵zj?eSv:Ƙn@Sfc7KzE),Mbb_'^^:O*&KRfRؒߡ8-g[;Fd`X\<1y"ɎJ \L6w\ϓ/,az#35f* )W[9֭W,Alr2bץm*MJ1GshԳG}Bh>y=*%+$m6D xNn96ſ_jnotԲi_Ÿ(:ߗIUO 5| }TKXzz.=ݟ &A&F:Y+c`KUpˁYL?MyڞcZ;ۧ#9r~.!G׊][W<䧮iTla48"Hu{ܒ"]=əqa䱉yp5 ti b$#GzI ㈍ |XeE4s~Ny p BZ{(LdЧ|>,#aglz-Q;v ]LK \ mQjgUe/t'e)5;S؉B~ceCdԬvV_۫xvqApwб:8]xCoW>ilMFQl꾉!2u~;mUJ"̦!zYO͙BOquI7h(ƢEՃ VG>EUROn鼭n~b C;R١2jok;/H~s0]e,ZmKX )_e;Eѿ.` 1T yK4+u0tC1*JtO1jo l?r}Lv?~~"hK.|=|iA,:J O֌FW;d"4_CWsU I`!Ǔ+"":N6H8"M܅Tj/8lȡ3,٬@uX{o)%䭷iQLBCAfǝ w5wD`6sɗ["o3-.^vW٤ƣ\u݄ J"RV]VF-8=Y&hظQ?٥澸~BGGq+Qt 851WHLj>zXO&I'nLU }#뒥VK=?4"#u[Aɱ8-+s(޻M@p*z~Fውo9ۍ=5<Ѕ3Ј9lh rGY\8/1/fTx| ʟ>143 BQOq4x-.'4=e{Ra6Vϒo{Xee%ZM3_æ#"WDĭ }dSD67%qCzq{ vbC\Ry,9=%c˜qZ,cܼ ep-gMYFX]hA}# uu E'%y(. <l iyJN嵶#N0x類zMH4̆ex3I_c#j]!˱٣ ʵ +ƠhGHI \J"ycG7VX&1:!^T +Fbgc>w(rj6Qiź2Eɖ\LDYd̓=7Y1Z OwF.3`DYv5sA0Z!zzz)yg /MJCf83B#,*A$oGIx@OHoL[uYX v~x:J3&AGH5DB\0Bz=+Uvᩬݛ0b1b@,qƽ16tW0(3TzOqNxxmtYovxod#w jb+7%-S{OQH7Z휨rE/N2{_8u43p2= w@.2:4(u7eHZoN:gnHJ-HZѡkx03@f#kmKOT=N>D+WˤzU^%A 7ZZ qdЛK:z)CTISHo]щ_Ѐ'0=FgצQJ1_ĀI#2.r&wM}gQK4?CIx:M*NDJV5|Wt0dVZÉ- / c$nr4$xzHI[1.hl@rީ]R˯$?RjTЁ}dHEE6Lkyx$EăwTD0/Do$یU]iPi)`GljuU4t"z3 ڽ%D*d }qZcfaBzN$µql`N%ռ {xSE2!4hM^'>%N[s>&YPQݞ>>r7A0\*(mC5蚧!4{}yW8f=?)}R BPQk' Ҋpc1L'Iػ&B>ZڊgjQ9U0RE ȵ;$Ma' w9+ ^ˮ>H"cL&Z :t &rIvWkA~]ZlW@%%~ _*%G${0U&RTdqLՊz!l a<^jljdj\sh}(T@) I8~jI+Z_GtI7 Am^ N]YS=?-s.:G_Mͩgÿ́B0Ú-Dә^.a~sNmTw9WTꙷӟPjva *f:4kށbiH vdaJ^PNeZ<̮tG*WLJ 2c#Oܴx 4C*J2фd^A`Ϣlj]:7h혆RNa04 &(:u?))8^RH! svI2DXgEʉPFJ`zhY89uSqV:`BY8QAM&h5l.hŭwLp ^3uՈpβA_dn$,Ft\trYJdF]ˠrmo*]w&2N4$̎ cՄgm*.Kz%P Ȥm%gVꚷ&#'I[Ԓ- ƩCF1%K6r~O7ꂟxaw>#tO xޜŴ &;|w$<`{kNX ^$04)aI‡tAsغz3?L&/+)kf@&U_iRiSؕgD̰M!G{9L?2`C=QږW阼;[Ē|Ҵf/"&*3K󂙌$);xWa'2SAd9L Ecp4_g e}{NbQ\;qK"`O$2Va_: 6~U$8 _Ȗ/ mV\u!(:+*S. Q%(z|]6f_y?JWEpSJ":ȱhT9Y۶ 1‘ϖђAMl Zо!ċgwe&EuM_;l6$fBV̀ -9_Y/gpXp7g&g7N!VS.>B08dFaۉ~AѓL`v?g|N_3`=)A6V<N'"#D:iOͨ*$_ԨWVHQODgx)I2z5Ex^ɤK,+X9XOmq]~HFK5cE^l9ҁA9KDsC&,>9 5bg3Uz#*FjL^cnʄ}?z+,לb]~6A׫m-I6|62{\4 u zFG>_y 4z6D/M[a7~5>IÅmNլwʩEUU1Cv]-JpS Ca;E!0n:XsxɱQǢMsndj9"8W4͇ƒ@>G٩>"lˌ̚Þ< 4q; !۲%QUם_Qe񉜊ɕAAP?b?2G>!Ac C /s|U4}*?"|9ߢfy2{p"MD0=)x$0gyH޲)lxQpY240d)<ڋlXwBjt  }T2k )XH/i

S}KAJ d\^vҧ I&b6qêlu5Ua?!&7٪~`˯0",^!9_UIw}uW>!j (gɬj`GaBy\^B?r"QG"'YҴ$6T?8)Ѹ3d‘]75Մ4j&n=MjM8N fl`z/GĊO!]}XO!$X>HwvϴY!*oU6k&{GG³PDS&> &Mxj֬ ?XF˅U!%_'h)Fiū) =8Uw<(:ت"FTA/S'Jg4C8840|OL^)8ǿ*Z.mvmXx/K-_i^kI. p0 H3:)baKیr/[&y]ۦ(hNMer #DFX[fg~;(6J2 #ZÒ| >{M%w] BkMvO#l'6=,HTj W 6`)}T#") OU93ۢk 9.$z u3ĴBD7"H@biP )b! )ގ /9u7N7^x{'BYQi5?2f2u)Lt8Gfx`hZ.ș*oooxkE4w"0\[PQ LgZD[T`HARzl|mH}sσy`>4N3=#  b@ڔ:oi!؂%]~cfΨd P5Gu+"`Klv#:8p:޽.VCˡ ~q 50CP=v`J z#_5Am*Y{ 0T&_3$jvEb7 =F̡IvQ;=:?u_BQ"A~V[NYz /(tT/ID҉2 u(e&Y% دg茙Ѝ?9NY 0WN4d*;6K=gބ۩ =RF-6Vͥ?Sx6GD cnz䷞ ,tyy#Ud&$"V?,xe(Xfk2LM=/rsm~m}iG|e(LnTGELArsCOd.uouN q(qM6>*:S*]l2a]6L

K1Q4qP;"c[*+:5V#ܒd ׶y?J/l:::rCOF4j8l`3;gƖZh. Ls) tGRB,&g2P+qW6FȩvAK*)|PWA$ B2eV";'(7SԿH>>ZX4;xw=(YGiMXf3Hw4.H J a3m&*L f- ok K",-D,i23u/kY3y(Y5\hw(sőz4켸$ +T-ii];s 9,:~^ Ĭ@e;E$4We-ܢd%Ǧ\ֽ~@'۷ZdqCG8N沠Q> stream xڍVT$F0 i -)!59@)QRZEnDB i %U@;=޳s{}L𲙥A$ `%< VH7 xCbJͮCqL#`@Co DS+@)0X/G V @M$4 "=p*-0 DQQ^w8P"aP4aPo%BXQ%(?I ]UDy-~pl .&& Zy -1\  o$ #X 6xqWHBNgDH`( A@H;Kp@(#C@PWC@(ߟ`XO!W%ݴ0(:6 n=^hL D!~QpYp?=ʂ`yE0 <@[!`> @D ?4aanݐ0DN?cA` @+G0h7dlag'&MML/!%!))4:~P#b┊T;r%Vdx@, pʻKIܑ N[3{(@ԺA=wB> jb[Ҵ+'I%RYOt*mI]ockxCwgṝMv;=)0lk+c.x9=o"iC&LQ/x^=9sR7Qpmlھ6 a* EјjДVGy{ۗGLtM<&}/#.Q 4XH[P] mO`||Z"?2Hgs ()QiLBefݨ/f*ytZѭ:+wu1W'.FY' KLyVڛ=3  ՠvF{h2rWdDQdž}rAsn=:*(%A|țw0zR'|:E z +ݟ^whz6ӭ6wZf$;8s?<+rv iy>ңЀ]k?en~\_q8S)g >[1Uuu08_= :Ǡ^YŗkÐ>%]㼃p)fn*Fgǜ4|Us4byp'XJ6v)`ځ z^+zj"PR^cx`G1[ʧLM1f2lu:'ON{ ;cJ`?1`Xb3 +mIT&xFͮ XK\P#g:$9%Ȱ歪MMB_-UlYO=WYC9DފLkgv0 W?^H "k<:$WZ!neVz,^,H,>[g?vCr"e*5"BȜ]- 69d('m͝^Yp!gH^Qfn6g80b|9kr -{L6-~8[wG׿VVz_:C~I7G6YWJ8%n]+r^˘MqKYŨ-ɔzヮ^5%D՚+oE=40zЍ$ \hQRBIJF|3} NZėeCOF3QCwQ$di6WE[[:(lo-PӊP}+gḹcb[n墦Tʯw1 K=&AeZWk?޸n&Yk~% ;V\oW 1U<<&x7 wɼy=m!oϻƌV>=vo| ica揕^ˉ\/ֳ5Oxp38m,P, fu>#֍0}FDI)&1<~4Wu(j %YϙZü6\w5$L@/)pIIԜxzy ߬BL4mz2n|}%0:&fO]íc nԍ?)C,hؐTBRwfnװXiY;c٤!sVW -PW[SCx oYƹ{рeYNȔ (ɘEN18!CGA2k[*rO1/J~?|2FWɍpNM[o TL7ـÉ ca?ᚅNAi4^:# Yd Ypԣ'U>qWYH"k7MK/-RkpK.J(dL6r.,ۛ6Z~C3VUzA+>|C(`aF)>jS|@5Kqj B0ޓN>(d ^6w znkt eKGƙ7x7\lLl9qvu6QSa?}wbhjvmQ${ͤ<@m#ElLNHO^E=S3ΜX)R qB!{F6[gi?lp? k3Bxo,kd}G"TZ er-i2۠|QL%yΊ3ԢEuj8 2-~: u`ۚ}S&Ԁ襨))HHu\f92Iy/<dP-{ HEGodez}Q@\\iZC hj'L{OS5yioKeQ-hNRhЮ|bu~jǪNភ'ڋ>G}Tb%ׄ=;?buQveᡦ>2SNqCsM9\>`-od)þLo͞Ĥ/-`nsuJniRSj;#)Sn5`QOb33gƼITg4[)u8ٚJ@=^#+XGM(;4nhG;=Bv#@PբĜ8$oCbs*:DMV砇$.t[DIֳE~𛢼ØF溜%tvU2u$H*_:T@Rǟ~wcǨq!|e 1A!}ϱ/o]opTkz&*>!zB]N\@۾pd 4OjD,a^糌Kh鋅1V;b"ۀRgnď^C$-IKK{OˊX}GFR9zvv*s$9Uwٮs<571C<{I;_JZ: NŒLD?%gyK K3Y.ʕ+Yx*X9qw餶;IZm S?y#hUciZ~T,&>i7} xK:νMgוƋ[SԢ:_e 7:aZSBBwSk%6/> stream xڍvuXj> ") K7,] ,K,HHJI R4HJ7R" ~|׵=<3s\ k#A0?/Heih@ p>C [Ҧh@ja@uoW _D_T @q{Jm}`/PxXPG'29]ʹA<0- ho 4C! pu{:Jsp}'> jۺA% `:A>2; |m=!@jy!/yO 2?@M7y _.maP# (k"@[yjktx[^PwK_aVnn >E'yGc( ۝)4~!0C;JbI;耤yu l} @7I@08BaёfP?@ЯY! vk|zf\X^ y"@qo C/-sflȵ$ G~ו~E?פ\[7?>F EGJ]M k[ zS5-R,r0G mz)C `](8\0. g(!h|dCgU( ,& , GJ kˁ|08yd(// ^PdE`ȿvq1 o$ !RDA|cBȑv9v@_-r&9;!߷6Y"\59j) ?!E"kp|Mao+?ֿw_3 b=# `?zDdKޞH6d\࿞xbK>s}vQ-G˳9"Qǝ7 u6j3ԗNҕZJq.$hTu%pǎA^R*20cV&6=0++ٙ3kEshd:zg%9^9IE;t=᧟#T#;j7Ý?5d;PsǼb>.8DO bb{R<}0,L-NWz33i g\ߐb'ooE&U':C6Ly>WcT5uU kiڧqbSY#zJ\메> ?Pݸl鉮5iakQHsk=kpGcu4HIB/empJ¾{|?nTkӀt>VrRIrVc۔ ~Os@*:ɠ;Q k {&UQwܽboÐijO/pl]N`ZZRow MlFFAoASD?2|=x\R˯}"`m0Tǭca {.eWT*{3>,Ϯ^}YBCQA͕GoA6FG!*w$$jϏ?jOnWb SV6_JԳR x^#O|5˥YCꢫN$_%Ugms2r^ݡ3D돼q_,qd{"C@q^5q&>}{qُzEĎ6[ep VuK |dz:^hB)^AVA電S6۷]8%Q^LR|nCN <-'3CQ$ugܜ꺶R8h^,X{?@-7voSb$t d~:6QSw?:t?~'zNWN O.SXС}7/BY4tVYH_*~W#Ɖy &wGX?Zޗ!$бw/ưP._֯f,fQf0 q qRM=M9copKll?Kch~m܊n2{a#E'uezc '{zgD/$gn6nŵ <K?Z PHY!$ÔCҏW5 /wD%Qk~I JmQ$wV\Qe xԘObWr3lVUGV,˿ߺB'5Fb [H_\u7u<Ů=J!}Ch|p$]^oYnƣ׈*v/0[_xJ+u1y% k{WF4)Sc:Aw9*KX^2۶Pp=wdՀNBbƻ,5"V 2b8K]%\é^y-)&aVvwh0 ^MD56&b8k,CGӜc[ m,dvElu>~7I1Ŭ6`5QS0%|Zq.5aF;y.]"wY y-;K7!M>V'n扪lȬJToyfңO{Η-P(IoW^\TwgܰUQhJEt9H~m?M?m\ _9)hqDel$b}2Dtp"NL<<T45yge0:3FAÙ;ܑ2T1eYUQRsN܈{V)aN#$)' ^T^=-_sExID}UZmOhJ:x a1-'fi6W&D$[pnw Hx#N[NQi^z6S%[l?I6P5KOfO,F=Lؿ@Q~zgΨwWc?ۻ5$*SY&9h Wۡaew&.+$f3;:~$d]=wH`Tc%;vS08)dٳG ہ60QIcnt:.wTlmxl.laq%[Ɯ$'y:ՙOpw84 -W$UkvZnY A?%w-Y[zٕu(|_NJ$RVa7fL7Y˲\Bs1SD|e\k?'fLxe^8R L_e7?m߻8OJ)Ye ELP<͜PRN6߼QSl4^Rm50YF?Kk2$,Ww5$9|Keb?pkA]fĕ($ qY؇80DK"SrRsP=4S ?@դGbK(486V/jv2 |VSl-SLޣzNLDBѷ8/UF\M||vw3_0@%-p`. T&mgcvq2= qr=2')+nX|X>Ci]dv@ݖV{4jw'pe5u q>ocnuuB{w聋FgFNA~7D3T)n3CrX)BC}EtdRgQj /qxqm׮"\π47C{̧Wj j˯Y&v_%*+#_ xs1-oٕ?_&> =&\mmWaz]23kk{|C>3_enLDMɈX+nUPpRɊP6E\?ۓs! MZq)z'Sm'Ҽd[)g5[Iڮ\KM ȅp;.s<`y<#NrjRUZG,<Ү> y2r|([}&S ǹ7bl1M/_D͙遵qA) !y^%ìw0r5ʖ|uY{_`GJdr{ʬń$*Umggn}p|k@.ӻ3QɊ;+!Fe24;Q uFKX*J T(cb2y Fd.gyTodA֋]?'|+}l |Ȉ>c_@vd(0W,;`sT\3s4Oh0o}0UsjfnWRX.ZtZ:]fG KQOo67?^bpՃB!#G[IoOL-y;8Z=zWiIhR?08Co=/; | ,ex=@5ʮLp $ћ<Ⱥ[0y,i()`A^E A1Pc԰wV/^Y|G$SԭH@1WO~,$, ? YӴ0E, zI{\ɳIB݁mag!$?ia.e%[FoR>oAsGVvLP Ӓǃw8lʰ▤^\*KjZ<׵y2=tٍ6 դ!"J}nF }TiQ[~/ED%͔ܼuXP8MK|xFj wyĎN3Q2HXec{=J5lvuJܓt~3of9?̂+5$XV8v)Hו`O4GT߳=q'!EyWrX΋6%a+ETeM4v EY_ I4nLw$ pXN^)ދz)}TU3e=.,eNͶI}< M*=MU9(Vm*'\on'8E¸>lĒ)j ^c?q(ϟk_~Qܒ5;W^ўv&R=l[tsU[lvОʼۘ$s|7jF~|vdk}Yh wȾgc&jz[{O*Z-oz5R/3Cqt(68yGlN ?j,W-Xx\->==u[b&4\$Q{8ARϗE-$?_P%2aR4'S2d?sֺZ.!tV" @@9t i ;vV>@o]<'џ]Q{},=:?WƼzN"~zN摴5//}%#QX'j|r&;s]L@ظ D EF<A*q bF ;i 1rH.N!㔚 zy!#|䨙h=ԋ*M<>9(xNѳ*ߣ1=֩un :1?Ţ!$g`}Uݕ>TKS?T>/%MhhBb KRWVbs~;.N Ƭ# á&Jw).-oJJVPh+o)pQu^pBwVDLi[ e6 +CqC7hEf1*`TW&MƬ<72Q9P7.OOCYmlk(' @m u#qx %}ɵKkp}5op UчГDWœ"H^q16lM{#:J\V]z.I8θI.S[TZ&->/|E?s}x اLhF^J?oV`pXZBP pŀlkn.WʒcQ|Be/AZ<d8)KjH*TRhfv{E32Y8Trmˀ_yz=5nZҵ%Va(av`Z~`n艥Xq֘ag$#*͚Nij5+aVG .:+{d\{=i8R+(<+ᶕ_JcD։#X, W*)~SsMW$^[CpV iy-Xc8߂(4k^maA7QN)M#~7} آY ӝjkmqIF^h4*;{)}¡Uk5:bkDmAs5~6֚u/i4k4e$I\%O䴾){OgN1%j-:'uH&~V+-w${lDm>$c#]PU mq<:zB`bOXlF11gۃ-ɾQ :7Xk"YC[1>xȆ[B ,7Ϭ{ԹOa㻤]1@>nu|mΎJ&bi tzf6n߶=*D/`Tܓ? ~pIQ1m$oGw.m ߯Ib󹜧x Ĝ@̊}9Lj1V~j:.yc$y_tiaPXv ?9Yb(xQaALh]ҜpʄrmAJʐH4~˯#ETwrq}ðr.ʼ~Yڹ }'1|k΋wm"Qd efD\)|(\3=_SGd0?O{uc=22ܘ(\x0炪2U%7PJH*)5$v]`G@vNʠӒOE"*k'4d`&0;,Z%N0-&[GxNq}XD-uO)]%ԵNJtp##Gx-]qg`>t6˄RF'd" CBd&>$\ ^ܟ1"|?"gѾ/wD r^!&}Û-׊d1psΥ{!T, P"V{+4]Mƒ)5a]S<>]g޵rR$}Tg=2Rd{X1tzS}W#{\ybl-N7\szbjZo: .Z+5̩鏱qF=.J|pkR4jV3@p]]>ȍ Fz&7Fͫ205hs0 V`DVk, ( b-DG. TqP-jRcMRE!JuŜ6=6Qx~X="BlN}- Mf3ݡ!(C~z\ 9Ӕc`]'} INV?*pkVd.EHU+mwƩlסy4Wm󠨝!f&Qpj&.'5.K^9(D`VfC԰đϦh3$Dsa{UC%_./9--.0Y`iG3NAj%Tcݧ"WBY]vs!O+]m0[48[O?s왷VkGh+7ap!7`% bB$ _(sb.Oץ>N"qGwWHrqw\ЇgSaf}X\KS^ї TO춏_pþh9w0U{FH#$o%_vȕ eKF/ (f*"@jl$3:|ލ84Z+pr)0NܥB3CI>+h["`/:/FՊg2ӿE, YZ6Mڮ\V_z5 v`hH䥿ΌARGaC{f] DC J1u&Z4Qu&y!k QVQD߹_-rX &30nAujf~ \ʀTeM9C5 9=iW뤄7;Z4ϘF+[շ*'Qp\)⥚̤lpԾo= ^J+)eewT/pZ-~"6JXoԂ+!z:}kx.3*ij2o7nh_;f(> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|c endstream endobj 122 0 obj << /Length1 1902 /Length2 14111 /Length3 0 /Length 15287 /Filter /FlateDecode >> stream xڍPҀ ܂4 Npww`]_߫նWP)19]XY견,vf6**u+W[T g+{Y;]eƮ97[+;Cg>@ `rAwprt}ZS:+//7v g+Sc{%=-@ ?.h,]]@fc;fg !:F%@rv(dl4f*_ 5sWcg]`ke wy?forG*>82Vˀws̬u?Yy`ne |R`vteۛahl~ԍR* Յyo$A}}6>!s+{3?0ssj[9d%y!#8YXXxx 'Gu/GПJ?58:8Y!n ?+XYfV=? <YǏO?^1PK񃨌,%W)& ab0qXY8_;*[ݿ<ڛ;x*{)ɠ{mA}A_yuoFRni2Yzm>nﻡ!T B+̬V}GD-眉/'LYeǰ);Xba?3y[\ޯO}7+0vv6Bxw\ߏk;8#q\x@7+(qrq%PbU!vPz_}bgfgf_|י:ؾ??: 4'a/|_^A^{Y c/||[\@{fTq]q] sy y3Nn/{>k?wd4`b]q_#J;Ɓ.yi,N$ڠ뎐@Zq5a ,ٝK˝YU )_7EylwKE.%zsҔKc J#,Kc.P;2`5V8٤v:c ?k(I k`k4ZQя*HEyDrLY@5u:.k2c$jOsYƢ "k!2Y7^oS'NdE"sA2}i&  ~m6\+3Fy|$bTS)gd1Og‘rjue7IVuIi. ]WsMaԹ}ʯ"{ӽ_K1(Xklq9;\Mߎ,M2|\{'0w\4c[YX6MO\% =$4 >.-Omwzhce%*xKW ~BƤC?8!|>*y "vo&X% <o T*zuC#ncQw3*7ݣޜV*nnOEx D'.Rb93Z`u:XG^j7d*!yXiF3PrDeNR;5ZX9HB4čDG/tM ;!_]JXMNҍfrl ۡ"D)-`,N7YukfZ5)]Gl7&К(3j>ܔV5"P'ZnhHoSNX 5jrscTYR$SOME"A)Xd͵S43_&]Zw֟ϲµNmgy֬tZsS4_D蜾8:c2b҈ςP"`Ui0/y+E!PYG&Ɩ^.X$,QkLU|J[z>X'_Z3[ gxX+8uNjH(<'w6c.9ȡ8p[_[Ȣˊ 0fX(j] <`=XS2y;"yG'׻=iBi+TףK9XDk '<ܳia^fajЀ1YWUI˕!'p{2|?h['HpuˢlC0H ]zHڞ$\/w&S:yK'0KLR~(%^`2j }^z4H5Ch<^ ]"疵P;!cKcAlj5ZvȧWdM'Y, [ӹ4»j*R$\1~uÅeDbn=I_rq?U,UԎW9T܆S=:>wλ:e3"{v*\vzϧq>ᚍ`w9 ڏ H^  E/y*q>c bdb]%S5YY. M ;htTa'Ep*<&Xy٨W$ʎ;h&Dk2]1\f2Ӭ~ nUlA :X,hH1KӒϨ]NxykZPaS6/MjS`)@YjnQpum+|f0\K_Vrrt=δx>Mđse1JǮQEl{M$QVi{Bgy+T-/3=iXƬ P MVơd*_(c, paW$CpAnXRi.eq (d:A{oW ;=:y-3%vMxlOmOP}m}J+4ilwszϋ|ɛљ4L.A^9AcI 'Ɉ:¢<@)#$yRz,WWmyB7UHy㠱bsPvhY ۝&-kJ!pT,gCMx}"Nx3X1&Я 5ey|[1جs)Mf5)ėЎCt DN#>GIޥ~9d`Bj'c^n̆jpSظM-C~o-A]tB_<[ gQ{gA0vA|o/-s1h&E/~cRFaݕ,w;y+= ^VjޜNz537еUJ&WfA3'5qNGk TxiϤGm;]ĺEpmP!Y$̣_G LԊ6?\khG$Ubi10Ą_;#i]%(6KuJWa@d\WRtIj{ʆO@ |fXl|erEVgр@c/TẐ)z"QnK';wtw 4^Q5+YrPNSM}3 Xՙd}SD< ٵiMՀ(4jBg7X3 {uAߨRmDnJc\IFmʕ-x0W_ 5HrzH)5Kgxѭ'N7^ǽcrnu7Sq:YJ!mc:yyS[x;..jy@9J˙+s,p:v_RS66aI]X8*%)g'vkT>8ψop^!z!jjo"YX̛GNG+ ј3|Ua ,/ n-*@趹pE=c,]=W;;tkCWW.:p~Z-vnp5z,zg~r׻9o5e8SGޠwp6 C7;2F?(qr ?"LEm`,Idi\޴^fF'݈8MC>+m@4PU-7Sdí s? } 2ƴpzޗDz(Ϸ5(N_EGW $#Z9.{\Q+Z c2 'TWlW>ڮRgc`D~#˿N{aїq\ J%ވV]h=Z_@5*RsȦnw Fw+wr )aT٪V풶3΄_ Bz>6 6UrW Uu S?zNe1xl'4y SgFׇ;/ D:epH60JKq$5P(o8afBzg6{N$)b\g֭DѳB&Au >s8 ]o}+9+ݏqN !i}eSO:e|T)هm}: LaeX7zTw݅:`,!tT8 VTΘƕ7F'ireì*6! + ^pȖE ϟR [:BD;8!z6_}8b͎ܕdBGgYuku[u-*[ v !R ҙ:[`wmUHi_Ys\I$ }<$9b?5G镂 u皇FR,}*TGiϾS))ַ@MḿI|^: p)exҨ&razes)1f㓯d&7pD0KT'-3:'^X/3b־ul\Ery9/<U`LjiA~lH`nq%Tt2W|Ggv2iMy}vo(SOs>˵x3`;B(2GR]JkV.3!MxuSպ<\II򺊖_$rns v܈q݈uUzA)9YBo]xe&BFoD#R.wMsY>;98q? 9qgL ;IWnnLߠ#/صzTq_%sPL>7c_ ʆ=,}*\4$C ٦ bZ1/K+[4~K,M||& a/1C-#ۚ\ȋ'}&y0{?Ә$&RqDOr$ U7J~ fzY r0Mۃ)UAϧ8Dpb7{9i4v\TY H.3FwJP*A64L`cM( :!V^r5#oJYL׌ jL1UlA?+d0q;lNg2r&5j)L:i4?Z^+{x/[4scLWxPaF#>pPbf=V)dN<rL'C\ m!Z xZ[>(3SzS *~:FFP%2ꋓU+=(`)?%#ԉW`v3į-ܽ_ЊH-hs ]9&q)J.JxLˈBvnQ\ПI( | 3ܹ٩ṲM׳z9 UpS}L!% k1dEh-<3NxđRL=sZU*2ǩІh CB}e /0,mnmy: &4>pecԾGqRU E3 ԽvTĴ F7+z]С)gZqҧ8͡Vmc徦.I<#fw*7]+| 1S,*A]oVW[4EP)D [a~,Aο3f`Ú;(w1>nOg!=al{tbb*}l_&2as{h.Lo tok"U>V] Ʋx"L{DXe7Lf,wm -C,JAVm8Ub /f U)C+m weBX}^I=jPsT6>Cxoad7NNUbQ#Tq{QR ÒkUsFR0 cT" X+׶$SFGܴZxv8a!,Zw8Ę׷upuO=AP 8Kxe֥h/Dh~ &orz|}|#&_$[@kęV Խjq .ETtXoڥ٢ X48>lGN)XԛWzȾe[&Id6DD } ThnwWPS\<~k&a0XQvanďz@98\zXEXB3YsB` YF#o+ jfl\N#d42wiܯ^l>OvJMs1vO͍^L^K\[B~F(s"BGPJ峹4"fdTSjԯF&Z'[sд1¹FrF0X`qضӢNZZ]KQV'VJ| !,M9 1kQLgj%؅z.=CMЇN* oFr-qƫZ쫻!}&@+ WԾ}ue,_Ow4}u`qݛmRKQ,nw@R2 qLIdhtfZĞqeD OSg~ntzF!gՑX9 &SVyCneBNcϮyUepa0S*)ɑ/ij;Ix o SRjI<NP$kNp~tE܇ /գJ8S{,Q6ρM;M ^hwod0L&]ɹ/c[(;21dW9۟0JK fL1;R3 T$v- yfәdd p~:X]J.Uwy\TR߶^bNZtA %'NC|US\2اFBeWX<+/NcP@-U@L±=`Kz]M-s3r'3{5;a4Aه)NM'F&:B,A94ktzv$`9Z5We[Bv`h4UUP;:;"ڏ2&+ 3}M U>2e; ˃)^ {r0x.:wPNPBrE 2 _yaȊUwH])ׂi+3fq*8BhƯ%X3 bwu6*3$xO lC9 ؍ID-W͉23} {Qod*1XUQFɚU>^7p٤IfPSA|AlР`CHkw#Q(}9^*MB@PCa/H}'T A>?P8J1X"^d: yakdcdȔgz:HMـr܇ָ>Jdm8YCg>)&^Lzj7LKun+T[+:btk6+;&},%=`]Xd-)&kaEWWD1qܴIBaY4_L zݑ+(@1ЛʜTWOʦ%0ɲ-g^=TAy XB|:O(J7;ƽj}y2Fh&U]}F,Vew{rzsx"K'UEM7gM3?~W*[q3{[fl[وngaِUrZkO{_6HM(rbPTjC,l`YFй!(j:K} EBq8ϬV (skLEzk1_gy5Tܘ}!)7iV:̂RC*ᅉ@Mj,1om(6<_b\q+/Z%%0R' uAO+-8%bf0򝞭.ڥ,I U2|/Ooƥxyf+Pk){6J{tͽT-S㥈;0\?PsF`E5)1EƯ S9Q2,͙jj}Tc6hJ?|_IeM3#vr_փ?;NfH朞=grTw?f֢h.D?U@~`] V)A6}|hHͲf߫?)OCǽjmM@FF X1ַ9= ц' ot4F\aQw}/c;QfEAcK82\C$F򺓮Q.]5K0C:O 3*ƻw4['s+e"kX+kwҕeJoʱKS#8&E|Jv-HDwnR'ۼ2"{&\SuaZc-6εvDw01Rq ґ>#YԕA#x+*UzOx4Oeu$('ijC"퉽3t!<ǽoN~Lx;vM=z,?%?&9+µ0h߄E=FaOF+N{5E`]P7 ob:PtKAPs>rDyUnsd,A/Ey&vx*,D2եv6x0nQf m`X 0x>;"ӣ$<,Y/jW\9:Cn" U'N +T@^^8 Y_[SG)JOa][_ {\A`sj:QOK8js=Jih" HaW\ %A>oha'SxdPz _kq]^'3㰩.4}Z,#_Ĉcc-lt :+˦֝ ́LiYݼx=Lz[oc^+m_OTq\Qkui z 8ac&Ғe5? AHԭi{ DJ%NNy畷 A50RXGoJpҳ -ӉBVyH5L\#*Xv~)b=./[՜&aZ`JY6!XᲾO7eu+ Wg%!jx_PbIiSȯSēXIJCgH>ewzy1f-iQ102bHB"_@"#wL$$Jn#|y^ϫd@-=)7G!) K( } \پ7Aob[VZIP.M 9NҴ_?DXqn=d.swжP@Jc*2ԩCOuq4Nt)y%S šg(UQ>un"x''Uf쁇H7_VEF@ʖaI4 w"4cMedlugTu%񌾺X9BԤR0*u+^a?Rn}# sؚO:fiChxk{a rzd;(u`$R溎17v8X ⡐ŎS`w GUsCoTlji6d -dіi{#]e˩h%sѩ͙nZ?O[z74c.+ڀ4jYv2hYɖU黋 endstream endobj 124 0 obj << /Length1 2263 /Length2 15494 /Length3 0 /Length 16845 /Filter /FlateDecode >> stream xڌT%lgd۶mMdۓkɜMM̯y1Zu}{wDYA(` SPWga03123QP[#:X9Bh!7v0TpȺX,,\Vff:8čݭ Y{ G|PXxxvL Ʈ@ƶ5S+tuueb`4satpxXZT.@gw௖vGPrBZ]>\̀΀5y#_2 #@V;:9{Y[̭l%IyFWOWz_ƶ.V&n Qt\L]]]l04K؛9]]Ohӿ?64쭜܀2Y]lijWu/GJ=8:8?Y?n@?*̬L]&@ +{??@w1 ~03{[?1ݿ[RT``ecpq8y8~VdVNq8Uߌf+' cX98>,;j{L.p)'I/ѿI0Iq1$  `>bAq?T 6`R>bjAQ:ux>z0/baHobjG?#LJH#agKbggd_Irr?ݛ~oCi gȏ:,T%22l?:SG  vß?;Q:~<9@s?RKu/WAmQ6mQ*\f&CX> [c|$Sǒ1z8CA?oV?9@'ne/ĺ>žV: ϊst MmvЖHH*i[#tx{Jdza~4TѩH !,䀘f xh,E7r!ǀg`xA-K,CFyR(WBZKOۻ9wb:8bm*uV\r\]B[JѣTY%-\fFAb߱n_z2h̶+;+:rGwav1[D7_Ý0n{||<<պ*%ݐࠋR2QЋ2(Fn?t~]Xct:xcU0-Ae+hqBLXvͬFxC tB!װ ̂TH4b^7'skKA-F4nPQQA`(D$e~ |bOTdKGEl ,їZ>! /jsA=qUzI+uzuF=k~jQ%dQ5/t*=}O1]f4|_&nڰ?18yShk]:ЩI<[GdtGw4a<;?an;5P*9Mn.`Rk=;jQK嫝E%aNcZ7B[ VX10:Ⱥ³2R$#_F|(Uv]._}C.ƁĒ[%qWk2%;j|.GvfSPK73DN=ّկэB7&;o+`pfCFPЬ/(AW43CPME(fi}UY;?7[sRZ aD3L;EiOKǷ$JLͶl #`4PJeIɹ+q 6&ye?d)`g*ke{dK v( IYwM1=Xb^ƏLdó#{Zyc"/D%\<[Qt;<[]+QS-ԏ!yT߯fwX&{%Db~@ASW!*H7|~.R\eEcfG^IUjVXA-+ٍȯ:?hNyKAD*p Rt CDmr)Q>OVJf]ul?]4RTQAe<Q!!R fKl++*DI" s~b\0Ҏ X;,dywld\Q1X8QjT]}SCbăd7 ae pT}6Z$hWˉDPGGQQ9t4~ѶTzLBԮ|#Ž􀻥 UcDK]|23'Hu8 #3jA^F3 9nOAt]yvOCR][*1 'T;FRҷ#XEE{kHh' u `oz-͘~tGb8>59 ȁQ^M( PrpQ|Ѯ@ fWKWY@_EI4!~p QfYx. sRzIBmIB+Ty*HU$Ո.md$1 s1m̈́١|<4 S[-3xy@{]@a" A!m.%f=6ߘKgfmCo[)ZN]>뿌1<}Bd߽Z뒇|YXV,)ڎE-wDפ@G9]g 9Pw(zcl}wݫ#Q8/Uγ*m})hs75N-7ۜxJGmX\DC94ÁXTFط?`Iaؘ<nwf3.3Е T-`,љ%ZCoe+nPt<\Q^R3}o[[e}=ޣHJ}ɾUoޢE-"=SMI'1S@GuzB/γX6BhJ 9B:NZF/O$]iqL-$yn~jxK~%⫹}*zN _6qk40$ZUcPN3bDJ _ SkTRYldʑCƵaDX3cRwm,& 3VT0Q e}l6,Uvpda=Ѽ%n5͍O|pC;P[ړP,$Bۘ;m(XdDXBm3)!j@=<H`t˒&I ܚ)&dL)ۭ(^$6jʳthy ҹI -7nP&ED g_<Ԉvfg2;UAMZRF2$W: w21z,ѩFs'A℩s.CMKXSmft Eoi7PëE4A1G 0G{LHTjR%mܑY!?y58a"7$@7qݟ2idǡ{+p%R~N.ioEycD|xu}S~9Kv,,lH^S%Xa3jOTzCqi>(LQ-j:5_ڦuwZ^]#oaڥ\aA3-!=w6t앎XwYK+< B:`IJ/6sӖ<ƮZx~ [Z)@+S38ሢChiu̡qM _ QmSk dڸp| ̜'p< ƉиdfBzr}pNMLmM`A J&dIBՃ[T+苉ΘDAv)%ҡ{2~(zhg-go[mubnh[r{75Ħt뷏mٹMr>)J04.gEj6C5ⳫbO7\ !!;ɦjRvcjR?LKÎOr)= qҊ 3Nƭ]uv'%U"J:^ڵQ>c))<5pTHTʴSĬ?AD1,P/ɜM1YquQW9f5oW1v]bHRJ#Upg-?[Ve}\O${T4qrwj;׎< hW-:-Vӂ[;\K.a終AE2"v1PvK, m~;6/ fFR"_U2j.#2- h+bXw[rj3f'.8Og=' wìK`{Qُq`}zP&U%&B(}1/5ɷ̳Ι.Yjb5`}^z$ %,87PQe߰eAXȲdy)3dCS[ͦte՘Zfa ~S:n&-AB 6? g~I ο,7NDWY،Ip-G(29B"NZ=R3 l;s-h"h҃uEE(a}Q9cTvh$k(ZMdY:tu΍@7x=v[^aIwrn\́FC+ǂ5[bBow'B!JrPEEOkVQ1z[Mga5_ߒ9j˨="($xݣ"GIC[*.?$xbM 5!Mc/.IM\tG ˲uC%3ǖ'<*]Y^S sV8&^61x>%QwRX "B<Ɖs8>OO cw~n9%q4Ʒ CMN]*YNFμr?_o^ J3 Hmڜ1Nu<]XyJ[ zXH4EPWld(+R)D-08`8=hrj_-c2K Co-vXMp[Hd`O\gj)xDD}zzkҔc-/IsGJ0i蚰`N) _I=2h8EqVciG޼Az~L'EƂC[/囕9=" Wv|3 <jgh>9 H 9:U6.mTtY\4!4[vQZ*{\I4 w-aK&I#z:(Yp߰Fxjo*HJ 1<1?+!οod)H$ `slj6h%O)_?Kvؼ̌9 FP17]QU$q[r͒4;)||QҟxFI-&fHy6-@B{zRW 6GM!$ W ?KqFҶB%/ӓK0K&fͦv;Z-l;(t[+a_jɩrQ=*v!|/!]GO[@/nf}>O 5^x.r>oT^+w,"@}KMAGc_=DHeхR}kwgXNT7NˢGe [Ao,F03 LɨS>ٓ~(HHܠKzF}~khׂiYfR(ctB,+9B(@7y&I6~T"2S~349-CɩP[n[@~Κ~6d=oo蝳̯ EKtE[ߪQށ> @H7s;qT~+sWViFHLK3mm[?P]`~N"? ,]Y7i&鷈$K#b )m[ĚQjwia?#=#aræcK5bi~`WiF#JjG UBg0XTXĊ]^."l b6/Z,r5Y˝|[vӉG`q[R%{8W ƾFln^Tw@d.1旭xP\w7NJ_{ʷFH"`>yz zУanR[W;1[YCoLN25Lg;GdQA#T[zmj%bP=kqn+%> vJTG9V]Na,lkС⤒ G- Oح+PY !a4d)׳O(a*}yZj=:=IPji&} dlڜ8Q% R&#}}qņx]ŤkSrU6 ?ecy02ޣ[{m?䌱:3r0* jA6uP߻u6>:FX UnPTQH|}B3Q5Zx3) )n>.O`GP?G3M>r~y3nRECD]Nb/{c( $ 8qs/GG3Zm+@e KRż5!m%f[DABR2Msվ.%5FW˴({V0Eή]#)=^0{kw=}`/{UY*k",\4xГr(hu,]zv]saj!KtZ4z s`^$VO$k4Y䗸t8PvM\{S$XЍ 7W`E4ūNpA#-^ 'W4O]8b>)i`DG()6##6)ȹnkMrҫd[$nQ~4}9s'9N(ʔ!uGCǏCl`O{v_(5ngifHt h@6lE~!4(>XB(Y/*qی՛!k \ xg8ϻęYt,Y9JD6,@ΕϤh)@˖ӜPP嚎r$Gc͹:-8/[ Cx@qU )2VW3!FFWOA*8h{AMm|L 0nvDY Kfx X JaJAZ#7G7>7dt!35B^wvJĤ0 Z;9_>%ֽ^@/2cn}J\gwrncJ WR R8Cܜ4Sꌛ KZBn`@hHeU>ɩذ6Ng״i uspd=d(ޭ,aWuK<*o-.Vn6XʠRDEǶ,'T~߶c(Y2zݛ){76G~W}to"W{(}pi{X_0>T)0`gD0*:ƪ7Up {:v۰Qj=^UQ2A0w.E#hy?gzBw^Txzc\{rяE)!P9tw@f'dro5+>DSxHea]s%lyU5/]cmQ+3 d16>^q;vM+TlǑdmB<&ӼVl*En)0v M#UIW<wӤ%2YWr$Ei(7ZEED.xeܳCsHJ[G]ʺ+LLFʊa1"nh둊I*!9䙊Ly чܙQvUh0P[{>i$CXMlQk +Osc 3ZuGPa+ ҆Eލf,AvWֱc}#gLZ@ %ghryr6{'aEoBup VgLḻCo-u 83Cw(V+Pڈ 'ƣcM*?ŝzӣm&P"[ZM˶+'Eϡ]nRw{09ʧ?7FI#'1SR lgӞ8¼pqQ3 uQK=ғn:a#Av޷e(Ŗ"cj"R+Z0D;$du>rmrX`RYj=|VaU9fhӬs4#0sRߙv6UCIQ*F\JEMmv= v>D&_-4~_17nᎌ("6*W;615&[Frpi>Q)![w;#ĵ~f4q&*Kaj _[BvCoEKH8 %ZQׯ~h:7-A(пR\4CIxwCb.@Ek3H@5 黣-ҙuu0ˬ*vÆB^tvL>B4&siiT([0 R M;Zvoqyzc{f:{\(R7 H_+'!,_139=H6QVʃ3lkl-6&*j :ʦ4XZ`vS2bʢUQ3a 3LtP yVK82?ds&]+$h68,_flT{5|SŜ=zg}rDLLq+ʄR3-,C]aIs'ODwU>6ys<}3K%b ~߳;]Pd$0SG%"D]bO:=sr=WT;RI|xÓƀl]L0 6#Ea1;7 teɋ$Ugk-'#-= qEg:dFCQ-! PHR1 W[5P塓7s Kػ[kg[Ij DoE[wj_ .$nR >ӔcՀ߽ƾU,xQ8;zBD MDqgJbn46r,tֶ4>ǘ܀_ ;w\6Г/u/)K9m*|jN YPRsM d,wg3.!xJ$17nx4,BośWy%p~[*K=wPJ~g >0PZ3I_vD 5=[y4k]3oGBz—CO$Y_дhe2hžx>y^ k0a3p^XnR?Hj\ څ@1nfV =oiYY4OFk\שM!6LcGs7nZUZЕtu3'~TI:)@2PJUo1 SJD\Zб,Ocbn(/+ZFJYEU-z YtǰZ[.Xx1R{5-UU1ֽ[iѧev~O^M&PԦ1n1~#MʴL,];ݰ)uC@Ay0&e%3V16vKʗe.d}:۩i'O@rG7u@?)-YoCZOAe5p <+=O#ʆ0&r8ynSzGۋ Tq祘*I})I]6LAVl]$ "!1g #o0l:9 {)]x#*7h?/f& 7׿BgRŒu,Od“3~¸,2lpk( .i/ቾ+6 |鋵֍İmO>[k?i/F$2кiAkK2\ 6nfgs|32jeM*5 k2;ЙG&޻ĉzT} Zn"{V.w(?Fh!g!4l;L`Nkt ?d#4C L !RCOYaqn^e|_bN\ V)%bgp Ğj̱/H#GM?ּr1wGd; (FΡСꌪ.҂y U;aA%j@y&^B]>DU: Z`S[ICI=Abմ-rD+ٞϔH SEb?R}xu؆8Iz!3j+0KM;׽+fjCN|ktۇ*T$vSEmzr$\W"[&;`3hfYq50P݅h> BZO4#.HE ǟM 6SUR9hVK:>q™v؉yTX0885vky*|CcJFu4m70UzO3&(:7:e(E΅m0F[& tʚϨtIfՂ z4$;qDՋpL*ޞ'R{L3oĄ6qRz)EƫW̛|U%ǿbR¡ Xys=$0_?̘fUԮ2|'d;O?gm\wJa9KnK-8oJr`ZCQQ?Pp!ԶǞ@`>Rrb(=T[FWi1^¬h, Ѱol'4%/7nrdkxMTd?+M>l2Õ6ӯr k>RJʆB,WF+ssr\1v% YX8ōIOu$/l 9|8X(!2b)$+'_?)n*Z~uyR)K7l.k4/r_p6M$҃g K.`yAmO9mz|Ђ4T?MMg ߋKs܁L2 R:}GLR=g뵡¾TD,j>A^MN1@@)|(a.4䜈%'u l:~6Wn|.g݁򊦞  YBPˇl꾸#ZqpD+?="(ఏKctUrYa m6#hPBgbt .g:]e}]-Hf5'?=/PRL៥ ~̈"z}gIԋ3ؿs]Q[},suw?QA4ڋH;j`0Izu!ARpyB9>7'ppw5[MΞ!3 ެ |+Ϻ q2v"ry]{|t\\d>%i.Kiwv2?t#*JL&8SegP?UaU-RV,_Z߳]B ֬#?wm,f7 SE7EDݵx8ZB5zӫUR_||> Ojֺ<OHxÑF /5Hxu2+E.S3+l8G.0,ȓc!"*S?_CwZw@5 iB0 <9 h.5}QoXJV.&b\ F n\ }ۤE屴{<*m=KYhuճx{dM0;8TeX.j%.Y: V)i(UԹ`ׄD4Tx 3zqdiXm x@cc01:aSW01 UlZk{kŦl|0}#yM FO]]K%ZNMms'1Gș.O sҞ0?)Gb'/S-0`Beq Cb}P[ mՓ{}w{Zx,oIľYObSirD~k^hexO'XI`g;acOپ;c BpOB5-Q`!KADd'EfaYȲ)/䱀[Ie?]~P<ݗ9Q5I\5iK0FDQ_$k^ ~Mb[Xp43G@ z@{h:9{Gu:I :;W$εs4_s3vKErw^YU~VvRHy7͸qaȀ^UPWF,: Eq(E8EҾ8q9#"Aj~ʇѴ$#q e> 1Yh ]f iw,^lhL`n]\CR,]L17+k ½,ZQuJ:XHO 7,9 ߵ endstream endobj 126 0 obj << /Length1 1465 /Length2 1980 /Length3 0 /Length 2906 /Filter /FlateDecode >> stream xڍT 8T{W$K-203lcٗ1sqfbꦺYZ$J*Ե)jSnPRI w{{yΜ}+Pl?F:$]"P<L B](kj!n0 0E8CA 5]x w6/0,<,E2`.w;G__`pILT!NtvB0 u|m) ⱱ|(BX4+03xt.tyk#a v6( Q>755…عf.7e Y  CD`lg=\> D>J L5AҔasG"LÅ82D ~?W0? H8S¾ç`MZ=C[ʊ uH@GO#CsogO{] df6zv( LRnFȌ.4fFſhHc)MSU&`_V SmW7u`"5jLJ ohH(pAi^V L}oH%=˚FSgh . 1}p 8tZڀX E&Rc@rM[$! ML p~0 ii .[ia_ :6}m춼OBGzUCx(q?@)3nՒn >-/#Ǒ1ڴ#juzee B{aZͥN[gVJ@|]X_bn ʩVW)ܴS Y>sz_Ҟ_%q>eHak ŷW,?3\{r8@1TН!X-k}uYŰ[ϚX-G:t;Z-.~_pEWf_+#|yg}W>ԏ$E=+CKwuh!b,cbZ~[{lM> *n=3Bik1?d"_)czzsaVnyjGwJ]F{[#!.&ؚ^hvw9n; m]U ߷hJ$DHȬa[ l\/"Y9ax5~yu[qЈmJ/2]W컆?OQ:,uI{/kޛ=xö Mר럤z [4H7:))W2Y/UUyݱ _"oQ?YY NCM gzq?4w):lD.!v[=|=dDHhu4*plj?$nVose;O&U;9)gmhpU҇18[]%T.{t$hMJw;( ;޿RT{Iv4k+niGE6ǣ8ZřjKL"]h)׹L0L__ QwfTYcAXDu,1/ѭK&2mkbÇ@H1M29!|dgob5JN=rLro^iMifŮb@,q9xgH]9rj6/:Gvktߡ-E|mJ=1[VZ }6X4z~8x誗L|?>m.V 퉊73>"OUVkX։Xy[Z6p~YT眠J}Qgg")SڼV+w/HnIڤZV.8&vFRk乪\Hber+OZ.QshlQoud)sƌ * ,%mł;j/`N'kCƮiJVLlɔ,c61Vxݪ)):cv96Mtȥɷ5cYTg%~N [D@6&\~ 5yBBήoE[N&ED3cWST H-RYeM~1!z4DK? RXe 4fҿ杳kTvkHq)"%˛jd^E($}4?RGz4`Mέ\h#pLݞ4h0cDi?]w`O f &t endstream endobj 128 0 obj << /Length1 721 /Length2 5043 /Length3 0 /Length 5634 /Filter /FlateDecode >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> stream x[r8}WqVj$NI2+EȒGrٯ J(#9ٗ@lO72gf1SfJft3𱙖ihTX\|fӴ~+XzE{W@BRB {(m0dLYPPh L<tBBb5L22+paXJ" pkE pd(,zŠ\$UyY߃I %?p0)?xK,+@IZC;3Qh4%=EVdbEV*`y|7ZЖu5ւcJ9rIF3v8=,gtk$քoԷf$=xL<2(eRh_k謪kv\^h=ίFz4dʛr/u7zgr3#3>'?u6tW4dGÛi3>޻R>6.ѿ5,'%pY Xk#,g8qSfUG`:'uD'h:>D#yQ{Ib+ͯ?a16Dю"Ŧ%xΞ8|~q37Y<G!ng&^>լ 9EvdY.e5(LQwyB8t)"ne&Qݣ,_cm=mq9(6|zx C$ b 1Z&G$zG -NI zXC!7-:9~Rҹsܱ3,*ˤ*f+[/q,)lՑ$KjY+G:,R UNXihۥ6БS&ySAnorgi[,Hxq8]K P.BylZrd& VU횶%dVq<[% XPV$֧u_A[Yxl'ZZ/P2 =UtjPpT(!qI.6t|rM?UCP @12nKM|ފFrLN{3Lљ<M#B\2_:HH5`GK[w^ 6NlаE `{%Aun;W1^_If2~'((^mfnw skF[+Qp<YY АzJ;(mJLj}Yo_}"/e͑? u9xM?,P\qsUrX!>noqFu?0&]r:*$ fo)Q*Sh~~ѓd άgSi}//6[?il\)̾z秧s9-͔ZҌni;4npyUՠ_6w兩=bPN&M6nܳ9kew/{p<Õ[o[#Yo-! f|]]WxIuccT?ݜ|o{>).>ADlWrVh^ʭ8)eMJ} G a5Ԥ FiwU۬5mܻ.w=8NԳ3!˾Kʓ7ۺc;AԂ^.7s:̕Za.];t/v9tBw;}&^[޷W+.3vIvwʯ]n-.\{u%6~HӭoauzŰaQ6  endstream endobj 139 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.11)/Keywords() /CreationDate (D:20110828122915-04'00') /ModDate (D:20110828122915-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.11-2.2 (TeX Live 2010) kpathsea version 6.0.0) >> endobj 130 0 obj << /Type /ObjStm /N 17 /First 128 /Length 692 /Filter /FlateDecode >> stream x}Un0+HU p-, A -;P@9of]7GG9 O׭uQ.J33Bu2͗StǿoymYjC1 t=gm@"<|4$|]up"FAp ;% |M?^+]Ij|Gs<)x\wþS _bJ_7[OuH endstream endobj 140 0 obj << /Type /XRef /Index [0 141] /Size 141 /W [1 3 1] /Root 138 0 R /Info 139 0 R /ID [ ] /Length 353 /Filter /FlateDecode >> stream x%9/Qs}}_3e6}k#JVBCR((}"h~&GDÉ8Qw"T>Rp, PHgAA8d0fv.\fvK B!3>!AHDHL &C ,6R;N? ynaVa6` _%pm ` V~B T{J ʡ*U^H-A=4B3@CtBtCx6 endstream endobj startxref 169398 %%EOF Zelig/inst/doc/manual.pdf0000644000176000001440000146252412217153457015073 0ustar ripleyusers%PDF-1.5 % 2 0 obj << /Type /ObjStm /N 100 /First 809 /Length 879 /Filter /FlateDecode >> stream xڭMoFs~A&ME((*A&V;pEQ)Ag@G5"/P\#$DxL, 2CjD3aGzL aP DcXQ '3HW \#]#B5٥4 ՆѳNuۋU@W  B8t `Ka a4QeKN*88P8yhV)I(0tH#+:4=>lX ?s`~HۇLbڑ(Zi:r5OhNhn?Swmw1Oy$ B8}2 8Џ6Dw v0(y(L s: s S jh׫nț]7˯K}0GP^R Tl{[KeOb/b * yiz Y';+t!zq Ћ7%7ŸN_@ҏe}Ow(D8DD(/U~rU}i endstream endobj 210 0 obj << /Length 2308 /Filter /FlateDecode >> stream xڥY[۶~IJW /i׍II֝6"u%QCJ;ߞs IAKss߸hJΎ#x$1$vzt]~R'xdjx| M ?)khM/?ԓN%U[?4ػPl':_*wNFik31oj`@Wp+tոg nDg'U?=Jn 9*+pAvLX_mpjx UF CQl A3u2V+-<f3U:ң,PjlS -k~5A>jB[.PEjnM>VyEZFUnω%B,\57eY;sL)nKv/nkk[^3ެAZR9*OtB8 '[DB)Z*܊ܕu0r yhS1 PN82f;)#``j< bشH XMfigH$ {YDѢC%ՌLT%q-[Y{pOִn%0p\6_f10z ʕD ?x' ?C!ZΦb/S!])g+QńoL- }d"鲮|.د C1v/R)t|R,-z/5Ҁ^ XF*MSɣ v_F>i$6S&dP6BAͨRYfyGs ׍_/e.Ke@)]fl A!?>}+ NKݫ}^+}!E&=O8-sBQ(eg^JR:IP58r "3 }|l{ C~{ ȄJHEyVH&e-ua K٘tqXX GDԹzZNIs+R5$e˶ ͦ!8V6r7 |Glu(6}7\.32Z-?/b}c=//I3J<חD=Tk$u*]OtUI_R>.q:;=p7J @8Y!9bR#:޳)vf$ch80+Q81@AeQ湇_1%=`)x'08$L0'VppG`KۖUZa$ wr.}}՟m4~V >3 wb^M@l}3^ WV O #w6JCAdTU4«҈`9QcLmL ?zDJ8.u0!{n6*Rcް.Çv+y\s^RĐֻD<%:<6)QSJ?6o0^Uwg'qkƯ7֭>n5SU,.r=\D ^xSi(6LJ'/tʱtOo1h9C,|q²G틞({]Iw5qd@9xiqڌh[=SAR\O^, IO3D>}Q$Ia4R.Q_5ݲ-4ŚJJBDgp)RjerH`SdRYw *t]Htү5Xn;?x:pB7dq#8C"AG^   /N#)XoxKI֒طD$KaT܉_>UU%*(;#3OiΎ:WYy?;w endstream endobj 227 0 obj << /Length 1731 /Filter /FlateDecode >> stream xYmo6_abER`+еiu%(vr/e'mWl}|9GΚ6EyNԷǷ>*`Lƒl@Tc>$tj0DŽ9)'# UL)#<eŸSE|T[Oe\Tz3Ճu۪fGvmg4&=a{>ʘ6={N |@ɊЂ; G43rQJ4{7rs`PHK91;)+v'ygv7gWTFzZVHv-^iePKRV]X1<| X狀K]*+jWҨJzάxFR˷j=fD=10=%]^ve\F5 9}z_(RHPkέ\z`fgTԂ팠`|fA9 HhPۿ6_ٿqS펝^$1ؿ S ,;l /C'cTgZY~.[k݄3n:|0'Oa&~4zz CpSX3 ިpؽsPNar8ow@gTg(a]D) ƏLs>&%*4¸RI.4]đ8|Nۭ6IUurϏ3.eiB!DI͜sqKUUm[l2( *9^FϏa ~PS0))lN듽1=gHRoڌ rID(:țe< o>Do((w&aQ=j&JW=W|Ir*rQ:g^v_'9KHkWs{iЄ[*]c5]-Q"T{όrC +/d"~ʑS418-&zezm[&/b[W5eGV|pX LL)b(˹H`kz ,=>Y׽+ʕrZNƮb{^M MBew@jS@@^hԗsN6:<[ZXE&u$?W *VbW >վn[\ }C "ux|_) endstream endobj 234 0 obj << /Length 893 /Filter /FlateDecode >> stream xWQo0~߯Hd1 =n4?|% chm:QT$0VHQ'˂2A"IY2#iD˙Y)Kanδ՟K^44FkTo[NjiPE}Go2 )@U\1: 4PE ӌ7^1 ,&5M/2.ұ1Zx*0D3~CB/86(3@ر#~[Z@= 3nƽY?5V=O)чmOs0BR,f,!m(=t^`N̂4,7Z ,7l=`dǰ :1ρ zNYtgP^[]iD鰯/`y.:/mJ endstream endobj 238 0 obj << /Length 1231 /Filter /FlateDecode >> stream xڭWMo7W졇ai=M!/AFkXv!ҮLqݷ3zCj$!訄"WG_Κ-+*ߕoV>zU7FB:9:~e}C$99kHk]h3Bۜ,-f)ur+(S.}nD4ڂЁקdWl\Crl_+lV}-.|۲Y_eEyx9Nue-oID#t0? VJ5ÃT7YE_j, %ܰR$sHpOj|k;t(ćce]InڧoQrLOByG!>csDON.^ʊ^2[ B6pׁF`pNaɨ]NHF*ʬWΊ@nb~G%8 =HNȎ{P34dU*7{N@LHJ8A'.{dVTp"Xsus|$^m14 j4:=Oj0d+B 8^؏bD@:W餈M8uFM Yɚ7QcnU898Fsg0B9'nUjT1C7]ܣyك>EN%v]k#.y]>W*D&bg`'!Ji>#h4 ~NqS5@5"LQP#$##N:_X].?Ҷ(L2?gTxZ"6+4͏3M3bD@J%f D_^.yѪ˟i}i,*x~N石<}JyZ& 3eO1(:m[r.ʝjg񁞺6l¢& mԎ/ &-iK(.;n>kכr)Ŧv1fCUF { CnENl>6n=[0/]pfh{ endstream endobj 231 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./manual-gamma-ExamplePlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 248 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 249 0 R/F3 250 0 R>> /ExtGState << /GS1 251 0 R /GS2 252 0 R /GS257 253 0 R /GS258 254 0 R >>/ColorSpace << /sRGB 255 0 R >>>> /Length 25595 /Filter /FlateDecode >> stream x-q7C`ÌEæ4dk@2~leҀk-8X@cKA:ɝqq_^Jzo}eWKd5^b۟ׯo^o/u?W_oy]&?}Zzo}:>*qg&N%'`I:Jw|?G֋[Z&N^P/`+/_{ ̝2( zF$KD y-% KZ#6r4/W_R#W|WV\G%{'zA##%* z4b}?Л|4Gx?}IXpFSA+w: _yW@A_pﺹ(hW{zAo4̑(h+c{n hF| p x?||0 k%A_%1Ob'h۹y4h=D|>ց_NmT7 VtyNJ3t}r"zA( +4+/smLhlH76$*D3Mudܦ_ QPc7Qx~םBLB'k*Є#y)T;AaBg&ـNgNDAի`Pr8 ț|7 LF4^GB3p/ba~k!̞_#tC ]ұOb։̀ 8+M\jzX2ةyO M_('*@܆_7oVa 0ct~c6bᕓi\btߵy&' 1:O7VΓ/-P#bt|7UΓc+|ubІ`1:eo<G׿ ]u4tWлQ7btE߈:[=r=Fۘ^b]νxcEi ܯ]n.`@ ! j裳]+fsA\DC3+FgFy8GB9i߈Q(u}t?[>:MIcƩ}tv+yF箉Ĭ<UAD裳wy8:YP1Jɂ*k0]f؇^8+yꝿO):wNX}Bsג0<]PC:y1WE<ΨpW>%q%Vy zߝU^m穼*|M׿ēSXpx71|yœσ^++C;v6>*KJН ӹy9;O^?WvΖOi|(/<2l+ǵ/y 7 77 ;[:z}ĥ܎ݝY_cŲ\WE"n|k )+諝,YsebY Q*oKqgoZٛ8,a1?XpGGy,>˛1?X|7c~@nW׋5?Xsb~<-U^⳼q~Onq\b~Z嵘,>1?X\~<ψzqI'/=wk~ .` eX`k~x?d'?s\N{?{4({W/oG_@X}~f>?Jo(//Lxqsܿ?֋7+~@J_~p kgvSa7p>{;>n>qrI~ڒ 7W>]܎Ìz>>^ljӨ8p?>|{ny}˹__)w ` 4/v؆_{l-k.ָXhsjlTw>Y>P&78PO?|w?yoQ_'; c)(w1^xtzQ/=GzKzQ/=Gң^zKGt^:Q/Q/=?GKzQ/v~KzGt^W3o|W *WկޜWsٚw[.Y*=G9\UJ7p]^,SBk0ki?Xq\nB+M10u8˽tgSiCw3y_yU,7Bb:˛*-G?Y Jo(;)/:-o _gx)97:}};+d2|Kܹ Y۪؇x/ a Ʃ+}-_Kyq -s/.g޹{޺}>j fK!9T, @o!O*r/Zu}.|y\Td:Ekw\Kxp!H4-foXRO41$"8K|ŝf\ڻ6#; 5x:2ؤb*pi?/U.4LqѨ, S)3ʻhu9}4J&E<Ε2bѨ4;uWAAP\?wqaxRyxr{<.qy6r9$'|a?`=K D:FS3ʓS{Y \eyri?Zr.VS87+JA5O.Lt"Ƴ{?HBmI1쐩BMEQd;l`_.71Y~D2'%9W"f_wrҹp9`H<)k\ 󃑤s8rqi?.O΅y}~0$3+,!7NDT&3BDFDiID~F~)Wb9K\)Q^M 9\0%q4&)apObWFSBy}֯B<%Y~)s\yd.iO>ۯB9]lT>kJ4%4ΕISBzy|? ƅ#ki8:\)YKs|9ki| eyl9Ӕ q)g$)<)e+.me(-~?)x1^_K{ewyS7}٢''-c}<߬}NSd4Β)A難4`}"#z3*MKg\!E`{zcfIؾJ i?wyJ i@K.P>GwJ*2e8M*,)Ram8MP],aYl\QY;6>Ӟ{)xA,sus=jZR)i!8x!8MRr^R(!EeI8!E % )BpHC@%E>˳CCf>y"`y").Epޥλ^H]yQMMrERw"GHuG_Eq]Mdz>%q^vz {^#{b@=G #{b@=1#{bG =1#xb@=1#xb@={lXU?dfL9v;(0R$o !7rf(Q=;qh,Xǁo"̎M_rf!S8L9H9%r((03 0"TrhH9lH9mTH9<1% Ċ)g(FA1 p"#F|xL9WW`#R+Rq0+R82L3@ p"Ln2t>L9lH9H9#IL9lH9H92rX_r^r&7rdd,Ŕ33LRn)g)gr՜)g 23D"匣)#Md,3ɝ̔3(L#t嘩2*)gZ`+"#`bhPPWƔ34rƑ?p" tB)ga?bʙb+R&gS@R̔3YhX#Q)L9h2N91RyEG&w)QZlJ3 H9ݒ"#֟{+R8Bpp ·&J N)g2cCFȝ+R8lɔ3.fU)g}*H9)g+zG43Joф]'S@"%, (H+uq)g H9Cǔ39L9I3+Sp0 T~L9# UW WF~j"KE uAL9U~EGtL9nj3+#L''S8M2L^`: ʩbG|tL91)gJfzoL9Vʙhr-)gr rr3PsWɡdh+RH8Ĕ3Δ34rCSθicrQqd,<`i3r&^)g Ï,wd&cAR0#>XlǑr2{Eʙr:3.n<`G L9ȤAȔ3hL9#KS8&gR`&J9̔L954C߿R@ >FH3!Q:dNJ9bGUQ#)SX}T")g M|,å3x.ns?2wK9#qRm)LLjJ9#5G#R0 Z 2[A;3%SΠqwV4$^)g)gyO)g)>r&G5AGa#RΠbˣQtBC\؃1SdZ+?"LٖRȋ3νw 0SΠ¾Xkl'=)Srƙϔ39Җ)LfH9939dMJ9Cf3P $Q p]9:N>~r&G1{Ҙ)g~.b %r&E)g)grTr&GUqfʙ29J)] ʉRm( f8'SU(LRp+ SE\80RG~r&Rq_)t2s/JŔ3RDpG d+L1”39J939̀J9줔3?r)f*)g?/S1 f&6Ό2L:#R`^=ŕ3.s>"3)g{#R83ES`@]r&s )g3Xr/S8d,gsiΔ3X 8s5L9!rK+~p ?yS7S`6XOc,x^rDǔ3)X]Xkɩ3X7Z-])gY3 ,Cv|!3%?g0ŲeʙSPp`O9wnll䳼\J9spNȃNzxqM'y>r(/xfʙurWZF)ѭ#Vsݙ#]9G#jsݧ#wϾ[>yhvp>%Q7@9G֧#k 1t+ˈb A2#XCAuuZ3s0꺕s` 1Ü#M5ڔs`MGyCl(^Ь#To1t/Bk^Os*TqL>*/XCwm(/XSd!G9G;cXC7sH05tci-,S9GC[9CRǜA9bǜ9b =5UU~JLh9G}9sslb sC`6-YK!YK/kCq97-rz4MҾ=3Ȓg(g(h(Z:+|3SɩBHbΑ%Pp*s<2%0Hf(Ϗ9n7pSK{>s$noLS©L19SMFDK9;* K[A^ē+ZG(qo,o#I?"爆99[)3bw9G`ڛBSG|D ;&Zȱ2jX9<.dT KSh*ee)jPN!iv;Mʜ#9rO-r$JQĝy=OeyÙ9G4l}D []<)`V\%6q#pTqkf$it1"d] WTLV 9GHJ c3A>Gyl9a]ʹ)@kS9G0l1$WҞr9a3]~*uI1snC Wr`RE+&t 8nt 8>zVyRbsvws9G0y˓H9G*ⱹ֕s$˜#拸u! `{dΑ%PH%E`œ#KZ#2\bIVN>|YR 9_<]Po&Q%RHXR?ss$9G`IbI・z9qWiMX9)CK,9yKX9|׼s)ԁ{6 )އABBB`)G6Bj#^m!E,oߏ͐"( )rd\Qrxh"Wikﶶπ6=R-4Ci!E`JH_R?,˯!E3Ȓ:(ErXؾz1i~O-{E~"pĒ"8.))Y=f%E`Íkr,r<9A9{Q%EPS,)rh(O91rH"4;NpK%z iܭ}O9999 9 9{99{˿9GE,Oq_`#`?<9{<~_93 aWoWYYY[Y]Y_7 _2Hn1?Fy٧sdٷsdٿsdϕsdەsdsdsdsdsdsd+sd7s`=0((/bΑ_P䱤/(b3[\}su+Gy9rدϜ#2=r^R"$s!8#%E6;y"(A9GC#Ko?9r.EPΑCKsl9GMKs]#C#!x(A9G6.A9Gޥ9q=9r.EPΑw)rKsd!X w^y{mJEKE )~!~[E%/;˺g?][-?쫨&ӁXwv뱄+T,!^o뫨( |/RX>=|I-<)7=[X+>CKmdΝ?$};I{zyl_;@&?=?}c'&@Yom_3z 9~$:`F+KAd#7-'L+)\P2h@8{l)6h>!(mD[Eߒ3MRKZDKř%"-(gFxQΌWx[F?E4JghΊvJph>R0VdZɝboZdp:+:+ ;}Q趌m 4^bobɇh\#ڦO|dslf'aF f4މA| x wp: ujr:{t)\i" KZ'\^)\iB *WD˄͎1pOh}>ܓO$QBP^H.)ՙ AzpY &zuF2D.-/Qh Kq/H_(8S|!mΓSbvw4ĄOzNp.CN0)H&\Z3ϧ/ <fc>Qly.FN#(%<3% '?KRx>O ޙ'CK"Hux|9W}KFZa:ٞ2;SpD%ÂAq.+tMMHrػMwE"_]sK㰽9O-. 01[ Z(ҁBܶ-H7Η t&q>OĖo \oZ| ZJᒅ61> r9BQ9_sk F&p@ o&s.|J?UoLo{˚?:{ӪL/W}c>W]B$rΩ}#:N܏=V F=*N;Bwxm&͜fk SK7DOg^ab/~_z 1EJ|[^l{=uVy>7k=r5c|Z\k5Gȵk=rG%~ZGȵk=rGȵ#xZ\k=rGȵk=rG2sa6))mdj @iUc"g]|"̂L'f04&fA0 2%".$Cl1vi:". 1pp& &O&Ą繓|~N&9UhKs6ΩڤbbTyiQ f.ad҃%) WR.dRseU+TdǦtW؅مZ!L;rvzU.TJ;uU5Gb!zyMp/nRMrjz_Z귈lL}DA\]M5TW0mǰ$W4aҪkI-GsJ飕:߷ |8[y :m2fyzMgwǽ_R)%a#OK&"S4y N>+i]l-/ ʖr97MnM~JC xkXz`haڔo V3nn_QlmJ(r[?TBᮩId$)P:d]`ޔ^{uZf=4x]QqmlTD_2V;_wK]eG!YW+`ӥ@ĕoa[>:MO|$ܕ$ ylZnvAAʸfq)2w۴#CB_S i_۠'cQtKJ ǐ$cХ1|cqEHŌ!t%I΃Všt`J ܱ 6 HZڻiku߾gz AyfMo~@?A۾iwNJ}pԿ@dڴ9l}]fRP١P؇ r:䣍)1.%3ih@oe &iNT=VAW1h@BH9oUBm=RRrJcˮŴyy vI8`~K| IC cJY?J=+rEe`KI ZDJ'Q;2oԸt)- 4'-T(;33 ÕcgJ[qA)Scskߏ}>0BL͸wy֬*!ƼC[פ⦎F{M _6N|bEl.zU:q d'pUDjK34n3fϠ@W(gb$AP#9@8D2 и %;Xe\%dHIȂjk Y=6g>! M%@KM@, 9ιHk`-.8튷2*&z(/ʣb%6J`f)#[ݚ"W.Pc!si\ G$'9vubA5T,kRZZ( !CK!z't }# U}!mr4u :qHǠ9B˼5h2eVA 8y4~M]FH&U抶3, lԅ9oBL8bJsa҈¹5+ͅ[C3 *]w6Y$k=zG/e̿^ >Gux|ĺO{Z`-}=Z`-!0X6owO볹l6?gsl6?gsl6?gsl6o?)|o~b5Cvnpvfǒ*sK[30_neoX&noXr[r܄%$a;7ۧvOM{[Ij?YX)c'U=BgYX՝d]Ȯʦpk->քrTI~bSZB[# 9/U(cM˞ C9#'p9ӄgӲ9rsShBZ):G7J838NaAY&QvbˉcȭlW=ѓ*0j$l -۫#͚-vn+jyICcH )+Ny ΅]ޱØ~ŏ'lSX2;V˫P{²pԵa,q̍g]XބfmEHGł0Pyܖ{ñrèRIb~Vfm914LHMZ,VA.kܱĴ8keű-؊T #U,,HVmtSڛ4ǭNi3i3v }Yhiq3R񽄣/p5>;:P>@nePmTϜxw~3ֶ bv94ԙ{?fq;>F|Ɲ,aΑBMi#BI6~==:Ѵ_-gPtE.೎"eIJ(B}ז()N-N\FutaC w`0DC8vćPˁg|@,$|ф[WUƘ l`ju'֜~&rA4+`4/:&LOwgb+wLƄw4mMybuyQ$ptETWI8p.\je ghfQ+6#vDq+FܲP 4VA)NE awŀ 7) n}‚ֆj2DH|* 34+xccx8VBCΟ'apeEOq`m۹دѢG]>T.T:"Pc?EWF&1o֙]M1M~#aD{[QS'jra!I+ٱ1SulydXGu DZ HIt87qV# eЃ(wPcםǓ=B7 BZ!deУT'A%^ QZanmCwP hwرM$*1%td\R܅]5/d'8䎎m>g0KVh R_bћ%4ӗD ZUNhV5!eIB2~P:k-y (lKŒUŠu!#!MI.K eJ }ǒW5mW:TCFNs!p4ϱwt4JZrˁ gps2 ?McpB{ƏXKC- Ԑ2ձ9n»)TGם* h2&. Un#p&wi.+E$d܏G7&S icf.. ڂ}{(ك_h!bD6rx. eAaEHk\2 R]tH[{I2-IGa se[% icC*Y&4qUv9]IHB8",?R#CH[l *U>NuN0JͻD)ҘBI͆PR&~k#`GQ|$@~8KnFc%6}dJ7N0JH]p]"'~eGirH08$eHWfGP>K8X^!t7Uv54@uP|=UX!Pʆ"u<v+IDtXp,vEzqЗ[X6y-K3X-]]:[XځtHs.׆}ߥ[ la-t KmNVq͉91/qsb~;yn/[R8TRs;pӈ8n^y]Ry m;b|uKn+h[4>p xW(8.# 㮽:iڣ6:{T?{۩ӧ SǧO\^ӯLSk  z^ǹn>8֋qǾ%C }{ywTQ{Nv]{oN!k{za8 Ree7Q;df(S^ߑj.[6I =!#} lVG5ȕH^ 椛kr>03k|pp@zH[wFH !\9V$!.ۈo 7">XKs Npa{T >0¹̀DDS*Epr(a c[.id8Xrx1J3V`dz84Q&VFU5WY,ϼU?*Š,e -T¹R0g`K SXJ!%f3*2ȑڧ?'Riol}I UـQ^g_$7Q EGSHAwH2@+lB8K vkr^#EmM ]dkҵj8Rt}>:l87Ke}Ef%VA˄G!:ShU`ת\uuS0KEG Ԋ=@]90-I X#bḑ0gSL:~V/ uѭPba cE.B]q /E&z+n)R)tiVޯj`HQ#F$ޮxށQ㊻(dLıH86jQݸxTz/- ~[Fk1o·jp!Q8f`P63K60X2î+/R4rRo|,!j)Tak"\#[cZu ;Q57c8 WJy0Orp *~ KUv KVԸuE *5knpkZPZi-cnqQ {؁zxKkHm(/9Z*Q6@o[ĵM 69BlμRMH0k,ߎ՜ԥCa!엔BlfWK_hG:;]EECylۊO[Sxxq.7EN{k]h^6;,#^tlqT&;fcg*d8*"e2ޙؿSzMɤ QQ ""I=w6-3^;+U锌c{VXkgP,5=oekSFeQq$qi#; m 츤PP( LѾ=G=Y#kk/#U7cGR2Gx%r\˼}UXm f%urw2R>|vLcOJVnҨ 0Y})cIZy3Υg-[Ma]9Mjfw="˙i<7FW{hC FR ucH;f޸ap)Ȧ;ͺO h!=v `Iqg>`]bor>Ois g$!1ڍ9g>JidlRf^Mބ݁e-xι̼rJL_*JZ5@PAgy)1pT.z53k3g8GSb?Ƴ ;pf| 5 #Xd 1zzzzzzzzzzzzzzzzzzzzzzzzzCȷ^#-=mMv-L/ endstream endobj 257 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 260 0 obj << /Length 2671 /Filter /FlateDecode >> stream xZo_Ay s{T/b}I E[g$3IG$m+wfvn︔hI6"cvwg~{7/mԢO.&V"(;.mb1y5Y+9{}o^V)^$ogjƚ;,r୞9?mnɾmtDAΧE~S %ujs`?ܬ=tݬf3,TgmqQsCLNJ[!] DbŶLWXǾ-N`ttT(8IӬZ+4ʍj!ZQf6fs=jǃċ:y+lm塺0*L2ԸtC}cێ#(@΢JDKv5 J%k?m/1&o}QXiaLg&^@жNv58bo7[Zo7kL |RZ`JQ@R#P*pzG҈ |񋓢S+4|tMWrz1DO&Hz)~)L3w,D"kd4 BVL$]%ߗ^{ԋ;k4( d3'  YrqXrŌ N/neՆbC}]#BS5k~~O컴xW+ZL 05&9ذ@'8ϼ/m%62iE&O*|KIwyMseGeZldk#o(g?\z5:@hȷV\^MSWDM$'7t=v13i+_K5N 3 g\'̓’yC_JuvJEֶkk"80aBh1Ä0k3ΆέHlCVٵZէmauԐJ(8tlzR2_*Wz C },s?Ř0ϻ|sT `4W y0tЫr~, 'j>Mڂ&%juIZ(yu1ymP.9׀,rN(Mƶ:o~#md@@M dN.>J6{ 'C-k."/ |{4 G@ZHcA13XTxԕ ˵6`,3 oR'X{ÞwgC@VWT5YeHe޸m_`h09%׋6Qk\_`@Ɏ9#]fKJNmepb4,gOr=5Jgͳ5kE+a;BE;&Z웫U%ŋ ?$uT3].9lqSD*91"D )Nxp?:Y˨O\Qmnc=tٛa }e@P? u|]u~qN@a1%̹c(/Z{/@ρ׃\ $٩pWj =ɝT*aPm Ȉ6p tAN@6M>j>΄ e 1?2Gv:s}R./>3$(2X࡭şK8җ܈!C“PƋV+\ͣި\eZnDq :չӃ&飸Gq?ʸV rm$eSqc!ʱnG6>3|t Fǖ؃bO ~-B(A)Jt85$UL~XOQZ*5:_c,8؎A>:Rґ\KZR9‘r$cm=ڤkфGb^`'ހ ݬz, @ӗ>(,-Y]ӀH-71Xe :4CMUOp9 NE澮yxE7_, ̊J#E.`?repr]RnsJrJ& ݤFY4K87$0.Y5͛^*8~y8EqJ{ =|Í@Ip!:dS/(1<;SrL^.@]XsZ$- {+A%U]&r _c6E{I9Ǎ)%IOait?ٹ(p`tS dǬ&mM=H(gNy>ڗ;TEG_37|vфd^&>ސfq3睧ZUmvFu;.I Ju#He(Ԣ7/y7ԠBB}0 &X 9"JYa60{$ܑޡ z|3TÝ.E =Wbo!Hq:$]۵(s|&놷1Rx'#X"ng1sE%]/S, endstream endobj 269 0 obj << /Length 2461 /Filter /FlateDecode >> stream xZYs~ׯJ`0<(lrT$Ub )*==+vU虾N_ԳJT.f˙**a+3+RhN%=0P(goNTg=<5+uͼ o=8nowkEO( 1yf<kj3Sp<đ8+w :& 0lIR:6Zw;ֽZާ{UDM$/ {ͫЖwuû4͵I~No`oDoC$!.i"D vS÷ߞ، =fJO<|_Վ\4BK';n[s(Fȯ ,29a[Fxk^s*Ѣ\$ײ7zS#S hwhʭ3kQ#[p~e4h׸m"A!pFA/'"} ӳz=rBIiUQ˪]-2LM`YP[Eb_NiH}xa޲e,y| a/ v#_DR *f pDXXr3qd7?RO!փ9e$Rxd&(=;#=r^qG|ɛ8 uG1~LCQ!aC4J^5ņ$hxVNnKBM*(8Ȃ7 ,]4y+0=d{g>xvSyMƵkYSq t MPMI?wmBȔJ,^7,KmGM%K^߄$ :mL`(w *ဤ(D ordx@j>S"/P8%sxzɭHTij2y= +d)GZdU!$?)hrw՜GdU}Fe+D &YuC wvKHvǨ}dݺ'01WSudgwˉH AEl%8IU󉲔* WSu){Y*WӅ=H_N$# Ϥto1"in^{b|di8 #J\$x ׮ [ac2Gz}6ǂJ{Qڊ0O%Ln{2*HG@Y@|{8+Ar~?$CwRDa43zj㽼!J;RfCݍ72N͙DeGr_NS(]SPG%ة ׫1ާ#>_uq{R8yJ} Jͩ'^_.hW",©.!}OQ-7 v FWqɓXm˵,O_ endstream endobj 280 0 obj << /Length 2329 /Filter /FlateDecode >> stream xڝYY~JFdlrwH{$`I=u5ٔ80Rꮪŋ8etN],2cϋy;}L>djMI[h&/MqV29LϦYL%Le6UmTdk2ɪj{,x"a-inlIu%.avf?çL'p9K:Q %N -AVezr12O#{`,[X u>.+pWvjv[AL51O 'n+p\ܺ /4Ek6C gqe<)<%ߒRL_\͎ض[96S8F4x A桖A~&-yJDqk?fyФ\NBjoyڌamW`ZhUsp90Vi V1&h?N;B3\'Q+RUCfaWCQWM {Ar8o><ᖎkMp¢z;z :_嚏q۩`3@T5^ \gPű4i$:O,ff; `Ą"0Auj\T&UVOQۥ&@#p5^3sվ<&Gn#X6|)yA+$ Dý8yn>$_)>>v i?#PJThE&zOK㈋pU f[7w[Þ-\| A |F3&7^Qs*#p,ɲ,#RHUZvO'9nGϊY3n!4 oc5CW&5CljO@.t@I" 3Ƕ9'O:KG̊Ψ;SLhKEu#wJpo\e}V,b )rJ DΘT sWg!ZlPRezT}(;ALk.2g`*.l찪Q=7\$P{ϐ1b 4k5zp}2l-]TSH"̙;FuX} 5J$,%$UYQ -EiU"RgwڲH$-/a,0 -S ID΃|͗b`{ۑCT&/pk19 ƍ=lؠQz9ajW<kX+ H21*- 5=)ျDh0B0;dfք/m{)@J" ݆S-{%u`uWu)Pq1!o4\UwWDϲޞ$VTʎRT=ف@6{IbhT=1JYأ ȏSEW('2H;Qyr@Cn9nCfP6+a7X`'N#- Fd*MXduȰ8t=,#>?d/jPjDs͕sUzLS9٧sw go 2޴0!z|.͚+ky @:#B}fg g;9;~X L†6rOEOI. K)ߕ]K鳜k"|l%2ZM@lHAUHB%\|b1esHf*A0x5.Mn}rq*e_ܟ,T%bLnB}GT8Zߣ4ϡra,`ӡe)W% T~hF.Hp,ݍΪ4׏.-ѵK ex_{J3$d)wj+٫{ޙf9ۡe/"rEo([wЌu yj]J:kToJJN)yLA?*+N+`ꥫ"J+% O"ґv̠֫Yͼ?wGæ^Eo'_Bv/ptvWgM!w_@YS t 7L^vnju endstream endobj 290 0 obj << /Length 1244 /Filter /FlateDecode >> stream xXo6_a&a1#R6`kݰE-;l+-%ɒ3hR>~wiyx6a($$q*T;O _z?RE^znOA.D%D ŃDI!?{RbPխf*"W^W$fuc豞^!( m =w֥.ўher!*"Rju sG#H"҄[C ZKGw~xŒj(q  jn֤ua]ᷮIv~G}A.QB#$s]F "ݯqڐ&Yi# ȿiH+ C`HOsr0baZI%9.;.'Lҝژq},d$h#OPĮ&[rŸH$0iˠ^h%iqkP>f:L";"Rz@ 7vbNv |G p-zLKRWS(K F2i0.YZXwk: ikGsa!0~o9}b~My ,Dҋu}I\/6sOwlHU{u Fdg-(%0LY8FJ T&3,될ʊ 0w溳4[] ej|կֺ endstream endobj 295 0 obj << /Length 990 /Filter /FlateDecode >> stream xWIO@WXRm/1j{@@WjzrI"@B9w218*U޼{^(s@f]YgP: zU=|2I*\ss#s[K0y,Il:2HOTKtU0v;"yD=DŽwS;ϲb3AdLt,J L(N2<wki6buxD #F=31QRB1:O 3*3@ cF*|s 7~`s -DT֨9P6g02`0D. \CWdfa1b@%]& E8bpD{8XA =( ښp?A!dNɀH2mAP\TTTjH +$֨T{ .lkiVřKtw p~  + vtüK>LYmWt&ϐ}{NA7KQ/йʤP[>q:xԎkkwh|c5X~k \Qnɱ\:pc& ƒ}&Utw#\cQ!Ie~ؕCg-=A/ ֐#Yliǂ oQl-6[K'ʯ>r8c^)~A}}ՉVRo=K']$G p&ζYě8qE6V4wlFb-yČ܊hhdmx=9nƶHSӨۜ淞aуid3ʭ폂mwm^Dzl?̎'ck>$Hau7}&vVu'CQ<}2p kLϧf'ij:43Rf NsQ"Zi?R endstream endobj 287 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./manual-logit-ExamplePlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 298 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 299 0 R/F3 300 0 R>> /ExtGState << >>/ColorSpace << /sRGB 301 0 R >>>> /Length 3827 /Filter /FlateDecode >> stream xKGW2^0twM ؂DIA$"?:;6! El};=>u-o_l_~}=䎿}|ۏ_n}忯c{Oo((m?KѶ>tK緼}}q/n#ö^ƖkKJ[߽Y^{>sg^g[fq6S흏~lϾӫ77iEkU 6i׆*|ί~>Ϸ>z=o>|샨TrZyysKy<9sy1u.<=]\xz ;}_xz>OEhG8>?Vfޗ1_-4u()^zXx#[Wt[G&gA 6n-hMRN.$L>nwj{RhTJA'M邪6,P%AʠMXJG=ѧ,YL`)ez 'o0 c/lLɞLRV PB -FepVF@|3P@__S`)֮KMXJ/9 ~opTS&mMmywua9y+\ 1#ٌ\:qz2uN4 fހ]E5(pz9ٳR@WNVR`QKz`!h(hO>8;n{:Cqz96k(0pw+ffP ,j#`8(1Ў.řr1҇W[jR^@ ٌ)ׅTG*x_űޥ2[#xZw[Ar\1 C5.Đc"W&86EQ:E@wWaLHa+&I(/rvc U􄯀'g2W=Co5 PXu[TP\qGy=HHSY(fkof󎑂J4;15; @DAjr,^pBB^.k8g|z[s+0X;( P\6%7=n\x+< Ys C;+tWJDb"971bd.of2"+Aڽ\~0](o*kQ( xM} s,pph4g<S_#}!PnwU>E^LTT^ڃ[&'x oޤ޷C.dibpt(D 2_Kd?ܨd{g']"3KŃʃk/C[Sn5]W +++X9~z_cY!;_!-L4`#0}9][ԧqmS)}U`42WCޗL=LOϰMAߣ0"(ޜ}Xplx"?`=~p*`轵7B.bzc~0so 0wJG3zo9 ޒ{\^BL i|PKa0w>A:q0w['~0+~I?XYϹRL`wD?FP c0Pʯ[=dC!IGsŪ_ 4"ʟ{l`=il伂1HsIav?X{0\ocہ])>/?ۆ5)9v)v{gzGzzF ~0)`zs̲ڱ^sC?Vz[埆畣q8F[iBVl`)37+|rArjj%{T]佩08ǜK+2.S2 ,wDo@i6]Orjr-Z-nvˁZ]aĐeɖqpuawnqpαr-K2͸6FgԾg^{&);?cvRqUnrܛ]"G/kPmn}I6 ]x8Ŕ \ܛN*xijC`xԓci<IJgLE-2E.'Vpn,FGg-EmɈG#t0m<Q׹G+<)pe㦡l;A8IEQέwc70#NjNC8y֢΁SKQcQܷ\K=iv' <q~C(IsEi'P >*3Π4aC(RXx9e:k Ol0oy?q?$ԻQ=~LNj:tN)G\HC?)MJ!&p( ftprqaڤ8Qqju )偍Qq \q$lapYN8؁O p1 jڒߞcu#w<|<?8:4Ho~.F^u,.=^ymµ+ q3t8Ηi& S>s7iq&pg\xzn&s5Ѷ7m2Ğ{*ǁx7X= mLt4v:']у㧏dyL3> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 307 0 obj << /Length 677 /Filter /FlateDecode >> stream xWK0WD+Rx=v$8 Z $-Z)qvݙ<ӗ|`:*LEZeLH2~;iT!"=' v|UxBw(!->8QBڳ ݐ%i֤&p5k!YqK6+{žʘ~MuhO|TgnMN75>g*tG׵D4. ҬiʬRiaH64 \nn+|zL^rYpPÂzؖCI? Tfu5c0*~{3C*k}\HUn_~oߩ*rowF<كEc_-PWDBYT)Tglϊ rI+G2o)249]vj#h )1m endstream endobj 312 0 obj << /Length 893 /Filter /FlateDecode >> stream xWKo@WX`z?#@Z&q҈Bvfvg mBUxv-k Pv(ɹY`܄R7#,3$> BԿ$+,NJ*0dhKJeNNZɘV*y:KpDZQ e8ģk2pg-1EG9TS-Ȗ\ڝᥕF 20kC(NzFY151!5ݕpωUfX%o]hxĴ7aFkMMt!LV9bM)lN4ǽ 鑝Y1o{wҦZSџ(KMqzS Db> /ExtGState << /GS1 318 0 R /GS2 319 0 R /GS257 320 0 R /GS258 321 0 R >>/ColorSpace << /sRGB 322 0 R >>>> /Length 15661 /Filter /FlateDecode >> stream xMqS%7vl$!`{aI@8HasI><"snW?}z)jiOi??^_/>ۘ_?Pz]~g^_+~!(?}hcu}z~݋QkޖE9n~c? 0闯~''?)~m~q`S tx$uz /~_zzz}w_g?OJua/x-_+?^x=>>Z^8z||v9g~ߡќ6PW~]gym5j)ny*G6w-=އ;>vY[x~˭ݾ}n?[>U>Ho} _Ϙc3ȷ3y;|;h 33v;|=q>l/Z!CW4JsWzgm;6W{'x9R__~h1On tbcq(9o {rD9w|w| d'r z[,hyD@G%\ 3wv\DL" 薡w>0w" P-WG4YPU%;zg7[B/M >)%0[h*kwMnw>QPS1Y5?$ 4cl4Xm&&;і4E e9{'=4r^`T'$~zqFy^r詇zg9\vڍv{:[lKl_NU}FQ^ɓU`޿!/K=&>~6vNY\OwT2kz%w6ʃv~6qUr +᳼:r_EֿwNb!(` buJ#;Wq^<lĝ`dW8rQ^j}>xإ}AgEloJ.lo%*nviP`V/5?ŕO溜U_-LZɍ+FZ>"++WWW}XI{Nj=>.qA{a؇SC?g==93%&g`e`V/nO{)ErX5>Yo+1>rpx㩃;;Z@*r9WI{k5N՝owk4f5 C\oQFyリTTwm<#j6<ڣ69>sĀख़[_"xrrX f%Ε~`̝'S-c|3$6NN~N\3Qk?435},l'9jqJwq8S)HMiK_U5$@i E~!}=V=2##3zdFȌ#3zdF=2GfzdF#3zdF}zdF=2GfȌ=2.3s0ɷ ~Aڗ[(wrtup5|\o}kHw\xN'ێGd?_lGy pDScYAb8櫢@a}Ly1 };#S1s˜~ܹٝaR+9#ÔbfwV_l߬?L3s\G Ӯ9u.o˺s79kIBbuݍwPUqtu+X])|꺓X+OdwH` UM=j(R*U "xc0`#`* ^!&Vyu)Vyg1TEfk0y=ʛC%V׽XC9Lġ V dqHXZ $^Z%], %_)OPJg_9Dl+G0-dlOl@<xJ9tכv9Sj&~@"k ,"~YT!`vTyi 79Uw6NK+į39>WkF_cS{+1bK,)85,׿dyc9+`*[;0 55&4$d{~o%10U^>B- Y,o e`c=g,o?pn X?2tW8P1t_x2toKgyY f! I )BsΒ~'gc(P"©, gR*Z8<֝%E99Kpl5SPL%y%E`{%| e(C ?88SR^߶%E"E\zbItڷ%E`S{HtcK8MR_Λ9!E -E"8MRԯ-E9(-E0qH8ERV4`%E=h%OZ )B2qH8URrU呹ZQ^t"pzHZ)S!E`FHh?)67C0Xh\:<N)I*ēv5U߸`V=/ Y%noоg\EquZ SJxēq5 Kd\O0bОЍA碂15%&~ B,qa/`b !}y*:wI%d1/TK R\b0Ls gIh{ګq F))˝ Fsh:shj Fא>p|չ`5|޽ABгSԹ`(zߧR=Rw\i%E8_~>B/? )lbIp BKX> ѹkU,)'N,1kbIz⸤#7""x )(! `{%-k>7jH^F )B&%p|9~_c/K )gN?1NJZU$ /w8?#5ѿ.锧Wy91?eߓOGE|cg#_f+)V|94_xfΛ4YsF|o(\_`(g/[)ʃ9ERC|9cg~ˏ!7G$yUmoƵߝXeܮ~wb|ԶDF/}.g7U_]_gog(>c`gL/ggH{y6E/O|V=feji2Gj}+o垦& NגkNm2|rڏz=B;?Bs"#z=BGz#z^Ώz=BGz#z^Gu#z^y^g<ər[OAr1.)\pLnAȝF p"aۯ8bjد8 {x'f7e'";P>y [ FG\qZD,G'b@cӒ+v]G'fqlm*}ĉB qZ:? 'F|t 6[WD%govW|t0G '@G#Fk5bg N]뵚ܸך6.X|t&gEl/Px-:$7Oҵ^ɅΉp׺ 2q'P60<'b@Ƚ k8/DdD^!FOcӝǼr[!DƲb^.^lpyޮa43y~ g̥n.iӕ7# Z<=,eklLF4亾eF F7GpY,!(Wj!,-  s4c[ieP&|F0)+h˦ٙڰ*SiX"j]Ls fZj .WzL]}u4s 0wڗi"M&&Ү E#3%ZH.l^4LAe>!2,B&&ȶF[VMmxz5lF.51RZdž4iiRՃao n^it 4+:g>i'ַ>gnA ivpp)"[.C1ցMm:BȮKFHܙߛx=nw3w944Mמ8s?gH[{#-{Gzy=> i`Hδ]KLK飢fcj-ҴEi/YiU;].FOWagUdb7} RLwT7XYBOH[GlL㉐w-cz-d7]{ }Ot DHهiZ?!ۛn&a7c i>}S^O6tv^5;$2xt{.dN;BęBٍ~bk9\vnoŗyi^59ɯmcy^(<bYkِ!Jsvv{]?4%!dLVBa||%s/ LL(!KH3LX$nY%!3% .P1pq1ˑVه#Kr/.iܝ,#ĞDvK1GrS(g8Bν$/#d#P2b?9Bno"$Q2BDΔg#&BŷeL ` >6@ːB%% p_I[> \| ]٥9x },.CIWwۛD 1#$0dT(wlUx=GEșNJ)/+xތ(Sbϱ |~ .<- !d Fy ǀMlU|`<moۛ!/j>~͐K4 A˘c}{Ⱥ^\x+Wڛ{p]k7Q3ڛBprGHmބd(!6hAMH;bqf\w/7!QWڛwH&n'aɧ{dy&WKHsIb],{C{1J{thIBC5Z,7Zbaoh_bS9QAlNiQE{4 D{}-xz'ԎeF6?a BWڛK*K`oJ,%{3/I'M|% GI}ɧ$z~oc{mo7)~Jz>8^$%ߌc^(iϱ-K3W}&˚8$qdx\Bn͐cJr Rɱۛ^BrH2ęJOzM+?A8!͜1Ę1r9%K -!5^r`CA-!u{sH-q휟rkCb_ |8$oI$Y 2dϓBеr~BXBP!hs~ct_A F$N叀$S ^8?׶G.LwLf5 .JEđ3+$~FA(_TœD+?%ENt@B%GO@IJgHdZ,WU, /SJW(I ` \5$nDJpTچy꒳v񯺤,zI*vK@Nxr#X*~/}Fϛ=ēS";*(9yBbJz0J-ձ#WxY(YpG*q0$)@{4vsIQ?HcX5$>??%5$?US"PCң@V N@!Qt"?w4qΈ?W-8JnxdzJHX"Y\w"yޮ[t爁S1ho6x֏+'QW{T1oN̑~c :a>ý$jt{.?R*:!i6C7Φ~2oߝŧ -/؄Т>-LRexǧ;sgqT]?3$vydtx=:-FܾGv^m>~1BȻc.ɥ@7.볯_^}/~[~I]O=˛ƻnя1{D/W!գzU}գzUG_}W}գzUG_^W=*zUG_}W=ףzUJ諮~)ZVC #<̖Mz5bK=C[̻km;}:n nnDK8Pk֢"cM^ߎ֢!)f0eLՈVb":d: ;*;T;DQ@FjZEjgAjxPY%dvINUCoaW+z ݑܪl{;vtx=mD%1خ3v|uXoTn1Fl ;Ы1#;v)2]8YlsCҠWTX泣ҝwe1~fb\7`OBHՈQue1۠gSb=zѓFf$GaOgJ=VdžVJV&+'ףGЫ nb2`2`8ѫaE{+C0Զ4Җ^Pٲ=5pŠvw^!֫Z€5/Ɏ\ xCWQ@ XaE{S+1[$ŇTntez u}h;9;:hw /eW~bFE@ܷ!þcǮjVǦjt_^߆>b>}}랪v)}[؋oM®=*jBaE{8Z[:jld5FUhBU U,T5)F4PO Y Ƕ̪6=Ȫ̪FU# #3vfU#ElHJ`5RlϽtjY& 䙰'=6ۤo&J?( ԬF Uгr2?߽=BeT} UAMo"B1#"h0-Ыar 91&=Mm fXQNlc3 U':I+է]}>>%vVؔjB1s)OZ|Zg;iEc5:zmW}6)60 08th~[N -\4V4VATcQjXl[5a"8&V Fl0ܲ[jkr0qo jϰDZ`^OہJ8"O;50##X=BwŻb(5f y/XQ[Y VԴ76#dE[`k>~Aa{ "+j1f`LaOIѯMM,]T5K٨GyyJ2v{ti*`ȜDug$*v.<_ <˯|F}sL`9ݹBvb,]rّQmJ/qՊ>Rkq8 y<oOh?K۬_Z2o9Ԧcθ;ɒ~PʶoԸbgMވ"9n;kU [3iZwbcc~91#U.bTޯX ka7KD ˺a7qÑwU诸DWb]76fC|v]|꒖u^qXn k!`.e+zCFne"vþ.¦W\\yC7vñnN5z_=s%lo|)q 8 1iV9udťϵSkb+0w$5~#LI-c9HB6kDai~QFLs}/nJ{#s,Ik#Mƿ_ v!F6~aN!F61r3)pN\:b?cmg9e6ؖB$4Z=AM.NcXs؜i cܺǎ rܥɜk[,7Mu I[\n!)|frbǁrqbp4ˈXVUF!\e=;D)W=bqB)0G xHD]%\ \yBo^(ec +NnC〃K{um&d6岗XQĠ)h(m"nn{-w5DWGG4ἢ4X:CH'] kl0FÔpƱ9 nG *Y>w;-V:cFD鎈'3;Y)gyMi{LfqMo'ws7jA?a5]*sT !S|L{;vMxGc./\&@Nή l ^Gmhďؐqc)KDc(vsHciFgډrDGyX.">q,m`u`s4J\3xrb)}b:>=A[s}a(+%6;ڎr)dS,B>+| n^.uA~cK߯Ӡp`pO.7cD70ӢXgoڇ xaoX֤eXX63CގH0:.(rtE ]qBC`z \֣_XP1 ^.eaK!<y+eE&l(WOP!mEGqtG)X aAyq,}8 Xpk@Nڅ8-c+_"՘c=ȃYykMz`|0GxaV(2'Or it]!BGj`YI$ :\&B",405rX`D;^,ʑq\LGC|LP@OZxR8y4{x<.?t5"Khxqg~VtLbT5@~2RqM4>gv>vײ30U_ڪƯ_F{jq-? )*ǐ|GMS`NARvX1!z/{xFQ_$2tl0c2C_G5!W$Yt\02e@'BuSBƳUڍ>UjEJR@AE30ѧJQ *-p (PS§J R>HNߦsb@ljʧZ (Pc湠:ҧOb ݼ"}=Hid]yY#Y§*l (nO#PȀrQ5:)`ɊZyP-b (P}Zbr^#PȘŀ#0 (tQӄ (T Y  (攡o Ze uH%r W5xU&o,ے27Pؘ/+RȀ~jcGV61O' I$_y OFOOF'#Hd$x2< OF'#Hd$x2< OF'#h5%u/8 endstream endobj 324 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 327 0 obj << /Length 1153 /Filter /FlateDecode >> stream xڵWM6WЃV\=, ZE})9^vcmί ITh $̛lryxҲي:ìq\*fmݴ5R5wShzK8=+a^>y8qMT3f+e7e,'$^L~M / )-w&*kt(n\qW K-^Ruc<#cyz4p.GRzHO[v[ uY\Ap!=Swlpl!)O;!7|/5~YL[i}D^7 !PydO ]LEszpȝ=d¾MJ4v5!԰a-))bosuk)x2' P]KLFKLm`+yh^Iy yC`h$K|&qz'8ZX/F6.!Ļ\S&I.CzFk%bUuҠKFWBUÓe%Su!gC 6ÇJ{o"[2?+!&Uh ʔW`$~d9:/~[GC#*#)׆G\ JLP bҝ`;G5fÆjdT.#_xs+@/2iH]{=Y^:a0C旻GN!ybg}Me_k|g7 =gNLFϞ{ =CFюQ"T>#N,D 9@d@'i1s.Z gQwG}턂:=_GyN5y(]IkoUFh@5\CxB:.QU`ZX\=V3D"ǿIf*#Iv6܇eBQ~ⷩM r8NZ endstream endobj 309 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./manual-logit-ROCPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 329 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 330 0 R/F3 331 0 R>> /ExtGState << >>/ColorSpace << /sRGB 332 0 R >>>> /Length 504 /Filter /FlateDecode >> stream xUn0+V /mmX@FN PVv[ﻲJ\V9h4j8\`?[~w\g 6 `g3Phj Oan=l`(di#Y$^Z6yB)GOu/sqaah- ,ZB>Tb"E|4|b.ޠv2RSpRT.Kq#,0@È /B WPؑ0rG>T[>I 5H"A"QiyQ*RIԜ Je*)WBc UZ޷t]y4fmq:tM_fq)`g_c^>@8m7]<=@wG(ۮtq{wtE+NBҲ/]:7{8̽$56Wm { endstream endobj 334 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 337 0 obj << /Length 2382 /Filter /FlateDecode >> stream xZIs7W!&D/SQM͔CDetDK,\x <|x'?tRJRƈc]ڸtQh1U7)>]O`pI-tfaxC;\n`N7҆מ6(LTk$LG,rzNg#o3&|GSjS&3\pI^wS/k7'7]-с&<9' ,# mIQY9JvFBLdPuPw|x-98q Puz;i(-̛ @ŝ&Nک[BIBЮ[{5Us%CWZhAGbF8CnmODo3G46_aEZǝYa8L-pWGe0@f󣛀`V e\[G(4=\WG4cRUnP) G"iC2- )7%(PR?>' ܝEnJytijKծזj/yɇɏZanC7Ĭߦƒ_.&VuyW&ܐ>a0KcveΟSsmX'SgFtw0TUu@wg[0+%-%Y jw eW%n0\HϢ׀g  jlMSTz: 7`i;βSHڬpu7dTǢ\82=QA,A}j9$J|O]Chݒ$d&gbk/VA*)ŋ c֖ǚmy>Fc^' vtUjcI"ZZA;oNk].x DM%SהLq<ɮ~J1_o}F~xz\ ͎;<ܧKxtۀH-ޡ5`ko="ŒY/7'0(Ã9svߥh'l5Liq0+}vvw`# |Up?:jY[ hVkaiXg<1ib[b IgD@+rEN"](%@={VpL- @Itb_c#˯ Aʍ0Rm6 9$Mtl.f?m٦F٦;m24]i.τ$ e$ӣamRbarbk/%Jx(ko#}e2_X_~h`!-oxu3k@T&h# 첥&ʥkhy#X[捴ь=!}|DsYp 5Ґm:epQ_bL endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 871 /Length 2049 /Filter /FlateDecode >> stream xZYs~篘G!rm,^%iJ0RB_!RDA):( fz2B -^g⩵pQi7NA KőQID#FlB+hml~Cqi`@Bjdpal::²Nav* <;f!RC38hFc@4xZ <#SJ: 2<9GA27(0YMXH3 0<f;" [8a5{a,d,'c)0pz"C7N10q O@Ɛ\;\(i Y?2 j`Ói6H1yLz;!)Ads+J0(^x28' ج P`%(X < K4U┳#ґMAABF#60G6,h`BӼbx<'mƌ xą!ɨ 5"51("H hO8 [{F/_ y*Lcqδ*q"몾~ . *}!w/@q8@YKk2ϥiBrp$^U]fդ,Ba<ɒ 2xH?-"=| uJ|N*C2OMHv~B#RX4\y#Z!aRV5_p[`:nƦY8z @ ƧX8-$xk!O}&lq;dܫ j7Pk3!$$[m\gpk® Fq({Zkta|^ :nVlhZhc;7Yv4/M/1J 6:qqYUOr"U?-e}05^W)ә:XA;Y'xR5G(ʷcYWE>Mٸ^59`G҃Gl2o~~sZC `P)],>1(jL袽iE-GwߪtQ}^>./KX9Ny]M rVFnx.K˺E5/ח򓬫ɸy1My lɋ%P,奜,`I~7a9Ij6-|&/N0yԽu!lv:y$K3]*ĵ9 (it ]HmyeA|S;P7Hه|1r.'A7qtaW F&9ױݎ!lWN:q %UWgX͇|XSȢţjgp,rzR(ڏP .YtLrd3ҺIL{$R(T十<ׄ+UQr# qMeV="oU%j\Cel]mAm3.?(I/Rҷm9晕iVsjpn_SF71>[:>,]Yf+ }Xй_G>8_Ʃ{8M>O8ET<ř7:qՙ 9sEΡG}#2 { yi~oz*KzҦ0O%J3  endstream endobj 343 0 obj << /Length 2627 /Filter /FlateDecode >> stream xZ[o~ϯhs㐋a[4 ChZluqH)qR23b{ldC̹~CwoI)*kz5Z W:]/gʔYq5R\;2Y #c_U \2e)t)y;xd{^ >G uԋ+;gG-~w4IlH&{pn5طg[xzALJ 8_lq &Uɖ?(1۫fsSYqTyUEVD /#Cuyb_iik[*~grx,Tfr'~W*3 l8_jkW|+Fe&:O) 6TKLavD]aPUA~= |q<"GwJutW$^[p%m🩤 {zy'HuM:bp9ֆRTǩza}  dE. &gICf(US4u e0oHNnqMǓI)uHR?>&Y\2*Y=p|H{GM#:…u E6";Qv_Lo!FWavA>EdƤ;ڳ{ؽG|/ (e VH|kc29դ?6Ù+e<9iWNTw##ݦWf` %T~ ?a|NIjbOvJUp $1-#5Xnc+&y;@FO2iۚ[}Mz>͋3H/,XoUe/_%anyz׌5+kL :w1٫ЪgjY{K>0~' @HGMH+moh6-a1WCE(7j>7xnt tioa*/8NslX T| RݷӃ;Ipݷ! gs0.ziw.fĔOǷ~1g۠9`VFв:00y#垯w |W,C]@ pۿS/ѽ[ )ҖEvǿ1&l޿!2c|藏Ѓ[Y߅aznu_1{gJ&iը`(,YD:L=;t e#}}=I 9_T] endstream endobj 353 0 obj << /Length 2234 /Filter /FlateDecode >> stream xڭYY~_!JVmkb0;@IH.gSWMs9y]쮪oo^}>F)R3Y*KQddt3~qf3zz:ܓOEuOYßxL}TjrnkYw[kG݉MTa ܏'@Xm 9.l9Y`fH|T"5)6LVy?xb2C*a!82 o'aƷ,v($[^#b gHg6DˊO1yY<̞XV~p\U,u ʄfϱvxjmVB+:B[6NRЋ|]NjQ&Sy&橀POgLMxϟgqpmzloƓ P+R,_ґ IK<[3L;k~9fG|%g~~4X,۵Ĝ\VґIkHlTՓg:s^{C?3lLj\]䋱Y}Dkݟ-Gp^<+YIwLA.5yœQ8bQkl=>bbB!\⢁s䗱 x%]Iw[/}8k=]:cs).p@N0>hOQYeʜ*\Lˆlt<]5=Mژ Z1Asߢ<΅KM&z+x0|~&Uʊw2T%H7N9iWl1>Х  3mئ^g;soGsADt(p2d&1C3LN*!3P[~lw8O+ҹ~P~f`3y ޅU^Oy \e jyZdhmg΀(/36I\9K`VICS]Ad.L\'ir EkEh1 8{GhZ[a^݊KxTW8w'"s: TUdt9pYP !˩M)n͕nh\Hsݩ;ܪdk I* @_\8x| /5̜<Pdy$X U^]5!,oy!HG]/;_TjXe|h*^[d`#tpёt!TRNv)4 @9PnD $'%ꦿF{I\-9RQa`m?w)ph\cfP8NLMn"Skztzsʰ$R ѝJOϲU 6h B [XX*;II/fA]KC1$EaŬxDm]tqPbW>̑fwҕXM{& T&CJӉUm:7OdR<" *MӮW^C%O|ۋ;/59FFw $HI@>|־];" 웂y Et9Q趯0O4D8M^PX(Uiរo-嗕<-MFuq Ⱥp`vȵj:v ,~0?NZr58p:O>;K=m3xРO\mV^Ƀ]6lrٰ԰M4?omΓnV}Kվf} Zlíme4o{XsLdPaq9G"%M endstream endobj 360 0 obj << /Length 1719 /Filter /FlateDecode >> stream xYs5޿aI33@i3(>.|v2ב?I{>(iWڧV/nܺQ4d;DZDY4J{G;@#=C Tz:*8clj/4ƦK~ Ts~&zelW >>a= SϏ]~nJagm/߰dg$rVb̔FRRD#ƆYqeα\, O;}ޡ}ÛFBf#W&1΁^`HcjciJ3^gn[%*WvH{#7~8qզ]~ Z}ϓ*zg\=%9=lp9~W̌3cZz?YevP >!$hRqq5a5+8rU ,4w4.f@h8ўP f}_['Wtkhb)%[ӎV<%@<*7#rl*H{V&d/_"3 3r5ڇ!8yK6Kx,_A7Kx~9uP [vcyY;Wjƺv*Vg 4 fZ5ek; >dBS'31x.U Œd5` YdЈQ[ ;'XX!,'\ E-sfyTdi]փFxZ2C6 /L`C& mA t60}q<*c7L1f!(m~J?SI.ҖHf>a&!%6wb9脑̗#aVY;;Vg_~N4s%u5䇉5X.<֝d lK⩹5f&bOYt_a> wu҈HhĄ ։9|4DQDT]=c[~WO^4"k lՁ[-oEB; \weSDytDedLwȘ|pߍ_w,JkQOK2]R_J'`%C;r ;ǘ+de^m!t]xx Vu i2d١wY[nAB]L?eSSOvEEnS`+Vڨf3|m;nsGoݎ֝#ߧ+gJp-y]El2ҒJڢSVl4?h5=9żˮT]W禾>!}uy?l*͜Thd3SPN U^fӰF$5 Y%u[o#t"vyͯ,o:bl/ nw WYՋ{M5{ȶ ZjtxE,LZlx /sRV˦.}$u6#wùso6õ5ބ9?\^׬}'ѵbNvb^V#.<u1}[p^_zu(jk 1m'F?Љ(+zڧ"G~( {d endstream endobj 364 0 obj << /Length 1272 /Filter /FlateDecode >> stream xXmoD_U:x+qNwiDi ۙylSWpJa}yew<&b?/&:Δ$d^L^9țj)ц!*D 1Nz: %u rXg̚uMT9/x|3jjOVYeH| [DQ@X\jz`K2"mXXL+x5:yCmrfDǰjD+FTsj,i- _`+R B/;SHK, KU!ƣA;2}[#oD/mMuk4qg-;(O ê'mf.CiXY*adŊ֭AxuhqgC a`8SCF( t mwvk!==[1|*-7sE;SpvIÃ8!'.P:٫ӜOԺҺWO܈I"jjYP%en7#>F8oMoH& Ҡ?1a%YW|%vy)מq/|5r3|&ª|atEch1񷟦!Ƒv,KcV#짤NQX Ra=n uqsߙN#ʗAa/7(&\킫F!U/!T-ZnWX{%|V \+0nj2Rm- _t]QJXWE۰J4 alcWNR )G^#˸&87 xcJ! OG#jWh4*|ǁ~({^*mnlX}[:MȍQSg >1qןp ֖[n+kb 4)c9 ??r._`HCnÛM+25d8x>՘mםJ5sy{t-X^tϺY\Ίٺ[[dcqӫRqvW^8AÊYlݏnkBD~%V~^<* =) u ߫.X v'shqۃ uq(?~<\9-horV;(PGJ׽0͏d W endstream endobj 369 0 obj << /Length 2433 /Filter /FlateDecode >> stream xZ[o7~ ;g}( @IdIdG~υ!%Vt Ï??{ct7痍r5kͻ۱-v/go%n~؃Q av$Wb ?/':oq=vj4N50/4(%:=p"x6sޢܲ`O3%W To,Ƙ|[Ԇ4b;/?Rr?p/ I%s{T(p*Ʒٽ:N4Hw e|z˒;I`ş?֨"ol{¼Y LGS "J R?WVDS0&uB=.aҢU8t@k1aLh-MHҬ␆sH[!e j`[a 0jGBBo ipf f7/:@[=!xV*Ȝqvޮ>F[5ҰER[D@^Oݡu[MxNcŠJ=w {Z}@qW/i r 9o ";X }gʕG%'O}"c#*YR} 50pȗօD53 6^m+Q6J&0!r]<9=6N^f,o M\=6t~kObT46L*1SB9lT![hFhfwd36@Bp$j%/g {A'4&E(А\QD^h`a ζЬ\(`57L[eHַTi՝Wq`E|bŎGzrzf,qlqR`SؓE+6bveLFeؑGi"|$Iq]|~$ÉHڧlq@HJDC J--Vu o{%bT9# ٚ=Zj;WT jT"}ƛgqoDDEb3wEjRp4㋳לzMZ(jT'Ԃ2 pl[nOwg[0+U>Mtǭ;bÝoH0>g( O^~4-4}3}%gHӧ^9#d]M(^Q{*ʅ(b -vG1$aŽ*W..VRԟۋ |=ErtkKcM"%sĎ.2Yٲ%w{'! "] ġvwa< 7٥z!|ja%6;>;Lw Aϊsj^Ə}ԟj|T)gXrH PkgNVnj*6%8:C endstream endobj 373 0 obj << /Length 2892 /Filter /FlateDecode >> stream xZY#~_X4ovه1ر'Rkf:f[^SU$I5x 'dXW/cf9J1g5Ie&7ɏbעS!=O3_]`duh}w7_' kHOfLkaӂ^0OUt՝vSuz=¯ .B3!a/qIp`z; Z. õqcxn:*mX޾cSmָTJ}xs֚,~+)e)mOD,e h}?4Tv=|Iq/SQ_4?S{E5gâ HxMD0̹&9 sdN\H%9X .R 7p>~҂zs^цDSh) Hak(f, pWx\6SK7A렮ݠ1c%ڌb"ˮ nmD&kEKF_b-Sr$,dQaiLsZ/z8u0]5 Z 9]!XޏkB$/f4 /96̈́|=ޕ@K,ֽ~9xm#iDCor] ssU|"/wh!f|6ffF}U !#c8!M{>g_+"]jL󚢦PM_J zQp!^AWL6.5LհA$}ecSF2&ZOAFDSoR2j|G'=_6dflw4݃_ 2TAgnú ؅u4vϻOFe%xrMb‹F'vwA>{$܇@dU֩P*\:ÓoEnS?H$BJqΎoO?x$?%_LTс&R>Z>6A4 $je+:d%:,3-tm)yXPrj?XlקekuNZXx)%)ɶ |f*eUِNC,R[4o`{x^_bbF&Gr!XWȽ!^X3P4G#xR](Q82V|>먔j8`nHmF%">}w*dt|u\Ȝ(~M=63l%!u1vTIHJS, G}(xC5MBLt9r//0 C5݇>{ 0fلSxӘMvF P> BFJ:x6raj:fU,9GS k }'$E_=1OpH-}:d' /1lMESڪ|/~"4&'5Bw!d)0nԂTdodb"p5~w2?'~-v}>: Wg=24x\~q?ɷ˵stG ZiL ($Vː8뛫7WODjЌR5(&Տ?~z򎦮'aF)&?\+]ȕ"> [Đy? +XRwyB&)A$p=J}>odϑ8̇G/RhnVo(%+c ~l34((vfFnʡl&Vs%'k;a_c]7l'xd|YØN "-m}S^H-׋lՙ%JfUIW,pZ2@ƞ#Ֆ5=$'H}ړXT3 7M&톒+6c]#BKgc19b37S$pۅQJ75Ԁ^paFܓ]`R݋,OC=+`8g^2x¤ Z9iE>tN:$@z p uz OjnMecdiIc79A;רy O5>9\7;)*hJE=b>\K3\'RzJbm].fd8=.|!V0/x1GbK*` WB$ ~/TĘ7tvT$x:T6;^ZJ_w Vjx%Q%鉛]o F[(PRg"mtLdŜ[kqx@iW̒Vvډ}:w,0۰L &ӿ6Cf B1F)uh K:DJx"&4'6A֡3Շa¬ Uhb_! endstream endobj 387 0 obj << /Length 1749 /Filter /FlateDecode >> stream xXrF+XdXe˜ o^/qRTYD4Aʥ|}zh$ fzfgH(ތf#mm&(idsXfl2ԩ]gKXU qUXgoxVesףx41qdS//r.63RΰF 8qqbm^*^f<[@/E6Ӭ8 u6m 7| (ZyB!ؠ胢36֨cZ\s&LtµfmcrqQa[gllc]^y~Aն׸7 emz[ xrL0I>jz  8jh-\6唀;w.TħX_C4w[A4h 9HCo Y@KYds>nEIh(M!=&Oii<1Yf|Q k2Wt# ?>3xj%%mK '_n _3G~,jG5k,ǃh܆S)IhC!\A03C16k-ֶHh K0(pګ @IQ:w h) S9C=H08Lrm#^jGiRZO+Θ++*dwBgPHwgɮJj24 ްBlBRgW|cU1)N]/dy]O[ bz6m8Nq#J'Kd)55OXOR^ɮ,E>Vњ@nFԫDk 9)#8ah]n|pbP%7}!oOb.9u* !&tl7'&J V' ¸(\eBUi 7[T!@_BwJu3ːXBfcFިSr#%: 3aUwV=[glV3:A3,V<`R|m;߶,G_}``(s xr;)t\_:2ᓰae䫴Yw| \m&ed~PuRT[x-azdAct[y <(۾a ]/YX$&9]n |К(7e`m & VU`*#',HAm.BcB>J{)^JM, tLbXN)[rDQn| UqC?V뒱Wߏse%v`OOXA9΋B174!?G?qaIYHC&Z{~YP!w*p8n~eM`E.qhooD'yu˳Rgt$mLC*c1@9صid0nHD"& d00O.uGPr>/|ƪ#u^榇GɡMF܄]鰅 0IMC5# cb\{?T endstream endobj 402 0 obj << /Length 2226 /Filter /FlateDecode >> stream xYo_aRkm.I@.Mw-zO#h;3;]kپE(ٙ|/9-NVSkӓ2UIn f|~ȨDԌLv0Teody#dK-xblf#)_vg,ຂ\no'ɏp 3(_s*\NNm bZ#.C˃HݎPB^ds*|9Сii"m|VNaYaGQ+{$:v~ l>欒V;n bzlIoyZFህӈkb {`B!Li*ˉ-(K0Oѭ01^ʽIh+=-Td}pY:Z֍!oYU2Wsͥl+ZAh`o@&GGN"X]tvwג|3xbaTѲڳvud_Pq^B-zz34͕NM~3\Ns#\QK.Z cjyS=YZ^̵I2 hlÛ\)T*)i rWI;ZB%+ !o}CT!yLC' C:g9i $ :ŖI; k.>R9J- tF^DtHԎ 1кxC]b{5DQgVĄ* 8Ō"y=\:`.wpkݴ(~#Cd=8-Y inΪfSRKÌ%Re\ ("D +>I$Gb03*"B 6$r-#t+\년+VdWV%M=@^s{яFUAGDq^;c[})VIf=< Eq xMb,LKs-aq#`3'q+ 2H;#GDqN/6⫋R,' t@ pBcqdpd/J*]H\W|Iu#Rt^ĠԈpO q2Lف!=Le^ !@B .;Fl[0 AꇕBXՏ +5?JEICכ uwN.J}~X5"Df ]7^ISQpT xh^2 הIJr nG6)F?`%$܍KC9NdOsrLm¦S\)92`CWiW}b5er$Zy8 HDe@M$۵ZgVbR]&2XZ lK7[ݫLsE% ᧟> 4A|z_:zӪ@7^o"/y:c@E2i˗7= ں7ׁp]]rl=XzߍІ՝=8W ;,){5H|Yw'Y@Θ%O ZlI3f5۱_k'Zq=n9_ 0C/.r{MUfsH԰I&>{s? endstream endobj 406 0 obj << /Length 1391 /Filter /FlateDecode >> stream xڵXmo6_a(`*^-@&`hv9,sȇQK>D{'O٨NӋ"-jT2BNѻᄍ QXZK =R @X(H,)g2ŚQFA;I$g7?1(jRvc9B ~7ېBSi3pkA 'mĬmHkfL Las=( [m8b3-j:q@X27/! `?'gZ _;cq !l901xtz'^Gc/-~[昜! ,c{/fy+2Yb0|z\F53񛩚O<$[Qصo^p9T}<f'Q;t[CLItڙ[˺o4-{:rf *t?zN[rsm`?ƺ \Lx5vxXJz:IqDjI;RݢzmУoo1A?<;{"$E|[ YlB"ng>8ZFj,54v1A9mhhtWva12*l}# kYaɶlFeJӟyl [Q/4)w- t8WΉ/Cwyi 1f][Bg$8ҏg}l֤`0ڗN xq#}Ao^BGרI9}?\LLAkxm%m}`0}ܰc:X$れK2+YZ]]3t d endstream endobj 411 0 obj << /Length 1494 /Filter /FlateDecode >> stream xڽWYo6~ϯP$,%ۇZEb{&w$ʒ Z29_^cy7`هBHǼіlQ+y%JKಸ\Uk6x o?܆ mWgs`^'3#<] O6=lN)94=BhS #eQk@0-36W;w6.&6%mq?zv& Q㘐R03f*Pdᨽ6^W_-:czAam- 1%+KdшB*Tbyۄ$z/a4Bi~K0[B3bʫHu;ef$WM岪Q7] l0^C<|xH+$`/,*peK^Ej% su xK.(>Eϑ(W˘3r:4 ]0dd9IQJY>Uڔ4W)Dhެ揨d8OJM_!et7J'!KCCS0.AM1$֖ 3BpY;n*k &]GFg'4,Jd+ku'8m3+$ F/9'wϤ #S\Q&?/^6!67< y$؋xByhV {%Igr/[>-h+daN|KV&eA00B$o7%Y EPJ4vBwt9K֡(RpM30qTV=Be .DPčsȯqI폊K.'3N*&;) SNqr;,N#Ϊy {rjF8smO!E[p=/xI*>5wů8qd;:6) cd 썆9U`_X8* O{ތyh$Vӱ /W^#HL}bgBJlS8FG,ylBr>bL@.zøat[=%ũbt<h@f:z?3a{޷a9Ĺeph^MH79fG$3"v6> /ExtGState << >>/ColorSpace << /sRGB 416 0 R >>>> /Length 3946 /Filter /FlateDecode >> stream xKeGWaCHL2H@@؍F <֊:]ln_'s#2bed|oop aI_/?}_Zx Ya6_}.|//qKWuf|y22MHW.Kc7ŭ_8o5/Z=ov۵i-]:}\qv4۞mNRءny_мv˖3ziաt*x۫nN:z5|*s}WwSZ[6zs4JEKtm ˋO~^.o|m[ǵkG[QQvGu[!Tcֿc9},އXuZ*|˿|_.}>~#܏iBY׋0tuy)ױ^9Zx(7󴽶 9r\ݱk+!sHf}\O "ͦ{Ƨ)hWl%]{Z-m9ޮՖbs;FjQ:-굴l/#u@@St_A4qhDeZkZNB?M8$Қh|sV:,VzuY1te8Eci1$2QƗHC (b&t(%VCEz3A".5hy :[A`hVPd+\_vz,`5s`:7!@fY/B 1˰FbA56L3o*cm s% Sl8`7t0pNH0MnXqb iM6lp{ GÞN*eNbX%r.Ԏ5Ug?{`h㵦0 Ps;p4Gf4i85ô>ܚc 0ÒĀa!)SX(j8Ujd#m >T\vLV pR-ɖfƶip` t n&WjNlEZYha;G-[4͒C)sqy49vܰA@Gs3!Ck-ËM96ESnc%#;ۼb_tGPUV5y@{ <0ą74Ճkf, Ӏ?`C[))k3 f] Z/hςmh[&OQ Ňh''9_ 4EcF՟ζ0Z-} Q0S4NB{HP{XS33yTqT)=Y6,Lg cK6S%#&ሕݿ6z[)8P9oؼ7̰ 3` `iyx[300K=X`?`y[ n<1e8vBx'k"Jc|9,ׯXHބV+IAEd϶ƯP~Cpdh:E_?ȵD~`+d?HF8T^Z/D=LXxd䇸͹p, ɉd?ȸNV2njO)dsjO?)/ ktAs!jgC9Hڣ*Lvj_̍-_!ק; W{t7nI{z'LHo9#~'gge7A5Ǧ+=op]Fu{؝=psF.Y'x*' ib>A)N 'T?߻/5)wξXϼTT +OCr='en? Q'mzbT{> a%0}Z `^iΈQioAМ=( ?=X8 wA鹩;60w:&N#~ǢBԓZB޶OC>mA:Am(o]; A6 kXOsKrD`/Y>x*BP z<0čX2z0|L WqEro>`Fb8`Rdz3"Bx֥S㆞MaYU0YK<ɦNXò`SY`2ԴC-- ̴Re 搑Ð ؘŒ6PN8B,rvl{x)1$h͕IDVM8;{wΜp`tllYMѷ'PfL˼!̘/q0/k,cv_ 9M}7l*eɦ~Cq53m ,#ȃpDTj#86H396]V@X|=p+ ʛ 1ce֫ۤσI aEβ_2͆i8d>0&ʎ3fiCЏx\J)+&*w_چ@r09[iIȭ`/{3VyۑԠCcO .gywaHҨLk{½*; or|n+putCq*2iI;)׶Q0Et}Ϸ'{|Ϸ0=־8=ߦ ijm[{۟pﭏH :[q\|C)a+Q y-v<'r\=%=ߚ&ﯞU}:KϥRs\|.u>:KϥRRs\|.E> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 421 0 obj << /Length 2415 /Filter /FlateDecode >> stream xZKs#W!ʄ~إ+ޔs+T\{VH"n3-;>H~|G]]|7+msuu1Lsj^޿^WBHό7 oQ3tvjK<>О٦+^uh78*s9vCĻU\67?S^~B -|,&4 !X03O,8QV3EL01bJaQFrUUzuHJfz;ҁicStܢW08>~AW[+˃ەsgk4 NJs^u [ƹz uiK5 7ށYCea,VYx0ķo5E2PIڰ043YQT1D3!/jters0m5C!bmu!,[Snݫb*L"k{C|!8a -;oҀ%cPUX⻷FT) *)fCK4O9,!ǧfRQ}YDLg?t1bO1G(/>rǭFO/ aV8lOIU|IE4ZU~IXNV\ҊVm{wi 8:W)N$p}w,qmw!3Xhpt#e7!$ F=;,n=P؉WO9 cPqß ؏Y -JQnz0ΰ/*.{0IPA% 7 }n}!萒#c|N NN xlѢ 1I$&ݗ:%8R` 4L*Tu?s(XSPA N]9s(s +d҅s3xb| u(Be`zp.J2c Y 5b7#8er. ^J@2>9aK~Au_ÛD1+b} `*Bx ܤG>}bkS4I5"NiӆbtDTI&u*9JOS:Qs jRo't oD#Ƈ VV,fx7+S=nt=5;l 3OegZl6Um pw uYo.@#|*^ 3MO$!Y] 7)̔~WY(؟18JE8mOT.nXBp,Q)(e.kq4QAg]j5.-ǐ5jקtx8sZJ.?8mr<NN4"t'ZR?gI. hɷ5SJ&^Livh4v$DTQ =[sdݚaњYmjL-%:}q=m)%̇WWeālHX'Ձq_0eaɴp%7f7^ 0"?;#qNL9/Nvô5 WiTo/N;;*6-X灆e8tuì %p~ 즒>/:×`: ӎ7&Y\~% ^~t3'JOģV a S>A/@bHtb_f3fe -)vyPm*J6˱xLO6lS6m=jXτ$S3'LI spvs8 @싃g1JX(k!R㑶VFi_E0+ 4gF獨Fy#n]X9(<T&ި=l9cSyc%$7dg=FZh3.,VKRqT0=~ endstream endobj 425 0 obj << /Length 2736 /Filter /FlateDecode >> stream xZIoWr֋l03 (!I54D)@~{V5ŲZ߼֪\\\hkU]5r~©.Tk{x{'+f0͘wEQ{U/4ۨ;i,{A98^4+^$114WF]Vh<놏}ctA>(竄 D֩eyV%1+ϸuD{E<)6> 'e! \W &/;l:2dd'U]co"MP8/kIS*XǶb%H  I[rM86b*!VAڀrW{!r&^wFWwKx4%dj OGu32Z&.MiX&oUSļ4GLE y(Q ɋqeG xyujʦ p!3{ۧ&Qt2F2I"?~ySj';͖ \@|2q/3 o j* `!ѭ/I1ڔy/Ske, mt":W6Ÿc3]p4g6>  k޿UW %d}AysusъJl%T]+gܙ`BK;Qaa]/M0߬NY5J|N2ϙw匇o_1ʙ: \g|Trfo)l*}/ƹ@o]Z$wYJӆ%~FI[Mu5լΕk/ԙu2u&dKMDz MofBfFXtebbs%ؗ]ly`مJj}:)"Bd;A}Ao:* YW&*c!=,e΢ڦf0+x.y dMUL@NgA30 5 ڋdv'{ɰ-d0id)X{xݝsT |Nw< Q&>!s0hL 0؛֟:GLӪWͨR;?rLpZ^f<3fK 0T_e y!=B߉cec{ԣ#J}K1 epPp| E%KBݠ1MY)n3*DO7x@[[D"boWm@!d8(%\4fk)BYZԏSŹH1`(wƂ@jqlRGtfj9£c[ PhϋnDkS#ئI[4*UhD~2U}2UOдh4LM>__4MrEibKd"[VnlhLux+}ǞC~>cxO vr?Ƀڇwfm_L;\2%p@Oš.2 ڹZVy>nfIK]v fY-[or]2Ҿf=F;;}r@cFfboK,D :>FW].6|jZTx"6U>gCfat>H4([_c>Yx;pp/Iyˎ endstream endobj 435 0 obj << /Length 2345 /Filter /FlateDecode >> stream xڝYI6W| 5c@pq%Se*I$񁖨ʢ!%;oR&-O<~֪pLm|L&W/ыtf$7\¾a0Op<^8mjr!8ZT۫Wx23<Nd9x& 鱬Q[=.ѲiyW9\l(=3nh.x^mjKw>~"#|Dʰh,F@m- r' K1 0JHg2}C3:JƘF R^Yըw s*l'`HlfVhȘveriTa2N1 cuI!b3JPs3!|xf l-y+FU0LL0; fQ*~  6˙Dy,~`Ldٖ@2Ր%~ 4̜pUa+%D1 _kҝ'(24 [vDD 6h 0eqɺT&rڮx_ >GSXzڰLKtG`&`l,9jɏyJb@AH;v R Hԟ"*̔)U ׍OA(U}hᒋ6d=-d <#y\0|QLPgP#tDSuԴ{%2I5ϑ؜|~ZypGEYqEkSVfQdC+U5QJp.%Tc"Um:`y!.af+(=-?^3dԩ'[:{'^rzlayHKUʘӶL +L>?`k AͭR.>q'k_R;K1??tܳi+~<mȲ"YZGh'5 {l\u#wtw{yy*= B*>ǒ,],R|0ED >1q!&Y,J=,K|I8y(G# ظ7݃^1C!XE(Tm@bo{D\3TBI4*zuu'q˾:sR/w ތDLHV(6}akt<((hxq@DG ui=o˕*cS$$|Պ,/aҷ}]JD,$ :񭔫) ry~wԌ@4u-E'Njq\ZWBޔORPz}Wݻ_Fn_\㦕~t` i )Z,bTSM 顨juɣHJ8y!ĮAKF33;,Qi-aihns:/0$uȇR Cm@a+aώ#B ZU(BOlt9h%:}Q]hgUM*|*Xj>2Z0VSYU|3L$ޥ/bPnDu埡QW)d1 <faa IPp^e{#AIG&i-nR\z I\ endstream endobj 340 0 obj << /Type /ObjStm /N 100 /First 874 /Length 2245 /Filter /FlateDecode >> stream xZYS#~ׯuf]F09{=%xhٱl!!5(UYYY_feefs^I$<ū.Ǻ߽NA$"G9JY3eL$wFxN`E4DIܓs#vC 9Ś Zp! l0 &⨅[m/fa6 FI.x ܘfn 1`2 LPLLz]@%#@jU=N1v<3KIP4hZY J@J(2 Gفabf/Igt,ƀְ ֥ 88 Y@&vPTYU - h4tA` d4C%A\l)xY1r Br ' +2DhIg4QDF,hR` AْJ6f SD#f bG"= ʀRAXg&C^`, ҼwXcl%Pٰbl2sFÒԉ8w`ũP7'4h>^&~3Po`L+%hlP 6oI߿`7/0nhv@!e2(g\_NuV~g-1P\=u lQStim*mc\˔ZVldv%w%mJp< 9w#F% AG =e.`g%\2#~{ף1:9ti'ES\C;^Ec&M 4imy1jn׻ A&$.(d|h8қtpAQVG{{u=~ۿU+y]L>,srX]+:ۇ68:EKO"(Gխ ,.tNb\Vc9BBfIjۃVjmq5Ų4\|]>4! eIˑ50n Sag7c6pqQKCLk>l,Kb|IBKRHۍZJ 7hA:m7brZFI݈\wDl{M݈@ mR>M>ㅝ ;7vn.[,rH-RR'S0a <yOdS!G2Z^2B=Ԣ0B6q% #K{F|n_o]#ڧ #}2PF쌓AnMC=gy!ijmɢCv֌YZekǓ줘wV3g;u쬚 1r*N??gA_NxF#A֘Vwǘ-=4=Sqc5]9\Ϊ~SDWu`6pz|SUz;c5:MX_M5OE3a` \J]Mϥ*Yդ?_ԬJuS'?MJ`JCjPai5UmP^ V}XpX,:磫b2_G_0m/W\*ۀkn礽|.Oj>]~ӿرhoHjOɻ:!&M-tq> stream xYYsD~ϯ ZN43 U8g UJ޻õZ`(tڕ*d=}|}{TZVl m-Z)fp:1|q)0)c.ANPf;&pMy-:w[%[ )JGQQwGZX`0Vy1_wp}בNU?&g%b3E/f#.MKCCUeݟvx &eRGR06 SdMKw'nCK4uvhsbp赓pM"#W<442*nc ke{ARZ{81cߜtz:j]/3-ʩ!%dʶ Ь8ڻ(OJxQK]-Bhzk#dY-=2+a+O^À82؍Ӱ+PEc׬w!RH٢4/_RT6MㅗՋV݆4/ .tLFc<8b2QćܬV^{ OkZc b:KK$e۶0( sAVyenA:` H0. A25tٷH=+$b o˦mC˄'lvr| Zl6Ŗs.DrӇhQ YHy[i-V3 [(Re ĉnO!X>-f59`b?(xBH3a=|6TOfߑ&k9 SJ*+J8R@n$#K=,N`>n{2I YĬ81p Ug6l+s?bu[/{Hi1)$P|۰p8^OY97Ih;}Y{d661 X>u؟H>a!`ID2yGp|놺K,y}(w9[1c+@>"#-5|knn.xߞ|9:)ЂkLOy}r̀. 8ubS:9 h2ٶ;>2k} }u> xϤnuIVt9Qs\0Kw*,sCo\A̟mu7O/me|i\TOgшbF* a!}/^X8Mۤ- F9SJZʉOkPq## O3]+%\'%*V D+V%k?ճ-;(zr3Iȧ6;cם<.^D9_pɢ$W1?]@{A xHþ`} {yIN<ĸL{/ox&oÒQRQ|59gb$x/6197CQz4U@tKo/OS1S_wFM?"Mc}f+pk䛺#vsG|̘ gVs%IN, |ou @*׾TAHw5Ru R'uc +xcv|ijW6?S=.BP[a ;f >; ˆ"箦Jy?o endstream endobj 449 0 obj << /Length 1160 /Filter /FlateDecode >> stream xWkF ܁%kWC =JJu/zt?>3vurpJa43;};=9ȣQFHE(KPhZތFi4Q 4w 1+sC{8!TW#Вt7v^^sH $bG7ɻ#EGRq(^¼5g_٬ @{1 TnbKDќf']h\ݐ/8TXHO06wg{YDwew7w ɍ`('g) 1酥3+DlЃA, pzlU9l  i볲*&i:ĪrGĺWrlŞY2e:zMVӁZTm R3ѝ5;kN}#Y~/^Z3ov:RۉCF5GnbHaW$|p#qJc yp6\ 6|9? v J{/ٰF+)v~ :)iuOY .,K_#tЙ.@J;+z8U/Z;X%si}t +QنWoipw1~*yt~\ź㎜*NWά[,̓b$yXh6K|z9M endstream endobj 454 0 obj << /Length 1066 /Filter /FlateDecode >> stream xڭVێ6}WHJ+R.E[iܠn֮/Y8(JCQ\pb>)ӠNB6PJ)`?F*h-6: жukGsaJۿiBKEο T bM6l(S>5HPMrBbhX'(p:+r!swAO_mǰ2D֣="8\ja;ʾk6 (<}׀l~qG/]^ZXWzҹޣqZ~;:D/@\ek.u=: nRX^oz(ÍukǣXuH6gҢsX( 'NK.[nBbV(ܸꥠx6+8z]' =p, ~7.cy+sĉ>=niQô9{e:Izzg}8s9aFA[̱Wu7n W'K23i&8Mz;hћ[>Y\ӟ`a!хH2K> /ExtGState << /GS1 460 0 R /GS2 461 0 R /GS257 462 0 R /GS258 463 0 R >>/ColorSpace << /sRGB 464 0 R >>>> /Length 26378 /Filter /FlateDecode >> stream xK-q7bɁn32Öذ-–(QCRMa]֊C<|5^+"/>O:_SGO4?%}|Ͼ?~/Kߧ>?O'}]?Oߵ׷KֿO#cUK~`[:#6b $ߗ68ƁXu h1cOH8t @ZhA\}l:I}j:EPc=Px= 5?x 9x`a)J}=0=0~= 5=q]C`)t(=@Fv` b1p|`),^O%b+@[=P5v= -?p.}ANg;zc 1.SOSwp=[zqp;Og7w״y +OQI\<[Ɖ X`F@q= 9bu|%/f\ؕ:8V~bubuU+sɻ!VB 49Oy<@_T Vp~db\.xVxS.|bu^|/f۽:V @4\YD_/FEz%]3ߟ  -+G<X/uvM"*/BekqB_g3y!*9:Yy9}ټ87/S/S+tNKkx#}׷}s*1 u`TROMty} c*v&~kb_/ż_+M_ȾOM4O3M u1g_/6bLkξ_yەbeb>ٰ\ž_W8oMrx|>2.lj>yrwb}2wk9/+XXy}_kίDS<+ k<>gM1+>S;,&Ebž;*ag*!=1^JV䥵Uk8xorI3 F?K\kIh 9&*VZZvxpN`uC0j28ȣLŅׯakS?zbsg"S/uqN+ʹs=|>-}b\/`1^-}N{I{}v΍߯m7JyzIok~^ Ë1^o2:LWsJIw탤bIFsŋ468^z1KœrNV\}?^z>N?{kۑ{fj=rbŋ{O=s?\- WFq6wkgzv|zʍWr?ɽq5ϋ\?{xwqŃ{\~mw?sشb9_A/ L:Ǜt x:Eg@|Wz4X6^D@sѩa^ t975gvtl|x<ߋ+37.x/g8~R7Gܳ7_k45ڛkMCd_k\IMtx->7Z|*?tȥ%><]I_A=tqe[淸~+s1RDx=G >ד;t|ܯv˫b9_~}b99\,>(yzL485!^IvxܯFo/x?ŧ9 K,/?ovY~Q]ʓoG8Y~ ?<ϋ,f_ c`B^,?珋5f%\_iOS;߬ןY# n{`Q1^]͗aHf6|z}pO6{sI@Qe/x/'[:" G|O?~ 4x4s /::/_<~+?e_˿w?O>>w??}g?7C'nǡ[w~0ov҉r W/ןSrq|x|>aFωp~}Frf48q7StMFkhua'_㠵`,bw^:[yȆeܯ3?_~ǿo?ϵo_?ϏOwUrqN_= bg8uY)=6p2YWt:U:UϫzAW^uЫzA:H^uЫzA:˫zA:UWį:cw:CPz-2o?HeT,="Cǩ9|3|FG8;V9!}3|˵ԝQ}3|G`;}3_<(܎W k;3! ;|#ʿk18wH?CG@9bZ;Q&cv8<숿#?Xtc*\RVKs;"2uq=b:Th=$nGܶ&K{q:k]| a*zϒX8L{2unb Z*tҍƃTz$$Y!Vf S[Jb t/_TXCi$4M~46MSF4i9^ Yak<[}+E |w^Vϛ糖sxrkwbUlqxqkhU ]1Ui*t]}XB־6 ][ŝ[oggOrʭ7eOBŭ75b<ϋJ~p%}[{k1i(b_3wnrTPǯ kskVY!4VS}0un `I[u6]W|躲%t]zb< +]q=-΋㵵_|]q>/nUktqtt-,6]Cr-vqkQA&MqeL=U񸵟 mUUڪUM<*аsUо&tPC^3C sͅ5=,`.d;sk?+]΍l>o[){P^eݮoLb9^+ʹ)t?Ńy_J|\󛍡í/{]C MP̭kz(tޡqP7 m|C VЋ`KnB pkmP~N΍5p/]9({qgh 냳Eh.dcW* Ź"(TWŝ:·[{ܡ?г;=b/Ӿu =>ux|~ 4 Uq}PC΋?yۡP^дwnLHЭ7b;T5>X 8rr'Cpך) Pڹagwy;\k4@kPX'os'x&^]WxE Z p_B{x>/j)j!EzQ-B"p>#=XRgkϙr\oy!ͨ+ֳ̀q6= X6fۘ-x1A`}1ԍ1G)n.|"Wo|_Ԙ)0'ژ*0iS׿1Y`N/sjG1_`Jkf ̡1e`a(V|=Hнc}<%Lg'[ϴ6&LcS;sΓ>G}8yV ίTאr5{ "wo!UݙN0֧|m_u&̢3 BΝߟΜ8> 1΍"δW7ev&̬3S -I[grd_w}3`&3] +2 7o1Xܿ:C%>Wb ǔf0sp}5%L)@zbS1eO#SeJ8_q秔!{єs0^?u w~ϟ)b|%SB΋{ i+m x p>?AĔw)/^);v"gLNEb=v2<ߡtf(?6U\2 c&rޏdȑXqKPh\ \Ń*Ԅc(7!ס|'߇~(A!1c<ڏC) -ry_)n<c4g/}) _gי"{/>3G|s/p%z9KFk~fuXz˵pn:6/p~½X#5|; C\Ċ/Оc#ħ4U~rH8/4mV|as%0tדCRrR"Gap$z3#08#םt1^px_=#!#wJ`GaGapHpm)aC@[`vCĒ"T i~:Kk"pX+C!Ei)=!ESRR!8! @*w*[ҀSR}HO))Ep>--E>Χ"8RS|JZ?vbJW ܒ9*|ww/_0/_<KhJ`DS:r8? ?Kp}$!>cO4uqM]) Ȧ..0rX>ԥL~6uO4uN%} ЏeS`DSDSDS7Ǧ.  _UC@-?X>WM]..DSGl\''O4uO4uqĻ.y`S`DS} ? } >cw˦.@DS1@Y?ԥpSM] O,g p~#:6u⫰wdli̦.;O4ubʁTQ#r7«M]ʟhďcM] @FS ~UG}ip !ϪhH.@DSGhh>5~ҧOad[}KM].X3: da..xEڳh=8b bS͕.Eަ 8J@ lDSׯeUٵo#^g־v+ɦ.ز;M]e3&R6ujn|#6a KhwM] OS?8I@r2'+!Ce%,p6u)aS]6u)!cS'p. ${ؚ;r K(ԥpM]Jyԥ̈M]JԥM].K hRĦ.UI d.%[M]JhuC}7o@>8?A?_5uqfU6uľ@Mhju!|K 828&0Jla:=PMR K4uqfQq6u)!M]N`<$6dQg6uqV<؆;){*.P/v,m33:nڂr4qf 6uڱ}EEY*e)C."Ϧ.%*judcpg6`S5uqf[6uq>@]ĕ߯&%؆;h=_u4I`Sh5uǓ?HM]JtTS_Kb6ق; fSVSxs9u}VxٔM]^M]Ʀ.ۡ.&x\eeeeG&e.e5\œ&QxKSe5nd1;9~?љ>jNN6>`Sk<5h2bCq/k<񤷿GӗI/}˃_UlK.x֓/[z;\.Gz˃z)$ie'=^pWTc!Z8/WV>r JB"WvFϡĸ?gW|9s9}$ |^*+.z\sV|ٕ"yb5K˿M!c^J˟?_S/7?|r]M{%}Av%S}m~:(VȢ;쟪,>rpyՑg@_Y|ՑgP_Yϸ35+6|Ցg_Y:zOcQGGԑeO`A%pȲjV_Tr,R"*%͊J[UkVJ Sas2vǕ,Saw`rҽ;TZTm*q UB7021Ys:Xe*tTWGݡEKТv-ВcݡEТ&6L9ZYZ," X-ۡPG0a*c;Mb)v`GpK$Y*u!HM,;# R4ؑe+Cԑ^/nԁfx;χ8ؑeAԑ[,R4i0K ώ,*~u 4LޢJ~# >YԱTRc*# \%~mPG^#~QI[ WPi$x~-UdGZbmvdJud=x5RXXKtd뭉8VhdGhFXYʈ !RoP e+# \K,+#K"ّe+ԑX\ovd)aKY-b XQYʮˎ,pEq+[BrԱ ;@`PI<ϏYAWϊȂP+Yv(AYʮX͎,EdB ~=`CՑR#ّeK ԑEfǗRvovd)8; YBYYbIԡfArVH!gّeKԑEf͗RFȂ;]aYYY`uŎ,2DGHXROȂЙ%E`]vdt!!Eĝ:B{H8## BI )B>Ro1!EƎ,:/ё"4@nfHz,)vd)3vdh"qHȲCȲCȲCȲCȲCȲCȲCȲCȲCȲC`IΎ,Ax&A㷐"IiΧAh~# !EcK8I,)GvdRudRud9/B,;t,x^|yRBȲCRvG vd)3*F#K.ؑGC.! P& VŃ';ް# )4nؑۮ$QSFudRŃ:0[`p#=# =):XH,xpV& h5;ұ#KVKtd6Ktdud+vd),|%:@:0ĕ)cvdoBbI8X?rFQ}ud?ħ@Yobh>@]`zrbJJcѿ7`8|udAȲOȲC|ԑe'L# g]<1:0E!ȲȲȲȲȲbQ%E|AUR8### _"Y]lG^YF|ԃ_PǖIYKiS|#˃5[vd[YUqH{/q8 =sL|Jԑ_Y{"Bx~ȲȲ#Ȳ)Ȳ-Ȳ3Ȳ7Ȳ=ȲAȲGn)!8SR! 0qHx>}KC!E)Rudy)EPGRudy)EPGRud9x="RudypHO):<"#˃Oi:<"#!EPGRud9=S,>S,\J$}Ɖ\ wx|= L,P\σ7L]/IJ*<ٲǯE `/B/;_q^'?ʈ~Uf䩣wG(,+~Vy5"7_UD{}aw~%v*V_nlX n<5zhFԟ.Xn{\ Eԁ~F:Op`_S?8'Al`9 ?Wqgo" ,P@#NO:{(yQX/eb)eU;o# XDt Ƣ_".>lX_~Tx, G6E+OWGUy`-Y(S5 qJX|@ه lcm*WrpŃ@FؙERT1U-eGYSvN x5o/]4\8^E1e,M뼋cXQ~rXQ} Y7=xx˙SG{g!cXor$7LT4Cڎ,r%ęE2b0 QdzHnS$">pv"~|" ӈEQ҂Xs>x*DQk"K3XQKPrJ34jMsH(P{Aڒt`dYE}"pf jSfO,Vu?+BBUɢbg}Uv%OEЙGZ&^<^EuVb,mY>ÄE} ۋ q(BLHtO3%">τDEUշ9^ޙ{ChΌ>Xl;(l# IɃ:z6QkwT]t5aEuƋ|cScGϙEY:} hQD/{v;PYE8>ߌEUp8s~cME6}cwuWC#!.r/rMH6he,:;BFUՄ V{`:kd \gM]> L Y9s~^hmCBEu/s!I\/ Ԏ.!n)YLh% !Cp|!xܘroko$ *sd4h՜)$G^)mrz&zț9矞8(gJ>1ѣAx>sp^5y)pTlI~zp߻2jz$ >C?o1>.xN/ ?O~w&?UwNzDUq=a\V?Jo.t^}6^}ѫ/zE_}ѫ/W_}^}ѫ/zEW_>"/W_įꋾW_DI۱Bɿ72_buٵ<_G7hk#}qA< * 4:̔&gytV Q9q[UI}4M0j$qFfM/t>1oTy$Y>IwW_[|] ɀk&ui&;wRG 8i8uR'68wJAboBaz:in X] tҜ7fo[=hAZwEy$鮀 )mhp8,Z짰 Ej8˝ |m`dn*6I+$X)mI5N㦢``Ew%h8Hji n T?n -MY-C,hnдq]wfڀЩB[40?8¸(T#[+ ,M21tW4A j Iܵh$Pqب ={Q2绪ODYd8俩~D{ Bs@䄟'y&]Nщ`^۝&[{bWpr·H5B"z]u'uUut 0&iO$u2PҠgn&쌋p&:BDLjDp}"95µcrvO:^$B+F9.3$+Ek9Ƞfv;qԅҚr6](+{E~We^PU|atU~At\LX3p6< {vn.1B,7 šϭs}ٍ׊UnaWGWʅj]څAWGosWq/OWo8o7>l}i^.t|^pLAw$6? {.hc#MANq_ AۢEo ]-5\p,/ q\pDzeRA˶>T R kXƹ/,8vva @?NMF4̈́m Bpr6ux 3܄31MHHcs\+S5TZG,2GpGYq,|XBC 4W9^̊ I+djd,'n%{Y)LkhxJУEG8*Y!7'`"跬7K48MSĨ9B} =onvaIp8_`vDqm)M'Gñԭ6\Yp†cy &k$/4jr:-*j:-RMr\8ڬcT+w8VJHMa^&ǻn9-?oFl!Olfl"-]4; LygXwug±| Qnl0p$+MF4džc)KEņEs-[4cS|:rM0bWO{_З.W Cm+2ra[u{~VV[*\a*l%1[h\ݴ@}"<V[BSk\LYKZpXp[҂onY ԭY .1 MxM *s)H+}\l? -,>G,v+( e#eg5H9$]h8L:Δչa'b 1 H' f7lGt 9^{=N-!lܔJ tݙn0m;ƴ;`{t{bhpz(+;wa$tnOժܙPV j 1wەat$ .q8Ftsf@|ʱX>ubfnU^ŵ{G.vH/[-!vhܯ =6T{Xu e epKM+/C=VQ[<7ܹjO(4Y{,#Ñ[u*{ y8z ǶcgF j+ 6!6nb@>,m;,$a7IwиMXnj{H=af{ !:]+/3YR1zlj[ȉa.IC*Cex2{0LzteIuX] 3;Ry-hv{Ab-s/yt9ے}ӥ?rGWkHrrr">|RcAx>yGkO(-DZ|^]=v COjV5\ܙMfNWN{f|fpC`r<ϗ Xw#ݾ\؍sLrݟIl#]¬[FOwɑ_awcVf-br-8&ƚH|9Vh<;{yP9h+:#`5;WΣy3F%ݟRJy{oHB'u֙xRQtc󯖜g7H.M'~??/?9_OoxT́q7)H ~κnl֡'9vj=WHEHd$Ny*H<$m$!-Y$A^ڊuC'fAЌXAA9F{~ -LP0%D[I]HA$*,4Gp4*AVf.MmXbV[nѫ0iim-4#Io{b0V!+4+ F>0Y.I`)TDEpK1++.1iE{lh+P HBѤXU)k+&C a78T4"}֤*"=+H-⶯)M7PB|~މِ [xl~#ǎΦX*lJW/ k*  <6#wԓnUC Fƕ}kYWRJ;ށ=@ Rz83,vά%*%1ʩb'z'}T@ OR8% g@C^+Y OЖ[[BBZ%LRl6L YGokʐ8⛥ǢM*W ADo"(gUe GVckUYVj–Ф|kBL0]3|OZHV2eEmHvl-&"hk֖TcU$䯢$E4X^juC<kh m b#$\{I:]"ױm,8~D+H}7[GQKXg|3̊0;lb hC2|5*=8Es)R;&At3k{e [7PWڝQ@!(`w5wA[L`FgyShKy@( ћ%fui $[>P:؎MoJC^~UKc8}7C}ףd`C-̭аQ-hH *'wj~*ƐN喋P U*1 "6@ĹI5͔7ľ5SJx[^Hjϫ{U^^+JPzЛ65!Їpbf(H57]Їq:V@^"*оC*:}ӥJ`$M"@4XGu;%E@-#"PPlN}9$ep~H;EЇ2^n&ItP>I "eEN!IQddl[v%hrK[7jMu9mW [3cMc Q"jM:쁫8#;- 9 + ,zU/x!cex}lz}>r}}[-y}>ro[x}>ro[-x}>row>~|f5]oB|Лs՛ބ7!M oB&Ŀ oB&Ŀ oB&Ŀ oB&Ŀ oB&Ŀ oB ?Fn7g~_'HO>U>8nLe<7GH?@b"6 82nC8),#㸣zω`v2ıSWy>DBq]BF[[jBSp+Su˘#OgUHۢߧp"Z"tiUӷ.x?XNv-ۣ yc b$wxqJHSo]Is!^V2LHÚB k^pLTLMH5x*~ʛ2%{YHc1!v ]8ʶJiwf楔ŒV,le*1a:Ҡ[VVH5Pr;GZX y|kRpO{Et>|<}>,7ֿ#OpQNǹvpش,Tg~ #VE ԥwh}mgQZ#铏J# vW=Z)8ι㺵vKuSIqR~H6= u2kfPZ!>9 ).Յ:Liű+>t Λ9fVnA ݸ/!5\b$"t"] "K\ ,cSuu)٬.ɡ9AUz$v d8[] -ז$>ʱwû`vq;p8Z⿜FZ9=Jencc y :'k0#δwu ' #jlrmMلǮ%d+}Pq,\ $PG&,p=RbLܨPq1Q'h "dڬXNA ? 22'`u߫cg +\zTabDžcͷ5Ҋ a5ji=% |\[5L)%anI/M %aIvHZYbr1 +O8ķgYCYmTzLN@vjh1#1_#moŤZ\ff~:3wU r,ij92/OlGڽNY8UpKMȀ4gIL~jG;U) i;)͑ʕ=e~z\?䵯L14NO&-aDZ-p0pp,2nIJM$[hGc83R]@b̵#I":6Dscvw&x9yԳc.Gz,_XlhC%wyˌCh<}u5f/odj-oeF)V7_:f$<<1Ӈ˱;L9֝L5MB>vp)Ք2k:}.@{ܮ׏4DY~b1~c)eL- -ǔ8,򒆒ِF˱Y ձ۔Jħ8v@"!=Ѧx^ns곥,<׎;2 K^8&`tU(E# 'Hm3GVf(+GÍ`O8N&f(%YT{F/ 5L:.ny3um+奻{HCd:ٔKK3oHgq=Vf;z'týąΙ*.ޙٕm>f9~A2X [|jtYT;x_'r`"-בe,2PWCY`[g(uqPyc;p<)^ۓ<}]HC`.$3cBS_)V|J$}+? tܘ$$A}%'y%WSb!ptp pe'ҭO,,/*O~px~)A3]*dShR'uhqZ gr5y%q;WS f+xei@#®P>"mBU~z]qEyV$ndڙK;눧@>_5hUhiysZNk)<;vz3|W;0טFzhwTo`Ď?Pqu(#m4ը88ez`Z{|ŋS^8ylo^ (oJ=Ky.^$xye!\x. R|.??eڋuu/[K~su]+QǕ<]Hݿ{P1P_9ٮ*ܟQ|~Zsx^ٽ!݅M3q.zTrօF%8'>+ë^w{*+A.Lmg?|o~Wo~g?HWO_\: '|κ Ëd8ˁUn,Q =*cr\ -)QxV(,Vcl@ ($R,$0BcNK(SJ $ B@'+E-jx UIj]Xn`~)K zZwwB接?LqJ3I+G{eO;h#–ٱUb U ]lmBU+Zz@wT̊O5kQֻF#7M# hjB *4c i$t!Y@['gWw.I'g! UٴY&d QS(qT 3xLt:R~S.ԅelac[Xhʑ2R\Y5tV&축Tm[+UfRNnG9J URCPumJ.40E9O)%]]piLW{G=< wЫ ̪\ir8RXlBUUQ)UHeۋȂx)3O%>)>e}f+ ,ޔrWqE9v%5s`1O+^vYQǑvzljEݠBE%ulhp\Es|v/cL"VvfvħxTwd!z>Igr5m@E %p֭)#`RB:TY0 Dq-q\o6յ1fY҂1J*&-x`YӇ1Box6(Qz.e LQ;7H{aqٙ.-cA5Vɰ}-etk\/V4t}Wp(Sޖ`^+G&3(ap&J ƘuAUcBRkw9Bԉpw^}UW6›ĠV2bܪ} c, 8~ %53S:"Ԥ[@OMRh2D͒U8"Ê?6-ɒ<SuN0Ƣ*g?93/.K^iDav:펽>pt ~e*{\Vb?U0hzqF)c;^!\fz2*X.؎˞agukQ b1g=9 fcaYOΈO){??'a\TbYnː2-ɬO$r"d313E21S%Gvp`%7gJ|:n8׭Q@Xfxql|N1UNU0Ƭ)wyALu_H3}U$S(q c, UjܒKLQ"J)<)t˦SK*g<*5~ݟZRjaY cd#7 kEU P*Vc;&<Ϩ$եo95`oQ}EZJV)^BcLvr.D8(ILclFUQQ,meE"1+>]0fd?C-ShZ i\16wA $CQsGI:ժ e2T7Pn6a|JQi{ԥ遫]XQۢ;n1DsuEvٴ9p ‚b;H#V0T?Bh}A07QeWk :bEܯT/ z. Q Cu{cBkBf1 C|4iZSINY3 &4X'٨駞PQ)$~䛌%D% q}3V#$;WPSi9gߌUrc"oA47ĝ"9K*'c|A)]]6褟j|cE8I0 `F!TC*Vfo^abל0ĝF8dlM 7q"̋;LXY<6LQ2x*-l %]*.vo;X> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 469 0 obj << /Length 1990 /Filter /FlateDecode >> stream xX[s5~fpfjU׽e( 4e(ILc'm_9:GZɖkkWgsΧçt5::JUB7::5K.Zk 9\EqOS9$ѓ>Ϊq8_ŋ>/ŎqObj+^ oؒhh`>(f wԏzCa` 9_X5|USy2O6$u: /EMvh3B҂'b4[к iu28a:o[(9i{=|rtRG Β='cxu>8ջI<1QRXF tC:<[5S\aCO[J{֬[B)?tAӘk__dvi}_tsN.:ÅDTnaӎpdz,3vqO=WKvE7]> d4/.phXqe%uXC 4 v+QtRvyRV7HmXMBk\yHl2TNt7zݴBkWf{:|YRDp!rj7 V)Čĭ}vC qX`K DGn >yg/-~-lK7]5'_ғ|NC0xy`7N>8pp&pj!T&X\凟Eh֊cp I$6`ۭޙ"z[б-\Cg95V9U]5:XMk 596YS0^ ш?%tm[_ ՞LFtnayb,#tKͣ[dn.D,r -ޓ{X endstream endobj 473 0 obj << /Length 2786 /Filter /FlateDecode >> stream xZio_AJfMM) E^?Py<"^3;K%V4;;{>3mU]\mȻPiFZ.~MԨ.,'jyƳ;o wι]l}V2v:0nm>.P[xz~8͸[|lj{߮pd7ٷq)>-i3mV *kTպAPg.b0 ῊU nFUF8&V\#Vk|6+;G`j{aCeMBxI-g_] WHPYG^$z4F2m3zѕmqwg8MHe맂=àꑯ`2r E-#jaIv'g#uը6BܹJWzF  Lz l1p;5h7lщ1(ZυE&אjOy`G.YX\LFG1c$l ]Q$vUh," 2`YS|U7._f ZDç_. Ƭ0op")$S$kDU J]), M%'Z|$Emj}n#m6;1AاKLe([r)nWBzplS`.1p,$%<<7+1m۪6Puy)(mtJP`bn-+siA?7| sx^7sAaЮg[1Ac˫ y eCpv,ۆ,K &<ڧ\IE9O =yvS*GQKXcG*V9[]Y]R꺨*u"؏ywܽSj ֆǒ#y͋qA bG N'#VeKBTS vYmtEwKp 2|cҼqF܄< =|3]/!730ݲnO hf3DH Һ!2+gR,9, NT55n@>y?Ήǜ6D;~0p ^Csv/4{6[@8:dYNӬ e=TiXg -lNcJ:9g$Qv}Gj~dr+ lGG/0ρ>5܈ O@EnNeE2r(7Rk*p`CeilSȦ?$idӤJ9h&L1m 1=&nDs:R,O26$1IU.. %K-SH?%" e D|J:i#n@SɬN8JQ-GZЭ6j6('j,Li `.'@Œ8`~Pow( *?.2[ zY0ph ?^3ꦂ䝘"#9LGӨ P':nSx({p'w[4&Ͳdx;3u՚ [*3:5Վ﮹9ekCA*DH {]:࿂ ?SAUۆJBf|"hđ^DK:j&}W!i(K>L1)CT *eK, {_ \#?QwG-u+tгK)Pc agkg).Du^݇k._7sO%p']j^'/wKږ㉇ oח>5TZL eĿ Q"L2vTPaѲv 2B+KeVj:b-ŐPT/`:@JSC4%{:Wm9fi$!FsC(f=D@I*^ፃmv9>@Ɏ4%♮2NPuvL7y"tinCGCYzAVBotMe}e/|>f˴Vv|2Vr\\Ϗˎ`*$hx"W& endstream endobj 484 0 obj << /Length 2436 /Filter /FlateDecode >> stream xYK۸WR Ue$S98ޗM3a>p$J$ʢf/lUHlF^|ILg$ 3\iN._/q0V$4p)pUp5p¹[J6Ld`'r:DGX{]Mg@ZJ冇Zf^첝X[b%eN%,IUa?_Нd*q>j2w43b(F,-GZ^+?fyۣnjJF2m|9*Fpu'\9DKy ׿z= Q6,Hc9b]y\$as$ (I22<йC*pHjÖ"rYhCY)by. 8lΒDiMyXğIUu?m*NZ4M,*7 U#V&c}8vbf%RZ:QISv;9ijqRd9 ;um Fʓһ8#TΜ!rI+{A#߰|dJb^c-%߼zXͱU=_ݓMr>As .3@@u}h.(\< ?Pqg¾k}iqǑ3" ᦐb&8H.g\ǁ O|UW{` TI&ÇzPY[1`khGa*sδGs$`f-A =ëW>q}V_Ez7:Δ)aƮ8t&OAK< Z=I{mes{IX{^m|YmN}r 8Z<A\IAQ0\LxǤ #dOc2@EkTcNMܚԛ`G C #*T&ql萣YKgP{jOnnGՎDz.gZ(H~K¿l4aTIJ JJ ]_wJ#qCɢx"7e q=B(MY@ԘM6wYp%_ZeI:+F}BtӨ ]1w0bIb tIw\Ov#dӸF7t)Eq81ܨGԴ"}:2i(#<*p|Vy؉|(En!`\zNͣj;Z:+y\-xҖT)tRJ*>Rd& |G۽2ɂawa?{8T5u8+ >'AAgGC{A^Cb@.XxQZo=cɋeF4w3sN&Wbc_/ r&~d.t9am6MX Gr1ԯtLnd󟼄\KRB٠hIifiU J2N4r9ytJٟJ Jhޣ+T>GevXTI .% ѣ.ԷDD[UYR~+  8̷ڷĺ?IdVL?P&+o(PHqjH9ϣD(Fb'atѵ(u|xsXV=_{ PQod]vw"HT tf*ڇW)dPݷ1ul.lcL3ofY@ Y0΁gۭ+&U=h-b~|IٔcpZHՎ ͔|RezD}}@k}vJ\gʷ|ًku S˝jd %:Jr;ƴy {Ρ;{d㿉\giʥsQ LS!D;s% m1>I4nx;Dpso |% }? Kat ts#BЙC<+>ج`<;8p0nKŭR`>9Jh O1{PES; a]h!䌓~dGE6~wdeAG_jȒ r%5;=|D,VČ^Ol/X1C{_=N X5}ojF- endstream endobj 496 0 obj << /Length 2290 /Filter /FlateDecode >> stream xڽY[6~ϯ0$YQnnl6ASmL[4yؖ!sI)ܲ>hLQ9߹su7i>V%Hei.gߣl`ebU':mqώ7ɧZepO4~D6Û'66/%4sGmIIwcOB2GNF9{sU97ޏ'jy&ƥ*<[̒ D".'ص8)@Zus"2}IG3ܾЬp'noǀhu`^;:Lć#psv ZUP3 *ӌ%WQiub 1 cv-,7XߵhwcX(*P5똖ì:Qr:Esf{ҁA%bP/g3d~QLFoQ#~bdo18cN֡W^[R13^-0 1#kr! ac>_'ȕA^)Ll6:>8,zOZ\m s/0 lar˒U7,C*mܔ|؇Dpȃوm]}cLՋ-%#-Y Zr_U/y{x^dJwuboCԋt ~{Ze[(cl+K8z٭ǹv+8V d;LC$IRByẵ?U^Y aܚ[c݊ gہ\3I_4Ȥ8~2^+bJYvO%Ԩ,.6z$d[/~t5;>:/% *c ?!4pH|_pOҌ %L]q1j\+.AE3L%>އW bPr|\:F 0L>Ogʦc p$w0 AǕ 57}},,0+%s7`NZ915~opwf;z9mqpE5) sr]5`#P/]SQSp'Tԇ|t%Gjv,^uKm@< -WWquO'Iݸ]y1.KcaS\;SKcɯ&m>JMs/*˲`?jTj%nV]r~Iˮ?Yg*d|}&׮ģX8ڼJ\z+R ( *:àA3I$  Rln@2=mHI7O/\ix W",ps\hIKpGnVS_r}G%D Z#{6ϮcTq>reHI8N:?d]R;|A"Zq^ ,5ԟp6_D(rzBx)]v@mBJw_TH%%${iu~}*:yn *-\rոNׇyۗ"j[)[{lMz~m1oYQ~A]㻺VjfU\uJ(m>t",en.=ouXzJvg?]dӶw id#+Wk//ӏ2v$MR4x}/W2 endstream endobj 500 0 obj << /Length 1454 /Filter /FlateDecode >> stream xX[o6~ϯ02{Y() tiuݥ[bn$FcLj+ 쯏"?2]Eox2լVBO{\V*J&d;~;K=nB鉞Nh{]@]n!fv؃gz8W0!zCY]mJ =mpWv9. 9DHwdǝ-. =zH2?sp0 W[A/j$==+ -VS@ɉDAv)i[sC̦Y{XILw =9׮ލypK~$J TJh*b;kJto2!\*ivyz|DhYYNzAsFW F*r-1@A]D:)!| 8({ruD ȗzjG".I<%,g Ls 4%/P-D@!Jy ȣP9YqeڑO:!z%)  Qhe5Uʤ3NQxa/9;O(3I:22Fek ~s;60?)69+I)?zv£sYVcBR"k6+wH9,2qN`圓*&ʞt~{{K{_t)ޅrӜGR_t{[AN$r> stream xڝU[K~ϯh8{|Wp aLݠɬUouUuceNubyT]0A,> m!4֋ZonY@+ HVY6 ;T?,JZγ 7Q1儱t A.AǓk:crê#R#mV9= sfzL5h^v2NKcW _AنIEpN6JlNPKR-#Aj6PqZgGSJӑ;]i#@7;va@R5 ޴4ڒ'\KfedҸnd®-fZ] -tHRNdXmg_g2"%9xbųq-6<> bc)Az  5y9[ 5)5'y0Z7K(¼c²)#Ɂ):Gͩ(AYA>ZA;.8d:D{ ",9Ft`TG 4`憽ox9T:wb1#52;m˒AZgoCvC_#@U Nϔ$j@?~v7fVo8K|SS9$ź0L'hi:u^1{{=~ ڗW*r7%1ܿB3 7͸Ŧhm'U{OIkWK2y-*R;c\I7cŋ4RK—;LgJ4L~(S> /ExtGState << >>/ColorSpace << /sRGB 510 0 R >>>> /Length 6676 /Filter /FlateDecode >> stream xK%Q+rfq=Afl/$o,?x/YflAljnSUYyȨxOz~=~hyGY1˳z7~Ňy7_G{營q<~!=~a(F~&okRM!˳>sYrV ٞSٟ* 8([ϒ)s\E:eKe3QrϊAGK2lxϐBȅ3Q ef}F9Ɂ3a3:(e##IJ3wʕ$'&g> ;=(9 MgruKgnv&S.f"_4ҳ⯡1_*xp!%q!OIm_ L3tŎ.)%͉-QJc1sl-=߱K4ts)yhh8v_ Dz|Ƴ0ѥduxqJqB.*% UJf\2^t|_.x)K:ٖzxb Ra OxgjO\b㇞j/t>|1mq> 2K,\)zk2SZ>hiU;qؾ0\Ѭ ݿPBTl&ţ:,G#4:NRZK8ܤïS+u01%_bF,y>Bc=[~)mMtP|?4<|4iѱ5g-`n҅k|CJG[>O >Ɠ՟N_1Ii|_ăG|jab0Kgrej1qh2w<!ݡg Zu=ǴziBda57Rnk C{/"=A-{G s:={n;⁈'?noq=ÿ!l:߆5}Ft~C Q HAB="S߇z[.u[sJGSu]6ƃno߇n>săjz|?##Ehx;#sYFFҋW{U1LJ_ăjo$^SFGn=e_1As]1d4M1-/5q~2 rJN_O?b{>A|ʜt8SW<jWy~N޸eăUׇ5׺k]AFs^xn{mz#ڲCfu5}hO2άa8l{@zW=`=.OL$"l#R{Gi \5>yQs=_jywXwzojăn/Yq~tJOăj==ăxI1G}X|>T' +A?]جk7+:Ί7|8amtu:Y6c|m~&nY"qUM|_F;zz\?G&Ne5>s^t?D|!W;޵WO]wK{]~tOăl<_jo.#Q?K(^ʿ!4]W6˘C㋏oؒdué;U;8}'ϸsz~yToo~?H/'ҋXqh}Ǘ/([p~=\ÍIF y=<Í1h'K,.8?#ny;K^~%/뒗y\.3U7l!N_mvL-?GkkPLvu><~F/E.\)VaG< Đ~_/_=G8??O>cߵtjD?%#^ݸg/^Qu).Ϻ˳<.Ϻ˳<.Ϻ˳<.Ϻ˳,<.Ϻ˳<.Ϻ˳<.Ϻ˳,<.Ϻ.Ϻ˳˳RK >w_bmQຂeT,*db38ࢆZ࢖ZyU sz@Ǯ%][CàAß]*$N `^e{*FWOM.QpSI]@c(SrC*]9T8o]7Y]60^tc(]djQD*P1t^`8ůrX7Z`LG UJX*0%JJ,P`<?\&0Uq@HAJ}=ifB|*t슁`c@ dῆ?]0vbSkk/c2 v@ ޮ epǮ*`82]F⢀vS Ni$`:c䊀. ^v=@z)y.W#"D}] a9ӵ=.usxyVtVUaeiDgM`v#Ea" q]fX.?Xq-*?OWCjB+mrO< q _NMEGr(fkFڦex۵qp:v,caaZ~h`?S #T`?HY#IQaM0J`?a>a?R0]vb~h2~Xv(!-SrrȰƩb ~hy)~gVqWO ar0YCk hCaiAvrްbfO7~g'}=]g'5l'Qja..  F DִalZ~ѬcA/iSٰ]6Q^aFaF`92ltX~Ma?DDZ~M~Cz]`?D(3} C˾a&/~`pװfb8OO~`?/-!3C YB_~;~h hz~3H[*O}`?Ssa?/O]6?^/Og`?t6 95}K.`?#~``?t9J c?).`DЂSؿeJ]`OPqCmh~ؗ`(`ic^_~h>}YB!Sm~_aCyRx5}:a?4?IuY ؏f& >~Go~Ɵ O5a?+g癵`hfm~z``?wσ翊 ?0U'G & C'ptV~Ck}~Sn_G}}~҄io#^Tq`?Ca O.^7G|Os~;m؏xZ0PZ<`??}}ǞO~hG_^mP\_-' ىG)r!H?oe;n&߀ʀ)8xp;Yk9Q? S$8/`quAX_)Mscsϳ9"\}E.n6̟Nt)ø }TGƟ6şuCpBY7gzO]% y w~n"|?6N#-8g=2z/mI~&o$q(!sD *b!#=yi]o +i?. 6y 瑜26OU2i?1-凍X~LSQ"ZC1U䑹Գe5\LF @ ydۦȻ BGFTW-7sx|n,?lVEᇋ0 L31'ĞMiD}߇0 w}9H,g}}g!EIG9d6Y~ $E{{ m? ~PR-'GLGϙg,#Ue\;GLR}S #s}E70`r]ǾJPl}ΉǰYcvuiK d28LIL/ 4> #M?+>fQ;Q>&clO~8CJisi)$,~i"4*9 JnܢB9?mo'-n~ڂi)EO2?-Tn 7-4.Tˤh74*7)Ҡ|MsM>75%Ԑ%|Ո%wC> 񚎿$W9EN;dG[~?[2  99R~lOY nu_\:Ο yK#iïN]FH[t}~.CpŃ!5iW\CH_??&˖zyO ˺[:X?楼o-s.?7_~%~W?g?O~P'oco={.ib.ib.ib.ib.ib.ib.ib.ފiL .ć0 endstream endobj 512 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 515 0 obj << /Length 2359 /Filter /FlateDecode >> stream xZKsEW쁃Ty?r UpEA%9(숊$#I}h8vw_<׮ ,Xi˫JhϜЕ5IeebR >}u7}KDţ囩lIIδUבd3Ǜb:SNS#';fj]mQj{,l7^x R($DK0kT5i4IW|L0LɦZ2Ϧ3>܀/dZŽmХ0gh Bhh*RZ5f"ƭLQ=9yx&g\sTLGδ 51Tj#s~ͷ+EwS|k_/[>p>@d{kX0X$,vәtt*.c i1aQ1BJ,pN,q3-z;T^TWP^ᥞcL]{(‚pϔ "lNZ-^$nW&ogl`fg;HBpZ?9/YO@D]a_4z}[ۦׯfۤ00Z:3CÜudC0W[|<0iUwKoفH65jrL@ -#A{]d]!!Hz B'Gh-su#+.Ju0?@@ y?]ĸMTTf{2S:)nYJf0d#rM3nJbFЙFA n/qGr5$ƒߢU[pBgOKm:Tdt<|Ӆϭ("ѯQxY2{XP4ʌO)#' 8v5:^; 4b?%[ xMMPo[ ;%LJW+Zr\ܡuP$wɷMAPt"CD5%)WS JpN5v[nZMHt$zj`t:ɐijDԥnI SaP'3 q |jrVuǛ"aPn:X! 6cp^)u^ڜZMǫ:¹:9)t#T :߫D0n Nu7rƳ|˕v 7SAW"[p?^ BV@@WŋWZC0SIt(Iëo^|CNz@PP @h@bڵ JNgJH&HZj?Ӷ Y3 l3&3RqgPK c 9nAВyV<{f:KM%n-խ1u,9Ls/y0 14Wg?W?%HKsc, hW%SJ&u0彤H{qĽ3j>JYCM>{M(.~XTs]TWimڵ!az0)VOࡓ&!S`a]uQ){ n0ciK-`3H0 kԫuw_"_v$Gib}2vѨP[ yPNӨ~afp-&<7}qo?rzGC6ET IH+mґ7S;^~%XW)hdm@/u{qy=ؖ9=ց5BQ6ݵQm7Z.8i#{mI"R4E=Ưۦ<q;?& Rh:[EܥySuJc=KM!}a~''ud4X~_3j&FSd,9m}8FK ؏㜘pso7j8% ŒH;ein˴3Ӛ[ٷ䷎o'`: R?wuBgBI`Z*z)e/u!֩O:=Z}>G$azD=;W3'Yq ,P U;8J53E_!lSQBFmmVmlSc b*7*'LXO25Z&6~aIA٩Fa}v0{QIѢI)o'Wם<7:75`xoF6Ur7[MQ{8r V(rl-(PF8Ϳ7FD0vaSYHh4ARIٚ`v endstream endobj 519 0 obj << /Length 2618 /Filter /FlateDecode >> stream xYo߿( D!!-@Z7-Ѷ:nlo9;?_uRZuqus!(/ ju2+.R*p<=.ُj.}ׯޔ UBB7i ,&^p:YS//-v;_J"ܶ;;<4-l?@O>^-/?"*ɒY}˛ra , k XZ% *k|Qej8P_^VpOX6<㿗*GG~U\K/~_{/h#"P;Ԋ(YmL*U 5tJTʺ7%7mwk^!1*4R.* x%V|.PF8&Lq BTK=DׯD^aUF~Ɲ= qƼ#'OJ !HYDמ \p1=[>VOH|gy9*ʇq@bFQcƘQpTiDXhp=*TgTr9U /nI3|eO\/K׾B {)}HC%op cA8,C],(^ :!LSWy!t%02wq Tb-YZвM)@$ZP v+G)aFTȦN;eP:Yz36&#}0P $&g 8ܰۿ8_ NaKMSCf).=5jmyb{b'[ -g;IoiWiiKcR/+QSsC .bXʪ->*9~+B40x-?hX+\~߅<̓Yb, Z7会vF}R>T9jCij.wҟݛdTF5Zj˂!RnjvI0 ZW:(uڙjw %6~V%7⮠=уni 1TZ%MfRЬ1O!O6:ixL UB9cU(B+~-wrȞhm3 +R?qȪa?tۇP'4"4*wEE@ׄxfL3OUh_ggCgV}52`B\@^>1W^o  endstream endobj 532 0 obj << /Length 2216 /Filter /FlateDecode >> stream xڝXIFWX4kf iŰ;Ll",I'@~{VEE39H,Vz6~w8)qg2&LliM<(gs4s¤6~o`%zefntjv򶺂dm3Z?^EBo0+|׬ ,N,qizϳYNPEB)by16m 7ALPtBx[_-EXv';w% ө ךC@OHچy*cI^#ewphe]_lj/%%AϢ9 !/lnE) M'@3:B!nqPo:E(ւQ,;24;SlY N]EfPCyPlOǯ@ŞPCE Iˆ*ĊGR+܀$8 eW!c8LS}l:Ox[Zٸ2 }u&?Dq6xDL-n_g|yS/hກayfIEb䷟p1 VMT $918PzXgJ+yTL/qi5%ۇ` 2<03CP#feV[Za+vW2XTjhFvi(A+q 2'bjk,׋\|w06 TBJ3ʖxͱ* !ڽy Mq',v|r6Ui'AqU%N=(ypV~& %(%/ \k*bGN[89p٠1O,aiʍ綕DZprDљUFVbjp dE !o^ Rs[f StI+>m 62P|^ إh#>ۈ DKh,ƻ82Nq`Hea2 a t> hJhN( WJڰJ.ʲ4\ IkJ}(J=/:Y`B:ahyoqluԒjAp1Xw_n_!qL_h@qP;p*Z$b|7luZbaZ:çÍ/o\]OBF /o0̹=t|e8p͵j=\4ߺ6C/<= G'5Lg+ŭ M'fwRBC3#}{_y(_H 8>މ(yfp+ zX'Pb$ʾquOIB9]/7|c3|`'FlLcp2 endstream endobj 542 0 obj << /Length 2211 /Filter /FlateDecode >> stream xYYs7~`%dք`&rk*]&9,)N*׷#J<@4_yɳ4LֻtQ*^re]Nz?דgy"qKl`La`l`<'0ΈA!*408 4?:09ZSkظ1L_wWtT^s.P($񬽀b˼{w^ }!V8 %QD 5Ҭ7VynMl\j[0Y0BtkղSωN 4W:5[*X}V΀l m7{N+~GSsksN/hlb]h^ܦ{aϐw\XWգ~5=ѠKiU-U$9I{Pq :ʂ&i($u4!tf!;㔌E |v8Te>H~OnD]>N=C/B[|62ھD9jgMS#J( x\о g1֓9rLBwGخy#K;wWA)!4e~  n"6-k6=.qdmSKogvYt!0 9o<+<Ӹ-}EG~chY*sYWϽG2gi{/͆cʘ!u(%Qi;Diqs^\cT݈>,4/L:I] [V2Ϫ٫'[jcl(`d!C.E4,JX`\rmŚk.ų9Bgèb}g|- endstream endobj 546 0 obj << /Length 1485 /Filter /FlateDecode >> stream xڵXo66@jQ!ZECPbcr w;J%'}8X"='_:9*Dlt~9R:/F_*)v@+h t=Xmpɳ|f7ĦQ HD%A6R09LJ/8I:=Rlۏ 觾)g#o5Ќel{Zd$_Hwls_H+ARzɺEw<#Du!Q6c_BI'%qS=x6_.kzM7Βjל]5.1(f86zxg}G?߇NQ ɸdll$>j5eMW@g"F-$*(귦Fs. xRI@Vg^&~ׅ8n9N۪FʗQ#GƖΤ#%̷IMT-tLd9Tb<D`;&]]{'RI͸<]y:j;~=З^%_E,I.#2ria36댋 3ϣ\oY 8:RF- WDe2Bi v $39&o_>M[*Q@q.͂S0z9:J,"0GF׷%-֍1 6 @N7~.c ˚xhRvxsQ& gra \%҂{֪/+F 꺠&yRvSBY{ZvEA7V8 FI+ÒO'ځam3eȠNlb [bw4 c¢0Bq> > stream xZKs6W8>,ϔ+U;ͫl&p#^ͯהlP]l@nZ$V2iҁAH9uyiǟuF{dɂ%A 4vvTш4dRhX4h7O+6I&Qf}dGlr:`Ah0+Z00H |ȧ64im1&6ax3X !:!'1#?ѣ0<b 8Sm6aO`>$r‚JO)jN;j` Ç8RЕr I<-InRcN HP99券x9k$!1 +0碬C:uұ@78 RC=#viĝ<65"SG 1mYPہ`9]"{]~f^i/GXb8,aEw4Xꢶj_7Gl߿-fr>R1^%13؅QK+JN0!^<#vxoj\T9%/y5/'־甉 ,Rqr:556Sl5oE^xpqWa݆p(k*_0bVq^ra<\m*bKi[a'7!m %tCΡ9%CD;YU٫TF&w˕αb䔽gnA-d94j`WI]mQӰl׸wS^l$I1D=4.tG~z{Vs`R?E:ӃK_y9iJ{Oh(O' \7l`ɋ,*W?+&%tXz}E6^VjU1&˙0A)x%&X 'co1ƉNΏu6_Le%r im6[Ǚ.MR&qi?iNe~5iWzhVlNp7\MAZo,AW8FqģjjvzF m&p#G.Y D뀻 J-#v vܾǢ FxVPzs%[W5=ص#pE6)Aq̗Mzq4 VW+!Α柲瓥-1ݞ>x)A2#JS?Í4;Ě;JCQЋո%9Q7+87OE%fw.yHt'<ԓH.a=U\Rol+Mr 6ԣ%ђꎣjyO_BJ5l%|S)1/"F0 j SLpB lR{TqJIl2HyqK`TP E<nͻtzӭ~ RpQq{_pH?apِCHP`ĺʺ+Z؀0|u|k# * yr9O!cOͫbp&<ڇ4QM kkӮ][PV#ԓIU?ZD\> stream xZKs7Wad-_\WeOyRe@cYtX>h`!1"%N9X4~w-?q,#뷍P9k4ȱDG?+1"hv]881vMߢ;tU[zN ^$6v`ξOah#VI"(,|YD\mK"T$LXFZؾ(ो-KFrQ;lގ9r.ѼZSmExEx2 *U~FXbVjb1 C$aO"G&vFUw٢ZZ0=8 fz4RK -ֶ< )g)wpjt6OdY@;@~ /xˉ@Z԰M{OtKB]`e2' t" Q%>K1))QA(*֢MjϬ@zT/9k9e+u̺yHf}P@3d|?@~)w)1HCBb2ݽI=:lw'^R]i_<Ll1,7E$CcY:ևXƥ2NH bݤT<}/aK Or ,<* 3(`ihḀSRF4B9~;jO#"F; {O~\asoWh?ވFJ#r0of˫y3EPtyIǫ{S>K(?UF k@mUOlL }Vst!x2lWbp5Fr.8 :&rD|~mВ&i"a(sPKY5 t83Z徣y}blY~ƘfSbٜQ=z}Թ)ڈФP&c'8~kLo*a͕q8g}o;xSSm(ۧO6&bV o|]M#gݭ}68 KHЛ^X(kCz p4HS`E uvGiHW:T_N{c%ēK\J =mz䔨`\~^8.Ⱦ.l*> dS:GyPmO6/+@毄6yi.CKM}uPSQ8: -.3&&fvs(W11PRB[?Du_)x }qUA5ܨ̸ũFmDFp#q#Jhڃ"G/Q&!F8M_3./>?|[8Og6Dwwp endstream endobj 555 0 obj << /Length 2597 /Filter /FlateDecode >> stream xZݏ۸_aT yD>\=tm o-ۑ&wf8(KveJ$g~hx7I),SLj-l^ jĊ7s)I~y<¯|ε͒ߔ&`dXgwۿ𦘕UK,.[a6ޭw5~뤮7&?-<;Ȓ%\ͤNe+|xG27^f[&=>;4=*@p}GԛT%,yzAL'on MZ= 2٬Iu2D;M#|tiOkߣ).,4K{ nY$O0ixUKp_߱[~j+#"K:iEg+';ʅL M y&eY&S0 ql^Qӄ7Y\[?.8s@"-i~ZÛm\Z1x6l7XsJ&WEtG`Pڊ<[n8s.8T8fӹ$l~ w>>of9@ReqS[@jE UBHrh1ܴzrJ4d 9]G)Qy9'=&jzw?Cl* vJǗ"-Ґ M^& Iy?z=r6F- WѫnHj;%>PLX&ZӠ\AqBb!Mw !vn{.Hp6THMl|')rNse$&^xVY#;#pcϳWypȩ9:yGzr/;,5dv1Ȳ3]̧竖ةG㶝F( -CKH¦!C> 5{vK|SrTzM>y&{9\9|u2 T˂0[k0uP)U䯖MVlt@fQ$NbesZR, q6{ܼpcoB*rMwvZ3o<:/wtqccF%$>f\( u]b-D=HїLR X"Ehsa9Ņ'1շ;dIRz /0TJ*5Sio[ZY)P0ϝL @9 Thι:z*a@ES89n0+oLkCU=L$;!V0M5D",s 8*wg3<{eH(R3GcA~ġ" +X"Óy!J<xvU@Ȁ UF_cP_)­>wqܤS4/OΞ `Uevc2 M3j1ɯhdV9=7=CyBGe/;O»7[ ;Pom|eVA  |}G>cX Rj{җԆ#M| _:x"\|fJsK9-R{rtH=kB n\)%<{Ov̪v΅|FRyZ$?y%λ xéP$'Ie29b"f^jy,ՠA!}l'J& p{ 5} 7Q#Ok8&=v}hO7p8\ӅQ +a] 29SuLZy LS%KsמD6S6ӦoF^]ǪCSpWߑ@vۿZ zl. f\Z.+8}^׾qi= _< v&:mu&$RC‘)7֨ :x[JBgQc"DZ6m|:Ki<܀1`ChoNK{1{ϻPv+\ByM8_YD}L]%cOiGhyԸf qe]äǜ;ejx7Cmż_>wJ;=Wiαq4^/ߙB>ZI*h?=i?PaC&:b4I`) b^ T endstream endobj 564 0 obj << /Length 2017 /Filter /FlateDecode >> stream xXKsG+TdT,7 &+ K:ZɟOfw$J咃ytM>?䥏{38hk XGjU=Z}ltj]9Lgj kiZ]En_Ȕ_a+W,yV_a5j Ռ(Ly,fʓiPU0zTؤYa ui 'F,0n\Q(3{+n}3FXaPn:x9YM>LL:\Y2\㊪aV'%MpCWc4Vq*S@dv)-A;qKf'Ñ2eiCRk:pӧ :=P!4[M!S4B1ʦpwj7G|7 ]àwy,{W0lS{"S1|C2PcAמL/"h'E6kU;F&"Fm 12G&%6#__э x/{K8Q[ZZy>^ԋA`arőA]+A4nrc"ϖh=sx9o`zMy' 2mXh* ƀl)[/Y,u KVBmz܆i~!nQ4ۧ4" [+q6NP:٭*UfTi[p o*vEBg3ag̕"t|\\TO} #g344oD8$ݦky_=?v1AM)gD'$!Ӑ'7eM<mZϹԧַ e) C!o#A{TY{KƅDl'S2T[T%qnyR 1d1lc@PQhw+7 Yh/u%jEE”{$.5 N5[H;C\@cYm97@ .y޻ba+0J+dKK9ѫ-{#4DJ7q=^Ï)۫.=+ 8+\p{ pgsFBY\cӖWd Mh͢:u@PQ5r^ P3)1CgFRNH۔ᇜȝB/|oA.}a*pM[`Uۏ5 ?Lz@y̭ML !޽"Sp>2 p߰1cpyw{9 Pbv6F/H_n/DS]|A xR?[e̞Ǐ.AGNymhΑ*S[ȫ(1RkL y%?緁zfcƙ'Vfّ$l6c 4x {P_7/NSxފz%.(pQzෑ8OҙT*JXP0>DYwaҐXve'D"EN=KԠw#WۃY}'  ؖeo ~\6bCxc+V:TfR™ #G9Yv[ryysMI E"{3s_CՈU1#,2a  ,N<:9 endstream endobj 574 0 obj << /Length 1815 /Filter /FlateDecode >> stream xڽXKs6WgB Iݴj3$%5t^(Jz⹏ow?'7NtV&8[$&lV8^v%Ko\no4}+#SE@{FeWUf_7z&S =OXENUdfq~M~rmzkx+ڬێŧSzٌ&`O!) NDΫ_[x۵(ǑDn:$iݑpp"jT79]3,bR*=gEN3)KXCs#cZv:$w2A 3SW*g8纖!r6"_'N SDSy.)3dX\gηA^7o+TȔV]aj9!n 6zl&Gq&w s^/"7:I3^ҒaЁ@G tv3άWw=9ؾ#ȁ;3~_jN/Mhp?DldC\AX[{b,3-6 fh8?ě(J׸(8֤a4i`׈+!3ʊQwM7rhjc$7I9⠙Th3\n=M&.sw7_.;:ep׏)2I B=`Cv n\'THG= _Y3F ٚ@V!WUtJuP!DCq!S,qjSl"EMvJ4wEKf]M 663ڞ^A#IaiS 8 ~$Q">3?‰ m I1Q ˰DXI8pƚ&޳P*,dn;0Їc]¬cS`s*3dLOR: ڼeA'% !fsBQf˲DU$ taG@6*HЇHC͘KUk֕xӌv<ڻyҋ vTM";&tDhm^Xu#n08Os ė^Qm;)RLQݨ;U2@%S4J"p _q#f_J/G]!{ZoV|W͕ϨŨ* 鞀g!*'*42dF?U|Rgمdcl}SN{i@OB ![`̹l6ޏ1z;NLV}}OVsq@.u旅r!F,и$u愛 0MLvTd;9zk:0j 2u\vp9eϢ3jQɎF)̅g^ Wb=$X}, l9JVH1ﹺEEP8 Od"MtppFrW'0T#eJU'npO/R@IO kt4KE w "4@(@+kҋu?^CL/ᐗj #ڜ>@c\'@Gσ R>AkN*4E"WLS8:pj{]<fEkѼILi endstream endobj 596 0 obj << /Length1 1397 /Length2 5860 /Length3 0 /Length 6802 /Filter /FlateDecode >> stream xڍtT6aЍ )  0 " *)HJ4RJ{y}kzV&]y{-DC$EmS~ @xP+o;1aPD@(M B0@E$E%@ @GHJ`/= ha$"utB qܿy7j` ] ?RK9P||޼`7$/( xCQN> AxA_5^(n "x E~_ `4?v; ɋ+ 0{EBCݗp]`po'( {Ow>#6A HTD x;'_ }!hpwMu`/BxB??`CG( f_gP^?~7Ka1r*(}aG@Wf۪ dT9H7?G6?+  aH/A]} BkCV쿡&wo: V<_m"U>{](%{ PD< КsATYvAВgIes#`_<'a-R{xap:@ _YH_$D =~4oC >;icǭU<#ғ&"gWzA5_*vIz&[4*qw1 s.5q v{9vv:}ZpbU b,:h A)=N=v΀j #n mYA"gZ70><31l?+79"D7ȅnV׫D*#ʰ16ȵ1`JT D_˲52@SnH:#,1s{]&Yɫz{dB_!1jqѼct/B%Fw= R2 B8BSw6PZRAl&˽d8N+z!Frt8{Us["=*Y.!{igW74u*ϥN5k.I.}) 1q[C]?Ҝg| :2NVs&nm>ێR*qKᙜK 2]_YY>dN5MF>sq59ѶiYYTݧޒ** & L=X> ƊI&6~w5*{cCYs2CvlfmhKr>U *yÉ" 5^.!y>g?NԱҁVm6W)K-*gRLnޟZXZ`+b~}պb9_fZd\W5͛|}>@T@aqKJU6>~Nyd,K+3n}#f)٧4zDZ/^XX<"Z]lqlşY|7W\h]sP#h7yv Gkx.W*WK-8WNbKy@ }Vt;M.g.!65JK|5Xi.d .$D(cmwԫSjA;ɭK']S\۱vS0ix 3=7ǖrEU GRHg➲s~[t6[hiS }ppvaGms;RU#iJ-Z?Rv޶<3:qb.[4 \ٚeWOR7-7{x;Q>M8%.ʝ]+_G@4?)&~%Xv^VKaAKp֚Ef 5KAASŶɳKՓ~;s߸ בv!oGB0I+eZһ?gh]W,r#kr4[dˇ7G77,-`vn Ak^mQ*6 z9/ƈrbˊ`i'iwѪ2yR9Y⥹аOKуKr=5 մ&(9ҞTC\"W6VfZ2~ɼL|?'d#Ĝ$ k;(gQ|EUW7Wd6)t2?Ǿ{ELY;T3*n.x +>^(z^EBX~-?fNBRΒelRFG><Hi* ZCmh\Z{jca!wU[]%LwGii ꥌ<_ZBrcp#iE-.P 4qҌFZi>6ߠ*&0R-#G4 xDCT˴bޠB4BЩlrD2z8i~*oy>I0yYƩR}2UF!{v%57w\,K 1cS}iS`n|̹s9).m;XtvN!V,diܔp:Sm]kEdP<>~ An"g]3 nKIsWZMn8dqvT52@#oE6TCǵ/t&Zȶl*T">qk~p3{ѺE^ iWj$G]?ﵙw^g8I]drn|6)cKc!+]V’YVLNm{uX~7RXd򈵅l T8dSA=>kŮ%ϕ-&1r ߵY69Q Y7@c6񡘐*qRNR\`Mǘ끢defLu6<9Gϩf?Fnh)b:NIl5p#ϵ=!>; [ucj~- \a]"؛ُ~0#JM̚ JB2O˗7jh}}(wݑrm_kABiLl=}12%2ӝ핬1LsMz+"K5./>?=͛YgG!f '! L[ȝZxPߛlM{5_G'LbP=o{ĕĹqOje꽷.jWQ pM"e񠧑u=8q"wfRg^\*[FŰ(ҝ(N=j7*N P߸`<p%X؜W[2$f.i']z8S}m*Ė)bVTȔش XO]&{w 6%EX\$״lP.]!j*;_MI"|G=6H\ڽoObRni4d}+N $Ǽ zxi1,{`} T $h%`14wX,]ݠfB^ɰ'v|j[e\ C n w.V4Y׭MBt Xj@og|!/A%kLfkrR1|]?pb4G:{8vX!YkR%hHO1»zHJ׷T} DK)^wxD)培=!kzN Jr=7\/xU.R 0bjpnfػc6bP^ "ɤ-0x=f": .'1 :٤B7z2$0vU )1cK+ݟ x(7ck>(w/`Vuf!N-4ANzvBo#G$vƶ#=someHzQnͬlYQʹHOD ,]沧MTꌦvY'8֭ {(D'S9S`B+UUn8Rz2v))bikgr:;B/Uw 9M}|\28(SLCn-3Csӆ@V#4LqQ{~AV]X2nZtO|v<3F.9xe1[*JMqYhq̆<9iLShS̔So.)ܾƻ^\tbrz_<ISGMݶg}fLq1c1jjSaiC&ĉ[. _@_O [ 58P a9/Vvy@[uEBݿΆ 0p@PTcx0@v` x9C #b$nJ5q:wIx~CF;pl8CߠiTspX⋋ 8Og% KFVX#1 pCr1l=(v0-L9$0hFMs8ZX[£+vxTMNjTqʪIK`EnSڰ?qثjlHcfWg_KΫ>k36$^ښ[33حȀcvz0{O/|37Õm K5n,P/M^\I%ى}(r>"e-Ib&p络: J og. >j[\ E~ h$1ȏh`AZFT=!Vk=I-f=^: z0f&)wkd_<4n)luAMDx '} ["Dg43'K_PPإ 4c@EK.؁)cSz}f2%P _јd//+*(h}GZӰ[ N.ʞ,҆@fy64m .?#UNmc;]$6&8\AFM󑏖v1$|@(IjT Zĺ`@\/zP7SS#%#5x;OPX #FУFg=>@0;Fږoˡr7NPBIS'h\}N{q$oO ҉\Mqӗ0zdgB 9vaI:c11R[U WS 1. ye -j(Gİ:zIpZE#s3=eY3!hFM% ㌯}KuhVc1]1kRaA2R;޷BaQJ;R^=Raٙ8ߨbS%KpY.6e}ic8`5m*x endstream endobj 598 0 obj << /Length1 2196 /Length2 15322 /Length3 0 /Length 16617 /Filter /FlateDecode >> stream xڍT%lgk2m7ٶkɶ8ٶmT3ٶy1Zuk{HAND։ ,+ `ddgdd##Sp6Lhag aӇLP l `b0s3qp32chXdRv&pdv@ 3s<40qqq1Zd Ml>2X,L'%=7+#ЌjdP2q4 3175z82vN@PۛX_7Dp+FFv6fS k -/CkG kK7 * >ɑ/ h#_XM>õs256=ȿm>Dpdf&N6FFFv.Ȝ*&+p~005hbp:x{S `la041Clb/q@ 761璘flgk#fӒ7*tl,:f6& qہ[``D5pGCߓAﵡo9y6PF6F_LoW9[[vbMMBvW'd!fm?D @t;gdq8~*ߔFv3;4pc0f66'ǒ=z[;9oeg0%b0A? qD8 3Ab?#A }d/d0(A|JG>?#G?#n_38HXY?j4ᣎ M|mjv8|~`4w77Ň?)6 $x(n/(?GQ!Pa0w'8|ˏ{h}j]?Ho?g ~Kߎ#hbfbdg%Ȳ.FϕnowlO=sHUx/8ڇ#Jy'Fyږ4294]p"X?HO"o -Ẻ: V?Xc"diOq]ljYa"61 5s q+̆Nڽng]`W0Yڷ*g|*3 $cLD_ϲGP߭@J͂I[N@z:1 _@젲b\m2f-k 1.A¬Wd0SB4. )<%A{at. ȸZ8kVlQT!/?1y^ك 4rbm?״6H=9P$e 4pYiR$m -b`u;-h`>J ˡu]$[ Z;u ʦN/"tj"ZtIU kIy-M>*K'LqDO>QGs݃дm4ejbXF,,58ÜVzgP0? z/sSI'g,0R-߄_dw'؀U217ػ#Ͽ*&}~6A]Շ-Fdʥǧp\ #VPz_ؔÚAa C#}c V§J|TVx6^B(T2cGMT&6vO|b:zs[A 0DDv6$ /W h{lc 4%n1Oަkd;Q%p:TgfmI_W[&5G9[d^W}ꇭ*"PۍS &fDprh.X<]߬Nī9@;l_!I5$ @B>z||DiDC-o]Z܆cVy>& ZrӸ@2WwنO\+:3ź:ll$;. Tһʅ >/CƤ7uQWܧ}an*X[=Vy'AE:pM״Wq-Le c*I!ٻ!*h0D* 1{~?"ÒY6gFި[hPk0yfG];#(GXYcQ8G N\ Ln`|xQj$" Y2ů.)A݆X#iqq.czc*P2ejB`(gq[GN'V:dw%T k sI"Hȅ Ek#MEjXQ) :pAi#Oe,ޅ*8ik1=$#|`1s9K9t-~~b]*"R)xm Ͻа/*]ͷUj8qUr?_}Ẹ̏/neI'KdNW#- ZʙPJT'9(j). g+$7bs@-G,K= Gj6eilZMiX|'q1pV(EM—j}gd<3AWVYB#O$=~kލ~#ns]wJ+&=ů[^ihiw+$*g|GAv$vx,}WR 1s7 /jxۜZiԧ IPh:_nN0ĽI?x!i*;QaOy?ɽ{+T!n⸑"?Fm# To^cz֐rV!Shw+Yõ ΫJavf$yʏlso:@gcW_,Z1fS" m]1!?zy-?خjsS=U'>#s6kX@9 d)D_X'׵pGn['MH5Cfۤ(!.^;psyVFh!OZ-2: JsTrR2Y߇ Ac?SͩHk b<+0B@I)`PpmnnBvQujȡԕ}c^rbZ7s?ce𗸏ϡuKbƖ$ |8A*De&R5g_ڣ\0VI{4J7ׁ!A,9~?)eA{Od=Rü2#-"\.ttu9dg=4&BsjH9]bgI %FbxnxXc,e>*U;yb_^~!Ym`7FtO;owZo7 郰8LJ)`z' ̌}}c wOTst9]rhFp(~>5Zc?P/EN*J=d貜"-32َ" $":_Im QDz)&'E( ?߯ eZ2FBz{5EZg%.> [iK=b`l ,v7JD_m#RFq_FAh} P.YsNĎusX<\2yW1֙=w); DNGT(w 7Pֳi{<^ݏ-$c^3웹ˬO5 V+ Bۅ4jC>4`_@|gBqnBA .%]A"ƈ] DK~?!xb5gϊ"jnfq`@GpU5'cWn-O1a?Ƃ"yW,rM;߉W^qFN?k6Ejzff[[+AYؕNj,jؖ#TuL'γ ] 6Kz&e,WJZXb=zm[,ϫ>6gVpJt;vǤW⽊2z{b5aSMM%0ʬCX~i Bd@_j'φt}K9^X9l_FCC2m(vA@>2FU`o,yb'&&jA񃐕lEFSTLhV0WƜ_si}KSͷ,^h`Rr"!9:Mv7=T# yKj w<9zq^N\vwnw Wy>vm[ʶɕi^Q@_eoאpU^YンŮߛ 3$H_e۾S7ݽn͹Ց}޴GckߋYG]qX]Ν ڰZRZdceJl8%$uE4FDzt|.@hKM f kP:MbX^& Lta,p,4+Y]D ʾdTZaР!¾Vtnnyf4ڠt̜d;P0×F.RE wDLdKE1Oնh7 f=d@,^ OIi?zPWMЦ`ku+WXDu.{629o g ~>O,L[J^H_zf Ѓ*I,'L|? N*-_TSWꆑ]}'0MN"i˕ē: mBKWl)kv+T lY r`:nm*7+#Z%m]V>lIxxUa0hIGmۻ0wɀ0BMU y-9QM,'3t(W_N_!4X]o~B@PgqɥuM/ҳnvnP=^ZlkK q/>]J`E% ocZm64C_@B}e^1*%b@ `>˗8bwsa^A>?` P'o0Jˉ^p#y n! WcͭIJ3R Hj?$h59;r`jF<5((CCvxu(ˑu_1tƜ< ST9ц@JDӏ,TubIMV钰EdWY85of8jv9/'``ٽ2s?):Z45ҮNIYngXүΰnזW9w5ft BE%5aO+sјۯj5|P@6?vܥ6sdBs$}ӣ-S5o?^?eʜfDEJ~prYe^Xz|X^ 4OڰE^u,!Of`طX@]v8HǛ_Z,i/PsCu$RzYyo=CK+/SFc8|$uOzbO^r _ґNL/:nCWPU?^[W 7ۆ}0&AkI%XqPy*FArTf% {"m׍wY^že ;=(=;C 2'0ȞVu#}I*{ۖ4z^fQ%]U{\LwM~Q *+yk@pA UwQp<4جbUy8P)֯ =iYzcvC FdΩ 2nhЭ==&2FW@~>?*kTuTu(D]zVnLM( ڻF픷ҡKN~0#4Hy!u<\>R2Qd_VGՔcsPcQ pIp%[}G{r#fQ"@ 2=lS9A`-Y󸬕E4Q A3s Г=6S|ɩd]~<]TН|-t{&t5m19Ťn:?1S*=cœK 1!?<~5vʅi#c|vN^+ܧ?TQMk%M[c2*Y#C/J<.bY qkM[,#!eٗqiͦ̌+y\Gꋮ#eW# /G~R>,Z6`ө`fvVJ)p",)-/_ .']deUed%#p[m2t"Jd$o{P*Uyl]C08MzzX|-J)QMy;") 7E2-# R$\bG˫عi]njޏ}X/JNH)9m4*O75n бF4zW2X;9e+rByva9?;_r̜S` Z7RM<@BqǸn )Ê޵/8*&gH׉LOw32|\z,E-RJg57Qx35 0n?O6~<ޫŸ{"uBzk{t$\=ϻ5+^D!WC!Wg! .;_lUg5DӮ>ZtX12ƣr+ f*x<$_4ԶImt3t9xFI 礟Yx71~!*7nK΋q&k_>P5e+EuO4,}Kfn4d2ޚ8RzDdaIڻYҵ* /2:* OoNaL-a16Sم&F5[`렽)b<.x>\%b@8' w?.Ƭ|麑juBݚg* ͹UC:f.)yԣٹߵ~Vy~6[n! R@mWwqޱ[#aKzd|3fޣŜ1~gw;kOJ*Erz٢k((,%fC;+/73r8LjIez{NlNPyekLCX \}5xvΠ:|Nʸ@Lıմϵ!A J{":lG Dݔev;|fIoJcx"ZWi sQE6{J?)l6nV_x7%%]$t:0VN ZX 䧕* 7ؘ)4[s?W띣lF[;MJ5YmKl2 JnH_aEWߞkq%5`{wNZ *ӊC3m˕ eLh\B㒘[ieCAE8X hG :n+!t>6\<^%y-םd9ͽZP7B˼(I|rS: 2wm4&.G(aͽJ#"*Ȉ(vG,+o },3y2\_!`Z|dxX*ä.Jai al/ Lj{QvVwq QTiOVAB!2-({>$u%ZVֿza`*A$8x N&uof(8%F{y~LiEB ydgG,19kaDž ALOʺڕ BúvN4*U2+f JGm%o% Š$~(8s/@He "D#>!⮧h3ȻL|"gv|$0#uN'Q*3922*Qi7Nί9zRa|,JwFZ%7G );j::N7Z]hnmZ+mIrW`#@'*Hݕ5NqnҞu?0}Yi\"uLtʈ`*fV&q5xg|e"Y '1"M1 eQTTIx w lPWg o*dxɝֽtS8a4wN1,Z1w2b6jZqH?U?ݽb Rݭ[h%ld"1K$z53>@GI68!6_IWͺrB [kt|#U@9Bfk:bFZn/F>i O3!VPhJU V.Ռ@a~yUρn_t s viB̒n(Da`Ku@[,(<6yZai@Ug}KuvA9" ړM]{R=r NK!R{3UKS*a]2-ɉiy.g-$cɃ"'g-V"hzE/w4|!+V0JP)-,tg/i~=5"}٥xgW9%RĴW>r{L 3f ܒg(4=>c5+jvamR&3PS˒ (EINtpCG^DHnڜK }E9jh!gagfz{fuBxY=>NjLrhZ~͗QaP[yoR|yN@y!bwmH[}U U(ʁG_uy) ґw#v hIG¸“Y0!>!R`E,{4VM, " YAy&-]u#_B\8n] k^~L{lOڰ89YmߗV ښwdk YE8=T$ 'ݢ'k\=qv 8riv^4Б[O-"D6koh]t[5gk nx߷r.Cu(m)dR"miI}Q]U>3\BzSG|Qw7|ԓuS'f6y%CQ@ԙf.äZeLD}jx5a"s|El;k9p$qQ !Zˀ-̳Lt Գ cFq,9tR/,TޱBQ[Ȫ+1ř+.7R\~2)O҇v?9$ٯHY~&$o;5cH~G9|no+|>kFJ1#G࿪ 4<*Fku\ءwϹhS I#r'q>h% u|;h$>ϝ VpTq;w%Ɲ%{Tˋ2Y=1 OgN`eh%&2QϚQɞbtN#D>[rf/xsza$QR7?Hc0=IʛOxÜFO=NFFS6?Lxv篣y ij@Y3Ac'Q9чxf'`i-}SY.ۉ:;,p$L^ϐYb.V[яd/*iwWaXO:S9[iMD^^X_*='9Һ {%+YA?fN>> stream xڍT6Lw7*0t ݂t7 C0ЩH)% (-)!- H}}5k>usݵ^nv#SaU3T G E@u}M+@LLBDLL -'ᶀ"`84ԑP0 #08@ A@@\LLoE\"]G­ FQ8 os7 }0ꍉ{L/| (HT400P'@) a(w  ~Qpa~WT  `^01@Lt KY/!"c  }`  DPA(!K؃0/3F-Uc??y( &͚pu7#u?  =XOq=@8+ 9#sRbr2/q,c8}>W h#Ao' P713HXV ~@د1悀{Ģ5,ԍP%rb$@FFoGIK?/:pW@/$Ok~# 0 vbRb<Mk~|)p7+QG`Fп&Z_T *?i.F0>^08s@10c?L~CPT;&p5~R0 &s9uno˜0$ɯ1=$C^PWA~_梢`T XB 4?1HV {|bAW H_&deA!$S|GSli@Qŏ떹YdO ,%j֛WT|*sl„;C/w̌1 /Qm`!%lzjێݭ_¨4_;yӻuz;US̓' &8P,D4A'i_$ M(C,M,Ԙ0s10ӼAmf2N+L\k+۞E'O.?uJ1اԨT-X^hfcY4*m,V)]&N-.&̪[[w+#;s^rqG^xG5&聭;W;:XXd޺V7=R&)wmZ"|V^Q4"`~%X<4SɫC?$YTjլqB7.71<{=_ϨNsr]&bYY Y<*O+J1!J76(~} xafDCCG/VOAJ?NX)ºx@;^gZK5$>٦:dcPoMeu%y7wdrpJhƍ>Z69)y7C&&ЉT6fzC.8Wu(ܛ6ֵN:wMX gbk_ޅ lw]R$_&(.$м7l_Njm'7/Ψ' vvoM>3vkYɷd#Άr">|F:Tk9gR.>t=1s}}m<)J}JY}tlu,-lLmE!]e iK; n_a3J7O ҧNijΘ*L{}/BaG}ۻº)oBeߐճ+vYZ[S\k#>wn Y49<,ua_%jb(b쩼1ۣr8H"ъ8пxr8ۯ ^0VuNPCLwd׭)dL>S#;N4>kF%asVV2]HVV7df7n2iC[^tŻb5<=yʤ8T^Q"g4I(s$뼐&u֟тGj/dIH?̼}g|y@b#~wo"+K<-wػ\5ň:n.(&(c0$ɱ˒-=ENӈ{vPqBHgUT=Ĝkq[%),ď<&0,%IaiWv8Xބn2ǟY\-, I vk-9|/Zb/.-7qV*\-бט-I?DC;ߘCͪnBi/ [n@eQ]ԊҼuAW4 |c '^{ reߥ()G%o~TV9݆_ ep[Mebm'N~A~+< xtDkY)LMNJ:;OMa3}ױ!7D/&Bqp6BW=j3kl.=H ԚcDÎ-%Ήw_sq`ܚNuz/mbGX5BE\tJ>Ewɞxr_nѤ"`b>-:%}wM&+I" ~lHs + Jȉ{de8O]0þX],}VolW: -xg2FrlK;:Ƅ;WcHBjmΌ"XN 4JPGT&E_p]cO>; Gc}e'~$䍂 1"U<Ɓqrx5&wC`w wX(юxg ] ֐8\7&6͑$vHH9RGyYD2tcƿl8/lVb <~hP'g u3,5vIŜ={OG ^pٜ(:r^Z8y4}r=SCP♌)/krۦ[HaeiY~}M;dhFlQAk67Lڮ_=W?\gF&ێz-29Xkkhw ab.ƾЌE{A+1fFU$Qk+og%\cLhHKdh4[Me -lr$+-q5a-eHV7ӷ7w]ˉ%Gƹ# ( = ~I%_ v]w":pj~!vAE辟\+۾JB4ᝐ,ȵvbBl&mWꮋa 9oA_mM>ryؓ5lH;YШ벑%emrLМo;U_+4e^\9pYE?8%jC6G[CN^Yw_I{m QEHmΛg{_l>ROB_-?"Nܰ]X{>ot5Z^J_Nt^R{G ";Qz1ŝQ R0P {?ޞVNآi!2" z}rs)HgĐ΃eV'g6;v8jqRȶxJf'c]h^%ZyJ ɘ8I*mLFv[snq=fφ[9nN^/l)`Ge^wY6qb5rؽ+R0;cBT5Y zye#t]fq^:䇈'3/8D _fDq/i#lOiv Q{m}?۸ѕOPyZ|_.X"QsʬCbŷv,xֵ t"{#TFq ;ȾHkZϢI4۽$̌uA.Cip&TX~vzK Cj (y:m5Qt|Ӓ7{_^y8$ oK6O@kW橙U/%B䵐**tQG<1"^D-5cޤF\voPEs2 ߍ;O2x F|F5@K$=.X>\}=y~\Ʈu^[Ip|'9dJԗ'Qg* 8O% ePodD\M%[D=70qVԴCW2Rq (#d #ܓ!?c $tx_ >χR/ɶk"x!\>6RĬG@Bw&䶞e%nܔ9V>!^Oilgػ\bqiN%0n0KNcJ&& 7Vzօ%o4T .\%hm?. =*eF %d١ck;ݹyQ jte-eY<1?}&>MZ&䴝h*}#l\i92.W)bF2]His- j-3# N#̝5+C<MuW!{AY#|B+g.1}?e E n8Gr7p!rIg(YH컯:!3*iƄ6t޺(/ ;^-famoBsz;uǮ:19"4CNAghڀU'CVH7p$<2GLt}ɚ}$d]uew"^*M,G&%_Qz# 1rj?ۘ 8&y=c9[`` ɛx{i2mrt] wR3nwe2¼O>B+?kص~jXʋp+ξ]N蚓uOhaWK$/右&ȸ鞪l/CiX2ZwC9ūJ쥮aObQWd9 *,[\t7of7dGQC:4 d S!fl DU_x? 5H\|C8,ܯ~k=YS3'AABGpz *.lOpMnܶS#r7aEa/Rċe;pq,>#S*XStSe<|A~zaBKR]>[R,+ȵr/ٓbHag{I1wgkN3cC"ƻml X ZG nۺk-i̭,$~ /),Ja Wu6u ',Hv]Yf ( DihJEަ3>SkӜWoonզp;# Q܉i}}LX'"w?Đ_@WX5K%^md yI`iKo(mH,?q?%ȟV zxY#8{/OY 8V{^*sAy+dob4Z:- W,-w/53Q׶<)d)5T][Z=69 +H4T=Td p ?[̒fBXa1m\ej; .rm>_AMqU.Xz䇤z{G7SFGf~U?ZC]ЄR_RZ&}L`4v<ҮΨs3?;eauR]R>OYEbXI!|L]tX#§b4l8@͏\P}$enixߚNe^ VS5|Q>}њ$'# ȰnD8|Fp&ϭCTS":`$y9(۶BSO_(2N/Q ZbzO3d6X%p|X[ӈÙ"K߉Mgg--,Fgk$[ "RMDnbmK)$pq K?YtӉ9h['/poxqc5آ*t8}- S$jD~ϨR;GZ&8VN; nI%*5K.bٶ'wzflWmp|5SۙR2@K}~Z᝝ag]ktzAdk_p=Pn,?_BnƠGE,'3ˊ ɸQV.6mgo 4ehz%gO^OL~n*&IӍ;q]$t*sсE^$Y/pOҩx"ŃKPZD脃yO6>#'+GbL2B#<;MpDUʮ-uN؜y1|F½:Z=yprpiG"]%'ؙ)?UwŸQMmG<$̃OäSF}gR3i8$.!y.VnhW& jH`S'hnݹMH-E gyu@|2wr{4#֘sγ IRJ/I,hyٚ|a)+psHnKa+%bw_͍S|EL jmf1-| Qb>r;f[^>^;s7~Խ:R 'Hs k%GǪКM4%C/+.3R~+bbXI'nQ׎m?O-h2}sylxwsѣYYm}I.# xorj8+ea钄?^i3iyR-i.qŴ{X*>HHmWBqҺԆ"VS@+8訔br<$P+μۖ1 endstream endobj 602 0 obj << /Length1 1790 /Length2 10595 /Length3 0 /Length 11742 /Filter /FlateDecode >> stream xڍT}7 5RC: i$%i;~=;g}ncy.m )@\"Yuuen./.[ŠgY@@ăLx0T8T\ܼnnA..߆@sT 8, !`bp vV@g:arzht@ `C "@'8f+p# 8nt@ SAa lr?:[`e5&ڟlpyvheq=ζ#Ɓ@ֿ pȃ? vZ>Q: >tWp+s{坭e!NN gw}r`=93odv݆+S RAs @.PJ|( / +ߊFXk` ;cA ?z7?O 8;zcLj95dYj?J>O9Y#$xv//.=잕ٟ* a7=!l< zxs?,589!CϾ E !tFA$:BH-AӿL( |px@ׇc 8y9,I_er8*z@dXOB|pzx wT>}5'PǿC5M+Waè\  kvb%־mE4;Aʅ!HW~|%N'3cNLa[̾CC"c:|g [Ԗ1g)hr dDaH/)#;1%m{u|^vĻ3(jwVdPF4[󟐾.p5$,Y#VU+ν h`+"@!}0@^tBJ!MvnS]KIGvkG4L v 6{^"XNF|V5JcD9\;{J UϹWdW}o|ڢl[^T'ɳd0;f.1MJkՕ(Z~oHˋN{Yُ^htww.8RE\V{u9*&Ri̧cT R[sAt$D@U6%b~'9D#Iɗ>H+/[I@ծ.r@ %D@^/6,/dM>'i[mކfv<5Ba zš/yh7DZq"[O#'kȧ~ⴖ`pnfڒ??BݜbN|(C_t3zÑ-O2䵆Om\3mBÁ5Q{NJI%S9C^'??pWږc3m^Oc;yoo9k/wPGX|b 2:Kpwr"->7c?<^yFp7r}:>G0oϠg ɐx!1dMY}@kNk5@Z КB$;=SF|!_Ԛ//_o_mʍJ´((1adY{ХR`;JyD1H4'r 0m6j8Ϝ 0]N!Lա% ɀsktsf i+"X!T,#̰-J.RMO| 6 [h\om|; 7Pu' =e?'j3tl Z)*u,s0BYozۑIJNFfRP0(EmLo4%eBj{ DfF2.^Big,cT `&1if#7Ž2Y59L" dXcjߋP~~t󜯲3cRR191 sZ\}7'܍ߗPYu6vo @)j ׾~5HabןødB%P2Cp#l{뿦NNnIDT mm_ԓ逽AvW12dn^%v"DhSs@[Y)ыnY$a6+˘"(Rϔ t M cȫ%%\QqU8%_g0jؗԌ, ^ sۓHO9vŴ7\%WCt('<{@z}}7 iԅpH/)54umܫ9`Q1yW=n`NadqG; ^ Ez3(l<\s(1=j}k()qֱ0\[&:WxB<+=kuRPL<뙝IdoQi |J=@ yE0lROFe 8:! $3CJxM&vcH2]n,%f YL=Y./鹸{ M(H7<=sC4d+7tϾI$>!=]Y͞Π;SnGh+h(Q!|ih8ZV2}CKR )|WqmQْ xf}?qB Md T#ӛUGͣ9(z1{[d&XHctc囑 4m璦"񪕶OJh1L n?sNLRG;ԭIW4P8^M>k@XoWzuNnxU^- Q7(K?|jĎJMٮ+m!RޱgeF8Rv .89sq9_PϊTH/?~ܗ^"1m Z > 979sH8nlkT+wjcW(巍{OKڒ*v' eʰՐ9c6EdHN߿1+gMp p-N}ZjHejo Z?6g%9\TtXn^ b[qd'!6iJJETg0dž ҷBN^kIǕCZϒdkeWG,T;Χ-,E8!׽+b` 79nXYIEvFK+ Tʦomz[F-AyX&J;CTXr+뀏C`P*N*JXny'd Pb9?Y/MMwPz/|`1z8('$g xKtGz.[TMƥ6(cnf١*)d9{!7{vxKyfo_@:F<|=_}I_0co aXB <`t9f 5|7 k3ofǵ6b~ʰ*;Bt BY@W1Oq3/~2/7~~}&}lW cZ|shmVbܒ$ ?]$H\IHuM{x^U/tˏ?_|ԵVqƓ.~OÅpyQLY33n!+X|C>V%lVW(D$Qښ{9X7%Zu>-A6z/7&+r$EdoDNZUx'}~w;E Gg@*FzGfzO\>LˢѾwh:#@LɾZ,M9ٸQi7'U jtPkEDv?Î|k)pp͹x{<>/}({B aБݾF_"WηtwiZI$5^Ü=p G6۩=̋(y ]44R|U'xK@TP69r\RF\W.)}:K@Հ &T.A/Gs;.LRk Qp2ᦪ MGK& p;,BՆ3QSf7ٟkL/?nw]^R,-43t:}q[\LY$- AM}Y5ֳYO;a%IP/o}Z _N2m{}qvk@dJGK~m.pΞGP\܀PryJs#il`M 5tDn^-z:rFUXk;!iWNLξgjiVyNDװt-6X1NUM7!GWh3Yj"EX̸EQKbGx` ocPԅHK1nxJ$1 $;slSaQ -Rn7syֆ$@k຋X?Պ {[((oQUI(;3SZZҪmD;؈8g ^#Vܥb F&Ϩ|#قLզ(VLiwb|6EElf,D1݅sS/Rܪ(%<엃Ʋ VS|ثQߞ|E%z=@@qOvQ5д8$}aDSVHU|&`rUdx8,ؠ5YfZ}[nF6s(b`Ӛ X-+W AVEOǕj!"Ouh CO;ڔ%$?eK"\w5s f~Cw/W|RK@dU޷+b7-SveQpB =Gصs$ YF0'JxCZZ|9],^OaU߰t~OXgV"*H(%"mnö;N%dg;v>n<؟=԰<\0?t6wK ئ1]'nSn>`VL ُ7o[e:2/*t/4,ئǠ)A @ b`FF'{Ӛ%_IR|&d :1`kbWje@û;3U :`hPQJ>)|u'KVI87nLޭ$W:gqp|:,[MUn~c!_KKA(x9b>ʨҨ?aA?Vi!?H h o&/sP͌KQ 4mw:XyFAw So2V/tL>l&]&Pq."*k8޳-U覽JqnB)G)`/PyYᕀl ]H'~k$~y >BV'޳6 TZM܊"F},~zbGq[7 ~in-uan9픎Bݔ[l7b>|Tʱ]䥫*)Z4BՈ"ǽN[H}O%wZ^;+/{dh&}uYEۍוSo]utT6"p-&%uUV^[(ŞIA_-f! fV+5RPa9@i炮-M&*E 6膳b>NgV: 7 jL$@6_ 0H^`p'`dxӒxy88x_`~xpﺑA?%<Ú@n꾒SK897(4M9l h5S/I_3MҗsW?,iQ1BL *#CX&Er _C .#+=Ūo $ 7!j!5oE uHQ)f {I\6t9l›<BUc+54BkɕHtcbd'yAx_u!tlC[6ܐbQ}X KUB cgwSr!^5e!lFC1P|NY#dhza@Db6 w5B.!3&&V79[spEx">lX5cb^l K?ka|ls3 1YZ_̛:[[_/c%Mٛ7p q~jmK'[20'ك %S)knaR';&M|Q^Prջ&t++JaSԢe{n$/y^yns}sh79Qlp8m uٹ&EDx=s Z>}٘$=rNDŽog"֚zT^'Tت|5{J~@) SrM|}? F80!'ƒ9ʞN#'Zs|segu{ݻG-={X.Q7S;Cفfw/ޜ UGհr+#;슙Zv̒VǾR{ʖ̏ "ģ FwU4Eho| !BjgUVzb[FUpI JCl?%(6[f|{#lg@#vjVikpTd )ʊ{3t-׬hܲ Bz|dLQ=oR5xMJp7}JmԊ01Y)pݏȪyh:j4IE/^GӊU^qhW.ňT}āGbDpcWv/4dgtΓ3uNT X9s)73 3_ ]4 ¨=ϛ"9QIHUh?U+x< snSX۳%h V(He݀ {jt53w(?gZl1X1)1>?4#I^4*\C~w9=џ \WPj|# w!jp>+ u+sQfƩ+XAnW+m^C<Ōlf4Y1y1xOGb5 b _?f0'0\εWU0xyIU%vF8=Y1If& tTgU e:|>^68b:BL$ԓG |lJsV`| `><66Yn{aZwӦU.cCI k-$ sS8XЀN1PbP\$i#M%)V2ՏYFXc-ؠIØCrm\:sSy]\P տsw5V7sP^qn&gOGBc]X#u+S֔¥XjO@0./S4y+d<7=~^ۧ.'O{˱,ZXy@ě{N9ǂDYZAnfBN--d7JyAijNCӂCuqޣUf/X)7!6d/nO4&]ũdl5FlbeC,FKr|Fnᵝ2»OfA)_d~& 9E#8ucPc&T,:EQw;'k ~itxyO 'p;Wvmlfwk|wrD;6%1gÔp׭Նѡxp$JS(fGx}B+-_WEϿj\?Mf579=-A¬{36[wV4.QUFqOr 飘j)55Sc՝]8EyMpΠf*՛[A M'^/YIѻ+i}/ jo,DI)/pǁ>2q+mRvpMY|8T#3lT4$qr>oH5+1%Q夺-I7Gll4a5I̓h3 ]ڑvTѹ/evS@ʓCNWG-#BÕ]E$֋_^DԤ㧓X~~ 1#j8$7%=\80mFewLodɔWQ+g]i 63 g}X|?"NZ Z'x(#MfbA{{S,8\8T"{X(W/е߶JҟdȎx~Y@E78c2ۯnȡq5o u}!O/:ôԹ,UD7t%ecۃ޿Qwv.ÌJDb]侳'AYye(C@aD(㗗(FS1|X+m894$+?' u_g%8,7D+ѩVFUhюhݿESؕ$."H7֖_QDrfvw_$ze E ڍZLO~_Sك endstream endobj 604 0 obj << /Length1 1407 /Length2 6193 /Length3 0 /Length 7147 /Filter /FlateDecode >> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i? endstream endobj 606 0 obj << /Length1 1489 /Length2 7049 /Length3 0 /Length 8055 /Filter /FlateDecode >> stream xڍTZ6L"]21C4Hw 1C ҍtJIw7 JJHHI4ߨ}k֚9{gs}iյ8$P9 UT 'čjÐп8@] /#Dd HN(:<00X@p@B  PDN8@i# %ٌ`: p iChh!`PJ0Z!\\;'N ;hB.Ps/U3N @ ǯ@Bf;2PGjs2@ V`u70'?U 13CC0%f )s"ݐb@C\ 0[) "='3G=҉ f"ׯ2[K#pίfkwY8a["alϥ98Cd\8,HHPGu@̬~vQ =  7t@HGgms` qrC-ب;/@(_ Q2Gm/se?B<9n> P WC` OA်y% F-T(-CH%d??HwwlD 5A lQ$5pK9 ?~ jCY߽@a CN_/* jlPcB'"7 E ٿ! 7CFn>~⎃xQckuw'DPG_m\_&7e 35F _&? )I͜QT~ Eo#Apgf"5gUcwS9򌰑+qZ J%r=`9#U)/Ǟk4u4r,iLcfnOѧ=R7e%I=.tESxeߋ{.ޕHN@1U}UQ2 &t@{)k.:k˰d7tJ8q>PwF)0# dEdxU~*ty<ˋ ^,!ι"];%W钟M4FֿV}R<"]s d7HDUiSYzu ?KE[6;T>LݏKiqOi=Jd|YT^nP1<ޢc2᫯n&ClʎD9ջH:Nu3&"Xͱ 2 25fZێ bS8nuy*'AJK+:vb%CVjqUU%n|}i0.hBr|c=@J_B:| [%WJCئ J_u}5}N2FHo?.Z-'pxF3LHO'reݡV(Aי a<:$NbDKj MaR*mJJٴu3/sq 퐤Pk6*+EW,0')"TRO LJ(}ɜs=coEkp&.K(rt㮵mR; ᒍ@ R̶ *pEI8I:6v)PdWʛeTB7]W/DSw5>뱣Q*'ܤwG{J8_q+>$.;bdʆUHiFIj7w76,9i&&nֹK7!W0x41I> ^XO'W hVMN88? lmhWݐ"#4"*<Uhxt n9$r6e,v/O}ҶבY=ZQ7kV@x]7Ơ9ii#S vf?5K`V=魋Kڂ,[I蕧Nbo;O^QE퀞ѿ3Mv$ ~ɏHC$I;ca'2 ~gF62mGp n>o64?v6aZ~7x 鈩bpvϒkxlx5nś9N/nAOĠ|'rdRM,eU"Ъo5uH^9,h __&aEpBzh4W+^\rю% .WF'XOGz9ܞ]cθ#to3²cĶ(>`:X-}Sfi$ sN3-1bTso'&=r&kٚ pns']V㧠MI 7꫸>ʠvHZs^-)aڃZ\vI9\*l({mxdm=˝g[ h$ `Sm71 VtfUזǔsD:T吽#^#/DZjԈs%b;"QP{zKG%u)z+r}_Z'|a!gw+@fK+b?k8KwRl ^0V\g&lT{‡׷п  gnLMN7:!9q"ɫ _twe6)1.ӅI'2{3~BdۇOoNF'jjKbw0͢~ %BiJ1k$_~hl~ɪQrHGXꆐAj[2hjOO}_bb9%t2ʒb$a>]7k.d DS^\TjAO,ht%z%?9Ӕx/c ?cƺc Ϫ 3\2ΪG [/i:4LMk^ChN#sʓ)/l0ӼZ w6H]S'jlPq<[ԓE@b/^Ol]oEH9؁Ri XNӖEK_OZMpp`&5o2_J½؞^1̅n|[ZWu%ζ2 cPJ>} rRyE w?Nc[Q@Ag_R:*UЬ+;~ݘZ* |DGv$`u]kv!3}sɧF5B0ͭ/^C(YY$] e!#vD\|;E/xy}?qZs/975HD*Ǧ6“LUnua+@V _)Q.;ODѰn4ȌS$TsJ{mtd*#V)kWaD_5Ĭ-N4 Phw~W-\#v£(Fc(.'mnz9cMX,gK†o$RL,I!Byd| {7}]GwDW,%?}/\|g+_F2eݦ?9~`_n!ov4\~C$zNY'dSz ng=wp_2?GE=(BVCܰe|,!^?%)Q ~ 87/a('@+nJMIѳp/YH;u_+=9c8{QX?S$>WpT{̶LXIO"zJxb[5fDkgbpʫȥŇ&~*q6?1[ЮO4SzqHoǵDCƐ,+:|o'doq`)r>dn_['m}9 7|܅g?ǡnow:0#oi""}F46ﻒXWct7i({rA0)Ti$ayn~'YXpq{bRZ|?;ꥳIVƙ+dܖ>};Iu{m򅪁,ySыхT5KPUNoÏ qpiAȳNʹR/ :vcջpw:ݽ)1dGe~]N6SGCa"\-L寷Z; ;ou pWZJVd!?Jۺq 2D_Wi*Wn*֡e}!!4%ѱbbž 1J縗( 94)sՑISB?m:M8N"(I~ޛ]+"vռ*!ddmwI+WKL([wJy?Sr^!rNA8-84[X*Z"*C \..wlxDVczWG뎲Y;D? .5Kꦷx6v:8ՅWw`ܼ;oC L[.7y9YBk =~6G-iDL1u> stream xڌP\ .-@=6\ !w n33$WuoQ$J¦@ {;zf& 3BBlio󇁨$3rd\m̬ffN&&  xbFnyB&4fnnwmN&Fvy# -( @|..< F N4.3 h 0@wg 5 Kf.FN@H`cisyڙUi9oc  px di9Pcppy03ehdl7r312U@BX`jM,\-m~+ hv@;g_Y:M@cd{vv3K;S_M:0Y:1~́.v&&&NnV0`^ԁ  l8}T!03L-M\@sK;Ab|'K{_?~_eTSPQSu""oz6&= ;8A|JFGDi;3{=>?'Co{ebg2b|(oIK6DeWYۃj>eyJC1Z:KXzM,]L, ociTwЃt3=PAKSۙ؛:<v'h f])/j]@.P{3{'_`0 8"'Q70FF'Q7b0J@*I#[[jo `28To*N7Sq*P@7Q@ŨFb#P1^7Y+tNڀƿhNF&@[巜_7ԽojDA9Lm@헡GF?  TFytȠ- ? /hG YA? wu#< B6^-<,vXd$dj4߭52qc̠g6of?g5(o5(nr1#/5@fi{l8ظ:$qP6GW{RV7 +?-0;-;hk_RvPgDfO13atpA\ppU@@Px? h\^E:?mW'v\zN@ oUMp]0;Ŷf* S lMUFЪӍp`MqkgæZذG'O*-s ¿WyvlqtBQøsW8:S!T>F=Z74EqO\RzB8Z3)WbOtG1k,z-8wiB^LRz%z.}h+$F~Da%R%ʮ|;VN ;VגL'RE( @½v3.3 ?,k߆4 6 mvj~|kL+nȓN]2 ѩ |n- (;\yI | {Gߊ3iYwt8^;R ,X 3BsŻ"rWbykuJ*J<7 ٤%{g+#u<N4*[IGD>rߘmܔckܟU ~\W ΍hW tVL(oLv&Fb9YTZp^Ov/g^oN:@;!M )GEH2|U<25$Ó6_zi6(If7>_SGGE6 .>z40%Bʄ)0v$((X+|IȲz mt֭Y )'_ W?yH!l_F9o˲b&1dvA NgBhAp&{hQp`|?0jbU0XsIyQLȠV1@ֈʌɸQxsq|E Ԙ<9# 2dEbܝT=1\5ܧ5^olw,qЯ/.핯e~.cel%'xb?:]pP3`$Z'C'%*2/GZS+>guQ0hصR.5S7D3/~&D;lln$:yէߪD3]gk1ĺys& ?B&fВeX=z#9$m.-"Ն@DH)Kâ4R!DNnPHӉ{8 LJÓd0O4 K{j'_ҋ6AlcxU7_6ۄwxv]<ۥRdxգڡ{[N+yhcz؂̸P&#MC-f ~W$L]Z^X+,z=JgAiaT׽\ :fdSO۠΅rq0;e TuU]1.UsC":%R-e]Q'сmP ܂ %c Thχ f=6mJ,5"$t(;| / ϼ+`UţBorj%tQ85X3֢#ǒDk57Y|qvs[.6r {)f{ nEMx1uWb#B"$/ 'POՑ5me95>4=s+FRkMSUl1}=W0Id{ipiilw/fӆL[.JM6nT69k_Ikr`īRO,! 3N7*\=ȝ./\|M{ػuowɡٱ䑺iW ]4*Jh8N` K򄯟z} I֥U?v#B]PPhgǭ|&j)M?|Kh9+%h6ٺQ0ٍ*ߖjTu[ed3;IzF[E~~}+d:]p=S{9M7e0-P[NŬfAZh[=mG?е],B.]АKal4 6[lsLq}S喍 FU-1zOn>PAg#C'4ukv/ҝ&u>D䟼60ǻ[bڞ˵yNw{ 2;.l灝wB>PGX3K{/p0fyN> GTE1>"}dDDcy!gk5T;(sY m1ɎFP2*i=Jq؁^nr TP`X[Lmw1\*6]_)6kYyhX,n}%8˞>f:|8Z4ˍ7lY؊>^|pd_!Op |/L˂h.$ Ucdqy뿺w. x~o_1 :H1_^KuΉRZEUN-*{ЧVȄ?dv;Zr9jTմ"q+R^ƾ SKjHͼv*|)Xgl,qC-&* +qBbNޓӴ0ܒo x|[kIin~;E)rڀ3Dj~|//t$T'][HB|HD4Nno4ǫrD*U21YGbKbR+cEFOC'N+xzM04]uz6otvs'$x߼S,°,%}!5=z5A)s,4'qk+_9MŚ L`YXE"75}UIz;ww XWUZ1*:3s.//Z솱8~]1 ճ|K ϼF%N ]x0xYM+=UK=wʪ|uK" rd ZixF<. 5I0#rqgԊj +ֱ0I(AR3vGy" ba}+V#'mnaؙ3UD^~O3:Ld2taU69Z xGvib.U9Y7"N6db.=|1"~27!مSEt9H_#1..iVHF69:9 rΆ:Q~?Bid0!=S¨װ/%1v`DUYAPAEK䭢}"G) |!ٔ=a}J]Y%^ FUF.dF\!=8R4(XW[w}bs Rv#[FP,tE),}^^.μMtaZyZ輌E?O4 Z$BR$ a+u k>ْKFQ2 Kߘq4D'<ig]%+R6EsSuMkQXC:@= AE#jh/fnV{RzW#qbBpzXWeκd!$}o]ZDy. %G34O^Rn̟]%(\?S >H,8ه_tKբx:ٿ""[ xoSп(}Pd/*34@~p( Jg@WKL0Œqw`!+bObPPR7cInOr~~ N<9X_KU6C$0.uDn{ p+4 ֟; d`CjQ<(Ds`sbWl].jFvܗRA!le#Q~AڮWfx7k}F䒙N_}E7ch[EYT-ӷ+Ù%ԅ?Y Ďu[O߽T#;Kv!4< .$ 6 Uu&ᫍaWw8.'%~'%؈جRǔ|fR R old7:S;^C-dɻM1)n٧wIN IHgZ$~SfC.[8f[j9S6iUr^ et R@"(>q@X3+b qVsdBIׅΓI-kkW QNݙp5 35lDUj$i$1{3(ϒ}}hk;q+K'Ќ{[^81e" ~ĥV%1y:Z(;t?BNJycCul껛;bh-P?MCMb1+_7v?#JmeY*F^P}J[Thߘt zii#x*:0ͦ'=Ub@Y4i2 =ɹKQ+e P,)c-u4 V8GuMiV%|ò)Q# Jnosm Ϙ$N,"ުn7Q־_w$Dq8ob,1tӻH_i-嫉QSE0ʗ?;-l͙[^yvQxsXdE>%1>EA*PqBAxT.ޗˇ !m =(UF/7L|QEԡG;qrB:XJMzוE?|Coݭ'J*S6T?FYA}(W$EL1iK%Zg*Jn6Hߤ[}k{mOR*͚IHw \폰/myӸJ}q[ce*MHIt:WBd;t<;*nP0Ni}e79B-G82)Ok>͕8sɇ Su=~b?maYcE~W7m㗮2o;h5uݰgH+76 bnOX@'u}k}a5j㪎 tpD^vS9Yh$)^RL=n[.jV8jmÓ+[i=N$/Q~{:t=*Qr*т~~ dUZCf|o^.ޛt.n5l0(+]_9[F(Қâ`DB< %:Wb61t YnuT>˥P&%@uR_-eDsLg}~* V"`ݩ2R2V:ktԺߞXp-0 o y<ܲMqLڲDR]{􆾶|"VC$9cTO rD9Ή8:P*oeُ b(nt818MOu^KjBǖ VW>/|5jy2ÅO+gR2yj"4u*c ^̓O?uf)3L3 ljTC S7A5xQLW.2;3u\h'ﲦ;XXyq ]?ʞ".VuCnh{IބzQ&Wu'`x b][XcHuA4RLV?.RX[{ V.J?Ea&THqݸ pdu:"DCxjT_h1+;oqgGQCFCC&lX*Nmp0iԈ%;t+ӧbėI4`ȈUh*TPTIsLWυ]p\ËJ9EXz䚕2@)Hc׮mvP ߊEDR!OZJp(POA^$v-Јُf}x 2Ѻ]?c;OSdxBĝqsl|;p޹ȐRQMo}w!`f(kN]p*b%5K~.}#6nP~[Nh #Ep6EfLV62(W,5}gLˑYr@8[tO$[ʼ] C(!$U񒏎?.-t(`Enl-&0%LjcDsh URm7u;}oSJ }>+{뒜f)CSB 9&7 !6M^35R(3a*jG3,sH<}9bfajg&惿l%N yet3{%zIgG)E4 F_} o;gy5g˟_;5*thYj"@@7Fxc(Uu[4IRDdl˧Ԅ6ΰ|W*j:<,goH{W :ى3H[m2POhmdk#WBMŽ JO$צ [1|G[$(yF-[PčC 2ֽi(.rv}$T楉)~U((s8 E $d)®zّM4ZoPZB霉wNeǨ|ޭy|3p0;tey1 \h.21t9^*~JGi0\DAOjO`ySRorN*%$ߪ3몪[0CUy)VykAMOڞ"4K~6$!2dxR}U|D\䅽DDt)p@% N&on`Սml%"@5$ٻӿLЏ0#ƁnZ kczfCPl^&A> /9a*2Ǯ/(&L羌r_TIeg6t( kffwyBK?qJJt[j:7 =S_{Mp%w!T4gYi-o*~,jr-{7vmGj9.Bt{CO}k\ z,\On݊tCcGQELjV FWbdC"sUyg'9b>Dʐ]%X=}gM,ne<)bL}Z2ֵw0T};MWX%äGm_L-sHb]L^|@h{8Bywh{n8V-p,SH8c/#WsO€B cR".WPahp=BF[=v\s(J oeEEW|a"$BmAXX$E,Pϼv?fl]u(:l/ވ};uaX,ݵ ޲@Ic$0AH߅AѹS cB[i-RԱ@nnƽ]~,THoEEk9 /[FݳsGEBÞY%'`ݺ.i$Tqܼ^ ӆ` o{f0-lȻu&$j lq!Rzw" K`(v*g瞫zɍ)i`u&Pu X8!uV;A٢ I΁orWV rr!۔掷Rk)A I?sB )Ej$NhL QڟXeONr%O ;Foד@XOSZ#CwI9wca^GGGCfàfS xu<\ VY;˂ qpTkI bb!z?rGO']\v+f< rsbݧ/;2S\=-7~qğ}ʨ-L xt}NP3-I0ߡ-/Fxp3JKEf Mxi8#w/ML |X <Ԋ20&u9شIT#A\C_ 5"9cYGg]מ[{;zؔV7| |\`82h&g:+~`w [c*4P*RN0fTL9߁q'_CI$l YV^7 Duy%r6 *# 4v3쓴 &T hP2ag'p%9}eҡo;KartbbG-9̾>0Jڴ$04ݲ;Vl<.`+.Ngd8DZb\3n n&፳7;ij 9b{=,㛈/JL3j_CzGT^5U%&Ӧ ,#\KWOIpqCp֤VH]piU2뒦{H$?o4~\^U*e"i-%A@ ?yrjcpaGc6k= (!viV9wqU8rWS0b'd"FOǻ9,׺.c^ɡ%dR|u*X,'q~d#EhFGu >"QIAիxy՜6SDzfE D3hjXhwc>mpWe[>)}o_`>Pd }e]]DG'c5kZquzހ|F0#.{-V1`yd0[Λo}/)zuBz/3tLd\ ~sg6[h%{zG$a2a]g6aGv9~ca$q;Z a67ńLbA5xE}K+-'L QxȻcl枚ԸˁFmQѭGjssuzcLI&w\Hjߍh8n4sOTÐ86}6D Ҵb!䢲b 8U-yH!8rխ6Tv{]I"j[H("N72]-Cm(<A{ /' %*0nDYqi>,N2xKbgۯ>].%j<ڐ橉+J4*磍e~)V k{;p:½>`QÒ q:VAa)W°)R429ݸ`}]'Yn<|#g,{>~j9לM $F04#JZJnx㊍Q.PE.41 N_^8nE?1]9E$ԊzӻV>ƵbѶ7cC=Tiq(ռqޠ{mq T32BHst 1ŦAg)%2ccq&lPes{ "Y) /9a^L*0{=0j׵:¸ܢ(z@o6bIZxlj&-F /~WHly걎#΂Gf1doYN\k!3Oq݋܅$.85[5&9F-qc5'tH^>~Dmwj(E鋾亇BbR+pmv|0m6\ 1jȱs՟tAɿȂ%r %ߧ QnC_xYS8P 3pT6 pknX@D6(*h. *&,Hfx c y9P!=-Kk{M"&l2)[+ƳVOFm4 [Mׁg_Z_Kp"c._(V3}r)Ns՞HdB۲+|jv߶WM2q̴e2Ǯ*U0m0(ww5~#rcBK]`dfSVM kFO;X4g+ep3%5=N[K_DapgS/^-}%ͩApGbJ.yhӒ k/U"g۷d߰,v=wUXxjjdqQ+S1 "M &8TcKcYcteъπ}t5]^WUNҝ0Zx.M5Re`jvF/D_/dÚ6 e' ED#AKN՛fؾW s"~f6€=>8*@y*<$ trAJfT : kqVE>ܹ`/.c0M5QvRRjF$$zj^V&|w q ";GfE~# L%۴[= nhɅ9' >1PҿG>EhlFKdj%U}pb+"?/Y>e#9o6k:j|51%)̀l~"+,{ P,#c;(  s3J!ՈpYݶ$3,D&3!ǡgQ9@^&N}fsk!jyuR1(uEۊЇd bkavNo+:o. 'Z&‰WWk kPbG1gGgbZqh=>ۜ@ U[-#9lQp܏ő8DP'wNUe(;wS&N٦,*%V^t빫̔u\E9mvn4spuZ?jC*voi=/Z7.J?2m8qio<]~&JlA@CCe?LM@0?kWyFcy_Fr^1SR)Wyn7ತA'ZG<0:vRv+@8Daΰmhd! mzה߬j{PGR_喑=4Ox *8 h&K?hE*+x.$NהHF 1!|)vlW0Ȍ֗.`& ֖gL#pfb \V5!AJK :(":X3G [_&E *<΃~1ѮBns?DAꖛ P0Vj)EmS,j*de YPc jD[[M%|nmNܵ7&_Kɮۃt1Glބ:p&K~IuCha{]#jz&Н~Dl*oe{4jlb}%-k(Pⴏjlh 8:Og^iG@-$*p=*9<&TLZB'' Nv7 zfؾp'HM7ۂWpg?]-ёUӹn%%h:]QZO{{꺕%Dsa@6%(bZƯONmCk/A?wm[zX"q(Z"oڨ[]HxtP,@ZvI\:du 3ytZVuH)M0V|K-nk7 w䚊ʍ==QźR\C(g䛐$@藺U==>Q:U%k%t^v~T&׾y: |E=߹ WQ]$9Z3,J"4?R7a$рahQ#\5z$!6}8Z[1.eq%[z"%Fy2g,@Bex!e134&Ԑ"[hߞipGdunl9_xr, vMfZzP ŅYCۢa4 u$i(&6U^<;|v< {EPhCŧ0DF!`xֽ4P@̾z;"ZCia`gmH ˸y8)09ST]۲`Í #ѭB(K\9icQV3]X-AhN7 ^|p뽼 O< ˇRDS8I w0AGyC\86=ZZ=A9\1q'bo rrC_gЧo&ʘ&K|iܦZb}Ld^)rƔR&2R jE (B gnpџ1Aʑ|nӃ +~`eT8}ʶ b F\B}wB|Yw">7u1®2>IµU'~VV8àVRX1M:?LEpCxK.tt.mv"됹dYhB)讕+Wp CªS'wF|PgWJ MCg \Ό9?gؑq)du9;ȴBY<=~tnI]%6*j"S+{ ?w=5iȎ-z ӿ֭ yq{V$3kjS{cbroL>eps|B Tr˪@0pCnza-d{tJH}(3%CrV5 ٥Fǰ֢DjT84Ѡf=/ʌEGP7:{PL0xOGB@n |l+z&aaP@vI DuϿ2v,^"-Cܭ Pif$ &[.jjwh6H ;qیX*Mly}Т)jgB)ޗPk햨 \ ]B=EH4|nB!HBN=(XO mMD(p|${%^~&XM.p'hA (8?~0JGvVܑ->#ةoTC92'B~nN5+{jNϴx! ur7RHs\qO\@Ҟ\Y4(d{ +?x:D6J,$ďF+fi( c "p)Lu3;6)I/8R%,21}{RRX|UM褈Z#}齥+{aBo+9u'ݽ;a Ol" vO7>ӜK쯉<7Dԅ%T2E `0nЁ ;vRQuA+YK~z'1U3O_is(;Ib(4Nz?SXuhҀMO*J[kM9R|:#5B>J<} PNE_@J{v)Ra|8itXG*NY^&jSl(h(֢*A#2wGtCl˶v%b%yؽRHlě _>r0Wfhl&olYK(vz5l2=?odE𫾟1~}~j) ~ޓ 84><#_<ѝ Z]cc%j8ڽoU]Kas?vh &vA.R͒@<ІjƬϟC1MS{sbRWػ0P= _(9N?3L$+ !3%ĩJ +L#72OpB}p 1 _}Ղd]h%5d4!Gc jD>/ˌlV3 "Ckp909pY[0Iwbf:\==0h e|JLsq} dBQL-LID`|ƨCOAatF0ƌu5%{Va;qhա*x"y=\JJb+. ?$>G@SjO' i#ɞ]ZYm5;/$l~dP0p4زJa,)ş䰵jEz8$D{O@2ǺmKoHF2c}tQ,+?fvk6RN,Cg Cu`>,ɤqP$)!nfe:Y#VrTmMco, W _Nq(./T-3WQpb\upҗMjV# qؗtPI P3Î gRsZ*_k؝X j}=Q6Qzŏwwa7#aQj@}[ MT km~ড\$#K8;=z &-ԭJH溥]`PL!# J ÑDtn: \hZ^)tHף}0д}6QDXORf(X^`1݂ A@?%MOcbi&ˑ@~[Ssy^>W$Nֽh7=&J/bjꟖGńLOK0fbÍx}C?&;%Q?Z UZpD9K :Y(QU(b='M7!@݂9&.JreHsG%6_ER?"h^,]{ZIkYqBHkՆ%sZktQ9G`0fWíB(QȘZձC7 *,Ylȯ{,sAuG #pszRحٴ^aRVii'|Eunͦ2ursV\%-kC[nT˜SΒ,a];jVh>0k9>r#Lzv7uTԠm5ͲAb*N٘:)l.M7_,X2!zC$(M B@Ա,]6\ ;/=w;ѰYj|/pdN첁sE d4t~,?Ӎ<:7\&N6|)ҷ\<<0lyag&gT+FZ՜U)D$TMi94,2Jcup6j""Ś["K(T +&Dd G7;P',:ҸEr _=79:ޒ/Bknwd0Sl3M?6EIAƒd.E5qR}be>ŰJ?NuS>ݗyG:8s9HfoJ(tY(F@fK =E!_D Rw endstream endobj 610 0 obj << /Length1 1836 /Length2 11663 /Length3 0 /Length 12805 /Filter /FlateDecode >> stream xڍP .www 0www'[4Ƚޫղ{՛\EY(rafgaH(s8Y85]`gk$@7[ j` 8HYY 3'L`k3@ hV`f t :!+GVVwww{g= t݀?(ae] ̀ W9 x+PS(;A+l,;"kП&ff& Ok%PV`qpa4svx7q331} s*ms6[;88[1"4o,2p\O 4{;vOֿnXX-ՑUd ;̈́fcc@3+?5<:0Mxkm|Av6q\@_;!̭\@Kk?of_}7@vy505};x9~>>/7Y;fӪbbwolʁ,vvoU1&e df3{b?S7߆]tq[ydWPtx Ɋ@skWs1yqYhbbfs ov o =q~?]uߒR 3?`x"ɋ@? `e9X8Q^v'U `*x ~[?j_`}{:qoߨ-:|+e/V_I [!п[!{}{: 5|_\ Dbv.Jxk_qfo|tE?0sߞ?M7@ ieL0ئ!Nȝyv:= >6;p|'eڮݭw&$_>F j3HӸ#S'$b>/N>Z퐽N|h*XC2Õ<+gc4?S,S0 0`^xaM'0"pxmq>.xWip8P@bNx?L[./O-vOn'y+= iY墢7;dr.7=xM_xՐptԬpR@a$y4hE1xGױьHڻw,5ȿy_{͆2a_ܘe9L:BP77 uI"3E6搸Pdgs6 4 gv#=bWjVVec#>BmOLo Hn`mˇ -֮>7(bfbTdp>WMd4[COiW0E)M_N]Px"6li' ÿiuB" Px}Qui-y_^sAU7*PڷQirmf5'd~6b= :0u1_&?< >jyg(AE<R'^j]!wZ|kC%Iw,2CM.ʼn^sYXrԣoCWFt{QbT6w^/t=5ݲYet }xMJ,gރi7b =~|5̋%穏JUhZxY:fD֥P3ЏxDUip~3Fثbl/JfCP]e>2O?JŞEM,3l9/m1k4f9Na E/:X:U1e9vN NjҀ6 ,Kl'~nPFW dx=rHNdpcW>7Q<>[0!D*L͈AX|[6<+,Qr@T歬>Wq"m5K25h|YuςjZg[v1+U3Xʇ,!CIO-SI~%Zؼ;YUfHJ} ר+12}[+>Yůf5h_xf2y`9V6I4o2wT|F/:>`b t ½tN6")hH̀[!V ,jO{k#wO?ΑFh\F.˅, sEH" 0If;kEX56 5!ȉ!I"h\0@u yBZgي]MIM~oavn w.otW'ao u Tʲ&r}[lYb&dX ƪ4!w@RRG'Ŋ'Y螲F8)"[]iSܸpZB6/k[w@$lxAIܾuIX&ոU%sXd'Q*cHP:a|/c.o.v W[lgy$(QcTuMdq,pT 6~ˬ쉹8Flsë#չqK?eo⇴,^{?$O BjAR;̧z#kTi5c[  Atnef~:SqyrNgX xZ 1)&h&KGl0vQv/P:ZoxDy6JKSʅ((G' tН9Y]47~Ŷ`84FmKW|n-0M>i֯x!dOcJG:haЍM^ 2m!g0<py CGwXa>z=R&K?Zۿfpq(fAXƸ:l5%/>%bX7@O+g6W#`DyX0Gt`?HlNޭ pл^3,iebKTh6U;Yղ;UNTyϋ wL>뚯3>8Ę+>G2Žj]` (K"F,iӪSMͱfQ55z;! &%2GNH1Nе)".t}WX0>b&aܱÖ;_]+N7L{.LBX<'<r6q(XxLKՈknA-cنV&ވ 6}4LX= (%{`$8c -F/ JRU#H-wzjZ3A֭y((ܪqwnzL|vi%Y#7bt KQwfŮ [#%VѽoA0Glj5.h}$_ۛ.dWx_y R~e#$N<&F^=I 9rbyA/|tr2y ƛy"GaQ *wleM~^r=0#-` RxD*e$i {V5X&˩Wc{ pZ})4RRPy-fQ$VF3xyGW`j6Iq}ChYŖ1@t+ideF!hB띕PģParH7TzQfmZ}Y~H񻛪Cu8^k"o䰼*^|):i oN'kZM&dGN\7Cvr>+K0*Wl Yr izLNz4 ~ϕ#‡W)fQ.Vr<891=sf Y/y@< X _iᾄ) ,1{5k!0 .09N!lgz66"D ܪ+j%PY3kZR>{2wg_#+J"VnmJYU@`;Ci_B2JQ6fOl.݈Fd.Y- Ê!_9䧁F۰ov}2#T1X#\ex"2CS%^O6*_kl$}qmrB=|C #_ 'X#3v#o"l4)xVZކ`.9F06Jf iVLjHJ%6LXg@?Qa>q-V $}~oQ;ıQW<`. &.򈜙*:z_6VmiAww#gA:qjoj[taYfݕ^$l=>pA Z),e2]d>.$إIl:,\l8 dŴ`@schߴY(8H_~ ,%+eOlɒ; ;&v&`UV0,V(g83Yފ-p+[ EEp3. ηulђ𹑷ر\Aw}GQS46&Qƫ5W货xZڕ8:0fhLhQ:gٶaVdU H_ΩV"-! y&1*utlUjBƾ#5hۥ(̈Be5_<'TGZBtCR~7B!CG2Sr} ;eW qt^#EҞ?QJȌ12e="wtѻ4&g?tgtT/ؐ$43PTP_d9`Ҡ4~6X &drg6y[`D?Xڈ'zW1-1e#G,p[ط_F'OggUoV!_U~`T 2?qAM?gA/6(ID; 'ȇ (nO8s"A\ b89~뒵u%"V0?cDD$'\N&1Tܪi)yͩ0lb? :cYYP]/s@Vt*P-g˟h\{%}]ٕAi,2'UhJvKeᷫ% L81<1ȄC3}9ڛJ%+8&?-AsHR1(M`˺kSw0E{ ;9Dи|ޤ ˭.vsk"6+11lF2|tU$pS?$Q%a|o8|H8s냦V ]3ͩh k,jBhQ8 kUW#Pq:=n/|؊ye\A*C6?z̙bQVdh*X$W_4P6R]'*|MJp~pn~@}lG%9ETX0x{ޔ HҁrFFB*"Zl;{| Ȋ9"TO>~/AŎ$(mT<9):+m*+^~" Bk:SfN**"D=TB4$'~%y"BGBfz'\EX;5 +.lx|M",,!`D^\ }uMEB峣E?P$Pw;ߥ[t#zd{ և0r {5 3Z>OEկ+n00X!S|1w|IcE MStn̆f:}!m%R,0 Y7Ê\ޑ& { #9_s Z'ۧPj㳚(w|``uzf- vdOH]PV8xoZ:2Cg8>}IuB i a%}zn ]mjY'E$ЂQFKh.Xhe.7h?MG+aʿ mnY)S-=5HpQyhg&F}t9H^</!0HFRwl煮F)=8=4Ƣ^0Z^+եG?ŮB:S<-}MGwÿ!?ӗG%| f3۝*;OCgtN%)E=ZTQ J!}]A=ZŒ(T_}Q%ZuO;P1G'x-hn׍ŅXGZT_I_Ja|k;y Gk4/]:Y'v'f~8HWA /圀fˀxr7ޙKP{-ʦ_%8'y!ei]i5Z< 解t=+nVhh1xVX](~~4(4-䢀) gpkY v>?#*0l~1[+wSڱԙ8ٽQ-t7hpb6 oN̟?ŌE_oWg^_-f`ɗdJ j#08uWk"(xg+=bN65 ´K <3OSvޑRāhDަ9]08״H|}C/YB<$")L9OlJݶ/:X/*!)2:+MsK_iB>lW~y^aNP8:1?yٜ*sOLL{Tc1 UmC8LBv1Q &5 XK)Ў|UmkI-\NMmz*ȊDhrwBHĪ6˹ڼ¾U'zZw a掺5±}큶%R\ ˀ2 "\ӁK^fP9\P bgc,*3e('-_aaӗkQ;`!vpޱx!H ]UzD8ߊ,gYٲˆidP<'X~nU&j@yA12_pQyQY!ZB|18-CT2?AE5.T-?.M$KeT~u#2h|ڮ.(=wA5Yρ3g SX+C\oŋz\JOxc -mauQAJ./l +X4S nzF DBrv/K66zrPv jh铂΋~Bq@I̗qcIQ"ѥs.Ve0cЄǦڀ]quP蹞| b[S|3)V:QvgUkx'>Gr_ǬԎ*.!zȬɞT])csiL`\3ֆ?v2CvcF7wrnuW=9a%]d)lƈg>b.?DgW!_Fُ9ee.=]_ dHwfM|/E"@k?3[JMNG#$8cH %,J @]vv/6ZH7*Շ [7+* YFMN MNPP硬:{pS.ՖH36Ӥ.a|7/~<֜\q4 ߃; ޮ<~:K' 6}?S$w7‚'U Rӭ*υ╦苅N'pO_V0 Fv i]ЩsX5%oJ>XL_pEwꂸC0P/*vy /Qq_gJF Tn4Z?A{w{վYDu^4K#ֵ>䨫е9[sm9Q69Q#\;ŎGܮ'L\G^X@xuԏHBCGT]VPd{1^HhR-VH ޔΟ=LK>JDz9m]ZSf&{+ Glk`(}w  @٤6c1rη/]醙_:isP =XNВ[R>o]}}mit+i[pC|Â` ";e|o%( C !dDL@}J פi*K#YQSNcG8>aVcyE ,bʴ4a¥k.kU'P nQ08 2R5EG0yFӌOh)A oG|(Ka>uYb[VmPS<^_nI|*wHyhQ³Dy+5-jO+C,aII36Om}Gpn#5,_ʡl&^S૦Ezԉ*bZ៴r=L02lC"窊3ҖfYAӸs77r gʥ|fܔa2'wfyN\~rMi6gkN,.r0Wgqg;=3V66JnG+P S2}'?3;;E^ ͉D{I'k Ѧ~ǎ哖1f2`'~}B^2aYT;b-"Ǻ|T@b>Ϩ䏰Pd'xǥPkl)#.)_3j蜃27{9! |D\/odm%5~>Y}L(Yyfp|tگn ?űu"cvaq_zawǠypEMZNFvZHEOye( OĆ[]"hv1[kC2Gp= ;_2͜ bFEt <㐵yIc4E,|^%T3ODΒ UG#YnUۀ!Xn|%CշTTfk_ 0`-hl`طMv m<ɏ*%>#2=Z+80k+ڸ9 w`]uCЋPL,"4-"`.|_n?V3tR;w/ Y);`ŜٰwO,m clݪIJE1SZzm4gP[4ݫtj*s>|i7ֶg'f,BZwA~l69.Xin-Bԋi_1Ԋe"-P2E0%mj._R 邾i>4:ytOHܓG3I˾ X4[}zlFkrIS[O'H@ķB endstream endobj 612 0 obj << /Length1 1707 /Length2 9408 /Length3 0 /Length 10502 /Filter /FlateDecode >> stream xڍP\-{Xwwkn\KpBp N5[p wGf̽_^uUY?4*Lb34PTcr0h\QhN _N@Sˋ" sqظxYY쬬|18$M@Ef tF8x:]^@kN`a ft.@vu9_!h]\YXݙM흙!NVtw5@ trZ~(dƌBа9)WX:/;9 :^e@ 03b`  ; @YZÅ` mhj y7u3ٙqrS*_͝@. Y~ye)vqF}>I=Y- XIX:hA@YɿL^D(Ȭ..VVV>.0f^`Bx9.N@+,@.3O1OR|'@??lePRc:qq p|;)诳Pl ICkbA @?oj(ICQڃ<2xdWPMN"jZYӗ[} giBbng /@` {XYG2o/V/)s 0ur2Da}i/v..ˀZ=l 3x8(7EF+Ebi~`d_Z ~#ӿKX{:X,^dA^?%_FOl07 !:/'_y0ln@?We]^6R?#4GY T#vgNcZpjuCGLt% siSRtk19^8Vmbe~o,_ICV-ltM+/J.΍{;!۪?+Q'5  ir2f(\HO<0/ƞbP|9x魱y\AHMG@ {=<@Ɨ4 VۢN5jfLV5,h-HdDgI:ԣkLGՎ(OgL`vA!zTHH &kvUw`*};ZRIMɥ$j٤GO0- 41v}fT@|3,gͅvjU y,7,BWC2X>/^#n1mD4L51#Z%Z+̉}::#yUxƎjz)eayL1#9iڌiOAn7KƲك?hc+[ Cd+.zo&"G)d')arq.{ׅ, >15DVpG,@B+R~_s [xMiJ+8ĐL$>nE ~Ԭρ/L8Jɟ8|Ʉ@@A#TE<$ɸ!mhf&%m Fqި (0*[êI֤:>Y ؙwbWGy_$jjtmPyOZ0 3N'ͣ]"RkϾ{.Zu w/Y@pjk'_tk|lޚC.r4N\l˘HL&Q!5I!JF jf< omvd éAې]ͮ6ũa|:QJ%h#>0 Iө$/Y Ϫ/Cg=IC`}MN Z!6և˾͟'?; JϨ\(}Z+ b8`CDs bSLn(Nl Q 3[u:l,7:iYG: _Ss`YA\ƺ 6fj-c&%>ȱ#<;.{f̽/o|?S-T=<==^>Q Wo+O[ݍ/U!=J+Lb.,aͲK k3z v*uJܘlӲF N,.| }LVG'}*įbݠXؓx1noh@v\R7(qlDT/Bo2, C}Vb!(lڙ2ۈTQY.Ԅeǹ4طݢXncu#B~ʺƧb30w}2R_pIwP\O&fN3#2 a7N(syvP'7޳2!Z07͘*S'oz+j vWeD;C瀨ѵjuěKa[T]>Ki:wHkWs&=Ȃ V_bo=L}%$p"x|ɼ 9mI7CиV@Nb1C-FW9p(!S)Cvd/D' ߮JS$chhMЍisѨBe6!YDV -ڮ>eƈu_NB mlI˱Ƌ4aP>8qk}klejtN]Er]g[X3/uKG%dE=3O V(O~% hi. 㫙ٶ DǠEl",@-oj}KG';t-d^ ӎi`3$tnwFJ~bkR@=*$1l۫[sw 6#:a +wxGAvao')ez pؠfÏ- uK&d eBpqe`>ŞiG_,g{𶁻:E|T'vKՅ, Z(K+ zIT<.y ɷ}t҇tdI 4){mGHw1^]N( M0+/GEIFQ{;"ޢQ| /';0!HNYƢ[wImuPgC J}RO5 UIqoZ5WcQ3yeq:drl i> |ʇq׽W"n:#6᠕l/a8CީeARAB?mW4޲z>oIwE#ؘxhԣ \=tA? ihG?{AEM]J}>Q{wro$y ^  5%_Z): iA>Ko<fE曅Ͻ?"^42' N_W,KQmbcU }@ W"¤{Lu>XfFRU8ld/yD ~TBKاzkQ!B3R]D(2/͢:txnxGۻcmc${6݀`0뿢a)v!W=b}@SHScVЕ%#Afxƣ{-jd\utwP}7ɾє;qZA3*lțMyn;k m`k elq倰MpF6y1"ѓ4@W-yFV8eʶrƹhzFAY.Up]-IF+ Z"UկH$}cMd%[Cbd V`Cڳ*xJnv.J1v,ys`k0J{͘\e3ٙ&m.zA^QE8ͯt[a YW/s|_U Fo{H:[9$Jh-} 3%t$NFapJwf/p ?ǰ e~_<*1 HE܎!SBh@W،iEVI3ti?05&tf fð_T7ܘد :n]JրDũu#?S(]GJ2,Ga3 JǧXBxX0  tLGxP)V=3M+7HC붱<R_e;RB6%W3]MdfLz˴1—uDejײԘ޳OK9<E;ܲЙrjTucdܹax{ۗTލY[\_]_Q5$ބe' ) ݯJ݌n]3ߐ2Ima;ꎖd4sFN}3_j+\oxةWO׼x#Е4OZ\P.J'&>GԾL D\`7n#hI[I|rz`xf3DFqXx\ z#ZWaK @(q h^sgsBv9dX28EGXu9G3ʔϢTOzޫ#dmA"{^GL TRsdF(3#a4!j2rc#=Wmp_~<ŻJM^N.&yB99+A i qPv1ɢ7^ ݳHike"\%YO F>ӎ5nOe̛=iԵ$*% (g+dD#y䋵LTlAD buׂ 9.aHU{7oSwTA#C6j$oT6NTUH9F=Or>~hO0wޜLDE4wzanK=K's]3t>UR6r"\c#M[D}sX}_ Ȝ?ʏ_ 6G|.ը&=@mp0WMG]SV02 \Cxɒ/> pRG4x9,dT1X M<$tskKjKnZ;bpY:1?,8O0AI+n/I8>j5@n LW|Zku9셾*T0Lw?,S䟩(E$u9vƤI }DWWE HU ޔ}3W |?-luWXKDf^D: 5xM2B |02k:D8-BߝƊW9Tcsٌ٦ `!r d߯?6.J* Bot*o-h:x¢)Go~ SU痊UBI>s0hiv_{EnA\?[,Yb" d^Z$V[ :YB7ԕIDqRUp:q,]wrIn#4w! OJā*]ȸ,E<K32 E`I& bއ(cڭe7A렅tai ci+w;tuCY,xP١o-$0?cڒ|u#EĢ䯒 @ܿQ64MY~=4t{d2qCẗ́Cmt)l2g MD=Ept"};Wczm5x?.Z?>Q5֘B8to W30}u۰kjTpå _?>PXdWU5tПa9-ֶx9vBQ#Ԑ͂[.((~*5\kch,M^+cRLTEmR/Ҥ?Rh7%Aa|K4/bRCbޏWP!]u4J%]ۓ'KšGX60fV&Bo Dkc]VYg0xM4~y3yϏ\Ͳ 73 Ѡj1=yڟ#l툏Φ Ȅhc M$hj<5ʭL;_ɐp}t69~iJ:mR~;U1fD7Ύ6#Y}b6Ry>Ƕ!fAou,AR_2,xB;7v$3WTۯ`޶)hґzO\u?ޣD|lI"E&̚oz@jA#W‚aKW̛q?YXqA ,K@( Ohs$'oDes(k(ߠQ#2ݱ;_,J.dsCijv!$3wXr]\b`jbۮ6)pi {#Tfa:(vsTTUwE/↌@ "!BzB5 i?%N)Zeևo†f"✇ˮI0qkZ,WXG~ra'nc39b彉f7Lg `5(IWB 7e8}x#Z#)Wm ؗ\w_-WSNow?Tl0RRi;]Qcǃ wKߞǑM\tyƉxB}`B$=(-]]v^/Z_}ۉ!$G=Qs+ȳ;r:%-2$?=Kզx\Q+9gS7Jv\BɁ^!X(O\on,p-zؾq4 KfQ'ѣ~f[)!>iO<|n qH5~u:vセaoKO,Q%{ t4@ =is9`!:GB !Pwran V4Dꗤ~#wRÆuGVኋRNKښÀΪ9jő?&z݌GnƭMh!`5,"_IUuK-IJN r$ɝ|ٗj)_;1!@ܞ8d. 7#%I5K.J}*ijpӯɆQ8=D{ ktK&>nK\&!byjBy {u݆aCE r| l76 hqLLm7qO_/2kߔty=E:R[wU4"N3j5[*\I-VPU&vkOnK6pyK84|rzZQYZ"BWm owZ?O6fw hJEfOPq*J^R:6|aRqwh>`HTECE5ipӼdw=NkRvLHOÆ ܴ`tiN&|@Uy$%PJ}⩟GlO[pEdRI;dXԟ'LXy*N2oʁ~YH݄h9B‚8QoJ9DpaNu|O|{[i\~.u<ťxu|Җ9Z%w&75W炓d;X3T'rZ6 |ΐE}{~B7QupG q{gqddy]/^SCk/ gH y)olK(v4܊v5/9<G7t_O5w:2wP 2%Չg@V z*^vx NjGHke-lw8/e/|fau.m M+Hʧ}{ŷ*~`6pt9SW ̲BDoɾ\@ ןsNw~ep&CmEjc#:\2+)>үM*8(%A|Vd9w{wb>;Bv4u[lDz]Ze |籞/1o3FӺh*omY_=(c wD\ ؐ}Ȥ@S ף endstream endobj 614 0 obj << /Length1 1448 /Length2 6614 /Length3 0 /Length 7593 /Filter /FlateDecode >> stream xڍVT'1 ѠttIm$AAJIiEnDB %%TB;~{Ϲ}~Oy3&jh6HFfr@0XJ  Z q^?PD^ &G03B~^@"S`_h"PtI(/@P "q,B0a DAAN;PE (&dAh W8F zJnb$hc_tPoobA;@p B(_r 70pƆ Dw?B~;Ca07 B܀xCPBQ ^h? ~j~a/CЯ0KBj(/W}H,F z(gED!}zZ ?r ` ~+!`Bx D(C8Á8< ]nHC&t }r ̖+tMo؊&J]ċK%e@DR(G8;5" OD= TL.g0Fg2` .֣[+K?PoWПza&?M,Z=j(7/髍 q0?{!Qp/3#̓:['ҿSj`h_;')# b I{ Gph,W?e ڋFd!@ǏЇi #KA/?߿Bq \`~X,acO&Ѱk=^n:T _T\~$,6ђ ȊuZS=ůWmH6m<9qJ2{fy3tMKBu9'*“U_0O$ K'l] Y ţy.Op"ہt{#9CIBݜñ,$}ظI߽W_Mg/))+F6@)w=$RV~NLTS[^N-M8wc+֓rdc/s()]MޛUeO 5Ѧ5Fy8E.#Ks2L'b5w8/m9D:WXY9>pRt/!grXJxƻ_2Jehp:&Y8;9m/S 7ieggr\F)4Ti"*5d`!_R-IIco+^#-tȣ} yILuoP[m.L$aIu[c_2kڵ-j<ԍڧL,'>@?teoJng^. +j}o|x,'2a!f3UuD/^Yd5t`Eƹpi%=s&zUFCV3MYLv[զ*gߑ)ҷ']fS] ⎼nnpr= `|7G>HiN6UAͰ lKf >OJkB% I:V'>t|j`G4_d2/ fs}ma "bt[H` #n/ O&(E֍U5Zg:e\6Hvs)Nitɼu9 ok2!DW{i1Hx Yz}*O{ZÓr.*@MާG ,"RG`iMxPLU܈=z\û|Tded$/uu2QF"7jgV@b L$ Ax&Zun2k jRń~r̚")f14T${Fc r0@K9 nl}lf mF0<-S#uQz"le:;WN? 3}r3E0ޏә?C>vT'*)m!Q; +2W1ڏY7 6fo]b& `ʬҗL/kűWa$ճ{ӍFgJY!_|uJ| pS3\"m^H&q?UCDh[Xr ׶'`].8W\r>}0æ&Q5)Ɣ⟖n9=k| ;˗ߊx<i`p׋J-pEuJ[B".X8i_a<ʹ9KۏSIRd7VDi[om.TW}-gLḵv7{N|(d}({ZT̪I:dxNG1I.;Xb*RMVDۖPXmPmXnA5byxLRoA09ӰQ&[C^D_v ,0=o01N'D_Kfǎٹ2 6q$fn[$>5Y[vu%IQ##OVc)^y,gRn: 78(Ђ?PX_9ع>[Ԡ[]T+B4GS|+h f9g6ȡ#\&u@!]B‰F--O;tz# }hdT ŷ|* 9wΰz}a}x}g6 .+mUKzKdJW_O(3  =Qy=WMRMPe,'V{GB+BJTsy'y7vFF2:upv%n tW2z'AbM~fH0wKdȖJm!ϩEh4,B=c稂[Rs?}{Y#G| 71KM4 +{M7Ckn=o6fs2ev'!I\i!]ʿ QUEܹ$F?kH1}I"lfC]WtP,&]!>Fnhރj\Ӹ$\>ס$G)TئFyvk?gjHS76lbݙssojQ^$˖HO(쫔ij?|g(E?GӤ"M~ՔcUtgo/}_#)be5%zwɝxg`L=:-;f%=t,KfjUʒ]3dQ7T|fk~}wsT)w'ٸ5l\NI褱lRRۚ Z|yd!g$A=ȋ{ ~:!X"ٞ 5b(l8Z |h]vb]ų9Q)~2uh[3k(k\NZvk.h$  V?ϑ\ϧ&$; w]k݃TEVZ%z5X h#:/u4asz fBjjBWeQr[rN ;;e)˜C?guoj}tmxLwaT-m_uuN/@Z97$mi1r{޳X,u%X`kbSy)gB^m*܏~3r MRַ֒3:yp:_νUJ:o?^;iLgmsn2i#6ٷ& .zLI=m]r阌V|;2?{n;9fX\7By L௄ &0"~–|c"Ma9:zhXStה ګǓ]#ZH~۹5js):k]{7j D#hDw$ >m:cmw:eJ۲>x;,VܟW6â|c&?7DХDvzAb긆\,uE4>a%9z>Px\ l;B\;ne&| MCIg7mr_S"="n-}6_Z>/1a6/i/,_Z›8ڮM?}scy0'5v- Ɨ9 Y`t}Z ?Iv \uqZ>meKq5Zj5YuZ92"ғ]XtIfvݢM[t?]U?"R+0) -Ok6]D>0mYG"Gxr@fn>{`jݫϲcuRqI ԁM,r:q,ѧ2jVC.Q&CzIT4Զ]j.Q\.(]h;kw!;`3Ȣwi 5޼R'BoS|2NQI VC6ƹ{;km`L+x˫r(NPNQW8COFAɉJ/K8|:F[pJN]k JWM6؀(Bwa$)^eh'Y@ ţhўԽe.qW=H=V52$ٿb]Qjt Qܒ7yjH)ߛL!9s sWez)`mJE␹Wn"^h)l5wBcR- kV0)BܹA<B.Gz[Gi;8oG!חZ2~ vPM zR/ĖZ-P#E93WFp"Fs3@*kMZok-Lw/6B$!O6^nXA&e\3Y:/c8|"+y#-8gf{VCTIߐG5֕;la?"ԅ9SWvofUP9Ef͉r`NYtӍPhyz,}Fy=(S{rVv4oҕcMt . Y;ú0nGُ`)K@*Pf|1xF Ǫ[TR.[eFBkLZÊlϷ%S_paD<@UZzVs`$JTAyl_46 __ d bE!-EjL}g$"Ka<p ?1z&e!`-IOUzӚgSۛS^K`sy;4AQo 1M&{ 3wWjhlx'H6/mM CSOΑNeވQzxUtږU j{ig.鳽s qFְAfu.S72y+wӤ@H0$\$Urf0{[Ɖ%~cWj_uEz"ew\Uqm+_wM#[3,/AZ=\Ӓ)1ܹ;m~٥D у3%["溜ᴖ%uB$H}*[:P1C А+ŝ|ws۠q!bUW}/o]nrT{<(PxJBUFOӾ+dy'hZ41ٽ1;/WӪ.ݰM w5:u4wzI4<'-r#̏܊tS|ZRp3}wb !cW;n7m=G"E>z mpVUq9,Z7MOJ?|R=#a(? 50U|xP!&:9zqrMf ZVN\V'Ik}~''[75]x\S-HjGP!Uitl5TgeOazŨ8CpɤuC\A#}6e 1%5fp(þy2+WSkunEt ߘyTr L)p=vT/7?䣾KŹxg1xGN#^84棠 SL;0dTF<-ȫE}RdDOHQy6'BND5<1A -}Νۖdv$}* qe NV PsQ[N:nh[QxrGy||D1-CN 7r #oN,d#q e |Xm0$13+ 9gIViV?֗۬khTFȿM87湵h^ފ7B.s%24̘CX{Uj,} &g\'(nfOEžgo,~0/YWU(()CGD:>WSB͙Q=#s8STTOo댾a[jVLۈзl*5n ]xR߹|߇̂_8W6# ^TqS&ercM1O_J?rg QLtKqcأԶd=SC" ? n<]!Pť/ endstream endobj 616 0 obj << /Length1 2206 /Length2 13246 /Length3 0 /Length 14589 /Filter /FlateDecode >> stream xڍeX./ݡ X )P[P܊(vҵ^]|ߏs庒3<3RkJXA`G+'@JESYKJKe \\mBr!P4uU;N>!N~!.Bi%@ vJ\lm L ``p pZ*@ h[؂ ^qbg`:]EY+d M tC ecIlPh r@4jN ǿv`=N6` eh d # mPd%4@(0tpufhGK)>i[^[G7K7'vmG[g7*?:k!=X3ia;/#o5 `AP}\ oJK[ dmY-C`BN?sf vA+K)hh3C$`q O K/:? P }e`07*: ß-0尀~q?_!+a d``k`AK {U@nU.5tYxVۺz,m!6 v}X9{(ؠhzɸB/`Ul{x@*tԸxy>Еy5v6G02X]P-?]/IGڴHv$A~;*ZB[x Hv$(:"q ??"7lot'<1G_ otpح@Zٺej@gjph#ll_";D2b996+?U@!ϟ;1C!G{՟pG?]*t)튓ۿj>ٝ m4W9o B]h!ʂ^п Wt %B/# )4_ɸ^ r;l .G:WAy,Pgv5mUc=|?(xPa7Uޖ^ $fJ؈V«Æ~"x+(7N>䈭29GIl$QrW)eO}ZQQP0[=g5$RҼrYFA_O4uHsؽ0yGhpt[ގc63+=TRsfN_/1˦]I+KAD%Kͼ2|5 Ak;PZvxZ!JCt;S,zGaIwPߴHF[ˇH47|ݖ51#FIah)bX]դ͔yd'Fgdd 8 y3BSg]e;^*̱%zGu%ʉZiD$'`w&u>*· <<>Em6y" A" Yln rbψr1|K/(YllCdcgT꼇!5;EJq2d z6";S^Z(<(ڃX (mc buab L{F"p$^yXN}u%6S# ]՚9QȭYh41P;ر4syW`|IIJ}n<}H2MJGG&)?%ycua(+57i5pvKOϚK "x^"ƣvD!z_R*\9>HjN 3`"m !gTa4}o2MgYsct]U}GPҵFJgfTH2~a@"_{[{$7DL|e5lT.Q{+P鑅Hgn^Azm螢oiIֲWĹX(%6Y1БfSx`w\T|F!0,ҕ:E=ȪGLi/^iqD 0P*ND># Y [Hn|vv I .NcQ:U eї{ /"= M%4$REuSoeV 4bR^"^v5 \$` Z)s^Q|."Fza$ibAXin=Em5ȓ855oydR[d.S9w ;uq6rw-ï;_?2E[S-<o,( 8&k\cgJ6 $$AzTl#zimt[*q'o!qewO{jWwNdaqD^Ҽݥ1F,d)GjRe 94|bġ5/|5N>rN4-B?@6yqNW TG*;a-} 6,X-HȳJ>++ LtCIxڹ\)6^ YKtNfu]iDT j#klô{jL6/ }J?!y0r^Ri8^=V<J3L;O}N<͟tH2~@gij7-ۋHؗQl̢;间aKan@={nwo:l|Ax6V-i|CyHX&]Aw)i2Z#&\LG;XڜhǁOD4o1*YLū9fe)C/j&<xX ͍D򝌗̣U̍py0ª9 @f,4S6*XOEnV!0>iĸO$9-zS+>O)i_tYj4\f%Ѐ. ꑭa)1 *@_XZ0,#f\xG{;#vNm()k##3R*aU^Zs\PeN&rZ)қs28ƶB JwI졮"2 /sF?[-eDSeEsOGXJB0Y4`u"q] <|m:,`F():jynx5~(N#۲fO\讛5׿_6lCxf\Q|f#^2քXv}ZrߔN5hm=|j曥*_XsEce2#-g1>Xf[㴖\X厺7ZD=KvѾտ314|gG[E!͔L|yv:u7yԲu'o3Z?Pb3GD:)$xhhcbjLo^ߙ,pLikh 9JRT7\3K2Qx(s#f 9CىnJ_2mгP%Zrsr¥pXoa^[NȘJ'La\Hm`/U&KrФuo]Qo՟cf]`Oj4VeS;R½AfLh1d9 &I Y얠]zki| :]$Y^p.J܉Xݠg7QH&˕P2{&d *oph"Kɟ}Hʓ?$,\ `_]>rwBQFwep 0Xq20Pt9 ?R{#L7/F\IqFIŋM^N\s@v=\BvDA|:q6@b 'O\E-S ϦVٯڑ!gҡ9xeW.JAD?cSxC$^J oR3'h޿WӜJF=U>.]Ei0B1oCsB,=sdp}uHDŽkXHt2{+aCk/e)Zo*'"?g~.{Q,Ÿva.^aGrt"EyBilМw=eGA55(M!m"1KHâaq6vyI3@9ي$p,Qu]֡\RR}_ۈRg})tgBna$Q(.8˗yqt[7ۅF<~8nnbo{(yiٚa(>JrJ˜9]$U)FG#*[Bӧ~|٬˚]Ö 4kܪj4i@^Y(),F}jS:1=LjcW97f n/"ܮa7)Q_3})B*\i/r[{$۬qt~ pٶ5 &d[\A cĤw.|AY+9Q|gY*.vIDfP()/ЛIIVF并6yFm_kG8)Vj,=xfRpJQbn_VJɫ\T4:`["YB(XUQR"!lS/^ 4?W2Ja\V&M07vc)TLbةO\ğtf08dB2"G} "<ʛ5AbAn8MQuH}TwUFI^E/>.R~DCFD*o'>MC,3rt b˩Lk )H $1n#گn Cdet=cFWzF@ N6,ggU9Ҵ$ziTUگ=YrPR;pAJLQQrHK 5zϺ  W{Jڏ[`oc2gBlPWט1q M`xI efUWo7bc=RгqyVKUl1 ʑ*g犯ܧ볫 $Vىavtg 9^<6Ta pG7fkXvq>!A^p]Z8JHRpڜ05G0~ıjrLf{FT$sޔ\)lP՟^;`ԁseCBP(.Iׯƅ˟IyVKʺäUoa >bs%J荱0ó,`lT*Vxf;IJ$_}տ?:彉Y]Y`}cv Y'lYS>@_B9{/V6>Z M%@sOْg&c='|B,^V+XxJ$Jn8=ĝ>9bi9 n(9k˂]i쌊dyiVv耘y 0>Qa~ $ k2-}E偿&nVP}EAv Y[ I4pǣնJa희91ůovoQq,@e2Jl2}ߖjJ)0Ol>~-mA(7obtdʇ*C'IȞZv*͎Y0)ؐ٧Q"7e. -8K5 fFi7"Elii>9>B tey~OOpV9_$h=>kZ4wX$EDy9+aG5=eDYe8VK\,17?[rGbM~w$Kڐl7m=:ڕN"_ۑQfX4Y&i#l%eJCТ<GΪM*g69M/օFP>BEA*RtfRs U .V#gڼ.TsEյ }M<ݢ P{FvLu"!}TשI`Se[d'C! ah?7ض |Da'pq69vmj# ]Py' /tnFOA }^J,w#e(6z0LBfg tNr1wOR$ݜf$F4fwIH2fxX&n!]1HǕ܈OѿcVQKkuZR]{qXA_s_|jN9;]tb|ᥦDaGXmv4 V 0Μw^aٟF^ix 慱"G۷3p; E Jދ U/Ԋ4:U$Qzp4Sov 4U#v< u#qEFRb^.Nd<i@ZqJtz\_g65Rz9[r@8#p>-+LB5ԳZEC'co766?1nַg74S﫺bj9jH+ҕi*MVf󄮹IDiާ+  w^H.Uz%,5u^S~ۺyBb}R-/՞$GG|Cm$ b_*6˕7ة G)sp"'M[O=i5D4ؽ&*{*<1_<(%QDԾlқdJdb2-nDɯl~){Y,DK1O@׽7V*o;p %c% 銮70Кq0掕ܤt~e 嫕(R0V%g8qFӋ.6R =xVt3G 5-Z;)K ~@pÀ ,R4]6w#TmҒ刍 í/1l]ƢcZ\_{bZ,%Yg|^&իeZ5(A ]1,{ VKW :#a-"TWz<(ܨr:P]dɻ$Or#aX|Kl =ےM뿥TPԓY Bh+ ){W^vzҧQ ^^0a6&v %lcZ>Ucm QK WxFD" bv,sOK6ջ_#)}cw i_-OV&X4B6g -WC㋅i3WK;@#o]ݑ:AÓR =Bqcb܄ҘӉ͉֌q`N w&0=) U_l<ӍLB?'fɕ %RC 9MCcV_sXU>ɩ&`.Ho!sk@2wCg`|\<**\['`pYB;5gXYԧL&h@9 51Y) ш*i]NQ=Ygiqf6vªJSVԗF>]!Bƿ&=umuT&Y92qur'MzE%˷ت }<7J<[q6[XQg_;|=~eҬ4!)^w^EGC+6?Eŋpr yQ(QKX{m ?,V˯cZ}LN3=} Jt n^C.dw_ S{`՝^6yZiF -z(f5i*Zg\t| ,q 'P aDY SKl6 ʋG^rkRA$Ȝhb)輬ig90w9Oq\Hym6RۈEw|mEБY_Y6 ʧAٝʜ𣔪B6qi:3(%.z3-Yȭ disEBHW[Xk5x2Ƿ8WTD1n];]_7/q/bA(1? Mv*-C;pt$r$OȲuxR3`hX<>2^E'0JxAYQ҇6[]N5azl;8qX^/0AVDtIP,Ke> [aYe낗"%!}u [ !ÊGIXfR*j=L-DkgtbjB3H酝89\]G#>*AS|y%]\IK6:Mz[ۻVZZ2:LVfN~x/pnj5b4v8NZS~odlU-b o!ٻpJiw>"fCZ_PݓaD^9nHnGzǸ5Fi\g('iJJt@Q ;z,te12Q,m.Ydf8 ,4xFJŖnXm -}ۏ>sA G|7L嚕p{A6q$Z} yטcn?`e:{)>F5E4ԮOXQo#L u/NjHY6^3R!IFk#jR"ϾXD9CTr"38B?vVՁ%RQHҜ!P/#8/WH{I{KJzҵ.߮kAe63btQ_?XG}q+Mi]ZhCjixBӘg6\o,ʖ.m"A*j£#}T 6z[f٥k UJ/,wJekS*|H0NkX(#;K= m8W2` 巫eO][%t;i?9}yj*DK,qӜ"nDbv*ܣRGq񓡖$Cv!8Xvbf=_]L))&Y2jL6F+xm6S/luMOm7z'hhPn{5Bē$?}*0|}i0dj|12XjZpa9yߖl%Fmd9Ww{1*LB KGkKu[]\ V n=[ p3fpCK=|dzcEDjQH?.OFjt 2V*Ԡz'/ăiڃt^X`+R-]`bp(nO΅RUc(`pخ.:k˔eϪGªX<:EsGldG77lHLJTo_0 _w+ [9a.RgPWn3f#s2ND5]=f-r 8?ƭHW3ӥ%&y)SqsV sYʽ&n&xwJ?kg /#4kU :ĥ%5洋\?}#ۑ=;2~vsb~>@E@hB &~]Շ <|y'L S-R`9H;֟#ƌVKzhnWQ¢-~s6?!6 ][r7dxn܇_4^3o$L2Gekd7%8̻bчF4l@~KjğydBs-u.x%cq8a\oR~KJ 9TCD-!$ #ts 2"%Lo^F8 =4~fjG66R]-xP Gl)-$eZ.2cwK))T `["' pL⧠٩K~dȢR&MoT4zM͛swa/0}$l~!?V@%/8XA[jөb^MOG^@~璙 EqeGחssanr.SƱ+ܔ۔.q! TSiHŎMoG> aoZ*F[q_K(=yoQlg)ZKA>0Q^xi>" tUaKշYc=QF9'8IrG!yt6ng RL4'mf842Q"G=*3JIЩY=ij ;B^oƁ`lx O&Jܻ~;A)@i zMyB(gȴݾ$(uk[z])EwtgjÍe&Rat#|6dᎱ;B2F|+Hv]v17X ~oElAt ,> 4e4Nc/"OL燵bȈ!jUgn%.ls~xgkGv͎(;o_#S"zЌ$]mz̶s/Gt,뜏(F>?9SI:U59XI3e9)Q;2uu& ,On?o3$' eG=D\ɷCtY&EКեWd4E-٬ڳT@R$c[L-^!#3w@ES3Gfe'*+2 jT5HcUmABcip\FDBY(i<ȷWmkg~5he{Vy=c~f%i;8 FN}!.ռW{{z>ַۅcR/7/h K'SZц7TS6կJZqCfOv|zȮvIËkF=ͬ뙰Fʵk8E4%CyV;( acryr"p>FI ylpBľʇ/jDAbLR ǃΐ4G/p$&75TGww(D-!_mN}օQIO)'͑Rל=bEsK$Yp㢻CJ>"F J}U/ZcKck9B8Yxj;5ǀVG_C~3F/C)z\J "/J3KzRmx/E>Wy|4̎n}єd~{7,hIwO9xI*r5]VmfZI/> I]d箖t/He@ն+gz2jiOqKFp6(ݪ22R#;lέgǗè i2KzXjA0 vҝkLۇyKpST Aczٮ+*c%aA+sG.9y&JFvMgm"AAxThrT5Q .r;*2TõVֵǍ'F endstream endobj 618 0 obj << /Length1 1505 /Length2 6647 /Length3 0 /Length 7656 /Filter /FlateDecode >> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|c endstream endobj 620 0 obj << /Length1 1411 /Length2 5990 /Length3 0 /Length 6951 /Filter /FlateDecode >> stream xڍtTk.(0HHw#]030 ݍtJH ")! {9kfw_6-]ikTGxF">>^>>~"66=LĦEp QhLB#7GH@0k:/@"0[;߯'i'(` ]v" 0(_)8P(g1 Ãʋ@Jr>xPv+" ;A0%b\ G wEGH8@WY qVWo ^+ ; p/`s4xQ0#a`+ 0_\!H3ʕ"Wtֲ''(J~r0$nd_ k7gS8 , "B|EPb^8#6hP? G vPH76Da j  CmG<&|h|~y3Cw|jz2&#<@?!"w4oQ-0Qn<ݼy% V o'A?@ ;_Y_ )9:6sf/PPG߮?9UF4-q /ZkP?B{08T AG uW=&(z]WAX>~!a{E/$[ /B6$ѯN0/7 CZ7$%kzB!D3SPo <_VuE ا_ةg(XZH&|lʗ۰i[VbR. CkM'lI}F~tAԏ0v򍂟ͮƏvNd,) X]h#T)Y$MOOhX܅Lc ݥךI\zBoVwW+ՎwetT*,9=t Y*u2B_e$ߣ+t g_v12u9aH*#5 c,?^I jD%k"2ȶWqBF3Ś/KÁ`#(ݞ;.GJ447$`fw˅ƌguԪH|1N7LeSPܑxl1x4% ϸkɊŕI@nլsΒU(yK@69b^pf{%Ib2߼9ptDZ?Q2Rwc_ƪY'g@y*b]NޚG8 X|' cks&邟]ǘ(%x\&ĴJ6\,E.UMc5 f* b|/ ʄK@V罰l׮yH]]K 8e5ۜJ}] iR폧 zU",7ROKFdgNMYdE? |]b!{ŕ!d&?Y]i~ep,,}+իzoV@"iԱPub*x s3VAF-|#}-HϢ 4Em2vvnZ d)2dp'r&j JU͜M?|'Ā#IۼPO?ʞɦyq=k;̩`rVbX T&Dšo8b^@uv3lOTfX#.kU(A81C' 㖋ى*T2?I'wLg 5OMI.Zz&R' 5v\zW5ǴWޛ KOVTLͤ:LgyK3tU!EG隂=O?:%B |'#*\T@ SX\ڙnt7gX-N\%v?Q}6{k.̘X ^~}A>}7K|y!e k0)m,eoKF h&IMުz/׏ ~(Ygh#]V ;L5 ɪDgZyM/D~6q-6H*_VƼ \ϢYܯ sa۝-{,So3';sĩ4 z 헮 }d,YΩ OկQI0$iqGIʧ&mU:˜.TwatOb+Rz_V(TZ|q8L|Ÿ=0qTv? sv߶UeQ’8'gr{|_KQǕ b;lvꃆe, JgB2oC:H_.)njIG4(QrFx=[ʸ3kQZyC"c7[/Ӷ0&h(\sq!\W`d=ɴlDP\LS, %_Rzꪟ)X3qGN7z7GfN{>0{+g=PAĕ"Ñ2P!\SxFiuEa J>[ݭR'K~~\in1$zY Y`Wޮͪ_e8h{i8=F LbJ1Dn ԩy}0̿n\A*nDOc XwGhQ7!-7Q Eqr2Brgj߬i24Dpz ^K?-.rbn)J]!F':gɓ&}&xU>¾;.%,YF4wj:䇺N&C7 p,&,F_=v:,bo֙ q=$\$>ɟ$'r!lKk.r|ihYӝeXUbf}ȼY 4e5$]7wkU2嗸UZ0J_lΆ "\B]y6J[dzo5\.$ j~BXn/gƓ)k.w~-U+qM6mS1"iyAW=K\Xʵz/oy$[zP!Sçqx}weӬW:_`F8{GڲJReuV wqizÿ^8C/EhBd%NUkLC u1I_oҔ/4CYOz("wk~F|@nĞ. ڢW1JK`K<bǯYQ}dc~}szFXί+&xC.wD Fފ4IUMImϸPs"՜d$ f ]͝DCϗ%k`ǽ&XњM* V´z@$B;FލbڵW%ܣ\x#T}y 9O*屪BMBg\ǔ;4)ϟ-Z(Df]GT'!Sp9#P^:kN -{;k{edJd$ f}MIJ9lg,w7pƠAk6ߍW7'Q/r{c(onV$/^}|fF׷KkJHF -mgJXk8|rQ..wog絤g1Kq*zFo20|uA7do_UQ \(uS0@xSWm[6!g&f.(5͐T Fr 1^2 vC8j%4O~X Sx}y yAu2`kPF(|Mvfig&i OϷW(H7 l)-m/?F_ 40Ozc 4j[}A?.n^w|i7du9F\*d {$~:'JA\3ykq_$nv`=Hҟ OvcٝABK葻+ 3 +XB~~,|ADqV.2YMK'o>~Z8[-"-ئ\>NkEJ'~^$wCrBs KrKWpI׭!i8U+$~zV5õf$ѻ!|Nf{yّ&U{OH=N8;E;Y-䁄-J[m>K֛IԖr_FR<ԻjY]O}W X4PUwsgiAc3zUVW16eJkJ&TG"HUR L;h U&Rf3xNܫa;"B2npz+ЮZ~gݒ>ENÂҎYTΒ~ ;jwSb3l2vĝ#A&I0P\;7p»=ǽ^Vo+AiOn<-ZobZf^,9| ȳۉ]f6>ܢ491C5^>ZSbvw0ۦݣXt`;?S`=B1F;(g*f ({G yHȀhgJ+O,}d.n> stream xڌP[ӆ 3h 3kpIpw =aWvΩbW~ #W054qa(K0hȔNV&Ñ88mm8r01p 8}$ LVN6Nzz#==m8.@c -@LhfF6꿗MF6's JF@'IAmdIGJk`Hk`KI p:MM\L 56wipdesJN&ccw4@_ p M%hc0ZDiܜ6X9~7p1Z~- *099iVHWc16qrK0}66!S_e;ѩM$aff`ggdL܌@o'_=lexMM>< \LN&ޞ:@#'f;Z'3r'+Twu ںrJC9e%vz?StJGN#  F% uLMfGE揃5w373 ~Ta~ȱ?ZNG7 Pf~(s?d82s?T\AUn*?C?=kZCLLLm,jp]i&o`vE]"f#7N-1-u7R"81 M wxN:;5l0ϛ\og(?S_ͥq7UܗCiM6΄.^!X-03!Ax?q_1e{`{|h'u~̛|Ê#?!zi 0tS#ʐ؝ڍP4kOڌ%؄r3S%|)AKiOY'QXEXA5YR^ʎ 3)ԣi䕮=`G#Ԃ; Q VzkN*mdD'$x^gcbg/tCht' g؃Oٶ }jzbz2 \ irBZ=J4fn3$VrQ3;x:A`߰<^2.ԒރUL˼'st&x~e9 T)u%Q{%&M%R]R;Y;a*ZZ<:VWMPq۹[M2.S mJkv53Tۊ(F0xR{?gX0m)4` -[B!{+8:W3 :6&ќ WHǨy% Xs7.~B6_,`>2)[  |~Rt+ %0QMw;o/~˺s8dvLQ܈#/oȚџ/ mRF۟]. p]ީgˀ jW{T#RH)X搼h(ޟE/iaM.p87 aٓ|Yh! '$*@vkp1XNu`!swI5@tg _yjUmNe:I:L`WG%H`J>~r%?_7kwƓZU*IHpS''s @ 2f[_rWe{_SJ*̧mtj9H@3-Iv;KTt*J4y/E3Os*@;n&q7 $,mKGvwsȁ䋠xf(]NqZR@XYY8PHoA@aQuN;G\0Dn,u }f݊B\=0Cp_cv6sY,HQ=,6fEQr>z5R<_}G" }$y׃.jFGӏqa]bBRʕ'2G , fQ/o"-x~6DvgyH+{/`OH05rV߃$ߟZqGSms`AZ v&|8P9dtLO[ԗLhD'x+*:7vQ^k1nҌ 0jGm] )H: }/f,#GUY?ډsFufؓɤtsf)4],{舢`H,tzKOx Tz UW0]3+p:J%Pt;قdp&R#jCck`Kj/&'+1}>v} l+D=]ȑeyzԷ(5Rlp}ɢ$;:#fTDFq1Qq]ؿ^g"a'c^"Vo 5P tsƵ[0k=To`jxvE̿6z zQqPU,, UIK͊O_!n<8uf_)~0Vߌ,>A?v(/"WHXH4Skp!6?_ب>箒4RLw)aӢ#0HCֹ6 BގIhxp>CWQ) }l&,h'k?ÒQSDw3%@:8Ϻ@ognybM3 eģ}8:ABEC(+{XMB( es?S=g'əŋf1=cdgT Hx rRAa.^C}.K aKK9oW"c"]#ؘd0%$WsMI_: 0; _Lr#hɴ;qum RY;`Ǭ)..M 9r0Z\/8 =&ogfb֩Un1Ҵ(X CF/y>HېO97E3Zc moF7@JUbţ8kiqKI(Uqİ[[=vJ|ev& W=9 |IǥCj>'rS3ސZ"LOk̀wϷ1;fBPx<<{Q).iqQ(e+*,Zz3HӔG7&P<#[O#M Q(`…GEC;wmrW$չ=aR-w}}: 1Cbg_洐.9tK9 MMJL1 _XI@2PUFl<a}cPR_(^7ѩa]Q0$b\ sLxn\hs+"Da|;E'VxOj ow2yx3 ZyX=cԤ%g+71(゚X;6F*NR~YMmygz) >U3ԫݮGy񫸖O# II] "uG2O:$v+vrac*<:ܴEѿk,m{R_j"W.XYQW r-/:*j)Ĝ<0_75}ן'x܇ 7&$N F]uz`a?84Nj0xTlr#IWUyP:zutQ5."W߸C_e*-M˚y˃{ ~Rt[RڈQIK J,=ݮrgA_Vx錆4&c}XxkXs >-ʹ2*iζ(9UV=k\壯_O˜}CC gƨ=4/Tw-׬R;b#O(f-4n'x\ n&:SpEY]!{ۉދrch۫@֢x+˚ԂWzB[\B@b&Q"[Y۳4+A HTr\|ǃxg_MNF|"[U.SzdO D(?FUHz/7jgX}D r%!*wmqrNKv1nz%0Qf&U|o!Ͽ _t?4~\(ۚڶ]9\Sj`Ay3yN.ET(?zcAj|3#]uF 8y Pj&BjeeXO<{?XGm:_)㷡vcw,wM|(nH JHa TS3Vp:Zt]T\UK]\%n`ݩ Ꜷdԯh2 ]f A+b5z'eR'J Wɻkj]y?& aşҵW2-:|)Vl^X@:0|䊞*ѵ$Xr>,Sf+, T8=M j!,^*直{ 51 :\u;!Oyl*A\H3?]9KjeF~*Hwl3N%⪡#iKx0&p3R{*-drT-fo[*i5ת@&ykp wcU@W1vh%bA:d*pg/0mTtl}>?r* kRs f@)YXN3ƴeaOx] m_` k1lC8b flm N Z4-EH fEXٖ,Ͽ};rH d'l~c RN8~R(8h~> 9 wh4S0"y(,32JnO07HDH]7\Q D,~+Ybb%an @N_ e͝O!NUy1) ?bLQJ.T ==bF" ˌ ܦrU/{#0!v1|sT q+I\HgP_PLb'T 51N0[u+SMyIyO | a ԲNb!ʦ&8:LU6@sqp8GW:Xp!x̫kJ9e_8JJ 8Nraک??ycFOF=SkFz8oin=2Arpc %+Y}5 S 4[.UtuN( |8 I)3\A&IJ۳(H`^V2´[Ě&9x51,qU< T1dFiR8 ucorO#!^1I(yM$!d2hn{6E| >;(tq%%~S b9nzMe+enjƸ%#blclS9 BÿXP#Ki,P-HzAowE-X?τ珎U\GLCX:`#I*9(2]XHjтCcg)$ޑ\ĮN_i5!BeeI {VjKslxj>e ]j1gvP_u>KɲY#3A꫞ T^14FyPAMIϬ#S,nّΜ9-g K1M8Wa+Ty囕tys1Е^TQ9'xO)Lm)Y5D@#qn5ՓZΔڬ)fB8Y_Zxg,hG̐!(Sv#)'{}1KE$7V>JrXvv̂TX&{׏ɵ7>`U͔L8 T_3.*>$زuN8.83E=ƛںTC,gҍ dp)a(p73AJ8f"K[`π朦-;MGI6@7NTCpbz>a`$A"DVV`15/vxn%>.0 vA#ƣѷ #wR 3B {~u)|M[ Q< ^Z@Ij*%_qXXJ~Q/Z:8t@WYYZwXm-B߰Δ ts 4SE\Wce9?)[D_.aø 5A USHj̴%;szzfr&"b)i oA[&:#T+NPTH](VLTWԃ\M>[])w|;8)%P1ՙfrsM!4ws0sHւl%S}x7B0rkdt B8W5MELE='v1}SfXȍf-'=(xjd `38FW攂"*Fw]DŽX8$|ihHWfuO4.>()\2'GW;1b/HǷ_|=nnQW~ɡV{)8U},041AC`Pf )vU]HON(DVᏡ&jAc]Ǜf>} OɮV 'DCsc7+ROo6u/DCsƖ-$ R"M_~3„W2|qŦ{#Xڼn:߬V=7:5^9zIzYuS&j9u/Jf}&7s.[ 3͋<,wk *J0P*W<'d0lhaqF1/o5K#fv5N܎9*_P1Lz( 5PR숀f+jiIJ,Yh(=o#QGw/&* /K&eoS&4OstDOӲcK0\2^J:ҩTC@kMWkڛmZny佊[Sol0$QMkgdMMsjmx\q]Yll5ꌴ? | ;J#l^^%tZ:}䕨V*vcV03b yjL.֯@ = +ASY eb0ڣx3`[OLTRc=( }VB40Y. yRŒ$[x_AVn3:rnU)ظ2M?5jxoHlRlU.zL&FeY5{VJRt|63xxXXߘ=DXncWs*D Po xӭ!oH2fk$4;uvi4}U!N9mjEYNb t PcïBR Wսlae5`yḯul[ Q`JSWj_ y W 5{̧sٓǔ1O_csv'W.~Y}92LR# `df񺥹:F&>?Öj}^{ܮNbr&J&QEeFUqױZwGٮaQ`%H(̔tO)xΘQn֍%5')η\߃ !DS ޼wĄ5tWp,AvFWAǬwTfoƂ Bzk=}:3S ?퐷%PWGn$kr?^/#^0˶OL?/K&۹jgfvM~crSf4=,s'Atm !S(e ;8X-qZCNٯ~ݫ\C"D}b4۰}ޣ)ſ,m(+OY,̨]bڳiOxq WȋhL$K`[M2;<'y8$ԋ T(VLE׍cFHu*{mWND <׃2C0nx݈]Kۈv(D7xa0`o=4{uJ8HgGZn <g4$}}*#.ceW^e6Xs]9D6E{er~5b!XPQ$,&5iFȌ/έGK5ZN16?#p,V2|NsZ:j;Bu]Z5!z0~T|Gq|عFtn?kB)^K8"ޅPkzi`zYVĨ7Ȟ| o:aEMl(3r:M,CƆ%_/z@B]]JbR91n õT XIkݶyxᑠzeG!\ VJ]c(7?Ӣ:cq ͣaHCd851 #?7A- q$j6_6eþؖ\SR)'KR.rfCߵ/6ZJHMT0^ܦSuIb ڃ ;!3[ s΍zV("!Cs\mLkl6b1K"ؒ.@K@s)G д} fhV;p,/$ uG|1K3-+?w Rᑼ?"eÆ?酃펆hd?n _Ϯ[rZ''y͠&bC{']3{[> =9av9`1?/jDUTMQ݊hSvY|clg%lp]H> \Yۄ*DJ]T*_x>WB : /n5J=#ɪx"AwveV kl Hf)!H_YdL26lu^Hx1C'.K~bHז%27M01x\Z>ֱQB;gl=)|oCի_f GOUa3޵_|7L!0k1ʑi z s?K,r1@^# 4'T 8TIN3m̓lЍG"gFJEO(7]tn~;Sh_\%}PbdAqc|ZιlUW5\F˼dJm/^(4buk=Wl5 zSb'M[DM؎(rC@>oXGu gq5]:dQI@a[8\S; &b0Y]j[5oPر 0-.1>_JVt/>«{d]ICJV`l?>լN@ ZQ-K⃪~EUyRݏÓ^߇Cw'`06(9AGy"̦r/5w9%>r Qk+@Ea af܎>1ġka:AZ񧕖s_c#9BX@oD:˫Ax8܅>)Q.DZt"8JrL6m`LOٍ!fst؊.UUVPsؼ57J5dk3KA-N9xtT!YN %(0 i$15-k%p#[Ź:mA a83Đ6o__q] ؍7l^bb?0 od^0+8B}Yzac.զ\"BQUAN=@bȭ8gR @ZU4I7fi&5l<r8キH" R7\ `Ýk\Š_LEyT Y&S S:dEB3|MW(?k3b$]еO}?99ZHL߅fm&TE#1Q{[qJ D6~}CLBMB͗(t}P˒[L`t1#YK'hMeVgԥ^W'*!de,A_1л y6eE[¸æ>4D淌. (pm,J*E"i W_]In݃`HLx99]\ %El=ٙO.T8?^ϼ9춗tej{Ió=%FXT2MB{f2)o㥻-Yf%ЊuXǂALȴE .Vft+ʨa-m%wWq8$ׁ;Ő4zgδp}g> - ;{\Y.SM<͌_NRy:8fY]ux&A ^6˿gI>Zr"aL߱w+N+) ֐9u `T. Xn8n ӕrr`J.^B}"cr׌c{Ue HM'U5լ`fCS)vÂۓ _@SѰÀ{mlZ ߺY ғL!6=Bё1L'"W_;/{4ڪvQW災BEl. ƚ~h@@V|_Z:5# #Cf!x24լtY׽Q[zuot-OKà^e^;"xgULo$SmL;CUxkj<7"tŵSQC9.*yO:6 /l`I̜: !'t~ِOٹncOEާ LG|7n%&<fx$;ˬ,9W+uD)fP&*We|f0/^G+}MSx3mlu:TmN/=O&č$}ÒӍ.(ɲXʉAUHqTs"V$l(gn/3׭+oinu;VHՠXn7@W-t; 'L3{FԪ"\Kp[br J:o*Z:cSE |ׯrV}a<ķK ;FXm 3 Dx9v2}/խ/jʊ~%Q5/G,'O=܇ޛ ;Wt(*{Wg2 nO}bD"Qҷ&oZWnKlLKOKN}H} E vC2h)L:r6Jڷu"O0h<9ݗkzBe p6.Fkg.+0J endstream endobj 624 0 obj << /Length1 2731 /Length2 19387 /Length3 0 /Length 20951 /Filter /FlateDecode >> stream xڌP N 5ww  7sOrzYmw%:P `aagbaaC԰vW@tqvtBhI rvVv++7 .| Sk "@@)bm ߏsZ+//7Q{@=hnjPw4yOnnN|̞LL.VB Ok5+hd=Ҙ(]Pwt4u@;ks+eN@+ǀOsL@;;;:x[;X,e)&7/7_v SSk;S3ߩDU ͕ j=$]栾{3sEaĬ`$B-8YXXx@g=_NA5:9:,Ae-?@;O"VV he;:H @4~~d0 G;1$?%s2r.^.FT'`O 查/#hobyv7EzMMh3AMYgEʺ6DFZJY{-T=1=Pt;k_ @+gn S\A ڨet0wk8..,bvh@.PuKG,? ,q#o `q~#Vo`̲]7+F vĮؕE< vĮ~#o`@hF\~#ob~#P֦"V9h~A.-ٸQYY`K GkWA@ if[ ꀙ-Y+ZW4A8A|v7-$ ^f?5tp#YV]4I/;jjoPY$O _7OPENXd@P6@P@P~g_k[jřSqb9= 9;To5(w`Ggz$.WSe֎ϓA';?*}#bv>gwG7 cVPG A殠_RPnvJw (t.@P'=Z@|.;fMЅ_w# hhj^qZpr_;wͥ 6.'d^4umcONd63Y8Qmn augxTiQCO+G2ٝEsPګidAlzxDwsTbGir+1[+,L`[C$~=| ,v.kғ]M:H9&NtN(+xR҅F?#]-=a}v֠tOOg}-wv76%^#aoxzm+(|lfΜԻ$/Q`S3Q0Z)09 x hץ429_qLe?xzxۥ̔raؘ'aWCdF1$s/U7=}:R8g\YlNnEt*v$t)4-]0J+JSy}O@q b(@rDb*?Vh=rw4TNmJ598b/c7uRVjMTB{WUO$֓dL-z{4F4kSI'.eSaw.v?I3[a2~_!it85:y[Pl[o_9ЭMǚ:@frǬNpe:;ox\,C(ԷzEH{ * _«W{wUD{֗2dqKEp4E7UP6bdurrltu$WܫH>qt9}M\SyvR`1\\r?CHYmv~lEI8$x&F(y*TN eWCqߊ RnО$5hS0@F IW"3$Mj.ZA1~,?B $vZ~0B32!kIY|"BF]@CϑVQbSc.Aͳ]ieRTIMn"owc,9y3OtϮ)`5f!c|Τ]&+`cM#ihV9|}o-DJ9oyt .'vBe83W]|@iBuFJ'?$~f=%[%3Ĉ+eI5p[fkIm6a̐&sPN?ځWRr7(} >E6Ұxт {RP bM>*V  I2渙ЧO; }29 { 18DLer%|IL|T't= ?>L2͍:ī֪{ixyv+U;YBasƹI#Vg J(/涜#/z2Wyb&#|Ԣ9`zX"!Ԧe޷OSdet{"ж#)❀cݴx0K^j^k&Q1/Ki3&OmLG^x1[[_X^K8+pc*Ax(tEz<7Zθ5̏Za "ڕPg3YcK W@Pr-J3\EV3oWmF#V|AM/Hd㶈i+mL8Pl;noE2cR+f;(̵X^W:a2 }'~uq1}ӽI߾( 7=A$G=hI X5uk2&^SgԠ; ͉3VlyD;WĬR%L $!L)JR2(9rhXΦt>t-jY}Z2)n'Kd˕ZP4 O7vs;.7+ x}sBac@]ȱoFڟEyfO}|b).-3N0S]A*c-8j=o/G )dٟfG_Vx6J~ۼ4ABpށ1gܪ"љg%AHGq#'jNƷӦ?I!A0>)ry'}j64qA{H"{va,̪~n} KqfB[_s77sѓna8+%[aumce+lDÇз{YC3 NYSy+X-dtŰk4en蒽XqW0M&YcCuf?lH&+hZMA z@HTfZ-cڕU)0ߞ E-ZTbGPϘj6Wf q#Bro k<$Db8c40~~xu5r6]X&Քʳ2Fu w}>v$IK-q{_dKwCHI[MkTmu#bew[ͰwKKZѴi?a+u'yzY^a,Xq1G1Ɇ&UP/tX.4w! X^'r_Z Dr.ɸn߼5gEu $ ;'?Os=+K2i/udGi6_4p7ζ\ W8˥iQ`wi<(DLs[(:kG&mRzӑ) Lgx*@g sƾ_De4Hz@lPg@̓=2ZYSKNr1-3HTo`wHXP}HV0m1/FJ4m^g?],tQ3 >N^P q"1E:]/5WWp8Kü3 ·4لo/TȝueaC",͸TS$U\}j62e7Kg8EL9*( ͒M9EyۣD̾i0g%G/})uXM'9@A K56sAk_U_uy޲gK) ը'7DF{`{ʮ&{Q+Q 3?oBչPp}=ApbVhP00 8ӑ!yU3ًVy]oW:n)l([{V}TT'*W-HqW0m"* <ݍ YK{!Uo-ow eᕠ v0m*3iNs[ D1Ff] w*dfSy]]1~H?REȹ |6ln R91 ۷&1LОB%lMޑ3(%z^# }+%if<0yb W ()7u\'_k4u ׇCk&# UZu^WHt;S8#]ъⷅkSX\\k ǑHKY)9R)2 ,^FX`^PeC7fZk7,gt3T Bj<ͅm975} :Z|Ym9dC˯س3l[51Tb6q)C==fc,ra/34u[ҹCng,sQ죮IX6EcL$R1ş#f=)馾fٲsKVD7I}K~j_ѯ*P՟e aZ/kXFoلpוS+x*FRKy DB/T^V$z"ř4#l\^Vn[; 1 s'(f?NҔ4X :>bR=kyۨ~ˣܕ3d/ dCPJjcOWF mY0MZzzRjW8ppTW5OKr8줜*lyd|{@ύ-I')٢M0Iox-d9f!ndzZgC4E=\@b6m:"=( S%xΐN}ԟCqpek}YG;E2􆚾('H!s#_kǹe.S|ц,Lۣ[q#a)\6\gi˰Al ^f*Y _ւ4G>|!,'e9CY;Zo۵}b7N9sKxuy0|?%,}ҭvpvz8 ݲVОT]DSNij _8J% M2nWq>}v$R%i u)T{ {|SML1+Q2|JWB˜0 c^х "\'D4B lidlo֊҂ַ/݊N0JxE͈E2hLL[l,( gۃp˳ũ j6#ԼByp87.sU,RmjHP6>hp>Nc:DEu+I:=${LgmRwR$Vᙁ3垅cןG -J1s(^*]ijs$A/Wq!êF}9!83 ;T yޅ.=J b&Q:qA^^hY{8]4J &&-~ > c&.~D%- KI3dd7,aQ q~y1 ;˚<ѥ52TN Y ks3h!Wo"=\92U)غm@mU[ޏ!wM}4$PO|,HT3K-8/X$yN7&U`w~>^qz.{{4]zqt,9KkjhX=nZjw9n%9q#CQ[;JrܴNI?x:?ބ ăIY-[gpy4m>OVZHwvf \>ٽF BZaKafؗlSߎȤ mp|(12k q A3{'4kxt=C*5lFwx7Ѕq빺u~ґ7|0E1^c$4w"Q!N, $K3ծ>oG0){GE). |??obq&0"ݑ-h`5px#֢~w=HNaUqA%u%"bWa-"(.IsXzU#XcVc%.̍R ;11}êb$ձ뵔jvwчFȆUѻ|bON+>6=9sj;}J8P)+ntLfk x5p ״Kf `/K7+^ 3!&驒KzydzXjޢvAEFDԡ>R=sY /aOF$@M [chwnWlhydCjzyD>#S#ŮQ8ڡA_& {p֞UisQZo11ƾh-VOaa-:F"ch`޽K(h;/yu6=1o[L8|F' Zjt0r_Oz( dwk?%W"rJt˷ժ(n3WH QofFu d,aEC>f^?֤7?Ad[|C^[OݑX{]6#.]W74 {>ZVJHA?Dtu<9δRld0%, Sg"F5Xճ~(\8I{зOȸw$?)r~۔hCA6Sjr35τ+$|Rs&Qif9D9,!(εOHs6 BɍnIxh /~Hρ R}j~CKzlA~w7G!F.cwUw50K -@9cnWމ[L?^z{kv1]G6YV.7k4.o%"Z9g"1}~:#-?^pJ$MhPc:jL-ěcZydiԀMY(kW$d;[g1Sl6k/fI§+"!H^#52ֻT͵6 +uɲ|w>?I]n0'_6W#6?tjw%Qq2s;!2Ԩj=o1j/WaۉbXEeqhVyKo7:N<k~$8-73&vPR a=f'?*v-!Qmɼ֩r6d_IUŸHr_w2 ղBLB&\@d("!R[:/2M^s E!\iezX/5y'/O( agmqeh ^? c_`b8g$S]4r *63woۭlFQʻIĽ4 [l>MSoc3Je3'lk"bW8BlPNTP se1ZV/1&c&dxԟ) a=^*a'$jf\PH 2߹c?:܆b/\Ýe .u0zr:۱˲۹JpĽ*OA|FpC[oYIC  @^Av vq%z>|4b$֘'8%ce'+ :NqA\ Tu[ LnCw#lv8>B W/%RHhڳՅ&x䱭p!-jV@<"fs6xQB=Yvڢ]Us}Zm/M5a&d W-/1wx'ƾi<(;!24 .q%&{W3T WK?OYƼ;s)2@J0ﳭ}${n#݆d_zx s!}K>" ىF~'1~.9/bĬ0Wh~HoV ӭ0)O뙤XfFiP@D F>O:ui|ƢH#_ܜ8m2iiYF\Շ>{IPo+\ULnȘǞP YϪQu^U|+1Xm!8 iJ(D mb1` 1JP?+Dk ` hFK$>ϙ0dB32̡#QD5vYh.IBgWnh.w* >}Z^ǿmeŜ``>Xy eh'Ytw̪+|<6| O@kcꥩ$܄`Q8\Kiwh diX|1l(߇%aXuUGOOs_idϕ՝[_Mj+F[r&} īêWp_|RnD$GmPfQYd15gGk;9g0j u!`;K:d\o` -9nsHmPc5eE '+ :B=?G[hgQ8tOu3W!2V]>>0L/$J4+Q(},(oܲ9Ɔ4z!i4z9+hȠ)TfvsSΗP>P6Kb~Z6L6Zٜ#Hh4Qڼ-oa]L&tv\E4lQpIS4+?]>stV^URt-&h\;osN",;6~sa&u16p> UzmG_ROCb=2\lEҌ@"Թ K6k|+]Oeꬣ'3à9Ou5kR̡u% [P/TFwr땚n5쐄M8sU^s[iҶh~f aEdYߎE 4s|]ycj8bA%BaP[3:'!~Q )"Xu ' |K"BSCV/ HMݸDBީc4lg!-h_{u^(Y:!:#3,P5$Gp5+< Y 7eZB7SKBg&y_]bE15IMS!ApjlMNM!}ND) Zj0.^YH N7dgt?/Xa\gmZ=jykѝn,*aN57$!l>'~^W{np6?:WcHz޽Of㳦aPbi*s1^^nh svGDD> c^ R$ﲁ|w(lP BiX8G,ܚƹ!/QZIm 2`.F).}z4[!j8Et5+oB,T}y@ߚݸE,rumz{(Q:!c%δHzh-T?[|q mq>ʷi3Y˘oJxIк rL. E,Ѫ ~zypUKߎyKyaP)4[c|~7}E+U6G%Mu  {j6H/;z"Rm}VZڨCUm~b8[WƎx^NxJź/iՆpӳ;$|-,y"x<1E~T^l[ӘԽi.^l_XdZyݧQT fo+$j%)=4o|YLgQPLT>doIi-"R*jה}7x t۵dЅl!z 6[ #Of$Y#:udJJFT`]c̤%oAEU.\ݷlTrw`9*̀8ׯ"VX%$OntQ5E}"gwd9uvR^ ;>X|و%n^Rl^-vZk Hw2lgn!n?K"WxvuܵEc\_vv?H.Ő5>MyrTꉟng 5:ϑ;0&^a]Gz!TʧBQ\a̪sr 7zoiLc)g4꺳KIՓQJI``hi S{;e{3+>9YhzCUihZtsW$Ј:?&<_ұԺ)Jj ȳkӸgKgg϶ȈO[E]RTjCQ 3CjrS|δ,dYrܷo{V+/9M)Dj E'\ Xdm {ĊCH YbT70ĹuIBsd$ҙҕ]}kw8~G5_zC 7,I՗`P4N] "lؿR)4:}W0sGŸؤ٢^:qȼOlcCFxvtc"!ȜVz]iVI@[*G7M{i!;jɡc_ Pp̂/^"9uH-Xb,> ܣgb*-sߴP%{]E잮g^hkZ?N]k8ȯ8W7#O<;ɷq+C_|ٹ SaߑxМk^0@ʊ9{wYiq!P߆&2&$>~Nu60A@nJV P^3;ZgFl:HܟhD, |hӻ-ҜbEՊEio@\--Z s锤!Aȱd$ ,1DMŝiQ_]X\Po)͓9i0PiM–a)z!Ge2:Njxd8'Y& oGg"OAƥ0ec?vXMfd);u ]U,m${#/-%QnېAlihH",  T||RJci $ќ̉am%=a~$:qxᴫz^йyx'yT&N]iyJu( *b#T (Ir!f M#t,a2a1T34gTs} |)Co* D$No /FxzXoRѡ4s% oMCFH\m"Osy"gH}[uϋ5/9l j}$\R|%F}A\ "Sl-jxTry<u=(\DÚ[tz M_4; ƽMŏ7d^kdEzu\!>lҏiJȾjaa-+TSҏq]g vǬ|U9Hd{)'@* 4Fqkďf.pDax:Ns*zD1Nj,=|&]U._ 8Ӥh+"5VFV_c8y]h 9_r< M#eor4GUQgeBpmx&^Z|1"-=9Q ԵeÆjeN|Iv|rJMb]? u## >0?NrCEI Bqg%V }xquKcBr="Mml/9 W;3_;vo-6M89Y5 ($nbv͓?u; n*x+%1S!˭C|[l$ E3aLum|N2aYG6ȌYHm>Yf2qZg *B{K:S06" EJSͮ!N9oIVyEDF1K*.,܂PպJ-$%?!wSs+=5m`l:tvt$5+TY<}M巴Nz^"kAUT./9ˇ#oE_ι.yrE`uK&~<@(@ D+@3ٮмAݜ*'T0:&jxtQ uVbwܣbӡCX$~Rs͟]K'N{@;is @BZbH%V֔>X߻`z&_ol佫{q*Ts9Vda6h΢j?Ϋ1j0ˉh}u'ML׾tkICuZU3~ I⎉i;H/ -Qh=n9gPp&?ɳ0ب㜿߳jUO$U虂 E`]p8iD7ʤ2ᰛoY5" =UeTRE|.%Vbh2-壡C [h:tV$"Xn*M6]=6C(LMgI2=dJ2fu.KkB>;4TGtPlDKAJpaϛĒo0'uh< kL}vd( {N +:%! 3K<CC49Q9\_bPL;P!ĴcQ4,gq1dHVIݯ}+ -v5@;ぇLnZ}J5cs+oZ8`g"T B_œF7Ú3INa-3碐 @N:$sb]Xh s&z PnQBBny% O[?ɳ%fzc(ҴK `̓k #L Lue҂Y{։өk8mgftQ\$`Tm8a tz|֠2_>i& PB "nC|Rܯ_9E=JfʬӍkSqWD1z=UynRuRm[#6HS 3! ''gI?1ťI9J3#C+ z];,~ŗ՜u]c ~c0l5@8`n'caX+N%HzK#ɏZƵʵa!)5GI1ܻ>N)=ZLۆWAF;~ԯk8RҿEf&\.)m(CK4dcRtWcS9y}=VW+9Uwïnޭ%78vp2"ӢaWP}Kc% 3ZH[ha,X^Jҷ~>@ P:_;PY!=~Ұ~.I՗RaP)S EUɡ()hLc^ 1!3s1! xKIlq~^gp v˹]-fh"8;_|ttipfwOjQ*mh2{Z`)%GѬs?Ts5tQ?\U…b*DLSx+E?O?Ǩ7ZQ5ڎF]~.Eef,9~\Q=f^FK?(e\H,J&ar.[S&n3bK0#.B@Ű?!^M ke@45)wQ{^{1k@FܻvB]qvz $3N=a*x<;Y]l/kgi<-j?21>hD| J͝#u<e z 3S73͑x?LeazP-w*E<b H) _mƚ@?lZ[E1fdAw61}=eJ=\uVvffs]p0J7{1t3\Jz Z҅5Y/Z̏H0/=;J ̝w[a6z/ROh g"18;_guw\6QH[iFhp(kprbJ,nki0Y!ҙGT fBJbPX ` 0`n%ÄTeRuN>sF$%=Թ%`X!1F~'i#>\pDԕ4=&&swK3MJfkiy6Z^2ZS$5toH%F81$iZ8?ڮP$j=@pP'T6<VjsyOw"R,8iu7UDEsF $\ {em)>\:Ј1\ns&x#*Է>bylK~յeKj6[2;"IÑߎ"A17mM݁s6[ 0;ntRwaŬ*#qps|@al(rNJ/nE0>ss}DzPŌ 7X;Vsrᥞpi'bUoUl]57.9U|aO%%kr:Ẓ_}~~=hT5ȣr1Y E?j(29yf0) t\'iWcp+]!ZegKK';ٵB̆TiMZ"IJ Z|D-l5PM'CBg`kn- UjlGFpTW@Av_6bJAHok)#M<5y+y^^~ɷM{He*ᜠlO@~a2n.RRA@L (7EMgNtt`>䠯d(ɡD~YoV^>}xn 9E]bo5+[/vF >]zSNF2`tI岣kǻxP`!7BQ'F NR%2@;x7!َE>*}ֱۥEFբBΩ7[ :w ϋ"vﭶCD+J endstream endobj 626 0 obj << /Length1 1569 /Length2 3126 /Length3 0 /Length 4104 /Filter /FlateDecode >> stream xڍT ?P,TSS_Ot}A &h7A;҂(px``ڗ@xix7` RAJ(h_pDS8H8Z ,TV? RVw"?䁍Hrkd4C%x@\DDZ @%h< X?:0ҵ, L*P521$__HBg܃C$C"ŭD?hb2A~ۼ@@ +)ak ffq%E @$ AHO O2u|p @}~0,H~p={={C9HA@( EeY׭hq$@~tcid?;XXjo!T)ת u?G}iͰ P':[X�&44kCt^_SA Ox+5DКDů7 @Z9M.k6ώD z*(M!UTP$kG`кDc,vD]*G~Bd7A% p&%lj7D"8qdU&m *p&jDQƟBa=be'^@0@IEQ{aC-u3_=-SIBÇ9t趽)79@i"a4Zۨ_.Oߗg|\lLJByڤ w\F2KPOjleq c"jdh{h3m?FyKR|gǓ_OQ,d -t}}R+y>[[ʅs$ԹbZ?-JHI۷ɳ[ =7|aza@,kgf*nB 钂MI;/de w+ȭm)ZS\nb3# (RwUk1o:B$S' VS'EfsrVB)fHkvZe6: w-ʏTl]ڨLܶm"#3ÏWC2vf#S>%@#ȯ.yn%|zvb͝KgKut7!Ĉdˍp?~P;0l,Ewf^5)-ͽHy."jo{tXGj0(tIO6c&i?c78b4n;,,?V<ςSH9v[T1$>8wwޣ3qӶ;-#CQ;u&!Qp:>(: !TW%>3zSxvhQ0Q3E'W:;pҢ?QMhc،SFYQubË yS. $-%Cط e 0l w#b^Vs2vsk`C/QC6MYj! 嫧As L->=L'0gʅ RymƎ9eX|uK\T=!ǖ)C#!!jCdM&/EkӴr`b*/xV1|5\m^MKukdz7IJ$ix~"|E }*cǝ}Wb.U,8vRdkg3K y:XbW†Ucz''RPA=J͹߱4ĢA3A=WmZ$0m)dWe Ci_Ӧ(c/Pj]FG-F^Wqz[3+%%S'{H5DuFo{΅Mo\(,?=Wr{ WK&ɨQ:xV.r H6}p0gl!X%Mgsqo;X6,s\LTQf (ފCf\U&\"sc yK@6nӰmC#',[( Km`_fMwU#cqڂa-ΥrE';δ2,+:D{v]|O9f uN^'"YbRvjf5᝿[[ ݣiXk+%k{ʰNm}/7Qg꓇ 7KJ70g*$ʉP=x@¶nv)lLYirWtX,y ES}ĶWF$)pD<0|Pc|c+ ,R^x8Ȉ"Ց-r{i oޣ$Kx~nZ<+1c!V|b{N~|jGImFVQ]ݵM|<>a\&{ lv~ .zr|^pDⅈNX!Yɳ6l/?4hy{GHw5yagAz+2O7ϙO e6Y;sRoN8Ocy&ЭBJ6>,Exg }= S,W۸+v) D8Ыu389;!Yg( G=j endstream endobj 628 0 obj << /Length1 721 /Length2 5043 /Length3 0 /Length 5634 /Filter /FlateDecode >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> stream xmctn6vضm۶gNVl۶mZ콿~=zUWWWw9&=#7@E\UHCF&lfj`/jj 039̌L0dG/g+ KW տu[#S+;+g%]ōٍN*ffWK3@DAQKJ^@)!07s6(ZdL]̨4&VBofή3wvȉ +ȫDTEFYۻpmfh#d?X=#01LL\fV0 MMrfxٙ(E\͜rfql濮FvV^C2-?*+q+O3SE+vuv3Z?s#gfjffpϬ:z 1(ȫ+i O,fo`jeoPqO#gQ۬hd /f\<:J=73#' d_pMܜ]M?d2343Y_q0 Nm -+1TYa^A458¹Wß 4ۻܕo&63;& [y-&~W׿SǶ3sMXRb9v*C`6,Gډ_[|ң@3;F )6x_ wCm`YPx_e-8%s-J^;$tŲ!r0Y~ë p )SɫZq77K:C# F .{=jϝ!*)=9B_nu2`A\gvLX9 uTl47/i(i[t"\9;#!E>#}@ٌA4Wg A2ĘKFS젷ПUsU02 _5d xϳ${zf6yi^5U^A S!}w)!h %SF;rB90.3=ltf_<9Ka(:y,op#E}r#丂Y |/xISؙAXgbER^9 s-'p'w٫Y5(ӕ|3uVARb$!.D 1@0]I2 g#^pTNYh߽Y~tl2 W*TXQj*zl}t-f:nVMoPX"*Z_n[7*JSkU{uFs'Ldjig&kh֎ wA3tݽJnKn9筼6[o/[x ]V wAeDH~3 }Mg⺈w;k}b21%:woQPK"F\H1^g pHUcf Uovey1-غ aWڠxCL|JRzV>= ;JHA[;`ك;֣'-A!W^ aehīO1]eV O \ =V' }]^Qc(%OOznu<ĜQ؋TIʪ+eA%8d$ d>#gشgAnK}W;2(G5}3.}ysA4Ξ=pdZaQe͆փ$NLjJ)?ɅLo/IKcR!q1hHSEzsu3Mp[HR9"Wq;ED-ˉA0Qkrl(RDRT2;]b׷}7C輀썩$ s4|ɏE]Txp8TQ*}XWױZs۫ozMZǛst!G{~V7N]j[vjxa{L뽱dKc݉Z]`a2&+Wk Mv^a&nhkS/S#7R-nKv՝fŧϴLBCr=m8p cM7=۩ej H 6y'{H@$_MWӦ{_^gf2  B*|Xv-@!G9L5fI";1uCD(T>'p}ua$cc }bu~땺W"tFB@ ]ӶVc+U?0|7$:NW6U 0Oτ: T|w^)3)2ʿLXUܞ~c]'JP2^Yn9g%:N_1P8-vЍ'~{"瘲dzr~a7kTU(jߎyw\t}ƠD񪉸abR3|g$#A^!M{/pU#_§Em? 0i HGam4pqh@!#Eb. .lXp(#\u8"*57ҕ:S):e%eOÆfpgq| gy%CHNmݺm^˭Ƽ]IߕXx0J*_s~.%#]VBoKd-OSmf=mu\> :b( Xs'Jcr-t#wN%TAx @"t-'3<0zCVm*O_> 3Y%rqC{nf \a /E #!8&ѩE(g{`^ay 0"0ۯE&ymC#@;ܝ`(F[.gEq`Sn\^A=.#x腾*/\{9ؾ %:;vv_=}~ZA\7x- ؈#u))I*hof1ZOe43R"=)g*̱$D'Džs3c11զЂ$`LV@L$ 芋R? 9:X<O@WrqAcZդa,̮17yBt1f gtǵ'&"e mڮ 2y ]E&͊bc:xjt:F!3.\:8nty}\y?Z~*gG:{2 HBHU,-0I6v!rQ\WW0qaXx-ؕF(ngm( 9FbGzG YЬ /uV_l!Iar#?Ol\7"2 xϝdwP"/B`pϷ(-jК)j(rgydLlJ^l% ie9,b EU]#'s @{ܜ辧Mv%Rq A>tZ Zjj7?ݨMy+mI\3z'F`rACDiV-!vy}]!h^ UI!Qʉ`Nf?_ E'B_wZzl-ZB _O#R7|pX5J)(P~$hlOq֗߉UI};uA*8qp)/ sna5;]<7@ "{RL+.HlQn5q-&\<2htԹ2z.Ab·uTA??eSC[@0C6T3n&, bTU_!|Jy(9ExףV6e 4'>qR̭n$𨪼S4?ή0LzLQb]{& }qe&U2 ,N2J!F 7؎zotwq1hu{*nղ|Tk Z {hۜխ#4! 42>9N}p$X-o`kkc@&Ds6j,z}tƟ"*BflUbQktw3|$͹GŪ@U#dƀ6oZ9CPQΏG:j% (0knb>f7`*%FXō("یGJ84P~ e9Ϛf*NMW(s &Q ;H膿 *כ>p*,}KUhHJ{寜BZ=p"꫚(0#%)XI|C%[ݖ@45QJR$AU%>"|{e-A; <]brYZpl0C#bѨ cH-'{ -A e%WN" ih5ј*=(VA8;x_jD]|K~= H"ܞqV_Q6O0!ve~Rmܪ}:;3$qJ;*MR*N±):O'ah9 Zsپ|.nЬ#]Y=J{V_DeQ|x\/sr$7]5NFp(mLB7S.4f`=F|D, *l>ELa rC 1",/hR;Mr B4*Y9r)`ߍ!fD@MvHw>X=:rϿKܻ}&Ր;[&~Fiz)v$5BQac!788\.\kV*tXҷp,qX79bVziO('UU Bڎ ,keX*ck4 3ǫE6-3I"#~ϕ&y"`6(eGP{:kiEc [PP,=cVCM=jph6izoOxSvAb7`KidTi[EԛUSx^~Pk*<g>tT͗*υ "`ew9i-(pL~w5JY)l͟-Pe]R,ŝ%FL&F4=' qD?q )3q뽽ob5y%+ Ҳw_ᶟTl/nH9/@JD|#HCp-b3oDǗN3l$̾.yFH:D£Dv"]O@?OSyqd^D?E$d0P?|||Ղނ@7$" WPHԠ=_>qĦ6! _ˋ&s7'VD9!Kf+>U.Ө I.<ՙ@"g}#HkhmA,r3ϛUUUi>ěGgrz鼥 #,dx{kHn*xȧ1zWI=C0{_wmsHs2ء#Β-cwF5K/eI<*~߁_q*.),+w |(-b{2Q%xLaA,;reJ-JusȫxK8RdWS퍙} ^ `ŰFK$s,%ǔ"C%S;5 `AGE"q\UXx=6~^g9o_sd XW Tߴ:gسFlp9ҕyO}4 s~L;Nn Q-zquk#esmFҊ͔?U7drў"kwc)%;Ñw{=LnjҖIxL {޳lیUv`GH$5wtN$ J8f> Tԉ̿sb~^v7V߱Qb}+H1PǤYb1<:,4^4/#o@ъu524Qx13bˉN&%5%=Q$f5d" {^ lBc8I)ni+Hf= ZLtjl֪ĕ;Q P|LȰP~a90y3M8e U>F@?OYxm$G#̲F;i_3@8@HOeC%Pɕv]Y[}`5(qz;^yWmY1`ڨeO9;za0{VS͞V% WkC aBMݼ-VWҋClUZIY$(M IAbrm휹V1l_aAjKC]P \zb=& <&T WōG*nG]("50]QL%W䲋us 8 X #mdǢxgt%WR +t4 0:JV!sjZ,Tv> "[`X 2.6u0V~)ظdp.nRn"X%\A"8]e|X -~O'78vIQkN\G,^wbnQd" ER>-d 8҅AzyXnkfP3AP('NalҮ%Bj_5 F/"I;!(-'U # 懏rΑ8 ?5X:\tL} "o,CVo=Ymc4-r ƕx\oN;.H R@\/ |sN[fv)GF=9G׏~4KMpv]?m?B <SQonW/ʮy. 'Vv"3R0” g/1| ,MK<.j5_(7;=ANʯ`„q2Tu&"RMX1 >rY[P~rnsF'gB]! $i*21Hy .oJyܕ|}vhvax;yY4Ĥ tx #ݟu3籍Z_FgI}] BTllC1 KK߅@HTY>ٴ̺{n#IKɡ(AMդcqɾ)D]Owfen;E~clp 5 G}V7_%%,x%Op}zP+)5`7·9{5Q H2p!Qh߭1N9>^cDL>ezgIrNpՇ;p،V ̬Y}`C|vuES`qc:~X I7Յ79QH:ס\B/i/V&>DuɬLujŒiMwcEJ7=~A=q'QP*G-_ {5Iz]O+N>ӋKN3 %~0qzPieA G>3/3y]M' ˓pEd8щHT5N~ Av7 Z i '6yTt'T f2=4ynS׶61nwGu%m.\SHP K7Zkږ? EpW @x@W#3? d(bAg^r> (6ohpp.@=Sw>h@-Zw* G-:Ƚf3E^@:=ٹCt %A[vr1b wb /Ζj-p |=,aT\.qXĉ.s>mqN;z)k+㊸aT?/۾3tSl3VES46o<`Z*=Acppw=hWciJc8]֨}EM-ȋD詝%فoW-zm"<$7Ԑ @`"Li -3qVnn_DFc )QƲ3$ji@@IP['RފvtBJ.)U1diGRԛIךl[78uw%ϲjK2 pysv@$G™26dpMH*7Ҿ-de QL2;zxTsMv5tVE# KFmAI+hwN/0@M<'-cXH;@҄7J  9ʗG/{*[ӪR@A j(5,!R0H9]c5٪9"$;}O(:a"N)F;.YږKȟ94}NEb錖1 sOվVsУ=4g܆l"`E$1D1}tĔ*MÐr"&vޛq:v{$ ʓт!]c򙬷᭱ݍCs>嫦ByeDli>-eTa;F;far2лcS(ceX~ubO}tr\JE]Æ\KFiK-?R;Jk\fkyWsHFʧrg,3l0B}$(\ޒؿE4 Mg[7aҵ¹/IɁ1iWK fQ7"oF !B)u4f[nۃYK2@(ÿ!+7gn=VZ :kM9쭿bpbiR5Wܓ5-4gʿ"Y $3l ~Ja`m +^%+"G~G=e}QAR&2$Td+3mB&223 ojvς /});;aŧwKaD\mMU|.hըݾ,ߥ4~[_P)+ӻ ed 6.HY sj^?FuC"i?A/;&ăd&L|Nmm3\! J5{ KK6V3Y?sު{hRkG_A V0iC/mCZDA3CČALx"tj\[eJSX мƇӏ$+WU+=׳됰6%;U'R⍜ 4dmj#$i.}ʦz*6̋cA u=ZuNw9?ȣfWW!&NLOlh5FUn9c I'Q W^o!#n@c?%/4}ӈQ6]ݠm&M)Kokq ~#$DfR;ҩ]_ҪۿV]zv@=ǹ19{9fZ"qxlV% 6& dG3@bLzD vÊBmĚL8qՅzΦggh4O͗ [.*(KϢ̃$l~%n"15ܨBKsb_+g-}m\:$m[f݉'Rz&]hDF5T|s<~™`$(ܔ)3ix4 RBPl^ <D uMKEٌ9* U2Ē5KM`0 HlpR((pujh+v9FwGkz%s%}?}A$w^!:3Zj\@{Ed*UKl`vHf4$ PҚ#>a4+ Bd1rqA9_^qZn,њ~\*1oNHg3u <4_0*gL5NpH86]|Aou}Ai2GE"_a?NW֨ dMLxVO'(G5Skz㽷Y3}l8~x1e.v%z:c^|;PZܧdΜF #۵"~VGحnAŌ&9cm 5P&eHxʨ>-%Ps_ɒ5S)p3%A_zꌰ_ UIl7]@5~D p 9$R`7CVDnSC^=ܧ?bk&uY7 3,.cwHCq<`iq,* ['^P @o fx%r˧gmU8 0((˸R\c$ Gp3_p˧ (B`>ч |Ug{Hv$Y j =&M|ˮ5J8]eh1\}hN Zu_v|wغ)4 |8Z0Rʪ 5\B;U7_fi !R܋~=)[Qde]g v$ߨJ-ݖEjiZq2)0;N0z1R*GI{['gM0皈$ 3 Jb_[@XCw]L'Ӂ['qSpL..IS !U]h9 ^^EE<2XRdljog< VE#SQ x{{w5`(,:x,ْ}^᳢/xk 86y00B6ZVb@p$gƅ\x;~(o[_'a,S-w_$Gi)aԟ ~L(O~Jzc}]~ґ»{cE-Yч8~8hmVЋ>5KNs K讁sRnpR4Ò;zkxРjP *L ڇ4\a].܅TW$/ &1ųf GRil4X$0@kN͇ +{咀1j5~ nTmkr!#<`*O#e]IX^\ch ' 7~x$W7>DpHz0զoc@?1NtJMS_\Fd[Ӛ>,䄤=^,]ƹb"F݁_{3ưJf-ceU܄ϯ냚 d\ "ՏT*$ !JAb+%(Jh1 3}L{4P\/D~+I{ubA-FQ >%)q6 0kp(;@PP_;2sb*ˊ_.|.#]<KIVthK+q)OF |?qIFpܖA0:_PCXX\̹4IrOlefB<2YR,cVp9ώn1^|.o>K&Rf}bF]ЛVΜVbֻD$M&)0)l`("̣c H O{'dA&ΊA?W`d gCm)5NƁ r<@Bl4dW+[gBtiּ;LF(TEpl \,jm$ uM/~[6w],}WiB2[#Ni'ȶ[?%FJ`I"Bl,j۝W(cx;V*TRЏ@9[+M10jJ}'fDPP@Y75B6 rbQ1EOQ0N_9h6k,=ƚY^hlCC  7 ?:7$xa] ֺm|O*&ȪľC}_;ɧJZ0D@)m_3Z9F007YA"dZθi| lN0\lsL8= S]s&"AHT\Eq2D 1!菨 fA6& YrOx;AH/=f_GV_00x_C&uò)GgNjyy-{5 2.SPJqݶR8zwu7r|T+Kz6nAYt*QՊU?:>GsO,\1TeyhRSsQf k? nQm%\5lk~U};lSQ69wםqZd>u-vr+ oP$FM]ySA&Ŝ Y؈ ZʭDcb1;KJ2C!࡟p_Lv^)pIN:|hݝ)1z. endstream endobj 548 0 obj << /Type /ObjStm /N 100 /First 928 /Length 4868 /Filter /FlateDecode >> stream x\s6۹)An27q6qMdAoeɕ6_. DGs7$Ar>]eEUXc c kBUGU eXhZk#:W8h .{":D6RXXfơ/' *BzPqDm4B$:F@ѡJ[(QARwK2ָӁb}Th<:J4 & $QR'ΠPhO#DGL}( V2{l@3E0  0'tD?#q,`Oj n pt= xނ4DZh#B t."m]4J1⣡&i4j2:FduR'*i8R: 0D %=ѡ"*(Q NžSh`TØ1 i,Rlq3^2t7e1,* Ҩ]P3U%iqHFB-F@FH0Eu>@[G*8I"x*(Yz[h :/iD0j|͠fTTs=x'~.>X * q=X2/KTG7ǽǣYA!}57;$ }bm;?dhIx~9o;&d2aC/'P?2+;z]i=M=q\O7z/=ϛK`f0A[rH)FW\uڄsT;xuQiCƾvhfozdv __s?|{!OXU}W YҩFct$bd:&y(Bca+C{b<9'K~OSqx43+OIƖPQTo>Уx֌~<óY3r6mF``r^7z\m^G[-F, O.d |Cׅx<>0ΚY]Gu~,P) !JMۻ#y~vpTC#qӆGi(pʹ2o,Rj6ưni`HHUTCݜ6j{.m$^$6=mGkIVHˈ$q+bD2+YF! Dn+ZhN9}?JL39Ӗ~[8KZ|6ԥَ v'lIlC[C ݎr[m?[eTbT\:7vJ/$ż݁ec2i4^Uy*oiU, @0"GG(61P p,cy&)L5M}h.MqM "dU}KaCRg*xܧlg(NV4m!1EԆ'z hbӄp$%y=$fAp%bHWG>o |Cā'l)'|9S]v3JԃLd mYոYCL:eDxGxabغ*ykIfC,Er0 Of$fM>Ͷ蔋WWZvlHhw){"%H2Q?ɺ'EJ:C1NR=q0~R73Ć$`؜=] ݿWo譲=q!t `zcaf6co ϒ@G M#@UgH<'sq$^8^ 'q&@ZpwY㛉e=] ŕjq-I3>i'1I]_cq#/k߰ O9x|27+֐ /6Uߪ.=W6&zX7dBdtv9՜әǙ"ͩ.p/z808at|n1pz'ĪL'O +zzs{'K[=dKiI=ՓdTOquZu[t6E=ߨtaR; ݈$mw)V 5]Q.z3oV;R/(A2Wh]v'GGм?3gS͹^^~,/ז}yٰ=ϾkW`tK>zFa^g@\}_zK4eR!0cӟZ|ڋ|f|nzj;y}"Wbz\N~ӣCHuҟPۅ1)ra1[:^5Κ.yڕ,`|mֶ.N;?oI=m78-6iA1/S;^'PkڔT+joy͌-O;yׇՂu{o[oOV)FKi`;Go^{h6WE`ɴ7D06iC7ht6>)6?cڍM:{)ꠅỌu|Z_E`ZKk8cXఙLg$Ams>sMUq?%wg'eO_ת^{;խUz }'}0w`BZn׸W͞ٯl_7+ܝʶ*5ë>ށr;X^fuvRÂÜhWiמpwp7UkVлaƯ.VnvUڝf17-xWV!̿au/-D_MWٯ;a[F_G_3;sxůgyXHۖi I߶Jd1"͈)}QyCH[ڜ#RERM%Ӈy*wws!71Ez@c ֤ _Rug&-/cǘmIR;, 6a> endobj 635 0 obj << /Type /ObjStm /N 85 /First 723 /Length 2349 /Filter /FlateDecode >> stream xڕZm_VH9$ H)ܴRl/$˿.W|=yy!Z *@mDWTZeV6je*pV9M:1*HWaw& :* cT1z:\+ɴ`lSRqdf 8Rv6 1.%K}ҝ%`ؔDw{x3!Fsde% QĉX"Z{PD""ZINl DF 9M(,hB@#**b(%91KdHIt^ Od! MY""H>I+i@Hf(dR$$p-PЁP% 0rrP>X։GJ":jrn,EϏ5%آq) y^#RfPdRT3BE<$'H)&lEpHagH19@vupݽ=? m/ǯKDK9^hWWgt?~a-H\s K>p\4p<ݟO;g^ k<^zjoh 6_:ƚUvh ZoYnj-}tqӗk|I//](;_%!n rPVd]V][Lu9\[ (e2D.2ݴnʀR-_)˗2x) JE(^orp%n%ZjzWV{&CsaNK&$HtܦuS'J@oMD\⦯( ŖXYVZd۬d;[KMoJhv.wnjr7Ô&sR[M T]j햫2[ YxJM5P2vi^ }_p3C#d,G*akihV33zi8/8mCdX3px mO7j.xM0/W7Y0vƅaHYQu%9j Fg59Mi/6j˯AXkIZXR\OЗ$òXӴغN, hPrm$%(7`y{q NXRgZh-}ђq?pzbӓYR 05ix['"ں@or@J&孌+싖kx׫8=Pvl6GA.cDTrVAE{Ry\ӟƭ$^#ұ5Fqn@(v\$y1 ,@7٢b/!SAD '*r$D% */P6KȎ$#ȉJ򂜨-R^Aәh d dܸ-ǥbAxkEhW?)A HHX8GBLK1!HHX a$$| $<`BB놑Pb0`O(@(Vgu >:j^6_T[b>c~g5Z 6~ | g-8͋({0È!js3b&tD5?FqpM?(tQ{;pP~fDjO endstream endobj 669 0 obj << /Type /XRef /Index [0 670] /Size 670 /W [1 3 1] /Root 667 0 R /Info 668 0 R /ID [ ] /Length 1619 /Filter /FlateDecode >> stream x%YlUUΥ-ЖRe*Cg K -mi)BⓁhB苉1&!boB6%NAAGzks+?E.(*B\f?4hh{IS m Zi.Cۄ4ա&-EhhHv%mZP։JZ*zZH+:3hI@u6`Zm+i Eӷ5nJжցzR&m-ZLbhJu4fRh(vhVhz -N>MZh ڔ6 ZRm>)4}p-tiMt ,Z5i7A[AӲO3BFӖhU7Ѵ~!0ֆ#Eۋ&#hphda4&,zLb7h'dY06F`mMNiMNeX>UY-h)ŪUYǕhT[ "2;%TvPa ,JKxT)8xKb>+> .WXPhQqZ)^h4UrEsJٲCEձ4<> XxLc`̀ .VHA 5‽CESJ)@u**Їu\ MU)@i ,eh ZNn/Po=]Bin]RQpȢaE7fu1c@y0aWp P a PafJh8 0u8r8mGPZv\1k{Bw_@_S 4rArc6Y;Aj@|.:̖[X@ٹ'΅FPo42QP[ojۀZx PAl/z.SA'PjAszT/c^+6`CEG_*@ y]r31t̂iO*3%O%p~{\HR6gJs~T6|zg| x q_J@)X M{1_gn*k̝FZ-{ 7g} 6 1 x q x,9}e~#<ͽp[Zo(ҡe[JubA<:̽%:>}tYNX#>6W9^$:g/={ur4^=l".{Ew,|bGj9}9 NR039[l\-f sQ3ŌjzD9뀚Q 6X"yUwJM` h[6V;./1K̄3,QTnJEx쒢NKTm{z,ѽQtВ/ϒ7& [*WEjV4`-ҳ,]EÖz0hR~d4p>TW5wn4kUX?@0D2)Ͷ  BF-L&Cʤ-g)_ endstream endobj startxref 417281 %%EOF Zelig/inst/doc/twosls.R0000644000176000001440000000311112217153457014557 0ustar ripleyusers### R code from vignette source 'twosls.Rnw' ################################################### ### code chunk number 1: loadLibrary ################################################### library(Zelig) ################################################### ### code chunk number 2: Inputs.list ################################################### fml <- list ("mu" = Y ~ X + Z, "inst" = Z ~ W + X) ################################################### ### code chunk number 3: Examples.data ################################################### data(klein) ################################################### ### code chunk number 4: Examples.list ################################################### formula <- list(mu1=C~Wtot + P + P1, mu2=I~P + P1 + K1, mu3=Wp~ X + X1 + Tm, inst= ~ P1 + K1 + X1 + Tm + Wg + G) ################################################### ### code chunk number 5: Examples.zelig ################################################### z.out<-zelig(formula=formula, model="twosls",data=klein) summary(z.out) ################################################### ### code chunk number 6: Examples.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 7: Examples.sim ################################################### s.out <-sim(z.out,x=x.out) summary(s.out) ################################################### ### code chunk number 8: Examplestwosls ################################################### plot(s.out) Zelig/inst/doc/negbinom.pdf0000644000176000001440000061530312061700507015375 0ustar ripleyusers%PDF-1.5 % 37 0 obj << /Length 2290 /Filter /FlateDecode >> stream xڽYm۸_'y)RK7+Z$ ֞dgwS~{%kE)K2 0N$}IIL!FJxyT[tbWccU֚gT+dɃ"f1Wbe:Wo<5۵)xZWf`y&YՂF!WĜhc{R`8SERo9EҩY07+ds\ʎktEv=\HmSGk!C[\d0㚁#7{$7zi!;5J#x;H<^MPS,P3}S*Y"p)%Qs?Jr \$_`iPw{pqAƞݬOgcW( (9: k_[`uPM]/w>)]/ౢ[MxfnCUDY좿cYRs?SY_.C#ٜ)3oKiEfpPpU4㩿+\pELF"4Qc.,Gf9n2+Odʶ*b0h |yG<J|Q=sPڿ[RRTN.I:d7<bʻyq;=Y{9jn+}+OoUdg.M^Qbv0}Pܦ)xm T.  ]@xgJ@ťt '1vQ&9^&zx jVɥ ]'T 폢ozDg e,y<}qy? endstream endobj 54 0 obj << /Length 1083 /Filter /FlateDecode >> stream xڝVYoF~ׯ# w!hShKi[(:C$MR \M RhM„ FD+CPɲJ3] ӇLq ޏ;߹m7E{ܕe!~A>PTbߔp*Xnd+lo_>b0Mr3\}劋ĉSg=4.a WTQgrm1>ci2nӣ TGpE PnfܻEa={~=>hg`vb1ït9F;j$]ۋCZ\0 K"ZiXn-(B+DcO.~G|P2 -`rƤM?a}дBlYfC edj+I| 4Ѥ0¢"J"^j3elD3pI,"e܄| ^{};\{t@E3XuMגט:9u\B="t#rS;^+H.rhpocCI0 sbTrWߖftGS*FDT=.gt}ȡeIwN7d6_bAjcП8= )Z`2G aQd fУvM倆I.t%C㌦f,^8DnR~fp]/ctO+I ;ejEl2)t r3*}s% q~Bۚ<Ga>5%ӄkMwmX+aנBV0uh/݌yP8`rM3ZmptV5L4 njR^lI"TqVboE M*B…;Sh"-߆`fl'3h?*`D52ӾP^[(3yQ )#nM*؄~FDah.53Zd;B(Z Q+ > /ExtGState << >>/ColorSpace << /sRGB 63 0 R >>>> /Length 19434 >> stream 1 J 1 j q Q q 49.00 276.96 357.90 106.04 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 62.26 280.88 m 62.91 280.89 l 63.56 280.89 l 64.20 280.89 l 64.85 280.89 l 65.50 280.90 l 66.15 280.90 l 66.80 280.90 l 67.45 280.91 l 68.10 280.91 l 68.74 280.92 l 69.39 280.93 l 70.04 280.94 l 70.69 280.95 l 71.34 280.96 l 71.99 280.97 l 72.63 280.98 l 73.28 281.00 l 73.93 281.02 l 74.58 281.04 l 75.23 281.06 l 75.88 281.08 l 76.53 281.11 l 77.17 281.14 l 77.82 281.17 l 78.47 281.20 l 79.12 281.24 l 79.77 281.28 l 80.42 281.32 l 81.07 281.36 l 81.71 281.40 l 82.36 281.45 l 83.01 281.50 l 83.66 281.55 l 84.31 281.60 l 84.96 281.65 l 85.60 281.71 l 86.25 281.76 l 86.90 281.82 l 87.55 281.88 l 88.20 281.93 l 88.85 281.99 l 89.50 282.05 l 90.14 282.11 l 90.79 282.16 l 91.44 282.22 l 92.09 282.28 l 92.74 282.34 l 93.39 282.40 l 94.04 282.46 l 94.68 282.52 l 95.33 282.59 l 95.98 282.66 l 96.63 282.73 l 97.28 282.81 l 97.93 282.89 l 98.58 282.98 l 99.22 283.07 l 99.87 283.17 l 100.52 283.28 l 101.17 283.40 l 101.82 283.53 l 102.47 283.67 l 103.11 283.83 l 103.76 283.99 l 104.41 284.17 l 105.06 284.36 l 105.71 284.56 l 106.36 284.78 l 107.01 285.01 l 107.65 285.26 l 108.30 285.53 l 108.95 285.80 l 109.60 286.10 l 110.25 286.40 l 110.90 286.72 l 111.55 287.06 l 112.19 287.41 l 112.84 287.77 l 113.49 288.14 l 114.14 288.53 l 114.79 288.92 l 115.44 289.33 l 116.08 289.75 l 116.73 290.17 l 117.38 290.60 l 118.03 291.04 l 118.68 291.49 l 119.33 291.94 l 119.98 292.40 l 120.62 292.86 l 121.27 293.32 l 121.92 293.78 l 122.57 294.25 l 123.22 294.72 l 123.87 295.19 l 124.52 295.66 l 125.16 296.13 l 125.81 296.60 l 126.46 297.07 l 127.11 297.55 l 127.76 298.02 l 128.41 298.49 l 129.05 298.97 l 129.70 299.45 l 130.35 299.93 l 131.00 300.42 l 131.65 300.91 l 132.30 301.41 l 132.95 301.91 l 133.59 302.42 l 134.24 302.94 l 134.89 303.48 l 135.54 304.02 l 136.19 304.58 l 136.84 305.15 l 137.49 305.74 l 138.13 306.34 l 138.78 306.96 l 139.43 307.60 l 140.08 308.25 l 140.73 308.93 l 141.38 309.63 l 142.02 310.34 l 142.67 311.09 l 143.32 311.85 l 143.97 312.64 l 144.62 313.44 l 145.27 314.27 l 145.92 315.13 l 146.56 316.01 l 147.21 316.91 l 147.86 317.83 l 148.51 318.77 l 149.16 319.73 l 149.81 320.72 l 150.46 321.73 l 151.10 322.75 l 151.75 323.80 l 152.40 324.86 l 153.05 325.94 l 153.70 327.04 l 154.35 328.16 l 155.00 329.29 l 155.64 330.43 l 156.29 331.59 l 156.94 332.76 l 157.59 333.94 l 158.24 335.14 l 158.89 336.34 l 159.53 337.55 l 160.18 338.76 l 160.83 339.98 l 161.48 341.19 l 162.13 342.41 l 162.78 343.63 l 163.43 344.84 l 164.07 346.05 l 164.72 347.25 l 165.37 348.43 l 166.02 349.61 l 166.67 350.77 l 167.32 351.91 l 167.97 353.03 l 168.61 354.13 l 169.26 355.22 l 169.91 356.27 l 170.56 357.30 l 171.21 358.31 l 171.86 359.29 l 172.50 360.25 l 173.15 361.18 l 173.80 362.09 l 174.45 362.97 l 175.10 363.83 l 175.75 364.67 l 176.40 365.49 l 177.04 366.28 l 177.69 367.06 l 178.34 367.82 l 178.99 368.56 l 179.64 369.29 l 180.29 369.99 l 180.94 370.69 l 181.58 371.37 l 182.23 372.03 l 182.88 372.68 l 183.53 373.31 l 184.18 373.91 l 184.83 374.50 l 185.47 375.06 l 186.12 375.60 l 186.77 376.11 l 187.42 376.58 l 188.07 377.02 l 188.72 377.42 l 189.37 377.79 l 190.01 378.12 l 190.66 378.39 l 191.31 378.62 l 191.96 378.80 l 192.61 378.94 l 193.26 379.03 l 193.91 379.07 l 194.55 379.06 l 195.20 379.00 l 195.85 378.91 l 196.50 378.77 l 197.15 378.59 l 197.80 378.38 l 198.44 378.13 l 199.09 377.85 l 199.74 377.56 l 200.39 377.24 l 201.04 376.90 l 201.69 376.54 l 202.34 376.18 l 202.98 375.81 l 203.63 375.43 l 204.28 375.04 l 204.93 374.66 l 205.58 374.27 l 206.23 373.88 l 206.88 373.49 l 207.52 373.09 l 208.17 372.69 l 208.82 372.29 l 209.47 371.88 l 210.12 371.45 l 210.77 371.02 l 211.42 370.57 l 212.06 370.10 l 212.71 369.61 l 213.36 369.10 l 214.01 368.57 l 214.66 368.00 l 215.31 367.40 l 215.95 366.78 l 216.60 366.13 l 217.25 365.44 l 217.90 364.72 l 218.55 363.97 l 219.20 363.19 l 219.85 362.39 l 220.49 361.56 l 221.14 360.71 l 221.79 359.84 l 222.44 358.95 l 223.09 358.05 l 223.74 357.15 l 224.39 356.24 l 225.03 355.34 l 225.68 354.44 l 226.33 353.55 l 226.98 352.67 l 227.63 351.81 l 228.28 350.97 l 228.92 350.16 l 229.57 349.37 l 230.22 348.61 l 230.87 347.88 l 231.52 347.18 l 232.17 346.52 l 232.82 345.89 l 233.46 345.28 l 234.11 344.70 l 234.76 344.15 l 235.41 343.63 l 236.06 343.13 l 236.71 342.65 l 237.36 342.19 l 238.00 341.74 l 238.65 341.31 l 239.30 340.88 l 239.95 340.45 l 240.60 340.03 l 241.25 339.60 l 241.89 339.17 l 242.54 338.73 l 243.19 338.28 l 243.84 337.82 l 244.49 337.35 l 245.14 336.86 l 245.79 336.36 l 246.43 335.84 l 247.08 335.31 l 247.73 334.75 l 248.38 334.19 l 249.03 333.60 l 249.68 333.00 l 250.33 332.39 l 250.97 331.76 l 251.62 331.12 l 252.27 330.46 l 252.92 329.80 l 253.57 329.13 l 254.22 328.45 l 254.87 327.76 l 255.51 327.07 l 256.16 326.37 l 256.81 325.67 l 257.46 324.97 l 258.11 324.27 l 258.76 323.56 l 259.40 322.86 l 260.05 322.16 l 260.70 321.47 l 261.35 320.77 l 262.00 320.08 l 262.65 319.39 l 263.30 318.71 l 263.94 318.04 l 264.59 317.37 l 265.24 316.71 l 265.89 316.05 l 266.54 315.40 l 267.19 314.76 l 267.84 314.13 l 268.48 313.51 l 269.13 312.89 l 269.78 312.28 l 270.43 311.68 l 271.08 311.09 l 271.73 310.50 l 272.37 309.93 l 273.02 309.36 l 273.67 308.80 l 274.32 308.24 l 274.97 307.70 l 275.62 307.16 l 276.27 306.63 l 276.91 306.11 l 277.56 305.59 l 278.21 305.09 l 278.86 304.59 l 279.51 304.10 l 280.16 303.61 l 280.81 303.14 l 281.45 302.68 l 282.10 302.22 l 282.75 301.77 l 283.40 301.34 l 284.05 300.91 l 284.70 300.49 l 285.34 300.09 l 285.99 299.69 l 286.64 299.30 l 287.29 298.93 l 287.94 298.56 l 288.59 298.21 l 289.24 297.86 l 289.88 297.52 l 290.53 297.19 l 291.18 296.86 l 291.83 296.55 l 292.48 296.24 l 293.13 295.93 l 293.78 295.63 l 294.42 295.33 l 295.07 295.04 l 295.72 294.75 l 296.37 294.46 l 297.02 294.17 l 297.67 293.88 l 298.31 293.59 l 298.96 293.30 l 299.61 293.01 l 300.26 292.72 l 300.91 292.43 l 301.56 292.14 l 302.21 291.85 l 302.85 291.56 l 303.50 291.27 l 304.15 290.98 l 304.80 290.69 l 305.45 290.40 l 306.10 290.12 l 306.75 289.83 l 307.39 289.55 l 308.04 289.28 l 308.69 289.00 l 309.34 288.73 l 309.99 288.46 l 310.64 288.20 l 311.29 287.94 l 311.93 287.69 l 312.58 287.44 l 313.23 287.20 l 313.88 286.96 l 314.53 286.73 l 315.18 286.50 l 315.82 286.28 l 316.47 286.07 l 317.12 285.86 l 317.77 285.66 l 318.42 285.47 l 319.07 285.28 l 319.72 285.10 l 320.36 284.93 l 321.01 284.77 l 321.66 284.62 l 322.31 284.47 l 322.96 284.33 l 323.61 284.20 l 324.26 284.07 l 324.90 283.96 l 325.55 283.85 l 326.20 283.75 l 326.85 283.65 l 327.50 283.57 l 328.15 283.49 l 328.79 283.41 l 329.44 283.34 l 330.09 283.28 l 330.74 283.22 l 331.39 283.17 l 332.04 283.12 l 332.69 283.07 l 333.33 283.02 l 333.98 282.98 l 334.63 282.94 l 335.28 282.90 l 335.93 282.86 l 336.58 282.82 l 337.23 282.78 l 337.87 282.74 l 338.52 282.71 l 339.17 282.67 l 339.82 282.63 l 340.47 282.59 l 341.12 282.54 l 341.76 282.50 l 342.41 282.46 l 343.06 282.42 l 343.71 282.37 l 344.36 282.33 l 345.01 282.29 l 345.66 282.24 l 346.30 282.20 l 346.95 282.15 l 347.60 282.11 l 348.25 282.07 l 348.90 282.03 l 349.55 281.99 l 350.20 281.95 l 350.84 281.91 l 351.49 281.88 l 352.14 281.84 l 352.79 281.81 l 353.44 281.78 l 354.09 281.75 l 354.73 281.72 l 355.38 281.70 l 356.03 281.67 l 356.68 281.65 l 357.33 281.63 l 357.98 281.61 l 358.63 281.59 l 359.27 281.57 l 359.92 281.55 l 360.57 281.54 l 361.22 281.52 l 361.87 281.50 l 362.52 281.49 l 363.17 281.47 l 363.81 281.46 l 364.46 281.44 l 365.11 281.42 l 365.76 281.41 l 366.41 281.39 l 367.06 281.37 l 367.71 281.35 l 368.35 281.34 l 369.00 281.32 l 369.65 281.30 l 370.30 281.28 l 370.95 281.26 l 371.60 281.24 l 372.24 281.22 l 372.89 281.20 l 373.54 281.18 l 374.19 281.16 l 374.84 281.14 l 375.49 281.12 l 376.14 281.10 l 376.78 281.08 l 377.43 281.06 l 378.08 281.05 l 378.73 281.03 l 379.38 281.02 l 380.03 281.00 l 380.68 280.99 l 381.32 280.98 l 381.97 280.97 l 382.62 280.96 l 383.27 280.95 l 383.92 280.94 l 384.57 280.93 l 385.21 280.92 l 385.86 280.92 l 386.51 280.91 l 387.16 280.91 l 387.81 280.90 l 388.46 280.90 l 389.11 280.90 l 389.75 280.89 l 390.40 280.89 l 391.05 280.89 l 391.70 280.89 l 392.35 280.88 l 393.00 280.88 l 393.65 280.88 l S Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 84.12 276.96 m 394.38 276.96 l S 84.12 276.96 m 84.12 270.98 l S 146.17 276.96 m 146.17 270.98 l S 208.22 276.96 m 208.22 270.98 l S 270.28 276.96 m 270.28 270.98 l S 332.33 276.96 m 332.33 270.98 l S 394.38 276.96 m 394.38 270.98 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 10.00 0.00 -0.00 10.00 77.17 255.44 Tm (2.0) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 139.22 255.44 Tm (2.5) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 201.27 255.44 Tm (3.0) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 263.33 255.44 Tm (3.5) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 325.38 255.44 Tm (4.0) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 387.43 255.44 Tm (4.5) Tj ET 49.00 280.88 m 49.00 379.05 l S 49.00 280.88 m 43.03 280.88 l S 49.00 297.24 m 43.03 297.24 l S 49.00 313.60 m 43.03 313.60 l S 49.00 329.96 m 43.03 329.96 l S 49.00 346.32 m 43.03 346.32 l S 49.00 362.68 m 43.03 362.68 l S 49.00 379.05 m 43.03 379.05 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 273.93 Tm (0.0) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 306.65 Tm (0.4) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 339.37 Tm (0.8) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 372.10 Tm (1.2) Tj ET 49.00 276.96 m 406.90 276.96 l 406.90 383.00 l 49.00 383.00 l 49.00 276.96 l S Q q 0.00 216.00 432.00 216.00 re W n BT /sRGB cs 0.000 0.000 0.000 scn /F3 1 Tf 12.00 0.00 -0.00 12.00 159.28 403.19 Tm [(Expected V) 60 (alues: E\(Y|X\))] TJ ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 156.24 231.54 Tm (N = 1000 Bandwidth = 0.07737) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 313.31 Tm (Density) Tj ET Q q 49.00 276.96 357.90 106.04 re W n /sRGB CS 0.745 0.745 0.745 SCN 0.08 w [] 0 d 1 J 1 j 10.00 M 49.00 280.88 m 406.90 280.88 l S Q q 49.00 60.96 357.90 106.04 re W n Q q 49.00 60.96 357.90 106.04 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 62.26 65.98 m 62.91 66.33 l 63.56 66.78 l 64.20 67.33 l 64.85 68.01 l 65.50 68.85 l 66.15 69.86 l 66.80 71.12 l 67.45 72.61 l 68.10 74.37 l 68.74 76.42 l 69.39 78.78 l 70.04 81.47 l 70.69 84.53 l 71.34 88.00 l 71.99 91.83 l 72.63 96.01 l 73.28 100.52 l 73.93 105.32 l 74.58 110.39 l 75.23 115.67 l 75.88 121.10 l 76.53 126.55 l 77.17 131.96 l 77.82 137.22 l 78.47 142.25 l 79.12 146.96 l 79.77 151.20 l 80.42 154.86 l 81.07 157.90 l 81.71 160.27 l 82.36 161.94 l 83.01 162.87 l 83.66 163.07 l 84.31 162.48 l 84.96 161.14 l 85.60 159.21 l 86.25 156.76 l 86.90 153.88 l 87.55 150.68 l 88.20 147.28 l 88.85 143.80 l 89.50 140.40 l 90.14 137.21 l 90.79 134.33 l 91.44 131.85 l 92.09 129.85 l 92.74 128.40 l 93.39 127.61 l 94.04 127.49 l 94.68 127.98 l 95.33 129.05 l 95.98 130.65 l 96.63 132.73 l 97.28 135.19 l 97.93 137.97 l 98.58 140.92 l 99.22 143.89 l 99.87 146.78 l 100.52 149.48 l 101.17 151.89 l 101.82 153.91 l 102.47 155.38 l 103.11 156.27 l 103.76 156.56 l 104.41 156.24 l 105.06 155.32 l 105.71 153.82 l 106.36 151.78 l 107.01 149.18 l 107.65 146.20 l 108.30 142.95 l 108.95 139.52 l 109.60 136.01 l 110.25 132.53 l 110.90 129.18 l 111.55 126.12 l 112.19 123.41 l 112.84 121.12 l 113.49 119.30 l 114.14 117.97 l 114.79 117.17 l 115.44 116.89 l 116.08 117.20 l 116.73 117.98 l 117.38 119.16 l 118.03 120.66 l 118.68 122.43 l 119.33 124.36 l 119.98 126.37 l 120.62 128.35 l 121.27 130.20 l 121.92 131.82 l 122.57 133.15 l 123.22 134.13 l 123.87 134.70 l 124.52 134.83 l 125.16 134.41 l 125.81 133.53 l 126.46 132.21 l 127.11 130.47 l 127.76 128.38 l 128.41 125.97 l 129.05 123.32 l 129.70 120.49 l 130.35 117.59 l 131.00 114.71 l 131.65 111.92 l 132.30 109.28 l 132.95 106.85 l 133.59 104.70 l 134.24 102.93 l 134.89 101.50 l 135.54 100.44 l 136.19 99.74 l 136.84 99.40 l 137.49 99.38 l 138.13 99.68 l 138.78 100.25 l 139.43 101.02 l 140.08 101.91 l 140.73 102.88 l 141.38 103.87 l 142.02 104.82 l 142.67 105.67 l 143.32 106.34 l 143.97 106.82 l 144.62 107.07 l 145.27 107.08 l 145.92 106.83 l 146.56 106.33 l 147.21 105.57 l 147.86 104.55 l 148.51 103.36 l 149.16 102.02 l 149.81 100.57 l 150.46 99.07 l 151.10 97.56 l 151.75 96.09 l 152.40 94.73 l 153.05 93.52 l 153.70 92.49 l 154.35 91.67 l 155.00 91.08 l 155.64 90.75 l 156.29 90.69 l 156.94 90.91 l 157.59 91.37 l 158.24 92.03 l 158.89 92.88 l 159.53 93.88 l 160.18 94.98 l 160.83 96.15 l 161.48 97.32 l 162.13 98.43 l 162.78 99.46 l 163.43 100.35 l 164.07 101.07 l 164.72 101.59 l 165.37 101.85 l 166.02 101.84 l 166.67 101.59 l 167.32 101.08 l 167.97 100.33 l 168.61 99.37 l 169.26 98.21 l 169.91 96.87 l 170.56 95.40 l 171.21 93.86 l 171.86 92.28 l 172.50 90.71 l 173.15 89.18 l 173.80 87.73 l 174.45 86.41 l 175.10 85.25 l 175.75 84.25 l 176.40 83.43 l 177.04 82.79 l 177.69 82.34 l 178.34 82.07 l 178.99 82.00 l 179.64 82.07 l 180.29 82.27 l 180.94 82.57 l 181.58 82.93 l 182.23 83.34 l 182.88 83.76 l 183.53 84.16 l 184.18 84.51 l 184.83 84.78 l 185.47 84.97 l 186.12 85.05 l 186.77 85.01 l 187.42 84.86 l 188.07 84.56 l 188.72 84.15 l 189.37 83.64 l 190.01 83.04 l 190.66 82.37 l 191.31 81.66 l 191.96 80.92 l 192.61 80.18 l 193.26 79.47 l 193.91 78.81 l 194.55 78.22 l 195.20 77.71 l 195.85 77.31 l 196.50 77.01 l 197.15 76.86 l 197.80 76.82 l 198.44 76.90 l 199.09 77.09 l 199.74 77.38 l 200.39 77.75 l 201.04 78.19 l 201.69 78.68 l 202.34 79.19 l 202.98 79.69 l 203.63 80.18 l 204.28 80.62 l 204.93 81.00 l 205.58 81.30 l 206.23 81.48 l 206.88 81.56 l 207.52 81.52 l 208.17 81.36 l 208.82 81.09 l 209.47 80.71 l 210.12 80.23 l 210.77 79.64 l 211.42 78.97 l 212.06 78.25 l 212.71 77.50 l 213.36 76.71 l 214.01 75.93 l 214.66 75.15 l 215.31 74.41 l 215.95 73.71 l 216.60 73.07 l 217.25 72.49 l 217.90 71.98 l 218.55 71.55 l 219.20 71.19 l 219.85 70.92 l 220.49 70.71 l 221.14 70.57 l 221.79 70.48 l 222.44 70.44 l 223.09 70.43 l 223.74 70.46 l 224.39 70.50 l 225.03 70.55 l 225.68 70.59 l 226.33 70.62 l 226.98 70.64 l 227.63 70.63 l 228.28 70.60 l 228.92 70.54 l 229.57 70.45 l 230.22 70.34 l 230.87 70.20 l 231.52 70.05 l 232.17 69.89 l 232.82 69.72 l 233.46 69.55 l 234.11 69.40 l 234.76 69.26 l 235.41 69.15 l 236.06 69.06 l 236.71 69.01 l 237.36 69.00 l 238.00 69.03 l 238.65 69.11 l 239.30 69.22 l 239.95 69.38 l 240.60 69.57 l 241.25 69.79 l 241.89 70.03 l 242.54 70.30 l 243.19 70.57 l 243.84 70.84 l 244.49 71.10 l 245.14 71.34 l 245.79 71.55 l 246.43 71.73 l 247.08 71.86 l 247.73 71.95 l 248.38 71.98 l 249.03 71.97 l 249.68 71.90 l 250.33 71.79 l 250.97 71.62 l 251.62 71.40 l 252.27 71.15 l 252.92 70.87 l 253.57 70.56 l 254.22 70.24 l 254.87 69.91 l 255.51 69.59 l 256.16 69.27 l 256.81 68.97 l 257.46 68.69 l 258.11 68.43 l 258.76 68.21 l 259.40 68.01 l 260.05 67.86 l 260.70 67.74 l 261.35 67.64 l 262.00 67.58 l 262.65 67.55 l 263.30 67.54 l 263.94 67.54 l 264.59 67.57 l 265.24 67.60 l 265.89 67.63 l 266.54 67.66 l 267.19 67.69 l 267.84 67.71 l 268.48 67.72 l 269.13 67.72 l 269.78 67.69 l 270.43 67.66 l 271.08 67.60 l 271.73 67.54 l 272.37 67.45 l 273.02 67.36 l 273.67 67.26 l 274.32 67.15 l 274.97 67.04 l 275.62 66.93 l 276.27 66.82 l 276.91 66.72 l 277.56 66.63 l 278.21 66.56 l 278.86 66.50 l 279.51 66.45 l 280.16 66.42 l 280.81 66.40 l 281.45 66.40 l 282.10 66.41 l 282.75 66.44 l 283.40 66.48 l 284.05 66.53 l 284.70 66.58 l 285.34 66.63 l 285.99 66.69 l 286.64 66.74 l 287.29 66.78 l 287.94 66.82 l 288.59 66.85 l 289.24 66.86 l 289.88 66.87 l 290.53 66.86 l 291.18 66.83 l 291.83 66.80 l 292.48 66.75 l 293.13 66.69 l 293.78 66.62 l 294.42 66.55 l 295.07 66.47 l 295.72 66.38 l 296.37 66.30 l 297.02 66.22 l 297.67 66.15 l 298.31 66.08 l 298.96 66.02 l 299.61 65.96 l 300.26 65.92 l 300.91 65.89 l 301.56 65.87 l 302.21 65.86 l 302.85 65.86 l 303.50 65.86 l 304.15 65.88 l 304.80 65.90 l 305.45 65.93 l 306.10 65.95 l 306.75 65.98 l 307.39 66.01 l 308.04 66.04 l 308.69 66.06 l 309.34 66.07 l 309.99 66.08 l 310.64 66.09 l 311.29 66.08 l 311.93 66.07 l 312.58 66.06 l 313.23 66.04 l 313.88 66.01 l 314.53 65.99 l 315.18 65.96 l 315.82 65.93 l 316.47 65.90 l 317.12 65.88 l 317.77 65.86 l 318.42 65.86 l 319.07 65.86 l 319.72 65.87 l 320.36 65.89 l 321.01 65.92 l 321.66 65.96 l 322.31 66.01 l 322.96 66.07 l 323.61 66.14 l 324.26 66.21 l 324.90 66.29 l 325.55 66.37 l 326.20 66.46 l 326.85 66.54 l 327.50 66.61 l 328.15 66.68 l 328.79 66.73 l 329.44 66.78 l 330.09 66.82 l 330.74 66.84 l 331.39 66.84 l 332.04 66.83 l 332.69 66.80 l 333.33 66.76 l 333.98 66.70 l 334.63 66.64 l 335.28 66.56 l 335.93 66.47 l 336.58 66.38 l 337.23 66.28 l 337.87 66.18 l 338.52 66.08 l 339.17 65.99 l 339.82 65.89 l 340.47 65.80 l 341.12 65.72 l 341.76 65.65 l 342.41 65.58 l 343.06 65.52 l 343.71 65.47 l 344.36 65.43 l 345.01 65.39 l 345.66 65.37 l 346.30 65.35 l 346.95 65.33 l 347.60 65.32 l 348.25 65.31 l 348.90 65.31 l 349.55 65.31 l 350.20 65.30 l 350.84 65.30 l 351.49 65.30 l 352.14 65.30 l 352.79 65.29 l 353.44 65.29 l 354.09 65.29 l 354.73 65.28 l 355.38 65.28 l 356.03 65.27 l 356.68 65.27 l 357.33 65.27 l 357.98 65.27 l 358.63 65.27 l 359.27 65.28 l 359.92 65.30 l 360.57 65.31 l 361.22 65.34 l 361.87 65.37 l 362.52 65.40 l 363.17 65.44 l 363.81 65.48 l 364.46 65.53 l 365.11 65.59 l 365.76 65.64 l 366.41 65.70 l 367.06 65.75 l 367.71 65.81 l 368.35 65.86 l 369.00 65.91 l 369.65 65.95 l 370.30 65.98 l 370.95 66.01 l 371.60 66.03 l 372.24 66.04 l 372.89 66.04 l 373.54 66.03 l 374.19 66.01 l 374.84 65.99 l 375.49 65.95 l 376.14 65.91 l 376.78 65.86 l 377.43 65.80 l 378.08 65.74 l 378.73 65.68 l 379.38 65.61 l 380.03 65.55 l 380.68 65.48 l 381.32 65.42 l 381.97 65.36 l 382.62 65.30 l 383.27 65.24 l 383.92 65.19 l 384.57 65.15 l 385.21 65.11 l 385.86 65.07 l 386.51 65.04 l 387.16 65.01 l 387.81 64.98 l 388.46 64.96 l 389.11 64.94 l 389.75 64.93 l 390.40 64.92 l 391.05 64.91 l 391.70 64.90 l 392.35 64.89 l 393.00 64.89 l 393.65 64.88 l S Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 83.19 60.96 m 393.39 60.96 l S 83.19 60.96 m 83.19 54.98 l S 186.59 60.96 m 186.59 54.98 l S 289.99 60.96 m 289.99 54.98 l S 393.39 60.96 m 393.39 54.98 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 10.00 0.00 -0.00 10.00 80.41 39.44 Tm (0) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 183.81 39.44 Tm (5) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 284.43 39.44 Tm (10) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 387.83 39.44 Tm (15) Tj ET 49.00 64.87 m 49.00 163.94 l S 49.00 64.87 m 43.03 64.87 l S 49.00 81.38 m 43.03 81.38 l S 49.00 97.89 m 43.03 97.89 l S 49.00 114.40 m 43.03 114.40 l S 49.00 130.91 m 43.03 130.91 l S 49.00 147.43 m 43.03 147.43 l S 49.00 163.94 m 43.03 163.94 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 55.14 Tm (0.00) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 88.16 Tm (0.10) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 121.18 Tm (0.20) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 154.21 Tm (0.30) Tj ET 49.00 60.96 m 406.90 60.96 l 406.90 167.00 l 49.00 167.00 l 49.00 60.96 l S Q q 0.00 0.00 432.00 216.00 re W n BT /sRGB cs 0.000 0.000 0.000 scn /F3 1 Tf 12.00 0.00 -0.00 12.00 166.61 187.19 Tm [(Predicted V) 60 (alues: Y|X)] TJ ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 159.02 15.54 Tm (N = 1000 Bandwidth = 0.3374) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 97.31 Tm (Density) Tj ET Q q 49.00 60.96 357.90 106.04 re W n /sRGB CS 0.745 0.745 0.745 SCN 0.08 w [] 0 d 1 J 1 j 10.00 M 49.00 64.87 m 406.90 64.87 l S Q q 59.04 73.44 342.72 299.52 re W n Q endstream endobj 65 0 obj << /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >> stream 00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72 52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06 00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00 49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d 48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33 64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74 00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04 00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14 67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a 00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54 00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88 76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77 00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8 00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24 74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43 00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c 00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c 74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68 74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65 74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61 6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12 73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00 00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00 00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20 00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da 58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84 00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00 16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe 00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b 00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00 00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02 73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76 00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f 00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37 00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e 00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86 00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae 00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5 00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01 01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32 01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67 01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1 01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1 01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26 02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71 02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1 02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16 03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72 03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3 03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b 04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8 04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c 05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96 05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16 06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d 06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b 07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf 07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a 08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb 09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4 09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54 0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b 0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8 0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e 0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a 0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e 0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09 0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec 10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7 10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9 11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3 12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5 13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce 14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0 16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa 17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b 18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45 19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77 1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2 1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5 1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40 1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94 1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0 21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55 22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2 23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38 25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7 26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f 28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0 2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69 2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c 2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7 2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c 30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a 32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1 34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2 35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c 37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f 39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b 3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61 3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61 3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a 41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d 43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a 45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0 48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0 4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a 4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e 4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb 51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13 53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75 55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0 58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56 5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6 5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61 5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5 62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94 64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d 67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1 6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af 6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78 6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b 72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28 75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11 78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04 7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01 7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a 81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d 84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b 87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64 8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98 8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6 91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20 94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75 97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5 9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40 9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6 a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38 a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4 a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00 b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68 b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3 c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7 cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6 cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1 d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8 d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29 df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63 e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9 e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58 f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2 f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38 f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba fe 4b fe dc ff 6d ff ff > endstream endobj 68 0 obj << /Length 2684 /Filter /FlateDecode >> stream xZKoWLH첷ߏ]bdd,"Y>$%+)HֿOUudrLd5)'k_]p϶;sn?]đwZK= e)C s^73tqusc@0 BAALxY՜d8~]_OicRMec3SB`$Vh-Q%X0n/Vʉ/0D_*jno1ŬqHěeBb%ʹ d&8bvǚ$M3NrJSʥޭMo[X1'Zzv^qSMiƕMm_ȟ3adLjDuF3lFxct-|D3\1I2*xP3_7Еv9373)UceBf>{7KxKÙ DC׍=sog eP8טnXT[{)[v\+U#. a]0LgN!\xPZk8 ܟiYfw,dι.F6r\iT%aj)N1Ȩ o#^+^( -N wq]u_BAݥ-e8%%f&|"*qOĨok3ޙ.:oV!X3Zw@vQ$x.ff|MĻe\6({(( ßNgMMNKWԩwx5<1,QYhƩmU ӟOr0x nǬhFZL M+ⓛ]eyVF:ROԺ` Pc5 %7yj/ % |Q\E6( _ ]PX1I1R,C6\$ǹǧ^9 ָPVaƐk%;uRП"B k[5.U ~]?3Egls #ϴVjZ8* 'OӰ߫s?5@yM,(V JOvd`j)p{"s⌚c2ADFQ''0/3 Q )42R(K'c(ap%'ΏbQI$$D&6+tQiu7s|O { s&s8f$&d҅xZ[s} t}MCPn@SsA.VuQGZ-k@/kxSP%Y-EyA@/zzuyݧȢVMcGQHPNJFg!` R6"P/{Iz TO88_=[/ KU~^R&6`U1 \HξˋZ0^\%ŦxYhW#e6Kx*H9n ,e_^Qnx{]kLlK{0J!dps*)hi?<۩3 GQGm\ۀ:c/&Ue&6Br3͜HWk`>Z@ceؑi]mߔSԣܸd2`Tݘ;?rYm.>`;GrSMQWGhoF2M5i?ƒJɄj=vv"ўi (,[͉bvm&ܼ~>lsR'Qm~RĎ02MʣXn RW/V3躉2-i>Zm{Qn \vEua .zpXcl@NJ 7e] ܞaQTznRd?,r0ut8 Ҭ])Ô/Toҙ/E#}8H+C3#k }_psC,ڴ.VlK"1-G|rEI;_tt'I[.QY1Ak={T #j~}Dxxp܇D"E0U& yv}tÄ")H"s34 !Pޥ>I]mཎ+_JES>hnn?jeid8 AO>c-tGS:~{kx]:*]llgo͓{_ִd´Ptiix O@ 3O8ӿLNSXѩO*:RiO(:@yÚc@3w?, 7I}d~) ;oSg7;G-y,}VlbقH< 2t} endstream endobj 75 0 obj << /Length 2787 /Filter /FlateDecode >> stream xZ[~фs!gh4i)h6)ں\UF^oϹp(R]i$ùwԟ.}"jUW]^tTYUzel9\5{s.}_h-1҅<(3YjoΰlZd^`w [`di.vq[l Zµ/ pNؽG-qW.q:eQSrq* L.oTk8{0uPuQF(J#Q.n˽̬7 %\IW h$.ݡ;RH"X4(QN=+dۜ$D/Y]+[Y(,vGwh kh4. VTO턈pB@)A5Tg&VcB5jʳj?A  @bzӲX5q[RJKoDXG ֫`t* iJ3ߣ& 09BF,m[zt Me6+M9f[5h%q{+P^]fR$S1?ԙJ]fYEtӋky4s*g]M|^<\>(*꼢U+2J$,r|:%00NEuǤeTL&Zt4IcWU4ZB;]N(*SH~7% ѳJ/OpNVHJIagCQBzG*bq3~أ9 )K~u3K|)]l'Rʧy1bSbUS`Iw`:Szn MsIY…Z˅ΈwE!Q _N%M*߂N+N4T#ut]LGW<~k7$F`k;U,`jaG-*RFa8fLOq B4-L֯U([;/{Nw >r,N+xE<ʎtU@+ A}.6H #]̻vm<_'>%$H#{^'X/szzBB`֡\P):m t'qmpWr°eƙUOB=c@6W*'&,S>bx;J;Lk.ą41YԚlEd{T!.D7EWa㵲|l$сsש}MrcӀ~'9r>d2K%Jz/N4u SJ/| ?oRLMq@֜ӬfקpqS#]-hmY9hEe2R3HK.D3C-ܶNV9>qOrNL3f+U:2Cķ/vE켍\|M;O|PJ'%l5S(S J }]- "f\SW,\T-o&ޞ-"VS㎁O//~81KINU?W7?Te:,x>Yc̽53tҡT4nWz(Ly?:T W/Z<'ѦaDZ8!S?dST\>s᎟RUg&d\Z?-ߡ|uԃ͞<XV 5辊lfhjP^cgaJTMfrRiLQBM x] Rj &hCsM,IyeLmfu@I*&Ic Дq.iO5faf!XQ{w#Z }/y 7p)CnpM?GL`zvDb8S?A>u`J2^mzXr(\ыQX[dUT^Fqv .ݓ(%",{#HF5Lp-&Y3eQukd2rɌs$P\ ijH=obU#nVD[Ĝϟu  ڬpB6p/v]АA;ѓ7K ih5P.R_P,3*aMv }IGAW=6ˀ%aׂe/[VpQj,|{`g,!E8 ! @[ju_6λVCu'3Ϩ]3YY(6Ȋ9Wa] ÓV8\Qjz1-@ST؄!؆r>J a(qop}/qnJ&lÎSQwZl+ Ԫ'l:S݅^-yO2&lyAK }-/Fj'`uKPu#78>]Xu" /Q [b8=򙜩#`[^<'h_f`к<< pLb>j}rXh"\G>ds73[}ACBNj`P5'L b1;<.0<5XCP2#ˣAXڒ"in[QIh/BRA?-h߫\ʌ(]Zzm.=t %}yS$c{,@P`}mOYf=; 𺡄Hz˵ePlGz{jp醍o8ax,*ffm} 62u6&XcYbN=^ ntX0 ZmmnV`FnDCT*p˚+.@ZY g[1k_YTÔwjj!gJ ǾƱ8zu[H0 ٬Cqfk?)d;@ BH\yqۏT-Rc'<5KzB"/GؘgM#)hIF\)7ϱKbgh痂邋M" 5"БBhp84bCQezN+Rs#)ߞ!e,m+52Jq)ɉ& wI:e.G6Am^%ɀLB1t6gpJ#H _1N#:-tjS XmW\9]|d\%%߫ DI(s_kߋR 6.LA!omB4Fr1q_0z 횒vӦ$[Ew'v؆z#0ďrp=u7xaGmZaa~GG Ob:#nu\gu4{juprPНD.ut w8ų< endstream endobj 96 0 obj << /Length 1020 /Filter /FlateDecode >> stream xڅV[o6~ϯ@+R(- Eʪm@%껀5LG`M-2}D@hU*-%NR:E"љe~E > o"4^s FiW c|0yB=\!5˼F,,K-VRdYK0]g"@<<`Z(ipЬ;p]\.Zbzc7p p}9EĈ]DDsğ_zF]_Deʈ 1^uc!* -W3;z|y'O cP4379S9,,^-#Nkx^KY5v}? endstream endobj 113 0 obj << /Length1 1884 /Length2 13491 /Length3 0 /Length 14662 /Filter /FlateDecode >> stream xڍP!Ӹ;ݭqhq4'X@pwwwfUUͷ_Td*L 3Wacr0#PQi؀#Pi]\m@|wd7CE#@`cce0u(2@@W*q5-?t6^^n?@sSG)2'5l rcx؀j@W;e/jT k(A`S M`octt}sqs޲eN@+ǀWsll@6:Ll6@30uonjcojfg)QUÿ8]]mG6K:Z`W?ꓰq݋9<},m-,aĢhM |`ee@Osk?hx9T!~rXX!`7Ͽ6`ob]l<o`/÷ 9{cYTĥ$RL a`b `cp}o;_JULm_e-Ax 3(g X?>?]Q_V$fo??zS{, v qdo"hewm\l<*6`s,r0͙۽=*oS|;M)hnb67v@?w,A.LE/Eo`qXAo#6?O`E1_-荱L,o6|C rsCA98 rپ=R%sGFmA" `W-loSQE~Kv[u`п޺~-?v}_czfA!u!kD =vFvS|\=&Ug|\sMA[ޒY$}9jmԖl6ӎ0??Vp$ZG OĤ!dS*ٍE%ޣWڳli8lvGuKl)Z3 x*,sD Gq:}s;=T.8Go=a{Bݵ _ W995,/?CzgU\BJ:1)=]ǔ4p>T%Җ U%ƙD6/: ߻IO5;}E: bnvds=?NH+OXXTRƙQTtn(\tdo`ѓWeLa?䥰3zP;x͸7|kʑ}(ˎ+rRS.euHJ{\B瘌hOe%LxI)h89)x|H8#h4t׬IV jӴqjy7`3g XAT;-C CzC50m4ֽj.еYez 9xEܜ^O>@E犂2<;Q5: OMTE:V`'hI-?wTv/ D&ID3+\Y2$u|y{=IsgM|M_doc|6aB6N`۹k l.?ֵϫ.CܫM ($-i@u%D,{O-7ǍоM淞c4,LϚ#Va¢3VLﮤQsvdi)~s&ouqfw %\Й_}]Pˆ:9? }7ԥvYyCs&-n-mi2>[zp0^2B&34dxG{YkMI̸ g}*qgF 6fk{9 `ay^~Vqu "ߣfe+JyR>a]m/kIZՂRޯe@@BtG(rBysB8Kd,d8ѤڹX-0QfOl})[6xϺ OC[5Yl' &rr 3gE(`1UHS]̡0ΔF5vRCq# `[[ '6x ZN$1  gW_-mVCl4fHYK 'uٖ/Uܟd5j$`Bbh-\5e R}ާY薩K{6sZТ)}"j!DZ0 0Yţzyv.z&(8vr6 qU] Ր=k2 oAMU,U1_aI7rV㿽v3% V?hp2QiOw5 b8LxS-`R4G$^ciR/&cQjA(>f0=e #sCvsE١bɏ] czRƪUhuXuDai2t&fu.68Ѱ]O<<~@8FKg( k4R#QJOUv:]m)VdOm6xPb8&lsE19aBb5&jDv3/7VAK׸O`q:FY ˢvgȏxYD msH V|fr m_\l?+SRӪCݫb_:Qo`'|%Yop&犖ܿ7|ORwCh7+s#`9lxA> #uiu~x[茐hdogxOٯPU\TY( c?R}5tA-r #jdCwp˘/~^←oŖ}!p2&q] >5MysͅvYJU?Zqr쿬HSC8)P&/W~'"C&AF9"b=y(a@U2&oْmňD"}B^X: ZtM-@C%fny' ޝ,H=zJP4/$6_#t[THB0;47Sn_B1f0K=-'@eSA&Jmò`8ѤU(cE=L%*OQ0jyz2` lA87{ܔ3 \#ގ>= цxI4d*TB@yJ ȩkz$zVޗf:wUrV䓔y.;]3QgFGrv9WQ( {@m_[qeIu3U#p 8_lMF hIj^̵rNA;wK"*Dv8Ra~:/?lS̝ SyDbS8m[w3?}JV=5 %CAi+⨾?`:G3FL',<2 1-ڒS햽,fBu΃X͛No؍ycyra~.1 C7u @5ܳj(0 Ltތ%[^!A1#/A88i}wH#7ǜO:.sЊ!>Z* }|//j -YtMϒFKT ]䗯}eԾΟoC!?TK, Y4x䘿h4xY)8e8"Ζ["~2f 6qn~pMLK6`fW[X[T@e+]V =YcH#7UUAgHY+cG(]PduK,]<Ũw Dջ (0ּ߀ X4[4CuwnkXPt]늍i#ϖEoŒx[]q@ҷh._sSGJu>X"g7ȠNC Hw2-^&?jH\iawuңޠpujj{+EmIl p9:\ލn۽E*ψ.L!O4W{mއ_ ݢ GfY☎kuۢrɪjHΎK^ͷ 29/W2LU^#<3E_FD 40[GM4}I^bTk6{^ӱ~9x·MRr7ಌٹt J %%'X[#Zd#7S%Y< FSfTtJ$@x/$8n,D[F)_dh)qC Pi,2;J &t}G;K)d gRvnn0O!7w2H^8[^ *U{as5.5`cZF[$ :dF555 r;}}ApfL_APDpϲ`uh ?5c'JHԺ@#> zˋk:@$oQa ٵ ")_>O/-=J'VRM{/dT+KI.@+(KW;BKCnXH,+|޾ۄ:lڧLѧ0YIo@Ɔ4_c pz27h!ț 'n9M֖ACQ?j<@bW>T &-e+l EZ¨^Tq"Ħ$!q(79Gsߢ WWEE]g"!8@\Vi})e=m$j甌7sYgIWuMpyGǞR؄!]Ut#C#nZLaZu6hT*r^X.( 3^B6yoA#N x1Zs_/il?T6y'(Ij%4aro}D1+e90PpߓgJሤo,]\-}"F d-Hv] r`>2lJx-/?ω\8w18!M!ȣ|>pM{`N;'l~e|^:!bG<I. 97[% dsХ0mNg7(޲uRHEVOH&N]1/w'QOS%;S{qU $hMˮGw %gGjOO-_f},g08u#bC$nHH!m%ÿ~sK938ѹ|SQY^t/3{ƳrnIH#lqZ-S?Խ$)[vP[{tNquyH3[|]^a;XM3x%z*݊?Aܓu琖Qlˋi@\tљ߬&yUC}\.8^Aڢ]/m #lLpy[k9F:$8B} ~c/EcJ47UN?e!Qi_-`6\]PdEU@3SMc2BY_jUI [$0~uI.&Uꎐ:>5zO-$ sd¥/¨$g٘]Q`í _gشiރ`|Lȏ`T;< zQF'+pyI^DGu] 99Ât}ؓI0nCwl; H-?(d4<{>`yY&yM=:Ӝ,Ie6kZ+s<5~Bru+ʪ2'EkX bZWԈE3_zĆ٧k4"2?U %)F-!3LrvZ6'ꍯqk2'>5VW5<ewu\]bݠeojs^x+E^,(oW_%@ډT@w^;ƧW373}9\[Ijjnc9-/M7 X(t ͏18z~gzE0QKO;W` Fc1fx>\LG\ݐ]hZ4wA3UhxhRSBgVl}ncUGX+Kl#ΦlT 7<' L(_Ood}ėw [AEbG<0*!sUn R#lM=hG+Q cV0;WX.DI4~}?w_q+@$J7$ /P~?-JJfa WPp%2Kp0,3vn-u.k} U|-8!w]?t+ufj?KS,XόCpn8;|(#>EH Kj qx c U)Y /?\|)WZh7ʥB$T O11ȜVE5Z`9D]Clz(2t8%F'eBZNWfQ׵0s |5f*.WhQ6fsq ~uډv/Q$@!1':,-%?dWEE #.&`<FOnfږrYs}-xr G`K4qHܺui' 1Kr+T*ڏ3*ЊAqJN,>.h=%jaߤQu9*?݀~rfǷ={[91p&\l]; ū[K*GZpRGpv'yķilW|` Utfgu/CIk`"NW(],{)xݨ ]M*Cܗ,<rV3?6JO݈5-W)ڈfމEߠcSm>*ںGsnV]gbw U?7buTZ{Mb^|piJxPGQȸ~v]cF!ǎu(?g^H 4:"ˆpmTW|:$/@U|]sFT,^bew-sx bN&wrƷL\ ` Ҽ;ػ.:*|XF&kOt~s._-J턅8|-Uԓ)k Jh ̷HLӞ; o|),r_"|Xsޙ{xJ`]L2k6g.o)9__r#RJMGۮVܑNPmWq)CzFnKQ;ǁnZwG"i\T ]Xo i*J#fkS*}I*J˴bfq`QK3x.a4uZe}>(P=9T^OCjw}wģ9*8 jLՎq'La mڍ et*89zgD:һ1_ԧV=/:w j~u,J۷:dnMb+xu͌裖QNs{@hyb[Sޫ5dP[©nV`7ÙOXەIm)Q{|?nY /Дdk ;}$X(l,~O/XL̈́8NlVm2Yh/m5N,7Zs# 6ZkzZȴɎYrw/}M} ”X>Ey4!Dh1UINUKVBUhxxo7x#2My u ؘ9+EtVtD$-5=SC_[<$C`Y"`nMka"'-d$MxZ(;'aTA8K GTvo{'!I-'GB6R5O5TNXzX* (N#+]e? 3ﬡ@GQUJ4[({cVy7rⴺ v ڍJsWsA+ .ɡC4Ď14$r5 d\| 5D1ymu/ll2>r7)`ݫWcGs4;UL}('vyw:#T4Uc(8gSe;`@ѭ(ZC[gzQ!s aX|x}vW_x`Wnfp;C_~(o}Ŭ#ψkӷ3ABI3?g]]zt. f7^'9 }H"p*L(8܉B-[HhlmS`Xy{|U ݊) "ݜ AY-2"yXw[);G\;I؍ӎMr捕ɖa䎷V2]ʓrU"zyܘo8@7ƪmP 'F ' 9cV?hȟɯJ, Pt } !rPw+ (Q}.umoBX$Fyݿ&JtaRl

s{NN3<ljT+I۫y394L3Y>Xa]'Yxׄ7>d mG \LF|n,}t!Q k*TY2Js}NٓAn+GM 6PNef<N4'dO4BL5,dgt'↞:ɋ@mtZ굗E[BqI qOXl-q9?7 'Y@=>ϱ'%WƼK?=(F@UjQΎ˳L?K_&EuIEv"xj4z6¹g6 # ݝLw {gSE,NQ24el%q_DiS*[FqjgH=Y߆Ovusv$`kebO}?8[Q ^0ɽk{]vD՝џ@}@DQRh@[I{a"3Z[ϭ!jѸ[RH8I1msK>YAuc ?&$|x(RIR-59&uc @>M6 :;T/Y@l*f:m\)vz8Bdb.:}"'S9&wG)׉z4'/^u ZC ]'dϽKʜ%IGY:OKhNqarZDVNm~BA0UǮo r'd!Q#U-烆>%44.!nOۀ+ʺ6P? Zȃ| [^9ZRm|YjTH$VLr_ҳoW9톴JraX [wbW/:a&#hpSPFJهPB^65Bm%Q+-IxV u&rdF~yzXc:+GnghvrA8VO)N`G,Sռph-4HBT0 J>B u3E]_C_,ȉM}G1~zQu1hgu5w%M9 IԶ mWLKZ3(So\gOlN GPPYt D6)pն"^50cUSH *fjs@W Ok)8^7:hXgos_ \.Ž >h<"/p}v!˔(=NHo)m}NmJѹ/1lɢ2Hks$:acb=c}eC0q>&&1׮g%*Cn[磵q x \5QCiwiF!xb+"i'\ 0#~tɳ;mť|pK!@a.ʈl郄TmbDRr6ROA+v [tWi@I)&\3x© < ȮjY9W{߈,]Vv/.ռלqzM~u,g@ha0@Km 3D2,լXrbӋKga`l{-wġkZ˿׿เ~{<˨԰?U2~߯3V/9 h 0F84\ lZG`bg}[ӺhSϊ}eC 3eENC]Vvc ;Q3#?࠹ٷ"$hح]8 A.`@f:sјܾf̠%,P3*w}R$և,s"Y VZW[YQF`pT|&uFL[Hwe5KVDC?f#β%Ye26^;oYnPӊ3=Vɍ JBLr@zY\"Gc"̙Z/vC[W~3e>3!*ODV)!T!VcEAbE6n߱8 {1%׃ZIգ2'y꘬G9bqPSf`+r[P:Tq;dc9cVUrGA;sϟ~eLL9ğFx\?i;9V&dq8?<1] pǦ$!䇽ZĊ7F? endstream endobj 454 0 obj << /Length1 1580 /Length2 8065 /Length3 0 /Length 9093 /Filter /FlateDecode >> stream xڍwuT-HHЍ!  -))*-)H?ޚf>}{k cu-.iK9s@pye^h?yxp!( .. 9# !193PrxBbb<<>ѿ0@b x(θL0G8\GWTTw9@ X9!l-̠-O V Q hf q & w[~كeh@Hinfp0B,"K0\LvxW#b3 `j   0sE4:Ðff9 i R -G3WF;Xg_'-;9VK_R,]u N.gr!b`@GXv-l-Fr9R>+0 @]>^N,!9OwdlFq M 3KV5P[i;O' |=K墨WgV02?* k01x#c%c @.Po_afzA:08/Up{0CΊ5\@?glAX᧿V9C~@*!Gy8#w +`5|B38$x"gn , `p_G+* 6FHKrܐ ҃H2_7B",pݝ o.p8T_K`;wff!`[tY.MƵO$޺<떆ďSiͰD{|wv/x쌗?T5aZqz=sVqTnm50w&Vv&5Ft1 \WzQb fKD6fR g'R_bh@;?>t rBV>P9*>Mzl: cZb?k c5wR+QN ;4PcU3'U?(Vg5ɒ4:TP;WV \Ťc1 G+R"hw`#Ijxⴻ>};P&}pu.;𔃢MM O{ o>6{[P1ó0KՁL5F QsURdqC5RQʣtdn#:fn@χڒQ.Bvu}x,eFGn:sjFWYdžV}*\F4eDW:~Q}vͱX~aēy'A6I 髽]DP̄Fqiiue|acn𲣂Vg7rYWCD\ -zv67* i~^Bt'FoKeN|>]+6ckD;D;\R?SVIt,OhS JEG!h_'LΛjs @oc fH~X~ítZ@R\CBR:Xo"L7lM;*+L 7uU5^(?>m [(p d祔QNUQћV C:7q \ LlF1~T0FK18̩tct|{MēCv OFA~o>Zak(˥ %4ɄeX0CsJW^s d2]zؒc2uNCShz%EaW2X Z'y֥ҁΟFpxC+jr2 *P:e%X#x1ʻzD|$]-1b\bJcӮ̮3 ŗւx! R& Y!kh`z]ٷKIcf Rژ};q|/$^ 0 2>fw@6rQN5IyeG5CϻwjdNZ/7IZ&`< udžQ YOț!w\T˂6Fϸ| 뻘W8^Erj ӥG+<*CwT"Vv4`Y6;rvgF/VKHJ 헅U<ި8DHv˶V$拠]qc(`5嬓֬u5/bZNt E\^M?n}> `w3,U!4̗NtB% _E] >Z -$Q9aBY֔j1aK|- 0-ul|~2sq Xt10JaKXڧk DVy{ r s-5#3ݣ҅JYRXl$uq#p{f{aqB|q!KMjUpf/x͕7JG_|[b}7n(,=x-"b_н5eLй)74"Ф N4ϲ8^Yw'^#^V},k<SlBŏk2Sl{JC72HZ#,w>|\9 :JT֘5C0v-1vCT?1sVA-|O5p^~%iuQ' %T AzĊCC,b阝9yÚ4X)|&lZ ÃIqQI8x P:e Y+ f_hOjW I) EXM(ٴ _ݸӕJaIELs(eȱ=ݘv׆v?/]0F}*Ftzea$,Za1):N8ʪ ߕQP*>=8J$ u^92䞱+-q+R]T z9:pVxyrI֎u[!EN+VhYSկ2fjB2j8Q""~M!^3f{_(ע+ˇ$!TAĀ{Ll1RD"=P4kd[nwLFH+q/{mw'v ]wU׿P ݞ蚎Ff\CLoe*p=O=Xm*]!J7ōRr?8&sd s׶,zBu_')\+l4kK>+ #0Vh%! CUf(DS{Q1:nMMz,uZm;_?L~wE{OL d&ޟiҟ奔}v64f"8?#ir ʔ.S2)k(왒w<8*)9`3d`1W޳;T\_o|=Ivax.Ja3eJcUј) \5ٰ.pO*g b͊%ly&r`a[gZSCR4~+=3~:8i6""rZ0McNdeOr=tt:K3!8 ,iϵn\͢-FUI@ edV-*l@R6x/Z_mγ8I+c2 W^n"#_P(9B{wŲc,I6bF8|ֿƆ,W(W,yN\~]1+Zzx+ f̟TBQ٦PAá+M3Y~B.8vww4>bi) J1e鍄Md_@Q")?*ÓA'xeozd儓aJTD ..I"~}Q$ co[,&! ōZFJxCSZaބ1=5Q6=c6I=)EN}m|^z6갇}Q:C[q`*1IhT_ȮS |~bSc 3uiFy+!NC5V-GOqv}Tk_\њ^E8 U;NU/cwB=H5eMf˥V>r˻'LcFЦ֗epfP.2X=+4}uP n+(\N9~yŢ:+P%Q$<י#HԃBvXAD9y3VK?nF1i^D\|CgOELLb{E,fh9d}Sl=&N1pQ45gDž&L?X|?^y>)zkW3)K+.2zjKBJ!׵O.(IQbQF Ɋ\ ^}ׂޝx>M؎O{C/Ǘ)т%e?gwmFlb,>i3yq%85*?G:O (kq7%4ď/p^[TDK,Lvt[o~}alӾh, JuSiUQ T $O "_z}ZY{qM2q 5jDzZN$d>]j&+z$k/o* ,`dL  su1O=q6O}1n*YT-&ng]S{$ɹӦBسs<6M;lD8{̠4/~U ce`7Zܶp5~oHgESD?e슨`зIN͸X;B}eȰ1a[DZ/Awq({}Giط^̦7*83znBslyBO_u߁߄΃iU =/";  Ÿ n1C S_91G]cNbi &8?7j]LФwƗ&v?3y.O.09pa|^mѨN&n 9!ҬE'd7yZc̖Vx z yϢϦffHhoa[F]UWǔe/'/UtX˺:hMDžROlIE^X`ĵs~!Wۻ*XUYXeA!I]S}ܗ$N+DM3Qr4)GC16>>(}|U r~enzrhUPCoa>֞՞˄Ӡd焪pj͵o=lF6"Wiڑ,f<\^agNъ76=6_J𑹡k`%;j4 yyh;_K#;bRs̘JXF'$1S+UnAo22[3"]Qmi4Ѭp t|=گRK[( @c -S _۾C:D9苜: ^ZuƋ3=("d)^1mbӇUޟ5=&+uJkj1~. 'ѺwivUmp 2ƂNa@G׿d\`xY!![^l [j:6~P+R[ϖXX/dMxcOk/%\٥z"bl0ĆXi$HEp{29o+ԁ+~+t>Az1z¾AVQW%mE:yԯ= ]g!"Tp6UU9S-(Xk1O7bM;9cR9zMpVWE[;0lIHboAL8U BwS-s)J RQig*ǫY`?k8^o)i ԟr2zvʸ:K323Tbn~q ۭ$k6o4GU[pඏ.-lmVaW,h_tCKl5U™&뼋OXyo _lg,Oj %(/;z!k'ѥڸc<`8*M]?Tѹ(M^ዕa < ^]BO TH f&9We*FhlyT5$I'%;BqIdw5M 5nLs}m3൛Af4cv@i^aA_ 嬞4jOh0ݢḛ4GL\>9}Z( %AީBz4A&9Uೖ-.?_4m{bn\u{5@QJpRk!x/Bo&'p?.Zׄu^8!Pz'sRIPeaG@oamsK*s\/{A{_*v$Pyo*.Iz @bec$JۿJsC] MK4e2{N;ŏ@.vkh&»,u>uwӆرi3giVg>gH<l{vňvD19]y}/Zl_% VhgZI0d Xe?<o>1FQJJ$  о\bW/,ȇ[j\KJtO endstream endobj 456 0 obj << /Length1 1613 /Length2 7255 /Length3 0 /Length 8297 /Filter /FlateDecode >> stream xڍT6Lt *0Hݩt0  1ÐC4*]ҩ()% H !7zA"66C(򷝈aPB@@HMD0COPI $&exA<ؔn#0'(!! A@ @ t3A.8 A+#&r#d9yP#@AxA$A?P=(@x :;@CESO?޿AaA`0 P@GU`v 8lфWT ?<҃K#02ம҃]w_?uaOP/vnF0'DCm"H ؑWC_7oˌr2 P{OH꿁@B0DG!G@}~}e0;8?-FFM،@EE+( EbbmA\BjT?go8Π G4o/B]|0D/"@h-Q $$ 0 P@tH_sw]0.Cx)U``ݯ/Dx`p$#~!~[ q#?w!v?f ~EoB3E@hj; ?H_Wt\F 񁀉f&`pj޼kC2clk&8yQ3sR4ΪEĉBZcY+vS=~ԻOGM|.Vf k(o݄-STԻKͧOkzUn]7 )g˷͞cC2pQQ~az(`'^e$p67_n(NޜFSq{59g.cЂRO1mG.:HN&R;wq#{ؑ, Q^$}f<wjܡB/℺i%xj[)>P*A C RU~\gsN%!)~eϹĊM=_tĕD:<-7ܣV0Q(^ZceX*dBdS-a$RU.ڟ?>Cyj~}ÒX 7yWk`u׶CS;8 "@' t=&p7ߥhFCMtL Ki݂^zN-˧`3^kЌ즞Q \(PHwY.85u*i-ޡʀd1N^;^gd+^<4<6W\{q].mi%T+>&?Һ Kj7y4S=U\3|5>NB_ed﬷IUyihX^C3 ^/>S?O?w$gn@W5vE Rƍ5:p&Ob0{_xaʋV^:Qr攟Y5*1-%.:#t+ql@+vp8Vq1 ~T)4?{t4&yYLE\"`}EvMT-Ҥ`e!RwQ/nqw9c֙3Xឃcw:E&"[;|zoL@di7E$MRd^ 6,Nl$ĪWN+Ͻ>* cG3ר f/sQD<"0W#+״_\foBYj@k=O >R)`b *VI&ZW^-˼J—}6ߡ:8b_1TsxlKW^0ߖu/T+2iJ0Iߒ]|.o"r}{g%|j9yv nAg9eviU` .kkëad<^Us_zAWبgdGFr)}Kwf)|*D7I}*}U0Mr~&\Re.*YBq4v'|GOpT:ej$tA=Ʀ}+/my\A3\M1tɃ1VEW0EznxO!9{'WyWujD):}^ņJޱ`N|<; Da|g&(68'!m{k\ PP6ZߒXKm?p e=v&!}oz.^?)v(/?M@t)mbd;=TpENz7ulǻ=s.u)g 1PSLPggj<\髺dHщ#$h֬f;xUJVO'O@}|z'^2Ml*:L]h9bД"p\Үm 3I+'tjKKzʴ6K$z_~͹-cI9kHsCwMu *ɯ&n=Or=<]%\Kz[%~{bl;{QXj:ӈWۛ &0O'4^|̬ɇbVx2\nw?&1}î5̻=ԛj=nU 3mنvrjE˭} eQVbnwP)g+&HaZnTyܖVr⅌%WV$"Ll77>~}‹d%>^Pz/+k)vQ(lSD{AKqf٠/؛m6iO06>%ԽIYOfFHI%Kr^%۫_ޝo[a)0E8f##U iSu{5mx (?$c"}eeĴ:~r/LM"a]h8i\@dJfYϏ}gLmGQaH-k.*3qu;rBO]t]l9T(kvI V5ԶO}E L|OHe'=R;t+! EQ8GCN{kDbE?b@o>46y94qX~( lpn+J^%*IjRE_$[d. +kh?#~5l3# $c$3T^bO A!eiE@CU,Ųm PMP8xmǪl*Z xvhod.YɉN 'C`S~KX/9u$kku 7']OoM/xXpʶz!ˍ. ؊d1y\jo_Xn-LN:y8 [\Ny˗sp\;YnnFey:; fīlcsh48yE9ƌޛؔ|ZqWlXs-.NkI7WFJf-B>a oDr RHj$)GەUX,]WVFni~3sqo|B;,YlCE":%:Z1^T)8N+5/7&Zt-Տ^KWT"y~i w/}`섫`V 9$c܇ӱSwĩrui,o\aˎ/A'l] ?PB/^Ԛ F Oa y]xYAb]23t3WedeN \.:>oZxaLt ֟򤳣_%Dɽ1{ip~obBHZiՁ*uJ"jH{b柺%cͶ:!;Y#Qbv&ˬ'w (9L,:jD&TG8U̙cd4KbM@%R ය ԹН9M p{J54b1sWDs $.gE;^Sgk J`+BB:wTݗI>H4S?X|syC n[y&=6qL:?Գ|ɛ'J*>wM%6`|OLj T:PTU j={#gL9uBHQ/`,[.s=:7RYxr4Qvא-Z |#|?;oR3722 J(KL[j*y}Hp i݉['Ն*MkteXnpș#~6]굯 6H|.2-D.p)yT}l- S \ޙtYWys ga[Ƿg6{ v0JSU/"N|0C&Z9]^D.z ۔\.%bn!9chZnּD QVk V'7})GӌRwV=8*YugZp$[t#' |GOq=J*v"9P]+YZB}a{3\rX5iϻq+j*I- cxqr+Q,ث8SA|M4/mRmVD2ۛ/%=^YDL'Oy=4b0[6n Ajsbש2$~[E-Efe1(K=%1 +K2RKat!yŊ 5g8%d(0dceia2Wg i?eF>#`EX'?7ek_<8:%l:V7>k\n~k0a|=mơf\m)] H`Z 96GvmaP (SOTlEWkD{''JJ=N7"JRU@aJ0V-p.δ7a\j,&#/8^L[M_@fI?͆xNV  idQ^3EdG']fLƔd9mKxs "n3+M,<{ŷh֊]{QR`ee&TG5C9='a_\BU'Jqw1|,Zat}7mqSǮJB}ɨr(gU%ԯ͉7N>yT cW^!_¤y]2Ä]UVfoyRgD?r %%cv}:}qku5Bejw;T!d[~; p &egUw_ 42t9 \ņZkDž.\K׉܅hpKĊS)8~FHge/_x)S & fiIYZƄb$oג "SNB&yZtLiI/{ >_}Pthۭ獐XkHdS5cQYugtk*ytkgOk6f[53&d rMz:?{qn. :}I|g:bXXem8L&6d&ov|Hٗw(:aXVz*> Jȏ^/^3 4+r|O7Le3wCH)SzDk saAAC]?t`cK,y`,;q ig.Ɲm{ol͇V%_Y 0Fi9t*v?7sv#=FjNUcɮq{ W)7Ÿ<;Ju8p~M˒+6xQ̾ v&> e [㜌N-u:solGn> stream xڍP-Jp n!@ݝ` 4hCpw ݂ w.33WuouUo4f& {;(3; @RYY ƁJC ڀ#G9:e!BeR@賡@ ```cpQ tY v 'TI{#?:Sz;??/q[#hPB-AM6 {S0_!,P++ ։B ZAN G7e[-/j,4MKӟ {s+x؀MAvN.vf Gsv@XO&_`ga;_޿pBv`; 9PQbA@;߆@'g l4y6t @F\ |f?'SG0͑wc3AP'v>;_͵w2ۙa aղ;8y#Al||fj;;'0P=. o#Tvv 0YP,vg{?vOffog-fWQTdJ {7'3' }~8!U_Sf||ah7NyA_y pQ8ڂmxhgr(?hePY<:3; ןr d Z9LsH ybcZ?_.N=Stz^DAϫuHۙڛIn<ψf ?fbg}v\˲噃?`sxLS4syx l/-]MpKl)\lpTjdc@Ӄ1Cv*. 'cn+-?KijMWۺҠ}wG-,vt͉ik֊)9 )ȋ^װ[ (~nќP 2*2v 81}OfV7ŒX1(cpyhکuEĪ`=t,уѫN11L&i?=Fh#A\F8Kwc' S/0u>r C32:DgnߓhJ_v[`eC"`-my.Cjϳ?Qh_-5P4 qi`s 0m޺Q*0,2z#FVx`XզV]E&kܦ/#T\DTBZOj8>5 Nx_?jW9*S^A|}Ks\gO'_S[], k\q?R>dbRZ_HXEl~ K)V `;6Ү&kDZe-0vj-:hs,/!U=ӎ%LNnGAZJM*X7r*5[K)Dպ'+qtcҚZ#~jZ䁒ݯb׽0=ZtA77cDQ0G)m-FAHؓ*:+`7oؖ⢬Y+i/пL|>WüK7(uo-nRlGu`Mrͭ!G>ӽS8RF}'9 ukģom%mҫDZbYXa'_x$Rvjͱ*̚9eֺzɱ1.$Y'Tոۻ}kϔ\SAh~7zPZ A=F4lF|݆SE85D+pVl.V?vQ@Gły!y;ZnC(HFЃ:9E(m=}4@&I[a]GwlO(R^p}X*elӷlj#@0AjD]ٴK@˔X}?7֠NԑJGn;Rtvٵ 3२H'[j83%p/w<ړc+0& $Jє`Yc4I\fVfi}eI2'؝y PϓZjV~J>0c[6g$[ߵ*UF,勿ٙz2ՅDBzW0gRŏ x['; m%e _&Uݷ%PD:_46`E%yWUHpC?w '4I s1W әӀvNz-sQ{rH'7dRۀaO0o=\(ciu5[t^(]$r M5=BEҥ2rQ0+Ump 55Ńd/1VoJb?{0Fd ,魫қ(|&SqbNnO,qȘD*Wi"6e4ھa0QO^/V:'Z0 vKD0IV:?L;/6yڸSį8BDǧ+2̿K#֔4 \BϬsƆijɱ g1Q.b *&$,s~}^l-GA?bz6bi kYj5:yTVrvW? VIbiS?"^_L)@vYC`0īVMNvCE7ނ/F"Ҋo^:4ly;qbU-,'kuYtr"iٜ@o[=_\>I䯈o5DõKF+f ?,߾pu7XXrp=~d+Pll )z{2a}g-o)-<PZ`oЌh9;JX&(O}R{{\0~^mt{+.ѽo YL`RkF_ţ BW?s5 ߜ_/վz'EWżn2&(GA GSW mٔx?8HR|˥߰|#*MKn*rݚj9<^L#K\Nϛ)qEKTJw$ ?!8g|ʞA4M]yu4>.VeRN,acWqP 1>a2p.MRFV ,PF2AatxE>,^ Gmp-uWMυ)@eОdB RQ0qGK%w"QśD\0+z@pE&sH\v]`cʟ1+ٞ2: -qDnZM蜈Iŷ9@EݢwfNr5f:mwIAu74s P{qRL t$77Y*5vgΥz2f F0N&4Tunq)dL!g !8\ܻXwa0TTVgV%p7Lۋ?8P"V}sAXƟOP$dR@kW&:*'rQŻ}D]>b(gtVG7cQst,0x Q~FGCfy?R^x_[j`Ӣ4HdX"R:wc|9yo, WDW跦Mh&#}SvEy06?Чģ reYN-S(uȢ5% ^tgfSLhn`VϦ)`E,>l=igv6VSͻ7UQMma+(ΰ(`%Oy>[Xr1ZQ}H*#L;Yy~sܑb{%T&z^7ġ<{:kc ';}H 2ҽkJch'q(6(DBd5%B,e7w0=y>4 "S$ym;"}hC"OY5?Iy٘|t`*X><+>7J\"=צv}[;mVMj`{l>(p͂eY5iMC~d~TDī7Kāj׬u9+̪fqP+bbqZ4Xa3e\uэd]^}Yui.n Oѳ|Á{C&ޔHu![qWd$]4̎BVi+!b`ؐ ߙ:(ե<(4Rܨec m? UN{r6Oz$EsN@cL!W%Z[ZiڰbS$lgkȡj^bD2MۉFuZ9>&;~LBk'l R.&("\ឧ0ũ9'n!`Ah?~)c"UnO;#~ fB&`6=e TK>\\]\!?L ^z( >[ºi/ ~f,d~raXt*F!k\uX/P\hY(ReL" ,cTJF^8X됑!ЊXD\2rA-ćJݻJP۰q PدڼM>j4eL/;۵^!qRX}v2F"> $+|G[w>; OeG5̉0"K̲Ÿ i,R';NhWn @l\" j6˰J;LgqLXvͅIήހ\Ss.Vt8uaJ-zpdS-ar~ yO[vølulT-ь AP+4%rNXu{bsQ>sԜXt o9'?.wndHم>mžېZ vPjkEd2}`zfng96].qZwg _OrK jF%<(ƶY5 zڷD#2f ?5?E*]zgTVN~m(I湤s5 砅fr ]D0&T͋b{O"V/9le,/׋`3|`I:}Ek/ФaGj2/%v@Nۨ lW=Ma8"W­$N:r_}"p^8bLyGEZ5?JXWb-wyظdgZřbk_Y'0anp^x&beKwfն%$n=ulxx z5N`dS?| uk Eۛ|_IA\:jq9S3:Ml-k=Si30!ۊ^5y y0m:g[o?NN>cڂ& .S\㌭c}E6%# _Rc `lzm((W~X"6'a ӚeytBE [RqoA5 kB {=1:@E|͝%_F0D3|Vax9g!-k<~#*[<|g =C,FhogGtY:-/"o.G;.XkDj T SKp2˧CUd Oؤ8sJ~B_}mF[/ rKP}okKD1P;*ftQX#W\eyg؎cqkR6b~^uOM`4T)T5qqƆl@pF{h(BIͪ9Ys.Hq]BAb]&f^ȋ,KJ]V14P2ce{9`+X,_Nǝ5U+3ܝףur2 ALg2f/L sԒ27Q䟔\HA)4Dq-d XR&}sKY|aSԺejЫkРYMv͌hb?Yulat6sӮs6)- 5c^LG:3Ϩf"oF h~ʽdK1{0XnJ_MwGm%ѕ!t:g'ѫ>oMf\ifMSxz>~FT:埕D, BIt+ !Yd41HA=Gw `">&~ȤcڨFp, F*B.[7 z;2hz7SUP5I[~ciISٝj41yC=W>|7U9?IL8Ki/gP!t0t.TN@}9[}iYH%&A[ؒ0ۋAVrwG8o|»"tyޱ$͍ۍ?%^*f~e6):W;i.K4H8Rlc Κo$I*ANH+ 4s(IdNN8 +|n>c:cmx ]6ubTǺw? F+[7;."xF8ieuyM^?8Fk/H>xT+K47`3ѼR}mWU{oČXgҏ޻f,wd,@D 4}#ƃh;_ZO0Y Hw_9~摊k&m~tfG֤oܚh5SMI/Scȹ%ȇlC(fڋ^]WVx8% QJ’7ݻU&A0g[%`̀`Nc'aKp̈H!_|NWܺպfE"df[Zc-pNtQ^_8·Sޘ`=QSam8Vw` &_Dըe ӗ{Vh18rg:b$ҕ35?~ NHU@ _4⬅hPWy&>V|Jt-{ZMSG%ʿSPkA.TʂfIZ E@Ȧߧtx:i-b̊IVS\);qIImԥ&Lm5{sˤ50 g! !ʢ\ i;~k ޅ(JVI`il[Wy &2|uJ(\tEPH˰s`k.'Z ]-%ײK3E> IJeJ)Iq?'  W  RUFjZzt!<}Ĉ+e;CZS?sGřc~9I윾kebL:ige=5sD$\|EzV!7 / ]D}i+g_/%\Τ:dfLl{wJ%]ppl> stream xڍtTk.)][J;bDFRc9kfw빯a㔵YaP8'/HCCEfdԇ،`7w *ApNGi |<<;y'TaP;6#(`fxEE9~`75 h`gDEk>J"aqs{yyqݹ`nvRnn`'`@ зl^ 70P8APwD z*ꀖ Yn^.3+dm svA} P;չprr!A  s(svݹ!N?!rLe#3 wٟ< lvߓu¼~['n("Gg<""<{[sLeF s-p7p6[l p lbwx<A]Da!Yo쿴 ȟxI<1 .ohgeXЄ! X 5BoEnH闙0!N>T#BXV8P;9yx~!o6nmHQ k!?_D[gxUm#Vk?e0b݇fsA$"7G- yynOQv%_@30kPЖJYJ/! ̋|C-0] O^U{8ɫhQS"gaZ m'Ux9$ARQX[6u ',i.=F/&7ªa->UyNJ%j o_NΜkE&;٫pw-晪gp8x/F\>Mnn_~VJevmJY/5ONv\;s;1 Օf% &U~K2,.{}э^ mh'yPp\M>I!^K)϶;8(܊5$[ЉYkuюGqXhA'o)[cgI(;Q OU$ `c;韉a.>w]!/.{K+֔R r{",0ə/⽭>h[ J+R޷hwTYzaўD ŸEry=^a|ejJ9a p %i$CPEƃ\۾F Y0bܳ8̄HJ)&v5ߗ׾U(WyMӪ~Lʢ` N&&͍ݔnee6Q84ajuvh; 2fKy9\;}-Ұj=(E+ hV:ד;튠<)TVf6Aoi88:ś~P>,L|4q~P0adʥlWhhDG[Tܶ ZLz[8 ,nR %M{T6xA扑?'|:::4'j_ٶTGp6=q܊iT =6鵂Z#gZɃ{:9E;]ޭ=d2"ԿܟG˂(6aƸaQH/wJSYWL>_3km-Ԃ\>R w/^nܰ &[Oؚr+یT>v$&m}@5dH{nM+>w$m*D}_Ba"wJA)Կ1Adթ]1DP 37~kț!6zC !j|,X5zM~(v\pF#[{Y*nROL 9oWn(y1<3!3^6nH ~)1~q9vߝ谶.PN7'ϴOߛwtRcL*GFȯ6%D: Y5& hx&N Ҵ_kMM0VG-u?C,W.H|J%꺍:ݰK 889Kb[oBuB`=|}+tn}08u`0y WF7Vr@{WSFV-_zdLw GMFh h63q ]k̬%6NȢ3\"E>W|PkvyA˱b.f✽D7H@/>zV /LrUj$/`>bS7j3 ro5b˨'oZ.)m/>ݹ!AodYz%`!X7;i%#݊i G<5:$ә?HyHyflF1!ULŦhPLp|xd( D_'YJ'mY[;J<>~jf#2(3BA&ZVV.JSlm)*Ux=Xlqip؉ˎ籆 )&4=<]{_U=$eH`WjBt>\)Zf|5?fخe3ނ>3 jxȉS/~C0Ȟt\~bvQ ! u }tNW.+`|J 3VA_ jEK'Xl^ط$IfҚ3+*J4?O-Lpo=N<\b>w>jpZLbo ̈Bgs6SI}vE<:5>FB0y7#r׵\WU/Z|s7cH&3*sCvXhg|TFG {6Hw}XNC.iB Z{iF.H̋Z ׯ`<ՊS3kUL#bwyCГo2“?cz;'ңS2?f.`4kmj* 4Ϗ-;=J珇 j3;|ueUG'>g='AO &8F|;>RQO{(ڙJlc|δ' 5*p]M.T#jue &U`8VH߽#@^*zs^Cʩ̍`0zzUio33G_ˀS~w$o:!NsQCtѤW ϗ~ץR/?W8 ^^ E;aršLuM96)WYzm# Ӧ5#ۮlWP8l|oǒE@ 1CXݦm#rRcOirT=Mw.MN|A[{ޚ"v "ƇwJ%4}zmSOS5W"?Qsp3}si݈zɱ9-'̰(a@'*xm֘M05͊'RP=r9 t+8h{EclXD+UI ߬0IxFݓr׎TC1>4LqSZ`zxkAjt.hr+aډenk6!\- c Baru;CH?fsewd}463ZY58MBTc7"F$M9/xG)| =<C0+նW>O[ރ'vg,ucd.S K Yxf.bCtSnt5O ^ *<ۼ⦓Ǒ2? ~}L']VRp?LOui_ˁU({ιU&!V];u.U..V?pW'?tuo!(Aɭΰ˷9 7VUr[XӲ#c&bUHwLېQ>)R(QBM;mu*K԰:W;ZDҞrmVWߠE<^ IǕn9~9k=I&ӂp_l8m9M 'E+»71)w/ ec: l&E$.V*6!*OU<1G hjs b ܷ喋MR={57RsANmkFf6Ez xU?d2Y,p vr{<9Q%xGvrGizCc}~σBRGuTEeMk%'/Hy.>_68B aV1=][<ZbxN,;Lon'$u 嶝mvskavrBRJO!BIo9gx2R'6*n>R=&8pi-+'铷VLK=..:e)̃Zh4b5Ga˲26#'VIt5wz-ˇhMO&6Y! {eF҆ "TvfS\Pϛ&I+^/>9cSоʫXZ{e1&;#i46mkIn'K ^aXBaz:c:o N^L.Ei4B8n1mS8SaXiAc tݳ/ rqDiGO (G2A1AŜ@ae)\y؄!o#ɛ)Z +(%0%9@/Ҿ@YDf/s|m=||=[YX7.|bf fSx!jj!E㛘=11 СdzS}y>؆RA`=0RγD&5[7o2{EIa=lS~ֳ=wtaJ=%hԌn]Z0̪XM$$q =qZK.>:3 FS6eۯ,_"=*O Uy _B0p˒*U`벓}U)4BolwC{ɏ]V0>D gn4Z|q3|Gc&0<5)[pIsK BoUbSϳu;xPҎi>W sӞp0\aQE;jנ|7\%##%< < ;k^@JѰrƜWmK'S̆LIԟKMkРPx=C}v)5q. pN`e/1:A<7hrWKp܎rjˍа`/ o>O} jbV^ڴAbz' \ܧ/v@׬_Nm[eUJ-_G|}pAkbbFQ`i{{9_ Vr'BM7ˉ8]xXꠘeB&WƻCYquRxi  )XIH1I,kd\9yo)rL/:[F P>bQ!ŘG߳$)d+NI+vsҭrER w1sBIaP]M F9B: X59LkNt9,e6@-|D Tbt励x+Ѐ 02OUblX@V~1 Z ɼukA NM~ +$p\?>a^G{N><" endstream endobj 462 0 obj << /Length1 1525 /Length2 7964 /Length3 0 /Length 8981 /Filter /FlateDecode >> stream xڍT[6LHH#94 ! C 54t H#ݝҝ!Ҡ4HI499k}ߚ]{_@.7@.aA edЅ89Ca q6Y!NPry@~a0K@{'a, ragL{'a&sfPHHw:@5 aGs-@ {W &Q+8A͍dad)p­g+ EaƁж:k[@Nj9?d'-E Oʟ6_wrS_ ss{; X@m!*pw8 :?\AP[CR9;AP_9ye9X;c:, bp:kwy,0/`N(Wȃ %@ws+_= _>^ \ >^v7`9`0`Xw pgA^`{?\CKKI^@;7>]?۪u6 *,@?.oɂ鯑ajZ<StM{ y[nd+A.PA* u_"0R0y9xءPwX 7#{-Qwzq0u6C@#_0d}9=4r@NN A< >alzpr)> {'_mp*2FBN /p 8mJ |( "|7@ s{s@֋*)r71Q }n[i1z?陋sc$,P jUk*JS!_ӄ7 ho>\X4 KR{O,~Vdh` +O>''2@!ˋ^sY9$s\QfjoH-\7{%7iR_k)qL5F>n~P}귤tF}?D]s$AwEQi[YӺ?Ꭲ)iG_:d<Ч豌R5ydNL"QB&}chA'aPUչrwXXb1jo&FZ59@אx軦/AdRk572 (h_ .+1J [mt `5yC͢M-礕)?wXc LϓP@ O z"2FqWN8n$k 7_‚8 bt1{Ȣ^W/:g:7t줇f2ZRRcfteXFSu#(Kc)s!- 4Rk!:n|Vì:jd1T^s/ߜFp&R&(_ z .|ɾ{Ěڟ \cH(p=h'"ʹ0c zmo":R;D{_Vl=Ѻxʭ}6 ),B:!B*[/4\w2żizhsij7኷ 3(q>42׷6]#^ vtpȭBLrd2OilqZ7BnzCnf*rtYҌ_*X U3VYlԽ`R"s{ݸU謠ihpk0 I8A䏎": MI0ͱ^H^vF`=j6nKvnyJB,9SL8E|fA">$x2DDƟMQukMؗQF]MYL4~~T s?]Rs$̥V4"E y_({su+)$1sX ReZ~gw*8 #gΉL: Oq9#,A+9u,c8~.Z^>k:$e3m[ّ96N[]-+q{A\pR˹nNDq V O._"#P"9ݑ.S`xŪͭ QJZ)1jV97e8 lH۰ƅzȥ6;Wt 6L5T;lJfNEF8Y7na#I KԵvTlgun"k ' ͓lQݣ}Pl>+D)QH|!cOqW 񼳸 $0i*QO,r6M̥Qs=Tʠb~ L\&PJU I;8[őP)^)xauT-|tEWΛ gTF 4 V/DmSv7Qk 7ꡊL _gTϤ[#>4ذHk5"#oac?4]f"ӀT-ZxruLIfCiŅЈfgiWGDŽR Mj[U|DƄE磊MHϳo/@I1zjWL+gI?B)=:"1FK&DOl3g5qZ⾁d>SG1 tj@KVlNOiˢڂ;Ycq]E)"6^ѵD\9T;= RKzG(!GI~;#OԎ)h8ǐ+c;*B[T,tDk8x 툩b0q̊nɎ2nNxrP3_JG:!rd[XljB˽F"ۛ:DhUWK@u[jy5hKx\M]כwg(GG{ܟ"MGxa9Gl[Srq˖I>}T|yJ]F}H9Cqr WsJxYeB5n@Rw Ֆqq Rsx<ᑍPN0w/7McOj^?lzsҵs2Ŵ,Y~ݽ9i-vR U9f~)ϣ5!֋D9;"Z7<(}#=~o|8.&$)x=qdPp0r5b9@X=/t3"Gonf^th2ǻ65O)Ղҍ3AKL*Sh5ޮ0}$sd5Vop.YA T~΄j5\2ɬ 5?G8H+R]ed``/Ӝ:k2٧1b6ʬ oĮ1U|T{Sﮖ +n ѨӞ.&i 41@ՌzVk !9syjy,WΘa g!yW_"uy4ɲ;'eB~@Q+oc`iZ#/!S^%ك!l;RҲBm!%JJRЦLzN^zy6c!LܸuM _pu%]qs(Y I-\؅D-;r$g\j[2^mo0d Lm{ɭ_L^M (;Ex eESAs5cwAIB}kDW 7=(3Y#bQl.}meSb Zip9UgZ~\bB)X(zԯs~1J̛Y\aZlӝcg17.6(йFEgnFD\:;{4/}rɾL2/x >TfSUyK qZ17 c sA@34uuckvtVEb(6Eȁxr!7mP%}X:ru_i |U"m*hKm}ZDAAVۖf9<=މ$iOeg#y4]s u(hwQ{|tb5k5˚F/K:Ȍ+۲C_׏=d^:j)68rEڱR\1БRp-O[0 M)󲛮ylnŐ9,7FhQ] JM 9U1/M+Ϧ$B>9DXxU*͜qLXbHRpT"z_Q9ںgߋ1Ndےj3՞wҔEH[|u>jTC8w0ٯ5e>tV@OKky؍|UH3OTK>#.gU|oJ[𔜄EWt*˗p}¤-2?۲RIq+ڲӷ e\x'8'8YӼ4kD]zc:pӥR%gaLQ){!^bQ#f䅌̊ eYvLbE /\6M8I,к5շHF*Ǧ2hԢ}sU2R\6m߈aX{ s)@ ۾EYX\hIUG.6n k[[i }WSK0C݇ThԵU\GRͰs/5#KoqHhECh$XWylI|W^N &LVoFRK[Ltʈ ,tg?ՏL"OkCRNW0C6q+{4b?GEM=BעC1Ӧ*!<'+Q~SF1w@Gk.U_|bgP+Cۖv`CcaiU7~TR1fcrN[°<_?K':PpT{6OZMK! eB:+Q'mΈkgҚ"q('Ņ&,qr6k ;b}5s9*ѐ}EZR5S<[t"ʴ|wФd2'`[y6#J_}R w}ǧi m$ 87}ڇe?$mo;zџ67Z=5JNHƸB nb06f5M]R<+!cS1RcCXT(0O Dt `Z;k}}6)2*Sјi㲢m vsЅߨZuL/T 6j9.dNP`ԨU.O'A8d b?~8zyfm +7|u@u[Ux/倘΃ {{]+$c9U;}-~ 7uV1amdv}\ U=8a@_JPɣoE6 jW !3AMr%J'-{$-+I/IJW3$ɑ_b_dc릢$=PR'.#;ttqGa|9]+"rӼ)#bddeا&]i:n[/+A9^GhjVwl%22;о jQ@CݤYubXgBuhC)Ùz{zo?b>5.p$\}&552kƸqحiG8%:ʨ|.fi7[Bcf*^}:fcPA9H'S9Ir f .'Zmz`GyW|I=bA.t Ҡ(W6>^q-w'Sg' j?),T3lTJ󴸂[t:W) (\_AIڊi1=voY~xЋ?S ~ؙ*{nم@,]!QU[ֈ\;>O rcDmz7O-8vTQQu"s Hr}>rM|) j #a/fFĵW2RT.b-Tf[ tj-=_P¤GG\-xڮ\7-"mU#Kd%P]槌/ ,1}iE4 KT_U31%0,N4Υ{oyo;PruK[xI"2Igby׈pتGZɗ"&Ӟ3 "#䑪kκ &hT&:u''ǟ-Y,5Zh4GӢQ(2M(Q'/KiNWݟ)L)k=Ez#곭u^VQH50]|'iC͓Gfp(  xS>r/P:UHW-{%bu gG,K%3-[*yLsZ](@O  H2٣JWe"6HªꥂS.b B#IgEgc/= \@-q ?oJD fK/T;uހޫٽ*FWw!k ؚB5`]~,z.S2TMG{JBoO$0{/V,4P} nV*j dӏbRi6jD d-49XÌ}ܩLvZVnSx#JJ--n,sCLM]st;K&R.JIւ_Q?L{ZڋG2%iw'XNDCW/g?˕}jtQ}qk#1Ћ䨀 9K5B>YS|t]&V>^3%[nb#׽ua#vE^#1C.E{L Gu̴ s$WdRakt\t/~3Y~i Ix| {vDoۄeHYWrw0{*1$9)M~*D`]X%M9eۣ7oj#gh-VY9vo gA 4=IY'OK]_3xFs^d*īeb"ӑ"gHXfF*.P0+rµ,^jOcLNْG϶ A:QC'$!/x0 ,K24i_OQ.7}`g&ǡ^oL%"NS);c⨏E!this|&C9!uqa'F4Ukϖ ?Hm endstream endobj 464 0 obj << /Length1 2654 /Length2 23069 /Length3 0 /Length 24553 /Filter /FlateDecode >> stream xڌP\ Bp'ӸKpwwƂwB-k.33$WuoQm4$J f&@ {;Ff^ 3BBleo$3vd\m,lN^.^ff+33 xbnVfyFBԦ4.¶@'+Sc;%jojtOj~K^&&wwwFc[gF{' z%@ tr~ P0]#<@oXAvf@'(9@UZXoz?0_r665u0󴲳[r..c;_6 c7c+c_̍cPldleD_a@]3ڹ8'f4ݓɾw[ٙ*ՁI(- H[ftp033s%ӯj,Ġ |"V@xogc7 `fe0ZXƠ;YytA`'}zx6kL JrJtWND ```Z2.+/?(mgnPW?kAA@c`6b|_QVpKMGmlkeh]]@g!o:k fVW+b :a; h,a4Sr1{7Px+;կ 4{4T@=7ٯc;9{ƒFBoЅ=Zm *`nk&_'I70F&߈$/b0IF,&߈$#vo"F .o/qQ@7QS@T~#5DM7QS@4~#5DF_",#7=r2w-gW)%2qۀv_[ ;(2p;n c! n6/ߐt#/A&@P@f`` $#!3? Y j W;k ?jP1ՠ`׭fdr:^r%=/vPsl\ 8^GW{ҲVB85=gGM2_]r{%=.*Ur"m5J%ʮmdeK }'ЉT0 ݥ=\dF:`g+`I(quh6,naxWHOVR7re70 eM&P~- 8;\e+Y|yoyݙByw4`NW|\K6q0 9kqT|5Rr,FOb-viɞH O{;}"e}w 6-˸"c[rX8BTGD2 s9R*UyZ#SZk#Cn' pt(nWvd"٤+Vf7O+k/ךkbNO-H}He<c낽yX48o7,>S lǎ^=A%1Sm[R*d >v$3Ʒ?a`y'T}pBœإcuO~r?q;@[19龹ɪo_ڳ0|z#b{*[ǂ j[2yԹ @*Pp,a8̖+n*qzURv{G BtʪrTmPlX9N~ G(OG09IIL=Y6mJ9D4"rL{X襢yY6|;ɚ$Ia>p{,'Uæ1<{c"/c/`>7v sG3KAۭK61"QS9qr='Y)d.fh h842n 䂆HM<.}*hXXm-1mJYmrw8cZo.T")^':,;[&=4&bLJDxo ̱9֕&pG1 >b딱і ĠU 8y+ahh-䴎FL##U(2*foXѷrsZ|~nCTbAVN-cBF` EEW֒Ty*IAlw{cve?@ϖFAcH IYlWB,Ly~>\~۳R'Ȃ`7(yI.ri9$ M;NOp8 ź ~Y#|Xaaa$)\;Z10ͥ`\@Y .'&+8)W8lnQx^/al_t"2>:.|w\4-IxUѕ$L4φ+MugDˆ6 蓧,F+ܮtۋ|g^C-_< ?:Ed?9H[X&yhx^-"'I+rpB" KHY+ft@iר-Z.Rj&Dv[ 6^!|&J 4_^珙$@jhhBpݏ'O봭9)}!Ν; :`t_^CЦ+v>0NC%%6eש?InjmajьaRrl&Rߡѧ/q7|l˳-xӰFīb8sL+,=Zy$ܸ8$0w\pB~硟ߤ؋~M#Nr#a?hHB\]8-_7֍2S` FoYhUMcinSJtL%u,ĔCᎧAKEΙ 4ނSE@b{4Iҹ1XG2ֳƪ7mкF8JWEĀPEئy,Je0-(uŏL}9$kFɧGb;sZMRE(#.pB veNWv+ݰHO. P rHvQiPkXu~Xq|1FDU'Ų"kgʄFxe0\iΰ >U\*DkHjke߂ũ%ƚ1Ė $Wj:Fwķ[q teIp;&:N DMxu)ި"ɤ/ POב5wl8d5>4= kƑR:Mӕ1}=WI)?Ifagw?RW6=fYPf]N7DU,f Suz4+iKN@CLbkaE q$ORe& d7 IYn;c:ay1v ,MUV挿OXL$_Tu1ܑ0jhݖ6RLjM<فqfImkT] xznOadyA˿}d2e[O8^8M*Y|\yfXKS馮Q.!`fztDg+h,}}Ax؅–L[rM <"L)2` G:*3asr,O_k0҅M#m5k/⠝Ȗ'촽|l޸V5SI|yߨ&٭}ʹV>N΅ݘB{ӌmrnWrWxs_S:.O?U٬cdurv/4{VR_C{+ /X_]6z$y#6{C3t(O:& p6xR(m5ֳé:lŐIbf %ڞZ4~~ߨxqF0`ˈF5-2hDÕ}='ΠRҕP2nŅ)ze#fd ~C5K]ᣘ4ݞy%9CqO{&I>2|i'ǟlAo\t\MRe) y5]Z=YhtIaQ|=$tX ЯjnN?&þUw?gB^ ݪ$RZAKBjfjSPDhA'+V*s5W 96v& ˸eƅojoh T&B}"t1'D*obTu^37glSz .'//ڛFq~]1>QTZu!B(sz!+7OCof yh}H0a/yHdC,^+ӈGp=d>TYG~t0&+h\q@(luGbhJ&-QW йr 땛UE, 0/m-f7w7aNYBғL7,r ,%{.,N//#2n>p)k2CjuWջx Mn(6NZVDT9xǔff~8P;l]10)샅^%DC;N5P q**/vJ67bgsz}@y̔eǣ e_,PU. ]y615"uaBJ D{GsFbM\>a^Ӡȇh`M{[~{Dۇ#UydKf!`VV?ayFսr_S2> PhUVsP.PP-UT,e4,"ٟO;6ޗEXmpY maSkBmD !!3f'G-%LTHh1[mbSڅ ءAD fxXCO3_!Kv.6Siàer $ t+i-1qސsɂ-)DXl9T[SNx±9@C)^vuS#BKG=ZdBoƞ!4thZ}=(ü#l㙋À&}gFzoX5Il |4B\Ue%Y+Kfl658dY<{ePگ]/(M:N9 ^aNqBqjKf8MUho._} 57I42V=YU62BwPUV:oFo`w1vYa>Y3hR? >)A)NqAɲHjW.f ,[JMO?gw2\C~P׸:kU{XCWǨg]y㹖!CIhϏ *rBFcm.yUr9I{D}m!79N8WwXMb0 &JM&S=e mAߍdanso,5JTȡs%:W(AJ?4w'=.ff fR%1Cm@H^[_qewQe[O; qlt/'`曧 UMh8w d-(vtp`zfvݖ? #٪"C#~J&E85@_@L#VyaއR{bj&i(¨0IL\PRSn({%ֵv"Cimm3|oM]m@yJmBDbr4J%>ב;ѿbV4B1qx# K&DiUzL;K+·\j@ظSYy P+[de!@j2 ۘQfTwUO( O9Z8OukzQ 4`Wt0͊CTM[X!5{g%8qFij)TX YMlL5ѻc'pC,u5u%q#V25wl=xf\֜9@L%1F<<؃nDt7fsG)_rK7>J};W(] r;pRQ-A3bM4͗gAAL2LS` INRe/dϝ[S_>&+6=Xt|Pc ]R~ҳZQVY85ŀ$8=ArՃA>P`2j+ ŦᣳaRI'fMw>ǹ †el>-8WDM|yy\G[. Ri9ݡ_2?=aN܅'^NT(,3+-UFvg83Z&1Z>kAgycA0ArEʝQTS݅vC?gh?i)\bKlNܬM` tG˟{p=ƃ1jaLCndϮl?s?4 m&׎5W~9U|l4E),DcDeB+Ӭֆhj*muFJH^R(?17LM%+|분Ǻw˹'s>%BRen9wm'Նl<쬦N^>HBW6?argċPGq}i84N@zݠ_W:;j27\,} DRRb"x1?T㓌I1HdxFmzn(ÏوG]&Ư;E!.RUO 5sՇK*_ɹv p88ʺI-o%69fq71v܋(9L|ӷ9̸&+cp~FRrjF/I?|dW>HL NZ'BߗKX#/CujiiVk _ON bv|\RRb+O0mBn֪"5ey@JXªPDjۮa~/fhy7?Y_J dPl=l _D0wӓh#ceQ@ʎ'Lc)O3}2EpY&߫cEBCZ) $ر(8:M$DՈMH1KxZ$;cs!q{ۍ](XpL^RQE2xqbS䮅d7>%)C ڠ 8Sŀۈ0UAG%D,hf a֠>YfS2WinFxxJ=RMJ8wS nW,h|ߤLR>mI@}ՀB?N%d g۟1xh~˖/_xXR,OA^-:( y7HÊ53Ɍq`~܊2#k̖(d81*ǞnK\hh5=!&*E=.jcdq1%;.l}y&gx/ lt2=vPAgIkp2 rjlU(r0DM,b=tC#rr$JG\^{!BSG+sRwU?,,X:3$u zޮ8}=Ps"-s6> |<iJ5[ɁGAB(vٞrxZP,њ%/$1,.ag"(Ssq2ϫ?T?Q1?:Czh q)11TS ɴZIO^H7X@iH#[R>P>3L)/#J?Mw2g]. w?Ѩ3WsSSؓ?:D5ײ;\0@Z2BZ"A}PP2 i9 q ݕϲыQ8SX<6}92>0:CGGG;|˩Q%iYDoI)Du$Z>.Sޣw6~V>i0Eۏ{V]kZmy> |32`5Y~nT?Aa~Q,;rmz_fh/6{ {\欤[͐pr9#m*p'r Ul IWu$;};E) )wNVPT'=P˶zzvOY{IAU [Okx>MzIpVBS;LkgN3\~]l.t WVMQrR~YwmtK WXD*{p3yHhZb{ #ZdwNAl9ٛ5ET^)#QE( yEyzLHP#:⊂fHIΎ疇aYAVjpo5JG㭌4yn5ҝ,B<'$<:o"-}Uƛc/_otl,U&s _N~bnu;E_I$\ a8Qz!?7CȊUDwt~sNwwj/\?7M,0a,>ZSM@q=:[],MB˛ǜdKHZ$%ݲ7<@`TV&_hׁdqlY稺 ?҈S@lxy_+q\t;B*9h0z9\<2{uy quDoatP}[IS2'[38Hs_`5N=Sv1Npo`M~]ەzp (RՓRGZDǏI6?JZV&”>kA:<$f߶^~W#|F@2 i?$-Kp7s;-j 0mg  ^Gi^=bxKm?yOS(Dt05 eSb WXA1s9e湡zm9WLQg:Z|aBfQpu>~MaM0l0VkESI<0ɜUM?aT&q(Ǎ3ΌAS7(ttpz̘C3%v$WZN)T%#K?vאw> a^1O iݐt.0Ԉi",s]LbـH[ضzq`u5!+jPѷp0?giY T;wBS#;;1$"YuH7=Fzal3zUPeIx$v:.Xs|mcmfkK6\f p[dU ߥ頜x4W2)- s#I]9Ua1sRЬDŽz܏ƇAM 9YCT:n"QwksSLL8Yn/Qvۋ@KNaSeEŀDGv xKo[^=t R5|b oC+ F 0x5'Qr28"j7G*Hrܱ!Ki磵5kzWEwbW_vj 'eްJVKT0NhfAF)"ozV`84hQ\unfX}^ ,[q|GYv'mCtj)̢~=98;*b-lb :&- +,es/d49_O\!^P^vVlېƆdūQaɽ"3eOdgƉr-qߔn^@G^2Ƌ&Px3)E OvVqzrU0#gza"ru@wq D:5XJeROZzM'.&6r{ B~ZNDq?eDc`&@86Ԅ]͗`y_gf@!=~ 7T-&uǧڮ%΅y)xrߟ&(l(֐q`$@4 W}(6n?i2i#|!?`oSfNIVŬclv}ؑ nt)&@ZVnVlgq]5Kߒ0hR{ء Q>FZ9;:HP qWb4?|c=\% L)M|G!}?x$҅H^ !Qahz40N+.!B*ePa(bF[}!ku*R 4dLFXf]A9=~hϱji !$3}_TY'+8owd#^yl^mQjP$FqJ̀[uw&pp ՉCk*#|*s\[j'y۝~UگǐC/P-YO`賈>`*ebCǂrpܷ' `&2Ք[Kc9ot f\  F~>6<.|,RHC7 R={'y6AX `@aY.+TId͔ꭓh;bD.Y83c}on:a#$ZdӱQʠϘw4 l_2*!ݘ TFF5~ )9xopS1'v }6muMMh/("f!_ yo΄հTyo¬ȍ{a3`˚()-g_`c GS'ې0ctH-QwQhtRJ׋&yjEḊDJtS15aQ,*iT'wq;Grы}TFGagY %HM[u̬ rpi*jY@SyΓ2&Dr (ߪ1Z> B?vƉ:JiųtD~ͤ*%:Kz xXC(<N4]e}x *R:YșaA&Z\s w!BtOv1s#{bdAE Mz5+Kue_6y3hPW=Cz s0%;DLdjcJ7CVw=}K/рA6?.ajQugcghk]eX늮BTb'XwPL10=zyv;OަДee1v7΍Mk~(t;+.ƥaB e#64*8}~ļ"TQ +D.  UMeЏ̻y65>8+.ݗQ r!ȥLJ^*6 srXb۶# 2DO}{*_i_{;axuh`1fGbkɜ;Fbn*!` %ZwpC%E//(t rh]n䆍J n=*W,n(x`;K)~ $ LKQw" 5 )Ò, U̙mAh;/DX)4"//g5.c\D+ W;K7)AiiQ˕Pzʭ'kWZVQNSdXNn_^ L|'4} G:[lv^~uqd!Q*}=a_tϛ@}rGNHѲLu}l.<|;])d*a5 KFŃ%` $E9RijZ#<Ý6Ne^=6^Մ1g. 聙Ub0:= c۠S-ɟ0u-@v~x Or'su,}Er,(9( @s/?-R?]hq,3t^X43[RS x>ZLF9yBTq+@+L{:fN׀-lou`GYO@q<L{i;ֲL[4eIc$胗 w+4*E)SW4\JѮJy/;Y Dq${_1|6U@cpJO0uaXeŊ{WZvV;P08*g8kB?;- ʷ49&o4LṘ89 ;oBzrk|pz12/ER 4,Ϩuf\f{Bab:sKNqK"Z33̟/IMT'QbEn08KM߸diwW%[=gݒ2ocW.˻͇7%Zi-N]/}}UF"N~T2c w;EȾ#IMx[?ٖٙ~a KRt ZNw=/>`-`wt"Uщtˆ"ojF]yKJ:bB osEٕ&&,s-^%p~VbwpNru7‡9vI,3? +h)hEY5T`v⑮j|fG~Z1ɩȩDhWjah5Jo ߢsM=oRRO'jEXPB/*qq ;" 8UEPtdx_UѢ7⎢^9]G, ;lbZ he%G)Ю-UHj%zaβ ܨfh,+_?£oi;?ž3uV6 j>˺0OJx45bn`Cb{/sYs#:؈ 4")Ѣ)E&P6$1)K{l"j/G= `~~IMla&J%N۵]aqJٱj: @kP-wQGvxloсTn0i>\!o2Z߁ɬ2yElF޳4AHX#*IlӷŒ8%Nt^ q7S_h@;גȘ&'KNu1, +,:X򑆃.w槡pt_ō,}/:A3ҤК/ u;%6Ŏq$gLB2b}Mq,2'{u?vќܢAW:A `R Aި8gؓ)ˁ 31{5Jz[|H+}fOpy+^ u/[ztU0?M` /4U+h/^Cxv1.s,_iYE?֝SA".;櫥k.YY,Iv_ƽOz+3֓ZiHYNP,8G[oJ&6ti! W KCfNiߘSUJ]쁱le LHmi)붅¶dYYFt"j ;>4U>|~t-2'h1uF: ǝ"@!ӲO҃G(:R 0s8)AUVHuVRGSw >\ EVRO ƸWǞS'ˇ@(r"Ye!={NoaEKCX)2kZņ;,_5eK[ >[X',ݟE[dHδY`:wo7_&Z1_h|m:9ãi{1yrA!g -Px4ʝ~rodONp#H/p5y $^#G`JSsGfam{{1zU~PyƶxߪKU;,&hv&R:IplwEl+dP MiC֢|R/<< {gɶUM0 9VQ" !b[˻Uc cP|E{OjF'd?}A=(m*e|# aȇIlSsDwBaf7ǝkXxwtxR{H>_,T"-qqI6A y 0[ vqOQLo)C'#VxeBdV^}rLԽzrs:;ۓpDgxDm2 x  c&:m#$_5 ag&QFV\6!<"74|σ >pK/p`Qz Ϣ̈$IJGO#ۣ5sR{FYc}=X*[Cø{Hh7́c g8{g 'L]ىL$2_7`DکhoJV p͘Nnt]Z9қLTrNt8(:EN{&ਇdoC?زA $8Ӆ(`XPE6zWiG;zkb\CgRd7RdqHYcW xbdo+3(\$ k @E✃o"Ed.j'THUik卣Phk1*3ݿ>:SFWߝ@,^-s"ރKii2 l z1X,LcP£i]?2\}:u4=Vdf\q^Q: \TvZ+;i â@֔F`|2gIÞ0!jm٣E|m' R1zuW̴S6~&sٕW WGzYaY}%vf.B %T%ɨv*_-t/#׉X'@4rC")5qr8E$PRi ΃. 4L¸!$]k&sH?q; 9L OZExLx~gGBɉԛTp̈Li`8Sqm3dy^+S9Ƨh.̾KLf_'cM7\Eox*8u 4CJbsDjwELu endstream endobj 466 0 obj << /Length1 1463 /Length2 6792 /Length3 0 /Length 7777 /Filter /FlateDecode >> stream xڍVT'1 i JH 0`)*HHJ+"%! %!!-Hs_9<{}DHeSG!1Ba PEX "nnS8 C{QHWAà, `PH;" H@$e`,! -Tz@mVAy.l@^> DZZR;P CHC`3:@݁&(8 . + Ex |@_8h }`_tP71a7lrB0 p;^Xo# h <`?u0y5@0pz Gv:8P? tÀ? teuBa>P;kp(P]b{jHGCbSa[n G::{zôTB0g(%@'[ c@y`p'1hoXpW[@ @Ghs#D0?dlp?=0v @'kl9n.LMSX7U(?`$PHD @DDC/QC(DB:P_4| ?ׅ (ÀX6c{R-wSbo v#Pؽ@%փ9½@tv^p?!lxw8fzfB0?t]sp>%^NVjH㯝Bh?x$ `{ a$ ubPh~KA(wlz,A0OolB `q (& a߷eli /=6d bh&,߯ sLOn?t|BWhuHn{,O(p}JN&3|}NyEPq"p0!ɨ,6xt05BaRU+1ZЅgn-9Ry4Ǿ~U]Fko$tHK? =guh;FzϏbh:{];QX rQD+SVF.FKVC[) ǭ E?XkL.K*\s^BR׏Ԉ*Iyv!XZ'~> d-h9)r\ƲDt6M&9Cg{vvƔ 2v#2ur.'?˛q^Җ '?'vLԶ)yxMpo:&NOxF ͥd w-5[QlIH¡ $XvV!VBn)k1vۏ-_{:7&#ITH!u"lլ՜x1W^iry7WQO6&Y-Jh%ٹN}kͨiS+Ç"VcG⪬6Z4n#Ԗk+k^oUGڈ)'FDGʌ&NbY~틅 K 'q)˹KnɒcZc)UW|%!7<jqV Q' os"oR?>Ic-zyFEibah@3e?0O 5[]Pnvz7:Qbs‘[8u|H |jUtR 7G7'X& '|L)nmkfzcWޅmnS#uj'"`w#'OXtXo dO |Qz@_jlmSaVtBoFeS|ڃg7}sl&NuLZ'v8n'ys{AgJuN5RkJ I$? w2ENcr AH޵qg %ZqZחwQMc:Ll( ]<*f4`i .FOC#iٟ6Y4ל?9StȕR^ǬdZ'~$y~'xuGƜ_~tezm0ܣz@xsq"%&F: 0%Jj5bEDJ>RF.vHK]`$QLG^Ȑ#MY=>#x 8ЛQ֑7F8)jfSb 44ވ7YR>$JbM'"W&䦛fr6km 'xShO(m.&x]k<4^}joD<] _V7-J9YC3Ԏ'b n k84`Rٵ%+5*4jz fiM! ,ڦygrV L8e3EƠ6ִOm}SoIewBckEBOodY Rg}|p\oFmYU;ٲn5E8Uek}\'xH7+ #@ܥ@03Uom&rսtg}xI9;)Zn[I{ޓaP 9TЧ1nFZ!S0&A[GوYһ4f9#Agx9`Ƃ;뵟{5M.4QkFO[W384Lpyp~HCo(d\a;Η]*Sn+GQF/dvp\/Lʲr)7e]c39w O^/Mi08.dU= {,&\z&ռxWK[1Ss%N6 rpƦ1ϵTar[Vs\Xq3e<831dϵkEE9.Z!ٹ +,OzOK6(j5=“^Qz$"ת|8l+R{SX-D J܆+=;e^3\lJu >0A%)VN k]tЮBCɇO {ITe W 'ы$49sߞʳ~UeV0Ōr$'8c9'̲`5!mz7v=cL^lFQU;kO*J3+˾Wٳ=c p07\pWjڻ}HRw5X1wd>̤=bBmT%/9O`BsbTAD䡷!m0lwg )N~K)X0Veմ\9t m}3r8soJӀ^C3Y#w B~45ftZMSsR$9Qƞh{ebǙK³+M);,# קޔ;7k 1j.}O^I)Q(~B(vu:ieل„uӗ9]ƃ호#lEy.Ye*JolљG#Zy D ^B}.{d9{K47Nx?Zǿ, o7-jH~J.ܗ#P&M43bo ".Fr*{>^OXb򠭅Nܴneqiƭ?L5A@{[5_QͻFFD^,uM yu/ FCZG*d|[ Sm5ME'|Zn?Lbfx 909Ƞ演}VԿJeod 2k5GEe6aU-gB-{W7 fsV!@mp*Rnfaێi(>Sn?!8ACXFZ0[O84eUތ MlzP|dr_S쀡u+{ pZgF1F\+0T,An$AzvTkn@`acFݡvOn,[L{/^x/k ?oG[ey2/;B1ri5heýAadeIZ}Pt2u%?UYXRN\+W'/'Ym,6%bzmH\[o{؏Ι ?DQd@q`dpGqz94"^ŵpŊߥΨ+q&ngI3-pǹ.|CCųt+:$L A{hĠUK;?l\ 3DRYC1$e]Yҁ 3'_.B jЃ xs'ibTD坡goiyaLJ7ňegGB&ilEո6:tY5EJ9:HI1?zE*,&,X[YgV3>mmIO &Fd.Ho+-kz ! x߶P520 csȾF'wƭMNNPqUJewZ~]P.?M "sY%bّ*w 6. ~>/"eHG|[%o='bp2Z14AB[gEݟWКJsRjTxJ]mF+NMIK(tv)(8W7Lq)ٜ XN[?}Q=/lb#p;wXPe/ kϙG<-ϾPJVNNόyL.ہR`d?laӃ)-Ljze)^IMV}i14ۥ`.ݷclMׅ6=>TvO #dbPho~}RUUL@Х@ijߍ;gI=(HӷuVOpFb_ֳiC z6=orB32"ޅ_GH7I $x|E֐!M|:$s\p^l̆$cZKpػ>LddyIk@ Gܣ ";j^҇+"DkG]eJ7K(9YJׁ Ye^#D&Д^rltwT[򪎬LX+e3ҷacS?D0wo$_ۊ`_:|LfwP<@#f5 yr0F#kmReWEz ^&ӝdzd ,wZ5]bneX}O^%ņԨ9>GS55Yiҳ:Ҽ[lz ,hYO3Vx8tVESu'0qNJJodO4w6 bLG6G/H0EeDNxoݶ7BT<#z1y׀kkdAΆl\^0.o~_vɊ2sXe$ػ͏ÚC$9gzRzhY&3k|TVZ:DLcEQ["[}-7?Us0!bʧFs{p"O/^s"WTe RfBjL.q%9ZȺB OU7mGc݇b#\ u endstream endobj 468 0 obj << /Length1 2253 /Length2 13923 /Length3 0 /Length 15272 /Filter /FlateDecode >> stream xڍeT\-SCnH!A]KW}o'}ߏ7j 5Z  $`.PP`ss"hZڂ~khA.H8L]2ISW=@dgp Y in (A.H4^֖VL 7gp19[L]@v榶 skc(jjl) v\@ ௶ʦvcEhZYpp0u[ks r4* 1`+ǿW kMM-ֶ "+3 lwi15)tblbmWl-epٻ U3̼ۿGlca-jȦeoX[f r𰳳y[D/1?GGb:|T/B]f Kk{b?<֞vr 5P«OVFDbK#7^I Q`A! `$Td_t'wUX&s<32Hfze|V o; sEܾ'KJϝr~U1ra C#Jgw6_` ,YTԈ .L7xyr :㖇ab-'Ҽ f]7А5+1OAȰ*& $L s8RҚmItSFݕ{^ JLe'd\FbU/ߨ0Č& g.@UhM[=ǧg(?e!Z!^F`DS+D~Mh p Q!&ceK쳘iNǬTxtːE5gyxhM{Sب^G}!,EMt$ˑhhHDQ^kqy Rasr x9B3Q@uE=iq?CH[8*v -+יh匎1̻n،gX i4X3.ԟ;:ҹ_(*"oYv7-ݸx(-{ovSJ|y[N d~$ i>I(qedd9Z}*wFgEA辻A]4uj;e;\1q;7W&$TϚǁɼ=I^oVxR`dlA{=)a8H\]qWPh}~ W,b" =&~q,JwFN4w$Z,AN:k~ZRzF)R̓PBY-Тn4pu }$Q=6T4X^,P8u)ʅF01V-rȡ%bfS(c7gN}tzfSP= CxQULY,MDˢ0?^/dTZTKK8R? M\FC]~ !-Ց!(~ qrI}_goi%i,K ÓzwǬbD8PyPu>R֊g%s4;+ݐSͿX/U$]z.Z>oԆqC9NURo̘$${yl{Pwz%fnct["y薛'˓߀{m#L $ ^)ޘh/ن!H?8kDρEcVd,t4Z1[P^VR13F3 YQdcw5h՘bɰHfI'2nȁ+'e(axCZۛLW?AP/umQ$y%*; eNa%J岘 W3&/_ARWUH] %7AQ셳KMjF{Mޓޙy *0fvdf]P&J Wsv h1/HQlvT_#X9Hnie(p*kĔ"\x$ٌY8Lh}H-Û546TRc?KlDAIxP 7.HuE~ַ d}HلE\d: xfp=~QlN#uDRR]'%ko#rO!rKhv͵vāpyHÕرi}[S倻Ն_ζ|!i8ׯfCz@`Btn} {qe/34I7W<%ϲ}-.n&_}jkgrQ[V\u)|,du_g ',Y7Hvv!_wИdG+ڡ뙭=L^?X36t3(LiN^%38 S^uɹlB5ͬL&X8K"7yb^&G8 U{t5]s%W\hxKbN>.>$x얻C%'Qia)4q1 6gb=+E+ݲ2Ȓ̈́:.f I$@zY: ozqdRfv7q3W>wͫܗ/Rp[FsZ:Ca|~odDpCJ\W1ƺȺS"*8;y/1.6:1v$#!o0p#/<4ze_|zqέ x M$+DZ'rO^"?RO |şi}(;bgPW 庴{?rM6.=KD@Po/-"(*@_ZO mǥ|y ٪vrq7owն ;O B]0O cȨ{!tIl0sk׮q([M UԛQAZ!iVe W! KG␏X~{6E"-B콝蕘[ZzBY]SZ!`G8[fuj1E.NY)!2fjdv>3̈pL)PK7=&o]7Q[:b ^R~C dpMGg4ct N:dOP|5I.,:ҷ0kĽzu^3bzʇ>BB`q2PGe,i661m7_}NDDY$>z~srJ;A2]I3fxMϱ0 Bsb>>Q}xJb둧VV. lF}&W_q_j3-oc'R&C*j3RKIz?ι y`&lXM0~b5e,'o,m0̿Zyv;Ӛ|KCJQ" P/}JLNf8_HI@EB}Z)HTlbF_gր7빹 .H +^'<QO ,͑&j!?4tnCPK(=>sukOrk<ŗ#"ɩsݹ{HzcbiZNj/)k+. +5zӡP;F<'lr:qWGnJu (Kޑm'J׉,{хBHx9Q~$ϔ,RL)nxGv6𙙅r=A5ު~jD8"<ũش_>I1Hq {8̽47e,A1@~{6GJT T*YbK!G>g7R[׸I~ӭؠT# ı=rIUC0lFW5.lU/$dQ72Ă틼 lgvE [jP<&GYE<8sI#@r#߸˻]N0.'Bb "Nf8P<rE\ na.[PGwTRUtÏ|4(<MFo!j{Y$j,Q&|M ϴ'TFxʊW^k'LN@wk01_dUB1cI#2SђDޑ|(bUUpnPwEKBϫҊP,@[N欏3@vAɷ0嶻(G !"Y:ͩ1-Vǟ^X,\X\}zzbX-.(?M➣(Pp ZV%QSa&l|Ǻ)8ZHiPÃ/=Xԅ.2zğuՠ=JhiVBcY ɥoALrrZײV RouRƨÙϨ/5m1& vBP &ǎ;8JZɰiX~БS ~17)vf"K!ٌW`!zЖ'ur>p{ R*ƾ;19!&娴$-s=T4ȬImcaI+Ԓ7_c&,6(+uO2By᫧Iïp&pC ƹs]|J&(Qfm)#zbED~ƕbE#$N0r>4&R#I -!7C!jeʌc2&+kLj #+@n|xϫTb.Q!|,azpv USeL7FQ)qڹP]Y1u4dgi C1Wxh#w*uJ#Usyg4MTf^^&oY=Iod۬E/t9ĜѨcv#.lĜYcS2GهUP{wZ\נoW(/m {'V܏6YwiD=Zyut;6!+-F;#G['/##x={0Td"8d 0ZQNMRUTo'sW627$ڮ_ Şsj9UU2#0h)iץF&[7iM2}،r<&p]6QJc3lE{6fpƊS~I>EO{atqp]66zwOL*tVܥDJDZ})ǯIfٲcڴR亚&L?1 z^Wӻ3wPʗjb1e6 p*U#\ 6O|x׈7'?G? ϿZM^sf_G{]˩orDud:%n MHr{+BjɞQ9U+աPvKHk~È f,.jB;JN=)Dcsb?EtGa;^e#{=WUI4[`qEȻN81"藽dL$)CSU9J-7}Tse(\n.w@%=OBy=ڋv 2J:.FvJxqNQct  w>fpN.*QB# ZI_ ypsb?x {U LE^_>&PЃs\'%< 4@3BO4hz8:=iQV5 I,a ~5+ܑWjrZ,a퍆2a]'ql%) a&2(gtR#(W`yj5&EadGZz&y^Pt=\E’}őJN{gy~;)7i, gR]ޠ; m1yMGI=/wh!r/ ʌkM\ڻ 2s4)U[u[~eɛI˗tUeѕp „O7Q!# Jg19#RS.f(uM[9)~^ NGH]Gʉ1X+r,cgrۍ|*}&A1 9tJ5)r Y gW4=H)%<P˘zcQi@qp[k9f y:ܸ;FgAv 0V w+d*8-ayū=ZH /_]٦R S:teOzc>uXtdVa#T `]gnj2} U mώAr5afs;tMWtf[{O,R#S3EWSxuI$$Y\mr?|~WE7׉Jz j:=U"ǁ>n vF9MXxO,½gG%52R|i6㌏odb nP {+=@xI =*#->*ɱ\D팩:1uJ{ ژaQ1UL^ȽsD%En?'e__+ޜ4W}>B(&30)b\]Z&ņPULxaL:xkJe"o,zTׅh=^Rӌyx(HцxK讎RZ<+[%mդA/+Lxf,N$o-ݒvn|9fpZñ,ʼY2_jl@bcXDPB"==Sͱqntbr?r_Qϕ!NQ?N6X2mra;V۷X?Ju zbUA׳5}PI|@4Y.vКZSWaȹsgX>^eg={g0(0yrx:$Wd@_EszB RLݤtl(A>:~5S£ԿcLH\Z8}2cy },[} ϰʻθݔi;<NJ8e}z\v߬U^Ksr\WYo-!_Yr|^U%.qE =4F MZi2}OUT7Tf(VRa?-+VyH9j+qp7B6~M|w%;amG"у J&ϊgݯ$Is c/ {d&Q@W(*G^듨#I.}R^IKYE؀w=(r'RPV8t,TJ}Q7םq˔:4j}_Awy z2UqlS]D)͵3Сr|DHÒoN{Z Q1-kWIIŕZĖ %b Fu?8pgkKHA]h@(NAjvȯz@-Qފ-Oh$jKNc[.ܪA3(ěDmoSNYvnx3 /`s4MI3 /veT0019DŽצRe(w0d-*N%[a:``@[ʈa+:R~`5oD{3ٯnx-uSX(+Zj=쨭~{Ma`ښc9N@/GԘ l??ՏUne"{@U[Z箝%j=?2>m^a`JZQ8c"mF Škf929#v^b\%mʽ~3V,ƯjI:%Q* $5΋ +] _uF !&E|UHoDl7Yγ{>)4bm g2hUa`^Di]?dBL;Lr -N’qP`|Y A(6Ky/g k`,\Fw{Ue?)絮}@^3T"3R0Oz[Eq$zc{V5<-Y]b䆭g̎+^AG9nu2r~6bbEf^@lIUs1N # Siվh"2H9\nj*Z|o~xFUZ}ZOkp4=ΤG:DR#dG1I҅WR %Yՠ0̮9d|4<ݙ 1␓<})4*>8pɉQ|p_2[)+gWfh|-nFC:B˝̾ʚvӨ#/е_;CF I om &.b :൬:|JÀ;HMdhKQ0莡c5{Yƚw㢠d{7hA{hc߇VZ%f2b:j\ꁲ- }@B~:zD7ߥcq0b;'Gr{ƣؘ#XRgؔN)-1_p]i$tьK |f?q P(zMۻ:͡1y<#':ߌa&s[z^nd?u]~S&YWS/yd.DҕQ z;A|ium(a_xň\YѶGsj,b7RUӌc y͸ċo%e&vz6U]m@b'Ux(1Ts&涃,lq94㛝0"uA.T-:TЕ˲(]^) ks6Tr|T߸-  :C bhCfdWD]Fh`T N̓8kP35n+loI1qW+,mKߜW#.K Us_MY5ouI`v?oN%?uw7brĖ~jҽ L(XK-&[mw!؞XW˫<BڱN#>56x Q{kf⢔Z^i;WGq<_+2R73;C-4U0^0Mн'*RSMtux\3WǔcǕt¹;iǣy58Oo  RNW2/bY]-.Xhg({+_^sR ONǜg7SÃ&m0ܗrfYc<駭M6NZJEJ7dz&Ѓzet>!Kg'ڣDO#'z@T?m*T3_ 86T*7% endstream endobj 470 0 obj << /Length1 1574 /Length2 7209 /Length3 0 /Length 8261 /Filter /FlateDecode >> stream xڍ4}7vmj3(jゥ-"ԦER^Rv)*{?s?9{rN~ϵ뛜!mH$(h PX"`g7пqvc /;Bc`D=0$*B@D@h ԑB~\0.h0`(zBJ z{{ ]<|o{ARh]R `:< Q`w( a(≰jW(/_>@ [ ]\_`C:ʚ(E=h}ۢ C`t\Q0AY atq"PSC! i3dCJUs)!0( nQC_WooC+`N?=^P߂@  B`a_gta>s z@,fD}n:#G@m?;ߨ.'GJ]3\ֆoHaS3p?ԚAWjb.6=R3AαJC^$HG-K7zP6h+'ŦIŏt4֭U"U3 @4>ӴC=H⋳KmfF\㲃pfAL_˞OF.,ezgaw2 h/ϭk>[VDnkT M'ƿyc7}kԌdNAOY{U(rB߾7+X'|kJQ&r$X'oڇ)Ì Y Sezҙ%F˫-X7gLx+d̗b):ВZ Rv9ߡNoɩ]ZaV5x/R٩ 9sA΅|~$3 5kWyE}3,:z4a^cU]Hv/G5,2e]Dg#RfYʵdNdV\yżHH}yɖhX gn6ODW!*L{Fqrb5iEtp?'gM>cdw.B=‰Zi:170Ϸ4;HTR+|uJq41a/_oX ;B޳po[?g$mxqL^[e1| &>\0ٰJeZ$qiaC 'r#*/E !pyNRD'ky% PlL&oC.u%<8iֿX2Б{Qv uf`X2t[fUOv$Mk]3 l=`s=:]diYv<3/y"uj$u@(RH?ܲc +{hc7v}hH66]︇oqm5M Z衏_!r5{SI`BdiIYZ]c;[Sߌ¼[Z6 x;Ƹg(R;)L"ޜ;k4:P-ؐoEkqvJh )wuށ?Np CμݯON< E@ZҢC%Loҕ ^.`j |~HRF.*4xibU $*'WX`*I~Uǵf[LI\c .[OWjޮηmBU1 C|<Ƶ#tcxBIee΋Qw.TAbI0քɾP6 MHcu Ν=v?| sB]?gҺ:( ӦοjϽ%ӱi$=?;s%?>1Wt5:8q*j͇;vk {O-yg%rެˏ@vwq>4Z/H ByDeE}-A&f[*TI`)s`ylǘq}ǯ#`t9AR|I\l޽z"Mǧo^]SĖe6/Z` AtDT#'\g!}x@`Q8hzKDXN:>7%T,4yFpq?h]X#visd||&K8'봱œifSp^k{vK+1QڍoB/Z,i.H ?4\@4х&$rTX%2p^Ad1H^q <\/:f;sw7Bط]֒u(`d~r ׫}9'vJVS4n7r== wx?]49$F'}䡾v{lx qzH?|,/S)B]02aV{V|{kֆ}ѿS)_vj%_[3wrhZt`H{vRS|];Ya7p]&,,;V*C]Niݳl!w.:u29YO4$ƒqy`ʍ &ߚ9~2PK!mv\aeSXỴP?ڣ}B "zoF㑑՝ӦP1 `5W>̎>WQO.S5x͋o_$mf>MJ4xjh JkZPoԷ2ʥ%#xʦ\.SUqؘNw*Rw]Y#wp@> lHEc^ױvy+ڰnt!g2BnG++9;W?% [ &_r/ =ń6{i|0ךYyPul]„V܋99,њ$N FDȏF*xkK[jbm0}1W9໵9& ϰ0^AJa ([RTV?oM3~t3 g֛NsyW̤GZAO s\Фzu LQؕ%[5YN+FFǞi1$'o \ϕwlyCxzxeDʢ9⧏t'Ք$dzQɸF:'!O:b!&Υŕ]#j9^~a,'}hTH;Iɢr}͜Bq>ʰU?ϱoyD0p+YADR;:/8SH\̳fo+NK'b2ȻotI׎vH}?޿%TRJ/I2M{%`,Ʋpwq`+Ͱ=@^zm_l 㗻fT(dj\+` z=qī^6xBӔiIJ+OOeʭy8ďY7Ҥ"%mI~_0/@p-C*YFtN +ոᾱG(/Y O;jO3_kʗviUly^DZk}>qz>z@֣G:>AҾ8g|7^].ύ] 1ϬA眞_X?6&u>}~{6߿E'NgRL>s^?dZuGA*xљd[}ſt{#1ZD-PWO3}1(oC]/^Uj$V\Y(7;ço+i6Z%QNS ϋl9x16eQl9.:Xh\JIM4T"1Mg 4*=~6GϤi<:~? 'NjS ]=;ws.ɉ Vc3eFcsV-ڂ7 $(kO V?ˀ{~ NpӽSz9jp N)s_m+:&_qJhLxB& )2X>X$:SͦmKrrOxbBJ^^I)+l^I/锔3= MkS@X (9,`5QnޮUƓ uyk{SKFgp;bt]s?M'vrlߖ;[W@&\%Lo6:z:FмQX h >ju<:"tn,k\)W=5:pAQ8Yfy}?Ʌ*~$#S1RXix7RKsʄs&}3"ή"zJd|e63|fi=NhYj](o`g-x9eVuXic]D_u65usJaؒUӬ ǵئS 0Z>wMUף#.Sv{V ,d7_ ~2fK*ũ<3a$y_;la| F˧߱=O,#RYGhvݧ,{߀XS4t@V}@Q`7D0]OֺB^fK櫰gnf\IR - ؜^<"*xy:߅/IFl Z,{r6bvc2+ hJlpt7G@fRI'g/e[!|d0_[orwŸ`Z[+dzM()7E koTlkGn4'o*^aP K21V,oi9mWO}.Lm>4D5j7R\d>E!+$6E>w|/,s ef.HXؑx~-M4;r2XIuI$aPAX '3Y".M-u·Sg"%7e2U!t;]6sv~Gʨ+œ]ò}MrTM+o 3'I8^ R[Q >%Vn*{w^V/ :x'S/uSF˳Uz}Qzv4q1L#g6m248?w,y26>AK?6~V|m X|r^BdVy&:&Ao]T$Mwi',:DvP_ai^]lAh(q5NucMẺľIJ Or>xȍ@/NSWFJ◂@ B Dh03jQͷA^jq ?9Wn+\!xr4n94d|ZFMh uh7/HL\^ϙzxu;Vs + endstream endobj 472 0 obj << /Length1 1417 /Length2 6123 /Length3 0 /Length 7091 /Filter /FlateDecode >> stream xڍwTTk6(̐t70303tw#-H(%!t#! ! ߨ;k~|羮AZÔX$7@‚ LeCH G Mi"57'XK@!߁H@h ԐK⅂cm~@yN:Pp(Є`a؎P@ 0^*#iHg e'{`hfqA&H0 PpCPls@'.௳)WBpdtv ;- Vxb _'4q ؀;du,ࡡ( -;U{ʊy3 Aڟb g篅-ac SU+k"fDAD`' ˌEtbA0 q0(7v{ElP fGSkYc{@X_ceD8y{@5yEG''EE&~O29@mOEU-p/Z%^;h!\x9H*/ܜ~y~7Wn,4Xq ;Gʚ0{U1?ke:Z1蝛x*|RXY8-GN_R}bZ-[N|qj-py|10++g|;P' MBi_WnhEKjZ# U@7zך,LnCL8nǸ\Ҿ^\ ||S°F%,6<&)nySY2 Q\7[ҴPU._͚_Zg?)0G@KG Y7Uy[IO.X} wGQw<,|f3h6!2P8~A(/x:{%)uw-'4 4"jyxw/le^ly&U-9]v²țH:΁r9>xEÂ*=UN]!,2[LތO(të|Yq/*7Jgx''>3QCXr]j!×%mg>Z^"n|iw,,c+zoBdCѼ/η%撲#ڡjO8ETuH x6 ]󢶰4!KOuh+ϾrН ;7Ƃ;>a3"{QZj&Zzy9Q|{>5[ѕ=ݟu7[? C.ܰDA^}Q.s'a9Ƣ3+pM2; 7dƖՈSEv~ '~q֍X%5GL/*p@3T>ΛInS Ә7G6H*ž b:p=g7:!j5 If{KǸ}1;[$ܼ{jT "ƒ;KYKs Ÿo}q̴-t,Ss:il{oêFӺ_Nv+UX,}qO}&=0qPv;f?{vϦuUICҒ'glsrPșMS'&"#@Gq}=D3~c2~DQMn9(7AV4x}sE} W ò *>^wW+ݘYs?MCk⑍8s e\HWdC:8Dge*#>m>q9/Ji=5 lXN?GN4^Ka25 oMzj{ ~c<ȴZ9+&<=p| KEpu{'wmZXqMzwAJ<6,;&_=ڈ,⮬W٫ xIɚJ4 7OU@7^8"V\嘰تi1[ce>SWk7sd}RGɠ'mcǾ_ KBR6JKZ]B?1<<& RlbxStKYKۧkTňc>W ! $ Q~ON(εe31YA2}j&O2$OEcT9X_\%ިd5 愉5^P:6&*<|LnMN-5dQ_FmX}gX^~$vBY7Y?T[wt.(HlKo'cIɩ'׈Ho` 1Z ђ,C(=諚qhmX'eH#!a# ILi.,|'JT- UE13C\k(ӷGiw(D[e5/o-|{IW߾u)=2*b5{j&pk쁍ύ-RUWh<+2\nsyL9'<ϡ&(Raq&5SCF~ZRvAC G~m}FWGB ^o\Ky386_D["F+X(*6wI5kB}k\B&qn~X}e9gk<˜|Ԝ+|Kifg |@ 8rd_hdlY\jAϖku| Sy!o6ѭ!nǶPi)=jkz|:k9Zjvy{g Ò2,%Ҭˈ*o}Rn { k Ԋ7;VZ6JŇb@+zfV?Φ;x$|/#X0$,x!|p~΋(n7JAYH%xO_@[o6tf[mCT8)/FDʙ;IrIW4@ Bh6w뾪gJrRTs,'~lI[܂!l&>_]QMoo[@n4*hf4=pOJ - 7cWvHl:0+V) A*3n}f%4jJ<:9Bv^o̰?JjᕤA ߂cSt=M[zu~ }ΨjV=I֣2mho/1d9N'AFz2:4!_D~f#!< ob R5fA#q#|;ӅU[l WovO.֦jޢ1';R :Hj2;yn[X C)ő엧sg`3c?zq*)?pዺSmнj0TwaJ[۫8f!&9l-TƛI"T"UV>Ut~0_~gncUu9$g8c"Skc4EGbZa6yMJܳVվ׾T=rwP%S} R]gf vJ0}9r\0]%.+ Y'˥<+Gsއv@۝HXԖ.>k *y( or85WtpMs 9?$ eE "2M^f^87J%}ώ4$yHq~-2KH:ûk'g25oNծW LVX%{V*(˰r'g?_kXfv-='5PRn^nJmٹ,J Pޞa*X{Jo\]E]>1{L5];4c , LU/RfCo'/'.a9A ^AmC%5Nw; Wq~9~M^'4◮ wQ**5k#-Yk,7u[6]@MjKV\v9Ҭ]$řwEeVSMg$6#RiS/{G|wt֚}VC[O<,iO.0j^Au[q#o; 7IAƜc w KE4-~S7[;?]sjYC;ݢ<V{G-a4W ZJp3RRx!Jv*_-rIi80+xOV%89MT K)BWPx"E zU{sUgɷퟑy\(@ M~6"B9'Լۼ-S 3#(7TSegKQٽW"p.%z6Z"9ԦGճ[^͏vRQ"ݦ{3z1_lG2ɪ:TIV#Nm#+ttKgBXptFS2;ge-i8{Ɍeo[0_·J5&Ꟍl^npc%T/D^&Ҷi]TIz]ato:Jys(XXU4͸yi=ue:=PG8Ļ(cVH^P/_K;iyhfQs:!Lٻry0NZe_/AlXGև5cBF7\qJzR2"n TJI̟J5lK<"h4H-$wv,j`_C(4r #lscUVwk/ |'޷d{jG 4'=b8M}rwĠ0|3<ukJ-ڹ,6]Ȣp]gN$ _bk*р +bl&^n\BS~@Te:* endstream endobj 474 0 obj << /Length1 1835 /Length2 12305 /Length3 0 /Length 13454 /Filter /FlateDecode >> stream xڍP w>0 n !`Ipw஗-}yWjYV 4j,@YG0] `gbegDA#]\A`1\fW䕨(8|Nvv]f K +@ tErtrY@^@oc3 tY*fkE 3{6 +(3h].@Kf"l@94 f.@d-.Me;' /_f߇`oHlfadV { 2+ 0[A4wu|7s7ٛl +0{U>W ĕdF?Ҽ R"џ4hz^l_d[Z!͉M rv*Hy5!cB<3iaG-/'N?̯|V2~ +;qq` ́ 0?_@<_ǏOFfIh)Hk1-NIIGO  {}<=ӪfeT[9zzd6 :@?ono:#Y7{?f {y  _.VZWb#`9gfery-@ f?Z9xFYؽ[\_Ou y!N+p%!!W~+G?.&OTAwE6"W?i__%26A_f/`r"/'࿳@6V_|mVll:+ ZArmk}/ڳk&/ڳ?ןf,ϥ}?@'y᧣PmMhm'7ZymB=`) yݘu#z;=|v;5Ax+-f l#We7]vS.5Iƀǥ4lƁ0mCM "ݏ_0c1oPaB[%2Z+$%g]~'ܥsl-2C6Rќ.3Ew)Nid>_ћhQ e*lO˟o*hX7JS#Id{m 1K7E/$kzsЕv"#N aRUL4rMΜN-dNy31i4bl% ʊE7Y TktcȣP`D=Q rRFZَ -sr\ǘEDʪ6CuWt2ռR\6zGyC܇6dB*4J9w)kd5ԸE2aZ+ %}nKvUB4Jxssda.5hEҞZ+OZJ곚wȳuĎVpB}-u+.3îqϯi$+,pվ]M5"Rhj}>=PEЌ&G6ZTk;(wR<{>4`jZضWG݀z`VϝQkFY[׌OQ%{O]k#kX AF1My&)pq mYB-/U/a@޾f'5Uhu8E0Pٵ &(T*INL.%5=,/'8yex$*?:ӼaqI;1_KVH<.'n|bʒ-('(sCZx\>Mvj2_JRfrgvI~c~~P}R?UIw}OO6zr[4{ })6/t+lrSǣs!pRd֙3MO\yK~*~] RJ* l&.F?=k3A~ w=(hז%:F?JEO>$r ۘ Z[!BT?P6RBK3Qd`ozyA`xQgKx\M~1LiJˇ#'BYtaw[x͇g#Tmt~X\-w%| Ϟ~{b3|c&E^iW"0ΛckU{Py{{I[j%Aѩ[Km\.ODƔ+^%bKePҡo!d<$J$3yE:_V{Ԗ5dlaHN~t0W,JO ,TP%#o&Ns wCEjz?m+-` ,YnF[:gtP$8߆%cTq>4vKٌS-u$Q߼7*Pm-s/zB~)"5P遠aU F'VF/@K E~wkҊ5G/F(y߲5~\]֝@͏zb){/*RJTyIfTWp:]q +}hdK_8Be 2y"?nUtWXw$t9}!Hӟ&lvL:DB/xZõ^5$='LT^.fdeAHQ1m2r]ᔗ+ݛ-(:`:=(ClV 뎵}Y&CO\?kJq!=%b7 XeGŅ3;pq#j=6Q@C w%.ohؕOYZ~hJD3@DnKoº4VRXn,^ضۨqÇj+IyrJ }ĸiu>GK?K;CA 1ro:tmڭ$q6:Fq9?5q*Q۸vjrdSDd /"=}&!"lpmiV}4!J$%Aah~(X婁c&ӼM߰irmprHuSHSlěTi|Eg*m:Byh9Ύ[ tǩU[F: ;<^7]6('ޔztN5 .[ iL>=i2S) 8b;&937' PbKOt^-R 4D*c9Eyf̨ɬ0#2C)z' cNB:Z =^|]Ms~z$KaEuZ UsGsd.C)`rsE ? ,Lİ]wD{,֒kE7'Vk"1%sȰ[gIHb]lRPIN֊ ĸ71҆"љ}HuLS2)e;zd &KfZ}$tvXyBꔜƱOA&oF̓24&>A>u=O(?!mzU@TTлT w1O9kͳ0[ :v"05݆&4>Sŵ$ xWU: m|DiDԖ+L/F7ú#fLu}i{"61IRK-kswY/|Cn΃AQ pӽυZ•%8fq0!2盒RuCoD +;yYSj=X1 rlt7/OC{cn$<潰oU7achg*2,#ً`.UǙ83A!n`NKEX\s284NߊQTlTm,7nV,|#f1ZRG:?nS!k<B?#<ՕNp%NKPF ?n=Hj|ӓ ިrwm83{E[ Z<[ 5KڣCtV\fǵ&,ĻVÜo-280=Y&ߗ'7njMtv;6\4288vE_LNѺ_U~yj<: iM-삈,qt+Y :\N ~dГ#';Meo ^͡2R8+'k`jL%=3N{7qnT^Mtp[fUɓ*v"< % ᄵd8b<'KrU7fm9 f}sPV2]gҧ#M/ۊf߽Wt;\?[JWѓ0\Lm `\?W:h(8NX/l'3Mv j~&}#ywV!m/!T v.c7r0 \dȤL3"Tu Ȣmu r+sv (fV߬hs0ˀo]dyz=xNXi(R)^f.,461)%CN)t=$TGZ7.a f'ޝ}-R@ҡ E-bC' n=_a2\##. v&;J,C=5mF20/]K>dpi_~'аOnM>Ym٫4`ek3*l̜oDV)L"9 3Hɨ\h0S?brѴNq)1P-qBUi|(.'a@&xx" J;t<.qij ƓPYXӇm=xR?a@I[?DŒW`K~dbCAFI/k&z+Dhۍ bBێRSa)6=٪ԃH$mdPuOL϶D~YbIG c"1כlUQL7H_lCθtw;4D/erì |LkYA\e!eGAB$j%ۧs pURȖ]bcBF F&,0ubc;ܱ tnxCRπ ,nʾxĕ-c_D ̗2SsN(%=s`~:pmĊ};i0=Fus6h<Ae7pJ(%Mk7_"w  l]:֬u/ E6`%mN|LS'=Z]%"d(TpNft fJ`5npn;VG*qd&4'JpDs.u#±\E9;sWWMU2Y.5eoqf5Dh SC̒z~!'n6m2GHG\EyG"E5 Im/ k9yܡxm ЅY(q:g sѨm,Lw0wc>sv"Ԫ2 QBPY5al8L $Qr+"+ [<).1MC< nf9ti$)<zEWi] !Nu9} ;w@ j?z,:=(ҞL^UnRZ&1$@h[˜8 IP 3A4萢?$E}(Dm#R78\PH-@\[ߠx>PڛQ8Wza?˫Zn@-IFihnS^$mmĩ~K^A#F7KnXTKľ5|mlSW'„]>I'l&5!e>\SxaOX OpvmҺ2OgbZ9A!A]O<X)op{S%M{1#3S7GGU3>\{[N>٬Ә:} 61)4B{Z 0j bhb䤀2\kA|mP[Y2&@f@{O%Pw^zKP'\ި&hn&jVFbS[+ix ȗ~20.S'"[w7QunMdމt4aot;tɸ 3<\O @_A>~^'6HоGkCh>*(GS/'Ojb:7_Z!3OFrIs|=D9bRY,y#a9ֺ۫8iWhetnF=T%MSĉ>fk/RUt1Y1?W u'H/'qRΘ !eߙ!X$hײhw2ZTkMaeŰ4Xֶ+7kV#'[.nk{uBq--&d[M՗ƍ,G=!63yP ocPf41 [nXIUF)+g%@VdIT1>zda'es0!;_"|6Ez[f 9AumxZ+]38gY4h3gehM:xgK*X"O+6{U8H V[8N?^oT{dɞdw -^[bꬪ/H߂;@K9dTprPo/-yEG.9ʮة6vVDp뽐d(uz;k{վ4aCIuh9fF.htoۂj, ٶ*e_MZ A3T*!SM~RbZJwyHLFY&fb!6n>* gXDh]ϫؕ$Ud_ kz]s1_ &|$Y8Mf X2] =Zpbz̽)Z9_8[G3%-qs\js}W _á~FW8'pP온~Rnd~*IwuWdͭw!^|vmMMsz ȨqV' ضP6Mu5T!]=E>}D {'y, nZ_ nCN5g$ELD( ޲clC@а6CKrs:r_% |"z3ȡŊmjmtrx]ѫ1~){GrD5cL3&|ʿaa!Qz;hU| q wuT2G2a 'oաIMUUYdc))p߲Z1ͣX#{kjex^ !-\,$ $a9@M,h=RB):KdF@hm^cu]u w҄`5.le[ucZ_8eN,r̺Fҋ_A+;06~q_~/e d HxP0ˋT:SB Fֶ*+*pg % w=oNi?[AyC"Oo>y|F'UǸ>귳[ -p;pp6Fq)3sh/!?R][PC es|o6OV]$ +ؼvܠFu|hܚf l_&W934Rl333.[*czunH0|>H$N53 j=vʈHE>տkS@-d~?G@fϚZlTؼ&}ֱl!j30[!tt՝ѽ™ű^0I< s-s\Gͥ+٘\:kvO }P/Th/R Vtn=Fn B,T4.IJy}O)1wx ჱ4_ Z1`wo maCA%.p5ʎYi}H%vt}589oQP|" @ErY07Tw)_l$t:%mkD{C:B `xpO٨p,МG.g}Ɲ/ /tEOkK%sn[7i6L@YIޖm> 6A["kDz}gb/Zw<څNC~!SOpg(:U(3ؽ FdPSYA\,o6);Qeͣ G]2%;e΄C_\١lv]QI*,!+U@Sֱ]/D[yQt(IOuSJzPű:`+Vctǖ~=v@ƗZ͇Gq\c#F>o&ġxX+'O0#h0| Qڅ&Gr&adpB q);lǃKVX˄TL5y27QLUn0gїy4"XwNI`v"x؇07@ G9M/EpDrny=R$jq~aFGFX>4 )wj32y\{km~A1 }t)GI'GΜ r:_F?8DV|vRuA9fP\D%wN'L* AE1'ƅp.wcBDSߊ%J\Z/qv LWs cJIݟ7= ll4p12uOܟf "ɬ;WRoLΪ$`;i\~̪Eì{Yq=N;YZFc~uY m M%q[Տdζۯֳό&n#6h{H҆uT&܀P5".E_@+ fr<=I \G*hx2aYE퉧**߿ys*4vVVX*,>?"]]d~yFI襳e4&x45/G[ei` -+]:w݀ |I#kqIwPI<6a&hÖ78˯<VSk'r&J@i_}eZ F2 endstream endobj 476 0 obj << /Length1 2628 /Length2 18793 /Length3 0 /Length 20298 /Filter /FlateDecode >> stream xڌP ܝap;]{pw 9ܓ+`Vw^{4*jbf ޅM `cdac@QrWD tr a!4v A9W[;'GW _C@ :#H<,,]<32} ft25(Xƶ5\ Z89,V.U3 h+eXhVQ]܍h >jotj ec8vs/GV6659{Z[̭le)&_ƶ yc7c+[cߡ3_9\fI{3 Y9Mud6 w{"s+{30su`հrtʾ,B-89@GԒ/uOJ|@sp@_+s  S`fe0ZX#w豁ǏϿfmwY$ԔdI_8`psxyRcbß9on?KC_%x }uoDRc7<ͮ.PjΊ@3+Wu1orXZ=1mػ=Pl}`fgc?:ʙڀgpV V`d/nn7;xG̀6>g 09!Rn_ o `~#~俈 *X#o `]7+F`v̮/F`]7F\VoE7kF`v?]7Gm/b1v6w +p &NLMm巜__8"7ػ)R\X[4n;p,=,XeV@p@pGl\ۿ\J|zp@o5ؙr#ߞooVÔowtu#WVnstLh;XG/t`sg+/)86g[cg?\C(gut{p.?}}q+džO{=*{ ,M]ev=ߤi=HK ӷֵ~U3Mi3{/9>'Wen8݊% `H݈.?{Ç&o{y2SkCZ,8'E$aVyv n씣qtCS'Q_2:~G;sƧų4&_(\I.yUs8wRB`M?L_.)!F1O3IC@OA i_zڷ5@1sOȁm]J:O`( .܉L-^{k FFG׈6"6jڻ0G_E8}.R^S}r3W4$4t F^ḛlUm& 4VX/_~?z4x&Nr`5[ŭBKdJ..E%*bUtMr\1۰, ʂDP$fVK-HHnAځÂܰHՆ hy7sau-%?I[oGFgͼ5Dt yÚ~Ŧ9})8c§,N{l|xD?fbU*>\-? mi{kFk?jmЛ)NhK}J'\0g,^h!(:ت⣲ Z$kdFBkٷѾ\p-'=+.h+7R T=R&mvU]79=k 7=#3E,"M2^H "*!(!9K}4JO>ݗck(p1kS#T=GFƂ3kn+m!LzBQuV)p")DMkyy섽R"_\9dR<~b`p;b-n-PbuӿSU((1~槺(2(~B}:H,_+PLE"/]B?4c,d ljrI ˶%͇Rsai#2zZ8RdyZtTZlLM%&CH5NiU4Qٛ"sxѴ+7X-S{atmJǖj8UV^o+Y|7qNA0=]Iఀ#G\ÂRO{=Fp=(12@+XxGqyDnǣY3Vh(x?dN ï$Z_<)]є%aԗ* r12{["Ӣu,& n7:VdK?CG}KITEv`j֣)_r{%Y2]S&@Klj_+Qp)|^>V3|7;@gq%t[x 'c`qV@ EWvivb0JNgF8 Cf> r^M2Ki|ct1?C nxW)8ci`cmڌr $}t_ۜ5t_%˲gnq/ o;Y  ll,, m||#N8d̐?K}AF(|ʫqjzq '̾Y }*mSA@ |ҫ*Ji+#2:/f4:tjIjOW$e6H0ѧTK`?HI_|~S8葼Gl"{ L9: r~9q^d!^o ͯ,u,W%B߃ ;0ai;g+2Tr.+`C!T*IL>כ\W10|a~z)t y9U:H=fu\Ӟ:F tȕU?FUĨ)I>QˆR^īvI p(A\Xe70MNoe ophR쏂fjgߠm} `޳9xBVJ&r]Z֮.}I$GKvFFX:>#=EQ毢>pق t* ͔H9$%!vD<{rbiguEz2k}V$-8S*r 8v M-̖= <*M<$HNWz6p"0aIښ!!T9˵ V$1ʣt`iS *1V ar0&B*ڱ5Y}AOtl$Yg>/U,))ٯ6&Y2 f,tH$,Rh ;ˮ>Vyy0-{ď;el66W$J0TI%j*9GҦCٺ3>c=hnʹTqN3%WjM2K .g83*9v<l!l h$-MS3NUȂ~)q:UBj{'fHs2Λ7ǬWۭQc6$ks0|ilD: e7Zx 3&Yc `<͜ ZtS2 âafʽ#ZQqWUY4nd cpdG J`S-Й?$D*v3UY(? U~' }KŽ HKXw`{@R2Sq{O;a]4=qÄunœ6][ڛ)z"GtI|䆈f)dV<ՆnN+xypفeAimJ?f48D,$pP9 3u܉ëX iC%ĢnL(ǫ ێܪ{3|`SG'_QAeKLq |pQ]_~.X nO8Bœ(YGYJw[7Nqk&7*cԫsvK씝][*>LJꚰ&P'|gůQ⽃ꮶ2Z]U}଻A\G#nO=W8u"<0<|7c"mBȐ%=^l{iBuN\y =3[1&a8P$lvBЬ_^׹_o!]"*m c;Z]#|>Iej&rn+y#3(?oTSF JQpBڠίC_~{}{SA'hDj&^ _̖x]aS&6zЇ/TG?ty|WTקZbHo*rxvc-XԖ׭HVq+Mf^'He[lUAJ|,=s_ey΢h?E_;r|"~/FN$w׊*'z#wCc/oH@vQ2#+-e;T}g}\ Y+$%'YHi1E#O_LzU鯼[|#m!YVQ@7dx snHMj"le߮ @P[牨f@yT&FD MA;hO 6~zJ2*(jΘMfݮ 䈪m6n>VwlH= @;2ܼ.2.K\1F%cRVrM*c \2q<\6(= 뼈7l)҉3&$C |Ayԛ}5`.bVH\WĔe~K=`3Ē?{&BUh& XR*eo;fX~`*bhhí 쒔d}7 !#,Wĝ } w&E)& }i`P3g|\Oj#E9C)>wtpxFIOH#3e7 *]od^O bGSr|0n_=U>A`zMン0-O:FQ;6EB׹傖ډ1%9l>~MY:[Ѕqq,]^ H#$U7Dv(e E08-8}ĂzNr54alE^~Ʉ&i15e-:-Dx}?I%iCRm]6c43lug+̆=wrZ4U+SQqPHΜh?$mZچ $R%ĠDgFPyQ㔢eV2V+}AvnFs}].xڟ~Ŧf+;ZӏM[Kwg)UԴ_0jd`g|΍ja]FN Υg=bv5@|UYzZ^1b6ǭMA@Q"v0'::»^-eZ㉦[Tf~]w˖IxuxMt?|j1jѦ"gDқ(he'Ȍٱ=?.$^xpDUsLVIeuGG#Bfwˮd U{԰hg)YcbNDm? C8%~b7E)rLm1֑FG/Epk&5oK9.aQ@T%XBQ_,So'yO#Z{Y mG8{JY, KϧXp_{QgsӾ_9_&S9NVZUq%ES~{Xc2u?1ouT/wkeTXI"y=۝5"\͏hb$#&J?%)mQ% Ta«NlLrP zYҗ:3PwF<:j~.MR5 ĒZbtVFޜokQˬ/\H+fA;0n>>ќQڒ6*$BjCMѻhqӣ_71RrwEq_.tL}= {ξ\LsPSh!uHI/~{, i"Vk9|v]DIidİԘ_Or#e=͸1FR^]M ̝Ȣli[<[Gox yH>\cnծwP;)]('Ycf{V3ᖸPkTE-9uPU:e Wc))WiCbcKLtRtSKB)jHu3qQXp70N{.ɎxN?6 L*q_^ŏ%vJt/rㇱnYr0mʘ*u<8XcQO `8&Ӆ$Y' ˦kDDBYѦod]=A\A#UT}hbve]|bhI!gwPœi㥿Y(ɬv|| դٮg|H8)pOb1#f|f[^ïn1vES3su'(m?մ15pIs7jGh3#1aU)r*ފD#0wwGEh>fK0]wᮊe\NȴeUkEA39D O}8,-eaM(=s7^ZeS9uNҟ0V%plܵ9ȇX~b9QF9EI #*Ta?9hnƛIC깁jCxW9ׄ:2''h?-ӝbl AQ*%Ǖ\x/?s, QPICxg_/l_5$ُ'JdJ'FT% :Fܥ̖Z*pJ{SZldtF/~ީ)8uU)f1fY[?`]-̖qiҷ|U4*=?{[Q+J6a[.3;fxl CXo5Ӗv׫sXY;ޯ5|d V:++{auyɡd4+OtсT&m"c];qD5ZϯT ɆYD_Kv&1Oe6EJ3Q)"Q@jHLEgΪ2MEo?oި^r.+ ba ݟP̒zrv!(/=mg_BmGtN׸t1+RQwg_JF )`7F,ɇim^id2*&\P^0 W$I,wR]Up:S7#~unfPݦ4:Eꛞh}-1Cx+xGg@ݶ zdJ%!/ }=/ZPR',<0tgm|C.E^u\J٢?O8t #84/+):L+{2Wgۀ*̟|LUXB --_VZ|/ ¢~+iU&垶#E]&9b~Ϡ&}lh9R;w@6SZgN]o'iaBjtB(GqrCdL92cD+4U'b6 Kc9 :Q#(6?|ZƤ!jȳ;j7XPXtqxVlq7Oܜ2\UlAF^[~lgyNՀEW1%Z huLƨ4's_evw{W_y$6[by*Pc5 ~_0[hj@,H:&qN)Pݪd$g8^sWpw믽a?9@WQH;X]׍s7A#e H6.!Rf[ҮnP9ngɖЀΓmd݅:l*\-!*-BW1HS{4hmRff;9ݤB5,)H HyݛYz">=-0_ QcCjGy(4{T@u\|Z5Gf%u-r KeP~ @oT0 ewuޑPhJύƖ`R|]Lr8@e2!ta_)JCz/"[Zwxu]1@4*&5$$f}I.GW|) QUxC05Hҋ7 A fѼDn$]\8,[i8 P<.t6}+s 鵀'ʼn_뭴KK+^jnOWf;'O(:ow}S7 P!- KXsOxD4:dg#UNp RJ]B,rH!%z^xh68{T?6EzV-9g߯j6C_z/?Mj]NnwgRH}F akk7%O}tYRY:^p4i=[i@#t@qNq(bDL1Pb^+$;6FKWfט|G7& )ms=cƁ,‘x#"iS%)xu0Ihs$:.Φ k l)Zǥ?0A& QpK}e[\Cl^q Q[Te6@xSMx#0&sj{f=%N!AR.%1;񕈡B۽}܁/Җ%Ms2 QsȐi=&tG8G~)Q*-'6mofC>Fj(AF8!~huɌɃvKzFaDl쭎"Ά˝bPGt׬YBוl"y%CSM_U 94|i JUxlO/+LjI\&1/=ʃ˹X`RZ44O~?.wEOG;%_I%pΨCV{g uI}*UӴ(VfXs5YzCNX10?+nhc09oe Y?imIe 8SoNc3NA\s*m,$y>+!n5wAO*Dq8(\\hocTY<+;~LxCip,ga=ZZm"8tY9u㊏qog視Zf6.߱K"tO*B,Ѹ \!Ɉ`q %4zOks>LQ/w`OӞRprVLZqSX ̲\aVSýFjHBSGgRtV(QM0 >7ЕIvoO5\F0Y~QjF[ uǟ*^ zcw>4kKѳxÚPaGGX/K8h|d49obJ3ʕCDp9IQO:CYZqb3 O׸DHOߴ[}㭋4ꮇ=9o!R'6vۺfa/Ͱ|R\ W.4/`➆=݆M*=뮗rIu~!s~JBC* k977E~=+kaDwIԇӳ` }> JRvHx`)2;~)nd\bjARզ/E:K ةS+/AUvͷ Pm՗P7 Fj.eQ kxBpm4w.f\%$#-%ZWt<}5Z9B>圏i3eMCHHc2:A,H1\-4p)IY?T;gL_ոgf&Iu,zھ(Jᡡ;k6H:>kZQ,BrRg(jЊ< \|wc8/tSa?\%u=}EףSTזH$Ɲ}Զq8&_?cS)+)i3f6_%u|큚lʈ1Jv6GahI`хB-cu8ټ, cR^#%0CS!ke)Ea&>!5z§I2sj[c&k%Nxg P'ZUHHbG1hGN4jsq[5mٽfN/ħO/v 6E8ó(y4*alUO?"gF)nE/ ˔ +CTtMG\n99x,׿4Hp_Kԛ\92Q1ż֖m*^@wOj{i2Qؿjn;o} VeՒA= {6N"KkrWp2Z3x" :eBq޽ #$ l Csu獞 V $.qwQkϾ9p %IN:~(*K^wuԒY,iNbvsF/XÚMȓ!|wG*ȿe~2/4"E?~DJªUĕ|]aiw `l*:VЭ-yU&*~>_ VS i7ImpQ _;m\]J*J]ޖ)#Y dcG>]ߧT0sN]2U6qѰŢѺ89ç cMʿA .ߣ;[I?ipq^Y19ɘ}6V L7\ ;6gFe:0v+kfhhg|p_.큏Pm^]h[Z[ğ)Z )StYSU荲Z+ܾJ>(,B^ qgX;@!sMwnIF) iJ{7\k1뙿$Ep>cc*$%&OopFV0!1gc@Z:dnUDaupT'$l[L\KB79U?~$*Dމ W -dNQ[Kz͍S*9bXȢX44 ōDz-I5֗\1LА7x:pVQQP+"[avxtF5*b <$x2SظI=[w;[Y'a&ҵI^~rvl?u-;uF}!={y5g_о~/S΋ jtk==jMjdLގ?QS+.\-~>Oyq _>.-4I + 3?I4VpX܊M͂ڿ7p@=ڌL"6]4̃FFid<Ӟ*Ӌ.gQW"T }fKHqŊ`O^[*EC.ֵ0oy(mlIqd'hWsSws} qp&/\oN|f^#=BW͢םҔ%Bjz E QWTsP79fq94ld>S`43c| GS)nΗ-5w0Gq+Xt %697RiV-k Dz~L`4ٻxJwB<3Ky Rx˪aEp:=? -1zsОv*;;{@\l ǀ ;*hT8qZl켧B&$j\;\ůf/ND ɉ<&,=(TY4r5́WYqiv7I\navצ]d*VFC1[YМlMG_Z($ l}Yq[nAXFi>.a$@Bj6_1 ,zZԆ SԦR˔3;bR”\Я^@,|Nb=zi0 "͂ "N%@W")n* rO]33*e.yk1/ ъ-0i!H`2&tsDh,1=3( ,:&(zb #~v.% @ڇFuԫt+Sn DE]Ǐ0$&}0~>ѰheHsoZVnrpć _sbQ\N#xHL_VsV`TnA8|-0T z ^dkG8,F7!` OWC'{zr31e-vWOrvGӣzJ sOj\C?D)ܙf<H=)\QrueuynR{en?8GVEx'Gdj_,tD)EQ>)Vרt #5 4w^@t}Dż1ïU'k=3Xa.=9Uq lL幙d,APCV|~YTY;(tPڵHR^[~PDљ.4<D3rm%]ZD.Mks ܜ 'CZ"]ʼꇱy&:>m!bkWw 2S,[l×E|C3RJcU]Q!Y#P*|z"^D ^$g/ \w&Xo &U,W? dzAaWn,¼-8V)Y='[6 =4J8wcVd^n7;˛}!_\TKr)dhVNYAkիg ^"(2N uUTzZi^E9~"_!="vOnMRH\<5EGF[k Ov{)VO o, w ڏףW/BB:3 @9|b2yiOO2@CTB۸8fǽc.t b˵8K2D ::6opH~`"j~~JB+gݿ裊쩓x'\$^ְAr罛6 ҇#юC!$9c5q"k>Qe~X T//P6Ⱥи;99Fau9ibMzFFр[.[VgX=D.ԞG|wIӵBXGckEgaEwOG~G$0pDR\w P|nl ߎ;]ԋL=o,G\.֙:TgaZ-"&hP3GE4F|Zw.囘?YͰ9 Y3N4(_٣Œ&;ȯdM3 P%I5ߡRb5"=AsC 1$%}"HIuw^bȺ  UZbΖ)`aaoD؜IΪ.X+!g0B^[>yi/!>+yL]"?o1<+K8H MzzQNTD/+_X"^UU RS a>y̷mR9 gAystEv܀cDh%YAr;G@sOIP9Jϳ8x@BO3ވ5*gL `))] pzm,DNe?_s;/aذL0|@$u$ou8̵k۩fYEbcRڨhO qU,!EF}h >Ysjc'z(ϚN@p2-̓ű&]$x UuiGp 29\h>X^q99XHB+>Q^iǷ%~h&= }#" (& xDmӪX鵤odI\ (ꎟm{91+荑^|Zy~))zMa c'&5PJt&L%A*=v;FYw; yHmiG an]h^7HH,إoʚBǁ80^N1ID߲+A~hX`9kyPRn!&A99*@ZN4.mR ¥t8 p+R|5GǑpk9k~/Ҡ@=񾀛4y.G*a1[s>cWel%w] ۔:| QKH`l; oӾA)_7m YQov%}>e{צp6~{jo S2p7 84mKLbD{E%h]G`;Opt I^ƹ8$Z6mM!-` /)C}ჯ=Jm-_ˈ(1/MTIH"b˝*62SR6mc(C65p-wb|8o%lAF"pfbCi`9DVmwf&5Fz9 ~0`1X0 hx`c& Պ%|ls::W_UE921g+iۇvKbv񾐴]AkZԪ+#,}C AcӪ9ź۝{P#5s4g'rlUC~=%o&PHHKqO} H +=!]$jЀ%<4m'7pX_byE*4&~Qur0{/* qC<$c0'-]u/4-*9 )HߕW8&S|[>&iў2 Tɍ*7ӝ FtC }'ic[+Ph7Uv:`?u vd)9GvFV!RP! jL7,/q3Y[ÚcF7WvG+JW5Ϲo$Ha\%rx4P ()<~dZfhFܓ(!2)2~.$Bjfqs Т"CJ/-stjH Pţ+#Ufh:0x]](ݶpXtѻ"\!5?@I3(\p/u 012*s Vi5z`KxɊӂ"~l endstream endobj 478 0 obj << /Length1 1603 /Length2 3362 /Length3 0 /Length 4359 /Filter /FlateDecode >> stream xڍt<du%>B8e*wܝ;2$DYU${EBHf[e~[XLJCt\h &# ! x+IdRp@ !# !doq߲?SO%?(g.D.oDA@`r04 ^7<]]?? 3fO }3 7 c A ^] !AZx/c]ИHo7rhB_֖ oԿOD!DByC`t}!8}G1ז4Htv~Hl^<Em~ 2A P_Tn @ Aze_@CY$ѵA! @IAzo_A[Y=I$3%g 7 @4Vr*~&5҂e1vf/u$PSey^&5S}4|3+n˹• ʘCo_"x"F++md"ӗ6#'U|v*R8-Z8+.ƠrmB9|Z˷r/$ndw_H<?^<h9ų)P H~e.{k>l*hPh&XG A8ۨin A-XLZT \NR5YUK{7b2~N9w#! RC̭tsWK~R81O_ع9ƁDz 2;Zð\{j#7aU`׶|YeoVc@FWUrM;uj5bMWmYUhQ=.=j.f/> 1||!b_xUB&T|.`p%i0/*Е<=;<:qNL{hԚ21®/}e;/2){Cn/7Y Y'H>9t %h9/ĪVo;y\Ǧrʾ# }L&ӫ UvNq.a+'W"}pjbso{T/9Զ;t18W-ھӹ7~rxt]ijgirXAy/Z }Wr ./џK %*j*˽mspN* _8?B:葹zר$uuޒ~zv;_CU;17 ",Ϧr+4/PHJt=^h̀|yS1ïu ]ˈ3%XGU\,̀gsFEw>ӥZ[3π0aW׶i`nz{ ylUf]2q 9^ <ٹm_ c|E; ڼrڋƔ̽;;iS}BFyrصXao_FIRpYL$lߊaov%wnR'29«Dr>\ ᐚe\dxI7h}[wh[rR|܋J$~LAKe4-+MfMv WkEل4xKGD1)]*MyTX3Te|hs\vRB;o &a!ŝڲL2rou3Mv($78;Kl^<;qb-v8uж.Kg:QY+>M K|u8ȳUCGRZ|1yԳB(NQ3xʹu_k%n~0t~RyK*½>bpVv].pV\9P+_ܹ疞|ZJJ3S짜M8Jk$YM0>x(i ߆B9w!%>hlIچolk+Y1KH~ཎK6|G1b_<5Yf2x8ԾXĴνa4nTX z-7=o?6T1 9;}@tgY'l7AJxt~yIz zl*0YfŦwԝ=4˜%sWUcJ=k m7L`-&^u`ԇ}x e{az2|ij엃X찴K抠NK1ٯ}Ma%UEG5d-4U VDBG_Ss<~XрRGz'reJWERbLBoOYgy9YtoSKY-9,s=]{!n4jkH$ᾓڅe`v`=F=k٦LÔN=k"),bR_=zeLiz[Z&Oj< ?S{%sB{V=~Z=NL.xa}e u9DrȊd*<;?---g.amK&S(_==ou_\#?WgN̎ dr8NGX#_b%wD7+,͈mKG1_E1f@p>a+%rsmJogt6cRaWUFlhÈUF_Nc7fC9GuҮ>]Ɍ;] _[\MfOT m}]ϳic - X$z+XX?pVl{+[2܂*:߶;wWAx|f̚)% 6 eAђ _9䟸$P4 .]@*KQJ$ .$ZXJJEį×4"&Fog;ʆWO&ut}zyikoV3%{C*a>@ud^x6 5(O;D]"\6nw)b?o|I)ݠ0aLeP@4ُ:6ڑ~20L=»A{zn`n+5.BZvpsW\vIjGx}ךN ֌{z!` LouME $T>m__~фa}>> stream xmrg4ju :ѣ D%.E13 3ѣN"D'щ5DF^7]Zz>쳟˥A!0HDT`n `P<V2`pb 2^ `@D!c ȹ*➋`+\7"=`tBTʹ @F`N6NH@ CqA- p'0h8oM8?Ю,Z-A t4x5â>_//u'!p$ A!dM m<?wt-w p f?wrCQ t1p 0YP_z9 $N醀#VB- ]O?ڏcN;z?<50 ⯽bP? \""X7Oa#i|žc4׻9$ #d |r o Y {igKX /(lok} (V{"B-XOΞuZjuӘ'OM{$ަ,}'OίmE3;1|KyzI!TB3`eda0$3;6/3?=KqrytnEGu2rHtn%MbԈpsڧ BJ ;`e`FX(8WD"Q/]*\ұaRƨoV@~CM…bԙe3'3'>]}TJT!{QyŦr؞{ } 2%.Evpz#J, Jc9u}-*;\pf4ѫ&wϯ,3o;!@ LGl** 7$WWpYQ5Ϛ5# o9-ͰEq?sHf =R=]q'b."_{88  8ixxs=e26R>-MԜy$l$Hr*ReK\w:(_``M:ǦBԲmhR@NP >ѝU%' 13atLjgt4O ")<u@VoYA38IG 4_?)o~[u.ᅬpLw$,ttQ[ \6Qb})Ŏ72K@w>T8~5,N乁c-Tlv#$I2<-fJLZ摳lru^Pd<=.m1MMf+km(=[3/71,(m}!\.·ڔe=D{ωM^ E2 !w/3+H6= M4A'Z,Dƞi*s\F. ONޜՍ 6 ۹,W!#%Xfo߷90 )!Us*@>i}ޟ|Gv-z C-d9Du1N,tA po%ǞMݩvIeʾ&Ĵ6flVk;;v^-YlM.#&l^D3 KYOhlu9ZM:IQtf\jwwŶLaG|-;+qm@٧ N4 8$ZTcg3-KVn*?CmY;S^cyס8'"R\R.E(/^,j&Ny[뙧}x0Q;>vdJKo7f>!ʏs5hr\TesnX͈S)lY,W%!%?b:I9;D>b60*/꘤p&8y\/+5D 8ǒܚsϩRXKIHdݢxN m& V}ih6{͎Q z|yń'<3reh;Xy3E ="A`.jbZ_+2f%vI^ف7Ҥz3q|Po_-g畈 eWGߚ&PJ/$/32pDqDwu&:`O#4) =lp7X\~\m+r-]hQ"eG>xTh "#Ud5i\*!' xAE@}oU4gnş5Y,tl:/IZo8io'"v){gdXߟ;ٺE+u7{</&Uiѝ*v|0l (kN1S#k>w?{Y9Ay|'?8*Yf dW(jP ]~:e!=0iټ౱]PEf-|ѝ6%~R)'ryhz`v,z5bphѵ1[$1ʪ{Jb~Կ s;_<9|9t*ʝX|Jy~>M۩^L(ݡ ֣KHڪzԴDjt³ޘy&m=t9+r[lS3΄QDgy+3f^x_hiޠdd357hm Oڻ;=F!}7;\+9n"jqK5T灁?"(l ,A]Dn,,fhaP)Feɻ3o52i@{;H8dg%lo VUÜ{#gZ#K 2f}{UZIݴzEW1M;7I^_w󱛍^1cŐ=!m endstream endobj 482 0 obj << /Length1 725 /Length2 15948 /Length3 0 /Length 16495 /Filter /FlateDecode >> stream xmctn6vضm۶gNVl۶mZ콿~=zUWWWw9&=#7@E\UHCF&lfj`/jj 039̌L0dG/g+ KW տu[#S+;+g%]ōٍN*ffWK3@DAQKJ^@)!07s6(ZdL]̨4&VBofή3wvȉ +ȫDTEFYۻpmfh#d?X=#01LL\fV0 MMrfxٙ(E\͜rfql濮FvV^C2-?*+q+O3SE+vuv3Z?s#gfjffpϬ:z 1(ȫ+i O,fo`jeoPqO#gQ۬hd /f\<:J=73#' d_pMܜ]M?d2343Y_q0 Nm -+1TYa^A458¹Wß 4ۻܕo&63;& [y-&~W׿SǶ3sMXRb9v*C`6,Gډ_[|ң@3;F )6x_ wCm`YPx_e-8%s-J^;$tŲ!r0Y~ë p )SɫZq77K:C# F .{=jϝ!*)=9B_nu2`A\gvLX9 uTl47/i(i[t"\9;#!E>#}@ٌA4Wg A2ĘKFS젷ПUsU02 _5d xϳ${zf6yi^5U^A S!}w)!h %SF;rB90.3=ltf_<9Ka(:y,op#E}r#丂Y |/xISؙAXgbER^9 s-'p'w٫Y5(ӕ|3uVARb$!.D 1@0]I2 g#^pTNYh߽Y~tl2 W*TXQj*zl}t-f:nVMoPX"*Z_n[7*JSkU{uFs'Ldjig&kh֎ wA3tݽJnKn9筼6[o/[x ]V wAeDH~3 }Mg⺈w;k}b21%:woQPK"F\H1^g pHUcf Uovey1-غ aWڠxCL|JRzV>= ;JHA[;`ك;֣'-A!W^ aehīO1]eV O \ =V' }]^Qc(%OOznu<ĜQ؋TIʪ+eA%8d$ d>#gشgAnK}W;2(G5}3.}ysA4Ξ=pdZaQe͆փ$NLjJ)?ɅLo/IKcR!q1hHSEzsu3Mp[HR9"Wq;ED-ˉA0Qkrl(RDRT2;]b׷}7C輀썩$ s4|ɏE]Txp8TQ*}XWױZs۫ozMZǛst!G{~V7N]j[vjxa{L뽱dKc݉Z]`a2&+Wk Mv^a&nhkS/S#7R-nKv՝fŧϴLBCr=m8p cM7=۩ej H 6y'{H@$_MWӦ{_^gf2  B*|Xv-@!G9L5fI";1uCD(T>'p}ua$cc }bu~땺W"tFB@ ]ӶVc+U?0|7$:NW6U 0Oτ: T|w^)3)2ʿLXUܞ~c]'JP2^Yn9g%:N_1P8-vЍ'~{"瘲dzr~a7kTU(jߎyw\t}ƠD񪉸abR3|g$#A^!M{/pU#_§Em? 0i HGam4pqh@!#Eb. .lXp(#\u8"*57ҕ:S):e%eOÆfpgq| gy%CHNmݺm^˭Ƽ]IߕXx0J*_s~.%#]VBoKd-OSmf=mu\> :b( Xs'Jcr-t#wN%TAx @"t-'3<0zCVm*O_> 3Y%rqC{nf \a /E #!8&ѩE(g{`^ay 0"0ۯE&ymC#@;ܝ`(F[.gEq`Sn\^A=.#x腾*/\{9ؾ %:;vv_=}~ZA\7x- ؈#u))I*hof1ZOe43R"=)g*̱$D'Džs3c11զЂ$`LV@L$ 芋R? 9:X<O@WrqAcZդa,̮17yBt1f gtǵ'&"e mڮ 2y ]E&͊bc:xjt:F!3.\:8nty}\y?Z~*gG:{2 HBHU,-0I6v!rQ\WW0qaXx-ؕF(ngm( 9FbGzG YЬ /uV_l!Iar#?Ol\7"2 xϝdwP"/B`pϷ(-jК)j(rgydLlJ^l% ie9,b EU]#'s @{ܜ辧Mv%Rq A>tZ Zjj7?ݨMy+mI\3z'F`rACDiV-!vy}]!h^ UI!Qʉ`Nf?_ E'B_wZzl-ZB _O#R7|pX5J)(P~$hlOq֗߉UI};uA*8qp)/ sna5;]<7@ "{RL+.HlQn5q-&\<2htԹ2z.Ab·uTA??eSC[@0C6T3n&, bTU_!|Jy(9ExףV6e 4'>qR̭n$𨪼S4?ή0LzLQb]{& }qe&U2 ,N2J!F 7؎zotwq1hu{*nղ|Tk Z {hۜխ#4! 42>9N}p$X-o`kkc@&Ds6j,z}tƟ"*BflUbQktw3|$͹GŪ@U#dƀ6oZ9CPQΏG:j% (0knb>f7`*%FXō("یGJ84P~ e9Ϛf*NMW(s &Q ;H膿 *כ>p*,}KUhHJ{寜BZ=p"꫚(0#%)XI|C%[ݖ@45QJR$AU%>"|{e-A; <]brYZpl0C#bѨ cH-'{ -A e%WN" ih5ј*=(VA8;x_jD]|K~= H"ܞqV_Q6O0!ve~Rmܪ}:;3$qJ;*MR*N±):O'ah9 Zsپ|.nЬ#]Y=J{V_DeQ|x\/sr$7]5NFp(mLB7S.4f`=F|D, *l>ELa rC 1",/hR;Mr B4*Y9r)`ߍ!fD@MvHw>X=:rϿKܻ}&Ր;[&~Fiz)v$5BQac!788\.\kV*tXҷp,qX79bVziO('UU Bڎ ,keX*ck4 3ǫE6-3I"#~ϕ&y"`6(eGP{:kiEc [PP,=cVCM=jph6izoOxSvAb7`KidTi[EԛUSx^~Pk*<g>tT͗*υ "`ew9i-(pL~w5JY)l͟-Pe]R,ŝ%FL&F4=' qD?q )3q뽽ob5y%+ Ҳw_ᶟTl/nH9/@JD|#HCp-b3oDǗN3l$̾.yFH:D£Dv"]O@?OSyqd^D?E$d0P?|||Ղނ@7$" WPHԠ=_>qĦ6! _ˋ&s7'VD9!Kf+>U.Ө I.<ՙ@"g}#HkhmA,r3ϛUUUi>ěGgrz鼥 #,dx{kHn*xȧ1zWI=C0{_wmsHs2ء#Β-cwF5K/eI<*~߁_q*.),+w |(-b{2Q%xLaA,;reJ-JusȫxK8RdWS퍙} ^ `ŰFK$s,%ǔ"C%S;5 `AGE"q\UXx=6~^g9o_sd XW Tߴ:gسFlp9ҕyO}4 s~L;Nn Q-zquk#esmFҊ͔?U7drў"kwc)%;Ñw{=LnjҖIxL {޳lیUv`GH$5wtN$ J8f> Tԉ̿sb~^v7V߱Qb}+H1PǤYb1<:,4^4/#o@ъu524Qx13bˉN&%5%=Q$f5d" {^ lBc8I)ni+Hf= ZLtjl֪ĕ;Q P|LȰP~a90y3M8e U>F@?OYxm$G#̲F;i_3@8@HOeC%Pɕv]Y[}`5(qz;^yWmY1`ڨeO9;za0{VS͞V% WkC aBMݼ-VWҋClUZIY$(M IAbrm휹V1l_aAjKC]P \zb=& <&T WōG*nG]("50]QL%W䲋us 8 X #mdǢxgt%WR +t4 0:JV!sjZ,Tv> "[`X 2.6u0V~)ظdp.nRn"X%\A"8]e|X -~O'78vIQkN\G,^wbnQd" ER>-d 8҅AzyXnkfP3AP('NalҮ%Bj_5 F/"I;!(-'U # 懏rΑ8 ?5X:\tL} "o,CVo=Ymc4-r ƕx\oN;.H R@\/ |sN[fv)GF=9G׏~4KMpv]?m?B <SQonW/ʮy. 'Vv"3R0” g/1| ,MK<.j5_(7;=ANʯ`„q2Tu&"RMX1 >rY[P~rnsF'gB]! $i*21Hy .oJyܕ|}vhvax;yY4Ĥ tx #ݟu3籍Z_FgI}] BTllC1 KK߅@HTY>ٴ̺{n#IKɡ(AMդcqɾ)D]Owfen;E~clp 5 G}V7_%%,x%Op}zP+)5`7·9{5Q H2p!Qh߭1N9>^cDL>ezgIrNpՇ;p،V ̬Y}`C|vuES`qc:~X I7Յ79QH:ס\B/i/V&>DuɬLujŒiMwcEJ7=~A=q'QP*G-_ {5Iz]O+N>ӋKN3 %~0qzPieA G>3/3y]M' ˓pEd8щHT5N~ Av7 Z i '6yTt'T f2=4ynS׶61nwGu%m.\SHP K7Zkږ? EpW @x@W#3? d(bAg^r> (6ohpp.@=Sw>h@-Zw* G-:Ƚf3E^@:=ٹCt %A[vr1b wb /Ζj-p |=,aT\.qXĉ.s>mqN;z)k+㊸aT?/۾3tSl3VES46o<`Z*=Acppw=hWciJc8]֨}EM-ȋD詝%فoW-zm"<$7Ԑ @`"Li -3qVnn_DFc )QƲ3$ji@@IP['RފvtBJ.)U1diGRԛIךl[78uw%ϲjK2 pysv@$G™26dpMH*7Ҿ-de QL2;zxTsMv5tVE# KFmAI+hwN/0@M<'-cXH;@҄7J  9ʗG/{*[ӪR@A j(5,!R0H9]c5٪9"$;}O(:a"N)F;.YږKȟ94}NEb錖1 sOվVsУ=4g܆l"`E$1D1}tĔ*MÐr"&vޛq:v{$ ʓт!]c򙬷᭱ݍCs>嫦ByeDli>-eTa;F;far2лcS(ceX~ubO}tr\JE]Æ\KFiK-?R;Jk\fkyWsHFʧrg,3l0B}$(\ޒؿE4 Mg[7aҵ¹/IɁ1iWK fQ7"oF !B)u4f[nۃYK2@(ÿ!+7gn=VZ :kM9쭿bpbiR5Wܓ5-4gʿ"Y $3l ~Ja`m +^%+"G~G=e}QAR&2$Td+3mB&223 ojvς /});;aŧwKaD\mMU|.hըݾ,ߥ4~[_P)+ӻ ed 6.HY sj^?FuC"i?A/;&ăd&L|Nmm3\! J5{ KK6V3Y?sު{hRkG_A V0iC/mCZDA3CČALx"tj\[eJSX мƇӏ$+WU+=׳됰6%;U'R⍜ 4dmj#$i.}ʦz*6̋cA u=ZuNw9?ȣfWW!&NLOlh5FUn9c I'Q W^o!#n@c?%/4}ӈQ6]ݠm&M)Kokq ~#$DfR;ҩ]_ҪۿV]zv@=ǹ19{9fZ"qxlV% 6& dG3@bLzD vÊBmĚL8qՅzΦggh4O͗ [.*(KϢ̃$l~%n"15ܨBKsb_+g-}m\:$m[f݉'Rz&]hDF5T|s<~™`$(ܔ)3ix4 RBPl^ <D uMKEٌ9* U2Ē5KM`0 HlpR((pujh+v9FwGkz%s%}?}A$w^!:3Zj\@{Ed*UKl`vHf4$ PҚ#>a4+ Bd1rqA9_^qZn,њ~\*1oNHg3u <4_0*gL5NpH86]|Aou}Ai2GE"_a?NW֨ dMLxVO'(G5Skz㽷Y3}l8~x1e.v%z:c^|;PZܧdΜF #۵"~VGحnAŌ&9cm 5P&eHxʨ>-%Ps_ɒ5S)p3%A_zꌰ_ UIl7]@5~D p 9$R`7CVDnSC^=ܧ?bk&uY7 3,.cwHCq<`iq,* ['^P @o fx%r˧gmU8 0((˸R\c$ Gp3_p˧ (B`>ч |Ug{Hv$Y j =&M|ˮ5J8]eh1\}hN Zu_v|wغ)4 |8Z0Rʪ 5\B;U7_fi !R܋~=)[Qde]g v$ߨJ-ݖEjiZq2)0;N0z1R*GI{['gM0皈$ 3 Jb_[@XCw]L'Ӂ['qSpL..IS !U]h9 ^^EE<2XRdljog< VE#SQ x{{w5`(,:x,ْ}^᳢/xk 86y00B6ZVb@p$gƅ\x;~(o[_'a,S-w_$Gi)aԟ ~L(O~Jzc}]~ґ»{cE-Yч8~8hmVЋ>5KNs K讁sRnpR4Ò;zkxРjP *L ڇ4\a].܅TW$/ &1ųf GRil4X$0@kN͇ +{咀1j5~ nTmkr!#<`*O#e]IX^\ch ' 7~x$W7>DpHz0զoc@?1NtJMS_\Fd[Ӛ>,䄤=^,]ƹb"F݁_{3ưJf-ceU܄ϯ냚 d\ "ՏT*$ !JAb+%(Jh1 3}L{4P\/D~+I{ubA-FQ >%)q6 0kp(;@PP_;2sb*ˊ_.|.#]<KIVthK+q)OF |?qIFpܖA0:_PCXX\̹4IrOlefB<2YR,cVp9ώn1^|.o>K&Rf}bF]ЛVΜVbֻD$M&)0)l`("̣c H O{'dA&ΊA?W`d gCm)5NƁ r<@Bl4dW+[gBtiּ;LF(TEpl \,jm$ uM/~[6w],}WiB2[#Ni'ȶ[?%FJ`I"Bl,j۝W(cx;V*TRЏ@9[+M10jJ}'fDPP@Y75B6 rbQ1EOQ0N_9h6k,=ƚY^hlCC  7 ?:7$xa] ֺm|O*&ȪľC}_;ɧJZ0D@)m_3Z9F007YA"dZθi| lN0\lsL8= S]s&"AHT\Eq2D 1!菨 fA6& YrOx;AH/=f_GV_00x_C&uò)GgNjyy-{5 2.SPJqݶR8zwu7r|T+Kz6nAYt*QՊU?:>GsO,\1TeyhRSsQf k? nQm%\5lk~U};lSQ69wםqZd>u-vr+ oP$FM]ySA&Ŝ Y؈ ZʭDcb1;KJ2C!࡟p_Lv^)pIN:|hݝ)1z. endstream endobj 414 0 obj << /Type /ObjStm /N 100 /First 944 /Length 4747 /Filter /FlateDecode >> stream x[[sƒ~ׯcR¹߶\J/-$;v-74Tbןz$({wkR%L_d%+b|tRtZVFX*,u]W 羊T)m"AQJ+k$u\4QV*XuJ$aI֐dxUkBe$XI,kXXѡ˖ƅH ILG `j)KX+>NU3U;WE:R֥*avX.i"f`Of*4⬤KP/ JЁlL$#b^XR,#+ӎf(f2$ґ4%pdk#UE\%5V$i@K$ g"B+x5E,V%I:Sj!d&<zxғ@3&IuĠF/7g`+CE9zIn=P +!/SN=#GȆ|ז!L= Bف,܁<(OH$ZT0wɢs";JV'ԇgɧ\ݰ|b2.ʉcX>`(' O b6=;ջJϋ݂\tcxQ#,@y8Y=h—䠵Xyd2%R8^A+;y܁;3ދ#qD'd* ՀK 5 : x4]޹b4S~?\.W%r8s8;z1 x'1|Tcx6`9 񨔇{)fV %Zkr l7l2p8Y6ǪtAw-4m%oPWp07f!qXaQǩr*GR/xmXKy$)Ng,-6)_T>wךspU\p@n؅i.&rySlOYUN g P:I1 8 TԖLA)%Fpmxb5H˃DTⅨau.E6EFOE%-.[s%AF4}s O |⣫ IːDᏟޢHƱ7_Ui-i' JtDd5i%*a)ך){+QG^L<L2FuuJBSqg / 7 -r GPD |ų^.k$Umw,Yio%ܮ!Nڲ:0βmxhhrI,c\a7.A#r1Kg}##YgkcpTKtΩs⠞Iz}|=܏^sQ74+k,AFq ;*!s4'ׁwW˼a_]I_/3W˅uZĬlmInUoT]c;&[κ$lRyb+qMUsñͺ Qx ܶ͠ \5+"R1BJXiIJNs fzWrVko4 ՖOFl>Y# /#8q gXrݒ' G9OTtJkQ' 37 hMMNlP 󖌖 pP/І`xGJ?R!x9[S`]15DbXE|[=FKjB$Myjlo4# v}/[(}xltہgOtիGݷJҍb^<.'e~Q>ȣN?`{?)|Ggq]E"DwޖI)pw?zr>_?95%y0K~͞=}4k{43 :M>ԫ١+}px.^D_ob(>3q6O'\8뙸e=#Ob"b:ŕg鹘>X\Z,k,߿QFt*x m-e%,U!`vU?x_IA[R4;@;ʦ&Lzc:lxV돋|20]i+ƠtyRxB̯?}bWEy6DŽo=!>Ŋ+Ư:sCkƻẆz1Fb]GyM>Ÿi}}&|l]he]ЬVZ|n)c{?䶚Ʉb%RV" {ڇ/OO2a2WK&x{E'8~A%79j|,{%<OW57dW@~>GUY- Ep࿭hmɈ*'-Q#`5Aժ_짋ØG/O>]n9nϜz6m;}^aw(h1ץ,<&L q1M|>*>nl_wUX\w=CpkonBm>@&^ C&G 4hBt=^_ X?a-ㄽˋGfeGAbvr6PSto+W~9|=q`cSW#J&H%V'ORƱFy+9>:}3lR|S]}ymɻ\S7Jû\_uߚ-熽2ӓGuixӮ,@y.3쟾>~N<{]#{m ku}{L 毩jq//=$]>eoI.C?? v>B[Ǐ&w&5;bh3.|5C|*OxXN7o0c.{eo]jO|`m0zqClrWMf' ]>j(/ֿ΃w=%[Η۟}Q@mپֻ7p[ ˇ[Xkm1VbonlδLXt-L}P;] v}genv1oD[co;|f.Ͼ[!wه=~-ۺCTGLK4@v<`O?5QW 8cjHn">-۲kTb蜪`bQ%]# -V,:HulN J GJD^pc};$^)cS=o{)2}x_`MKQpdR-8a[-ixv5M} 0_߄guzbxOfaJ쬥IϯcKc'q>[f9sexW_?{f4)z9;" #BKhd=k%mr- wв;i-YӒhThu^fZvmmc2[om[ДDFX P_SvqÒlfb)hֆ7v6ÛEK U.6;i`AݠNZ-mkkk`Vv b@Kt,,BDZD}U۔k'HkrjR"rvV.HRjyCnFZ9#tZ+uC endstream endobj 516 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.14)/Keywords() /CreationDate (D:20130920191549-04'00') /ModDate (D:20130920191549-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) kpathsea version 6.1.1) >> endobj 488 0 obj << /Type /ObjStm /N 50 /First 408 /Length 1543 /Filter /FlateDecode >> stream xڕXn6}߯c] 19 mRax׽}g(KJ5`h.2kR2LBB6hb0`u.q" &'݋_0'k~]2,~0ܝdw?'˗M&6eeb/YsoG. G6}{}UE;k77(ݒU93<212x e6vкCu? e-Jj]->JΏԮLSz)Mv;[I.i`B{TOe|;ѨLz1Sb_]v5̭dCL yPNlk^YŵVk\\vvPlwvg7Q>Z1MH%qqSƓ5~<_t^^N玁ܘ{ӅpW<-€Eft|8-a 3;"6 :⁁T,]4ctBsi*p?xBB}f8x5Won"̶D,jЊx$;X1!B=(jIkA,t4 AdhRk;M=ZI:tuy1i $t12ny:1Z6#_/{eekR=z't18 u8JŞ bOjċ=!䓜,Ĥk҉ӎZײ@]䂖zA:96hUVAJkQvx5ORk98`3(Jr.pE|̌]֖IDevSHU# ’sǦ@ <2CD0319730349E491EB0239C3F55D216>] /Length 1274 /Filter /FlateDecode >> stream x%IlUUw+m)m)t:K[@QJ[JiDu.L !qƸ 1,cܰ!1(&l4Q8l0Fq!s9ps99sUk9g' D:ZV Z%V6*AAa~BPVE+F+-hhe `Pr*ԣrgGMzԢ s!h(NiG@i4F#hB;cj-hh:VІ#nh:gEt)<ݠ'0Q{A-7nGChжpQ*Maq10֊; qhhk'GwhVp'$qgY4˸%% 5,vmwX|* `JL>Y0vwXL<\M*Z~՜+SPKlk[dLv_3Wt7%Y\v\'BTr\s-%!2#$kHKy'AZ`4* K]/Bqg_ 􄪬\TUP374L%`.;*\]P e@Q. G 3@ C^zSSH0(@ s5opL{' @/KH0fY׀U Wa| A.IHhފQ8* FX#ci(aoh &Ki#q>HpLncw˃hոܣW%|sk?(3-@>V ZPm9 h %?OkJ#hmjP4z{i"Mjs>PgP0lw3C@nmb)$T@BU$/};gwـho endstream endobj startxref 289931 %%EOF Zelig/inst/doc/twosls.pdf0000644000176000001440000065077712217153457015161 0ustar ripleyusers%PDF-1.5 % 47 0 obj << /Length 2164 /Filter /FlateDecode >> stream xYIFW>QŰn$A. 9%(ʢd`~Ub-*~sW&)[zIˢyjY~O_7?|fLmSYSs|o/I[X`[ru|)mwk#O~fClޝCU: ]6J-f * H2w,q~=6[na2Y"0wn+Ӗ0wU]C5.=p{+v$p8Ȅ~ :PY$6[6m 2"BŨ=E͎xqˏ@,~Is@ͭLCdYGg~7KR8U Sג`-v5ۈa pJi8;bkKC!q3ZwRRD{P& R:q*?o0lkFk΀9h6C%)G7G@ܲ9([7JCdio?PH}@ldLո`kG]q5Yѣ3Wwv{\>{J'v|M.'䕸( nє'Ur [rm;0$R7>aZP ~R*z5yZ*0- ^@3J~&墀F~9T)}=_\pӕnɇ%9Q{2[&_~x_IK#+c> 9/ʭi~  /%94 @T#>G•.x.^B8ֵYNb@'4M_$x?Rkx^Qp '~'h p!(Ѐ PsyVv!,EqwSR+&'϶ (eR=~nOrp޵'@@i50/;^Z2'';IMyd\p.4mށ=MSy̮7Ň\VTUefcs'i4xDYtJ+J}sa={=QZ:t ctHjX:gN긌!X 8B ڇé v rjΆ<~)*g6_>E]c}]O@҃J3tzK/It+y T2s_iG],*5 ?ѐu?QxK=/sRZ"rA'9].Sc>-a6bsrAJw|%rܤk;"ٵx= < -e9u+|^a.Z^ơ"-(#O|dzP=˲F+E ی>btWxg;{^>y\e?2v;~D(7lQtO x>L1 endstream endobj 60 0 obj << /Length 2827 /Filter /FlateDecode >> stream xZY7~_ DNl<,`;FjaUbjx?AR]EU|E%*\q7/ KS8Ҷ/G,o_߽G#;cJe|y>5|4Ǭ3CB.vl}vlr4CJַ*9MH^ZAp:QB ']S تẃfSO15bX|=~O&^N'(eGCkI1i|HcZts[F-sQL>M#fzwkFxIzْfy71̥Jr8EM2{3q_D۰~g{74Rxfk_4q2~ QV5 xgNj@2OR>54&zzGς;`C ^UjuCd߇Z!LfDJW4hNѿ9ń#)|AU*,:"꿡t7(eO<<Y3w+@}*JӵDh\B (]FL0ZMMw)_ob5V-(30 R<7<84 z|68@!Э9)rt*iBa)Q9<*mt_EqO`%o)~Z%%5$7aJu!'a\?'dڌ홖- htknA&D7OvG)ZTƁ!My !Ka٠ݱ^CȐSl)>FDrF%ɈW|aeGznG) $1M*̭%`Ew )c@Zo >ER,umWfYΟA>2Ta%ꒊRWY-9ZkEkP4&]0$T6'LwP^hs pDM/ȴB_@hq*c#cF17zYv-jn.ZRҎ)IP>@gqGQg4-B@,c+X[w!ԙ `S@/"b{$% + ȾY2 Ơp(E67)#[=!0 7䑾Hml @ƆQ;&עA<}*J n>51U|ci@"*^x^ڙu&ul@":Y\墤9 \O?Uc4SfK3;SV]Gl@\]_t ^@G [@OO\lwa-Yߵ\@IP4Hؤa4˝<m(k UĶp7ZcWq*ʶF)F.,0 HWt>X䮪2":1_|dQE6u]Nq$jl'TV&R$.z,x߲:ϚXh姚ia(9D'Q #la۲-#L7S,UԼ bIႆFr;\rmsb2 O 懻w7>B1벘E)4d4tj.◛|>&rIZu ƃ%XbأP/h{ c-3pzCtuQg6DO7ƳH _!W "%Js 0' C Rr`ya`h4se a8Wpr !߁9lndթ!sD߲V(Q0Tnkvȉ2a'"Й +WW,\]Z$|=!— 傤$ yX3j[vXv8):8W |/Trg9b ßEa[;]Y?7v1j͵k2W) ?lw'Ri`'qWv# KyHwԩ;F,jV23i#  '\26g=Ϸ/LWeeoS~4B\L_3pQKpCx%K1J_NIg΄v&tgDb$taO'3Jp& ,H3.pƠ_Q+릣/En, l^uu臊OlNYg~SVd|oi>KynU ɏ] <Ԡ>CwB:֏{t#5wto[Tr]+zv!Xj%F}jhr{("thY$vb CBٖ:0Ҳ~>^yUkPXy(-:aG<#`ş#5E}##Lo6ͮ^mtoC%5wKp@G`E5#鲌GMwt>sJw em}fos p9 |0(KɇݣuphOcU%/nZʢ9{Z4l ʴP20 endstream endobj 70 0 obj << /Length 1272 /Filter /FlateDecode >> stream xڭWIs6Whz45i,HzθqI4m4=(ex@_ONƙiL\4@<R &C>Ô3(<+Oc:7?O9d\al"bG" +ukVwf<܌);{3d*H;ʳL3^x_Y{`0e] #-Ȇ|$J~1׆~a VLGrY&~yV0f&331lf' ?fg%OK(y%1QtuT n-8Zm^!3CkMkšIta[#麿,.YZW -dZftZ"+]%O) W*ZSl;guػ+çIGbY?c.qE6x>HOE\| mq8 >޸mo[A˙Ӯ1hbyD3bH@\"&Ƚ P>4gȹ'.C EHG9@|Mx6<" Ax-s#e?1OmS0װ>>*fEʘ L.R-)u^:t5%"Po>"<;v`npj CNA#Yp^aNs,ͲNY6ReN#-- w%Y Z]+;:"pzr8[Ntϸy[/Je(p+9WM\DlmZ$ | <[8Sг@Zb$aK )?8sy/-꿤u?XtlI%VmIzXCzB%ps]R+8%uX]L$` endstream endobj 75 0 obj << /Length 1343 /Filter /FlateDecode >> stream xYKO$7+Hi0I"iS";6e3d]vD9XvWW}Uo$k,f~0!HMUGP|wk?Vq}׮.];΋k˝E%̘"([xbhoR(2* @'șs]'6-(n\ :4^/gu_A)W}~~ p)b -4kAbv#PS]}S`+JF{l[f:d<9 (+(xPDk MAs PvLo Bf 7Q.e4T18tBEoX͍޸)93al:Nm["ٮ ۫ӢС0l` ZqڂhVXh ok/`7fgyIHCcGq6qF q/r~?+"sZ)a{\F EE^}4Rl_jb-\Ęp&szf|EzVQM(GRqXBZ_2N$P@qrWSm? d XIEE]T039;-+oSݍ%ⲖDu⟩רP- 5g vSPKY APeRe˽T1ttzC 14[n1Kng$_TJE(b~?)Ǭ11pUe~R=[F7DD]rEտ&n姘Pj, HԂe Itt1D" ,$60lĔ6YBɞ"Ӊ  # BRբ" 켩lآHbbeOI)R%8Ab!b!bRܕdžX>&ը,TsrߍXɈAVzs$+C쉥xRb)I,_uJC.uW󿸌@L.(CHq4MWxAՊ9(W̐R(jNOl#¬PrFZ%1bl)De{!,K&(Cy eIyqHLu _ jHEz'&-<(|-Zo1A߇nͷlQU endstream endobj 80 0 obj << /Length 1103 /Filter /FlateDecode >> stream xڽWYoF~K(ܓdHQh+6DWs׻ǷܑDَa gLaJa=8Vz:*ÚZ[mnZ?\sy71swga 4LގBqY!$kx8!"vGWZŭ~YZQ֡Qd+, KM``X27a98\Z:Ņ PuOΊBr,#޸&d7s _{y*CQ ,'8&h< x,xo"I&mw>0A ?ƟsM9 5@1l5'kEW)ETJ9ۉec fZRJGӋnWyġeK\;sY}2D)t|pW>[vO _cy: zjMX8nEcIm9u~ XZWXO%A _zP!_b:{ Ľ^Ӳz|+nz-T7% }xn%>$aK dZvRYN5熲Md-jEFZf:^;"m K  vPEGk}N &Ҙ>N5Ze1f p? ;śZ7t-UlaېUYv lF(xqg,(G)hτ{OFr&iKcSDul1A#xoþӆ:]*܄N7^Q⭰H-#>A>)F ?QF  b W$g7yRJљäEQOn7۪^tCogQVb-Z[7/|R1V6-/b&vOc ?~S endstream endobj 84 0 obj << /Length 113 /Filter /FlateDecode >> stream xMM @+"[om ۉbor iy R@C=sLbS+5%ׅ6 ?z4lְm)hV8eC|I[HQ%hd endstream endobj 77 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./manual-twosls-Examplestwosls.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 86 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 87 0 R/F3 88 0 R>> /ExtGState << >>/ColorSpace << /sRGB 89 0 R >>>> /Length 9809 /Filter /FlateDecode >> stream x}eqݾ-ɅJ9, `2 i!mXIX&ـ?qxUHVEwթyoF'O?~?>xcc?XΣq_O'هx_|GyC}4凊hk{ǯ&_!B[eK\ ?AtZEO&4U6"ZB]˖E z,Ɩ*VOe-[GHޔ(-;]HUn3R2:z c@ Gs2.H}j#QcZBѓNBЊE?-hugp_:q 5"4p^^uZ=?Vֻlu-*PBh\gꮇVB1V@Mv,lD|g زV꺄j|a֏-+GH.Ce MB뻅NGk[ZYh?Z]Z͕e!c 5'C zL}}P^ -(J;Dhu=?XvЎ`Ų3Zv-d7]e@ EM3E\T{~ՁEoiZVx{k͍VK(Zc\24x)QH}?EO<;hӱf>16S(Z}P虓sՁQYg{_D.Α >sh }շx]|)A[k8VJ5zŗn| ,h*QN@Ҋw/uQԿG >ZvQK8RZ_@ǯ 0^K|^FkY9hvn T s2[k6v 'JKz0CzSH;(BC[E%lCs- Dhӽ ٖ4{m150mjx" KWޱx!B ]Ҳ]ڷphdAfh/ FN5* CKo4rx-&D !BU\CЊBcq*Ta8XX" ` TDAoAuwK/ES;rXuOKBh/zXC"נ\^._}B;(P[,ꂀ!BXnЪt!B?HMŌw+[k696 OӬl)TPz~ Fh}nG4;੘BA.Kc+vq 1 DA04Q %)g ;0Dȭ[R42^5 B/] 6`l=9ν搅VY Xݴc={"n'@fec>YuY B~ՇEQ!Fהr !`LYMWAڂќa!? =P1Ɵa< roS""0l /EW0P_pox~ R+OܻQJ &d@p\Ka.sp^:7wAuH:M"lBH}"X*ח-Eoqt͉=E?417T8/'-e,i) EhnHrNAvj@} BU0ku!B8pBvX]"S!B>yR()b_?B #"FO{PAaQֵaqFiJ &YU"ľ B-ؗ Bi90W5!uΡ ۓa`(,bd;͓`M4%ؠw(bn!B KA me?_`_-S@0.NG؀B`m,-"!!`h}k|.9* ('8۴f5"4crw ¼76Mҝ\ BTA.F/J@NGb@7#_:O9#s[kE8:˜8.-֊9Q/L;f_ sFckc:M5NȐg̣y<{yqic.L6?-KUTե1nݦуU ,S[N1T_SgZPC')bj>RTc8qyv8!BX_ͥ8L#3 σKJ'PPC$#`Ց{<^y_l|UЧ=aLX8)بa c2`n1x.pb"l1:"v=YZ!b q:ӞZY!ٓ\^J!zՆF][z0DXK;`p,!b]tz1Odֽt}v}|J1 DRah nYV\b\s_tȬ.;""tYzQ+. Dh9hU:($jTT "s=c a%}-1ͫ h6^x9Oη"<0^mj $dlpVCэ<s=9UG(iW5l&CaAVy"!,CY~E s2hA.7۞89+XQ8ᔜ*"$;0&y.#2/gZ}]5ȇ)I}!Ϙ)/[0Wzx˿߲gQ7^A[Nr8+gܦ' /kc y 4FEN>y5rȃ@6xj2[a/ =/BB^v֣.8 |P3//v{cTK'?c;+DWkYEi&JPck=G`ţIkoDMY5kxk0YLO`j<mg;ɅWYXAo*2?x 1'3ʓv/ݢ< 0 /{o*$N M3 F{g}R?!dO_0heϝmLbP-'}B5r8T=Tj<1iTWgz` a y곿Ҍfvc Or;CrsR1Ӭo[.Q?8xkƐTWtGAkځ c}>U<{y=`d3+X Ņ8D&$V !u}7lS`ȳDyqUﷁ!<:Ӿ<(W]&Y^`Gڳ!OM1D$B9c CnR20Ͽ0B?G{Px37P_5Ik4훿;ͻ7\&qy#>j9>ßLZ$lc1U폓ؾ,HC Fcc6>vU.'1g9w9‚lw}3M6V|M@L!\+4|?x=4^&&z~n%#f}7lb~S1$!OoR+60j4_'ZKy+-YM{FIYzDlkq2lmr# 8G{=/;g9j ɷL8ˉD n}h~ )VS\Aϳ>ji v2m{:׳hy/[bzJW6OO+yX)XVrh†[9ˆ^?吧mdU Ch80jmzRzjf`di Z1;l5V\u'F^#6qh`|?cV3E0]J( v~Ćھ  vs?9bCm3\Z׎tfI+f23q^̫g"0i*f̑5ld%<~e6X\g ~dl[DYV=vVմy}~>Kl59r e=o3͙s~Dgr`\8Tg::[rvf3Ͽ򝵖u6su5+Xy}[u_ipɅJ{Vu,oWX<wLĵvi}'2 5˝ӻ$^Jv}w}MJܘM1~wf ʶ6 R;ge~};'TM=ϜnYݟ 3ge7ߙ(۸aF5ux}S}dMtmo4ng];Msq)DwWTp_3%'gJ^,upܗK*ZW5K׽&~7bJq7Ib`p+P/+@E|}jO zJIZuEPįϫ&,[=%R 8f*P/҇7dJ3g4kZ@o(iftaa=*}.3j0w=5t|Xaӻ 2"~cc7Ttek+K6fqצ L ?%x,sdA#T2*ihZ7|K`8~ʨdjN&-]7፻]|r޹ko5(f rG띻Yy'wg|2U9rW> _lg^P7x>ISɺ~r/V\cTb/VֶVyvʱ2%o6%@@,ia*0~^O=~{nvQNׅY2W-S vo^\ OM,ߥIZ+g3) uY`pXX`L5,g/+r>"7>]׊ endstream endobj 91 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 94 0 obj << /Length 2613 /Filter /FlateDecode >> stream xZ[o+~?BoЊr rmMsXے-K ݥkɗv9~3prL Vr"b5Ie&gb&|l.lgsŧhq3o_|d.Wıs"qPǂ<*` WH3_]j;'aSBKW6p.wac?os%L@Xyre^.k&EH-mE&573uufAiWy2E;LVҰZi] &UŤ"V'# j:P y޼ UhхeCn-wLش/<,G 4i[A[G.A n΄=,R{0_?21p\$੧aEtX\ o6}7h[5)_clBWY*l ,6iӞdz:>5;ѕ'RzRep[ ۠s:+ku2)2)ٔKrA6/k4 *x@C鉃D;:Q! @x{Ы_7ũVq9D#ߥes r1F5M`nijDL  t^uCNb}> xܤĕB}wޤP!:L]!3KĤv,+ iea@<(%:]wȒ.Z3wuKZ!sK@$M{o+C#t^u(gK}y@m$:9] I+ R\M3<:W _<+ NRwYC^'5zuC &1( xY,Pw.;lS.|խ ZYv~a4uh#WQ>쓵4&qI4QDؤYKuv)m&:'znzdAE *|bIt0Sv;69C-kEX 39yCD t WE}kzT#C&Ĥ%>طzjR5419 bGB ek#e?&hښ>HQҗ]K d_K*y=ͫҼ ܰӄ()!^1UJMywa8[?ٳ5n5R]\kN ds[ @AZ2 DcJ^?Uwxv\ ւ`3y5uqZTh8`*P Tu'fEdY  ܍h5ŘKbچ&d5edeIaojUUͲ1wY˃&T%i'f}|Ec~h{S ;ZhfB C!zp)WjYKI9 tQ8P㊕h;N%KEiW Ϗ=RXu"ʥ|7\P1YMxP\.HorZ劝DEѪ}EMs}i=V/ "Lz;r7fˀxK5^ّ+#2(-8~BxӥU.88'V1z}F8&y﷛0_D LqV\Ì0QAǢU:r*s.wLv4a=9kʊXר9kܥ(Cj> ;DyOŨHӊ"]UBvS|z""s쒅NXH@=!piMRHB?VzY;q'sPsf S)FoX Aa,?`Wx8\7uMU7jŞOrg[VĜKіs}s @fL3.< m0vۣ|yMi6%uQ1G9Z[g]uAsxWTpeߤڃ$P]JH滗A ]-2HHw܋,׹H 2JB7#>d.);ph3 wIVxO#T&-l&C5h܄v* mEwԑVFկx}ƆA 6\|f of jʕ/*^.¥sWl_ E;,i|G,dba~M +?k_}ӄ<">\ݢuL!Li镻\.d[ O8&uX?%|H5xCvR{k>oso: zuY ǫeih>,y)VoBi} endstream endobj 100 0 obj << /Length 1664 /Filter /FlateDecode >> stream xY[F~ϯ0!6DURh(R.>ȶ5̙3zm.Aki|/7(>XfM#.%KL:2:aBt1{<<7&rFՎ(gϷX𳤉5<%-`|޻JhWO-Jw4mȂ/'L% G/AWv$B&"W7'"&(V8 mګ=tk 0<:ζU[G$aIAGSLr'̬ZN;6 KO%٦,1ԍ`F⿷FTi9e -e7/ȣ5ZW2Mm͸jlsQj{}밶P/0L^9Q/i9AլOZ-fir琉ޑ<ϐ3vtC8RA :w;w?vfCyEqc%+5Yx,gr u2ueX] CQ0$?xĻx4$JlusS:p33=E!Ioez7`BD붕ĸ"߄S,\  Eﵸm.e(b2* "uz|a$?q}?$7wkj U>tCۏs߭.r tئ̒[;gn֮"xy|EylkS~>6̈́ (ȉzo|P=bsbϨ^QCaʴ[, bcIf8(b(HlݘI mP8\U]ۈxvgc}JBDHMK+ԾNvmk^-ˡc3:6p}IC 6}RɴB&R /*xz:wxbOəύa+u+Y ?( $0˾:)[a)p^f>5}*lބt؞$+ֆ0a 8*^9uFƂ.B8?]N{ uh^R.sC mdTjI a5%"\ -]׏K¶JRwA-(“.t.H8sb}J@ᅻvG-Mrz܍;h\gc)8#+&}(S\4hkpy7cט`/:VQ`Uf81@H%^>x2¡vG.R<Z.$\f=Ls2p殨p*-ߛN"._1(͘1]?3dD>'bթ ŵ;șWE#+=tmbCgF4zbE?5ؘwe_,cLZb9QWde. G)^ [s'3g(=K|Y r͔4> stream xYs6 Kg:w9@lxbLiw$?pFi+ݗ0\d^~P:qxA-7?_uR ln2ߑ48uJpy* 5ޖwT[$ ~7}ѼC +p~kژGd6GTmҬ HQp؞P,b/==^F3T>fhqH6 C RPt 57 G@~lg1S|QUWm])m?Ar=H痃dyڋ;U\ؿzva<-/e O fG'Hez$eBs+1aE]Q@:FxDD GLb{Yςˠ!ŠG„`F>TecH v|G0$:Z- 2[h6^|V>hK (kD$n=h:t#rVl V} ue"bNGK>~3G@M`D"T=H~g8M8*Mwh#;" {؎MyoDhm*3m<T^fib[kM$Ez ֨yʍMMPz[&2Au)_Kk!(u8 4!m2sK1 ;kG [ zŇaQ QLZdCcs VO VǑ?jck⫯b]漫܊5T4:15 *[P۾/P`MTFAldueܪ~)ήL ϢD^wC$]N?-/%Ґs_5X.^x馠aBhԺ⇸n;gg uYY|TquK#YY hsk^̘LBBB~Y"YyKe2;~tgSXϥhn]֎5Wġ:Q6hZ~n!ly{Eep͇&luQpaƿv72>/f, n#٣|ULdI=/l15ՀWWw,}KOa+' 2e\:Lek sۢ× rwC0iS~0]w9{>πx cϧӫKj:؃s+ux_(pPCt06NfO'̀oT8V;@ EJэ'vL .S/*ݣ~08lN{ =LpzxBMM'Lƫ3 *OuI "Qq!8'sx"<Gc둈֜ڳzcFcWvY!Ƶ^p!ZVT㣋r?36U٨s0ˡ>F+;1ufqlElC?Q '^ Wz;G7& endstream endobj 110 0 obj << /Length 1647 /Filter /FlateDecode >> stream xڽX[sF~WxRE+NJ@2f 3J8[4=%vݳ|߹ɿ٨ [x|8Z]O4*7Kᒍ,QjQtfjrZoOԞ̪$5LYYM='Zic&@pV%o&^Qdʘ&2+@]r$ȀV  ^*TT|ɈB PyCt˟J'f_Zx@ǟK( BDJc|@M&'QJKҏVSlYOcgnqwg4]D,dH;lXKef.a1/~2_?hO#FܠAW 85{G΂'x^#DA/~, I_os{3vE:g=L#6PBf](ludOr=f[1w.矄vq.ЀLPkӐj- dwf-ԟMkUQsP|=HÙ8 p E2b|RJc`2t0..3gRpS:3m@i(t&58S' `8(x'bMOBg}mXu mťth]25ī@!4w\0ΣeCXE`WW2;4C\er6c"2I0kNu[D7n '9U87t5f} }Q+\m_qO螅,9&>P3j ' ꇨCncY*6o2V^_W@20DOSAo ~n-|B g<$0qF9= <<=ܫAd@,%\sYd|%w+sK9k' "hX+a2?N߳in)\  D'\[_mx[h:Ū@O!E.7pN&!LOь1LYUW/փY Ra[8etmՄ䤩W^;Nj|̌Y4E&Le̴L2k@E|%9u4kKTK=sz^*H57T7qGT!5܆ׁW0w/ ܬ/W}%KMFWl9utXlA6奸V۰s[ PKD:?4#Oi b`͞TR:0q=QTKk$A\U a,)@2nAfҩmŻH 2h^/]T>z^l(t17A ߇szD> stream xڍTk Wٶ&md7MmNdۓ~wVlj+2"y%:Ac[C=#7@XVHB KFldLhnk/ aӇLP l`b0s3qp32kh 1p17lmd¶vfNy 40qqq:d ̀ JF@' AkdJo`Ho`jdP:\ƀ?( FKP63wKdkj|̍6.6@Gv /c hip#͟FFv66s+ ૘ -C+Gs+?K7 * >#fQca[kk#;>ZغxAَA()?2S݌HnSprpz{[ `ln0C 4  ~L?~0c[+1(uxұLLwOWDI[_$>_". 3~3@k31}b|?HO=_?zks+X|쳳m~\5UuBVW'dq!6VQ h,oddw m<8:&F9#ˏGcV')Eml=揹88~<>nml>\&L / `q}߈ 0>,8 ?;Aoo8=ZG菎8ˉ`Ӈ˿uvG?Z`/qn 6(cLl7dpGv>N~ +_3}TO _e};~<*8|$mGdWS>X9იW8h/M#gwcL݀FK FOܭte,daOa]t.J%Rۿh,0c҉ in5kP*4Ss9qc\ٱ [ -4wϋŅ|a1CA}Ҫ>XA%t|i~2h]YFiVFrr :h`bqJb / e2I& $r_1gƕrE=s ,>Y|*t^s,?l(_pqZk6P~83ƒqD+Y,sH<# ڔ“)t??kFY)9)P1B" Ng6>Woj?L/Q֩kƓ)WU zDBpc qYf^gî<{VlppbbBjOLJDo` s걭Tp$so\pnj`5􋰧K:֫%bԎ3S\sBZcqMk^L`8 'uQ(S_d>[Y3ٌ:lzEO+@%&Ly?Ӌ'5x?0 ֻ^ZvUg˕XDZӰx>ޢP?%cOá*)"2>ST`k(Dr"n[a0rX_^ў0,hkh 4G|=Dyْ.Ҿx`(*$Jb/ dN^ $LIӯxcKDlW{$ k{F[XMd4 ͈ ɇhVe ԦN6{jDlP ]]Eyx,y-G=J w'͍gpm|_/$٢f6*Ncȉ$:6k ĸӑw'Yn=f$6a%Dah:.Nn-%0VURpu±IP|%; "6UpWEsB{o-g,"UG8LhS.T[3<^| fsxJ.& <%?Dg|s"[ՙR242^Gja&DVv>h_4T/E_#lvLt]BXA'M4dzp-,3mQrG-qJa{eVzE+=@~i̜>Ww#SθZ_$ʻO/JVmƘRe?ch!ǃ#8YpAˮo{nk^6 ?) ޝ:)8]q U4X N ~qA 9&'R ƺxo80\ʄzW4ݻN995kÐqnKYڳ AO"6BVJhp{!95R*K'0E!a.}z++V Z ˡtVG;юs1RςbV6( [x7dJ3wKQJopfC k'AєjƎ*|:O)Ȳ^qRe~HMƔr1;x͞ĘVˡJNUؔЋK >[ꮮ-%7H5[vPc!T˴:BlI _Eۨvћ?".J}vטSzcRxy|itg L2h&.+-9[9nÅB6Aur3xmfUZBb:ieUꅀ~ԤՄ6n[,۞kU\&*<جoQ -OAuqᐦmM7lWUpл JV)2̷-Yu5E͔_B'՜FyxZ*z*Ҩ*JDԘgm @w–/;M"'KA7 #H"Yx/\;]SEieDztVK1miXxKseAMg`m `BdZcp,t>)I!Tp16ԒnMVi $99-~'X:kO$͓#XAP{k5%yk9f&{qe&t{pxoHYo(8`OdF~H}bGC |̈́}0XRbJ= sFp5'::vwMl,Vo} Y*BP`>"Xj1"reLuTMRhnˋ3=q# CHaL`Y& Mdn[M1 'X wGz7ᙥ,N$%m=PŒR][+"X8%#x(ʴ8(O٢V~{BqWrnb Dl-yͿgǻo*%pY|ڑ?wCjPD'K9>SG>y쳧bVfª 5 q*:yU 2+Ln7|uyAL.k`?^X'ryÅ7ua"t#l212!F:)xLT~A[{I}Vcbxsdn&e߫%9ba_ڑ~q^6ffE0N>$:9k*= aj:_?W--F)p “Y.T mmn3k8)58^)5{F<:yhAc>r=p|vi Bn.uef]G^ 2f0<Ѣz2e-a9|]'a !CJ_hwJGMIJ; &i|?ХE4W:Epg)xsձc3 $ZX$0CAKbn{>s<'(4l++oRfR6Jw~S/":/+)tS5lZ.כ =dfrd*xi>q Ul6ǡG!Gނt(8-#ڰ"?9gϡjɲK%㏄%&Cڿ.7yNVs1*m'{_/jN嬈(g2_(>ω̷g}ߕ68uya ,R. =uEt#ԻΜK9*P+<&IJ\lR4+Y&+|W~_vd I<"^r((v2q'CxN ʾ`+o[ Z<#IU/MĢ~5DF~0h@H0KG7,0Z0MSdz;)CE_2G]b(ѨUE{hM]}L6#.ne~ Xh{F3 |hgPN|:C\ny}֣T/s~f0Cqb{eځs)T;κt-Fl-:tg-rr~ll@ IqN 3{tj!0Fb ˜$nyvVJ.3gwn~ͫn6o lfY,ԣwsW$͊{_ 7k y0>d$Rn2_0Y<χ^ VO{:9~Qza&ύMaIeH'G_CGxjg#gj8#bDH:_ Y򑵣kEQG0A*S TMRBRRCgZ՝x\2C68T&;uvϦs --Qq)#^WXX'}IF#2w}i?U\r^9Eq3+zK>w[q0-y;P5ڷ^N=cBK"5}\@t?DTu Ǥ,r_SV8 8'1zLhQO<ŎZ^dLO(սf0Ƕg?g2@R0fO `ꏐZ Td(*^8~b[˟)1 |N\$~U[u<)M ^*˱^gZouOU 1g^Iapj `jr"``fR=x1?hJv "4yPu&u$S4.d S@[J%U"'&: 0`lv͂76"I[OJp:[j04|,-@d &r lʤz 'v!%Q{]\tZR;IJ`fjb Di=(`q,CcqXcdݡeIT *EpK9B#SpeC) ˔OAq7PBXǼ~F9>1}+@ Q94{i;&S]Aw9/˜j*$ADzn`?LA H YI& /f=5S^Md}VE!O8_0弋0 N{yXɲ`(hIExPRZ1/B~PdeUDqQƗhHOy;Mbg4Xd*%GM~[}_ bD͋Uo0O%f E0V =/K'Dyzް~2'y="n/>:GU6X@g5 mWrfĘ}y@v_t1rbЊzEe aH%(b,ϴwgvh=:V}lKWEN>1sl@mpv-8 0I_Vw|zzixʩ>j-ƛBLOs>?JL$9:Y27y?T5'az$wӤݎKQ[6jL&&R$7gQ|;2l2_hb7h7=C8{ ! c0%d8!Nw"rR蜀2FS^V<P1LAre܇DP `Hmka4Q }@Vu u林e%4dXX> <;g#@8O sqRT6X'Oj |-r8Y+kM2Ba+&q#4{`쩫3LQvTC ˠҒIxvtmK{;EDo)}5&R5J>A 7JC%fQV0 v_y= %ZjL`N8Io>IZewY^Bvzn"!p376Cq~xcTjcz֫9^kRey߃/&fXUfsK3z3O iQrdTACrW/?:J1MqM@rqH6bS֍l/U@mk(A?qG VwHm RE2iE[tT5jiAtfj/ylYf/oT\,g|;OcS5ob %㷍g:q\qN?B|*/np! K<DnkTH YX_ʷ9:BW4 "nn^jcD7MnT3( RZFpxÍ!D^2hapY[2ٔj۔:|6_Γ/Ĩ꼦#r[@yOB1VUշt7,H`;,ňi$[a.\oѼlG6.x y0 ҝo|%CҚʞ#z) ,,!LΗ1VaY8髓]=$^^rNɌznmF7gԃΚZF@:܄{OHu{S˗71wċKueW8dмM،@%g+XLu&("b&>4BU 7^|JV==*ˬMRk;6 8Sol%YԉC2ݪN ґgݴm0+m>Pk=]UzlշWF[ա;ZUf,^lŀBm!)(&l-s[>ڔEmp.`hT'I.S R-CӈϹibAH*/PqOe"hk+4!O+QFu~LV;ko[dN_ XiI[H6`i$),A$I<_o Z -M,\P~!Xhij`p_iC1i%u-ο F)x\YWj.'D2P5+?'NHFK|'+D6bKaDe`]VS{u܁!o/gSEB'ۚD"NT ]+S~ӎv♟ZuML$`A0;]q?} z)9Ԧ`WR-;=QNZEE+֊ 4|B;hdlϛS?TXp]WUĆ 97+6 QU,Nζ"? #~ lڣ[Z3=]{sO6rP3u🣋I6yKe}ܒ>E Ic\Q5f'tFn$:FdYec'(Ժ"cМh%?iO3 R%J2Qⓡi];(oƘ;eޝaT[ .4.>K:txtΚj֧b2od@#ί_+N£Xth"lWԖ&9ƚ.A. B0c%+B8<2UK}F`u -kS^TSL55zBTk#utZ&K_PŻc%eo&‡ QFGP&e}6.j])Op+>tTs o/}ZGSE4TO (ͤiH6*.J։CdNe"(&+*i4Cɍ`7-[~K#xy%&4^j# Ͱb,ˢpY 62QUdvPKN (hLw':&+N+qe;~gÌQ*X;>?B㛒+%RPQom#{c΃DHsd 1 g;LWp6Bp5Asx3׍z1E}L:[JLTԶA&`?2}SI&eg_ϟ;o59kߟ>EqYn<]7$?yn<X= N@D k58(\"J3۔&Ź&z n; d=)yzWZioԕ` cxМ04 79H~(i).PotR`k 즘| 1T12C8ͥo<',B=)KM}hA5R+;!Öbŷx,u=* 'Ʀ{ր(tC~gʐMj- <=Zs w^ >j%LBVIi`E+|Y+^cf%5sW)7ʢ&Hc1In ]^%Y^I,ۄTԗ'j6gj*6K)*~*?\It[Siid xD yp̌qf?ҺyY.>C_oaWiH7ea\i?G'Xik(XQ4*TnꘒrjjA0*D_̘P26޶iVGYCd0R9/^UZ]2}c@.]ӧQ]ňܡ:K$!&kAyr*ƨZԎ~T剞 =t^/%CwU͛6%čVg|TW9g"D oQAcJzlY772ۊG r :u9H%/vG¨z3y(%S5ֽn*w*4a~zz?:y 6{)K'33Ȼ\_8mp"g~X\_6E1竝 }?]~&K'Efn8ܛΧ/.aN; s+%k3*^=P٠;zcWrpr.iлq;dcaS|X{9#(Y=eڍAi8 tf^9uʼn?{RVD0w`0RB=[A>=G1WVMm~t'O1IN*V/xw$P=҈(2Ŀ?!Fj Olp;gl~IU뒧k{j'%>V- ?|$%1eHV]A@wҼ_" ER T?1i_NMmF o5v%* βuu!V/xEKR(?аg\Z/@^i U굓ΤF*zqGlK/XwuLÕQ.'@+fwyf= m)9xfYr!NIDl!a%]ds ! =X&:<%(bTH+hb ͮZgj_eW7m%`.5 uq~$-H)J]AMƘ'#1jL F6f$aFi{ޥ1 Q4r\Bg*c1Z4YuU{ vioPߘg#6`ҘyfvTWAt_!Xx/gQ=u?RMfÅB͗u&|>ͫ^H("G8$ endstream endobj 136 0 obj << /Length1 1777 /Length2 10599 /Length3 0 /Length 11708 /Filter /FlateDecode >> stream xڍP- ŝZ;- @p8Xq+Z[ bf$YO~jrufqsS 3; @RIBƁLMv%GA./2)ˋ=@ ```cpeH%=Zry_=w6.V f@[_!脬\\XYYv,Kz&; rA@ߔ@;ПXV`(,\܁E` 6;ڛ u9E;Gc9v;g#lo ۂdY\<\@{߆@[gl 4}1t @F\|a'?g3řl#0/m7tٻ8#O ݓ;{,i:jڃ\ArRڼY\lll<af;#%o _oGG / t\ _+!f.S%/b!`>~ga1bVe%YIR[)!f0sp9lwbT:"[8C{qs3<zgPvxg7`f3{b>?\vwoE2cZ쳫m(9\jss\m;ˀ=@*`3,_Sx n 88?8fv6ѽܜˣ2?Tfo@l/ f9Rs `ewpyqX8@O*[XF|/:'U`XA/ ~߈9ؾKVпK/UX a/ ` $|_e.ߐq%ӿKbȿKb> 4_%k N>Z60Н9N|*yط}_vUxPJgc5c sM (]IN=0殮g'}b9 68潾kp8wR\aMxK/zˇEZ-4c;JG'7G JblOśnQK U ʩ-yd7GvV󊮘 q9VO}o&N eg0ooXi~7䤬='K c)(aJy 'JghW c^Ͻʟ͂EWP_m,:i캆,ꃦ2aG(9'gIb+A9VS"h-/nTH&Kf"PWI+=B lD)%užUƩ!+elSgrT(MPi^$B@GX4)u+2SQϺ*o1Mɽl*awj`S[ENkDyo$5:ܜ蹭1swRJM)JGgB^~WRǸk/ʮzEaW!ܖnh"_&29 /Mo8{ Fh%C_gI5h)w#H-%YV:Q =Z= [!J` g,O$WNk>na7G9S#^&CHxuBp]2T}zҏcB6G ELlr[໾g?ĕoq]0!t#+{dhfکRi|# 0CZ&`g:3O?OQ^ƨy}K>&2zB G;ַ6 qR+WRP55i.;eM,' $fr}އ:ُ$8Z%oepϦ޶w_1a[x56)p[N5m.06]H~W1T*_~Q1ddTMno,Qsu^vrC."ׇ6R>/+MDFyc;BׄB"Lo*ʆ5E^cf30N΅çrܶ%e&ء %G"ze?D'T)@R*<-ĉIwnV]:t aʷitDE Byk:\p:__Ǖu4b,|Xeh#%g!qNnRl\4(W;h{uwUjy\5 g}76]uSБkp([Y߰ E.H Ӊqs mF._iƚ251XT;G?w~U{Z;=8vi;NoHP>FݑM-t7vhwtfb^; sڶ}}"DI6WͼңvݯLH\Tk"3͟ӄ)+Ab گڤ#\`ۓQLI'/OKSjD⋩G E>oQf3$To>%ǽqM(,s"<}#Zwh>9n&ozXHH8s qL5)3ߜ{[7f՞#?h5U#q%S>xJ(սVt6-2z0O^v՝SQ/0"oNP"ҹg S=~KF1ra \#(B(jRU_ Ֆj3iu Xt\N&00T+>_S:Qt*Ģ+茮{f녙>S+.)XVSLb=Cc]Qʚ=c4llDZh7jϢO1'u޻V#w2֙_po*1Stw!/W6A#|ЂE|SBfH%j,sb8N%+Ƞ?|-I5OWq mJn}向ȫ&؀Uww URi-u5:/9*+g1;%WbοR,2m^d]8|WH]x5Y>h*㘐,祕k8i%̜>0cWyb:m=,Cm]R˔cZ;`MN1y`Ђb/J:7Bxԁy_: jo>D^D~G{U lTP1X0fCkG&NBeM9$|_D GlSa? 'G5~X]U1(101ܞwЏ& e:`Khb8\d.&hV)ȱiH=^[;$ 0bھ?ؑ´䃿7xR>g<= ävY4Eŝ 9Z>Ncznf/|Bȵ- ;XmъhݖqX0&-d3Y畡 !:ͦb+{&cUg ̏5:78|%$'E҅8x N^=pcxЩ4hD˔ǘ0ktƏ1Zuߙcp/i簨k|Z?LEo'q(+*h/euyo$FߓC' јRЃ/G'ǿE[ֽeL AýO,l<T\)eZpg_t |{wHtQ|mgXh\sݫ3 wU}F(yNMȌ͛b('vLJrv(jUuU|=ʡY QĆ}%KEqNiYmTzREwXM6a3rqpV1\5~d7d}V6)r a|^`+@@N0WG8(tzG!xO:uz~(,+4@1Oz%J;(r%otA{Hmi`}=Wvv}=w$#ixد4cdșÁ aAPm #ߣdm@%XXBE-u4)UGɅr, ,1l/4ɦWFMu }sj,}a(-EY(c7z%}?C&ThL"gPPw+ӶK{ ^?26-H!IH/?yW|5 j9Kov/kI^6M*mU|;4#M9 wLӫ d8i %](>hMk#>Sm.Q@}1Mhu>DCc5cƜG m4l33QinL,rbirM$#8t(a\gB=U\/T=6VAj 6#<ء8$Pm\ӷ-ej5Ux# oѽޙ41y6g$Սr>~+U %`@On&,Z?cd|mHC甕ȕRXçnC(y}lt"O^ThhXڴߔUqaPOE˓{X~jGӚE]$To4J- _ֽ:w۬p(tI n.{FZv]êfffC!4m~G^C;c&FټYᲁ~7wV?F7gOi|)`|Ί\pB*ĕf!R ԗzZ W rɨtrS- X3W0ԪZXEj|"@‚6,cw8m#8۪>=r5& t'Do3>"p*fel]!qYa)k:Qh: ]2jr6ꅜU\PG߲J;=mei]|;Kx TC}4XR]S B6wUlgA ,kщoHX ũf~|V81^l*VA6X벼m4 l_D;P>1i̷f}$n1N}G]S> AAw~{mŦCѼteӫTg] #`Ce“>nZ䷫Z XrgKk_ ᡥ+]R9)Z%EUi'>jHcfjߕ5WڢIi~ˊrOTV7 'M3O+=ayޖ0j!Ҵɇ/jTjޞ?>h "[C̉@=gZ}e(<4 J\*ځfS~kt6jr%EjQFaRNeF5"  r {F,E<}HjjE{JOp<)TT/ ѧp~eT%Gv# OYϴ) Im8=m ))V,W߾_?7^N}r:k^'M2UJcžaz$a-QdFS9- ڽC0C$d2H$;T%vqWIhF\p[r̿qgHG?ȣ1GʳoUj\b> c'Z <afyFm|+W6 v5(1 2j&E%]4u{}= O`$u8S&jK4 w ve!vy>)uL_Vst3?: {3R&yamϧ&9Z1C0ixf<=ʃ Gș{1Ư=upu{WݣjHӓoW;U$`EQ&č ωhe^%`"FCN> 7lf~rlGoRrd#)eG)rCr.{Xh /ѵ[~m q3<)0Ld{}Aj*N5v +^-#ŸzUwy,w38׫VA/=3pL @A0@<|#&K^!}J(_YI4$%>@؉c8!y7)^+>P-6i~ FO^}ys; TjQѐyKE),vGnx>]dInZ kZ$$QgMESQH.*UqR"'%ŬJKB\lct=mĖxȢqowRb Ӊ FouF>b|J]n2$?rEqu׹+v⤉#H@D>&<+ͫY. qTmnP wɽP9F*34dNaӅ"'8j:]Rzņ ,Ƹ5[^?ӄuYYb->1yoJ.fލ+/`6?=k- ) 9A+EՓq`Äj+Tr@*CX]ɮįН|FSr캤痞Vd {we9iC$!fp3!kbhɩdg)5M3,H:Nz5VqsQ";ĭgTP{RHKc.I}wl U$АFTXxx4 ;l )*-&(`}ֳ?}QϹ׶{bdLKVe p kx?F'_T=Ā7nFI '8YC97jtHZ=Sw.)ޞTE8COҜJBT)1[G eAqm"oWaw3Bh>b4tOKX6::[Z.W&B._$|^{Vco6a6۾!>ߎWZzPokV~S 82(yqm*NCmkgx |eͮV(cQMk#IqmHzD) pPzD{(@Շzx6{;T՟-W=l}$8O/;V0K.At`#nYq61p1IğA8e Inp|[\LndmDr^_W0~Tf9n8hJER4tK>\F1!̿< B4z,&}Nyα`ʋdBn8F͜Rch[P0kơzZݪR??beD]<ɊIkDv:nK>g}Yk;sՃOVɅin[5}7˧qXQVeFO>~G&k6^pHTkNZԂ{U1jc^5epEhcM̢B`Z:Zx ≄ oU섹V{}sL_H[Ŗ@yvۃca/l$zbi9,2 )_C0R,BYY 8WP㥯aevhsӾG~JoUz/_wD;+Ow,V~kUFB)F+>~Ol}PfʭEy4]GnZN%uT D M˥YzwrH>PXX./{H/K)fVn|UMEk$R$tZ_uo Tvϻg !5LF.kHO" yÊ:G^y߬Iǫ"@N"2zY<ߊq!gps͎RRMW 1Ʌ(,U:]BSC!(U8ETH(W`νTO?p}vXLRLQeŐa1!ǚudr֌un0W}~\ᴤwGgLE5GC goQC׉8I ;*7y [ڡef5º+?I3yDE'0v`{Ҿ(6b-(2k|y̧%RB2:Ĝ6$ꙋYzab'S9ɜe:/-GLX)' +L`p6V5y6cv f3zw&j܍)kYRPaE&S4mu %=O҆NrˑWWꈗijEm|Pn B- t:jɠ7@An00> stream xڍwuX6 HDSt  $T@TB%NIA~׮ksss羟3[vH*d`-%S $ DH a8)1!2€QPS`P-$%d%e@ $(Cav- @IH/#ǖ ,--);B- maPJ9b0.2BB@c4rx0}(r~ І<= `C2@c< ((l46 aE4:.P`?? ܟٿ !. UM # ~!p4q,!UE=;mQ0 M) vUv`PMk}0^B3Ƕ!b"dA(ºH9@1q$)) Bz@s ]Q~0{( q0(7ϿHv0[ CSacYy,@X @>?YbyfD>h!-CVRBz|E" @R\ J_B`_ ?_? om$P?2xb;_U?dkRu#x_cO nJX jCJH` X("|Ъ0O. c:l8 Ean l?1m {hCPWa%Eq xb9>XA= D 1vB?=EhAR!/&B!L _4@5ٺPXvٿ (jK: i+T\sR!UDm5%&U c +?7ErʝMAVoeKkm|n5DV4ͭEv+;<x\GRݩ(8wNe H52QJJ /V1@Xqh'z_v,7" my7.)ך$njXTϢykyl=kIcg^co{e= Hkʢ|AR3.L'UZ JOcӈt9Ԙ1l6͗F"%n Ft^t/D7y-;gf3r>-t5zٝ0}$]-3g#*3 !?Er*z@>ު˚B );+soZC ɸ6ȼf.>l=!h[A`=~%^ګsYɠpfwn:3)yz5kr!Q`qfsm2)QV8ͷO< ͮЊrqIwVB$97> ?3"Ґ֗P1f'xSzI۱f 9 걁'-C[%ޑv*ěR{ʾ+|ޓċ 2La`DarȠQ#7vrҀBmjA%ƛ4ly1s8h:a뺇PxzBԍiN eNBdhӝbTYj@².G=5>0S)gӏd* }<3JV,xgҞ$ʼ).'حzbm?f*{jdLLLz"?9f\0g{)DscS$b :݌Ǝ6ٜ轊φ=^BbjVB$hq-wn4sG@G`xmi>?Po\NϬnN# 8sl UKfr*ppɾȺ_|pKXO QWY[ Sfy :>S97rKi4Dz" +zq]ğcD  gHSGV:\AAgIM &nFRK*p-N)1AjXF >鄾;Ԧv+: mT^  5z4=4g.1v3[9a>w3{<;lOT4$dh2[ψ'lzot%-Im1+Έi馑jٖz綮y:ZǛںq&膹P?.;< +AfĜA\r߭ʖ;9Q a?HZu6ia_WЃYLՊ;)2QA{Qq\FMruD)BtCЪƝ`TE ̽Vp})r)m |@eEsxv%"qNvNmݪi&`cmT\ObvKHa]4/jŐ]vbMbF-* #S"uU(KDB)EްhUFw,Tw#X-"Āo^>mR޾jc !V0]0A')DYCuoI"(پRZxă]lNQ5RaxPW ϭ7/g}F_4Z( =N xf.,"ۺ:jڈl^Q6 y,:Žү[q%EY#T#yt̃=#94\C&Srooyff4rLV jѯ,y]k?Uha糊"Drfq7m'r]ܵ!#G ;u+^FNv 3g[)6uqڎ{/n4|?s>dT4341`J@J<'=9R_eGm;XiǕJijmZ4UHmytjďD58<)esTyT"9>rmL>ƨf F:Yt9?q#X+t5j#!gIDw%Cs&*G}op|r5ǥ#ͦ~%uUj2ΤoGƶWJh>u1>^'tMS .!^>jEבGNf9myݻYj " zZo xݐ,&SݠH޼NnL&]lf3mc1Ue,lXTLT}!MtyM|7? c"Z/~t|LK.H,Rzv8f6mM%[[Ā*h_FZbp9MbD+W3%2+ӥ٧z|Ur_a} YgtqZ:Ne&x9eџ癈1^vy(bϼ2b tI'Teh+ q\ڬ]+j$5Yhe޾mj4T_`p}^F˫L^޺kMy]<)j a&ÞZ^yUNmN]1؛"6ctƽQolH>f+%xtyJx_$E^tDZ+ DEfmr/ :gKsf:qTh%oZyYe.#Q5ӯu)t<Ų|i`(0GLzrQԮJhž1CNō3|4 +]ߊqa'[2_}CA <tj w[vԄ d 2xkwd݉coj^M-MR ZyRɪpA d;WCu%t@ ,&;ܟt.@fvgS}e DnwX>Zt-t&ao8ᅗ sL3K %!yxc-ZfeSL փى]^#A@{܊3HLlQѦC^_Q+q4$F57A9N2H90.woe< 4+>V_v}J9lb>7ͱX~5<*bRqcEbrgØr7.u98L'O]َ| FaXD ǧ4FUgKɋr 7ň⁊ xxkE}kw ?dUJâI|@!1Oħ*}7CQʇ: A٫ XoE k{|(V[/GT#JP7$ڄMhn}n)vv:țI '$`4)wx^u_ѻx g*f8~ޞEAKOZ,[ʩS%pmax 'zKyK3ʁg`}˻+ B\h3C8j%dJC&ᙝ14E˟Og# w#*5_|;ㆮkd{2s^vV]bU8$]_m@m1dՊ앲=*co*ˌUl2 *Z~2/W ʐ$; ?^>'9Wl<M{G'q2/CϾRq#LD+o:OD;PU(g2Eu()f8/>Zn3Cdzߘe.k5|\Λ_ OIĭ=!3%k dsM\ա*FCw[7R E,T#kwŴ>^|A7`\>F4#mG{YeE Acˍ6sz>Q8D&P:Ht>!^%ZM*.rZo9s<*m)BUJƬ&rJM~EaC[A2m4UjȚvLcٷw\?6! wńM8mM¨^0 ==T '|D&rٻJVkew3.1h"-zSUlWfY }E{/5Pd ^Q?[F8Lo;X#Tj8牓%~_I+1y.j/p~r*]g:f5r=B8o#R9>$6K;C @~_ kDNYpNY-߼2훈΍q4wy^sc({=BHOpZ=aևћ *\g7Oz9 c5A'ڜ.c֟dFe?7y|MoǸpjE[;+m 峏> stream xڍuTTm6]ҡ" 3twJw C0Hw" t (">>}5{_{5FB*PL@ 5} + dfp/9 G"dX:#;$) @_@$JC€;Ḣ[ qB )O #`+"!p:_.x]h/Ya0']&0 0{&L 0s0E:(+C`/ C:zC/AA#81Azzp j Ђ0 Ab~` }u0@S2B=~qf T C}~OAy?:1G}a:b"d.04@(#*%) y`W_`_b,`  ;ð/2@|aTDps#Ü8c돂lE"<.V"!Qq$HIE zR  ؆x;y_o[у=" >;"Zh}Z4;$* фFp4>XpsB tرcZU0T;?Q Ia=I0 Ba "@&,`3E22W0k`5 (@o4 {Ga,X 4 ӿ Ec$:0X B67E5DS/>{2O3IIW$| u1C5{Dи޹6q%;*,Bf.Yv.4*ߧ_MFwBIvae܅NSLDh!V~'i^y @$VYM> Z2y|نmfLyb$GוY !uVFuH5cW Lxc$9В +ꟿsJMK̂} WE9h'Ґj Y*$/z,(֟ {נ^uZإY/ͧX<;8:"6|jxOU>*GX6tB>zJid#Qn\1=*Zd*9P8fz;;ҳtM?> Lدd%=yoG Rwd~ z^R"Ӏ%c.9w+VT ^">2ά(?ćd=ѡKES"oWZ%cM|\O>g3e}Td%v^a"J?It0t6}l&|P{XV _ d_L&:7xT)4FtkG= Ut EHtsNX>mTZ,bD⍍2 & }WwnfVڦܛSG'5dv%_~ɽnK g~~AvT뿕c>=PYS`ˉV)QwpoVLEvK_}QB|2[f@NH [QǻaDv]ɻθnYgJ+j]p^4QH@b\Q`͏8>džj2>X Wxc]NING`B^sf'158m(7ngNs?c[E6(&OKƮ'qL P8EjL?a#%dck^;QSq/T8;%?5Aly>1qݞS] uڅiڦpnĿbТ^=lՈ1ٮ=',40LS֢>W;\G`v)3MFT@oH ȧ`Gf -ͤ$iS,y~;Z#])ȈIƨ4X-:Po \Mf )Lpj'/ɧq6afHT7ӷ3w^ ߽fra-C}_rGWct0|o2:94%xF[ |cܙe_9&OP78ƫRӢMSw_j\q8gɮ5>4y.3>1lO;IdqQ6~hyT%^\z/|;PkEYTte%kmtC/mw;AF /{]E-^y:39vc{k)'ӨKHTqʼn 2T_{ 6@S'K2ޓx%-0*e(S٣ \ʁa7{-& :7,7מ W%gT&wtgxf`"6bõ;~!-S@-i*:l(7d]~@e&%;`cp|Y')]fdԖF"8$SlÃ̰ÉWZzTRxp?̔\!IfDW4bY1DxP2KdsWzo?v Le$`hJmIZ+,k ~L[ә 5? k56uR#O7fz&bYđ,ElW[|%wgkBX1+ryeJ o~#?ZgBڞ?5mHw3o҃ 6?tMo) 4.wf:s6]S )cn3qHPۙ=ڂ#/ϯԼq*ooh0=^9}}ʚeN?dH%v7ّZ[ʗGeF+0rњX;`J]%{ UE!C%%:mIx'f-?8DMژE  me .'̓+BR;ł4Q *Tq|d1Op؉r6Ya!a&n cOnlz猩.kW:B#!k+gj;{ϳM)>|Jxyr71DE1":7O|7t_E>>oe#-r|$~$bu\'Pܩj<( |)9hb"D-5deG_:]$:,2.( uwuȖ0#ec20W~2 cW:.rJ)OL*{>:n]p^n{Y|^c/B>PK~0JW}cR. `#JGgvQ<{GlTkXq.y߱]'s8Xf1,mCQoY[hK}: ځ*O}vo{![-14[oL褐ȹ1WВ:&gK]I!p\Sd!nXk Ur\_jݭXv!Ԗ}N[! {.Syߜ' _u y!~ 7-0]c6#&ILmh}Lvޏ܍G3ݢ4@M{yB7C¸m S!å<O>e-|cjyӔcW0PI>jvdz+3{pqvmBIx9{ -NFz&䱼KOL)]XYB/}G:]\,^KZYo׻ WSjMeLd^N2R" wRzI{|'pN(e2c?FDP\݆j d?4K/u'8Q?HR [|~1^nqm}ymKYQqAk_Ɵ!Bf>X,JsT$ A_$ss;R\ڈ*/5e^_ҪZ|Wg=Fpt_sjs1GjK]/(P8mmLtdZ+W&=cdU%o gMs'=_]TH[`2 -X-Ui: (kUqSOPf@+0p+w9]jBPn )[ɵ4_cjkH-+qꍧJ,FD!LҤ>#MK4-#r}T~fxPї;:]uJn}PEm53tLŗP+C;/٠! . {G>Wؾd^ rab[=IէvC-!wsڝ7\5_w3--u=%Zka7W94bםE6;4]!s:wsX-\j䑹%f (uPyDcJ-`w[f;HC۪7*m C"4^ ?wPuU,#L'*ZQo+~c' d4*\{? X~vXjn˻DڣJ9df0P 1f9BcfGU_1(dBr7M)d \ Ç$k3Ɂ"ΐ`9YXlg8>d2ah|S*D@셄~wǍ )yeRц9j+TeP endstream endobj 142 0 obj << /Length1 1862 /Length2 12440 /Length3 0 /Length 13613 /Filter /FlateDecode >> stream xڍPi.LpF{C< Np $ݙ{>筯)IDL. ,̼1f33#33+"%:o9"& r3M&nf`uX8yYx<6tp Y{ Rdiߏj3 ;3`b{hfb Ps0]<+5#/;Rr@g79&vZcD[R9X8o[jote2=XY/?t613ss4[,@@< =C[Û M"*l rt3AG1K؛9]'rݓõwp7ٛ[ц#=(#͛o%:fVL$PtdCփ# / 6q\]T7Bda\@K=@wy`'7;zm3)i)o6V+3q3wTWu(co#]ߝE ) P}ff/-D+tSO/d]]ޖCmET V\W+b$"oDg`agdfy͕A.fV"ӿO--qy13ml.ۙKe~[D? |[Cd8;x"Q qYޖ'L.o.}Έ4'Iџ `RF\&ћ-3Iog7z3byg t[ֱ[2L!r|IYa`L;țdV?[vo5ڹ}[&7F}X6U'{ g,ocbo= 3Wg7o7=f f|!!" 0gڬ ņ.3FIj9+r%Y$ E6Hz2HZ&,޾K#$[@k(J%-sP&FF2PDX߷N].%ڡ][#CȣsGեtX}c]|n~dbb{ F?QOt[9E 08;\'en'YަRX'_6i/.O HSS,bX~z=a8af8D慓@5 &߁52AҽU;D6r+s}[]e&C^*~6R~ulX'ACski6w:tNU;êC]t'-@ QcDۋUg(ՊSM},fVÚOVq fu1b^v۷>5Cv%U^v1bx$y]Q!mdU7ĕ _q: cOO _`>+Ӝ4)Lz!ؖ n'<ִJ=I mc;?$fˀJ2|!uݚM3[G0 \ G5%U*^ɫ髃sQBQK-2_x{Mٽ[&G`Db3sVYiqߛsTԎ__Xu-QaXL;[sd?wZŖQ1[kCpy["beX5~t|a9X0<-!ز{i]ګ^mukh!|S@aӮ-yMӎB|(Vt4q4gylC N% D[6[iݠ40@e.`c"?ꏿ>=m_7'mm6lWAw UDw7v.Hi㦠P WaSUm^pl`"%Bd!a.ӯTߐpOmd\N.![ݘ)4ajک0s_YS ;)5rBb *k*6'(+} W?aŒ3t/=\Cu Al|"D'di*9#Dk;L b|},X&wĂԘ 4) Paem&בf5Ӕ6rV t 5^xj`2پez8#wlw\2푖[ѿ^҉tjW8)bmre\S6Ӥ+*P(7W.Hg=nuo4F4)bT=iCGZ'v o$E6Y)6)u _uqK Ҟ"-{,,CfګmLz|*($!b|}b<#*I=hOCJ&pc!~et]WaX(kmLA痻>0%0%USp )h_Bcؔl];OouGPbΦ>T{[>p(Q#6{n.M8l?| ^ˉre#1 dx+VSHk712@ M˼;J( Xb]p* BDw fj|\5MIS1d]}QT-J߳P[al,0IhژEF]f &, eEE5z&%j.}]<>DiBgۄF""u\Sy_& ̟w*^p8~G.0‘WJl(V}p;:GYLEG޿`]&?>#mjy?ZO3G4WIhjK^űSu:ĺ+MX@Oٰh~RAF#/ t 27iK+uҥL#!B7;ZulUV-%KZ#\TiXb2x}^tY kM\+`TMO-9s&bkQPMjenYƗy6gG{` dMٷ?t\33jYr/CJ 8]Xm׍M dNphru3挀j.(%f?Ŷ8Ї<ǻD2KTѿr,=Xũӂ WrVAk'+b(};PWz P?oP;WàoP~FdJ"sXX "ț`qd6"&]d%SoQ?3`t ٔl_?WE o|i˵"-v w6@Ʉ(hAw3* k:'}zjm"pV3N [u[^)T&eh_)$>'IJAl~(ftTeR0Szؐ>e0`heTJ1MMv+t6^lC11 W.,K7ԺfW[}c ,_ulxI.̆š>|`:G8,^骏*YD({p.jSoם'U[vGs59ba*Z`nl`?O S/(-b!c߮%VM+ٮONy ^zqHyQ`Qr&riU F a #;b:&%a5Gu(>8PUM`+M/,lnͫ#>mϝ_4~hCz^Mso)_~y8l}7r)#>JZ`.8HiKaE,3t̺1$$#> cv"ʲ&L<_D-(מ'WX`2j#MwH\%TROkG7eXD6DZI%+ E n[td [3-؎>XwN6Nαuf5XT07*qdI@2͸D~aJ" *$p GM@wYO@ qQX H i\ AJpHu#>Hڔ ۫]&%EzN,7-iߎKut͛Ƒ0DJ9,2>Mqt1͸bUN&.w< iӊ#[rX38l)E_5*_M9 ku&R3~㎡O{^Y&~brMB3wd6Ij>H4ؾ)3nB4igŧI;GRSC=0Y2 ۞Y8L D>]Ɯ00.(X6#ĠO9wq#PVѹԜ)"mnƅwK3M"z>`}2Mkv3]ùG"|&g;i6%S]Ҕ!WK'#3kQ\0&2R.Em^TM%Q&ޜ)ӊCLs@ơ`'nMR◊!mwq&mrj N)d⡛4,iEpF>Vnd]?^wF2$q &;5:_EZwg9agïdϒ3} 4:u>xjŠ4ǫ񸘽 m%$x `.8죚 ~qi潽<4}t5t7wTZN#tO=? ڋy яQM 'a^3vp @Mj)\T1 OZOYJ+w2LPqiRgM{ "lq6 ȽF Wܘ&"q> fⱨ"f3[B&?+>0Ö%w` wW"]i/=ůZTȑ=wD)pZ*L]Sۛ 4x ]GZUz~cŢ`OQ@2e\=DT+ G,1KH琿Pb&J֜Zǂ n1)eppi#2 N^k IFu%||hzrǓHdk1&nKwZ3 cūchP̔S6L+\3p[FaϜ؏((DrTCDUf5y4[j >̦ۆM8 Me f+}2*z_MYQ}ogNq"`_xI7}jDM=4詶V).A. DvPOc[\/Wu~;=2CǖPi}9w{Or@2#9 .u7nFMy ki$G3=DSqoQ~/dy{ԇ^*:{^/IISܿvۚOp.uJ8WV6%[YA!3MY0& ˑo+bCeHL{0grh)-SD܂k~t==r@+wue>CG1UuK>(%G+xm|Q={SiIkO u?/k챙cnM'įPX66[VO_C1Ё%vjZd"zfm 6-|z8 nZ g3koI`5K$9Cc! ,z q6Jt\~Yn΁::2|ɜ>׫OSJ4}=wiɓE.5Yjxİ^`pdI"aΞ'Ub-+'g,%;ŭ%v*ɓS8vdOWMYbTKtY)pQ~nEH =u)#)Q^ 6o勿x%WL .qɲ8|ڣKe;jC_Z4u eC 6,Vc(>yElE/#l7-x v  $xO{;QE҈VO2ADŽ6 Imp7j+XM$V}$*7cgL˃=^K2P^7z%e$|Ri+Hr#@P-:lEL񌬘@,.lMH? r S t}QIYŎx !;Lƒq^b`\Ye %%|TfXlݿ1ԉdb^!2lGآ7"<zGq;k'Oo.OA+v:YKo?ʶ|m;>*_,'3ɞQQd?s"jۂಣ JƵk+n]9":$Ai|`S4^fYZnI()ǝyyI!E'|c>c/ mϟ/[h-7CizZd9RSBnK 6Q#X wٚL5auȉ~GK@Tc~gv?F8zI­floc94;Ah L2vtELҟ5twsamוZ\Z4bPgBEz;-p% ]r_W  Y? fG#K_jWW 5܈ozK^mYɤN6ocC\LJ5_q5B2z :ٙo3XDć,ZdLߛD>CiW/3pY8'&W(xws-,-} 7SH/ cmSbOK\e_ƖTm b2fh_}tkj SS5FԖj6Zms{/zdhbwwqU&@c#!z綊C5&f澅K!Ĝrc,()+X"q%;nZw&_gF&tNl^.lmg\ʂ`0FH4I޳3e% pR]\T *`av2(B7"zt e|,+JIi[s#B˖18~ݼ79CՉ/ǰ/N*QS%}xy"T&ynV(8_ڳz6)ɳ ~@=a:PvDJ̴ue)Su [ DPPdyLVYl&֘zcկzރ۽U6 흿0e$,`"0q1{38.<+0*nds5EO6YWYERUoDu=4eq!2z+nL3 Yl1u\51)7قN*߸N^45hp[ ءJfdw<<[ۉ.$4FNB5`BJ뢴Z,T c*㍨bG~h3L/znITC?܀~錍e ,HjܲEmB0USAv Eu{~sNs|q&)ʑ09D˦$_M[F[^, yqxJ6qՐ󩺅0cP{YU XnW6B5H\^ d^LA&vUէ Z=7$Bh^<`Y\c"e) eP_&0-Ct=v$RH@u}lH=$S9FǬmB O2$*#,%ǛӨ(P:slj\>xCFE]FR.0bwBF> rG!DC8B0#@bmUÖj_=aLJVa^S!S^?7Q OmdD>9 o "vLNYb ə:K5[vUg=qM3P| 1gl^ deQׄgӝt6u~ۑJ:b&.Ъ 빞ڭ ؖu-YfP=*B;CcS3@3%òe%R~3B:E| CL;}_s"N5( Iuoem!縺:T7xwcx'nBq|>ns~ONQN,3\Ք˽ZetP}XDAo+S/u@'r,eR:]`aLSG>) ˉ j[>4>L})"u$< "I_NrNXUA ~h:Z}-Au۪N! 86^~%DDv]ꗻˈ\& ZVt 'x< +U5S&ל/HIA:Gq0#a/PS qk~u{.'do=NaP.W3^#` >Լb,~7T*z߱%ٽ3;l zW!|A2.oftUw#K y*BFeA\;y64gDQIqZ`x~wHoP$> A^ለi)&@dKiU\>!p]Zۙ̆;Si봺y)iNR8fBFZ89󧮸>Gaʒ`!TkrWv9i#5D_kkqLi' [*4`[QZh,Cϙqɇ9\ @xe肀\͚|Ķk~Ks$w:bf ] Se҅xQTpE.S5Lwa.{6D4uƜD*+}dRcy'0k3BljDW:|$UMS"c=@aﻅo95^btJ¼zyJjmq)٦`@XxƳk)ަJS6Dx5gt8}2jQ@ T>s%[!D^?W:KDGi|760.wqpML K@IΎ"Ҟg$!H)7AV:2O%f9 re?]S牻Yy0J=&•8iǖ3WU7ҫlvm>M )z& , 8]#kxRxb6QpqYzZW,hsJᵡ=J$.K>aEo:P.0L.5 yPlHݡb9×?FSnco $.d7 -jfgWŧ+VglԻ$ݑl٠3V\{03|7]5z{1UL2P@{FV/=JɌ ? &w-)K B@-z~(l]o]~S+L9WN`5 VBT Dtb^(LhkGh;?$PāAjiq{RBs\D `U$Xc ))]}PVܒ8Mr?lUaϠ+]TE"@L\X]Q}c*3sӬDT u򓢆uq&(Y}>$Tc% S!?.6C{ݫ髃!ՀP}@d&d;@o_re9Lx hC<$idSd]ïr &N K\y/iGIV ?أDczVGHI`A&2,j?0',On;s)B)gLJOSU]1 d^Dѳ*=}(uSEJ*ۅuwK`[\tν+x@t45ZdxӐe rrad dtoAV]ơe/L062bap۟L`} oVr͍;}~Oڊo:ٞ%DyS=CFh`@]5_cq `/~ ΢# #,ñaݟl^C"#5}& H!)^8)kIyI9Yo%o/ 2%).-4|Sr:ֱF`_`p8w~$_P%KNmEt}- 'fnGh?fPQ)5%a`M~=>N@ 2@50P'ix@\/{5s9OȵN&kYv I[=VuQ8P̒czGڠ,w$-zp>ZƲB&wBAC/]DhI}ĜF.1[k R0 <3y0Feܗ/#i}f~U zț=ڇpA#n2{yg:?sϗZ+t̟<4Vo1'`Z1cjkZ.,+䏓a)+ 7ʧGiNqh!R ³S"^e1=?3 ]yΈ[ x&maN fi14ԑsJ]qBLT?gv`sգ6u0巩ĵ&KvI 2A .ba C`/ ^eK\&tCA endstream endobj 144 0 obj << /Length1 1436 /Length2 6588 /Length3 0 /Length 7566 /Filter /FlateDecode >> stream xڍtT6)42R3tItR 0 1 )%)- " JHHI7sk}ߚw׾ :\V sDjjJBuaH_j|> D HPvs`AQ(DvD 0+7@eN^.0[$G%;,""; uYB5ꈪh q ,aP?R"N<<GWn;'hC].P+/u#2n| @GFz@\f "VP8@GIqV n`n+ ;bipt`p5 PPFz"9/G+q (ߝC Z _\-]`NHWnW/<ҠnYn%pt‘@-Qgp/͉Gsv*R[gE@B|¼3ii+KBpX@@}aP+ @A}}O  X, (5  E/+c TO) <>\` B? k5!z;`@]8_+g uPۿo Y>Wݐo3oc8r@Q Z 5j9jjP+[zHmPsa 0O& iiHUj"\a^T_6Yڣ^W D/Z!DXF^A⅏"JQkkw7DP}_cR ?DAoE-\\P]  ğAXWIxpmcr"{'Vt2TJ{ v2癟gO|zq+|=CA8CԈm$PХM.~M9kM\ YrPz[GUQ*ޚ6b@wC5k1՗Hd7*mqW{:#6br8K9WYoH|,(?d/H5 r|+n*]S`- SHƷw'KʧCTwZ+2+h+zJ zku.`7xzQ eC#Mt{ĂK, V J^DtO}zkE)Y*LcPaˠP5<;fɚxDD43:YVsZ]/\}|a>cѥXa/̛c]ᾉ1RZ\],:5W%d-`Wi0r LL]r)2*PؑAg_xb1QыL,yoNC!zMOR(- 9VL Y]9ƅ><@gdhWėxfl {tTQ%۲"vIWSuoMabp4kp^;>yjx+a|%$ =1"n~tIS]SY}Ks瘵F DmP%&'`f–&nފG\OmMb.CպY<랾3Lȩx {gPٍshE~o"gr % =6=ڣ mʺ ̾o@OʫuwёʈegIAҺƏ)6" 1f_#ZJ.b|LYrg rӏhf\KXNƽ .&>W6X](ly/GvaĒU2eoS7`R{DQ !<4TsSw)+&GS~)°J%l{TM=5aωL<Lu=%+ -9q."^^9o>$vlOԞS3Ak]5E' >8~Ƥ aDq#+,x12}|uJ.BֺrCXNP] &.VknAMdRI-QY$賚|6`(LMOhOzo\DA`H#ѱ9OypeډpC*{4y{c*0*E S~)cL)púJm̏ ]釛(}ծAt;k!7ZOS#I#SAѷc`|!@ KbUBlYâ1LJUEe3V{8>י.E]P1z>GS@*ЮR|sI͙2+F{(x43qT=Rsɽ'KV lS.!/k.kM_7BCnVI֧w8J]7EK61@o(1[hŸ/J6)b{\!F}1mqqɠ=48YuUBz e]WGzyrFl)p"QepZ۟0V|WIXJM;%{.0ܯ)WE&@NcJVlT)7[ A*ڕWI)T}|EoApbђ {YmC_!v2d?X(jN;Z*q(@ ^qLoY\fM*E5kOQ?~1U&8pl穆9i73W~`O5l{^J7%x્Z:ZۭV?3Eb-ҷ:$h5^HO jjy5h "m}X <=\ NsO0K^gIlEش{Q8Ňpݠ{XI^V<513T$7iLś5 ܬ2ɏ\WQ5oOkQDMzFTS|!Zc Wҥ!V}>!ʬvHY׳Dt*xv7y|rtPZIl6j9<Gt< x _L)up"m)m;is 0R}9aa@}ωbu4'4svb#Ӭ{zKGp_*U>&Z^%|cư:, LSce> vR'+K7qyAϒ,:3ASؗYo>A6;#*~>'+V!|N3C|]Bgkqg,+a2GxT:ofO<pKjVkx#wSn,[Rů3XF?zm޲KW2([W8]XYA)u{܍B",Cs|g*x ]FM)10sC .[1r5Rke<w=ʰP;!պZXqz>g]e*)^g8SAu7@M'lXv)B͵̲ꐄONi pw}ԖhsJo*g>hzjo,c9ߙRcG L(v~;Dg(@ 1攐x'Ji!C꤫u照 op Jdg6,+񺫓9(|Nӣgm\z9${F:GsEWmxkeNl9^#hDX6اyWIcP1f^!&hzT\+m^#N]a `27-5,i3Ò݌~gclo^DYk lYPnٍswMKgƭj1DDȘ+ wI݋=#(NڤCQ2q-FȾDJ/cH%sXr/~wR1 UT2vig/KjTh1>B棼~l:G̽?FCuwe`c}ߧ+ttMaqZ(1Jf>J-Z zyvʲsaK)dWLO#HN٬D&ĭ>nS )0w#{D٠ tv 8vNdaS80j!9k:墥/߻V|5t%;IGv+h[gښh/+ӹН@ Jkq z 0Vo4} ^cs:G𔼤yOtڣOA5d ePKڲ -e cZBcQ¶;v|_ܘU͗4 K$NtCT瑌4,J ;qRqeo#=wns~mhi;_+ߴTߚ'&Y  O cdSgѬRJr97"gAbyB.x"*[~Eoo1R^p_Є ~ג>&.NMukptו.s4} ~kx~zfCZ":^u҂!]<)0Aj2o3KR'ۥ#qˌ*e([|Fz[{3}2!ӣN\fõm7dLiO*F!K*y`o7rr-zSZ6E$agPP-&FqFD3eϷ+LYm<LsQH5ԩZWvgKsVʋ ѣM#^Ԋcg^k6sʓH }HCI k@MlԛmA~ƉMo&UlFD7[L[Q]O!e.>h<'4q DEkxܹ͐l èGa UZ )l 7O'2:ߨ0O ޜÒSܨ]8+ =e$=I~tx8yq<~<>N[c;Xܪt|ϙQsgQ))Bq/(F9__z;ѸO1v`1Y ޟ4}w7b4FW<7el,,jD𽧯B;tԶ!/{i{SmdU?d,p܁)}'G"^楚]dB.\Akѳzх ZdaBZcYv:)VLEg&quݱآA)@Rv˙p"[$ʋ9TВn,L]?~vJ- 0 mXi*uvk:~˞e{$DwB}C\׉ɯ]|JضzݥL'd74O ~CbR릢Ҝx'.#ڧE|ws G3e?3K P E}UzC򳒳(c*My:q 'Q=YOpvְ;XM} ILoN/Q'hr˪z p6X̄u 6"͓zr~o95 C6^avvqi#w}Hsef~V>]p=!?CYqH'TX`pκ8Ut%'jLs{K`wY(u8Ȉs4yz`cTafSE}[;tgS~_ڌ҄Q DZ2Ņ 6*8V-Bz 9T\Ne~-m sJOR 3Wʬy+Oy"=5{OaRGxkNkůef /ⳂOR]}_d+!ΟE*bdݐaw:㻩x5\-Zd.9фYH4G^:ߴy:+%I ^U1t1%ztk~< Dn4WR vl׭ BL R;of%=M!˰E%,F]e[p^jgFm2ɽرt/i*^c;OϟйY!;ބlͦ^,|7$Ƹ>R endstream endobj 146 0 obj << /Length1 2643 /Length2 22259 /Length3 0 /Length 23760 /Filter /FlateDecode >> stream xڌPi .%kNpw'k@ g&95U3ww_-3dĊ*tB&F@q[':&zFn2#L Lhak $5tL,&vn&nFF3## m.&9z L Jc*_B@ cC9 bkltr J^s'';nWWWzCkGz[3~*Z9@tp~ZfF@P5p[bkjV@G g"% Pm,-u_,l:lhllkmghnac0eܜh6& mA ] - @enRCɑE_n@U189"Oh *;ߝhcj011EَA(% H[ft122rp9/vL ޞvvS )h898=T!01L,F@3 Ab| 76#h>>_ePSR:aa[7'+#k8@uoG/?Q7P埱ge o e 01?/_G//owKMGmhmah@k!g Zk{&W+dZ!3h(n4Qp26{{+ ů@jс#Bq/O )fclkkփ &@F@oc:: (;Ao`8 A_` 3A7b0HF]7b0F\~#P.('(]7EW,̬ AF o / o*G 5c[W dR2p0v6b6P c[+МOt/1 Y@tLl %dO.Π=}TPd`d-~_ƿ!/G_z[?3As 9 쏀 @Pg>Ae pg6Q  2v gvW=gemlT;+g?$[ 9,_B['ⲰV74 ?~0;_G@T=G+CG?\H bNp%ǤNAxNw\8ݮ݀ <,k?zJ?7KBEHUp+8fmWFp65^ד~~dP;:Ug{/u-]d9Μ(ynuec J2Oe3tj:sdF$0Ntpns7ٓDұ4ާ,=+TH>@ޠM{ %I,z .e#&ѽ?bNPiq[dI|x;_Sڄ@UݦTHpi*~cjnk0e~~}dt.8~it[X`@+v*w:A2t8DP K"agwG|F}crGyW6\wn͡-Z˿u%_^dS榋|݈P61\nUbӋ-}"-d_ p|ʧ?WTkaW"; ?j 59ڹ-/:Ut VS/Q!UB(nw uS4*xwѓ+m(E܀1oײha?A7M~̵ `Ho֣2V!w4~zc oqf|.UN1k3-"*xq/z2"4yCU~]M ptx J=l #&ĩ$"cCu!>r#S(Qv7O[ tST T{bDP۴0=j,iYf04TApGhp`õIߕ1Yr?qנQmL HVC/׊HOI;yrİ W>_P:"hJ"Ζ]%ԫVwp"q7 .a)ccr#f\C×/#xI'؈c9ډלnL|N`+<-2L,?D-Ұ%*kgoq ^| t6/tZ[XX]Z\U?a 3n_I?ek1VExo&, GHX 2UgddpPHx|@ $p_D cV`UObR$%yXLݍ{2 ‡Ó[$g&3K0Ku`pK cNk.BE.~(ϗI6:ysiTI.P5 kGA;iHszĊ¤`=L[=&uaa>gČq=ZgSwC~d]#X̺e}*g)G08 L(pKI&pw+qO6l*Wt'_$:^@eAY@xdͧ÷%H"(#~k3%S?ʊʬ'sh2rl>i!Η1@9׎zasX! QYIT Gllea;,<(2ݼ@yp9 .R)Yx%6V! W2' QBB.3Vy Z`+Sy2<4 xgx,^Ρ~!lpw+u'&!ʲL$;Izm|%f#cSi<X:I*1^9 N֎:XQ<l$c?JB!$&s&5Ngkgek~KZ_i2۶7aaʇ̅|ϙ6o/H !Vγ]hR <&u{`Qn'2H".hd1 <󭎑~2, B[Ŏi@_Ҳi;EE\!ȧ+ Î7C MD0HzA̬VsA \F$ E} EeJ5# :Joũ,TGnM  UT[e8hSN ӟn0δ5K B L^D\vϣJFP6P@Zr"{M.'|1D;֢[5mTN;`o)-G$P{u* ASFasRcF73|]U\ϧPt ͵փ<L)B玉W66!SJFo.m1=cED=q5|?4^0 n9*MVO̥uA7Za ys=ҏ'5ҘN ym {Td`pkv~ҧ nỎ7_`kL wϱ/%订=("Vx"()Ӆ)LY؃<_JdC6.ف=kDձ GV]JvyT W <*xHz-7{NP50(%Fy&ZV!J>R\f⍱kd%+`OF]췟) `Q~CPaGd)N[hE}8`m'& []0 L2[5S 0M5I+ܜ~l6 ّqXu)t>1)ݷ~*0Lw׳h(cJeZt>*/l9E-)B.wP8Z`Al~qӔ}M#!yov֒{Ws'?&WX'U=\Ir2H7hjە2T$O}n;؀qbgU)c6"vwo>KeLv `4)yԛe3)k.DiZ!4ڳmCSVC"dE+xCc8QHĕotK.J{e2U sTO*mg_|̈́O3L5 >qk*~j8eijeBPeJ!eUC_{3;zꙐ#Vr7agxd~ <}}*i:ؾ݇y]w>})m%xSՁUNBP*e>P@\~ hN;t{G`VPh3n0B)]=ܭ‘d~;͍,|U'[֘qt,,v%bM'?6+ӟ

,t$DS~w$OR*nl+D@:$]߃8-!#VKCs}}-yj ONH,w@#%A~K*^ s=PżWm֙Wrk&tC0Π)3DJ~\7tlX՜&GC;xH|HDTnoQdI9WL%a#QD,D*ceFhgdNұ xn_Z`v.{t2 l;hN󼡕'/( өWꑺ1E-}&$~s(ٳX[Afj".dJT A=MGdLAY kJGb24w}FqEk GG?ݭ'2R-+B3a(䓄 v)DOkO#?!F狸gtH<.XV<8gB-(nRńr<f-B`rd!) tpvVWca22tx*UBek8uS3cbKS=8ՄgZ{#t#briŸwIt3*@m~z2iRd:-CWovk>E3l v%U;Bye;ۂg 2zJ|A#!=*CĪ5&26fdf\ IFD>b?*8(\6:oa'37(w{;L6א`%Ve]CJfQ~glZFXb)˩BlGƞ"TCfcUhEM[I(h'66+-E.R_ 8[%l|1/͉{]: .Bww?kjFy?YTo҂nqk5V5n:&[`sslIOtgO}~FMdN+)϶W?~B, synG2w}^[СNba^)$i>r{a}hEK^e_R1a0^m9>gYbAv!F+_jC%[%/=iy RdS#p"crkxS*IN2᤬#-p]U[SvzռJgG j/rcKHwc.{A/)`޵|&}ui4553@"zHh;+ / |2k4v K.}mQZ&{{^Yi1؍%LS>u]Sm a~PʔujIw5wwcOufaozh˕aT6o\`WHSv{wނTQk%aE7 @^8v6ynȚ)=oÈ7"d{,ˀ}L8sڬP ])q'>'N-Yl[ER.3:ԣΣ!fcM7 L9z%{fli~^~jEz8\Ԝ"(BμU8ڑn fFDs3e bJ]q{;OVi#<,opՎя wx*(,a͔wTڥd_ .3p{oD.cſWiࢰW಍~QahJo뚋$@UMF6+SaYpS MY-ijŖa/+}os&} ` }mm^C(T˳"#2v cd\R~ݣ3!j[g=zu:?&Iᜦ`̾B[&07\3 0qڇ/vD%<4.9aƒZF[I`m F7`LVXQA]/|>޲?noW.a%yI#֯БB]=wG >1޵8>_.uGHmq6D>ÖخrHS'"GFL_F TpiM»ELZJ=L9R4vB2`Vѽkh6|-ݖ g3d#BdMWۇq|TzZ)dDx deX ,ٿ##tƛ5Fb,>Y|+WX KbΌ5>a;z O. #E`Xx^82rF$f~ !S Y錬Bm/~ /O}'SʼaGe;'CYOϊ UwLpY =L=KԤ}آYgkPY 31̟Sh*.H>JafQ:843J$3;84kD7tt΀[ZclWE_VIQy$g@~s\x,gdϺz0>賢6Yy~?{g.VsC6xahqS>-̢m*1mD#` 9:ްtt:=,r=Vs|M{XQ[/b (0G}F%ua >p(Z+{%eY}m8`lKLme8>Oh>ސuJѴSTI!K%oz ,5#۾gP;?95J)=:1L@꜍(wϦ/\a݊q2D̴oju{UۂKLaKЖ:Bn/W ԕ:3 :'oy^-Wv`.{bFÊN\ȸ4?7+"ј`†\}DB2-GA3 eb 6Sa ˥Wѡ1%/ QS1Sjb7~,9SɨfoM;^Ss;\2p$i!6Ts~~'DͦZh'ۺaˆ,FA? ['ɼ(5M Ȃ&)utŮ% V^dedK1>KW ,TY]'LG'RAGF6'̽Mu%40@[27e 'fq30͈[ӗVhb#~Qwŝӗ_7|+#Fw>XHuTuاH G! Q=cgN|snui+X6*K;Q8OάK;V50S+`L,c_&A0TMg(msۥH5STR)Uv;skǩm;W@|8DIvչmV*37&P>݊#FE~+9yB]藄"0&9*bfa޴N(1_Ty^WiYЭim%[vRE7t0l-pØ85k4%blt| *HM>]ۊ6"J>T&fki [{I5~7xAL\?JBNRy=Ե*=Dm}i2CV*MtQI~/䌅cbX?WJqXdž~q3@R`gbG3JN|@\d{:XdLS%pE;˺r)î&%burϒͼ\T$j3rcJ"e( l^ʑ:橭vV֓~P㑰[!U+'dRK {<;@`꓆FIPkX5!l6鍘\P #b!g*?E?8_z!OA}=i{gշCS TlX&N^ Ac@E8v<'41!+-p0rBbJ}n" hu ڳ:~^ t׶,ѤRw{> 9m̗:^-z3V?aA}u-uc48bCvY0D#n8(WH5ɬqyx??<7X$u H(fpx Q9-VuypFtK`a-K߅{_l|!\x'ӵcðyc`qTB~Mc'qԗkjE wK-! ^܄ OOjzV c,M+ҩ53w="evui෥oHFB]${EwYQo8-+ a J-6Xm>#y$i}>DZŝ#Ir ˵+۔@aG_ʁM1s/y"Pв&n|n39l^UN1Vc?&bd Z?V<[cJIBq&Q(k鳗Kfݪ9}X[4}<}4Lb񞆅I9P 3{ lov@yEnԎƙOʩn\F&aᶅYwT.׏o]b~_͆ЈL YcųR 6џ2%fFIӖ}E$wcKΚre,0;1$(u#+%{VM/*!˭0a)%~xGLb`B3=6<8yqnHCQ$V/h// 3N_¸uElJYq2o:&"$ a5W*5nLE805mQľ]307OzrLm?#ow,Mvs',j)=IƔ/L|A+z2aF&n|[Fne^d%OOc[&aXU 4ahJ>bv* */F#V.PI%4).YQnڟzRJ~"`b3/i;hSL=ߪ1 `9p@}E ę;6yH@fM?暸4QeWW጗oʎᇁyͅEq^sAecxS )⧼Ed⭔Z^yM*R$_Amar!ken+Ah[hk!mI7'Rg(銹X:x'0an! KE- &6=yJ  RN F=LZI,N^.?@Y%*H dțR-;{gC;.-F@S m5x.XrV)5sr=xÀ%,v%8~͆Q9 \[ez$h1"OSαFnTk1;? | I"G>.w˺; @~vt#wN7%0&k8az‡Sh6z Ec9/F#yDF>Gei0Jɚ~v2E"3AŪ!QDE z[QTJ"v AͨqM-ňQP7ˏ0G6ZwXv񾻜 NV"h:Sg*5wr DzK2CwZC7ьM$o,^>Ǝj(;^\ή*,|іFvUq }6 |ӏucl$;|$p bZi"a"TJ{s0C` 9,#E~Q|/pZ;Z=B?/^kSeְzWT+d`:bk00mג-3UT"Zrx'D(A&tTYቖ%Q>hXc9eϘ-6zT)}( PTCΪ':l!Hә;w/>F؟#+oYDsTi.YtMI-$]:mֽ}1Ȁ#qNf5}y (s{xZT4y /& '&, H̭ 'ª m3>z IMρ׉ĸ{uX;@ %>ZnHl~,@9UEUc:k7TnD<%V-0YKSbrM P5`Z|d_K+:GMy^LkZH'i9@ݣ~zxΟ@B{6^1b3jvhMǧaDWˇ >oۻ[C:a+`T+XNʙмפ}|87ir[ZL x J0 zz/8+'+@_Z:͚7ѽ{&Bcy_Syl5r8n)ǭ%.u^&3h=(&a_$D, `ρ㚤c-CD 6Q +ti< UNzR %~L]+pFJXQ%>E=q/~L !4*ŔJ=pB;-ʾ)zIˠYeO,7_5eܸOϭϨ|H"FDX1 ;+(w9l抹^Ssv~ڛ3 YY2NySv̔Űnyͩ/d,*CyTI{ۥNӱ'. 0syP֪SL~Ѣj qq9Ҹ&jd%`HbG6.Z)Ï{V +1֙bcjx!B,cBDalOÄ&z0W\e7[8D[ruƱ2՜ R+jڣJԙjjq :m1s2(L",-2ોOs=q;㷆%4>I~j7ڊ8q~ݐ}k CN'(sPhS/v$7w(;#MI~ȉ%~uUvޔ('*ZN +ʋ$,(49':Bi#x4O}$*B|W[At(lӎ)s2}L2nGnN~N٠΄8zq'xwMHqXEMKoIi5T͖YD)ta @ĆaBPh(+<otDx{i@MQSf x RXJ( b-󎠊ZvLv# }Y澘88sK"{ܠ0&dt'o64+d8:_UppO>SZL>*U+ہPk4PQu+[8dZ=j b_>m|ФM=3cgmF+glE4=N(`:i5e_b E3eJSzC6:l^"f4$sߔY֯y sԤFj2:qGٶ̏Xp2@"`ecք;&yOu'b z,O &WPbJa+dc"KuI_I:bZA̩ʣ*>p`o#aCU٥O"qXY1@dSF;'G{Չ#g "I=<$0D@/1<[/KfxR3&oś@J6J|xC_uB>FPAI)ĊFq(=`[|{P2y< ^vv[6M~bdaTGhbu Vf<'jK̐h0c{"{'"4`zY o4,29~~Mœ{ sj~Y5A+aHbȊ|Yz 5cEFܝ3"P/>ml@ ?o(YznkOo7X|7MEݶ訣^Pڸ'[' fQ@18Vvj ;ҫ?f=K]%?Y4]/CrjB\p~Mj5#QXPS.s^i̿"sF]Z$7b΢?pqAբgl{(skpl``PDG-qrcҦANp;ґf8R6iOTLb D!u.Ԥt;[?uڅP 3N;4o]a vG)FzԷ)-8iw0= DG3{Sl<\M!`I1]8T8"OǢ^D8i;dT _"H I홫sݲC/M7v vFN `|BBNW?8 `P\QrGRIжdTj^ԏ%@ÙO[r3$ Jrz"`.%,\M5UaG{"F&0/2ԅ,5 [bНd/`-(;>6ؙZ<據4cu\ycz.OdR9X/U?&P$c"?BNcBpG #,srzo2C#ہ$I@\?V 4c.)yPEi5:kB"N%9wr2`IQy9-s5wMԅjBU~ ʦi f$ ׇNJY!,̴dZ|5Q/u~wC_S= `DDO0?Z,晿E fRx+ZfpCW .{eJS-I c$k٩!(w ;[QNe(UseITh 94M SJ8 aU`f£wå\H4! |Tl15u$ѝ9}=.Wbi5uxoX(yaũ >:Tuu 9kQnHƶp{YaO sO_ˆꉥw]jˋO% 5q#eB0&{NDP4t`2RwX>%JQ2*r4ެU/ҭj@3Δh3Qjn"5syUqSyi9+Ig8 k& 8%- e>>tU\}A[xs*,;IVfF>u>5*)!_m?EK@:4NUq3q[9ӠIfS%@C͔>3AKpɡ Ç;k0]O&Isq\$9OeYD)'F vsiZ, Mb5Dj8;B5gJI5̬*t}TR=aru6XG%l"<.Uro5B(AQmnAAԡ䣧HVGԓqׯ 6*XHOHQh'j< UQ$c i'/ x,ļE#;O"wS# HdwjƩlZ)WJ!c(_y6cd&y 4-H *1Z~vwJ!m0"Ej.*JzC(TQf^Hl Ah_9|<<\O,M5U.,2Iz~pFsP }=!&Rw@.uwCOND45!T;{: ٶyCqϓ?upQdbU}< \4 `/;SrQ{`l?KZ]!ݢZy\'ϔŞXKtVꇲ:}d:Gep5NEwњd$pM˿ۮ= K j?VH4ZqӁaM>I/KWJa\Ɲځȥ!IcƢ ߊa.s?orΪZ_0 Y\ )y]oעsh%̽cdm\paoc h<^qO.-Gbn:!ŷ]6="8yFDj^Kfȋ6λ|e(:Ӧ v|-瞳1L !`/%o_}o0KI-;>/.~ͷ5'NN/=sc•0+.5\9 x.#eyXj /*93ʕSit6Nd\fPvVoUb7YZ{κ(%_Jyy2|Ƨœyt5/F^p*VjN҆O%2Ba8Awj,D Xr\uS@EGrJAF9JHxt-!2UbjPPMU0_s߻?]ȏrk*Y$yqW,Ȓ*WK*xVsWY1mirb}ӱf|ӟQE)^;k]qCTQ5E8|HV P!0=CN=ms- YX I6k@P/S'f7/])ޮ{~Byqǯ~c"~/OD}7={^ zZaJJ iEi *|Bߺ̜ke,AW0_!m#:ea7b['2`$vˠe]xl"tQv_^sK+ddž7lZwZIP?UdJ.%<Ɖ<-ersÁcCA]L1s(!Vb& ɵYc mOlɎ8eV,G?#ơB1|-};%[!c2]l'GF >J$zC}*-zkM: 8O,Xf2YD8--(kӟ3'7G M?r,ѨaK3Q Ϩ{;Z=P"W7j_&D"l"UUUh[%p8ji0ӶS!|%ٳBr1SbsfUAI*>MsMxjUfI sgʈo 9{̹I;@SlS'0Op;R**&X3D]JrkیA9mEWϺ'd9 pA :q$/{xf*n)H[C;/ʠ 6Ϧ7PO,Ϳ (DAXI j7dQ^@8޳_ڭ 1 fsE߯Ý($}3 ^谤p*(9A}"ю1BcI&HY$*2o~ki0B3-UuUP endstream endobj 148 0 obj << /Length1 1395 /Length2 6090 /Length3 0 /Length 7032 /Filter /FlateDecode >> stream xڍVT컧$F42 tl1r4J  Ҋ( RJJ()W{νgl}~{TT D1PDK~~3FQrͮCx:w3@>@"-`_hPpu(7_ AbU:`@p A( G+ @S4 ++)Abhu_\! L 4sEx6E;c8@(o| kMu s^G`,a_<῍_j|8O'p8o/qo 0,@ɎWÝ wxA_Oxn9Q.HJK\7Mh NT\(*.B @!YZ#(dA9@_0|"wC4p?Ka/C7?meV(b,~# @%6;!|iB񛡂rޚ s@( ~`?&8~]RC;9q)i KR@Np߼Ph,> tFc)) _2-/o"Kp?@nu{ua (E(n sLC&";bsAiIC`_y ,1Ÿ$>dd 09vJu7JЙWpwV]|R/(+g"DR+P-W9C+ӧ2j]^ ʮ={sڗ[q[k-jۘZuH3yC(q_ *=&ŨH]xJ"kWQsDdg6®AbF8ݵlZ' "k")+Jaޟ𤠔-bRsRs3rS$wĥ9l&X?K=0eLPJ! }I]vA$o%|؎ >l2EkO>bw8̈r)dR'=m{|C[VMF |[H>IP{tϩ|ԝ&%2T٬M|$rJ;F s!-dXFu9NׂGCg]\h[-j2v}ÿ{CyL6kiW骹rtIh Y&0{6# ҷvifB5^L0wXYu\'cӠzH%%MuRFP'~fz'>t|Dn797]b4I:֙#@_㌠ԛ4B(zYs:I!l~W ]˹iYBuSqEiuԽ~v_S&&}SF$ED #ߌ6+Lb62ի^O*8ɫEJ56|2 $o*3#Ƅ8aC㳚nš yu=:'gj<ޞ<NXAtڭrHr8ž^_x9ӵ-yQ$7IT. >6 dWʞ?O}V mA=xAʧ<E7hWtuƸ5Ӭ4tHex|"\dn:EZ9~NܦΩSX>`">6E9#aIr<ŏ;4Zm {d_= Fx@NCx޵)msFi4ANvbkmۘؗi_*h%ku+alJi :Y?uf cT`39y}YW_?|W: U͸$,T ʮ?,pjUDOXt=0]P"a8":#Ȱ殪MyHF^0\?ד)~Hkr5$U>YH'i:2 ::7J_Q*y 윪G"M 1, $[܊cV5wfeF X#z=Ghls}Ix ĕC3^ԙ?KŽgj6oSچ'8wV9R1&sjk#dY) ? 8[t1s 7dc*DM]%?]rkJ:U+V& =mwЉNwEyZ)&/8m.®d4.q(zn^WY)5Jt'\ZxV{y#[E\MHiM;I }žO$䧗F~?a&}d^2^0'<휘hlN~-Ez xOHb,9}'[/Cvs^\ /jBl0V6c v,mFN:`r9 ^gC-86XNI3=k*bWEa2+=25k{L~\hbQ7zW(6>z~L )@y.qO"? cż[}6hހ`y.&2%ћ7jNJ[iӥ&iNu폥dܪQ֜!Fɯi4-Y KTi>0NcqDUϊۘȃ͸W&J_?k{]Vty2zfv !>mF9z}7w%ikU_DhEHI~a7<ӞJ@] *g$c'Ad籨k|YՔ+L6mî- {&ϗ>3-$j AfQafQ ݋Z xtHpgg~AIRvM;;-Syq߶ G눱SVmw3 uj#}Z5gm>5kWpdյUUj{@ pL׊Oc62hT ۵۷Biwt]iiOF+ uXhl$lai7%1؅Gy) ) WI|\@2EIp>d^j\Ml+8\^, 5_Ϳ5tPO! ιh37<#D}is§@O ϖEBfi FM2qpw'{ep\#pZ`G@T"0+'c3 Mɔ(g藥XvTr9 ا$Y-% f~Ga?@CT a(p).qGq%4#[ 3kE6aWكTӄ|WPr=EJp ~ZV XKAֆM=?ׯQhUJi49~RrH Ƙq٧ d8QR%=3=rU@Yֳy#IT:|Յ]تS0nv3!5nMN:[- eǠ{JsTi+.cRH"۬lFE}gZS}ĻSm)7QzsBL 0Y۬ngwX`mnjӍt`XnYWyRW+nXpIj9K 1fr.sT#ȪSJ$ (ie ǖDG69K*YYm_lF-ENCZPuj&ltW[@&uVXZ/c#"*¸|#8r {ւmߒE7;,oTw;㨊rQW^YPT?@4'AfTW>bΎxcUv\pmehTH<>ْdk#fVC =gqI[?֦ѝvcw%rm.RAF"Y;Yo $:A󰯒Sz/C)$Uٕ j7n{7zg+ؑO1EO2I2s?/Pzʷv-i)0M C)L7nZ]e2e =՗W_}C,n%(& 6Լ7-;LHCTA>gdg&%ed?xnB`w%tZ3u?%0LS=ɷ٘~7FsGQ v{ wmUh:n00& Ln_љyAPuٗBtjp:V$,e3V,mWH]6>{goϹ$5BVFw"-HT]W;-!w?x.}Yl&{}=Z K.9҉\B {>gkrQv6̛wrp鮉d`-}\\d4JJśv3ѱ?&pxK3ܚ$x o>[j^ F)pw ;~Y !;\w_%. HHF3zT)LE&Qvq-.a@Gͭdm$%:2O;__*m'?oCamޢ#gy߄1LŹ e.SP \<\s-34Zu:>cra6S +/l5zX8@ _å|6Y$"AL*yoRZv} n-Q`~mԓҗT*!4_iA.^ʜ ڰ[o j}I\TĮʾ UdBǑv/{"G 'ϧ}ynxFeb| ^k)Whu([/&\ޛ"hvp6&UpEܹ!~|l֔m3BwX0RTѷ'vY1x䷋F@LRb޺P,ұh CDF&||Cg;_ #a endstream endobj 150 0 obj << /Length1 2104 /Length2 12526 /Length3 0 /Length 13799 /Filter /FlateDecode >> stream xڍeT\-R@!hN!Cw.U}ZJ2%UaS{c ** `ffcdffETh)5NΖvu21#T b`app23Xykh 3r43dΈN pPXxxr,MF -8 @,@ ^&&777F#[gF{'sz%t:MilcDYX:Gjor3rK3Jv1=XY @v9:yXڙ,mE 9F;`dgojdicd 6x#2o&N gFgK,~7ZThrF]y635MŁI(-XGf8 tM,~'Qpd-rw-̀D/g#W " 0[!Sde! 93cA3JhC;dpp7?-/JFvfL\꿷c P=ff.?l]_5XZxmlxIbj@SK[+ 2/9xx9#tt*YL,8P``o5q_* x7Md99y 2G^YS_S`b]`3{'G`- q$ 673Ib0A7I0ixQt ? M,ݱ1#g_@_=o?&A0O?`<spߘ2Ap`2r }>ufWld';\5|@,KMu~;ظ) aG{_McKŇO3,j/_~ 9x`'0__xQzD@ą9{@ֻjaB71nNWRv(-F.<BkL1a J]hyhXB(.7k67APRanjux'. "RzIhS bc;*U (<*J|V慛lcIAhAj<Ŭh0A D՞jpv>X C/Ϧڻ/]L߉K%ҕX(&1w2Z:JQM`|6w9 B43hЗsZ+TԈ!W89BD5o^mv$8>#h?&Q|d4OHNЊbӆFyD'& na}Pnei6rOܢZț5r9,߭d+oXHk8z#(_g*4|t'$yyld{u!an}tS4yN#ӝ[ꤪlC;Qh%|J"Ԭ4u6m`w-WՁ8U=J=,:ZӶP O쓋82YeǤú{49CG'mq,"-&;ahM3HYufTUEȗJ$Sǯj>klA^_1^66LO{*s'dky.; ]e i_S,dm7$oD.Ojx"vLQ5_ysbCӅVgF^*i/mh{Ffy⚔%kǾ1:28Dd%?2=%3;ׄ-o4AB/&M0[ ?LgXs"( CS%ߏ/E`d"\x{& pmѐID`:IZH!^s;FƓ 4kfJS|z`]Z&23Jʱ=C>Ҷ*޴}>vuK46|U|ךźwLq>8}w&_r=m=/4C;qJSK?O$ǝ4qKԑ~36|xkhL*hÈ;克)5ۑzt6Luy!6!*]hYt-<᰻kG=G*f_+ۃ2o$PJ˔ҌKTX2:e!f-Ϯ袳3Yݖ)ٽ|W2!dC ƙrq!jA2 ]N%Nq - 'vJ{%52rJhOpҨ3AN3%7t+)بa^x g2b|S"nGB 0 ]-ő8<^&Raa0x21#I  ҉D-I x"-m,j0 -TPT ?rUZJTXKIHAV} _7im4YʕA!Aۍ#dhv״bR؅-}+o#f߸~`E< t%ߛ 8yرn 7J9ӵ\DxLfD0x>0 F842 c0' z-AAWyhuJ'.ENg3]ԟ(*i~xn\ Ji_{N#!@Oim;H qHWni0\.5CA~亮ײ)L2_$$@QaqσPH9z",^C=w,̮R -(1қs[|AwzΏ rwZZMY^#ǣ UѓH U(z0:}H.hHl!Y:׏vpjGY iѽu ]8N [j r1{j X_нA|& [Oٳ:n:r4Y"0uY2`^3մl87墄u@mTc>JiǤdHP +s04j+F*d'/ bH'1o6Wf:3TAi&'/{ΛTcIj:qezDet1rՔ~U[Z[,gi#N<-,hB`sj}$2=VӍ"uvD8'|]F.l=qWY@8ٹA9fA/a=:QG9W#wk4u "P |R:{McHˌśϟ_Sg;{VeCx_3Lp2yYKW KS0\NK5|.^c‡؅Qלe~)㹱*'3N38󂶲G'˗UW0+PD f΅_pٞ6+9Osd`ɾ%UONAb J\|KNX]v_2jTОڢ۳H?!f\n\U>Aє):X ToYC8&2Ke! Ga`"3'YIp ;neݍTm]Nx6l4ѽݸzҎ3"/ hUQK%sݩ>\bIKJ! x#rr1*6zEO:sKlFͤ0!z˕})?10\o\U9P3Un=<Ȁ i+-۴)5hT'v]lyq`hf"c_Dg<6Ϟ/XZPnñHha]"qb8h 7*826nx-&ΰŊ/nl.Jda}~r#Y˲QL"seHߵJL7 C4)88QCpMqH ʈݰׅ k~-jl1XOB0O RAo6|Ptw/'/SOp97beKyi O@oj$GUN$x}F m e(*@J2Ƒ̶0ݣZA =yCz}o!T2zefV܉UׄNYy~@Joc~c:ʂr-O[kgXtV@gʫ?WhE~c>S`t֤ՈzghW;i6pE\/E>;u-$ 9(jSV̘\Sf^J>Vzy({!_$hwZ]W䤈"X3![% .7xGK}ɞ\cqp {@xz+0ruFV>on\S:wA/7񠁀X"z[x9 p$;`+LXphY>p652=#qv]g|ڱvb!VI&uc Mi`).-z/ҽIi~+Z$s_iB  cpN{p40Htͮ佽u"ܚDtЀL#bf՜XJ҈ R5Übj-m1W\xf܄7#1w@+TtN05^(rj{&/SN˰x4S(B_ny'9mm6m>؎Q"5˽^uRoΫm zT*Y?"/޲Lʭ!en=l8Bw(B۝8#~Eg&[)NDr_yv\fJ`z\[c3 ]Z^W~ J+/_+@$FQLs(Vv?{[ZS'#ĬDy%U!{7>05Xݙp[S\KO騬UTN~P|^VA%zhD $kTW + 6 :{AFs )%@PGXI&^K9^ǮPߜJ87O.Crdb,~B+}J"]8 Woٴnb.a~j h~%Ӭ|X+gܭ[ğY<)C>Q1@!x̘`3K479OaEҤT.[4Od:dn7O5T<9,6 -/F&7Wo>gC.wo?̑y+Ҹ;"iYGf Q7N}g!=_-5Ɔ*yY񇂢D#!u̙~K;ͰybɏG1p4>PGO业`1&Ti?& &f TE/iGQ [m @ŕ$K){ZB =\&WKOXHZ8LCp&Um!١u>NdݽpM>r}o?ҕAQP]Fi0]=A7;j:z5ʻz͑aDybT |ڔ~5y Pqmu'>>_=}y%  p^&U?VطIy}-zx,AS#Y$K!Uu\P*iu}jM uyɅCR,$ٕgZIfm0tJv|kSpLUًCJCG;nZzaPNGZc1% !LڣMmWi)!R H 티U!uxՍ/P6$݂~*) v6*Tٷ @'ݐqtX,k+$g"xXp&]M%䂍O W zcjT=y]o`5SKΠ\! QDډnϕAQkjY@gA3F qzC~LPvD3Q6eG{Xlv2δ(g4٪Xc EE )m3EF4B3V.Z*$ZC)DS|h]bKO%ęr1!ҸN<2cu.o՟ʔ*gH8s΀rmnROXv 5֝ڌ/<84qb_Ӹٹ-W[{h~#)5Szk%+q^!$-PpvV/b)zCWw6~mfӆC!y3k_.fMo.'[aKt%Gzg2yëv^IY;'w߯Tötx?=n  ݐ=79GZCd-d+[VzáW++OaWѡ(є,tPj`bƸƴ]Swexsq5j"r#cCLDr[rQR]ȩ|7a`%^'*O,7tT%ƶ" (+v Aa3 %k=.م=Ն>8>SY>%;\^ _@}H/P~EGWm^MM%24tgZȡ$ੳNZk3R}]W,cce1H{XZ|T|) $ŕц4K+DD` _ŻE!ׄy<}y 5J CJT_ +^DTCUHƮ/rd X>";9 Ekm;K +7[摙i6FWO7 f~\౸2D.幟[;L|"ѱ[nGUeJ&tK+l~U!zZ2zR7Vxl}2OUk˙ܤҿۼ^ a=$jXxa4 :,F(4n˪eּ y,Agy,tT bt*%(:!~9R]C;᥿( wptVַ@|3Ï5.oQ낧X1}\Y,C<U֞菉PИ@4~E؎Ômc+Ba tѢy9'Uw?@x|J z<(C1\(6&N~ŻnOv~ W)&p2$Dvq_'XY&/eAO=e_ʃ7o4SM||+30Lz} (%;&&×L#~sژ.+ӗQdz{xۓ]CI1W1A ֡}^EV~* txsj[hyq[(|T/hL.dKq5o1.u` ٯi3sx`ǻZ1B/PwkRSwݒ}U/d1sa [6ڽ=gnc_Fݜf`=nN5]}觪 {cSYPW_[̓ſjvӻ<^tuh Ф1_~Pj)(Ĩ $4Kk-B-{QGsyIWR~3C bM:2lht VێX OkyBc7a؅>DbVVq8]!]vat3}Z J@*e#ش=7H#5KgQrUI ye%Of$[]#Wxw"̼Ch(pRF<'P_:53vXG5XOJ '״ySvgH{|R9f;!,:I]ҧZhJº {Q̍tL,Zvw;&8 =Q9Ӄ>t[ ס~Ӯ8Wjvs r({i !3MD.Lym;VQmar c3 r!<8U RʺgYҢѓ|s%k*]ħsA$ל"T3:Uv} /XyvL3爢,t+}.t|Ǥe>$,͚x7 e,O6!Qr]&I_}saw֟s?Ev=KZwd:_Czbű_8g _d-Q ;wR$S?n64}ev9it;?*P~ԯ{WͬAeVY~^hE_Of]Sg~/ꥆBzxp ja[KDgId3(; 0Rvo,njt~|W Ag7ŝ tp,?Oؗ%1%wev_! gIYH,~+rkh܆GK!0(R5,8"E6F:δ$A.m$m^W6Ji"%O]S`AA N FLe%8:&rmfq2aYyh)ޔIϓ2…FEf|`cINwog).׋Oc[ !|N܉|gօǟ}Cyāl<*X(Oڕ]s/.0nchS T~}ALwR},*U~xtE]{c3;52Y곒JOjQ8[-.ʾ}--$n_B#0wJ1޵Zz\1dQFr_kG {GNfJ>h׭C+P,2[0(s`m#= }nlV]giΥB/] +D0HȄT1r*鑼붢e:b$EQ+ VNG{/<< M˒A43x?"YPPV|W*efŐxu^%UN9Rt4¯: EȆ-joGT$I¡،&,n7ol^pr P3D 9?wɿ1V15؉ewT`p&(GJ).3=ߎ3j!y4pKA!b,1RxƖ`*jBp~ez,]tگZ5HI.OoW $O+g)GxS2R~؅ hPNї#,7cv|npSX ?h6m):)9U|fTgߑ'i9WPbżF)P='/X@ah{@zee5~aBXCfn!K"Ar0F5Kd#t?lNwk6k?g&:P姅]>BE\~hX{o,-8kSR[nsR{4CLy!HUuQP`5Ƨ'rdni5ȶjN=Lqg=gcoѿM[JXfMNYrp!8 twHq}q䴈0aᖧ ^R*W:MxЊ&saIBoJr_F R6eVú@6C \4%m9}P V)JPlԪ^ Ϝei͹CƢ䰦➗sQpķbPP|wϢ|=ߙvzE3Ռ]|vjr^x Hx> E%qڮn|!ܳH3(Eh:gA M^|:ʚcIi*k(i`Ԣ_F`Z2fʭCEe!(P7(E[fT0٪[U"]~^.kLG:šW$G##M]@2\E;_m˟ف zueuTPb5ߑ{KѠvYql] JB]A[6C.dmFʼn~51Mq0{ǚ=t$7D@g%S`eY> wXr)3*V#zVzD(HL<{"htV94o̴r_l(uI` pp#OL0?6kEf]Oi G܋{\j>>{ xEW8*T Z;Uӄsv5ϿGXXtL]&Zw``u?(G!es"űr%P0 g}ĸԞ4Cn .7+LbOq`CL__>6p endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 811 /Length 3766 /Filter /FlateDecode >> stream xZmo8_-E4ml7mvJcf3Cٖ{N;pMQey83D.(r3" |R N q Bk-<AD (\Ac^Fbt`E&վgb c"w2 Һ>6`Baq=pEa!Ms;<7X½NQ@D@$мxBC{A砄RX!&F0aB os,XB =bE ı$rQSlAY E7V}MjzUz<)ARn#[ȪJ mY9jB5sTR1 z:v ~⭐usFוo@cQ3#|[MdzI8వ|g= 0AOx$71)N|YoeV٧G{x2&<:/?UhAFƒe=T4{YKemC<< Rf+عd:kAsJ |n3xl8<(Zs>CᲶYۭX٭d ߪ(ڼ寁7W:EN7CܴuakQX2a-L xz Iuf魽{1|9]mlnv*#T7o}kC v:n^E߃'n{D]r,eڂQ@^.6..lKG׵tNᎭ=m~){?JO˦#ʈƃNf'oIy}Y"Y_MiAa;טFhu 5|U^3XXN+FT_=lхyW-F,֎x8X;<ߧ9uf˧1ho4HFd*(V^գTD'M5Fu:ŤZɲ?k*ٯ'M=TO#iRA]~ƕz*3\N0ah.jX9ϲ_x_u=V(v%f}ӿ(Y'W8A~ώw8|YN!sY'MȂ[bEڧq-nto7v"q7uE.*]gwO z&Q޺ޡ3/,Q۝R*d塎NZ kx*n'31A2cqCf\idrcAIe\$g천|-'հx T^gN@8CM v꿿@\F&1f -"~=wcomߒm0ywVP: p[ k"?uO=3<dFy 5&P0eXGG gSX~Dzin]M0f+i9Fh@҇ZYDj=XkxԿAG `kfH\Ht[^Bo^Yj.=]uPp..ᝊ uMcAyD\!mLD6״u%DBefe!cI3DSψ$\R۵mJF϶m1([-[:{$HZQm+ٱi.؉%Lfg"l.&Yز 4Jd$&r8u.mw%C T/ ]&HiiRhH420ċ65'-) Xz2)j3;Fn΅vW emAXyz?f |h3ւ7 bL\(lZ?.Ў>d@ĥ(:y7F@B3qdK"@Ǣ~m bY.Q1I>kmZk R}k"+-9:Z䤳W]a?;(GS϶dIϞB Bq>ԣ-B$Zf|*SK`PoN)o8ӔGFФQ!L dѦRm=8"KYI0J%VωiS4m]S+3Q:ǁWEK3 $a8.JC4alQOv[ w3tH7IG-NYxȈ! c+t\ɦiT!NXgQwu7j!gѤ'`\ZAIDv:md[K& --FW ]ԟ䧪P}QRS-%?W3|// țU.o>2D~=Bj7AW:;__~x;vy}4wq6{asegZoس O tUCӘ'5g$OX3pXNˬRxO-346/DIZwQ^-󮇳)跈I!oRK5R[__F1>ٛ߈Z <ߪ:;>߬rگ9)/Yp G Z~˟=+HE7C+* endstream endobj 152 0 obj << /Length1 1523 /Length2 6800 /Length3 0 /Length 7825 /Filter /FlateDecode >> stream xڍx4Vm5j{ڛHԞVJQԨvU[U{E[}yߓsƝ0"l *8(P20@A^ PA X!nH(., SІZ8; /@߆7 j C # EꂠN"H7?gm8Π@3oK6?OֳeAP <л@oMM -Zu#p{ ¡HV;5K7CtH{z`'݂D ެUVP@Xrsy'- |ѻj =>^8v9n+*| $P+@3@0}1a!bE@ A5mKr MoxA3djyZOHaK_MLIWkCis3~^O:SrQʽ J0mM|.|̘SYU1ω miW|,'>7o,HgH6ko&&8EJLtXJzBdtptX -%xҚ;z]n[&ظ Yj?v.f{J6%\m+M,*4 (y$.G׭\SǰVѥncKR~}La3*Z+onVGedl=ksk8Fo~!)b]}UA @N6&.^*MiDU4^,0pk ؀j,P3?k&r|MQ0XE쇇'>S򈎚ç{[&JZM8fB+ŧdfǚVMw*Jj)&uS .Ͽh?T~~Rt?yz: ՓM2L} *96_*"`D.vP:iDl0Y:0r$ae~g2 P28F;1oغUjD2cKz2p1پ~_7UJ`X)b^$55ZD̓wCi9I]H>ϮZ[/.oT!%ބm}ŔBl=%j)9+~l6'rX;ؖ%fYm|&E;B0GC@оzh&pĬ5oߣ3~<C&N^ZHx2Բ.[ܣWC}uLFZg{.3iju$rI–ǂ)Qbvo&: I0PU‚I>(NOv|#-ɔΤ6}32RvgA ر)z/U[z-gfKӈPy%#}g܌ d Qlg'ĢxX 8ߎmO=A[2e<= oE6v%Yrd2nN1W+kW $S-1 O2D=x5cLa|8#<}rS\2ķKQzԧi2"`#䷲FvUfhH4l[vKNw Iщ*O0Xb0\w&^4\vJ>Ncw"&WKvQ]$;RgKZT|̲QUeb |,dܮI*fI@[ùB[Z|/q1sKª_k;֏!cVDgi~hX:;mH56Ni)ͺE@a5sm#W $7ƹe;?/E ~1Ħ`1 p67{w2'_T؍0=f)0B Ĕwm%ف9 Qm6SVyK_x@~4 r=8Ûy$Ysz=\֕$3|^WnCpIUğh77Ǣ?O^»\~[M_VUK*`v&w}r2 j;wԄQ-6Ljv?kR'Cm|M{|jD^dUFMm(X{ͨu9arT+>L7%R_dWԎqRC$;} TWm, '9(q6̌ 7vJZigy*s /Ǽf^|nK.7_ճ`JGz.ty֓66q>?%qLhP 4ۈ/T_ 2X*>㑜S?h:)Djxu䷤ 杉|1ڵWCiե3]hȂ>/SuBKkP wq $Lao^Ӑx,ɑ_>`k;G;~ (ǣ}_}6~Tj:uћ9.A7/è^!J?'Tp|YN8rәMbىpVJ|mߒo͔Y֤Ob%9JrR#9컫58wL50|/pN>'HX]!~wtc-6/:@JXjbrw(_FCoơ{vFѻAW~713]:~8L/ qɜ\.ܝ~dY_ RHxwTJhi(hL^&:O unKƌD\uZjЍd`NScqfGigH/ U:j^(dlod˗;"ynyB7! a3"g뭷^'~DZ_#YGׅ*M.mh^oK-d<Wd&K߯cwP[/ߖ'NOX3L"pc\6sZW2S _FaT&7LƊjۗ/>8ݛN-}Nz[X[wҮ+쉄 !mtWวuI`,u^O?ZiGߟv YvOje a栚fw92A*7>R*h'H܅ѪXu[vjtbޒwuSASGy>JڗalDle88x ^"֢/1Qj]DJkMm {/}( ySf2Sn9Р}-(vy߫H[MRNN8Osyӫz9# fVK:dv 1ldI= 7q>R98A'P1W_8]M oOPR1N'|x9CcvgMU)k׫Y|hI[3-rigG+G樉{ XWߙHߥ<-k+' ,I%ޝ`W)̑T}~{ͥu  iG$8 IJ9PeXS|]q3A&Y>G4{;ZZD} U+ TKݜg\ˏIԽ~jFoß\֢үoi6IMMYC1 DZ]e>˓v[RScnY g^~d! ]xRH-d:E?|@[wⱺqh⛭5,(;[ubM„Z.ǃ0ۦkC$GRꮪK2DxERcYlI0y:I]t[J[*s=F%QVޭ&p[ruz\f^Hn2( Ey#a/p: ֝iVAJjGWŧBZTDx2[8g\KzS@j 齠/ȝ/#2a+rQ{CdkC\do+*]ыF!3_ϔyom$( _ٯ 3GŰUwD=MZ1'KW屹xU 2re1jѫ9lr?Lg.&ҙ7U\1ytx?قzZ+)I? 9{<.1= _x!Ġi]ڻ]UEB!mX0:gb~])<;95GLzeˆC%K8 \ ?3mҕ۟᫫lIv%錂 ?9|w*/m2b ysH_DMB%eTfV{QLa븈%$!xHK%ufbK)Υ,Zsa#kq/NҜ8B[gf8f?x"\(v23{t_"8ꒈT2eu'+D=;Tԋ)MpG6ނvEx&Jtw+vI&韃vY,'U^z4η/{x.I龍+%"S5<_8-_4ZÄYib#W'"0۬DOB7eF$Iz =~\>X24?XC0TӌhcWqBQ^zT1eJ.{eõթn1&y.bFCIA3.^®8c|7^ ʷKyA 5,*[>7 ?޵yxu<{,i_4-f/o& }D8rC{bՖޛ&xRVKy+؈Y⛏o˕F|8J^ls}5)=pЏQfQ.^w+sLgՉo֙.@_UG~{A^/ޙxZuKNl,G&]{Ρ('-·r8r]w/Sa݃Q(=,A|.ʘ Ի+C/z櫑ŏOh4MeF{H ]\{KDn^t..:X`LZ.O#pIyFL$z&/CtN$ qh7:^,͍QJ?7Qw~x[^>—-{5JdBisn1lL'܌4J2L|bv^0TzVvaQ ճ"nUI׶:tkyYd`k/Իj.ޞ^Yԇ!=ES<&`X/~'4 MNy9I}JkcDxָ)} F[y#k;޷Hܑ'oϿ3]Sq6<4XE:\^.:t?~YRɠw`㜪|^⡙h/z.Jǵrz2Ns&W6pu훙P]l;&Z"9w1bJcvMVox5MPe4 >1M%kPPܓ& U@ߥ*1 յ_kaiQiW}wT5 .r4K5a<1 Yܚ1F9,X@rdWb }mzf-i01g1IF(b^e@ bp6UX̀dGj3-> stream xڍtTk.(0! ҂030 ݍtH ݢtJw?wZYzz9شd0%$kI88h_fDy  hLPsu q@P@߁H8@hԐ <Ec r@uPA1 =UKv!.H4};m ЅPn0+/M#2~-]iv`!\0+ iSUh9u7??U BN'a;ZJh}a+C p%&<( vw;Usˊ+y# v!5bg;5ae 1 SU+c"fCDD0gj U^ e vB:1 `pkQ0_Xh% : s, ` ^VH? ב32?>99= ACTL2jC 'OEU5/Zp%n;h"1\Xy;_U_\~~7Wʮh,4q ;G0+{U53h83TMhl-e6P- #ݼeƾ36B>ĉǞ5F3{Ʀdvu~^.RF@Ɩݟ@V)&_w!1sױj (d뗅G`'n 44rH$x!5xK}k͇ϔk.|Nr ؆gEumϙ7r>Pu1-ΩA >NXadZoFGGdxL9-;Fkӕױ'</ 3a).iX\hEB,L,kG([͑«5C}/ɢ+fͮ́#GJL3@0 A&Q]9fhJoHh:kSc1E(J2ޭ i(jr^eOJ_4KUtEmCS9}"]>PR'?b8Nd{[G2\۹TρN;Y.zH]r&]j+L7Uz:CReZq$>ߎ+{SMYe[=./ڏ1!evMitEMj!k͓ %`<^^"izm{44m3z#AY!8몳]-q5;Ȑ J[.߁)D{l KVlYQ3oA,*i Zx{k"q!ɫj$ vKьulSY&1T) MdXoI C( bR_@Bwuf"N_Md"1L1\Gת!G}-/Aև-gBȳh( (sIpL' 12HIN*X|"Z/ 1_zFu ޙ#HMV wL oRb+&R|?~WJuIA *ҴrȻ7pďsCm^6%W<M8$0#vex=^T -~/A}gkܨx;~n}a.c~9"XT}n9r쥹 \zt[)h|< 27j]#a?]t"W =ꌬEӋA÷hQ! ЌETcB+ي%tCAKNN4eEoLto|_&/ 7|[G1]vݞ! ha4z xOr5i͑{/VbPϝNMhfgdisbvpuhXAZWKMCL3>5H-kH`S42(uk<6@%-ҙ9+rwN=*zeMjNK/j=~+ܓoxo#0%7m5Ҍ#!ze4İRYwLyqzd/^)lq̭8N*aN["%r`<@?mu{#Dm>#HgELI%yaE6Ko]rrnmL.X,Fh>_ :uϼiOFMs(5Өc?þ 2Fl!+vp\8=""/X?Pw# _•Co 8ݨIV8QnE)'GJHih{CS2)$/C<^Ǡ,Ca6Ν$!kIM|8,X)nX\[VᗹJ;K_INuPđ kmLk.[i+%҈*;qMh#B0Fm<$-2¶mDǠ!e'LPfFIqSpcÓ[kr0)N-#7)56+D՚B8׳Ƅ'h:`DhzgOFٱUOHk=s3ӹTi jWdHo0A3T\)ER-n; ނa;}`('oYL!eazyZ rn{r-?j}K(7Ai` |IϪŚ~U+A͂otȾ*Z{BNWb1 d<٠خ}1bWh 8:=b_9Y: `T3NA={rD/ᩈ>0{z}UIN'"mmP]g41_g7į*>:]Am}8P'xvS8 E'\VgoKIg&9mU:OQd-rsk'Kv9tL;/"kEj#mN~43GZBG ַ޽8]XA]@4|>Z{?8(JRiq 2p=l=۶ܪ[T3b$WktmX_Y\RTVk9[_Aސmst}yG-y/Kٔx -pF8f : Y]jRU^F{6z{lg{f/ܞWEbbp:Hk@\Yn3Z̹ n0 }3EyRw)ЯY_phwÞX6x;) -搒O0hfsƳ)-UɭaJ3;[LGFvAum,Yi}G08ؐ/f3c"G'DRZmOWGak˳]I7'w^?,BS[$ J2«%+wK). 4'Uܔݕ5ݲQ<):|=.ජh5t'w o"s`2%sTJ⣗qJNYP%h Wo_U9s+gJӭvaX)Ozx{ I74Zfmޞ}U/+ ϚqceÌԄ׍3gf1 k*la\QAZԨydp7{O= W{q|>qFkGHЀʤ)X858艖goD#c~,`Ƣj -;9k'Ӥp 7WЗ4GL6+ԏ$Y(^_o=(Bl|M xh+#CU2.~ƹHP^V s<.4a?cǀNV񳈎>S)#١[?CX CGdMxwF3uj%+xm%,`I(،r??`vBJǎ>Rz}:w& 2ׇUpnIn|v$n/@Dt&(̋"EUzK_uN |@`s@ Hl4-:h;W#ZDG i& oc 頨"s~G'v Dؖz=/}6hLC+jQYڙNCEu[+;w"gx⛣A_Zy܇=o WX5ƽD櫏H-fW7Zn6N,d/M Ff;p5!gg<+Y#+BҴ +m!wX{2e2x{WFjw9OdkKN"D>տhY^Ky{G!D,@]o}oq^c;38jEvg &$u+Rk5 :VLrbcP]RJɶ>t{Tqߗꝧ ?K8qҞ:2otT.3iiK *WZv "y 7_=%_bq3փ>L^6 ycT.zŏ.e ߧzI wSa=/v'\V\|}:=ߊ 7P㖬 uP),-s -9N&cvx 3YAIv t7.ࢌE`V jGɌgMMfxtҕ :o@jmfէ- 'Զ'NB0j^nA>}Zʉu5`/$MphOe>*,^pOaO52^\f`r!Cmk.wAg!1Fx(uNfNF' {1<:Y%W4RL8a֩7{a/JIuD0ZQ3`\>pu3Ļ$rD7;P_|xgaA 66ogh;"FBgK>qj=*{u-EKs%9ͧ\8Ћq< ~ 49EDm~ܰM-嶕XrR f4d2F}?Q7 QR,[$]! ?Vӡ, fN|m2윜QkVւL~uĐR+JUs΅tSӥbwyz.tgC!R"Z:;t+O)[m8ƙe7FB9gRi؇T~ԝ]nMh:˫oY4y/.Υźz<Xu~3Ԟp$9f> stream xڍP-{p'  0 2  '[ Cp,ȽUU÷Wwz3Ъie`Pk.vNA<'ۃeb;@`P0$ M "*àW{7  '')/"Y rX 0(A ?'ق% g8@ A ᩢ Ywpwwg9ÜEY @vv[hr;@Cfw9O{ ;4`_dlbwH 985 b(=l"rAAO?H@Oݟ3G?J}cq&Z. iɹl)Dj\cA/5ңmMG9Mxr xǷ{/ur9d$ r41q C<ɄMqtDʾO)95o_g[oՆOWŽ) G层|] VŒޓ{U<$ڧ&=Ю.r2` /I~_=pY,BASJV YX=m Iq "Ăa3_*WUMkԥ_[7;+_)[(^o|&K=SW{]"W*¹dH>HUz+db.YJ4|bB NfI=7W\Pfe6zB >ޟH~^[r=حZx y bd]/V`M*ٔI}_׉[$j4Ώ~x WG%#=,?-ؔF0pͅInE;Aqb9/e*#4 XV@;t"ѱ3NҸ<65,&y,XGĀJd!>+Þx]fOӟH֧]yF ] b^WyeƟK_1st+Iƨ-@s$tT\oc~eߞm3~2߱Ys^g‹J9h~GXf23%U2HDEI:mAC;{W׬$16]laxʣZ%b7v:c YoeΪqYmWѣWxSlԭl*+?_"J:-jJ%\4"H{{ŤKqA2)٦|E}W0ZL3%1 xߍ$LW16.j1`'5wK)ik̺BL=,6r(3Dcl7qZ^Gx7X{9f̖=:HrO略A~W!)J:"ϸBbP`rx5stWWwN:|z4mzo7 BiB[?;1ĉF oq[1$TGチŀ7h8T_\h`8 RІ⋀a$AYfYcF4Y{od}fl P ?@dfc.IҸ[ CPAWwO]6H*G5a8ЙYxv*m2?96&{*';m-Ҷk@߬ʖa#cgdhlJt! 5{dzWoRp}+9w-G]еW{+Trϭb CHLU= 1B'?hVlVY5v8@Фqb7DDwgTxcRZ@")֥` ?> \x.&qOdɦZѹM@uraSAmW e܌jY+ԺޣYx Ԍ{U2 d+w_\u㟿u.gTO4lIP6N%VaL Ju9|yMK,"(yK ƽv Y+-~ع|)Z jK+JZ66 "*MMnw(XKp6*H? pq}Eo#g*i<9Ձ~yA,Na5G!df0*rr ިKn&`EkT&.!$SO4`[*$ܼ W]ټ PRяh-kYH~+#},B B_ޯ(4fXG`g`B0*%Tn >κmg[!piU+b8\OUY&u /p &J~ZM8~հ\ҵFsp#"a/zSos.dI65}l:.¡3@Emy *-RVd,#ƲsFq_|5o^L*Ow@, ybn&ޱ)6ִt:yA")載^Ix{٤Mu#j#MmFmynEWLCs/;U~~G Y¨8pu8R.>x~lnNJtZ*"Po7CEÂn+M8"Bܣ1JL^eU䦾FMg`aݐԄ\X?|My}B[e],ɪS̩ڽ1>m0y x=}~dE]Q΂[abS5KcW&v}ǿ%|SPTx15Q1z/w1k^+M\+(DȽp"㠢Gx Ȯxy.Bīq-g6iFOxEp5B(7+k}Խv}ʼ\Ne9qwe+)P0ozԀ]6ZwTv?5ʚ(EŊOKCZEo[FD_D'MELW*i<Yb }9͏L@3U)RGNt HU?o-qj),nJ_Xv,4@Rv8LyhVx?=SiqhTϺXS˴/ <7-4?B!^;b 77%ġ YEaIBdQjah$Qճ"aG+@%V|(I 1wHQ絋EFɹn<8߈_si;!WlCG9Vs k88q>o0c݁:d};Gb#+Hk,x=' CoM/(w6KyiЕ)+XBIcg15$ѽ8ϰ$Γ'/gz#|q׹ds?waa1!*X@\&.ErhtϜGȻ{zMcC3Vcޭ:#oee3#>И7ʖoL].FvQJ`D]o_Wf5bw1ijؒ',JRs ?)55`pUp"/Z"g.?ƺϻh"/jbyjV2d_0A̒3ˈRSФ =(gmww*qD-%neq[2yO݅;د-4}}8ڦ- :K)^2˵ J:%S~j,ɦpaExGn2O +7+b5"E"y4q;ZM z4Rn@/'EeDKYG̋LSF dpSV즪24"w*scQǻ_d\d/k&Ҽ7F3I?NR ,L(?4,D^}#U973_s|cṱM VA:< ψ۬ b;f{tpx[C݇Hyƫڣ RޡeŠ=w=IDywIyIaԊ& zTƗ\+;ciF@/` GƟ{ʂxUޤ{M4D,8D]}XDU2ڴy/8MCUVP5SbߗJ{k͹861:u'44`Cxc4S64n,W!E(فb(juY!6c^0WFGP˖ [.C_l\65DIFJ>%_X0gj&ol DltGޕGz֣<2g7d`2b*4-ُ{ϗQª!^JǛ^xvqi25꥔,=f+Z q up4꜖JDY{s/b;e/7y?Ržh*/l!ҐiVlT~y'7oTo==YW/,#w~2?F$ Ɓş'6rP*AaB*B(# N_yr\qk\ap+.*QCZO&0? (sDQҮ'kTʛJM-wNxY3p"@*\n%ҷ_dkm4>"p \?it3z;qEG8oRIJJ]cT]),1#drhɫгyZ)z ]ϊ=NmwGKYbe GE/OSl950C?#PeÆ$ Ma kn,i#Kem / pu-Ur~ƫT $.-h#1x_϶{4:k)j޶jٗV:h]r:]9_qx}syXHoL9&D?w!onfO_KN b+)UܴX^ّ l<& ltBhfiնؙ>.̈h g"(m޸대7sx/v~Q0;8GĆiCm93.vmb-VW#тe5(4uaزQGcJwwEϘ\h> ܘx8)JDpz1*uOUq! y".wY/U5wsBXo, 4%R;6M +K%nV$9DR4/=/r<)#;b;->#R '(B- ʨב/M%.tKg0^ GU}`sc U\Z:ɥFP~ NDRY0Tcyi^Әe%L;5ڗ{0,3beUuEtjs_}LƠ&/ow{)ıCɇgW:¯A:lpü:,oQfD*] VN CcΟc,IGX1='?ı: §r}0Q]58r1 nu=႕sO@C] `Lk)#4םS@Áa%va^u{reF1뼈<+ko<5j;6Cci=M@)C~<M\UHJ1M6OfvcHz=sڎl:nj_jn| o.-L M9{C^X}b)4#Ɵ!PMtc]W(-/3HɏTU2C;k~9)3ńµ {܅|lqvO23+iIΙDx P63%m| B5l0 K1i uޙrڮ\U+,5wkh; Ë%,V6B&JaK/;? V/gܼL֜X!ZǞ*|4CLǜwmBgEtThbbNyLϋ02P&6>ҢWMIf:Zᗄ5b8Ԉu-15WXi٫ -C31-<k5"9jD P˝6c8̧'o B5[v?& emLqѧy>£%a6ӱm)gNDkDeWI^~Cx%waCE~TRj0Rz8kа;2 3xn5C*v 1ײ{Hء;dA*4MەD>L&pe2U0A/y-yʹ%TxǠ9YmLyt;%kQX_1Ưp ~k$}{p_Ò_􆞳Ft⻁=S9l#jґE$'5iˍ=%ڝFB Ge-zTdo<ג#Ԛϒ[ :##^|L]mA=B1Z8>LXu05'EMץ4V;d P~KNẆ hj#.߬9 7R"XG o>٫yqHI@$FS#>.R sa4|64*R}TkԸ3LGBfgP)V=y~èP_~ Õ endstream endobj 159 0 obj << /Length1 2717 /Length2 19207 /Length3 0 /Length 20765 /Filter /FlateDecode >> stream xڌP c 6u!8!xpww  H7sOrzYmw% P΅ `ffcdffET+G:9xse.`C{; `ef/@ dP`)<@.`~ИXxx:L .@[0 @t4..LLƶΌN K*4U2@OiuKj.N@X`29]\̀N0;@MF ipxd'`$]<\24qlMn Q+>gS'33 n-AN@Sp=9\k;{w;"s_e:0i؁]2؀Ee@3337+zZ2E[\\dAv6v\\*!@.wth >'@<~,~03{;1?%x3Xl\NNFTOnē3p[?sAA<@c`6bHo= ƶ , {~_S-YhrZcYH$h r1{b{ 6 ;3t3)[o2Jؙڛzc''cODf|rpY;j{Lv.`:__G`K߈$$E\&߈$#6o8L]7+F`v7]7F`>߈5~#0of~#0̮E,`KcSփ30v6LAN-Y9Ql~۳% wp:&c;Vodlj n.lUt#Mp"0 x*M/Ǖ쏤0;R6pf66$ݘ~ǖ ?qwt_]M1.G]X[\4Wd>hXz:X@@pV@p@p~g _[n~Sqcف= ;\o58}ggGg~NwSοe 19n 䏃bK1 #pCG`sg/)87gcg?BS( artq]ppC {]8?Ts :C 6zMWMBC:~Պ3O Ske2x:u>¥m9݊J%}>mm oKViy2LToG\.>i$F bP>yv n얥,ptFU.> 0X6rP)T9X@YhO@ Oyၶps;?J*H{V5~k:s>1 ,Q,޲wyi̖r3-# x79 &*o{S~d}5#zSe|zswwI"p'z3x8EOUi]1]f pG_lXb :~3yΡ*ﮨpũhXY_(GojxM ziuG Jj1:^Ndp=z5yڤLp`6Z&|B͌z̕_4Z)W띰gv3Iû^G3wGQ0 :-ZDQ7QL_wuꇊ !q %&Ktǧ be؏nQb`-͛#us(qEFǮj$,T3*#'敃Zz^?TN'׾˘ЙYԢM?Ȧlo[#!jUJ5Yb4|-:.Mڴawkpk=~t^yöe@s:: >֧sofN\>.K_e"0r ж96TZx$E϶o7~T6w~]eK +UYWxTRFbH}O}`5Fbٵ#pZLGvaA3R:saU ]?-+o?Cefnt,ǘ!̨Ub(D( r(rhv$o :yPem\쏡s<*,b_ f}es8&v~)nKy ~M%Wgqx>#y\wʒ"14׼Q$2[B^@U(!757 1 [jGkd6[h m궑ʻIS;.֝E%Swا_Gl&29Q-q{(K''gKR%jqT5`65,NTρ/ɝdub|l[9Lpow|XWԄ0TH%YɌ~l_|9ʶ" #c^cMqI Q|JԿSUͮ+1xyw-rM/4,zJq>L{"T[FE}:EtP)iB0,uW": J<}UCAY#FyjXb$9j4yj|oʊyؤXUQ9 1\,~X;etsMhd\Y>Yąz'Kv[bĝl'yy pL}.Z$hWˑL4TޞlzT\CgY]=^N:hs2*svi70#vy@]NJ#Szp[Y=L:"w /hRCzmGiÐ$b?`)*ku^َ ɸɆ4[FRr6ݝ΀8GI%^3&h(F8s?4.n ï&Dhrg4i?E8+ 0} }0r0!0 澖<~evW"b@ 3ؚCd*[ D3l?7M&Z+ S{l$# DS5T8QH}I j`/l2jcϓfH 0p.2D/$tjCq5نHGq (|epb0 A(.?~nT9<˟z>\2zKH<1k=fڿA+k1xzisSEA00bLq63.3c/pUPv-h3S,1YZCU/p嫯<_ع0=hf^PQzȫvP S|>y 7nt6H'4J8$I| =g /XBk5GYDFSA1)˘ނ0 (d.0d'^h7ZRBn`(VyLFyv% ̲DHdUi 9urbg=!ikE 'Ő_>Q%v H "闳 @p _ YrSM0ߦ%1G4]7+FC`d٢i} bpq>St!kݦ ]U[y7.}$iv'kX6iqkPmlU~I}:Jm~B>"xk"?=5&5CMnh֔5bƃ,v 7mִ}t\w$p([gR-BԺ^YIP_ؖ%m2C(|RۍkqI0B ȣthi ʩU3 k | ډٛk}mF}7˼opwb#Rԟnqmea'lHËػ*1f*ZIN;ÚZo G6?H'=O/Rfw)=[E#P{|H F||p1s.T2ҞU!7גF/UaBF8{QwOk4Vf #>Crn Ȓ_=T'KG@rko7ڵ`L{?1uzsyU~:Kq)*hH^W%Zf3rxʼn $m*mR6ҋJܴyf>ߩ/Gz"vܴ@pDq!ǢǛu kM =63)5݆J2[\L 0^ fN(愅\[KB{r+vzy4̛Z+ B 2*"ܕ& AQnV_BT~Tp$ Q|H%ې9qsƞu}7PiV+pE_>Z!9ׯk3P@lF8,]ca~kn磯1Ib_![fQwFBvcxbmTT 08^nV-iyQ).3c!ZaƉW5xyxpn$t $;V<2zo28b-7ILpzX(Qs>TV&{+FGʂ  &i39$*tuO^8e>'FB0eh宁|MA#4͏R=H!@nt)$BRCtz*urognQX 2^T[=+l/zqTDPD~49NE~iŇRCzBVZ%T_?vMk ʽT+ՖUHmVMF+;] ˠ񉘷J mU.\ͯw/eawF*/3iN`8WpRIϤ,:r)uO~%BʠoC @ngsvx2 l!f.Y[I"ٞrwC>\7~x$`ǒخ?2R@<.I i-~ Z,Hٗ5[E ܇oq8 6UL6(lGDӇ$c.̷%8ЩxI.;I q.-bd )nާN(yJ њ&ʵ-D-:g9ʸ eC2۴(&4ɬ_Iq`g/#C1Po[s=j7~[VXO fFrsj'/j21 nWBRvk7 jE'ĬJDCa`0b=ި|xXar&TI]cqCG=0\/&v]9y)9{JM@ߜ?C) E-|ʦ bwpw9<ߩ2eC-ⶾҵb@җWKjٙ)Njf(C7Ue Z(Xso`7ϙAmK .<4NFG/ka=%,bdd[v8s .pGa+݂7v]pC,: B 6R,RۨHPeق172(0a7@ݧ&) r&r2v!-WlI>]BUhjK2Kzpk%uX]-&30_R8kʩ"(%xbC[+To'zMk#5"M c~ 7qr|?Vn H=(+Ә#"AHmv>. PȔ2 -TT܌'rڏǧ(jc66ڱ.'%qR͠v D7 ܍jllfmTV.SBI/P Wɜ@FH h'oe(?<~&/%>G`rb-cCn'uc]9bijb.Jxg}_P􁅉tP)KJEHq?wy\a;+t(1[ŤFt=) 'Үv⌿X.g bL_ 멇trp%^[#%PUwNHBY&8cs,gB\L$yKl#RL] ܤ.$Ƿ{UG<6wsw*?/˺ḮdhVRy{ڵV\E+y#NK}SY=cOt`k@)RySTc.Ln \pk6y$s|̜Hoyϣ5u ؝V͹\תN= O/d2` DU<[2P\{ `?ǫ6sneh?!~nGI[UiPD6)Y aLz-65/qؖ,;jkW|14].kEf_zwk4jiVb@Wp1okح +<Ϟ1b) neVZSc^ BL] | aj(r5Hb#6Z؍nRATF̮#K6H8CZ]9u't#hQAV LIib\㺞}A9?؀W~&(l*y[ϬMZj |:hȬV9LSe鄟6ڙ9w s%y7\kqwq$>ctОfq0H|?c)?fA?ǧQ Jd~a]*a-4OR9I$-%g!¬ipuؽ]ŌN-^`OvrQsT{͍(JvlecoxsE5+vkʡYCVURG[ | ,1%͂}o # uEze8vQ-doϧ)0k+?D˳y}¾4/&p0XD"~8ogDmyzaM*rQÙiH1(ISM%|  dCş5ق݄80\KMKByjKgk@3il{~;|Su)k<;)]uV'R6Y_fqpűo!Ç\3e.!A 4+E>پBAQzygk&`6+҂{<)"~9(u2x/6+>zW j;4Q?,3O-|ݵ>W!{IMMDίb&EҸ֐{}t| x7;H57+f~{%mB-/C`|Q?44;RRj0f'=4or6ʙ@{#?|{1Ϳ43YBCW9܄| WfrLohCOE-]KWuNBPܑ$LJZ E5/5akWcu -fB?TM]כZ9B#ϼI]"h^Yf#Kܔ0uҕ¯ux3ؐ-%k@~5(cuEh@fHqw8iDyjτξrWMB=??k~Ucdn9:$V:zRӳTz as)ԒBqf.Bk}rYޯFp:d%<ňKn/N+Dy4 /bݒݺ nԦ,HuOA2陼9t docleK.@r/:.Ƴ ³yY|g)G)视C|ZG+c~wa 2 /BG.YTU92Ybrց?A&5Q ߖ_\*kO+ntBO~2?.-HI+u~eY4Y^{௖DU=%FD(k#ݯEzPF+w1B56R1L`` j#QNwi`SS ˨"*D9_MGߓ,k $"/LĐ%Gv-E6= kk~1IpU!KA*=JfVH;(/scV'|**Jm4EH︥7MׅQD'!6t4mQ giDk/"e~,OQTC= p\ iCFrRBgFi )#2Gwu|U˥|pnޣ,R2pĕci3D5? WTפ:͔ood2Sp>*% Y,uOb̫Z|4lq>G Q3\+-A6krįZgU T&KؔT۰ \s#Z̺0Z6JFhnSjC3W44eD%a.zs<~-b) ,:We6~U"Os)ϑM-eja!\ۛx6Z6_]vzN@>Rbs2) (>Hv}6W_=Q"I _\`S_jc%+@@q+b3ێqIU=ز[c1I+$οKBׯ܄l՜dЅCL&@E"$~ H9@EF-PHZCC%B4\{lrUxl^h<ø ޑ蠫}ib i 7|LMX [&nF;{59q,)z  򎾋+H+#m;StԒ;M\ %.lxx-U2"Qg{e")u~N^בvjPIhC؏x$HxDuqx1董Tʞk_Ecyd+}\ Yu .J[5R7:2lc5~z`N5ϙ76P)^C2`lFNөOdAu=Qp?W]s J_Ŷ0g\6[?'~bHDL5gs5!\>[yiAя@eC܃ߏ ĽzS4l)XNtz則5yk.zИBÃ~gH$;pSO.7ڍITQ rHXi˜ [$S3_yuRDSo@QCe±d73OVW Q"B7.!7CZk)oc1\XO]3FîxmJ9!2e%$-A7 Z\DjWI_ܶ+X.imr<6QO0l!qߒ_ ̼bcqcB2K9aR$UƓ!&(ˆsE]PʯB^蕧v&!=}.R]M{O|MΊtA55fЀ}o̯T畖xu~dt؏!:*_i}YJ;u5ݥB-{,v 5Q\7瓋DH,'J}2IQionyZx1ÑԨX;?<זk-/X.U)]>aGd@~gy1x;)zRԜxĤכ[,jуz@id |i"k2.? `W |£3rƉPO8|ZХv@7Dnq:7~hޏ2,`lykf6=sl<$i0cyfv}6:e?OM|t_݌w;|i?ٔ )ӱ7M;#tOBy #Ư,JdHe9N"'h++Q;+=Iai567nHdQ'vxm*_zU"~(@ < ņ 2<7(7pz?Q`}0}imr-ݯ7_H;eί3A-Zsobɷ3\ QݏKhR=oY)يd~F>*DNbKۧ"P8GA:LUGCO!wِ;-3P9vėc&M15nR{IKRdO)N}VwhsUuY{ Ipr~}st&Yx/NqDu) E)-D'TtQP6·3lyOuH߸wKD̓okx4ȷX+q:E3t0K.Ùm*DL#\ ԍ}]Z^+zG鋲F( ?/Djv^F#*yel7 @U/,@7>J*L҉Wʑ,O%Y#,W)SxOlnzb3عNBqnQqƨwr}C'3qJXCC 3.d1 w4 e0RJc|_}[C4 8^^ 7Nr_^ZAamәE˂%j#> D;m+ݦ{bS!vzVCgJ1s-xEN~hD4G:eEBDߋ(:<|l0chZί)XZ.z8p,@'CQucr \Hk&yIvh瞓r8I +hz\wl*IW77TYe#da?Ez=L ݌=lcwѶ]@Z#ʚӛGI@uxÔÜjlM(%/9WDV5cH/$hS~Oٯ@]_PF/%^`_Mp({e|]gĉs/kՙ4v`GVC$5y_\C^YuJX.IGH ܵѷKKpؗqBܖuuk!GӜq%U\ 6n JGt{ẦxdI8tLjuޤS)\> AU'Y9q WƐVtD:cw;יdjpsSg?iXe7E`|B.b`ő呺FY%f4-?Z!Z=T C>>\p+j9}yYN0e2a!qckF,#i|Tmmǜ+HjzEtb0dwPiEH#Đߍ2w., 7BwYcw#eK3u{۞˚ϥR?|g-Auy"| }ٖsAJ|H|?$19]qpG5 U\vTu=\Ic Nf]t u GrX0AJ"2slҶB@Ø2(Svsqy\Ţbő3ZF53L]pT}H 5رvp]"{"A@Bv:?5hyY/+}ד>͇VLSE&{fM 5uyy<깾1&@fjPV;)P+Ia$Y' mw s_ɪ O j1{& '&qLڤQT6j-mQ8 N p%mɽۗkw:>G Zp}B9vQ7 k-^u~™/yCdI'(>r\xIٚR]gp*ޟtrY;w uO-(MꪨeeﶽQsW +,~Z ]2d;*A@'lɃHcǟΎ)bfV [&`GKFݔю{?=-N&٩[ػj0$al-`{iqcA5iH|j}KybQª WP@aX%djZGۏDgovMݣ!\16_5Bw5G% kS٫9'搬qr-g-p$}LF ԸSYr*~fK (W۩)w/c7޶V&if(#cyGOΑ{ٽ@K"0̅!40#_}3%\eerIWcҌү+"3 Y| :|J&}2+Ñ)ç8#-ɊL16S NcM|V䰳қ ]pF;`"WU(֌b YE |tK,f̣14IYW-d ^Q5D=*Wx]d';ݎx eIR9&g%2"(|bǖ+N g2+v7۸)a': xb$ Zhv)6p0> [!w2L74gg? aӱ>5EmJ,p^-FE)$k{tB1ۊEMi1&(MB v @0Ae4YO=Ȭ.Lm#ۑGݵ}dR&-fxdnU̎S)&*Y_p"A $ua._"[ߧ^,, ; n*ӶwF ? *B2\3uAEh!FR?/; 1Ӎ,IaDj5'WwoR떯GV|ޟuU;+f4;.B(Y[|YFyq;Aإ7ӿ{#dQK͐w#~^a*<{E~7F8CcW}DD;%Á$ {q|$ؾTxHTT(gd X{ Z;UZ6B7=D!)VEވx 'صr!pt˜ӲwgY,6''9H~҂"ҨƊ b|1%vN~U&<qHpRUR9F - eY/q/CuAɤ΄ck{PF*|m> '/A/Ӗg+ b!LgxFĆ[7=k0-f믌ĒP׌tS7Lv6ѱ3-ZUBbIKEr(>li]0+gSLo]vI*d HE@1Dd472b^qV|V|p[b-#g<=,0/۱Yݤ44[s c@RNi}=\yɭC*o%Ac4">d)ە^q"(g~4baxk^+M=bׅ!"ķ!TBo<7Pҭ)'ՁX+t67y \j$$J@(E8%O,y<Nk,i!<W?! 9Z꾡!(&-Y`U !l9JҒ皟Y 1Ib\zaÞq %<F.`0 rd  u[ڼ%GDNft[ SJ^p129Mi6j["˪.nsO]/ |;|w =cB`RMb9和mBEZڕ68x"11˭\hY[)pg fއYaxC:ct^Eԯ>(.gUNb^ y]TӢCb%BGb(ij(87؏z2C 9cd^B[y/Q*١PSNj{lEuU: n3 hw\ʲ endstream endobj 161 0 obj << /Length1 1451 /Length2 1709 /Length3 0 /Length 2626 /Filter /FlateDecode >> stream xڍT T-/ d',.,N LP7eȪ>+֧-,.P6 D-&,n9~wcό+3f,:gɡ3l?BY?`#K !9B P.,YLf2fn hD<Ca `#agPƀee60 xBDAv@b & " LF"$t ]kL2ƣa!PP^PX L7+O:T,S"q T 7# ^gOXH#>!\4T 3 }B6k ${XL'1r7EB^T&7N*Vmn b)LR_lss"wTLI0(F)dDNQ\)i bo$>0Ci`Ȧ̏fHq\)ِS`MֳuquefUWGU68=l8)wZR.|>|%gX/[Q,wN<>%Udr/iQ#m9.6U/O nT>q_ږܜR3ܖ n+%~sl6z<Ԉ lMh1=F!KN%R(ONīqY\e'}:$4@/]A gWPl̜v7ms-EW\G5D5$ß F ȇ˔whtND^Qwcb>GbL/;&eOonfmƥO GwD9&2Cl]ĺC+0Z4\\:*[uc-Xj%-U4L+'.]OWEXf{a E=3v[[P9q,{i]7;Tv6*pkֱuҹ] ~c2׈4LF}CG4-҃DǾKe%Gm-؝wߪ_:Qv/>9wFygT]w*(Q[BU5܏KMWDy觪4%Q73~p}ex۩ov 8 ZhD]=|½`PdOkW,.}1~5+71x܆ 9xZkOgUyiKr [kҭ:єVd<~{ޙm9~ ˲sVO5 };@U^^;@s9Klxt&c< 4]_`2jO)%}uYx`赹2?,VtXɴO˫ܕ\^s^3fYrv|{U<~hCO{>2}*ܥS{\{cmߞ6bG"3hmB>o>4$5axCS [5=wo:IJZLЦx"+3 VCoxg[v^K:PUzvǒ̭/{7OZo,nx/UrHnXW+R[f?;NRŹE|v|A1Q[Yڬz^4WEOCiN_D=!+=-֎:Ry:K :ωÛ>dTWG{nsg+ִm=^T6Ǵw08}쳟˥A!0HDT`n `P<V2`pb 2^ `@D!c ȹ*➋`+\7"=`tBTʹ @F`N6NH@ CqA- p'0h8oM8?Ю,Z-A t4x5â>_//u'!p$ A!dM m<?wt-w p f?wrCQ t1p 0YP_z9 $N醀#VB- ]O?ڏcN;z?<50 ⯽bP? \""X7Oa#i|žc4׻9$ #d |r o Y {igKX /(lok} (V{"B-XOΞuZjuӘ'OM{$ަ,}'OίmE3;1|KyzI!TB3`eda0$3;6/3?=KqrytnEGu2rHtn%MbԈpsڧ BJ ;`e`FX(8WD"Q/]*\ұaRƨoV@~CM…bԙe3'3'>]}TJT!{QyŦr؞{ } 2%.Evpz#J, Jc9u}-*;\pf4ѫ&wϯ,3o;!@ LGl** 7$WWpYQ5Ϛ5# o9-ͰEq?sHf =R=]q'b."_{88  8ixxs=e26R>-MԜy$l$Hr*ReK\w:(_``M:ǦBԲmhR@NP >ѝU%' 13atLjgt4O ")<u@VoYA38IG 4_?)o~[u.ᅬpLw$,ttQ[ \6Qb})Ŏ72K@w>T8~5,N乁c-Tlv#$I2<-fJLZ摳lru^Pd<=.m1MMf+km(=[3/71,(m}!\.·ڔe=D{ωM^ E2 !w/3+H6= M4A'Z,Dƞi*s\F. ONޜՍ 6 ۹,W!#%Xfo߷90 )!Us*@>i}ޟ|Gv-z C-d9Du1N,tA po%ǞMݩvIeʾ&Ĵ6flVk;;v^-YlM.#&l^D3 KYOhlu9ZM:IQtf\jwwŶLaG|-;+qm@٧ N4 8$ZTcg3-KVn*?CmY;S^cyס8'"R\R.E(/^,j&Ny[뙧}x0Q;>vdJKo7f>!ʏs5hr\TesnX͈S)lY,W%!%?b:I9;D>b60*/꘤p&8y\/+5D 8ǒܚsϩRXKIHdݢxN m& V}ih6{͎Q z|yń'<3reh;Xy3E ="A`.jbZ_+2f%vI^ف7Ҥz3q|Po_-g畈 eWGߚ&PJ/$/32pDqDwu&:`O#4) =lp7X\~\m+r-]hQ"eG>xTh "#Ud5i\*!' xAE@}oU4gnş5Y,tl:/IZo8io'"v){gdXߟ;ٺE+u7{</&Uiѝ*v|0l (kN1S#k>w?{Y9Ay|'?8*Yf dW(jP ]~:e!=0iټ౱]PEf-|ѝ6%~R)'ryhz`v,z5bphѵ1[$1ʪ{Jb~Կ s;_<9|9t*ʝX|Jy~>M۩^L(ݡ ֣KHڪzԴDjt³ޘy&m=t9+r[lS3΄QDgy+3f^x_hiޠdd357hm Oڻ;=F!}7;\+9n"jqK5T灁?"(l ,A]Dn,,fhaP)Feɻ3o52i@{;H8dg%lo VUÜ{#gZ#K 2f}{UZIݴzEW1M;7I^_w󱛍^1cŐ=!m endstream endobj 165 0 obj << /Length1 725 /Length2 15948 /Length3 0 /Length 16495 /Filter /FlateDecode >> stream xmctn6vضm۶gNVl۶mZ콿~=zUWWWw9&=#7@E\UHCF&lfj`/jj 039̌L0dG/g+ KW տu[#S+;+g%]ōٍN*ffWK3@DAQKJ^@)!07s6(ZdL]̨4&VBofή3wvȉ +ȫDTEFYۻpmfh#d?X=#01LL\fV0 MMrfxٙ(E\͜rfql濮FvV^C2-?*+q+O3SE+vuv3Z?s#gfjffpϬ:z 1(ȫ+i O,fo`jeoPqO#gQ۬hd /f\<:J=73#' d_pMܜ]M?d2343Y_q0 Nm -+1TYa^A458¹Wß 4ۻܕo&63;& [y-&~W׿SǶ3sMXRb9v*C`6,Gډ_[|ң@3;F )6x_ wCm`YPx_e-8%s-J^;$tŲ!r0Y~ë p )SɫZq77K:C# F .{=jϝ!*)=9B_nu2`A\gvLX9 uTl47/i(i[t"\9;#!E>#}@ٌA4Wg A2ĘKFS젷ПUsU02 _5d xϳ${zf6yi^5U^A S!}w)!h %SF;rB90.3=ltf_<9Ka(:y,op#E}r#丂Y |/xISؙAXgbER^9 s-'p'w٫Y5(ӕ|3uVARb$!.D 1@0]I2 g#^pTNYh߽Y~tl2 W*TXQj*zl}t-f:nVMoPX"*Z_n[7*JSkU{uFs'Ldjig&kh֎ wA3tݽJnKn9筼6[o/[x ]V wAeDH~3 }Mg⺈w;k}b21%:woQPK"F\H1^g pHUcf Uovey1-غ aWڠxCL|JRzV>= ;JHA[;`ك;֣'-A!W^ aehīO1]eV O \ =V' }]^Qc(%OOznu<ĜQ؋TIʪ+eA%8d$ d>#gشgAnK}W;2(G5}3.}ysA4Ξ=pdZaQe͆փ$NLjJ)?ɅLo/IKcR!q1hHSEzsu3Mp[HR9"Wq;ED-ˉA0Qkrl(RDRT2;]b׷}7C輀썩$ s4|ɏE]Txp8TQ*}XWױZs۫ozMZǛst!G{~V7N]j[vjxa{L뽱dKc݉Z]`a2&+Wk Mv^a&nhkS/S#7R-nKv՝fŧϴLBCr=m8p cM7=۩ej H 6y'{H@$_MWӦ{_^gf2  B*|Xv-@!G9L5fI";1uCD(T>'p}ua$cc }bu~땺W"tFB@ ]ӶVc+U?0|7$:NW6U 0Oτ: T|w^)3)2ʿLXUܞ~c]'JP2^Yn9g%:N_1P8-vЍ'~{"瘲dzr~a7kTU(jߎyw\t}ƠD񪉸abR3|g$#A^!M{/pU#_§Em? 0i HGam4pqh@!#Eb. .lXp(#\u8"*57ҕ:S):e%eOÆfpgq| gy%CHNmݺm^˭Ƽ]IߕXx0J*_s~.%#]VBoKd-OSmf=mu\> :b( Xs'Jcr-t#wN%TAx @"t-'3<0zCVm*O_> 3Y%rqC{nf \a /E #!8&ѩE(g{`^ay 0"0ۯE&ymC#@;ܝ`(F[.gEq`Sn\^A=.#x腾*/\{9ؾ %:;vv_=}~ZA\7x- ؈#u))I*hof1ZOe43R"=)g*̱$D'Džs3c11զЂ$`LV@L$ 芋R? 9:X<O@WrqAcZդa,̮17yBt1f gtǵ'&"e mڮ 2y ]E&͊bc:xjt:F!3.\:8nty}\y?Z~*gG:{2 HBHU,-0I6v!rQ\WW0qaXx-ؕF(ngm( 9FbGzG YЬ /uV_l!Iar#?Ol\7"2 xϝdwP"/B`pϷ(-jК)j(rgydLlJ^l% ie9,b EU]#'s @{ܜ辧Mv%Rq A>tZ Zjj7?ݨMy+mI\3z'F`rACDiV-!vy}]!h^ UI!Qʉ`Nf?_ E'B_wZzl-ZB _O#R7|pX5J)(P~$hlOq֗߉UI};uA*8qp)/ sna5;]<7@ "{RL+.HlQn5q-&\<2htԹ2z.Ab·uTA??eSC[@0C6T3n&, bTU_!|Jy(9ExףV6e 4'>qR̭n$𨪼S4?ή0LzLQb]{& }qe&U2 ,N2J!F 7؎zotwq1hu{*nղ|Tk Z {hۜխ#4! 42>9N}p$X-o`kkc@&Ds6j,z}tƟ"*BflUbQktw3|$͹GŪ@U#dƀ6oZ9CPQΏG:j% (0knb>f7`*%FXō("یGJ84P~ e9Ϛf*NMW(s &Q ;H膿 *כ>p*,}KUhHJ{寜BZ=p"꫚(0#%)XI|C%[ݖ@45QJR$AU%>"|{e-A; <]brYZpl0C#bѨ cH-'{ -A e%WN" ih5ј*=(VA8;x_jD]|K~= H"ܞqV_Q6O0!ve~Rmܪ}:;3$qJ;*MR*N±):O'ah9 Zsپ|.nЬ#]Y=J{V_DeQ|x\/sr$7]5NFp(mLB7S.4f`=F|D, *l>ELa rC 1",/hR;Mr B4*Y9r)`ߍ!fD@MvHw>X=:rϿKܻ}&Ր;[&~Fiz)v$5BQac!788\.\kV*tXҷp,qX79bVziO('UU Bڎ ,keX*ck4 3ǫE6-3I"#~ϕ&y"`6(eGP{:kiEc [PP,=cVCM=jph6izoOxSvAb7`KidTi[EԛUSx^~Pk*<g>tT͗*υ "`ew9i-(pL~w5JY)l͟-Pe]R,ŝ%FL&F4=' qD?q )3q뽽ob5y%+ Ҳw_ᶟTl/nH9/@JD|#HCp-b3oDǗN3l$̾.yFH:D£Dv"]O@?OSyqd^D?E$d0P?|||Ղނ@7$" WPHԠ=_>qĦ6! _ˋ&s7'VD9!Kf+>U.Ө I.<ՙ@"g}#HkhmA,r3ϛUUUi>ěGgrz鼥 #,dx{kHn*xȧ1zWI=C0{_wmsHs2ء#Β-cwF5K/eI<*~߁_q*.),+w |(-b{2Q%xLaA,;reJ-JusȫxK8RdWS퍙} ^ `ŰFK$s,%ǔ"C%S;5 `AGE"q\UXx=6~^g9o_sd XW Tߴ:gسFlp9ҕyO}4 s~L;Nn Q-zquk#esmFҊ͔?U7drў"kwc)%;Ñw{=LnjҖIxL {޳lیUv`GH$5wtN$ J8f> Tԉ̿sb~^v7V߱Qb}+H1PǤYb1<:,4^4/#o@ъu524Qx13bˉN&%5%=Q$f5d" {^ lBc8I)ni+Hf= ZLtjl֪ĕ;Q P|LȰP~a90y3M8e U>F@?OYxm$G#̲F;i_3@8@HOeC%Pɕv]Y[}`5(qz;^yWmY1`ڨeO9;za0{VS͞V% WkC aBMݼ-VWҋClUZIY$(M IAbrm휹V1l_aAjKC]P \zb=& <&T WōG*nG]("50]QL%W䲋us 8 X #mdǢxgt%WR +t4 0:JV!sjZ,Tv> "[`X 2.6u0V~)ظdp.nRn"X%\A"8]e|X -~O'78vIQkN\G,^wbnQd" ER>-d 8҅AzyXnkfP3AP('NalҮ%Bj_5 F/"I;!(-'U # 懏rΑ8 ?5X:\tL} "o,CVo=Ymc4-r ƕx\oN;.H R@\/ |sN[fv)GF=9G׏~4KMpv]?m?B <SQonW/ʮy. 'Vv"3R0” g/1| ,MK<.j5_(7;=ANʯ`„q2Tu&"RMX1 >rY[P~rnsF'gB]! $i*21Hy .oJyܕ|}vhvax;yY4Ĥ tx #ݟu3籍Z_FgI}] BTllC1 KK߅@HTY>ٴ̺{n#IKɡ(AMդcqɾ)D]Owfen;E~clp 5 G}V7_%%,x%Op}zP+)5`7·9{5Q H2p!Qh߭1N9>^cDL>ezgIrNpՇ;p،V ̬Y}`C|vuES`qc:~X I7Յ79QH:ס\B/i/V&>DuɬLujŒiMwcEJ7=~A=q'QP*G-_ {5Iz]O+N>ӋKN3 %~0qzPieA G>3/3y]M' ˓pEd8щHT5N~ Av7 Z i '6yTt'T f2=4ynS׶61nwGu%m.\SHP K7Zkږ? EpW @x@W#3? d(bAg^r> (6ohpp.@=Sw>h@-Zw* G-:Ƚf3E^@:=ٹCt %A[vr1b wb /Ζj-p |=,aT\.qXĉ.s>mqN;z)k+㊸aT?/۾3tSl3VES46o<`Z*=Acppw=hWciJc8]֨}EM-ȋD詝%فoW-zm"<$7Ԑ @`"Li -3qVnn_DFc )QƲ3$ji@@IP['RފvtBJ.)U1diGRԛIךl[78uw%ϲjK2 pysv@$G™26dpMH*7Ҿ-de QL2;zxTsMv5tVE# KFmAI+hwN/0@M<'-cXH;@҄7J  9ʗG/{*[ӪR@A j(5,!R0H9]c5٪9"$;}O(:a"N)F;.YږKȟ94}NEb錖1 sOվVsУ=4g܆l"`E$1D1}tĔ*MÐr"&vޛq:v{$ ʓт!]c򙬷᭱ݍCs>嫦ByeDli>-eTa;F;far2лcS(ceX~ubO}tr\JE]Æ\KFiK-?R;Jk\fkyWsHFʧrg,3l0B}$(\ޒؿE4 Mg[7aҵ¹/IɁ1iWK fQ7"oF !B)u4f[nۃYK2@(ÿ!+7gn=VZ :kM9쭿bpbiR5Wܓ5-4gʿ"Y $3l ~Ja`m +^%+"G~G=e}QAR&2$Td+3mB&223 ojvς /});;aŧwKaD\mMU|.hըݾ,ߥ4~[_P)+ӻ ed 6.HY sj^?FuC"i?A/;&ăd&L|Nmm3\! J5{ KK6V3Y?sު{hRkG_A V0iC/mCZDA3CČALx"tj\[eJSX мƇӏ$+WU+=׳됰6%;U'R⍜ 4dmj#$i.}ʦz*6̋cA u=ZuNw9?ȣfWW!&NLOlh5FUn9c I'Q W^o!#n@c?%/4}ӈQ6]ݠm&M)Kokq ~#$DfR;ҩ]_ҪۿV]zv@=ǹ19{9fZ"qxlV% 6& dG3@bLzD vÊBmĚL8qՅzΦggh4O͗ [.*(KϢ̃$l~%n"15ܨBKsb_+g-}m\:$m[f݉'Rz&]hDF5T|s<~™`$(ܔ)3ix4 RBPl^ <D uMKEٌ9* U2Ē5KM`0 HlpR((pujh+v9FwGkz%s%}?}A$w^!:3Zj\@{Ed*UKl`vHf4$ PҚ#>a4+ Bd1rqA9_^qZn,њ~\*1oNHg3u <4_0*gL5NpH86]|Aou}Ai2GE"_a?NW֨ dMLxVO'(G5Skz㽷Y3}l8~x1e.v%z:c^|;PZܧdΜF #۵"~VGحnAŌ&9cm 5P&eHxʨ>-%Ps_ɒ5S)p3%A_zꌰ_ UIl7]@5~D p 9$R`7CVDnSC^=ܧ?bk&uY7 3,.cwHCq<`iq,* ['^P @o fx%r˧gmU8 0((˸R\c$ Gp3_p˧ (B`>ч |Ug{Hv$Y j =&M|ˮ5J8]eh1\}hN Zu_v|wغ)4 |8Z0Rʪ 5\B;U7_fi !R܋~=)[Qde]g v$ߨJ-ݖEjiZq2)0;N0z1R*GI{['gM0皈$ 3 Jb_[@XCw]L'Ӂ['qSpL..IS !U]h9 ^^EE<2XRdljog< VE#SQ x{{w5`(,:x,ْ}^᳢/xk 86y00B6ZVb@p$gƅ\x;~(o[_'a,S-w_$Gi)aԟ ~L(O~Jzc}]~ґ»{cE-Yч8~8hmVЋ>5KNs K讁sRnpR4Ò;zkxРjP *L ڇ4\a].܅TW$/ &1ųf GRil4X$0@kN͇ +{咀1j5~ nTmkr!#<`*O#e]IX^\ch ' 7~x$W7>DpHz0զoc@?1NtJMS_\Fd[Ӛ>,䄤=^,]ƹb"F݁_{3ưJf-ceU܄ϯ냚 d\ "ՏT*$ !JAb+%(Jh1 3}L{4P\/D~+I{ubA-FQ >%)q6 0kp(;@PP_;2sb*ˊ_.|.#]<KIVthK+q)OF |?qIFpܖA0:_PCXX\̹4IrOlefB<2YR,cVp9ώn1^|.o>K&Rf}bF]ЛVΜVbֻD$M&)0)l`("̣c H O{'dA&ΊA?W`d gCm)5NƁ r<@Bl4dW+[gBtiּ;LF(TEpl \,jm$ uM/~[6w],}WiB2[#Ni'ȶ[?%FJ`I"Bl,j۝W(cx;V*TRЏ@9[+M10jJ}'fDPP@Y75B6 rbQ1EOQ0N_9h6k,=ƚY^hlCC  7 ?:7$xa] ֺm|O*&ȪľC}_;ɧJZ0D@)m_3Z9F007YA"dZθi| lN0\lsL8= S]s&"AHT\Eq2D 1!菨 fA6& YrOx;AH/=f_GV_00x_C&uò)GgNjyy-{5 2.SPJqݶR8zwu7r|T+Kz6nAYt*QՊU?:>GsO,\1TeyhRSsQf k? nQm%\5lk~U};lSQ69wםqZd>u-vr+ oP$FM]ySA&Ŝ Y؈ ZʭDcb1;KJ2C!࡟p_Lv^)pIN:|hݝ)1z. endstream endobj 176 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.14)/Keywords() /CreationDate (D:20130920191558-04'00') /ModDate (D:20130920191558-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) kpathsea version 6.1.1) >> endobj 154 0 obj << /Type /ObjStm /N 45 /First 370 /Length 1820 /Filter /FlateDecode >> stream xڵXnH+޸AK^c˛9R[J|T\<;<1mau/lTM !7 4>4s9dv$9sqxyyaUٮ #AǪԤ CVM\ \p"} <\/\L=Je[ E WbYxt.=Z=YU7bD4<<ǔeXE>4{A^!zp}M`|X+sx4=y/Bl?3̪;`9{p6ЃV%㻴 磻[KѠ+9m!wZT_] e+FU3P^ί5xsռL٭ͱoEF Y!o* ig&N\n^ױװmsͱW:~Ǚ۸o^mXUx7ߏ|Vak^gȆꅙE't`q-HHaEp;Su$Z{g뱾 `|'Yȼkn6+eu/EEeMiN9[!7$jm\+~CEp 5|[LM N>U?SiEVhueV|)ah8[H obVxjXnRP-(M+inu.oQVuERϪ^Q)FvJaYŜgt {n\»h=J8"Ł[yϰu?-|f]lǬK`5/uvk5Qwg]t <9A868443C1B221CA29CCA54A0C657DD9>] /Length 460 /Filter /FlateDecode >> stream xӹRQftEepM$D L,2cjU>!U$ܾ}mf/%Sʯw کu2ԊTjH5P {A{i qjVhX(5A3FCiv;!/.he 993%ij7ǎ گwzvrpzv6P7e-1W~葵^YHPrqG`@V|!paY9n9 Ge3J-v8geO~G\p.Ȟ(8K0W`ʌ_0 S0 7&܂0w.܃٧W6>FiNji^ =담(}yc9ҒO'.6RS)}JW9eH|L$@/p^TP endstream endobj startxref 216883 %%EOF Zelig/inst/doc/manual-gee.pdf0000644000176000001440000127711712217153457015633 0ustar ripleyusers%PDF-1.5 % 146 0 obj << /Length 2755 /Filter /FlateDecode >> stream xڭn=_!FM.gn-Ѳ%8I~{m!5Rș3~w?ldVVʘEMzج~ʇYSJd{5I߶?Ѱ616w'"ϗfsgUK?A?nqӸ*:*hml,z'~jP9{6"rU%EXLKLƦʣxO5Pq#w"k}fDJ& V !S<2K'2+<>Ii)K%UnYϷds}#.5RtkғqsyF-17osըh͒;B/'\?=#Mޏ1~Db,rzZ#LtqI?73NOBWXO]ŕCdg_o,"07*:*`LEq<B7g %qKTt|Ujk&^ZUNA l٣؂vѤ ؟\ٮ'zY#ggzu'6N8lAI>bk@%O".ic;Cƶ>C 1/_j68S%CKZ0HP;3a8$0&9RB2 ͪO$GQIiٸk^t-H?*[;L@x"3 qq>b;x2&93M2+:`6z. nK:'\!xp!@@%7^8L\ak eLյEIT}DB]Wς9ϣz^x0kF'zIKO# zi[kZgVD< e/J 4 Jy}*T[:|4I;iCx$/!L9 dV3( ٙ ctR~mvn -(cQg괾8]]6M¢p % І XՉ,r6E&M~%R!S HuA͑7+dN¦ckp'8'lHzˬ@c'DO;kZÙΈHـ؜ VX  '7Nݘ:e^d̚66Z{tMDu5eAE ܨ#X'F:QlA/dϡ@ArrlSa57be+Js=B o6ZuNDt׺kITUػݭtަ,fԻ{o]V;*phŗC 'םn.WIIg6MlVNA?CoY Ӥ*w~%"yN-V% IYnЩtgr]t#SOĔ16εV9PD#VQSNUd?%|ô9b t6#FZnw-͖YoxU.ˤ@-K /2bƳq+8y9oWًeQ(AZ7r ;ǻOW;wJJ37UE뼃6IUT>hN.̑pKb%šM2`qtja{Oyഗd{"FNRM<~ U_[1~E~휞:ixF;]$2M_z?ܸcF:^~6Y0")俿n!odJ;RE/en|eIE-?h@ONǣS*F%FkonYM2%t%V=OE?Th.#1Sp,OX;w>!ùz\&ݴW%:$'6۟Uյ. `nd﯄o o9uv9؛MO^_ ֘Soc^Ɩ}Z[رV$-9Kj,Bmq q(dC@7pjqe ae}LRQ.{Q. 7D&&҂tEV*B=x=o,}˫'A<{9<ŢBO#b>-VHcf?N7и0~[j\g"ąQe~X|Zp(폩CnH5Ƅn1$.hlȎ51 ?.Ps?$o(? endstream endobj 164 0 obj << /Length 2444 /Filter /FlateDecode >> stream xZI60r}ALi &uKU:m` =Z(Ql-Oׯ%_84׋ӎX'Z…Z\.~^_q _s*7T4ׄ cG7+sW#p`p DF&`V1v'{$us G2'j H疛7!@)o(o@E%8<$5b$Ir,ެEӂ)1k=uД ÉT@ـ@&@Q71΅2*s"tcC 3Ji& 9 2KqEgԻ캰~:"- Ez1#'FdI$ٴL vxQ\<@pQ@䪗5(Ф%9F~RD&} "!.^Ѹ˔W]/D1AZ=.A}OBnbμ#5Bˈ$& |Lx%F6ϣ2bI I^Lع 5/n}5)K2_]ó]º.ҡ)M5N=&وS s_ކr)rkWa"^F=.?`mL\Jha$fjzp5M\sUހ F{|ܬ;wӟ}R:MVE2MM} Iı gr7Q۸cdQP ~ >di41m=f󬤉эcXBY[\iqRo|;2HK*,wa 3!;h7qyEm[1ۡhmhgK3Πfa5ip3Y~Q fdLH}X8֨E*g%IΨxFz$ נ#*  {i '|˘BfVu SIt7͇̓\G'W! 2P1H]r]S.'|p zcSb[ڋ+Y%d5(m/AbZM*BmCm.\7hCE`kcud\I|-j' =8m)Tfևx (#c&}`0xokY_GQcGypY]"x zm㐝 Mj<܇#\ϗx> yC5>x}FLpb5ަ[[?V%*gEB}I#Z-A-[4~BEgbf&ÛLl<o>Gś!f[يIYI{Aa5y8^NOzrt>v\NcH>k4LJ3&.| \lBejKF!i>u:IN'fBN_^<^^J_Ȼ'JgqIB\vГ<fATG'ΠPzr\ς~7dܗ>z!~pU[kqsM 33n'( vݓ ;72 w"ߨY VUZUJjTBnc!"W Cf\d@>:Ld@8U53ԶM!Bg.NBwZn} aERp3DX;[D0Ǒovg7BWi7f^3 +r)cq>u# Hh>|yI.Gj­591]!j@~>]j'' [ _o)pÚKBfwٞݸ7l=C2*!,`eT^hݮs a8˜f [Os RB8gOU//CC|~c̖ >̴ӳ?\|1e endstream endobj 170 0 obj << /Length 2794 /Filter /FlateDecode >> stream xn_!}Ps¹hڀ&l) JM^,=g!9;#HvIgΜmٓ/^uҊ)wrvu"]+BOBi{rvycӟϾeH5Ÿ4ͩ663_.vh:5aX9#ԛZZ"K+-6 kDݩ UO~jlCooܰY39UzN0^ïw{BO`as rZ0?2B{0U'rVXgNj)EkYFCHA) ܞֺ !-!u B~ GdgWwX *eGm. h_08yAuZ?͸Ou;Ԡy@j'lJxi (H9iD-Ed 1{4[I1o2fP -$#xpl51јdkK[j\FtuvdpB 5jpW͉!r\ 2M$iRdb3䥰d "C_` >A> =p$d9ە*JT`ehdި/H?ՐXc?惔v?YWVJVD 4ʹXS+hܧwswp6?:+bB9&Y୏KWҖr@n vSaAm%!خ8 S`Aluv46;mnB?- ίHJy1cJ?>|(7"4۔s9!{VX~@Y:.>A>{Z?Z?>ԎLq1XGٱf%Ulv[Γ]^_0rڻXB'{c\᳆̸˂~=ds*rN:v.NǠvH4*c'Ib?hbrt[mjC~,fcvәòPaG6`/cه7Q'ʳ\vo꤇k 3Jրڐε@hMPx$1^'J33Ѩaq$[&kʎ۪ramLƺZ8fis Fe S9|0~QȻOpx7t"0XAwu6i'E:L~}b> sk#Df*"~-*Yh޲q8.DLpvu7}cG)qd^|1` 6zt¢7@&v>_~xM~dA,? y=12ite.Wɬi?ep !|=g#&}k=_T]> .cN^,}`C;A'侘'Z1yX0?owrB`,;tx8{?0$ؖ endstream endobj 176 0 obj << /Length 1500 /Filter /FlateDecode >> stream xXo6_a P+D@dme466YXNqi~:Tu<7i{^YƳʈgq9_rYqemr|s98${ fH (aap-OETdg!ҿzP;k4){k~p+f'`f9VpH ZGXk5(!H5X}v c`hI>PwCADQ}f}hxbj)D8dXz4>Ư]BƻD/iuq#ߏfrQ8T!;Εy@$9q1xaP¯|D}E]}GR̀تҺYS,ƾ@]+x:<| 5 ŽUѿ'R4tH4w,)ԑY:0- ڞUak >Bd W^ndw h/7M5.4JKr.jSnPIJcwX/qI9469"q|?3.bsY X75wȷkl&%Oؓ?] ~Rxso35 5.'+u}5htvU^;CR/u;36IU~\PM(pIh,u0#0#n!GmԆH(Z;%W63/0nM6/`AؤBTufg'/mVpi ުTCwMǬ{T,nzO6}t ưk|unr0#]p [RMԓkvMsg"7ssB+%lsH/mv+CT8V3OԤ\y((ӳ j./E*잓]P4!j_B6Nl] N~5Xmc  : Nni!Vq䘚\xu}Kɒ\ 99#5=965U霈Sd;l+ly%aJO8-zLB$!.fVɈ|ゖR݅1Nf C++#r [6/&6#3c G][,Cڒ> stream xWKo@WXHH޵׏r@$҃8vZ@xvv>m#!aݝ|3iA I4rSܽT'RkV{T-)o3}[tܹ/+&R|*&Ek"tjJH${GT2OZ5$ֳ7F=BZ#o= i.r8CϏ=G1Er1Old4έ9}0=@K% ='nP~B XՂ\I2?!Cyr }e9a9ׯ6 {\[kJ_07X)L4Rj9s]Iz9}_xuO^BvkbT}`Utv8i?KRx)9|Ʃ2YNcŁn0[Xe4s`;T|ft,lt@o[>3" Xs,r<5_ٹe+V> stream xڵXKo7Wqd)z)-At)6zJ,cII;!WV%=)*3ddRj|ŬFG0./M<}+_𗗚̳0e~U`J[וP9+e-SWe3Q3gsj(?Y#C\/G8|.Ww{b$M`"̤ϓ-}ݵ;t|DCU Q(C]AG$߉W+Ü :pgj@ҬPIeIt27)|[h%dW$*^rl8J-G6ʹ+噘0cEPiV*Q+wAhDl뿺CxPt~m+"(ƍ\q1[C) %{ըRJ/dt>t>q;!hWŊ ځy`JJ=0q"htx0 Rb2v~s<3즒CS/~73"MkfҋrF0U2L)!Oe4">H!MDz@>h`͙: F/L-i%i?d@.e =rBlާ>IS(CL7bG}I+^ ǜ=>$Hܔx@q+TAf8h6 XQy) TRLA6 dD&QZOE1;C1gJREF>J[àlYЉtp(_ic&ᙑ'6-ڽqͅ&dFye&@o8zp-lwźr{yƘ_hN(5z- |cxr\ aAqc!d8(95 a44}`Cܤx ÖE;XI >@DwaOûNlJebmqq|EC )!.ڪ!xGm[(0&I!D }@9GJ (cB0P<ݦX>JE&xQPm"`\^>̼}ǫ%,B0Wtkz7hh#IoEl(Tg7P*ƮҶuOh,o> /ExtGState << >>/ColorSpace << /sRGB 192 0 R >>>> /Length 3795 /Filter /FlateDecode >> stream xZ[fE}?b?<&hB" 20C ( MKs}ppMzժ)G9:vcƭ#ZzԽo߽8p|sW;ǻݝ<~ُ>8wxof8Vv|}7-P?^6NAn MՄQA)+MYhBV0ڲ26L@S[Bhyk:W>w*FBDUߵ[BhN1vlaH;&=F e;VU֌f;l>o1V"Fer@_!FwȠIݸ ,DMcAN=qjDSc{wq`o"j{9p-XiXoe֕LS+U1Ԁs&p{mpb-j!kMo-dׄ[׼%AgIY TzNpki6DڔN$`܀&e :a褑Sac ZWL&g LV&'bpjZ<I5`Nc-!8-!Py]LMp҇m&D 1 B|nYm?IJa 5,K,$`҆xA=#xDc: cLAeHd"cyVho()f0mXavS 0"Z4hntttt.nq<` 0\n¹M dm<ŃetǦHp>㹌JD!AY003>Ok=HH*A6:#ʺUA?e*3QXO3k*Thgƛ ,j+YVITZj x|")W_KzN+ߩ |= >WgcZ{'ՔV}LJ+ !:DrefŋT|_N"X|0{z= CϧBt-1w\xFV"?Ɣ{8HXHPh"sDQr|2AvMDخ' V 8X8 } O+^DS~U|X`g}AB`y̓=۔JU]3yra=|:1$Eģ&F&`&^31IVV= bǟb{>gsZZJx~P~Tg,\mޜƃg=r~R~@6|Q~̘-o>oYf*`W=uM gIZzC]Ϧ;P7в~3Ĭ8Ÿ~a~&f6:n;UoNwI7 5P_59|V,G%co|Q-3[u fz$# Koԃп?sпԃп&ez׶'Ni=װmǏv]-bw}4A=Xԃzhכ$"1zF=8[BMmJ~_z3Gb`2߉ٯ ~ ZkZX_T|'f}-l_CY1zn,{~V#15מ_D؟V >!Ѳ_yQ$f!}&t? }MfV3Eܾ_P?왘ZM~PP?`kmk%) [kgK<|R=nt2arŏz ;ԃC9Xǟz|_6 ?i/7Iϳu-q'1Č'nRvٟ݇ԃe7}?\.υ8/,>wuxRa?1/Ww.7Tgqd{ 1jt)A sFԙ `N4r5GG^V/SQթ\jԍSJ\0S{.vF6I x[ ~.ky}֕m2`RgگۧCCNf+<}Zg.X,/r+Y_ru:MwCn uňo:aE/>]kYNIgs-_Ak%t;)u]* =c"EN=kMּ߲֬jfr"5 tʳVQJ ILx2FJ$b(bQ}F>pM/\#<\OcAe7 WCOm1+W^ceLInRQ hO?km(41)HՓ^)|x-S&[JMD-'Sةӷ.&K {P ӋKGծ5O4_M=*uZzrJ^/?RɆpqV?^~L9o~ _mWS$RtKu&I:هXϏMHp@="T~Z9zy|CƗø~?a YW?Ws_(Ͼ8yy4g_Ox{d|>%w^|lqP_|$ǟbI~dIh\>8A_ 5'#Ź>G} O]܏>SÁ ƽ?#쑟wt|SqRBra'q޺6o?7 tu}Ω疂~Cک_&]0f dQ߄t"mѹm^b{Ͽ˿xu|䋧86Ǔ|w񓧿8ɟoHQME{t/)8?|? ϋė7_x꿭OXh endstream endobj 194 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 806 /Length 1533 /Filter /FlateDecode >> stream xڵXnF}WcP핻"IMCRYId'($rwΜ3gHRNFRƑl[RKZId ;Ҋt22G,>-n!b);\Ì'%y|Д[ .< fN#xBRr9I#)Q 9y+ǎJ\) )mi3(*$ ȠLg /7ɔ Gt#N] "^sz+98p@00qLAiP| rhɱ@-2IXZ,84T,Sӊ)@T@rApH9tRRp+I;f x!S.&'aWd4K2)cޅJc.qL74(LA;!x7~SȖ@N Oτ)ɇjZf5kcOI| H\Г!Vcݵ uFϞeOVz].V1~KcKz9vE/JFMk6qaCGvYNn/5ϕ ioq8k6ؗwGAr)26` 槩lGnxq4"3l/EliU=/0R5C/Nԋ<LH=FAϒl[mׯx&̑,!쉚%p>Oq3EK ђ0K-+]= ڻ `l+-O-<Fϔ-cdK,ٶxw%Z>Gp'~h f@cDcF#cޓxU x4FUyMq@2M}Ԓ._twt%1ЭB_gpMyvpu?:;2gqLLeku-o95Ste[h`fQŒY8maSVc\<@9G%XuNMsu[lxb8c 3~=EgQߠvN{ŧ [';gwR᜵0&l j.^w_>IgH?Sx@>ktRu::;(μ|Y8GvWq;;Nl58T=yN߷ޞg>Ox5An> stream xZ[~_a,֌x)(KfZAkkf݌eFe{R@v;kkgjv |n9xotyw_|]g8ҳI>cdTTH TpYVޚOtt(ҒȢw-p|kS|5 Ol7!ƪoBWμjR575NO顄SK>4)ͽB,R 8NAk||i93kjefmS*gKnV* z!n =)"2^}WrA(ͧICxP.o|+k,z_jw >5Kdo=2(V榬 MB EeqvE/w?D ΁ F.)%CYQa7xlN(hڛAեҨP3N&ֽ`l^~L?on纩 f/;Z9XσVM^^_}?oo7 k7l$~eUY {?9S hɏDcǘ<:2<-HA~u;=3X=ٻ[?/LLdEQZ}^;Leq6Ǧj{teͦE駉 p*5-W(..l*x %a**)=&k Bꕭ.FtjۯCac?cIO}ԆUʝYy3Uj0T7 Kt*x;Yi3J=}iʴ71+}7qwH05vθ9%XbMyRB"0>SiZ#x!j> stream xZKϯ=H嫛IE {,>H=31nISEnj7?^]|RIŪRЖ'eaTj9y5}-6wb}6Rj O-|%<{ߢyAk,`+*Vxpw"Y2e ?ͮ7'}7֛ <־eͥ5wս]nG{_\Y&L5K!nImo!mh*e61ާ̔E@ I-]Ƿ V(:|̤dQַpqĘ@nI15%v't*J$fEQ~;^;26Ρ@ bKߡgus fWZ 785(b@vkx؄E賣}]% FA3i׷'{7 >-pd5mn3|s BkE Nj5m+ߔ`Js@^ހ@^\~߻%ʕYkg8/.]D@7$(dQZ>YB#<p?DJ3#}?2Ģ6 1 m *߭ƾ@2+hTAS5O!*CaLb\P8?K2q%uj+}R)09pXv=ʼAHKY fGG|b޺(CJ?gE kzķE馻OB,| @\.>Y/CBULkIoiօCd;~7;DnZ" @!W@uYx$ܶp@l672VwhwrJ#{p^nr`#ю%QAčA޸>%EQNoXBg4W% #B,tδ etn`?Up?&ycbX}>ȹ卿}|$V"f:o=6hQu3oo0 xAAæό&D/ ^joϒQ,hݐQ=RRJ.djBtO$]Bvo?Q~#ټt␓&aC"W=S86r։u7j@󢘾uuob~=+%; GpwKdk1`KNLV^I/13U{Akܰ;j퇸I=7*_';d8v42TǠ6 4!ɡL{bJƯIVuuꙓP ؘd0"1p8Ų°ҥO`YСpv˪:#kzesK̪d -mr{+eȡˠiD,{DE;!"IsӞڶĺ*mHs:uj%e`VAaxdAwTg < | L3QW~j"?ro!o N+>nwE S~ k]>3 ~ZU:w`խ0l60aA{w_ڕ Y2\, Ǔك.-mBP:o!xܧ\D˞'ԅ+5:2p:D+b\><$^īޒ/6uZR9B}3kȝr6b]炸GO| nY-W#YyrˊNFWu[O3-Y}7O<7>DR xgEe7Ŋ!qɊ@8жo|wB@w_Mॣ? z\.?rҳNf9DJ$2oX+IdO$jPy62}p03H%GssH}㻠6 Cqm0ToEl%sn'>)3֔fff/ۺAmҼVbu"L/h@D\,A"o l=( endstream endobj 213 0 obj << /Length 2624 /Filter /FlateDecode >> stream xڽYKs7WR[*q2`^9^%k9$aD(CZo?Hɛ$@/&mJS^\^e֍(*5^^gk b,.2^c'k ߒܔilLM$#L70lq[Z|rみ/0H ] {_0@gCV ~L6r-$[#t/x1K}Z]?ΊB*pu}]W딗_a9 j?3R{ U"B;g=ׁ%-eV[{-!۞߭d5deK}lI@#~-'r=5[.:S}tӻwol''Rd -M>qڭVqҤ+LSۄjaI*#OZ߰= "ZWJd >#&&o2VZHG MYЍQZ9>hVd>]a}l4&*mPԐ&2G%4~ﺕvBПD (묞⇃+k{W+\F<~%A6mdٯh}zA<bA뼁F՟v uKP;P%#!eܓR{ <#喇'~'|"Hl<yTN3ww2yH~9.+|"jtɿz-v|U&H5iE.E纒m#%c+!ii!1/qNMu,IOg0䚃D1&Rv_)>hZ%W)tAA#csV#mQG <0Q^mcGXIZzBTs?1#~PRޓg[!ޕTK߫oxyA{mڳ5d]"8| FXzUINwmp4 z*mkcP=R]Ńv1h FQďEh_?he> stream xZ[o~Dd3i6 +@8(V$%ѡDKv foRjݹۜ9;W/Y*oՙV|j'wsn>YtfC4o3'K\z]h'j:+c1yyp֖vZ[njp'2~s.Q[W;sK#[C@iI=+fZa& m-`RY_~ `"I7%.;\f'÷2ѯ&+^lokԯe_02g$2us&m0:''ύ$A އZd6GM6 qq6e\l;|=na( x{dW/y Fƻ0ys U$h/Jbb=Qn3ޭLCOC{E waj2{FGefJM3v/ԺV^O[KW#Ѝz+|-E~_OFx#/[ƨ88Ȉ. b۽4B¢lsWY!YlDE֖Xdy5' qyoG6{ӆ{w"2ㆦREaEڣB_,i''K%Oc IP BREJ3"TCa~t/)*.CFΨ*^2vCanQ}'Xͽ('[GGK g+e[\s 76_t)#mvRS0GhO6G_B$_q'@slwCċfemlNUk1NL [흊6} RUb0Wu:ICƥܶϺtʙ7zO>OS[ )8(E)7=5 mMT8rg4\G>O:E$sreq\L$ÊDR΀q M<ńIׂ#1nr{m>L8M_|'`A:u!^!ϲ]}Ona mU#DU5!@'Ł0[񊯏_6yr=o{µ+)Ikg}yEHXmL}yۆnnȔ˞l",zX9ߗVT 7q#cۡt<]ofr< { B20:ҁBd!I5 l B*dޫ>zp4@ :2"8 +)\gCW8%XOIeyp[[Gs>dIVj'i_%VT@4 {Ss pZ1PJ[;&i{ڀy+eVD2,C~LU%*e-h {94<2B/`"C z;10*\{G3ew#(C'(BRaa|Ղf[k?1p3 ?f Sb^S>BDL54%x->ؠ/B!uHv k!MLfRt(@{O/EiEq(f[l1'RdrȐ`MV,5X:7($2sv4@JNvt8B&,P=",1_<GޥB|_dXx&\%భ[!Z\6 N84P9{,9[~i z i|UjZTKDtIyI*;HwuTN+M#Ϗ<9\ST_X$X*ylDhGhǝv§G;c3ha#uˈK'(u Hjx 6yiᛌТ݉EW 9l(_zmWދH*-UޛdSc YzT5}`ua\W:£Лغb2vԆa?'`fXB'>d31Ů_&e 'l[hk*ñ7G!X\/t0vR?М`V?LY)C "GA41 N0` O 1/=HkU rR:_Ut9p#r֜VJdK¥-@n Ҡu~"*_2&˔\݀!Q;~;ܣLGRy} '1=?\o/jbjd{L.xp,zۜ܅q. C~Bµ endstream endobj 227 0 obj << /Length 2689 /Filter /FlateDecode >> stream xZo6߿'X~k]{88q/lqe2%ٴDSp>~3|I-jz|-bm&_M~w>vI&~f sZ‡Q:(wŵ6`ì~Eu?aUG$/bCg5\"MYg-]WNwYyű_ >y[`HT=Ш`_pޤh .cׅBFuvRL`c) Hάt>JmKrA]*"d\qkQZ H\(qapf_Y%Qi* B֊t=SCM9!}] ( |#_yh`~v^&9K3ո[svD~.vlw2.u#jEmΒP:tZ a,IP$J99|KQEtuswQѦWҒc?&wd5t/ݣ]⭀saz~O:@]YϥەD1[ՇTp~PQ,nshI MΆ.qZ-X] adJC!^op'3BZgps10CK"?ЩlIHE1bD |AtQ6BGersqDpSC 4[\#MLPM{H~0rYC7"z䰪upj @S~-ّR L4C3Ca,1*8 骒s÷ ۠0 TFaܣ3k˜:iɢPSiw'Dz)i3$;58q0.I)5*Q;c_x RIB39p^ i؇8p-gK?-d[Kĭ>t'4PO(:]!P+ѱN>@eBZN|(qŧ! ~4fN!1 Fh΄"  <u68# <_Յ`5R5$|}9Y2֔SH=Ae ԃ&ā }6 !0ym H8O!S%yZ&e)*m-`S81c{w %4jL!I k@xdBm' u WZ+3eʜ?XpE f!kodr>bs5[[3ai:B]=leCfI~pׂTK SIBF}ea ,#$i+;@~A;vFU"N\ٶRnަRT&7ul3er f([Fq,Չ-"fI{I)me{qv"eด=7]֝cSB´2B9n1VB~-axb[$0Af<{|Q-?F`V,^\?kE~@AW qehhtm:5CW -e/%k@𝴰SϛDwGl2R<YDy'BZ.( BD5z!ϳN˰ iӳ-{1үmnL}],*n +W<4KpyCo?{i^ץ#C80&JSHT Yu6 l0g⛮ JX5ڰ(cNCbS0Ah{"a%(3gĄt@i,eȜ:SWa{HuWJɫ6&*d ,ۼHIXg Z#j d볼F Ot$OOxVN#/φm|!>MOd2l #JRim{_C:+{+C_SeFJH)q1') y+ ;V3-"U.{&–gyR>[kzj轵CTP&9oc{&Pmq4PҡW^:gTU-e!ܽyJ 6+=V¹]k;!mR>GF v)ݲP䄗0[Ct2jXzl**)> stream xڥXYD~_pĸm@ h7!I<d9Nuu'N|TWU={2JbUͪZNTQ2!l15{/.c$3ZMy𳁵Ïv1MoY.yQEmkb4-L>5'/ՈY cqiqa{waNy@IC8).* k:OI\7x% ǭٶ@I*k8fHM+mDY,͖LC\%׾uj0K7:Q˹V5ZֿnƼ[_,`wͮ}_6+cvܠ I ]*Rl7NRg5E9&}oY%}TʙRnSPQCeCzM Ǜx}R cv+gyxڊY CuCcYB@dX)92K i+$f (I\(CI_`}km3 ٫ܛwbHM{D"P$VmsXә9{dc?I+yZLzZ; ,1)Ciߠ=d2 ^"/;[:Scc 7[`=Q@T%˟624upg*+ Bdfg)nE%\6fX5fEjhjo2o9YܵA(.ʅVɗ k_ r 0YOr xpQ笨K{Mv+҈ }A#\lM(9hJ4 H3UWəZ{Ada @;nӶ6ٌRwN-_ba¤4Ɛ G)6OE6"2躼l= ~%K{6cz?gfz\P:ms"J5;[n]] HM1'BZGjvHh6vJ[?]/7Ao@K3&s،Mϧ:;jo^ms,Ѵ|QهvAi NX8 ^YMI5NI&`Zczi|DpoYy1߾wXr|^#{xg;:a }KrHLMo>26짣&p!& w+XLi-VyР.CalWc#fo<{c|),9“Q$8rt0"MC3΃sC*Np,;\]qF)!#wZdw"XENRU,`Yv_uKHj! 3,cxR|%, apB^ cG C2 Si`f]G endstream endobj 236 0 obj << /Length 700 /Filter /FlateDecode >> stream xڭUMO1WX6Rc]sZjTQX`J6CCUEOkόϓd*fL0kja+vZ|bI"t{޴ns@wOLRJ ~!Ś.a8-u\ಇus]VY:bV;#{OI)xUτz$/TFw,Y:$ߡk^l>r+j)ѷA&| I:?v vЅ:_pyJ:yLIGCmv$%6VBӽ,e&kDփleclwR mxcACR:Hq`=p uEذ߄/=>+g1-p&tL|'ƚ(aH;S0\gj@'ڍ -+^TbMNMΐÝ1:8kdl"L67FpE t^+L>Ch1I]sGi\-Ng0`^LKuqj2U@v&=@$kHI 56P~w~8݄Ԧ*]"rqM^2t/-W4U4;K/y.vb+2CGWiWVhԉ, endstream endobj 242 0 obj << /Length 890 /Filter /FlateDecode >> stream xX]o0}߯&i$ x@lH0Uhh!k /Җ ď>n:$4\'_sX};<ݤ+2DH.,Ao(DX D #5)gQK=kN%(tbD:UycEc\jXWk޻ bƒ.G%"seƞPytSO$uN zxRtLA`U,ozteMHB׏s]& 'bƁ@'PAԄ6Mj1Algs2laHTNj7ϛnyznI?֎\6g;d3hd"72YţJh0m<]*v,- \ t+_~p_B6ɐf[:=6E38DDfʅd8BiS&EQзNWw3cj5np]@hb ENs!9gEPx}\49Pc!_'m;α.vRZb'}\b-0o7Sk-L> stream xڍVYo0~_!!qc{R H@p<,tbG>x$ U3͌|<8|5ʣRʢE$RHEɅ&O/r(j4֮D\ƮSKw:ceb|3Jǥ]-(1B)%RҐ K% <Qi`kvq~ .Ks(J:?P=55lK -'#Y”*ҺҚ̌[-K\>ڟJ΄)}ԑՑ(dqi1LFed⫅٪/C0Wmw {Cpr# ) cR-F>mk:LkG9Z)Q7osmՎPilvN!BuExzK"OA\vY ޹ 绺ӽ" I3#Z✒,ww-z $Afhy5gI& ļwN:V7]ڍᆠZ)k5Jſ e ;; V,uoIje~șO;dF'sΎi`y/6S䤥dJ'V{n`l9g>Y:y)6}+ u3uŽ+*TT)2YbEQAR<k(lW 6%V&hcx''킮m8v>vRdz$]|> /ExtGState << >>/ColorSpace << /sRGB 253 0 R >>>> /Length 12748 /Filter /FlateDecode >> stream xK.q{H tȖH@(ʦ Y梁;CZuUTu~[~ۿ|_孮{:>[xo?RJoϟ>?|~z2Nxϟaׇ>߾i|E"wy:xВECI//o9rH#I"nadI7DӇ[8'QSp~jIVyHn!//ɦ[[r/O!fY%K0nl$_>Ad_^]r֔\˛j|Ⱥ]$nSNg-%ɆΛ˒}KVI6с\\lhYrVI^?I9$kܒ]d5% eH&%gߑ$nNI7T-4^[$nMɩxm8E/&u eG.eq:nȦ[`> u whȮ[`7; _OY%2{ΑSr_fC9eSr5Jq:C,I AN3 kDCG6^ ٳD1!y3EC+KD-rV=3:%ՑQ$ eƑuSvܸ!Ϊ:RVeCy R7>E-TQC8:${-t<$HN_sA%ɆcP.Ɇ~ȶ$Б su'w.XҶ$V#t$V#9}H#:UgMGr= k8Gbu*%PP.bO\4lXeI,g)hw'fXW#:Gw$V3:kI͒XTI4tV̿\:c-hHNGbu>EĢŃru>ёX4Xlqu> ~ I[HgO] HHco졆<<ёX4(Vg,<:h9ƑXͼ#:{qu^|$ͭMY;d3i ڛ M#:OcJ4t$ԜhfY)lI , pΪ__64438Eze@c>Sn/j)\ϴ5sϩrS4ۛ2VcjXC86tw*34k̘}ѽZc^Y4M;2E{yMF{ 4U-rjj9.cA=Uk,GO}zf\x3ЊiYc<ވCZmۛ~ f{r\ŏ8+&fu|y@c} 2[c-?hٞ72XΏ^qjɹqA_h%}yM˹s]6/ۻXlVh,k\n֊]4V<~2tX1/kXwahnĠ =X㡋x(S8hϣd.qZnK.=7Yx>GOO߯\uQ8zp %yK㚿n_os=5}l=Կ~2"clӻ[cU>y@p Bb8&8>5h,Ce]58>484hYyK ck5j\^qXEUjhXtU{YhXuzz4ȵqi)՚u20 ]uhYKTT{\6д\{%m`4k~>KAp_,j߲J\^h F6ϲwk H ;bVzB5Z4̒RnlV^}}0Ѱ-t}0{N]h1ijپ32l6Ǯft4샑=_b)+],?Y>87h`ЬaXξa{AOuKl4E$tXHQ3jݵq=e6KsJWmj]웣^ag{hc=]s4=a!c M'z p{t$_Fb=SG'$[oM?9%#{og Sn 5>n?=5qk}aa}4VaʑC>'k[Կ}~<+^}ЊS.8 kmѿNLoZ1qᗭa?zʷHwi,NWz;`yW{y+ټ$uݡ]1^OM4JOBG>{ৃzeR;s>5!}F[uqFV:ǿmoͯ~w-oA9d1~px'.V哯nt~^>8#6X휧vyQK>wb㒏A8G}q|K>/Zqq}ӽ]}t[6N4k'_FCEȭ-@9?K\M|઺^;4s?O7o>_~O~~O](NJ1?qWͿ~?pEiG7- ݿ_7 ^&s?׋+~B[~çg~o_2H/VmXŠۂ~[jb^Zցnou[J-KX( .耸uP\:⸆uj*cF{3Yz<2h\S~rVjV6ҵ[PwM4ʺRhc]Zwefj#V2t W 3uaCRMxѪv{E׷`jv{Xj_մ6UMz5]?.kXbڰW3ڸWnOwQ~E{s5wis7KƾVj+ڻ4JۻN>EwaAwrs_!{[Z3ݻf x/{m6kS`oV :K\7A0=,jO q{)[z{=j/+JUQ\#0@˚AH5 [zKPX.KU|sakva3 IlX+GX6Saz;6zɋ=Zl1-45u1bb4@S-H1o .^̼-',6ܿvZl'kbcۋ;=UHyYW8[?GS31?uy1ǽzWco{k-ᱚRcbZ&8֔eM^vF e}yq/U^}ΟC^ݬQj_^\85s,YtUbVkɓ}vSQ$ʆ詨K2E̗&T("4ˋMVP/O(RSQn!42ЄL-@ʊZմ9j ӚYV0+53]Q7Gl/?AM )ʧs49Kf$̡AwEWhfEˋ; i3ͪkl/B8sM}0GbͨChF|yqg>y*\|yqamkF7hGϊn; [ފ*7'lkfT˫ E$l~8B>L -/a̩ EQB\Zﳔ4?gz=Ф& +/=MQhR`:Eh_^eUE!IU (CYu4k~e:U]Iy}&6dղDyqTx/⮩ԙ[P/vPg5:7hSgM@̛"6CoQZEחZ6uև3Wu6Ck LCmўֻڂ:)0~Qg*֦k(0YmLYў[Ai=3xJZޯ@rS}Ȗ+ޏCAkPMT<^GS{Pv^{dCeO kS`Zχ2z}$ÞyCӺj?78CYf(ͬtǁ|9hM6C:PYOwl LPYOz gq ^ih9_uL{ΦtY̳9KP`zӹgk* N=3o[S)h-SL'8NBCLn[W Lw*U_-<6u1ĸM{*Sh =wPgZѸЦ-夵XV lzo LAiZ93+G{V LU=u }Wa:؎S^ՂSYJQkaӫuzPgZCݭM 7=5:xX#ړ}FPgZ LA8n LZAi}[+(0ku㸩3ߵ=w4? vNxRzEqDJ,֎/hegh|YnOoנ4_iԙў݂:3݃:| M8;>twԙ=:S33cv{{F(gi:+A4(imLuZJu֬:A|QglYLu\X'uR(eΠtPg,VE~RgOꬥBA?3_:ki3ki _g\Bk3B_g1"3Bg̭|:?/د J!W7;>b's6q^drʏdrm_OBdۄv-ן> @}13}ϰ7q~}}/A8_w'|L.;2 7yp~?֯4 *R|q; qU>yO9};`}< N [Y֓]KZ'ww6gbWE) r`?y-\،Q՚IS]N?tݒ=H d)e٤jzײ`y5ײt5W, . %_%u &nҦt G\dZZ̓tPK5_R@-Qҵ /Q/kkEP.]Kzth!k]gڮm.vCȤl;Ki,VCd &BrG4&?EC4YY(uMk :RֵUgƔLFLc(]Hf&IVL_:% ]ޮ-%k* Vp*Y_UYWU=UQW֍WU]*#MEw@B* NL‚YuyV)rJ8fm#Y5pVyfzuTٺ^UJraU?tW.;VYC+˿JQҌC~YttA;+?,i:%EAnf,Q58gAGcYBk|Y }: 8y6f9gjg]%_宠[d-JP Θo_& 0e $hg53 xߓ`"ä[[)BYu?' hgQ3˻ے^ZY:1oZ<3h.ThJ_1014ИoPpV{ 40Ia Nit~_aJ㌯/ Ajǎ1\WƯyuzzW2[7}5Gel>dui*y@7+Usާ3YŊƉiXcR(4'bGoc|Zt[iRZ1_Z f4n*$EcJT@.4>5>T\<9{7&U-o|VҳȧEvAӫ+pWGKLN0Qsc#+_3462hw31 Ls0~|AP TL2ogoܭ1M뗫v9Z=RV|'w$[T]iƬo\@R B>"֯~'0O|S{{NAk}ihx]"_͊|@%ie_N~G|/20iZo2]&voGa.1|8yFhF>֯A|&P`^֒l!"`oyI%ٻ"A{XDT^V\a$]]e/B~lIXxg>߭i/'oʯNOO0ߤ'W~更"߇U?|&7 +]'lii|+6*:ghno)?G{5ڟȟIڟ{?s3ʯU Osyu #_F?wyBUFWA"ÿbHLُRmZ-4  6]h}K_GϿ_?~zmYX( `/؆=l4lF۟im}; `i*TZPg,^HڥH=z\GR D*hKF %*R$zȳҟj:fz!Xxh_n(@Zw xhuggEuv|֝.; RYOׇ*0gqg=-QgݎjAgeĜu' 9Nqg=3}z>5x,`nX Peiohֳi̺7(,REALnhUBz]Yg!uėuυu..d!lز"XB˺SDu0߳ަ%>%MQe=_ k0GBʺ]"ʺ _u"OK|a)Q0Y/r%%>PE>-$G3F["Y/!!%3DGy+}t[>(h"<]XgJK"z_ڝFml;ejT#h73(bz|EXX &1͋(p~}sX|hаXb=>x T,>ChRA9H1)z$c7#և x3>+C@o'>g(N=vHa:]:EHäSzp㊍["SN= r/q("" pQX|SO+o$QMpSO..q.G8MB2t}@XSL5tCLe^)3M2M0)6VMcf32LI3a6L=RWH$- 2E0SD1ݒED 1=W<%E0=弃nY"L"ix閜՟*5tKKO[x_Zj,뭸Wd]V{q8}|pzc=!㛡eQϽ} LUh{{dZd׷L:֗C0U%|^ešJ>.镓I>!ڃ 7O/QOH>::N}TVR/eQh>+wѿ4f7K7+8 ɳD=8@"5Dd}|ٯ??i]ӧ]NSp54귂ND}_)Ƨ=@~>CӔ]Y !0? endstream endobj 255 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 258 0 obj << /Length 1507 /Filter /FlateDecode >> stream xXmO#7ί)nz~CJTTBtUKrJ\clvC~wxtcW CB!6!2">ߑzç;8άX]@fL?>~Ce{{//kh.D7!z1b]ոJw1N:@0b1$ '9&f10'&OƙBC2:VmH2oF  DA rǛ S\`JF *%U|)ɨ1 LRdZF%aZŹȭLvH,䉆r$PEI2RIu>v\";`.R[6c< -xY'9+e3[෮'OFGKBe]ZBg@!m?=^}F2=w6hXb~ftQ9![eR vh[SDa?ȩ۟`7LjaJhDST6E)RMnLSd8q/,[Xq_{yJz |ͦn9)u/Ih3^Vg" $ |KB[ߙj2?sm"$5ɞ"X1-ȍiVڽ%s{y 78V?;⥁kk<= ~cn03'eΗ0 A |m~,)ꋿ *w|%wRYg'BbV )2iE/ӝA+8yx\7ڠ7{RSF1STEc[z \j^Qq'@Ll ˝sݹݩt>c|SЬt]Z(S;k gyH5@MN&mY]7t> <Q`8*2cL0ïA_I endstream endobj 262 0 obj << /Length 3318 /Filter /FlateDecode >> stream xڵZI|*!JqgM023$ PV5#璿,Vl}p*{{ﯯ~g!&mZi'wTXjvsq_``3uǁLf֭QtM䣦OgZjg/n[U8>oZ;=iNw'$t^(fj/[]JVT Lyΰz;懪V®]S]0 몸-^J5Q=/Y 3l- G߷NgU$=qd&iA ',bza+CCum7[dPMIXՁ -; qhZO/jd쯹_lLBF Nz:AF*mjӞPr>Ht9S#HE)a 6oӒFT~FÛV&.+/raSu xŝtnŏoibx6s!SKmc_uc$0!<&;@vDm)ܵJ NCMAߑ k TaEVz{}*D Mufr 䙆'ֆ&?]{C41qəxyȢhlzHkJuOe_juQ\yzK/` ?X>9<Ws8Uah'`$IJo/0vsqn°E]G E%)/<6C8zuI HLIW1B"5ckql8YAKY@ E2ߦ4VDh}$S9$گOw8O *'UCtNEŹfsڄE v܅tGE)$KprZQ2ĖQ)'(5 5)0Q5BM3(/Dž!*ZC L~2L*|FјocAx:+6?'yu$.c=' L= t{#F{#㦥{/W Gi 13VX8wP+Ā;\"nk+6GdavޅA6{94Qo&ځ \)2.&;i:"3Lٖ$~LWapx}n9{tJW7o}|{:`Tw<$/ִ>]Q_R(W8t g)ΥV7]wjЎ?tp>o(<"7Zڅ$\!E~ZNQ>-],ll3x|8!!l9$u %3Ôl5 8{}L1XL{g%"_~ð0H_p='a:#c]lZLrHܱ BY5=1TNaީXtRt̠)e`x9q?Ş(nV5aF#2JlJqi[V0s(&+? #!iR? rtTc{b?-ْiӊcӦMIiX")J r9 _4 JHq賳h.1'۞{Iz}p$"XD]'.+˻sOJycT7'8dr;?ڛ^>uʴԵ/D8W92ɦϰ13r6e7 "[)x\%gNQw\.ۖ!9W7-eo"|%ƶ﷏a[~/P;К\uôD8D]'krO- M:iLeg7-m<ӂ;NCJ<xL:#ݍ;W˝>۩ )9> stream xM۶BAZ En}hvǽ4Iw2mmZJTkQ9})j-IDx{W߼zTfeb|F6nt};z55rT)CvbaU=`;h//D՞716+m1xZ HlQ ^ÌkXDx#|&yVп[0 F4:n/v{l .W[\D {d~xR  ^v`Юȧ򖧪̜5N` @X),|D x@g!C;r/.vYm#fL}5C5-]"oeW_&ޝ"L:~*~sTq9r%:&Vkjl)kmTr=Jʹܟ*3WDN SIf-onf7К@5O^J_eT,/=>+uHȚLe]B5ڇ񳁩ϔK3JQrYsR:?]4ZndUT6O뫷W(H 8rʑefnz& (tf0z ͨ0֣\}-#)Ty+jG>!M?.2·3o~\"WgL:WvU~T QE 0bGx:\h&m`@Rw(`6Iɭ=[1S WyZbm6֑ĿRIRČ{b?ɹ`tƛ#rg e,}υ4 :;$@NղBvMάf1!Shkzh %n3-5BN BHt Ӡq`o&̀o Hbl !L5?K 'tƑ@vt ![Ac#.|EZt.堚 R=.V311@LC9n:1!-9ݐDzt:A7A!􎜞:8""N4֭#(j9b [J#wDnRUtPR|FLdC)ʌ63F?\u;~nj86@<5Rg tA teޫn:щf*;$`n x`I4Zbm$=c!F'@gA5, z1gSOz)2N0pi$;04^.L1Լ>!NwSPR]L!3ed}:05S-2tBd;};n(z6B!9'0Ay@^K P\BGKPERYqt4n3͚#G+)Os2z%A%@9gs>^hD+@ӹ95uC* GJL2-(h~ubX +ڎr3B_$)?ܬP'NJ-8sNtr@gd@ },")r̬zg\Z((5{W`f9]b+NЩ-0K&S`b&=@p9em!$xMF_l_q~E"t.r; @&+?s(| )!}TglĶKƕ SJ./: =w^bqP|=Pte 讥9v]TSF#ň[shS3 ~( =Ǧngl3,r҉=$J:HU>_aUzɕ$o;+\2T}uRC.!6 1Nid׏&dnpt"esR!֞6oT!ms_%R\K⁛t=s-E˵A>6:ʏ҉er~үHbعgoғrDu,zG:Ju\vcMǧ'w.B˦с;5<kGrS#[0DPہʄ +mg஥f'@͟bTi !;eȌͷ_l;mFj.`L#Z (GD qH 莃U%%! K PM wsPIR3>8mL|;'~ %rLq+}Jnt6 7°S1АR!P]х2SLlƫJeJΥ6Z p>ϙRmh?F\)UYf[ H ^W$Ef:ڐIhOŐj nHL0 4Mrl7gsśT1W%9FgnګWu<<.NCTqrLiu\{Dd͏vl6E\ށvu\bw Ci:JN{.("no2 j$eGθaykٺ; 6]ᔨ| k?Jv,?q܉  u@멨aTvaT%, endstream endobj 273 0 obj << /Length 2412 /Filter /FlateDecode >> stream xY[o~ϯJ&ù[nIEcC>-DEK|mȡI9-@˙3xOV/|K].ίfQUM8_-{_`a/̳jR%-< 7|H [eB! TI&V&3m 2/o{/S]&m/Ra7U**!HTtI]d/>7J 08\Tderfg]-EȦ.]w+At߀GAün*[=ukHSEVX}镱Ȅf*˃$}oOb0 צ=, Dii%}゘1Ji )?-%]Q2SeN~+O0'yEN,=r`2>~AioY|`Fp$l |N`I PՇ/Q!^Si˧-`jHU==m ֭D(=t', p޳)<y^ۿΒzMgpSG7)pS"T]_FUoE(N{3 yWOq%m\Zȱ>aw G}TVH6" }{hS 5 %~y9Se|:Fek&(y! Qr5EiM7$1c i}GHN C"x35* l^‹ˌ JT$ BItWZ:G |?v޶=2 5ӅI%ȓ732YB볶h!?=qRGUr Q|Zaۆt\Py- wT7D P~2w$1f?tܑx;CWSYktILAgggr2ueW3i?50j`;/wԁaZ<]@͚gފH 84+HSZ7S#/#8A $li\Tu Hu'4HW Qb'ko}I%BO"5ԧ 8+rv) 1SXZHf%>ägڈݰOI",|Qd&>ԃ>u az7[jzS!𼝸+dռʹ*i(3Gʡ,c-ꕩ}5ѹ Ǹ=5゠f:AQT 4.c_06=-&6mtTupDW}}qɋ]_BxޢкYed>M~!u_]dP?Pggj{ŴۆI$SESkῶ2bGLD]C%¸04[C$+fs׬3qqɏO@g endstream endobj 282 0 obj << /Length 2681 /Filter /FlateDecode >> stream xڭY=B 9LM }E\U-[Q]5Ñ4s|~Δ*ڪҳ2hj7Ц.gfo~f\eo7k5,grq>5|lO{X>;O\/=²>[=W,\ün%w_u@짂J<r:0@r``"_ mZAaiɅZ{Ą"M?PHdYo󪆻 A ߳qc!=j^Fg_ۜ(8!ʪl * SjG`DT[.`C(" iZ<ȂǍٲ;X0l=~ZWX#B?5Q6,_4rj[I(m'$>g``@\>Mv3A4i[Y } <$jFuTRPۀbztYeQY+H xr3"\•$|*7f |"8pԏ|GR|ln^tμǤP"Z{1Eq Rak @! O!DX5cC3  9: {T /{r*HL^02H c ܶnmZd/|,;3l۫ A yEr$IƇ GC/j9JvXDرcku%c`um!p)GK!D'e2y/ 6>la=8a^j(KK9)1T R l]0'(!Uc^³7 8yɵ: ĺ`2ES'$G܁ak՞*²(""?ڗXQU* Zt!'PuȖR'lOP>ԩ0>wIU Yآjݱ|S4&0%X9 ݟ雍1qm3Ŋs_> Js0^6\4Sxth|,Ъ>Lw®(Zg>{Nt8<9psl|w"dR%VF9lQW64bdqac(Fxv8e?zI{Amj&D $JtE' Uq&N u ; Bp-@xeɓM뿎]Hp&1Ѝlϒ.\[厪S_e_BuM@n+KU@aFlC9,wQ`^܃Е썩Ea|,_5jp}Lr*\_t,/g|rp8H8vǍ &^2x x؆#'wV6.zoK< Ti=ia<~uuPgN)M{+??fN_jV.JX5A@E11„5x>$R%H}S&:NNM9^7%A, I[gw%`5 Y -4\.RWA`y#nn$}0ĈTJD sZ"/D-0hv eH ^S[rhͳ< I̿G`+"=1MWfy e:  Aʈ0&H_gWbxBYzdPe45E{V,p-E#5WY{"Fq .aRPE7> Q# K{'ш>xʥ.Z`DR/˭.*cis*s01إ~A+1g<3Pbq)0h% px62s3٫ PɐG*Xrhmu&iU&4A+/xȝL1ChdiZ);HڪVSkN]hxu-`d׊x<G""GrGF$NJ Rx9`6+ TDR[-vD2!HF%H'O=Mx1A䴹yT|J3,WKtu!=69kk Z2<\~sHwET,xUO_V_qT<}ڣYr(ZhkLQ:r fT7A& oLqp'ŃjӡȩI8N9T[m/HDPz^ii5'碯5uV{(se\+G^ωӑՁX⪜qxB,S̶Eyn (_!.ndʄP%riʗ)\LO6@It溵E*7(W i[\96=T} >:[ZE06ZQTuݱ?)mt-C'x׆(x,Gizrhl4.߯nn/F endstream endobj 288 0 obj << /Length 2469 /Filter /FlateDecode >> stream xZo#~B' 81Mni9 ҇om%ZC .WeŹ냭].w83_束TN.n&sf*51zb=\;>}e^mfs ܇Kh4mV:4.?;3vǶ A[Ŵ0bێ (,:߬_\VhET[r?}/Co_1%w5gstE-ЂOkTdF oH}S4I4gO~?wZve.8s߰J~ ><<~. (u^S)nӋd}&]zn~~^CMGeP#N0~͝I )VQ. |{bKGWH-@~υo0* &<ʃl t=V' 5OxFLӠNNЋЂ}\ubF.1岞GX ٴj[߶! ݬ _ G1m^`KUAd6^&MBDMGhZ12kVғE7c?׏PGkjgxٶg6IJ)O>dktJ2CA)Xӝ^.(bJȲH U^(r+AdUЋ}}iA gq_ɒc$$;:u*vTcpWUǂɒ)۸yWr^alfa W09,H2 a1X\1&n]%>("`"Kupy_1+lnUA;>8yϥ.EeJ{R4]S ҒI$e6̨&%8+ )B. Vy?Vh^e* ժWߠ`[<O:T~h]ܣn>lrV^?Q PL%S[:%eyl7m!ܧqֱܒAA$0XQ21tJ,sJiܑ!S\59pyG`O?Mo|qZwn`L\R 5],AzO7`CE:I.&0H]-U2c#0w4ϧGx>wJ@+%z{cךQz<H( s5a,L5΄+kڈQr0ހ^\624qmqMo趻 H:dH]tdR鶐+̈́i98`+'ܛ̹7dޠQ"4%q Ș7ے 5{1dE6|zOh($N : @Hsֆ Ptrt$uF loX7|@^Pއ{ưD֗/5RHci59'^ErIɌԱz]$aRN"T"̉RVVnpG7vCًg5T_*3XTޕWқ#,N~$%|O"1Ot>gc!OJ9=JUye ՠ>22TNsУ@kƑ+ 0G[&+~BOψrTț@\8R|K)2*T)j#~ ;>m~x?V > endstream endobj 292 0 obj << /Length 2780 /Filter /FlateDecode >> stream xZݏ۸_aIF<~S5E wr{OMqpڍ o|P)v6 <Ȓ(r83f/|BMx'a0ދzry5g%DNf*g7~5:ф>&xn }NXQVXe&ƈ:J9VNxW9Z*3))hZq5ܕhKrlfY̙=Xלe9lT}zۜ _HM ĉ#*,SK7!eA Jz6lmPY:e2b%:OƤ-穪vpwK]q? p!lTNg)^nWjnow ?[dTU^K'!-}7ItQiS=ShWpZ,L3 $^^3GXVhw#M qlZ%7#6/Mea@{tf+Cga~%८ Zdvy=,HiS\xz3(ZPk $ jNT:,i-HrLV+RްV2\j?` *bpz+<> g UB<+r"t cڢ3ш==޶l&LfOv-;6tƊqV5Tr+4pEK8mgz38\nPZՅ+98MM f\ !-l >I`QLR|M +ݜu$$f _gHՉ'ϬSEҰ p`}}{I> );̃w1x*>,yoJ~ D@8a#5>DtsRNwLN׏2 '2<>a|3Qڨ%6,;9(Fz`odT$qeL4*2 c"X>K"< _Mlž>n}V0U5Lrp!`1#o&C\o'ҿy-`u.SjrIL&?srYJs ZU/WiCwhW0/i0rNH]e }l ȅS1H+ׯY݈@$)jE?W\Zq']w9)kWe5@+)úiXSnJř/+.+n~aG`pq}ܨm۱T*ab_e>UbJ\dBDLە9_!(M_?hCy.`˜*`xџ\tp>3NW?슫挎5ӷܧO;_@w'<9] ]c 'rϲbn;4~9\;а+<1KSЦMRX'(@NP=zgѬlq͏ J5o3 m28Bp0-^:#}@{!,y{^u:y1fcubZ0¹,QDDtf&#ӄ<{vǢ6Rؙgfo&07B,%P&{~QQk:I{t~?Op\UQ-͞u<"HJ*DJmzGXHaHy!e弁檬l꘠j O_>=Z endstream endobj 297 0 obj << /Length 1516 /Filter /FlateDecode >> stream xYR#7}+\y Tat U* f %6ؘ |}4ґԚѸ+yPXjiZ[{GY]b0TBj0.UöuQnKݮ(ʒksjIaD'A/z(J3uQy@ee%tcUxrj$*.5X,Пf42P]cNNoN* P*`4 : rM^f'?b'6,{4,9g7V 醗(P{=6ΌmFOyObk<4XCD}ozѿu[DFsoy4 Ük `*Rʴ +BvndfndUଗkj~$?9\ U`>JfWYKA{+e& k'O/JUCjf|s#t11_1h_=kCΰO}BQ(t2ɤ{kXe"厄cK?@42M|#S[SRWLO%M7vʚu7XS狢YKN{*yQǔ"&P.is4D`Xw\F)iRsW3_o&IHre$jK)UB $S^o;kٜʼGS;\f 2ԉR9!h "w3M)A>[Pќ@ ,=|nFr^ .8]@.kNgsĬ:iPVxtSW>Q[˥1CF(ؕ uMTSȗ*./qmj'DO&TH<㹊ivh w['$FOE1Iإ:}>ht b9*1DWLEފh&ޗ"/1H{% `{7 lbW,AL{eHi`͇Ŋ]o IdU),x_]W endstream endobj 301 0 obj << /Length 709 /Filter /FlateDecode >> stream xn y S00|\Wzm\R{(vVp@Ȅ_00OO 9 z%a3_YAdX_ fb[ESL3>cLST23%|f"q6 |& MLۃv,M'saX&f U_mZ KvkMR45t' Kq5Rdmnܦo7CMx45mCp34MM&mmT5܌54uyCp3k 095'lnI5c8?HFA\p3M-W P܌(`%|(б&\٤V-Z#btSinlrK+54L=~=6)\\Z.Ne^@K^M 0}b:~\ ##w߿/Q-X{ɻhՂ%֘\sW Fx”J` b&V7&;&?udDz?L8_gnK]~jUKvhPergkvj23][L\ՕtQvdd. ]W׮ۛ)6xzpǬ3Hxg endstream endobj 305 0 obj << /Length 669 /Filter /FlateDecode >> stream x嚻n+!{?e"ń^l!vr(W1;Wjls7f垹9C1w3v&rb&桮8` b&>r1Ṃ$YM[ fib_-.vDs4TWK4I69f` b&x첎\Uɥ:j01gJzKC%Hs.^輡[iju4^ƁZHq}HKej[}m9Wk-P5v @-V׺[8t @MVE[WHo9R)x:^p_Jm;VVv(.@m6,ӆ+˻ QiA{ҤkA!߄v;YlBݞx| z4s..> stream xWێ6}߯X+R"eM-"@"&^_|ZvvS˙9)Kvm33C \\^gyTą6L#eMdMDqtӹ骎v#q=S~(P9ދSXj} f`XQ s@Í _ @Vrt|'y@58CpF>NLvhT.h8ɶKu3qϏn/pE?[|$y53ܸ9nI֔uIIq#1OiF$dKg9cu'U|ΐHP>9"o>Y[S?iڹwlgBFdv%dcODc,ϋuA^`U'ۙL&)8+R"fVPBWVRM#~A w=y,Abbr&-8b_X0d\ko o^7^ sZx<u}x9WJҍu".QtTlJTKͪtѤtv҄hoj=Y}(T>rs Cd(^+꥛{P6lK9tEj`O,,^Ùw;Oj`ǷP7m}àp(2ؒ:z1Q`[^8Tgৠ}A|,hYNwUK@u0-N{mR'O48 jXò9+9qS@xJ _ +Ȏ7Y5Ih[O{ԟA:E-No;(j,Ndv>Ɨ\Q_n Ѵq+ J\#Ҡ-fd3Z8ˠ/ tSy:XTK+['@[n.ŗBK:J4%D$ADMJ>vQ#_M0rk%UC*Un8U=R9*|Z2<-FV&yZ^8{)h=cAu%+'z-:ߩt|IYWJ&9RۑG4;!\ "M endstream endobj 195 0 obj << /Type /ObjStm /N 100 /First 872 /Length 2118 /Filter /FlateDecode >> stream xYKsFW:켟)Udi帒ݤlm%0Ɍ)B!Aw~ R@Zt*9H zzz~NC%&YT LČ36yfcZ@c>$ RD+͒* ]DLAb9,ShUMD!H ė$O$i-n[fb7t o@14kІ`&ڀK80#M`ȈFqGfJ1H?uƊA0'c B뙉` Bz g| _m&pvЦ <,&7PV$d@gN)%wMzi|8-^X 1f"!NVDwL_sF8X7o/ENO%)h^v /6cr }BZ Ѓ>`;2$l F)ݻe5?]\2qU|N<xqSjwŪ\/bUǕzt.k C7&[b-|>#{B1&F1Hǡ] 0GzoD X/{>tavR+Sd0n.O<7qlN E*WgE Vu$Y(Eֿ2n7N'Jn"^iP7;V!H\"!9kT, wӈ\ xfOAլ\_߫Uwf;1[~ΖS^L|vw l 1{Dg Gh~b[s p|[/kOVkф= \gǽgMyU28|Vrͫe'Ig~v^nFl"8C;ÈeT" ɪӌG%es21*eTcc=:(BL9Tܠ6ZrTSI5"~k\HolcCFkj^heX3ufzi&tƍCvǬ{;39ܘ۴`$[p6^(FXp)Ux$CpDJ?N9c)Ǥryx}&- UFVȪCeYS3|YdT]dU^]|Eu "+foޱ7,_ú:5]ŒޢD^UItY#ҤfN#fU|W?,&B `ie|[yETYDaaYK,uKc1KJzFNJs+ ~5 $[FHn6i4_lW8ݞjJ#i<_4n4FA1?4JvOG&}^5 endstream endobj 314 0 obj << /Length 1564 /Filter /FlateDecode >> stream xڵXYoF~#DCФh(#Vb%Kr1\]|kSDWU\>ʻ qlQU0:mꛉiN: ;xD^>/ofSR+PVŧ w(C /ިwu[ӎt5)J#V8cX)b,O!3_LM4dSX˷q[D\@x+.3򡾛=opy0Mŗyqi[fp_Np:ϯX**+ g&)$Nh@zaSzj@-Q^= yH(5Eh4DC*< e$Q@$4``DrE7,2%qjv/30>rP%pMyL6\¹>Xu].Jܾ\"%/4rГ- sj!'$@ƯȿfCQz',VhTo)p충*NNI؀C$gh_8IT2¨0Ň"8 ("Y,K`l˼/Yb_}eݰp; )[1%SJ":}!1p]Ed$g`vlns7hs'v x.q,6hAͶӷ(N Mr`POo7\coպ+]qH}'/v 7!: psrO$Tth7/u+:;ʔf,+@HSc|'_8J5W@Qčox0 vp//6Mft%Pơs`99̰ -H>Z^G͌ I*4N4@w;U*:= }5Nw/#UJ/8'BMtYDy2;@bl&t&܎a]T;菥}ߜ-Pʷm.ݩOYU'!E(t裆 }?j@GOph @ l$4[)0W y{8S|YYbR'3r}7 endstream endobj 319 0 obj << /Length 3116 /Filter /FlateDecode >> stream xڵrܶ_5e N'q2K'ۙ6Khweq%}\HrZAZ888 o޼[cV]9VoVʆ+riWoZ5?W߆ Gj0țnjLpp\VM+xsoTu|G֧-kBj8]]^h_}g4Jex5j.p՝7:mgeSI Lg@Xk*Š3ph0׀zD߲hUuݟP:GmAb `?C'3tXn-Q~͖_>XuU_v.q%vƶr:m]վY"N.P>9\~A:w//֪k Fﲵ Xrc"3%Ew-,yZuM`Ѧc{TޞSV71@aݙn */9͚6_9ѠLS7jaP0d0ȡ$?.C?)wmHx}Zg+ CAkx_hmB,\l5ɭ_1}/J%Wk~U>'ʁ*|OYB)"ta]P@!<8 )xŇʛZB 5]m/~Yma+ @ 3Qz^|:,!j]4 KֺfGZnk%#׭k* `6mSIʔdѪtj3*i 辀J"Y%af읅ؕ3 4^?A_Ff0CS 5duoh?=` 1v@}HxcH+%H⠓88Aj4)%a D3ϋH h(UyG4jzSYO󈉐ncjtҀIl'%nA=nqz<׌@9q_SUBo"SWHىg6ԡ]hciz$UrIτ3l,x! Q8 JBoB^Pqs Y0T0 ȶaVnQ.v=nbMcf= s}ympHp 2#H[:Q"l.sp(?0B.v;AĎSo(5[]jFÄ4S}v+=Ɂa{GivW DŽ-aUtCxYPκi?w* H/gij2>I?Tw1oib~q18v=뮐EWL^x|F:b}≯m#H޸@o;^|KKO̬7I"ZHxx7bӈ\ipP9[N rDUl>q 6nq.&);򬙥|z"UxW.I' 2k>VJȨ EHn_2ƸO(7Ezg@ޖlaNq?xi++SZ|8 +!QՆWb@@6)QľRcgTdžV!,+{ t_Ph]"o?C45J;y/x3Q*kU\(ojjH( o6o$^2e)ƨЏDƹQoǞ&nsZy =p7ByN0|xO `Hn\qqh(=WMH3J%֖LM))`L[KS#'C2d;YqT<2^54D㩏XVp1 5WR1eP iLȍ317PYY..ִ|: Oٺ RYPɰ1l&ܑi ¤Sf1 tpNKa2r:DZF&D5&L Z#Bt5fr`B0i#S Pɇ!JL:.xaj (z<Ae'Vt"8=u&$HM[ٸ}jO)^_> 逢GQܤo=ab*'gca[5ĻUdu)T3[xG\峫I([,)V"E9tNR&̣l~汍9/[[~س3ù6;TJ& f0ttD 1x5S[5(awB9=-_I X)"yAb-m |Ag#wj)Ţ3+šIKOML3)]+xA.]v˄ ?8_|kfG\з%=ΦTJ>n?)w_ P=jpݚ{Qm46m A=HXe{.ON3ΩCGj7AQS>ȁ{4g:w\R+j?}BG5ƺ,sOrGQ%\q CaX~ 2Jr.0שX=2A&ɳ0gܥ/j,:ď M endstream endobj 323 0 obj << /Length 3055 /Filter /FlateDecode >> stream xZY~_! Vo_d7CK6`G˫cc;@~{&k썁AWu_Uˋ_3DUrry3Q ,Ц\^O^N_i%g/O❚Hrfln~%<{ߢWK0+8w"] %u*fK>NMHvzEx͵^7p~=﨡Y\zDM \+3#N?OuW*هU2.*)\YA؍5cq-mw%zlrˋw(?9QM Y^X nxZNXOC5xd[Mv׋ul }?2Ģ6 m"띨*Gc_WUkTQS5!2CaLRP8e %ujK>-Eiʉ"L9pؠv=ʼA>2Vv*Wܪl$Lw3tU >2ZjOd3bP=\`YRZs R֍\ k6b}TK*S~.##=5^D6٪&zUae*zS y*G F?f1]5]7 yۘmsNoXB4W% Kb!9U3؝ӿ /`A>D!0^ u;8#k(7ľ1pP?1|۠UW]޼` *8>dGmBl NG37,x3oɦ5;:XѪaHvC=ڥASC%eEXێ6n?q"0l^V>TXқ5xݎ f8C+^ߓ0)y^Ƿ% _TvIC>*BfstN1 m[haQDiK.T[B AiS۞6P% Wq8`?bs5 GqmkؾS1}RjH+D ѾA/SƔX L,x7Ei#h!ĩg(;-:J J7`QaTb V%Iy VT! q|>T3nhkorji+{f:1xZ řT*DwDgbή w#<ɦV_wqݡMNA+,G2f]eĹ?|]G@$Ʈ`"W^=bQ:aC"W=S8:r։u;j@󢘾 o}=l !{M1`KULV^IajwA[9#,_GkȡUoR#*$z7&_/d8vl,2,՜Ǡ]hb?&bxLIwu 5)~jvzA9{6Vx1WRb<XV8Q,:ގUǺcڱ^<f2a|h {+uȡˤyD4Wx^ [&-=9-#&7IAR_I]f2RHi*R0?R3ݰb !mg}8Q8mC/p(E ȽAyTMXlQsmV#§G|6xJd-;y~zlZSE:D@+.. ϙX l8- [BN[RX!eht /[y:轣T5"!B=N0D ? a? "1o.Te$+,a3$MZGˠp٢Usn]kUoYI.uZ29B}H4Z+r 6b.kf}KBe ԑ,ى<u%dj#ooS W+dGC|x&\к%.Ͷv~Є9CW+"& Fz6&|.t/Et.ҵ>} .8cnrgq#v7,A_ut! ޶q { ")Xg(Ug*bڀ6 u&ΰl3PL_JҏQO|nַSg)[&M]W^b9JtAMV)=(G9Ѥg*{_)]ůXY. endstream endobj 330 0 obj << /Length 2662 /Filter /FlateDecode >> stream xڽYݓ۶_qL!IS'MI2xw%Q!%糟).>o_kg.Myu}{uk{UUjlqu%fiuo}Ehg%prϏk \,=H^> wA&[9mn`ۮ^-P^Jʴn o'j.@S%'1\- 3\NseL"fGndFCl, AEqȞ6vȈ=&HJi` M::yo {Ѻ+Đ!A8oJ}ŲwZid[kSnq;uG-A5M]YYfG@sE+DT٥UbǪܺY[ae> , Ś͠f)(7{>y!, 'OR&lxXJ̹"w/pӁ׼/AS.F$|!}k\ z' хB Xh4n~ŲkI:2)E_}=Ru@>ylTX>*H[7}@Ze`2Τ.A~з^ qy`HveK|Py=uk=Y4Dd?E3O 7||ƍg;Tk0- *ivdS_^x)(5mp"h$s6mٸ!nQ <(4޶dD!81SGЈL8םz^x{M00`O)A -:vGSoYմu " Kgo &rUC];s >\PjcICoOTiۉ/a9WUeV4uuaiGK=Cj_" G,y lΣ6t$n__2I0X;cC #%1HaWV$rQ3#2 Î{L9M;;1r.PC#NaV`59"a SL$y%w4'nNh( U-7TJ5 &6:RJ"5%;ǔLl}G'8>'%Y>ryt 1O5q7OZPef@§Qn.(,*᭴  ڭAcCp&hC?H Wp$zC?zfm=c|&u(:ыX7hF9ZzF0*d1@C'̆w<Z5iAV6;=ܳ=~%OI{یVPG<^9bvWA_,Ţн ˎF4,{,瀒Aɡ-\lIJ u9!l9ik`44cecTcVl`O2&``5d(Ȓؘ e4(pdž.4ʣzWiVk!q>!-\{ef 4:rviY 梤S῜Q砞Ls^롉,*uPaM>/S]KYUb v?xO쏯[ʡwz|'Amw]|xطqZd$.x Vj | urׂ iŝPsw ,ʍӈa7KIګ.RixIPv 7a |;l拵H)yz{KK 7%tIt  ZmV{}:WRymɵ*Л֎,A_R 3^ȤFL+LN*Vȣۍ?ƹeyV<ٞ򢤣8!cC>~3q5~>H4 X8tiC[y(˒dv Y-ſQ?GR%H S1g8;L?1=d(,(ne(Wל68O: '/'ݒlRf.&586"o!~ !o9o?|Ze ȧvD_>m/j*\R'nt18mt>V EFwfN 7.pA@~Bktܥ^eerMm3{`rj endstream endobj 337 0 obj << /Length 2491 /Filter /FlateDecode >> stream xYY#~_!쓄h^M؈/1 =iF4dg =Ub_3lvc_Q^ՓRNjޅ+Ц\N<35*gslpmgFMpS=r{2d0AEi_6\O3npu- TOqƿ?ZtnD*>nxV" G4|ȲK vNBL0DY0XkZg,24T3ma ;-̸>ŵa;PsVٵBD6yt|B/ބiN݇{&3QBJ@2eR3nZa]Wz1azG8f¨ZTKc=5l3YEUo&>7!z ʽ͵iFV2ޠ3!$E8&U[VDO=q<9Hvh~XkG\V'|iٵ(1:BL+ Gû}`^9_C&b e״)yTkL0ӷ[2M\Θ>tV sV2x5M::}%hU-Ү죟kow +nFopM-E%UιxIR_Eܬ[pg4LV5q*ɡUFAX7ʿOi{ȑazmhqrgv^,4%$r~~lPMȒ1hm+s|H:kUĸ iY.lcl.Xz&BlSݽݭ#p|eŸ'wEYR$!'N+E05{ŗ'®%aఫ{W_v7%9ܩv.@jKFe4mƶk捐³GM1^Z0q`{qcECig&s9 ̭daC+?3H L{Q zDimӽϰ9 Ҝl- ޣdWw*5$7VrWr6xpYz–3fY0JEjX ʐKY&ΒpQDs+mIp13gl]˱\~UF<{X|.# YZxyodKQMJ"Xg&z%FTɞx'<$~ 3Bh Q[V oX#CqbaoOfzI $M'ށbڵ&]d>۶T`TR!u5%;Š6ƊY_?ǑAL?CjLQmgocM9#7Il)emc?3kz.LfI:=$$kr\xL` )s h0O!▿j =vuHDXui-Cȇc>!6!M uծQ׬Xe CͣÒćРsRHsauK9a61m [M$ Ҕi{xRjBJuR.w. zrFPaA11t@ 5!щ|GyYc#9gf]w|d&e-,40 A4Q -ýAc|YƉ3&k&g؅TݎJf0!sq$z@^er)kS 6Yj7˨n%O9p\DCԣL[yRU7U\Wq\AWu3 >&xoWxz4b*+rV_Ơ_>^&{dlRV]Ξw]YmfA>ѝ1|t.Wݟ:>ę6.̻pNv?RtQ v^Mu + zz%Bd4MUm0/i3Z;*ƈyTJ/.3I#d4Bs(ƎxՋ-_]qt?SЍP6mB뜡=ӟ5%w|G …!FM;EZfL'79n 9j4!m^|wP endstream endobj 342 0 obj << /Length 2690 /Filter /FlateDecode >> stream xZo6߿'X~k]{88q/lqe2%ٴDSp>~3|I-jz|-bm&_M~w>vI&~f sZ‡Q:(wŵ6`ì~Eu?aUG$/bCg5\"MYg-]WNwYyű_ >y[`HT=Ш`_pޤh .cׅBFuvRL`c) Hάt>JmKrA]*"d\qkQZ H\(qapf_Y%Qi* B֊t=SCM9!}] ( |#_yh`~v^&9K3ո[svD~.vlw2.u#jEmΒP:tZ a,IP$J99|KQEtuswQѦWҒc?&wd5t/ݣ]⭀saz~O:@]YϥەD1[ՇTp~PQ,nshI MΆ.qZ-X] adJC!^op'3BZgps10CK"?ЩlIHE1bD |AtQ6BGersqDpSC 4[\#MLPM{H~0rYC7"z䰪upj @S~-ّR L4C3Ca,1*8 骒s÷ ۠0 TFaܣ3k˜:iɢPSiw'Dz)i3$;58q0.I)5*Q;c_x RIB39p^ i؇8p-gK?-d[Kĭ>t'4PO(:]!P+ѱN>@eBZN|(qŧ! ~4fN!1 Fh΄"  <u68# <_Յ`5R5$|}9Y2֔SH=Ae ԃ&ā }6 !0ym H8O!S%yZ&e)*m-`S81c{w %4jL!I k@xdBm' u WZ+3eʜ?XpE f!kodr>bs5[[3ai:B]=leCfI~pׂTK SIBF}ea ,#$i+;@~A;vFU"N\ٶRnަRT&7ul3er f([Fq,Չ-"fI{I)me{qv"eด=7]֝cSB´2B9n1VB~-axb[$0Af<{|Q-?F`V,^\?kE~@AW qehhtm:5CW -e/%k@𝴰SϛDwGl2R<YDy'BZ.( BD5z!ϳN˰ iӳ-{1үmnL}],*n +W<4KpyCo?{i^ץ#C80&JSHT Yu6 l0g⛮ JX5ڰ(cNCbS0Ah{"a%(3gĄt@i,eȜ:SWa{HuWJɫ6&*d ,ۼHIXg Z#j d볼F Ot$OOxVN#/φm|!>MOd2l #JRim{_C:+{+C_SeFJH)q1') y+ ;V3-"U.{&–gyR>[kzj轵CTP&9oc{&Pmq4PҡW^:gTU-e!ܽyJ 6+=V¹]k;!mR>GF v)ݲP䄗0[Ct2jXzl**)> stream xڥYo6޿L*F$vZwJ,43?<'Ib<T*Q*MF2DYQBl4E?L~;|RrD.YeŸ5<)Gl+%IX.iZTY8Δڟ ϲGa:43 JDwrA9 Ʊ.hZ{mdT!R]DrQDTe6HR\hxaT?cARY*W d(U ,JYdxl-$6NUNՔY$u@?8Ko/Y)eTP)TP;D.lɴN'TRJ\7* QK`\HKxRCqDqΐTvgȇBtK"|L ,x(*UF$q @6]խ;U6=./ཞڴ33v"BbHkvm[# ߷{i7ɂ),s )FIeQo;<%Dvl6vZLk Z@,)^[π iG&E4C=r}%xkKLds)5SG۷k3MuK >tߙhv=.Kkv/ =z\|ej.6vԺ96>෤T!*"ϻM!:9`,kg;x ק$N!K[a$H/>Tѓ)f/B:d EwJEVV}nVU#\ll]=Lj zXAK@3a/L!#RetR/W!͕ШtU5ntm47T2O)hc|%Z/SkHСP4h c2SP ]_"Mmۑ=jlY+WV *S?㌕zLwR5IqwȖUSsG tBǸpk}ʬzQܞcJ67Hm:DtYtw;hh:Ynت8Y x0Oߠ|z= +[(7]z$:=:dou43^'.̬kk]`pe@>2ιkH76-,?ǁÚ+z.mM:.%lט֠clcmeǙ`itOLǞo w[viΙ65`v d4]ԅ^?&^SL[n<woX~+W+·Is6<: S;H¬=cwb -GN+}~=vV]G{iwQTuB sb3耒 #B֬{`y?Hyb%j6HU3|yft #z2D!>zo#>sLLZDr@ OAu7¡s5;3ߧR$K{> stream xXo6~_!IjU))!: Ŗ݀,-wA8_?HeH lH;?ώ޼U:2EQ7*Ӫ*Pl]&,`5w-Lk'SE1ݵрrCgtaa~RVX -h2ǖX9WpETNϙ MAU]R̝&ΰ?P'k>SJ޼Ww1-{=]8ytlJsMwXhW2eꗗpbA$\NG p|lopqs#\l1:R Ā&yT&A1B8`1%]ЁԐ E-5R9ᅡ/$9&"G5`;s<^爏yL!b<&\ "Erz6%t/wrJSl%YњZԔ w{/[1>2&FȘrcK K 9h$xEqq @W.D|!B_D^(o7ok`/ yER{7@5d(CM,kUflyӺě(S܀mw5M2386'1);ݎ\۾}ڙ;\uc5P Mxvʣk8 aϵ{!9`%FQhwiO>zYK,+F:͉CY7 $bH؇`?LVR4%{.JePQ0VR T8@`# /Z՞ۯ`@Gb>WOIJe 6>fTERG'ul+ endstream endobj 355 0 obj << /Length 1537 /Filter /FlateDecode >> stream xڥXoE_q/HgGxHH !,DExNRR?Yξ:mnovvvv~u~=zƆ*䵯fwrQ*UE{}=Q_0`,aalyL60m`ݐuEapM=-%iv7z{= ƹ[5W׳+d*pIWFzl5p%CoJKe^~o۫,MAkݏcD!F!Tz{ 2Ջ%N:P (Ȧ`cAԟG7ym*` `P\7|y2,9hh1")AЙfGsgnc<)<%RrXR(-qݔ@r|5}IcV2e?\֊Qӗ{k3T\G%g) )*:v)R0O*4-P|ںTwm.R! ڔk>wiWiCILOTIX1w^~,as1ټ"Đz[E#ePLG!UYEW it8^'&J%qKk1\ vX`+!㹬c5(5#!ATFpN>m;q'l(~|tMNLzYv$"xKhPpqRjF&b*jh^D |WQf󮔣!)qQuQ+S|a\`ۦү@ RA:~Fv"};CeG ^E?m_Vrv&J7v@={48x2{`ލdwa9u2]lꅁ6AB>ATyg<< Jw[9,3xDĂ_kr3 z>-9oA ܃rARjݨ%]r.? 0S(( l9*ÂO'!a->L̍ zN:jG"Ķ9Q|Un5H(AJLcA\Lrxy3TXI/`X#`Oa[W1.\.cĽT&m+_;b%2:A sW~= g6 endstream endobj 359 0 obj << /Length 2967 /Filter /FlateDecode >> stream xZK80rRF|,2@2,fһ䠶ovt}Eiw2%z|UE3ki7)JվԦ]-gﴪ._ݛH*&pjP骴D>=bjq97+.V4 fY>n"Pb}R_*Gk% x? l7+;]V%[~ԞaQ/u(>_R yХ͵*Eѕ& e]gsUF,)3Kk]UW tS:`,yʮ]yȕ ջJٌJ5z Ȥ0ՙkT*Gس -е;~)" q{~VCU!&^ Y'D9T0ʀQo\ x0{cF^ϱe[T볎ӔևNb%VACQ.[6{b`\|m1ͻ(nh#QD@lX׸Shd҅f8Eʞ";K9gUʍxp((t[*|#HBƙ c@41C̍{HS'2@lPz}K~/dnTS9E|%vm5廪.MC&Sթ)c?O^>b߾H!X]·*0fv)@WM?_!LBy&-Ԧ?#?wˉڭD"ZÈbv\NfW^ν(w hχ1|7&M9 &2S죦2!T t+!d`Λ l:Z>eG5ĵ@(e2A zy(Gat,tt(S:H.'6dl(xIOI BCήS8GtcL*)Ф]7|:&ښ3 @nU@?L}MȕU2#"txŴnFPHnjjNjW_ W353: 0[/~{_͖0 Ѽ}"5( ^rvAj#JWtFptRGVXfՎ: /_T + KhNT ގU&g"{T㒱J( `%2F Ӣz:ev~WY#ZgلF6M*@{eϧv9!ͰV!v FIB7VR~`'帍KRS7kY$Hy(>ߟG2_G~A=]4M2WXw 4Bg+&|dz,Ԥz@=RߨK?:%:͍9*3Ռ*V3]lc/E*J3K9ud+w D`+O6\wRa{vӲ`Pis'-tKz$\X'-QXkd1Wޛ.HiE[D@*Z':L󩛰'|*8oңdp2w&Yc?Yc&;Oϯ`w~,&~;qŽy%&e#{KCk>OlEi*9@GnY5ch޳PT`po;.|VCW6D;`)jato1gsC7n߷Hvw;3MrmAJ3 )6ΟnqvH3<$N wX.]Zw0biDJhttSu!K:IV{#LDr9צ]j79SADvFl$xG_ G\Mkedߓ>RuɨvK;ܝғH mN3GvHl O 1NRMbz<>+ι61je@|87*^0IwlE`FMH=j@p3ƯO-8 Rp袭^Z ? : F bT,Ijx;[C8D>W8{M*]u1Q~OΑ&qqfSI(9SQq8w?\~Q*kv3kJ}xׯS_ O}ǕUYy/'T=an,Qޔޙt#FRE]aK/a);GThn8uH09vθ9( ?HĜ`iFCsㅨy CFH:dCÝkܡ#uEƒ\])9/:q钯[r2$G a<_sI iH}kϾ̬Y%\`lq.HYQRS /f9@0l\!$ŚO/%ecޕ&/N|0`Gy;?II JHB_ǬPp5j8y؃%'h՘0/*i1(.:rr&9 N["šoMԘu(iB;YIt1P[Vr D!ҍ#ͳ5$E5HxŹd{LI^~1 :~XƀhZAlᜂ]LoIJ׈H1T2*Ϯgn) [I-c+1 'yՉdDV8inw`˘ڼ1sEAnmsl3\ >Gx_Vj endstream endobj 363 0 obj << /Length 3009 /Filter /FlateDecode >> stream xZK۸ϯPmAă8/[n*S$ gHF;SߞFHHr ^k=E]jvu; +ͬ*P]*Y,].OrV.Wr.9X*KoGzEY͛{h9෽(y cE(JV[ZLTT%dUUoH? ^^g${$kmM@v:Ij~?[mJ Yurym8V6]xEɓZ?,+o `/0~+bK6)cNJΖJ -'ՔVԪ[dY=;GR)/sdY!˨*S1DmNp0h)ë颕pyWm?<نE%{ ]Mnd*\+-({"|αT%wk>i3X^eG+V ,SrYiz@KPyq5k+/l=~AcȨ.|>Xo/Od CF]*/W)3sTY(WOB6•m^U(ǰ›n۲,@(vM kd[B^~~b^s HF?8χ}`IFX:,*JX (Y<Pv]Xmx;c(+@Sd1  W.΄pIK(,~)sP k&DvjFui<hJs:}bzEsZ dF]͚@͌joҰm_ s,'GuRJ7ʢJlWC_$6!8PBRhCPAV50.i6o`eІAY3a-'+b ;G G  Wr~KDP*o'KHKi0-Jf˾]J\V!i6 xs>BdDM'B#+ퟰ#e:M(cPwȭ.di("tzVYFrzx.MqB;9.܁NÌxGuK= kk   {J$Z~H!8$NG ,V gM+$_l}n}~)i*LiB*PbEx[*==<.'.Y <)F^,Qo7Xj~aYx=XWiO< hy%^ͮ Du_p1轏ΖFg@\/,4CQkr}q?Qp:4ߴT=u:` _rMXjwZaǐvm~P)}R)-H i"Tu+SJL(֗'VT˵*ټXdG4SSC%*q/$r#5[L4RQ Pdn aC)"☰ۜ*`62ĞٱῆF_U~Ytpf4 M66ܸۅ}YXd~ZDiQg"PmDaõ{O1r*==Ohr= k ׉)qy bMB 2;ɪalӿr~+KT= j(to$Xoε|8<>=HOLñn!cmAh'y "G>ϔ3S]=ti9Zm߯܇@s緡*Dg}95)qc,+-?eAITa ;ꕍ.1!:i5MJ<4ɪ±x^{D*>sD&؞Gz+B˽Yai;OL,HG]$Lun?dܐc1VG.4yFIE)\ax@,s:qe ,|j{~i )w n i>FzS!SLI"׈˲tȄ=K˂AK δTŠ[RX!eh>tC}J<|GCgd&`GpwN nJCKR޲vdQs%3= zr^2죔S pSp?bLA endstream endobj 372 0 obj << /Length 2579 /Filter /FlateDecode >> stream xڽY[s۸~ϯt:Sj&BH}˦޴Il}fhU[V{{nCh~W/^`EPiwq5(\PU0JjzKѯW`.̕yۨZ6·o>d0_|5|[YS Ȅ5u/Fg-QOU6iQȭFccL3 8PxÜ|E~[hF%x ٦jUvr%/s) r[m?@e^ƥBlOv I+rLԩ"qKdQ#رYs/jԓzKZo 3e\РP  E)tL.76Le_ JHfMqk;V A̋VءrLH%iǪcJt \#X8p)3GDk-*3#z[{E'^6c4(|',ؔS煷?KK)茭E4lgLjʷf]4R6c u$(‘9۱,tiU皤:%v*682g$g^>?tc'u* :CTdbiV$ HhהɔQ'}:tQJ^L;Pi 5Ѣϱ{2*~aޤ$LtzJuKSd'2ma)?8i[eg:*;jߑJߖhp+ZK=m6D"d6:ipj`l$Yo{ӇoGwG ΄"t9M"|I󓸆Av>&{hR#0WiТM#da cmv5 _<,w G%@bQs 5Z2@*P/ #e\M]]|GTD&o>KθUCkCm/1P8o}ad&f@˔MWsKhS*V{V"VEv Uɴ.m| k벅,|bwK_RFh}+Y4YGP?UĽmN2L$H$ʐ$ϨO($JpZHtp"wZX) "ӚT]d/̫F"݆.շ7* OgF ?&KxڟcXye+}њ`PPo ΫQ%mL:dњ;n w(º3(P΢&Ⱥ>kV8m + xRޥSة ¬N8Ȭx1zL!,!@0!wJ*?Q'qz ONrcNEqy)W=gBhW*VMEex1uUGL\Ȩ{^J 4jrN6 ^S&z.ϧ% S &#u[tlpUo1^q eԫ)7p\ݮX:P4N<>eVc.MŕSUTXi S\gR(Y^HSL[D$B׌C7Zp8t7AUAHtF_@t8,h홸j3.M074.ZGiy#u=A+w.8u|N"֐s-ov#$p-OZMKe$# a+dқl_$FQebāT7 wH팟ЛcA\\˹ 7g eNeg<1HLRiN+חPA+Ge4Φ5w8#q\p^Uj3Z~Zm.n1 =lғ+] K8<;zY˹rǢZBV+&s0,3t#yJGSiҋMς sg鰮@-vNs_{\M{ Л؉tSMO"b'RPK6L,Юk4=f|*bH89SxgoŴh7ynB v<ʕ5hN"A)qzt$hERYtOν/"R]ZpP> stream xZ[o~_a쓌Z\!vSnuqPmk+Jn f8$GEds9s懲:qwڬtՅ+zyl}g+m~r׏GxfGoͽKxmMv9jv@C=\rҳsG˹qvLv^Ytn#y|!|-=W7U!De>0|XTB61-Yp,Ou^n3Mڎ5ج){p,t-RxcV`I1Mng 2޻Z3mb%]1۹+{wZG`TV0^ˀ<YeL r7"39  <$;4.>#'E`vfO^mgEm^O#nY809~dX2A|mF:]14%6Z;ɏ7#.be4|Uhl(K^h_[:\K۲cg7E$>DZē¸P:$M[Y(IYc臎a۷l$y=+yzcjVBPҶ`nVH[Th;hN,Gb ϙ0Nd!C&fj{2 9x=BO SY.dlƭ$b oV(`ށ)Q*E5;$v=ýLƅUؠpCBz-%h4wer&b Ӱrs t?X 7wqRw<Ƕ)O tXq()_ɧX.W)C`Urfz`Al9-[}`ω( y;|$o6dgxNId* Yv5on,&1rO桄[gR'Qd ,#RiW SawQ .Lf'ghݶPYY~?0Xϲjs ;Y`E3pc1OBIPeL+6Ha? X+V 'ͯ[+:o-~A8Y-eG$YUY bNrBa.5ӎt8BlFP&ӳ:Deϩ1UrEk:WX 04q.3޻|ihL5Ũ6zQmA)>Don?[W 9ܲndzjާb_YF.v#LukA@^#krdueE?'*)V 'zcz{cRctY)ʖJƻX22+{&:ɃY +s@Wv~+<嬍Ui *a |^q"%&:0'} \oْLEF;=~N>]šR&p.&WL5>=x/;h#ña[ ;7'w{#&o:bCKK\A9:ddɹj{p'vqH| ω,=:^4IfMǁ~qQF؋W|y&H/E/M9 RHF]{VHc3!mT e[i3U(: sp \5?ciy$rw'K9 L1{d + +YgICadz7kdyںV6Q}:g찠XCr&P G:u.!Aȁ׺hasedYm$ WWڒ gd]ђi+ UEq ?UNjxQVvp[Ƴi#iI>3Ukv2& j20I׀ c,@ 9AxP7q{tw@`~tSq$G=qtDuɖ?h8c}j#@b˿)qMPG!譔Cp[NJ@k+93dTPY=#L^>YNWrВoQ5l$:@VNB]fz/:u@:[TxXQyo \~ DZ/ ,yX(P 0h6S *  ]èɸȜA]beE{S-+]yIG'F[P`),~rL+IsHftRLZ]fR 8p&(Y+N-gxHz}Tقg_Rs#.yLsfdzK.]phjNNxF:g,# ˆq϶qckzկ|J< endstream endobj 385 0 obj << /Length 2591 /Filter /FlateDecode >> stream xZmo_!D{ .[S-nmː$.%(Y=$leٙݙyYtw~X.nfsfYTfvq=|[[/f '+} jvp{x7b)m%QIK|ialAQs^3>[ IVn}N|YIIBYW 0 Y |^Gp: NyP0 [a/ `fL* 8P˸7m28uk>*eC#0؎`Z.hU}WztmK<`Ax=ܧ%wB p65#qb4i{2_cx<5 Rtnϴ}fVWV |{Bpu=?Lp)c8y\QL:fSu$5?eʥKaԖYfJ1L2pp4+T(t#oL+9ˤMFȄAKkL{G2w]e2ai.gALapW7ZkQ sp2o{۸ٜ?AH>- A-ei߮ џ%WIHDd~^1ܠ\] c#&|×`/JppmʍH9HxZ L1 udh&%CsNNT'zUpB/]ɑF3 yRbJW[{6H>N: {9imdxƽ =\D;bmLL@58 Ŵj'L:x廪UCӧ4R}iX'zM/sWKsYL` Y )(Y#P xpkMH\ ~)YaJC^#H6sPq ]p+4nWT׫Kji#u"O뢰#g4=ߥt[TlNz_4A54/G!>v}0mookQO#,57O H SYWEmB"kuVUP ! '/":݀>2$}[BO/@؁Ė#W*Ыb-ޥ6G߷ULu?RmUP wW/)z +rwKTH;<)"AD;U棝$0!|{%"t3: &kst|RB;ė) ɝImvy_3>[CgFg̈Pd.1AP񼏩.}UeB@^]~pg1$iP<$ s4Ec VRb`)D_|tr endstream endobj 389 0 obj << /Length 2245 /Filter /FlateDecode >> stream x]~qȃ)^ wN -.lgf8(zC>"p?fϾMjQ[e'DBZOf2[L~ʖS3gzkSeK| צf7o7~2ӟg1e,']!ɷ R#ɪ?.e ^\:%*a EmXLڃ7c|c|"=MinKx-af3 CrPcٌXiYrM74q?lPL i $2FoBʲiJilv{i["˛" ԅ?_k^łkKqVCh`}K"M)@۹D!NUQe.Q_(O9~viAe8Xeo1M.*23J6Xke!@lқvK[ g+` m(zyV/~~ת3,؞kNmnbMȄ;BH5v\*03+ǺҎ($`ViT,+E$#(9 d-TdS1HIaLo]-*O)nOaK֝$@tjv}Td-4m{? }(cL .51FT׉ u"XKNE*]zS%ռd6O?bv,wm SJK}VќRGe,`Ґ "y ] Q(E8!alPi9*D-0Qߴ+'q@UlKըt0X(NVkv] 'aؤ64K 5Աoub,jwD]1UJӾS>8?JO$jT] 걑oS(Q4ߌQmp퍳-ͯ E*RA2_ʬ:U.{)yMu/BRaȅ}C(om>gוoK)B)^x* 訔8/: h%G@_ĪwĶcaQcvԬyIףy"{E )V18O! k.#yB+ՒXs_⻶H9#NwĽz;LMT|7N ~gŹR{Kj/u0.X5D3Խb{^qR9%ڟ=}gi|Yw^my Dg'd̔<ާP0I|͞"` ˇο -OIƒ0E]h Ի>S6NYh8fb!>`U7V]>_^O)= E ;4<:ǐg*g%RUN'l&bLP"3t OoIAZVYk~ kyڃ-b\~ $P%X[n]nE؞ yiHPVx Zk'%?{5{+Tw8 endstream endobj 394 0 obj << /Length 937 /Filter /FlateDecode >> stream xڵVMo0 WÆ%@ZeŶÀt>5u=m,v1Ǐ,:IaYGAz%aGH2_KdꇑCu"YLH$ G,OI|30 $>#I}F st7֘{r%,L(gjd2jZe߅=NʦW@VԜaAQob|n pږ^:d!^pcjh~h y3KY.5=)j$.Bżw ViQ &&4/JU(c猧|ЬcAqUlF:fb.BA'ZqC/a.c#? l*ME9I+W斦 .zEaŝMi*zfј҇>?ƢtFf6 1_^i̚g,Tu2/Dޘ<ށxtsKh1LUg Y/u-ı®eX^?ƷL-vhK5d4z?s 5 w Hgna: ;(]aA#1q]|w8=sk~9{iZ[Im}j5v6Q$R8!D&MaՎ [ڬPSٙXdx;y"6*̋s2X+tl\OOH<{PĻ㑪 +O;'{m@;✲p,*!SU:_mJ3f(Z7z8 BB[v׹VS1I>#ryhLkQG52$EL&]r?tNf' endstream endobj 398 0 obj << /Length 786 /Filter /FlateDecode >> stream xVIo@WXX®ߌ T$B*=dqN:)z-nƭqC=}[fZ$Lc 6-Gw83Mے OGgKףש.f};A΂eKke<σs0JR}A-C]mvֽP #c:=eZkBErY&]:εc8egeF[P𾹦@n[Tu)lܑ܏q#~bkg ,%SUB"^drzqV=pmQ9[NaF+ ܅WLa\-Doto1DA. H';ª<ɈSkKou  %?b, (S8L*5`ɫK,9M1$ 4FУӴQЎdLMYmԽ3%,W U=m7Ti訸?y`/ꎨhJĤbk^bB ~?X5bc>a>⎮Dce}jWK[7}n4sm׃kwv6<ٞ199I$p\JRGv4?|Jߋ\:^$i-d+hWb_ T Nc]>V'ޜe6%lFtu3.F,1j)7#/2̥gWRoE79kyCD=:3k@j /1[!-p3ӍJts9݉ERAb3鈵п WTtf9pVEQ0Ԡd< ¼QP endstream endobj 404 0 obj << /Length 597 /Filter /FlateDecode >> stream xVKo1WXHu<^?8  UTP VI+z3' T$8|w:n/B&W X &>P>KߑU!RqzjhE-⚐Mٕ`MWeAUVԃ``AH =!ws]vS'B.$E|JS ={(^d*˖=x%fxHP4ĄS֔6Juپa?y&+g3)p:tmaxBY e>í=\ʣ`jwE &Pܣ]EXYRV].`(Orbɩ=چSÜm{; Mv6ٛT.3ϩTQ`(ooF/A2kq|W-?~Έ_h~t3(arSzӣ枊p0 rWBs'қh}GoEt$NuoVScpl#0b b endstream endobj 408 0 obj << /Length 975 /Filter /FlateDecode >> stream xڕVKs0+<AXml-IviBz@#N0ǡZieI߮=_cd"ࡗ.[-( -z;_ C~vkmvwV4D"F3!KB(bI{-Y$I{R=1t56q} jgn#Zy8w$_>n(d\Q SkZ 8hnHk_uK> 8VoD^ֶWhi"b^D1@a% z ϝ{GuA7n3{@TiVs8hy|j K/3#؋S&;Tޘ oȤn3bL ~S%'w ~m09j8rF3S5C)ēuUyBWVy:[p>v8 ZTZSt,{/< +E6WY%8 +2%J}^)Pk KI_stDHKY{ n:&\m5p*dťBY~-U iC(օfV7 ECGn/%`ρ{+B pH8ը܉#OH0dׯ!EU]s :w2}NB\q䌸K1.a{J+?fn26%;'3BẦx6@j_匦<2 j )A ruFCfXnO[nTKaAiBkf05(j~^m ,36ܛ/ P_+ģX@0?IaAX endstream endobj 413 0 obj << /Length 1660 /Filter /FlateDecode >> stream xXYo7~ϯ$\.EMmEAXl4Ԭv(> ;8׳GJ`z8Q+;NK+Cjz7_ L ;ß:"8uS!3 >YolN~U"-tL  [kh 4'7@5| cB_P;AB|z]F%?=(D#FuoP+da"6AO^Nwgijξ!AZ6j?cH)}gW(D}RP:bj;`Ϙ7 smÒ,npP2`hvGyяGacZ TGUf3$tjO8FLƢxF4aGTcC+6(K!*[W$7])F5@GXᗤƼ(W+QnK-21]żir;R5ծWRfn-LHTnUkLy%uS@2IT[׊yǓ V spIEZRtK ,%@`+aJ^"/;1slUowZpft6"t}#z6enTQ Odgw|6M ;)$46KY2mm\۬fuN VȪ*I3r,Iیy;n4h,3&΃Q%s!=-4ca_1'뵫0JL%&}lK+V rʴm8 |<-H儆Ԣ!T/B%E4Ryu#PSN.No6VӐ]4dSuUv:dv#k ^9_.:Y *EKSg!. I81U8uh*aY* u9%A{ ɢ`fQZ` 3pUJ?9:-IE4i\f-# [jMs=Zp_[LƇe*IGXtUu^ v06*m`U!Wh> stream xڵZ[o#~iD P ҇mE6cyl+kI$_/=r#Q8 ϐ i=iD㔛\L K3q zSIz_.d8I.零ȪJB&mjZYatb3| ?M-7 _N qz%I*y^Џ(G"lc8PνKaӎ/Jkْa_sցLC)9:f {/%-QgL wU\X)N'xO>6t֍)n=Z@ȍ 8#BM0CD;jf7aj\iVid:0L =Ǒ_=E\C(iY]*b&C̀amhx}@ɚq IzhK&BL*B-WͦF(XI뛒re/={Jj3!H~ۓ90 0U{¹q͙bjQX nŠ`[|GT9 'D4ߦlzU68ɾU<$)Z5T)>Jמ#ʠUxO:߾G6=zH ޔR6>ӟBL'ҵe2GuYX Kguƭy}W.}V)h%*E׉5 t/uFԯj6"ذ'=([ۇE11ٵTdxt& LhLT۶tc 6/t_g|+%$qt5.GcPΦp0t& 2[rN %gsji]0Tjc7F+ߕ@6a'EwEħݑFSC: ~H!+VH(ub^HhFN놺E\%iWO567>v -v 7!msp̔eC-w]:DKI4Oڔ:]$ &> stream x˒_r@Vc@qEJٗΖ+ r"HC=`@WdHtOg3JU)FVyG׷|*?UΏ%7djo~f߼6FTT{ef̯GxGi3)ozzJTvW@OBۚ~M1^bA$tp5RxR dl0qCdSLyS])_ًys}'k0|2ķF"!P/7<|N?&:ЪS\+, 4OUhf"#Ӧw$ea^ <',!H+Z\ւa~ ? MЧb"f+^a3?IND2õ!=|nJܑ6w.CPqebwBJ?gM%q`6nb~Bg[ " ., g&2QP\G W=;d`3=~; `!81z2+r@FS(̪y9rrǤcf)>$٬xsM+i;i jTLU>*AR%" Z2g]aWh:eBvf8I>ei,m,z~RUX%fʗ.#9Gb2?KU*GV P6*TU"Q?gH &yX_e:;`E]sR8Up7'bX9&r(Œ e)3 TڇYE0 -Ur):@smK4|ÉeY`( ǢF|*=7qPBqdg/]R2խ͎fbSFNq(!^:pIe!ҬQYf6پ):/׫Lɱw6nܼN=57 _D?ܬ8A~u\](};> > [قZݹΤPjr s[#SrJʶn9wC[qu[tE:$,v䀸dZ牷a qYq IO]7+Rcr3 @K?]ɛ;xmnw}j,*kb~ck- j<+. a;CqЄza"Uli`*#M{!e͞P#ҍF5b۪s1㙂?w֌LJ}cl5:i{ґ's(OoX~UJR>ڀ[0TJ!L[68A|#۰}\Gcv@Ov;rT!k/2iJzL+%sǵg=@_ewznϓ*ᙎ:}؋3G=}?D:4h[~]zê/7A8i(X:^^G6>y-s\${;XD9Ct#DkBPcp67vGZ_eTv)GBOEG2m- ?W"˝@Dp`hUwa(m)X10˄0'l 1-9FDa]wIA4iS>!Cy֤}R(T&,wRP#yC^\ܥ+A۵ ZaZ~8/Us~]Qpt6+?Ԇ4 M66ܸ 7xl:YEV2n(t}1pp{tpE0}x +en\ŧXD^GlHZ$$΄\bݞ s:)yb3 J>K7d_? Q0 wyS1 i݅·Q endstream endobj 316 0 obj << /Type /ObjStm /N 100 /First 878 /Length 1781 /Filter /FlateDecode >> stream xYMo7W\I4hv 1|plqJm}߬%[զkqHy8ٍ>ggS$6>M lR1aI&}@2J{SfbK !ƈ16RVcԽ%IH&81˩FS< !mdN`2MՎ ɥI$dU %AiXTMB;YWhFIkKﰋ`(x\s4J!"k#Ccр^Q /"pHtxS}a,9Eõ-`,b xYa-sX١8e47  }1# t #jF`D7VgD $yIq.t$F8IaK *1!r Ou.(O$' aT`)[QWBC؃g}7ld? f@9!HGIUL7tR=ϖ hF8Ǔxeuq1Rz/s0 g,\P5rO?7>Ǧz;lgc Kg_?}:떍,lAt5:}ZM;"xiدڀsXw蔼'.k$#uToyF`Tn^/NKs 5҆???Yti&`AY!:˕`^5Ԧ 6n &zBli=AVK֗wtd*It.=Ycz?Sp>OUDV/WhYf#A%֬~}Ë|VTߣ~8_y˯?OW8} VޕA Yɬ)d>.hq VO\-nջuF/hnGڢ-G>p'z1378.Sn9Q2ԗGBf U/aF2cKEs\Z_~N_d с#G~#+I~Œ2X7M e3c]Crc]Ck:wb7f`'~{Lژh̸?+d3s?a O@s7`p<4{D \rsX#Bw ;G-86)* {EUh_ (xWc8n,Ү٤g& $ʱ9og։cW-QԷ}y]Qlw5 l_F`[l1^ͦ-(?R(~A5.^/׳˶#K&\O蒺pP}V!W76vޕ@SPgG{O6:Jڑ dkʮby%v ǒK{ MwI~9m5+D6DZ~9zF@p f;Y;i4fΜw'JbP 1X?{՟ދђvJ/;?+`:iE"8c}аѦi2ڴߒs>o{jr!@*ȷ ]?0߿ݒ̗)Hq}4vNoCSBg[S8bf//R endstream endobj 429 0 obj << /Length 2393 /Filter /FlateDecode >> stream xY[o~ϯ\[nwч4}%ZVc$;=Eʱh\Μ9\g/~zVuLUuk3JkS.fϰХ _\Z5< [xOHU:l}w1dfM+Xop8eNM+[>oÞ}eqlsu4U˽S͝ p;We^g/28Kx(xnebD&>]hǷ:t! iMCLюH^".鶼)I LA4 d`$ZP,@{Z*?^&sf iT=U1q>p W}?k8Nd3%p pGG!Go7c猅L(\i(\(PcP}[ RH 2Bb|qlu(.H{!L e}韔d^, &4sM&Bڇ-EAW>ё amܙ$,InppE9G 6LJj>yBF%w+I:'y0w|RA$i~ΧcEۤ@%d{ D!J(-V ؖJ=L,gsa{Q8)euF6؆P[;mZ$;iQ;cF4wikKh%0PС!606{EHQsWE55H?_DJ!#P2ۻ68v*]Iy!r H@. ^xzP  |l Tp.=aZN`%c4lMנE}hErwiΔ?:1@@yCr [q/=XqtZwT?Ot5-{JI|z.R Ks'&' zI&rU:pspNe@KkZ۩mKX"`1$x^^ȳӅ7I>y_&X/%\}9JC8?O|SfhWUOVmحЧ^G3SV|j-v>E$ًL-Syv5)spӻZGOvcimUC hV\IU^MU;QnlN1S₠_O07> stream xڵWKoFW""9A4qV[i4EKPM9?y(rK6y|uཙ,'$ϊIX?Y,'_e]Og6wj ~]|+&! d:"35"U=_umPW;ZޢoҺU-/۲BLWJptpB#Yi>$.i̥LhFт>v;뜁-ӪstmPhג_MX$ @ 0 sΖm36TÈ me)k71+p`G >桙>Jk^OĦԑtHϣ3VP93I|T%6QkԲܑZ Ú6x7_y2L[n +/b_GNH >`k=Y i>nrNUlP$FF̈wP7e(IZ!0e焭owitB0 %G;mj{Uy%t5W\E Z?rψe%jU?.LBLCIuKD.{(r-"g +T<BJb!g/mE|A# f*&|[&gN߈GÜr;̫ĵ& thVDoHcD# Qtŵo` Y[:i XorBo&W3B:ʛ==x;~`>iFc4Des/ hlS?X1Qx.I$f]_wJ< T/" I bB1)|  pr.nbRgϕL2LN?XEl{>32ip"z?-oaRu}R/l¦sMaҷ1](I򱵿!SݐcSu: QH̆ggzWl&n*>IX]ݨa=h(cx#n)'z54jD# NTpDa_VdV"|TG]lHVcˡftџ 6zs*#%pJ#I;,;hKOaU&VAs[kĝdd'S)l#ꑪՄdBnQ!AZZR9 ;>-XGyqTou`Y-w>98DV2.^@3o+U磌,Xsº7Pd<u\ Nl@<${X߃c endstream endobj 461 0 obj << /Length1 2032 /Length2 14818 /Length3 0 /Length 16060 /Filter /FlateDecode >> stream xڍP"!Xww ];5;={fo9Uz]_52P֙ "'`ddgdd%#SpWKtt#C&ja(gg v0ع8̌\5sZv@'X2;{G 3s<}PS8ht- mr@Ɔe;c 5wvf`pss7qs4㧢Y8N@GW yC_a*NQ(ۙ::k cӇ ,% b hDwda".KL 05ϣą dhaDdaG?|YDhD-u`Vvn^E&0qgPppJe!Gft122rs9 T<*p񲷳~X?~` ]gG׿`&#-??@;Z?Ə 'ݏ 33 K)Eo;@`bbgp|z RRc軡G?cIM6A`jGG>Ao`qA_FLЇ?b0>b`/7m"Nrb0aaj(\q_`/A} `cѵ? Y?Gq?ni[k?$Y:w֏j?bN?9>-=NB#?i?~_UpW> :7G|@cإy;c`j!\7 =Tt^K.OPITUwBIýȫ;b˄^[꡾&(={)M.NaLLJS~uV o&qpDTC{pp/] Sܯb{)EP4Kk9M LMz4{{7=N(GsR襵8VԍC~:6M%|,U#ro![rp_cp _liwq<+X4dX?_9^ԄL;>)`†m3ӗpZB"ddY q\1a/\t_8ssb)L<)&vŚk7TbM!wrL93$4r\J1c #erI`CqSSR|28!›@y<-XQnN.Wvџ߆u~tY#@^(:DK ͇|>~2l_ ?m Qk+|t vn,ʳHɒ"CC|=\")9/O\|#9e2 2&ߠ[t㍡v,Ɋu8>:;}ޑϧs5:ǚhw%ohdHD˰Ү NH>6vrCQ+'&PSa~P|#O#GiAIvx͖$WF\HYԅ|[9$YG&{mjIw25 z;{8؝ޜlE[pgpx>vD*N`ٵJQso%֣iW+=PnV$6 af(mW\UFܰVK' hՑZ\zpNhSZ2=^$fxK' 6^i+@@bJ|cpiG$ c<ۇsd3WT X?/Y_dƖk)^3F6r<hi?OgK8h~5m[ZMOJ ׻S OV\ṱj7VBl"gp~"Kt~N 5M^곢k+g7օ{$-'hR;*:e攈O#[:lj*}ڝ@4kmhHnSf ?0E1a.cz;;VZˡ|VGsgV1RWRV ?[TZpic-;yюڨP%W)!C[5є&NR|O3r3iq&:JeHM&1;x^Ę֏:]JN5 s>[ڮ-%Og`-pcT˴|\IuG}db6}A54ޅ4(^?*=LZnbJv%V~ 0Ȱ @+.#SW`[9aAuZYYUCza;5i5 ZS;O'5仩*[DTm"euSp]\8YWB U"2| KV)g3̷- u]5AyEԎ/Sa:ΣC! <-Q Jx6kTw%b:CL=3vSh ;ߖ/t:"'lbK7z#H]Ӣٍx/\;S^EeZDtK1mYxKdE@~rIÄ=ɶ9|Ntїu) 3XSe&;Y?8IoC,\J}p دoq_) Ү&_p.NzG!n A0"JA4KC2VQlX2FJ-G_B/TΐrB܎\붼IYgV`-&Aua~nj>Ҕ@VɊ%MpŠ'=zDлZ&R-NYґH94%m ٽŽ"*dE~>-JC ހa婣 ˠs)&boYU\6p[~<'xSy/Cl̊|G^X٪Fw_'LR a`XN!7N1#/t0jSU=BI0!%/T;'#pFb?ɥa0xN3XiD F#޽yz[RV.ner&wTm~A/1Pgx&lrܟ߮?^!dJ"y,s\񊭜ou;|S{Ĺ;Л=3@ij"ݽԛ̠^M,M&MՊnIKrJ>\^ʈtY]bܬSg9<'sNDEq>4c7MDsy~HuV kcԝB:#u)ɖ, z/WF0(AM%P34Q̀WJə"e{4+qbiࠕFhO c]B\e"k-Kni"0T_?6 +g}fǟIcggS m#-`Y^/v1@ʛ`7kIEE~݂;=Y-[3%rqO\z'`@9IB%J/0>2՞Yeʪt\z=2FB 5B尵xBCf1Q>H?PDw℞9N O݋U坵37MshB++%Z霓esLǛ=MyH8%yԂ"6R"s D2JDlUJEE"&gBVM|A/_MmNg1)tS۴|n⛵/vfP͔U0AC>8PyCi:O[L%{2b<#(vdNhJdX=Xa)rjK>"%㏄㣙f]%C:כ: }'+yvg?$s^m.jN䭉(g2ϕgEڳt龂*\RQOIMhsu򀅝8":EOOx~}K=*PqL^+r*qanxUXMobK{WH]Wp'N %AeD7jn,Q,K8]4(]XU@U [*}w `"=tP 9a4ڝ5`AM gj3ece<Pq߫L! J ]G\t*\602AWP$% ްhɐ.yJʶnirɺwFX#CSYVTϪκL>-Fl:$L669B9q?|oI !򧟵BKG4xʿ]FP'5<߲lXnYEU8DLśD-9bh\[%xI#MZf=f&ӲEՌOT[Ruіnon)zr,|-hJu"p~q)Qwۦ-"2RKHPI&M,|Cq'VZNdq~cnԵJ-2#ܿXW}xXxWGxSʪz`1v7lB0yFǠxwj_b*i/urC+$F4<i$sMu$V6 V2bl`tlS])EkoeP"Lϗ*xV$  myT7nj1GnMyG@Ly I(*=;ؚP#dx^5ىJ|Zdz38Rpm} CD-2A~W;&qR8r|CRg`?Y4hE\ꀨWc4Qݹ4Cvxt]݄!+GqxUPJTꔔYJ]L^ [d>á^&v_$: "4n;dWH ʞ ~-MP~4;L ,|qE; omڠ|vK7GnKztztú&",P"{>_RC<۩E? +!pp YyIJi‰"@0I"<π6YӬsp܈$ƒ+*Z¸?W6RK-#oC2.p`R @%sy,DP=.@HqQֶ dx~F95yAȂ62wN!WRz(t Ԣj;}-4a}DH=e<-0,g֯SU}zSq{0”^Ƙ)W_U}c*5z&K%y5j`ql=R qn&B5|ސ#Y; VZP<(};W%z`Qe\*KH _*rEKQsYD'$N|ݻRB[JѯqiBc^7X_ؿ GdCΘ;\r_9Ŧq*xK>Xs 0-P5:^M=cBI>NT`T DȊwb'SvA/T"5{\@t?DPsǤ,俯)+rn/~“el&`,'fGF/2w!'Ybe[wRS")A3 d2 SpuGHvlP~qmRs[Vd/C b;@(7s otrSv:nmC Uv<~"h'vzF4.ާ:0uJ~}/o57&ƈH S`SV wa6^Ѭ=B 2|$;ap 鞞 A uQwE6Dl NB~vl?yK-_:%B,; ;Dcَk 2,9P8Dz2™JF~C"$*go{ԈN[zX.}h9IkY@sUXL>"=kĺ ҼJ1a\Rre wJe*ܿABRp7PX.Ǽ;"Þ"PvL5 <ƞ{ٍthr#-lY|?B(I쵪+STRBրKXԢd5YTlW7D6 hU2>Bhu%SާCw,;`Yz [edZ(eQ<@EI#l-}"'*k2dCGC{ 4vKjerJд#:y!5?W"5(&"`")P?9 /[7TezΨ~27y=:WM6D@w50 9X71n "k6 miH- j,ϴgvh3:Vslƺ(XѴgf-Õ+XS{9NJnqMO$腣ս󰞞#5t(ry;=y6ٷVds@xW{blo )ԐCPї0]R;ZE_n tH?=8ď ؃po <;c@8O6sq؍rTX}fR69茵 &' !]Պixijyǿevk$<;y_lK;EDo%s4HkBbϥf,F*x* 8`=@Go!noOY(Y 'ؗj99,$eBѵlo-v嵉x+אּB2+"Z\Q65*GFnx6ϴyߓ?&S71l b"F}Y qB+DzG<,:rg^"vaDOˀOk5|\Z[?hG@K Vld 7ekx*.g,NϓƢ5>Z~-5}4"d-!ž[$kԔ(H>": s.WqT挞&,5) 9]/V V BtE"R鐾E}a=~]q qHk1ZdǷX _{vg(d>\*Dєc*Q{*UȞ1_}jɅWɤV"s[:1v9.K: G):ARHq'mL#tC%8M(3'X_вm#Rw)a=M%*3bN[DVMN덠[_;ʫ$Vj\ wvdž&`0ziL!O]\)͆ iw9~p`2XR{n hXR9VՉ^Zl%͔ 9܆!OWۿN ū3xKJ?8Flw<1ET_x}z->/P{3äh>L7Vcki8i$P/XJGzHjZE6:<3%C9Dkj& b4ߪ+I27v%(ܩ)F}xE|A(o;ƵMۢ"V㛝y2ʡo@#[#+ѫ9?&3M,8D'ulr%Џ;Vm *$H O@*pNx3xK[ ?>Vp0S]_O:l u#/nXY;7+G 72\R$%ƌd8elɢ-!|@%P*U$VZˏl>Žzk)"Yuͷ SŦIΜcp6c_~'qTzZv9I&5,?/x0~kOXm{DG8@*"!Xwyj!],b>mPw|\uG3~NF\CIIL![:Gڴ$ }Ifw5fPPKMr:*N9 ޕ-qI5F)^իgD0H !EYUk5>,,k~jC.Gp 9LXE;iS4QﳖT:Ce8hf0e[MgUV' `% vnDRl1k)1{7,Ɯ#rP"Mo:UẬ&%MIT<'JO欳I `i8͵_ΝLp,.dtáĒ٣sS|.g^Ƅ o[Ǣ RfcBOƶcT嚇^z Ob:51t%$PxFᑺnz~ztyp. ~8%rz5|};]S:3t/h,Qݝ]|Ie&&?H]dʍRgc&]n<_GWm^XcH`^ tF:omq[$jm4xCg^[o4"|8`_;/)vˏm4 kqRg/ vC7o,]IMdmx-"aK#֣!c*r!EP<sݚijuK/heuvBBv#q/9aJB* ^%DsRYgܓ ظ6˟z3..w "Sf_sJYDa0cYٯl7^r7lB !ye<j6%5ax-z9W- ;` 瀔JFMP'"f=<9~ӻ*ӣX㿔&S^d?KN%)RucOv{BBECDԄu&R",KޝJð+W~@p(՛SbRʍ"tܛ8ܹcс"c\D8M1$R$H'p<*g]B.Vc߾1I2Wc.e8>jCGG2}î8Ñ \Vun;ĉG7>%ґIfKnt d}O wVGd]8`lj%Qzsf;Oi ]tƧ[O?:ēB H/g&ƒts@PNOM$C@{ٲ4s-vܞOH08g0_3s "MO|4%C0OfG%CnJgOQf~|fQq 3orXt!̐^ hgO3ݷXiA~BZQBUܭX T@mX^ y?KHJX&h0xT * N{ yͭфJ^>cn@rqysm.TIVKD>&tApꡩO.J}ܣ|D3?wRG~JU6l/y/wVؿY&o=eD-.r4ͲZ\klgqeSew2gLGu%ѷ!E? .d@iFFv&_nKg{qC/[ٕyw]vJ̈<!2;68{9+e~|֪EXFm ^~o5jLj[Sk=YWݺ#)Q׉$(u$mESdr;=x5WSYzkx,mNw[,td5Dbo[F7ٽ9Ö O/_Jf+$ ?AebvD0鐀a*h[ȸ{+3")ޛF%xs,3A[KLb]{'*-KxKw WYǿKEdajeD1U~^o5ȸhDW_SQOCZI!=? 3/;z~M[+tʵY80<7qMYƛ14)׷&nUD7d!I_'h˾c11J%߷4nk @e[){F ؕ_-.ds7B35&wg)A7h i$~6"I"Y&l$Aq8<}߯<"={PDy ;9aZh_BL֙ib}4LMp u5Oi#Aϳ:3ؿ'2] YIK,6+Z7ȰGqכNF hq|tD(܅m!gt_y7CNVZ2ҷt_|L~jN 1ZvC̒q,x3Q!%Ƨk/MҨy2@hY]W5-U¶Wz[ Sz۪zt:8Ř+^"o̜]tm ɥ0xM¿9i[[8Fԃ;ibK5zOR3sjCFc ZK>M?8gi<:X-T8ObPV^,6Y\.Au \D1G`@}aso~݆lJK>YqL0}E3 @f^%F0>7A>_J&+ %>Wi6Ni*xP ǹC[BiUA^h9gdz)]o!Dϝ]UOQdm S]o46!z ֖b7 gS|`1O|{ÃMɬZLqLD/-w)VCeF៶]/AV#J95?r0F~ߗL9}xPA.LVw;Гkz)2眚J?Km+Y_ゐKʮgf"(Nm;1&~4 $%oG& ! qkm1&7UlTn^ʵN7ZOqݢzՀ/S׊w4(Q`zqo~5|/QF!b,êbK᭔\`BDm`ό!1L( O_#Tcӊi)q]I|T~i:1ySԗZfc DJqZWMF"fzx_;ZlBKsҋ~[ԀV$6Ѽ]jc ԛ*-Z":%Ԣ@?j_ё#BxĩxG+p SGg[HLԸŶYc]0hFln1{\}1>GUG. endstream endobj 463 0 obj << /Length1 1959 /Length2 12818 /Length3 0 /Length 14018 /Filter /FlateDecode >> stream xڍP ap >!www@pv={vޚyZPj0ٛ\ؘYJ̬HԚ`H 'g,$@@7$P j`qYYkhJy{;3-Ll||<lAN`S@ b }h h؛A.NŁݝhld!LpXA '7@[_1#Q4-Qh؛@7 djgreh)T@v1V#ؘv:MMmv`; 9PVdvpa08ۿ݀`ɛԁi15¿s6u;83;m0om3ٹ8#O2}'_kmgn_d33 3W-;+HN/7?2 r+݁VT?|){-ɠkmAmA_o:͟z聶`Ͽ,m766fW'|1; v{T.[pHDž`bce?3~TOm7 :9=X f ?glgx+`nljrX$XFnoMPk{y2WoCZ? E$a=yvn쒧vtESžw(] [W;V@~*a֊,1ɜ'sa"Exu>ws;5J&π+[w=ak\ݹPkl[GoǦ"+(P[!Kfzt+~;Qϔz&X"cJA!8 mD1p)Q Sm+E4,^23s%uUVvuZWr,XiQ4,%hj&Cc*z?vW?k_j~ ma{9qԣ/ύ .=KPW3R:\z,LG+$}U8#x%9K=B>H^: ӿ<ӕDp@>EAvWѽ-gp %ІKHg~s{j9Q[R*2mNgE!١ 41O|A帎 7!AÙ|smkQaT[czpz MB&0}!V{uxdpI*u= [v:!23λ i#$z=^8>MRݠg\}*<Q!ׂ`R6.lspRoc:0 >&xZy<7FIa6Y~hIې_ݐMg64q~ rF!54 sx>mo@gZ±LeC*#A|}1,۝`]RU zjF\\zTdb؉&]`)ߐ=_^wITOzRٜء^,:?јFr KC=nj" VW;_4bӈL uT3-B Q:PRU.0F#LC&yyWf%q'%Ѕ-2*WY׳řD+ Hd${ cl(Qƒ3=zb覂Bnc3?8-2Wd`#.Jа{7|f@A|N ?q4VP0^6,lߦ sU#6T?dU>RwL%_}3⪨>!d?wd.,$'"uQ\ThPIMsr/lS}yfLY2#g I*'bZ;ÿ6=yfݹ/SmkV5"W1`̴W|0uR=ҹZt|L>Wx^zzC<=Cz? %4y<@A3$dC%.~"rf5oeqPv36{"ъnr8 .E$֧K!ML覗 Zan̝k =5⒂ ;zeNy^+u銢^im'JU+{27ĔHZʀcSov٫T9<^SNm) JD'B>R }+j2,T\zH9b,cb8N#~bp߁[ΒęOwq2uTwO7 5ko˃Gw2 G? 4V\m@#nun/Q!L a["^o$Fe"WbգK5LR)>~YɉhHW_ 2!"'C0p`uz$_pSwɯ> }ڥ~|FIq-4mfIؔ[ȪlS: uҏıfcka/T2gs7 ػ4lE厩IBalaUzg{@V 7љ0a Wf53"|01+B}7οaoZ2!J5 zsf{Ш9۠F-~RFK'bz饅R `#&Wwix#Kz8Z?LxB"Flyd/m4fj}1yOfgmw==i5 *ôSNeۍ/RS$jX=9P+n, 95/_ m$j<[רI^觨u楿@(ayV]:vrC $F53{<&_ !]8u3! l#g!WT*o- /-HLPZz՚xXBM"`>1Y*rN z۶zurPD`qٶktV8ܟYV\}=Ʌ>.m~&q[faxoiש'y4gstM[j}I@,!-c*)˪Ktјaˉ|sƽ Vu~^ގb3T^$V6@ ќRЅ 'G'ǷCWֳcJ IXZy&T[BǶf&r]({wLrՠ|cIZ܁i #}yyPsAs}宦ǠYKc3C˶(ٮ㦕-r iLEG*{PL"iŘoU{SDXLrwMöa^~&[SFw5XXo%DeWa=v|\A %!a8vHm PJ mPPh'z50]:DpL< gHN$lZF`c<]GGjcSF4nK-zC%cFu$߆&]&uM|74+M93O8 +$it%_}FPs7 )۾Nso,r>TY;]Ʌ@H^]UDT0{nc| mJr"QoM1o\ # SRfOLjg=9k@MUk=j2'ʟ - .>X[R<53^cBp%Su+gL=?{wiR, ?2[s"='{6p׀sAIhHGZ 63ؾ8$`]\ړ.25ކzpdwTE='E:xqMOARJFB ڣ{c @\g{bTߴ&[s으[_^ cc+HވkI?0ד-Y X 56+: \Ԗl:\>:jnG T//̼ 6y}hlHHfX:mbŏ27,gT~1;٨0J ubMل=8cj9Qx Mx+n-Zy:H2znûs`W=;g~i4a |u2~B `Ű6zW.ﳯN|͓;yv3 ~k;@e 5S|)d= ފ-%Ócδ wuQ4Jov zg<eZnIk)l8l39Sӑdqn#]YoRVAgc #uB,Yj.i W2VRart>HpJ /)W6{ qV;G9!巁Nz -EBALsUu0 L*ݜ:"kvZb[}mhh:rcP!eG. I[?0ypFMJDW4 LW2Գm!e9X?`B!Q Lبrt9`-f[O]yfPd:p`g`M\^Q0pdgţE).w`v4={NF-z3MvQJ[A%X4E$wL} eYCF!:Y)y=Mnx/*K}w}{rI1 ?D!(vvN!R^.UQ¬Lwjg0s$HtQ_:mn>$r1Z~Ϟ%lz'1֕i(E7˲+DdR {_Rm]9$n0?Gֽ,0xV_Vj rErKip=m`[ o5A,A K{:-%)W]W8 Y2,(,>v,,Zk2w:,TϤW\JBĒ;o(#ds$TxʼnK(,'9\;#3O8F?$v N޿R{3ո׋EX0ذ9X}wa2 @"DUܹ&IOmul =ĄLљ݇ؐy*!Uu?# Vjh8ڟ>"<A9yd!gylp.R=)A)A)k˽mMM͌-AE$eEa,ezl11ʓߌ"Z[9+Ԣ՜EeIt+lXTb1|t|X n6'JhF_}(?3s`nx33x2 ) n^~/SiXHC?!r0Z)uYa HQ.!U8<~oAB|`Lɉp(6#o>II_I%R mۿȰc*VyT۴,BGz?S:lp]Keuli&Rv6?9|8iA2TjDdP1랟[W7^ Y(K5,~q#'i3łKSgZra "6 CM4ڕb_YlJX(WpCqMׅz:o_tX;╯%O+{Y:"'ϩYp ߻&c(+^p|ןRw^hq uZT,WFKI3Z~ڹSBO}!f0r;WxbwRGSı!K$ԝaz{E.~)~/Euaa 'e[~j'= eG#?eyȉㇷ!t]U$!dzc}iM}Ƙ^>ҴZta<%9*Y pbv%6lK_`ٌˀV8C!<ǰ~ۜ R:P\NԆhnӐ "jRB.}SԐw ы*EqIA}璵ܛ_|Z:ȼ}Z&~Ivru(lU8π1NӬI– "TFqBZK"Ĕ8߭J T>xd(I@פM_B&ךe'?a;?@{jm4fA ጒvR=hTk:ͦ:E ɰ;2bA矽s"4sQXKBI;^E&ڠOJ%ڹU)Z+\\ؤo> QdR̦b9C0Q(.IX$ԥ6u4 C%D,K/~@yzוT:q0L:dbJt4hiwС:bBɢY:1)kYhG:sOhKBX -̎murC]=ʖTWŵ} KeZ rt>Aus0a:HLi:MHm诜CznW>vͿ3h-E]vz= "aJ;Om̆Κ^%4!k֟Οt?&ĥB25_̏q;.P:_+6i|ǏoSݍc\@9`O2UJƣ0_b1u[4+A:QTgNQZxjbz/daMB&!=<=fj b\ T !Jm'E?!񌊏00~W+%nPoG S 1 L1NT0p*W*jbF;im&h#/|k &PE#G7`j(~,vH(3q_naصJ{@LtN5Ϯ-]p(T:*o:bK8 woPf8R1)Hf+BKaoUbnzk'Ԥv+{dqh|>a q'݂p b:+lZgI' ZiG4 8?OXW* ek 2@jI^QF~()pb%zpm~qC+Q:5HtL~pR7)BnQSɋ.[<"^Zh漚m71pb~'[Q+ g >#0lEjE: ם#_Hpͥ) (ŚH>SE;qIJwrtܗ^ .5<6'3ud& )%^;zp "A91صtO.3K99(Y8"ai(4E-$|58>&bV7>5:,1ɼ=0db+-TF'jv6zS d@@%נ;d]xj;3,|2zDTBS꺫IkYmIۨ D-6#Z|ݦ^{~ha8' W)oǺ): YVmV͑g 3Yl3k6B˿!eg8n )M`1wHC(#sX%3-e+TtϐբG+-.fI3(Dֹфo4aɔV=E:*RxH惼_XW,/Xk5V_ˏ&S[ݙ,+;Ğ80Q_g` KOC/_If0$tEu[Tպk*aUr:Gsr"Z"tM)lpji00dT6P 61 kq:KUO{+څhJn:1HCLF3g ҃BׂqXPSwl{C4Na{VT_uݻ7 t^U(n~<_\pT LJXʿA! Tfc\Vv@ӥI,/XyGZG^Pko>z}INdlE@a^{qz3rwZwaa 'sQaZ7dW?Ϲq xMvH+11^0֑5µnH6sgC. D_?A# endstream endobj 465 0 obj << /Length1 1610 /Length2 8428 /Length3 0 /Length 9467 /Filter /FlateDecode >> stream xڍwuT.]t P0t*t00 JJ7-ҝw߽5kͼs};\Җ0s dd tx cfց xp' */, B mr ^!1^a1 Er %@ eap YGWTTw8@ X5lhh, `RJ b<< {'n)'hp%Wۀ {q1tl NaVW @ `2j Ju0N;ݟѿAA0{XAuUnZ"`x b2G~/P=١pvWFC-ea`( pry>WP+lZZjفG qt+BYA (, ;n6<;;}x{:VV+0  `o;xy l i[*C@y_L:A>h-e 7[Fp |aA3۪eTZܿZqSÐX@A{~fW15)8fE {)Q!gT}-_i5R\@?'RCO ր9A~@( |xeFNC-`FOPAxH 9`2pCad١7 u/Hc7EJ/@v R<Adfؿ o( DH,?c #:F_-a⁶MeԮ\#|=ޞoSlkJ\ n Z!˻}e@|r+9L| |k3ߖJk?ҚkVT3u%6_YjDaSG lNk.)lQbr&5rHa*{OpgLr4iC衊(`yCG4YSӐF|N^woCϪ?z#DIxoÕj` kZ)MoiKFwc3oF}7·~杷BHZ08p^h(_ع.X{SpAPjlfm0a}'5S;<+#x4A{d(zC<G͎T8+w*Cs7 F'RQ/Bwsw_YDwn˂=)֕4l"%˕jXjSFtdke5~٣Rk]苬WqxX~a$Ṿo![LF ^΢} qr81`knV6}{+@j'(BCuKK4%{|1@|1op`*=+gD S ^Xд|%z/Mx1cPyxv̗kfb#’x7XG39} nZx>Z?w+': eQt„vk z[cj̘RCv6i}CKqŔLxh2\/bppU'S[v~]PuqsɡI}FEr,&Vu fJ^ |d`;?,=%&8m8 b ~xKh+,YA"zÞTK#?m->fHdۻ4,ey2>vt +ʰFLnkcUT݈)6d;IZb8qx 0㤿޶ڴ-&|>Dy\ӂrK}m~ǘ@DIdkCA^qEŃdKs܄R:}%R $ >w$WƳ.Y&*&=@λ3A=o##4.圶H[`YFzl ~hqQCWmMNqzKO}2'4.Mw\4qVxG"}#xP_4(]ȜeuU7>"$e[˓D.9`,c7qY[)51bZNt E\]O7b|ʨKj 3pE|DtZ T5e2j˺r-&Lxj _ TLK2嚠`RMn҂?L wO@X: 뉉>kVEr ̽ y28,¦ c.vޭ)!% rzYQ]f}4AaWK2~3좑c2.7>|^"Cxg۝;& L?zV²4QQw'Y#^V{еg)tY,Ǡ|%e&y:|O\sT+*PƮk焱{n_vؽn1}ܩd|wvp^~ei QhB֓Ebj`#j=OFZRyO5$31;1r5i0Q*3VRbsmY]äpY8%Eld܄t(GD2;#|֨ ;s/^d*ОjW*<+ 4r'b6&|̢=bhʓ\RcH)dc]ǡ wca&wӨɷGY7,?z?R޵naQֹo7)6Kyg2Yg(i8*nsGS=aXf:/)B+| ަK >+ꃠ)nk 8Մleƴtnͷ>sƕc.E6ml7=֝hmRjw?HycN=1I4jR* -6YG*PH[~\Ÿ2g(m8O {,G:f=:Xʑ~eTm;oYZ?&㬞pQW 'LOa.uΆEtq[J `OQCD-jT[ _;Ӭ:= hϊɠoiJIܗ97@7ͧjÑMLA^O}CNtaDaxQx5RzogL&^Щiu֕,(fol%J.TʟEz }c>.Mӊ٩MUV(6?h>+9F拼tAPsxL`y@ڰ;xݘL/.tcweP]6$_Z} GbFp✦$8!2^.}vn^$68zz Cjyȱ|pډ++!~X?$Cߜgʊ~4OZGQ(ئHt`T  H&Vݗy~".xv7OHm*ROHo&~n"Yp[9]u+A24&GS,}ػGUsބ{ߐ h;?ld}xV8KZ%]>"uO7 gv]qRo;~%?ty>&Mw[EZh)&Ļ-/48.jEo/QƿwF+VVQY߰`-!&6M=D619ՏU g;8mq]X{KVInl6YGY<EO3d.qWmU@EǙI.=8\q3֩Z`F+7q> }=s--E*Ӽ aa#Ϣ~9q <fh6/@dWhj8xf6/h?il9Lْ <~"Pw^o5׬-Ƴ5}"=y=Ŧ@fpwGkzaz]rdZseRϖ;{fٱe_GЦ֗erfR-1 69zJ%VnK6q T i+,X qHy|^l&j$Q(Йi#H܃a |[w~?%۟JC i~6T|BCgOǀYk"*B}͞Bh_ebS_uQI//Z1n MÙYS}^V^{)Nܳ~~&ߥW+v|TN̶6#W}k*K$32QIPnjɋ]}kJnfiv_1^T _LPPIQ{guiFLlka,>i3 h{ЧW&O sƽo~|+rآ"z+/M9gO{QU2uˮMmOVjdXP༆oһ\&rנtk&ftZ*3&Ez / "V T$gy{Xrw))mOjlcj5/{å/S(ޖcydTE[3R'r>ɏzn?iq]2i5jTX|\"+gF4KÉA؈Q'O)F_C} DDL{+_g}hK/5I{LFd52$:g:N?pĝPa G|0n>ȪZT-A϶ qOs۠M#geb m~w.y_^9y:ϡݿEq}卟Ͱ&h7ܶx֗7}{X Ou7**uS+V3x]>S6}hܘD7-?V1y &fa_{1 ߨjyD뭺α[4 F|ګVj2Vί{Q. zvbÀSQ(Qq1yXԢe_DSnqMec-/h]VPr›LR3*&)"9`v]qb-F#*:’!޹Uz{l>|j1 umo_4w܄jwC褄Em:5K+ஒC"],՗ygWp3smCYofgئ\F*eEQdYOr"2t=ܶ/;7k-DW.>3 }ɾ3V&[\_FKxsmpJIP9H*9K ̹Q8nNMɍm%/ӆtVb.;6׽Q]2>ŘGk)2[SfO\4wJ>rĀ|TyF ZI>IJ t(&m> stream xڍTk6Lt"Ctw#0 0 C H#-J"JK ҍtHI}k֚y}]Ϯ{ >-!<|yM'@>?  ێbAC01ΦB503( E||bqj aw<yj# pvȺ@P0! .w g> }KMtR\/(q y0[8*pI?/""O NUzTbeqW33lw 3|B|/v_*7RpvE @{ C~"ChM-QU$nIda)$] Ձ"}w :pw; nNw]~C00 @w'!nOm!޿#\w_= @`3iFw7./vAّ¿D [IDB{m @wrb=w}WɿϿ/.ƛ%BCV>^ze;4;"#xq*A^!~x;0<KM85h+i[x;~KqiҘRӡ~y'F5WT?gz,mvjt` % >q%xeo?8)״UǦEdnbYJhRiTX 0. KΤ䡕k!!W0tyF-MD EPIɔ]SKߒ"O<<ҺbN4]jxGΩPf,[ؽ8VCK;-b$)XBž&UN._z`w&-:u癤y3L13IbRzN.˼DcUMh#yT;`O"3\QkTSF~ykCm 38# iq4P1 Lt- @ʭ܀.ep7ՙ*? o?vWouQV\ kx@L%]ԼLb~\ڈŗeٷf)_O "{Ry%>mJ$2uQ -8(%a: jc(,C~F 9)g8N@9wU)n.EUB5S%w~ ]4~(l~`H;XAˎm OhS/UYQ.;t]n0Ze;lZ4vy?*bd_Ioq1"\!,a2'i3">Dg|3ߧ灒go-?{fO`W0\>n16r0!zwW8;׼뫊q* y7YyCMm֏24e:?MgVV]ʠy6YtA>"9Ղ\ۉ,~ӔUKWC"1&pF %>Unq &q& H@3F?kz4)\4ph{^rz`sn6 W+gjAgp;.Ox,UdvQ!&d~K$("ȊP`Q^e7+N2yqr7}nc>#+V MomBl[v|8M*^ RoU )u Zbkdf_?Rh;M!Aс<6YPvyʜ7M4$2#MA-xR~#Yw?ZTPzSR̚bhTA9BK3Wm’V`0)lُgɗ(cGARs&-hdpު,; k}.nGUD}n07m+;k\Yl~IΔ9θnNLL-1@ÄeV]lD_`'dXjjku)5zƌ\y}T+p=U38\ '`>oI.r]rkϩoQ7-B x|>@O:/q"c>=dB!x9ireQg]UWVˆsyVu<|B>-52m P{ʘS x $W܄pfAo.TrO3TY<"5z3Ix6rvt;*YFK"A9XKFLg!$iWh^v]TEaf13}h8F ;o?ln4xVyU#EowwAvj3vç%4[٢d-&= ԙ?[&%;lyjI5 ,v.t3Jܩ g= (>҈'+_6PAEygl4[}TDj0OQw!nҠ<[_ᩁap ir9^͹-# )[?kƆ:\{F\Wqr#bR)FԎŔ%SVѓs1%U ;4dшfHShKZivsOu!r<숛f$ d["s0U@G9 jHi;`]oϴz3Sdn'{luc~Ah"޸]Nbyzm.aꀄھ5)Z'sߡ^d4Dh:-U̶lg>JW=MJ j$gЭ`!xw` gfI#Dӕ,<:F{iEEjj!3 lxg㇡gh'ǾVwԓn=0!Ȉ@u羆"OOQl5?~hҩԶơe,E, l5zcAOezڎ?(q^ _Rf;!uu_LJ'to&&n~V %X}CSث| ,h/9D:+xnmކ&GA_&'Q $*BֽwI`S3IwoYX[UQ3PcУo{` c!:J y+ùgRGx޿Afs35 q)R]}E5FǤ"r_??4oOنMDtPbjWORmQ$YUHn#@G?N*T#'W8w{[Rg7J9Dv xXqo V^G:"ZՏÖztMiZ*F#Ӿ7ޖ:C㷋?30=/MC vT3'YG zsANKhI.7TtH'c n.3|G9ĞW۟< )&Yְih> `x[L>(/kB?jYֿ &5t~zjt%&dE\ƼA'>Q[Ӷka=1f(xR{wP%5lvi] z>9]N(*-92_i=#-vJae㑛`| ӎ!n af_53R_6ΦPH`3!jv|Sl}Ryz 2yS,Եؚg ۗŹ'^?q0S`A?ne,y"4,M"D$"/OmIUiyyRVNAPppU[x \7"o/فSI=oH/G^X[۝(Bֵ{pvK8zm;t[RvЫu }Gܳy z|QU9CeIY駘 m2-<ݱvJk8 nJϣD)lC:/Dqy2g .^A@Z}' Y`XNɰېY'/9RVG㛓b"vX1N8Nm$PDyW*fN62i.xgpNԤXėDL[bx77ⲮI@{E*\|l=ZNCc! J6i>]jӮzJKyb7@Q9o/-} MMҗ#@3n{_dɹĜ[0S\ n{[}g5 ˮWtP+n|NbgP](E{>#ҡS\ʍZcdX駆 Q ތ@Kҟ,Vދ;=<ȌhIhDFS@1\,b*U7Bx[w `.OY5XkE|_8dmDs+Qf &_SAdr^GFgG"5AgPo4N:¯EnBtQX>}8]n69q@Z܃LLD’6:kf22[tʭv0Q*x~kƆ_MR!Vk`gmMFY!8hu3^3SYCw9GgysHj|/$iC~ɖ$IYԵ”.a8%ޘ4PtY,˽JKOWhOlT`mIy@#^ߟr<bFnI@&y*,gu}UMIEvKeʷr{f]l~MރЄ}AFD/MYq\zQ U?6d"yUTfmsgg;Q"Fg2$,/OҷDR\%}#Ѭ=܍բgi=꜀E]ḑL'eϡ0.$^)K3#ec6pgKC̮l9S)J?vٽ7x8.y/ ǦCnA]ԫ 9ô~=Ic zJSv5 dh0Ч/uh$ѥ].ߟ юW?zg?P گ⎶hְ(f8\scs1zeKK' 2lF4L ͳsJbi'B藦Ǥs\t)?X9}[N&lIBcO@hN WC찉M[J<1=OxDq3(rOLtT4Kʼng-> stream xڍT.)EJ)N(R]   XP;-ZPR܊[Z|3̛BUI bؘYJJrlVVfVVvtjjM0Z!žd@Q bwqظxYY쬬|!I3 ؁ѩ% P7%)ߏZS:1[hP,AOM6 )s/0Ņh qcau#d]2@h 4ftj%Ot6`S㓉!P$+I`u86f#@SS-hm@iEf+3M8B@ G@T_9:0GfGY~y:f);3 -;?IXjod33]El$BGfXyy8x {ԒwM7(%oS ^P`T lz@p:0'ǿf`SdCd'~4~l߯<c/`''[Pr Xٟښ;STO>m!z[DO""?Ň+'=m"<___)?5i"ԧiq#@ SS֫*1bAwL#^qX9R=l҆VW3unL[&ӏq$ortzTIð;D,z5]Vn*K]OKtW5''H+soͮ.B*@Z\J@{Â?ApK<:Gt3=ހG;C.~:.J icT)~]EҋOHL?<بV0jB|%w8,NӅ^?4c?iv W\>!+|.u~3#W7E~]5^E 6tRqeD.]CS}VwpZs!K}9k@#`ƙYqT!~~Z}ճwᕸրjK.@> l@#+ *&Ej3[*5@šDɚl}_eʔ0ln5G Z.8Kى>.omp~IXzf@%ub=, |revW@v0ls]{XW'X<]U/Ļ׸uV *+-ԝϣ2Z='#X*K$l!K#e^9П~yXs >3t,<At E;EP$5b[coL7τiBƄI^6}qA }B5B,Rc'h$ԕ`z4Ֆ#B5rPzshPn` \p> ~sHҐKVGYݏ./뉔v8{BK _WenzE#r{)iW|s{#뉵xlH߃́KUY݈>$Wgܶ^>LTioL(hݭ%M`/z21֕ /8'P8SΖjӌ-ƃJkh  VajH@M \uKiis EF"B[[*ጛ,~GX+*vf]f:u~jͷiIQW[d]0ӰԤuO ŻN5R͍,ɀ[ZH1P i>=A>i@4HY$vo]PI bbfCv*lњeQ@@1v_&EsCqei`Wy[q`UqWіޭHK|!5 500[}~<7i\~AߜPA c;ξA=E8!Y|7,Et=EME/.k=K!5\|Jb\-#|EUJS)98}!79g(u3$wx¨N&%Q5$v۪o̓'6FcL]ڈ&oyDY-JtZlw͆oMy9P+`o 8=m&_Of p*m& , _Y'=2> kV'h+ޏs(x%y5[mj UԜnԯi0w~9k=W)M`R ]U^1uP. cY0l '?FjDr:i–z,2&"wU!W:*@1l?ݼu]6o.fn:'x>tt$Gk "j"٩~ b}-b_č( dqR E_M6'nVGc_سԖ8j|ά"#{&͙}+g*lDntLt2Rl'%#:#CGG1Pljڊ8d֮,f=śe,zPBOȞ%O³nN~cv+~ pzQ>Z7gO7Wbw6TéV>}.ݰ@p""_t2nЦU;t严ےa蕋 LVb5Y  Գ<L0}g GiUkd^m do$M$?Tcl`VTil-|2ؒ8͆՚^"߇og/ko1_e_0dz ?YYW5xM&bD __<2b\XUIiη~dq4˟}ocjf<%lr(QaMt\^Zd2C _>ު α+-f"{S#PKu/A(#bش? gpа. }ǦTmF sIS= /YkBĎ,1B=X6HYNl\ 6NX HUj&0;*w]j 1ImA>k.tpW6vܵǷ Sp.Xj+"-Oێ93Cš7,)#Z|nP[EK*+\ښS^ If:WZqw4v4 q$gʂ&+SAآ{c o~j#ɀJԺõS 7;šέp"DnH'7 d+jDl:jLpT .(@y?w`l,D,1&A qַ,K(c񐴑Q xeq>BGZ5*O$2%(laM] Hl^Dx!4pJB(7wAzkw@A\ӟpٸʏ,;-nXB|Tώw co,)Ae[C/|uzͼ/eXWFE "\Uڥc*?ŗcOCY+û,MOwd=xd-Ph8?lU{8nc%g)%_R`kЌl9Oc_ ,FJyGJB5uwkR^F~ER?7ߎwmc;m0TSl8ɔaX #"SZ')uQQta "xD1,ڊ ǯԴɟoi UM8(NնPiw%jzo~m\;6,݊Y}S5ckqeZX㙒4^ ۪Zp3Nf}<Ը6Lš㾐Pd?vݦ5+NRUBS}ɦ屺e›kʅXQOy 3H(x^Z"t>Ci bVet!5jRm)]s(zV5vPf s!# 0_ZsPMҳײB0Ӑd~~΋ͣ h}Mt 09 %5` 6̤r,9L1w5i0stb]nt -Q% !Oȵ9lshW1!r\o#Hk =Ɗ!Qx'-QK9*Vsk""6$?GŐGIxfShDk|LtÑ3^*>6&f M1QM7Ѷ} ?@DEl#aPvJMQŧ_W;ǛDj3k(φ`?ي+Ssҝ(WniY(V{zL15qM"aDMZKต#gHF-"OW"?z0MBe<&-O{F!XJiЈ@3$ms%魈r]ɞLUHguH8Y88Ċ7DA<2 zCYK;BM4þXҏanD1_G75%fQ_h&1AY- e~ޜ<HۅKZ"t&csF-Pn̵~od4XO%\ZN)R,jhZ#?$aU:PZB4{N6Գi GnƋعB,[[<嘹T.茏Ki]rq$/)-UBBHQdEK+c.wb xqK|/7o>jZf\ʑ^oME9J!_ HM Hw?H1F. 4!+^ 'Bə4qD<@Q-Aa?aQT4)z BJ>{Mʹ(Y2g{|.+N-1$ѵs$W͛W0ʷ'AerP5GuK1ŐVW(Bdf:F2}R !q= X|ӗLCOMjx0L؏SDpV^-p]C3U=$. 3_XKDVqPK80W R]D]1{'ZD 8_5nA_&NQԚa `MWt-F&|OKS>H:?i}nhNYe7o8~)r>V d^ cYo5{~VÅȳZ{F0ֲ[S12k469I#CИbEUg P?g\4T-V'ǷX?1.彈 Yq~t!\2L᨜#L<_y3:Gjf) EIճ OaaF~ȾSuug9}tȝӬaEo/b?y9߰8̦Tj3.TyߥwC[8!S`Ν\a'Kj[ዃݰa@RST_ט£beV]3*1EHY(/`{:}U}fo/D4nvcfK`O+|k-E/[mnݤ 9 Zt4tb>2LMX!׬18{"_h @ 1 >j/,NT8{GԜ/r! ZDTO!nf3C%oۛf~0W.ͅ?;P#:L\JF5Rv dž3XpgDٺ \{9mÔ_Z7/x_~GdQ[6C='LO)tw;zCݳ{@<٤ITQ4tRMٖF866LaI{Ћ~h0yqXZZFTD2|/7O{ץhHO~:mjh=^;K4*-#L⍶CnӑԓaynTI(7:>ctC7-UZ56ꤷĬe(D,) "P 7*ӬO$s_eSo=Sqq|l RnX)"&|h༭o"y'vRH(9K\ UOt{e֎ l_so>QI^cd5<;O©KGyCsD+!U+) <]WBQ8Rr|ZY}ayf_UyCՓ^-y1o:+!tEE5壘zCܧ["o^3|zkp+*:j"K8VSܑ69ީq 5!ϼY}>zip~9o,4-8[ni,&ֺB>^Drw@" u9涵_?ӉWUQ?d^)bs601 [dgDo3ȡ%ť& &[+6l:^Dg>톮4~y;8JeY`z(_nq#ydW]ku!igF3@~\Nj@~d:k!;DzgO?ĮH,9<tq:*].]M+c, 1Yt&o9E:U]0)2wd񪷴ڊb6wy?ܑ2L'Ny;Kz:j= 2iNjsWp2_ϋ47EE6+ٛgu #QYΗU'$iۖloϜd7eS$Uc;b?r*_qW3NJf-#^SE+jA/LE4*Z|u eE Sfȝ FPK ,-G4-rˢl)rRW:i)$oqVε =Ņ#)=<Q4|0q).qlunc J#ܬs|úMZvt[K=w 6n!/UiRPq{)Lt/ 'S1^G%Tj*ß?}#$wr"Vbr}(\j /Э1z, x%u}=I=V|"pE~evZ֘KZ>bOjm!@=l4' H۽)k5,&:(̈.էCĞH,ƛ=Yb3Q̩+|ёC[5>dBl6.klt(nG! M8Ajv Bd%[ NJ68[y,NBtpmof 0+Z_)|a66E t݂\GUv$jGv>bHr,䂸a6 2g`R9Z;}c[K 굥>^Lf6'[OA6A #?NϢCAX[ڝ۳Q%)\+1ӧ4a<칠N|1U jL%Wwz5lzӢS~:oj(SkW ;4")<^0]T)yOdy Fyz\͜tSWa{(QENrvx'&|G!ݜ녍:%zf ~Ha#x@.Dݎmә4Ԑ,sSm_Cbt;l {{xs2s &fF;*N3)m8}2^%EZnјϥ=EAqZt]B>хy0MSh_ SS ϮN8 SHSk>Zi\d|n]7w{LINF38$FthSdaXFؐ^",Pز5@l.J"M0d}S I4Ca_ Ijs(jz4NW9֧EX[@H-϶F%I|Cd󮴋_.%PLF0FPg^U7|8 Jk_0A6*d0yq9|˾6uO"ahu~h`6l^|SS N*oI1g0@"c (BUWsNo0e20+%@b M^d'p_# 8!.aүXai?лl+.5{C*W+`MިJ?Qihս)`!b~K0;ewls-_rκ|{.L:o82gzS5GߟD*W\F i݅0V1f՞ X]>#M ~g7q秘Dm*,<;dz04y`*!x i_Oa,t!dߝMfH&jVE+bH "3jwjzC |2Ղ+.{&Ц+QWj`DZ怹E, ^vY (^AUY eV f yeq JW8N_WZ8W> pBzIV]OF0z紜M9CJ097 TocZ]7 >K|ojQMcs_ ,ҰGR_FFWq dU\z>BPLFFGgI|fed`YM}1cP77gw7u@vlʁ>My58'4QφކE$r:d/Rg^,#^}bms^ï8P6_wҺҵſx8Q1hZtYUd<F]y LFgՍEB8f ư9/g T>x )KF̼vO;2\D\rs+J ]yEMz3˱_dkٙw:|#WuFHHy;=J7^8[se7,|KDX9_*ǥ 5+\z[]툚׹}G(T?ɗ endstream endobj 471 0 obj << /Length1 1422 /Length2 6361 /Length3 0 /Length 7324 /Filter /FlateDecode >> stream xڍtTkۮt);b)A$ACiPc9kfw빯a㒵[A0/7H x"@ >a2B0F u`OT^~WHWX @ ѿ.b<jhpp!jg@ZœYG  4{#5Ѓ[C!`G xx<<LAH̑j9g,L}^8Sܴ=EO>f$m$G+VuG&[ƮKЇc:䭢jpfKkdԢ_uVk)X2:D'k1I\{-wҴEPuX;| V稜,3!,tImt_fǦx-R~xǜݹ3k7_])yZvtP\8ɒP3ҰAtϣWuY6_{n(X(M/70ؗҿhw TҽR;BtleUؠy͊m``J~6bI5GEF$Q"nuJ-/{"L؞w-&SƸ^C];JEhՏXl/;IH=kscyk uY 4pajMq|GآZGclREW!߃k>-E=!uތ;ĞL|zK]mlc+"  ;:tNڅNTcvu\N;s0.ߡC`zCon;pV@r? *lR, "iBe=,Q݊ѬC V)n~jQC3{G UF@#]Eh gM 7U 2sR`a W9ҜZ5 ,)Խ v=B-2{otEɱ}:z?9f{CxyQkƪIyv+F'xw }aa[ּn*ٜޗvqjj ׮VSDӸ?dB5f$6}JW&Kn;$vQL כwQIQ"J' *SqT]Wnk\_Lictkask%u_wW,~kRr؞W h7x&O\sO{39tʝ l}{n%Ͳ#EisWQ7ø\E9CAr篃 Gk;M\#QݩHzS]q%rrh,g㣎X&dfwמ !nErꑰPX9XPRAM-M?njS,%wfȫY Sڭ7eP2es/pYKf=LOTG`k!0gqf"#vǸA%RvI;֡ԯ`qF~Ej0pw)Pڕͺ5n_\~4)g>P#goWkW 4C,P۷I֔m<^qXoq'*2цbMnAmTʫY M QdaKM:☜ PƘOn-ߎrLDPp'tcrseMYܷkq1x/F23O>]~zov^.m.*㕗0yM^C]O"CVeAH; 8uƔ$_"+nMn=%5<NybOhm.BX1R~#f*Qs4]LLONNެy9a5*y?{ʟ5~6̡zi|~v.⎉xȜ06) Qsi;"s՞Ds '_wbBULԸ42EFb4޽gN+Q <:9NڱW?Ҿ5/t??&#)Fgϼ47 񯞪4Mz<"L|HL~ĔbLe:t}XW֐p"^\! ʗ׬G I;h`K!Z/2ʃuٸTyП 8ߠrL2D1beJMwȆО0]4[}p^/,s}Źm_Q*X:{*o ϐonVLO5u+_m]/if_zwi}ژFx԰ |qP'2`}^pj ?7R@ 9э pu4Z烁1xqEqi,C%ڊtL8ʺ#oWI%eߕrnoGSRL𯽦  ^Q^皡]<5 3WV4L0Ct~鼣enko.PBE&qv=l>XN{:ll!g$zne/QfLi{6[+-yO&XC`oke>s$!< LP@_۬EP9&Z- g Ar5Q(hw~̌Lgn]zjm$7k*jpDot.=J8/¶xM')+D7{dߓ<qVm*1+|.>t(j{,ycX&sWɔX]3'׸ZI:jjgs }W` |†^1F?B8yD/QZFp XO~aG5ۛp{ǥιf!톿Tk*9>?zZ%x7ċB^GQqUoc &n\YZeGea1zN˒QM&:-F.)03t>L)_rnz˂<؉auv \=B!h"8k~=~7ʏ_b9nA笩v'I OrCNףs7]Ǽ(}[{n0ޞNDRm?Z؀׻o"?iWշ}¿'>NtHK&iuܘJ9 YѪIDپUZ%kMex5b:(Xpd/=K|usVzYj jKVيrO_  09A Vʑ=꜔G]6@-MQ5S=;DžOj76죍c:!r[6GG:za _(V>PN@?_,έBCTK#\˦amR@aI«+!Nd-(\JuY|3_xa8HGtbs4+w{-KGiMO'6xVk6 %F҆Xu"Y;fүl{;ԟ7V<_,4"zqʮ4}]=!ر)ȗe1&;+b0.qG~Y:_ `l,?`=o摝׹fǯ'V#t%{BA~ܜ7X (.\# $Ӿ7[" nM ŧ儲8x:_dm g˦BCΚHP^Uwy䷛cjѠzEt,( U_qQu>װG)_~g_EdB ,~l|(uMT){ ADlТ;('H7Yb(17#cwB"Dm$yS1ÔK6\;%I%Ph4Ldvvyw0rkG8RT6YO3­xU{}NX%È֐|W/(]G:IY)Oz+ݜД62JΎp&:7!7pϒqem#\2SAK=swj.A;8Ź#le?p9\4N%9*bx}چ֋);|a_NSBDpǠf@>/k|g X}W!|@_4Hzl+Yø;|Kqt+!~&|$wĢ]AdkWq_L=m:e\P>mQo ,Q"zu#{8q v93 {2"9*Hq+[#›ddppigKHe0^ʔնt> stream xڍTk6L "!C 3tItHC 54 tw7 ""HHHz{Z߷fu~4ue,aN$7$SWW@<  G:2anp'ȹ HMDũ;!*0?,$| ߁Nby PqBrNޮp[$꘿lPvXTTw:@ Bu: q8A0JI"b<G7'WIv.'i І\=`V_Gfy2E O(=?>YY'//7'`0Uo_)vA8.oɂa 'aoAQ__Uo߆~~?n#ݑPwB-C `VYfww_2Z J`;M҄#,Pg80M'77* jjb\7 "}( NVOPquxB_0jm`^A8!Q)g+ޯ1xu~#QQ/? (y" R] xw 8AŃj[Ϫd=% p} Sq:i %`E3 Y/Ǿum-_ܞOa!jB6H+tCӤyWʦOHZ3BZ(ҪYUFN#l]/М?44rZrGDq1- |ݮV f@Fłq>Asvkχ{IÿxwscD(1kEHݎ[v~%GXb+U=̋.隙nLBQ =>ϴZ3d{6S2nJ3ymcQ8F{,Jv}AiL9MXSЖfSBcj]pdXIߨ^^ozo1.eLx VcL*vE7(.λ0c'pMK3x[VCn=պxڳm69"JgNQTHF㧆ZV.7ri94U5/{/f R9e䴡%x,S hlHPaf#1 =Vf\`tve&l] c2!۾> J3~dk:\jjZs'9;/">$:_)|&xT^"cr{- =q&!W q#78=uFOMߕF|[Ί:օ?s +-BZi((0\>X}֯2lҷ*"dZh}W -q9"p .X *Xe@@3uY)DՏ[E) 8"c3D Ur}-`r3YU2*(g@͞2)(?(|lV(@O6\hjإ xDyטŰSxCe9;(]sw CޝOFgpXa!i˗ש(B_i1S۶]o(!S<-o*UtR_k,_U[H:4e&?lßURˬu~  \2uڙpM:{4 y{s:0:Y173w\L#.r"׮g#TB!yMW mڭ'Uk!?jJ_I Y~'-K[NABzn2KOx0,"dzTUg1gMrsnӆhy6*%1T\ɳ4A N ȀG+?M#x&['k:W$gM p1W8KJփ1@o(0Bhx"eZ!肈ؑ^`%ȒQk`+kzmLbyJcFٽ<$sn3-%LifU>|]NٲQDK oAd]ʐ҇44Κ\e)s.Y_W\g$4jo ,e$ٚ?ubӸ}w:ĩe>" ~PPܸg%.IE+cl]Jȓtkzӛ`uv9\vS\ 7r)vIon۹d[~()S,mCؐ\}+b jOOٯ0 we?%3q 4s(P`$b.Xݱv3Vke29ưX}ulӌ|HB6vFW_)\84d&WKzbk=f¶{ġa^6ϬGNܝUu;:D'A Z7{(֩}&衺ppѴq\W-(w P'8iYuKkFLNMbҁ ]|Ch}>>IJtZ,^)(VuP9^H׵.P?a|t."Oqlg[`'E9g#VPEN-wc2<,J}` o`yDnE.썃u} NnbGpUqŦhܡ6`|bdzzŮ~i,.q<2xTf#ȁ:aWZ̳вyn9|׽w5ߏ2b#$f3ߨ4{1SO;X< ̫ryemTرt3&)rFӽO)j$E}sq '?rMfb;P3j9r՝v2墥-%ƿVz=|%;AK4(*ևd.|+}Һjos&pAF^lK8zw.} M-3j~dZAJ^7&sHO!AMziR:8kI8Ʌv]2P !a{"o>#C&wH5OO eJ$O`bxc2 c-'.g/#D Yؕʲ^9=*2pi pyJ>4獝/ܖZ`to ih~Y8h)Ħ}o?^rKIsx6F㜬OC b:9y\nɭo2hT$()qX/l#&nvǽ؛M&ܟc>TF7ooTߔh=[ ݻRF;3A%ᚋO͜k`yew6dꤽј88Z5T >?^ӕ,=9c>3.O|`+DHVx\G|orf[쾤l1 }}1mJ4)3t%0x4'{{|iq:4?5SnH:Wy~`۳DKޔ2癴3ƛSzd]oUѧuoIT \vZ^rZ;N~pxfHDx<ȑUGĎ 3C&ۇ}op/țF9/o{?xO1~d9U ޝ4Ͻ > wJ>]ZW<7u|. #%ExJd\>FNm:%cD|V ݄)SV(ysu6΀-mÖ m"IʥI0# = <<$[1՝;2vlbms쒓{;w˛r2[}M2SUw4@Cc!Y{^#Tozmuyc_;̸0cXi.}^KiJDuG%DwR}M\ߙ9`mNN| j݅Lgc$}O .G 맣}R]&Ϋ_&vL'>n7c;3G X M}UzCrYU 0~RS~I`F伋=YO`vְC-Z&}sKqFZn3v~;8t43,imf3a݂imf, :3򚞍Mǿ%(\3J|5^SS|WׄTqG%Qz|GOkR3:&Q8~XCN彅Мuq5kN*;N]&0qFP|Q3b3IQQo\ܹ[^-GSg'j?)-TVjm֋\f1gQBMS+/7\G?$O#pM%M3GwۨMi%ħ)2+%2A{7Xw0.aubB~ /YŔNN 3-`nc7%˳\MHpg]Iggb|PgoeS~4+eiNIfb?(/֧4^kKJq̈Tr,|1i3Y3B{ZVF(V_?1솙j&{hW$+1dvD@͂=b"=܂,wBeŰg;@)s`,gTĺ0fG6>g6C5n'|;aI"P1IEV~cm @@u=ujVqy@7.N$6A?whzte&Zo\|5R3#x:q=tܣ9sCžR2ճ|J 鲖߫Zy,-`tqZ,ĄBto'}=]nrf n澆k[n3:KId]+8;z;;x+x_})~ ^Pg̾u8KVE}Z55{ 7@RTIuq1J!!kߐ7$[)G )%5rc}d-%%oS?Bnfk,de&5=8@]-CW9D ϜNY4H/اp.׋#_0eX 3)tm$*Nu/-g޴!#R$s&< ,ܕ<3T,פxTL4^}3E=PR-NXoḽatoY28Sm-wuINi)yJDC~8bh6 8~\@.]|D endstream endobj 475 0 obj << /Length1 2655 /Length2 22165 /Length3 0 /Length 23662 /Filter /FlateDecode >> stream xڌTU Hס9tsn$CBFnnTg7:[Zx7ޔ*ꌢNf@)'G#+ @\Q†HIa#F89a 4e #@`ccaɕ aacPd99)ŝ]mA`ИXyyr:]mM kdny'5dj%DYԀn@WW%Sߕ1!R4m;Y xX,^N޿/,s2r8YamKbjOrDut]y㟵dhePr2@{ X8YX?_.W IK6u Y(:j>eEʂL!heomܤl*6 swSq8z?:ہ(nY鿔N `j=q|YjkLN \?D8̢D#.o `x/Y_`Xҿ;Y70F`v̮#0ofWU~#0 j8oNF7' ~#7FVKo9_2'8=x9'%qpMkk-~C6p:6@W\877?<mI &xLݬ;P7X9~?H쿠Y;lbxh@?,?en񟵀G- vuzpN;;G .v*p#"pv?~g{? $av;`6w'?eaG_1믩1VpGrB@?Z 6w(7?׆&A֮?np ? xN@p,7wrH>@׿05ww}^@sĥy's0ڰϢ3鴌KRhC]oES{W%inDI|[_E&i6ۆ8=h]?!ȞߓVt 9<wT{>i]սj.yeӌqf)rp@Dt^h73%#ım?|`s£%;HY-)ZXj("ʈtUm[1ɺ&I)mzcJUf atZ}k궴M#\杮{̢Z5ww6<2xz?4I_ʓNZ?zu/( 4ե }ΰ4\7Bu# l/w2}תl{YJs8~<${kqu[^.fup^%6S-Crh T\/CSxWOO2Y J%~CH%E^A"ooj;i ѿSf@w 7i]<kl@.LoNmSW|ksf@'R.le^ F?[F7iz/dO`_u8|,^S(2k#H,XfPF \РKb]B8Jar'Wʇi/|Urhj S l85iIc-uB^Cl QMHPTa' cyMzyRU vV\nBTA GcZWiUhGzD4J\OL:{5Z:MeF+KVcE3c2Ά~,p|8~O~lYO^Sb[Ϛ{RF^,]f]1JJ uB洸_6 έ>*K]p8HkȳP2o8|;UH͋DžTbj8`U9vHLP%[7an00&SY:IXz __+*b|7]HH $ WSғxsu} uSOkye j:+MCqɑCH\D%JU3JtXGW}̖79*l|Zb {e91sE r|Gh[u`c !x|^wikC>9)"cϤi^&L@Q_oAERfRݰah)'= h !B&(/uo#=S+8ޞު;gl2iA\ܨӃ)*+@9VQ"@iE|#Ob7| >x\ B=$:cy)dlE6!#.vU?*NjxD$MP7.S/M@h/ORu2mlr{y|De>C"z3]yl}W ;~e(T_d3|Oo~ǵ&OAJSOl CwKdA2ՖT醻 bQd&̩&{zvHkiX~=CfH%("1vU-cx8cBbN)r6F3d al}# bUt1$fsEϏSȤJt)aen]ż (&Z}XREN*}[SC)uMߩ.ŹFBRlW.k?)/:r|D"gmD-ibM [2K.ȓq^:) o&e5Q TSzVm4/ƅ&#)5Z2O]~ck bu#U' 5% NcgCdbk TE&d6@;/]%}T?'skugWL{5z/u\g3SiREkF'3+|W΍zOM WL?jC:SX_m+HfMtu}gQo.Mn)덙o<<8I/9.QS3"R3rUgW˩f}ʛWmh %?m?o/~,AM4T3B'im $!phiIBd5q5S6HT Q15&Mx 8|MRC@.@ yȵs.`_c*Iub3/Ή3]9 Eq񨑍Znv@0r5"GoB%iXG'ZVT]KiP s!p\q+&8]\wb&}X UX{PlHr#a)43 ĭa]fg%NynH'`miLj^L5{7)Tݔ#YHYYݒxE'?Ŗd XW3QU#twC]M9*ҥsļ0q0S81"AI֧hrzC%dl# зݰ\BVSz'竫ڥU-SV /g~ڑ2il.ؖ5QJxmOp Α !4֪)c2%n滘kNZubUy&?zjh6ti}jKEW$:ښO?ou⌐f(mIe:be^Ic"k'.=Qk W)^P[ sf>~IA4b|!hqh YHs |daQvńʃʤZ>)ptg͌Jȉ83 g#Ece;hYȕ<ޫ߮R-]z9H<wj2TBvhld.:VhDRZ.pB}|Q}>Y2z ](>FbqޔAJ[͍삸U:ogldDV[~ }kVc:κyt` Wh˝]{3/^Wp`X-i,a9vy#nlqm kc !g8=2+^k ǒ~HC3Ei[~rm0;.g%얢!뺯m+z^vLLc躢I%-[R+HF>f,{vմpW^O/Ixa4KMu(v<Cb\C adiR_m9>v7YwQ$Hlaj~y٦GT7qc6%` L jA}2w\&C(&ӝc=ݰ'>{6 a8#E~Fzi7¾utOgqCE+Ij9%qfT*}&o"0/1I-˰[phۀϷtIXO#%Jf+kaNdqK4}Mw߹KMebV #R^[H~= 0R2#3Á⢈-Ɏb{BK&pTKBn/Uꓸk΀Ɛ%Tza{~hvD&TG};dh"|h$ .#5A_,׋jd:u*ys< _f\+f|DZk=x^[څh>t7<@s:uOJ3(QPcڔF(v^̎_Ot k,J+ RR#PAf=a"%d´XEk;HĀ,5)y]} l陽=go6@l\>?nr$HgyuDžBkP$5 FIiΣs"d 25,4WK'=`@滈Ʈ3p1#m =1FedV]ZO͢GOڪs+Q,Y [U(W.HEnN(-"I d~P{eK7>zu" ˲9O=g Hl}xuM? V밉+ /Oq~>:mYD]2,w/@ێYv?< M- +:6y;keO@Qk8 sT?"-`m):[n~*]t JfWXqKJ&]Z4:d߉B-@oJW:(l!yXԣ~w9׸C_OSQ)嬃w> -}lSĔֻU*ԧ⠘݊DL-&״\o>\V*5rpZUH)IwymeuSd\[3C;/PJjSlU%u)PK"z^&i'sNh3b4}F[K x%t=+C"m~6Ga"b'?~!by\Sм >oSlTOd#ػơigq|cXZ {4I-QIU,{bAҡdvdy`Z+w$ ^۩=B9:`<h卮vFyS6≰"u kRa nU *02-vd'%Y4Ư,p7ꆶwܹ4k6lӒBܠMe:g)UZn_zs| /'X$F z,fN b"a8#k!g&P,DEn0,-**Di~0s[ if1&;tbds bkˀ™T8euu-|=NBg:j"C)IcûinJu\ZZ^HP9ثZ$kۈ*^څg*m%-P|߃NOjЎ^]v\f:J'$PO҆ 834<.IM aT&?[G<#QӚ.Uաs@|mO+!v9O>( EKd8T#ߊ'_}8DaW 3HdF͌ Ѯ?vD@s幩'H$77pO{?$QԞ!~SHBio^7g5ݯ w^`kA2XiFW ٰbfcy*sF]8elL@};ށZ q%?< (Gc4%L2HS]pS޵\mcDr7>Fmvc0 ?]jJ#xC>7ckE*wzGHxa䋩|A_csۄY8liRe^SR.lYN,ÍnjB;`T;1+vB6BμZ} @=ݮa&ns/ <= A/Ϣs½~mT?Jp܀K@&{R#GRfEu׀6I^`&O G~a.t8ѨKD1vxf>Ttԫ d݈:?a!a!l7k#1QΝ;׌O7e1Ņ}`Z,Qpl9]=1Ö)bƊH02)&0~n\*?ֲR Z\&X<pne-.`њxPvʰ bNg8y>OtcZ5d]Pْ+gQrOnYT.M_!L=BC4 g𮅜7JZ P̄JogQuN2"O3ՀwTu"r}Y~7 ɑ%*68xqzXH^A *0;|{g l>=dC} `ru]#"&+]`^lC(mwN*6=v? T>}`'bYZp![\]#YaUHZ`fZUx=rAٻYϥ-`'d9'/gT.r CI| Pŋ;20/3>$*"FBR1] ^ZBѐf g.J}&FV⽠SLdQsChCd>metM. w`@ffo{`Z=!ç;m g6NdawrQ=E c>JR%OJ=H4>+ @\\$+UTp_VCE+`+WNI@@h:FҌ2 qCq40yJ-Wzam jߡkBE%\Q=QFWpaT>7a~[F*&$ =)EyR s6-gm|u:[x-l&A]D\}7)t430\džTD&ı:@3!x ȝoٱ);?_vA**1k4rؑG TmwB >p()T~``5FSGnk2a#S^fn߲ⱣUAu}Ÿ"rUSV /%Paߎ3FJY9y4{=~Tx3Bdvl 7vR2vI#]̒wȵ˜ FlךctwJmcdJ詣'%)u8*Y9nV]iMT{m MD2>{ڌp ,a)XT~>#<]kzep/K+Yq3!Uř$^fd|/jT-6fuER%<? $˱5;2]Q *9&xF %y O]cqS~9 KH?[Xd&َcgNk[B򇌸>i SOj_ֵϥs-QR%"(1~{ݭqݽ(SxDrU*Lm }EsuL{P;zXnb>V&q46TA}0R ΅L,5У 'UU-{f5FlR~ÌEd Gms[vB47(} &ިVU oX"c_!I; KN`Gr#_+fdk5PZ| 5ÆpSܟdmI 7/bZ|݁@z4ٮ:I4ůh@EHog՘D+~tO$f5L@ĴJn#8"K?ZAv6j @twWVUժ`f* ]M7H-+oHe*]TξV߀5Ca,,P uL@%RZ|(/8*DGOth{I I~D$Rx.1}5dWV'QCRx3}%DWR 8p`/IF0%CPv}rZO?pGz'[B,Rs"rgo~*g ^sX%tu6$Wz}i竣SIp2rH$  m9뗀8*x@c6@Abj}@ 00F3ѧXWKRSi뭝@uDTɌkD~ڲu*8AyjeYD!FQ_LOO}fC$)>g7 ִ~lW8Q,nhY6XrWGl Qv[Z0yMmirs79dҜ8e3 mU*KEXQRy+Ph ZH~Y3].UX_·Pڴ eS^KL a3V,vݗyR.TmٞR O>P<MȟqMŒ"yUM#2 U &H6_uӹ>ęFK).mW1\^W$( V%ՄkipֵQY_(Rç{[5݈q͙fd/ BHN)\t[ "]`>B:iriV|ʭN} jQCPjJտ27'0k8Ϝlں^Q!Wݺ}ʫ@#j_&/"tDҊ"nFoIۮh`8WC/ C}^%/ w%Uæ,>KèZ%@ 3(hwr94K {~@SkX̽Q2v*1 cms3 $vYϾ'ijfZ- Q1c2fŴ/D%g_-<\޳a}b\azc]i,a(8F /h@*?, h+.|LqmؖWtV>1apS]|R$bƥ@iiN308Ev?%a۶FI R( G| }ӽV%[{uaPұ2Noo)%+./GBOķՠHSu ]\}űf =,$zceυ87v_R2kSc@N_QLvݧL̘^ 'gy` >9R-$SZ>Hp"Jb8AJ,qWV;P 3" b(SBw)1N8R ݩ_h7ƯԖtr0J)Bsⴇ,HkgUIU**\O@Em4:Ek{B\, ْgZj |!6Jq_Z7 .3S1ĿkLEQ>aۦK/!źFYT@Ɉ*VƤ jfiR4 3:Fh6RHjV1(UF~" ՝X/c8>)񔆢Xݢ{TQ$r_ip=}@ iJXl;^ _5Z¶хȌoJvN\3JzU { S C둻0t3Jڏߧ%୴Pqǿ=OZ>O}[ (\h+?D>[.-?EcK. .$6ZI%@,# IF[}d{ELz٢](q s901"Ӂ@wGlV ᜰڴ{p:AkfmjVfuRvLdyt4'% 5$uKA6̈́Ɩ?2D 0!v÷ll]O!6+J ri X]xP <BRur0?d-2-3`EmȒZSZ, njA2zNKPf/'[>—QRj>13ǀgUgu+&6 /%@NQgͳFihn'M䬛ʅ5qPLW7]0D5*\^s[yo?7?-HIi(.h;~=|̩솆WP17=lSzfXS`![AL.$h:_RX}Vf-0<\I0bL?T 7)MVy`U Jr*Á.b';PA_Y=Jyff^wʄ.? sRB9jGv_]OfX>k|4,;T 4 :^^FqX ׁo>ix58u@0 J]$o~-_9V4'mc)ÐJ<"r"aEm[xosWk/!?xTOxP8 ;/GJa)Oc,0[bڮVt8>t"҉7*=RwDzyUK!8z)'bP#DIE8\mJ^^Ol}eQ7jiiETtW )dG|FO@QP" -QwF^EY5iX1{6Ӊf5%M‘) ʂ;ڣN=[\\+ D4i\ğdzYF"v<^³GHc~% tĢs}[%DFc4'ncIvaT"c=QBJ],m[)!6an/gpn-8w;'2s#ԯj糖bޗ I ,(unօެUH~XݝrFѐ.CM瘶gFNRUFv3dv3P Eρ3VlDlp1ڧ|sMkjduj%&xb0(fuZ< 1|YOɔ54ȷDIw6cgB:&E4Np`#U=L}*H }˺`Ċ~ҳ2 IRF 2J( q`9Y@w :É2+&ۤV{c4:yc 5)#5I4J:DVU}'+B\rB8sHBQ"0(f:]T^`de~UwqQ];bqF}w7cbK\~~_E,vBhܵ5rUlS!<ݩ,xlq;U'6/*NTO(ЕjܷU .N@ףرr7uS ōŷ_VAZ4PR $֡չ +fk[HK!wپinvpQ{H 3#SO1a7!)$bء-m.'zX65{y¦@+YvX:"ךNt"FF)DS$O\*L("VcO.ohNinT'f,zKDZP) u{h7DOZ<#u:t:UCaXJ>xKd=p/P,k FURfYj XLn,3J(&r铄{7OT:Ooe.xPj>\:BFi$Һ:(QdC}DmfWcfP}$qS7/r{ fu 3~v^Epki#u*f̄Iǰ G_h xoU#gJMoXY7V D8R%I*%SH4b@> X:E6ܪ2$v ծ>6zn}BBra('U-ӂ#BwًʢϠ4~ %:>9R ƘSXg!{Č!znWﺹ$u. bNY|_fN+ q#h;ꀲgqb|AlHkNz{tg]MjH3oRB?sHD` لbO熮A#z%)MB5Okv__7bfT WLcFz'|INV6{7\ eͮVk&Iw!m&,.d\GՀJ婕znV,M5^y!C'(]Irgޒp~.|sMbNO)i(`K椠}CgA 1НyW7Jtbn)Hugn~!L5a -#@>If"ˀ*N #C&!0b3#;\;wu?1u,H]W[U>qX[-u_\:śZ0;Yfsd9Sx! ʿE4аG2śVDmОy-]ܔPN dd~/ g~<ǽP 5P|KjZ1!;Xj6 Rz_0ՋG,`[^s9QIxDtP53d8 vJ@Ѷ5ET-gŮr冭*Šsʙ4IF'gj2Cl>gx䁋vtq8>9PSP hxB4 Y76JQ<>.+ێcC9:TiCk KzQzTW"X%J;sr^~Rె -׊dt;O[q! _v>&=3Y44 aR"8F|#K p5.L[Uьw \勬h#%50a{gY-[d5U)XHCI.`m*r7Ț{vm{y>k{էƔub*I :*쪗}T Ef▥'A, @ϝcfU)uXL636rA_ seNt%ˏ + +6C!y֋{0ea45RBҙp`3KmoDTXڤC&"sFt7#5RMH`bOǛ7|^81RNx^#5f0Gk观4P~0=giAN@  `XyAqg?mAALtP31Xv'dэ5@7Br/A&[ }"W''$LGa2rv 1٘gBAuK1>)J: Y]Blr I3ֿʹFV˥BAr9HG +`gsM$ =l.(`o)@]&9~WF;:z$y~bZ3Tt Wrm:I-6uSޣ9(׬uDp)ܾo#MX:J)Ty+#V(42WBaU'\{%u(}myjI6u! udc*}f QJmIMЬߤR}캮i=@婤80O0>T5Ayѿp\r_YxEK.Mg ^~I|q<.ٺ"*2"wPoaQ~qD (\"8r"bo6kL.<ZgKE9YZW>.qAW7/l]42=zDk:qTXNOwnEC6ulGa_|DWn"Lf(?(M}C? UyҎ0k}~.ye9~:D1 !go# ?sd @N'v n$0zݴhpb?ۏy5gH6W`o.fW+^(N,0,ޚN!5#{DfE ͕faO e~4[f:A6LDN<7^*fҬVaLJ6ʙѣ 2F7K'm \+plEiI!`+NOk)q:WRiu7B{8AT I3g^ 0:vYZbc e1DUxz'JgiF(hy:$Z\;C9Κ*9*!'5*5V?Z驹WH>W˞"N+<}Z:6eLλe5;5cN05E%k.B$I$qU}@ڿI-fձ96Yb;IOh˥KP`o%cCc^y,O0h*@7JԠ+5=1[ [_䚛\'8y?Jz>=_Rט.DqЛh?ΠfY24f7^!Ȍ }TPѷ^aQRDÁUk2<R ՂEj8 V&W3@wHMƨh)uŞ4'l>lpH]س5![^ 'pS =G*9*r!(Z#s0A_X;}PgCc(XJZʽ`pv{eV)(6: -1VTuZQeFUZ'Y"fl/rDs - #GzhȧAPmS[j7HEakRwRzaGNgn3Iwta|uKǦ^Asbgï_,ڀJuwۇ5Nƌ(dmMOmĊQEU^3Q!V&e^'Nw'[1oѱŠ/xq-\A~]#9λo/ux}zۙ| *L4z-waGʙ)2!rBe:>R%7~8l9񪉪JKV4ZpJn?=9e=`XhMji6WsTU$L?~ylf zzǔ:qwcb&`6&59˱r(A]+yXg)-pÏY@9m&Cŋ뇂I")qd.Γ;&=q9T$K%0AqN.z&S4<q[Βɘ™JR!>ǫ%:8$הG\d!&SrHsWrIBýjx2fV($R yGXZ$SNO^WW;c^$2 Xɤnn'Ǒm*\1>\K7>5?%xX6~`]{S{D х;6|̏ktdK}Mj DNwl߯b(?ڡCD$1Az ҎDSH gr{y]a%Bv̦Q{צJ k؂pXMӀ/|uO|Q)HkPZ}Fuӊ?q M v18*9w/\hbOK싞 a )t0: [(nLH qS(Dq{oLD_pRƼݐ[^Oc6"̡3YC-2kcɄ K0c~ӈzZk6q5K?Ngz.4%!JfѲ;Iq7YXf*֜H[,?!lAy\{lGX|IH57Y}yɶc 5}EMe8 M0E%S#{Rz$#&@ޒcz9/uS~w]> vֈ1i'F"@{m9`Sjsw_|d:niS/&2e;QԬW*&r%w0DB[bFV_pd(4t5(Mi9Y"\*.Cۗ\zL Krd's!V3I]<@ ˙D. TfѲ^JV :GhQ đd7/s؝?" aqpGowvdиf m~Ҙ2;]#ϩ޹W#sM (ͅ&_l mm4unŤCW#O7V;cHTa64XϒPۿ+רfy4JށˊܥHeWlC?Ap UixĽf=Do \:kq|E5Z`㸊cUI/T顴:ȵ4'1s6%?ӧHfM Soȫ2aU4W˥Axc^u/ E +M]p WvZ^{+)6}aX-ƣB9TSK&>,z=. d<Ԣbjڐ^s"ب΀1@#jrnL~j1&s\ fV׏DX瓅Q.#Tq-2m}&Ğ'cb+##Rۺh$rk.,Qxor6o cr 3* 0x sy @oڦ68fBr^p`lʗeR_/VOEW!X~isJ<ӊ[xwi~ˠ1c_B-oo^BT!z ;QXʸ%ض)-Y5?_t~ Ƃ@tտa!Il;2R+` b(d;'i\~ #Rdb1z1j3R1ӂ U'$:D;ju(6K]$8aӜ悘t7Vб$ 1xX!R̟ym [&cgHYv8M↬T*-]`gMTxp8 ,~ Wh3? 3 endstream endobj 477 0 obj << /Length1 1395 /Length2 6101 /Length3 0 /Length 7050 /Filter /FlateDecode >> stream xڍVT'CJRp4H  F 6` tH4ҍt !%J+]ws9{3"8O( x'@!Bvv( 슄" Bu M 9b@ @* PCmZu$dprCP*\6A 1yj@(hr#l`׿RpICP(gI~ ɏp =0 x 'd@?; @+6`8еjmg0g?x^ @_tFJ ` n:ʚ(O/rB" w dv8, i uF!P_~A_QH_)B]6[=VG8 Yuq)V"@ PL\v=m x98#vh`?C(W77["BmPk=NOvl+` DOd- jIA Dhg_ku@?{Q nH}wp\ 7#<Phw_Yg?nNN\ AYBot}cP7ZP fD(R Ձl ;A`zlO =&0z]R nsB"+ȋ=x$D/-7p @!\ @XRuP ٸ7]%t0lC8; q i>g[ľ$gֵ/<#hD>laMXnޕv{ݦKߟqzcM3{Fs嫻 }r5 tnlSgrq'ɦF?Srmvp/b40}*%GtQ7z1qVĶ:۶i~by% OREN1w7x31҇ ?nn缒KH;.%v'b) ڛxz忽l^NC:bsTX >X^plm.- msp 4曅O?dgq[(ǰ)rLoHʔH}AS|)'t18Ϭ *QP(gy=?snwy Kr4vP8EZ>l@90׳"f16ݝ#,ivHZ.ඣg-Jo{ 7l7;?ԦkiƎFc2撃-&敏,u2dȱv+W;yxUS#sIWL@`xR:Uq૲pY{)J:(12AH[J٤e0ߧB~iƘc C#cD}m7)xbV"nk,pb<ȿ/:S<3~.f﫟Tgj˗6;^XՙK|3ۃt պإtkįwYO/4h4A:fM?%/xHVu?9n"\þ|&@h >(`aWᖽV]zF3l#yd)Leua0|v7ɠ]z%OQx}k3I[(sI65ý‚a\jLwls?p,~*Vo_%&I޺<7dpIZkr3+3;sq X?M_ݽ&u%scfxٖ;T΋l9E^V@rUN8oD=rkP$+;oB{fgwn,Kl %vX⿎j$fZ(u߈9s'^ 47dߡe|m2gmQ 2w A>H|ٜ#Ł.t/LnjNd:gy 3FDhgC\4rWN, dX>vIw;GcaoMhsC]h?  wyvO^0gQq#WOq^ت4Ƶ-ԜsXx9^ x?X.!RPAMbT7꜓rI_ȾAO$V\DźҝU2"뽵^ܩ~~L#qT"y([NQ IMpi ݽjZ5e*m8}CV 럷U>]<;/yF -9QA$ߔ;'Vg;{ò1:7&Ð9;g9:d!\Эz8i'-r4*bn^({ɧ;/HM-0 ``DZuJ |۔EdH`h\v%Cْ+^R)GY=sIΩ̊Iz$Pq z8{dp'3[[侫-'YN#жX*%۔#ךҏ=1+c<ˇ@k\4N0 ;]ܚ3)LeRVa]w&'oݕ y;؆ϕEŸ9{97hYL?013CN{Sߒ7{wWy n6&L?lG~c!o+!N/ɨ) !4Zq.ِ,mN.[qusC.).*ǟIDwQt"w/g!=&oJf/δ03gܕþ_[֋d{ )?tٻuӊz}di#0+iO:eGcE:KTӍ cK UɠwDT`|Vֳ*pC,!\c6Nojir暦Q X;&SeW\ҽ;OƷsSKԞPz~QFP=]2 9gGm3(Yv/Ncxْ(GFg1R/$PY=XA;̋a[[_:0|YKUQݩ eUzd,߀]n܍`_,4!|b6\|AN"ϲ%`oΉcPHw.1>E}ٞ~ װu7V8tVsO9pBJ8ͤicJFva7gi֋_ߋL>v9hҙcJug9nû;jg5;6p5nyȞ:,(%4 /= zT1&0!njYBj_wu@[HTKz^5yv ѝ8NȊ)S 4h2nm̢)HmY)ZX{8a/( ]er7B3)2BY`?TA>xTh`~KdTG~ĴݣFɉ8<235#ߩpq9kɽ7")֩9?Pt9p3 >zAH''e&K1GpAn9]UgT|cepJ eq+1aJ6- j{\ S!wCulb|{۪oNjR:?rHƄԶ c@3=?(KAۅ.a}[I,IYR5 ^ \5pGGZsCtdȗc,dυK9RH,8 f(\q?̎|)OYVQg;RO}ԉǢ.=Dj+W*jje0@Kmyۢi^>h*-ionL'|;~J,_اSbgC \.IPQ*cd! ݤo>O/oX\{ӄ1pm0޿((,f9-:m'W{Tm{NZ| onKfW0W󖨇C˩)'%[(.7Y=Mlq{6*l$z4*-D~I"M߲nwkߴCD*Ϟ_?+ 3^?J\X/S[ؤ@4e3*7t)3ag/ꛊUu!v%/v.RW1bm3= ~8RߖO}4^Zz-{@S0<\Wj~z>ZR2q4\_4ʙF=[GZoWql^:eYs"sf,JIGBʼĎcgWQy.9SV =̑. ~NGgZ{ekAnyX CAD@Pˊ3oqldɟT*`/A1Qzޞ?&En,6^Z4;-BO5\\~7yٻ 0?hɬ4'}-Ǖt,0j.Q#I.o4q8^n0-$n:ڤ=⃭`օtODA v›&G]S?eRi]} 6I|oa;v{XӾCorncU?hs 7ΟL?\-oSI/y% X}a~T._1A;n$!Bsz%@:UsC[p>| gGOf*X 5X*gn0xggR@ͮ/%ײc՚Aj[X]~jzt#1Q"U,,VD:kЮ6$G7%* ;MiRʂb:kK ر"|JŸ up-af2 EBfӴ:`N MPr\D Cm#Gs!ä7'|m{Y>iܝQg̔{;7yVNS( `qAGf5?>\2J+:J?`hfjnu5EA1-&y(ͣ hM%P &V)/R;UF,:*|jJ)O~{X^Zy=0M"ecasbtL5hQI-׻7sS%5w3^wT*?V n8+ml%1pgZk"%y:st[Y ϸ?"n /&ZEZ+ZQ q7/-ŗ endstream endobj 479 0 obj << /Length1 1483 /Length2 7059 /Length3 0 /Length 8059 /Filter /FlateDecode >> stream xڍvT>hAZ4hPSj#6(H(H7 (4H*!!ݒ (7}sy빯9i`,r!0Xk$ E`7 pR?h8T. º!@ DR 92@+ B!ne?Uk !ҒÁp4Eu" 4FpRq`jq c8[0,!?ϣuwmePvDpsoWsC wD`=۪&C%"~pG.; 7@y#~=3@!_6ܬpO7SMp(*r5s"@( ۉ!t5$Dap!@` Oq) rǕ ". 9!pb(,o@L=y8r`\@8{/0,ñk08 v{Y|VeGW'MJ̈9Ŕv/K S灛oG7$6%}\iL ӿ*TA*dtdFE; +EiG{۩WU65bZ)MvVIiux(w1F" k{~T?Fe]k% Z͋<< ya"dxZ[JZ K gGE_ZlCI%#^\u^BV߇TJ-X=,$_];fR(V@RaZ7eey|R+nF( )(u߄t9_԰0QEvdbł[$Èf[9nPKҐ\܃^ 49t% Rum)̾ΤӒp }8%8U57O$C™riÛrsn{ׯ *dj!q_gԟv@>*8[ST*KT{n&rۖ4DZꛙս;D|C0llDz!CX#('toxb(|Uw6A*`Q?XRPc/aڶS$7]@s2&7^ֲ)J䓃ݛ#t>Ox > Gۿi'.m?T{<PJR-SB⧺:>1_n"=rT('|r^%7#^׭upVDFTD@HEOdUϦ\+6 G>*C}/ w8SD].c}xsE*3J2ɘ/5X̉n'/B<$ډj=YQZ(EN}ڵY٬D.8>ږ٩@M˂@ɔ:"\ mpZVyp8%}*&ƪg32pJ_MSaiB]JqjӜ-)Z.R;<iAVf"[B̻W)GrTbHԻхA%O{tEI_:ҕУJm>o^ȀL:aE6i@/Qs[%R3紌x=.Hy#y,i}ǭƫOZ|u닑qr S2Q 42OwRiccKk^{䁏q5~Qj]Kmk]ql]vu0jzԀht4EP֏li٪2NZ "yA9OͦkzYda*>4jZatiy~x_]w0dTA߮ʐ;g{OL1vY2;sxK%s2c'X>kqi ӏ@89gN]s]ưgm}ȑeY$]9{&< OY+Kn?*bU?$1;? ViX9XԠWʹ*vٚ07gџSӐkgS 7F X="&VawB15W-G-upH~P, foHvb9U|*K㆞u@ͦrW"^lE+ȶ*k09 ԞV "QCi&qb3 BFѩ:!HdG( M⇑;7T&v䫷I{hIOr` js;OL{3C܍ot*vaTv\JN,,ֹxF:c"96 AIo.5LŧjP#ֽw£]f3j}3i|FT7ꋎ ľYrtX% ̂E[p%xc7yX2dGx<x%%̮vq.mڥ$şuj'z!!j4@YwK3Q) ɷ*g+ӭ(S]سYj9Yq*0qC2YOHX!F JqlPNPYGF9n v[7"Q/[^$VUūS&wM?ȣ^zWS[S]|m=+`u#AJx*U+q:YC4{]tG])VoɉtEɻSqxR}T}u;$ f,%+k9GP7)T([O @nnߌM{IZ8(BJ\Sx>,x@1N땫#DzG\RSƺ+aK@MdGr|MZ{Qg{`'oWkf(v\QQt7RS>Jd+^gQ{u] zS|qpb#Y\B)K-ci J׾^s~rk^Q; rbʆ61}'t|~gP1rO 6!zfT&t]wEn?Jy{VIh΀8`#SE"C؃X`m`U[w݉z)(P11z'f ER&tRGSOdy| Kݎ{GZ,wZ%lMt'-'{OD\|9%T6ti鹴 9b2U"=<ଂ7&iXB=g4IUYEvN=j3EA{ D J߳/޾ P6W+b1O$QkSkp49MFN[ U@mz_[vg)*ʩYs)X!uC5HVMpFn##u;.0x72Jo[D!4 y!$g ވ"=.԰OuwLIj{<_-U wh7)jL)z¥;eϯH+;X.bܺ!%G-MxBnZo4=H3F\GQbu(˻DE].vNj7ZJiq'SXž8ҦF0ww{~0/:zp;20u1&b$lvsQy!۴,oAuۖz5(ez~㖕^8mZ7J]ݠkpۛtbJ('4vLB;ժG4TxoFY|nI~hMΜ oM+oz!xE=-cµkZ9:ZNL[+͛O;8AUJ%.;'6riYtYʋ.<KW%/g1,;1O-{Z2B2m*S}"D -|Ȳg;6I\TkpS^A&3VbO#"*R߆/D̵eu)X7q'+murYJ8f# ^[GU?Bf5%Bf(V72 g&|~־&D5B:xHBȋ%Gc8R=,KBT<_HXq; Qua\˾fgNY_?X nx'1mMm'iϞUV-:r+1+p:nqInz'|0Y^Ɉ|Ի݋D\@Ou{Z &u4ReE[u 4˧9ihp'X?7#%#S?)=OAXxόIL ag|:ݦ{CmWG{;S)aN`ÜW;Rt)#'coD} љ߳υG]ܬ氻k@o1wOsJɇ\hrp{*P?|DiKVO`c\kf-&Ѩ^պH穯S@L66J=m' ~#΍wbK=i&r/ϣh;:1o '4!L{F}?f%Psٽ,c&Jz~Lɞ@*xdZ=@`WVYhX Av\+9B.\d8ˊ!ZCqFFPI]%©){&nB#fEka͹hjzRofmygںN1TRs 3w؋!KGZ3QOTe_M,Wcd`< hyhl9/t~ӓ9-ǐڬ7'׾K֦-syaI f2&Dx3tsXIDtKvDO/D]E,#@ប6 RBK'xۧӺt3WdV|z/#-/¿W S.{m.RQk81@yV (0+UTX®H@AC-7R7Ez,B#Ft0O>[6u&3Ϊ&i&~3OZ^09R[blàÖ&#4Ϟ ͖w3,~\u4G]5$!yW$Gn&ћT"1g-[_{%d_Iz]3ٯcHX70oX5Qj<1[OOD],7rs}a[]BXȬp޾ 7{˕56RD/Ө6\n߹@d]ME67ZB/_}8n$CR>=xcQJ1\nl\m@ҦŲ]!dn f6{E&y׺V?ЦeK\!ϒc ;d=|n.Mܧz t'ϗϭb#2{?Zn=&{ڔw/e6̗ӥx2leX.MNƳo8;StnNxEOFBm<@5R'jaIxϨf"VP> stream xڍeT.[pwwAww -%=3Lr{?bvMI(bbgufdeb}PWSce3!PRY8[k(?,ls:d vYk+;_C;G> @@)fghaf ߯cZ+//7-9jglt4͝ܘ minh6@/9&J?*U;Sg7CG $0:\lMP~<@h? oxogCcc;{C[ [35()05ojhamh2xC2? -읝,bWP%lMllN'n4uރ#sM-lMLbbϬnkH[ftp3D/1=Dca Cr2t]>^*!L,F@3 [Ab?4XhLl=~}ddE%ZT`dcgprx>R%CG@[S;?,@/@c ]Nc.E؂&Ik-hk0 h]AK*4p2Άe5 <#/?b 'I we*9YuY{(@hld@ Z*aklg&qr  =X@ b )039\ >S;G, `qs_`V8j(g/beA'c Kko+o BV@Еm[W*_ flg %Ill(^f!;,;kkC?,@UPf$K.vkjGv.қ4n @?,@2? @<zPl~CG0Ѕl;h[ ,sL!vvooGq;9M2+HGXAG ]' tv,}l@pͰaet2s5AscAA jﶀ"y6W/c@c;c`·Z7ƽ >.7hk&o Vey'ӢP #z>8tP! (W<\SQWfn[20,QyZV `~_o.T ˆ@{yp7W\k%yx_r GneH˷bqɅq[hE={79`TKxS"s1e'#\493=3c{P9 P-jDNIݽYIr}oăzOrDAWXq~d@vT53) <󦟢I=ZTdm3tOܡ^*3qӾܯm0JWy:G:ɮ(RA!&7~7OrVXCmq޴ݧzrv40+ Ӧ V.2F %XhR@/8eBMeoqc01ɢIP2~qDMw^$Yy7S Ą ?qMZ[鮛2HHWDDMݸƋ֋2ć?6¼#rC5֘)󈳝Z3R$P[8ٗɫ_ua{4KѦa{u Mcޱ@W[fٹa&kj/HN\g0f$>mmj_zbPr`2S32-;ѴX~`B{mP4Ke^q4 v'#T>.9;U?/t0$4']jRZO ?5V~+(hx=c4{4<$|CvD5(u'2YĖ 7[]+tuf 5rG9: 0vٌFq5Ya:y]Ш@wBB dh/ Dczr|5}^oty` ˖v{&:u[٨L^s}h"Êse $ܦ(&ݴ(j(A;dPBH]C J;XJUS~  +.ڻ( 1Mzղ`VjGZ;^Z&c2- <Dߗ_ƚJc&]tGo(_nD+-nJr7~rA:IQERmNR:|jBÊAiT2/\w,F*q1_|J]΀o V]CRz-i]^Α1X'Iqi`q'SEv ԧnR&|:.6' W1Jބƅ"9*qqk]&pJA89-(\n8[5 >>C x؋ERڦ)JRhp|P2ƽ!)1}ĴRVUr3BsO8tHBP| A3kS88-*p&9rWGԢA[H0-QHC&wTu6e>SJ<} G78[k;M+F V᭓G-# |$R ǼS%ԔF?-ХMϢuSbNRP7<#0`A諣 ױ?J ^{Lop1-{ ,A.{~P4ҵ@1 Zgfq6kS@1Sa^͘!'FMKpo~؎=D+u ?ז-Ym uu\=zUiQqkuvJ" ūb&83pft*oףU_dKoy*#X 痛/5<=3pSIǻ3b7zx%H*V\~"]=l霧."ujaxOfuX:jFCD/%O0]hȌ<"_`TwTe; Jw_3)H qMz.vnETp6Yf\-E7F}@LRU#%cqp3|[!r~ٹvԎqoeWOՙ{˪ؗ aWY37>;GD}ͺ4-&a>s^h<&Wl R8˂e_99)t ,x_H7gafI$<"FN1f"KsWtA3/K}1@mTQؓ&xFewd ,)cnRQ m IVEok=<IR^:k(3}-*}EeMΈ)Bqflq,f{JN"Lf$+D9"g'`Z`IKrś4~0qKvhqѪ3n@Ou3'h+(Za @} ףb 0y5+q&jDD2 [W#y|Jk ^Q:-WFqtbf^|lpGb9$mo7A։(V P0Bk:8cZ1cuG5i)>sCa 'vK}7V=F;I#kq/ytr_n75X튇`lCM I;E{6m`R}[k_wVLeH0tt9L ;CKQl$ m#V+at`$jkMQ@}6E'}$w ,\|s o5}:)(R?hv)^ %=؉肆x>\>}d vBKSLzi> bN ؒP =UMaY.Z~c>yI$Tf-հ 3`-@ub6r$Y2 uE ?=!k0F9(p' >˝(-˸BqGEӅd4qu[ wflbb_;qS|H>H׆7O-;/1׮[ ⯩Z\,'kZ36*"~6ų B+ 7uƱظZ'.!n*uL.gKR7i9`\▃tT_t㮟0 #2~ 1L'\XAcdRי^s5ZN|eVle~/Xe^kP0[vyAt#;!Y^BxOY.Qjc|#I xT3ⲹ* ަ|zyfs"zMFd*g}\/]:K^0%lcrD65ot dzy'Etr <pxX`xo y_t=O7{:\M;1j׹f\&|p~vI+߈ kvt 6|vF(UfUoG5VCK8#(Q|qzcVQjL Mjq* Ä!}V6rdKV^+wc>pF {Y43hd&T; ^g~>_%{')R>gcϏ߃TJB"N̼ku<J\׶ha6-OȽTzHya*ݼİ[ӡKuM\4wשI_ԊD#?Dvݞ;cVRMc5 Dd7gعSzf}NW铥PP(A~?PYcX0os͂G]i(&!g.-ٯ w}zs_n}i>E[W. Xk/MWX|Ւ9ygt'u~lK]jߛ^Ncׄ@h> J^FAKY"Y馜"! f<}(!yXlCZ6H˖"ެ8<%-eA^u7%KpgD9NTo؟ۺ9dfI[O6mkg.$EN$ⱗ Npp5҆]W Z[`F;<ɐgl:[I7'29 oGˇb+02,[/Ų<9p8 vs+&BĪb4">V$G7ĊRv>xMވ0^/\_kܔHF"\ DzA.+.7z0q#` |yh_N9Pޙ Wao0@v,%d!$4Ky Q hb'D_(/'WŪGja ҆ O`b(OUN!ȧ}Nky$}:o@FNc3}%&a:5ۣV^P=pN}xHW8J#ћ1Y68%6M95r=oW[/lPl@jA'cR3ݢ$H"UU0.7E{n,/knI4&wl Ys;&,|VP{x{Hj7AY)螦/ ۯqLc-X2 E\K uҜW >fx:uJ!_0m ^bqr# x}F_CVE8goP33󂈭P]dApLrj RqE|oP}^rPa؆:1c\׹ψ֚Ψ/'|6S1.AHvS'ݬ8*R.u\f߂4dC-^ ʩ<]|:t_d=䒌&L,7)Mv~\ðw@kA .&^Z.(_HK$)6֒IAhϚ \Z3?*%u\=A;jAt}R_^##-J$Z|<_6[sRm/i%ϮV^6-tC_3K8S/ v#E@Ppv.=e/<(a~/0"VPйr~QJņM,_ja&?祮?:EuyK.hC?D`*$W{_⫗< Cp3cRiu^ɟXġt!OHt,~W.2i__^q0 }WBOjB7-|x=/oJb 47deZIm8S׮48gVvذj~WdE^0zuUzEn`B~ͻUM:v&423_pIʇ“`G+9{׭Oo~xs.Mjoodd+цv:kQ9>Wwp鈯y6W߶poU=NCi)ޡt_}I%?.|[z0n,R=u=#-((V̪JMR#q5֜QLzڛcZ} s5Ʋȋ@Q |eUUH{ LG͌m{ZP:#a'AV^F|ma[) A{0E'tXWSh!Y[v{CB͠m~1W :b61WGm u<ák7AϩqnBIK/ Zq1Y`l&,= } ~s.N↋tX Iub 8/qFvh ikB⏭ݭBrZrce4=IX^ YeÄrdXa;K1fCdmxRiO4uwQ_p!(&+OmeCDɾὕ9g>Dedó#.eނ7"T+:#c.xr[ϸhĥ ѽn|^[":$~ln椪 >\ dqEXX- zIc# m M8z@\÷H'EX;D%?1//jIxI<:-[_`k#L!%+ӾxjR\'ĕWj @d;LFI(2c˖I'>Q? euB툚)>n{yi=6N56%] rQp:fj^F,H=̯1lS+Dd]cqw?YนW'%V?'D8f5y _rGş8~mmc~E8ѠʒzMC0`SVYH-bX%UpD -{ͷ]ݏk..䧫O3C^"u&3e/D3!3<*$a آ(lɲ[h78Eɚn!%C#~ɟs"i*OqnQӽ)H:keh&d}1=/毦nSv?NZv,{Qxw~ZnE~umƨ.kfw2l/dQV7qGPIUYbgj.c'*OoU݋%lYXvUt OGjY7 etE=z;++q#ޯM'W紮l]?Y85aL_ q$ Ob#t٣FtàbR}.E3Џkh9(F%p(KNZ8Ju>WYO#Uɔ#"ԜQwQGQS?Ź.Bd$N,$u`u+3>/2"Zl.Y6O@81}%U%ˁg/O x/4|]&,V]oH -O'7EJ"\xe)MjǶRQS:f-ynnNpC/,.up7MZ(KN.iV ?x. 98AtQzO$L}[P K1c\I`È6< 0MB.$G)r@D|fuBBմ̱9e֤7 B;? Mhu[92S;䎱j ݰ%.Ng}1LkLNZB=$t_}E{xy:O߳l ^"szÇq6jN :Z)ˊ5M 4(DD`-Wh!tC!zkb~r/qd#Fw*P ̺Z 'K̚KЫׂE uJ6`F8^m&h++B'HJ L1)R#˱*xKz^=?ּ׾29H wZ.7fzɫ(G~$%N s >UPTe1 #+k~c2d`:Ɔ\38 ߼p@_Yw3 a r']-zA8" Iv*qc0]=XC8+üNFJlogƘ=D\Ϧ~}dU8}}{RH2J6sV9u3M{DnMDػ\XmFrρϼx}7Q$*n-;BI_2 )ZNWT->݄щc`di;p\(hzL/VXL: ۥ)k<8OU:1S{%"#oaߨV#c i؉)E݈Ä,] IQN ]sv+6BgZ?C}(C„8b5s$N}@`uxf)41E4]e'snFz EN|'<|&0;Ub,a F~">0dx@xAjfTErSGDrt#6JQ9P9 25;~>~V_jJJB۶C&I!Ǘ=[C^Jbڰg%GB./!=XG>{d%>AD-e:ކgZ~Opkq5A&zx2L w+{ POY _ps3E ZdWKWU#LM,SPuk>M?ό\,"kf5S1x#SAU?|g!}-BZle,kIhmr/G>?2Mz!{!\U\( 셖m:9ʱ9-].bvc$OkQ-<68[Vwqgo\QE L 3jظt1ʃrC٧aF,tvltM:sѿ"Jq:>fm [I꿉hlq?y !P{II-FO=ј xA6x0tb.vv%yW\zmYY#&BL!*98g3^ތ݀krT"m#iB#eC,)oc+O_'uAcmp}KٻVOxv? q[̆  (DpW! (mDұ73Ya G B7.>,_h=K1<-g>>EK@gh;VӨ{O7^y*ǁi?JދB#p\. # 2[SܵmјٷB{RzCx/|i(Iԙ@|uBQIJ i88bsWqfbҵ!q|bL  k5*LOb/AE&?ޗpvw X_,8{#. nnŦ_cTO ? TH}cL]:4e.oZ=Y.~}9 ],MhC{rBj- w5;69oUšaMЂx+,Ƚ^Vl0*+L WUcps boԙ^6}H]/V>!.|J;eҹReR]Ua;o5?M]‚G3MFV/7W0}]Ȁ:wUi{aS,R;pT '$KG wXϓtJ);dv$*C8C \<'Ո)X`|WBfTM7V ]1id4gKZ`ʃiiܒ}J7M'A;n=՜rWBAs~OUǛOTXoZJlt"tZ9!Z[uJnʒW,6oZ ό7{,VK5nYH? EтrApQ J(SnTؖ,x_<Φ &6huS+Ǚ4j^XWӡӞpVjs-2btE?>E"~H;0{G: M ap0 %;᮴8<)u Xh%o !j1BtF;OtCT,gxզUk77`trňIzE} YlNX 9ΟHRU)L8:N20,I("YTﵡjLfup8 M˳D 1LB]N8Bȹ=o R?ę%va+9 ~w@`=#g]25ĸMS>c:~(cj=coml="h:(F~WOBt?X(eH|ڵzH %}s^KTu#i2w)svPqzh&._2&:0* v cyAT4AP<}N!a'nvC#2[ILf<bjC@k"7{=x]=bp\CI2vILmO͢ g6k$6EJjKFy >,7_-Je:]LN9A%{XV葌Yu'W\۲'ľx&/ 4''S Fڹ}_ ]M$QO3֬TS 1Fԅmq ~w$Pdo1]n芲&]ֽS̤e4"Ru&FQ:{ zP@'kiZò++c 7 68"qr?FvɨW+4}3"տ} Z)Rpti aI4y%O+zYb T= 1qq?I Bض3zH I HI1DV55ZOOZA>G 'bIwdo:*0?zri_}0]H5;+%zـ1t>эJLL?67g;Vؖgro˨׼3i'F@{w8UKrCd.0B 敦$ c{%Q Y3+cCrCWmg=q~Nmmc>{4u<<"ZG遞6Д]u(5%ǃVa|%Ɵԩ=/qqA.& 1_~^rܱ!P*s*Ո`؄G8Gl9KpYoTKE.x&աB-rRϫ`N(Bt;`˞:Ab5m$;cۣJ~!pH Q!${KZ>n`Y H;Tx=h=]|"55tz⌎xR׹R=.6U=_*2}|tq endstream endobj 483 0 obj << /Length1 1575 /Length2 7170 /Length3 0 /Length 8217 /Filter /FlateDecode >> stream xڍT}7NIIw S1 Ɔl4H(%(-ҍt7J *No~?}~! !JچBAA~AAa|66# g3{ p1<@$ S"QDm8 ĥ$‚ReЀ|6%#Pp{@@@@tH^"(}ڣCT@TC< H?/32nn`+>e0O4<aǞ`u?FńY#_wooC;Jq>@/0 oOBB ;A`XG`ǿΨ{@|z5ap **)I?BEEOX '%.HHm?;ߨ'sJU3ֆ o:p< &UfoDPo9_a m8jC`K5`JՑ@Ԏ(Ps'$/(AB|z$Y(P G@~;(-AV䊺[Qo*0 @_|Nb!Ԯ:}~8@GTp_=~a`G"7.,?DoA`h(N/]p W\%%GUD֛/;[R{7@9 s=B^Ssfu䐹s2 O#ukmq}7,g}>/]PJ2O9o8i21GƮ(vTB[ɾi's5q@ijIG)Z؜l^=l4MI1μ鬊lUhCU",*Fvm4\ c!I͗ KgYB֩PɁ/ÎKWRtlz:.y^A*̘aMۆ_(BڳzwgHMUđ5N[ <,֎G2R ,&"FFZ[h:x $D_,y!$*,dy]Y?f~;6 G¸6v%:HH^նTȑjq-y|g?m)F[@cR:6l_0[?5ΑV~Kx!^EC?ee?P ף{ı;兌fvΡNJ2b)J`v),h e3I2BD}ٱ*DUg)#{[j h .0BU%z鉬|0do1rv3vZIdiyHʑֵp2Z?-.Gg'm@+AJqAfs4O (-U)F}Eٙ~ Pj)3D5=Ϋ)dBiw'Z%ՉB!0xmWK~\wm LJNC+ Yԓw Rrimys]ɨ;B/l0k3ȋ\9A"a>?cC k5Ft_Gͫ ŏ[4\`lb-T L&{\rW,o?kqiz;\<첞"pq+$1#ϵ-:_⨰f]:ׂ_؈"dq?j†Tyff'ݹ]yaGOնo[%k`t9hkF_RTJW*OWbdrI>ƴ\b޿8=mo gmd|rlM* MlD4HɆ+so0cʼnuvC+O4|LqEYB/rnef|xKE(_Pd|t{Y"2p6Q7qֿP,Й |(<*tkͱN`Y,/=L"xm[m3R+`;`w{@!~N"mkQʕ9UZ  م@(gB l{GJr,lE5iφ Y46K߶p ?W]s'=_s{a4>۷Qq +nUWtZD]@'pEױZjE3-+' y\g8xA澩}E#qv|8d&95eHWrj(9"z/\uLͻTl+֦.p.͎/b(\]ﻅō@Di?PV$/y1v3Io^jyΊ\SHw/tuTQK.aqLcT/|Fm+n`oK~1}_1)W MrwR(=Y:НvI"t 㮢7>z8Ж%=1G*"O*5Sɽbٍlhq2ąz>~v֨-'3aYklHcxFRzmY|$x$b8G@6Z}b&{ƱB/doPgtzYRJn~NgqrW}'R!,F4*}6KtVUp$G@~yX0 irLLGI9~U# ^'_])-hWa*H>N"#)Yr\;Ub"E_;kEs37J+?&fZZljez0U荞# 9þ|Ӎ;^x*L#A[}gԧA>XoËv 4RwfkCei*92S3qc lycHp/.>#5谫}xЌ[*ېeDIm2Wrƕz6OB` nQi{q!R7*UA:Z8˭y".6vf,{)sD+<'+kc}/:'nwyR@D  r#dH3v`-mrd?;\tź v"bPOnQ XV2F19CEI"Oh+nxeO͗֯ (^$Q<Y]$g4YrCZUQb ~T*a=OwgWHe^J)~^QII,ۛYҤN msv?y!nq8Îg\pʄhOR?^ܨc[/')angdG4:n)Vxzvh\rռL%ַtCsvE@\$"tiDfظe(9\ϸ3N[-DrJJG @0 Sq\|RJkqª:Ǿɱe"-䪙l]TW[6q{CЅg- D"eR/)_neY3K=VͱH)`g9.ā>KNG:_BWYʭ/ juo^1 %jUo01̢%Z:xlB'~;Lʦ*=Я}x^HsAϹNent#ރ鴔t;QԷМGV@ WdJ‹)1#[Wg6z ۈ<7|$;i{s:I+6#XW*{#^ a;^pWzunuz?xO+c/@/]$8|'$t2QѓeVNJajZWՙғZNV$Uqcj[<+Ⴔ,C{!;a>p r+qO{AbG&jy^5b5Ff+<ԛc$v1v/k|Tz{@u|}g,7$w >qP#K6 aǬ1FLi"t݈^><3젞ȀVJ< q5ZTX֎1lV+C1U1e㒷:˒Zpe<ICt&fR<*5G:ظq}qn͹Qw?,r}jmv~ w'?dT˕PӌK}:d~甬7ַ~nYNnŻ"aVL5~|[]l >Skך]h @ogZpp»ݩztF}MLbN ]i9Ľ7*t*k2оrtv,6 z'}цXA5'l{ ^~?>5\@a<2wSoEOm׆׭y,ls? uY+;wc=J] ]/DR3=C1HË/l !\],4*$KjD1.EMsY-htGՆP|s@--j'l~V:[WT*8`)RYmj89_h+):EɦBY;M[^^M&rl5R*ٯVwe$Ri2/*TcSrFb3 :V "$ʵZ#1A@0n!-׸;!=:>Vh0' 9Щꔳm_6:!9e7"Og^Y%8Wˠm~!62?j)F O+1Tѱ7رhycExlCl'Rq7ܙQC W*vmD{vB[%hmC<`kZɺtRUߴmOht_dmUY1xDIm25*R"fxZmܗ.%!p%ko]vЖb`V?+)d'HɨFH2u5)&VgU,Y{. 4[w}~<, Kr>/ߘ/>S# ?_} tI?r0ュηzU%\RZ`H> stream xڍvTSk.H D6R!"JA%${ST" Ho*EHW.E@G=;]ޕv;ޛK~]kRbpׅ0@I n,`PLk92xX(8M㴰@ %d%e`0@uh@ h`1(w mg×G Ғဂ3 D`-匯D8p,+="#$E8Cnv gQn(a@  p- '4qGx`lPn8W踠0w _gC_И$1v- ށqD8cO a9PUxsG]pPw/BOYcuvFap_SFcYG EE.RW 7١p8LZBBL@(oЯ>.N_f<? `' @ۢ ?w' y+0`Fk';ތ7 `~3qB*F0OQ ץa11)@RZwo.`$Tb?g7 ϿTK|38 wMRpr?g_=pgPCԟIB٠=۫CCcWua1(LFqH?:Nh JG`Pq7 U 6OD\@!|@0D?aڠb8|b@ڊ׉Oo+5 ?wP($$y#ܡ&J bkTqw8o*YڨMiL ~=6 K#P^Vܾ;e,ݰdZ2ݷD=0)dɳNѵg?ZL7g+P!uB1"،64@ 1CXceӸپ4<ͮJ \ozY4^)($\a-p7Gd%9w:Ӕ+QgB8 ~ɗfl*-HOx#iIѼ|v[UB) C+!}PR@[I"Rb|WN-Zꛗ!\e1wiDzT3SRW[z<J6 ҼiγA Y^)Xy8tzԻ%m%D;&FԻFf3^uVrYjyݦ몭Hp Lde]5d&R.cNTP[9=!.ƥ:YOu2S8j`jJwT l\w_Jő^kmHV>)"+Jr+dp6]i#㎯8ʖFQYJ ?7?- 0 z}>YO2[JyuU1tOK}Jf۷EvmОk-_ e|$*wh/T9K_4O%XzA\J\7\!0l!~ha ^>WshTw`nŎF$ ݞYu;&7]]#Ww(zumWw&UhAa_> cDhe!D2WuFItzLV|6tBʚ̛#?s΀{J6չ;c%Wԍm鋋ϭ>h[ʼn^׈FqZ?CTܮT ѫF,mz#J;3܁.q舭mS۩m[C l"(vСHͮ%!PPS> m~?L%{w݋zNz@fH E'L3N#/ܜ52Üc孤TP9]Jz7f.yR!X{@o|Z1{24 q⽠Ku A'u"VwD>$ Rm±ʊ2 AF¾nLmIFХ#jр~Ugx WRhX~ڒ4k5{|"!"ZT)Pcm0^Vr ׄtdLs7$EMjT̔LdbCV\U8V>I;^}~X⽲q8|}4$I,I$qЌ3OYKN<`X[/zR"zM2˔Ί _ouU(r1Lr^SO>"=J#x4;`MTBTOpafܘt˪ HX&N\*VL\NjSЉ3MTnp{:O<P}7.ls_pu:V2ȃSϹ䤞sb{{L複N%@ 15%[?s  ߻g~[ zwξ1d"v!3=&z+;MW4#Ufl `r+եyU D }_ VëQVת5j;ԶEvD G^S2i\w#tt~όito"o7lߍǐsReqQ}[u3Ʈ̇/^X^:f~l.qv`ThR< &R02Т@Q.ڸrM^njWܻ,)I3BIN1}򝾚EZ;ሠk!H=1ZPbI.HS#]ONÍzc/k2M]&GNCOY&̶ r0."NE-uȨ퉞jKMXG\>YȆd ! zÅi&uL(/mzkaĨs]=zyHd[%Årw7_iH<"BFvvOgKbr=W,0^dkw\k[cqsV)7C1BwR;\ 7#t?ilVrGV58~O[>c Dt2ji_kվ|[_oZݿx SJqRXmEyn_g4؋sc3 JDm-k@tF&)-p3!V M1j9絙ި54(8<6t[p(45!b8"z~Ra9?DH%*fEI/]zO<{LV$e-X\:شCJpsrEePVi쁀rJK!zkht晈VLg o-0rm_Qt`鑕 y$'~:woU\R=Ӻ\xl؊NRBͫ2<1lb[jmٽ߼6 } 5T,Ip<ih":1+hB7J'sw3߭~z5DHjQL q Ge:iz'Rjrݗz<&.HXB&Dȉ3]>I:b{ ݰC 2K>yBF8MBkPRR1h/a1`@_޴w話U4󈕟9$=F#d:mDgWN/kg+=SC`Ӗ6wno=<(=Nb$ICgg+ :NƧn+پ>-Vwfü#UFuJkŨK'<0,Ƨǻ4JǦ"0sRo^K]o:܏2up1˟5:Uf.菁w"ƫtCD\&t!3mz--L~Yi ,HӢmWFRpOgĭe =풣Bu`-:Yvb% vg\| +?vuZ^t:ѵd<ӮhOP)Nɩ2ʸ͹[31;>#ğ 3L*NľӤfqo[$tElfV^U]1K'Wa.R2պ|l4r+0 th. X\I =a6z߁͗KOޣ<rQ`ڪy{9WO5"::4.XĦfzЂIrӋ %!  ug}Lu*R<ζ̌moǃ޼`]Uy)fx%Ӥ02U)5O=c2e>xl}x0<: Q)ҼTG-v!v@%si&oF:&ޯ#9RSsW0lrɔK}O3/V{PIK -K.\6ݘJ䌒GO{<TQxvw,9D u‡4R)|8i7+.T7P-NL"Lwxep/jfإ)=ë6R;hΪJlUf0gQJ9r|8 4QoHFȧPzq'cYF> stream xڍTTktP@BnCa!f`fnR)Q@JInAK{{׺wZ|}~k'o h>$@QT / HaC;A$FP$ K7E$`J`4O h9@B$HLR@ ( #) PlZ "PDx!avhL^\nHBBp3 -0ꌩ; \h$vF#vw0=@"ݡ6`gof$C{7nE{PpAp& nE0(o?A3 + ]p/` stT4ў0# ă0'5y=C= sAQ0?` QD8;Ch)P^ߓu#<>0O6n.pT] ""+ Loe1 |\.[ #Aݡ4 >@ $dPg0OF{ o1Aq5_Cmmߌ)( <>| <~Nw" \Np[@7LG\V o! "<@gKy!7'_f_a;Ü8`Ƭt5^e- ?h0f=v0 j CC Q`j8P] 󋃉f 3_&(f]WA>AQ{`D&("aK ?Ƅ0$ϱD@k0' ap7F%@$ ӠȿCܐHjf}PO(db  u(V*G08޴-R9^갫#=)_ Ç|xv{Z|MVFc)-):;deA0 <^KcSabBk% 53-3 +[2:V>a 'ڔ}mjAG4Ou3T0p ;Ua8Z2K랙hoK:|uhq85[VObmBF5 SAbaR-2EI3ޮ -pvbKNWrY܍%,$/+@Sݬ: =Gz>MӞ.ښMY9C>NJۓzd:?)N?'zCRJYȕ |;u܌P.~7)9{YzKl//fpd{x1<3QFrAr~J4N3ž7KbP_ h9s1PgHoq6śp9j"­ԀXұ& ϟ%7!i:\>:|&Fz&Vt/+&\\H[TZښlz3^bK ~&Qٔͨ0$AFbSe؎_xF,"9zLvh[1hdۜ}\ rתD+u# _ =Ml7\h ДEDs\dm欘Q.*;VP+6_lw/Jwd]G2]-uٚ" hmf3U#Lɽ@gA'&_S|VE?^@EXxQͦFݐf-33dh[ a'[IrrʎзTŠ^dQ7{Y36<#~ەGdе/Oݿ3;Ja2w-|UA]$\DX2AXhSX/Ak`N=fH>Vv;r6$RKjG^N] 4.FeI#\3o/~(;/q9HMyX/gb*4:Wa99^wFXd I{=),~m֪;ˆsϓ}7x1wcBEfGZЖ6ʈ/īpL\O(Ra7H:UzSRun8x vj][3. qދ>d4PW]3ZᙱyґA(#t EIRma^w,̎J͏۽<@̕Mg$8YM$"t͆X?G_K"}9Ynvu)|zDGLe}Tp88%% يg9o؄O۸+PracUchm'zģXFUBJ!g2g@&yI)᭗c Gx)Q&,u>)n6g+B;Qa0n~YA-凾F_ 񭋼@2׋6$ 2wG9bE"'ɬ\+?o0n&+zJ0D8:Zq\AJi<ݧsi!XQ@h+*O$}}[bStZ^BЗZvT(;9+Z>'n_<9} YfV# a>p艛G]UUEm ĸ?qDLyFR ">d[hwe\@ʸ1SOGa[Ka(H햹Aw 9EZW>%YJdUҷ7ZX^X]P<iz ~MEfl_&/(JG 3:Z qLp*S]kԞF qx>tgt{gj/‘WMbt¸/*PWRUn+Fĵ fv_Q˱_<ʲ?ug_Ƭ 8CV~HU2Wsh5{Pf3 RA M^*Sۛ7qC|-'{ZU͖,iݖGPM8/`3*G'DBZcO_G^5[1wЧ9/.ؽ[6ƗHCe\FTHQ&#nԔqU"^U;hH* x=c{qa@d>J֘mܱO Ahr&T.ߍ cN"أ oJZ \;xQ:#wnٛcǍ76\3Ms9+2ܡݐm$g#ⵂ-":%c wO`0+ZS'$&VLV"#OrʩA6>mz=*=O+$x%jR6gT<]NV_]B^<9a3X(zIqPjAke}/+4II1UH݊E{}hb3 Qo!x\rk3h=~7X=[$:x]BM鿚pr'w:I[?Y'@6ZP8-˥" ?ʺ]!Py|2tEJǎ>Q|u2s* o׍Uw@ƃ+N~EDqZ;7WͬKܯ|̂n5,$A2QQBTx2>(ě<щyeE&ln0_^g%v]Eu)8 PdteOQdbC F[4J2cg7ɱO{RTw*D|ކ)yqZ /}XlSK᣼ 1yOOu3\J3 7&nGN&%4ĀV;xj=x]WPν@gO-b4Y n0}%~3D _ a (H1uzf{MaZ8{fy9>V=rCV}DF4e d#'oCk)Tq\LDRݩzdx޸Н:V q=x҃ܺ0#3 |uBS5 :#f\r$j}P7*}}ؔdMɉƵr/ۏz)(I{G{8Zç-RtmTڰYԸ}Yp{kNE2 SIdy!E_w=ΈhINtqI9}f+᪉6aRl79fCHyC{[fӮ}oM^{8ygt@Qo<1|#.\K[/f(J׌klw$V1-:v}m6t#*/ȲY2>I;$];c,aIG*,&MI{UVnD$Q&]v uXmY~BڨxaEmOX"Ugȿ7;CGŜ\BQToC2ՓwUV*Dod /)|pjYE9ݢ?C|TWzE*z遟I&Ze6qBUķy_sh397|#V$x }V L$=dCz[4o>X+"/3 ; [rkЬ)~N]/c\Jkl &j<)? D@-#)+++᷼ 9E#]TYEyzS+{GJ6&$*mj}4D}9K'ezES!OuMa?>#g`l󞖷b<${a]b$1ftbR6"R`p<[vOaMe;ޢWvLdu޷Zl:/r#ȷՊ_h;gMzAxi@JI-3]lRYQWlVC{m.71'|hH,9|W̏Wa13Ud`(g1*Q6{8Qc;,19Gᚮb-qpj$pKwũI8{Pƥg+3aL+O> stream xڍP ^x)wHp-N)^" -V圽f$oz 6$89Ҫ:nv. ::;#?r :=++,1=B%7G'7O_!C@ PAP :i-9LNAA~?N W;Ks0@f rzhiІXځ`^Qs=<<͝W1&V\AV?Z;nckK yG;KU _*>';G ;斖'gs`m˩4d06L͠yg7|?HO=_?zs';G-  _S}_ ssZEHm眍/Tdaks9 γ=|e@ϛye?V`j< |U+#!gs~k+ J!@H/JгI@೥?+L#|^ _Z C k/ 9.^݉U`@`-Dԁlm;/z{UqQ64[a"fu91//B';Dl4*7BHdVgTl"-LbWkc\*X6_pV:Gl6%K` yhVܞ:S8ێUԲ08(@}.ii"-S)j)U؛R:f"ϐ\L:*;C "r_ɣqyA|´;`m? xWD:gu<6̩7rWv6GԾ}VVJR`;kߐ!O-z3sm\śyh" 7~ iA i1D?)nubfdK%kDUOD_xvwCE%mJ]#5iz FAeޒf!Ye7_[|؄~aC&EV{}4_TEP-f+_S`~?KLY mnE:\1HkD3o3"p< .>)!#;~ 4Pq \nk+LV>`No0U5{Wa[g'Ҿ$Uێ/qjwv?拡+) 㚖7eb'̥1I<cfB64m2vQajheOi*:7epE>^ ٚ<2Op-||Bqځ4\pxq,ƿF݉b??cb Olonx©yw_u /n)?,Aw+JMD^M>͚ب9 (`2RNӲ'N|)L<"uMw/w2jJƻ r[h%\T&VCKL~s3{bY\PWP"ãʧ!; @x0Q]{wCQX%no꓎!\"[2=,tOw2}mׁiB~K@%c_(Kglr7LI30T: ף@p?G{$mJO ^wGxm)eH * /hžQ]-NWN6/`k-e^ywEtDfAUnEөmS?Noc9\Bnƽ _ji:?nzsPM!!,`Yy.1H(ͼW*NGZ"b%QqSmQi@%|5t|",c\@_p8|tLZtKy|INDŽ.hclҔ/@+>ɼ>k6 &!z<w(خـ2 ԛjܨG[ey]A OJxzBx-yYҖǪ\׷OסLk^G,̡VOTǦTp[Pؤi뾞Q*~8?51/ե o2%Us v[<)nwNb VF?>0N'a'xaΩ2ng]qF:Fz C'AV>,.&K {e9Û*X߄Mx1%Ƶ/v>p{3pC)l+th=K%y9͑^_G_;t)fvFj`~fޥ}6֛rX7Lp`^iEj.x?blܡAcp7'rZ")| 3 G渶mh(^E87yi{󺀒\Ξ@vQO/46 {^zVCInUM!Ɏ v๻GщuST >QBV GY O-,(Y33\WZ[iŅ~6CF,@Qa hU&/ Rʊ""!-wQSSpHA/o YBl 3#0Bl^2X4zG `חy"4pLo>z==SRKIZ7RO6yHq0r,[r{)!ΈiֲeQE3׍c#xG=Vz},c}C&T%t؍6ϿL/Na>PiC-ghp" SKͮRXܘxͯWG>E辥Z~#Tf^!Re#]8d+ SѦ՚ aռްGUvJ ƇvNTJ6,KT[ĒPrzӻ7'p":I4dS|, yA٩\:wNކ5νyqhȉz# ϠI7b\)$V`;UWՏ{|F+@F ê%ʂoABG煠]r[TZp&뷏Gw MMKgRe|bĤwt??bx,>mԹC~92M jA")~+jv:/gKU"Ei6+U\Ga/ MK>E"I]KZ fg+Un  *VO:IPљy'3}!Nޏۛo[bt}w5't/o"lhV\Qq$oB[VB.u ųTvNQ5jᵠ/W8KYzy找@KG<2 ̹hn1`-t M[{ b^ް}{[+>a{)&!Wi(`Q{&3<"=sRH_`yI_bI[FOuTcⶶ otR|ya[\{UZ82i%SfpeddB~`pu(:i*:MHYNe!|К1Ԉ }Y;zUNJ^r7yA0mGM g 3m\6\B]]wk ?R?^C"l<(XJC.ʋ5R+m'?u!,*t_VEn9#xn~.к2V:Zq.y',u9^X^Sֺ* xE8a+l|5O,D*}kRV'I@6ù7*%E^JUL=\p"C uHSYGOD(aB="T arD%q}7rϘ1 Ū$PMu뢫X״H! G.pt#[͒7mw!RJ]Duڃ³.r47%iӻT,8ߏuEg|0\8i &P*1W`/nK3- xY|Ni`RXv-/a}t׾iӀb MwT ↰^`~L^öx~UZ21,[A*=:Pk`8I2~f<> t#"˔EOl~D1o[0k1Et+q5ZPlHMJwf&b(iLs&9Yo+_ɴ' d0uH TQ] txzr2V).]Ҩa-G\z1n=4K4LrO%{_=VH<ˌ~7&ѕ.{COfDžWk?nYWMJCDŽ\JXI![US$Ozw$&p9xb 3r]dO#QCOBZRI"&k $RR Um_ww6șͻ3n'v{M wcv4mee=ud&?ZWx05{'_|#q{%tK< 4!s\l&Wú4t~4h|ʭӣEt'v(mj=bcެcM?p)54g2,Ex$.ؾ9=X-ψ_4 fy3RFC3s7 Dc{Kmja&%r.4|un2d 㓁E<ofM!P|PmFr0NvDE9u-Nm 'upe9+53߁Lyff.aˎ<FZnQ9rC{KIOEp5UftwNK̶6Aj%n\aXK`ɧ"۱` Mvyz+c^Xa(1mZ夘u-T{4^싶۫yǝmԔ;fji(aq;~?UKxp˄1kiBK/2)a6C*ztKh$'x̘\/sA`zX I\xo㇮f{C((&2ڦ7g;PӦN|hLB` t|T\<)Zެwu@W0={Pu ':]FJyx`vޗ0אFd/ \ݭJLYNW8k<1/NöNژLݕkU#_oi΄`m(Ԫ! 錖Z.~6)P!h| o[᥷ro{6EBD,"fwCXUk}srE*1;ՕmsӶ(ͮ90GXKLaO^k8QOX"bB gTr]jKF|τLȏfsCF9PJMSԺL ^;nhx;exU["^  g&ϗI7٪fHt>XܭQXT-8˸zNMO':#D%I wnOQk\45ͤЩCP$t79z<1@k@\|gT7X䁡n;M2SH:ax~ 3$͘ܧ9Gmȱ&z_ t}9Jݳfp?rVk`R< pj?%k{o ^&uuGq 2 nO#LP˸+9uyofizնg)~#G3El2ZoIGm{G-3x,eU9q|M,q8Fr9>!,1[(@.L9!aIoŻz0 =X¨$r%g†ܜ*>lLk3!}y8@pfc%)Ub@SRYώtLJFUIзla4BE&jC6mMI$2&%>}-' a$-#Xy'[@Y)6-zru3;v7}(QCcX5P2ilYw})d#wuA)$ܪwWj^߸*,jBX<ǘەVq`RH!v]驝P+TĨ'ԑۈp˱-}fh=[=xX T@_rHU­mslcد)14Ma>b]MW6d.(ӕA7Z8/1:,T%fz{'MD)JXrЅ6./PO~(p~UOWoWte<DXζ?(jгFdOkܙc̀t.J؜TJ7CfI̡h. 7bdȳ恩J=v8ɾ'}M~R,EgNP@H{ќ='z%a z>!t`w}L{uXS~/x(j4 n%IB{T4RF( Ϩ _v=+\Ұ!2,YwKg{IuR?EP,nە0,9 6;nata! cmڮ..Vޞwۖ2{=8Ж?Taso|אWMz<ۛ-!UE]x k"球um=H3+HOY-dOµLDsv3$qt񓟃k"풄 ZԈxA6hQch j7{S˒-N?P_)Als$l6Xک D)Z@M}ù)TxF TV3U}P@cG adaԚ!{Bjڬ^{8L5 lHQ9$ٸ\ۭO?)c)Qa WU椝',JԿMg0_Ҹ&3B</'~yg`<"=,{doZ/ G.*bls%$Q\lO(9ei j\T'<8r*O UN') #z'c*9lKfiMqT `@"p _Fѕ_D&o 6ƽE?fr[/|q6MgBN6d%9f8+=abo-JսOr<1ǚ'ߨ H{`OUޒ~MqB{%呀~ DZ.z#Nvh6X W=i>ckWr,k͌)ŗ9d2`U_6G2Ksx|b>'?Rm0UDZ~\JY2{%U1|<Qe.+H AݾOŹ5X*{/ ">xʼnbr7|R㱌g_W+0Bzx\0?~[=5_],N#Co65sCm'+0 A3hj,hPg#B+k]˥uz*)r}>.ԢaCb//p#"DRӹARg=M&8$ Nu MVCtpqWQc'+bW_*I&sc#4jJWJ04뷫~O߼:wkQw7 ~2O%Z?OÖ2[Ɉir'v& I|P(T@&CflzU$Qf0HszݜC~M OЙ5e"QNۧզӱӻʴur3FJfwjfv}<#*p9ɅSk/bGog%|۫0ۚ|">5G%\(E48ywmτ7n!bF 4“·ߏ;T`I^v)?WaYr!m]=Ŗj"\쥍@EFߥR~5nt 'B'5.6F}3;cŀyX|H-&e9EY գg)ZV ˂Wt ֜u[)F<)g%C\neB=ߤu15<'҈>_Wڙ/׉E%釶b H6 7^}B^U[~p$^Fn{[K[xlGX&CjlNhW /GL2W$:f)Y|<:^khrGԻ(L;z7ߛ\փɂ[aZˉ B/b ?\װfZoXt`!Nf ,pmbCPh_Vg >}PuRVIY y/qܲ|:nޓ&kq~{ut(wFt.6hcNDL6CPtȇBhrXor|\vMz`hdPREiq-O^ @?Z䏐=@=_]@ʤ;m[΋[H:hAo`lT’]J)< >\#"dul6n@ާռj 1Flm_Aض.> 8ߡn!!J4t73qa?J`M=A4 D=ۋh6rlE*_nC^E&^!tGr "'M9襽zf0t]C_fur*-yaQR&DTm9PbU8Cc݌6FD17WOSďV{ ip$l߳g XqPѐ!ϛ՟}\U| F@ɿ`oCQ~2o_5 1UgM֬}0ywT7͔O6bGf`UgEpH.伤Ed \1 U!cޭY*W1ȪK{q7<䚾'CNJ4OF]:7\xLAue)'0=7/&"[鐃p;CC: կ*:բCϷ v14ׯ:rii>BU%媑q> c 5 !:৆h1UO<{^26r&r$q޿R!)ʏāHE5:6Ws 7۲=s[=g`+mfk'ՍUM}z\Q(Tb>cF8^1dlWyKu,g-%.mPaO­I;$ D$%ӧi &Eu;!_h(ꍕx˓:Bl3h{כ6׳Uj endstream endobj 491 0 obj << /Length1 2650 /Length2 18884 /Length3 0 /Length 20399 /Filter /FlateDecode >> stream xڌP cݝ]gpwCIpg'{ky{u?m}$UVc1s0J:ػ22YY,,L,,lV)5.V|X9]A2qcW=@`cca nneP`:]),,]Aq@cJ `f8@lejlP0vځ"L^FՑÃ΅Baj P݁fR(I ni3Z]@G̀Pt<@hc0)_wˑ߇MM-V@<+/Cc[ycwc+[cԍ"*cPblbeWYLh?q+g)^445쭜܀2؀De@W' ;zZ2@/1(?GG9( 9b:|T/geYLV𿽃@`P<z,c>hm~bfuU5i)9RW)* a08ٹ\\oo?'coO 7 查oE44 ')_Fnic74nPp5gfVnvW+j {  i"i 4Sr5{bw[+{_ @+gjS\@[mF7u0k8^,bv h\AG,? ,q~#o `q%#Vo`2(o.+F芿(ҿ]7EW@U#Pt߈IohF .ڿοE73Zmkmgo5(!gcS e[?[_ n` J88 4yfBvO3[?H$ߔA \@濏[/۟1@&==c[3K/GK ? )rҶk~A A+oߜ _C7aQRp9s=H˛ zaw8@%su#Л o7z99L +HGQYA%/t sCߠ n..QMt3Z:h6(wW?|YP̿G\L, ]@P=S? (T|ߜAa?W3?@߯2@'~y?Ժ>VqV:-ϲs#2L mM[~Ե] ӶF$'g_g OEՅ|_|5l {d)sx1=<W'Uj˿1j|*3^%ve$CDCϙy#M;e/b^ҋGKy>9K#z*SZ~ -D>=yt[e^I  DjFtKRJŃpwf q0^>P7:7r?gwwZD_0 xz} (|g<<պ+$ݐa S2PP1 3)n08>v}er:x7#AeЩNÜ<[CbrǨw4a89?at_*1V+7i`Jk-'z}ć%Nr(1`e!c=^R_;[[[dMII9z|8Uv~/C:7Kn$#2yQj\nGXSpK73$/lz_4~Έj5JLAo6\dEP1+/,8Spi9CxS=YZIʬϜS: ϭ(OҰw0Fhg#&ԙ:Ek}^eMkn O_[wRU.V$ePK~-c^hDpmD8F2UtH9qR=/,e[* %T& 5`B,cYgBm&j.AEngZ0Ė"‘O*0ׇ-!lXգIl&'ww:9?lK=&5Jw2x 1e-x!Nv K4 r"H2z;*,7ڲ4GTW5uM%t7k~x.%vDyUvp[3[Y|N҈'WnIjJ7Sz}GyӐ8b?.w9*sKَ-'ɄɺC-@)ghNQNwP;')░Ed>y3fH&t](=@L&xz?@93 . DFB4/M~x??|[)yZaqQ~.bO +Ć0UNޙǯ _R0whe$TF챑dȎ,ioūp@-OgW#id*oLR׀*c)C x(Z&WBKb:\PE !aѸ-n@^%f=vKNg_m_lh:uu~YaT4jL$%H["4r,t!Ol֧a]ɈOܛ>5hwG6k!gb~-oΣ>8}o9Rn +[FxNSȞ;qj}?,U j_1zKH<3yh?}p`)k5xf=$0jLW0OqIN,xƭqfz05 SFnߪ5c5&XkctMs ,] m-K fus47{|A0ٷT[ DE7PdaKظ虺O`"(H66"Nzh-r,Ƌl~?ʻqi˘}ӽWa<3 IyaB I8|r7yZoɡ7PpLxw% 2EeUi~p~3VhzD1Q,B>lNfNC%K{.JT9E/e< B塚b5F5MM"ightEmQfbݤj{ d޷:|66ܧT#jh(UbaJĺA`Bk\z#PYk [5(]!lT(+;)vD4gfzywmUjviDxmhSOih\VR!-m}TlWr-l!ʶٻ(wfp `|Ӓ6Q Қ#lR([aI\g*:s!! 4z^J lډٻk0}FU7K|{RUJTx^fY[|N2e۹L"ѩZ;Rۓa qT9kˡ%&otU:I}Mef i'HӫE4A)yos%5@~ȏ&.%;K \۴#)S*{ -hެuA(_\߾)?%bz6,Ωn3|7r[Ê i*8LQ5zgKdMe=BûJ=i]՛+0Z@.e iѴ驿`et4&xzY^eY0G0ȆLJ&U /M[87v X^%pͼRۿ?5( 4\v ~Y>a=iIv`xGa5y_PIf/k'ۋy ɜ k[vsv>tiQ-l:ԤhF8;Jwb:2Ihtk^E҇9c-Q?$E=c1X(S`=WUK̇Q~d}e; =$,~ ˛6 T&JB8m`zO}S]A ů>N^P a!Ym:W*v~,x9taNpeȦsgG^9 6b*A~:20rzC sw"ʓ$06VwZIH[FJÙq>tX)GEWssޱ$9xlLnCZxO6V4BwXJZ{0.OK>tl8i 7Wo1}lRC9.:0s_FdPoZRm]x f~dc!c0zW3T !XxC+n]燭n>S1a5oS1z]lH̚F+YzkTPQL2QoFGrh{ Xx&GP $.!&.{a{H7|+j8E1 ' ZOs_DGf:tqQIM]s~;\Kꁒ/kMA`c1A<NߖΣG$d L!nⴕM?D=C;79݉IL7ɋd]XK0x^EW4<ďnV.S{𦺾}(Ff!귺}E%u8n`Jn|9ä\b׃$4p5ď6"QY DEk7Z<"YYԑõ[ +',+vUtv,'_bDc^n<A9EJ\ǪF|$3W]= XW<127R )o F^~R'şqƅhMmJ|ޖC d >ƴpC<ݴ/&4Ţ+PNSE2v1Pd%{KN=˂WLJ*tL3 ژzK¼OeQS j-oe'جîJDCaP%0b#ΨtdXfr.TI]cyEO= 7/&vY|9%kZM}7q'yRbVZN 44FWds0p3貼T2q3C6M:DK$fTu2L![3M -l8u1KsBAlt:[ka3!"8Bpz瘍 uYoPxח_xLؙkwA)TS,: L 6R,RǨHPfزdA`]aIOr^\́FC+ǂOľXn'"! 2pEE0VѱzMgaɜ5Ԋ<( 0|1QdseIŞ3:ꦇ?/.L\uljJc_'i,;<cuS>4U>ɡܑ3.g/6gWLlcWBw'm}3n8;0|K'`][ı7Eϔo䤔"olqdtgB@ nu{{:\a *uk:3nSg`t yg}To,_nH E[tƆ4.O/C鉶qN1qGc/3eʈUDo5T9+%H"ۧs`vZrn(ՓS{#!3[i7x)Lg>R1,IT6wJ1ETH%vZge"-ț/XIq(5ߘw(c^|l3G =?k fZěZssS)avIML~MJiG-52+ϝD[`q+a*)*BR0~MXscoXND] Ճ9H 8߫:;_7pi1HSHj%]uX"?mrYcOG :ןQy4$k6;;4A9pzִ/"ג,IVԸ}j ] ctKiY4Pԣ"^P9/J)#Y"}gm2K s+] ׁ6f<:ZطQ7 j('<궥^;׿s?m%s^o}_UzVQ9jIEDڀ(#^?O  ˒6cTӂIUyvHWCУC1,­" u!I9 $J/"["j6`dN"q[duFh3Agm}S1}w++V䀙x ֣Ed+Tr nCUٶ [n+ )ްºXَ_QGn\nկ?=|t6beډSNAp`e|{dRx*&2AH=Ml{$lwN+v3x/+HCѧЅ}In|nR6ޡ;PK`[4i<2Ru6˯Y7bܭf&8,-gSwܨ(n#Cc?o!MbYjyzDBB64",-,TTiVȼ%Ů(9)Ay ٯQ;k{'3wo^-zGW`O|N$_XJ r8ʜ?9SrcKJ~ r\jH/D6^St864x{+ ͭI4RVy:G>i/BS !؊= | J݌Bygp ; C=*\31UHy(ɲ1Y$p l1IP xu%${кͧ2=F6F)$G2+=bMN6\6J{ CI*3&q:R#΋5B5X$_Xs}xQ9攌YGuX0m:/BsDJ68^gMVfee $rzM=Fիcv36}D 9Kg$>]݃)tj)}(LwEpXZLy+ɪ@n ɥi'A&au%J""ɨ1FKD Zb{35B ;]s&tc@bK|0A@xM$4Ax0rF x;JyڱCR┅45KoPeQ밡Fg^()"PsZšYmȦ]@%]Uu8oX~6d΂'62羮y'+3l`j&2 !U὞H?9B^9QڊNt|46*{yd;#HXF@9fd++%*k#YRN8K='**!Grru4}Mh*TS=hotMs?h$SW8XG?wcŒ~։5\:Izz!O wmmlq ZOwJL MцNy!.!85_E\o1}h߆ƣ~Si/o3zc'Nޜ{-#2@=Sǁ(_q4OB!_//"c+(=<[t.~:՜2<7ú֭+K$|~o v ~\vkq g;:ծgZ28<\mpW"RUzqٸFz*Ӟ8zJzt = V?^H59,af#keo95-%=0޶! mAVLYMygH >9s"h-Q"Ar>uBT[֟z}0 a]%) }?9fLw0B!/Ψkd1=E'~<9uVMp;d2| [@暬,u@t^&ځ8n!+a ~u4G$o-|rjenW~X՞K9[W uLI׍*ix@Li&* n},%&_d9#Fy_;z[KNeu?{;/gSL蔼>_Ԝb֫d!Yn B4Jq":|y`C:)e^Y-Ӎs||Dʲ HU۾|-7gcje0{eI8C x~ߚQpDCȈ0→ܾܾd:U_feGe%3+#zO8+OJe k.Q VnI7c]OD pg \R5!z a]w&gA \CQ$",.ޞq!9 G-KΚ1Y2'QV/y6LMX6%~[G`2g $V4˨z4VwaJK\ a\~Wi3#Ex\Hw!hIc󇣕*8t%bƽPpDBba( )ز@D_J< *,>2wإk5KM;/F~)s#Mp|eGTc1?$5Q2[!KS}RH7@]0K Co}؄nרgAJ: J-0pGB9cs7a~WWiw N G slN?Cϑ" }J,zЂ shY8ceO8wglER<nC n-fOX ? ..`-|)@6Oɦ$=X2`Y'hSSGA+#zVj7.GD],C-:5co?'q𑣌7`BÜVrbW<V){RhSR2 B&T1SÛn,TXΆ33c|7S0NoB ط۝mGTo̕t]@_ԾfsFIjlN-PP\GT-s8ta(.bX=b{#ynzF0T1K?^v&1}ʐL<~A`sAc|diX.6Vlaԅm{ 5MKM';JɸϜ$6yːG | qX(~5}TgJ2bWk iu=ɹR1zz#zOCQt: wyĵg(.-H/lK4F4Rb̜`M~+*jۿ Ky~wkY|5gA/ڒN(38rr #OG2b9-VS+4ZKu|lЙ/7v(P؏Ӣ 7VSzʵ5 lZ4ZdѺjC%Xe_׿ =GO:!=8a&hu'*{s(Q 2U 8^F"K$q}$B{L"6"99W-ĉ$Kr/VK):7dfR,ۮehY+E׮`;!) xZem᫧:a^tݚG$ ;o.&g5Xi^*svՖV nԭC8\<7HK{&A|/lo $h(db FL>vRoPûĘ1CHJ݁3d2Hxv؟5Tϝ.rIe*`|oecj"g"I_wZ{]*E"\}qbF!RnY7 J.e%_4Ⱦg{lL?z, }$eZab܉:t5j@Ɇ$eb(9Q㣹&D°`ķlfӺ*{W*ꍢxM7~$17^iTu&J 8nnz!0 dhp;\Z:0JuUnt} " hYm021 #jLi̓/O 5Bd.hkHe1/EsU>ަg0kU+ ^$*rӵb^[aP'yVZ'ΕBҗp60#CP笜.F"g i/ qd^?v /鲳 |_5s/Q^}.)|I\tw (fdˢdK8%i{S3G+=9E&'``W(Pv!~tAdqccMm3Oïݔ(|W/^UT('2Bzأa[gj=er[l 7"( +E0]|; uV:H.Žt% PԣdF=3ڡaSj8L.SM{wſ@L8q kj1J%m>xpнZǪi2gtR2H2I%VU&.~q8Iy |?uP OnVl9n5Ĝb+ s@ )I#l*Dl2]M _w_3p>pdZDqIsBV9k $_vٿkЖLFlrNA#4@f-%yt8^ f}7H}.+NA-XXҿ(~a/e;yUU'+߈)ۛ@k{8jK%^zfGIaoKMnR:,O^.xRf ;L"HXU2^$q6֩mc9f{aHz9_EkN䖻%R9ꛥ3I"n뗑}3|y-CW3' x4vLs s8 gr{iQ~B'Q _@PVs~Jg8.F?jK_MҬS="n6=sKͿ2JhݾxDA(h*5U3Vث{Kr-Ĵj$BS%IƲT΅8 g(juXSI[:ɧ;9aDk>'X +T.:GJT8COޝIo՝ ;ź cS(S-kM%TѺWIቪ3eTuD8瑱_LeR  #> n#=ISExҚ{Z`H-Y1p! )fhZ^>ȭ4 (h|WXHs3B6>#UB6p$º脏!Xu,wa@cYÒ,\hNc&w̦ +BJ~1t̟XL}bӘCenw5;F!*ɍBҸ,ZMo> 9S0SlӶ:9*jjpZ/פl {k{l,2%5Ц9|_E2 =+pa>id,c K}h׭mdW7=8jK{HkSsk-[Fg^3n#8{OWBLpG]qHQIX]ucBay(2^K ZN„vgF#&"%d!;1IwA$ˆTb|6Y簁]O펠"kF^{#7Ȝ^F>J/+qyG *ӂMC:\Ԝ% n4]`*9W&T^(^L)4"R:Bg&\Dg4E oNjzľ5xi{gƇ1f pcCӪrr2`[6C]-B 0h(_hk7.1]TZս(ѩAu1gd=t?Ų>,iI:y'l)TpNmaw= :o!,[ZMC W nwP԰f*jeW$9P}'CJׄd3q`{ɳJEg=rva9.2BI%}fa7>4]a15.HcBkjMyNO7ŽFx\ukM`%]Mg&QW<8AckSuP:|ӵ{$̒a 7HJ3>}u|sJr;#Z@Īn^M Aa7o>`n?C+>#0l:k9zaEb;G4N3 p.ލitLlM!$s(ahaof  ⰅW\{u[c0?ҥ[2uUYh!f(6[m7iߊ~xযFft,L_kҲk~[:В3O CM"Pr&Ce¸UW'bOKj{~Nu6H=>ODH3Z^RdguWtGgѸ/upgTQ8ql.jY"^YM(N\CO )N7 3Hm01~*p#W(=z'-tփ4aY8EuR "nS2=f A 9+ݫ]t gAMl`Q:wpabu}EO3=FݟXp=3ƍ"׽2#-}UͿ|m=Y[Ҳ\9ӦM"*F]pPwwx&hEӠ-Y:f^8K+,m\۬ϙEjj,AY!Mͩ$h#SnsiJP%=9LBICcMTHޯN#'A#W:2yÈCm (Z'/ &hO\縩~8!bq,>in@!/v>HyPrdF,#7 ȟB\Y5)`qd{gq~4-Ծq ? ($HJGb}E*ߴI5!ީh7ޜ#2S.eO*%GJD_+"S"vso5o.%9id9Ϛ=&"3ڗnm{5$( G\Ur2kG_{Oiӄ}$[[˿KIj ˨94lWzћ,#k/r"\;=Zэ'HYG57/^dn:jVe/|Hc%nXLIs*B[+7,"1^NB,pt;d0\VӍ(;$0nTaWބ-!&D7*бh' < [ )A.hvZZ:ze'n(,IIN.,f{汓N kߐ\n`SW5ҭ(Kӎ)SNJv9jC?UczNki*Ũ-F%t->xGuʝ 6#R/]g[( d{6=XdRKSG.GHzHuMr~}r醝 '1E%tQV֤fr.KJZs12ň c[ן5l2k޼}N3rbcfW5WmHb4=x!j9qKpCц&Ixg4&w&i#G8:p~YX\qcJOWYa=Vވ|Kv ([jk܎-ai ˮ$HpO>sۯqjy3؃5,9}kC~#Z "QRRU5{;}b4MHQu8QaLƃbbGi q*/Hǔ/< u*P.'_6K!+ "SMY/NKi5ƅRԝ[MRx:p'Nm=~wRmpLF<\=5!!^9vbF]|FX ')1,$i&z*ʷdFߵ=@ QZ ?Ru,gtYm Og^PC s h] DqJ͕Jz]"qz qZ 'i|ɐWEt ?[Sy u7[`- Rs㵯5b4 "Na 8D\A]m)8 nj6V:Eh}L TvXp)gśfoƖFyWX&UKq\azy,֮VU'C.gc]!bjAjU<3 +8Uxѓ4ݣ~|<EIʠUvY4PbKPMxq7TgoY_GpTʁ7*!e~&ԶwFCŎ s~hqg[H^{}D1ݡ]Z%R;?~2~1M&SeӭȾ]`g}zob&աP<i!rf6ms>^YXJcי}?i# b?+ Va.^0 J)]*ɶq}lu_hOy_'2]~p!,+¯mr+j7IRU\MkT1VPT,]Ѻ a:ehOi0riGVuûluFmǷj> 4=eZbFIٮ ;Ϯ*O9|{<4"GxN߇ k<(9.Fʠs7H45@=KYULC<#bo wF{6)16\K~) QڡykK I,02\n*dRuI"gaF)d*Jc傭 5e&$ UQkfuuoϒp 㠷sȱ6Or zFPC ̑lyCZq4&>ڍZ'C͍ad]o[~ >3  ӄK3"v u{*ከWXQkޞLP݃L{2O,tY9BwG0d zٹϹ/]KZ;>D;95o_qʲs[a̻~PԛWDlRٕoX˼؈Q /!]*%Ԉ2]r)dÑl7Z ;A}3t@ ` =+;D$#KZwrap`F\jy * X?{,'ZT@up +JV+YRq^s^ihT3A!RRn "?U4U :ov Fu帟zΙ¢x(֣ZsqK ]Χ̉nZƵh_5 XMMܮ4R_&| lx d978fݱ4Da0\Ԩ0b]:و5zhR*ѺyCmb endstream endobj 493 0 obj << /Length1 1588 /Length2 3190 /Length3 0 /Length 4178 /Filter /FlateDecode >> stream xڍt<?RqH4|2ϺAѰi}ܝTU- );# $3JFdC(>=kuZр@uM",mlJ`RR6#@:R408&l31@K*0"XeU`% FW !`̨2萫/X 5t !<Xn Ǒk*~@j14M4#3PT1+ҽAB؏#?Rᰦ>8:) 8ŋBg?(r?W AdO%p? !0@1} BX đT8獃H88`8!b@2M(#* R !:y"Bq@^>1 2  wC4񣁫NO"L gAIvX,@Lt(?a3HCa ,?,YwVJ! _b!; "PTR (T5T y6̟z(D*<_4sid;j`)?T_zH~䏀Ǐ#C$fXR7Ζ "׻7ĀJ=Ha ﶪ_W'A 7"^90ZuFфVVOIE8?֗ wJ@(T&"XR 5[1@72DAeT_%54b4/W47ܭ #XT_4/f *g8x/:~7V O^}@#:Zx _r v(VW37:# /OeeNǕ)׭EVu>,fm S-hKegM)Er~2/GPA|IaA}icnVPR鼯}cxfΊֽ1T*l~h4پty4(xyjnatH@zX^ކJ}oX6VjAr ;- {J\W"j;*62tz5'OP6%ukm#RV9Ic̪/ FLSrֆ^8~r1`aA_= ӳ#uq!N]qOIJF;v?Ҽ-Ȩ4!:1]\aVxNTF8$Y4-DisӅMd/{,UDW4kCfy}7ܡS :vXe(NfìkvY,&9di3$턧{#84]춹H[`i䈻ߐ4~uI7G@{y>D 9ӆM~1į4'N&܃ӟ}cݱv xq [$j -}^xJ +[Ǵ| '4.nW6|SϦM 7Rekz\]4K؏>OhoZ=pPCM <"V;`P}zpċ҄'D*i՟J oU W&K]blvXG !~ݍ?K,D1\٩6Ĩ}g <'j֯>L<> W Z-0wMIuLb*ٍu:=[,cKoF@ >jW֏FD? \fBVWW:Re¯ԉMzrSU3=l(v7W_.,LS!bEe!٪j\bj~wbbhCHtvm"縻TӱKڹ'ž,59D93jMVϪ[o^/ܢA'I=*őg`,j$}se3Չ?ޣ]3ӯ!=Zḛ/BJum 4ڻ uow\36Kh RKQۙrNΎE]CTΞcTXqF7cg[]O)ˣzOݪոɱ|lo,l?tv!kDӇDd3d*pGʱִT;!:Pu[D+S㮃Q\[[]ETݎ]#Kp==켻ipʶl"Wt!heb%t"G+Lo}@|LT`}Koɾ6c.8W9`\b:}>|k9CyΘG(X.tNBhFaLR1'Z`_`5D2Dž2IJ]_{LՂhUAJGbK=SL~̊+uiѨ'u&àHkK]b7N_P$E=!a.~l%n'J.žkɸۃԙ ݪ']6ՉFV2=Ѻkv|{CYqU{w K'B.^Y|Ň@%PRxKI[)}s,J){;L ?B2xqmY yycttU%fFbqs(נ Guqy>K>bIuDuڭ%eGr\N 1ثGBrk2;;)-꤆g}_(=^!;=;^/o4%yZywVQFeL&co^4z͝>=|%j)ԌA[E͓o/3Bo{k<*3RoyZ 2xn2rNB~HK9یH]O>hA 칑7x md7ΛѼ`)iiSXSNcdss.e{ogWimU&]by]wYL{51ǔ}]~iyD׶t=J>T'#uU<#/}״i6Z)~ љm$}zNMС4jLt~#pCz}@Z!A:z%"Nupm(<ȅ'1A_ix4K{ѽs_J<;w>Gbkˎ\2ShM}sBrdYF/6]/ljB't|J%IԽ=_-v͇oK$EvkdU$x†%19?&'Xw}Ӫ Ü}˖Vp3a򻭼dW7iCm [RiE6u<7-gj,}mx/HI;|X]5c=|٣>V[jzg"㵗>&SLvY^杏dqW$sh8=nZJ X[XoHw2~^!V{ӦrtY ?ݨxS877T6Wj԰i#FO>*vi ̮Ӯښ14ږ+i-7$|irZOsYw;Uw$>C.:+MX endstream endobj 495 0 obj << /Length1 721 /Length2 4672 /Length3 0 /Length 5264 /Filter /FlateDecode >> stream xmrg4ju :ѣ D%.E13 3ѣN"D'щ5DF^7]Zz>쳟˥A!0HDT`n `P<V2`pb 2^ `@D!c ȹ*➋`+\7"=`tBTʹ @F`N6NH@ CqA- p'0h8oM8?Ю,Z-A t4x5â>_//u'!p$ A!dM m<?wt-w p f?wrCQ t1p 0YP_z9 $N醀#VB- ]O?ڏcN;z?<50 ⯽bP? \""X7Oa#i|žc4׻9$ #d |r o Y {igKX /(lok} (V{"B-XOΞuZjuӘ'OM{$ަ,}'OίmE3;1|KyzI!TB3`eda0$3;6/3?=KqrytnEGu2rHtn%MbԈpsڧ BJ ;`e`FX(8WD"Q/]*\ұaRƨoV@~CM…bԙe3'3'>]}TJT!{QyŦr؞{ } 2%.Evpz#J, Jc9u}-*;\pf4ѫ&wϯ,3o;!@ LGl** 7$WWpYQ5Ϛ5# o9-ͰEq?sHf =R=]q'b."_{88  8ixxs=e26R>-MԜy$l$Hr*ReK\w:(_``M:ǦBԲmhR@NP >ѝU%' 13atLjgt4O ")<u@VoYA38IG 4_?)o~[u.ᅬpLw$,ttQ[ \6Qb})Ŏ72K@w>T8~5,N乁c-Tlv#$I2<-fJLZ摳lru^Pd<=.m1MMf+km(=[3/71,(m}!\.·ڔe=D{ωM^ E2 !w/3+H6= M4A'Z,Dƞi*s\F. ONޜՍ 6 ۹,W!#%Xfo߷90 )!Us*@>i}ޟ|Gv-z C-d9Du1N,tA po%ǞMݩvIeʾ&Ĵ6flVk;;v^-YlM.#&l^D3 KYOhlu9ZM:IQtf\jwwŶLaG|-;+qm@٧ N4 8$ZTcg3-KVn*?CmY;S^cyס8'"R\R.E(/^,j&Ny[뙧}x0Q;>vdJKo7f>!ʏs5hr\TesnX͈S)lY,W%!%?b:I9;D>b60*/꘤p&8y\/+5D 8ǒܚsϩRXKIHdݢxN m& V}ih6{͎Q z|yń'<3reh;Xy3E ="A`.jbZ_+2f%vI^ف7Ҥz3q|Po_-g畈 eWGߚ&PJ/$/32pDqDwu&:`O#4) =lp7X\~\m+r-]hQ"eG>xTh "#Ud5i\*!' xAE@}oU4gnş5Y,tl:/IZo8io'"v){gdXߟ;ٺE+u7{</&Uiѝ*v|0l (kN1S#k>w?{Y9Ay|'?8*Yf dW(jP ]~:e!=0iټ౱]PEf-|ѝ6%~R)'ryhz`v,z5bphѵ1[$1ʪ{Jb~Կ s;_<9|9t*ʝX|Jy~>M۩^L(ݡ ֣KHڪzԴDjt³ޘy&m=t9+r[lS3΄QDgy+3f^x_hiޠdd357hm Oڻ;=F!}7;\+9n"jqK5T灁?"(l ,A]Dn,,fhaP)Feɻ3o52i@{;H8dg%lo VUÜ{#gZ#K 2f}{UZIݴzEW1M;7I^_w󱛍^1cŐ=!m endstream endobj 497 0 obj << /Length1 725 /Length2 15948 /Length3 0 /Length 16495 /Filter /FlateDecode >> stream xmctn6vضm۶gNVl۶mZ콿~=zUWWWw9&=#7@E\UHCF&lfj`/jj 039̌L0dG/g+ KW տu[#S+;+g%]ōٍN*ffWK3@DAQKJ^@)!07s6(ZdL]̨4&VBofή3wvȉ +ȫDTEFYۻpmfh#d?X=#01LL\fV0 MMrfxٙ(E\͜rfql濮FvV^C2-?*+q+O3SE+vuv3Z?s#gfjffpϬ:z 1(ȫ+i O,fo`jeoPqO#gQ۬hd /f\<:J=73#' d_pMܜ]M?d2343Y_q0 Nm -+1TYa^A458¹Wß 4ۻܕo&63;& [y-&~W׿SǶ3sMXRb9v*C`6,Gډ_[|ң@3;F )6x_ wCm`YPx_e-8%s-J^;$tŲ!r0Y~ë p )SɫZq77K:C# F .{=jϝ!*)=9B_nu2`A\gvLX9 uTl47/i(i[t"\9;#!E>#}@ٌA4Wg A2ĘKFS젷ПUsU02 _5d xϳ${zf6yi^5U^A S!}w)!h %SF;rB90.3=ltf_<9Ka(:y,op#E}r#丂Y |/xISؙAXgbER^9 s-'p'w٫Y5(ӕ|3uVARb$!.D 1@0]I2 g#^pTNYh߽Y~tl2 W*TXQj*zl}t-f:nVMoPX"*Z_n[7*JSkU{uFs'Ldjig&kh֎ wA3tݽJnKn9筼6[o/[x ]V wAeDH~3 }Mg⺈w;k}b21%:woQPK"F\H1^g pHUcf Uovey1-غ aWڠxCL|JRzV>= ;JHA[;`ك;֣'-A!W^ aehīO1]eV O \ =V' }]^Qc(%OOznu<ĜQ؋TIʪ+eA%8d$ d>#gشgAnK}W;2(G5}3.}ysA4Ξ=pdZaQe͆փ$NLjJ)?ɅLo/IKcR!q1hHSEzsu3Mp[HR9"Wq;ED-ˉA0Qkrl(RDRT2;]b׷}7C輀썩$ s4|ɏE]Txp8TQ*}XWױZs۫ozMZǛst!G{~V7N]j[vjxa{L뽱dKc݉Z]`a2&+Wk Mv^a&nhkS/S#7R-nKv՝fŧϴLBCr=m8p cM7=۩ej H 6y'{H@$_MWӦ{_^gf2  B*|Xv-@!G9L5fI";1uCD(T>'p}ua$cc }bu~땺W"tFB@ ]ӶVc+U?0|7$:NW6U 0Oτ: T|w^)3)2ʿLXUܞ~c]'JP2^Yn9g%:N_1P8-vЍ'~{"瘲dzr~a7kTU(jߎyw\t}ƠD񪉸abR3|g$#A^!M{/pU#_§Em? 0i HGam4pqh@!#Eb. .lXp(#\u8"*57ҕ:S):e%eOÆfpgq| gy%CHNmݺm^˭Ƽ]IߕXx0J*_s~.%#]VBoKd-OSmf=mu\> :b( Xs'Jcr-t#wN%TAx @"t-'3<0zCVm*O_> 3Y%rqC{nf \a /E #!8&ѩE(g{`^ay 0"0ۯE&ymC#@;ܝ`(F[.gEq`Sn\^A=.#x腾*/\{9ؾ %:;vv_=}~ZA\7x- ؈#u))I*hof1ZOe43R"=)g*̱$D'Džs3c11զЂ$`LV@L$ 芋R? 9:X<O@WrqAcZդa,̮17yBt1f gtǵ'&"e mڮ 2y ]E&͊bc:xjt:F!3.\:8nty}\y?Z~*gG:{2 HBHU,-0I6v!rQ\WW0qaXx-ؕF(ngm( 9FbGzG YЬ /uV_l!Iar#?Ol\7"2 xϝdwP"/B`pϷ(-jК)j(rgydLlJ^l% ie9,b EU]#'s @{ܜ辧Mv%Rq A>tZ Zjj7?ݨMy+mI\3z'F`rACDiV-!vy}]!h^ UI!Qʉ`Nf?_ E'B_wZzl-ZB _O#R7|pX5J)(P~$hlOq֗߉UI};uA*8qp)/ sna5;]<7@ "{RL+.HlQn5q-&\<2htԹ2z.Ab·uTA??eSC[@0C6T3n&, bTU_!|Jy(9ExףV6e 4'>qR̭n$𨪼S4?ή0LzLQb]{& }qe&U2 ,N2J!F 7؎zotwq1hu{*nղ|Tk Z {hۜխ#4! 42>9N}p$X-o`kkc@&Ds6j,z}tƟ"*BflUbQktw3|$͹GŪ@U#dƀ6oZ9CPQΏG:j% (0knb>f7`*%FXō("یGJ84P~ e9Ϛf*NMW(s &Q ;H膿 *כ>p*,}KUhHJ{寜BZ=p"꫚(0#%)XI|C%[ݖ@45QJR$AU%>"|{e-A; <]brYZpl0C#bѨ cH-'{ -A e%WN" ih5ј*=(VA8;x_jD]|K~= H"ܞqV_Q6O0!ve~Rmܪ}:;3$qJ;*MR*N±):O'ah9 Zsپ|.nЬ#]Y=J{V_DeQ|x\/sr$7]5NFp(mLB7S.4f`=F|D, *l>ELa rC 1",/hR;Mr B4*Y9r)`ߍ!fD@MvHw>X=:rϿKܻ}&Ր;[&~Fiz)v$5BQac!788\.\kV*tXҷp,qX79bVziO('UU Bڎ ,keX*ck4 3ǫE6-3I"#~ϕ&y"`6(eGP{:kiEc [PP,=cVCM=jph6izoOxSvAb7`KidTi[EԛUSx^~Pk*<g>tT͗*υ "`ew9i-(pL~w5JY)l͟-Pe]R,ŝ%FL&F4=' qD?q )3q뽽ob5y%+ Ҳw_ᶟTl/nH9/@JD|#HCp-b3oDǗN3l$̾.yFH:D£Dv"]O@?OSyqd^D?E$d0P?|||Ղނ@7$" WPHԠ=_>qĦ6! _ˋ&s7'VD9!Kf+>U.Ө I.<ՙ@"g}#HkhmA,r3ϛUUUi>ěGgrz鼥 #,dx{kHn*xȧ1zWI=C0{_wmsHs2ء#Β-cwF5K/eI<*~߁_q*.),+w |(-b{2Q%xLaA,;reJ-JusȫxK8RdWS퍙} ^ `ŰFK$s,%ǔ"C%S;5 `AGE"q\UXx=6~^g9o_sd XW Tߴ:gسFlp9ҕyO}4 s~L;Nn Q-zquk#esmFҊ͔?U7drў"kwc)%;Ñw{=LnjҖIxL {޳lیUv`GH$5wtN$ J8f> Tԉ̿sb~^v7V߱Qb}+H1PǤYb1<:,4^4/#o@ъu524Qx13bˉN&%5%=Q$f5d" {^ lBc8I)ni+Hf= ZLtjl֪ĕ;Q P|LȰP~a90y3M8e U>F@?OYxm$G#̲F;i_3@8@HOeC%Pɕv]Y[}`5(qz;^yWmY1`ڨeO9;za0{VS͞V% WkC aBMݼ-VWҋClUZIY$(M IAbrm휹V1l_aAjKC]P \zb=& <&T WōG*nG]("50]QL%W䲋us 8 X #mdǢxgt%WR +t4 0:JV!sjZ,Tv> "[`X 2.6u0V~)ظdp.nRn"X%\A"8]e|X -~O'78vIQkN\G,^wbnQd" ER>-d 8҅AzyXnkfP3AP('NalҮ%Bj_5 F/"I;!(-'U # 懏rΑ8 ?5X:\tL} "o,CVo=Ymc4-r ƕx\oN;.H R@\/ |sN[fv)GF=9G׏~4KMpv]?m?B <SQonW/ʮy. 'Vv"3R0” g/1| ,MK<.j5_(7;=ANʯ`„q2Tu&"RMX1 >rY[P~rnsF'gB]! $i*21Hy .oJyܕ|}vhvax;yY4Ĥ tx #ݟu3籍Z_FgI}] BTllC1 KK߅@HTY>ٴ̺{n#IKɡ(AMդcqɾ)D]Owfen;E~clp 5 G}V7_%%,x%Op}zP+)5`7·9{5Q H2p!Qh߭1N9>^cDL>ezgIrNpՇ;p،V ̬Y}`C|vuES`qc:~X I7Յ79QH:ס\B/i/V&>DuɬLujŒiMwcEJ7=~A=q'QP*G-_ {5Iz]O+N>ӋKN3 %~0qzPieA G>3/3y]M' ˓pEd8щHT5N~ Av7 Z i '6yTt'T f2=4ynS׶61nwGu%m.\SHP K7Zkږ? EpW @x@W#3? d(bAg^r> (6ohpp.@=Sw>h@-Zw* G-:Ƚf3E^@:=ٹCt %A[vr1b wb /Ζj-p |=,aT\.qXĉ.s>mqN;z)k+㊸aT?/۾3tSl3VES46o<`Z*=Acppw=hWciJc8]֨}EM-ȋD詝%فoW-zm"<$7Ԑ @`"Li -3qVnn_DFc )QƲ3$ji@@IP['RފvtBJ.)U1diGRԛIךl[78uw%ϲjK2 pysv@$G™26dpMH*7Ҿ-de QL2;zxTsMv5tVE# KFmAI+hwN/0@M<'-cXH;@҄7J  9ʗG/{*[ӪR@A j(5,!R0H9]c5٪9"$;}O(:a"N)F;.YږKȟ94}NEb錖1 sOվVsУ=4g܆l"`E$1D1}tĔ*MÐr"&vޛq:v{$ ʓт!]c򙬷᭱ݍCs>嫦ByeDli>-eTa;F;far2лcS(ceX~ubO}tr\JE]Æ\KFiK-?R;Jk\fkyWsHFʧrg,3l0B}$(\ޒؿE4 Mg[7aҵ¹/IɁ1iWK fQ7"oF !B)u4f[nۃYK2@(ÿ!+7gn=VZ :kM9쭿bpbiR5Wܓ5-4gʿ"Y $3l ~Ja`m +^%+"G~G=e}QAR&2$Td+3mB&223 ojvς /});;aŧwKaD\mMU|.hըݾ,ߥ4~[_P)+ӻ ed 6.HY sj^?FuC"i?A/;&ăd&L|Nmm3\! J5{ KK6V3Y?sު{hRkG_A V0iC/mCZDA3CČALx"tj\[eJSX мƇӏ$+WU+=׳됰6%;U'R⍜ 4dmj#$i.}ʦz*6̋cA u=ZuNw9?ȣfWW!&NLOlh5FUn9c I'Q W^o!#n@c?%/4}ӈQ6]ݠm&M)Kokq ~#$DfR;ҩ]_ҪۿV]zv@=ǹ19{9fZ"qxlV% 6& dG3@bLzD vÊBmĚL8qՅzΦggh4O͗ [.*(KϢ̃$l~%n"15ܨBKsb_+g-}m\:$m[f݉'Rz&]hDF5T|s<~™`$(ܔ)3ix4 RBPl^ <D uMKEٌ9* U2Ē5KM`0 HlpR((pujh+v9FwGkz%s%}?}A$w^!:3Zj\@{Ed*UKl`vHf4$ PҚ#>a4+ Bd1rqA9_^qZn,њ~\*1oNHg3u <4_0*gL5NpH86]|Aou}Ai2GE"_a?NW֨ dMLxVO'(G5Skz㽷Y3}l8~x1e.v%z:c^|;PZܧdΜF #۵"~VGحnAŌ&9cm 5P&eHxʨ>-%Ps_ɒ5S)p3%A_zꌰ_ UIl7]@5~D p 9$R`7CVDnSC^=ܧ?bk&uY7 3,.cwHCq<`iq,* ['^P @o fx%r˧gmU8 0((˸R\c$ Gp3_p˧ (B`>ч |Ug{Hv$Y j =&M|ˮ5J8]eh1\}hN Zu_v|wغ)4 |8Z0Rʪ 5\B;U7_fi !R܋~=)[Qde]g v$ߨJ-ݖEjiZq2)0;N0z1R*GI{['gM0皈$ 3 Jb_[@XCw]L'Ӂ['qSpL..IS !U]h9 ^^EE<2XRdljog< VE#SQ x{{w5`(,:x,ْ}^᳢/xk 86y00B6ZVb@p$gƅ\x;~(o[_'a,S-w_$Gi)aԟ ~L(O~Jzc}]~ґ»{cE-Yч8~8hmVЋ>5KNs K讁sRnpR4Ò;zkxРjP *L ڇ4\a].܅TW$/ &1ųf GRil4X$0@kN͇ +{咀1j5~ nTmkr!#<`*O#e]IX^\ch ' 7~x$W7>DpHz0զoc@?1NtJMS_\Fd[Ӛ>,䄤=^,]ƹb"F݁_{3ưJf-ceU܄ϯ냚 d\ "ՏT*$ !JAb+%(Jh1 3}L{4P\/D~+I{ubA-FQ >%)q6 0kp(;@PP_;2sb*ˊ_.|.#]<KIVthK+q)OF |?qIFpܖA0:_PCXX\̹4IrOlefB<2YR,cVp9ώn1^|.o>K&Rf}bF]ЛVΜVbֻD$M&)0)l`("̣c H O{'dA&ΊA?W`d gCm)5NƁ r<@Bl4dW+[gBtiּ;LF(TEpl \,jm$ uM/~[6w],}WiB2[#Ni'ȶ[?%FJ`I"Bl,j۝W(cx;V*TRЏ@9[+M10jJ}'fDPP@Y75B6 rbQ1EOQ0N_9h6k,=ƚY^hlCC  7 ?:7$xa] ֺm|O*&ȪľC}_;ɧJZ0D@)m_3Z9F007YA"dZθi| lN0\lsL8= S]s&"AHT\Eq2D 1!菨 fA6& YrOx;AH/=f_GV_00x_C&uò)GgNjyy-{5 2.SPJqݶR8zwu7r|T+Kz6nAYt*QՊU?:>GsO,\1TeyhRSsQf k? nQm%\5lk~U};lSQ69wםqZd>u-vr+ oP$FM]ySA&Ŝ Y؈ ZʭDcb1;KJ2C!࡟p_Lv^)pIN:|hݝ)1z. endstream endobj 423 0 obj << /Type /ObjStm /N 100 /First 943 /Length 4827 /Filter /FlateDecode >> stream x\Ys8~cwMEľJMlv6vʃb36o˒[3I9$HN}* A@FBFB@ߦP1F8)Iע߲4f.}_DkWHQԑ iiё:ƈBB:0[H+b=M :Lrhkc*DBPW(0v -AcE! K;jqˀnb[qU`bP83tۋhYN*T# ނ qL xUDJSDG3IChGIJX/(!>TVY[!KI0& I IN" 塋H+T$:Mz$KBQyg3쎒BC+uPP]Y 3$i]. 1K$URE/#-c 58J` MIw@#ql9^tp7DEDގ<'iL )FϱQ`1L^-yj'tBx<&Y5 Cϫ7V|4$I}"41epD>r-WxN7Wc-?Oʃr.OAO fQ޿ݳi='|~N,/k|ޫoʿA};Qw7ɀzBr'H&w&ѽ>ʹ^@ 5C1 [{P|Db|)za{dÛjzMV9Z׸d. [^rI##?/9wvDweV$~3rI݋H䏎QZy,퓢|<:i#s9]B^D͍=7yٓAo6J^$mo6dIG wT4az>u2> 򣶶G3TMprKQ `{5'- SyƭLj{{cHlP`z{H]!OA/^GFJeOwLF+Qd "6`J2'dj6F $JdZ2L+85$Ci#\X6@ČFE2_^@^GɂV0e&J"@~!BiLO N 9PiLQmFTz xҗIZÃ4D橘 _4jZ1(:3cH3p#mz. )&OiwcY\*6 !DWS.iwjOk9d$f 2߶]DX۲JömK( _>2RK ,5[?,A-T4sL_-/%%O qlcLmC%^ ^j3u]K`JBQE1`W7id٧e.tZ}=̧s{"u9V q]GnӜ,-am0pG Hp d`Rc8[Y"R "QH,]DXD*d+xژxrRwEېaUP?kHpCG@F.gt˷M HjZ3 D=`_ʆ\:h0bhZ$YSͩ؇Hڡ jȗR"r-755lHHN%鿔AZpaͩ#qoO^ZJQ 5Ԧ0>r3 0b"Z8KU6@dpɋaJ`i3@n繎ftBn紤8Q.Wh,<2H390G ļf.jqnwR?@Ш甝wۤ[|@Y=:÷iL^\7KSny暂'UM3Uś6L|DfqqY*dX)BrG R ) 6:]Lu?JJE\,!9SJQXSdv&}"J-Rc(Jli4(61.<ϩ URkcD0YU[{Tv\";9HY1p.a6Gba^r!cQ͙CR*l*0AQvۑwv2OGx˝w& S!杻⃕SaKtS2Cd4g@>Qڙl(s&D@)f8ZJSI $ V !u#42%v>dy>A)m [Ut r7.9{KYU"}BNFs2X-ш6DNԼn>77t=Y{IB[xO<&gz:/Wx?{'/&I3={ G:J3$٪5Ր-Nt5qlI'3켞\4#>޼>}xzVʶ"L_ mū"D:`/ti<%o(/UZ'>ɤnu}Y5 k7M-2+E}6I(; Ϟ>I -g)f\)E˺D0Ud:^gF̌XQ[Lx2G#i/)SylmTSβ,$8/j\MIy>ٓIM՟7%ey*8_n&M5H*u+:vo~oLZ?W?H*(xٳ`gYJkI旭jnILmVɳӵ 8BĠkp+e[\ιUJu"Ry{䬮GGAp̙G6p8(ύp+_Wh\saD˷۪LSc#fJD>/R/ bM:$|/P)6MjƓ-wG,IQoCQ/ukEs=6;[׽{/^0;K-կPuUI+8*>~l^Iy5 r!Š#*Rq TA"ceU,>=>yx}$6)[Sx" mQZ%;+|X9#͘QlWKU᫤t~Cϭ+ݮUVqq9pJC]Md̮;(XwJ`[J U^ /_y~xES ^}ImVDó9M%/ :6E,Ohd<{Iſ_:~mߔ p-/>^N] },-jމ/u pK&-0r{q]^5ч=`j}爨}keG9_2`aw9}b_Вo wֿ;tksqA܊;q_2:ҺjL_2VMsw6 Vrki{Pu9CX:ٵBjڝ}wE;]f$gf.KGLݤ Ŝya/oMr5إi u3bnnZu`xG3TR{Nt[tD|N8RY(p(pGNo*-CWT "0 qww>fa||;HzR2uoy,+̇K3 )o 2>vȰˠ:m#ەveDeFPj٫`&i"zRYpTOFeHCiL2㾳tPS7 +)yRn&_,q3F3ճWѱܺ:gxoc,%nBJfbVXKejXi V/+;, %i-(k^Wmr!x<ɂV 8PmcVHl;Y[,4 m[   6P-m,7ux endstream endobj 530 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.14)/Keywords() /CreationDate (D:20130920191552-04'00') /ModDate (D:20130920191552-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) kpathsea version 6.1.1) >> endobj 503 0 obj << /Type /ObjStm /N 51 /First 416 /Length 1582 /Filter /FlateDecode >> stream xڭYۊG}W/` M 8vLHb`W2ڐ}[=־hTSkfdXd4Фd$o5.9MDC, oM !֛l,K5 D m8val36 va*hEdЂ "9:X! bl /`\ wl̓q9\#A4.;0nCwc͖Bp"8DLHXH#lQT oէf`;i'n[Z9~0so^@ jqfWpuViFT0/s7|NuȔ)T!겂 TPu6Xe ldQz* ?Fw&FD 3C„B~0'6< aEխY B(S0,Ks@ TSalk/p!nC /mx!><3:Lޥfɳ1ϮVDn͂`lGg\! sg¥1T&lwľcR7 @i~}lQeZI~\!-g&:/B#znpo|idُ`s@xLx [gFݟV)kXlG)K8i=|VfYÕPΔ]n[IuFikMb]2P]ԙ[mz/zaڒL')eRO)'(SJVvQ\7keJzZR+ズ\DN|aI厅r"tܳH]-sW˴'*_зݟ(݋ӛE+JZZ9"urHlL'_R@Iƕ,aT˽}G0v?pUgQSO-aewKӯ㏻g?|ear>0Ѽiz9><zK+XG1!\M]9 ] /Length 1322 /Filter /FlateDecode >> stream x%KlVE+-BR-ҖˣGy6 C1숑DMLDWN 7ĸ085D1!F@4qW#F̽w9gn!7YheX%P-Ū*pkEܹԡU-]5aeSRV bi+_Ͱ˔l9XKkhV4ZVl Xv!ifݫ<@oߍlt'2"+}rٚ *mӛrP~Xc`LsQM>hYe_+mQf[[Usր*sT9 F)gTy|ĥ .q)KRĥ ~I * ~? * ~5 *>U<az endstream endobj startxref 358437 %%EOF Zelig/inst/doc/parse.formula.pdf0000644000176000001440000023020212061700507016344 0ustar ripleyusers%PDF-1.4 % 3 0 obj << /Length 822 /Filter /FlateDecode >> stream xڭVM01W$V 8,ln#5IogcͶړ'x"aHXθ̢\dLY͗6IeW (ǺkTq>1,E+qߖP16M@fD|*-˭`G.rHW-F,UL뜠;t&E| ݣBL Z2 bI*mD<x[1af%o`1YܭhN9T,1 uWT\qW~H%fhg?lqxl :@ n[KRH&qQYJÒ4<~Zu{Vtx_kJBPݸ1V emtt+W ! EK_&Za-eۛyꓞxFZ:mZC3/Z)<7K h}?S,UW$MU8 P_1xZ>v.~Vx H7P%:ĥŶ!m 8&QAa,iSla@299j}њʑޟTF uIn0,g|/fOZ^LXg^:Qkpz2xɸ@otzSZGs! Iw6@{Z&0.SsRh OL$f%n'e(ia_2fzO5;931I9SƗ T7L' endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 1 0 obj << /Font << /F15 4 0 R /F16 5 0 R /F17 6 0 R /F27 7 0 R /F8 8 0 R /F14 9 0 R /F28 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 14 0 obj << /Length 417 /Filter /FlateDecode >> stream xڅQ +(AI+Ҥq(Yg^K>3+t̼ǛOIwL5nfÉ̴uˆ9|}xR斩{$ťiIu+W]oQ켌>ٕٲ^F;M%-ۋa YTy5x垊pXPcxrAoJ莯`'E܇,k}C/!F/iףvm] #Ro7O)?Lnmf<r$kT,-R&າ+ob>aFN{Wq3g/H%3.\|IOxl5l~=Fo7^Bo\wc(-h g yM>da6-em8×7ֿ endstream endobj 13 0 obj << /Type /Page /Contents 14 0 R /Resources 12 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 12 0 obj << /Font << /F27 7 0 R /F16 5 0 R /F8 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 15 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 16 0 obj [500] endobj 17 0 obj [555.6 555.6 833.3 833.3 277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 277.8 277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8] endobj 18 0 obj [562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7 593.7] endobj 19 0 obj [272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2] endobj 20 0 obj [514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6] endobj 21 0 obj [499.3 499.3 748.9 748.9 249.6 275.8 458.6 458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1] endobj 22 0 obj << /Length1 1724 /Length2 9434 /Length3 0 /Length 10527 /Filter /FlateDecode >> stream xڍT. " -!=C)])ݍt4rq}ZYkf7>FZ mN)+DsdT y /ăȨusGqqa"qe`GCU8 p p @H?p,jP(aW F 1X,Y‚!.PK0 v8>f;P`uss===\p V'qx@)qa0tl*n`Q\]aVcv @ XO_psq/߁?pG'0 XC uy.7/7f {`G?J4Gst:rB~sf9 ss],bwo_õ=aAPoVN@](ͣ g;%o#?_'j yu{@n.?+apsn OG1O8~L7 s_h((Eo4 ps AwWu"*¬?I]%yW:cT4˘k9GJIƆ;{q9=@w[kw3\ǵ̐ tWz7YdRxt5|D.ؙkItdb}t,Hws*vv')~N`=Y>f=OtlK䀽ۡODj[ I݈Eo',X;^Pe<ЙDⶥE1?@(zl7ZUO-k2DrTl9֓g-ER#T\Rm=v^ѻ媈Zb0Crd3ysyѕxTk=*iK'^zVŭ,sg'wGrNu)q ,TR萩5He%cmЧK4\ 7zqWorx]_KEoXm{2䩃kOjFU)fgw|ڳ>saw*Kj5wyVqwے!h"?ҦfYo>lcyw/7_xli<Fm_z7EdZJA%-_P,J`1_lZ 3\"kw(*aDqh#ڑm57]ubv2e[LB-SenUyT9'VaZE/UsHZka3 U~hJ.+$SSP۩| OtؕHo쟑aIp4-BԕT$Y!,}b6=u{ctf<&aDܘІ!n< #DV|*@+E»Bq[n3pTa+yUR6~7'X2(rJqeMxƋ&wKlͳ"/)8%(/UZo e.n.ʣ۬R?~lh91:Vbsq4OPy|I ؂4O׷~`O+'H#o{\]&3B 4X՝ ^h2ȬztӐ"xik*`[xsEt@5sd$KԿDo *)"o7$:&BOۛwӛи2e@yWTL[9=9V $[>WB+?ir{j6̩nӂjn=c 7j0(A3>98*9ٴoq.# z&Dup1<CM Sw-Kl*cGwf_e% c`'.v f)w`"]~ "==*ÜK67wi;I!0=P<ŵ/SmmF!2W1pԲ !1[XLs";c~$%"D;ߴ L)a-BL`+_$a'I5}Yeۭ$ˆNKIPNs*o^_;! t)h|)6 {:de$QYTVR`Q׍⬇,Vh F4YQ8i 6^l!|{yezXq>$npfs}>D;.z:ڤ8=&U71#%Xr E jmby \U]UdΩY"JE&L|z!ɋ߽%CL{%z~s8iؽ$"UnBʸb}sEuL2XH~%''$Xɕ_I*ݸH+ӑl2Qy=./wNOO?rVyat\MԪ|:3Mow8Wtc$M K2)ʊoX֦B|Z\]BK zQmJsW: F[8%.LD9QX ǞxUc俧:P$)֓HLHxK #"ǿH3 n;P˃,d٫| oY|wDV0R~pB-ȓF,$jFm\~5g hגdRq݊5?F]~0֟dF3-~.͖55vqC "EayI7JPKX cIK!͔cFcy }*̮@# F/d#Y0;|YoMdjq[W)ѰN23ԁxÄ;g%4Pż lt6ҏ&;ɬ4lDD7>d=Yǭ eĠʋvVSF'J9F:@.0 4ݧ9lT&S l֭rtH8ǖxfuڶivV8ܟ]^R}>;k)ïS7¥Km_}TE[F>0Kuݔ#H Yvqlx9}nNoסRkx\㷨y;:t_g)ci[h5m%/ޔvYR5 PRNLO*"I! FQ g`+X0}C Ad0ߡER-֖0r#o{pxH L ާu֠v~cGUAiaCK,[vc3OM#v(y-17a_Tar֊XZ TUO+_T ]?d*EP-H&Duü ui+1^rhhUk}y+LH(En= A͔]M(<S1ފDWRBNn6jt_\MM]=fꅡopl* W()֡ s!z}Ϙ ۿ- bsWYl_7'2/Zfx%"`rEy xSnލtΙ'D TC'"зlsy3II#Ыah ZXFH*#{<7R:D\bl'+<6,씸\1yF=os,'GU(f}Y0Pq5u'ȣh\Qd!6*jPFfeCb)ev03D>ejsHRB#WdF<%ͣ[۾fuQnr"WTLrc-/dz>=LBszne`m>Y$o$jd]`5wMuPiUFi^ACx/Þ7P4u31/yonҩEMJ$Jv }Ϲ7j2SjQٍgSd6hCLc;w~Ԙ.^#(Tj9eftK\6 ;CIwCVG q-r~5aa}6l{(84譼X]<9l!ү/jī(_B|ә*bD{?(k_$ad-WY+@ o|z3?19 6]^&/G.mr=5cB'FHd: {nma%s'>8㐗EmVSg]ؔêr^!9#i"灂F9Xxш{VmJRŷ JcL8 uRM"9d= p?JyUh& [mTe4|hPqջѾw04-t"\HhLK :T(Ԅ\υ6z.O3.¥CTiFLe woMKI CYapoE/H]U}_ "_Џ0쪶5 $\mN{*X\P 2R+:%pmœzUe_~WF(#D5CVV(?t!KࣃaK%+-S$r#UCYN{Zxޅz?u P[kv;&&!0V;a7ZI[\H;tkJюuV7{2Z'yYթx0cBSYMo#]S"ⲪX895 #|Jl@:y CdyרᶝtTOʱtXylRi6D8/dg⨒t_^0<E=x`qC%}s %\AIμ-]ޯʭG^bӋNMl-6!T}L{x`%OAkͳav4Ds/ E('M7?R̐كzD[_w8j*jp}"rq^Xivbb,i*S^g%&+!['~W^U&zj]*޷u ŐbeJ̭65pmD+?„!N3U;5Gr$?zlfRΌF Za}@GQ6LtMSmq9#vļ;JYT&î5j1s\t83ip=\X!cw+5(q>?(шd~T($'ɿNl[VKy[;"zUGMwz[ɩcu+wA:1yI-w&tR%a&['k%jew?[.Clf1-Τ[\=ˌV,:ʩuBʻ<]?pxpͺkjJ&_P{ ԼOi4XHywN)-GFC4;|N_LV$\|F*4dI_ϧH(G0UD+a`YlYMQ#Z)G!`iVZxf7\a ߒ bԭN/_8}n»MaSs)ٰZBx9 -_3/Zb-4`n&s![3ӃE87B8$4i4}֘a?;zS7Ǔx;T X1aGgqYϵS>"0ڽR1LZƥX&r'RJ"vK./VS̈\gٷP *s:S՟[n>)sN@^fQ"1شĦXx{?uYҾҽXxV`2@7riKg*&|oO8L^vrJĴf2Q1(&fhd&+q?h&o_<,W &"ۉ$; FzȘ7NOT1y_7r|AN rDUk}T Yĸ*;{:W_K^`b~HܽQϜpW%"߈^Ц'SSRx댒v-yI> Է7I,EfRXAz%j 6!rj 0vŲ*:|_O9K2WSHk9A]>j_\\S+ \!E~yU&[־muM׸?Cs[ Cb qVRDհ>yU>EvU6ث<亹\KfV25^F,N ]F[XT-ҝCrhblQ*~sJA).,i ] " pEI!u>9*`;#/dVN{* 9"ubG/J{OQ[_IVݔmMzB{3}J&ķy Ko=}ڥ3Q_8SG5R;^*R:bʩzYԻŐrMP9"UJٖBͅBCWL!.= ߹є҂,dȭ{}f܁ ݫ.p0`a-&K;R _Gl`_@WW u||جm钪N̋S75 {^t8\Gv35uPGqҞ4 * HyNJyCo F sH;R?TrD[c"{&B^sv_]˨k;ɼ d* F?d> r7 #˕E!.eHܽР )XTM2t$Ǽ= 9$C/I1WIs*v? zhq+ijf=g{h8_[~:7YYV 2DntRn!cힵJ%Y`\dT)%IX h~׷F_&y տh/|%̊omEҴ0rb,s%je(vTDv(2#mAx}C?l4,Z2 Bm^ AQ7/ "̉&:u%pvX8\R(!_$ciE22u_ˡhrqi/ xJc<;XR ׷+6_eq(P֞8 3}: LxYJ8Rt:x4/^㻏rY,#-o{D9Zl\o^e^+=zxS&wX0j.@H!E#+ rkj)>?]FtȺ/Z|"옌ەHH]~W O:ءm+X# =x`i VsF9w-wƥXnyuD#@-6:=`gzi#XO%Q Xdk{3e::_AOLih.|v,&ơ0S_|a*'ϠPO;V ubG2<1u)pQ{yq..BSO endstream endobj 23 0 obj << /Type /FontDescriptor /FontName /YLRLGJ+CMBX12 /Flags 4 /FontBBox [-53 -251 1139 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 109 /XHeight 444 /CharSet (/F/I/T/a/c/d/e/f/four/i/l/m/n/o/one/p/r/s/t/three/two/u/y) /FontFile 22 0 R >> endobj 24 0 obj << /Length1 1918 /Length2 14737 /Length3 0 /Length 15907 /Filter /FlateDecode >> stream xڍvtnl۩ض:1+;ضձ:VǶI̜sfߵ]Vl?DIA(ao Waa03123QPY%:9[@ h!3rȸX,,\Vff;Č,M{;3G?Mh,<<\mN&Fvy# GF#%BP[8213:3;[XT@'7)#[_(jU\܍ HP(:2ˀXY_`fi(J1xL04q7r3120r#298Y:83:[A0]3ڹ8QL$L],]b2-38x@GĂj?,?z;;>H}-̀?pFn@+Fp,,SK1b_,=:`'2eRQVt""ovf+3!x0i)U2Wq(mgfG_cAwY}]ff/6D,HO56(|rOSM_,4tZi3O-%,=J.&пO#Pq`Cp&Y~37cX98FNNFpG8,j sLv..z3{'?N$/`b0IxLA& KG7o?#a=`2d0YLf??l&`j`qm!G~n7<Xu&}~ (o5~0e4=brpc>\?G}ㇷ?Gx?͚%m1@nyބ/ت>VߝaB`b_3{٩ :&˦ӝpH/ڮ8 IktX[rϋA~;dBX5WG@kV2HJWBj8e_gգtK(qH\ah.13\ߪ 9Ew4 Nw)l↙y=_6Q)ʙ.H.]ro*GTM%n@uTěYDˆp A] ptx B ĩ*sC}!!j+K[@n-Hn(`/ةΤ7˅IPgg'p|YAFLkmuue9f{NWLjr!Zx3!t<mk;`Wdw#0n˯=^9x`ǼIXq%/(\9͛s'qA8Nʆ+p6%˸&k[rT(\T[D2s)B*UyV#SZ!{Kd8>0+;HJah\v/3Fj'_ڏ6IN[8ЋX1ctS@6˄yK`ndͳډ{gAyhKFĊ¤P&#L.S԰Po<{GߏSCU?G0ݷ7Y6?]Dl$yY`Maʆ=9tl%Kq8T)Nfkk%Jy~ SQvHX(<5,x)RYLm1!-)IO 5k·VVٮS0/B>@%l&0etR(iӨ1cqf lgU{솧&k[ i'O  dӯMgyf,/c/o0F׉'P[yoM #rǔ"qIIDk,/8%9n[5%fSXA+!MSP&bMux>m/"%268ʐ|k dɆ'd6텫>iP31]BD[7VMn! {| 6J HCo)c<| ZQ1{˒b(/4y2 vgQdo;4&+ఐw@. W/ >(ab~ew>s, 3ry8W{KXh> ΓJ'ףug݅Eص< AxQ@u=RVxñ _ M#!۫r-tEڑ__;JD#1XkMl߾8&FiF>c1\vev;]&}wA50Mg^>̜uaMEcl(e`fy۸:EG凓RvՃEv4P$ӮEKJߥT쾔dZ!l.R4w\M5RuD1(v[eo*Mڎ⼤`rpbFo![# EJ;ӨA屝llJ<<{ K*?sF&8mZ@}w< (q7 v93CR)9ô]\dtV'Ƒ&:!/R mzѰVA(_a}A Hq mWpݗI`%`o1{P` *IN&rñ|r-K:[<ۄCၧ+Lu3YD9M2='I灖@^br=N '[jFc;H~}B#' rx9Kj 6V1#cګK CH|7 N(5 ?CIm"HVu3.k\ -aV8%ܜڭ v)+@2!%GBl`c7ec ~6$]*+q oY#kxdC!.";)뱱)Z AwBJG qjfQ6UeGDk5֋llXG|=@9Qq8Ǹ~Ǚ@)/QUn%>?"*8<[Lhp l#9 QpDyAC TCӷa!\:[c C0M3Y+#4̜~l,őIxM)s~*=z iLG9T΢\aӛ@^IKl~"@l[ +2D# ~}s!3|V_P󈘔UX>ʮ3dO+S 55y)+6|5d+WX= f]i!U)dwȎ37z`]rk*aOώ]Y:l /Ɠo _|63N~J%VR;OCT}klnoև[":Tz!6xl; ۑiqC[##_.G^ HVy%lR( ' 6ݨ!#M$"^AHs ٪┝ժ! aaMV~KRwb>xMё>|ʼn5aVYƮBUu+cG|C):}hK.́%UnbH*uP1PBq SV?$oeWPvH.7nK DS^8[?E=)vZp?l vb?`1̲Z.J MZ0dܾQ 2Q-xp%`#h.~=not0̀~h\f)~Fvaۊ۹bZRen,ܜǂtTO\pIUR}bO\L˦ke@^U 1S"h"u@ * Cy,=NQyH$\;!lA8&pOVlZ.}P0d_TCRnRpḴb"jQ+XEs$$Ɋ_pO#bȻ6p뷆̼OJ[gdQaAa#x3WԂD%_>ٻY8f$'C{pB)e:ilzնBu|9i zB9̛CW,B,ЭSP"T-$q}gbKs*ݬUB*w50}Ui;wWzpmq)QЛ{x-hH`W[nj.\Ӓ7mo~=A>T‚%P8uӂ>h<|/桕fŚm%^„9gS_qݓ4[. U, F^NS}aqwԊf 3q(U(N\.iTA>@'oA|*zDoYmGI0 Ux~ܸK /2k߱LNWp^}~tYLf:E`VwOWɸ^5L&ilf¥d(7m|%*hBwGU[}MD'!;hty6iBw#=}2UzZr@;T fDTn>SUWQ(%S (!Sx/KkD,;x,fRxp$UP?V1s֥))%Z{# #hqz"_wr@.Y)[v-vNk VMܧ A,,8%{yTջP2Q С\Sqh_Yh:]'Drr$W}( _&G6yJעكӂ@I$>*/'=fR sK4 yڻr׸&\nԤ>v4WNJYcj$UJW8x$x('&-8~q`>㶄yax7u$"x ,eer7'VYZGode2`ٴ'M,F r)BocfPXb}:4"fnh; mMײ%gk/,xBFJ!+ϻPĬ+ލ1mrO3L(Oj+39A> { =~n+x@l 9azBBrNpͿGLޟ%:O:7yd50+4qO6-8|tI9ofۇ=jF=L Q- ~ěsO{NJdfӘk%j~sZh.!M&1.yGڳwTÍ iaDr{`+J)*k/*qǐ;n WJpt ǁ琞tgIAM Ί*8}4gЦ`pׯ^!6ɬ,/V*iuԵE$DQ)[X@N?C&#/E3[d&SLLԷ}=?kJ&4PSO`j/}=9:^D.AϚDO!r Ct SBJN |>}'6 1ǩqOsgDw!  +f 1QY3ML =z3y:RQª`q/mA6H:3+GtT=U ŰEU^Zj"7däz +0v{3u(*bU4+ي;ck>8KcrpljÅLee 2`N NS$g7CLl'FLMٺzDyڿLr)Q.7~Xz{@j!OaDG|v+z"9+>؝1ɘ=0>cx@E.QG6_<.&^<\,5ǚ{أފɇvأbvN~ק7Lcj %ߤڣ䒯sص v;P`DI]I^~v!%5C}'PcPA^Up0Ө3NK"im1}80D2B:WlF*[2ĝ T tׇ@˹ZFmzkd( MMةgpK2{; lf/ 6e]ze^>IgcMc 9%A,SMb^Zic^ mwU>l1hty҆FկR`dXXST2meHe4ԭ_͸Q# QhJ8c~m"5 zR%OƾQ5tᵧS&u7| jlر\u+ڑB{]2 ,a=2zkNNfZ_ L81F!W@ =c X[(|AْCR0`uڄ~uWf\">mh]Ҭy:8"Bb= ).U8ͨ":D}ϑ"k&:Ufބt7om@:cewr'#y6$,ެwpHl"Ƴ$% *b;9f'1q7ә c AyLlo-#I:k(ɠ7',r҄fO7O:r^ܦf萒Eew;[`°S&$F=R*VRzf= ж`m{5 yEjq¢+*t %D /_o&~=J9e'/{ %V5Qّ }iLHՌ.b5:PxGYez^˂U{/"#] ]e [G`->U0c,pIe%0X/1,ԴǙR9b~%UgPYP V7YZR5[ {pﭑoZ_:WuA-4ۄeT ڭ_3J4h)m-;L :wi}0>"ŭS\ڪ|Hn+[p{^'?8(w{$`qRW]D滦(jq5Zz#; ;i!o$@0zaD~h9U˃<4ˁ-- QMR?Լ^L`)a=dU=$"nJKbTu1cԝ{y.Gf|D-Ϣ4tc\rFWu&%}OUJO$H=ԙ ͕RĶeg\i[ #0#B D83{,d o~ z~B&$F8l1{CL71&R6oõn\٭pxze>BaRLj%}Wn<,\th~ŭJ]- 0qa0TY|l%y;-]!t&*^S}9)^6Bg)_A^K#^+:^+Rz]/@@p+%EA^Y.ހ0+L51pUyHo#{,'7hU';03yh kԟ!K\ f0J)i-519+>SҠ00I&_g^W/ٷ:TK[1qKUYg)V)bdP$=Yjy}[ɸTNBs"eH4]?y[=A$@2<10,:37xUg]Rohn*r"5<6/C!Z|'hFRϋEq'A{h2FjV B6A01Z齿>S,C/[_P6-uf=NqtWQABx ]&W"2O8'"jHh?K-ޝe9͂>ߔQl6 -":?Psƒuwp^RT,5dϕz~uF!բxaaVFMs{igF 0RB{ֈ4mhZ:0h!iWmy=V^j* ô: >uW RH{җvxT!@ԟ*f AZYNSc 0Qscz~ʊ)V#&b-2{6ۢGRJt(2Lw[D5OG h]$\tX`n 5NAO"d|N8A@{i퀜*g%lH1=LkS1[! -(Y~YI]ė)d\)g ypĵD( cߡU hKG}ܥ,Kqtw0 o -J@ L]K"r Mf+t63%rH iiM}:0ߥ|w̥PIVDa|x\tǘhxѺ{bO>a܉'V?I'NKn=R | PTET+)CO-009P# DaMr;~wSr¾FrQXL~|iWQFɢql?eefX]Fo,i]j;҂6QEWNql4}!ӄa?ZA][黕~ n;}p" PTM+Q*%GEzHiҬ<Єi_k(pܶs(J oMzM ^ˇ1 fg)o0̋]&mwR6M4Qr1Uwaz{ qSYID15_VTAf[ʦG]nޜhq- ߩGd"G0g0q)~ds[+vO7sT\i YT5 ò38!l?O`DfC.@* Vf2ٿRefء [jc-8"%0jQ/:OVFl-0?dH_\:#y|+:do'0LGnJǹ5+@Y^?$CU-w[;h6qY`, G:.ެ#8!u4+r+'jx9( t 5L["IIELt%FqkyoChLk,Yպ2a ȤBmR%1݃1T Bx1'=jeea+?c]fp');frxhwYsC>3 J7*"Hђ* *"?GBxbY "&v6ptGݫ}[^޶>;&"67 /*Id+Ĝ7+_Lv =|WHF{  "tyJ6_ғIn+tq\q548ћ %`qOK?{XJ&Jf|q(R6uu b5ȩ}Dz rV! `?1a?16ƑJs.,SrJ'LD[9_TH(gVV70^R(5pƜ2._Č63[7)Mh銻ݝ|VCH*؎rtQ xx:$S{gr!3,obpQ̭te6b89eCS­c4;J1jz'zy >>QV-諣 CoxK*"e*HTv0j@;445TwEK&TbG8>|gl56r_%-`$+~/97 >ȵtx A/XGPX _a'?kؗNCqUsf@[Yѡj۸u#qNݝbb>j3͇JEDuN~*d%ȯjepiE,-ڐn"nC"RMuaƸh*ۅtVR22iMs׸H¡e4l,R)z%گʿIFCg숽?b5)_DT]-7Pu@%1d먹]ǣ 2?8=5_L}doXVNMShԠ`0N[eYVfa~tR!)|В/{<)Nٮ1NbzyyҐʪþdK}" :l mD>j<פ*gSDl120!e>W>ls{V x <ö*/sURr8D)C%B PoI|+*%*pU?X4;9~R nY U{[d[;b}4;PtܐF5GK+gebf+evf/ l"bBAہ0LCR%0kup Š> $OZe/rC+]9mIksP?w9B+XM5b!.QN M1[3<Fp endstream endobj 25 0 obj << /Type /FontDescriptor /FontName /UDLBQR+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/C/F/O/T/Z/a/b/c/comma/d/e/f/fi/g/h/hyphen/i/k/l/m/n/o/one/p/period/r/s/t/three/two/u/v/w/x/y) /FontFile 24 0 R >> endobj 26 0 obj << /Length1 1645 /Length2 9083 /Length3 0 /Length 10151 /Filter /FlateDecode >> stream xڍT-ww 8$k@ -x-Hp';3{]Ω:Z]]$osspdU<..^..Tzz-0^ 2>^@y*-- -(QlP(C@N`K+1 `2cp 9L D3[uLbVP'+3 AN G9wU;ПqN5-& l8=G8CAJj ȟw'C613s0! -&e@MlM\L&τ?nn<WyNf`wRbfo{x&&\xr?9e89 sy {G/*(Tm 8UAN348W?~gssg?ٞ[_NYSP+G?^qB]|Y9Iޚ9;:>??2C]7 j&seMef\ppDNb XsN^ޒcZyRښ]pr u~xt]? 9Ԯׯ^:6-0n]˖FBfw4v^=MGiG/3FLex{5su=3DNJ#`''-.:b +ܑIOde9ϒ5Ǒovܶ{L;[s#q&bNx|kvH|YknJ-Nlj'5[:~ N}N2AK(Њ JSǀVc9EflexYXo2EzhmPiLc*e,Kl}CC^ukRK4VuY-dQI- h1gTކli=IWU e("D5n:*Ll\ P~d ɿЭ|q򶀝KRS ]6 [-t^4?p}/HVDcyԀ'pb_٬IpD\F)nɵzG`!Qw!+h3V>SwJnMjX]e&\V}sbvHx\FrC-$ +XE]0jNcw)|᪓,xK̕;HKAcd6v&B_&0c:'GK*%c_V~bJjvV o,{M׭XH!O y?1r˙bx<,f‰n,(Tߴ"8502[Hw7O>tV-cOI [oדLr _:q 6>{ňk-:P>OOO97x \%xBxIP'i7 eK* <& y([H{$(O{8E&%FZٟ(o0'W ~C1=S  SEP8cjOR3T Œz}x\/hr5$tU൤{mG3/Bj^G%mqq%*;__x9@j=c?MR~ s 9b|#}:g:z`9\3H ]ɷjE8_K.B%D UQ.^bG3 RШz!C1JDLz.Iû°U+`p^$'MfM_|'@pLr8llâTY6K8n$WCZI"\0hX6(T:iWo6Qvt'6})Bī9 @d[nreDU җfg܏VNGcF'KH9DGoɏxSuwgWyU Ff:r| #aԨ*s!8B2,_R!RTr?^?I𕮖~5CL$nmh+]%z7Fzm@)qڧk=߲7uD.ay\Ap<?+;_E1|_'~C"vy{"Lu8.v-licY3(fL/X'4&IJ%3^!!NHlEd$T @ּRkm[Wzߪ6^4:T;TÓޚZRFyIird>@qNW\d61->R@`-BUW]0S_zu%-|<0g;db?cOuS.G=J[ \X F7eJRje!KY;^뾦w9aWSMV~d؍ztS|QSd3T8]RnL_i5^wl_0$E,;t醸0%}b/eu"T[5rV)pPb|jxgyzU',*[oFy9-%v:$c; Qӑ֙!ik= x/`5ܚKE Iàlk`R+"FCDY@Yr=\<b]GDuۖS7w;_Wx _EA5 sEJɷ\ݜq(?HN2AԚ^< Q?^+fFK@ Y5#!e\SYNf>kFqyɺ},FRJf ǔ:/ٚ8wrUgE}&!qU: %^|Oy^ @MWE#Km@Li^Ih v & ٸy k6]Bhxl%$Ww~㑤 ΙS#GQ~IRS, L90r৵8˔qϐwXi\3L_u;<2FtT,X zG̾W.dG]]+YvTc.t?C%e,sI)ۊ|VhLd>Bg;Fnd?je"idW8̄{Dz>2fdǣ~%; /t*)R8e8G6G} JY;K_5E9Y^IX ``k9H|/ :44&h.-th"4 |d%hh Ií uWޣ஬h|~{eW3z__{wӦG]a}=Wȋ jN=Q-4sav" u9ӬK J)џHݧ2ө(:|" cyXXf=義>y<*# ƻ<']fo\SZ(fJ* <>Ԙt7Uj8J^0{آDۛǖɢ#ۓV>#Bйj>/:>nQl>rzρdzEı+a'‰Bg7\=w6崱_'>!;} B{s0l/k/%tt(rA"%pä͜IM+Î%.us2ȩΔl6zЈc+>[f^ \: }ϡyنUS7ZS el^c7/iбl9Ե4V> u{0 u#,p6ź_H:XV=XmPyp).m913JqpC,3 ,|pfnLɀ;HD1afHm] J0տ,=1^DZcGy2BY+̜;7PK_ﴇ?>.Frߡʾfe5~<$zTlGP9gEqoU܇0: a !!9+FJOna2.!ߕ(0V+A 쇆 |G􍮻Ď[-[Wqd9utY~F>*!}8b]k%o1I ?j?‡_l'j ob;mmb=nj2n\} _TL&hQZk48)Z;:vPwO(l,)Tha7P O !6yhD&:m%>lBJck;3bDQ A%T[ ;h콛D.RX&>ݙ23sR;o>@%xȆ&|q?`fC\N'zJ Wg$i] [un#Iؠ.zw ۈ7V:u}~bˮݰ?:| Y.*4LXq?ZWlR;~L*n=U3,Ddw o5 +6QzUjm־I7ȷ-T!ހMQv2AA'zי!E9Lr ̾v*Yј{5Jp l#NFLE)EU@)oMh*i5g hkIAio0/:~ TLդQ;*r?ݝ8">1%V/[patQjQ?ECj/a+T<2 Q'Z^Tc#5㎢?'gߦǁm^D{d ?uP#%&v[ VRuvULs 7ΫjC<#'H;lm YX]DKMO~Pڂ^\" K x҆wy!#*M| m?:ַ=SF S4g dWƢM˫aDu[g#mz 9O@ט'շOsvwƿ)4Kq,YΛ G>f2߱δ3>OGIc nX)nag⌵ł.48`լS. f4ia("VJӇ~|J N;"Znɨܒ1 *IxyG+(2tA^P5Mzd-6֏}Tc6Ju{%Cs"7͗vwTi ?{5 #gXSz.9t˹4*5֯>́z\ڣ(Np=n|7 fP-[=HV;njd^kWw,Ko*w-jTK.[0v3aC͍-Nɍ$jNKҫ|@ǖM8obF*\E 3hnWHEih?XDȡ24^Di1cRnJ/ qɍk>%蠠gdq!i-nw1EEc$+1ʆ-d"3@j2ʎD· Vڞw#E??P28ڻ C]; }d҇"G0zOmovoNɃC':>p{4mqu/Z7_L׀ ƕE d% qQA# oMmus ̭F[fAdo|~W7QHI}Un юI+ _~T14};'#h^3+6W)zjjIgQ;d2Xi~mfDy endstream endobj 27 0 obj << /Type /FontDescriptor /FontName /PZTFNR+CMR12 /Flags 4 /FontBBox [-34 -251 988 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/M/N/O/a/b/comma/e/m/n/o/one/r/t/three/two/v/w/zero) /FontFile 26 0 R >> endobj 28 0 obj << /Length1 1547 /Length2 7949 /Length3 0 /Length 8958 /Filter /FlateDecode >> stream xڍTT.t(-!5tP)) 0ݝ]JKw7!HJ\[u֚s~{ -&5Huf` $58x@ ȉNKviF9:aPH:̜mRfΏq0(@x)+8@a)3W@ i%a`+ke038yY~! Gll _vM E=)?퓐X<@?7*oϽ)(ػh ?'T`RQ!h)Uݐo7omydǩP=CuAL2_tCn#IP;[!Nᱼ R95V |fnx8=oq4fk8y^<Ёxq<lPc DAvǣ&Av//CK/ο8:>ؖr/mjۮIXwƅiwtY]n0Q+/ē?`/oI3-Q{}oC kITo3טiE_D00Q] UKN-BNڷ.|jxWn}GCvԿTTĸ+bю6 ({=KDJʄ{5s~1;@ό`JS1 9$nW(&{lJ^/qnH:wPhȗKdcO6:Ԩ/!-uRXG6sxlNYɢ kg7St rJ|X\5 ;#{%q1ԦEeb#}VKZ*be7F(t='y;XY~z{~@=$RJo#ց?[pAW=WUF5~Jݖ9wTwX=[)c}.]׌lw!wO+5F2 ,wk{-A',ZQMWن,I^0XܐkÉ 1d &ҌNcε2_8J:g3Nob(1CwI[;9UbU]ٖ5p.tOc'f٬]4{OhfUѶwoTv+y>i"7GgEʬixH١k,aEVqp}ŚP̱Ӎƌ^iFF{>'{VtIfv.mayD=+=aނ!ŢwŔ[*оBxK/~wB2FUg$/q&Ɲ('pU\%?o0Z@|,&c#$j_Csl]HU5}o>iK5(7Q2YG5C*22 ']-|V3\qc0=vc'bPuN p ^Oy0_ 33=q>3{>E \˳G}u!v67{j(j<7,ozlkA$ nLeRMfO5T'%EU|0HE[ (o{aj [-0*z,:L-ixrEVm]Az3PY'=Bma>rͮ uQ$yf@hrgx|m z.Xep':Th埜PF*i/ Cg[? ð͌u_t/ӌaob[ÒD< J8, %Olĕ{ЪmqB+~"&QlBp'U;Ec2Fӓ}`ƭ?U:4_NnU~zu UׄNAfK^rm5D~]nNB谧rQd@Z{3^IR o]dli^gz(3t2iӶUc'Vg6Ne$Jqiuم.Vj܆IPΎHhyaIVXy/".Հ'JV95I׵B;g'D*OblREC8>?N/+/->9[~ 62p7ˍ*'h3ÙsDe>_L!.eZfYl.S麔A!FS9 AAC*; 5&* -4d鰢ބ+x:"@2rc'Jb@s_S_ PfB'h:sPLBe a곟FaH|Л:)wx3 3>keN? Os^NqD 0o̴K/aɞJwK((a/n|q8sF*$t3 )Ah>/V썫7lfLl8%C6D :?8{WVx&DKUԽN8 I^VV^C z;Bo DP sm%SoN#g@.sʄ!KT [جtZ<2B3<(|jHc7'X4H-.ԇ ތ|l;0E8f$I|PFKc1RDR@u-0*xbQUOxolh> 0jM5j?P#)fG5k2,z҉w ,Mu'N#?KP:GTs IҭJ\i⩆/^3`Pik::a"Q=x|?d}L$| y5Oc>;>E{*aTdI)'v09&wIсDksI򅹥?яB0B[ F{ <ΔF?O|Dž{Q͍3t2u V+tiǯ2֠w}Urt{2R )*pl]ih"Ɗhg}9B( ˠ*d=}"QW춢i|YX&hԚeCd~M#Z&^L[ fktdKך֭t;L* υ&[\ꌎ:ʃ| u>Kܒ~)%F|*@L5?V0qI:mB6ٸ6@>8Omv}3 GE!ٷ.On?};AX:sਉFu|hEظZk̡2@dd)WEږ̻ݰR`}n!͈|r+qT|M9eX7iNu$['H6rDƊw۶1A ب ] s_m&ZORdTܓ+[hHs-1/D\jqq"#jۛo-g5@~=?JIg@lqgQN)./M.`t̟3;r+2Yd* !j`nN[> V)oZk%Shhk>R$LA6+k8iɳSJl5} EQRSؤ5A2)XQN?,D $5S;߶R.[=% ]dDymMQb5,Ȼvr/H{L;x6p3ɼ`1☍e/*X[wH\~6& xTֳ̚A$8%)[? Zc162aF{$bEJg!de΋4|M)$2AzfE zY%ޞ:wp!]kp ۰UH"w紐{4 Zu6G,|CK3QpQfhKˍh8XWjԦ $&2IJj:l/-%ę #^&g| _ccruԅ5_oK&,UT9LMd׉z=;S`-{)&eyurZ$~)0S>KDe3譌kۨrUc/ʗޣ|Ԛ$w6pFG$ N Hx{ON!u Fae/0՝Xj|d qbR{4 }CC9ңrƢ(^i`NTZ$'>4jζ>@h+A{`bUnQwNgӊs".ה+OIVk[=CQ ?tOdTw;v-Γ{ ̸j6~?$l#xʟfUfMtji-.a0oWμ>iYژRx/2?XH_$`'32RGB4?oj$ yE} MwT6D˖%ӹ/e3*c<&Ӽ].A{"^EҨܧՀ)p)~5^, iȷOpN%2bL|oLhbWJ7~{^m:e d ;_U"Ƥs=zqiX(Q/!J&^;,GUF4sA 7A8iY~0 $軬6w֢$ ַY'Q.+E:Fk}XIB&bYOKD {uRt!u vW[ՔQiwNSD3H~P3VS4K U4D uSoiQzT-2%Y҄|U>pfQU`n pC}a !ƏC-׸bv̧Se1Coo4/qb}(ꬩ'Kt'S?pPlX0$-yut}uQ?fA _7s-)--88r~k<оv}s%mdV}H<)F#eRNPDTPG7s=ԍʶUh+U+v  v9ݯ̬I  Ws纾ռ~~\Fř|~>]) 6A5WuRIae}ASy:NG"I,>ho6b<$"AS週ȍ QR @$y# endstream endobj 29 0 obj << /Type /FontDescriptor /FontName /SRKXDN+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/S/a/c/e/f/fi/i/n/o/p/r/t) /FontFile 28 0 R >> endobj 30 0 obj << /Length1 1403 /Length2 6029 /Length3 0 /Length 6987 /Filter /FlateDecode >> stream xڍx4ֶ Zhчu{NDc0D{ !: G'JM=5k={_{p (!mHZ$(i PD&0пD&Pw ;ؔh P<@"H\ Re'-xD@QDJHWw#S[7Pp `@v`*Bp!}#*%$%vA "dy^0#{B(t.?8F0_C= ` p@aB<vPw:PC E Ht%!~!+C8ap(@WUKv`8 {ap-{`>a sEQ0/B`ڬSB@hѯ)ܡL}3{eCa*dy@5`0&h(PRLLG_|\~HW=4f|P@  B`gǘ1X1>(TL PSQ H H .. guoz`؟GF =  L&GƆ :HP\@!,{Gpo?_v} 0z@cfCCM 6^ 43# @P0o qKK!Q_L_>A1~g]ikE`wwF(U;oH4&G:X(@#1vxc0^u( !ABÜ^(0x l୬vF'E9g9jgM)ؽ37W11|Qwnrz>Ko]P`qI0&NqDfckb:s.#rPr(9%gMg@)ub?1ge_E?"naakhimn_Qfo؋J:*ytIPXJilt.86? ےD<to>~QY>b1.Dr99ڑ&]t(ZߋK \֞Bka/4?snLK ||(gv7]auZ/yҌ%qmPO! dpYG& &*bZYd5OB^TA~^[Cyɹq#Y#mLBsp)rRJ/L/= iI>^?@^~KMD[C!a+·6:\a'gZS=~o#IAB]CxtjdwL3_vpm{7\RI +D[-Z'=O,ΤmZ}j9pQᦨ M5.)B;S8$PmxC BѾh.@Sk9BqQ/ 8DU⇧ȇBfbo}]_n[1(hE[)=h(4O~Whru%n-rEK9R=͏D=IG5A߆$9?0aa2VI=*jI> gQyEmzɬgX_$DPRMi? Rpc.G}yahPeYAVY;8Ϫq+ԫwPFOJgu9!}r\?o"epc o*ItBYϋ5:$JCT&ȺEּdTZa륕*7eN4PJ+Wv$#%pMgkV8׳®Ϧ,Tu憜zHd 32Ө-Aч1n/N(h1ܬš[ rWËIlƥr'ur)3a➤2z TY|NաHZf}kG$2E' (>5ANF\tl_㇓~YYki;3P\J>k5/^[B%Rjn\t[74.91$}/!U,n9c%'pñX`;h4b5y|dI!OKhBpu %Ydm cV}[ 0d+NvaeM z%(CXX2Z'xP;>qVNi)7"5?(?1FzuE .O} ):p@}|j]) ج2Yg[|'?ES2Œu<{K >L4X껞v'2wK=Lտ9,LCOӠ*M<8HqKYV-)ɱqCX?զ }bjjx3rwSWUf@K#[a,!>.ع./jJ> 7!汫brԋ߷j~89n71Ii+ϹADi.F@x$wvmX6XDf'TkFKjYǴOu韝{W Ǭ8ȁ W{.amXd.ȩ{7[_k@ Oڏ:wA@B礱*w3"!,*d:G>GbMty/#xxH"OKa)5dEI"8tgX$s*8xĒjO&~1~i_<>>*[G,4qr%-B}S;f~seBЗB%*[tS.T3oԝZ̊ {D>7qFY-b U>$յZ[r灻(Bqb^2aL[@{Ȳ=Hud2'8Iɏ I3[ɻlكh;!حiTެEGaeW%RO?4 ~Z6J]$l~8fM/8r_:6GT_*[k)s|f /B S(`xηiꆌ9F@Be -tAjk ؑT/tc˃Hd|MZzdH>.Ef쇒*4N2DO,yݬ&9+V0Uwb֧=۫nXV^/Oka,Jzg=a1a_zMgEIKݞ6jўtz_3 zTFaSu$+RS"sE=+  A\.{YƟ%]Y;Kmp̔%+ydYq,b&Wn^y?HF;;sIQ._XtҎg"u;"rt a#n9hBix:ì{̚Q}zʷ(csR\S6~M}̀o׏<#rSI9HH ^͔m{*BUEK8'f-zB m)t\"(IXŢclsqayY5W/L%4d=K_,Jh!Q"䑲Yw迦O%Tku6b%,b]Z EJ6O]lGI;<'ҕskr;co$׎^t;(<"h["WH] iEt:Z=K&Ij}7śuР<ɚ{81%]Wv*wO{*j,rk,ו/NYL.i ~D"d>{mJ=s6O(oi<AG6V^8UDo|I!Ҋqǎ7M]3w^r#_= _w_Ub}#rȾc魖bw±\' LN }plHlプ:0B*\WtEo#̫zf9$^[ڕM=dV0Y ?4C!RL2 1Zt+%!.T ߳b, F<˃(v Z1SJ%^O!{ZN?㡏5+#;|ݺsj\b^GbfȻ5u#s,KL{,vƂTf"S"XflIL{iԼ|1 _{s"g,y ZtͰ3Pس Kc*u!{T#wbzAB/𾏢x9;|y4GX=#[lg\_YeE~h{۟[ML3%פR;s!LnPSO.K~xZU[^l:DxBFIC%2`Hjx^xYv56KߴYշ{?Z!NJs˕ssc {;2Sd՟=WE iƤ ]Z%u)r:Uzj턜7:83-nN|UNѓg\hԗ`;Hr0q/h,ӇZ=w^G9XpG+fvPh5b-hk ~jɗa˂ifAgќyK"'krTUGO(νʨPꥪ޷GKI:$g̬WxҒe` Y%WDS8pHG1R&v#SYSSĘG&5 _+,/w1r^+/_=}b+Ք6_:Q8U9dS'8vd`'=b7eTo F?liG:Vt?V^.}|>V6L+Vi> endobj 32 0 obj << /Length1 1726 /Length2 10276 /Length3 0 /Length 11386 /Filter /FlateDecode >> stream xڍP\.kXpwwwwiiܝ$<- ;3{uoZ4Y%! 93C fBCAgYHg l q(y88|BB.B܄2@O5@ qIC\|v<0X18YpH:V@g*jrzhthC `B]ٽ؀Nl7[1Fjk.ZFgPuVY=W>o v{5P+?&?mxvi@+'WNqn*FwFYg+܀>h |Qk `gs@]67-ݭ58Z~+ -Av3z^Iߒߕ[ 8 Wnc ` >9?yٝI|XZdGω[,vpWJ cO ]xɯ$n]t) f}|TXEmEP~6=Ġ5gW…1 f//9B~(h7fkUDd5KKӏSƾ6[h[Rk2\T~ tgOyykw V~BC.~_n$Vդx䳜6GӂqL{_//FǴE^KfJ{S#*8Tő : /53r'Q=ָ4EĎcEZ3b. bx ?o},>(.H%"xo<6*?^` 3n)MsquE\Vry$9Ж'Ī[d}+h3Ǎz}Fk>F 迒1N;~׸۶ L-HpЙ7\g35yLqy/f+qdNy۩ehϰ&`\dm*ƏC۟Or?{m4M$בN9WfWc׆( ~9\^I!Bwr"Q{~ "~U{u 6ᄵ8QfpA]pǔ\=CK%JOEC._?lh]4;y8`xe]f!iŽc(k|EFeԢ[U:s%YK/ O!:i02#BTATr8^ ;3^ DJg ǝB܎| ૥5}K:(B!gU|ݮ2;D4:W'd~ /ؤOʂ] [<ѻ+m1oY~Zo9[Y+\S? l9__ "zLP4-u챽?fcC2wmubv\n8} `+Ü0|9Mn!m ǻ+3\p3OaY>JGlÂ0Ŋ׏1"=kc5@ru_-¶թ+} d$s4j0_=*Ǡj S̈́.z2#T5y1>[p[]p~. p?v:ɘ?׍GL2WO ~ RH1啞|ٛs;h_d-N o$$G'ժ|c.AB9V@n -v9JrDeA$Ţ,1)UN!j/xjQUJ IA`j8jquƣA~١ct2.~>sq;FWR@T*63(N@,o:--as}:.xom'OCC=`\es@C*v!z@(0Vư=:6U(6Ǩ"҄p{)1^Hy+l㛇7m,iRC-&WO~]n"ܦhkAK:'cs?K$b ljS5]`ijW=i âH<Ӷu'w|$l:F oq͹c #5hR'n<:,D*e$"l7b ?VPA؋V+ wՏ&_ԮV !{R0Q#Qd.m ) f-aPXڪ; < WTP&$DmGѓ 檮o &-uf%ҩ5IӼ\& S 8/˦J\EF ''I)Q3+u(|=ԿF& V؅۲gy|P9FRI@`lz;9w-]KcY,rZql TN|8xd¡>AA7,y7_-8"GZ YCAC篷2i@5]1`' [Ί}Z^z^asɽAi'_ekUMsS{?E5h.JnJw?tbW8c]~$ _]ka읁tQqHd" }F )fNFFUNf整?3C8 %no[-}O,`+^ڵfwT;%^Nķ*'0(AƱyS(26H ͐OnRN\trCwCN(BI+CYoC}`!Yy ;Tꛖ4Zqf~op[S v 9[: <AΔETim;4A5(. yJ`hj}bG) ȿVzx: C9(_2WnӐJyYLa4Si41.Ҹ W]|@0O+juHH:W?XxF[<\úO8?MIFJGPdB0G7N+o?E]!}7?d@DH^*|8pBSp ] emq,oU-|JrGRVHĿN% 5ڑ;¶"j\DSn0 tj \)bm )cm43Raun8ɷzr6PSpT&0qGu=/V@ZW4Mo7ȶft}~@(z'ѢlhTny&^G_ >#eڜ B*mUݕY&c-{th(ƽk '^bD i`8irRLL &7Y1K2U;[GLizdYj7V{ݷ7Uu5Cvfm#O{'Yp2mFLd3-j.H[\\`;*qĶt:)Ѝo{3\tl :k͓׆eJRvT#lSC]L]*UC-JTI2~l=pH ׂ-wJBV+8Y%]9"DqQϤ)xQv86|ݨ>1^M [5YV3-f:e{yf*ěHx# nr{9U(y_Y6^ohz}2侄@D)q6~KIʾ$Ԇ M-Q[Z:IXgԓZ$h^R\Pk> 2b؏Nu=Uʞǻyo0GXB*8ؚFzfjv*ED=OW[։}FܡOO!}}Bc mͤ9X,;꧿]+ZŽ (Jig"7̎Q= F=? ^&N.v!jNf 2?HړDܢ(]9)nç$aѧ۔ '<{r% w=z~Cjȧ5, 4vN ^B:@E,j2ӳ'#gcjr{jd>뭺k!T:3p(i5oFN/ƍ͝,S: e POؚ{|ͷa G\ ~|;ȅhAYI7Ul!ak;5lk!˓_?b,ӏ؉sEm.& 5>2,u:3? ʀR,Ez9q1)^{`>U}2SZb37n ^@, Zۢ"v'<\h-H-1= (zM0L'<݁#8pmjL^x|a٣7,X\vu!ee*C;gȃHsVkRx_*1B[y)Mw3}ؚ(wF=%X{ ["2wiDME_mz͏݂8(N?5j tKСLUi1&1``m|3atb{G]CuBF+鐖B~MM HRCfc JMϷ QWQҮ0W Iu,>fwb٫Ot&&3Uh +\|Ou, EY-<{ $1Aa*9Z9m rǼ] ^ ~Mδ[ u1^aBfKToO;*W5Rhbl0W|*Uk)~fpjW{^oN]wr: tN&<\fQ5d/̊aۉZsn]2'ǜ J|7ɞg1b*d2A$^JB^:761%KZ"j(s=!4FVΔk6~mtE/-.{*3]Z|gcF.)Lm8|<[}_XrIf?]#|S6,f67rp ,z;A/fwͩ)FlEa|vTK# 6E\XY4[r;o-ٝwG֗ ^3'ŹsUete֮>sX<+L؟_*BMǖ:,{ 6CO~B2PPEK Ƈ"x> - ͵{q0 é #ɻ'cZngHO =-ڷn{|`|Ì^&_vS~;ٹ%׆KUgT i DO26J=~yA9.+T&Tm WYN[NÍTt@HTL{ yF^TF-'s'̸ۢZc7 Um#ѝpHҷ7~9 -<^;N5שv lQ}V7m)&EJw*yKY;Uۛ<*%%L>O.P#au;tW H=ˊXt% ̬M-U.{J>FW~Y!^ eetՁH"AQ͛߶Fa#1P:^2|Zt t+ѵngqqi9Ɨ,jR3w3|捲Z+QCph6C{ܼ[^8V1J_z4;*@X77] &]Ύ@faU lJX+ґq*7!>-Sבuԫ>|U&IkTlnoc\WSxڍL ԹV5^ȁ_ww_T<@VDLXFtK=㓋̜ʰpf=!D:[_3-?6̺2+aiǦ w,X-s4`v'! VA<*;;Nhc\KMj܈hF4d^;~LmkUp8}j#vb&ƹ0ZuȪG{-3Wk͗ꁺgԷ:s۟lXTD Me}z]?GAc־&O8P2 #衁s/xVaq'kn/ Yժ)<I74(Iw+Wp䢲YY |%cF^ nqVyZ/mVFN8pLNz/9"|j\q:QcgXɰ;C®1qýl{/GmmS?GwWbOkYX@n&)9! 5ZVtOPô!!Eys/OR%wZFKF[! GisTvU#ܤhc2+B oKwcO|qQW  V}>~}/u% J}wt +] -CÝ^nW/C 3}"O$RD3.2ЈypYˋNt;oSpr2L?e 7ﭫSV _qӎX8p91R(47_62[2-b —s-}u_( F'o% ݀Q{7C-H@c>{ U Gߴ7צ&yPmFW'V)W6 T|G{H> 7rN𓵰stdI,VC6܏vb%D k=V5;o JJ(r6ŌqjnRG 1(A!6w-?x[١W/-hp6[yq?E!zͯR66XL0h˨p86Z*ؔ))ĉL"D;է^!hfX'7qw\iGni%.yB endstream endobj 33 0 obj << /Type /FontDescriptor /FontName /JZMROV+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/asciitilde/b/c/comma/d/equal/i/l/m/n/one/parenleft/parenright/plus/s/t/three/two/u/x/y) /FontFile 32 0 R >> endobj 34 0 obj << /Length1 1604 /Length2 3271 /Length3 0 /Length 4264 /Filter /FlateDecode >> stream xڍv 4}ؾ,)Pb[Y3L!T YKeI-^QeM-iR3<׽wֲX+h@$PeQp*kfcHy8)S=_vqL "t T(ЌHiJ@)"+HVt<0DHI~d;H(2k逶Hc Mu'`MA_%$ݩT*G{QD V $A,J8שab;aMQ}d x H@)4$Pw0'?d(8wBxZ2!z?< =ANhv5I!Bh:v֎ -4pCƓ8Z>K T l|zx2X\ч ,nFB4Ho=2@*D"}16~$p͉Z5CIDhx)h:P40oC,C\A7<:dq?1td/p  W?NA  ~׮kjhi`zhoEr ]7_׬hِpD@'hvhu!4R!5;" ^W hk~ɟ[LBaFP;:X<^#*mA)x_kbxhAW7, Z9N@>CĮ&~0$/9EE(]6T(8"z*zմVOn(nr* <7@B nP)o!H Q B( A!?PF&C5=C^Z b`]oU S_XZ^U_(٩]>wR2{~S@b*WIuP&W9I1ɍԜp'`g˭,jIH?.^>Et et=YuR^N_2_I|$8P}OfCމ .b捱'J&.-@=_b$/,VIR^XV,Mަ "Oɕ|}djpɫpnS\)gd~XYGD(ZiF5_yk")% S3/drE}X`v0IZ K?BiACڗw}8\n qW32z' KVBy"|7%cG>(}G#Y=j'nϓ:q7,E?I!~l:z/&Gj|G`"ɹ<)Mq6_}]Z>ykqyHijE5cAW#3 ojh,6QCq7 ˰~2ƭzbI"N?[G-D dH!Rz /1~iʗ*s#@׻>8 xL==${t`0J=@ZpðӸs ך1UMo=ֹaPēt+oj+5?c}> $jf;GՋ 2IAoRc/\־wX_]bʻ^t@ғ>p7y`^/I7~d1Mz'*BI}e,ŷ3cQCtNY-ak7soz,ʞ|+S"ʳ}gOd8khVsƀCǞ^.+C %-8ieU[OlmXuBj$QEWY-Vr@@Q5Ѱ0Y;{*;mQU6j>㥓:^&obIgk*1>J)擽 e*y&+#C&״w(=ߊ=,_Zg-+tzaaD躨]Er-Q-:HGUG_mM NwYi4xP~v ?C^,4未U>DTF2KnO-kvg)_~)4dztkF`WbkBG? XPyuLSI&dT6?kTTtVBg_+n|)塈S%s.ȑ,udSNVVXwpRE0/0nysl __>Ca1щi&a2o h֨'sM2MC yIaC>oZsS 3vͨfnTJ/jQ!qzG>WBiq2=rc.Y򔚐6˛;MtW I ?R*!TUr+vvX W!F# ՙ3^t1磦hŽK_ ocb’ϋ0fy-KGQ𾨚.̴;Ss}]22SB!$!kuS#t%ƍ:Z4r8"oTq|YwF&g>XK#.!9M4S_.[σ;xlͳZ*NGܒ ut7z{vPQg*~c(fr-!i؉ij5mKf,=%\{yϠ!;=W @n&F4dG03S-Fi d5[ANTI8- 9/^ =5?lS[ {g4뽿]y7>I:xXvoise/ 7OuY:XIi^ob@tE+ 0 ϐ)'* c3> c EG3T &GRmq2Rܶ:\~|Ky(drܓ.xFAPj"묰Ҩrێuy{w,f=vfw˗HG,Kr9ѫj߲?VqHދk/QR>Z):4—{2TnD R\Xbiߑ~Ǯ+Ou8C^ҽF~By}/.lc*M֤B?pt͆O}|,|j<ȔyfKF9X`lgvF7_x'ݝ<WKTg_`/ˍ5 pg:m7"X U7y$8lnuˢZy=U 2CXK1v۸ hVyCS[yIgm\f%d~~ m60Dќ=~ޔ䋢T璉UFN7z nT{5wëV;rXQKDz{yCTsMl&n ה.AGk}LA> endobj 7 0 obj << /Type /Font /Subtype /Type1 /BaseFont /YLRLGJ+CMBX12 /FontDescriptor 23 0 R /FirstChar 49 /LastChar 121 /Widths 18 0 R >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /BaseFont /UDLBQR+CMR10 /FontDescriptor 25 0 R /FirstChar 12 /LastChar 121 /Widths 17 0 R >> endobj 6 0 obj << /Type /Font /Subtype /Type1 /BaseFont /PZTFNR+CMR12 /FontDescriptor 27 0 R /FirstChar 44 /LastChar 119 /Widths 19 0 R >> endobj 4 0 obj << /Type /Font /Subtype /Type1 /BaseFont /SRKXDN+CMR17 /FontDescriptor 29 0 R /FirstChar 12 /LastChar 116 /Widths 21 0 R >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /BaseFont /GFAWRG+CMSY10 /FontDescriptor 31 0 R /FirstChar 15 /LastChar 15 /Widths 16 0 R >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /BaseFont /JZMROV+CMTT10 /FontDescriptor 33 0 R /FirstChar 40 /LastChar 126 /Widths 15 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /BaseFont /CLHQFL+CMTT12 /FontDescriptor 35 0 R /FirstChar 46 /LastChar 120 /Widths 20 0 R >> endobj 11 0 obj << /Type /Pages /Count 2 /Kids [2 0 R 13 0 R] >> endobj 36 0 obj << /Type /Catalog /Pages 11 0 R >> endobj 37 0 obj << /Producer (pdfTeX-1.40.10) /Creator (TeX) /CreationDate (D:20111130114055-05'00') /ModDate (D:20111130114055-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009) kpathsea version 5.0.0) >> endobj xref 0 38 0000000000 65535 f 0000001021 00000 n 0000000916 00000 n 0000000015 00000 n 0000076103 00000 n 0000076522 00000 n 0000075964 00000 n 0000075685 00000 n 0000075825 00000 n 0000076242 00000 n 0000076381 00000 n 0000076662 00000 n 0000001760 00000 n 0000001652 00000 n 0000001155 00000 n 0000001850 00000 n 0000002216 00000 n 0000002238 00000 n 0000002848 00000 n 0000003278 00000 n 0000003695 00000 n 0000004163 00000 n 0000004807 00000 n 0000015453 00000 n 0000015727 00000 n 0000031754 00000 n 0000032064 00000 n 0000042334 00000 n 0000042599 00000 n 0000051676 00000 n 0000051915 00000 n 0000059021 00000 n 0000059246 00000 n 0000070752 00000 n 0000071053 00000 n 0000075436 00000 n 0000076727 00000 n 0000076778 00000 n trailer << /Size 38 /Root 36 0 R /Info 37 0 R /ID [<07B90B55F19D626232CAD193717DB9B2> <07B90B55F19D626232CAD193717DB9B2>] >> startxref 77037 %%EOF Zelig/inst/doc/poisson.pdf0000644000176000001440000060372512061700507015276 0ustar ripleyusers%PDF-1.5 % 37 0 obj << /Length 2298 /Filter /FlateDecode >> stream xڽY[۸~ϯ\uI]E.vgI4#ck sI=7Jċ)<<#׫߾BʦZ\hkU˕WW?]4 GT\$<6Q|ndY'?P.[vV{*j d#P G#,(<>!5UiǮ&3MW:yK8N:]5&[#L`zSUhf\a{$R{,ĩC,ۂ v5Lo9ij ] $ytzQYo8>0!f~l>mË\Ad95(<<`s[N%4u P o`!zu @!8v*v?%A%gZ<aеzCf.CߺOB [dِ(?xDpdv ν.QkaÏVZM>߈!zd9TB4ujO y>LQw(ͪf_SYuX2Jt`?I hM~XY܆ I>}c@r_/W9zr#2(jbeПeBx΅^!0YƦ}=@*KsR'igug'y! ݛ3޴̓0L &Q5oNUғ" =B0*&˿X.3RI^g2&gU=rIyNWǸHܻ_C;Grm?w ;|(w"9}KdOD_K;5 ϫ(qJ weLp@&w*IYe@kW8tVs`#"K8cru4KȻ\hx)H[oMs~*ɇ^?HvRt6'sG9l htԁv"MrN\=Zz|spr}]mf\Sy (88}7v<|hOCϔk%.}{^L4?к=?m#oefpid+7VgB m"cՋp endstream endobj 54 0 obj << /Length 836 /Filter /FlateDecode >> stream xڝVK0WH?:`%H zACh݈m4ylʖE3f;م*Fh,762:gBh/T  06~0v0~Xd:o FUNēgv`(RYsg(V$Rķ6qy+-x;7G++j5z-N=j~jUC5Pk {].*#_1\t) _lM0M{+OrLuqIDԾgpqhu5zPtZ9]+Ȟote[QC5)\˸,"$ZF,cFHe8'alx}_5S#.xL{seY*>^eI;hc|h 2kdaE.-jh[PLiS[9@[ ErKso|ī휬Y;}- ҽmnit(u&]/9h@ܥWo;^]*F/P|g&T%_ωCw$I@/6JeCj0KrQ)H7BlkP1q-7b8ַAl!=I`418z @2"n6T4]c,>Yf5"G B8.%_鐚z* S#| }Oũ.L½>r3\Oc杛Ϧ8p1{?v2[ASA8zu4zǦu ۣDIBi"A%ξ9@ endstream endobj 51 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./vigpics/poisson-ExamplePlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 60 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 61 0 R/F3 62 0 R>> /ExtGState << >>/ColorSpace << /sRGB 63 0 R >>>> /Length 19386 >> stream 1 J 1 j q Q q 49.00 276.96 357.90 106.04 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 62.26 280.88 m 62.91 280.88 l 63.56 280.89 l 64.20 280.89 l 64.85 280.89 l 65.50 280.89 l 66.15 280.89 l 66.80 280.90 l 67.45 280.90 l 68.10 280.90 l 68.74 280.91 l 69.39 280.91 l 70.04 280.92 l 70.69 280.93 l 71.34 280.93 l 71.99 280.94 l 72.63 280.95 l 73.28 280.96 l 73.93 280.98 l 74.58 280.99 l 75.23 281.01 l 75.88 281.02 l 76.53 281.04 l 77.17 281.06 l 77.82 281.08 l 78.47 281.11 l 79.12 281.14 l 79.77 281.16 l 80.42 281.20 l 81.07 281.23 l 81.71 281.27 l 82.36 281.31 l 83.01 281.35 l 83.66 281.39 l 84.31 281.44 l 84.96 281.49 l 85.60 281.54 l 86.25 281.60 l 86.90 281.66 l 87.55 281.72 l 88.20 281.79 l 88.85 281.86 l 89.50 281.93 l 90.14 282.01 l 90.79 282.09 l 91.44 282.17 l 92.09 282.25 l 92.74 282.34 l 93.39 282.43 l 94.04 282.52 l 94.68 282.62 l 95.33 282.72 l 95.98 282.81 l 96.63 282.92 l 97.28 283.02 l 97.93 283.12 l 98.58 283.23 l 99.22 283.33 l 99.87 283.44 l 100.52 283.55 l 101.17 283.65 l 101.82 283.76 l 102.47 283.86 l 103.11 283.97 l 103.76 284.07 l 104.41 284.18 l 105.06 284.28 l 105.71 284.39 l 106.36 284.49 l 107.01 284.59 l 107.65 284.69 l 108.30 284.80 l 108.95 284.90 l 109.60 285.00 l 110.25 285.11 l 110.90 285.22 l 111.55 285.33 l 112.19 285.44 l 112.84 285.56 l 113.49 285.68 l 114.14 285.80 l 114.79 285.93 l 115.44 286.07 l 116.08 286.21 l 116.73 286.35 l 117.38 286.50 l 118.03 286.66 l 118.68 286.83 l 119.33 287.01 l 119.98 287.19 l 120.62 287.37 l 121.27 287.57 l 121.92 287.77 l 122.57 287.98 l 123.22 288.20 l 123.87 288.42 l 124.52 288.65 l 125.16 288.89 l 125.81 289.13 l 126.46 289.38 l 127.11 289.64 l 127.76 289.90 l 128.41 290.17 l 129.05 290.45 l 129.70 290.73 l 130.35 291.03 l 131.00 291.33 l 131.65 291.64 l 132.30 291.96 l 132.95 292.29 l 133.59 292.64 l 134.24 292.99 l 134.89 293.36 l 135.54 293.74 l 136.19 294.13 l 136.84 294.54 l 137.49 294.97 l 138.13 295.41 l 138.78 295.87 l 139.43 296.34 l 140.08 296.83 l 140.73 297.34 l 141.38 297.86 l 142.02 298.40 l 142.67 298.96 l 143.32 299.53 l 143.97 300.11 l 144.62 300.71 l 145.27 301.32 l 145.92 301.95 l 146.56 302.58 l 147.21 303.23 l 147.86 303.88 l 148.51 304.54 l 149.16 305.21 l 149.81 305.89 l 150.46 306.57 l 151.10 307.26 l 151.75 307.96 l 152.40 308.66 l 153.05 309.37 l 153.70 310.09 l 154.35 310.81 l 155.00 311.54 l 155.64 312.28 l 156.29 313.03 l 156.94 313.80 l 157.59 314.57 l 158.24 315.37 l 158.89 316.18 l 159.53 317.00 l 160.18 317.85 l 160.83 318.72 l 161.48 319.61 l 162.13 320.53 l 162.78 321.47 l 163.43 322.44 l 164.07 323.44 l 164.72 324.46 l 165.37 325.52 l 166.02 326.60 l 166.67 327.70 l 167.32 328.83 l 167.97 329.99 l 168.61 331.17 l 169.26 332.37 l 169.91 333.58 l 170.56 334.81 l 171.21 336.06 l 171.86 337.31 l 172.50 338.57 l 173.15 339.83 l 173.80 341.09 l 174.45 342.34 l 175.10 343.59 l 175.75 344.82 l 176.40 346.03 l 177.04 347.23 l 177.69 348.40 l 178.34 349.55 l 178.99 350.66 l 179.64 351.75 l 180.29 352.80 l 180.94 353.83 l 181.58 354.81 l 182.23 355.75 l 182.88 356.65 l 183.53 357.52 l 184.18 358.35 l 184.83 359.14 l 185.47 359.88 l 186.12 360.60 l 186.77 361.28 l 187.42 361.93 l 188.07 362.54 l 188.72 363.13 l 189.37 363.69 l 190.01 364.23 l 190.66 364.74 l 191.31 365.25 l 191.96 365.73 l 192.61 366.21 l 193.26 366.67 l 193.91 367.14 l 194.55 367.60 l 195.20 368.06 l 195.85 368.52 l 196.50 368.99 l 197.15 369.46 l 197.80 369.94 l 198.44 370.43 l 199.09 370.92 l 199.74 371.42 l 200.39 371.92 l 201.04 372.43 l 201.69 372.94 l 202.34 373.45 l 202.98 373.96 l 203.63 374.46 l 204.28 374.96 l 204.93 375.44 l 205.58 375.90 l 206.23 376.34 l 206.88 376.77 l 207.52 377.16 l 208.17 377.53 l 208.82 377.86 l 209.47 378.15 l 210.12 378.41 l 210.77 378.63 l 211.42 378.80 l 212.06 378.93 l 212.71 379.02 l 213.36 379.06 l 214.01 379.07 l 214.66 379.03 l 215.31 378.94 l 215.95 378.82 l 216.60 378.66 l 217.25 378.46 l 217.90 378.23 l 218.55 377.96 l 219.20 377.65 l 219.85 377.32 l 220.49 376.97 l 221.14 376.59 l 221.79 376.18 l 222.44 375.75 l 223.09 375.29 l 223.74 374.82 l 224.39 374.34 l 225.03 373.83 l 225.68 373.30 l 226.33 372.76 l 226.98 372.21 l 227.63 371.65 l 228.28 371.07 l 228.92 370.47 l 229.57 369.87 l 230.22 369.26 l 230.87 368.65 l 231.52 368.02 l 232.17 367.40 l 232.82 366.77 l 233.46 366.14 l 234.11 365.51 l 234.76 364.89 l 235.41 364.27 l 236.06 363.67 l 236.71 363.07 l 237.36 362.49 l 238.00 361.93 l 238.65 361.38 l 239.30 360.85 l 239.95 360.35 l 240.60 359.86 l 241.25 359.39 l 241.89 358.95 l 242.54 358.52 l 243.19 358.12 l 243.84 357.73 l 244.49 357.36 l 245.14 357.01 l 245.79 356.66 l 246.43 356.32 l 247.08 355.99 l 247.73 355.66 l 248.38 355.33 l 249.03 354.99 l 249.68 354.64 l 250.33 354.28 l 250.97 353.91 l 251.62 353.51 l 252.27 353.08 l 252.92 352.63 l 253.57 352.16 l 254.22 351.65 l 254.87 351.11 l 255.51 350.53 l 256.16 349.92 l 256.81 349.28 l 257.46 348.60 l 258.11 347.89 l 258.76 347.14 l 259.40 346.36 l 260.05 345.55 l 260.70 344.72 l 261.35 343.86 l 262.00 342.97 l 262.65 342.06 l 263.30 341.13 l 263.94 340.19 l 264.59 339.23 l 265.24 338.27 l 265.89 337.30 l 266.54 336.32 l 267.19 335.34 l 267.84 334.36 l 268.48 333.38 l 269.13 332.41 l 269.78 331.45 l 270.43 330.49 l 271.08 329.54 l 271.73 328.60 l 272.37 327.67 l 273.02 326.75 l 273.67 325.85 l 274.32 324.95 l 274.97 324.07 l 275.62 323.20 l 276.27 322.35 l 276.91 321.51 l 277.56 320.68 l 278.21 319.86 l 278.86 319.06 l 279.51 318.26 l 280.16 317.49 l 280.81 316.72 l 281.45 315.96 l 282.10 315.22 l 282.75 314.50 l 283.40 313.78 l 284.05 313.08 l 284.70 312.38 l 285.34 311.71 l 285.99 311.05 l 286.64 310.40 l 287.29 309.77 l 287.94 309.14 l 288.59 308.54 l 289.24 307.96 l 289.88 307.38 l 290.53 306.83 l 291.18 306.29 l 291.83 305.76 l 292.48 305.26 l 293.13 304.77 l 293.78 304.30 l 294.42 303.84 l 295.07 303.40 l 295.72 302.98 l 296.37 302.57 l 297.02 302.18 l 297.67 301.80 l 298.31 301.44 l 298.96 301.10 l 299.61 300.76 l 300.26 300.44 l 300.91 300.13 l 301.56 299.83 l 302.21 299.55 l 302.85 299.27 l 303.50 299.00 l 304.15 298.74 l 304.80 298.49 l 305.45 298.24 l 306.10 298.00 l 306.75 297.76 l 307.39 297.53 l 308.04 297.30 l 308.69 297.07 l 309.34 296.84 l 309.99 296.61 l 310.64 296.38 l 311.29 296.15 l 311.93 295.92 l 312.58 295.69 l 313.23 295.45 l 313.88 295.21 l 314.53 294.96 l 315.18 294.72 l 315.82 294.46 l 316.47 294.20 l 317.12 293.94 l 317.77 293.68 l 318.42 293.41 l 319.07 293.13 l 319.72 292.86 l 320.36 292.58 l 321.01 292.29 l 321.66 292.01 l 322.31 291.72 l 322.96 291.44 l 323.61 291.16 l 324.26 290.87 l 324.90 290.59 l 325.55 290.31 l 326.20 290.04 l 326.85 289.77 l 327.50 289.50 l 328.15 289.24 l 328.79 288.98 l 329.44 288.73 l 330.09 288.49 l 330.74 288.25 l 331.39 288.02 l 332.04 287.80 l 332.69 287.58 l 333.33 287.37 l 333.98 287.17 l 334.63 286.97 l 335.28 286.78 l 335.93 286.59 l 336.58 286.41 l 337.23 286.23 l 337.87 286.06 l 338.52 285.90 l 339.17 285.74 l 339.82 285.58 l 340.47 285.42 l 341.12 285.27 l 341.76 285.13 l 342.41 284.98 l 343.06 284.84 l 343.71 284.71 l 344.36 284.57 l 345.01 284.44 l 345.66 284.32 l 346.30 284.20 l 346.95 284.08 l 347.60 283.96 l 348.25 283.85 l 348.90 283.74 l 349.55 283.64 l 350.20 283.54 l 350.84 283.44 l 351.49 283.34 l 352.14 283.25 l 352.79 283.17 l 353.44 283.08 l 354.09 283.00 l 354.73 282.93 l 355.38 282.85 l 356.03 282.78 l 356.68 282.71 l 357.33 282.64 l 357.98 282.58 l 358.63 282.51 l 359.27 282.45 l 359.92 282.39 l 360.57 282.33 l 361.22 282.27 l 361.87 282.21 l 362.52 282.15 l 363.17 282.10 l 363.81 282.04 l 364.46 281.99 l 365.11 281.93 l 365.76 281.88 l 366.41 281.83 l 367.06 281.77 l 367.71 281.72 l 368.35 281.67 l 369.00 281.62 l 369.65 281.58 l 370.30 281.53 l 370.95 281.48 l 371.60 281.44 l 372.24 281.40 l 372.89 281.36 l 373.54 281.32 l 374.19 281.28 l 374.84 281.25 l 375.49 281.21 l 376.14 281.18 l 376.78 281.15 l 377.43 281.13 l 378.08 281.10 l 378.73 281.08 l 379.38 281.06 l 380.03 281.04 l 380.68 281.02 l 381.32 281.00 l 381.97 280.99 l 382.62 280.97 l 383.27 280.96 l 383.92 280.95 l 384.57 280.94 l 385.21 280.93 l 385.86 280.92 l 386.51 280.92 l 387.16 280.91 l 387.81 280.91 l 388.46 280.90 l 389.11 280.90 l 389.75 280.89 l 390.40 280.89 l 391.05 280.89 l 391.70 280.89 l 392.35 280.89 l 393.00 280.88 l 393.65 280.88 l S Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 74.44 276.96 m 372.15 276.96 l S 74.44 276.96 m 74.44 270.98 l S 173.68 276.96 m 173.68 270.98 l S 272.91 276.96 m 272.91 270.98 l S 372.15 276.96 m 372.15 270.98 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 10.00 0.00 -0.00 10.00 67.49 255.44 Tm (2.5) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 166.73 255.44 Tm (3.0) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 265.96 255.44 Tm (3.5) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 365.20 255.44 Tm (4.0) Tj ET 49.00 280.88 m 49.00 362.35 l S 49.00 280.88 m 43.03 280.88 l S 49.00 308.03 m 43.03 308.03 l S 49.00 335.19 m 43.03 335.19 l S 49.00 362.35 m 43.03 362.35 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 273.93 Tm (0.0) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 301.08 Tm (0.5) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 328.24 Tm (1.0) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 355.40 Tm (1.5) Tj ET 49.00 276.96 m 406.90 276.96 l 406.90 383.00 l 49.00 383.00 l 49.00 276.96 l S Q q 0.00 216.00 432.00 216.00 re W n BT /sRGB cs 0.000 0.000 0.000 scn /F3 1 Tf 12.00 0.00 -0.00 12.00 159.28 403.19 Tm [(Expected V) 60 (alues: E\(Y|X\))] TJ ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 156.24 231.54 Tm (N = 1000 Bandwidth = 0.05024) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 313.31 Tm (Density) Tj ET Q q 49.00 276.96 357.90 106.04 re W n /sRGB CS 0.745 0.745 0.745 SCN 0.08 w [] 0 d 1 J 1 j 10.00 M 49.00 280.88 m 406.90 280.88 l S Q q 49.00 60.96 357.90 106.04 re W n Q q 49.00 60.96 357.90 106.04 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 62.26 65.04 m 62.91 65.08 l 63.56 65.13 l 64.20 65.19 l 64.85 65.26 l 65.50 65.35 l 66.15 65.45 l 66.80 65.57 l 67.45 65.71 l 68.10 65.87 l 68.74 66.06 l 69.39 66.27 l 70.04 66.51 l 70.69 66.79 l 71.34 67.09 l 71.99 67.43 l 72.63 67.81 l 73.28 68.22 l 73.93 68.67 l 74.58 69.16 l 75.23 69.68 l 75.88 70.23 l 76.53 70.81 l 77.17 71.43 l 77.82 72.06 l 78.47 72.71 l 79.12 73.37 l 79.77 74.04 l 80.42 74.70 l 81.07 75.36 l 81.71 75.99 l 82.36 76.60 l 83.01 77.18 l 83.66 77.72 l 84.31 78.22 l 84.96 78.65 l 85.60 79.03 l 86.25 79.36 l 86.90 79.62 l 87.55 79.83 l 88.20 79.98 l 88.85 80.06 l 89.50 80.10 l 90.14 80.11 l 90.79 80.08 l 91.44 80.03 l 92.09 79.97 l 92.74 79.92 l 93.39 79.89 l 94.04 79.90 l 94.68 79.96 l 95.33 80.09 l 95.98 80.30 l 96.63 80.62 l 97.28 81.05 l 97.93 81.60 l 98.58 82.28 l 99.22 83.09 l 99.87 84.05 l 100.52 85.17 l 101.17 86.42 l 101.82 87.81 l 102.47 89.31 l 103.11 90.92 l 103.76 92.64 l 104.41 94.44 l 105.06 96.29 l 105.71 98.16 l 106.36 100.04 l 107.01 101.90 l 107.65 103.70 l 108.30 105.41 l 108.95 107.01 l 109.60 108.49 l 110.25 109.82 l 110.90 110.98 l 111.55 111.90 l 112.19 112.64 l 112.84 113.17 l 113.49 113.50 l 114.14 113.63 l 114.79 113.57 l 115.44 113.30 l 116.08 112.88 l 116.73 112.34 l 117.38 111.71 l 118.03 111.01 l 118.68 110.28 l 119.33 109.58 l 119.98 108.94 l 120.62 108.40 l 121.27 108.00 l 121.92 107.77 l 122.57 107.77 l 123.22 108.06 l 123.87 108.61 l 124.52 109.46 l 125.16 110.61 l 125.81 112.07 l 126.46 113.92 l 127.11 116.08 l 127.76 118.53 l 128.41 121.25 l 129.05 124.21 l 129.70 127.38 l 130.35 130.74 l 131.00 134.20 l 131.65 137.70 l 132.30 141.19 l 132.95 144.63 l 133.59 147.94 l 134.24 151.03 l 134.89 153.86 l 135.54 156.40 l 136.19 158.59 l 136.84 160.42 l 137.49 161.80 l 138.13 162.66 l 138.78 163.07 l 139.43 163.03 l 140.08 162.54 l 140.73 161.62 l 141.38 160.24 l 142.02 158.45 l 142.67 156.34 l 143.32 153.97 l 143.97 151.38 l 144.62 148.63 l 145.27 145.77 l 145.92 142.90 l 146.56 140.08 l 147.21 137.38 l 147.86 134.84 l 148.51 132.52 l 149.16 130.53 l 149.81 128.89 l 150.46 127.59 l 151.10 126.67 l 151.75 126.15 l 152.40 126.01 l 153.05 126.37 l 153.70 127.10 l 154.35 128.18 l 155.00 129.57 l 155.64 131.25 l 156.29 133.17 l 156.94 135.30 l 157.59 137.54 l 158.24 139.84 l 158.89 142.13 l 159.53 144.36 l 160.18 146.46 l 160.83 148.35 l 161.48 149.99 l 162.13 151.36 l 162.78 152.41 l 163.43 153.13 l 164.07 153.43 l 164.72 153.30 l 165.37 152.81 l 166.02 151.95 l 166.67 150.73 l 167.32 149.19 l 167.97 147.31 l 168.61 145.18 l 169.26 142.85 l 169.91 140.38 l 170.56 137.82 l 171.21 135.23 l 171.86 132.66 l 172.50 130.20 l 173.15 127.88 l 173.80 125.76 l 174.45 123.87 l 175.10 122.24 l 175.75 121.01 l 176.40 120.11 l 177.04 119.55 l 177.69 119.35 l 178.34 119.49 l 178.99 120.00 l 179.64 120.89 l 180.29 122.06 l 180.94 123.48 l 181.58 125.12 l 182.23 126.94 l 182.88 128.89 l 183.53 130.91 l 184.18 132.93 l 184.83 134.90 l 185.47 136.77 l 186.12 138.50 l 186.77 140.01 l 187.42 141.24 l 188.07 142.20 l 188.72 142.85 l 189.37 143.17 l 190.01 143.16 l 190.66 142.74 l 191.31 141.96 l 191.96 140.85 l 192.61 139.44 l 193.26 137.75 l 193.91 135.81 l 194.55 133.61 l 195.20 131.26 l 195.85 128.79 l 196.50 126.26 l 197.15 123.71 l 197.80 121.18 l 198.44 118.75 l 199.09 116.45 l 199.74 114.32 l 200.39 112.38 l 201.04 110.66 l 201.69 109.21 l 202.34 108.08 l 202.98 107.22 l 203.63 106.65 l 204.28 106.34 l 204.93 106.30 l 205.58 106.53 l 206.23 107.02 l 206.88 107.69 l 207.52 108.53 l 208.17 109.49 l 208.82 110.54 l 209.47 111.66 l 210.12 112.78 l 210.77 113.86 l 211.42 114.87 l 212.06 115.78 l 212.71 116.56 l 213.36 117.15 l 214.01 117.53 l 214.66 117.71 l 215.31 117.67 l 215.95 117.41 l 216.60 116.92 l 217.25 116.16 l 217.90 115.20 l 218.55 114.04 l 219.20 112.72 l 219.85 111.24 l 220.49 109.64 l 221.14 107.92 l 221.79 106.16 l 222.44 104.37 l 223.09 102.59 l 223.74 100.84 l 224.39 99.16 l 225.03 97.59 l 225.68 96.14 l 226.33 94.83 l 226.98 93.67 l 227.63 92.68 l 228.28 91.88 l 228.92 91.29 l 229.57 90.87 l 230.22 90.62 l 230.87 90.54 l 231.52 90.60 l 232.17 90.83 l 232.82 91.18 l 233.46 91.61 l 234.11 92.11 l 234.76 92.67 l 235.41 93.24 l 236.06 93.82 l 236.71 94.36 l 237.36 94.85 l 238.00 95.28 l 238.65 95.62 l 239.30 95.86 l 239.95 95.95 l 240.60 95.92 l 241.25 95.76 l 241.89 95.48 l 242.54 95.06 l 243.19 94.52 l 243.84 93.83 l 244.49 93.04 l 245.14 92.16 l 245.79 91.20 l 246.43 90.18 l 247.08 89.11 l 247.73 88.01 l 248.38 86.91 l 249.03 85.83 l 249.68 84.77 l 250.33 83.75 l 250.97 82.80 l 251.62 81.94 l 252.27 81.15 l 252.92 80.45 l 253.57 79.85 l 254.22 79.35 l 254.87 78.96 l 255.51 78.68 l 256.16 78.49 l 256.81 78.39 l 257.46 78.36 l 258.11 78.41 l 258.76 78.53 l 259.40 78.69 l 260.05 78.89 l 260.70 79.11 l 261.35 79.34 l 262.00 79.57 l 262.65 79.78 l 263.30 79.96 l 263.94 80.11 l 264.59 80.21 l 265.24 80.26 l 265.89 80.24 l 266.54 80.16 l 267.19 80.01 l 267.84 79.80 l 268.48 79.53 l 269.13 79.19 l 269.78 78.80 l 270.43 78.36 l 271.08 77.87 l 271.73 77.35 l 272.37 76.80 l 273.02 76.24 l 273.67 75.66 l 274.32 75.09 l 274.97 74.52 l 275.62 73.98 l 276.27 73.45 l 276.91 72.95 l 277.56 72.50 l 278.21 72.09 l 278.86 71.72 l 279.51 71.39 l 280.16 71.11 l 280.81 70.88 l 281.45 70.69 l 282.10 70.56 l 282.75 70.45 l 283.40 70.39 l 284.05 70.35 l 284.70 70.35 l 285.34 70.37 l 285.99 70.40 l 286.64 70.44 l 287.29 70.49 l 287.94 70.54 l 288.59 70.59 l 289.24 70.62 l 289.88 70.64 l 290.53 70.65 l 291.18 70.63 l 291.83 70.60 l 292.48 70.54 l 293.13 70.46 l 293.78 70.36 l 294.42 70.23 l 295.07 70.08 l 295.72 69.92 l 296.37 69.74 l 297.02 69.54 l 297.67 69.33 l 298.31 69.12 l 298.96 68.90 l 299.61 68.68 l 300.26 68.46 l 300.91 68.24 l 301.56 68.04 l 302.21 67.84 l 302.85 67.66 l 303.50 67.49 l 304.15 67.33 l 304.80 67.20 l 305.45 67.07 l 306.10 66.97 l 306.75 66.88 l 307.39 66.81 l 308.04 66.75 l 308.69 66.71 l 309.34 66.68 l 309.99 66.66 l 310.64 66.65 l 311.29 66.64 l 311.93 66.64 l 312.58 66.65 l 313.23 66.66 l 313.88 66.66 l 314.53 66.67 l 315.18 66.67 l 315.82 66.67 l 316.47 66.66 l 317.12 66.65 l 317.77 66.63 l 318.42 66.60 l 319.07 66.56 l 319.72 66.52 l 320.36 66.47 l 321.01 66.42 l 321.66 66.36 l 322.31 66.29 l 322.96 66.22 l 323.61 66.15 l 324.26 66.07 l 324.90 66.00 l 325.55 65.92 l 326.20 65.84 l 326.85 65.76 l 327.50 65.69 l 328.15 65.61 l 328.79 65.54 l 329.44 65.48 l 330.09 65.41 l 330.74 65.35 l 331.39 65.30 l 332.04 65.25 l 332.69 65.20 l 333.33 65.16 l 333.98 65.12 l 334.63 65.09 l 335.28 65.06 l 335.93 65.03 l 336.58 65.01 l 337.23 64.99 l 337.87 64.97 l 338.52 64.95 l 339.17 64.94 l 339.82 64.93 l 340.47 64.92 l 341.12 64.91 l 341.76 64.91 l 342.41 64.90 l 343.06 64.90 l 343.71 64.90 l 344.36 64.90 l 345.01 64.90 l 345.66 64.90 l 346.30 64.90 l 346.95 64.90 l 347.60 64.91 l 348.25 64.91 l 348.90 64.92 l 349.55 64.92 l 350.20 64.93 l 350.84 64.94 l 351.49 64.95 l 352.14 64.96 l 352.79 64.97 l 353.44 64.98 l 354.09 65.00 l 354.73 65.01 l 355.38 65.03 l 356.03 65.04 l 356.68 65.06 l 357.33 65.08 l 357.98 65.10 l 358.63 65.12 l 359.27 65.14 l 359.92 65.15 l 360.57 65.17 l 361.22 65.19 l 361.87 65.21 l 362.52 65.23 l 363.17 65.24 l 363.81 65.26 l 364.46 65.27 l 365.11 65.28 l 365.76 65.29 l 366.41 65.30 l 367.06 65.30 l 367.71 65.30 l 368.35 65.30 l 369.00 65.30 l 369.65 65.29 l 370.30 65.29 l 370.95 65.28 l 371.60 65.27 l 372.24 65.25 l 372.89 65.24 l 373.54 65.22 l 374.19 65.20 l 374.84 65.18 l 375.49 65.17 l 376.14 65.15 l 376.78 65.13 l 377.43 65.11 l 378.08 65.09 l 378.73 65.07 l 379.38 65.05 l 380.03 65.04 l 380.68 65.02 l 381.32 65.00 l 381.97 64.99 l 382.62 64.98 l 383.27 64.96 l 383.92 64.95 l 384.57 64.94 l 385.21 64.93 l 385.86 64.93 l 386.51 64.92 l 387.16 64.91 l 387.81 64.91 l 388.46 64.90 l 389.11 64.90 l 389.75 64.89 l 390.40 64.89 l 391.05 64.89 l 391.70 64.89 l 392.35 64.89 l 393.00 64.88 l 393.65 64.88 l S Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 88.01 60.96 m 393.33 60.96 l S 88.01 60.96 m 88.01 54.98 l S 138.90 60.96 m 138.90 54.98 l S 189.79 60.96 m 189.79 54.98 l S 240.67 60.96 m 240.67 54.98 l S 291.56 60.96 m 291.56 54.98 l S 342.45 60.96 m 342.45 54.98 l S 393.33 60.96 m 393.33 54.98 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 10.00 0.00 -0.00 10.00 85.23 39.44 Tm (0) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 136.12 39.44 Tm (2) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 187.01 39.44 Tm (4) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 237.89 39.44 Tm (6) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 288.78 39.44 Tm (8) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 336.89 39.44 Tm (10) Tj ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 387.77 39.44 Tm (12) Tj ET 49.00 64.88 m 49.00 154.95 l S 49.00 64.88 m 43.03 64.88 l S 49.00 82.89 m 43.03 82.89 l S 49.00 100.91 m 43.03 100.91 l S 49.00 118.92 m 43.03 118.92 l S 49.00 136.93 m 43.03 136.93 l S 49.00 154.95 m 43.03 154.95 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 55.15 Tm (0.00) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 91.18 Tm (0.10) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 127.20 Tm (0.20) Tj ET 49.00 60.96 m 406.90 60.96 l 406.90 167.00 l 49.00 167.00 l 49.00 60.96 l S Q q 0.00 0.00 432.00 216.00 re W n BT /sRGB cs 0.000 0.000 0.000 scn /F3 1 Tf 12.00 0.00 -0.00 12.00 166.61 187.19 Tm [(Predicted V) 60 (alues: Y|X)] TJ ET BT /F2 1 Tf 10.00 0.00 -0.00 10.00 159.02 15.54 Tm (N = 1000 Bandwidth = 0.3374) Tj ET BT /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 97.31 Tm (Density) Tj ET Q q 49.00 60.96 357.90 106.04 re W n /sRGB CS 0.745 0.745 0.745 SCN 0.08 w [] 0 d 1 J 1 j 10.00 M 49.00 64.88 m 406.90 64.88 l S Q q 59.04 73.44 342.72 299.52 re W n Q endstream endobj 65 0 obj << /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >> stream 00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72 52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06 00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00 49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d 48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33 64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74 00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04 00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14 67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a 00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54 00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88 76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77 00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8 00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24 74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43 00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c 00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c 74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68 74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65 74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61 6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12 73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00 00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00 00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20 00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da 58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84 00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00 16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe 00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b 00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00 00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02 73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76 00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f 00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37 00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e 00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86 00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae 00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5 00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01 01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32 01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67 01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1 01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1 01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26 02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71 02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1 02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16 03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72 03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3 03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b 04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8 04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c 05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96 05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16 06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d 06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b 07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf 07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a 08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb 09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4 09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54 0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b 0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8 0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e 0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a 0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e 0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09 0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec 10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7 10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9 11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3 12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5 13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce 14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0 16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa 17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b 18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45 19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77 1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2 1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5 1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40 1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94 1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0 21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55 22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2 23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38 25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7 26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f 28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0 2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69 2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c 2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7 2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c 30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a 32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1 34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2 35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c 37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f 39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b 3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61 3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61 3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a 41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d 43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a 45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0 48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0 4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a 4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e 4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb 51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13 53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75 55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0 58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56 5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6 5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61 5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5 62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94 64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d 67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1 6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af 6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78 6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b 72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28 75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11 78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04 7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01 7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a 81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d 84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b 87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64 8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98 8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6 91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20 94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75 97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5 9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40 9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6 a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38 a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4 a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00 b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68 b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3 c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7 cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6 cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1 d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8 d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29 df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63 e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9 e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58 f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2 f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38 f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba fe 4b fe dc ff 6d ff ff > endstream endobj 68 0 obj << /Length 2365 /Filter /FlateDecode >> stream xZKoGW ~?l Dva@@$ꞞaHKagQ]]]U}5/˫О9G8&].FƯ7/DHx|7e2倒3mU#{w q1^d5L/N Jm=&4@j( T K$I>,8壤'`1&9娐y1P|x $S7~m)XC! }ePITN72?1A0nehwNw䌫pjꔉc⸵SmyMt4:}?~/*B7oQ>ʽv8-C{/*Wak98a80|3M|;JG~WziĘE}t~0 /K(Pbl&0.K\VdM(P "r|Oك5xTv\mwx> [ KX# e'hxxzT-bt5MxvvBHc!hs|ݬJ@H! sc E__ni|#U1~EblUoKYQ1a\+;Xƽ4 (= N"ķђ[F#95 x0]`'>㕈4[`eNC"~Ml/9.kUd SOHJ."G4*pwCP3נt JpgMڠdRQ[JvL)4&JNFN<7 lԳūvp`ߢrxر k !k=mp%@2c?_`i1V1\))0elhEufڪ HaR]ѐDEN1M5%ּP@N g)@Iʟ58EsWsݔDGj .tu/K%6 mg :xFQ^RR8E%eqO-@,Mes^d!FU즃`3:7u@MSTn/S TP n,-萊T :߫0KOKǺה9Q>v 7lDp_|$F@r|} -X)$FnF_v36:љG)Z FfB Mce(\B>V^ $0I\+c w\!.4.t b2T<5XVd g'_(d^ iG?F7్qjGnw^mOR-q1iƛ3_^ $4,tgZR?ǒbI|S3dm ]H Z>ȉgAܫsV@Z ڦֲj|{E(>^57⣋қj25ӡ3 QbWVR'شࡐlJ4Lv n0㩪{h=8*P؂PWqWP|* n"v#kFF:A57&PxJ"dzrF֦@_ܹESe 3gy6^SD9(O?v3F {%(Xq:MHڴZ~hc[/KT[=-/j鄢DlktZZ.Ui={mI"PDJ)6B N3dijs])LM>a>7- u(ICۼ~EnRc&sYboCCM:p3Vզ"o1>C.RNzQ)N_fU);Ls[gy?E+{K[|3΁f%8tI'q\ABmxxCqjSNuN>HQ>E#܄_zy 8=S2T{=ž͞r̊ 9*)1H0;ӀYXb_>sÌ(X8JFNPVއ'6|#ʥ^/dCq9ڨnmd*9HT&ڨ=,]9Cic~e64> stream xYY~_a, !QZ$` @Ami=3SIQȃ%J$X՛o(E|q]H͋EYt,ȥLD/WR"3\w˕.te%՝忯ͻ"#]d!t!y[|&kNGW-I]&|d 3ihp _Ƨ?=u758𧩎nXf|u &T7 ?ޤe ןrer[7%@&p_ðIi–߈*DyM1Pf6M8U3/2 *i7\e<<Ҹ7a. }P<;;8B+/P2dX9u$ *' r[>LfLRƆn޸ACp)v|Lӵky6:uUhb1֥Jhm{vrPݟkxJeUTQ1vmۙa bg?qg"4G7wLxxxp9u+$T3J,axVhM*xG  *1#MBu}ΩE7)e/kmgY|)ףC0H^0׫23 2; .T)IwI~Dp׳!rН|qs(R >M/t_}ey.$ʟWfpd,G}J a.H-'ã Jj(?z>wuu/&nU ]icH8*u,}-h٧=(9 QJ9=)n`PϹ.LyBZ,qKjd|wѻxo(ev}C?:|x*.'&9!}1n ӤɃ= $q܎,wh9I}KcT*p왮94/#jl|n<K&zgE'2'~:c"XoCF\k~$&\yGfv׺i65pNNiWnԇ*C6TVnK eVg5Zjˆ!Ƶo7(}@u4w[>(3EwĻ E6|V8%7.{#R,K2)IYcCbv*j|L bǙǙFZqӈ:θCD+5QϜ v.P%a>/kZbTZlx]ퟯ#3u3ʟVBh/g lDAxg 1|n!v |ɷO$ }Bx՛O  endstream endobj 84 0 obj << /Length 2585 /Filter /FlateDecode >> stream xڝYr+>؍յuuhD DhF$`a3#k/ (ÉBuY/_f~z '){ru}bcY!'eoG&[Gc}_9 3i8ÿ5⑋>N潱mMջgҖ(Wq26U*Gvב28֖Ueg>BsGSsY}K3bVxSoa5+YzȫH(eQs*{/pA3 6#]`);9X]iگFf(jX߃*C^ʪ  ˧ ٿGDyh  :-Cu<GP ϼ\_h8&09b_GhU.CYpڞ@7(nxB_Hq *Xd-~]7dM4n;=#U&햗uSAEn||/O=peoP7H?ӖP ku.@ءh 6^1=(@Ucnl N]<'G*n1( \ mDi %<1'p:ndЎ`,}ЎFRsE"},kJn) rz߸ogBZq`}k Ed陋ڷ&Z0'$뮍=PQ8dBgX[M:/Mմ/BNP\1):^Mk= ?DpI5HHB NUdaIMJF,H]CzHVLaa4NG32ׯ1. I ;KʮԪNjT1L)+<%EZDƌXcbnHYcnx{b`N v5[/G.dg(NĈ|:,13ZXF6Ȕ0&. `ivC 쀨F|™T<<~̝]qYj=oݱ(cƄz$!r?OOԛmW6]SY9 \ikz;O[/M&鈗z19.R?ގ <mA&^rI*B7E7iMRGz?H${9oAj^zIʊe JĜ+1BD9ZԌ1]9ܞLocHkèXx|޼'MvN!8ha.o78p?<خ6-t&[4a֕03d!Bx L5p)0IRڡqpenv͞תbt 0zϮ;FɒzmV]1'8EVixݹV{#0~m^. @ Qo^4xGMIۣ̓<qhlyѼ}x)g Q W\B} yp:}]v^hS!9 D8~Y zlfIQ`X~mfӍGt 了|1_g8mFQiY|=^2¬Z>)`U:rP~U^TYkLI;].]d^ʳ4/, H */~@٨ 7-ٻƙfrP͗G> stream xڍPNFKpиӸ&{pwwww -3gf^սU{}')IUM퍁v Ff^& 3RdRlio/ Q']&fz7ȸX,,\Vff;Č\-M{;3=j a[@d}hbdP7<'5hdhdf (N@S F1"PT-,P79K󻋋) "- wdi9,!rL04q7r512~7F a%;ÿ98Y:-mG2ۙ@O h^wkmgf_dfigj S&5;KG_6"d@tM,HS l \>^V/B`aZ@sK;fwt0 ' 33hEo; `adp|7/?F_3{'?:`C`qA\&л7 I0xޣ`d/d}_&&!ǻ?>]`;aAnͿ;-v1 _onKkg4#eK[^$m';cygwk=?I޷ dWr{{\Հw±:!g;@E{@a7)y}eN'$ꌯNwI}hkԷB+$^' !m J/qʳ?fp N T_տXCwP8p(a> HN/+Ts"1DE~)NkGb ŸpG~{7=D&4K{5qsBչ_cbK WIQRWXJ@:>"S`)@\7&EOIɴ#I=WeYBhA&+9J&)]g/qZ7w| /K)[;̝L_ΗGrYI9$3 8s*>ʣQ ^:s B@ܸSƊ ^ c-Fuknf xBwg@ol M\Ҭ"(3GdR6l 4fL5OI gQ_3~ *a*GHE!͇3:L f|>?mVR c4b8vȞ hs>"H p31PuVOr :suT&{"5'=Bk)J]9Iߋ=l2*8Y7 ޴\eH:.prJ‹Ay:` 6>RK5H> ZZ =˻,j>˒0q?]͢J pu- ~"+~u㣝@F@{b R!&}(`m<%>iHͫFlKtލ[9ć x*ퟆ]5HΦR@8-s3_TMymD} Zщ0f^b {|HyZ:E |mni;*/9rbO샌InM{ފ"k n=5Y_*ͬMcm8Oˉ!boi7~%"bҫ(=WP},5S =DYoc6 븸?aZ))բCEM<|%R>)5t˶\N-Ѓ'"$΢ 5nJh:ꤛ4k:<7$kj4jHSBc-L7lgLT_j,%gTaE-`)tT*%~??QSq5io>C:ys$pF&:]9毉Jo6K;;$sg ,tZ>\&[ @5Xu 2[K{l|LC2?oEc`HJewqŐ쪥<4CĚ:rCo?Zfv-aaD ƏS[3={^Mڑ%MlJΧ=UDM!kJ82M{Ht!f4sFl̿CuZi,B9-Bs q mi.>[rt0R7]g2B#xh6[6Ϣ@8f\I*>QGFrU6F%K}AYÕѬW>G|Squ B+zOKWmx&XRBsKu!+~ "#Yq!± ʯ{xo j_4 <)c)X~ޛ9)Z&b۟~B0uV~8{OEN3y*SF)Gmf7FT%l"ñy YTq#>_ L?8hmoWCc5o9"MY3ȋ5 ?w0,R"hKr|Yb`L9 2{J/;۸o?Y"„6݁ syB5:"!]rm3:1D5$vl۾ku.<נ35>|,|%pM5dRJ"X=ak3Kݵy톭x:3Sq &(FeJtRth] xL0Űe ./G2qGnvٱY&B.݂trmCvGxY{m?sAHPrsv2Orm1~Zq@)(ˠbo]QnO`j %BD;iDtrK^n F<1hY%j8@tAvַ$;:hpOl (Q7'x" [BV (4V9CF! v\M~@+4,`:`<Ń"\޿JW6S-'מ4EWB #]tny(kZIϲP'̱1\s̞mރU1AcxX轌N84 V:K`y Qc"vV$0ĨNx,1VĻo'qQNXA! |QuC&$RiՄxyL+[[wcajMer_$aF?/hcLB䃸xaYmT0H P,HXw"Cpvx6ɝoe74Ä)Gp8zRk 'K%5rPա~5g/e;|]crPDM"Z% 'G9#c=ɧa3yNW33&ZjF G {XNzq+9гfk?zZfC㟹3av5P>Ǿb04kPRcLu_||1LW!V Z'pє "MfK)OZDkiٔmXV]T`g8jTS*ęǩ)*]-}'Pt܌!X q}'ForSME'sN%j ɅrKЀ⭟P!࿾^ӨLaRTџIber46L3Y%s$oN6G}ie^.*E/%7>5MsʾBgV[D$SoX3 ~ +('|"#lk~Nfr-rʼn~~k)7+ EoB;?|`gZEVũ&z~=B)lMV!_)y.(<}cz!>){h`I^h'y:2ؕXΣg5[['ȉQ = '\hOw(pl*?ahO(cLD. 8ft6c Wjv-ȊΙSi 1fH"IA*r='(ӵmnSgѐ4ꛮR6]D0eSys9-HHʢRUfc;Ȫ+췕ٶ6}Z@*dF3u(UO}tQVoqlОҙsTYף7LS#Y^}Gtdr<ӼԌ~D.jfv gYۆˢE]m )rsb Yz !{f4O]_ç{etxm BObQ H| sgk )GqV\Es0Kcm"~[{:{B-5w՘G`Ȫc'_8nH]9 \  ū[|idI4/:11{S@SDF;!]blޏ`l򨣘uRZglL}nYgZsc%Hl!$,|ytBcq2;X7@j$ XzIJ$5{5֚ 7e>6oc5}{fdByƎXzw]c+A+*pz9AU c tpfNzqFŶ zv\knV"LwΗ+V%dUQ<W+7niFnτzG@x ˘$+)? 9ڙRofx^5ًMɈ@]Kx* )Խ/%-e E&;LD1O  UobJu~ca&Au9/^tm.῝:ݟ._zW6C+Ċ|UD]20BEIhD1oD>S]pl4bMED/`1,~ep7m.}߅ٶw0 !y>>ѦK,lΰGEV^3үa@>޺ȗR,Ժc{]ڌk;_2#\Qٶp9' uQ=#l; 0z[T~?7a'ꉉպ0C#-(x*ʊ9[%Oc nAD,IL\3!LBuQ־668TsvL'4U:,xYzŨ]÷š1M7)&yt֑ZwjdTcn)}4cjXleFm~hxz{%$sdvp%2ܳ^7E:&h,fa`Iy^ݕ+Ay#c%̒=ۇky[%ֲ xy =Ե)a%7\Kzi,S5SJ|IZg￞HFn{ͷzI jUk! qYe7?W"Z ]C4~/AJZ]4dI[ n# aUgDay w$f3\m8a|Sk Ώ Nֵ[gJYv ˆSdo*˟:I'xy&V=h8 Ap26J+l:lF~)k>s/I0hcծ6=?YyC$X_SPZ=w1߲[ RQ\ %]n㓁% ٨ͫLډO_7rfX(+>W NΫVAj#G1U)u oI^M\#qG%[0j-P~ޛTcG*]KJGCVa}NqbLi&er$@b>;ɸdUe(RB,TNڸ狝-Jϕ::ы&e MjK|RNV`LXW'Y_-kSEIcDIZW )yrmdF/=I0n"[A#o^S-{$m i`Fx5vʾI-4#ȷ -FtH7 -LA6GEN"񲘫2|Ksp9$! 4H|8pрT&^6x) >eT@29;ع4>dpke߹䎰@Zd۵B90P4Z-Ҍd+L @ͰZ(plu:q!{rN RR4p.X(0[b;j`18}9)nڽrnˋ!B-hxR-so0"%ndV'^h<7<^o E"(ilDaƈU*vXHoF4+"C󍻤CLdK3r'[[IutdZCRfCRK㢠ތfX ^J Jy @-G}P)i>/XIn#x}j';ۉ|tO}zbԂ0}ÄAu_?]p5tz~(*saBCþI|4J@Z80y}P9͇YB&^}| J%8`. R4_$Qx '&jfh p=(j_ 2%[Y ů=m1ق3^#Ԡ)uCYf `JxhŤ_k~c=-;=2A7p2mgd 79` T蓧j@ lxgKsd{EC#$^$J4pCudkZ }\2,jcaihpLX>gDcJtu[9lh::4`N- N ~n{=f"C@I0A1è7.%@XЇ)EbΏE Pˬ5sB]M0'khb U"R42yAsI`W ?C#Μ>_hmhlF7T[_Jminz2>VP2qA; +S)/jqk湲LWO~Agn'Ö0i+ D\o<*yrP%d#d)Awcj Y)wJ`̊0NbCnEa]B ReFRpaD2n=^:|'9nCRAWVĕM!qhY?4'R|pȃeF~rJտ$51Tp|Eshۖ 7%bYK`~́' lv+@)69g"EH%lJC\_p u8fVɂӾ>R-4W C|\Snl3n¨)sXg%ʂCa]:~[$Ȓmg!OlvFBo ,?A1e9w7z,f[WcgM<+t>.p:%YRX@D7 Ba M0f)fL_Mir0&r(~C(# sM}066^oVOO7^W]Wz^V3QE2vרww+SkNjH%08c-43] bO-ekl)q^M ˣεU'?hmj+K^[K#u ^z|WzNiV@6BbarG)بg1H>Qbc(VNM%_`pqy/nw(k #wo 94>A/T[z9T;-^q#4+']nȡ !+ZeF2==>(͌Cl;v|13K,I5u#)C$ @af &E #ŽbvÕ pQHY؂:GL!xx%WTeĒnWW;K$|dNQxa7CS97 hҔo(::/}/y\~LX*$>̙ęx|@qna%7K0M;U~>Q9׵#I`.]^/([R'ϑmd,D%# t*Pש/N?"n_s$P8s_\6C v0"5a z~ 3D?7FbO2l (R"{|RIk=,γ~_LT) L7BN>{8<@-񫴺KI/ƗN\79ȧRN]~kɗ_?[a=K4TԐw QZKŅׯɮ6SPP3XrVN5gm^PRf\=)y!۷=sF\ U S;L4b~O@vv$ԛ }Wm G% 0*NT=$=Hls9~{O<˂ֹ?k _}& AH'``{RVa[ObED㰰~?vU/K)`w9sZJ=Wc)VX@8q7lxp$ ]V EE.I-{w8̭$o9S3%Ozۥ\yq\d In >aBX2le*WÑOS9IJ*tǔ^!sc,P-BSQOU`irɹzo}z,–Hʆ3 ΥqJ f % j G_&Z6 :u?oY6SGl9b\wnMW[rL5RS-Po1@FGcL ! R7VX~[exgwߥw:ѺI[!ɮmJnK([FFr-TyU_ƴG]Ͻ! w:韪=m,VCJ[8_;lDZ±5]=E;D*d=vh|E^!+` dRV/qC\5:K29nL⨢'mp~ꇱL.Kn,ӟA+cJ7$נU7n*~*a7hS]ؽ%a1C%$p 99n<ŤDa/XVc˽{H.ߤ"x 0(5X77XeS8ʳCnHFBűQ[6:ڟX `bKߦ3DQb 'ʿU' `V/RFb;sYƛH~AZU %7mW徆S0,谂 8劺gi)D.eu199U,$0}kc,σimҒw+ Wybj W#ebl~'`beoYi=ơ݊Vp77k腹$, gSc 'Ĩ;}pCAB-k3wd1 sz_KcČc$U0Z OF#~OյV;,VjͰp]p%wʣtmF"`o2$Th i+Z E{J;8P)uASP[.κz`$ .TMMuzR?Q_/~QGcQ<L s NLҍ~;e2NP̖r/n/R& *!ׇV!pY,QYC I=.5}=p'ҪK{b P-wZ v,%4ZT^~,,3X*n7u|'Î[E֟yqAtZ4/Y'JhFS0WD eP@G^eu^x=6=%%Pm}YejwXN$os)7^ ~NEskT+c$@qG|#?+V>bGfĮ@;ϗ :ӄhw x6咶,^<Vy(оdP/z]_ BsF9wZb=T@@]+#.gRT$_w;.O43_vd,~gLxcΞeM*=LLfisŭ?g^"ʏlEX*>y ,}"1Txq5HnJ4wNM}X酿PHgŒ\|93NחJ~~}ƚ\ L녒:f"䔃#c{RIMz`??ӯFǟ =57s⏷%Gh ,wMuUs}|BhwD܆8.Xn~d[$ B;a|NWNK}ZzxsH<5'Vſ#v'鑢dF݉E5c[ DЭ? U!FAybB]wU,<1-C/6 ^d>_/?K(J kDa{m칶Bm*Jy[?`,[ۯ̒%"Iȧ+цh#M%\}O<ۇNJɼE ˔9N8_2\IQND?3OtJß?+KM`qBh,QTMARi-bZ@X1ڋ{=2,1fUAɹ.q Pbi]UEFp:ZsHB:>g<'AMx:C4˼KڙB[?\:ӯc6\^_%y|ǖ/QRѨ"`ځC@ţ}[\UX=j3q$}te4[0;GK|`Wsþ(|Rq""D!-buRIҶդ09 .# 7&XX+ t ;ѝV)z?41P8=m~{#f_%! ,TE5v&z&{x~ӿ9lK!Q.w×`j ju/*( ])#.>Eo_綇f8"}j-ϻ\-/zJF^MM5 3~3,mh|,}JwN 䔹dhT~O;Hy iӧ6{HfI`qlIDapY嘏*!O1.CbR7fM']<@YwX=R!'0+G"nϋnU-1ƪ[O` >_=PnhCDaǝw p׿@HN uuϕOFd_߳[U^{[EJgq>:inJF<Ę],ɛ endstream endobj 111 0 obj << /Length1 1848 /Length2 11497 /Length3 0 /Length 12633 /Filter /FlateDecode >> stream xڍPh%xݝ ;%].#*{w\YY,ioSfcrPSC\lQ5N{;,Ĝ 8P j`qYY6w fZ ba:Szӟ[dPXm_2ljtqqY@,NLw%@ vrh 5@; x@Lv/.vf`'Kv<@lc0: ?#Ogbg0؀J,..L gb2y1t@RDzM .,?z%mmv.('q'˵w!vfa԰8ey+XYYy`GGuOJ?/=z;;_B/PAn`+w  b0[@P"_ c}?6?|2x03{;b _-x3sqٹll|.VO2WuF3&wEy}V.Vӗ_lK:[͟z [_/ /bZ,d\@/"bga1B%!`3e[x n+;Cxpl{9SGT_VSJؙڛ{\eعl/Kjs@;{Kss{'?nC%>Pa?T^,U%P_5!?%&_z_zzљۼߒ?h$&ߐ @oRo_d{[/+9_~RMRo7|IoRoRoO0uurzy;|`)✽@շ*"w1imdzfEV_?E7%-=z4 ~hWiy0UnFY?%A&fV` .Kʋ}#Q[}$tn[e[dF~@ uI, 3 S̙Yd(9 uأfVٝ;u H`^Lx%{}$Ŝp^}Qdx|}QX d'S j6jYmy ٌPUv"gҝY)H鎳! {жa/i{0o&vNoQ RޥΑ %h͒#ed]{bD0YPaV8؉L173 m#2M^ת2w1Yɽl塆*f{bC]KENsJDqg8s#,bPԶhOs5ϢvW|$}1UNsBѳSc9M3 d3([Ec^ I9v7 񃼶Uaf0GY&qM=J>K |-+%}&zTk+4}{'JA\hw Bj}O$,GY4 ׳8՞@pO>AA|W =-N_1`<h" !Aencٱj1AS\2"eFkI.ɡ8.OtN頚 7.FÙ syIqDStj׺wW)(u6Z}4P/j4ˌb;b(ve#aJ_$radĺdm$^/0,+B4Aa&i h JWW𓤲qg> |fmM܍eA9}M,>-=Y};=ʻ m@i WL- n"M&d)aMxHpߌkN0wU )XButi[=ŒvASiMEâ Cq-0 ub|}Mnf_uUYfQ~`/9N?J 1SD>Mo@[Gں t(r2hOG3)ٚ";n7V@٥ ]e,z*9F%m0?W'U]*AlUV{NewKw Z=CDU[*X=lNo/UO f" Nme| W1%cNՕX#䰕d;$;3#g5jTc~eLDx lkB? Xއ ]OŖbE~P<*]u %QJQR"kAvQƛ%YSYF}[12bY{n.kB9> E4T^)`ϒ[TPh7mSJCCs>r6jvw~b5 ɬՇɎB҇mer0O;h p&;[ .⾪c5wAWy1!~F+ȏb2o QѼ k|]卓K(x2ڦQaovϷBWx=1>n],9;rT8y{)-&RV3צU GL"Qeהr1ɔx`| 5}8Ɨ_3Wb\X)hT2׀[gE6zF[ 7Ѯ}>F[ dNkwʈcScvYTC<ޭ,?|؛Z኷ MUcy s`[<{#(y2辋W~+~|j*0ʼn3`OWQ,Tڼ0mQR/Noc@c̰D(㦸J"o8| ԡ wiSr>uP |ʞfNk__msWPRwMV!j䍈|ЪV^I[c*}hВew*y ᬝo.}^Ę4bi~;i&OCK|J#$=eO VEYh D10KaRnoe}#u7JWun>ו_D LSj#M&A%93_5I5Z8MٝHjJ9xI09JYQ¾DeaƬ!9c9Hx [&9& +6ƒ2dD(f.[Kʖi-Ilۻ<:)OGgP,j~ii%s{SIeMLwrl~:vxۤ4#̛/e_,@ 7G3=2`8CU"ݬۣYҞa=V~ O^ua'iaX|d4 FWlM`); rf&17M#YR#eqt޻ݣ(H)O`7æoqf=X83}Ϩ9-O~ ȥlr驑\ `5&Ww{GG,'W3g7F"p\{IS+Ŵ[2;_n쩉Sⶨ(й&NJw7*%ݮ4HPmQ=,jfB ^.SZۈ};lZ&~"ӚLWB(`xęul=*^"P}VOc*5/M$dACp%iBnhNC.)W\[@AQΩad5̫Եyf,oBL?E i1X*r#{oT[=:])_FS e#{7o4nB, -œT}6?P;-5@[tI^ 5seg_߮0hH˔qmm0:x2 LڭVz::1[>g\Z&(:eIE泌&+IleٓGR GLJ?>7! +KS 2Mw[3R|}m]"!KXũ@"·blsnlnow9ycȟ.j/;r78IZqLV?BH{To_ќx_1F:606C=ٴca`'a.fZ*ERW^Qەz_!OdГ/J^ҋ_7dv^ں[Pym*I&jM@] 9Cyjoٲ"z~*[1<8_ѐU.y: _ 񴼴BJBb=n>lI=VW)Wށ/WX Ўxitk:G@f~cL6fJ4Bϡs#3Bsdc.pnf^h<#F4{+y'M>] [˴ϐp4vP(vorD [ S` eюI%:oI^C͙a`< =$$09)ڿP/4[ei aMGD__ lĢVtHz/0^`2 ::2 ':f&\9 _}0}iTM26-ztWe!145r,.? bOfg.xm&RܷQ}osNW )}'ZWs9 fd$ l/gR+MR=JtB'9w"7.hܦJ)%b!jVC<ץ~U`rAїoUYuHPo4i,Gøcv/~h5\" i\E7jKB}M? kn6˲Q)~DI VǼIyЅ}ZP[UA0t#X N(ϵ`$:K%-Z/S7Vi.W (|:괭mNsZ=FQc.x_,9i)|Ap?Wג~f'[b=`H>^ $H籰9ilE;ʙ7]PRzXS5yѰ"֢n)RDlfo)U_guTHGE+[!,5>jAyK Nj oNeF[\1CRU;oQ"є߇.֪#'@)UK 1ZA9_t5((CN|% ;$yvSԨr~ E3S| ;$=/]MOz fG*m)O5++4{ Mi ܱW ]SRfWąߨIVbR7:H}̴+y! jsI|9evŠ夰CIX|MN+I\nzx>P˄@E^Cp6kZ  G)!efoy{5y/=-Kf*Y L*ܜZ׹/n4y}!j^h2qHǨDŽZt2Ifsɕ I/ob`g? k#C|GtRW£%ԩ$jؖ쁶+N * CpNbе, lij & x4h3>HY`^>Q|$;+t%q F-Q ("tǍ9\|Մ1X,!ΦNR4ĕ3TF!v5o !xstW=<^n^}PX`2l]g7顫a(÷Y8=,\<28:艓m e}fXyYpxʫPTEPe.&ʅUL`GϢr.ަBԚg]t8aS Ʋ/-"* XZWZ%bݾ&PkNg,˝Myu * tX:}᚜mdF=Tmbd{uTC!Cwۧ.vDDj}FHil8ACM49!T#{p$|qrDirbYnWKF(fIZ"Zt֢>Hm1֫0]W E,ÈtڞF)Y^6W8 /5x?~aG"A0^RC!B(ÍOGT.橶SWL$2' ϏO"oF&+"l~|5piM[;3(Ng[MkCPzc&`, M!<[xT/.N#r\/եʴV-0ż!XGҖ~*GJm"/>R$^V:NM0f n p! O톡x܋.%l&kYm!KװV,uN %b6Ǻr7oJ୶(TE[EGpr~u>+|p#9=VUumsv´6*I;[4G7?vǬ>=3}\J-K#AW){e *iu0R '"eQ^ N o*y\xB rTC|w`H"i&I)[2e yZ@eh:i.uzF14a`[,ϱd9vΜ%=THNOk hMaXOk[2@1& tf>G{4VDZޢe+ih_bī]r n(+dwdH֗/=iLZ Cc<" ~,X͙.>߉qBR\'c}͂D<458erqH5R2jd kht} T!yaT,aHy`1/m/QltW %3&?Ol5U3nCSwE2-.`cVز=PC$uSVA9 aãx'4 d޼q8s_︓C\M8Yj4XܦGL)2y? p*ٚWEb|?K:M̪rq8Z!qO"'2aZgΥtrLEK.Z}>X\2/C9*[y"bn[`l&ֽ8n>@_3I%*se qgqyBYa ,8UUy.X !&*Dd!FyX8*Dƨި>ԑS(Iϯ퓥kb[|D*;Hϰ.ؠeP1~$@KJ#~-FJZV\k5z W;,T6-TxW"j P!g)z?+5ƝiùIl?,#h)xU]qlo3=C'5ǍYV8D?PB>CWΠt!o],G0{ {=Z~\B9 & Ճ1]0%C`C4Ss`WRBP*qAf䃔!frwGX0ݻ$.3E;- ʸuTւ0/3NȔ%[5g̙AY2a}vsO)\_0A^Х#` bW<9ShG= +gq+IQr8ᖟe #3J-.@;? eRdVN+J.ɳRe!nMs+Z]nh!6%W{Nao0Iu:إ~ӜYxNՊ$݄֛sC{ k ^32:}S;#U4L+mNG23XX~6oxN_Le|gN.0}6db6yTϟiV" N,S~܈ Ѓ'@klKԙ1*"{sLN%Ua›)TF&i ,y]HS6승2TAk(\CsA Uh̰L`t Эչw ,hØ\2Ɵ(zXJ 0ۭ5MQ_(X) H0Oؑj,P̍_Ek@̞Y&#D++7 a&yK=fC玲Ju޳E1*}JiƠU+V#P]%Bh5Hqq܂R̬hQKY8DZ;pI 'YOSE8A(Y:lV4M}ZT~N÷GK%ޣV>P,nj.eqF .lZB-+y9m\Y}6'65d7[Y({K%$[G s.a*vŻa]?- =[%YtKO4>>JQ&w/`__d=Y +c\;g[ ÿD~QY xsNq6y^[ 50i|y()otj7!pa˛r"bUj#o<}=C$U>jto?ax_c& #Y(b(jлcnOQǫ;|ٷ44Eaל/_ F Ӝ>G3FMuri=v\~;HCQEw&Ĭ i34":$7Kajc57<0ixoԣzy=;FpK#.9O(X9QD\h .T>yrLL)vȇu(&ΑU .dݠ%DIH3u)Tfd޲pU ɛ\x6YCD,1',M]VVSs!P\ozkhFl `6Ɵgv},D8kndhܤe{x\93 L1_v}p [T~K,! hN:{-ܢՁog<]t1^\'i}|z!]cүw1s^{iQz·Tٸ| iM$H6u|`ZS{g倁s^ԃ񟥗UH_[U/`@wԟ- 1Zlot{ 7Zp> stream xڍ4[6B^Fޅ`eމ(I%JD D%zHB&99}k}z֚u}p+90(( $ PS D88L!Ov"s0J  Bm Qhy"4PBZH ,$$# . P!!=6 %Py!nt?\NpqAz  ] 09AuC @^0<7p}p$2@CM` 0 Ap0m8?3@Wh пur9PO?ѿAANN0/o4u@<u]D:ry $ rD;:dx#||!8 J>f5 Eڟ*vB{z@aP+ g?oA3(m" I K>p ! iC .` B8WD@ 8]!PdG.C6BhB sA=łZVZF(*+(~aQ(*& ;?G7VC+f# ?s w}Z`o+$&?O?H7yA<x@ ="u5z`gZzH$Wv6 }@@0_ȯ; =vN{ݭ=U.u9?a1q^P@:~ (!!4 N@ '' qAMިq"1KJ}~__oOP@Go}`'LF%F1Q.dY y+3}j\ ,?Q{q/u\_?0 |_|VO`vm"?I2s?4j!O1K(v̟gC3PO}*|â(d?Ee*z1Tk*.5=)ջ{(l[)T 3_!uF^r־2L(s9HC&i{V(vd-[@'KЕbH'"t7ec>.OXZd*XO="<(C?yM\1{zo&ꐆWB|`ue9дa~L)ͮ)>vʩԢ8CU4UJ5 ?fos\s6 ſpߧˁMN}'fVs wGQPĩmZKgD!Fwo=ї -aw%y2[u1UwsJqIG%Er)O?G"?_,]25-Ua )lc3&?{;c{rv'`mmqej +lҔgyF?d#Hf<*x'E&mPk 먼w4 Ԩel⭭|.j\`Xi8{UM>^NW+ZdnZ7Z&q IYʝX])B}{vH8$k ZRo/c 뱽Ӿ]tpm2`|mHV~` b&$'샄G~)w5-z6+ɮ{.6{=#AK;Eb8ʌp}7O*eCuX.?o] Guʮ]^FДYPt,~~;ڞ{gMDa}bC\@lE*bH(/YE"Ze]1)XU?82PӁK1ؤ6_mH315;~M쯏Uk٩=,I~0LU#poL|qٛ獡Gl;=@U: 5EHۖyw&c{]nXR.GrQU"B_o8UV;h:=@Ұcnb3yRpxlG&?AFWՇ!> y2.^̖^MVּb\#DOz?iHQ`6R-WwjKZcܧk i_@N-D/ PoaP0Z]դ:BǨgMэPo&|ŁOC 4MTz>gOy>aY=S16Kߐed%pHP}|>3AZ:KiǴ@ˇtf\ƌzI!-Λ_1HgiX~U9fFhВ2ta凴sϋ&Vp^AApRǔ)UV-Fx:C ]sEӧPǦt/۟eTN{?Nv¿A6R¸qK-y*N*}Hh=*O-bqӱŘA2XCLeEJN-SZZ!N3;6>*ᄐ޳Reṡƒ3E:ߧKĚyJdOIv説̘;c'#DIqHQm"6`̻^֪R@E6 ` e8W#)&6M }$y!gD[D͞\V?VDH&d*ee8*޽-Sb0'}" {u[:X,#'@V3t2N!~I,A\JƫH&xn-I `ӀJ;c7+[:,~ Q̦Y"k`cR|޶ee JvEj!UB:8dj)-3>19o',0@jd|N!) Z1f]g.~#C\}5ǹw^ ;'Ἀc0#:)]}mǐUQhb=MK,3tK?3^3~e nEzQ/x`n/щ۹=Ҋw䶃O,⫥F=t5d`ҼMy%oOߚഁAi K 6R3*һEdᠵj tA{\qBN3;FIMcgHXƿU}td+ڹS^4$Q:v t߄E;m\r,&&9յ :h}d[HzAz:Aj l ,)CQ7 =|=ף[a3${@fA˄6_P#!R^m)x53[Y<^(?h9(46_#ʼn srA2ENeT!>b9ٶ?^Nҥ|z6nE+1PLdt8ygzGj->q+QbT s3yx;ji>ֶf41*wyl4"80ES bOyfSJ*-I\SgwU[_^b[T:b9%]˲EFtq N9tKf4FY~xL⓴Hi=So^+~25qUgAbx@ c&˻K!Qp:̰3z3Ǟ<[;J/~pYYA}5dH=%!1 kK2!vACP c8[^#}XLTJw;&XDT2ˌH%z]w{J)`Ɖ`JC cu$t\כ5o` Xs*е]+k8Tj!+uCaki; =FjAɆJy$|la>/Sqz o4rjn{ƑHt6^wfX%F,*5[=5IqY,haIgFVo׋tO'z䒓o+gm;Þ&!K1'yqnozfj?K(U,liDLBs^jk$&T݊YzL}Sm&E]J5z#,|>c*tהbl[roOa'!rS:y24E?$&s>x(٧{iVCwkXWa~#f2:M^9Kc*JE\J39P8s}̅wzw { 3A**jIȡAP؃6Tcgt! `3O'C!5'- u6iGq靼8H:>:A(S,5i{%нK-T ĉyĉ`Q<.-wTuDR!%*R \-F8909BatAEf(3Lҁ(͋ sV8jʭFu'ӟivnV+"a?KE07Hϟu -Kv^}YeDjkRXN} yNqFȆ /W] |7 fHN'8#[:>ɎEzs۠V6)zp7SaG vz)P%6ޠb~}CeC{Eai~͓3/UГ0J 8UWyOY=OwouPb▘| i S nt>R5㔑hFk/ +'DI[RԨVF7wi3 [6T/R8yxn:zn3v@eeU`>Sw0RV$bJ'#k+X7c;11-ƾ jLy+NLә[R|ѕAxcF?Ga[Г'D0Y.n`Oy%-N',~&hى8e( JcύܰngQxY6Y(gqҴ%|w!"_\3%XaE\=G'SuH":,=,`Ov+foʠr]\ݶ$ Kud-Q^d|d8 u $3QfƈWRCsT`s}CѼE W ֎.T~|"L&sN"xC#g)зGΨJ1URI"ۑ37>Ed6=1wEM )y̥ܴ#ύIQr]T&Ǣml (a9`r*3ȼ+m+,kbVa:VXW)!E sֹ=]ط @f0}A\̹.?'aWc#b ݦT|Ih~j/lwnoAM+9n1',U3~1cBz endstream endobj 115 0 obj << /Length1 1543 /Length2 7848 /Length3 0 /Length 8877 /Filter /FlateDecode >> stream xڍT]6t))Ҍ H3Ctw7"1C ̌4H7HwIKwI)tJtk}ߚf>9>j0S  $A@r20hA :8 $F{2@/@ .;A= spC-}y01@^df`{2ihh̠`B"899vR EZ4  bMMeEЄY pa 5#SڛCMy%/_6ߛqU߅ff0;+`Te8.H67l烝P[=qufp6KۛK HIA}wpmaXP{s4:pjCBܻp @#bfO}Z@p`'  t[ jB,~Xeߟ?0^a0{[1,ߔٹ\@xyuUC^T~~a4fP `yf_)'Uɼg #y?ʰ_.䯉VCoT q{{x8< \ 4KL}[=D xϞ傸?B` "or?ji{3p+$-^;~x!.4䰇!S=08{c[@\NS/}| pڂL|N8]E-~9cw LߺʿBʙ}mHc?\}(%=j6X$3 1nSpY|13yj'~s6ǫi;ܖTGi ZL`Ə$ur/}u@]KO>܂AF32s6:|*9<9Mҏdϲfȴ1MajQ`߾#:J%.If}@6#;Ob[m #jʖMgh^h8"V^͂ 5ٓ*~&(4&m7c,MAlzJ HI"_uӛq:LM{s6c^[М';G+`Wm҉{ AVXznmOrDݦ|k!EBQȷguB֊בc6 vɯV;֞؀Q]$i ܿPgD~ϐq7jl 3=Dit1_/J^jVT/lO9elY76ҸyҴICg#O ^_ӳއH%Kv8@~tM1x'Bi.xUe&BvMK"Y%%`k!O7ܭxDBC :ѶPs%ZQl|( uDW8 ꊶmYֺ1.uߵlD8o5{ &}58߻;W5yz=U;LG<`7_eh/ |'rr-2b,8]xJ?ęRy'3ԉד(Ug|G(4\~=c OX|^!C[=mr.N-$ޫ2RMI2պHk"{mY6t୪Pa\$/VYXUV0oT?Ԧt0*&x! (c}pu/:DG d|\E4j u0p,:†3oO%"] AAk2q*盛z]JQuz+NSWAZrԽkD8\Z(,nÐPnN3RO']$V UgD[}~"*R +ngg5 iMl~+[u^KNfKZf'M: utT6,2AJoI yy aTeb21f_cT0ް~NAЁ+L W?Q=yEn)2kCK~&z:9@$[1htmOɲuMgDuf~ۑ.ͿF8q^&t0rkF)Vz<}]SB~/9&Yy!+bOA9c^O;50DAE&ǻ]m|W4#?eѡkGnSۉ]EinDUdINP!N,I [B1Zik tPhO2^GfUW{h%ck-a#\6=Ӯ5ռnPZ{)[zʱAώLNڪ(rK+?%WH 7dل"C6Bc̜:hB(H0OیwX/EIkxRhݻ.|oi.\RL YU3iйᑏሇ~?.9 hGJnwOm$al/I)rFm4H&&e2F@oܘxXJ2v"O 6yWis_Onk'f׀؍KFG8x aŊۉMl>[M")luXl>M|@!);V[fEd碇 @k]|ldZ w ,|To$֗cgЬKۻ;hYBxF8E;kߔn RNrk6Wjy  \OF+PNպ=|=Ѭ"T@6N;u+u[z/BpA tQ\ Ⓟ\n4ՖbF2Yֆ'O/%_ w[Mm3۔6BqMǢFO]d8 vUS^YȐj5{FԘDXN6*Ya /{2c,s<` #ّIOBwJ3qYn?q/+O.9D.ƩC fPx!Ӵ*$!\OwJoDžFn>nf?6[P ` 6a͍V㌛9$KeT&+bž&ވ)ł 5xnm/(Y>i KP>io]-onk)Utq[3FДnE}ѝd KG7qs-2hDJ 3jgS==tӶ*/!LQ71RXD3'jbƊLp?jD۽7&N)L F$)5'+GϊNoP"D2/iy9 =Tr\e-Um5Ufī(jygO!9HP'%gOP`|܍"H,u(n<~Y澝z_c7_4wxd4C̈jwtXNmm LY53bB\]v CI'To{)lGٍ|H2oO 2Ol|IJ+(0]v;7~—p*կb+صIa`e/ OHWA"JZ|3ۇJрˢZ%s TEԇbWi!{a-:a0r5 N {Ŝ[Gϙ+糁eB&='Bq,^R,m j 칕ÈCv,&+{y+IQFA۶p{czXT^e"v&.CJɲ?xZUfu7}nØ~>~QN6-/IPNm Vz)%XL fǒTƯѪ ',wv $FbzegjffQ|ЃoC2O3:rKv;'>Mv ߈t5[!@EF%zౖ;eW:*eTS>g]-v 2 ^O _@8llŸY{SHzKdku80d\<;4eNL.z%#J(H~c+hz ukx 0)Y݇m<~'c }@eT_Čd]◾5g,/V +,KةŦm(S @$ a"Ze 9/KsT0 t§L1Q }+T_.DE0/yo}'thu'k(xKԥ DeyO߳Q)gR* t.:|]畀7OڈM`Wi.2&[^b6v7~|P<~B:>a| u|T+X_iӜR`̒#r~Vߌٰ.'S) &Ը)R1Svg.[;f: Ad#?;?ПiJ K&*PcpN.pᰐ;"<$`zr*ŭQa "ct"dac::AxfOV2v/U6ԥcs!W,UW8eX 1ՙg{޽eEg @t"6?{%඘$3EQӍ{4 9ʶM23۩<ꂳ%=gθs*eJ.#@ $c=1+5BO'xu̜5-C~e.2XݼAО̝aVԉR[@x6M8 O7og3/L?a{d}ih!s aetL,ߐn8>c$:,h,\Kُ-EWb V(2/97hEU":m_G*41D hcՁBQx՚ʾR|7Jćz,>Ooe]~]o_-zn[Y}1KKKx*9koz@F@U-rC̏,x;jpHa+! ڀ -Dk#um\@5GlAFFW,& Y?QI|TjϪ0:8eQI}%dcyDN XS*k!U~VoB:?~,iO>`EsMa6\j+p si`Sn=QhZKmД ,xL6)o!fSҧy2SThl=w"Hq'XǏ=L 'Shg13\<.ĥ}h2BS9>WyҹU8g #FTFcIyüb&@dۑѥ1b"df g=z+)C}۪8•4V\l<2ONg%lL,=I|㛜XэIz0l,]||K9SEqq>4ʩMݝesNwΓVfH-gڏ~aybd+]> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i? endstream endobj 119 0 obj << /Length1 1437 /Length2 6532 /Length3 0 /Length 7507 /Filter /FlateDecode >> stream xڍtT6)-C 3t7HwK 03 !(ҝ % 4(7sk}ߚw׾ zܲk*aHg_j= akm\7 ijxfǻlurZQU]d %kKӯ̢5_0It\%{W=?4DK~$RU2\#-yAoDN${JqzVVPdՐF܆`ǝҫlOatBV:#׿,QbiK?yp7H D[[F0XԻN^ܝ3g([iG/%Zg3f}Il}ʧɋt}[ @h+@ a(< |;qͼ9pؚ-^P4裹xb>g" U6$ol/M~+i*z15W+Zl<]9;ٽh uLdw%ëq`Fd\%z-S1"F/^Da}%ߺuX?I,wG'Ku(Y fiD>&kv_YR,g i2 ,˂(o -/5|ڰ@&vyGmloEq70ح=LEYtpޒQ`l{ў_Za_.Acyk.qBP%&jǛy-G;æ{k+'(X\fOݏGKIɗɷT2_͈-chD)7^,/3~\8 { :sXi.S,9Lx?"(>d7- +14UH{7w9S*ÂJ]e K,k.CvxbF^#K嵄'uڶJ^f6GNJ)i )jĹ<25°u\"0Ȝ1:myr vA]s۶ǣ)?1Ջ1MF1tt(@-_0.0 :G0uE2]G\UrPg[p*;'^\Gi؎T{!5Ydkxa͊Y$h B8ΣkGg c3ϣzաo}v:7sop^?0i쾷B~ _}j=⪤ʮ>YAQU@8_K !-e7<9G+ilzKPtW۸vBNMXkVv0Zc>' x!qh"jW?Z1)4)V>ϵxUӁB0| =dIx06E1jbfם0{}*C%N^ޯGtXÜtARse̊ȅjK>}&W14 >}dKᅹz=2"$F t%{mhcCt# ?99&`Q֢N.KS,OmI`OI-K(B%z]5*pĚ%zb;"13~X~ ![_~x!mg-لLZƉ]$czoKFl* '@[)郈lpSsٻ^nHdgZ57Ih,H4b0!5^cO3?@4IO+Y޶LREglC+͚/?xOl'){ZHp*!?p NT\!BȌ2*ZڤWO: ݰ́9's7',OI*_>7k72 dm$xп 뗓gkD)/^!|N'l"}UyÃǝ=/OTX0F˅ޥԳy1sBp(0HP!dE ajK-`]LnʸiIݲC aQzdgRAg ʼnԾѐ{?a$ $24ZGZ)7g/~5e. PH|iv?i$-,X7[{ Jv5"rM3vKElhuU:q_2}nڍB);3ږnWAOhotX <-wJ |~L}¾Rs!' ]idƲS$E ;@ې)SI{Ͷu E,Ն4= Zv*+`MP 5hst2 ׁmhSxZqFsѦ/Ë/ӆ?> E\iq/qX  sc7wi(_OqEnJ||oOc_SH|ʵ}Tu[_~XV*$ vDK@y$F `uݐ&.LL1VKZER'P12\chLm&|wKWs2+N}WNΙW+dj^׀aٖIٙ7[d@cRmf،8k FK eMި%f:'s3W cY,Q ޫRsʬ'2"O؞3ޘN^ vPcDTп9ƃgxR3D8+q9HTSmK5w :643  fr$ak1ƌCE@/>#C85)hm>x`U! Qdxo\4Hà{|Se$o Ɔ.?łIHE7}NOckB)^^}*OW ǝIpDS5ۍCmOV,TZw<7%]@[Y<u\Q6LYOK'l B{haT\xluғ-ϱGN wD K؞0m?K%-zpQPyvj:OhpqzoN:ʓ$m: C"MtAZw89i (`[zkz23fIU.f(^H`D($f4LaeM}y9.oxg}:6F<çe>|Bx2oݫ.U\U@m.7Pc5.[F"]YU$~mВ̵[r^f2|瞞&~gnu=]74ls&[ a -ת+ǷV٤LX ґ u˫ ^SkjJkGI-DZrJPjd9V/۶&aw+9̔< 'ri>5f?R M27T*O\ ,'MJ|{O(F=:[%@UӠq0N Aq D2"kY+OOT\ K;co9Fwο.NMz"Rkvuh'͛V6F tRW30YS5RRb[M%V)Lu.24)!o+b.:_>h}:[~H+1a!oz\k n΁lk9|/6"6W7#M_hመI=Ѯs/K،*v:v q`Rtf]K詹ҧ򼳉5A hcT1o!>9j4k$_2GGҌj'F蕂LK{yH+͊gqRu>& {HB?!bSamm t)S*xםO ?>3pI(9'μq9amlBbt1Ҭ $u^h:G$M<8'"@x.wbp?F endstream endobj 121 0 obj << /Length1 2620 /Length2 22317 /Length3 0 /Length 23798 /Filter /FlateDecode >> stream xڌP\ tpwN# 4@wwwA|^սEUk~NSQVc1w0J:ػ22TYY,,L,,l֮@gk{? Ĝ& +N f `errXXxg7q6(0d.b^֖V0 1r3:[L\vf&53k(h\]=<;j@6wR8(a{Iy~/] SٯC|*Q?h24s ƕuv#{T3=i4{&[ÜZ:K>.1 4a,Oqg@i62C*#![zj}coRnN" ps7șL ( ӵH|a!vm.hW,I@S:ƻƑn?"~!"KV: +tdRq.- ò{"+G/,,<нcD9W1~ \ɗ_%3Bir%#rcUk̗8L%^qۜW2R{ ÑA^x5+4Z?q櫼=b? {k~}[V&j}pY.:ѡ墔*%Qx3 oJ~.Ʈ1UK]qgɃTF`I_H w`Q:@'1] )m-2cܨ}Q@PM>{wΛ  "&?THTovҮ7i>FXD6kx-դ7NƠDaYNJPgcg~$mtѯ]ǺP&ߥN!.q ?ĕS*W~0-׺r>!4<n^Vo>Z|3;DMRTf}WN2%"ZW+&;&Z F JVHyw9;lh.!2c>F /v,K)ti'}7l|$"j8眘bY"w>]4-0qdpQ`)`!<>q}4FZ"/|0g7^>#{*rߙf +2gI^&4{*(,LI>AڕxO~|a[PF#)%JwI jUmh!"pB U2z]9]j:HoB[3wJN{pp!e UcSէ>pw@OF\&FXe$tU 􃦎>kc*8m3(JLJY m< 1 4]Q#JABF*^dђpޖ VRމluꨗ&X/iKMzxE x6oUf"9L2q-z$Л\K+ jRߐs;ٖB0\㔨_= 6ZmNۺ< !AmĜ>g5^qcv?Y"{~{nj#r%%}~CUs|0y`b9S~}:̀/{7r&qb&gQ l& 1>Rsab)Ű(jx@Gŏב[/=?*О6" sw1C0K!] yb$?hYmQbOH8(mO(N6v̻{NmSA|꼬Pp:2s3H* caHqbMckRa6ȸV/$sWG}BIUkuCCEQqP5J-rܱUpzOC:7g:N@E"E0y//g䂻P?RֿU@Yt}M+xʱD?ҡ]1iP「v~?lod)+G$P{3:PQH#'Yrihncsf,_obE#)}B~ce?#k {Lg;sDt%w#.7X>ވF1im8 gG4u`颜bN8[51N%/ фj^s4ܗ@o11ULeT+]9M} f!W$ ;0RU ^.,G;JZzHw=ZQ}Ī&'_rt2j96W."a1cZ+P d~fRuq*-yf 鍢1W/m昖t˜Ќ~گ!w(=(B3#'E% A}XĊ6&:+ [5tV}nBxph۩9, mWhCC}wh~X5|j$]W(ٚwXe_%hXF'ZWT bJlԩ/>9/ʋk8 >/9}+ڍfS"Wf'C#&),$\SU9+&I3Un~}?a4oFtÔdQHT5L]1 Pa_ϴ[驄[09xpuJIx Jqup>sĭmL g|~8,..,m;s5 a|UUMrm?URrZw'Z]ItF30a5i$W趸s(=f`dfM){I/z,7IA /[~I';dR%I .ӰZ~OM:}ц Hw\D)I ǐ=4DN|y[=6`b uZJ(3U D lJ8/>ͤ.+UYd葭xXg"){w+쾶ĕ-297k=($HT\N8".Z(@g68?"UyR8OZNtC3sf0HxuPCo'=CC MP)XRi mf_Uwpևti]}X3.0)CQh/EvAJM6;,ٸ{;biO6ML'7vLj;=cK^Ox8yH:7b_+ 8aX 2E|ٌ۾D䈨a7)~ߢԒ׊@Bx[-?gV]g bv tk򀞵0tюonbI`U "H'h[LJ XmO©ᇠ˕hSzX7(mCxF: {A$C/*2"-1ɣU'\ooKkzK.Apc{a_SRúe.s,&CȑzUh:${<OMHr˛b>uB6u>%&ŞVH:*q#m#4PO 9b㤼aRC8gbES+m!YdKEmזǖ&1$sSz1֚J˧  ,o_9 z>qK/|O3r:fh]#Mq=r*m) BG k~;WK'3SO泈 w=p5+a9ÍFħpԠ'GKKQlYMwUVNm.ȌqrRܱ;d*Sa{.0# ,JڊzD/b/?}5o\_CRAt/fԵ@ȁK$vet {/8>e <魮 htkA-Rn)qw."jy~ԶkhZBSKGS~H1~!^P*\d~s1Bc@?wp.oQcϑrtr kZj{Q"R}8}_I\-NI+swVj 3JcH(|^0HΦ3bPi߇2"9;~?HUA `!PĐ@rUuulC+3}V7^f.fBZt_Q?d(J1dv׏]s~E/pFiv=]1+=1*dl0lߗkQ X_ 39<1kЍN?s7hi"Y!;@(TJxW:S.Z%vdq rWV\-y)vOiO"t n[R&)4Aۈ')u("E6PO#P5uV3[+|== _bAq{#4v';?0_\p 5AHh[YBy. V#N~dj~? xmntN|#brX'"V.>49)]tR.N0ss3]Bbxle۝B㨄 aͭ Lj7>.!tU)c,ĞTx&`{ ,XC)S- <G 1&N~+@W*s5#$'c&֩[|ha%?C8DI=la]nF(i[澞ueC>Sg.}=`:UӕcIXxAx!RD祈r7p]4ȣzpZ߇Zl;ToTNP_必l^`KGH+og{ڏ;` *›BK?t,ݘ0j?;57o̡ KRܯZ#k /x\YMUy3TCZUacĸdnq鑁TwkFO"Jh&rp{¤]֥D1}t._s ELjTT.uryO֖oILL!5JP~QieM w2aF`x'l$@7]_P$8c+UIŮ0)f].[3K Mu0:-/)pe5 ऩ;9SX.0'aNb|jhyDAՀ +9\':fB[M9]m}RkvgKdWXҾ@H#Z]F#=W`<=SE\`NT~Esb+tpЛǡ UҬLuS-&:'oeID? SYhQwYݧtẃ'dYvּ(RG.o<&绗S O0l(i״鏨XͻB8Dl*?*fvHͶt~̖ktֳgBSH0?C/J7{I>z{-{|P~!Bj3EÛ= ,<6g3T}B~WI>d!?K|Fmdp_"tAo92}r,V|s偶&Z|Bݻ)[6Ñ`,^p-1&Fd%a~pE0Mݯ^kO?mpmX˶QPOY[dfj~^dө/ۍf>H OiXS{#`/Jb%1l 'G 3\:v-gCxcTer2W bEEGAw_こ^_.PS?\e>On5`9S|kDT# RW+l_p1=}lC,H0D7MϩԷ#2ǎU|MꀨBL]_A˾'GZ #)A܋2LZz KdT^dwy͞6:wCGFH*>1L`ui%yKVTEɠ<]y>|l@aYG!DT2So>^ J%1Gɺ01#1#P8lΎ(y#8Ns]z$Ah g8MGE);mNjS1z^54{};kp@%lJ!Sˡup= A!+pUKCR%crw 1x\˃$U;]CJT;|:bE2),NRS! TM~tTgرNj$xN}= ~5q5נek̚b.΀45}&1bD}#kĮ&5bhjgO|J4%<ٙPib2dqV2D '\?0 p`KQלtcSdC9ЧJ*%Jܨc*L-OGߝlV{D$H#mKy[ܥpP0%w\}bc uC6 ܻ7-vc^r0XURGeU;}Khne#5%ntrVlT[ zD| ))L/в6v `[:,p-G7࣢犅v#fUC3HμgAȍi|3>]'l/qJw %:JBO hH-m.3+u4KKt^dǙ&8$QD(KLe~$/lBӧ76df=(y`b}5Z ]!DAяBÛ9lަ#|puܺsZe#bWKBTjub"-p<\&c9Ä/:ljLfP` _檈ho~;8pCOZR˚Vj]{B*al E-0츰Q."1s.?cX60֫@oy!NMul]aQJ<\߉2bQd"D9°BM#};as+r@mM5&-wB4:*_YE#a6f#CA}5+;]GrGXoC Oc_E<]mn5w:F)nm>j#Fye)d쏛T;;Yl N*:1n8='j>N?=+*i]ʦn 6 qWHy7լIdtn`|k}{U4=Aҧ>w9G!dK-K6Q΋M)(찝ѥw$Nn{$)5Cl8A%ɫp#@x3&Zn-;xðA7yEqͻh [_hX#sMJDPù^LJ//q};̑~Epߦ]GkJ0_!';4hLSĪ3y֚㏜/pZV)^-+3KlǘbV,L $bzwо_:&)r0j}>L(5ZA(ڋiZ.쨑#D?&dGrUQqex1vQY}2梤 ݘ:fqߍ;e$k˩s&S*&%C,S=YyY$zV|JgZ%%f˾o.nlsvv{ /9'ARN;-WDS. s({J M;Dn%4P?p) $cc2]"Ɇ4̔{d.FŁ,]֨ 컟v)[K5Qr?zg;z *%Tʆhf$O;` k5 0+v/,x.?;q(6Q_9l+%$ݘJ09]b>Ξ7V΂8lwKbjy6(<1Rj *feRZs'BKQ8ߵQ]DCGk S<dyǦ״n?9?;;!fUҀO6VoqJ_g< LhuېpevӕkNܬGo,9ND˜sg&2Ă6?u٘;2E!9}{[\xFZO>#N>%cե:$wLjѹ3}ѻ@Z锑M[oꞘ6Ucfֆxq*N/҉ϋ uuD8T3Iz8U11 %9_If4հ|NLUͩ1Ȳk?) /7nA9PUM&@*9aӉ&L F#ܹAHq'ԎL!H5sIY2+uejf .OI 6ٵȢ"׳DU fYHz^8پ0O $\LzJFL{8ϒHjS .(C͵`zfҡɩAL79[@tep@7e3BW7{v):kMç%NIyoXŕ#Ժٮi<蛡yV8논JIr> ir̠ܥ \{LsT's6IKTd|Vt$JBn)sF{?x]oÚ[9c>HQjN%5Ym^ۖ$&W7fpt[v#P3N{:K[-桛l;򮺤VG5&:Gp 6Td0U m+vW/z>CPEx ؏\6B7`d5";Ʀ(g HE66H BWO[E\m{=}!n:EA%5"JϽ~{5 (/McnvJ*Dɐ 9rDi?^>Dy,_̝y3)}ɰQԈ:KD#P`&yzo@7Xᐋ`X_-6E2Uuc/WF5@GEg{A)WS-j+XoFwWs_4'ďY̪En2V9egfM !4[J _mk auslWyV?= ''ov7ƯSW @PЩ?v+CNQx)yd胞:f^7?$>~J%J(ޓ\iBY)(Qc%̤Mˁn*qQ<΂h2k ș+ rz4:VD0eq%jU)XEۚQOL`~ra p(twi'ZϋQ%u|3m}0H7!"15Hs?-%50ͼ 79w@jtnZDCxׁj1yȵ5S?_ih5i&da8JER*w&9Fyʥ lQ @]|mͶP/_gg˟#ABY!mo7zB4ĝAq1A=D.(n'=s8Y~іua6ΕHQx.gc7S@ 7_l0[;U-C:*6O8q qSם@f yNe4{#:٥~/:(0Kk^VDgpz1u% y9&nKR:vyrޕE%24 0/%JqT1?LZf^[矔 [`8Ou ,˳5,h-IGCfaV+V9f,/hc ~IX (&24:\h4Iڌ.[_g=Yѕٖ+\jMɷ\'/y47knK"u<KE_@D-m$ =ʯ˞5dk9=H{*ftJ==n_Ww6f0wP?:/P~!zϷ6K+I2^-#\VML_Vtm#v:9oɧĄ+h$N"fB%)xUu[d@Y+5+jAW^{Mڇ`ݼyQ@DZ"we˶C9g Sw5]yzSK\½HMD=KO,O@@M]c.-HڒB$ruW-iºαPxyg8*M[# a:%J͝S(m?"Sa.T%M>Вv0x4do%sVtg*wUOC6 0&tӐ ˬ_ p3G SmXGY,[b@6kJ8TZxycOYznxK# ` bkM#(\7,-'h b ^Tp+3+>;D~}Q+2ŵ[f{_!" \/T U4z";aNWw{.HR !P9jpപ+Roj])o?n^*em~o-1TzHwz>+4YCԭ7H$g2!99RV+[${2 Kq;ҕIIdӭ4 ޢЄPf1zpsstHr3 ,@ji 9?bC-xaQ0{f}ұS,*f̘\M i~SLgKzFenõ?b^5r6(ha~Ƨq'r茶:l[e=#5UHL(,i܏ ˤJڣ Hd]z*;n#ʔ#IG[X}~2D;"?Y1Ii9QnCaCCCwɉl$`!t+},X~+Z&ߖk/u=̘W 㓁y㗰s/K^)~ Ev "ڞ |>]H3 ;iBw7 Gs6 fAf}6ڑ9MF%cHsOk<>2 TGӘ& #D;ډݞgdE ]1pS 'l (U-F{#6Z I4$ZÎm>օ0bɹssvY_ yūdS;}D;[ R"k(SqhJ47tnbP9m Dojt5Fc$klćp(]3r"+5Qd,i$odhQN|~FI4:j\ȇvmپVZ@,xOZM("Skvo9Tc3g.{ߤao軩?BlYʲT*KG |b0B'8ALQkT JrW,y"x]K(ca,ޡe.y`>'-DipSp"ǣA.!gLBwRl4#fW;. oG:ʼn#;'o]4pBl)Qni.ts؉-A6L*cWdBhY1޸V΀>iD1 qxeoE%F"+_=OFFt0zUT#TҾ!vD-,TQ= aK@t=CN\lvu [ 9ͺ  !Z pyHWnj^ekxjTυ}^?#D`7`a7LK"⢓J@J_fid)x:1tafxuBYfJ:D_Uj`=11Ph9D+/ذnH\$;Xn]Rf}ĥrzWp(!vތ}j4T?"P؆)Y:/䢕u0@V3o\w%3,Ȑmdbn.$b.'V6듧gGpQ>r@ 6J\` 0̑lYX S6{FJ(I\h7A%OR},iE@yㆰʘY0:==[ /,Wl~YVqShB)F lNGJٚ+ $As`8ms;>X%0-P_RfYo3.-5vu}E_Sn.ǏT3Q^FN[hhK7Yz7EJ蒎[s7&xN`O+;ٰ?T$4އ'^c{v@"f`16\>XDrD7811K6|G:y~{Su \U֌\?A$$}+qLT2=&C:< _.4˚z:6cjϠZIb&Z49Ñ"H;}=?',ni [RfVgZ|"OQ.cOgs^7R<6M-4-:`O,C N&`oe*p =Cu<2Rѳ/ؑ$O<ҖMQnz`uX:Ǜ< .8ۈx8lnkgM4Kdԑh;:g*9Pd ) D@PϿnv i7gT(:S8E;hr NFmvk8QPO4ǰQfnN4iuxLq, .@}JY -)܌WPƿK@VcAͶ1U]y^}G%m+)NUd]0w6$'.R/Op7,3)&4gLHMYON//)d_9o}ryO>x.t CS|͟ dEtxjk:y4R]hK*5X_<^a. qg#vHAdFdؘ<`9 &r۽|zVk9y;ҫ:," `̮5Ȯ&3SR[Sw&><3"^D?G`F|z8!.JTP>W?̼u~SrA?Skc5s]++9 Kۮ%1;9>E[QZXPMQQF_&߾:ByUWNyq#Ml@oMK3 / qB֖+wG ~;SiBBlЁ|#wOQoݠʌ $ܪp8f|QAa'='<#5mm-`˄J|\(Uj uxǔᷳjxC;/P\x=PnmdqMl›kOL7w]E1Cƭj0sα`-GV` zZ@u Sh lm&9,.עbA JQ5?q(|R^B8KʰT4BRҔXWCaj_pFHWeA> ofbo{bt49Tm02YyZDdNP8iD] ~84ó b /pr <$wi%j! %pjκeyp 7n gaHt8g1=TJ#9]fJms^F+p2HƝk̘ xH(##+vn xk[r3:48ұT)ayRXl"\ ʮ~ICl|(VK^ F_dXc{xB)'\VdÏtH[P θ]B# >*lQ%Q-+>m5]4w3 3kY~T.3r.j,A)vRT5%-k5pis<6w^4}pZdw 6p\̲┃Y+VٸU7?GUY_;u潚t;_,K[/=2_CQ#I+8WaFó"b_Z2 ?cu/~[7h{O晵rŝIi${.`\X` dF_6B5Go.zuH0' 2$ 0o:Y!8bG&4l7B46)P LF3f3K/$™{z_?4 ̠}mi)}(LFZ!GIq0Ǟc5i)s@te3*-3Yf2pFC<|6}iwu4>D1lJ8mhbx!^*D МF]6rIK}{a$f~fO8jmzh1yǙG=raN+M>=]6tZ=28]~ƴT~;1@!],"^#/  z$ #=%2@EeBΘئ;={p[]JHqJ\)d͋d`XIe BgU`H=)\\p I%QEEÁa> stream xڍVT$F0 i -)!59@)QRZEnDB i %U@;=޳s{}L𲙥A$ `%< VH7 xCbJͮCqL#`@Co DS+@)0X/G V @M$4 "=p*-0 DQQ^w8P"aP4aPo%BXQ%(?I ]UDy-~pl .&& Zy -1\  o$ #X 6xqWHBNgDH`( A@H;Kp@(#C@PWC@(ߟ`XO!W%ݴ0(:6 n=^hL D!~QpYp?=ʂ`yE0 <@[!`> @D ?4aanݐ0DN?cA` @+G0h7dlag'&MML/!%!))4:~P#b┊T;r%Vdx@, pʻKIܑ N[3{(@ԺA=wB> jb[Ҵ+'I%RYOt*mI]ockxCwgṝMv;=)0lk+c.x9=o"iC&LQ/x^=9sR7Qpmlھ6 a* EјjДVGy{ۗGLtM<&}/#.Q 4XH[P] mO`||Z"?2Hgs ()QiLBefݨ/f*ytZѭ:+wu1W'.FY' KLyVڛ=3  ՠvF{h2rWdDQdž}rAsn=:*(%A|țw0zR'|:E z +ݟ^whz6ӭ6wZf$;8s?<+rv iy>ңЀ]k?en~\_q8S)g >[1Uuu08_= :Ǡ^YŗkÐ>%]㼃p)fn*Fgǜ4|Us4byp'XJ6v)`ځ z^+zj"PR^cx`G1[ʧLM1f2lu:'ON{ ;cJ`?1`Xb3 +mIT&xFͮ XK\P#g:$9%Ȱ歪MMB_-UlYO=WYC9DފLkgv0 W?^H "k<:$WZ!neVz,^,H,>[g?vCr"e*5"BȜ]- 69d('m͝^Yp!gH^Qfn6g80b|9kr -{L6-~8[wG׿VVz_:C~I7G6YWJ8%n]+r^˘MqKYŨ-ɔzヮ^5%D՚+oE=40zЍ$ \hQRBIJF|3} NZėeCOF3QCwQ$di6WE[[:(lo-PӊP}+gḹcb[n墦Tʯw1 K=&AeZWk?޸n&Yk~% ;V\oW 1U<<&x7 wɼy=m!oϻƌV>=vo| ica揕^ˉ\/ֳ5Oxp38m,P, fu>#֍0}FDI)&1<~4Wu(j %YϙZü6\w5$L@/)pIIԜxzy ߬BL4mz2n|}%0:&fO]íc nԍ?)C,hؐTBRwfnװXiY;c٤!sVW -PW[SCx oYƹ{рeYNȔ (ɘEN18!CGA2k[*rO1/J~?|2FWɍpNM[o TL7ـÉ ca?ᚅNAi4^:# Yd Ypԣ'U>qWYH"k7MK/-RkpK.J(dL6r.,ۛ6Z~C3VUzA+>|C(`aF)>jS|@5Kqj B0ޓN>(d ^6w znkt eKGƙ7x7\lLl9qvu6QSa?}wbhjvmQ${ͤ<@m#ElLNHO^E=S3ΜX)R qB!{F6[gi?lp? k3Bxo,kd}G"TZ er-i2۠|QL%yΊ3ԢEuj8 2-~: u`ۚ}S&Ԁ襨))HHu\f92Iy/<dP-{ HEGodez}Q@\\iZC hj'L{OS5yioKeQ-hNRhЮ|bu~jǪNភ'ڋ>G}Tb%ׄ=;?buQveᡦ>2SNqCsM9\>`-od)þLo͞Ĥ/-`nsuJniRSj;#)Sn5`QOb33gƼITg4[)u8ٚJ@=^#+XGM(;4nhG;=Bv#@PբĜ8$oCbs*:DMV砇$.t[DIֳE~𛢼ØF溜%tvU2u$H*_:T@Rǟ~wcǨq!|e 1A!}ϱ/o]opTkz&*>!zB]N\@۾pd 4OjD,a^糌Kh鋅1V;b"ۀRgnď^C$-IKK{OˊX}GFR9zvv*s$9Uwٮs<571C<{I;_JZ: NŒLD?%gyK K3Y.ʕ+Yx*X9qw餶;IZm S?y#hUciZ~T,&>i7} xK:νMgוƋ[SԢ:_e 7:aZSBBwSk%6/> stream xڍuT.L7HH׀ ]C3НJ]HwI7Hwq}.u=z5M6q+g 3H*k*iiq ;ĉAOeu`!tCa2)s(TPppp8x9A '$_Cg7A@ cK:Bahc v4͡`'XFKsG?!_B.@;+j 8~G`]_5X;9m;l($0@oS] pPsY!6g`]lfxXG;X`Rh{daKKJC,~3`f'FY+_WC0 E!N^tUhG. Za*Z ry#Wؒp6 8a ?Ix@[[# &䅕{T@e )_V˟0[ q[CH9Æi?.\=`+&u9`qUykUa ϹXzʇl-`KigKp*qr/an^'jn8Guv*$9)mE* #ߒKy9HD#E׾R:Fc=u{CqWҧOR^Dr_3ҙ0`{U4]ugI6c @>uBG fAyt6Od,؂\O}ֶMQ k՜bb :a7>uB)!/q.^"#X^!r}y'>w؍0{Q%Qd 'oNRݞL(0;hpp v׺8z' J0"T`Zan݌#Y-05|nDfo6<#/M]ey.ﳿ gxw_ Sx3BTSN5NOSUmWG\@S@_+ۅ3&A65@|\BA cRwDdtBT"gYkh}K>f~B+@ ;`sUo틣:Yj87{)@~vRzMvIGoJt8#>AH6_.VZn2DDr`˚ʹ "?Dƃ{8lo֭2''?$Y|.v9oK84Q1)_wjL_2NT"\o7p/ n୛x]zbkv^z7)xR=t̹1daU,73c#PbH|&NEY2>lJY/D95qfcL .݌oI/e⊖D%}_?j@:5HU=5-"EAxgL g^/u_jbKF7iF[<7>83s}z; 7j:#TZ[G%q+j'ˌyqj6Ԣזldjt\/>H4 zFyPu5y524+b|ߐkˠ;j;_.Q$>* ]x)mR82 4{CPWCR{b> i@f['/Q5}$6Ri9%ZpV,X^+/&d2VnZO]-Nz(L io׎exGw1ۺCZ>5Nhr7 G'r猡'3dG0lriQd $9HuK=E˾P'W>_tEAqC(D9Rq"8?qkf54()5fP®C+Eд@t'\;rߛl> -)FvOm_8;^aS,5?vPjmVP!0NO៞)}߬6h9͜1z`5+BOXe?bHGPqÅ]Tq"V HcDxwвZt 2/Z*"*Z9pEU-*APsftm_gV r/2{aIJpJv'큡"wDFP;˺ DDk),;kZy1Z?KMHWy F'aBQ@HY4(jDxKw7+~Vu$9{=Cm򲜔pgǎ6tjj)Ɖ N"AcSa)O{T`puܞjó\=TIKѵY1/fE0sf +F GđhҒ$vs1 DY}v$|g]QBd"hx>r3(F"SnZclJ>ڌ5E 6j†&ժ} 66ϗmWuw)4GnQ_LIlO'lA7F譼OC8Yd־͋xokcvr sSgL-qDIJ Xng,iEِsqarCHl~.:>6-͐N 1mRXΔG7?bJ5^[̰mџef[Fm6t0(8j\#w>Ddx,R6`bԄG(dy+XB$wH!`"QE&oraXrVNi"WWœJ&iphfU Tc ,VfL}j)zO$^|j䙤J_|밾c >B-@M371 ajye zlT~R~}qC~˂1DG(O\wLd# ?F{9x@rI-{f xkBaׂF.$%k=Fl_rM?<6B6kż/x=u`pqAȌ`XHtsZܖX<ۘT }ZAg_ /TKBd;r‚% @,[;?$?2ӳ9@7BKEv\F>`p 6+cl=vRٯӶKg6NS0mӲxHTk6I$xx;|A4$}wy 3O:!2h\ի]6\!\}$: rSUW K}8;Ƽij_=Gv*q_n+@i*MX5,"D]j<4}oy͈jdb+}|=ctYͶwgwk` o exv}d'ǨKlﯴ?O9>KHFt/<NYZ ]3&3 8u9W+%ҟf*mS+Mb'|3Ng qČ!/}fp?1Vc%{*>Ci53DTɿ/T퀛b;TEBHԠp1k$vC#eWW ί#?8̱Y}dkR;7`qU#.&,cq D{)jȆ, S@u\A@5gzxy5h3i)%8+bY|a U&Z6B]YӹzS%zalP91l{'S&@"J< ݀/s,-mSEQxx 9}z^NT=b!.T>U.&xezK$|D[F員%0o`43DFxܖ_F -'[WS(>_Ty~kp00k1{JoT_;',rAsy!׊a+EF JCzHAJ qtkO+u# +yfxH賆],PۣkzݣYK_0^S ֛%t[;=*87e>35ߋuϕ&GqԌ„I;[%'0 j3H<篨91ocW:1pty_HjuXQ%Ea?sPu5O:SwO  !JAl,| c%v=@r^aΕ 綶x6BF~k@\ȝ`b_3} *G=gDUWjWacJ+`a8Q+_ zGg]V!H2wq܄LBKq*?gEBe/Q Ćȫd(Msf{DbNJNDO<}N=-hvtA(TƼ?5hF'Uu%=%>j(JdbHqUog9$ R92?D!V3wӢ-Ze2bk[5ob`> ho9&% 8n{mw\"LX&FV'tYjݽ_; $8m2)xzG:`:2UQ}x HV6oX՞0q˄u`jB2^1eązi80EqZK\X25iH]&Ċ.COSvA>lvWxGO$q~)g 2b WS<'uVHpk3T ejs56ϱ@Fm38nߘ*\E]]rmj7eD7c|i'@A۳M2Y“F" 'd5+A1 4=z2>s8}GEpN9[\0 VGC>U8A=70PM\QyjeSi3D6* ZП!Ok s~ku43NU M1;W1=Q8 /v߸f\I[~~u@,BˆB2ptw0s)I0=gLUxME)BAgȀ?Ĺs3ܖLxA >nӴH-V_i1;wzPh2OA[dX2v0ދqL& K:s=s>4?qЦ-ZQ7>,];B%~WNiIGlehK@UM>_h)[ͬ"#Kq>oIlyN<#K<ާU%}kﴑ#V 9-D&_V0j ۑ[HFظΥt |z(=hS9׹Dݣh϶*'$\-8x°~O/U*|-@?aSb0 _Y#Z\2Y"z ˾#<4&$S!rSkŇz:qxr/C6$}hzCE9^SMS؂n,*nĴNLBOYW_>]st7ˢ1:esWoN u^J8, 񪽐l$)ZԜ91W$揤^?X^h >6|(XH\;2uELp'TGj4@E)#-OrPv,'6ln6`v@,)+ /۸=* j`/ DSʗMB*:F#Wc oS*t,aᙺ GdX\\2lAE|9~MT+WKq([wIv$֌ ))o*bSwRflhОmw#J39)BD*Z&\t߹03bf}ԷF(lV4\ { SbFCX6`sZT pM,܎ci+ S_d'N*LS4e2* zҀWL8C!l91Dr0 gs=2 nqn`g'Þ8$`;onhoV N.Ţk2tBz~9Q)2\yо2Ohk9w9p4<ZbK3ӄg&ax>Y.Qp)؏uQ:9EpOMrz6i;\kb/oWpr׺rP=_'_랾 Bpy,;"m)N̒7w60\v5}g$k=7( BgΚ$2+LjK?xoHQ^nbIË=:y޶_cGt5bOh4dzH/4\ɉJ쳛9[>ƏElSԽ w ^AQE(UMWcIIM8pmI6l{pF"F7=:Ӿf&&fˇ*B{e.*ahjTF(0w^`7WrR䲨{-t/bu>ry;2)HS}.avH/ =EgiXfxo«=,mMؾmJP]vƅE($ӛ +jsEŋI6rJ)5Ϛ y0K:.-n|^zS^rAzh@57L?"։/Ga4zPb2Ru.#yQ4 4AJ;ʈBSwV ͆Icp6y2:DڑJ+a|W;Zy^߼@?<q__sԸiCObSsrK&-')=9%^;GYbtєGy)6M+ݠ!Sރ8whG}BXBVG!,4~¢:%t}Z 0LT,~7֕(8We&d҉|JrXv({Lɯ(hP?hVX|=XzSB$io!x;#8A(V"9йt>!\b닥é.u;uW`)4fL%ͥz,0–RE)W"5zДnȵOc5^'&:m!33L Ծa}E.o]~Ŋ5#*[ (N{:]6 sׂ4CW*3L4VɄjվ_Cmõ5}!ZBJI~/U+L*gz`^MlΥy]P/e㞔R@Þ˞XTjOHOZHe8Fø]խb&O`$ f#^QyQWFX^|!0u:3S ,X՜I %bxyJ8ͩy3E˴٠ 7FλaY*CYjo )Ը͎Ѣjd"@"WXY:C}%iƮTXGVnkFA& wW+gL)D $Tc??=2mATHe_w |)[1UC|H,ayկεx$Y&\B.mi45XθD]ɗg gp ҙH xC ,/2ѷIoioj9G73[p԰*鲲  ˽ܜh;Q9)c*OS3UŚ\RE5u`G}d$&ŒtpɻBI%龝?̦3H,zdODCfBElRDw󴂊N :oWfel!eߒOC3nFY!Z$X#5-_H(F%;."59Zoټ~ɄyD ?-#r-CHOׄү endstream endobj 127 0 obj << /Length1 1505 /Length2 6647 /Length3 0 /Length 7656 /Filter /FlateDecode >> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|c endstream endobj 129 0 obj << /Length1 1946 /Length2 14667 /Length3 0 /Length 15865 /Filter /FlateDecode >> stream xڍP !0h ]';www'X~r}UUt뵺_ QT23ق"rRLFFzFFf U 5?v u-"Dw!=P l `b0s3qp32h 5t0lN"vf}20qqq dt06́6;ZT- IAks3089S\-@ehd (N9TLA@hx"% P,W-037߫HdabCcc;{C[w [35 .Kr mM4v{_obhamhtC¿s2v9;YXQ#iޏYDh rBC#\+[;W[e83Z88Dy7!c3l̜fl?Lk0Bt2t@@o;& f_~nmc0'3v'+fVV:t,l:f6F3+SVEC+"O?T 5w{g adc4~`<.dmHO?_?~C k#>rvbC5 z@3"dktL--܀& cz?񾇵-P*F{=cwO+fklg2  ;Ljt v%v\,;A_`8 A`X{b0C9KT,%,л2]glg~q &w {iE2w7;__._|bzo0 ߕ ߥ8 u ]˿]?._._.O3vvt|;x @71;c ˚*!W fp;bx.{J"W,yKB]s#6Џ4~yDpck65ڦB{@ S1=ķX\NN$v jٹ)rK)l[˥)e{e ;=bO1TmATFNc*d<R;S;ߤ͚$7 E6bH7܌>m|-n ZLOo ^|8> MKzx:NO)1c6v4 AQsi~4"1ʂV㶯r X7XEkIPZ~[/$" JYz>EVC'!8#S^l>}оjC$YR{CHtEf{ !ޠMAO<Ē)ٛ 0)@\'i ٗmݷZ^P\cIo_?UƆ#yO8|3*#3v@JgMi_ yBE-)EB$Bn*qOX#}8f˲,ţ5>y5m`[Dy߹n:w{aM/gʶ}[?H"5̑/?f Rtk?w+e|`ŇADcBE>q0Y#ۑ"O xsW5~Cb6OX=NMD?0zOR loԏimLʎ=Z!ņ{cyw^޾)j1od/yp 3 (Ӌe[$X[t90$/&U,g=)Iiȩ摽N $˰&帜(9p(>-6\SĿdyI Q XeGo\͘0Af]0m먻VEac;OӇa֤dJ}S$OsQdDĨYj!,H~i3Y Ҷt-ww@1X;iL5tE6>BRKjX;;w#s Wx(+ݓ5_tԐq8}&v6aV.YCHx>^aw6X.mK/5eDQbMf[s_I">Rc>O[* B>ے؟y[vFZ;H~ʏ`~A W,0i\'An%Mu"Eky]>|M SFeݣW (t4R P:Hm-9dK5QF6F˗mL`vRi\d2dF͆9RzS`(Nઞw57د37(e7L.ˉ#KyAZBüliCWKj)cvX J+J΃2ɮ4"s>. ;$Z:xZݚJl.B>Q >.߃i0?9lϡH3W '`(WEY9#Fk?-KamΰFŔD?;}i{/̂3hO2u*T3Ƞ>oRYC* UG(uqJ(uc!tSaK]ջFpy_fU A dUHcK^jV${um%pW7\M#zznއ_бR)qQ#mZHN7t^@.QE}s[53U.UXqzLPu c_%^DVQ#׈I>Ӥ0 gRJcI${r~βdw19͹,?ZpZߟZTxY{"2ݯ|JbVߴGy^K܌LE7k =*Z@ D{ aYNB.(%LceK%n)s)Lbl@ 1q68L#Ӝ:!\8K qoL]Mok``_&1e3&)C )K z0Z\/< 5hgy.7iZW.q j`8n:6SM Ur>B EHcB[jA QCZh.cY㴇 $EUyĨOW3fJren6_35rҡr9gD{l#iZȌfy\0::fUyjPzLǷ *%m.6Uq{56fYCik HK7TF\/8ޣ! w{;ʫ]Ru*clZ7E iu~;3%Q.v[IN9%nɶ.Ӯ V+A& }DR^& oUMؑS׈g-rƽپG FFD24XiiehJQAP(v \!`XS\fp91HT5/--调Ƭ'^Z0bL' %4D6-/ V2GCGT7h߅L$` UΓπkCeG_ێU"!Tz@ oz2 3N3'_Ewg$"J /:{}%о9Y[)"n3,\몁e7t'z#ђLsY|UmWc(h~Tagʌg~Wrċ,8*>΀.> [;?'! }>rUPXXʈ@DRByXu+'>kSY/ jDmciK)Ǚ)L[-SkG6E?tk!+MoGG.7*&JͷႵ(ZAÝIyr﷬}h(?%>44^G& >Cr=o C~^n$ ̷X/Rɜ77E*tL`54IUWPe: [E")^Y3@U1* C^L_'_\:U#ηN6@B ^3NїXPh¸Y)(N_Qz6[8GT^`Bٜ}xm]\=r-ʹ4.kζ⏓*@9WV?j1cJSHN™#~_`AgVk-RwЬ\;Q1{r/\pYu@cB&׮B^F#gƐ*'GeӁf5cEyŶCBb> %0=WӶ',Ka XTJlBǽdq+([@S,`8l#e0"·oRu=jΆƩu;HCU.Dz lahJakrLwC+}2X,9+y&;0i Pmڵ^:^}f \NS}\xM 5#_uE :nq&ZMK_@ ӷ kEJR{A[ZwBq"~7 @MCfG(Hg+U #n{`q u`9V|]TREG]R-ah sF_2WE2f料]z I+b5z;ê;>!'MH=yGڐcM)o4aD NS=]d%#β×m5WFFSgMKLPkm'ei1qʊS9rm-wUѣVyRgˮmwʔ桢҂=cqӕs ֫k{a>$yqwO4RlZ.5X&t7izKA.ucܬ(dw 'U+@j )RTAPtc#x*9q.!2c$|#Ɓh_k1$Jţm{|ZKkhӗBsR(rll+Kl kJS4>z!$UÖL*>C=<`F "}@I㩼[ F6zfБDMQ ukq[}=" K@5}b0:i،x՚_SfK(3|I,'4@-Pۖ6͋SR$Mx\}|@$u+1""AWԲb˨=3g**`v 0RTXU>OO~NC7] 2ZESqQUzÓT"$KEo`JZR4Mkh1]}[àeȦe|pU!@zx3#U:GQPJv_><LkgmKc[>>Ɛaʥ:R&@̑(yxtu:19~ oe\ LJ9 zaTL$d<#s&gH2eC&vk4}{8kan36Ava)(F O 8{ PI!d]2ڼm?I'eZ 74UF^g#]HFdz(H`nrl+q&-`5WޜNB՚h/|4R\ig2Puc #7h3/dNL٦eRyY~t״*b>Fsʀ}k=R3#l.vz^StqJhdI}<8^ӾK ogK*HS)߬oa,"cuP~ ~GDGP:h'M.=(6v[1ոeF_У4RxG6kE2&ce h51Bea B$`MaԞԁ(̞:ݻRW]?u-5ۢOUW;cSEi}5-RBpPM,HpeD9G}(M}@֐!=9m*2~76IiɲГ{af֕n46xagWK )ˌ,nI[k h9v7s&Z@KUGDe I-7)I!.\jVleipU.|h19ĩk[ ;abB%M b{L)^6+G Moº57~(ymvLbHaXj?\_fL:MiM@M;Lx؀ : E]=Ix$S~!v<X#[2! C B@k3$efu OÔo :8Ls)vcEh1SQa5!5}_˻ /Wyd¾E)$w=d˛Nj5$>|*9N"KN]3cZ܊ c OsΒEi4%kU UvT^G("݊yPm^gQp NwE>u.g^)r4+g梫DJvlD`v)ڲҔFQ ПRF~<Β..ʁ'b͞e(U }jݞNXy2!&sts]Ou\&3K|):akJNCe-<:x*9&6*+uvӔ?F^/%mWre$y!C4UXJ͎P?SEp cjT6[]L h ` 1]s}w%#?,@||.5`\r!墮vIgi4{{]~LI@-A0"R,r)Z2eI-oL.t)1j,]xyKevf&=*?(eV8{~[טG Y\=>HR35XH]Mhڒx {&fKS8Z9yTF)%2f7ӯunIZlz23rˋX74K\. A4ƟM0XBD]|%b-^_!713Yz|nhJ&2i7V[s!ϽO l) YeeCB`*[K|^eci[q F*,zT$xt~Wfψicgŕ2lFTF'd(9)tks_ra!+WĈM >! 8\ɗڒ`GUCSh hK>pauuOPZbwL=݋.syV0zŁ]Socfw5M@Qa HQZQݠ]gF@Xq2j( +$B7дg#~zM M(.BA ]9WVwՊB7{cGksx!5;[Pz͔>~F{ Y A8䷩ 4 Z252lxq&[菉we{?DÝq~E 49B'L&@z C'7z3j) X)I$,(AW'&q1T ׿iЇ6_w . l|k0t(DVDȑ|̋U:ߧ5/FKKC:ZH*љJ63wp!r2cfm:OъM"cXu`̀; GMCt}xudNa 'Y=ҝZh.AZQJGy=[{%D;M7w g5cKs`kn( ec8}%h[i"1 I.u< ^kd9+vӭ{(h>dtC)= s GtwjJWՁgyd!:L+DGދ"h>$[;5-0 .$ *AaagkS2+7bc6iľvsΎ7C~d;GM%QOtq e :N gN3K2t2C_+oƮ3xlw!FlS'D8xbZ)drGbOEbpUk>se w~~[8[?VRxB|3BcuSCr[ɱ}yʅU,-E:pIE#5.!Y. 4ډh0^Ap$ElOqL떠6}wG9ZMs)KB2DW~Ԍư.ݍ-eg])N^f\咏sUD9FE!$Dp-L^Bq\NkT:IPZP^*W[1%Au?j 4s,/2/!1P;ҁ`C/x'ޜ%b3xk}GʫYRD3)µe6 A __έ蠉h=UIQm҆REN>1b439]z#0ҏ Vٰ!Kt #wҍԕ=KpP9˓t SX^ giڮqPaɚ)oRb0Y}2wjL(R`F-Of#MiOKVN翩~ VS0tq, q"Aq2l@S"YQ/ =;v>/+z`Otp}4Dkxґ .I)hvqfC_a88nha]yէk_GSVٙ1dۑIy%( @8j@TtQ=|FLXV:e -U 9r W2eBC(4L׭A&4ԁ҉_ܓ]zvi]7 \V5!j屳D:q(Mf{uN'fR6 _xv1Nrb_gG7zKپ~:3Zff]khH{]7)r['HNzhR = 41[?`94y/;Ũ;_bVTC:3n/N^)hji;bː H>"=Wcsª17jcpa#I7}5Sna{go dg=Ձ4~DJ4n1aYޛÂWk_ 'L|SZ{~`l0wX5[|FI8Wϖ)ߓ!N?n39!̌Y2E]Y} uQMSkS5f3: KR4JDjLܠd>+nǩim]hK,APGH%=M߿`8ڥ ?W,zd3KWXR2:먗P(T^P$V 1S7^e@/&w*8vl3RCUOL @~ǤTC0AԘ60׊~qW%L*"_֖-]#N:#cd d],f˅?:QnDt1m)_"v.ftD$GC:7m= dH6G"|$NF[M4͝WwYN]զmaϻ>^֍eb'PCa*1ő &qmݼCE͇?Vޟɯ!L(2FYģ8&ISrXV?}=, EIfՅ;$a^jqR> Of#lccƵ?pyFm{Nwp})B͘[0scWAVQ@S9u2j2Åw;~|+kseأ>G|_+$Gwf%I5ǕfΊ^Ael.&ء' hWE|M\^,@ 7JO4΃}Cl=^m`*a -J*ʉr!T5o C{f5<,fү*a^ VEŊL+yLV503)nHat V%}@dK/dCWK(;*Xlr@o+|.LƎ]BVGٱ:RFQ 2)ʻ['m? TxF >>R̈́cDzS HTəa H읺bkņhjwB]ٕpzUd d,˦HY/hT%.&Zx 2nfFXxfiHMsW3N7wwK#sudye OPS9dE EM|+ӆDS@xM}ͩE*!0w9SCAV40As#jyjتWzϵU u喴;htP2ͺCLG'J Dh@?,_U5Ԍ]^^<=1-c.>ɧIdb1Zq7|2!0f&P+m2^T-x&n*a/-*}jlMzI]y* Tf0Oy9[Zء!׏r?k JBEoO\[Kq|s8jS/zB$ 76KwTSpB+aב[JaXU ^c\ER6> A680,A mkeP QG ~I_?L ;YyrWۛr/{YZ:sq]rj1XH)Cysj7bq l ;:MToz}([ C66y Hh RUOMn:O >LDosH KZ jwtЃ@t Ӻ O8-ׯ!+musfZt>@-DKk>of3?(/jO{UdFAUSG-qi")qN|xBm j4Ɗi{Ց8`Pd٥V_>G eì&S&GDelaݛN5c[߈Nּ.qPA,UOO'ħ_-.L+~p~u9UM B\჋AxF,abtDtO>@Vp [:0PHK, Ք " ]EOa8xBLh'c# DxKI?ScܸJȽ8kYsJ-x9tE 3jHwvlp*"I="4ic^x% INg<Ӿ#] *64x$U.о,-j{.X.Ҽ7;+zNfqUO]*k6$b0ڸ|a*n=:G DyiN ]yQtn]_R,TtBn+* unKKS  Eۅ>nl:֗sDX ZLwUbQ/D8ˆz /"Px qSFn]_(374AOIjs u sH:d6UjE~'N˩ y?:?J7j~6˪cPDEׅ3K7N_vʖu+P8 KL'̓fzǨ*Av…+(FO?RoLTiaߗߜX/LVE).+*8A{% MH+4s5 BglvHѐ6{zB)S7~2G<(8O2Dt7~)l'uuUota.~Uȓ;Q:)ʀ]6nߘaܿPuDE4&g/Sldm?=a3,Q3|8 sr/2:Ԯ6y)@j`LpHDwl_piifnWvXGhD"Jwa2xWx@p-1D+i< w\#ʺjpFՙתe;p endstream endobj 131 0 obj << /Length1 2263 /Length2 15494 /Length3 0 /Length 16845 /Filter /FlateDecode >> stream xڌT%lgd۶mMdۓkɜMM̯y1Zu}{wDYA(` SPWga03123QP[#:X9Bh!7v0TpȺX,,\Vff:8čݭ Y{ G|PXxxvL Ʈ@ƶ5S+tuueb`4satpxXZT.@gw௖vGPrBZ]>\̀΀5y#_2 #@V;:9{Y[̭l%IyFWOWz_ƶ.V&n Qt\L]]]l04K؛9]]Ohӿ?64쭜܀2Y]lijWu/GJ=8:8?Y?n@?*̬L]&@ +{??@w1 ~03{[?1ݿ[RT``ecpq8y8~VdVNq8Uߌf+' cX98>,;j{L.p)'I/ѿI0Iq1$  `>bAq?T 6`R>bjAQ:ux>z0/baHobjG?#LJH#agKbggd_Irr?ݛ~oCi gȏ:,T%22l?:SG  vß?;Q:~<9@s?RKu/WAmQ6mQ*\f&CX> [c|$Sǒ1z8CA?oV?9@'ne/ĺ>žV: ϊst MmvЖHH*i[#tx{Jdza~4TѩH !,䀘f xh,E7r!ǀg`xA-K,CFyR(WBZKOۻ9wb:8bm*uV\r\]B[JѣTY%-\fFAb߱n_z2h̶+;+:rGwav1[D7_Ý0n{||<<պ*%ݐࠋR2QЋ2(Fn?t~]Xct:xcU0-Ae+hqBLXvͬFxC tB!װ ̂TH4b^7'skKA-F4nPQQA`(D$e~ |bOTdKGEl ,їZ>! /jsA=qUzI+uzuF=k~jQ%dQ5/t*=}O1]f4|_&nڰ?18yShk]:ЩI<[GdtGw4a<;?an;5P*9Mn.`Rk=;jQK嫝E%aNcZ7B[ VX10:Ⱥ³2R$#_F|(Uv]._}C.ƁĒ[%qWk2%;j|.GvfSPK73DN=ّկэB7&;o+`pfCFPЬ/(AW43CPME(fi}UY;?7[sRZ aD3L;EiOKǷ$JLͶl #`4PJeIɹ+q 6&ye?d)`g*ke{dK v( IYwM1=Xb^ƏLdó#{Zyc"/D%\<[Qt;<[]+QS-ԏ!yT߯fwX&{%Db~@ASW!*H7|~.R\eEcfG^IUjVXA-+ٍȯ:?hNyKAD*p Rt CDmr)Q>OVJf]ul?]4RTQAe<Q!!R fKl++*DI" s~b\0Ҏ X;,dywld\Q1X8QjT]}SCbăd7 ae pT}6Z$hWˉDPGGQQ9t4~ѶTzLBԮ|#Ž􀻥 UcDK]|23'Hu8 #3jA^F3 9nOAt]yvOCR][*1 'T;FRҷ#XEE{kHh' u `oz-͘~tGb8>59 ȁQ^M( PrpQ|Ѯ@ fWKWY@_EI4!~p QfYx. sRzIBmIB+Ty*HU$Ո.md$1 s1m̈́١|<4 S[-3xy@{]@a" A!m.%f=6ߘKgfmCo[)ZN]>뿌1<}Bd߽Z뒇|YXV,)ڎE-wDפ@G9]g 9Pw(zcl}wݫ#Q8/Uγ*m})hs75N-7ۜxJGmX\DC94ÁXTFط?`Iaؘ<nwf3.3Е T-`,љ%ZCoe+nPt<\Q^R3}o[[e}=ޣHJ}ɾUoޢE-"=SMI'1S@GuzB/γX6BhJ 9B:NZF/O$]iqL-$yn~jxK~%⫹}*zN _6qk40$ZUcPN3bDJ _ SkTRYldʑCƵaDX3cRwm,& 3VT0Q e}l6,Uvpda=Ѽ%n5͍O|pC;P[ړP,$Bۘ;m(XdDXBm3)!j@=<H`t˒&I ܚ)&dL)ۭ(^$6jʳthy ҹI -7nP&ED g_<Ԉvfg2;UAMZRF2$W: w21z,ѩFs'A℩s.CMKXSmft Eoi7PëE4A1G 0G{LHTjR%mܑY!?y58a"7$@7qݟ2idǡ{+p%R~N.ioEycD|xu}S~9Kv,,lH^S%Xa3jOTzCqi>(LQ-j:5_ڦuwZ^]#oaڥ\aA3-!=w6t앎XwYK+< B:`IJ/6sӖ<ƮZx~ [Z)@+S38ሢChiu̡qM _ QmSk dڸp| ̜'p< ƉиdfBzr}pNMLmM`A J&dIBՃ[T+苉ΘDAv)%ҡ{2~(zhg-go[mubnh[r{75Ħt뷏mٹMr>)J04.gEj6C5ⳫbO7\ !!;ɦjRvcjR?LKÎOr)= qҊ 3Nƭ]uv'%U"J:^ڵQ>c))<5pTHTʴSĬ?AD1,P/ɜM1YquQW9f5oW1v]bHRJ#Upg-?[Ve}\O${T4qrwj;׎< hW-:-Vӂ[;\K.a終AE2"v1PvK, m~;6/ fFR"_U2j.#2- h+bXw[rj3f'.8Og=' wìK`{Qُq`}zP&U%&B(}1/5ɷ̳Ι.Yjb5`}^z$ %,87PQe߰eAXȲdy)3dCS[ͦte՘Zfa ~S:n&-AB 6? g~I ο,7NDWY،Ip-G(29B"NZ=R3 l;s-h"h҃uEE(a}Q9cTvh$k(ZMdY:tu΍@7x=v[^aIwrn\́FC+ǂ5[bBow'B!JrPEEOkVQ1z[Mga5_ߒ9j˨="($xݣ"GIC[*.?$xbM 5!Mc/.IM\tG ˲uC%3ǖ'<*]Y^S sV8&^61x>%QwRX "B<Ɖs8>OO cw~n9%q4Ʒ CMN]*YNFμr?_o^ J3 Hmڜ1Nu<]XyJ[ zXH4EPWld(+R)D-08`8=hrj_-c2K Co-vXMp[Hd`O\gj)xDD}zzkҔc-/IsGJ0i蚰`N) _I=2h8EqVciG޼Az~L'EƂC[/囕9=" Wv|3 <jgh>9 H 9:U6.mTtY\4!4[vQZ*{\I4 w-aK&I#z:(Yp߰Fxjo*HJ 1<1?+!οod)H$ `slj6h%O)_?Kvؼ̌9 FP17]QU$q[r͒4;)||QҟxFI-&fHy6-@B{zRW 6GM!$ W ?KqFҶB%/ӓK0K&fͦv;Z-l;(t[+a_jɩrQ=*v!|/!]GO[@/nf}>O 5^x.r>oT^+w,"@}KMAGc_=DHeхR}kwgXNT7NˢGe [Ao,F03 LɨS>ٓ~(HHܠKzF}~khׂiYfR(ctB,+9B(@7y&I6~T"2S~349-CɩP[n[@~Κ~6d=oo蝳̯ EKtE[ߪQށ> @H7s;qT~+sWViFHLK3mm[?P]`~N"? ,]Y7i&鷈$K#b )m[ĚQjwia?#=#aræcK5bi~`WiF#JjG UBg0XTXĊ]^."l b6/Z,r5Y˝|[vӉG`q[R%{8W ƾFln^Tw@d.1旭xP\w7NJ_{ʷFH"`>yz zУanR[W;1[YCoLN25Lg;GdQA#T[zmj%bP=kqn+%> vJTG9V]Na,lkС⤒ G- Oح+PY !a4d)׳O(a*}yZj=:=IPji&} dlڜ8Q% R&#}}qņx]ŤkSrU6 ?ecy02ޣ[{m?䌱:3r0* jA6uP߻u6>:FX UnPTQH|}B3Q5Zx3) )n>.O`GP?G3M>r~y3nRECD]Nb/{c( $ 8qs/GG3Zm+@e KRż5!m%f[DABR2Msվ.%5FW˴({V0Eή]#)=^0{kw=}`/{UY*k",\4xГr(hu,]zv]saj!KtZ4z s`^$VO$k4Y䗸t8PvM\{S$XЍ 7W`E4ūNpA#-^ 'W4O]8b>)i`DG()6##6)ȹnkMrҫd[$nQ~4}9s'9N(ʔ!uGCǏCl`O{v_(5ngifHt h@6lE~!4(>XB(Y/*qی՛!k \ xg8ϻęYt,Y9JD6,@ΕϤh)@˖ӜPP嚎r$Gc͹:-8/[ Cx@qU )2VW3!FFWOA*8h{AMm|L 0nvDY Kfx X JaJAZ#7G7>7dt!35B^wvJĤ0 Z;9_>%ֽ^@/2cn}J\gwrncJ WR R8Cܜ4Sꌛ KZBn`@hHeU>ɩذ6Ng״i uspd=d(ޭ,aWuK<*o-.Vn6XʠRDEǶ,'T~߶c(Y2zݛ){76G~W}to"W{(}pi{X_0>T)0`gD0*:ƪ7Up {:v۰Qj=^UQ2A0w.E#hy?gzBw^Txzc\{rяE)!P9tw@f'dro5+>DSxHea]s%lyU5/]cmQ+3 d16>^q;vM+TlǑdmB<&ӼVl*En)0v M#UIW<wӤ%2YWr$Ei(7ZEED.xeܳCsHJ[G]ʺ+LLFʊa1"nh둊I*!9䙊Ly чܙQvUh0P[{>i$CXMlQk +Osc 3ZuGPa+ ҆Eލf,AvWֱc}#gLZ@ %ghryr6{'aEoBup VgLḻCo-u 83Cw(V+Pڈ 'ƣcM*?ŝzӣm&P"[ZM˶+'Eϡ]nRw{09ʧ?7FI#'1SR lgӞ8¼pqQ3 uQK=ғn:a#Av޷e(Ŗ"cj"R+Z0D;$du>rmrX`RYj=|VaU9fhӬs4#0sRߙv6UCIQ*F\JEMmv= v>D&_-4~_17nᎌ("6*W;615&[Frpi>Q)![w;#ĵ~f4q&*Kaj _[BvCoEKH8 %ZQׯ~h:7-A(пR\4CIxwCb.@Ek3H@5 黣-ҙuu0ˬ*vÆB^tvL>B4&siiT([0 R M;Zvoqyzc{f:{\(R7 H_+'!,_139=H6QVʃ3lkl-6&*j :ʦ4XZ`vS2bʢUQ3a 3LtP yVK82?ds&]+$h68,_flT{5|SŜ=zg}rDLLq+ʄR3-,C]aIs'ODwU>6ys<}3K%b ~߳;]Pd$0SG%"D]bO:=sr=WT;RI|xÓƀl]L0 6#Ea1;7 teɋ$Ugk-'#-= qEg:dFCQ-! PHR1 W[5P塓7s Kػ[kg[Ij DoE[wj_ .$nR >ӔcՀ߽ƾU,xQ8;zBD MDqgJbn46r,tֶ4>ǘ܀_ ;w\6Г/u/)K9m*|jN YPRsM d,wg3.!xJ$17nx4,BośWy%p~[*K=wPJ~g >0PZ3I_vD 5=[y4k]3oGBz—CO$Y_дhe2hžx>y^ k0a3p^XnR?Hj\ څ@1nfV =oiYY4OFk\שM!6LcGs7nZUZЕtu3'~TI:)@2PJUo1 SJD\Zб,Ocbn(/+ZFJYEU-z YtǰZ[.Xx1R{5-UU1ֽ[iѧev~O^M&PԦ1n1~#MʴL,];ݰ)uC@Ay0&e%3V16vKʗe.d}:۩i'O@rG7u@?)-YoCZOAe5p <+=O#ʆ0&r8ynSzGۋ Tq祘*I})I]6LAVl]$ "!1g #o0l:9 {)]x#*7h?/f& 7׿BgRŒu,Od“3~¸,2lpk( .i/ቾ+6 |鋵֍İmO>[k?i/F$2кiAkK2\ 6nfgs|32jeM*5 k2;ЙG&޻ĉzT} Zn"{V.w(?Fh!g!4l;L`Nkt ?d#4C L !RCOYaqn^e|_bN\ V)%bgp Ğj̱/H#GM?ּr1wGd; (FΡСꌪ.҂y U;aA%j@y&^B]>DU: Z`S[ICI=Abմ-rD+ٞϔH SEb?R}xu؆8Iz!3j+0KM;׽+fjCN|ktۇ*T$vSEmzr$\W"[&;`3hfYq50P݅h> BZO4#.HE ǟM 6SUR9hVK:>q™v؉yTX0885vky*|CcJFu4m70UzO3&(:7:e(E΅m0F[& tʚϨtIfՂ z4$;qDՋpL*ޞ'R{L3oĄ6qRz)EƫW̛|U%ǿbR¡ Xys=$0_?̘fUԮ2|'d;O?gm\wJa9KnK-8oJr`ZCQQ?Pp!ԶǞ@`>Rrb(=T[FWi1^¬h, Ѱol'4%/7nrdkxMTd?+M>l2Õ6ӯr k>RJʆB,WF+ssr\1v% YX8ōIOu$/l 9|8X(!2b)$+'_?)n*Z~uyR)K7l.k4/r_p6M$҃g K.`yAmO9mz|Ђ4T?MMg ߋKs܁L2 R:}GLR=g뵡¾TD,j>A^MN1@@)|(a.4䜈%'u l:~6Wn|.g݁򊦞  YBPˇl꾸#ZqpD+?="(ఏKctUrYa m6#hPBgbt .g:]e}]-Hf5'?=/PRL៥ ~̈"z}gIԋ3ؿs]Q[},suw?QA4ڋH;j`0Izu!ARpyB9>7'ppw5[MΞ!3 ެ |+Ϻ q2v"ry]{|t\\d>%i.Kiwv2?t#*JL&8SegP?UaU-RV,_Z߳]B ֬#?wm,f7 SE7EDݵx8ZB5zӫUR_||> Ojֺ<OHxÑF /5Hxu2+E.S3+l8G.0,ȓc!"*S?_CwZw@5 iB0 <9 h.5}QoXJV.&b\ F n\ }ۤE屴{<*m=KYhuճx{dM0;8TeX.j%.Y: V)i(UԹ`ׄD4Tx 3zqdiXm x@cc01:aSW01 UlZk{kŦl|0}#yM FO]]K%ZNMms'1Gș.O sҞ0?)Gb'/S-0`Beq Cb}P[ mՓ{}w{Zx,oIľYObSirD~k^hexO'XI`g;acOپ;c BpOB5-Q`!KADd'EfaYȲ)/䱀[Ie?]~P<ݗ9Q5I\5iK0FDQ_$k^ ~Mb[Xp43G@ z@{h:9{Gu:I :;W$εs4_s3vKErw^YU~VvRHy7͸qaȀ^UPWF,: Eq(E8EҾ8q9#"Aj~ʇѴ$#q e> 1Yh ]f iw,^lhL`n]\CR,]L17+k ½,ZQuJ:XHO 7,9 ߵ endstream endobj 133 0 obj << /Length1 1451 /Length2 1937 /Length3 0 /Length 2856 /Filter /FlateDecode >> stream xڍT 8Uy'pƟ,q7K\سf/ۘ{:纋KѨ̤MY22Tƒ%)J)$]*Lwlm<9{^SגAv(%HT`EI@"QpxcAK~~(B áhK@[uӁeā4x!P֑NcOC/Jhxl*(0.k D@ 0GlA8< O8,!\,0 Ogʆ@, -fdiH&̂341(O,Z, cȏKlYssecEhX𸸹l`D=x*@,&0s4|6"s>!0 HFzz P$=8+ snCl4e&F" _Z820`:A0TsC Ii;l(ŠbEVVh$%]>0Cce{hlO& (`gD#bq/4EŶ?d@c-sU=Śk.#N YQli ~`ZϭRR&;gmԤg t9w,9| t)B˼Ƥ~)tjv V+]*w?&,[2(çP9BTx≐=~.[/.s}sh dm}sYD5-4aJkYj=E,՝n9 +>|fܿF#Rr2*ה|S99Nx%}wnY,mK"ĉd?"aǶWIcefwDןq̑ݎ8Ap-zJL/Nw=Ig׽8gYIw3+^TYڕZ=?]>檙;Ʃ>b'sUƵscm/GL/)a=:P_eb{SQ;;s>(fYvnm !N^O1+3F%StHqs.b&Ķ!97kD\!g!wvF^[κQn8 sυǿo:۷Piiwq^q̬GKG.ݚNY)?kF ӽ3qEv)3+Gf o>(eRE6Z4D؆TݤB\z#q7_ʼn֢4߭ہZ:E6)D{"tLZ6? ]9ЫŹI2$]zneT{@#\q]~^J4rnleQeF\{JCgsYZM4o+)g{h}]&r T}ljѠ)u*8_ZhpWW8j6s囒PpC}DYEVyGbpoUܓ\rG[O[#T[-Xe:wYVgID$Lk䢖~cy^![w ?P w1RyIWOM4/ď>H֧{6Dbf^U'>1Z`Ź;}*T՚LFk;Eevef_MhuWxIOj P(pK3--`ny,G=쫤8՟0(4'H d՜5UFLp; Q!)mJ.?m|܁{ _zZ(uLx t[Pߎ&ϜT V$ kXu|qU?bɱCb4{VfJV$5;+NVT;810reL4#:C|ۈlחdyNi#zdwEyU#gP"~a,8m{[B٧]& (CP/Mʢ޿9NQ@nfPԺU*ԮnP8c#R4gJ(?'E x~=ߍn1.0}Syb޶xBwooOv9 endstream endobj 135 0 obj << /Length1 721 /Length2 5043 /Length3 0 /Length 5634 /Filter /FlateDecode >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> stream x[[s8~ׯcR[!שV's=h%DeeQמM" I$Kdn%R&E>Q$J&*R'56-DgJ'LJLȒP@9@[39r* H g0#b ɋ $4pi{<x9>'b?y2-u5i܎t<-yOjRN I.ǓŷrT'{ }1a9}zsI9 pt;7bDZ/7r:8&&ҿd| ՛L`of5 eINi=qL쉽1)(I9&}HrPɗ VzP=L0!3fh4<_(SX>x0|8-cztvQQ5ɠ07y.^C rNkeChSCxzJIV1Wu~.aYMhGE[NJ2C-h0)fq:Tm! %Rim,GWe㉒K Q55R#•O)e&pxI3.Mk`}%7A+"Qp-`2jXN:4Sn)=)E6Xyd?-a;D5^Fm5&eAmo yQO1xyשׁsUĨ5fOfc{t=񺸡{ N_LK6xUu/zŨ?T+*Zm0cvg`_J9}nPvFjq{DM5MQ$?g51PE W[).Eg7򻨫7E2I  )}XW *JdTRL[aqy=]Ͱb|5_EEl/oIՄ i :syƭYL`Рw 㛋SP$n7Jʚ~uYkPY1ˤM]bT K0uGiMem< Tά]&} |Pg;}~x{ +]EpQ*McW-"jeQ3%I5咳DׄhnAp-N'{r]׷ _gu1VLi9飕qҦ %%(k mSir7{|_NL=bEc[ƚ6*u丿uV yMAWk~4$!ilP>ۏbRWVj[yvku2>ߌVCİ)%YjLAmnDk}j̆fX4߈V9h%f3t%CfVP?oPwdv_䃇9#l,{_df? Zq-V٢($RKJyğT>xkFeY6~O%F{E@w*i6GPKw4cI@ճMZ4͇m0)7{=-ŵev-)HC:ާi9b)XUEkږ.`cٚK7u%h=[ oHhhIOlSz8˂jG2@<|A >"19wJv-Uv~Ŗ] Ja ,yڭ3IO!CgB[[Gz[<92]3EϻIz 4L p [6x) iXF~FS6*]P2xѲ\m\x>3E>m-[b`:Pg N@ s3D;K@75QPhp.9ӓ#܁nBpKDZLP +@"!f|z b"w@VJjTFbiM~o*a713!%~=$D9`@E!3j69uҴCや&n=QDd[<ݵK : T4Tdm3rplgIR\c<:c2YxsdWX6slK y~83c5q_i)ߒc쁿ؤ(͏خe77w D"X>XI:^ϯZSFAa'mىf<{ѱxN1>sr)Rz/9Sp5pZs* @^f| ҈lν0js.njd,eyܺ{ܶW2&4Ʋ9GFD3"q`QE{2-6me۴Fylq~`^/f-F/Z_˚|s#TziÏW=^{=*{/iOް?m]NZg۳_6rg͞tVoK羲1Y~^o\!2mZ endstream endobj 146 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.11)/Keywords() /CreationDate (D:20110828122855-04'00') /ModDate (D:20110828122855-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.11-2.2 (TeX Live 2010) kpathsea version 6.0.0) >> endobj 137 0 obj << /Type /ObjStm /N 22 /First 170 /Length 836 /Filter /FlateDecode >> stream xڝVn@}W#ޫ+!-44-`UQp{f׎v %w.眙]O," 5PA*`RAAK1Ċ h Q0(~( q 8iĵR䠱tkjoJPT( `,Axgm |[UnWni4XWvzwGIMdؠ([ ڳMY%? pӴY?eĺ}y^Nu|<&CɅΞv#:/O./󋚞 Ћ>=%Woof=|oc/EG}I)0)(Ȗ%|؂tR vro]ZeErҠU)hU+87s :ks]'6NlN]S(tBA(Zhܢ(G!(E!C(.Il[X[v! Rȉµ8;=@uJ J7 /YeNrc~@S:Md]deY#TELO&z1yY4͋ʬFkVp=eUO[/[ 7M&{_L2YIjS5I"1?{Ļ=.U CiUV/ lTφjP&+q+gpJ,R>H!'*%S}ȉ?K=V\QڜvR_is1'2`}ٛIZ1G}rOn2??~W~4biOyNvX&{ endstream endobj 147 0 obj << /Type /XRef /Index [0 148] /Size 148 /W [1 3 1] /Root 145 0 R /Info 146 0 R /ID [ ] /Length 379 /Filter /FlateDecode >> stream x%RSQ5ALDcPD8A NhTta)\ܹ`_WнYȿwuo` u#8 NR;JJeI)HC7 #VtwO|vcp:Gf>nNȸ"y ,ϻ BdzVyok>pFVmvd~%(ӯ e((\0_c00 anB n >a5<Ʀ|I#)4RDZjxz*5~yz&}Y,m=( ł o^*yzٹgSM~od"ٍnDv#9%ɔjf8A endstream endobj startxref 197978 %%EOF Zelig/inst/doc/manual-bayes.R0000644000176000001440000003310112217153457015604 0ustar ripleyusers### R code from vignette source 'manual-bayes.Rnw' ################################################### ### code chunk number 1: loadLibrary ################################################### library(Zelig) library(MCMCpack) ################################################### ### code chunk number 2: BasicExample.data ################################################### data(turnout) ################################################### ### code chunk number 3: BasicExample.zelig ################################################### z.out <- zelig(vote ~ race + educate, model = "logit.bayes", data = turnout, verbose = FALSE) ################################################### ### code chunk number 4: BasicExample.geweke ################################################### geweke.diag(z.out$result$coefficients) ################################################### ### code chunk number 5: BasicExample.heidel ################################################### heidel.diag(z.out$result$coefficients) ################################################### ### code chunk number 6: BasicExample.raftery ################################################### raftery.diag(z.out$result$coefficients) ################################################### ### code chunk number 7: BasicExample.summary.zout ################################################### summary(z.out) ################################################### ### code chunk number 8: BasicExample.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 9: BasicExample.sim ################################################### s.out1 <- sim(z.out, x = x.out) ################################################### ### code chunk number 10: BasicExample.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 11: FirstDifferences.setx.high ################################################### x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75)) ################################################### ### code chunk number 12: FirstDifferences.setx.low ################################################### x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25)) ################################################### ### code chunk number 13: FirstDifferences.sim ################################################### s.out2 <- sim(z.out, x = x.high, x1 = x.low) ################################################### ### code chunk number 14: FirstDifferences.summary ################################################### summary(s.out2) ################################################### ### code chunk number 15: BasicExample.data ################################################### data(mexico) ################################################### ### code chunk number 16: BasicExample.zelig ################################################### z.out <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes", data = mexico) ################################################### ### code chunk number 17: BasicExample.heidel ################################################### heidel.diag(z.out$result$coefficients) ################################################### ### code chunk number 18: BasicExample.raftery ################################################### raftery.diag(z.out$result$coefficients) ################################################### ### code chunk number 19: BasicExample.summary ################################################### summary(z.out) ################################################### ### code chunk number 20: BasicExample.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 21: BasicExample.sim ################################################### s.out1 <- sim(z.out, x = x.out) ################################################### ### code chunk number 22: BasicExample.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 23: FirstDifferences.setx ################################################### x.weak <- setx(z.out, pristr = 1) x.strong <- setx(z.out, pristr = 3) ################################################### ### code chunk number 24: FirstDifferences.sim ################################################### s.out2 <- sim(z.out, x = x.strong, x1 = x.weak) ################################################### ### code chunk number 25: FirstDifferences.summary ################################################### summary(s.out2) ################################################### ### code chunk number 26: BasicExample.data ################################################### data(macro) ################################################### ### code chunk number 27: BasicExample.zelig ################################################### z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose = FALSE) ################################################### ### code chunk number 28: BasicExample.geweke ################################################### geweke.diag(z.out$result$coefficients) ################################################### ### code chunk number 29: BasicExample.heidel ################################################### heidel.diag(z.out$result$coefficients) ################################################### ### code chunk number 30: BasicExample.raftery ################################################### raftery.diag(z.out$result$coefficients) ################################################### ### code chunk number 31: BasicExample.summary ################################################### summary(z.out) ################################################### ### code chunk number 32: BasicExample.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 33: BasicExample.sim ################################################### s.out1 <- sim(z.out, x = x.out) ################################################### ### code chunk number 34: BasicExample.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 35: FirstDifferences.setx ################################################### x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8)) x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2)) ################################################### ### code chunk number 36: FirstDifferences.sim ################################################### s.out2 <- sim(z.out, x = x.high, x1 = x.low) ################################################### ### code chunk number 37: FirstDifferences.summary.sim ################################################### summary(s.out2) ################################################### ### code chunk number 38: BasicExample.data ################################################### data(sanction) ################################################### ### code chunk number 39: BasicExample.zelig ################################################### z.out <- zelig(ncost ~ mil + coop, model = "oprobit.bayes", data = sanction, verbose = FALSE) ################################################### ### code chunk number 40: BasicExample.factor ################################################### sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain", "little effect", "modest loss", "major loss")) ################################################### ### code chunk number 41: BasicExample.heidel ################################################### heidel.diag(z.out$result$coefficients) ################################################### ### code chunk number 42: BasicExample.raftery ################################################### raftery.diag(z.out$result$coefficients) ################################################### ### code chunk number 43: BasicExample.summary ################################################### summary(z.out) ################################################### ### code chunk number 44: BasicExample.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 45: BasicExample.sim ################################################### s.out1 <- sim(z.out, x = x.out) summary(s.out1) ################################################### ### code chunk number 46: FirstDifferences.setx ################################################### x.high <- setx(z.out, mil=0) x.low <- setx(z.out, mil=1) ################################################### ### code chunk number 47: FirstDifferences.sim ################################################### s.out2 <- sim(z.out, x = x.high, x1 = x.low) summary(s.out2) ################################################### ### code chunk number 48: BasicExample.data ################################################### data(sanction) ################################################### ### code chunk number 49: BasicExample.zelig ################################################### z.out <- zelig(num ~ target + coop, model = "poisson.bayes", data = sanction, verbose = FALSE) ################################################### ### code chunk number 50: BasicExample.geweke ################################################### geweke.diag(z.out$result$coefficients) ################################################### ### code chunk number 51: BasicExample.heidel ################################################### heidel.diag(z.out$result$coefficients) ################################################### ### code chunk number 52: BasicExample.raftery ################################################### raftery.diag(z.out$result$coefficients) ################################################### ### code chunk number 53: BasicExample.summary ################################################### summary(z.out) ################################################### ### code chunk number 54: BasicExample.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 55: BasicExample.sim ################################################### s.out1 <- sim(z.out, x = x.out) ################################################### ### code chunk number 56: BasicExample.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 57: FirstDifferences.setx ################################################### x.max <- setx(z.out, target = max(sanction$target)) x.min <- setx(z.out, target = min(sanction$target)) ################################################### ### code chunk number 58: FirstDifferences.sim ################################################### s.out2 <- sim(z.out, x = x.max, x1 = x.min) summary(s.out2) ################################################### ### code chunk number 59: BasicExample.data ################################################### data(turnout) ################################################### ### code chunk number 60: BasicExample.zelig ################################################### z.out <- zelig(vote ~ race + educate, model = "probit.bayes", data = turnout, verbose = FALSE) ################################################### ### code chunk number 61: BasicExample.geweke ################################################### geweke.diag(z.out$result$coefficients) ################################################### ### code chunk number 62: BasicExample.heidel ################################################### heidel.diag(z.out$result$coefficients) ################################################### ### code chunk number 63: BasicExample.raftery ################################################### raftery.diag(z.out$result$coefficients) ################################################### ### code chunk number 64: BasicExample.summary ################################################### summary(z.out) ################################################### ### code chunk number 65: BasicExample.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 66: BasicExample.sim ################################################### s.out1 <- sim(z.out, x = x.out) ################################################### ### code chunk number 67: BasicExample.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 68: FirstDifferences.setx ################################################### x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25)) ################################################### ### code chunk number 69: FirstDifferences.sim ################################################### s.out2 <- sim(z.out, x = x.high, x1 = x.low) ################################################### ### code chunk number 70: FirstDifferences.summary ################################################### summary(s.out2) Zelig/tests/0000755000176000001440000000000012217153457012525 5ustar ripleyusersZelig/tests/lognorm.R0000644000176000001440000000124112061700507014312 0ustar ripleyuserslibrary(Zelig) # Load the sample data: data(coalition) # Estimate the model: user.prompt() z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "lognorm", data = coalition) user.prompt() # View the regression output: summary(z.out) # Set the baseline values (with the ruling coalition in the minority) # and the alternative values (with the ruling coalition in the majority) # for X: user.prompt() x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) # Simulate expected values qi$ev and first differences qi$fd: user.prompt() s.out <- sim(z.out, x = x.low, x1 = x.high) user.prompt() summary(s.out) user.prompt() plot(s.out) Zelig/tests/models-gee.R0000644000176000001440000000733612110047000014654 0ustar ripleyuserslibrary(Zelig) data(coalition) data(turnout) data(macro) data(sanction) cluster <- c(rep(c(1:62),5), rep(c(63),4)) coalition$cluster <- cluster z.out <- zelig(duration ~ fract + numst2, id = "cluster", model = "gamma.gee", data = coalition, corstr="exchangeable" ) summary(z.out) # Setting the explanatory variables at their default values # (mode for factor variables and mean for non-factor variables), # with numst2 set to the vector 0 = no crisis, 1 = crisis. x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) # Simulate quantities of interest s.out <- sim(z.out, x = x.low, x1 = x.high) summary(s.out) # Generate a plot of quantities of interest: plot(s.out) ## Attaching the sample turnout dataset: turnout$cluster <- rep(c(1:200),10) sorted.turnout <- turnout[order(turnout$cluster),] z.out1 <- zelig( vote ~ race + educate, model = "logit.gee", id = "cluster", data = turnout, corstr = "stat_M_dep", Mv=3 ) summary(z.out1) x.out1 <- setx(z.out1) s.out1 <- sim(z.out1, x = x.out1) summary(s.out1) plot(s.out1) x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) s.out2 <- sim(z.out1, x = x.high, x1 = x.low) summary(s.out2) plot(s.out2) ##### Example 3: Example with Fixed Correlation Structure ## User-defined correlation structure corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10) diag(corr.mat) <- 1 ## Generating empirical estimates: z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = T, corstr = "fixed", R=corr.mat) ## Viewing the regression output: summary(z.out2) # NORMAL.GEE # NORMAL.GEE # NORMAL.GEE z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee", id = "country", data = macro, robust=TRUE, corstr="AR-M", Mv=1) summary(z.out) # Set explanatory variables to their default (mean/mode) values, with # high (80th percentile) and low (20th percentile) values: x.high <- setx(z.out, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out, trade = quantile(macro$trade, 0.2)) # Generate first differences for the effect of high versus low trade on # GDP: s.out <- sim(z.out, x = x.high, x1 = x.low) summary(s.out) # Generate a plot of quantities of interest: plot(s.out) # # # sanction$cluster <- c(rep(c(1:15),5),rep(c(16),3)) z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster", data = sanction, robust=TRUE, corstr="exchangeable") summary(z.out) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) summary(s.out) plot(s.out) turnout$cluster <- rep(c(1:200),10) z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = turnout, robust = T, corstr = "stat_M_dep", Mv=3) summary(z.out1) x.out1 <- setx(z.out1) s.out1 <- sim(z.out1, x = x.out1) plot(s.out1) x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) s.out2 <- sim(z.out1, x = x.high, x1 = x.low) summary(s.out2) plot(s.out2) ##### Example 3: Example with Fixed Correlation Structure ## User-defined correlation structure corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10) diag(corr.mat) <- 1 ## Generating empirical estimates: z.out2 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = turnout, robust = T, corstr = "fixed", R=corr.mat) ## Viewing the regression output: summary(z.out2) Zelig/tests/MatchIt.R0000644000176000001440000000063512110047000014157 0ustar ripleyuserslibrary(MatchIt) library(Zelig) data(lalonde) m <- matchit( treat ~ age + educ + black + hispan + nodegree + married + re74 + re75, data = lalonde, method = "subclass", subclass = 4 ) z <- zelig(re78 ~ re74 + re75 + distance, data = match.data(m, "control"), model = "ls", by = "subclass" ) # Fin. Zelig/tests/mi.R0000644000176000001440000000025612061700507013247 0ustar ripleyuserslibrary(Zelig) data(turnout) z <- zelig(vote ~ age, model = "logit", data = mi(turnout[1:10, ], turnout[100:110, ])) x <- setx(z, age = 90) s.out1 <- sim(z, x=x, num=20) Zelig/tests/plot-ci.R0000644000176000001440000000117312117373223014213 0ustar ripleyuserslibrary(Zelig) data(turnout) par(mfrow=c(2, 2)) z <- zelig(vote ~ income + educate, model="relogit", data=turnout) x <- setx(z, educate=2:8) x1 <- setx(z, educate=2:8, income = 10) s <- sim(z, x, x1) plot.ci(s, var="educate") z <- zelig(vote ~ income + educate, model="logit", data=turnout) x <- setx(z, educate=-5:5) s <- sim(z, x) plot.ci(s, var="educate", ylim = c(-2, 1)) z <- zelig(vote ~ income + educate, model="logit", data=turnout) x <- setx(z, educate=-5:5) s <- sim(z, x) plot.ci(s, var="educate") z <- zelig(vote ~ income + educate, model="logit", data=turnout) x <- setx(z, educate=12) s <- sim(z, x) plot.ci(s) Zelig/tests/relogit.R0000644000176000001440000000072712110047000014275 0ustar ripleyuserslibrary(Zelig) data(mid) z <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, model = "relogit", tau = 1042/303772, data = mid) x <- setx(z) s <- sim(z, x) summary(s) plot(s) ## weighting + bias correction + robust s.e. z <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772, case.control = "weighting", robust = TRUE) x <- setx(z) s <- sim(z, x) summary(s) Zelig/tests/models-bayes.R0000644000176000001440000000535312110047000015214 0ustar ripleyuserslibrary(Zelig) data(turnout) data(mexico) data(macro) data(sanction) # mlogit.bayes # mlogit.bayes # mlogit.bayes z.out <- zelig( vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes", data = mexico ) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) summary(z.out) summary(s.out) # logit.bayes # logit.bayes # logit.bayes names(swiss) <- c("Fert","Agr","Exam","Educ","Cath","InfMort") z.out <- zelig( vote ~ race + educate, model = "logit.bayes", verbose = FALSE, data = turnout ) summary(z.out) x.out <- setx(z.out, age=65) x1.out <- setx(z.out, age=10, educate=5) s.out <- sim(z.out, x.out, x1.out) summary(s.out) # normal.bayes # normal.bayes # normal.bayes z.out <- zelig( unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose=TRUE ) x.out <- setx(z.out) x1.out <- setx(z.out, gdp = 10) s.out <- sim(z.out, x.out, x1.out) summary(z.out) summary(s.out) sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain", "little effect", "modest loss", "major loss")) z.out <- zelig( ncost ~ mil + coop, model = "oprobit.bayes", data = sanction, verbose=FALSE ) x.out <- setx(z.out) x1.out <- setx(z.out, coop=3) s.out <- sim(z.out, x = x.out, num=10000) summary(z.out) summary(s.out) z.out <- zelig( num ~ target + coop, model = "poisson.bayes", data = sanction, verbose=TRUE ) x.out <- setx(z.out) x1.out <- setx(z.out, coop=3) s.out <- sim(z.out, x.out, x1.out) summary(z.out) summary(s.out) z.out <- zelig( vote ~ race + educate, model = "probit.bayes", verbose = FALSE, data = turnout ) x.out <- setx(z.out, age=65) x1.out <- setx(z.out, age=10, educate=5) s.out <- sim(z.out, x.out, x1.out) summary(s.out) z.out <- zelig(cbind(Agr,Exam,Educ,Cath,InfMort)~NULL, model="factor.bayes", data=swiss, factors=2, lambda.constraints=list(Exam=list(1,"+"), Exam=list(2,"-"), Educ=c(2,0), InfMort=c(1,0)), verbose=TRUE, a0=1, b0=0.15, burnin=5000, mcmc=10000) ## Checking for convergence before summarizing the estimates: geweke.diag(coef(z.out)) heidel.diag(coef(z.out)) raftery.diag(coef(z.out)) ## summarizing the output summary(z.out) # These methods should not work. #setx(z.out) #sim(z.out) Zelig/tests/twosls.R0000644000176000001440000000057012061700507014174 0ustar ripleyuserslibrary(Zelig) data(klein) formula <- list( mu1 = C ~ Wtot + P1, mu2 = I ~ P + P1 + K1, mu3 = Wp ~ X + X1 + Tm, inst = ~ P1 + K1 + X1 + Tm + Wg + G ) z <- zelig(formula, model="twosls", data=klein, cite=F) x <-setx(z) x1 <-setx(z, Wtot = 60) s <-sim(z, x, x1) summary(s) # Plot plot(s) Zelig/tests/mix.R0000644000176000001440000000106112071063367013441 0ustar ripleyuserslibrary(Zelig) # mix(list('a')) # mix(list('a', 'b', 'c'), list(1, 2, 3, 4)) # # # data(turnout) z1 <- zelig(vote ~ race, model = "logit", data = turnout) x1 <- setx(z1, race = "others") summary(x1) z2 <- zelig(vote ~ race, model = "logit", data = turnout) x2 <- setx(z1, race = c("white", "others")) summary(x2) z3 <- zelig(vote ~ race + educate, model = "logit", data = turnout) x3 <- setx(z2, race = "others", educate = 10:15) class(x3) summary(x3) z4 <- zelig(vote ~ race + educate, model = "logit", data = turnout) x4 <- setx(z3) summary(x4) # Fin. Zelig/tests/models-core.R0000644000176000001440000000524012071063367015060 0ustar ripleyuserslibrary(Zelig) data(coalition) data(macro) data(mid) data(tobin) data(turnout) data(sanction) # exp # exp # exp z.out <- zelig(Surv(duration, ciep12) ~ invest + polar + numst2 + crisis, model = "exp", data = coalition[1:100,]) x.low<- setx(z.out, numst1 = 0) x.high <- setx(z.out, numst2 = 1) s.out <- sim(z.out, x = x.low, x1 = x.high, num = 10) plot(s.out) # gamma # gamma # gamma z <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition) x.low <- setx(z, numst2 = 0) x.high <- setx(z, numst2 = 1) s <- sim(z, x = x.low, x1 = x.high, num = 10) plot(s) # logit # logit # logit z <- zelig(vote ~ age*educate + race, model = "logit", data = turnout) x.high <- setx(z, educate = quantile(turnout$educate, probs = 0.75)) x.low <- setx(z, educate = quantile(turnout$educate, probs = 0.25)) s <- sim(z, x = x.low, x1 = x.high, num = 10) plot(s) # ls # ls # ls z <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro) x.high <- setx(z, trade = quantile(trade, 0.8)) x.low <- setx(z, trade = quantile(trade, 0.2)) s <- sim(z, x = x.high, x1 = x.low, num = 10) plot(s) # negbinom # negbinom # negbinom z <- zelig(num ~ target + coop, model = "negbinom", data = sanction) x <- setx(z) s <- sim(z, x = x, num = 10) plot(s) # normal # normal # normal z <- zelig(unem ~ gdp + capmob + trade, model = "normal", data = macro) x.high <- setx(z, trade = quantile(trade, 0.8)) x.low <- setx(z, trade = quantile(trade, 0.2)) s <- sim(z, x = x.high, x1 = x.low) plot(s) # poisson # poisson # poisson z <- zelig(num ~ target + coop, model = "poisson", data = sanction) x <- setx(z) s <- sim(z, x = x, num = 10) plot(s) # probit # probit # probit z <- zelig(vote ~ race + educate, model = "probit", data = turnout) x.low <- setx(z, educate = quantile(turnout$educate, probs = 0.75)) x.high <- setx(z, educate = quantile(turnout$educate, probs = 0.25)) s <- sim(z, x = x.low, x1 = x.high, num = 10) plot(s) # relogit # relogit # relogit z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) z.out2 <- zelig( conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772, case.control = "weighting", robust = TRUE ) x.out1 <- setx(z.out1) x.out2 <- setx(z.out2) s.out1 <- sim(z.out1, x = x.out1, num=10) s.out2 <- sim(z.out2, x = x.out2, num=10) plot(s.out1) plot(s.out2) # tobit # tobit # tobit z <- zelig(durable ~ age + quant, data = tobin, model = "tobit") x <- setx(z) s <- sim(z, x = x, num = 10) Zelig/tests/by.R0000644000176000001440000000026512110047000013237 0ustar ripleyuserslibrary(Amelia) library(Zelig) data(turnout) z <- zelig(vote ~ educate + income, model = "logit", by = "race", data = turnout) x <- setx(z, educate = 4) s <- sim(z, x) summary(s) Zelig/tests/summary.MI.R0000644000176000001440000000034612142745743014656 0ustar ripleyuserslibrary(Zelig) data(turnout) d1 <- turnout[1:500, ] d2 <- turnout[501:1000, ] d3 <- turnout[1001:2000, ] z <- zelig(vote ~ I(educate*income) + educate, model = "logit", data = mi(d1, d2, d3)) summary(z, subset = c(1, 3)) # F Zelig/tests/models-survey.R0000644000176000001440000001552612071063367015475 0ustar ripleyuserslibrary(Zelig) data(api, package = 'survey') data(scd, package = 'survey') # gamma.survey (1 of 3) # gamma.survey (1 of 3) # gamma.survey (1 of 3) # TEST 1 z.out1 <- zelig( api00 ~ meals + yr.rnd, model = 'gamma.survey', weights = ~ pw, data = apistrat ) summary(z.out1) x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) x.low x.high s.out1 <- sim(z.out1, x=x.high, x1=x.low) plot(s.out1) # gamma.survey (2 of 3) # gamma.survey (2 of 3) # gamma.survey (2 of 3) z.out2 <- zelig( api00 ~ meals + yr.rnd, model = "gamma.survey", strata=~stype, fpc=~fpc, data = apistrat ) summary(z.out2) jk1reps <- jk1weights(psu=apistrat$dnum) # gamma.survey (2 of 3) # gamma.survey (2 of 3) # gamma.survey (2 of 3) z.out3 <- zelig( api00 ~ meals + yr.rnd, model = "gamma.survey", data = apistrat, repweights=jk1reps$weights, type="JK1" ) summary(z.out3) x.low <- setx(z.out3, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out3, meals= quantile(apistrat$meals, 0.8)) x.low x.high s.out3 <- sim(z.out3, x=x.high, x1=x.low) plot(s.out3) # logit.survey (1 of 3) # logit.survey (1 of 3) # logit.survey (1 of 3) data(api, package="survey") # TEST 1 z.out1 <- zelig( yr.rnd ~ meals + mobility, model = "logit.survey", weights=~pw, data = apistrat ) summary(z.out1) x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) # x.low x.high s.out1 <- sim(z.out1, x=x.low, x1=x.high) plot(s.out1) # logit.survey (2 of 3) # logit.survey (2 of 3) # logit.survey (2 of 3) z.out2 <- zelig( yr.rnd ~ meals + mobility, model = "logit.survey", strata=~stype, fpc=~fpc, data = apistrat ) summary(z.out2) # logit.survey (3 of 3) # logit.survey (3 of 3) # logit.survey (3 of 3) data(scd) scd$sued <- as.vector(c(0,0,0,1,1,1)) BRRrep<-2 * cbind( c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0) ) z.out3 <- zelig( formula=sued ~ arrests + alive, model = "logit.survey", repweights=BRRrep, type="BRR", data=scd ) summary(z.out3) x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2)) x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8)) s.out3 <- sim(z.out3, x=x.high, x1=x.low) # normal.survey (1 of 3) # normal.survey (1 of 3) # normal.survey (1 of 3) z.out1 <- zelig( api00 ~ meals + yr.rnd, model = "normal.survey", weights=~pw, data = apistrat ) summary(z.out1) x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) x.low x.high s.out1 <- sim(z.out1, x=x.high, x1=x.low) plot(s.out1) z.out2 <- zelig( api00 ~ meals + yr.rnd, model = "normal.survey", strata=~stype, fpc=~fpc, data = apistrat ) summary(z.out2) # normal.survey (2 of 3) # normal.survey (2 of 3) # normal.survey (2 of 3) BRRrep<-2 * cbind( c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0) ) z.out3 <- zelig( formula=alive ~ arrests, model = "normal.survey", repweights=BRRrep, type="BRR", data=scd, na.action=NULL ) summary(z.out3) x.min <- setx(z.out3, arrests = min(scd$alive)) x.max <- setx(z.out3, arrests = max(scd$alive)) x.min x.max s.out3 <- sim(z.out3, x=x.max, x1=x.min) plot(s.out3) data(api, package="survey") # TEST 1 z.out1 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat) summary(z.out1) x.low <- setx(z.out1, api00= quantile(apistrat$api00, 0.2)) x.high <- setx(z.out1, api00= quantile(apistrat$api00, 0.8)) x.low x.high s.out1 <- sim(z.out1, x=x.low, x1=x.high) plot(s.out1) # TEST 2 z.out2 <- zelig( enroll ~ api99 + yr.rnd, model = "poisson.survey", data = apistrat, strata=~stype, fpc=~fpc ) summary(z.out2) data(scd, package="survey") BRRrep<-2*cbind( c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0) ) z.out3 <- zelig( alive ~ arrests, model = "poisson.survey", repweights=BRRrep, type="BRR", data=scd ) summary(z.out3) x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2)) x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8)) x.low x.high s.out3 <- sim(z.out3, x=x.high, x1=x.low) plot(s.out3) data(api, package="survey") z.out1 <- zelig( yr.rnd ~ meals + mobility, model = "probit.survey", weights=~pw, data = apistrat ) summary(z.out1) x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) x.low x.high s.out1 <- sim(z.out1, x=x.low, x1=x.high) plot(s.out1) # TEST 2 z.out2 <- zelig( yr.rnd ~ meals + mobility, model = "probit.survey", strata=~stype, fpc=~fpc, data = apistrat ) summary(z.out2) data(scd) scd$sued <- as.vector(c(0,0,0,1,1,1)) BRRrep<-2*cbind( c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0) ) z.out3 <- zelig( formula=sued ~ arrests + alive, model = "probit.survey", repweights=BRRrep, type="BRR", data=scd ) summary(z.out3) x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2)) x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8)) x.low x.high s.out3 <- sim(z.out3, x=x.high, x1=x.low) Zelig/tests/pooled.R0000644000176000001440000000027512061700507014125 0ustar ripleyuserslibrary(Zelig) data(turnout) z <- zelig(vote ~ race + educate + age, model = "logit", data = turnout) x <- setx(z, educate = 6:7, age = 17) s <- sim(z, x, num = 200) summary(s) plot(s) Zelig/tests/amelia.R0000644000176000001440000000144112110047000014052 0ustar ripleyuserslibrary(Zelig) library(Amelia) # Create data set beta <- c(.3, -10) .x1 <- runif(1000, -5, 5) .x2 <- runif(1000, -2, 2) .x3 <- sample(1:4, 1000, TRUE) .y <- t(beta %*% rbind(.x1 + rnorm(1000, 0, 1.2), .x2 + rnorm(1000, 0, .1))) + 3 + rnorm(1000, 0, .3) data.set <- data.frame(y = .y, x1 = .x1, x2 = .x2, x3 = .x3) # Add missing data missing.data.percent <- .3 missing.data.column <- "x1" missing.data.rows <- sample(1:nrow(data.set), round(missing.data.percent * nrow(data.set))) data.set[missing.data.rows, missing.data.column] <- NA # Impute imputed.data <- amelia(data.set) # Remove unused data sets rm(.y, .x1, .x2) # Print amelia obj imputed.data # Fit statistical model z <- zelig(y ~ x1 + x2, model = "ls", data = imputed.data) x <- setx(z) s <- sim(z, x) # summary(s) # Fin. Zelig/NAMESPACE0000644000176000001440000001503312152222105012565 0ustar ripleyusersexport(.getRandAndFixedTerms) export(.reduceFurther) export(.ZeligModelCategories) export(alpha) export(as.description) export(as.qi.default) export(as.qi.list) export(as.qi.qi) export(as.summarized.list) export(as.summarized.summarized.qi) export(as.summarized) export(bootstrap) export(cite) export(cmvglm) export(coef.parameters) export(combine) export(depends.on.zelig) export(describe.default) export(describe.gamma) export(describe.logit) export(describe.ls) export(describe.negbinom) export(describe.normal) export(describe.poisson) export(describe.probit) export(describe) export(description) export(GetObject) export(getPredictorTerms) export(getResponseTerms) export(GetSlot.zelig) export(GetSlot) export(has.zelig2) export(help.zelig) export(ignore) export(link) export(linkinv) export(loadDependencies) export(make.parameters) export(Max) export(MCMChook) export(McmcHookFactor) export(Median) export(mi) export(Min) export(mix) export(Mode) export(param.default) export(param) export(parameters) export(parse.formula) export(parseFormula) export(plot.ci) export(print.setx) export(print.zelig) export(qi) export(reduceMI) export(relogit) export(repl) export(robust.glm.hook) export(robust.gee.hook) export(rocplot) export(setx) export(sim) export(simulation.matrix) export(simulations.parameters) export(splitUp) export(structuralToReduced) export(summarize) export(summary.MI.sim) export(summary.sim) export(summary.zelig) export(termsFromFormula) export(TexCite) export(tolmerFormat) export(user.prompt) export(z) export(zelig.call) export(zelig.skeleton) export(zelig) export(zelig2exp) export(zelig2factor.bayes) export(zelig2gamma.gee) export(zelig2gamma.survey) export(zelig2gamma) export(zelig2logit.bayes) export(zelig2logit.gee) export(zelig2logit.survey) export(zelig2logit) export(zelig2lognorm) export(zelig2ls) export(zelig2mlogit.bayes) export(zelig2negbinom) export(zelig2normal.bayes) export(zelig2normal.gee) export(zelig2normal.survey) export(zelig2normal) export(zelig2oprobit.bayes) export(zelig2poisson.bayes) export(zelig2poisson.gee) export(zelig2poisson.survey) export(zelig2poisson) export(zelig2probit.bayes) export(zelig2probit.gee) export(zelig2probit.survey) export(zelig2probit) export(zelig2relogit) export(zelig2tobit) export(zelig2twosls) export(ZeligDescribeModel) export(ZeligListModels) export(ZeligListTitles) export(zeligBuildWeights) S3method("[[",qi) S3method("[[",zelig) S3method(as.data.frame,setx) S3method(as.description,description) S3method(as.description,list) S3method(as.matrix,pooled.setx) S3method(as.matrix,setx) S3method(bootstrap,default) S3method(bootstrap,gamma) S3method(bootstrap,negbinom) S3method(bootstrap,normal) S3method(coef,parameters) S3method(coef,zelig) S3method(describe,default) S3method(describe,exp) S3method(describe,factor.bayes) S3method(describe,gamma.gee) S3method(describe,gamma.survey) S3method(describe,logit.bayes) S3method(describe,logit.gee) S3method(describe,logit.survey) S3method(describe,logit) S3method(describe,lognorm) S3method(describe,ls) S3method(describe,mlogit.bayes) S3method(describe,negbinom) S3method(describe,normal.bayes) S3method(describe,normal.gee) S3method(describe,normal.survey) S3method(describe,normal) S3method(describe,oprobit.bayes) S3method(describe,poisson.bayes) S3method(describe,poisson.gee) S3method(describe,poisson.survey) S3method(describe,poisson) S3method(describe,probit.bayes) S3method(describe,probit.gee) S3method(describe,probit.survey) S3method(describe,relogit) S3method(describe,tobit) S3method(describe,twosls) S3method(describe,zelig) S3method(getResponseTerms,formula) S3method(getResponseTerms,Formula) S3method(getResponseTerms,list) S3method(logLik,zelig) S3method(model.frame,multiple) S3method(model.matrix,multiple) S3method(model.matrix,parseFormula) S3method(names,qi) S3method(param,default) S3method(param,exp) S3method(param,factor.bayes) S3method(param,gamma.gee) S3method(param,gamma.survey) S3method(param,gamma) S3method(param,logit.bayes) S3method(param,logit.gee) S3method(param,logit.survey) S3method(param,logit) S3method(param,lognorm) S3method(param,ls) S3method(param,mlogit.bayes) S3method(param,negbinom) S3method(param,normal.bayes) S3method(param,normal.gee) S3method(param,normal.survey) S3method(param,oprobit.bayes) S3method(param,poisson.bayes) S3method(param,poisson.gee) S3method(param,poisson.survey) S3method(param,probit.bayes) S3method(param,probit.gee) S3method(param,probit.survey) S3method(param,relogit) S3method(param,relogit2) S3method(param,tobit) S3method(param,twosls) S3method(parseFormula,formula) S3method(parseFormula,Formula) S3method(parseFormula,list) S3method(plot,MI.sim) S3method(plot,pooled.sim) S3method(plot,sim.cloglog.net) S3method(plot,sim.gamma.gee) S3method(plot,sim.logit.gee) S3method(plot,sim.normal.gee) S3method(plot,sim.poisson.gee) S3method(plot,sim.probit.gee) S3method(plot,sim.twosls) S3method(plot,sim) S3method(plot,zelig) S3method(print,qi.summarized) S3method(print,qi) S3method(print,setx.mi) S3method(print,setx) S3method(print,sim) S3method(print,summary.MCMCZelig) S3method(print,summary.pooled.sim) S3method(print,summary.relogit) S3method(print,summary.relogit2) S3method(print,summary.setx) S3method(print,summary.sim) S3method(print,summary.MCMCZelig) S3method(print,summaryMI) S3method(print,summarySim.MI) S3method(print,zelig) S3method(qi,exp) S3method(qi,gamma.gee) S3method(qi,gamma.survey) S3method(qi,gamma) S3method(qi,logit.bayes) S3method(qi,logit.gee) S3method(qi,logit.survey) S3method(qi,logit) S3method(qi,lognorm) S3method(qi,ls) S3method(qi,mlogit.bayes) S3method(qi,negbinom) S3method(qi,normal.bayes) S3method(qi,normal.gee) S3method(qi,normal.survey) S3method(qi,normal) S3method(qi,oprobit.bayes) S3method(qi,poisson.gee) S3method(qi,poisson.survey) S3method(qi,poisson) S3method(qi,probit.bayes) S3method(qi,probit.gee) S3method(qi,probit.survey) S3method(qi,probit) S3method(qi,relogit) S3method(qi,relogit2) S3method(qi,tobit) S3method(qi,twosls) S3method(repl,default) S3method(repl,sim) S3method(setx,default) S3method(setx,MI) S3method(sim,default) S3method(sim,MI) S3method(simulation.matrix,pooled.sim) S3method(simulation.matrix,sim) S3method(summarize,default) S3method(summary,glm.robust) S3method(summary,MCMCZelig) S3method(summary,MI.sim) S3method(summary,MI) S3method(summary,pooled.sim) S3method(summary,Relogit) S3method(summary,Relogit2) S3method(summary,setx) S3method(summary,sim) S3method(summary,zelig) S3method(t,setx) S3method(terms,multiple) S3method(terms,vglm) S3method(terms,zelig) S3method(vcov,gee.naive) S3method(vcov,gee.robust) S3method(vcov,glm.robust) S3method(vcov,Relogit) S3method(vcov,zelig) Zelig/demo/0000755000176000001440000000000012215712501012274 5ustar ripleyusersZelig/demo/vertci.R0000644000176000001440000000162612151655275013735 0ustar ripleyusers ## Attaching the sample turnout dataset: data(turnout) ## Estimate the model: user.prompt() z.out <- zelig(vote ~ race + educate + age + I(age^2) + income, model = "logit", data = turnout) user.prompt() summary(z.out) ## Creating setx structures with education set to high school and ## post-college levels, for the whole range of the age variable. user.prompt() x.low <- setx(z.out, educate = 12, age = 18:95) x.high <- setx(z.out, educate = 16, age = 18:95) ## Using sim to generate the simulated predicted probabilites: user.prompt() s.out <- sim(z.out, x = x.low, x1 = x.high) user.prompt() plot.ci(s.out, xlab = "Age in Years", ylab = "Predicted Probability of Voting", main = "Effect of Education and Age on Voting Behavior") text(x=50,y=.95,labels="College Education (16 years)",cex=0.6) text(x=60,y=.8,labels="High School Education (12 years)",cex=0.6) Zelig/demo/lognorm.R0000644000176000001440000000124712061700507014102 0ustar ripleyuserslibrary(ZeligCommon) # Load the sample data: data(coalition) # Estimate the model: user.prompt() z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "lognorm", data = coalition) user.prompt() # View the regression output: summary(z.out) # Set the baseline values (with the ruling coalition in the minority) # and the alternative values (with the ruling coalition in the majority) # for X: user.prompt() x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) # Simulate expected values qi$ev and first differences qi$fd: user.prompt() s.out <- sim(z.out, x = x.low, x1 = x.high) user.prompt() summary(s.out) user.prompt() plot(s.out) Zelig/demo/logit.survey.R0000644000176000001440000000734612061700507015105 0ustar ripleyusers##### Example 1: User has Existing Sample Weights ##### # Attach sample data: data(api, package="survey") # In this example, we will estimate a model using # the percentages of students who receive subsidized # lunch and the percentage who are new to a school # to predict whether each California public school # attends classes year round. z.out1 <- zelig(yr.rnd ~ meals + mobility, model = "logit.survey", weights=~pw, data = apistrat) summary(z.out1) # Set explanatory variables to their default (mean/mode) values, and set # a high (80th percentile) and low (20th percentile) value for "meals," # the percentage of students who receive subsidized meals: x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) # Generate first differences for the effect of high versus low "meals" # on the probability that a school will hold classes year round: s.out1 <- sim(z.out1, x=x.low, x1=x.high) summary(s.out1) # Generate a second set of fitted values and a plot: plot(s.out1) #### Example 2: User has Details about Complex Survey Design #### #### (but not sample weights) #### # Suppose that the survey house that provided # the dataset excluded probability weights # but made other details about the survey # design available. We can still estimate # a model without probability weights that takes # instead variables that identify each the stratum # and/or cluster from which each observation was # selected and the size of the finite sample from # which each observation was selected. z.out2 <- zelig(yr.rnd ~ meals + mobility, model = "logit.survey", strata=~stype, fpc=~fpc, data = apistrat) summary(z.out2) # The coefficient estimates from this model are identical to # point estimates in the previous example, but the standard errors # are smaller. When sampling weights are omitted, Zelig estimates # them automatically for "normal.survey" models based on the # user-defined description of sampling designs. In addition, # when user-defined descriptions of the sampling design are # entered as inputs, variance estimates are better and standard # errors are consequently smaller. # # setx() and sim() can then be run on z.out2 in the same fashion # described in Example 1. ##### Example 3: User has Replicate Weights ##### # Load data for a model using the number of out-of-hospital # cardiac arrests and the number of patients who arrive # alive in hospitals to predict whether each hospital # has been sued (an indicator variable artificially created # here for the purpose of illustration). data(scd) scd$sued <- as.vector(c(0,0,0,1,1,1)) # Again, for the purpose of illustration, create four Balanced # Repeated Replicate (BRR) weights: BRRrep<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0)) # Estimate the model using Zelig: z.out3 <- zelig(formula=sued ~ arrests + alive , model = "logit.survey", repweights=BRRrep, type="BRR", data=scd) summary(z.out3) # Set the explanatory variables at their means and set # arrests at its 20th and 80th quartiles x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2)) x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8)) # Generate first differences for the effect of the minimum # versus the maximum number of individuals who arrive # alive on the probability that a hospital will be sued: s.out3 <- sim(z.out3, x=x.high, x1=x.low) summary(s.out3) # Generate a second set of fitted values and a plot: plot(s.out3) #### The user should also refer to the logit model demo, since #### #### logit.survey models can take many of the same options as #### #### logit models. #### Zelig/demo/ls.R0000644000176000001440000000321412061700507013037 0ustar ripleyusers##### Example 1: Basic Example with First Differences ##### # Attach sample data and variable names: data(macro) # Estimate model and present a summary: z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro) # Set explanatory variables to their default (mean/mode) values, with # high (80th percentile) and low (20th percentile) values: x.high<- setx(z.out1, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2)) x.high x.low # Generate first differences for the effect of high versus low trade on # GDP: s.out1 <- sim(z.out1, x = x.high, x1 = x.low) # Summary of fitted statistical model summary(z.out1) # Summary of simualted quantities of interest summary(s.out1) # Plot of simulated quantities of interest plot(s.out1) ##### Example 2: Using Dummy Variables ##### # Estimate a model with a dummy variable for each year and country. # Note that you do not need to create dummy variables, as the program # will automatically parse the unique values in the selected variables # into dummy variables. z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(country), model = "ls", data = macro) # Set values for the explanatory variables, using the default mean/mode # values, with country set to the United States and Japan, respectively: x.US <- setx(z.out2, country = "United States") x.Japan <- setx(z.out2, country = "Japan") # Simulate quantities of interest: s.out2 <- sim(z.out2, x = x.US, x1 = x.Japan) # Summary of fitted statistical model summary(z.out2) # Summary of simulated quantities of interest summary(s.out2) # Plot differences: plot(s.out2) Zelig/demo/factor.bayes.R0000644000176000001440000000150312061700507015000 0ustar ripleyusers## Attaching the example dataset: data(swiss) names(swiss) <- c("Fert","Agr","Exam","Educ","Cath","InfMort") user.prompt() ## Estimating the model using MCMCfactanal: z.out <- zelig(cbind(Agr,Exam,Educ,Cath,InfMort)~NULL, model="factor.bayes", data=swiss, factors=2, lambda.constraints=list(Exam=list(1,"+"), Exam=list(2,"-"), Educ=c(2,0), InfMort=c(1,0)), verbose=TRUE, a0=1, b0=0.15, burnin=5000, mcmc=50000) user.prompt() ## Checking for convergence before summarizing the estimates: geweke.diag(z.out$result$coefficients) user.prompt() heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## summarizing the output summary(z.out) Zelig/demo/logit.R0000644000176000001440000000220112061700507013532 0ustar ripleyusers# Attach the data frame data(turnout) ## Generating empirical estimates: z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout) ## Using setx to generate baseline and alternative velus for the ## explanatory variables. x.out1 <- setx(z.out1, age = 36, race = "white") x.out1 ## Simulating quantities of interest (predicted probabilites, risk ## ratios, and risk differences): s.out1 <- sim(z.out1, x = x.out1) # Summary of fitted statistical model summary(z.out1) # Summary of simulations of quantities of interest summary(s.out1) # Plot simulations of quantities of interest plot(s.out1) ## Example 2: First Differences # Fit the statistical model z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout) # Set alternate values x.high <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.25)) s.out2 <- sim(z.out2, x = x.high, x1 = x.low) # Summary of the fitted model summary(z.out2) # Summary of the simulated quantities of interest summary(s.out2) # Plot of the simulated quantities of interest plot(s.out2) Zelig/demo/mi.R0000644000176000001440000000025112061700507013024 0ustar ripleyuserslibrary(Zelig) data(turnout) z <- zelig(vote ~ age, model = "logit", data = mi(turnout[1:10, ], turnout[100:110, ])) x <- setx(z, age = 90) s <- sim(z, x=x, num=20) Zelig/demo/gamma.survey.R0000644000176000001440000000647412061700507015052 0ustar ripleyusers##### Example 1: User has Existing Sample Weights ##### # Attach sample data and variable names: data(api) # In this example, we will estimate a model using # the percentages of students who receive subsidized # lunch and an indicator for whether schooling is # year-round to predict California public schools' # academic performance index scores: z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", weights=~pw, data = apistrat) summary(z.out1) # Set explanatory variables to their default (mean/mode) values, and set # a high (80th percentile) and low (20th percentile) value for "meals," # the percentage of students who receive subsidized meals: x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) # Generate first differences for the effect of high versus low "meals" # on academic performance: s.out1 <- sim(z.out1, x=x.high, x1=x.low) summary(s.out1) # Generate a second set of fitted values and a plot: plot(s.out1) #### Example 2: User has Details about Complex Survey Design #### #### (but not sample weights) #### # Suppose that the survey house that provided # the dataset excluded probability weights # but made other details about the survey # design available. We can still estimate # a model without probability weights that takes # instead variables that identify each the stratum # and/or cluster from which each observation was # selected and the size of the finite sample from # which each observation was selected. z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", strata=~stype, fpc=~fpc, data = apistrat) summary(z.out2) # Note that these results are identical to the results obtained # when pre-existing sampling weights were used. When sampling # weights are omitted, Zelig estimates them automatically for # "gamma.survey" models based on the user-defined description # of sampling designs. If no description is present, the default # assumption is equal probability sampling. # # setx() and sim() can then be run on z.out2 in the same fashion # described in Example 1. ##### Example 3: User has Replicate Weights ##### # Suppose that the survey house that published # these data withheld details about the survey # design and instead published replication weights # For the purpose of illustration, create a set of # jk1 replicate weights jk1reps <- jk1weights(psu=apistrat$dnum) # Estimate the model regressing api00 on the "meals" # "yr.rnd" variables. z.out3 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", data = apistrat, repweights=jk1reps$weights, type="JK1") summary(z.out3) # Set the explanatory variable "meals" at high and low values x.low <- setx(z.out3, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out3, meals= quantile(apistrat$meals, 0.8)) # Generate first differences for the effect of the high # versus low concentrations of poverty on school performance s.out3 <- sim(z.out3, x=x.high, x1=x.low) summary(s.out3) # Generate a second set of fitted values and a plot: plot(s.out3) #### The user should also refer to the gamma model demo, since #### #### gamma.survey models can take many of the same options as #### #### gamma models. ####Zelig/demo/mlogit.bayes.R0000644000176000001440000000237212061700507015022 0ustar ripleyusers## Attaching the example dataset: data(mexico) ## Estimating the model using mlogit.bayes: z.out <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes", data = mexico) user.prompt() ## Checking for convergence before summarizing the estimates: heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## Summarizing the output summary(z.out) user.prompt() ## Setting values for the explanatory variables to ## their sample averages: x.out <- setx(z.out) user.prompt() ## Simulating quantities of interest from the posterior ## distribution given x.out: s.out1 <- sim(z.out, x = x.out) user.prompt() ## Summarizing the simulation results: summary(s.out1) user.prompt() ## Simulating First Differences: ## Setting explanatory variables to their default(mean/mode) ## values, with pristr(the strength of PRI) equal to 1(weak) or ## 3(strong) x.weak <- setx(z.out, pristr = 1) x.strong <- setx(z.out, pristr = 3) user.prompt() ## Estimating the first difference for the effect of ## military action on the probabilities of ## incurring differnt level of cost: s.out2 <- sim(z.out, x = x.strong, x1 = x.weak) user.prompt() ## Summarizing the simulation results: summary(s.out2) Zelig/demo/relogit.R0000644000176000001440000000137512063675316014107 0ustar ripleyusersdata(mid) user.prompt() ## prior correction + bias correction z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772) user.prompt() summary(z.out1) user.prompt() x.out1 <- setx(z.out1) user.prompt() s.out1 <- sim(z.out1, x = x.out1) user.prompt() summary(s.out1) user.prompt() plot(s.out1) ## weighting + bias correction + robust s.e. z.out2 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years, data = mid, model = "relogit", tau = 1042/303772, case.control = "weighting", robust = TRUE) user.prompt() summary(z.out2) user.prompt() x.out2 <- setx(z.out2) user.prompt() s.out2 <- sim(z.out2, x = x.out2) user.prompt() Zelig/demo/normal.bayes.R0000644000176000001440000000252112061700507015013 0ustar ripleyusers## Attaching the example dataset: data(macro) ## Estimating the model using normal.bayes: z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose=TRUE) user.prompt() ## Checking for convergence before summarizing the estimates: geweke.diag(z.out$result$coefficients) user.prompt() heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## summarizing the output summary(z.out) user.prompt() ## Setting values for the explanatory variables to ## their sample averages: x.out <- setx(z.out) user.prompt() ## Simulating quantities of interest from the posterior ## distribution given x.out: s.out1 <- sim(z.out, x = x.out) user.prompt() ## Summarizing the simulation results: summary(s.out1) user.prompt() ## Simulating First Differences ## Set explanatory variables to their default(mean/mode) values, ## with high (80th percentile) and low (20th percentile) trade on GDP: x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8)) x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2)) user.prompt() ## Estimating the first difference for the effect of ## high versus low trade on unemployment rate: s.out2 <- sim(z.out, x = x.high, x1 = x.low) user.prompt() ## Summarizing the simulation results: summary(s.out2) Zelig/demo/exp.R0000644000176000001440000000071112061700507013214 0ustar ripleyusers# exp # exp # exp # Fit the statistical model data(coalition) z.out <- zelig(Surv(duration, ciep12) ~ invest + polar + numst2 + crisis, model = "exp", data = coalition) user.prompt() # Set explanatory variables x.low<- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) user.prompt() # Simulate quantities of interest s.out <- sim(z.out, x = x.low, x1 = x.high, num = 10) summary(s.out) user.prompt() # Plot simualted results plot(s.out) Zelig/demo/poisson.gee.R0000644000176000001440000000143312061700507014653 0ustar ripleyusers##### Example 1: Basic Example ##### # Attach sample data and variable names: data(sanction) # Variable identifying clusters sanction$cluster <- c(rep(c(1:15),5),rep(c(16),3)) # Sorting by cluster sorted.sanction <- sanction[order(sanction$cluster),] # Estimate model and present a summary: user.prompt() z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster", data = sorted.sanction, robust=TRUE, corstr="exchangeable") user.prompt() summary(z.out) # Set explanatory variables to their default values: user.prompt() x.out <- setx(z.out) # Simulate quantities of interest user.prompt() s.out <- sim(z.out, x = x.out) user.prompt() summary(s.out) # Generate a plot of quantities of interest: user.prompt() plot(s.out) Zelig/demo/logit.gee.R0000644000176000001440000000342012061700507014275 0ustar ripleyusers## Attaching the sample turnout dataset: data(turnout) ## Variable identifying clusters turnout$cluster <- rep(c(1:200),10) ## Sorting by cluster sorted.turnout <- turnout[order(turnout$cluster),] ##### Example 1: Simple Example with Stationary 3 Dependence ## Generating empirical estimates: user.prompt() z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = T, corstr = "stat_M_dep", Mv=3) user.prompt() ## Viewing the regression output: summary(z.out1) ## Using setx to generate baseline and alternative values for the ## explanatory variables. user.prompt() x.out1 <- setx(z.out1) ## Simulating quantities of interest: user.prompt() s.out1 <- sim(z.out1, x = x.out1) user.prompt() ## Summarizing the simulated quantities of interest: summary(s.out1) ## Diagnostic plot of the s.out: user.prompt() plot(s.out1) ## Example 2: First Differences user.prompt() x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) user.prompt() s.out2 <- sim(z.out1, x = x.high, x1 = x.low) user.prompt() summary(s.out2) user.prompt() plot(s.out2) ##### Example 3: Example with Fixed Correlation Structure ## User-defined correlation structure user.prompt() corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10) diag(corr.mat) <- 1 ## Generating empirical estimates: user.prompt() z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = T, corstr = "fixed", R=corr.mat) user.prompt() ## Viewing the regression output: summary(z.out2) Zelig/demo/twosls.R0000644000176000001440000000060012061700507013750 0ustar ripleyusersdata(klein) formula <- list( mu1 = C ~ Wtot + P1, mu2 = I ~ P + P1 + K1, mu3 = Wp ~ X + X1 + Tm, inst= ~ P1 + K1 + X1 + Tm + Wg + G ) z.out<-zelig(formula=formula, model="twosls",data=klein, cite=F) x.out <-setx(z.out) s.out <-sim(z.out,x=x.out) summary(s.out) # Plot user.prompt() plot(s.out) Zelig/demo/normal.R0000644000176000001440000000144212061700507013712 0ustar ripleyuserslibrary(Zelig) ##### Example 1: Basic Example with First Differences ##### # Attach sample data and variable names: data(macro) # Estimate model and present a summary: z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal", data = macro) # Set explanatory variables to their default (mean/mode) values, with # high (80th percentile) and low (20th percentile) values: x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2)) # Generate first differences for the effect of high versus low trade on # GDP: s.out1 <- sim(z.out1, x = x.high, x1 = x.low) # Summarize the fitted model summary(z.out1) # Summarize the simulated quantities of interest summary(s.out1) # Plot the simulated quantities of interest plot(s.out1) Zelig/demo/normal.gee.R0000644000176000001440000000155312061700507014454 0ustar ripleyusers##### Example 1: Basic Example with First Differences ##### # Attach sample data and variable names: data(macro) # Estimate model and present a summary: user.prompt() z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee", id = "country", data = macro, robust=TRUE, corstr="AR-M", Mv=1) user.prompt() summary(z.out) # Set explanatory variables to their default (mean/mode) values, with # high (80th percentile) and low (20th percentile) values: user.prompt() x.high <- setx(z.out, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out, trade = quantile(macro$trade, 0.2)) # Generate first differences for the effect of high versus low trade on # GDP: user.prompt() s.out <- sim(z.out, x = x.high, x1 = x.low) user.prompt() summary(s.out) # Generate a plot of quantities of interest: user.prompt() plot(s.out) Zelig/demo/oprobit.bayes.R0000644000176000001440000000277712061700507015216 0ustar ripleyusers## Attaching the example dataset: data(sanction) # Create an ordered dependent variable: user.prompt() sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain", "little effect", "modest loss", "major loss")) ## Estimating the model using oprobit.bayes: z.out <- zelig(ncost ~ mil + coop, model = "oprobit.bayes", data = sanction, verbose=FALSE, tune=0.3) user.prompt() ## Checking for convergence before summarizing the estimates: #geweke.diag(z.out$coefficients) #user.prompt() heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## summarizing the output summary(z.out) user.prompt() ## Setting values for the explanatory variables to ## their sample averages: x.out <- setx(z.out) user.prompt() ## Simulating quantities of interest from the posterior ## distribution given x.out: s.out1 <- sim(z.out, x = x.out) user.prompt() ## Summarizing the simulation results: summary(s.out1) user.prompt() ## Simulating First Differences: ## Setting explanatory variables to their default(mean/mode) ## values, with military action to be yes(1) or no(0) x.high <- setx(z.out, mil=0) x.low <- setx(z.out, mil=1) user.prompt() ## Estimating the first difference for the effect of ## military action on the probabilities of ## incurring differnt level of cost: s.out2 <- sim(z.out, x = x.high, x1 = x.low) user.prompt() ## Summarizing the simulation results: summary(s.out2) Zelig/demo/00Index0000644000176000001440000000356412215712501013436 0ustar ripleyusersexp Exponential regression and simulation gamma Gamma regression and simulation logit Logit regression and simulation lognorm Lognormal regression and simulation ls Least Squares regression and simulation mi Multiply imputed regressions and simulations negbinom Negative Binomial regression and simulation normal Normal (Gaussian) regression and simulation poisson Poisson regression and simulation probit Probit regression and simulation relogit Rare events logit regression and simulation twosls Two Stage Least Squares factor.bayes MCMC factor analysis logit.bayes MCMC logistic regression model and simulation normal.bayes MCMC regression model and simulation probit.bayes MCMC probit regression model and simulation poisson.bayes MCMC poisson regression model and simulation mlogit.bayes MCMC multinomial regression model and simulation oprobit.bayes MCMC ordered probit regression model and simulation logit.gee GEE logistic regression gamma.gee GEE gamma regression normal.gee GEE normal regression poisson.gee GEE poisson regression probit.gee GEE probit regression normal.survey Survey-Weighted Normal Regression for Continuous Dependent Variables logit.survey Survey-Weighted Logistic Regression for Dichotomous Dependent Variables probit.survey Survey-Weighted Probit Regression for Dichotomous Dependent Variables poisson.survey Survey-Weighted Poisson Regression for Event-count Dependent Variables gamma.survey Survey-Weighted Poisson Regression for Positive Continuous Dependent Variables vertci Confidence intervals across the range of a continuous covariate Zelig.HelloWorld Step-by-step demo on creating Zelig packages Zelig/demo/probit.gee.R0000644000176000001440000000342112061700507014457 0ustar ripleyusers## Attaching the sample turnout dataset: data(turnout) ## Variable identifying clusters turnout$cluster <- rep(c(1:200),10) ## Sorting by cluster sorted.turnout <- turnout[order(turnout$cluster),] ##### Example 1: Simple Example with Stationary 3 Dependence ## Generating empirical estimates: user.prompt() z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = T, corstr = "stat_M_dep", Mv=3) user.prompt() ## Viewing the regression output: summary(z.out1) ## Using setx to generate baseline and alternative values for the ## explanatory variables. user.prompt() x.out1 <- setx(z.out1) ## Simulating quantities of interest: user.prompt() s.out1 <- sim(z.out1, x = x.out1) user.prompt() ## Summarizing the simulated quantities of interest: summary(s.out1) ## Diagnostic plot of the s.out: user.prompt() plot(s.out1) ## Example 2: First Differences user.prompt() x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) user.prompt() s.out2 <- sim(z.out1, x = x.high, x1 = x.low) user.prompt() summary(s.out2) user.prompt() plot(s.out2) ##### Example 3: Example with Fixed Correlation Structure ## User-defined correlation structure user.prompt() corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10) diag(corr.mat) <- 1 ## Generating empirical estimates: user.prompt() z.out2 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = T, corstr = "fixed", R=corr.mat) user.prompt() ## Viewing the regression output: summary(z.out2) Zelig/demo/poisson.bayes.R0000644000176000001440000000246312061700507015222 0ustar ripleyusers## Attaching the example dataset: data(sanction) ## Estimating the model using poisson.bayes: z.out <- zelig(num ~ target + coop, model = "poisson.bayes", data = sanction, verbose=TRUE) user.prompt() ## Checking for convergence before summarizing the estimates: geweke.diag(z.out$result$coefficients) user.prompt() heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## summarizing the output summary(z.out) user.prompt() ## Setting values for the explanatory variables to ## their sample averages: x.out <- setx(z.out) user.prompt() ## Simulating quantities of interest from the posterior ## distribution given x.out: s.out1 <- sim(z.out, x = x.out) user.prompt() ## Summarizing the simulation results: summary(s.out1) user.prompt() ## Simulating First Differences: ## Setting explanatory variables to their default(mean/mode) ## values, with the number of targets to be its maximum ## versus its minimum: x.max <- setx(z.out, target = max(sanction$target)) x.min <- setx(z.out, target = min(sanction$target)) user.prompt() ## Estimating the first difference for the effect of ## maximum versus minimum number of targets: s.out2 <- sim(z.out, x = x.max, x1 = x.min) user.prompt() ## Summarizing the simulation results: summary(s.out2) Zelig/demo/probit.R0000644000176000001440000000213412061700507013720 0ustar ripleyusers## Attaching the sample turnout dataset: data(turnout) ##### Example 1: Simple Example ## Generating empirical estimates: z.out1 <- zelig(vote ~ race + educate, model = "probit", data = turnout) ## Viewing the regression output: ## Using setx to generate baseline and alternative velus for the ## explanatory variables. x.out1 <- setx(z.out1) x.out1 ## Simulating quantities of interest (predicted probabilites, risk ## ratios, and risk differences): s.out1 <- sim(z.out1, x = x.out1) # Summary of fitted the statistical model summary(z.out1) # Summary of the simulated quantities of interest summary(s.out1) ## Diagnostic plot of the s.out: plot(s.out1) ## Example 2: First Differences x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) # Simulate quantities of interest (include first-differences, etc.) s.out2 <- sim(z.out1, x = x.low, x1 = x.high) # Summary of quantities of interest (for difference in x.low and x.high summary(s.out2) # Plot of quantities of interest plot(s.out2) Zelig/demo/probit.survey.R0000644000176000001440000000734612061700507015266 0ustar ripleyusers##### Example 1: User has Existing Sample Weights ##### # Attach sample data: data(api, package="survey") # In this example, we will estimate a model using # the percentages of students who receive subsidized # lunch and the percentage who are new to a school # to predict whether each California public school # attends classes year round. z.out1 <- zelig(yr.rnd ~ meals + mobility, model = "probit.survey", weights=~pw, data = apistrat) summary(z.out1) # Set explanatory variables to their default (mean/mode) values, and set # a high (80th percentile) and low (20th percentile) value for "meals," # the percentage of students who receive subsidized meals: x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) # Generate first differences for the effect of high versus low "meals" # on the probability that a school will hold classes year round: s.out1 <- sim(z.out1, x=x.low, x1=x.high) summary(s.out1) # Generate a second set of fitted values and a plot: plot(s.out1) #### Example 2: User has Details about Complex Survey Design #### #### (but not sample weights) #### # Suppose that the survey house that provided # the dataset excluded probability weights # but made other details about the survey # design available. We can still estimate # a model without probability weights that takes # instead variables that identify each the stratum # and/or cluster from which each observation was # selected and the size of the finite sample from # which each observation was selected. z.out2 <- zelig(yr.rnd ~ meals + mobility, model = "probit.survey", strata=~stype, fpc=~fpc, data = apistrat) summary(z.out2) # The coefficient estimates from this model are identical to # point estimates in the previous example, but the standard errors # are smaller. When sampling weights are omitted, Zelig estimates # them automatically for "normal.survey" models based on the # user-defined description of sampling designs. In addition, # when user-defined descriptions of the sampling design are # entered as inputs, variance estimates are better and standard # errors are consequently smaller. # # setx() and sim() can then be run on z.out2 in the same fashion # described in Example 1. ##### Example 3: User has Replicate Weights ##### # Load data for a model using the number of out-of-hospital # cardiac arrests and the number of patients who arrive # alive in hospitals to predict whether each hospital # has been sued (an indicator variable artificially created # here for the purpose of illustration). data(scd) scd$sued <- as.vector(c(0,0,0,1,1,1)) # Again, for the purpose of illustration, create four Balanced # Repeated Replicate (BRR) weights: BRRrep<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0)) # Estimate the model using Zelig: z.out3 <- zelig(formula=sued ~ arrests + alive , model = "probit.survey", repweights=BRRrep, type="BRR", data=scd) summary(z.out3) # Set the explanatory variables at their means and set # arrests at its 20th and 80th quartiles x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2)) x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8)) # Generate first differences for the effect of the minimum # versus the maximum number of individuals who arrive # alive on the probability that a hospital will be sued: s.out3 <- sim(z.out3, x=x.high, x1=x.low) summary(s.out3) # Generate a second set of fitted values and a plot: plot(s.out3) #### The user should also refer to the probit model demo, since #### #### probit.survey models can take many of the same options as #### #### probit models. #### Zelig/demo/gamma.R0000644000176000001440000000121312061700507013500 0ustar ripleyusersdata(coalition) # Fit the statistical model z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition) ## Setting the explanatory variables at their default values ## (mode for factor variables and mean for non-factor variables), ## with numst2 set to the vector 0 = no crisis, 1 = crisis. x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) ## Simulating draws using the default bootstrap method. s.out <- sim(z.out, x = x.low, x1 = x.high) # Summary of fitted model summary(z.out) # Summary of simulated quantities of interest summary(s.out) # Plot of simulated quantities of interest plot(s.out) Zelig/demo/logit.bayes.R0000644000176000001440000000255012061700507014643 0ustar ripleyusers## Attaching the example dataset: data(turnout) ## Estimating the model using MCMClogit: z.out <- zelig(vote ~ race + educate, model = "logit.bayes", data = turnout, verbose=TRUE) user.prompt() ## Checking for convergence before summarizing the estimates: geweke.diag(z.out$result$coefficients) user.prompt() heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## summarizing the output summary(z.out) user.prompt() ## Setting values for the explanatory variables to ## their sample averages: x.out <- setx(z.out) user.prompt() ## Simulating quantities of interest from the posterior ## distribution given x.out: s.out1 <- sim(z.out, x = x.out) user.prompt() ## Summarizing the simulation results: summary(s.out1) user.prompt() ## Simulating First Differences: ## Setting education is set to be between low(25th percentile) ## versus high(75th percentile) while all the other variables ## held at their default values. x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25)) user.prompt() ## Estimating the first difference for the effect of ## high versus low trade on unemployment rate: s.out2 <- sim(z.out, x = x.high, x1 = x.low) user.prompt() ## Summarizing the simulation results: summary(s.out2) Zelig/demo/Zelig.HelloWorld.R0000644000176000001440000001264212061700507015552 0ustar ripleyusers## Load data data(turnout) # The following demo is a step-by-step instruction guide on building a Zelig # model. For the most part, the steps have been simplified, and the model # itself is simply written to show broad ideas, rather than the specifics # of developing a fully functioning statistical model user.prompt("Press to Read about External Methods") # Step 1: Creating and Using External Methods (optional) # ====================================================== # Create a model to be used to be used by the Zelig function. This method # should be designed with the singular purpose of fitting a statistical model. # That is, it should analyze a data-set given several parameters # # For the most part, this step is optional, as quite often R contains builtin # functions for doing these kinds of analyses. Regardless, this step is kept # here for completeness. # # The foreign model, in its simplest form, has only one of two requirements, # either: # 1. The model contains a slot labeled "formula", or # 2. There is a "formula" method defined for objects of this class user.prompt("Press to Continue to Step 1") HelloWorldMethod <- function(formula, verbose=TRUE, data) { if (verbose) { print.form <- paste(as.character(formula), collapse=" ") print.data <- as.character(substitute(data)) cat("Hello, Zelig!\n") } x <- list(formula = formula) class(x) <- "HelloWorld" x } user.prompt("Press to Read about Describing Zelig Models") # Step 2: Describing Zelig Models (optional) # ========================================== # Describing the model is an optional, though important step if the developer # would like to be correctly cited in scholarly documents. In its most basic # form, it is simply a list specifying "authors", "text" as the title-text, # and and publication year. user.prompt("Press to Continute to Step 2") describe.hello <- function (...) { list(authors = "You", text='A "Hello, World!" Model') } user.prompt("Press to Read about zelig2 Functions") # Step 3: Interfacing between the External Model and Zelig (crucial) # ================================================================== # The 'zegli2' function of a model is named in the style the model's name # appended to "zelig2". This informs Zelig that a model by the appropriate # name exists. In this demo, "hello" is the model's name, and, as such, # the zelig2 function is named "zelig2hello". # # In the upcoming example, please note that the parameters of the external # method "HelloWorldMethod" are all included within the list that is being # returned from the "zelig2hello" function. # # In general, all "zelig2" functions follow this format. For more detailed # information concerning "zelig2" functions, type: # ?zelig2 # # within an R session. user.prompt("Press to See an Example of a \"zelig2\" Method") zelig2hello <- function (formula, ..., data) { list( .function = "HelloWorldMethod", formula = formula, data = data ) } user.prompt('Press to Read about the "param" Functions') # Step 4: Simulating Parameters # ============================= # The "param" function of a Zelig model is written by concatenating "param." # with the model's name. In the ongoing example, the "hello" model will have # a param function named "param.hello". # # The retun value of a "param" function is a list optionally containing the # values: simulations, alpha, link, linkinv, and family. For more detailed # concerning writing "param" functions, type: # ?param # # within an R session. user.prompt('Press to See an Example "param" Function') param.hello <- function(obj, num=1000, ...) { list( simulations = rbinom(n=num, 1, .5), alpha = .5, linkinv = NULL ) } user.prompt('Press to Read about "qi" Methods') # Step 5: Simulating Quantities of Interest # ========================================= # The "qi" method of a Zelig model is written by concatentating "qi." with the # model's name. In the ongoing example, the "hello" model will have a qi method # named "qi.hello". # # The return-value of a qi method is a list pairing titles of quantities of # interest and their simulations. For example, a model that computes # "Expected Values" will have a return value: # list("Expected Values" = ev) # # where 'ev' is a variable containing the simulated expected value. For more # detailed information concerning writing 'qi' methods, type: # ?qi # # within an R session. user.prompt('Press to See and Example "qi" Method') qi.hello <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { possibilities <- c('Hello', 'World') success.prob <- alpha(param) sims <- rbinom(n=num, 1, success.prob) + 1 pv <- possibilities[sims] list( "Predicted Value: E(Y|X)" = pv ) } user.prompt('Press to Read More about Zelig') # More Information about Zelig # ============================ # That's it! Now that the zelig2, qi, and param methods are defined, Zelig can # run the "hello" model. For more detailed information concerning the Zelig # package, visit: # http://gking.harvard.edu/zelig # # or type: # ?Zelig # # within an R-session user.prompt('Press to see the results of the "hello" model') ## Run Zelig Functions z <- zelig(~ 1, model="hello", data=turnout) x <- setx(z) s <- sim(z) ## Display Fictional Summary summary(s) Zelig/demo/negbinom.R0000644000176000001440000000063512061700507014223 0ustar ripleyusers# Attach the data-frame data(sanction) # Fit the statistical model z <- zelig(num ~ target + coop, model = "negbinom", data = sanction) # Set explanatory variables (in this case, nothing is explicitly set) x <- setx(z) # Simulate Quantities of Interest s <- sim(z, x) # Summarize the statistical model summary(z) # Summarize the simulated quantities of interest summary (s) # Plot the results plot(s) Zelig/demo/poisson.survey.R0000644000176000001440000000701312061700507015450 0ustar ripleyusers##### Example 1: User has Existing Sample Weights ##### # Attach sample data: data(api, package="survey") # In this example, we will estimate a model using # each school's academic performance in 2000 and an # indicator for year-round schools to predict the # number of students who enrolled in each California school. z.out1 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat) summary(z.out1) # Set explanatory variables to their default (mean/mode) values, and set # a high (80th percentile) and low (20th percentile) value for the # measure of academic performance, "api00": x.low <- setx(z.out1, api00= quantile(apistrat$api00, 0.2)) x.high <- setx(z.out1, api00= quantile(apistrat$api00, 0.8)) # Generate first differences for the effect of high versus low "meals" # on the probability that a school will hold classes year round: s.out1 <- sim(z.out1, x=x.low, x1=x.high) summary(s.out1) # Generate a second set of fitted values and a plot: plot(s.out1) #### Example 2: User has Details about Complex Survey Design #### #### (but not sample weights) #### # Suppose that the survey house that provided # the dataset excluded probability weights # but made other details about the survey # design available. We can still estimate # a model without probability weights that takes # instead variables that identify each the stratum # and/or cluster from which each observation was # selected and the size of the finite sample from # which each observation was selected. z.out2 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat, strata=~stype, fpc=~fpc) summary(z.out2) # The coefficient estimates from this model are identical to # point estimates in the previous example, but the standard errors # are smaller. When sampling weights are omitted, Zelig estimates # them automatically for "normal.survey" models based on the # user-defined description of sampling designs. In addition, # when user-defined descriptions of the sampling design are # entered as inputs, variance estimates are better and standard # errors are consequently smaller. # # setx() and sim() can then be run on z.out2 in the same fashion # described in Example 1. ##### Example 3: User has Replicate Weights ##### # Load data for a model using the number of out-of-hospital # cardiac arrests to predict the number of patients who arrive # alive in hospitals. data(scd, package="survey") # For the purpose of illustration, create four Balanced # Repeated Replicate (BRR) weights: BRRrep<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0)) # Estimate the model using Zelig: z.out3 <- zelig(alive ~ arrests , model = "poisson.survey", repweights=BRRrep, type="BRR", data=scd) summary(z.out3) # Set the explanatory variables at their means and set # arrests at its 20th and 80th quartiles x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2)) x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8)) # Generate first differences for the effect of the minimum # versus the maximum number of individuals who arrive # alive on the probability that a hospital will be sued: s.out3 <- sim(z.out3, x=x.high, x1=x.low) summary(s.out3) # Generate a second set of fitted values and a plot: plot(s.out3) #### The user should also refer to the poisson model demo, since #### #### poisson.survey models can take many of the same options as #### #### poisson models. #### Zelig/demo/probit.bayes.R0000644000176000001440000000255612061700507015032 0ustar ripleyusers## Attaching the example dataset: data(turnout) ## Estimating the model using probit.bayes: z.out <- zelig(vote ~ race + educate, model = "probit.bayes", data = turnout, verbose=TRUE) user.prompt() ## Checking for convergence before summarizing the estimates: geweke.diag(z.out$result$coefficients) user.prompt() heidel.diag(z.out$result$coefficients) user.prompt() raftery.diag(z.out$result$coefficients) user.prompt() ## summarizing the output summary(z.out) user.prompt() ## Setting values for the explanatory variables to ## their sample averages: x.out <- setx(z.out) user.prompt() ## Simulating quantities of interest from the posterior ## distribution given x.out: s.out1 <- sim(z.out, x = x.out) user.prompt() ## Summarizing the simulation results: summary(s.out1) user.prompt() ## Simulating First Differences: ## Setting education is set to be between low(25th percentile) ## versus high(75th percentile) while all the other variables ## held at their default values. x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25)) user.prompt() ## Estimating the first difference for the effect of ## high versus low trade on unemployment rate: s.out2 <- sim(z.out, x = x.high, x1 = x.low) user.prompt() ## Summarizing the simulation results: summary(s.out2) Zelig/demo/poisson.R0000644000176000001440000000073612061700507014121 0ustar ripleyusers# Attach the data frame data(sanction) # Fit the statistical model z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction) # Set explanatory variables (in this case non are explicitly set) x.out <- setx(z.out) # Simulate the quantities of interest s.out <- sim(z.out, x = x.out) # Summary of the statistical model summary(z.out) # Summary of the simulated quantities of interest summary(s.out) # Plot the simulated quantities of interest plot(s.out) Zelig/demo/gamma.gee.R0000644000176000001440000000175412061700507014251 0ustar ripleyusers##### Example 1: Basic Example ##### # Attach sample data and variable names: data(coalition) # Variable identifying clusters coalition$cluster <- c(rep(c(1:62),5),rep(c(63),4)) # Sorting by cluster sorted.coalition <- coalition[order(coalition$cluster),] # Estimate model and present a summary: user.prompt() z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee", id = "cluster", data = sorted.coalition, robust=TRUE, corstr="exchangeable") user.prompt() summary(z.out) # Setting the explanatory variables at their default values # (mode for factor variables and mean for non-factor variables), # with numst2 set to the vector 0 = no crisis, 1 = crisis. user.prompt() x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) # Simulate quantities of interest user.prompt() s.out <- sim(z.out, x = x.low, x1 = x.high) user.prompt() summary(s.out) # Generate a plot of quantities of interest: user.prompt() plot(s.out) Zelig/demo/normal.survey.R0000644000176000001440000000647512061700507015261 0ustar ripleyusers##### Example 1: User has Existing Sample Weights ##### # Attach sample data and variable names: data(api) # In this example, we will estimate a model using # the percentages of students who receive subsidized # lunch and an indicator for whether schooling is # year-round to predict California public schools' # academic performance index scores: z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", weights=~pw, data = apistrat) summary(z.out1) # Set explanatory variables to their default (mean/mode) values, and set # a high (80th percentile) and low (20th percentile) value for "meals," # the percentage of students who receive subsidized meals: x.low <- setx(z.out1, meals= quantile(apistrat$meals, 0.2)) x.high <- setx(z.out1, meals= quantile(apistrat$meals, 0.8)) # Generate first differences for the effect of high versus low "meals" # on academic performance: s.out1 <- sim(z.out1, x=x.high, x1=x.low) summary(s.out1) # Generate a second set of fitted values and a plot: plot(s.out1) #### Example 2: User has Details about Complex Survey Design #### #### (but not sample weights) #### # Suppose that the survey house that provided # the dataset excluded probability weights # but made other details about the survey # design available. We can still estimate # a model without probability weights that takes # instead variables that identify each the stratum # and/or cluster from which each observation was # selected and the size of the finite sample from # which each observation was selected. z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", strata=~stype, fpc=~fpc, data = apistrat) summary(z.out2) # Note that these results are identical to the results obtained # when pre-existing sampling weights were used. When sampling # weights are omitted, Zelig estimates them automatically for # "normal.survey" models based on the user-defined description # of sampling designs. If no description is present, the default # assumption is equal probability sampling. # # setx() and sim() can then be run on z.out2 in the same fashion # described in Example 1. ##### Example 3: User has Replicate Weights ##### # Load data for a model using the number of out-of-hospital # cardiac arrests to predict the number of patients who arrive # alive in hospitals: data(scd) # Create four Balanced Repeated Replicate (BRR) weights: BRRrep<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0)) # Estimate the model using Zelig: z.out3 <- zelig(formula=alive ~ arrests , model = "normal.survey", repweights=BRRrep, type="BRR", data=scd, na.action=NULL) summary(z.out3) # Set the explanatory variable at its minimum and maximum x.min <- setx(z.out3, arrests = min(scd$alive)) x.max <- setx(z.out3, arrests = max(scd$alive)) # Generate first differences for the effect of the minimum # versus the maximum number of cardiac arrests on the number # of people who arrive alive: s.out3 <- sim(z.out3, x=x.max, x1=x.min) summary(s.out3) # Generate a second set of fitted values and a plot: plot(s.out3) #### The user should also refer to the normal model demo, since #### #### normal.survey models can take many of the same options as #### #### normal models. #### Zelig/NEWS0000644000176000001440000001770112216140074012056 0ustar ripleyusersThe Zelig core team is pleased to announce the alpha release of Zelig 4. Designated as the "Developer Update", Zelig 4 offers a wide-range of improvements to ease the process of adding new statistical models to the already extensive Zelig software suite. Significantly, this release is packaged with a brand-new API, geared towards reducing the complexity and length of Zelig's development functions - the zelig2, param and qi methods. In addition to this, Zelig now brandishes a package-creator (zelig.skeleton) that operates in the same vein as R's core function "package.skeleton". In addition to changes in the development toolkit, Zelig has now been split across 13 distinct packages. This change has been made to refine the scope of Zelig and its add-ons. In particular, this restructuring of Zelig into a full software suite allows developers to contribute, develop and repair add-on packages without tinkering with the Zelig API and core functionality. While this release's prime focus has been improving the developer toolkit and restructuring the software suite, Zelig 4 offers an end-user experience completely identical to previous versions. That is, zelig's basic functions - zelig, setx and sim - ostensibly remain unchanged in functionality for available statistical models. For full details concerning changes between Zelig 3.5 and Zelig 4, please refer to: http://zeligdev.github.com/ New Features ------------ Some of the new available features are: A revised developer API. The primary developer methods - zelig2, param and sim - have been reimplemented to use a sleeker, simpler API. For information, please read the Zelig developer's manual found here: http://zeligdev.github.com/files/booklet.pdf The core package has been restructured and minimized. In particular, Zelig core now contains only code essential to its operation, while all non-essential tasks have been made into specific R-packages. For a complete list of official Zelig packages, please refer to: https://github.com/zeligdev Development tools for contributors have been added to the core package. In particular, the "zelig.skeleton" function is packaged within Zelig-core in order to facilitate the rapid development of new Zelig packages. The Zelig software suite has grown to include a total of 7 R-packages. This change offers a simple and easy method for ensuring that development and bug-fixing within any particular Zelig add-on will leave the remainder of the Zelig software suite unchanged. A hook API has been integrated into the core package, in order to reduce the necessity to directly alter the zelig, setx and sim methods. Roxygen-compliant documentation has become standard in all Zelig packages. This offers an easy way to manage Rd documentation, dependencies and exports from within the R code itself. That is, documentation is more tightly paired with the actual R code. For more information about Roxygen, please refer to: http://roxygen.org/ GitHub ------ Zelig is now on GitHub! Fork an add-on package or contribute bug-finds today! For a full listing of official packages and their repositories, please see: https://github.com/zeligdev Links ----- The following comprises a list of relevant information for Zelig 4: * Website: http://zeligdev.github.com/ * Package Repositories: https://github.com/zeligdev/ * Installation Guide: http://zeligdev.github.com/files/zelig.pdf * Zelig Manual: http://zeligdev.github.com/#install * Available and Missing Add-on Packages: http://zeligdev.github.com/#models Questions --------- For any particular questions on developing new Zelig models, please send all mail to: zelig@lists.gking.harvard.edu Zelig v4.0-4 Release Notes (May 16, 2011) Introduction ================================================================================ This document is a brief overview of the current state of the Zelig project as of the 4.0-3 release. This release hopes to maintain the canonical Zelig syntax and interface for end-users, while supplying developers with tools to aid in the development of effective statistical modeling techniques. Emphasis has been placed on readability and modularity. As a result of this gargantuan change, a plethora of features, API functionality, and documentation has been added to the Zelig R-package. Several previously existing models, however, have been removed temporarily or moved from the Zelig core package to more-specific Zelig extensions. Project Information ================================================================================ The Zelig software suite is an easy-to-use R-package geared towards making complex statistical techniques available to end users, particularly those researching the quantitative social sciences. In particular, it offers unifying syntax and programming-style between seemingly disparate and unrelated statistical mdoels. To facilitate this purpose, Zelig (as of May 16th, 2011) includes an array of programming tools, geared towards allowing the rapid development, debugging, and inclusion of new statistical models. That is, Zelig now facilitates and encourages collaboration between novel and pre-existing statistical packages. Author Information ================================================================================ Zelig is a collaborative effort by Harvard's Institute for Quantitive Social Sciences (Harvard IQSS). Publications, software releases, and additional information can be found at: http://gking.harvard.edu/ http://iq.harvard.edu/ Licensing ================================================================================ Zelig is licensed under the GNU General Public License version 2, and as such can be freely used and edited given proper attribution to Harvard's IQSS Department. What's New in this Release? ================================================================================ This release offers a large variety of coding style changes, as well as core functionality. Please carefully read the following: Major Changes (from version 3.5) -------------------------------------------------------------------------------- - Models are now added to Zelig as separate extensions. The method 'zelig.skeleton' has been added to the R-package to facilitate this change. - The main Zelig package now contains a mere 8 models. 22 additional models are available via extensions, geared towards adding specific functionality to the Zelig software suite. - zelig.skeleton: a method used to create blank zelig packages. This follows the style and format of the R-core method 'package.skeleton' - Simplified zelig2-function API. See "?zelig2" within an R-session for help - Enhanced API for 'param' and 'qi' functions. See develoepr documentation for more information Minor Changes (from version 3.5) -------------------------------------------------------------------------------- - Slight changes to the plotting of simulated quantities of interest. Most changes are stylistic - Quantities of interest using two different sets of explanatory variables now output information containing concerning the simulations of the second 'setx' object's Predicted Values and Expected Values. This was previuosly not the case - ZeligListModels: a method used to list available models, installed on the current operating system. - More robust support for various ways of describing 'terms' of a statistical model. This is essentially light error-detection Missing Features -------------------------------------------------------------------------------- - The 'setx' method currently doesn not support setting multiple counterfactuals in a single call to 'setx'. This feature is under current development, and should soon be admitted into the main branch. - "ternaryplot" plotting style is ommitted from the core package, and will be instead moved to the 'bivariate' and 'multinomial' Zelig modules. - "Average Treatment Effect" quantities of interest are not being included in zelig models temporarily. Simulation of these qi's will return pending a minor update to the 'setx' function. Zelig/data/0000755000176000001440000000000012217153461012267 5ustar ripleyusersZelig/data/klein.txt.gz0000644000176000001440000000115012217153460014545 0ustar ripleyusers5A c.=7&@䂓RD@ޞܻN{e>ۋ}?Ӿ7wbjLVՍUUe_B{ E'd B ?ߗ _#v&A,1-IMТC铫,0N B3sw=0 XH%C,iS0}:[ޘ g7RHҁJӠ:PkEwh4J5~'*v6W" &)|_4ɚҡ1*hܪ؜~D`fej:E,Ł:AHKNמN E=B@ՉCBӠ]Na̹D\!2i0a|․ʪP@6IxփUo{*Y姭rz0<2JO9x9lpg`0:Es$oc9tWN91Xt}H\، ƱjDܣdf /q ؚWʳCF _d$wUѶO@^_(i+onOIO[1Zelig/data/immi3.tab.bz20000644000176000001440000004767612217153460014514 0ustar ripleyusersBZh91AY&SYd5`'Sـ`P&Ԡ`v|= *(@Jʢ$B@hP+[u`$}4J:잪w1:vkvuk-ܙk-n=7p2h[)4ahHL> /-|Kl4;3-9YGOMU 4Ҋw g>|KVakʅa.st}{L@(H6fQlUutF $MFF%4 !)*110" L3B$@BQEjzN_?c% aKH4d2( #2 32 ЈHH,Бb(PL4&Ƃ"&%`,d2@1C ɤY#I$FFIɔAؘ$QaQL0HH%00QBHHd$"$EJf&ɈPH0@ `$d1LMf)fHQ!#H2"A fa#(&% a"fXI$H$3@D&4P1( (بM d Q)&iIL! c LF%( 0 &QD #Q)(4A(ia($&X2&HY $Lɑ`Fci&BA"lM1 $$2D 3$3$1W>^{Nka;(!.,dE \MHBQWJxW[XFH=_*LnA"Fr{a!XE 6 h+ʚ ?5@m ˚ߴ:zSH2-.C6BE݆FGFnflԘh8pU{0%vL-CԋVUZYGl0"eso abkǣ }bn"֟*,[XHDn,f*+=yp*`H!Ξ#_3։^L4AD*(9NB4aٖwCyoH۰1娳H[QQH*&d㙺NN2YZ.Fz2|xi;*an #xj4MKWj0Ie|>TQ}SMx9rm]zpI+Ⱥfʳ=64wǎt͒r1wiqs&= gv/7Yɽt#ヂ{\3onJ#v"E>ޚCi5*]ϴR)Ĉ$yd'[ݼݥͻ)AEm֒ TrTZ NNnM3G$38dę\$TYD#zg )iUAlǀޟ 82a sķLjo#~JRnNE"kj;&X>gLQD8nogLs8u7T8Vv2f7zYuaǨ#&Gm 5# /bв(X:y4W 'w>;vn(!mw/s!瘎 6mحgoo9.9oe|BacU.:@pvM.#KkI$KlnK'illMa9U>@E 1NIڊuxi=:jP{q: dE K#!R`j'4+sM Ԓ<[)o\Lz.)~@(:ˋ#gfIgh~ׅy䲡QXGPX1?bۼD3A :v+H2%ڇ^oMSixPn^RL Ngr͢ В\a' >w|ÞJt=p0$֍IQ"-(ʑq51̕vR~֝l954!jT쎃6Y㸭4$@oԊ<. Bϒ2E-~,P5G[8DP9BT*P"T˂ 2W rdO%C*f<֩Qǟ[h:PRՔqlN*UWLQ Vӏ!ܯu&7#), USimTLx ҏ> la7Dp/25', 0|*e$/![$s~/N|2 "9"7S$-Rռdh5ME>(gäxӅ:pӇĖjb,Ba (.oS i(j~1ܯ#FҚSCCJ[ dē DrdC`Bh,4eD+ exs̐I+Cb̶\5b Ler/ڭW0XTU`REE$YBS/Y@0c7;oetVT<>|>mSF)ϖ"_p*J%pE ]~r3% V*m~m X2XS ӻ/wNi$:0ךnr '-6.!; S٪T& F6a! .Y,;5OQ(VY̱D275ߍӻ.[JF>[7N')%\rц" +QlwLu>ijXXѹTeg,Բiu o4 4]iS-kH[oK2Y[*~$',Y &kRiC2|mA/Je2$L#V-%8$hώ` FpPSPC?6*Zi zM[G:o,Îi2JP3 YbXz=HE$GrKFn=:a`9{"4#޽шD/2/vřܛ0W;tXE=i?Pn&p-Pʖ+ pҳ狆BUBr#F7{ҙ5s_ggemIp$Ϙ/n1!B*#,w+_FڭMszI囗 {Lw O&VVTŌG!5=ߟ?Dc-9h0A-hᩜhAfp{u+Ѫ/v 2]AoeSPRq:v{mJhj5۾Djw6R2 Pw04N%\ SD^HV1Ejt'uNT;QvڌL m^RzλNruMYzE'US}VCe,9;$5gKoyTʔbg+v'^Y:NGQ8'<ܛAԺ?u3NyC kYzL1=5v0 މkӞ'8v8^ạy S;,*AiS5 |;`©uS%њ'p,XY~95&qC%>Թxsdy'nL}slkSJVQ2ɉyeB)ݦDnbPh%f5 DCb38U;sqiWL\W\^Xþ3'5,wψzB0{=޾ \,9o{Դ ];]|&wV⌭3nhWZhAÈHOH,DkJ'ɓlHSfó˗S릘wgl]wGnbAlLi>0,Ğ8W{\4͛kڌN+Ok#xs5{{"3DYeg&s9uh'tSf/ag][V›띫/oS<'G_GXV;-G{wx)ӆg;Q"` NLx^3z&TH[qmIŕvʾ8Of K 8>Ye&-˜G*eK`{.CR33כ>ő湩b^ K 4"͘}<:F!DNw?;ĞF2Ǿ.(JNwK.& g+|IM3&$&={IpDٔ9%1'&g۽r/xNcD>޻;除,F1I#DQF8̚U"uAU۠MMTFd "mhIdAwD=̝H{ o.ݹ`]%eV\u%HxKwzG9^ct(޸1wZUbv ١GuBȓςfI<7 AJk qڼ+ܷ5 lgc7h"9d"ccq'$%WQo7YqBR1sEwV8uj.WQdvd>:j+4O애 =n~ACPu+=wQ{G*xL83"<<:]s2%fb-8V"hZLӗ )# }Ԑ~G?#MaK\3ܖf Sp1f4Wb1Rn!/(±)Bnjrىq @"^ci$2i)صS>\M͜ʹ&/v]nꅾ3g;,T.NUfED8?!FauF\bG&FUԭ:@;3N̐lDg80le ݠ= )ݵկЃZpp"p0 sՊONMpn鶀T\&JkFdUTqDZK&Vw{h=WfbXAp﷎Z:M]f]>.mlDKj܈87*vX72.;6;^}chIN7dd7W18jc"Hl; k9dj/ph7;Y".ș<w3rI~ L^׵phܲq'ۂBlmN*K+E꧂㖌:4B$d%r{Ge/eyw5>}{R8m>Ay}M>"44`첚|36&x: .[TGAY}o:lh%K6-˙axa;SPS%uRcbn_8ǣ|"97pۓ۾4{'~ob^p}t-G[Zo=0MP޴:vHw6K\ݒiEm$Q*zuCԬ)cgqmé5%B6!HtzO "#8Fpm"$vb_n6c.$y"J>Sb#D$F:eW\.cŲda}!e6Ms55qX)w_jY-N.xxh,n7tLT{#ڎ3n dʶhׂ{n؆k%yAoOgc.0ļ 1ƳxA44ҭőMŧ62 qzt Ȫ-Gnac5Di%n2m SKsyo>aEtBEq< 'ڍpϠoӆNr&J]^5rPf++R"Tw\r钀Li,o m){2nfs).eJf2lM1Xmq 6|";v1n)-雟wr~ ?6QFQ?"9V̮8>W J<@S|x]v%лAt'vچSnן jbr.|zLfG7d~Bv#%a,iTSϫ$MszK1YbqϏ3]>f-疙 ![sm}>b c]ʁ"~4U?^?=tDW=-8?zcYR\wzӮؖL)F93?ka8 {FzI5ש% pQJ`z)jfNX)qZ~o!G]&O10(J>3#7d˱;*Fܾ}]N, /2'9R!\t_-c! nrot֌]!$yɧO9xDw#dd%O)? Ni ZgNsoO>N s[0%aD `M}8eP=xϷZߠ9) ]u?&! lSBK-Ɍn}2zAh݂lJ޵>AƭCQn-Ce>1K@@]{ D5PG^ &N\xPІ DlCX!uOZv@9%m$װ㪗[[Qʷf$Amew{W3fq^!1oks^w1/qysO^[ }vs$a 'bE65dq=K21$F'Hx~|]@Z*F_@ @!B8}!fFKfu'b;y6'P-  _qM_rxU|N0 alzCD?5i/-q|~H\?>"aU5p{63ka=vI]>uBulBC*FÙĖ_!sc>ɓPG>{ub-!5`m"y,x|elmfbױ2Z-P!_. j}0n- mUno3&q '$M`of8VT,'s7cqS|7f 0"+2{9W ;$:2PNإGld4K\2Ǎ% I %浥 7ꅌ8ѭS972uXb#oXaC51&y,I blt̚&d&LG֙Ll[fI4CY.&I3${qX"9ADD&"HV6@C#'ܘ@ !A'rUEA$$o6w/<ɀ$})5 4XssƹZ͍;m ϴnvc{A=wCld۬b&V˘5ؾ]wǢvV}RlCmܸ{JEKYn=lKn|=c&OQlTr4)YZûN)79*ODfWgEs4svM{sO~ )G>\=L#=i̎VxB:_KsiN뎤ڜb+Xe[X]Fr+^<W F_U(E i'\l CEѻ_̅'-"{KM/9@6HjȚ! f=䰝Ñ-5dw:kѿO:6 y @ΞQ?#|BǷQة$3\q߯wȍbr8$kKZAL'y3;|>댑9SsZ!vO :~uKzs誚T$*|]{Jh5 x>x*\ ݒ$9XYurW+[w]#0 ~{۴>_I^گcxoh}N!!"/䎜Y'Qϝi_[9\{}h\k p/m!ن\7dϣ^|0;NP$=sWavۘˡFF{~=1f)(s *~71*޳|2≾oI={K2ݻ2⢩k쨊q3N$N#;W1u֯ň?x O, <~b韕|%o@oDM.bl!e0K1SUpo+j嫟lZtH6 J&иĈ`lGZMFL 1-jYl[C h2X0>i %<VO~.">)4hk;Cٓ9urb~7dbag#tc՞o1<8+Em .7+> U߈;*P#@#7zz._=ܺ{--#{U]%fg1Sz1+?(YZ7}SN@ 6mNw{po{iZ {M6g=40pU )\GT6:=h4]X3)nd$B8>:tD\K*%L WfTW;|PUUpM UW މ6*c;`m*l\)&<7nj~\ʳysj}⟅&כ] ]3[BΤ&DZ9{Kx{`<:$.|[f&Pv:qx$pU"ՐSvQ2nxI<VE:2K={K5sB{lv!0_h{$P{o~"%k~ŨvxzX,5)9KvSiW=;M9'r*9?W=i.[֒wi?3jJ³Qt_B0V]%ՒqI~5pM=${.r!,eD_=\ޙLfF>3 x'%^.^7;#fdk; dLJٕY' +%uxxy㵩oSľuCۏyy9kCTsV}pM <TKR{iԽ ؎x&. mۛ5JEg<=nn4_R2%CT^B;ZXrDw{$4|90+Jj"e_s)8n󼬲3yq#X!4a 6a AmmOղ>rFL'oѯ e)T%LM3B%BhMI"FfoSc 6IX5G*i:ǜ{UzG=+z\LE %;+0@xs?{tOp~ }'0ք^7)z'+n]o{&b=IBZ=$h(V@۱me^x@"s"%m~1"ZGc\6j7ƽ-\z ӆשM]5jWz\n%CS11+m `rY6`Ey#.Q]^Qc4aY, c׳OÇ5 @0D& W$\0hz w\S!޹s@L:dʄO{W46}ΘEǶ8vWiD*26jrվ7n[d-6mk(jŕw^Ӻ/kog&3xMmP5c6;lPJ|<<kPEC_-ol4&݅қ [>TTWdX9mWި *1dsf4?83U9HA ^/uVƚcD 0h7f6gÿ_}/"~T}V@B-XSWhwR7غ{/7+ VBxՈ%њRh@!Vs9>)3'2z-OSxxKOM7Qv1{iLHyw t$-\nt%/ƅR3EP.zrVڗ_b=]RJ'6pv}̦.b<]Ԟ'psl5g)'xYgE?=?p/S n>{%g9?N|e$ ;(.IWMͮRϘ ph(dGylSƕ\X@'c'ǚ1aQq}tjE QTj\9 d0BpnlzU5FoxA~MY~D$(wڥaH1`.HMCÐ;f鯸1|6-Z\۾Fz;u*eKphxIX&O_7g6QAKr&:L h<92o~L})=p`Q*I=F=Az+9)3OpɕʚN0Pi3zȾmw\0m ClIצ[Ay͸X[h":c_#0,$5?@#z =g%5eXxU6V@ۺT4Pһ nld=}eͷ&69BPrn5\ymjawIˮCҺH>HA:zI0fRW#Rٚ˜"U++nbPOՒ=sf U&ٵ] {l}wfDQ?w ۞:t"WmD u-}И}Pz/vr2v# RHWaDQRcE6eLG*H&`B{2uOO蝕`w#fBNZ.qپ0_7qw?9{2aN`fa_vRaS(1 U2! gn"N0L^s}c|M'Nm>i{y>|#{9>N=]ov(E%l쳧2SYz$q<;KH&XS@RpWMĕR/u*d=0Q+(u{.uߵà=Ց<]>mNס*R:7U=M=ũ=pX"(ѱH &yodf9=9.x~޸ք9]>jJL{uu̷8mz%p8 KwWHM=36Mߠ\h $]Xs]Jv7n@sq<6Dk r*3x Lh'󔫷1ȍh82XUVzCb8D#Lqu;,1>蚦e5PGfBۧC.o2Zm[ng%WG3N>hm@n l٠޶Tkl?j۠`0xPxtS?n~*̌gxgy;ʦRgOeR˩FUVū!Ax"$L' />33:9B.h\uxzwbMXՒr|Lj&=l ]9J n}^=]N֯dW =پ]'D-m4a/!"29\ LHiPe ._C7. aE4-K^pS9)%gOwf%ݭ XZ:alLf1d."Ai9R`B)#"Z3mRH>=iۖneܼg7-}g/=o5o ̝ ^8>:eہ DTm:w78t}ۑkLshڪh|#rP&1H(TZ}{>dƽ\m6",lJra&x'\ ]|)ozM5DZ^E~q$5S~Ss +L,xg[3v{WN6wF&2]MtD,f.^e wp=_^9Ovfn A‰,/l&:~ZyŇ'~CoI"qJ4yz匢:Ԕ5jIxzoNj2,ƚ ȊQVO!uf=KF|Qtཨ3(TQE͘:{v5s㘌a:-5ڷ#Jǀ  v=F<)7inlUFљ:;1.̊i;x>^S; rcpx{زƾ9|_4T@_֒MtO7tv1}ё$/xxdŋe4:{Y:/Xu*%UҠ鬫#wBn9]GzjN,5lBv;q|锕ug8R $<: ~B{qfǀ+ y <^Zg4$u}dmܯߣ͔$#rl;JY.2]_08rSllzo۝ujqh͞kG) DTޕD_PO.$k XɄEkaϞM=JYI^69]WpɋN:y]ckYdݹSlGŚi*1>x4jgZB캛Ƚ4!]3-:s,kDž'JǼ.ork6j$O:YJu>{f%؄y$HxO=qk1LjBiOhjoyoHYヘ tKB i.C+o;sU1xGI3 x$]ik.sNY NjIg/:*+霘W[ݏqHG9IrG ve(Bs>gG:< HI"> a,6w.b8{yLuT.!+zӽ5\3uhw_sR#BTFgY(RĄꝊE. !s~ H!JD &$jdH F_)JyJH/Iu bR,$ZHH<$?/Ӥs]BAՃZelig/data/grunfeld.txt.gz0000644000176000001440000000077412217153457015272 0ustar ripleyusersET;%1Ȁ8i=†6dPد;OϿW}~C~ydZ~Z~VOUkb/ 8֒ZӖu2`1iSv.=UH1pOͨo>Q sT9J(vјm\cMp;QU~dU ͯY"+ZtSXVyhK߅^]CpםM¹,9ye?X`lUjir_ ywiC!DqA#Vͻ_ Π#w҃|gК<-N!Zelig/data/mexico.tab.bz20000644000176000001440000003372212217153460014745 0ustar ripleyusersBZh91AY&SYh&=_ـ@P?߰`isj 'q*D:f `A-wM,S/lgv=]{ѯv4{n+5R2&^B^5CP@lUvg^֠v̨.PU]PR@ICmT-< QZGtGisWlWpwY7πR8,cXqp{<@Hi **0SФU 4 U@OT4CM@RdډQ 4IJ4`#Jg}I=#/7M;:ζ̬͜ޡ}lXV SfQӗr`A<)W@N%;W94 l!UnYTNV.S!nbuMfcC;Ҫfk(BB,+)L0IA ,".'~>>9yMq/QUT[E$%(B0!*Dٓ۽IhILB( I T3K2 -Sjyj ՂNT` dI[мÕ֦H" cER#yL,{Ʌ iN+cg5%X".Q%S.qFa6ݒe 3fJ23&آD12) hwwnGίfݼDi2L(dE(,chb,bL,mԸK׆kΏ6Z=-3d.HcȌ)A-hwjH=j"Ȣ$"%m! a_j`'g]YZS,Ɋj aN>c~TF\QQ%ğ6&~It/%-%*A$s!2snkz(dVI4FPdUltbP Q%J'"; %ac{%侂Oǧ]+w/&KOHF{]9)nrrI0 Ww\ 3=׳.s383cbdy""0H& ݐSbJ t4N8<f6lFjP$ s}CVEhHDŖjaELAEL j[:$ϿǾG0PBO?@=0J-B"2d &$*J ߟw|;訩 29+S/O)*<!tz޼I&{e ;\/-q:\M"Q] h_5j.;˒y&&GγI{s39FG\g",33-znK̋iJ,iݥ"]yDyn2hl}4hs%#6,o-GH"9\騉,V4npH .±k,V"D6CH SI%DDj&mc`%f%H!AfR"#FR ؒ2hK6 SL’J5(ECDL(i F(4dh c*(Ѩ"IQQbPTEEƍb2I&Q$BfRe-bѨ6%1h֋i,Q5AEFD$BBF` "Bd0R3L&P4,Jd01E͌Lؤ|._ĺL,/$%13{Zu@N>cHUGzwi o{c6o(Y4L H6- B؊5MXěbIj " !`mRiōh( DQ&&Hi*-Cc3hъ̴lmQ5EZ6Md%%`[EhQhX1Q$TYmX$cDĶ֊K@%HDk?Vt\5j|vND$5Iesp* ؈A1BY2R!ʠpcSO?Rsbx)8FS$+E$Ѡ(*fDED3FljHcƍE6@P!EX&2%ѱ0XQRF"X4i1lZ(ث4Ub6Y_$]QX/IqX1+nuDs="W E9yM&ѪWJ\ڑF;_*,mQKJ&)VI4cIdF(L$lIm**6Ѷ-hb*A3"2(Ő$̠-IQHX(cQeAň2i4ҙ*l(iBQ(DBɒţ$s[F!Ӝ#lhEG%T:+!YC%5ݡ Et߽2+;u e`7i2$ EI! 1Rŧʺ۩uuOM{%ɷUJ g|72 wz %ݪE_,Mi{Dp0f}omuQTqB颳/{8gE}Ts,OI?[*Q*R Ϟ翊w}1X*Ek֊vm߾]R.r()^yH0B(_ Gޙ2Ihm(-SLa_Q8 ~ *u"1]BkYf`g(%jr*WїMEg>6:a~zB{3^U=n{>ĪKy|$l~r SgeeV뒈Tc 2QP֦E3Aa31Rq+]}\^Ě Gsܻ|˫BsPmE9Lzy|I'aY`JP%y®QӲTaσ"/*'*ͩvd+$dNRˣH]M NL(RSQ*Qh3$'1Hgm\D(PQ*Ǒ&J+\*}}#cXHMZeWM U!(-gkYn;VJ(K I,g r٧T󞜆1/biJ2i9nh$"ms6[_$6krXw qz #P(bD !&6W1^5~칬jf"Nr0I7;.`t,& *ɖ-d l9!,d" mJ[jUTTT3ݔ %̙Zzƽ۩s"/I?vQȣ$T=eQzl[lAuɉ{PM Msٞ7MJ!NM|Μ:o ^:A{儁WHMwK7F\56vW <vk1 ! ""<ď#WJH.m3U f/!$/-O!/]fQE+¼B-OCtӊ;(76-vB7 %8]0MYH{38Y"[m4Qgi"f\."OOD*B%y(f\c*z"2加]WvKO;nzmHgx_iʈI:͝D.ќO0ҍcM{}kqH~nfsWtG{yd@$sD[f^`eak҂Ul\"M1r7 ڑQEݯuv{5X,o4^[uc5(T(ɴcp9ۜhyΝKwq9faK}oQ ܚyV@m=-2J܉ uw/(t$VQ&2 ,REծC%z?b}bG5z) ]y=n"i fSKY<3J.}5jcMfyv 2EJEt.׍G)c7S r1/@6{S,+gcc䠖zXaEbbVyvvزL.=t\3mmM\}Vuj뭽FebJ!4#+ȔQ= bJ!Mۻ렁Gz䠐DΒx/;Vduw*xR*|aUzGA$TA!SkB`ngx"fK h:rca\;"ybѶE{p_YM]cJt,BmhF&Aa.2Id*BBo)YF)gg_O~_tY>ks M)a*^,n[t{[kA`~(BZP[d\4Y/XNTЕ*j K~\֛mZHTv5+je5FG^1qqœTPݻ5ubӀ `>Q)"R #N9`0%0Z+  )aUEݏIüY,67ꜢQGȫ߶DrLA ҙ!imE;+Ie=6*f4-EgiթmG$= ʶd\<9vο>ʖ7UGQ DTij,ZjIgE^P^H S<.xkGC۾w\˙bnr h O"u@;jƨaT^hgR)'E.y7w&I@&{\]K$feI滮5lI%нf $^ʪiittAdueU%{LM_TKiQfQ~g.r*" mF, ^Uyc8 K˹J;<&K *"("5ѭ`uSr״KK+JɇIHݗg>2RW4$R EyZqvxReyWP2ZxSҪf9]h5{cwt͞q )<~eģ'Q2ENH0V5l o#Q`7{޻Mh!Ó#&BwHRòmN$Z 5T=|߯hi$(]Y#IEV,XBhI1E6-E8FHɍIpI$WDbtJPhd\F-"2T2lll]~;Rh2j(Y4bъBSQbf1&ŀlc>Ot ?2Lʹ5H1[wӽOΛHEYs `%K*`۱2+$IAwOyϭUf]0cha- (Èal7N'W9`v"T)ǕMC[7wjHUs@z%;Ce ɠԨU+0'I@Zd{z|w,Y40h6c_~KL*Yk-gOj+q7,..\l0柛⨈UFEa f)F2JYdz\KR>sֳgl,4LGI[ {EK{)IT$ʒlvTPv_~|H0 ɠdc@RD41DC#&T&$c!,뻺DUEQىFDZ\GRMIh$j^yyCԶ+H0`TiQ F)4Po|K @(uS7U1<&Յi3Jjʼdk,&zfS$671Lny{~Ǘ~uͭ/ieӖ=hjCIm)<ܜ9˶ ȹÜ0սnպ٘aqSv'*搚훬:fme=vǸC5rK\,⑺]zuƤ*M :_VMA M ݝ=s a2dsVfUy:礋6n2VxKk^o-i\|(mknTRPړJSD+3wהvemȮOnV{rs/&=V.3!Ҫ/T[So 9ncK7Ewdrgz$lMY F/YQ=iʗ²/D|vR+rw9'8uk$1k+ɩʕHd=]T^+_w *wO72ݍsGAzM4\S /M K)֙"M55N++';---)}.hܲ4 _ӻ0ÙֻὛ7[:%]ŬGj}<(r~=淬vsܱ9 ٣:Iڎ&yB>ٚ\e឴Zsxf-S[l_p8m,')b؂I B>e8US/-%3e2&e}DjN"f-EBb-juO{ݝI9 =! VI 3qnAt IHhb&! CH;{ΕpwW׽rOkIOP/'D%$@*@BLHB@ U^&I ! 4B ]۫aV".L+zeod%ueٮbzˮI.gr'v(멞w\{4@:XwlovȁӮq^X7]s@sZ,mA$AhN{A$I$3=I$I$~@R>_{ I$H?@>{o??UQQ_|`omLi[ÒByI TET=9#]d@-mM~؅%PQ$NuB گvM%[îlpuU}$*VusΖ~ZnrxV5ۛVtSԎoL@4w儂 H$ |^}_>A$I˟w{$$ER7tI$A]aֽH$ C\lAIugݦr I$Ox}AA$AD@}Ͼ$ ?@7Oϖ $ $@q0W?m }E7'VH:H/uTMB\9sqEARJ}ɎvBM\,sCo.w0sl^*]iI-75:sZV!93k~"}w>i $ ?_wI$A~ o}Y$ I?VW>A$I'tZ I$ {"IA~o?}͈.O }Hϻ~ }uw|>Ͼ =+dMJoy_YIrB=&M-Ӄ"r&HU "L$J N1N=|&jgkVK ;V'yP9[Rqj;7]^77nm>F> ^vտz''>#kVbg/_{q } fU}u{[y;DM{h19"8)D* N.7@0ӓ[˱$u˪&Zmc<=wPqm}qfA$$o~՝gv.gBڞ'P݆䳤;{7ݝ! krŽ,q}o\?O-o_/舚?>>]oO/z~@fM~">{"=w>.oC%~)UUAI z຺^MkFYD #_Ke׶hTs,Epum#. *IǏkE^ }ï{D?uz}z }<@*n﷽]ݵ!/~?S>5|for1= .;z U aq `O䡘}"Lvs+_:*O襕UBoq3YҢp^ |@xblm |;z~ngwHW=]>ɛϽ_P*<߾מrgSht%3-# $!,$K~84y5vBkn@lls]YB|PT_ln՟y|>a9<s]W}xD7|szM:CjSZbeӧޑ>~~74s(g׷ gg^vOzBpソ{ݙs ^2e H&Dxw<4*V}>MdhHl#z=L.T俥~뼜xAJi:-] ;kE9n+k/lo8?Z Y5g1-^{ jwO^%me7ޑNwO@zKM'[uqSg[cۉjZ~~9מ9G}wBgVֻg߁̺vnw$S vcZelig/data/mid.tab.bz20000644000176000001440000011617712217153460014240 0ustar ripleyusersBZh91AY&SY=DYxP/`^a^hi6D&}vtkh]5.)m(3,k`hi՛fwev7n 4CL^kWnus#j֡kSwnwcs{)=jZ .-NvDL(T!*ZoqQDݭ6t݀U1*([lj-x;ew\-f7w9lY*6aIR^ /[tkmbKmUmn٩:wlSAl\w0 zښ[-[vӲwjfR]JgN[h65;7Y=`PZVYk6ZMe3TՖu^هs'KW4UNշqFvSjږ2o opw,5+K]7mjʭjژ͛Ceru6ISR@4"I)U=@S†d"$P 5<%Ti J~ jgkQT Xv' meO* {_0MzXLn$;3%um%8GCrY7uqaY.C n(<j"=gNSIA ތcO|p 9{ Op:YMV]r$pX:x-@(րL%MTyqi @Z qZw0>|C/uct{(lQǦZs0eҬs04y : |";-AM3eۻёW[I7s9ق;n B6C}/xtݗq4Js;f\A鏫0״` FܩǑfy΄țnﰚn!K7k5ޙXvaJOedҷ/zh'm5{Ҕ%m֮FbWnq*ʘT[.Pԇ'-a/n`Eu2ܨ֗CF6Y<ڬxz5eW]_K@ĝQŮC:3YmC[B%@i,Xo,A:mNk8y mQ cbjKJ m+eśq*NǏS (P ԥ,.Cn-*8kPacUL!anZжŘ1oq-'{`x;'z%ZE~7]ff  J,̜Хý[p`шXvlUZp6du1'Ebt%ػؗ KrY${<w2lAСZ'Wd JّaATX>uұ/# 8ES%S1%] bO*]eͺ,ߟ}y%[C[fic6jJEhVWLk6kβ?Zˉm?2f\/~>YD|: GѶj j`C14|n!iÄ!3m!q!N ,jӅLͺ'fYT0Qb&u6 FŜFc6o)B 8#v4ӫnVs|CٱnW={ʹ=n \{Ljw[wmrum Ʈ}9Ƈ qu}M=B62[v-*Pj !~el@ʱ ũnC±Xݡm{m6ф~;{orn/79w=Ae9|~r޷w]g?&~Ƃ _J EĒ6፬T #+lB@"蚘 F@~Sp&1ABCAP@&0ro*,0r*KHBoI,7sѦ^DJCPB–g-4 N V.,=c[~o.-jiowuKjTmh #PĢq|T-J137d3ШwU`"ݥy,fI-;@B"<@ĦpA"$ժ9u7BA>ނH'M?]D1 J(P_*m IAzt7\a'1*I׻] FR5PKaזWuYTy*+/ʷsw_{^Oy9mͮ%ݦ.\NVwn{;oxiפƁZ V4R4R s/].6KߊjK}k*pfmJU+J `nlA- BDͰ(tJ$+Wꉔ/jSFL;ta~05*HQ*daDg&`rV[ڔ jRh!}n4D`n^+:hyo7tDi{@Z4Pr=v5ۜ70n-xכhuyx;V|qIC׎4lTm ,277ZM^}[!J^([7hWהFʈx2$ᙵ^+RPo&UmԷ{o=3W]ںKwyc|흷o<[ze4 %]`')$W8EV"E4T3Sv&kn}wф$@PH!SLjivfjܗʢ4+# ,h`||3//j+$̊3# +-ׯPG^n![thAjC(EҴiiJ٩Vqio4Dj5;CivK h5 y<ԓqیjRC͊{%·vfMd$xȲ K{nȬtD6AN1)3pugIQTTTl]U wzS!u}~i7c[눍7Z /g KuvF\^ ֡/9E4c:U'o,%dHyr)˶E_/Vnזk-nݫVm]3mun웇c5DnTYܚ̼9LPrzEo:o)dSp,案P3Ӝj'5f>j ۜf3n5*T;N)P]S])rي@NXAͶ]-S/!oc:tUJknuzދpeXA=j%ٮOMuvJ= įF .+\'ֈRT8@OWlّYM(!%":h6ER\40$ w E/5#`4 mu44Kub+U 뻅y?/<.찍HUCmJ o] #Mcr7%+Zܴ*5Y:%o}~}ݸW;}XơDe'62A(VTmDᙪ`S%ڣ|f$PЎïk*%.^]݌:ٰJQz9ҰP\)jfrmMū[{7s?_xswk;|{n|#rtO*{VaP@4\o1.5u|9yϽg~7_mjsQ/|y/-ݹ҉Di:9ވ5iu]3vRGf ZnY L#$2W !h5  i,9HaQ.SpQ ұ,V)+$RmqfaI覴s Y0Qr*wl m6^L;4CO  ;˴v֌EeS"w fvFaBRU9P5IȀvʗPDָJ4uD os`ɳ9ԆrmΜ Լewt Y/^=qC"f<Mޯʬ.[ES`+~w~-W{,gyF]-x{.(WO?ZO 35dM֠"f úu[p71^VDn){tqcSfLթ(9aC]_=+r[.yzL$bKs3c;"Ox|wmy (ĺLJΥnoQjLӄń~,ʘ,cw:yG >N p?4QUc5|ܪփJcdKwJg;5+[:ёHNji#cYl]VP7Ղe9hQ:4m͢4:l9X9Y, l x. N+wK{ӳ^\$V?6X4e$ۜX)8%>[Ћ-cm3dQѫ^&]¸_uiY_<"ZNKYYp쓱=#\MU aVrR. G;v`o=HЛ(ۻ{v*^Tv.K8iۊjPD1FKztݤԲvjAu7}W"Ygw@6"{M덤VYc9uHZmq`ƆjĊEd~ٕh-Vj(Q->LS 6vh\tҎ6G bwjǧuܧV9t,Xbڋ;-Xx }x4fFa`W/fF1 hpg: ]uzVczK֕nbug@ַyP1Yr[-nSE]9TSb (p9/ǝ(i麚A8Xʰ,PԔZ[15tFܡL^U?mbp}5;zZv#?y'A[z&ǃShe[$ccb@ʧ;DƏ3=)wf-VJ̩DfPݼ'TWy0+9zHv,u2+7{sSv`- ]خxζ RJ~CJQ%պ.d̨ufdŽ8h"9 :gF\+3]ާ󢹲psg5%+.'PBVAҠ5rQ|f *W[ɻ=,NQ;R۲=2rUtT!u/Mγ ^Mwx~ Ѩl6ketݝU(m.Uhp*]kqgI{G/Vn*قl] ×J(8mއa737ޚA1ү*ƴ\Y3WwJʭBfd^ADf×y; c5tƥ=f/ j9Ʀ@%z]/6lə4>2o$j96bko%;'MPj3 ]SʥOM V `'P.jf!CM ٦YI2ҚuW* !CBý2A뚗&zV~XD2a(1@aupn}#{Qf2#xoç{,:szWN;}77jZk]dɾLhs0A5.XѱN藮sfH\)VՕ*?[ö* [4Ta;n\މaNHN]H(m.YnzkIwbnTPJIڣeNEJuءL KF48 ﱿEn$hշTL3|e0lh ]ơ''Yk)2gw^K'4],; p^\`+6F$K^I,3Z+:zY79z#J ܽk.ClVsJ2g,xUrڊOs.)<_&&s/P7ʻ@ze]O_8v}b!ˮF1O318lt. 99mt:6!$eH|'`'\F 6ܣlR`"LZt6L5ۨ6Ln {soC\ؽBH5ٯ]z+) j? z ,(sgcЖڷV;هAiY `՞Q+_)2] }%C]ll!25=[ =0A:}]iyoun\ϳfWn{rg-NL>=^}\kݨR-l(tcKH[3E{ni?_ юLe}ԬL ^Ûm:58kjnAٕ3'T:նXe{EvM5L4k8Sh.BiRb prtWeMBW9zHΥm}U@b)t室׀͟vVϚB-9XU>֧CyoC؝ +#\1ZJ;f4#핁iWavQ'% TOMȶ e›ERj0BNrvK:]yi&,CHEg`x =ob:k)f2 \ςd4{/:1HUg\ij$j=[t RzрK>պRU3]qgTٕ^DkRBOxXV{q R֥Ntczi 3L˜75篎+5\{+hOI۶Im' f-جD uD8*[EUњ]bYO9iq*Ne<:zRWLRJ]4&yMK%}tgF ʶNz-dv~iT^ceAJIxm;\oTٞW<3bd=J^f Gk)\n Cr]8Xb {W˗=NQtצn[11Wg/)T- W>ւj+ymhJ0CY_`(9j9Tz޻O,= k&}<5Dvղo}ߧ"٫?t ~u|ji UD> b~X2цQ1+v+˼loW6oq𾘭j RflxKZ$Ll=@5*56wBv(ֆ{yLn^MC c"{Q {mWpOELG;5i)Ae#+S6ߥ^$@fBL/<߁Q3wHVՂ,1אP-Iw*V/QqY&(;p@#M UgҴp11&}& Wq<X p@x^]ш}S{%:g{mfںQmǠp%ɜSpd\jL$Aسu?{%ֵ8SBDj/&;E8PבdA /jUo#݉ˍ?0 c2>t(#pR9nȍztAG/dzdSgQӪpbŃ.sͧytk*A4IKNwU^5L]M=MT7&gyDŽn,SYl (4w./qr4m֌`Qž2p@=SdO:BR\fsH׬Όlp_ U)iGEǪuM[P3ӆI ̢(n꺹K~A4*dT\\8Z&cxEi XSJy Uk0/Yp)TVۍ- wgo^Mt1tFZ-"lf(l\/'C6P}{d6azw+:Kݛ1cp{Ofx/O<>vGG/j}0fV`l3,V*'O̱ꇐ"nNh 7@`24_Wrr(sՒ+++_q8*5ڋ;7  mdr~Rry=q.}ZC{[J`?Ϭ}DN%܃hI2k{O=bMz(\e=YXiBWx}-v2fSlkYM4=_EF$WLY eUiDf?D}@!sj= 8dmm#1ums] jYo(W}[_ZM)b1pSжYȵQ/]*WRϋnl\\;KW: }AM89m\Dlh4SN=/{^&A}.M7*dw`q0MUv&to,ߺNYgi]Q -.9T\Zj9 fFasC3뉹}wqm:y]Xc$.':/1y:ؼNw\jWɴ^ cYA/L"6^sNi4(g~"" <1C2;!KkQY.; Iތ4+2|;y.B4Ha ,hYWpng"-ܜeWt.}N'XAiJbw/IRMmӗ1#ˎocceF.55ve l4UcW%;bkN }YyeDc}4^IfecF!]Zmy:]Ԏ?.r="n ]\QO-D%f-y;6{Su~]J6=A})vM<:g֚-@ 9إH7Hjn3w%sw0Z%/vS->)GE+*ro6i)˭kVHXɮzЅ1Ȯ$t?RJ'f"岛fgQ*"S]DGxb-O[l7 ʛL!plG7LUsꪻ+ qkl\%OiJq(e?707. YD;ɮo9o2o97j֮l]sw.i#ӝ򻱮w{ww5ˮˎYkuuxqP`"I)=w]4Ëvnэ%tɪl{U(7r4p_} | 1G||ϲw! YٝttAY}]o\<3RHv?̠7$u&3?xIVă=^D"B]P2} pF+ō3wT"&-@bfR19Zl'm\S]p{CoUބmͽ:g%jU61ca[sgosw]_4^:w$,=Zm;N[few.\k1) x.q$ɳ>U{#տUF»{J#!j嶭/vN>#Mtk}j21(13wFoּ:b"˪b Y1oznGjESzOڒ ttuT00[=qɜkh[%{~(Y1$}+ΐ%Y9|E5W׭:JZo!DaWF;nsCs:.g*SiVݒ<`Py_ɳ&єsM1݋&z%Bx;-:PKo:Ț٫B7 u 1p"[vWnXl~Z!9Y ˻bp[*Q{`IѰY JSJʁp="AzYbzC5clӛ֨ Qܬ]\j}'p߁~3.#8krG]S5);[Xy'/@v0+%33+32M^mPc#rbqlz+mf0oox$RؾqXwV>Y&WYK Ͼqλg[52CSV-ֲCeDsئ(aZBU%-ap_ȹ@;^ A*DeE(TUcwaP; Fg|V˸vIs6&痔2;P)(wצ5\+yHN_0>trVF*֥yg5C#ge*t󟶾9@>>Q}'_i::Ý"ќ+rԎaj?}jp3w WJܽZǤ )("c>ZAN|z_ 5Ƈ5̵ִ_Fm`tܴoz*6`H^n}&w]ju8"4eS5_-hY [l \cw/~.L1"mgA< v[vӻ[*3)L/fspzki_^p9`87ƭ}P&79az Y{ó4hfI( ' (QlCK2=*禙\s"Xϳm<*=bCks+jC k]H1BqwZBwfdX){~sTGږ+qo߿U~}WNl5n7ݮBSnc=qĥ_Enm[efSP34I,D*rC+Q>t5!S~!b*bvzL]aҷ%woFdUN`b!QIF_jqeJ }j<$>u+ ζ,uKKPx<,Mӿ2Խp:iwˎK_))~˺lD=59oKYan``-Q4oWҥ\Η4{^~z,]#X(GBdXDZDy@lHaUiޞՌNt7cmMTR=5k.b§n pyȹTJUOݣF4 -0Vfg忁gSp+4Ļg.-`z|~ɦ1P橲"Ŷ$XI+i'`D[| JRϻД7qvӽۗѶ 䛷<5 gg}4LݶemjCGoBN"ベFm޹sFUPۮC2Rׯs8L+LK BuD5gEg]ĀPɭPN/7zc\XYvZ(CI:9p6Uuҿ:=ݖ?H$%~sw+KֻCKrPjBۼ^m`y^'(1/`]uCOwDz`ʰe5U,mkEF/hn}9%Cv +#KM0+SZ 7]e}ݼ8y}M t^&[#1䴠Ȭߨu(U#*3o0.*D?xe 2^3^VtF44{Dւr'lή.o?7XH>VD4ycUfrAa?B22^*9a߫*~ XkCȭ{zrB[ qZn-Lrm%ݪb[A-6lf{zxl/oAJV.7[=>>#uCЊ@?v!;Z9coc;nI]7 n!vI A=o)""^hcldqFjjY B./EPxh2^U.Qcv^~^[Ӫ7\4Sq 66v!/UEqsp^dG7.vccj^_Mm.T[>>W_ 4k82Lg\=dxKEh{K:Fz9It_4Kf^9)܌"k-Z}N24L츯ienڞc75IEOj̉ckRz^]VDr5r[Ao*8UiZ[-Fj41K]jw ȵ!@K+jk+.Wm9&ܬ٦pqcѬ!-Ζh׺Yp[jM ٬ePo> nk]n.{ lq5ֆ%x I33W9Ƨ`%"al=[msxpىn|9Ú5ε!C41jVۻi1s]3uvwg7[s[b[źض\Ѕ%/j"?07bnjD?fa{R D3B]ϙw La G_2$R"!QP P^z*stk'{X ;X6el(BtxGɎ}3E߾}ӥ`\vuȐ9+Q0*wSxIwzݸwX.w0@:^Xi.u'2\*N|(5 ;{-̽Z9f_v%N9=t,tfZ0U>YovDDc6#UPԆx)kUb9u]_\W Izh:]Xk]m$'?O-hq UûCh!ґ_PgǺ2 ξ fhmo 7Cw]wkC̄y e8 YM=f"~tr0v-"~f}%v:ڑpyE҆&6򾻢_ilrߏQ嗜`RsH'06q3Ƴ&8쩤FdiXɆ%d>_'dz轅*7M7ɰfT:1{3lHRN/|жQC#KPZ+Bo3}*[.,;]3C"*sWPiD֎r,18u%}xɯYIƧ{ׂ;[3~9ԫHb+h^>H{כ+~;wìQ<՜ +hQnoK^ߞrP03rjAM0gBaR}}2lD U󳹕e^%Zw-}n۽e/Њ9on*Z[(z8jMQ ؾr04,yY$X7FNfN;+2`Ujp8㫘ɥt|vu4v.91TV96gnS 8+mXpvn~1 'Lj}N10-nfQʄĚB*v *w3|7AW$L|jmL 5TVA ϟ;>fDhj#ў%z@O;}Z̍ѐ3+0;XW T|}Zk4¨͍zoqQ'ǜ>=Sr,և.'{َv<*VWp9;N;|jNA){o_S[W0rs:}]LV'R_w4 m#_׽g**0O>΂ps>$]j;G]$9^:߼O1'c*I[ŞP(jݿ9s\\59%ͭsqZzyM6wM[]f۹9ɜ9W8ymZfsO@@"5O,O^5)qD;?XveSu=F_:}_?c1&a?}u|c"@Y;|9lİI~`n٬ _EZpL7뎒K"[.7μȘdɊ, _>z#!L'J۰6Xl*1wdp𩾾\lȊ1M :`nJi HKY'.@VIR.kH. ]F\ &]LU/9ᤑ4 iL`(0DlUh>«l*}sV8S(9rMDF.QxG-x5Y|Vb=}u {8i:Ѳz#&ހ1=Umzx}1~G9BE<(ilҳ%3%f6Sm}a RJܵ:+Q:[ee >e0 .=}bIPR@٤9+ oVc+~!Z3"PwX Vh0:9r8p?B?,1JFYZ>q(r&`cpc?G+?oNo.׋']}[YDa}tfMfѾ.!r.VvgU%E]a-VUV1Gᕺ߲pg~`2f6m1e݇el/\WJ=[-{b}U"(n&y^hnLyƅ7yT}]a4\YE|W\*~Qa /a۝j =G՟Kْa*YL=dc'#Swgpw ]}j~^ʚZrHzr+M=a:-@4mV2;_?y_Xi533>po>9S1v6c2=T[2QJV=*YCvK hiJZt)˻\ud7X%^y48 e+]T2|ֻ&S`:$IwcxA͢ox1btp6yg+3ci,P2!\7[ц y9ȫ B9z!#j:fvN["t⠭ WgyaG: Ty]d=q{-7F3MM4Q5ptVY{ijwcCc+-Q:b.l[o{]FiPI`ECή˓ W}G鋩덱n˳y3e]v?)g«~LK){^#Tp*c5 Z%tY= h˰PSFH>j8y^WE}YZIlqil«u/l >Dl}eLݱhyn7*1onI,*_kǵߡڒ *A R-ϥ/r}Pnq5#LK ^v,jvroao7ǼkC|j=Ū>/hho߄-ŎX9 @ثu2gLzn?txF\]r8eJѻ{߉L|F GƬ᪲p9 X$  2y=ߔW UҡEs?u?PX.Gysw{qlwwsno8޸7:y۽qs.sms.Yr[\yu-˚Y<;@*7 5avu#q۰fYXJVåZ7){3"IK){W?|XU@sJCn_Q:TX̉Q \ӷ)Y@Q\C/ZHRx2JEޟ}"}vT_{g 7};"f~Ŵ>f{y9@Ҁ-#ϧuPӚ[r eIM9iod i.Cvur7EΣZv[4swTۥl'PVQ6 .. ަTOlX3{zV{8.w)";bnEG+K}qhnmQήUäiqQ_͍_tp(偧9V)Ѯzf5s9 ]ES71X8 3`[/{đCO)wW^€FZhul]}5&_+_E/&~|-7a5L<ʤךԔ^kWJ9@ZѢ!I_vJ?hr%)4+ f<@1طMYM{%>M@F)TSS a.d2Ƙ7ڛ}⽣Uíی#,sGweٶV9]̾Sny5FZxvFIJܼ[*§{9⇵B<эnͲc [ҰZ߬JRy8zUu-7iѴM=K YgpyJ<~Ϧ;W n gvW+["-F,{a5xX#9ZFsk%@Nl{ʴdo\+Aԡ{uX.e׊L[sKn"3-b.wBbi~NʩnYޅ}}WmdeUd.oT/FoWBznnճF`tN#*m'h&C%n:0z/@r^nXl^)Dmc H1۝^}B&(vS9 ahկΘ&Bb #El%oO([  74蝃/N5<0Joj5(Ly]:m-%"(ϯYᷴ<,EG^jQzD._1_a^(E HF\~yͦ]~>?߻J_0մֱQR8%MXiۙ;bO,z]fFS 2}پ/bщޝObT.ٸΖ#b=aЫ>S#% L}_Lezz(95sv^BTi]3mq'[wo0UBi{^8a&nFB秄ה?LEQ+8b't9Vwnv38pDcE9ީZvWIIte\1nezU3A-PdR[m-[oqn<ԍ.ά SlKau 4ǧ,Y^"=X_A?rnɝwMgF)ky<)WKYwsז=i&iƂ\X1R|֯evPzs*JeL2 oEOA{ [NwÅUN*cj z_TJkA[$\$u{FZnk#cWJtBn T\La>f9#'/f%Fj*rxI'IaA\.q?lYP)dE9Յ؟w߮Tb:٦8ovKP-v1rѱWV# ]3. @ j*7)v/j%s!^N[#떛C[ZkΑY4l;2+=TxS[ģ&NCe#vWv<5ϋ.蚹Usח[> | q7XIcӔeՉTf{+4.&V"־wCY C&U5IQZ4kaCxE.w:A}dJys\ r=) -Z3Y\ɞرVT:!8uC*~uERPt#wT/ܬiӽH❭KuѰ':BK;qV{COŭ=˞Xe(e6Ҩj:Ogmf:Ƽ/nۇVf+I͹jknFHt* "d1Wu57/fڕfxCvhz!׶@6jC3HRY$k>S|7&C}eنV 蝚C2l)ϵ>t[qimG:ko>KbXDްtE`7R썒 [Ѽ.+NVɩmc!E&cuuHh/16 Y2=K*巣E9{@OyK:_-Ѵq[߸qt=xFJNՅxpFbZ us#+5R{p똺!jSP^>|~G-|y-9rKwy3o9k"榴xŮ9sua4ͮ!mksY8-o9weL[7eO?{W+ΟYk>n=Q_|_0id}"%ȿ}Kc-B/f(L 3*22213# J{{@YQeEQ|σ ,*Ȩ* ,00,,2"|<\ 'v +Sw~dvuBf74-wZWMھnV1@3rAciss߿;{3Fde`e_fFXfTUQ̌۵g|w01nǩdmhg/"Mut{9'fv Sře22u⩃OWC"|[fև.-xnfh$*9()༻*\-a$6Mrotc*C -jʝ/ۮ5gsakyL)oK1tpWa>S, kx˅V*KntmuFޓGz]bR#;0VW2Ӕ߯ |'(;P= 3O5Syc'Gt(J`E[WzkJ~y~nOe2j8! lÏ׀vvT6/be̍oriM*(>b=yAUȥ>|bO{\mkO B/WtS-7vyAq=Q9U77;ȸr1m9nNUѓb,8fDz0n q`! ɋ;q_T;o! *Ŀ=ܴGvQNL/v/ 9PPMҨ϶x҉iȉfûT_DSRxPY"XV=0z ћVcիsu~9&JP?ئtelMcGנ~)fl+zz%W2Z[t{ 9eX̊q;689g"KꨇɗޓR39M]Jl뻇IUå;f%wn yQ&Btfз fPӴSRgf{Aan˩b_e++8ycuV7Y{Xx'wLl3{"L[$B9]0_a/3~ ;wOe#uvq/hcٞ!zdk%dKct"Lu&ate{5hYF>OXq6wzF!pK{)´SCH>ܮ!Mn.U"W迕K[OǦ/\e+uV5RtlsC).2s/Ϫ#cgoVIscsW>:nDk7/ұ 9ems>> 2,KKLƧ/J~VWا,L̑A{ۚUVP':'7kG>^Z`/zNGBHC>2󠢎:`<:Mwuw\[6*Iӊ;Ry&.uB=:D#D}Ճ!tCDDL~x~CV}Ja+} [Zw-Nׇլ ޡ?LޛP2V!]RH +oLTΎ9hģWݟ;u|⚣!E4&0euȫjY2ѤOh;c4jQ5#_ S{&u#^:%W=Y; ϰcmEN93PW3_m!v/*F0 YːxYWƮ k@""5B*/74auRHcN!$~gNu5˻L'ٚuYQ^g^-~lY9KfUtͧJ1JU;}5v _$ ~ 67CteZk4;2 ?QR7[[qsSs9E7xƧ fb\nfcen79q9nnfW`6(3;;3gJџ3(yC}}M Z7,sٞHw^KWww|Vf{cEw߽"dX, Sa&dgsa= Oz=[2 ډg<`.}-w\\9#\]{>BTÀnfJ2,+;繄fEQedU_#3#C*y~}$H=og1?} & ` HgOo|iNRz*`C3okcN 0fSŧ3""ҷh_ۗCwt/r[ڥe2wv1J1ZriNa݇ օ[NvP{X蹶r'ԉvunr9ԹNi&: f+}}sT1\tɺ`aL9uw)U׋7|'CWSo@:ը;#$%jabʓ@oQcws]ic0Hkh{EEr M4ڴmqԬ:({iCo%;PV,OVͯw=SS;yœ8]] ~{hJ)ObRߪ蛩Ǒs;蚪>xkI@D>&0+ m2wjZ*˔]^ tSr[`.f!vlXگɏH\Ttee#s3h+, \88%C٣/ְ,<&S%> .O(nGBݔ7tkuyUfjdNќ!Q<΀3 FD@?Dv55}'w6sr;# !XqtM6 ->*Xf' ӽ.왱!ëF< 2Q*2l{6|m# _ifUDޠ |آ>8ʶpvLl5|#m#}J}]-xsA60 GNgZ28ezT`ҩ`aW(E*9WgX>)7 _p7.ڙFKY]CM|>М기V R0Ɛ$Yn똹z:˕@n&)芕F@LlCqze6z{1]庱pO?uf .tucF!jιL]HN`ܮb٫E5VZYY2ƝsES[L JnOfag(@R`GZ: 8L~6g7Kx6l^=io腺Al,Ӱy'eT2!w%61z:3whNunVJI-dŭj LQEx({,9.^zqn 9v]*r7#(Ԅzl\ՆؙUok{^rup )QOf;i1#_Yc}ժKBc1v$xn ρxAr6Hx "[޽SuUEmdlg'os:E=݊C9D3lGԪ&udϲx%SzRlFI{Uò]Y %E|s6w-~V/Y 8'Sve,Ӑ7KF+[}E hG6[ snUNsaρyQfxL^Wvb*X6{zһ^HXW$^lǍw[В'έޘ,.c/]윜~kˢ獫jn}$ D2ctEcLt􋫽txz̄x9BB QE˘x㴝S cTO+#3û`'+"Xc}~P2;˨4H|~Yj}fgtPM=wC=sJҌZ܂y,Js0,[ tյ1CB}QRTHحoUxN\"/ BYU8=zo=Z8>%L横Sv{Fάf.tV++9Mo-τ,TgSci[F" ׍ҡ1Y/ǪR{r s髕< "\Ÿ7~9^`\<*aιKޫmdD%mH(maH/luKmْu6 Cu]XFۖSxSl-8NrA<}b8v/䖾5ę(l 'cB #[+Į;WfsdǮ-ORm x /..u2nd4'TGKu}&ȲbJ"X]nbݽ]A}rV&nw4k;0&L~7~8eu qPeqxDyE)rp ^*}dIS6.p*pK+1eO3N}`@=(kǺzV=׸Sc ni4]HifM.nUƕ_EpCDF_/k~>f);ٟĮjwshKOpjvQn-*v={E;K̡u!Lm !Tshb}m%̒Y@E9tx7b.s,VAv恡P)fMr0l!笷7O ?ћ.hM}*{$m]`7^j wo;t@cٳ"zc+fmJVWCAJ̡ٹj jnZ}\Bɲ'nb+edx7YhP䙩VY[\+qif{{i{'Ϲrv^N>B\ ]6ZiˣnV[Oevrln~߮rj/G y❪}i\NC'yS3ZM<_jŐcUW<U`O}0 Avy[,,rx%{}j68)g,|XlH,khO9s&\yhA ryӾ(j mOEmEZ\]?*T{54ha˞?|5_uUWԐ:L8undv |g^ݨr;)戟@d}=;[ugV<4x9m)N/zyPUȠuˬ&"sȲs4U_ yMW}5dWo4.߃}u}mq3cVU/; ֶg۔mzΪtnҡqvlfU>KF٢јXxxdmVrqd,?m^,%:< ZM4 ϺeYVQrNE+NG9;Kثj{LqO*%BO+m<V~˻.:r 746^7"@ r^w7iJՔn,ɦ6^ذ1L[pK3o.'HkТOGOGCیb[KOysBHHqXlwijx}{dߧZyVmK[:2Fnv6pz}K#s[6$OpCs8kDZ~+ENQb"/S}*.e9yV;-@<ŭ <3va<7OҶFOs8:˞MTQL[+K= },_](jsILO1UFuĶ`IP@OIï-]t#C /fk[>Is)ᑹSOtw^FO#YY=[%w#9U/bo*695LD Y kUH_g!N[+-< x$N>}|{.Ev{l8yK9yhYнU3]͙.q*(w>)NCf;dzs1آ9z/o;83j1OJdcsӬ^;WNBh{\nяz.slnZAs)HsS 5CFquU) WP>Uޕ(~AhSqGTsTxŢntIUԴ'\қ'7cS>pҶC2]lSu1E$d-'yVd-ӕ3p5Ue f1g|7pnǓĪիOMX{^):uڨDBMs^M<MWU#MeIP2 ϏrQ=;WV֫Hu'cSFx@df9V BV545 }h$pYK-IUW}鎬}Q6RnyNƅO-4<9ŕg3=tUt4WKD`[W>bjU )^M͎ӝ63;% |DnCrA۲i (5:dૌ\e9iwۙA7Vm2;ռa IBQ%nh!z^x>D|8 A8rE8PZelig/data/free2.tab.bz20000644000176000001440000000667712217153457014503 0ustar ripleyusersBZh91AY&SYxkK]@P"``npzSu PHA! 4R?BTU4dS%R@ OU*yQbdLBbs}Cܸ5RqY .VB&̈%5`SR]ItqW5ΈtlLvè֩@ꐞdDYuLl59p\ 25\ɓ ̔gCnO>IޓwlsskޓkNҼinZpQ*3L]{C 뾦ń/m2t$!KoI^qy,lϲ_{>tȟ͋{tԊ202;zI,xMam>|s93kAY,2kx"ED) /pB2{+S ^Kû\'w v̉(wJ3HIf@PT-|JĽ Kfvdi7lI_!y&k!4W=f׶I B gxb7++W@$ @,AUM[wABtuukɍ* E@,Y Yd5{Ah2dzJ;nqq>ɋn[fT].4!{5z;JNc>udES#xSBz%QGʰ ̐L4$Di4B""AX?m)ޖnsW&9W1"LꕫcVMh@ N]%߄,.t m'RjNwRU}_\ݍ=ۑls: s9Tr<NJGΜ{ZQNDБ;n{N#*Dr3#KZB2zSx|t*< gu9}YVu$H%$ -"8UK{o èGDz:e,C)"dl &Ln, r9 `C~5$ذ6,{s N[uGY$nM;ZIع5iŶ:“DipEdQ(EQS]+"=22TC[R'd8E3i.n$fL+E+c'7YPXgM-h\ gFVFnIrNLVj1$~&gp^!U3s=u4KŘrB2qTupg1CM 34(iL V3u&Q24.#B3E<(Wݪ(ՐVF`Ciqǽj-07ٺgbqc`GIsYBBrQx f8ǫIOY1kZ<诂`!y{Z6Vy@fճ{Ɣ#pɋyYöSK  7э=@/=n牍}8ѣ7X2OS*^+Xr p^t!(>pL|;|QvQ cG./NA QVB2I /;\ޏq{f$Dlgz!NZUu$ŽPkYRvÌf;op"6x;*R :0Mx6D_'##fX(:)V]Eo6 8lIS6zMuΜ „ާPnrˆȍ* (Q%8Avա/*nL98jwuOr3>Q{;{ӶI#ybB^66+" CJ$/Xc mg>G_e^ s'sܠ;fu\s&=Ed&bA wKJӺ}x9-ᅹ&?f^yycJ*NC;(Y{}ViD$%;#N[VS M{ޝz5ķO06kpw` HA>16M #Ba& *BEXm("%) $Ack&mjV֯ DfM F!M#Lb "&E2 I 2kWd ֿϰ HA!2 =DܑN$Zelig/data/coalition2.txt.xz0000644000176000001440000000414412217153457015543 0ustar ripleyusers7zXZi"6!X(6&] F8J VtZ)ꑶ2lhD/lp(-ˇÝ]@:|VMjb5fpGd@y =,̫ ѽn|S#esb+߹"hlhuG06}oSQo"jj"$. yhBَ><{(5_jGՠE J}6MKأ/K8kWnDhˇΑ6/BNFҶ\zboAp2s-1y-> @j4Jxx]CdB'۹ّ;ܴg4`Ued X["7Vr++_%A n筸_4Y>V2JHWS4l87N#hא_R˴Y}$wg_e1l~S(n|sњgXA_Hp/4 YvGX5[t` $`8_{Nin[TBR~q8.c7dq ɚ*H2єm}O46Yf2#].dɗӣ!1P)j 9[^(CBxT7 6n\^{ ]RtltZk$ }2όfxƓۖJǹk_8rgvHӊɯ2#H$30ⶲ~IsWA2b~\vT!OU} 7 ڭId Dsm,\6tSh2O +(ⴰ;0Rl3e9{Tt5qk?ӂe ^c-gŮMn 9x ONk:r#06m ZW:ZwO~|=D0h4b>7Tx2ƨ<b5}zuz2/P\ $4h?BDJFYB/P=w∤˚.%LF)0t:UBY]>d1i",EZyRQ ȋ]V0ۏ4,5z4+IW),kSgfP0,RBC!7SzJ6^n,*)3BjƏ[Cc t ,HiGz@ӲG^2ْ[?ˌŸ'XrFZvU7ࣽiH%; ŕ?6v;tbM4I=L>̟sAG6{F̋O͇((s|'TN.w?*; fPܾlrrY%Y&M=Inek9ZM\ͪmpDdOrrg A\HO3пm)!:yO 3 0Wc^:6=m(! FL 7 s DI Vq. a!FaX5lXH tZ=9:/a%}b >y*гL#/롊NْPHݾ O P,|N1/rizqA="mVX{siFߥx7z] 7?Vx3~E(.+Vޑ+Q,[p~~Zg_ct }ߐ\+~Pilo>0 YZZelig/data/free1.tab.bz20000644000176000001440000000667712217153457014502 0ustar ripleyusersBZh91AY&SYxkK]@P"``npzSu PHA! 4R?BTU4dS%R@ OU*yQbdLBbs}Cܸ5RqY .VB&̈%5`SR]ItqW5ΈtlLvè֩@ꐞdDYuLl59p\ 25\ɓ ̔gCnO>IޓwlsskޓkNҼinZpQ*3L]{C 뾦ń/m2t$!KoI^qy,lϲ_{>tȟ͋{tԊ202;zI,xMam>|s93kAY,2kx"ED) /pB2{+S ^Kû\'w v̉(wJ3HIf@PT-|JĽ Kfvdi7lI_!y&k!4W=f׶I B gxb7++W@$ @,AUM[wABtuukɍ* E@,Y Yd5{Ah2dzJ;nqq>ɋn[fT].4!{5z;JNc>udES#xSBz%QGʰ ̐L4$Di4B""AX?m)ޖnsW&9W1"LꕫcVMh@ N]%߄,.t m'RjNwRU}_\ݍ=ۑls: s9Tr<NJGΜ{ZQNDБ;n{N#*Dr3#KZB2zSx|t*< gu9}YVu$H%$ -"8UK{o èGDz:e,C)"dl &Ln, r9 `C~5$ذ6,{s N[uGY$nM;ZIع5iŶ:“DipEdQ(EQS]+"=22TC[R'd8E3i.n$fL+E+c'7YPXgM-h\ gFVFnIrNLVj1$~&gp^!U3s=u4KŘrB2qTupg1CM 34(iL V3u&Q24.#B3E<(Wݪ(ՐVF`Ciqǽj-07ٺgbqc`GIsYBBrQx f8ǫIOY1kZ<诂`!y{Z6Vy@fճ{Ɣ#pɋyYöSK  7э=@/=n牍}8ѣ7X2OS*^+Xr p^t!(>pL|;|QvQ cG./NA QVB2I /;\ޏq{f$Dlgz!NZUu$ŽPkYRvÌf;op"6x;*R :0Mx6D_'##fX(:)V]Eo6 8lIS6zMuΜ „ާPnrˆȍ* (Q%8Avա/*nL98jwuOr3>Q{;{ӶI#ybB^66+" CJ$/Xc mg>G_e^ s'sܠ;fu\s&=Ed&bA wKJӺ}x9-ᅹ&?f^yycJ*NC;(Y{}ViD$%;#N[VS M{ޝz5ķO06kpw` HA>16M #Ba& *BEXm("%) $Ack&mjV֯ DfM F!M#Lb "&E2 I 2kWd ֿϰ HA!2 =DܑN$Zelig/data/MatchIt.url.tab.gz0000644000176000001440000000015512217153457015536 0ustar ripleyusersM,I,Q())OKH,*K,JKM)),'LJC@x܂\Iz)%6ϵbTZelig/data/immi1.tab.bz20000644000176000001440000004777512217153457014520 0ustar ripleyusersBZh91AY&SY?'UY`P&Ԡ`v|P}BF:4@R TPRE^URT5̸Gۻ*M݄}UMZznRJhMN]ٍ;n̋`{;z{+V(m+ħE} C_GUvԦՍ) ˣCG *֥V:PﻀP{נ;09j5Jxf.umk3*H50 @1aTSLLi *110QOTdiH=A{HԔi2( #2 32 ЈHH,Бb(PL4&Ƃ"&%`,d2@1C ɤY#I$FFIɔAؘ$QaQL0HH%00QBHHd$"$EJf&ɈPH0@ `$d1LMf)fHQ!#H2"A fa#(&% a"fXI$H$3@D&4P1( (بM d Q)&iIL! c LF%( 0 &QD #Q)(4A(ia($&X2&HY $Lɑ`Fci&BA"lM1 $$2D 3$3$1W>|u/^9.`h; i #Bc2bƐzuo߻5,AŎ"VzIuj/4k(#$l4cųe[_3e-,WU9i"QT&~-?NKr #g5F] mPbRqe/iVɤc"ѫN~MmXw ,h(ʴQ j5H93HlV 䑐E_\@#N0YV3ڒgh@eyjL҅SCD_b@ $nV䶅vkC<5`&i}AmY(ǖp=1L@¨$͟Bi+Y֪:bD&D]IlK4@NB9YDB{.$ovvHR~SvD@T#MC͜e")l uR$RS L++-ݩ)K!1%X IaGMU bф $mHHk uR YFQj1RRHCV@feh4B"XĈK7XDJZ((MXV%YvKtHq5F@T4#B*`AjTŊ0BYX*At5d$lj!3BŀԲ`mm.80% cFZ %`1X-b BAT#Ht4Хf03VhTAL$[K Y)n20@ 4t 9BB֒Z0"H[GvPab.,[ZȄRFW(XX`Kc XˉpDڦnƻV,F8AdXE XE@ft+-LM"J #V2ʹW[Q)Z2 ml#]ʡ 4X@Y % 1cEXM0pX58M%ʰX*DaT"l20r)02`WXՂuSM%$n9tEbi5"DC$ARF RD5B%rR)m#fw)4 edl)Y]cP`ЂE~.]oGe1a" GTSVe0( &!c(!2RJQ4@wcH]CBo5uRXbM WGOKf#rKw͡c91چEC=v$/W4+Ѿ!l?{tQ3v,Z/Pel(:bWș(/ic;2f) bJmNdXX$$2"<~.4aGJIf۴&1;,~9w%‰aJ ǒʹObsb7Pɺ36ߎXú޷X45JnȂ%q՛EԽ=8zqȃ# $qO=V}jGArqA ۰"a%1S{45weܹX\3s#Oyrq{u& i @w5fN@̍ɊV-eWkl`FztEA ;qƐ?3L)t  u:ܱJsϳ$s8V[L4 D득O췂AR@72OI$)6xS%eAy'Ogf{P?L}^ #xj4MKWj0Ie}m dnӱr{s]^ gQqض@ر]:{sFO\:c(0ܒv1yM|^dֆ%^>q rmifFóG3WaHwxj:Τ.92࣎Hma-ѮX2M~'-]7,64al*@Ï9rĆQ^f,"CM%e-6XsL՛c\)vq٭~‰B5Je!Ҕ9`nB~$%FA $rNٙ{nHQ 041aR($Un‰;7f$,A0cwnؐRեcfB33JecKmyS7PH5 Pkyde3*k Se\;Cxo'xټDͲ0heiB^ST3`9}AǤhnqQ2*#2,Ѷ.$#wm Esvs3Aŕ],d{)bfv]%_yn'2TBPجuPVYz"*@*Ӹ okR0*IYQ]nI2fK (Ƕ nɱtf4[T ZVEsK;{ 1tK|C_=W!5=Ạ:p[j'-:UʽjV<e(jsZhmkZ[[sJ*9MkN/\ĉN.^jsD' /Kv;> oɳѓ=o"qBK3B2<,-; ynm5xmqa9*ݐա٭Ae;OԹxqVϭUJN'M<dfʄr,y:h{/դc 0ۜPqx[H(zy{:Z eDW/.9+Ǿ& ٫~R 6Cw}ZLrݰ; 7bףɷznTg=*ҟ{vr 4숰 um6jCkEY%[Yn>qjobvO9OE'^CV߉~GϽe7BKV"{Ǚ&x~ {W{lNg2L57amiY=d];twdh{<(>ܾfm%b? 1{j}y(:V VٙWd!qov3/h#Mt&<=%GM7NpV(sDU^幍^L>w۰hߍ}*Ku,Y?HH?m#JCV~xݏ14ܲ$KlKÎ 朓.xHM:PN-x2C}U.Za pPw.y/Bnw'0 Jľq62"0rJQdzd8P2LO1Jebɹ+*P)$PcQ2Ri2d &:I%-7l jɱ1)ͷhK&g(< iLwMbw`\s3UiN %8!HU9˙xΚgT]-)w-ucd40Lj6l͛ lHHM$6 !)*׫wi,I'} {i ٤js{QԈ]N8EPW1f_{>Fyb@ Vu|34J [% 2e(I6sWIfH|r}t.hx.>V웬p\jjwzEFgpp(IVL㬬^n.͵fu;t' :`'Ο),gy^n|d{bvywcc%OuYy:lEEx\B 93=l)$87illi6z!eI90h}PB1o];Bzy I1E˄ !bi)@0A$*5e#ΏO2$Q7 -շ8Qc^JtOC)J'ORɖr米>v G k#W\Lh[Ǫ[}ћ#IMVvtषvfm }H[H-a7&j{&(ǀQi<?0 uQZ8N z-y٭=;\HAS1 ^{(<{ h\ԑnf΀)J F7>kM$ƚOΆ̒aߗ|necc57{و H \D22ffK4pUD;Vc*Mاqq#{v"Vj٘3:rfpK"?mtfBp[ۿ?N?:{uڞ:kt1{7?sruM=斶,挑zN9|ߪJ`'DXչklb:ǀ 6LZ\{5tnijRQoDq=Pg{ۉ:ɑVomH-KQDchIldpX[1$?_wyD0&=[S_B>9[[c4Dwf/Z>4όqMPل _OYzsOu/}7Wccd9@5/3]?d|,{?!sNlxQR.9_xc>}b{yQgN:κglC71#uż6*NB]hN]epMGѹsl3us_|dBDIB?@C0=(ܙ=۞r(-[ /|wv51T?krcY!UHSzJؼ֢ }E<҆d H%[<"/'!ܓ{޼lClMg[ont=|x%a25Hvī"VS(ln2OSJx˧e yD1$Fd?Q=Ж9>l( @Ѕȏ܃>tBM5G cwn>ZIo;36T?'̮rMeI)S'OQ?³,_<@4{WnlĀ"+̳=Q?z9]ovN鵙xx=j13Ns˾QIݸ<<*D)qr}q]7k~K-J7291䇯sbIcjeiE6/V远<ƧY$!kncuE|5blzq^ʷIJopM o{џ,W}OoyZǂU}Mnߟs#sUzn{E_4SEކso|MENAO C. o$qov*eyXѫBsm4%x{ûA[v!Mh`>si Q2>xҖTb# Dm4헇a |vΗ}AWq .JϝaE{1=uho'ٔY7{`9P!]}*͑!TۓQ.0jkbeĊfM1I =N?sx?o/ j7$Gïa>2dI‹eRJĽB RELٔMz[ $1&6WbHI{~B:xf@uJHVI|h|ޚ|wGeOeTI;.l,UyS *XvOF7D/_.ORόSsF+ xx{-\u~vE#@y_C4XҾn9'ctylLb8N鬅<>Σ@yᯖ[nrص·]goA0i| gHs7A6Tҍ}sZa<=sm'>(@z&9sKvC N^+"7H}bRbdp<E4o+dANcj=|$~Z !5tj+tҾ*m ^`w`'ДΰK愒A-h<ŸX55-/rk0yD-h7rA FD :b b3E4 X.0cG2F#INml>d]2bMjTIu3$hCB=B%H[nYbLω3$̞o' lahXF".X32xL̛l~9rrXG+o lLցmڊ6 tIu]ftI2%"Od Ȝa,c8!FE,= < ĥ5R_V kFO~o~/ǸګBw0@[۹ŀTҔ=8Gv]6M#lK91jYx*;S*LUM(q[`*.Wܽo!'Vu5~DӚ)iͨ]=csDf86%qϝ挎4s _DzV1j/JDjU_ݵϙxG>R3-jMͶ];ƺtIbwL[R3;G'}wI;qd>Tx,lFF  VF^<67s$]M]Px*v|緮Bo'~KGtvݛWmcS=ϼ=C~[p OLMp6 n-BmvnjCNy];R Nߨ} 4si |:& [繞."}RlŊt u} ${ŋ<əof$#3+==#<@{x{(hW (;"pۗA(xIK4^icA a# 6!C1(b<С` ~^hG[k.]tε\(yS"Ɖg\ hYCwy@}Γ͞~=&"eb)Y^n^)"_5 ;l2*ܕ\hH"k Z)<Āչ'D1DaS;r5`Hk J0`lp(X[QZyF3k#C˪N)"d7{Rh7Ϊڪ6f,ͣko>H1{1b21%oXpbhsOxm:t#yxx.6[!Ɖzt:Lt4 =ɬyyM󝢭eiVAÄ Dm}|G ][+-qlZe 10y6N{l+w-R[{g6V[qw3EW{{t sAC7nwŴ‡3Vsw):8*QE)5xU^{Z.7l2t+!%o=݊*']ԇ?r\y0*, 9^ hDsu難ZٹV/i!ϖU,mo$Dd 6Eb5 b$BU饒uJ1m'b"^gB]sþr2s8YdVQmicicw(yfh+ sYacy{g@Q6&fcM(Ī6l[ []ܴcu{Oó: 癶I1a;_!ɸo~nvl'351g4!ؠH->!rI|qAyS !˙/Q[\5v8#Y1HQ)_].>L.M2O5Irr4āΟ3|HdzqS'7{;4$26Ȗh!En3\8p4gV yۛõ<-924"y%ڞTFg%j&ҡ*sӗ;s^N{Sut9&љ.7Z6|\7~D!/jԒ&@{5"C[>n"S h_TWP>{I)]vEYj:eg-Eӝh__LveD+~$ft607j-pLhĖxD/5Ub ڙ/bԜ2IQĭyP,\C׺֭m4pɮM{jlmzRFGVwG@;{׆wIQcJԶkhb`OK{FROU͗li?`(R9t}n7C{ޮ٪TGs;r{K|5;{CZ{2\W6e(xzQEZOz\uE,`4C(2,pIs=usV7J9D#Qj5 ʞzz%*ŊWsf{\tYqoB.;Mzz9ץLC sڅ n#E؎$^u+3sjQ~ay9ƪ~R! Uٖ5Zjx ~Xb3i_N,jD8AaQ1_) g[q Z!=My\r12i `S&^OzuJ٦1ۋ$;օ q-s<<Vh1ٖoK;{[O2lY/G4 A`jNxMOv^^dfAOͽٺw<+=lیT+2f&pcc.W_NLr#apۼV\!=͚\7s@ZXETqj fDy(=/7'zaOϾ(#m-mKəfKXu=iަpKI{vv"x-B 0" H yXNM[h[vGG-.w>}5^7RLn_cD^JoStt}oM)ĽK6}Scʄ$r&vstNuΒFI33x۾5i_XWtvpsT2ܼ'>͸e4' h\sUTԚi:w'$_E_<ϳ4%pyea3(]Iym`򟝼=/UB ]{m$n6Ek66ixEImSvikj@Қpz3G+KFp^8q4Fk[r/&y6[@ID9ߏ${{ަ,ѐm9v F:$16sNTs*ɇU{6,M,d>߀Mcw^*^wjJxܱc}u}^)#ܰWe$C5;\{}$%!蛝މ9wW[f{z%XlJwZx{У*5 &'ev{ժb/:fc;kt4pɳEnuǽ;_+}B{ ȡ5rXo<8{dxjZ}y`pś%Vf$k#fjawMDDrqA>vvc"F>Cքr I;|Ӱ>خ354TxUݼVU эo/L&RI3eII$Osf*nsp )).B[=\bi%'qyK6[e_ܼ"}YIutD Sb31Oj:uz6!"OSmX7%ixdTZ~u<:$VxE;&{n"RM( ٓw̍n]+:/*# x򶋵N}E3a|DVG;'3bw{âpc4s̊^}upn}NiiIgtu-NfV;}k,;ȑD|"3 }8ύEG'fة<{ټ]|]e-S\fOq@:q^!řUiQ/41*3{" M lmmj$Pf^!yW~}Ww6g٥(@)ѤVC{*Y6rWoyu6 UIۄH`.3Rx7 Xqsmzu,W$*w~Td!o9ﹱw ;b<{|MyqXrTWkGygZUxyxZȟ}kE;%,I;JR*:J:biLJ!s)8}8~C[zrʟ\f o0>8Wɾsu!Ɏu m &~Qד(K]ȣb3Smz˥SJ5WkF\S=-*Aku2>Ζ EwK=kHAGkܔ?.(K0M[w N)Cx&!& ~.󙟶umQ|o wk쌮nqBaasǷz&uyݼ8B^x% ZAfWϻs]1/ YUg^UXfmV@7i!l#>ܾi&|l )u!rGtSKBDy},vI$!8H%$JI=DP%ߪ#RH< (IZR($P G?WwbJE.wB) iFphFH(Z=D%V+^ng;XQ`.* v9fo<]AX%S`%ۓاh%) \_h+0s7Zŏ%Sl{TJ.h_+?ED,}9Eo\}UΨf Uc65$`Ӯ=F-Fݽ0guZ\WfYٵK-3L7M߆2Cx868]=q^##+ ǏA9|ۨoϘdžb8ccc#lG_>zQUqm+=lڼc\zuЈ8xqWͱ>z6OMNY#!̫08zvt0lₒyO Ţ1`XCTh/#Ek-692 %zvFXv*5B> oC\(ӝԇnKjp 9jݍGNTؘN(.Ջ;{2vݨp6jq*Ǣ6U=rZ-rpkos=8h0aXٶuE#z:qq6ǏC^Quc!^x>x8㮘׎1^ׯc^x[m⫊UGmozX[=xϜ|O1\c珝uoGc0LWΕmquh&" j5Rde50MYMdVMX3mdT")V4kIaUZّ4MkV3MI $#RIqv0"+c< cX{CP…3abDaO13gPPň^ BQ#{!f2WzqC^.9Ǧ"+vJ!|0D0Hz#F98U,-)yVN-$S3Kec&\IQ.]TE*1QWQnZj&UX|t+Mkj6Oa>>>}*gq4bﳈ1AVM'qfn77ԌB8ˉ1p9bpr8{Hlyq f]sO Vg ia/wx c5LTEue"$.eMD1RBn1b)$C.Vcӯ5^ϝ*Lw+NUy궎6w]mzh,n0X0eZ^t]Sv]M:Tb7zb2F8śDDkYH7nii`x#1r)&ZJdb*kQuP5ef]bTJT\fb٩knRR,V)Y$UR,#{kI #R7-jƣJ̦&lbUQc%"D1iPdkRb)ZkU-U˙MFLS &" K5L5s.BR%dRY"KӜȫ3,Fj&")W%QQb,nJTb1aQEVT.k2EHbXcjZBjMH"YI*0,"MaUqV1fI1ˬ1V+]\[ djvn]SIRi %V6"Md+]0%+&RJ$2$ H H S l"D3 4JlL Bi@1DDR&b53fbCE MMeAPM784Y%,TT,%e%I,RJK,K%RII)JI)IiJJJRIJIJR+,R)%)IdI$JY%)%%$IIIJRVYIRRII%YI2fLdJVZZYK$dJI)J6K%Io{M%(S)$RdI(E%$Q4-E$Xe$Q%)&&XI+"LEQ2"RDEfQfT҈JI%%,ɖ"m)KD2R$%dEQIEEbŊQX&QbȨ"fZR,XeJŒRZ,TM(($V$DDRLȥ%"I2iDQ2dDTddD""Id%qTl)|Ǐonsמ[clmJVDGc.^^U~m*4вߝ\"{d1XR8*1ckZ־֚֭-"TRo]9nӓ1؈îqig@ѝ.kh"Y!ffF}UAUU+JԚfQ}^ʮ ìqn :vVcj# lqTm9M&S Ȭ̶ h6 D;I1%ʊcmVԂ0.κjŒ{EG5cwV۷zKv{]^ץ]U8U3Kprc]9> |7uO ;GM{-6omU 4 OJR*4dɦ$i)&T$IIHH22"%4ɪzCCC@"$IT9UN/!9eVGuU kY{Xvv3U;t9TGxSuX2?|?Oϲq)>p?5PB~쾓PŴ:S &?7ӟzG`@Otx5f9m'ft8Qom[D=V[IևyviǎHZلpf/ۭN~k~m|;ݫHxMknkmݠ4A 50u}kQiNڿEwTMqlP )VYrT4F"]֒+uWP$sIQ"m=)c4MRK WE;'A*j51@5"9jq^u6|{WYCSVr-Mj.z W:TF1tbca[hYDPu cihY3od=IZ?5WǑ]W>uW_6-K/S^k]Z+mk^RஸQܚݫӎvu54T[ȽR5]k%lf9/8]jSd+@c03Hݑ5bgf0?WRxV&]8ؠn'Jeu- cm0 ZE3Q4ߙZRYOQQ 60ĝ 1DLY1Tl(X)/=jVlq\VB M"l#TlF=$e!PtZ6ߴhܣOPШT$ʹ`LO-A"yD:du(dM)"FJhP #B IrH뾻ow=r,mq.1'4y:*LJ1ƘAch} W{=c#R'F !mUMxLeEjABu-harwBb"%TKj5Ե-]Qv-[zkxFzY1 AC1h#7 Ǜ[&X7(ģ/;/X}s[LubzgN UĈ񝚵Vufv[=G^#z&"GRT§%<f05hm-=˚ .?mŀVdeIA?TqG<%~AEa+VHҳE*I:<:'r{ 94$ƈ!V #V-L#XOZm{sx\';6{楗x@r73"z$* ԀR|?troWua&mk&SUH^[oTM((:V5&&ȏ{k~>,`U\E"Դٝ&ز+Uxmv;6AIӹUT3wuYUdQ-f$^h@ʬ'p\ge.;ó{][]>ޛ!A}[sR6y]g!]hBj V*uWGpUT/ywrW:4`r4*\9.pI (.2!@yɓq?8DK-jmV[|A;ElOVh<+YT,m'wm?]"{ saZN{[KȾ9[]W"5m_3fK1!U´!G;V5$=FMUe HHj,)i:)dVUׇiu{pYBc;.%bRJX۞q*EAѪ&*]P{"sL7onv}a@ֽXWΊXyҺ$&Q]vLbù&[څe"W]qqO|-bj_9 -cZc6}uO >Q[i}*b#{"~s272xkPTZYhDOv X2Y+mug'UF.n~J| oRܦ-yvMSAcr a Y|/}A@Qtr;i+dRf=UAWWh& R(57;TZﮝ2hRe4wtw_*1' K[&"μuJ(DZ3g~ѷLܚۛ2|=_ip'>E}ӥi7)woz^v!S)pApkmr&yp9=.ZŃC~t h<~gWt ?a"nH= m; [41 Hт/"<ӎH 7ɩ̻g3 K]lNqRO__V5?Eוh,̌s]=RhI=jTaU3/1I<2xk3İne]C[E+bF`VFnM"r:۞YǓ9K-eLV^_N>=y2qW_uNVKI{ruNn](ᝢtuS}΂L}R۹l`;T3Fu%IY9PWNg]2f/'Lo;.jbwӂi 3\4ӮfʭҷYx2ER(̥P@˛[S ;}S\PYX$ޜTwTwdĵvm"2s۝(O_=s6FٯvpQdXؚFvÚueᗇVM6s[Vvc\57We6tӹb^ֶbgU»C<ݥ5[@/5+[|Y{HbPmTجZG![bާ_\Y n雧CM]{6&Ys*ՓRg6'"QUv6zmnr;FJAMլ=o&\$cSSzŊ6*sx(cnvV`vN4Œar5Z7[sb9a6W;OKsp%WEWj/&,R49j4Q-3׀ԇW+VdWk%LFVQTs"g `˺iULt9yNY]j':ttQ5S.袆5#X^UxzhrXO_uPz }ċwSt3wv!o&șRWV ᛛs,ɞS/g^u}ۚ}0&#詹e<3. I{Ïu죂I4+pHNôi`{W:zujv(ޛDV!Y!Mɵvo<\&hv'T*V5]Y9u'9mM]- |3/rΞS}zf4Y};;vsHuyHLC0^fWvòn8]& Pr>DV{xRý"j\R,bR}%5Ȱ3y9.(XD}VԪQPݙeoԹiWy+OcS/eIo/&O =vR&k{mi/85}9=].l9bcDcYDuu^jM;9@DG;rsܜV}E!jC`qA& Gy)-ڻ#fA$T --Hk9Yo~os3H@%E>fXmD"(("@>j{{W5>ͯ#Z h mH2 ڑXjEID[T¤dΟwz9R,Vd&A<Sh)-RZ[m{|>!Լ"2/(G&Gb)2# IT-14(BnD@#Y5Un d 8PJ_U$krӻi^ճof>yw~wQ̢Yb-[TmS0Td~4٥ &F0HB%md[GHˀ#:kn0-wիs1knƙV}:E ]2-|)}2"Xy˷]8)s$Q ej']fcd؉ɐI,`T/H!R i%d* L@ɪz~ھ~ׇ@"h$ c2m2RR&eڤЉ139ssΟsw-[T-ReRK=uRڤ _W'%2S9Z'%p{WxfzbU%! r -R2C2m$N}w;xf^2Ysf[`I+ a)@gf~qPۡ RTvQS`[)n\Ͻ#W.sOR2)IeEI潷yj+=uPI$JE0#D I;}χҀʖ m-*Ai aPHa39WV`G1D&b [%˛DnfT?QPzID-f 1mk#= cBEq$JRZUZCMmD f5-wP#s櫾aikK("Tj,Kl(D09|3ˮ{ma\]sZlx΄.ٓhR:R-_cmcd۰hbhp. ]Jge=Sw1jJ]7'Gݙ}=vR[9m~E@/moiP7:rKx$A"P(n_EV ܖl^nl )DݞǷ|&}'~?l-! H}A+$|g/K^$WANDD&H BImחuZHmB. NOO:~<Ua~t C@)a2j E":YcB;HNqO(m.v0]FZG| )׭,J;y͇>@)i4(S`&blu ' 3d_i]0i< |hg^J#'q$ڶgKN/Sh |Ů?375#I3;㋷3*3o:d޿]ϻʰyAc,)Nov.6ksi껡=-gm enFӻ<]]+'>u{lC<%) %SF  ,|]e_mD.|$,x.Jߗ^s!~LȼS 'PJۄ!:A$z}g=^};9w<$DBzz6|_{g 5Fr v{H4# p"h@ TYw^UyK@ I[y.ϣH9ApP$#{]Sj4 hju%" ޥ " I ov:*N}$?3 RbF^*Tn&v ~O),;fJp VI&JQXo$`C/0ET_X>K[>K߲tĹy{*蘆U x}-"h//$zh`f(ۋU4ɞ3Wz*r֥T{39Cnq&˚3"o- 0,pPS\x=ꡌ^Nz':3uÚ72z{v>ux+]H=q_W5,y滾sjOQ3$  DP$ g7>WOD̓W3b ӆϼ9wc=~=PN+D͐ ԖLE # +e'9/^AxDFBB)* TV#P0mM#|w93 dTIz-R_ʞ~$H s?};^/;5/KGIHwU8v,D@&gn֧zL">S0lRY8b\ 2 gU37Cm  &}Q BRI@ml?1n5 ϵ^I2" fUJ))s̽Էk޼~t 12 I2iOΪ'_U? } ,B;c:bo[ M͑/&*~y LҖTӨy|Y#$cA!FHt  GڭXO:6kKdC tyg=3tFk%e"3PsZS6Az=shv=Ʀd,BFyvP{\vKy.U[wMq$9~A̐')o>;ܓ-M[A$VTKO *!"IP"$]nB-&I&mؒ JJ+/ FNmvTi 4sd  HIV=}c=uˠe&eBHIf$3Ꝯnڶ[JJ 䔴(>oB@s j0Mo|e]>AP$M!+SY]쮾wI OoAح@jEL֔*hPVR֕PՅ 5`P.[Ky;GQiz)O)%Yݏ"| =amu 5.A[1amLWݓ#e*睶g/Gk{`3,إ\2w7=̴2:=(nl55\:dԊy*aFUL=׃z׳<"& U)I%HI~7k0BݤJfI \ t7n&BUY߅8=/ I$ LA}ٯ;~-jnP:(${v}[5'AۘM !i1Q%!/@ՕX(>cnya1^ lbD@{:^TxtAJ1%` ʊ9rk=MMˡ I [xA@iow{Mo~ T t.v*yC̢a1P45{<=5su&Hf %*%AuQm  `)m54E5OE`(D~zAt 1P8bJ? "~A?߰w$S h1Zelig/data/coalition.tab.xz0000644000176000001440000000372012217153457015407 0ustar ripleyusers7zXZi"6!X] F8J VtZ)ꑶ2lhD/lp(-ˇ)Hߗ?B:OVA@ 8+Åh:vY[]hVWC&O)aF篼d0X2 oAz}ٺl5k(- +>U9 1p+Sz֋+ЏuGDMI_߹:k׮= jFpfbP n'3z?ZS?xHl^„@g\az[-;҅8poJ_ޚk2EHlzoft$#JL!b$ylVGXn]gB7..5D칢GcnpT6 *+o(xoO T%Cݠc(#eC2SsH,70ЉE&Q޽ӞAV2v b뺉!f J1oiX-ʳ5tB;f**(*2f:e= Gߝ? &MB!{CD"f7dI 3TObgo̓1=R\`&YTs'&WEk%2:ҭ̼;'B<û7מ 9Swbrs9.aŘs5C&N!L;I$9j~&ə.rm @gEOˡ ~:rbY1agmKu N{˄?b t^^e_+[- =gX߈?=p/Fq;eFТ?m ,ءq&vn }tQ|ƌ˜@WzM)6 ;!F4 _4Uջ8rջJrNSzh4)s$).8ҳ N+C`ۨ|dI$MSTJKEhߜeЙDj'P c\nJ07$W;GS5VI`ӫTPB%;t}rvd˸t(o^YgdG8]so=}}fMT'Y? nxgg/J+puԕ,j>}j^v$n2y-6stCו[Ʊ¥;Kn%g]InV7MچZ߸k5#x]ҔW{#BqAonF"(;p/~:e%m>0 YZZelig/data/kmenta.txt.gz0000644000176000001440000000047312217153460014731 0ustar ripleyusers5R9n1 `s"E7afKe.k| ,C_ِ`zOEv-HVDe 8LޡSXbTs .mq_hd\nƐ'yD$吣f&ni }c*;.m$P:L rkU<R4gv@dlMg[ԝ-So7s\ ȷ *LT(`MN|쮜|zuJQQRJqNS'HXz`-z}ه=7 Ȩu{'ha?Laݟ9]]j;4o ~8NkWWqpvГNJA/i'Tc:A909Y !&? $xw;t_2N@}w˳FӔ[!F^dKKl"[zS|CW"y86I5_92oFř*9:UZd"qhKҳEײE_&M2+,.bwu kF7=BPF2bKq...QUVuZo 4ʭ>PNJR$BcnD |fNQ~k|%̔htqa1x<ź&\hY0+%I&V䬓h_an2iJ%]Åt},65W.y@)=oz˸7c$A/@?DD<*T#j;}q fu55]#k&ҫ;b %ooћaj\N$Zj;h͋I@t+AnS[cw|g} ѷo2ϛ3ha||](2%䰼DjFlUd$.G'̻̒=m(I򠨆H؉NJ;O7Eg\OsYi;5.%^exO5S2uj lN~P_wR+L-$Z ua6Åa=Η=V.0i^ Re܉" .(=CT08h)J7-%S+PnyIkh9X@E :u%f0`]eWa%nLU[+.TA}[1:1pa- NrD+kd5B5%|eľ p3봿N rIrR0R ^(p ^7Rb+O}wm!I+:bT`iNX~Hk&(-ft@^ R,+hR͗gFLꍏT EmTu!i\n~9 g);n`|mu%}3M8*T721^vNˍv}ĪPg|ˠ!]1GTхjeL.Ot7Y۾N-ݩ,mq|[Y_^o kj0^2nh(_&ad|~V}.j/@Ʋ1!͘E&$]jCR > 26TzayqNd@7` ({ {#k<􈫞4L~8bSM΅y3چ#,oIúpOqׇe(/9݌oҡ/8\sѺPv4'B2?!;Tg[;X;NwOos~::J"Rq:ch:7e.7,Eay:N9\O}%}I7L»*k .x.B()%F_k w!C :-ǚ|߽z4]Y/,{4\w1L"wHl6A{Ku4P>SwQv5ƐRb DO&3TG8 8  x ~z%(!Wc\ȪV{\<Cn8!\6x늂d2:ϕký [`<RNP-:8{X1kTկd𠶎7sЋ)xjbwShrسPW9 m[ć5Fn>0 YZZelig/data/PErisk.txt.bz20000644000176000001440000000230512217153457014726 0ustar ripleyusersBZh91AY&SYc "_@P?_?PE50čF4h$ @4J h##C&&CC 4 I OSzM=Gl1e ,\ SKfT=6WV!S+(-J$IPD@(\bBxUlC@8ap ge,W0py+Ò2̜#^\T[9yv&]. ׹{,Iq*hƥvc^e╨[󿐧|x54ظ$"R+>ydE!.1U]˒rUJ4֒T={Îx+dWfg@UXTL,"y,"jX3`c01$[:N_kjF$Nmj-Yijv ð H!kaԨF_uNf5"׈ ,de}3|@`m+};Rp%n`CO` 0Oэ_((%7F9ga954s à /1z.x:j:+[YTRVS9kxqoz&lqUԪ6*̢Cgx. 6YVE$"0tD䪄* U5ʨuei95,fLjaVa#y%Xs1ЬnTL^׆(|$CܑN$;mZelig/data/immi5.tab.bz20000644000176000001440000004770612217153460014510 0ustar ripleyusersBZh91AY&SY'QY`P&Ԡ`v|} @PM QQ(TUtvRF[` BjJ{aӯZnvWf{ݽчvҧ9y]bEzfCdioq֬x^tU 94>Ntm[f [c==V6l|] *ê|EziRQ6{* ͑-H%dh!)*110"UM12bba'2a@$@%Hhjd dIXZi!/4$̂e(̃1f4" 4$i (@M)ɱ1IaA 2K dhe2iH$Ri()fl$"2e%ba#0!6&4I0XADAf&f@&,LĀ@0 4@4@ 112b"L1B %"LScdY(HhbH)BdDbH% C$@ȡ@f`&)ٖ$I b % 0"L@F J6*$EFE2"C&"d@TJIRS1H,XBfa CdL(FQ$hƔff0a4J0`Xc ̉C!$$2dA1i11IfH#&LBd%0I& 12H 0ƌɌM6Mn&]^k9$%KM HJ""B'XЌnbN=0*ADb ;KLB0' U-Ag!XAK+Rvwoϵ0Aq\ir  >mL# 6FyFeAb|HF,@/YUBЦ7VBdilZ" g[?h:9Vlz9!6ntYsMR o ['JFBNj>mGΆ%gI&⋉&qVH L;rAS(6!\B-F@؁uZ mKF@Ԡfj7lf"#2P_Ti5\؜R T4ۗrdB,q{vlՙҵihJ_a%Ciכ<)4|4>S1D T#לș9P2Nhރ-+Xc.9"KJ_6T%NƯ[$j6D(齖}^Mh4Nj!Uc_/`OI 'Sڻ[{4zNzF/%C1Lq\lb3܈s`ޜ4Yj]q0CKi$I'O[˼Yb~${/m0A֬`5GPHZ\34Fir0 MDGan;hܸlZ޵KMN.kktvZ]o% x8NPF 4Z+[&PJD/ٕ,Ӌ\6#9\ӻy6@_UNmZxܺG: Dh)a|'[y_K5QAQh4Y9956Lq&΂!כ8INSLi:XOGw@EOPsĜl6Ǎ킒ƪ`,أsHڼ' #WKe9v]˃cLie0[WxZRˁYBݯcQM ͉#4%?:{0" !G̥\,}.ε;YO2nBsXry25 8QBp+2<Ԥ6Pro*^ۃր]&mq]]m BiDKlUˋ')ddMa9UJʖ}Bnxi@ ^xX#16hh~ UnP;cAbrFr3 71o Awvs &-\qlN*UWLQ Vӏ!ܯu&7#), USimTLx ҏ> la7Dp/25', X)ȦT)p$)H^CQ + HQхaE+ܙaFc$jӷmژȆcJ!ݝ#ɼUOgozPMEM[7zE~ІXuC / u™ ~:RP58aԛ#ӒT,xѱeO䱶kr̒LF7)xfP\)172qBL$q"̶\5b LNf\knE0XTU`REE$YS8(cum43sUECӫ/"8Zȴw+gui!٦MD ^kݿ{̒ :܍~ݏktɋ\/ozj6ɫƠJS(B'm eyFJB1۔aT<fh717ܧ{{XX}-aY2O 7<[=wvuWFY}x5X~n(a 57M<5H|kH]&MS |ՠ-t!9X7dNvxŻ&Fm$3Qbe-fݜzn ^o^uPO.G^5b<;}hG Ʈvj!9{mFG 3}j lG4Ǧh_-owD@WTA^QXq/zYm|JAwy4$sɼ%A 6ܫK5fHqR-#mt;}|Y`xl(ml@%֊DZܼqwPG165nɇS➭ l`o>_,0M* 0`̧* *o< C58{LXI֘8Kڳח ]xK<G1tOaOvgǍeVÞԳݎ.~_Uwޅ"cptq5hlxwfr@^^ū8ݲ>nB,N4boYR@Ut䓻-cuPnx8QKv1e[Y(Ja2֝Sazg'ŊW,Vi}];4zcl{T\'}_'6 qn5}$J?#y4S̺&?wcKLN(қ(Bs8gjLC?;Y9ӷK|0]7<۵ޢn=6&bG5MT[:ucFy͹/2JmL҆Sf&d͵d0 h4"KL8@f "Yq‡xotI\Յ/2IcM U#CH& !+H 8fI2p"NbtBHlBl"Vĸ"U ye#2H+k&&un;s6wrL&0K+,E,S0^snSJRȴԽ.ewO 1$.3eT{tף2SQbb,)"'rw7^͌»9/.uFWyFhg\ sb;0vL˞%b q͜=fZæ2b'r9^vm!6$JR\/f#{i=ZK*]BNDD@"Nu$łH!.\H^OB=H7(# (yzЎmH+W_B3rC9lFq"d|u_f, 'yv=zYW0]}|fi"=y3sM0R{9w{o: bH.iڼOxf}P{$IQRf[ Я|w#seb۪ݾ!KIO2P{b&LI}+k;3l:XK2/䦶9ofdjt¨#\GEye\Ioc9ȉnؒǝG*vGr]O;N+=;x7p {T$( qOiݻ;FoQq!Y+#MM*U=j#{nJܘ/e¼9zҖ)>'uf)[Bx !Hc3ٵ[17tfKsW[O$Vwڈ$t;:y$#|-%;{ 9ޘ*3.w:F@M 4[Gw`dأ5z |ax(֩ksO0wgpK\E R ;n QUP Soڪ'=3.,QM ݴy۪VG^6Z"< /#dd3sקu]s|SUg)#$YU3Z0$rqќc2+rK]9)LNks` -=஥Qyy,ƨ8Lp9*r "Y jNz_E\ }==w/e=>xBR8˒ i>mpQĒ@ʱG۳RhܙfM&I _Ձ)0sfF5lS!6v o/ }fL4 D`\S32 fNBcj׹O;F)هU=U)F5ivz]S*yܹȷrYoH=ꋾz+М}WJvީY<x9;FaיڵeF:X kl4xkM8 fEM5N]gv܇Ns3ՎF= ScG4%K=٧I "x!H>;g]$zô;oC0򜈷.00v2nI@#G[dy2"~GᘤԢ<+L s(JSze<'_OrLS:{d3sV>=&|Sgk_H;|zBW }aGР}.Ywu$FPM?l[Lk~/fz͈OCgGIG K60>ƶB'tNLbdPsULSqs!Y#Z]Lʴ5לJ§ 9A?*$]p?ƶ`'> r̻;55Snb^h0a;M/鹫n9;B>{m7]t^9FFlxeя8LG1FԦhO%9>Dzд}Y2h$t:I,ke1=nl0=0n<}9_&?Fd[\ ;Qƴ7G{~2S/ }viua f!tLB!oÝ=0>X+ˤKɲ^31e6r(gj/GNfG20\ Rʀm5*2">޽czVWf8nc7#0(/`{&?q@k)?ɗIIÄ `DBv }䗢}SF2bgXk9 ! qT{ݤ"/(y 0.'#%?u8jXY|3WϞ=c9>吴OG|~Sjȏ_k+S?fԈz=EL#.Q/ 2#' l=>n'|?-$fkyy)Qb&æi 0p;]Kv9Ros#gazBܺ׳ ,{l%9Yps .CI>pbnmgBY gm0?Y,Zw2%l/;p;ڧX8֩ΰ-.b1h1+uPnFCb,il&5:c^OgBA0^HN  Beqp Bw\#g}\.䝠ҥ{ V\C(OZ1ƨ9'4#7 虞<`X0ՃxdkL󞼞z uOs+r1`Jݿ]YgQNYQS)lF٩_.=Osw$ B#t|Q,/` k\W'2XVG"=Q؎W# .c̎Gy ;?tvؼ<uavm<{ Kf̵(j{}m}$HCl=8ٔ2 5 ?6.Z+HvQ|'_{IdË/*2dހÛCe=;1nFXf2:݇-,{[y77{Nv9h5uSN2ؙH|<_)=9㦦O-j>2ܳwmvr)ddD&70"*J:mK{sQT1[Y0A~$$d 6cuKۍイM~ x g#.xۖc{ۆ88fP2~i 8t6.)tȦxv`_GL&%GOB4>|1 |̛ZpC$f%Z(V T5gt]xE%ۃ{ʮx}+.<F̹?fhuDGCÇ' -?Ͽ)*Aa> I3s=ᑬC^l~YI(M2I<40 ۅBUC٧}A9R5Y͸Ȯ:J|!/a9fC6-dERhusޜP8 P)"ҧk_9Y*ک Q)ɿCnhby6wjW>=w5;ʕSl'^z:ɘB8 \irY$]>欃Cck\b*Dd2! D\IюZӄR%f "ߑϻ0ӻr! J9͔<臉"B {,wIc.ut6nr(޾E _Z54d$cV!\KH̹ d\"ް=쐖%BƛBIcօL1ɅƖ0ۍ{!-1[ kYֈpf0]7uI.6 RC.}'=S޾́InjIA"*sfM2f$̅!i`&fp3&5[d ΒbOL3dȄ `Oۈp4"I1w en'WIKg0M!At-{j,FLrז3't:oxJNQ %{vդDؠNˮ-tfҵQ*Q2̊`մN0'jo.9Nrk}|Cg uW -H4۞t˝|V)J{e.[>WtK[C"="bS,7 {ort\Z~{&96ӵj|F2կ]%v ~wﻷ&l=@Rw~9S VF. C8׆M᎝˵%Mi ɞJt4F7pҜ9@ýG6AS]2{JWn~݋_a/b}O oO/zg} s̻]Z[""G_@oe Cϻ{ޕ!GTT,LnCZ6lf.2LEIv7FwTc[f 6WgD2CO_(o6v+^C$*f{jDJtN/9eWٸ$yd?>QFrx96ښo0Am"hH"&&k./߷yFkH5Cs5e7@Ԑ眙 vėwpH Fg?=ORۓϻO(K#S{&m}OѰu'7bQ⭶버 +Ƒَ+,}zGN7m‘OȐ Q'CAq`f!^]jާSo:{rcx1Uo`dx;1j[{Upƙ`ɩV͇e5N1 hB@DUr_;݁RXBMi'~RL)6F$KDŽ Zk R}=L)keȚCx̻}v{8ǂZA-#hAkHGXS݁/0]hPkG65KYM SA c$C3<[1 #VŬV5 igX=e0K<ě8KfV0`uh /"LR!P8ȓ$cYjaN' դ,iYd)_2Jd]B0p%:gGs-v/CR܍D toy%X=l SLLF\5j{&Idz%&rͨll)qڷلKP33=b`D+{|lQW읇YqJ.KW ۜ3r_7*3\uZ\jٛ鶈!*ѸVv eJvfyE+2ƣZ ڬƈyL=xx OA(+ky$WUqPi6, =1;vWPg@2{?O }w"#e%6}uK3'읅;FڶlAw2TG=<:QLpl'cX]s5YCmHE+7ݶ{uhVjǼ_x{^Rw)}M9U06+ ?7ig{Si;DpaK)xrzϺYpq/ 옅Ӛ)8S Ww޴߽S^#\'] }=gY <0Lpꋻ{Y@*2fR.P%Þ /XV)AoSc=<'(iE28oBEKxR1PL܃#o_OF4TF.A!Ɏ 6|\]Ni" b9Y&}zZf.~gd6V߽SӾc9tMD se)=WO)2c\T5#I;S8|bUy\@Cӓ Dl2&{ {Ž-yӎ۠XC++<4q(ܹ b\!fJq 2B&c~wb;QF4yjU{'y?dG;hxx;tRqͣ<`x̺qwoڙ%0xx[ɳpfz&&=G6u72a.Ǻ= wyUQW;9=GczONFWJ{`Qw_"vu["շ SmO'~sٞ9]rM}|>I2]x^ûKQ3g͌`4Ɔ ¹fe縬W>?@vrA(:`=Ȭ ;]Z95ϕ+H}W{7s{TʊJvW{̨ A8پ M*4w5lj;6d/)^Ml֛O{:;&VA  hGFG8{jwn~r>A(_fŽZVEUƺҦXJZE4 [4z_3 y 1qo%u6Tםb)pYs 9 + 2|;|ƹ%:m$UE!]ATੴ*z j$ GB6mrYcH?e&>-U3t`1i\qX\Lظʜ2z5]X_8ݗ͌qnA:wzv^P9x,c^2fŻ! ڨr\"3qS݉{D3W|-fA`Y=Ddf5den͜1U}3"qB\T"Wa`NOջ3z-P/Z[ܘ cli0f}Ni,5n/fp&/%߽=7V!S-~3כ%ONYغED6ܣ|v- AԙU$[,=I#t%!yR׃dQxa+{In{;Ł&2jAg.uQwpu^1x'akH8sݬsA/gv1VbGTӷ\Gv$YN>wSJ`NjC)(]Vj;z ޢ,3> 4Cv]tAj(g=[[:9Jզݬxoc<BBӫ3^{v ]HzV\ޫN7C49VRvʬOwi`k{[EENz7= L≻iNڼ=ʯIxm9L U<S[Wt8F ipr. D]3x{NJ.KVmnЅ [wQ6:_t)vt蹵ڙE6E֞Eճ EIz\w$pU>c;5D1Rp)Gqʠ_lE1;u 72/\DžՄ۵7dplT4f1iMUh}Cd99Ta )1Z!(&0k38w ,#Lܮn;EnQK82 ®6B̈g+Y?m;jjcs!>&Z0ώCYyH٭ѣ\& | Nw r'9Pf*Iۓ `˶`dŇ[3M]͹}Unl<_Mm`Yxz :-@Kuq$'tHD $R#v#猦SJ i %Ƅ?BM΍&rHz4ƺɘ7Bн˗ئ*tDqEewAzAk)>ݻP}#7=7>#YS9s+{D?LiRZ1`op鋪qM;wәҮ6(GEdyLMRt.pۛjvrj+6px{k{6*zyt>m@0e{z9Coy[Hqj 7qx {yǢ8"2# Q27M.]2ٻ>|Zhm$P,)0A9yuNW7u{9D/[$)4u,AyQ؍6M*E<2mshp.9Ar JW)ܾpni!D@Ĝl"  laK\SDR7YGq&X"H%$ D!r ٳ{}X^]G,m{xh̯פ'[3<'!龍S}&{q؝ E(,/;KQ9(QˎVUln{cȓЖ+gԵ=lv}ǵgj66N^ףك "s{DƼq1(4dux<:~!5_L1\7/sc87) 3N?6gG059!`. +E|2G<[f)N,[NGLjO}mɏ2rN@z'7cP|}RPzN}e;mˍbΛrT^>}.bݜxmW!wUmR+->d^3Ä0GrKHqޫ6ܺv)dBhɔiF5W<ϳ'P>ik@uO{%n([#ч%{ YL%<4Ve.6VW;׼=u߲\Bl MӬGΫn}|<<:O2V&3[JXK B׹[_ٷ{73yߑyf^{m[YܬFd4ᒙ뻎57[#^I cz륐[3waf93/6O:*^-H<9Cwrt=>͌2.0Q촒PuTTi WG͉h{¢_Sʂ_xnT*ZKFC7nHMݮ졉,,@(H`FI?}{\qfGk}3. {}|W}DY?|L!nlNUp>7gW 1:c+cIwKĉ ΢zE3~`xIF}y+8&g&pCP_ G{|xqMfS4!OA@PjBwC._.u~m\AbS 64\2d)!qs˳$Ww- ;we:ƹ}/ P~&^7ޚWoj}BHU\#$g;qD-ުc˝ jXKxw*33c<02leξl2 htK{P-LLWB8>8]YICP')z­xKh7[s f:;s6kcn2b5T=,"ln3]1{ ^1$=]p,1NNΫHU cڒMcMcM!FQy4QoNdY+T m}o{]w EPЃTT7ZE{*ﷶ!`620+hBcأ2S=oe.cA7"wP642ncW5 %sSZHPu-ۓ>#NL*+HKN.]  2 A$=z4՚yݞ6I8rwxQbk>@>d8 $#*)_d͐A{E bz`&$Ąz;`9onBE#ӹe-1$`)]"BX I@hH!#x5@*i"PH??/qH ôYZelig/data/friendship.RData0000644000176000001440000000533512217153461015345 0ustar ripleyusersݛ XCXZIEԪXKee۹[6u1{kG\w-{+W][XU.l-ϥ%[SuSTz{߱˾}YEھ//{Xh47IBClL%НS=QX+#]ݍ䇳+8싎s UЙ?=@ʓa҇G7ִ /[EEe*J m#UOljڧԻ-W%x, rhh܁ZV[6t2瑲F\uw-45( *=LAT)5~(.oYN7EQrн _54u>u?m%b!l9wJ.I% n"5q%fC4r ``\)k{T!ۅmV}QMZڞ*NE(OȢ*8OC'O$L)zX GMBTWYSz0%2FF^)1~YIxCk_x֭T\:v_1?o _6z獉yD}zkn\ꎒ|]TKaժQ;|L͉ң3{jޚxr8ӜF9`\m-7g"+1vi6L~s,p@N|en^ػ( }4n9()C1ӊG. ARӤw3vESwVtԮ$A#|1 ORmҵIgg^} TFv!ɄK4UNGy[jKڊ[|HvE-p/FsףΔAw׿8oy>5-nĢeuK.fm}:O.zas7u}^(֝ʇp9eܯv"&b(}ݚԅP!r<RQl"55gb4zr9w7S>j.B;pOv6݊b(XQ}[$4{~_(&"rHE$)qnRyGG g3Ka(%w {_Ѐ<ѸDgmhl1ZxoL_zg8jxP_ms4T7]ZHYo:L(GݭՃB.Gt6)vD'Uwk4VŞ%иm4.pgw@S"4]0a(*yA :S}o\Pr"=:zv|hLV"HYX J`XXDJY ,DH9X VJY4+f%*JYJiVJYJVV`%0X V+JdYX V`%*JY,DVJ`YX 4+Hd%ҬD +f%0X4+f%ҬDV+JY4+`%ҬVJ`%(JY 4+f%2X JiV"JTJTJY JYy42R6LQ 2l)S;=Taݧ¿+گlW=,Ϭ?[|zo6V3d7L;L=VmyfL{WtsWTlQɔYNg\㛫Ϯ?e9\V;Bsĥ>)uBguqAtN# }i^W+ -z0(/rjDFȘ!Ic/RtxptOt4.3Zelig/data/Zelig.url.tab.gz0000644000176000001440000000125712217153457015263 0ustar ripleyusersn0 {̔e16W^VZBծzU26 mfYXtĸ b!q)B{SqZ S<=MhTDDž֩1MY̠aVHiT,"ڃi߮E m8"7VQ̴ƣ*X]4T.kکūf?-K+ͥozFyWP>3-.ms"xJݸTp6mJ/3h<*j4ӮN4VE2n'>Y51 ͌&_YH'!{\V/V,E4,[h{/E"G*˝zp>Ux&4GLK*bm89_͠%**]t⚒#EWbؖ30v`ZbiV4To)=6nFݦuȽu]q0B2T7N_ Mz̛TfޡzcqN7o(t+-iaD3MnVܩ鼣Y_7*0nB˩Ji}yqyUFKS-)$0OTIh|1zojNfPϗ>Y5c͊!uܲ8{5|Nف..IF0%JXD5UKv_G7+Qs)AmށXUCAr^$GHioCͫO7+*ux~uU}ֶsܞg< `h2~*I],ˆwuQ*OgUhre94#R>F [yY黖WBK=,5 ]4**wiD332jPfw:ƛ؏ 7n82#ڥx\wz!AC_ S%<ѪGOr`w9u?9R@R{A]HbF5bQ^kzW< p-U]jxXyϮGM hI[%@InWP%˗2"¹^IQ>0 YZZelig/data/sna.ex.RData0000644000176000001440000005620112217153461014404 0ustar ripleyusersw|>ǻnng 9!򉓃c1`uw)-Qh7[:Eu1g_0&n{BηN?b9y`Zne:}Hgۊhs\E,篂R//7"mrmw'+Y2NtG ~k^Ζu \lc`DJZvZ#ZM) 3ƿ+AhЛg]7m}VF~(;|(XQ|a`ڀU!n<*qaQ7Hcz%n唭`*3C61h⒳x0(=;&cP41ws![c0mV7%~ œw]n\ܷo/Թ,߀ebRAEɍ|`p:f'2?U omjuis?A 9,Dywm0^.pu) `=+,s|Fn`:_|!|1GVqrGu,+Xiag6`Mc*]O?)(v䙽*BEٮO۠I05k^/_<)xX7y.qWM>qW쫭u|2vZ`M zu+4]ɧ ՑVy`[&EIS.}93ܥ)+Y|!ͻF b?0]-`PyhQ8oqDCO۾dU'SR( )C`ڹ6N/Vj9- ީ`7_G}ͬZ`MOFeM(pNkUWu v)i`=zCZ-l%`v`ЗBi=Moz)2vH \Eu;ܦ3ޠ.2ng,"۽.;[ EwByn} _b0Ź(K:XUCj<)A0h9YjZ0u1 +Dwce/? EJпŽ<3ݤoiֆ/S`';(7qσa=ڟ3 V,*QV}k5N|eQ`o{lav ls)ҕQ,?=ņ`}`sB cvG* `%6Ap_$ #Hm0=Nm\V 5  6`6R^) fziN#2{̉q>efhƖk`L(0ƒ|'u`{oHG: gƓBZԑKP(=`K}zQg3/\arI XR1;Mc4w+S ^.vKpcEŏ`[6T{ցuVxG`lu8֙ᖇ7rPh3;tNi(V~/E8̝cD?=z]'R[w ˬ%/"/Qk'h*uQ,ؐvkxr ;XbuPT܏Q8ѿH{2W|hءg`̼8(v_O5%rUN%ʤl9 O=a5V͂ yTQ{˟`=p4hDO97HQ#~n2q9!Y'~C٣`ݽhλ[;kf3$B }Ip/{A?x%/%>kE_s7Y+>fY hEOc(:3Wuc,inORx1H'$2˜8sx0ߌ͈-pԖF|}{0-0fЏ`Y%;> `qDfn۔Mp9H /K E:*`\8K䂩3BاyF`vtd\,0 vTq0tR$BCwPx 8z꿒AHv& dZ@K'\\"{hRI `:*tbJxT:ɶ)qnՔF$wݸ{;2۟2Pޏ k0y LZ~di:e+YYBG_0wO!9Ii>4>sօygQHPҭߔO(/#XK =~'3;K*`nk_!߶GזH:E ~%})Sy21znB6X3d)]* E~!vZ?Zbo|H (μػLQI^})tA) }ۧ_~j?a)M(%v|E\[|6qw7OiJpc¦__]?| 6G#`nL@QB~[N?.+q{N[Z}{2ρEUP^Pg?x\y#$r /R~&!vgC3m@,|.R8+μNg 0s=J \ߤ|ߥ@׿I~6:'pU3}1ƒ}`|oܩ\wn+XXa%ayFIs²LޡA:fkҹ;D77<ς6<#x$g^wY~,X<غp)B'!y@'xt?I^LJ"G$Q{*F,>>qƒ'+lRQ!3PtRDB f &{2hY F, W[FKiAk%`9E-ܙg!$ﵺ*Vt:F24߅ ^da]a*ئ~`!({Cg_\|RH펚4ط~9ȋ;rQn= eq~s^'3bzKA)5yOF*k* H '}=ik>m?/~ Ɯwÿ `~, kFq,Qng8.D;jJ(|*{Ɵ֑KPT``X +Hީ>-$i_|^ (P}jhms|ەrz`)7}k8V}4x/]c1>0e__'vg>#`o!R'Ic4+s66`Вvm%2olOɦ_ cR~ӛ\k =xϼSu lyCcn'(כPs"'Sfi:2O,ADaolyd /F#kEಡFQ{EŸ @ n'{%urGVƀj&4B է Rc(b}>##S4l/_ wO>`\އ(l89!,^x_&??do)#(~+7q$i4Z[ ~2_B5@9Yܭj F/iF?}[?gM=@ @> M %v\2D3(|rbFg'+sOܡ ]dwLoY/jVP*CˊZ#R|J`4ufy=|/6!|j2>V,yWS.DkͤnSW'Hٺ/:ҙtW@׵ځgw\BcJ|(S!^>e&Sw_Q1OI]pBd{70x:Npşy*\A}%o8Q#%..+E(:ڧ/x@#nK#Ӡ.]pPBϞ&[\c;?-nGdi5 \{iȿf*C~fUȿ-$Qr9%\?~U1gp#Ο+Wb9:[`Hayfsfc:H]gxVtSm CBW$8xvVn ;ٝY!p̹ _c(?u_ 'N*{G+T@8c#fdPSM%@54.o֟4T"Sddl6Z\{{'%9fK>ȓy]yk~GnM;7/}[l04!HtiP0yHͼT#9Β/D,9ss'"?QRRf;|o5Z6~o{=Ndv ƪvmA[]̯oע gJ4()'@OWRFFaC P͗jDԎ.@^Mucȯ=B ӈE5<ҽdxt9 'nE˪,5w]5! ۆ>ʂz} (gx8#@}xKk?"'ex]19Qf"kx 󈳻쬆ÑH%2 !'C͠ ͌|{RAkezY#\{NOז˴AP}v> @g <*N7^w>wlx"M?2/U.})R\+[AIb#h5O&V9x0~>}G\]5JM@7uz']-jJ('Fn"o[aN熙:RS?C~+yr:iI_<y1#{\:POb ?* }+F]'pvÁ>6$%89R"m +]jԄ\~0#9xʯk>'#Yfr^thrzX@$h_齧ᰳR{OxFaP8tW/rh+"f+p9՞XχZ!@نnos<7 \rQ/Rugrr-'(_,< eJB~bf6,~ANГ>ka\| 6@~h2wIM~@`W(s[/YKѕ}[Ֆiz3_ tTx\}._OwZ%j Y] 'Dإ"n}ӃNu kީ՟y{j摛{-s2ʲ7 ~C9kN!rpISBd"^aj9rn#U,ׇ̂‘Qu51jSމ2^DTBje2k}i P-JA^i%{dj =p9w-(Cj[) tћ?W3)tf'@qį6!3~v_wGXk;AvU>[,\BokYn'ᢞȻ28u)r5:B@s5rr$Zg琯exȓBx ro̾538եa8vεR!܎z0GФ";=AvawAP_-#Q:@N^c턧 []qyb3r&}I3MɾCUwݍE{2K/E[ISUtE+W AVRw྾.rI^}#(fsg>}nc >|zt %$ymVԛl3jp&dxs {!~܅LwyB[CqGܴ,zn]_nr-2 nT ܐΪP͊fW(W]JF>|~=|ٶ >j̼L/#xny >r7~=Fֵ12s{4+c/spQZG# Hkpٚk狑's3V9-~uc}k 8ň gBAOެD1;Gb4ŜP`"L0&AI<+Gt!Po'1z N56T!r:.|fN6ֽ "JmAW'oa=PΙh()ɑ|7NxXw3Ren D]K_0jܮmRm7{ Yq  ݿg۟7kOkQ? Qr3"H{@ъhNxl3ziC1Beבۡ*r|{׃Tq.PONe[l HЮ9]C QMИS7DГfu$VpȌZ /R|Wi acy6MC< Wn6^Ki֍B[һǐsw1 ckgȡnTB֝qEvP=|U}vdG܏RxM8TGdkL2 _l ""ӣkʐcR yG#Iȷ54^|Y{9ͼ"^IrȹU|z(//~ ^^9y4n5Os=-V^y:۟K1xA42h#sQϙN+QП\ JSWf,؃T@;2tEY"oRe SH^j:;P+]1Uᨙ+Cr(xz{|%bB'@ }A8`znGoUnAΛzQߑqÿVK҇/"oB~"-#JMy"]~>h^gCໝ/In_1*;&Z{qOTٻ)>Yxh~ބ KL=t?H|Jxl2е_9{: 9Sso"NsŠye[})HmZkZ8 Սȝ8m ⧬/Ȱ]J62_9ZF V GˠiήbW۪2oݻo)!}un뽺ަ`;ŮNs$Teq o98HVc-yoa]3փ`8̵X / ƽ9K4cuL+θH>CƮ|'OlJ 2J_ΕȔnjBYPkz(֦1|:`_˻EFQ3*0T-P0u\4=gZ+jm9pڿj{Q줓>S!!.0A{/X6'珒$zh? ֒A k _DXxq]`Hk}YA{?: R@h斃5 0mJ}<1H_UꠐP\ֈ!CvH˽nreIT4!<ױyUU!? +^rʇ>|Ƥ%\,1u2?|VFgFڭQ}r3M%W=8i\K l}~`ZFJV)tQ{uwl]@%@ 37QZ^ ?*WȎ}"+yf+}Rf +=JfC9Ml[I]2y!=ORć2WD Yl}.|E$X56mT6m#3')GsOqƀiAld;3ziZ7j08={߂\5h.|=bIs& |ΟͳCժH3=Tg J>/0g6عŒ]qȏ^^]ٯA(8ނzPhf'@Dn*䷞/.="L0QMo  `H$woiC,7EAsd0w H3(\a;|{/qF,CAo#R4{\T|X)/Au{x3P/9O[U줴.ݲRrx9v?ať`P4]0 WO[@c=0vP0MZ]MLnZx0_'ꥷuE;yx Af1=YѢ(*~̭Zh 674E gci>6J~3-{\Eg^W@DExٗߺ6y`vQEg~ T!ZiEQ觕4Yܮj(_#-8(mz9o=(g`%5u J84XԵԔM2 /YP䬖{N#lYYK&rehV7 }w[ =M[o]AhInRQfJ-=fԚVjxl{VnZgMX/X+^Ւd^Yـ`LK8`Cost[_vѰ4%>8I@EwJA=h@td .0ν3!,@t0=Vפ6G+m켢ŕϠZ̚uI7~^K '$o_y[/L497V }X[.YݏĤGAOO_w=a&rdQ<5w-Wܾs{5_^$C|g3|FNS ~=|bB|e! Em EaNE^0nW3rP|rWs;UGW"Okne`D⺎tS_'vz}$#O|Ⱥ6߳"W}+nAg]@=fPy_U+q$4Z_?ކHA(C"%kA;4Ȯ_M-ȬB̓v?cI;c`LmU/]mvgI!f#{X-ތ\Y /U9C*}/իb'&I7~Ҥ| 1}\Jr3%9ٖ:SuϿwg'*ݯF'Y11^NvU$ |zKοw(=Ԕ!Q-_SN̗CH*¼G$D/ FCk.r*ȹ.O#.TKX8-D^nb sI_C|@̬}w!򳝾v zۚcDe͏ j`I*^30_R:飠5xu _E: ߟ @% >r3;Dggo5wAQ0T=eXmbrg:`|}hwV;X!Q ^- ;^(:"om9}5Ofn'(9~p^0}7>P;l̃s`^Ru.~ ]A4ߧlTvۍO/Z8,XFuQJcE: zdQs2$p'E"=uM?dւaI9AŊ-& (9t-bm^ Jཇć5~H-D[Է;A?쓡:' 􋿨iC](:PUM gF@яYry}N68rrl\sz2`gI0'\ ӷn&kiX5ƍ֕ YJ9k ꏃPfU aǯ>wwQ@ɣnVQ( P$}d=#]))O$ ̢s)?>'8׾h>E\8ۅ z|❚o>ȋp*FGЭv^? `k-&}ozַ) ǬnY"3*0qρN0;}tjP-}ob/F'n} uD>:>P$c+ ] R#\Air* %}KUa'Ln,_WCs(cj(XO1c=!'@o2`'_*l:$ c5A9˹*2n홲* OGWN^Ņ ss}1u]&]Z eJX[A9jˠ#럈(ےBk{&7Da5m8Q ºY!0_gF!YGx>壪k=#UKr]aZ4mGu?ۚ4.4j,,uA5Q6BsGSDlLo6Z-'lgnDw2;0ٙǨVH{-AvyAʑ@ZxOp͍.T};rv[L? ِ݄(4rw|zZO緞)zgbh`dBjy3z?FG؟7GxQ𻒎XZ4-DҳNrU\hv⺕斍Ɠ>Nϣ hT FC/}ѥwhX: TS6s^@Zd>c/o`kSnj[ƓQ{ᘻp"4 v>NCcRzx4^H?|~>jnS;RꋃIT6.fgXE-7opLt~*CWg%?.hlJ>؋ύ>eűBF.OrcrQn5+GqMĹMhS> {CdlhW,Kdz(FzKP+3g4ykMAC.}R?Zs'WFeyޱ9=b!hZ+qbs}晨(q[+ khzW]/kg>pD[ZLOZ:ơXM銮*Ѽy'iy4l|=AuIr@(pI١Nyd?>_t+ע~{3nIwTU;v/mg }4/3).UDuwvA2Q$'*/a lV5 Q'72# O\JBRCuUphYP5=b(k&-1l|pae,g6~GNh<\>FqJG ve{w47>p>bJ4) GMJ2c.QEr)Gt=w: yTJ;Z q[otjsR뵉L%#z=n߄z=?E1QF~/PAFQc4ߖfD>N`W爭B7]}ɴ}hlcGs!"Ufgdޙf7bw 5vKr/^V*})u~~6Ԫ[' kJ{>ɼ(59{4M<]d{&e ,1/w kLY>"2A1ge?o4Vpj74<"KMn&?%SMB}b27u:ڶ}9̓ݿEsԒxi4 ^l[ǴraiSuÝy3"nXs(a T*b]inD{ ݎ=h^־|/_IoAUhC|jwY`o: {Z/7E ՛N^ELҦJd/Π_W+CΡ\9&^ywp';c#T$wZ4 x&kb3} zUj!Ѹgn.5w-ӮɨNNB9E)n_ m7<VADsPk¼)Ɏ[8ѰiuDj(^Roѐj+~=w$}nZ>.9k3MWk7^2E؝Dv7I[Oh2#bYzm~O~RqWI\^*5fcMYh& ǨMpJeF*).pAbc\4쓓A=)d.&w[ N:sGEͶYLfg]/$+P'f^0%הiAԹtej9kʍ9hL^:+zԺG4 0Ọ;ȇ uǢJ3{ S%T~yZP+G~cϤ.A+e\8L1BåX}hlQ;Q'.y N?`׀ﻟDE벟D. {uG g5d^W&qhGsZ׶QDZ4yY'Ɓ'gMʿbبFYz}ˍ#\"Lm7 2׈.%0E5ȉVխ]^P~aHJۦޠwe0- B͘vfh >Q:F58߲BBTmb)D /+G&=e4 Xw/W+B& ZU}BEJOޡ6XI׷&kٻz4^ dF]k/^Vv&Zly~CôS}P/Ws)U}/At%Sy砙.!σ-t&oyH\u~Swq@%Znn6 '\&8l+$ԄQb.Zx;82#oVU:mPv)<Z g+?:6FB[h wE/˖f;^2PseKhِ|킆ݫBp[+q+#铟iZhsԀ׹hJq(ASK쏢dj^@ɾ3wl,;%'!/[D˯?Tx7 qFE~FT* ~{f%8JPc2Uk޻G~hGy_qI1W;Ot*ۨVAN&} ڶk~E-co? /llUu#Z?9fa}#]HtKzeoX$pfВ7UH sMhhK܉zxREz#j%G84OAr-ҽ4 ZΘ@Uw;t ̨#:*e0ڢ_=t 5ͭ*hdRw~vWUrx-N^ef ~6[̡Zr+@\OdʺJi{NWMhTruEҜ%&Eo Bg?O{ ѣ+YhzU\gU[L5LZGD8|r]Z!h\=ߌu/:7x eݹM7*WK㶬6rn*GkSDkDl;\"kGُ?%ht`o?4T*%גlBʨ_SeYtz\zw,ˡm Ey⏬8 huӀ䇀={+|_y jC.<ڤE/:xGpZx[EE>mL˕vCٞJOt s43[ ;ϰFSTM/[Jm#N>=MO9JyQ3X+ƒ2Ŷ ԩqqw:5}ZL,Nseh)WAqWQIivTyEr>Մ_$ 56XE  ~B]iS'µyqlF3unshnqPO7q?Ws@MzT"2GqH{p}k{4h/y 5O{cШyitFDKl] k}~G[N7)u9^h'g5mE og]jj7DcoL n5$|8'1+g?dw*/MztddOc2.HWbGh_K0~H?wŚ~ءz|zp&bj3z_WkM [j/ cTۘX۩k\;tU0Ns_UR]1|pFWLUܪ0}'U'䃖Hn!92S."Ѧ&"6 OƸg{ QuIvQ(=L|[sKzhØGWv: .} H0c>bJ .1ο.&Z7umFo;gbTz=l|[ l l9xgm1Ҷ*B̭vb߽1v! >6€PPL~uvcFWۻlu@+bv{׹)3|})ctUUP)G]1ޚtl2o(dŠՆ3db;ڿYmcEc{G ZCB!Rr槒1&󓂟OA=0f-x M0Bíf:tz42v¿=8Lh T+'-Ż0r M󇖤c&z ze]]Zv+*)T{[d> 1GaD8t[ZSooJ'7^_ޕlO̅ueяm/'ǰЛvG WLo{gЯ"T;R虼!_ٟ2 uŏa &YO{t,%}0Z)Rv?Wa*t6= 4AD{L4 ?TH쁒lTG$_(_1|}⩽L܏ Hk))(lm\Qn sz(c]b( B>U^+'j+]e-GG7o #F_1ՀϬ(pjʻwci?V ڟdb䄉}9,A۾ݥ1A_@s-2aBmM?eW~8?%q&> j& C ebo70pK7ù6Ob7F<ދb߄ "\|7~r]i= bJ?ςdMK#at.%Sf4 wcZu_ו#jO ;-[vR3WDucx#g\\j$M0pn& ^R]fZqiM=)Bѹ7zp>Pcm*%;:\8 ; 5yְc<1Pv֑Ksd9cVnBlGO|cZ#je$1~_o%t7մ01h>V!0#W:1@ҵ)ˆ'0\&%D/D_4Ow?2 Bbbc/0Hȫ|8[ {:n_xagDa𢭵M}"lEҋG2ڻ0ݥѪC!ż[v&+6 .d~-صBo:&V#mLWb4V0\eL*uV01|h^/VcPq2P~sţƈgVĻLl\#{׳  7Yz C}\K0ssN;1qϚvc*fXb #b4F~Iwiޢ8m*{M}_? hj>,u1|K VU0s6c0Oݝ6(:Gv6r'`Zk;^=KA\C9FY6y%mQWM'tdd//D[J')smm叞b[N_9Ò_ Y w>1UQ>k.x^]>%䕆1pwdqyEؘXdЩ,<'jЗ0,dqCw6bؠ'W1ѳ0q]F| I/,00?0ĵDž:j?!}S˃MZ+.Avܿ YCӪr\lR<&JøӶ 3 q ?ۥٹ kh:z]GL|H/e2b.=d.6fqs-FB`x^Ts:L |2YG&}OiM`״R >~aK{->Ino{1j4G?!o'9bR)LXt(VzdkvD_—KnL+OӞqL ӛ:z lc ա1SoFC^ + G_q"3=^1V>R1/h=e˙G N۸>6Ոw`;:&\1`}Ly.KA rӏpMK sw髻os22ЋLK'M&^ϋ)/cźb_D> $.U9Љߣ1<7gn^mYZeqxhyQ)уKlJIzxwap6WD/R*1(V?8ゾB$ɉ|75@Wܿc]3GcSbE* eEOEBgnYcLtW/W`6҄LF%܀OZUoBٝ;~2GPK1.1uJ?e QŊ$GH洳 p!D & ~@F)9o>ӧsHzcYٴ ,W<7Ƙr&L[4@yXc\q:pj9{mc46Zf/ zG*TƊmvĹ``Ty!.OЋcסߨLG%S牢10S*1K]%W`+VLnՎ`yY%%[irX1;IcZ{ۛ?4@=.5;4Г{^% s];xWSx H:f"I763\'Z;3ȏxaEm6{6c<3t_JEf]3HDڎ7˪MHjjK }}}+Ȑ 6 >R1xFgnSdʍ6,02InW&|/KQ{ѧ|fs? ݭYBٮhZġ`,g7`A+)f2EI|#Lb S+f?@^^t-#2 | VYiw1)_L~(L-vaLLpk^MŤciu9rIaFw|0PэӖَQMiZx45/0;e9p y֯`ݛaBsrKґ1%yIv)#MimqTҽv c6cl"r9/7 5= y^WDj%zo;܈a S+ˣ?,%||Sx}o:06.eFKp/c&s#)L=2q ]. youw-{N /尙08o{(cc .slp25Zdž ?9*{%4Ґ*1U/-''1-(Eza1ƽdK?{2=ݞ ;%_XVJ8xENCZelig/data/turnout.tab.bz20000644000176000001440000002405212217153461015176 0ustar ripleyusersBZh91AY&SYi@(>ـ@P.㟀`?}x xQ@XjC֞`{JZk<}wf%_|BJCU*CK`/%snc8]Hk0#Hcn BQB0L sBU H^\&л ] RhCqӘ|cΝ蹳 vJa*u 6h2}Uw!R3NJ2%Rѷ{U۪ܣ l"|&e ^ ۻ,f5NebfOmL;YygՕ`Oh5p-M\x7o&z\V([[oӯ$#sl3uk{Ӡ/+/-k&ctjL{5nB+xHiFCYzeӧ-9aݷS.LʝKPVu|trf.#}Y4tttB#F `TEYͣ2ٛ}\UOsڍ {(1:/=w0#3+q{OJelPP5ye0ᚃ0ḙThKMU{9{ q0?mB:Y[x kaOUv fdΎk'[=ܪݺ\wR7[mu=Ttdj[ nrڜ)uƍ.]TuQyEhO]? (u|B9{PL*q%V%Y1$v[Zegr 8g1fumia"k]mr8MDN'{Mmvwfݱ_ }etpW졄[Vz縍a3Z0-'o0r;X'{-32JU(+nS%U{ ԖgT'T_q&crj: wo[e}Rڜ0Tȋw =W`d/m霺Vv+>P@f {39Trخs;}Gܗ)4EgS`Vk7%k{"^OlٴAهJՌT5b/E\ы JJww;Bǩ_<++;I۹kbiW#9wלfnp WI,d؍%*M5-;sa̲%"fejphʳ(32U/;zl.:[|]RT4C]8śu-E`ެؒ2. wB" E%vVeS 4٦xfA%Yau%u:moaB+n =q.9x\nЬ\ccg6lrǍAΫ],bA_mrb΢pҝyyu FVT]YG&6{i+2Lj̎]ྻ: ^Kҩ:XvNsꊀyN.ގmngګm>1yʾͫ8b80ouVK{/2ھW joh+n9V2Mߟ_[Zl3,X)6†أdE &h&Ʊ$,ш-EdQj1mmRcXU%V&DBF5&X4lQlBch%mQl-&MEbdĖ-F EX6mElI-րl&6Ej+E TIE&Eؒ-ѬbjHՐփbb,ɶ,3d5mXQZBbf %WҢ3%$釠d5/:>^ "u",=# kBb@y{Kd>tάcfm#I<{6>|{jT _& !žQW,47i!0:v]ETT ;w.0Yjb҆̕(qvow_Zô Hjۦ%G!LJ鳇 /PCo9fu^V1c鋎RE fȲ+s[jh]JTtVe%lq9UBSG-]^*ilh\^^f<$i-dJUMEڝώۻ@ֱ1n&T3٘+It"&NdjFDpxܠ`|^[\n6QZm ("k"GDFCnH=gi೐tfa# z= PP3O֑fl+QtU8.HGB }HfJ\S^ 8YȢ,[^uT ߴM٪ b"$^@1QzhŪe>Bdn.!dYhgv߫2\U!Q?FE5qLRlL@+hN"F>FNǐFFDRfq1.DڽQ`EjE.("#]uS%X:A" |sIIDO(իxKPh8_S4HQdT"A)UC0164I hs-AdQr"߶T"[q3 udGLɛro%n7\Zv;eWW1])4Ե9.8^W)e=S-uԱ2KeNjUwShqOj\-ׁ4.ʰԯwRwz;rLU\VbjKʷ]CZ'H<ŕtUpbܮ&;+j.˫Ul4yMAbꘇkҹAnJkלB3z+":7x_*5ԳIxiH;6l'Bn4e{-s <ڪSc)gSOH /'DY*iCY#OR3_.g$;߭)i]r:TMMq1l(41YݺPiW]Z9*!Ä[V[@YCۇﳜk^ξ2dj5s†BD|\uꯣs_TiBP%$Q#jDYP̿{dMIme/ݘ:s::"$BHk5|Rf5Ot tYl]#i u b谆2:fP݀`,@Z׫1XyYN}]v=xpW8z(2[a2\mjeD+zMe)piPAF DeqM4#Pk|/>]Yr%t 2Dtp}+{.5 vzrk5PN׆J];uLX7GΛ3Rp>m]V-mGpF*X@ʩ0J\{_6"8Z6ٮEhshiiqÆEekĒb$BD4Hm!d;CE& wgMSO!Cd8AB)ܴ # !bJ6γnMYX @I !JAdaR !k9lЈ=}=3u[Hm Z5u.hЖ40KSN~>JQUuwn4/#*LBK*׿^޷UKTxFf !V;Vwp6p< 6 8潚ޯ+o\tC P=Zp cdU!y;=_o{䅶Bա%a:1x"VV}>3mJ#iĢ mB:Us{O"#>m:e}4A#ɮ8z{Yc7u=!-Qhi%%B?vɺ-cM&ERV[iW߈O^>嶆4؀N\I 7`|>(Bk;2ZD-SB -[-DRJbU 0ƣ"ZRBРB ;M@.O9CskmC+QҌ|d6+F\ R#Α@cmM)&0Y#1GRn%ۈ*CVϾf[z}ɾyےŝWWCEۮs-Еx;d}}9{w\`D@Zl[ijʚڦU[0 HZ8Z~U^MFN9ӈuOQB wuFo|ק6$8ؓb[.5NyrXCmoHjgOw1$l$UI-^`|$UDhγۭ8}qTDWK[$"3W.u;߲o%+[$2p}AHk_{o5m@mhU=|# oxh}UCWU^[9=謪KLFi1bqsW>XQq.)Z4Y[tYK=,˽a#qIk8ABuBPjlSeآz[,bD8T1*`?֔n-PMFR*YQխ5'UO)kEjת2)@qUדp{r˪yқ:[TˊAvKP/mϾ\|hnbuC:!\{Cko\Ͼ% j+Z+[-kfH>ƽ{߹{_m7#W@|_o]y>}xZ*+d m!,d{oϘ8ЊIǀBH~W="+ry#!3j=wVvnQ IDb EtUbm[A)us9 H6oN0RZlH rwmF/!S~|;F y!ԗ BZ7{ֳI[ÕDBD@1 xq!C # АDh==[y)k0hB_1)>'W$X% *pW⪡p$lj}ΘkЕ-֘v+܉vnM 5Tks*&F 8{;OQr k ea|DhQ)N{dRF+Zoی*|G~9bvrQ+w5RMw 3*X+*KΫ;.ՔVOwΜs:&7"  ǝY{yzү Z"<=UV-M}ٟOu߲鱌q]muz`L"ί\T6ETWdUX(֏1ލuTUDW`w,YR͛:w|^4v4c <;cɽgZ2}ЯZ6F̍83~5u]D64};Dږ(eqqw6w~UU]'m12+|Trw[I*x:gMMH"6ۣ~t z̒Zw8E 5feT$eݗ2˵)P|ګ'5;Di8[ҦBH2h"q$U']ڽ(cVnQ:Vjn/ofO﫾ߗwso>|۶J4B&lmZM+bI4 )۟wW^UޤG=UUHA_m~ξj[mcĢc@nU=|RZBp%)gw5[UUHp"Hl~1"c[ 7DX"†C !g9߽9_]|Tu}82d %e~q{WF2y{9׷H ]0Ɏ$QoQᦣIjree1Yh@f.:) F5VQԹAU٣V^ ;,w 6!iouAlNpKªc7 F+UPWPq C}:+6uFZO;9_wijp dO |ӻnһ)rvrL0EPF cH$1+ۢ7.o~kkUE-Do 6D x. ;~79=$D*&N6mRj-e4}jJ0jw_t?Z2U1mQ7uOxhgĒd ݾ9l m("5~>ƹgtR"bZ }dEO/\ت U- 3^G9$oDy'Flm7w3|c'}wɸ{3TWm%NJ9؛UV]!j\v NUf\ʈn`,T|_WfrfmƸ(X{[Ӽcz`-m6 qDy3(#C9?:s xLߤjkY-HAS,;+.Beu:g8+"jAE{dMY;UnTE87b[.(]c*$4Q1Bi2;jU=k<׆ 0{jSּKE8nai=R&]Ɉ9ŃG(xPLIP"ض6Z|^h}'y|5xKEh@kMe\ ǒ"mБ!oK0%آzc<܏ hh+mjJvwooQhȪݐ?+a-ŔqKm)`i}^zoz~Zs 7d4M&q@kqw)c#}*>Y0^u]>:2KEW$٦*6*&;Vu>mqQ6"8וc0{w׽o_ge41m mmCf{k DDq%?_]BBG">$’_oR#">H=RKrE8Pi@Zelig/data/immi2.tab.bz20000644000176000001440000004773012217153457014510 0ustar ripleyusersBZh91AY&SY̿'UY`P&Ԡ`v|@ 萠2hzn ]J@ցL@((A@!ە)-ni=:PlkwF{nwwk͚:YcxGY]ɛ[WviR`}Sנ(QvByG@nް{y=ڼ)ʃ+`a oozB޵t4Ϫ zD yw_cQIJRF ?A)Tddd`jx"$4HA IꤙS4$@BQSԆjhtRY(+ lp @#j{4$̂e(̃1f4" 4$i (@M)ɱ1IaA 2K dhe2iH$Ri()fl$"2e%ba#0!6&4I0XADAf&f@&,LĀ@0 4@4@ 112b"L1B %"LScdY(HhbH)BdDbH% C$@ȡ@f`&)ٖ$I b % 0"L@F J6*$EFE2"C&"d@TJIRS1H,XBfa CdL(FQ$hƔff0a4J0`Xc ̉C!$$2dA1i11IfH#&LBd%0I& 12H 0ƌ,d G+{׿>y .$K^`J1AЊ\tz񝽯}KXǥ.Kwh!Tl-i5h4.K[(p>+R9!Dc3HKRrb ,>&"b6# -7Te\/&qR n>GR9ՍFЮdX=Zd āIep2jsOIe ś:Zԑdtn3ѭad䑐jxhgX`%/+9LH8HP2 j@DJۂp h0,p34 B(y2gzmT;iBada`&~˸4 w$'5.fL&hUT$aR9Hnӎ5dAv^$6%X !v<3Bhpv  Kުco,)|z}N 帢lYeclH1 hT W*1LvВBݻmJb\0QV2-8(P t2i."dv2`%FGM̓4Dba*1`8c)i6n& +DTYjAѬ &)F(@,\mjml[w]%bJbuJM%m!A%Մ0b)[,KF pbJƁ)Hr +kD1%nF@cjXB G%)dW4JZʥ+0 #  k(5\ +`(a[,Aԁۋ#e%$1B>]! ͻHC64ScVJbbذћ-%0b"$"4B8pIUkZHk+lKݑ#ra`Vuˇ'0o\]n\pNc $t01e(c** 챰 bmfܬiڰ mfS0HزծFh cbK`Fug ݢ H$bL1 Y)f"pRYHBIeWZ 7je#PˍBCB0H (0lB@F m+%lփfC @e(U 7]R!)=utu8e8n3ՉII *V](\F)H 2YlrXJ1# 0 DbHJIDr7v\!&E5tЕ@VK#hT7ZU}7}:N>OٝQ;/e-D]3-(0ix@*hBHaDaJg38dz!֋Y1e0F{&đ< ]QƘ":(i_fjmÞuBc*Xd7jDS׌+!Q8h/"4JpoƖaL]n(i^oUfWlmp7;Ln9e֡RogG _L< TLsE[!JUMݼwġo:Ng1ucVUus $SIK/=˹;6#ņD}AƬ`5ha5rѶX31(~p-DM/cڞE.Z D\UK8dA"GEI2B <5+d|;ӺJq!#j'uOɑ18-qA⻐-ÇCY6="bA bX\r]V(AE ,ƑlAѓ=p86$<fH]eynMbAP̙qJX>|E= uhVaEftŐR%k S$9SnReU+-AY eyG{ws1y,=%1wiIe4m޴E\;,x,̲h"zӊV{gj[x@;{) +K{K iډD 3έ|wIʛĠnŪm֒ TrTZ r]QPcs3&Ē)28ۊ#: (`B^l%9M2jfCc^7ugZtmy(/j [UyǢbl'+ {2pMֳ:L$6֐(azjrK3#SZReکך.e bGdLN{tCPwӦtW 'S]7_V-6*Q[e6fEص16quU5&Y ЊJ'"m9ĬrI:VdOh/j\*3M4(JI#rWXNUN1Yib0(`؄kӦ i{wZWMH8Y +V<Яkዣy5BHvi5uacRy6Z`8dZYSI2+v:Ÿb6Nv UFcQUba^J Ye N.մcXŊMYrh,H4ՀŋeU;eq>4{>;c{QxDE,\Xˑ `tLbkF`uRy 32Y㺭4$@o%Lyc\Jʖr)m`; , Tu^CI%J-eL)<4A< UnP;cAbrFrK8[x\<Ԁ! ffB,YHmR& b">8j/WD*KUZ08윥JdIH.:['cٙy$I]".I+BG6Z*J"rrpՈ224NcqJ6mpckSUI:Ys%e LZAa7^nv3C:ˤ[Օ j1Mqb(Z1PDDyfK.U4۪H%`Ebd*AL3K3a$~}-yt qL{CcʝY ]T*݌hQ} rc@BB5rt֠RQꓸ(ވ$q^\]ʝw//4ҵKW Uo-eR݉jwrL{ƚ9|l^e|5ڽy$$osބ{ʻ5ͻed/6ͥMc>_o 3nvXsJ7[zGP뻫fr(Ӈn)^StL&y8&74=GwS+t˩v[0w!y:YȪT, 2u(Wv&k9V5A]WZI϶"=,I>4Sxz31+.`g$1oV(R:n 1wvv^AryepN&AlCN \EaJV֙ǁ+jR>2X-g@WjCܛ=ȼ7V5}钼1"W|| 6 UT8Uɵ`w΂reFpc`Tf, }$m8Z3[ŽXr%|-5w6A['!:E7^޹B·-Gr>q8rfoo:F0QGa-J[jurnaeա48 vœύ5Y.}۫O-ba9[ou8uv~݆͚ޗ+rվWX6!]®udx&.[twjen>}U׻)Dz]E?OٻZj;YrwGP̉vIsu.1]NrCl"YV9S{3}FL[V˘aӆ72߆Iv>yH3лu[3';) Q-[e hxwC>iwB^2oxqƹTKlb/S۪2gd*xqfX&͕qk;snqv[܆:ѫ HaNd!! qTvLunng=1qEӳH>pOvetpD{-<30 V+` eYP4YRd8&w/)& yC321dU'+!]u&QC d -B˧t@nFYpMLˀ`$C(mE &10`A3 HDƐ;jKI"\lBBL!d6H_K4C38o%&b3332t 2&pMo5LLZM3%Ci$*hP-Rۍdr`h,LI2t5)%]3cBHl!$T e.Lb 6ME6% $l(䘣|gHP%WL)Ւusa$[ |r6MCWB Bn`P8%(9IzYQԋLYV44b4)W'Qt 1{$kərtYzP([Ge5ѫHm]J! _>ʝXjzJpC`I/Ơ˅43u"][:<]Wr(yJjdɏ |Bm_c>/-I(}BRZ%&rM ֐dI0IBLA < (9{H a @:fZGP}~"FB2n!$""y#B;LJϮ/$ٵDž_gpdu s n"!p` 2#cFMFlcM 4mݗ2=r"H='z&&IꙄ,Gp =/_}Τ;>)Ñ`*mHnZ:lyѐEdvBHٌȣO $Wʶfۅv6Z { lUcǑ4K§4k۪qW#x۳[z<-|#( l{Lۋ@!&}ʳfIV^Nީ%ꍪ-67*dީGһbB&ޔǖ'uhNLӖ88ד^ZaZo[8Vj]"U`Uz`<[eٝD{-r87OWt(>R>V y?u\> 96OXԤ]fFޑarw33ffdfp ׎Ld(jOU4F,BB<4&.UQ?;=㫳Z9R<8*܌n7ۗNs*T'g%Q~.D.0լgڧΫ.68fVa"BurQrkڄ6עsXФkjBt~|@NE6 /\2\r{oua4*:ld2:IKB>iHo2Cd?olt1uQnbZ!$Y>uG#Z:"6麖"[*+s0:j¡k k2!"u.F9o 2!CX?s)D'l><3y!H?:p^_RtᛓvNp :E~%>>~;I"VK}yQsyNk xM[vH?WHC0\h \Cof !%[uR>dwg%$?$O`0ɾŴ60+ؾCwD&As>xΝm -ˠSV3dFOT^( J*T{s4}˻%>dMBK'lK. 1tXr=ss G 3"fukQJlW@Ha!z:F%=Cz_.BD6vDɁkbZMm.T2:0/~:=(YlQ5S\/2Qǯ>W>? zz/]-dx$߫&G^z):|ο=} p=*~gax)1Dg&sE$vƏp!%tW><~{H#эѿ!ԈӵCORCڰSMC"o_:H$uWX~'ߛ^^e?Cq }ĵۈw8+s <I/ƛs$}ص%/ޏ O;gHI2tկM<:e[fa5& LaAɃ-{{k.2~cH*I2aYߞ~禟?R|ih:Lv9amᗧgM PswLk*f| 'S^Xy KS3s>g!;g0,Eád׹n/m@S}y͒;?-۟JTqXTƖ` 4@Y{SY{Aǽr^2L9X}Oiڡ~BMah晴C?FYa<3s0ۺɢKS|z,=c},o< Ȉn\F>M *t|"Lh /dt!'N ܟ5}GaTIe #n#g=bc_3!ơÜvn)ȑi ׏ |an9myJU\Ov!vAPPҺRЍbI*; ^h֐,s9p:#ck=;?O?_9 -,.m 4|72۩:PO XӅz[^b 7[s2=n|~~;>4 4@_DihL?{Ƙp_|p_ ɗTeS"~8t}U֊4g,cbM6"652朔;J}ؓXЕų'8?vz,@EyH 3 1u 2ZGd 9'!c\qd#b1lG!X:;.)+)NTմ0ϫcQېDk nmf=1ۋ5 z ؊L> ݣEE6(jy@1#;0PnW75厕-oiu;W"2`B A]#Yo1Ω3z=B~K%|%m~-nvG1MYC},JUZ ;s%y~_J"T;Ivd}kϳᑙ*m蔓qGv#bS 7ĕ~}{Y6燏~@nī{zKnISRȳQgrs`9VVt]:j;, }<~ۮ;6'{y3i5`)U(j=isT=pJW{ Ҷ*`Ҷ! %l!Ƹ;(5l5]4Э*bܼR`t=ˠn.rcf}U/{hoG>v>-"`¤x'q䣭%;Dy,|x$;ZGUN衝J2Mol*s[CKl8] DHJ{ضhq`n}{j9)ԩ\@QJ>L'"S@ ʃ>TwwJBTozbAꦑZG_)e3 b!%}KIW+r{2L 33Yki9NɂNR|̑>JXKЁ=ҚB:&& qLI`B u XM(';iaIa7Wy7 7 =eL=-qZUj2Ct^i#lNy..t7ŵW.r)]y{֖%`:纥郱ralM߻T<_p"ӮkwgH'GZ+@{ϻG}]p$o Wo3ѕ&)Re'2=AU's5 \6`qϼi+ qbm] dechQt7ƟU*M -֕y<,lv(ܻs]{@n0Ӄ7"-ΜtQ{^0~rHsI+K(U dX=?m-[w<J 퀅΍wk’uX$=B؞V{Z'|n`Lp\v;x5>ջ #]ON&NGW"f<$Nm;{3ɵJ]O"i [iqͦn fvEc3gY[C_o<)dLr:Cyhf3^ i~x 6xz##_5l4솼Av,}=K#$#k-2'Mj)AESnvSo84Tᬍbl^˾͑1*̇ޓT.ud59\xS-4Xd|<=[24b݉^'ֻbXfᓛMkMw1[aG:Ӭb9ȶW9ڕӵ̆ި[v]xCS"4ޝ- I7h{ހmGT/{#¸lMŔLfTڛ؝nl(x=Jpν3EۺYgؾsﻖXEwYIewMyf'Q}e|5=lQ*bbն#_nQeq4Z+bmVo[GMMKۭ龝9ɋKyC BȚL)É?5%%9jnJX ">,%Wh}g{B5yǽb= tWQC N wUǴϙlK-]+45|hIҍCsif̤ y$/7urޜ7$ +dLEiKuĈ`a%Z3 ܁ BAGYBîS6ye [-+dB]jEbLy teOݘ Yex[,wUQ<\a 7VEšV!D6H29lQ]z} Q'&PXX{/{*YD㕕<&ӶfC:k#MڹWʫXm˸ڤ9vT O#$ 9LF?|!09 oN^܋{ch>Srs䇀12KFYY4鷇U3(0j,M 6 {J׀KEJA0 %jP¯,+QýWyhJ;ӂԷL#w6ֈ)5fe{™P;Qx xU&6CRA󔐷}%Ay>+>vM@537tCoXL%ɭ>ZqnyU7 i܌sb7a"nhCۻWWAxoqY}XU W+MGLK~eds8rGq^ͣwۻRRty^zY ՜lRm7yL_ESA[i9ڴFFL?W{!r>lj${ qe^sɒqfiݕn;Orq̀ x? .|2rL<"xGBJ2fE?ROvxD=+1fs,ΦZӭ  74%";7TcD<=:dP,7MQ׹󲪭,Ѵifbl5ʙ8Ûh)ffjE"'AHP W|: $yq~q q .W6`SK-ie>4Z؄Y Qq fKCCy,8`r``؛K/+`ql%b {zռ$3sp9ͻ_7+bN]g~3&.2Yt@z{uA6 47Ӻ5GYJﺰ 'kƿxx4퓽3G[wHHGD.9%-su lݘt3n0kijp?3i9{y9}{ϼ!j@{w͏xx@8USX/l`?'΅1<|kۯɼ<1T=,/0~WRrNuAuq<n$ix3ʅn#bV(4iSXw"#!!,f#cXdo4"4Mڣ%jH=XWAU ;_:һb`8 !ryL^} $zջ.<,^֘SQ,/]eRMzS{Ih =v%iK@vF,>YwN$nvw֒&M_?$C%kȡQIǍsƃYiϻ7|1A6Y$ 4Dn|<8e9vIjw uOxhnq-JQ:rO{ Sk&cwx0J5%Mt{޴h0t)iRKCn 5miaoz_^iS{ս}xu\sZbm$؃RХ6קw$u6>|^^Q)Ty^hwot@@Pwyv] 6&8c5 ؅ݺpW,VE{(5ܼ>ۨb9EvVOO{%zs|B]Zjg *y)b*sW {Ѡr0H2^Yְ f.`MSw`%&1];z~wf w!v";:{q B[Hк^y3mr>!:Bs;e?7($n|2ob2ҫ!cW_ة8xtk_XV 5!e n WS^if7G(gHO[6D$DKY?2 @԰suWWE&\o+֓Z6ɨ:_.Ds!{\I/./ՋsʢdPL!ˇ<&jeeJfNWa6cߤr8҆gz(w̟<6yq `(f;@-il~ Xs'nȝ|j3EnDVIaN),z 8U x4* umޭWѴu*ge%nDOPX<ijt.F!h9X ~܎g%Mr=,Ϸ0]4Da5mw8k'P;DxadX ]@vtvezK0={PM:1Wseb0vzwNjD))3XFT{Ӹz{~R}w \l9h:)=q|)Oξ ߈.=k[<]ޗ@etz[s96fo7ތS[^ +&46g|=i[TtXW%KFG!DR mxJC_7eua ͨY A`&Iª3Cvy'=<?>q jVp-|> hkӴE'w~?&eQ-?W6˹J ޙZE#9cZ2x\uh떒*ݳS?ħf~~ 3ژىc)ʽ+H}>f/ Ԗ)uͻZD.YlXݷ=7 Ĝ:J9[@*@B. :I՞KveI dlUH3=~ӛ:yRޖoz<,܌4?"umCĈu&DJ꿇rgeO-sKO;a4] {IӋ"r̾t@.d7i"u۳wwoOJd"ʠQk(WohיAۃxt"Mv+3j#E!Qu!M|)g3@x E; Sl.0\ҷPP)đd ' m$ci%6R.OʳAZW7:~ofרAs5L[haLk^7;XnMc=}89WEpckxR45)#;]Cim=^ϲy'ϱѰ5 8;u4][:adsJ=4U2b#=WbUq;4KeIOHE+-ttebNiYݛ$KlqMCm^`]7(n= g֯F:wwٸ,Ls]hOZ'_|H:-Ц\M͋x0U c}.il@Vc}b']oE0P`qUGlҷ͍y8¯JS|ThJts̕(&=;Ty:UŅn;Gq<n=EļisiVwx2.revpym /9x ~g0#0I<['zwW8=8H{Yo8چg59PU,Jz}V Ŕ9~CQٯ4s3QyrʏS8dun.>8m\N-̶,#Iw++6'yٽ#6>c*N&(ǎ poxԸxIhH@"PDwѽ>c/WMܥѪ}7cvMl1Њ$HAe alUՆ]19/ηeS<2ƅÌu`R=ayb7iCɸusb۪r 2oQ-sFÊ`/Jj:2ڭ[gsA(a{cKط9uI[i͋K{dz.O.F(5p}--"i{T 1Es侎O UIH~O)7]%o,xI ki/E/|njI9J_=[i Ow.hai~z!]2슂 rjɀlZX۩'VBrcSO28CG$fmSQ*&6##l70eQ{fc3{ϯv >Ƙ11a'\1uiRϨJMnPІ =Lϙ;eZO\Ʊm5݊s9 N[|1R$韴cl>K9v] $97w'^gŸ@[B:yMWWXϙ/OsT {zb_.j|ųL,pwIx|eֺ*xTxx][1slc,)itN:Mu4,Pݥ_brߟ^Sf9YC0n#k/0̼*ʎ}f!{iqCX054Sɝ(ƘהҡnKr3r.urg_-=Yc!'mJCυq!v6uf{jIq9yOctBH9obZջh!ިF|_0{CJ<<)n4e[FoۨǷSXˍVx)7t߇(7aʯ{5-KUt s'WI.4dJ﷞1>/Oq]x,뙽2+4%brl '<=#Yi#l$#@ׄZGDTMiU6>>º`T $oN8>bkqbs15WJ,60(J,&%O"yfY'Af/)!u,|F1$/s_9{ԵNNTB $QʿkE#/9WP?${!+HR%$4$31]$ 7%(}\$p%O??")„feZelig/data/immi4.tab.bz20000644000176000001440000004770712217153460014510 0ustar ripleyusersBZh91AY&SYҡ'SY`P&Ԡ`v|PV ҆Fb% hLm(UP PQ}OH6+[fT=}wt캭v٥͙fnŻeӺúݷY^ey@6Xw҅+NL{]OqB} ݁ԅQ:m(u@*/5R<; }lʤ@02R4 & IJT1M O)%T&&&y"QL $J !%(A'zdI5lm"@# 2( #2 32 ЈHH,Бb(PL4&Ƃ"&%`,d2@1C ɤY#I$FFIɔAؘ$QaQL0HH%00QBHHd$"$EJf&ɈPH0@ `$d1LMf)fHQ!#H2"A fa#(&% a"fXI$H$3@D&4P1( (بM d Q)&iIL! c LF%( 0 &QD #Q)(4A(ia($&X2&HY $Lɑ`Fci&BA"lM1 $$2D 3$3$1Kw}N/ womREE[BXn+ 8BC $a y |,6J 2\?zz6fu#ja#A ,hA8*c'S BrL$fs t*V8{V,;?E0Y'%@8[,)%PeCAj2X$Q#{ێĬ@)Fp\_;_?Y!фbOInͅ2l5wlHP*Ĩ֣[*B& b%c("@1dq XjZmff8IAhEA  Ų͗K [ ujm\ TTb ,S,YenAjCIH.0oP2XX<0X=Asut8xHc`13P)ƣ%"Ac)nGMF:;iݲc%pd` 1Xb2a@BMRX`4vҨ#,j,##-.FH@"e.H$bG"+X& +m5]tȩ0\ vAL@+`"0]wK `S+VɬtDZmV J"ctr, crÙwGW?l^%콟bxF7ZmF$zmߠ6 ,1]A>.aȘ#K'iKv^ZT,Z6pc Au.w{l:|rϮ /yLBCw6a#hBny?PD$̑IfYkMk|BFLZF0"in38= jK+] ].FD58m!Ճ-{s4nDiZVRՎՔp;uT{4q m+95⩋OJ>w!#XKOvv1>?51 Im!]}e>~Zy99*- 'Nݚ_3z2A9&!q%:e"R u{﹨v>!rN sʼnfQ&,% g9"pbSzc`]f3 QʌqL)tZRˁًN^Xl!ڣ˔T'$Z`ގn8-]neVQvjÐm}ts ͦZs2ܧgk)9*P4A> UnP;cAbrFr3 5pTq7N rŔ8'\*(DZEcp+iǐnW:Iz&7#), USimTLx ҏz0/Kc #ys#Y"pb@k)h瑅LB5rD T Ւl**]il>Fd32DEYMo>v(Q4]IFU* {2ZDኌ2f{MfpClm3N~nca vV"c8 $J`/11"{6)&,׹~ϛ RZE]$ \]n22nzA0ا$Ѳ*ٷa'46v1v\ۣ&UMFZcj7FדN+`8fA4]L,y8r92ag2!i b +1>yǦB+B G7غp8ogڒM0 \ïM+.7"K{;qFubkLC^崨\ԑͣ/gf/v+R -j rVT.״_߹<>{ŕYc2$ڑ;N39w#ɕ }Yv옰RXXQoC_UkhʩEݞ_uUܼA['uW)Gw|㝯U2ﮟ>Hv<>A3"8\o@*Ҷsb/2c>qX|m:Γ-on4Fe]ZdWIW14Rr_&Aݻ΢Gs`)\7?1εt6^wpӸNtcn"6aɚkn`Usf7.൮;23>j6rއ΃iIu:䬃Fܼ+(9y)0qxں'vT:Kb\7uzU˴p\84iU(E/yvޕ'K2eVSUZX1lͮChMi.RBX{ZY#6`\޷{յuv}WtG?ܸOu/fE9ZO<ۃdiUV\9®Mӳ[cS$sgYoųwFwl C۱MSC3E=\EٮJxn[Yntp[${g2fV(ۺY#ܸ`Lat,USl3P}2o\__cNmepKǛ]yzܪ̵FWRlj87 LS#Y쳨fUc,ӵuœ#<аہ*CA5"7]vqFs*fInBË{i׶iv B&]N7<ٌ䝽of\I(8鷐o!k*gG9({-LG\K]:u@MtbÏ^Jsݙ}ojڽIڻDLЄ(x/7E|lJ?2Ct5zLv91BBAhp}xVӵYڝwݰ-!4ǀFYpg [4!֋ؘ3}&dTI6ffӦsKc$fLIaE)YnЍΆS$&IDe ܰTBd"zIyIIܠxa&D4 XpALi¹r/a Ǝؐhpᴐ6 Tđ jUMx=yj/dS%X JX$Kr&s.0L`EgSL9$8Ik2n&׈2̧Z-BMenIC^Դ9r`$6@b$2 *&evF m'̚ILɓv {$ɪI2,&5VTt1"]5Q Φf3#31t"Gj)!10񳘳$D5aH.q7UMox 2Zl4J&"K@fwKs*95JƲx(˱/=ͪtU‰]  }󘅷] 8 {TN Zk *cԛܮþ|a"P1UD{$&@Twk׼vY4 _ڸ$DoHBВ `"bH!& āS2# Hw)Bܞ~ B "/3s%$#^q"R+gx6s" l䌪}Z,'\u G@#up`lcm捈Il c`c~]]_cnwي9$r"s^+k##HO9BU4 VT#^3Hq~[{ñt@䤩fK۩}6&\ RHo!of5/}@3m'u1dlw'g ~eb.w_gjӘ7+j#Df>S[/ š p`"=Nsy̻ʙ'97Sëxq:K|FZ_b)+&<=8QD?G@# yP _Ik׬#FszP#wuByBІ+f0{Aw3SN& uJ)#zJ4P9۰Qf|X{"GjHxC{æ;UW}oN%h;KI;_-ﳓV-/o5ď`6!}heO6vyd;exiV{N),ݸ鰯$/} ̟A%<V{Dk}r2<ȳ}q!!U\F۪ 6@6_e\9S{]2D劣A\[AS$0d|#AJbyc@roN;*o(8uq2S9S*wNr?b[]o\uE r{\ʯ-r;^.*ωpj+(-D"6pKU9&&8}:zoz8 H͹f38!"kѮ} )~3(o\fAwo]<)'Q@&{!|;U<{LCgd,gEd+;P&kH>~: ,: uGBF3-B {+YȇQ ڗ__naj9\p5j ʅ+Mե|Ig0̧p8#b_P%_>l7,{?|=bZG߽͵lqL==@,An N쓊}L;ZFgH%F89I[ʲ4t,AC(S93\#DʭF XBt^ o OÏŞ#\x.:8{J`͍VBNnW6Ǽr\ >#a[[&&E@U 2*~5ZB=3Lj*=1"/`:~3gD#I?6{#O扉x=rDۄ"K-&/^qV[s<AO>VcR#}qٜͲ ǧN.?35%pO4Lk1uݥi045mB*s ;>r-#Ҍ8"+ٺ dS_\k3#n R$q}>N 7pUm"[bt{]Bqʯ:QgƋs6L-@_U,7]2%AJF )B϶#9 GiH򨔒*//65W,yJH@%!l %cŌm#Xxm1[G(bB ?ѮT0V\E0֭>KI"O(.9&fm>W-jM$"  iu֑6ONz%4 1 sHk9i>ʛ⻬܃l;o8ɻ˘c眃Y`7_l|5°S~cg>l$2o,DlJdm=̧shw 7=TveHo?+.{gam TNHfwSbhDw,j0xNV־9)1s\*p>8ƝlK]BZ0~LDDT?~akxz imP=uo)&E%ᙢC>Siyi—i'~JY C]8>m2|4ag;?0{je4 f-x[/cJ= {hqEic-m/AK mc^O٧8fU8e*5/"v vr_%x~x 'LWG8)Q #M~AD㟗Ux#VnkCi?-?VߒҌD":N<}؞BXO#$3>+Gb\j&JcֆL?* ~%|P?a/ GJ-:{xNP:W: ʳ-(+Vc\vy[9xξ5]?"~wzirCͭ "N!l >5܃*|`N>gG6H*g[Ã!2U?N=[d WH$ݏ$v\*}1߈o_}3Xx.,nFIS-4U i}փ F*vEwjػ',_A;/O{;54mOCF4&kYZqq#lⱩk9{;z'X }.`h֮7m{"9[/=;z{W?s~%!"In8þ #}}Oהri-z=/^'np8 ]P^QT 6ی\#)j'{cFɘ[g.kZeR/"LX0ԥu0o;etsn9h[Ez n I6Tng>f~'6ћ&̓XZi?op}j}sbq2'7T=2㓫6g"_?k3mz=E;@6-H/:$ HJ˸cZM<eqxsΛ;G蝘Gu5.Up@y}Ns܏|͋B i/M Y3_ዟzfڽqy>ǟ(YI$z$6э/ ֺ,TYYm )I6vհ8c:ሖ3 L֥/֖2Sbon[`kl)Z7Rt70d԰j$ٲVbbb">)&6aHC~]2z빈qhBl* d4dFdd۰<[B@/z$tX@N?k&̓ O6zJIRGȂ_V-~"uOh9 ]Wx8eҸKo5_-_{/}瓗a ]1}hU6֮sU?B`PGv̴N 78/wgvF7nU@'t׀A.j80|m{͸8tDVf«'go'8"Tkc)v"iCP 01WR[sZؙ6\s2O9w3m>rG̓m`ڢ$ ^{{cުdmCGi<`f+#vLɜe%/5ЎS5K!O7\#׻P\Z9I螦kC-Ή߉u 51W+҉ ϭdޤӝ_uʥ]'r0k{xV~kƴv6Bx;S[u<3ClpTi<uA&YO3#H'Dn^=eӥrn#ŶB|t׻t^yPC>lTN&@X9'<+xB{HWi㹲YwtUTtmqwPde勍>ǽG|7 _p2&05VK3zSvFB [Ir{j;ERJ8{bЈM&򧱋9y0ʮ+~2fG]䈮b]7p1k4٩Oqǩ e[݇ҙXbOtsC6Mv^ 2";O{ɭ#2~$[ xpH TZQlQz/^.w!ߖMU%"iI_nohΊ*_x2m͋⹊>̇!Kӡ7A}8 we@=<=j+'VOw,z !9FwBuIGsy.6}<% =잢݁=F8gqf@8i!f}gbYᤄF}mUAa{͖s`(xO5.ʬh{\=}=(6w6]v3ye<A.7_ONwg>pse6m&ܸhlTlC#mlYn1R(s-Maz[A6K[siɈ !ZNK volc fccc`la>xCE`c+Q574vVS3]ӵgj_1sl{ C mXZrh1#]OKI\h; $X7yo1N+nQyф8{ yD9aLK .}:*`UB56Fi7 mZ -i!7,A oXc.[82Cpƥ/4](GJ9 "}3+% nq2Y28&]i$Sr2HV"OgL,V zjβ5;[+zļ$r Rk&.?l椗>8ᆳ$}קcd\\]xT2ŻV#bSZ7rAb>򛺞y!rn8sGKw5Xƚ9tc)ݫjq5c}ľ1xP*Uz8 ^<x,P?!6Nֽ9{gn`#}) xx < Q4t,qq%N׼*TYlhn; jkipe ͐_h8$+G;ϺkZ ݼ$ §/% 5*Gz.C=Z$]*c%N\0ky ȱ@HsZ-^{. 71j:Ĭ.UmuzWwCV]e1wӱr7Vmnٸ8rD6]<=ۥtL['VՈiGr}Y<6k}KCW-\lA`l~=!<=-n؎v%(-[Glۗ/$;و{ ^e!#zv|=soiy&?]i(V ҕ@fΞ:o[ Ywкud_ wҍ"Mz'4*A!c[8+dO3=\Vax6dW sKꅓjgڪkt%H y4\ ø.ϮsʽBP.2swk~GDDB:>hH:61-鹫W}^ٱxVq fI{a᝜rinw3㸗}N0in~hO}F>UD%.+¯ƪKh{xg7muj8|1/۝|O! H' AXH,`m11:DTW,.mTo GoW7WiRj-3ꢵ 7knz='w:1-̝8ߊy$N/}<6I:د@Sn ïZUNHͨg/zvVg`H.s?~}1 %klbBYLjpW_fCMZ2rd#w t2A]T)=ݎM[Leila_Wj)^)+ns,*ẩ)uc j[MSC2Ȳk6 g9ϽN*$0nySϧw\aBΈdyry3`sdةw5pͫ{e}Ll$^XXMKb-k0M^_v+{;R[Wّ' ɻ.|@{dz0<= #[WB=$k,㖵mA &z: +m:XLaAubλ0ۃº-#jV1yJunv[ݬu{Cubtpu3ELEveSfMtA9{;)O4z96mΙںʍ#;<:p48\݅ çٮ{¸4 Nȏ{8Lk ? QGz#9ҪLdmxsrݘDhƔ7tg{~7 Fw&R쮸7%Jè1})O5=w]𢰧;G?QD5nErq4.ן{;qxg݁rpRfr5eϾGfI#& ׆-Qa FI[Ο6QW5favg 'BޛP"6ʘgμgu9}Ǝ lP =.K {ބ[.ǀkAnsn`2ze,{l3P+U@Ŝ/CVjCj-dS<-NG\!wU1]C=ᡣ<-$}իEGP:G̤:WDd`جEUǫսAyqMNX0tCrC& ^[w!q@:'QU>qǶŴ#JyV>ֆ}y HPIP+Ldl60j'wCw6^,݇op-9\ {Riln\=e%ְŨUq*7 ЉMJ#[`+eB5dEIz|0HB$N"cO~y&՚SQ~85%@(ÜnVOsLVe붣 Cn&v#D3wNZ# T$#nؖMc͍ ji=OiY kBg/0fAOX}*,r:ݝʆ3F:gG\xXz' X VTgR jLJ=sA%/i5 Q2k3x1<yg*z'&̩9[ UO3Bѻ oP y;;cUrJr;ٹ~1s%U+2 soqvj#/)Rz}d[֕#u2"6-oK2:Jw5*۪y$6LPvS Hdu݂7H 6RuGI=n9<g ͮlC~gSM=NzsH~]KJ}%&eU H6k0#4S,F? 0FO]Zh6 Cwx5qd}tHI η&KbrvS1%k6Am1FEv-8HtWeoC}YHUJ=. ]M=0{]s=k;h|?_EP& {o6c8UI2At%BGBCIdMs_6o*>{C-r r9ie#]oBNMv!HW V?k>)H@DA'~vJe3՛g$ClaĊF= n a/ũ C {35rkm9Z2ԽQ)r4:uB1V`Xߓ7r _L7*e|@[z{n}'`ٹ,&b<Չsj[Y܍m"R[ 3{p 3Q6|UEߴB ^LoH,-7[ )xLvYd/oPl|[AGq6\^%z=nO_zz1#)5x\xǕQbOm\͵;T7ݝf޺\em$%$Yν(sSӺj'6fD"Ofw9{n+ Q?AדF|lvkY8@I3O[뜾~vqvY 4I=Hc 3i6Gitq ʑnjH.c['ܟW=}ܻUu=GEIm w l@G;1* b+P{qcA?θSk5=P33 A7TJ~F@z/{wRf0|` %V~}^2.< ra^}n\>r.x~܁Аd]UDz_wuwN]z!/ê|~&/=U F7wrݪbnOÞ xW52e_8U?I߄vshK 5' =̝Ϧz~dmP^=Mllw6udeꢗj<=s0o09y~Dlu"_0o꼷8>oqX$\͜>mۃe F-T9/++f Q3ンnv9nk<(։vUiwcB}\P+jDa GZB<Ѓd{9sNdvđ~%'1ZO[{oVZ;Wo{[|\ > v-$e!@z{{,^]c6~ďnDC!o6>=x|i!.n"eY{|@rn?|^AHEV"/I螮]S+u!}H=sBGg>QI BB}IБ}Σ@i IxIJnP}䑍ΤR$OI3)„Zelig/data/tobin.txt.gz0000644000176000001440000000031712217153460014562 0ustar ripleyusers%IjA E:Pq:$d64?_s<.q?=ݎԢ5NfԌtGa3l.J4Q4^ҴȚEcaX4;(QQ5Hºɠ/V.̘z5&ExPZ)Qzv6.M¡֝&AIClYCxNbTӃ^dW!nNJCE3EM̗8E;iAEbc [5f"Q)ᑧfi4*uì|,*6B;T'-♈:Cة#狲 7R _aœr5SR+`Hиe/t3]\cdZ(mCK~`Ju̜dJ=#)JM-e|5tyҜ>>)~W DQQ~bZelig/data/bivariate.tab.bz20000644000176000001440000000050112217153457015422 0ustar ripleyusersBZh91AY&SYH؀@P`@fh 24J&ILP%ET&y|[wwEGj5jh"5c14PW-U /9*"șIHRD";<.9mFs! hb*;DWIi e!Bˬb@̺>υlS-jRԮu{đtwSY[wkg3 *e {T@~>^D=mۈUM+ $ +6IR+a?ܑN$1zZelig/data/newpainters.txt.bz20000644000176000001440000000100712217153460016060 0ustar ripleyusersBZh91AY&SY@-_P|??@\&224 y@iI4dC ij*z@dC 7[ 0"1PXDDIAa#AE$DF4""+k3ݼ0eɮȱ/ QYw^8cȘ^%!VH;s!3aM5MV(j6Z %"p`:)4#ht&䎊p!$*pqJcڍ1buHFPUՕtRcBaP`QHHESnǁ>,fϢjVZ"_ 1Ǣ@ubr}IdFI QoL-᫨d}JJ H⶿)D1ؕS-5QڲߥG5KR'eLjr娆 #By3<գ5۶׌]c'2s7JĒ78tq\5+*0N dgZ\ r%kFl{\¢EK|y!] >Vw$S Zelig/data/approval.tab.bz20000644000176000001440000000156512217153457015313 0ustar ripleyusersBZh91AY&SYIXoـP.P18\M<2iPh5hh4@HLL HH h@{J@PAhPO܌X2ݕ㒹Ts|.lq{ͮ<i`e7k@_QmhZjijMJ0B%f' #V JOy81JUր% BwIZn+/ƚTC/-MfuieuSViЛԏQٜ o*+q+fRos}q]5IJ$)$$I$%u`ª1DZ_hV̽QOH-a daRUb{'.^V6&dgrܲ1%so ix<2 X MBFlFlb޻*bҏ/i݊H1S$)6$Tq)D,RQYU9瑨JURP2FrkǢy֪βI"c:ibgX sŹbM޼@#lvF *AX荳ws;͵:{8lN , < ) lhs <- call("Surv", lhs, call("<", below, lhs), type="left") # Place back within formula formula[[2]] <- lhs # Return formula } #' Param Method for the \code{tobit} Zelig Model #' @note This method is used by the \code{tobit} Zelig model #' @usage \method{param}{tobit}(obj, num, ...) #' @S3method param tobit #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored parameters #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.tobit <- function(obj, num=1000, ...) { cov <- vcov(.fitted) mu <- c(coef(.fitted), log(.fitted$scale)) # Return list( coef = mvrnorm(num, mu=mu, Sigma=cov), linkinv = NULL ) } #' Compute quantities of interest for 'tobit' Zelig models #' @usage \method{qi}{tobit}(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi tobit #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.tobit <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { # This needs to be fixed. ev1 <- ev2 <- pr1 <- pr2 <- fd <- NA # return list("Expected Values: E(Y|X)" = ev1, "Expected Values: E(Y|X1)" = ev2, "Predicted Values: Y|X" = pr1, "Predicted Values: Y|X1" = pr2, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' Describe a ``tobit'' model to Zelig #' @usage \method{describe}{tobit}(...) #' @S3method describe tobit #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} describe.tobit <- function(...) { list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2011, category = "continuous", text = "Linear regression for Left-Censored Dependent Variable" ) } Zelig/R/parseFormula.R0000644000176000001440000000630012061700507014335 0ustar ripleyusers#' Parse Zelig-style Formulae #' #' Zelig uses three distinct types of formulae. This method is a re-design #' of the Zelig function \code{parse.formula}. #' @param obj a list or formula #' @param data the data set associated with the formula object #' @return an object of type "parseFormula". This object has slots specifying: #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export parseFormula <- function (obj, data=NULL) { UseMethod("parseFormula") } #' Parse Standard Formulae #' #' This method parses a formula-style Zelig formula #' @usage \method{parseFormula}{formula}(obj, data=NULL) #' @param obj a formula #' @param data a data frame #' @return an object of type "parseFormula" #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @S3method parseFormula formula parseFormula.formula <- function (obj, data=NULL) { # Extract terms TERMS <- terms(obj) # MODEL.MATRIX <- tryCatch(model.matrix(obj, data), error = function (e) NULL) # Build the object res <- list( formula = obj, terms = TERMS, response = getResponseTerms(obj), predictor = getPredictorTerms(obj), model.matrix = MODEL.MATRIX ) # Return class(res) <- "parseFormula" res } #' Parse List-Style Zelig Formulae #' #' This method parses a list-style Zelig formula. #' @usage \method{parseFormula}{list}(obj, data=NULL) #' @param obj a list of formulae #' @param data a data frame #' @return an object of type "parseFormula" #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @S3method parseFormula list parseFormula.list <- function (obj, data=NULL) { # Extract terms (and place in a list) TERMS <- Map(terms, obj) # MODEL.MATRIX <- makeModelMatrix(obj, data) # Build the object res <- list( formula = obj, terms = TERMS, response = getResponseTerms(obj), predictor = getPredictorTerms(obj), model.matrix = MODEL.MATRIX ) # Return class(res) <- "parseFormula" res } #' Parse ``Formula''-style Zelig Formulae #' #' This method parses a ``Formula''-style Zelig formula. This is to support the #' ``Formula'' object. It seems like it has the right idea when it comes to #' expressing multiple responses. #' @usage \method{parseFormula}{Formula}(obj, data=NULL) #' @param obj a list of formulae #' @param data a data frame #' @return an object of type ``parseFormula'' #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @S3method parseFormula Formula parseFormula.Formula <- function (obj, data=NULL) { message("parseFormula.Formula") # Create the actual object res <- list( # Remember the source class source.class = class(obj), # Store the original copy of the formula formula = obj, # Store the terms terms = terms(obj), # Use Zelig-style methods to get the responseTerms response = getResponseTerms(obj), predictor = getPredictorTerms(obj), # Create the design matrix from the ``Formula'' package model.matrix = NULL ) # Return class(res) <- "parseFormula" res } Zelig/R/GetSlot.zelig.R0000644000176000001440000000200012061700507014360 0ustar ripleyusers#' Return a Value from a \code{zelig} Fitted Model #' #' Returns a value from the result of a model fitting function #' @usage \method{GetSlot}{zelig}(obj, key, ...) #' @note This function is primarily used by Zelig developers within \code{qi} #' functions #' @param obj a \code{zelig} object #' @param key a character-string specifying the which value to extract from #' the fitted model object #' @param ... subsequent values to extract from the fitted model object #' @return values of the specified keys #' @export #' @author Matt Owen \emph{mowen@@iq.harvard.edu} GetSlot.zelig <- function(obj, key, ...) { # expand dots dots <- list(...) # error-catching if (!all(sapply(dots, is.character))) stop("all dot parameters must be characters") # get result of zelig object obj <- obj$result # res <- obj[[key]] for (key in dots) { # res <- try(res[[key]], silent=T) # if it doesn't exist, then NULL if (inherits(res, "try-error")) return(NULL) } # return res } Zelig/R/zelig2.R0000644000176000001440000000415112061700507013073 0ustar ripleyusers#' The \code{zelig2} function acts as a simple interface between a user's call #' to the \code{zelig} function and the zelig functions subsequent call to the #' pre-existing external model. The external model varies based on which model #' is being called. #' #' @title Interface Between Zelig Models and External Functions #' @note Writing \code{zelig2} functions is required of Zelig developers. In #' particular, \code{zelig2} functions act as an interface between external #' models (models not included in the Zelig package) and the \code{zelig} #' function which must use that model. #' #' \code{zelig2} is not an actual function. Rather, #' #' @name zelig2 #' @return #' The main purpose of the \code{zelig2} function is to return a list of #' key-value pairs, specifying how Zelig should interface with the external #' method. This list has the following format: #' #' \item{\code{.function}}{specifies the name of the external method to be #' called by \code{zelig} function. Subsequent parameters, are called and #' evaluated as a function call to the function of the named string.} #' \item{\code{.hook}}{specifies the name of a hook function as a string. The #' hook function is only evaluated on zelig object once the external method #' fits the statistical model} #' \item{...}{any parameters aside from \code{.function} and \code{.hook} is #' as part of the function call to the external model} #' #' @examples #' zelig2some.model <- function (formula, weights, verbose, ..., data) { #' list( #' .function = 'some.other.method', #' .hook = NULL, #' formula = formula, #' weights = 2 * weights, #' data = data #' ) #' } #' #' ## This \code{zelig2} function equates the following function call: #' ## zelig(formula, weights = weights, verbose = TRUE, data = data, model="some.model") #' ## #' ## with: #' ## some.other.method(formula = formula, weights = 2 * weights, data=data) #' #' ## Note that the 'verbose' parameter is ignored, since the #' ## 'zelig2some.model' does not include the 'verbose' parameter in its return #' ## value. NULL Zelig/R/bootstrap.negbinom.R0000644000176000001440000000125712061700507015515 0ustar ripleyusers#' Bootstrap Parameters for Zelig ``negbinom'' GLM #' #' Returns bootstrapped parameter estimates for a negative-binomial GLM. #' @usage \method{bootstrap}{negbinom}(obj, ...) #' @S3method bootstrap negbinom #' @param obj a ``zelig'' object that will be used to produce boot-strapped #' parameters #' @param ... extra parameters to be passed to the ``boot'' method. These are #' typically ignored, but is included for further expansion. #' @return a list containing information concerning link, link-inverses, etc. #' @author Matt Owen \email{mowen@@iq.harvard.edu} bootstrap.negbinom <- function (obj, ...) { list( alpha = .fitted$theta, beta = coef(.fitted) ) } Zelig/R/lognorm.R0000644000176000001440000000525712061700507013364 0ustar ripleyusers#' Interface between the Zelig Model lognorm and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param ... additonal parameters #' @param data a data.frame #' @return a list specifying '.function' #' @export zelig2lognorm <- function (formula, ..., robust = FALSE, cluster = NULL, data) { loadDependencies("survival") if (!(is.null(cluster) || robust)) stop("If cluster is specified, then `robust` must be TRUE") # Add cluster term if (robust || !is.null(cluster)) formula <- cluster.formula(formula, cluster) # Return list( .function = "survreg", formula = formula, dist = "lognormal", robust = robust, data = data, ... ) } #' @S3method param lognorm param.lognorm <- function(obj, num=1000, ...) { # These are the fitted parameters coef <- coef(obj) # Append the log-scale mu <- c(coef, log(obj$result$scale)) # These are their correlations cov <- vcov(obj) # Simulate the results simulations <- mvrnorm(num, mu, cov) # Return list( coef = as.matrix(simulations[, 1:length(coef)]), alpha = as.matrix(simulations[, -(1:length(coef))]), linkinv = survreg.distributions[["lognormal"]]$itrans ) } #' @S3method qi lognorm qi.lognorm <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { linkinv <- linkinv(param) alpha <- alpha(param) beta <- coef(param) # Compute expected values for "lognorm" regression # # This function is nested within qi.lognorm for code-clarity and because it # will not be used by any other function # @param coef # @param alpha sim.scale # @param x # @return a matrix compute.ev <- function (coef, alpha, x) { if (is.null(x) || is.na(x)) # If there are missing explanatory variables, ignore them return(NA) # Compute eta # This value must be *inverted* to be restored to the true "observed" value eta <- coef %*% t(x) # Apply inverse link function theta <- as.matrix(apply(eta, 2, linkinv)) # Copied from qi.survreg in Zelig v3.5 ev <- exp(log(theta) + 0.5*(exp(alpha))^2) dimnames(ev) <- dimnames(theta) # Return as.matrix(ev) } # Compute expected values for X and X1 ev1 <- compute.ev(beta, alpha, x) ev2 <- compute.ev(beta, alpha, x1) list( "Expected Value: E(Y|X)" = ev1, "Expected Value: E(Y|X1)" = ev2, "First Differences: E(Y|X1) - E(Y|X)" = ev2 - ev1 ) } #' @S3method describe lognorm describe.lognorm <- function(...) { list( authors = c("Matthew Owen", "Olivia Lau", "Kosuke Imai", "Gary King"), text = "Log-Normal Regression for Duration Dependent Variables", year = 2007 ) } Zelig/R/bootfn.default.R0000644000176000001440000002144512216401247014617 0ustar ripleyusers#' Default Boot-strapping procedure #' #' The default procedure for extracting bootstrap information. Note that this #' method re-fits the data and resamples the data frequently. This is a good #' candidate for fixing-up. #' #' @param data a data.frame #' @param i an integer or chacter-string specifying the index of the row to #' be used in the bootstrapping procedure. #' @param object the fitted model object #' @param bootstrapfn a function used to bootstrap the object #' @param num an integer specifying the number of samples to simulate #' @param ... unspecified parameters #' @return a list of paramters bootfn.default <- function(data, i, object, bootstrapfn=NULL, num, ...) { # This is mostly here to squelch R-check notes, however sloppy programming # can potentially prevent the ".model" variable from being defined in the # attached environment. To make sense of this line, see the "sim.default" # function where an environment (containing the variable ".model" is # explicity attached to the boot function if (!exists(".model")) .model <- "default" # Get a random sample of the data set d <- data[i,] # Extract the call object # Naming it "jeez" because it's really hard to find names for call objects # that are meaningful and not reserved for other functions jeez <- .call # Replace the data frame with an appropriate one jeez$data <- d .env <- if (exists('.env')) .env else NULL # Fit the model fit <- eval(jeez) # If "bootstrapfn" is unspecified, then we try to search its appropriate value # down if (is.null(bootstrapfn)) bootstrapfn <- getS3method("bootstrap", .model, TRUE) # If bootstrap search came up sour, get default ## CRAN is opposed to ::: within same package, ## but I'm opposed to S4 environment artifacts ## if (is.null(bootstrapfn)) ## bootstrapfn <- Zelig:::bootstrap.default ## So this obviously makes my code better: if (is.null(bootstrapfn)){ localbootstrap.default <- function (obj, ...) list( alpha = NULL, beta = coef(obj) ) bootstrapfn <- localbootstrap.default } # Attach the ".num" private variable bootstrapfn <- attach.env(bootstrapfn, NULL, .num = num, .fitted = object) # Get a result res <- bootstrapfn(fit) # Return vectorized bootstrap simulation to "boot" function as.bootvector(res)$vector } #' Convert Boot Object to a Vector #' #' Receives a list with 2 slots as its input, and returns a vector of the two #' smashed together alongwith the offsets used to reverse-construct the object. #' #' @note This method is used internally by Zelig to allow an intuitive, #' ``param''-like API for bootstrapping. #' #' @param obj a list with two slots: ``alpha'' and ``beta''. Respectively, these #' represent bootstrap samples for ancillary parameters and systematic #' component of the bootstrapped GLM. #' @return a list containing the resulting vector, as well as an object used to #' reverse-build the list (``obj'') from the resulting call to ``bootstrap''. #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.bootvector <- function (obj) { # If this fails, something is really wrong. a <- obj$alpha b <- obj$beta # Error-checking if (!(is.vector(a) || is.null(a))) stop('The "alpha" slot of "obj" must be a vector or NULL.') if (!(is.vector(b))) stop('The "beta" slot of "obj" must be a vector') # Return list( # For antiquity, beta should be placed before alpha. This is partially # because alpha is not always specified. vector = c(b, a), # The respective lengths of each vector lengths = c(beta = length(b), alpha = length(a)), # Names names = list(beta = names(b), alpha = names(a)) ) } #' Convert of Vector of Bootstrapped Parameters to a List-style Boot Object #' #' This inverts the ``as.bootvector'' function, and returns a list containing #' the slots ``alpha'' and ``beta''. #' #' @param bootstraps ... #' @param lengths ... #' @param names a character-vector specifying the names of the boot terms #' @return ... #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.bootlist <- function (bootstraps, lengths, names) { # Error-checking. "bootstraps" and "lengths" must: # 1. "bootstraps" must be a matrix && have at least 1 value # 2. "lengths" must be a vector # 3. The sum of all the lengths must perfectly add up to the number of # columns in bootstraps if (!is.matrix(bootstraps) && ncol(bootstraps) > 0 && nrow(bootstraps) > 0) stop('The parameter "bootstraps" must be a matrix') if (!is.vector(lengths)) stop('The parameter "lengths" must be a vector.') if (sum(lengths) != ncol(bootstraps)) stop('The parameters "bootstraps" and "lengths" must be ', 'the same length.' ) # Actual work begins here. This could be made more general, but if there's # more info besides "alpha" and "beta", it's not very much like a bootstrap... # In the future, we might need to add support for "link", "inverse link" and # "family" slots, but there is overlap here with the "param" method. # Note that to make sense of the below, it has to be understood that the # canonical form of these bootstrapped values is: # (beta, alpha) # where "beta" is several columns of systematic parameters and # "alpha" is several columns of ancillary parameters a <- b <- NULL # If beta is 0-sized, then we should ignore it if (lengths[["beta"]] > 0) { # Extract the "beta" portion of "bootstraps". These values should represent # the systematic parameters b <- bootstraps[ , 1:lengths[["beta"]] ] # Change the column names of the system's parameter (beta) simulations b <- name.object(b, names$beta) } # Note that 1 + 1:2 is 2:3, so that this statement offsets subsetting by the # length of "a". if (lengths[["alpha"]] > 0) { # Extract several columns from "bootstraps". These values should represent # the model's ancillary parameters a <- bootstraps[ , lengths[["beta"]] + 1:lengths[["alpha"]] ] # Change the column names of the ancillary parameter (alpha) simulations a <- name.object(a, names$alpha) } # Return the appropriate list(alpha = a, beta = b) } #' Name Elements of an Object #' #' Returns an object #' @note This method is used internally by Zelig to name the columns and #' elements of matrices and vectors for simulations and bootstrapped parameters. #' @param obj a vector or matrix #' @param names a character-vector specifying names #' @return the original object, with a "colnames" or "names" equal to the #' parameter "names". If "names" is larger than "obj", the "names" parameter #' is truncated appropriately. If it is smaller, then the latter part of "obj" #' is replaced with a numbered generic column name #' @author Matt Owen \email{mowen@@iq.harvard.edu} name.object <- function (obj, names) { # Handle the special case, which shouldn't really happen... if (is.null(names)) { if (is.matrix(obj)) colnames(obj) <- NULL else if (is.vector(obj)) names(obj) <- NULL return(obj) } # Get the length of names names.len <- length(names) # Get the 'length' of the object, regardless of whether it is a vector or # matrix. Note that in our case, length is equivalient to "ncol" if the # object is a matrix obj.len <- if (is.matrix(obj)) ncol(obj) else if (is.vector(obj)) length(obj) else { # Warn the user. This might be necessary, but it helps debug for # developers. Ideally this case never crops up in well-made Zelig models warning('"name.object" ignores objects that are not matrices or vectors') # Bail out of the function return(obj) } # Ensure that names is the exact length of "obj" by if (names.len < obj.len) { # Create vector equal in size to the length of the object being named temp <- paste(rep("col", obj.len), 1:obj.len, sep = "") # Replace default values (col1, col2, ... colN) with the value that # *should* there in a perfect world, where there is never any glitchy code temp[1:names.len] <- names # Replace "names" with the newly constructed, appropriately size, vector # of names names <- temp } # Truncate the "names" parameter if it is too largit is too large else if (names.len > obj.len) { # Warn the user. This is probably only useful/meaningful to developers. # This case should not crop up in well made Zelig models. warning('"names.object" is truncating the names parameter, because it ', 'is larger than "obj" the object of the function.') # Truncate "names" names <- names[1:obj.len] } # After all the prep work, finally name the object if (is.matrix(obj)) colnames(obj) <- names else if (is.vector(obj)) names(obj) <- names else warning('"obj" must be a matrix or a vector. ', 'Returning the "obj" untouched.') # Return modified object obj } Zelig/R/parse.formula.R0000644000176000001440000004664512061700507014473 0ustar ripleyusers#' Parse Formulas for Zelig Models #' @note This is used typically in multinomial and multivariate Zelig models #' @param formula a formula #' @param model a Zelid model #' @param data a data-frame #' @export #' @author Kosuke Imai and Olivia Lau parse.formula<-function( formula, model,data=NULL){ if(class(formula)[[1]]=="multiple") return(formula) nrUserOpt<-nrUserReq<-nrUserFixed<-nrUserSubreq<-0 userOpt<-userReq<-userFixed<-userSubreq<-list() fc <- paste("describe.", model, sep = "") if (!exists(fc)) stop("describe.",model," does not exsist") modelReq<-do.call(fc,list()) modelReq <-modelReq$parameters checkNrReq<-function(modelNumEqn,nrUserReq,modelParsReq){ if(length(modelNumEqn)==1){ if(nrUserReq != modelNumEqn) stop("The parameter \"",modelParsReq,"\" requires ",modelNumEqn, " equation(s). You have provided ", nrUserReq, " See model doc. for more details") }else{ if(!(betweenf(nrUserReq,modelNumEqn))) stop("The parameter \"",modelParsReq,"\" requires between ",modelNumEqn[[1]]," and ",modelNumEqn[[2]], " equation(s). You have provided ", nrUserReq, " See model doc. for more details") } } checkNrOpt<-function(modelNumEqn,nrUserOpt,modelParsOpt,userOpt){ if(!(betweenf(nrUserOpt,modelNumEqn))) if(nrUserOpt < modelNumEqn[[1]]){ if(modelNumEqn[[1]]==1) userOpt[[modelParsOpt]]<- as.formula("~1") else for(i in (nrUserOpt+1):modelNumEqn[[1]]){ userOpt[[i]]<-as.formula("~1") names(userOpt)[[i]]<-paste(modelParsOpt,i,sep="") } }else stop("The parameter \"",modelParsOpt,"\" requires between ",modelNumEqn[[1]]," and ",modelNumEqn[[2]], " equation(s). You have provided ", nrUserOpt, " See model doc. for more details") return(userOpt) } betweenf<-function(a,range){ if (is.finite(range[[2]])) return(a >= range[[1]] && a<=range[[2]]) else return(a>=range[[1]]) } "%w/o%" <- function(x,y) x[!x %in% y] matchPars<-function(parName,userNames){ res<-c() for(i in 1:length(userNames)){ a<-substr(userNames[[i]],nchar(parName)+1,nchar(userNames[[i]])) b<-substr(userNames[[i]],1,nchar(parName)) if(b==parName && (!is.na(suppressWarnings(as.numeric(a))) || userNames[[i]]==parName)) res<-c(res,userNames[[i]]) } return (res) } fMode<-function(b){ if(b$depVar == TRUE && b$expVar == TRUE) return (1) if(b$depVar == FALSE && b$expVar == TRUE) return (2) if(b$depVar == FALSE && b$expVar == FALSE) return (3) if(b$depVar == TRUE && b$expVar == FALSE) return (4) stop("some error occurred ... please contact the Zelig team") } parsType<-lapply(modelReq,fMode) modelParsReq<-names(parsType[parsType==1]) modelParsOpt<-names(parsType[parsType==2]) modelParsFixed<-names(parsType[parsType==3]) modelParsSubreq<-names(parsType[parsType==4]) modelNrParsReq<-length(modelParsReq) modelNrParsOpt<-length(modelParsOpt) modelNrParsFixed<-length(modelParsFixed) modelNrParsSubreq<-length(modelParsSubreq) userNrLevels<-0 dataNrLevels<-0 userLevels<-c() if(class(formula)[[1]]=="formula") formula<-list(formula) nreqns <-length(formula) if(is.null(names(formula))){ if(modelNrParsReq >1) stop("You should name the equations. The model requires more than 1 systematic component. Please see model documentation for more details") for (i in 1:nreqns){ eqni<-formula[[i]] if (length(eqni)==3){ rootNames<-modelParsReq lhs<-eqni[[2]] rhs<-deparse(eqni[[3]],width.cutoff=500) if(length(lhs)>1 && (lhs[[1]]=="cbind" || lhs[[1]]=="as.factor" || lhs[[1]]=="id")){ if( lhs[[1]]=="cbind"){ #rhs=deparse(rhs) g<- as.list(lhs)[-1] for (j in 1:length(g)){ e<-paste(g[[j]],"~",sep="") if(rhs!="1"){ nrUserReq=nrUserReq+1 userReq[[nrUserReq]]<-as.formula(paste(e,rhs,sep="")) }else{ nrUserSubreq=nrUserSubreq+1 userSubreq[[nrUserSubreq]]<-as.formula(paste(e,rhs,sep="")) } } }else{ if(is.null(data)) stop("Data argument is required when you use as.factor() or id() as a dependent variable\n") if(lhs[[1]]=="as.factor"){ varname<-as.character(lhs[[2]]) userLevels<-levels(as.factor(data[[varname]]))[-1] userNrLevels<-length(userLevels) for (j in 1:userNrLevels){ e<-paste("id(",lhs[[2]],",\"",userLevels[[j]],"\")","~",sep="") if(rhs!="1"){ nrUserReq=nrUserReq+1 userReq[[nrUserReq]]<-as.formula(paste(e,rhs,sep="")) }else{ nrUserSubreq=nrUserSubreq+1 userSubreq[[nrUserSubreq]]<-as.formula(paste(e,rhs,sep="")) } } }else{ varname<-as.character(lhs[[2]]) userLevels<-c(userLevels,lhs[[3]]) userNrLevels<-length(userLevels) levels<-levels(data[[varname]]) lhs<-deparse(lhs) # rhs<-deparse(rhs) e<-paste(lhs,"~",sep="") if(rhs !="1"){ nrUserReq=nrUserReq+1 userReq[[nrUserReq]]<-as.formula(paste(e,rhs,sep="")) }else{ nrUserSubreq<-nrUserSubreq+1 userSubreq[[nrUserSubreq]]<-as.formula(paste(e,rhs,sep="")) } } } }else{ lhs<-deparse(lhs) # rhs<-deparse(rhs) e<-paste(lhs,"~",sep="") if(rhs !="1"){ nrUserReq=nrUserReq+1 userReq[[nrUserReq]]<-as.formula(paste(e,rhs,sep="")) }else{ nrUserSubreq<-nrUserSubreq+1 userSubreq[[nrUserSubreq]]<-as.formula(paste(e,rhs,sep="")) } } }else{ rhs<-deparse(eqni[[2]]) if(rhs !="1"){ nrUserOpt=nrUserOpt+1 userOpt[[nrUserOpt]]<-as.formula(paste("~",rhs,sep="")) }else{ nrUserFixed=nrUserFixed+1 userFixed[[nrUserFixed]]<-as.formula(paste("~",rhs,sep="")) } } } if (modelNrParsOpt==0){ if (nrUserOpt !=0){ stop("the equation(s) ",userOpt," does not match model requirements!")} }else{ modelNumEqn<-modelReq[[modelParsOpt]]$equations userOpt<-checkNrOpt(modelNumEqn,nrUserOpt,modelParsOpt,userOpt) if(length(userOpt)==1) names(userOpt)<-modelParsOpt else names(userOpt)<-paste(modelParsOpt,1:length(userOpt),sep="") } if(length(modelParsFixed)>0){ modelNumFixedEqns<-modelReq[[modelParsFixed]]$equations for(i in 1:modelNumFixedEqns) userFixed[[i]]<-as.formula("~1") if(modelNumFixedEqns==1) names(userFixed)<-modelParsFixed else names(userFixed)<-paste(modelParsFixed,1:modelNumFixedEqns,sep="") } if (modelNrParsReq==0){ if (nrUserReq !=0){ stop("the equation(s) ",userReq," does not match model requirements!")} }else{ modelNumEqn<-modelReq[[modelParsReq]]$equations checkNrReq(modelNumEqn,nrUserReq,modelParsReq) if(userNrLevels>0){ if(userNrLevels !=nrUserReq) stop("The number of equation for the systematic component should be equal to the number of levels -1\n") names(userReq)<-userLevels }else{ if(nrUserReq==1) names(userReq)<-modelParsReq else names(userReq)<-paste(modelParsReq,1:length(userReq),sep="") } } if (modelNrParsSubreq==0){ if (nrUserSubreq !=0){ stop("the equation(s) ",userSubreq," does not match model requirements!")} }else{ modelNumEqn<-modelReq[[modelParsSubreq]]$equations checkNrReq(modelNumEqn,nrUserSubreq,modelParsSubreq) if(nrUserSubreq==1) names(userSubreq)<-modelParsSubreq else names(userSubreq)<-paste(modelParsSubreq,1:length(userSubreq),sep="") } result<-c(userReq,userOpt,userFixed,userSubreq) }else{ ##user provides names for formulas modelPars<-names(modelReq) parsS<-names(sort(sapply(modelPars,nchar),decreasing=TRUE)) userNames<-names(formula) userEqnNamesByPars<-list() tmpUserNames<-userNames for (i in 1:length(parsS)){ userEqnNamesByPars[[parsS[[i]]]]<-matchPars(parsS[[i]],tmpUserNames) tmpUserNames<-"%w/o%"(tmpUserNames,userEqnNamesByPars[[parsS[[i]]]]) } tmp<-"%w/o%"(userNames,unlist(userEqnNamesByPars)) if (length(tmp)>0) stop("Ambigous equation name ","\"",tmp,"\"") res<-list() userPars<-names(userEqnNamesByPars) for (i in 1:length(modelPars)){ modelPar<-modelPars[[i]] userNumEqn<-length(userEqnNamesByPars[[modelPar]]) modelNumEqn<-modelReq[[modelPar]]$equations mode<-fMode(modelReq[[modelPar]]) tmplst<-formula[userEqnNamesByPars[[modelPar]]] if(modelNumEqn[[1]]==1 && modelNumEqn[[2]]==1 ) tmpNames<-modelPar else tmpNames<-paste(modelPar,1:userNumEqn,sep="") if(mode==1){ whiche<-which(lapply(formula[(userEqnNamesByPars[[modelPar]])],length)!=3) if(length(whiche)!=0) stop("The equation ",formula[[names(whiche)]]," is not conform model requirements or its name is ambigous . DepVar/ExpVar is missing.\n") checkNrReq(modelNumEqn,userNumEqn,modelPar) whiche<-which((names(tmplst) %in% tmpNames)==FALSE) if(length(whiche)!=0){ warning("The name \"",names(tmplst)[whiche],"\" is ambigous. The equations of the paramter \"",modelPar,"\" are renamed\n") names(tmplst)<-tmpNames } }else{ if(mode==2){ whiche<-which(lapply(formula[(userEqnNamesByPars[[modelPar]])],length)!=2) if(length(whiche)!=0) stop("The equation ",formula[names(whiche)]," is not conform model requirements or its name is ambigous A .\n") whiche<-which((names(tmplst) %in% tmpNames)==FALSE) if(length(whiche)!=0){ warning("The name \"",names(tmplst)[whiche],"\" is ambigous. The equations of the paramter \"",modelPar,"\" are renamed\n") names(tmplst)<-tmpNames } tmplst<- checkNrOpt(modelNumEqn,userNumEqn,modelPar,tmplst) }else{ if (mode==3){ whiche<-which(tmplst !="~1") if(length(whiche)>0) warning("You cannot specify a formula for the parameter \"",modelPar,"\" . All your equation for this parameter are set to their default value.For example your equation:\n",deparse(formula[names(whiche)]),"\n") if(userNumEqn !=modelNumEqn) warning("The parameter \"",modelPar,"\" requires ",modelNumEqn, "equation(s). You are providing ",userNumEqn, " equation(s) for this parameter. This problem is fixed. All the equations for this parameter are set to the default value \n") tmplst<-list() if(modelNumEqn==1) tmpname<-modelPar else tmpname<-paste(modelPar,1:modelNumEqn,sep="") for(i in 1:modelNumEqn) tmplst[[tmpname[[i]]]]<-as.formula("~1") }else{ if(mode==4) { whiche<-which(lapply(formula[(userEqnNamesByPars[[modelPar]])],length)!=3) whicha<-which(lapply(formula[(userEqnNamesByPars[[modelPar]])],FUN=function(a){if (a[[3]]=="1") return (TRUE) else return(FALSE)})==FALSE) if(length(whiche)!=0 ) stop("The equation ",formula[names(whiche)]," is not conform model requirements or its name is ambigous . DepVar/ExpVar is missing.\n") else{ if (length(whicha)!=0) stop("The equation ",formula[names(whicha)]," is not conform model requirements or its name is ambigous . Its right hand side shoule be \"1\".\n") } checkNrReq(modelNumEqn, userNumEqn, modelPar) whiche<-which((names(tmplst) %in% tmpNames)==FALSE) if(length(whiche)!=0){ warning("The name \"",names(tmplst)[whiche],"\" is ambigous. The equations of the paramter \"",modelPar,"\" are renamed\n") names(tmplst)<-tmpNames } } } } } res[[modelPar]]<-tmplst } result<-c() for(i in 1:length(res)) result<-c(result,res[[i]]) } class(result)<-c("multiple","list") return(result) } Zelig/R/bootstrap.R0000644000176000001440000000307512217150360013717 0ustar ripleyusers#' Generic Method for ``bootstrap'' #' #' This method is intended to be overried by statistical models that would like #' to support statistical bootstrapping. #' @note This method has private memory storage and can reference the objects: #' ``.fitted'', ``.data'', ``.call'', ``.env'', despite having no declaration in #' the argument list. #' @param obj a fitted model object that will be used to produce boot-strapped #' parameters. This object usually inherits the class ``glm'' or ``lm'' object #' @param ... unspecified parameters #' @return a list with the ``alpha'' and ``beta'' slots set. Note that ``alpha'' #' corresponds to ancillary parameters and ``beta'' corresponds to systematic #' components of the model #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export bootstrap <- function (obj, ...) UseMethod("bootstrap") #' Produce Boot-strapped Parameters for a Statistical Model #' #' This method is a fallback for bootstrapping models that do not have a defined #' ``bootstrap'' method. For most models, this default is sufficient, so long as #' the model follows the usual convention that ``coef(obj)'' returns the #' systematic parameters of a fitted model. #' @usage \method{bootstrap}{default}(obj, ...) #' @S3method bootstrap default #' @param obj a fitted model object. This is typically of type ``glm'' or ``lm'' #' @param ... unspecified parameters #' @return a list with the ``alpha'' and ``beta'' slots set #' @author Matt Owen \email{mowen@@iq.harvard.edu} bootstrap.default <- function (obj, ...) list( alpha = NULL, beta = coef(obj) ) Zelig/R/logit.survey.R0000644000176000001440000001222012071063367014354 0ustar ripleyusers#' @export zelig2logit.survey <- function( formula, weights=NULL, ids=NULL, probs=NULL, strata = NULL, fpc=NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights=FALSE, rho = NULL, bootstrap.average=NULL, scale=NULL, rscales=NULL, fpctype="fraction", return.replicates=FALSE, na.action="na.omit", start=NULL, etastart=NULL, mustart=NULL, offset=NULL, model1=TRUE, method="glm.fit", x=FALSE, y=TRUE, contrasts=NULL, design=NULL, data ) { loadDependencies("survey") if (is.null(ids)) ids <- ~1 # the following lines designate the design # NOTE: nothing truly special goes on here; # the below just makes sure the design is created correctly # for whether or not the replication weights are set design <- if (is.null(repweights)) svydesign( data=data, ids=ids, probs=probs, strata=strata, fpc=fpc, nest=nest, check.strata=check.strata, weights=weights ) else { .survey.prob.weights <- weights svrepdesign( data=data, repweights=repweights, type=type, weights=weights, combined.weights=combined.weights, rho=rho, bootstrap.average=bootstrap.average, scale=scale, rscales=rscales, fpctype=fpctype, fpc=fpc ) } # we cannot plug in family=Gamma yet because of weird issues # with glm. Uncomment the below lines for an explanation: ## fails: # test <- Gauss # svyglm(formula=formula, design=design, family=test) ## works: # svyglm(formula=formula, design=design, family=Gauss) # this is because of how glm is written (it evaluates the # family variable as a function in the parent.frame) z(.function = svyglm, formula = formula, design = design, family = quasibinomial(link="logit") ) } #' @S3method param logit.survey param.logit.survey <- function(obj, num=1000, ...) { list( simulations = mvrnorm(num, coef(obj), vcov(obj)), alpha = NULL, fam = binomial(link="logit") ) } #' @S3method qi logit.survey qi.logit.survey <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { model <- GetObject(obj) coef <- coef(param) alpha <- alpha(param) eta <- coef %*% t(x) link.inverse <- linkinv(param) theta <- matrix(link.inverse(eta), nrow=nrow(coef)) pr <- ev <- matrix(NA, nrow=nrow(theta), ncol(theta)) dimnames(pr) <- dimnames(ev) <- dimnames(theta) ev <- theta for (k in 1:ncol(theta)) { pr[,k] <- rbinom(length(ev[,k]), 1, ev[,k]) pr[,k] <- as.character(pr[,k]) } levels(pr) <- c("0", "1") if (!is.null(y) && NCOL(y)) y <- y[,1] # invisiblify pr1 <- ev1 <- fd <- rr <- NA if (!is.null(x1)) { ev1 <- theta1 <- matrix(link.inverse(coef %*% t(x1)), nrow = nrow(coef) ) pr1 <- matrix(NA, nrow=nrow(theta), ncol(theta)) for (k in 1:ncol(theta)) { pr1[,k] <- rbinom(length(ev1[,k]), 1, ev1[,k]) pr1[,k] <- as.character(pr1[,k]) } levels(pr1) <- c("0", "1") fd <- ev1-ev rr <- ev1/ev } att.ev <- att.pr <- NA if (!is.null(y)) { yvar <- matrix(rep(y, nrow(coef)), nrow = nrow(coef) ) tmp.ev <- yvar - ev tmp.pr <- yvar - as.integer(pr) att.ev <- matrix(apply(tmp.ev, 1, mean), nrow=nrow(coef)) att.pr <- matrix(apply(tmp.pr, 1, mean), nrow=nrow(coef)) } list( "Expected Values: E(Y|X)" = ev, "Expected Values (for X1): E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values (for X1): Y|X1" = pr1, "First Differences: E(Y|X1) - E(Y|X)" = fd, "Risk Ratios: P(Y=1|X1)/P(Y=0|X)" = rr, "Average Treatment Effect: Y - EV" = att.ev, "Average Treatment Effect: Y - PR" = att.pr ) } #' @S3method describe logit.survey describe.logit.survey <- function(...) { list( authors = "Nicholas Carnes", year = 2008, description = "Survey-Weighted Logitistic Regression for Continuous, Positive Dependent Variables" ) } Zelig/R/ls.R0000644000176000001440000000611412214411116012311 0ustar ripleyusers#' Interface between ls model and Zelig #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param weights a numeric vector #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2ls <- function(formula, ..., data, weights=NULL) z( lm, formula = formula, weights = weights, model = F, data = data ) #' Param Method for the 'ls' Zelig Model #' @note This method currently returns via a deprectated style #' @usage \method{param}{ls}(obj, num, \dots) #' @S3method param ls #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored parameters #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.ls <- function(obj, num, ...) { mvrnorm(n=num, mu=coef(.object), Sigma=vcov(.object)) } #' Compute quantities of interest for 'ls' Zelig models #' @usage \method{qi}{ls}(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi ls #' @param obj a \code{zelig} object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.ls <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { # error-catching if (missing(x)) stop("x cannot be missing while computing the `ls' model") # Get coefficients of the linear model coefs <- coef(param) # compute expected value ev <- coefs %*% t(x) ev1 <- NA fd <- NA if (!is.null(x1)) { ev1 <- coefs %*% t(x1) fd <- ev1 - ev } # return list("Expected Values: E(Y|X)" = ev, "Expected Values: E(Y|X1)" = ev1, "Predicted Values: Y|X" = ev, "Predicted Values: Y|X1" = ev1, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' Describe a \code{ls} model to Zelig #' @note \code{ls} stands for "least squares fit" #' @usage \method{describe}{ls}(...) #' @S3method describe ls #' @param ... ignored parameters #' @return a list to be processed by \code{as.description} #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.ls <- function(...){ parameters <-list(mu = list( equations = c(1,1), tags.allowed = FALSE, dep.vars = TRUE, exp.vars = TRUE ) ) # return list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2007, category = "continuous", parameters = parameters, text = "Least Squares Regression for Continuous Dependent Variables" ) } Zelig/R/model.matrix.parseFormula.R0000644000176000001440000000227212061700507016743 0ustar ripleyusers#' Construct Design Matrix from a Parsed, Zelig-style Formula #' #' This method constructs a design matrix from a Zelig-style formula. This #' matrix is commonly used in statistical simulation, and will likely be #' relevent as the relevant form of a \code{setx} object. #' @usage \method{model.matrix}{parseFormula}(object, data = NULL, ...) #' @note This method is primarily used by the \code{setx} function. #' @param object a "parseFormula" object #' @param data a "data.frame" #' @param ... ignored parameters #' @return a "model.matrix" specifying information relevant to a statistical #' model #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @S3method model.matrix parseFormula model.matrix.parseFormula <- function (object, data = NULL, ...) { # if (is.null(object$model.matrix)) # # Note that if data is NULL, then "makeModelMatrix" will return NULL # makeModelMatrix(formula(object), data) # # else if (!missing(data)) # # If data is supplied, recompute the model matrix # makeModelMatrix(formula(object), data) # # else # # Otherwise use the previous stored value (which still might be NULL) # object$model.matrix makeModelMatrix(formula(object), data) } Zelig/R/factor.bayes.R0000644000176000001440000000254512110047000014247 0ustar ripleyusers#' @export zelig2factor.bayes <- function ( formula, factors = 2, burnin = 1000, mcmc = 20000, verbose=0, ..., data ) { loadDependencies("MCMCpack", "coda") if (missing(verbose)) verbose <- round((mcmc + burnin)/10) if (factors < 2) stop("Number of factors needs to be at least 2") x <- as.matrix(model.response(model.frame(formula, data=data, na.action=NULL))) list( .function = "MCMCfactanal", .hook = "McmcHookFactor", formula = formula, x = x, burnin = burnin, mcmc = mcmc, verbose= verbose, data = data, factors = factors, ... ) } #' @S3method param factor.bayes param.factor.bayes <- function (...) { } #' @S3method param factor.bayes qi.factor.bayes <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { stop('There is no qi function for the "factor.bayes" model') list( "Expected Value: E(Y|X)" = NA ) } #' @S3method describe factor.bayes describe.factor.bayes <- function(...) { list( authors = c("Ben Goodrich", "Ying Lu"), text = "Bayesian Factor Analysis", year = 2013 ) } Zelig/R/as.dataframe.setx.R0000644000176000001440000000132512061700507015207 0ustar ripleyusers#' Coerce a \code{setx} Object into a \code{data.frame} #' @usage \method{as.data.frame}{setx}(x, row.names=NULL, optional=FALSE, ...) #' @note In subsequent versions of Zelig, this version is expected to undergo #' minor modifications. #' @param x a \code{setx} object #' @param row.names ignored parameter #' @param optional ignored parameter #' @param ... ignored parameters #' @return the \code{setx} object interpretted as a \code{data.frame}. The #' column-names of the resulting \code{data.frame} are specified by the names #' of the \code{setx} object. The row-names are typically unlabeled. #' @S3method as.data.frame setx as.data.frame.setx <- function (x, row.names=NULL, optional=FALSE, ...) { x$matrix } Zelig/R/names.relogit.R0000644000176000001440000000000012110047000014416 0ustar ripleyusersZelig/R/logit.R0000644000176000001440000001100012214411116012777 0ustar ripleyusers#' Interface between logit model and Zelig #' #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param weights a numeric vector #' @param robust a boolean (logical) specifying whether robust error estimates #' should be used #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2logit <- function(formula, weights=NULL, robust = F, ..., data) { w <- weights z( glm, formula = formula, weights = w, family = binomial(link="logit"), model = F, data = data ) } #' Param Method for the \code{logit} Zelig Model #' @note This method is used by the \code{logit} Zelig model #' @usage \method{param}{logit}(obj, num, ...) #' @S3method param logit #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored parameters #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.logit <- function(obj, num, ...) { list( simulations = mvrnorm(n=num, mu=coef(.object), Sigma=vcov(.object)), alpha = NULL, fam = binomial(link="logit") ) } #' Compute quantities of interest for 'logit' Zelig models #' @usage \method{qi}{logit}(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi logit #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.logit <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { # Compute expected values compute.ev <- function(obj, x=NULL, num=1000, param=NULL) { if (is.null(x)) return(NA) coef <- coef(param) link.inverse <- linkinv(param) eta <- coef %*% t(x) eta <- Filter(function (y) !is.na(y), eta) theta <- matrix(link.inverse(eta), nrow = nrow(coef)) ev <- matrix(link.inverse(eta), ncol=ncol(theta)) ev } # Simulate quantities of interest for "x" ev1 <- compute.ev(obj, x, num, param) pr1 <- matrix(nrow=nrow(ev1), ncol=ncol(ev1)) # Simulate the quantities of interest for "x1" ev2 <- compute.ev(obj, x1, num, param) pr2 <- fd <- NA # Produce 0 or 1 (FALSE/TRUE) results for "x" for (i in 1:ncol(ev1)) pr1[,i] <- as.character(rbinom(length(ev1[,i]), 1, ev1[,i])) # Produce 0 or 1 (FALSE/TRUE) results for "x1" and comppute first-differences if (!is.null(x1)) { pr2 <- matrix(nrow=nrow(ev2), ncol=ncol(ev2)) for (i in 1:ncol(ev2)) pr2[,i] <- as.character(rbinom(length(ev2[,i]), 1, ev2[,i])) # This is the computation of the first difference... fd <- ev2 - ev1 } # Ensure that the correct levels are passed along. levels(pr1) <- levels(pr2) <- c('0', '1') # return list("Expected Values: E(Y|X)" = ev1, "Expected Values: E(Y|X1)" = ev2, "Predicted Values: Y|X" = pr1, "Predicted Values: Y|X1" = pr2, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } .compute.ev <- function(obj, x=NULL, num=1000, param=NULL) { if (is.null(x)) return(NA) coef <- coef(param) link.inverse <- linkinv(param) eta <- coef %*% t(x) theta <- matrix(link.inverse(eta), nrow = nrow(coef)) ev <- matrix(link.inverse(eta), ncol=ncol(theta)) ev } #' Describe a `logit' model to Zelig #' @usage \method{describe}{logit}(...) #' @S3method describe logit #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.logit <- function(...) { # parameters object parameters <- list(pi = list( equations = c(1, 1), tags.allowed = FALSE, dep.var = TRUE, exp.var = TRUE ) ) # return list list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2008, category = "dichotomous", parameters = parameters, text = "Logistic Regression for Dichotomous Dependent Variables" ) } Zelig/R/simulation.matrix.R0000644000176000001440000001037712061700507015375 0ustar ripleyusers#' Get Simulations as a Matrix #' #' Returns a MxN matrix where N is the number of simulations and M is the number #' of predicted values. Additionally, a ``labels'' attribute is attached that #' produces a human-readable identifier for each column. #' @param obj an object, typically a ``sim'' or ``pooled.sim'' object. #' @param which a character-vector specifying the \emph{titles} of quantities of #' interest to extract #' @param ... additional parameters #' @return a simulation matrix #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export simulation.matrix <- function (obj, which = NULL, ...) { UseMethod("simulation.matrix") } #' @S3method simulation.matrix sim simulation.matrix.sim <- function (obj, which, ...) { which <- find.match(which, attr(obj, "titles")) if (is.na(which)) { warning( 'The "which" parameter does not exist. Valid titles are:\n ', paste('"', names(obj$qi), '"', sep="", collapse=", ") ) # Return a matrix containing the single entry NA return(matrix(NA)) } # Store the little matrix (probably a column-vector) lil.matrix <- as.matrix(obj$qi[[which]]) # Specify what quantities of interest this matrix represents attr(lil.matrix, "qi") <- which # Return the little, modified matrix lil.matrix } #' @S3method simulation.matrix pooled.sim simulation.matrix.pooled.sim <- function (obj, which, ...) { # Get the best match for the value "which" which <- find.match(which, attr(obj, "titles")) # This will become the matrix that is returned big.matrix <- NULL # Iterate through all the results for (label in names(obj)) { # Get the matrix for the single quantity of interest small.matrix <- simulation.matrix(obj[[label]], which = which, exact.match = FALSE) # Column-bind this result with the total matrix. # This might want to be wrapped by a tryCatch in case weird things happen big.matrix <- cbind(big.matrix, small.matrix) } # Column-wise specification attr(big.matrix, "labels") <- names(obj) attr(big.matrix, "which") <- 1:ncol(big.matrix) names(attr(big.matrix, "which")) <- names(obj) # Specify what quantities of interest this matrix represents attr(big.matrix, "qi") <- which # Return the big matrix big.matrix } #' Find a Partial or Exact Match from a Vector of Strings #' Searches a vector of character-string, and returns the best match. #' @param needle a character-string to search for in the #' @param haystack a vector of character-strings #' @param fail the value to return in case no match is found. Defaults to NA #' @return the best-matched string or NA #' @details ``find.match'' attempts to use several common matching functions in #' an order that sequentially prefers less strict matching, until a suitable #' match is found. If none is found, then return the value of the ``fail'' #' parameter (defaults to NA). The functions used for matching are: ``match'', #' ``charmatch'', and finally ``grep''. #' @author Matt Owen \email{mowen@@iq.harvard.edu} find.match <- function (needle, haystack, fail = NA) { # Having multiple approximate hits is bad form, since the string "x" can match # "xe", "xen", "xs", etc. If it allows this possibility, we'll be constructing # matrices out of potentially disparate quantities of interest. That is, it # obviously would not be good to match the string "Average" with # "Averge Treatment Effect" and "Average Value". # That is, we want our matrices to be constructed consistently if (length(needle) != 1) return(NA) # Search the strings all at once for code clarity. We can write this smoother, # but then it sacrifices readability for nested if clauses. exact.match <- match(needle, haystack, nomatch = 0) partial.match <- charmatch(needle, haystack, nomatch = 0) grep.match <- grep(needle, haystack)[1] # If we found an exact match, then we go with it. if (exact.match != 0) return(haystack[exact.match]) # If there is a unique partial match, then that will work too. else if (partial.match != 0) return(haystack[partial.match]) # If there are non-unique partial matches, then we take the first incidence else if (!is.na(grep.match)) return(haystack[grep.match]) # If nothing else is good, then return whatever value a failure should be. NA by default return(fail) } Zelig/R/GetSlot.R0000644000176000001440000000067012061700507013262 0ustar ripleyusers#' Generic method for extracting variables from both #' S3 and S4 fitted model object #' #' @param obj an object of type `zelig' #' @param key a character-string specifying the name #' of the variable to extract #' @param ... typically ignored parameters #' @return the value of that extracted object or NULL #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} GetSlot <- function(obj, key, ...) UseMethod("GetSlot") Zelig/R/mi.R0000644000176000001440000000144212110047000012267 0ustar ripleyusers#' Bundle Data-sets for Multiple Imputation #' #' This object prepares data-sets for processing with multiple imputation. #' @note This function is largely identical to simply creating a list object, #' with the exception that any unnamed data-sets are automatically labeled #' via the \code{substitute} function #' @param ... a set of \code{data.frame}'s #' @return an \code{almost.mi} object, which contains the important internals #' of a valid, useful \code{mi} object #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export mi <- function (...) { # Get arguments as list data.frames <- list(...) # Ensure that everything is data.fram for (k in length(data.frames):1) { if (!is.data.frame(data.frames[[k]])) data.frames[[k]] <- NULL } # Return data.frames } Zelig/R/zelig.skeleton.R0000644000176000001440000001103112216141336014630 0ustar ripleyusers#' 'zelig.skeleton' generates the necessary files used to create a Zelig #' package. Based on (and using) R's 'package.skeleton' it removes some of the #' monotony of building statistical packages. In particular, 'zelig.skeleton' #' produces templates for the \code{zelig2}, \code{describe}, \code{param}, and #' \code{qi} methods. For more information about creating these files on an #' individual basis, please refer to the tech manuals, which are available #' by typing: \code{?zelig2}, \code{?param}, or \code{?qi}. #' @title Creates a Skeleton for a New Zelig package #' @param pkg a character-string specifying the name of the Zelig package #' @param models a vector of strings specifying models to be included in the #' package #' @param author a vector of strings specifying contributors to the package #' @param path a character-string specifying the path to the package #' @param force a logical specifying whether to overwrite files and create #' necessary directories #' @param email a string specifying the email address of the package's #' maintainer #' @param depends a vector of strings specifying package dependencies #' @param ... ignored parameters #' @param .gitignore a logical specifying whether to include a copy of a #' simple \code{.gitignore} in the appropriate folders (\code{inst/doc} and #' the package root #' @param .Rbuildignore a logical specifying whether to include a copy of a #' simple \code{.Rbuildignore} in the appropriate folders (\code{inst/doc} #' and the package root #' @return nothing #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig.skeleton <- function ( pkg, models=c(), author="UNKNOWN AUTHOR", path = ".", force = FALSE, email = "maintainer@software-project.org", depends = c(), ..., .gitignore = TRUE, .Rbuildignore = TRUE ) { # WARNING BLOCK # so that developers are aware of potential pitfalls that will prevent # installation of their packages if (!is.character(pkg)) { warning("invalid 'pkg' parameter; should be a character string") pkg <- as.character(pkg) } if (length(pkg) > 1) { warning("invalid 'pkg' parameter; length cannot be greater than one") pkg <- pkg[1] } if (!is.character(models)) { warning("invalid 'models' parameter; should be a character vector") models <- as.character(models) } if (!length(models)) warning("invalid 'models' parameter; should contain at least one model-name") if (missing(author)) warning("missing 'author' parameter; please change the value in the", "'DESCRIPTION' file's 'Author' field") if (missing(email)) warning("Missing 'email' parameter; please change the value in the ", "'DESCRIPTION' file's 'Maintainer' field") if (missing(depends)) warning("Missing 'depends' parameter") # new environment e <- new.env() for (m in models) { # Place proper functions in # correct environment (out of global) # this technically doesn't work # (bug in package.skeleton) describe <- function (...) list() zelig2 <- function (formula, ..., data) list(.function = "") param <- function (obj, num, ...) list(coef=NULL) qi <- function (obj, x, x1, y, param, num) list() assign(paste("describe", m, sep="."), describe, e) assign(paste("zelig2", m, sep=""), describe, e) assign(paste("param", m, sep="."), describe, e) assign(paste("qi", m, sep="."), describe, e) } # Invoke package.skeleton package.skeleton( name = pkg, environment = e, path = path, force = force ) # Copy files over - as of 3/11 these files are blank for (m in models) { .copy.templates(m, pkg, path) } .make.description(pkg, author, email, depends, url, path) .make.package.R(pkg, author, email, depends, url, path) # copy .gitignore and .Rbuildignore if (.gitignore) { src <- system.file('hidden', 'gitignore', package='Zelig') dest <- file.path(path, pkg, '.gitignore') file.copy(src, dest) dest <- file.path(path, pkg, 'man', '.gitignore') file.copy(src, dest) } if (.Rbuildignore) { src <- system.file('hidden', 'Rbuildignore', package='Zelig') dest <- file.path(path, pkg, '.Rbuildignore') file.copy(src, dest) dest <- file.path(path, pkg, 'inst', 'doc', '.Rbuildignore') dir.create(file.path(path, pkg, 'inst', 'doc'), recursive=TRUE) file.copy(src, dest) } # Why zero? Eh, maybe a return code thing. This function is really just used # for side-effects invisible(0) } Zelig/R/describe.zelig.R0000644000176000001440000000116312061700507014570 0ustar ripleyusers#' Get Description Object Used to Cite this Zelig Model #' @note This function should be reevaluated in design, since 'description' #' objects are exclusively used internally. In particular, this method would #' be more useful to users as a 'cite' method. #' @usage \method{describe}{zelig}(object, ...) #' @S3method describe zelig #' @param object a 'zelig' object #' @param ... ignored parameters #' @return a 'description' object used internally to produce citation text #' @author Matt Owen \email{mowen@@iq.harvard.edu} describe.zelig <- function(object, ...) { append(list(model=object$name), NextMethod("describe")) } Zelig/R/as.summarized.R0000644000176000001440000000177012061700507014465 0ustar ripleyusers#' Generic Method for Casting Objectst as 'summarized' Objects #' #' This function is particularly for use by the 'summarize' method, which #' summarizes the simulations taken from the 'qi' method. The generic function #' 'summary' when applied to a Zelig Simulation implicitly uses this function. #' #' @note This is made available on the Global namespace as a matter of potential #' future compliancy. #' @param x an object #' @param ... unspecified parameters #' @return a 'summarized.qi' object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.summarized <- function(x, ...) { UseMethod("as.summarized") } #' summarized.qi -> summarized.qi #' #' Identity operation on ``summarized.qi'' objects #' @usage \method{as.summarized}{summarized.qi}(x, ...) #' @param x an object of type 'summarized.qi' #' @param ... ignored parameters #' @return the same 'summarized.qi' object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.summarized.summarized.qi <- function(x, ...) { x } Zelig/R/callToString.R0000644000176000001440000000060512061700507014304 0ustar ripleyusers#' Convert \code{call} Object to a String #' #' This method concerts \code{call} objects into a simple, intuitive #' human-readable form. #' @param x a \code{call} object #' @param ... ignored parameters #' @return a character-string representing the \code{call} object #' @author Matt Owen \email{mowen@@iq.harvard.edu} callToString <- function (x, ...) as.character(as.expression(x)) Zelig/R/makeModelMatrix.R0000644000176000001440000000144612061700507014766 0ustar ripleyusers#' Make a Model Matrix from a Zelig-Style Formula #' #' This is a helper function that creates a \code{model.matrix} like object #' of Zelig-style formulae. #' @param formula a Zelig-style formula #' @param data a \code{data.frame} #' @return a design (or model) matrix #' @author Matt Owen \email{mowen@@iq.harvard.edu} makeModelMatrix <- function (formula, data) { if (missing(data) || is.null(data)) return(NULL) # This is kludge and should be generalized if (inherits(formula, "Formula")) { } if (is.list(formula)) { m <- NULL for (form in formula) { m <- cbind(m, model.matrix(form, data)) } t(as.matrix(m[, unique(colnames(m))])) } else { return(model.matrix(formula, data)) } } # # # makeModelMatrixFromFormula <- function (formula, data) { } Zelig/R/vcov.R0000644000176000001440000000071112061700507012652 0ustar ripleyusers#' @S3method vcov gee.naive vcov.gee.naive <- function(object, ...) object$naive.variance #' @S3method vcov gee.robust vcov.gee.robust <- function(object, ...) object$robust.variance #' @S3method vcov glm.robust vcov.glm.robust <- function(object, ...) { so <- summary.glm.robust(object, corr=FALSE, ...) so$dispersion * so$cov.unscaled } #' @S3method vcov Relogit vcov.Relogit <- function(object, ...) summary.Relogit(object, ...)$cov.scaled Zelig/R/gamma.survey.R0000644000176000001440000001152412071063367014326 0ustar ripleyusers#' @export zelig2gamma.survey <- function( formula, weights=NULL, ids=NULL, probs=NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", return.replicates=FALSE, na.action = "na.omit", start = NULL, etastart = NULL, mustart = NULL, offset = NULL, model1 = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, design = NULL, link = "inverse", data, ... ) { loadDependencies("survey") if (is.null(ids)) ids <- ~1 # the following lines designate the design # NOTE: nothing truly special goes on here; # the below just makes sure the design is created correctly # for whether or not the replication weights are set design <- if (is.null(repweights)) { svydesign( data=data, ids=ids, probs=probs, strata=strata, fpc=fpc, nest=nest, check.strata=check.strata, weights=weights ) } else { # Using the "z" function stores this implicitly in a namespace .survey.prob.weights <- weights # svrepdesign( data=data, repweights=repweights, type=type, weights=weights, combined.weights=combined.weights, rho=rho, bootstrap.average=bootstrap.average, scale=scale, rscales=rscales, fpctype=fpctype, fpc=fpc ) } z(.function = svyglm, formula = formula, design = design, family = Gamma() ) } #' @S3method param gamma.survey param.gamma.survey <- function(obj, num=1000, ...) { shape <- gamma.shape(.fitted) list( # .fitted is the fitted model object simulations = mvrnorm(num, coef(.fitted), vcov(.fitted)), alpha = rnorm(num, shape$alpha, shape$SE), fam = Gamma() ) } #' @S3method qi gamma.survey qi.gamma.survey <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { model <- GetObject(obj) coef <- coef(param) alpha <- alpha(param) eta <- coef %*% t(x) link.inverse <- linkinv(param) theta <- matrix(link.inverse(eta), nrow=nrow(coef)) pr <- ev <- matrix(NA, nrow=nrow(theta), ncol(theta)) dimnames(pr) <- dimnames(ev) <- dimnames(theta) ev <- theta for (i in 1:nrow(ev)) { pr[i,] <- rgamma( n = length(ev[i,]), shape = alpha[i], scale = theta[i,]/alpha[i] ) } # ensure these are no-show pr1 <- ev1 <- fd <- NA # if x1 is available if (!is.null(x1)) { ev1 <- theta1 <- matrix(link.inverse(coef %*% t(x1)), nrow(coef)) fd <- ev1-ev } # ensure these are no-show att.pr <- att.ev <- NA # I have no clue if this even works if (!is.null(y)) { yvar <- matrix( rep(y, nrow(param)), nrow = nrow(param), byrow = TRUE ) tmp.ev <- yvar - ev tmp.pr <- yvar - pr att.ev <- matrix(apply(tmp.ev, 1, mean), nrow = nrow(param)) att.pr <- matrix(apply(tmp.pr, 1, mean), nrow = nrow(param)) } list( "Expected Values: E(Y|X)" = ev, "Expected Values for (X1): E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values (for X1): Y|X1" = pr1, "First Differences E(Y|X1)-E(Y|X)" = fd, "Average Treatment Effect: Y-EV" = att.ev, "Average Treatment Effect: Y-PR" = att.pr ) } #' @S3method describe gamma.survey describe.gamma.survey <- function(...) { list( authors = "Nicholas Carnes", year = 2008, description = "Survey-Weighted Gamma Regression for Continuous, Positive Dependent Variables" ) } Zelig/R/cluster.formula.R0000644000176000001440000000115012061700507015020 0ustar ripleyusers#' Generate Formulae that Consider Clustering #' #' This method is used internally by the "Zelig" Package to interpret #' clustering. #' @param formula a formula object #' @param cluster a vector #' @return a formula object describing clustering cluster.formula <- function (formula, cluster) { # Convert LHS of formula to a string lhs <- deparse(formula[[2]]) cluster.part <- if (is.null(cluster)) # NULL values require sprintf("cluster(1:nrow(%s))", lhs) else # Otherwise we trust user input sprintf("cluster(%s)", cluster) update(formula, paste(". ~ .", cluster.part, sep=" + ")) } Zelig/R/MLutils.R0000644000176000001440000002371712061700507013301 0ustar ripleyusers#' Reduce MI Formulas #' Take a formula in any of the reduced form or in a structural form and return #' the most reduced form of that formula #' @note This formula is used primarily by 'zelig2' functions of multivariate #' Zelig models #' @param f a formula #' @export #' @author Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau reduceMI <-function(f){ if(class(f)=="list") f <- structuralToReduced(f) return(.reduceFurther(f)) } #' Transform the Multilevel's Structural Formulas Into Reduced Form #' @param f a list of formulas #' @return a formula in reduced form #' @export #' @author Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau # possible bug: what if class(f) is 'multiple' and not a list? structuralToReduced <- function(f){ ## input should be a list if(class(f) != "list" || (class(f)=="list" && length(f)<2)) stop("the input should be a list of formulas") ## take the first formula; It should be of length 3 main.fml <- f[[1]] if(length(main.fml)!=3) stop("the main formula in the extended form should be of length 3 !") lhs<- main.fml[[2]] TT <- terms(main.fml,specials="tag") TT.labels <- attr(TT,"term.labels") TT.vars <- attr(TT,"variables") tagattr<-attr(TT,"specials")$tag hastag<-!(is.null(tagattr)) if (hastag){ for(j in tagattr){ lind<-j-1 vind<-j+1 tg<- .deparseTag(TT.vars[[vind]]) whicheq<-which(names(f) %in% tg$label) if (length(whicheq)!=0) tg$label<-deparse(f[[whicheq]][[2]]) else stop("one of the equation's name is expected to be ",tg$label) TT.labels[[lind]]<-.newTag(tg) res<-(as.formula(paste(lhs,"~",paste(TT.labels,collapse="+")))) } } else stop("tag is missing in the first equation\n") return(res) } #' Convert a Formula into 'lmer' Representation from Reduced Form #' Take a formula in its reducd from and return it as a 'lmer' representation #' (from the lme4 package). This is basically removing the starting 'tag' from #' each term. #' @param f a formula in reduced form #' @return the 'lmer' representation of 'f' #' @export #' @author Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau tolmerFormat<-function(f){ lhs <- f[[2]] tt <- terms(f, specials="tag") tt.labels<-attr(tt,"term.labels") for (i in 1:length(tt.labels)){ tt.labels[[i]]<-.trim(tt.labels[[i]]) tt.labels[[i]]<-gsub('^tag',"",tt.labels[[i]]) } rhs <- paste(tt.labels,collapse="+") res <- as.formula(paste(lhs,"~",rhs,sep="")) return(res) } #' Further Reduce Formulas in Reduced Form #' Given a formula in a reduced form, output the most reduced one. #' @param f a formula in reduced form #' @return an even-more reduced formula #' @export #' @author Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau .reduceFurther <- function(f){ if(length(f)!=3) stop("the main formula in the extended form should be of length 3 !") lhs<- f[[2]] TT <- terms(f,specials="tag") TT.labels <- attr(TT,"term.labels") TT.vars <- attr(TT,"variables") tagattr<-attr(TT,"specials")$tag hastag<-!(is.null(tagattr)) lstOfTags<-c() if (hastag){ for(j in tagattr){ vind<-j+1 lstOfTags<-c(lstOfTags,.expandTag(.deparseTag(TT.vars[[vind]]))) } } else stop("tag is missing in the first equation\n") tmp <- paste(lstOfTags,collapse="+") rhs<-paste(.replace(TT.labels,tagattr-1,tmp),collapse="+" ) return(as.formula(paste(lhs,"~",rhs,sep=""))) } ### ## Helper function which takes the term with tag and return ## all its parts ## ## input: a tag like call/list i.e. tag(z1,w1+w2 | state) ## output: list(var= "z1", label="w1 + w2", id="state") .deparseTag <- function(f){ f <- as.character(f) res<-list() if(length(f) == 3){ ## tag(var,label|id) or tag(var,label) res$var <- f[[2]] tmp <- .trim(unlist(strsplit(f[[3]],"|",fixed=TRUE))) if(length(tmp) == 2){ ## tag(var,label|id) res$label <- tmp[[1]] res$id <- tmp[[2]] }else{ ## tag(var,label) if(length(tmp)==1){ res$label <-tmp[[1]] res$id <- "none" }else stop("wrong use of tag function!!") } } else { ## tag(var|id) tmp <- .trim(unlist(strsplit(f[[2]],"|",fixed=TRUE))) res$var <- tmp[[1]] res$id <- tmp[[2]] res$label="none" } return(res) } ### ## takes the output from .deparseTag (a list) and construct a new tag ## as a string ## i.e. takes list(var="z",label="w1",id="state") and output "tag(z,w1|state) .newTag <- function(lst){ res <- "tag(" if (lst$var != "none") # must have var res <- paste(res,lst$var,sep="") else stop("wrong use of tag(); variable is missing") if (lst$label !="none"){ ## tag(z,gamma??) res <-paste(res,",",sep="") res <- paste(res,lst$label,sep="") if(lst$id != "none") ## tag(z,gamma|state) res <- paste(res,"|",lst$id,sep="") }else{ ## tag(z|state) res <-paste(res,"|",sep="") if(lst$id !="none") res <- paste(res,lst$id,sep="") else stop("wrong use of tab") # tag(x |) } res <- paste(res,")",sep = "") return(res) } ### ## expands tag. tag(1,w1+w2 | state) => tag(w1|state) + tag(w2|state) ## tag(z,w1+w2 | state) => tag(z:w1|state)+ tag(z:w2|state) ## input tag as a list; i.e the output from .deparseTag .expandTag <- function(l){ if(l$var == "1" && l$label!="none"){ ## tag(1,z1 | state) == tag (z1|state) l$var <- l$label l$label <- "none" } if(l$label =="none"){ ## tag(1+z1|state) vars<-unlist(strsplit(l$var,"+", fixed=TRUE)) }else{ ## tag(z1,w1+w2|state) vars<-unlist(strsplit(l$label,"+", fixed=TRUE)) } if(length(vars) == 1){ ## nothing to expand return (.newTag(l)) }else{ alltgs<-c() for(i in 1:length(vars)){ if(l$label == "none") alltgs <- c(alltgs,.newTag(list(label="none",var=vars[[i]],id=l$id))) else alltgs <- c(alltgs,.newTag(list(label="none",var=paste(l$var,":",vars[[i]],sep=""),id=l$id))) } } return (paste(alltgs,collapse="+")) } ### ## In the vector 'src' replace the element in the position ## 'index' with elementSSS in vector 'dest' .replace<-function(src,index,dest){ "%w/o%" <- function(x,y) x[!x %in% y] return (c(src %w/o% src[index],dest)) if(1==2){ if(index <1 || index > length(src)) stop("wrong index arguemnt in function .replace") if(index==1) beforeEls<-c() else beforeEls<-src[1:(index-1)] if(index == length(src)) afterEls<-c() else afterEls<-src[(index+1):length(src)] return(c(beforeEls,dest,afterEls)) } } ## # Trim the word's white spaces # input : one word string s # output: trimed version of s .trim <-function(v){ for(i in 1:length(v)){ v[[i]] <- gsub('^[[:space:]]+', '', v[[i]]) v[[i]]<- gsub('[[:space:]]+$', '', v[[i]]) } return(v) } ## # Reaction ~ Days + tag(1 + Days | subject) ==> # list (fixed = ~ Days, # random = ~ 1 + Days) # #' @export .getRandAndFixedTerms <- function (fml){ f <- function(x){ as.formula(paste("~",paste(x, collapse = "+"))) } res <- list() if(length(fml)!=3) stop("the main formula in the extended form should be of length 3 !") lhs <- fml[[2]] rhs <- fml[[3]] TT <- terms(fml,specials="tag") TT.labels <- attr(TT,"term.labels") TT.vars <- attr(TT,"variables") tagattr<-attr(TT,"specials")$tag hastag<-!(is.null(tagattr)) if (hastag){ ## fixed F.labels <- TT.labels[-(tagattr-1)] if (!length(F.labels)) F.labels <- 1 res$fixed <- as.formula(paste("~",paste(F.labels,collapse="+"))) ## random random <- list() idx = 1 for (j in tagattr){ vind <- j + 1 tmp <- .deparseTag(TT.vars[[vind]]) idx <- idx + 1 ## if tags have the same id, merge them together if (tmp$id %in% names(random)){ random[[tmp$id]] <- c(random[[tmp$id]], tmp$var) } else { random[[tmp$id]] <- tmp$var } } res$random <- lapply(random,f) } else { res$fixed <- fml } return(res) } Zelig/R/describe.default.R0000644000176000001440000000134112061700507015100 0ustar ripleyusers#' Default describe function for an arbitrary model #' This method exists solely as a backup when an author does not contribute a #' 'describe' function for their model #' @usage \method{describe}{default}(...) #' @S3method describe default #' @param ... dummy parameters purely to cast the correct object. That is, the #' parameters of the function should not #' BE referenced specifically #' @return a list to be processed by \code{as.description} #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.default <- function(...) { warning("The 'describe' method for this function is unspecified") list( authors = "Unknown Author", year = as.numeric(format(Sys.Date(), "%Y")) ) } Zelig/R/mlogit.bayes.R0000644000176000001440000000520512110047000014260 0ustar ripleyusers#' @export zelig2mlogit.bayes <- function ( formula, burnin = 1000, mcmc = 10000, verbose=0, ..., data ) { loadDependencies("MCMCpack", "coda") list( .function = "MCMCmnl", .hook = "MCMChook", formula = formula, data = data, burnin = burnin, mcmc = mcmc, verbose= verbose, # Most parameters can be simply passed forward ... ) } #' @S3method param mlogit.bayes param.mlogit.bayes <- function(obj, num=1000, ...) { list( coef = coef(obj), linkinv = NULL ) } #' @S3method qi mlogit.bayes qi.mlogit.bayes <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { res1 <- compute.mlogit.bayes(.fitted, x, y, num, param) res2 <- compute.mlogit.bayes(.fitted, x1, y, num, param) list( "Expected Value: E(Y|X)" = res1$ev, "Predicted Value: Y|X" = res1$pv, "Expected Value (for X1): E(Y|X1)" = res2$ev, "Predicted Value (for X1): Y|X1" = res2$pv, "First Differences" = res2$ev - res1$ev ) } compute.mlogit.bayes <- function (obj, x, y, num, param) { # If either of the parameters are invalid, # Then return NA for both qi's if (is.null(x) || is.na(x) || is.null(param)) return(list(ev=NA, pv=NA)) # resp <- model.response(model.frame(obj)) level <- length(table(resp)) p <- dim(model.matrix(eval(obj),data=obj$data))[2] coef <- coef(obj) eta <- array(NA, c(nrow(coef),level, nrow(x$matrix))) eta[, 1, ] <- matrix(0, nrow(coef), nrow(x$matrix)) for (j in 2:level) { ind <- (1:p)*(level-1)-(level-j) eta[,j,]<- coef[,ind]%*%t(x) } eta<-exp(eta) ev <- array(NA, c(nrow(coef), level, nrow(x$matrix))) pr <- matrix(NA, nrow(coef), nrow(x$matrix)) colnames(ev) <- rep(NA, level) for (k in 1:nrow(x$matrix)) { for (j in 1:level) ev[,j,k] <- eta[,j,k]/rowSums(eta[,,k]) } for (j in 1:level) { colnames(ev)[j] <- paste("P(Y=", j, ")", sep="") } for (k in 1:nrow(x$matrix)) { probs <- as.matrix(ev[,,k]) temp <- apply(probs, 1, FUN=rmultinom, n=1, size=1) temp <- as.matrix(t(temp)%*%(1:nrow(temp))) pr <- apply(temp,2,as.character) } list(ev = ev, pv = pr) } #' @S3method describe mlogit.bayes describe.mlogit.bayes <- function(...) { list( authors = c("Ben Goodrich", "Ying Lu"), text = "Bayesian Multinomial Logistic Regression for Dependent Variables with Unordered Categorical Values", year = 2013 ) } Zelig/R/GetObject.R0000644000176000001440000000042112061700507013541 0ustar ripleyusers#' Extract the fitted model object from the Zelig object #' #' @param obj an object of type `zelig' #' @return the fitted model object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} GetObject <- function(obj) { if (inherits(obj, 'zelig')) obj$result } Zelig/R/as.matrix.pooled.setx.R0000644000176000001440000000236712061700507016057 0ustar ripleyusers#' Convert a ``pooled.setx'' Object to a Matrix #' #' The setx object is, in its most basic form, a list of column names and values #' specified for each of these column names. This function simply converts the #' key-value pairs of column-name and specified value into a matrix. #' #' @note This method allows basic matrix arithmetic operations on data objects, #' which mirror values stored within setx objects. In many scenarios, #' simulations require matrix-multiplication, etc. to be performed on a #' data-set. This function faciliates that need. #' #' @usage \method{as.matrix}{pooled.setx}(x, ...) #' @S3method as.matrix pooled.setx #' @param x a setx object #' @param ... ignored parameters #' @return a matrix containing columns and rows corrseponding to the explanatory #' variables specified in the call to the 'setx' function #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.matrix.pooled.setx <- function(x, ...) { big.matrix <- NULL for (label in names(x)) { small.matrix <- as.matrix(x[[label]]) big.matrix <- rbind(big.matrix, small.matrix) } rownames(big.matrix) <- names(x) attr(big.matrix, "labels") <- names(x) attr(big.matrix, "which") <- 1:nrow(big.matrix) names(attr(big.matrix, "which")) <- names(x) big.matrix } Zelig/R/param.R0000644000176000001440000000505012061700507012776 0ustar ripleyusers#' The \code{param} method is used by developers to specify simulated and fixed #' ancillary parameters of the Zelig statistical model. That is, this method #' is used between the \link{zelig2} function and the \link{qi} #' as a helper function that specifies all the necessary details needed to #' simulate quantities of interest, given the fitted statistical model produced #' by the \code{zelig2} function. #' #' @title Generic Method for Simulating Ancillary/Auxillary Parameters of Zelig #' Models #' @note The 'param' function is a method meant to be overloaded by Zelig #' Developers #' @param obj a \code{zelig} object #' @param num an integer specifying the number of simulations to sample #' @param ... optional parameters which will likely be ignored #' @return #' The main purpose of the \code{param} function is to return a list of #' key-value pairs, specifuing information that should be shared between #' the \code{qi} function and the fitted statistical model (produced by the #' \code{zelig2} function. This list can contain the following entries: #' #' \item{\code{simulations}}{specifies a set of simulated parameters used to #' describe the statistical model's underlying distribution} #' \item{\code{alpha}}{specifies the fixed (non-simulated) ancillary #' parameters used by the statistical model's underlying distribution} #' \item{\code{family}}{specifies a family object used to implicitly define #' the \code{link} and \code{linkinv} functions. That is, this specifies #' the "link" and "inverse link" functions of generalized linear models} #' \item{\code{link}}{specifies the \code{link} function to be used. This #' parameter is largely unimportant compared to the "inverse link" #' function} #' \item{\code{linkinv}}{specifies the \code{linkinv} function to be used.} #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @examples #' param.some.model <- function (obj, num, ...) { #' list( #' simulations = NULL, #' alpha = NULL, #' link = NULL, #' linkinv = NULL, #' fam = NULL #' ) #' } param <- function (obj, num, ...) UseMethod("param") #' Default Method for ``param'' #' #' If no \code{param} function is set for a Zelig model, then this function will #' return NULL. #' @usage \method{param}{default}(obj, num, ...) #' @S3method param default #' @param obj ignored parameter #' @param num ignored parameter #' @param ... ignored parameters #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.default <- function (obj, num, ...) list() Zelig/R/simulations.plot.R0000644000176000001440000001362512157603402015233 0ustar ripleyusers#' Plot Quantities of Interest in a Zelig-fashion #' #' Various graph generation for different common types of simulated results from #' Zelig #' @usage simulations.plot(y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, axisnames=TRUE) #' @param y A matrix or vector of simulated results generated by Zelig, to be #' graphed. #' @param y1 For comparison of two sets of simulated results at different #' choices of covariates, this should be an object of the same type and #' dimension as y. If no comparison is to be made, this should be NULL. #' @param xlab Label for the x-axis. #' @param ylab Label for the y-axis. #' @param main Main plot title. #' @param col A vector of colors. Colors will be used in turn as the graph is #' built for main plot objects. For nominal/categorical data, this colors #' renders as the bar color, while for numeric data it renders as the background #' color. #' @param line.col A vector of colors. Colors will be used in turn as the graph is #' built for line color shading of plot objects. #' @param axisnames a character-vector, specifying the names of the axes #' @return nothing #' @author James Honaker simulations.plot <-function( y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, axisnames=TRUE ) { ## Univariate Plots ## if(is.null(y1)){ if (is.null(col)) col <- rgb(100,149,237,maxColorValue=255) if (is.null(line.col)) line.col <- "black" # Character if (is.character(y)) { # Try to cast y as integers, note that this is not always possible for the # general case of characters newy <- tryCatch( as.numeric(y), warning = function (w) NULL, error = function (e) NULL ) # If: # newy is not NULL (can be cast as a numeric) AND # newy is actually a collection of integers (not just numeric) # Then: # we can tabulate (so sick) if (!is.null(newy) && all(as.integer(y) == y)) { # Create a sequence of names nameseq <- paste("Y=", min(newy):max(newy), sep="") # Set the heights of the barplots. # Note that tablar requires that all out values are greater than zero. # So, we subtract the min value (ensuring everything is at least zero) # then add 1 bar.heights <- tabulate(newy - min(newy) + 1) / length(y) # Barplot with (potentially) some zero columns output <- barplot( bar.heights, xlab=xlab, ylab=ylab, main=main, col=col[1], axisnames=axisnames, names.arg=nameseq ) } # Otherwise, we stick with old-style tables else { y <- if (is.null(levels(y))) factor(y) else factor(y, levels = levels(y)) bar.heights <- table(y)/length(y) bar.names <- paste("Y=", names(bar.heights), sep="") output <- barplot( bar.heights, xlab=xlab, ylab=ylab, main=main, col=col[1], axisnames=axisnames, names.arg=bar.names ) } } ## Numeric else if(is.numeric(y)){ den.y <- density(y) output <- plot(den.y, xlab=xlab, ylab=ylab, main=main, col=line.col[1]) if(!identical(col[1],"n")){ polygon(den.y$x, den.y$y, col=col[1]) } } ## Comparison Plots ## } else{ ## Character - Plot and shade a matrix if(is.character(y) & is.character(y1) & length(y)==length(y1) ){ newy<-trunc(as.numeric(y)) newy1<-trunc(as.numeric(y1)) yseq<-min(c(newy,newy1)):max(c(newy,newy1)) nameseq<- paste("Y=",yseq,sep="") n.y<-length(yseq) colors<-rev(heat.colors(n.y^2)) lab.colors<-c("black","white") comp<-matrix(NA,nrow=n.y,ncol=n.y) for(i in 1:n.y){ for(j in 1:n.y){ flag<- newy==yseq[i] & newy1==yseq[j] comp[i,j]<-mean(flag) } } old.pty<-par()$pty old.mai<-par()$mai par(pty="s") par(mai=c(0.3,0.3,0.3,0.1)) image(z=comp, axes=FALSE, col=colors, zlim=c(min(comp),max(comp)),main=main ) locations.x<-seq(from=0,to=1,length=nrow(comp)) locations.y<-locations.x for(m in 1:n.y){ for(n in 1:n.y){ text(x=locations.x[m],y=locations.y[n],labels=paste(round(100*comp[m,n])), col=lab.colors[(comp[m,n]> ((max(comp)-min(comp))/2) )+1]) } } axis(side=1,labels=nameseq, at=seq(0,1,length=n.y), cex.axis=1, las=1) axis(side=2,labels=nameseq, at=seq(0,1,length=n.y), cex.axis=1, las=3) box() par(pty=old.pty,mai=old.mai) ## Numeric - Plot two densities on top of each other }else if(is.numeric(y) & is.numeric(y1)){ if(is.null(col)){ col<-c("blue","red") }else if(length(col)<2){ col<-c(col,col) } if(is.null(col)){ semi.col.x <-rgb(142,229,238,150,maxColorValue=255) semi.col.x1<-rgb(255,114,86,150,maxColorValue=255) col<-c(semi.col.x,semi.col.x1) }else if(length(col)<2){ col<-c(col,col) } den.y<-density(y) den.y1<-density(y1,bw=den.y$bw) all.xlim<-c(min(c(den.y$x,den.y1$x)),max(c(den.y$x,den.y1$x))) all.ylim<-c(min(c(den.y$y,den.y1$y)),max(c(den.y$y,den.y1$y))) output<-plot(den.y,xlab=xlab,ylab=ylab,main=main,col=col[1],xlim=all.xlim,ylim=all.ylim) par(new=TRUE) output<-plot(den.y1,xlab=xlab,ylab=ylab,main="",col=col[2],xlim=all.xlim,ylim=all.ylim) if(!identical(col[1],"n")){ polygon(den.y$x,den.y$y,col=col[1]) } if(!identical(col[1],"n")){ polygon(den.y1$x,den.y1$y,col=col[2]) } } } } Zelig/R/zeligBuildWeights.R0000644000176000001440000001633012215715475015341 0ustar ripleyusers#' Utility to build a vector (or sometimes matrix) of weights for analysis model. #' #' This takes standardized Zelig user input about weights, and tailors it #' via developer defined settings, to correspond with the format of #' weights acceptable by the model Zelig bridges to. It also runs a #' set of checks to uncover any potential errors in the specified weights. #' @param weights A set of non-negative value weights. Overrides repweights #' if defined. #' @param repweights A set of whole number (non-negative integer) weights. #' useful if weights are just for making copies or deleting certain #' or frequency weights. #' @param zeros An option on how to deal with zero valued user supplied weights. #' Default of "zero" allows zero weights, "epsilon" changes zeroes to 1e-08, #' "remove" removes those observations from the dataset. #' @param rebuild An option to allow specified repweights to reconfigure the #' rows of the dataset to rebuild a corresponding dataset where every row is #' of weight 1. Useful if analysis model does not accept weights. #' @param allowweights Defines if weights are allowed in model. #' @param allowrepweights Defines if repweights are allowed in model. Overridden if #' \code{useweights=TRUE}. #' @param data Dataset, required if weights are defined by variable name, or if #' dataset is to be reconfigured (by \code{rebuild} or \code{zeros} options) #' @return weights A vector of weights of the structure defined by the #' developer and required by the analysis model. Or NULL if certain checks #' are failed. #' @return data A reconfigured dataset, if modified. #' @author James Honaker \email{zelig-zee@@iq.harvard.edu} #' @export zeligBuildWeights <- function (weights=NULL, repweights=NULL, zeros="zeros", rebuild=FALSE, allowweights=TRUE, allowrepweights=TRUE, data=NULL) { ## Developer can turn off certain types of weights ## NOTE: Can't currently turn off "repweights", if "weights" allowable. if(!allowweights & !allowrepweights & !is.null(weights)){ warning("You have specified weights, but weighting is not available for this model. Ignoring weights. ") return(list(weights=NULL, data=data)) } if(!allowweights & !allowrepweights & !is.null(repweights)){ warning("You have specified repweights, but weighting is not available for this model. Ignoring weights. ") return(list(weights=NULL, data=data)) } if(!allowweights & !is.null(weights)){ warning("You have specified weights, but weights are not an option in this model. Ignoring weights. repweights may be an available option.") weights=NULL } ## Override repweights with weights when in conflict. if(!is.null(weights) & !is.null(repweights)){ warning("You have specified both weights and repweights. The repweights will be ignored.") repweights<-NULL } ## Turn weights as variable name into vector, with checking. if(is.character(weights)){ if(is.null(data)){ warning("ZELIG DEVELOPER WARNING: You have named a weight variable in the dataset, but not supplied dataset to zeligBuildWeights. Weights will be ignored in your model until amended.") return(list(weights=NULL, data=data)) }else if (!(weights %in% names(data))){ warning("The variable name supplied for the weights is not present in the dataset. Ignoring weights.") return(list(weights=NULL, data=data)) }else if ( !is.numeric(data[,weights])){ warning("The variable supplied for the weights is not numeric. Ignoring weights.") return(list(weights=NULL, data=data)) }else{ weights<-data[,weights] } } ## Turn repweights as variable name into vector, with checking. if(is.character(repweights)){ if(is.null(data)){ warning("ZELIG DEVELOPER WARNING: You have named a repweight variable in the dataset, but not supplied dataset to zeligBuildWeights. repweights will be ignored in your model until amended.") return(list(weights=NULL, data=data)) }else if (!(repweights %in% names(data))){ warning("The variable name supplied for the repweights is not present in the dataset. Ignoring weights.") return(list(weights=NULL, data=data)) }else if ( !is.numeric(data[,repweights])){ warning("The variable supplied for the repweights is not numeric. Ignoring weights.") return(list(weights=NULL, data=data)) }else{ repweights<-data[,repweights] } } ## Some checking/transforming on repweights if(!is.null(repweights)){ if(!all(floor(repweights)==repweights)){ warning("Defined repweights are not integer, so will be rounded.") repweights=round(repweights) # Maybe allow floor/ceiling as other options? } if(sum(is.na(repweights))>0){ # any(is.na()) sometimes has issues warning("Some defined repweights are missing values, so will be treated as zeros") flag<-is.na(repweights) repweights[flag]<-0; } if(min(repweights)<0){ warning("Some defined repweights are negative, so will be treated as zeros") flag<-repweights<0 repweights[flag]<-0; } if(sum(repweights)==0){ warning("Defined repweights give no weight to any observation. Ignoring weights.") return(list(weights=NULL, data=data)) } } ## Some checking/transforming on weights if(!is.null(weights)){ if(sum(is.na(weights))>0){ # any(is.na()) sometimes has issues warning("Some defined weights are missing values, so will be treated as zeros") flag<-is.na(weights) weights[flag]<-0; } if(min(weights)<0){ warning("Some defined weights are negative, so will be treated as zeros") flag<-weights<0 weights[flag]<-0; } if(sum(weights)==0){ warning("Defined weights give no weight to any observation. Ignoring weights.") return(list(weights=NULL, data=data)) } } ## If repweights not available to function, reconstruct a dataset ## NOTE: "rebuild" overrides any setting of "zeros" if( is.null(weights) & !is.null(repweights) & rebuild){ if(is.null(data)){ warning("ZELIG DEVELOPER WARNING: You have set zeligBuildWeights to rebuild dataset, but not supplied dataset to zeligBuildWeights function. Weights will be ignored in your model until amended.") return(list(weights=NULL, data=data)) }else{ ## Rebuild dataset according to replication weights newobs<-rep(1:nrow(data), repweights) # Index of rows to use data<-data[newobs,] # Copy relevant rows } weights<-NULL # Or, could be weights<-rep(1,nrow(data)) ## when repweights are correct, but need to be transfered to final output }else if (is.null(weights) & !is.null(repweights) ){ weights<-repweights } ## From this point, only "weights" exists in a meaningful way. if(!is.null(weights)){ ## Implement zeros option. if(zeros=="epsilon"){ flag<-weights==0 weights[flag]<- .00000001 }else if (zeros=="remove"){ flag<-weights==0 weights<-weights[!flag] data<-data[!flag,] } } ## NOTE: Ideally, we could just pass back a vector of indexes to reformat the ## data, rather than passing back and forwards the data. ## But simpler for developer this way. built <- list(weights=weights, data=data) # Return return(built) } Zelig/R/as.summarized.list.R0000644000176000001440000000053712061700507015437 0ustar ripleyusers#' list -> summarized.qi #' Convert a list into a ``summarized.qi'' object #' @usage \method{as.summarized}{list}(x, ...) #' @param x a list #' @param ... ignored parameters #' @return a ``summarized.qi'' object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.summarized.list <- function(x, ...) { class(x) <- "summarized.qi" x } Zelig/R/model.frame.multiple.R0000644000176000001440000000620512061700507015724 0ustar ripleyusers#' Create Model Frame from \code{multiple} Object #' #' This method creates a \code{model.frame} from a \code{multiple} object. This #' method will be deprecated as the development of Zelig 4 progresses. #' @usage \method{model.frame}{multiple}(formula,data,eqn=NULL,...) #' @S3method model.frame multiple #' @param formula an object of both type \code{formula} and \code{multiple} #' @param data a \code{data.frame} #' @param eqn the number of equations in the formula #' @param ... ignored parameters #' @return a \code{model.frame} object #' @author Kosuke Imai, Olivia Lau, Gary King and Ferdinand Alimadhi model.frame.multiple <- function (formula,data,eqn=NULL,...){ if(class(formula)[[1]]=="terms"){ terms <-formula }else{ terms<-terms(formula) } #is multilevel? if(!(is.logical(attr(terms,"subs")))) return(multilevel(tt=terms,data=data,eqn=eqn,mode=2)) "%w/o%" <- function(x,y) x[!x %in% y] eqns<-names(formula) eqns<-attr(terms,"systEqns") nrEquations<-length(eqns) termlabels<-attr(terms,"term.labels") depVars<-attr(terms,"depVars") Xs<-Ys<-tlNew<-dvNew<-list() for (i in 1:nrEquations){ rhs<-toBuildFormula(termlabels[[eqns[[i]]]]) if(!(is.null(rhs))){ rhs<-paste(rhs,"-1") rhs<-as.formula(paste("~",rhs)) Xs[[eqns[[i]]]]<-model.matrix.default(rhs,data=data) tlNew[[eqns[[i]]]]<-colnames(Xs[[eqns[[i]]]]) tlNew[[eqns[[i]]]]<-gsub("as.factor\\(.*\\)","",tlNew[[eqns[[i]]]]) colnames(Xs[[eqns[[i]]]])<-tlNew[[eqns[[i]]]] } } depFactors<-attr(terms,"depFactors") if(!(is.logical(depFactors))) depVars<- paste("as.factor(",depFactors[[1]],")",sep="") #print(depVars) lhs<-toBuildFormula(unique(unlist(depVars))) if(!(is.null(lhs))){ lhs<-paste(lhs,"-1") lhs<-as.formula(paste("~",lhs)) Ys<-model.matrix.default(lhs,data=data) dvNew<-colnames(Ys) dvNew<-gsub("as.factor\\(.*\\)","",dvNew) colnames(Ys)<-dvNew } attr(terms,"term.labels")[names(tlNew)]<-tlNew attr(terms,"depVars")[names(dvNew)]<-dvNew ronames<-rownames(data) ronr<-nrow(data) Xnames<-unique(unlist(tlNew)) Ynames<-unique(unlist(dvNew)) if(!(is.logical(depFactors))) Ynames<-c(depFactors[[2]],Ynames %w/o% depFactors[[2]]) X<-matrix(0,nrow=ronr,ncol=length(Xnames),dimnames=list(ronames,Xnames)) Y<-matrix(0,nrow=ronr,ncol=length(Ynames),dimnames=list(ronames,Ynames)) if(length(tlNew)>0) for(i in 1:length(tlNew)){ xtmp<-intersect(tlNew[[i]],Xnames) X[,xtmp]<-Xs[[i]][,xtmp] } Y<-Ys my.data.frame<-as.data.frame(cbind(Y,X)) rhs<-toBuildFormula(Xnames) if(!(is.null(rhs))) rhs<-(paste("~",rhs)) else rhs<-"~1" cb<-FALSE if(length(Ynames)>1){ lhs<-toBuildFormula(Ynames,",") if (!(is.null(lhs))){ lhs<-paste("cbind(",lhs) lhs<-paste(lhs,")") cb<-TRUE } }else{ lhs=Ynames } lhs<-as.formula(paste(lhs,rhs)) Y<-model.frame.default(lhs,data=my.data.frame) result=Y if(cb) names(result)[[1]]<-"response" new.response<-attr(attr(result,"terms"),"response") attr(terms,"response")<-new.response attr(result,"terms")<-terms class(result)<-c(class(result),"multiple") return(result) } Zelig/R/getResponseTerms.list.R0000644000176000001440000000221412061700507016160 0ustar ripleyusers#' Get Response Terms from a List-style Formula #' #' This method gets the response terms from a standard formula #' @usage \method{getResponseTerms}{list}(x, ...) #' @param x a list of formulae #' @param ... ignored parameters #' @return a character-vector specifying the response terms of the formula #' @S3method getResponseTerms list #' @author Matt Owen getResponseTerms.list <- function (x, ...) { if (! all(unlist(Map(is.formula, x)))) { # If not all the elements are formulae, then we should strip them from 'x' warning("All non-formula will be removed from this list.") x <- Filter(is.formula, x) } if (length(x) == 0) # Zero-sized lists will have no available response terms, and should thus # return a zero-length character vector. Note this is intended to ensure # the result of 'getResponseTerms' is always a character-string. vector("character", 0) else # Get response terms of each element of 'x', # then transform the list into a vector, which should always be flat, since # getResponseTerms should always return a character-string unique(unlist(Map(getResponseTerms, x, single.only=TRUE))) } Zelig/R/setx.R0000644000176000001440000002403112217150360012660 0ustar ripleyusers#' Setting Explanatory Variable Values #' #' The \code{setx} command uses the variables identified in #' the \code{formula} generated by \code{zelig} and sets the values of #' the explanatory variables to the selected values. Use \code{setx} #' after \code{zelig} and before \code{sim} to simulate quantities of #' interest. #' @param obj the saved output from zelig #' @param fn a list of functions to apply to the data frame #' @param data a new data frame used to set the values of #' explanatory variables. If data = NULL (the default), the #' data frame called in zelig is used #' @param cond a logical value indicating whether unconditional #' (default) or conditional (choose \code{cond = TRUE}) prediction #' should be performed. If you choose \code{cond = TRUE}, \code{setx} #' will coerce \code{fn = NULL} and ignore the additional arguments in #' \code{\dots}. If \code{cond = TRUE} and \code{data = NULL}, #' \code{setx} will prompt you for a data frame. #' @param ... user-defined values of specific variables for overwriting the #' default values set by the function \code{fn}. For example, adding #' \code{var1 = mean(data\$var1)} or \code{x1 = 12} explicitly sets the value #' of \code{x1} to 12. In addition, you may specify one explanatory variable #' as a range of values, creating one observation for every unique value in #' the range of values #' @return For unconditional prediction, \code{x.out} is a model matrix based #' on the specified values for the explanatory variables. For multiple #' analyses (i.e., when choosing the \code{by} option in \code{\link{zelig}}, #' \code{setx} returns the selected values calculated over the entire #' data frame. If you wish to calculate values over just one subset of #' the data frame, the 5th subset for example, you may use: #' \code{x.out <- setx(z.out[[5]])} #' @export #' @examples #' #' # Unconditional prediction: #' data(turnout) #' z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout) #' x.out <- setx(z.out) #' s.out <- sim(z.out, x = x.out) #' #' @author Matt Owen \email{mowen@@iq.harvard.edu}, Olivia Lau and Kosuke Imai #' @seealso The full Zelig manual may be accessed online at #' \url{http://gking.harvard.edu/zelig} #' @keywords file setx <- function(obj, fn=NULL, data=NULL, cond=FALSE, ...) UseMethod("setx") #' Set explanatory variables #' #' Set explanatory variables #' @usage \method{setx}{default}(obj, fn=NULL, data=NULL, cond=FALSE, ...) #' @S3method setx default #' @param obj a 'zelig' object #' @param fn a list of key-value pairs specifying which function apply to #' columns of the keys data-types #' @param data a data.frame #' @param cond ignored #' @param ... parameters specifying what to explicitly set each column as. This #' is used to produce counterfactuals #' @return a 'setx' object #' @author Matt Owen \email{mowen@@iq.harvard.edu}, Kosuke Imai, and Olivia Lau setx.default <- function(obj, fn=NULL, data=NULL, cond=FALSE, ...) { # Warnings and errors if (!missing(cond)) warning('"cond" is not currently supported by this version of Zelig') # Get formula used for the call to the model form <- formula(obj) # Parsed formula. This is an intermediate for used for processin design # matrices, etc. parsed.formula <- parseFormula(form, data) # If data.frame is not explicitly set, use the one from the Zelig call if (is.null(data)) data <- obj$data # Create a variable to hold the values of the dot parameters dots <- list() # Get the dots as a set of expressions symbolic.dots <- match.call(expand.dots = FALSE)[["..."]] # Assign values to the dot parameters for (key in names(symbolic.dots)) { result <- with(data, eval(symbolic.dots[[key]])) dots[[key]] <- result } # Extract information about terms # Note: the functions 'getPredictorTerms' and 'getOutcomeTerms' are in need # of a rewrite. At the moment, they are pretty kludgey (written by Matt O.). vars.obj <- getPredictorTerms(form) not.vars <- getResponseTerms(form) # Default the environment to the parent env.obj <- parent.frame() # explanatory variables explan.obj <- Filter(function (x) x %in% vars.obj, names(dots)) # defaults for fn if (missing(fn) || !is.list(fn)) # set fn to appropriate values, if NULL fn <- list(numeric = mean, ordered = Median, other = Mode ) # res res <- list() # compute values # if fn[[mode(data(, key))]] exists, # then use that function to compute result for (key in all.vars(form[[3]])) { # skip values that are explicitly set if (key %in% names(dots) || key %in% not.vars) next m <- class(data[,key])[[1]] # Match the class-type with the correct function to call if (m %in% names(fn)) res[[key]] <- fn[[m]](data[ ,key]) # If it is a numeric, then we just evaluate it like a numeric else if (is.numeric(data[,key])) res[[key]] <- fn$numeric(data[ ,key]) # If it's ordered, then we take the median, because that's the best we got else if (is.ordered(data[,key])) res[[key]] <- fn$ordered(data[ ,key]) # Otherwise we take the mode, because that always kinda makes sense. else res[[key]] <- fn$other(data[ ,key]) } # Add explicitly set values for (key in names(symbolic.dots)) { if (! key %in% colnames(data)) { warning("`", key, "` is not an column in the data-set, and will be ignored") next } res[[key]] <- if (is.factor(data[,key])) { factor(dots[[key]], levels=levels(data[,key])) } else dots[[key]] } # Convert "res" into a list of lists. This makes atomic entries into lists. for (k in 1:length(res)) { if (!is.factor(res[[k]])) res[[k]] <- as.list(res[[k]]) } # Combine all the sublists res <- do.call("mix", res) # A list containing paired design matrices and their corresponding data.frame's frames.and.designs <- list() # Iterate through all the results for (k in 1:length(res)) { # label <- paste(names(res[[k]]), "=", res[[k]], sep="", collapse=", ") # Get specified explanatory variables specified <- res[[k]] # Construct data-frame d <- constructDataFrame(data, specified) # Construct model/design matrix # NOTE: THIS NEEDS TO BE MORE ROBUST m <- constructDesignMatrix(d, parsed.formula) # Model matrix, as a data.frame dat <- tryCatch(as.data.frame(m), error = function (e) NA) # Specify information frames.and.designs[[label]] <- list( label = label, data.frame = d, model.matrix = m, as.data.frame = dat ) } # Phonetically... setx's setexes <- list() for (key in names(frames.and.designs)) { mod <- frames.and.designs[[key]]$model.matrix d <- frames.and.designs[[key]]$data.frame dat <- frames.and.designs[[key]]$as.data.frame specified <- res[[k]] setexes[[key]] <- list( name = obj$name, call = match.call(), formula= form, matrix = mod, updated = d, data = dat, values = specified, fn = fn, cond = cond, new.data = data, special.parameters = dots, symbolic.parameters = symbolic.dots, label = obj$label, explan = vars.obj, pred = not.vars, package.name = obj$package.name ) attr(setexes[[key]], "pooled") <- F class(setexes[[key]]) <- c(obj$name, "setx") } if (length(setexes) == 1) { attr(setexes, "pooled") <- FALSE setexes <- setexes[[1]] class(setexes) <- c(obj$name, "setx") } else { attr(setexes, "pooled") <- TRUE class(setexes) <- c(obj$name, "pooled.setx", "setx") } # Return setexes } #' Construct Data Frame #' Construct and return a tiny (single-row) data-frame from a larger data-frame, #' a list of specified values, and a formula #' @param data a ``data.frame'' that will be used to create a small design matrix #' @param specified a list with key-value pairs that will be used to explicitly #' set several values #' @return a ``data.frame'' containing a single row constructDataFrame <- function (data, specified) { # Make a tiny data-frame with all the necessary columns d <- data[1,] # Give the computed values to those entries for (key in names(specified)) { val <- specified[[key]] if (is.factor(val) || !(is.numeric(val) || is.ordered(val))) val <- factor(val, levels=levels(data[,key])) d[, key] <- val } # Return tiny data-frame d } #' Construct Design Matrix from #' Construct and return a design matrix based on a tiny data-frame (single-row). #' @param data a ``data.frame'' (preferably single-rowed) that will be used to #' create a small design matrix #' @param formula a formula, whose predictor variables will be used to create a #' design matrix #' @return a design (model) matrix constructDesignMatrix <- function (data, formula) { tryCatch( # Attempt to generate the design matrix of the formula model.matrix(formula, data), # If there is a warning... probably do nothing # warning = function (w) w, # If there is an error, warn the user and specify the design # matrix as NA error = function (e) { NA } ) } #' Set Explanatory Variables for Multiply Imputed Data-sets #' This function simply calls setx.default once for every fitted model #' within the 'zelig.MI' object #' @usage \method{setx}{MI}(obj, ..., data=NULL) #' @S3method setx MI #' @param obj a 'zelig' object #' @param ... user-defined values of specific variables for overwriting the #' default values set by the function \code{fn} #' @param data a new data-frame #' @return a 'setx.mi' object used for computing Quantities of Interest by the #' 'sim' method #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @seealso \link{setx} setx.MI <- function(obj, ..., data = NULL) { results.list <- list() for (key in names(obj)) { object <- obj[[key]] results.list[[key]] <- setx(object, ..., data = data) } class(results.list) <- c("setx.mi", "setx") results.list } Zelig/R/relogit.R0000644000176000001440000003044512214411116013344 0ustar ripleyusers#' Fit a rare-event logistic model in Zelig #' #' Fits a rare-event (``relogit'') model. #' @param formula a formula object #' @param data ... #' @param tau ... #' @param bias.correct ... #' @param case.control ... #' @param ... ??? #' @return a ``relogit'' ``glm'' object #' @export relogit <- function( formula, data = sys.parent(), tau = NULL, bias.correct = TRUE, case.control = "prior", ... ){ mf <- match.call() mf$tau <- mf$bias.correct <- mf$case.control <- NULL if (!is.null(tau)) { tau <- unique(tau) if (length(case.control) > 1) stop("You can only choose one option for case control correction.") ck1 <- grep("p", case.control) ck2 <- grep("w", case.control) if (length(ck1) == 0 & length(ck2) == 0) stop("choose either case.control = \"prior\" ", "or case.control = \"weighting\"") if (length(ck2) == 0) weighting <- FALSE else weighting <- TRUE } else weighting <- FALSE if (length(tau) > 2) stop("tau must be a vector of length less than or equal to 2") else if (length(tau)==2) { mf[[1]] <- relogit res <- list() mf$tau <- min(tau) res$lower.estimate <- eval(as.call(mf)) mf$tau <- max(tau) res$upper.estimate <- eval(as.call(mf)) res$formula <- formula class(res) <- c("Relogit2", "Relogit") return(res) } else { mf[[1]] <- glm mf$family <- binomial(link="logit") y2 <- model.response(model.frame(mf$formula, data)) if (is.matrix(y2)) y <- y2[,1] else y <- y2 ybar <- mean(y) if (weighting) { w1 <- tau/ybar w0 <- (1-tau)/(1-ybar) wi <- w1*y + w0*(1-y) mf$weights <- wi } res <- eval(as.call(mf)) res$call <- match.call(expand.dots = TRUE) res$tau <- tau X <- model.matrix(res) ## bias correction if (bias.correct){ pihat <- fitted(res) if (is.null(tau)) # w_i = 1 wi <- rep(1, length(y)) else if (weighting) res$weighting <- TRUE else { w1 <- tau/ybar w0 <- (1-tau)/(1-ybar) wi <- w1*y + w0*(1-y) res$weighting <- FALSE } W <- pihat * (1 - pihat) * wi ##Qdiag <- diag(X%*%solve(t(X)%*%diag(W)%*%X)%*%t(X)) Qdiag <- lm.influence(lm(y ~ X-1, weights=W))$hat/W if (is.null(tau)) # w_1=1 since tau=ybar xi <- 0.5 * Qdiag * (2*pihat - 1) else xi <- 0.5 * Qdiag * ((1+w0)*pihat-w0) res$coefficients <- res$coefficients - lm(xi ~ X - 1, weights=W)$coefficients res$bias.correct <- TRUE } else res$bias.correct <- FALSE ## prior correction if (!is.null(tau) & !weighting){ if (tau <= 0 || tau >= 1) stop("\ntau needs to be between 0 and 1.\n") res$coefficients["(Intercept)"] <- res$coefficients["(Intercept)"] - log(((1-tau)/tau) * (ybar/(1-ybar))) res$prior.correct <- TRUE res$weighting <- FALSE } else res$prior.correct <- FALSE if (is.null(res$weighting)) res$weighting <- FALSE res$linear.predictors <- t(res$coefficients) %*% t(X) res$fitted.values <- 1/(1+exp(-res$linear.predictors)) res$zelig <- "Relogit" class(res) <- c("Relogit", "glm") return(res) } } #' Zelig2 bridge function #' #' ... #' @note T #' @param formula a formula object #' @param ... ignored parameters #' @param tau ... #' @param bias.correct ... #' @param case.control ... #' @param data a data.frame that will be used to fit the model #' @return a list used internally by zelig #' @export zelig2relogit <- function( formula, ..., tau = NULL, bias.correct = NULL, case.control = NULL, data ) { # Catch NULL case.control if (is.null(case.control)) case.control <- "prior" # Catch NULL bias.correct if (is.null(bias.correct)) bias.correct = TRUE # Construct formula. Relogit models have the structure: # cbind(y, 1-y) ~ x1 + x2 + x3 + ... + xN # Where y is the response. form <- update(formula, cbind(., 1 - .) ~ .) # Set the environment to be this function's environment(form) <- environment() # Return the obvious answer z( .function = relogit, formula = form, bias.correct = bias.correct, case.control = case.control, tau = tau, data = data ) } #' Estimate Parameters for the ``relogit'' Zelig Mdoel #' #' Returns estimates on parameters, as well as, specifying link and #' inverse-link functions. #' @note This method merely calls ``param.logit''. #' @usage \method{param}{relogit}(obj, num, ...) #' @S3method param relogit #' @param obj a zelig object containing the fitted model #' @param num an integer specifying the number of simulations to compute #' @param ... unspecified parameters #' @return a list specifying important parameters for the ``relogit'' model param.relogit <- param.logit #' Estimate Parameters for the ``relogit'' Zelig Mdoel #' #' Returns estimates on parameters, as well as, specifying link and inverse-link #' functions. #' @usage \method{param}{relogit2}(obj, num, x, ...) #' @S3method param relogit2 #' @param obj a zelig object containing the fitted model #' @param num an integer specifying the number of simulations to compute #' @param x ideally we should be able to remove this parameter #' @param ... unspecified parameters #' @return a list specifying important parameters for the ``relogit'' model param.relogit2 <- function (obj, num, x, ...) { object <- obj stop("Currently zelig does not support relogit models containing 2 ", "tau parameters") pping <- function(tmp0, tmp1, num, bootstrap, x) { par0 <- param.relogit(tmp0, num=num, x=x, bootstrap=bootstrap) par1 <- param.relogit(tmp1, num=num, x=x, bootstrap=bootstrap) P00 <- qi.relogit(tmp0, par0, x=x) P00 <- as.matrix(qi.relogit(tmp0, param = par0, x=x)$qi$ev) message("P01") P10 <- as.matrix(qi.relogit(tmp1, param = par1, x=x)$qi$ev) test <- P00[,1] < P10[,1] par0 <- as.matrix(par0[test,]) par1 <- as.matrix(par1[test,]) list(par0 = par0, par1 = par1) } tmp0 <- tmp1 <- object tmp0$result <- object$result$lower.estimate tmp1$result <- object$result$upper.estimate tmp <- pping(tmp0, tmp1, num = num, bootstrap=bootstrap, x=x) par0 <- tmp$par0 par1 <- tmp$par1 while (nrow(par0) < num) { tmp <- pping(tmp0, tmp1, num=num, bootstrap=bootstrap, x=x) par0 <- rbind(par0, tmp$par0) par1 <- rbind(par1, tmp$par1) } if (nrow(par0) > num) { par0 <- par0[1:num,] par1 <- par1[1:num,] } par0 <- as.matrix(par0) par1 <- as.matrix(par1) rownames(par0) <- 1:nrow(par0) rownames(par1) <- 1:nrow(par1) return(list(par0 = par0, par1 = par1)) } #' simulate quantities of interest for the zelig ``relogit'' model #' #' ... #' @usage #' \method{qi}{relogit}(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi relogit #' @param obj a zelig object, containing the fitted ``relogit'' model #' @param x a ``setx'' object #' @param x1 a ``setx'' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a ``parameter'' obejct containing information about the link, #' inverse-link, and simulated parameters #' @return a param qi.relogit <- qi.logit #' simulate quantities of interest for the zelig ``relogit'' model #' #' ... #' @usage #' \method{qi}{relogit2}(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi relogit2 #' @param obj a zelig object, containing the fitted ``relogit'' model #' @param x a ``setx'' object #' @param x1 a ``setx'' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a ``parameter'' obejct containing information about the link, #' inverse-link, and simulated parameters #' @return a param qi.relogit2 <- function (obj, x = NULL, x1 = NULL, y = NULL, num=1000, param = NULL) { simpar <- param # Aliased, because object <- obj # This model needs work, so it will be discontinued for now stop("Relogit 2 is not currently supported") num <- nrow(simpar$par0) tmp0 <- object$result$lower.estimate tmp1 <- object$result$upper.estimate low <- qi.relogit(tmp0, simpar$par0, x, x1) up <- qi.relogit(tmp1, simpar$par1, x, x1) PP <- PR <- array(NA, dim = c(num, 2, nrow(x)), dimnames = list(NULL, c("Lower Bound", "Upper Bound"), rownames(x))) PP[,1,] <- P00 <- low$qi$ev PP[,2,] <- P10 <- up$qi$ev qi <- list(ev = PP) qi.name <- list(ev = "Expected Values: E(Y|X)") if (!is.null(x1)) { FD <- RR <- array(NA, dim = c(num, 2, nrow(x)), dimnames = list(NULL, d2 = c("Lower Bound", "Upper Bound"), rownames(x) )) sim01 <- qi.relogit(tmp0, simpar$par0, x = x1, x1 = NULL) sim11 <- qi.relogit(tmp1, simpar$par1, x = x1, x1 = NULL) tau0 <- object$result$lower.estimate$tau tau1 <- object$result$upper.estimate$tau P01 <- as.matrix(sim01$qi$ev) P11 <- as.matrix(sim11$qi$ev) OR <- (P10/(1-P10)) / (P00/(1-P00)) RR[,1,] <- pmin(as.matrix(P01/P00), as.matrix(P11/P10)) RR[,2,] <- pmax(as.matrix(P01/P00), as.matrix(P11/P10)) RD0 <- as.matrix(P01-P00) RD1 <- as.matrix(P11-P10) RD <- as.matrix((sqrt(OR)-1) / (sqrt(OR)+1)) ## checking monotonicity y.bar <- mean(object$y) beta0.e <- coef(tmp0) beta1.e <- coef(tmp1) ## evaluating RD at tau0 and tau1 RD0.p <- 1/(1+exp(-t(beta0.e) %*% t(x1))) - 1/(1+exp(-t(beta0.e) %*% t(x))) RD1.p <- 1/(1+exp(-t(beta1.e) %*% t(x1))) - 1/(1+exp(-t(beta1.e) %*% t(x))) ## evaluating RD at tau0+e and tau1+e e <- 0.001 beta0.e["(Intercept)"] <- beta0.e["(Intercept)"]+log(1-tau0)-log(tau0) - log(1-tau0-0.001)+log(tau0+0.001) beta1.e["(Intercept)"] <- beta1.e["(Intercept)"]+log(1-tau1)-log(tau1) - log(1-tau1-e)+log(tau1+e) RD0.e <- 1/(1+exp(-t(beta0.e) %*% t(x1))) - 1/(1+exp(-t(beta0.e) %*% t(x))) RD1.e <- 1/(1+exp(-t(beta1.e) %*% t(x1))) - 1/(1+exp(-t(beta1.e) %*% t(x))) ## checking the sign and computing the bounds check <- sum((RD1.e-RD1.p) * (RD0.e-RD0.p)) if (check > 0) { FD[,1,] <- pmin(RD0, RD1) FD[,2,] <- pmax(RD0, RD1) } else { FD[,1,] <- pmin(RD0, RD1, RD) FD[,2,] <- pmax(RD0, RD1, RD) } qi$fd <- FD qi$rr <- RR qi.name$fd <- "First Differences: P(Y=1|X1) - P(Y=1|X)" qi.name$rr <- "Risk Ratios: P(Y=1|X1) / P(Y=1|X)" } if (!is.null(y)) { yvar <- matrix(rep(y, num), nrow = num, byrow = TRUE) # tmp.ev <- qi$tt.ev <- yvar - qi$ev # tmp.pr <- qi$tt.pr <- yvar - as.integer(qi$pr) # qi.name$tt.ev <- "Unit Treatment Effect for the Treated: Y - EV" # qi.name$tt.pr <- "Unit Treatment Effect for the Treated: Y - PR" tmp.ev <- yvar - qi$ev tmp.pr <- yvar - as.integer(qi$pr) qi$att.ev <- matrix(apply(tmp.ev, 1, mean), nrow = num) qi$att.pr <- matrix(apply(tmp.pr, 1, mean), nrow = num) qi.name$att.ev <- "Average Treatment Effect for the Treated: Y - EV" qi.name$att.pr <- "Average Treatment Effect for the Treated: Y - PR" } return(list(qi = qi, qi.name = qi.name)) } #' Describe a `logit' model to Zelig #' @usage \method{describe}{relogit}(...) #' @S3method describe relogit #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} describe.relogit <- function(...) { # return list list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2007, category = "dichotomous", text = "Rare Events Logistic Regression for Dichotomous Dependent Variables" ) } # Return Names of Relogit Model # names.Relogit <- function(x){ res <- list(default=names(unclass(x)), estimate = names(x$lower.estimate), tau = x$tau) class(res) <- "names.relogit" res } Zelig/R/normal.bayes.R0000644000176000001440000000445712110047000014265 0ustar ripleyusers#' Interface between the Zelig Model normal.bayes and the Pre-existing Model-fitting Method #' @param formula a formula #' @param ... additonal parameters #' @param data a data.frame #' @return a list specifying '.function' #' @export zelig2normal.bayes <- function ( formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data ) { loadDependencies("MCMCpack", "coda") list( .function = "MCMCregress", .hook = "MCMChook", formula = formula, data = data, burnin = burnin, mcmc = mcmc, verbose= verbose, # Most parameters can be simply passed forward ... ) } #' @S3method param normal.bayes param.normal.bayes <- function(obj, num=1000, ...) { list( coef = coef(obj), linkinv = gaussian() ) } #' @S3method qi normal.bayes qi.normal.bayes <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { normal.ev <- function (x, param) { # If either of the parameters are invalid, # Then return NA for both qi's if (is.null(x) || is.na(x) || is.null(param)) return(list(ev=NA, pv=NA)) # Extract simulated parameters and get column names coef <- coef(param) cols <- colnames(coef) # Place the simulated variances in their own vector sigma2 <- coef[, ncol(coef)] # Remove the "sigma2" (variance) parameter which should already be placed # in the simulated parameters cols <- cols[ ! "sigma2" == cols ] # coef <- coef[, cols] # ev <- coef %*% t(x) pv <- rnorm(nrow(ev), ev, sqrt(sigma2)) # list(ev = ev, pv = pv) } res1 <- normal.ev(x, param) res2 <- normal.ev(x1, param) list( "Expected Value: E(Y|X)" = res1$ev, "Predicted Value: Y|X" = res1$pv, "Expected Value (for X1): E(Y|X1)" = res2$ev, "Predicted Value (for X1): Y|X1" = res2$pv, "First Differences: E(Y|X1) - E(Y|X)" = res2$ev - res1$ev ) } #' @S3method describe normal.bayes describe.normal.bayes <- function(...) { list( authors = c("Ben Goodrich", "Ying Lu"), text = "Bayesian Normal Linear Regression", year = 2013 ) } Zelig/R/exp.R0000644000176000001440000001014212110047000012453 0ustar ripleyusers#' Interface between the Zelig Model exp and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param ... additonal parameters #' @param robust a boolean specifying whether to use robust error estimates #' @param cluster a vector describing the clustering of the data #' @param data a data.frame #' @return a list specifying '.function' #' @export zelig2exp <- function (formula, ..., robust = FALSE, cluster = NULL, data) { loadDependencies("survival") if (!(is.null(cluster) || robust)) stop("If cluster is specified, then `robust` must be TRUE") # Add cluster term if (robust || !is.null(cluster)) formula <- cluster.formula(formula, cluster) # Return z( .function = "survreg", formula = formula, dist = "exponential", robust = robust, data = data, ... ) } stratify.rqs <- function (obj) { x <- vector("list", length(obj$tau)) for(i in 1:length(obj$tau)) { xi <- obj xi$coefficients <- xi$coefficients[, i] xi$residuals <- xi$residuals[, i] xi$tau <- xi$tau[i] class(xi) <- "rq" x[[i]] <- xi } names(x) <- obj$tau x } #' Param Method for the \code{exp} Zelig Model #' @note This method is used by the \code{param} Zelig model #' @usage \method{param}{exp}(obj, num, ...) #' @S3method param exp #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored parameters #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.exp <- function(obj, num=1000, ...) { cov <- vcov(.object) mu <- coef(.object) # Return list( coef = mvrnorm(num, mu=mu, Sigma=cov), linkinv = survreg.distributions[["exponential"]]$itrans ) } #' Compute quantities of interest for 'exp' Zelig models #' @usage \method{qi}{exp}(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi exp #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.exp <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { linkinv <- linkinv(param) # Compute Expected Values for the "exp" Regression # @param simulations # @param x # @return a matrix compute.ev <- function (simulations, x) { if (is.null(x) || is.na(x)) # If there are missing explanatory variables, ignore them return(NA) # Compute eta, which is the "flattened" prediction. # This value must be *inverted* to be restored to the true "observed" value eta <- simulations %*% t(x) # Return as a matrix, since this should be a vector at this point. as.matrix(apply(eta, 2, linkinv)) } # Compute Predicted Values compute.pv <- function (ev, param) { rexp(length(ev), rate = 1/ev) } # Compute expected values for X and X1 ev1 <- compute.ev(coef(param), x) ev2 <- compute.ev(coef(param), x1) # Compute Predicted values for X and X1 pr1 <- compute.pv(ev1, x) pr2 <- compute.pv(ev2, x1) # Return quantities of Interest list("Expected Values: E(Y|X)" = ev1, "Expected Values: E(Y|X1)" = ev2, "Predicted Values: Y|X" = pr1, "Predicted Values: Y|X1" = pr2, "First Differences: E(Y|X1) - E(Y|X)" = ev2 - ev1 ) } #' Describe a ``exp'' model to Zelig #' @usage \method{describe}{exp}(...) #' @S3method describe exp #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} describe.exp <- function(...) { list( authors = c("Olivia Lau", "Kosuke Imai", "Gary King"), year = 2011, category = "bounded", text = "Exponential Regression for Duration Dependent Variables" ) } Zelig/R/poisson.gee.R0000644000176000001440000000373612110047000014123 0ustar ripleyusers#' Interface between the Zelig Model poisson.gee and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param id a character-string specifying the column of the data-set to use #' for clustering #' @param robust a logical specifying whether to robustly or naively compute #' the covariance matrix. This parameter is ignore in the \code{zelig2} #' method, and instead used in the \code{robust.hook} function, which #' executes after the call to the \code{gee} function #' @param ... ignored parameters #' @param R a square-matrix specifying the correlation #' @param corstr a character-string specifying the correlation structure #' @param data a data.frame #' @return a list specifying the call to the external model #' @export zelig2poisson.gee <- function (formula, id, robust, ..., R = NULL, corstr = "independence", data) { loadDependencies("gee") if (corstr == "fixed" && is.null(R)) stop("R must be defined") # if id is a valid column-name in data, then we just need to extract the # column and re-order the data.frame and cluster information if (is.character(id) && length(id) == 1 && id %in% colnames(data)) { id <- data[, id] data <- data[order(id), ] id <- sort(id) } z( .function = gee, .hook = robust.gee.hook, formula = formula, id = id, corstr = corstr, family = poisson(), data = data, R = R, ... ) } #' @S3method param poisson.gee param.poisson.gee <- function(obj, num=1000, ...) { # Extract means to compute maximum likelihood mu <- coef(obj) # Extract covariance matrix to compute maximum likelihood Sigma <- vcov(obj) # list( coef = mvrnorm(num, mu, Sigma), fam = Gamma() ) } #' @S3method qi poisson.gee qi.poisson.gee <- qi.gamma.gee #' @S3method describe poisson.gee describe.poisson.gee <- function(...) { list( authors = "Patrick Lam", text = "General Estimating Equation for Poisson Regression", year = 2011 ) } Zelig/R/MCMChook.R0000644000176000001440000000426112110047000013264 0ustar ripleyusers#' Hook to Clean-up MCMC Objects #' #' This method gives valid methods to the resulting MCMC object so that it can #' be used with Zelig. #' @note This function is used internally by the ZeligBayesian package. #' @param obj the fitted model object (in this case a \code{mcmc} object. #' @param model.call the call made to the external model #' @param zelig.call the actual call to zelig itself #' @param seed a seed for the MCMC algorithm #' @param ... ignored parameters #' @return an object useable by Zelig #' @author Olivia Lau, Kosuke Imai, Gary King and Matt Owen #' @export MCMChook <- function (obj, model.call, zelig.call, seed=NULL, ..., data = NULL) { # Create a new object res <- list() attr(obj, "call") <- NULL # Add the bare necessities for a zelig object res$coefficients <- obj res$formula <- zelig.call$formula res$data <- data res$model <- model.frame(eval(res$formula), data = data) res$terms <- attr(res$model, "terms") res$call <- model.call # Ensure that a "seed" element exists res$seed <- if (is.null(seed)) NA else seed class(res) <- "MCMCZelig" res } #' Hook to Clean-up MCMC Factor Object #' #' This method gives valid methods to the resulting MCMC object so that it can #' be used with Zelig. #' @note This function is used internally by the ZeligBayesian package. #' @param obj the fitted model object (in this case a \code{mcmc} object. #' @param model.call the call made to the external model #' @param zelig.call the actual call to zelig itself #' @param seed a seed for the MCMC algorithm #' @param ... ignored parameters #' @return an object useable by Zelig #' @author Olivia Lau, Kosuke Imai, Gary King and Matt Owen #' @export McmcHookFactor <- function (obj, model.call, zelig.call, seed = NULL, ...) { out <- list() out$coefficients <- obj out$formula <- zelig.call$formula out$data <- zelig.call$data out$model <- model.frame(eval(out$formula), eval(out$data)) out$terms <- attr(out$model, "terms") out$call <- model.call # Factors have no intercept term? attr(out$terms,"intercept") <- 0 if (is.null(zelig.call$seed)) out$seed <- NA else out$seed <- zelig.call$seed class(out) <- "MCMCZelig" out } Zelig/R/logit.gee.R0000644000176000001440000000507212110047000013542 0ustar ripleyusers#' General Estimating Equation for Logit Regression #' @param formula a formula #' @param id a character-string specifying the column of the data-set to use #' for clustering #' @param robust a logical specifying whether to robustly or naively compute #' the covariance matrix. This parameter is ignore in the \code{zelig2} #' method, and instead used in the \code{robust.hook} function, which #' executes after the call to the \code{gee} function #' @param ... ignored parameters #' @param R a square-matrix specifying the correlation #' @param corstr a character-string specifying the correlation structure #' @param data a data.frame #' @return a list specifying the call to the external model #' @export zelig2logit.gee #' @name logit.gee #' @aliases zelig2logit.gee zelig2logit.gee <- function (formula, id, robust, ..., R = NULL, corstr = "independence", data) { loadDependencies("gee") if (corstr == "fixed" && is.null(R)) stop("R must be defined") # if id is a valid column-name in data, then we just need to extract the # column and re-order the data.frame and cluster information if (is.character(id) && length(id) == 1 && id %in% colnames(data)) { id <- data[, id] data <- data[order(id), ] id <- sort(id) } z( .function = gee, .hook = robust.gee.hook, formula = formula, id = id, corstr = corstr, family = binomial(link="logit"), data = data, R = R, ... ) } #' @S3method param logit.gee param.logit.gee <- function(obj, num=1000, ...) { # Extract means to compute maximum likelihood mu <- coef(obj) # Extract covariance matrix to compute maximum likelihood Sigma <- vcov(obj) list( coef = mvrnorm(num, mu, Sigma), fam = binomial(link="logit") ) } #' @S3method qi logit.gee qi.logit.gee <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { coef <- coef(param) inverse <- linkinv(param) eta1 <- coef %*% t(x) ev1 <- theta1 <- matrix(inverse(eta1), nrow=num) # default to NA rr <- ev2 <- fd <- NA if (!is.null(x1)) { eta2 <- coef %*% t(x1) ev2 <- theta1 <- matrix(inverse(eta2), nrow=num) fd <- ev2 - ev1 rr <- ev2/ev1 } list( "Expected Values (for x): E(Y|X)" = ev1, "Expected Values (for x1): E(Y|X1)" = ev2, "First Differences: E(Y|X1) - E(Y|X)" = fd, "Risk Ratios: E(Y|X1)/E(Y|X)" = rr ) } #' @S3method describe logit.gee describe.logit.gee <- function(...) { list( authors = "Patrick Lam", text = "General Estimating Equation for Logistic Regression", year = 2011 ) } Zelig/R/z.R0000644000176000001440000000264212110047000012136 0ustar ripleyusers#' Return value for a zelig2-function #' #' This is an API-function that bridges a model-fitting function with a zelig #' interface. #' @note This is used internally by Zelig-dependent packages to instruct Zelig #' how to evaluate the function call to a particular statistical model. #' @param .function a function #' @param ... a set of parameters to be evaluated symbolically #' @return a ``z'' object which specifies how to evaluate the fitted model #' @export z <- function (.function, ..., .hook = NULL) { # Construct the function call .call <- as.call(as.list(match.call())[-1]) .function.name <- as.character(.call[[1]]) .parent <- parent.frame() .dots <- list(...) # Ensure that hook works appropriately if(!missing(.hook)) { if (!is.function(.hook)) { warning(".hook parameter must be a function. ignoring.") .hook <- NULL } } s <- append(list(as.name(.function.name)), list(...)) literal.call <- as.call(s) # Construct the object s <- list( "function" = .function, "hook" = .hook, "call" = .call, "env" = .parent, "function.name" = .function.name, "dots" = .dots, "literal.call" = literal.call ) # Set attributes attr(s, 'baseenv') <- baseenv() attr(s, 'call') <- match.call() attr(s, 'function') <- substitute(.function) # Set the class class(s) <- 'z' # Return s } Zelig/R/Zelig-package.R0000644000176000001440000000303012110047000014320 0ustar ripleyusers#' Zelig Everyone's Statistical Software #' #' Zelig is an easy-to-use program that can estimate, and #' help interpret the results of, an enormous range of statistical models. It #' literally is ``everyone's statistical software'' because Zelig's simple #' unified framework incorporates everyone else's (R) code. We also hope it will #' become ``everyone's statistical software'' for applications and teaching, #' and so have designed Zelig so that anyone can easily use it or add their #' programs to it. Zelig also comes with infrastructure that facilitates the #' use of any existing method, such as by allowing multiply imputed data for #' any model, and mimicking the program Clarify (for Stata) that takes the raw #' output of existing statistical procedures and translates them into #' quantities of direct interest. #' #' \tabular{ll}{ #' Package: \tab Zelig\cr #' Version: \tab 4.1-2\cr #' Date: \tab 2013-01-11\cr #' Depends: \tab R (>= 2.14), boot, MASS, methods, sandwich, survival\cr #' Suggests: \tab mvtnorm, Formula \cr #' License: \tab GPL version 2 or newer\cr #' URL: \tab http://gking.harvard.edu/zelig\cr #' } #' #' @name Zelig-package #' @aliases Zelig #' @docType package #' @author Matt Owen \email{mowen@@iq.harvard.edu}, Kosuke Imai, Olivia Lau, #' and Gary King #' @keywords package #' @seealso zelig setx sim NULL # SUPER SECRET VARIABLES... # These squelch "R CMD CHECK" issues for dynamically (though constantly added) # local variables to the "bootstrap", "param" and "qi" functions. .call <- .fitted <- .object <- NULL Zelig/R/common-methods.R0000644000176000001440000000075012061700507014631 0ustar ripleyusers# This file is a quick-hack to fix a mistake placed in Zelig Core on Oct. 1st. # The issue in Zelig should be fixed by November `12. :( #' @S3method coef zelig coef.zelig <- function (object, ...) coef(object$result, ...) #' @S3method logLik zelig logLik.zelig <- function (object, ...) logLik(object$result, ...) #' @S3method plot zelig plot.zelig <- function (x, ...) plot(x$result, ...) #' @S3method vcov zelig vcov.zelig <- function (object, ...) vcov(object$result, ...) Zelig/R/model.matrix.multiple.R0000644000176000001440000000603012061700507016132 0ustar ripleyusers#' Create Design Matrix of a \code{multiple} Object #' #' This method is used to generate a \code{model.matrix} adhering to the #' specifications in the help document "model.matrix". #' @usage #' \method{model.matrix}{multiple}(object,data,shape="compact",eqn=NULL,...) #' @note This method is scheduled to be deprecated. #' @param object an object of type \code{multiple}. This represents a Zelig 3.5 #' formula #' @param data a \code{data.frame} #' @param shape a character-string specifying the shape of the matrix #' @param eqn an integer specifying the number of equations #' @param ... ignored parameters #' @S3method model.matrix multiple model.matrix.multiple <- function (object,data,shape="compact",eqn=NULL,...){ intersect <- function(x, y) y[match(x, y, nomatch = 0)] #olny for multilevel if(class(formula)[[1]]=="terms"){ terms <-object }else{ terms<-terms(object) } if(!(is.logical(attr(terms,"subs")))) return(multilevel(tt=terms,data=data,eqn=eqn,mode=1)) ## if((shape != "compact") && (shape != "array") && (shape !="stacked")) stop("wrong shape argument! Choose from \"compact\", \"array\" or \"stacked\" \n") if(!(any(class(object)=="multiple"))) stop("Please run first parse.formula() on your formula ...\n") if(!(any(class(data)=="multiple"))) data<-model.frame(object,data) terms<-attr(data,"terms") whiche<-which(eqn %in% names(terms)==FALSE) if (length(whiche)!=0) stop("Unknown eqn name \"",eqn[whiche],"\"\n") intercAttr<-attr(terms,"intercept") systEqns<-attr(terms,"systEqns") ancilEqns<-attr(terms,"ancilEqns") if (is.null(eqn)) eqn=systEqns # if (!(all(eqn %in% systEqns))) # stop("all eqn names should be from systematic parameters") termlabels<-attr(terms,"term.labels")[eqn] nrEquations<-length(eqn) if (length(eqn)==1) shape="compact" Xnames<-unique(unlist(termlabels)) rhs<-toBuildFormula(Xnames) if(!(is.null(rhs))) rhs<-as.formula(paste("~",rhs)) else rhs<-as.formula("~1") rawX<-model.matrix.default(rhs,data=data) if (shape=="compact"){ result<-rawX if(all(intercAttr==0)){ result<-result[,colnames(result)!="(Intercept)"] } attr(terms,"response")<-0 attr(result,"terms")<-terms return(result) } ronames<-rownames(data) ronr<-nrow(data) parsMat<-make.parameters(terms, shape = "matrix", ancillary = FALSE,eqns=eqn) parsVec <- unique(na.omit(c(t(parsMat)))) result<-list() result<-array(0,dim=c(ronr,length(parsVec),length(eqn)),dimnames=list(ronames,parsVec,eqn)) for(i in 1:nrEquations){ eqni<-eqn[[i]] whiche<-which(is.na(parsMat[,eqni])==FALSE) result[,,eqni][,parsMat[names(whiche),eqni]]<-rawX[,names(whiche)] } if(shape=="array"){ res<-result } if(shape=="stacked"){ res<-result[,,eqn[[1]]] if(length(eqn)>1) for(i in 2:length(eqn)) res<-rbind(res,result[,,eqn[[i]]]) rownames(res)<-c(1:nrow(res)) } attr(terms,"response")<-0 attr(res,"terms")<-terms return(res) } Zelig/R/model.warnings.R0000644000176000001440000000275412061700507014635 0ustar ripleyusers# This code is rough looking. It needs to be made more elegant # but R doesn't really support block quotes model.warnings <- function (model) { # Get appropriate Zelig package pkg <- get.package(model) # Get zelig2 <- paste("zelig2", as.character(model), sep="") zelig2 <- tryCatch( { get(zelig2, mode="function"); 1 }, error = function (e) NA ) # # # if (is.na(zelig2) && is.na(pkg)) { msg <- ' ** The model "%s" is not available with the currently loaded packages, ** and is not an official Zelig package. ** The model\'s name may be a typo. ' message(sprintf(msg, model)) } else if (is.na(zelig2) && !is.na(pkg)) { if (pkg %in% .packages(TRUE)) { # The package is available on the system msg <- ' ** The model "%s" is not available with the currently loaded packages, ** however it *is* installed on your system. ** ** To load this model\'s package, please type: library("%s") ' message(sprintf(msg, model, pkg)) } # # # else { # Else... the package is not available on the system repos <- "http://r.iq.harvard.edu/" msg <- ' ** The model "%s" is not installed on your system, ** however it *is* available for download from Harvard. ** ** To install and load this model\'s package, please type: install.packages("%s", repos="%s", type="source") library("%s") ' message(sprintf(msg, model, pkg, repos, pkg)) } } invisible() } Zelig/R/twosls.R0000644000176000001440000001541112061700507013233 0ustar ripleyusers#' Interface between the Zelig Model twosls and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param ... additonal parameters #' @param data a data.frame #' @return a list specifying '.function' #' @export zelig2twosls <- function (formula, ..., data) { loadDependencies("systemfit") # Helper function to perform set-difference "%w/o%" <- function(x, y) x[!x %in% y] formula<-parse.formula(formula, "twosls") tt<-terms(formula) ins<-names(tt) %w/o% names(attr(tt,"depVars")) if(length(ins)!=0) if(length(ins)==1) inst <- formula[[ins]] else inst <- formula[ins] else stop("twosls model requires instrument!!\n") class(formula) <- c("multiple", "list") # Return list( .function = "callsystemfit", formula = formula[names(attr(tt,"depVars"))], method = "2SLS", inst = inst, data = data, ... ) } #' @S3method param twosls param.twosls <- function(obj, num=1000, ...) { # Produce a vector of all terms big.coef <- coef(obj) # Produce a pretty sparse matrix containing 3 vcov matrices. # # Note that this matrix will give a value of zero to any invalid row-column # combination. # In particular, any terms that do not belong to the same equation will have # a zero value. big.vcov <- vcov(obj) # This is a complete list of the terms. This is largely ignored, aside from # the fact that we need a list of the formulae. In general, terms.multiple # produced a pretty unwieldy list of items. all.terms <- terms(obj) # This list stores the results simulations.list <- list() # Iterate through the set of terms, and simulate each list separately. for (key in names(all.terms)) { # Extract the terms for an individual model. eq.terms <- terms(all.terms[[key]]) # Extract the labels for the terms eq.term.labels <- attr(eq.terms, "term.labels") # Add the labeled for the intercept column, if it should exist if (attr(eq.terms, "intercept")) eq.term.labels <- c("(Intercept)", eq.term.labels) # Format the title, this should look like: # _ # # So for the list: list(mu1 = y ~ x + sin(x)) # We get: # "mu1_(Intercept)" "mu1_x" "mu1_sin(x)" entries <- paste(key, eq.term.labels, sep = "_") # Extract the mean-value of this term (from the lumped-toegether vector) eq.coef <- big.coef[entries] # Extract the vcov matrix of this term (from the lumped-together matrix) eq.vcov <- big.vcov[entries, entries] # Simulate the parameters eq.simulations <- mvrnorm(num, eq.coef, eq.vcov) # Name the columns colnames(eq.simulations) <- eq.term.labels # Add to the list simulations.list[[key]] <- eq.simulations } # Return. list( coef = simulations.list, linkinv = NULL ) } #' @S3method qi twosls qi.twosls <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { # Compute the expected value of multistage LS methods compute.ev <- function (obj, x, param) { # if (is.null(x) || is.na(x)) { return(NA) } # If 'x' has too many rows, there will currently be errors. This is an issue # in Zelig-core if (nrow(x$matrix) > 1) { warning("This package does not currently support pooled results.") x <- x[1, ] } # Begin regular function terms <- terms(obj) # :q coef.list <- coef(param) # Hold Results eta <- list() # for (key in names(coef.list)) { # coef <- coef.list[[key]] # print(colnames(coef)) small.x <- as.matrix(x$matrix[, colnames(coef)]) # eta[[key]] <- coef %*% (small.x) } # Convert list into a matrix eta <- Reduce(function (x, y) cbind(x, y), eta) colnames(eta) <- names(terms) eta } ev1 <- compute.ev(obj, x, param) ev2 <- compute.ev(obj, x1, param) fd <- ev2 - ev1 # Name each column after the associated equation # Return the results list( "Expected Value: E(Y|X)" = ev1, "Expected Value (for X1): E(Y|X1)" = ev2, "First Differences: E(Y|X1)-E(Y|X)" = ev2 - ev1 ) } #' @S3method describe twosls describe.twosls <- function (...) { category <- "continuous" description <- "Two Stage Least Squares" authors <- c("Ferdinand Alimadhi", "Ying Lu", "Elena Villalon") year <- 2007 package <-list( name = "systemfit", version = "0.8" ) parameters <- list() parameters$mu <-list( equations=c(2,Inf), tagsAllowed=TRUE, depVar=TRUE, expVar=TRUE ) parameters$inst<-list( equations=c(1,1), tagsAllowed=FALSE, depVar=FALSE, expVar=TRUE ) list(category = category, authors = authors, year = year, description = description, package = package, parameters = parameters) } #' @S3method plot sim.twosls plot.sim.twosls <- function (x, ...) { # Define locak function to plot a set of quantities of interest plotSet <- function (title) { for (col in colnames(qis[[title]])) { q <- qis[[title]][, col] plot(density(q), main = paste(col, title, sep=": ")) } } # Code begins here cols <- c( rep(), rep(), rep() ) qis <- as.list.qi(x$qi) qis <- Filter(function (y) any(!is.na(y)), qis) qis <- Filter(is.matrix, qis) max.cols <- max(unlist(Map(ncol, qis))) layout.matrix <- matrix(0, length(qis), max.cols) rownames(layout.matrix) <- names(qis) count <- 1 for (title in names(qis)) { for (k in 1:ncol(qis[[title]])) { layout.matrix[title, k] <- count count <- count + 1 } } layout(layout.matrix) for (key in names(qis)) { plotSet(key) } } callsystemfit<-function(formula,data,method,inst=NULL,...){ # Call systemfit.. out <- systemfit( data = data, formula = formula, method = method, inst = inst, ... ) # Assign class to formula, so that it is correctly parsed class(formula) <- c("multiple", "list") # Set the terms explicitly attr(out,"terms") <- terms(formula) # Set the class explicitly class(out) <- c("multiple", class(out)) # Fin. Return the modified object return(out) } as.list.qi <- function (x, names = "") { class(x) <- "list" indices <- attr(x, ".index") attr(x, ".index") <- NULL rename.keys(x, indices, names(indices)) } rename.keys <- function (x, keys, to, warn = TRUE) { all.names <- names(x) indices <- match(keys, all.names) if (any(is.na(indices))) stop("Keys contains values that are not in `x`") all.names[indices] <- to names(x) <- all.names x } Zelig/R/summarize.R0000644000176000001440000000725712061700507013725 0ustar ripleyusers#' Generic methonf for summarizing simualted quantities of interest #' #' @S3method summarize default #' #' @param obj a \code{qi} object, storing simulations of quantities of interest #' @return a \code{summarized.qi} object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} summarize <- function(obj) UseMethod("summarize") #' Summarize Simualted Quantities of Interest #' #' @usage \method{summarize}{default}(obj) #' @S3method summarize default #' @param obj a \code{qi} object, storing simulations of quantities of interest #' @return a 'summarized.qi' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} summarize.default <- function(obj) { res <- list() titles <- names(attr(obj, ".index")) for (key in titles) { val <- obj[[key]] if (!is.qi(val)) next if (!is.matrix(val)) val <- matrix(val, ncol=1, nrow=length(val)) # make a matrix that is data-friendly m <- if (is.numeric(val)) { matrix(NA, nrow=ncol(val), ncol=5) } else if (is.character(val) || is.factor(val)) { levels <- levels(val) if (is.null(levels)) { #warning("Indeterminate number of levels for qi: ", key) levels <- unique(c(val)) } levels <- sort(levels) matrix(NA, nrow=ncol(val), ncol=length(levels), dimnames=list(NULL, levels)) } # for (k in 1:ncol(val)) { if (is.numeric(val[,k])) { row <-c( mean(val[,k], na.rm = TRUE), sd(val[,k], na.rm = TRUE), quantile(val[,k], c(.5, .025, .975), na.rm=TRUE) ) m[k,] <- row # colnames(m) <- c("mean", "sd", "50%", "2.5%", "97.5%") } else if (is.character(val[,k]) || is.factor(val[,k])) { # A table specifying the _percentage_ of simulations matching # each particular level of the factor qi's result.table <- table.levels(val[,k], levels = levels) result.table <- result.table/length(val[,k]) # A character-vector specifying the factors found in the qi factor.names <- sort(names(result.table)) # This should prevent size errors for qi's with # a NULL levels attribute # in particular, it resolves issues m[k, ] <- 0 m[k, factor.names] <- result.table[factor.names] m[k,] <- result.table colnames(m) <- names(result.table) } else m[k,] <- NA col.names <- colnames(val) rownames(m) <- if (is.null(col.names)) "" else col.names } # add to list res[[key]] <- m } # cast as class - for some reason - then return class(res) <- "summarized.qi" res } #' Test If Value is Interpretable as a QI #' @param qi a potential quantity of interest #' @return a logical specifying whether this value should or should-not #' be output #' @author Matt Owen \email{mowen@@iq.harvard.edu} is.qi <- function(qi) { if (is.null(qi)) return(FALSE) else if (!length(qi)) return(FALSE) else if (all(is.na(qi))) return(FALSE) TRUE } #' Create a table, but ensure that the correct #' columns exist. In particular, this allows for #' entires with zero as a value, which is not #' the default for standard tables #' @param x a vector #' @param levels a vector of levels #' @param ... parameters for table #' @return a table #' @author Matt Owen \email{mowen@@iq.harvard.edu} table.levels <- function (x, levels, ...) { # if levels are not explicitly set, then # search inside of x if (missing(levels)) { levels <- attr(x, 'levels') table(factor(x, levels=levels), ...) } # otherwise just do the normal thing else { table(factor(x, levels=levels), ...) } } Zelig/R/user.prompt.R0000644000176000001440000000064012061700507014174 0ustar ripleyusers#' Prompts user to hit enter #' @title Prompt User #' @param msg a character-string, specifying a message to be displayed #' @return This function is used for its side effects #' @export #' @note This function is primarily used by Zelig demo scripts user.prompt <- function (msg = NULL) { if (is.null(msg)) msg <- "Press to continue: " msg <- paste("\n", msg, sep="") invisible(readline(msg)) } Zelig/R/as.parameters.R0000644000176000001440000000635612061700507014455 0ustar ripleyusers#' Generic Method for Converting Objects into 'parameters' #' #' Converts list-style objects into Parameter lists primarily used by the 'qi' #' methods. These list-style objects may contain keys specifying: 'link' (the #' link function of a statistical model), 'linkinv' (the inverse-link #'function), 'family' (a object of 'family' class used to specify the model's #' classification), 'alpha' (a vector of ancillary parameters, and 'simulations' #' (a vector of simulated draws from the model's underlying distribution. #' #' @note Only three scenarios may exist - converting 'parameters' to #' 'parameters', 'list' to 'parameters', and vectors to 'parameters'. The #' third in particular is needed only for backwards compatibility, and support #' will likely be deprecated. #' #' Furthermore, this function should be exlusively used implicitly and #' by Zelig. #' #' @param params the object to be casted #' @param ... parameters reserved for future revisions #' @return an object of type `parameters' #' @seealso as.parameters.list as.parameters.parameters, as.parameters.default #' @author Matt Owen \email{mowen@@ig.harvard.edu} as.parameters <- function(params, ...) UseMethod("as.parameters") #' list -> parameters #' #' The list may contain: 'link', 'linkinv', 'family', 'alpha', and #' 'simulations' keys. #' #' @param params a list object #' @param num an integer specifying the number of simulations #' to be taken #' @param ... ignored parameters #' @return an object of type `parameters' #' @seealso as.parameters #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.parameters.list <- function(params, num=NULL, ...) { # coefficients <- if ("simulations" %in% names(params)) params$simulations else if (num < length(params)) params[1:num] else params[[1]] # Extract alpha parameters from Zelig alpha <- if ("alpha" %in% names(params)) params$alpha else if (num < length(params)) tail(params, -num) # link function if ("link" %in% names(params)) link <- params$link # link-inverse function if ("linkinv" %in% names(params)) linkinv <- params$linkinv # family object, has both a link and link-inverse fam <- if ("family" %in% names(params)) params$family else if ("fam" %in% names(params)) params$fam else NULL # Return parameters(coefficients, alpha, fam=fam, link=link, linkinv=linkinv) } #' parameters -> parameters #' This is merely an identity function when casting 'parameters' objects into #' 'parameters'. #' @param params a parameters object #' @param ... ignored parameters #' @return the same parameter object #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.parameters.parameters <- function(params, ...) params #' ??? -> parameters #' @note This function should be deprecated. #' @param params any non-supported data-type #' @param num an integer specifying the number of simulations to compute #' @param ... ignored #' @return the object passed in #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.parameters.default <- function(params, num=NULL, ...) { if (!missing(num)) { alpha <- if (num < nrow(params)) tail(params, -num) # parameters(simulations=head(params, num), alpha=alpha) } else parameters(simulations=params, alpha=NULL) } Zelig/R/plots.R0000644000176000001440000005503312157627053013057 0ustar ripleyusers#' @S3method plot sim.gamma.gee plot.sim.gamma.gee <- function (x, ...) { # store device settings original.par <- par(no.readonly=TRUE) if (is.null(x$x)) return() panels <- if (is.null(x$x1)) { palette <- rep("black", 3) matrix(1, nrow=1, ncol=1) # How the layout window will look: # +---+ # | 1 | # +---+ } else { palette <- c('red', 'navy', 'black') matrix(c(1, 2, 3, 3), nrow=2, ncol=2, byrow=TRUE) # How the layout window will look: # +-------+ # | 1 | 2 | # +-------+ # | 3 | # +-------+ } layout(panels) # extract quantities of interest ev1 <- x$qi$ev1 ev2 <- x$qi$ev2 fd <- x$qi$fd # Plot ev1 .plot.density(ev1, "Expected Values (for X): E(Y|X)", palette[1]) if (!is.null(x$x1)) { .plot.density(ev2, "Expected Values (for X1): E(Y|X1)", palette[2]) .plot.density(fd, "First Differences: E(Y|X1) - E(Y|X)", palette[3]) } # return plotting device par(original.par) } #' @S3method plot sim.normal.gee plot.sim.normal.gee <- plot.sim.gamma.gee #' @S3method plot sim.poisson.gee plot.sim.poisson.gee <- plot.sim.gamma.gee #' @S3method plot sim.logit.gee plot.sim.logit.gee <- function (x, ...) { # store device settings original.par <- par(no.readonly=TRUE) if (is.null(x$x)) return() panels <- if (is.null(x$x1)) { palette <- rep("black", 4) matrix(1, nrow=1, ncol=1) # How the layout window will look: # +---+ # | 1 | # +---+ } else { palette <- c('red', 'navy', 'black', 'black') matrix(c(1, 2, 3, 3, 4, 4), nrow=3, ncol=2, byrow=TRUE) # How the layout window will look: # +-------+ # | 1 | 2 | # +-------+ # | 3 | # +-------+ # | 4 | # +-------+ } layout(panels) # extract quantities of interest ev1 <- x$qi$ev1 ev2 <- x$qi$ev2 fd <- x$qi$fd rr <- x$qi$rr # Plot ev1 .plot.density(ev1, "Expected Values (for X): E(Y|X)", palette[1]) .plot.density(ev2, "Expected Values (for X1): E(Y|X1)", palette[2]) .plot.density(fd, "First Differences: E(Y|X1) - E(Y|X)", palette[3]) .plot.density(rr, "Risk Ratios: E(Y|X1)/E(Y|X)", palette[4]) # return plotting device par(original.par) } #' @S3method plot sim.probit.gee plot.sim.probit.gee <- plot.sim.logit.gee # Plot Density Graphs for GEE Quantities of Interest # @param x a vector containing quantities of interest # @param main the main title of the plot # @param col the color of the line-plot .plot.density <- function (x, main, col) { if (all(is.na(x))) return() density <- density(x) plot(density(x), main = main, col = col) } #' Plot graphs of simulated multiply-imputed data #' #' This function combines results across multiply imputed results #' and then calls the appropriate plot for that class. #' #' @usage \method{plot}{MI.sim}(...) #' @S3method plot MI.sim #' @param ... ignored parameters #' #' @return the return of the appropriate plot method #' @author James Honaker \email{jhonaker@@iq.harvard.edu} plot.MI.sim <- function(x, ...) { m<-length(x) # The number of imputed datasets reformed<-x[[1]] # Simplified object of the original class all.qi<-attributes(x[[1]]$qi)$names # Convoluted given the current structure of objects ## Currently, we're appending all the qi's together into one object ## Note - everything that is not a qi, will just come from the first imputed dataset if(m>1){ for(i in 2:m){ for(j in all.qi){ # Could do this by position number as "in 1:length(all.qi)" ## The $qi's are themselves lists, so this is difficult: reformed$qi[j][[1]]<-rbind(reformed$qi[j][[1]],x[[i]]$qi[j][[1]]) } } } output<-plot(reformed) ## Return any plot returns invisibly invisible(output) } #' Method for plotting pooled simulations by confidence intervals #' #' Plot confidence intervals of pooled simulated values. #' #' @param x A `sim' object #' @param qi a character-string specifying the quantity of interest to plot #' @param var The variable to be used on the x-axis. Default is the variable #' across all the chosen values with smallest nonzero variance #' @param ... Parameters to be passed to the `truehist' function which is #' implicitly called for numeric simulations #' @param main a character-string specifying the main heading of the plot #' @param sub a character-string specifying the sub heading of the plot #' @param xlab a character-string specifying the label for the x-axis #' @param ylab a character-string specifying the label for the y-axis #' @param legcol ``legend color'', an valid color used for plotting the line #' colors in the legend #' @param col a valid vector of colors of at least length 3 to use to color the #' confidence intervals #' @param leg ``legend position'', an integer from 1 to 4, specifying the #' position of the legend. 1 to 4 correspond to ``SE'', ``SW'', ``NW'', and #' ``NE'' respectively #' @param legpos ``legend type'', exact coordinates and sizes for legend. #' Overrides argment ``leg.type'' #' @return the current graphical parameters. This is subject to change in future #' implementations of Zelig #' @author James Honaker, adapted by Matt Owen \email{mowen@@iq.harvard.edu} #' @export plot.ci #' @usage \method{plot}{ci}(x, qi="ev", var=NULL, ..., legcol="gray20", col=NULL, leg=1, legpos=NULL) plot.ci <- function(x, qi="ev", var=NULL, ..., main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, legcol="gray20", col=NULL, leg=1, legpos=NULL, ci=c(80,95,99.9)) { if(length(ci)<3){ ci<-rep(ci,3) } if(length(ci)>3){ ci<-ci[1:3] } ci<-sort(ci) if (! "pooled.sim" %in% class(x)) { something <- list(x=x) class(something) <- "pooled.sim" attr(something, "titles") <- x$titles x <- something } xmatrix<-matrix(NA,nrow=length(x),ncol=length(x[[1]]$x$data)) for(i in 1:length(x)){ xmatrix[i,]<-as.matrix(x[[i]]$x$data) } if (length(x) == 1 && is.null(var)) { warning("Must specify the `var` parameter when plotting the confidence interval of an unvarying model. Plotting nothing.") return(invisible(FALSE)) } if(is.character(var)){ if( !(var %in% names(x[[1]]$x$data) ) ){ warning("Specified variable for confidence interval plot is not in estimated model. Plotting nothing.") return(invisible(FALSE)) } } if (is.null(var)) { each.var <- apply(xmatrix,2,sd) flag <- each.var>0 min.var<-min(each.var[flag]) var.seq<-1:ncol(xmatrix) position<-var.seq[each.var==min.var] } else { if(is.numeric(var)){ position<-var }else if(is.character(var)){ position<-grep(var,names(x[[1]]$x$data)) } } position<-min(position) xseq<-xmatrix[,position] xname<-names(x[[1]]$x$data[position]) # Use "qi" argument to select quantities of interest and set labels ev1<-NULL if(qi=="pv"){ request<-"Predicted Values: Y|X" if(!is.null(x[[1]]$x1)){ ev1<-simulation.matrix(x, "Predicted Values: Y|X1") } } else if(qi=="fd") { request<-"First Differences: E(Y|X1) - E(Y|X)" } else { request<-"Expected Values: E(Y|X)" if(!is.null(x[[1]]$x1)){ ev1<-simulation.matrix(x, "Expected Values: E(Y|X1)") } } ev<-simulation.matrix(x, request) if (is.null(ylab)){ ylab <- request } # Define functions to compute confidence intervals ci.upper <- function (x, alpha) { pos <- max(round((1-(alpha/100))*length(x)), 1) return(sort(x)[pos]) } ci.lower <- function (x, alpha) { pos<-max(round((alpha/100)*length(x)), 1) return(sort(x)[pos]) } # k<-ncol(ev) n<-nrow(ev) # if(is.null(col)){ myblue1<-rgb( 100, 149, 237, alpha=50, maxColorValue=255) myblue2<-rgb( 152, 245, 255, alpha=50, maxColorValue=255) myblue3<-rgb( 191, 239, 255, alpha=70, maxColorValue=255) myred1 <-rgb( 237, 149, 100, alpha=50, maxColorValue=255) myred2 <-rgb( 255, 245, 152, alpha=50, maxColorValue=255) myred3 <-rgb( 255, 239, 191, alpha=70, maxColorValue=255) col<-c(myblue1,myblue2,myblue3,myred1,myred2,myred3) }else{ if(length(col)<6){ col<-rep(col,6)[1:6] } } form.history <- function (k,xseq,results,ci=c(80,95,99.9)){ history<-matrix(NA, nrow=k,ncol=8) for (i in 1:k) { v <- c( xseq[i], median(results[,i]), ci.upper(results[,i],ci[1]), ci.lower(results[,i],ci[1]), ci.upper(results[,i],ci[2]), ci.lower(results[,i],ci[2]), ci.upper(results[,i],ci[3]), ci.lower(results[,i],ci[3]) ) history[i, ] <- v } if (k == 1) { left <- c( xseq[1]-.5, median(results[,1]), ci.upper(results[,1],ci[1]), ci.lower(results[,1],ci[1]), ci.upper(results[,1],ci[2]), ci.lower(results[,1],ci[2]), ci.upper(results[,1],ci[3]), ci.lower(results[,1],ci[3]) ) right <- c( xseq[1]+.5, median(results[,1]), ci.upper(results[,1],ci[1]), ci.lower(results[,1],ci[1]), ci.upper(results[,1],ci[2]), ci.lower(results[,1],ci[2]), ci.upper(results[,1],ci[3]), ci.lower(results[,1],ci[3]) ) v <- c( xseq[1], median(results[,1]), ci.upper(results[,1],ci[1]), ci.lower(results[,1],ci[1]), ci.upper(results[,1],ci[2]), ci.lower(results[,1],ci[2]), ci.upper(results[,1],ci[3]), ci.lower(results[,1],ci[3]) ) history <- rbind(left, v, right) } return(history) } history<- form.history(k,xseq,ev,ci) if(!is.null(ev1)){ history1<- form.history(k,xseq,ev1,ci) }else{ history1<-NULL } # This is for small sets that have been duplicated so as to have observable volume if(k==1){ k<-3 } # Specify x-axis length all.xlim <- if (is.null(xlim)) c(min(c(history[, 1],history1[, 1])),max(c(history[, 1],history1[, 1]))) else xlim # Specify y-axis length all.ylim <-if (is.null(ylim)) c(min(c(history[, -1],history1[, -1])),max(c(history[, -1],history1[, -1]))) else ylim # Define xlabel if (is.null(xlab)) xlab <- paste("Range of",xname) if (is.null(ylab)) ylab <- "Expected Values: E(Y|X)" ## This is the plot par(bty="n") plot(x=history[, 1], y=history[, 2], type="l", xlim=all.xlim, ylim=all.ylim, main = main, sub = sub, xlab=xlab, ylab=ylab) polygon(c(history[,1],history[k:1,1]),c(history[,7],history[k:1,8]),col=col[3],border="white") polygon(c(history[,1],history[k:1,1]),c(history[,5],history[k:1,6]),col=col[2],border="gray90") polygon(c(history[,1],history[k:1,1]),c(history[,3],history[k:1,4]),col=col[1],border="gray60") polygon(c(history[,1],history[k:1,1]),c(history[,7],history[k:1,8]),col=NA,border="white") if(!is.null(ev1)){ lines(x=history1[, 1], y=history1[, 2], type="l") polygon(c(history1[,1],history1[k:1,1]),c(history1[,7],history1[k:1,8]),col=col[6],border="white") polygon(c(history1[,1],history1[k:1,1]),c(history1[,5],history1[k:1,6]),col=col[5],border="gray90") polygon(c(history1[,1],history1[k:1,1]),c(history1[,3],history1[k:1,4]),col=col[4],border="gray60") polygon(c(history1[,1],history1[k:1,1]),c(history1[,7],history1[k:1,8]),col=NA,border="white") } ## This is the legend if(is.null(legpos)){ if(leg==1){ legpos<-c(.91,.04,.2,.05) }else if(leg==2){ legpos<-c(.09,.04,.2,.05) }else if(leg==3){ legpos<-c(.09,.04,.8,.05) }else{ legpos<-c(.91,.04,.8,.05) } } lx<-min(all.xlim)+ legpos[1]*(max(all.xlim)- min(all.xlim)) hx<-min(all.xlim)+ (legpos[1]+legpos[2])*(max(all.xlim)- min(all.xlim)) deltax<-(hx-lx)*.1 my<-min(all.ylim) +legpos[3]*min(max(all.ylim) - min(all.ylim)) dy<-legpos[4]*(max(all.ylim) - min(all.ylim)) lines(c(hx+deltax,hx+2*deltax,hx+2*deltax,hx+deltax),c(my+3*dy,my+3*dy,my-3*dy,my-3*dy),col=legcol) lines(c(hx+3*deltax,hx+4*deltax,hx+4*deltax,hx+3*deltax),c(my+1*dy,my+1*dy,my-1*dy,my-1*dy),col=legcol) lines(c(lx-deltax,lx-2*deltax,lx-2*deltax,lx-deltax),c(my+2*dy,my+2*dy,my-2*dy,my-2*dy),col=legcol) lines(c(lx-5*deltax,lx),c(my,my),col="white",lwd=3) lines(c(lx-5*deltax,lx),c(my,my),col=legcol) lines(c(lx,hx),c(my,my)) polygon(c(lx,lx,hx,hx),c(my-3*dy,my+3*dy,my+3*dy,my-3*dy),col=col[3],border="white") polygon(c(lx,lx,hx,hx),c(my-2*dy,my+2*dy,my+2*dy,my-2*dy),col=col[2],border="gray90") polygon(c(lx,lx,hx,hx),c(my-1*dy,my+1*dy,my+1*dy,my-1*dy),col=col[1],border="gray60") polygon(c(lx,lx,hx,hx),c(my-3*dy,my+3*dy,my+3*dy,my-3*dy),col=NA,border="white") text(lx,my,labels="median",pos=2,cex=0.5,col=legcol) text(lx,my+2*dy,labels=paste("ci",ci[2],sep=""),pos=2,cex=0.5,col=legcol) text(hx,my+1*dy,labels=paste("ci",ci[1],sep=""),pos=4,cex=0.5,col=legcol) text(hx,my+3*dy,labels=paste("ci",ci[3],sep=""),pos=4,cex=0.5,col=legcol) } #' Method for plotting pooled simulations by confidence intervals #' #' Plot pooled simulated quantities of interest. #' @usage \method{plot}{pooled.sim}(x, qi="ev", var=NULL, ..., legcol="gray20", col=NULL, leg=1, legpos=NULL) #' @S3method plot pooled.sim #' @param x A `sim' object #' @param qi a character-string specifying the quantity of interest to plot #' @param var The variable to be used on the x-axis. Default is the variable #' across all the chosen values with smallest nonzero variance #' @param ... Parameters to be passed to the `truehist' function which is #' implicitly called for numeric simulations #' @param legcol ``legend color'', an valid color used for plotting the line #' colors in the legend #' @param col a valid vector of colors of at least length 3 to use to color the #' confidence intervals #' @param leg ``legend position'', an integer from 1 to 4, specifying the #' position of the legend. 1 to 4 correspond to ``SE'', ``SW'', ``NW'', and #' ``NE'' respectively #' @param legpos ``legend type'', exact coordinates and sizes for legend. #' Overrides argment ``leg.type'' #' @return the current graphical parameters. This is subject to change in future #' implementations of Zelig #' @author James Honaker, adapted by Matt Owen \email{mowen@@iq.harvard.edu} plot.pooled.sim <- plot.ci #' Method for plotting simulations #' #' Plot simulated quantities of interest. #' @usage \method{plot}{sim}(x, ...) #' @S3method plot sim #' @param x a `sim' object #' @param ... parameters to be passed to the `truehist' function which is #' implicitly called for numeric simulations #' @return nothing #' @author Matt Owen \email{mowen@@iq.harvard.edu} plot.sim <- function (x, ...) { env <- tryCatch( asNamespace(x$package.name), # error = function (e) { warning("") globalenv() } ) # If plotPackageName if (exists("plot.simulations", envir = env, mode="function")) { # Get the simulation, because we know it exists .plotter <- get("plot.simulations", envir = env, mode="function") # Pass to a temporary variable to improve the visibility of the traceback # if there is an error res <- .plotter(x, ...) # Return object (whatever it is) return(invisible(res)) } # Otherwise we just use this fall-back old.par <- par(no.readonly = T) # Some numbers we use to make things count<- 0 for(i in 1:length(names(x$qi))){ if (!all( is.na(x$qi[[i]]) ) & !is.null(x$qi[[i]]) ) count<-count+1 } total.qis<-max(count,1) #total.qis <- length(names(x$qi)) palette <- rainbow(total.qis) total.cols <- 2 total.rows <- ceiling(total.qis/total.cols) if(total.rows==1){ total.rows<-2 total.cols<-1 } vals <- ifelse(total.qis %% 2, c(1:total.qis, total.qis), 1:total.qis) # Colors! color.blue <- rgb(100, 149, 237, maxColorValue=255) # vals <- if (total.qis %% 2) { c(1:total.qis, total.qis) } else { 1:total.qis } # Construct layout layout(matrix(vals, total.rows, total.cols, byrow=TRUE)) k <- 1 for (title in names(x$qi)) { simulations.plot(x$qi[[title]], main = title, col = palette[k], line.col = "black") k <- k + 1 } # return(par(old.par)) } #' @S3method plot sim.cloglog.net plot.sim.cloglog.net <- function (x, ...) { env <- tryCatch( asNamespace(x$package.name), error = function (e) { warning("") globalenv() } ) # If plotPackageName if (exists("plot.simulations", envir = env, mode="function")) { # Get the simulation, because we know it exists .plotter <- get("plot.simulations", envir = env, mode="function") # Pass to a temporary variable to improve the visibility of the traceback # if there is an error res <- .plotter(x, ...) # Return object (whatever it is) return(invisible(res)) } # Otherwise we just use this fall-back old.par <- par(no.readonly = T) # Some numbers we use to make things total.qis <- length(names(x$qi)) palette <- rainbow(total.qis) total.cols <- 2 total.rows <- ceiling(total.qis/total.cols) vals <- ifelse(total.qis %% 2, c(1:total.qis, total.qis), 1:total.qis) # Colors! color.blue <- rgb(100, 149, 237, maxColorValue=255) # vals <- if (total.qis %% 2) { c(1:total.qis, total.qis) } else { 1:total.qis } # Construct layout layout(matrix(vals, total.rows, total.cols, byrow=TRUE)) k <- 1 for (title in names(x$qi)) { simulations.plot(x$qi[[title]], main = title, col = palette[k], line.col = "black") k <- k + 1 } # return(par(old.par)) } #' Plot Any Simulation from the Zelig Core Package #' #' Plots any simulation from the core package. In general, this function can #' \emph{neatly} plot simulations containing five of the popular ``quantities #' of interest'' - ``Expected Values: E(Y|X)'', ``Predicted Values: Y|X'', #' ``Expected Values (for X1): E(Y|X1)'', ``Predicted Values (for X1): Y|X1'' #' and ``First Differences: E(Y|X1) - E(Y|X)''. #' @param x an object #' @param ... parameters passed to the ``plot'' and ``barplot'' functions #' @return the original graphical parameters #' @author Matt Owen \email{mowen@@iq.harvard.edu} plot.simulations <- function (x, ...) { # Save old state old.par <- par(no.readonly=T) # Quantities of Interest qi <- x$qi # Define Relevant quantity of interest titles that have special properties ev.titles <- c('Expected Values: E(Y|X)', 'Expected Values: E(Y|X1)') pv.titles <- c('Predicted Values: Y|X', 'Predicted Values: Y|X1') # Determine whether two "Expected Values" qi's exist both.ev.exist <- all(ev.titles %in% names(qi)) # Determine whether two "Predicted Values" qi's exist both.pv.exist <- all(pv.titles %in% names(qi)) # Color of x should always be this pertty blue color.x <- rgb(242, 122, 94, maxColorValue=255) color.x1 <- rgb(100, 149, 237, maxColorValue=255) # This mixes the above two colors, and converts the result into hexadecimal color.mixed <- rgb(t(round((col2rgb(color.x) + col2rgb(color.x1))/2)), maxColorValue=255) if (is.null(x$x)) { return(par(old.par)) } else if (is.null(x$x1) || is.na(x$x1)) { panels <- matrix(1:2, 2, 1) # The plotting device: # +--------+ # | 1 | # +--------+ # | 2 | # +--------+ } else { panels <- matrix(c(1:5, 5), ncol=2, nrow=3, byrow = TRUE) panels <- if (xor(both.ev.exist, both.pv.exist)) rbind(panels, c(6, 6)) else if (both.ev.exist && both.pv.exist) rbind(panels, c(6, 7)) else panels # the plotting device: # # +-----------+ +-----------+ # | 1 | 2 | | 1 | 2 | # +-----+-----+ +-----+-----+ # | 3 | 4 | | 3 | 4 | # +-----+-----+ OR +-----+-----+ # | 5 | | 5 | # +-----------+ +-----------+ # | 6 | 7 | | 6 | # +-----+-----+ +-----+-----+ } # layout(panels) titles <- list( ev = "Expected Values: E(Y|X)", ev1 = "Expected Values: E(Y|X1)", pv = "Predicted Values: Y|X", pv1 = "Predicted Values: Y|X1", fd = "First Differences: E(Y|X1) - E(Y|X)" ) # Plot each simulation simulations.plot(qi[[titles$pv]], main = titles$pv, col = color.x, line.col = "black") simulations.plot(qi[[titles$pv1]], main = titles$pv1, col = color.x1, line.col = "black") simulations.plot(qi[[titles$ev]], main = titles$ev, col = color.x, line.col = "black") simulations.plot(qi[[titles$ev1]], main = titles$ev1, col = color.x1, line.col = "black") simulations.plot(qi[[titles$fd]], main = titles$fd, col = color.mixed, line.col = "black") if (both.pv.exist) { simulations.plot( qi[["Predicted Values: Y|X"]], qi[["Predicted Values: Y|X1"]], main = "Comparison of Y|X and Y|X1", # Note that we are adding transparency to this col = paste(c(color.x, color.x1), "80", sep=""), line.col = "black") } if (both.ev.exist) { simulations.plot( qi[["Expected Values: E(Y|X)"]], qi[["Expected Values: E(Y|X1)"]], main = "Comparison of E(Y|X) and E(Y|X1)", # Note that we are adding transparency to this col = paste(c(color.x, color.x1), "80", sep=""), line.col = "black") } # Restore old state par(old.par) # Return old parameter invisibly invisible(old.par) } plot.zelig.relogit <- function(x, xlab ="", user.par = FALSE, alt.col = "red", ylab = NULL, samples = 100, ...){ k <- length(x$qi) op <- par(no.readonly = TRUE) if (!user.par) par(mar = c(4,4,2,1), tcl = -0.25, mgp = c(2, 0.6, 0)) par(mfrow = c(k, 1)) if (dim(x$qi[[1]])[2] == 1) { pr <- x$qi$pr y0 <- 100 * sum(pr == 0)/length(pr) y1 <- 100 * sum(pr == 1)/length(pr) barplot(c(y0, y1), horiz = TRUE, col = alt.col, las = 1, names.arg = c("Y = 0", "Y = 1"), xlab = "Percentage of Simulations", main = x$qi.name$pr, xlim = c(0, 100)) x$qi$pr <- x$qi.name$pr <- NULL for (i in 1:(k-1)) { qi <- as.vector(x$qi[[i]]) plot(density(qi), main = x$qi.name[[i]], xlab = xlab, ...) } } else { for (i in 1:k) { qi <- x$qi[[i]] main <- as.character(x$qi.name[i]) if (is.null(rownames(qi))) rownames(qi) <- 1:dim(qi)[1] idx <- as.integer(sample(rownames(qi), 100)) tmp <- qi[idx,,1] xlim <- c(min(qi[,1,1]), max(qi[,2,1])) if (is.null(ylab)) ylab <- paste("Observations (n = ", samples, ")", sep = "") plot(xlim, type = "n", xlab = xlab, ylab = ylab, main = main, ylim = c(0, 100), xlim = xlim, ...) for (j in 1:nrow(tmp)) lines(c(tmp[j,1], tmp[j,2]), c(j,j), col = alt.col) abline(v = mean(qi[,1,1])) abline(v = mean(qi[,2,1])) } } par(op) } Zelig/R/help.zelig.R0000644000176000001440000000505112061700507013740 0ustar ripleyusers#' Help system for Zelig models #' @param ... the help files to look-up #' @return results of calling the specific help function #' @export #' @author Matt Owen \emph{mowen@@iq.harvard.edu} help.zelig <- function (...) { driver <- match.call() driver <- as.character(driver) name <- NULL if(length(driver) > 1){ name <- driver[2] } else { print(do.call("help",list(package="Zelig"), envir=parent.frame())) return(invisible(NULL)) } if (name == "models"){ print(do.call("vignette", list(package="Zelig"))) return(invisible(NULL)) } filesPDf <- NULL helpfile <- try(system.file("Meta", "vignette.rds", package="Zelig")) if(helpfile!=""){ helpMtrx <- readRDS(helpfile) ix <- grep("[pP][dD][fF]", colnames(helpMtrx)) if(length(ix)) filesPDF <- helpMtrx[,ix] if(length(filesPDF) && length(name)) { fl <- paste("^",name,".pdf$",sep="") ix <- grep(fl,filesPDF) if(length(ix)){ file <- filesPDF[ix] print(do.call("vignette", c(list(topic=name),list(package="Zelig")))) return(invisible(list())) } } } helpfile <- try(system.file("Meta", "hsearch.rds", package="Zelig")) fileshtml <- NULL if(helpfile != "") { helpMtrx <- readRDS(helpfile) fileshtml <- helpMtrx[[2]][,"Aliases"] ix <- grep("url$", fileshtml) if(length(ix)) fileshtml <- fileshtml[-ix] if(length(fileshtml) && length(name)) { ix <- grep(name, fileshtml) if(length(ix)){ print(do.call("help", c(list(as.name(name)), list(package="Zelig")), envir=parent.frame())) return(invisible(NULL)) } } } ##message("Not valid input...Showing package description") do.call("help", c(list("Zelig"), list(package="Zelig")), envir=parent.frame()) } Zelig/R/list.depth.R0000644000176000001440000000175512061700507013764 0ustar ripleyusers#' Count the Depth of a List Object #' #' This function recursively computes the depth of a list object. That is, it #' determines how many layers or levels exist within the object. #' @note This function is used internally by Zelig. #' @param obj a vector or list object #' @author Matt Owen \email{mowen@@iq.harvard.edu} list.depth <- function (obj) { # Stop-recursing conditions if (length(obj) == 0) return(0) else if (is.atomic(obj)) # Atomic vectors can only have one level return(1) else if (!is.list(obj)) # If the object is not a list, then we have the option whether to compute # the depth of its elements. return(1) # Produce a list of integers, specifying the depth of each element results <- Map(list.depth, obj) # Ensure that the result is a non-list results <- unlist(results) # Find the maximum, ensuring that the value is neither negative nor -Inf max.depth <- max(results, 0) # Add one for the level that we are on 1 + max.depth } Zelig/R/normal.R0000644000176000001440000000743712071063367013210 0ustar ripleyusers#' Interface between normal model and Zelig #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param weights a numeric vector #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2normal <- function(formula, weights=NULL, ..., data) z( glm, # .hook = "robust.glm.hook", formula = formula, weights = weights, family = gaussian, model = F, data = data ) #' Param Method for the 'normal' Zelig Model #' @note This method is used by the 'normal' Zelig model #' @usage \method{param}{normal}(obj, num=1000, ...) #' @S3method param negbinom #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.normal <- function(obj, num=1000, ...) { degrees.freedom <- .fitted$df.residual sig2 <- summary(.fitted)$dispersion list( simulations = mvrnorm(n=num, mu=coef(.fitted), Sigma=vcov(.fitted)), alpha = sqrt(degrees.freedom * sig2 / rchisq(num, degrees.freedom)), link = function (x) x, linkinv = function (x) x ) } #' Compute quantities of interest for 'normal' Zelig models #' @usage \method{qi}{normal}(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi normal #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.normal <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { # get `num` samples from the underlying distribution coef <- coef(param) alpha <- alpha(param) # theta = eta, because inverse of # normal models' link function is # the identity theta <- matrix(coef %*% t(x), nrow=nrow(coef)) # pr <- matrix(NA, nrow=nrow(theta), ncol=ncol(theta)) # ev <- theta ev1 <- pr1 <- fd <- NA for (i in 1:nrow(ev)) pr[i,] <- rnorm(ncol(ev), mean = ev[i,], sd = alpha[i]) # if x1 is not NULL, run more simultations # ... if (!is.null(x1)) { # quantities of interest lis1 <- qi(obj, x1, num=num, param=param) # pass values over ev1 <- lis1[[1]] pr1 <- lis1[[3]] # compute first differences fd <- ev1 - ev } # return list("Expected Values: E(Y|X)" = ev, "Expected Values: E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values: Y|X1" = pr1, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' Describe the \code{normal} model to Zelig #' @usage \method{describe}{normal}(...) #' @S3method describe normal #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.normal <- function(...) { # parameters object parameters <- list(pi = list( equations = c(1, 1), tags.allowed = FALSE, dep.var = TRUE, exp.var = TRUE ) ) # return list list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2008, category = "continuous", parameters = parameters, text = "Normal Regression for Continuous Dependent Variables" ) } Zelig/R/normal.gee.R0000644000176000001440000000374112110047000013715 0ustar ripleyusers#' Interface between the Zelig Model normal.gee and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param id a character-string specifying the column of the data-set to use #' for clustering #' @param robust a logical specifying whether to robustly or naively compute #' the covariance matrix. This parameter is ignore in the \code{zelig2} #' method, and instead used in the \code{robust.hook} function, which #' executes after the call to the \code{gee} function #' @param ... ignored parameters #' @param R a square-matrix specifying the correlation #' @param corstr a character-string specifying the correlation structure #' @param data a data.frame #' @return a list specifying the call to the external model #' @export zelig2normal.gee <- function (formula, id, robust, ..., R = NULL, corstr = "independence", data) { loadDependencies("gee") if (corstr == "fixed" && is.null(R)) stop("R must be defined") # if id is a valid column-name in data, then we just need to extract the # column and re-order the data.frame and cluster information if (is.character(id) && length(id) == 1 && id %in% colnames(data)) { id <- data[, id] data <- data[order(id), ] id <- sort(id) } z( .function = gee, .hook = robust.gee.hook, formula = formula, id = id, corstr = corstr, family = gaussian(), R = R, data = data, ... ) } #' @S3method param normal.gee param.normal.gee <- function(obj, num=1000, ...) { # Extract means to compute maximum likelihood mu <- coef(obj) # Extract covariance matrix to compute maximum likelihood Sigma <- vcov(obj) # list( coef = mvrnorm(num, mu, Sigma), linkinv = function (x) x ) } #' @S3method qi normal.gee qi.normal.gee <- qi.gamma.gee #' @S3method describe normal.gee describe.normal.gee <- function(...) { list( authors = "Patrick Lam", text = "General Estimating Equation for Normal Regression", year = 2011 ) } Zelig/R/as.qi.R0000644000176000001440000001607612061700507012723 0ustar ripleyusers#' Generic Method for Converting Various Objects into 'qi' Objects #' 'qi' objects are list-style objects used by the 'summarize' function to #' compute simple summaries about the simulated data. For readability and #' and simplicity purposes, the 'qi' function typically returns a list of #' named simulations. This list is converted internally by Zelig into a 'qi' #' object so that several methods can be easily applied to the Quantities of #' Interest: plot, summarize, and print #' @note These functions are primarily used internall by Zelig and should not #' be used in the Global namespace. #' @param s the object to be casted #' @return an object of type `qi' #' @seealso as.qi.default as.qi.qi as.qi.list #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.qi <- function(s) UseMethod("as.qi") #' ??? -> qi #' #' @param s any unsupported object #' @return an object of type `qi' #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.qi.default <- function(s) stop("as.qi does not yet support this data-type") #' qi -> qi #' #' @param s an object of type `qi' #' @return s an object of type `qi' #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.qi.qi <- function(s) s #' list -> qi #' This function has a lot of room to go wrong. It tries o detect whether the #' zelig model is old-style or new-style (as of 4/4/2011). Eventually this #' feature should be phased out. #' @note This method has peculiar behavior when the list contains only two #' elements. The crucial fix is to simply remove the portion of code which #' intentionally implements this perculiar behavior. #' @param s a list #' @return an object of type `qi' #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.qi.list <- function(s) { #q <- list(titles=list(), stats=list()) titles <- list() stats <- list() # divide the list into ones with/without keys keys <- splitUp(s) fail.names <- paste("qi", 1:length(s), sep="") success.names <- unlist(Map(.acronym, names(s), fail='')) success.names <- .number.list(success.names) # create new environment env <- new.env() # iterator k <- 1 long <- list() short <- list() stats <- list() # add the named entries for (title in names(keys$wordful)) { key <- if (regexpr("^[a-zA-Z]", success.names[k]) != -1) success.names[k] else '' stats[[key]] <- keys$wordful[[title]] long[[title]] <- key #attr(stats, title) <- key # increment counter k <- k + 1 } attr(stats, ".index") <- long q <- stats # cast as `qi' object, and return class(q) <- "qi" q } #' Print a Quantity of Interest in Human-Readable Form #' #' Print simulated quantities of interest in a human-readable form #' #' @usage \method{print}{qi}(x, ...) #' @S3method print qi #' @param x a qi object #' @param ... ignored parameters #' @return the object that was printed (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.qi <- function(x, ...) { self <- x # error-catching if (length(self$titles) != length(self$stats)) stop("corrupted object! titles and stats length mismatch") qi.length <- length(self) # iterate through for (k in 1:qi.length) { # output title message(self$titles[[k]]) # output qi print(self$stats[[k]]) # just to prevent extra end-line if (k != qi.length) message() } invisible(x) } #' The Names of a 'qi' Object #' #' Function to get the names of a 'qi' object. This function does not entirely #' parallel the functionality of traditional 'names' methods; this is because #' the \code{$} operator has been overloaded to support a unique style of value #' extraction. For technical details, please see the source code. #' @note No method exists to set the names of a 'qi' object, once it is #' constructed. This will be a feature added later. #' @usage \method{names}{qi}(x) #' @S3method names qi #' @param x a 'qi' object #' @return a character-vector containing the names of the Quantities of #' Interest #' @author Matt Owen \email{mowen@@iq.harvard.edu} names.qi <- function(x) { names(attr(x, ".index")) } #' Convert a Vector of Character Strings into Acronyms #' This function will convert a vector of character strings into their #' appropriately titled acronym forms. That is, the two Quantity of Interest #' titles: #' \begin{itemize} #' \item "Expected Values (for X): E(Y|X)" #' \item "Expected Values (for X1): E(Y|X1)" #' \end{itemize} #' The result will be: "ev1" and "ev2". That is, the acronym will not contain #' information kept in paranetheses or after a colon. #' @note This function currently includes preopositions as parts of acroynms #' @param str a vector of character strings to convert into acronymns #' @param fail a result to produce upon failure #' @return a vector of character-strings #' @author Matt Owen \email{mowen@@iq.harvard.edu} .acronym <- function(str, fail=str) { ignored.words <- c( "in", "for", "by", "the", "a", "an" ) # remove all text after colon # remove trailing whitespace # remove leading whitespace # remove paranthetical statements # remove non-alphanumerics reduced <- sub(':.*$', '', str) reduced <- sub('\\s+$', '', reduced, perl=TRUE) reduced <- sub('^\\s+', '', reduced, perl=TRUE) reduced <- gsub('\\(.*?\\)', '', reduced, perl=TRUE) # if we get an empty string, return whatever the fail value is if (nchar(reduced) < 1) return(fail) # splitted is not a word, I know # 1. split the reduced string into non-whitespace characters # 2. take the first letter of each # 3. put into lowercase splitted <- unlist(strsplit(reduced, '\\s+')) # remove ignored words ## splitted <- Filter( ## function (char) regexpr( ## splitted ## ) splitted <- substr(splitted, 1, 1) splitted <- tolower(splitted) # remove all non-letters acronym <- Filter( function (char) regexpr('^[a-zA-Z]$', char, perl=TRUE), splitted ) # paste together, and return paste(acronym, sep="", collapse="") } #' Append Numbers to Identically Valued Strings #' This function ensures that vectors of strings are uniquely named. #' @note This function is used in tandem with '.acronym' to correctly produce #' short-names for quantities of interest. #' @param vec a vector of character-string #' @return a vector of character-strings of shorter length. Duplicate hits on #' short-titled names append a number to the end. E.g.: the character vector #' if vec equals c('ev', 'ev', 'pr'), then the result will be: #' c('ev1', 'ev2', 'pr') #' @author Matt Owen \email{mowen@@iq.harvard.edu} .number.list <- function(vec) { if (!is.character(vec)) { warning() return(vec) } final.list <- c() unique.vec <- unique(vec) for (k in 1:length(vec)) { val <- vec[k] hits <- sum(val == vec[1:k]) total.hits <- sum(val == vec) final.list[names(vec)[k]] <- if (total.hits > 1) paste(val, hits, sep="") else val } # return final.list } Zelig/R/sim.MI.R0000644000176000001440000000251212151471374013001 0ustar ripleyusers#' Simulate Multiply Imputed Data #' @usage \method{sim}{MI}(obj, x=NULL, x1=NULL, y=NULL, num=1000, ...) #' @S3method sim MI #' @param obj a 'zelig.MI' object containing several fits for two or more #' subsetted data-frames #' @param x a 'setx.mi' object containing explanatory variables for each #' fitted model #' @param x1 a 'setx.mi' object containing explanatory variables for each #' fitted model #' @param y this feature is currently unimplemented #' @param num an integer specifying the number of simulations to compute #' @param ... ignored parameters #' @return a 'sim.MI' with simulated quantities of interest for each fitted #' contained by 'obj' #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @seealso \link{sim} sim.MI <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, ...) { sim.results <- list() m<-length(obj) mi.num<-ceiling(num/m) for (key in names(obj)) { object <- obj[[key]] new.x <- x[[key]] new.x1 <- x1[[key]] new.y <- y[[key]] sim.results[[key]] <- sim(object, x=new.x, x1=new.x1, y=new.y, num=mi.num) } model <- get('model', attr(obj, 'state')) class(sim.results) <- c( 'MI.sim', paste(model, "mi-sim", sep="-"), paste(model, "mi.sim", sep=".") ) sim.results } Zelig/R/bootstrap.normal.R0000644000176000001440000000157112061700507015206 0ustar ripleyusers#' Bootstrap Parameters for Zelig ``normal'' GLM #' #' Returns bootstrapped parameter estimates for a Gaussian GLM. #' @usage \method{bootstrap}{normal}(obj, num, ...) #' @S3method bootstrap normal #' @param obj a ``zelig'' object that will be used to produce boot-strapped #' parameters #' @param num an integer specifying the number of simulations to produce #' @param ... extra parameters to be passed to the ``boot'' method. These are #' typically ignored, but is included for further expansion. #' @return a list containing information concerning link, link-inverses, etc. #' @author Matt Owen \email{mowen@@iq.harvard.edu} bootstrap.normal <- function (obj, num, ...) { degrees.freedom <- obj[["df.residual"]] sig2 <- summary(obj)$dispersion alpha <- sqrt(degrees.freedom * sig2 / rchisq(20, degrees.freedom)) list( alpha = alpha, beta = coef(obj) ) } Zelig/R/as.matrix.setx.R0000644000176000001440000000200112061700507014557 0ustar ripleyusers#' Convert a 'setx' Object to a Matrix #' #' The setx object is, in its most basic form, a list of column names and values #' specified for each of these column names. This function simply converts the #' key-value pairs of column-name and specified value into a matrix. #' #' @note This method allows basic matrix arithmetic operations on data objects, #' which mirror values stored within setx objects. In many scenarios, #' simulations require matrix-multiplication, etc. to be performed on a #' data-set. This function faciliates that need. #' #' @usage \method{as.matrix}{setx}(x, ...) #' @S3method as.matrix setx #' @param x a setx object #' @param ... ignored parameters #' @return a matrix containing columns and rows corrseponding to the explanatory #' variables specified in the call to the 'setx' function #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.matrix.setx <- function(x, ...) { if (!is.null(x$matrix)) #as.matrix(x$updated[, x$explan]) x$matrix else stop("unspecified error") } Zelig/R/description.R0000644000176000001440000001155612061700507014231 0ustar ripleyusers#' Constructor for the 'description' class #' #' @param authors a character-vector of author names #' @param year a numeric specifying the year #' @param model a character-string specifying model name #' @param text a character-string specifying the title of the model. This #' typically includes more exact information than 'model'. E.g., for the #' 'logit' the title 'Logistic Regression for Dichotomous Variables' would be #' a suitable text parameter. #' @param url a character-string specifying the model's software page #' @param category deprecated until data-verse bindings are reevaluated #' @return an object of type 'description' #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} description <- function(authors=c("Kosuke Imai", "Gary King", "Olivia Lau"), year=NULL, model="", text="", url="", category = NULL) { # error-catching if (!is.character(authors)) author <- "Kosuke Imai, Gary King, and Olivia Lau" else if (length(authors) > 1) { # collapse author names if it is a character-vector bigger than 1 authors <- paste(paste(head(authors, -1), collapse=", "), ", and ", tail(authors, 1), sep = "" ) } if (!is.numeric(year)) year <- as.numeric(format(Sys.Date(), "%Y")) if (!is.character(model) || length(model) != 1) { print(model) stop("model must be a character-string") } if (length(text) > 1) stop("text must be a character-vector of length 1") if (is.null(url)) url <- "http://gking.harvard.edu/zelig" if (!is.character(category)) category <- "" else if (length(url) > 1 || !is.character(url)) stop("url must be a character-vector of length 1") # double back-up, even though this should be impossible now authors <- ifelse(nchar(authors) > 0, authors, "NAMELESS AUTHOR") year <- ifelse(!is.null(year), year, "UNKNOWN YEAR") model <- ifelse(nchar(model) > 0, model, "UNNAMED MODEL") # construct object self <- list(authors = authors, year = year, model = model, text = text, url = url ) class(self) <- "description" self } #' Citation information for a 'description' object #' @param descr an object of type 'description' #' @return a character-string giving citation info #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} cite <- function(descr) { # if (inherits(descr, "list")) descr <- as.description(descr) else if (!inherits(descr, "description")) descr <- description() # url <- "http://gking.harvard.edu/zelig" title <- if (is.null(descr$text)) descr$model else paste(descr$model, ": ", descr$text, sep="") # quote title <- paste('"', title, '"', sep="") # construct string. This should be done much more elegantly # and with localization str <- "How to cite this model in Zelig:\n " str <- paste(str, descr$authors, ". ", descr$year, ".\n ", title, sep="") str <- paste(str, "\n in Kosuke Imai, Gary King, and Olivia Lau, ", sep="") str <- paste(str, "\"Zelig: Everyone's Statistical Software,\"", sep="") str <- paste(str, "\n ", url, "\n", sep="") str } #' Generic Method for Casting 'description' Objects #' #' Convert the result of a call to the 'describe' method into an object #' parseble by Zelig. Currently conversions only exist for lists and #' description objects. #' @param descr an object to cast an object of type 'description' #' @param ... parameters which are reserved for future Zelig revisions #' @return an object of type 'description' #' @export #' @seealso as.description.description as.description.list #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.description <- function(descr, ...) UseMethod("as.description") #' description -> description #' #' Identity operation on a description object. #' @S3method as.description description #' @usage \method{as.description}{description}(descr, ...) #' @param descr an object of type 'description' #' @param ... ignored #' @return the same object #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.description.description <- function(descr, ...) descr #' list -> description #' #' Convert list into a description object. #' @usage \method{as.description}{list}(descr, ...) #' @S3method as.description list #' @param descr a list #' @param ... ignored #' @return an object of type 'description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} as.description.list <- function(descr, ...) { text <- if (!is.null(descr$text)) descr$text else if (!is.null(descr$description)) descr$description else NULL description(authors = descr$authors, year = descr$year, model = descr$model, text = text, url = descr$url, category= descr$category ) } Zelig/R/is.formula.R0000644000176000001440000000051612061700507013757 0ustar ripleyusers#' Whether an Object is a Formula #' #' This is a boolean-check to see whether an object is a formula. #' @note This will not be shared in the Zelig/ZeligFormulae namespace. #' @param x an object #' @return a logical specifying whether an object is a formula #' @author Matt Owen is.formula <- function (x) "formula" %in% class(x) Zelig/R/oprobit.bayes.R0000644000176000001440000000703212110047000014443 0ustar ripleyusers#' @export zelig2oprobit.bayes <- function ( formula, burnin = 1000, mcmc = 10000, verbose=0, ..., data ) { loadDependencies("MCMCpack", "coda") if (missing(verbose)) verbose <- round((mcmc + burnin)/10) list( .function = "MCMCoprobit", .hook = "MCMChook", formula = formula, data = data, burnin = burnin, mcmc = mcmc, verbose= verbose, # Most parameters can be simply passed forward ... ) } #' @S3method param oprobit.bayes param.oprobit.bayes <- function(obj, num=1000, ...) { # Produce the model matrix in order to get all terms (explicit and implicit) # from the regression model. mat <- model.matrix(obj$result, data=obj$data) # Response Terms p <- ncol(mat) # All coefficients coefficients <- coef(obj) # Coefficients for predictor variables beta <- coefficients[, 1:p] # Middle values of "gamma" matrix mid.gamma <- coefficients[, -(1:p)] # ... level <- ncol(coefficients) - p + 2 # Initialize the "gamma" parameters gamma <- matrix(NA, nrow(coefficients), level + 1) # The first, second and last values are fixed gamma[, 1] <- -Inf gamma[, 2] <- 0 gamma[, ncol(gamma)] <- Inf # All others are determined by the coef-matrix (now stored in mid.gamma) if (ncol(gamma) > 3) gamma[, 3:(ncol(gamma)-1)] <- mid.gamma # return list( simulations = beta, alpha = gamma, linkinv = NULL ) } #' @S3method qi oprobit.bayes qi.oprobit.bayes <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { labels <- levels(model.response(model.frame(obj$result))) res1 <- compute.oprobit.bayes(x, param, labels) res2 <- compute.oprobit.bayes(x1, param, labels) # list( "Expected Value: E(Y|X)" = res1$ev, "Predicted Value: Y|X" = res1$pv, "Expected Value (for X1): E(Y|X1)" = res2$ev, "Predicted Value (for X1): Y|X1" = res2$pv, "First Differences: E(Y|X1) - E(Y|X)" = res2$ev - res1$ev ) } # Helper function used to generate expected values compute.oprobit.bayes <- function (x, param, labels) { # If either of the parameters are invalid, # Then return NA for both qi's if (is.null(x) || is.na(x) || is.null(param)) return(list(ev=NA, pv=NA)) # Extract simulated parameters beta <- coef(param) gamma <- alpha(param) # x is implicitly cast into a matrix eta <- beta %*% t(x) # **TODO: Sort out sizes of matrices for these things. ev <- array(NA, c(nrow(eta), ncol(gamma) - 1, ncol(eta))) pv <- matrix(NA, nrow(eta), ncol(eta)) # Compute Expected Values # *********************** # Note that the inverse link function is: # pnorm(gamma[, j+1]-eta) - pnorm(gamma[, j]-eta) for (j in 1:(ncol(gamma)-1)) { ev[, j, ] <- pnorm(gamma[, j+1]-eta) - pnorm(gamma[, j]-eta) } colnames(ev) <- labels # Compute Predicted Values # ************************ for (j in 1:nrow(pv)) { mu <- eta[j, ] pv[j, ] <- as.character(cut(mu, gamma[j, ], labels=labels)) } # **TODO: Update summarize to work with at most 3-dimensional arrays ev <- ev[, , 1] # Return list(ev = ev, pv = pv) } #' @S3method describe oprobit.bayes describe.oprobit.bayes <- function(...) { list( text = "Bayesian Probit Regression for Dichotomous Dependent Variables", authors = c("Ben Goodrich", "Ying Lu"), year = 2013 ) } Zelig/R/print.R0000644000176000001440000002765412216375154013060 0ustar ripleyusers#' Print a Zelig Object #' @S3method print zelig print.zelig <- function (x, ...) { name <- x$name package.name <- x$package.name call <- x$call cat("Model Name: ", name, "\n") cat("Package Name: ", package.name, "\n") cat("Call:\n") print(call) # message("\nFor information about the fitted model, use the summary() function.") # Return invisibly invisible(x) } #' Print a Bundle of Data-sets #' #' @S3method print setx.mi #' @usage \method{print}{setx.mi}(x, ...) #' @param x a \code{setx} object to print #' @param ... ignored parameters #' @return the \code{setx} object (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.setx.mi <- function(x, ...) { # Store size for readability size <- length(x) for (k in 1:size) { # Print object print(x[[k]]) # If this is not the last element, print a new-line if (k < size) cat("\n") } invisible(x) } #' Print values of `setx' objects #' #' Print a ``setx'' object in human-readable form. #' @usage \method{print}{setx}(x, ...) #' @S3method print setx #' @param x a `setx' object #' @param ... ignored parameters #' @return the value of x (invisibly) #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.setx <- function(x, ...) { model <- x$name formula <- x$formula label <- x$label cat("Call:\n") print(x$call) cat("Model name = ", model, "\n") cat("Formula = ") print(formula) cat("\nComplete data.frame:\n") print(x$updated) cat("\nModel Matrix (Design Matrix):\n") print(x$matrix) invisible() } #' @S3method print summary.setx print.summary.setx <- function (x, ...) { cat("\nModel name =", x$model.name, "\n") cat("Label =", x$label, "\n") cat("Formula = ") print(x$formula) cat("\nCall:\n") print(x$call) cat("\nModel Matrix (Design Matrix):\n") print(x$model.matrix) invisible(x) } #' Print values of `sim' objects #' #' This function is currently unimplemented, and included for future development #' @usage \method{print}{sim}(x, ...) #' @S3method print sim #' @param x a `sim' object (ignored) #' @param ... ignored parameters #' @return NULL (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.sim <- function(x, ...) { o <- x class(o) <- 'list' print(o) } #' Print a Summary MCMCZelig Object #' #' This method prints a summary object for \code{MCMCZelig} objects #' @param x an "MCMCZelig" object #' @param digits a numeric specifying the precision of the summary object #' @param ... ignored parameters #' @return a \code{summary.MCMCZelig} object #' @S3method print summary.MCMCZelig print.summary.MCMCZelig <- function(x, digits=max(3, getOption("digits") - 3), ...) { cat("\nCall: ") print(x$call) cat("\n", "Iterations = ", x$start, ":", x$end, "\n", sep = "") cat("Thinning interval =", x$thin, "\n") cat("Number of chains =", x$nchain, "\n") cat("Sample size per chain =", (x$end - x$start)/x$thin + 1, "\n") cat("\n", "Mean, standard deviation, and quantiles for marginal posterior distributions.", "\n") print(round(x$summary, digits=digits)) cat("\n") } print.summary.glm.robust <- function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) { class(x) <- "summary.glm" print(x) cat("\nRobust standard errors computed using", x$robust) cat("\n") invisible(x) } #' Print a Summary of a Set of Pooled Simulated Interests #' #' Prints the summary information from a set of pooled simulated interests. This #' method assumes that quantities of interest are kept in a data type which can #' be used with ``rbind''. #' @usage \method{print}{summary.pooled.sim}(x, ...) #' @S3method print summary.pooled.sim #' @param x a ``summary.pooled.sim'' object, containing summarized information #' about simulated quantities of interest #' @param ... Optional parameters that will be passed onward to ``print.matrix'' #' (the matrix printing function) #' @return a ``summary.pooled.sim'' object storing the quantities of interest #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.summary.pooled.sim <- function (x, ...) { # los labels... kinda like spanish for "the labels" # labels is function name in base, so we needed a name that said "labels," # without using "labels". You know? los.labels <- x$labels los.titles <- x$titles # Pooled summarized data for (title in los.titles) { # This will implicity become a matrix m <- NULL for (label in los.labels) m <- rbind(m, x$stats[[label]][[title]]) rownames(m) <- paste("[", los.labels, "]", sep="") cat(title, "\n") print(m) cat("\n\n") } } #' Print Summary of a Rare-event Logistic Model #' #' Prints the #' @usage #' \method{print}{summary.relogit}(x, digits = max(3, getOption("digits") - 3), ...) #' @S3method print summary.relogit #' @param x an ``relogit.summary'' object produced by the ``summary'' method. #' @param digits an integer specifying the number of digits of precision to #' specify #' @param ... parameters passed forward to the ``print.glm'' function #' @return x (invisibly) print.summary.relogit <- function( x, digits = max(3, getOption("digits") - 3), ... ) { # Straight-forwardly print the model using glm's method ## Was: ##stats:::print.glm(x, digits = digits, ...) ## ":::" not allowed by CRAN ## Copied from Stats Internals ## Temporary Patch / Need to write print method now print.relogitglm<-function (x, digits = max(3L, getOption("digits") - 3L), ...) { cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") if (length(coef(x))) { cat("Coefficients") if (is.character(co <- x$contrasts)) cat(" [contrasts: ", apply(cbind(names(co), co), 1L, paste, collapse = "="), "]") cat(":\n") print.default(format(x$coefficients, digits = digits), print.gap = 2, quote = FALSE) } else cat("No coefficients\n\n") cat("\nDegrees of Freedom:", x$df.null, "Total (i.e. Null); ", x$df.residual, "Residual\n") if (nzchar(mess <- naprint(x$na.action))) cat(" (", mess, ")\n", sep = "") cat("Null Deviance:\t ", format(signif(x$null.deviance, digits)), "\nResidual Deviance:", format(signif(x$deviance, digits)), "\tAIC:", format(signif(x$aic, digits))) cat("\n") invisible(x) } print.relogitglm(x, digits = digits, ...) # Additional slots # Prior co if (x$prior.correct) cat("\nPrior correction performed with tau =", x$tau, "\n") # Weighting? Sure, if it exists, we'll print it. if (x$weighting) cat("\nWeighting performed with tau =", x$tau, "\n") # If there is bias-correction if (x$bias.correct) cat("Rare events bias correction performed\n") # If robust errors are computed... if (!is.null(x$robust)) cat("\nRobust standard errors computed using", x$robust, "\n") # This is not a mutator assignment! class(x) <- "summary.glm" # Return object to be printed invisibly invisible(x) } #' Print Summary of a Rare-event Logistic Model #' #' ... #' @usage #' \method{print}{summary.relogit2}(x, digits = max(3, getOption("digits") - 3), ...) #' @S3method print summary.relogit2 #' @param x the object to print #' @param digits an integer specifying the number of digits of precision #' @param ... ignored parameters #' @return x (invisibly) print.summary.relogit2 <- function(x, digits = max(3, getOption("digits") - 3), ... ) { cat("\nCall:\n", deparse(x$call), "\n\n", sep = "") print(x$lower.estimate) print(x$upper.estimate) } #' Print Values of a Summarized ``sim'' Object #' #' Print values of simulated quantities of interest (stored in a ``summary.sim'' #' object. #' @usage \method{print}{summary.sim}(x, ...) #' @S3method print summary.sim #' @param x a 'summary.sim' object #' @param ... ignored parameters #' @return the value of the `summary.sim' object (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.summary.sim <- function(x, ...) { # Rename 'x' 'summary' summary <- x obj <- summary$zeligcall model <- summary$model x <- summary$x x1 <- summary$x1 stats <- summary$stats num <- summary$num # Error if there are no statistics to display if (is.null(stats)) stop("stats object cannot be NULL") # new-line cat("\n") # Print model name cat("Model: ", model, "\n") # Print number of simulations cat("Number of simulations: ", num, "\n") # new-line cat("\n") # Display information about the X setx object # This should probably be reconsidered in the future if (!is.null(x$matrix)) { cat("Values of X\n") print(as.matrix(x$matrix)) # new-line cat("\n") } else if (is.list(x$s.x)) { # add special hooks here? } # Display information about the X1 setx object # This should probably be reconsidered in the future if (!is.null(x1$matrix)) { cat("Values of X1\n") print(as.matrix(x1$matrix)) # new-line cat("\n") } # Decrementing the size of the list will give us an easy way to print size <- length(stats) # Loop across all qi's for (key in names(stats)) { # Create variable for code clarity val <- stats[[key]] if (!is.qi(val)) next # Display Title cat(key, "\n") # Round value if numeric if (is.numeric(val)) print(round(val*(1000))/1000) # Simply print if anything else else print(val) # Print a new-line between qi's if (size <- size - 1) { cat("\n") } } # Return invisibly invisible(x) } #' Print Multiply Imputed Simulations Summary #' #' Prints summary information about Multiply Imputed Fits #' @usage \method{print}{summarySim.MI}(x, digits=3, ...) #' @S3method print summarySim.MI #' @param x a 'summarySim.MI' object #' @param digits an integer specifying the number of digits of precision to #' print #' @param ... ignored parameters #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.summarySim.MI <- function(x, digits=3, ...) { for (qi.name in names(x)) { if (!is.valid.qi.list(x[[qi.name]])) next summed.qi <- qi.summarize(qi.name, x[[qi.name]]) print(summed.qi) cat("\n") } invisible(x) } #' Row-bind Matrices and Lists #' @param x a list or a matrix #' @param y a list or a matrix #' @return a matrix #' @author Matt Owen \email{mowen@@iq.harvard.edu} .bind <- function (x, y) { # Get names for future columns if (!is.matrix(x)) x <- matrix(x, nrow=1, ncol=length(x), dimnames=list(NULL, names(x))) if (missing(y)) return(x) if (!is.matrix(y)) y <- matrix(y, nrow=1, ncol=length(y), dimnames-list(NULL, names(y))) names <- unique(c(colnames(x), colnames(y))) ncol <- length(names) X <- matrix(NA, nrow=nrow(x), ncol=ncol, dimnames=list(NULL, names)) Y <- matrix(NA, nrow=nrow(y), ncol=ncol, dimnames=list(NULL, names)) X[, colnames(x)] <- x Y[, colnames(y)] <- y rbind(X, Y) } #' Check If Object Is a List of Valid Quantities of Interest #' @param x an object to be tested #' @return TRUE or FALSE #' @author Matt Owen \email{mowen@@iq.harvard.edu} is.valid.qi.list <- function (x) { # if it is not a list or that list has no entries if (!(is.list(x) && length(x))) return(FALSE) # if any are not a matrix for (val in x) { if (is.matrix(val) && !(ncol(val) && ncol(val))) return(FALSE) else if (is.list(val) && !length(val)) return(FALSE) } TRUE } #' Print values of ``zelig'' objects #' #' Print the zelig object as a list #' @usage \method{print}{zelig}(x, ...) #' @S3method print zelig #' @param x a `zelig' object #' @param ... ignored parameters #' @return the `zelig' object (invisibly) #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} print.zelig <- function(x, ...) { class(x) <- "list" print(x) } Zelig/R/sim.default.R0000644000176000001440000002055512216401440014114 0ustar ripleyusers#' Method for Simulating Quantities of Interest wrom 'zelig' Objects #' #' Simulate quantities of interest #' @usage \method{sim}{default}(obj, #' x=NULL, x1=NULL, y=NULL, #' num=1000, bootstrap = FALSE, #' bootfn=NULL, #' cond.data = NULL, #' ...) #' @S3method sim default #' @param obj a 'zelig' object #' @param x a 'setx' object #' @param x1 a secondary 'setx' object used to perform particular computations #' of quantities of interest #' @param y a parameter reserved for the computation of particular quantities of #' interest (average treatment effects). Few models currently support this #' parameter #' @param num an integer specifying the number of simulations to compute #' @param bootstrap ignored #' @param bootfn ignored #' @param cond.data ignored #' @param ... parameters to be passed to the boot function, if one is supplied #' @return a 'sim' object storing the replicated quantities of interest #' @author Matt Owen \email{mowen@@iq.harvard.edu} sim.default <- function( obj, x = NULL, x1 = NULL, y = NULL, num = 1000, bootstrap = FALSE, bootfn = NULL, cond.data = NULL, ... ) { # Create environment of local variables model.env <- new.env() # Add local variables assign(".object", obj$result, model.env) assign(".fitted", obj$result, model.env) assign(".model", "model-name", model.env) # Get S3 methods paramfunction <- getS3method("param", obj$name, FALSE) qifunction <- getS3method("qi", obj$name, FALSE) bootfunction <- getS3method("bootstrap", obj$name, TRUE) parent.env(model.env) <- environment(paramfunction) environment(paramfunction) <- model.env environment(qifunction) <- model.env # Begin function if (length(attr(x, "pooled")) > 0 && attr(x, "pooled")) { xes <- list() titles <- NULL # for (key in names(x)) { for (k in 1:length(x)) { key <- names(x)[[k]] xes[[key]] <- sim(obj, x[[k]], x1[[k]], y, num, bootstrap, bootfn, cond.data, ...) attr(xes[[key]], "pooled") <- FALSE titles <- append(titles, xes[[key]]$titles) } attr(xes, "pooled") <- TRUE attr(xes, "pooled.setx") <- x attr(xes, "titles") <- unique(titles) class(xes) <- c("pooled.sim") return(xes) } # Stop on unimplemented features if (!is.null(cond.data)) warning("conditions are not yet supported") # Simulate Parameters # param <- param(obj, num=num) param <- paramfunction(obj, num=num) # Cast list into a "parameters" object param <- as.parameters(param, num) # Define the pre-sim hook name post.hook <- obj$zc$.post # apply the hook if it exists if (!is.null(post.hook)) { zelig2 <- get(paste("zelig2", obj$name, sep="")) envir <- environment(zelig2) # Produce a warning if the post-hook defined cannot be found if (!exists(post.hook, mode="function", envir=envir)) warning("the hook '", post.hook, "' cannot be found") # Otherwise, business as usual. Extract the hook and apply it to the zelig # object. Note that a post-hook always has the arguments: # obj, x, x1, bootstrap, bootfn, param else { # Retrieve the hook, since it exists hook <- get(post.hook, envir=envir) # Assign the param object. In the case of bootstrapping, the param object # might not have any meaning. param <- if (bootstrap) param # Otherwise apply the hook and return it as the parameters else hook(obj, x, x1, bootstrap, bootfn, param=param) } } # Get default boot-strapping function if boot is enabled and no boot-function # is specified if (bootstrap && missing(bootfn)) bootfn <- bootfn.default # Boot-strapping!! if (!missing(bootfn) && !is.null(bootfn)) { # Get the appropriate d <- obj$data d <- d[complete.cases(d), ] # Add several private variables to bootfn: # .fitted : a fitted model object # .data : the data-set used to fit the original model # .call : the call used to fit the original model # .env : the environment in which the .call variable should/can be # evaluated boot.env <- obj$method.env bootfn <- attach.env(bootfn, obj$method.env) # Bootstrapfn bootstrapfn <- getS3method("bootstrap", obj$name, TRUE) environment(bootstrapfn) <- model.env # If is.null then we just get the default bootstrap fn, which is merely to # simulate the systematic paramaters ## CRAN is opposed to ::: within same package, ## but I'm opposed to S4 environment artifacts ## if (is.null(bootstrapfn)) ## bootstrapfn <- Zelig:::bootstrap.default ## So this obviously makes my code better: if (is.null(bootstrapfn)){ localbootstrap.default <- function (obj, ...) list( alpha = NULL, beta = coef(obj) ) bootstrapfn <- localbootstrap.default } # Attach the appropriate environment to the function bootstrapfn <- attach.env(bootstrapfn, model.env) # Get a sample, so we know how to re-size the result. # Note: This "example" object will be used at the end of this if-clause to # build an object similar in structure to that of "bootstrapfn(obj)" example <- bootstrapfn(obj) example <- as.bootvector(example) # Bootstrap using a function with parameters: data, i, object # Where data is a data.frame, i is an vector of integers used to sample the # data.frame, and object is a fitted model object. res <- boot(d, bootfn, num, object = obj$result, bootstrapfn = bootstrapfn, num = num ) # Copy the param object that was made earlier via ``param'' method res.param <- param # Reverse-construct a bootlist object from this bl <- as.bootlist(res$t, example$lengths, example$names) # Replace slots corresponding to "alpha" and "beta" on the "param" object param$coefficients <- bl$beta param$alpha <- bl$alpha } # Compute quantities of interest res.qi <- qifunction(obj, x=x, x1=x1, y=y, param=param, num=num) # Cast as a "qi" object if it is not one res.qi <- as.qi(res.qi) # Assign class class(res.qi) <- c(obj$name, class(res.qi)) # This is kludge (for now) # This can be removed as of 4-27-2011 if (inherits(obj, "MI")) class(res.qi) <- c("MI", class(res.qi)) # build object s <- list( model = obj$name, x = x, x1 = x1, stats = summarize(res.qi), qi = res.qi, titles = names(res.qi), bootfn = bootfn, cond.data= cond.data, zelig = obj, call = match.call(), zcall = obj$call, result = obj$result, num = num, special.parameters = list(...), package.name = obj$package.name ) # cast class sim.class <- if (inherits(obj, "MI")) sim.class <- "MI.sim" attr(s, "titles") <- unique(names(res.qi)) class(s) <- c(sim.class, paste("sim", obj$name, sep="."), obj$name, "sim" ) # return s } create.pooled.sim <- function( obj, x = NULL, x1 = NULL, y = NULL, num = 1000, bootstrap = FALSE, bootfn = NULL, cond.data = NULL, ... ) { xes <- list() titles <- NULL for (key in names(x)) { xes[[key]] <- sim(obj, x[[key]], x1[[key]], y, num, bootstrap, bootfn, cond.data, ...) attr(xes[[key]], "pooled") <- FALSE titles <- append(titles, xes[[key]]$titles) } attr(xes, "pooled") <- TRUE attr(xes, "pooled.setx") <- x attr(xes, "titles") <- unique(titles) class(xes) <- c("pooled.sim") return(xes) } Zelig/R/bootstrap.gamma.R0000644000176000001440000000125012061700507014772 0ustar ripleyusers#' Bootstrap Parameters for Zelig ``gamma'' GLM #' #' Returns bootstrapped parameter estimates for a ``gamma'' GLM. #' @usage \method{bootstrap}{gamma}(obj, ...) #' @S3method bootstrap gamma #' @param obj a ``zelig'' object that will be used to produce boot-strapped #' parameters #' @param ... extra parameters to be passed to the ``boot'' method. These are #' typically ignored, but is included for further expansion. #' @return a list containing information concerning link, link-inverses, etc. #' @author Matt Owen \email{mowen@@iq.harvard.edu} bootstrap.gamma <- function (obj, ...) { list( alpha = gamma.shape(.fitted)$alpha, beta = coef(.fitted) ) } Zelig/R/cmvglm.R0000644000176000001440000000431012061700507013161 0ustar ripleyusers#' cmvglm #' @param formula a formula #' @param model the names of the Zelig model #' @param ndim the number of dimensions in the statistical model #' @param data a data-frame #' @param fact ??? #' @author Kosuke Imai and Olivia Lau #' @export cmvglm <- function(formula, model, ndim,data=NULL, fact=NULL){ toBuildFormula<-function(Xnames,sepp="+"){ lng<-length(Xnames) rhs<-NULL if (lng!=0){ if(lng==1){ rhs=Xnames }else{ for (j in 1:(lng-1)){ rhs<-paste(rhs,as.name(Xnames[[j]])) rhs<-paste(rhs,sepp) } rhs<-paste(rhs,Xnames[[lng]]) } } return (rhs) } tt<-terms(formula) attr(tt,"systEqns")<-names(formula) p<-make.parameters(tt,shape="matrix") vars<-rownames(p) cm<-vector("list", length(vars)) names(cm)<-vars for(i in 1:length(cm)) cm[[i]]<-diag(1, ndim) constrain<-attr(tt,"constraints") if(!is.logical(constrain)){ tmp <- sort(colnames(constrain)) for (i in 1:length(tmp)) { ci<-constrain[,i] if (is.null(na.omit(ci)) || length(unique(na.omit(ci)))!=1) stop("invalid input for constrain") minj <- match(FALSE, is.na(ci)) whatvar <- pmatch(unique(na.omit(ci)), names(cm)) for (j in 1:3) if (!is.na(ci[j])) { cm[[whatvar]][j,j]<-0 cm[[whatvar]][j,minj]<-1 } } } for(i in rownames(p)){ for(j in 1:ncol(p)){ if(is.na(p[i,j])) cm[[i]][j,j]<-0 } } # if(!is.null(constant)) # for(i in 1:length(constant)) # for(j in 1:length(cm)) # if(names(cm)[j]!="(Intercept)") # cm[[j]][constant[i],]<-matrix(0, ncol=ncol(cm[[j]])) for(i in 1:length(cm)) cm[[i]]<-as.matrix(cm[[i]][,apply(cm[[i]], 2, sum)!=0]) rhs<-toBuildFormula(attr(tt,"indVars")) if(!(is.null(rhs))) rhs<-(paste("~",rhs)) else rhs<-"~1" Ynames<-unlist(attr(tt,"depVars")) if(!is.null(fact)) lhs<-fact else{ if(length(Ynames)>1){ lhs<-toBuildFormula(Ynames,",") if (!(is.null(lhs))){ lhs<-paste("cbind(",lhs) lhs<-paste(lhs,")") } }else{ lhs=Ynames } } formula<-as.formula(paste(lhs,rhs)) list("formula"=formula, "constraints"=cm) } Zelig/R/probit.gee.R0000644000176000001440000000376412110047000013731 0ustar ripleyusers#' Interface between the Zelig Model probit.gee and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param id a character-string specifying the column of the data-set to use #' for clustering #' @param robust a logical specifying whether to robustly or naively compute #' the covariance matrix. This parameter is ignore in the \code{zelig2} #' method, and instead used in the \code{robust.hook} function, which #' executes after the call to the \code{gee} function #' @param ... ignored parameters #' @param R a square-matrix specifying the correlation #' @param corstr a character-string specifying the correlation structure #' @param data a data.frame #' @return a list specifying the call to the external model #' @export zelig2probit.gee <- function (formula, id, robust, ..., R = NULL, corstr = "independence", data) { loadDependencies("gee") if (corstr == "fixed" && is.null(R)) stop("R must be defined") # if id is a valid column-name in data, then we just need to extract the # column and re-order the data.frame and cluster information if (is.character(id) && length(id) == 1 && id %in% colnames(data)) { id <- data[, id] data <- data[order(id), ] id <- sort(id) } z( .function = gee, .hook = robust.gee.hook, formula = formula, id = id, corstr = corstr, family = binomial(link="probit"), data = data, R = R, ... ) } #' @S3method param probit.gee param.probit.gee <- function(obj, num=1000, ...) { # Extract means to compute maximum likelihood mu <- coef(obj) # Extract covariance matrix to compute maximum likelihood Sigma <- vcov(obj) # list( coef = mvrnorm(num, mu, Sigma), fam = binomial(link="probit") ) } #' @S3method qi probit.gee qi.probit.gee <- qi.logit.gee #' @S3method describe probit.gee describe.probit.gee <- function(...) { list( authors = "Patrick Lam", text = "General Estimating Equation for Poisson Regression", year = 2011 ) } Zelig/R/repl.R0000644000176000001440000000472212061700507012645 0ustar ripleyusers#' Generic Method for Replicating Data #' @param object a 'zelig' object #' @param ... parameters #' @return a replicated object #' @export #' @author Kosuke Imai and Olivia Lau \email{mowen@@iq.harvard.edu} repl <- function(object, ...) UseMethod("repl") #' Default Method for Replicating Statistics #' #' Replicate a simulation #' @usage \method{repl}{default}(object, data=NULL, ...) #' @S3method repl default #' @param object an object to replicate #' @param data a data.frame #' @param ... ignored parameters #' @return a replicated object #' @author Kosuke Imai and Olivia Lau \email{mowen@@iq.harvard.edu} repl.default <- function(object, data=NULL, ...) { if (!is.null(data)) obectj$call$data <- data eval(object$call$data, sys.parent()) } #' Method for Replicating Simulated Quantities of Interest #' #' Replicate simulated quantities of interest #' @usage \method{repl}{sim}(object, x=NULL, x1=NULL, y=NULL, #' num=1000, #' prev = NULL, bootstrap = FALSE, #' boot.fn=NULL, #' cond.data = NULL, ...) #' @S3method repl sim #' @param object a 'zelig' object #' @param x a 'setx' object #' @param x1 a secondary 'setx' object used to perform particular computations #' of quantities of interest #' @param y a parameter reserved for the computation of particular quantities of #' interest (average treatment effects). Few models currently support this #' parameter #' @param num an integer specifying the number of simulations to compute #' @param prev ignored #' @param bootstrap ignored #' @param boot.fn ignored #' @param cond.data ignored #' @param ... special parameters which are reserved for future versions of Zelig #' @return a 'sim' object storing the replicated quantities of interest #' @author Matt Owen \email{mowen@@iq.harvard.edu} repl.sim <- function(object, x=NULL, x1=NULL, y=NULL, num=1000, prev = NULL, bootstrap = FALSE, boot.fn=NULL, cond.data = NULL, ...) { # would rather use a factory function new.call <- object$call # this should always give the same value... rep.zelig <- eval(object$zcall, sys.parent()) # new.call$z <- rep.zelig # x new.call$x <- if (is.null(x)) object$x else x # x1 new.call$x1 <- if (is.null(x1)) object$x1 else x1 # how is this EVER true? if (!is.null(object$seed)) set.seed(object$seed) eval(new.call, sys.parent()) } Zelig/R/robust.glm.hook.R0000644000176000001440000000206012061700507014727 0ustar ripleyusers#' Hook for ``glm'' Models in Zelig #' #' Adds support for robust error-estimates in the Zelig ``glm'' models. #' @param obj a zelig object #' @param zcall the original call to the zelig model #' @param call the call that will be evaluated for the #' @param robust a logical specifying whether or not to use robust error #' estimates #' @param ... ignored parameters #' @return the fitted model object #' @export robust.glm.hook <- function (obj, zcall, call, robust = FALSE, ...) { # If "robust" is a list, if (is.list(robust)) { # if none of the entries of robust belong to the vector below if (!any(robust$method %in% c("vcovHAC", "kernHAC", "weave"))) stop("robust contains elements that are not supported.") # Acquire the value of the robust parameter obj$robust <- robust } else if (!is.logical(robust)) stop("Invalid input for robust: choose either TRUE or a list of options.") # Set as a robust generalized linear model model (in addition to other types) class(obj) <- c("glm.robust", class(obj)) # Return... obj } Zelig/R/terms.R0000644000176000001440000002344212061700507013035 0ustar ripleyusers### ## terms ## -accept single and multiple equations: ## -in case of single equations, the equation is named "mu". is this right? ## -if mu=y~x:z then the attr(tt,"variable") gives list(y,x:z). Should it be list(y,x,z) ?? ## - #' Extract Terms from a \code{multiple} Object #' #' Extracts terms from Zelig-3.5-style formulae. This function is scheduled for #' removal. #' @usage \method{terms}{multiple}(x, data=NULL,...) #' @param x a Zelig v3.5 formula #' @param data a \code{data.frame} #' @param ... ignored parameters #' @author Kosuke Imai, Olivia Lau, Gary King and Ferdinand Alimadhi #' @S3method terms multiple terms.multiple<-function(x, data=NULL,...){ object <- x termsexist<-attr(object,"terms") if(!(is.null(termsexist))) return (termsexist) nreq<-nrConstr<-nrEquationsNew<-0 constr<-XconstrEqn<-variables<-termlabels<-depVars<-objectNew<-intercAttr<-depFactors<-list() depFactorVar<-depLevels<-namesConstr<-c() if(!(any(class(object)=="list"))){ object<-list(object) names(object)<-"mu" } namesOfEquations<- names(object) nrEquations <-length(object) "%w/o%" <- function(x,y) x[!x %in% y] for (i in 1:nrEquations){ TT<-terms.formula(object[[i]], specials=c("id","tag")) attrTTvars<-attr(TT,"variables") attrTTlabels<-attr(TT,"term.labels") eqni<-object[[i]] namei<-namesOfEquations[[i]] tagattr<-attr(TT,"specials")$tag hastag<-!(is.null(tagattr)) if (hastag){ ## has tag so make a new list of variables and term.labels newVars<-list() newLabels<-c() indxV<-indxL<-1 constrTmp<-c() for(j in 1:length(tagattr)){ taglabels<-c() if(length(eqni)==3) lind<-tagattr[[j]]-1 else lind<-tagattr[[j]] vind<-tagattr[[j]]+1 ## add all vars/terms prior to tag into new list of ## newVars and newLabels for(v in indxV:(vind)) newVars<-c(newVars,attrTTvars[[v]]) newVars[[length(newVars)]]<-NULL indxV<-vind+1 for(l in c(indxL:lind)) newLabels<-c(newLabels,attrTTlabels[[l]]) newLabels<-newLabels[-(length(newLabels))] indxL<-lind+1 ## deparse and fix the tag tagAsList <-.fixTag(.deparseTag(attrTTvars[[vind]])) for (tindx in 1:length(tagAsList)){ t<-tagAsList[[tindx]] if(((t$var %in% namesOfEquations)==FALSE) && t$var != "none" && t$var != "1"){ newVars<-c(newVars,parse(text=t$var)[[1]]) newLabels<-c(newLabels,t$var) } if(((t$id %in% namesOfEquations)==FALSE) && t$id !="none" && t$id !="1"){ ##print(t$id) newVars<-c(newVars,parse(text=t$id)[[1]]) newLabels<-c(newLabels,t$id) } ## constraints ? if(t$var !="none" && t$label !="none" && t$id =="none"){ nrConstr<-nrConstr+1 namesConstr<-c(namesConstr,t$label) constr[[nrConstr]]<-c(i,t$label,t$var) constrTmp<-c(constrTmp,t$var) ##???? what is constrTMP? } } } ## if there is any var/term remaining after tags ## add them to newVars and newLabels if(length(attrTTvars)>vind){ for(v in (vind+1):length(attrTTvars)) newVars<-c(newVars,attrTTvars[[v]]) } if(length(attrTTlabels)>lind){ for(l in (lind+1):length(attrTTlabels)) newLabels<-c(newLabels,attrTTlabels[[l]]) } XconstrEqn[[i]]<-constrTmp ## make newVars and newLabels unique newVars<-unique(newVars) newLabels <- unique(newLabels) } else{ ## there is no tag => newVars and newLabels remain unchanged newVars<-attrTTvars newLabels<-attrTTlabels } nrEquationsNew<-nrEquationsNew+1 objectNew[[namei]]<-eqni if (length(eqni)==3){ nreq=nreq+1 ## number of required equations lhs<-eqni[[2]] if (length(lhs)>1 && lhs[[1]]=="id"){ depVars[[namei]]<-lhs[[3]] depFactorVar<-c(depFactors,deparse(lhs[[2]])) depLevels<-c(depLevels,lhs[[3]]) }else depVars[[namei]]<-deparse(eqni[[2]]) } attr(TT,"variables")<-as.call(newVars) attr(TT,"term.labels")<-newLabels variables[[namei]]<-attr(TT,"variables") termlabels[[namei]]<-attr(TT,"term.labels") intercAttr[[namei]]<-attr(TT,"intercept") } ## end of for each equation namesOfEquations<-names(objectNew) myattr<-list() result<-objectNew constraints<-subs<-FALSE ## construct constraints namesConstr<-unique(namesConstr) if(length(constr)>0){ constraints<-matrix(NA,nrow=nrEquationsNew,ncol=length(namesConstr),dimnames=list(namesOfEquations,namesConstr)) for(i in 1:length(constr)){ constri<-constr[[i]] eqind<-constri[[1]] eq<-namesOfEquations[as.numeric(eqind)] lab<-constri[[2]] constraints[eq,lab]<-constri[[3]] } } indVars<-unique(unlist(termlabels)) if(length(depFactorVar) !=0) depFactors<-list("depFactorVar"=unique(unlist(depFactorVar)),"depLevels"=depLevels) else depFactors<-FALSE whiche<-which(lapply(termlabels,length)!=0) myattr$systEqns<-names(whiche) myattr$ancilEqns<-"%w/o%"(namesOfEquations,myattr$systEqns) myattr$variables<-variables myattr$term.labels<-termlabels myattr$indVars<-indVars myattr$depVars<-depVars myattr$depFactors<-depFactors myattr$constraints<-constraints myattr$subs<-subs myattr$response<-1 myattr$intercept<-intercAttr attributes(result)<-myattr names(result)<-namesOfEquations class(result)<-c("terms","multiple","list") return(result) } ### ## Fix the deparsed tag ## .fixTag <- function(l){ if(l$var == "1" && l$label!="none"){ ## tag(1,z1 | state) == tag (z1|state) l$var <- l$label l$label <- "none" } if(l$label =="none"){ ## tag(1+z1|state) vars<-.trim(unlist(strsplit(l$var,"+", fixed=TRUE))) }else{ ## tag(z1,w1+w2|state) vars<-.trim(unlist(strsplit(l$label,"+", fixed=TRUE))) } if(length(vars) == 1){ ## nothing to expand return (list(l)) }else{ alltgs<-list() for(i in 1:length(vars)){ if(l$label == "none") alltgs[[i]] <- list(label="none",var=vars[[i]],id=l$id) else alltgs[[i]] <- list(label="none",var=paste(l$var,":",vars[[i]],sep=""),id=l$id) } } return (alltgs) } #' Model Terms for 'vglm' Models #' @usage \method{terms}{vglm}(x, ...) #' @S3method terms vglm #' @param x a fitted model object from the VGAM library #' @param ... ignored parameters #' @return the models terms of this fitted model object #' @author Ferdinand Alimadhi, Kosuke Imai and Olivia Lau terms.vglm <- function(x, ...) x@terms$terms #' Model Terms for a Zelig Object #' #' This method simply extracts the model terms for the fitted model passed to #' the \code{zelig} function. #' @S3method terms zelig #' @usage \method{terms}{zelig}(x, ...) #' @param x a \code{zelig} object #' @param ... forwarded parameters #' @return terms of the original fitted model terms.zelig <- function (x, ...) { terms(x$result, ...) } Zelig/R/getResponseTerms.formula.R0000644000176000001440000001023012061700507016647 0ustar ripleyusers#' Get Response Terms from a Standard Formula #' #' This method gets the response terms from a standard formula #' @usage #' \method{getResponseTerms}{formula}(x, ..., single.only=FALSE, duplicates=TRUE) #' @param x a formula #' @param ... ignored parameters #' @param single.only a logical specifying whether 'cbind' or 'list' keywords #' are allowed #' @param duplicates a logical specifying whether the returned character-vector #' will only return duplicates. #' @return a character-vector specifying the response terms of the formula #' @S3method getResponseTerms formula #' @author Matt Owen getResponseTerms.formula <- function (x, ..., single.only=FALSE, duplicates=TRUE) { # Handle handle.formula.err <- function (e) { message("\n\n") message("The formula ", x, " seems to have no dependent variables") stop("The formula for the ") } rhs <- tryCatch(x[[3]], error = handle.formula.err) lhs <- tryCatch(x[[2]], error = handle.formula.err) # Reponse terms are always specified in the lefthand-side of the equation if (is.name(lhs)) { # If the lhs is a name, this implies it's a single variable with no function # applied to it. Thus, it's a term. return(tryCatch( callToString(lhs), error = function (e) as.character(lhs) )) } # Otherwise, it is either a function being applied or the keywords "cbind" or # "list" op <- callToString(lhs[[1]]) if (op %in% c("cbind", "list")) { if (single.only) { # If only single outcome response terms are allowed, then 'cbind' and # 'list' cannot be used. warning("'cbind' and 'list' may not be used ", "in this formula specification.") return(vector("character", 0)) } # If it is one of the keywords, we extract these terms individually lis <- as.list(lhs[-1]) lis <- unlist(Map(callToString, lis)) if (!duplicates) # If duplicates flag is FALSE, remove all duplicate entries lis <- unique(lis) # Remove all emptry strings and return Filter(nchar, lis) } else { # Otherwise, we can treat them as one single term. That is the formula: # x + y ~ 1 # will have a single response term: # x + y callToString(lhs) } } #' Get Response Terms from a ``Formula'' Object #' #' This method gets the response terms from a ``Formula'' Object #' @rdname getResponseTerms.Formula-not-formula #' @aliases getResponse.Formula #' @usage #' \method{getResponseTerms}{Formula}(x, ..., single.only=FALSE, duplicates=TRUE) #' @param x a formula #' @param ... ignored parameters #' @param single.only a logical specifying whether 'cbind' or 'list' keywords #' are allowed #' @param duplicates a logical specifying whether the returned character-vector #' will only return duplicates. #' @return a character-vector specifying the response terms of the formula #' @S3method getResponseTerms Formula #' @author Matt Owen getResponseTerms.Formula <- function (x, ..., single.only=FALSE, duplicates=TRUE) { # Create and empty list list.formula <- list() # This loop goes through all the list response and predictor terms and # creates a "Zelig-style" list based on it. This is so we can extract response # and predictor terms with "getResponstTerms" and "getPredictorTerms" in a # manageable way! for (resp in attr(x, "lhs")) { # Iterate through all response variables for (pred in attr(x, "rhs")) { # Iterate through all predictor variables # Append response variable and predictor terms # "ccc" is probably going to be convention for a call object in Zelig # models since "CALL", "call", "Call" all seem too similar to "call". # And we need to break ccc <- call("~", resp, pred) # Cast from a "call" object to a "formula" object ccc <- as.formula(ccc) # Append to list list.formula <- append(list.formula, ccc) } } # Important to send 'single.only'/'duplicates' into this function resp <- getResponseTerms(list.formula, ..., single.only, duplicates) # Apply unique only if 'duplicates' is FALSE # This ensures the list has the expected properties if (duplicates) resp else unique(resp) } Zelig/R/poisson.bayes.R0000644000176000001440000000450112110047000014455 0ustar ripleyusers#' Interface between the Zelig Model poisson.bayes and the Pre-existing Model-fitting Method #' @param formula a formula #' @param ... additonal parameters #' @param data a data.frame #' @return a list specifying '.function' #' @export zelig2poisson.bayes <- function ( formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data ) { loadDependencies("MCMCpack", "coda") if (missing(verbose)) verbose <- round((mcmc + burnin)/10) list( .function = "MCMCpoisson", .hook = "MCMChook", formula = formula, data = data, burnin = burnin, mcmc = mcmc, verbose= verbose, # Most parameters can be simply passed forward ... ) } #' @S3method param poisson.bayes param.poisson.bayes <- function(obj, num=1000, ...) { list( coef = coef(obj), fam = poisson() ) } #' @S3method qi normal.bayes qi.poisson.bayes <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { res1 <- poisson.ev(x, param) res2 <- poisson.ev(x1, param) list( "Expected Value: E(Y|X)" = res1$ev, "Predicted Value: Y|X" = res1$pv, "Expected Value (for X1): E(Y|X1)" = res2$ev, "Predicted Value (for X1): Y|X1" = res2$pv, "First Differences: E(Y|X1) - E(Y|X)" = res2$ev - res1$ev ) } poisson.ev <- function (x, param) { # If either of the parameters are invalid, # Then return NA for both qi's if (is.null(x) || is.na(x) || is.null(param)) return(list(ev=NA, pv=NA)) # Extract inverse-link and simulated parameters (respectively) inv <- linkinv(param) eta <- coef(param) %*% t(x) # Give matrix identical rows/columns to the simulated parameters ev <- pv <- matrix(NA, nrow(eta), ncol(eta)) dimnames(ev) <- dimnames(pv) <- dimnames(eta) # Compute Expected Values ev <- inv(eta) # Compute Predicted Values for (i in 1:ncol(ev)) pv[, i] <- rpois(length(ev[, i]), ev[, i]) list(ev=ev, pv=pv) } #' @S3method describe poisson.bayes describe.poisson.bayes <- function(...) { list( description = "Bayesian Poisson Regression", authors = c("Ben Goodrich", "Ying Lu"), year = 2013 ) } Zelig/R/multi.dataset.R0000644000176000001440000000772212110047000014447 0ustar ripleyusers# Make a ``multi.dataset'' Object # @param datasets a list containing data.frames # @param labels a character vector labeling indices of the dataset make.multi.dataset <- function (datasets, labels=NULL) { md <- datasets if (!missing(labels)) names(md) <- labels # Set super important attributes #attr(md, "something") <- "red" class(md) <- "multi.dataset" # Return object md } # Multiple Dataset Object multi.dataset <- function (obj, ...) { UseMethod("multi.dataset") } # Create a Multiple Dataset Object from a data.frame # @param obj a data.frame to conver # @return a ``multi.dataset'' object multi.dataset.data.frame <- function (obj, ...) { # Place inside a list and label according to the name from the function call label <- as.character(as.expression(substitute(obj))) make.multi.dataset(list(obj), label) } # Create a Multiple Dataset Object from a data.frame # @param obj a list of data.frame's # @return a ``multi.dataset'' object multi.dataset.list <- function (obj, ...) { # Iterate backwards through list, so that we can remove elements for (k in length(obj):1) { if (!is.data.frame(obj[[k]])) { warning('"obj" contains an element that is not a data.frame... removing.') obj[[k]] <- NULL } } LABELS <- names(obj) # If there are no labels, or they are uneven if (is.null(LABELS) || length(LABELS) != length(obj)) LABELS <- paste("data-set-", 1:length(obj), sep = "") # Otherwise, we have a nice matching of labels, but we might still have some # that are empty else { for (k in 1:length(LABELS)) { lab <- LABELS[k] if (is.na(lab) || is.null(lab) || (is.character(lab) && nchar(lab) == 0)) LABELS[k] <- paste("data-set-", k, sep = "") } } # Return object make.multi.dataset(obj, LABELS) } # Create a Multiple Dataset Object from a data.frame # @param obj a list of data.frame's # @return a ``multi.dataset'' object multi.dataset.amelia <- function (obj, ...) { data.frames <- obj$imputations class(data.frames) <- NULL make.multi.dataset(data.frames, names(data.frames)) } # Divide a Data Frame or Matrix Into Subsets # @param obj a data.frame or matrix to be split into subsets, divided by the # categorical variable # @param by a character-string, specifying the column to subset # @return a list, containing the subsetted data sets. The names of the list # correspond to the value of the subsetted list divide <- function (obj, by) { # Ensure that "obj" is valid (a data.frame or matrix) if (!is.data.frame(obj) && !is.matrix(obj)) { warning('"obj" is not a data.frame or matrix') return(list(obj)) } # Ensure that "by" is valid (a character-string) if (!is.character(by) && length(by) == 1) { warning('"by" is not a character-string') return(list(obj)) } # Ensure that "by" is a column in "obj" if (! by %in% colnames(obj)) { warning('"by" is not a valid column of "obj"') return(list(obj)) } # Get the set of possible values column.levels <-if (is.factor(obj[, by])) levels(obj[, by]) else unique(obj[, by]) # A list used to store each individual data.frame res <- list() # Iterate through all possible values and store each subset in a separate # entry in the list for (val in column.levels) { # Determine which rows match this value hits <- obj[, by] == val # Store data set temporarily in a local value data.set <- obj[hits, ] # Assign levels to the column. This adds levels to string data. levels(data.set[, by]) <- column.levels # Store data set in list res[[val]] <- data.set } # Return list res } # Print a ``multi.dataset'' Object # @param x a multi.dataset object, essentially a list of data.frames # @param ... parameters to pass to the print.data.frame object # @return x (invisibly) print.multi.dataset <- function (x, ...) { for (key in names(x)) { cat("label =", key, "\n") print(x[[key]], ...) cat("\n") } # Return printed object (invisibly) invisible(x) } Zelig/R/multipleUtil.R0000644000176000001440000000327012061700507014371 0ustar ripleyusers#' Build Formula ??? #' #' This function builds a formula #' @param Xnames a character-vector #' @param sepp a seperator (???) #' @return a character-string #' @author ??? toBuildFormula<-function(Xnames,sepp="+"){ lng<-length(Xnames) rhs<-NULL if (lng!=0){ if(lng==1){ rhs=Xnames }else{ for (j in 1:(lng-1)){ rhs<-paste(rhs,as.name(Xnames[[j]])) rhs<-paste(rhs,sepp) } rhs<-paste(rhs,Xnames[[lng]]) } } return (rhs) } #' Multilevel #' #' This function currently has no documentation, but is essential in Zelig 3.5's #' implementation of formulae. #' @param tt a terms object #' @param data a \code{data.frame} #' @param mode ??? #' @param eqn an integer specifying the number of equations in a model #' @param ... ignored parameters #' @return a list with the "terms" attribute specified #' @author Kosuke Imai, Olivia Lau, Gary King and Ferdinand Alimadhi multilevel<-function(tt,data,mode,eqn,...){ if(!(mode %in% c(1,2))) stop("Wrong mode argument") if(is.null(eqn)) stop("Please provide an equations") res<-list() eqns<-attr(tt,"systEqns") subs<-attr(tt,"subs") depVars<-attr(tt,"depVars") nrEquations<-length(eqns) termlabels<-attr(tt,"term.labels") #for(i in 1:nrEquations){ rhs<-toBuildFormula(termlabels[[eqn]],"+") if(!is.null(rhs)) rhs<-paste("~",rhs) else rhs<-"~1" Ynamei<-depVars[[eqn]] if(!(Ynamei %in% colnames(subs))) lhs<-Ynamei else lhs<-NULL f<-as.formula(paste(lhs,rhs)) if(mode==1) res<-model.matrix.default(f,data) # res[[eqns[[i]]]]<-f else res<-model.frame.default(f,data) # res[[eqns[[i]]]]<-f #} attr(res,"terms")<-tt return(res) } Zelig/R/sim.R0000644000176000001440000001214412061700507012470 0ustar ripleyusers#' Generic Method for Computing and Organizing Simulated Quantities of Interest #' Simulate quantities of interest from the estimated model #' output from \code{zelig()} given specified values of explanatory #' variables established in \code{setx()}. For classical \emph{maximum #' likelihood} models, \code{sim()} uses asymptotic normal #' approximation to the log-likelihood. For \emph{Bayesian models}, #' Zelig simulates quantities of interest from the posterior density, #' whenever possible. For \emph{robust Bayesian models}, simulations #' are drawn from the identified class of Bayesian posteriors. #' Alternatively, you may generate quantities of interest using #' bootstrapped parameters. #' @param obj the output object from zelig #' @param x values of explanatory variables used for simulation, #' generated by setx #' @param x1 optional values of explanatory variables (generated by a #' second call of setx) #' particular computations of quantities of interest #' @param y a parameter reserved for the computation of particular #' quantities of interest (average treatment effects). Few #' models currently support this parameter #' @param num an integer specifying the number of simulations to compute #' @param bootstrap currently unsupported #' @param bootfn currently unsupported #' @param cond.data currently unsupported #' @param ... arguments reserved future versions of Zelig #' @return The output stored in \code{s.out} varies by model. Use the #' \code{names} command to view the output stored in \code{s.out}. #' Common elements include: #' \item{x}{the \code{\link{setx}} values for the explanatory variables, #' used to calculate the quantities of interest (expected values, #' predicted values, etc.). } #' \item{x1}{the optional \code{\link{setx}} object used to simulate #' first differences, and other model-specific quantities of #' interest, such as risk-ratios.} #' \item{call}{the options selected for \code{\link{sim}}, used to #' replicate quantities of interest. } #' \item{zelig.call}{the original command and options for #' \code{\link{zelig}}, used to replicate analyses. } #' \item{num}{the number of simulations requested. } #' \item{par}{the parameters (coefficients, and additional #' model-specific parameters). You may wish to use the same set of #' simulated parameters to calculate quantities of interest rather #' than simulating another set.} #' \item{qi\$ev}{simulations of the expected values given the #' model and \code{x}. } #' \item{qi\$pr}{simulations of the predicted values given by the #' fitted values. } #' \item{qi\$fd}{simulations of the first differences (or risk #' difference for binary models) for the given \code{x} and \code{x1}. #' The difference is calculated by subtracting the expected values #' given \code{x} from the expected values given \code{x1}. (If do not #' specify \code{x1}, you will not get first differences or risk #' ratios.) } #' \item{qi\$rr}{simulations of the risk ratios for binary and #' multinomial models. See specific models for details.} #' \item{qi\$ate.ev}{simulations of the average expected #' treatment effect for the treatment group, using conditional #' prediction. Let \eqn{t_i} be a binary explanatory variable defining #' the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the #' average expected treatment effect for the treatment group is #' \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - #' E[Y_i(t_i=0)] \mid t_i=1 \,],} #' where \eqn{Y_i(t_i=1)} is the value of the dependent variable for #' observation \eqn{i} in the treatment group. Variation in the #' simulations are due to uncertainty in simulating \eqn{E[Y_i(t_i=0)]}, #' the counterfactual expected value of \eqn{Y_i} for observations in the #' treatment group, under the assumption that everything stays the #' same except that the treatment indicator is switched to \eqn{t_i=0}. } #' \item{qi\$ate.pr}{simulations of the average predicted #' treatment effect for the treatment group, using conditional #' prediction. Let \eqn{t_i} be a binary explanatory variable defining #' the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the #' average predicted treatment effect for the treatment group is #' \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - #' \widehat{Y_i(t_i=0)} \mid t_i=1 \,],} #' where \eqn{Y_i(t_i=1)} is the value of the dependent variable for #' observation \eqn{i} in the treatment group. Variation in the #' simulations are due to uncertainty in simulating #' \eqn{\widehat{Y_i(t_i=0)}}, the counterfactual predicted value of #' \eqn{Y_i} for observations in the treatment group, under the #' assumption that everything stays the same except that the #' treatment indicator is switched to \eqn{t_i=0}.} #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu}, Olivia Lau and Kosuke Imai sim <- function( obj, x=NULL, x1=NULL, y=NULL, num=1000, bootstrap=F, bootfn=NULL, cond.data=NULL, ... ) { UseMethod("sim") } Zelig/R/probit.R0000644000176000001440000000521312214411116013171 0ustar ripleyusers#' Interface between probit model and Zelig #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param weights a numeric vector #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2probit <- function(formula, weights=NULL, ..., data) z( glm, # .hook = "robust.glm.hook", formula = formula, weights = weights, family = binomial(link="probit"), model = F, data = data ) #' Param Method for the 'probit' Zelig Model #' @note This method is used by the 'probit' Zelig model #' @usage \method{param}{probit}(obj, num=1000, ...) #' @S3method param negbinom #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.probit <- function(obj, num=1000, ...) { list( simulations = mvrnorm(n=num, mu=coef(.fitted), Sigma=vcov(.fitted)), alpha = NULL, fam = binomial(link="probit") ) } #' Compute quantities of interest for 'probit' Zelig models #' @usage \method{qi}{probit}(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi probit #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.probit <- qi.logit #' Describe the `probit' model to Zelig #' @usage \method{describe}{probit}(...) #' @S3method describe poisson #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.probit <- function(...){ parameters <-list(mu = list( equations = c(1,1), tags.allowed = FALSE, dep.vars = TRUE, exp.vars = TRUE ) ) # return list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2007, category = "dichotomous", parameters = parameters, text = "Probit Regression for Dichotomous Dependent Variables" ) } Zelig/R/probit.survey.R0000644000176000001440000000627312071063367014550 0ustar ripleyusers#' @export zelig2probit.survey <- function( formula, weights=NULL, ids=NULL, probs=NULL, strata = NULL, fpc=NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights=FALSE, rho = NULL, bootstrap.average=NULL, scale=NULL, rscales=NULL, fpctype="fraction", return.replicates=FALSE, na.action="na.omit", start=NULL, etastart=NULL, mustart=NULL, offset=NULL, model1=TRUE, method="glm.fit", x=FALSE, y=TRUE, contrasts=NULL, design=NULL, data ) { loadDependencies("survey") if (is.null(ids)) ids <- ~ 1 # the following lines designate the design # NOTE: nothing truly special goes on here; # the below just makes sure the design is created correctly # for whether or not the replication weights are set design <- if (is.null(repweights)) svydesign( data=data, ids=ids, probs=probs, strata=strata, fpc=fpc, nest=nest, check.strata=check.strata, weights=weights ) else { .survey.prob.weights <- weights svrepdesign( data=data, repweights=repweights, type=type, weights=weights, combined.weights=combined.weights, rho=rho, bootstrap.average=bootstrap.average, scale=scale, rscales=rscales, fpctype=fpctype, fpc=fpc ) } z(.function = svyglm, formula = formula, design = design, family = quasibinomial(link="probit") ) } #' @S3method param probit.survey param.probit.survey <- function(obj, num=1000, ...) { list( simulations = mvrnorm(num, coef(obj), vcov(obj)), alpha = NULL, # note: assignment of link and link-inverse are # implicit when the family is assigned fam = binomial(link="probit") ) } #' @S3method qi probit.survey qi.probit.survey <- qi.logit.survey #' @S3method describe probit.survey describe.probit.survey <- function(...) { list( authors = "Nicholas Carnes", year = 2008, description = "Survey-Weighted Probit Regression for Continuous, Positive Dependent Variables" ) } Zelig/R/summary.R0000644000176000001440000002710012142745743013406 0ustar ripleyusers# Summary of MCMCZelig Object # # This method produces a summary object for \code{MCMCZelig} objects # @param object an "MCMCZelig" object # @param quantiles a numeric vector specifying the quantiles to use in the # summary object. # @param ... ignored parameters # @return a \code{summary.MCMCZelig} object #' @S3method summary MCMCZelig summary.MCMCZelig <- function(object, quantiles = c(0.025, 0.5, 0.975), ...) { out <- list() out$summary <- cbind( summary(coef(object))$statistics[,1:2], summary(coef(object), quantiles=quantiles)$quantiles ) colnames(out$summary) <- c("Mean", "SD", paste(quantiles*100, "%",sep="")) stuff <- attributes(coef(object)) out$call <- object$call out$start <- stuff$mcpar[1] out$end <- stuff$mcpar[2] out$thin <- stuff$mcpar[3] out$nchain <- 1 class(out) <- "summary.MCMCZelig" out } #' Method for summarizing simulations of multiply imputed quantities of interest #' #' @S3method summary MI.sim #' @usage \method{summary}{MI.sim}(object, ...) #' @param object a `MI.sim' object #' @param ... ignored parameters #' @return a `summarized.MI.sim' object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} summary.MI.sim <- function(object, ...) { summarized.list <- list() for (key in names(object)) { stats <- object[[key]]$stats for (qi.name in names(stats)) summarized.list[[qi.name]][[key]] <- stats[[qi.name]] } class(summarized.list) <- "summarySim.MI" summarized.list } #' Summary of Generalized Linear Model with Robust Error Estimates #' #' Returns summary of a glm model with robust error estimates. This only #' slightly differs from how the standard GLM's behave. #' @usage \method{summary}{glm.robust}(object, ...) #' @S3method summary glm.robust #' @param object a ``glm.robust'' fitted model #' @param ... parameters to pass to the standard ``summary.glm'' method #' @return a object of type ``summary.glm.robust'' and ``summary.glm'' summary.glm.robust <- function(object, ...) { class(object) <- c("glm", "lm") res <- summary.glm(object, ...) if (is.null(object$robust)) { res$cov.unscaled <- covmat.unscaled <- vcovHAC(object) res$robust <- "vcovHAC" } else { fn <- object$robust$method res$robust <- object$robust$method object$robust$method <- NULL arg <- object$robust arg$x <- object res$cov.unscaled <- covmat.unscaled <- eval(do.call(fn, args=arg)) } res$cov.scaled <- covmat <- covmat.unscaled*res$dispersion if (!is.null(res$correlation)) { dd <- sqrt(diag(res$cov.unscaled)) res$correlation <- res$cov.unscaled/outer(dd, dd) dimnames(res$correlation) <- dimnames(res$cov.unscaled) } res$coefficients[,2] <- s.err <- sqrt(diag(covmat)) res$coefficients[,3] <- tvalue <- coefficients(object)/s.err if (length(dimnames(res$coefficients)[[2]])>3) { if (dimnames(res$coefficients)[[2]][3]=="z value") res$coefficients[,4] <- 2 * pnorm(-abs(tvalue)) else res$coefficients[,4] <- 2 * pt(-abs(tvalue), object$df.residual) } class(res) <- c("summary.glm.robust","summary.glm") return(res) } #' Return a Summary of a Set of Pooled Simulated Interests #' #' Returns the summary information from a set of pooled simulated interests. #' The object returned contains the slots ``labels'', a character-vector #' specifying the labels (explanatory variable titles) of the qi's, ``titles'', #' a character vector specifying the names of the quantities of interest, and #" ``stats'', a list containing quantities of interests. #' @usage \method{summary}{pooled.sim}(object, ...) #' @S3method summary pooled.sim #' @param object a ``pooled.sim'' object, containing information about #' simulated quantities of interest #' @param ... Ignored parameters #' @return a ``summary.pooled.sim'' object storing the replicated quantities of #' interest #' @author Matt Owen \email{mowen@@iq.harvard.edu} summary.pooled.sim <- function (object, ...) { model <- list() stats <- list() titles <- list() original <- list() call <- list() x <- list() x1 <- list() # for (key in names(object)) { o <- object[[key]] stats[[key]] <- o$stats titles[[key]] <- o$titles } s <- list( labels = names(object), titles = names(object[[1]]$stats), stats = stats ) class(s) <- "summary.pooled.sim" s } #' Summary for ``Relogit'' Fitted Model #' #' Summarize important components of the ``relogit'' model #' @usage \method{summary}{Relogit}(object, ...) #' @S3method summary Relogit #' @param object a ``Relogit'' object #' @param ... other parameters #' @return a ``summary.relogit'' object summary.Relogit <- function(object, ...) { dta <- model.matrix(terms(object), data=model.frame(object)) class(object) <- class(object)[2] res <- summary(object, ...) if (object$bias.correct) { n <- nrow(dta) k <- ncol(dta) res$cov.unscaled <- res$cov.unscaled * (n/(n+k))^2 res$cov.scaled <- res$cov.unscaled * res$dispersion res$coefficients[,2] <- sqrt(diag(res$cov.scaled)) res$coefficients[,3] <- res$coefficients[,1] / res$coefficients[,2] res$coefficients[,4 ] <- 2*pt(-abs(res$coefficients[,3]), res$df.residual) } res$call <- object$call res$tau <- object$tau res$bias.correct <- object$bias.correct res$prior.correct <- object$prior.correct res$weighting <- object$weighting class(res) <- "summary.relogit" return(res) } #' Summary for ``Relogit2'' Fitted Model #' #' Summarize important components of the ``relogit'' model #' @usage \method{summary}{Relogit2}(object, ...) #' @S3method summary Relogit2 #' @param object a ``Relogit2'' object #' @param ... other parameters #' @return a ``summary.relogit2'' object summary.Relogit2 <- function(object, ...) { res <- list() res$lower.estimate <- summary.Relogit(object$lower.estimate) res$upper.estimate <- summary.Relogit(object$upper.estimate) res$call <- object$call class(res) <- "summary.relogit2" return(res) } #' Method for summarizing simulations of quantities of interest #' #' Return a ``summary.sim'' object (typically for display) #' @S3method summary sim #' @usage \method{summary}{sim}(object, ...) #' @param object a 'MI.sim' object #' @param ... ignored parameters #' @return a 'summarized.MI.sim' object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} summary.sim <- function(object, ...) { res <- list( model = object$model, stats = object$stats, titles = object$titles, original = object$result, call = object$call, zeligcall= object$zcall, x = object$x, x1 = object$x1, num = object$num ) class(res) <- c(object$name, "summary.sim") res } #' Zelig Object Summaries #' #' Compute summary data for zelig objects #' @S3method summary zelig #' @usage \method{summary}{zelig}(object, ...) #' @param object a zelig object #' @param ... parameters forwarded to the generic summary object #' @return the summary of the fitted model #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} summary.zelig <- function (object, ...) { # For now, simply get the summary of the result object obj <- eval(object$result) if (isS4(obj)) { sigs <- findMethodSignatures('summary') classes <- class(obj) # Remove classes that do not have 'summary' methods intersection <- classes[ ! sigs %in% classes ] intersection <- na.omit(intersection) intersection <- as.character(intersection) # Summary only has one parameter, so we only consider the first one # This may be slightly dangerous, but it should not fail sig <- intersection[1] # if an attempt to get the summary fails, replace with a call to the S3 SUMMARY <- tryCatch(getMethod('summary', sig), error = function(e) summary) # return SUMMARY(obj) } else # S3 objects have no problem figuring out which method to use summary(obj) } #' Sumary of ``setx'' Object #' #' Compute summary data for ``setx'' objects #' @S3method summary zelig #' @usage \method{summary}{zelig}(object, ...) #' @param object a zelig object #' @param ... parameters forwarded to the generic summary object #' @return the summary of the fitted model #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} summary.setx <- function (object, ...) { mm <- object$matrix attr(mm, "assign") <- NULL attr(mm, "contrasts") <- NULL structure( list( call = object$call, label = object$label, model.name = object$name, formula = object$formula, model.matrix = mm ), class = "summary.setx" ) } #' Summary of Multiply Imputed Statistical Models Using Rubin's Rule #' #' ... #' @S3method summary MI #' @usage \method{summary}{MI}(object, ...) #' @param object a set of fitted statistical models #' @param ... parameters to forward #' @return a list of summaries #' @author Matt Owen \email{mowen@@iq.harvard.edu} summary.MI <- function (object, subset = NULL, ...) { if (length(object) == 0) stop('Invalid input for "subset"') else if (length(object) == 1) return(summary(object[[1]])) # getcoef <- function(obj) { # S4 if (!isS4(obj)) coef(obj) else if ("coef3" %in% slotNames(obj)) obj@coef3 else obj@coef } # res <- list() # Get indices subset <- if (is.null(subset)) 1:length(object) else c(subset) # Compute the summary of all objects for (k in subset) { res[[k]] <- summary(object[[k]]) } # Answer ans <- list( zelig = object[[1]]$name, call = object[[1]]$result$call, all = res ) # coef1 <- se1 <- NULL # for (k in subset) { tmp <- getcoef(res[[k]]) coef1 <- cbind(coef1, tmp[, 1]) se1 <- cbind(se1, tmp[, 2]) } rows <- nrow(coef1) Q <- apply(coef1, 1, mean) U <- apply(se1^2, 1, mean) B <- apply((coef1-Q)^2, 1, sum)/(length(subset)-1) var <- U+(1+1/length(subset))*B nu <- (length(subset)-1)*(1+U/((1+1/length(subset))*B))^2 coef.table <- matrix(NA, nrow = rows, ncol = 4) dimnames(coef.table) <- list(rownames(coef1), c("Value", "Std. Error", "t-stat", "p-value")) coef.table[,1] <- Q coef.table[,2] <- sqrt(var) coef.table[,3] <- Q/sqrt(var) coef.table[,4] <- pt(abs(Q/sqrt(var)), df=nu, lower.tail=F)*2 ans$coefficients <- coef.table ans$cov.scaled <- ans$cov.unscaled <- NULL for (i in 1:length(ans)) { if (is.numeric(ans[[i]]) && !names(ans)[i] %in% c("coefficients")) { tmp <- NULL for (j in subset) { r <- res[[j]] tmp <- cbind(tmp, r[[pmatch(names(ans)[i], names(res[[j]]))]]) } ans[[i]] <- apply(tmp, 1, mean) } } class(ans) <- "summaryMI" ans } print.summaryMI <- function(x, subset = NULL, ...){ m <- length(x$all) if (m == 0) m <- 1 if (any(subset > max(m))) stop("the subset selected lies outside the range of available \n observations in the MI regression output.") cat("\n Model:", x$zelig) cat("\n Number of multiply imputed data sets:", m, "\n") if (is.null(subset)) { cat("\nCombined results:\n\n") cat("Call:\n") print(x$call) cat("\nCoefficients:\n") print(x$coefficients) cat("\nFor combined results from datasets i to j, use summary(x, subset = i:j).\nFor separate results, use print(summary(x), subset = i:j).\n\n") } else { if (is.function(subset)) M <- 1:m if (is.numeric(subset)) M <- subset for(i in M){ cat(paste("\nResult with dataset", i, "\n")) print(x$all[[i]], ...) } } } Zelig/R/ignore.R0000644000176000001440000000114512061700507013162 0ustar ripleyusers#' Constructor for the 'ignore' class #' This class is included for future use, and is currently #' not used in any Zelig model. It is designed for use with #' zelig2* functions #' @param default default value #' @param type ignored parameter #' @return an 'ignore' object #' @export #' @author Matt Owen \emph{mowen@@iq.harvard.edu} ignore <- function (default = NULL, type = "no pass") { self <- default class(self) <- "ignore" # store information, set class, and return self <- list( default = default, type = type ) class(self) <- "ignore" self } Zelig/R/attach.env.R0000644000176000001440000000347712061700507013744 0ustar ripleyusers#' Attach Variables to a Function #' #' Returns a function, specified by the user, with the variables of a specified #' environment attached. This, in essence, allows programmers to write functions #' that have forms of private memory. This makes the function behave similarly #' to an object. #' #' @note This function is used by Zelig to ensure that particular method calls - #' param, qi, bootstap - will contain the private variables: ``.fitted'', #' ``.model'', ``.call'' and ``.env'' which respectively contain the fitted #' model object, the name of the zelig model being invoked, the original call #' to the model-fitting function and the environment in which to call the #' function call. #' #' @param f a function which will be modified #' @param env an environment variable which will be attached to the function #' being returned #' @param ... arbitrary key-value paired parameters which will be assigned to #' the environment of the function being returned #' @return the original function ``f'' with a different environment attached to #' it. #' #' @author Matt Owen \email{mowen@@iq.harvard.edu} attach.env <- function (f, env = NULL, ...) { # Ensure that a valid environment is passed in if (is.null(env)) env <- new.env() # Expand dot parameters dots <- list(...) # Ensure that "env" is a valid environment if (is.null(env)) env <- new.env() else if (!inherits(env, "environment")) { warning('Environment "env" is not a valid environment variable. ', 'A default environment will be applied to "f" instead.') env <- new.env() } if (length(dots)) { # Add variables to the newly created environment for (key in names(dots)) assign(key, dots[[key]], env) } # Modify the default environment of the function environment(f) <- env # Return the modified function f } Zelig/R/qi.summarized.R0000644000176000001440000000553212061700507014473 0ustar ripleyusers#' Constructor for QI Summarized Class #' This class takes an arbitrary number of the _same_ type of #' quantities of interest labels them, then #' merges them into one simple printable block. In particular, #' this class determines which print function to use based on the #' the type and size od data to be passed to the print function. #' @param title a character-string specifying the title of the QI #' @param x a list of summarized quantities of interest #' @param ... additional quantities of interest (the parameter that #' titles these will be used as the name of the data.frame #' @return the list of QI's (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.summarize <- function (title, x, ...) { qis <- append(x, list(...)) attr(qis, 'title') <- title class(qis) <- 'qi.summarized' for (key in names(qis)) { val <- x[[key]] if (is.matrix(val)) next qis[[key]] <- matrix(val, nrow=1, ncol=length(val)) } nrows <- Map(nrow, qis) if (all(nrows == 1)) attr(qis, 'print') <- 'matrix' else attr(qis, 'print') <- 'list' invisible(qis) } #' Print Method for Summarized Quantities of Interest #' @usage \method{print}{qi.summarized}(x, \dots) #' @S3method print qi.summarized #' @param x a 'summarized.qi' object #' @param ... parameters to be passed to the specific print functions #' @return x (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @seealso \link{special_print_MATRIX} and #' \link{special_print_LIST} print.qi.summarized <- function (x, ...) { if (attr(x, 'print') == 'matrix') .print.qi.summarized.MATRIX(x, ...) else if (attr(x, 'print') == 'list') .print.qi.summarized.LIST(x, ...) else print(x, ...) } #' Method for Printing Summarized QI's in a Matrix Form #' @name special_print_MATRIX #' @aliases special_print_MATRIX .print.qi.summarized.MATRIX #' @note This function is used internall by Zelig #' @param x a 'summarized.qi' object #' @param ... additional parameters #' @return x (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} .print.qi.summarized.MATRIX <- function (x, ...) { m <- matrix(NA, 0, 0) for (key in names(x)) { m <- .bind(m, x[[key]]) } rownames(m) <- names(x) cat(attr(x, 'title'), "\n") print(m, ...) invisible(x) } #' Method for Printing Summarized QI's in a List Form #' @name special_print_LIST #' @aliases special_print_LIST .print.qi.summarized.LIST #' @note This function is used internall by Zelig #' @param x a 'summarized.qi' object #' @param ... additional parameters to be used by the 'print.matrix' method #' @return x (invisibly) #' @author Matt Owen \email{mowen@@iq.harvard.edu} .print.qi.summarized.LIST <- function (x, ...) { cat(attr(x, 'title'), "\n\n") for (key in names(x)) { cat('imputed data = ', key, "\n") print(x[[key]], ...) cat("\n") } invisible(x) } Zelig/R/gamma.R0000644000176000001440000000777512071063367013007 0ustar ripleyusers#' Interface between gamma model and Zelig #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2gamma <- function(formula, ..., data) z( glm, # .hook = "robust.glm.hook", formula = formula, family = Gamma(), model = F, data = data ) #' param method for the `gamma' Zelig model #' #' Return parameter estimates for the ``gamma'' GLM in Zelig. #' @usage \method{param}{gamma}(obj, num, ...) #' @S3method param gamma #' @param obj a `zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored parameters #' @return a list to be cast as a `parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.gamma <- function(obj, num = 1000, ...) { # Extract shape parameters, which will be used to simulate the ancillary # parameters shape <- gamma.shape(.object) # Simulate ancillary parameters alpha <- rnorm(n=num, mean=shape$alpha, sd=shape$SE) # list( simulations = mvrnorm(n=num, mu=coef(.object), Sigma=vcov(.object)), alpha = alpha, family = Gamma() ) } #' Compute quantities of interest for 'gamma' Zelig models #' @usage \method{qi}{gamma}(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi gamma #' @param obj a \code{zelig} object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.gamma <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { # Get parameters shape <- gamma.shape(.fitted) alpha <- rnorm(num, mean = shape$alpha, sd = shape$SE) coef <- coef(param) # Compute eta eta <- coef %*% t(x) # Compute theta (apply inverse) theta <- matrix(1/eta, nrow = nrow(coef)) ev <- theta pr <- matrix(NA, nrow = nrow(theta), ncol = ncol(theta)) # Default to not available ev1 <- pr1 <- fd <- NA # Compute predicted values for (i in 1:nrow(ev)) pr[i,] <- rgamma( ncol(ev), shape = alpha[i], scale = theta[i,]/alpha[i] ) # if x1 is not NULL, run more simultations # ... if (!is.null(x1)) { eta1 <- coef %*% t(x1) ev1 <- theta1 <- matrix(1/eta1, nrow = nrow(coef)) pr1 <- matrix(NA, nrow = nrow(theta1), ncol = ncol(theta1)) for (i in 1:nrow(ev1)) pr1[i, ] <- rgamma(ncol(ev1), shape = alpha[i], scale = theta1[i,]/alpha[i]) fd <- ev1 - ev } # Return list("Expected Values: E(Y|X)" = ev, "Expected Values: E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values: Y|X1" = pr1, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' Describe the \code{gamma} model to Zelig #' @usage \method{describe}{gamma}(...) #' @S3method describe default #' @param ... ignored parameters #' @return a list of important information #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.gamma <- function(...) { # parameters object parameters <- list(lambda = list( equations = c(1, 1), tags.allowed = FALSE, dep.var = TRUE, exp.var = TRUE ) ) # return list list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2007, category = "bounded", parameters = parameters, text = "Gamma Regression for Continuous, Positive Dependent Variables" ) } Zelig/R/logit.bayes.R0000644000176000001440000000442112110047000014102 0ustar ripleyusers#' @export zelig2logit.bayes <- function ( formula, burnin = 1000, mcmc = 10000, verbose=0, ..., data ) { loadDependencies("MCMCpack", "coda") if (missing(verbose)) verbose <- round((mcmc + burnin)/10) list( .function = "MCMClogit", .hook = "MCMChook", formula = formula, data = data, burnin = burnin, mcmc = mcmc, verbose= verbose, # Most parameters can be simply passed forward ... ) } #' @S3method param logit.bayes param.logit.bayes <- function(obj, num=1000, ...) { list( coef = coef(obj), fam = binomial(link="logit") ) } #' @S3method qi logit.bayes qi.logit.bayes <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { # Use a Helper-Function that computes expected values and predicted values # simultaneously. res1 <- logit.ev(x, param) res2 <- logit.ev(x1, param) # Return quantities of interest list( "Expected Value: E(Y|X)" = res1$ev, "Predicted Value: Y|X" = res1$pv, "Expected Value (for X1): E(Y|X1)" = res2$ev, "Predicted Value (for X1): Y|X1" = res2$pv, "First Differences: E(Y|X1)-E(Y|X)" = res2$ev - res1$ev ) } logit.ev <- function (x, param) { # If either of the parameters are invalid, # Then return NA for both qi's if (is.null(x) || is.na(x) || is.null(param)) return(list(ev=NA, pv=NA)) # Extract inverse-link and simulated parameters (respectively) inv <- linkinv(param) eta <- coef(param) %*% t(x) # Give matrix identical rows/columns to the simulated parameters ev <- pv <- matrix(NA, nrow(eta), ncol(eta)) dimnames(ev) <- dimnames(pv) <- dimnames(eta) # Compute Expected Values ev <- inv(eta) # Compute Predicted Values for (i in 1:ncol(ev)) pv[,i] <- as.character(rbinom(length(ev[,i]), 1, ev[,i])) # Return list(ev=ev, pv=pv) } #' @S3method describe logit.bayes describe.logit.bayes <- function(...) { list( authors = c("Ben Goodrich", "Ying Lu"), text = "Bayesian Logistic Regression for Dichotomous Dependent Variables", year = 2013 ) } Zelig/R/qi.R0000644000176000001440000000265512061700507012317 0ustar ripleyusers#' The \code{qi} function is used by developers to simulated quantities of #' interest. This method, as a result, is the most significant method of any #' Zelig statistical model. #' #' @title Generic Method for Computing Quantities of Interest #' @param obj a \code{zelig} object #' @param x a \code{setx} object or NULL #' @param x1 an optional \code{setx} object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a #' handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of #' quantities of interest with their simulations #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @note Run \code{example(qi)} to see a trivial version of #' @examples #' qi.some.model <- function(obj, x=NULL, x1=NULL, y=NULL, param=NULL) { #' list( #' "Expected Values: E(Y|X)" = NA, #' "Predicted Values: Y|X" = NA #' ) #' } qi <- function(obj, x=NULL, x1=NULL, y=NULL, num, param=NULL) { if (!inherits(obj, "zelig")) stop('"obj" must be of a "zelig" object') if (!(is.null(x) || inherits(x, "setx"))) stop('"x" must be a "setx" object"') if (!(is.null(x1) || inherits(x1, "setx"))) stop('"x1" must be a "setx" object') # then use the method UseMethod("qi") } Zelig/R/negbinom.R0000644000176000001440000000743212143273572013512 0ustar ripleyusers#' Interface between negbinom model and Zelig #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param weights a numeric vector #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2negbinom <- function(formula, weights=NULL, ..., data) z( .function = "glm.nb", .hook = robust.glm.hook, weights = weights, formula = formula, data = data ) #' Param Method for the 'negbinom' Zelig Model #' @note This method is used by the 'negbinom' Zelig model #' @usage \method{param}{negbinom}(obj, num=1000, ...) #' @S3method param negbinom #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.negbinom <- function(obj, num=1000, ...) { list( simulations = mvrnorm(num, mu=coef(.fitted), Sigma=vcov(.fitted)), alpha = .fitted$theta, link = function (e) e, linkinv = function (e) e ) } #' Compute quantities of interest for 'negbinom' Zelig models #' @usage \method{qi}{negbinom}(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi negbinom #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.negbinom <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { # coef <- coef(param) alpha <- alpha(param) # get inverse function inverse <- obj[["family", "linkinv"]] # eta <- coef %*% t(x) theta <- matrix(inverse(eta), nrow=nrow(coef)) # ... ev <- theta pr <- matrix(NA, nrow=nrow(theta), ncol=ncol(theta)) # default values ev1 <- pr1 <- fd <- NA # for (i in 1:ncol(ev)) pr[,i] <- as.character(rnegbin(nrow(ev), mu = ev[i,], theta = alpha[i])) if (!is.null(x1)) { # quantities of interest results <- qi(obj=obj, x=x1, num=num, param=param) # pass values over ev1 <- results[["Expected Values: E(Y|X)"]] pr1 <- results[["Predicted Values: Y|X"]] # compute first differences fd <- ev1 - ev } # Return quantities of interest, paired off with their titles list("Expected Values: E(Y|X)" = ev, "Expected Values: E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values: Y|X1" = pr1, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' Describe the \code{negbinom} model to Zelig #' @note \code{negbinom} stands for "negative binomial" #' @usage \method{describe}{negbinom}(...) #' @S3method describe negbinom #' @param ... ignored parameters #' @return a list to be processed by \code{as.description} #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.negbinom <- function(...) { # parameters object parameters <- list(pi = list( equations = c(1, 1), tags.allowed = FALSE, dep.var = TRUE, exp.var = TRUE ) ) # return list list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2008, category = "count", parameters = parameters, text = "Negative Binomial Regression for Event Count Dependent Variables" ) } Zelig/R/zelig.R0000644000176000001440000002422712110047000013002 0ustar ripleyusers#' Estimating a Statistical Model #' #' The zelig command estimates a variety of statistical #' models. Use \code{zelig} output with \code{setx} and \code{sim} to compute #' quantities of interest, such as predicted probabilities, expected values, and #' first differences, along with the associated measures of uncertainty #' (standard errors and confidence intervals). #' #' @param formula a symbolic representation of the model to be #' estimated, in the form \code{y \~\, x1 + x2}, where \code{y} is the #' dependent variable and \code{x1} and \code{x2} are the explanatory #' variables, and \code{y}, \code{x1}, and \code{x2} are contained in the #' same dataset. (You may include more than two explanatory variables, #' of course.) The \code{+} symbol means ``inclusion'' not #' ``addition.'' You may also include interaction terms and main #' effects in the form \code{x1*x2} without computing them in prior #' steps; \code{I(x1*x2)} to include only the interaction term and #' exclude the main effects; and quadratic terms in the form #' \code{I(x1^2)} #' @param model the name of a statistical model. #' Type \code{help.zelig("models")} to see a list of currently supported #' models #' @param data the name of a data frame containing the variables #' referenced in the formula, or a list of multiply imputed data frames #' each having the same variable names and row numbers (created by #' \code{mi}) #' @param ... additional arguments passed to \code{zelig}, #' depending on the model to be estimated #' @param by a factor variable contained in \code{data}. Zelig will subset #' the data frame based on the levels in the \code{by} variable, and #' estimate a model for each subset. This a particularly powerful option #' which will allow you to save a considerable amount of effort. For #' example, to run the same model on all fifty states, you could type: #' \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = "ls", by = "state")} #' You may also use \code{by} to run models using MatchIt subclass #' @param cite If is set to "TRUE" (default), the model citation will be #' @return Depending on the class of model selected, \code{zelig} will return #' an object with elements including \code{coefficients}, \code{residuals}, #' and \code{formula} which may be summarized using #' \code{summary(z.out)} or individually extracted using, for example, #' \code{z.out\$coefficients}. See the specific models listed above #' for additional output values, or simply type \code{names(z.out)}. #' #' @name zelig #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu}, Kosuke Imai, Olivia Lau, and #' Gary King #' Maintainer: Matt Owen \email{mowen@@iq.harvard.edu} #' @keywords package zelig <- function (formula, model, data, ..., by=NULL, cite=T) { # Yea this forever model.warnings(model) # Split data.frame if (!missing(by)) { if (length(by) > 1) { warning("by cannot have length greater than 1") by <- NULL } if (!is.data.frame(data)) warning("") else if (any(by %in% all.vars(formula))) { warning("by cannot list contain a variable from the model's formula") by <- NULL } else data <- divide(data, by) } # Almost equivalient to: # data <- multi.dataset(data) # # but we want to keep the name of the original data object as our title (sometimes). divided.data <- eval(call("multi.dataset", substitute(data))) # Call <- match.call() # expand dot arguments dots <- list() # get non-dot arguments in a general fashion notdots <- as.list(match.call(expand.dots=F)[-1]) notdots[["..."]] <- NULL # only get the non-dot arguments # that do not exist in the dot arguments names.notdots <- Filter(function(x) !x%in%names(dots), names(notdots)) notdots <- notdots[names.notdots] # build parameter list (including optional parameters) params <- c(dots, notdots) # set up list res <- NULL old.style.oop <- TRUE # Call make.mi symbolically so that the function can implicitly label # data.frame's from context. For example, the expression: # mi(turnout[1:1000, ], ) # will contain a data.frame labeled: # turnout[1:1000, ] # m <- eval(call("multi.dataset", substitute(data), by=by)) # Ensure certain values remain consistent between any object on this list # by giving them all a pointer to the same environment object which contains # a few pieces of information state <- new.env() # Begin constructing zelig object object <- list() # Create zelig2* function zelig2 <- paste("zelig2", as.character(model), sep="") zelig2 <- get(zelig2, mode="function") # Get package name. This is useful for writing methods that apply to all # models within a particular software package package.name <- getPackageName(environment(zelig2), FALSE) # repeat for (key in names(divided.data)) { d.f <- divided.data[[key]] label <- key # catch end-of-list error if (is.null(d.f)) next zclist <- zelig2(formula, ..., data=d.f) new.call <- zclist$call env <- zclist$env if (!inherits(zclist, "z")) { if (!is.list(zclist)) warning("invalid object returned from `zelig2` method") else { wl <- zclist # reserved words taken from the zelig2 method .func <- as.name(wl$.function) .hook <- wl$.hook # remove the reserved words wl$.function <- NULL wl$.hook <- NULL wl$.post <- NULL wl$.model.matrix <- NULL new.call <- as.call(append(list(.func), wl)) mock.call <- match.call() env <- NULL } } else if (inherits(zclist, "z")) { new.call <- zclist$literal.call mock.call <- zclist$call env <- NULL } else { warning("zelig2 function is returning an invalid type of object") } # Default value for result object new.res <- NULL tryCatch( { new.res <- eval(new.call) }, error = function (e) { warning("There was an error fitting this statistical model.") print(e) } ) # Apply first hook if it exists if (!is.null(zclist$.hook)) { zclist$.hook <- get(zclist$.hook, mode='function') new.res <- zclist$.hook(new.res, new.call, match.call(), ..., data = d.f) } else if (!is.null(zclist$hook) && is.function(zclist$hook)) { new.res <- zclist$hook(new.res, new.call, match.call(), ..., data = d.f) } # Determine whether this is an S4 object old.style.oop <- ! isS4(new.res) if (exists("mock.call")) { if (isS4(new.res)) new.res@call <- mock.call else new.res$call <- mock.call } # This is the only "obj" assignment that matters obj <- makeZeligObject(new.res, model, new.call, match.call(), d.f, label, env, package.name = package.name ) # Specify the appropriate class # Attach shared environment as an attribtute attr(obj, 'state') <- state # Add to list of results object[[label]] <- obj } if (missing(by) && is.data.frame(data)) { object <- object[[1]] } else { attr(object, 'state') <- state class(object) <- c(model, paste(model, 'mi', sep='-'), "MI") } # Update the shared environment assign('old-formula', formula, state) assign('args', list(...), state) assign('parent', parent.frame(), state) assign('call', match.call(), state) assign('by', by, state) # assign('methods', methods.env, state) assign('methods', NULL, state) assign('model', model, state) # The below line should probably remain commented out # assign('mi', m, state) # Display citation information if (cite) { described <- describe(object) descr <- description( authors = described$authors, year = described$description, text = described$text, url = described$url, model = model ) cat("\n\n", cite(descr), "\n") } object } #' Make an Individual Zelig Object #' #' Returns a ``zelig'' object with the proper specifications #' @param object a fitted statistical model #' @param model a character-string specifying the name of the model #' @param call The call that produced the fitted model #' @param zelig_call The call made to the original zelig function #' @param data the data.frame used to fit the model #' @param label a character-string or symbol used as a human-readable label for #' the data-set #' @param env an environment variable that contains all variables to evaluate #' the call ``zelig_call'' #' @param package.name a character-string specifyign the name of the package #' that is the source of the model used to fit this object #' @return A ``zelig'' object makeZeligObject <- function (object, model, call, zelig_call, data, label, env, package.name = NULL ) { # This is a set of variables that will be visible to the following methods: # param, bootstrap, qi implied.variables <- new.env() # The fitted model assign(".fitted", object, implied.variables) # The name of the model assign(".model", model, implied.variables) # The call to the model-fitting function assign(".call", call, implied.variables) # The environment used to evaluate the model-fitting functino assign(".env", env, implied.variables) # Create list-object self <- list( result = object, formula = formula(object), zelig.call = zelig_call, name = model, label = label, env = env, call = call, data = data, S4 = isS4(object), method.env = implied.variables, package.name = package.name ) # Specify as a ``zelig'' object class(self) <- c("zelig", model) # Return self } Zelig/R/poisson.survey.R0000644000176000001440000001057412071063367014742 0ustar ripleyusers#' @export zelig2poisson.survey <- function( formula, weights=NULL, ids=NULL, probs=NULL, strata = NULL, fpc=NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights=FALSE, rho = NULL, bootstrap.average=NULL, scale=NULL, rscales=NULL, fpctype="fraction", return.replicates=FALSE, na.action="na.omit", start=NULL, etastart=NULL, mustart=NULL, offset=NULL, model1=TRUE, method="glm.fit", x=FALSE, y=TRUE, contrasts=NULL, design=NULL, data ) { loadDependencies("survey") if (is.null(ids)) ids <- ~1 # the following lines designate the design # NOTE: nothing truly special goes on here; # the below just makes sure the design is created correctly # for whether or not the replication weights are set design <- if (is.null(repweights)) svydesign( data=data, ids=ids, probs=probs, strata=strata, fpc=fpc, nest=nest, check.strata=check.strata, weights=weights ) else { .survey.prob.weights <- weights svrepdesign( data=data, repweights=repweights, type=type, weights=weights, combined.weights=combined.weights, rho=rho, bootstrap.average=bootstrap.average, scale=scale, rscales=rscales, fpctype=fpctype, fpc=fpc ) } z(.function = svyglm, formula = formula, design = design, family = poisson() ) } #' @S3method param poisson.survey param.poisson.survey <- function(obj, num=1000, ...) { list( simulations = mvrnorm(num, coef(obj), vcov(obj)), alpha = NULL, # note: assignment of link and link-inverse are # implicit when the family is assigned fam = poisson() ) } #' @S3method qi poisson.survey qi.poisson.survey <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { model <- GetObject(obj) coef <- coef(param) alpha <- alpha(param) eta <- coef %*% t(x) link.inverse <- linkinv(param) theta <- matrix(link.inverse(eta), nrow=nrow(coef)) pr <- ev <- matrix(NA, nrow=nrow(theta), ncol(theta)) dimnames(pr) <- dimnames(ev) <- dimnames(theta) ev <- theta for (k in 1:nrow(ev)) pr[k, ] <- rpois(length(ev[k, ]), lambda=ev[k, ]) ev1 <- pr1 <- fd <- NA if (!is.null(x1)) { ev1 <- theta1 <- matrix(link.inverse(coef %*% t(x1)), nrow = nrow(coef) ) fd <- ev1-ev } att.ev <- att.pr <- NA if (!is.null(y)) { yvar <- matrix(rep(y, nrow(coef)), nrow=nrow(coef), byrow=TRUE) tmp.ev <- yvar - ev tmp.pr <- yvar - pr att.ev <- matrix(apply(tmp.ev, 1, mean), nrow=nrow(coef)) att.pr <- matrix(apply(tmp.pr, 1, mean), nrow=nrow(coef)) } list( "Expected Values: E(Y|X)" = ev, "Expected Values for (X1): E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values (for X1): Y|X1" = pr1, "First Differences E(Y|X1)-E(Y|X)" = fd, "Average Treatment Effect: Y-EV" = att.ev, "Average Treatment Effect: Y-PR" = att.pr ) } #' @S3method describe poisson.survey describe.poisson.survey <- function(...) { list( authors = "Nicholas Carnes", year = 2008, description = "Survey-Weighted Poisson Regression for Continuous, Positive Dependent Variables" ) } Zelig/R/get.package.R0000644000176000001440000000452112061700507014051 0ustar ripleyusers#' Find the Zelig package that a particular model belong to #' #' This method is used to help transition Zelig v3.5 users to Zelig v4 #' @param model a character-string specifying a Zelig model #' @param quiet a logical indicating whether to display messages and warnings #' @param ... ignored parameters #' @return NA or a character-string specifying the name of the package which #' contains a specific model #' @author Matt Owen \email{mowen@@iq.harvard.edu} get.package <- function (model, quiet=TRUE, ...) { # Bad variable-types return NULL if (is.null(model)) return(NA) else if (!is.character(model)) return(NA) else if (length(model) != 1) return (NA) # Create list (auto-generated using another script. # This is a copy-and-paster of that below descr <- c( gamma = "Zelig", logit = "Zelig", ls = "Zelig", negbinom = "Zelig", normal = "Zelig", poisson = "Zelig", probit = "Zelig", gamma.gee = "Zelig", logit.gee = "Zelig", normal.gee = "Zelig", poisson.gee = "Zelig", probit.gee = "Zelig", factor.bayes = "Zelig", logit.bayes = "Zelig", mlogit.bayes = "Zelig", normal.bayes = "Zelig", oprobit.bayes = "Zelig", poisson.bayes = "Zelig", probit.bayes = "Zelig", aov = "Zelig", sur = "Zelig", twosls = "Zelig", threesls = "Zelig", blogit = "ZeligChoice", bprobit = "ZeligChoice", mlogit = "ZeligChoice", mprobit = "ZeligChoice", ologit = "ZeligChoice", oprobit = "ZeligChoice", logit.gam = "ZeligGAM", normal.gam = "ZeligGAM", poisson.gam = "ZeligGAM", probit.gam = "ZeligGAM", gamma.mixed = "ZeligMultilevel", logit.mixed = "ZeligMultilevel", ls.mixed = "ZeligMultilevel", normal.mixed = "ZeligMultilevel", poisson.mixed = "ZeligMultilevel", probit.mixed = "ZeligMultilevel", gamma.survey = "ZeligSurvey", logit.survey = "ZeligSurvey", normal.survey = "ZeligSurvey", poisson.survey = "ZeligSurvey", probit.survey = "ZeligSurvey", cloglog.net = "ZeligNetwork", gamma.net = "ZeligNetwork", logit.net = "ZeligNetwork", ls.net = "ZeligNetwork", negbinom.net = "ZeligNetwork", normal.net = "ZeligNetwork", poisson.net = "ZeligNetwork", probit.net = "ZeligNetwork" ) if (model %in% names(descr)) descr[[model]] else NA } Zelig/R/parameters.R0000644000176000001440000000770312061700507014050 0ustar ripleyusers#' Constructor for `parameters' class #' #' #' @param simulations a vector or matrix containing simulated values #' @param alpha ancillary parameters for the Zelig statistical model #' @param fam a family object which implicitly specifies the link #' and link-inverse functions for the #' @param link the link function of the specified statistical model. #' The `linkinv' parameter is implicitly defined by #' by the `link' parameter, when `linkinv' is omitted #' @param linkinv the inverse link function #' @return a `parameters' object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} parameters <- function(simulations, alpha, fam=NULL, link=NULL, linkinv=NULL ) { if (is.function(fam)) fam <- fam() # if (!missing(fam) && isS4(fam)) { link <- fam@link linkinv <- fam@inverse } else if (!missing(fam) && inherits(fam, "family")) { link <- fam$linkfun linkinv <- fam$linkinv } else if (missing(link)) { #warning("no link function") } else if (missing(linkinv)) { #warning("no inverse link function") linkinv <- .NumInverse(link) } # Construct object p <- list(coefficients = simulations, alpha = alpha, link = link, linkinv = linkinv ) # cast, and return class(p) <- "parameters" p } #' Extract ancillary parameters from #' `parameters' objects #' #' @param param a `parameters' object #' @return the ancillary parameters \emph{specified} for #' the statistical model #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} alpha <- function(param) param$alpha #' Return Simulations of Parameter Coefficients #' #' Returns simulated parameters of coefficients for use in statistical #' simulation. The values are set by the model-fitting function and the #' developer of the qi. method. #' #' @note This function may not differ at all from coef.default #' @usage \method{coef}{parameters}(object, ...) #' @S3method coef parameters #' @param object a 'parameters' object #' @param \dots ignored #' @return simulations, specified by the Zelig model, of #' the ancillary parameters #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} coef.parameters <- function(object, ...) { object$coefficients } #' Return Simulations of Parameter Coefficients #' #' Returns simulated parameters of coefficients for use in statistical #' simulation. The values are set by the model-fitting function and the #' developer of the qi. method. #' #' @note This function does not differ at all from coef.default #' @usage \method{simulations}{parameters}(object, ...) #' @S3method coef parameters #' @param object a 'parameters' object #' @param \dots ignored #' @return simulations, specified by the Zelig model, of #' the ancillary parameters #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} simulations.parameters <- function(object, ...) object$coefficients #' Method for extracting the link function from 'parameters' objects #' @param param a 'parameters' object #' @return the link function specified by the `param' function for the given #' Zelig model #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} link <- function(param) param$link #' Method for extracting the inverse link function from 'parameters' objects #' #' Returns the inverse link function of a ``parameters'' object. If the #' model's developer did not specify one (but did specify a link function) this #' function returns a numerical approximation of the link function. #' @param param a 'parameters' object #' @return the inverse link function specified by the 'param' function for the #' given Zelig model #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} linkinv <- function(param) { if (is.null(param$linkinv)) .NumInverse(param$link) else param$linkinv } Zelig/R/probit.bayes.R0000644000176000001440000000217712110047000014271 0ustar ripleyusers#' @export zelig2probit.bayes <- function ( formula, burnin = 1000, mcmc = 10000, verbose=0, ..., data ) { loadDependencies("MCMCpack", "coda") if (missing(verbose)) verbose <- round((mcmc + burnin)/10) list( .function = "MCMCprobit", .hook = "MCMChook", formula = formula, data = data, burnin = burnin, mcmc = mcmc, verbose= verbose, # Most parameters can be simply passed forward ... ) } #' @S3method param probit.bayes param.probit.bayes <- function(obj, num=1000, ...) { list( coef = coef(obj), fam = binomial(link="probit") ) } #' @S3method qi probit.bayes qi.probit.bayes <- qi.logit.bayes #' @S3method describe probit.bayes describe.probit.bayes <- function(...) { list( description = "Bayesian Probit Regression for Dichotomous Dependent Variables", authors = c("Ben Goodrich", "Ying Lu"), year = 2013 ) } Zelig/R/robust.hook.R0000644000176000001440000000066412110047000014144 0ustar ripleyusers#' @export robust.gee.hook <- function(obj, Zall, Call, robust, ...) { # Assume robust, if nothing is specified if (missing(robust) || is.null(robust)) robust <- TRUE # Invalid robust parameters should stop program if (!is.logical(robust)) stop("robust must be a logical (TRUE or FALSE)") if (robust) class(obj) <- c("gee.robust", class(obj)) else class(obj) <- c("gee.naive", class(obj)) # obj } Zelig/R/poisson.R0000644000176000001440000000707112071063367013404 0ustar ripleyusers#' Interface between poisson model and Zelig #' This function is exclusively for use by the `zelig' function #' @param formula a formula #' @param weights a numeric vector #' @param ... ignored parameters #' @param data a data.frame #' @return a list to be coerced into a zelig.call object #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig2poisson <- function(formula, weights=NULL, ..., data) { z( glm, # .hook = "robust.glm.hook", formula = formula, weights = weights, family = poisson(), model = F, data = data ) } #' Param Method for the 'poisson' Zelig Model #' @note This method is used by the 'poisson' Zelig model #' @usage \method{param}{poisson}(obj, num=1000, ...) #' @S3method param negbinom #' @param obj a 'zelig' object #' @param num an integer specifying the number of simulations to sample #' @param ... ignored #' @return a list to be cast as a 'parameters' object #' @author Matt Owen \email{mowen@@iq.harvard.edu} param.poisson <- function (obj, num=1000, ...) { list( simulations = mvrnorm(num, mu=coef(.fitted), Sigma=vcov(.fitted)), fam = poisson() ) } #' Compute quantities of interest for 'poisson' Zelig models #' @usage \method{qi}{poisson}(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) #' @S3method qi poisson #' @param obj a 'zelig' object #' @param x a 'setx' object or NULL #' @param x1 an optional 'setx' object #' @param y this parameter is reserved for simulating average treatment effects, #' though this feature is currentlysupported by only a handful of models #' @param num an integer specifying the number of simulations to compute #' @param param a parameters object #' @return a list of key-value pairs specifying pairing titles of quantities of #' interest with their simulations #' @author Matt Owen \email{mowen@@iq.harvard.edu} qi.poisson <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { # coef <- coef(param) # get inverse function inverse <- linkinv(param) # eta <- coef %*% t(x) theta <- matrix(inverse(eta), nrow=nrow(coef)) # ... ev <- theta pr <- matrix(NA, nrow=nrow(theta), ncol=ncol(theta)) # default values ev1 <- pr1 <- fd <- NA for (i in 1:ncol(ev)) pr[,i] <- rpois(nrow(ev), lambda = ev[,i]) if (!is.null(x1)) { # quantities of interest results <- qi(obj, x1, num=num, param=param) # pass values over ev1 <- results[["Expected Values: E(Y|X)"]] pr1 <- results[["Predicted Values: Y|X"]] # compute first differences fd <- ev1 - ev } # Return quantities of interest list("Expected Values: E(Y|X)" = ev, "Expected Values: E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values: Y|X1" = pr1, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' Describe the `poisson' model to Zelig #' @usage \method{describe}{poisson}(...) #' @S3method describe poisson #' @param ... ignored parameters #' @return a list to be processed by `as.description' #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export describe.poisson <- function(...) { # parameters object parameters <- list(lambda = list( equations = c(1, 1), tags.allowed = FALSE, dep.vars = TRUE, exp.vars = TRUE ) ) # return list list(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = 2007, category = "count", parameters = parameters, text = "Poisson Regression for Event Count Dependent Variables" ) } Zelig/R/zzz.R0000644000176000001440000012372212216377251012552 0ustar ripleyusers# THIS FILE CONTAINS PACKAGE HOOKS FOR ZELIG # ------------------------------------------ # @...: nothing # spill-over: output information about Zelig .onAttach <- function(...) { package.name <- "Zelig" mylib <- dirname(system.file(package = package.name)) ver <- packageDescription(package.name, lib.loc = mylib)$Version build.date <- packageDescription(package.name, lib.loc = mylib)$Date # build info packageStartupMessage("ZELIG (Versions ", ver, ", built: ", build.date, ")") # cat, for readability of the message text # Zelig info - do not exceed 80char/line packageStartupMessage(" +----------------------------------------------------------------+ | Please refer to http://gking.harvard.edu/zelig for full | | documentation or help.zelig() for help with commands and | | models support by Zelig. | | | | Zelig project citations: | | Kosuke Imai, Gary King, and Olivia Lau. (2009). | | ``Zelig: Everyone's Statistical Software,'' | | http://gking.harvard.edu/zelig | | and | | Kosuke Imai, Gary King, and Olivia Lau. (2008). | | ``Toward A Common Framework for Statistical Analysis | | and Development,'' Journal of Computational and | | Graphical Statistics, Vol. 17, No. 4 (December) | | pp. 892-913. | | | | To cite individual Zelig models, please use the citation | | format printed with each model run and in the documentation. | +----------------------------------------------------------------+ ") } # @param object a zelig object # @param envir an environment .GetGenericsS4 <- function(object, envir=parent.frame()) { if (inherits(object$result, "list")) { .ListS4Generics(classes=class(object$result[[1]]), env=envir) } else .ListS4Generics(classes=class(object$result), env=envir) } # @classes: classes # @where: compatibility with showMethods # @env: the environment to search for generics # return: a character-vector of function names # ******************************************** # this function searches .AllMTable within the namespace # of the functions environment .ListS4Generics <- function(classes=NULL, where=NULL, env=topenv(parent.frame())) { # get list of all generic functions functions <- if (missing(where)) getGenerics() else getGenerics(where) # matches <- c() functions <- as.character(functions) # for (f in functions) { fdef <- getGeneric(f) env <- environment(fdef) table <- tryCatch(get(".AllMTable", envir=env), error=function(e) NULL) if (is.null(table)) next if (any(classes %in% ls(table))) matches <- append(matches, f) } # return flist <- c("zelig", "param", "as.parameters", "sim", "setx", "register", 'summary') matches[ ! matches %in% flist ] } #' Describe a Zelig Model #' #' @param model.name #' @param ... ignored parameters #' @return a 'description' object containing citation information #' @author Matt Owen \email{mowen@@iq.harvard.edu} .ZeligDescribeModel <- function(model.name, ...) { # lie to zelig dummy.zelig <- "dummy" class(dummy.zelig) <- model.name # return as a description as.description(describe(dummy.zelig)) } #' Get a Character-Vector of All Models with a 'zelig2' Function #' #' @note In order for a Zelig model to either execute correctly or be listed as #' a legal Zelig model, the function name must be prefixed with 'zelig2'. #' @param zelig.only a boolean specifying whether we want to search only the #' Zelig namespace #' @return a character-vector of the Zelig models loaded on the user's machine #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} ZeligListModels <- function(zelig.only=FALSE) { results <- if (zelig.only) ls(pattern="^zelig2", envir=asNamespace("Zelig")) else apropos("^zelig2", mode="function") # substitute and return sub("^zelig2", "", results) } #' Get a Text-Block of Citation Information about a Zelig Model #' #' @note This function is strictly used internally by Zelig #' @param model.name the name of a Zelig model #' @return a block of text giving a human readable (and APA compliant) block #' citation text #' @author Matt Owen \email{mowen@@iq.harvard.edu} .GetModelCitationTex <- function(model.name) cite(ZeligDescribeModel(model.name)) #' Produce a 'description' Object from the Name of a Model #' @note The 'description' object is a list-style object containing citation #' information #' @param model.name a character-string specifying a Zelig model #' @return a 'description' object specified by the 'model.name' parameter. This #' object is created by executing the specified Zelig models' 'describe' #' function #' @export ZeligDescribeModel <- function(model.name) { dummy <- "I love baseball. You know, it doesn't have to mean anything. It's just very beautiful to watch." class(dummy) <- model.name # describe res <- describe(dummy) # add model name res$model <- model.name # return as.description(res) } #' Get a TeX-style Citation #' @param model a character-string specifying the name of the Zelig model of which #' to describe in TeX-style #' @return a string to be rendered as part of a LaTeX-style document #' @export TexCite <- function(model) { # description object descr <- ZeligDescribeModel(model) # url url <- "http://gking.harvard.edu/zelig" # define title title <- if (is.null(descr$text)) descr$model else paste(descr$model, ": ", descr$text, sep="") # quote title string title <- paste('"', title, '"', sep="") # construct string str <- paste( "{\bf To cite this model in Zelig:}", paste(descr$authors, descr$year, sep="."), paste(title, "in Kosuke Imai, Gary King and Olivia Lau,"), "\"Zelig: Everyone's Statistical Software,\"", url, sep = "\n" ) str } #' Get a List of Categories for Describing Zelig Models #' @note This feature is being deprecated, as original functionality with the #' Dataverse Project \url{thedata.org} is being reevaluated. #' @return a list of character-string specifying legal category types (as the #' keys of the list) and their human-counterparts (as the values) #' @export .ZeligModelCategories <- function() { list(continuous = "Models for Continuous Dependent Variables", dichotomous = "Models for Dichotomous Dependent Variables", ordinal = "Models for Ordinal Dependent Variables", bounded = "Models for Continous Bounded Dependent Variables", multinomial = "Multinomial Choice Models", count = "Event Count Models", mixed = "Models for Mixed Dependent Variables", ei = "Ecological Inference Models" ) } #' List the Titles of the Zelig Statistical Models #' @return a list of manual titles for the Zelig software #' @export ZeligListTitles <- function() { # models <- ZeligListModels() # lis <- list() # for (m in models) lis[[m]] <- ZeligDescribeModel(m)$text # turn into a vector with each entry having: # model_name: model_description # e.g. # probit: Probit Regression for Dichotomous Dependent Variables paste(names(lis), lis, sep=": ") } #' Whether an Arbitrary R-package has a Zelig2 Function within Its Namespace #' @note This function is used primarily internally to determine whether a #' a package is contributing a function to the Zelig software suite #' @param pkg a character-string representing a package name #' @return whether the package contains any zelig2-functions #' @export has.zelig2 <- function(pkg) { env <- asNamespace(pkg) hits <- grep("^zelig2*", ls(envir=env)) length(hits) > 0 } #' Whether a Statistical Package Depends on the Zelig Software Suite #' @note This function is used primarily internally to determine whether a #' a package is contributing a function to the Zelig software suite #' @param package a character-string representing a package name #' @return whether the package lists Zelig as a dependency in its DESCRIPTION #' @export depends.on.zelig <- function(package="") { zcomp <- packageDescription(package, fields="Depends") if (is.na(zcomp)) return(FALSE) zcomp <- unlist(strsplit(zcomp, " *, *")) # "Zelig" %in% zcomp # pattern to match things leading with Zelig, some spaces, and a parenthesis ending # ex: # Zelig # Zelig (>= 3) # Zelig (blah blah) pattern <- "^Zelig *(?:\\(.*?\\))$" length(grep(pattern, zcomp)) != 0 } #' Get a List of Packages Installed on the Current Machine that Depend on Zelig #' @note This function is used primarily internally to determine whether a #' a package is contributing a function to the Zelig software suite #' @return a character-vector of all zelig-dependent packages on the current #' machine list.zelig.dependent.packages <- function() Filter(depends.on.zelig, .packages(all.available=TRUE)) #' List Zelig Models Installed on the Current Machine #' @note This list is not necessarily complete #' @param with.namespace a boolean specifying whether #' @return list of all zelig models list.zelig.models <- function(with.namespace=TRUE) { # list the zelig-dependent packages pkgs <- list.zelig.dependent.packages() # include the core package pkgs <- c("Zelig", pkgs) # initialize functions variable functions <- NULL # create a list of every zelig2 function for (pkg in pkgs) { # get all zelig2 functions, then get their model name models <- ls(pattern="^zelig2", envir=asNamespace(pkg)) models <- sub("^zelig2", "", models) # add to results list functions[models] <- pkg } # return if (with.namespace) # with model-name as the key, and namespace as the value functions else # with just a list of models names(functions) } #' Append a Prefix to a Character String #' @note This function is exclusively used internally by Zelig #' @param name a character-string specifying the name of a variable #' @param envir an environment variable to search #' @param prefix a character-string to prefix the string with #' this is applied until the name is unique #' @param sep a character-string that separates prefix and name .prefix <- function(name, envir, prefix="zelig", sep=".") { # check to make sure this is an environment variable if (!is.environment(envir)) { warning() envir <- globalenv() } # ensure some name is returned if (!is.character(c(name, prefix, sep))) { warning() name } else if (length(name) > 1 || length(prefix) > 1 || length(sep) > 1) { warning() name } else if (!nchar(name)) { warning() sep <- "." } else { while(exists(name, envir=envir)) name <- paste(prefix, name, sep=sep) # return if nothing wonky happened name } } .GetGenerics <- function(...) UseMethod(".GetGenerics") # needs work .GetGenerics.MI <- function(...) new.env() # @zelig.object: a zelig object # @envir: namespace to search with 'ls' # return: a list of generic functions names to # to define for zelig .GetGenerics.default <- function(zelig.object, envir=parent.frame()) { if (is.null(zelig.object$S4)) stop(as.character(zelig.object$family[[1]])) else if (zelig.object$S4) suppressWarnings(.GetGenericsS4(zelig.object, envir)) else suppressWarnings(.GetGenericsS3(zelig.object, envir)) } .GetGenericsS3 <- function(zelig.object, envir=parent.frame()) { # hash <- list() cls <- class(zelig.object$result) method.list <- as.character(unlist(mapply(methods, class=cls))) regex <- paste("(", paste(cls, collapse="|"), ")", sep="|") method.list <- gsub(regex, "", method.list) meth.list <- c() for (cl in c(class(zelig.object$result), "default")) { method.list <- as.character(methods(class=cl)) method.list <- gsub(paste("\\.", cl, "$", sep=""), "", method.list) meth.list <- unique(c(meth.list, method.list)) } # final list flist <- c("zelig", "param", "as.parameters", "sim", "setx", "register", 'qi', 'summary') meth.list <- sort(unique(c(meth.list, names(get(".knownS3Generics"))))) meth.list[ ! meth.list %in% flist ] } # Numerical Derivative # # This method computes the numerical derivative at a point # @param f function (differentiable) # @param stencil number of points in stencil. This is currently ignored. # @param h size of mesh # @return anonymous function with the approximation # @note single variable numerical derivative .nderiv <- function(f, stencil=5, h=sqrt(.Machine$double.eps)) { # return approximated derivative function function (x) { # construct the 5-point mesh, middle point omitted # since it gets deleted anyway x.stencil <- rep(x, 4) + c(2, 1, -1, -2)*h # compute approximation sum(sapply(x.stencil, f) %*% c(-1, 8, -8, 1))/12/h } } # @F: function to invert # @f: derivative of function, or NULL to use numerical approximation # @x: initial guess # @tol: error-tolerance # @h: mesh size # @max.iter: number of iterations to perform before giving up # return: df(x_0)/dx # **note: newton-rhapson for single variables # **suggestion: replace with C code, otherwise won't be truly fast-enough .nr <- function(F, f=NULL, x = 1, a = 0, tol = sqrt(.Machine$double.eps), h = sqrt(.Machine$double.eps), max.iter = 50) { # save function to prevent recursions saved.function <- F # rewrite function to solve for a if (!missing(a)) F <- function(x) saved.function(x) - a # if NULL assign numerical derivative if (is.null(f)) f <- .nderiv(F) # count <- 1 # while (abs(F(x)) > tol && count <= max.iter) { # increment counter count <- count + 1 # if derivative is zero, or near it # (otherwise we have issues with solutions where x=0) if (abs(f(x)) < 10^-8) { x <- x + runif(1, min=-1, max=1) next } # iterate x <- x - F(x)/f(x) } if (count > max.iter) warning("approximation failed to converge given specified tolerance") # return result x } # @F: # @f: # @x: initial guess # @tol: # return: a functional form of the newton-rhapson approximation .NumInverse <- function(F, f=NULL, x = 1, tol = (.Machine$double.eps)^.5, h = sqrt(.Machine$double.eps), max.iter = 50) { function (a) { res <- c() # kludgey, but just a hold-over for now for (val in a) { val <- .nr(F=F, f=f, x=x, a=val, tol=tol, h=h, max.iter=max.iter) res <- c(res, val) } res } } # This file contains overloaded operators # However, developers - in general - should avoid the use of these features, # and instead use iterators when dealing with multiple fitted models or # quantities of interest. # The methods primarily come up when defining 'summarize' and 'plot' functions #' Extract a Value from a Fitted Model Object (Wrapped by Zelig) #' @S3method "[[" zelig #' @param z an object of type 'zelig' #' @param slot a character-string specifying the slot to extract from the fitted #' model object #' @param ... subsequent slots to extract from the fitted model object #' @return contents of the specified slots #' @author Matt Owen \emph{mowen@@iq.harvard.edu} "[[.zelig" <- GetSlot.zelig #' Extraction Operator for Quantities of Interest #' This function is exclusively used internally by Zelig, and behaves in a very #' fishy manner. \code{qi} objects maintain an internal list of indices which #' are used to find the appropriate slot which holds a particular quantity of #' interest. #' When a \code{qi} object is defined, all the quantities of interest are #' converted into acronyms, so that elements of the \code{qi} object can be #' stored without a lengthy name containing spaces (since most qi's are #' human-readable). As a result, these objects contain an \code{.index} #' attribute which pairs every quantity of interest with its acronym. This #' index is then used to extract (using the \code{$} operator) the appropriate #' element of the list. #' In short, it pairs the key "Expected Value" with the slot \code{ev}. This #' allows that the following will always be true (in the mentioned example): #' \code{qi$ev == qi[["Expected Value"]]} #' @note When possible, \code{qi} objects should be handled with iterators #' rather than list-style extraction operators. #' @S3method "[[" qi #' @param self the \code{qi} object #' @param key a character-string specifying the title of the quantity of #' interest to extract. #' @return if the quantity of interest exists, that entry. Otherwise, #' \code{NULL} #' @author Matt Owen \email{mowen@@iq.harvard.edu} "[[.qi" <- function(self, key) { # Produce the index of titles of qi's index <- attr(self, ".index") # Find the 'short-name' matching qi.short.name <- index[[key]] if (is.null(qi.short.name)) NULL else # if this title => key pair is found, invoke the "$" operator on the # shortname. In effect, this makes: # qi[['Expected Value']] # # equivalent to: # qi$ev do.call("$", list(self, qi.short.name)) } #' Receiver Operator Characteristic Plots #' #' The 'rocplot' command generates a receiver operator characteristic plot to #' compare the in-sample (default) or out-of-sample fit for two logit or probit #' regressions. #' #' @usage #' rocplot(y1, y2, fitted1, fitted2, #' cutoff = seq(from=0, to=1, length=100), lty1="solid", #' lty2="dashed", lwd1=par("lwd"), lwd2=par("lwd"), #' col1=par("col"), col2=par("col"), #' main="ROC Curve", #' xlab = "Proportion of 1's Correctly Predicted", #' ylab="Proportion of 0's Correctly Predicted", #' plot = TRUE, #' ... #' ) #' #' @param y1 response variable for the first model #' @param y2 response variable for the second model #' @param fitted1 fitted values for the first model. These values may represent #' either the in-sample or out-of-sample fitted values #' @param fitted2 fitted values for the second model #' @param cutoff A vector of cut-off values between 0 and 1, at which to #' evaluate the proportion of 0s and 1s correctly predicted by the first and #' second model. By default, this is 100 increments between 0 and 1 #' inclusive #' @param lty1 the line type of the first model (defaults to 'line') #' @param lty2 the line type of the second model (defaults to 'dashed') #' @param lwd1 the line width of the first model (defaults to 1) #' @param lwd2 the line width of the second model (defaults to 1) #' @param col1 the color of the first model (defaults to 'black') #' @param col2 the color of the second model (defaults to 'black') #' @param main a title for the plot (defaults to "ROC Curve") #' @param xlab a label for the X-axis #' @param ylab a lavel for the Y-axis #' @param plot whether to generate a plot to the selected device #' @param \dots additional parameters to be passed to the plot #' @return if plot is TRUE, rocplot simply generates a plot. Otherwise, a list #' with the following is produced: #' \item{roc1}{a matrix containing a vector of x-coordinates and #' y-coordinates corresponding to the number of ones and zeros correctly #' predicted for the first model.} #' \item{roc2}{a matrix containing a vector of x-coordinates and #' y-coordinates corresponding to the number of ones and zeros correctly #' predicted for the second model.} #' \item{area1}{the area under the first ROC curve, calculated using #' Reimann sums.} #' \item{area2}{the area under the second ROC curve, calculated using #' Reimann sums.} #' @export #" @author Kosuke Imai and Olivia Lau rocplot <- function(y1, y2, fitted1, fitted2, cutoff = seq(from=0, to=1, length=100), lty1="solid", lty2="dashed", lwd1=par("lwd"), lwd2=par("lwd"), col1=par("col"), col2=par("col"), main="ROC Curve", xlab = "Proportion of 1's Correctly Predicted", ylab="Proportion of 0's Correctly Predicted", plot = TRUE, ...) { roc1 <- roc2 <- matrix(NA, nrow = length(cutoff), ncol = 2) colnames(roc1) <- colnames(roc2) <- c("ones", "zeros") for (i in 1:length(cutoff)) { roc1[i,1] <- mean(fitted1[y1==1] >= cutoff[i]) roc2[i,1] <- mean(fitted2[y2==1] >= cutoff[i]) roc1[i,2] <- mean(fitted1[y1==0] < cutoff[i]) roc2[i,2] <- mean(fitted2[y2==0] < cutoff[i]) } if (plot) { plot(0:1, 0:1, type = "n", xaxs = "i", yaxs = "i", main=main, xlab=xlab, ylab=ylab, ...) lines(roc1, lty = lty1, lwd = lwd1, col=col1) lines(roc2, lty = lty2, lwd = lwd2, col=col2) abline(1, -1, lty = "dotted") } else { area1 <- area2 <- array() for (i in 2:length(cutoff)) { area1[i-1] <- (roc1[i,2] - roc1[(i-1),2]) * roc1[i,1] area2[i-1] <- (roc2[i,2] - roc2[(i-1),2]) * roc2[i,1] } return(list(roc1 = roc1, roc2 = roc2, area1 = sum(na.omit(area1)), area2 = sum(na.omit(area2)))) } } #' Create Function Call #' #' #' @param Call a \code{call} object, typically specifying the original function #' call to \code{zelig} #' @param zelig2 the return-value of the \code{zelig2} method #' @param remove a list of character vectors specifying which parameters to #' ignore from the original call to \code{zelig} #' @return a function call used to fit the statistical model #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} zelig.call <- function(Call, zelig2, remove = NULL) { # envir <- new.env() # reserved words taken from the zelig2 method func <- as.name(zelig2$.function) hook <- zelig2$.hook # remove the reserved words zelig2$.function <- NULL zelig2$.hook <- NULL zelig2$.post <- NULL zelig2$.model.matrix <- NULL # make a list of the parameters to be passed to the external model args <- names(formals(as.character(func))) # remove certain parameters for (key in remove) { if (key %in% names(Call)) Call[[key]] <- NULL } # remove invalid params for (key in names(Call[-1])) { if (! key %in% args) Call[[key]] <- NULL } # A static list of objects that do not printout well or should be stored # within a separate environment messy.objects <- c("data.frame", "function", 'matrix', "family", "function") neat.objects <- c("formula", "family") skip <- c() # Store values within 'messy.objects' within another environment, and give a # pseudonym for (key in names(zelig2)) { obj <- zelig2[[key]] Class <- class(obj) first.class <- Class[1] if (is.object(obj)) { if (all(Class %in% neat.objects)) { Call[[key]] <- obj } else { Name <- store.object(obj, envir, ucfirst(first.class)) Call[[key]] <- as.name(Name) skip <- c(skip, key) } } else if (is.function(obj)) { Name <- store.object(obj, envir, "Function") Call[[key]] <- as.name(Name) skip <- c(skip, key) } else if (is.atomic(obj) && length(obj) > 5) { Name <- store.object(obj, envir, paste(toupper(Class[1]), length(obj), sep="")) Call[[key]] <- as.name(Name) skip <- c(skip, key) } else if (is.list(obj) && length(obj) > 5) { Name <- store.object(obj, envir, paste("List", length(obj), sep="")) Call[[key]] <- as.name(Name) skip <- c(skip, key) } else { # this is a hack to prevent removal of elements if the value is NULL null.list <- list(NULL) names(null.list) <- key # the two statement are *slightly* different if (is.null(obj)) { Call <- as.call(append(as.list(Call), null.list)) } else { Call[[key]] <- obj } } } # Guarantee all zelig2 names are included (including model, etc) for (key in names(zelig2)) { if (key %in% skip) next; if (!is.null(zelig2[[key]])) Call[[key]] <- zelig2[[key]] else { # Clear the entry. Don't worry. It's going to get re-added later in this # Else-block. Call[[key]] <- NULL # Create the NULL paramater dummylist <- list(NULL) names(dummylist) <- key # Cast as a list, so we can use append Call <- as.list(Call) # Append the entry Call <- as.call(append(Call, dummylist)) } } # Change function value Call[[1]] <- func list(call=Call, envir=envir) } #' Store Object in Environment with a Fake Name #' #' This function takes the value of an object and stores it within a specified #' environment. This is similar to simply using the \code{assign} function, but #' will not overwrite existing values in the specified environment. It #' accomplishes this by appending a prefix to the name of the variable until #' the name becomes unique. #' @note This method does not correct invalid names. That is, there is no test #' to determine whether the submitted name is valid. #' @param obj any object #' @param envir an environment object, which will contain the object with the #' assigned name #' @param name a character-string specifying the name that the object will be #' stored as in the specified environment #' @param prefix a character string specifying the prefixes to append to names #' that already have matches in the destination environment #' @return a character-string specifying the name of the object in the #' destination environment #' @author Matt Owen \email{mowen@@iq.harvard.edu} store.object <- function (obj, envir, name=NULL, prefix=".") { variables <- ls(envir=envir) # ensure name is unique while (name %in% variables) name <- paste(prefix, name, sep="") assign(name, obj, envir) name } #' Uppercase First Letter of a String #' #' This method sets the first character of a string to its uppercase, #' sets all other characters to lowercase. #' @param str a vector of charaqcter-strings #' @return a vector of character strings #' @author Matt Owen \email{mowen@@iq.harvard.edu} ucfirst <- function (str) { paste( toupper(substring(str, 1, 1)), tolower(substring(str, 2)), sep = "" ) } #' Search for, Copy, and Customize Template for a Newly Create Zelig Package #' This is used internally by \code{zelig.skeleton} #' @param model a character-string specifying the name of the model #' @param the file template to search for and copy #' @param pkg a character-string specifying the name of the package #' @param path a character-string specifying the base path to the package's u #' parent directory #' @return This function is used for its side-effects. .copy.templates <- function (model, pkg, path) { # path to R folder r.path <- file.path(path, pkg, 'R') # source files zelig2 <- system.file('templates', 'zelig2.R', package="Zelig") param <- system.file('templates', 'param.R', package="Zelig") qi <- system.file('templates', 'qi.R', package="Zelig") describe <- system.file('templates', 'describe.R', package="Zelig") # create R directory dir.create(r.path, showWarnings=FALSE) # destination files zelig2.dest <- file.path(r.path, paste('zelig2', model, '.R', sep="")) param.dest <- file.path(r.path, paste('param', model, 'R', sep=".")) qi.dest <- file.path(r.path, paste('qi', model, 'R', sep=".")) describe.dest <- file.path(r.path, paste('describe', model, 'R', sep=".")) # create blank files file.create(zelig2.dest, param.dest, qi.dest) # substitute zelig2.lines <- .substitute.expressions(zelig2, model=model) param.lines <- .substitute.expressions(param, model=model) qi.lines <- .substitute.expressions(qi, model=model) describe.lines <- .substitute.expressions(describe, model=model) # write to file writeLines(zelig2.lines, con = zelig2.dest) writeLines(param.lines, con = param.dest) writeLines(qi.lines, con = qi.dest) writeLines(describe.lines, con = describe.dest) TRUE } #' make a description file for a specific package #' param pkg a character-string specifying the name of the package #' param author a vector of strings specifying the names of contributors #' param email a character-string specifying the email of the maintainer #' param depends a vector of strings specifying package dependencies #' param url - ignored - #' param path a character-string specifying the location of the package #' return nothing .make.description <- function (pkg, author, email, depends, url, path='.') { model <- pkg description.file <- file.path(path, model, 'DESCRIPTION') # make author list human-readable author <- .get.list.as.text(author) maintainer <- paste(author[1L], ' <', email, '>', sep="") depends <- c("Zelig", depends) depends <- unique(depends) depends <- paste(depends, collapse=", ") fields <- c( Package = model, Version = .1, Date = as.character(Sys.Date()), Title = "A Zelig Model", Author = author, Maintainer = maintainer, Depends = depends, Description = "A Zelig Model", License = "GPL (>=2)", URL = "http://gking.harvard.edu/zelig", Packaged = gsub('\\s+', ' ', date()) ) # correctly write to file: # Package: 'model' # Version: .1 # etc. writeLines( paste(names(fields), ': ', fields, sep=""), con = description.file ) } #' @note This function fails if passed non-alphanumeric variable names. In #' particular, the parameters cannot contain periods, etc. #' @param .file the name of the file to replace #' @param ... #' @return a character-string .substitute.expressions <- function(.file, ...) { lines <- readLines(con = .file, warn = FALSE) replacements <- list(...) for (key in names(replacements)) { val <- replacements[[key]] expr <- paste('\\\\\\\\', key, '\\\\\\\\', sep="") lines <- gsub(expr, val, lines) } lines } #' Make \code{pkg}-package.R File for Roxygen Compliancy #' @param pkg the package name #' @param author a vector of characters specifying the authors of the Zelig #' models #' @param email the email address of the package's maintainer #' @param depends a vector specifying package dependencies #' @param URL specifying the package's website #' @param path location of the package #' @return NULL #' @author Matt Owen \email{mowen@@iq.harvard.edu} .make.package.R <- function (pkg, author, email, depends, url, path='.') { file <- system.file('templates', 'PACKAGE.R', package='Zelig') dest <- file.path(path, pkg, 'R', paste(pkg, 'package.R', sep='-')) author <- .get.list.as.text(author) depends <- paste(c('Zelig', depends), collapse=', ', sep=', ') lines <- .substitute.expressions(author=author, package=pkg, .file=file, depends=depends ) writeLines(lines, con = dest) } #' Convert Character-Strings into Human-Readable Lists #' This functions converts its parameters into a human-readable and #' grammatically correct series. #' @param ... character-vectors and list of characters #' @param final.comma whether to add the final comma to the series. Grammatical #' correctness is debateable #' @return a comma delineated string #' @author Matt Owen \email{mowen@@iq.harvard.edu} .get.list.as.text <- function (..., final.comma=FALSE) { authors <- c(...) length <- length(authors) if (!length) "" else if (length == 1) authors[[1L]] else if (length == 2) paste(authors, collapse = " and ") else { beginning <- head(authors, -1) beginning <- paste(beginning, collapse= ', ') end <- tail(authors, 1) final.sep <- ifelse(final.comma, ', and ', ' and ') paste(beginning, end, sep = final.sep) } } #' Compute the Statistical Mode of a Vector #' @param x a vector of numeric, factor, or ordered values #' @return the statistical mode of the vector. If two modes exist, one is #' randomly selected (by design) #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} Mode <- function (x) { # build a table of values of x tab <- table(as.factor(x)) # find the mode, then if there's more than one, select one randomly v <- sample(names(which(tab == max(tab))), size=1) # if it came in as a factor, we need to re-cast it # as a factor, with the same exact levels if (is.factor(x)) return(factor(v, levels=levels(x))) # re-cast as any other data-type as(v, class(x)) } #' Compute the Statistical Median of a Vector #' @param x a vector of numeric or ordered values #' @param na.rm ignored #' @return the median of the vector #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} Median <- function (x, na.rm=NULL) { v <- ifelse(is.numeric(x), median(v), levels(x)[ceiling(median(as.numeric(x)))] ) if (is.ordered(x)) v <- factor(v, levels(x)) v } #' Compute the Maximum Value of a Vector #' @param x a numeric or ordered vector #' @param na.rm ignored #' @return the maximum value of the vector #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} Max <- function (x, na.rm=NULL) { if (is.numeric(x)) return(max(x)) else if (is.ordered(x)) return(factor(max(levels(x), na.rm=T ), levels=levels(x) ) ) else stop("Error: max cannot be computed for non-numeric and non-ordered values") } #' Compute the Minumum Value of a Vector #' @param x a vector of numeric or ordered values #' @param na.rm ignored #' @return the minimum value of the vector #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} Min <- function (x, na.rm=NULL) { if (is.numeric(x)) return(min(x)) else if (is.ordered(x)) return(factor(min(levels(x), na.rm=T ), levels=levels(x) ) ) else stop("Error: min cannot be computed for non-numeric and non-ordered values") } #' @export loadDependencies <- function (..., character.only = FALSE) { # Get arguments that aren't "character.only" if (character.only) { packs <- match.call(expand.dots = TRUE)[-1] packs$character.only <- NULL packs <- as.character(packs) } else packs <- as.character(list(...)) # results <- list() # for (pkg in packs) results[pkg] <- require(pkg, character.only = TRUE) if (all(unlist(results))) invisible(TRUE) else { failed.packs <- Filter(function (x) { return(x == FALSE) }, results) list.of.packages <- paste('"', names(failed.packs), '"', sep = '', collapse = ', ') message('The following packages did not load: ') cat(' ') message(list.of.packages) message() install.string <- paste(' install.packages(', names(failed.packs), ')', sep = '', collapse = '\n') message('To run this model, install these packages with the following command:') message(install.string) message() stop('') } } #' Produce All Combinations of a Set of Lists #' @note This function is used internall by the 'mi' constructors in order to #' produce the complete set of combinations of data-frames and factors by to #' subset the data-frames. #' @param ... a set of lists to mix together #' @return all the combinations of the lists with repetition #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export mix <- function(...) { # expand dot arguments dots <- list(...) # error-catching if (length(dots) < 1) return(NULL) # prepare lists for first iteration res <- dots[[1]] dots <- dots[-1] # this entire algorithm could be optimized, # however, it will always be exponential time while(length(dots) > 0) { # get list to store new combinations in new.list <- list() # divide list first <- dots[[1]] # add new combinations for (f in first) { for (r in res) { row <- append(as.list(r), f) new.list[['']] <- row } } # Update list res <- new.list # Shift first entry off dots <- dots[-1] } # Appropriately name each entry for (k in 1:length(res)) names(res[[k]]) <- names(list(...)) res } #' Produce All Combinations of a Set of Lists #' @note This function is used internall by the 'mi' constructors in order to #' produce the complete set of combinations of data-frames and factors by #' to subset the data-frames. #' @param ... a set of lists to mix together #' @return all the combinations of the lists with repetition #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export combine <- function(...) { # expand dot arguments dots <- list(...) # error-catching if (length(dots) < 1) return(NULL) # prepare lists for first iteration res <- dots[[1]] dots <- dots[-1] # this entire algorithm could be optimized, # however, it will always be exponential time while(length(dots) > 0) { # get list to store new combinations in new.list <- list() # divide list first <- dots[[1]] # add new combinations for (f in first) for (r in res) new.list[['']] <- c(r, f) # update list res <- new.list # shift first entry off dots <- dots[-1] } # m, as in matrix m <- NULL # format results as a matrix for (r in res) m <- rbind(m, r) # name rows/cols rownames(m) <- 1:length(res) colnames(m) <- names(list(...)) # return m } #' Split a List into Two Lists #' This functions takes any list, and splits into two lists - one containing #' the values of arguments with specifically specified values and those without #' specified values. #' @note This function is a good candidate for deprecation #' @param args a list #' @return a list containing two entries: the key-value paired entires (titled #' wordful) and the unkeyed entried (titled wordless) #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export #' @examples #' #list(wordful = list(x=1, y=2), wordless=list(2, "red")) splitUp <- function(args) { wordless <- list() wordful <- list() k <- 1 if (is.null(names(args))) return(list(wordless=unlist(args), wordfull=NULL)) for (key in names(args)) { if (nchar(key) == 0) wordless <- c(wordless, args[[k]]) else wordful[[key]] <- args[[k]] k <- k+1 } list(wordless=wordless, wordful=wordful) } ## Honaker: I had to remove this utility function because ## CRAN has recently weighed against use of ":::" ## @topic: character-string representing help-topic ## @package: package containing help-topic ## return: character-string of processed Rd file #.get.help.file <- function(topic, package) { # # get package help-file if no topic is set # if (missing(topic)) # topic <- package # ## error-checking: ## ensure file and package are strings # if (!is.character(topic) && length(topic) > 1L) # stop() # # if (!is.character(package) && length(package) > 1L) # stop() # ## # directory <- system.file(package=package) # ## # path <- utils:::index.search( # topic=topic, # paths=directory # ) # ## search package-help-dataabase, get Rd file as string # utils:::.getHelpFile(file=path) #} # @package: character-string specifying the name of a package to # scan for help files # @as.table: boolean specifying whether the return value will be # a table or names of Rd files # return: either a named vector (table), or an unnamed vector .list.help.files <- function(package, as.table=TRUE) { # index for help files fi <- file.path( system.file(package=package), "help", "AnIndex" ) if (file.exists(fi)) { # get index of search-values and corresponding # Rd file index <- scan(fi, what = list(names="", values=""), sep = "\t", quote = "", na.strings = "", quiet = TRUE ) # the if-else below is a return value if (as.table) # return as an index structure(index$values, names=index$names) else # return only the names of the Rd files index$names } else { warning("nothing was found") NULL } } #' Compute the Intersection of Two Sets #' @note This function is used internally by Zelig #' @param a a vector #' @param b a vector #' @param unique a boolean determining whether a intersect b will contain only #' unique elements #' @return the intersection of a and b .intersection <- function(a, b, unique=TRUE) { intersection <- a[a %in% b] if (unique) intersection <- unique(intersection) if (is.null(intersection)) c() else intersection } #' Hook to Update the Zelig Call with the Appropriate Call Object #' @note This function is used internally by Zelig, and currently deprecated. #' @param zobj a 'zelig' object #' @param call1 the original call to Zelig #' @param call2 the manuafactured call to the model fitting function #' @return the 'zelig' object with a modified 'call' slot replace.call <- function(zobj, call1, call2) { # what if it doesn't exist? if (!is.null(zobj$result$call) && is.call(zobj$result$call2)) zobj$result$call <- call2 zobj } #' Wether an Installed R-Pack Depends on Zelig #' @note This package was used internally to determine whether an R-package is #' Zelig compliant, but is now likely deprecated. This test is useless if not #' paired with #' @param package a character-string naming a package #' @return whether this package depends on Zelig is.zelig.package <- function(package="") { "Zelig" %in% tools::pkgDepends(package)$Depends } #' Whether a R-Package Contains a 'Yes' in its DESCRIPTION File's 'Zelig' Field #' @note This package was used internally to determine whether an R-package is #' Zelig compliant, but is now likely deprecated. #' @param package a character-string specifying an installed R-package #' @return whether the package's DESCRIPTION file specifies Zelig-compliancy #' @seealso is.zelig.package #' @author Matt Owen \email{mowen@@iq.harvard.edu} is.zelig.compliant <- function(package="") { # zcomp <- packageDescription(package, fields="Zelig-Compliant") zcomp <- tolower(zcomp) # if (! zcomp %in% c('yes', 'no')) stop("") zcomp == "yes" } Zelig/R/t.setx.R0000644000176000001440000000073712061700507013132 0ustar ripleyusers#' Matrix Transpose of a ``setx'' Object #' #' Returns a ``setx'' object as column vector. If multiple values for each #' explanatory term has been set, then return a NxM matrix where `N' #' is the number of explanatory terms and `M' is the number of values set for #' each term. #' #' @S3method t setx #' @usage \method{t}{setx}(x) #' @param x a `setx' object #' @return a transposed matrix #' @author Matt Owen \email{mowen@@iq.harvard.edu} t.setx <- function(x) t(x$matrix) Zelig/R/getPredictorTerms.R0000644000176000001440000000252612061700507015351 0ustar ripleyusers#' Get Predictor Terms from Zelig-style Formulae #' #' This function extracts the predictor terms from a Zelig-style object. #' @note This function is used exclusively in the development of Zelig-core. #' @param x a Zelig-style formula ('formula' or 'list') #' @param ... ignored parameters #' @return a character-vector or NA #' @author Matt Owen \email{mowen@@iq.harvard.edu} #' @export getPredictorTerms <- function (x, ...) { # The following functions are unsafe for general input, so they are being # kept as nested functions. # Extract "predictor" terms from a formula # @param x a formula # @param ... ignored parameters # @return a character-vector specifying the # @author Matt Owen extractFromFormula <- function (form, ...) { TERMS <- terms(form) attr(TERMS, "term.labels") } # Extract "predictor" terms from a list of formulae # @param x a list # @param ... ignored parameters # @return a character-vector specifying the # @author Matt Owen extractFromList <- function (x, ...) { as.vector(unlist(Map(extractFromFormula, x))) } # Beginning of work for function if (is.list(x)) unique(extractFromList(x)) else if ("formula" %in% class(x)) unique(extractFromFormula(x)) else { warning("The model formula must either ", "be a list of formula to work properly") NA } } Zelig/R/gamma.gee.R0000644000176000001440000001134212110047000013503 0ustar ripleyusers#' Interface between the Zelig Model gamma.gee and #' the Pre-existing Model-fitting Method #' @param formula a formula #' @param id a character-string specifying the column of the data-set to use #' for clustering #' @param robust a logical specifying whether to robustly or naively compute #' the covariance matrix. This parameter is ignore in the \code{zelig2} #' method, and instead used in the \code{robust.hook} function, which #' executes after the call to the \code{gee} function #' @param ... ignored parameters #' @param R a square-matrix specifying the correlation #' @param corstr a character-string specifying the correlation structure #' @param data a data.frame #' @return a list specifying the call to the external model #' @export zelig2gamma.gee <- function (formula, id, robust = FALSE, ..., R = NULL, corstr = "independence", data) { loadDependencies("gee") if (corstr == "fixed" && is.null(R)) stop("R must be defined") # if id is a valid column-name in data, then we just need to extract the # column and re-order the data.frame and cluster information if (is.character(id) && length(id) == 1 && id %in% colnames(data)) { id <- data[, id] data <- data[order(id), ] id <- sort(id) } z( .function = gee, .hook = robust.gee.hook, formula = formula, id = id, corstr = corstr, family = Gamma, data = data, ... ) } #' @S3method param gamma.gee param.gamma.gee <- function(obj, num=1000, ...) { # Extract means to compute maximum likelihood mu <- coef(.fitted) # Extract covariance matrix to compute maximum likelihood Sigma <- .fitted$naive.variance # list( coef = mvrnorm(num, mu, Sigma), fam = Gamma() ) } #' @S3method qi gamma.gee qi.gamma.gee <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) { coef <- coef(param) inverse <- linkinv(param) eta1 <- coef %*% t(x) ev1 <- theta1 <- matrix(inverse(eta1), nrow=num) # default to NA ev2 <- fd <- NA if (!is.null(x1)) { eta2 <- coef %*% t(x1) ev2 <- theta1 <- matrix(inverse(eta2), nrow=num) fd <- ev2 - ev1 } list( "Expected Values (for x): E(Y|X)" = ev1, "Expected Values (for x1): E(Y|X1)" = ev2, "First Differences: E(Y|X1) - E(Y|X)" = fd ) } #' @S3method describe gamma.gee describe.gamma.gee <- function(...) { list( authors = "Patrick Lam", text = "General Estimating Equation for Gamma Regression", year = 2011 ) } # Remove Negative Simulations from Gamma GEE Parameter Simulations # @param object a \code{zelig} object # @param x a \code{setx} object # @param x1 a \code{setx} object # @param bootstrap a logical specifying whether the model is using a boot function # @param bootfn the boot function # @param data a data.frame used to simulated parameters # @param param the original \code{param} object # @param num an integer specifying the number of simulations to produce clean.up.gamma.gee <- function(object, x, x1=NULL, bootstrap = FALSE, bootfn = NULL, data = NULL, param, num = 1000) { coef <- coef(param) eta <- coef %*% t(x) if(!is.null(x1)) eta1 <- coef %*% t(x1) else eta1 <- NULL # define good.parameters (???) good.params <- function(par, x, x1=NULL) { eta <- par %*% t(x) if(!is.null(x1)) { eta1 <- par %*% t(x1) pos <- which(eta>0 & eta1>0) } else { pos <- which(apply(eta > 0,1,all)) } matrix(par[pos,], nrow=length(pos), ncol=ncol(par)) } if(length(which(apply(eta<=0,1,any)))>0 | (!is.null(eta1) & any(eta1<=0))){ warning(paste("Negative expected values in simulations. Rejection sampling method used.")) sum.neg <- length(which(apply(eta<=0,1,any))) coef <- good.params(par=coef, x=x, x1=x1) counter <- 1 while(sum.neg > 0){ if(!bootstrap) new.coef <- matrix(mvrnorm(sum.neg, mu = coef(object), Sigma = vcov(object)), nrow=sum.neg) #else # new.coef <- matrix(boot(data, bootfn, R = sum.neg, object = object)$t, nrow=sum.neg) new.coef <- good.params(par=new.coef, x=x, x1=x1) coef <- rbind(coef, new.coef) sum.neg <- num - nrow(coef) counter <- counter + 1 if(counter==200) warning(paste("Suitable parameters not found after 200 iterations of rejection sampling. Iterations will continue, but choosing another x is suggested for non-conditional prediction models.")) if(counter==2000) stop("Rejection sampling stopped after 2000 iterations. Please choose another x value.") } } # list( coefficients=coef, fam=Gamma(), linkinv = Gamma()$linkinv ) } Zelig/R/describe.R0000644000176000001440000000041312061700507013454 0ustar ripleyusers#' Method to describe a model to Zelig #' @param ... parameters which are typically ignored #' @return a list to be processed by `as.description' #' @export describe #' @author Matt Owen \email{mowen@@iq.harvard.edu} describe <- function(...) UseMethod("describe") Zelig/R/termsFromFormula.R0000644000176000001440000000072712061700507015210 0ustar ripleyusers#' Extract Terms from Zelig-style Formulae #' #' This method is a sugary function to extract terms from any type of #' Zelig-style formula. #' @param obj a Zelig-style formula #' @export #' @author Matt Owen \email{mowen@@iq.harvard.edu} termsFromFormula <- function (obj) { # Do not put all of this function on one line, because it will make error # messages long and confusing obj <- parseFormula(obj) # Actually extract the terms, then return terms(obj) } Zelig/R/make.parameters.R0000644000176000001440000000271112061700507014756 0ustar ripleyusers#' ??? For use with cmvglm #' @param terms ??? #' @param shape ??? #' @param ancillary ??? #' @param eqns ??? #' @return ??? #' @export #' @author Kosuke Imai and Olivia Lau make.parameters <- function(terms, shape = "vector", ancillary = TRUE,eqns=NULL) { if (!shape %in% c("matrix", "vector")) stop("not a valid 'shape' for parameters. Choose from \"matrix\" or \"vector\".") #comment if(is.null(eqns)) eqns<-names(terms) ints <- attr(terms, "intercept")[eqns] labs <- attr(terms, "term.labels")[eqns] const <- attr(terms, "constraints") for (i in 1:length(eqns)) { if (ints[[i]] == 1) labs[[i]] <- c("(Intercept)", labs[[i]]) } fixed<-eqns[eqns %in% attr(terms,"ancilEqns")] syst<-eqns[eqns %in% attr(terms,"systEqns")] # syst<-eqns vars <- unique(unlist(labs)) pars <- matrix(NA, ncol = length(syst), nrow = length(vars)) colnames(pars) <- syst rownames(pars) <- vars for (i in syst) { idx <- which(!is.na(match(vars, labs[[i]]))) pars[idx,i] <- paste(labs[[i]], i, sep = ":") } if (!is.logical(const)) { const <- attr(terms, "constraints")[syst,,drop=FALSE] for (i in 1:ncol(const)) { cidx <- which(!is.na(const[,i])) ridx <- match(const[cidx, i], rownames(pars)) pars[cbind(ridx, cidx)] <- colnames(const)[i] } } if (shape == "matrix") out <- pars if (shape == "vector") { out <- unique(na.omit(c(t(pars)))) if (ancillary) out <- c(out, fixed) } out } Zelig/R/getResponseTerms.R0000644000176000001440000000055412061700507015213 0ustar ripleyusers#' Get Response Terms from a Zelig-style Formula #' #' This method acquires the response variables from Zelig-style input. #' @param x a formula or list of formulae #' @param ... ignored parameters #' @return a character-vector specifying a the of response terms in this formula #' @export getResponseTerms <- function (x, ...) { UseMethod("getResponseTerms") } Zelig/R/normal.survey.R0000644000176000001440000001071012071063367014530 0ustar ripleyusers#' @export zelig2normal.survey <- function( formula, weights=NULL, ids=NULL, probs=NULL, strata = NULL, fpc=NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights=FALSE, rho = NULL, bootstrap.average=NULL, scale=NULL, rscales=NULL, fpctype="fraction", return.replicates=FALSE, na.action="na.omit", start=NULL, etastart=NULL, mustart=NULL, offset=NULL, model1=TRUE, method="glm.fit", x=FALSE, y=TRUE, contrasts=NULL, design=NULL, data ) { loadDependencies("survey") if (is.null(ids)) ids <- ~1 # the following lines designate the design # NOTE: nothing truly special goes on here; # the below just makes sure the design is created correctly # for whether or not the replication weights are set design <- if (is.null(repweights)) svydesign( data=data, ids=ids, probs=probs, strata=strata, fpc=fpc, nest=nest, check.strata=check.strata, weights=weights ) else { .survey.prob.weights <- weights svrepdesign( data=data, repweights=repweights, type=type, weights=weights, combined.weights=combined.weights, rho=rho, bootstrap.average=bootstrap.average, scale=scale, rscales=rscales, fpctype=fpctype, fpc=fpc ) } z(.function = svyglm, formula = formula, design = design ) } #' @S3method param normal.survey param.normal.survey <- function(obj, num=1000, ...) { df <- obj$result$df.residual sig2 <- summary(obj)$dispersion list( simulations = mvrnorm(num, coef(obj), vcov(obj)), alpha = sqrt(df*sig2/rchisq(num, df=df)), # note: assignment of link and link-inverse are # implicit when the family is assigned fam = gaussian() ) } #' @S3method qi normal.survey qi.normal.survey <- function(obj, x, x1=NULL, y=NULL, num=1000, param=NULL) { model <- GetObject(obj) coef <- coef(param) alpha <- alpha(param) eta <- coef %*% t(x) link.inverse <- linkinv(param) theta <- matrix(link.inverse(eta), nrow=nrow(coef)) pr <- ev <- matrix(NA, nrow=nrow(theta), ncol(theta)) dimnames(pr) <- dimnames(ev) <- dimnames(theta) ev <- theta for (k in 1:nrow(ev)) pr[k, ] <- rnorm(length(ev[k, ]), ev[k,], alpha[k]) ev1 <- pr1 <- fd <- NA if (!is.null(x1)) { ev1 <- theta1 <- matrix(link.inverse(coef %*% t(x1)), nrow = nrow(coef) ) fd <- ev1-ev } att.ev <- att.pr <- NA if (!is.null(y)) { yvar <- matrix(rep(y, nrow(coef)), nrow=nrow(coef), byrow=TRUE) tmp.ev <- yvar - ev tmp.pr <- yvar - pr att.ev <- matrix(apply(tmp.ev, 1, mean), nrow=nrow(coef)) att.pr <- matrix(apply(tmp.pr, 1, mean), nrow=nrow(coef)) } list( "Expected Values: E(Y|X)" = ev, "Expected Values for (X1): E(Y|X1)" = ev1, "Predicted Values: Y|X" = pr, "Predicted Values (for X1): Y|X1" = pr1, "First Differences E(Y|X1)-E(Y|X)" = fd, "Average Treatment Effect: Y-EV" = att.ev, "Average Treatment Effect: Y-PR" = att.pr ) } #' @S3method describe normal.survey describe.normal.survey <- function(...) { list( authors = "Nicholas Carnes", year = 2008, description = "Survey-Weighted Normal Regression for Continuous, Positive Dependent Variables" ) } Zelig/vignettes/0000755000176000001440000000000012217153457013373 5ustar ripleyusersZelig/vignettes/Zelig.sty0000644000176000001440000000152712061700507015202 0ustar ripleyusers\usepackage{hyperref} \usepackage{Sweave} \DefineVerbatimEnvironment{Code}{Verbatim}{ samepage=TRUE, fontsize=\small } \newcommand{\CiteZelig}[0]{ To cite Zelig as a whole, please reference these two sources: \begin{verse} Kosuke Imai, Gary King, and Olivia Lau. 2007. ``Zelig: Everyone's Statistical Software,'' \url{http://GKing.harvard.edu/zelig}. \end{verse} \begin{verse} Imai, Kosuke, Gary King, and Olivia Lau. (2008). ``Toward A Common Framework for Statistical Analysis and Development.'' Journal of Computational and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913. \end{verse} } \newcommand{\Sref}[1]{Section~\ref{#1}} \newcommand{\hlink}[2]{\href{#2}{#1}} \newcommand{\rvers}{2.5} \newcommand{\rwvers}{R-2.5.1} \newcommand{\fullrvers}{2.5.1} \newcommand{\code}[1]{{\tt #1}} \usepackage[all]{xy} Zelig/vignettes/gkpubs.bib0000644000176000001440000021174612061700507015346 0ustar ripleyusers% A bibtex-format file for papers by or coauthored with Gary King % % rules used for abbreviations: % % -if one author: use last name and last 2 digits of the year: King99. % -if multiple authors, use 1st 3 letters of each of UP TO the first three % authors and the last 2 digits of the year: KinTomWit00. % -if necessary add lower-case letters for multiple entries in a year: % King02, King02b (the first one should NOT have an 'a' afterwards) % -No string abbreviations are used % % entries are in separate sections (books, articles, software, data) % in reverse chronical order % % copies of all papers, articles, data, and software, and some books, % are available at http://gking.harvard.edu/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Books %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @book{KinSchNie09, editor = {Gary King and Kay Schlozman and Norman Nie}, title = {The Future of Political Science: 100 Perspectives}, publisher = {Routledge Press}, address = {New York}, year = {2009} } @book{GirKin08, author = {Federico Girosi and Gary King}, title = {Demographic Forecasting}, publisher = {Princeton University Press}, year = {2008}, address = {Princeton}, note = {{http://gking.harvard.edu/files/smooth/}} } @book{KinRosTan04, editor = {Gary King and Ori Rosen and Martin A. Tanner}, title = {Ecological Inference: New Methodological Strategies}, publisher = {Cambridge University Press}, year = {2004}, address = {New York}, note = {{http://gking.harvard.edu/files/abs/ecinf04-abs.shtml}} } @book{King97, author = {Gary King}, title = {A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data}, publisher = {Princeton University Press}, year = {1997}, address = {Princeton}, note = {{http://gking.harvard.edu/eicamera/kinroot.html}} } @book{KinKeoVer94, author = {Gary King and Robert O. Keohane and Sidney Verba}, title = {Designing Social Inquiry: Scientific Inference in Qualitative Research}, publisher = {Princeton University Press}, year = {1994}, address = {Princeton}, note = {{http://www.pupress.princeton.edu/titles/5458.html}} } @book{King89, author = {Gary King}, title = {Unifying Political Methodology: The Likelihood Theory of Statistical Inference}, publisher = {Michigan University Press}, year = 1989, address = {Ann Arbor} } @book{KinRag88, author = {Gary King and Lyn Ragsdale}, title = {The Elusive Executive: Discovering Statistical Patterns in the Presidency}, publisher = {Congressional Quarterly Press}, year = {1988}, address = {Washington, D.C} } @book{BraHarKin89, author = {Paul Brace and Christine Harrington and Gary King}, title = {The Presidency in American Politics}, publisher = {New York University Press}, year = {1989}, address = {New York and London} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Articles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Article{SonKin11, author = {Samir Soneji and Gary King}, title = {Statistical Security for Social Security}, journal = {Demography}, year = 2011, note = {{http://gking.harvard.edu/files/abs/ssc-abs.shtml}} } @Article{, author = {Gary King and Richard Nielsen and Carter Coberley and James Pope and Aaron Wells}, title = {Avoiding Randomization Failure in Program Evaluation}, journal = {Population Health Management}, year = 2011, volume = 14, number = 1, pages = {S11-S22}, note = {{http://gking.harvard.edu/gking/files/mhs.pdf}} } @Article{KinNieCob11, author = {Gary King and Richard Nielsen and Carter Coberley and James Pope and Aaron Wells}, title = {Comparative Effectiveness of Matching Methods for Causal Inference}, journal = { }, year = {2011}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {{http://gking.harvard.edu/files/abs/psparadox-abs.shtml}}, OPTannote = {} } @Article{SteKinShi10, author = {Gretchen Stevens, Gary King, and Kenji Shibuya}, title = {Deaths From Heart Failure: Using Coarsened Exact Matching to Correct Cause of Death Statistics}, journal = {Population Health Metrics}, year = 2010, volume = 8, number = 6, note = {{http://gking.harvard.edu/files/abs/heartfcem-abs.shtml}} } @Article{GriKin10, author = {Justin Grimmer and Gary King}, title = {Quantitative Discovery from Qualitative Information: A General-Purpose Document Clustering Methodology}, journal = { }, year = {2010}, note = {{http://gking.harvard.edu/files/abs/discov-abs.shtml}} } @Article{GriKin10b, author = {Justin Grimmer and Gary King}, title = {A General Purpose Computer-Assisted Document Clustering Methodology}, journal = { }, year = {2010}, note = {{http://gking.harvard.edu/files/abs/discovm-abs.shtml}} } @Article{IacKinPor11, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {Multivariate Matching Methods That are Monotonic Imbalance Bounding}, journal = {Journal of the American Statistical Association}, year = {In press}, note = {{http://gking.harvard.edu/files/abs/cem-math-abs.shtml}} } @article{HopKin10, author = {Daniel Hopkins and Gary King}, title = {Improving Anchoring Vignettes: Designing Surveys to Correct Interpersonal Incomparability}, journal = {Public Opinion Quarterly}, year = {2010}, pages = {1-22}, note = {{http://gking.harvard.edu/files/abs/implement-abs.shtml}} } @Article{KinLuShi10, author = {Gary King and Ying Lu and Kenji Shibuya}, title = {Designing Verbal Autopsy Studies}, journal = {Population Health Metrics}, year = 2010, volume = 8, number = 19, note = {http://gking.harvard.edu/files/abs/desva-abs.shtml} } @article{LazPenAda09, author = {Lazer, David and Pentland, Alex and Adamic, Lada and Aral, Sinan and Barabasi, Albert-Laszlo and Brewer, Devon and Christakis, Nicholas and Contractor, Noshir and Fowler, James and Gutmann, Myron and Jebara, Tony and King, Gary and Macy, Michael and Roy, Deb and Van Alstyne, Marshall}, title = {{SOCIAL SCIENCE: Computational Social Science}}, journal = {Science}, volume = {323}, number = {5915}, pages = {721-723}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/LazPenAda09-abs.shtml}} } @Article{AbrBolGut09, author = {Mark Abrahamson and Kenneth A. Bollen and Myron Gutmann and Gary King and Amy M. Pienta}, title = {Preserving Data for Long Term Analyses}, journal = {Historical Social Research}, year = {2009}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {Summer, forthcoming}, OPTnote = {}, OPTannote = {} } @article{KinGakIma09, Author = {Gary King and Emmanuela Gakidou and Kosuke Imai and Jason Lakin and Ryan T. Moore and Clayton Nall and Nirmala Ravishankar and Manett Vargas and Martha Mar{\'i}a T{\'e}llez-Rojo and Juan Eugenio Hern{\'a}ndez {\'A}vila and Mauricio Hern{\'a}ndez {\'A}vila and H{\'e}ctor Hern{\'a}ndez Llamas}, title = {Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme}, journal = {The Lancet}, volumne = {373}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/spi-abs.shtml}} } @Article{KinSon09, author = {Gary King and Samir Soneji}, title = {The Future of Death in America}, journal = {}, year = 2009, note = {{http://gking.harvard.edu/files/abs/mort-abs.shtml}} } @Article{IacKinPor11, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {Causal Inference Without Balance Checking: Coarsened Exact Matching}, journal = {Political Analysis}, year = {2011, in press}, note = {{http://gking.harvard.edu/files/abs/cem-plus-abs.shtml}} } @article{ImaKinStu08, author = {Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Misunderstandings Among Experimentalists and Observationalists about Causal Inference}, journal = {Journal of the Royal Statistical Society, {S}eries {A}}, volume = {171, part 2}, year = {2008}, pages = {481--502}, note = {{http://gking.harvard.edu/files/abs/matchse-abs.shtml}} } @article{uImaKinStu08, author = {Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Misunderstandings Among Experimentalists and Observationalists about Causal Inference}, journal = {Journal of the Royal Statistical Society, {S}eries {A}}, volume = {171, part 2}, year = {2008}, pages = {481--502} } @article{KinLu08, author = {Gary King and Ying Lu}, title = {Verbal Autopsy Methods with Multiple Causes of Death}, journal = {Statistical Science}, volume = {23}, number = {1}, year = {2008}, pages = {78--91}, note = {{http://gking.harvard.edu/files/abs/vamc-abs.shtml}} } @article{AltKin07, author = {Micah Altman and Gary King}, title = {A Proposed Standard for the Scholarly Citation of Quantitative Data }, journal = {D-Lib Magazine}, volume = {13}, year = {2007}, month = {March / April}, number = {3/4}, note = {{http://gking.harvard.edu/files/abs/cite-abs.shtml}} } @article{GroKin07, author = {Bernard Grofman and Gary King}, title = {The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry}, journal = {Election Law Journal}, volume = {6}, year = {2007}, pages = {2-35}, month = {January}, number = {1}, note = {{http://gking.harvard.edu/files/abs/jp-abs.shtml}} } @article{uHoImaKin07, author = {Daniel Ho and Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference}, journal = {Political Analysis}, year = {2007}, volume = {15}, pages = {199--236} } @article{HoImaKin07, author = {Daniel Ho and Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference}, journal = {Political Analysis}, year = {2007}, volume = {15}, pages = {199--236}, note = {{http://gking.harvard.edu/files/abs/matchp-abs.shtml}} } @article{HopKin10b, author = {Daniel Hopkins and Gary King}, title = {A Method of Automated Nonparametric Content Analysis for Social Science}, journal = {American Journal of Political Science}, year = {2010}, volume = {54}, number = {1}, month = {January}, pages = {229--247}, note = {http://gking.harvard.edu/files/abs/words-abs.shtml} } @article{ImaKinLau07, author = {Kosuke Imai and Gary King and Olivia Lau}, title = {Toward A Common Framework for Statistical Analysis and Development}, journal = {Journal of Computational Graphics and Statistics}, volume = 17, number = 4, pages = {1--22}, year = 2008, note = {{http://gking.harvard.edu/files/abs/z-abs.shtml}} } @article{ImaKinNal09d, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {Matched Pairs and the Future of Cluster-Randomized Experiments: A Rejoinder}, journal = {Statistical Science}, volume = {24}, number = {1}, pages = {64--72}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/cluster-abs.shtml}} } @article{ImaKinNal09, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation}, journal = {Statistical Science}, volume = {24}, number = {1}, pages = {29--53}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/cluster-abs.shtml}} } @article{uImaKinNal09, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation}, journal = {Statistical Science}, volume = {24}, number = {1}, pages = {29--53}, year = {2009} } @article{King07, author = {Gary King}, title = {An Introduction to the Dataverse Network as an Infrastructure for Data Sharing}, journal = {Sociological Methods and Research}, year = {2007}, volume = {36}, number = {2}, pages = {173--199}, note = {{http://gking.harvard.edu/files/abs/dvn-abs.shtml}} } @inbook{King09b, author = {Gary King}, chapter = {The Changing Evidence Base of Political Science Research}, title = {The Future of Political Science: 100 Perspectives}, publisher = {Routledge Press}, address = {New York}, year = {2009, forthcoming}, editor = {Gary King and Kay Schlozman and Norman Nie}, note = {{http://gking.harvard.edu/files/abs/evbase-abs.shtml}} } @inbook{King09c, author = {Gary King and Kay Schlozman and Norman Nie}, chapter = {An Introduction to the Future of Political Science}, title = {The Future of Political Science: 100 Perspectives}, publisher = {Routledge Press}, address = {New York}, year = {2009, forthcoming}, editor = {Gary King and Kay Schlozman and Norman Nie} } @article{KinGakRav07, Author = {Gary King and Emmanuela Gakidou and Nirmala Ravishankar and Ryan T. Moore and Jason Lakin and Manett Vargas and Martha Mar{\'i}a T{\'e}llez-Rojo and Juan Eugenio Hern{\'a}ndez {\'A}vila and Mauricio Hern{\'a}ndez {\'A}vila and H{\'e}ctor Hern{\'a}ndez Llamas}, title = {A `Politically Robust' Experimental Design for Public Policy Evaluation, with Application to the Mexican Universal Health Insurance Program}, journal = {Journal of Policy Analysis and Management}, volume = {26}, year = {2007}, pages = {479-506}, number = {3}, note = {{http://gking.harvard.edu/files/abs/spd-abs.shtml}} } @article{KinWan07, author = {Gary King and Jonathan Wand}, title = {Comparing Incomparable Survey Responses: New Tools for Anchoring Vignettes}, journal = {Political Analysis}, volume = {15}, year = {2007}, pages = {46-66}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/c-abs.shtml}} } @article{KinZen07, author = {Gary King and Langche Zeng}, title = {When Can History Be Our Guide? The Pitfalls of Counterfactual Inference}, journal = {International Studies Quarterly}, year = {2007}, pages = {183-210}, month = {March}, note = {{http://gking.harvard.edu/files/abs/counterf-abs.shtml}} } @article{uKinZen07, author = {Gary King and Langche Zeng}, title = {When Can History Be Our Guide? The Pitfalls of Counterfactual Inference}, journal = {International Studies Quarterly}, year = {2007}, pages = {183-210}, month = {March} } @article{KinZen07b, author = {Gary King and Langche Zeng}, title = {Detecting Model Dependence in Statistical Inference: A Response}, journal = {International Studies Quarterly}, volume = {51}, year = {2007}, pages = {231-241}, month = {March}, note = {{http://gking.harvard.edu/files/abs/counterf-abs.shtml}} } @article{WanKinLau07, author = {Jonathan Wand and Gary King and Olivia Lau}, title = {Anchors: Software for Anchoring Vignettes Data}, journal = {Journal of Statistical Software}, year = {2007, forthcoming} } @inbook{EpsHoKin06, author = {Lee Epstein and Daniel E. Ho and Gary King and Jeffrey A. Segal}, title = {Principles and Practice in American Politics: Classic and Contemporary Readings}, chapter = {The Effect of War on the Supreme Court}, year = {2006}, publisher = {Congressional Quarterly Press}, edition = {3rd}, address = {Washington, D.C.}, editor = {Samuel Kernell and Steven S. Smith}, note = {{http://gking.harvard.edu/files/abs/crisis-abs.shtml}} } @article{GakKin06, author = {Emmanuela Gakidou and Gary King}, title = {Death by Survey: Estimating Adult Mortality without Selection Bias from Sibling Survival Data from Sibling Survival Data}, journal = {Demography}, volume = 43, year = 2006, pages = {569--585}, month = {August}, number = 3, note = {{http://gking.harvard.edu/files/abs/deathbys-abs.shtml}} } @article{HonKin10, author = {James Honaker and Gary King}, title = {What to do About Missing Values in Time Series Cross-Section Data}, journal = {American Journal of Political Science}, year = {2010}, volume = {54}, number = {2}, month = {April}, pages = {561--581}, note = {{http://gking.harvard.edu/files/abs/pr-abs.shtml}} } @article{King06, author = {Gary King}, title = {{Publication, Publication}}, journal = {PS: Political Science and Politics}, volume = {39}, year = {2006}, pages = {119--125}, month = {January}, number = {01}, note = {{http://gking.harvard.edu/files/abs/paperspub-abs.shtml}} } @inbook{KinRosTan06, author = {Gary King and Ori Rosen and Martin Tanner}, title = {The New Palgrave Dictionary of Economics}, chapter = {Ecological Inference}, year = {2006}, edition = {2nd}, editor = {Larry Blume and Steven N. Durlauf}, note = {{http://gking.harvard.edu/files/abs/newintro-abs.shtml}} } @article{KinZen06, author = {Gary King and Langche Zeng}, title = {The Dangers of Extreme Counterfactuals}, journal = {Political Analysis}, volume = {14}, year = 2006, pages = {131--159}, number = {2}, note = {{http://gking.harvard.edu/files/abs/counterft-abs.shtml}} } @article{GirKin07, author = {Federico Girosi and Gary King}, title = {Understanding the Lee-Carter Mortality Forecasting Method}, year = 2007, note = {{http://gking.harvard.edu/files/abs/lc-abs.shtml}} } @article{EpsHoKin05, author = {Lee Epstein and Daniel E. Ho and Gary King, and Jeffrey A. Segal}, title = {The Supreme Court During Crisis: How War Affects only Non-War Cases}, journal = {New York University Law Review}, volume = {80}, year = {2005}, pages = {1--116}, month = {April}, number = {1}, note = {{http://gking.harvard.edu/files/abs/crisis-abs.shtml}} } @article{StoKinZen05, author = {Heather Stoll and Gary King and Langchee Zeng}, title = {WhatIf: Software for Evaluating Counterfactuals}, journal = {Journal of Statistical Software}, volume = {15}, year = {2005}, number = {4}, note = {{http://www.jstatsoft.org/index.php?vol=15}} } @article{BecKinZen04, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Theory and Evidence in International Conflict: Response to de Marchi, Gelpi, and Grynaviski}, journal = apsr, volume = {98}, year = {2004}, pages = {379-389}, month = {May}, number = {2}, note = {{http://gking.harvard.edu/files/abs/toe-resp-abs.shtml}} } @inbook{GelKatKin04, author = {Andrew Gelman and Jonathan Katz and Gary King}, title = {Rethinking the Vote: The Politics and Prospects of American Electoreal Reform}, chapter = {Chapter 5, Empirically Evaluating the Electoral College}, year = {2004}, publisher = {Oxford University Press}, pages = {75-88}, address = {New York}, editor = {Ann N. Crigler and Marion R. Just and Edward J. McCaffery}, note = {{http://gking.harvard.edu/files/abs/rethink-abs.shtml}} } @article{GilKin04, author = {Jeff Gill and Gary King}, title = {What to do When Your Hessian is Not Invertible: Alternatives to Model Respecification in Nonlinear Estimation}, journal = {Sociological Methods and Research}, volume = {32}, year = {2004}, pages = {54-87}, month = {August}, number = {1}, note = {{http://gking.harvard.edu/files/abs/help-abs.shtml}} } @article{ImaKin04, author = {Kosuke Imai and Gary King}, title = {Did Illegal Overseas Absentee Ballots Decide the 2000 U.S. Presidential Election?}, journal = {Perspectives on Politics}, volume = {2}, year = {2004}, pages = {537--549}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/ballots-abs.shtml}} } @article{King04, author = {Gary King}, title = {EI: A Program for Ecological Inference}, journal = {Journal of Statistical Software}, volume = {11}, year = {2004}, number = {7} } @article{King04b, author = {Gary King}, title = {Finding New Information for Ecological Inference Models: A Comment on Jon Wakefield, "Ecological Inference in 2 X 2 Tables"}, journal = {Journal of the Royal Statistical Society}, volume = {167}, year = {2004}, pages = {437}, number = {Series A} } @inbook{KinRosTan04b, author = {Gary King and Ori Rosen and Martin Tanner}, title = {Ecological Inference: New Methodological Strategies}, chapter = {Information in Ecological Inference: An Introduction}, year = {2004}, publisher = {Cambridge University Press}, address = {New York}, editor = {Gary King and Ori Rosen and Martin Tanner} } @inbook{KinZen04, author = {Gary King and Langche Zeng}, title = {Encyclopedia of Biopharmaceutical Statistics}, chapter = {Inference in Case-Control Studies}, year = {2004}, publisher = {Marcel Dekker}, edition = {2nd}, address = {New York}, editor = {Shein-Chung Chow}, note = {{http://gking.harvard.edu/files/abs/1s-enc-abs.shtml}} } @article{AdoKin03, author = {Christopher Adolph and Gary King}, title = {Analyzing Second Stage Ecological Regressions}, journal = {Political Analysis}, volume = {11}, year = {2003}, pages = {65-76}, month = {Winter}, number = {1} } @article{AdoKinHer03, author = {Christopher Adolph and Gary King, with Michael C. Herron and Kenneth W. Shotts}, title = {A Consensus on Second Stage Analyses in Ecological Inference Models}, journal = {Political Analysis}, volume = {11}, year = {2003}, pages = {86--94}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/akhs-abs.shtml}} } @article{EpsKin03, author = {Lee Epstein and Gary King}, title = {Building An Infrastructure for Empirical Research in the Law [with comments from four law school deans]}, journal = {Journal of Legal Education}, volume = {53}, year = {2003}, pages = {311--320}, number = {311}, note = {{http://gking.harvard.edu/files/abs/infra-abs.shtml}} } @inbook{GakKin03, author = {Emmanuela Gakidou and Gary King}, title = {Health Systems Performance Assessment: Debates, Methods and Empiricism}, chapter = {Chapter 36, Determinants of Inequality in Child Survival: Results from 39 Countries}, publisher = {World Health Organization}, pages = {497-502}, address = {Geneva}, editor = {Chrisopher Murray and David B. Evans} } @inbook{GilKin03, author = {Jeff Gill and Gary King}, title = {Numerical Issues in Statistical Computing for the Social Scientist}, chapter = {Chapter 6, Numerical Issues Involved in Inverting Hessian Matrices}, year = {2003}, publisher = {John Wiley and Sons, Inc.}, pages = {143-176}, address = {Hoboken, NJ}, editor = {Micah Altman and Jeff Gill and Michael P. McDonald} } @article{King03, author = {Gary King}, title = {The Future of Replication}, journal = {International Studies Perspectives}, volume = {4}, year = {2003}, pages = {443--499}, month = {February}, number = 1, note = {{http://gking.harvard.edu/files/abs/replvdc-abs.shtml}} } @article{KinLow03, author = {Gary King and Will Lowe}, title = {An Automated Information Extraction Tool For International Conflict Data with Performance as Good as Human Coders: A Rare Events Evaluation Design}, journal = {International Organization}, volume = {57}, year = {2003}, pages = {617-642}, month = {July}, number = {3}, note = {{http://gking.harvard.edu/files/abs/infoex-abs.shtml}} } @article{KinMurSal04, author = {Gary King and Christopher J.L. Murray and Joshua A. Salomon and Ajay Tandon}, title = {Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research}, journal = {American Political Science Review}, volume = {98}, year = {2004}, pages = {191--207}, month = {February}, number = {1}, note = {{http://gking.harvard.edu/files/abs/vign-abs.shtml}} } @article{KinRosTan07, author = {Gary King and Ori Rosen and Martin Tanner and Alexander F. Wagner.}, title = {Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler}, year = {2007}, note = {{http://gking.harvard.edu/files/abs/naziV-abs.shtml}} } @inbook{KinZen03, author = {Gary King and Langche Zeng}, title = {Inference in Case-Control Studies}, year = {2003}, publisher = {Marcel Dekker}, volume = {2nd edition}, address = {New York}, editor = {Shein-Chung Chow, ed.}, journal = {Encyclopedia of Biopharmaceutical Statistics} } @article{LowKin03, author = {Will Lowe and Gary King }, title = {Some Statistical Methods for Evaluating Information Extraction Systems}, journal = {Proceedings of the 10th Conference of the European Chapter of the Association for Computational Linguistics}, year = {2003}, pages = {19-26} } @article{TomKinZen03, author = {Michael Tomz and Gary King and Langche Zeng}, title = {ReLogit: Rare Events Logistic Regression}, journal = {Journal of Statistical Software}, volume = {8}, year = {2003}, number = {2}, note = {{http://gking.harvard.edu/stats.shtml#relogit}} } @article{TomWitKin03, author = {Michael Tomz and Jason Wittenberg and Gary King}, title = {CLARIFY: Software for Interpreting and Presenting Statistical Results}, journal = {Journal of Statistical Software}, volume = {8}, year = {2003}, number = {1}, note = {{http://gking.harvard.edu/stats.shtml}} } @article{EpsKin02, author = {Lee Epstein and Gary King}, title = {The Rules of Inference}, journal = {University of Chicago Law Review}, volume = {69}, year = {2002}, pages = {1--209}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/rules-abs.shtml}} } @article{EpsKin02b, author = {Lee Epstein and Gary King}, title = {Empirical Research and The Goals of Legal Scholarship: A Response}, journal = {University of Chicago Law Review}, volume = {69}, year = {2002}, pages = {1--209}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/rules-abs.shtml}} } @article{GakKin02, author = {Emmanuela Gakidou and Gary King}, title = {Measuring Total Health Inequality: Adding Individual Variation to Group-Level Differences}, journal = {BioMed Central: International Journal for Equity in Health}, volume = {1}, year = 2002, month = {August}, number = 3, note = {{http://gking.harvard.edu/files/abs/ebb-abs.shtml}} } @article{HonKinKat02, author = {James Honaker and Gary King and Jonathan N. Katz}, title = {A Fast, Easy, and Efficient Estimator for Multiparty Electoral Data}, journal = {Political Analysis}, volume = {10}, year = {2002}, pages = {84--100}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/trip-abs.shtml}} } @article{King02b, author = {Gary King}, title = {Isolating Spatial Autocorrelation, Aggregation Bias, and Distributional Violations in Ecological Inference}, journal = {Political Analysis}, volume = {10}, year = {2002}, pages = {298--300}, month = {Summer}, number = {3}, note = {{http://gking.harvard.edu/files/abs/ac-abs.shtml}} } @article{KinMur02, author = {Gary King and Christopher J.L. Murray}, title = {Rethinking Human Security}, journal = {Political Science Quarterly}, volume = {116}, year = {2002}, pages = {585--610}, month = {Winter}, number = {4}, note = {{http://gking.harvard.edu/files/abs/hs-abs.shtml}} } @article{KinZen02, author = {Gary King and Langche Zeng}, title = {Improving Forecasts of State Failure}, journal = {World Politics}, volume = 53, year = 2002, pages = {623--658}, month = {July}, number = 4 , note = {{http://gking.harvard.edu/files/abs/civil-abs.shtml}} } @article{KinZen02b, author = {Gary King and Langche Zeng}, title = {Estimating Risk and Rate Levels, Ratios, and Differences in Case-Control Studies}, journal = {Statistics in Medicine}, volume = 21, year = 2002, pages = {1409--1427}, note = {{http://gking.harvard.edu/files/abs/1s-abs.shtml}} } @article{MurKinLop02, author = {Christopher J.L. Murray and Gary King and Alan D. Lopez and Niels Tomijima and Etienne Krug}, title = {Armed Conflict as a Public Health Problem}, journal = {BMJ (British Medical Journal)}, volume = {324}, year = {2002}, pages = {346--349}, month = {February 9}, note = {{http://gking.harvard.edu/files/abs/armedph-abs.shtml}} } @article{AltAndDig01a, author = {Micah Altman and Leonid Andreev and Mark Diggory and Gary King and Daniel L. Kiskis and Elizabeth Kolster and M. Krot and Sidney Verba}, title = {A Digital Library for the Dissemination and Replication of Quantitative Social Science Research: The Virtual Data Center}, journal = {Social Science Computer Review}, volume = 19, year = 2001, pages = {458--470}, month = {Winter}, number = 4, note = {{http://gking.harvard.edu/files/abs/vdcwhitepaper-abs.shtml}} } @article{AltAndDig01b, author = {Micah Altman and Leonid Andreev and Mark Diggory and Gary King and Daniel L. Kiskis and Elizabeth Kolster and M. Krot and Sidney Verba}, title = {An Overview of the Virtual Data Center Project and Software}, journal = {JCDL '01: First Joint Conference on Digital Libraries}, year = 2001, pages = {203-204}, note = {{http://gking.harvard.edu/files/abs/jcdl01-abs.shtml}} } @article{AltKinSig01, author = {James E. Alt and Gary King and Curtis Signorino}, title = {Aggregation Among Binary, Count, and Duration Models: Estimating the Same Quantities from Different Levels of Data}, journal = {Political Analysis}, volume = {9}, year = {2001}, pages = {21--44}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/abcd-abs.shtml}} } @article{King01, author = {Gary King}, title = {Proper Nouns and Methodological Propriety: Pooling Dyads in International Relations Data}, journal = {International Organization}, volume = {55}, year = {2001}, pages = {497--507}, month = {Fall}, number = {2}, note = {{http://gking.harvard.edu/files/abs/pool-abs.shtml}} } @article{KinHonJos01, author = {Gary King and James Honaker and Anne Joseph and Kenneth Scheve}, title = {Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation}, journal = {American Political Science Review}, volume = 95, year = 2001, pages = {49--69}, month = {March}, number = 1 , note = {{http://gking.harvard.edu/files/abs/evil-abs.shtml}} } @article{KinZen01, author = {Gary King and Langche Zeng}, title = {Logistic Regression in Rare Events Data}, journal = {Political Analysis}, volume = 9, year = 2001, pages = {137--163}, month = {Spring}, number = 2 , note = {{http://gking.harvard.edu/files/abs/0s-abs.shtml}} } @article{KinZen01b, author = {Gary King and Langche Zeng}, title = {Explaining Rare Events in International Relations}, journal = {International Organization}, volume = 55, year = 2001, pages = {693--715}, month = {Summer}, number = 3 , note = {{http://gking.harvard.edu/files/abs/baby0s-abs.shtml}} } @article{RosJiaKin01, author = {Ori Rosen and Wenxin Jiang and Gary King and Martin A. Tanner}, title = {Bayesian and Frequentist Inference for Ecological Inference: The $R \times C$ Case}, journal = {Statistica Neerlandica}, volume = 55, year = 2001, pages = {134--156}, number = 2 , note = {{http://gking.harvard.edu/files/abs/rosen-abs.shtml}} } @article{BecKinZen00, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Improving Quantitative Studies of International Conflict}, journal = {American Political Science Review}, volume = 94, year = 2000, pages = {21--36}, month = {March}, number = 1 , note = {{http://gking.harvard.edu/files/abs/improv-abs.shtml}} } @article{King00, author = {Gary King}, title = {Geography, Statistics, and Ecological Inference}, journal = {Annals of the Association of American Geographers}, volume = {90}, year = {2000}, pages = {601--606}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/geog-abs.shtml}} } @article{KinTomWit00, author = {Gary King and Michael Tomz and Jason Wittenberg}, title = {Making the Most of Statistical Analyses: Improving Interpretation and Presentation}, journal = {American Journal of Political Science}, volume = 44, year = 2000, pages = {341--355}, month = {April}, number = 2, note = {{http://gking.harvard.edu/files/abs/making-abs.shtml}} } @article{GelKinLiu99, author = {Andrew Gelman and Gary King and Chuanhai Liu}, title = {Not Asked and Not Answered: Multiple Imputation for Multiple Surveys}, journal = {Journal of the American Statistical Association}, volume = 93, year = 1999, pages = {846--857}, month = {September}, number = 433 , note = {{http://gking.harvard.edu/files/abs/not-abs.shtml}} } @article{GelKinLiu99b, author = {Andrew Gelman and Gary King and Chuanhai Liu}, title = {Rejoinder}, journal = {Journal of the American Statistical Association}, volume = 93, year = 1999, pages = {869--874}, month = {September}, number = 433 , note = {{http://gking.harvard.edu/files/abs/not-abs.shtml}} } @article{KatKin99, author = {Jonathan Katz and Gary King}, title = {A Statistical Model for Multiparty Electoral Data}, journal = {American Political Science Review}, volume = 93, year = 1999, pages = {15--32}, month = {March}, number = {1}, note = {{http://gking.harvard.edu/files/abs/multiparty-abs.shtml}} } @article{King99, author = {Gary King}, title = {The Future of Ecological Inference Research: A Reply to Freedman et al.}, journal = {Journal of the American Statistical Association}, volume = {94}, year = {1999}, pages = {352-355}, month = {March}, number = {445}, note = {{http://gking.harvard.edu/files/abs/reply-abs.shtml}} } @article{KinLav99, author = {Gary King and Michael Laver}, title = {Many Publications, but Still No Evidence}, journal = {Electoral Studies}, volume = {18}, year = {1999}, pages = {597--598}, month = {December}, number = {4}, note = {{http://gking.harvard.edu/files/abs/manypub-abs.shtml}} } @article{KinRosTan99, author = {Gary King and Ori Rosen and Martin A. Tanner}, title = {Binomial-Beta Hierarchical Models for Ecological Inference}, journal = {Sociological Methods and Research}, volume = 28, year = 1999, pages = {61--90}, month = {August}, number = 1 , note = {{http://gking.harvard.edu/files/abs/binom-abs.shtml}} } @article{LewKin99, author = {Jeffrey Lewis and Gary King}, title = {No Evidence on Directional vs. Proximity Voting}, journal = {Political Analysis}, volume = {8}, year = {1999}, pages = {21--33}, month = {August}, number = {1}, note = {{http://gking.harvard.edu/files/abs/spatial-abs.shtml}} } @article{GelKinBos98, author = {Andrew Gelman and Gary King and John Boscardin}, title = {Estimating the Probability of Events that Have Never Occurred: When Is Your Vote Decisive?}, journal = {Journal of the American Statistical Association}, volume = {93}, year = {1998}, pages = {1--9}, month = {March}, number = {441}, note = {{http://gking.harvard.edu/files/abs/estimatprob-abs.shtml}} } @article{KinPal98, author = {Gary King and Bradley Palmquist}, title = {The Record of American Democracy, 1984-1990}, journal = {Sociological Methods and Research}, volume = {26}, year = {1998}, pages = {424--427}, month = {February}, number = {3}, note = {{http://www.hmdc.harvard.edu/ROAD/}} } @article{BenKin96, author = {Kenneth Benoit and Gary King}, title = {A Preview of EI and EzI: Programs for Ecological Inference}, journal = {Social Science Computer Review}, volume = {14}, year = {1996}, pages = {433--438}, month = {Winter}, number = {4}, note = {{http://gking.harvard.edu/files/abs/preview-abs.shtml}} } @inbook{GelKin96, author = {Andrew Gelman and Gary King}, title = {Advantages of Conflictual Redistricting}, year = {1996}, publisher = {Dartmouth Publishing Company}, pages = {207--218 }, address = {Aldershot, England}, editor = {Iain McLean and David Butler, eds}, note = {{http://gking.harvard.edu/files/abs/advant-abs.shtml}}, journal = {Fixing the Boundary: Defining and Redefining Single-Member Electoral Districts} } @inbook{KinBruGel96, author = {Gary King and John Bruce and Andrew Gelman}, title = {Racial Fairness in Legislative Redistricting}, year = {1996}, publisher = {Princeton University Press}, editor = {Paul E. Peterson, ed.}, note = {{http://gking.harvard.edu/files/abs/racial-abs.shtml}}, journal = {Classifying by Race} } @article{King96, author = {Gary King}, title = {Why Context Should Not Count}, journal = {Political Geography }, volume = {15}, year = {1996}, pages = {159--164}, month = {February}, number = {2}, note = {{http://gking.harvard.edu/files/abs/contxt-abs.shtml}} } @article{KinSig96, author = {Gary King and Curtis S. Signorino}, title = {The Generalization in the Generalized Event Count Model}, journal = {Political Analysis}, volume = 6, year = 1996, pages = {225--252}, note = {{http://gking.harvard.edu/files/abs/generaliz-abs.shtml}} } @article{King95, author = {Gary King}, title = {Replication, Replication}, journal = {PS: Political Science and Politics}, volume = {28}, year = 1995, pages = {443--499}, month = {September}, number = 3, note = {{http://gking.harvard.edu/files/abs/replication-abs.shtml}} } @article{King95b, author = {Gary King}, title = {A Revised Proposal, Proposal}, journal = {PS: Political Science and Politics}, volume = {XXVIII}, year = 1995, pages = {494--499}, month = {September}, number = 3, note = {{http://gking.harvard.edu/files/abs/replication-abs.shtml}} } @article{KinKeoVer95, author = {Gary King and Robert O. Keohane and Sidney Verba}, title = {The Importance of Research Design in Political Science}, journal = {American Political Science Review}, volume = {89}, year = {1995}, pages = {454--481 }, month = {June}, number = {2}, note = {{http://gking.harvard.edu/files/abs/kkvresp-abs.shtml}} } @article{VosGelKin95, author = {D. Steven Voss and Andrew Gelman and Gary King}, title = {Pre-Election Survey Methodology: Details From Nine Polling Organizations, 1988 and 1992}, journal = {Public Opinion Quarterly}, volume = {59}, year = {1995}, pages = {98--132}, month = {Spring}, number = {1}, note = {{http://gking.harvard.edu/files/abs/preelection-abs.shtml}} } @article{WinSigKin95, author = {Rainer Winkelmann and Curtis Signorino and Gary King}, title = {A Correction for an Underdispersed Event Count Probability Distribution}, journal = {Political Analysis}, year = {1995}, pages = {215--228}, note = {{http://gking.harvard.edu/files/abs/correction-abs.shtml}} } @article{AltKin94, author = {James E. Alt and Gary King}, title = {Transfers of Governmental Power: The Meaning of Time Dependence}, journal = {Comparative Political Studies}, volume = {27}, year = {1994}, pages = {190--210}, month = {July}, number = {2}, note = {{http://gking.harvard.edu/files/abs/transfers-abs.shtml}} } @article{GelKin94, author = {Andrew Gelman and Gary King}, title = {A Unified Method of Evaluating Electoral Systems and Redistricting Plans}, journal = {American Journal of Political Science}, volume = 38, year = 1994, pages = {514--554}, month = {May}, number = 2, note = {{http://gking.harvard.edu/files/abs/writeit-abs.shtml}} } @article{GelKin94b, author = {Andrew Gelman and Gary King}, title = {Enhancing Democracy Through Legislative Redistricting}, journal = {American Political Science Review}, volume = {88}, year = {1994}, pages = {541--559}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/red-abs.shtml}} } @incollection{GelKin94c, author = {Andrew Gelman and Gary King}, title = {Party Competition and Media Messages in U.S. Presidential Election Campaigns}, booktitle = {The Parties Respond: Changes in the American Party System}, publisher = {Westview Press}, year = 1994, address = {Boulder, Colorado}, editor = {L. Sandy Maisel}, pages = {255-295}, note = {{http://gking.harvard.edu/files/abs/partycomp-abs.shtml}} } @article{GelKin93, author = {Andrew Gelman and Gary King}, title = {Why are American Presidential Election Campaign Polls so Variable when Votes are so Predictable?}, journal = {British Journal of Political Science}, volume = 23, year = 1993, pages = {409--451}, month = {October}, number = 1, note = {{http://gking.harvard.edu/files/abs/variable-abs.shtml}} } @inbook{King93, author = {Gary King}, title = {The Methodology of Presidential Research}, year = {1993}, publisher = {University of Pittsburgh}, pages = {387--412}, address = {Pittsburgh}, editor = {George Edwards, III, John H. Kessel, and Bert A. Rockman, eds.}, note = {{http://gking.harvard.edu/files/abs/methpres-abs.shtml}}, journal = {Researching the Presidency: Vital Questions, New Approaches} } @article{KingBruGil93, author = {Gary King and John M. Bruce and Michael Gilligan}, title = {The Science of Political Science Graduate Admissions}, journal = {PS: Political Science and Politics}, volume = {XXVI}, year = {1993}, pages = {772--778}, month = {December}, number = {4}, note = {{http://gking.harvard.edu/files/abs/admis-abs.shtml}} } @article{KinLav93, author = {Gary King and Michael Laver}, title = {On Party Platforms, Mandates, and Government Spending}, journal = {American Political Science Review}, volume = {87}, year = {1993}, pages = {744--750}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/hoff-abs.shtml}} } @article{KinWal93, author = {Gary King and Daniel J. Walsh}, title = {Good Research and Bad Research: Extending Zimile's Criticism}, journal = {Early Childhood Research Quarterly}, volume = {8}, year = {1993}, pages = {397--401}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/good-abs.shtml}} } @article{King91, author = {Gary King}, title = {'Truth' is Stranger than Prediction, More Questionable Than Causal Inference}, journal = {American Journal of Political Science}, volume = {35}, year = {1991}, pages = {1047--1053}, month = {November}, number = {4}, note = {{http://gking.harvard.edu/files/abs/truth-abs.shtml}} } @article{King91b, author = {Gary King}, title = {Constituency Service and Incumbency Advantage}, journal = {British Journal of Political Science}, volume = {21}, year = {1991}, pages = {119--128}, month = {January}, number = {1}, note = {{http://gking.harvard.edu/files/abs/constit-abs.shtml}} } @article{King91c, author = {Gary King}, title = {On Political Methodology}, journal = {Political Analysis}, volume = {2}, year = {1991}, pages = {1--30}, note = {{http://gking.harvard.edu/files/abs/polmeth-abs.shtml}} } @article{King91d, author = {Gary King}, title = {Stochastic Variation: A Comment on Lewis-Beck and Skalaban's `The R-Square'}, journal = {Political Analysis}, volume = {2}, year = {1991}, pages = {185--200}, note = {{http://gking.harvard.edu/files/abs/stoch-abs.shtml}} } @article{King91e, author = {Gary King}, title = {Calculating Standard Errors of Predicted Values based on Nonlinear Functional Forms}, journal = {The Political Methodologist}, volume = {4}, year = {1991}, month = {Fall}, number = {2} } @article{KinGel91, author = {Gary King and Andrew Gelman}, title = {Systemic Consequences of Incumbency Advantage in the U.S. House}, journal = {American Journal of Political Science}, volume = 35, year = 1991, pages = {110--138}, month = {February}, number = 1 , note = {{http://gking.harvard.edu/files/abs/sysconseq-abs.shtml}} } @article{AnsKin90, author = {Stephen Ansolabehere and Gary King}, title = {Measuring the Consequences of Delegate Selection Rules in Presidential Nominations}, journal = {Journal of Politics}, volume = {52}, year = {1990}, pages = {609--621}, month = {May}, number = {2}, note = {{http://gking.harvard.edu/files/abs/pri-abs.shtml}} } @article{GelKin90, author = {Andrew Gelman and Gary King}, title = {Estimating the Electoral Consequences of Legislative Redistricting}, journal = {Journal of the American Statistical Association}, volume = {85}, year = {1990}, pages = {274--282}, month = {June}, number = {410}, note = {{http://gking.harvard.edu/files/abs/svstat-abs.shtml}} } @article{GelKin90b, author = {Andrew Gelman and Gary King}, title = {Estimating Incumbency Advantage Without Bias}, journal = {American Journal of Political Science}, volume = {34}, year = {1990}, pages = {1142--1164}, month = {November}, number = {4}, note = {{http://gking.harvard.edu/files/abs/inc-abs.shtml}} } @article{KinAltBur90, author = {Gary King and James Alt and Nancy Burns and Michael Laver}, title = {A Unified Model of Cabinet Dissolution in Parliamentary Democracies}, journal = {American Journal of Political Science}, volume = {34}, year = {1990}, pages = {846--871}, month = {August}, number = {3}, note = {{http://gking.harvard.edu/files/abs/coal-abs.shtml}} } @article{King90, author = {Gary King}, title = {Electoral Responsiveness and Partisan Bias in Multiparty Democracies}, journal = {Legislative Studies Quarterly}, volume = {XV}, year = {1990}, pages = {159--181}, month = {May}, number = {2}, note = {{http://gking.harvard.edu/files/abs/electresp-abs.shtml}} } @article{GelKin89, author = {Andrew Gelman and Gary King}, title = {Electoral Responsiveness in U.S. Congressional Elections, 1946-1986}, journal = {Proceedings of the Social Statistics Section, American Statistical Association}, year = {1989}, pages = {208} } @article{King89b, author = {Gary King}, title = {Representation Through Legislative Redistricting: A Stochastic Model}, journal = {American Journal of Political Science}, volume = {33}, year = {1989}, pages = {787--824}, month = {November}, number = {4}, note = {{http://gking.harvard.edu/files/abs/repstoch-abs.shtml}} } @article{King89c, author = {Gary King}, title = {Event Count Models for International Relations: Generalizations and Applications}, journal = {International Studies Quarterly}, volume = {33}, year = {1989}, pages = {123--147}, month = {June}, number = {2}, note = {{http://gking.harvard.edu/files/abs/ISQ33-abs.shtml}} } @article{King89d, author = {Gary King}, title = {Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator}, journal = {American Journal of Political Science}, volume = 33, year = 1989, pages = {762--784}, month = {August}, number = 3 , note = {{http://gking.harvard.edu/files/abs/varspecec-abs.shtml}} } @article{King89e, author = {Gary King}, title = {A Seemingly Unrelated Poisson Regression Model}, journal = {Sociological Methods and Research}, volume = {17}, year = {1989}, pages = {235--255}, month = {February}, number = {3}, note = {{http://gking.harvard.edu/files/abs/SMR17-abs.shtml}} } @article{King88, author = {Gary King}, title = {Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model}, journal = {American Journal of Political Science}, volume = 32, year = 1988, pages = {838-863}, month = {August}, number = 3 , note = {{http://gking.harvard.edu/files/abs/epr-abs.shtml}} } @article{BroKin87, author = {Robert X Browning and Gary King}, title = {Seats, Votes, and Gerrymandering: Measuring Bias and Representation in Legislative Redistricting}, journal = {Law and Policy}, volume = {9}, year = {1987}, pages = {305--322}, month = {July}, number = {3}, note = {{http://gking.harvard.edu/files/abs/LP9-abs.shtml}} } @article{KinBro87, author = {Gary King and Robert X Browning}, title = {Democratic Representation and Partisan Bias in Congressional Elections}, journal = {American Political Science Review}, volume = {81}, year = {1987}, pages = {1252--1273}, month = {December}, number = {4}, note = {{http://gking.harvard.edu/files/abs/sv-abs.shtml}} } @article{King87, author = {Gary King}, title = {Presidential Appointments to the Supreme Court: Adding Systematic Explanation to Probabilistic Description}, journal = {American Politics Quarterly}, volume = {15}, year = {1987}, pages = {373--386}, month = {July}, number = {3}, note = {{http://gking.harvard.edu/files/abs/sct-abs.shtml}} } @article{King86, author = {Gary King}, title = {How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science}, journal = {American Journal of Political Science}, volume = {30}, year = {1986}, pages = {666--687}, month = {August}, number = {3}, note = {{http://gking.harvard.edu/files/abs/mist-abs.shtml}} } @article{King86b, author = {Gary King}, title = {The Significance of Roll Calls in Voting Bodies: A Model and Statistical Estimation}, journal = {Social Science Research}, volume = {15}, year = {1986}, pages = {135--152}, month = {June}, note = {{http://gking.harvard.edu/files/abs/SSR15-abs.shtml}} } @article{King86c, author = {Gary King}, title = {Political Parties and Foreign Policy: A Structuralist Approach}, journal = {Political Psychology}, volume = {7}, year = {1986}, pages = {83--101}, month = {March}, number = {1}, note = {{http://gking.harvard.edu/files/abs/PP7-abs.shtml}} } @article{KinMer86, author = {Gary King and Richard Merelman}, title = {The Development of Political Activists: A Model of Early Learning}, journal = {Social Science Quarterly}, volume = {67}, year = {1986}, pages = {473--490}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/poliactiv-abs.shtml}} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Article{IacKinPor11b, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {Replication data for: Causal Inference Without Balance Checking: Coarsened Exact Matching}, journal = { }, year = 2011, note = {http://hdl.handle.net/1902.1/15601 Murray Research Archive [Distributor] V1 [Version]} } @article{HopKin09b, author = {Daniel Hopkins and Gary King}, title = {Replication Data for: A Method of Automated Nonparametric Content Analysis for Social Science}, journal = { }, year = 2009, note = {\underline{UNF:3:xlE5stLgKvpeMvxzlLxzEQ==} hdl:1902.1/12898 Murray Research Archive [Distributor]} } @article{KinGakIma09b, Author = {Gary King and Emmanuela Gakidou and Kosuke Imai and Jason Lakin and Clayton Nall and Ryan T. Moore and Nirmala Ravishankar and Manett Vargas and Martha Mar{\'i}a T{\'e}llez-Rojo and Juan Eugenio Hern{\'a}ndez {\'A}vila and Mauricio Hern{\'a}ndez {\'A}vila and H{\'e}ctor Hern{\'a}ndez Llamas}, title = {Replication Data for: Public Policy for the Poor? A Randomized Ten-Month Evaluation of the Mexican Universal Health Insurance Program}, journal = { }, year = {2009}, note = {\underline{hdl:1902.1/11044} UNF:3:jeUN9XODtYUp2iUbe8gWZQ== Murray Research Archive [Distributor]} } @article{ImaKinNal09c, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {Replication Data for: The Essential Role of Pair-Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation: Rejoinder}, journal = { }, year = {2009}, note = {\underline{hdl:1902.1/12730} UNF:3:CKs4T0iVYxP36LQSMgAkuw== Murray Research Archive [Distributor]} } @article{ImaKinNal09b, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {Replication Data for: The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation}, journal = { }, year = {2009}, note = {\underline{hdl:1902.1/11047} UNF:3:jeUN9XODtYUp2iUbe8gWZQ== Murray Research Archive [Distributor]} } @Article{KinZen08, author = {Gary King and Langche Zeng}, title = {Replication data for: Empirical vs. Theoretical Claims about Extreme Counterfactuals: A Response}, journal = { }, year = 2008, note = {\underline{hdl:1902.1/11903}, Murray Research Archive [Distributor]} } @article{GakKin06b, author = {Emmanuela Gakidou and Gary King}, title = {Replication data for: Death by Survey: Estimating Adult Mortality without Selection Bias from Sibling Survival Data}, year = 2006, note = {{\underline{hdl:1902.1/ZMESWNECZW} Murray Research Archive [Distributor]}} } @article{GirKin06, author = {Federico Girosi and Gary King}, title = {Cause of Death Data}, year = {2006}, note = {{\underline{hdl:1902.1/UOVMCPSWOL} UNF:3:9JU+SmVyHgwRhAKclQ85Cg== Murray Research Archive [Distributor]}} } @article{HoImaKin06, author = {Daniel E. Ho and Kosuke Imai and Gary King and Elizabeth A. Stuart}, title = {Replication Data Set for: Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference}, year = 2006, note = {{\underline{hdl:1902.1/YVDZEQIYDS} Murray Research Archive [distributor]}} } @article{KinAlt06, author = {Gary King and James E. Alt and Nancy Burns and Michael Laver}, title = {Replication data for: A Unified Model of Cabinet Dissolution in Parliamentary Democracies}, year = {2006}, note = {{\underline{hdl:1902.1/RMPXNUSBBS} UNF:3:lfKIeFJKgejkOzXEY1i6lw== Murray Research Archive [Distributor]}} } @article{KinZen06b, author = {Gary King and Langche Zeng}, title = {Replication Data Set for: When Can History be Our Guide? The Pitfalls of Counterfactual Inference}, year = 2006, note = {{\underline{hdl:1902.1/DXRXCFAWPK} Murray Research Archive [distributor]}} } @article{KinZen06c, author = {Gary King and Langche Zeng}, title = {Replication data for: Detecting Model Depedence in Statistical Inference: A Response}, year = {2006}, note = {{\underline{hdl:1902.1/FGSRBXXIYT} UNF:3:K4/CgnMYDMV6izc5RVOZTA== Murray Research Archive [Distributor]}} } @article{KinZen06d, author = {Gary King and Langche Zeng}, title = {Replication data for: When Can History be Our Guide? The Pitfalls of Counterfactual Inference}, year = {2006}, note = {{\underline{hdl:1902.1/DXRXCFAWPK} UNF:3:DaYlT6QSX9r0D50ye+tXpA== Murray Research Archive [Distributor]}} } @article{KinZen06e, author = {Gary King and Langche Zeng}, title = {Replication data for: The Dangers of Extreme Counterfactuals }, year = {2006}, note = {{\underline{hdl:1902.1/UTVMBVNGMX} UNF:3:ytKKNjK+yR8Pq3H0RcV6eg== Murray Research Archive [Distributor]}} } @article{EpsHoKin05b, author = {Lee Epstein and Daniel E. Ho and Gary King and Jeffrey A. Segal}, title = {Replication data for: The Supreme Court During Crisis: How War Affects Only Nonwar Cases}, year = {2005}, note = {{\underline{hdl:1902.1/RESUDVYWPE} UNF:3:ZmbzFbfqogNM0Gb6CcV52A== Murray Research Archive [Distributor]}} } @article{BecKinZen04b, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Replication data for: Gelpi and Grynaviski}, year = {2004}, note = {{\underline{hdl:1902.1/LAAYCJJGDS} UNF:3:N0bEAswAlPPVXCxPOZYyqw== Murray Research Archive [Distributor]}} } @article{King03b, author = {Gary King}, title = {10 Million International Dyadic Events}, year = {2003}, note = {{\underline{hdl:1902.1/FYXLAWZRIA} UNF:3:um06qkr/1tAwpS4roUqAiw== Murray Research Archive [Distributor]}} } @article{KinZen01c, author = {Gary King and Langche Zeng}, title = {Replication data for: Explaining Rare Events in International Relations}, year = {2001}, note = {\underline{hdl:1902.1/OUCBSJKXIC} UNF:3:vyct3c8fMCdWOdp03NUhaA== Murray Research Archive [Distributor]} } @article{KinZen01d, author = {Gary King and Langche Zeng}, title = {Replication data for: Improving Forecats of State Failure}, year = {2001}, note = {{\underline{hdl:1902.1/RPQIODIANR} UNF:3:CEsbEgPxbxExfYuh2NWwWQ== Murray Research Archive [Distributor]}} } @article{BecKinZen00b, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Replication data for: Improving Quantitative Studies of International Conflict: A Conjecture}, volume = {2000}, note = {{\underline{hdl:1902.1/SZKONDGOMF} UNF:3:rYRDzT8dCJ/BR7V9u8fObA== Murray Research Archive [Distributor]}} } @article{KinTomWit00b, author = {Gary King and Michael Tomz and Jason Wittenberg}, title = {Replication data for: Making the Most of Statistical Analyses: Improving Interpretation and Presentation}, year = {2000}, note = {{\underline{hdl:1902.1/QTCABXZZRQ} UNF:3:1VaLflZ/LfB+AISX+hBm1w== Murray Research Archive [Distributor]}} } @article{KatKin99b, author = {Jonathan Katz and Gary King}, title = {Replication data for: A Statistical Model of Multiparty Electoral Data}, year = {1999}, note = {{\underline{hdl:1902.1/QIGTWZYTLZ} UNF:3:gwGcKylle0BKJTGv3Zv4OA== Murray Research Archive [Distributor]}} } @article{GelKinBos98b, author = {Andrew Gelman and Gary King and John Boscardin}, title = {Replication data for: Estimating the Probability of Events that have Never Occurred: When is your Vote Decisive}, year = {1998}, note = {{\underline{hdl:1902.1/NOLXXTUHNZ} UNF:3:ORDulVH6qEb4lsCyDn5W3A== Murray Research Archive [Distributor]}} } @article{King97b, author = {Gary King}, title = {Replication data for: A Solution to the Ecological Inference Problem: Reconstructing Individuals Behavior from Aggregate Data}, year = {1997}, note = {{\underline{hdl:1902.1/LWMMKUTYXS} UNF:3:DRWozWd89+vNLO7lY2AHbg== Murray Research Archive [Distributor]}} } @article{GelKin94d, author = {Andrew Gelman and Gary King}, title = {Replication data for: Enhancing Democracy Through Legislative Redistricting}, year = {1994}, note = {{\underline{hdl:1902.1/BNCOWNVERH} UNF:3:ZXahi7PBFxLRb46sVKOAuQ== Murray Research Archive [Distributor]}} } @article{GelKin94e, author = {Andrew Gelman and Gary King}, title = {Replication data for: Unified Methods of Evaluating Electoral Systems and Redistricting Plans: United States House of Representatives adn Ohio State Legislature}, year = {1994}, note = {{\underline{hdl:1902.1/JWFTSFKOBK} UNF:3:Fi01DWj4Sx+0ZEOEo4TOXA== Murray Research Archive [Distributor]}} } @article{King94, author = {Gary King}, title = {Elections to the United States House of Representatives, 1898-1992}, year = {1994}, note = {{\underline{hdl:1902.1/TQDSSPRDDZ} UNF:3:tD8SznMFjKIxWxOqTQaamQ== Murray Research Archive [Distributor]}} } @article{GelKin93b, author = {Andrew Gelman and Gary King}, title = {Replication data for: Why Are American Presidential Election Campaign Polls so Variable When Votes are so Predictable?}, year = {1993}, note = {{\underline{hdl:1902.1/SBBXEUSSCW} Murray Research Archive [Distributor]}} } @article{KinLav93b, author = {Gary King and Michael Laver}, title = {Replication data for: On Party Platforms, Mandates, and Government Spending}, year = {1993}, note = {{\underline{hdl:1902.1/XEHYCJAWQD} UNF:3:cwNXuRQ/6Lp72obLkttmGg== Murray Research Archive [Distributor]}} } @article{King91e, author = {Gary King}, title = {Replication data for: Constituency Service and Incumbency Advantage}, year = {1991}, note = {{\underline{hdl:1902.1/JTMXGSZXIZ} UNF:3:IE4ZSAs8ZzUK+fRXNbVvGw== Murray Research Archive [Distributor]}} } @article{King91f, author = {Gary King}, title = {Replication data for: On Political Methodology}, year = {1991}, note = {{\underline{hdl:1902.1/KHTLSQXAEJ} Murray Research Archive [Distributor]}} } @article{AnsKin90b, author = {Stephen Ansolabehere and Gary King}, title = {Replication data for: Measuring the Consequences of Delegate Selection Rules in Presidential Nominations}, year = {1990}, note = {{\underline{hdl:1902.1/BUJXCEPXQK} UNF:3:OdFPcQcvfO5hc3WJ5ty8vQ== Murray Research Archive [Distributor]}} } @article{KinBen86, author = {Gary King and Gerald Benjamin}, title = {Replication data for: The Stability of Partisan Identification in the U.S. House of Representatives, 1789-1984}, year = {1986}, note = {{\underline{hdl:1902.1/HINHTJQYFO} Murray Research Archive [Distributor]}} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Software %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Article{IacKinPor09b, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {CEM: Coarsened Exact Matching Software}, journal = {Journal of Statistical Software}, volume = 30, issue = 9, year = 2009, note = {{http://gking.harvard.edu/cem}} } @article{WanKinLau07, author = {Jonathan Wand and Gary King and Olivia Lau}, title = {Anchors: Software for Anchoring Vignettes Data}, journal = {Journal of Statistical Software}, year = {2007, forthcoming} } @Article{HonKinBLa10, author = {James Honaker and Gary King and Matthew Blackwell}, title = {Amelia II: A Program for Missing Data}, year = 2010, note = {{http://gking.harvard.edu/amelia}} } @article{ImaKinLau06, author = {Kosuke Imai and Gary King and Olivia Lau}, title = {Zelig: Everyone's Statistical Software}, year = 2006, note = {{http://gking.harvard.edu/zelig}} } @article{TomWitKin05, author = {Michael Tomz and Jason Wittenberg and Gary King}, title = {CLARIFY: Software for Interpreting and Presenting Statistical Results}, year = {1998-2005}, note = {{http://gking.harvard.edu/stats.shtml#clarify}} } @article{HonJosKin98, author = {James Honaker and Anne Joseph and Gary King and Kenneth Scheve and Naunihal Singh.}, title = {AMELIA: A Program for Missing Data}, year = {1998-2002}, note = {{http://gking.harvard.edu/amelia}} } @article{King98, author = {Gary King}, title = {MAXLIK, a set of Gauss programs, annotated for pedagogical purposes, to implement the maximum likelihood models in Unifying Political Methodology: The Likelihood Theory of Statistical Inference}, year = {1998}, note = {{http://gking.harvard.edu/stats.shtml#maxlik}} } @article{King96b, author = {Gary King}, title = {EI: Program for Ecological Inference}, year = {1996-2003}, note = {{http://gking.harvard.edu/stats.shtml#ei}} } @article{GelKin92, author = {Andrew Gelman and Gary King}, title = {JudgeIt: A Program for Evaluating Electoral Systems and Redistricting Plans}, year = {1992-2002}, note = {{http://gking.harvard.edu/stats.shtml#judgeit}} } @article{HoImaKin07a, author = {Daniel E. Ho and Kosuke Imai and Gary King and Elizabeth A. Stuart}, title = {MatchIt: Nonparametric Preprocessing for Parametric Causal Inference}, year = {Forthcoming}, journal = {Journal of Statistical Software}, note = {{http://gking.harvard.edu/matchit}} } @InCollection{Gelman04, author = {Andrew Gelman}, title = {Treatment Effects in Before-After Data}, booktitle = {Applied Bayesian Modeling and Causal Inference from an Incomplete Data Perspective}, publisher = {Wiley}, year = 2004, editor = {Andrew Gelman and Xiao-Li Meng}, chapter = 18, address = {London} } Zelig/vignettes/gk.bib0000644000176000001440000204601212061700507014446 0ustar ripleyusers% A bibtex file for papers by or coauthored with Gary King % % To add references, first please CHECK that your doesn't already % exist in this file and % then add entries only at the end. % % Use these rules for the reference label: % % -if one author: use last name and last 2 digits of the year: Tobler79. % -if multiple authors, use 1st 3 letters of each of UP TO the first three % authors and the last 2 digits of the year: KinTomWit00. % -if necessary add lower-case letters for multiple entries in a year: King02, King02b % (the first one should NOT have an 'a' afterwards) % % -feel free to use the abbreviations at the start, or add to them. % -Use authors full names when known. % % please be sure to commit changes to CVS regularly as a number of % people are all using this at the same time. @STRING{ prq = "Political Research Quarterly"} @STRING{ apsr = "American Political Science Review"} @STRING{ ajps = "American Journal of Political Science"} @STRING{ jop = "Journal of Politics"} @STRING{ bjps = "British Journal of Political Science"} @STRING{ jleo = "Journal of Law, Economics, and Organization"} @STRING{ isa = "Paper presented at the annual meetings of the International Studies Association"} @STRING{ apsa = "Paper presented at the annual meetings of the American Political Science Association"} @STRING{ cp = "Comparative Politics"} @STRING{ io = "International Organization"} @STRING{ midwest = "Paper presented at the Annual Meeting of the Midwest Political Science Association"} @STRING{ mpsa = "midwest"} @STRING{ southern = "Paper presented at the Annual Meeting of the Southern Political Science Association"} @STRING{ icpsr = "Inter-University Consortium for Political and Social Research"} @STRING{ jasa = "Journal of the American Statistical Association"} @STRING{ lsq = "Legislative Studies Quarterly"} @STRING{ isq = "International Studies Quarterly"} @STRING{ tas = "The American Statistician"} @STRING{ jbes = "Journal of Business \& Economic Statistics"} @STRING{ joe = "Journal of Econometrics"} @STRING{ wp = "World Politics"} @STRING{ cup = "Cambridge University Press"} @STRING{ hup = "Harvard University Press"} @STRING{ ny = "New York"} @STRING{ sv = "Springer Verlag"} @STRING{ pup = "Princeton University Press"} @STRING{ ucp = "University of California Press"} @STRING{ ap = "Academic Press"} @STRING{ wb = "The World Bank"} @STRING{ eas = "Europe-Asia Studies"} @STRING{ jet = "Journal of Economic Theory"} @STRING{ jrssA = "Journal of the Royal Statistical Society, A"} @STRING{ jrssb = "Journal of the Royal Statistical Society, B"} @STRING{ poq = "Public Opinion Quarterly"} @STRING{ pnas = "Proceedings of the National Academy of Sciences"} @STRING{ ai = "Artificial Intelligence"} @STRING{ pa = "Political Analysis"} @STRING{ ps = "PS: Political Science and Politics"} @STRING{ smr = "Sociological Methods and Research"} @STRING{ sim = "Statistics in Medicine"} @STRING{ asr = "American Sociological Review"} @STRING{ bmj = "British Medical Journal"} @STRING{ lan = "Lancet"} @STRING{ dem = "Demography"} @STRING{ bull = "Bulletin of WHO"} @STRING{ ssm = "Social Science and Medicine"} @STRING{ mitai = "Artificial Intelligence Laboratory, Massachusetts Institute of Technology"} @STRING{ nc = "Neural Computation"} @article{AbaDruLeb02, author = {Alberto Abadie and David Druckker and Jane Leber Herr and Guido W. Imbens}, title = {Implementing Matching Estimators for Average Treatment Effects in Stata}, journal = {The Stata Journal}, volume = 1, year = 2002, pages = {1--18}, number = 1 } @article{Bin83, author = {David A. Binder}, title = {On the Variance of Asymptoticaly Normal Estimators from Complex Surveys}, year = {1983}, journal = {International Statistical Review}, volume = {51}, number = {3}, pages = {279--292} } @article{HorTho52, author = {D. G. Horvitz and D.J. Thompson}, title = {A Generalization of Sampling without Replacement from a Finite Universe}, year = {1952}, journal = {Journal of the American Statistical Association}, volume = {47}, pages = {663--685} } @article{AbaGelLev08, author = {Kobi Abayomi and Andrew Gelman and Marc Levy}, title = {Diagnostics for Multivariate Imputations}, journal = {Applied Statistics}, volume = {57}, number = {3}, pages = {273--291}, year = {2008} } @misc{AbaImb05, author = {Alberto Abadie and Guido Imbens}, title = {Estimation of the Conditional Variance in Paired Experiments}, year = 2006, howpublished = {KSG Working Paper}, note = {{http://ksghome.harvard.edu/\~{}.aabadie.academic.ksg/cve.pdf}} } @misc{AbaImb09, author = {Alberto Abadie and Guido Imbens}, title = {A Martingale Representation for Matching Estimators}, year = 2009, howpublished = {IZA Discussion Papers number 4073}, note = {{http://ftp.iza.org/dp4073.pdf}} } @article{Imb00, author = {Guido Imbens}, title = {The role of the propensity score in estimating the dose-response functions}, year = {2000}, journal = {Biometrika}, pages = {706--710}, volume = {87}, issue = {3} } @article{AbaImb07b, author = {Alberto Abadie and Guido Imbens}, title = {On the Failure of the Bootstrap for Matching Estimators}, year = {2007}, journal = {Econometrica}, pages = {1537--1557}, volume = {76}, issue = {6} } @article{AbaImb06, author = {Abadie, Alberto and Imbens, Guido W.}, title = {Large Sample Properties of Matching Estimators for Average Treatment Effects}, journal = {Econometrica}, volume = {74}, year = {2006}, pages = {235--267}, number = {1} } @inproceedings{Abu-Mostafa92, author={Y. Abu-Mostafa}, title={A Method for Learning from Hints}, booktitle={Advances in Neural information processings systems 5}, year={1992}, publisher={Morgan Kaufmann Publishers}, address={San Mateo, CA}, editor={S. J. Hanson and Jack D. Cowan and C. Lee Giles} } @article{Abu-Mostafa92, author={Y. Abu-Mostafa}, title={A Method for Learning from Hints}, journal={Advances in Neural information processings systems 5}, volume={1992}, pages={Morgan Kaufmann Publishers}, month={San Mateo CA}, number={S. J. Hanson and Jack D. Cowan and C. Lee Giles} } @book{Achen86, author={Christopher Achen}, title={Statistical Analysis of Quasi-experiments}, publisher={University of California Press}, year={1986}, address={Berkeley} } @techreport{AdaCoaRue00, author={Michelle Adato and David Coady and Marie Ruel}, title={An Operations Evaluation of Progresa from the Perspective of Beneficiaries, Promotoras, School Directors and Health Staff}, institution={International Food Policy Research Institute}, year={2000}, month={August}, type={Final Report}, address={2033 K Street, NW Washington, DC 20006} } @article{AdaGla05, author={Adamic, L.A. and Glance, N.}, title={{The political blogosphere and the 2004 US election: divided they blog}}, journal={Proceedings of the 3rd international workshop on Link discovery}, year={2005}, pages={36--43}, publisher={ACM Press New York, NY, USA} } @article{AgoDyn04, author={Roberto Agodini and Mark Dynarski}, title={Are experiments the only option? {A} look at dropout prevention programs}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={180-194}, month={February}, number= 1 } @unpublished{AgrRajSri03, author={Rakesh Agrawal and Sridhar Rajagopolan and Ramakrishnan Srikant and Yirong Xu}, title={Mining Newsgroups Using Networks Arising from Social Behavior}, note={IBM ALmaden Research Center 650 Harry Rd., San Jose, CA 95120}, year={2003}, month={May} } @book{Aitchison86, author={J. Aitchison}, title={The Statistical Analysis of Compositional Data}, publisher={Chapman and Hall}, year= 1986, address={London} } @article{Albert88, author={James H. Albert}, title={Computational Methods Using a Bayesian Hierarchical Generalized Linear Model}, journal={Journal of the American Statistical Association}, volume={83}, year={1988}, pages={1037-1004}, month={December}, number={404} } @article{AldMcK77, author={John H. Aldrich and Richard D. McKelvey}, title={A Method of Scaling With Applications to the 1968 and 1972 Presidential Elections}, journal= apsr, volume= 71, year= 1977, pages={111-130}, month={March} } @article{AleTab90, author={Alberto Alesina and Guido Tabellini}, title={A Positive Theory of Fiscal Deficits and Government Debt}, journal={The Review of Economic Studies}, volume={57}, year={1990}, pages={403-414}, month={July}, number={3} } @article{Alho00, author={J. M. Alho}, title={Discussion}, journal={North American Actuarial Journal}, volume= 4, year= 2000, pages={91--93}, number= 1 } @article{Alho92, author={J. M. Alho}, title={{Comment on ``Modeling and Forecasting U.S. Mortality'' by R. Lee and L. Carter}}, journal= jasa, volume= 87, year= 1992, pages={673--674}, month={September}, number= 419 } @article{AlSaCr76, author={James Alt and Bo Sarlvik and Ivor Crewe}, title={Individual Differences Scaling and Group Attitude Structures: British Party Imagery in 1974}, journal={Quality and Quantity}, volume= 10, year= 1976, pages={297--320}, month={October} } @book{AltGilMcD03, author={Micah Altman and Jeff Gill and Michael P. McDonald}, title={Numerical Issues in Statistical Computing for the Social Scientist}, publisher={John Wiley and Sons}, year= 2003, address={New York} } @article{Altman85, author={Douglas G. Altman}, title={Comparability of Randomised Groups}, journal={The Statistician}, volume={34}, year={1985}, pages={125-136}, number={1} } @article{Altman98, author={Douglas G. Altman and Jonathan J. Deeks and David L. Sackett}, title={Odds Ratios Should be Avoided When Events are Common}, journal={British Medical Journal}, volume= 317, year= 1998, pages= 1318, month={Nov. 7} } @article{AltMcD03, author={Micah Altman and Michael P. McDonald}, title={Replication with Attention to Numerical Accuracy}, journal={Political Analysis}, volume={11}, year={2003}, pages={302-307}, number={3} } @article{AltRub70, author={Robert P. Althauser and Donald B. Rubin}, title={The computerized construction of a matched sample}, journal={American Journal of Sociology}, volume= 76, year= 1970, pages={325-346}, month={September} } @article{AlvBre95, author={Michael R. Alvarez and John Brehm}, title={American Ambivalence Toward Abortion Policy: A Heteroskedastic probit Method for Assessing Conflicting Values}, journal={American Journal of Political Science}, volume={39}, year={1995}, pages={1055-82}, month={November} } @article{AlvBre97, author={Michael R. Alvarez and John Brehm}, title={Are Americans Ambivalent Towards Racial Policies}, journal={American Journal of Political Science}, volume={41}, year={1997}, pages={345-374}, month={April}, number={2} } @article{AlvGarLan91, author={Michael R.\ Alvarez and Geoffrey Garrett and Peter Lange}, title={Government Partisanship, Labor Organization, and Macroeconomic Performance}, journal= apsr, volume= 85, year= 1991, pages={539--556} } @article{AmoMccZim97, author={A.F. Amos and D.J. McCarty and P. Zimmet}, title={The Rising Global Burden of Diabetes and its Complications: Estimates and Projections to the Year 2010}, journal={Diabetic Medicine}, volume= 14, year= 1997, tpages={S7--S85} } @book{AndBasHum83, author={Andy B. Anderson and Alexander Basilevsky and Derek P.J. Hum}, title={Missing Data: A Review of the Literature}, publisher={Academic Press, Inc}, year={1983}, editor={Peter H. Rossi and James D. Writght and Andy B. Anderson} } @article{AndGib06, author={Krister Andersson and Clark C. Gibson}, title={Decentralized Governance and Environmental Change: Local Institutional Moderation of Defroestation in Bolivia}, journal={Journal of Policy Analysis and Management}, volume={26}, year={2006}, pages={99-123}, number={1} } @article{AndGreMcc05, author={Richard G. Anderson and William H. Greene and B.D. McCullough and H.D. Vinod}, title={The Role of Data \& Program Code Archives in the Future of Economic Research}, year= 2005, month={July}, note={Federal Reserve Bank of St. Louis Research Division} } @article{Andrews91, author={Donald W.K. Andrews}, title={Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation}, journal={Econometrica}, volume={59}, year={1991}, pages={817--858}, month={May}, number={3} } @article{AndZom01, author={A.S. Andreou and G.A. Zombanakis}, title={A Neural Network Measurement of Relative Military Security--The Case of Greece and Cyprus}, journal={Defence and Peace Economics}, volume= 12, year= 2001, pages={303--324}, number= 4, annote={have not read primary source. looks promising, given secondary source comments: all input variables are financial and the output variable--relative security--is population/demographics based. Arms race scenarios are simulated by increasing and decreasing financial covariates.} } @article{AngAngFro94, author={G. De Angelis and R. De Angelis and L. Frova and A. Verdecchia}, title={MIAMOD: A Computer Package to Estimate Chronic Disease Morbidity Using Mortality and Survival Data}, journal={Computer Methods and Programs in Biomedicine}, volume= 44, year= 1994, pages={99--107} } @article{AngImb95, author={Joshua D. Angrist and Guido W. Imbens}, title={Two-Stage Least Squares Estimation of Average Causal Effects in Models withVariable Treatment Intensity}, journal={Journal of the American Statistical Association}, volume={90}, year={1995}, pages={431-442}, month={June}, number={430} } @article{AngImbRub96, author={Angrist, Joshua D. and Imbens, Guido W. and Rubin, Donald B.}, title={Identification of Causal Effects Using Instrumental Variables (with discussion)}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={444--455}, optnumber={434} } @article{Angress59, author={Werner T. Angress}, title={The Political Role of the Peasantry in the Weimar Republic}, journal={The Review of Politics}, volume= 21, year= 1959, pages={530--549}, number= 3 } @unpublished{AnkBlaCol99, author = {Martha Anker and Robert E. Black and Christopher Coldham and Henry D. Kalter and Maria A. Quigley and David Ross and Robert W. Snow}, title = {A Standard Verbal Autopsy Method for Investigating Causes of Death in Infants and Children}, note = {World Health Organization, Department of communicable Disease Surveillance and Response}, year = {1999}, journal = {World Health Organization} } @book{Anker03, author = {Martha Anker}, title = {Investigating Cause of Death During an Outbreak of Ebola Virus Haemorrhagic Fever: Draft Verbal Autopsy Instrument}, publisher = {World Health Organization}, year = 2003, address = {Geneva} } @article{Anker97, author = {Martha Anker}, title = {The Effect of Misclassification Error on Reported Cause-Specific Mortality Fractions from Verbal Autopsy}, journal = {International Journal of Epidemiology}, volume = {26}, year = {1997}, pages = {1090-1096} } @article{AppBosGra96, author = {A. Appels, et al}, title = {Self-Rated Health and Mortality in a Lithuanian and Dutch Population}, journal = {Social Science and Medicine}, volume = 42, year = 1996, pages = {{681-89}}, number = 5 } @techreport{Arendt03, author = {Jacob N. Arendt}, title = {Social gradients in self-rated health in Denmark - gender differences and health risk factors in dynamic context}, institution = {AKF, Institute of Local Government Studies}, year = 2003, month = {May}, address = {Nyropsgade 37, 1602 Copenhagen V, Denmark} } @book{Arendt73, author = {Arendt, Hannah}, title = {The Origins of Totalitarianism}, publisher = {Harcourt Brace Jovanovich}, year = 1973, address = {New York} } @incollection{Armstrong01, author = {J. Scott Armstrong}, title = {Extrapolation of Time Series and Cross-Sectional Data}, booktitle = {Principles of Forecasting: A Handbook for Researchers and Practitioners}, publisher = {Kluwer}, year = 2001, editor = {J. Scott Armstrong}, pages = {217--243} } @unpublished{Ashworth01, author = {Scott Ashworth}, title = {Reputational Dynamics and Congressional Careers}, note = {Harvard University}, year = 2001, annote = {introduce the single crossing property in political science} } @article{AssPocEno00, author = {Susan F. Assmann and Stuart J. Pocock, Laura E. Enos and Linda E. Kasten}, title = {Subgroup analysis and other (mis)uses of baseline data in clinical trials}, journal = {The Lancet}, volume = {355}, year = {2000}, pages = {1064-1069}, month = {March} } @article{AusMam06, author={Peter C. Austin and Muhammad M. Mamdani}, title={A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use}, journal={Statistics in Medicine}, volume={25}, year={2006}, pages={2084-2106} } @article{AusMamStu05, author={Peter C. Austin and Muhammad M. Mamdani and Therese A. Stukel and Geoffrey M. Anderson and Jack V. Tu}, title={The use of the propensity score for estimating treatment effects: {A}dministrative versus clinical data}, journal={Statistics in Medicine}, volume={24}, year={2005}, pages={1563-1578} } @article{AvlSchDav98, author={Kirsten Avlund, Kirsten Schultz-Larsen, and Michael Davidson}, title={Tiredness in Daily Activities at Age 70 as a Predictor of Mortality During the Next 10 Years}, journal={Journal of Clinical Epidemiology}, volume= 51, year= 1998, pages={{323-33}} } @article{BacKin04, author={Bachrach, Christine A. and King, Roslind B.}, title={{Data Sharing and Duplication: Is There a Problem?}}, journal={Archives of Pediatric and Adolescent Medicine}, volume= 158, year={2004}, month={September}, number= 9 } @article{BagHopMas02, author={A. Bagust and P.K. Hopkinson and L. Maslove and C.J. Currie}, title={The Projected Health Care Burden of Type 2 Diabetes in the UK from 2000 to 2060}, journal={Diabetic Medicine}, volume= 19, year= 2002, pages={1--5}, number= 4 } @book{Balderston02, author={Theo Balderston}, title={Economics and Politics in the Weimar Republic}, publisher={Cambridge University Press}, year= 2002, address={Cambridge} } @article{BanBan92, author={A.T. Bang and R.A. Bang and the SEARCH team}, title={Diagnosis of causes of childhood deaths in developing countries by verbal autosy: suggested criteria}, journal={Bulletin of the World Health Organization}, volume={70}, year={1992}, pages={499-507}, number={4} } @article{BaqBlaAri98, author={A.H. Baqui and R.E. Black and S.E. Arifeen and K. Hill and S.N. Mitra and A.Al Sabir}, title={Causes of childhood deaths in Bangladesh: results of a nationwide verbal autopsy study}, journal={Bulletin of the World Health Organization}, volume={76}, year={1998}, pages={161}, number={2} } @article{BarFraHil03, author={John Barnard and Constantine E. Frangakis and Jennifer L. Hill and Donald B. Rubin}, title={{Principal Stratification Approach to Broken Randomized Experiments: A Case Study of School Choice Vouchers in New York City.}}, journal={Journal of the American Statistical Association}, volume={98}, year={2003}, pages={299-324}, number={462} } @book{Barkai90, author={Barkai, Avram}, title={Nazi Economics: Ideology, Theory, and Policy}, address={Oxford}, publisher={Berg Press}, year={1990} } @article{BarPonCor00, author={Ivana C. H. C. Barr{\^e}to and L{\'i}gia Kerr Pontes and e Luciano Corr{\^e}a}, title={Vigil{\^a}ncia de {\'o}bitos infantis em sistemas locais de sa{\'u}de: avalia{\c{c}}{\~a}o da aut{\'o}psia verbal e das informa{\c{c}}{\~o}es de agentes de sa{\'u}de}, journal={Rev Panam Salud Publica / Pan Am Journal of Public Health}, volume={7}, year={2000}, pages={303-312}, number={5} } @article{Bartels96, author={Bartels, Larry M.}, title={Uninformed Votes: Information Effects in Presidential Elections}, journal={American Journal of Political Science}, volume= 40, year= 1996, pages={194--230} } @unpublished{Bartels98, author={Larry Bartels}, title={Panel Attrition and Panel Conditioning in American National Election Sudies}, note={Paper prepared for the 1998 meetings of the Society for Political Methodology, San Deigo}, year={1998} } @article{BasEst01, author={S.A. Bashir and J. Esteve}, title={Projecting Cancer Incidence and Mortality Using Bayesian Age-Period-Cohort Models}, journal={Journal of Epidemiology and Biostatistics}, volume= 6, year= 2001, pages={287--296}, number= 3 } @unpublished{BatFerHab06, author={Robert Bates and Karen Feree and James Habyarimana and Macartan Humphreys and Smita Singh}, title={The Africa Research Program}, note={{http://africa.gov.harvard.edu}}, year= 2006 } @article{Bath03, author={Peter A. Bath, PhD}, title={Differences Between Older Men and Women in the Self-Rated Health-Mortality Relationship}, journal={The Gerontologist}, volume= 43, year= 2003, pages={{387-95}} } @article{Baum88, author={Lawrence Baum}, title={Measuring Policy Change in the U.S. Supreme Court}, journal= apsr, volume= 82, year= 1988, pages={905--912}, month={September}, number= 3 } @article{BeaMei89, author={Michael L. Beach and Paul Meier}, title={Choosing Covariates in the Analysis of Clinical Trials}, journal={Controlled Clinical Trials}, volume={10}, year={1989}, pages={161S-175S} } @incollection{Bearce00, author={David Bearce}, title={Economic Sanctions and Neural Networks: Forecasting Effectiveness and Reconsidering Cooperation}, booktitle={Political Complexity: Non Linear Models of Politics}, publisher={University of Michigan Press}, year= 2000, address={Ann Arbor, MI}, editor={Diana Richards}, pages={269--295}, annote={asks whether real-world forecasting needs make NN preferable to traditional (and linear) analysis. Looks at effectiveness of sanctions, using about 100 quantitative cases first examined in 1980s. NNs are shown to forecast twice as well as traditional methods.} } @book{BecChaWil88, author={Richard A. Becker and John M. Chambers and Allan R. Wilks}, title={The New S. language}, publisher={Wadsworth}, year={1988}, address={New York} } @article{BecIch02, author={Sascha O. Becker and Andrea Ichino}, title={Estimation of average treatment effects based on propensity scores}, journal={The Stata Journal}, volume= 2, year= 2002, pages={358-377}, number= 4 } @article{BecIch02, author={Sascha O. Becker and Andrea Ichino}, title={Stata programs for ATT estimation based on propensity score matching}, journal={The Stata Journal}, volume= 2, year= 2002, pages={358--377}, number= 4 } @article{BecJac98, author={Nathaniel Beck and Simon Jackman}, title={Beyond Linearity by Default: Generalized Additive Model}, journal= ajps, volume= 42, year= 1998, pages={596--627}, month={April}, number= 2 } @article{BecKat95, author={Nathaniel Beck and Jonathan Katz}, title={``What to Do (and Not to Do) with Time-Series-Cross-Section Data''}, journal= apsr, volume= 89, year= 1995, pages={634--647} } @article{BecKat96, author={Nathaniel Beck and Jonathan Katz}, title={Nuisance vs. Substance: Specifying and Estimating Time-Series-Cross-Section Model}, journal= pa, volume={VI}, year= 1996, pages={1--36} } @article{BecKatTuc98, author={Nathaniel Beck and Jonathan Katz and Richard Tucker}, title={Taking Time Seriously: Time-Series-Cross-Section Analysis with a Binary Dependent Variable}, journal= apsr, volume= 42, year= 1998, pages={1260-1288} } @article{BedChrJoh96, author={Edward J. Bedrick and Ronald Christensen and Wesley Johnson}, title={A New Perspective on Priors for Generalized Linear models}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={1450-1460}, number={436} } @techreport{BehTod99, author={Jere R. Behrman and Petra E. Todd}, title={Randomness in the Experimental Samples of Progresa (Education, Health, and Nutrition Program)}, institution={International Food Policy Research Institute}, year={1999}, month={March}, type={Research Report}, address={2033 K Street, NW Washington, DC 20006} } @article{Bell97, author={W.R. Bell}, title={{Comparing and Assessing Time Series Methods for Forecasting Age-Specific Fertility and Mortality Rates}}, journal={Journal of Official Statistics}, volume= 13, year= 1997, pages={279--303}, number= 3 } @article{Bello93, author={Abdul Lateef Bello}, title={Choosing Among Imputation Techniques for Incomplete Multivariate Data: A Simulation Study}, journal={Communications in Statistics A: Theory and Methods}, volume={22}, year={1993}, pages={853-877}, number={3} } @article{BelMon91, author={W.R. Bell and B.C. Monsell}, title={Using Principal Components in time Series modeling and Forecasting of Age-Specific Mortality Rates}, journal={Proceedings of the American Statistical Association, Social Statistics Section}, year= 1991, pages={154--159} } @article{Beltrami1873, author={E. Beltrami}, title={Sulle funzioni bilineari}, journal={Giornale di Matematiche ad Uso degli Studenti Delle Universit{\'a}}, volume= 11, year= 1873, pages={98--106}, note={{An English translation by D. Boley is available as University of Minnesota, Department of Computer Science, Technical Report 90-37, 1990}} } @article{BenBluLus03, author={Yael Benyamini, et al.}, title={Gender differences in the self-rated health-mortality association: Is it poor self-rated health that predicts mortality or excellent self-rated health that predicts survival?}, journal={The Gerontologist}, volume={43}, year={2003}, pages={{396-405}}, number={3} } @incollection{Bendix53, author={Bendix, Reinhard}, title={Social Stratification and Political Power}, booktitle={Class Status and Power}, publisher={The Free Press}, year= 1953, address={Glencoe, IL}, editor={Bendix, Reinhard and Lipset, Seymour Martin} } @article{BenHumEbe04, author={Maureen Reindl Benjamins}, title={Self-Reported Health and Adult Mortality Risk: An Analysis of Cause Specific Mortality}, journal={Social Science and Medicine (Forthcoming 2004)} } @article{benichou95, author={J. Benichou and M. Gail}, title={Methods of Inference for Estimates of Absolute Risk Derived From Population-Based Case-Control Studies}, journal={Biometrics}, volume= 51, year= 1995, pages={182-194} } @article{BenIdl99, author={Yael Benyamini, and Ellen Idler}, title={Community Studies Reporting Association Between Self-Rated Health and Mortality}, journal={Research on Aging}, volume= 21, year= 1999, pages={{392-401}}, number= 3 } @article{BenIdlLev00, author={Yael Benyamini, Ellen Idler, Howard Leventhal, and Elaine A. Leventhal}, title={Positive-Affect and Function as Influences on Self-Assessments of Health: Expanding ou View Beyond Illness and Disability}, journal={Journal of Gerontology: Psychological Sciences}, volume={{55B}}, year= 2000, pages={{P107-116}} } @article{BenLav03, author={Kenneth Benoit and Michael Laver}, title={Estimating Irish party policy positions using computer wordscoring: the 2002 election - a research note}, journal={Irish Political Studies}, volume={18}, year={2003}, pages={97--107}, number={1} } @article{BenLevLev00, author={Yael Benyamini, et al}, title={Gender Differences in Processing Information for Making Self-Assessments of Health }, journal={American Psychosomatic Society}, volume= 62, year= 2000, pages={{354-64}}, number= 2 } @article{BenLevLev99, author={Yael Benyamini, Elaine A. Leventhal, and Howard Leventhal}, title={Self-Assessments of Health. What Do People Know that Predicts their Mortality?}, journal={Reasearch on Aging}, volume= 21, year= 1999, pages={{477-500}}, month={{May}}, number= 3 } @article{BenLip59, author={Bendix, Reinhard and Lipset, Seymour Martin}, title={On the Social Structure of Western Societies: Some Reflections on Comparative Analysis}, journal={Berkeley Journal of Sociology}, volume= 5, year= 1959, pages={1-15} } @article{BenSin99, author={S.K. Benara and Padam Singh}, title={Validity of Causes of Infant Death by Verbal Autopsy}, journal={Indian Journal of Pediatrics}, volume={66}, year={1999}, pages={647-650} } @article{BenSin99, author={S.K. Benara and Padam Singh}, title={Validity of Causes of Infant Death by Verbal Autopsy}, journal={Indian Journal of Pediatrics}, volume={66}, year={1999}, pages={647-650} } @article{BerdeG47, author={Berelson, B. and de Grazia, S.}, title={{Detecting Collaboration in Propaganda}}, journal={Public Opinion Quarterly}, volume={11}, year={1947}, pages={244--253}, number={2} } @proceedings{BerDegLin88, editor={J. M. Bernardo and M.H. Degroot and D.V. Lindley and A.F.M. Smith}, title={Bayesian Statistics 3}, publisher={Clarendon Press, Oxford}, year={1987}, month={June 1-5}, organization={Proceedings of the Third Valencia International Meeting} } @article{Berenson04, author={Robert Berenson}, title={The Medicare Chronic Care Improvement Program}, journal={The Urban Institute}, year={2004}, month={May}, note={{http://www.urban.org/url.cfm?ID=900714}} } @article{Berger04, author={Vance W. Berger}, title={Selection Bias and Baseline Imbalances in Randomized Trials}, journal={Drug Information Journal}, volume={38}, year={2004}, pages={1-2} } @article{Berger05a, author={Vance W. Berger}, title={Quantifying the Magnitude of Baseline Covariate Imbalances Resulting fronmSelection Bias in Randomized Clinical Trials}, journal={Biometrical Journal}, volume={47}, year={2005}, pages={119-127}, number={2} } @book{Berger05b, author={Vance W. Berger}, title={Selection Bias and covariate Imbalances in Randomized Clinical Trials}, publisher={John Wiley \& Sons, Ltd.}, year={2005}, editor={Stephen Senn and Vic Barnett}, series={Statistics in Practice} } @article{Berger94, author={James Berger}, title={An Overview of Robust Bayesian Analysis (With Discussion)}, journal={Test}, volume= 3, year= 1994, pages={5-124} } @article{BerHenSav77, author={E. Berndt and D. Hendry and N.E. Savin}, title={Conflict Among Criteria for Testing Hypotheses in the Multivariate Linear Regression Model}, journal={Econometrica}, volume={45}, year={1977}, pages={1263-1277} } @article{BerKinKon97, author={Shulamit L. Bernard, Jean E. Kincade, Thomas R. Conrad, et al}, title={Predicting Mortality from Community Surveys of Older Adults: The Importance of Self-Rated Functional Ability}, journal={Journal of Gerontology: Social Sciences}, volume={{52B}}, year= 1997, pages={{S155-63}} } @misc{BerKos03, author={Erik Bergstralh and Jon Kosanke}, title={dist, gmatch, and vmatch: SAS Macros}, year= 2003, howpublished={Mayo Clinic, Division of Biostatistics}, note={{http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros.cfm}} } @book{BerKreOve98, author={Mark de Berg and Marc van Krevald and Mark Overmars and Otfried Schwarzkopf}, title={Computational Geometry: Algorithms and Applications}, publisher={Springer}, year= 1998, address={New York}, edition={2nd, revised edition} } @book{ImbRub10, author={Guido Imbens and Donald Rubin}, title={Causal Inference}, year= {2010}, note={Unpublished manuscript} } @article{Bernstein32, author={F. Bernstein}, title={{\"U}ber eine Methode, die soziologische und bev{\"o}lkerungsstatistische Gliederung von Abstimmungen bei geheimen Wahlverfahren zu ermittlen}, journal={Allgemeines Statistisches Archiv}, volume= 22, year= 1932, pages={253--256} } @article{Besag74, author={Julian Besag}, title={Spatial Interaction and the Statistical Analysis of Lattice Systems (With Discussion)}, journal= jrssb, volume= 36, year= 1974, pages={192-236} } @article{Besag75, author={Julian Besag}, title={Statistical Analysis of Non-Lattice Data}, journal={The Statistician}, volume= 24, year= 1975, pages={179--195}, number= 3 } @article{Besag83, author={Julian E. Besag}, title={Discussion of paper by {P}. {S}witzer}, journal={Bull. Intern. Statist. Inst.}, volume= 50, year= 1983, pages={422-425}, number={Bk. 3} } @article{Besag86, author={Julian Besag}, title={On the Statistical Analysis of Dirty Pictures}, journal={Journal of the Royal Statistical Society B}, volume={48}, year={1986}, pages={259--302}, number={3} } @article{Besancon05, author={Marie L. Besancon}, title={Relative Resources: Inequality in Ethnic Wars, Revolutions, and Genocides}, abstract={Political scientists and economists have exhaustively examined the nexus between economic inequality and political conflict (EI-PC nexus) in aggregated civil wars. This article revisits the nexus and its related theories, empirically and parsimoniously testing the effects of inequality on disaggregated intrastate conflicts. The results buttress the notion that traditionally deprived identity groups are more likely to engage in conflict under more economically equal conditions, while class or revolutionary wars fall under the conditions of greater economic inequality and war. Of the three types of conflicts tested - ethnic conflicts, revolutions, and genocides - economic inequality seems to have the most ambiguous bearing on genocides. Support follows for recent findings that political and social equalities are of greater importance in mitigating ethnic violence and that greed factors might exacerbate violence in all civil conflicts, including genocides. The theoretical argument proposes that the context within which intrastate violence takes place affects the requisite level of relative resources needed for the escalation of violence between groups. The results have policy implications for ethnically divided states that are in the process of equalizing their income differential, but neglect the substantial inclusion of all groups within the political process and the distribution of public goods. The social contracts between the governors and the governed then require careful crafting for a peaceful coexistence of diverse identity groups.}, journal={The Journal of Peace Research}, volume={42}, year={2005}, pages={393-415}, month={July}, number={4} } @article{BesGreHigMen95, author={Julian Besag and Peter Green and David Higdon and Kerrie Mengersen}, title={Bayesian Computation and Stochastic Systems (With Discussion)}, journal={Statistical Science}, volume= 10, year= 1995, pages={3-66}, number= 1 } @article{BesHig99, author={Julian Besag and David M. Higdon}, title={Bayesian Analysis of Agricultural Field Experiments (With Discussion)}, journal= jrssb, volume= 61, year= 1999, pages={691-746}, number={4} } @article{BesKoo95, author={Julian Besag and Charles Kooperberg}, title={On Conditional and Intrinsic Autoregressions}, journal={Biometrika}, volume={82}, year= 1995, pages={733-746}, number={4} } @article{BesYorMol91, author={Julian Besag and Jeremy York and Annie Molli{\'e}}, title={Bayesian Image Restoration with Two Applications in Spatial Statistics (With Discussion)}, journal={Annals of the Institute of Statistical Mathematics}, volume= 43, year= 1991, pages={1-59}, number= 1 } @article{Bicego97, author={G. Bicego}, title={Estimating adult mortality rates in the context of the AIDS epidemic in sub-Saharan Africa: analysis of DHS sibling histories}, journal={Health Transition Review}, volume= 7, year= 1997, pages={7--22}, number={S2} } @book{Biggs93, author={N.L. Biggs}, title={Algebraic Graph Theory}, publisher={Cambridge University Press}, year= 1993, address={Cambridge, UK}, edition={2nd} } @article{Billordo05a, author={Libia Billordo}, title={Publishing in French Political Science Journals}, journal={French Politics}, volume={3}, year={2005}, pages={178-186}, number={2} } @article{Billordo05b, author={Libia Billordo}, title={Methods Training in French Political Science}, journal={French Politics}, volume={3}, year={2005}, pages={352-0357}, number={3} } @article{BinBreEar05, author={J.B. Bingenheimer and R.T. Brennan and F.J. Earls}, title={Firearm violence exposure and serious violent behavior}, journal={Science}, volume={308}, year={2005}, pages={1323-1326}, month={May} } @book{BisFieHol75, author={Y.M. M. Bishop and S.E. Fienberg and P.W. Holland}, title={Multivariate Analysis: Theory and Practice}, publisher={MIT Press}, year= 1975, address={Cambridge, MA} } @book{Bishop95, author={Christopher M. Bishop}, title={Neural Networks for Pattern Recognition}, publisher={Oxford University Press}, year= 1995, address={Oxford} } @article{BisSteWil06, author={Benjamin Bishin and Daniel Stevens and Christian Wilson}, title={{Character Counts: Honesty and Fairness in Election 2000}}, journal={Public Opinion Quarterly}, volume={70}, year={2006}, pages={235-248}, number={2} } @article{BjoKri99, author={Jakob Bue Bjorner and Tage Sondergaard Kristensen}, title={Multi-item Scales for Measuring Global Self Rated Health}, journal={Research on Aging}, volume= 21, year= 1999, pages={{417-39}}, number= 3 } @article{BlaGeo91, author={R.C. Blattberg and E.I. George}, title={Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations}, journal= jasa, volume= 86, year= 1991, pages={304--315}, month={Jun}, number= 414 } @article{BlaRas04, author={Grant Blank and Karsten B. Rasmussen}, title={The Data Documentation Initiative: The Value and Significance of a Worldwide Standard.}, journal={Social Science Computer Review}, volume={22}, year={2004}, pages={306-318}, number={3} } @article{BlaSmi04, author={Dan A. Black and Jeffrey A. Smith}, title={How robust is the evidence on the effects of college quality? Evidence from matching}, journal={Journal of Econometrics}, volume={121}, year={2004}, pages={99-124}, number={1} } @article{BloHilRic03, author={Howard S. Bloom and Carolyn J. Hill and James A. Riccio}, title={Linking Program Implementation and Effectiveness: Lessons from a Pooled Sample of Welfare-to-Work Experiments}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={551-575}, number={4} } @book{Bloom05, title={Learning More from Social Experiments}, publisher={Russell Sage Foundation}, year={2005}, editor={Howard S. Bloom}, address={New York} } @article{BloRicBla07, author={Howard S. Bloom and Lashawn Richburg-Hayes and Alison Black}, title={Using Covariates to Improve Precision for Studies that Randomize Schools to Evaluate Educational Interventions}, journal={Educational Evaluation and Policy Analysis}, year={2007} } @book{BLS03, author={{Board on Life Sciences}}, title={Sharing Publication-Related Data and Materials: Responsibilities of Authorship in the Life Sciences}, publisher={National Academies Press}, year= 2003, address={Washington, D.C.} } @article{Blumer48, author = {Herbert Blumer}, title = {Public Opinion and Public Opinion Polling}, journal = {American Sociological Review}, volume = {13}, year = {1948}, pages = {542-549}, month = {October}, number = {5} } @incollection{Bohm84, author={Peter Bohm}, title={Are thee Practicable Demand-Revealing Mechanisms?}, booktitle={Public Finance and the Quest for Efficiency}, publisher={Wayne State University Press}, year={1984}, address={Detroit}, editor={H. Hanusch}, pages={127-139} } @article{BonBarMee94, author={Luc Monneux and Jan J. Barendregt and Karin Meeter and Gouke J. Bonsel and Paul J. van der Maas}, title={Estimating Clinical Morbidity Due to Ischemic Heart Disease and Congestive Heart Failure: The Future Rise of Heart Failure}, journal={American Journal of Public Health}, volume= 84, year= 1994, pages={20-28} } @unpublished{BonBonJen01, author={Doug Bond and Joe Bond and J. Craig Jenkins and Churl Oh and Charles Lewis Taylor}, title={Integrated Data for Events Analysis (IDEA): An Event Form Typology for Automated Events Data Development}, note={manuscript, Harvard University}, year= 2001 } @article{Bongaarts89, author={John Bongaarts}, title={A Model of the Spread of HIV Infection and the Demographic Impact of AIDS}, journal={Statistics in Medicine}, volume= 8, year= 1989, pages={103--120} } @techreport{BooMaiSmi02, author={Heather Booth and John Maindonald and Len Smith}, title={{Age-Time Interactions in Mortality Projection: Applying Lee-Carter to Australia}}, institution={The Australian National University}, year= 2002, month={August}, type={Working Papers in Demography} } @article{BooMaiSmi02b, author={Heather Booth and John Maindonald and Len Smith}, title={Applying Lee-Carter Under Conditions of Variable Mortality Decline}, journal={Population Studies}, volume= 56, year= 2002, pages={325--336}, number= 3 } @unpublished{BorBorRal01, author={Roman Borisyuk and Galina Borisyuk and Colin Rallings and Michael Thrasher}, title={Forecasting the 2001 General Election Result: A Neural Network Approach}, note={{http://www.psa.ac.uk/spgrp/epop/forecasting\_genelect2001.htm}}, year={2001}, annote={authors try to forecast election results; they generate fitted values by 'predicting' the winners of past elections. they do break up their data sets into training and test in the spirit of cross-validation; they also compare their results to logit.} } @incollection{Borchardt91, author = {Knut Borchardt}, title = {Economic Causes for the Collapse of the Weimar Republic}, booktitle = {Perspectives on Modern German Economic History and Policy}, publisher = {Cambridge University Press}, year = 1991, address = {New York}, editor = {Knut Borchardt}, pages = {161--184} } @article{borgan95, author={{\O }rnulf Borgan and B. Langgholz and L. Goldstein}, title={Methods for the Analysis of Sampled Cohort Data in the Cox Proportional Hazard Model}, journal={The Annals of Statistics}, volume= 23, year= 1995, number={1749-1778} } @article{BorMayTur04, author={Robert Boruch and Henry May and Herbert Turner and Julia Lavenberg and Anthony Petrosino and Dorothy de Moya and Jeremy Grimshaw and Ellen Foley }, title={Estimating the Effects of Interventions That are Deployed in Many Places: Place-Randomized Trials}, journal={American Behavioral Scientist}, volume={47}, year={2004}, pages={608-633}, number={5} } @book{Boruch97, author={Robert F. Boruch}, title={Randomized Experiments for Planning and Evaluation}, publisher={Sage Publications}, year={1997}, address={Thousand Oaks} } @article{BouChaWel01, author={Andrew Boulle and Daniel Chandramohan and Peter Weller}, title={A Case Study of Using Artificial Neural Networks for Classifying Cause of Death from Verbal Autopsy}, journal={International Journal of Epidemiology}, volume={30}, year={2001}, pages={515-520} } @unpublished{BowHan05, author={Jake Bowers and Ben Hansen}, title={Attributing Effects to A Cluster Randomized Get-Out-The-Vote Campaign: An Application of Randomization Inference Using Full Matching}, note={Departments of Political Science and Statistics: University of Michigan}, year={2005}, month={July} } @book{BoxHunHun78, author={George E.P. Box and William G. Hunger and J. Stuart Hunter}, title={Statistics for Experimenters}, publisher={Wiley-Interscience}, year={1978}, address={New York} } @article{BoyHonNar01, author={James P. Boyle and Amanda A. Honeycutt and K.M. Venkat Narayan and Thomas J. Hoerger and Linda S. Geiss and Hong Chen and Theodore J. Thompson}, title={Projection of Diabetes Burden Through 2050}, journal={Diabetes Care}, volume= 24, year= 2001, pages={1936--1940}, number= 11 } @article{BozBel87, author={J.E. Bozik and W.R. Bell}, title={Forecasting Age Specific Fertility Using Principal Components}, journal={Proceedings of the Americal Statistical Association, Social Statistics Section}, year= 1987, pages={396--401} } @article{bracken98, author={Michael B. and John C. Bracken}, title={Avoidable Systematic Error in Estimating Treatment Effects Must not be Tolerated}, journal={British Medical Journal}, volume= 317, year= 1998, pages={11-56}, month={October 24} } @article{Brady85, author={Henry E. Brady}, title={The Perils of Survey Research: Inter-Personally Incomparable Responses}, journal={Political Methodology}, volume= 11, year= 1985, pages={269--290}, month={June}, number={3--4} } @article{Brady89, author={Henry E. Brady}, title={Factor and Ideal Point Analysis for Interpersonally Incomparable Data}, journal={Psychometrika}, volume= 54, year= 1989, pages={181--202}, month={June}, number= 2 } @inproceedings{BraHil73, author={William Brass and Kenneth Hill}, title={Estimating Adult Mortality in Africa from Orphanhood}, booktitle={Proceedings of the International Population Conference Liege}, year= 1973, organization={International Union for the Scientific Study of Population} } @article{BraTuc01, author={Ted Brader and Joshua Tucker}, title={The Emergence of Mass Partisanship in Russia, 1993-96}, journal={American Journal of Political Science}, volume={45}, year={2001}, pages={69-83} } @book{BreDay80, author={Norman E. Breslow and N.E. Day }, title={Methods in Cancer Research}, publisher={Lyon}, year= 1980 } @book{BreFriOls84, author={Leo Breiman and Jerome H. Friedman and Richard A. Olshen and Charles J. Stone}, title={Classification and Regression Trees}, publisher={Chapman \& Hall}, year={1984}, address={New York, New York} } @book{Brehm93, author={John Brehm}, title={The Phantom Respondents: Opinion Surveys and Political Respresentation}, publisher={University of Michigan Press}, year={1993}, address={Ann Arbor} } @article{Breiman01, author={Leo Breiman}, title={Statistical Modeling: The Two Cultures}, journal={Statistical Science}, volume={16}, year={2001}, pages={199-215}, month={August}, number={3} } @article{Breslow96, author={Norman E. Breslow}, title={Statistics in Epidemiology: The Case-Control Study}, journal= jasa, volume= 91, year= 1996, pages={14--28} } @unpublished{Breyer04, author={L.A. Breyer}, title={The Dbacl Text Classifier}, note={laird@lbreyer.com}, year={04}, month={June} } @unpublished{Breyer04, author={L.A. Breyer}, title={The Dbacl Text Classifier}, note={laird@lbreyer.com}, year={04}, month={June} } @article{BreZie92, author={Hermann Brenner and Hartwig Ziegler}, title={Monitoring and Projecting Cancer Incidence in Saarland, Germany, Based on Age-Cohort Analyses}, journal={Journal of Epidemiology and Community Health}, volume= 46, year= 1992, pages={15--20} } @book{BroDav91, author={Peter J. Brockwell and Richard A. Davis}, title={Time Series: Theory and Methods}, publisher={Springer-Verlag}, year={1991}, edition={2nd} } @article{BroDenVer02, author={N. Brouhns and M. Denuit and J. Vermunt}, title={A Poisson Log-bilinear Regression Approach to the Construction of Projected Lifetables}, journal={Insurance: Mathematics and Economics}, volume= 31, year= 2002, pages={373--393} } @article{BroGra00, author={Ron Brookmeyer and Sarah Gray}, title={Methods for Projecting the Incidence and Prevalence of Chronic Diseases in Ageing Populations: Application to Alzheimer's Disease}, journal={Statistics in Medicine}, volume= 19, year= 2000, pages={1481--1493} } @article{BroHew00, author={M. Brockerhoff and P. Hewett}, title={Inequality of child mortality among ethnic groups in sub-Saharan Africa}, journal= bull, year={2000}, optnumber={1}, optvolume={78}, optpages={30--41} } @article{Bronnum-Hansen02, author={Henrik Bronnum-Hansen}, title={Predicting the Effect of Prevention of Ischaemic Heart Disease}, journal={Scandinavian Journal of Public Health}, volume= 30, year= 2002, pages={5--11} } @article{Bronnum-Hansen99, author={Henrik Bronnum-Hansen}, title={How Good is the Prevent Model for Estimating the Health Benefits of Prevention?}, journal={Journal of Epidemiology and Community Health}, volume= 53, year= 1999, pages={300--305} } @article{BroSchRot06, author={M. Alan Brookhart and Sebastian Schneeweiss and Kenneth J. Rothman and Robert J. Glynn and Jerry Avorn and Til Sturmer}, title={Variable Selection for Propensity Score Models}, journal={American Journal of Epidemiology}, volume={163}, year={2006}, pages={1149-1156}, month={April} } @book{Brown58, author={Ralph Brown}, title={Loyalty and Security}, publisher={Yale University Press}, year= 1958, address={New Haven, CT} } @article{Brown82, author={Brown, Courtney}, title={The Nazi Vote: A National Ecological Study}, journal={American Political Science Review}, volume= 76, year= 1982, pages={285-302}, number= 2 } @article{BruFal94, author={Brustein, William and Falter, J{\"u}rgen W.}, title={The Sociology of Nazism: An Interest-Based Account}, journal={Rationality and Society}, volume= 6, year= 1994, pages={369-399}, number= 3 } @book{Brustein96, author={William Brustein}, title={The Logic of Evil: Social Origins of the Nazi Party, 1925-1933}, publisher={Yale University Press}, year= 1996 } @article{BruUrd05, author={Helge Brunborg and Henrik Urdal}, title={The Demography of Conflict and Violence: An Introduction}, abstract={The demography of armed conflict is an emerging field among demographers and peace researchers alike. The articles in this special issue treat demography as both a cause and a consequence of armed conflict, and they carry important policy implications. A study of German-allied countries during World War II addresses the role of refugees and territorial loss in paving the way for genocide. Other articles focusing on the demographic causes of conflict discuss highly contentious issues of whether economic and social inequality, high population pressure on natural resources, and youth bulges and limited migration opportunities can lead to different forms of armed conflict and state failure. The articles on demographic responses to armed conflict analyze the destructiveness of pre-industrial warfare, differences in short- and long-term mortality trends after armed conflict, and migratory responses in war. Another set of articles on demographic responses to war is published simultaneously in the European Journal of Population.}, journal={The Journal of Peace Research}, volume={42}, year={2005}, pages={371-374}, month={July}, number={4} } @book{BSER02, author={{Board on Earth Sciences and Resources}}, title={Geoscience Data and Collections: National Resources in Peril}, publisher={National Academies Press}, year= 2002, address={Washington, D.C.} } @article{Buchheim03, author={Christoph Buchheim}, title={Die Erholung von der Weltwirtschaftskrise 1932/33 in Deutschland}, journal={Jahrbuch fuer Wirtschaftsgeschicht}, year={2003}, pages={13-26}, number={1} } @article{BurFred01, author={B Burstrom and P Fredlund}, title={Self-rated health: Is it as good a predictor of subsequent mortality among adults in lower as well as in higher social classes?}, journal={Journal of Epidemiology and Community Health}, volume= 55, year= 2001, pages={{836-40}} } @article{Burgoon06, author={Brian Burgoon}, title={On Welfare and Terror}, journal={Journal of Conflict Resolution}, volume={50}, year={2006}, pages={176-203}, month={April}, number={2} } @article{Burnham72, author={Walter Dean Burnham}, title={Political Immunisation and Political Confessionalism: The United States and Weimar Germany}, journal={Journal of Interdisciplinary History}, volume= 3, year= 1972, pages={1--30} } @article{Burtless95, author={Gary Burtless}, title={The Case for Randomized Field Trials in Economic and Policy Research}, journal={The Journal of Economic Perspectives}, volume={9}, year={1995}, pages={63-84}, number={2} } @article{ButBurMit87, author={J.S. Butler, et al.}, title={Measurement Error in Self-Reported Health Variables}, journal={The Review of Economics and Statistics}, volume= 69, year= 1987, pages={{644-50}} } @techreport{ButCar01, author={C.T.\ Butts and K.M.\ Carley}, title={Multivariate Methods for Interstructural Analysis}, institution={CASOS working paper, Carnegie Mellon University}, year={2001} } @incollection{Butler51, author={David E. Butler}, title={Appendix}, booktitle={The British General Election of 1950}, publisher={Macmillan}, year= 1951, address={London}, editor={H.G. Nicholas} } @article{BuuEyrTenHop03, author={S. van Buuren and S. Eyres and A. Tennant and M. Hopman-Rock}, title={Assessing comparability of dressing disability in different countries by response conversion}, journal={European Journal of Public Health}, volume={13}, year={2003}, pages={15-19} } @book{ByaFotHuo06, author = {Peter Byass and Edward Fottrell and Dao Lan Huong and Yemane Berhane and Tumani Corrah and Kathleen Kahn and Lulu Muhe and Do Duc Van}, title = {Refining a probabilistic model for interpreting verbal autopsy data}, publisher = {Scandinavian Journal of Public Health}, year = {34}, volume = {2006}, pages = {26-31} } @article{CamJagHar03, author={Michael J. Camasso and Radha Jagannathan and Carol Harvey and Mark Killingsworth}, title={The Use of Client Surveys to Guage the Threat of Contamination in Welfare Reform Experiments}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={207-223}, number={2} } @book{CamTri98, author={A.C. Cameron and P.K. Trivedi}, title={Regression Analysis of Count Data}, publisher={Cambridge University Press}, year={1998} } @article{Canner91, author={Paul L. Canner}, title={Covariate Adjustment of Treatment Effects in Clinical Trials}, journal={Controlled Clinical Trials}, volume={12}, year={1991}, pages={359-366} } @book{Cantril65, author={Hadley Cantril}, title={The Pattern of Human Concerns}, publisher={Rutgers University Press}, year= 1965, address={New Brunswick, N.J.} } @article{CapAngFro95, author={Riccardo Capocaccia and Robert De Angelis and Luisa Frova and Milena Sant and Eva Buiatti and Gemma Gatta and Andrea Micheli and Franco Berrino and Alessandro Barchielli and Ettore Conti and Lorenzo Gafa and Arduino Verdecchia}, title={Estimation and Projections of Stomach Cancer Trends in Italy}, journal={Cancer Causes and Control}, volume= 6, year= 1995, pages={339--346} } @article{CapDeaFro97, author={Riccardo Capocaccia and Roberta De Angelis and Luisa Frova and Gemma Gatta and Milena Sant and Andrea Micheli and Franco Berrino and Ettore Conti and Lorenzo Gafa and Luca Roncucci and Arduino Verdecchia}, title={Estimation and Projections of Colorectal Cancer Trends in Italy}, journal={International Journal of Epidemiology}, volume= 26, year= 1997, pages={924--932}, number= 5 } @article{CapVerMic90, author={Riccardo Capocaccia and Arduino Verdecchia and Andrea Micheli and Milena Sant and Gemma Gatta and Franco Berrino}, title={Breast Cancer Incidence and Prevalence Estimated from Survival and Mortality}, journal={Cancer Causes and Control}, volume= 1, year= 1990, pages={23--29} } @article{CarCha70, author={J.D. Caroll and J. J. Chang}, title={Analysis of Individual Differences in Multidimensional Scaling}, journal={Psychometrika}, volume= 35, year= 1970, pages={283--319}, month={September} } @article{CarGre97, author={J. Douglas Carroll and Paul E. Green}, title={Psychometric Methods in Marketing Research: Part II, Multidimensional Scaling}, journal={Journal of Marketing Research}, volume={XXXIV}, year= 1997, pages={193--204}, month={May} } @article{CarKucLom96, author={Raymond J. Carroll and helmut Kuchenhoff and F. Lombard and Leonard A. Stefanski}, title={Asymptotics for the SIMEX estimator in structural measurement error models. }, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={242-250} } @book{CarLou00, author={Bardley P. Carlin and Thomas A. Louis}, title={Bayes and Empirical Bayes Methods for Data Analysis}, publisher={CRC Press}, year= 2000, edition={2nd} } @article{CarMacRup99, author={Raymond J. Carroll and Jeffrey D. Maca and David Ruppert}, title={Nonparametric regression in the presence of measurement error}, journal={Biometrika}, volume={86}, year={1999}, pages={3}, month={541-554} } @article{Carpenter02, author={Daniel Paul Carpenter}, title={Groups, the Media, Agency Waiting Costs, and FDA Drug Approval}, journal= ajps, volume= 46, year= 2002, pages={490--505}, month={July}, number= 2 } @techreport{CarPrs00, author={Lawrence R. Carter and Alexia Prskawetz}, title={Examining Structural Shifts in Mortality using the Lee-Carter Method}, institution={Bundesinstitut fur Bevolkerungswissenschaften}, year= 2000, address={Germany}, note={Demographische Vorausschatzungen --- Abhandlungen des Arbeitkreises Bevolkerrungswissenschaftlicher Methoden der Statistischen Woche} } @article{Carr07, author={David Carr}, title={24-Hour Newspaper People}, journal={New York Times}, year= 2007, month={15 January} } @article{CavTre94, author={W.B. Cavnar and J.M. Trenkle}, title={{N-Gram-Based Text Categorization}}, journal={Proceedings of the Third Annual Symposium on Document Analysis and Information Retrival}, year={1994}, pages={161-175} } @article{Chafee19, author={Zechariah Chafee}, title={Freedom of Speech in War Time}, journal= hlr, volume= 32, year={1919}, pages={932--??} } @book{Chafee41, author={Zechariah Chafee}, title={Free Speech in the United States}, publisher= hup, year= 1941, address={Cambridge, MA} } @article{ChaMauRod94, author={Daniel Chandramohan and Gillian H. Maude and Laura C. Rodrigues and Richard J. Hayes}, title={Verbal Autopsies for Adult Deaths: Issues in their Development and Validation}, journal={International Journal of Epidemiology}, volume={23}, year={1994}, pages={213-222}, number={2} } @article{Chamberlain80, author={Gary Chamberlain}, title={Analysis of Covariance with Qualitative Data}, journal={Review of Economic Studies}, volume={XLVII}, year= 1980, pages={225-238} } @article{ChaRodMau98, author={Daniel Chandramohan and Laura C. Rodriques and Gillian H. Maude and Richard Hayes}, title={The Validy of Verbal Autopsies for Assessing the Causes of Institutional Maternal Death}, journal={Studies in Family Planning}, volume={29}, year={1998}, pages={414-422}, month={December}, number={4} } @article{Chase68, author={G.R. Chase}, title={On the Efficiency of Matched Pairs in Bernoulli Trials}, journal={Biometrika}, volume={55}, year={1968}, pages={365-369}, month={July}, number={2} } @article{ChaSetQui01, author={Daniel Chandramohan and Philip Setel and Maria Quigley}, title={Effect of misclassification of causes of death in verbal autopsy: can it be adjusted}, journal={International Journal of Epidemiology}, volume={30}, year={2001}, pages={509-514} } @article{ChaSolShi05, author={Daniel Chandramohan and Nadia Soleman and Kenji Shibuya and John Porter}, title={Editorial: Ethical issues in the application of verbal autopsies in mortality surveillance systems}, journal={Tropical Medicine and International Health}, volume={10}, year={2005}, pages={1087-1089}, month={November}, number={11} } @article{CheCumDum03, author={Lee Cheng, et al}, title={Health related quality of life in pregeriatric patients with chronic diseases at urban, public supported clinics}, journal={Health and Quality of Life Outcomes}, volume= 1, year= 2003, pages={{1-8}}, month={October}, number= 63 } @book{CheRon83, author={G. Shabbir Cheema and Dennis A. Rondinelli}, title={Decentralization and Development: Policy Implementation in Developing Countries}, publisher={Sage Publications}, year={1983}, address={Beverly Hills, CA} } @article{Childers76, author={Thomas Childers}, title={The Social Bases of the Nationalist Socialist Vote}, journal={Journal of Contemporary History}, volume= 11, year= 1976, pages={17-42} } @book{Childers83, author={Childers, Thomas}, title={The Nazi Voter}, publisher={University of North Carolina Press}, year= 1983 } @article{ChiLwa91, author={J. Chin and S.K. Lwanga}, title={Estimation and Projection of Adult AIDS Cases: a Simple Epidemiological Model}, journal={Bulletin of the World Health Organization}, volume= 69, year= 1991, pages={399--406}, number= 4 } @article{ChiZamGra92, author={J.D. Chiphangwi and T.P. Zamaere and W Graham and B. Duncan and T. Kenyon and R. Chinyama}, title={Maternal mortality in the Thyolo district of southern Malawi}, journal={East African Medical Journal}, volume= 69, year= 1992, pages={675--679} } @article{Chochran53, author={William G. Cochran}, title={Matching in Analytical Studies}, journal={American Journal of Public Health}, volume={43}, year={1953}, pages={684-691}, month={June} } @book{Christensen96, author={Ronadl Christensen}, title={Plane Answers to Complex Questions: The Theory of Linear Models}, publisher={Springer-Verlag New York}, year={1996}, edition={Second} } @article{Church75, author={Thomas Church}, title={Conspiracy Doctrine and Speech Offenses: A Reexamination of Yates v. U.S. from the Perspective of U.S. v. Spock}, journal={Cornell Law Review}, volume= 60, year={1975}, pages={569--??} } @incollection{ClaBer92, author={David G. Clayton and Luisa Bernardinelli}, title={Bayesian Methods For Mapping Disease Risk}, booktitle={Geographical and Environmental Epidemiology: Methods for Small-Area Studies}, publisher={Oxford University Press}, year= 1992, address={Oxford}, editor={P. Elliott and J.Cuzick and D. English and R. Stern}, pages={205-220} } @article{ClaJanHob01, author={W. Crawford Clark and Malvin N. Janal and Elaine K. Hoben and J. Douglas Carroll}, title={How Separate are the Sensory, Emotional, and Motivational Dimensions of Pain? A Multidimensional Scaling Analysis}, journal={Somatosensory and Motor Research}, volume= 18, year= 2001, pages={31-39}, number= 1 } @article{ClaMarLie04, author={Tim Clark and Sean Martin and Ted Liefeld}, title={Globally Distributed Object Identification for Biological Knowledgebases}, journal={Briefings in Bioinformatics}, volume={5}, year={2004}, pages={59-71}, month={March}, number={1} } @article{Clarkson00, author={Douglas B. Clarkson}, title={A Random Effects Individual Difference Multidimensional Scaling Model}, journal={Computational Statistics and Data Analysis}, volume= 32, year= 2000, pages={337--347}, month={January} } @incollection{Clayton96, author={David G. Clayton}, title={Generalized Linear Mixed Models}, booktitle={Markov Chain {M}onte {C}arlo in Practice}, publisher={Chapman \& Hall}, year= 1996, address={London}, editor={W.R. Gilks and S. Richardson and D.J. Spiegelhalter}, pages={275-301} } @article{CleDev88, author={W.S. cleveland and S.J. Devlin}, title={Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting}, journal={Journal of the American Statistical Association}, volume={83}, year={1988}, pages={596-610} } @book{CleHen98, author={M.P. Clements and D.F. Hendry}, title={{Forecasting Economic Time Series}}, publisher= cup, year= 1998, address={Cambridge, U.K.} } @misc{CliJacRiv00, author={Joshua Clinton and Simon Jackman and Douglas Rivers}, title={The Statistical Analysis of Legislative Behavior: A Unified Approach}, year={2000}, howpublished={Paper presented at the Annual Meeting of the Political Methodology Society} } @unpublished{CliJacRiv02, author={Joshua Clinton and Simon Jackman and Douglas Rivers}, title={The Statistical Analysis of Roll Call Data}, note={Stanford University}, year= 2002 } @article{CloRubSch91, author={Clifford C. Clogg and Donald B. Rubin and Nathaniel Schenker and Bradley Schultz and Lynn Weidman}, title={Multiple Imputation of Industry and Occupation Codes in Census Public-Use Samples Using Bayesian Logistic Regression}, journal={Journal of the American Statistical Association}, volume={86}, year={1991}, pages={68-78}, month={March}, number={413} } @book{CoaDem66, author={Ansley J. Coale and Paul Demeny}, title={Regional Model Life Tables and Stable Populations}, publisher={Princeton University Press}, year= 1966, address={Princeton, N.J.} } @book{CocCox57, author={WG Cochran and GM Cox}, title={Experimental Designs}, publisher={Wiley}, year={1957}, address={New York} } @article{Cochran65, author={William G. Cochran}, title={The Planning of Observational Studies of Human Populations}, journal={Journal of the Royal Statistical Society. Series A (General)}, volume= 128, year= 1965, pages={234-266}, number= 2 } @article{Cochran68, author={Cochran, William G.}, title={The effectiveness of adjustment by subclassification in removing bias in observational studies}, journal={Biometrics}, volume={24}, year={1968}, pages={295-313} } @article{CocRub73, author={Cochran, William G. and Rubin, Donald B.}, title={Controlling bias in observational studies: A review}, journal={Sankhya: The Indian Journal of Statistics, Series A}, volume={35, Part 4}, year={1973}, pages={417-466} } @article{ColMah93, author = {David Collier and Mahon, Jr., James E.}, title = {Conceptual `Stretching' Revisited}, journal = apsr, volume = 87, year = 1993, pages = {845-855}, month = {December}, number = 4 } @article{ColSul02, author={James E. Coleman and Barry Sullivan}, title={Enduring and Empowering: The Bill of Rights in the Third Millennium}, journal={Law and Contemporary Problems}, volume= 65, year={2002}, pages={1--??} } @book{Colton06, author={Timothy Colton}, title={Transitional Citizens: Voters and What Influences Them in the New Russia}, publisher={Harvard University Press}, year={2006 in press}, address={Cambridge, MA} } @article{ComMolGri01, author={Campbell, M.K. and Mollison, J. and Grimshaw, J.M.}, title={{Cluster trials in implementation research: estimation of intracluster correlation coefficients and sample size}}, journal={Statistics in Medicine}, volume={20}, year={2001}, pages={391--399}, number={3} } @unpublished{Congdon06, author={Peter Congdon}, title={A Model Framework for Mortality and Health Data Classified by Age, Area, and Time}, note={to be published in Biometrics Peter congdon, Dept. of Geography, Queen Mary (University of London), Mile end Road, London E1 4NS, England p.congdon@qmul.ac.uk}, year={2006} } @book{CooCam79, author={Thomas D. Cook and Donald T. Campbell}, title={Quasi-Experimentation: Design and Analysis Issues for Field Settings}, publisher={Rand McNally College Publishing Company}, year={1979}, address={Chicago} } @article{CooSte94, author={J. Cook and L. Stefanski}, title={Simulation-extrapolation estimation in parametric measurement error models}, journal={Journal of the American Statistical Asociation}, volume={89}, year={1994}, pages={1314-1328} } @book{CorCraFox94, title={Transforming State-Society Relations in Mexico}, publisher={Center for U.S.-Mexican Studies}, year={1994}, editor={Wayne A. Cornelius and Ann L. Craig and Jonathan Fox}, address={University of California, San Diego}, series={U.S.-Mexico contemporary Perspectives Series, 6} } @InCollection{Cornelius04, author = {Wayne A. Cornelius}, title = {Mobilized Voting in the 2000 Elections: The Changing Efficacy of Vote Buying and Coercion in Mexican Electoral Politics}, booktitle = {Mexico's Pivotal Democratic Election: Candidates, Voters, and the Presidential Campaign of 2000}, OPTcrossref = {}, OPTkey = {}, OPTpages = {}, publisher = {Stanford University Press}, year = {2004}, editor = {Jorge I. Dom\'{i}nguez and Chappell Lawson}, OPTvolume = {}, OPTnumber = {}, OPTseries = {}, OPTtype = {}, OPTchapter = {}, address = {Stanford and La Jolla, CA}, OPTedition = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Cornfield51, author={Jerome Cornfield}, title={A Method of Estimating Comparative Rates from Clinical Data: Application to Cancer of the Lung, Breast and Cervix}, journal={Journal of the National Cancer Institute}, volume= 11, year= 1951, number={1269-1275} } @article{CowBra96, author={Mary Kathryn Cowles and Bradley P. Carlin}, title={Markov Chain Monte Carlo Convergence Diagnotics: A Comparative Review}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={883-904}, month={June}, number={434} } @article{Cox52, author={D.R. Cox}, title={Some Recent Work on Systematic Experimental Designs}, journal={Journal of the Royal Statistical Society. Series B (Methodological)}, volume={14}, year={1952}, pages={211-219}, number={2} } @book{Cox58, author={David R. Cox}, title={Planning of Experiments}, publisher={John Wiley}, year= 1958, address={New York} } @book{Cox58, author={D.R. Cox}, title={The Planning of Experiments}, publisher={Wiley}, year= 1958 } @article{CoxSke92, author={Brian Cox and D.C.G. Skegg}, title={Projections of Cervical Cancer Mortality and Incidence in New Zealand: The Possible Impact of Screening}, journal={Journal of Epidemiology and Community Health}, volume= 46, year= 1992, pages={373--377} } @article{CraWoo05, author={Craggs, Richard and Mary McGee Wood}, title={{Evaluating Discourse and Dialogue Coding Schemes}}, journal={Computational Linguistics}, volume={31}, year={2005}, pages={289-295}, number={3} } @article{CroKen02, author={Thomas F. Crossley and Steven Kennedy}, title={The reliability of self-assesses health status}, journal={Journal of Health Economics}, volume= 21, year= 2002, pages={{643-58}}, number= 4 } @article{Crosnoe05, author={Robert Crosnoe}, title={Double Disadvantage or Signs of Resilience? The Elementary School Contexts of Children from Mexican Immigrant Families}, journal={American Educational Research Journal}, volume={42}, year={2005}, pages={269-303}, number={2} } @unpublished{CruHotImb06, author = {Richard K. Crump and V. Joseph Hotz and Guido W. Imbens and Oscar Mitnik}, title = {Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand}, note = {Department of Economics, UC Berkeley}, year = {2006}, month = {September} } @article{CruHotImb09, title = {{Dealing with limited overlap in estimation of average treatment effects}}, author = {Richard K. Crump and V. Joseph Hotz and Guido W. Imbens and Oscar Mitnik}, journal = {Biometrika}, volume = {96}, number = {1}, pages = {187}, year = {2009} } @article{CuaFor95, author={C.M. Cuadras and J. Fortiana}, title={A Continuous Metric Scaling Solution for A Random Variable}, journal={Journal of Multivariate Analysis}, volume= 52, year= 1995, pages={1--14} } @article{CuaForOli97, author={C.M. Cuadras and J. Fortiana and F. Oliva}, title={The Proximity of an Individual to a Population with Applications to Discriminant Analysis}, journal={Journal of Classification}, volume= 14, year= 1997, pages={117-136} } @article{CumMcKWei03, author={Peter Cummings and B. McKnight and NS Weiss}, title={Matched-pair cohort methods in traffic crash research}, journal={Accident Analysis and Prevention}, volume= 35, year= 2003, pages={131--141}, note={{http://depts.washington.edu/hiprc/about/topics/web/bike\_prevmat/}} } @article{CumRoy88, author={W.G. Cumberland and R. M. Royall}, title={Does Simple Random Sampling Provide Adequate Balance?}, journal={Journal of the Royal Statistical Society. Series B (methodological)}, volume={50}, year={1988}, pages={118-124}, number={1} } @article{Dagostino98, author={Ralph B. {D'Agostino, Jr.}}, title={Propensity Score Methods for Bias Reduction in the Comparison of a Treatment to a Non-randomized Control Group}, journal={Statistics in Medicine}, volume= 17, year= 1998, pages={2265--2281} } @article{DagRub00, author={Ralph B. {D'Agostino, Jr.} and Donald B. Rubin}, title={Estimating and using propensity scores with partially missing data}, journal={Journal of the American Statistical Association}, volume= 95 , year= 2000, pages={749-759} } @article{DalBecHuc98, author={Russell J. Dalton and Paul A. Beck and Robert Huckfeldt}, title={Partisan Cues and the Media: Information Flows in the 1992 Presidential election}, journal={American Poltical Science Review}, volume={92}, year={1998}, pages={111-126} } @article{DanGraStu96, author={I. Danel and W. Graham and P Stupp and P. Castillo}, title={Applying the sisterhood method for estimating maternal mortality to a health facility-based sample: a comparison with results from a household-based sample}, journal={International Journal of Epidemiology}, volume= 25, year= 1996, pages={1017--1-22} } @inbook{DanLaf05, author={Isabel Danel and Gerard M. La Forgia}, title={Health Systems Innovation in Central America}, chapter={Contracting for Basic Health Care in Rural Guatemala - Comparison of the Performance of Three Delivery Models}, year={2005}, publisher={The World Bank}, address={Washington, DC}, editor={Gerard M. La Forgia} } @unpublished{DasChe01, author={Sanjiv R. Das and Mike Y. Chen}, title={Yahoo! for Amazon: Opinion Extraction from Small Talk on the Web}, note={Department of Finance Santa Clara University}, year={2001}, month={August} } @article{DasKleiKlei94, author={Erik J. Dasbach, PhD, Ronald Klein, MD, Barbara E. K. Klein, MD, and Scot E. Moss, MA}, title={Self-Rated Health and Mortality in People with Diabetes}, journal={American Journal of Public Health}, volume= 84, year= 1994, pages={{1775-79}} } @article{DavAlbCoo03, author={G.L. Davis and J.E. Albright and S.F. Cook and D.M. Rosenberg}, title={Projecting Future Complications of Chornic Hepatitis C in the United States}, journal={Liver Transplantation}, volume= 9, year= 2003, pages={331--338}, number= 4 } @article{DavAlbCoo03, author={G.L. Davis and J.E. Albright and S.F. Cook and D.M. Rosenberg}, title={Projecting Future Complications of Chornic Hepatitis C in the United States}, journal={Liver Transplantation}, volume= 9, year= 2003, pages={331--338}, number= 4 } @unpublished{DavLawPen03, author={Kushal Dave and Steve Lawrence and David Pennock}, title={Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews}, note={Kushal Dave NEC Laboratories America, 4 Independence Way Princeton, NJ 08540, Kushal@nec-labs.com}, year={2003}, month={May} } @article{DavManLai98, author={Huw Talfryn Oakley Davies and Tavakoli Manouche and Crombie Kinloch Iain}, title={Authors Reply}, journal={British Medical Journal}, volume= 317, year= 1998, pages={1156-7}, month={October 24} } @article{DavNeaWen98, author={G. Davey-Smith and J.D. Neaton and D. Wentworth and R. Stamler and J. Stamler}, title={Mortality differences between black and white men in the USA: contribution of income and other risk factors among men screened for the Multiple Risk Factor Intervention Trial (MRFIT)}, journal= lan, volume= 351, year= 1998, pages={934--939}, number= 9107 } @article{DawFauMee89, author={Robyn M. Dawes and David Faust and Paul E. Meehl}, title={Clinical Versus Actuarial Judgement}, journal={Science}, volume={243}, year={1989}, pages={1668-1674}, month={March}, number={4899} } @article{Dawid00, author={Philip Dawid}, title={Causal Inference Without Counterfactuals (with discussion)}, journal= jasa, volume= 95, year= 2000, pages={447-448} } @incollection{Dawid83, author={A. P. Dawid}, title={Invariant Prior Distributions}, booktitle={Encyclopedia of Statistical Sciences}, publisher={Wiley-Interscience}, year= 1983, editor={S. Kotz and S. Johnson and C.B. Read}, pages={228--236}, volume= 4 } @inbook{DeaGro00, author={Angus Deaton and Mararet Grosh}, title={Consumption}, chapter={5}, year={2000}, publisher={The World Bank}, pages={91-133}, volume={1}, series={Designing household survey questionnaires for developing countries: lessons from fifteen years of the Living Standards Measurement Study} } @techreport{DeaPax04, author={Angus Deaton and Christina Paxson}, title={Mortality, Income, and Income Inequality Over Time in the Britain and the United States}, institution={National Bureau of Economic Research}, year= 2004, address={Cambridge, MA}, number= 8534, note={{http://www.nber.org/papers/w8534}} } @unpublished{DebKee05, author={Suzanna De Boef and Luke Keele}, title={Revisiting Dynamic Specification}, note={DeBoef: Dept. of Political Science; PA State University, State College, PA 16802; 814-863-9402 sdeboef@psu.edu}, year={2005}, month={July} } @book{DeBoor78a, author={C. de Boor}, title={A Practical Guide to Splines}, publisher={Springer-Verlag}, year={1978}, address={New York} } @article{DeeBat03, author={Dorly J. H. Deeg and Peter A. Bath }, title={Self-rated health, gender, and mortality in older persons: Introduction to a special section}, journal={The Gerontologist}, volume={43}, year={2003}, pages={{369-71}}, number={3} } @article{DeeKey04, author={Thomas S. Dee and Benjamin J. Keys}, title={Does Merit Pay Reward Good Teachers? Evidence from a Randomized Experiment}, journal={Journal of Policy Analysis and Management}, volume={23}, year={2004}, pages={471-488}, number={3} } @article{Deeks98, author={Jon Deeks}, title={Odds Ratio Should be Used Only in Case-Control Studies and Logistic Regression Analyses}, journal={British Medical Journal}, volume= 317, year= 1998, pages={1155-6}, month={October 24} } @article{DeeZonMaa89, author={Dorly J. H. Deeg, et al}, title={Medical and Social Predictors of Longevity in the Elderly: Total Predictive Value and Interdependence}, journal={Social Science and Medicine}, volume= 29, year= 1989, pages={{1271-80}}, number= 11 } @article{Dehejia05, author={Dehejia Rajeev}, title={Practical Propensity Score Matching: A Reply to Smith and Todd}, journal={Journal of Econometrics}, volume={125}, year={2005}, pages={355-364} } @article{DehWah02, author={Rajeev H. Dehejia and Sadek Wahba}, title={Propensity Score Matching Methods for Non-Experimental Causal Studies}, journal={Review of Economics and Statistics}, volume={84}, year={2002}, pages={151-161}, number={1} } @article{DehWah99, author={Rajeev H. Dehejia and Sadek Wahba}, title={Causal Effects in Nonexperimental Studies: Re-Evaluating the Evaluation of Training Programs}, journal={Journal of the American Statistical Association}, volume={94}, year={1999}, pages={1053-62}, month={December}, number={448} } @article{deMGelGry03, author={Scott de Marchi and Christopher F. Gelpi and Jeffrey D. Grynaviski}, title={Untangling Neural Nets}, journal= apsr, year={2003, forthcoming} } @article{DemLaiRub77, author={Arthur P. Dempster and N.M. Laird and D.B. Rubin}, title={Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm}, journal={Journal of the Royal Statistical Association}, volume={39}, year={1977}, pages={1-38} } @book{DeMoivere1725, title={Annuities on Lives}, year= 1725, editor={Abraham DeMoivre}, address={London} } @book{Derthick79, author={Martha Derthick}, title={Policymaking for Social Security}, publisher={The Brookings Institution}, year={1979}, address={Washington, DC} } @article{DeuBufPoy99, author={Sylvie Deuffic and Laurent Buffat and Thierry Poynard and Alain-Jacques Valleron}, title={Modeling the Hepatitis C Virus Epidemic in France}, journal={Hepatology}, volume= 29, year= 1999, pages={1596--1601}, number= 5 } @book{DevLor93, author={R. DeVore and G. Lorentz}, title={Constructive Approximation}, publisher={Springer-Verlag}, year= 1993, address={New York} } @article{DewThuAnd86, author={William G. Dewald and Jerry G. Thursby and Richard G. Anderson}, title={Replication in Empirical Economics: The Journal of Money, Credit and Banking Project}, journal={American Economic Review}, volume={76}, year={1986}, pages={587-603}, month={September}, number={4} } @article{Diamond86, author={Diamond, A.M.}, title={{What is a citation worth}}, journal={Journal of Human Resources}, volume={21}, year={1986}, pages={200--215}, number={2} } @misc{DiaSek05, author={Alexis Diamond and Jasjeet Sekhon}, title={Genetic Matching for Estimating Causal Effects: A New Method of Achieving Balance in Observational Studies}, year= 2005 , howpublished={{http://jsekhon.fas.harvard.edu/}} } @article{DieGodYu07, author={Daniel Diermeier and Jean-Fran{\c{c}}ois Godbout and Bei Yu and Stefan Kaufmann}, title={Language and Ideology in Congress}, year={2007}, note={Corresponding author, d-diermeier@kellogg.northwestern.edu} } @article{DieMarKoe95, author={Paula Diehr and Donald C. Martin and Thomas Koepsell and Allen Cheadle}, title={Breaking the Matches in a Paired t-Test for Community Interventions When the Number of Pairs is Small}, journal={Statistics in Medicine}, volume={14}, year={1995}, pages={1491-1504} } @article{Dinh02, author={Viet D. Dinh}, title={Freedom and Security After September 11}, journal={Harvard Journal of Law and Public Policy}, volume= 25, year={2002}, pages={399--??} } @unpublished{DinMaz02, author={L. Dini and G. Mazzini}, title={Opinion Classification Through Information Extraction}, note={Turin, Italy}, year={02} } @article{DipGan04, author={Thomas A. DiPrete and Markus Gangl}, title={Assessing Bias in the Estimation of Causal Effects: Rosenbaum Bounds on Matching Estimators and Instrumental Variables Estimation with Imprerfect Instruments}, journal={Sociological Methodology}, volume={34}, year={2004}, pages={271-310}, month={December} } @article{DocWei03, author={Henry V. Doctor and Alexander A. Weinreb}, title={Estimation of AIDS adult mortality by verbal autopsy in rural Malawi}, journal={AIDS}, volume={17}, year={2003}, pages={2509-2513} } @article{DonDon87, author={Allan Donner and A. Donald}, title={Analysis of data arising from a stratified design with the cluster as unit of randomization}, journal={Statistics in Medicine}, volume={6}, year={1987}, pages={43-52} } @techreport{Dong04, author={Lauren Bin Dong}, title={{The Behrens-Fisher Problem: An Empirical Likelihood Approach}}, institution={University of Victoria}, year= 2004, key={Econometric Working Paper} } @article{DonHau89, author={Allan Donner and W. Hauck}, title={Estimation of a common odds ration in paired-cluster randomization designs}, journal={Statistics in Medicine}, volume={8}, year={1989}, pages={599-607} } @book{DonKla00, author={Allan Donner and Neil Klar}, title={Design and Analysis of Cluster Randomization Trials in Health Research}, publisher={Arnold}, year={2000}, address={London} } @article{DonKla93, author={Allan Donner and Neil Klar}, title={Confidence Interval Construction for Effect Measures Arising from Cluster Randomization Trials}, journal={Journal of Clinical Epidemiology}, volume={46}, year={1993}, pages={123-131}, number={2} } @article{Donner87, author={Allan Donner}, title={Statistical Methodology for Paired Cluster Designs}, journal={American Journal of Epidemiology}, volume={126}, year={1987}, pages={972-979}, number={5} } @article{Doorn98, author={Carol Van Doorn }, title={Spouse-rated limitations and spouse-rated life expectancy as mortality predictors}, journal={Journal of Gerontolofy: Social Sciences}, volume={{53B}}, year= 1998, pages={{S137-143}} } @article{Doorn98, author={Carol van Doorn}, title={Spouse-Raetd Limitations and Spouse Rated Life Expectancy as Mortality Predictors}, journal={Journal of Gerontology}, volume={{53B}}, year= 1998, pages={{S137-43}}, number= 3 } @techreport{DooTra90, author={Fred Doolittle and Linda Traeger}, title={Implementing the National JTPA Study}, institution={Manpower Demonstration Research Croporation}, year={1990}, month={April}, address={New York} } @article{Dorsen89, author={Norman Dorsen}, title={Here and There: Foreign Affairs and Civil Liberties}, journal= ajil, volume= 83, year={1989}, pages={840--??} } @article{DowMan90, author={John E. Dowd and Kenneth G. Manton}, title={Forecasting Chronic Disease Risks in Developing Countries}, journal={International Journal of Epidemiology}, volume= 19, year= 1990, pages={1019--1036}, month={May}, number= 4 } @book{Doyle06, author={Sir Arthur Conan Doyle}, title={A Study in Scarlet}, publisher={Adamant Media Corporation}, year= 1888 } @article{DoySam00, author={Michael W. Doyle and Nicholas Sambanis}, title={International Peacebuilding}, journal= apsr, volume= 94, year= 2000, pages={779--801}, month={December}, number= 4 } @book{DozSch98, title={Roads not Taken: Tales of Alternative History}, publisher={Del Rey}, year= 1998, editor={Gardner Dozois and Stanley Schmidt}, address={New York} } @article{Drake93, author={C. Drake}, title={Effects of misspecification of the propensity score on estimators of treatment effects}, journal={Biometrics}, volume={49}, year={1993}, pages={1231-1236} } @unpublished{DreFar04, author={Daniel W. Drezner and Henry Farrell}, title={The Power and Politics of Blogs}, note={American Political Science Association, Chicago, Illinois}, year={2004}, month={August} } @book{Dueve95, author={Christian de Dueve}, title={Vital Dust}, publisher={Basic Books}, year= 1995 } @article{DunDav53, author={Duncan, O. D. and Davis, B.}, title={An Alternative to Ecological Correlation}, journal={American Sociological Review}, volume= 18, year= 1953, pages={665-666} } @unpublished{DurRicWar03, author={Stephen D. Durbin and J. Neal Richter and Doug Warner}, title={A System for Affective Rating of Texts}, note={RightNow Technolgies, Bozeman, MT}, year={03} } @unpublished{DurRicWar03, author={Stephen D. Durbin and J. Neal Richter and Doug Warner}, title={A System for Affective Rating of Texts}, note={RightNow Technolgies, Bozeman, MT}, year={03} } @article{Easterlin03, author={Richard A. Easterlin}, title={Explaining happiness}, journal={PNAS}, volume={100}, year={2003}, pages={11176-11183}, month={September}, number={19} } @book{Edwards72, author={A.W.F. Edwards}, title={Likelihood}, publisher={Cambridge University Press}, year= 1972, address={New York} } @article{Edwards91, author={Harry T. Edwards}, title={The Judicial Function and the Elusive Goal of Principled Decisionmaking}, journal={Wisconsin Law Review}, volume= 1991, year={1991}, pages={837--??} } @article{Efron01, author={Brad Efron}, title={[statistical Modeling: The Two Cultures]: Comment}, journal={Statistical Science}, volume={16}, year={2001}, pages={218-219}, month={August}, number={3} } @article{Efron79, author={B. Efron}, title={{Bootstrap methods: another look at the jackknife}}, journal={Annals of Statistics}, volume= 7, year= 1979, pages={1--26} } @book{Efron82, author={B. Efron}, title={{The Jacknife, the Bootstrap, and Other Resampling Plans}}, publisher={SIAM}, year= 1982, address={Philadelphia} } @article{Efron87, author={B. Efron}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={754}, month={September}, number={399} } @article{Efron94, author={Bradley Efron}, title={Missing Data, Imputation, and the Bootstrap}, journal={Journal of the American Statistical Association}, volume={89}, year={1994}, pages={463-475}, month={June}, number={426} } @article{Efron94b, author={Bradley Efron}, title={Missing Data, Imputation, and he Bootstrap: Rejoinder}, journal={Journal of the American Statistical Association}, volume={89}, year={1994}, pages={478-479}, month={June}, number={426} } @book{EfrTib93, author={B. Efron and R. Tibshirani}, title={{An Introduction to the Bootstrap}}, publisher={Chapmand and Hall}, year= 1993, address={London} } @book{Einstein20, author={Albert Einstein}, title={Relativity: The Special and General Theory}, publisher={Henry Holt}, year= 1920, address={NY} } @article{EisLaz38, author={P. Eisenberg and Paul F. Lazarsfeld}, title={The psychological effects of unemployment}, journal={Psychological Bulletin}, volume= 35, year= 1938, pages={358--390} } @article{ElbGilWu05, author={Nabila El-Bassei and Louisa Gilbert and Elwin Wu and Hyun Go and Jennifer Hill}, title={Relationship between drug abuse and intimate partner violence: A longitudinal study among women receiving methadone}, journal={American Journal of Public Health}, volume={95}, year={2005}, pages={465-470}, month={March}, number={3} } @article{Elekes86, author={G. Elekes}, title={A Geometric Inequality and the Complexity of Computing Volume}, journal={Discrete \& Computational Geometry}, volume={1}, year={1986}, pages={289-292} } @book{Elster00, author={Jon Elster}, title={Ulysses unbound: studies in rationality, precommitment, and constraints}, publisher={Cambridge University Press}, year={2000}, address={New York} } @inbook{Elster79, author={John Elster}, title={Ulysses and the Sirens: studies in rationality and irrationality}, chapter={II Imperfect Rationality: Ulysses and the Sirens}, year={1979}, publisher={Cambridge University Press}, pages={36 - 111}, address={Cambridge} } @article{Emerson68, author={Thomas I. Emerson}, title={Freedom of Expression in Wartime}, journal={University of Pennsylvania Law Review}, volume= 116, year={1968}, pages={975--1011} } @book{Emerson70, author={Thomas I. Emerson}, title={The System of Freedom of Expression}, publisher={Vintage}, year= 1970, address={New York} } @book{Enders04, author={Walter Enders}, title={Applied Econometric Time Series}, publisher={Wiley}, year={2004}, edition={2nd} } @book{EneHin84, author={James M. Enelow and Melvin J. Hinich}, title={The Spatial Theory of Voting: An Introduction}, publisher={Cambridge University Press}, year= 1984, address={New York} } @article{EoPre92, author={Irma T. Elo and Samuel H. Preston}, title={Effects of Early-Life Conditions on Adult Mortality: A Review}, journal={1992}, volume={58}, year={1992}, pages={186-212}, month={Summer}, number={2} } @article{EpsGonWei01, author={S.A. Epstein and J.J. Gonzales and K. Weinfurt and B Bockeloo and N Yuan and G Chase}, title={Are Psychiatrists' Characterists Related to how They Care for Depression in the Medically Ill? Results from a National Case-Vignette Study}, journal={Psychosomatics}, volume= 42, year= 2001, pages={482--489}, month={Nov.--Dec.}, number= 6 } @unpublished{EpsOha05, author={David L. Epstein and Sharyn O'Halloran}, title={Higher-Order Markov Models}, note={Columbia University}, year={2005} } @book{EriMacSti02, author={Robert S. Erikson and Michael B MacKuen and James S. Stimson}, title={The Macro Polity}, publisher={Cambridge University Press}, year= 2002, address={New York} } @article{EriUndElo01, author={Ingeborg Eriksson, Anna-Lena Unden, and Stig Elofsson}, title={Self-Rated Health. Comparisons Between Three Different Measures. Results from a Population Study.}, journal={International Epidemiological Association}, volume= 30, year= 2001, pages={{326-33}} } @book{EstGolGur95, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Pamela T. Surko and Alan N. Unger}, title={State Failure Task Force Report}, publisher={Science Applications International Corporation}, year= 1995, address={McLean, Virginia} } @book{EstGolGur98, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Barbara Harff and Pamela T.\ Surko and Alan N.\ Unger and Robert S. Chen }, title={The State Failure Task Force Report: Phase II Findings}, publisher={Science Applications International Corporation}, year= 1998, address={McLean, Virginia} } @incollection{EstGolGur98b, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Barbara Harff and Pamela T.\ Surko and Alan N.\ Unger and Robert S.\ Chen}, title={The State Failure Project: Early Warning Research for U.S. Foreign Policy Planning}, booktitle={Preventive Measures: Building Risk Assessment and Crisis Early Warning System}, publisher={Rowman and Littlefield}, year={1998b}, address={Lanham, Maryland}, editor={John L. Davies and Ted Robert Gurr} } @article{EstGolGur99, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Barbara Harff and Marc Levy, Geoffrey D.\ Dabelko, Pamela T.\ Surko and Alan N.\ Unge}, title={The State Failure Report: Phase II Findings}, journal={Environmental Change and Security}, volume= 5, year= 1999, month={Summer} } @article{EtaLehDia04, author={Jean-Francois Etard and Jean-Yves Le Hesran and Aldiouma Diallo and Jean-Pierre diallo and Jean-Louis Ndiaye and Valerie Delaunay}, title={Childhood mortality and probably causes of death using verbal autopsy in Niakhar, Senegal, 1989-2000}, journal={International Journal of Epidemiology}, volume={33}, year={2004}, pages={1286-1292} } @book{Eubank88, author={R.L. Eubank}, title={Spline Smoothing and Nonparametric Regression}, publisher={Marcel Dekker}, year={1988}, volume={90}, address={Basel}, series={Statistics, textbooks and monographs} } @article{Eule87, author={Julian N. Eule}, title={Temporal Limits on the Legislative Mandate: Entrenchment and Retroactivity}, journal={American Bar Foundation Research Journal}, volume={12}, year={1987}, pages={379-459}, number={2/3} } @book{Everitt05, author={Brian Everitt}, title={An R and S-Plus Companion to Multivariate Analysis}, publisher={Springer-Verlag}, year={2005}, address={London} } @inproceedings{EzzJohKha95, author={T. Ezzati-Rice and W. Johnson and M. Khare and R. Little and D. Rubin and J. Schafer}, title={A Simulation Study to Evaluate the Performance of Model-Based Multiple Imputations in NCHS Health Examination Surveys}, publisher={Proceedings of the Annual Research conference}, address={Washington, D.C.}, pages={257-266}, organization={Bureau of the Census} } @manual{FalHae89, author={J{\"u}rgen W. Falter and Dirk H{\"a}nisch}, title={Wahl- und Sozialdaten der Kreise und Gemeinden des Deutschen Reiches von 1920 bis 1933}, organization={Zentralarchiv f{\"u}r Empirische Sozialforschung}, year= 1989, address={Universit{\"a}t zu K{\"o}ln}, note={ZA number 8013} } @article{FalHan99, author={J{\"u}rgen W. Falter and Dirk H{\"a}nisch}, title={Wahlerfolge und W{\"a}hlerschaft der NSDAP in {\"O}sterreich von 1927 bis 1932}, journal={Zeitgeschichte}, volume= 15, year= 1988, pages={223-244}, number= 6 } @article{FalLohLin85, author = {J{\"u}rgen W. Falter and Jan-Bernd Lohm{\"o}ller and Andreas Link and Johann de Rijke}, title = {Hat Arbeitslosigkeit tats{\"a}chlich den Aufstieg des Nationalsozialismus bewirkt?}, journal = {Jahrbuch f{\"u}r National{\"o}konomie und Statistik}, volume = 200, year = 1985, pages = {121-136}, number = 2 } @incollection{Falter90, author={Falter, J{\"u}rgen}, title={The First German Volkspartei: The Social Foundations of the NSDAP}, booktitle={Elections, Parties and Political Traditions}, publisher={Berg}, year= 1990, address={M{\"u}nchen}, editor={Rohe, K.} } @article{Falter90b, author={Falter, J{\"u}rgen W.}, title={Arbeiter haben erheblich haeufiger, Angestellte dagegen sehr viel seltener NSDAP gewaehlt als wir lange Zeit angenommen haben}, journal={Geschichte und Gesellschaft}, volume= 16, year= 1990, pages={536-552}, number= 4 } @book{Falter91, author={Falter, J{\"u}rgen}, title={Hitlers W{\"a}hler}, publisher={Beck}, year= 1991, address={M{\"u}nchen} } @article{FalZin88, author={Falter, J{\"u}rgen W. and Zintl, Reinhard}, title={The Economic Crisis of the 1930s and the Nazi Vote}, journal={Journal of Interdisciplinary History}, volume= 19, year= 1988, pages={55-85}, number= 1 } @article{FanFotBer06, author={Mesganaw Fantahun and Edward Fottrell and Yemane Berhane and Stig Wall and Ulf Hogberg and Peter Byass}, title={Assessing a new approach to verbal autopsy interpretation in a rural Ethiopian community: the InterVA model}, journal={Bulletin of the World Health Organization}, volume={84}, year={2006}, pages={204-210}, month={March}, number={3} } @article{FanFotBer06, author={Mesganaw Fantahun and Edward Fottrell and Yemane Berhane and Stig Wall and Ulf Hogberg and Peter Byass}, title={Assessing a new approach to verbal autopsy interpretation in a rural Ethiopian community: the InterVA model}, journal={Bulletin of the World Health Organization}, volume={84}, year={2006}, pages={204-210}, month={March}, number={3} } @article{Fantahun98, author={Mesganaw Fantahun}, title={Patters of Childhood Mortality in Three Districts of North Gondar Administrative Zone}, journal={Ethiopian Medical Journal}, volume={36}, year={1998}, pages={71-81}, number={2} } @inproceedings{Fay92, author={Robert E. Fay}, title={When are Inferences from Multiple Imputation Valid?}, year={1992}, pages={354-365}, organization={Proceedings of Survey Research Methods Section of the American Satistical Association} } @article{fearon91, author={James D. Fearon}, title={Counterfactuals and Hypothesis Testing in Political Science}, journal={World Politics}, volume= 43, year= 1991, pages={169--195}, month={June}, number= 2 } @article{Feeney01, author={G. Feeney}, title={The Impact of HIV/AIDS on Adult Mortality in Zimbabwe}, journal={Population and Development Review}, volume= 27, year= 2001, pages={771--980}, number= 4 } @unpublished{Fernandezval05, author={Ivan Fernandez-Val}, title={Bias Correcion in Panel Data Models with Individual Specific Parameters}, note={Boston University}, year={2005} } @unpublished{Fernandezval05, author={Ivan Fernandez-Val}, title={Bias Correction in Panel Data Models with Individual Specific Parameters}, note={Boston University}, year={2005} } @techreport{FidFreGro92, author={M. Fidrich and J. Frenk and J. Gromicho}, title={An efficient algorithm to check whether $0$ belongs to the convex hull of a finite number of {$L_p$}-circles}, institution={Econometric Institute}, year={1992}, type={Report 9204/A}, address={Netherlands} } @book{FieMarStr85, author={Stephen E. Fienberg and Margaret E. Martin and Miron L. Straf}, title={Sharing Research Data}, publisher={National Academy Press}, year={1985} } @article{Finkel01, author={N.J. Finkel}, title={When Principles Collide in Hard Cases}, journal={Psychology, Public Policy, and Law}, volume= 7, year= 2001, pages={515--560}, month={September}, number= 3 } @book{Fiorina81, author={Morris P. Fiorina}, title={Retrospective Voting in American National Elections}, publisher={Yale University Press}, year= 1981, address={New Haven} } @article{FisCobVen98, author={Bonnie S. Fisher and Craig T. Cobane and Thomas M. Vander Ven and Francis T. Cullen}, title={How Many Authors Does It Take to Publish an Article? Trends and Patterns in Political Science}, journal={PS: Political Science and Politics}, volume= 31, year= 1998, pages={847--856}, number= 4 } @article{Fish95, author={Steven M. Fish}, title={The Advent of Multipartism in Russia, 1993-95}, journal={Post Soviet Affairs}, volume={11}, year={1995}, pages={340-383}, number={4} } @book{Fisher35, author={Ronald A. Fisher}, title={The Design of Experiments}, publisher={Oliver and Boyd}, year= 1935, address={London} } @article{Fisher24, author={Ronald A. Fisher}, title={The conditions under which $\chi^2$ measures the discrepancy between observed observation and hypothesis}, journal={Journal of the Royal Statistical Society}, volume={87}, year={1924}, pages={442-450} } @article{Pearson00, author={Karl Pearson}, title={On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can reasonably be supposed to have arisen from random sampling}, journal={Philosophical Magazine}, volume={50}, year={1900}, pages={157-175} } @article{FlaBes82, author={Brian R. Flay and J. Allen Best}, title={Overcoming Design Problems in Evaluating Health Behavior Programs}, journal={Evaluation \& The Health Professions}, volume={5}, year={1982}, pages={43-69}, month={March}, number={1} } @article{Foote58, author={Richard J. Foote}, title={A Modified {D}oolittle Approach for Multiple and Partial Correlation and Regression}, journal= jasa, volume= 53, year= 1958, pages={133-143} } @article{ForNorAhm95, author={Ian Ford and John Norrie and Susan Ahmadi}, title={Model Inconsistency, Illustrated by Cox proortional Hazard Model}, journal={Statistics in Medicine}, volume={14}, year={1995}, pages={735-746} } @book{Fortas68, author={Abe Fortas}, title={Concerning Dissent and Civil Disobedience}, publisher={Signet}, year= 1968, address={New York} } @article{Franklin89, author={Charles H. Franklin}, title={Estimation across Data Sets: Two-Stage Auxiliary Instrumental Variables Estimation}, journal={Political Analysis}, volume={1}, year={1989}, pages={1-23}, number={1} } @book{Franzese02, author={R.J. Franzese}, title={Macroeconomic policies of developed democracies}, publisher={Cambridge University Press}, year={2002}, address={New York} } @unpublished{FraRub01, author={Constantine E.\ Frangakis and Donald Rubin}, title={The Defining Role of Principal Effects in Comparing Treatments Using General Post-Treatments Using General Post-Treatment Variables: From Surrogate Endpoints to Censoring by Death}, note={\url{http://biosun01.biostat.jhsph.edu/~cfrangak}} } @article{FraRub02, author={Constantine E. Frangakis and Donald B. Rubin}, title={Principal stratification in causal inference}, journal={Biometrics}, volume= 58, year= 2002, pages={21-29} } @article{FraRubZho02, author={Constantine E. Frangakis and Donald B. Rubin and Ziao-Hua Zhou}, title={Clustered Encouragement Designs with Individual Noncompliance: Bayesian Inference with Randomization, and Application to Advance Directive Forms}, journal={Biostatistics}, volume={3}, year={2002}, pages={147-164}, number={2} } @article{FreChrKha05, author={James V. Freeman and Parul Christian and Subarna K. Khatry and Ramesh K. Adhikari and Steven C. LeClerq and Joanne Katz and Gary L. Darmstadt}, title={Evaluation of neonatal verbal autopsy using physician review versus algorithm-based cause-of-death assignment in rural Nepal}, journal={Paediatric and Perinatal Epidemiology}, volume={19}, year={2005}, pages={323-331} } @article{FreChrKha05, author={James V. Freeman and Parul Christian and Subarna K. Khatry and Ramesh K. Adhikari and Steven C. LeClerq and Joanne Katz and Gary L. Darmstadt}, title={Evaluation of neonatal verbal autopsy using physician review versus algorithm-based cause-of-death assignment in rural Nepal}, journal={Paediatric and Perinatal Epidemiology}, volume={19}, year={2005}, pages={323-331} } @article{Freedman08, author = {David A. Freedman}, year = 2008, volume = 40, title = {On Regression Adjustments to Experimental Data}, journal = {Advances in Applied Mathematics}, pages = {180--193} } @article{Freese07, author={Jeremy Freese}, title={Replication Standards for Quantitative Social Science: Why not Sociology}, journal={Sociological Methods and Research}, year={2007, forthcoming} } @article{FreGonGom06, author={Julio Frenk and Eduardo Gonz{\'a}lez-Pier and Octavio G{\'o}mez-Dant{\'e}s and Miguel A. Lezana and Felicia Marie Knaul}, title={Comprehensive reform to improve health system performance in Mexico}, journal={Lancet}, volume={268}, year={2006}, pages={1524-34}, month={October} } @article{FreKleOst98, author={D.A. Freedman and S.P. Klein and M. Ostland and M.R. Roberts}, title={Review}, journal={Journal of the American Statistical Association}, volume= 93, year= 1998, pages={{1518-1522}} } @article{FreMil04, author={Per G. Fredriksson and Daniel L. Millimet}, title={Comparative Politics and Envrionmental Taxation}, journal={Journal of Environmental Economics and Management}, volume={48}, year={2004}, pages={705-722} } @techreport{Frenk04, author={Julio Frenk}, title={Fair Financing and Universal Social Protection: the structural reform of the Mexican health system}, institution={Secretaria de Salud}, year={2004}, address={Mexico City} } @article{Frenk06, author={Julio Frenk}, title={Bridging the divide: global lessons from evidence-based health policy in Mexico}, journal={Lancet}, volume={368}, year={2006}, pages={954-61}, month={September} } @article{FreSepGom03, author={Julio Frenk and Jamie Sep{\'u}lveda and Octavio G{\'o}mez-Dant{\'e}s and Felicia Knaul}, title={{Evidence-based health policy: three generations of reform in Mexico}}, journal={The Lancet}, volume={362}, year={2003}, pages={1667--1671}, number={9396} } @article{FreWec81, author={Frey, Bruno and Weck, Hannelore}, title={Hat Arbeitslosigkeit den Aufstieg des Nationalsozialismus bewirkt?}, journal={Jahrbuch fuer Nationaloekonomie und Statistik}, volume= 196, year= 1981, pages={1-31} } @book{Friendly00, author={Michael Friendly}, title={Visualizing Categorical Data}, publisher={SAS Institute}, year={2000} } @unpublished{FriHol05, author={John N. Friedman and Richard T. Holden}, title={The Rising Incumbent Advantage: What's Gerrymandering Got to Do With It?}, note={Dept. of Economics, Harvard; rholden@fas.harvard.edu}, year={2005}, month={August} } @unpublished{FriHol05, author={John N. Friedman and Richard T. Holden}, title={The Rising Incumbent Advantage: What's Gerrymandering Got to Do With It?}, note={Dept. of Economics, Harvard; rholden@fas.harvard.edu}, year={2005}, month={August} } @article{FriKroNew98, author={Linda P. Fried, Md, MPH, Richard A. Kronmal, PhD, Anne B. Newman, MD, PhD, et al}, title={Risk Factors for 5-Year Mortality in Older-Adults: The Cardiovascular Health Study}, journal={Journal of the American Medical Association}, volume= 279, year= 1998, pages={{585-92}} } @book{Fritzsche98, author={Peter Fritzsche}, title={Germans into Nazis}, publisher={Harvard University Press}, year= 1998, address={Cambridge, MA} } @unpublished{Frolich02, author={Markus Fr{\"o}lich}, title={What is the Value of Knowing the Propensity Score for Estimating Average Treatment Effects?}, note={IZA Discussion Paper 548, University of St. Gallen}, year= 2002 } @article{Frolich04, author={Markus Fr{\"o}lich}, title={Finite Sample Properties of Propensity Score Matching and Weighting Estimators}, journal={Review of Econometrics and Statistics}, volume= 86, year= 2004, pages={77--90} } @article{FurLov01, author={A. Furnham and J. Lovett}, title={The Perceived Efficacy and Risks of Complementary and Alternative Medicine and Conventional Medicine: A Vignette Study}, journal={Journal of Applied Biobehavioral Research}, volume= 6, year= 2001, pages={39--63}, number= 1 } @article{FylFor91, author={Knut Fylkesnes and Olav Helge Forde}, title={The Tromso Study: Predictors of Self-Evaluated Health-Has Society Adopted the Expanded Health Concept?}, journal={Social Science and Medicine}, volume= 32, year= 1991, pages={{141-46}}, number= 2 } @book{GAD01, author={{Government's Actuary Department}}, title={National Population Projections: Review of Methodology for Projecting Mortality}, publisher={National Statistics Direct, UK}, year= 2001, address={London}, note={{http://www.statistics.gov.uk/}} } @article{GaiMarCar96, author={Mitchell H. Gail and Steven D. Mark and Raymond J. Carroll and Sylvan B. Green and David Pee}, title={On Design Considerations and Randomization-Based Inference for Community Intervention Trials}, journal={Statistics in Medicine}, volume={15}, year={1996}, pages={1069-1092} } @article{GaiMarCar96, author={Mitchell H. Gail and Steven D. Mark and Raymond j. Carroll and Sylvan B. Green and David Pee}, title={On Design Considerations and Randomization-Based Inference for Community Intervention Trials}, journal={Statistics in Medicine}, volume={15}, year={1996}, pages={1069-1092} } @article{GaiWiePia84, author={M.H. Gail and S. Wieand and S. Piantadosi}, title={Biased Estimates of Treatment Effect in Randomized Experiements with Nonlinear Regressions and Omitted Covariates}, journal={Biometrika}, volume={71}, year={1984}, pages={431-444}, month={December}, number={3} } @article{GajPet04, author={Vendhan Gajalakshmi and Richard Peto}, title={Verbal autopsy of 80,000 adult deaths in Tamilnadu, South India}, journal={BMC Public Health}, volume={4}, year={2004}, month={October}, number={47} } @article{GajPetKan02, author={Vendhan Gajalakshmi and Richard Peto and Santhanakrishnan Kanaka and Sivagurunathan Balasubramanian}, title={Verbal autopsy of 48000 adult deaths attributable to medical causes in Chennai (formerly Madras), India}, journal={BMC Public Health}, volume={2}, year={2002} } @article{GajPetKan02, author={Vendhan Gajalakshmi and Richard Peto and Santhanakrishnan Kanaka and Sivagurunathan Balasubramanian}, title={Verbal autopsy of 48000 adult deaths attributable to medical causes in Chennai (formerly Madras), India}, journal={BMC Public Health}, volume={2}, year={2002} } @article{GakHogLop04, author={Emmanuela Gakidou and Margaret Hogan and Alan D Lopez}, title={Adult Mortality: Time for a Reapprasal}, journal={International Journal of Epidemiology}, volume= 33, year= 2004, pages={710-717}, number= 4 } @article{GakLozGon06, author={Emmanuela Gakidou and Rafael Lozano and Eduardo Gonz{\'a}lez-Pier and Jesse Abbott-Klafter and Jeremy T. Barofsky and Chloe Bryson-Cahn and Dennis M. Feehan and Diana K. Lee and Hector Hern{\'a}ndez-Llamas and Christopher J.L. Murray}, title={Assessing the effect of the 2001-06 Mexican health reform: an interim report card}, journal={Lancet}, volume={368}, year={2006}, pages={1920-35}, month={November} } @book{Gamson92, author={William A. Gamson}, title={Talking Politics}, publisher={Cambridge University Press}, year= 1992, address={New York, NY} } @techreport{GAO94, author={{U.S. General Accounting Office}}, title={Breast conservation versus mastectomy: patient survival in day-to-day medical practice and randomized studies: report to the chairman, Subcommitee on Human Resources and Intergovernmental Relations, Committee on Government Operations, House of Representatives}, institution={U.S. General Accounting Office}, year= 1994, address={Washington, DC}, number={Report GAO-PEMD-95-9} } @article{GarFri97, author={M. Garenne and F. Friedberg}, title={Accuracy of indirect estimates of maternal mortality: a simulation model}, journal={Studies in Family Planning}, volume= 28, year= 1997, pages={132--142} } @book{Gasset32, author={Ortega y Gasset, Javier}, title={The Revolt of the Masses}, publisher={G. Allen \& Unwin}, year= 1932, address={London} } @article{Gastwirth87, author={J. Gastwirth}, title={The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data}, journal={Statistical Science}, volume={2}, year={1987}, pages={213-222}, number={3} } @book{Geiger32, author={Geiger, Theodor}, title={Die soziale Schichtung des deutschen Volkes}, publisher={Ferdinand Enke}, year={1932}, address={Stuttgart} } @book{GelCarSte03, author={Andrew Gelman and J.B. Carlin and H.S. Stern and D.B. Rubin}, title={Bayesian Data Analysis, Second Edition}, publisher={Chapman \& Hall}, year= 2003 } @book{GelCarSte95, author={Andrew Gelman and J.B. Carlin and H.S. Stern and D.B. Rubin}, title={Bayesian Data Analysis}, publisher={Chapman and Hall}, year= 1995 } @unpublished{GelGri00, author={Christopher Gelpi and Joseph M. Grieco}, title={Democracy, Interdependence, and the Liberal Peace}, note={{Duke University, http://www.duke.edu/$\sim$gelpi/papers.htm}}, year={2000} } @book{GelHil07, author={Andrew Gelman and Jennifer Hill}, title={Data Analysis Using Regression and Multilevel/Hierarchical Models}, publisher={Cambridge University Press}, year= 2007, address={New York} } @unpublished{GelHua04, author={Andrew Gelman and Zaiying Huang}, title={Estimating incumbency advantage and its varation, as an example of a before-after study}, year={2004}, month={October} } @article{Gelman06, author={Andrew Gelman}, title={Prior distributions for variance parameters in hierarchical models}, journal={Bayesian Analysis}, volume={1}, year={2006}, pages={515-533}, number={3} } @article{GelSmi90, author={{Gelfand, A.E. and Smith, A.F.M.}}, title={Sampling-based approach to calculating marginal densities}, journal= jasa, volume= 85, year= 1990, pages={398--409} } @article{GelSmi90, author={A.E. Gelfand and A.F.M. Smith}, title={Sampling-based approaches to calculating marginal densities}, journal={Journal of the American Statistical Association}, volume={85}, year={1990}, pages={398-409} } @article{GemGem84, author={Stuart Geman and Donald Geman}, title={Stochastic Relaxation, {G}ibbs Distributions, and the {B}ayesian Restoration of Images}, journal={I.E.E.E. Transactions: Pattern Analysis and Machine Intelligence}, volume= 6, year= 1984, pages={721-741} } @article{GerGre00, author={Gerber, Alan S. and Green, Donald P.}, title={The Effects of Canvassing, Telephone Calls, and Direct Mail on Voter Turnout: A Field Experiment}, journal={American Political Science Review}, volume= 94, year= 2000, pages={653--663}, month={September}, number= 3 } @inbook{GerGreKap04, author={Alan S. Gerber and Donald P. Green and Edward H. Kaplan}, title={The illusion of learning from observational research}, chapter={12}, year={2004}, publisher={Cambridge University Press}, pages={251-273}, address={Cambridge, United Kingdom}, editor={Ian Shapiro and Rogers M. Smith and Tarek e. Masoud} } @article{GerSchFra94, author={Gerner, Deborah J. and Philip A. Schrodt and Ronald A. Francisco and Judith L. Weddle}, title={{Machine Coding of Event Data Using Regional and International Sources}}, journal={International Studies Quarterly}, volume={38}, year={1994}, pages={91-119}, number={1} } @unpublished{Gertler00, author={Paul J. Gertler}, title={Final Report: The Impact of PROGRESA on Health}, note={International Food Policy Research Institute}, year={2000}, month={November} } @article{Gertler06, author={P. Gertler}, title={Do Conditional Cash Transfers Improve child Health? Evidence from PROGRESA's Control Randomized Experiment}, journal={The American Economic Review: Papers and Proceedings}, volume={94}, year={2006}, pages={336-42}, number={2} } @techreport{Geyer05, author={Charles J. Geyer}, title={Le Cam Made Simple: Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity}, institution={University of Minnesota}, year={2005}, month={May}, address={Univ. MN, Twin Cities, School of Statistics} } @techreport{Geyer05, author={Charles J. Geyer}, title={Le Cam Made Simple: Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity}, institution={University of Minnesota}, year={2005}, month={May}, address={Univ. MN, Twin Cities, School of Statistics} } @article{GhoHutRus03, author={Hazem Ghobarah and Paul Huth and Bruce Russett}, title={Civil Wars Kill and Maim People--Long after the Shooting Stops}, journal= apsr, volume= 97, year= 2003, pages={189--202}, month={May}, number= 2 } @article{GiaPalCap01, author={S. Giampaoli and L. Palmieri and R. Capocaccia and L. Pilotto and D. Vanuzzo}, title={Estimating Population-based Incidence and Prevalence of Major Coronary Events}, journal={International Journal of Epidemiology}, volume= 30, year= 2001, pages={S5--S10} } @article{Giles06, author={Jim Giles}, title={The Trouble with Replication}, journal={Nature}, volume={442}, year={2006}, pages={344-347}, month={July} } @book{Gilksetal96, title={Markov Chain Monte Carlo in Practice}, publisher={Chapman \& Hall}, year= 1996 , editor={W.R. Gilks and S. Richardson and D.J. Spiegelhalter} } @book{Gill02, author={Jeff Gill}, title={Bayesian Methods for the Social and Behavioral Sciences}, publisher={Chapman and Hall}, year= 2002, address={London} } @article{GilWal05, author = {Jeff Gill and Lee Walker}, title = {Elicited Priors for Bayesian Model Specification in Political Science Research}, journal = {Journal of Politics}, volume = 67, year = 2005, pages = {841--872}, month = {August}, number = 3 } @unpublished{GimHus06, author={James G. Gimpel and Laura Hussey}, title={State of the Journal Market 2006-2007: Political Science}, note={Univ. of MD, Dept of Gov 3140 Tydings Hall, College Park, MD 20742}, year={2006}, month={February} } @techreport{Girosi91, author={F. Girosi}, title={Models of noise and robust estimates}, institution= mitai, year={1991}, type={A.I. Memo}, number={1287}, note={ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1287.pdf} } @article{GlaLevMye03, author={Steve Glazerman and Dan M. Levy and David Myers}, title={Nonexperimental versus experimental estimates of earnings impacts}, journal={The Annals of the American Academy of Political and Social Science}, volume= 589, year= 2003, pages={63-93}, month={September} } @article{GlaMayDec06, author={Steven Glazerman and Daniel Mayer and Paul Decker}, title={Alternative Routes to Teaching: The Impacts of Teach for America on Student Achievement and other Outcomes}, journal={Journal of Policy Analysis and Management}, volume={25}, year={2006}, pages={75-96}, number={1} } @article{Gleditsch02, author={Kristian Skrede Gleditsch}, title={Expanded Trade and GDP Data}, journal={Journal of Conflict Resolution}, volume={46}, year={2002}, pages={712-724}, month={October}, number={5} } @article{GleJamRay03, author={Nils Petter Gleditsch and Patrick James and James Lee Ray and Bruce Russett}, title={Editors' Joint Statement: Minimum Replication Standards for International Relations Journals}, journal={International Studies Perspectives}, volume= 4, year= 2003, pages={105} } @article{GleMetStr03, author={Nils Petter Gleditsch and Claire Metelits and Havard Strand}, title={Posting Your Data: Will You be Scooped or Will You be Famous?}, journal={International Studies Perspectives}, volume= 4, year= 2003, pages={89--97} } @unpublished{Globetti97, author={Suzanne Globetti}, title={What We Know About 'Don't Knows': An Analysis of Seven Point Issue Placements}, note={Paper presentated at the annual meetings of the Political Methodology Society, Columbus, OH}, year={1997} } @book{GoeZel86, author={Prem K. Goel and Arnold Zellner}, title={Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti}, publisher={Elsevier Science Publishers B.V.}, year={1986}, volume={6}, editor={Prem K. Goel and Arnold Zellner} } @book{Goldberger91, author={Arthur Goldberger}, title={A Course in Econometrics}, publisher={Harvard University Press}, year= 1991 } @article{GolFraEri96, author={Marthe Gold, MD, MPH, Peter Franks, MD, and Pennifer Erickson}, title={Assessing the Health of the Nation. The Predictive Validity of a Preference-Based Measure and Self-Rated Health}, journal={Medical Care}, volume= 34, year= 1996, pages={{163-77}}, number= 2 } @article{GolHeaWah79, author={G. Golub and M. Heath and G. Wahba}, title={Generalized cross validation as a method for choosing a good ridge parameter}, journal={Technometrics}, volume= 21, year= 1979, pages={215--224} } @article{GolIdn83, author={D. Goldfarb and A. Idnani}, title={A Numerically Stable Dual Method for Solving Strictly Convex Quadratic Programs}, journal={Mathematical Programming}, volume={27}, year={1983}, pages={1-33} } @book{GolJudMil96, author={Amos Golan and George Judge and Doug Miller}, title={Maximum Entropy Econometrics: Robust Estimation With Limited Data}, publisher={John Wiley and Sons}, year= 1996 } @article{GolLan92, author={Larry Goldstein and Bryan Langholz}, title={Asymptotic Theory for Nested Case-Control Sampling in the cox Regression Model}, journal={The Annals of Statistics}, volume= 20, year= 1992, pages={1903-1928}, number= 4 } @article{GolPhiCox01, author={Lee Goldman and Kathryn A. Phillips and Pamela Coxson and Paula A. Goldman and Lawrence Williams and M.G. Myriam Hunink and Milton C. Weinstein}, title={The Effect of Risk Factor Reductions Between 1981-1990 on Coronary Heart Disease Incidence, Prevalence, Mortality, and Cost}, journal={Journal of the American College of Cardiology}, volume={38}, year= 2001, pages={1012--1017}, number= 4 } @article{GolSchMcC02, author={J. Goldie and L. Schwartz and A. McConnachie and J. Morrison}, title={The Impact of Three Years' Ethics Teaching, in an Integrated Medical Curriculum, on Students' Proposed Behavior on Meeting Ethical Dilemmas}, journal={Medical Education}, volume= 36, year= 2002, pages={489--497}, month={May}, number= 5 } @article{GomGarLop99, author={Octavio G{\'o}mez-Dant{\'e}s and Francisco Garrido-Latorre and Sergio L{\'o}pez-Moreno and Blanca Villa and Malaqu{\'i}as L{\'o}pez-Cervantes}, title={Assessment of the health program for the non-insured population}, journal={Revista de Sa{\'u}de P{\'u}blica}, volume={33}, year={1999}, pages={401-412}, number={4}, note={Evaluaci{\'o}n de programa de salud para poblaci{\'o}nno asegurada} } @article{Gompertz1825, author={B. Gompertz}, title={On the Nature of the Function Expressive of the Law of Mortality}, journal={Philosophical Transactions}, volume= 27, year= 1825, pages={513--585} } @article{GonChaLev02, author={Jeffrey S. Gonzales, Gretchen B. Chapman, and Howard Leventhal}, title={Gender Differences in the Factors that Affect Self-Assessments of Health}, journal={Journal of Applied Behavioral Research}, volume= 7, year= 2002, pages={{133-55}} } @article{GooBlu96, author={Jodi S. Goodman and Terry C. Blum}, title={Assessing the Non-random Sampling Effects of Subject Attrition in Longitudinal Research}, journal={Journal of Management}, volume={22}, year={1996}, pages={627-652} } @article{Goodman53, author={Goodman, Leo}, title={Ecological Regressions and the Behavior of Individuals}, journal={American Sociological Review}, volume= 18, year= 1953, pages={663-666} } @inbook{GooJaGoo03, author={Mary-Jo DelVecchio Good, et al.}, title={The Culture of Medicine and Racial, Ethnic, and Class Disparities in Healthcare}, year={2003}, publisher={The National Academies Press}, pages={{594-625}} } @article{GosWadBel98, author={Stephen C. Goss and Alice Wade and Felicitie Bell and Bernard Dussault}, title={Historical and Projected Mortality for Mexico, Canada, and the United States}, journal={North American Actuarial Journal}, volume= 4, year= 1998, pages={108--126}, number= 2 } @article{Gower66, author={J.C. Gower}, title={Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis}, journal={Biometrika}, volume= 53, year= 1966, pages={325--388}, month={December}, number={3/4} } @article{Gower71, author={J.C. Gower}, title={A General Coefficient of Similarity and Some of its Properties}, journal={Biometrics}, volume= 27, year= 1971, pages={857--872} } @article{GraBraSno89, author={W. Graham and W. Brass and R.W. Snow}, title={Estimating Maternal Mortality: The Sisterhood Methods}, journal={Studies in Family Planning}, volume= 20, year= 1989, pages={125--135}, number= 125 } @inbook{Graham94, author={Carol Graham}, title={Mexico's Solidarity Program in Comparative Context: Demand-based Poverty Alleviation Programs in Latin America, Africa and Eastern Europe}, chapter={15}, year={1994}, publisher={Center for U.S.-Mexican Studies}, pages={309-327}, series={U.S.-Mexico Contemporary Perspectives Series, 6}, address={University of California, San Diego} } @article{GraPioCha95, author={Mark Grant, Zdzisiaw Piotrowski, and Rick Chappell}, title={Self-Reported Health and Survival in the Longitudinal Study of Aging, 1984-1986}, journal={Journal of Clinical Epidemiology}, volume= 48, year= 1995, pages={{375-87}}, number= 3 } @inbook{GraSch06, author={J.W. Graham and J.L. Schafer}, title={Statistical Strategies for Small Sample Research}, chapter={On the performance of Multiple Imputation for Multivariate Data with Small Sample Size}, year={2006 In press}, publisher={Sage}, address={Thousand Oaks}, editor={R. Hoyle} } @book{GraSmiBar90, author={Ronald H. Gray and Gordon Smith and Peter Barss}, title={The Use of Verbal Autopsy Methods to Determine Selected Causes of Death in Children}, publisher={International Union for the Scientific Study of Population}, year={1990}, address={Rue des augustins, 34 ; 4000 Liege (Belgium)}, month={February}, number={30} } @book{Graunt1662, author={John Graunt}, title={Natural and Political Observations Mentioned in a Following Index, and Made Upon the Bills of Mortality}, publisher={John Martyn and James Allestry.}, year= 1662, address={London} } @article{GreChr01, author={Sander Greenland and Ronald Christensen}, title={Data Augmentation Priors for Bayesian and Semi-Bayes Analyses of Conditional-logistic and Proportional-Hazards Regression}, journal={Statistics in Medicine}, volume={20}, year={2001}, pages={2421-2428} } @article{Greenland00, author={Sander Greenland}, title={When should Epidemiologic Regressions Use Random Coefficients?}, journal={Biometrics}, volume={56}, year={2000}, pages={915-921}, month={September} } @article{Greenland01, author={Sander Greenland}, title={Putting Background Information About Relative Risks into conjugate Prior Distributions}, journal={Biometrics}, volume={57}, year={2001}, pages={663-670}, month={September} } @article{Greenland03, author={Sander Greenland}, title={Quantifying biases in causal models: classical confounding vs collider-stratification bias}, journal={Epidemiology}, volume= 14, year= 2003, pages={300-306}, number= 3 } @article{Greenland03b, author={Sander Greenland}, title={Generalized Conjugate Priors for Bayesian Analysis of Risk and Survival Regressions}, journal={Biometrics}, volume={59}, year={2003}, pages={92-99}, month={March} } @article{greenland81, author={Sander Greenland}, title={Multivariate Estimation of Exposure-Specific Incidence From Case-Control Studies}, journal={Journal of Chronic Disease}, volume= 34, year= 1981, pages={445-453} } @article{greenland82, author={Sander Greenland}, title={On the Need for the Rare Disease Assumption in Case-Control Studies}, journal={American Journal of Epidemiology}, volume= 116, year= 1982, pages={547-553}, number= 3 } @article{greenland87, author={Sander Greenland}, title={Interpretation and Choice of Effect Measures in Epidemiologic Analysis}, journal={American Journal of Epidemiology}, volume= 125, year= 1987, pages={761-768}, number= 5 } @article{greenland94, author={Sander Greenland}, title={Modeling Risk Ratios from Matched Cohort Data: An Estimating Equation Approach}, journal={Applied Statistics}, volume= 43, year= 1994, pages={223-232}, number= 1 } @incollection{GreGer01, author={Donald P. Green and Alan Gerber}, title={Reclaiming the Experimental Tradition in Political Science}, booktitle={Political Science: State of the Discipline, III}, publisher={APSA}, year= 2001, address={Washington, D.C.}, editor={Helen Milner and Ira Katznelson} } @incollection{GreGer02, author={Donald P. Green and Alan S. Gerber}, title={Reclaiming the Experimental Tradition in Political Science}, booktitle={State of the Discipline}, publisher={W.W. Norton \& Company, Inc.}, year={2002}, address={New York}, editor={Helen Milner and Ira Katznelson}, pages={805-832}, volume={III} } @misc{GreGre03, author={Grendar, Jr., M. and M. Grendar}, title={Maximum Probability/Entropy Translating of Contiguous Categorical Observations into Frequencies}, year= 2003 , howpublished={Working paper, Institute of Mathematics and Computer Science, Mathematical Institute of Slovak Academy of Sciences, Banska Bystrica} } @article{GreKimYoo01, author={Donald P.\ Green and Soo Yeon Kim and David H.\ Yoon}, title={Dirty Pool}, journal= io, volume= 55, year= 2001, pages={441--468}, month={Spring}, number= 2 } @article{GreLuSil04, author={Robert Greevy and Bo Lu and Jeffrey H. Silver and Paul Rosenbaum}, title={Optimal multivariate matching before randomization}, journal={Biostatistics}, volume={5}, year={2004}, pages={263-275}, number={2} } @article{GreMicRob06, author={David H. Greenberg and Charles Michalopoulos and Philip K. Robins}, title={Do Experimental and Nonexperimental Evaluations give Different Answers about the Effectiveness of Government-Funded Training Programs?}, journal={Journal of Policy Analysis and Management}, volume={25}, year={2006}, pages={523-552}, number={3} } @misc{Grenander83, author={Ulf Grenander}, title={Tutorial in Pattern Theory}, year= 1983, howpublished={Technical Report, Division of Applied Mathematics, Brown University} } @article{GrePeaRob99, author={Sander Greenland and Judea Pearl and James M. Robins}, title={Causal Diagrams for Epidemiologic Research}, journal={Epidemiology}, volume= 10, year= 1999, pages={37--48}, month={January}, number= 1 } @book{GreShr04, author={David Greenberg and Mark Shroder}, title={The Digest of Social Experiments}, publisher={Urban Institute Press}, year={2004}, address={Washington, DC}, edition={Third} } @techreport{GriHilOdo01, author={W. E. Griffiths and R. Carter Hill and C. J. O'Donnell}, title={{Including Prior Information in Probit Model Estimation}}, institution={Department of Economics}, year= 2001, month={September}, type={Working Papers}, address={University of Melbourne}, number= 816 } @book{Grindle04, author={Merilee S. Grindle}, title={Despite the Odds}, publisher={Princeton University Press}, year={2004}, address={Princeton, NJ} } @unpublished{Grindle05, author={Merilee S. Grindle}, title={Going Local: Decentralization, Democratization, and the Promise of Good Governance}, note={Kennedy School of Government, Harvard University}, year={2005}, month={July} } @book{Grindle77, author={Merilee Serrill Grindle}, title={Bureaucrats, Politicans, and Peasants in Mexico}, publisher={University of California Press}, year={1977}, address={Berkeley and Los Angeles, California} } @book{Grindle80, author={Merilee S. Grindle}, title={Politics and Policy Implementation in the Third World}, publisher={Princeton University Press}, year={1980}, address={Princeton, NJ} } @article{GroBri99, author={Wim Groot and Henriette Maassen van den Brink}, title={Job Satisfaction and Preference Drift}, journal={Economics Letters}, volume= 63, year= 1999, pages={363--367} } @article{GroLevSny99, author={Tim Groseclose and Steven D. Levitt and James Snyder}, title={Comparing Interest Group Scores Across Time and Chambers: Adjusted ADA Scores for the U.S. Congress}, journal= apsr, volume= 93, year= 1999, pages={33--50}, month={March}, number= 1 } @article{Groot00, author={Wim Groot}, title={Adaptation and Scale of Reference Bias in Self-Assessments of Quality of Life}, journal={Journal of Health Economics}, volume= 19, year= 2000, pages={403--420}, month={June} } @article{Grossman97, author={Joel B. Grossman}, title={The Japanese American Cases and the Vagaries of Constitutional Adjudication in Wartime: An Institutional Perspective}, journal={Hawaii Law Review}, volume= 19, year={1997}, pages={649} } @article{GroZalLeb00, author={William M. Grove and David H. Zald and Boyd S. Lebow and Beth E. Snitz and Chad Nelson}, title={Clinical Versus Mechanical Prediction: A Meta-Analysis}, journal={Psychological Assessment}, volume={12}, year={19-30}, pages={1}, number={1} } @unpublished{GruGuhKum05, author={DanielGruhl and R. Guha and Ravi Kumar and Jasmine NOvak and Andrew Tomkins}, title={The Predictive Power of Online Chatter}, note={Daniel Gruhl IBM Almaden Research Center, 650 Harry Rd. San Jose, CA 95120 dgruhl@us.ibm.com}, year={2005}, month={August} } @article{GuRos93, author={X.S. Gu and Paul R. Rosenbaum}, title={Comparison of multivariate matching methods: structures, distances, and algorithms}, journal={Journal of Computational and Graphical Statistics}, volume={2}, year={1993}, pages={405-420} } @article{GutVan98, author={Sam Gutterman and Irwin T. Vanderhoof}, title={Forecasting Changes in Mortality: A Search for a Law of Causes and Effects}, journal={North American Actuarial Journal}, volume= 4, year= 1998, pages={135--138}, number= 2 } @article{Gwatkin00, author={Davidson R. Gwatkin}, title={Health Inequalities and the Health of the Poor}, journal= bull, year={2000}, optnumber={1}, optvolume={78}, optpages={3--18} } @article{Gwatkin03, author={Davidson Gwatkin}, title={How well do health programmes reach the poor?}, journal={Lancet}, volume={361}, year={2003}, pages={540-1}, month={February} } @article{HabBer95, author={J. Haberland and K.E. Bergmann}, title={The Lee-Carter Model of the Prognosis of Mortality in Germany}, journal={Gesundheitswesen}, volume={57}, year={1995}, pages={674--679}, month={October}, number={10}, note={article in German}, annote={Lee-Carter model is applied to West Germany.} } @article{Haenisch89, author={Dirk H{\"a}nisch}, title={Wahl- und Sozialdaten der Kreise und Gemeinden des Deutschen Reiches von 1920 bis 1933}, journal={Historical Social Research}, volume= 14, year= 1989, pages={39--67}, number= 1 } @incollection{Hagtvet80, author={Hagtvet, Bernt}, title={The Theory of Mass Society and the Collapse of the Weimar Republic}, booktitle={Who Were the Fascists}, publisher={Universitetsforlaget}, year= 1980, address={Oslo}, editor={al., S. U. Larsen et} } @article{hahn98, author={Jinyong Hahn}, title={On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects}, journal={Econometrica}, volume={66}, year={1998}, pages={315-31} } @unpublished{Hamermesh07, author={Daniel Hamermesh}, title={Replication in Economics: Discussion Paper No. 2760}, note={{IZA Discussion Paper : http://www.iza.org/publications/dps/}}, year={2007}, month={April}, address={University of Texas at Austin, NBER and IZA; iza@iza.org} } @book{Hamilton83, author={Hamilton, Richard}, title={Who Voted for Hitler?}, publisher={Princeton University Press}, year= 1983 } @book{Hamilton94, author={James Douglas Hamilton}, title={Time Series Analysis}, publisher={Princeton University Press}, year= 1994, address={Princeton} } @book{Hammond24, author={C.S. Hammond and Company}, title={[Map of] Germany}, publisher={C.S. Hammond and Company}, year= 1924, address={New York} } @article{Hand06, author={David J. Hand}, title={Classifier Technology and the Illusion of Progress}, journal={Statistical Science}, volume={21}, year={2006}, pages={1-14}, number={1} } @article{Hansen04, author={Ben B. Hansen}, title={Full Matching in an Observational Study of Coaching for the {SAT}}, journal={Journal of the American Statistical Association}, volume={99}, year={2004}, pages={609--618}, number={467} } @misc{Hansen05, author={Ben Hansen}, title={Optmatch: Software for Optimal Matching}, year= 2005, note={{http://www.stat.lsa.umich.edu/\~{}bbh/optmatch.html}} } @techreport{Hansen06, author={Ben Hansen}, title={Appraising Covariate Balance After Assignment to Treatment by Groups}, institution={Statistics Department, University of Michigan}, year= 2006, month={{April}}, number= 436 } @article{Harding03, author={David J. Harding}, title={Counterfactual Models of Neighborhood Effects: The Effect of Neighborhood Poverty on Dropping Out and Teenage Pregnancy}, journal={American Journal of Sociology}, volume={109}, year={2003}, pages={676-719}, month={November}, number={3} } @article{HarLis04, author={Glenn W. Harrison and John A. List}, title={Field Experiments}, journal={Journal of Economic Literature}, volume={XLII}, year={2004}, pages={1009-1055} } @article{HarSie75, author={H.O. Hartley and R.L. Sielken, Jr.}, title={A `Super-Population Viewpoint' for Finite Population Sampling}, journal={Biometrics}, volume={31}, year={1975}, pages={411-422}, month={June}, number={2} } @article{Hartung56, author={Fritz Hartung}, title={Zur Geschichte der Weimarer Republik}, journal={Historische Zeitschrift}, volume= 181, year= 1956, pages={581--591}, number= 3 } @book{Harvey91, author={Andrew Harvey}, title={Forecasting, Structural Time Series Models and the Kalman Filter}, publisher={Cambridge University Press}, year= 1991 } @book{Harville97, author={David A. Harville}, title={Matrix Algebra from a Statistician's Perspective}, publisher={Springer}, year= 1997, address={New York} } @unpublished{HasKanSta05, author={Justine S. Hastings and Thomas J. Kane and Douglas O. Staiger}, title={Evaluating a School Choice Lottery: The Importance of Heterogeneous Treatment Effects}, note={Hastings - Yale, Kane - Harvard GSE, Staiger, Dartmouth College}, year={2005}, month={November} } @unpublished{HasKanStai05b, author={Justine S. Hastings and Thomas J. Kane and Douglas O. Staiger and Jeffrey M. Weinstein}, title={Economic Outcomes and the Decision to Vote: The Effect of Randomized School Admissions on Voter Participation}, note={Working paper 11794, National Bureau of Economic Research, 1050 Mass. Ave., Cambridge}, year={2005}, month={November} } @unpublished{HasKanStai05c, author={Justine S. Hastings and Thomas J. Kane and Douglas O. Staiger}, title={parental Preferences and School Competition: Evidence froma Public School Choice Program}, note={National Bureau of Economic Research, 1050 Mass Ave. Camb. Working Paper 11805}, year={2005}, month={November} } @book{HasTib90, author = {Hastie, Trevor J. and Tibshirani, Robert}, title = {Generalized Additive Models}, publisher = {Chapman Hall}, year = {1990}, address = {London} } @article{HauDutBeh99, author = {Lene V. Hau and Z. Dutton and C.H. Behroozi and SE Harris}, title = {{Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas}}, journal = {Nature}, volume = {397}, year = {1999}, pages = {594-598}, number = {6720} } @article{HavNag05, author={Amelia M. Haviland and Daniel S. Nagin}, title={Causal Inferences with Group Based Trajectory models}, journal={Psychometrika}, volume={70}, year={2005}, pages={557-578}, month={September}, number={3} } @book{Hayes87, author={Hayes, Peter}, title={Industry and Ideology}, publisher={Cambridge University Press}, year={1987} } @article{Haynes02, author={R Brian Haynes}, title={What Kind of Evidence is it that Evidence-Based Medicine Advocates Want Health Care Providers and Consumers to Pay Attention to?}, journal={BMC Health Services Research}, volume= 2, year= 2002, month={March}, number= 3, note={{http://www.biomedcentral.com/1472-6963/2/3}} } @article{HaySchBla96, author={Judith C. Hayes, David Schoenfield, Dan Blazer, and Deborah T. Gold}, title={Global Self-Ratings of Health and Mortality: Hazards in North Carolina Piedmont}, journal={Journal of Clinical Epidemiology}, volume= 49, year= 1996, pages={{969-79}} } @article{Heberle43, author={Heberle, R.}, title={The Political Movements among the Rural People in Schleswig-Holstein, 1918-1932}, journal={Journal of Politics}, volume= 5, year= 1943, pages={3-26} } @book{Heberle45, author={Heberle, Rudolf}, title={From Democracy to Nazism}, publisher={Louisiana State University Press}, year= 1945, address={Baton Rouge} } @article{HecHidTod97, author={James J. Heckman and Hidehiko Hidehiko and Petra Todd}, title={Matching as an econometric evaluation estimator: evidence from evaluating a job training programme}, journal={Review of Economic Studies}, volume= 64, year= 1997, pages={605-654} } @article{HecIchSmi98, author={James J. Heckman and Hidehiko Ichimura and Jeffrey Smith and Petra Todd}, title={Characterizing selection bias using experimental data}, journal={Econometrika}, volume= 66, year= 1998, pages={1017-1098}, number= 5 } @article{HecIchTod97, author = {James Heckman and H. Ichimura and P. Todd}, title = {Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Program}, journal = {Review of Economic Studies}, volume = 64, month = {October}, year = 1997, pages = {605--654} } @article{Heckman06, author={James J. Heckman}, title={The Scientific Model of Causality}, journal={Sociological Methodology}, volume={35}, year={2006}, pages={1-98}, month={June}, number={1} } @article{Heckman06b, author={James J. Heckman}, title={Rejoinder: Response to Sobel}, journal={Sociological Methodology}, volume={35}, year={2006}, pages={135-162}, month={June}, number={1} } @article{Heckman76, author={James Heckman}, title={The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables, and Simple Estimator for Such Models}, journal={Annals of Economic and Social Measurement}, volume={5}, year={1976}, pages={475-492} } @incollection{Heckman92, author={James J. Heckman}, title={Randomization and Social Policy Evaluation}, booktitle={Evaluating Welfare and Training Programs}, publisher={Harvard University Press}, year={1992}, editor={Charles F. Manski and Irwin Garfinkel} } @inbook{HecRob85, author={J. Heckman and R. Robb}, title={Longitudional Analysis of Labor Market Data}, chapter={Alternative Methods for Evaluating the Impacts of Interventions}, year= 1985 , publisher= cup, editor={J. Heckman and B. Singer} } @article{HecSmi95, author={James J. Heckman and Jeffrey A. Smith}, title={Assessing the Case for Social Experiments}, journal={The Journal of Economic Perspectives}, volume={9}, year={1995}, pages={85-110}, number={2} } @article{HecSny97, author={James Heckman and James Snyder}, title={Linear Probabilty Models of the Demand for Attributes With an Empirical Application to Estimating the Preferences of Legislators}, journal={Rand Journal of Economics}, volume= 28, year= 1997, pages={142--189}, month={special issue}, number= 0 } @article{Heilbronner97, author={Heilbronner, Oded and M{\"u}hlberger, Detlef}, title={The Achilles' Heel of German Catholicism: ``Who Voted for Hitler?'' Revisited}, journal={European History Quarterly}, volume= 27, year= 1997, pages={221-249}, number= 2 } @article{HeiRub90, author={Daniel F. Heitjan and Donald Rubin}, title={Inference from Coarse Data via Multiple Imputation with Application to Age Heaping}, journal= jasa, volume= 85, year= 1990, pages={304--314} } @article{Heitjan89, author={Daniel F. Heitjan}, title={Inference from Grouped Continuous Data: A Review}, journal={Statistical Science}, volume={4}, year={1989}, pages={164-183} } @article{HelPol80, author={L. Heligman and J. H. Pollard}, title={The Age Pattern of Mortality}, journal={Journal of the Institute of Acturaries}, volume= 107, year= 1980, pages={49--80} } @article{Henderson24, author={R. Henderson}, title={A new method of graduation}, journal={Transaction of the Actuarial Society of America}, volume= 119, year= 1924, pages={457--526} } @unpublished{Herron98, author={Michael C. Herron}, title={Voting Abstention, and Individual Expectations in the 1992 Presidential Election}, note={Presented for the Midwest Political Science Assocation conference, Chicago}, year={1998} } @article{HerSek04, author={Michael C. Herron and Jasjeet S. Sekhon}, title={Black Candidates and Black Voters: Assessing the Impact of Candidate Race on Uncounted Vote Rates}, journal={Journal of Politics}, volume= 66, year= 2005, month={forthcoming November}, number= 4 } @article{Heymann02, author={Philip B. Heymann}, title={Civil Liberties and Human Rights in the Aftermath of September 11}, journal={Harvard Journal of Law and Public Policy}, volume= 25, year={2002}, pages={440--455} } @article{Hibbs82, author={Douglas Hibbs}, title={Economic Outcomes and Political Support for British Governments Among the Occupational Classes}, journal={American Political Science Review}, volume= 76, year= 1982, pages={259--279}, month={June} } @incollection{Hicks94, author={Alexander M. Hicks}, title={{Introduction to Pooling}}, booktitle={{The Comparative Political Economy of the Welfare State}}, publisher={Cambridge University Press}, year= 1994, address={New York}, editor={T. Janoski and A. Hicks} } @misc{HigYam00, author={Dave Higdon and Steve Yamamoto}, title={Bayesian Image Analysis in Scanning Magnetoresistance Microscopy}, year= 2000, howpublished={Discussion Paper \# 98-35, Institute of Statistics and Decision Sciences, Duke University} } @article{HilButLor77, author={Lewis E. Hill and Charles E. Butler and Stephen A. Lorenzen}, title={Inflation and the Destruction of Democracy: The Case of the Weimar Republic}, journal={Journal of Economic Issues}, volume= 11, year= 1977, pages={299-314}, number= 2 } @unpublished{Hill04, author={Jennifer Hill}, title={Reducing bias in treatment effect estimation in observational studies suffering from missing data}, note={Columbia University Instititute for Social and Economic Research and Policy (ISERP) Working Paper 04-01}, year= 2004 } @article{Hill87, author={Joe R. Hill}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={752-754}, month={September}, number={399} } @unpublished{HilPurWil07, author={Dustin Hillard and Stephen Purpura and John Wilkerson}, title={Bill Titles as Proxies for Bill Content: A Case Study of the Distillation of Meaning from a Political Corpus}, note={Prepared for delivery at 2007 annual Meeting of the Midwest Political Science Association, Chicago, IL}, year={2007}, month={April}, address={Univ of WA hillard@u.washington.edu; JFK School of Gov't. stephen_purpura@ksg07.harvard.edu; Univ of WA jwilker@u.washington.edu} } @article{HilRei06, author={Jennifer Hill and Jerome P. Reiter}, title={Interval estimation for treatment effects using propensity score matching}, journal={Statistics in Medicine}, volume={25}, year={2006}, pages={2230-2256} } @incollection{HilReiZan04, author={Jennifer Hill and J. Reiter and Elaine Zanutto}, title={A comparison of experimental and observational data analyses}, booktitle={Applied Bayesian Modeling and Causal Inference from an Incomplete-Data Perspective}, year= 2004 , editor={Andrew Gelman and Xiao-Li Meng} } @incollection{HilRubTho99, author={Jennifer Hill and Donald B. Rubin and Neal Thomas}, title={The Design of the {N}ew {Y}ork {S}chool {C}hoice {S}cholarship {P}rogram Evaluation}, booktitle={Research Designs: Inspired by the Work of Donald Campbell}, publisher={Sage}, year= 1999, address={Thousand Oaks, CA}, editor={L. Bickman}, chapter= 7, pages={155--180} } @article{HilTru77, author={Kenneth Hill and J Trussell}, title={Further Developments in Indirect Mortality Estimation}, journal={Population Studies}, volume= 31, year= 1977, pages={313--334} } @article{HilWalBro05, author={Jennifer L. Hill and Jane Waldfogel and Jeanne Brooks-Gunn and Wen-Jui Han}, title={Maternal Employment and Child Development: A Fresh Look Using Newer Methods}, journal={Developmental Psychology}, volume={41}, year={2005}, pages={833-850}, number={6} } @unpublished{Hindman07, author={Matthew Hindman}, title={Voice, Equality, and the Internet}, note={Book Manuscript}, year={2007} } @book{HinMun94, author={Melvin J. Hinich and Michael C. Munger}, title={Ideology and the Theory of Political Choice}, publisher={University of Michigan Press}, year={1994}, address={Ann Arbor} } @unpublished{HinTsiJoh03, author={Matthew Hindman and Kostas Tsioutsiouliklis and Judy A. Johnson}, title={Googlearchy: How a Few Heavily-Linked Sites Dominate Politics on the Web}, note={Midwest Political Science Association, Chicago, Illinois}, year={2003}, month={April} } @article{HirImbRid03, author = {Keisuke Hirano and Guido W. Imbens and Geert Ridder}, title = {Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score}, journal = {Econometrica}, volume = 71, year = 2003, pages = {1161--1189}, month = {July}, number = 4 } @article{HirImbRub00, author = {Keisuke Hirano and Guido W. Imbens and Donald B. Rubin and Xiao-Hua Zhou}, title = {Assessing the effect of an influenza vaccine in an encouragement design}, journal = {Biostatistics}, volume = {1}, year = {2000}, pages = {69-88}, number = {1} } @article{HirRubZho00, author={Keisuke Hirano and Guido W. Imbens and Donald B. Rubin and Ziao-Hua Zhou}, title={Assessing the effect of an influenza vaccine in an encouragement design}, journal={Biostatistics}, volume={1}, year={2000}, pages={69-88}, number={1} } @unpublished{Hiscox04, author={Michael J. Hiscox}, title={Through a Glass and Darkly: Attitudes Toward International Trade and the Curious Effects of Issue Framing}, note={{http://www.experimentcentral.org/data/data.php?pid=136}}, year= 2004, address={Chicago}, organization={Annual meetings of the American Political Science Association} } @article{Ho91, author={Ho, Suzanne C.}, title={Health and Social Predictors of Mortality in an Elderly Chinese Cohort}, journal={American Journal of Epidemiology}, volume= 133, year= 1991, pages={{209-21}}, number= 9, keywords={aged, cohort studies, health status, mortality, social environment} } @article{HoeFesVan97, author={Nancy Hoeymans, MSc, eta al}, title={Age, time, and cohort effects on functional status and self-rated health in elderly men}, journal={American Journal of Public Health}, volume= 87, year= 1997, pages={{1620-25}}, number= 10 } @article{HoeMadRaf99, author={Jennifer A. Hoeting and David Madigan and Adrian E. Raftery, Adrian E. and Chris T. Volinsky}, title={Bayesian Model Averaging: A Tutorial}, journal={Statistical Science}, volume= 14, year= 1999, pages={382-417}, number= 4 } @article{HoeMadRaf99, author={J.A. Hoeting and D. Madigan and Adrian E. Raftery and C. T. Volinsky}, title={Bayesian Model Averaging: A Tutorial (with discussion)}, journal={Statistical Science}, volume= 14, year= 1999, pages={382--417}, month={{corrected version at http://www.stat.washington.edu/www/research/online/hoeting1999.pdf}} } @article{HojSteAab99, author={Lars Hoj and Jakob Stensballe and Peter Aaby}, title={Maternal mortality in Guinea-Bissau: the use of verbal autopsy in a mutli-ethnic population}, journal={International Journal of Epidemiology}, volume={28}, year={1999}, pages={70-76} } @article{holland86, author={Paul W. Holland}, title={Statistics and Causal Inference}, journal={Journal of the American Statistical Association}, volume= 81, year= 1986, pages={945--960} } @inbook{Holmes95, author={Stephen Holmes}, title={Passions and constraint: on the theory of liberal democracy}, chapter={5 Precommitment and the Paradox of Democracy}, year={1995}, publisher={University of Chicago Press}, pages={134 - 177}, address={Chicago} } @misc{HolMulKal00, author={F.W. Hollmann and T.J. Mulder and J.E. Kallan}, title={{Methodology and Assumptions for the Population Projections of the United States: 1999 to 2100}}, year= 2000 , howpublished={Working Paper 38, Population Division, U.S. Bureau of Census} } @article{HolQuiRap03, author={Harry J. Holzer and John M. Quigley and Steven Raphael}, title={Public Transit and the Spatial Distribution of Minority Employment: Evidence from a Natural Experiment}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={415-441}, number={3} } @article{Holtfrerich84, author = {Carl-Ludwig Holtfrerich}, title = {Zu hohe L{\"o}hne in der Weimarer Republik? Bemerkungen zur Borchardt-These}, journal = {Geschichte und Gesellschaft}, volume = 10, year = 1984, number = 1 } @book{HolWai93, title={Differential Item Functioning}, publisher={Lawrence Erlbaum}, year= 1993, editor={Paul W. Holland and Howard Wainer}, address={Hillsdale, N.J.} } @book{HomUga06, title={Decentralizing Health Services in Mexico}, publisher={Center for U.S. -Mexican Studies, UCSD}, year={2006}, editor={N{\'u}ria Homedes and Antonio Ugalde}, address={La Jolla, California} } @book{HopVau02, title={Paleodemography}, publisher={Cambridge University Press}, year={2002}, editor={Robert D. Hoppa and James W. Vaupel}, address={Cambridge, UK} } @article{Horowitz01, author={Joel L. Horowitz}, title={{The Bootstrap}}, journal={Handbook of Econometrics}, volume={5}, year={2001}, pages={3159-3228}, publisher={Elsevier} } @article{Howell04, author={William G. Howell}, title={Dynamic Selection Effects in Means-Tested, Urban School Voucher Programs}, journal={Journal of Policy Analysis and Management}, volume={23}, year={2004}, pages={225-250}, number={2} } @article{Hsieh85, author={David A. Hsieh and Charles F. Manski and Daniel McFadden}, title={Estimation of Response Probabilities from Augmented Retrospective Observations}, journal={Journal of the American Statistical Association}, volume= 80, year= 1985, pages={651-652}, month={September}, number= 391 } @book{HucSpr95, author={R. Robert Huckfeldt and John Sprague}, title={Citizens, Politics, and Social Communication}, publisher={Cambridge University Press}, year= 1995, address={New York, NY} } @article{HumRogEbe98, author={R.A. Hummer and R.G. Rogers and I.W. Eberstein}, title={Sociodemographic Differentials in Adult Mortality: a Review of Analytic Approaches}, journal={Population and Development Review}, year={1998}, optnumber={2}, optvolume={24}, optpages={553--578} } @article{IacPor08, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Random Recursive Partitioning: a matching method for the estimation of the average treatment effect}, journal = {Journal of Applied Econometrics}, volume = {24}, pages = {163-185}, year = {2009} } @unpublished{IacPor06b, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Missing data imputation, matching and other applications of Random Recursive Partitioning}, journal = {Computational Statistics and Data Analysis}, volume = {52}, number = {2}, pages = {773-789}, year = {2007} } @article{IbrChe97, author={Joseph G. Ibrahim and Ming-Hui Chen}, title={Predictive Variable Selection for the Multivariate Linear Model}, journal={Biometrics}, volume= 53, year= 1997, pages={465--478}, month={June} } @article{IdlAng90, author={Ellen Idler and Ronald Angel}, title={Self-Rated Health and Mortality in the NHANES-I Epidemiologic Follow-Up Study}, journal={American Journal of Public Health}, volume= 80, year= 1990, pages={{446-52}} } @article{IdlBen97, author={Ellen L. Idler and Yael Benyamini}, title={Self-Rated Health and Mortality: A Review of Twenty-Seven Community Studies}, journal={Journal of Health and Social Behavior}, volume= 38, year= 1997, pages={{21-37}} } @article{Idler03, author={Ellen L. Idler}, title={Discussion: Gender Differences in Self-Rated Health, in Mortality, and in the Relationship Between the Two. }, journal={The Gerontologist}, volume= 43, year= 2003, pages={{372-75}}, number= 4 } @inbook{Idler92, author={Ellen L. Idler}, title={Self-Assessed Health and Mortality: A Review of Studies}, chapter= 2, year= 1992, publisher={{John Wiley \& Sons, Ltd.}}, pages={{33-54}}, volume= 1, journal={International Review of Health Psychology} } @article{IdlHudLev99, author={Ellen L. Idler, Shawna V. Hudson, and Howard Leventhal}, title={The Meanings of Self-Rated Health- A Qualitative and Quantitative Approach}, journal={Research on Aging}, volume= 21, year= 1999, pages={{458-76}}, month={{May}}, number= 3 } @article{IdlKas91, author={Ellen L. Idler and Stanislav Kasl}, title={Health Perceptions and Survival: Do Global Evaluations of Health Status Really Predict Mortality?}, journal={Journal of Gerontology: Social Sciences}, volume= 46, year= 191, pages={{S55-65}}, number= 2 } @article{IdlKas95, author={Ellen Idler and Stanislav Kasl}, title={Self-Ratings of Health: Do they Also Predict Change in Functional Ability?}, journal={Journal of Gerontology: Social Sciences}, volume={{50B}}, year= 1995, pages={{S344-53}}, number= 6 } @article{IdlKasLem90, author={Ellen L. Idler, Stanislav V. Kasl, and Jon H. Lemke}, title={Self-Evaluated Health and Mortality Among the Elderly in New Haven, Connecticut, and Iowa and Washington Counties, Iowa, 1982-1986}, journal={American Journal of Epidemiology}, volume= 131, year= 1990, pages={{91-103}} } @article{IdlRusDav00, author={Ellen Idler, Louise Russell, and Diane Davis}, title={Survival, Functional Limitations, and Self-Rated Health in the NHANES I Epidemiological Follow-Up Study, 1992}, journal={American Journal of Epidemiology}, volume= 152, year= 2000, pages={{874-83}}, number= 4 } @article{IhaGen96, author={Ross Ihaka and Robert Gentleman}, title={R: A Language for Data Analysis and Graphics}, journal={Journal of Computational and Graphical Statistics}, volume={5}, year={1996}, pages={299-314}, month={September}, number={3} } @article{ImaDyk04, author={Kosuke Imai and David A. van Dyk}, title={Causal Inference with General Treatment Treatment Regimes: Generalizing the Propensity Score}, journal= jasa, volume= 99, year= 2004, pages={854--866}, month={September}, number= 467 } @article{Imai05, author={Kosuke Imai}, title={Do Get-Out-The-Vote Calls Reduce Turnout? The Importance of Statistical Methods for Field Experiments}, journal= apsr, volume={99}, year={2005}, pages={283--300}, month={May}, number={2} } @techreport{Imai07, author={Imai, Kosuke}, title={Randomization-based Inference and Efficiency Analysis in Experiments under the Matched-Pair Design}, institution={Department of Politics, Princeton University}, year={2007} } @article{Imbens00, author={Guido W. Imbens}, title={The Role of the Propensity Score in Estimating Dose-Response Functions}, journal={Biometrika}, volume= 87, year={2000}, pages={706-710}, number= 3 } @article{Imbens03, author={Guido W. Imbens}, title={Sensitivity to exogeneity assumptions in program evaluation}, journal={American Economic Review}, volume= 96, year= 2003, pages={126-132}, number= 2 } @article{Imbens04, author={Guido W. Imbens}, title={Nonparametric estimation of average treatment effects under exogeneity: a review}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={4-29}, number= 1 } @unpublished{ImbensNDb, author={Imbens, Guido W. }, title={Semiparametric Estimation of Average Treatment Effects under Exogeneity: A Review}, note={Manuscript, UC Berkeley}, year={2003} } @article{ImbRub97, author={Guido W. Imbens and Donald B. Rubin}, title={Bayesian Inference for Causal Effects in Randomized Experiements with Noncompliance}, journal={The Annals of Statistics}, volume={25}, year={1997}, pages={305-327}, month={February}, number={1} } @unpublished{ImbRubND, author={Guido W. Imbens and Donald B. Rubin}, title={Causal Inference}, note={Book Manuscript}, year= 2002 } @book{IngMcC96, author = {Jorge Inguez and James A. McCann}, title = {Democratizing Mexico: Public Opinion and Electoral Choice}, address = {Baltimore}, publisher = {Johns Hopkins University Press}, year = {1996} } @book{Insua00, author={David R. Insua and Ruggeri Fabrizio}, title={Bayesian Analysis}, publisher={Springer-Verlag}, year= 2000 } @article{IrwJonMun96, author={Julie R. Irwin and Lawrence E. Jones and David Mundo}, title={Risk Perception and Victim Perception: The Judgment of HIV Cases}, journal={Journal of Behavioral Decision Making}, volume= 9, year= 1996, pages={1--22} } @article{IslRahMah96, author={M. Aminul Islam and M. Mujibur Rahman and D. Mahalanabis and A.K.S. Mahmudur Rahman}, title={Death ina Diarrhoeal Cohort of Infants and Young Children Soon After Discharge From Hospital: Risk Factors and Causes by Verbal Autopsy}, journal={Journal of Tropical Pediatrics}, volume={42}, year={1996}, pages={342-347}, month={December } } @article{IslRahMah96, author={M. Aminul Islam and M. Mujibur Rahman and D. Mahalanabis and A.K.S. Mahmudur Rahman}, title={Death ina Diarrhoeal Cohort of Infants and Young Children Soon After Discharge From Hospital: Risk Factors and Causes by Verbal Autopsy}, journal={Journal of Tropical Pediatrics}, volume={42}, year={1996}, pages={342-347}, month={December } } @misc{ISO97, author={ISO}, title={The Dublin Core Metadata Element Set}, year={1997}, note={{http://www.collectionscanada.ca/iso/tc46sc9/standard/690-2e.htm}} } @article{Iversen01, author={Edwin S. Iversen, Jr.}, title={Spatially disaggregated Real Estate Indices}, journal={Journal of Business \& Economic Statistics}, volume={19}, year={2001}, pages={341 - 357}, month={July}, number={3} } @article{Jackman00, author={Simon Jackman}, title={Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo}, journal={American Journal of Political Science}, volume={44}, year={2000}, pages={375-404}, month={April}, number={2} } @techreport{JagRob03, author={Carol Jagger and Dr. Jean-Marie Robine}, title={The Health of Adults in the Eurpoean Union}, institution={Press and Communication, Unit "Analysis and Public Opinion"}, year= 2003, month={{June}} } @article{JagSpiCla93, author={C. Jagger, N.A. Spiers, and M. Clarke}, title={Factors Associated with Decline in Function, Institutionalization and Mortality of Elderly People}, journal={Age and Ageing }, volume= 22, year= 1993, pages={{190-97}} } @incollection{James90, author={Harold James}, title={Economic Reasons for the Collapse of the Weimar Republic}, booktitle={Weimar: Why Did German Democracy Fail?}, publisher={Weidenfeld and Nicolson}, year= 1990, address={London}, pages={30-57} } @article{JeeGimSug98, author={Sun Ha Jee and Il Soon Kim and Il Suh and Dongchun Shin and Lawrence J Appel}, title={Projected Mortality from Lung Cancer in South Korea, 1980-2004}, journal={International Journal of Epidemiology}, volume= 27, year= 1998, pages={365--369} } @inproceedings{JefBarRod01, author={William H. Jefferys and Thomas G. Barnes and Raquel Rodrigues and James O. Berger and Peter M{\"u}ller}, title={Model Selection for Cepheid Star Oscillations}, booktitle={Bayesian methods, with Applications to Science, Policy, and Official Statistics}, year={2001}, publisher={Official Publications of the European Communities, Luxembourg}, editor={E. George and P. Nanopoulos}, pages={253 --252} } @unpublished{JefBarRod06, author={William H. Jefferys and Thomas G. Barnes and Raquel Rodrigues and James O. Berger and Peter Muller}, title={Nonparametric Regression with Wavelet Based Priors: Efficient Posterior Simulation for Unequally Spaced Data and Dependent Priors}, note={Jefferys, Barnes Rodriques, Univ of Tx at Austin, Berger and Muller, Duke Univ.}, year={2006} } @book{Jeffreys61, author={H. Jeffreys}, title={Theory of Probability}, publisher={Clarendon Press}, year= 1961, address={Oxford}, edition={3rd (1st edn., 1939} } @book{JohAlb99, author={Valen E. Johnson and James H. Albert}, title={Ordinal Data Modeling}, publisher={Springer}, year= 1999, address={New York} } @article{Johnson01, author={David H. Johnson}, title={Sharing Data: It's Time to End Psychology's Guild Approach}, journal={Observer (American Psychological Society)}, volume= 14, year= 2001, month={October}, number= 8, note={{http://www.psychologicalscience.org/observer/1001/data.html}} } @inbook{Johnson96, author={Wesley O. Johnson}, title={Predictive Influence in the Lognormal Survival Essays in Honor of Seymour Geisser}, year={1996}, publisher={Elsevier}, pages={104-121}, address={Amsterdam}, editor={J. Lee and A. Zellner and W. Johnson} } @article{Johnson98, author={Timothy P. Johnson}, title={Approaches to Equivalence in Cross-Cultural and Cross-National Survey Research}, journal={ZUMA Nachrichten Spezial}, volume= 3, year= 1998, pages={1--40}, month={January} } @book{JonBau05, author={Bryan D. Jones and Frank R. Baumgartner}, title={The Politics of Attention: How Government Prioritizes Problems}, publisher={University of Chicago Press}, year={2005}, address={Chicago, IL} } @article{JonDagGon04, author={Alison Snow Jones and Ralph B. D'Agostino Jr. and Edward W. Gondolf and Alex Heckert}, title={Assessing the Effectof Batterer Program Completion on Reassault Using Propsensity Scores}, journal={Journal of Interpersonal Violence}, volume={19}, year={2004}, pages={1002-1020}, month={September}, number={9} } @book{Jones88, author = {Jones, Larry Eugene}, title = {German Liberalism and the Dissolution of the Weimar Party System}, publisher = {The University of North Carolina Press}, year = 1988, address = {Chapel Hill and London} } @unpublished{JonKimSta05, author={Bryan D. Jones and Chang-Jin Kim and Richard Startz}, title={A Markov Switching Model of Congressional Partisan Regimes}, note={University of Washington, Center for American Politics and Public Policy, Box 353530 Seattle, WA 98195-3530, bdjones@u.washington.edu}, year={2005} } @article{Jordan1874, author={C. Jordan}, title={{M{\'e}moire sur les formes bilin{\'e}aires}}, journal={Comptes Rendus de l' Acad{\'e}mie des Sciences, Paris}, volume= 78, year= 1874, pages={614--617} } @article{JylGurFer98, author={Maria Jylha, Jack Guralnik, Luigi Jokela, et al}, title={Is self-rated health comparable across cultures and genders?}, journal={Journal of Gerontology: Social Sciences}, volume={{53B}}, year= 1998, pages={{S144-52}} } @incollection{Kadane80, author={Joseph B. Kadane}, title={Predictive and Structural Methods for Eliciting Prior Distributions}, booktitle={Bayesian Analysis in Econometrics and Statistics}, publisher={North-Holland}, year= 1980, editor={Arnold Zellner} } @article{KadDicWin80, author={Joseph B. Kadane and James M. Dickey and Robert L. Winkler and Wayne S. Smith and Stephen C. Peters}, title={Interactive Elicitation of Opinion for a Normal Linear Model}, journal={Journal of the American Statistical Association}, volume={75}, year={1980}, pages={845-854}, month={December}, number={372} } @article{Kahn86, author={Paul W. Kahn}, title={Gramm-Rudman and the Capacity of Congress to Control the Future}, journal={Hastings Constitutional Law Quarterly}, volume={13}, year={1986}, pages={185-231} } @article{KahSchSun98, author={Daniel Kahneman and David Schkade and Cass R. Sunstein}, title={Shared Outrage and Erratic Awards: The Psychology of Punitive Damages}, journal={Journal of Risk and Uncertainty}, volume= 16, year= 1998, pages={49--86}, month={April} } @article{KahTolGar00, author={Kathleen Kahn and Stephen M. Tollman and Michel Garenne and John S.S.Gear}, title={Validation and Application of Verbal autosies in a Rural Area of South Africa}, journal={Tropical Medicine and International Health}, volume={5}, year={2000}, pages={824-831}, number={11} } @article{KalGraBla90, author={Henry D. Kalter and Ronald H. Gary and Robert E. Black and Socorro A. Gultiano}, title={Validation of Postmortem Interviews to Ascertain Selected Causes of Death in Children}, journal={International Journal of Epidemiology}, volume={19}, year={1990}, pages={380-386}, number={2} } @article{KalHosBur99, author={Henry D. Kalter and Munir Hossain and Gilbert Burnham and Naila Z. Khan and Samir K. Saha and Md Anwar Ali and Robert E. Black}, title={Validation of caregiver interviews to diagnose common causes of severe neonatal illness}, journal={Paediatric and Perinatal Epidemiology}, volume={13}, year={1999}, pages={99-113} } @article{KalHosBur99, author={Henry D. Kalter and Munir Hossain and Gilbert Burnham and Naila Z. Khan and Samir K. Saha and Md Anwar Ali and Robert E. Black}, title={Validation of caregiver interviews to diagnose common causes of severe neonatal illness}, journal={Paediatric and Perinatal Epidemiology}, volume={13}, year={1999}, pages={99-113} } @article{Kallay84, author={Michael Kallay}, title={The Complexity of Incremental Convex Hull Algorithms in Rd.}, journal={Informational Processes Letter}, volume={19}, year={1984}, pages={197}, number={4} } @article{Kallay86, author={Michael Kallay}, title={Convex Hull Made Easy}, journal={Information Processing Letters}, volume={22}, year={1986}, month={March}, issue={3} } @article{Kalter92, author={Henry Kalter}, title={The Validation of interviews for estimating morbidity}, journal={Health Policy and Planning}, volume={7}, year={1992}, pages={30-39}, number={1} } @article{KapBarLus88, author={George Kaplan, Vita Barell, and Ayala Lusky}, title={Subjective State of Health and Survival in Elderly Adults}, journal={Journal of Gerontology: Social Sciences}, volume= 43, year= 1988, pages={{S114-20}} } @article{KapGolEve96, author={George A Kaplan, Debbie Goldberg, Susan Everson, et al}, title={Perceived Health Status and Morbidity and Mortality: Evidence from the Kuopio Ischaemic Heart Disease Risk Factor Study}, journal={International Journal of Epidemiology}, volume= 25, year= 1996, pages={{259-65}} } @article{Karaagaoglu99, author={Ergun Karaagaoglu}, title={Estimation of the Prevalence of a Disease from Screening Tests}, journal={Tropical Journal of Medical Sciences}, volume={29}, year={1999}, pages={425-430} } @article{KasCarGel98, author={Robert E. Kass and Bradley P. Carlin and Andrew Gelman and Radford M. Neal}, title={Markov chain Monte Carlo in Practice: A Roundtable Discussion}, journal={The American Statistician}, volume={52}, year={1998}, pages={93-100}, number={2} } @article{KasWas96, author={Robert E. Kass and Larry Wasserman}, title={The Selection of Prior Distributions by Formal Rules}, journal={Journal of the American Statistical Association}, volume= 91, year= 1996, pages={1343--1370}, month={September}, number= 435 } @article{KatTri02, author={Neal K. Katyal and Laurence H. Tribe}, title={Waging War, Deciding Guilt: Trying the Military Tribunals}, journal= ylj, volume= 111, year={2002}, pages={1259--1310} } @article{Kawada03, author={Tomoyuki Kawada}, title={Self rated health and life prognosis}, journal={Archives of Medical Research}, volume= 34, year= 2003, pages={{343-47}} } @book{Kele72, author={Kele, M.}, title={Nazis and Workers}, publisher={University of North Carolina Press}, year= 1972, address={Chapel Hill} } @article{Kelly06, author={Kevin Kelly}, title={{Scan this Book}}, journal={The New York Times Magazine}, year={2006}, month={October 11} } @article{KenStu50, author={M.G. Kendall and A. Stuart}, title={The Law of the Cubic Proportion in election Results}, journal={The British journal of Sociology}, volume={1}, year={1950}, pages={183-196}, month={September}, number={3} } @book{Keyfitz68, author={N. Keyfitz}, title={Introduction to the Mathematics of Population}, publisher={Addison Wesley}, year= 1968, address={Reading, MA} } @article{Keyfitz82, author={N. Keyfitz}, title={Choice of Function for mortality Analysis: Effective Forecasting Depends on a Minimum Parameter Representation}, journal={Theoretical Population Biology}, volume= 21, year= 1982, pages={239--252} } @unpublished{KimHov04, author={Soo-Min Kim and Eduard Hovy}, title={Determining the Sentiment of Opinions}, note={Soo-Min Kim Information Sciences Inst. Univ. of Southern Calif. 4676 Admiralty Way, Marina del Rey, CA 90292-6695; skim@isi.edu}, year={04} } @unpublished{KimHov04, author={Soo-Min Kim and Eduard Hovy}, title={Determining the Sentiment of Opinions}, note={Soo-Min Kim Information Sciences Inst. Univ. of Southern Calif. 4676 Admiralty Way, Marina del Rey, CA 90292-6695; skim@isi.edu}, year={04} } @article{KimWah70, author={G.S. Kimeldorf and G. Wahba}, title={A correspondence between {Bayesian} estimation on stochastic processes and smoothing by splines}, journal={Ann. Math. Statist.}, volume={41}, year={1970}, pages={495--502}, number={2} } @article{KinAubHer98, author={Hilary King and Ronald E. Aubert and William H. Herman}, title={Global Burden of Diabetes, 1995-2025}, journal={Diabetes Care}, volume= 21, year= 1998, pages={1414--1431} } @article{Kinder86, author={Donald R. Kinder}, title={The Continuing American Dilemma: White Resistance to Racial Change 40 years After Myrdal}, journal={Journal of Social Issues}, volume={42}, year={1986}, pages={151-71} } @book{KinPal93, title={Experimental Foundations of Political Science}, publisher={University of Michigan Press}, year= 1993, editor={Donald R. Kinder and Thomas R. Palfrey}, address={Ann Arbor} } @article{KinSea81, author={Donald R. Kinder and David O. Sears}, title={Prejudice and Politics: Symbolic Racism Versus Racial Threats to the Good Life}, journal={Journal of Personality and Social Psychology}, volume={40}, year={1981}, pages={414-31} } @article{Kirchgaessner85, author={Gebhard Kirchg{\"a}ssner}, title={Rationality, Causality and the Relation between Economic Conditions and the Popularity of Parties}, journal={European Economic Review}, volume= 28, year= 1985, pages={243-268}, month={June/July} } @article{Kish49, author={Kish, Leslie}, title={{A Procedure for Objective Respondent Selection within the Household}}, journal={Journal of the American Statistical Association}, volume={44}, year={1949}, pages={380--387}, number={247} } @article{KlaDon97, author={Neil Klar and Allan Donner}, title={The Merits of Matching in Community Intervention Trials: A Cautionary Tale}, journal={Statistics in Medicine}, volume={16}, year={1997}, pages={1753-1764}, number={15} } @article{KlaDon98, author={Neil Klar and Allan Donner}, title={Authors' Reply: The Merits of Matching in Community Intervention Trials: A Cautionary Tale}, journal={Statistics in Medicine}, volume={17}, year={1998}, pages={2151-2152} } @article{Klarman97, author={Michael J. Klarman}, title={Majoritarian Judicial Review: The Entrenchment Problem}, journal={The Georgetown Law Journal}, volume={85}, year={1997}, pages={491-554} } @article{Klee80, author={Victor Klee}, title={On the Complexity of d-Dimensional Voronoi Diagrams}, journal={Archive der Mathematik}, volume={34}, year={1980}, pages={75--80} } @book{KliSmi99, author={Philip A. Klinker and Rogers M. Smith}, title={The Unsteady March: The Rise and Decline of Racial Equality in America}, publisher={?}, year= 1999 } @article{KluBerBra06, author={Klump, J. and Bertelmann, R. and Brase, J. and Diepenbroek, M. and Grobe, H. and H{\"o}ck, H. and Lautenschlager, M. and Schindler, U. and Sens, I. and W{\"a}chter, J.}, title={{Data publication in the open access initiative}}, journal={Data Science Journal}, volume={5}, year={2006}, pages={79--83}, number={0} } @article{Knorr-Held00, author={Leonhard Knorr-Held}, title={Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk}, journal={Statistics in Medicine}, volume= 19, year= 2000, pages={2555-2567} } @article{Koch02, author={Koch, Jeffrey M.}, title={Gender Stereotypes and Citizens' Impressions of House Candidates' Ideological Orientation}, journal={American Journal of Political Science}, volume= 46, year= 2002, pages={453--462} } @article{KohAlt05, author={Isaac S. Kohane and Russ B Altman}, title={Health-Information Altruists --- A Potentially Critical Resource}, journal={New England Journal of Medicine}, volume= 19, year= 2005, pages={2074--2077}, month={November}, number= 353 } @article{KohAlt05, author={Isaac S. Kohane and Russ B. Altman}, title={Health-Information Altruists - A Potentially Critical Resource}, journal={New England Journal of Medicine}, volume={353}, year={2005}, pages={2074-2077}, month={November}, number={19} } @book{Kolb88, author={Eberhard Kolb}, title={The Weimar Republic}, publisher={Unwin Hyman}, year= 1988, address={London} } @article{KolBur91, author={Kolbe, R.H. and Burnett, M.S.}, title={{Content-Analysis Research: An Examination of Applications with Directives for Improving Research Reliability and Objectivity}}, journal={The Journal of Consumer Research}, volume={18}, year={1991}, pages={243--250}, number={2} } @unpublished{KolFinJos06, author={Pranam Kolari and Tim Finin and Anupam Joshi}, title={{SVMs for the Blogosphere: Blog Identification and Splog Detection}}, note={American Association for Artificial Intelligence Spring Symposium on Computational Approaches to Analyzing Weblogs}, year={2006} } @article{KolVliKap00, author={H. Koivumaa-Honkanen et al}, title={Self-Reported Life Satisfaction and 20-Year Mortality in Healthy Finnish Adults}, journal={American Journal of Epedimiology}, volume= 152, year= 2000, pages={{983-91}} } @article{KonDes01, author={M.M. Konstantareas and N. Desbois}, title={Preschoolers Perceptions of the Unfairness of Maternal Disciplinary Practices}, journal={Child Abuse \& Neglect}, volume= 25, year= 2001, pages={473--488}, month={April}, number= 4 } @article{KooVanBon94, author={Marc A. Koopmanschap and Leona Van Roijen and Luc Bonneux and Jan J. Barendregt}, title={Current and Future Costs of Cancer}, journal={European Journal of Cancer}, volume={30A}, year= 1994, pages={60--65}, number= 1 } @unpublished{KopSch05, author={Moshe Koppel and Jonathan Schler}, title={The Importance of Neutral Examples for Learning Sentiment}, note={Dept. of Computer Science Bar-Ilan University, Ramat-Gan Israel koppel,schlerj@cs.biu.ac.il}, year={05} } @unpublished{KopSch05, author={Moshe Koppel and Jonathan Schler}, title={The Importance of Neutral Examples for Learning Sentiment}, note={Dept. of Computer Science Bar-Ilan University, Ramat-Gan Israel koppel,schlerj@cs.biu.ac.il}, year={05} } @article{KorJorLet99, author={A E Kirtne, A F Jorm, Z Jiao, et al}, title={Health, Cognitive and psychosocial factors as predictors of mortality in an elderly community sample}, journal={Journal of Epidemiology and Communtiy Health }, volume= 53, year= 1999, pages={{83-8}} } @book{Kornhauser59, author={Kornhauser, W.}, title={The Politics of Mass Society}, publisher={The Free Press}, year= 1959, address={New York} } @article{KorWilGou03, author={Eline L. Korenromp and Brian G. Williams and Eleanor Gouws and christopher Dye and Robert W. Snow}, title={Measurement of trends in childhood malaria mortality in Africa: an assessment of progress toward targets based on verbal autopsy}, journal={The Lancet Infectious Diseases}, volume={3}, year={2003}, pages={349-58} } @book{Koshar86, author={Koshar, R.}, title={Social Life, Local Politics, and Nazism}, publisher={University of North Carolina Press}, year= 1986, address={Chapel Hill} } @article{KosHeiZak05, author={Michael Kosfeld and Markus Heinrichs and Paul J. Zak and Urs Fischbacher and Ernst Fehr}, title={Oxytocin Increases Trust in Humans}, journal={Nature}, volume={435}, year={2005}, pages={673-676}, month={June} } @article{KraJay94, author={Neal M. Krause, PhD, and Gina M. Jay, PhD}, title={What do Global Self-Rated Health Items Measure?}, journal={Medical Care}, volume= 32, year= 1994, pages={{930-42}} } @article{KraSha84, author={M.S. Kramer and S.H. Shapiro}, title={{Scientific challenges in the application of randomized trials}}, journal={Journal of the American Medical Association}, volume= 252, year= 1984 , pages={2739-45}, number= 19 } @article{KriBacRob07, author={Samuel Krislov and Charles Backstrom and Leonard Robins}, title={When Texans Gerrymander: Much Power, Continuous Politics, Little Law} } @book{Krippendorff04, author={Krippendorff, D.K.}, title={{Content Analysis: An Introduction to Its Methodology}}, publisher={Thousand Oaks, CA: Sage}, year={2004} } @article{Kruedener85, author={J{\"u}rgen von Kruedener}, title={Die {\"U}berforderung der Weimarer Republic als Sozialstaat}, journal={Geschichte und Gesellschaft}, volume= 1, year= 1985, pages={358--376}, number= 3 } @article{Krueger90, author={Anne O. Krueger}, title={Government Failures in Development}, journal={The Journal of Economic Perspectives}, volume={4}, year={1990}, pages={9-23}, number={3} } @article{Krueger99, author={Alan Krueger}, title={Experimental Estimates of Education Production Functions}, journal={Quarterly Journal of Economics}, volume={114}, year={1999}, pages={497-532}, month={May}, number={2} } @article{KrzWys86, author={Mical Krzyzanowski and Miroslaw Wysocki}, title={The Relation of Thirteen-Year Mortality to Ventilatory Impairment and Other Respiratory Symptoms: The Cracow Study}, journal={International Journal of Epidemiology}, volume= 15, year= 1986, pages={{56-64}}, number= 1 } @article{KucMwaLes06, author={Helmut K{\"u}chenohoff and Samuel M. Mwalili and Emmanuel Lassaffre}, title={A General Method for Dealing with Misclassification in Regression: The Misclassification SIMEX}, journal={Biometrics}, volume={62}, year={2006}, pages={85-96}, month={March} } @article{KulLei51, author={S. Kullback and R.A. Leibler}, title={On Information and Sufficiency}, journal={Annals of Mathematical Statistics}, volume= 22, year= 1951, pages={79--86}, month={March}, number= 1 } @unpublished{KumAll04, author={Giridhar Kumaran and James Allan}, title={Text Classification and Named Entities for New Event Detection}, note={Center for Intelligent Information Retreival, Department of Computer Science, Univ of MA, Amherst}, year={2004}, month={July} } @unpublished{KumAll04, author={Giridhar Kumaran and James Allan}, title={Text Classification and Named Entities for New Event Detection}, note={Center for Intelligent Information Retreival, Department of Computer Science, Univ of MA, Amherst}, year={2004}, month={July} } @article{KunGeuvan95, author={Anton Kunst and J.J. Geurts and J. van den Berg}, title={International variation in socioeconomic inequalities in self reported health}, journal={Journal of Epidemiology and Community Health}, year={1995}, optnumber={2}, optvolume={49}, optpages={117--123} } @article{KunGroMac98, author={A.E. Kunst and F. Gorenhof and J.P. Mackenbach and E.W. Health}, title={Occupational class and cause specific mortality in middle aged men in 11 European countries: comparison of population based studies. EU Working Group on Socioeconomic Inequalities in Health }, journal= bmj, year={1998}, optvolume={316}, optpages={1636--1642} } @article{KunGroMac98b, author={Anton Kunst and F. Groenhof and Johann Mackenbach}, title={Mortality by occupational class among men 30--64 years in 11 European countries}, journal= ssm, volume= 46, year= 1998, pages={1459-1476}, number= 11 } @article{Kunsch87, author={Hans R. K{\"u}nsch}, title={Intrinsic Autoregressions and Related Models on the Two-Dimensional Lattice}, journal={Biometrika}, volume= 74, year= 1987, pages={517-524}, number= 3 } @article{Kuo01, author={Yen-Hong Kuo}, title={Extrapolation of Association Between Two Variables in Four General Medical Journals}, year= 2001 , month={September}, note={Forth International Congress on Peer Review in Biomedical Publication}, key={Barcelona, Spain} } @book{kvart86, author={Igal Kvart}, title={A Theory of Counterfactuals}, publisher={Indianapolis: Hackett Publishing Company}, year= 1986 } @article{KwoShuHov06, author={Namhee Kwon and Stuart W. Shulman and Eduard Hovy}, title={{Collective Text Analysis for eRulemaking}}, journal={7th Annual International Conference on Digital Government Research}, year={2006} } @incollection{LagRus02, author={Monica Lagazio and Bruce Russett}, title={A Neural Network Analysis of Militarized International Disputes, 1885-1992: Temporal Stability and Causal Complexity}, booktitle={The Scourge of War: New Extensions on an Old Problem}, publisher={University of Michigan Press}, year={2002}, address={Ann Arbor}, editor={Paul Diehl}, optpages={269--295}, optannote={This paper fits a model for Cold War militarized disputes and assess how well the Cold War model fits pre-Cold War data (so-called 'post-diction'). So it gets fitted values. Also, runs test and training, and discusses merits of neural net approach.} } @article{Lahlrl03, author={P. Lahlrl}, title={On the Impact of Boostrapping in Survey Sampling and Small Area Estimation}, journal={Statistical Science}, volume= 18, year= 2003, pages={199-210}, number= 2 } @article{LaiLou87, author={Nan M. Laird and Thomas A. Louis}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={739-750}, month={September}, number={399} } @article{LaiLou87b, author={Nan M. Laird and Thomas A. Louis}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Rejoinder}, journal={Journal of the American Statistical Association}, volume={399}, year={1987}, pages={756-757}, month={September} } @unpublished{Lakin05, author={Jason Lakin}, title={Letting the Outsiders in: Democratization and Health Reform in Mexico}, note={American Political Science Association}, year= 2005 , address={Washington D.C.} } @article{Lalonde86, author={Robert Lalonde}, title={Evaluating the Econometric Evaluations of Training Programs}, journal={American Economic Review}, volume={76}, year={1986}, pages={604-620} } @article{Landers05, author={John Landers}, title={The Destructiveness of Pre-Industrial Warfare: Political and Technological Determinants}, journal={Journal for Peace Research}, volume={42}, year={2005}, pages={455-470}, month={July}, number={4} } @article{langholz91, author={B. Langholz and D.C. Thomas}, title={Efficiency of Cohort Sampling Designs: Some Surprising Results}, journal={Biometrics}, volume= 47, year= 1991, pages={1563-1571} } @article{langholz96, author={Bryan Langholz and Larry Goldstein}, title={Risk Set Sampling in Epidemiologic Cohort Studies}, journal={Statistical Science}, volume= 11, year= 1996, pages={35-53}, number= 1 } @article{langholz97, author={Bryan Langholz and Boran {\O }rnulf}, title={Estimation of Absolute Risk from Nested Case-Control Data}, journal={Biometrics}, volume= 53, year= 1997, pages={767-774}, month={June} } @article{LaPalombara68, author={Joseph LaPalombara}, title={Macrotheories and Microapplications in Comparative Politics: A Widening Chasm}, journal= cp, year= 1968, pages={52--78}, month={October} } @book{Laplace1820, author={P.S. Laplace}, title={Philosophical Essays on Probaiblities}, publisher={Dover}, year={1951, original: 1820}, address={New York} } @article{LaRBanJar79, author={Asenath LaRue, PhD, Lew Bank, MA, Lissy Jarvick, MD, PhD, and Monte Hetland, BA}, title={Health in Old Age: How Do Physicians' Ratings and Self-Ratings Compare?}, journal={Journal of Gerontology}, volume= 34, year= 1979, pages={{687-91}} } @article{Lassen05, author={David Dreyer Lassen}, title={The Effect of Information on Voter Turnout: Evidence from a Natural Experiement}, journal={American Journal of Political Science}, volume={2005}, year={49}, pages={103-118}, month={January}, number={1} } @article{Lau97, author={Tai-Shing Lau}, title={The Latent Class Model for Multiple Binary Screening Tests}, journal={Statistics in Medicine}, volume={16}, year={1997}, pages={2283-2295} } @article{LauIbr95, author={Purushottam W. Laud and Joseph G. Ibrahim}, title={Predictive Model Selection}, journal= jrssb, volume= 57, year= 1995, pages={247--262}, number= 1 } @article{LauIbr96, author={Purushottam W. Laud and Joseph G. Ibrahim}, title={Predictive Specification of Prior Model Probabilities in Variable Selection}, journal={Biometrika}, volume= 83, year= 1996, pages={267--274}, number= 2 } @article{LauSmiSta00, author={Jennifer L. Lauby and Philip J. Smith and Michael Stark and Bobbie Person and Janet Adams}, title={A Community-Level HIV Prevention Intervention for Inner-City Women: Results of the Women and Infants Demonstration Projects}, journal={American Journal of Public Health}, volume={90}, year={2000}, pages={216-222}, month={February}, number={2} } @article{LavBenGar03, author={Michael Laver and Kenneth Benoit and John Garry}, title={{Extracting Policy Positions from Political Texts Using Words as Data}}, journal={American Political Science Review}, volume={97}, year={2003}, pages={311-331}, number={2} } @book{Leamer78, author={Edward Leamer}, title={Specification Searches}, publisher={Wiley}, year= 1978, address={New York} } @article{Lebow00, author={Richard Ned Lebow}, title={What's so Different About a Counterfactual?}, journal= wp, volume= 52, year= 2000, pages={550--85}, month={July} } @misc{Lechner00, author={Michael Lechner}, title={A note on the common support problem in applied evaluation studies}, year= 2000, howpublished={{http://www.siaw.unisg.ch/lechner}}, note={University of St. Galen} } @incollection{Lechner99, author={Michael Lechner}, title={Identification and Estimation of Causal Effects of Multiple Treatments under the Conditional Independence Assumption}, booktitle={Econometric Evaluation of Labour Market Policies}, publisher={Physica}, address={Heidelberg}, editor={Lechner, M. and Pfeiffer, F.}, year= 2001, pages={43--58} } @article{LedBre59, author={S. Ledermann and J. Breas}, title={{Les Dimensions de la Mortalit{\'e}}}, journal={Population}, volume= 14, year= 1959, pages={637--682}, note={[in French]} } @article{Lee00, author={Ronald D. Lee}, title={The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications}, journal={North American Actuarial Journal}, volume= 4, year= 2000, pages={80--93}, number= 1 } @article{Lee00a, author={Ronald D. Lee}, title={{Long-Term Projections and the US Social Security System}}, journal={Population and Development Review}, volume= 26, year= 2000, pages={137--143}, month={March}, number= 1 } @article{Lee93, author={Ronald D. Lee}, title={{Modeling and Forecasting the Time Series of US Fertility: Age Patterns, Range, and Ultimate Level}}, journal={International Journal of Forecasting}, volume= 9, year= 1993, pages={187--202} } @article{LeeCar92, author = {Ronald D. Lee and Lawrence R. Carter}, title = {{Modeling and Forecasting U.S. Mortality}}, journal = jasa, volume = 87, year = 1992, month = {September}, pages = {659--675}, number = 419 } @article{LeeCar92b, author={Ronald D. Lee and Lawrence R. Carter}, title={Rejoinder}, journal= jasa, volume= 87, year= 1992, pages={674--675}, month={September}, number= 419 } @article{LeeCarTul95, author={Ronald D. Lee and Lawrence Carter and S. Tuljapurkar}, title={Disaggregation in Population Forecasting: Do We Need It? And How to Do it Simply}, journal={Mathematical Population Studies}, volume={5}, year={1995}, pages={217--234}, month={July}, number={3}, annote={Authors describe a model for reducing the dimensionality of the forecasting problem by modeling the evolution over time of the age schedules of vital rates, reducing the problem to forecasting a single parameter for fertility and another for mortality. Authors also show how one can fit the model more simply and prepare integrated forecasts for a collection of regions, and discuss alternate approaches to forecasting the estimated indices of fertility and mortality, including state-space methods.} } @misc{LeeHigBiFerWes00, author={Herbert Lee and David Higdon and Zhuoxin Bi and Marco Ferreira and Mike West}, title={Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media}, year= 2000, howpublished={Discussion Paper \#00-35, Institute of Statistics and Decision Sciences, Duke University} } @book{LeeJohZel96, author={Jack C. Lee and Wesley O. Johnson and Arnold Zellner}, title={Modelling and Prediction: Honoring Seymour Geisser}, publisher={Springer}, year={1996}, editor={Jack C. Lee and Wesley O. Johnson and Arnold Zellner} } @article{LeeMil01, author={Ronald D. Lee and Timothy Miller}, title={Evaluating the Performance of the Lee-Carter Approach to Modeling and Forecasting Mortality}, journal={Demography}, volume= 38, year= 2001, pages={537--549}, month={November}, number= 4 } @article{LeeRof94, author={Ronald D. Lee and R. Rofman}, title={Modeling and Projecting Mortality in Chile}, journal={Notas Poblacion}, volume={22}, year={1994}, pages={183--213}, month={Jun}, number={59}, annote={Authors extend the Lee-Carter method to deal with various problems of incomplete data common in Third World populations, and then apply the method to forecast mortality in Chile.} } @article{LeeSki99, author={Ronald D. Lee and Jonathan Skinner}, title={Will Aging Baby Boomers Bust the Federal Budget}, journal={Journal of Economic Perspectives}, volume= 13, year= 1999, pages={117--140}, month={Winter}, number= 1 } @article{LeeTul94, author={Ronald D. Lee and S. Tuljapurkar}, title={{Stochastic Population Projections for the U.S.: Beyond High, Medium and Low}}, journal= jasa, volume= 89, year= 1994, pages={1175--1189}, month={December}, number= 428 } @article{LeeTul98, author={Ronald D. Lee and S. Tuljapurkar}, title={{Uncertain Demographic Futures and Social Security Finances}}, journal={American Economic Review: Papers and Proceedings}, year= 1998, pages={237--241}, month={May} } @incollection{LeeTul98a, author={Ronald D. Lee and S. Tuljapurkar}, title={{Stochastic Forecasts for Social Security}}, booktitle={Frontiers in the Economics of Aging}, publisher={University of Chicago Press}, year= 1998, address={Chicago}, editor={David Wise}, pages={393--420} } @techreport{LenFox06, author={Amanda Lenhart and Susannah Fox}, title={{Bloggers: A Portrait of the Internet's New Storytellers}}, institution={Pew Internet and American Life Project}, year= 2006, note={{http://207.21.232.103/pdfs/PIP\%20Bloggers\%20Report\%20July\%2019\%202006.pdf}} } @book{LenHsu99, author={T. Leonard and J.S.J. Hsu}, title={Bayesian Methods}, publisher={Cambridge University Press}, year= 1999, address={Cambridge} } @unpublished{LeuSia03, author={E. Leuven and B. Sianesi}, title={psmatch2}, note={{Stata module to perform full {M}ahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. Available at: http://www1.fee.uva.nl/scholar/mdw/leuven/stata}}, year= 2003 } @misc{LeuSia04, author={Edwin Leuven and Barbara Sianesi}, title={PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing}, year= 2004, howpublished={EconPapers}, note={{http://econpapers.repec.org/software/bocbocode/S432001.htm}} } @article{LeuTanLue97, author={Kai-Kuen Leung, Li-Yu Tang, and Bee-Horng Lue}, title={Self-Rated Health and Mortality in Chinese Institutional Elderly Persons}, journal={Journal of Clinical Epidemiology}, volume= 50, year= 1997, pages={{1107-16}}, number= 10 } @book{Levinson01, author={Sanford Levinson}, title={What is the Constitution's Role in Wartime: Why Free Speech and Other Rights Are Not as Safe as You Might Think}, publisher={?}, year= 2001 } @article{LevKas70, author={P.S. Levy and E. H. Kass}, title={A three population model for sequential screening for Bacteriuria}, journal={American Journal of Epidemiology}, volume={91}, year={1970}, pages={148-154} } @article{Lewis01, author={Jeffrey B. Lewis}, title={Estimating Voter Preference Distributions from Individual-Level Voting Data}, journal={Political Analysis}, volume= 9, year= 2001, pages={275-297}, month={June}, number= 3 } @article{Lewis03, author={Anthony Lewis}, title={Marbury v. Madison v. Ashcroft}, journal={New York Times}, year={2003}, month={February 24, A17} } @incollection{Lewis05, author={Maureen Lewis}, title={Improving Efficiency and Impact in Health Care Services: Lessons from Central America}, booktitle={Health Systems Innovation in Central America}, publisher={The World Bank}, year= 2005, address={Washington, D.C.}, editor={Gerard M. La Forgia} } @inbook{Lewis05, author={Maureen Lewis}, title={Health Sysems Innovatin in Central American}, chapter={Improving Efficiency and Impact in Health Care Services - Lessons from Central American }, year={2005}, publisher={The World Bank}, address={Washington DC}, editor={Gerard M. La Forgia} } @book{lewis73, author={David K. Lewis}, title={Counterfactuals}, publisher={Cambridge: Harvard University Press}, year= 1973 } @article{Lewis99b, author={John A. Lewis}, title={Statistical Principles for Clinical Trials (ICH E9) An Introductory Note on an International Guideline}, journal={Statistics in Medicine}, volume={18}, year={1999}, pages={1903-1904} } @article{LewLev89, author={R.A. Lew and P.S. Levy}, title={Estimation of prevalence on the basis of screening tests}, journal={Statistics in Medicine}, volume={8}, year={1989} } @article{LewLev89, author={Robert A. Lew and Paul S. Levy}, title={Estimation of Prevalence on the Basis of Screening Tests}, journal={Statistics in Medicine}, volume={8}, year={1989}, pages={1225-1230} } @book{Li95, author={S.Z. Li}, title={Markov Random Field Modeling in Computer Vision}, publisher={Springer-Verlag}, year= 1995 } @article{LicLipDan92, author={Allen S. Lichter and Marc E. Lippman and David N. Danforth Jr and Teresa d'Angelo and Seth M. Steinberg and Ernest deMoss and Harold D. MacDonald and Cheryl M. Reichert and Maria Merino and Sandra M. Swain and Kenneth Cowan and Lynn H. Gerber and Judith L. Bader and Peggie A. Findlay and Wendy Schain and Catherine R. Gorrell and Karen Straus and Steven A. Rosenberg and Eli Glatstein}, title={Mastectomy Versus Breast-Conserving Therapy in the Treatment of Stage I and II Carcinoma of the Breast: A Randomized Trial at the National Cancer Institute}, journal={Journal of Clinical Oncology}, volume= 10, year= 1992, pages={976-983}, month= June , number= 6 } @article{LilPer94, author={David E. Lilienfeld and Daniel P. Perl}, title={Projected Neurodegenerative Disease Mortality among Minorities in the United States}, journal={Neuroepidemiology}, volume= 13, year= 1994, pages={179--186} } @article{LinCutZwi02, author={Shin Lin and David L. Cutler and Michael E. Zwick and Aravinda Chakravarti}, title={Haplotype Inference in Random Population Samples}, journal={American Journal of Human Genetics}, volume= 71, year= 2002, pages={1129--1137} } @book{LinHam97, title={Handbook of Modern Item Response Theory}, publisher={Springer}, year= 1997, editor={Wim Van Der Linden and Ronald K. Hambleton}, address={New York} } @article{LinLin80, author={Bernard S. Linn and Margaret W. Linn}, title={Objective and self-assessed health in the old and very old}, journal={Social Science and Medicine }, volume={{14A}}, year= 1980, pages={{311-15}} } @article{LinPekWan05, author={Peter K. Lindenauer and Penelope Pekow and Kaijun Wang and Dheeresh K. Mamidi and Benjamin Guierrez and Evan M. Benjamin}, title={Perioperative beta-blocker therapy and mortality after major noncardiac surgery}, journal={New England Journal of Medicine}, volume={353}, year={2005}, pages={349-361}, month={July}, number={4} } @article{LinSmi72, author={D. V. Lindley and A. F. M. Smith}, title={{B}ayes Estimates for the Linear Model}, journal={Journal of the Royal Statistical Society B}, volume= 34, year= 1972, pages={1-41}, number= 1 } @book{Lipset63, author={Lipset, Seymour Martin}, title={Political Man: The Social Basis of Politics}, publisher={Anchor Books}, year= 1963, address={Garden City, NY} } @article{LisMilFre03, author={John A. List and Daniel L. Millimet and Per G. Fredriksson and W. Warren McHone}, title={Effects of Environmental Regulations on Manufacturing Plant Births: Evidence from a Propensity Score Matching Estimator}, journal={The Review of Economics and Statistics}, volume={85}, year={2003}, pages={944-952}, month={November}, number={4} } @article{LitAn04, author={Roderick Little and Hyonggin An}, title={Robust Likelihood-Based Analysis of Multivariate Data with Missing Values}, journal={Statistica Sinica}, volume={14}, year={2004}, pages={949-968} } @article{LitAn04, author={Roderick Little and Hyonggin An}, title={Robust Likelihood-Based Analysis of Multivariate Data with Missing Values}, journal={Statistica Sinica}, volume={14}, year={2004}, pages={949-968} } @book{LitRub02, author={Roderick J.A. Little and Donald B. Rubin}, title={Statistical Analysis with Missing Data, 2nd Edition}, publisher={John Wiley and Sons}, year={2002}, address={New York, New York} } @article{LitRub89, author={Rodrick J. Little and Donald Rubin}, title={The Analysis of Social Science Data with Missing Values}, journal={Sociological Methods and Research}, volume={18}, year={1989}, pages={292-326} } @inbook{LitSch95, author={Rodrick J. Little and N. Schenker}, title={Handbook of Statistical Modeling for the Social and Behavioral Sciences}, chapter={Missing Data}, year={1995}, pages={39-75} } @unpublished{Little05, author={Roderick Little}, title={Calibrated Bayes: A Bayes/Frequentist Roadmap}, note={University of Michigan}, year={2005}, month={September} } @article{Little92, author={Roderick J. Little}, title={Regression with Missing X's: A Review}, journal={Journal of the American Statistical Association}, volume={87}, year={1992}, pages={1227-1237} } @unpublished{LiuHuChe05, author={Bing Liu and Minqing Hu and Junsheng Cheng}, title={Opinion Observer: Analyzing and Comparing Opinions on the Web}, note={Bing Liu Dept of Computer Science; Univ of Illinois at Chicago, 851 south Morgan St. Chicago, IL 60607-7053, liub@cs.uic.edu}, year={2005}, month={May} } @article{LiuWonKon94, author={J. Liu and W.H. Wong and A. Kong}, title={Covariance Structure of the Gibbs Sampler with Applications to the Comparisons of Estimators and Augmentation Schemes}, journal={Biometrika}, volume={81}, year={1994}, pages={27-40} } @article{LiWen05, author={Quan Li and Ming Wen}, title={The Immediate and Lingering Effects of Armed Conflict on Adult Mortality: A Time-Series Cross-National Analysis}, abstract={This research investigates the effect of armed conflict on adult mortality across countries and over time. Theoretical mechanisms are specified for how military violence influences adult mortality, both immediately and over time after conflict. The effects of aggregate conflict, interstate and intrastate conflicts, and conflict severity are explored. The Heckman selection model is applied to account for the conflict-induced missing data problem. A pooled analysis across 84 countries for the period from 1961 to 1998 provides broad empirical support for the proposed theoretical expectations across both genders. This study confirms the importance of both the immediate and the lingering effect of military conflict on the mortality of the working-age population. The immediate effect of civil conflict is much stronger than that of the interstate conflict, while the reverse applies to the lingering effect. Both the immediate and the lingering effects of severe conflict are much stronger than those of minor conflict. While men tend to suffer higher mortality immediately from intrastate conflict and severe conflict, women in the long run experience as much mortality owing to the lingering effects of these conflicts. The mortality data show a strong data selection bias caused by military conflict. The research findings highlight the imperative for negotiating peace. Preventing a contest from escalating into a severe conflict can produce noticeable gains in saved human lives.}, journal={Journal of Peace Research}, volume={42}, year={2005}, pages={471-492}, month={July}, number={4} } @article{LoeFulKag03, author={Susanna Loeb and Bruce Fuller and Sharon Lynn Kagan and Bidemi Carrol}, title={How Welfare Reform Affects Young Children: Experimental Findings from Connecticut - A Research Note}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={537-550}, number={4} } @article{Londregan00, author={John Londregan}, title={Estimating Legislator's Preferred Points}, journal={Political Analysis}, volume= 8, year= 2000, pages={21--34}, month={Winter}, number= 1 } @book{Londregan00b, author={John Londregan}, title={Legislative Institutions and Ideology in Chile}, publisher={Cambridge University Press}, year= 2000, address={New York} } @book{LonFre06, author={J. Scott Long and Jeremy Freese}, title={Regression Models for Categorical Dependent Variables Using Stata}, publisher={Stata Press}, year={2006}, address={College Station, TX} } @article{LooBee46, author={Loomis, C. P. and Beegle, J. A.}, title={The Spread of German Nazism in Rural Areas}, journal= asr, volume= 11, year= 1946, pages={724-734} } @book{LopAhmGui00, author = {Alan Lopez and O. Ahmed and M. Guillot and B.D. Ferguson and J.A. Salomon and C.J.L. Murray and K.H. Hill}, title = {World Mortality in 2000: Life Tables for 191 Countries}, publisher = {World Health Organization}, year = 2000, address = {Geneva} } @article{LowAltFer98, author={Robert Lowry and James E. Alt and Karen Ferree}, title={Fiscal Policy Outcomes and Electoral Accountability in the American States}, journal={American Political Science Review}, volume= 92, year= 1998, pages={759-777}, month={December} } @article{Lowenstein2006, author={Daniel H. Lowenstein}, title={Vieth's Gap: Has the Supreme Court Gone from Bad to Worse on Partisan Gerrymandering?}, journal={Cornell Journal of Law and Public Policy}, volume={N:X}, year={2006}, pages={101-130}, month={January} } @article{LozSolGak06, author = {Rafael Lozano and Patricia Soliz and Emmanuela Gakidou and Jesse Abbott-Klafter and Dennis M. Feehan and Cecilia Vidal and Juan Pablo Ortiz and Christopher J.L. Murray}, title = {Benchmarking of performance of Mexican States with Effective Coverage}, journal = {The Lancet}, volume = {368}, year = {2006}, pages = {1729-1741}, month = {November} } @article{lubin94, author = {J.H. Lubin and M.H. Gail}, title = {Sampling Strategies in Nested Case-Control Studies}, journal = {Environmental Health Perspectives}, volume = 102, year = 1994, pages = {47-51}, number = {suppl 8} } @article{Lubkemann05, author = {Stephen C. Lubkemann}, title = {Migratory Coping in Wartime Mozambique: An Anthropology of Violence and Displacement in Fragmented Wars}, journal = {Journal of Peace Research}, volume = {42}, year = {2005}, pages = {493-508}, month = {July}, number = {4} } @article{LumHea99, author = {Thomas Lumley and Patrick Heagerty}, title = {Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression}, journal = {jrssb}, volume = {61}, year = {1999}, pages = {459--477}, number = {2} } @article{LunSmi05, author = {Jennifer Hickes Lundquist and Herbert L. Smith}, title = {Family Formation Among Women in the U.S. Military: Evidence from the NLSY}, journal = {Journal of Marriage and Family}, volume = {67}, year = {2005}, pages = {1-13}, month = {February} } @article{LuRos04, author={Bo Lu and Paul R. Rosenbaum}, title={Optimal Pair Matching With Two Control Groups}, journal={Journal of Computational and Graphical Statistics}, volume={13}, year={2004}, pages={422-434}, number={2} } @inbook{Lustig94, author={Nora Lustig}, title={Solidarity as a Strategy of Poverty Alleviation}, chapter={5}, year={1994}, publisher={Center for U.S.-Mexican Studies}, pages={79-96}, series={U.S.-Mexico Contemporary Perspectives Series, 6}, address={University of California, San Diego} } @article{LuZanHor01, author = {Bo Lu and Elaine Zanuto and Robert Hornik and Paul R. Rosenbaum}, title = {Matching With Doses in an Observational Study of a Media Campaign Against Drug Abuse}, journal = {Journal of the American Statistical Association}, volume = {96}, year = {2001}, pages = {1245-1253}, month = {December}, number = {456} } @techreport{LymVar03, author = {Peter Lyman and Hal R. Varian}, title = {{How much information 2003}}, institution = {University of California}, year = 2003, note = {{http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/}} } @article{Lynch03, author = {Lynch, C.A.}, title = {{Institutional Repositories: Essential Infrastructure For Scholarship In The Digital Age}}, journal = {portal: Libraries and the Academy}, volume = {3}, year = {2003}, pages = {327--336}, number = {2} } @article{LynMcc92, author = {Henry S. Lynn and Charles E. McCulloch}, title = {When Does it Pay to Break the Matches for Analysis of a Matched-Pairs Design?}, journal = {Biometrics}, volume = {48}, year = {1992}, pages = {397-409}, month = {June} } @article{MacKunGro99, author = {J.P. Mackenbach and A.E. Kunst and F. Groenhof and J.K. Borgan and G. Costa and F. Faggiano }, title = {Socioeconomic inequalities in mortality among women and among men: an international study}, journal = {American Journal of Public Health}, volume = 89, year = 1999, pages = {1800-1806}, number = 12 } @book{Macridis55, author={Roy C. Macridis}, title={The Study of Comparative Government}, publisher={Doubleday and Co.}, year= 1955, address={New York} } @article{MacRivJur06, author = {Ellen J. MacKenzie and Frederick P. Rivara and Gregory J. Jurkovich and Avery B. Nathens and Katherine P. Frey and Brian L. Egleston and David S. Salkever and Daniel O Scharfstein}, title = {A National Evaluation of the Effect of Trauma-Center Care on Mortality}, journal = {New England Journal of Medicine}, volume = {354}, year = {2006}, pages = {366-378}, month = {January} } @article{MadDou64, author = {George L. Maddox and Elizabeth B. Douglas}, title = {Self-Assessments of Health: A Longitudinal Study of Elderly Subjects}, journal = {Journal of Health and Social Behavior }, volume = 14, year = 1973, pages = {{87-93}} } @article{MadNel92, author = {W.R. Madych and S.A. Nelson}, title = {Bounds on Multivariate Polynomials and Exponential Error Estimates for Multiquadric Interpolation}, journal = {Journal of Approximation Theory}, volume = 70, year = 1992, pages = {94--114} } @article{Malaker86, author={CR Malaker}, title={Estimation of Adult Mortality in India: 1971--1981}, journal={Demography India}, volume= 15, year= 1986, pages={126--136} } @article{ManKarMar03, author = {Kristiina Manderbacka, et al}, title = {The Effect of Point of Reference on the Association Between Self-Rated Health and Mortality}, journal = {Social Science and Medicine}, volume = 56, year = 2003, pages = {{1447-52}} } @book{ManSch99, author={Christopher D. Manning and Hinrich Sch{\"u}tze}, title={Foundations of Statistical Natural Language Processing}, publisher={Massachusetts Institute of Technology}, year={1999}, address={Cambridge, MA} } @book{Manski05, author={Charles F. Manski}, title={Social choice with Partial Knowledge of Treatment Response}, publisher={Princeton University Press}, year={2005}, series={Econometric Institute Lectures} } @article{Manski77, author={Charles F. Manski}, title={The Estimation of Choice Probabilities from Choice Based Samples}, journal={Econometrics}, volume= 45, year= 1977, pages={1977--88}, month={November}, number= 8 } @article{Manski90, author = {Charles F. Manski}, title = {The Use of Intentions Data to Predict Behavior: A Best-Case Analysis}, journal = {Journal of the American Statistical Association}, volume = {85}, year = {1990}, pages = {934-940}, month = {December}, number = {412} } @book{Manski95, author={Charles F. Manski}, title={Identification Problems in the Social Sciences}, publisher={Harvard University Press}, year= 1995 } @inproceedings{manski99, author = {Charles F. Manski}, title = {Nonlinear Statistical Inference: Essays in Honor of Takeshi Amemiya}, booktitle = {Nonparametric Identification Under Response-Based Sampling}, year = 1999 , publisher = cup, editor = {C. Hsiao and K. Morimune and J. Powell} } @article{ManSzoKoh01, author = {Mandl, K.D. and Szolovits, P. and Kohane, I.S.}, title = {{Public standards and patients' control: how to keep electronic medical records accessible but private}}, journal = {BMJ}, volume = {322}, year = {2001}, pages = {283--7}, number = {7281} } @article{ManSzoKoh01, author={Kenneth D. Mandl and Peter Szolovits and Isaac S. Kohane}, title={Public standards and patients' control: how to keep electronic medical records accessible but private}, journal={British Medical Journal}, volume={322}, year={2001}, pages={283-287}, month={February}, publisher={British Medical Journal} } @article{mantel73, author={N. Mantel}, title={Synthetic Retrospective Studies and Related Topics}, journal={Biometrics}, volume= 29, year= 1973, number={479-486} } @article{ManTudDie06, author={Dennis T. Mangano and Julia C. Tudor and Cynthia Dietzel}, title={The Risk Associated wtih Aprotinin in Cardiac Surgery}, journal={The New England Journal of Medicine}, volume={354}, year={2006}, pages={353-365}, month={January}, number={4} } @article{ManRao04, title = {{Community-Based and-Driven Development: A Critical Review}}, author = {Mansuri, G. and Rao, V.}, journal = {The World Bank Research Observer}, volume = {19}, number = {1}, pages = {1-39}, year = {2004} } @article{MarCamFay91, author = {Elizabeth A. Martin and Pamela C. Campanelli and Robert E. Fay}, title = {An Application of Rasch Analysis to Questionnaire Design: Using Vignettes to Study the Meaning of `Work' in the Current Population Survey}, journal = {The Statistician}, volume = 40, year = 1991, pages = {265--276}, month = {September}, number = 3 } @article{March57, author={James G. March}, title={party Legislative Representation as a Function of Election Results}, journal={1957}, volume={21}, year={1957-1958}, pages={521-542}, month={Winter}, number={4} } @article{Marcus00, author={George E. Marcus}, title={{Emotions in Politics}}, journal={Annual Review of Political Science}, volume={3}, year={2006}, pages={221-50} } @article{Marcus88, author={George E. Marcus}, title={{The Structure of Emotional Response: The 1984 Presidential Candidates}}, journal={American Political Science Review}, volume={82}, year={1988}, pages={737-761}, number={3} } @article{MarDiePer93, author={Donald C. Martin and Paula Diehr and Edward B. Perrin and Thomas D. Koepsell}, title={The Effect of Matching on the Power of Randomized Community Intervention Studies}, journal={Statistics in Medicine}, volume={12}, year={1993}, pages={329-338} } @article{MarHusLob95, author={David Marsh and Khatidja Husein and Melvyn Lobo and Mehboob Ali Shah and Stephen Luby}, title={Verbal autopsy in Karachi slums: comparing single and multiple cause of child deaths}, journal={Health Policy and Planning}, volume={10}, year={1995}, pages={395-403}, number={4} } @article{MarHusLob95, author={David Marsh and Khatidja Husein and Melvyn Lobo and Mehboob Ali Shah and Stephen Luby}, title={Verbal autopsy in Karachi slums: comparing single and multiple cause of child deaths}, journal={Health Policy and Planning}, volume={10}, year={1995}, pages={395-403}, number={4} } @book{MarKenBib79, author={K. V. Mardia and J. T. Kent and J. M. Bibby}, title={Multivariate Analysis}, publisher= ap, year={1979}, address={London} } @article{MarMajRas93, author={David Marsh and Nuzhat Majit and Zeba Rasmussen and Khalid Mateen and Arif Amin Khan}, title={Cause-Specific Child Mortality In A Mountainous Community In Pakistan By Verbal Autopsy}, journal={Journal of the Pakistan Medical Association}, volume={43}, year={1993}, pages={226-229}, month={November}, number={11} } @article{MarMajRas93, author={David Marsh and Nuzhat Majit and Zeba Rasmussen and Khalid Mateen and Arif Amin Khan}, title={Cause-Specific Child Mortality In A Mountainous Community In Pakistan By Verbal Autopsy}, journal={Journal of the Pakistan Medical Association}, volume={43}, year={1993}, pages={226-229}, month={November}, number={11} } @misc{MarQui01, author={Andrew D. Martin and Kevin M. Quinn}, title={The Dimensions of {S}upreme {C}ourt Decision Making: Again Revisiting {T}he {J}udicial {M}ind}, year= 2001, howpublished={Paper presented at the Annual Meeting of the Midwest Political Science Association} } @manual{MarQui05, author={Andrew D. Martin and Kevin M. Quinn}, title={MCMCpack: Markov chain Monte Carlo (MCMC) Package}, year={2005}, url={{http://mcmcpack.wustl.edu}} } @article{MarSadFik03, author={David R. Marsh and Salim Sadruddin and Fariyal F. Fikree and Chitra Krishnan and Gary L. Darmstadt}, title={Validation of verbal autopsy to determine the cause of 137 neonatal deaths in Karachi, Pakistan}, journal={2003}, volume={17}, year={2003}, pages={132-142} } @article{MarSadFik03, author={David R. Marsh and Salim Sadruddin and Fariyal F. Fikree and Chitra Krishnan and Gary L. Darmstadt}, title={Validation of verbal autopsy to determine the cause of 137 neonatal deaths in Karachi, Pakistan}, journal={2003}, volume={17}, year={2003}, pages={132-142} } @article{Marshall91, author={R.J. Marshall}, title={Mapping Disease and Mortality Rates using Empirical Bayes Estimators}, journal={Applied Statistics}, volume= 40, year= 1991, pages={283--294}, number= 2 } @article{MarSmiSta91, author={M.G. Marmot and G.D. Smith and S. Stansfeld and C. Patel and F. North and J. Head and I. White and E. Brunner and A. Feeney}, title={Health inequalities among British civil servants: the Whitehall II study [see comments].}, journal= lan, year={1991}, optvolume={337}, optpages={1387--1393} } @book{Martin92, author={Lisa Martin}, title={Coercive Cooperation: Explaining Multilateral Economic Sanctions}, publisher={Princeton University Press}, year={1992}, note={Please inquire with Lisa Martin before publishing results from these data, as this dataset includes errors that have since been corrected.} } @article{MatFatIno05, author = {Colin D. Mathers and Doris Ma Fat and Mie Inoue and Chalapati Rao and Alan Lopez}, title = {Counting the dead and what they died from: an assessment of the global status of cause of death data}, journal = {Bulletin of the World Health Organization}, volume = 83, year = 2005, pages = {171--177}, month = {March}, number = 3 } @unpublished{MatLopSte03, author={Colin D. Mathers and Alan Lopez and Claudia Stein and Doris Ma Fat and Chalapati Rao and Mie Unoue and Kenji Shiubuya and Niels Tomijima and Christina Bernard and Hongyi Xu}, title={Deaths and Disease Burden by Cause: Global Burden of Disease Estimates for 2001 by World Bank Country Groups}, note={Evidence and Information for Policy, World Health Organization, Geneva and School of Population health, University of Queensland, Brisbane, Austrailia}, year={2003} } @unpublished{MatSteFat02, author={Colin D. Mathers and Claudia Stein and Doris Ma Fat and Chalapati Rao and Mie Unoue and Niels Tomijima and Christina Bernard and Alan D. Lopez and Christopher J.L. Murray}, title={Global Burden of Disease 2000: Version 2 Methods and Results}, note={Global Programme on Evidence for Health Policy Discussion Paper No. 50 World Health Organization}, year={2002}, month={October} } @article{MauRos97, author={Gillian H. Maude and David A. Ross}, title={The Effect of Different Sensitivity, Specificity and Cause-Specific Mortality Fractions on the Estimation of Differences in Cause-Specific Mortality Rates in Children from Studies Using Verbal Autopsies}, journal={International Journal of Epidemiology}, volume={26}, year={1997}, pages={1097-1106}, number={5} } @techreport{Mayaud01, author={Philippe Mayaud}, title={Aids-Related Research Projects}, institution={The London School of Hygiene \& Tropical Medicine}, year={2001}, address={London School of Hygiene \& Tropical Medicine www.ishtm.ac.uk} } @book{McCNel89, author={Peter McCullagh and James A. Nelder}, title={Generalized Linear Models}, publisher={Chapman \& Hall}, year={1989}, series={Monograph on Statistics and Applied Probability}, edition={2nd}, number={37} } @inbook{McConahay86, author={John B. McConahay}, title={Prejudice, Discrimination, and Racism: Theory and Research}, chapter={Modern Racism Ambivalence, and the Modern Racism Scale}, year={1986}, publisher={New York: Academic Press}, editor={J. Dovidio and S.L. Gaertner} } @article{MccRidMor04, author={Daniel F. McCaffrey and Greg Ridgeway and Andrew R. Morral}, title={Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies}, journal={Psychological Methods}, volume={9}, year={2004}, pages={403-425}, number={4} } @article{McCShaWan94, author={John McCallum, DPhil, MPhil, Bruce Shadbolt, PhD, and Dong Wang, BSc}, title={Self-Rated Health and Survival: A 7-year Follow-Up study of Australian Elderly.}, journal={American Journal of Public Health}, volume= 84, year= 1994, pages={{1100-05}} } @unpublished{McDonald06a, author={Michael P. McDonald}, title={Seats to Votes Ratios in the United States}, note={George Mason University, Dept of Public and International Affairs 4400 University Dr., 3-F4 Fairfax, VA 22030-4444 (703)-993-4191 mmcdon@gmu.edu}, year={2006} } @unpublished{McDonald06b, author={Michael D. McDonald}, title={A Standard for Detecting and Remedying Gerrymanders}, note={Department of Political Science, Binghamton University- SUNY, Binghamton NY 13902-6000, (617) 777-2946, mdmcd@binghamton.edu}, year={2006} } @article{McKibbin69, author={Ross McKibbin}, title={The Myth of the Unemployed: Who did Vote for the Nazis?}, journal={Australian Journal of Politics and History}, volume= 15, year= 1969, pages={25--40}, number= 2 } @book{McLThr97, author={Geoffrey J. McLachlan and Thriyambakam Krishan}, title={The EM Algorithm and Extensions}, publisher={New York: Wiley} } @article{McNown92, author={Robert McNown}, title={Comment}, journal= jasa, volume= 87, year= 1992, pages={671--672}, number= 419 } @article{McNRog89, author={Rober McNown and Andrei Rogers}, title={Forecasting Mortality: A Parameterized Time Series Approach}, journal={Demography}, volume= 26, year= 1989, pages={645--660}, number= 4 } @article{McNRog92, author={Robert McNown and Andrei Rogers}, title={Forecasting Cause-Specific Mortality Using Time Series Methods}, journal={International Journal of Forecasting}, volume= 8, year= 1992, pages={413--432} } @unpublished{McqLasLai06, author={Matthew B. McQueen and Jessica Lasky-Su and Nan M. Laird and Christoph Lange}, title={Screening and Testing using the Same Data Set: A Testing Strategy for Genome-Wide Association Studies for Case-Control and Case-Cohort Designs}, year={2006} } @article{Mead92, author={A. Mead}, title={Review of the Development of Multidimensional Scaling Methods}, journal={The Statistician}, volume= 41, year= 1992, pages={27--39}, month={April}, number= 1 } @article{MebSek04, author={Walter Mebane and Jasjeet Sekhon}, title={Robust Estimation and Outlier Detection in Overdispersed Multinomial Models of Count Data}, journal= ajps, volume= 48, year= 2004, pages={391--410}, month={April} } @article{MeiKarPar04, author={Bettina Meinow et al.}, title={The effect of the duration of follow-up in mortality analysis: The temporal pattern of different predictors}, journal={Journal of Gerontology: Social Sciences}, volume={{59B}}, year={2004}, pages={{S181-89}}, number={3} } @article{Meng94, author={Xiao-Li Meng}, title={Multiple-Imputation Inferences with Uncongenial Sources of input}, journal={Statistical Science}, volume={9}, year={1994}, pages={538-573}, number={4} } @article{Meng94b, author={X.L. Meng}, title={Posterior Predictive p-Values}, journal={Annals of Statistics}, volume={22}, year={1994}, pages={1142-1160}, number={3} } @article{MenRom03, author={Xiao-Li Meng and Marin Romero}, title={Discussion: Efficiency and Self-Efficiency with Multiple Imputation Inference}, journal={International Statistical Review}, volume={71}, year={2003}, pages={607-618}, number={3} } @article{MenRub92, author={X.L. Meng and Donald Rubin}, title={Performing Likelihood Ratio Tests with Multiply-imputed Data Sets}, journal={Biometrika}, volume={79}, year={192}, pages={103-111} } @article{Metetal53, author={N. Metropolis and A. W. Rosenbluth and M. N. Rosenbluth and A. H. Teller and E. Teller}, title={Equation of State Calculations by Fast Computing Machines}, journal={Journal of Chemical Physics}, volume={21}, year= 1953, pages={1087-1092} } @article{MicBloHil04, author={Charles Michalopoulos and Howard S. Bloom and Carolyn J. Hill}, title={Can propensity-score methods match the findings from a random assignment evaluation of mandatory welfare-to-work programs?}, journal={Review of Economics and Statistics}, volume= 56, year= 2004, pages={156-179}, number= 1 } @article{Midlarsky05, author={Halbert White}, title={A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity}, abstract={This study seeks to distinguish between instances where genocide occurred and others where it might have been expected to occur but did not. Territorial loss, a corollary refugee influx, and a resulting contraction of socio-economic space are suggested to provide that distinction. Four analytic perspectives based on emotional reactions, class envy, prospect theory, and territoriality indicate the critical importance of loss. The theory is examined in the context of the mass murder of European Jewry including, of course, Germany and Austria, and all European German allies that allowed an indigenous genocidal impulse, willingness to comply with German genocidal policies, or an ability to resist German pressures for Jewish deportation. Three instances of perpetrating states - Italy, Vichy France, and Romania - emerge from the analysis. The latter two governments willingly collaborated with the Germans in victimizing their own Jewish citizenry, while Italy was on a genocidal path just prior to the German occupation. All five states mentioned above were found to experience considerable territorial loss and a contraction of socio-economic space. Bulgaria and Finland, on the other hand, actually expanded their borders at the start of the war and saved virtually all of their Jewish citizens. The importance of loss is demonstrated not only cross-sectionally, in the comparison between the five victimizers, on the one hand, and Bulgaria and Finland, on the other, but also diachronically, in the changing behavior over time of the genocidal and perpetrating states.}, journal={Econometrica}, volume={42}, year={1980}, pages={375-391}, month={July}, number={4}, optnumber={4}, optvolume={48}, optpages={817--838}, optmonth={May} } @article{Mierendorff30, author={Carl Mierendorff}, title={Gesicht und Charakter der nationalsozialistischen Bewegung}, journal={Gesellschaft}, volume= 7, year= 1930, pages={489--540}, number= 1 } @article{MiiVuoOja97, author={Seppo Miilunpalo, Ilkka Vuori, Pekka Oja, Matti Pasanen, and Helka Urponen}, title={Self Rated Health as a Health Measure: The Predictive Value of Self-Reported Health Status on the Use of Physician Services and on Mortality in the Working Age Population}, journal={Journal of Clinical Epidemiology}, volume= 50, year= 1997, pages={{517-28}} } @misc{MikSuc05, author={Gerome Miklau and Dan Suciu}, title={Managing Integrity for Data Exchanged on the Web}, year= 2005, month={16--17 June}, howpublished={Eighth International Workshop on the Web and Databases, Baltimore}, note={{http://webdb2005.uhasselt.be/papers/1-3.pdf}} } @article{Miller01, author={Tim Miller}, title={Increasing Longevity and Medicare Expenditures}, journal={Demography}, volume= 38, year= 2001, pages={215--226}, month={May}, number= 2 } @inbook{MilReiHes98, author={Arthur H. Miller and William M. Reisinger and Vicki L. Hesli}, title={Elections and Voters in Post-Communist Russia}, chapter={Leader Popularity and Party Development in Post-Soviet Russia }, year={100-135}, publisher={London: Edward Elgar}, editor={Matthew Wyman and Stephen White and Sarah Oates} } @article{MilRob89, author={Miller, Abraham H. and Robbins, James S.}, title={Who Did Vote for Hitler? A Reanalysis of the Lipset/Bendix Controversy}, journal={Polity}, volume= 21, year= 1989, pages={655-677}, number= 4 } @article{MilSha94, author={Paul Milgrom and Chris Shannon}, title={Monotone Comparative Statics}, journal={Econometrica}, volume= 62, year= 1994, pages={157--180}, month={January}, number= 1, annote={introduction of the single crossing property as a way to ensure monotonicity} } @article{MinRos00, author={Ming, K. and Rosenbaum, Paul R.}, title={Substantial gains in bias reduction from matching with a variable number of controls}, journal={Biometrics}, volume={56}, year={2000}, pages={118-124} } @article{MoeWal01, author={Karl Ove Moene and Michael Wallerstein}, title={Inequality, Social Insurance, and Redistribution}, journal={American Political Science Review}, volume={95}, year={2001}, pages={859-874}, month={December}, number={4} } @article{MoeWal03, author={Karl Ove Moene and Michael Wallerstein}, title={Earnings Inequality and Welfare Spending: A Disaggregated Analysis}, journal={World Politics}, volume={55}, year={2003}, pages={485-516}, month={July} } @book{Mommsen89, author={Hans Mommsen}, title={Die verspielte Freiheit --- der Weg der Republik von Weimar in den Untergang, 1918 bis 1933}, publisher={Propyl{\"a}en}, year= 1989 } @techreport{MonLopGel99, author={Manuel Montes-y-Gomez and Aurelio Lopez-Loez and Alexander F. Gelbukh and Grigori Sidorov and Adolfo Guzman-Arenas}, title={Text Mining: New Techniques and Applications}, institution={Center for computing Research of the National Polytechnic Institute, Mexico City}, year={1999}, month={August}, address={CIC, IPN, Laboratorio de Lenguaje Natural, Av. Juan de Dios Batiz, Mexico DF.}, volume={34} } @techreport{MonLopGel99b, author={Manuel Montes y Gomez and Aurelio Lopez Lopez and Alexander F. Gelbukh}, title={Text Mining as a Social Thermometer}, institution={Centro de Investigaci{\'o}n en Computaci{\'o}n}, year={1999}, address={CIC, IPN Laboratorio de Lenguaje Natural. Ave. Juan de Dios Batiz, Mexico DF} } @book{MonSam04, title={Decentralization and Democracy in Latin America}, publisher={University of Notre Dame Press}, year={2004}, editor={Alfred P. Montero and David J. Samuels}, address={Notre Dame, Indiana} } @book{Montgomery2001, author={Douglas C. Montgomery}, title={Design and Analysis of Experiments}, publisher={Wiley}, year={2001}, address={New York}, edition={5th} } @article{MorBlaTom03, author={Saul S. Morris and Robert E. Black and Lana Tomaskovic}, title={Predicting the distribution of under-five deaths by cause in countries without adequate vital registration systems}, journal={International Journal of Epidemiology}, volume={32}, year={2003}, pages={1041-1051} } @book{Morozov84, author={V.A. Morozov}, title={Methods for solving incorrectly posed problems}, publisher={Springer-Verlag}, year= 1984 , address={Berlin} } @article{MorSpi99, author={Mary J. Morrissey and Donna Spiegelman}, title={Matrix Methods for Estimating Odds Ratios with Misclassified Exposure Data: Extensions and Comparisons}, journal={Biometrics}, volume={55}, year={1999}, pages={338-344}, month={June} } @unpublished{MorYamTat02, author={Satoshi Morinaga and Kenji Yamanishi and Kenji Tateishi and Toshikazu Fukushima}, title={Mining Product Reputations on the Web}, note={Satoshi Morinaga and Kenji Yamanishi NEC Corp. 4-1-1 Miyazaki Miyamae Kawasaki Kanagawa 216-8555 Japan Tel: 81-44-856-2143; morinaga@cw.jp.nec.com}, year={2002} } @unpublished{MorYamTat02, author={Satoshi Morinaga and Kenji Yamanishi and Kenji Tateishi and Toshikazu Fukushima}, title={Mining Product Reputations on the Web}, note={Satoshi Morinaga and Kenji Yamanishi NEC Corp. 4-1-1 Miyazaki Miyamae Kawasaki Kanagawa 216-8555 Japan Tel: 81-44-856-2143; morinaga@cw.jp.nec.com}, year={2002} } @article{MosSha82, author={Jana Mossey MPH, PhD, and Evelyn SHapira, MA}, title={Self-Rated Health: A Predictor of Mortality Among the Elderly}, journal={American Journal of Public Health}, volume= 72, year= 1982, pages={{800-08}} } @article{moynihan00, author={Ray Moynihan and Lisa Bero and Dennis Ross-Degnan and David Henry and Kriby Lee and Judy Watkins and Connie Mah and Stephen B. Soumerai}, title={Coverage by the News Media of the Benefits and Risks of Medications}, journal={New England Journal of Medicine}, volume= 342, year= 2000, pages={1645-1650}, month={June 1}, number= 22 } @article{MugLac02, author={Anthony Mughan and Dean Lacy}, title={Economic Performance, Job Insecurity, and Electoral Choice}, journal={British Journal of Political Science}, volume= 32, year= 2002, pages={513--533} } @book{MurEva03, title={Health Systems Performance Assessment: Debates, Methods and Empiricism}, publisher={World Health Organization}, year= 2003, editor={Christopher J.L. Murray and David B. Evans}, address={Geneva} } @book{MurLop96, title={The Global Burden of Disease}, publisher={Harvard University Press and WHO}, year= 1996 , editor={Christopher L.J.\ Murray and Alan D.\ Lopez} } @article{MurLop97, author={Christopher J. L. Murray and Alan D. Lopez}, title={Mortality by Cause for Eight Regions of the World: Global Burden of Disease Study}, journal={The Lancet}, volume={349}, year={1997}, pages={1269-1276} } @article{murphy69, author={George G. S. Murphy}, title={On Counterfactual Propositions}, journal={History and Theory}, volume= 9, year= 1969, pages={14-38} } @book{Murphy72, author={Paul L. Murphy}, title={The Meaning of Freedom of Speech}, publisher={Greenwood}, year= 1972, address={Westport, CT} } @book{Murray98, author={Murray, David M.}, title={Design and Analysis of Group-Randomized Trials}, publisher={Oxford UP}, year={1998}, address={New York} } @book{Mutz98, author={Diana C. Mutz}, title={Impersonal Influence: How Perceptions of Mass Collectives Affect Political Attitudes}, publisher={Cambridge University Press}, year={1998}, address={New York, NY} } @article{MwaLesDec05, author={Samuel M. Mwalili and Emmanuel Lesaffre and Dominique Declerck}, title={A Bayesian ordinal logistic regression model to correct for interobserver measurement error in a geographical oral health study}, journal={Applied Statistics}, volume={54}, year={2005}, pages={77-93} } @article{Myerson04, author = {Roger Myerson}, year = {2004}, title = {Political Economics and the Weimar Disaster}, journal = {Journal of Institutional and Theoretical Economics}, pages = {187-209}, volume = {160} } @article{Nagler91, author={Jonathan Nagler}, title={{The Effect of Registration Laws and Education on U. S. Voter Turnout}}, journal= apsr, volume={85}, year={1991}, pages={1393--1405}, number={4} } @unpublished{NasYi03, author={Tetsuya Nasukawa and Jeonghee Yi}, title={Sentiment Analysis: Capturing Favoriability Using Natural Language Processing}, note={Tetsuya Nasukawa IBM Research, Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan; nasukawa@jp.ibm.cop}, year={2003}, month={October} } @unpublished{NasYi03, author={Tetsuya Nasukawa and Jeonghee Yi}, title={Sentiment Analysis: Capturing Favoriability Using Natural Language Processing}, note={Tetsuya Nasukawa IBM Research, Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan; nasukawa@jp.ibm.cop}, year={2003}, month={October} } @book{National02, author={NIPSSR}, title={Population Projections for Japan (January, 2002)}, publisher={National Institute of Population and Social Security Research}, year= 2002, annote={Life tables for Japan are constructed using the Lee-Carter method.} } @book{Neuendorf02, author={Neuendorf, K.A.}, title={{The Content Analysis Guidebook}}, publisher={Thousand Oaks, CA: Sage Publications}, year={2002} } @article{Neuhaus02, author={John M. Neuhaus}, title={Analysis of Clustered and Longitudinal Binary Data Subject to Response Misclassification}, journal={Biometrics}, volume={58}, year={2002}, pages={675-683}, month={September} } @article{Neuhaus99, author={John M. Neuhaus}, title={Bias and efficiency loss due to misclassified responses in binary regression}, journal={Biomtrika}, volume={86}, year={1999}, pages={843-855}, number={4} } @article{neutra78, author={Raymond R. Neutra and Margaret E. Drolette}, title={Estimating Exposure-Specific Disease Rates from Case-Control Studies Using Bayes Theorem}, journal={American Journal of Epidemiology}, volume= 108, year= 1978, pages={214-222}, number= 3 } @article{Neyman23, author={J. Neyman}, title={On the application of probability theory to agricultural experiments. Essay on Principles. Section 9}, journal={Statistical Science}, volume={5}, year={1923}, pages={465-480}, note={Translated in 1990, with discussion} } @article{Neyman23b, author={J. Neyman}, title={Statistical Problems in Agricultural Experiments}, journal={Journal of the Royal Statistical Association}, volume= 2, year= 1923, pages={107--180}, number= 2 } @article{Nickerson05, author={David W. Nickerson}, title={Scalable Protocols Offer Efficient Design for Field Experiements}, journal={Political Analysis}, volume={13}, year={2005}, pages={233-252} } @article{NieFet86, author={Richard G. Niemi and Patrick Fett}, title={The Swing Ratio: An Explanation and an Assessment}, journal={Legislative Studies Quarterly}, volume={11}, year={1986}, pages={75-90}, month={February}, number={1} } @misc{NISO01, author={NISO}, title={The Dublin Core Metadata Element Set}, year={2001}, note={{http://www.niso.org/standards/resources/Z39-85.pdf}} } @article{NiyGirPog98, author = {P. Niyogi and F. Girosi and T. Poggio}, title = {Incorporating Prior Information in Machine Learning by Creating Virtual061 Examples}, journal = {Proceedings of the IEEE.}, volume = {86}, year = {1998}, pages = {2196--2209}, number = {11} } @book{Noakes71, author={Noakes, J.}, title={The Nazi Party in Lower Saxony}, publisher={Oxford University Press}, year= 1971, address={New York} } @article{NovReaRau06, author={Scott P. Novak and Sean F. Reardon and Stephen W. Raudenbush and Stephen L. Buka}, title={Retail tobacco outlet density and youth cigarette smoking: A propensity-modeling approach}, journal={American Journal of Public Health}, volume={96}, year={2006}, pages={670-676}, month={April}, number={4} } @article{nurminen95, author={Markku Nurminen}, title={To Use or Not to Use the Odds Ratio in Epidemiologic Analysis}, journal={European Journal of Epidemiology}, volume= 11, year= 1995, number={365-371} } @article{NybPetGai03, author={Hanne Nybo et al}, title={Predictors of Mortality in 2249 Nonagenarians-The Danish 1905 Cohort Study}, journal={Journal of the American Geriatrics Society}, volume= 51, year= 2003, pages={{1365-73}} } @booklet{OetParHym03, title={The Not So Short Introduction to \LaTeXe\}, author = {Tobias Oetiker, Hubert Partl, Irene Hyma and Elisabeth Schlegl}, year = 2003, note = {{Available at http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf.}} } @article{OhaWooMoo90, author={A. O'Hagan and E.G. Woodward and L.C. Moodaley}, title={Practical Bayesian Analysis of a Simple Logistic Regression: Predicting Corneal Transplants}, journal={Statistics in Medicine}, volume={9}, year={1990}, pages={1091-1101} } @book{Ohr97a, author = {Dieter Ohr}, title = {Nationalsozialistische Propaganda und Weimarer Wahlen: empirische Analysen zur Wirkung von NSDAP-Versammlungen}, publisher = {Westdeutscher Verlag}, year = 1997, address = {Opladen} } @article{Ohr97b, author={Dieter Ohr}, title={Nationalsozialistische Versammlungspropaganda und Wahlerfolg der NSDAP: eine kausale Beziehung?}, journal={Historical Social Research}, volume= 22, year= 1997, pages={106--127}, number={3/4} } @article{OkoDev01, author={Ike S. Okosun and G.E. Alan Dever}, title={Verbal Autopsy: A Necessary Solution for the Paucity of Mortality Data in the Less-Developed Countries}, journal={Ethnicity and Disease}, volume={11}, year={2001}, pages={575-577} } @article{OkoDev01, author={Ike S. Okosun and G.E. Alan Dever}, title={Verbal Autopsy: A Necessary Solution for the Paucity of Mortality Data in the Less-Developed Countries}, journal={Ethnicity and Disease}, volume={11}, year={2001}, pages={575-577} } @article{OloFliAns94, author={John O'Loughlin and Colin Flint and Luc Anselin}, title={The Geography of the Nazi Vote: Context, Confession, and Class in the Reichstag Election of 1930}, journal={Annals of the Association of American Geographers}, volume= 84, year= 1994, pages={351-380} } @article{O'Loughlin02, author={John O'Loughlin}, title={The Electoral Geography of Weimar Germany}, journal={Political Analysis}, volume= 10, year= 2002, pages={217--243}, number= 3 } @article{Oman85, author={Samuel D. Oman}, title={Specifying a Prior Distribution in Structured Regression Problems}, journal= jasa, volume= 80, year= 1985, pages={190--195}, month={March}, number= 389 } @article{OneRus97, author={John R. Oneal and Bruce Russett}, title={The Classical Liberals Were Right: Democracy, Interdependence, and Conflict, 1950-1985}, journal= isq, volume= 41, year= 1997, pages={267--293}, month={June}, number= 2 } @inproceedings{OrcWoo72, author={T. Orchard and M.A. Woodbury}, title={A Missing Information Principle: Theory and Applications}, booktitle={Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability}, year={1972}, publisher={Berkeley: University of California Press}, pages={697-715} } @book{ORourke98, author={Joseph O'Rourke}, title={Computational Geometry in C}, publisher={Cambridge University Press}, year= 1998, address={New York} } @article{OSS44, author={OSS}, title={Greater Germany --- Kreis Boundaries}, journal={OSS Map 6289}, year= 1944, month={July 1} } @article{OveMag92, author={John E. Overall and Kevin N. Magee}, title={Directional Baseline Differences and Type I Error Probabilities in Randomized Clinical Trials}, journal={Journal of Biopharmaceutical Statistics}, volume={2}, year={1992}, pages={189-203}, number={2} } @article{PacPacDuk90, author={Sara Pacque-Margolis and Michel Pacque and Zwannah Dukuly and John Boateng and Hugh R. Taylor}, title={Application of the Verbal Autopsy During A Clinical Trial}, journal={Social Science Medicine}, volume={31}, year={1990}, pages={585-591}, number={5} } @article{PalPet03, author={Ted Palmer and Anthony Petrosino}, title={The "Experimenting Agency". The California Youth Authority Research Division}, journal={Evaluation Review}, volume={22}, year={2003}, pages={228-266}, month={June}, number={3} } @article{PalPoo87, author={Thomas R. Palfrey and Keith T. Poole}, title={The Relationshiop Between Information, Ideology, and Voter Behavior}, journal= ajps, volume= 31, year= 1987, pages={511-530}, month={August}, number= 3 } @article{Palvi41, author={Palvi, Melchior}, title={Economic Foundations of the German Totalitarian State}, journal={American Journal of Sociology}, volume= 46, year= 1941, pages={469-486}, number= 4 } @inproceedings{PanLee05, author={Bo Pang and Lillian Lee}, title={Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales}, booktitle={Proceedings of the ACL}, year= 2005 , pages={115--124} } @article{PanLeeVai02, author={Bo Pang and Lillian Lee and Shivakumar Vaithyanathan}, title={{Thumbs Up? Sentiment Classification using Machine Learning Techniques}}, journal={Proceedings of the Conference on Empirical Methods in Natural Language Processing}, year={2002}, pages={79-86} } @misc{Parsons00, author={Lori S. Parsons}, title={Using SAS Software to Perform a Case-Control Match on Propensity Score in an Observational Study}, year= 2000, note={{http://www2.sas.com/proceedings/sugi25/25/po/25p225.pdf}}, booktitle={SUGI 25}, volume={225-25} } @misc{Parsons01, author={Lori S. Parsons}, title={Reducing Bias in a Propensity Score Matched-Pair Sample Using Greedy Matching Techniques}, year= 2001, note={{http://www2.sas.com/proceedings/sugi26/p214-26.pdf}}, booktitle={SUGI 26}, volume={214-26} } @article{ParThoNor92, author={Marti G. Parker, Mat Thorslund, and Marie-Louise Nordstrom}, title={Predictors of Mortality for the Oldest Old. A 4-year Follow-up of Community Based Elderly in Sweden}, journal={Archives of Gerontology and Geriatrics}, volume= 14, year= 1992 , pages={{227-37}} } @article{Paskin05, author={Norman Paskin}, title={Digital Object Identifiers for Scientific Data}, journal={Data Science Journal}, volume={28}, year={2005}, pages={12-20}, month={April}, note={{http://www.doi.org/topics/050428CODATAarticleDSJ.pdf}} } @inproceedings{Passchier80, author={N. Passchier}, title={The Electoral Geography of the Nazi Landslide}, booktitle={Who Were the Fascists?}, year= 1980, publisher={Universitetsforlaget}, address={Bergen}, editor={S.U. Larsen and B. Hagtvet and J.P. Myklebust}, pages={283--300} } @book{Paul90, author={Paul, G.}, title={Aufstand der Bilder}, publisher={Dietz}, year= 1990, address={Bonn} } @article{PeaLucGla02, author={J.W. Peabody and J. Luck and P. Glassman and S. Jain}, title={Measuring What we want to Measure: Using Vignettes in Clinical Education}, journal={Journal of Internal Medicine}, volume={17, Suppl.}, year= 2002, pages={232--232}, month={April}, number= 1 } @article{Pearce70, author={S.C. Pearce}, title={The Efficiency of Block Designs in General}, journal={Biometrika}, volume={57}, year={1970}, pages={339-346}, month={August}, number={2} } @book{pearl00, author={Judea Pearl}, title={Causality: Models, Reasoning, and Inference}, publisher= cup, year= 2000 } @article{PecBeeSan02, author={Mark Peceny and Caroline C. Beer and Shannon Sanchez-Terry}, title={Dictatorial Peace?}, journal= apsr, volume= 96, year= 2002, pages={15--26}, number= 1 } @article{PelAsp1996, author={Markku Peltonen and Kjell Asplund}, title={Age-Period-Cohort Effects on Stroke Mortality in Sweden 1969-1993 and Forecasts Up to the Year 2004}, journal={Stroke}, volume= 27, year= 1996, pages={1981-1985}, number= 11 } @article{PelAsp96, author={Markku Peltonen and Kjell Asplund}, title={Age-Period-Cohort Effects on Stroke Mortality in Sweden 1969-1993 and Forecasts Up to the Year 2003}, journal={Stroke}, volume={27}, year= 1996, pages={1981--1985} } @article{Perkins00, author={Susan M. Perkins and Wanzhu Tu and Michael G. Underhill and Xiao-Hua Zhou and Michael D. Murray}, title={The use of propensity scores in pharmacoepidemiological research}, journal={Pharmacoepidemiology and drug safety}, volume= 9, year= 2000, pages={93-101} } @article{Permutt90, author={Thomas Permutt}, title={Testing for Imbalance of Covariates in Controlled Experiments}, journal={Statistics in Medicine}, volume={9}, year={90}, pages={1455-1462} } @article{PerTuUnd00, author={Susan M. Perkins and Wanzhu Tu and Michael G. Underhill and Xiao-Hua Zhou and Michael D. Murray}, title={The use of propensity scores in pharmacoepidemiologic research}, journal={Pharmacoepidemiology and Drug Safety}, volume={9}, year={2000}, pages={93-101} } @article{PerWilLev02, author={Thomas T. Perls and John Wilmoth and Robin Levenson and Maureen Drinkwater and Melissa Cohen and Hazel Bogan and Erin Joyce and Stephanie Brewster and Louis Kunkel and Annibale Puca}, title={Life-long Sustained Mortality Advantage of Siblings of Centenarians}, journal= pnas, volume= 99, year= 2002, pages={8442--8447}, month={June 11}, number= 12 } @article{PetRoeMul06, author={E.D. Peterson and M.T. Roe and J. Mulgund and E.R. DeLong and B.L.Lytle and R.G. Brindis and S.C. Smith Jr. and C.V. Pollack Jr. and L.K. Newby and R.A. Harrington and W.B. Gibler and E.M. Ohman}, title={Association between hospital process performance and outcomes among patients with acute coronary syndromes}, journal={Journal of the American Medical Association}, volume={295}, year={2006}, pages={1912-1920}, month={April} } @article{PijFesKro93, author={Loek T. J. Pijls, Edith J.M. Feskens, and Daan Kromhout}, title={Self-Rated Health, Mortality, and Chronic Diseases in Elderly Men: The Zutphen Study, 1985-1990}, journal={American Journal of Epidemiology}, volume= 138, year= 1993, pages={{840-48}}, number= 10 } @article{PiqMacHic02, author={Alex R. Piquero and Randall Macintosh}, title={The Validity of a Self-Reported Delinquency Scale: Comparisons Across Gender, Age, Race, and Place of Residence}, journal= smr, volume= 30, year= 2002, pages={492--529}, month={May}, number= 4 } @book{Placket81, author={R. L. Plackett}, title={The Analysis of Categorical Data}, publisher={Macmillian}, year= 1981, address={New York}, edition={2nd} } @book{Plackett81, author={R.L. Plackett}, title={{The Analysis of Categorical Data}}, publisher={Griffin}, year= 1981, address={London} } @manual{PluBesCowVin05, author={Martyn Plummer and Nicky Best and Kate Cowles and Karen Vines}, title={coda: Output analysis and diagnostics for MCMC}, year={2005}, url={{http://www-fis.iarc.fr/coda/}} } @article{PocAssEno02, author={Stuart J. Pocock and Susan E. Assmann and Laura E. Enos and Linda E. Kasen}, title={Subgroup analysis covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems}, journal={Statistics in Medicine}, volume={21}, year={2002}, pages={2917-2930} } @article{PogGamLit88, author={T. Poggio and E.B.\ Gamble and J.J.\ Little}, title={Parallel Integration of Vision Modules}, journal={Science}, volume= 242, year= 1988, pages={436--440}, month={21 October} } @unpublished{Pole06a, author = {Antoinette Pole}, title = {Congressional Blogging: Advertising, Credit Claiming, & Position Taking}, note = {Presented at the 2006 annual meeting of the American Political Science Association, Philadelphia, PA}, address = {Antoinette_Pole@brown.edu} } @article{Pole06a, author={Antoinette Pole}, title={Black Bloggers and the Blogosphere}, journal={International Journal of Technology, Knowledge and Society}, volume={2}, year={2006}, number={6} } @unpublished{Pole07, author={Antoinette Pole}, title={Do Blogs Matter? Elite Political Bloggers in American Politics}, address={Antoinette_Pole@brown.edu} } @article{Pollock44, author={Pollock, James K.}, title={An Areal Study of the German Electorate, 1930-1933}, journal={American Political Science Review}, volume= 38, year= 1944, pages={89-95} } @unpublished{PolMck07, author={Antoinette Pole and Laura McKenna}, title={Blogging Alone? Political Participation and the Blogosphere}, address={Antoinette_Pole@brown.edu}, organization={Brown University} } @article{PooDan85, author={Keith Poole and R. Steven Daniels}, title={Ideology, Party, and Voting in the U.S. Congress, 1959--1980}, journal= apsr, volume= 79, year= 1985, pages={373-399}, month={June} } @article{Poole98, author={Keith T. Poole}, title={Recovering a Basic Space From a Set of Issue Scales}, journal= ajps, volume= 42, year= 1998, pages={954--993}, month={July}, number= 3 } @article{PooRos91, author={Keith Poole and Howard Rosenthal}, title={Patterns of Congressional Voting}, journal= ajps, volume= 35, year= 1991, pages={228--278}, month={February} } @book{Popkin94, author={Samuel Popkin}, title={The Reasoning Voter: Communication and Persuasion in Presidential Campaigns}, publisher={University of Chicago Press}, year= 1994, address={Chicago} } @article{Porter80, author={Porter, M. F.}, title={{An algorithm for suffix stripping}}, journal={Program}, volume={14}, year={1980}, pages={130-137}, number={3} } @article{PosVer02, author={Eric A. Posner and Adrian Vermeule}, title={Legislative Entrenchment: A Reappraisal}, journal={The Yale Law Journal}, volume={111}, year={2002}, pages={1665-1705}, month={May}, number={7} } @article{Powell01, author={G.N. Powell}, title={Workplace Romances between Senior-level Executives and Lower-Level Employees}, journal={Human Relations}, volume= 54, year= 2001, pages={1519--1544}, month={November}, number= 11 } @article{PraAit54, author={Prais, S. J. and Aitchison, J.}, title={The Grouping of Observations in Regression Analysis}, journal={Revue de l'Institut International de Statistique}, volume= 22, year= 1954, pages={1-22} } @book{PreHeuGui01, author={Samuel H. Preston and Patrick Heuveline and Michel Guillot}, title={Demography: Measuring and Modeling Population Processes}, publisher={Blackwell}, year= 2001, address={Oxford, England} } @article{prentice78, author={R.L. Prentice and N.E. Breslow}, title={Retrospective Studies and Failure-time Models}, journal={Biometrica}, volume= 65, year= 1978, number={153--5} } @article{prentice79, author={R.L. Prentice and R. Pyke}, title={Logistic Disease Incidence Models and Case-control Studies}, journal={Biometrica}, volume= 63, year= 1979, number={403-411} } @article{prentice86, author={R.L. Prentice}, title={A Case-Cohort Design for Epidemiological Studies and Disease Prevention Trials}, journal={Biometrica}, volume= 73, year= 1986, number={1-11} } @incollection{Preston91, author={Samuel H. Preston}, title={Demographic Change in the United States, 1970--2050}, booktitle={Forecasting the Health of Elderly Populations}, publisher={Springer-Verlag}, year= 1991, address={New York}, editor={K.G. Manton and B.H. Singer and R.M. Suzman}, pages={51--77} } @incollection{Preston93, author={Samuel H. Preston}, title={Demographic Change in the United States, 1970--2050}, booktitle={Demography and Retirement: The Twenty-First Century}, publisher={Praeger Publishers}, year= 1993, address={New York}, editor={A.M. Rappaport and Sylvester Scheiber}, pages={19-48} } @article{Prinz86, author={Michael Prinz}, title={Der unerw{\"u}nschte Stand: Lage und Status der Angestellten im `Dritten Reich'}, journal={Historische Zeitschrift}, volume= 242, year= 1986, pages={327--359}, number= 2 } @article{Prinz89, author={Michael Prinz}, title={Angestellte und Nationalsozialismus}, journal={Geschichte und Gesellschaft}, volume= 15, year= 1989, pages={552--562}, number= 4 } @book{Prinz91, author={Von Michael Prinz and Rainer Zitelmann}, title={Nationalsozialismus und Modernisierung}, publisher={Darmstadt}, year={1991} } @book{PrzAlvChe00, author={Adam Przeworski and Michael e. Alvarez and Jose Antonio Cheibub and Fernando Limongi}, title={Democracy and Development: poltical institutions and well-being in the world, 1950-1990}, publisher={Cambridge University Press}, year={New York, NY}, address={The Edinburgh Building, Cambridge CB22RU, UK} } @incollection{Przeworski05, author={Adam Przeworski}, title={Is the Science of Comparative Politics Possible?}, booktitle={Oxford Handbook of Comparative Poltics}, publisher={Oxford University Press}, year={2005}, month={August}, address={New York}, editor={Carles Boix and Susan C. Stokes} } @article{PrzTeu66, author={Adam Przeworski and Henry Teune}, title={Equivalence in Cross-National Research}, journal={Public Opinion Quarterly}, volume= 30, year={1966--1967}, pages={551--568}, month={Winter} } @article{PurHil06, author={Purpura, Stephen and Dustin Hillard}, title={{Automated Classification of Congressional Legislation}}, journal={Proceedings of the International Conference on Digital Government Research}, year={2006} } @book{Putnam00, author={Robert D. Putnam}, title={Bowling Alone: The Collapse and Revival of American Community}, publisher={Simon and Schuster}, year= 2000, address={New York} } @article{Quandt72, author={Richard Quandt}, title={Methods of Estimating Switching Regressions}, journal= jasa, volume= 67, year= 1972, pages={306-310}, number= 338 } @article{Quandt74, author={Richard E. Quandt}, title={A Stochastic Model of Elections in Two-Party Systems}, journal={Journal of theAmerican Statistical Association}, volume={69}, year={1974}, pages={315-324}, month={June}, number={346} } @incollection{Qui04, author={Kevin Quinn}, title={Ecological Inference in the Presence of Temporal Dependence}, booktitle={Ecological Inference: New Methodological Strategies}, publisher={Cambridge University Press}, year= 2004, address={New York}, editor={Gary King and Ori Rosen and Martin A. Tanner} } @article{QuiArmSno96, author = {M.A. Quigley and J.R.M. Armstrong Schellenberg and R.W. Snow}, title = {Algorithms for verbal autopsies: a validation study in Kenyan children}, journal = {Bulletin of the World Health Organization}, volume = {74}, year = {1996}, pages = {147-154}, number = {2} } @article{QuiChaSet00, author={Maria A. Quigley and Daniel Chandramohan and Philip Setel and Fred Binka and Laura C. Rodrigues}, title={Validity of data-derived algorithms for ascertaining causes of adult death in two African sites using verbal autopsy}, journal={Tropical Medicine and International Health}, volume={5}, year={2000}, pages={33-39}, month={January}, number={1} } @article{Quigley05, author={Maria A. Quigley}, title={Commentary: Verbal Autopsies - from small-scale studies to mortality surveillance systems}, journal={International Journal of Epidemiology}, volume={34}, year={2005}, pages={1087-1088} } @misc{QuiMonCol06, author = {Quinn, K.M. and Monroe, B.L. and Colaresi, M. and Crespin, M.H. and Radev, D.R.}, title = {{How To Analyze Political Attention With Minimal Assumptions And Costs}}, year = {2006}, howpublished = {Annual Meeting of the Society for Political Methodology} } @misc{Quinn00, author = {Kevin M. Quinn}, title = {Flexible Prior Specifications for Factor Analytic Models with an Application to {A}merican Political Ideology}, year = 2000, howpublished = {Paper presented at the Annual Meeting of the Midwest Political Science Association} } @manual{R08, author={{R Development Core Team}}, title={R: A Language and Environment for Statistical Computing}, organization={R Foundation for Statistical Computing}, year={2008}, address={Vienna, Austria}, note={{ISBN} 3-900051-07-0}, url={{http://www.R-project.org}} } @article{Rabban83, author={David Rabban}, title={The Emergence of Modern First Amendment Doctrine}, journal={University of Chicago Law Review}, volume= 50, year={1983}, pages={1207--??} } @article{RagGri95, author={T.E. Raghunathan and J.E. Grizzle}, title={A Split Questionnaire Survey Design}, journal={Journal of the American Statistical Association}, volume={90}, year={1995}, pages={54-63} } @article{Ragsdale91, author={Lyn Ragsdale}, title={{Strong Feelings: Emotional Responses to Presidents}}, journal={Political Behavior}, volume={13}, year={1991}, pages={33-65}, number={1} } @article{RahJos98, author={Elham Rahme and Lawrence Joseph}, title={Estimating the Prevalence of a Rare Disease: Adjusted Maximum Likelihood}, journal={The Statistician}, volume={47}, year={1998}, pages={149-158}, number={1} } @article{RakMorHir91, author={William Rakowski, PhD, Vincent Mor, PhD, and Jeffrey Hiris, BA}, title={The Association of Self-Rated Health with Two-Year Mortality in a Sample of Well Elderly}, journal={Journal of Aging and Health}, volume= 3, year= 1991, pages={{527-45}} } @article{Rao96, author={J.N.K. Rao}, title={On Variance Estimation with Imputed Survey Data}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={499-506} } @article{RauMarSpy06, author={Stephen W. Raudenbush and Andres Martinez and Jessaca Spybrook}, title={Strategies for Improving Precision in Group-Randomized Experiments}, journal={Educational Evaluation and Policy Analysis}, year={2007}, address={University of Chicago, University of Michigan} } @book{Recipes87, author={William H. Press and Saul Teukolsky and William T. Vetterling and Brian P. Flannery}, title={Numerical Recipes: the Art of Scientific Computing}, publisher={Cambridge University Press}, year={1987}, address={Cambridge} } @article{ReeQui97, author={Barnaby C. Reeves and Maria Quigley}, title={A Review of Data-Derived Methods for Assigning Causes of Death from Verbal Autopsy Data}, journal={International Journal of Epidemiology}, volume={26}, year={1997}, pages={1080-1089}, number={5} } @article{ReeQui97, author={Barnaby C. Reeves and Maria Quigley}, title={A Review of Data-Derived Methods for Assigning Causes of Death from Verbal Autopsy Data}, journal={International Journal of Epidemiology}, volume={26}, year={1997}, pages={1080-1089}, number={5} } @book{Rehnquist98, author={William H. Rehnquist}, title={All the Laws But One: Civil Liberties in Wartime}, publisher={Knopf}, year= 1998, address={New York} } @article{ReuLi03, author={Rafael Reuveny and Quan Li}, title={The Joint Democracy-Dyadic Conflict Nexus: A Simultaneous Equations Model}, journal= isq, volume= 47, year= 2003, pages={325--346}, month={September}, number= 3 } @article{RieSch93, author={Arthur van Riel and Arthur Schram}, title={Weimar Economic Decline, Nazi Economic Recovery, and the Stabilization of Political Dictatorship}, journal={Journal of Economic History}, volume= 53, year= 1993, pages={71--105}, number= 1 } @book{Riffenburgh98, author={R. H. Riffenburgh}, title={Statistics in Medicine}, publisher={Academic Press}, year={1998}, address={San Diego} } @proceedings{RilWie03, editor={Ellen Riloff and Janyce Wiebe}, title={Learning Extraction Patterns for Subjective Expressions}, publisher={Conference on Empirical Methods in Natural Language Processing}, year={2003}, address={Ellen Riloff, School of Computing, University of UT, Salt Lake City, UT 84112; riloff@cs.utah.edu} } @proceedings{RilWie03, editor={Ellen Riloff and Janyce Wiebe}, title={Learning Extraction Patterns for Subjective Expressions}, publisher={Conference on Empirical Methods in Natural Language Processing}, year={2003}, address={Ellen Riloff, School of Computing, University of UT, Salt Lake City, UT 84112; riloff@cs.utah.edu} } @proceedings{RilWieWil03, editor={Ellen Riloff and Janyce Wiebe and Theresa Wilson}, title={Learning Subjective Nouns Using Extraction Pattern Bootstrapping}, publisher={Seventh CoNLL Conf. Edmonton}, year={2003}, month={May-June} } @proceedings{RilWieWil03, editor={Ellen Riloff and Janyce Wiebe and Theresa Wilson}, title={Learning Subjective Nouns Using Extraction Pattern Bootstrapping}, publisher={Seventh CoNLL Conf. Edmonton}, year={2003}, month={May-June} } @book{Ripley96, author={Brian Ripley}, title={Pattern Recognition and Neural Networks}, publisher={Cambridge Univeristy Press}, year={1996} } @article{Ritschl03, author = {Ritschl, Albrecht}, title = {Hat das Dritte Reich wirklich eine ordentliche Besch{\"a}ftigungspolitik betrieben?}, journal = {Jahrbuch f{\"u}r Wirtschaftsgeschichte}, year = {2003}, pages = {{125-40}} } @article{Ritschl90, author = {Albrecht Ritschl}, title = {Zu hohe L{\"o}hne in der Weimarer Republik? Eine Auseinandersetzung mit Holtferichs Berechnungen zur Lohnposition der Arbeitsschaft 1925-1932}, journal = {Geschichte und Gesellschaft}, volume = {16}, year = 1990, pages = {375--402} } @article{Robins95, author = {J.M. Robins}, title = {Discussion of ``Causal diagrams in empirical research'' by J. Pearl}, journal = {Biometrika}, volume = 82, year = 1995, number = {387-394} } @article{Robins86, author = {J.M. Robins and M.H. Gail and J.H. Lubin}, title = {More on Biased Selection of Controls for Case-Control Analyses of Cohort Studies}, journal = {Biometrics}, volume = 42, year = 1986, number = {293-299} } @incollection{Robins99, author={James M. Robins}, title={Marginal Structural Models Versus Structural Nested Models as Tools for Causal Inference}, booktitle={Statistical Models in Epidemiology: The Environment and Clinical Trials}, publisher={Springer-Verlag}, year= 1999, address={New York}, editor={M.E. Halloran and D. Berry}, pages={95-134}, volume= 116 } @article{Robins99b, author={James M. Robins}, title={Association, Causation, and Marginal Structural Models}, journal={Synthese}, volume= 121, year={1999b}, pages={151--179} } @article{RobJew91, author={Laurence D. Robinson and Nicholas P. Jewell}, title={Some Surprising Results about Covariate Adjustment in Logistic Regression Models}, journal={International Statistical Review}, volume={59}, year={1991}, pages={227-240}, month={August}, number={2} } @article{RobMar99, author={Noah Jamie Robinson and Ravai Marindo}, title={Current Estimates of and Future Projections for Adult Deaths Attributed to HIV Infection in Zimbabwe}, journal={Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology}, volume= 20, year= 1999, pages={187--194} } @article{RobRot01, author={James M. Robins and Andrea Rotnitzky}, title={Comment on the Peter J. Bickel and Jaimyoung Kwon,, `Inference for semiparametric models: Some questions and an answer'}, journal={Statistica Sinica}, volume= 11, year= 2001, pages={920--936}, number= 4, annote={on double robustness} } @article{RobRot03, author={James M. Robins and Andrea Rotnitzky}, title={Inverse Probability Weighting Estimation in Survival Analysis}, journal={Encyclopedia of Biostatistics}, year= 2003, note={forthcoming} } @article{RobRot95, author={J. Robins and A. Rotnitzky}, title={Semiparametric efficiency in multivariate regression models with missing data}, journal={Journal of the American Statistical Association}, volume= 90, year= 1995 , pages={122-129} } @article{RobWan00, author={James Robins and Naisyin Wang}, title={Inference for Imputation Estimators}, journal={Biometrika}, volume={87}, year={2000}, pages={113-124} } @article{Rogers86, author={Andrei Rogers}, title={Parameterized Multistate Population Dynamics and Projections}, journal= jasa, volume= 81, year= 1986, pages={48--61} } @article{RogRay99, author={Andrei Rogers and James Raymer}, title={Fitting Observed Demographic Rates with the Multiexponential Model Schedule: An Assessment of Two Estimation Programs}, journal={Applied Regional Science Conference}, volume= 11, year= 1999, pages={1--10}, number= 1 } @book{Rokeach73, author={Milton Rokeach}, title={The Nature of Human Values}, publisher={Free Press}, year= 1973, address={New York} } @book{Rokeach79, author={Rokeach, M.}, title={{Understanding Human Values: Individual and Societal}}, publisher={Free Press}, year={1979}, address={New York} } @article{RonVanCha98, author={Carine Ronsmans and Anne Marie Vanneste and jyotshamoy Chakraborty and Jereon Van Ginneken}, title={A comparison of Three Verbal Autopsy Methods to Ascertain Levels and Causes of Maternal Deaths in Matlab, Bangladesh}, journal={International Journal of Epidemiology}, volume={27}, year={1998}, pages={660-666} } @book{RoseAckerman99, title={Corruption and Government: Causes, Consequences, and Reform}, author={Rose-Ackerman, Susan}, year={1999}, publisher={Cambridge University Press}, address={Cambridge, UK} } @book{Rosenbaum02, author={Rosenbaum, Paul R.}, title={Observational Studies, 2nd Edition}, publisher={Springer Verlag}, year={2002}, address={New York, NY} } @article{Rosenbaum05, author={Paul R. Rosenbaum}, title={An exact distribution-free test comparing two multivariate distributions based on adjacency}, journal={Journal of the Royal Statisitcal Society B}, volume={67}, year={2005}, pages={515-530} } @article{Rosenbaum05b, author={Paul R. Rosenbaum}, title={Heterogeneity and Causality: Unit Heterogeneity and Design Sensitivity in Observational Studies}, journal={The American Statistician}, volume={59}, year={2005}, pages={147-152}, month={May}, number={2} } @article{Rosenbaum84, author={Paul Rosenbaum}, title={The Consequences of Adjusting for a Concomitant Variable That Has Been Affected by the Treatment}, journal= jrssA, volume= 147, year= 1984, pages={656--666}, number= 5 } @article{Rosenbaum86, author={Paul R. Rosenbaum}, title={Dropping out of high school in the {U}nited {S}tates: an observational study}, journal={Journal of Educational Statistics}, volume= 11, year= 1986, pages={207-224} } @article{Rosenbaum89, author={Rosenbaum, Paul R.}, title={Optimal matching for observational studies}, journal={Journal of the American Statistical Association}, volume= 84, year= 1989, pages={{1024--1032}}, keywords={Network; Computation} } @article{Rosenbaum91, author={Paul R. Rosenbaum}, title={A Characterization of Optimal Designs for Observational Studies}, journal={Journal of the Royal Statistical Society, Series B}, volume={53}, year={1991}, pages={597-610}, number={3} } @article{Rosenbaum91, author={Paul R. Rosenbaum}, title={Sensitivity analysis for matched case-control studies}, journal={Biometrics}, volume= 47, year= 1991, pages={87-100}, number= 1 } @article{Rosenbaum99, author={Paul R. Rosenbaum}, title={Choice as an alternative to control in observational studies}, journal={Statistical Science}, volume= 14, year= 1999, pages={259-304}, number= 3, note={With discussion and rejoinder.} } @book{RosHan93, author={Steven J.\ Rosenstone and John M.\ Hansen}, title={Mobilization, Participation, and Democracy in America}, publisher={MacMillian}, year= 1993 } @article{RosHen78, author={Bernard Rosner and Charles H. Hennekens}, title={Analytic Methods in Matched Pair Epidemiological Studies}, journal={International Journal of Epidemiology}, volume={7}, year={1978}, pages={367-372}, number={4} } @book{RosNoc83, title={Measuring Social Judgements: The Factorial Survey Approach}, publisher={Sage}, year= 1983, editor={P. H. Rossi and S. L. Nock}, address={Beverly Hills, CA} } @article{RosRub83, author={Paul R. Rosenbaum and Donald B.\ Rubin}, title={The Central Role of the Propensity Score in Observational Studies for Causal Effects}, journal={Biometrika}, volume= 70, year= 1983, pages={41--55} } @article{RosRub83b, author={Paul R. Rosenbaum and Donald B. Rubin}, title={Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome}, journal={Journal of the Royal Statistical Society Series B}, volume= 45, year= 1983, pages={212-218}, number= 2 } @article{RosRub84, author = {Paul R. Rosenbaum and Donald B. Rubin}, title = {Reducing Bias in Observational Studies Using Subclassification on the Propensity Score}, journal = jasa, volume = 79, year = 1984, pages = {515--524} } @article{RosRub85, author={Rosenbaum, Paul R. and Rubin, Donald B.}, title={Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score}, journal={The American Statistician}, volume={39}, year={1985}, pages={33-38} } @article{RosRub85b, author={Rosenbaum, P.R. and Rubin, D.B.}, title={The Bias Due to Incomplete Matching}, journal={Biometrics}, volume={41}, year={1985}, pages={103--116}, number={1} } @article{RosSil01, author={Paul R. Rosenbaum and J.H. Silber}, title={Matching and Thick Description in an Observational Study of Mortality After Surgery}, journal={Biostatistics}, volume= 2, year= 2001, pages={{217--232}} } @article{Rothman77, author={Kenneth J. Rothman}, title={Epidemiologic Methods in Clinical Trials}, journal={Cancer}, volume={39}, year={1977}, pages={1771-1775} } @book{rothman98, author={Kenneth J. Rothman and Sander Greenland}, title={Modern Epidemiology}, publisher={Philadelphia: Lippincott-Raven}, year= 1998, edition={2nd edition} } @article{RouSto96, author={L. Roussos and W. Stout}, title={A Multidimensionality-based DIF Anslysis Paradigm}, journal={Applied Psychological Measurement}, volume= 20, year= 1996, pages={355--371} } @article{Rowe05, author={Alexander K Rowe}, title={Should verbal autopsy results for malaria be adjusted to improve validity?}, journal={International Journal of Epidemiology}, volume={34}, year={2005}, pages={712-13}, number={3} } @article{Roy51, author={A.D. Roy}, title={Some Thoughts on the Distribution of Earnings}, journal={Oxford Economic Papers}, volume= 3, year= 1951, pages={135--146} } @article{RoyCum85, author={Richard M. Royall and William G. Cumberland}, title={Conditional Doverage Properties of Finite Population Confidence Intervals}, journal={Journal of the American Statistical Assocation}, volume={80}, year={1985}, pages={355-359}, month={June}, number={390}, tpages={+} } @article{RubDudVan06, author={Daniel Rubin and Sandrine Dudoit and Mark van der Laan}, title={A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting}, journal={Statistical Applications in Genetics and Molecular Biology}, volume={5}, year={2006}, number={1} } @article{Rubin01, author={Donald B. Rubin}, title={Using propensity scores to help design observational studies: Application to the tobacco litigation}, journal={Heatlh Services \& Outcomes Research Methodology}, volume={2}, year={2001}, pages={169-188}, month={December}, number={3-4} } @unpublished{Rubin04, author={Donald B. Rubin}, title={Discussion of ``{P}rinciples for modeling propensity scores in medical research: a systematic literature review"}, note={Forthcoming in {\it Pharmacoepidemiology and Drug Safety}. Referenced paper by Weitzen, Lapane, Toledano, Hume, Mor}, year= 2004 } @book{Rubin06, author={Donald B. Rubin}, title={Matched Sampling for Causal Effects}, publisher={Cambridge University Press}, year= 2006 , address={Cambridge, England} } @article{Rubin80, author={Rubin, Donald B.}, title={Comments on ``Randomization Analysis of Experimental Data: The Fisher Randomization Test'', by D. Basu}, journal={Journal of the American Statistical Association}, volume={75}, year={1980}, pages={591-593} } @article{Rubin73, author={Rubin, Donald B.}, title={Matching to remove bias in observational studies}, journal={Biometrics}, volume={29}, year={1973}, pages={159-184} } @article{Rubin73b, author={Rubin, Donald B.}, title={The use of matched sampling and regression adjustment to remove bias in observational studies}, journal={Biometrics}, volume={29}, year={1973}, pages={185-203} } @article{rubin74, author={Donald B. Rubin}, title={Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies}, journal={Journal of Educational Psychology}, volume= 6, year= 1974, pages={688--701} } @article{Rubin76, author={Donald Rubin}, title={Inference and Missing Data}, journal={Biometrika}, volume={63}, year={1976}, pages={581-592} } @article{Rubin77, author={Donald Rubin}, title={Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys}, journal={Journal of the American Statistical Association}, volume={72}, year={1977}, pages={538-543}, month={September}, number={359} } @article{Rubin77b, author={Donald B. Rubin}, title={Assignment to Treatment Group on the Basis of a Covariate}, journal={Journal of Educational Statistics}, volume={2}, year={1977}, pages={1}, number={1-26} } @article{Rubin78, author={Donald B. Rubin}, title={Bayesian inference for causal effects: The role of randomization}, journal={The Annals of Statistics}, volume={6}, year={1978}, pages={34-58} } @article{Rubin79, author={Donald B. Rubin}, title={Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies}, journal= jasa, volume={74}, year={1979}, pages={318--328} } @book{Rubin87, author={Donald B. Rubin}, title={Multiple Imputation for Nonresponse in Surveys}, publisher={John Wiley}, year={1987}, address={New York} } @article{Rubin87b, author={Donald Rubin}, title={A Noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR Algorithm, Discussion of Tanner and Wong}, journal={Journal of the American Statistical Assocaition}, volume={82}, year={1987}, pages={543-546} } @article{Rubin91, author={Donald B. Rubin}, title={Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism}, journal={Biometrics}, volume= 47, year= 1991, pages={1213-1234} } @article{Rubin94, author={Donald B. Rubin}, title={Missing Data, Imputation, and the Bootstrap: Comment}, journal={Journal of the American Statistical Association}, volume={89}, year={1994}, pages={475-478}, month={Jun}, number={426} } @article{Rubin96, author={Donald B. Rubin}, title={Multiple Imputation after 18+ Years}, journal= jasa, volume= 91, year= 1996, pages={473--489}, number= 434 } @article{Rubin96, author={Donald Rubin}, title={Multiple Imputation after 18+ Years}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={473-489} } @article{Rubin97, author={Donald B. Rubin}, title={Estimating causal effects from large data sets using propensity scores}, journal={Annals of Internal Medicine}, volume= 127, year= 1997, pages={757-763} } @article{RubSch86, author={Donald Rubin and Nathaniel Schenker}, title={Multiple Imputation for Interval Estimation for Simple Random Samples with Ignorable Nonresponse}, journal= jasa, volume= 81, year= 1986, pages={366-374}, number= 394 } @article{RubSch87, author={Donald B. Rubin and Nathaniel Schenker}, title={Logit-Based Interval Estimation from Binomial Data Using the Jeffreys Prior}, journal={Sociological Methodology}, volume={17}, year={1987}, pages={131-144} } @inproceedings{RubSch90, author={D.B. Rubin and J.L. Schafer}, title={Efficiently Creating Multiple Imputations for Incomplete Multivariate Normal Data}, booktitle={Proceedings of the Statistical Computing Section of the American Statistical Association}, year={1990}, pages={83-88} } @article{RubStu06, author={Donald B. Rubin and Elizabeth A. Stuart}, title={Affinely invariant matching methods with discriminant mixtures of proportional ellipsoidally symmetric distributions}, journal={Annals of Statistics}, volume= 34, year={2006}, pages={1814-1826}, number= 4 } @article{RubTho00, author={Donald B. Rubin and Neal Thomas}, title={Combining propensity score matching with additional adjustments for prognostic covariates}, journal={Journal of the American Statistical Association}, volume= 95, year={2000}, pages={573-585} } @article{RubTh, author={Donald B. Rubin and Neal Thomas}, title={Characterizing the Effect of Matching Using Linear Propensity Score Methods With Normal Distributions}, journal={Biometrika}, volume={79}, year={1992}, pages={797-809} } @article{RubTho96, author={Donald B. Rubin and Neal Thomas}, title={Matching Using Estimated Propensity Scores, Relating Theory to Practice}, journal={Biometrics}, volume={52}, year={1996}, pages={249-264} } @unpublished{RugKimMar03, author = {Theodore W. Ruger and Pauline T. Kim and Andrew D. Martin and Kevin M. Quinn}, title = {The Supreme Court Forecasting Project: Legal and Political Science Approaches to Predicting Supreme Court Decision-Making}, note = {Washington University in St. Louis}, year = 2003 } @book{Rule88, author={Rule, J. B.}, title={Theories of Civil Violence}, publisher={University of California Press}, year= 1988, address={Berkeley} } @article{RusOneBer03, author={Bruce Russett and John Oneal and Michael L. Berbaum}, title={Causes of Peace: Democracy, Interdependence, and International Organizations, 1885--1992}, journal= isq, volume= 47, year= 2003, pages={371--393}, month={September}, number= 3 } @article{SabCanGib05, author={Marc S. Sabatine and Christopher P. Cannon and C. Michael Gibson and Jose L. Lopez-Sendon and Gilles Montalescot and Pierre Theroux and Basil S. Lewis and Sabina A. Murphy and Carolyn H. McCabe and Eugene Braunwald}, title={Effect of Clopidogrel Pretreatment Before Percutaneous Coronary Intervention in Patients with ST-Elevation Myoc}, journal={Journal of the American Medical Association}, volume={294}, year={2005}, pages={1224-1232}, month={September}, number={10} } @article{sackett96, author={D. Sackett, J. Deeks and D. Altman}, title={Down with Odds Ratios}, journal={Evidence-Based Medicine}, volume= 1, year= 1996, pages={164--6}, number= 6 } @book{Saldern79, author={Adelheid Saldern}, title={Mittelstand im `Dritten Reich'. Handwerker-Einzelh{\"a}ndler - Bauern}, publisher={Campus}, year= 1979, address={Frankfurt} } @article{SalWeiHam02, author={Joshua A. Salomon and Milton C. Weinstein and James K. Hammitt and Sue J. Goldie}, title={Empirically Calibrated Model of Hepatitis C Virus Infection in the United States}, journal={American Journal of Epidemiology}, volume= 156, year= 2002, pages={761--773} } @article{Sambanis01, author={Nicholas Sambanis}, title={Do Ethnic and Nonethnic Civil Wars Have the Same Causes?}, journal={Journal of Conflict Resolution}, volume={45}, year={2001}, pages={259-82}, month={June}, number={3} } @article{SamDoy07, author={Nicholas Sambanis and Michael W. Doyle}, title={No Easy Choices: Estimating the Effects of United Nations Peacekeeping (Response to King and Zeng)}, journal= isq, year= 2007, month={October} } @article{SanKliDun06, author={Lisa Sanbonmatsu and Jeffrey R. Kling and Greg J. Duncan and Jeanne Brooks-Gunn}, title={Neighborhoods and Academic Achievement: Results From the Moving to Opportunity Experiment}, journal={National Bureau of Economic Research, Working Paper Series}, year={2006}, month={January}, number={Working Paper 11909}, note={{http://www.nber.org/papers/w11909}} } @article{SanNaiWhi02, author={H. Babad and C. Sanderson and B. Naidoo and I. White and D. Wang}, title={The Development of a Simulation Model of Primary Prevention Strategies for Coronary Heart Disease}, journal={Health Care Management Science}, volume= 5, year= 2002, pages={269--274}, number= 4 } @article{SanRedHan96, author={Robert Sanson-Fisher and Sally Redman and Lynne Hancock and Stehen Halpin and Philip Clarke and Margot Schofield and Robert Burton and Michael Hensley and robert Gibberd and Alexander Reid and Raoul Walsh and Afaf Girgis and Louise Burton and Ann McClintock and Robert Carter and Allan Donner and Sylvan Green }, title={Developing methodologies for evaluating community-wide health promotion}, journal={Health Promotion International}, volume={11}, year={1996}, pages={227-236}, number={3} } @article{Sartori70, author={Giovanni Sartori}, title={Concept Misformation in Comparative Politics}, journal= apsr, volume= 64, year= 1970, pages={1033--1053}, month={December}, number= 4 } @article{Schaback96, author={R. Schaback}, title={Approximation by Radia Basis Functions with Finitely Many Centers}, journal={Constructive Approximation}, volume= 12, year= 1996, pages={331--340} } @book{Schafer97, author={Joseph L. Schafer}, title={Analysis of incomplete multivariate data}, publisher={Chapman \& Hall}, year={1997}, address={London} } @book{Schattschneider60, title = {{The Semisovereign People}}, author = {Schattschneider, E.E.}, year = {1960}, address = {New York}, publisher = {Holt, Rinehart and Winston} } @article{SchBuc03, author={M. Schneider and J. Buckley}, title={Making the grade: comparing DC charter schools to other DC public schools}, journal={Educational Evaluation and Policy Analysis}, volume={25}, year={2003}, pages={203-215}, number={2} } @article{SchGer00, author = {Philip Schrodt and Deborah J.\ Gerner}, title = {Cluster-Based Early Warning Indicators for Political Change in the Contemporary Levant}, journal = apsr, volume = 94, year = 2000, pages = {803--818}, number = 4 } @article{Schieder93, author={Wolfgang Schieder}, title={Die NSDAP vor 1933}, journal={Geschichte und Gesellschaft}, volume= 19, year= 1993, pages={141--154}, number= 1 } @inproceedings{SchKhaEzz93, author={Joseph L. Schafer and Meena Khare and Trena M. Ezzati-Rice}, title={Multiple Imputation of Missing Data in NHANESIII }, booktitle={Proceedings of the Annual Research Conference}, year={1993}, pages={459-487}, organization={Washington, D.C., Bureau of the Census} } @article{SchMalBla94, author={David E. Schoenfeld, et al}, title={Self-Rated Health and Mortality in High Functioning Elderly-a Closer Look at Healthy Individuals:MacArthur Field Study of Successful Aging. }, journal={Journal of Gerontology}, volume= 49, year= 1994, pages={{M109-113}}, number= 3 } @article{Schneider04, author={Schneider, B.}, title={{Building a Scientific Community: The Need for Replication}}, journal={The Teachers College Record}, volume={106}, year={2004}, pages={1471--1483}, number={7} } @techreport{Schochet03, author={Peter Schochet and Sheena McConnell and John Burghardt}, title={National Job Corps Study: Findings Using Administrative Earnings Records Data. Final Report}, institution={Mathematica Policy Research, Inc.}, year={2003}, month={October}, address={Princeton, NJ} } @book{Schoenbaum80, author = {Schoenbaum, David}, title = {Hitler's Social Revolution}, address = {New York}, publisher = {Norton}, year = {1980} } @article{Schoenberg46, author={I.J. Schoenberg}, title={Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae}, journal={Quart. Appl. Math.}, volume={4}, year={1946}, pages={45--99} } @article{SchOls98, author={Joseph L. Schafer and Maren K. Olsen}, title={Multiple Imputation for multivariate Missing-Data Problems: A Data Analyst's Perspective}, journal={Multivariate Behavioral Research}, volume={33}, year={1998}, pages={545-571}, number={4} } @article{SchSin00, author={Robert E. Schapire and Yoram Singer}, title={BoosTexter: A Boosting-based System for Text Categorization}, journal={Machine Learning}, volume={39}, year={2000}, pages={135-168}, number={2/3} } @article{SchSin00, author={Robert E. Schapire and Yoram Singer}, title={BoosTexter: A Boosting-based System for Text Categorization}, journal={Machine Learning}, volume={39}, year={2000}, pages={135-168}, number={2/3} } @article{SchSla01, author={Kenneth Scheve and Matthew Slaughter}, title={Labor Market Competition and Individual Preferences over Immigration Policy}, journal={Review of Economics and Statistics}, volume={83}, year={2001}, pages={133-145}, month={February}, number={1}, note={Sample data include only the first five of ten multiply imputed data sets.} } @article{Schuessler99, author={Alexander A. Schuessler}, title={Ecological Inference}, journal={Proceedings of the National Academy of Sciences}, volume= 96, year= 1999, pages={10578-10581}, month={September 14}, number= 19, note={{http://www.pnas.org/cgi/content/full/96/19/10578}} } @book{Schumaker81, author={L.L. Schumaker}, title={Spline functions: basic theory}, publisher={John Wiley and Sons }, year= 1981 , address={New York} } @article{Schwarz99, author={Norbert Schwarz}, title={Self-Reports: How the Questions Shape the Answers}, journal={American Psychologist}, volume= 54, year= 1999, pages={93--105}, number= 2 } @article{SchWolWel99, author={Lisa M. Schwartz, Steven Woloshin Gilbert H. Welch}, title={Misunderstanding About the Effects of Race and Sex on Physicians' Referrals for Cardiac Cetheterization}, journal={New England Journal of Medicine}, volume= 341, year= 1999, pages={279-283}, number= 4 } @article{ScoMacCor97, author={William K. Scott, et al}, title={Functional Health Status as a Predictor of Mortality in Men and Women Over 65.}, journal={Journal of Clinical Epidemiology}, volume= 50, year= 1997, pages={{291-96}}, number= 3 } @article{SegBurLoo03, author={O. Segura and A. Burdorf and C. Looman}, title={Update of Predictions of mortality from Pleural Mesothelioma in the Netherlands}, journal={Occupational and Environmental Medicine}, volume= 60, year= 2003, pages={50--55}, number= 1 } @article{Seidel91, author={Raimund Seidel}, title={Small-Dimensional Linear Programming and Convex Hulls Made Easy}, journal={Discrete \& Computational Geometry}, volume={6}, year={1991}, pages={{423-434}}, issue={5} } @inbook{SeiMue94, title={Modelling the AIDS Epidemic: Planning, Policy, and Prediction}, chapter={Viral Load and Sexual Risk: Epidemiologic and Policy Implications for HIV/AIDS}, year={1994}, publisher={Raven Press}, pages={461--480}, address={New York}, altauthor={S.T. Seitz and G.E. Mueller}, alteditor={E.H. Kaplan and M.L. Brandeau} } @article{Sekhon08, author = {Jasjeet S. Sekhon}, title = {Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The matching Package for R}, journal = {Journal of Statistical Software}, year = {2008} } @unpublished{Sekhon04b, author={Jasjeet S. Sekhon}, title={The Varying Role of Voter Information across Democratic Societies}, note={{http://jsekhon.fas.harvard.edu/papers/SekhonInformation.pdf}}, year= 2004 } @article{SekMeb98, author={Jasjeet Singh Sekhon and Mebane, Jr., Walter R.}, title={Genetic Optimization Using Derivatives: Theory and Application to Nonlinear Model}, journal= pa, volume= 7, year= 1998, pages={187--210}, note={{http://jsekhon.fas.harvard.edu/genoud/genoud.pdf}} } @article{Sen02, author={Amartya Sen}, title={Health: Perception Versus Observation}, journal={BMJ}, volume= 324, year= 2002, pages={860-861}, month={13 April} } @article{Senn00, author={Stephen Senn}, title={Consensus and Controversy in Pharmaceutical Statistics}, journal={The Statistician}, volume={49}, year={2000}, pages={135-176}, number={2} } @article{Senn04, author={Stephen Senn}, title={Controversies concerning randomization and additivity in clinical trials}, journal={Statistics in Medicine}, volume={23}, year={2004}, pages={3729-3753} } @article{Senn04b, author={Stephen Senn}, title={Unbalanced Claims for Balance}, journal={2004}, volume={13}, year={2004}, pages={14-16}, month={June}, number={6} } @article{Senn05, author={Stephen Senn}, title={Quantifying the magnitude of baseline covariate imbalances resulting from selection bias in randomized clinical trials - Comment}, journal={Biometrical Journal}, volume={47}, year={2005}, pages={133-135}, number={2} } @article{Senn89, author={S. J. Senn}, title={Covariate Imbalance and Random Allocation in Clinical Trials}, journal={Statistics in Medicine}, volume={8}, year={1989}, pages={467-475} } @article{Senn93, author={Stephen Senn}, title={Baseline Distribution and conditional Size}, journal={Journal of Biopharmaceutical Statistics}, volume={3}, year={1993}, pages={265-270}, number={2} } @article{Senn94, author={S.J. Senn}, title={Testing for Baseline Balance in Clinical Trials}, journal={Statistics in Medicine}, volume={13}, year={1994}, pages={1715-1726} } @article{Senn96, author={Stephen Senn}, title={Baseline Balance and conditional Size: A Reply to Overall Et. Al.}, journal={Journal of Biopharmaceutical Statistics}, volume={6}, year={1996}, pages={201-210}, number={2} } @article{SetSanRao05, author={Philip W. Setal and Osman Sankoh and Chalapati Rao and Victoria A. Velkoff and Colin Mathers and Yang Gonghuan and Yusuf Hemed and Prabhat Jha and Alan D. Lopez}, title={Sample registriation of vital events with verbal autopsy: a renewed commitment to measuring and monitoring vital statistics}, journal={Bulletin of the World Health Organization}, volume={83}, year={2005}, pages={611-617} } @article{SetSanVel05, author={Philip W. Setel and O. Sankoh and VA Velkoff and C Mathers and Y Gonghuan et al.}, title={Sample registration of vital events with verbal autopsy: a renewed commitment to measuring and monitoring vital statistics}, journal={Bulletin of the World Health Organization}, volume= 83, year= 2005, pages={611-617} } @article{SetWhiHem06, author={Philip W. Setel and David R. Whiting and Yusuf Hemed and Daniel Chandramohan and Lara J Wolfson and K.G.M.M. Alberti and Alan Lopez}, title={Validity of verbal autopsy procedures for determining causes of death in Tanzania.}, journal={Tropical Medicine and International Health}, volume= 11, year={2006}, pages={681--696}, number= 5 } @article{ShaBarrCra02, author={Bruce Shadbolt, Jane Barresi, and Paul Craft}, title={Self Rated Health as a Predictor of Survival Among Patients with Advanced Cancer}, journal={Journal of Clinical Oncology}, volume= 20, year= 2002, pages={{2514-19}}, month={{May 15}}, number= 10 } @article{ShaDavWeg92, author={Said Shahtahmasebi, MSc, Richard Davies, PhD, and G. Clare Wenger PhD}, title={A Longitudinal Analysis of Factors Related to Survival in Old Age}, journal={The Gerontological Society of America}, volume= 32, year= 1992, pages={{404-13}}, number= 3 } @article{Shahidullah95, author={M. Shahidullah}, title={The sisterhood method of estimating maternal mortality: the Matlab experience}, journal={Studies in Family Planning}, volume= 26, year= 1995, pages={101--106} } @unpublished{Shalev05, author={Michael Shalev}, title={Limits and Alternatives to Multiple Regression in Comparative Research}, note={Dept. of Sociology \& Anthropology and Department of Political Science; The Hebrew University of Jerusalem; Israel 91905}, year={2005}, month={July} } @book{Shannon49, author={Claude E. Shannon}, title={The Mathematical Theory of Communication}, publisher={University of Illinois Press}, year= 1949, address={Urbana-Champaign} } @article{ShaSit96, author={Jun Shao and Randy R. Sitter}, title={Bootstrap for Imputed Survey Data}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={1278-1288}, month={September}, number={435} } @article{Sherman00, author={Robert P. Sherman}, title={Tests of Certain Types of Ignorable Nonresponse in Surveys Subject to Item Nonresponse or Attrition}, journal={American Journal of Political Science}, volume={44}, year={2000}, pages={356-368}, number={2} } @article{SheSto93, author={R. Shealy and W. Stout}, title={A Model-Based Standardization Approach That Separates True Bias/DIF From Group Ability Differences and Detects Test Bias/DIF as Well as Item Bias/DIF}, journal={Psychometrika}, volume= 58, year= 1993, pages={159--194}, month={June}, number= 2 } @article{ShiLitPot06, author={M.H. Shishehbor and D. Litaker and C.E. Pothier and M.S. Lauer}, title={Association of socioeconomic status with functional capacity, heart rate, recoery, and all-cause mortality}, journal={Journal of the American Medical Association}, volume={295}, year={2006}, pages={784-792}, month={February} } @article{ShiSmiDra89, author={M.J. Shipley and P.G. Smith and M. Draimaix}, title={Calculation of Power for Matched Pair Studies When Randomization is by Group}, journal={International Journal of Epidemiology}, volume={18}, year={1989}, pages={457-461}, number={2} } @article{ShiTes93, author={T. Shiferaw and F. Tessema}, title={Maternal mortality in rural communities of Illubabor, Southwestern Ethiopia: as estimated by the `sisterhood method'}, journal={Ethiopian Medical Journal}, volume= 31, year= 1993, pages={239--249} } @article{Shively72, author={Shivley, W. Phillips}, title={Party Identification and Voting Choice and Voting Stability: The Weimar Case}, journal= apsr, volume= 66, year= 1972, pages={1203-1225} } @article{Sianesi04, author={Barbara Sianesi}, title={An evaluation of the {S}wedish system of active labor market programs in the 1990's}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={133-155}, number= 1 } @article{SibFleHil01, author={A.M. Sibai and A. Fletcher and M. Hills and O. Campbell}, title={Non-communicable disease mortality rates using the verbal autopsy in a cohort of middle aged and older populations in Beirut during wartime, 1983-93}, journal={Journal of Epidemiology and Community Health}, volume={55}, year={2001}, pages={271-276} } @article{Signorino99, author={Curtis Signorino}, title={Strategic Interaction and the Statistical Analysis of International Conflict}, journal= apsr, volume= 93, year= 1999, pages={279-298}, number= 2 } @article{SigYil03, author={Curtis Signorino and Kuzey Yilmaz}, title={Strategic Misspecification in Discrete Choice Models}, journal= ajps, year={2003}, month={July}, note={{http://www.rochester.edu/College/PSC/signorino/papers/Signo00.pdf}} } @article{SimHop05, author={Beth A. Simmons and Daniel J. Hopkins}, title={The Constraining Power of International Treaties: Theory and Methods}, journal={American Political Science Review}, volume={99}, year={2005}, pages={623-631}, month={November}, number={4} } @article{SimXeo04, author={Simon, Adam F. and Michael Xeons}, title={{Dimensional Reduction of Word-Frequency Data as a Substitute for Intersubjective Content Analysis}}, journal={Political Analysis}, volume={12}, year={2004}, pages={63-75}, number={1} } @unpublished{Singh00, author={R. Singh}, title={Estimation of Adult Mortality from Widowhood Data for India and its Major States}, note={Mumbai, India: International Institute for Population Sciences}, year={2000} } @inproceedings{Singh02, author={Abhishek Singh}, title={Forecasting Mortality in India}, organization={Ninth International Conference of Forum for Interdisciplinary Mathematics on Statistics Combinatorics and Related Areas, University of Allahbad}, crossref={Atlas Document #cakd-39}, annote={Lee-Carter is used to forecast mortality in India from 2000-2015.} } @article{Sisson05, author={Scott A. Sisson}, title={Transdimensional Markov Chains: A Decade of Progress and Future Perspectives}, journal= jasa, volume= 100, year= 2005, pages={1077--1089}, month={September}, number= 471 } @inproceedings{Sivamurthy87, author={M. Sivamurthy}, title={{Principal Components Representation of ASFR: Model of Fertility Estimation and Projection}}, booktitle={CDC Research Monograph}, year= 1987 , address={Cairo Demographic Center}, pages={655--693} } @article{Skalaban92, author={Andrew Skalaban}, title={Interstate Competition and State Strategies to Deregulate Interstate Banking 1982-1988}, journal={Journal of Politics}, volume={54}, year={1992}, pages={793-809}, month={August}, number={3} } @InCollection{Skocpol91, author = {Theda Skocpol}, title = {Targeting Within Universalism: Politically Viable Policies to Combat Poverty in the United States}, booktitle = {The Urban Underclass}, pages = {411-436}, publisher = {Brookings Institution}, editor = {Christopher Jencks and Paul Peterson}, address = {Washington, D.C.}, year = {1991} } @proceedings{Skoufias05, title={PROGRESA and Its Impacts on the Welfare of Rural Households in Mexico}, year={2005}, organization={International Food Policy Research Institute}, address={Washington}, author={E. Skoufias} } @unpublished{Small05, author={Dylan S. Small}, title={Sensitivity Analysis for Limited Information Linear Simultaneous Equations Models With Overidentifying Restrictions}, note={Dept. of Statistics, The Wharton School of the University of Pennsylvania, Philadelphia, PA 19104-6340, dmall@wharton.upenn.edu}, year={2005}, month={September} } @book{SmiMor91, author={P.J. Smith and R.H. Morrow}, title={Methods for field trials of interventions against tropical diseases: a 'toolbox'}, publisher={Oxford University Press}, year={1991}, address={Oxford} } @article{Smith03, author={Tom W. Smith}, title={Developing Comparable Questions in Cross-National Surveys, in Cross-Cultural Survey Methods}, journal={John Wiley and Sons}, volume={2003}, pages={Janet A. Harkness and Fons J. R. van de Vijver and Peter Ph. Mohler}, month={Hoboken, NJ} } @article{Smith97, author={Smith, H.L.}, title={Matching With Multiple Controls to Estimate Treatment Effects in Observational Studies}, journal={Sociological Methodology}, volume={27}, year={1997}, pages={325--353}, number={1} } @article{SmiTod05, author={Jeffrey A. Smith and Petra E. Todd}, title={Does matching overcome LaLonde's critique of nonexperimental estimators?}, journal={Journal of Econometrics}, volume= 125, year= 2005, pages={305-353}, month={March-April}, number={1-2} } @article{SmiTod05b, author={Jeffrey Smith and Petra Todd}, title={Rejoinder}, journal={Journal of Econometrics}, volume={2005}, year={125}, pages={365-375} } @book{SneCoc80, author={George W. Snedecor and William G. Cochran}, title={Statistical Methods}, publisher={Iowa State University Press}, year={1980}, address={Ames, IA}, edition={7th} } @book{SniCar97, author={Paul Sniderman and Edward Carmines}, title={Reaching Beyond Race}, publisher={Harvard University Press}, year= 1997, address={Cambridge, MA} } @article{SniGro96, author={Paul M. Sniderman and Douglas B. Grob}, title={Innovations in Experimental Design in Attitude Surveys}, journal={Annual Review of Sociology}, volume= 22, year= 1996, pages={377-399}, month={August} } @article{Sobel06, author={Michael E. Sobel}, title={Discussion: 'The Scientific Model of Causality'}, journal={Sociological Methodology}, volume={35}, year={2006}, pages={99-33}, month={June}, number={1} } @article{Sobolev38, author={S.L. Sobolev}, title={On a theorem of functional analysis}, journal={Math. Sbornik}, volume= 45, year= 1938, pages={471--496}, note={Russian original;AMS Transl. (2),34(1963),39--68} } @book{SolChaShi05, author={Nadia Soleman and Daniel Chandramohan and Kenji Shibuya}, title={WHO Technical Consultation on Verbal Autopsy Tools}, publisher={Geneva}, year= 2005, note={{http://www.who.int/healthinfo/statistics/mort\_verbalautopsy.pdf}} } @article{SolChaShi06, author={Nadia Soleman and Daniel Chandramohan and Kenji Shibuya}, title={Verbal autopsy: current practices and challenges}, journal={Bulletin of the World Health Organization}, volume={84}, year={2006}, pages={239-245}, month={March}, number={3} } @article{SolWil92, author={Patricia J. Solomon and Susan R. Wilson}, title={Predicting AIDS Deaths and Prevalence in Australia}, journal={The Medical Journal of Australia}, volume= 157, year= 1992, pages={121--125} } @article{SomDjuLoe86, author={Alfred Sommer and Edi Djunaedi and A.A. Loeden and Ignatius Tarwotjo and Keith P. West, Jr. and Robert Tilden and Lisa Mele}, title={Impact of Vitamin A Supplementation on Childhood Mortality}, journal={The Lancet}, volume={1}, year={1986}, pages={1169-1173} } @article{SomZeg91, author={A. Sommer and SL Zeger}, title={{On Estimating Efficacy from Clinical Trials.}}, journal={Statistics in Medicine}, volume={10}, year={1991}, pages={45-52}, number={1} } @article{SomZeg91, author={Alfred Sommer and Scott L. Zeger}, title={On Estimating Efficacy From Clinical Trials}, journal={Statistics in Medicine}, volume={10}, year={1991}, pages={45-52} } @article{Song01, author={Juwon Song and Thomas R. Belin and Martha B. Lee and Xingyu Gao and Mary Jane Rotheram-Borus}, title={Handling baseline differences and missing items in a longitudinal study of {HIV} risk among runaway youths}, journal={Health Services and Outcomes Research Methodology}, volume= 2, year= 2001, pages={317-329} } @article{Sorenson88, author={Kirsten Hjort Sorensen}, title={State of Health and its Association with Death Among Old People at Three-Years Follow Up}, journal={Danish Medical Bulletin}, volume= 35, year= 1988, pages={{597-00}} } @book{Sowa99, author={J. F. Sowa}, title={Knowledge Representation: Logical, Philosophical and Computational Foundations}, publisher={Brooks Cole}, year= 1999 } @unpublished{SpeSun01, author={P. Speckman and D. Sun}, title={{Bayesian Nonparametric Regression and Autoregression Priors}}, note={{www.stat.missouri.edu/\textasciitilde speckman/report/bnpreg.ps}}, year= 2001 } @article{SpiJagCla96, author={Nicola Spiers, Carol Jagger, and Michael Clarke}, title={Physical Function and Perceived Health: Cohort Diffrences and Interrelationships in Older People}, journal={Joural of Gerontology: Social Sciences}, volume={{51B}}, year= 1996, pages={{S226-33}} } @techreport{Sroka06, author={T. Neil Sroka}, title={Understanding the Political Influence of Blogs}, institution={Graduate School of Political Management, George Washington University}, year={2006}, month={April}, address={The Institue for Politics, Democracy, & the Internet, Graduate School of Political Management, George Washington U, 805 21st St., NW Suite 401, Washington, DC 20052} } @article{Stachura93, author={Stachura, Peter D.}, title={National Socialism and the German Proletariat, 1925-1935: Old Myths and New Perspectives}, journal={The Historical Journal}, volume= 36, year= 1993, pages={701-718}, number= 3 } @article{StaNouHil00, author={C. Stanton and A. Noureddine and K. Hill}, title={An Assessment of DHS Maternal Mortality Indicators}, journal={Studies in Family Planning}, volume= 31, year= 2000, pages={111--123} } @inbook{StaSeiWay91, author={E.A. Stanley and S.T. Seitz and P.O. Way and P.D. Johnson and T.F. Curry}, title={The AIDS Epidemic and its Demographic Consequences}, chapter={The iwgAIDS Model for the Heterosexual Spread of HIV and the Demographic Impacts of the AIDS Epidemic}, year= 1991, publisher={United Nations and World Health Organization}, pages={119--136}, series={ST/ESA/SER.A/119}, address={New York} } @article{SteCoo95, author={L.A. Stefanski and J.R. Cook}, title={Stimulation-Extrapolation: The Measurement Error Jackknife}, journal={Journal of the American Statistical Association}, volume={90}, year={1995}, pages={1247-1256}, month={December}, number={432} } @book{Steele04, author={J. Michael Steele}, title={The Cauchy-Schwarz Master Class}, publisher={Cambridge University Press}, year={2004} } @article{Stefanski92, author={Leonard A. Stefanski}, title={Monotone Likelihood Ratio of a "Faulty-Inspection" Distribution}, journal={The American Statistician}, volume={46}, year={1992}, pages={110-114}, month={May}, number={2} } @article{SteNap00, author={Anita L. Stewart and Anna Napoles-Springer}, title={Health-Related Quality of Life Assessments in Diverse Population Groups in the United States}, journal={Medical Care}, volume= 38, year= 2000, pages={II-102 -- II-124}, month={September}, number= 9 } @article{Stephan32, author = {Stephan, Werner}, title = {Grenzen des nationalsozialistischen Vormarsches. Eine Analyse der Wahlziffern seit der Reichstagswahl 1930}, journal = {Zeitschrift f{\"u}r Politik}, volume = 21, year = 1932, pages = {570-578} } @article{Stephan32b, author = {Stephan, Werner}, title = {Die Parteien nach den grossen Fr{\"u}hjahrswahlk{\"a}mpfen. Eine Analyse der Wahlziffern des Jahres 1932}, journal = {Zeitschrift f{\"u}r Politik}, volume = 22, year = 1932, pages = {110-118} } @article{Stephan33, author = {Stephan, Werner}, title = {Die Reichstagswahlen vom 31. Juli 1932}, journal = {Zeitschrift f{\"u}r Politik}, volume = 22, year = 1933, pages = {353-360} } @article{Sterk03, author={Stewart E. Sterk}, title={Retrenchment on Entrenchment}, journal={The George Washington Law Review}, volume={71}, year={2003}, pages={231-254}, month={April}, number={2} } @techreport{Stewart92, author={G.W. Stewart}, title={{On the Early History of the Singular Value Decomposition}}, institution={University of Maryland, College Park}, year= 1992, type={Institute for Advanced Computer Studies}, number={TR-92-31} } @article{Stimson85, author={James A.\ Stimson}, title={Regression Models in Space and Time: A Statistical Essay}, journal= ajps, volume= 29, year= 1985, pages={914--947} } @book{Stockman86, author={David A. Stockman}, title={The Triumph of Politics: How the Reagon Revolution Failed}, publisher={Harper \& Row, Publishers}, year={1986}, address={New York} } @article{StoDorKoz89, author={M.J. Stones, Brenda Dornan, and Albert Kozma}, title={The prediction of mortality in elderly institution residents}, journal={Journal of Gerontology: Psychological Sciences}, volume= 44, year= 1989, pages={{P72-79}} } @article{Stogbauer01, author={Christian St{\"o}gbauer}, title={The Radicalisation of the German Electorate: Swinging to the Right and the Left in the Twilight of the Weimar Republic}, journal={European Review of Economic History}, volume= 5, year= 2001, pages={251--280} } @article{Stone74, author={Stone, M.}, title={Cross-Validatory Choice and Assessment of Statistical Prediction}, journal= jrssb, volume= 36, year= 1974, pages={111-33}, number= 2 } @article{StoRel90, author={Ross M. Stolzenberg and Daniel a. Relles}, title={Theory Testing in a World of Constrained Research Design: The Significance of Heckman's Censored Sampling Bias Correction for Nonexperimental Research}, journal={Sociological Methods and Research}, volume={18}, year={1990}, pages={395-415}, month={May} } @article{StoWat03, author={James H. Stock and Mark W. Watson}, title={Forecasting Output and Inflation: The Role of Asset Prices}, journal={Journal of Economic Literature}, year={2003}, optnumber={3}, optvolume={41}, optmonth={September} } @article{StoWay98, author={John Stover and Peter Way}, title={Projecting the Impact of AIDS on Mortality}, journal={AIDS}, volume= 12, year={1998}, pages={S29--S39}, number={supplement 1} } @book{Strang88, author={G. Strang}, title={{Linear Algebra and Its Applications}}, publisher={Saunders}, year= 1988 } @phdthesis{Stuart04, author={Stuart, Elizabeth A.}, title={Matching methods for estimating causal effects using multiple control groups}, school={Department of Statistics, Harvard University}, year= 2004 } @article{StuRub07, author={Elizabeth A. Stuart and Donald B. Rubin}, title={Matching with multiple control groups with adjustment for group differences}, journal={Journal of Educational and Behavioral Statistics}, year= 2007, note={Forthcoming} } @article{SucJor90, author={L. Suchman and B. Jordan}, title={Interactional Troubles in Face to Face Survey Interviews (With Comments and Rejoinder)}, journal= jasa, volume= 85, year= 1990, pages={232--253}, month={March}, number= 409 } @article{Sunetal00, author={D. Sun and R. Tsutakawa and H. Kim and Z. He}, title={{Spatio-temporal Interaction with Disease Mapping}}, journal={Statistics in Medicine}, volume= 19, year= 2000, pages={2015--2035} } @manual{SunReiLan03, author={S. Sun and S. Reilly and L. Lannom and J. Petrone}, title={Handle System Protocol (ver 2.1) Specification }, organization={RFC 3652 (Informational)}, year={2003}, note={{http://www.ietf.org/rfc/rfc3652.txt}} } @article{Super04, author={Nora Super}, title={Medicare's Chronic Care Improvement Pilot Program: What is its Potential}, journal={National Health Policy Forum Issue Brief}, year={2004}, pages={1-20}, month={May}, number={797}, note={The George Washinton University, Washington, DC}, institution={National Health Policy Form} } @incollection{Tabeau01, author={Ewa Tabeau}, title={A Review of Demographic Forecasting Models for Mortality}, booktitle={Forecasting Mortality in Developed Countries}, publisher={Kluwer Academic Publishers}, year= 2001, address={The Netherlands}, editor={Ewa Tabeau, Anneke van de Berg Jeths and Christopher Heathcoate}, chapter= 1, pages={1--32} } @article{TabEkaHuiBos98, author={Ewa Tabeau and Peter Ekamper and Corina Huisman and Alinda Bosch}, title={Improving Overall Mortality Forecasts by Analysing Cause-of-Death, Period and Cohort Effects in Trends}, journal={European Journal of Population}, volume={15}, year={1999}, pages={153-183} } @article{TabJetHea03, author={Ewa Tabeau and Aneke van den Berg Jeths and Christopher Heathcote}, title={Forecasting Mortality in Developed Countries: Insights from a statistical, demographic and epidemiological perspective.}, journal={Journal of European Population}, volume={1023}, number={10} } @book{Takeshi85, author={Takeshi Amemiya}, title={Advanced Econometrics}, publisher={Harvard University Press}, year={1985}, address={Cambridge} } @book{Tally00, author={Steve Tally}, title={Almost America: From the Colonists to Clinton, A ``What If'' History of the U.S.}, publisher={Quill}, year= 2000, address={New York} } @article{TanKumIke03, author={J. Tanaka and H. Humada and K. Ikeda and K. Chayama and M. Mizui and K. Hino and K. Katayama and J. Kumagai and Y. Komiya and Y. Miyakawa and H. Yoshizawa}, title={Natural histories of Hepatitis C Virus Infection in Men and Women Simulated by the Markov Model}, journal={Journal of Medical Virology}, volume= 70, year= 2003, pages={378--386}, number= 3 } @book{Tanner96, author={Martin A. Tanner}, title={Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions}, publisher={Springer-Verlag}, year= 1996, address={New York} } @article{TanWon87, author={M.A. Tanner and W.H. Wong}, title={The Calculation of Posterior Distributions by Data Augmentation}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={528-550}, month={June} } @article{Taylor92, author={G. Taylor}, title={A Bayesian interpretation of Whittaker-Henderson graduation}, journal={Insurance: Mathematics and Economics}, volume= 11, year= 1992, pages={7--16} } @book{Tendler97, author={Judith Tendler}, title={Good Government in the Tropics}, publisher={The Johns Hopkins University Press}, year={1997}, address={Baltimore} } @article{TerKleOce00, author={Jeanne A. Teresi and Marjorie Kleinman and Katja Ocepek-Welikson}, title={Modern Psychometric Methods for Detection of Differential Item Functioning: Application to Cognitive Assessment Measures}, journal= sim, volume= 19, year= 2000, pages={1651--1683} } @book{TetBel96, title={Counterfactual Throught Experiments in World Politics}, publisher={Princeton University Press}, year= 1996, editor={Philip E. Tetlock and A. Belkin}, address={Princeton} } @article{TetLeb01, author={Philip E. Tetlock and Richard Ned Lebow}, title={Poking Counterfactual Holes in Covering Laws: Cognitive Styles and Historical Reasoning}, journal= apsr, volume= 95, year= 2001, month={December}, number= 4 } @book{TetLebPar00, title={Unmaking the West: Counterfactual Explorations of Alternative Histories}, publisher={Columbia University Press}, year= 2000, editor={Philip E. Tetlock and Ned R. Lebow and G. Parker}, address={New York} } @article{tetlock99, author={Philip E. Tetlock}, title={Theory-Driven Reasoning About Plausible Pasts and Probable Futures in World Politics: Are we Prisoners of our Preconceptions?}, journal= ajps, volume= 43, year= 1999, pages={335-366}, month={April}, number= 2 } @book{Thisted88, author={Ronald A. Thisted}, title={Elements of Statistical Computing: Numerical Computation}, publisher={Chapman and Hall}, year= 1988, address={Florida} } @inproceedings{ThiSteWai93, author={David Thissen and Lynn Steinberg and Howard Wainer}, title={Detection of Differential Item Functioning Using the Parameters of the Item Response Models}, booktitle={Differential Item Functioning}, crossref={HolWai93} } @article{Thompson05, author={Dennis F. Thompson}, title={{Democracy in Time: Popular Sovereignty and Temporal Representation}}, journal={Constellations}, volume= 12, year= 2005 , pages={245-261}, month={June}, number= 2 } @article{Thompson98, author={Simon G. Thompson}, title={Letters to the Editor: The Merits of Matching in Community Intervention Trials: A Cautionary Tale}, journal={Statistics in Medicine}, volume={17}, year={1998}, pages={2147-2151} } @article{ThoPanLee06, author={Matt Thomas and Bo Pang and Lillian Lee}, title={Get out the vote: Determining support or opposition from Congressional floor-debate transcripts}, journal={Proceedings of EMNLP}, year= 2006, pages={327--335}, note={{http://www.cs.cornell.edu/home/llee/papers/tpl-convote.home.html}} } @article{ThoSyl82, author={Stuart J. Thorson and Donald A. Sylvan}, title={Counterfactuals and the Cuban Missle Crisis}, journal={International Studies Quarterly}, volume= 26, year= 1982, pages={539--571}, number= 4 } @book{Thurstone59, author={L.L. Thurstone}, title={The Measurement of Values}, publisher={University of Chicago Press}, year= 1959, address={Chicago} } @book{TikArs77, author={A. N. Tikhonov and V. Y. Arsenin}, title={Solutions of Ill-posed Problems}, publisher={W. H. Winston}, year= 1977 , address={Washington, D.C.} } @article{Tikhonov63, author={A. N. Tikhonov}, title={Solution of incorrectly formulated problems and the regularization method}, journal={Soviet Math. Dokl.}, volume={4}, year= 1963 , pages={1035--1038} } @article{Timaeus86, author={Ian Timaeus}, title={An Assessment of Methods for Estimating Adult Mortality from Two Sets of Data on Maternal Orphanhood}, journal={Demography}, volume= 23, year= 1986, pages={435--450} } @article{Timaeus91, author={Iain Timaeus}, title={Measurement of Adult Mortality in Developing Countries: A Comparative Review}, journal={Population Index}, volume= 57, year= 1991, pages={552-568}, number= 4 } @article{Timaeus91b, author={Ian Timaeus}, title={Estimation of Adult Mortality from Orphanhood Before and Since Marriage}, journal={Population Studies}, volume= 45, year={1991b}, pages={455--472} } @article{Timpone98, author={Richard J. Timpone}, title={Structure, Behavior, and Voter Turnout in the United States}, journal={American Poltical Science Review}, volume={92}, year={1998}, pages={145-158}, month={March}, number={1} } @incollection{TimZabAli01, author={Ian M. Timaeus Basia Zaba and Mohammed Ali}, title={Estimation of Adult Mortality from Data on Adult Siblings}, booktitle={Brass Tacks: Essays in Medical Demography}, publisher={Athlone}, year= 2001, editor={B. Zaba and J. Blacker}, pages={43--66} } @incollection{Tobler79, author={Waldo Tobler}, title={Cellular Geography}, booktitle={Philosophy in Geography}, publisher={Dordrecht: Reidel}, year= 1979, editor={S.\ Gale and G.\ Olssen} } @article{TodDefOde94, author = {J.E. Todd and A. De Francisco and T.J.D. O'Dempsey and B.M. Greenwood}, title = {The limitations of verbal autopsy in a malaria-endemic region}, journal = {Annals of Tropical Paediatrics}, volume = {14}, year = {1994}, pages = {31-36} } @book{Torgerson58, author = {Warren S. Torgerson}, title = {Theory and Methods of Scaling}, publisher = {Wiley and Sons}, year = 1958, address = {New York} } @incollection{TorRauHer93, author = {Hege Torp and O. Rauum and E. Hernaes and H. Goldstein}, title = {The First Norwegian Experiment}, booktitle = {Measuring Labour Market Measures: Evaluating the Effects of Active Labour Market Policies}, publisher = {Ministry of Labour}, year = {1993}, address = {Copenhagen, Denmark}, editor = {K. Jensen and Per Kongshoj Madsen} } @article{TruRod90, author = {J. Trussell and G. Rodriguez}, title = {A Note on the Sisterhood Estimator of Maternal Mortality}, journal = {Studies in Family Planning}, volume = 21, year = 1990, pages = {344--346}, month = {Nov-Dec}, number = 6 } @article{TsuLin86, author = {Robert K. Tsutakawa and Hsin Ying Lin}, title = {Bayesian Estimation of Item Response Curves}, journal = {Psychometrika}, volume = {51}, year = {1986}, pages = {251-267}, month = {June}, number = {2} } @article{TsuMinKey94, author = {Ichiro Tsuji, MD, et al}, title = {The Predictive Power of Self-Rated Health, Activities of Daily Living, and Ambulatory Activity for Cause Specific Mortality among the Elderly: A Three-year Follow-up in Urban Japan. }, journal = {Journal of the American Geriatric Society}, volume = 42, year = 1994, pages = {{153-56}} } @techreport{Tsutakawa75, author = {Robert K. Tsutakawa}, title = {Bayesian Inference for Bioassay}, institution = {University of Missouri - Columbia}, year = {1975}, month = {August}, number = {52} } @article{Tsutakawa84, author = {Robert K. Tsutakawa}, title = {Estimation of Two-Parameter Logistic Item Response Curves}, journal = {Journal of Educational Statistics}, volume = {9}, year = {1984}, pages = {263-276}, number = {4} } @article{Tsutakawa92, author = {Robert K. Tsutakawa}, title = {Moments Under Conjugate Distributions in Bioassay}, journal = {Statistics \& Probability Letters}, volume = {15}, year = {1992}, pages = {229-233}, month = {October} } @article{Tsutakawa92b, author = {Robert K. Tsutakawa}, title = {Prior Distribution for Item Response Curves}, journal = {British Journal of Mathematical and Statistical Psychology}, volume = {45}, year = {1992}, pages = {51-74} } @article{TulBoe98, author = {Shripad Tuljapurkar and Carl Boe}, title = {Mortality Change and Forecasting: How Much and How Little Do We Know?}, journal = {North American Actuarial Journal}, volume = {2}, year = {1998}, number = {4}, annote = {This paper makes a critical assessment of knowledge about mortality change and the potential of existing work to contribute to the development of useful forecasts in Canada, Mexico, and the United States. Methods of forecasting are reviewed, including the scenario method used by the US Social Security Administration and the time series method of Lee and Carter.} } @article{TulLiBoe00, author = {S. Tuljapurkar and N. Li and C. Boe}, title = {A Universal Pattern of Mortality Decline in the {G7} Countries}, journal = {Nature}, volume = 405, year = 2000, pages = {789--792}, month = {June} } @article{tumbarello98, author = {M. Tumbarello and E. Tacconelli and K. de Gaetano and F. Ardit and T. Pirronti and R. Claudia and L. Ortona}, title = {Bacterial Pneumonia in HIV-Infected Patients: Analysis of Risk Factors and Prognostic Indicators}, journal = {Journal of Acquired Immune Deficiency Syndromes and Human Retroviology}, volume = 18, year = 1998, number = {39-45} } @unpublished{TurLit02, author = {P.D. Turney and M.L. Littman}, title = {Unsupervised Learning of Semantic Orientation}, note = {National Research Council Canada}, year = {2002}, month = {May} } @unpublished{TurLit02, author = {P.D. Turney and M.L. Littman}, title = {Unsupervised Learning of Semantic Orientation}, note = {National Research Council Canada}, year = {2002}, month = {May} } @article{TurMat01, author = {G. Turrell and Colin Mathers}, title = {Socioeconomic inequalities in all-cause and specific-cause mortality in Australia: 1985--1987 and 1995--1997}, journal = {International Journal of Epidemiology}, volume = 30, year = 2001, pages = {231--239}, number = 2 } @book{Turner85, author = {Turner, Henry-Ashbury}, title = {German big business and the rise of Hitler}, publisher = {Oxford University Press}, year = {1985} } @proceedings{Turney02, editor = {Peter D. Turney}, title = {Thumbs Up or Thumbs Down? Semantic Orientation Applied to}, publisher = {40th Annual Meeting of the Associatin for Computational Linguistics}, year = {2002}, month = {July}, organization = {Institute for Information Technology}, address = {National Research Council of Canada, Ottawa, Ontario, Canada K1A0R6} } @proceedings{Turney02, editor = {Peter D. Turney}, title = {Thumbs Up or Thumbs Down? Semantic Orientation Applied to}, publisher = {40th Annual Meeting of the Associatin for Computational Linguistics}, year = {2002}, month = {July}, organization = {Institute for Information Technology}, address = {National Research Council of Canada, Ottawa, Ontario, Canada K1A0R6} } @article{Urdal05, author = {Henrik Urdal}, title = {People vs. Malthus: Population Pressure, Environmental Degradation, and Armed Conflict Revisited}, journal = {Journal of Peace Research}, volume = {42}, year = {2005}, pages = {417-434}, month = {July}, number = {4}, publisher = {Journal for Peace Research} } @book{UttLock02, title = {American Political Scientists: a Dictionary}, publisher = {Greenwood Press}, year = {2002}, editor = {Glenn H. Utter and Charles Lockhart}, address = {Westport, Conn}, edition = {2nd} } @book{Valentine64, author = {Frederick Albert Valentine}, title = {Convex Sets}, publisher = {New York, McGraw-Hill}, year = {1964} } @book{Valentine64, author = {Frederick A Valentine}, title = {Convex Sets}, publisher = {McGraw-Hill}, year = 1964, address = {New York} } @article{VanCor99, author = {Marina Vannucci}, title = {Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective}, journal = {Journal of the Royal Statistical Society B}, volume = {61}, year = {1999}, pages = {971-986}, number = {Part 4} } @book{Vandeth98, author = {Jan W. van Deth}, title = {Comparative Politics, the problem of equivalence}, publisher = {Routledge}, year = {1998}, editor = {Jan W. van Deth}, address = {11 New Fetter Lane, London EC4P 4EE} } @article{vanDoorslaer97, author = {Eddy van Doorslaer}, title = {Income-related Inequalities in Health: Some International Comparisons}, journal = {Journal of Health Economics}, year = {1997}, optnumber = {1}, optvolume = {16}, optpages = {93--112} } @article{VanWissen01, author = {Leo J.G. van Wissen}, title = {Demography of the Firm: A Useful Metaphor?}, journal = {European Journal of Population}, volume = {18}, year = {2002}, pages = {263-279} } @book{Vapnik95, author={Vladimir N. Vapnick}, title={The Nature of Statistical Learning Theory}, publisher={Springer}, year= 1995, address={New York} } @book{Vapnik98, author={Vladimir N. Vapnik}, title={Statistical Learning Theory}, publisher={Wiley}, year= 1998 , address={New York} } @book{VenRip02, author={William N. Venables and Brian D. Ripley}, title={Modern Applied Statistics with S}, publisher={Springer-Verlag}, year={2002}, edition={4th} } @article{VerAngCap02, author={Arduino Verdecchia and Giovanni De Angelis and Riccardo Capocaccia}, title={Estimation and Projections of Cancer Prevalence from Cancer Registry Data}, journal={Statistics in Medicine}, volume= 21, year= 2002, pages={3511--3526} } @article{VerCapEgi89, author={A. Verdecchia and R. Capocaccia and V. Egidi and A. Golini}, title={A Method for the Estimation of Chronic Disease Morbidity and Trends from Mortality Data}, journal={Statistics in Medicine}, volume= 8, year= 1989, pages={201--216} } @article{Verrall93, author={R.J. Verrall}, title={A state space formulation of Whittaker graduation, with extensions}, journal={Insurance: Mathematics and Economics}, volume= 13, year= 1993, pages={7--14} } @article{VerSch77, author={Sidney Verba and Kay Lehman Schlozman}, title={Unemployment, Class Consciousness, and Radical Politics: What Didn't Happen in the Thirties}, journal={Journal of Politics}, volume= 39, year= 1977, pages={291--323}, number= 2 } @book{VerSchBra95, author={Sidney Verba and Kay Lehman Schlozman and Henry E. Brady}, title={Voice and Equality: Civic Volunteerism in American Politics}, publisher={Harvard University Press}, year= 1995, address={Cambridge, MA} } @article{Villalonga04, author={Belen Villalonga}, title={Does Diversification Cause the "Diversification Discount"?}, journal={Financial Management}, volume={33}, year={2004}, pages={5-27}, number={2} } @article{Voth03, author = {Voth, Hans-Joachim}, title = {With a Bang, not a Whimper: Pricking Germany's Stock Market Bubble in 1927 and the Slide into Depression}, journal = {Journal of Economic History}, volume = 63, year = 2003, pages = {65--99}, number = 1 } @article{Voth95, author = {Voth, Hans-Joachim}, title = {Did High Wages or High Interest Rates Bring Down the Weimar Republic? A Cointegration Model of Investment in Germany, 1925-1930}, journal = {Journal of Economic History}, volume = 55, year = 1995, pages = {801--821}, month = {December}, number = 4 } @article{WacWei82, author={Wacholder, S. and Weinberg, C.R.}, title={{Paired versus Two-Sample Design for a Clinical Trial of Treatments with Dichotomous Outcome: Power Considerations}}, journal={Biometrics}, volume={38}, year={1982}, pages={801--812}, number={3} } @article{Wagstaff00, author={Adam Wagstaff}, title={Socioeconomic inequalities in Child Mortality: Comparisons Across Nine Developing Countries}, journal= bull, year={2000}, optnumber={1}, optvolume={78}, optpages={19--29} } @article{Wahba75, author={G. Wahba}, title={Smoothing noisy data by spline functions}, journal={Numer. Math}, volume= 24, year= 1975, pages={383--393} } @article{Wahba77, author={G. Wahba}, title={Practical approximate solutions to linear operator equations when the data are noisy}, journal={SIAM J. Numer. Anal.}, volume={14}, year={1977} } @article{Wahba78, author={G. Wahba}, title={{Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression}}, journal={Journal of the Royal Statistical Society B}, volume= 40, year= 1978, pages={364--372}, number= 3 } @incollection{Wahba79, author={G. Wahba}, title={Smoothing and ill-posed problems}, booktitle={Solutions methods for integral equations and applications}, publisher={Plenum Press}, year= 1979, address={New York}, editor={M. Golberg}, pages={183--194} } @inproceedings{Wahba80, author={G. Wahba}, title={Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data}, booktitle={Proceedings of the International Conference on Approximation theory in honour of George Lorenz}, year={1980}, month={January 8--10}, publisher={Academic Press}, address={Austin, TX}, editor={J. Ward and E. Cheney} } @incollection{Wahba80a, author={G. Wahba}, title={Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data}, booktitle={Approximation theory III}, publisher={Academic Press}, year= 1980, address={New York}, editor={W. Cheney}, pages={905--912} } @article{Wahba85, author={G. Wahba}, title={A comparison of {GCV} and {GML} for choosing the smoothing parameter in the generalized splines smoothing problem}, journal={The Annals of Statistics}, volume= 13, year= 1985, pages={1378--1402} } @book{Wahba90, author={G. Wahba}, title={Splines Models for Observational Data}, publisher={{Series in Applied Mathematics, Vol. 59, SIAM}}, year= 1990 , address={Philadelphia} } @techreport{WahLinZha99, author={G. Wahba and Y. Lin and H. Zhang}, title={Generalized Approximate Cross Validation for SVM, or, anather way to look at margin-like quantities}, institution={Department of Statistics, University of Wisconsin}, year={1999}, type={Tech. Report}, number={1006} } @misc{Wakefield01, author={Jon Wakefield}, title={Ecological Inference for $2 \times 2$ Tables}, year= 2001, howpublished={Working Paper \# 12, Center for Statistics and the Social Sciences, University of Washington} } @article{WalCarXiaGel97, author={Lance A. Waller and Bradley P. Carlin and Hong Xia and Alan E. Gelfand}, title={Hierarchical Spatio-Temporal Mapping of Disease Rates}, journal= jasa, volume= 92, year= 1996, pages={607-617} } @article{WalDon94, author={G.E.L. Walraven and P.W.J. van Dongen}, title={Assessment of maternal mortality in Tanzania}, journal={British Journal of Obstetrics and Gynaecology}, volume= 101, year= 1994, pages={414--417} } @book{Waldron99, author={Jeremy Waldron}, title={Law and disagreement}, publisher={Oxford University Press}, year={1999}, address={New York} } @article{Waletal97, author={L.A. Waller and B.P. Carlin and H. Xia and A.E. Gelfand}, title={{Hierarchical Spatio-Temporal Mapping of Disease Rates}}, journal= jasa, volume= 92, year= 1997, pages={607--617}, number= 438 } @techreport{WalHogHam06, author={Robert Walker and Lesley Hoggart and Gayle Hamilton with Susan Blank}, title={Making random assignment happen: Evidence from the UK Employment Retention and Advancement (ERA) demonstration}, institution={Department for Work and Pensions, Corporate Document Services}, year={2006}, month={March}, type={research report}, note={ISBN 1 84 123981 X, Research Report 330} } @article{WanRob98, author={Naisyin Wang and James Robins}, title={Large-sample theory for parametric multiple imputation procedures}, journal={Biometrika}, volume={85}, year={1998}, pages={935-948} } @article{WanSchAvo05, author={Philip S. Wang and Sebastian Schneeweiss and Jerry Avorn and Michael A. Fischer and Helen Mogun and Daniel H. Solomon and M. Alan Brookhart}, title={Risk of Death inelderly Users of Conventional vs. Atypical Antipsychotic Medications}, journal={New England Journal of Medicine}, volume={353}, year={2005}, pages={2335-2341}, month={December} } @article{WanSha91, author={Goya Wannamethee and A. G. Shaper }, title={Self-assessment of Health Status and Mortality in Middle Aged British Men}, journal={International Journal of Epidemiology}, volume= 20, year= 1991, pages={{239-45}}, number= 1 } @unpublished{WanYanMa06, author={L Wang and G. Yang and J Ma and C Rao and X Wan and AD Lopez}, title={Evaluation of the quality of cause of death statistics in rural China using verbal autopsies}, year={2006}, journal={Journal of Epidemiology and Community Health} } @book{WapBerBra40, author={Waples, D. and Berelson, B. and Bradshaw, F.R.}, title={{What Reading Does to People: A Summary of Evidence on the Social Effects of Reading and a Statement of Problems for Research}}, publisher={The University of Chicago Press}, year={1940} } @article{Ware05, author={Helen Ware}, title={Demography, Migration and Conflict in the Pacific}, abstract={This article explores the relationships between demography and internal conflict in the Pacific Island countries, focusing on the three subregions Polynesia, Micronesia and Melanesia. These countries confront distinctive challenges and opportunities because of their unique cultures and non-militarized status, combined with very small size and remote locations. The use of the MIRAB model of island economies based on migration, remittances, aid and bureaucracy is extended to examine its impact on social cohesion and the avoidance of internal conflict. For Polynesia, MIRAB is found to be a sustainable development strategy. Continuous emigration from Polynesia serves to reduce population pressure and communal tensions. Further, remittance income supports the Polynesian economies, and this also reduces the potential for conflict. For Micronesia, except Kiribati and Nauru, migration access to the USA is assured. In contrast, for the Melanesian countries, there is minimal emigration, rapid population growth and considerable intercommunal tension, which has resulted in several coups and one 'failed state'. Demographic pressure created by rapid population growth results in a lack of employment opportunities for youths (who provide the majority of participators in civil unrest and conflicts) rather than in direct pressure on land and other natural resources.}, journal={Journal for Peace Research}, volume={42}, year={2005}, pages={435-454}, month={July}, number={4} } @unpublished{WarSivCao05, author={Michael D. Ward and Randolph M. Siverson and Xun Cao}, title={Everybody Out of the Pool!}, note={Michael Ward, Dept of Politcal Science, Univ of WA, Seattle mdw@u.washington.edu}, year={2005}, month={August} } @techreport{WasRoe06, author={Larry Wasserman and Kathryn Roeder}, title={Weighted Hypothesis Testing}, institution={Carnegie Mellon University}, year={2006}, month={April} } @article{Weibe04, author={Janyce M. Wiebe}, title={Tracking Point of View in Narrative}, journal={Computational Linguistics}, volume={20}, year={1994}, pages={233-287}, number={2} } @article{Weibe04, author={Janyce M. Wiebe}, title={Tracking Point of View in Narrative}, journal={Computational Linguistics}, volume={20}, year={1994}, pages={233-287}, number={2} } @article{WeiCoxWil87, author={Milton C. Weinstein and Pamela G. Coxson and Lawrence W. Williams and Theodore M. Pass and William B Stason and Lee Goldman}, title={Forecasting Coronary Heart Disease Incidence, Mortality, and Cost: The Coronary Heart Disease Policy Model}, journal={American Journal of Public Health}, volume= 77, year= 1987, pages={1417--1426}, number= 11 } @book{Weiss86, author={N.S. Weiss}, title={Clinical Epidemiology: the Study of Outcome of Disease}, publisher={Oxford University Press, NY}, year={1986} } @book{Weiss86, author={Noel S. Weiss}, title={Clinical Epidemiology: The Study of the Outcome of Illness}, publisher={Oxford University Press}, year={1986}, volume={Volume 11}, address={New York}, series={Monographs in Epidemiology and Biostatistics } } @article{WeiTan90, author={Greg C. Wei and Martin A. Tanner}, title={A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms}, journal={Journal of the American Statistical Association}, volume={85}, year={1990}, pages={699-704}, month={September} } @article{WeiWanIbr97, author={Robert E. Weiss and Yan Wang and Joseph G. Ibrahim}, title={Predictive Model Selection for Repeated Measures Random Effects Models Using Bayes Factors}, journal={Biometrics}, volume= 53, year= 1997, pages={592--602}, month={June} } @article{Wellhofer03, title = {{Democracy and Fascism: Class, Civil Society, and Rational Choice in Italy}}, author = {E. Spencer Wellhofer}, journal = {American Political Science Review}, volume = {97}, number = {01}, pages = {91--106}, year = {2003} } @article{Werner00, author={Suzanne Werner}, title={The Effects of Political Similarity on the Onset of Militarized Disputes, 1816-1985}, journal= prq, volume= 53, year= 2000, pages={343--374}, month={June} } @article{Wernette1977, author={Wernette, Dee Richard}, title={Quantitative Methods in Studying Political Mobilization in Late Weimar Germany}, journal={Historical Methods Newsletter}, volume= 10, year= 1977, pages={97-101} } @book{WesHar97, author={Mike West and Jeff Harrison}, title={Bayesian Forecasting and Dynamic Linear Models}, publisher={Springer}, year= 1997, address={New York} } @article{WesHarMig85, author={Mike West and P. Jeff Harrison and Helio S. Migon}, title={Dynamic Generalized Linear Models and Bayesian Forecasting}, journal={Journal of the American Statistical Association}, volume={80}, year={1985}, pages={73-83}, month={March}, number={389} } @article{Western95, author={Bruce Western}, title={{Concepts and Suggestions for Robust Regression Analysis}}, journal={American Journal of Political Science}, volume={39}, year={1995}, pages={786--817}, number={3} } @article{Western98, author={Bruce Western}, title={{Causal Heterogeneity in Comparative Research: a Bayesian Hierarchical Modelling Approach}}, journal={American Journal of Political Science}, volume= 42, year= 1998, pages={1233--1259}, month={October}, number= 4 } @article{WhiEva96, author={Stephen Whitefield and Geoffrey Evans}, title={Support for Democracy and Poltical Opposition in Russia 1993-95}, journal={Post Soviet Affairs}, volume={12}, year={1996}, pages={218-52}, number={3} } @book{WhiRosMcA97, author={Stephen White and Richard Rose and Ian McAllister}, title={How Russia Votes}, publisher={Chatham House Publishers, Inc.}, year={1997}, address={Chatham, NJ} } @unpublished{WhiSetCha06, author={David R. Whiting and Philip W. Setel and Daniel Chandramohan and Lara J. Wolfson and Yusuf Hemed and Alan D. Lopez}, title={Estimating Cause-Specific Mortality from Community- and Facility-Based Data Sources in Tanzania: Options and Implications for Mortality Burden Estimates}, note={Whiting, MEASURE Evaluation, Carolina Population Center, Univ. of NC at Chapel Hill, Dept of Medicine, School of Clinical Medical Sciences, Univ of Newcastle upon Tyne England; david.whiting@ncl.ac.uk}, year={2006} } @article{Whitbeck05, author={Caroline Whitbeck}, title={The Responsible Collection, Retention, Sharing, and Interpretation of Data}, journal={Online Ethics Center for Engineering and Science}, year= 2005, note={{http://onlineethics.org/reseth/mod/data.html}} } @article{White02, author={Kevin M. White}, title={Longevity Advances in High-IncomeCountries, 1955-96}, journal={Population and Development Review}, volume= 28, year= 2002, pages={59--76}, month={March}, number= 1 } @book{White82, author={Halbert L. White}, title={Asymptotic Theory For Econometricians}, publisher={Academic Press}, year= 1984, address={New York} } @book{White92, author={Halbert H. White}, title={Artificial Neural Networks, Approximation and Learning Theory}, publisher={Blackwell}, year= 1992, address={Cambridge, MA} } @article{Whittaker23, author={{Whittaker E.T.}}, title={On a New Method of Graduation}, journal={Proceedings of the Edinburgh Mathematical Society}, volume= 41, year= 1923, pages={63--75} } @article{WidKub96, author={Widmer, G. and Kubat, M.}, title={{Learning in the presence of concept drift and hidden contexts}}, journal={Machine Learning}, volume={23}, year={1996}, pages={69--101}, number={1}, publisher={Springer} } @unpublished{WieWilBel01, author={Janyce Wiebe and Theresa Wilson and Matthew Bell}, title={Identifying Collocations for Recognizing Opinions}, note={University of Pittsburgh wiebe, twilson, mbell@cs.pitt.edu}, year={2001}, month={April} } @article{WilBerNob01, author={B.P. Will and J.M. Berthelot and K.M. Nobrega and W. Flanagan and W.K. Evans}, title={Canada's Population Health Model (POHEM): A Tool for Performing Economic Evaluations of Cancer Control Interventions}, journal={European Journal of Cancer}, volume= 37, year= 2001, pages={1797--1804} } @article{WilGouBos02, author={Brian G. Williams and Eleanor Gouws and Cynthia Boschi-Pinto and Jennifer Bryce and Christopher Dye}, title={Estimates of world-wide distribution of child deaths from acute respiratory infections}, journal={The Lancet Infectious Diseases}, volume={2}, year={2002}, pages={25-32}, month={January} } @article{WilGouBos02, author={Brian G. Williams and Eleanor Gouws and Cynthia Boschi-Pinto and Jennifer Bryce and Christopher Dye}, title={Estimates of world-wide distribution of child deaths from acute respiratory infections}, journal={The Lancet Infectious Diseases}, volume={2}, year={2002}, pages={25-32}, month={January} } @article{WilHol07, author={Elizabeth Ty Wilde and Robinson Hollister}, title={How Close is Close Enough? Evaluating Propensity Score Matching Using Data from a Class-Size Reduction Experiment}, journal={Journal of Policy Analysis and Management}, volume={26}, year={2007}, number={3} } @techreport{Wilmoth93, author={John Wilmoth}, title={{Computational Methods for Fitting and Extrapolating the Lee-Carter Model of Mortality Change}}, institution={Department of Demography, University of California, Berkeley}, year= 1993 } @incollection{Wilmoth96, author={John R. Wilmoth}, title={Mortality Projections for Japan: A Comparison of Four Methods}, booktitle={Health and Mortality Among Elderly Populations}, publisher={Oxford University Press}, year= 1996, address={Oxford}, editor={G. Caselli and Alan Lopez}, pages={266-287} } @article{Wilmoth98, author={John Wilmoth}, title={The Future of Human Longevity: A Demographer's Perspective}, journal={Science}, volume= 280, year= 1998, pages={395--397}, month={April 17}, number= 5362 } @article{Wilmoth98b, author={John Wilmoth}, title={Is the Pace of Japanese Mortality Decline Converging Towards International Trends?}, journal={Population and Development Review}, volume= 24, year= 1998, pages={593--600}, number= 3 } @article{WinMar92, author={Christopher Winship and Robert D. Mare}, title={Models for Sample Selection Bias}, journal={Annual Review of Sociology}, volume={18}, year={1992}, pages={327-50} } @article{WinMor99, author={Christopher Winship and Stephen L. Morgan}, title={The Estimation of causal Effects from Observational Data}, journal={American Review of Sociology}, volume= 25, year= 1999, pages={659--707} } @article{WinRad94, author={Christopher Winship and Larry Radbill}, title={Sampling Weights and Regression Analysis}, journal={Sociological Methods and Research}, volume={23}, year={1994}, pages={230-257}, month={November}, number={2} } @unpublished{WinSob00, author={Christopher Winship and Michael Sobel}, title={Causal Inference in Sociological Studies}, note={Harvard University}, year= 2000 } @article{WirLin94, author={D.N. Wirawan and M. Linnan}, title={The Bali indirect maternal mortality study}, journal={Studies in Family Planning}, volume= 5, year= 1994, pages={304--309} } @inbook{WolCalJoh94, author = {F.D. Wolinsky, C.M. Callahan, and R.J. Johnson}, title = {Subjective Health Status and Mortality in the Elderly}, year = 1994, publisher = {{New York: Springer Publishing Company}}, pages = {{13-28}}, journal = {Facts and Research in Gerontology} } @article{WolFir02, author = {Rory Wolfe and David Firth}, title = {Modelling Subjective Use of an Ordinal Reponse Scale in a Many Period Crossover Experiment}, journal = {Applied Statistics}, volume = 51, year = 2002, pages = {245--255}, month = {April}, number = 2 } @article{WolJoh92, author = {Fredric Wolinsky and Robert Johnson}, title = {Perceived Health Status and Mortality Among Older Men and Women}, journal = {Journal of Gerontology: Social Sciences}, volume = 47, year = 1992, pages = {{S304-12}} } @article{WolJohStu95, author = {Fredric D. Wolinsky, Robert L. Johnson, and Timothy E. Stump}, title = {The Riske of Mortality among Older Adults over an Eight-Year Period}, journal = {The Gerontologist}, volume = 35, year = 1995, pages = {{150-61}} } @article{WonBenKof98, author = {John B. Wong and William G. Bennett and Raymond S. Koff and Stephen G. Pauker}, title = {Pretreatment Evaluation of Chronic Hepatitis C: Risks Benefits, and Costs}, journal = {Journal of the American Medical Association}, volume = 280, year = 1998, pages = {2088--2093} } @article{WonMcqMch00, author = {John B. Wong and Gerladine M. McQuillan and John G. McHutchison and Thierry Poynard}, title = {Estimating Future Hepatitis C Morbidity, Mortality, and Costs in the United States}, journal = {American Journal of Public Health}, volume = 90, year = 2000, pages = {1562--1569}, number = 10 } @book{WraPet96, author = {Richard Wrangham and Dale Peterson}, title = {Demonic Males}, publisher = {Houghton Mifflin}, year = 1996 } @book{WuHam00, author = {Chien-Fu Wu and Michael Hamada}, title = {Experiments: Planning, analyzing and Parameter Design Optimization}, publisher = {Wiley-Interscience}, year = {2000}, address = {New York} } @book{WuHam00, author = {Chien-Fu Wu and Michael Hamada}, title = {Experiments: Planning, Analyzing, and Parameter Design Optimization}, publisher = {Wiley-Interscience}, year = {2000}, address = {New York} } @article{WuSch93, author = {Z. Wu and R. Schaback}, title = {Local Error Estimates for Radial Basis Function Interpolation of Scattered Data}, journal = {Journal of Numerical Analysis}, volume = 13, year = 1993, pages = {13--27} } @article{YanRaoMa05, author = {Gonghuan Yang and Chalapati Rao and Jiemin Ma and Lijun Wang and Xia Wan and Guillermo Dubrovsy and Alan D. Lopez}, title = {Validation of verbal autopsy procedures for adult deaths in China}, journal = {International Journal of Epidemiology}, year = {2005}, month = {September}, note = {Advance Access published 9/6/05 doi:10.1093/ije/dyi181} } @article{YeeHas03, author = {Yee, T. W. and Hastie, T. J.}, title = {Reduced-rank vector generalized linear models}, journal = {Statistical Modelling}, volume = 3, year = {2003}, pages = {15--41}, issue = 1 } @article{YeeWil96, author = {T.W. Yee and C.J. Wild}, title = {Vector Generalized Additive Models}, journal = {Journal of the Royal Statistical Society. Series B (Methodological)}, volume = {58}, year = {1996}, pages = {481--493}, number = {3} } @article{Yoo02, author = {Thomas W. Yoo}, title = {Presumed Disloyal: Executive Power Judicial Deference, and the Construction of Race Before and After September 11}, journal = {Columbia Human Rights Law Review}, volume = 34, year = {2002}, pages = {1--??} } @Article{YacYac06, author = {Jason Webb Yackee and Susan Webb Yackee}, title = {A Bias Towards Business? Assessing Interest Group Influence on the U.S. Bureaucracy}, journal = {Journal of Politics}, year = {2006}, OPTkey = {}, volume = {68}, number = {1}, pages = {128-169}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{YosMagBos03, author = {Hirokazu Yoshikawa and Katherine A. Magnuson and Johannes M. Bos and Jo Ann Hsueh}, title = {Effects of Earnings-Supplement Policies on Adult Economic and Middle-Childhood Outcomes Differ for the `Hardest to Employ'}, journal = {Child Development}, volume = {74}, year = {2003}, pages = {1500-1521}, month = {September/October}, number = {5} } @proceedings{YuHat03, editor={Hong Yu and Vasileios Hatzivassiloglou}, title={Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences}, year={03}, organization={2003 Conference on Empirical Methods in Natural Language Processing}, address={Hong Yu Dept. of Computer Science columbia Univ. New York, NY 10027 hongyu@cs.columbia.edu} } @article{YuKeaSly98, author={Elena S. H. Yu, Yin M. Kean, Donal J. Slyman, et al}, title={Self Perceived Health and 5-Year Mortality Risks among the Elderly in Shanghai, China}, journal={American Journal of Epidemiology}, volume= 147, year= 1998, pages={{880-90}} } @article{yule12, author={G.U. Yule}, title={On the Methods of Measuring the Association Between Two Attributes}, journal={Journal of the Royal Statistical Society}, volume= 75, year= 1912, pages={579--642} } @book{Zaba86, author={Basia Zaba}, title={Measurement of Emigration Using Indirect Techniques. Manual for the collection and analysis of Data on Residence of Relatives}, publisher={Ordina Editions, 10, place St. Jacques 4000 Liege Belgium}, year={1986}, note={Working Group on the Methodology for the Study of International Migration} } @article{ZabDav96, author={Basia Zaba and Patricia H. David}, title={Fertility and the Distribution of Child Mortality Risk Among Women: An Illustrative Analysis}, journal={Population Studies}, volume= 50, year= 1996, pages={263--278} } @book{Zaller92, author={John R. Zaller}, title={The Nature and Origins of Mass Opinion}, publisher={Cambridge University Press}, year= 1992, address={New York, NY} } @article{ZamRouOrh01, author={Asad Zaman and Peter J. Rousseeuw and Mehmet Orhan}, title={{Econometric applications of high-breakdown robust regression techniques}}, journal={Economics Letters}, volume={71}, year={2001}, pages={1--8} } @article{Zeileis04, author={Achim Zeileis}, title={Econometric Computing with HC and HAC Covariance Matrix Estimators}, journal={Journal of Statistical Software}, volume={11}, year={2004}, pages={1--17}, number={10}, publisher={Wiley} } @article{Zellner62, author={A. Zellner}, title={An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias}, journal= jasa, volume= 57, year= 1962, pages={348--368}, month={June}, number= 298 } @incollection{Zeng00, author={Langche Zeng}, title={Neural Network Models for Political Analysis}, booktitle={Political Complexity: Nonlinear Models of Politics}, publisher={University of Michigan Press}, year= 2000, editor={Diana Richards}, pages={239--268} } @article{Zeng99, author={Langche Zeng}, title={Classification and Prediction with Neural Network Models}, journal= smr, volume= 27, year= 1999, pages={499--524}, month={May}, number= 4 } @article{zhang98, author={Jun Zhang and F. Kai Yu}, title={What's the Relative Risk? A Method of Correcting the Odds Ratio in Cohort Studies of Common Outcomes}, journal={New England Journal of Medicine}, volume= 280, year= 1998, pages={1690--1}, number= 19 } @article{Zhao04, author={Zhong Zhao}, title={Using matching to estimate treatment effects: data requirements, matching metrics, and {M}onte {C}arlo evidence}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={91-107}, number= 1 } @article{zocchetti97, author={Carlo Zocchetti, Dario Consonni and Pier Bertazzi}, title={Relationship Between Prevalence Rate Ratios and Odds Ratios in Cross-sectional Studies}, journal={International Journal of Epidemiology}, volume= 26, year= 1997, pages={220--23}, number= 1 } @article{Zorn01, author={Christopher Zorn}, title={Generalized Estimating Equation Models for Correlated Data: A Review with Applications}, journal= ajps, volume= 45, year= 2001, pages={470--490}, month={April} } @article{ZouTepSaa00, author={Shimian Zou and Martin Tepper and Susie El Saadany}, title={Prediction of Hepatitis C Burden in Canada}, journal={Canadian Journal of Gastroenterology}, volume= 14, year= 2000, pages={575--580}, month={July/August}, number= 7 } @article{KnaArrMen06, author = {Felicia Marie Knaul, H{\'e}ctor Arreola-Ornelas, Oscar M{\'e}ndez-Carniado, Chloe Bryson-Cahn, Jeremy Barofsky, Rachel Maguire, Martha Miranda,}, title = {Evidence is good for your health system: policy reform to remedy catastrophic and impoverishing health spending in Mexico}, journal = {Lancet}, volume = {368}, year = {2006}, pages = {1828-41}, month = {November} } @article{KnaFre05, author = {Felicia Marie Knaul and Julio Frenk}, title = {Health Insurance in Mexico: Achieving Universal Coverage Through Structural Reform}, journal = {Health Affairs}, volume = {24}, number = {6}, year = {2005}, pages = {1828-41}, month = {November} } @book{Turner79, author={Henry Turner}, title={German Big Business and the Rise of Hitler}, publisher={Oxford University Press}, year= 1979, address={New York} } @article{CamElbAlt04, author={Campbell, M. and Elbourne, D. and Altman, D.}, title={{CONSORT statement: extension to cluster randomised trials}}, journal={BMJ}, volume={328}, year={2004}, pages={702--708}, number={7441} } @proceedings{HigGre06, editor={JPT Higgins and S. Green}, title={Cochrane Handbook for Systematic Review of Interventions 4.2.5 [updated September 2006]}, publisher={John Wiley and Sons}, year= 2006, address={Chichester, UK}, series={The Cochrane Library}, number= 4 } @article{Campbell04, author={Michael J Campbell}, title={Editorial: Extending CONSORT to include cluster trials}, journal={BMJ}, volume= 328, year= 2004, pages={654-655}, month={March}, note={{http://www.bmj.com/cgi/content/full/328/7441/654\%20?q=y}} } @techreport{MRC02, author={{Medical Research Council}}, title={Cluster Randomized Trials: Methodological and Ethical Considerations}, institution={MRC Clinical Trials Series}, year= 2002, note={{http://www.mrc.ac.uk/Utilities/Documentrecord/index.htm?d=MRC002406}} } @article{Cornfield78, author={Jerome Cornfield}, title={Randomization by Group: a Formal Analysis}, journal={American Journal of Epidemiology}, volume={108}, year={1978}, pages={100}, number={2} } @book{Wood06, author={Simon N. Wood}, title={Generalized Additive Models: An Introduction with R}, publisher={CRC Press}, year= 2006, address={London} } @article{Wood04, author={Simon N. Wood}, title={Stable and efficient multiple smoothing parameter estimation for generalized additive models}, journal= jasa, volume= 99, year= 2004, pages={673--686} } @article{Wood00, author={Simon N. Wood}, title={Modeling and Smoothing Parameter Estimation wiht Multiple Quadratic penalties}, journal={Journal of the Royal Statistical Society}, volume={62}, year={2000}, pages={413-428}, number={2} } @manual{HamHen05, author={Jeff Hamann and Arne Henningsen}, title={systemfit: Simultaneous Equation Systems in R Package}, year={2005}, url={{http://www.systemfit.org}} } @article{BenYek01, author={Yoav Benjamini and Daniel Yekutieli}, title={The Control of the False Discovery Rate in Multiple Teting under Dependency}, journal={The Annals of Statistics}, volume={29}, year={2001}, pages={1165-1188}, month={August}, number={4} } @article{BenHoc95, author={Yoav Benjamini and Yosef Hochberg}, title={Controlling the False Disvoery Rate: A Practical and Powerful Approach to Multiple Testing}, journal={Journal of the Royal Statistical Society, Series B}, volume={57}, year={1995}, pages={289-300}, number={1} } @techreport{WWC06, author={{What Works Clearinghouse}}, title={Evidence Standards for Reviewing Studies}, institution={Institute for Educational Sciences}, year= 2006, note={{http://www.whatworks.ed.gov/reviewprocess/standards.html}} } @article{RauMarSpy07, author={Stephen W. Raudenbush and Andres Martinez and Jessaca Spybrook}, title={Strategies for Improving Precision in Group-Randomized Experiments}, journal={Educational Evaluation and Policy Analysis}, volume= 29, year= 2007, pages={5--29} } @article{HorKle07, author={Nicholas J. Horton and Ken P. Kleinman}, title={Much Ado About Nothing: A Comparion of Missing Data Methods and Software to Fit Incomplete Data Regression Models}, journal={The American Statistician}, volume= 61, year= 2007, pages={79--90}, month={February}, number= 1 } @book{GwaWagYaz05, title={Reaching the Poor}, publisher={The World Bank}, year= 2005, editor={Davidson R. Gwatkin and Adam Wagstaff and Adbo S. Yazbeck}, address={Washington, D.C.} } @book{wdr04, title={Making Services Work for Poor People: World Development Report, 2004}, publisher={Oxford University Press and the World Bank}, year= 2003, editor={{World Bank}}, address={Washington, D.C.} } @article{BauLak03, author={Matthew A. Baum and David A. Lake}, title={The Political Economy of Growth: Democracy and Human Capital}, journal={American Journal of Political Science}, volume={47}, year={2003}, pages={333-347}, month={April}, number={2} } @book{Lee02, author={Taeku Lee}, title={Mobilizing Public Opinion: Black Insurgency and Racial Attitudes in the Civil Rights Era}, publisher={University of Chicago Press}, year={2002}, address={Chicago, IL} } @book{Herbst93, author={Susan Herbst}, title={Numbered Voices: How Opinion Polling Has Shaped American Politics}, publisher={University of Chicago Press}, year={1993}, address={Chicago, IL} } @book{Ginsberg86, title = {The Captive Public: How Mass Opinion Promotes State Power}, author = {Benjamin Ginsberg}, year = {1986}, publisher = {Basic Books}, address = {New York, NY} } @article{Blumer48, title = {Public Opinion and Public Opinion Polling}, author = {Hubert Blumer}, journal = {American Sociological Review}, volume = {13}, number = {5}, pages = {542--549}, year = {1948} } @article{Converse87, title = {{Changing Conceptions of Public Opinion in the Political Process}}, author = {Philip E. Converse}, journal = {The Public Opinion Quarterly}, volume = {51}, pages = {12--24}, year = {1987} } @article{LakBau01, author = {David A. Lake and Matthew A. Baum}, title = {The Invisible Hand of Democracy: Political Control and the Provision of Public Services}, journal = {Comparative Political Studies}, volume = {34}, year = {2001}, pages = {587-621}, month = {August}, number = {6} } @article{IveSos06, author = {Torben Iversen and David Soskice}, title = {Electoral Institutions and the Politics of Coalitions: Why Some Democracies Redistribute More Than Others}, journal = apsr, volume = {100}, year = {2006}, pages = {165-181}, month = {May}, number = {2} } @article{Timmons05, author = {Jeffrey F. Timmons}, title = {The Fiscal Contract: States, Taxes, and Public Services}, journal = {World Politics}, volume = {57}, year = {2005}, pages = {530-567}, month = {July}, number = {4} } @article{Ross06, author={Michael Ross}, title={Is Democracy Good for the Poor?}, journal= ajps, volume={50}, year={2006}, pages={860-874}, month={October}, number={4} } @unpublished{Spence07, author={Matthew J. Spence}, title={Do Governments Spend More to Compensate for Openness}, note={Working paper.}, year= 2007 } @article{Rodrik98, author={Dani Rodrik}, title={Why Do More Open Economies Have Bigger Governments?}, journal={Journal of Political Economy}, volume={106}, year={1998}, pages={997-1032}, month={October}, number={5} } @article{Fearon05, author={James D. Fearon}, title={Primary Commodity Exports and Civil War}, journal={Journal of Conflict Resolution}, volume={49}, year={2005}, pages={483-507}, month={August}, number={4} } @article{ColHoe04, author={Paul Collier and Anke Hoeffler}, title={Greed and Grievance in Civil War}, journal={Oxford Economic Papers}, volume={56}, year={2004}, pages={563-595}, month={October}, number={4} } @article{FeaLai03, author = {James D. Fearon and David D. Laitin}, title = {Ethnicity, Insurgency, and Civil War}, journal = apsr, volume = {97}, year = {2003}, pages = {75-90}, month = {February}, number = {1} } @article{Marinov05, author = {Nikolay Marinov}, title = {Do Economic Sanctions Destabilize Country Leaders?}, journal = ajps, volume = {49}, year = {2005}, pages = {564-576}, month = {July}, number = {3} } @book{Barro97, author = {Robert J. Barro}, title = {Determinants of Economic Growth}, publisher = {MIT Press}, year = 1997, address = {Cambridge} } @article{ChaLin01, author = {Chih-Chung Chang and Chih-Jen Lin}, title = {{LIBSVM}: a library for support vector machines}, year = {2001}, note = {{http://www.csie.ntu.edu.tw/~cjlin/libsvm}} } @article{BosLarGie03, author = {Thomas J. Bossert and Osvaldo Larra{\~n}aga and Ursula Giedion Jos\'e and Jesus Arbelaez and Diana M. Bowser}, title = {Descentralizaci{\'o}n y distribuci{\'o}n equitativa de los recursos: evidencia obtenida en Colombia y Chile}, journal = {Bulletin of World Health Organization}, volume = 81, year = 2003, pages = {95-100}, number = 2 } @article{Bowyer04, author = {Tim Bowyer}, title = {Popular participation and the State: democratizing the health sector in rural Peru}, journal = {International Journal of Health Planning and Management}, volume = 19, year = 2003, pages = {131-161}, } @article{CohPet97, author = {John M. Cohen and Stephen B. Peterson}, title = {Administrative Decentalization: A New Framework for Improved Governance, Accountability, and Performance}, journal = {CID Development Discussion Paper 582}, year = 1997, pages = {1-37}, month = {July}, } @book{DjuMac75, title = {Alternative Approaches to Meeting Basic Health Needs in Developing Countries}, publisher = {World Health Organization}, year = 1975, editor = {V. Djukanovic and E.P. Mach}, address = {Geneva}, } @book{Frenk95, title = {Health and the Economy: Proposals for Progress in the Mexican Health System}, publisher = {D.F. Funsalud}, year = 1995, editor = {V. Djukanovic and E.P. Mach}, address = {Mexico}, } @article{GaiKul02, author = {Raghav Gaiha and Vani Kulkami}, title = {Panchayats, Communities, and the Rural Poor in India}, journal = {Journal of Asian and African Studies}, volume = 37, year = 2002, pages = {131-161}, } @article{GonLeyAta89, author = {Miguel Gonz\'alez-Block and Ren\'e Leyva and Oscar Zap Ata and Ricardo Loewe and Javier Alag\'on}, title = {Health Services Decentralisation in Mexico: Formulation, Implementation and Results of Policy}, journal = {Health Policy and Planning}, year = 1989, pages = {301-315}, volume = 4, month = {July} } @book{KauNel04, title = {Crucial Needs, Weak Incentives: social sector reform, democratization and globalization in Latin American}, publisher = {Wilson Center Press}, year = 2004, editor = {Robert R. Kaufman and Joan M. Nelson}, address = {Washington} } @article{Lloyd-Sherlock00, author={Peter Lloyd-Sherlock}, title={Failing the needy: public social spending in Latin America}, journal={Journal of International Development}, year= 2000, pages={101-119}, volume= 12, month={July}, } @article{LonFre97, author={Juan Luis Londo\~no and Julio Frenk}, title={Structured Pluralism: towards an innovative model for health system reform in Latin American}, journal={Health Policy}, year=1997, pages={1-36}, volume= 41, month={July}, } @inbook{Lustig94, author={Nora Lustig}, title={Solidarity as a strategy of poverty alleviation}, year={1994}, publisher={Center for U.S.-Mexican Studies}, address={University of California, San Diego}, editor={Wayne Cornelius and Ann Craig and Jonathan Fox}, } @article{Prudhomme95, author={R\'emy Prud'homme}, title={The Dangers of Decentralization}, journal={The World Bank Research Observer}, year=1995, volume= 10, month={August}, pages={201-220}, number= 2, } @article{RawSheVan04, author = {Laura Rawlings and Lynne Sherburne-Benz and Julie Van Domelen}, title = {Evaluating Social Funds: A Cross Country analysis of Community Investments}, journal = {World Bank Regional and Sectoral Studies}, year = 2004, } @article{Shah97, author = {Anwar Shah}, title = {Fostering Responsive and Accountable Governance: Lessons from Decentralization Experience}, journapublisherl ={World Bank}, year = 1997, address = {Washington, DC}, annote = {{http://www1.worldbank.org/wbiep/decentralization/library3/shah.pdf}}, } @article{Smoke01, author = {Paul Smoke}, title = {Fiscal Decentralization in Developing Countries: A Review of Current Concepts and Practice}, journal = {Governance and Human Rights Programme Paper No. 2}, year = 2001, month = {February}, journapublisherl ={UNRISD}, address = {Geneva}, } @book{Snyder01, author={Richard Snyder}, title={Politics after neoliberalism}, publisher={Cambridge University Press}, address={Cambridge}, year=2001, } @book{Weyland04, title = {Learning From Foreign Models in Latin American Policy Reform}, editor = {Kurt Weyland}, publisher = {Woodrow Wilson Center Press}, year = 2004, address = {Washington DC}, } @book{Weyland96, author = {Kurt Weyland}, title = {Democracy Without Equity: failures of reform in Brazil}, address = {Pittsburgh}, publisher = {University of Pittsburgh Press}, year = 1996, } @unpublished{Wallach06, author={Hanna M. Wallach}, title={Topic Modeling: Beyond Bag-of-Words}, note={{http://www.icml2006.org/icml_documents/camera-ready/123_Topic_Modeling_Beyon.pdf}}, year= 2006, } @unpublished{WanMccWei07, author = {Xuerui Wang and Andrew MacCallum and Xing Wei}, title = {Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retreival}, note = {{http://www.cs.umass.edu/%7Exuerui/papers/ngram_tr.pdf}}, year = 2007, } @unpublished{GriSteBle04, author = {Thomas L. Griffiths and mark Steyvers and David M. Blei and Joshua B. Tenenbaum}, title = {Integrating Topics and Syntax}, note = {{http://books.nips.cc/papers/files/nips17/NIPS2004_0642.pdf}}, year = 2004, } @unpublished{ScoMat99, author = {Sam Scott and Stan Matwin}, title = {Feature Engineering for Text Classification}, note = {{http://www.ldv.uni-trier.de/ldvpage/naumann/textklassifikation/Textklassifikation/scott99feature.pdf}}, year = 1999, } @unpublished{Sabastiani02, author = {Fabrizio Sebastiani}, title = {Machine Learning in Automated Text Categorisation}, note = {{http://www.math.tau.ac.il/%7Eshimsh/Text_Domain/ACMCS00.pdf}}, year = 2002, } @unpublished{BekAll03, author = {Ron Bekkerman and James Allan}, title = {Using Bigrams in Text Categorization}, note = {{http://ciir.cs.umass.edu/pubfiles/ir-408.pdf}}, year = 2003, } @unpublished{MosBas04, author = {Alessandro Moschitti and Roberto Basili}, title = {Complex Linguistic Features for Text Classification:a comprehensive study}, note = {{http://dit.unitn.it/\~moschitt/articles/ECIR2004.pdf}}, year = 2004, } @article{Manor95, title = {{Democratic Decentralization in Africa and Asia}}, author = {Manor, J.}, journal = {IDS Bulletin}, volume = {26}, number = {2}, pages = {81--88}, year = {1995} } @article{BarMoo90, title = {{Capture and Governance at Local and National Levels}}, author = {Bardhan, P. and Mookherjee, D.}, journal = {The American Economic Review}, volume = {90}, number = {2}, pages = {135--139}, year = {2000} } @book{SavLevBir06, author = {William D. Savedoff and Ruth Levine and Nancy Birdsall}, title = {When Will We Ever Learn? Improving Lives Through Impact Evaluation}, publisher = {Center for Global Development}, year = 2006, note = {{http://www.cgdev.org/section/initiatives/\_active/evalgap}} } @article{GonGutSte06, title = {Priority setting for health interventions in Mexico's System of Social Protection in Health}, author = {Gonz{\'a}lez-Pier, E. and Guti{\'e}rrez-Delgado, C. and Stevens, G. and Barraza-Llor{\'e}ns, M. and Porras-Condey, R. and Carvalho, N. and Loncich, K. and Dias, R.H. and Kulkarni, S. and Casey, A. and others}, journal = {The Lancet}, volume = {368}, number = {9547}, pages = {1608--1618}, year = {2006}, publisher = {Elsevier} } @article{DonKla94, author = {Allan Donner and Neil Klar}, title = {Cluster Randomization Trials in Epidemiology: Theory and Application}, journal = {Journal of Statistical Planning and Inference}, volume = {42}, year = {1994}, pages = {37-56} } @article{BleLaf07, author = {David M. Blei and John D. Lafferty}, title = {A Correlated Topic Model of Science}, journal = {The Annals of Applied Statistics}, volume = {1}, year = {2007}, pages = {17-35}, number = {1} } @article{BleNgJor03, author = {David M. Blei and Andrew Y. Ng and Michael I. Jordan}, title = {Latent Dirichlet Allocation}, journal = {Journal of Machine Learning Research}, volume = {3}, year = {2003}, pages = {993-1022} } @inproceedings{GolZhu06, author = {Andrew B. Goldberg and Xiaojin Zhu}, title = {Seeing Stars When there aren't Many Stars: Graph Based Semi-Supervised Learning for Sentiment Categorization}, booktitle = {HLT-NAACL 2006 Workshop on Textgraphs: Graph-based Algorithms for Natural Language Processing}, year = {2006}, address = {New York, NY}, url = {{http://www.cs.wisc.edu/\~jerryzhu/pub/sslsa.pdf}} } @inproceedings{Turney02, author = {Peter Turney}, title = {Thumbs Up or thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews}, booktitle = {Proceedings of ACL-02, 40th Annual Meeting of the Assocation for Computational Linguistics}, year = {2002}, pages = {417-424}, address = {Philadelphia, US}, url = {{http://www.aclweb.org/anthology/P02-1053.pdf}} } @inproceedings{YuHat03, author = {Hong Yu and Vasileios Hatzivassiloglou}, title = {Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences}, booktitle = {Proceedings of EMNLP-03, 8th Conference on Empirical Methods in Natural Language Processing}, year = {2003}, editor = {Michael Collins and Mark Steedman}, pages = {129-136}, address = {Sapporo, JP}, url = {{http://www.aclweb.org/anthology/W03-1017.pdf}} } @inproceedings{PopEtz05, author = {Ana-Maria Popescu and Oren Etzioni}, title = {Extracting Product Features and Opinions from Reviews}, booktitle = {Proceedings of HLT-EMNLP-05, the Human Language Technology Conference / Conference on Empirical Methods in Natural Language Processing}, year = {2005}, pages = {339-346}, address = {Vancouver, CA}, url = {{http://www.acl.ldc.upenn.edu/H/H05/H05-1043.pdf}} } @inproceedings{BalPea94, author = {Alexander Balke and Judea Pearl}, title = {Counterfactual Probabilities: Computational Methods, Bounds and Applications}, booktitle = {Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI-94)}, year = {1994}, month = {July}, address = {Seattle, WA}, } @manual{Bates07, author = {Douglas Bates}, title = {lme4: Fit linear and generalized linear mixed-effects models}, year = {2007}, } @book{PinBat00, author = {Jose C. Pinheiro and Douglas M. Bates}, title = {Mixed-Effects Models in S and S-PLUS}, publisher = {Springer}, year = {2000}, address = {New York} } @BOOK{BoxJon04, AUTHOR = {Janet M. Box-Steffensmeier and Bradford S. Jones}, TITLE = {Event History Modeling: A Guide for Social Scientists}, PUBLISHER = {Cambridge University Press}, YEAR = {2004}, } @BOOK{Huber81, AUTHOR = {Peter J. Huber}, TITLE = {Robust Statistics}, PUBLISHER = {Wiley}, YEAR = {1981}, } @ARTICLE{White80, AUTHOR = {Halbert White}, TITLE = {A Heteroscedastic-Consistent Covariance Matrix Estimator and a Direct Test for Heteroscedasticity}, JOURNAL = {Econometrica}, YEAR = {1980}, volume = {48}, number = {4}, pages = {817--838}, } @BOOK{TheGra00, AUTHOR = {Terry M. Therneau and Patricia M. Grambsch}, TITLE = {Modeling Survival Data: Extending the Cox Model}, PUBLISHER = {Springer}, YEAR = {2000}, } @book{Schoenhoven72, author={Klaus Sch\"onhoven}, title={Die Bayerische Volkspartei 1924-1932}, publisher={Droste}, year= 1972, address={D\"usseldorf} } @article{Geiger30, author={Theodor Geiger}, title={Panik im Mittelstand}, journal={Die Arbeit}, year={1930}, pages={637-654}, number={10} } @article{Borchardt79, author = {Knut Borchardt}, title = {Zwangslagen und Handlungsspielr\"aume in der gro\ss{}en Wirtschaftskrise der fr\"uhen drei\ss{}iger Jahre: Zur Revision des \"uberlieferten Geschichtsbildes}, journal = {Jahrbuch der Bayerischen Akademie der Wissenschaften}, year = {1979}, pages = {87-132} } @book{Kruedener90, author = {J{\"u}rgen von Kruedener}, title = {Economic Crisis and Political Collapse: The Weimar Republic}, publisher = {Berg}, year = 1990, address = {Oxford} } @book{Barkai77, author = {Avraham Barkai}, title = {Das Wirtschaftssystem des Nationalsozialismus}, publisher = {Berend von Nottbeck}, year = 1977, address = {K\"oln} } @book{Lipset60, author = {Seymour Lipset}, title = {Political Man: The Social Bases of Politics}, publisher = {Johns Hopkins University Press}, address = {Baltimore}, year = 1960 } @article{Temin91, author = {Temin,Peter}, title = {Soviet and Nazi Planning in the 1930s}, journal = {Economic History Review}, year = {1991}, volume = {44}, pages = {573-593} } @article{Palyi41, author={Palyi, Melchior}, title={Economic Foundations of the German Totalitarian State}, journal={American Journal of Sociology}, volume= 46, year= 1941, pages={469-486}, number= 4 } @article{Abelshauser99, author={Abelshauser, Werner}, title={Kriegswirtschaft und Wirtschaftswunder}, journal={Vierteljahrshefte fuer Zeitgeschichte}, year={1999}, pages={503-38} } @book{Kretschmar33, author={Hans Kretschmar}, title={Deutsche Agrarprogramme der Nachkriegszeit}, publisher={Junker und D\"unnhaupt}, year= 1933, address={Berlin} } @book{Ruppert92, author={Karsten Ruppert}, title={Im Dienst am Staat von Weimar: Das Zentrum als regierende Partei in der Weimarer Demokratie 1923-1930}, publisher={Droste}, year= 1992, address={D\"usseldorf} } @article{BucSch06, title = {{The Role of Private Property in the Nazi Economy: The Case of Industry}}, author = {Christoph Buchheim and Jonas Scherner}, journal = {The Journal of Economic History}, volume = {66}, number = {02}, pages = {390--416}, year = {2006}, publisher = {Cambridge University Press} } @article{Hemmer35, title = {{Die unsichtbaren Arbeitslosen}}, author = {Hemmer, W.}, journal = {Statistische Methoden-Soziale Tatsachen. Zeulenroda: Bernhard Sporn, Buchdruckerei und Verlagsanstalt}, year = {1935} } @book{Plum72, author = {Plum, G\"unter}, title = {Gesellschaftsstruktur und politisches Bewusstsein in einer katholischen Region 1928-1933: Untersuchung am Beispiel des Regierungsbezirks Aachen}, publisher = {Deutsche Verlags-Anstalt}, year = 1972, address = {Stuttgart} } @Article{HerTre07, author = {Claudia Herrera and Jesus Trevi{\~n}o}, title = {Aplaza Calderón hasta 2030 la meta sobre un sistema universal de salud}, journal = {La Jornada}, year = 2007, month = {October 6} } @Article{Frenk05, author = {Julio Frenk}, title = {Sistema de Pr\'{o}teccion Social en Salud, Elementos conceptuales, financieros, y operativos}, journal = {Secretaria de Salud}, year = 2005, note = {Mexico City} } @InCollection{Ritschl92, author = {Albrecht Ritschl}, title = {Die Wirtschaftspolitik des Dritten Reichs: Ein {\"U}berblick}, booktitle = {Deutschland 1933-1945. Neue Studien zur nationalsozialistischen Herrschaft}, year = 1992, editor = {Karl-Dietrich Bracher and M. Funke and H.-A. Jacobsen}, address = {D\"{u}sseldorf}, publisher = {Droste} } @Book{James86, author = {Harold James}, title = {The German Slump: Politics and Economics, 1924-1936}, publisher = {Clarendon Press}, year = 1986, address = {Oxford} } @inbook{Brady04b, author={Henry E. Brady}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Doing Good and Doing Better: How Far Does the Quantitative Template Get Us?}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{Munck04, author={Gerardo L. Munck}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Tools for Qualitative Research}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{Rogowski04, author={Ronald Rogowski}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={How Inference in the Social (but Not the Physical) Sciences Neglects Theoretical Anomaly}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{Bartels04, author={Larry M. Bartels}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Some Unfulfilled Promises of Quantitative Imperialism}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{BraColSea04, author={Henry E. Brady and David Collier and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Refocusing the Discussion of Methodology}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{ColBraSea04, author={David Collier and Henry E. Brady and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Critiques, Responses, and Trade-Offs: Drawing Together the Debate}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{ColBraSea04b, author={David Collier and Henry E. Brady and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Sources of Leverage in Causal Inference: Toward an Alternative View of Methodology}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{ColMahSea04, author={David Collier and James Mahoney and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Claiming Too Much: Warnings about Selection Bias}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @article{Brady04, title = {Symposium: Two Paths to a Science of Politics}, author = {Henry E. Brady}, journal = {Perspectives on Politics}, volume = {2}, pages = {295--300}, year = {2004} } @article{Fischer98, title = {Beyond Empiricism: Policy Inquiry in Postpositivist Perspective}, author = {Frank Fischer}, journal = {Policy Studies Journal}, volume = {26}, number = {1}, pages = {129--146}, year = {1998} } @article{ClaGilGol06, title = {A Simple Multivariate Test for Asymmetric Hypotheses}, author = {William Roberts Clark and Mihcael J. Gilligan and Matt Golder}, journal = {Political Analysis}, volume = {14}, pages = {311--331}, year = {2006} } @article{Denrell03, title = {Vicarious Learning, Undersampling of Failure and the Myths of Management}, author = {Jerker Denrell}, journal = {Organization Science}, volume = {14}, number = {3}, pages = {227--243}, year = {2003} } @article{Wong02, title = {Did how we learn affect what we learn? Methodological bias, multimethod research and the case of econmic development}, author = {Wilson Wong}, journal = {The Social Science Journal}, volume = {39}, pages = {247--264}, year = {2002} } @article{Tilly01, title = {Mechanisms in Political Processes}, author = {Charles Tilly}, journal = {Annual Review of Political Science}, volume = {4}, pages = {21--41}, year = {2001} } @article{CarPan05, title = {TQCA: A Technique for Adding Temporality to Qualitative Comparative analysis}, author = {Neal Caren and Aaron Panofsky}, journal = {Sociological Methods Reseaarch}, volume = {34}, pages = {147}, year = {2005} } @article{Ebbinghaus05, title = {When Less is More: Selection Problems in a Large-N and Small-N Cross-National Comparisons}, author = {Bernhard Ebbinghaus}, journal = {International Sociology}, volume = {20}, number = {2}, Month = {June}, pages = {133--152}, year = {2005} } @article{Tarrow95, title = {Bridging the Quantitative-Qualitative Divide in Political Science}, author = {Sidney Tarrow}, journal = {American Political Science Review}, volume = {89}, number = {2}, Month = {June}, pages = {471--474}, year = {1995} } @article{Tickner05, title = {What Is Your Research Program? Some Feminist Answers to International Relations Methodological Questions}, author = {J. Ann Tickner}, journal = {International Studies Quarterly}, volume = {49}, pages = {1--21}, year = {2005} } @article{Ragin97, title = {Turning the Tables: How Case-Oriented Research Challenges Variable-Oriented Research}, author = {Charles C. Ragin}, journal = {Comparative Social Research}, volume = {16}, pages = {27--42}, year = {1997} } @article{Abelson01, author = {Julia Abelson}, title = {Understanding the Role of Contextual Influences on Local Healh-Care Decision Making: Case Study Results from Ontario, Canada}, journal = {Social Science & Medicine}, volume = {53}, year = {2001}, pages = {777--793} } @article{Achen05, author = {Christopher H. Achen}, title = {Two Cheers for Charles Ragin}, journal = {Studies in Comparative International Development}, volume = {40}, year = {2005}, pages = {27--32}, month = {Spring}, number = {1} } @article{Adler97, author = {Emanuel Adler}, title = {Seizing the Middle Ground: Constructivism in World Politics}, journal = {European Journal of International Relations}, volume = {3}, year = {1997}, pages = {319-363}, number = {3} } @article{Agrawal01, author = {Arun Agrawal}, title = {Common Property Institutions and Sustainable Governance of Resources}, journal = {World Development}, volume = {29}, year = {2001}, pages = {1649--1672}, number = {10} } @article{Agrawal03, author = {Arun Agrawal}, title = {Sustainable Governance of Common-Pool Resources: Context, Methods, and Politics}, journal = {Annual Review of Anthropology}, volume = {32}, year = {2003}, pages = {243--262} } @article{AmeHalYou99, author = {Edwin Amenta and Drew Halfmann and Michael P. Young}, title = {The Strategies and Contexts of Social Protest:Political Mediation and the Impact of the Townsend Movement in California}, journal = {Mobilization: An International Journal}, volume = {4}, year = {1999}, pages = {1--23}, number = {1} } @unpublished{Andersen03, author = {Svein S. Andersen}, title = {On a Cleary Day You Can See the EU. Case Study Methodology in EU Research}, note = {{http://www.arena.uio.no/publications/working-papers2003/papers/03_16.xml}}, year = 2003, } @unpublished{AndWet01, author = {Steinar Andresen and Joergen Wettestad}, title = {Case studies of the effectiveness of international environmental regimes: Balancing textbook ideals and feasibility concerns}, note = {{http://www.fni.no/doc&.pdf/rapp1901.pdf}}, year = {2001} } @article{AspSch00, author = {Mark D. Aspinwall and Gerald Schneider}, title = {Same Menu, Seperate Tables: The Institutionalist Turn in Political Science and the Study of European Integration}, journal = {European Journal of Political Research}, volume = {38}, year = {2000}, pages = {1--36} } @article{Bartle00, author = {John Bartle}, title = {Political Awareness, Opinion Constraining and the Stablility of Ideological Positions}, journal = {Political Studies}, volume = {48}, year = {2000}, pages = {467--484} } @article{Bartle03, author = {John Bartle}, title = {Partisanship, Performance and Personality: Competing and Complementary Characterizations of the 2001 British General Election}, journal = {Party Politics}, volume = {9}, year = {2003}, pages = {317--345}, number = {3} } @article{Beck06, author = {Nathaniel Beck}, title = {Causal Process ``Observation'': Oxymoron or Old Wine}, } @article{Bellin00, author = {Eva Bellin}, title = {Contingent Democrats: Industrialists, Labor, and Democratization in Late-Developing Countries}, journal = {World Politics}, volume = {52}, year = {2000}, pages = {175-205}, month = {January} } @article{BelMacTha01, author = {Duncan S.A. Bell and Paul K. MacDonald and Bradley A. Thayer}, title = {Start the Evolution Without Us}, journal = {International Security}, volume = {26}, year = {2001}, pages = {187--198}, month = {Summer}, number = {1} } @article{BerLebSte00, author = {Steven Bernstein and Richard Ned Lebow and Janice Gross Stein and Steven Weber}, title = {God Gave Physics the Easy Problems: Adapting Social Science to an Unpredictable World}, journal = {European Journal of International Relations}, volume = {6}, year = {2000}, pages = {43--76}, number = {1} } @article{Berman97, author = {Sheri Berman}, title = {Civil Society and the Collapse of the Weimar Republic}, journal = {World Politics}, volume = {49}, year = {1997}, pages = {401--429}, number = {3} } @article{BlaDob98, author = {Andr\'{e} Blais and Agnieszka Dobrznska}, title = {Turnout in electoral democracies}, journal = {European Journal of Political Research}, volume = {33}, year = {1998}, pages = {239--261}, number = {} } @article{BogCatKel00, author = {Laura M. Bogart and Sheryl L. Catz and Jeffrey A. Kelly and Michelle L. Gray-Bernhardt, and Barbara R. Hartmann and Laura L. Otto-Salaj and Kristin L. Hackl and Frederick R. Bloom}, title = {Psychosical Issues in the Era of New Aids Treatments from the Perspective of Persons Living with HIV}, journal = {2000}, volume = {5}, year = {2000}, pages = {500--516}, number = {4} } @article{Bostrom03, author = {Magnus Bostro{\''m}}, title = {How State-Dependent is a Non-State-Driven Rule-Making Project? The Case of Forest Certification in Sweden}, journal = {Journal of Envrionmental Policy & Planning}, volume = {5}, year = {2003}, pages = {165--180}, number = {2} } @article{Brady07, author = {Henry E. Brady}, title = {Using a Simple Model of Decision-Making to Select and Understand Cases} } @article{BraLanHal00, author = {Paul Brace and Laura Langer and Melinda Gann Hall}, title = {Measuring the Preferences of State Supreme Court Judges}, journal = {The Journal of Politics}, volume = {62}, year = {2000}, pages = {387--413}, month = {May}, number = {2} } @article{BraOhr99, author = {AnnP. Branch and Jakob C. Ohrgaard}, title = {Trapped in the Supranational-Intergovernmental Dichotomy: A Respone to Stone Sweet and Sandholtz}, journal = {Journal of European Public Policy}, volume = {6}, year = {1999}, pages = {123--143}, number = {1} } @unpublished{Braumoeller99, author = {Bear F. Braumoeller}, title = {Statistical Estimation in the Presence of Multiple Causal Paths}, note = {paper prepared of rhte annual meeting of the Midwest Political Science Association, Chicago, IL April 15-17, 1999.}, year = {1999} } @article{Braumoeller03, author = {Bear F. Braumoeller}, title = {Causal Complexity and the Study of Politics}, journal = {Political Analysis}, volume = {11}, year = {2003}, pages = {209-233} } @article{Brecher99, author = {Michael Brecher}, title = {International Studies in the Twentieth Century and Beyond: Flawed Dichotomies, Symthesis, Cumulation: ISA Presidential Address}, journal = {International Studies Quarterly}, volume = {43}, year = {1999}, pages = {213-264}, month = {June}, number = {2} } @article{BreKerPet03, author = {Mark D. Brewer and Rogan Kersh and R. Eric Petersen}, title = {Assessing Conventional Wisdom about Religion and Politics: A Preliminary View from the pews}, journal = {Journal for the Scientific Study of Religion}, volume = {42}, year = {2003}, pages = {125--136}, number = {} } @article{Burden05, author = {Barry C. Burden}, title = {Ralph Nader's Campaign Strategy in the 2000 U.S. Presidential Election}, journal = {American Politics Research}, volume = {33}, year = {2005}, pages = {672--699}, month = {September}, number = {5} } @article{Buthe02, author = {Tim B\''{u}the}, title = {Taking Temporality Seriously: Modeling History and the Use of Narratives as Evidence}, journal = {American Political Science Review}, volume = {96}, year = {2002}, pages = {481--493}, month = {September}, number = {3} } @article{CamLapRie00, author = {Charles Cameron and John S. Lapinski and Charles R. Riemann}, title = {Testing Formal Theories of Political Rhetoric}, journal = {The Journal of Politics}, volume = {62}, year = {2000}, pages = {187--205}, month = {February}, number = {1} } @article{Caporaso95, author = {James A. Caporaso}, title = {Review: Research Design, Falsification, and the Qualitative-Quantitative Divide}, journal = {American Political Science Review}, volume = {89}, year = {1995}, pages = {457--460}, month = {June}, number = {2} } @article{ChiRot03, author = {Fang-Yi Chiou and Lawrence S. Rothenberg}, title = {When Pivotal Politics Meets Partisan Politics}, journal = {American Journal of Political Science}, volume = {47}, year = {2003}, pages = {503--522}, month = {July}, number = {3} } @article{ClaGilGol06, author = {William Roberts Clark and Michael J. Gilligan and Matt Golder}, title = {A Simple Multivariate Test for Asymmetric Hypotheses}, journal = {Political Analysis}, volume = {14}, year = {2006}, pages = {311--331} } @article{Clarke05, author = {Kevin A. Clarke}, title = {The Phantom Menace: Omitted Variable Bias in Econometric Research}, journal = {Conflict management and Peace Science}, volume = {22}, year = {2005}, pages = {341--352}, number = {4} } @article{Collier95, author = {David Collier}, title = {Review: Translating Quantitative Methods for Qualitative Researchers: the Case of Selection Bias}, journal = {American Political Science Review}, volume = {89}, year = {1995}, pages = {461--466}, month = {June}, number = {2} } @article{Denrell03, author = {Jerker Denrell}, title = {Vicarious Learning, Undersampling of Failure, and the Myths of Management}, journal = {Organization Science}, volume = {14}, year = {2003}, pages = {227--243}, month = {May-June}, number = {3} } @article{DerBou04, author = {Mark de Rond and Hamid Bouchikhi}, title = {On the dialectics of Strategic Alliances}, journal = {Organization Science}, volume = {15}, year = {15}, pages = {56-69}, month = {January-February}, number = {1} } @article{DesFinHen00, author = {Laura Desimone and Matia Finn-Stevenson and Christopher Henrich}, title = {Whole School Reform in a Lowe-Income African American Community: The Effects of the CoZi Model on Teachers, Parents, and Students}, journal = {Urban Education}, volume = {35}, year = {2000}, pages = {269} } @article{DeSoysa02, author = {Indra de Soysa}, title = {Ecoviolence: Shrinking Pie, or Honey Pot?}, journal = {Global Environmental Politics}, volume = {2}, year = {2002}, pages = {1--34}, month = {November}, number = {4} } @article{DeSoysa02b, author = {Indra De Soysa}, title = {Paradise Is a Bazaar? Greed, Creed and Governance in Civil War, 1989-99}, journal = {Journal of Pece Research}, volume = {39}, year = {2002}, pages = {395--416}, number = {4} } @article{DicLev99, author = {Jonathan M. Dicicco and Jack S. Levy}, title = {Power Shifts and Problem Shifts}, journal = {Journal of Conflict Resolution}, volume = {43}, year = {1999}, pages = {675--704}, month = {December}, number = {6} } @article{Dorussen01, author = {Han Dorussen}, title = {Mixing Carrots with Sticks: Evaluating the Effectiveness of Positive Incentives}, journal = {Journal of Peace Research}, volume = {38}, year = {2001}, pages = {251--262}, number = {2} } @article{Dowding01, author = {Keith Dowding}, title = {There Must Be End to Confusion: Policy Networks, Intellectual Fatigue, and the Need for Political Science Methods Courses in British Universities}, journal = {Political Studies}, volume = {49}, year = {2001}, pages = {89--105} } @article{Druckman04, author = {James N. Druckman}, title = {Political Preference Formation: Competition, Deliberation, and the (Ir)relevance of Framing Effects}, journal = {American Political Science Review}, volume = {98}, year = {2004}, pages = {671--686}, month = {November}, number = {4} } @article{Elgie04, author = {Robert Elgie}, title = {Semi-Presidentialism: Concepts, Consequences and contesting Explanations}, journal = {Political Studies Review}, volume = {2}, year = {2004}, pages = {314--330} } @article{ElmElm02, author = {Colin Elman and Miriam Fendius Elman}, title = {How Not to Be Lakatos Intolerant: Appraising Progress in IR Research}, journal = {International Studies Quarterly}, volume = {46}, year = {2002}, pages = {231--262} } @article{BerLor99, author = {Bernard I. Finel and Kristin M. Lord}, title = {The Surprising Logic of Transparency}, journal = {International Studies Quarterly}, volume = {43}, year = {1999}, pages = {315--339}, month = {June}, number = {June} } @article{Forster98, author = {Anthony Forster}, title = {Britain and the Negotiation of the Maastricht Treaty: A Critique of Liberal Intergovernmentalism}, journal = {Journal of Common Market Studies}, volume = {36}, year = {1998}, pages = {347--368}, month = {September}, number = {3} } @article{Fricke03, author = {Tom Fricke}, title = {Culture and Causality: An Anthropological Comment}, journal = {Population and Development Review}, volume = {29}, year = {2003}, pages = {470--479}, month = {September}, number = {3} } @article{From02, author = {Johan From}, title = {Decision-making in a complex envrironment: A sociological institutionalist analysis of competition policy decision-making in the European Commission}, journal = {Journal of European Public Policy}, volume = {9}, year = {2002}, pages = {219--237}, number = {2} } @article{Galaz05, author = {Victor Galaz}, title = {Social-ecological Resilience and Social Conflict: Institutions and Strategic Adaptation in Swedish Water Management}, journal = {Ambio}, volume = {34}, year = {2005}, pages = {567--572}, month = {November}, number = {7} } @Article{MadHofKup07, author = {Temina Madon and Karen J. Hofman and Linda Kupfer and Roger I. Glass}, title = {Implementation Science}, journal = {Science}, year = {2007}, volume = {318}, pages = {1728--1729}, month = {14 December} } @Article{Steele05, author = {J. Michael Steele}, title = {Darrell Huff and Fifty Years of \emph{How to Lie With Statistics}}, journal = {Statistical Science}, year = 2005, volume = 20, number = 3, pages = {205-209} } @book{Huff54, title = {{How to Lie With Statistics}}, author = {Darrell Huff}, year = {1954}, address = {New York}, publisher = {WW Norton \& Company} } @article{HeiRub91, title = {{Ignorability and Coarse Data}}, author = {Heitjan, D.F. and Rubin, D.B.}, journal = {The Annals of Statistics}, volume = {19}, number = {4}, pages = {2244--2253}, year = {1991} } @Article{Izenman91, author = {Alan Julian Izenman}, title = {Recent developments in nonparametric density estimation}, journal = {Journal of the American Statistical Association}, year = 1991, volume = 86, number = 413, pages = {205--224} } @article{Gartzke99, title = {War is in the Error Term}, author = {Erik Gartzke}, journal = {International Organization}, volume = {53}, year = {1999}, pages = {567--587}, month = {Summer}, number = {3} } @article{GauLie04, author = {Varun Gauri and Evan S. Lieberman}, title = {Institutions, Social Boundaries, and Epidemics: Explaining Goverment AIDS Policies in Brazil and South Africa} } @article{GelGri01, author = {Christopher Gelpi and Joseph M. Grieco}, title = {Democracy, Leadership Tenure, and the Targeting of Militarized challenges, 1918-1992}, journal = {Journal of Conflict Resolution}, volume = {45}, year = {2001}, pages = {794--817}, month = {December}, number = {6} } @article{GerBar03, author = {John Gerring and Paul A. Barresi}, title = {Putting Ordinary Language to Work: A Min-Max Strategy of Concept Formation in the Social Sciences}, journal = {Journal of Theoretical Politics}, volume = {15}, year = {2003}, pages = {201--232}, number = {2} } @article{GerGreKap03, author = {Alan S. Gerber and Donald P. Green and Edward H. Kaplan}, title = {The Illusion of Learning from Observational Research}, year = {2003} } @article{GerMcD07, author = {John Gerring and Rose McDermott}, title = {An Experimental Template for case Study Research}, journal = {American Journal of Political Science}, volume = {51}, year = {2007}, pages = {688--701}, month = {July}, number = {3} } @article{Gerring04, author = {John Gerring}, title = {What Is a Case Study and What Is It Good for?}, journal = {American Political Science Review}, volume = {98}, year = {2004}, pages = {341--354}, month = {May}, number = {2} } @article{Gerring05, author = {John Gerring}, title = {A unified Framework for The Social Sciences}, journal = {Journal of Theoretical Politics}, volume = {17}, year = {2005}, pages = {163--198}, number = {2} } @article{Gilardi01, author = {Fabrizio Gilardi}, title = {Policy Credibility and Delegation of Regulatory Competencies or Independent Agencies: A Comparative Empirical Consideration}, year = {2001} } @article{Gilardi02, author = {Fabrizio Gilardi}, title = {Policy Credibility and Delegation to Independent Regulatory Agencies: A Comparative Empirical Analysis}, journal = {Journal of European Public Policy}, volume = {9}, year = {2002}, pages = {873--893}, month = {December}, number = {6} } @article{Glaser02, author = {Barney G. Glaser}, title = {Conceptualization: On Theory and Theorizing Using Grounded theory}, journal = {International Journal of Qualitative Methods}, volume = {1}, year = {2002}, note = {{Article 3 from http://www.ualberta.ca/~ijqm/}}, month = {Spring}, number = {2} } @article{GoeLev05, author = {Gary Goertz and Jack S. Levy}, title = {Causal Explanations, Necessary Conditions, and Case Studies: World War I and the End of the Cold War} } @article{Goerzen05, author = {Anthony Goerzen}, title = {Managing Alliance Networks: Emerging Practices of Multinational Corporations}, journal = {Academy of management Executive}, volume = {19}, year = {20}, pages = {94--107}, number = {2} } @article{Golder03, author = {Matt Golder}, title = {Explaining Variation in the Success of Extreme Right Parties in Western Europe}, journal = {Comparative Political Studies}, volume = {36}, year = {2003}, pages = {432--466}, month = {May}, number = {4} } @article{Grendstad99, author = {Gunnar Grendstad}, title = {A Political Cultural Map of Europe. A Survey Approach}, journal = {GeoJournal}, volume = {47}, year = {20}, pages = {463--475} } @article{Grigorian05, author = {Arman Grigorian}, title = {Third-Party Intervention and Escalation in Kosovo: Does Moral Hazard Explain it?}, journal = {Ethnopolitics}, volume = {4}, year = {2005}, pages = {195--213}, number = {2} } @article{Guzzini01, author = {Stefano Guzzini}, title = {The Significance and Roles of Teaching Theory in International Relations}, journal = {Journal of International Relations and Development}, volume = {4}, year = {2001}, pages = {98--117}, number = {2} } @article{Gwako97, author = {Edwins Laban Moogi Gwako}, title = {Conjugal Power in Rural Kenya Families: Its Influence on Women's Decsions About Family Size and Family Planning Practices}, journal = {Sex Roles}, volume = {36}, year = {1997}, pages = {127--147}, month = {February}, number = {3/4} } @article{Hansen98, author = {Kenneth N. Hansen}, title = {Identifying Facets of Democratic Administration: The Empirical Referents of Discourse}, journal = {Administration & Society}, volume = {30}, year = {1998}, pages = {443--461}, month = {September}, number = {4} } @article{Harcourt00, author = {Bernard E. Harcourt}, title = {After the "Social Meaning Turn": Implications for Research Design and methods of Proof in Contemporary Criminal Law Policy Analysis}, journal = {Law & Society Review}, volume = {34}, year = {20}, pages = {179--211}, number = {1} } @article{Haverland03, author = {Markus Haverland}, title = {Methodological Issues in Europeanisation Research: the `No Variation' problem}, note = {prepared for preentation the section 'Europeanisation: Challengs of a New Research Agenda', panl `Europeanisation: Concepts and Methods', ECPR Conference, Marburg, 18-21 September, 2003}, year = {2003}, pages = {}, month = {September} } @article{Haverland06, author = {Markus Haverland}, title = {Does the EU Cause Domestic Developments? Improving Case Selection in Europeanisation Research}, journal = {West European Politics}, volume = {29}, year = {2006}, pages = {134--146}, month = {January}, number = {1} } @article{Hawkins04, author = {Darren Hawkins}, title = {Explaining Costly International Institutions: Persuasion and Enforceable Human Rights Norms}, journal = {International Studies Quarterly}, volume = {48}, year = {2004}, pages = {779--804} } @article{Hay04, author = {Colin Hay}, title = {Theory, Stylized Heuristic or Self-Fulfilling Prophecy? The Status of Rational Choice Theory in Public Administration}, journal = {Public Administration}, volume = {82}, year = {2004}, pages = {39--62}, number = {1} } @article{HelHer01, author = {Gunther Hellmann and Benjamin Herborth}, title = {Democratic Peace and Militarized Interstate Disputes in the Transatlantic Community}, note = {Paper prepared for presentation at the 42. Annual Convention of the International Studies Assocation in Chicago, 21\-25 February 2001}, year = {2001} } @article{HelMul03, author = {Gunther Hellmann and Harald M\"{u}ller}, title = {Editing (I)nternational (R)elations: A Changing World}, journal = {Journal of International Relations and Development}, volume = {6}, year = {2003}, pages = {372--389}, month = {December}, number = {4} } @article{HesLea97, author = {Frederick M. Hess and David L. Leal}, title = {Minority Teachers, Minority Students, and College Matriculation: A New Look at the Role-Modeling Hypothesis}, journal = {Policy Studies Journal}, volume = {25}, year = {1997}, pages = {235-248}, number = {2} } @article{HesLea99, author = {Frederick M. Hess and David L. Leal}, title = {Computer-Assisted Learning in Urban Classrooms:The Impact of Politics, Race, and Class}, journal = {Urban Education}, volume = {34}, year = {1999}, pages = {370} } @article{Hess99, author = {Frederick M. Hess}, title = {A Political Explanation of Policy Selection: The Case of Urban School Reform}, journal = {Policy Studies Journal}, volume = {27}, pages = {459--473}, number = {3} } @article{Hite03, author = {Julie M. Hite}, title = {Patterns of Multidimensionality Among Embedded Network Ties: A Typology of Relational Embeddedness in Emerging Entrepreneurial Firms}, journal = {Strategic Organization}, volume = {1}, year = {2003}, pages = {9--49}, number = {1} } @article{Hite05, author = {Julie M. Hite}, title = {Evolutionary Processes and Paths of Relationally Embedded Network Ties in Emerging Entrepreneurial Firms}, journal = {Entrepreneurship, Theory \& Practice}, volume = {29}, year = {2005}, pages = {113--144}, month = {January}, number = {1} } @article{HodHar03, author = {Matthew Hoddie and Caroline Hartzell}, title = {Civil War Settlements and the Implementation of Military Power-Sharing Arrangements}, journal = {Journal Of Peace Research}, volume = {40}, year = {2003}, pages = {303-320}, number = {3} } @article{HofOca01, author = {Andrew J. Hoffman and William Ocasio}, title = {Not All Events Are Attended Equally: Toward a Middle-Range Theory of Industry Attention to External Events}, journal = {Organization Science}, volume = {12}, year = {2001}, pages = {414--434}, month = {July-August}, number = {4} } @article{Hooghe97, author = {Liesbet Hooghe}, title = {Serving `Europe' - Political Orientations of Senior Commission Officials}, journal = {European Integration Online Papers}, volume = {1}, year = {1997}, note = {{http://eiop.or.at/eiop/texte/1997-008a.htm}}, month = {April}, number = {8} } @article{HowPerVil04, author = {Susan E. Howell and Huey L. Perry and Matthew vile}, title = {Black Cities / White Cities: Evaluating the Police}, journal = {Political Behavior}, volume = {26}, year = {2004}, pages = {45--68}, month = {March}, number = {1} } @article{JacLan04, author = {Karen Jacobsen and Loren B. Landau}, title = {The Dual Imperative in Refugee Research: Some Methodological and Ethical Considerations in Social Science Research on Forced Migration}, journal = {Disasters}, volume = {27}, year = {2003}, pages = {185--206}, number = {3} } @article{JacPhaSwy04, author = {Dirk Jacobs and Karen Phalet and Marc Swyngedouw}, title = {Associational Membership and Political Involvement Among Ethnic Minority Groups in Brussels}, journal = {Journal of Ethnic and Migration Studies}, volume = {30}, year = {2004}, pages = {543--559}, number = {3} } @article{JacTil04, author = {Dirk Jacobs and Jean Tillie}, title = {Introduction: Social Capital and Political Integration of Migrants}, journal = {Journal of Ethnic and Migration Studies}, volume = {30}, year = {2004}, pages = {419--427}, number = {3} } @article{Johnson04, author = {Craig Johnson}, title = {Uncommon Ground: The `Poverty of History' in common Property Discourse}, journal = {Development and Change}, volume = {35}, year = {2004}, pages = {407--433}, number = {3} } @article{JonSte97, author = {Bradford S. Jones and Marco R. Steenbergen}, title = {Modeling Multilevel Data Structures}, year = {1997}, note = {Annual Meetings of the Political Methodology Society} } @article{KaaBea99, author = {Juliet Kaarbo and Ryan K. Beasley}, title = {A Practical Guide to the Comparative Case Study Method in Political Psychology}, journal = {Political Psychology}, volume = {20}, year = {1999}, pages = {369--391}, number = {2} } @article{KatVomMah05, author = {Aaron Katz and Matthias vom Hau and James Mahoney}, title = {Explaining the Great Reversal in Spanish America: Fuzzy-Set Analysis Versus Regression Analysis}, journal = {Sociological Methods Research}, volume = {33}, year = {2005}, pages = {539--573} } @Book{Kenneally07, author = {Christine Kenneally}, title = {The First Word: The Search for the Origins of Language}, publisher = {Viking}, year = 2007, address = {New York} } @book{Coombs65, title = {A Theory of Data}, author = {C.H. Coombs}, year = {1965}, address = {New York}, publisher = {Wiley} } @article{CEFP06, author = {Centro de Estudios de las Finanzas P{\'u}blicas, C{\'a}mara de Diputados}, title = {Gasto en el Sector Salud}, journal = {Nota Informativa}, volume = {64}, month = {September}, year = {2006}, } @Book{Ayres07, author = {Ian Ayres}, title = {Supercrunchers}, publisher = {Random House}, year = 2007, address = {New York} } @Article{Ross06b, author = {Philip E. Ross}, title = {The Expert Mind}, journal = {Scientific American}, year = {2006}, month = {August}, note = {{http://www.sciam.com/article.cfm?id=the-expert-mind}} } @article{RubTho92, author = {Donald B. Rubin and Neal Thomas}, title = {Affinely Invariant Matching methods with Ellipsoidal Distributions}, journal = {Annals of Statistics}, volume = {20}, number = {2}, year = {1992}, pages = {1079-1093} } @article{Rubin76b, author = {Donald B. Rubin}, title = {Multivariate Matching Methods that are Equally Percent Bias Reducing, II: Maximums on Bias Reduction for Fixed Sampled Sizes}, journal = {Biometrics}, volume = {32}, year = {1976}, pages = {121-132}, } @book{RosRub02, author = {P.R. Rosenbaum and Donald B. Rubin}, title = {Observational Studies}, Publisher = {Springer}, year = {2002}, address = {New York} } @article{RacineLi09, author = {J.S. Racine and Q. Li}, title = {Efficient Estimation of Average Treatment Effects With Mixed Categorical and Continuous Data}, journal = {Journal of Business and Economic Statistics}, volume = {27}, number = {2}, year = {2009}, pages = {203-223} } @article{Popoviciu35, author = {T. Popoviciu}, title = {Sur Les \'Equations Alg\'ebriques Ayant Toutes Leurs Racines R\'eelles}, journal = {Mathematica}, volume = {9}, year = {1935}, pages = {129-145} } @article{Rubin76c, title = {{Multivariate Matching Methods That are Equal Percent Bias Reducing, I: Some Examples}}, author = {Donald B. Rubin}, journal = {Biometrics}, volume = {32}, number = {1}, pages = {109--120}, year = {1976} } @InCollection{Coleridge1789, author = {Samuel Taylor Coleridge}, title = {The Rime of the Ancyent Marinere}, booktitle = {Lyrical Ballads}, publisher = {Routledge}, year = {1789 (1991)}, editor = {W. Wordsworth and S. T. Coleridge}, address = {London} } @book{MieBer07, title = {{Permutation Methods: A Distance Function Approach}}, author = {Mielke, P.W. and Berry, K.J.}, year = {2007}, address = {New York}, publisher = {Springer} } @Article{ShiShi07, author = {H. Shimazaki and S. Shinomoto}, title = {A Method for Selecting the Bin Size of a Time Histogram}, journal = {Neural Computation}, year = 2007, volume = 19, number = 6, pages = {1503--1527} } @inbook{Ragin04, author = {Charles C. Ragin}, title = {Rethinking Social Inquiry}, chapter = {Turning the Tables: How Case-Oriented Research CHallenges Variable Oriented Research}, year = {2004}, publisher = {Rowman and Littlefield Publishers, Inc.}, address = {Lanham, MD}, editor = {Henry E. Brady and David Collier} } @unpublished{Ragin07, author = {Charles C. Ragin}, title = {Qualitative Comparative Analysis and Fuzzy Sets}, note = {Presented for the American Political Science Assocation conference, Chicago}, year = {2007} } @article{BatChe04, title = {{The Impact of Measurement Error on Evaluation Methods Based on Strong Ignorability}}, author = {Battistin, E. and Chesher, A.}, journal = {Institute for Fiscal Studies, London}, year = {2004} } @book{Agresti90, title = {{Categorical data analysis}}, author = {Agresti, A.}, year = {1990}, address = {New York}, publisher = {John Wiley \& Sons, Inc.} } @book{Scott92, title = {{Multivariate density estimation. Theory, practice and visualization}}, author = {Scott, D.W.}, year = {1992}, address = {New York}, publisher = {John Wiley \& Sons, Inc.} } @article{FDiac81, title = {{On the histogram as a density estimator: $L_2$ theory}}, author = {Freedman, D. and Diaconis, P.}, journal = {Probability Theory and Related Fields}, year = {1981}, volume = {57}, pages = {453-476} } @article{FreDue07, title = {Clustering by Passing Messages Between Data Points}, author = {BJ Frey and D Dueck}, journal = {Science}, volume = {315}, number = {5814}, pages = {972}, year = {2007} } @Article{Ruben02, author = {Harold Ruben}, title = {A simple conservative and robust solution of the Behrens-Fisher problem}, journal = {Sankhya}, year = {2002}, volume = {64}, number = {1}, pages = {139--155} } @Article{FawChaHer93, author = {WW Fawzi and TC Chalmers and MG Herrera and F Mosteller}, title = {Vitamin A Supplementation and Child Mortality}, journal = {Journal of the American Medical Association}, year = {1993}, volume = {269}, number = {7}, pages = {898--903} } @Article{LavDurKoc05, author = {LM LaVange and TA Durham and GG Koch}, title = {Randomization-based Nonparametric Methods for the Analysis of Multicentre Trials}, journal = {Statistical Methods in Medical Research}, year = {2005}, volume = {14}, number = {3}, pages = {281--301} } @Article{Little04, author = {RJ Little}, title = {To Model or Not to Model? Competing Modes of Inference for Finite Population Sampling}, journal = {Journal of the American Statistical Assocation}, year = {2004}, volume = {99}, pages = {546--556} } @Article{LitRub00, author = {RJ Little and DB Rubin}, title = {Causal Effects in Clinical and Epidemiological Studies Via Potential Outcomes: Concepts and Analytical Approaches}, journal = {Annual Review of Public Health}, year = {2000}, volume = {21}, pages = {121--145} } @Article{MalGre02, author = {G Maldanado and S Greenland}, title = {Estimating Causal Effects}, journal = {International Journal of Epidemiology}, year = {2002}, volume = {31}, pages = {422--429} } @Article{DasNewVel03, author = {Mitali Das and Whitney K. Newey and Francis Vella}, title = {Nonparametric Estimation of Sample Selection Models}, journal = {Review of Economic Studies}, year = {2003}, volume = {70}, pages = {33--58} } @Article{AbaDruHer01, author = {Alberto Abadie and David Drukker and Jane Leber Herr and Guido W. Imbens}, title = {Implementing Matching Estimators for Average Treatment Effects in Stata}, journal = {The Stata Journal}, year = {2004}, volume = {4}, number = {3}, pages = {290--311} } @Article{DunAuMil03, author = {Joel Dunning and JKK Au and RWJ Millner and AJ Levine}, title = {Derivation and Validation of a Clinical Scoring System to Predict the Need for an Intra-Aortic Balloon Pump in Patients Undergoing Adult Cardiac Surgery}, journal = {Interactive Cardiovascular and Thoracic Surgery}, year = {203}, volume = {2}, pages = {639--643} } @Article{Rubin90, author = {DB Rubin}, title = {On the Applicaiton of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9. Comment: Neyman (1923) and Causal Inference in Experiments and Observational Studies}, journal = {Statistical Science}, year = {1990}, volume = {5}, number = {4}, pages = {472--480} } @book{HasTibFri01, title = {{The Elements of Statistical Learning: Data Mining, Inference, and Prediction}}, author = {Trevor Hastie and Robert Tibshirani and Jerome Friedman}, year = {2001}, address = {New York}, publisher = {Springer} } @book{HasTibFri09, title = {{The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Ed}}, author = {Trevor Hastie and Robert Tibshirani and Jerome Friedman}, year = {2009}, address = {New York}, publisher = {Springer} } @Article{WesMukCha00, title = {{Feature selection for SVMs}}, author = {J. Weston and S. Mukherjee and O. Chapelle and M. Pontil and T. Poggio and V. Vapnik}, journal = {Advances in Neural Information Processing Systems}, volume = {13}, pages = {668--674}, year = {2000} } @Article{HsuChaLin03, title = {A practical guide to support vector classification}, author = {C.W. Hsu and C.C. Chang and C.J. Lin}, journal = {National Taiwan University, Technical Report, July}, year = {2003} } @Article{BraGroMil02, title = {Feature Selection Using Linear Support Vector Machines}, author = {Janez Brank and Marko Grobelnik and Natasa Milic-Frayling and Dunja Mladenic}, journal = {Microsoft Research, Technical Report}, year = {2002} } @Article{HilPurWil08, title = {{Computer Assisted Topic Classification for Mixed Methods Social Science Research}}, author = {Dustin Hillard and Stephen Purpura and John Wilkerson}, journal = {Journal of Information Technology and Politics}, year = {2008}, volume = {4}, number = {4} } @Incollection{Joachims98, author = {Thorsten Joachims}, editor = {Claire N\'{e}dellec and C\'{e}line Rouvierol}, booktitle = {Machine Learning ECML-98}, title = {Text Categorization with Support Vector Machines: Learning with Many Relevant Features}, publisher = {Springer}, year = 1998, volume = 1398, pages = {127--142} } @article{AnaAlkLav08, title = {The Role of Fish Oil in Arrhythmia Prevention}, author = {Rishi G. Anand and Mohi Alkadri and Carl J. Lavie and Richard V. Milani}, journal = {Journal of Cardiopulmonary Rehabilitation and Prevention}, year = {2008}, volume = {28}, pages = {92--98} } @article{RosRosSil07, title = {{Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer}}, author = {Rosenbaum, P.R. and Ross, R.N. and Silber, J.H.}, journal = {Journal of the American Statistical Association}, volume = {102}, number = {477}, pages = {75--83}, year = {2007} } @article{AbaGar03, title = {{The Economic Costs of Conflict: A Case Study of the Basque Country}}, author = {Abadie, A. and Gardeazabal, J.}, journal = {American Economic Review}, volume = {93}, number = {1}, pages = {113--132}, year = {2003} } @Article{IacPor08b, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Invariant and Metric Free Proximities for Data Matching: An R Package}, journal = {Journal of Statistical Software}, year = 2008, volume = 25, number = 11, pages = {1--22} } @Article{IacPor07, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Missing data imputation, matching and other applications of random recursive partitioning}, journal = {Computational Statistics and Data Analysis}, year = 2007, volume = 52, number = 2, pages = {773--789} } @article{StuGre08, title = {Using Full Matching to Estimate Causal Effects in Nonexperimental Studies: Examining the Relationship Between Adolescent Marijuana Use and Adult Outcomes}, author = {Elizabeth A. Stuart and Kerry M. Green}, journal = {Developmental Psychology}, volume = {44}, number = {2}, pages = {395--406}, year = {2008} } @PhdThesis{Moore08, author = {Ryan T. Moore}, title = {Political Analysis and Statistical Applications for Social Policy Research}, school = {Harvard University}, year = {2008}, OPTaddress = {}, month = {May}, } @Article{Moore08b, author = {Ryan T. Moore}, title = {blockTools: Blocking, Assignment, and Diagnosing Interference in Randomized Experiments}, journal = { }, year = {2008}, note = {{http://www.people.fas.harvard.edu/$\sim$rtmoore/software.blockTools.htm}} } @Incollection{NigOroOla03, author = {Gustavo Nigenda and Emanuel Orozco and Gustavo Olaiz}, editor = {Felicia Knaul and Gustavo Nigenda}, booktitle = {Caleidoscopia de la Salud}, title = {La Importancia de los Medicamentos en la Operacion del Seguro Popular de Salud}, publisher = {Funsalud}, pages = {263-273}, year = {2003} } @article{ImaVan04, title = {{Causal inference with general treatment regimes: Generalizing the propensity score}}, author = {Imai, K. and van Dyk, D.A.}, journal = {Journal of the American Statistical Association}, volume = {99}, number = {467}, pages = {854--866}, year = {2004} } @Book{MorWin07, author = {Stephen L. Morgan and Christopher Winship}, title = {Counterfactuals and Causal Inference: Methods and Principles for Social Research}, publisher = {Cambridge University Press}, year = 2007, address = {Cambridge} } @Article{AbaImb07, author = {Alberto Abadie and Guido W. Imbens}, title = {Bias-Corrected Matching Estimators for Average Treatment Effects}, journal = { }, year = {2007}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, note = {{http://ksghome.harvard.edu/~aabadie/research.html}}, OPTannote = {} } @Book{Jevons1874, author = {W. Stanley Jevons}, title = {The Principles of Science: A Treatise on Logic and the Scientific Method}, publisher = {MacMillen and Co.}, year = 1874, address = {New York} } @Book{Twain1883, author = {Mark Twain}, title = {Life on the Mississippi}, publisher = {Chatto and Windus}, year = 1883, address = {London} } @Article{SamMic08, author = {Nicholas Sambanis and Alexander Michaelides}, title = {A Comment on Diagnostic Tools for Counterfactual Inference}, journal = {Political Analysis}, year = {2008}, OPTkey = {}, OPTvolume = {17}, OPTnumber = {1}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{McAfee02, author = {R. Preston McAfee}, title = {Coarse Matching}, journal = {Econometrica}, year = {2002}, volume = {70}, number = {5}, pages = {2025-2034} } @Article{Mielke85, author = {Paul W. Mielke Jr.}, title = {Geometric Concerns Pertaining to Applications of Statistical Tests in the Atmospheric Sciences}, journal = {Journal of the Atmospheric Sciences}, year = {1985}, volume = {42}, number = {12}, pages = {1209-1212} } @Book{Greene08, author = {William H. Greene}, title = {Econometric Analysis, 6th Edn.}, publisher = {Prentice Hall}, year = 2008, address = {New York} } @Article{LeeMil02, author = {Ronald Lee and Timothy Miller}, title = {An Approach to Forecasting Health Expenditures, with Application to the U.S. Medicare System}, journal = {Health Services Research}, year = {2002}, volume = {37}, number = {5}, pages = {1365-1386} } @Article{LubBeeBak95, author = {James Lubitz and James Beebe and Colin Baker}, title = {New England Journal of Medicine}, journal = {Longevity and Medicare Expenditures}, year = {1995}, volume = {332}, number = {15}, pages = {999-1003} } @Article{McKusick99, author = {David McKusick}, title = {Demographic Issues in Medicare Reform:Birthrates, Death Rates, and an Aging Population all Affect Medicare's Financing}, journal = {Health Affairs}, year = {1999}, volume = {18}, number = {1}, pages = {194-207} } @Article{Miller01, author = {Tim Miller}, title = {Increasing Longevity and Medicare Expenditures}, journal = {Demography}, year = {2001}, volume = {38}, number = {2}, pages = {215-226} } @unpublished{Caldis08, author = {Todd G. Caldis}, title = {The Long-Term Projection Assumptions for Medicare and Aggregate national health Expenditures}, note = {{http://www.cms.hhs.gov/ReportsTrustFunds/downloads/projectionmethodology.pdf}}, year = {2008} } @Article{Hansen08, author = {Ben Hansen}, title = {The Prognostic Analogy of the Propensity Score}, journal = {Biometrika}, year = 2008, volume = 95, number = 2, pages = {481--488} } @unpublished{GalSmiBla08, author = {Jose Galdo and Jeffrey Smith and Dan Black}, title = {Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data}, note = {University of Michigan}, year = {2008} } @Article{Pronin08, author = {Emily Pronin}, title = {How We See Ourselves and How We See Others}, journal = {Science}, year = 2008, volume = 320, pages = {1170--1180} } @article{GraSci04, title = {{Puzzles, Proverbs, and Omega Matrices: The Scientific and Social Significance of Empirical Implications of Theoretical Models (EITM)}}, author = {Granato, Jim and Scioli, Frank}, journal = {Perspectives on Politics}, volume = {2}, number = {02}, pages = {313--323}, year = {2004}, publisher = {Cambridge Univ Press} } @book{GeoBen05, title = {{Case Studies and Theory Development in the Social Sciences}}, author = {George, A.L. and Bennett, A.}, year = {2005}, publisher = {Mit Press} } @article{MarQuiRug04, title = {{Competing Approaches to Predicting Supreme Court Decision Making}}, author = {Martin, A.D. and Quinn, K.M. and Ruger, T.W. and Kim, P.T.}, journal = {Perspectives on Politics}, volume = {2}, number = {04}, pages = {761--767}, year = {2004} } @Article{Grove05, author = {William M. Grove}, title = {Clinical Versus Statistical Prediction: The Contribution of Paul E. Meehl}, journal = {Journal of Clinical Psychology}, year = 2005, volume = 61, number = 10, pages = {1233--1243} } @proceedings{DjeSmi08, title = {Heterogeneous Impacts in PROGRESA}, address = {Bonn, Germany}, author = {Habiba Djebbari and Jeffrey Smith}, organization = {IZA}, year = {2008} } @Book{Meehl54, author = {Paul E. Meehl}, title = {Clinical Versus Statistical Prediction: A Theoretical Analysis and a Review of the Evidence}, publisher = {University of Minnesota Press}, year = 1954, address = {Minneapolis} } @Book{Rosenstone83, title = {Forecasting Presidential Elections}, author = {S.J. Rosenstone}, year = {1983}, publisher = {Yale University Press New Haven} } @Article{AdcCol01, author = {Robert Adcock and David Collier}, title = {Measurement Validity: A Shared Standard for Qualitative and Quantitative Research}, journal = {American Political Science Review}, year = {2001}, volume = {95}, number = {3}, month = {September}, pages = {529--546} } @Article{BatGreLev00, author = {R.H. Bates and A. Greif and M. Levi, and J.L. Rosenthal, and B.R. Weingast}, title = {The Analytic Narrative Project}, journal = {American Political Science Review}, year = {2000}, volume = {94}, number = {3}, pages = {696--702} } @Article{Carpenter00, author = {Daniel P. Carpenter}, title = {What is the Marginal Value of Analytic Narratives?}, journal = {Social Science History}, year = {2000}, volume = {24}, number={4}, pages = {653-668} } @Article{Skocpol00, author = {Theda Skocpol}, title = {Commentary: Theory Tackles History}, journal = {Social Science History}, year = {2000}, volume = {24}, number = {4}, pages = {677-684} } @article{Parikh00, author = {Sunita Parikh}, title = {The Strategic Value of Analytic Narratives}, journal = {Social Science History}, volume = {24}, year = {2000}, pages = {677--684}, number = {4} } @article{Mahoney00b, author = {James Mahoney}, title = {Path Dependence in Historical Sociology}, journal = {Theory and Society}, volume = {29}, year = {2000}, pages = {507--548} } @article{Pierson00, author = {Paul Pierson}, title = {Increasing Returns, Path Dependence, and the Study of Politics}, journal = {American Political Science Review}, year = {2000}, pages = {251--268}, month = {June} } @article{Mahoney99, author = {James Mahoney}, title = {Nominal, Ordinal, and Narrative Appraisal in Macro-Causal Analysis}, journal = {American Journal of Sociology}, volume = {104}, year = {1999}, pages = {1154-1196}, month = {January}, number = {4} } @article{Pierson00b, author = {Paul Pierson}, title = {Not Just What, but When: Timing and Sequence in Political Processes}, journal = {Studies in american Political Development}, volume = {14}, year = {2000}, pages = {72--92}, month = {spring} } @article{ColLev77, author = {David Collier and Steven Levitsky}, title = {Democracy with Adjectives: Conceptual Innovation in Comparative Research}, journal = {World Politics}, volume = {43}, year = {1977}, pages = {430--451}, month = {April}, number = {3} } @article{Elman05, author = {Colin Elman}, title = {Explanatory Typologies in Qualitative Studies of International Politics}, journal = {International Organization}, volume = {59}, year = {2005}, pages = {293--326}, month = {spring}, number = {2} } @article{Lustick96, author = {Ian S. Lustick}, title = {History, Historiography, and Political Science: Multiple Historical Records and the Problem of Selection Bias}, journal = {American Political Science Review}, volume = {90}, year = {1996}, pages = {605--618}, month = {September}, number = {3} } @Article{Campbell05, author = {James E. Campbell}, title = {Introduction: Assessments of the 2004 Presidential Vote Forecasts}, journal = {PS: Political Science \& Politics}, year = {2005}, volume = {38}, pages = {23--24} } @article{Lieberman05, author = {Evan S. Lieberman}, title = {Nested Analysis as a Mixed-Method Strategy for Comparative Research}, journal = {American Political Science Review}, volume = {99}, year = {2005}, pages = {435--452}, month = {August}, number = {3} } @techreport{Heckman08, author = {James J. Heckman}, title = {Econometric Causality}, institution = {National Bureau of Economic Research}, year = 2008, address = {Cambridge, MA}, number = 13934, note = {{http://www.nber.org/papers/w13934}} } @article{Hall06, author = {Peter A. Hall}, title = {Systematic Process Analysis: When and How to Use It}, journal = {European Management Review}, volume = {3}, year = {2006}, pages = {24--31}, month = {Spring}, number = {1} } @article{Converse87, title = {Changing Conceptions of Public Opinion in the Political Process}, author = {Philip E. Converse}, journal = {The Public Opinion Quarterly}, volume = {51}, pages = {12--24}, year = {1987} } @article{Mahoney08, author = {James Mahoney}, title = {Toward a Unified Theory of Causality}, journal = {Comparative Political studies}, volume = {41}, year = {2008}, pages = {412--436}, month = {April/May}, number = {4/5} } @article{DasNewVel03, title = {Nonparametric Estimation of Sample Selection Models}, author = {Mitali Das and Whitney K. Newey and Francis Vella}, journal = {Review of Economic Studies}, volume = {70}, year = {2003}, pages = {33--58} } @article{HerHei04, title = {The Distribution of R&D Subsidies and Its Effect on the Final Outcome of Innovation Policy}, author = {Liliana Herrera and Joost Heijs}, year = {04}, journal = {DRUID Summern conference 2004 on Industrial Dynamic, Innovation and Development,Elsinore, Denmark, June 14-16}, year = {2004} } @article{AbaDruHer01, title = {Implementing Matching Estimators for Average Treatment Effects in Stata}, author = {Alberto Abadie and David Drukker and Jane Leber Herr and Guido W. Imbens}, journal = {The Stata Journal}, volume = {1}, year = {2001}, pages = {1--18}, number = {1} } @unpublished{BryCapLuc02, title = {Why so Unhappy? The Effect of Union Membership on Job Satisfaction}, author = {Alex Bryson and Lorenzo Cappellari and Claudio Lucifora}, year = {2002}, note = {Policy Studies Institute and Centre for Economic Performance} } @article{DunAuMil03, title = {Derivation and Validation of a Clinical Scoring System to Predict the Need for an Intra-Aortic Balloon Pump in Patients Undergoing Adult Cardiac Surgery}, author = {Joel Dunning and JKK Au and RWJ Millner and AJ Levine}, journal = {Interactive Cardiovascular and Thoracic Surgery}, volume = {2}, year = {2003}, pages = {639--643} } @Book{GlaStr99, author = {Barney G. Glaser and Anselm L. Strauss}, title = {The Discovery of Grounded theory: Strategies for Qualitative Research}, publisher = {Aldine De Gruyter}, year = {1999}, address = {New York} } @Book{Tetlock05, author = {Philip E. Tetlock}, title = {Expert Political Judgment: How Good Is It? How Can We Know?}, publisher = {Princeton University Press}, year = {2005}, address = {Princeton} } @Book{Hammersley00, author = {Martyn Hammersley}, title = {Taking Sides in Social Research: Essays on Partisanship and Bias}, publisher = {Routledge}, year = {2000}, address = {London and New York} } @book{Little91, title = {{Varieties of Social Explanation: An Introduction to the Philosophy of Social Science}}, author = {Little, Daniel}, year = {1991}, publisher = {Westview Press} } @Book{Gerring07, author = {John Gerring}, title = {Case Study Research: Principles and Practices}, publisher = {Cambridge University Press}, year = 2007, address = {New York} } @article{Goldthorpe01, title = {{Causation, Statistics, and Sociology}}, author = {Goldthorpe, J.H.}, journal = {European Sociological Review}, volume = {17}, number = {1}, pages = {1--20}, year = {2001} } @book{Gill08, title = {{Bayesian Methods: A Social and Behavioral Sciences Approach, 2nd edition}}, author = {Jeff Gill}, year = {2008}, publisher = {Chapman \& Hall/CRC} } @book{Elster89, title = {Nuts and Bols for the Social Sciences}, author = {Jon Elster}, year = {1989}, publisher = {Cambridge University Press}, address = {Cambridge, New York} } @book{Hausman98, author = {Daniel M. Hausman}, title = {Causal Asymmetries}, publisher = {Cambridge University Press}, year = {1998}, address = {Cambridge UK, New York} } @book{Collins98, author = {Randall Collins}, title = {The Sociology of Philosophies: A Global Theory of Intellecutual Change}, publisher = {Belknap Press of Harvard University Press}, year = {1998}, address = {Cambridge,MA} } @InCollection{Hall09, author = {Peter A. Hall}, title = {Path Dependence}, booktitle = {The Future of Political Science: 100 Perspectives}, pages = { }, publisher = {Routledge}, year = {2009, forthcoming}, editor = {Gary King and Kay Scholzman and Norman Nie} } @article{MahGoe06, title = {{A Tale of Two Cultures: Contrasting Quantitative and Qualitative Research}}, author = {James Mahoney and Gary Goertz}, journal = {Political Analysis}, volume = {14}, number = {3}, pages = {227--249}, year = {2006} } @techreport{Duneier08, author = {Mitchell Duneier}, title = {How Not to Lie with Ethnography}, institution = {Princeton University}, year = {2008}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{BraGoe00, author = {Bear Braumoeller and Gary Goertz}, title = {The Methodology of Necessary Conditions}, journal = {American Journal of Political Science}, year = 2000, volume = 44, number = 4, pages = {844--858}, month = {October} } @techreport{GlyQui08, author = {Adam Glynn and Kevin Quinn}, title = {Non-parametric Mechanisms and Causal Modeling}, institution = {Harvard}, year = 2008 } @InCollection{Goertz03, author = {Gary Goertz}, title = {The Substantive Importance of Necessary Condition Hypotheses}, booktitle = {Necessary Conditions: Theory, Methodology, and Applications}, publisher = {Rowman \& Littlefield}, year = 2003, editor = {Gary Goertz and Harvey Starr}, address = {Lanham, MD} } @book{RosAllMcc05, author = {Peter E. Rossi and Greg M. Allenby and Robert McCulloch}, title = {Bayesian Statistics and Marketing}, publisher = {John Wiley & Sons, Ltd}, year = 2005, address = {West Sussex, England} } @Article{Starfield91, author = {Starfield, B.}, title = {Primary care and health. {A} cross-national comparison}, journal = {The Journal of the American Medical Association}, year = {1991}, volume = {226}, number = {16}, pages = {2268-2271}, } @Article{WarMur82, author = {Warner, Kenneth and Murt, Hillary}, title = {Imact of the antismoking campaign on smoking prevalence: {A} cohort analysis}, journal = {Journal of Public Health Policy}, year = 1982, volume = 3, number = 4, pages = {374-390} } @Article{WilDeeLun00, author = {Wilmoth, J.R. and Deegan, L.J. and Lundstr\"{o}m, H. and Horiuchi, S.}, title = {Increase of maximum life-span in {S}weden, 1861-1999}, journal = {Science}, year = 2000, volume = 289, pages = {2366-2368} } @Article{Waldron91, author = {Waldron, Ingrid}, title = {Patterns and causes of gender differences in smoking}, journal = {Social Science and Medicine}, year = 1991, volume = 32, number = 9, pages = {989-1005} } @Article{DolPetBor04, author = {Doll, Richard and Peto, Richard and Boreham, Jillian and Sutherland, Isabelle}, title = {Mortality in relation to smoking: 50 years' observations on male {B}ritish doctors}, journal = {British Medical Journal}, year = {2004}, volume = {328}, pages = {1519-1527} } @Article{Doll99, author = {Doll, Richard}, title = {Tobacco: A Medical History}, journal = {Journal of Urban Health: {B}ulletin of the {New York Academy of Medicine} }, year = 1999, volume = 76, number = 3, pages = {989-1005} } @Article{RouBhoPar98, author = {Routh, Hirak Behari and Bhowmik, Kazal Rekha and Parish, Jennifer and Parish, Lawrence}, title = {Historical Aspects of Tobacco Use and Smoking}, journal = {Clinics in Dermatology}, year = 1998, volume = 16, pages = {539-544} } @Article{LeeTul97, author = {Lee, Ronald and Tuljapurkar, Shripad}, title = {Death and taxes: Longer life, consumption, and Social Security}, journal = {Demography}, year = 1997, volume = 34, number = 1, pages = {67-81}, month = {June} } @TechReport{SSAHist07, author = {{Social Security Administration Historian's Office}}, title = {Social Security A Brief History}, institution = {Social Security Administration}, year = 2007, number = {21-059}, month = {October 2007} } @Article{Schneider99, author = {Schneider, Edward}, title = {Aging in the Third Millenium}, journal = {Science}, year = 1999, volume = 283, number = 5403, pages = {796-797} } @Article{FrePla07, author = {Freedland, Stephen and Platz, Elizabeth}, title = {Obesity and prostate cancer: making snese out of apparently conflicting data}, journal = {Epidemiologic Reviews}, year = 2007, volume = 29, number = 1, pages = {88-97} } @Article{LitWhiKri07, author = {Littman, Alyson and White, Emily and Kristal, Alan}, title = {Anthropometrics and prostate cancer risk}, journal = {American Journal of Epidemiology}, year = 2007, volume = 165, number = 11, pages = {1271-1279} } @Article{YanKelHe07, author = {Yang, Wenjie and Kelly, Tanika and He, Jiang}, title = {Genetic Epidemiology of Obesity}, journal = {Epidemiologic Reviews}, year = 2007, volume = 29, number = 1, pages = {49-61} } @Article{RisHelKne90, author = {Rissanen, Aila and Heli\"{o}vaara, Markku and Knekt, Paul and Reunanen, Antti and Aromaa, Arpo and Maatela, Jouni}, title = {Risk of disability and mortality due to verweight in a {F}innish population}, journal = {British Medical Journal}, year = 1990, volume = 301, number = {}, pages = {835-837} } @Article{HeiEriEll00, author = {Heitmann, BL and Erikson, H and Ellsinger, B-M and Mikkelsen, KL and Larsson, B}, title = {Mortaltiy associated with body fat, fat-free mass and body mass index among 60-year-old {S}wedish men $-$ a 22-year follow-up. {T}he study of mean born in $1913$}, journal = {International Journal of Obesity}, year = 2000, volume = 24, pages = {33-37} } @Article{CorMonSom06, author = {Romero-Corral, Abel and Montori, Victor and Somers, Virend and Korinek, Josef and Thomas, Randal and Allison, Thomas and Mookadam, Farouk and Lopez-Jimenez, Francisco}, title = {Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies}, journal = {The Lancet}, year = 2006, volume = 368, pages = {666-678}, month = {August} } @Article{FleGraWil07, author = {Flegal, Katherine and Graubard, Barry and Williamson, David and Gail, Mitchell}, title = {Cause-specific excess deaths associated with underweight, overweight, and obesity}, journal = {Journal of the American Medical Association}, year = 2007, volume = 298, number = 17, pages = {2028-2037} } @Article{AdaSchHar06, author = {Adams, Kenneth and Schatzkin, Arthur and Harris, Tamara and Kipnis, Victor and Mouw, Traci and Ballard-Barbash, Rachel and Hollenbeck, Albert and Leitzmann, Michael}, title = {Overweight, obesity, and mortality in a large prospective cohort of persons $50$ to $71$ years old}, journal = {New England Journal of Medicine}, year = 2006, volume = 355, number = 8, pages = {763-778} } @Article{SukSacBod03, author = {Suk, Seung-Han and Sacco, Ralph and Boden-Albala Bernadette and Cheun, Jian and Pittman, John and Elkind, Mitchell and Paik, Myunghee}, title = {Abdominal obesity and the risk of ischemic stroke: The {N}orthern {M}anhattan {S}troke {S}tudy}, journal = {Stroke}, year = 2003, volume = 34, number = 7, pages = {1586-1592}, month = {July} } @Book{Quetelet1842, author = {Qu\'{e}telet, Lambert Adolphe Jacques}, title = {A treatise on man and the development of his faculties}, publisher = {William and Robert Chambers}, year = 1842, address = {Edinburgh}, } @TechReport{ssa07, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2007 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2007 } @TechReport{ssa04, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2004 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2004 } @TechReport{ssa06, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2006 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2006 } @TechReport{USG:05, author = {{United States Government}}, title = {Budget of the United States Government, Fiscal Year $2006$}, institution = {US Government Printing Office}, year = {2005} } @TechReport{USG:09, author = {{United States Government}}, title = {Budget of the United States Government, Fiscal Year $2009$}, institution = {US Government Printing Office}, year = {2009} } @TechReport{ShoSunBun87, author = {Shoven, John and Sundberg, Jeffrey and Bunker, John}, title = {The social security cost of smoking}, institution = {National Bureau of Economic Research}, year = 1987, type = {Working Paper Series}, number = 2234 } @TechReport{Gravelle98, author = {Gravelle, Jane}, title = {The proposed tobacco settlement: who pays for the health costs of smoking?}, institution = {Library of Congress, Congressional Research Service}, year = 1998, number = {97-1053 E} } @Article{HaeShiMil56, author = {Haenszel, W and Shimkin, MB and Miller, HP}, title = {Tobacco smoking patterns in the {U}nited {S}tates}, journal = {Public Health Monograph}, year = 1956, volume = 45, pages = {1-105} } @Article{WalLyeBra91, author = {Waldron, I and Lye, D and Brandon, A}, title = {Gender differences in teenage smoking}, journal = {Women Health}, year = 1991, volume = 17, pages = {63-87} } @Article{Ferrence88, author = {Ferrence, R}, title = {Sex differences in cigarette smoking in {C}anada, 1900-1978: {A} reconstructed cohort study}, journal = {Canadian Journal of Public Health}, year = 1988, volume = 79, pages = {160-165} } @Article{Elkind85, author = {Elkind, A}, title = {The social definition of women's smoking behavior}, journal = {Social Science and Medicine}, year = 1985, volume = 20, pages = {1269-1278} } @Article{LynBro01, author = {Lynch, Scott and Brown, Scott}, title = {Reconsidering mortality compression and deceleration: {A}n alternative model of mortality rates}, journal = {Demography}, year = 2001, volume = 38, number = 1, pages = {79-95} } @TechReport{Holmer08, author = {Holmer, Martin}, title = {SSASIM Guide}, institution = {Policy Simulation Group}, year = 2008, month = {March} } @Article{MeySab00, author = {Meyerson, Noah and Sabelhaus, John}, title = {Uncertainty in Social Security Trust Fund Projections}, journal = {National Tax Journal}, year = 2000, volume = 53, number = 3, pages = {515-529} } @Article{TulLiBoe00, author = {Tuljapurkar, Shripad and Li, Nan and Boe, Carl}, title = {A universal pattern of mortality decline in the $G7$ countries}, journal = {Nature}, year = 2000, volume = 405, pages = {789-792} } @Article{Boyer47, author = {Boyer, Carl}, title = {Note on an early graph of statistical data {(Huygens 1669)}}, journal = {Isis}, year = 1947, volume = 37, number = {3$/$4}, pages = {148-149} } @Book{Vollgraff50, editor = {Johan Adriaan Vollgraff}, title = {Oeuvres compl\`{e}tes de Christiaan Huygens. Publi\'{e}es par la Soci\'{e}t\'{e} hollandaise des sciences}, publisher = {La Haye: M. Nijhoff}, year = 1950 } @TechReport{Wilmoth03, author = {Wilmoth, John R.}, title = {Overview and Discussion of the Social Security Mortality Projections}, institution = {Technical Panel on Assumptions and Methods, Social Security Advisory Board}, year = 2003, } @TechReport{SSAB07, author = {{Social Security Advisory Board Technical Panel}}, title = {2007 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 2007, } @TechReport{SSAB99, author = {{Social Security Advisory Board Technical Panel}}, title = {1999 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 1999, } @TechReport{SSAB94, author = {{Social Security Advisory Board Technical Panel}}, title = {1994 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 1994, } @TechReport{SSAB91, author = {{Social Security Advisory Board Technical Panel}}, title = {1991 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 1991, } @Article{Alho90, author = {Alho, Juha}, title = {Effects of targets and aggregration on the propogation of error in mortality forecasts}, journal = {Mathematical Population Studies}, year = 1990, volume = 2, pages = {209-227} } @Article{CoaKis86, author = {Coale, Ansley and Kisker, Ellen}, title = {Mortality crossover: {R}eality or bad data}, journal = {Population Studies}, year = 1986, volume = 40, number = 3, pages = {389-401} } @Article{Parascandola04, author = {Parascandola, Mark}, title = {Skepticism, statistical methods, and the cigarette: {A} historical analyis of a methodological debate}, journal = {Perspectives in Biology and Medicine}, year = 2004, volume = 47, number = 42, pages = {244-261} } @TechReport{Ball73, author = {Ball, Robert}, title = {Hearings before the {S}pecial {C}ommittee on {Aging}}, institution = {U.S. Senate, Ninety-Third Congress}, year = 1973, number = {Part 1}, month = {January}, note = {SUDOC:Y4.Ag4:So1/2/pt.1} } @Article{Olshansky05, author = {Olshansky, S. Jay and Passaro, Douglas and Hershow, Ronald and Layden, Jennifer and Carnes, Bruce and Brody, Jacob and Hayflick, Leonard and Butler, Robert and Allison, David and Ludwig, David}, title = {A potential decline in life expectancy in the {U}united {S}tates in the 21st century}, journal = {The New England Journal of Medicine}, year = 2005, volume = 352, number = 11, pages = {1138-1145} } @TechReport{ssa117, author = {Cheng, Anthony and Miller, Michael and Morris, Michael and Schultz, Jason and Skirvin, J. Patrick and Walder, Danielle}, title = {A stochastic model of the long-range financial status of the {OASDI} program}, institution = {Social Security Administration, Office of the Chief Actuary}, year = 2004, note = {Actuarial Study No. 117} } @TechReport{ssa116, author = {Bell, Felicitie and Miller, Michael}, title = {Life tables for the {United States} social security area 1900-2100}, institution = {Social Security Administration, Office of the Chief Actuary}, year = 2002, note = {Actuarial Study No. 116} } @TechReport{ssa120, author = {Bell, Felicitie and Miller, Michael}, title = {Life tables for the {United States} social security area 1900-2100}, institution = {Social Security Administration, Office of the Chief Actuary}, year = 2005, note = {Actuarial Study No. 120} } @Article{Warner78, author = {Warner, Kenneth}, title = {Possible increases in the underreporting of cigarette consumption}, journal = {Journal of the American Statitical Association}, year = 1978, volume = 73, number = 362, pages = {314-318} } @Article{CanFisBak65, author = {Cannell, C.F. and Fisher, G. and Bakker, T.}, title = {Reporting of hospitalization in the health interview survey}, journal = {Vital and Health Statistics}, year = 1965, volume = 2, number = 6, pages = {i-71} } @Article{Halley93, author = {Halley, Edmund}, title = {An estimate of the degrees of mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives}, journal = {Philosophical Transactions of the Royal Society of London}, year = 1693, volume = 17, pages = {596-610} } @Article{Wright86, author = {Wright, VB}, title = {Will quitting smoking help Medicare solve its financial problems?}, journal = {Inquiry}, year = 1986, volume = 23, number = 1, pages = {76-82} } @TechReport{HMD08, author = {{University of California, Berkeley (USA)} and {Max Planck Institute for Demographic Research (Germany)}}, title = {Human Mortality Database}, year = 2008, institution = {\url{http://www.mortality.org}}, note = {data downloaded on April 7, 2008} } @Article{SasIch02, author = {Sascha O.\ Becker and Andrea Ichino}, title = {Estimation of average treatment effects based on propensity scores}, journal = {The Stata Journal}, year = 2002, volume = 2, number = 4, pages = {358--377} } @Article{JacAdaMul99, author = {Jacobs, David R., Jr and Adachi, Hisashi and Mulder, Ina and Kromhout, Daan and Menotti, Alessandro and Nissinen, Aulikki and Blackburn, Henry}, title = {Cigarette Smoking and Mortality Risk: Twenty-five-Year Follow-up of the Seven Countries Study}, journal = {Archives of Internal Medicine}, year = 1999, volume = 159, number = 7, pages = {733-740} } @Article{PeeBarWil03, author = {Peeters, Anna and Barendregt, Jan and Willekens, Frans and Mackenbach, Johan and Al Mamun, Abdullah and Bonneux, Luc}, title = {Obesity in Adulthood and its Consequences for Life Expectancy: A Life-Table Analysis}, journal = {Annals of Internal Medicine}, year = 2003, volume = 138, number = {24-32} } @Article{LynSmi05, author = {Lynch, John and Smith, George Davey}, title = {A Life Course Approach to Chronic Disease Epidemiology}, journal = {Annual Review of Public Health}, year = 2005, volume = 26, number = 1, pages = {1-35}, } @Article{Peace85, author = {Peace, L.R.}, title = {A Time Correlation Between Cigarette Smoking and Lung Cancer}, journal = {The Statistician}, year = 1985, volume = 34, number = 4, pages = {371-381} } @Article{Sturm02, author = {Sturm, Roland}, title = {The Effects of Obesity, Smoking, and Drinking on Medical Problems and Cost}, journal = {Health Affairs}, year = 2002, pages = {245-253}, month = {March/April} } @TechReport{Gutterman08, author = {Gutterman, Sam}, title = {Human Behavior: An Impediment to Future Mortality Improvement, A Focus on Obesity and Related Matters}, institution = {Society of Actuaries}, year = 2008, note = {Living to 100 and Beyond Symposium} } @Article{BakOlsSor07, author = {Baker, Jennifer and Olsen, Lina and S{\o}rensen,Thorkild}, title = {Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood}, journal = {New England Journal of Medicine}, year = 2007, volume = 357, number = 23, pages = {2329-2337} } @Article{LeuSia03, title = {{PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing}}, author = {Leuven, Edwin and Sianesi, Barbara}, journal = {Statistical Software Components}, year = 2003 } @Article{Kalton68, author = {G. Kalton}, title = {Standardization: A Technique to Control for Extraneous Variables}, journal = {Applied Statistics}, year = 1968, volume = 17, number = 2, pages = {118--136} } @Article{Wei82, title = {Interval estimation of location difference with incomplete data}, author = {Wei, L. J.}, journal = {Biometrika}, volume = {69}, number = {1}, pages = {249--251}, year = {1982} } @article{Moulton04, title = {Covariate-based constrained randomization of group-randomized trials}, author = {Moulton, L.H.}, journal = {Clinical Trials}, volume = {1}, number = {3}, pages = {297}, year = {2004} } @Unpublished{Wand07, author = {Jonathan Wand}, title = {Credible Comparisons Using Interpersonally Incomparable Data: Ranking self-evaluations relative to anchoring vignettes or other common survey questions}, year = {2007}, note = {http://wand.stanford.edu}, } @Unpublished{Buckley08, author = {Jack Buckley}, title = {Survey Context Effects in Anchoring Vignettes}, year = {2008}, note = {http://polmeth.wustl.edu/workingpapers.php}, } @Book{GrzymalaBusse07, author = {Anna Grzymala-Busse}, title = {Rebuilding Levithan: Party Competition and State Exploitation in Post-Communist Democracies}, publisher = {Cambridge University Press}, address = {New York}, year = {2007} } @Unpublished{SoeDelHar07, title = {{Validating the Use of Vignettes for Subjective Threshold Scales}}, author = {Arthur Van Soest and Liam Delaney and Colm P. Harmon and Arie Kapteyn and James P. Smith}, year = {2007}, note = {UCD Geary Institute Working Paper} } @article{JavRip07, title = {{An" Unfolding" Latent Variable Model for Likert Attitude Data: Drawing Inferences Adjusted for Response Style}}, author = {Kristin N. Javaras and Brian D. Ripley}, journal = {Journal of the American Statistical Association}, volume = {102}, number = {478}, pages = {454--463}, year = {2007}, publisher = {American Statistical Association} } @article{KapSmiSoe07, title = {{Vignettes and Self-Reports of Work Disability in the United States and the Netherlands}}, author = {Arie Kapteyn and James P. Smith and Arthur Soest}, journal = {American Economic Review}, volume = {97}, number = {1}, pages = {461--473}, year = {2007}, publisher = {American Economic Association Publications} } @article{Bowling05, title = {{Just one question: If one question works, why ask several?}}, author = {Ann Bowling}, journal = {Journal of Epidemiology and Community Health}, volume = {59}, number = {5}, pages = {342}, year = {2005} } @article{DamVasSzw05, title = {{Perception of health state and the use of vignettes to calibrate for socioeconomic status: results of the World Health Survey in Brazil, 2003}}, author = {Damacena, G.N. and Vasconcellos, M.T.L. and Szwarcwald, C.L.}, journal = {Cadernos de Sa{\'u}de P{\'u}blica}, volume = {21}, pages = {65--77}, year = {2005}, publisher = {SciELO Brasil} } @article{HseTan07, title = {{Sun and Water: On a Modulus-Based Measurement of Happiness}}, author = {Christopher K. Hsee and Judy Ningyu Tang}, journal = {Emotion}, volume = {7}, pages = {213--218}, year = {2007} } @article{SalTanMur04, title = {{Comparability of self rated health: cross sectional multi-country survey using anchoring vignettes}}, author = {Joshua A. Salomon and Ajay Tandon and Christopher J.L. Murray}, journal = {British Medical Journal}, volume = {328}, number = {7434}, pages = {258}, year = {2004}, publisher = {Br Med Assoc} } @unpublished{AbaDiaHai09, title = {Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program}, author = {Alberto Abadie and Alexis Diamond and Jens Hainmueller}, journal = {Journal of the American Statistical Association}, year = {2009, forthcoming} } @Article{AbaDiaHai09b, author = {Alberto Abadie and Alexis Diamond and Jens Hainmueller}, title = {Synth: An R Package for Synthetic Control Methods in Comparative Case Studies}, journal = {Journal of Statistical Software}, year = {2009, forthcoming} } @article{LozSolGak07, title = {{Benchmarking of performance of Mexican states with effective coverage}}, author = {Rafael Lozano and Patricia Soliz and Emmanuela Gakidou and Jesse Abbott-Klafter and Dennis M. Feehan and Cecilia M. Vidal and Juan Pablo Ortiz and Christopher J. L. Murray}, journal = {Salud P{\'u}blica de M{\'e}xico}, volume = {49}, pages = {53--69}, year = {2007}, publisher = {SciELO Public Health} } @article{MarPol95, title = {{Diagnostics for Redesigning Survey Questionnaires: Measuring Work in the Current Population Survey}}, author = {Elizabeth Martin and Anne E. Polivka}, journal = {Public Opinion Quarterly}, volume = {59}, number = {4}, pages = {547--567}, year = {1995}, publisher = {AAPOR} } @article{Tourangeau04, title = {{Survey Research and Societal Change}}, author = {Roger Tourangeau}, journal = {Annual Review of Psychology}, volume = {55}, number = {1}, pages = {775--801}, year = {2004}, publisher = {Annual Reviews} } @conference{GerWelKel96, title = {{Who lives here? The use of vignettes in household roster research}}, year = {1996}, author = {Eleanor R. Gerber and Tracy R. Wellens and Catherine Keeley}, booktitle = {Proceedings of the Section on Survey Research Methods, American Statistical Association}, pages = {962--967} } @InCollection{Tourangeau91, author = {Roger Tourangeau}, title = {Context Effects on Respones to Attitude Questions: Attitudes as Memory Structures}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {35-48}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York} } @InCollection{Smith91, author = {Tom Smith}, title = {Thoughts on the Nature of Context Effects}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {163-186}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York} } @article{NieCraMat91, title = {{Measuring Internal Political Efficacy in the 1988 National Election Study}}, author = {Richard G. Niemi and Stephen C. Craig and Franco Mattei}, journal = {American Political Science Review}, volume = {85}, number = {4}, pages = {1407--1413}, year = {1991}, publisher = {JSTOR} } @article{CraNieSil90, title = {{Political efficacy and trust: A report on the NES pilot study items}}, author = {Stephen C. Craig and Richard G. Niemi and Glenn E. Silver}, journal = {Political Behavior}, volume = {12}, number = {3}, pages = {289--314}, year = {1990}, publisher = {Springer} } @article{SteKorCar92, title = {{Arenas and Attitudes: A Note on Political Efficacy in a Federal System}}, author = {Marianne C. Stewart and Allan Kornberg and Harold D. Clarke and Alan Acock}, journal = {Journal of Politics}, volume = {54}, number = {1}, pages = {179--196}, year = {1992}, publisher = {JSTOR} } @book{Oliver01, title = {{Democracy in Suburbia}}, author = {J. Eric Oliver}, year = {2001}, publisher = {Princeton University Press}, address = {Princeton, NJ} } @InCollection{Strack91, author = {Fritz Strack}, title = {'Order Effects' in Survey Research: Activation and Information Functions of Preceding Questions}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {23-34}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York}, } @book{Weisberg96, title = {{An introduction to survey research, polling, and data analysis}}, author = {Herbert F. Weisberg and Jon A. Krosnick and Bruce D. Bowen}, year = {1996}, publisher = {Sage Publications}, address = {Thousand Oaks, CA} } @book{Fowler95, title = {{Improving Survey Questions: Design and Evaluation}}, author = {Floyd J. Fowler}, year = {1995}, publisher = {Sage Publications}, address = {Thousand Oaks, CA} } @InCollection{SchHipNoe91, author = {Norbert Schwarz and Hans-J. Hippler and Elisabeth Noelle-Neumann}, title = {A Cognitive Model of Response-Order Effects}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {187-202}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York}, } @article{SchStrMai91, title = {{Assimilation and Contrast Effects in Part-Whole Question Sequences: A Conversational Logic Analysis}}, author = {Norbert Schwarz and Fritz Strack and Hans-Peter Mai}, journal = {Public Opinion Quarterly}, volume = {55}, number = {1}, pages = {3--23}, year = {1991}, publisher = {AAPOR} } @article{WilKe95, title = {{Part-Whole Question Order Effects: Views of Rurality}}, author = {Fern K. Willits and Bin Ke}, journal = {Public Opinion Quarterly}, volume = {59}, number = {3}, pages = {392--403}, year = {1995}, publisher = {AAPOR} } @article{MccObr88, title = {{Question-Order Effects on the Determinants of Subjective Well-Being}}, author = {McKee J. McClendon and David J. O'Brien}, journal = {Public Opinion Quarterly}, volume = {52}, number = {3}, pages = {351--364}, year = {1988}, publisher = {AAPOR} } @article{Finkel87, title = {{The Effects of Participation on Political Efficacy and Political Support: Evidence from a West German Panel}}, author = {Steven E. Finkel}, journal = {Journal of Politics}, volume = {49}, number = {2}, pages = {441--464}, year = {1987} } @book{SchPre96, title = {{Questions and Answers in Attitude Surveys: Experiments on Question Form, Wording, and Context}}, author = {Howard Schuman and Stanley Presser}, year = {1996}, publisher = {Sage}, address = {Thousand Oaks, CA} } @article{Krosnick99, title = {{Survey Research}}, author = {Jon A. Krosnick}, journal = {Annual Review of Psychology}, volume = {50}, number = {1}, pages = {537--567}, year = {1999}, publisher = {Annual Reviews} } @book{SudBraSch96, title = {{Thinking about Answers: The Application of Cognitive Processes to Survey Methodology}}, author = {Seymour Sudman and Norman M. Bradburn and Norbert Schwarz}, year = {1996}, publisher = {Jossey-Bass Publishers}, address = {San Francisco, CA} } @article{KriWilMos97, title = {{Measuring Social Class U.S. Public Health Research: Concepts, Methodologies, and Guidelines}}, author = {N. Krieger and D.R. Williams and M.E. Moss}, journal = {Annual Reviews in Public Health}, volume = {18}, number = {1}, pages = {341--378}, year = {1997}, publisher = {Annual Reviews} } @book{Payne51, title = {{The Art ofAsking Questions}}, author = {Stanley L. Payne}, publisher = {Princeton University Press}, address = {Princeton, NJ}, year = {1951} } @InCollection{Bradburn83, author = {Norman M. Bradburn}, title = {Response Effects}, booktitle = {Handbook of Survey Research}, pages = {}, publisher = {Academic Press}, year = {1983}, address = {New York, NY}, editor = {Peter H. Rossi and James D. Wright and Andy B. Anderson}, } @Article{Robins08, author = {James M. Robins}, title = {Causal models for estimating the effects of weight gain on mortality}, journal = {International Journal of Obesity}, year = 2008, volume = 32, pages = {s15--s41} } @Article{OepVau02, author = {Oeppen, Jim and Vaupel, James}, title = {Broken Limits to Life Expectancy}, journal = {Science}, year = 2002, volume = 296, pages = {1029-1031}, month = {May} } @Article{HorWil98, author = {Horiuchi, Shiro and Wilmoth, John}, title = {Deceleration in the Age Pattern of Mortality at Older Ages}, journal = {Demography}, year = 1998, volume = 35, number = 4, pages = {391-412}, month = {November} } @Article{PreWan06, author = {Preston, Samuel and Wang, Haidong}, title = {Sex Mortality Differences in the United States: The Role of Cohort Smoking Patterns}, journal = {Demography}, year = 2006, volume = 43, number = 4, pages = {631-646}, month = {November} } @article{Finkel85, title = {{Reciprocal Effects of Participation and Political Efficacy: A Panel Analysis}}, author = {Steven E. Finkel}, journal = {American Journal of Political Science}, volume = {29}, number = {4}, pages = {891--913}, year = {1985} } @article{DipGla99, title = {{Incentives and Social Capital: Are Homeowners Better Citizens?}}, author = {Denise DiPasquale and Edward L. Glaeser}, journal = {Journal of Urban Economics}, volume = {45}, number = {2}, pages = {354--384}, year = {1999}, publisher = {Elsevier} } @book{ColRai78, title = {{Social Standing in America: New Dimensions of Class}}, author = {Richard P. Coleman and Lee Rainwater}, publisher = {Basic Books}, address = {New York, NY}, year = {1978} } @article{GruSor98, title = {{Can Class Analysis Be Salvaged?}}, author = {David Grusky and Jesper B. Sorensen}, journal = {American Journal of Sociology}, volume = {103}, number = {5}, pages = {1187--1234}, year = {1998}, publisher = {UChicago Press} } @article{Sorensen00, title = {{Toward a Sounder Basis for Class Analysis}}, author = {Aage B. Sorensen}, journal = {American Journal of Sociology}, volume = {105}, number = {6}, pages = {1523--1558}, year = {2000}, publisher = {University of Chicago Press} } @book{JacJac91, title = {{Class Awareness in the United States}}, author = {Mary R. Jackman and Robert W. Jackman}, publisher = {University of California Press}, year = {1991}, address = {Berkeley, CA} } @article{Fischer03, title = {{The Relative Importance of Income and Race in Determining Residential Outcomes in US Urban Areas, 1970-2000}}, author = {Mary J. Fischer}, journal = {Urban Affairs Review}, volume = {38}, number = {5}, pages = {669-696}, year = {2003} } @article{SchHipDeu85, title = {{Response Scales: Effects of Category Range on Reported Behavior and Comparative Judgments}}, author = {Norbert Schwarz and Hans J. Hippler and Bridget Deutsch and Fritz Strack}, journal = {Public Opinion Quarterly}, volume = {49}, number = {3}, pages = {388--395}, year = {1985}, publisher = {The Trustees of Columbia University} } @article{JavPopLal08, title = {{Co-occurrence of Binge Eating Disorder with Psychiatric and Medical Disorders.}}, author = {Kristin Javaras and Harrison Pope and Justine Lalonde and Jacqueline Roberts and Yael Nillni and Nan Laird and Cynthia Bulik and Scott Crow and Susan McElroy and B. Timothy Walsh and others}, journal = {The Journal of Clinical Psychiatry}, volume = {69}, number = {2}, pages = {266-273}, year = {2008}, publisher = {J Clin Psychiatry} } @article{SinAdlMar03, title = {{Subjective social status: its determinants and its association with measures of ill-health in the Whitehall II study}}, author = {Archana Singh-Manoux and Nancy E. Adler and Michael G. Marmot}, journal = {Social Science and Medicine}, volume = {56}, number = {6}, pages = {1321--1333}, year = {2003}, publisher = {Elsevier} } @Article{RogHumKru05, author = {Rogers, Richard and Hummer, Robert and Krueger, Patrick and Pampel, Fred}, title = {Mortality Attributable to Cigarette Smoking in the United States}, journal = {Population and Development Review}, year = 2005, volume = 31, number = 2, pages = {259-292}, month = {June} } @Article{MehCha08, author = {Mehta, Neil and Chang, Virginia}, title = {Mortality Attributable to Obesity Among Middle-Adults in the United States}, journal = {Demography}, year = {Forthcoming} } @Article{StuRinAnd04, author = {Sturm, Roland and Ringel, Jeanne and Andreyeva, Tatiana}, title = {Increasing Obesity Rates and Disability Trends}, journal = {Health Affairs}, year = 2004, volume = 23, number = 2, pages = {199-205} } @Book{SloSmiTay03, author = {Sloan, Frank and Smith, Kerry and Taylor, Donald}, title = {The Smoking Puzzle: Information, Risk, Perception, and Choice}, publisher = {Harvard University Press}, year = 2003, address = {Cambridge, Mass.} } @Article{RyaZweOra92, author = {Ryan, James and Zwerling, Craig and Orav, Endel John}, title = {Occupational Risks Associated with Cigarette Smoking{:} A Prospective Study}, journal = {American Journal of Public Health}, year = 1992, volume = 82, number = 1, pages = {29-32}, } @Article{LevGusVel97, author = {Levine, Phillip and Gustafson, Tara and Velenchik, Ann}, title = {More Bad News for Smokers? The Effects of Cigarette Smoking on Wages}, journal = {Industrial and Labor Relations Review}, year = 1997, volume = 50, number = 3, pages = {493-509} } @Book{SloOstPic04, author = {Sloan, Frank and Ostermann, Jan and Picone, Gabriel and Conover, Christopher and Taylor, Donald}, title = {The Price of Smoking}, publisher = {The MIT Press}, year = 2004, address = {Cambridge, Mass.} } @Article{DolPetWhe94, author = {Doll, Richard and Peto, Richard and Wheatley, Keith and Gray, Richard and Sutherland, Isabelle}, title = {Mortality in Relation to Smoking: 40 Years' Observations on Male British Doctors}, journal = {British Medical Journal}, year = 1994, volume = 309, number = 6959, pages = {901-911} } @book{Mayhew91, title={{Divided We Govern: Party Control, Lawmaking and Investigations}}, author={David R. Mayhew}, year={1991}, publisher={New Haven CT, Yale University Press} } @article{Sebastiani02, title={{Machine learning in automated text categorization}}, author={Fabrizio Sebastiani}, journal={ACM Computing Surveys (CSUR)}, volume={34}, number={1}, pages={1--47}, year={2002}, publisher={ACM New York, NY, USA} } @article{PanLee08, title={{Opinion Mining and Sentiment Analysis}}, author={Bo Pang and Lillian Lee}, journal={Foundations and Trends in Information Retrieval}, volume={2}, number={1}, pages={1--135}, year={2008} } @Book{Rudalevige02, author = {Andrew Rudalevige}, title = {Managing the President's Program}, publisher = {Princeton University Press}, year = {2002}, address = {Princeton, NJ} } @Book{Kellstedt03, author = {Paul M. Kellstedt}, title = {The Mass Media and the Dynamics of American Racial Attitudes}, publisher = {Cambridge University Press}, year = {2003}, address = {New York, NY} } @Book{Gilens99, author = {Martin Gilens}, title = {Why Americans Hate Welfare}, publisher = {University of Chicago Press}, year = {1999}, address = {Chicago, IL} } @unpublished{NovRau08, title = {The Intergenerational Transfer of Public Pension Promises}, author = {Robert Novy-Marx and Joshua D.Rauh}, journal = {Working Paper}, year = {2008}, note = {http://www.nber.org/papers/w14343} } @Article{Helmond08, author = {Anne Helmond}, title = {How Many Blogs Are There? Is Someone Still Counting?}, journal = {The Blog Herald}, year = 2008, number = {2/11}, note = {http://www.blogherald.com/2008/02/11/how-many-blogs-are-there-is-someone-still-counting/} } @book{Mendelberg01, title={{The Race Card: Campaign Strategy, Implicit Messages, and the Norm of Equality}}, author={Tali Mendelberg}, year={2001}, publisher={Princeton University Press}, address={Princeton, NJ} } @book{Gerring98, title={{Party Ideologies in America, 1828-1996}}, author={John Gerring}, year={1998}, publisher={Cambridge University Press}, address={New York} } @book{Thompson02, title={{Sampling}}, author={Steven K. Thompson}, year={2002}, publisher={John Wiley and Sons}, address={New York} } @book{HilShi08, title={{The Persuadable Voter: Wedge Issues in Presidential Campaigns}}, author={Sunshine Hillygus and Todd G. Shields}, year={2008}, publisher={Princeton University Press}, address={Princeton, NJ} } @book{BraSudWan04, title = {{Asking Questions: The Definitive Guide to Questionnaire Design}}, author = {Norman M. Bradburn and Seymour Sudman and Brian Wansink}, year = {2004}, publisher = {Jossey-Bass}, address = {San Francisco} } @book{ConPre86, title = {{Survey Questions: Handcrafting the Standardized Questionnaire}}, author = {Jean M. Converse and Stanley Presser}, year = {1986}, publisher = {Sage Publications}, address = {Thousand Oaks, CA} } @book{GroCouLep04, title = {{Survey Methodology}}, author = {Robert M. Groves and Mick P. Couper and James M. Lepkowski and Eleanor Singer and Roger Tourangeau}, year = {2004}, publisher = {Wiley}, address = {Hoboken, NJ} } @article{KriJoh08, title = {{New evidence on cross-country differences in job satisfaction using anchoring vignettes}}, author = {Nicolai Kristensen and Edvard Johansson}, journal = {Labour Economics}, volume = {15}, number = {1}, pages = {96--117}, year = {2008} } @Article{GupKriPoz08, author = {Nabanita Datta Gupta and Nicolai Kristensen and Dario Pozzoli}, title = {External Validation of the Use of Vignettes in Cross-Country Health Studies}, journal = { }, year = 2008, note = {Danish National Centre for Social Research} } @article{ColRosQui00, title = {{Prospective validation of a standardized questionnaire for estimating childhood mortality and morbidity due to pneumonia and diarrhoea}}, author = {Coldham, C. and Ross, D. and Quigley, M. and Segura, Z. and Chandramohan, D.}, journal = {Tropical Medicine \& International Health}, volume = {5}, number = {2}, pages = {134--144}, year = {2000} } @Article{MorDaw06, author = {Morera, Osvaldo and Dawes, Robyn}, title = {Clinical and Statistical Prediction After 50 Years: A Dedication to Paul Meehl}, journal = {Journal of Behavioral Decision Making}, year = 2006, volume = 19, pages = {409-412} } @article{OlsHayCar02, author = {Olshansky, S. Jay and Hayflick, Leonard and Carnes, Bruce A.}, title = {{Position Statement on Human Aging}}, journal = {Journal of Gerontology Series A: Biological Sciences and Medical Sciences}, volume = {57}, number = {8}, pages = {B292-297}, year = {2002} } @article{Fries80, author = {Fries, JF}, title = {{Aging, natural death, and the compression of morbidity}}, journal = {New England Journal of Medicine}, volume = {303}, number = {3}, pages = {130-135}, year = {1980} } @article{WarCarHaw08, author = {Wardle, Jane and Carnell, Susan and Haworth, Claire MA and Plomin, Robert}, title = {{Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment}}, journal = {American Journal of Clinical Nutrition}, volume = {87}, number = {2}, pages = {398-404}, year = {2008} } @Article{MokForBow01, author = {Mokdad, Ali and Ford, Earl and Bowman, Barbara and Dietz, William and Vinicor, Frank and Bales, Virginia and Marks, James}, title = {Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001}, journal = {Journal of the American Medical Association}, year = 2003, volume = 289, pages = {76-79} } @article{FonRedWan03, author = {Fontaine, Kevin R. and Redden, David T. and Wang, Chenxi and Westfall, Andrew O. and Allison, David B.}, title = {{Years of Life Lost Due to Obesity}}, journal = {Journal of the American Medical Association}, year = 2003, volume = {289}, number = {2}, pages = {187-193} } @article{AllWanRed03, author = {Allison, David B. and Wang, Chenxi and Redden, David T. and and Westfall, Andrew O. and Fontaine, Kevin R.}, title = {{Obesity and Years of Life Lost$-$Reply}}, journal = {Journal of the American Medical Association}, year = 2003, volume = {289}, number = {14}, pages = {1777-1778} } @article{WesAraOls04, author = {Wessel, Timothy R. and Arant, Christopher B. and Olson, Marian B. and Johnson, B. Delia and Reis, Steven E. and Sharaf, Barry L. and Shaw, Leslee J. and Handberg, Eileen and Sopko, George and Kelsey, Sheryl F. and Pepine, Carl J. and Bairey Merz, C. Noel}, title = {{Relationship of Physical Fitness vs Body Mass Index With Coronary Artery Disease and Cardiovascular Events in Women}}, journal = {Journal of the American Medical Association}, volume = {292}, number = {10}, pages = {1179-1187}, year = {2004} } @article{BlaChu04, author = {Blair, Steven N. and Church, Tim S.}, title = {{The Fitness, Obesity, and Health Equation: Is Physical Activity the Common Denominator?}}, journal = {Journal of the American Medical Association}, volume = {292}, number = {10}, pages = {1232-1234}, year = {2004} } @Article{FreSigRaj06, author = {Freedman, Michal and Sigurdson, Alice and Rajaraman, Preetha and Doody, Michele and Linet, Martha and Ron, Elaine}, title = {The Mortality Risk of Smoking and Obesity Combined}, journal = {American Journal of Preventive Medicine}, year = 2006, volume = 31, number = 5, pages = {355-362} } @Article{GreCheCad05, author = {Gregg, Edward and Cheng, Yiling and Cadwell, Betsy and Imperatore, Giuseppina and Williams, Desmond and Flegal, Katherine and Narayan, Venkat and Williamson, David}, title = {Secular Trends in Cardiovascular Disease Risk Factors According to Body Mass Index in US Adults}, journal = {Journal of the American Medical Association}, year = 2005, volume = 293, number = 15, pages = {1868-1874} } @Article{MurLopFee07, author = {Christopher J.L.\ Murray and Alan D. Lopez and Dennis M. Feean and Shanon T. Peter and Gonghuan Yang}, title = {Validation of the Symptom Pattern Method for Analyzing Verbal Autopsy Data}, journal = {PLOS Medicine}, year = 2007, volume = 4, number = 11, pages = {1739--1753}, month = {November} } @Article{CurDurEil04, author = {Currie, Iain and Durban, Maria and Eilers, Paul}, title = {Smoothing and Forecasting Mortality Rates}, journal = {Statistical Modelling}, year = 2004, volume = 4, pages = {279-298} } @Article{KirCur09, author = {Kirkby, James and Currie, Iain }, title = {Smooth Models of Mortality with Period Shocks}, journal = {Statistical Modelling}, year = {Forthcoming} } @Article{INDEPTH03, author = {{INDEPTH Network}}, title = {Standardised Verbal Autopsy Questionnaire}, journal = { }, note = {{http://indepth-network.org}}, year = 2003 } @Article{SetRaoHem06, author = {PW Setel and C Rao and Y Hemed and DR Whiting and G Yang et al.}, title = {Core Verbal Autopsy Procedures with Comparative Validation Results from Two Countries}, journal = {PLoS Medicine}, year = 2006, volume = 3, number = 8, pages = {e268}, note = {doi:10.1371/journal.pmed.0030268} } @Book{WHO07, author = {{World Health Organization}}, title = {Verbal Autopsy Standards: Ascertaining and Attributing Causes of Death}, publisher = {World Health Organization}, address = {Geneva}, year = 2007 } @Article{ThaKalBaq08, author = {N Thatte and H D Kalter and A H Baqui and E M Williams and G L Darmstadt}, title = {Ascertaining causes of neonatal deaths using verbal autopsy: current methods and challenges}, journal = {Journal of Perinatology}, year = 2008, pages = {1--8}, month = {December} } @TechReport{LeeAndTul03, author = {Lee, Ronald and Anderson, Michael and Tuljapurkar, Shripad}, title = {Stochastic Forecasts of the Social Security Trust Fund}, institution = {Center for the Economics and Demography of Aging}, year = 2003, type = {2003-0005CL} } @TechReport{Holmer03, author = {Holmer, Martin}, title = {Methods for Stochastic Trust Fund Projection}, institution = {Policy Simulation Group}, year = 2003, month = {January} } @TechReport{CBO01, author = {{Congressional Budget Office}}, title = {Uncertainty in Social Security's Long-Term Finances: A Stochastic Analysis}, institution = {Congressional Budget Office}, year = 2001, month = {December} } @TechReport{BurMan03, author = {Burdick, Clark and Manchester, Joyce}, title = {Stochastic Models of the Social Security Trust Funds}, institution = {Division of Economic Research, Social Security Administration}, year = 2003, type = {Research and Statistics Note}, number = {2003-01} } @Manual{Harrell08, title = {Hmisc: Harrell Miscellaneous}, author = {Frank E Harrell Jr and with contributions from many other users.}, year = {2008}, note = {R package version 3.5-2, http://biostat.mc.vanderbilt.edu/s/Hmisc} } @article{Heckman90, title = {{Varieties of selection bias}}, author = {Heckman, James}, volume = {80}, number = {2}, journal = {The American Economic Review}, pages = {313--318}, year = {1990} } @article{TheGol61, title={{On pure and mixed estimation in econometrics}}, author={Theil, H. and Goldberger, AS}, journal={International Economic Review}, volume={2}, pages={65--78}, year={1961} } @Book{Hsiao03, author = {C. Hsiao}, title = {Analysis of Panel Data}, publisher = {Cambridge University Press}, year = 2003, address = {New York} } @article{BanDhiGho05, title= {{Clustering on the Unit Hypersphere Using von Mises-Fisher Distributions}}, author= {Arindam Banerjee and Inderjit Dhillon and Joydeep Ghosh and Suvrit Sra}, journal= {Journal of Machine Learning}, volume= {6}, pages= {1345-1382}, year= {2005} } @article{BleJor06, title= {{Variational Inference for Dirichlet Process Mixtures}}, author= {David Blei and Michael Jordan}, journal= {Journal of Bayesian Analysis}, volume= {1}, number = {1}, pages= {121--144}, year= {2006} } @article{Cowan00, title= {{The Magical Number 4 in Short Term Memory: A Reconsideration of Mental Storage Capacity}}, author= {Nelson Cowan}, journal= {Behavioral and Brain Sciences}, volume= {24}, pages= {87--185}, year= {2000} } @article{Dhillon01, title= {{Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning}}, author= {Inderjit Dhillon}, journal= {Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, pages= {89--98}, year= {2003} } @article{HoPep02, title= {{Simple Explanation of the No Free Lunch Theorem and Its Implications}}, author= {Y Ho and D Pepyne}, journal= {Journal of Optimization Theory and Applications}, volume= {115}, number = {3}, pages= {549--570}, year= {2002} } @MISC{JonWilBau09, author = {Bryan Jones and John Wilkerson and Frank Baumgartner}, title = {{The Policy Agendas Project}}, year = 2009, note = {http://www.policyagendas.org} } @article{JorGhaJaa99, title= {{An Introduction to Variational Methods for Graphical Models}}, author= {Michael Jordan and Zoubin Ghahramani and Tommi Jaakkola and Lawrence Saul}, journal= {Journal of Machine Learning}, volume= {37}, pages= {183--233}, year= {1999} } @Book{KauRou90, author = {Leonard Kaufman and Peter Rousseeuw}, title = {Finding Groups in Data: An Introduction to Cluster Analysis}, publisher = {Wiley}, year = {1990}, address = {New York} } @Book{Kohonen01, author = {Teuvo Kohonen}, title = {Self-Organizing Maps}, publisher = {Springer}, year = {2001}, address = {New York} } @MISC{Lewis99, author = {David Lewis}, title = {{Reuters -21578 text Categorization Test Collection Distribution 1.0}}, year = {1999} } @Book{Mackay03, author = {David Mackay}, title = {Information Theory, Inference, and Learning Algorithms}, publisher = {Cambridge University Press}, year = {2003}, address = {Cambridge} } @article{Meila07, title= {{Comparing Clusterings: An Information Based Distance}}, author= {Marina Meila}, journal= {Journal of Multivariate Analysis}, volume= {98}, number = {5}, pages= {873--895}, year= {2007} } @article{Miller56, title= {{The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information}}, author= {George Miller}, journal= {Psychological Review}, volume= {63}, pages= {81--97}, year= {1956} } @article{NgJorWei02, title= {{On Spectral Clustering: Analysis and an Algorithm}}, author= {Andrew Ng and Michael Jordan and Yair Weiss}, journal= {Advances in Neural Information Processing Systems 14: Proceedings of the 2002 Conference}, year= {2002} } @article{Sammon69, title= {{A Nonlinear Mapping for Data Structure Analysis}}, author= {John Sammon}, journal= {IEEE Transactions on Computers}, volume= {18}, number = {5}, pages= {401--409}, year= {1969} } @article{ShiMal00, title= {{Normalized Cuts and Image Segmentation}}, author= {J Shi and J Malik}, journal= {IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume= {22}, number = {8}, pages= {888--905}, year= {2000} } @Book{Simon57, author = {Herbert Simon}, title = {Models of Man}, publisher = {Wiley}, year = {1957}, address = {New York} } @article{StrGro02, title= {{Cluster Ensembles: A Knowledge Reuse Framework for Combining Multiple Partitions}}, author= {Alexander Strehl and Joydeep Grosh}, journal= {Journal of Machine Learning Research}, volume= {3}, pages= {583--617}, year= {2002} } @article{vonLuxburg07, title= {{A Tutorial on Spectral Clustering}}, author= {Ulrike von Luxburg}, journal= {Statistics and Computing}, volume= {17}, number = {4}, pages= {395--416}, year= {2007} } @Book{Watanabe69, title = {Knowing and Guessing: A Quantitative Study of Inference and Information}, author = {Satosi Watanabe}, publisher = {Wiley}, year = {1969}, address = {New York} } @article{WolMac97, title= {{No Free Lunch Theorems for Optimization}}, author= {DH Wolpert and WG Macready}, journal= {IEEE Transactions on Evolutionary Computation}, volume= {1}, number = {1}, pages= {67--82}, year= {1997} } @Book{Bailey94, author = {Kenneth D. Bailey}, title = {Typologies and taxonomies: an introduction to classification techniques}, publisher = {Sage}, year = 1994, address = {Beverly Hills} } @article{Spivey08, title = {{A generalized recurrence for Bell numbers}}, author = {Spivey, M.Z.}, journal = {J. Integer Sequences}, volume = {11}, year = {2008} } @article{FraRaf02, title = {{Model-based clustering, discriminant analysis, and density estimation}}, author = {Fraley, C. and Raftery, A.E.}, journal = {Journal of the American Statistical Association}, volume = {97}, number = {458}, pages = {611--631}, year = {2002} } @Book{GanMaWu07, author = {Guojun Gan and Chaoqun Ma and Jianhong Wu}, title = {Data Clustering: Theory, Algorithms, and Applications}, publisher = {Siam}, year = 2007, address = {Philadelphia} } @Article{DiaGoeHol08, author = {Persi Diaconis and Sharad Goel and Susan Holmes}, title = {Horseshoes in multidimensional scaling and local kernel methods}, journal = {Annals of Applied Statistics}, year = 2008, volume = 2, number = 3, pages = {777--807} } @article{Almon65, title = {{The distributed lag between capital appropriations and expenditures}}, author = {Almon, Shirley}, journal = {Econometrica: Journal of the Econometric Society}, pages = {178--196}, year = {1965}, publisher = {The Econometric Society} } @Book{ManRagSch08, author = {Christopher D. Manning and Prabhakar Raghavan and Hinrich Sch{\"u}tze}, title = {Introduction to Information Retrieval}, publisher = {Cambridge University Press}, year = 2008, address = {NY} } @article{Mayhew74, title = {{The electoral connection}}, author = {Mayhew, D.}, journal = {New Haven: Yale University}, year = {1974} } @Book{Fiorina89, author = {Morris Fiorina}, title = {Congress, Keystone of the Washington Establishment}, publisher = {Yale University Press}, year = {1989}, address = {New Haven} } @article{EulKar77, title = {{The Puzzle of Representation: Specifying Components of Responsiveness}}, author = {Heiz Eulau and Paul Karps}, journal = {Legislative Studies Quarterly}, volume = {2}, number = {3}, pages = {233-254}, year = {1977} } @article{Yiannakis82, title = {{House Members Communication Styles: Newsletters and Press Releases}}, author = {Diane Evans Yiannakis}, journal = {Journal of Politics}, volume = {44}, number = {4}, pages = {1049-1071}, year = {1982} } @article{MonColQui08, title = {{Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict}}, author = {Burt Monroe and Michael Colaresi and Kevin Quinn}, journal = {Political Analysis}, volume = {16}, number = {4}, pages = {372-403}, year = {2008} } @Book{TayCri04, author = {John Shawe-Taylor and Nello Cristianini}, title = {Kernel Methods for Pattern Analysis}, publisher = {Cambridge University Press}, year = {2004}, address = {Cambridge} } @Misc{Billington07, author = {James H. Billington}, title = {Testimony to Congress (House Subcommittee on Legislative Branch)}, howpublished = {http://www.loc.gov/about/welcome/speeches/digital/digitalage.html}, month = {20 March}, year = 2007 } @article{AbeLedLew08, title = {{Blown to bits: your life, liberty, and happiness after the digital explosion}}, author = {Abelson, H. and Ledeen, K. and Lewis, H.}, year = {2008}, publisher = {Addison-Wesley Professional} } @Article{GilCas09, author = {Jeff Gill and George Casella}, title = {Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation}, journal = {Journal of the American Statistical Association}, year = 2009, volume = 104, number = 486, pages = {1--12}, month = {June} } @article{SchGer97, title={{Empirical indicators of crisis phase in the Middle East, 1979-1995}}, author={Schrodt, P.A. and Gerner, D.J.}, journal={Journal of Conflict Resolution}, pages={529--552}, year={1997}, publisher={Sage Publications} } @article{Guttman50, title = {{The problem of attitude and opinion measurement}}, author = {Guttman, L.}, journal = {Measurement and prediction}, volume = {4}, year = {1950} } @article{MilKub05, title = {{Why the move to free trade? Democracy and trade policy in the developing countries}}, author = {Helen Milner and Keiko Kubota}, journal = {International Organization}, volume = {59}, number = {1}, pages = {107--143}, year = {2005} } @Book{GutTho96, author = {Amy Gutmann and Dennis Thompson}, title = {Democracy and Disagreement}, publisher = {Harvard University Press}, year = {1996}, address = {Harvard University Press} } @Unpublished{MikLavBen08, author = {Slava Mikhaylov and Michael Laver and Kenneth Benoit}, title = {Coder Reliability and Misclassification in Comparative Manifesto Project Codings}, note = {Paper presented at the Midwest Political Science Association, Chicago}, month = {April}, year = 2008 } @conference{CarElhNgu06, title={{Meta clustering}}, author={Rich Caruana and Mohamed Elhawary and Nam Nguyen and Casey Smith}, booktitle={ICDM'06. Sixth International Conference on Data Mining}, pages={107--118}, year={2006} } @conference{CarNgu07, title={{Consensus clustering}}, author={Rich Caruana and Nam Nguyen}, booktitle={ICDM'07. Seventh International Conference on Data Mining}, year={2007} } @conference{FerBro03, title={Random Project for High Dimensional Data Clustering: A Cluster Ensemble Approach}, author={Xiaoli Fern and Carla Brodley}, booktitle={Proceedings of the Twentieth International Conference on Machine Learning}, year={2003} } @conference{LawTopJai04, title={Multi-objective Data Clustering}, author={Martin Law and Alexander Topchy and Anil Jain}, booktitle={IEEE Computer Society Conference on Computer Vision and Pattern Recognition}, year={2004} } @conference{BaeBai06, title={A Novel Approach for the Extraction of an Alternate Clustering of High Quality and High Dissimilarity}, author={Eric Bae and James Bailey}, booktitle={Proceedings of the IEEE International Conference on Data Mining}, year={2006} } @conference{FreJai02, title={Data Clustering using Evidence Accumulation}, author={Martin Law and Alexander Topchy and Anil Jain}, booktitle={Proceedings of the 16th International Conference on Pattern Recognition}, year={2002} } @conference{GioManTsa05, title={Clustering aggregation}, author={A Gionis and H Mannila and P Tsaparas}, booktitle={Proceedings of the 21st International Conference on Data Mining}, year={2005} } @conference{TopJaiPun03, title={Combining Multiple Weak Clusterings}, author={A Topchy and AK Jain and W Punch}, booktitle={Proceedings IEEE International Conference on Data Mining}, year={2003} } @conference{TopJaiPun03b, title={A Mixture Model for Clustering Ensembles}, author={A Topchy and AK Jain and W Punch}, booktitle={Proceedings SIAM International Conference on Data Mining}, year={2004} } @conference{Kleinberg03, title={An Impossibility Theorem for Clustering}, author={Jon Kleinberg}, booktitle={Advances in Neural Information Processing Systems Proceedings of the 2002 Conference}, pages={463-470}, year={2003}, } @article{Achen78, title={Measuring Representation}, author={Chris Achen}, journal={American Journal of Political Science}, pages={475--510}, year={1978}, } @INCOLLECTION{LazBar65, author= {Paul Lazardsfeld and Allen Barton}, title = {Qualitative Measurement in the Social Sciences: Classification, Typologies, and Indices}, booktitle = {The Policy Sciences}, publisher = {Standard University Press}, year = {1965}, editor = {Daniel Lerner and Harold Lasswell}, } @article{Pitman97, title={Some Probabilistic Aspects of Set Partitions}, author={Jim Pitman}, journal={The American Mathematical Monthly}, pages={201--209}, year={1997}, } @Article{ZhaSma09, author = {Kai Zhang and Dyland S.\ Small}, title = {Comment: The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Program}, journal = {Statistical Science}, year = {2009, forthcoming}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{HilSco09, author = {Jennifer Hill and Marc Scott}, title = {Discussion of `The Essential Role of Pair Matching'}, journal = {Statistical Science}, year = {2009}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Imbens09, title = {{Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)}}, author = {Imbens, G.W.}, journal = {NBER Working Paper}, year = {2009} } @article{Ashenfelter78, title = {{Estimating the effect of training programs on earnings}}, author = {Ashenfelter, Orley}, journal = {The Review of Economics and Statistics}, pages = {47--57}, year = {1978} } @article{Grimmer10, author = {Justin Grimmer}, title = {A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases}, year = {2010}, journal = {Political Analysis}, } @article{TehJorBea06, title = {Hierarchical Dirichlet Processes}, author = { Y Teh and M Jordan and M Beal and D Blei}, journal = {Journal of the American Statistical Association}, volume = {101}, number = {476}, pages = {1566--1581}, year = {2006}, } @article{MilSto63, title = {{Constituency influence in Congress}}, author = {Miller, W.E. and Stokes, D.E.}, journal = {The American Political Science Review}, pages = {45--56}, year = {1963}, publisher = {The American Political Science Association} } @book{Pitkin72, title = {{The Concept of Representation}}, author = {Pitkin, Hanna F.}, year = {1972}, publisher = {University of California Press} } @Article{HorCoa82, author = {Horiuchi, Shiro and Coale, Ansley}, title = {A Simple Equation for Estimating the Expectation of Life at Old Ages}, journal = {Population Studies}, year = 1982, volume = 36, number = 2, pages = {317-326} } @book{Ayres08, title={{Super crunchers: why thinking-by-numbers is the new way to be smart}}, author={Ayres, Iain}, year={2008}, publisher={Bantam} } @Article{Wilmoth05, author = {Wilmoth, John}, title = {Some methodological issues in mortality projection, based on an analysis of the US Social Security System}, journal = {Genus}, year = 2005, volume = 61, number = 1, pages = {179-211} } @TechReport{Romig08, author = {Romig, Kathleen}, title = {Social Security: What Would Happen If the Trust Funds Ran Out?}, institution = {Congressional Research Service}, year = 2008, number = {RL33514} } @TechReport{SweNic08, author = {Swendiman, Kathleen and Nicola, Thomas}, title = {Social Security Reform: Legal Analysis of Social Security Benefit Entitlement Issues}, institution = {Congressional Research Service}, year = 2008, number = {RL32822} } @Unpublished{BelSon09, author = {Beltr\'{a}n-S\'{a}nchez, Hiram and Soneji, Samir}, title = {A Unifying Approach for Assessing Changes in Life Expectancy Associated with Changes in Mortality: The Case of Violent Deaths}, note = {}, OPTkey = {}, OPTmonth = {}, year = {2009}, OPTannote = {} } @Article{Olshansky88, author = {Olshansky, S. Jay}, title = {On Forecasting Mortality}, journal = {The Milbank Quarterly}, year = 1988, volume = 66, number = 3, pages = {482-530} } @TechReport{ChaWad05, author = {Chaplain, Chris and Wade, Alice}, title = {Estimated OASDI Long-Range Financial Effects of Several Provisions Requested by the Social Security Advisory Board}, institution = {Social Security Administration}, year = 2005, address = {http://www.ssa.gov/OACT/solvency/provisions/index.html} } @article{Armstrong67, title = {{Derivation of theory by means of factor analysis or Tom Swift and his electric factor analysis machine}}, author = {Armstrong, J.S.}, journal = {American Statistician}, pages = {17--21}, year = {1967}, publisher = {American Statistical Association} } @article{ImbAng94, title={{Identification and estimation of local average treatment effects}}, author={Imbens, G.W. and Angrist, J.D.}, journal={Econometrica}, volume={62}, number={2}, pages={467--475}, year={1994} } @article{Little08, author={Roderick Little}, title={Calibrated Bayes: A Bayes/Frequentist Roadmap}, journal={American Statistician}, volume={60}, number={1}, pages={1--11}, year={2008} } @book{McLThr08, author={Geoffrey J. McLachlan and Thriyambakam Krishan}, title={The EM Algorithm and Extensions, Second Edition}, year={2008}, publisher={New York: Wiley} } @article{Little95, author={Roderick Little}, title={Modeling the Drop-Out Mechanism in Repeated-Measures Studies}, journal={jasa}, volume={90}, number={431}, pages={1112--1121}, year={1995} } @book{MolVer05, author={Geert Molenberghs and Geert Verbeke}, title={Models for Discrete Longitudinal Data}, year={2005}, publisher={New York: Wiley} } @article{DavShaSch01, author={Adam Davey, Michael J.\ Shanahan and Joseph L.\ Schafer }, title={Correcting for selective nonresponse in the national longitudinal survey of youth using multiple imputation}, journal={The Journal of Human Resources}, volume={36}, number={3}, pages={500--519}, year={2001} } @article{KacRagSch08, author={Niko A. Kaciroti, Trivellore E. Raghunathan, M. Anthony Schork and Noreen M. Clark}, title={A Bayesian model for longitudinal count data with non-ignorable dropout}, journal={Journal of the Royal Statistical Society Series C-Applied Statistics}, volume={57}, number={5}, pages={521-534}, year={2008} } @article{SteCutRos09, title = {{Forecasting the Effects of Obesity and Smoking on US Life Expectancy}}, author = {Stewart, S.T. and Cutler, D.M. and Rosen, A.B.}, journal = {The New England Journal of Medicine}, volume = {361}, number = {23}, pages = {2252}, year = {2009} } @Article{ByaDamOue09, AUTHOR = {Byass, Peter and D'Ambruoso, Lucia and Ouedraogo, Moctar and Qomariyah, S Nurul}, TITLE = {Assessing the repeatability of verbal autopsy for determining cause of death: two case studies among women of reproductive age in Burkina Faso and Indonesia}, JOURNAL = {Population Health Metrics}, VOLUME = {7}, YEAR = {2009}, NUMBER = {1}, PAGES = {6}, URL = {http://www.pophealthmetrics.com/content/7/1/6} } @article{Traxler97, title = {{An Algorithm for Adaptive Mesh Refinement in N Dimensions}}, author = {Traxler, S.T.}, journal = {Computing}, volume = {59}, number = {1}, pages = {115-137}, year = {1997} } @TechReport{BelMil05, author = {Bell, Felicitie and Miller, Michael}, title = {Life Tables for the United States Social Security Area 1900-2100}, institution = {Social Security Administration Office of the Chief Actuary}, year = 2005, number = {Actuarial Study No. 120} } @Article{TweCutRos09, author = {Stewart, S.T. and Cutler, D.M. and Rosen, A.B.}, title = {Forecasting the Effects of Obesity and Smoking on Life Expectancy}, journal = {The New England Journal of Medicine}, year = {2009}, OPTkey = {}, OPTvolume = {361}, OPTnumber = {23}, OPTpages = {2252-2260}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Guolo08, author = {Guolo, Annamaria}, title = {{Robust techniques for measurement error correction: a review.}}, journal = {{Statistical Methods in Medical Research}}, volume = {{17}}, number = {{6}}, pages = {555-80}, year = {{2008}}, doi = {{10.1177/0962280207081318}}, } @Article{GrePal90, author = {Green, Donald Philip and Palmquist, Bradley}, title = {{Of Artifacts and Partisan Instability}}, journal = {{American Journal of Political Science}}, volume = {{34}}, number = {{3}}, pages = {872}, year = {{1990}}, doi = {{10.2307/2111402}}, } @Article{WilWil70, author = {Wiley, David E. and Wiley, James A.}, title = {{The Estimation of Measurement Error in Panel Data}}, journal = {{American Sociological Review}}, volume = {{35}}, number = {{1}}, pages = {112}, year = {{1970}}, doi = {{10.2307/2093858}}, } @article{Stefanski00, author = {Stefanski, L. A.}, title = {{Measurement Error Models}}, journal = {{Journal of the American Statistical Association}}, volume = {{95}}, number = {{452}}, pages = {1353--1358}, year = {{2000}} } @article{BroVal96, author = {Brownstone, David and Valletta, Robert G.}, title = {{Modeling Earnings Measurement Error: A Multiple Imputation Approach}}, journal = {{Review of Economics and Statistics}}, volume = {{78}}, number = {{4}}, pages = {705-717}, year = {{1996}}, tags = "measurement error, statistics" } @article{FreMidCar08, pmid = {{18680172}}, author = {Freedman, Laurence S and Midthune, Douglas and Carroll, Raymond J and Kipnis, Victor}, title = {{A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression.}}, journal = {{Stat Med}}, volume = {{27}}, number = {{25}}, pages = {5195-216}, year = {{2008}}, doi = {{10.1002/sim.3361}}, tags = "measurement error, statistics" } @article{ColChuGre06, author = {Cole, Stephen R and Chu, Haitao and Greenland, Sander}, title = {{Multiple-imputation for measurement-error correction.}}, journal = {{International Journal of Epidemiology}}, volume = {{35}}, number = {{4}}, pages = {1074-81}, year = {{2006}}, doi = {{10.1093/ije/dyl097}}, tags = "measurement error, statistics" } @article{CasTuf03, author={Casper, Gretchen and Cladiu Tufis}, title={Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets}, journal={Political Analysis}, volume={11}, year={2003}, pages={196-203}, number={2} } @Article{OlsGolZheRow09, author = {Olshansky, S. Jay and Goldman, Dana and Zheng, Yuhui and Rowe, John}, title = {Aging in America in the Twenty-first Century: Demographic Forecasts from the MacArthur Foundation Research Network on an Aging Society}, journal = {Milbank Quarterly}, year = 2009, volume = 87, number = 4, pages = {842-862} } @TechReport{SSAHist10, author = {{Social Security Administration Historian's Office}}, title = {Historical Background and Development of Social Security}, institution = {Social Security Administration}, year = 2010, note = {http://www.ssa.gov/history} } @Article{KanLauThaVau94, author = {Kannisto, Vaino and Lauritsen, Jens and Thatcher, A. Roger and Vaupel, James}, title = {Reductions in Mortality at Advanced Ages: Several Decades of Evidence from 27 Countries}, journal = {Population and Development Reiew}, year = 1994, volume = 20, number = 4, pages = {793-810} } @Article{HucPluSpr93, author = {Robert Huckfeldt and Eric Plutzer and John Sprague}, title = {Alternative Contexts of Political Behavior: Churches, Neighborhoods, and Individuals}, journal = {Journal of Politics}, year = 1993, volume = 55, number = 2, pages = {365--381}, month = {May} } @Article{KatKat10, author = {Jonathan N. Katz and Gabriel Katz}, title = {{ Correcting for Survey Misreports Using Auxiliary Information with an Application to Estimating Turnout}}, journal = {{American Journal of Political Science}}, year = 2010, volume = 54, number = 3, pages = {{815--835}}, } @Article{ImaYam10, author = {Kosuke Imai and Teppei Yamamoto}, title = {Causal Inference with Differential Measurement Error: Nonparametric Identification and Sensitivity Analysis}, journal = {American Journal of Political Science}, year = 2010, volume = 54, number = 2, month = {April}, pages = {{543--560}} } @conference{BitSmiKra06, title = {Statistically dual distributions in statistical inference}, author = {Bityukov, SI and Smirnova, VV and Krasnikov, NV and Taperechkina, VA}, booktitle = {Statistical Problems in Particle Physics, Astrophysics and Cosmology: proceedings of PHYSTAT05, Oxford, UK, 12-15 September 2005}, pages = {102--105}, year = {2006}, note = {http://arxiv.org/abs/math/0411462v2} } Rubin, D. B. (2010), On the limitations of comparative effectiveness research. Statistics in Medicine, 29: 1991–1995. @Article{Rubin10, author = {Donald B. Rubin}, title = {On the Limitations of Comparative Effectiveness Research}, journal = {Statistics in Medicine}, year = 2010, volume = 29, number = 19, pages = {1991-1995}, month = {August} } @Article{TunBenMcC10, author = {Sean R. Tunis and Joshua Benner and Mark McClellan}, title = {Comparative effectiveness research: Policy context, methods development and research infrastructure}, journal = {Statistics in Medicine}, year = 2010, volume = 29, number = 19, pages = {1964-1976}, month = {August} } @Article{Rubin08, author = {Donald B. Rubin}, title = {For Objective Causal Inference, Design Trumps Analysis}, journal = {Annals of Applied Statistics}, year = 2008, volume = 2, number = 3, pages = {808--840} } @Article{Rubin08b, author = {Donald B. Rubin}, title = {Comment: The Design and Analysis of Gold Standard Randomized Experiments}, journal = {Journal of the American Statistical Association}, year = 2008, volume = 103, number = 484, pages = {1350--1353} } @Article{Austin09, author = {Peter C. Austin}, title = {Some Methods of Propensity-Score Matching had Superior Performance to Others: Results of an Empirical Investigation and Monte Carlo simulations}, journal = {Biometrical Journal}, year = 2009, volume = 51, number = 1, pages = {171-184}, month = {February} } @Article{Stuart10, author = {Elizabeth A. Stuart}, title = {Matching Methods for Causal Inference: A Review and a Look Forward}, journal = {Statistical Science}, year = 2010, volume = 25, number = 1, pages = {1--21} } @Article{Rubin80b, author = {Donald B. Rubin}, title = {Bias Reduction using Mahalanobis Metric Matching}, journal = {Biometrics}, year = 1980, volume = 36, pages = {293--298} } @InCollection{StuRub07b, author = {Elizabeth A. Stuart and Donald B. Rubin}, title = {Best practices in quasi-experimental designs: Matching methods for causal inference}, booktitle = {Best Practices in Quantitative Methods}, pages = {155--176}, publisher = {Sage}, year = 2007, editor = {Jason Osborne}, address = {New York} } @Article{Wilmoth05a, author = {Wilmoth, John}, title = {On the Relationship Between Period and Cohort Mortality}, journal = {Demographic Research}, year = 2005, volume = 13, number = 11, pages = {231-280} } @Article{Guillot03, author = {Guillot, Michel}, title = {The Cross-Sectional Average Length of Life (CAL): A Cross-Sectional Mortality Measure That Reflects the Experience of Cohorts}, journal = {Population Studies}, year = 2003, volume = 57, number = 1, pages = {41-54} } @Article{BonFee03, author = {Bongaarts, John and Feeney, Griffith}, title = {Estimating Mean Lifetime}, journal = {Proceedings of the National Academy of Sciences}, year = 2003, volume = 100, number = 23, pages = {13127-13133} } @Article{Wilmoth95, author = {Wilmoth, John}, title = {Are Mortality Projections Always More Pessimistic When Disaggregated by Cause of Death?}, journal = {Mathematical Population Studies}, year = 1995, volume = 5, number = 4, pages = {293-319} } @Article{Cawley04, author = {Cawley, John}, title = {The Impact of Obesity on Wages}, journal = {Journal of Human Resources}, year = 2004, volume = 39, number = 2, pages = {451-474} } @Article{WolDagKan98, author = {Wolf, Philip and D\'Agostino, Ralph and Kannel, William and Bonita, Ruth and Belanger, Albert}, title = {Cigarette Smoking as a Risk Factor for Stroke. The Framingham Study.}, journal = {Journal of the American Medical Association}, year = 1998, volume = 259, number = 7, pages = {1025-1029} } @Article{BurGouBra03, author = {Burns, Paul and Gough, Stephan and Bradbury, Andrew}, title = {Management of Peripheral Arterial Disease in Primary Care}, journal = {British Medical Journal}, year = 2003, volume = 326, pages = {584-588} } @TechReport{ReiSar08, author = {Reichmuth, Wolfgang and Sarferaz, Samad}, title = {Bayesian Demographic Modeling and Forecasting: An Application to U.S.\ Mortality}, institution = {Humboldt University}, year = 2008, type = {SFB 649}, note = {Discussion Paper 2008-052} } @Article{WanPre09, author = {Wang, Haidong and Preston, Samuel}, title = {Forecasting United States Mortality using Cohort Smoking Histories}, journal = {Proceedings of the National Academy of Sciences}, year = 2009, volume = 109, number = 2, pages = {393-398} } @Article{Platt05, title = {Fastmap, MetricMap, and Landmark MDS are all Nystr{\\"o}m algorithms}, author = {Platt, J.C.}, journal = {Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics}, pages = {261--268}, year = {2005}, } @Article{DesTen03, title = {Global Versus Local Methods in Nonlinearity Dimensionality Reduction}, author = {de Silva, V. and Tenenbaum, J.B.}, journal = {Proceedings of Neural Information Processing Systems}, volume = {15}, pages = {721-728}, year = {2003}, } @article{DuFabGun99, title = {{Centroidal Voronoi tessellations: applications and algorithms}}, author = {Du, Q. and Faber, V. and Gunzburger, M.}, journal = {SIAM review}, pages = {637--676}, year = {1999} } @Article{CroMcCBur08, author = {Jerry Cromwell and Nancy McCall and Joe Burton}, title = {Evaluation of Medicare Health Support Chronic Disease Pilot Program}, journal = {Health Care Financing Review}, year = 2008, volume = 30, number = 1, pages = {47--60} } @Article{McCCroUra08, author = {Nancy McCall and Jerry Cromwell and Carol Urato and Donna Rabiner}, title = {Evaluation of Phase I of the Medicare Health Support Pilot Program Under Traditional Fee-for-Service Medicare: 18-Month Interim Analysis}, journal = {Report to Congress}, year = 2008, month = {October}, note = {CMS Contract No. 500-00-0022} } @Article{Foote09, author = {Sandra M. Foote}, title = {Next Steps: How Can Medicare Accelerate The Pace Of Improving Chronic Care?}, journal = {Health Affairs}, year = 2009, volume = 28, number = 1, pages = {99--102}, note = {http://content.healthaffairs.org/cgi/reprint/28/1/99} } @article{GhoSch03, title = {Multiple edit/multiple imputation for multivariate continuous data}, author = {Ghosh-Dastidar, B. and Schafer, J.L.}, journal = {Journal of the American Statistical Association}, volume = {98}, number = {464}, pages = {807--817}, issn = {0162-1459}, year = {2003} } @article{ThoOgdGal10, title = {{Chronic conditions account for rise in Medicare spending from 1987 to 2006}}, author = {Thorpe, K.E. and Ogden, L.L. and Galactionova, K.}, journal = {Health Affairs}, month = {April}, volume = 29, number = 4, year = {2010} } @Article{Weintraub95, author = {Hal Weintraub et al.}, title = {Through the Glass Lightly}, journal = {Science}, year = 1995, volume = 267, pages = {1609--1618}, month = {17 March} } @article{Forgy65, author = {EW Forgy}, title = {Cluster Analysis of Multivariate Data: Efficiency vs Interpretability of Classifications}, journal = {Biometrics}, year = {1965}, volume = {21}, OPTpages = {768-769}, } @article{GatGev89, author = {I Gath and AB Geva}, title = {Unsupervised Optimal Fuzzy Clustering}, journal = {IEEE Transactions On Pattern Analysis and Machine Intelligence}, year = {1989}, volume = {11}, number = {7}, pages = {773-780}, } @Article{CueGorMat97, author = {JA Cuesta-Albertos and A Gordaliza and C Matran}, title = {Trimmed K-Means: An Attempt to Robustify Quantizers}, journal = {Annals of Statistics}, year = {1997}, volume = {25}, number = {553-576}, } @TechReport{ZhaHsuDay99, author = {Bin Zhang and Meichun Hsu and Umeshwar Dayal}, title = {K-Harmonic Means: A Data Clustering Algorithm}, institution = {HP Laboratories}, year = {1999}, number = {HPL-1999-124}, } @conference{Karayiannis94, title={MECA: Maximum Entropy Clustering Algorithm}, author={NB Karayiannis}, booktitle={The 3rd IEEE International Conference on Fuzzy Systems}, pages={630--635}, year={1994} } @article{McQuitty66, author = {LL McQuitty}, title = {Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data}, journal = {Educational and Psychological Measurement}, year = {1966}, volume = {26}, pages = {825-831}, } @article{Fraley98, author = {Chris Fraley}, title = {Algorithms for Model-Based Gaussian Hierarchical Clustering}, journal = {SIAM Journal of Scientific Computing}, year = {1998}, volume = {20}, number = {1}, pages = {270-281}, } @article{KoyGraRam05, author = {M Koyuturk and A Graham and N Ramakrishnan}, title = {Compression, Clustering, and Pattern Discovery in Very High-Dimensional Discrete-Attribute Data Sets}, journal = {IEEE Transactions On Knowledge and Data Engineering}, year = {2005}, volume = {17}, number = {4}, } @article{GuhRasShi00, author = {S Guha and R Rastogi and K Shim}, title = {ROCK: A Robust Clustering Algorithm for Categorical Attributes}, journal = {Information Science}, year = {2000}, volume = {25}, number = {5}, } @article{HeyKruYoo99, author = {LJ Heyer and S Kruglyak and S Yooseph}, title = {Exploring Expression Data: Identification and Analysis of Coexpressed Genes}, journal = {Genome Research}, year = {1999}, volume = {9}, pages = {1106-1115}, } @article{BroPihDatDat08, author = {G Brock and V Pihur and S Datta and S Datta}, title = {clValid: An R Package for Cluster Validation}, journal = {Journal of Statistical Software}, year = {2008}, volume = {25}, number = {4}, } @article{MeiShi01, author = {M Meila and J Shi}, title = {A Random Walks View of Spectral Segmentation}, journal = {8th International Workshop on Artificial Intelligence and Statistics (AISTATS)}, year = {2001}, } @article{DhiMalMod03, author = {Inderjit Dhillon and Subramanyam Mallela and Dharmendra Modha}, title = {Information Theoretic Co-Clustering}, journal = {Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, year = {2003}, volume = {9}, } @article{Lerman91, author = {IC Lerman}, title = {Foundations of the Likelihood Linkage Analysis Classification Method}, journal = {Applied Stochastic Models and Data Analysis}, year = {1991}, volume = {7}, pages = {63-76}, } @article{WanQiuZam07, author = {S Wang and W Qiu and RH Zamar}, title = {CLUES: A Non-Parametric Clustering Method Based on Local Shrinking}, journal = {Computational Statistics \& Data Analysis}, year = {2007}, volume = {52}, number = {1}, pages = {286-298}, } @misc{Leisch99, author = {Friedrich Leisch}, title = {Bagged Clustering}, howpublished = {Working Paper 51, Adaptive Information Systems and Modelling in Economics and Management Science}, month = {August}, year = {1999}, } @article{Rajesh96, author = {Dave Rajesh}, title = {Fuzzy Shell-Clustering and Applications to Circle Detection in Digital Images}, journal = {Internationl Journal of General Systems}, year = {1996}, volume = {16}, pages = {343-355}, } @Book{Kullback59, author = {Solomon Kullback}, title = {Information Theory and Statistics}, publisher = {Dover Publications}, year = {1959}, } @book{KauRou90, author = {L Kaufman and PJ Rousseeuw}, title = {Finding Groups in Data: An Introduction to Cluster Analysis}, publisher = {Wiley}, year = {1990}, } @Article{Washington08, author = {Ebonya L. Washington}, title = {Female Socialization: How Daughters Affect Their Legislator Fathers' Voting on Woman's Issues}, journal = {American Economic Review}, year = 2008, volume = 98, number = 1, pages = {311-332} } @Article{Muller59, author = {M.E. Muller}, title = {A Note on a Method for Generating Points Uniformly on N -Dimensional Spheres}, journal = {Comm. Assoc. Comput. Mach.}, year = 1959, volume = 2, pages = {19-20}, month = {April} } Zelig/vignettes/Zelig.bib0000644000176000001440000000335512061700507015120 0ustar ripleyusers@manual{ImaLauKin-gamma11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { gamma: Gamma Regression for Continuous, Positive Dependent Variables }, year = 2011, url = { http://gking.harvard.edu/zelig } } @manual{ImaLauKin-logit11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { logit: Logistic Regression for Dichotomous Dependent }, year = 2011, url = { http://gking.harvard.edu/zelig } } @manual{ImaLauKin-ls11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { ls: Least Squares Regression for Continuous Dependent Variables }, year = 2011, url = { http://gking.harvard.edu/zelig } } @manual{ImaLauKin-negbinom11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { negbinom: Negative Binomial Regression for Event Count Dependent Variables }, year = 2011, url = { http://gking.harvard.edu/zelig } } @manual{ImaLauKin-normal11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { normal: Normal Regression for Continuous Dependent Variables }, year = 2011, url = { http://gking.harvard.edu/zelig } } @manual{ImaLauKin-poisson11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { poisson: Poisson Regression for Event Count Dependent Variables }, year = 2011, url = { http://gking.harvard.edu/zelig } } @manual{ImaLauKin-probit11, author = { Kosuke Imai and Olivia Lau and Gary King}, title = { probit: Probit Regression for Dichotomous Dependent Variables }, year = 2011, url = { http://gking.harvard.edu/zelig } } Zelig/MD50000644000176000001440000005466012217234503011676 0ustar ripleyusers577c21becf5e9c56c5fe0e528be7424d *CHANGES 263b03fca1747f78c6f7dc74e8d028b3 *COPYING edc38b6ac6225e48a65c07509990e71a *DESCRIPTION 1ac2c7f3615bd20410c3c28653a88a97 *NAMESPACE bd30b95abbc5202460180cb71124ac1b *NEWS b087530253b66e2f221a18045b8b2797 *R/GetObject.R 04b1a37fe9c0ea566ee393326e1b1e1d *R/GetSlot.R fec78b51d14f64c8fd150423b150ea6c *R/GetSlot.zelig.R dced6b0eac63aed97fb5a4dda097b21e *R/MCMChook.R 9b6ed3cf40cf3c85d9f0027d16b2d0a2 *R/MLutils.R 922284ab917d3c8020c260774dd310c6 *R/Zelig-package.R 38ff46f6c8894a6edb307ab769c1df47 *R/as.dataframe.setx.R 8c993d074f1cdb9f04ac32d7c2059cf0 *R/as.matrix.pooled.setx.R 9fb636319620cbc85fafa03eb71c1564 *R/as.matrix.setx.R e0953e2dca569c7777227d6ca1c575a7 *R/as.parameters.R af7d00382f5752ed4d43da5987251fd3 *R/as.qi.R a069447d1fef9f59f5c5baa13868d4cc *R/as.summarized.R fce511662ec23766b6c8008f9487ea9b *R/as.summarized.list.R 281ca3ae7ed98ff52d143c443d967cf9 *R/attach.env.R a8d5150931b2b16fe54ec095103384f9 *R/bootfn.default.R 57a7b009cdd02bac27d8de7eec9b7579 *R/bootstrap.R f3baaa4332c8a63ee08391380c8610b6 *R/bootstrap.gamma.R b15d34bc142939e4187892e1f87aaa67 *R/bootstrap.negbinom.R 1e627353517c14db57aaa418fbe47927 *R/bootstrap.normal.R 18dcd166adb42d5394871285446aace1 *R/callToString.R bbb80a37728924859ec04c51e4012f8f *R/cluster.formula.R 034ffe0bb6847bae195f0a4b4b622cfa *R/cmvglm.R 605fd97789b918b1551ef1ba115c21d9 *R/common-methods.R 3baba2387850a5790bed8a37791e5351 *R/describe.R 25c13325bf3130035c20b7aae04e3cb4 *R/describe.default.R 7725517c5014cb8bf5f61d158e90ec32 *R/describe.zelig.R 86cd18c299b633531983e9b3c6d47c80 *R/description.R 9dbbfc42a46347db9838de2c55255c45 *R/exp.R c2df466056cad5fcdb6b69094966df03 *R/factor.bayes.R 122238465b2d50bc98c3472166c8083f *R/gamma.R d5b500d351bf6bf0504d5e0e0f91e8cb *R/gamma.gee.R e240ebf5f63cfea783259426b4439b8e *R/gamma.survey.R d4d37567c7a668594f16aa1fb2b87524 *R/get.package.R 2d4d275c23474b79dd5a44433c2a1fe9 *R/getPredictorTerms.R 2b0ecd0287f4a0261e715ee86d195e28 *R/getResponseTerms.R 3e72a999f3dd2e3bab609a66cd0b7f6a *R/getResponseTerms.formula.R 8c60d36664b0f5b65460c8038899aa02 *R/getResponseTerms.list.R 23bebcebf65e49089e37367ab0d4d1e2 *R/help.zelig.R 1a9c2fdc0277364a211a9b051a734ed9 *R/ignore.R da6bd58b3374044577642c068d6bd45f *R/is.formula.R 5f1230fa11c859fc902f2c026521a20e *R/list.depth.R 884b01095b353823da0ecc4f9ec0e803 *R/logit.R 390532016c7c3259b80f261771917c72 *R/logit.bayes.R d8f4ccc940d87ceeca7a9d49872d8147 *R/logit.gee.R 8afab5bb4e93510fa4d2889813314109 *R/logit.survey.R 7fb40166a123fdfcc57f95d53626e1df *R/lognorm.R a392f5cc85177a05e18aebf1411c3e85 *R/ls.R 1be0c5070cd5bbeae803a4e4c0ea9782 *R/make.parameters.R 722f70b4ab267ed63c12775d26d97210 *R/makeModelMatrix.R f80e2219a6824b74d020fa3d73c5bcf2 *R/mi.R c6dba740ff5b5b45b10d08ee84f02a81 *R/mlogit.bayes.R 47a223326c0d43f7682ee7ee09c11a8c *R/model.frame.multiple.R 057b9fe88d7a95248d344659c747c741 *R/model.matrix.multiple.R e335ed7e0bf3ce1218bfa659edabfd98 *R/model.matrix.parseFormula.R e3e1629fa2bdd28a9a4606501723437e *R/model.warnings.R e8eeed1cda2ed6af7b4513f171ee99cd *R/multi.dataset.R a2338a7f2a569d976a7431c516a55ce4 *R/multipleUtil.R d41d8cd98f00b204e9800998ecf8427e *R/names.relogit.R 1dc7173a8065deed986ce0d102afc4d2 *R/negbinom.R bde1114a0a7f7dd4686d69fd6a66fc6f *R/normal.R c9ea43bfb803fdf16569fa19bb23bd9e *R/normal.bayes.R be1a168ba1761809c8e7c3e2fa45a662 *R/normal.gee.R c532712f4284ce882a4fb8ef708a2161 *R/normal.survey.R b419598efacb4f6db0a75c41387cb3bc *R/oprobit.bayes.R 5b8d60db6ebb46faf99d0ace8d8cdee1 *R/param.R 246f95bbf2338c3d83b3f573e3d74613 *R/parameters.R 4256c2a803299e053aef257d076cae8a *R/parse.formula.R 80ca8d82671353a2c58694af079fd50a *R/parseFormula.R dd2d201c03933dcd464fc7eb0ca33b50 *R/plots.R 995511490db5fd0770d8bf1f797e337a *R/poisson.R 06f7988988376b2fcbe80d550b41546b *R/poisson.bayes.R d365262df07215b227411820d0a7b6c6 *R/poisson.gee.R 490a754a436a5aea141d57b6028e84e1 *R/poisson.survey.R 88cad5ed1eeb242eeea3ad46118a4e43 *R/print.R 91e476019d62c0d863dbf20f0d25774a *R/probit.R 0810aa237d64f6108655e2ce6cc96dbe *R/probit.bayes.R b99bcb6128cee77d276e7842835f6cce *R/probit.gee.R 9146c4b6f8823d638fbd9edfd6d49359 *R/probit.survey.R 94221b6f88ee82df95fd82560b91cf74 *R/qi.R 457528566b2e4e2d4555fe6d0763ac71 *R/qi.summarized.R 9d6a844d7dd8e981c54873c6d9e73b1f *R/relogit.R 2e86f2447930d4d4c8bec285e5d99fdd *R/repl.R 8c9d7d6f667dbd1685020090536e8472 *R/robust.glm.hook.R b5aa8503dcb438182d3c4abe2116cf66 *R/robust.hook.R 90a390fe2a8e84fb283a73648a6c5faf *R/setx.R 1d0ec64c99e67ef82349ad39ed1bb5f6 *R/sim.MI.R 07784710c5dc5b989f320184ddfa70fc *R/sim.R c271f5826afc0d1905363a718becfe83 *R/sim.default.R 273efcd0bd95588cb76835a799f913c8 *R/simulation.matrix.R 530a23c14badb456da3f26cd18574810 *R/simulations.plot.R 13d14dc0c552b55857c56d10ba43cb3a *R/summarize.R 9545402c696aa3c3c8328bc539e90f37 *R/summary.R 5f82bb886519200bfb8ef9c6b7e2c3b2 *R/t.setx.R 26a1ddd198da5b23b007bd5154add412 *R/terms.R aa36e193d4ac3b6a77eaf39d36c6b109 *R/termsFromFormula.R 60a72741864b42dc622f729d7f103235 *R/tobit.R a63434f6d1e10509df1a2a2d916d68ac *R/twosls.R ad6237fff8d120414edbb13e090eb5b2 *R/user.prompt.R b1547c95d94d113b0b2b759c0aa52222 *R/vcov.R 6b22678c08fed5bb69c63a89018c8e49 *R/z.R 7f404f13a7309f2edabeb2c5f6ab2cbf *R/zelig.R a6e8f15dbebb2be11fe21a697e7fe79d *R/zelig.skeleton.R 0b2980cf9cc2abfd8d935a4847d4c2f3 *R/zelig2.R 778221f28a111f964ae64f328edb59e8 *R/zeligBuildWeights.R bb500fd793bba24dd5794f4da6401132 *R/zzz.R 5dde81c7d95c4d5ee7c2d6112a56ed45 *README 3cc5f0b138fc2b0b28111f49c37e09ac *build/vignette.rds d8568ae5389248b670f8c744a6393bc5 *data/MatchIt.url.tab.gz 42bfcc353eae9f5f6903d5018fd21f17 *data/PErisk.txt.bz2 118d8ee31df10e8303e70d33299afde0 *data/SupremeCourt.txt.gz b7e99eba34328eb8666a65215d295aec *data/Weimar.txt.gz 2b28913437fe43e4a443c2135967db7a *data/Zelig.url.tab.gz 563377d20b9e0aaf15d021fe889495b1 *data/approval.tab.bz2 9117157e9719f41f4d6a2d0687717ed6 *data/bivariate.tab.bz2 40b068ce0210035c9a2a0f7c7cd70f6e *data/coalition.tab.xz 03b4d236774f27b217f9c8a63eecbfcd *data/coalition2.txt.xz 809c9dc00afa3a9a2fac98c6a5beb07a *data/eidat.txt.gz 9d604cbab664c61aecb2029b22e1ff09 *data/free1.tab.bz2 9d604cbab664c61aecb2029b22e1ff09 *data/free2.tab.bz2 e6d3d10b9f34dc691c29b473ce907117 *data/friendship.RData 66063f43a7ab713fe9902234fff20336 *data/grunfeld.txt.gz 350bdb7fcd6af5111de558dc4d95dbdc *data/hoff.tab.gz 21e5c0751ad485d6f448f45b327f8296 *data/homerun.txt.xz 5b1c5c74480e42e2f30dd4073339c996 *data/immi1.tab.bz2 21ff00f1c79aee15b3f1d5b8bcbd2ee8 *data/immi2.tab.bz2 8ef232b45f22946cded1429acb6214a6 *data/immi3.tab.bz2 75769e27e13bd6ac0332421b54f5ea20 *data/immi4.tab.bz2 816d147c1d03cb1c975f40616129339d *data/immi5.tab.bz2 a22a6142a8adf930c06bd35bdaea3a3e *data/immigration.tab.bz2 758ac52b426648bfdfa6cb5890525322 *data/klein.txt.gz 4b90f1abe69813998c0e883ea50d8d1d *data/kmenta.txt.gz d9c7b186a14fecbe1de9de9a92678a07 *data/macro.tab.xz d4d8ae34bc9283fb37eed1e4823b7530 *data/mexico.tab.bz2 f0f226b3b844530f36498e42c75b1703 *data/mid.tab.bz2 c10afea1fb3a11e9aa8b6c5717bc6e2f *data/newpainters.txt.bz2 839ca4b77a23441da065a7db969b8882 *data/sanction.tab.bz2 a263796f7d1d4dacd9104088e923cb29 *data/sna.ex.RData bc8dca44e8c9f5b07da91bc0a10cb26a *data/swiss.txt.bz2 6ac34a147ed09bb7cbc393d35382cd85 *data/tobin.txt.gz b7ffde3c50f11549db21d920a600605d *data/turnout.tab.bz2 6346b190eb5375586fbbb87cc8926124 *data/voteincome.txt.bz2 b3278389e0d96f8465a1aa1ee5cdb070 *demo/00Index 3b0efd341facce5bf27391cfb0e10d79 *demo/Zelig.HelloWorld.R 6c5015399f7e0b91ac107fcbd790ce33 *demo/exp.R dbc45d1cfb23ef9e0741e13a985aae74 *demo/factor.bayes.R 9a1be8041e1ec3b22b6ebfb641abf783 *demo/gamma.R 5b05bfcdc9d10a518c4ede23e2c44400 *demo/gamma.gee.R c3be56905783df81f90f20f61c5de12c *demo/gamma.survey.R 4507c6194f692d249751fc798c8d08cf *demo/logit.R 81c44823cfeccee63ed0614756972e06 *demo/logit.bayes.R 47e45df8683896d5da1fda6e536e2a7f *demo/logit.gee.R 49456e875d48127913cbb4965e3b5f9c *demo/logit.survey.R 588688ad2bf33680472aca01c1928149 *demo/lognorm.R 483314f54b7b8a8414a6c7c070952ce9 *demo/ls.R 34a1e173102a8e3580402fd97af5f516 *demo/mi.R f5861bcbf70c2d7c2c70d81d86d39af1 *demo/mlogit.bayes.R 7db69d65a9c2c46773eeb7a4b1f3a9de *demo/negbinom.R 14c8b85bca57a7cb1451bc3dfb10e3fa *demo/normal.R 495061a7c0b681610c99c1b0dcc28fdd *demo/normal.bayes.R 4384f1f9cac3718c31713dcb589c1b4d *demo/normal.gee.R 445550b68a8fa873ae2e3221921dac62 *demo/normal.survey.R ab9b753894065112812022419b4194e2 *demo/oprobit.bayes.R dd0649acf889bb4d92ff4a9ac0f1f94c *demo/poisson.R 4f8d7638e1a58166b74ba97c4b78753f *demo/poisson.bayes.R 637f75deedcde3780f381c550cb0007f *demo/poisson.gee.R c92a8fead665a2caa59d7c1dce82c0c5 *demo/poisson.survey.R c87c01971457e57842e3052a22ad607b *demo/probit.R 0e63f5a84bc11793b58e3c10b366081b *demo/probit.bayes.R 3063e1bb3f9c31ea1cc0cffd4d93d075 *demo/probit.gee.R 1b1c5bd37ec746d04910dafd9e9d67e8 *demo/probit.survey.R 7e02b50c97835c7f3a20fc51b10a5fbf *demo/relogit.R fb3e86404eb48271f47eb48c0dfe0db5 *demo/twosls.R aaf49ebca2bd4abd8b90a152da0f9b0e *demo/vertci.R 0d0d1c14fbef07ec707ccbeaa1806efc *inst/doc/gamma.pdf 167daeb0529d31f16b9f352c12736e5b *inst/doc/logit.pdf 91030650a8d82f3f59d01187c630aef7 *inst/doc/ls.pdf ea1a15763d2d9cb490f624942e823784 *inst/doc/manual-bayes.R f654c2c81608dea5d6d611522454682e *inst/doc/manual-bayes.pdf d6e77d18e7c793cddb4305ac51cca002 *inst/doc/manual-gee.R 768766facf9002600b590c5c2cbfa145 *inst/doc/manual-gee.pdf d1227d16d2cbd838ef3bac6641568c1b *inst/doc/manual.R b7d5c2e9d4861d5a31b564235eecc857 *inst/doc/manual.pdf b110ff07eda2be42ed1430efcb0c0051 *inst/doc/negbinom.pdf 995acc30b4cf84e3555c850a6d2f677a *inst/doc/normal.pdf 33df7df4e1113c852bffda80a0529056 *inst/doc/parse.formula.pdf a235b51b2668e7905bb97fca42a0d879 *inst/doc/poisson.pdf d8439c38a20251d17224b157326b7d8a *inst/doc/probit.pdf 024a6c851932cfcf47054a89696cf5fd *inst/doc/twosls.R 604b2e6ff000dc5b0d697181b59c3a21 *inst/doc/twosls.pdf bbc5b26d487010691036f3a2626e03c5 *inst/templates/DESCRIPTION 1f675b08283031c5ed15607ae39eb3b8 *inst/templates/PACKAGE.R d41d8cd98f00b204e9800998ecf8427e *inst/templates/ZELIG.README fc182c4100f4789333fd2dd78bf7f92c *inst/templates/describe.R f17c6c109624641719be76a9e5ba5ede *inst/templates/param.R 2aed8671075ebf1457a96da96879b28e *inst/templates/qi.R 530c754f2afa6b440664b9b2cc040c75 *inst/templates/zelig2.R c9bd6c94c6336ebd9598acec18f97bc0 *man/GetObject.Rd 4a74d5cdef2fbd4d6bfe97305cceac6c *man/GetSlot.Rd 453e3d46105fc8199620512e0b6c4e82 *man/GetSlot.zelig.Rd 784832952993d1e953cef1faf1335554 *man/MCMChook.Rd 6dffb5b20df0d6fa72529763c7f62a27 *man/MatchIt.url.Rd 0c3084f4758abddde8685ff64c411db2 *man/Max.Rd f5e18a14c6b0d61846a0121daafb4b7c *man/McmcHookFactor.Rd 3d559d57f5f1960561ab873c81549f89 *man/Median.Rd e356125658c18d9ce162080fc443e79c *man/Min.Rd 9ad339b46e6e3653d3ee823eea2830d7 *man/Mode.Rd 0641d8ba40e205316b2d2fbe0fb5eaf5 *man/PErisk.Rd 58172f8c13fe9864a8ac2e26fbd391de *man/SupremeCourt.Rd 5a035cf4a11e64ae120b7dc2f9700008 *man/TexCite.Rd fe15364db9b4e80c56722eec238629e7 *man/Weimar.Rd 643e1e6e1be099a7018af34911cd710f *man/Zelig-package.Rd 8ded77c2eb2977abe80918da28c0782a *man/Zelig.url.Rd 233f3a62ca4cd15cbd9bcfa16a979881 *man/ZeligDescribeModel.Rd aead67c0c6da91ab1d7f19af2824d037 *man/ZeligListModels.Rd 6fa7bfa9d92779c30481d6f113bde54a *man/ZeligListTitles.Rd e1a3a7386d920fa043fb322abe8756fe *man/alpha.Rd 7e5422c7821d99df3cd21a9e789c5cb6 *man/approval.Rd b0e49b8c8af1a58c1ffec7f9c5fb85da *man/as.bootlist.Rd 98c5b6a6e86079e6dc3a840d6294ed3f *man/as.bootvector.Rd c6197a492a799f5028bbfaffeae74cff *man/as.data.frame.setx.Rd cb25845ba9fdb44eef75f01afc59305e *man/as.description.Rd 68fed7a45cb4432bdf9f66da04d5d7b6 *man/as.description.description.Rd ea835225f64f0b57d3ff642d5883d119 *man/as.description.list.Rd 738db6158fd3beabb5ced5403beb98ba *man/as.matrix.pooled.setx.Rd 851f39fc7c78240e2e69df1d737da0a8 *man/as.matrix.setx.Rd 10958eb02ef264ad5a639432294b848c *man/as.parameters.Rd b6d87e40368e8f26413112fe647d3b4f *man/as.parameters.default.Rd 2f5a002c1dc83ddc03c1bfae46fab8e8 *man/as.parameters.list.Rd c6d321f1daca4d0a333c8e590b8c4d36 *man/as.parameters.parameters.Rd b45437817da882d869e3017a3ccefc3a *man/as.qi.Rd 10f4fcd3618643b9339a8288b4ad1406 *man/as.qi.default.Rd b64e11467fc8952a22b1cc95d1601f10 *man/as.qi.list.Rd 5d9f612735bf8a60c2c2f49f736d5217 *man/as.qi.qi.Rd 3cf9ae08fd13f68ebf7c0efaafe31365 *man/as.summarized.Rd 862925d5cde1fc83b59f74a0752668d6 *man/as.summarized.list.Rd 2c47c7167bc70c1fcf7d8b96a2d2b0f9 *man/as.summarized.summarized.qi.Rd 6828b0d881bc787ab5d08665770916ec *man/attach.env.Rd 83d85754bfcbadc14cfe8dc538007d0b *man/bivariate.Rd 41d681b024e1156e65dbf19ef732b68d *man/bootfn.default.Rd 45ab871f55572cfe62b1e5954a2460a8 *man/bootstrap.Rd 4c937f3a46fa2c4cd17636a6629cf107 *man/bootstrap.default.Rd 06b3b50467d814f0232240357c683547 *man/bootstrap.gamma.Rd 42617ae2cf1b45be1c70f2657db9a934 *man/bootstrap.negbinom.Rd 70d4bf51840d417a42756b30be007553 *man/bootstrap.normal.Rd 524cb5ea071b054abed5c4d4958c06dd *man/callToString.Rd 5a0f6a763f1b4e93bfb0c3675cf1f5f4 *man/cite.Rd 294f05247a62c832331330d9263fcee7 *man/cluster.formula.Rd f57c88e9649b4188a10635c6833bc33c *man/cmvglm.Rd 3b01d1373c2b9f311a70f150f8a3e7cf *man/coalition.Rd d9588301df675d5e63882097e8130ea2 *man/coalition2.Rd 6b1d516559cd05f32dc64b14a40ff321 *man/coef.parameters.Rd f60d8fa916719234a99bcfc58fa44977 *man/combine.Rd ba3a632f7ec6a5f903ebfd1465448cb7 *man/constructDataFrame.Rd 55a88929afcdbc4d351ea8500bc795ec *man/constructDesignMatrix.Rd 4b09bd9ab242c0b67e5626e0b7d32da2 *man/depends.on.zelig.Rd 98315ff01f7c1ecd2ad1c7cc96ebea1d *man/describe.Rd 34336df2b30c26705d57728707ef48fd *man/describe.default.Rd 637599adac074b6ceb1e63711e39e7ac *man/describe.exp.Rd 4d646e38b5d6d52b162fffd1ef152c9a *man/describe.gamma.Rd f142f11f4df7402bcfd27882facb9465 *man/describe.logit.Rd 8681bc0f95fbf3cc724fe45a3888f12c *man/describe.ls.Rd a3d647c361183857fdab12c3465b2b2e *man/describe.negbinom.Rd 120b7375c8097e1cf5b8daf24aaeb164 *man/describe.normal.Rd 39e04467b04c947a7647acf3283f2a40 *man/describe.poisson.Rd 644d8e676e7735a8043189b78a70523c *man/describe.probit.Rd 16d54cde09a2ada7394b2c02435b1287 *man/describe.tobit.Rd 87c6fd1b4f212d2592c112e0682f8590 *man/describe.zelig.Rd 6f08d366da6bc44fdd951a705e8115f1 *man/description.Rd 11ad69ed866d12262602fc3b786091d4 *man/eidat.Rd 73a2f7194321c4edeb5d69c878c37167 *man/find.match.Rd d8e4df6b181afc5e10fee0d774850c90 *man/free1.Rd 788c8364b3a5ff56275ed6f1de9b7790 *man/free2.Rd 9308b489e0e1fa78db5aa3a0267058c1 *man/friendship.Rd 3c0993ec2cccedfa85723963fd153611 *man/get.package.Rd 2d06d33e4f904368f053bb261437a862 *man/getPredictorTerms.Rd 465423b551f5a638a20bd99550f3c157 *man/getResponseTerms.Formula-not-formula.Rd 221b400f09d18267827cc6d864d81f5e *man/getResponseTerms.Rd cbc0c02ce6572fc96d8d2c8713baed62 *man/getResponseTerms.formula.Rd 9becd5adc4ce12ee099cdfbb41a87712 *man/getResponseTerms.list.Rd 1f77e073ad9ed30b57064d284fe0f2a6 *man/grunfeld.Rd face801c31d1dc268b6289a1ea5aa8c0 *man/has.zelig2.Rd e9d755c538423b59f86ae485fd9f615f *man/help.zelig.Rd 2c288905c76033d24c8f7f57b0d65d40 *man/hoff.Rd 5f0c67b452fcfdfb90eb29a5d8ed1097 *man/homerun.Rd 065cad3e06bc5b280ad685677abb0d74 *man/ignore.Rd 20131069ca801fde8baa331de4b7657e *man/immigration.Rd bd950ad3a6dd8c54ad6655872c7dfb69 *man/is.formula.Rd 338f8a5835bea2f84b7fa6dcf0af657e *man/is.qi.Rd b681dcd3ebf33d9c5ceeb51ef40c826f *man/is.valid.qi.list.Rd 4b386091dbdb2f05991417274ba37d1f *man/is.zelig.compliant.Rd c7ee6bc2ceeb30482f0340167d36a9f7 *man/is.zelig.package.Rd 81c4ba627b9e0c72a52277a18b8baa7a *man/klein.Rd e01f00d574aa52df6ae5c03e836c79b3 *man/kmenta.Rd 9a85bd994b7c1306c6721151f15566de *man/link.Rd 897e4e2473be3f9de1c597c3270069f0 *man/linkinv.Rd 581ff0fd47c5280102e0c32ac3cb188e *man/list.depth.Rd b0a27dc8fbd7472a907ce1efcd5d61d8 *man/list.zelig.dependent.packages.Rd c67df5f8da39b1d03d9057a70d525a6b *man/list.zelig.models.Rd 631d28c57a183d19abc2c3393469d7de *man/loadDependencies.Rd 58bda9cf87e4f5c413a73aedc14bb159 *man/macro.Rd 2ba5cbca95a93f318d474f6b3fb69832 *man/make.parameters.Rd 6b04dd54072499f51a6d907887b6ff41 *man/makeModelMatrix.Rd 7f77974ebd56cb8c3cb286a7a871c42c *man/makeZeligObject.Rd f9c9396da5c2e9ab849dd470df38c0f5 *man/mexico.Rd 0d2a6b5e4916ff0c691c773a91e5644a *man/mi.Rd 485a9a9403ecf50f15440f191801f2a2 *man/mid.Rd 67fd27df704501a7488a7354343b9c8d *man/mix.Rd f2989d1582d56b7ed47a09fd179936ff *man/model.frame.multiple.Rd 71b500e88dc689d6991e0267994c7c20 *man/model.matrix.multiple.Rd 78206eb5459fe64390498ae12548b4b1 *man/model.matrix.parseFormula.Rd 5254acd8bc4fef34301afc991fc07252 *man/multilevel.Rd d1c1a887fa9678ca30d132892ef762de *man/name.object.Rd d7cda1a9c4a73cdc91befb37c36a8901 *man/names.qi.Rd d7905236f8793559d3c452facbc3ea4c *man/newpainters.Rd e04b2f0a71aa447253375a12f195a3ea *man/param.Rd 803d9a00ea8f7e3d8a75ab6feae27931 *man/param.default.Rd cd29ee9bdf3ea6256769153fde38869c *man/param.exp.Rd f76209fa73c1b36644ac56b233d4122f *man/param.gamma.Rd c94a6c248d1fc6a88ce7ed8063277651 *man/param.logit.Rd 1b5d754ef9e96e292000f42271c183b9 *man/param.ls.Rd 55f5a3a524678ffe2af11db1ea84ccd2 *man/param.negbinom.Rd 01e5d1cd2e766188a57c2fd87f4bf91a *man/param.normal.Rd 90b8bc399c84ae33dfd3b1a365044852 *man/param.poisson.Rd 4ceab9c1912859dd59a9cb8b1e1d11ce *man/param.probit.Rd 39b0c8be9d995f7642b1f9519c5efc82 *man/param.relogit.Rd 3e6d072f5a4059bdad5873ff32017eca *man/param.relogit2.Rd d0b92597318ad87473d4d10c7cfce53c *man/param.tobit.Rd c2ca077a4c40ab85f6f3a248d1a0acf7 *man/parameters.Rd 50e3c177cba2d0c0b122d85c43cc09b4 *man/parse.formula.Rd 4b0740eaeb69d90ba468ef6575bf3563 *man/parseFormula.Rd 7d20becde042ea0facb79e610cb71122 *man/parseFormula.formula.Rd 821d71ca6ae7206b242590dedaa6864a *man/parseFormula.list.Rd f2eb66e75eaab06acbc38b201dd7d965 *man/plot.MI.sim.Rd 892eb691848679fffe6e366ebc9ce4b5 *man/plot.ci.Rd b8aef126fd49de819fff3453cc20d359 *man/plot.pooled.sim.Rd 34507a7ed081d653c8e5509d0c959a58 *man/plot.sim.Rd d0c103e40b38d54a4108a9c6013104aa *man/plot.simulations.Rd ac17ad9be163a17d0a5d7b30350d4b76 *man/print.qi.Rd 367b0c6d18525152b27cb1013a3f9555 *man/print.qi.summarized.Rd b27ee0bc8c9491f75c953ca27fc24d7b *man/print.setx.Rd df13b5983368d41f3612043d95b38a35 *man/print.setx.mi.Rd b5072e4e129ba0b28c7f5c6ea47dcf2e *man/print.sim.Rd ef5ee63ca6e4f23c25a63914ca16feec *man/print.summary.MCMCZelig.Rd fa80a23aae29624ac831bb90f32c14ef *man/print.summary.pooled.sim.Rd ec8c2c06c81608e34f09fc5b7ed5653c *man/print.summary.relogit.Rd e66e81ef463297415de8ade84e242dc5 *man/print.summary.relogit2.Rd 203891c1e2c0576052d2da6717399bb5 *man/print.summary.sim.Rd c7eb506e8c71f699afbc00d1c1b4fe7f *man/print.summarySim.MI.Rd 6b28ce03dca907fa837480069fa56bad *man/print.zelig.Rd 680cd1c79176cf28ef6c5a1dcca245f5 *man/qi.Rd b6bdef3602275edb000eb71e64d1ca59 *man/qi.exp.Rd 2546cd1df4831fe7c1fb368f9d09ae53 *man/qi.summarize.Rd dde5d2eb226a14bbaf9541386b4407ce *man/reduceMI.Rd 30941e963f829a38020b64a094212803 *man/relogit.Rd 64db643c8032b1362cac56cdc9b98e26 *man/repl.Rd 656fef44714f9e5f2cb63e39f9572368 *man/repl.default.Rd aa0c4a9184cb6a5f34d67827c0a64af6 *man/repl.sim.Rd a496bcce7e71378d22cd0938bf7563f7 *man/replace.call.Rd d46cf72bf76964907d1e15cee9a583c7 *man/robust.gee.hook.Rd 9727c64c5b8d6e24045d78d689c5dbf7 *man/robust.glm.hook.Rd 194900341a4145076a510bd4b3b69b2e *man/rocplot.Rd 685e8fe4738e2aad2ad73d7f2388570b *man/sanction.Rd 2443219ee36a1d7f1a995adfbb03eca2 *man/setx.MI.Rd fbca11d6a833ef32c79001dc7660f534 *man/setx.Rd 35ae732054417b4dd15561df6eea76c2 *man/setx.default.Rd b828c382fe49b52e0768d3c8f58246fe *man/sim.MI.Rd c1506f57a058d26b1dcafaf9a5329e93 *man/sim.Rd 0f8cd4ff64927ac5c040605c19eff20f *man/sim.default.Rd 77cc07e347939e579b117c93ee9acd3b *man/simulation.matrix.Rd fdaa2a66e1a6f52bab44d95d13ffceb3 *man/simulations.parameters.Rd ed6b11c524a1bdf7164c42721bc23f8c *man/simulations.plot.Rd 1eab2cf2e0c82ea67d16c8ad05571a9c *man/sna.ex.Rd 54d6dd5011a574c16c7f494eae45fc48 *man/special_print_LIST.Rd 781ec28f6c60ee7aaece1571725a3922 *man/special_print_MATRIX.Rd 7a064c38895979a1f9562891031c82fd *man/splitUp.Rd a84301cb431946f8887d01cc756ef364 *man/store.object.Rd 4f966930f5b6422521bb408266b1d154 *man/structuralToReduced.Rd 64a34068369970e69c9fb556d3aed895 *man/summarize.Rd a87af5212ad0e40d71379862d6dc2551 *man/summarize.default.Rd 3879f433725da0db03d1cb6600e1028f *man/summary.MI.Rd 288c2380bbb272af77d89d70ec648644 *man/summary.MI.sim.Rd 0e1ad76e17a9597f7218d3863cc60c1d *man/summary.Relogit2.Rd 2ba6219325aee97b57e05e13d1a61e21 *man/summary.glm.robust.Rd ee86a5246f90b4ed876b026442cac539 *man/summary.pooled.sim.Rd 1bd5a6763e3d675293bd4449a43d0746 *man/summary.relogit.Rd df0d723d1afa54ac3ee04f2379c9b43d *man/summary.sim.Rd 6459266f8831aec535e4b81000b45d83 *man/summary.zelig.Rd ca14c12e0087b1815d741b09dba0f5cc *man/swiss.Rd 29cd4b01a20aedd254d64c8bddf6f481 *man/t.setx.Rd e03c72941cd05a1a87ec1e96bf4e7a2f *man/table.levels.Rd 2b62155d275a1850ce6834c70b92b2b6 *man/terms.multiple.Rd 5c3cd23a97d6f35d4e9cbd649875a14d *man/terms.vglm.Rd 0cd8cf800eb4b6de6fdc253078af0f56 *man/terms.zelig.Rd 77f7851d9f7813d81f8e461fd42c7015 *man/termsFromFormula.Rd 6ff4e69066aedfcd7882e397d91b1dfa *man/toBuildFormula.Rd a75e0696550ade6ffe2e44144e98d75b *man/tobin.Rd b0c4b0f3838717ea98f43da5fe4f8b25 *man/tolmerFormat.Rd f7b42178326db13f916c540e911d3864 *man/turnout.Rd 54d6ad9e9be6c4abc531fd18c4d0b07a *man/ucfirst.Rd 69c49f3e5d195827788453416aad89f0 *man/user.prompt.Rd 01c9c5b45b38c6240e5a1831e153390c *man/voteincome.Rd 08bb4fc168852c1af1dfe900a99e416e *man/z.Rd d5a57f78acdf7e3665275691b7d51d0d *man/zelig.Rd db5d3d911b778db51d0ed336355060d4 *man/zelig.call.Rd bf3bf749ecafeb03ebaf312ce24e8751 *man/zelig.skeleton.Rd 73478e1acb2a5ab5a2ddce166461fe85 *man/zelig2-bayes.Rd 982fbf939e18d3a501c1a4edd9660e71 *man/zelig2-core.Rd 142acdbd460032c48b2fa9ab46ae9ae2 *man/zelig2-gee.Rd 92798192843543bd475f7a1127abebcd *man/zelig2-survey.Rd 0582491d8b2073639b1202c677d839ce *man/zelig2.Rd 585a585b5c00f26b8d87ea34234e8b58 *man/zeligBuildWeights.Rd 438bb2e5447a9d566fbcae4657974c34 *po/R-en.po 247f0490337165f500224fd5eab1de8b *tests/MatchIt.R 7104b3beb85e184be2193da209497f77 *tests/amelia.R b47aea86fa83382112dfa9e531d4fabc *tests/by.R 9ce2df193b74ae47a82024f81a35bf50 *tests/lognorm.R 04720577fdbcc28544b396b55164efe9 *tests/mi.R c0458e644bb50ace45e4b89f3adc235a *tests/mix.R 04b6f9b189a9fb6e4dbdfd959794521c *tests/models-bayes.R 4712575f3142cbe8894db95db0393f87 *tests/models-core.R b64512358b907c88cab39c8808ddd62f *tests/models-gee.R 7f82704b0c25112224ac2cdd89ebfaf9 *tests/models-survey.R 312e3a847f2874327c4338f9bcd10820 *tests/plot-ci.R cff6618ed3f2a58687d22c115ab745af *tests/pooled.R 32522f6db5aa52a087c7fed252054cd5 *tests/relogit.R 4f5bf07089b9425a121ab6cdae418c6a *tests/summary.MI.R bbb4157a80472a791a3fa21a06eaf2a2 *tests/twosls.R 55c2ecd46b3b0d9576b9aa82d0545124 *vignettes/Zelig.bib fa7f97b865034c25ca528ebfe02e0d0f *vignettes/Zelig.sty c9a0058c2df7ec58641689e43e66e9fc *vignettes/gk.bib a35da60f3f139a9a7cd6749353eb430f *vignettes/gkpubs.bib Zelig/README0000644000176000001440000003076112214411116012234 0ustar ripleyusers4.0-6 (August 25th, 2011): Experimental branch to improve the formula parser. 4.0-5 (August 25th, 2011): Stable release for R.13.1. Removed dependency on the 'iterators' package. This is part of a general move towards shrinking the size of Zelig's dependency list. To facilitate this change, the 'mi' object has been made more robust, and the 'zframe' helper object has been removed. For specifics, please refer to the CHANGES file 4.0-2 (May 16, 2011): Stable release for R 2.12,1. Major version update, and and addition of numerous API features. Core package now contains a mere 7 models. Dependencies having correspondingly been reduced to: MASS iterators survival methods For the missing models, please see the software packages: bivariate.zelig: bivaraite generalized linear regressions mixed.zelig: multilevel (mixed) generalized linear regressions multinomial.zelig: multinomial logit and probit regressions ordinal.zelig: ordinal logit and probit regressions survey.zelig: survey-weighted generalized linear models These models can be found on the Harvard IQSS website at: http://gking.harvard.edu/zelig/ Or via installations with: source('http://people.iq.harvard.edu/~mowen/install.R') 2.8-3 (May 29, 2007): Stable release for R 2.4.0-2.5.0. Fixed bugs in help.zelig(), and summary for multinomial logit, bivariate probit, and bivariate logit with multiple imputation. First version dependencies are as follows: MASS 7.2-34 boot 1.2-27 VGAM 0.7-1 MCMCpack 0.8-2 mvtnorm 0.7-5 survival 2.31 sandwich 2.0-0 zoo 1.2-1 coda 0.10-7 nnet 7.2-34 sna 1.4 2.8-2 (March 3, 2007): Stable release for R 2.4.0-2.4.1. Fixed bug in ARIMA simulation process. 2.8-1 (February 21, 2007): Stable release for R 2.4.0-2.4.1. Made setx() compatible with ordred factor variables (thanks to Mike Ward and Kirill Kalinin). First order dependencies as in version 2.8-1. 2.8-0 (February 12, 2007): Stable release for R 2.4.0-2.4.1. Released ARIMA models and network analysis models (least squares and logit) for sociomatrices. First version dependencies are as follows: MASS 7.2-31 boot 1.2-27 VGAM 0.7-1 MCMCpack 0.7-4 mvtnorm 0.7-5 survival 2.31 sandwich 2.0-0 zoo 1.2-1 coda 0.10-7 nnet 7.2-31 sna 1.4 2.7-5 (December 25, 2006): Stable release for R 2.4.0-2.4.1. Fixed bug related to {\tt names.default()}, summary for multiple imputation methods, and prediction for ordinal response models (thanks to Brian Ripley, Chris Lawrence, and Ian Yohai). 2.7-3 (November 9, 2006): Stable release for R 2.4.0. Fixed bugs related to R check. 2.7-2 (November 5, 2006): Stable release for R 2.4.0. Temporarily removed ARIMA models. 2.7-1 (November 3, 2006): Stable release for R 2.4.0. Made changes regarding the S4 classes in VGAM. The ARIMA model for time series data added by Justin Grimmer. First level dependencies are as follows: MASS 7.2-29 boot 1.2-26 VGAM 0.7-1 MCMCpack 0.7-4 mvtnorm 0.7-5 survival 2.29 sandwich 2.0-0 zoo 1.2-1 coda 0.10-7 2.6-5 (September 14, 2006): Stable release for R 2.3.0-2.3.1. Fixed bugs in bivariate logit, bivariate probit, multinomial logit, and model.matrix.multiple (related to version 2.6-4, but not previous versions, thanks to Chris Lawrence). First level dependencies are as follows: MASS 7.2-27.1 boot 1.2-26 VGAM 0.6-9 MCMCpack 0.7-1 mvtnorm 0.7-2 survival 2.28 sandwich 1.1-1 zoo 1.0-6 coda 0.10-5 2.6-4 (September 8, 2006): Stable release for R 2.3.0-2.3.1. Fixed bugs in {\tt setx()}, and bugs related to {\tt multiple}. Added instructions for installing Fortran tools for Intel macs. Added the RxC ecological inference model. 2.6-3 (June 19, 2006): Stable release for R 2.0.0-2.3.1. Fixed bug in VDC interface functions, and parse.formula(). 2.6-2 (June 7, 2006): Stable release for R 2.0.0-2.3.1. Removed R x C EI. Changed data = list() to data = mi() for multiply-imputed data frames. First level version compatabilities are as for version 2.6-1. 2.6-1 (April 29, 2006): Stable release for R 2.0.0-2.2.1. Fixed major bug in ordinal logit and ordinal probit expected value simulation procedure (does not affect Bayesian ordinal probit). (reported by Ian Yohai) Added the following ecological inference (EI) models: Bayesian hierarchical EI, Bayesian dynamic EI, and RxC EI. First level version compatabilties (at time of release) are as follows: MASS 7.2-24 boot 1.2-24 VGAM 0.6-8 MCMCpack 0.7-1 mvtnorm 0.7-2 survival 2.24 sandwich 1.1-1 zoo 1.0-6 coda 0.10-5 2.5-4 (March 16, 2006): Stable release for R 2.0.0-2.2.1. Fixed bug related to windows build. First-level dependencies are the same as in version 2.5-1. 2.5-3 (March 9, 2006): Stable release for R 2.0.0-2.2.1. Fixed bugs related to VDC GUI. First level dependencies are the same as in version 2.5-1. 2.5-2 (February 3, 2006): Stable release for R 2.0.0-2.2.1. Fixed bugs related to VDC GUI. First level dependencies are the same as in version 2.5-1. 2.5-1 (January 31, 2006): Stable release for R 2.0.0-2.2.1. Added methods for multiple equation models. Fixed bugs related to robust estimation and upgrade of sandwich and zoo packages. Revised setx() to use environments. Added current.packages() to retrieve version of packages upon which Zelig depends. First level version dependencies are as follows: MASS 7.2-24 boot 1.2-24 VGAM 0.6-7 mvtnorm 0.7-2 survival 2.20 sandwich 1.1-0 zoo 1.0-4 MCMCpack 0.6-6 coda 0.10-3 2.4-6 (October 27, 2005): Stable release for R 2.0.0-2.2.0. Fixed bug related to simulation for Bayesian Normal regression. 2.4-5 (October 18, 2005): Stable release for R 2.0.0-2.2.0. Updated installation instructions. 2.4-4 (September 29, 2005): Stable release for R 2.0.0-2.2.0. Fixed links for help.zelig(). 2.4-3 (September 29, 2005): Stable release for R 2.0.0-2.2.0. 2.4-2 (August 30, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in setx() related to as.factor() and I(). Streamlined qi.survreg(). 2.4-1 (August 15, 2005): Stable release for R 2.0.0-2.1.1. Added the following Bayesian models: factor analysis, mixed factor analysis, ordinal factor analysis, unidimensional item response theory, k-dimensional item response theory, logit, multinomial logit, normal, ordinal probit, Poisson, and tobit. Also fixed minor bug in formula (long variable names coerced to list). 2.3-2 (August 5, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in simulation procedure for lognormal model. 2.3-1 (August 4, 2005): Stable release for R 2.0.0-2.1.1. Fixed documentation errors related to model parameterization and code bugs related to first differences and conditional prediction for exponential, lognormal, and Weibull models. (reported by Alison Post) 2.2-4 (July 30, 2005): Stable release for R 2.0.0-2.1.1. Revised relogit, additing options for weightig in addition to prior correction. (reported by Martin Plöderl) 2.2-3 (July 24, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug associated with robust standard errors for negative binomial. 2.2-2 (July 13, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in setx(). (reported by Ying Lu) 2.2-1 (July 11, 2005): Stable release for R 2.0.0-2.1.0. Revised ordinal probit to use MASS library. Added robust standard errors for the following regression models: exponential, gamma, logit, lognormal, least squares, negative binomial, normal (Gaussian), poisson, probit, and weibull. 2.1-4 (May 22, 2005): Stable release for R 1.9.1-2.1.0. Revised help.zelig() to deal with CRAN build of Windows version. Added recode of slots to lists in NAMESPACE. Revised install.R script to deal with changes to install.packages(). (reported by Dan Powers and Ying Lu) 2.1-3 (May 9, 2005): Stable release for R 1.9.1-2.1.0. Revised param.lm() function to work with bootstrap simulation. (reported by Jens Hainmueller) 2.1-2 (April 14, 2005): Stable release for R 1.9.1-2.1. Revised summary.zelig(). 2.1-1 (April 7, 2005): Stable release for R 1.9.1-2.1. Fixed bugs in NAMESPACE and summary.vglm(). 2.0-13 (March 11, 2005): Stable release for R 1.9.1-2.0.1. Fixed bugs in NAMESPACE and rocplot.Rd. 2.0-12 (February 20, 2005): Stable release for R 1.9.1-2.0.1. Added plot = TRUE option to rocplot(). 2.0-11 (January 14, 2005): Stable release for R 1.9.1-2.0.1. Changed class name for subsettted models from "multiple" to "strata", and modified affected functions. 2.0-10 (January 4, 2005): Stable release for R 1.9.1 and R 2.0.0. Fixed bug in simulation procedure for ordinal logit. (Reported by Ian Yohai.) 2.0-9 (October 21, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux only). Fixed bugs in NAMESPACE. 2.0-8 (October 18, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux only). Revised Zelig for submission to CRAN. 2.0-7 (October 14, 2004): Stable release for R 1.9.1 \emph{and} R 2.0.0 (Linux only). Fixed bugs in summary.zelig(), NAMESPACE, and assorted bugs related to new R release. Revised syntax for multiple equation models. 2.0-6 (October 4, 2004): Stable release for R 1.9.1. Fixed problem with NAMESPACE. 2.0-5 (September 25, 2004): Stable release for R 1.9.1. Changed installation procedure to source install.R from Zelig website. 2.0-4 (September 22, 2004): Stable release for R 1.9.1. Fixed typo in installation directions, implemented NAMESPACE, rationalized summary.zelig(), and tweaked documentation for least squares. 2.0-3 (September 1, 2004): Stable release for R 1.9.1. Fixed bug in conditional prediction for survival models. 2.0-2 (August 25, 2004): Stable release for R 1.9.1. Removed predicted values from ls. 2.0-1b (July 16, 2004): Stable release for R 1.9.1. MD5 checksum problem fixed. Revised plot.zelig() command to be a generic function with methods assigned by the model. Revised entire architecture to accept multiply imputed data sets with strata. Added functions to simplify adding models. Completely restructured reference manual. Fixed bugs related to conditional prediction in setx and summarizing strata in summary.zelig. 1.1-2 (June 24, 2004): Stable release for R 1.9.1 (MD5 checksum problem not fixed, but does not seem to cause problems). Fixed bug in help.zelig(). (reported by Michael L. Levitan) 1.1-1 (June 14, 2004): Stable release for R 1.9.0. Revised zelig() procedure to use zelig2model() wrappers, revised help.zelig() to use a data file with extension .url.tab, and revised setx() procedure to take a list of fn to apply to variables, and such that fn = NULL returns the entire model.matrix(). 1.0-8 (May 27, 2004): Stable release for R 1.9.0. Fixed bug in simulation procedure for survival models. (reported by Elizabeth Stuart) 1.0-7 (May 26, 2004): Stable release for R 1.9.0. Fixed bug in relogit simulation procedure. (reported by Tom Vanwellingham) 1.0-6 (May 11, 2004): Stable release for R 1.9.0. Fixed bug in setx.default, which had previously failed to ignore extraneous variables in data frame. (reported by Steve Purpura) 1.0-5 (May 7, 2004): Replaced relogit procedure with memory-efficient version. (reported by Tom Vanwellingham) 1.0-4 (April 19, 2004): Stable release for R 1.9.0. Added vcov.lm method; changed print for summary.relogit. 1.0-2 (April 16, 2004): Testing distribution for R 1.9.0. 1.0-1 (March, 23, 2004): Stable release for R 1.8.1. Zelig/build/0000755000176000001440000000000012217153457012462 5ustar ripleyusersZelig/build/vignette.rds0000644000176000001440000000044212217153457015021 0ustar ripleyusersN0 ӵl i]З`ж-nU)KF)ڍGMF BU\k'MJ8cO1 q]J77:[  iGCbԼ+_?Jz+K(@bJ2zLz90W'7 License: GPL (>= 2) Title: Everyone's Statistical Software Author: Matt Owen , Kosuke Imai , Gary King , Olivia Lau Description: Zelig is an easy-to-use program that can estimate, and help interpret the results of, an enormous range of statistical models. It literally is ``everyone's statistical software'' because Zelig's simple unified framework incorporates everyone else's (R) code. We also hope it will become ``everyone's statistical software'' for applications and teaching, and so have designed Zelig so that anyone can easily use it or add their programs to it. Zelig also comes with infrastructure that facilitates the use of any existing method, such as by allowing multiply imputed data for any model, and mimicking the program Clarify (for Stata) that takes the raw output of existing statistical procedures and translates them into quantities of direct interest. Version: 4.2-1 URL: http://gking.harvard.edu/zelig Date: 2013-09-12 Depends: R (>= 2.14), boot, MASS, methods, sandwich Suggests: Amelia, mvtnorm, Formula, gee, survey, survival, systemfit, MatchIt, MCMCpack, coda Packaged: 2013-09-20 23:15:59 UTC; jhonaker NeedsCompilation: no Repository: CRAN Date/Publication: 2013-09-21 08:14:26 Zelig/man/0000755000176000001440000000000012217153457012136 5ustar ripleyusersZelig/man/sna.ex.Rd0000644000176000001440000000063112061700507013610 0ustar ripleyusers\name{sna.ex} \alias{sna.ex} \title{Simulated Example of Social Network Data} \description{ This data set contains five sociomatrices of simulated data social network data.} \usage{data(sna.ex)} \format{ Each variable in the dataset is a 25 by 25 matrix of simulated social network data. The matrices are labeled "Var1", "Var2", "Var3", "Var4", and "Var5". } \source{fictitious} \keyword{datasets} Zelig/man/repl.default.Rd0000644000176000001440000000063212061700507015002 0ustar ripleyusers\name{repl.default} \alias{repl.default} \title{Default Method for Replicating Statistics} \usage{ \method{repl}{default}(object, data=NULL, ...) } \arguments{ \item{object}{an object to replicate} \item{data}{a data.frame} \item{...}{ignored parameters} } \value{ a replicated object } \description{ Replicate a simulation } \author{ Kosuke Imai and Olivia Lau \email{mowen@iq.harvard.edu} } Zelig/man/TexCite.Rd0000644000176000001440000000051112061700507013756 0ustar ripleyusers\name{TexCite} \alias{TexCite} \title{Get a TeX-style Citation} \usage{ TexCite(model) } \arguments{ \item{model}{a character-string specifying the name of the Zelig model of which to describe in TeX-style} } \value{ a string to be rendered as part of a LaTeX-style document } \description{ Get a TeX-style Citation } Zelig/man/repl.Rd0000644000176000001440000000051112061700507013353 0ustar ripleyusers\name{repl} \alias{repl} \title{Generic Method for Replicating Data} \usage{ repl(object, ...) } \arguments{ \item{object}{a 'zelig' object} \item{...}{parameters} } \value{ a replicated object } \description{ Generic Method for Replicating Data } \author{ Kosuke Imai and Olivia Lau \email{mowen@iq.harvard.edu} } Zelig/man/homerun.Rd0000644000176000001440000000233612061700507014075 0ustar ripleyusers\name{homerun} \alias{homerun} \docType{data} \title{Sample Data on Home Runs Hit By Mark McGwire and Sammy Sosa in 1998.} \description{ Game-by-game information for the 1998 season for Mark McGwire and Sammy Sosa. Data are a subset of the dataset provided in Simonoff (1998). } \usage{data(homerun)} \format{ A data frame containing 5 variables ("gameno", "month", "homeruns", "playerstatus", "player") and 326 observations. \describe{ \item{\code{gameno}}{an integer variable denoting the game number} \item{\code{month}}{a factor variable taking with levels "March" through "September" denoting the month of the game} \item{\code{homeruns}}{an integer vector denoting the number of homeruns hit in that game for that player} \item{\code{playerstatus}}{an integer vector equal to "0" if the player played in the game, and "1" if they did not.} \item{\code{player}}{an integer vector equal to "0" (McGwire) or "1" (Sosa)} } } \source{\url{http://www.amstat.org}} \references{Simonoff, Jeffrey S. 1998. ``Move Over, Roger Maris: Breaking Baseball's Most Famous Record.'' \emph{Journal of Statistics Education} 6(3). Data used are a subset of the data in the article.} \keyword{datasets} Zelig/man/describe.Rd0000644000176000001440000000051412061700507014174 0ustar ripleyusers\name{describe} \alias{describe} \title{Method to describe a model to Zelig} \usage{ describe(...) } \arguments{ \item{...}{parameters which are typically ignored} } \value{ a list to be processed by `as.description' } \description{ Method to describe a model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/parseFormula.Rd0000644000176000001440000000077012061700507015060 0ustar ripleyusers\name{parseFormula} \alias{parseFormula} \title{Parse Zelig-style Formulae} \usage{ parseFormula(obj, data = NULL) } \arguments{ \item{obj}{a list or formula} \item{data}{the data set associated with the formula object} } \value{ an object of type "parseFormula". This object has slots specifying: } \description{ Zelig uses three distinct types of formulae. This method is a re-design of the Zelig function \code{parse.formula}. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/free2.Rd0000644000176000001440000000776512061700507013436 0ustar ripleyusers\name{free2} \alias{free2} \title{Freedom of Speech Data} \usage{data(free2)} \description{ Selection of individual-level survey data for freedom of speech. } \details{ A table with 150 observations and 12 variables. \itemize{ \item{sex}{1 for men and 0 for women} \item{age}{Age of respondent in years} \item{educ}{Levels of education, coded as a numeric variable with \itemize{ \item{1}{No formal education} \item{2}{Less than primary school education} \item{3}{Completed primary school} \item{4}{Completed secondary school} \item{5}{Completed high school} \item{6}{Completed college} \item{7}{Completed post-graduate degree} } } \item{country}{Character strings consisting of "Oceana", "Eurasia", and "Eastasia", after Orwell's \emph{1984}.} \item{y}{Self assessment (see below).} \item{v1-v6}{Response to vignettes (see below).} } Survey respondents were asked in almost the same language for a self-assessment and for an assessment of several hypothetical persons described by written vignettes. The self assessment (\code{self}, in the data set), "How free do you think [name/you] [is/are] to express [him-her/your]self without fear of government reprisal?" was first asked of the survey respondent with respect to him or herself, and then after each of vignette. The possible response categories are: \itemize{ \item{1}{Completely free} \item{2}{Very free} \item{3}{Moderately free} \item{4}{Slightly free} \item{5}{Not free at all} } The vignettes, ordered from most free to least free, are: \itemize{ \item{vign1}{[Kay] does not like many of the government's policies. She frequently publishes her opinion in newspapers, criticizing decisions by officials and calling for change. She sees little reason these actions could lead to government reprisal.} \item{vign2}{[Michael] disagrees with many of the government's policies. Though he knows criticism is frowned upon, he doesn't believe the government would punish someone for expressing critical views. He makes his opinion known on most issues without regard to who is listening.} \item{vign3}{[Bob] has political views at odds with the government. He has heard of people occasionally being arrested for speaking out against the government, and government leaders sometimes make political speeches condemning those who criticize. He sometimes writes letters to newspapers about politics, but he is careful not to use his real name.} \item{vign4}{[Connie] does not like the government's stance on many issues. She has a friend who was arrested for being too openly critical of governmental leaders, and so she avoids voicing her opinions in public places.} \item{vign5}{[Vito] disagrees with many of the government's policies, and is very careful about whom he says this to, reserving his real opinions for family and close friends only. He knows several men who have been taken away by government officials for saying negative things in public.} \item{vign6}{[Sonny] lives in fear of being harassed for his political views. Everyone he knows who has spoken out against the government has been arrested or taken away. He never says a word about anything the government does, not even when he is at home alone with his family. } } } \references{ \emph{WHO's World Health Survey} by Lydia Bendib, Somnath Chatterji, Alena Petrakova, Ritu Sadana, Joshua A. Salomon, Margie Schneider, Bedirhan Ustun, Maria Villanueva Jonathan Wand, Gary King and Olivia Lau. (2007) ``Anchors: Software for Anchoring Vignettes''. \emph{Journal of Statistical Software}. Forthcoming. copy at http://wand.stanford.edu/research/anchors-jss.pdf Gary King and Jonathan Wand. "Comparing Incomparable Survey Responses: New Tools for Anchoring Vignettes," Political Analysis, 15, 1 (Winter, 2007): Pp. 46-66, copy at http://gking.harvard.edu/files/abs/c-abs.shtml. } \keyword{datasets} Zelig/man/Median.Rd0000644000176000001440000000054412061700507013614 0ustar ripleyusers\name{Median} \alias{Median} \title{Compute the Statistical Median of a Vector} \usage{ Median(x, na.rm = NULL) } \arguments{ \item{x}{a vector of numeric or ordered values} \item{na.rm}{ignored} } \value{ the median of the vector } \description{ Compute the Statistical Median of a Vector } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/simulations.plot.Rd0000644000176000001440000000235012061700507015740 0ustar ripleyusers\name{simulations.plot} \alias{simulations.plot} \title{Plot Quantities of Interest in a Zelig-fashion} \usage{ simulations.plot(y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, axisnames=TRUE) } \arguments{ \item{y}{A matrix or vector of simulated results generated by Zelig, to be graphed.} \item{y1}{For comparison of two sets of simulated results at different choices of covariates, this should be an object of the same type and dimension as y. If no comparison is to be made, this should be NULL.} \item{xlab}{Label for the x-axis.} \item{ylab}{Label for the y-axis.} \item{main}{Main plot title.} \item{col}{A vector of colors. Colors will be used in turn as the graph is built for main plot objects. For nominal/categorical data, this colors renders as the bar color, while for numeric data it renders as the background color.} \item{line.col}{A vector of colors. Colors will be used in turn as the graph is built for line color shading of plot objects.} \item{axisnames}{a character-vector, specifying the names of the axes} } \value{ nothing } \description{ Various graph generation for different common types of simulated results from Zelig } \author{ James Honaker } Zelig/man/link.Rd0000644000176000001440000000062612061700507013355 0ustar ripleyusers\name{link} \alias{link} \title{Method for extracting the link function from 'parameters' objects} \usage{ link(param) } \arguments{ \item{param}{a 'parameters' object} } \value{ the link function specified by the `param' function for the given Zelig model } \description{ Method for extracting the link function from 'parameters' objects } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/summarize.Rd0000644000176000001440000000063312061700507014432 0ustar ripleyusers\name{summarize} \alias{summarize} \title{Generic methonf for summarizing simualted quantities of interest} \usage{ summarize(obj) } \arguments{ \item{obj}{a \code{qi} object, storing simulations of quantities of interest} } \value{ a \code{summarized.qi} object } \description{ Generic methonf for summarizing simualted quantities of interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/find.match.Rd0000644000176000001440000000176212061700507014435 0ustar ripleyusers\name{find.match} \alias{find.match} \title{Find a Partial or Exact Match from a Vector of Strings Searches a vector of character-string, and returns the best match.} \usage{ find.match(needle, haystack, fail = NA) } \arguments{ \item{needle}{a character-string to search for in the} \item{haystack}{a vector of character-strings} \item{fail}{the value to return in case no match is found. Defaults to NA} } \value{ the best-matched string or NA } \description{ Find a Partial or Exact Match from a Vector of Strings Searches a vector of character-string, and returns the best match. } \details{ ``find.match'' attempts to use several common matching functions in an order that sequentially prefers less strict matching, until a suitable match is found. If none is found, then return the value of the ``fail'' parameter (defaults to NA). The functions used for matching are: ``match'', ``charmatch'', and finally ``grep''. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/param.relogit2.Rd0000644000176000001440000000113012061700507015235 0ustar ripleyusers\name{param.relogit2} \alias{param.relogit2} \title{Estimate Parameters for the ``relogit'' Zelig Mdoel} \usage{ \method{param}{relogit2}(obj, num, x, ...) } \arguments{ \item{obj}{a zelig object containing the fitted model} \item{num}{an integer specifying the number of simulations to compute} \item{x}{ideally we should be able to remove this parameter} \item{...}{unspecified parameters} } \value{ a list specifying important parameters for the ``relogit'' model } \description{ Returns estimates on parameters, as well as, specifying link and inverse-link functions. } Zelig/man/getResponseTerms.Rd0000644000176000001440000000062312061700507015726 0ustar ripleyusers\name{getResponseTerms} \alias{getResponseTerms} \title{Get Response Terms from a Zelig-style Formula} \usage{ getResponseTerms(x, ...) } \arguments{ \item{x}{a formula or list of formulae} \item{...}{ignored parameters} } \value{ a character-vector specifying a the of response terms in this formula } \description{ This method acquires the response variables from Zelig-style input. } Zelig/man/parseFormula.formula.Rd0000644000176000001440000000104012061700507016513 0ustar ripleyusers\name{parseFormula.Formula} \alias{parseFormula.Formula} \title{Parse ``Formula''-style Zelig Formulae} \usage{ \method{parseFormula}{Formula}(obj, data=NULL) } \arguments{ \item{obj}{a list of formulae} \item{data}{a data frame} } \value{ an object of type ``parseFormula'' } \description{ This method parses a ``Formula''-style Zelig formula. This is to support the ``Formula'' object. It seems like it has the right idea when it comes to expressing multiple responses. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/description.Rd0000644000176000001440000000170612061700507014743 0ustar ripleyusers\name{description} \alias{description} \title{Constructor for the 'description' class} \usage{ description(authors = c("Kosuke Imai", "Gary King", "Olivia Lau"), year = NULL, model = "", text = "", url = "", category = NULL) } \arguments{ \item{authors}{a character-vector of author names} \item{year}{a numeric specifying the year} \item{model}{a character-string specifying model name} \item{text}{a character-string specifying the title of the model. This typically includes more exact information than 'model'. E.g., for the 'logit' the title 'Logistic Regression for Dichotomous Variables' would be a suitable text parameter.} \item{url}{a character-string specifying the model's software page} \item{category}{deprecated until data-verse bindings are reevaluated} } \value{ an object of type 'description' } \description{ Constructor for the 'description' class } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/z.Rd0000644000176000001440000000121512110047000012647 0ustar ripleyusers\name{z} \alias{z} \title{Return value for a zelig2-function} \usage{ z(.function, ..., .hook = NULL) } \arguments{ \item{.function}{a function} \item{...}{a set of parameters to be evaluated symbolically} \item{.hook}{a function to be applied after the external, model-fitting function is called} } \value{ a ``z'' object which specifies how to evaluate the fitted model } \description{ This is an API-function that bridges a model-fitting function with a zelig interface. } \note{ This is used internally by Zelig-dependent packages to instruct Zelig how to evaluate the function call to a particular statistical model. } Zelig/man/depends.on.zelig.Rd0000644000176000001440000000106112061700507015560 0ustar ripleyusers\name{depends.on.zelig} \alias{depends.on.zelig} \title{Whether a Statistical Package Depends on the Zelig Software Suite} \usage{ depends.on.zelig(package = "") } \arguments{ \item{package}{a character-string representing a package name} } \value{ whether the package lists Zelig as a dependency in its DESCRIPTION } \description{ Whether a Statistical Package Depends on the Zelig Software Suite } \note{ This function is used primarily internally to determine whether a a package is contributing a function to the Zelig software suite } Zelig/man/param.negbinom.Rd0000644000176000001440000000102012061700507015302 0ustar ripleyusers\name{param.negbinom} \alias{param.negbinom} \title{Param Method for the 'negbinom' Zelig Model} \usage{ \method{param}{negbinom}(obj, num=1000, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the 'negbinom' Zelig Model } \note{ This method is used by the 'negbinom' Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/terms.zelig.Rd0000644000176000001440000000056612061700507014666 0ustar ripleyusers\name{terms.zelig} \alias{terms.zelig} \title{Model Terms for a Zelig Object} \usage{ \method{terms}{zelig}(x, ...) } \arguments{ \item{x}{a \code{zelig} object} \item{...}{forwarded parameters} } \value{ terms of the original fitted model } \description{ This method simply extracts the model terms for the fitted model passed to the \code{zelig} function. } Zelig/man/param.probit.Rd0000644000176000001440000000100412061700507015005 0ustar ripleyusers\name{param.probit} \alias{param.probit} \title{Param Method for the 'probit' Zelig Model} \usage{ \method{param}{probit}(obj, num=1000, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the 'probit' Zelig Model } \note{ This method is used by the 'probit' Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/mix.Rd0000644000176000001440000000100012061700507013200 0ustar ripleyusers\name{mix} \alias{mix} \title{Produce All Combinations of a Set of Lists} \usage{ mix(...) } \arguments{ \item{...}{a set of lists to mix together} } \value{ all the combinations of the lists with repetition } \description{ Produce All Combinations of a Set of Lists } \note{ This function is used internall by the 'mi' constructors in order to produce the complete set of combinations of data-frames and factors by to subset the data-frames. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/setx.default.Rd0000644000176000001440000000117412061700507015025 0ustar ripleyusers\name{setx.default} \alias{setx.default} \title{Set explanatory variables} \usage{ \method{setx}{default}(obj, fn=NULL, data=NULL, cond=FALSE, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{fn}{a list of key-value pairs specifying which function apply to columns of the keys data-types} \item{data}{a data.frame} \item{cond}{ignored} \item{...}{parameters specifying what to explicitly set each column as. This is used to produce counterfactuals} } \value{ a 'setx' object } \description{ Set explanatory variables } \author{ Matt Owen \email{mowen@iq.harvard.edu}, Kosuke Imai, and Olivia Lau } Zelig/man/robust.gee.hook.Rd0000644000176000001440000000144112110047000015413 0ustar ripleyusers\name{robust.gee.hook} \alias{robust.gee.hook} \title{Classify Fitted Object as Naive or Robust} \usage{ robust.gee.hook(obj, Zall, Call, robust, ...) } \arguments{ \item{obj}{a \code{zelig} object} \item{Zall}{the call made to the \code{zelig} function} \item{Call}{the call made to the external model} \item{robust}{a logical specifying whether to use the naive or robust covariance matrix} \item{...}{ignored parameters} } \value{ a \code{zelig} object with the additional class \code{gee.robust} or \code{gee.naive} } \description{ This hook is ran after the call to the external mode. It sets the class of the object (in addition to its other designations) as 'gee.naive' or 'gee.robust' depending on the value of the \code{robust} parameter. } \author{ Skyler } Zelig/man/mexico.Rd0000644000176000001440000000116512061700507013703 0ustar ripleyusers\name{mexico} \alias{mexico} \title{Voting Data from the 1988 Mexican Presidental Election} \description{ This dataset contains voting data for the 1988 Mexican presidential election. } \usage{data(mexico)} \format{A table containing 33 variables and 1,359 observations.} \source{ICPSR} \references{ King, Gary, Michael Tomz and Jason Wittenberg (2000). ``Making the Most of Statistical Analyses: Improving Interpretation and Presentation,'' \emph{American Journal of Political Science}, vol. 44, pp. 341-355. King, Tomz and Wittenberg. ICPSR Publication Related Archive, 1255. } \keyword{datasets} Zelig/man/summary.glm.robust.Rd0000644000176000001440000000102712061700507016204 0ustar ripleyusers\name{summary.glm.robust} \alias{summary.glm.robust} \title{Summary of Generalized Linear Model with Robust Error Estimates} \usage{ \method{summary}{glm.robust}(object, ...) } \arguments{ \item{object}{a ``glm.robust'' fitted model} \item{...}{parameters to pass to the standard ``summary.glm'' method} } \value{ a object of type ``summary.glm.robust'' and ``summary.glm'' } \description{ Returns summary of a glm model with robust error estimates. This only slightly differs from how the standard GLM's behave. } Zelig/man/describe.gamma.Rd0000644000176000001440000000052312061700507015255 0ustar ripleyusers\name{describe.gamma} \alias{describe.gamma} \title{Describe the \code{gamma} model to Zelig} \usage{ \method{describe}{gamma}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list of important information } \description{ Describe the \code{gamma} model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/bootstrap.Rd0000644000176000001440000000155612061700507014440 0ustar ripleyusers\name{bootstrap} \alias{bootstrap} \title{Generic Method for ``bootstrap''} \usage{ bootstrap(obj, ...) } \arguments{ \item{obj}{a fitted model object that will be used to produce boot-strapped parameters. This object usually inherits the class ``glm'' or ``lm'' object} \item{...}{unspecified parameters} } \value{ a list with the ``alpha'' and ``beta'' slots set. Note that ``alpha'' corresponds to ancillary parameters and ``beta'' corresponds to systematic components of the model } \description{ This method is intended to be overried by statistical models that would like to support statistical bootstrapping. } \note{ This method has private memory storage and can reference the objects: ``.fitted'', ``.data'', ``.call'', ``.env'', despite having no declaration in the argument list. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/Zelig-package.Rd0000644000176000001440000000251712061700507015064 0ustar ripleyusers\docType{package} \name{Zelig-package} \alias{Zelig} \alias{Zelig-package} \title{Zelig Everyone's Statistical Software} \description{ Zelig is an easy-to-use program that can estimate, and help interpret the results of, an enormous range of statistical models. It literally is ``everyone's statistical software'' because Zelig's simple unified framework incorporates everyone else's (R) code. We also hope it will become ``everyone's statistical software'' for applications and teaching, and so have designed Zelig so that anyone can easily use it or add their programs to it. Zelig also comes with infrastructure that facilitates the use of any existing method, such as by allowing multiply imputed data for any model, and mimicking the program Clarify (for Stata) that takes the raw output of existing statistical procedures and translates them into quantities of direct interest. } \details{ \tabular{ll}{ Package: \tab Zelig\cr Version: \tab 4.0-11\cr Date: \tab 2012-10-28\cr Depends: \tab R (>= 2.14), boot, MASS, methods, sandwich, survival\cr Suggests: \tab mvtnorm, Formula \cr License: \tab GPL version 2 or newer\cr URL: \tab http://gking.harvard.edu/zelig\cr } } \author{ Matt Owen \email{mowen@iq.harvard.edu}, Kosuke Imai, Olivia Lau, and Gary King } \seealso{ zelig setx sim } \keyword{package} Zelig/man/ZeligDescribeModel.Rd0000644000176000001440000000107512061700507016113 0ustar ripleyusers\name{ZeligDescribeModel} \alias{ZeligDescribeModel} \title{Produce a 'description' Object from the Name of a Model} \usage{ ZeligDescribeModel(model.name) } \arguments{ \item{model.name}{a character-string specifying a Zelig model} } \value{ a 'description' object specified by the 'model.name' parameter. This object is created by executing the specified Zelig models' 'describe' function } \description{ Produce a 'description' Object from the Name of a Model } \note{ The 'description' object is a list-style object containing citation information } Zelig/man/kmenta.Rd0000644000176000001440000000117212061700507013674 0ustar ripleyusers\name{kmenta} \alias{kmenta} \title{Simulation Data for model Three-Stage Least Square (threesls) that corresponds to method 3SLS of systemfit} \description{ Dataframe contains 20 annual observations of a supply/demand model with 5 variables. Columns are q=Food consumption per capita, p=Ratio of food price to general consumer prices, d=Disposable income in contstant dollars, f=Ratio of preceding year's prices received by farmers to general consumer prices, a=Time index. } \usage{data(kmenta)} \format{ A table containing 5 variables ("q", "p", "d", "f","a") and 20 observations. } \keyword{datasets} Zelig/man/klein.Rd0000644000176000001440000000142212061700507013515 0ustar ripleyusers\name{klein} \alias{klein} \title{Simulation Data for model Two-Stage Least Square (twosls) that corresponds to method 2SLS of systemfit} \description{ Dataframe contains annual observations of US economy from 1920 to 1940. The columns are, Year, C=Consumption, P=Corporate profits, P1=Previous year corporate profit,Wtot=Total wage, Wp=Private wage bill, Wg=Government wage bill,I=Investment, K1=Previous year capital stock,X=GNP,G=Government spending, T=Taxes, X1=Previous year GNP, Tm=Year-1931. } \usage{data(klein)} \format{ A table containing 14 variables ("year", "C", "P", "P1","Wtot", "Wp", "Wg", "I", "K1","X", "G", "T", "X1", "Tm") and 21 observations. } \source{http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm} \keyword{datasets} Zelig/man/SupremeCourt.Rd0000644000176000001440000000200712061700507015050 0ustar ripleyusers\name{SupremeCourt} \alias{SupremeCourt} \title{U.S. Supreme Court Vote Matrix} \description{ This dataframe contains a matrix votes cast by U.S. Supreme Court justices in all cases in the 2000 term. } \usage{data(SupremeCourt)} \format{ The dataframe has contains data for justices Rehnquist, Stevens, O'Connor, Scalia, Kennedy, Souter, Thomas, Ginsburg, and Breyer for the 2000 term of the U.S. Supreme Court. It contains data from 43 non-unanimous cases. The votes are coded liberal (1) and conservative (0) using the protocol of Spaeth (2003). The unit of analysis is the case citation (ANALU=0). We are concerned with formally decided cases issued with written opinions, after full oral argument and cases decided by an equally divided vote (DECTYPE=1,5,6,7).} \source{ Harold J. Spaeth (2005). ``Original United States Supreme Court Database: 1953-2004 Terms.'' . } \keyword{datasets} Zelig/man/qi.summarize.Rd0000644000176000001440000000214112061700507015036 0ustar ripleyusers\name{qi.summarize} \alias{qi.summarize} \title{Constructor for QI Summarized Class This class takes an arbitrary number of the _same_ type of quantities of interest labels them, then merges them into one simple printable block. In particular, this class determines which print function to use based on the the type and size od data to be passed to the print function.} \usage{ qi.summarize(title, x, ...) } \arguments{ \item{title}{a character-string specifying the title of the QI} \item{x}{a list of summarized quantities of interest} \item{...}{additional quantities of interest (the parameter that titles these will be used as the name of the data.frame} } \value{ the list of QI's (invisibly) } \description{ Constructor for QI Summarized Class This class takes an arbitrary number of the _same_ type of quantities of interest labels them, then merges them into one simple printable block. In particular, this class determines which print function to use based on the the type and size od data to be passed to the print function. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/eidat.Rd0000644000176000001440000000051212061700507013500 0ustar ripleyusers\name{eidat} \alias{eidat} \title{Simulation Data for Ecological Inference} \description{ This dataframe contains a simulated data set to illustrate the models for ecological inference. } \usage{data(eidat)} \format{ A table containing 4 variables ("t0", "t1", "x0", "x1") and 10 observations. } \keyword{datasets} Zelig/man/linkinv.Rd0000644000176000001440000000110412061700507014062 0ustar ripleyusers\name{linkinv} \alias{linkinv} \title{Method for extracting the inverse link function from 'parameters' objects} \usage{ linkinv(param) } \arguments{ \item{param}{a 'parameters' object} } \value{ the inverse link function specified by the 'param' function for the given Zelig model } \description{ Returns the inverse link function of a ``parameters'' object. If the model's developer did not specify one (but did specify a link function) this function returns a numerical approximation of the link function. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/Max.Rd0000644000176000001440000000051612061700507013143 0ustar ripleyusers\name{Max} \alias{Max} \title{Compute the Maximum Value of a Vector} \usage{ Max(x, na.rm = NULL) } \arguments{ \item{x}{a numeric or ordered vector} \item{na.rm}{ignored} } \value{ the maximum value of the vector } \description{ Compute the Maximum Value of a Vector } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/rocplot.Rd0000644000176000001440000000464712061700507014111 0ustar ripleyusers\name{rocplot} \alias{rocplot} \title{Receiver Operator Characteristic Plots} \usage{ rocplot(y1, y2, fitted1, fitted2, cutoff = seq(from=0, to=1, length=100), lty1="solid", lty2="dashed", lwd1=par("lwd"), lwd2=par("lwd"), col1=par("col"), col2=par("col"), main="ROC Curve", xlab = "Proportion of 1's Correctly Predicted", ylab="Proportion of 0's Correctly Predicted", plot = TRUE, ... ) } \arguments{ \item{y1}{response variable for the first model} \item{y2}{response variable for the second model} \item{fitted1}{fitted values for the first model. These values may represent either the in-sample or out-of-sample fitted values} \item{fitted2}{fitted values for the second model} \item{cutoff}{A vector of cut-off values between 0 and 1, at which to evaluate the proportion of 0s and 1s correctly predicted by the first and second model. By default, this is 100 increments between 0 and 1 inclusive} \item{lty1}{the line type of the first model (defaults to 'line')} \item{lty2}{the line type of the second model (defaults to 'dashed')} \item{lwd1}{the line width of the first model (defaults to 1)} \item{lwd2}{the line width of the second model (defaults to 1)} \item{col1}{the color of the first model (defaults to 'black')} \item{col2}{the color of the second model (defaults to 'black')} \item{main}{a title for the plot (defaults to "ROC Curve")} \item{xlab}{a label for the X-axis} \item{ylab}{a lavel for the Y-axis} \item{plot}{whether to generate a plot to the selected device} \item{\dots}{additional parameters to be passed to the plot} } \value{ if plot is TRUE, rocplot simply generates a plot. Otherwise, a list with the following is produced: \item{roc1}{a matrix containing a vector of x-coordinates and y-coordinates corresponding to the number of ones and zeros correctly predicted for the first model.} \item{roc2}{a matrix containing a vector of x-coordinates and y-coordinates corresponding to the number of ones and zeros correctly predicted for the second model.} \item{area1}{the area under the first ROC curve, calculated using Reimann sums.} \item{area2}{the area under the second ROC curve, calculated using Reimann sums.} } \description{ The 'rocplot' command generates a receiver operator characteristic plot to compare the in-sample (default) or out-of-sample fit for two logit or probit regressions. } Zelig/man/model.matrix.multiple.Rd0000644000176000001440000000130512061700507016650 0ustar ripleyusers\name{model.matrix.multiple} \alias{model.matrix.multiple} \title{Create Design Matrix of a \code{multiple} Object} \usage{ \method{model.matrix}{multiple}(object,data,shape="compact",eqn=NULL,...) } \arguments{ \item{object}{an object of type \code{multiple}. This represents a Zelig 3.5 formula} \item{data}{a \code{data.frame}} \item{shape}{a character-string specifying the shape of the matrix} \item{eqn}{an integer specifying the number of equations} \item{...}{ignored parameters} } \description{ This method is used to generate a \code{model.matrix} adhering to the specifications in the help document "model.matrix". } \note{ This method is scheduled to be deprecated. } Zelig/man/combine.Rd0000644000176000001440000000101412061700507014024 0ustar ripleyusers\name{combine} \alias{combine} \title{Produce All Combinations of a Set of Lists} \usage{ combine(...) } \arguments{ \item{...}{a set of lists to mix together} } \value{ all the combinations of the lists with repetition } \description{ Produce All Combinations of a Set of Lists } \note{ This function is used internall by the 'mi' constructors in order to produce the complete set of combinations of data-frames and factors by to subset the data-frames. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/sanction.Rd0000644000176000001440000000134012061700507014230 0ustar ripleyusers\name{sanction} \alias{sanction} \title{Multilateral Economic Sanctions} \description{ Data on bilateral sanctions behavior for selected years during the general period 1939-1983. This data contains errors that have since been corrected. Please contact Lisa Martin before using this data for publication. } \usage{data(sanction)} \format{A table containing 8 variables ("mil", "coop", "target", "import", "export", "cost", "num", and "ncost") and 78 observations. For full variable description, see Martin, 1992. } \source{Martin, 1992} \references{ Martin, Lisa (1992). \emph{Coercive Cooperation: Explaining Multilateral Economic Sanctions}, Princeton: Princeton University Press. } \keyword{datasets} Zelig/man/multilevel.Rd0000644000176000001440000000106512061700507014600 0ustar ripleyusers\name{multilevel} \alias{multilevel} \title{Multilevel} \usage{ multilevel(tt, data, mode, eqn, ...) } \arguments{ \item{tt}{a terms object} \item{data}{a \code{data.frame}} \item{mode}{???} \item{eqn}{an integer specifying the number of equations in a model} \item{...}{ignored parameters} } \value{ a list with the "terms" attribute specified } \description{ This function currently has no documentation, but is essential in Zelig 3.5's implementation of formulae. } \author{ Kosuke Imai, Olivia Lau, Gary King and Ferdinand Alimadhi } Zelig/man/param.Rd0000644000176000001440000000410712061700507013516 0ustar ripleyusers\name{param} \alias{param} \title{Generic Method for Simulating Ancillary/Auxillary Parameters of Zelig Models} \usage{ param(obj, num, ...) } \arguments{ \item{obj}{a \code{zelig} object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{optional parameters which will likely be ignored} } \value{ The main purpose of the \code{param} function is to return a list of key-value pairs, specifuing information that should be shared between the \code{qi} function and the fitted statistical model (produced by the \code{zelig2} function. This list can contain the following entries: \item{\code{simulations}}{specifies a set of simulated parameters used to describe the statistical model's underlying distribution} \item{\code{alpha}}{specifies the fixed (non-simulated) ancillary parameters used by the statistical model's underlying distribution} \item{\code{family}}{specifies a family object used to implicitly define the \code{link} and \code{linkinv} functions. That is, this specifies the "link" and "inverse link" functions of generalized linear models} \item{\code{link}}{specifies the \code{link} function to be used. This parameter is largely unimportant compared to the "inverse link" function} \item{\code{linkinv}}{specifies the \code{linkinv} function to be used.} } \description{ The \code{param} method is used by developers to specify simulated and fixed ancillary parameters of the Zelig statistical model. That is, this method is used between the \code{zelig2} function and the \link{qi} as a helper function that specifies all the necessary details needed to simulate quantities of interest, given the fitted statistical model produced by the \code{zelig2} function. } \note{ The 'param' function is a method meant to be overloaded by Zelig Developers } \examples{ param.some.model <- function (obj, num, ...) { list( simulations = NULL, alpha = NULL, link = NULL, linkinv = NULL, fam = NULL ) } } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/splitUp.Rd0000644000176000001440000000150612061700507014056 0ustar ripleyusers\name{splitUp} \alias{splitUp} \title{Split a List into Two Lists This functions takes any list, and splits into two lists - one containing the values of arguments with specifically specified values and those without specified values.} \usage{ splitUp(args) } \arguments{ \item{args}{a list} } \value{ a list containing two entries: the key-value paired entires (titled wordful) and the unkeyed entried (titled wordless) } \description{ Split a List into Two Lists This functions takes any list, and splits into two lists - one containing the values of arguments with specifically specified values and those without specified values. } \note{ This function is a good candidate for deprecation } \examples{ #list(wordful = list(x=1, y=2), wordless=list(2, "red")) } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/describe.logit.Rd0000644000176000001440000000052012061700507015306 0ustar ripleyusers\name{describe.logit} \alias{describe.logit} \title{Describe a `logit' model to Zelig} \usage{ \method{describe}{logit}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by `as.description' } \description{ Describe a `logit' model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.sim.Rd0000644000176000001440000000057212061700507014343 0ustar ripleyusers\name{print.sim} \alias{print.sim} \title{Print values of `sim' objects} \usage{ \method{print}{sim}(x, ...) } \arguments{ \item{x}{a `sim' object (ignored)} \item{...}{ignored parameters} } \value{ NULL (invisibly) } \description{ This function is currently unimplemented, and included for future development } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.zelig.Rd0000644000176000001440000000053312061700507014662 0ustar ripleyusers\name{print.zelig} \alias{print.zelig} \title{Print values of ``zelig'' objects} \usage{ \method{print}{zelig}(x, ...) } \arguments{ \item{x}{a `zelig' object} \item{...}{ignored parameters} } \value{ the `zelig' object (invisibly) } \description{ Print the zelig object as a list } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/structuralToReduced.Rd0000644000176000001440000000061112061700507016421 0ustar ripleyusers\name{structuralToReduced} \alias{structuralToReduced} \title{Transform the Multilevel's Structural Formulas Into Reduced Form} \usage{ structuralToReduced(f) } \arguments{ \item{f}{a list of formulas} } \value{ a formula in reduced form } \description{ Transform the Multilevel's Structural Formulas Into Reduced Form } \author{ Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau } Zelig/man/is.formula.Rd0000644000176000001440000000060012061700507014467 0ustar ripleyusers\name{is.formula} \alias{is.formula} \title{Whether an Object is a Formula} \usage{ is.formula(x) } \arguments{ \item{x}{an object} } \value{ a logical specifying whether an object is a formula } \description{ This is a boolean-check to see whether an object is a formula. } \note{ This will not be shared in the Zelig/ZeligFormulae namespace. } \author{ Matt Owen } Zelig/man/setx.MI.Rd0000644000176000001440000000143612061700507013707 0ustar ripleyusers\name{setx.MI} \alias{setx.MI} \title{Set Explanatory Variables for Multiply Imputed Data-sets This function simply calls setx.default once for every fitted model within the 'zelig.MI' object} \usage{ \method{setx}{MI}(obj, ..., data=NULL) } \arguments{ \item{obj}{a 'zelig' object} \item{...}{user-defined values of specific variables for overwriting the default values set by the function \code{fn}} \item{data}{a new data-frame} } \value{ a 'setx.mi' object used for computing Quantities of Interest by the 'sim' method } \description{ Set Explanatory Variables for Multiply Imputed Data-sets This function simply calls setx.default once for every fitted model within the 'zelig.MI' object } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ \link{setx} } Zelig/man/parseFormula.list.Rd0000644000176000001440000000060212061700507016024 0ustar ripleyusers\name{parseFormula.list} \alias{parseFormula.list} \title{Parse List-Style Zelig Formulae} \usage{ \method{parseFormula}{list}(obj, data=NULL) } \arguments{ \item{obj}{a list of formulae} \item{data}{a data frame} } \value{ an object of type "parseFormula" } \description{ This method parses a list-style Zelig formula. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/plot.ci.Rd0000644000176000001440000000410012216135406013761 0ustar ripleyusers\name{plot.ci} \alias{plot.ci} \title{Method for plotting pooled simulations by confidence intervals} \usage{ \method{plot}{ci}(x, qi="ev", var=NULL, ..., main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, legcol="gray20", col=NULL, leg=1, legpos=NULL, ci=c(80,95,99.9)) } \arguments{ \item{x}{A `sim' object} \item{qi}{a character-string specifying the quantity of interest to plot: "ev" expected values, "pv" predicted values, "fd" first differences} \item{var}{The variable to be used on the x-axis} \item{...}{Parameters to be passed to the `truehist' function which is implicitly called for numeric simulations} \item{main}{A character-string, specifying the main title of the plot} \item{sub}{A character-string, specifying the sub-title of the plot} \item{xlab}{A character-string, specifying the label for the x-axis} \item{ylab}{A character-string, specifying the label for the y-axis} \item{xlim}{A vector of length 2, specifying the left-most and right-most values for the plot} \item{ylim}{A vector of length 2, specifying the bottom-most and top-most values for the plot} \item{legcol}{``legend color'', an valid color used for plotting the line colors in the legend} \item{col}{a valid vector of colors of at least length 3 to use to color the confidence intervals} \item{leg}{``legend position'', an integer from 1 to 4, specifying the position of the legend. 1 to 4 correspond to ``SE'', ``SW'', ``NW'', and ``NE'' respectively} \item{legpos}{``legend type'', exact coordinates and sizes for legend. Overrides argment ``leg.type''} \item{ci}{A vector of length up to 3, specifying the three confidence interval levels to plot on the graph (where confidence is expressed on the scale 0-100).} } \value{ the current graphical parameters. This is subject to change in future implementations of Zelig } \description{ Plot confidence intervals of simulated quantities of interest, across a range of a variable. } \author{ James Honaker, adapted by Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/has.zelig2.Rd0000644000176000001440000000101712061700507014361 0ustar ripleyusers\name{has.zelig2} \alias{has.zelig2} \title{Whether an Arbitrary R-package has a Zelig2 Function within Its Namespace} \usage{ has.zelig2(pkg) } \arguments{ \item{pkg}{a character-string representing a package name} } \value{ whether the package contains any zelig2-functions } \description{ Whether an Arbitrary R-package has a Zelig2 Function within Its Namespace } \note{ This function is used primarily internally to determine whether a a package is contributing a function to the Zelig software suite } Zelig/man/relogit.Rd0000644000176000001440000000071212061700507014061 0ustar ripleyusers\name{relogit} \alias{relogit} \title{Fit a rare-event logistic model in Zelig} \usage{ relogit(formula, data = sys.parent(), tau = NULL, bias.correct = TRUE, case.control = "prior", ...) } \arguments{ \item{formula}{a formula object} \item{data}{...} \item{tau}{...} \item{bias.correct}{...} \item{case.control}{...} \item{...}{???} } \value{ a ``relogit'' ``glm'' object } \description{ Fits a rare-event (``relogit'') model. } Zelig/man/toBuildFormula.Rd0000644000176000001440000000045412061700507015347 0ustar ripleyusers\name{toBuildFormula} \alias{toBuildFormula} \title{Build Formula ???} \usage{ toBuildFormula(Xnames, sepp = "+") } \arguments{ \item{Xnames}{a character-vector} \item{sepp}{a seperator (???)} } \value{ a character-string } \description{ This function builds a formula } \author{ ??? } Zelig/man/as.parameters.Rd0000644000176000001440000000234112061700507015161 0ustar ripleyusers\name{as.parameters} \alias{as.parameters} \title{Generic Method for Converting Objects into 'parameters'} \usage{ as.parameters(params, ...) } \arguments{ \item{params}{the object to be casted} \item{...}{parameters reserved for future revisions} } \value{ an object of type `parameters' } \description{ Converts list-style objects into Parameter lists primarily used by the 'qi' methods. These list-style objects may contain keys specifying: 'link' (the link function of a statistical model), 'linkinv' (the inverse-link function), 'family' (a object of 'family' class used to specify the model's classification), 'alpha' (a vector of ancillary parameters, and 'simulations' (a vector of simulated draws from the model's underlying distribution. } \note{ Only three scenarios may exist - converting 'parameters' to 'parameters', 'list' to 'parameters', and vectors to 'parameters'. The third in particular is needed only for backwards compatibility, and support will likely be deprecated. Furthermore, this function should be exlusively used implicitly and by Zelig. } \author{ Matt Owen \email{mowen@ig.harvard.edu} } \seealso{ as.parameters.list as.parameters.parameters, as.parameters.default } Zelig/man/reduceMI.Rd0000644000176000001440000000104412061700507014110 0ustar ripleyusers\name{reduceMI} \alias{reduceMI} \title{Reduce MI Formulas Take a formula in any of the reduced form or in a structural form and return the most reduced form of that formula} \usage{ reduceMI(f) } \arguments{ \item{f}{a formula} } \description{ Reduce MI Formulas Take a formula in any of the reduced form or in a structural form and return the most reduced form of that formula } \note{ This formula is used primarily by 'zelig2' functions of multivariate Zelig models } \author{ Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau } Zelig/man/help.zelig.Rd0000644000176000001440000000047112061700507014457 0ustar ripleyusers\name{help.zelig} \alias{help.zelig} \title{Help system for Zelig models} \usage{ help.zelig(...) } \arguments{ \item{...}{the help files to look-up} } \value{ results of calling the specific help function } \description{ Help system for Zelig models } \author{ Matt Owen \emph{mowen@iq.harvard.edu} } Zelig/man/as.description.Rd0000644000176000001440000000117112061700507015341 0ustar ripleyusers\name{as.description} \alias{as.description} \title{Generic Method for Casting 'description' Objects} \usage{ as.description(descr, ...) } \arguments{ \item{descr}{an object to cast an object of type 'description'} \item{...}{parameters which are reserved for future Zelig revisions} } \value{ an object of type 'description' } \description{ Convert the result of a call to the 'describe' method into an object parseble by Zelig. Currently conversions only exist for lists and description objects. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ as.description.description as.description.list } Zelig/man/describe.probit.Rd0000644000176000001440000000053112061700507015471 0ustar ripleyusers\name{describe.probit} \alias{describe.probit} \title{Describe the `probit' model to Zelig} \usage{ \method{describe}{probit}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by `as.description' } \description{ Describe the `probit' model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/bootstrap.gamma.Rd0000644000176000001440000000114012061700507015506 0ustar ripleyusers\name{bootstrap.gamma} \alias{bootstrap.gamma} \title{Bootstrap Parameters for Zelig ``gamma'' GLM} \usage{ \method{bootstrap}{gamma}(obj, ...) } \arguments{ \item{obj}{a ``zelig'' object that will be used to produce boot-strapped parameters} \item{...}{extra parameters to be passed to the ``boot'' method. These are typically ignored, but is included for further expansion.} } \value{ a list containing information concerning link, link-inverses, etc. } \description{ Returns bootstrapped parameter estimates for a ``gamma'' GLM. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.qi.list.Rd0000644000176000001440000000143512061700507014404 0ustar ripleyusers\name{as.qi.list} \alias{as.qi.list} \title{list -> qi This function has a lot of room to go wrong. It tries o detect whether the zelig model is old-style or new-style (as of 4/4/2011). Eventually this feature should be phased out.} \usage{ as.qi.list(s) } \arguments{ \item{s}{a list} } \value{ an object of type `qi' } \description{ list -> qi This function has a lot of room to go wrong. It tries o detect whether the zelig model is old-style or new-style (as of 4/4/2011). Eventually this feature should be phased out. } \note{ This method has peculiar behavior when the list contains only two elements. The crucial fix is to simply remove the portion of code which intentionally implements this perculiar behavior. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/tobin.Rd0000644000176000001440000000103312061700507013524 0ustar ripleyusers\name{tobin} \alias{tobin} \title{Tobin's Tobit Data} \description{ Economists fit a parametric censored data model called the `tobit'. These data are from Tobin's original paper. } \usage{data(tobin)} \format{ A data frame with 20 observations on the following 3 variables. durable: Durable goods purchase age: Age in years quant: Liquidity ratio (x 1000) } \source{ J. Tobin, Estimation of relationships for limited dependent variables, Econometrica, v26, 24-36, 1958. } \keyword{datasets} Zelig/man/free1.Rd0000644000176000001440000000776512061700507013435 0ustar ripleyusers\name{free1} \alias{free1} \title{Freedom of Speech Data} \usage{data(free1)} \description{ Selection of individual-level survey data for freedom of speech. } \details{ A table with 150 observations and 12 variables. \itemize{ \item{sex}{1 for men and 0 for women} \item{age}{Age of respondent in years} \item{educ}{Levels of education, coded as a numeric variable with \itemize{ \item{1}{No formal education} \item{2}{Less than primary school education} \item{3}{Completed primary school} \item{4}{Completed secondary school} \item{5}{Completed high school} \item{6}{Completed college} \item{7}{Completed post-graduate degree} } } \item{country}{Character strings consisting of "Oceana", "Eurasia", and "Eastasia", after Orwell's \emph{1984}.} \item{y}{Self assessment (see below).} \item{v1-v6}{Response to vignettes (see below).} } Survey respondents were asked in almost the same language for a self-assessment and for an assessment of several hypothetical persons described by written vignettes. The self assessment (\code{self}, in the data set), "How free do you think [name/you] [is/are] to express [him-her/your]self without fear of government reprisal?" was first asked of the survey respondent with respect to him or herself, and then after each of vignette. The possible response categories are: \itemize{ \item{1}{Completely free} \item{2}{Very free} \item{3}{Moderately free} \item{4}{Slightly free} \item{5}{Not free at all} } The vignettes, ordered from most free to least free, are: \itemize{ \item{vign1}{[Kay] does not like many of the government's policies. She frequently publishes her opinion in newspapers, criticizing decisions by officials and calling for change. She sees little reason these actions could lead to government reprisal.} \item{vign2}{[Michael] disagrees with many of the government's policies. Though he knows criticism is frowned upon, he doesn't believe the government would punish someone for expressing critical views. He makes his opinion known on most issues without regard to who is listening.} \item{vign3}{[Bob] has political views at odds with the government. He has heard of people occasionally being arrested for speaking out against the government, and government leaders sometimes make political speeches condemning those who criticize. He sometimes writes letters to newspapers about politics, but he is careful not to use his real name.} \item{vign4}{[Connie] does not like the government's stance on many issues. She has a friend who was arrested for being too openly critical of governmental leaders, and so she avoids voicing her opinions in public places.} \item{vign5}{[Vito] disagrees with many of the government's policies, and is very careful about whom he says this to, reserving his real opinions for family and close friends only. He knows several men who have been taken away by government officials for saying negative things in public.} \item{vign6}{[Sonny] lives in fear of being harassed for his political views. Everyone he knows who has spoken out against the government has been arrested or taken away. He never says a word about anything the government does, not even when he is at home alone with his family. } } } \references{ \emph{WHO's World Health Survey} by Lydia Bendib, Somnath Chatterji, Alena Petrakova, Ritu Sadana, Joshua A. Salomon, Margie Schneider, Bedirhan Ustun, Maria Villanueva Jonathan Wand, Gary King and Olivia Lau. (2007) ``Anchors: Software for Anchoring Vignettes''. \emph{Journal of Statistical Software}. Forthcoming. copy at http://wand.stanford.edu/research/anchors-jss.pdf Gary King and Jonathan Wand. "Comparing Incomparable Survey Responses: New Tools for Anchoring Vignettes," Political Analysis, 15, 1 (Winter, 2007): Pp. 46-66, copy at http://gking.harvard.edu/files/abs/c-abs.shtml. } \keyword{datasets} Zelig/man/as.parameters.default.Rd0000644000176000001440000000072712061700507016612 0ustar ripleyusers\name{as.parameters.default} \alias{as.parameters.default} \title{??? -> parameters} \usage{ as.parameters.default(params, num = NULL, ...) } \arguments{ \item{params}{any non-supported data-type} \item{num}{an integer specifying the number of simulations to compute} \item{...}{ignored} } \value{ the object passed in } \description{ ??? -> parameters } \note{ This function should be deprecated. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/model.frame.multiple.Rd0000644000176000001440000000124512061700507016441 0ustar ripleyusers\name{model.frame.multiple} \alias{model.frame.multiple} \title{Create Model Frame from \code{multiple} Object} \usage{ \method{model.frame}{multiple}(formula,data,eqn=NULL,...) } \arguments{ \item{formula}{an object of both type \code{formula} and \code{multiple}} \item{data}{a \code{data.frame}} \item{eqn}{the number of equations in the formula} \item{...}{ignored parameters} } \value{ a \code{model.frame} object } \description{ This method creates a \code{model.frame} from a \code{multiple} object. This method will be deprecated as the development of Zelig 4 progresses. } \author{ Kosuke Imai, Olivia Lau, Gary King and Ferdinand Alimadhi } Zelig/man/macro.Rd0000644000176000001440000000146512061700507013523 0ustar ripleyusers\name{macro} \alias{macro} \title{Macroeconomic Data} \description{ Selected macroeconomic indicators for Austria, Belgium, Canada, Denmark, Finland, France, Italy, Japan, the Netherlands, Norway, Sweden, the United Kingdom, the United States, and West Germany for the period 1966-1990. } \usage{data(macro)} \format{ A table containing 6 variables ("country", "year", "gdp", "unem", "capmob", and "trade") and 350 observations. } \source{ICPSR} \references{ King, Gary, Michael Tomz and Jason Wittenberg. ICPSR Publication Related Archive, 1225. King, Gary, Michael Tomz and Jason Wittenberg (2000). ``Making the Most of Statistical Analyses: Improving Interpretation and Presentation,'' \emph{American Journal of Political Science}, vol. 44, pp. 341-355. } \keyword{datasets} Zelig/man/Zelig.url.Rd0000644000176000001440000000026412061700507014271 0ustar ripleyusers\name{Zelig.url} \alias{Zelig.url} \title{Table of links for Zelig} \description{ Table of linds for \code{help.zelig} for the core Zelig package. } \keyword{datasets} Zelig/man/simulation.matrix.Rd0000644000176000001440000000125512061700507016106 0ustar ripleyusers\name{simulation.matrix} \alias{simulation.matrix} \title{Get Simulations as a Matrix} \usage{ simulation.matrix(obj, which = NULL, ...) } \arguments{ \item{obj}{an object, typically a ``sim'' or ``pooled.sim'' object.} \item{which}{a character-vector specifying the \emph{titles} of quantities of interest to extract} \item{...}{additional parameters} } \value{ a simulation matrix } \description{ Returns a MxN matrix where N is the number of simulations and M is the number of predicted values. Additionally, a ``labels'' attribute is attached that produces a human-readable identifier for each column. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/getPredictorTerms.Rd0000644000176000001440000000077412061700507016072 0ustar ripleyusers\name{getPredictorTerms} \alias{getPredictorTerms} \title{Get Predictor Terms from Zelig-style Formulae} \usage{ getPredictorTerms(x, ...) } \arguments{ \item{x}{a Zelig-style formula ('formula' or 'list')} \item{...}{ignored parameters} } \value{ a character-vector or NA } \description{ This function extracts the predictor terms from a Zelig-style object. } \note{ This function is used exclusively in the development of Zelig-core. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/param.exp.Rd0000644000176000001440000000101112061700507014300 0ustar ripleyusers\name{param.exp} \alias{param.exp} \title{Param Method for the \code{exp} Zelig Model} \usage{ \method{param}{exp}(obj, num, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored parameters} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the \code{exp} Zelig Model } \note{ This method is used by the \code{param} Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/robust.glm.hook.Rd0000644000176000001440000000105212061700507015445 0ustar ripleyusers\name{robust.glm.hook} \alias{robust.glm.hook} \title{Hook for ``glm'' Models in Zelig} \usage{ robust.glm.hook(obj, zcall, call, robust = FALSE, ...) } \arguments{ \item{obj}{a zelig object} \item{zcall}{the original call to the zelig model} \item{call}{the call that will be evaluated for the} \item{robust}{a logical specifying whether or not to use robust error estimates} \item{...}{ignored parameters} } \value{ the fitted model object } \description{ Adds support for robust error-estimates in the Zelig ``glm'' models. } Zelig/man/list.depth.Rd0000644000176000001440000000065012061700507014473 0ustar ripleyusers\name{list.depth} \alias{list.depth} \title{Count the Depth of a List Object} \usage{ list.depth(obj) } \arguments{ \item{obj}{a vector or list object} } \description{ This function recursively computes the depth of a list object. That is, it determines how many layers or levels exist within the object. } \note{ This function is used internally by Zelig. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/setx.Rd0000644000176000001440000000442612061700507013405 0ustar ripleyusers\name{setx} \alias{setx} \title{Setting Explanatory Variable Values} \usage{ setx(obj, fn = NULL, data = NULL, cond = FALSE, ...) } \arguments{ \item{obj}{the saved output from zelig} \item{fn}{a list of functions to apply to the data frame} \item{data}{a new data frame used to set the values of explanatory variables. If data = NULL (the default), the data frame called in zelig is used} \item{cond}{a logical value indicating whether unconditional (default) or conditional (choose \code{cond = TRUE}) prediction should be performed. If you choose \code{cond = TRUE}, \code{setx} will coerce \code{fn = NULL} and ignore the additional arguments in \code{\dots}. If \code{cond = TRUE} and \code{data = NULL}, \code{setx} will prompt you for a data frame.} \item{...}{user-defined values of specific variables for overwriting the default values set by the function \code{fn}. For example, adding \code{var1 = mean(data\$var1)} or \code{x1 = 12} explicitly sets the value of \code{x1} to 12. In addition, you may specify one explanatory variable as a range of values, creating one observation for every unique value in the range of values} } \value{ For unconditional prediction, \code{x.out} is a model matrix based on the specified values for the explanatory variables. For multiple analyses (i.e., when choosing the \code{by} option in \code{\link{zelig}}, \code{setx} returns the selected values calculated over the entire data frame. If you wish to calculate values over just one subset of the data frame, the 5th subset for example, you may use: \code{x.out <- setx(z.out[[5]])} } \description{ The \code{setx} command uses the variables identified in the \code{formula} generated by \code{zelig} and sets the values of the explanatory variables to the selected values. Use \code{setx} after \code{zelig} and before \code{sim} to simulate quantities of interest. } \examples{ # Unconditional prediction: data(turnout) z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout) x.out <- setx(z.out) s.out <- sim(z.out, x = x.out) } \author{ Matt Owen \email{mowen@iq.harvard.edu}, Olivia Lau and Kosuke Imai } \seealso{ The full Zelig manual may be accessed online at \url{http://gking.harvard.edu/zelig} } \keyword{file} Zelig/man/GetObject.Rd0000644000176000001440000000052312061700507014262 0ustar ripleyusers\name{GetObject} \alias{GetObject} \title{Extract the fitted model object from the Zelig object} \usage{ GetObject(obj) } \arguments{ \item{obj}{an object of type `zelig'} } \value{ the fitted model object } \description{ Extract the fitted model object from the Zelig object } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/is.zelig.compliant.Rd0000644000176000001440000000122712061700507016127 0ustar ripleyusers\name{is.zelig.compliant} \alias{is.zelig.compliant} \title{Whether a R-Package Contains a 'Yes' in its DESCRIPTION File's 'Zelig' Field} \usage{ is.zelig.compliant(package = "") } \arguments{ \item{package}{a character-string specifying an installed R-package} } \value{ whether the package's DESCRIPTION file specifies Zelig-compliancy } \description{ Whether a R-Package Contains a 'Yes' in its DESCRIPTION File's 'Zelig' Field } \note{ This package was used internally to determine whether an R-package is Zelig compliant, but is now likely deprecated. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ is.zelig.package } Zelig/man/coalition.Rd0000644000176000001440000000212412061700507014374 0ustar ripleyusers\name{coalition} \alias{coalition} \title{Coalition Dissolution in Parliamentary Democracies} \description{ This data set contains survival data on government coalitions in parliamentary democracies (Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and the United Kingdom) for the period 1945-1987. For parsimony, country indicator variables are omitted in the sample data. } \usage{data(coalition)} \format{ A table containing 7 variables ("duration", "ciep12", "invest", "fract", "polar", "numst2", "crisis") and 314 observations. For variable descriptions, please refer to King, Alt, Burns and Laver (1990). } \source{ICPSR} \references{ King, Gary, James E. Alt, Nancy Elizabeth Burns and Michael Laver (1990). ``A Unified Model of Cabinet Dissolution in Parliamentary Democracies,'' \emph{American Journal of Political Science}, vol. 34, no. 3, pp. 846-870. Gary King, James E. Alt, Nancy Burns, and Michael Laver. ICPSR Publication Related Archive, 1115. } \keyword{datasets} Zelig/man/cluster.formula.Rd0000644000176000001440000000056412061700507015546 0ustar ripleyusers\name{cluster.formula} \alias{cluster.formula} \title{Generate Formulae that Consider Clustering} \usage{ cluster.formula(formula, cluster) } \arguments{ \item{formula}{a formula object} \item{cluster}{a vector} } \value{ a formula object describing clustering } \description{ This method is used internally by the "Zelig" Package to interpret clustering. } Zelig/man/param.relogit.Rd0000644000176000001440000000110512061700507015155 0ustar ripleyusers\name{param.relogit} \alias{param.relogit} \title{Estimate Parameters for the ``relogit'' Zelig Mdoel} \usage{ \method{param}{relogit}(obj, num, ...) } \arguments{ \item{obj}{a zelig object containing the fitted model} \item{num}{an integer specifying the number of simulations to compute} \item{...}{unspecified parameters} } \value{ a list specifying important parameters for the ``relogit'' model } \description{ Returns estimates on parameters, as well as, specifying link and inverse-link functions. } \note{ This method merely calls ``param.logit''. } Zelig/man/bootstrap.default.Rd0000644000176000001440000000130412061700507016052 0ustar ripleyusers\name{bootstrap.default} \alias{bootstrap.default} \title{Produce Boot-strapped Parameters for a Statistical Model} \usage{ \method{bootstrap}{default}(obj, ...) } \arguments{ \item{obj}{a fitted model object. This is typically of type ``glm'' or ``lm''} \item{...}{unspecified parameters} } \value{ a list with the ``alpha'' and ``beta'' slots set } \description{ This method is a fallback for bootstrapping models that do not have a defined ``bootstrap'' method. For most models, this default is sufficient, so long as the model follows the usual convention that ``coef(obj)'' returns the systematic parameters of a fitted model. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.bootlist.Rd0000644000176000001440000000077512061700507014666 0ustar ripleyusers\name{as.bootlist} \alias{as.bootlist} \title{Convert of Vector of Bootstrapped Parameters to a List-style Boot Object} \usage{ as.bootlist(bootstraps, lengths, names) } \arguments{ \item{bootstraps}{...} \item{lengths}{...} \item{names}{a character-vector specifying the names of the boot terms} } \value{ ... } \description{ This inverts the ``as.bootvector'' function, and returns a list containing the slots ``alpha'' and ``beta''. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/tolmerFormat.Rd0000644000176000001440000000130612061700507015067 0ustar ripleyusers\name{tolmerFormat} \alias{tolmerFormat} \title{Convert a Formula into 'lmer' Representation from Reduced Form Take a formula in its reducd from and return it as a 'lmer' representation (from the lme4 package). This is basically removing the starting 'tag' from each term.} \usage{ tolmerFormat(f) } \arguments{ \item{f}{a formula in reduced form} } \value{ the 'lmer' representation of 'f' } \description{ Convert a Formula into 'lmer' Representation from Reduced Form Take a formula in its reducd from and return it as a 'lmer' representation (from the lme4 package). This is basically removing the starting 'tag' from each term. } \author{ Ferdinand Alimadhi, Kosuke Imai, and Olivia Lau } Zelig/man/summary.pooled.sim.Rd0000644000176000001440000000143212061700507016161 0ustar ripleyusers\name{summary.pooled.sim} \alias{summary.pooled.sim} \title{Return a Summary of a Set of Pooled Simulated Interests} \usage{ \method{summary}{pooled.sim}(object, ...) } \arguments{ \item{object}{a ``pooled.sim'' object, containing information about simulated quantities of interest} \item{...}{Ignored parameters} } \value{ a ``summary.pooled.sim'' object storing the replicated quantities of interest } \description{ Returns the summary information from a set of pooled simulated interests. The object returned contains the slots ``labels'', a character-vector specifying the labels (explanatory variable titles) of the qi's, ``titles'', a character vector specifying the names of the quantities of interest, and } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/model.matrix.parseFormula.Rd0000644000176000001440000000137412061700507017463 0ustar ripleyusers\name{model.matrix.parseFormula} \alias{model.matrix.parseFormula} \title{Construct Design Matrix from a Parsed, Zelig-style Formula} \usage{ \method{model.matrix}{parseFormula}(object, data = NULL, ...) } \arguments{ \item{object}{a "parseFormula" object} \item{data}{a "data.frame"} \item{...}{ignored parameters} } \value{ a "model.matrix" specifying information relevant to a statistical model } \description{ This method constructs a design matrix from a Zelig-style formula. This matrix is commonly used in statistical simulation, and will likely be relevent as the relevant form of a \code{setx} object. } \note{ This method is primarily used by the \code{setx} function. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/param.tobit.Rd0000644000176000001440000000102312061700507014630 0ustar ripleyusers\name{param.tobit} \alias{param.tobit} \title{Param Method for the \code{tobit} Zelig Model} \usage{ \method{param}{tobit}(obj, num, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored parameters} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the \code{tobit} Zelig Model } \note{ This method is used by the \code{tobit} Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.summary.relogit2.Rd0000644000176000001440000000064212061700507016774 0ustar ripleyusers\name{print.summary.relogit2} \alias{print.summary.relogit2} \title{Print Summary of a Rare-event Logistic Model} \usage{ \method{print}{summary.relogit2}(x, digits = max(3, getOption("digits") - 3), ...) } \arguments{ \item{x}{the object to print} \item{digits}{an integer specifying the number of digits of precision} \item{...}{ignored parameters} } \value{ x (invisibly) } \description{ ... } Zelig/man/ucfirst.Rd0000644000176000001440000000057412061700507014101 0ustar ripleyusers\name{ucfirst} \alias{ucfirst} \title{Uppercase First Letter of a String} \usage{ ucfirst(str) } \arguments{ \item{str}{a vector of charaqcter-strings} } \value{ a vector of character strings } \description{ This method sets the first character of a string to its uppercase, sets all other characters to lowercase. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/qi.exp.Rd0000644000176000001440000000144712061700507013626 0ustar ripleyusers\name{qi.exp} \alias{qi.exp} \title{Compute quantities of interest for 'exp' Zelig models} \usage{ \method{qi}{exp}(obj, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) } \arguments{ \item{obj}{a 'zelig' object} \item{x}{a 'setx' object or NULL} \item{x1}{an optional 'setx' object} \item{y}{this parameter is reserved for simulating average treatment effects, though this feature is currentlysupported by only a handful of models} \item{num}{an integer specifying the number of simulations to compute} \item{param}{a parameters object} } \value{ a list of key-value pairs specifying pairing titles of quantities of interest with their simulations } \description{ Compute quantities of interest for 'exp' Zelig models } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/sim.MI.Rd0000644000176000001440000000147112061700507013513 0ustar ripleyusers\name{sim.MI} \alias{sim.MI} \title{Simulate Multiply Imputed Data} \usage{ \method{sim}{MI}(obj, x=NULL, x1=NULL, y=NULL, num=1000, ...) } \arguments{ \item{obj}{a 'zelig.MI' object containing several fits for two or more subsetted data-frames} \item{x}{a 'setx.mi' object containing explanatory variables for each fitted model} \item{x1}{a 'setx.mi' object containing explanatory variables for each fitted model} \item{y}{this feature is currently unimplemented} \item{num}{an integer specifying the number of simulations to compute} \item{...}{ignored parameters} } \value{ a 'sim.MI' with simulated quantities of interest for each fitted contained by 'obj' } \description{ Simulate Multiply Imputed Data } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ \link{sim} } Zelig/man/print.summarySim.MI.Rd0000644000176000001440000000071612061700507016225 0ustar ripleyusers\name{print.summarySim.MI} \alias{print.summarySim.MI} \title{Print Multiply Imputed Simulations Summary} \usage{ \method{print}{summarySim.MI}(x, digits=3, ...) } \arguments{ \item{x}{a 'summarySim.MI' object} \item{digits}{an integer specifying the number of digits of precision to print} \item{...}{ignored parameters} } \description{ Prints summary information about Multiply Imputed Fits } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/summarize.default.Rd0000644000176000001440000000061212061700507016052 0ustar ripleyusers\name{summarize.default} \alias{summarize.default} \title{Summarize Simualted Quantities of Interest} \usage{ \method{summarize}{default}(obj) } \arguments{ \item{obj}{a \code{qi} object, storing simulations of quantities of interest} } \value{ a 'summarized.qi' object } \description{ Summarize Simualted Quantities of Interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/cite.Rd0000644000176000001440000000052212061700507013337 0ustar ripleyusers\name{cite} \alias{cite} \title{Citation information for a 'description' object} \usage{ cite(descr) } \arguments{ \item{descr}{an object of type 'description'} } \value{ a character-string giving citation info } \description{ Citation information for a 'description' object } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/McmcHookFactor.Rd0000644000176000001440000000134712061700507015260 0ustar ripleyusers\name{McmcHookFactor} \alias{McmcHookFactor} \title{Hook to Clean-up MCMC Factor Object} \usage{ McmcHookFactor(obj, model.call, zelig.call, seed = NULL, ...) } \arguments{ \item{obj}{the fitted model object (in this case a \code{mcmc} object.} \item{model.call}{the call made to the external model} \item{zelig.call}{the actual call to zelig itself} \item{seed}{a seed for the MCMC algorithm} \item{...}{ignored parameters} } \value{ an object useable by Zelig } \description{ This method gives valid methods to the resulting MCMC object so that it can be used with Zelig. } \note{ This function is used internally by the ZeligBayesian package. } \author{ Olivia Lau, Kosuke Imai, Gary King and Matt Owen } Zelig/man/param.ls.Rd0000644000176000001440000000077612061700507014143 0ustar ripleyusers\name{param.ls} \alias{param.ls} \title{Param Method for the 'ls' Zelig Model} \usage{ \method{param}{ls}(obj, num, \dots) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored parameters} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the 'ls' Zelig Model } \note{ This method currently returns via a deprectated style } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.matrix.setx.Rd0000644000176000001440000000162612061700507015311 0ustar ripleyusers\name{as.matrix.setx} \alias{as.matrix.setx} \title{Convert a 'setx' Object to a Matrix} \usage{ \method{as.matrix}{setx}(x, ...) } \arguments{ \item{x}{a setx object} \item{...}{ignored parameters} } \value{ a matrix containing columns and rows corrseponding to the explanatory variables specified in the call to the 'setx' function } \description{ The setx object is, in its most basic form, a list of column names and values specified for each of these column names. This function simply converts the key-value pairs of column-name and specified value into a matrix. } \note{ This method allows basic matrix arithmetic operations on data objects, which mirror values stored within setx objects. In many scenarios, simulations require matrix-multiplication, etc. to be performed on a data-set. This function faciliates that need. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/zelig.call.Rd0000644000176000001440000000110512061700507014435 0ustar ripleyusers\name{zelig.call} \alias{zelig.call} \title{Create Function Call} \usage{ zelig.call(Call, zelig2, remove = NULL) } \arguments{ \item{Call}{a \code{call} object, typically specifying the original function call to \code{zelig}} \item{zelig2}{the return-value of the \code{zelig2} method} \item{remove}{a list of character vectors specifying which parameters to ignore from the original call to \code{zelig}} } \value{ a function call used to fit the statistical model } \description{ Create Function Call } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/describe.default.Rd0000644000176000001440000000131612061700507015620 0ustar ripleyusers\name{describe.default} \alias{describe.default} \title{Default describe function for an arbitrary model This method exists solely as a backup when an author does not contribute a 'describe' function for their model} \usage{ \method{describe}{default}(...) } \arguments{ \item{...}{dummy parameters purely to cast the correct object. That is, the parameters of the function should not BE referenced specifically} } \value{ a list to be processed by \code{as.description} } \description{ Default describe function for an arbitrary model This method exists solely as a backup when an author does not contribute a 'describe' function for their model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/GetSlot.zelig.Rd0000644000176000001440000000120312061700507015102 0ustar ripleyusers\name{GetSlot.zelig} \alias{GetSlot.zelig} \title{Return a Value from a \code{zelig} Fitted Model} \usage{ \method{GetSlot}{zelig}(obj, key, ...) } \arguments{ \item{obj}{a \code{zelig} object} \item{key}{a character-string specifying the which value to extract from the fitted model object} \item{...}{subsequent values to extract from the fitted model object} } \value{ values of the specified keys } \description{ Returns a value from the result of a model fitting function } \note{ This function is primarily used by Zelig developers within \code{qi} functions } \author{ Matt Owen \emph{mowen@iq.harvard.edu} } Zelig/man/print.summary.pooled.sim.Rd0000644000176000001440000000140312061700507017312 0ustar ripleyusers\name{print.summary.pooled.sim} \alias{print.summary.pooled.sim} \title{Print a Summary of a Set of Pooled Simulated Interests} \usage{ \method{print}{summary.pooled.sim}(x, ...) } \arguments{ \item{x}{a ``summary.pooled.sim'' object, containing summarized information about simulated quantities of interest} \item{...}{Optional parameters that will be passed onward to ``print.matrix'' (the matrix printing function)} } \value{ a ``summary.pooled.sim'' object storing the quantities of interest } \description{ Prints the summary information from a set of pooled simulated interests. This method assumes that quantities of interest are kept in a data type which can be used with ``rbind''. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/names.qi.Rd0000644000176000001440000000132312061700507014126 0ustar ripleyusers\name{names.qi} \alias{names.qi} \title{The Names of a 'qi' Object} \usage{ \method{names}{qi}(x) } \arguments{ \item{x}{a 'qi' object} } \value{ a character-vector containing the names of the Quantities of Interest } \description{ Function to get the names of a 'qi' object. This function does not entirely parallel the functionality of traditional 'names' methods; this is because the \code{$} operator has been overloaded to support a unique style of value extraction. For technical details, please see the source code. } \note{ No method exists to set the names of a 'qi' object, once it is constructed. This will be a feature added later. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/approval.Rd0000644000176000001440000000062112061700507014237 0ustar ripleyusers\name{approval} \alias{approval} \title{U.S. Presidential Approval Data} \description{ Monthy public opinion data for 2001-2006. } \usage{data(approval)} \format{ A table containing 8 variables ("month", "year", "approve", "disapprove", "unsure", "sept.oct.2001", "iraq.war", and "avg.price") and 65 observations. } \source{ICPSR} \references{ Stuff here } \keyword{datasets} Zelig/man/as.data.frame.setx.Rd0000644000176000001440000000136512061700507016007 0ustar ripleyusers\name{as.data.frame.setx} \alias{as.data.frame.setx} \title{Coerce a \code{setx} Object into a \code{data.frame}} \usage{ \method{as.data.frame}{setx}(x, row.names=NULL, optional=FALSE, ...) } \arguments{ \item{x}{a \code{setx} object} \item{row.names}{ignored parameter} \item{optional}{ignored parameter} \item{...}{ignored parameters} } \value{ the \code{setx} object interpretted as a \code{data.frame}. The column-names of the resulting \code{data.frame} are specified by the names of the \code{setx} object. The row-names are typically unlabeled. } \description{ Coerce a \code{setx} Object into a \code{data.frame} } \note{ In subsequent versions of Zelig, this version is expected to undergo minor modifications. } Zelig/man/makeZeligObject.Rd0000644000176000001440000000166112061700507015457 0ustar ripleyusers\name{makeZeligObject} \alias{makeZeligObject} \title{Make an Individual Zelig Object} \usage{ makeZeligObject(object, model, call, zelig_call, data, label, env, package.name = NULL) } \arguments{ \item{object}{a fitted statistical model} \item{model}{a character-string specifying the name of the model} \item{call}{The call that produced the fitted model} \item{zelig_call}{The call made to the original zelig function} \item{data}{the data.frame used to fit the model} \item{label}{a character-string or symbol used as a human-readable label for the data-set} \item{env}{an environment variable that contains all variables to evaluate the call ``zelig_call''} \item{package.name}{a character-string specifyign the name of the package that is the source of the model used to fit this object} } \value{ A ``zelig'' object } \description{ Returns a ``zelig'' object with the proper specifications } Zelig/man/plot.sim.Rd0000644000176000001440000000062412061700507014163 0ustar ripleyusers\name{plot.sim} \alias{plot.sim} \title{Method for plotting simulations} \usage{ \method{plot}{sim}(x, ...) } \arguments{ \item{x}{a `sim' object} \item{...}{parameters to be passed to the `truehist' function which is implicitly called for numeric simulations} } \value{ nothing } \description{ Plot simulated quantities of interest. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.summarized.list.Rd0000644000176000001440000000065312061700507016154 0ustar ripleyusers\name{as.summarized.list} \alias{as.summarized.list} \title{list -> summarized.qi Convert a list into a ``summarized.qi'' object} \usage{ \method{as.summarized}{list}(x, ...) } \arguments{ \item{x}{a list} \item{...}{ignored parameters} } \value{ a ``summarized.qi'' object } \description{ list -> summarized.qi Convert a list into a ``summarized.qi'' object } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.summary.relogit.Rd0000644000176000001440000000101012061700507016700 0ustar ripleyusers\name{print.summary.relogit} \alias{print.summary.relogit} \title{Print Summary of a Rare-event Logistic Model} \usage{ \method{print}{summary.relogit}(x, digits = max(3, getOption("digits") - 3), ...) } \arguments{ \item{x}{an ``relogit.summary'' object produced by the ``summary'' method.} \item{digits}{an integer specifying the number of digits of precision to specify} \item{...}{parameters passed forward to the ``print.glm'' function} } \value{ x (invisibly) } \description{ Prints the } Zelig/man/describe.tobit.Rd0000644000176000001440000000052412061700507015315 0ustar ripleyusers\name{describe.tobit} \alias{describe.tobit} \title{Describe a ``tobit'' model to Zelig} \usage{ \method{describe}{tobit}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by `as.description' } \description{ Describe a ``tobit'' model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/bootfn.default.Rd0000644000176000001440000000141012061700507015322 0ustar ripleyusers\name{bootfn.default} \alias{bootfn.default} \title{Default Boot-strapping procedure} \usage{ bootfn.default(data, i, object, bootstrapfn = NULL, num, ...) } \arguments{ \item{data}{a data.frame} \item{i}{an integer or chacter-string specifying the index of the row to be used in the bootstrapping procedure.} \item{object}{the fitted model object} \item{bootstrapfn}{a function used to bootstrap the object} \item{num}{an integer specifying the number of samples to simulate} \item{...}{unspecified parameters} } \value{ a list of paramters } \description{ The default procedure for extracting bootstrap information. Note that this method re-fits the data and resamples the data frequently. This is a good candidate for fixing-up. } Zelig/man/summary.Relogit2.Rd0000644000176000001440000000053512061700507015602 0ustar ripleyusers\name{summary.Relogit2} \alias{summary.Relogit2} \title{Summary for ``Relogit2'' Fitted Model} \usage{ \method{summary}{Relogit2}(object, ...) } \arguments{ \item{object}{a ``Relogit2'' object} \item{...}{other parameters} } \value{ a ``summary.relogit2'' object } \description{ Summarize important components of the ``relogit'' model } Zelig/man/summary.zelig.Rd0000644000176000001440000000060712061700507015225 0ustar ripleyusers\name{summary.zelig} \alias{summary.zelig} \title{Zelig Object Summaries} \usage{ \method{summary}{zelig}(object, ...) } \arguments{ \item{object}{a zelig object} \item{...}{parameters forwarded to the generic summary object} } \value{ the summary of the fitted model } \description{ Compute summary data for zelig objects } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.description.list.Rd0000644000176000001440000000054012061700507016312 0ustar ripleyusers\name{as.description.list} \alias{as.description.list} \title{list -> description} \usage{ \method{as.description}{list}(descr, ...) } \arguments{ \item{descr}{a list} \item{...}{ignored} } \value{ an object of type 'description' } \description{ Convert list into a description object. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/Mode.Rd0000644000176000001440000000060212061700507013276 0ustar ripleyusers\name{Mode} \alias{Mode} \title{Compute the Statistical Mode of a Vector} \usage{ Mode(x) } \arguments{ \item{x}{a vector of numeric, factor, or ordered values} } \value{ the statistical mode of the vector. If two modes exist, one is randomly selected (by design) } \description{ Compute the Statistical Mode of a Vector } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/Weimar.Rd0000644000176000001440000000157612061700507013651 0ustar ripleyusers\name{Weimar} \alias{Weimar} \title{1932 Weimar election data} \description{ This data set contains election results for 10 kreise (equivalent to precincts) from the 1932 Weimar (German) election. } \usage{data(Weimar)} \format{A table containing 11 variables and 10 observations. The variables are \describe{ \item{Nazi}{Number of votes for the Nazi party} \item{Government}{Number of votes for the Government} \item{Communists}{Number of votes for the Communist party} \item{FarRight}{Number of votes for far right parties} \item{Other}{Number of votes for other parties, and non-voters} \item{shareunemployed}{Proportion unemployed} \item{shareblue}{Proportion working class} \item{sharewhite}{Proportion white-collar workers} \item{sharedomestic}{Proportion domestic servants} \item{shareprotestants}{Proportion Protestant} } } \source{ICPSR} %\references{ %} \keyword{datasets} Zelig/man/parameters.Rd0000644000176000001440000000142712061700507014563 0ustar ripleyusers\name{parameters} \alias{parameters} \title{Constructor for `parameters' class} \usage{ parameters(simulations, alpha, fam = NULL, link = NULL, linkinv = NULL) } \arguments{ \item{simulations}{a vector or matrix containing simulated values} \item{alpha}{ancillary parameters for the Zelig statistical model} \item{fam}{a family object which implicitly specifies the link and link-inverse functions for the} \item{link}{the link function of the specified statistical model. The `linkinv' parameter is implicitly defined by by the `link' parameter, when `linkinv' is omitted} \item{linkinv}{the inverse link function} } \value{ a `parameters' object } \description{ Constructor for `parameters' class } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/param.default.Rd0000644000176000001440000000063012061700507015136 0ustar ripleyusers\name{param.default} \alias{param.default} \title{Default Method for ``param''} \usage{ \method{param}{default}(obj, num, ...) } \arguments{ \item{obj}{ignored parameter} \item{num}{ignored parameter} \item{...}{ignored parameters} } \description{ If no \code{param} function is set for a Zelig model, then this function will return NULL. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/zelig2.Rd0000644000176000001440000000401112061700507013604 0ustar ripleyusers\name{zelig2} \alias{zelig2} \title{Interface Between Zelig Models and External Functions} \value{ The main purpose of the \code{zelig2} function is to return a list of key-value pairs, specifying how Zelig should interface with the external method. This list has the following format: \item{\code{.function}}{specifies the name of the external method to be called by \code{zelig} function. Subsequent parameters, are called and evaluated as a function call to the function of the named string.} \item{\code{.hook}}{specifies the name of a hook function as a string. The hook function is only evaluated on zelig object once the external method fits the statistical model} \item{...}{any parameters aside from \code{.function} and \code{.hook} is as part of the function call to the external model} } \description{ The \code{zelig2} function acts as a simple interface between a user's call to the \code{zelig} function and the zelig functions subsequent call to the pre-existing external model. The external model varies based on which model is being called. } \note{ Writing \code{zelig2} functions is required of Zelig developers. In particular, \code{zelig2} functions act as an interface between external models (models not included in the Zelig package) and the \code{zelig} function which must use that model. \code{zelig2} is not an actual function. Rather, } \examples{ zelig2some.model <- function (formula, weights, verbose, ..., data) { list( .function = 'some.other.method', .hook = NULL, formula = formula, weights = 2 * weights, data = data ) } ## This \\code{zelig2} function equates the following function call: ## zelig(formula, weights = weights, verbose = TRUE, data = data, model="some.model") ## ## with: ## some.other.method(formula = formula, weights = 2 * weights, data=data) ## Note that the 'verbose' parameter is ignored, since the ## 'zelig2some.model' does not include the 'verbose' parameter in its return ## value. } Zelig/man/describe.exp.Rd0000644000176000001440000000051212061700507014765 0ustar ripleyusers\name{describe.exp} \alias{describe.exp} \title{Describe a ``exp'' model to Zelig} \usage{ \method{describe}{exp}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by `as.description' } \description{ Describe a ``exp'' model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/store.object.Rd0000644000176000001440000000224512061700507015020 0ustar ripleyusers\name{store.object} \alias{store.object} \title{Store Object in Environment with a Fake Name} \usage{ store.object(obj, envir, name = NULL, prefix = ".") } \arguments{ \item{obj}{any object} \item{envir}{an environment object, which will contain the object with the assigned name} \item{name}{a character-string specifying the name that the object will be stored as in the specified environment} \item{prefix}{a character string specifying the prefixes to append to names that already have matches in the destination environment} } \value{ a character-string specifying the name of the object in the destination environment } \description{ This function takes the value of an object and stores it within a specified environment. This is similar to simply using the \code{assign} function, but will not overwrite existing values in the specified environment. It accomplishes this by appending a prefix to the name of the variable until the name becomes unique. } \note{ This method does not correct invalid names. That is, there is no test to determine whether the submitted name is valid. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/zelig.skeleton.Rd0000644000176000001440000000354212061700507015355 0ustar ripleyusers\name{zelig.skeleton} \alias{zelig.skeleton} \title{Creates a Skeleton for a New Zelig package} \usage{ zelig.skeleton(pkg, models = c(), author = "UNKNOWN AUTHOR", path = ".", force = FALSE, email = "maintainer@software-project.org", depends = c(), ..., .gitignore = TRUE, .Rbuildignore = TRUE) } \arguments{ \item{pkg}{a character-string specifying the name of the Zelig package} \item{models}{a vector of strings specifying models to be included in the package} \item{author}{a vector of strings specifying contributors to the package} \item{path}{a character-string specifying the path to the package} \item{force}{a logical specifying whether to overwrite files and create necessary directories} \item{email}{a string specifying the email address of the package's maintainer} \item{depends}{a vector of strings specifying package dependencies} \item{...}{ignored parameters} \item{.gitignore}{a logical specifying whether to include a copy of a simple \code{.gitignore} in the appropriate folders (\code{inst/doc} and the package root} \item{.Rbuildignore}{a logical specifying whether to include a copy of a simple \code{.Rbuildignore} in the appropriate folders (\code{inst/doc} and the package root} } \value{ nothing } \description{ 'zelig.skeleton' generates the necessary files used to create a Zelig package. Based on (and using) R's 'package.skeleton' it removes some of the monotony of building statistical packages. In particular, 'zelig.skeleton' produces templates for the \code{zelig2}, \code{describe}, \code{param}, and \code{qi} methods. For more information about creating these files on an individual basis, please refer to the tech manuals, which are available by typing: \code{?zelig2}, \code{?param}, or \code{?qi}. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.qi.default.Rd0000644000176000001440000000037712061700507015061 0ustar ripleyusers\name{as.qi.default} \alias{as.qi.default} \title{??? -> qi} \usage{ as.qi.default(s) } \arguments{ \item{s}{any unsupported object} } \value{ an object of type `qi' } \description{ ??? -> qi } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/terms.vglm.Rd0000644000176000001440000000060212061700507014510 0ustar ripleyusers\name{terms.vglm} \alias{terms.vglm} \title{Model Terms for 'vglm' Models} \usage{ \method{terms}{vglm}(x, ...) } \arguments{ \item{x}{a fitted model object from the VGAM library} \item{...}{ignored parameters} } \value{ the models terms of this fitted model object } \description{ Model Terms for 'vglm' Models } \author{ Ferdinand Alimadhi, Kosuke Imai and Olivia Lau } Zelig/man/alpha.Rd0000644000176000001440000000056712061700507013511 0ustar ripleyusers\name{alpha} \alias{alpha} \title{Extract ancillary parameters from `parameters' objects} \usage{ alpha(param) } \arguments{ \item{param}{a `parameters' object} } \value{ the ancillary parameters \emph{specified} for the statistical model } \description{ Extract ancillary parameters from `parameters' objects } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/special_print_LIST.Rd0000644000176000001440000000101212061700507016075 0ustar ripleyusers\name{special_print_LIST} \alias{.print.qi.summarized.LIST} \alias{special_print_LIST} \title{Method for Printing Summarized QI's in a List Form} \usage{ .print.qi.summarized.LIST(x, ...) } \arguments{ \item{x}{a 'summarized.qi' object} \item{...}{additional parameters to be used by the 'print.matrix' method} } \value{ x (invisibly) } \description{ Method for Printing Summarized QI's in a List Form } \note{ This function is used internall by Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/Min.Rd0000644000176000001440000000053012061700507013135 0ustar ripleyusers\name{Min} \alias{Min} \title{Compute the Minumum Value of a Vector} \usage{ Min(x, na.rm = NULL) } \arguments{ \item{x}{a vector of numeric or ordered values} \item{na.rm}{ignored} } \value{ the minimum value of the vector } \description{ Compute the Minumum Value of a Vector } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.description.description.Rd0000644000176000001440000000061112061700507017661 0ustar ripleyusers\name{as.description.description} \alias{as.description.description} \title{description -> description} \usage{ \method{as.description}{description}(descr, ...) } \arguments{ \item{descr}{an object of type 'description'} \item{...}{ignored} } \value{ the same object } \description{ Identity operation on a description object. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/parse.formula.Rd0000644000176000001440000000063412061700507015175 0ustar ripleyusers\name{parse.formula} \alias{parse.formula} \title{Parse Formulas for Zelig Models} \usage{ parse.formula(formula, model, data = NULL) } \arguments{ \item{formula}{a formula} \item{model}{a Zelid model} \item{data}{a data-frame} } \description{ Parse Formulas for Zelig Models } \note{ This is used typically in multinomial and multivariate Zelig models } \author{ Kosuke Imai and Olivia Lau } Zelig/man/special_print_MATRIX.Rd0000644000176000001440000000075412061700507016342 0ustar ripleyusers\name{special_print_MATRIX} \alias{.print.qi.summarized.MATRIX} \alias{special_print_MATRIX} \title{Method for Printing Summarized QI's in a Matrix Form} \usage{ .print.qi.summarized.MATRIX(x, ...) } \arguments{ \item{x}{a 'summarized.qi' object} \item{...}{additional parameters} } \value{ x (invisibly) } \description{ Method for Printing Summarized QI's in a Matrix Form } \note{ This function is used internall by Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/constructDataFrame.Rd0000644000176000001440000000123312061700507016204 0ustar ripleyusers\name{constructDataFrame} \alias{constructDataFrame} \title{Construct Data Frame Construct and return a tiny (single-row) data-frame from a larger data-frame, a list of specified values, and a formula} \usage{ constructDataFrame(data, specified) } \arguments{ \item{data}{a ``data.frame'' that will be used to create a small design matrix} \item{specified}{a list with key-value pairs that will be used to explicitly set several values} } \value{ a ``data.frame'' containing a single row } \description{ Construct Data Frame Construct and return a tiny (single-row) data-frame from a larger data-frame, a list of specified values, and a formula } Zelig/man/simulations.parameters.Rd0000644000176000001440000000122012061700507017120 0ustar ripleyusers\name{simulations.parameters} \alias{simulations.parameters} \title{Return Simulations of Parameter Coefficients} \usage{ \method{simulations}{parameters}(object, ...) } \arguments{ \item{object}{a 'parameters' object} \item{\dots}{ignored} } \value{ simulations, specified by the Zelig model, of the ancillary parameters } \description{ Returns simulated parameters of coefficients for use in statistical simulation. The values are set by the model-fitting function and the developer of the qi. method. } \note{ This function does not differ at all from coef.default } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/mid.Rd0000644000176000001440000000165412061700507013173 0ustar ripleyusers\name{mid} \alias{mid} \title{Militarized Interstate Disputes} \description{ A small sample from the militarized interstate disputes database, available at \url{http://pss.la.psu.edu/MID_DATA.HTM}. } \usage{data(mid)} \format{ A table containing 6 variables ("conflict", "major", "contig", "power", "maxdem", "mindem", and "years") and 3,126 observations. For full variable descriptions, please see King and Zeng, 2001. } \source{Militarized Interstate Disputes database} \references{ King, Gary, and Lanche Zeng (2001). ``Explaining Rare Events in International Relations,'' \emph{International Organization}, vol. 55, no. 3, pp. 693-715. Jones, Daniel M., Stuart A. Bremer and David Singer (1996). ``Militarized Interstate Disputes, 1816-1992: Rationale, Coding Rules, and Empirical Patterns,'' \emph{Conflict Management and Peace Science}, vol. 15, no. 2, pp. 163-213. } \keyword{datasets} Zelig/man/param.normal.Rd0000644000176000001440000000100412061700507014776 0ustar ripleyusers\name{param.normal} \alias{param.normal} \title{Param Method for the 'normal' Zelig Model} \usage{ \method{param}{normal}(obj, num=1000, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the 'normal' Zelig Model } \note{ This method is used by the 'normal' Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.qi.Rd0000644000176000001440000000061112061700507014156 0ustar ripleyusers\name{print.qi} \alias{print.qi} \title{Print a Quantity of Interest in Human-Readable Form} \usage{ \method{print}{qi}(x, ...) } \arguments{ \item{x}{a qi object} \item{...}{ignored parameters} } \value{ the object that was printed (invisibly) } \description{ Print simulated quantities of interest in a human-readable form } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/summary.MI.Rd0000644000176000001440000000072412142745743014433 0ustar ripleyusers\name{summary.MI} \alias{summary.MI} \title{Summarry of Multiply Imputed Statistical Models} \usage{ \method{summary}{MI}(object, subset = NULL, ...) } \arguments{ \item{object}{a set of fitted statistical models} \item{subset}{an integer vector, specifying the indices of the data.frames to be used in the subset} \item{...}{parameters to forward} } \value{ a list of summaries } \description{ ... } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/list.zelig.dependent.packages.Rd0000644000176000001440000000103012061700507020214 0ustar ripleyusers\name{list.zelig.dependent.packages} \alias{list.zelig.dependent.packages} \title{Get a List of Packages Installed on the Current Machine that Depend on Zelig} \usage{ list.zelig.dependent.packages() } \value{ a character-vector of all zelig-dependent packages on the current machine } \description{ Get a List of Packages Installed on the Current Machine that Depend on Zelig } \note{ This function is used primarily internally to determine whether a a package is contributing a function to the Zelig software suite } Zelig/man/name.object.Rd0000644000176000001440000000134112061700507014600 0ustar ripleyusers\name{name.object} \alias{name.object} \title{Name Elements of an Object} \usage{ name.object(obj, names) } \arguments{ \item{obj}{a vector or matrix} \item{names}{a character-vector specifying names} } \value{ the original object, with a "colnames" or "names" equal to the parameter "names". If "names" is larger than "obj", the "names" parameter is truncated appropriately. If it is smaller, then the latter part of "obj" is replaced with a numbered generic column name } \description{ Returns an object } \note{ This method is used internally by Zelig to name the columns and elements of matrices and vectors for simulations and bootstrapped parameters. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.setx.Rd0000644000176000001440000000053712061700507014537 0ustar ripleyusers\name{print.setx} \alias{print.setx} \title{Print values of `setx' objects} \usage{ \method{print}{setx}(x, ...) } \arguments{ \item{x}{a `setx' object} \item{...}{ignored parameters} } \value{ the value of x (invisibly) } \description{ Print a ``setx'' object in human-readable form. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/bootstrap.negbinom.Rd0000644000176000001440000000116412061700507016230 0ustar ripleyusers\name{bootstrap.negbinom} \alias{bootstrap.negbinom} \title{Bootstrap Parameters for Zelig ``negbinom'' GLM} \usage{ \method{bootstrap}{negbinom}(obj, ...) } \arguments{ \item{obj}{a ``zelig'' object that will be used to produce boot-strapped parameters} \item{...}{extra parameters to be passed to the ``boot'' method. These are typically ignored, but is included for further expansion.} } \value{ a list containing information concerning link, link-inverses, etc. } \description{ Returns bootstrapped parameter estimates for a negative-binomial GLM. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/terms.multiple.Rd0000644000176000001440000000067712061700507015412 0ustar ripleyusers\name{terms.multiple} \alias{terms.multiple} \title{Extract Terms from a \code{multiple} Object} \usage{ \method{terms}{multiple}(x, data=NULL,...) } \arguments{ \item{x}{a Zelig v3.5 formula} \item{data}{a \code{data.frame}} \item{...}{ignored parameters} } \description{ Extracts terms from Zelig-3.5-style formulae. This function is scheduled for removal. } \author{ Kosuke Imai, Olivia Lau, Gary King and Ferdinand Alimadhi } Zelig/man/ZeligListModels.Rd0000644000176000001440000000121012061700507015460 0ustar ripleyusers\name{ZeligListModels} \alias{ZeligListModels} \title{Get a Character-Vector of All Models with a 'zelig2' Function} \usage{ ZeligListModels(zelig.only = FALSE) } \arguments{ \item{zelig.only}{a boolean specifying whether we want to search only the Zelig namespace} } \value{ a character-vector of the Zelig models loaded on the user's machine } \description{ Get a Character-Vector of All Models with a 'zelig2' Function } \note{ In order for a Zelig model to either execute correctly or be listed as a legal Zelig model, the function name must be prefixed with 'zelig2'. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/table.levels.Rd0000644000176000001440000000115712061700507015000 0ustar ripleyusers\name{table.levels} \alias{table.levels} \title{Create a table, but ensure that the correct columns exist. In particular, this allows for entires with zero as a value, which is not the default for standard tables} \usage{ table.levels(x, levels, ...) } \arguments{ \item{x}{a vector} \item{levels}{a vector of levels} \item{...}{parameters for table} } \value{ a table } \description{ Create a table, but ensure that the correct columns exist. In particular, this allows for entires with zero as a value, which is not the default for standard tables } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/zeligBuildWeights.Rd0000644000176000001440000000413412216625034016046 0ustar ripleyusers\name{zeligBuildWeights} \alias{zeligBuildWeights} \title{Developer Utility Function for Dealing with Observation Weighting} \usage{ zeligBuildWeights(weights=NULL, repweights=NULL, zeros="zeros", rebuild=FALSE, allowweights=TRUE, allowrepweights=TRUE, data=NULL) } \arguments{ \item{weights}{A set of non-negative value weights. Overrides repweights if defined.} \item{repweights}{A set of whole number (non-negative integer) weights. Useful if weights are just for making copies of or deleting certain observations or for frequency weights.} \item{zeros}{An option on how to deal with zero valued user supplied weights. Default of "zero" allows zero weights, "epsilon" changes zeroes to 1e-08, "remove" removes those observations from the dataset.} \item{rebuild}{An option to allow specified repweights to reconfigure the rows of the dataset to rebuild a corresponding dataset where every row is of weight 1. Useful if analysis model does not accept weights.} \item{allowweights}{Defines if weights are allowed in model.} \item{allowrepweights}{Defines if repweights are allowed in model. Overridden if \code{useweights=TRUE}.} \item{data}{Dataset, required if weights are defined by variable name, or if dataset is to be reconfigured (by \code{rebuild} or \code{zeros} options)} } \value{ \item{weights}{A vector of weights of the structure defined by the developer and required by the analysis model. Or NULL if certain checks are failed.} \item{data}{A reconfigured dataset, if modified.} } \description{ The \code{zeligBuildWeights} utility allows developers building models or modules for Zelig, to easily define what types of weights can be set by the user and passed to estimation function. In some cases it can reconfigure the dataset by duplication to functionally invoke discrete weighting by replication of observations, when the estimator itself can not utilize weights. } \author{ James Honaker \email{jhonaker@iq.harvard.edu} } \seealso{ The full Zelig developer manual may be accessed online at \url{http://gking.harvard.edu/zelig} } \keyword{weights} Zelig/man/PErisk.Rd0000644000176000001440000000555712061700507013625 0ustar ripleyusers\name{PErisk} \alias{PErisk} \title{Political Economic Risk Data from 62 Countries in 1987} \description{ Political Economic Risk Data from 62 Countries in 1987. } \usage{data(PErisk)} \format{ A data frame with 62 observations on the following 6 variables. All data points are from 1987. See Quinn (2004) for more details. country: a factor with levels 'Argentina' 'Australia' 'Austria' 'Bangladesh' 'Belgium' 'Bolivia' 'Botswana' 'Brazil' 'Burma' 'Cameroon' 'Canada' 'Chile' 'Colombia' 'Congo-Kinshasa' 'Costa Rica' 'Cote d'Ivoire' 'Denmark' 'Dominican Republic' 'Ecuador' 'Finland' 'Gambia, The' 'Ghana' 'Greece' 'Hungary' 'India' 'Indonesia' 'Iran' 'Ireland' 'Israel' 'Italy' 'Japan' 'Kenya' 'Korea, South' 'Malawi' 'Malaysia' 'Mexico' 'Morocco' 'New Zealand' 'Nigeria' 'Norway' 'Papua New Guinea' 'Paraguay' 'Philippines' 'Poland' 'Portugal' 'Sierra Leone' 'Singapore' 'South Africa' 'Spain' 'Sri Lanka' 'Sweden' 'Switzerland' 'Syria' 'Thailand' 'Togo' 'Tunisia' 'Turkey' 'United Kingdom' 'Uruguay' 'Venezuela' 'Zambia' 'Zimbabwe' courts: an ordered factor with levels '0' < '1'.'courts' is an indicator of whether the country in question is judged to have an independent judiciary. From Henisz (2002). barb2: a numeric vector giving the natural log of the black market premium in each country. The black market premium is coded as the black market exchange rate (local currency per dollar) divided by the official exchange rate minus 1. From Marshall, Gurr, and Harff (2002). prsexp2: an ordered factor with levels '0' < '1' < '2' < '3' < '4' < '5', giving the lack of expropriation risk. From Marshall, Gurr, and Harff (2002). prscorr2: an ordered factor with levels '0' < '1' < '2' < '3' < '4' < '5', measuring the lack of corruption. From Marshall, Gurr, and Harff (2002). gdpw2: a numeric vector giving the natural log of real GDP per worker in 1985 international prices. From Alvarez et al. (1999). } \source{ Mike Alvarez, Jose Antonio Cheibub, Fernando Limongi, and Adam Przeworski. 1999. ``ACLP Political and Economic Database.'' . Witold J. Henisz. 2002. ``The Political Constraint Index (POLCON) Dataset.'' \ . Monty G. Marshall, Ted Robert Gurr, and Barbara Harff. 2002. ``State Failure Task Force Problem Set.'' . } \references{ Kevin M. Quinn. 2004. ``Bayesian Factor Analysis for Mixed Ordinal and Continuous Response.'' \emph{Political Analyis}. Vol. 12, pp.338--353. } \keyword{datasets} Zelig/man/as.parameters.parameters.Rd0000644000176000001440000000104512061700507017323 0ustar ripleyusers\name{as.parameters.parameters} \alias{as.parameters.parameters} \title{parameters -> parameters This is merely an identity function when casting 'parameters' objects into 'parameters'.} \usage{ as.parameters.parameters(params, ...) } \arguments{ \item{params}{a parameters object} \item{...}{ignored parameters} } \value{ the same parameter object } \description{ parameters -> parameters This is merely an identity function when casting 'parameters' objects into 'parameters'. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/zelig2-survey.Rd0000644000176000001440000001010312061700507015136 0ustar ripleyusers\name{zelig2-survey} \alias{zelig2gamma.survey} \alias{zelig2logit.survey} \alias{zelig2normal.survey} \alias{zelig2poisson.survey} \alias{zelig2probit.survey} \title{Interface between \code{Zelig} and \code{svyglm}} \usage{ zelig2gamma.survey(formula, weights = NULL, ids = NULL, probs = NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", return.replicates = FALSE, na.action = "na.omit", start = NULL, etastart = NULL, mustart = NULL, offset = NULL, model1 = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, design = NULL, link = "inverse", data, ...) zelig2logit.survey(formula, weights = NULL, ids = NULL, probs = NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", return.replicates = FALSE, na.action = "na.omit", start = NULL, etastart = NULL, mustart = NULL, offset = NULL, model1 = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, design = NULL, data) zelig2normal.survey(formula, weights = NULL, ids = NULL, probs = NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", return.replicates = FALSE, na.action = "na.omit", start = NULL, etastart = NULL, mustart = NULL, offset = NULL, model1 = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, design = NULL, data) zelig2poisson.survey(formula, weights = NULL, ids = NULL, probs = NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", return.replicates = FALSE, na.action = "na.omit", start = NULL, etastart = NULL, mustart = NULL, offset = NULL, model1 = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, design = NULL, data) zelig2probit.survey(formula, weights = NULL, ids = NULL, probs = NULL, strata = NULL, fpc = NULL, nest = FALSE, check.strata = !nest, repweights = NULL, type, combined.weights = FALSE, rho = NULL, bootstrap.average = NULL, scale = NULL, rscales = NULL, fpctype = "fraction", return.replicates = FALSE, na.action = "na.omit", start = NULL, etastart = NULL, mustart = NULL, offset = NULL, model1 = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, design = NULL, data) } \arguments{ \item{formula}{a \code{formula}} \item{weights}{...} \item{ids}{...} \item{probs}{...} \item{strata}{...} \item{fpc}{...} \item{nest}{...} \item{check.strata}{...} \item{repweights}{...} \item{type}{...} \item{combined.weights}{...} \item{rho}{...} \item{bootstrap.average}{...} \item{scale}{...} \item{rscales}{...} \item{fpctype}{...} \item{return.replicates}{...} \item{na.action}{...} \item{start}{...} \item{etastart}{...} \item{mustart}{...} \item{offset}{...} \item{model1}{...} \item{method}{...} \item{x}{...} \item{y}{...} \item{contrasts}{...} \item{design}{...} \item{link}{an object specifying a link function between the predictor and response variables} \item{data}{a \code{data.frame}} \item{\dots}{ Additional parameters passed to teh ``gamma.survey'' model fitting function } } \value{ a \code{list} used to construct parameters for the \code{svyglm} function } \description{ Interface between \code{zelig} and \code{svyglm} for the \code{logit.survey} } \note{ This manual file is largely incomplete, and needs a significant amount of filling out. This, in itself, might be motivation to divide this package into more models with more specific function. } Zelig/man/describe.negbinom.Rd0000644000176000001440000000065412061700507015776 0ustar ripleyusers\name{describe.negbinom} \alias{describe.negbinom} \title{Describe the \code{negbinom} model to Zelig} \usage{ \method{describe}{negbinom}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by \code{as.description} } \description{ Describe the \code{negbinom} model to Zelig } \note{ \code{negbinom} stands for "negative binomial" } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/mi.Rd0000644000176000001440000000113212061700507013016 0ustar ripleyusers\name{mi} \alias{mi} \title{Bundle Data-sets for Multiple Imputation} \usage{ mi(...) } \arguments{ \item{...}{a set of \code{data.frame}'s} } \value{ an \code{almost.mi} object, which contains the important internals of a valid, useful \code{mi} object } \description{ This object prepares data-sets for processing with multiple imputation. } \note{ This function is largely identical to simply creating a list object, with the exception that any unnamed data-sets are automatically labeled via the \code{substitute} function } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/replace.call.Rd0000644000176000001440000000104012061700507014734 0ustar ripleyusers\name{replace.call} \alias{replace.call} \title{Hook to Update the Zelig Call with the Appropriate Call Object} \usage{ replace.call(zobj, call1, call2) } \arguments{ \item{zobj}{a 'zelig' object} \item{call1}{the original call to Zelig} \item{call2}{the manuafactured call to the model fitting function} } \value{ the 'zelig' object with a modified 'call' slot } \description{ Hook to Update the Zelig Call with the Appropriate Call Object } \note{ This function is used internally by Zelig, and currently deprecated. } Zelig/man/coef.parameters.Rd0000644000176000001440000000117212061700507015473 0ustar ripleyusers\name{coef.parameters} \alias{coef.parameters} \title{Return Simulations of Parameter Coefficients} \usage{ \method{coef}{parameters}(object, ...) } \arguments{ \item{object}{a 'parameters' object} \item{\dots}{ignored} } \value{ simulations, specified by the Zelig model, of the ancillary parameters } \description{ Returns simulated parameters of coefficients for use in statistical simulation. The values are set by the model-fitting function and the developer of the qi. method. } \note{ This function may not differ at all from coef.default } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/zelig2-core.Rd0000644000176000001440000000327012061700507014540 0ustar ripleyusers\name{zelig2-core} \alias{zelig2exp} \alias{zelig2gamma} \alias{zelig2logit} \alias{zelig2lognorm} \alias{zelig2ls} \alias{zelig2negbinom} \alias{zelig2normal} \alias{zelig2poisson} \alias{zelig2probit} \alias{zelig2relogit} \alias{zelig2tobit} \alias{zelig2twosls} \title{ Zelig to Basic GLM Fitting Functions } \usage{ zelig2exp(formula, ..., robust = FALSE, cluster = NULL, data) zelig2gamma(formula, ..., data) zelig2logit(formula, weights = NULL, robust = F, ..., data) zelig2lognorm(formula, ..., robust = FALSE, cluster = NULL, data) zelig2ls(formula, ..., data, weights = NULL) zelig2negbinom(formula, weights = NULL, ..., data) zelig2normal(formula, weights = NULL, ..., data) zelig2poisson(formula, weights = NULL, ..., data) zelig2probit(formula, weights = NULL, ..., data) zelig2relogit(formula, ..., tau = NULL, bias.correct = NULL, case.control = NULL, data) zelig2tobit(formula, ..., below = 0, above = Inf, robust = FALSE, cluster = NULL, data) zelig2twosls(formula, ..., data) } \arguments{ \item{formula}{a formula} \item{...}{additonal parameters} \item{weights}{a numeric vector} \item{robust}{a boolean specifying whether to use robust error estimates} \item{cluster}{a vector describing the clustering of the data} \item{data}{a data.frame} \item{tau}{...} \item{bias.correct}{...} \item{case.control}{...} \item{below}{a numeric or infinite specifying a lower boundary for censored responses} \item{above}{a numeric or infinite specifying an upper boundary for censored responses} } \value{ a list used by Zelig to call the model-fitting function } \description{ Interface between Zelig and Basic GLM Fitting Functions } Zelig/man/constructDesignMatrix.Rd0000644000176000001440000000114012061700507016753 0ustar ripleyusers\name{constructDesignMatrix} \alias{constructDesignMatrix} \title{Construct Design Matrix from Construct and return a design matrix based on a tiny data-frame (single-row).} \usage{ constructDesignMatrix(data, formula) } \arguments{ \item{data}{a ``data.frame'' (preferably single-rowed) that will be used to create a small design matrix} \item{formula}{a formula, whose predictor variables will be used to create a design matrix} } \value{ a design (model) matrix } \description{ Construct Design Matrix from Construct and return a design matrix based on a tiny data-frame (single-row). } Zelig/man/loadDependencies.Rd0000644000176000001440000000146212061700507015645 0ustar ripleyusers\name{loadDependencies} \alias{loadDependencies} \alias{load.dependencies} \title{Load External Dependencies Safely and Dynamically} \usage{ loadDependencies(..., character.only = FALSE) } \arguments{ \item{\ldots}{ A collection of packages to load. If ``character.only''=FALSE, these can be entered symbolically (e.g. loadDependencies(MASS)). Otherwise, these arguments are character-strings. } \item{character.only}{ A boolean specifying whether the arguments are strictly character-strings. } } \value{ TRUE (invisibly) if successful. Otherwise the script is stopped. } \description{ ``loadDependencies'' is a helper function for loading external dependencies at runtime. } \note{ This is used by Zelig developers to dynamically load ``dependent'' pacakges at runtime. } Zelig/man/makeModelMatrix.Rd0000644000176000001440000000067512061700507015507 0ustar ripleyusers\name{makeModelMatrix} \alias{makeModelMatrix} \title{Make a Model Matrix from a Zelig-Style Formula} \usage{ makeModelMatrix(formula, data) } \arguments{ \item{formula}{a Zelig-style formula} \item{data}{a \code{data.frame}} } \value{ a design (or model) matrix } \description{ This is a helper function that creates a \code{model.matrix} like object of Zelig-style formulae. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/grunfeld.Rd0000644000176000001440000000122112061700507014216 0ustar ripleyusers\name{grunfeld} \alias{grunfeld} \title{Simulation Data for model Seemingly Unrelated Regression (sur) that corresponds to method SUR of systemfit} \description{ Dataframe contains 20 annual observations from 1935 to 1954 of 7 variables for two firms General Electric and Westinghouse. Columns are Year; Ige and Iw = Gross investment for GE and W,respectively; Fge and Fw=Market value of Firm as of begin of the year; Cge and Cw= Capital stock measure as of begin of the year. } \usage{data(grunfeld)} \format{ A table containing 7 variables ("Year", "Ige", "Fge", "Cge","Iw", "Fw","Cw") and 20 observations. } \keyword{datasets} Zelig/man/cmvglm.Rd0000644000176000001440000000057612061700507013711 0ustar ripleyusers\name{cmvglm} \alias{cmvglm} \title{cmvglm} \usage{ cmvglm(formula, model, ndim, data = NULL, fact = NULL) } \arguments{ \item{formula}{a formula} \item{model}{the names of the Zelig model} \item{ndim}{the number of dimensions in the statistical model} \item{data}{a data-frame} \item{fact}{???} } \description{ cmvglm } \author{ Kosuke Imai and Olivia Lau } Zelig/man/zelig2-bayes.Rd0000644000176000001440000000262112216135776014726 0ustar ripleyusers\name{zelig2-bayes} \alias{zelig2factor.bayes} \alias{zelig2logit.bayes} \alias{zelig2mlogit.bayes} \alias{zelig2normal.bayes} \alias{zelig2oprobit.bayes} \alias{zelig2poisson.bayes} \alias{zelig2probit.bayes} \title{Zelig Bridge Functions to Bayesian Models} \usage{ zelig2factor.bayes(formula, factors = 2, burnin = 1000, mcmc = 20000, verbose = 0, ..., data) zelig2logit.bayes(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data) zelig2mlogit.bayes(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data) zelig2normal.bayes(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data) zelig2oprobit.bayes(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data) zelig2poisson.bayes(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data) zelig2probit.bayes(formula, burnin = 1000, mcmc = 10000, verbose = 0, ..., data) } \arguments{ \item{formula}{a formula} \item{...}{additonal parameters} \item{data}{a data.frame} \item{factors}{a list of factors} \item{burnin}{a parameter corresponding to the 'burnin' paramater for the MCMCprobit function} \item{mcmc}{a parameter corresponding to the 'mcmc' paramater for the MCMCprobit function} \item{verbose}{a parameter corresponding to the 'verbose' paramater for the MCMCprobit function} } \value{ a list specifying '.function' } \description{ Interface between Zelig and the bayesian models. } Zelig/man/is.qi.Rd0000644000176000001440000000053712061700507013444 0ustar ripleyusers\name{is.qi} \alias{is.qi} \title{Test If Value is Interpretable as a QI} \usage{ is.qi(qi) } \arguments{ \item{qi}{a potential quantity of interest} } \value{ a logical specifying whether this value should or should-not be output } \description{ Test If Value is Interpretable as a QI } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/summary.sim.Rd0000644000176000001440000000062612061700507014704 0ustar ripleyusers\name{summary.sim} \alias{summary.sim} \title{Method for summarizing simulations of quantities of interest} \usage{ \method{summary}{sim}(object, ...) } \arguments{ \item{object}{a 'MI.sim' object} \item{...}{ignored parameters} } \value{ a 'summarized.MI.sim' object } \description{ Return a ``summary.sim'' object (typically for display) } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/describe.ls.Rd0000644000176000001440000000060412061700507014611 0ustar ripleyusers\name{describe.ls} \alias{describe.ls} \title{Describe a \code{ls} model to Zelig} \usage{ \method{describe}{ls}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by \code{as.description} } \description{ Describe a \code{ls} model to Zelig } \note{ \code{ls} stands for "least squares fit" } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.parameters.list.Rd0000644000176000001440000000101012061700507016123 0ustar ripleyusers\name{as.parameters.list} \alias{as.parameters.list} \title{list -> parameters} \usage{ as.parameters.list(params, num = NULL, ...) } \arguments{ \item{params}{a list object} \item{num}{an integer specifying the number of simulations to be taken} \item{...}{ignored parameters} } \value{ an object of type `parameters' } \description{ The list may contain: 'link', 'linkinv', 'family', 'alpha', and 'simulations' keys. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ as.parameters } Zelig/man/termsFromFormula.Rd0000644000176000001440000000052612061700507015723 0ustar ripleyusers\name{termsFromFormula} \alias{termsFromFormula} \title{Extract Terms from Zelig-style Formulae} \usage{ termsFromFormula(obj) } \arguments{ \item{obj}{a Zelig-style formula} } \description{ This method is a sugary function to extract terms from any type of Zelig-style formula. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.summarized.summarized.qi.Rd0000644000176000001440000000065112061700507017767 0ustar ripleyusers\name{as.summarized.summarized.qi} \alias{as.summarized.summarized.qi} \title{summarized.qi -> summarized.qi} \usage{ \method{as.summarized}{summarized.qi}(x, ...) } \arguments{ \item{x}{an object of type 'summarized.qi'} \item{...}{ignored parameters} } \value{ the same 'summarized.qi' object } \description{ Identity operation on ``summarized.qi'' objects } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/MCMChook.Rd0000644000176000001440000000143712110047000014004 0ustar ripleyusers\name{MCMChook} \alias{MCMChook} \title{Hook to Clean-up MCMC Objects} \usage{ MCMChook(obj, model.call, zelig.call, seed = NULL, ..., data = NULL) } \arguments{ \item{obj}{the fitted model object (in this case a \code{mcmc} object.} \item{model.call}{the call made to the external model} \item{zelig.call}{the actual call to zelig itself} \item{seed}{a seed for the MCMC algorithm} \item{...}{ignored parameters} \item{data}{the data.frame being used to fit the statistical model} } \value{ an object useable by Zelig } \description{ This method gives valid methods to the resulting MCMC object so that it can be used with Zelig. } \note{ This function is used internally by the ZeligBayesian package. } \author{ Olivia Lau, Kosuke Imai, Gary King and Matt Owen } Zelig/man/summary.MI.sim.Rd0000644000176000001440000000071012061700507015202 0ustar ripleyusers\name{summary.MI.sim} \alias{summary.MI.sim} \title{Method for summarizing simulations of multiply imputed quantities of interest} \usage{ \method{summary}{MI.sim}(object, ...) } \arguments{ \item{object}{a `MI.sim' object} \item{...}{ignored parameters} } \value{ a `summarized.MI.sim' object } \description{ Method for summarizing simulations of multiply imputed quantities of interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/MatchIt.url.Rd0000644000176000001440000000027712061700507014554 0ustar ripleyusers\name{MatchIt.url} \alias{MatchIt.url} \title{Table of links for Zelig} \description{ Table of linds for \code{help.zelig} for the companion MatchIt package. } \keyword{datasets} Zelig/man/t.setx.Rd0000644000176000001440000000074412061700507013646 0ustar ripleyusers\name{t.setx} \alias{t.setx} \title{Matrix Transpose of a ``setx'' Object} \usage{ \method{t}{setx}(x) } \arguments{ \item{x}{a `setx' object} } \value{ a transposed matrix } \description{ Returns a ``setx'' object as column vector. If multiple values for each explanatory term has been set, then return a NxM matrix where `N' is the number of explanatory terms and `M' is the number of values set for each term. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/plot.MI.sim.Rd0000644000176000001440000000064212215713204014466 0ustar ripleyusers\name{plot.MI.sim} \alias{plot.MI.sim} \title{Plot graphs of simulated multiply-imputed data} \usage{ \method{plot}{MI.sim}(x, ...) } \arguments{ \item{x}{A zelig `sim' object, with multiply imputed data} \item{...}{ignored parameters} } \value{ NULL (invisibly) } \description{ This function is currently unimplemented, and reserved for future use. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/coalition2.Rd0000644000176000001440000000221512061700507014457 0ustar ripleyusers\name{coalition2} \alias{coalition2} \docType{data} \title{Coalition Dissolution in Parliamentary Democracies, Modified Version} \description{ This data set contains survival data on government coalitions in parliamentary democracies (Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and the United Kingdom) for the period 1945-1987. Country indicator variables are included in the sample data. } \usage{data(coalition2)} \format{ A data frame containing 8 variables ("duration", "ciep12", "invest", "fract", "polar", "numst2", "crisis", "country") and 314 observations. For variable descriptions, please refer to King, Alt, Burns and Laver (1990). } \source{ICPSR} \references{ King, Gary, James E. Alt, Nancy Elizabeth Burns and Michael Laver (1990). ``A Unified Model of Cabinet Dissolution in Parliamentary Democracies,'' \emph{American Journal of Political Science}, vol. 34, no. 3, pp. 846-870. Gary King, James E. Alt, Nancy Burns, and Michael Laver. ICPSR Publication Related Archive, 1115. } \keyword{datasets}Zelig/man/ignore.Rd0000644000176000001440000000113712061700507013701 0ustar ripleyusers\name{ignore} \alias{ignore} \title{Constructor for the 'ignore' class This class is included for future use, and is currently not used in any Zelig model. It is designed for use with zelig2* functions} \usage{ ignore(default = NULL, type = "no pass") } \arguments{ \item{default}{default value} \item{type}{ignored parameter} } \value{ an 'ignore' object } \description{ Constructor for the 'ignore' class This class is included for future use, and is currently not used in any Zelig model. It is designed for use with zelig2* functions } \author{ Matt Owen \emph{mowen@iq.harvard.edu} } Zelig/man/getResponseTerms.Formula-not-formula.Rd0000644000176000001440000000127412061700507021576 0ustar ripleyusers\name{getResponseTerms.Formula} \alias{getResponse.Formula} \alias{getResponseTerms.Formula} \title{Get Response Terms from a ``Formula'' Object} \usage{ \method{getResponseTerms}{Formula}(x, ..., single.only=FALSE, duplicates=TRUE) } \arguments{ \item{x}{a formula} \item{...}{ignored parameters} \item{single.only}{a logical specifying whether 'cbind' or 'list' keywords are allowed} \item{duplicates}{a logical specifying whether the returned character-vector will only return duplicates.} } \value{ a character-vector specifying the response terms of the formula } \description{ This method gets the response terms from a ``Formula'' Object } \author{ Matt Owen } Zelig/man/repl.sim.Rd0000644000176000001440000000204312061700507014144 0ustar ripleyusers\name{repl.sim} \alias{repl.sim} \title{Method for Replicating Simulated Quantities of Interest} \usage{ \method{repl}{sim}(object, x=NULL, x1=NULL, y=NULL, num=1000, prev = NULL, bootstrap = FALSE, boot.fn=NULL, cond.data = NULL, ...) } \arguments{ \item{object}{a 'zelig' object} \item{x}{a 'setx' object} \item{x1}{a secondary 'setx' object used to perform particular computations of quantities of interest} \item{y}{a parameter reserved for the computation of particular quantities of interest (average treatment effects). Few models currently support this parameter} \item{num}{an integer specifying the number of simulations to compute} \item{prev}{ignored} \item{bootstrap}{ignored} \item{boot.fn}{ignored} \item{cond.data}{ignored} \item{...}{special parameters which are reserved for future versions of Zelig} } \value{ a 'sim' object storing the replicated quantities of interest } \description{ Replicate simulated quantities of interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.summarized.Rd0000644000176000001440000000122412061700507015175 0ustar ripleyusers\name{as.summarized} \alias{as.summarized} \title{Generic Method for Casting Objectst as 'summarized' Objects} \usage{ as.summarized(x, ...) } \arguments{ \item{x}{an object} \item{...}{unspecified parameters} } \value{ a 'summarized.qi' object } \description{ This function is particularly for use by the 'summarize' method, which summarizes the simulations taken from the 'qi' method. The generic function 'summary' when applied to a Zelig Simulation implicitly uses this function. } \note{ This is made available on the Global namespace as a matter of potential future compliancy. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/make.parameters.Rd0000644000176000001440000000055612061700507015501 0ustar ripleyusers\name{make.parameters} \alias{make.parameters} \title{??? For use with cmvglm} \usage{ make.parameters(terms, shape = "vector", ancillary = TRUE, eqns = NULL) } \arguments{ \item{terms}{???} \item{shape}{???} \item{ancillary}{???} \item{eqns}{???} } \value{ ??? } \description{ ??? For use with cmvglm } \author{ Kosuke Imai and Olivia Lau } Zelig/man/param.gamma.Rd0000644000176000001440000000073612061700507014603 0ustar ripleyusers\name{param.gamma} \alias{param.gamma} \title{param method for the `gamma' Zelig model} \usage{ \method{param}{gamma}(obj, num, ...) } \arguments{ \item{obj}{a `zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored parameters} } \value{ a list to be cast as a `parameters' object } \description{ Return parameter estimates for the ``gamma'' GLM in Zelig. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/describe.zelig.Rd0000644000176000001440000000120212061700507015300 0ustar ripleyusers\name{describe.zelig} \alias{describe.zelig} \title{Get Description Object Used to Cite this Zelig Model} \usage{ \method{describe}{zelig}(object, ...) } \arguments{ \item{object}{a 'zelig' object} \item{...}{ignored parameters} } \value{ a 'description' object used internally to produce citation text } \description{ Get Description Object Used to Cite this Zelig Model } \note{ This function should be reevaluated in design, since 'description' objects are exclusively used internally. In particular, this method would be more useful to users as a 'cite' method. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/is.valid.qi.list.Rd0000644000176000001440000000053712061700507015514 0ustar ripleyusers\name{is.valid.qi.list} \alias{is.valid.qi.list} \title{Check If Object Is a List of Valid Quantities of Interest} \usage{ is.valid.qi.list(x) } \arguments{ \item{x}{an object to be tested} } \value{ TRUE or FALSE } \description{ Check If Object Is a List of Valid Quantities of Interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.qi.qi.Rd0000644000176000001440000000036012061700507014036 0ustar ripleyusers\name{as.qi.qi} \alias{as.qi.qi} \title{qi -> qi} \usage{ as.qi.qi(s) } \arguments{ \item{s}{an object of type `qi'} } \value{ s an object of type `qi' } \description{ qi -> qi } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.qi.summarized.Rd0000644000176000001440000000077612061700507016351 0ustar ripleyusers\name{print.qi.summarized} \alias{print.qi.summarized} \title{Print Method for Summarized Quantities of Interest} \usage{ \method{print}{qi.summarized}(x, \dots) } \arguments{ \item{x}{a 'summarized.qi' object} \item{...}{parameters to be passed to the specific print functions} } \value{ x (invisibly) } \description{ Print Method for Summarized Quantities of Interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ \link{special_print_MATRIX} and \link{special_print_LIST} } Zelig/man/plot.simulations.Rd0000644000176000001440000000132512061700507015741 0ustar ripleyusers\name{plot.simulations} \alias{plot.simulations} \title{Plot Any Simulation from the Zelig Core Package} \usage{ plot.simulations(x, ...) } \arguments{ \item{x}{an object} \item{...}{parameters passed to the ``plot'' and ``barplot'' functions} } \value{ the original graphical parameters } \description{ Plots any simulation from the core package. In general, this function can \emph{neatly} plot simulations containing five of the popular ``quantities of interest'' - ``Expected Values: E(Y|X)'', ``Predicted Values: Y|X'', ``Expected Values (for X1): E(Y|X1)'', ``Predicted Values (for X1): Y|X1'' and ``First Differences: E(Y|X1) - E(Y|X)''. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/getResponseTerms.list.Rd0000644000176000001440000000065112061700507016701 0ustar ripleyusers\name{getResponseTerms.list} \alias{getResponseTerms.list} \title{Get Response Terms from a List-style Formula} \usage{ \method{getResponseTerms}{list}(x, ...) } \arguments{ \item{x}{a list of formulae} \item{...}{ignored parameters} } \value{ a character-vector specifying the response terms of the formula } \description{ This method gets the response terms from a standard formula } \author{ Matt Owen } Zelig/man/describe.poisson.Rd0000644000176000001440000000053612061700507015671 0ustar ripleyusers\name{describe.poisson} \alias{describe.poisson} \title{Describe the `poisson' model to Zelig} \usage{ \method{describe}{poisson}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by `as.description' } \description{ Describe the `poisson' model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/param.poisson.Rd0000644000176000001440000000101212061700507015177 0ustar ripleyusers\name{param.poisson} \alias{param.poisson} \title{Param Method for the 'poisson' Zelig Model} \usage{ \method{param}{poisson}(obj, num=1000, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the 'poisson' Zelig Model } \note{ This method is used by the 'poisson' Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/describe.normal.Rd0000644000176000001440000000054312061700507015465 0ustar ripleyusers\name{describe.normal} \alias{describe.normal} \title{Describe the \code{normal} model to Zelig} \usage{ \method{describe}{normal}(...) } \arguments{ \item{...}{ignored parameters} } \value{ a list to be processed by `as.description' } \description{ Describe the \code{normal} model to Zelig } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.summary.MCMCZelig.Rd0000644000176000001440000000075612061700507016765 0ustar ripleyusers\name{print.summary.MCMCZelig} \alias{print.summary.MCMCZelig} \title{Print a Summary MCMCZelig Object} \usage{ \method{print}{summary.MCMCZelig}(x, digits=max(3, getOption("digits") - 3), ...) } \arguments{ \item{x}{an "MCMCZelig" object} \item{digits}{a numeric specifying the precision of the summary object} \item{...}{ignored parameters} } \value{ a \code{summary.MCMCZelig} object } \description{ This method prints a summary object for \code{MCMCZelig} objects } Zelig/man/zelig.Rd0000644000176000001440000000534512061700507013535 0ustar ripleyusers\name{zelig} \alias{zelig} \title{Estimating a Statistical Model} \usage{ zelig(formula, model, data, ..., by = NULL, cite = T) } \arguments{ \item{formula}{a symbolic representation of the model to be estimated, in the form \code{y \~\, x1 + x2}, where \code{y} is the dependent variable and \code{x1} and \code{x2} are the explanatory variables, and \code{y}, \code{x1}, and \code{x2} are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \code{+} symbol means ``inclusion'' not ``addition.'' You may also include interaction terms and main effects in the form \code{x1*x2} without computing them in prior steps; \code{I(x1*x2)} to include only the interaction term and exclude the main effects; and quadratic terms in the form \code{I(x1^2)}} \item{model}{the name of a statistical model. Type \code{help.zelig("models")} to see a list of currently supported models} \item{data}{the name of a data frame containing the variables referenced in the formula, or a list of multiply imputed data frames each having the same variable names and row numbers (created by \code{mi})} \item{...}{additional arguments passed to \code{zelig}, depending on the model to be estimated} \item{by}{a factor variable contained in \code{data}. Zelig will subset the data frame based on the levels in the \code{by} variable, and estimate a model for each subset. This a particularly powerful option which will allow you to save a considerable amount of effort. For example, to run the same model on all fifty states, you could type: \code{z.out <- zelig(y ~ x1 + x2, data = mydata, model = "ls", by = "state")} You may also use \code{by} to run models using MatchIt subclass} \item{cite}{If is set to "TRUE" (default), the model citation will be} } \value{ Depending on the class of model selected, \code{zelig} will return an object with elements including \code{coefficients}, \code{residuals}, and \code{formula} which may be summarized using \code{summary(z.out)} or individually extracted using, for example, \code{z.out\$coefficients}. See the specific models listed above for additional output values, or simply type \code{names(z.out)}. } \description{ The zelig command estimates a variety of statistical models. Use \code{zelig} output with \code{setx} and \code{sim} to compute quantities of interest, such as predicted probabilities, expected values, and first differences, along with the associated measures of uncertainty (standard errors and confidence intervals). } \author{ Matt Owen \email{mowen@iq.harvard.edu}, Kosuke Imai, Olivia Lau, and Gary King Maintainer: Matt Owen \email{mowen@iq.harvard.edu} } \keyword{package} Zelig/man/zelig2-gee.Rd0000644000176000001440000000251712061700507014353 0ustar ripleyusers\name{zelig2-gee} \alias{zelig2gamma.gee} \alias{zelig2logit.gee} \alias{zelig2normal.gee} \alias{zelig2poisson.gee} \alias{zelig2probit.gee} \title{Bridge between Zelig and the GEE Model Fitting Functions} \usage{ zelig2gamma.gee(formula, id, robust, ..., R, corstr = "independence", data) zelig2logit.gee(formula, id, robust, ..., R, corstr = "independence", data) zelig2normal.gee(formula, id, robust, ..., R, corstr = "independence", data) zelig2poisson.gee(formula, id, robust, ..., R, corstr = "independence", data) zelig2probit.gee(formula, id, robust, ..., R, corstr = "independence", data) } \arguments{ \item{formula}{a formula} \item{id}{a character-string specifying the column of the data-set to use for clustering} \item{robust}{a logical specifying whether to robustly or naively compute the covariance matrix. This parameter is ignore in the \code{zelig2} method, and instead used in the \code{robust.hook} function, which executes after the call to the \code{gee} function} \item{...}{ignored parameters} \item{R}{a square-matrix specifying the correlation} \item{corstr}{a character-string specifying the correlation structure} \item{data}{a data.frame} } \value{ a list specifying the call to the external model } \description{ Bridge between Zelig and the GEE Model Fitting Functions } Zelig/man/newpainters.Rd0000644000176000001440000000222112061700507014750 0ustar ripleyusers\name{newpainters} \alias{newpainters} \title{The Discretized Painter's Data of de Piles} \description{ The original painters data contain the subjective assessment, on a 0 to 20 integer scale, of 54 classical painters. The newpainters data discretizes the subjective assessment by quartiles with thresholds 25\%, 50\%, 75\%. The painters were assessed on four characteristics: composition, drawing, colour and expression. The data is due to the Eighteenth century art critic, de Piles. } \usage{data(newpainters)} \format{A table containing 5 variables ("Composition", "Drawing", "Colour", "Expression", and "School") and 54 observations.} \source{ A. J. Weekes (1986).``A Genstat Primer''. Edward Arnold. M. Davenport and G. Studdert-Kennedy (1972). ``The statistical analysis of aesthetic judgement: an exploration.'' \emph{Applied Statistics}, vol. 21, pp. 324--333. I. T. Jolliffe (1986) ``Principal Component Analysis.'' Springer. } \references{ Venables, W. N. and Ripley, B. D. (2002) ``Modern Applied Statistics with S,'' Fourth edition. Springer. } \keyword{datasets} Zelig/man/user.prompt.Rd0000644000176000001440000000053312061700507014713 0ustar ripleyusers\name{user.prompt} \alias{user.prompt} \title{Prompt User} \usage{ user.prompt(msg = NULL) } \arguments{ \item{msg}{a character-string, specifying a message to be displayed} } \value{ This function is used for its side effects } \description{ Prompts user to hit enter } \note{ This function is primarily used by Zelig demo scripts } Zelig/man/hoff.Rd0000644000176000001440000000135712061700507013344 0ustar ripleyusers\name{hoff} \alias{hoff} \title{Social Security Expenditure Data} \description{ This data set contains annual social security expenditure (as percent of budget lagged by two years), the relative frequency of mentions social justice received in the party's platform in each year, and whether the president is Republican or Democrat. } \usage{data(hoff)} \format{A table containing 5 variables ("year", "L2SocSec", "Just503D", "Just503R", "RGovDumy") and 36 observations.} \source{ICPSR (replication dataset s1109)} \references{ Gary King and Michael Laver. ``On Party Platforms, Mandates, and Government Spending,'' \emph{American Political Science Review}, Vol. 87, No. 3 (September, 1993): pp. 744-750. } \keyword{datasets} Zelig/man/print.summary.sim.Rd0000644000176000001440000000070712061700507016037 0ustar ripleyusers\name{print.summary.sim} \alias{print.summary.sim} \title{Print Values of a Summarized ``sim'' Object} \usage{ \method{print}{summary.sim}(x, ...) } \arguments{ \item{x}{a 'summary.sim' object} \item{...}{ignored parameters} } \value{ the value of the `summary.sim' object (invisibly) } \description{ Print values of simulated quantities of interest (stored in a ``summary.sim'' object. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/print.setx.mi.Rd0000644000176000001440000000054712061700507015144 0ustar ripleyusers\name{print.setx.mi} \alias{print.setx.mi} \title{Print a Bundle of Data-sets} \usage{ \method{print}{setx.mi}(x, ...) } \arguments{ \item{x}{a \code{setx} object to print} \item{...}{ignored parameters} } \value{ the \code{setx} object (invisibly) } \description{ Print a Bundle of Data-sets } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.matrix.pooled.setx.Rd0000644000176000001440000000166412061700507016574 0ustar ripleyusers\name{as.matrix.pooled.setx} \alias{as.matrix.pooled.setx} \title{Convert a ``pooled.setx'' Object to a Matrix} \usage{ \method{as.matrix}{pooled.setx}(x, ...) } \arguments{ \item{x}{a setx object} \item{...}{ignored parameters} } \value{ a matrix containing columns and rows corrseponding to the explanatory variables specified in the call to the 'setx' function } \description{ The setx object is, in its most basic form, a list of column names and values specified for each of these column names. This function simply converts the key-value pairs of column-name and specified value into a matrix. } \note{ This method allows basic matrix arithmetic operations on data objects, which mirror values stored within setx objects. In many scenarios, simulations require matrix-multiplication, etc. to be performed on a data-set. This function faciliates that need. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/getResponseTerms.formula.Rd0000644000176000001440000000123412061700507017371 0ustar ripleyusers\name{getResponseTerms.formula} \alias{getResponseTerms.formula} \title{Get Response Terms from a Standard Formula} \usage{ \method{getResponseTerms}{formula}(x, ..., single.only=FALSE, duplicates=TRUE) } \arguments{ \item{x}{a formula} \item{...}{ignored parameters} \item{single.only}{a logical specifying whether 'cbind' or 'list' keywords are allowed} \item{duplicates}{a logical specifying whether the returned character-vector will only return duplicates.} } \value{ a character-vector specifying the response terms of the formula } \description{ This method gets the response terms from a standard formula } \author{ Matt Owen } Zelig/man/summary.relogit.Rd0000644000176000001440000000052712061700507015561 0ustar ripleyusers\name{summary.Relogit} \alias{summary.Relogit} \title{Summary for ``Relogit'' Fitted Model} \usage{ \method{summary}{Relogit}(object, ...) } \arguments{ \item{object}{a ``Relogit'' object} \item{...}{other parameters} } \value{ a ``summary.relogit'' object } \description{ Summarize important components of the ``relogit'' model } Zelig/man/friendship.Rd0000644000176000001440000000150012216135102014536 0ustar ripleyusers\name{friendship} \alias{friendship} \title{Simulated Example of Schoolchildren Friendship Network} \description{ This data set contains six sociomatrices of simulated data on friendship ties among schoolchildren.} \usage{data(friendship)} \format{ Each variable in the dataset is a 15 by 15 matrix representing some form of social network tie held by the fictitious children. The matrices are labeled "friends", "advice", "prestige", "authority", "perpower" and "per". The sociomatrices were combined into the friendship dataset using the format.network.data function from the netglm package by Skyler Cranmer as shown in the example. } \source{fictitious} \examples{ \dontrun{ friendship <- format.network.data(friends, advice, prestige, authority, perpower, per) }} \keyword{datasets} Zelig/man/get.package.Rd0000644000176000001440000000111612061700507014564 0ustar ripleyusers\name{get.package} \alias{get.package} \title{Find the Zelig package that a particular model belong to} \usage{ get.package(model, quiet = TRUE, ...) } \arguments{ \item{model}{a character-string specifying a Zelig model} \item{quiet}{a logical indicating whether to display messages and warnings} \item{...}{ignored parameters} } \value{ NA or a character-string specifying the name of the package which contains a specific model } \description{ This method is used to help transition Zelig v3.5 users to Zelig v4 } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/param.logit.Rd0000644000176000001440000000102312061700507014625 0ustar ripleyusers\name{param.logit} \alias{param.logit} \title{Param Method for the \code{logit} Zelig Model} \usage{ \method{param}{logit}(obj, num, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{num}{an integer specifying the number of simulations to sample} \item{...}{ignored parameters} } \value{ a list to be cast as a 'parameters' object } \description{ Param Method for the \code{logit} Zelig Model } \note{ This method is used by the \code{logit} Zelig model } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/swiss.Rd0000644000176000001440000000272512061700507013572 0ustar ripleyusers\name{swiss} \alias{swiss} \title{Swiss Fertility and Socioeconomic Indicators (1888) Data} \description{ Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888. } \usage{data(swiss)} \format{ A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0,100]. [,1] Fertility Ig, "common standardized fertility measure" [,2] Agriculture % of males involved in agriculture as occupation [,3] Examination % "draftees" receiving highest mark on army exami nation [,4] Education % education beyond primary school for "draftees". [,5] Catholic % catholic (as opposed to "protestant"). [,6] Infant.Mortality live births who live less than 1 year. All variables but 'Fert' give proportions of the population. } \source{ Project "16P5", pages 549-551 in Mosteller, F. and Tukey, J. W. (1977) ``Data Analysis and Regression: A Second Course in Statistics''. Addison-Wesley, Reading Mass. indicating their source as "Data used by permission of Franice van de Walle. Office of Population Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number No 1-HD-O-2077." } \references{ Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) ``The New S Language''. Wadsworth & Brooks/Cole. } \keyword{datasets} Zelig/man/qi.Rd0000644000176000001440000000264512061700507013034 0ustar ripleyusers\name{qi} \alias{qi} \alias{qi.exp.Rd} \alias{qi.logit.Rd} \alias{qi.negbinom.Rd} \alias{qi.normal.survey.Rd} \alias{qi.poisson.survey.Rd} \alias{qi.relogit.Rd} \alias{qi.gamma.Rd} \alias{qi.ls.Rd} \alias{qi.normal.Rd} \alias{qi.poisson.Rd} \alias{qi.probit.Rd} \alias{qi.relogit2.Rd} \alias{qi.tobit.Rd} \title{Generic Method for Computing Quantities of Interest} \usage{ qi(obj, x = NULL, x1 = NULL, y = NULL, num, param = NULL) } \arguments{ \item{obj}{a \code{zelig} object} \item{x}{a \code{setx} object or NULL} \item{x1}{an optional \code{setx} object} \item{y}{this parameter is reserved for simulating average treatment effects, though this feature is currentlysupported by only a handful of models} \item{num}{an integer specifying the number of simulations to compute} \item{param}{a parameters object} } \value{ a list of key-value pairs specifying pairing titles of quantities of interest with their simulations } \description{ The \code{qi} function is used by developers to simulated quantities of interest. This method, as a result, is the most significant method of any Zelig statistical model. } \note{ Run \code{example(qi)} to see a trivial version of } \examples{ qi.some.model <- function(obj, x=NULL, x1=NULL, y=NULL, param=NULL) { list( "Expected Values: E(Y|X)" = NA, "Predicted Values: Y|X" = NA ) } } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/ZeligListTitles.Rd0000644000176000001440000000040312061700507015504 0ustar ripleyusers\name{ZeligListTitles} \alias{ZeligListTitles} \title{List the Titles of the Zelig Statistical Models} \usage{ ZeligListTitles() } \value{ a list of manual titles for the Zelig software } \description{ List the Titles of the Zelig Statistical Models } Zelig/man/turnout.Rd0000644000176000001440000000145312061700507014137 0ustar ripleyusers\name{turnout} \alias{turnout} \title{Turnout Data Set from the National Election Survey} \description{ This data set contains individual-level turnout data. It pools several American National Election Surveys conducted during the 1992 presidential election year. Only the first 2,000 observations (from a total of 15,837 observations) are included in the sample data. } \usage{data(turnout)} \format{A table containing 5 variables ("race", "age", "educate", "income", and "vote") and 2,000 observations.} \source{National Election Survey} \references{ King, Gary, Michael Tomz, Jason Wittenberg (2000). ``Making the Most of Statistical Analyses: Improving Interpretation and Presentation,'' \emph{American Journal of Political Science}, vol. 44, pp.341--355. } \keyword{datasets} Zelig/man/as.qi.Rd0000644000176000001440000000244512061700507013434 0ustar ripleyusers\name{as.qi} \alias{as.qi} \title{Generic Method for Converting Various Objects into 'qi' Objects 'qi' objects are list-style objects used by the 'summarize' function to compute simple summaries about the simulated data. For readability and and simplicity purposes, the 'qi' function typically returns a list of named simulations. This list is converted internally by Zelig into a 'qi' object so that several methods can be easily applied to the Quantities of Interest: plot, summarize, and print} \usage{ as.qi(s) } \arguments{ \item{s}{the object to be casted} } \value{ an object of type `qi' } \description{ Generic Method for Converting Various Objects into 'qi' Objects 'qi' objects are list-style objects used by the 'summarize' function to compute simple summaries about the simulated data. For readability and and simplicity purposes, the 'qi' function typically returns a list of named simulations. This list is converted internally by Zelig into a 'qi' object so that several methods can be easily applied to the Quantities of Interest: plot, summarize, and print } \note{ These functions are primarily used internall by Zelig and should not be used in the Global namespace. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } \seealso{ as.qi.default as.qi.qi as.qi.list } Zelig/man/callToString.Rd0000644000176000001440000000065512061700507015027 0ustar ripleyusers\name{callToString} \alias{callToString} \title{Convert \code{call} Object to a String} \usage{ callToString(x, ...) } \arguments{ \item{x}{a \code{call} object} \item{...}{ignored parameters} } \value{ a character-string representing the \code{call} object } \description{ This method concerts \code{call} objects into a simple, intuitive human-readable form. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/attach.env.Rd0000644000176000001440000000227712061700507014457 0ustar ripleyusers\name{attach.env} \alias{attach.env} \title{Attach Variables to a Function} \usage{ attach.env(f, env = NULL, ...) } \arguments{ \item{f}{a function which will be modified} \item{env}{an environment variable which will be attached to the function being returned} \item{...}{arbitrary key-value paired parameters which will be assigned to the environment of the function being returned} } \value{ the original function ``f'' with a different environment attached to it. } \description{ Returns a function, specified by the user, with the variables of a specified environment attached. This, in essence, allows programmers to write functions that have forms of private memory. This makes the function behave similarly to an object. } \note{ This function is used by Zelig to ensure that particular method calls - param, qi, bootstap - will contain the private variables: ``.fitted'', ``.model'', ``.call'' and ``.env'' which respectively contain the fitted model object, the name of the zelig model being invoked, the original call to the model-fitting function and the environment in which to call the function call. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/as.bootvector.Rd0000644000176000001440000000146312061700507015210 0ustar ripleyusers\name{as.bootvector} \alias{as.bootvector} \title{Convert Boot Object to a Vector} \usage{ as.bootvector(obj) } \arguments{ \item{obj}{a list with two slots: ``alpha'' and ``beta''. Respectively, these represent bootstrap samples for ancillary parameters and systematic component of the bootstrapped GLM.} } \value{ a list containing the resulting vector, as well as an object used to reverse-build the list (``obj'') from the resulting call to ``bootstrap''. } \description{ Receives a list with 2 slots as its input, and returns a vector of the two smashed together alongwith the offsets used to reverse-construct the object. } \note{ This method is used internally by Zelig to allow an intuitive, ``param''-like API for bootstrapping. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/bootstrap.normal.Rd0000644000176000001440000000126412061700507015723 0ustar ripleyusers\name{bootstrap.normal} \alias{bootstrap.normal} \title{Bootstrap Parameters for Zelig ``normal'' GLM} \usage{ \method{bootstrap}{normal}(obj, num, ...) } \arguments{ \item{obj}{a ``zelig'' object that will be used to produce boot-strapped parameters} \item{num}{an integer specifying the number of simulations to produce} \item{...}{extra parameters to be passed to the ``boot'' method. These are typically ignored, but is included for further expansion.} } \value{ a list containing information concerning link, link-inverses, etc. } \description{ Returns bootstrapped parameter estimates for a Gaussian GLM. } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/plot.pooled.sim.Rd0000644000176000001440000000400412216135466015450 0ustar ripleyusers\name{plot.pooled.sim} \alias{plot.pooled.sim} \title{Method for plotting pooled simulations by confidence intervals} \usage{ \method{plot}{pooled.sim}(x, qi="ev", var=NULL, ..., main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, legcol="gray20", col=NULL, leg=1, legpos=NULL, ci=c(80,95,99.9)) } \arguments{ \item{x}{A `sim' object} \item{qi}{a character-string specifying the quantity of interest to plot} \item{var}{The variable to be used on the x-axis. Default is the variable across all the chosen values with smallest nonzero variance} \item{...}{Parameters to be passed to the `truehist' function which is implicitly called for numeric simulations} \item{main}{A character-string, specifying the main title of the plot} \item{sub}{A character-string, specifying the sub-title of the plot} \item{xlab}{A character-string, specifying the label for the x-axis} \item{ylab}{A character-string, specifying the label for the y-axis} \item{xlim}{A vector of length 2, specifying the left-most and right-most values for the plot} \item{ylim}{A vector of length 2, specifying the bottom-most and top-most values for the plot} \item{legcol}{``legend color'', an valid color used for plotting the line colors in the legend} \item{col}{a valid vector of colors of at least length 3 to use to color the confidence intervals} \item{leg}{``legend position'', an integer from 1 to 4, specifying the position of the legend. 1 to 4 correspond to ``SE'', ``SW'', ``NW'', and ``NE'' respectively} \item{legpos}{``legend type'', exact coordinates and sizes for legend. Overrides argment ``leg.type''} \item{ci}{A numeric triple, specifying the three levels to plot confidence intervals for, scaled 0 to 100} } \value{ the current graphical parameters. This is subject to change in future implementations of Zelig } \description{ Plot pooled simulated quantities of interest. } \author{ James Honaker, adapted by Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/immigration.Rd0000644000176000001440000000156212061700507014737 0ustar ripleyusers\name{immigration} \alias{immigration} \alias{immi1} \alias{immi2} \alias{immi3} \alias{immi4} \alias{immi5} \title{Individual Preferences Over Immigration Policy} \description{These five datasets are part of a larger set of 10 multiply imputed data sets describing individual preferences toward immigration policy. Imputation was performed via Amelia. } \format{ Each multiply-inputed data set consists of a table with 7 variables ("ipip", "wage1992", "prtyid", "ideol", "gender") and 2,485 observations. For variable descriptions, please refer to Scheve and Slaugher, 2001. } \source{National Election Survey} \references{ Scheve, Kenneth and Matthew Slaughter (2001). ``Labor Market Competition and Individual Preferences Over Immigration Policy,'' \emph{The Review of Economics and Statistics}, vol. 83, no. 1, pp. 133-145. } \keyword{datasets} Zelig/man/sim.Rd0000644000176000001440000001276612061700507013220 0ustar ripleyusers\name{sim} \alias{sim} \title{Generic Method for Computing and Organizing Simulated Quantities of Interest Simulate quantities of interest from the estimated model output from \code{zelig()} given specified values of explanatory variables established in \code{setx()}. For classical \emph{maximum likelihood} models, \code{sim()} uses asymptotic normal approximation to the log-likelihood. For \emph{Bayesian models}, Zelig simulates quantities of interest from the posterior density, whenever possible. For \emph{robust Bayesian models}, simulations are drawn from the identified class of Bayesian posteriors. Alternatively, you may generate quantities of interest using bootstrapped parameters.} \usage{ sim(obj, x = NULL, x1 = NULL, y = NULL, num = 1000, bootstrap = F, bootfn = NULL, cond.data = NULL, ...) } \arguments{ \item{obj}{the output object from zelig} \item{x}{values of explanatory variables used for simulation, generated by setx} \item{x1}{optional values of explanatory variables (generated by a second call of setx) particular computations of quantities of interest} \item{y}{a parameter reserved for the computation of particular quantities of interest (average treatment effects). Few models currently support this parameter} \item{num}{an integer specifying the number of simulations to compute} \item{bootstrap}{currently unsupported} \item{bootfn}{currently unsupported} \item{cond.data}{currently unsupported} \item{...}{arguments reserved future versions of Zelig} } \value{ The output stored in \code{s.out} varies by model. Use the \code{names} command to view the output stored in \code{s.out}. Common elements include: \item{x}{the \code{\link{setx}} values for the explanatory variables, used to calculate the quantities of interest (expected values, predicted values, etc.). } \item{x1}{the optional \code{\link{setx}} object used to simulate first differences, and other model-specific quantities of interest, such as risk-ratios.} \item{call}{the options selected for \code{\link{sim}}, used to replicate quantities of interest. } \item{zelig.call}{the original command and options for \code{\link{zelig}}, used to replicate analyses. } \item{num}{the number of simulations requested. } \item{par}{the parameters (coefficients, and additional model-specific parameters). You may wish to use the same set of simulated parameters to calculate quantities of interest rather than simulating another set.} \item{qi\$ev}{simulations of the expected values given the model and \code{x}. } \item{qi\$pr}{simulations of the predicted values given by the fitted values. } \item{qi\$fd}{simulations of the first differences (or risk difference for binary models) for the given \code{x} and \code{x1}. The difference is calculated by subtracting the expected values given \code{x} from the expected values given \code{x1}. (If do not specify \code{x1}, you will not get first differences or risk ratios.) } \item{qi\$rr}{simulations of the risk ratios for binary and multinomial models. See specific models for details.} \item{qi\$ate.ev}{simulations of the average expected treatment effect for the treatment group, using conditional prediction. Let \eqn{t_i} be a binary explanatory variable defining the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the average expected treatment effect for the treatment group is \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - E[Y_i(t_i=0)] \mid t_i=1 \,],} where \eqn{Y_i(t_i=1)} is the value of the dependent variable for observation \eqn{i} in the treatment group. Variation in the simulations are due to uncertainty in simulating \eqn{E[Y_i(t_i=0)]}, the counterfactual expected value of \eqn{Y_i} for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to \eqn{t_i=0}. } \item{qi\$ate.pr}{simulations of the average predicted treatment effect for the treatment group, using conditional prediction. Let \eqn{t_i} be a binary explanatory variable defining the treatment (\eqn{t_i=1}) and control (\eqn{t_i=0}) groups. Then the average predicted treatment effect for the treatment group is \deqn{ \frac{1}{n}\sum_{i=1}^n [ \, Y_i(t_i=1) - \widehat{Y_i(t_i=0)} \mid t_i=1 \,],} where \eqn{Y_i(t_i=1)} is the value of the dependent variable for observation \eqn{i} in the treatment group. Variation in the simulations are due to uncertainty in simulating \eqn{\widehat{Y_i(t_i=0)}}, the counterfactual predicted value of \eqn{Y_i} for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to \eqn{t_i=0}.} } \description{ Generic Method for Computing and Organizing Simulated Quantities of Interest Simulate quantities of interest from the estimated model output from \code{zelig()} given specified values of explanatory variables established in \code{setx()}. For classical \emph{maximum likelihood} models, \code{sim()} uses asymptotic normal approximation to the log-likelihood. For \emph{Bayesian models}, Zelig simulates quantities of interest from the posterior density, whenever possible. For \emph{robust Bayesian models}, simulations are drawn from the identified class of Bayesian posteriors. Alternatively, you may generate quantities of interest using bootstrapped parameters. } \author{ Matt Owen \email{mowen@iq.harvard.edu}, Olivia Lau and Kosuke Imai } Zelig/man/bivariate.Rd0000644000176000001440000000106312061700507014362 0ustar ripleyusers\name{bivariate} \alias{bivariate} \title{Sample data for bivariate probit regression} \description{ Sample data for the bivariate probit regression. } \usage{data(bivariate)} \format{A table containing 6 variables ("y1", "y2", "x1", "x2", "x3", and "x4") and 78 observations.} \source{This is a cleaned and relabelled version of the sanction data set, available in Zelig.} \references{ Martin, Lisa (1992). \emph{Coercive Cooperation: Explaining Multilateral Economic Sanctions}, Princeton: Princeton University Press. } \keyword{datasets} Zelig/man/voteincome.Rd0000644000176000001440000000301612061700507014564 0ustar ripleyusers\name{voteincome} \alias{voteincome} \docType{data} \title{Sample Turnout and Demographic Data from the 2000 Current Population Survey} \description{ This data set contains turnout and demographic data from a sample of respondents to the 2000 Current Population Survey (CPS). The states represented are South Carolina and Arkansas. The data represent only a sample and results from this example should not be used in publication. } \usage{data(voteincome)} \format{ A data frame containing 7 variables ("state", "year", "vote", "income", "education", "age", "female") and 1500 observations. \describe{ \item{\code{state}}{a factor variable with levels equal to "AR" (Arkansas) and "SC" (South Carolina)} \item{\code{year}}{an integer vector} \item{\code{vote}}{an integer vector taking on values "1" (Voted) and "0" (Did Not Vote)} \item{\code{income}}{an integer vector ranging from "4" (Less than \$5000) to "17" (Greater than \$75000) denoting family income. See the CPS codebook for more information on variable coding} \item{\code{education}}{an integer vector ranging from "1" (Less than High School Education) to "4" (More than a College Education). See the CPS codebook for more information on variable coding} \item{\code{age}}{an integer vector ranging from "18" to "85"} \item{\code{female}}{an integer vector taking on values "1" (Female) and "0" (Male)} } } \source{Census Bureau Current Population Survey} \references{\url{http://www.census.gov/cps}} \keyword{datasets}Zelig/man/is.zelig.package.Rd0000644000176000001440000000076112061700507015536 0ustar ripleyusers\name{is.zelig.package} \alias{is.zelig.package} \title{Wether an Installed R-Pack Depends on Zelig} \usage{ is.zelig.package(package = "") } \arguments{ \item{package}{a character-string naming a package} } \value{ whether this package depends on Zelig } \description{ Wether an Installed R-Pack Depends on Zelig } \note{ This package was used internally to determine whether an R-package is Zelig compliant, but is now likely deprecated. This test is useless if not paired with } Zelig/man/sim.default.Rd0000644000176000001440000000177412061700507014640 0ustar ripleyusers\name{sim.default} \alias{sim.default} \title{Method for Simulating Quantities of Interest wrom 'zelig' Objects} \usage{ \method{sim}{default}(obj, x=NULL, x1=NULL, y=NULL, num=1000, bootstrap = FALSE, bootfn=NULL, cond.data = NULL, ...) } \arguments{ \item{obj}{a 'zelig' object} \item{x}{a 'setx' object} \item{x1}{a secondary 'setx' object used to perform particular computations of quantities of interest} \item{y}{a parameter reserved for the computation of particular quantities of interest (average treatment effects). Few models currently support this parameter} \item{num}{an integer specifying the number of simulations to compute} \item{bootstrap}{ignored} \item{bootfn}{ignored} \item{cond.data}{ignored} \item{...}{parameters to be passed to the boot function, if one is supplied} } \value{ a 'sim' object storing the replicated quantities of interest } \description{ Simulate quantities of interest } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/GetSlot.Rd0000644000176000001440000000103712061700507013776 0ustar ripleyusers\name{GetSlot} \alias{GetSlot} \title{Generic method for extracting variables from both S3 and S4 fitted model object} \usage{ GetSlot(obj, key, ...) } \arguments{ \item{obj}{an object of type `zelig'} \item{key}{a character-string specifying the name of the variable to extract} \item{...}{typically ignored parameters} } \value{ the value of that extracted object or NULL } \description{ Generic method for extracting variables from both S3 and S4 fitted model object } \author{ Matt Owen \email{mowen@iq.harvard.edu} } Zelig/man/list.zelig.models.Rd0000644000176000001440000000060312061700507015761 0ustar ripleyusers\name{list.zelig.models} \alias{list.zelig.models} \title{List Zelig Models Installed on the Current Machine} \usage{ list.zelig.models(with.namespace = TRUE) } \arguments{ \item{with.namespace}{a boolean specifying whether} } \value{ list of all zelig models } \description{ List Zelig Models Installed on the Current Machine } \note{ This list is not necessarily complete } Zelig/CHANGES0000644000176000001440000000244512061700507012352 0ustar ripleyusers4.0-6: * Improving parse.formula function * Renamed 'parse.formula' to 'parseFormula', to avoid name confusion and adhere to common naming standards in Zelig. 4.0-5 (August 25th, 2011): * Removed dependency on 'iterators' package * Updated NAMESPACE and DESCRIPTION files correspondingly * Restructured internals of 'zelig' function * Added CHANGES file to summarize detail-oriented code changes * Print methods for multiply-imputed data-sets have been improved * Print methods for setx objects have been improved * zelig now returns a specially constructed list when handling multiply- imputed data-sets * The 'state' variable has been added to the the zelig and MI objects. This variable stores shared information between an "MI" (zelig-list) object and all its children. * Beautified output of print.setx * Added terms.zelig as a method with documentation * Added a 'formula' index to the 'zelig' class. This contains a formula formula identical that contained in the result index (within the zelig object) * Added "old-formula" variable to the "state" attribute (this attribute is an environment. That is, the attribute "state", which is an environment, now contains a variable titled "old-formula". This specifies the original formula submitted to the 'zelig' function

s )"끻E9 P"X#7~lCF&gɁM볪|i@+ꔆ /0wp:$Q\AL$SV1W;Mf`G"lNZg4<&f9gSeBC򄟫28~&}r=5$E/ L΅oݘlrP.آYJs=lAlyl;ɟÜ Vf"],--q5ߤAhS8'<3](~eI8Uu Iy+/DzݳgCDAP^lɃM endstream endobj 115 0 obj << /Length1 1891 /Length2 12166 /Length3 0 /Length 13326 /Filter /FlateDecode >> stream xڍP Jpww]$ܵ"B/N"w)PG9gޛ̐|kmԵؤ,Nl\i}.n'';''7*69*. (+,?89.00''S?NY' :9Pd}\6yh` vZ* wsFK=@ v6^^^ 7v'Wkq&V vz P9nmuKq{% xRT92Vˀع :,-A>PGkj+{@VݜA =Ay) ÿst:A0,h%vtwC>Y+}8\;G'/Gh +gGXQog2k;S_v-m8H S?g'g ?~Bsy`M\\+;l uD7  0|?.~NRu8qϿ'awUycN>N?\K:[zƿ ?zoyp  q_S=_ -do:EwH9ZsP7y7JniCNn?'wQq{?UrNV7? A|0n>>Zm 9pH!2 C_pCWҳʿ r8g?/=ע =K@s2Ygd|qV!> k y6!>e> sׁ}},<~<T^3?7 [.;YքVIymO}Keb[rmTz-<܃%x%Lw\ْzv+dTm? 9G׺vpͰ@lAL\[>c;Jh%3l:o gr,>S#Q 3zc^]͚|cA?)3w7ZEBKbHLw;6M'$Z+ 0ooVSu.Nn0 )ښؤaA]+P8eѱHS>*1`~֛h2Qc/r/e$w_(`.)P"EQ䤂#'Km#q)a U' ';qXJcN_̧^O˦;w/-ho{-ZmݎJohr+S q ,SsH"/ o)'ꦋg~XUJ[%V,:eUQ: =Xʣ>6u d'_M&Q>s%f$)S $J!hh}m;\ϒ˫l 6{Ԧ*Lyv{O&¬Ĺ[wJzM ZGD˧hcxsPBB&4&y(g/'= /ewa‰10,PTb B#!Ag}PaZ:#^/Dņo29-!s7 Ƶ:_ܰxlMb2n\pSa/,~9^BgO1.3}T$F!]"+y5}V>lVPZR+{ #i2Pb:AI$'#wFTEtl,E*<3ưad ֑g߼vZpQ`, .-Lr 4a0To ="C3G\FSZ=;ʇY:j%ڠu5 3UTtI,0졬6!f8p` Dy Q;+@@Fu+;P6OQY * f{Ī VJ '†&Q'- pJbVnx aIvҗshL_d3de4vxi'TʺSG5Z~v!ku4^rW蒼Pu[? 젓]y{|uB4_;@cc>Tpg' 5yJ wΎ  I5V[RE&W/Tx5I,XEmЪJ/WYwqNzB̒A#nr:nז@? YX#pGQEnGҺBg qXӸDg8 '0akνu/ꈤe&}$̆ax?>o&W[f뚄q5YRG*9sZY$H[IƲ cev~+iLE Q9 ꬇17܉7?2> h}ܣ`@aϦ\5՝戞NݭuEvx3Ƽ-JZmo1 -SPyՇSDz؄L3SSJpR?9CBkݛOȡL|db6p3! UŚbX.yODkO ^ZW~]ԫ^>vnR/uX>m7ºȟn_џ]xi&44oHl98۪8AЊ4(*u 0+{oUÉ>*a&3˗*'R9eXbU MaEgYFu#/rEL~:W:%138_ՔC] #Zڕ_Hl%{1 C!J] #50bkOIo@'7:7fDcD5"` | E}a/[aхa/=~ö֡Gg?#@l'CFỔn5+:*yΠM`u߉BRJ] >רj&F9"ѧOXTؽmVot6WU͞(}|􁴛i=Q/߳[_J+>H'|?Nǿk֗< ᶚek?"B‚EkHyf ~ni zMe˕ε`E ;K'.nT|]0Q Q*y}h_x~.8١j6n>pKY^~0,.+a7mB+J@`4}1zEPb5xh=wXxjXؚºg5i|zT9صL*#0g= + 7FǎEa *WrPQmgcl(բI5 _gttc{?V!&0QF pbgٳ1]'Z +XJ|RobzTq,)+9]S{|D `">b^=2PB hs! n˓PMfc RʨwꦇHLÒHp6sHOy/hnݣ_khz/UQLz= FwW*=3> VWT5t/֜cMrt&|'mJOƇ ɢIAIX`zg͕/#ƄT b 1y@=6^Vivt)HEa(CXCrHom\'2D&<1*s,776;)k7}& fT2[^ ebQ*Ҿ}Y@C{f}vO #7Z۰K h7TxX,&e tS#{^wxJļ>DH^w[hy3-RA0I,Y~w{sdG*hRHvxn"~_?q-*$οʍڔ RTglɻ4sO5m3w(7J < ,(|iSz9"rI`52g̊RЈIsQ:Y("e8Mltz+N *x%W bH!XsE ]5p %lA:8⽢hAs4O[ !vS˼LT|&^y5ձ9)⢓ 3ҘxD{f{_/{5ЂF["`ڦ[!ozu@n}Q[B <`)MFx4U(ipUm5Q)!==%7ζdh(t~OS,}0NX%H3B܋ePY<>3Y9WVk N'oKg)Rҡ~I[6y:oC36#qzPY`{/|TDoXdp ^Ѯ"&`0JX T̴ FG7O, ؖ*N{wbܢPMBνLD1\vZJV31=Y ȅG($L`,,Wy@zZG:IG!|P1ӘV}M lêt'҉bB= }\םG1ViB LKۤ8ZbcP~8#`]3.(@Oq Gw4͖HM=f֜0:fwTZIV"?l];WjMyoGZp`o$ /?GG0EtC c{[ii //?9gaHTWSdpk]8f p/ ,,_ku?iRt9ŒK[ULeW{ m^ʙE\+x>i.'(.pS/,&#U'ȣIMr|Yz"Λ:+@m-1]?3ֽň&f@nof擲"V!8C1t::=u_*ЇO1)!&"GDAvPLCP70~V,YEu5YH ubM؈ .$OW (Wm|Hy5[7+x z y lj}0|%£BLf}SUD/iSirNRs[LBB+Ǧ㐨v}Ѝ ˸e6a:lZCƸSBq6 |BP NIn 5 (MX4OwHWM's+F`N[w<=1.0F0/`*RLޏnmhp%P<g3 *x!ԞdS)4Q+ZׇUIh1 m]g;<M0M6mkbp4o8+@C;'=n,$rڙf7L o~ŝZiTCqSߔl#A ֳtt"( R(;Yڮw6d'}jgӣUbBPMT@ӖzToU:;s rޚ;TAL&Bx|kR.|!(?x`f&JU|1s0̳B󴩰-Նڟ$3n~P+45k=֟ZxkȐFgR1У`יt@R b4ws;-hU-@-I3(=kJwp^&Ai@4U_tze&][ TgT#c޽T]Eo2\R;8L=T:G)'' *>J98/a̳BS7Y1:|~ ؆ˊoGYLpD6{,r{#?lQdmK6)o~,(jÖ}\^xjO~eOp"R.Sڑ!OȤR.Y Y$Q@y o cIQk~,uΠU)Kl$!/ZlM6_^mvu #Ү}Zn0w7Gv#Bßx9 {mt|P}դAiޏdRX4;#S~}t-uc5 8ʹ=LO[iɵ k k8S)?L~} $eY=\p6D5/^S2PndPPL407Xdfd.dN.aB +cClQd4>Y=ݥ22"Ҽ.) *gSZyt<,K͗l:M4L:|{wUU?VGA0` Z-9ְcDuIk*w̋]&O.'%qU=7;%Z\˫7HH.0II`c -3 %6O.R]g!^QVٔ 9#)3|$T9k~Cg2' mjT)ޓuRP-gЖXD&B~ m[V=7mj]u~RѬ=3~NNEk}g5f9$fba ݷ MpHl?|ʐB3<B:f"ߦn ư>^ ν>J Rw]MlfB"$W a=wd`/?۽59Gsz]mK4E©tT/.!pzV;m}D147iDd9?GqC4QԦ=}w{}i9"ArF{Ei!G7}艥9f =mCYYp*:yK,K~0{uzgqϞ@5sH 7O$# R>E|C}Qᄵu>#l؋ۣԌކCUs#YTV۠W Cn{ƚb+HX a8 *O RÆ/~V#8䚎E=ʹ}Xz3S˩~WrL O;VR}l#gtE"+>*7GsJ2d%[3QEa*(I0ʰB^7|´s`jVڵ]5`!-*D*u}}Z4+''r'70nf'0Qjp${Mmm!/RPՎ%5t 4CWQq~'pgjv;^UznŸh"gWY-CÅB~Ɍ)ytb?u ;/. Q) ky 7U2DpVda[sSiZ ܋OnqXMQI s۠^KTmƻWO|YaRD 6a|/N ,f!fQ Iٲ z2KKUs֠a|\(]crUχ,}% 6]~Kh.@L{]*{@NKzZ46b5ؗ&Gx˕m$g G?ٸ";ܮ+ֿ[7o㈤k(t: `]5pX|WoOCs reԠӹƼ+ΛВX?mm)o 6fH9S9͍ir V.pu¾^fI1 4/>k︴xʐh 5EibzI&鋄cyF}Q״FMT HJ6Cu+ҖmIB?]af9zXV2kP̌[٠Ts x c?EFb+}Uvвr㮙KҜB]ңFg'o $4Q v[GBwۡˇmmTr˒A){t 79Fz,ИۥCW|$śWY]߁BG&܌GBYUhu] IqD'gvty=qYbg+x(cG+h.n^FB7@q endstream endobj 117 0 obj << /Length1 1511 /Length2 6641 /Length3 0 /Length 7654 /Filter /FlateDecode >> stream xڍ4[6B^Fޅ`eމ(I%JD D%zHB&99}k}z֚u}p+90(( $ PS D88L!Ov"s0J  Bm Qhy"4PBZH ,$$# . P!!=6 %Py!nt?\NpqAz  ] 09AuC @^0<7p}p$2@CM` 0 Ap0m8?3@Wh пur9PO?ѿAANN0/o4u@<u]D:ry $ rD;:dx#||!8 J>f5 Eڟ*vB{z@aP+ g?oA3(m" I K>p ! iC .` B8WD@ 8]!PdG.C6BhB sA=łZVZF(*+(~aQ(*& ;?G7VC+f# ?s w}Z`o+$&?O?H7yA<x@ ="u5z`gZzH$Wv6 }@@0_ȯ; =vN{ݭ=U.u9?a1q^P@:~ (!!4 N@ '' qAMިq"1KJ}~__oOP@Go}`'LF%F1Q.dY y+3}j\ ,?Q{q/u\_?0 |_|VO`vm"?I2s?4j!O1K(v̟gC3PO}*|â(d?Ee*z1Tk*.5=)ջ{(l[)T 3_!uF^r־2L(s9HC&i{V(vd-[@'KЕbH'"t7ec>.OXZd*XO="<(C?yM\1{zo&ꐆWB|`ue9дa~L)ͮ)>vʩԢ8CU4UJ5 ?fos\s6 ſpߧˁMN}'fVs wGQPĩmZKgD!Fwo=ї -aw%y2[u1UwsJqIG%Er)O?G"?_,]25-Ua )lc3&?{;c{rv'`mmqej +lҔgyF?d#Hf<*x'E&mPk 먼w4 Ԩel⭭|.j\`Xi8{UM>^NW+ZdnZ7Z&q IYʝX])B}{vH8$k ZRo/c 뱽Ӿ]tpm2`|mHV~` b&$'샄G~)w5-z6+ɮ{.6{=#AK;Eb8ʌp}7O*eCuX.?o] Guʮ]^FДYPt,~~;ڞ{gMDa}bC\@lE*bH(/YE"Ze]1)XU?82PӁK1ؤ6_mH315;~M쯏Uk٩=,I~0LU#poL|qٛ獡Gl;=@U: 5EHۖyw&c{]nXR.GrQU"B_o8UV;h:=@Ұcnb3yRpxlG&?AFWՇ!> y2.^̖^MVּb\#DOz?iHQ`6R-WwjKZcܧk i_@N-D/ PoaP0Z]դ:BǨgMэPo&|ŁOC 4MTz>gOy>aY=S16Kߐed%pHP}|>3AZ:KiǴ@ˇtf\ƌzI!-Λ_1HgiX~U9fFhВ2ta凴sϋ&Vp^AApRǔ)UV-Fx:C ]sEӧPǦt/۟eTN{?Nv¿A6R¸qK-y*N*}Hh=*O-bqӱŘA2XCLeEJN-SZZ!N3;6>*ᄐ޳Reṡƒ3E:ߧKĚyJdOIv説̘;c'#DIqHQm"6`̻^֪R@E6 ` e8W#)&6M }$y!gD[D͞\V?VDH&d*ee8*޽-Sb0'}" {u[:X,#'@V3t2N!~I,A\JƫH&xn-I `ӀJ;c7+[:,~ Q̦Y"k`cR|޶ee JvEj!UB:8dj)-3>19o',0@jd|N!) Z1f]g.~#C\}5ǹw^ ;'Ἀc0#:)]}mǐUQhb=MK,3tK?3^3~e nEzQ/x`n/щ۹=Ҋw䶃O,⫥F=t5d`ҼMy%oOߚഁAi K 6R3*һEdᠵj tA{\qBN3;FIMcgHXƿU}td+ڹS^4$Q:v t߄E;m\r,&&9յ :h}d[HzAz:Aj l ,)CQ7 =|=ף[a3${@fA˄6_P#!R^m)x53[Y<^(?h9(46_#ʼn srA2ENeT!>b9ٶ?^Nҥ|z6nE+1PLdt8ygzGj->q+QbT s3yx;ji>ֶf41*wyl4"80ES bOyfSJ*-I\SgwU[_^b[T:b9%]˲EFtq N9tKf4FY~xL⓴Hi=So^+~25qUgAbx@ c&˻K!Qp:̰3z3Ǟ<[;J/~pYYA}5dH=%!1 kK2!vACP c8[^#}XLTJw;&XDT2ˌH%z]w{J)`Ɖ`JC cu$t\כ5o` Xs*е]+k8Tj!+uCaki; =FjAɆJy$|la>/Sqz o4rjn{ƑHt6^wfX%F,*5[=5IqY,haIgFVo׋tO'z䒓o+gm;Þ&!K1'yqnozfj?K(U,liDLBs^jk$&T݊YzL}Sm&E]J5z#,|>c*tהbl[roOa'!rS:y24E?$&s>x(٧{iVCwkXWa~#f2:M^9Kc*JE\J39P8s}̅wzw { 3A**jIȡAP؃6Tcgt! `3O'C!5'- u6iGq靼8H:>:A(S,5i{%нK-T ĉyĉ`Q<.-wTuDR!%*R \-F8909BatAEf(3Lҁ(͋ sV8jʭFu'ӟivnV+"a?KE07Hϟu -Kv^}YeDjkRXN} yNqFȆ /W] |7 fHN'8#[:>ɎEzs۠V6)zp7SaG vz)P%6ޠb~}CeC{Eai~͓3/UГ0J 8UWyOY=OwouPb▘| i S nt>R5㔑hFk/ +'DI[RԨVF7wi3 [6T/R8yxn:zn3v@eeU`>Sw0RV$bJ'#k+X7c;11-ƾ jLy+NLә[R|ѕAxcF?Ga[Г'D0Y.n`Oy%-N',~&hى8e( JcύܰngQxY6Y(gqҴ%|w!"_\3%XaE\=G'SuH":,=,`Ov+foʠr]\ݶ$ Kud-Q^d|d8 u $3QfƈWRCsT`s}CѼE W ֎.T~|"L&sN"xC#g)зGΨJ1URI"ۑ37>Ed6=1wEM )y̥ܴ#ύIQr]T&Ǣml (a9`r*3ȼ+m+,kbVa:VXW)!E sֹ=]ط @f0}A\̹.?'aWc#b ݦT|Ih~j/lwnoAM+9n1',U3~1cBz endstream endobj 119 0 obj << /Length1 1645 /Length2 8835 /Length3 0 /Length 9916 /Filter /FlateDecode >> stream xڍTo6,).%! ,²tH7Jw7J74HHJ};{333s}e}!a3 N @JEE<@ 7#a[è;CaCN@U`E;@˿0 @ pagF)je@l|w=5;Tk=29 3BYprss;sV,7(q]!%TJahYC4h,n`8TA!H TP9B+ `O: 67;<VK&̉pG`;g ځ͐?J uD8s:C~; 2R0{{p9\ d u]# WgA/x'ܚw-GFo5/G#Yj Ax9]!p@ 0XApTC,C@$@?OFHY<1b.Y}- uJ() sxqp8Wq}u` N d/j07,N C`@>9 w+D.vvؙ`{_$]P!W?7Zbu_\ +$9@@?PgY;an'2 } !wy8#g \D-Cq0YIn>~{ )^ Z@<@5,ap߃ C@JH nG4#o5 ?"7e7 bF@JHr,Q#c8ہÇWD iq\!"Cx+"=W]pdw`=n;gvf.dSzY%AƱ1"qr1R`7Y̘Sz/; 5iWtZ9Z=砑ݲ1?0uAE7MЄ$Lރ:[ªGyM׷x7&mU%ʤT/uk 6NɞgeF$ 'έpo3_5`!A$#O%Rg!&u7LEχec]#Z愎֦ Q=_D $)P> gTԶJs]c+7.J A*q"we{>]-CP[W%˰fX2e.3OrXj- j#sThs{X{w&4TMRV{uRgZ%fz]jg+)l_!zdGEqӕϯu=+C@)QpuO: kEq-EM8ybDHg݊/UtH%YO^8t0JƖGڲNh51&N`x-^zvܻVHjG%"X/KdXQRdܛLJR,_ >l8֥'G]oL>ކuVe J(`<>nvRX>!/z&sv5ۣߺ_W y]hU2kkP|6m.6{x`nI8Cyqi8Ś\18 1|=mCi멳}qNm eENMԅr6byۗ.vٙg;v(Cf,0`0$c ޑ+=GXuƇp6w+#-N4_.ku@Z ᢝBcivz<łEmo^V!, ڕ+ ;օi!6'*=lO 'zDNfh%B`1שXC MvK& F/8s6ڂP,J}!'T윗֧VK̐9^La8z/V.~/?[6*,|u޲EMIFq߄؜ l{wZ K` @ԘKxJ,\mfܺBvfKd4WNYe=ly8X8⇗5)hqCc7Cq~7j?f"^/#DU/,A ~wzm\|{TˍlLqӗ+Yzǘ #T"L>u;k}w+—EOuD44Rn@O*ґQ燸;|ÁǶqawv?EvGWz.NnFB\i+a߶)hδ]W%?-z\po#nj5Р:6MְeK6s$NM_Eb#dpӊDjXK_QJK\~/bm**}/U? ۿcYY_{=^,!ː ̤m_ ^OrL[en_vry@%JKa#{, 6ToRz6/V0%R$MiC8^ )<L`(jƥf7cCSS /Ux5oh_y_s`S3=FS G=S,g0h)m9 C)~3 "*Ĥ<,GN+Ԙ1 9^F?U‘gS"3S%#QwS{AwFO)8ÞmBJ,o੪TŦ` oN4w"l nWV$qmlPDr $E.~odN[/ |- ^'}t?[JɎ!z'{2-1ٳay1@;v{qV-12ͨjVsIӝQUێd`ygtX '`xeO@CZՉ:ʷ|Jޞ~'kɇs 6:">wev7=E_5ʑIC95sЅcQx]с߯8KXUhNd J9nK=?%mW`쬌3JUF劈!$Iz^aMqNZ♫Iy%kn9l[?6g&^TzVa(dR |suD1;~R<#w0So!^V^sGEz/X\Iry&r)"|xկUoJvH,_Lr>Ey]NIj\ƫ(G4rm.D0d ZQ~2fIgyK%&'3B^jg\8ҫ^PHڣT2Jʶ[Ϝ^UvaŤsoR~S5Q;nsd0 dGۣ,?]*(C,kl@R~/p|U_oPNf(D쥸Kw{,]2ב?m*dIZ3)4櫮- ۂ`loB6:evB"٥*NBn*N?7|rZ3u[m[CDMHrc_>6Xm8CؓO&ʟܓ.`| 8h!u17S)pmdk󐜌$Ӗؓ`@ J5񗑴)0CqxVw9k煶PFp<죖vO mܝx W ӷcz0D6eb+[8W൅eWCBfr|u39UV%FHdm(gjL yXqSZډ݇{Ȧ3;"h쫅A M>g6>J!yO5bvu5$w( /Ni!X;o\\}f! \^˘c A{ GZ6 N$^9~f0ۥ}L>'L.=A/ Mq3:uNa^lدχB&Fp_Zp. nT 9)P ypo!?NpFM),𽐻ʤ`, ݡU:5U~H('vaUhy0cXBs!3fU& W0lwW-V;eD  ܋xw;=U8Sq.+h17p!Aޭz&st>0o{.{~zۥ`:J3'DN5BN.qgR37`Ȗ:H%t_CMB-"e5#µ<7F cҁoU)̉vB2󮴰PMU@/ng꼆k:aU;^ɛ81gڋ)R9[U$"1Ӥc ;rfnTUeVzOxtqkrO=⽘̯M%tZ|!76L#Ow}2@zVT8B<^[Lṝm:ɐFlCV\8hH%ilϳ[Jߔt?PFe%: dfʘgwu(m+~Icp?XێAv㜳.j'ɞv6*>Z i:/tB'PZֿ|}q{@l/zݮu/JJWɰaxSLHa"ngՖ~14N\3[Tć=aU[LZo0 gøKr_:1PӴTW="QHyTEL)z1P1bxGlA0~%fd7?Y& c{&$.7捧 M#SH CV}QJ$X/sSuʩYgʡc0щ6g,N_7eIj٨"5-=sxߊL6{D oْ+^nH zDu~c9_ +FrnM@,X,dž4hX* uL"In,D +]P0S1Sˑ_BiC>.L`Ԏ$;;n)닆QKuS2_sփy)d =$Ձ/6<4ƅ㊜rdȍT74O<`L/3)%ZE>pU3d|dZyr5T< ~5EaK=Qǹ*Η_Ӆ c] Pi>OqSY U7ś\=N (o?j=Eȋr9ْQ;"MXLCZ/> O_mK,@󤁦SucQgUM+7"|<Hk<viqC)'\ҰҼ%3|#y^:ˈ̎i~9WkQ3Z6}` J$J0# C0Z{mrg b+i w^G܊WT|Y΃fgokC J3lN9w[wRI~vclO\`I҅sV!Xwvr4a~H:X+)Kq9|Q̓LsN&37)u) py:0~f&.AZG [v31'LjvRU8FKLN*'9S%;{F#蒳@׸xv~ZBHT}+Ň}dxB$S5p?꼮]Rb ݔS`*pT"'klu]_a) !nd9?~4wLE8A=J(?BBd.1я3P6T_뙳XjxKЁlgX:;|Yb_3b/>l'{<~ӡTt:d{Xk9MJ\ Zml}9VYЀ/+bFpD.iM\<DwKE-Lh,9cVt#p92g]:՞G/Z'\拚qeXAk@jҍ{~Nt;vLgC/(]qoPhgn>wQܧtQop/P4-酼'rkpK 8X[! Q Ӻ!(hnIJ|`ܹĽ$:P%IҜVA3 KؾTnUϿTJeUH.Ya`7J.v2 Gg~ Tb4dUks4_j<v*<:Om5{U8^ NWS'cJ Xӣg<. x"F~ $ޤ-Wy=4g([?\!#mϞFAOfG32؜qqDO_RVZBzFwiWvh̡|bCUwtd{7jC#Wˏ>[Cʢs[~Gtm, \maesձN7 ZJߖݔ E,F'ut#LDsv7MT3%B- 5z NDw/U~9o8sIڥ1[iWZzyyX('ÔweИt[ {YֳQ/40 fͫ6X<Ø#]DNTxr˩ʺTiv9%m>^ĊaqWR;56h|8vLsNLFJ3|Ǝ2KTNLt zq.R:saP򸃜hEF}N<7p_"#{]j Y??zNw\aQCz[#{Sy˕uK7鋥jғ?[ himj0?~h B]LF6}1 ޲گ<_;]Wz?{@J;K2֩dT~}$gD ϮE2aY\AMa'8.C tif&0Z0VƘ˽ MRz] hEu}x:~~7ƿFh!(UQ)9Q"Em|:bh\Krzy`Xf!rj2ة[49*@~ha;&vmH0m{:*=i Sm? ״ZŲ˗-l[~gnh8_eAq6uNVgJ[0E38yp k[+fKPv e汫 eYՇrq \& +o,sGC_k&2d\u ́9(9P RZK'`BxF뜀0jξ4wy 9 k;az6VJ lCΡƆ%~AJSS*>68aO k_jt><qWYZRh'X~5Y$ g* myEC^, [%l{^twhj۶ܶLkd+G9sxz7'݀:4>7'QgrvYW4*oY`ۅ;ɊcCТ*eEcQE*q㮏wpz1'jS|p7%rALt,u- !}4ZA"hW{,c…h.FtZyB1Ea"IjãRLk#E0kיbf, ,2QF6#tS72UcH)&@bW~CĖ"m΅c/9K{U [%I_1~}| k_iϫX(+J'B΅%uZk endstream endobj 121 0 obj << /Length1 1407 /Length2 6193 /Length3 0 /Length 7147 /Filter /FlateDecode >> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i? endstream endobj 123 0 obj << /Length1 1470 /Length2 6907 /Length3 0 /Length 7900 /Filter /FlateDecode >> stream xڍtTk6 "!C7% ҝJ 03"ttw#!ݠHR"79ky׽0krX-!pȩ+ @~ Yp2@\ݠp sHL@ƩawG > P@@T0.jk@+͊qB0:aqBhv­JI!b<`'7$;@ k/ 3\f Ax]!$ܐ0k+y8@WY Vn ;lewrü0[ TTAx!`@CȀߝ20_ܬ\77/ oYf-wrnBg0'/ EݙWuq(pl! PD_q@xvv~H~pg jA= ;;m@k` p!6l]^g@@L =_'OT U80OVHF708yyKl ;GhZ Ph|wM );:vnȵP#ߡ?;WF )qnPuSzA+?B{30 닃ˇ:+W 9?.rˆ }(ֿOPvu{" ZC~#)$g? טA@A/DJL!/SiA>]]}V_  b;? j;]f笵=s,$Ŋ*m頋3ȨE t-zkNFhaPMz20] ЪaM<2i3,G7՜, S`VJg+{kԏu/a 7f|bgp7F[hP X_?+}cz "v魞5TEçAfɗFGdrZẸIZxEE03u;pZ+YP5H3].ǥOx/,ZݤἉ3VjV]"mj8?[ωmfQ'JY+ndޛR!\=2t$=hW2M=& BC|2cKG*8@`\ ']cW `l qTR$g seH6R[^o]^jaW* v6QMkvKC'Uq,?I)Yn7'<ϯy|^|n !aH3a8Z}XCL`઺Ǔi%S+ͪ{{;3(Y̖Zw>43d{.mS'g%=j0 p7N pDb2̧zr2>2UQz㢘}0ꇤqA$IW7";s 98*ڃsH\e<rXV]2p =F뇖k Ss&۶K<CZ#Hjձ<5@v{V"0ehʐkȰҸPeEr%IPג2r֚l, ]xl=}'O*zUkLbX3Xՙ35I[C 'Y3wabHʻ3IWȒCk X "cbuB>B޾zKX_SCTچTVaz]o=?-lH+8ЁoBTQpJfJN֡g ղP}Ω'_q31(w1qԈ߸ӍP6 QK7_;%viv4 "h_ ff,?4S3>ټ ɲ&ecs,:iO,z}̅I3]tqm\Bϖ05f*UI'%W8l'S2/DOѧϥ,Y{/r }Y{YoM!z Tcc]xؽ>uY)V|O>LӒ|QƬF*u R/z%0&T'XTQ`#M7% 1m4M{4u+Ś 1%z" ,ԷWPVBw9,V8t-7%|#*xw.$V\#XMV3³! ĠWB'碣:՟2=\RY*iL5:Y*4y(PZ u}h[\aK.C:s|;uVŠ:r}toeZs#[ {ZZNd̅DWY 73Q( RFrqrkݧ(Iۏfc9g~@бȿ3'-7<| GӪ[>AVDŽqo$.ZED 掺2-ǃl#Qj ȜY,iÕ\7$cĪ{c/]l(t׫/o)ƺ^&17;=8z6ד2Ll)VHN92TuͅoZd+ҒIGιʹHRЛRͪ$M;E6Y̤\l[ _q I3"9e".C>k6uCL]d_б" zmҤgh*Hп0  8`kL!7^>|N+cʚB:Q{ΚU$YVeQZ8}D;/($f7Rgw?a:au$zlNj"O\3{lWzpٶO:$P8]C1XX ){xapQ9:JA91mS-9Z2z^C^5xm Hv5i65"36KEl(uUi +̖)\8̴d>ӕ`i=aġfY2n@ >A9(U_:_g.$ҙ2o>ӧ=갱5ntmį5qT͎FD3>H1ײGj7T͋LތR(̴o[Ubз5vi ߊN_>4#ނjKƨ1IV1g҈}>ꏕsUWBwL'z.0{)Q^ߡ@uh5'?ͻV9"]?-2mIx1| 2b|ݗiXUqtcGq,``1Sܽ ڟ\[Quy(Ifff[{k<|\v q8k1]zbWm?I"2xTvcRHu_zV6Uu<>Qrw\o .$來~3T Ū)/P:Jw6=K7`y g m^Zq3Z痴.!wd\c1\g d,#»Qz3r-7EC 8I hmMU5\Ne5_M սق((zw>΅C MsgȔyol:#Bכ@e0K覂r`!cjc1m,{T9NG-jKME21\1;a1CV+M(@"v兝QNl 4|A[iRؠmO3 7l)\L?.''u9t[wSRZt&-ɉbJ I*W#`ԃi9t)s5QɝS)?,φ# ?. Ɛz\ݒw\UqU1 01|T2^納o$rŞ^Ť/Es8k7kԆ%T{ߡ5S(+#K~3~%,-7u\Pܢ?ՇJ1@Ƅ~4 _ysTVN#fӠoHF;+6̯_crFxt9kB$asA`!%-*f .4itCbJ+a>fzqЪ4{&iha84gS&6IE"Ū*SsL=6fZl!N!gn=-ɛ{%z?}Kq-rJ@6jYwmWYaSh!=ClL_ n{Rs& v[5n' RP؞:s̬` |ei |*LNFXs5R E@JHJJdױ[aLue/va1rRꅔ#Cd/uL}~˃uU95:ើlks˴躠:=3_Š9_ xl zj"0'P灉@2*L$w\=J>.PJ饚| 31yP_ Sy9w5vbxB(ǏD i܃Y Y˄ &tI/ˍQh֬&I("I@yk{Z7,y6)+ q{/ibL alhL4ڳs}a:ĂF\FT(&1hQrU'x3VR !bpTE98mկw>(񑋁,v|CF!Xꪉ(r8՞(eN%pUb%U6=)GS6)h/ۻ~Ӥr7gnkR:4#~(! S> stream xڌP\ !-{o݂Npwz;3M2{UUMmk9MNB/ddcvgf`)33XXU-Ձf6A2Q}G5@ `ffb01qƞ lfcHXEllLLA4 20sqqڛ[MV FC}K?!xMm]\\lM.fehU0@^ we US3*6Ǝ.@H`ifvy8Y r,@htz`f`7?޿Yohhceoffm06e]F -l@f 2 )ASuYH h+?Q3{!nO`lfmd#'[F5k3;'?& o  «R2*򰵱zA=G{'ǟ"xff#hbf ;:H 4oo b3߿>_eTu6z6&= ;גqx7̿ _IIR6k5u8T 5 6]~6;!oE[_j?j}+3K @: 9qX_S ߧ,42sZ)G}yYXF3q3W;)[Ym~=l -@ЬRA_J1kC_зw̠ 5FkG TD9BD#o `E#.ؿ (1%E o5 Q7b0JFlFoJN7%'@)ރ2P@ʿ]7F vĮ5E\ HZVPfV,$5@ 37^LƎ> E`6Ϧ-F? ;8Y@ܠmw0=_>vN_FVD57~A?h@7dgH ? ( @#3u5ZaA*J? z2rzP69G *F٘wlA;df{lFZ:9$# 6;'G(X~+b_Sc̠e99l ToЫA rtp? hV@P.,2Px? 9[ ?WC'{,z9@+~aƐ'м&J߅~{o|[#c&2F(aҦյgZ8G'fqޱCo=p;v~?ɳ#+߹tK~)9CƑef -st -Q$k5/3e,dq!ц'(<-l\{û kޠR>vMpUQP'IWl%Ra[fs,`Z_Q6}#>ÂmPbD%++esWR !KT2@/t׈HI;Qtyp樆'So? g,D3q!gr9W %|QMB@ΛNT ۼouZ[?2`zZ [WWU*0'pəx;vUyqNl#^ƉyWZI)7oC"rUS_66gbT[oO;xLrrLeQ8w]L$|骓2 K28t2"%2Z~R!Pw(0M'UpH)Y>?5aiNG`qe(XM *CnqSlXqWbSB9h6 t"Nr-ZΕ2]>3t,(2}hFХ5n,H^[!5otQfvL0_{;bYɊM|C-fuƈ~a>꫇cbl{>_.+,lJVRC(N{V'o똑a`8nWHE8*.SUwE\8|[T-RO[ hdfHYg+Lhv~nzrr%rdh0qq]閭b,DB*²;%X'%"B<CTMĒ%PEVŦ80zCEJ@]}!iErے{-ͪiwx+|͘&~.;iʦ!ܸDe-H&q7ph%$@yu( a]uh%ft٧~+hX X}% {PwP8ZCQ.*T_၃t/x>q qNXсzx@h]AclVq¬މ҉dsᒟ}vަr5)uMYudz/i`bYv]:N')08&f^3uHCc m{q p*)8K?7aF:pSm!/js;L]׿|cCDVl鎰C6͢q^{eMP>8E#i@ϭ$B.t ^[)_dL?_XR=O~;p?*&stq6%>"AYSQIpEja͑ӫ)ֺ ҲXT5YC_ =dVXtZxcV~ q*ԴwŜLno%z␀{yaq&v&@#mXD]!,GD;LkA&Fd7ө?P,=Sk=0 t'~5sw+rx[#^1|"<z.~.{ܙ<+ğ!8&. 0wpn*σ2!R-mg%;3Շ#.>k)Jeazh< xN*|žps.M2U9q4ؐ]ĖSY΁$ U+#V8 ?wd\80(B*pÜ;o4eu-~͚La+Z9qߧ1 5~H`JP~R <6Uu ƕ}/H1 ޷zcV_HSonZ%3a^eֳZ5vSbG|SQ[=yC HMۻNnKd˗ N^v]n˟fڏw̸%/RU ^`9uKpwdJ~&R;vo#BwYt#WhʇSpM C:~5lsNRp)x,٢A0ٙҷϊrDeSyxgVȷ:N0wu (/kgkl˭CuElp><כיla/}w %eow*Tj,俪jT۹u:qz4ivP;*rшF9r'䈊xH_MAѤ_7d1ƥ5] %ڭ*Sld Bk8]_@Uk[vv:/OSvw thfH粏ܣcy=i?.,}}zNwxPeG0gBj,r0fM'Gv1F2| qE9 m%ɚRcex Z8w2z"NĜ%MCͽ:Oib1g׋ hfؐE.O\o}vϚHBPR6@or&Sg4[בԹ:v@dKoqN#޼I r!N}`e^Fg{G .WƹicϏ Ď 3wHTDn_$%؃>5DH1 'H[m:Q>{ùFOU3O ٤W“]T1ʛۮ{ql#u Y:],25Ɔb.pӈDeŎ@{rԼz[r-s9cuQϤ(^"aؽB{8ɹ^t,3UQ7i̾ke3n70MZGz(!|U-&B24νs挵eRˋ:^nkGdZg8غ@ AٷRRwnu!g hI<1aOY{ӌ!WŢCߣ?=PW aMs7V.a!䧵8 7 @JpFm{*@^;x{vԪsXv F͞ tj}3{N^ETNpextfȱ͜y7Uh% }wXڹN'8EmXJtt|SR` Zn(ş7kpK*\w#K2HfӾ,okIUCCpySvG!Ol_ޥϛLm#d$%Oop@~Kaãǝ[WV * ^z6>9,v2?.ف]It1@_#>&&3kL24O,J;;:DGU>}}F.`ffl`F<݇8T>])nc}S(*+k*=k(p0 % U` T,;. 53B6ht i5g-F%I yK#|)!OOol27wdU؆ݢF6@ޓ fr ܯuc.si5#d́Da,$Й62B!JRKxpԮ3\=g]9gw MKUVrn2Fikc}M7Q3 )u[O%p qH?lV[oƞxF3Ш[!1%I*-s yE^?7(mw״0!2-(qPLHgFF=ůOfX|)P(iICz~i} n,]x3^S9*p?HP3ߓO fCC'0seozF FZW%=<*`0}`dnG DMϞ@W$|D|"ro ŔFHvEYnWq=ܬ Ep~}H~p[a"λn Fфn :'Ufؚt7S@û_G<k`z4jӄmmuaQSኈSi]IɟbA{%<,I}SJ(>=NwSU v= UN}3fYyH`X@-Y kZZS/;sJ?*xR o_#|45[*~Uxf}Go9Ua=C:OzMz3Ā M)e|J{.z'LNt4Z)QHN3ڍD]j3wȕxIeKh_yI{B捜d#a?;y%Z|lTlMh;@cxҊ35j+SPq߿oGjHB޷}%+|W懇$ۏZtS@/MN T53aE$LJSBtmק<|=ǻ߹El}.EMt]K׃h]VqՎf[XQa-jr | R@EAԙ떥侮cYZ/dfy[s\c4GT)~^Yz;#Z9vdd+dֿCt~,~cYЄ%+YVUJX=!T kJ>m@orVm7A V>5s<2$uɴT(д[,{=^ T1#ǹ%;̶ lĈNF])8"K5I )yثKC?}dfƾ-ed#zl':\G<92f)7>"ϿDLK>2fd.#y(Ҝ$McA-Dԝ7@LBqB(u^'zgp`[i@)g]=|e95 !9bBFtqLh ,<M.[엟Q<7@% o~2ƁK/5,8z 5d4}{"D3[ (R!񤜣 ma[g&/[@vH} D\X=+IԷQF OboObodrdTizFv蒡*٘-Qpvtu…\ 5aP(>7n/]WW( D@߱ }M4ln4vG&8[5Xsx/36]C Tp:kWH,y^Kw MoR\q_GQǽJ~97 ]#eިu'q&)ېFȷtY<+ެru&u$u &WcV"-ml9h,"(;L;秔&5#~0cPeлkB+:xEǔ걌:j2˖̹xfrF||~[9iv.,󪼵KI/W٩2 -]xQېWr1bV|5rO96qSNoG[J\IS|$('UyݿXuj ~;3r;A_t1xNt},K5.ᗽ\!d!m\,g4,Gr;^hC܌mlvȏ٫AޜOY:ᴔwP\YmR U:< O,ă4M_7#s~_]˪j<;3τ]}:Nix.gksX!%EJա= R_ZU˹΋Ɏ;OnE]RE[c,Z4~eZ(;8QWk_BpjM?(0#l?7pP{=Q{qͦ-u4{ K;Ա^Dl*Y> ޫ"l:K Ui@FJ;>![ iA1Yu'*>6\i&&(EyJxe%Ɨq&Sw /&zLΌ %VSqEZ>9TLxÖ{p6;;SnIqs!w${#IcqPks˷.ۭBDlFN^9uI?.zŊij"\ioDmU ~LR[ ] \P:k ;L[t]~3&w9ƣ;MiWIt\ͦhOXw7e32"e8AU鸋/nmЎ K0&6n gA%QaߑӨGmȁ#S#h1`lA_!;od@z%| ?`0.N:5V:Z?/)W9̐Q^;}.Oɱ+8>=1LpIؚSCOaL\G MzU{l0 Yd4].j$ّGJ|?]ǙW6~!s8/ 7$*=XjSvj|6/l"BY5U"5?P)j=?;UAy~y{Ⱥw'u-l Q ܴмS"&Ċ!)(FuTl{/.Ry^%SmHڍixYBaC _~TkUga}^O+ jfVdꁟ}hz Z6sH T(UIeRf8񋆓& A0߄Vi`^@V?TF\.3}ߕ}V&N?CXk#ښ* mf6Ta!i`i͊$=#p$VM*tw'cY@/VILv[W0tx} 7ߡXiID9F]VBfYbC08O%W͚u3-Hk.@i*LtRC:\S,Ǘ[[uD|KizQMZ 8?i~=4$ɪ9@rJ5pL #w0j|c5,H ith?s9^g%N:4u0h|NXo;^Hc4Y6|Gd鋈4p{ +fțVs2`֎浦ve4Տ`'\]W$1Sy{̯o}p1]z%Z~PEx4ݧޗX\F%aYO)/o} /d`EHi̗u#E}mD?e% uqha3]wɯvQi$!2D;e,?{N皻2NיB.5""tBS̝F:cy1'Ն3E<(HGk-PVߡ|GfxSW9uߠ cЦ^}Jab!du^|/DvŽ*~pNMlO#޳M窆2? KJ?A3&/GqawSSʔϕ K9h6L dT(BT * gLZ=$FJ8byȠK0t?[$,u/U,QOZ9e>%Cc+`(5AZ'x' [3DU${ 6FIW=G4uG2]d:IJX%;^Zju)16&$gƙxZ@6ٴRDznf܀Ck Ux.Ĺn]S9Țm4d΍K=C+~ @-ÔgT,J_XhE Pe$gS2}M\BV:Ѡ=> b䦽W?ޤ .HQTF%z6&Eœk5k0;]ƕW4!h1yYhtd}ƞX2 :e@>S3Hptޢ%%inilK-I"bFthW޲]LF| -WAOϽmsvC0Ph| ph9]a1$~qihO{*&M %׬": L_Nb Ia7F3_o0(j=>7#vZLy:)_3O@K3QSȈ*G ZA͘<.~r%Ig<5$}l_Ŭ6퀯8ۙA|ɑnTY@}+n4HZ@Š5/NABAZ, K(t#mI3I9~գ",u:8A5+Q[^)HWU lMgLZS.fa/ ~{NxASPBe1Ճ''ހE6CﵱoYݍcPo긲aWWiUؼ?Kƽ^z05۹7Dby0jM \KNtY d|;X\ФjS[+6 ͭ )(%̇q!QW  NH6̿:0 }33,Ubc]vj&``!HUYܸȪ Br\L}1NcjѪSA۲MZLV튘=#FVW/ 2.ez\ӷ[JV'*iI'B*<{0žtlߓW?ίڅms#e~c*PnȌ& xK7RLn|/&9PW3ueiQ R'H9s{h)γo~ZŝG"lReȍţw4c<\z\}o)I\D>S]m';myJjdvs|9?)i$$ؕʼn/[].Y4-!}] 9(*Oq@o&=nvuJ.Xr>{.vgȅc:0E]p8qlDP9ф;eGtޙ6dn'vʕCN`>xe'ahqxN/AJK䭌P1ir>,Rd1NYdzY@ŊO GʳQ] SubڲvC EW*Ų5ۣn*B9ozCe #W0eBV~0wr?|:ܴxXQe;uqsoxy~T6'+phq`݀yO.-Uba18P<;hAuy'IP;c ][}n[}񫵴OE:'Ԅ)z43 q2jЎۻ}6 XBe'lC)Djb|i"`' n\g PzaWj[xwNS$NvMǗe,*<~55z2i%n *g ,({`uĞ|2'gVdPgI4#uXSTuEjKp[2PkR>@U]P ZZMcq[ʹ >6;׷T4ƐkDb݃ɀ}n%)=XD\.X5k\r`% X<*6='wBc|_{Ě%8s)x[7"KtW(?eT{"7i޿Tem}qg59w8sF1M"!(akKXBy+y{ &۷oIX#&VgDlj]2)wH5$Mw9ƣcѦ5wnOpgh\|E` dcI5+srOJ>4U3͟*yw1U4T芝=ҧj*jAH̤6Gl``df/i+Y3?_*|x6+7cSi Oi-Xc$6.q8{ =ǝg݀$N \/{ؠJחQ~bW4qw/8o-vuLXEi^ h8>k63sd{d\j|Gx_0i9j  }[F/$Y ¾]VksxDm{ %-OB"/.{F%%ĉ8*RߑP,,ٛ{NZ:)!jB] /!r{[2\5s屠%xx nƊN +ڔqEƂTxˡn%Y>C PU1Ay7lN ,[[Xh=_uErzP$GÏ.Z:;bf m|)ǟ0givJ>b/s({dϦЕck܀鶊si(Cp*Jɴ4Az=GEx* = ٹCU5Ui%TC ޑUM>R\(FWtuT^F@ѕѕ9/.4? K+L-ok}z(kdvE-.Zo"TD]pLxE<͚ /,J}aDuzDL3 9v⛏8J uy ~H" }/>+*WKZ7}1_GPQnU^0kC-3>BVwRikH mRmOc(v1+b* _;UT3)7 vZ-ů:,ʅUdђtƂgR]%APAW8I70{әBAbrjŒF ,+{B-ڊ^ۘ1̀ ʼnyZwRg]"¼)-䞌)c`hHeSm9&mKX'½3jӞGl:$SPT[O6resL-gP0A6gx834$AJ'$?/"HP%7,Wkm38< bZ _G t/n0P6#Nc7Ȉdd[>+ ahSN S-N&3 ޻ՙ[(f%P;݃fLrqr2Nre" @C|FG<(jk 9L,gM5KR *Ef3"i\(:.I}Md:Y $y8_V0}}JOvx阪a2 YqIH^ Xt^<RVE p$Ɗn1cVk;o3I9uDF(b4NfG)#K%d; &x6O} 5 QKuYj;L=-=y% 4Aз\dшMClɋmj͞W$ΝF8rH4% $&}W2ji?G{/຃k41elA@} o 6Swߛ-UG+#6ZggJ9 A'w|$jAisoFLەphA[<lu^BK0-3>Fƛ+뼏``#|`nJ8{Sr$GV =xvlC&ZR;kGN8:yAc/Pvؒ.918;$o2Ly>Yc@EpwH 5.,^lc'23ߍg{fzdyaF9>UN)x2ݱޤc7!QҸ֨M})DlXxӖk~p4mBέ=e'w vB$\S-]W.3 *t+ pbYљl߽1W rZb>/_G[`ϣn](@}lFl E(@] ;;Բ4@>Y4 Y_2Z"_VhOe'2/D'+n(kJꂥbDDn|hEuN=J̟Ahp߂D7''S4SoʍL_-^al@GCr?ye ]GLʔ,Y&O>+6laKux8I ۝}d,o3,v&V<1?9~)IOEz Zg^Q-͛56rrH?=gFS}=Fqݤ8~PP:q:o(ca`jDO[r*Dtuæn_+_%]a5 *. z~VLDh?:dןŮ~fmЖoIK\@2 CT;XiyzOpX_!MZ`oz!r. tS;/ f[''؂Kps OhM@V8K^&e:ϲ/lES/&/|e6'x8NW%sVs8Rޱu2qqVXݑFݨ [nYǾmG* ƋYc$XhʢUxhp\,Q:ˇPCʶklrk&mrJ-K)4*e 0V ꄅ6BrdP9{i] cW*܉iaB9 !KVES=wrVl~v_NT _Բ#Z1A&[*oOuʦOXv`D!l82.W7dpp۪/ ݳuqw+`?QWWg]ۋ#. 7s踷R%~8 q!p;<6!㊻u9 FM[d":oM=u`n,&MHUqrxP A|7N jID{#Z̵q'F|J_7u';H=D Z -'3W_cC`c,E)9a[9oPU@z 8_5xN\h BiXWI+{c>jZ<4?+^R!yX2 \/s`Lj^E,m"H@ }73ymr;͗ʜٰ 'k4Xz:y|z{ITtIZhif~9gl-14QDͤã4YUH٘W{.Ka5Pw%=oҘlys/E A $a VzrAe^ ~m+ZӸx0N v#ORbYGF䠁Mشl޸vmk¨[⒕٦l-_ ۮW(1a]ŒU?_F7prWBl7րxC~Ts\gDtI,͠$wk?5 mde6[UsgAJ݋qr f8[%Z愨H6!Q.ӕ0BvA_F 8RůַS%)FD:SPobT<]. α.ȍWU .CP(ֈKδq]!2G~%|>A nV[fW\|1H_ Z妮p/3 ].#k2XڏlD5-pX%1h)O6}9Ä){]$$A#mW+ɇ$X00zV `ޅK= Ę_rH6' ֮~1\h(XeldKc.T}: rMWW**ej&ۼME])! ?ﻉ{qNw\pR endstream endobj 127 0 obj << /Length1 1448 /Length2 6614 /Length3 0 /Length 7593 /Filter /FlateDecode >> stream xڍVT'1 ѠttIm$AAJIiEnDB %%TB;~{Ϲ}~Oy3&jh6HFfr@0XJ  Z q^?PD^ &G03B~^@"S`_h"PtI(/@P "q,B0a DAAN;PE (&dAh W8F zJnb$hc_tPoobA;@p B(_r 70pƆ Dw?B~;Ca07 B܀xCPBQ ^h? ~j~a/CЯ0KBj(/W}H,F z(gED!}zZ ?r ` ~+!`Bx D(C8Á8< ]nHC&t }r ̖+tMo؊&J]ċK%e@DR(G8;5" OD= TL.g0Fg2` .֣[+K?PoWПza&?M,Z=j(7/髍 q0?{!Qp/3#̓:['ҿSj`h_;')# b I{ Gph,W?e ڋFd!@ǏЇi #KA/?߿Bq \`~X,acO&Ѱk=^n:T _T\~$,6ђ ȊuZS=ůWmH6m<9qJ2{fy3tMKBu9'*“U_0O$ K'l] Y ţy.Op"ہt{#9CIBݜñ,$}ظI߽W_Mg/))+F6@)w=$RV~NLTS[^N-M8wc+֓rdc/s()]MޛUeO 5Ѧ5Fy8E.#Ks2L'b5w8/m9D:WXY9>pRt/!grXJxƻ_2Jehp:&Y8;9m/S 7ieggr\F)4Ti"*5d`!_R-IIco+^#-tȣ} yILuoP[m.L$aIu[c_2kڵ-j<ԍڧL,'>@?teoJng^. +j}o|x,'2a!f3UuD/^Yd5t`Eƹpi%=s&zUFCV3MYLv[զ*gߑ)ҷ']fS] ⎼nnpr= `|7G>HiN6UAͰ lKf >OJkB% I:V'>t|j`G4_d2/ fs}ma "bt[H` #n/ O&(E֍U5Zg:e\6Hvs)Nitɼu9 ok2!DW{i1Hx Yz}*O{ZÓr.*@MާG ,"RG`iMxPLU܈=z\û|Tded$/uu2QF"7jgV@b L$ Ax&Zun2k jRń~r̚")f14T${Fc r0@K9 nl}lf mF0<-S#uQz"le:;WN? 3}r3E0ޏә?C>vT'*)m!Q; +2W1ڏY7 6fo]b& `ʬҗL/kűWa$ճ{ӍFgJY!_|uJ| pS3\"m^H&q?UCDh[Xr ׶'`].8W\r>}0æ&Q5)Ɣ⟖n9=k| ;˗ߊx<i`p׋J-pEuJ[B".X8i_a<ʹ9KۏSIRd7VDi[om.TW}-gLḵv7{N|(d}({ZT̪I:dxNG1I.;Xb*RMVDۖPXmPmXnA5byxLRoA09ӰQ&[C^D_v ,0=o01N'D_Kfǎٹ2 6q$fn[$>5Y[vu%IQ##OVc)^y,gRn: 78(Ђ?PX_9ع>[Ԡ[]T+B4GS|+h f9g6ȡ#\&u@!]B‰F--O;tz# }hdT ŷ|* 9wΰz}a}x}g6 .+mUKzKdJW_O(3  =Qy=WMRMPe,'V{GB+BJTsy'y7vFF2:upv%n tW2z'AbM~fH0wKdȖJm!ϩEh4,B=c稂[Rs?}{Y#G| 71KM4 +{M7Ckn=o6fs2ev'!I\i!]ʿ QUEܹ$F?kH1}I"lfC]WtP,&]!>Fnhރj\Ӹ$\>ס$G)TئFyvk?gjHS76lbݙssojQ^$˖HO(쫔ij?|g(E?GӤ"M~ՔcUtgo/}_#)be5%zwɝxg`L=:-;f%=t,KfjUʒ]3dQ7T|fk~}wsT)w'ٸ5l\NI褱lRRۚ Z|yd!g$A=ȋ{ ~:!X"ٞ 5b(l8Z |h]vb]ų9Q)~2uh[3k(k\NZvk.h$  V?ϑ\ϧ&$; w]k݃TEVZ%z5X h#:/u4asz fBjjBWeQr[rN ;;e)˜C?guoj}tmxLwaT-m_uuN/@Z97$mi1r{޳X,u%X`kbSy)gB^m*܏~3r MRַ֒3:yp:_νUJ:o?^;iLgmsn2i#6ٷ& .zLI=m]r阌V|;2?{n;9fX\7By L௄ &0"~–|c"Ma9:zhXStה ګǓ]#ZH~۹5js):k]{7j D#hDw$ >m:cmw:eJ۲>x;,VܟW6â|c&?7DХDvzAb긆\,uE4>a%9z>Px\ l;B\;ne&| MCIg7mr_S"="n-}6_Z>/1a6/i/,_Z›8ڮM?}scy0'5v- Ɨ9 Y`t}Z ?Iv \uqZ>meKq5Zj5YuZ92"ғ]XtIfvݢM[t?]U?"R+0) -Ok6]D>0mYG"Gxr@fn>{`jݫϲcuRqI ԁM,r:q,ѧ2jVC.Q&CzIT4Զ]j.Q\.(]h;kw!;`3Ȣwi 5޼R'BoS|2NQI VC6ƹ{;km`L+x˫r(NPNQW8COFAɉJ/K8|:F[pJN]k JWM6؀(Bwa$)^eh'Y@ ţhўԽe.qW=H=V52$ٿb]Qjt Qܒ7yjH)ߛL!9s sWez)`mJE␹Wn"^h)l5wBcR- kV0)BܹA<B.Gz[Gi;8oG!חZ2~ vPM zR/ĖZ-P#E93WFp"Fs3@*kMZok-Lw/6B$!O6^nXA&e\3Y:/c8|"+y#-8gf{VCTIߐG5֕;la?"ԅ9SWvofUP9Ef͉r`NYtӍPhyz,}Fy=(S{rVv4oҕcMt . Y;ú0nGُ`)K@*Pf|1xF Ǫ[TR.[eFBkLZÊlϷ%S_paD<@UZzVs`$JTAyl_46 __ d bE!-EjL}g$"Ka<p ?1z&e!`-IOUzӚgSۛS^K`sy;4AQo 1M&{ 3wWjhlx'H6/mM CSOΑNeވQzxUtږU j{ig.鳽s qFְAfu.S72y+wӤ@H0$\$Urf0{[Ɖ%~cWj_uEz"ew\Uqm+_wM#[3,/AZ=\Ӓ)1ܹ;m~٥D у3%["溜ᴖ%uB$H}*[:P1C А+ŝ|ws۠q!bUW}/o]nrT{<(PxJBUFOӾ+dy'hZ41ٽ1;/WӪ.ݰM w5:u4wzI4<'-r#̏܊tS|ZRp3}wb !cW;n7m=G"E>z mpVUq9,Z7MOJ?|R=#a(? 50U|xP!&:9zqrMf ZVN\V'Ik}~''[75]x\S-HjGP!Uitl5TgeOazŨ8CpɤuC\A#}6e 1%5fp(þy2+WSkunEt ߘyTr L)p=vT/7?䣾KŹxg1xGN#^84棠 SL;0dTF<-ȫE}RdDOHQy6'BND5<1A -}Νۖdv$}* qe NV PsQ[N:nh[QxrGy||D1-CN 7r #oN,d#q e |Xm0$13+ 9gIViV?֗۬khTFȿM87湵h^ފ7B.s%24̘CX{Uj,} &g\'(nfOEžgo,~0/YWU(()CGD:>WSB͙Q=#s8STTOo댾a[jVLۈзl*5n ]xR߹|߇̂_8W6# ^TqS&ercM1O_J?rg QLtKqcأԶd=SC" ? n<]!Pť/ endstream endobj 129 0 obj << /Length1 1897 /Length2 10117 /Length3 0 /Length 11305 /Filter /FlateDecode >> stream xڍuTk6Nt ) %943!! J*HtIJ (=Ƿfgk}0ҩkqHXA-P- RRqy9yv0G QfFlˤapS(A Aann 7 @is;+ 'P ޮv60x-Y !!A%v9hiԂZځa- ,i ucazl`7 l8@m[;0OsW0.pC!V`W <>PKA X?qqߎ 6:9C 6@k;G0PMVcC~;A=-%okB7KW;g*~7Zb%urC`nI۹-g'XY.ݙKbV .ـa@~nn]`/K[A)A:}@kx)`;k0f\V/@@+;Klc[j4/!ϛ |ϬG? KGGIFߐퟢQKJB<@^^H( $_G%U7;9TXCB޾Vz0FP dcn~nK̅Q෗9ɺ;:e_6vISmU"/<'vnv^`+u;_q#8AP7ߡ3~ɸ 'FXB~3_hj ??-rqB0 B5{B@.ߢG,9Z =rYAB@.//:A@?~#wl>lmW֟Spݿ )8n=`[BlF\CGlղQtx|=0#a؇VbٻE2&s+3#"c }^vutR剷>(scr*F4ru5Z{2ExԬ&zNKn|$TAƨώftxv>uXNm <氡IQǓ} 83niVxE_}pgzgil.a%-kݵ]3p#+_fT\G[4I_+ʹa2HUI98iy|I\aSF /켧X0F 9}$X)成>ZKN0ImԻ{6~]Alu [EYf]Lm¹_nhhn[v|T$K\^F[ʸ`3znt\j* w?Gn2oՐ}9>]Ҹ#\#?1dB\^&1-L3=^j2-Zb@ 5E?{ւ-U-㙾FEZVh*Y2:$!(ЇDʫno`-| r]kɲE‚!YTC27\Ck3\ȜZt. bkPp#r“ _V?1jK&ɔu˂Ŵ/ 2+u˞ByZ0l~?c,s12W%nR(!\]:za3W6IE;Z0֝p!F&/-Zӳg!þ LѫVyJhy/se<\[WhCFb<}7A#4%+MHy1 qz3C+Q d&dZ{)oz&8y.(W687[,jF&)6muet9qYoxt }qeLX街i=jTP)zSdn Sr#mc^HZؒJʥP|f_XO]*5c13z[UJL6qi7_<3 F+`?vd>w$Kb^tz8[  ӊ;rcNk:a? p t }}˖"o7VՅ&mbq܊>(J }KVfx % @7)f#hQӪlI贙q` +-B"ۅNeрt+ލNU9ڐ3,:kד\m=Վ >F< ~Qw`a7+% %=8ZJA~8"Ee=1 {0~XDh\ueR@AeN:w>2 }െ 6 gs;ߖvaGdJ:C^c'bF_(PӜp4r'BB<[c :)sȕL7c~%ݙfyu)`=O *J"Ftn8\Laky[aq)`?yʃ,?>:~ ) Wj,i7,M hۣD>}X)΁Y">Hx1tUy퍾~j(xuEJq:cQOXxX?x" t Bд TXʩϜW'o$lI m|qo6j7 WNc"ޖ>:P 4--*L|5t&q6C,2k1tkG\둒̳J!ݮuj Z;D(Q [(;Kf4E \xVc6دl"xxy?I ve~n]FRaw=#[h{r nibH7wjN {+N // +*j֨l#Jjڸ8*c Ϭu>{R(C |E7w`40B Gʚjޡi4pӣD1K:\/Hgƥ*{Y 5#@Bns"JDo|T-ڥE 2oٮw42_"vhC8]t~Ew2 /?yaoטUL"RmE qނS#y u_UŶhrI"*I!G׸hH)"nj|Ka}9.ޜ7_9}k=swd2dE +U1>PΪУE4֢=F, :z~56Э|#nXXeza~jTfgxQRX:=#uu-cN޼\`&l; - В\<6PnpyW ZBbΩ%r@pMC|*ȕے>ϳnjAh9dR%(ߎ?^ >h:ؐ&eg){kpl褧8͚n8|=0ٙ*6bH[F?qNM7HV)VM9VPeBH2'VUBG}ݥH!EWA!=>o*.B5vD?cxLaZd2W"çRIX kg" Q1C/ׄԩnz#gI؞Z;~7Vy()cdsծԏFǕ !C&91FM8i[&F?FeI<(&CXRqC)[Qi nIn"lYK2%>g23{~V0K;;)bz#>>w8H8~$sv#*98|Q,Rq,O wA0 1=gK{Dw@?(% J b=[2R@mZίCuqI|iKN"O;CK 7/:tl>M)hD=X}_!Ta[)݂gPHp > kܐ|F)K+8eb G%뷢4,]zqTlA|¨CoEkbWG$1n`qnFɵ{hu%^zq[g?sSG7:ro4&Y=x@ԣq_Edi13("g\,sE8Σ?9~t;;D}yz\|-z+ %ew8~HRV\ayIT^!zG}'$ӥk)u(tő rU9$ PGL"& ΋Ut1 4S/KeB6b387ٯw % !`u\ "3L?J~ra/agT6DoVlm}_@sb#w#Ul۞~զediJcnH-ϫ.6wo^,>XbKl nN*@"tӃ#-aJ=bhWPt`AH y@PuIkyBǝHvz)y埼|[zT-i 3Z@nLk2{PShOciHٲӥ#6›~W(9],kH_RЋ y0; W4Ś;>ίW*vqdP~!R?$Y>-ښ[ rAh,n2 Ӽ~WK1E{ň4"!E*àNlqk@A/ˤL`˛y{W{<m:0D/~JQ㺫Q3E;yI &_6(oIVp;[wN{>{^c/^A(-҆;4evq_u_Zc7CRPI5{"'%+=m!S;Ekp@F̪swq֦YrŲEiꥍyc# [~ai,3fj4-ukEF hS:-ݡw /jREcASb26Z4BN2t{9X,18/ek fl'q*)L_yݣӓۉ 9Gs3l]m*Au~c7 o҉iyrF[1ny6x0JZ M>c_o z)"H~.X5g0>[Kj:Qrƶ.f9b/`&zrӋJXc8y_KQNDQꨈ7EZ#BW ~t|f*/b9crMglfwg2ޘ|%qOgHߐϪ#N߰=}a‘VZ ѺLbrb9셠.K]~qѠ Z kU1?lxMhѱmWӕdur%\ k{L\/P^||fʢD(7NXafFoz[T^i!X|'I+Z ~,2?5r5!OƏOnJgXGq1wK"Z5^oMX"2+= ۈ౜mGn!ӉD)Kj{A*';(Ѩ̳"*w|2f6/ ն\gˡ "0: ^^rP}\wM율މU$9(rG2eXŠ&}76YͿ'+fRy"mƬJUzB 5]FWPBTL'چW5n'mFgt/S*%sC]M| FviMEiC=lbSK!Ѭ<( Gȓpf|!j7K}R^S^RE6uwDR8M۳tuc @xК'~$};d2ɼV |v17/WJj|Q3 /\(GA[D3 wy'y&S|n6TQS졁5OR>?6HO6"XA ͇#K]LQnѯJ~1g6"?e736l7 H҇u3z M&؃{E *SءF:G-_^6m-͠ūsBp]!QYQߊ}7>[c&WY6EQylbAB W3.?+]B_Y,-QP;: ڡ*O?`{9$a3l NgzL'KɌudrIL[# 3DHM8Xmk8 aP(TFB#3C~OD^2ҍia 7= ?5ht^Zܳ%w w.Χ/?]rSNK"j|~ 5[!2fJQn??cI,bIABg@{x2sn^r I .hsZ('U1MPЏSr~ @Lv`]RJ4۲..?qNP w I"%+=> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|c endstream endobj 133 0 obj << /Length1 1960 /Length2 14950 /Length3 0 /Length 16146 /Filter /FlateDecode >> stream xڍPҀ apwwww 3 =C஗-}j}{w4-@0ȍM %`cdac@ֲusGDtqe!4s{I*Aw;'GW C@PHԒ`'o[k8yYy<wZfn6@ǷfM-\ ٸ9 zzz9]En6 +h d#XZ6)4Vnf.@r};ޢ4N@_J0n>#[П,,Nf o[5PQbqrc,04sp70u0333u3:¿spursequF?ܼYd) vt\Ohwoֿ/lAVaĪ uvKm&BGf tpq *vX yn.@+ns-ob_v.^lo`' 1Y5$d.J `g=v?)U3;yYֽd6~g 7dfxb7xßz f[ͳn(6Mu-2jvDd6\,l\m]eljn6.--vvVveoqA`?V`b6o eUKן#`eގjX]Xn*X%!>?`/Xe!.?SzT/qM? `޼߼Co^,Ko: [{#ˬ·܁·$oYX J/r5oo2[v·to:o;/WooV-3[*.··n· r/|K_ϟ?h6?@/B0Ԯ6Zؓyo u" AwW@=XR3?fI{n?~ 똣^x/=Fo|oKUɝc_diwڬ1y%6K|7y$+D\y[as Oj26*CO5l_3RtS_Hkƭrc-ľ%F֍nF+hvՖy\S}:Uβz1!E7N2ȒISZv*vSj('KX̱.fwPe͢4;GHO,`&nRyxG_̀jh^σAk2FE[eWo;7orρ r6z]Qh~#8cy%ʢGy7< R MZ/o!@FǤhjSӕ-ƈ8`^CNI2D+e-iNL>#<gۓ8%^SK$4C ‹WI_|8eĩ>}'ۺnUnm}!cfH1z3 4K.I}2_Jݭ(''5Qi6TÌf@uie!g#-=WYqT6׆8^^JʜdJtx\7%IwYsϜy) eK Ymf@.F ^uYv T_wQn,Ku*KKD?&rMf@٘ X[)80wSJh,b8*km (W(.yz>SdCĴ%[ NT3Å2 3w޷ڏK=/:F(h|㓻۱8Ջ; AKAƻpyAY1w"6ϯs*:?C pfX>'`K⏈|tY \}0{e'qꬥ {flYA5ӚM8eG6_?v'xk]l -}*7SiTbF|y߾j4J_]՟C,Mt`/v+MQHJW{KgtUUr8]zq )yv\1$T\4~ }!_;oSTLfՙۮDXe|8X­% ?? ^#v.ƶah)1Vb_ܘTcjۗr,ź1QhY+/5?\Yz? ~Yjy.ObE3FVz^Fbl[@"֨GfDC'XpPؕ`X=m6*_n)%cM+鑴je#8!`QbkYWz4iY}`}K;$c;R[L= >{U~~ (uwk_i8ԌA5swHOKA[3ig]p!;cRşɀQS+hEy$wly xrK*S##xT`˗-߽Xv hyi K~b)w a*U?&cUvkqд X 閿tv&iZ:_l_Qճtx EnO4yxMST/]jS݆'ݓE7mbv“[&Jbᅷe}*ߛBe,ZFOՖfFFIђ?;ppCn;_3"_CvZףZ:yE-f*?^@0 QB-B+hzV@>49D;Dg+@.UFI6Ӓc*a1 7W;gaB{NƇD7MACV[`Mƈ26i*k:ZH%>= Tlctm˕p=-yis' " tzb]Xn{)\]Պc ,G~-#zR]3>[78nh!3tvm{/g:oJrՏ4%,kJ놠<3t0N`> Oc:f2a i!\ AP#3hnLS<LphleayheE8`O #HaKUd4*uny$zqw *w} 9"$odi"iκ&DrAzM($63iP[+RH~ i['TP9gcJ4vC!rqֱOi8fۢHi&^$QN]JbRUcS gMZn **( "lr#w,~}8Ֆuؕw!#Ķ8;APƱ|[8agi?n-"r鼞]]*vGqwp~zً?=)¢2;[KH/[/'@uu%S *Dt!zBB\߯@q_\n,0{D=fs&c5Qc1l9{W7kfxd{F`Vv@q v^aNitT\j^@Is̓;U|]hu$}֓ VS#B֟Ӈoj%!拴Æ+Aİ(~5Ț q*ld9i] YsZoa\` %g7u/.sRQC|[^8D#aNԋ[B$`:i\ FU5e-)-,R [;- Sƺ0cl ,j(Ddːe w|%izL̥tyҎ BX ٝ p`mY(@G.`j | US#=n^ *u`P?'jg+j|+=1v̍MiFL&;5n` er$>̚lˁg@OqO<7fE:72؈;=)Ï]d~<Jp\H zѧOYjђȒmJR+kO45'!DnQe_ൄY\gbnE%Ԭdo!N$_ڄ2F π."Z<{TQ9"#v# UM3?SOl ρQm?nQWAHIM/s)M穤\:acT۷<^ǤW)G9)3ف"hr?e:-WTp%6lɎ\fvB j# y>V4P!Nqu˞˹1l#u'gu3Bn4 N|$Hz*$673}}"2>"z {(23.?O,pȍ?0&rAsN+̠]t9~>̣Ջtyڈ!i[.z:l( ѺC]߅r >Q([rOp(hԜ,n4c2O U_9!j8j/+vȎ]RH9P]FL=}2M|7/51%aa^P o*ξME23g3Қ vʴB' Pb^֢$O`K78e8v+mȉhITlziqT V&/.|`wyu(z~ʝ'Cm2``TI@z ՙpqyvbh ܁oz%5ˌcMT^;!!9Dh%61gd&&v w#|"2@w_Z+C$a1g%G6;ғ$kj} R*Uo}n)jlfI`o] 3Dž_Mzb.ŚɌV_uy'Q0{&?'mB||IFq8p @2(Nl5Mo\( ~e%_Ma:uI9@үŐr5 ZvЬ」OZ53 JcQ }&sVa禜"Lۡ"Qװ 9pW:Cz- =L+1BR(2;jq_B/_>X <3La%_b}s4:Ӥ2hƘRk:#k)0!e[!#D_1+V˹()l.t1< )>S%Z)[+Y%4n(' 1fUl/Qg6&qNc^`s`z)‹'7KZ¿n@l>-,^e ew+?O33%(?4 e5.ҙy8[ 3N+ɍ~a=/V+IÐA'hM{(ڗ1!TT[V7;߄;_a>,{3V 3+%u[5S]3Tåo5'UaG5CJ5&|JlpΏm: 1ԯLTn,y|RaEd=ݦO[I c178,T5+R e4<'bH]ɡV>~0<u <!g\6 g ^[6Vl`u8ZXO߰GUjH"ݺ?d1&XhH.c63%E?֌g=l3K:19Oꑬ(5aN4浭'~Qt")DTɹz:iSEMiYvB 3+j@[nfؒFV g tI q1@1a97-0B#Z)v.YCۉJwf 9)tp;ejItL]%wX$>G|qDu ɚRkִSpTfah=/j>pOӔxӖ]=}`Tf2&x 4X^Jz`f8! g\p_",ɕF/DQiC8xcC܃yXa~(S~NK|T\k\Wr>4_r|46 -.ʨaCѥJF'Y4EOyUc™wWum7j!V>X0xFxkJcmM e!lp5^ѫHO(N}' ^o1,d*+cK*"~DZqjhW1xp{K |Z&y$1"syI;1LZM_}$x޷c&'jPk9k?'Z#OXFf$S410W?~?5Wc9~/Rj@+F,6eyG[u=rppeJxH*I}|޷;kႸB]TUN~NSԟhZt)3Hm iQbނa%Î xw@DםڣZ{;@ss(&sʅKplۜKۙm2ѯf'0{(Vn&c3RZ}TUd_&g,}21vi)*ՒOTٽ^de6ۈ1CԠ ;~ձDׯG(jr7Ds*8?NFLt-E [DGN]ŰdDqiQf/ZmmLta|NDzOa/6q,›+ uZꗛ%GaOxa~۫=l:\*OV'm sQp;^fQΆj.; \u{HߨҾvKhrڲMQ*t*V!+nҺJcw'uV}s_- Z&CUfyAe» å:Z,mtl1̗y+{9$ =MiMKa=+۾oRq97L[ o^wH$t@eyIBIךGF?|PZmIT\#0pJH7G礌U&}0-0ِ7d߷8!cHˏu^c5g ydlHi(=lƎ TQlĄ{ٍB4,AdsgιCTz"ׄL)LgD6}-wB*{).8xL,KF09[Hëۀx{'S!/pYVGl^%vS:2ff=i%k" Y J[.,SZ|-JL:>qe/I ݿ)X\L5>\r`(He{| Zq;S?ogJlGhd?YFxGg1˗Uң9; J/!|v //|jѓL#MάWa&ZgY^DcKKrmB4[ v^5stfPQrowL`:Ah59 ޥ۬6CYve{o艊+ ꞉ʰO?8SV+1_) Ӟۣ'V(c^:!4 /t:ۢ`^CA%\&!m]"0.3JY<횔ןb eR}^޾;4+ w5]L DHŚVv!ȂfԎf0 rN6S^,KWYr< Dbs&2/ C>AZ];spSR!/ba"Lũ>*zAwf$PB@@rƵ x`qqiS7nkXdC;Z8+UZtN$jV8gN0 \P!S)},Mr%0#:zd+A%Fa& ]Z#48%iaXjk]UljJvO/O3< @`a8VN'T܎.0jut^]ߗmzhi&{ PJcCUéĨc!8KO5y4lqPneC bKf@&[G%AL7z#ü{Cw8Z|{6[ZrhVbzp %h}ˢ5|<E;BZ(JBf~Oq'ZN9=낌WA}M {;f.Ϧ~lj_:O9(c8V| \#{XN&@p:cF=k(}K,/:RKEZ8;m\6F>8̮)Ǧ;oR u`җ(£ٙ/{Ir[L-] SOtz-tʚkB"އQmotO?j>7c j6Y,6F^K?,l͇iMz~l8F=iwPU5T&1t=z^}2`=Aj29jw Z gv0m7#5P|:i ,'PG-e(q(Ss{NrhHfB09ҠKM${,Q]Sruเ}bF֏N>plGuIo1\\*Buנ`zaeLRF#b 7 W(ޮ?@D&%#\OCfC͢FA 8ARcJXCSԴ97Or=3`OX6=p sbA7:u~,~= Y@hQ7rRf_?J\)ɸ;]%tC`ꭗJ% pVFoG ^bn| jPxРPEs'twEH6nB=isV}LKxS[C%<8/AdEs}'\Q};JOty>\WQ{Ʋ8we13Z#hգ?qz^98HR| j0qy#{;8Ҽ(m8L*̛P/&8B($%l>`KPbz*p,x(zmV'*qI:k2pk2&dlR0$D%4;Z*39`uH-6hݹ;*Щ 9|+yx>ʮyVvlm̴U'Yu$g()8YDfj-Bt3-k0ɨ,McF'~2EX F[sg֠*i w"Yg}u~-⏼<2Y^b/ ct8]}SMkXU6wG_m?PR ~RVyd=XO­^ꇞJa"J0Q칛.T"PH52։ƾ@jB[H$T$bJiPDMo[[5.:OMt|*<.d>k R-YjOPx*Rt' ;C/ x߭sƐsʹ= kAX򃅓}~N8>۳2F!wjz&*2Am-HVXȬ #BF$/ea]1FK9GQG*7ҿQ}"f#i<~|̭twY 8dU/1/j!(^!]S%A)jMңt>rqmr=?41o_c #K4IWw%zQ R$a-ʞױY^p%BRu!a1cǷvhAں+fy&>$ǛoY-V$'"CoE"v .VPj>&􀩚)M/.+ig tV#eX8!yKh R24YU- D*|־4 8 hd j_dȅn14C18/KG+~]zEJxMZA_)ڙ8`!QR} aNp&=A^$Çk=T4_D.cpȬuL CɋZiӠzx{23*DHx>&JJÌ%њ^A̻ @X'y: MqX/9 _hp=4ēYYxEBtëY|M!}>4gKu50v5 :<|Rf%=JR=s;UNY{kN\2e`r:&2Oa뗃 d&ؐV#oa()m&] ô0ю]-cE(.}{4~,~N@̀ڎ*L YdO 0s}mk> stream xڌT%lgd۶mMdۓkɜMM̯y1Zu}{wDYA(` SPWga03123QP[#:X9Bh!7v0TpȺX,,\Vff:8čݭ Y{ G|PXxxvL Ʈ@ƶ5S+tuueb`4satpxXZT.@gw௖vGPrBZ]>\̀΀5y#_2 #@V;:9{Y[̭l%IyFWOWz_ƶ.V&n Qt\L]]]l04K؛9]]Ohӿ?64쭜܀2Y]lijWu/GJ=8:8?Y?n@?*̬L]&@ +{??@w1 ~03{[?1ݿ[RT``ecpq8y8~VdVNq8Uߌf+' cX98>,;j{L.p)'I/ѿI0Iq1$  `>bAq?T 6`R>bjAQ:ux>z0/baHobjG?#LJH#agKbggd_Irr?ݛ~oCi gȏ:,T%22l?:SG  vß?;Q:~<9@s?RKu/WAmQ6mQ*\f&CX> [c|$Sǒ1z8CA?oV?9@'ne/ĺ>žV: ϊst MmvЖHH*i[#tx{Jdza~4TѩH !,䀘f xh,E7r!ǀg`xA-K,CFyR(WBZKOۻ9wb:8bm*uV\r\]B[JѣTY%-\fFAb߱n_z2h̶+;+:rGwav1[D7_Ý0n{||<<պ*%ݐࠋR2QЋ2(Fn?t~]Xct:xcU0-Ae+hqBLXvͬFxC tB!װ ̂TH4b^7'skKA-F4nPQQA`(D$e~ |bOTdKGEl ,їZ>! /jsA=qUzI+uzuF=k~jQ%dQ5/t*=}O1]f4|_&nڰ?18yShk]:ЩI<[GdtGw4a<;?an;5P*9Mn.`Rk=;jQK嫝E%aNcZ7B[ VX10:Ⱥ³2R$#_F|(Uv]._}C.ƁĒ[%qWk2%;j|.GvfSPK73DN=ّկэB7&;o+`pfCFPЬ/(AW43CPME(fi}UY;?7[sRZ aD3L;EiOKǷ$JLͶl #`4PJeIɹ+q 6&ye?d)`g*ke{dK v( IYwM1=Xb^ƏLdó#{Zyc"/D%\<[Qt;<[]+QS-ԏ!yT߯fwX&{%Db~@ASW!*H7|~.R\eEcfG^IUjVXA-+ٍȯ:?hNyKAD*p Rt CDmr)Q>OVJf]ul?]4RTQAe<Q!!R fKl++*DI" s~b\0Ҏ X;,dywld\Q1X8QjT]}SCbăd7 ae pT}6Z$hWˉDPGGQQ9t4~ѶTzLBԮ|#Ž􀻥 UcDK]|23'Hu8 #3jA^F3 9nOAt]yvOCR][*1 'T;FRҷ#XEE{kHh' u `oz-͘~tGb8>59 ȁQ^M( PrpQ|Ѯ@ fWKWY@_EI4!~p QfYx. sRzIBmIB+Ty*HU$Ո.md$1 s1m̈́١|<4 S[-3xy@{]@a" A!m.%f=6ߘKgfmCo[)ZN]>뿌1<}Bd߽Z뒇|YXV,)ڎE-wDפ@G9]g 9Pw(zcl}wݫ#Q8/Uγ*m})hs75N-7ۜxJGmX\DC94ÁXTFط?`Iaؘ<nwf3.3Е T-`,љ%ZCoe+nPt<\Q^R3}o[[e}=ޣHJ}ɾUoޢE-"=SMI'1S@GuzB/γX6BhJ 9B:NZF/O$]iqL-$yn~jxK~%⫹}*zN _6qk40$ZUcPN3bDJ _ SkTRYldʑCƵaDX3cRwm,& 3VT0Q e}l6,Uvpda=Ѽ%n5͍O|pC;P[ړP,$Bۘ;m(XdDXBm3)!j@=<H`t˒&I ܚ)&dL)ۭ(^$6jʳthy ҹI -7nP&ED g_<Ԉvfg2;UAMZRF2$W: w21z,ѩFs'A℩s.CMKXSmft Eoi7PëE4A1G 0G{LHTjR%mܑY!?y58a"7$@7qݟ2idǡ{+p%R~N.ioEycD|xu}S~9Kv,,lH^S%Xa3jOTzCqi>(LQ-j:5_ڦuwZ^]#oaڥ\aA3-!=w6t앎XwYK+< B:`IJ/6sӖ<ƮZx~ [Z)@+S38ሢChiu̡qM _ QmSk dڸp| ̜'p< ƉиdfBzr}pNMLmM`A J&dIBՃ[T+苉ΘDAv)%ҡ{2~(zhg-go[mubnh[r{75Ħt뷏mٹMr>)J04.gEj6C5ⳫbO7\ !!;ɦjRvcjR?LKÎOr)= qҊ 3Nƭ]uv'%U"J:^ڵQ>c))<5pTHTʴSĬ?AD1,P/ɜM1YquQW9f5oW1v]bHRJ#Upg-?[Ve}\O${T4qrwj;׎< hW-:-Vӂ[;\K.a終AE2"v1PvK, m~;6/ fFR"_U2j.#2- h+bXw[rj3f'.8Og=' wìK`{Qُq`}zP&U%&B(}1/5ɷ̳Ι.Yjb5`}^z$ %,87PQe߰eAXȲdy)3dCS[ͦte՘Zfa ~S:n&-AB 6? g~I ο,7NDWY،Ip-G(29B"NZ=R3 l;s-h"h҃uEE(a}Q9cTvh$k(ZMdY:tu΍@7x=v[^aIwrn\́FC+ǂ5[bBow'B!JrPEEOkVQ1z[Mga5_ߒ9j˨="($xݣ"GIC[*.?$xbM 5!Mc/.IM\tG ˲uC%3ǖ'<*]Y^S sV8&^61x>%QwRX "B<Ɖs8>OO cw~n9%q4Ʒ CMN]*YNFμr?_o^ J3 Hmڜ1Nu<]XyJ[ zXH4EPWld(+R)D-08`8=hrj_-c2K Co-vXMp[Hd`O\gj)xDD}zzkҔc-/IsGJ0i蚰`N) _I=2h8EqVciG޼Az~L'EƂC[/囕9=" Wv|3 <jgh>9 H 9:U6.mTtY\4!4[vQZ*{\I4 w-aK&I#z:(Yp߰Fxjo*HJ 1<1?+!οod)H$ `slj6h%O)_?Kvؼ̌9 FP17]QU$q[r͒4;)||QҟxFI-&fHy6-@B{zRW 6GM!$ W ?KqFҶB%/ӓK0K&fͦv;Z-l;(t[+a_jɩrQ=*v!|/!]GO[@/nf}>O 5^x.r>oT^+w,"@}KMAGc_=DHeхR}kwgXNT7NˢGe [Ao,F03 LɨS>ٓ~(HHܠKzF}~khׂiYfR(ctB,+9B(@7y&I6~T"2S~349-CɩP[n[@~Κ~6d=oo蝳̯ EKtE[ߪQށ> @H7s;qT~+sWViFHLK3mm[?P]`~N"? ,]Y7i&鷈$K#b )m[ĚQjwia?#=#aræcK5bi~`WiF#JjG UBg0XTXĊ]^."l b6/Z,r5Y˝|[vӉG`q[R%{8W ƾFln^Tw@d.1旭xP\w7NJ_{ʷFH"`>yz zУanR[W;1[YCoLN25Lg;GdQA#T[zmj%bP=kqn+%> vJTG9V]Na,lkС⤒ G- Oح+PY !a4d)׳O(a*}yZj=:=IPji&} dlڜ8Q% R&#}}qņx]ŤkSrU6 ?ecy02ޣ[{m?䌱:3r0* jA6uP߻u6>:FX UnPTQH|}B3Q5Zx3) )n>.O`GP?G3M>r~y3nRECD]Nb/{c( $ 8qs/GG3Zm+@e KRż5!m%f[DABR2Msվ.%5FW˴({V0Eή]#)=^0{kw=}`/{UY*k",\4xГr(hu,]zv]saj!KtZ4z s`^$VO$k4Y䗸t8PvM\{S$XЍ 7W`E4ūNpA#-^ 'W4O]8b>)i`DG()6##6)ȹnkMrҫd[$nQ~4}9s'9N(ʔ!uGCǏCl`O{v_(5ngifHt h@6lE~!4(>XB(Y/*qی՛!k \ xg8ϻęYt,Y9JD6,@ΕϤh)@˖ӜPP嚎r$Gc͹:-8/[ Cx@qU )2VW3!FFWOA*8h{AMm|L 0nvDY Kfx X JaJAZ#7G7>7dt!35B^wvJĤ0 Z;9_>%ֽ^@/2cn}J\gwrncJ WR R8Cܜ4Sꌛ KZBn`@hHeU>ɩذ6Ng״i uspd=d(ޭ,aWuK<*o-.Vn6XʠRDEǶ,'T~߶c(Y2zݛ){76G~W}to"W{(}pi{X_0>T)0`gD0*:ƪ7Up {:v۰Qj=^UQ2A0w.E#hy?gzBw^Txzc\{rяE)!P9tw@f'dro5+>DSxHea]s%lyU5/]cmQ+3 d16>^q;vM+TlǑdmB<&ӼVl*En)0v M#UIW<wӤ%2YWr$Ei(7ZEED.xeܳCsHJ[G]ʺ+LLFʊa1"nh둊I*!9䙊Ly чܙQvUh0P[{>i$CXMlQk +Osc 3ZuGPa+ ҆Eލf,AvWֱc}#gLZ@ %ghryr6{'aEoBup VgLḻCo-u 83Cw(V+Pڈ 'ƣcM*?ŝzӣm&P"[ZM˶+'Eϡ]nRw{09ʧ?7FI#'1SR lgӞ8¼pqQ3 uQK=ғn:a#Av޷e(Ŗ"cj"R+Z0D;$du>rmrX`RYj=|VaU9fhӬs4#0sRߙv6UCIQ*F\JEMmv= v>D&_-4~_17nᎌ("6*W;615&[Frpi>Q)![w;#ĵ~f4q&*Kaj _[BvCoEKH8 %ZQׯ~h:7-A(пR\4CIxwCb.@Ek3H@5 黣-ҙuu0ˬ*vÆB^tvL>B4&siiT([0 R M;Zvoqyzc{f:{\(R7 H_+'!,_139=H6QVʃ3lkl-6&*j :ʦ4XZ`vS2bʢUQ3a 3LtP yVK82?ds&]+$h68,_flT{5|SŜ=zg}rDLLq+ʄR3-,C]aIs'ODwU>6ys<}3K%b ~߳;]Pd$0SG%"D]bO:=sr=WT;RI|xÓƀl]L0 6#Ea1;7 teɋ$Ugk-'#-= qEg:dFCQ-! PHR1 W[5P塓7s Kػ[kg[Ij DoE[wj_ .$nR >ӔcՀ߽ƾU,xQ8;zBD MDqgJbn46r,tֶ4>ǘ܀_ ;w\6Г/u/)K9m*|jN YPRsM d,wg3.!xJ$17nx4,BośWy%p~[*K=wPJ~g >0PZ3I_vD 5=[y4k]3oGBz—CO$Y_дhe2hžx>y^ k0a3p^XnR?Hj\ څ@1nfV =oiYY4OFk\שM!6LcGs7nZUZЕtu3'~TI:)@2PJUo1 SJD\Zб,Ocbn(/+ZFJYEU-z YtǰZ[.Xx1R{5-UU1ֽ[iѧev~O^M&PԦ1n1~#MʴL,];ݰ)uC@Ay0&e%3V16vKʗe.d}:۩i'O@rG7u@?)-YoCZOAe5p <+=O#ʆ0&r8ynSzGۋ Tq祘*I})I]6LAVl]$ "!1g #o0l:9 {)]x#*7h?/f& 7׿BgRŒu,Od“3~¸,2lpk( .i/ቾ+6 |鋵֍İmO>[k?i/F$2кiAkK2\ 6nfgs|32jeM*5 k2;ЙG&޻ĉzT} Zn"{V.w(?Fh!g!4l;L`Nkt ?d#4C L !RCOYaqn^e|_bN\ V)%bgp Ğj̱/H#GM?ּr1wGd; (FΡСꌪ.҂y U;aA%j@y&^B]>DU: Z`S[ICI=Abմ-rD+ٞϔH SEb?R}xu؆8Iz!3j+0KM;׽+fjCN|ktۇ*T$vSEmzr$\W"[&;`3hfYq50P݅h> BZO4#.HE ǟM 6SUR9hVK:>q™v؉yTX0885vky*|CcJFu4m70UzO3&(:7:e(E΅m0F[& tʚϨtIfՂ z4$;qDՋpL*ޞ'R{L3oĄ6qRz)EƫW̛|U%ǿbR¡ Xys=$0_?̘fUԮ2|'d;O?gm\wJa9KnK-8oJr`ZCQQ?Pp!ԶǞ@`>Rrb(=T[FWi1^¬h, Ѱol'4%/7nrdkxMTd?+M>l2Õ6ӯr k>RJʆB,WF+ssr\1v% YX8ōIOu$/l 9|8X(!2b)$+'_?)n*Z~uyR)K7l.k4/r_p6M$҃g K.`yAmO9mz|Ђ4T?MMg ߋKs܁L2 R:}GLR=g뵡¾TD,j>A^MN1@@)|(a.4䜈%'u l:~6Wn|.g݁򊦞  YBPˇl꾸#ZqpD+?="(ఏKctUrYa m6#hPBgbt .g:]e}]-Hf5'?=/PRL៥ ~̈"z}gIԋ3ؿs]Q[},suw?QA4ڋH;j`0Izu!ARpyB9>7'ppw5[MΞ!3 ެ |+Ϻ q2v"ry]{|t\\d>%i.Kiwv2?t#*JL&8SegP?UaU-RV,_Z߳]B ֬#?wm,f7 SE7EDݵx8ZB5zӫUR_||> Ojֺ<OHxÑF /5Hxu2+E.S3+l8G.0,ȓc!"*S?_CwZw@5 iB0 <9 h.5}QoXJV.&b\ F n\ }ۤE屴{<*m=KYhuճx{dM0;8TeX.j%.Y: V)i(UԹ`ׄD4Tx 3zqdiXm x@cc01:aSW01 UlZk{kŦl|0}#yM FO]]K%ZNMms'1Gș.O sҞ0?)Gb'/S-0`Beq Cb}P[ mՓ{}w{Zx,oIľYObSirD~k^hexO'XI`g;acOپ;c BpOB5-Q`!KADd'EfaYȲ)/䱀[Ie?]~P<ݗ9Q5I\5iK0FDQ_$k^ ~Mb[Xp43G@ z@{h:9{Gu:I :;W$εs4_s3vKErw^YU~VvRHy7͸qaȀ^UPWF,: Eq(E8EҾ8q9#"Aj~ʇѴ$#q e> 1Yh ]f iw,^lhL`n]\CR,]L17+k ½,ZQuJ:XHO 7,9 ߵ endstream endobj 137 0 obj << /Length1 1480 /Length2 2291 /Length3 0 /Length 3230 /Filter /FlateDecode >> stream xڍT 8TODBIʱxżDy g]91f3aȣQӉH0-ںn dT`2.PàЀG pgҸ|20IT w{'ŸNx kBqrĈX@ jqpf" ?3Hx!?GddC`:EBR]!.%p^1_ƀTg@0@s@CV|S8ȰC Q?v)L 2M@} Hu#|٦7v{HQIr)Yxgt+j,2akYE1dkFG~ Ҁi8[$99bw )m7=H~Hչ?Ԇ7?gvmrw֩i7TuL3ڥ?t"v_wݗUv*.tG2&;'43 WܧJZW$*b?It*9eE%q]))VTf'*1zG{GG夵3 IlݴŦM)\m(QokZD!vLʭ~ԽoJǛk42q2+m|5|:TI1p-ts~l7[ff]VSۮWfŹGn)aY\>pEu֭wJN%[r+ ȚbȻMPaQe bo?}vIk\MA{N e߸ދ[u݉Jx2πWR\y} OCi1zpN<74&iB֢jӧ&fB//R&_f u1to]]ٓ2ϲӉ^(!b} L͠!emeX{oe|֫W X<>l#6*yp:J/}A1XTItR? NoM[+A9&,ZNޮ+j9d~(oD^Ζߪ=8sI?F?~C6xCὂ\ fﶰO&DbY)9(BhczܻE%a> Ap_\X!Y$,^ν!<'%0距5}qa'py1qdިD2(#H 6~pH|L!J%ݿjoj=%e,R_W2ZbqDIBvVLoLH@t\o1uJdН_bTϴXkË3Л }$k骾n3/fUƧ/ Dm?yhM&p𗯩XZK7,eS(cV*3t3t2)z%H~y,T޲+F[Hk(N>x<)^h%L-aT|ZuF -a>ΛQ/Kۢ bR]hrIoG8CRZGOhZxYNLEoIy=@|,xqw *15%anpX^¹E-.,92zOA fEF뻘%yl *|PЎz7f)mCS}u]woX!o8t/pS@>M5 # !Qe]Cɾ!lh]QH1$$nHcV,M) -KdK2j1=Gk"@ W]YhyϥF9z/n\mo}+ym !1izY^KDAI:7KV)b)1`ߔha}ٙ!7ԢR2jS` endstream endobj 139 0 obj << /Length1 721 /Length2 5043 /Length3 0 /Length 5634 /Filter /FlateDecode >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> stream x[[sH~#j{ڪ$%{Jű3iٖ8}Y[R|.2+2"s,|3i<2iѡ3q08LQgȔs S*tSX\}Ť4Ѹ!3p2W`μd!`*z:dR"X_: NT)h~M{R: &`L:@]9]Z\Ϝ[-*l*5 6Seя)Ng<_EAhk.9&]c9o3b8H %"LPB7#X$؊хɢ͌Q)@"H-EBMf<@9FLY(! +A(4H0" 薅% VgK ѐP+ 02-SiVL'%MIYg &̐M4%+ &ZcOBB@WPF  rYjA1<&3l4i{02q4>gQvoZz<Uh|[,Ku]rRM.ƓjdGM5rRjzf7_0/拾6jʯ Pi`PS6u<5;-_aFpz_QUl| 6`kv 0( 8~iú>ш{Mec,:jphDt<#T>9(MTz`Bb4hy>Eh`Soe<'^~Z>x2&$cq o9y&] yc +k@cد*PêI^wʣ.mh0Fy{pZ<^"! IUxw[AV$"-EU&KxK-uY{|]pnpi+fR|.zh%.JحZC>G9Bwk9M{)|l愵x1_UãLU_u]s֬ n6ڹ&UIQTٽG)N_ƃf;Ѥ,`֯&tW~ؘFvT:eO<+鞂֗ӊE T/US˞x<үG;̨7`<l8>8̱?uVӧ9z7ۏ #4A\ףs6nau 0b0rR~Dٟ5דbX}M=TO#q>@!eAMcP] }pX.:fr2F/ǣ4W]zg_%mʜR-ԵEZ\#~5ae4&qaY"v|M FOr~gXWI&[Cn]|8mMRN z?7;J:,1 (v *ЅAP?CĂOiW!iJ?H%%&rσʠ<ܱuלꈽyɷx%^U&pmU9RNy5W]%R(sVE&CK!mOTPwIrC9^p?H/OϪaRF&74Qakҵ @${$v/'天GQeaX6:ᔑRD[@:Dk.ZI-2څV"Aosn{/#O}f4?nYmVIEOD#wE&mvD}!GYX(" 5\e/JEe]fyĿ\7*b>=i/G}:O=:W௃c{8RiS,[~K&fs|eOxyXHJu{\J% !@%#MrNm`VIm;Lyqαν$Q/I!.EA$ #f"m#Hި4alimA<-Eb;6kLnm;R }U - g6m[9xC|BTe"T8i t:0f{pQLbgoWPMVHHt{#?Gp)Wgy.cW٤ l..]Ud`V4= iڠ@13( c~fҰiMDjjWld`K_2d,]@i wd vXfv|7.+%"7?m' Q{ Ah["^ g8$2!QҤYu1ORN2h.i3%AU%*ÒD% 9 S}+G2'D</hJZhI?򣯉IMI)%;%Rs==cMCt{JK_!מ?\} 6ޢ 7?nZvVcȘ 8EEQȼ$]8I&]_Gz9[owmkxjSO8dĂa'a#HVSI`yd,8EI$pP!U: QL Kj n}A:zway9LPM?Pd2*bJ_Г_뉃IU_^5T-CHyܔú7VToŞx^brB_=X\QD5+q!./&Cq-Fb,ƣJ܈jRb"bZh&U%b&od|?1vXc;(U7jo'4Esu}q 'x!N\E< q)5|boO PڱJL@eIWOt1!2*A5mtv}o Ͱh*6P?{PoB֒ FAPëp<yՔPpH P^Jq=[tHvEBLrxN߼pQAо@xGb+ +JO~;7SwJYm[9'O<[s5-~ID uq+W{ Gv(QIJ_.Oٵ=oۙx ]\y !/`R#Y9>̂" Ղ1<շjptwT^ҭu gSgz%np>dE"tʑӦ}$Nf}> endobj 141 0 obj << /Type /ObjStm /N 26 /First 205 /Length 932 /Filter /FlateDecode >> stream xڝVnH}+qQF#$$ c Looi_D$rΩrB>H }`R <B088p#*:$E`>P@95P'"c65bqDJ! ђ#Ju!(%:kQ@}_ "Pdk7@.J:Kntz 6p2N}a>|Mv{ɱ)38Ф:qPl(b-U;64۷اψٽ 9{#'%o\չ9s}p?>^v;&_TS+=}NNg=nW>7ƎJԡӏҷ?wqg1zg?_x|y>ǩ+,2ZVaє4 & pOH g*3tU&,`i)dcهd{qyç{#(Dz<1ڝ7ZPHBQ(-Z,Qqx-(DPD7V;辰%{@4{"g W6T5* W>`kp>]gIORi&X.p>pFgYnK0DI'd|^@.~8 ]5/wf0Zlv{p&5q_:RWRلZTf3wyB8{_;{̗~]clL[24o]lI>[UʯX )]BnXC^K{^쯰{'P!!ǜ(cNL1'ʦ^5Y\#Oe-Z2d دl|oeo7AlvNv]O;>Ccm&=n5Q?<3 endstream endobj 152 0 obj << /Type /XRef /Index [0 153] /Size 153 /W [1 3 1] /Root 150 0 R /Info 151 0 R /ID [ ] /Length 394 /Filter /FlateDecode >> stream x%=SAs6*E *j PDZ0Zd,()mٓ}f`H'HupҤprԎ:.PK0\$!jZjn@t nToHti#xTR;eNuյ`y`ԣO8 [3cۇy[wp> (\A ZUm7&- p}0f``B ¼]̭Tw{Ң{s -{J [JK%W_=|+5=ו^{^ȀD$2g &6ifU;X endstream endobj startxref 202809 %%EOF Zelig/inst/doc/manual-gee.R0000644000176000001440000002433712217153457015254 0ustar ripleyusers### R code from vignette source 'manual-gee.Rnw' ################################################### ### code chunk number 1: loadLibrary ################################################### library(Zelig) library(MCMCpack) ################################################### ### code chunk number 2: Example.data ################################################### data(coalition) ################################################### ### code chunk number 3: Example.cluster ################################################### coalition$cluster <- c(rep(c(1:62),5),rep(c(63),4)) sorted.coalition <- coalition[order(coalition$cluster),] ################################################### ### code chunk number 4: Example.zelig ################################################### z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee", id = "cluster", data = sorted.coalition, robust=TRUE, corstr="exchangeable") summary(z.out) ################################################### ### code chunk number 5: Example.setx ################################################### x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) ################################################### ### code chunk number 6: Example.sim ################################################### s.out <- sim(z.out, x = x.low, x1 = x.high) summary(s.out) ################################################### ### code chunk number 7: ExamplePlot ################################################### plot(s.out) ################################################### ### code chunk number 8: Example.data ################################################### data(turnout) ################################################### ### code chunk number 9: Example.cluster ################################################### turnout$cluster <- rep(c(1:200),10) ################################################### ### code chunk number 10: Example.sort ################################################### sorted.turnout <- turnout[order(turnout$cluster),] ################################################### ### code chunk number 11: Example.zelig ################################################### z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep", Mv=3) ################################################### ### code chunk number 12: Example.setx ################################################### x.out1 <- setx(z.out1) ################################################### ### code chunk number 13: Example.sim ################################################### s.out1 <- sim(z.out1, x = x.out1) ################################################### ### code chunk number 14: Example.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 15: ExamplePlot ################################################### plot(s.out1) ################################################### ### code chunk number 16: FirstDifference.setx ################################################### x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) ################################################### ### code chunk number 17: FirstDifference.sim ################################################### s.out2 <- sim(z.out1, x = x.high, x1 = x.low) ################################################### ### code chunk number 18: FirstDifference.summary.sim ################################################### summary(s.out2) ################################################### ### code chunk number 19: FirstDifferencePlot ################################################### plot(s.out2) ################################################### ### code chunk number 20: Example2.corr ################################################### corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10) diag(corr.mat) <- 1 ################################################### ### code chunk number 21: Example2.zelig ################################################### z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "fixed", R=corr.mat) ################################################### ### code chunk number 22: Example2.summary ################################################### summary(z.out2) ################################################### ### code chunk number 23: Example.data ################################################### data(macro) ################################################### ### code chunk number 24: Example.zelig ################################################### z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee", id = "country", data = macro, robust=TRUE, corstr="AR-M", Mv=1) summary(z.out) ################################################### ### code chunk number 25: Example.setx ################################################### x.high <- setx(z.out, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out, trade = quantile(macro$trade, 0.2)) ################################################### ### code chunk number 26: Example.sim ################################################### s.out <- sim(z.out, x = x.high, x1 = x.low) ################################################### ### code chunk number 27: Example.summary.sim ################################################### summary(s.out) ################################################### ### code chunk number 28: ExamplePlot ################################################### plot(s.out) ################################################### ### code chunk number 29: Example.data ################################################### data(sanction) ################################################### ### code chunk number 30: Example.cluster ################################################### sanction$cluster <- c(rep(c(1:15),5),rep(c(16),3)) ################################################### ### code chunk number 31: Example.sort ################################################### sorted.sanction <- sanction[order(sanction$cluster),] ################################################### ### code chunk number 32: Example.zelig ################################################### z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster", data = sorted.sanction, robust=TRUE, corstr="exchangeable") summary(z.out) ################################################### ### code chunk number 33: Example.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 34: Example.sim ################################################### s.out <- sim(z.out, x = x.out) summary(s.out) ################################################### ### code chunk number 35: ExamplePlot ################################################### plot(s.out) ################################################### ### code chunk number 36: Example.data ################################################### data(turnout) ################################################### ### code chunk number 37: Example.cluster ################################################### turnout$cluster <- rep(c(1:200),10) ################################################### ### code chunk number 38: Example.sort ################################################### sorted.turnout <- turnout[order(turnout$cluster),] ################################################### ### code chunk number 39: Example.zelig ################################################### z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep", Mv=3) ################################################### ### code chunk number 40: Example.setx ################################################### x.out1 <- setx(z.out1) ################################################### ### code chunk number 41: Example.sim ################################################### s.out1 <- sim(z.out1, x = x.out1) ################################################### ### code chunk number 42: Example.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 43: ExamplePlot ################################################### plot(s.out1) ################################################### ### code chunk number 44: manual-gee.Rnw:1346-1347 ################################################### options(width=80) ################################################### ### code chunk number 45: FirstDifference.setx ################################################### x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25)) ################################################### ### code chunk number 46: FirstDifference.sim ################################################### s.out2 <- sim(z.out1, x = x.high, x1 = x.low) ################################################### ### code chunk number 47: FirstDifference.summary.sim ################################################### summary(s.out2) ################################################### ### code chunk number 48: FirstDifferencePlot ################################################### plot(s.out2) ################################################### ### code chunk number 49: manual-gee.Rnw:1373-1374 ################################################### options(width=75) ################################################### ### code chunk number 50: Example2.corr ################################################### corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10) diag(corr.mat) <- 1 ################################################### ### code chunk number 51: Example2.zelig ################################################### z.out2 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "fixed", R=corr.mat) ################################################### ### code chunk number 52: Example2.summary ################################################### summary(z.out2) Zelig/inst/doc/manual.R0000644000176000001440000002657112217153457014520 0ustar ripleyusers### R code from vignette source 'manual.Rnw' ################################################### ### code chunk number 1: loadLibrary ################################################### library(Zelig) ################################################### ### code chunk number 2: Example.data ################################################### data(coalition) ################################################### ### code chunk number 3: Example.zelig ################################################### z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition) ################################################### ### code chunk number 4: Example.summary ################################################### summary(z.out) ################################################### ### code chunk number 5: Example.setx ################################################### x.low <- setx(z.out, numst2 = 0) x.high <- setx(z.out, numst2 = 1) ################################################### ### code chunk number 6: Example.sim ################################################### s.out <- sim(z.out, x = x.low, x1 = x.high) ################################################### ### code chunk number 7: Example.summary ################################################### summary(s.out) ################################################### ### code chunk number 8: gamma-ExamplePlot ################################################### plot(s.out) ################################################### ### code chunk number 9: Example.data ################################################### data(turnout) ################################################### ### code chunk number 10: Example.zelig ################################################### z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout) ################################################### ### code chunk number 11: Example.setx ################################################### x.out1 <- setx(z.out1, age = 36, race = "white") ################################################### ### code chunk number 12: Example.sim ################################################### s.out1 <- sim(z.out1, x = x.out1) ################################################### ### code chunk number 13: Example.summary ################################################### summary(s.out1) ################################################### ### code chunk number 14: logit-ExamplePlot ################################################### plot(s.out1) ################################################### ### code chunk number 15: FirstDifferences.setx ################################################### z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout) x.high <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.75)) x.low <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.25)) ################################################### ### code chunk number 16: FirstDifferences.sim ################################################### s.out2 <- sim(z.out2, x = x.high, x1 = x.low) ################################################### ### code chunk number 17: FirstDifferences.summary ################################################### summary(s.out2) ################################################### ### code chunk number 18: logit-FirstDifferencesPlot ################################################### plot(s.out2) ################################################### ### code chunk number 19: ROC.zelig ################################################### z.out1 <- zelig(vote ~ race + educate + age, model = "logit", data = turnout) z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout) ################################################### ### code chunk number 20: logit-ROCPlot ################################################### rocplot(z.out1$y, z.out2$y, fitted(z.out1), fitted(z.out2)) ################################################### ### code chunk number 21: Examples.data ################################################### data(macro) ################################################### ### code chunk number 22: Examples.zelig ################################################### z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro) ################################################### ### code chunk number 23: Examples.summary ################################################### summary(z.out1) ################################################### ### code chunk number 24: Examples.setx ################################################### x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2)) ################################################### ### code chunk number 25: Examples.sim ################################################### s.out1 <- sim(z.out1, x = x.high, x1 = x.low) ################################################### ### code chunk number 26: Examples.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 27: Dummy.zelig ################################################### z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(country), model = "ls", data = macro) ################################################### ### code chunk number 28: Dummy.setx ################################################### x.US <- setx(z.out2, country = "United States") x.Japan <- setx(z.out2, country = "Japan") ################################################### ### code chunk number 29: Dummy.sim ################################################### s.out2 <- sim(z.out2, x = x.US, x1 = x.Japan) ################################################### ### code chunk number 30: Example.data ################################################### data(sanction) ################################################### ### code chunk number 31: Example.zelig ################################################### z.out <- zelig(num ~ target + coop, model = "negbinom", data = sanction) ################################################### ### code chunk number 32: Example.summary ################################################### summary(z.out) ################################################### ### code chunk number 33: Example.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 34: Example.sim ################################################### s.out <- sim(z.out, x = x.out) ################################################### ### code chunk number 35: Example.summary.sim ################################################### summary(s.out) ################################################### ### code chunk number 36: negbinom-Example1Plot ################################################### plot(s.out) ################################################### ### code chunk number 37: Examples.data ################################################### data(macro) ################################################### ### code chunk number 38: Examples.zelig ################################################### z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal", data = macro) ################################################### ### code chunk number 39: Examples.summary ################################################### summary(z.out1) ################################################### ### code chunk number 40: Examples.setx ################################################### x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8)) x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2)) ################################################### ### code chunk number 41: Examples.sim ################################################### s.out1 <- sim(z.out1, x = x.high, x1 = x.low) ################################################### ### code chunk number 42: Examples.summary.sim ################################################### summary(s.out1) ################################################### ### code chunk number 43: normal-ExamplesPlot ################################################### plot(s.out1) ################################################### ### code chunk number 44: Dummy.zelig ################################################### z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(year) + as.factor(country), model = "normal", data = macro) ################################################### ### code chunk number 45: Dummy.setx ################################################### ### x.US <- try(setx(z.out2, country = "United States"),silent=T) ### x.Japan <- try(setx(z.out2, country = "Japan"),silent=T) ################################################### ### code chunk number 46: Dummy.sim ################################################### ### s.out2 <- try(sim(z.out2, x = x.US, x1 = x.Japan), silent=T) ################################################### ### code chunk number 47: Dummy.summary ################################################### ###try(summary(s.out2)) ################################################### ### code chunk number 48: Example.data ################################################### data(sanction) ################################################### ### code chunk number 49: Example.zelig ################################################### z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction) ################################################### ### code chunk number 50: Example.summary ################################################### summary(z.out) ################################################### ### code chunk number 51: Example.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 52: Example.sim ################################################### s.out <- sim(z.out, x = x.out) ################################################### ### code chunk number 53: Example.summary.sim ################################################### summary(s.out) ################################################### ### code chunk number 54: poisson-ExamplePlot ################################################### plot(s.out) ################################################### ### code chunk number 55: Examples.data ################################################### data(turnout) ################################################### ### code chunk number 56: Examples.zelig ################################################### z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout) ################################################### ### code chunk number 57: Examples.summary ################################################### summary(z.out) ################################################### ### code chunk number 58: Examples.setx ################################################### x.out <- setx(z.out) ################################################### ### code chunk number 59: Examples.sim ################################################### s.out <- sim(z.out, x = x.out) ################################################### ### code chunk number 60: Examples.summary.sim ################################################### summary(s.out) Zelig/inst/doc/logit.pdf0000644000176000001440000062053412217234502014717 0ustar ripleyusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3966 /Filter /FlateDecode /N 75 /First 598 >> stream x[[s8~?o 멭%N8&).zT℥).BTA>)K-$z "Tb"SE!RϔJ.6h($SV"=TFQ2aYj:RGI0 ̠JA \3k aK2RcQ?ܡd̻D3S' uHg$0:Tt'B8P3Ct-R$ )ۃC AvfNeBJv0`R?*?]^К~dh21#'_1,D&/r2ڹum](*}ȋa^z%/&W2~8 YQ‰'/?%~t1f:˚#h۳0/7Uj ,x0˿^XwIzV<@CJ>Fey#RiK`T-`T {POB b ?@ QQ=$1&v?ibMćY7=:@'ŬSNyٟj2u?ťd$hD+}I1>W}x\%k_nf~vp;0Zeen5f7f3o=9$?'b|G6jC#;ʣ7Ƹ<<idks1(QDdtTMnP[6@Q|U ٤N0Iɯ_& >!,_^ 81yBmKG<8rw!q )UpN'Pq0D$b^/AUQ sy1˦Edt^=[G|9~¨ëlD~`/oL !bZo|0.eqq{' d(oI[?ReY0~7>y֟Ҽ_0xU ed,'B}r<V%=A~,fì?eh1pr7,\N~NvX(wGuqa%"mk$)}!v~ Co i1iբͱx#氵f YS[]MSuIia kg_t~کk Vk`Zûק/swk2@U_Gszr_0O63??z1||5;٭R~3o>^ߵ\cwc?xu=dxf7-U/ςXu8'1^]zܥܥ:~_˟+.z|WmiRףzJNIJ.ޟB yY۰TnŎQbqigW)\ҭ-pEBZs`,zaӭDYbeczn?Beχ#mۖ0/[+q+ `uA!dLhoHOb8U%A#(XbEG/Aʈ6â $,_Iv7(e}YV sUc aIc |"#Œ!gHRem4I6&(gAV?TiI  Xg62P}@7t*}ܩgEiUu|8̫e5xr1zNʏ q-8yφ(5xTBv(?>W_1ࡿ2!ΏE6mD?k}ۊrTl5QC B 8ӵ]"9u=.dU'(빔bs"P܄C!)T0'!z*.D~ąlPREёҎR&/uJk_OK96zDm$FxJ8rA)T(mMjUP>DX4a4m )ҧӄU~mzaa;.bw 7"ajN"a8!"J[s!3wjz&`Xݏ12Gi&K5]V^nT>F1zR,.X~Q7]@kd8f;~G'YCNovNk`+$jlvCYzQsi+a1u.*V,h>pŎل' T}g%V>cPIӞ~M';k]yM'!A@j;E My< w,p"l(rZܲ6Oe>I"e^ډq-m B$ 59m5wT ;:v*'c6Hg-Ŷ:穐t`OmG"zmF%iT;C w<_V 8egb?7tc1w =PzkѦH#fyzbDUނ%m`ދ& qi\o'zI<[2鿒VvGC4{=a0U7iy]j m|G;YlT9WwR$_β}){Ef-^[2{۷E}swd1m/Jtp >ޢB'C=싞JzB#0g(y8$|>Ml> stream xڵYY~D%V/cza$$HD)x`{j)slIfwuU_Ux;g)23Xϴ*ϊYsejK/~K)YC:ik{c6SEi(r|)W6L4;y{|5[nϖs k_U-xUi } o TWgoKT$bՠ}RpW `a*҂EhxCKEZ:|Ytɒz)S~MQNYRhdANM D׃GꞴz:1؟ >4+A}{ MsD :9qc7hođ/Qyڊ<}[чT!ݫ HM,~@*R}X M>M9sͶ,u {_E$$x³̅(^WTޡG3jO!hqX\2\]i/Am8/(CiDQӕ(gr`m&օ"x^#S=_dJa])Kɔt~WsaVϙR)VSVSe=F^er!Xf\r "FUIJдr@WYL'TƉNs-0ݡ+tG_]| p!-2'1K LZ:]s'1x peraryd_["sGA(| ?lnBܡMǔBcơ(ခ%%%mjpRhv?(&~#bjѡ.XtT!?Bkh?U2]@U|,(M`6!QxU&(vgR{W!^eo@ֆ1s'6.7u>Iˡ(/.9񷷒gIUyEIЦO&o656l}hc7`ƀ;:8- WKK2)fF?,I2UD]1ӈ#SQ[f_ (뭎\ߓkJ=d3dSu^( H?ObN]+OӢ5ilcMBDT5dV(^mXfSsKEM <υN i,F\{bÞM=p _#xzX"F>hL+Zi҈Ȫ85igĚBv_WNnLe׻a踕ɼG%ыV_ PÍN bM}ڋƍ_{p_iOE}cQendstream endobj 78 0 obj << /Type /ObjStm /Length 2065 /Filter /FlateDecode /N 74 /First 620 >> stream xXms6~ ANfR'iԵ7?(#s*j,HI(r"X>],KO¯`0/y$^3%0LY-oi ~LG`FRf]*<$>7HOk<>U,x0@L@H -I&Ei)hy,J <?)&~ >B@%]}i@ "h0$`)43*1p*<% KK #0 7j &0iHg)dG%${ISل!F!R$S,eKdRErW rS^Д L[Cr0F:50P+fZP,8a!, yKe4 b )5̿3U^q 㯋ۂz$HF&zfK lAUy^ eYQFŨr5Zf"6f{1+y 1Φˬ,}.,?UXJv-܍,+8fIgxx|E㶋E"Jm1F_jS0dy8d)Av5KEtO&9ibU5'U:Mž( {~ݗbCazjcU^%yjZX];{YLY4%j{0Cyi5WXdg,~!ܰ!v!Z퉍%];hqUXE]A%y^A. V +69a=r= {VWz1*WgOKt?:2ǥ&eɨ"X~tad92_T(l*Wd߬>U,2/z(~V[\CmW=-__WmCUFڄ~([5jJw 4> b7?#9p̍h'P)~&${3Dw nHo+HMzPUo8C>&FIMV,ż:)l 4 }DfXxt6shפ/pxtexn@Eկ&QԺ^d@#_>N u,&84W[YYcwjMN0Jro[(͚gWYrͯE힞*$4CHm}R:)qXTtQ]Oe3F= KOT|e5I@sMB; \52/ }[\!Ov׬ۃͿ$GpfXZ5jӌz2  (6D]~kJP Oo\jc JOG7Y>}GM47_+~oGq1+|3O|g|_Qk;%uu> /ExtGState << >> /Font << /F2 17 0 R /F3 18 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 3762 /Filter /FlateDecode >> stream xKeW! .?#e!C(D$R~|jU>g ׵r|ώx|uutk\ȩ_8r|?WG{჏t<ǻg,(3s_WCEtY#lh?bLgF#^pq$|=ф=Ohv`9 2S"Ol3ńE8#E/g)cUG-MQ<ʛS#Gᑊ$YGrZQvbQ4E- I~,MX+9QhJ*C8fXgF˙#רI*U%;y/FqH*ECR8T Y I85dcS:[Xj A.[.-fC:UDI>}f}cfᛊOb=<O23@|{Uy#3]  [B(ʞJV{=+[5mW5)K,\>nZϱ ޣ?'#>=0fg7Razv1AOnm3[zr|Z 鶩Y 9;q| Az-`mqdVzۜ<o1nlM<'zrx1)Ot7s[a#BGܔ܆`uGI4RΘ6bbCGHF> ɍzEc=M =&Ԟbvd#x"ōzžF=&Z0b\Г׷?n硸_xب.ze?RO_77fH>QK'  =9zrzE;on!lٍ(NOřO7I BV;O00{q#?b-g|~ąJSMqㅞڹтKO~c =gM1Cߙ`}x+7d~ԙF:q}+0F V~j>ø;˜t|1ko'}|`OT8x^eQ~!=b"f# W h |…ʞ?AO%{AfW_VI(<$k; 6G܈7N'o\}Y9/CO`|2,h|XgSZ?[3Kכ#̑oa=9} J0So1'si2 Rn:9+^08aYh3#LYCO)shhV PkߙߌNU{kk.^ ?E߂QaX?A EqG(ekf'{\Ob/gCF9mg,@̅ Lr#WXDD}rEz 7G8)LYaK#ϴ`'cq>9X7rM#]?TUVzƦzƗ?Yn(YnH6>Y{YZ`]qS]MnUߌD~ oFꓶToK O-6YqO?.'œz7 cԻ5j$C-=;GOJBxnDozڇ%?ژrSO,~>jx<>2>3_9^05LI8Mgm샓6DYtݿTᦸWD~>?z+|cq~|GZ})XJ=>ܿWП$H =`OR7# zZ7M~_,{IO 7K\w /q}-~k^:Kg طşn䛑1ϸrK{ec=ԤClsoWӱJwjBӦ2-\^U2GwĊϏ?~*ǟ_|_ٻ?u6fjwc:>>O0лL*͋/_~#O- D! Ÿpɏ /}{15ap-n}G(xV8_ (>Ŋ3U?ҳd9n_xwL =IOth=:#ݣE(DPG% [\x+_4a,O*waKkS9p{ߎ7EI%$9n/zQʈ"endstream endobj 154 0 obj << /Filter /FlateDecode /Length 817 >> stream xN@𞯰PZT8 @joA6 ‰!B9;3WUOUgvfO8w OdLo I4rs{ 7t>mװ9BMf~"3ͩ#DI:l|Ex9[F>zxY/2.<lXrQlvdn,5H%5' v l.ް5/]yQZ" Ȝ\o-Ce@.Q҉S 'Eq[Vണ?:3c$ { im3^l: 2t#0Ptd&X\L&aD5ׇ_9m'g|#շĞVTB ~`w2po{eCȎ ؙ۸ oׅ|uѯlx9Jz VG֖gydKendstream endobj 155 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 156 0 obj << /BBox [ 0 0 432 432 ] /FormType 1 /PTEX.FileName (./vigpics/logit-FirstDifferencesPlot.pdf) /PTEX.InfoDict 23 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 26 0 R >> /ExtGState << >> /Font << /F2 24 0 R /F3 25 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 9948 /Filter /FlateDecode >> stream xK-uW!9_dB[ FC J,*pǧ! L9}YjZW??zQxk|K[?}/?oӿ׿~䷔#wmǿ|WW.ǿ\7ZK3=wx+~;p$¶^p;$0Іο[/hCp|ª&!n5aGu癄MME8uI- 0І.5aUMMX]hC ϹΠ&,¡&!\фua&i`-Bo'y '04 s :*1  ; 78NgP65o ?ip τIC@!lsI>y|cIIugЃDlYhC жІ:oD\B?ߙG&L3G&pXt݄M-\E2C`-gup"ά24*\B꼶EVݙs1˸u_u:P4BƕsMԏ2TAԯ2T4RD!=Є>9f : G'3܍ȹ}rvrMz mL΄kWM؊]W'y ] B| &r;\E|.ժs FY>HCC3Ax㕳f‹NMMPᝏf^N} rHwnvm᝛}ʢ}Δk'_h'yƢYw7e ѓNv7'z|6Ax|%w YAxg"N;"Cݷ*ivh+sjA8Y; RwiNswzns|yx&܃;lUHw0Kn:-;! t/"r^ih*ˉav_jf }Kp9G`btB{{8Vxj]*= i!>>lru`x{ 8sp؇pgf]fiٻ%39Fm ){qp1̻t!`属ӢK][tޘzNLYo}g+RgF{]>\Ӧ[Ι^fx _`3z~]7Wג ;_0}4)0\rsW3sy=Sz}헽){S%_kKM8wsw{6}1W+zgF& +D"w}`:$3X05$X @0リjS3Ìe5X%W^r8 , o1>PnGL{1?yVX[<#>@dͷB+:bK &2\Un4Aw20UjDa J0uޙ:RGYz_+ンpx9uOc|u4^ώVtG- MV87F|3 }~`|$W&P>(Z_F|pg2>sŭŮ[g KΝ,sӚ]0/ϋg> Ct%d8)e:rȑ}̬T!JվQdob30hۿa ڋ3 3U1>h~-ftV0-'b&*IRms/0Lߺ)TORyU?Z2q+ϴc67%^>#g\RBk<8|K_mOq|Ieö' G9)|3:ůs0B?wH.fn {5O+j= ;y0P$dB63~U***` XWqg= *>xGN5а<QǼjf)hz}J^>P,̻߄dbvi0^#y:.y621XaХ>O'ښ>|˧o)"j΁0 `Kt|j&[/?H > ~׿_=z?<~|?>GE}Josտ?O@[ko㷿?M܄DTsέ M_?G=oЃo2E¨>cw>۾3tْ0橏@k|ij\^F_;?h1W#x3^,~F:y~`y~dy~~/>ݳ2o a'z_Yǵ-}ը%^W?gDuϠ̻ݵbw<+'ǶZ'2r0bfCDj1SRyǩ&2\MHIb#D$Gh1ZL"e9 q$-&>BIRs PR \O-&>BIϠheU6-\hBNZLŗmԗȣbYhHDդ$0;eCbY3bgң(9 Cjˬ&K\-L('@f4sM!{ba,DPi1|eb(bi1"jج9_E-&}RZL`7Ly/=+i1(_O-&P.C^DK VjҐSb @i1̽j@=Xj1۸ڣ$箤J -&JZ̒('ˇ@imrJYRQYI d,ҽ@R('W@&,Gh1J=Ubّr(y%Z-&NZL _%MM2b')-&P?rȐ;4ԖJ%m-؟ZL|j1'xK lfy JZL +2b5HY$ -&pXyi Eblq@I$J#H-&Xi1K*I ]A\\r$#-&=@L-fR[PWQZL =ŗE5%Ovi1L-ͬh(u)ҼRd]\ZRn% A{Rk,i1sQ)ةJH-f)J O-&PCj(JȹNZ"=Hh1r,eJk+-&G"r)WZL i1KIZLbg+xe@VS,i1Zl*-&s26?:VPRYjׄ,-&p>MPb%\245J T +-fOn,U%>ѰK VZ}k1KS<(+HKP[YBn-&&9^uJZtk1 q|&bM Zz>N0`iA[I-&x.}J Fh# ׶כBk ݆bUZi>ZdݏZLjbeQ,ma {z^ZŤZVݴ%Db--&b[Ycbk1KHfSwCH/ ޺kwbVnٯY M5ó o^Sdc-&Ƈjbrͭ#픴o ~վ6'-&Q .7-&ǿw̞`~X i1K|c-&Xi1b!)pQK{&-&xIpQ(ėYbZrծ|{bV--&xvskVu{wb+-fjb)-f}h1/b-&KfOZKڛ}-<ܿŤ'f:Z?j1ߥKk$-&ܮ/i1/,*-&xh3i/`֥DH0C{ɘKb3*ȞHhEOZLƻu4?J vBZLNzbMk)H1/7p .5K1%zb"qAE疽?d\ʹi1D n {gM if">ݵ~i1҂Iy-k"H󭴘`OZLM1i1Zۡդl픴En}h1P\eeҊZ^k1N-C!-(,yZ̢}h1?b%{3+~] }{VCZL1i1Uj?D{K,YkSZL&D*ZLǥ4+,ʾQ /-&9j(-&S=L{ϥddiЦI,S$U1WeKM f,Rb)S77b2U7Wi1ٛ˦,3i1PN3󱴘Lw6s;*^Vk7k1i &soKɴ6W勭=,7B+YUAJ0[sh-S{dzR;NHI.f'MIVGmaoVI|i$i|CbىgS;ϥ|<덥|Xk9+BiƏn.3wGEZLMʤ(>\ejXI[ ڕ-=֊c%-&+FzSJZLr5,8Yz~R?̥e.jfYIR[3/U4ޤż ub̶7CUɓ Zy $b^5Fk1<\dh/m^vZ.eNB{9\\ML-UW3WZ m- +y_nZm-?sL%TY3v -' ^z>n|ǚ/ϛ팑 팗_3~ҧ3h[Zz.-fgObV?b=̛̏Vy]moDZ2u\x;^0 oJOrbad_Iyrƈ .mśuMi_HY-~yf?E٥c${Otrh:?F$5 xMŏ<3KZ<~@ttth:ݧj:o~/;T6[Cw5]Ny]Wy;#3XE.cD=6uA9J|xQsٳXl6sڿggwtl߽;>x3W۽!f%gwҙ=*cIIT^7-Y$ c&ccS]۔YL!ơ+%LbU=؉;2( H;yȁ'J}s-8£Z%`wQ%B g`_jV{u13Q~ڣAqT>j2ֻJ" =2C1꣪YQd1##Bݍ2K'ZfN#ߖG0n<2=1 ҇S*K-BZ,2le_UJfgHX2ǜ-֥/?U:>YJU>^GjWᄆ:gĶ@vjSR7RԽiف#vE !:sF +# f6q9.`Pkz&Ty|ˆ$(İu3IH JO3bG*ӈ %#rtwO[w+yw#T a"{g^g45tVkю cy]9UVin.Xʐď%Fי0Ԟx0jE=wFQb `a,W٬QBlLر1ș!V-bsHg}gF.8oe3Q̫ϯ,,`.=gHTrQAVb&^ut"}_9's,wE-׶,]PLV%kW&T+G2* g&'֓LzZ* bڬnѓ rEqrD3XxSɅEbd(;P~Ӯ~e$gfC2\p OnPR9%ȮR',&O7.,eaT;lamU?mUݽY>d>QEMY)gU&/*:~5}:__4/{z%:$GfX8 MFɌ!$W`7+A0Q]3UO]zB#wxUJ 9਺b&WPEJP$oB 9Z ݘN'aH z|LJw\N?.uq{H C0Bşm9G<{O߹q{M˞[8Ʃiܒqr^B ӷEۢoo!Zn6/MhgȟI,_m+rKcય+3ҶAL,+ԢN NNnQgAqCҙMd`+óhu ,r5=}t [|_ίV x,t*acUdϿ&/ <-B|U= ~A-glS <qmpCוAxfBDs9+ xi˴F n6--c;Qz=`L?' wZQ&[:_W!7 )dbz \1&vL pf]@ī1'}ZLϢgbkx3(Ȍ Ẇ 9f\Kn(:NaQc2H|镁zt,{ux < ZG"a+pr%_x1o G̰"7/Q#7ՠ#;› :۰lJ>kՑXK@MAoc8\\nnM8F&)8..Nٯj^ز5/l|pއ5Q/8U6Kl<~{cvkj/ڼ&n=j{O0 ^K#"^MTuo^3E}Ι0fJ:h͔^vo Y Ю>Vfc_͚yUJ/3R3Hd׽" ]~׻k 2`dDJ " 2`8U|XؘMBaV"fuN-#1%J{}VK~jݻֲ/05&gX]UٳjD*\"t+47&ݻǺt׫V 'ڞȀyff&6*Y7CPG2y8wc jISIK݊^䞰ff“x&ݡ8wzz@{v^1" \̻"#!9[NP#NqwD?-œ-IUMQ[u+UH57er\q Nlv_ynl2xf¾"C_"E62IisV/Js݄=,6NJW$SB;dlk 2Pn27#3赻ڄ (wU2x҉S2TQA ZR& bŽJKV呺s/x變}ʼj=] ^*6 WLQmt>JQNşUXW ۣ~êbԨy(o?u,g*w *qug +fG){(G,fbs8WOLV? ?;*O\QD$Fⴌ=x`}`8bZxu~(ia"_`OOr}E s#zվtW#:̴vauTAuT0QQmGE܏:ٯ98*+K_lG Aԋŋk)F@`ZWoE[6d\Io~@z|oQ|ŏؘ$kǨ{ٟb_1~HjchM?&w1#gKr)_Z`+endstream endobj 157 0 obj << /Filter /FlateDecode /Length 652 >> stream xUK0WX+ ^?@ *XQJmR.Ό=nHr񌿙89NNUUΦ3&m²\i˦-74u'[WpP8*yRcm=:6nh~!mcՁWWv X-.ڭ&s40 35µ4M;c(Cΰ1>Bqa u`-U^2OJh `F "jZRcɰȤU3hרf;@2u/QB(ߩ[2Ft?o\D]`:jN,w*ܝ(rM"tOPSTMHB\ -?]3Ji5HrY9PC9Rȥ?)| eShB^-/4Ԋo-ߌ*;0ʻr6'{ jr#MRT:|Tendstream endobj 158 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 159 0 obj << /BBox [ 0 0 432 432 ] /FormType 1 /PTEX.FileName (./vigpics/logit-ROCPlot.pdf) /PTEX.InfoDict 37 0 R /PTEX.PageNumber 1 /Resources << /ColorSpace << /sRGB 40 0 R >> /ExtGState << >> /Font << /F2 38 0 R /F3 39 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 507 /Filter /FlateDecode >> stream xUn0+V w&lXߗQJ\>Hp4j8\,` ?;\?@B{Y|Z #d l3>/v(XJ3(AhM5,_=2g-| 0l;F^J`'G 'ٯw'N}:10mߗ;7#?F>>IRT$R RTr)dQS5 |٧.m-}!PqKoxYT+w5 }+y?B8+@ypp5mM74^aEӶP۶<J1.xg%%ٹ5}Kendstream endobj 160 0 obj << /Filter /FlateDecode /Length 1374 >> stream xWKo7W졇9|3E.Ac A 4.EJ#5ב!Wl5M°Z#TǙ^0.>_pf*aJV?w_jzMJ3oƷHɬqz_jըP57j}r"N'2 e2i1(dH2[HB3bʫ(8>0f2Q#L=CA[pU=Y;o׏M>,H6(N ~,iC|ۭLG ?8I;fv!meuMɪީH{v%c U#4gV'0u)T@MIYE`X9ż"I#k/zޯ7JgߐUHh[~p4c=iQw+|qOB,x[8_37`"}\Q8 c!{;e~[4S=]2dԠpU&te!rxBɎ\ LVǂ90͘ Y8 C,wg3P t\d02b;ì%{R ^% c+i1A<dG{3 OQLz, ^DSn9Ƶ:`wnq(U0nRfI.]1!o`0B؃<'͍4D Og%ug="v /qXW>хBc>sNs. <7J0Ϗ4:Vm@<K3/Jm8 @ʹzcvl&&*TfU !cm%e/rxuo\| H,ywmVTa kFQfYX"ߴ|L,A-_$c5%6vAL=Nd@`9 <z2bS1RNS*ov[f<3;tTjP鉔kvl\k6du{{կT6CR \5$00'B? &# [dl%\ +3N>Qt)z6z-UC؝ G8QAQocnOu>n7JDz=FK&c:@g 9Ic8ڣ,JPx cl߶M2dEY l8P) 8_jjb/hJRX%ՓRV-UcڸeCFM! /&HuY> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 162 0 obj << /Filter /FlateDecode /Length 2630 >> stream xZKs#WL| L⊷*qT$=PHb"k>C~{=#ZekɁ̠ۋ_*赯.+𵫼6XT/'7˩0iә1z“Tד;z/杈RWI*KDulIafEK.ppwdf}d;$roA{t0VW3E`%W-w\3Y'ͶnyO#pGoO!!Ovs)&?_'mrʔB&mCCY8mR'|6+i{k G%%SޒV͜ݦA 6%;iRP󞎑/߽δ4WcX4/ӠQL%+/bmR9 -.OmaQuգ)6^ȧ bVDsT8РkI5\z#67d}/#na=w`&FJxY/h=9ǟ0~ۉ;04uOSR޵\ OY gr#zN#}wRXȆ}oJ ?)(rĕGpMAHAa0 'A:|S 5 ,@iO'E[v"ݶgiñ]f]kL+#DybN%ᡅ px{*]|Վb# <ņythʷJb9hRG QK2|Gqz7GZ$cnj9D[Gz(0 6袾;YFe j@Ϣi2<~aoIsΗi1i^ Wo|Oȓ Ntn_3fJd <:^!ǷM8sis6n0n'P΃_91r4N%5 _puҗQg^xm9G0%x[>tj?Mc$CbDYt"O_@95*80Z)@KdAW"DQ*qA>T&䳃G`@6`}~` Ht(̄1GcL~w(Nz)rztOF7'?CxBK].j %K-AH?.EP+͓[CQ%hna#S֩n@{[8Q6-,hD-u PF8/ݧ F3b7P=z\פ+oM@<(G03u{Cq J;eŇ!,xܞAW">׏t}5-'EU[p>[hFj0wZsx%geY4=|%ݬ:?[{7/x Fi>}#.HZH\@\R`JIi;yzn^6|@)u/qyq_qJg YHYt#LCda5+vfu>eeL^pt=5Z- g->[wkL:G = 9bfpdF{I9&q#+D_4p4_/G|"¬뷍C.%|-JNxU055ܖG-Ϝ+NmfJI-rJK(oah J}V.iɾGtC%$L6ߍc28h_̯.5=TXuQ۵ endstream endobj 163 0 obj << /Filter /FlateDecode /Length1 1965 /Length2 14140 /Length3 0 /Length 15350 >> stream xڍPNFKpиӸ&{pwwww -3gf^սU{}')IUM퍁v Ff^& 3RdRlio/ Q']&fz7ȸX,,\Vff;Č\-M{;3=j a[@d}hbdP7<'5hdhdf (N@S F1"PT-,P79K󻋋) "- wdi9,!rL04q7r512~7F a%;ÿ98Y:-mG2ۙ@O h^wkmgf_dfigj S&5;KG_6"d@tM,HS l \>^V/B`aZ@sK;fwt0 ' 33hEo; `adp|7/?F_3{'?:`C`qA\&л7 I0xޣ`d/d}_&&!ǻ?>]`;aAnͿ;-v1 _onKkg4#eK[^$m';cygwk=?I޷ dWr{{\Հw±:!g;@E{@a7)y}eN'$ꌯNwI}hkԷB+$^' !m J/qʳ?fp N T_տXCwP8p(a> HN/+Ts"1DE~)NkGb ŸpG~{7=D&4K{5qsBչ_cbK WIQRWXJ@:>"S`)@\7&EOIɴ#I=WeYBhA&+9J&)]g/qZ7w| /K)[;̝L_ΗGrYI9$3 8s*>ʣQ ^:s B@ܸSƊ ^ c-Fuknf xBwg@ol M\Ҭ"(3GdR6l 4fL5OI gQ_3~ *a*GHE!͇3:L f|>?mVR c4b8vȞ hs>"H p31PuVOr :suT&{"5'=Bk)J]9Iߋ=l2*8Y7 ޴\eH:.prJ‹Ay:` 6>RK5H> ZZ =˻,j>˒0q?]͢J pu- ~"+~u㣝@F@{b R!&}(`m<%>iHͫFlKtލ[9ć x*ퟆ]5HΦR@8-s3_TMymD} Zщ0f^b {|HyZ:E |mni;*/9rbO샌InM{ފ"k n=5Y_*ͬMcm8Oˉ!boi7~%"bҫ(=WP},5S =DYoc6 븸?aZ))բCEM<|%R>)5t˶\N-Ѓ'"$΢ 5nJh:ꤛ4k:<7$kj4jHSBc-L7lgLT_j,%gTaE-`)tT*%~??QSq5io>C:ys$pF&:]9毉Jo6K;;$sg ,tZ>\&[ @5Xu 2[K{l|LC2?oEc`HJewqŐ쪥<4CĚ:rCo?Zfv-aaD ƏS[3={^Mڑ%MlJΧ=UDM!kJ82M{Ht!f4sFl̿CuZi,B9-Bs q mi.>[rt0R7]g2B#xh6[6Ϣ@8f\I*>QGFrU6F%K}AYÕѬW>G|Squ B+zOKWmx&XRBsKu!+~ "#Yq!± ʯ{xo j_4 <)c)X~ޛ9)Z&b۟~B0uV~8{OEN3y*SF)Gmf7FT%l"ñy YTq#>_ L?8hmoWCc5o9"MY3ȋ5 ?w0,R"hKr|Yb`L9 2{J/;۸o?Y"„6݁ syB5:"!]rm3:1D5$vl۾ku.<נ35>|,|%pM5dRJ"X=ak3Kݵy톭x:3Sq &(FeJtRth] xL0Űe ./G2qGnvٱY&B.݂trmCvGxY{m?sAHPrsv2Orm1~Zq@)(ˠbo]QnO`j %BD;iDtrK^n F<1hY%j8@tAvַ$;:hpOl (Q7'x" [BV (4V9CF! v\M~@+4,`:`<Ń"\޿JW6S-'מ4EWB #]tny(kZIϲP'̱1\s̞mރU1AcxX轌N84 V:K`y Qc"vV$0ĨNx,1VĻo'qQNXA! |QuC&$RiՄxyL+[[wcajMer_$aF?/hcLB䃸xaYmT0H P,HXw"Cpvx6ɝoe74Ä)Gp8zRk 'K%5rPա~5g/e;|]crPDM"Z% 'G9#c=ɧa3yNW33&ZjF G {XNzq+9гfk?zZfC㟹3av5P>Ǿb04kPRcLu_||1LW!V Z'pє "MfK)OZDkiٔmXV]T`g8jTS*ęǩ)*]-}'Pt܌!X q}'ForSME'sN%j ɅrKЀ⭟P!࿾^ӨLaRTџIber46L3Y%s$oN6G}ie^.*E/%7>5MsʾBgV[D$SoX3 ~ +('|"#lk~Nfr-rʼn~~k)7+ EoB;?|`gZEVũ&z~=B)lMV!_)y.(<}cz!>){h`I^h'y:2ؕXΣg5[['ȉQ = '\hOw(pl*?ahO(cLD. 8ft6c Wjv-ȊΙSi 1fH"IA*r='(ӵmnSgѐ4ꛮR6]D0eSys9-HHʢRUfc;Ȫ+췕ٶ6}Z@*dF3u(UO}tQVoqlОҙsTYף7LS#Y^}Gtdr<ӼԌ~D.jfv gYۆˢE]m )rsb Yz !{f4O]_ç{etxm BObQ H| sgk )GqV\Es0Kcm"~[{:{B-5w՘G`Ȫc'_8nH]9 \  ū[|idI4/:11{S@SDF;!]blޏ`l򨣘uRZglL}nYgZsc%Hl!$,|ytBcq2;X7@j$ XzIJ$5{5֚ 7e>6oc5}{fdByƎXzw]c+A+*pz9AU c tpfNzqFŶ zv\knV"LwΗ+V%dUQ<W+7niFnτzG@x ˘$+)? 9ڙRofx^5ًMɈ@]Kx* )Խ/%-e E&;LD1O  UobJu~ca&Au9/^tm.῝:ݟ._zW6C+Ċ|UD]20BEIhD1oD>S]pl4bMED/`1,~ep7m.}߅ٶw0 !y>>ѦK,lΰGEV^3үa@>޺ȗR,Ժc{]ڌk;_2#\Qٶp9' uQ=#l; 0z[T~?7a'ꉉպ0C#-(x*ʊ9[%Oc nAD,IL\3!LBuQ־668TsvL'4U:,xYzŨ]÷š1M7)&yt֑ZwjdTcn)}4cjXleFm~hxz{%$sdvp%2ܳ^7E:&h,fa`Iy^ݕ+Ay#c%̒=ۇky[%ֲ xy =Ե)a%7\Kzi,S5SJ|IZg￞HFn{ͷzI jUk! qYe7?W"Z ]C4~/AJZ]4dI[ n# aUgDay w$f3\m8a|Sk Ώ Nֵ[gJYv ˆSdo*˟:I'xy&V=h8 Ap26J+l:lF~)k>s/I0hcծ6=?YyC$X_SPZ=w1߲[ RQ\ %]n㓁% ٨ͫLډO_7rfX(+>W NΫVAj#G1U)u oI^M\#qG%[0j-P~ޛTcG*]KJGCVa}NqbLi&er$@b>;ɸdUe(RB,TNڸ狝-Jϕ::ы&e MjK|RNV`LXW'Y_-kSEIcDIZW )yrmdF/=I0n"[A#o^S-{$m i`Fx5vʾI-4#ȷ -FtH7 -LA6GEN"񲘫2|Ksp9$! 4H|8pрT&^6x) >eT@29;ع4>dpke߹䎰@Zd۵B90P4Z-Ҍd+L @ͰZ(plu:q!{rN RR4p.X(0[b;j`18}9)nڽrnˋ!B-hxR-so0"%ndV'^h<7<^o E"(ilDaƈU*vXHoF4+"C󍻤CLdK3r'[[IutdZCRfCRK㢠ތfX ^J Jy @-G}P)i>/XIn#x}j';ۉ|tO}zbԂ0}ÄAu_?]p5tz~(*saBCþI|4J@Z80y}P9͇YB&^}| J%8`. R4_$Qx '&jfh p=(j_ 2%[Y ů=m1ق3^#Ԡ)uCYf `JxhŤ_k~c=-;=2A7p2mgd 79` T蓧j@ lxgKsd{EC#$^$J4pCudkZ }\2,jcaihpLX>gDcJtu[9lh::4`N- N ~n{=f"C@I0A1è7.%@XЇ)EbΏE Pˬ5sB]M0'khb U"R42yAsI`W ?C#Μ>_hmhlF7T[_Jminz2>VP2qA; +S)/jqk湲LWO~Agn'Ö0i+ D\o<*yrP%d#d)Awcj Y)wJ`̊0NbCnEa]B ReFRpaD2n=^:|'9nCRAWVĕM!qhY?4'R|pȃeF~rJտ$51Tp|Eshۖ 7%bYK`~́' lv+@)69g"EH%lJC\_p u8fVɂӾ>R-4W C|\Snl3n¨)sXg%ʂCa]:~[$Ȓmg!OlvFBo ,?A1e9w7z,f[WcgM<+t>.p:%YRX@D7 Ba M0f)fL_Mir0&r(~C(# sM}066^oVOO7^W]Wz^V3QE2vרww+SkNjH%08c-43] bO-ekl)q^M ˣεU'?hmj+K^[K#u ^z|WzNiV@6BbarG)بg1H>Qbc(VNM%_`pqy/nw(k #wo 94>A/T[z9T;-^q#4+']nȡ !+ZeF2==>(͌Cl;v|13K,I5u#)C$ @af &E #ŽbvÕ pQHY؂:GL!xx%WTeĒnWW;K$|dNQxa7CS97 hҔo(::/}/y\~LX*$>̙ęx|@qna%7K0M;U~>Q9׵#I`.]^/([R'ϑmd,D%# t*Pש/N?"n_s$P8s_\6C v0"5a z~ 3D?7FbO2l (R"{|RIk=,γ~_LT) L7BN>{8<@-񫴺KI/ƗN\79ȧRN]~kɗ_?[a=K4TԐw QZKŅׯɮ6SPP3XrVN5gm^PRf\=)y!۷=sF\ U S;L4b~O@vv$ԛ }Wm G% 0*NT=$=Hls9~{O<˂ֹ?k _}& AH'``{RVa[ObED㰰~?vU/K)`w9sZJ=Wc)VX@8q7lxp$ ]V EE.I-{w8̭$o9S3%Ozۥ\yq\d In >aBX2le*WÑOS9IJ*tǔ^!sc,P-BSQOU`irɹzo}z,–Hʆ3 ΥqJ f % j G_&Z6 :u?oY6SGl9b\wnMW[rL5RS-Po1@FGcL ! R7VX~[exgwߥw:ѺI[!ɮmJnK([FFr-TyU_ƴG]Ͻ! w:韪=m,VCJ[8_;lDZ±5]=E;D*d=vh|E^!+` dRV/qC\5:K29nL⨢'mp~ꇱL.Kn,ӟA+cJ7$נU7n*~*a7hS]ؽ%a1C%$p 99n<ŤDa/XVc˽{H.ߤ"x 0(5X77XeS8ʳCnHFBűQ[6:ڟX `bKߦ3DQb 'ʿU' `V/RFb;sYƛH~AZU %7mW徆S0,谂 8劺gi)D.eu199U,$0}kc,σimҒw+ Wybj W#ebl~'`beoYi=ơ݊Vp77k腹$, gSc 'Ĩ;}pCAB-k3wd1 sz_KcČc$U0Z OF#~OյV;,VjͰp]p%wʣtmF"`o2$Th i+Z E{J;8P)uASP[.κz`$ .TMMuzR?Q_/~QGcQ<L s NLҍ~;e2NP̖r/n/R& *!ׇV!pY,QYC I=.5}=p'ҪK{b P-wZ v,%4ZT^~,,3X*n7u|'Î[E֟yqAtZ4/Y'JhFS0WD eP@G^eu^x=6=%%Pm}YejwXN$os)7^ ~NEskT+c$@qG|#?+V>bGfĮ@;ϗ :ӄhw x6咶,^<Vy(оdP/z]_ BsF9wZb=T@@]+#.gRT$_w;.O43_vd,~gLxcΞeM*=LLfisŭ?g^"ʏlEX*>y ,}"1Txq5HnJ4wNM}X酿PHgŒ\|93NחJ~~}ƚ\ L녒:f"䔃#c{RIMz`??ӯFǟ =57s⏷%Gh ,wMuUs}|BhwD܆8.Xn~d[$ B;a|NWNK}ZzxsH<5'Vſ#v'鑢dF݉E5c[ DЭ? U!FAybB]wU,<1-C/6 ^d>_/?K(J kDa{m칶Bm*Jy[?`,[ۯ̒%"Iȧ+цh#M%\}O<ۇNJɼE ˔9N8_2\IQND?3OtJß?+KM`qBh,QTMARi-bZ@X1ڋ{=2,1fUAɹ.q Pbi]UEFp:ZsHB:>g<'AMx:C4˼KڙB[?\:ӯc6\^_%y|ǖ/QRѨ"`ځC@ţ}[\UX=j3q$}te4[0;GK|`Wsþ(|Rq""D!-buRIҶդ09 .# 7&XX+ t ;ѝV)z?41P8=m~{#f_%! ,TE5v&z&{x~ӿ9lK!Q.w×`j ju/*( ])#.>Eo_綇f8"}j-ϻ\-/zJF^MM5 3~3,mh|,}JwN 䔹dhT~O;Hy iӧ6{HfI`qlIDapY嘏*!O1.CbR7fM']<@YwX=R!'0+G"nϋnU-1ƪ[O` >_=PnhCDaǝw p׿@HN uuϕOFd_߳[U^{[EJgq>:inJF<Ę],ɛ endstream endobj 164 0 obj << /Filter /FlateDecode /Length1 1511 /Length2 6641 /Length3 0 /Length 7654 >> stream xڍ4[6B^Fޅ`eމ(I%JD D%zHB&99}k}z֚u}p+90(( $ PS D88L!Ov"s0J  Bm Qhy"4PBZH ,$$# . P!!=6 %Py!nt?\NpqAz  ] 09AuC @^0<7p}p$2@CM` 0 Ap0m8?3@Wh пur9PO?ѿAANN0/o4u@<u]D:ry $ rD;:dx#||!8 J>f5 Eڟ*vB{z@aP+ g?oA3(m" I K>p ! iC .` B8WD@ 8]!PdG.C6BhB sA=łZVZF(*+(~aQ(*& ;?G7VC+f# ?s w}Z`o+$&?O?H7yA<x@ ="u5z`gZzH$Wv6 }@@0_ȯ; =vN{ݭ=U.u9?a1q^P@:~ (!!4 N@ '' qAMިq"1KJ}~__oOP@Go}`'LF%F1Q.dY y+3}j\ ,?Q{q/u\_?0 |_|VO`vm"?I2s?4j!O1K(v̟gC3PO}*|â(d?Ee*z1Tk*.5=)ջ{(l[)T 3_!uF^r־2L(s9HC&i{V(vd-[@'KЕbH'"t7ec>.OXZd*XO="<(C?yM\1{zo&ꐆWB|`ue9дa~L)ͮ)>vʩԢ8CU4UJ5 ?fos\s6 ſpߧˁMN}'fVs wGQPĩmZKgD!Fwo=ї -aw%y2[u1UwsJqIG%Er)O?G"?_,]25-Ua )lc3&?{;c{rv'`mmqej +lҔgyF?d#Hf<*x'E&mPk 먼w4 Ԩel⭭|.j\`Xi8{UM>^NW+ZdnZ7Z&q IYʝX])B}{vH8$k ZRo/c 뱽Ӿ]tpm2`|mHV~` b&$'샄G~)w5-z6+ɮ{.6{=#AK;Eb8ʌp}7O*eCuX.?o] Guʮ]^FДYPt,~~;ڞ{gMDa}bC\@lE*bH(/YE"Ze]1)XU?82PӁK1ؤ6_mH315;~M쯏Uk٩=,I~0LU#poL|qٛ獡Gl;=@U: 5EHۖyw&c{]nXR.GrQU"B_o8UV;h:=@Ұcnb3yRpxlG&?AFWՇ!> y2.^̖^MVּb\#DOz?iHQ`6R-WwjKZcܧk i_@N-D/ PoaP0Z]դ:BǨgMэPo&|ŁOC 4MTz>gOy>aY=S16Kߐed%pHP}|>3AZ:KiǴ@ˇtf\ƌzI!-Λ_1HgiX~U9fFhВ2ta凴sϋ&Vp^AApRǔ)UV-Fx:C ]sEӧPǦt/۟eTN{?Nv¿A6R¸qK-y*N*}Hh=*O-bqӱŘA2XCLeEJN-SZZ!N3;6>*ᄐ޳Reṡƒ3E:ߧKĚyJdOIv説̘;c'#DIqHQm"6`̻^֪R@E6 ` e8W#)&6M }$y!gD[D͞\V?VDH&d*ee8*޽-Sb0'}" {u[:X,#'@V3t2N!~I,A\JƫH&xn-I `ӀJ;c7+[:,~ Q̦Y"k`cR|޶ee JvEj!UB:8dj)-3>19o',0@jd|N!) Z1f]g.~#C\}5ǹw^ ;'Ἀc0#:)]}mǐUQhb=MK,3tK?3^3~e nEzQ/x`n/щ۹=Ҋw䶃O,⫥F=t5d`ҼMy%oOߚഁAi K 6R3*һEdᠵj tA{\qBN3;FIMcgHXƿU}td+ڹS^4$Q:v t߄E;m\r,&&9յ :h}d[HzAz:Aj l ,)CQ7 =|=ף[a3${@fA˄6_P#!R^m)x53[Y<^(?h9(46_#ʼn srA2ENeT!>b9ٶ?^Nҥ|z6nE+1PLdt8ygzGj->q+QbT s3yx;ji>ֶf41*wyl4"80ES bOyfSJ*-I\SgwU[_^b[T:b9%]˲EFtq N9tKf4FY~xL⓴Hi=So^+~25qUgAbx@ c&˻K!Qp:̰3z3Ǟ<[;J/~pYYA}5dH=%!1 kK2!vACP c8[^#}XLTJw;&XDT2ˌH%z]w{J)`Ɖ`JC cu$t\כ5o` Xs*е]+k8Tj!+uCaki; =FjAɆJy$|la>/Sqz o4rjn{ƑHt6^wfX%F,*5[=5IqY,haIgFVo׋tO'z䒓o+gm;Þ&!K1'yqnozfj?K(U,liDLBs^jk$&T݊YzL}Sm&E]J5z#,|>c*tהbl[roOa'!rS:y24E?$&s>x(٧{iVCwkXWa~#f2:M^9Kc*JE\J39P8s}̅wzw { 3A**jIȡAP؃6Tcgt! `3O'C!5'- u6iGq靼8H:>:A(S,5i{%нK-T ĉyĉ`Q<.-wTuDR!%*R \-F8909BatAEf(3Lҁ(͋ sV8jʭFu'ӟivnV+"a?KE07Hϟu -Kv^}YeDjkRXN} yNqFȆ /W] |7 fHN'8#[:>ɎEzs۠V6)zp7SaG vz)P%6ޠb~}CeC{Eai~͓3/UГ0J 8UWyOY=OwouPb▘| i S nt>R5㔑hFk/ +'DI[RԨVF7wi3 [6T/R8yxn:zn3v@eeU`>Sw0RV$bJ'#k+X7c;11-ƾ jLy+NLә[R|ѕAxcF?Ga[Г'D0Y.n`Oy%-N',~&hى8e( JcύܰngQxY6Y(gqҴ%|w!"_\3%XaE\=G'SuH":,=,`Ov+foʠr]\ݶ$ Kud-Q^d|d8 u $3QfƈWRCsT`s}CѼE W ֎.T~|"L&sN"xC#g)зGΨJ1URI"ۑ37>Ed6=1wEM )y̥ܴ#ύIQr]T&Ǣml (a9`r*3ȼ+m+,kbVa:VXW)!E sֹ=]ط @f0}A\̹.?'aWc#b ݦT|Ih~j/lwnoAM+9n1',U3~1cBzendstream endobj 165 0 obj << /Filter /FlateDecode /Length1 1606 /Length2 8531 /Length3 0 /Length 9590 >> stream xڍT?tH3RFwwJ0ƀ`nPRRBTE:ys~smO xm3/PVyYY (o9>1 ;K+)Pwpg E$~~ %; Ѐ;Cp+uG; qAmt  `(_!إQ(/ wx@Q}.rU/>+SaEy\!; 8#\ܜm u-.֟܀ @P?A`0 r:l0@WEm~`H? 8:"UW}H+B"5sfegE}>%+|w/ pBmla3rAԕ+bb C -GlʀAm!w>H;ru>QkwbnPO3;_'tx6v}D{$yjvtvזekQЊڬ 7(: ^1LdҔB7:;f]jcIc}3 .|u1N+'5+ZNNߗ?% ;]Q!Lz#mt+/)Fhe1׻|D7VœƓ]v"}2_oʴh9\ 6ϴqtrRB6Ƶux_t/EsLLQ&+^-{HЎWg ַpˇ?h.qMS7d_nß u8BYl;36~h^gvdT-lX/H7<;3K>-g_]tNtoԄ(oG@FBARpK|1։?pAáB k;dXcY{D{&MCxeve$F̐gg '2. )v 0uoDDQ^V|M3csPaa Wa wrfKI.815ބGzSK}2 ~k `Eۘ&1[,۶fWqS,EV#' 5G O>ɨɝ#>X['Rkr-4G|m~Ӓl zaAGԊ~8}/}%~!Yv&рCTȲ_7D2Gmi#RldCvb/rC}dcjKcU~G6|)dHp{(!;yЋژM<_jE܇ J*A./cL0ooZ\}2OHsҒ~*ʌ f0 x*(AB3(e:<Sb[j3EBm*tv,PʉЯ[Q׌7^s59ߩi~5?bAD[$.[Q"Qml;/C\O3ҸbM _Hp$BbD l_#qtGjU,ӝ-_ KS59#{5JaCqko#Չ)l󌣥[y,+pza:%-3{BFF(dM; jO C5A^Q2Ts>; *0kXߤn \ЩfKNVdk GP33 &:쳭r>~_]_'ŜucR͕YcC~gQt s&G[AT\ 4g#uim9RIkRNqv,&Nrne2yCEуAwD'|RZˏOfLؑtTZϣPFB*F"3w%لG:՛'geRFl)ف٤'GiGl+p0E%jih$z{V+I^:Ks{j J '}-"g3ܩ" ,ES7Xf`AkZQo0I*&9). KLtxfSgժm#6)԰pͽMNч(;c#G R'L4}&mF;(lKW{6|VtI=lt_ؤ"j+#}uwΧ !%hR"(`wufZ^;.%Gӌ_Ӗb(#ި\tOxSKiK>=u+ٶJA#3s؊$a׎ ^EZ _y0[lzMxZEGhO^b1Yas%i6AjhgI u@wG* Z.֨m5*2kq+7RS9:WZBzg`TIt_I׆"K)f_(sҶ~}z`$5(W$:q,=Z,ĪB-o@`,׊,x9kM}^pXUyǚ6(T™3O[ބ0\]JӰ̧5k* Y@sHƢ/N`G knf;phnj_=laצdEY阮o}]ԇW]m!dƧkm?)=Į+i3:AMr. g fjNd>yO)u^ҴGeϽcYn /@/uEMqhQUfے} ("[JYfLi% ,Q{D]59ߝI(OPo&Z.t ״t]Ht)Y`*{w3kшr\M{2e׆5"DiE{sU+{' zFd5.k*oݻ[nHbe.Z6yː4jաoea]`r'%Gܢ0 5@TXJ%߆D22S~1džmBAay_L/cw:.,{SW.(Hp&v]~Xf&, ̸{W)vf踌i(r4+,ķt>mʼn'q=:(μ`b4DKI"OVΎkii3JA0uثÐlX/cJsjLlX<(H#AFi7_ziJR C-K_7tKvaI:Q~Ϯa k+*DoՒK/OXg\^ X,te@hr4dK'ӟc?$zop p+|I+՜E>`'QAK0V'U+TuX@<O{N\rs,s5"㜛)5VCُ͖Mc`J1ꕘDPN2 )GZx;TcLJdS}σx^O< Y2fv%5&wm%ZK$\0)4oT$n>^V,Mv]b9(j\U¼3AoIJOu4͛7e;O082/%_jpc`q'O*Iq Xg]識Xq]ZK!˖ɊW4Z6omKsu?:VlLqZ-e}v-2^R0 Su o1bQW[X=Knӫhv@GC#U (p:N]z%*)(T<"i>Y/,7oj&u7F( VqK{ZƼ4z{@D7AavML6T6ۆ֛XgqG^J_pL^Y2'ZGnS}=8Hԭ^@A _P?-F!IpP^mKwթ >lPT8K5'Aʯc Nq3=#J;R7-^Ü'4SEZ\] BtKRj~œ@'=Juܯ֬m1}T3Ed<^fb]~uL blC`ԀM+L8|U,C"ӷ xE"t0p)l3!Kj È 5tz^ˡsW_#Hkc5b{gh]PNVz=Sյ#݊6h(Z)"<9}r ^a3C}V{˖Wi bo78)}Q14$~>~XAm(Rʸj8|ZR*0g7\8xd XE[yZm ƸpH< 5{Ly*=D{jND'b-Ѹ<|椵H&NA6AVN(2$!o!{=PM!R5S6Z7g _{0Ox8U tg"S7j:^EhZKx:@.~yCxW7؃|\lW>TXg+ؔsmj=qG*&T|{qN!J~Lүw-md<0՞q3s3ti>}#sF?UA[QELh`-PU)S.`ƒQ,j,4|HAeڌ>Am kSeF"J`ɡI7, O*LƟcsQ 1Fwi``W}/hjc8ڕNd>|xUO piE8CyND%V8,v*V+ ^QSL{2xg!1V?QΗT3d;a6bc{*] gGKt"o%:{JMf?¯D\0iPȌH>%9%[-QZp&"\4Kf bWn #,sBo``cE֪Mۻ2LX̨HMϯF2e"wLLi;dL,$mچUAȈ;لV B`/;"^701e`\kr@=E, ylot^(1H EVԇ@!M3O|Ԙ1C.ۭG>7XnӅ Z\=Ia/G]]SH_uuĺ2a-w+ H'ĐLP5q!s=j`0 }rX ;8JkǏi?R?GE}pS"8/^&NPx 0܈HPX=sZe4֞y\v)ȿ?EONA-'-g/Jc-y1'*$ZBUes+9}W)LRم+O><2Wճc{o"9 O9^sag!OSWn[2J/oIߺQ/>wƽH5GZsIwJWUC^ٛ*IP/Oq0&if?2ߺsvU+ Y1LULq;^!A h+BoR#}3!a%4ss@U'Ҳ@` F/mx.,wKX*@3^tƄ]VҤ.Qj1s)>;"9sx!6 ot1c粼8#@E47[Hnf+rۊ϶F_ ~G%s1Wo@J\x:%&hY) á-+nsԧ06o{^'=ɩ聣hЈɫQas"hqES _^z?>n^f}),ϤRN>g1-vq뉅h#.rC\EK:KǴl`HG|aN]6A'8 z޳ɡyre|+]e'ĆgY7RFx&]c)=P`p$!]D6ʼnp#河EZJO@wZ΍U4 n0 #InsӜ_[wt٧``f|#ےK^c._+#%.}xFOVcvd%OG~g)Ukwbg}`!%/3}LpSk >U3ќnA(JSbh }^>a6x+<&K5Ш%;ĺ!ͦد#56Gkӌ6%Pf&"-Rmq?h+؉x:T9n0?vVr^pZլǀ#9; 2S}KHZVȼQ_8' |NW^QMVs6ϩa7`Fswqt$:|3|at,-%|FzNIc]\Yu´9C9Ֆԓ hdiUO0W8ݛt"ۊzeB=-v6?Z;2X?~P(&/ɬjOxC/ rtuU | f <>Gi'o< c:_T(䒇|bBT~72@_cc6@ `=,4WIfz uj)mo\H[}Md /W0(d^z$=*OԮ9A"^ips!!q( 5pID̢z%Qq$Y9x9.czÏ_ɛO)":B+_ǛK?W cI+rMԏ4)}*kk^~c,1QbEs<4s(RՖMnuo HB1nk_GL<`^[aѣ}bkTM>7Tendstream endobj 166 0 obj << /Filter /FlateDecode /Length1 1407 /Length2 6193 /Length3 0 /Length 7147 >> stream xڍtTTk6)]6"]C72CH %)!HtR*tHw=y_֞}s=um&m=.[5DCpr9 Apg7.! 9wɃ< 8 Ptx^!1^a1DN`/- a\&9;+j s*d\ P0 # .ȉ6`g@n |ՂUpxp8o(Ѕx@ܽ O&7.׃!p@` O-@T-WwNܼig#(W1 @ah)s##80g"{`kd¯E;u g-+l..ެ cAav?Azn?)H?>{yl󳽾+W  !A@v  =!~;o  k=OwbF.0! ~f-OjsF,1/ p t/cC OCƀqxɰ GrC}s vQ++.Pg? H*{"Ѐ#T#o)k@l.UA#)+ z(BClD{PDAV@C U@nw쁔 r} ;I%"ek y7 @HyA_}m<ݑ9o! xcuhy 7ڠA1`%6SaR^5e_O~[8WܴN=EK;w=JQ,X{'6m 'zLD,SdoUÚ5?||R➨.GM;KK|JyTf}5Iċݽ=$1OU#H{ `U^gydV"ޱ,Y`K=x_GbZ/ _]k-|:X8sYCVDFB5]NzGֵ{Ldފ&Hzx: '73^I{%d*S/ ^`zQ%bx G>n);x+ub&}Jtޠ0c&FtcH20Xvܭ5qZ?lyP27ԔRvӬg5Oz%yY.ZoDִLAg&z߯Յ۞EbҢ 8ĥi͌&#L=4YS?.k*~=Okm܇@J ugfJug,ʙ 42D?+&X\`l*[+yɬ;9}=5w 6fS덭F" ňtt^ajyzZڐa P3 E$cq"nuj-_bL8>1w,&&x#}I:HCEZԏ(X2gId䀞5&M=Mq/`QvMuAF#QL)o+u_/=}3)uނ7"Zx$O"(Ve( LPX-='Q|x r3mySFnܪALfK( =ULYv}(`\`╛<^vQ7Uy('4֞is5/a9zW{bvU%?3B$EiŚZͫ5HyT+i`WUGav'ެITz)S(nib{/JOr[e'2-=db~0K ]XiORǤ?iHϕSsϡ(#,ӷ=F{75^G׃,sB'on.C{igE 3=ru17Ԥ*cq*݊ѮUC/Q)jzaِK#k[UZ@+WCdbOgemrR˴ W= ӞX-)/q;B+6}dtKͱ}:4-ؚP19eP|RMSMiC5#G|Lqa6ֺUS"n:[-~ڵV_3xwv  L{X$fV3BekOX lazs*Ję8D\t|֕[kfj8?ʶIYːGׯ j{u%J^)mϩ a~p5x)ORwOw?1tʝ iK}sn-ͪ;])則d'a4\SWUZn@u˰"9جѦ}Ӕ5 )Ē#{ ˗<M\"wFs1?lNdu2ț]N uVԹ`̽^;^;<%ߟqc,)<0#,ͪR(c[EpX1Ch`:]$ejh VC z&R%s9 1O/m>X3km.ւl>RK /=(֥ucէ̸m@n~@DmW tClƤ76Ols?1W M|LsHޝKJ }&FNjO4T! I^S]F ;)QTcũ+XoV?K7򰇕I1:9TFr[>n73x&Kխq=#A[YAm1Pso+P_A\:Vo5yڛ^ng趻gwxІ{g2l%E.#aqL-FmKw F,Z}Y[4OLY"Ouɫf^zoT̈́jM$#yZa$~tve;QEZ@\LŶhXL`lhx09D_e>ZMykfa%>ZC%8=B&*CMFTl<ؒUa"V}C{Γ҅I/nb/ګ_*Əs[u%Jާ+vuϽ{@ϡ8ۉv/7\MYOrO_]&멜}mZ,)QI!Ѓ<>GD%}7AE ON/6ާo1՘z̪a3^ Se5QIfa-]S* qw~Ux)(Lv!sYڙԮ&W&&ɉ&n@RYkžn߷+y?Zʟ5-2,ǘ߼F15V:cfvhֆfu`;y/<{Cіhƥ(61<{nMsZD/8iYSHt;B>Cv蛴U=g. 1iuY؇+- u# 2znڟFőU{CI`A.b4x_]C5ᅉ=frp1}|##NRʿz<>S(mLّ#F~i8ČbTe*b}DWƐh {rIeunR XW!8k-bK`2BDT|ӵ|zbqJѭcX]ErtM6S,A eb]P 4lP~LMel]hoh*jp酨6ltΗF>HM>u(Ʊ|Cx |54C8#:p_>Gga'(v{4mcd6i!Vx2б\]ƅ3Ә'>Tx]Z:jjgE$+V045={FT !՘A:>|h;Kp0LOuad|/-.ecvYEEH/Uk:*ׇ W>T%=puKh) Aãθ˷1 7~>7eGCm\FԐHJ4--KqN le+nn2:{,d{=?.wQs|W]K՟`&)L9K 5:D]uZz~^V&-|sn6fxax`<EofG&/"Qtrn'T5gTP¾2Z@xPSPϜEol\QsZL.sUI}jQekeI2 #:V%ZKʧu[R~BSR=,u J)VيN_R ~Nޅ ZL >WV>o|9P[7 :QCzT8Yg)r>ʮ=b1$|UGuZC߸| <19c|*b6 n.b=&8pa-+٣vݮvi:DϯX8yҴc1NĢk{֬KʸX8r-uG+&Y4 Ӊgհh9*bk2?qYcLR9ewJbٸz|>v$=̒*/?yuʮԯ}S7.ؾ%rTgO<6(qm֏|I.GG$pq8tYt]_'FЗj rs:`%s=!6D$SuO?geoܧlK.9$7*fW"H4CU1^!'~L69PXs_V~Y;?-oLi9P9MQGjg J汞C E6@Qd#-H\유8/s,X& Mm[!bR[ItAHr xG)1vA~8 y:һ!ػe_2Qw61+ˑXm.1!< ԼXFJ/`c8blS_ڦJbKWT7R#f3Eо+O⾲P\{`϶7\Kҫn޴36 2Ym^J=0}2i?endstream endobj 167 0 obj << /Filter /FlateDecode /Length1 1452 /Length2 6769 /Length3 0 /Length 7751 >> stream xڍtTk/)t 3tIt(0  1C --HI R!Ҡt4ߨ;kݻf<ٿ2Y#8(hj@A> Ptc5p #Q:E0姉 AHD$*@EPCnx goWU# 9A]a0 FAP!`G>"Ct;!\m9y0@uZ~h `n' @)a( Pmg(_w_`` {#Bp_`G7*9P;t`A\aH7>7/ҠnY npr‘nxSB!k3Y8`[aoCUrABazA7v6~Q|u{@HWw6[0`ɎRCmȨ¼f@@NOQFq=_ڪ M^xHE?[🄪puy '%(.CP PA}@ ;_Y_9~3 HZh"PoWcUքZܝ۪Cn8/H(GsSyAu`H"= T GpzqPQ@P[q@*n1P+=_2dC AXFa썇"JPkk w?DP6W_c_?"% o_M@]]Q]ÿN! 5-gUrk#Rg&#yq̌9n}Ycw B mnO'}1M5'?(tAӡᮌm>+3DO6"eQUEtF;+z&>5*ߢDhfRj;K𬼿;з@Mv$VS©4Z%.~MkT^l3(~-x?ri=fdgvUܗZz" Kݡk{摒Nn0Uf=;RiU:v W_A'N3 2MT 5,0Z2+yejVO !p\M͙<;1dM:ؙz mVX? "[vXdC{mm d/ DNM(o 5#A"x$)?7e ~OK0_`-!Omٌ*{m|3C&Rɭ͆YP_FS\DPdD*Rw/nR]S:i}Ksp%Ffpv" 6BeEBV+XiY1e#"ld"׈&Üp.Q*Oċպ,s>=B%.¦|,ȤzC[BI({|9GL_3%5u~{UzޭnȾ ιo@*yoщTukYYCM!> "a+If?C:JNb+U/mc6FvNCL޷2U7?1D޺zC5_NP]#.lnAMdUO+ײ]$h=#D'4T\YxVnRװvjg5ٜ0=؈DŽ̅P03Z)pU^1 64PP6i^9鷴5BX_>vv <㖱-0 oCY7i9Em> yFkMVuiZ'yOŷ)%C{u<5X+m0ǝ4<ӒtA:  MG>N3$Ŝ2e~Q@ss8MHbis]6 { jWj[`Z)ɤ% 2Vi_d~2)@^O)3F5`ͫsƼ+6F_b }?Wq;ƱpZH0$6j|_CeDQֶwC*iFU&8R8"Tꌒ4h WϪmfW\Kq_y\4?9:~:ף}RLv(v ǚİ-7k# ^7+(%:eۑ#-qjߗa|J73FfGUT͛ q-nV"jU hv۠Dcxk,FoFX)kv/P&{82ߋz'vE&4#il:Xj;58MmoK |2(x9L?Lcͣ UPެN65m+2S^±ȱ ZթNJO,%H Wsb o|wzΧ!&l$StvZwG>sTsʓ ٸ0w4.l;Vn&D9<>TiE DQ_]J9j Qk SP5;@]΢"h 8UdD9q<,2riwy}` crp[f=i75OR6P929d%¡{gm;]ab.%{÷U4h9 Iu5FޣGU:m;D9dw.ʳzU@A&5_WDAǞnOa-/!CF}Gzqi"e>'%❯V)5ݖ;E\< c0Trpl8"o'WB 7C҆U0[z0[jVna^콅hbk΁sJEt`m XPsGC3 a̼A]7 A/ 4ą%dTP-)IvJLD'>v'wJ5 @|LHkcj$;@+l{z1sq -YL 9^1.=9c93+O&1IUm"d+<Ճ7_3n6ØX}}1m{Jt`S$9LR|*Zʩ3aI @4 n~&o;.m&dx5'͍=JtRw={a&pku&qaEc}`D1rd5^ ڝ|*2 ^)DiisXpd]P/?knzzl4&>\2&{0HƜ#N(ijKp|tDoiVdVWO:<=F[U8_S>H^HpO@[7xL}bOf.=G=e8K z-ϵKAV $nK޽sSm)\IbWD_ ͐t-0sGnE|y+S;wYUaȟϤv-\"]q-R݋hfc3tMv} Y'_lɎES/(_Kb>&+ƧTM`L͜WG'Ot=7V`;5(@ \ KwUzCvYS*ź]6HcOm:i87I켃3P`nڤ;Ouxw3e2vGBU"huϮ38/fƺ+}Q[>:E 7~K|M6^fq ;;(ĎQI%!:| Ȥ5Gfg!f!~p}~qMq8-kn*'Nm&0I`lQ) |id ִ(o vۙ[^mG?Oyp~)S ["O|a(jakBhz8,оbcfaM? '| _YlVCrы%E Y# CVEPDCĔ Χ_?&6Ra{$ov󹋄7x?a83ps'y4Aq1LmfkpU'& YWͫljڗs3Th zߵCƬ,xFp+ʈ'N6?l}=Km|-ug?K<# t8탉5l{jz93QLLxӣ3wHca꽲y~&8+  *scޢqIT+r=[T {1UdVDqW2 u# %vQFTygv ~INQdWoZLLm!R,5-WcJGdup3~YQ) bξA?WBoHrޑѤQ4)|}I¾ڷؾnZ.._@U|չ4b k`}bke&=}Ix$^>6x<7r [2\bu:^gϧ#I> stream xڌP\ NHp и{pmAKA|^սEڲӐ) l"rLFFzFFf22U gk?b2u-"@CgLd'gg v0ع8̌\3sZv@'2;{G 3sgP}PS8hr- mr@PDcCk? nnn6NvfT7 gs2 4* oh2z2r;Sg7CG $0:<\lMPp,@hz`g_D9zXؚL-qYzgwgZ/CCk'; BJCPdhaDdaD_4.ٚm~'j4݃ZڹzL-lMLabϠfk$B-3:9X@؜=/%/1/{;{))pvtx/B`bX;fAb4|G w6#h~ Z/;[k͗ABKVHA ۹Xtl_K_*ZRvk5u @ P^}F6Fc/7!qkԔԆ6VtrvOYhbbRΆ5N@E gcwS[[,~=lt@'ЬRAߐbv&`h=@jtk v <#¯~F߈ qD#.ؿ 167b0HF,߈ r@F\~#P.('(]7EW@U#Pt]7Eq"hF Ὲ=@~=I~#P o9˿_@1N*1A!@\NGti@4 A@_N X~A?sqdbN4s{s AuYAg-Q a@C*w2 gAVAo[̗ 0v j EspsY' opò6]7_6@?"q>'? Tﰠ#m4=? (3?V {Awu3Pu^_'_\dR榋u~]P2\lcҋxm-\JItW FzX>pӟIJ+Dҍ p09QV&qhpQ.<]?I!UB(n{ވTUؕȦ!ECq{ɍTJpQW7{QwA盿 6{J0d{ː$m /x*y$`SDÓۤ^:Ŭ=O֟ɉӮ(?EF4 .J @ 0H J(2d i_,<3 c*toyCt:4IEՎ'%rl"pv,*'dlQ}2 g|.lw}:&RME,(Ż 7(Ћ="c`Υ`^0U$dzsxב %Co܈b.UI+_xǒ' |y3 KR_y[mk2/r}K1H:DɁNltWeeſs[BAaOmjqqa:d&mY+\^=9`טLg_yUՕH;]N9yMFߞq$.:~ٕ\&בW/u9nc`1 dBꔦ U'-ĐaDV2nfi v)ERR럇_6;gp82#df Faw#8.vr_{=\RsfةZ{&_}YɗI4Թ0v.'(َi zJc"#Ҙ^0cn\PٝӁHdbwIӀ0`)c\f]?YOA ͵Mf]u@0A͙8 w$58`lY[6+7oY_(v(G[kvPoR e]gm0-:Nlz4fC˱ mVS Ҏa{rLo3Řs ԅTexK1JE2y*;)I>@ۊEsz)/ŽQŢ׸0zCGNxsǎ+YN^۝s!q.C&%aB=I1D6fO~0֥e]@u >TP+*8kʨm-QmmPPEca_(T"*޺< h_p]0/c?X{bMYp% ]'=qF1ei1PGVx+`,䶎OAFPWڰm,#: 1$xW5]= ښڬ3sh|0AG) OtB2@OD?_ TLFY#F9uD۱0i@TZ0nA3LaL\M,ŴLP,':~p-%1 gפ/T=O9cHU83ˆ]ݗfSlm!es1(s'd֗/ҍֺl|1O d+u rzQ]eWXoRHm^Ϝѻl!S[Jn/э>{!Fzaki՟1b"nه9)MI'ڈb^yH?ؓTOc:5pSZسb(,;Yuv>a>'l Br",=Ǯ8eH6Djxx¤LW"Ƈ@dzuC@{EwVɐ #XZe 9h,7lO{:e0LIcl\-uN gf7%Jo+8G%z Itm<*,p"\-~h|QW6~^3]&W\ w~RR'eAFb.ϚAٱ({ҝ9M0(#R~/l1ߜخt!+$  gu =uQz3dD pф<acW~]sT讐 .–,S `?㷜/΄O3ZO*gzhm^+GyPLl0?aelm _aL!eQE[{;5t═#Vr7fox`~`ipmTBxz`cMK;wqF9jς[*]!gBp/0`N;|3(+$]RK,Fuys[{cX8ʃ_^u@ t=&4KJlxгU2q+ =*ŨvhȢ!6G%v3,ɟEڕco GIJp;O r=,d P}, ̏sG;רMݵ sNa~Z@:2q5qОNv| '乌? YARARf>=qsJC_LCh[ׂ[='͎F wc]js&Sy>'?$&^VxӱIP r|jQ@l/{S *m|.)k 滏$ɯcg`?NıL%dhi10Jl148vC 7ԋAgh 5-=@nAߒW`G5u>owq.*=gX1bOu@h"%?.Aч:xU4g՜7w:wz3<GQ@dIWL%#whBkBRKwdҟar^2pu5Smgw[g>@ٵϝyK+O͢$BJ^SJrffC@TpAk_VC*cW 96V&qeU*=I:[7gZp-F1 ;DM(eh`g̏ )ӗM6,q_tΨ H,Hqua(jso٥uSW~?q-⢖b!Z;gQ[t0Y,U\2D%ΉVFUqa10ýabIRTnЏXdL$ )M\4W кt UA(7-i-b9PAd<]cҰ$RIP d fعݒi/]h%cgDڵV6do9wkzc9&H0 Y=uPF#2dXqGdpW5 Uv#G+J%(z0{Vj&FΙ&$9:* N5w4Q> &Eӽd&Uj݃4$>9OeRd6fhqDh?e9î{ͧ}NЪjT(]q`W^JoҷY+H?| [/X"C22BӨщ݈ @>F&1fD x@.%HOo10]idQEߡyc)B _ߛ fr T5W.]}((;ؾ+¼"Ъ3=V0Dk}q UgDd0A.\FJm? p" G:;`Y4x8 E(ɠ&+7/,LWqS ^}JwĀ{F \[];Nʵ, f)1GcMŽ%jD$ )S}k ߿> 8/阬uKYbτ.eJ!ڨ sG"C}WF^yC%Zqݬ$0RUlQ^'8(^BRH\#۱'Jy/@_JSOpopQy,MWIpV (eSH'Q ݇G|wbL6?ʣ$ˆ[6‹w*J> ʓCzKCdЊ&d5VA7ᡮDNQ*Ck{H]Aғѓ=Բh!SK"Z_W^`|t둏r&8.-ӇQpqz4Adlx^IƾGo?ȭ"caF1Y)SO۲ ]G ܝN] 4QRE͌@-D:kWM6cw&A>A }6G ľ`OFmw䜩{n*rE6ɌbF)7/;5kE]8G~r#eD,fn/;k `+mkp-_#{KF]ݤ,hx}ۀH%R8*Rmg+',G,DM2OwS _lDLjbW5Le2t)9XE,Z gC_Gݽ.P .$H 7Q*{[GGWzn4<ˢK2 zڙ)l9dųm03,@d}y=u@8x,CЧm }-lqbi /d)j[rګ1uȎw cնқ  t㡇R۽F%L)ӌav jm6-41%Y맬/[8?n~w s|Sc~c*w(r)]5tz'T>ѹztJs` Fl/2fvzZ |Eug n~AX|J1XHG[-ծmoIK#)1)?&I9}a11kDY $[N٩Ix{x/&mR%gu!%1Ary}1ճwo/ ye . 3_mXrdL%ż76!9wO $i2ḳ2bH ͙淳 h{[&*S:AVcx-8 rrH! S7xzYݯ)Jh@#禎B溭rhuщ1qs:QTHdt#n 99X)C{߾G'N##3{ 2i3_93?!M+2p'kj'kLtgvY~:|CzSX2.Tz);Yӑ 0ғ(½ qQi+r~9scF rd~Չ]N{:Iw!&_30Ԫpع+O/HX`ma 3g"Y϶i(iޥT4| +ZghfۃQ 1ufc@8]c˰뺈18YZ 0 "Ov\18x^رT׻vʥƩJsn-;kҁ 9Հ}zNm\C ?ڭ;~(mv!?L ڜhj8qQ[խ45Nȅ0:N웁zq2ݨܙ%nB>A^fQУkTT_`YstI@>=p_QNF1M, rvͲg@}t-j\a٘W6n?['W4>}U]%HY?kP f+_I6f-p97\ b[u}.$QMh6nׅzez h(0L:qs0bZ>{(#˘O QjWa;Q.09 D* pT4 S}t>Ȃ%>`GRĞMܿ7_m-♂ O9qWG|`ip<(.ޖ1Us% j!=Ss՛a| C䎪`.<FTVC/NݫZh r4&~9ْjuyõ“=9y,V'qh-J \9\MTx?sEe*徒f8,_:m"%";Vw%v4ߠs hM"\2u&h(-KW/^PyܡZ˷y3ǪDv@ƷI܍#s4i=4"ES9P!0'!PF vwO^HXdPFQہN.R82KZjap?ݥ|djظׅ+ׄrG2vndv^ل p18CxќciF47˶ w$|3xŭP-MdA1b̍Xa9Y%?D' F/T`юg6K%z$/C?"fe`0x>pej*c 4s=D'R'Y ĸ/01zBOȀdˮAšvҺ|>P8 *SM[|Wfğr=~E>=ُGjs9^O*KnNG~,ߍI0]})&B:|93ҖMKb7Ur#g4@f#桽QMKmި[rƥ8e;E9T.4F'e̋=pGFi!q4kSddFA$m*E_vndz1a)ZEH]m8B)XxUvclN"dnLǴ,y#WлFUtot_"J T6vowN_V@/‰%v .DQ"%#:Vf:˙ab泬݌EK@= 7vdY c85|gaZ[ghK[2 _Vl}9 ˃+;Q@GTr:*:-N:2+ٺ"[+`塗GzhWJS݃ J`qYb'i&t91&H۬10eh丢Oct'ۇ{xO>.'D<+k1N+`s.EC}=1j;qhf54q/6_l*Ci쇡> 3K;0+dbWx{ۋVv=Mk}?C5LHY[WUh9Ng`: uv8Mnbn4L^('{,=!WuM ۱Py%I8<IE",q6ypLex>$q[\쑢~}U2w8+#ai(fֻQvrU\xC25crBZ٢L`_ܘ lc^+)$۩5yo'/.7Rzǟ@mS'RWz"B&֤Ě/3!f=h«DاHZò~G\׹ n1ii),n*7Y+'KJFv'7s#6"Fv׹$>T0;<{B |H!ɡ)S@?ޮ,-40@ϢE> D[̾^S;M84TgH[0r /Dt'O#[o|f;N}o5;Ps9†{uB\4Tŧ ΗセOnܸa;,z4j_B뉾k2Ng8`?6}{yyk1+o$Q"rS'AR "@jnU,czJ-B]+Damo7̽WSW<2)G!⟺਎Wplj ?˘Ly+[Y?|eeR;)?qxSUGqXG24[sB(FOd;b' MυO5ouKjܔCqDCQArvx$fѬkޯsfG8,˰I %JYMѮ:)շ]5g,ܝ}( MM'.n,q-kj092T3ĨҢJ <`y`@wJU\yOgFW@*DAG^aDe൵tQ [3*S5%#s{md*6ُTHș/1G-"h-fh߯å"msly8?Đ#P"u~5δӣYOe[GVc- d\flj [h=!XAol+볏q蟔gZatF $ اPh̶FR?,M{@&sIbct]UJ@Ț\|Q8*E{XQЍ%Ʊ֣'Y""]ܤsn&{{\˒ks4sBm`luik2j OjJ]a8H]݉ƣ惒dKnO)85[ݡx()gengz&pVFؿVSWtYu!C# q1mB^Ѕ-ߠ7IܻoDZ-`C6;@x'Njj O)6'\;֫I|1OhϦR#GVl0*\IaE=/"Nn :I ၷDz޵O4׸T3юǧz!E9A)KO( /p JŒTn5l GF/`u_= 0NIޣ?nWIY!bTT5p_DYen傓C-_b΋Q@ p>ߦC{X8VkmΫDF"o3l|RI5%b~> { fB6(yc^ն~,W%k04Z!Z᳟:_mTJ:Br2,6ҧNpb|w#WmS,5~ER\ڕrp7;yO#x0n4L`XDMGV9]ᱚ E8.1}爭E`%aRM pi^~@7e':UY4GOji_`n*Ej<'~)!NM&T+%i2fsNx<w;@wkGeb7kuhTGE97cZ a ? j%߯<5PK1jyL0dٹ3i+:)@H66AE{%z ꮅ;$VEU:̺iC*InJAtTf-χqYE)~LX]w]ctEƈqEXɦt/2M)p%O!*(UcCU+Gn-)T)5Gp_"pmӇ! srtF7zx" yyI3e.cT%$@Bo„xd=@0M}9Ue*Z35q+´=؞ ^!6*7LڶR\#{7 42S"+2i'M1hy"NwR3 vq8eEWnd(=YوevEe=5cr_x As >Y{P | ^9"dylojsn2N{ꟍ NoY d JeBSaFat/^h^f23nY^O;ۙ]F&-3[.><ܣ}tM(Z1Q0b?q*aҞz.aǮP/6VKߩ~v 6XlpxJ!3#EdEBTT8W@nAYlL5"Ljcٟ[vКm<ңLU>L5n[nVSE$lHh;&_Ͽ FǗ8iNyª[&P+r]{jJ"윝%.Ӭ6jTazoijtॽ?Z7L8 %I6/]8!8^cHzbz6pnjJǶЫlA{Ax׌OP3稩)|r[P^톗U0 ϙ}f$TZoV7.,-ᙶyg{(y @9"kb1oa#$uنĤ~ƚ옉c~|b582ϴM墋>3{v-{kCF~"+^3?9%/&$8G~+@~ %79 N3XBR <4t%$;o!oROgXI51NV3zD/VBԹ>.pFHo]Od^llo]6⦄?6 ;%;])ۊ03JDGSB4W/||DݔBô}@"ҍp$V]nN2xf$ +#/@F͟YzpthT_&~\|X){cYCYjJ&٠p2g nH\'<.~_!(d_ڼ˙,א TN<$zC 7[Uvڨ{uFz0Gmպf=- =Hə `)౷,l$()1.(߻~iR,W3Y\wZfflbPMTۆhwI0AhkCB,|\[.GNf1MGRB^ 7M'|q[Ôc͆ۜCK0taͻFm?xmm5;b-󀛚V pn#>)%肀QG8&V*޽.N^0(əp:{ZI(1j+wrheC7j׆9xH'}MBkHƒtworB_d_%:S-6]7$*u Uzs-|ƲOP-W @ dd:uHܾy=.5iO M&~"{:,kœϜhQLWe xIs6D?IȡXٟNx_LMvBI 4K3oEk!xekeO9&r ]UzGRLa54!nt{tė-k8l\Q; AA DRQ10 `- Rfќ C|T5*zJ (v ?Sm{7kcYU[t4t{lXwJNW;}VM}y$ |+6?dZX/>312L~j8?lB#mcxk`_~y726JFX|vҲ ZȩȨXn _TƠ{dPSMǽnzFKl*=2.ivm .Ǡ"o-ȷ:ª?fGft$gԬ`m'8ԃ\-n<K]#`20QPBٱ3ң;42|Qݿ[[݃(^e[a#v#kۧNa,h(`GZ'}>TOu*GAC5owFE|Q.n883]!ZCLom1b䑈Mh479x4!^-@uYЗjk 6%{#1UK6{gQ3?ğΣFai jkjetU&07ƛ굜_t #imd 4B|z JʄޑܩY'YM^d0Q^Y3)p}X_-8qD!tNمL FQյބS68:(:e/HZa65jy2<9ɠHpgp\_/9X2L2zB9=ϫ=>T=F⿫S_6vSZy99%{!VGۛF3Ib{E-r‚(6 ?y<<ßvcl(0Y\BDԞ12`J,Y$ /{rx(vŢ=vh3 KTMm2W [Hm.; N&9% /㹂ab,oV3s7;2CGEZ+I[?5gSg[zzc mbl˾w90k}}oSNNcU,3q@:~Ȋ/@Sut4aFV"KEki3ĩ(VmIIs$%Ѽ?LDg6[>Z%jC@@C'_NkLyBH0u ^؁#}]r{Ϲ{|o[ٲo%%p,@nᝊG^0"'F!M\ K +/$|_S&$J!@qjF n4ZKOE` !xn_X֋;Mu)}jr{@/_^mscHom30xJiJPJGT?|l-(Rc?Z ^5X=m}(y)\4m"'jU4{'MÚ/JkP3_t$ћ2"T" %4@W-9i0={]Hv?)zs勺 45#>HPz燇"8Ez4 RnVKkdTB8FPw݉-A:ۈljPgi'H)CٱB=}i vɤhP Hu 0]KK ЌE5$(wo/~tpclPa WT拆D J@ޜ8 &n[{WfFӇҬ/.OIef2rFǫz#D }OPH"j4_[RȵhH೨&ɬSCAtmJj'iKoA2.R._vQv x_l[SDejcW*2Pc=01/hG(NI۽52љendstream endobj 169 0 obj << /Filter /FlateDecode /Length1 1415 /Length2 6362 /Length3 0 /Length 7322 >> stream xڍVT$F0 i -)!59@)QRZEnDB i %U@;=޳s{}L𲙥A$ `%< VH7 xCbJͮCqL#`@Co DS+@)0X/G V @M$4 "=p*-0 DQQ^w8P"aP4aPo%BXQ%(?I ]UDy-~pl .&& Zy -1\  o$ #X 6xqWHBNgDH`( A@H;Kp@(#C@PWC@(ߟ`XO!W%ݴ0(:6 n=^hL D!~QpYp?=ʂ`yE0 <@[!`> @D ?4aanݐ0DN?cA` @+G0h7dlag'&MML/!%!))4:~P#b┊T;r%Vdx@, pʻKIܑ N[3{(@ԺA=wB> jb[Ҵ+'I%RYOt*mI]ockxCwgṝMv;=)0lk+c.x9=o"iC&LQ/x^=9sR7Qpmlھ6 a* EјjДVGy{ۗGLtM<&}/#.Q 4XH[P] mO`||Z"?2Hgs ()QiLBefݨ/f*ytZѭ:+wu1W'.FY' KLyVڛ=3  ՠvF{h2rWdDQdž}rAsn=:*(%A|țw0zR'|:E z +ݟ^whz6ӭ6wZf$;8s?<+rv iy>ңЀ]k?en~\_q8S)g >[1Uuu08_= :Ǡ^YŗkÐ>%]㼃p)fn*Fgǜ4|Us4byp'XJ6v)`ځ z^+zj"PR^cx`G1[ʧLM1f2lu:'ON{ ;cJ`?1`Xb3 +mIT&xFͮ XK\P#g:$9%Ȱ歪MMB_-UlYO=WYC9DފLkgv0 W?^H "k<:$WZ!neVz,^,H,>[g?vCr"e*5"BȜ]- 69d('m͝^Yp!gH^Qfn6g80b|9kr -{L6-~8[wG׿VVz_:C~I7G6YWJ8%n]+r^˘MqKYŨ-ɔzヮ^5%D՚+oE=40zЍ$ \hQRBIJF|3} NZėeCOF3QCwQ$di6WE[[:(lo-PӊP}+gḹcb[n墦Tʯw1 K=&AeZWk?޸n&Yk~% ;V\oW 1U<<&x7 wɼy=m!oϻƌV>=vo| ica揕^ˉ\/ֳ5Oxp38m,P, fu>#֍0}FDI)&1<~4Wu(j %YϙZü6\w5$L@/)pIIԜxzy ߬BL4mz2n|}%0:&fO]íc nԍ?)C,hؐTBRwfnװXiY;c٤!sVW -PW[SCx oYƹ{рeYNȔ (ɘEN18!CGA2k[*rO1/J~?|2FWɍpNM[o TL7ـÉ ca?ᚅNAi4^:# Yd Ypԣ'U>qWYH"k7MK/-RkpK.J(dL6r.,ۛ6Z~C3VUzA+>|C(`aF)>jS|@5Kqj B0ޓN>(d ^6w znkt eKGƙ7x7\lLl9qvu6QSa?}wbhjvmQ${ͤ<@m#ElLNHO^E=S3ΜX)R qB!{F6[gi?lp? k3Bxo,kd}G"TZ er-i2۠|QL%yΊ3ԢEuj8 2-~: u`ۚ}S&Ԁ襨))HHu\f92Iy/<dP-{ HEGodez}Q@\\iZC hj'L{OS5yioKeQ-hNRhЮ|bu~jǪNភ'ڋ>G}Tb%ׄ=;?buQveᡦ>2SNqCsM9\>`-od)þLo͞Ĥ/-`nsuJniRSj;#)Sn5`QOb33gƼITg4[)u8ٚJ@=^#+XGM(;4nhG;=Bv#@PբĜ8$oCbs*:DMV砇$.t[DIֳE~𛢼ØF溜%tvU2u$H*_:T@Rǟ~wcǨq!|e 1A!}ϱ/o]opTkz&*>!zB]N\@۾pd 4OjD,a^糌Kh鋅1V;b"ۀRgnď^C$-IKK{OˊX}GFR9zvv*s$9Uwٮs<571C<{I;_JZ: NŒLD?%gyK K3Y.ʕ+Yx*X9qw餶;IZm S?y#hUciZ~T,&>i7} xK:νMgוƋ[SԢ:_e 7:aZSBBwSk%6/> stream xڍveXk6- ! 04 ݍtHtw44!ݝ~>x9Yuo u13 Hl.PTW`ss"hX؂~[i@NV`{?|$@@NqU\m\^A>Avv';NI@ 9#H<,,] @oc+ fr2. ;HES-@ljr,]\Yvά`' f%@ rr~(@cEhXZ9mR@d r79  e ;0tDJdeW0l[ق ../G3tZM 5H t6urpqfuWȠ$vv {g_IZ9L!dm޿es+{3_P\4]AxATȿu ;;;?`A%ۯ"`9 Av.N _? -!sp̬L]& +{!j2d <%gf`{[4ӿ5=,N../W߉UZ eQ@$n?aw%0dA,0`a7|qWX{v˃?.b@HPj"[e][@EoLq@*ZكTV. _6Krh@wU){S/&rNN@OdvȪq9 5y6V{ $A 0;!:Z>/":ZA:5lJ ?@p+rArmmNxp~%9B'_ "YC4@-~Ϡ?k@&Dt\z= :?D-B@o;oBA?Ah] y(E˓ӎؓ ki:$~MؒMxkTO0<ಆ<!UubFwU20gʯIIks=7 fM{' N˷+='8>xNqU>Q 'bANݟM1*(1v#~hpM@uC=}lD1M+Gfݾ3[55 2[~ N76ƮCi}:6cq ߇.hH $o  $羆EuAZ=yG0 cEbOf7: 2xo(a$R\NyT{T3~|DT$gUcdc[6vaJW `H]@S8e ]>X8 +! :ٴuzgg&7: YCUq ֚+I;7Pf"SOuVZ%B7,ReۛA==:{UC EN\o"8Y|VyJG[lňY otNZzTbVshw. x는̄쒆qdpKٙb IhVMVKJ0:4Ui] ە-a1?I!x=T8%;C"&cT:YKP2OJ>=_(ud6>v G8S; Aw}Fw2[n5碶^=6D(XNp HLÌ`ppr>q ]Ln b=۱YW#y͙w$>{YUFUwk&ˁck4"b"!eޱQ1Du+[ Քn;KF0}}I65վ(}JNmzR[FaF5K7Ȅ# .L97S;l-͸1V27 'k*g* ,[Isk9^ae+7 ӃlgÖ7㍀x[lWCk#^L<tGU_Vհ;^|9u$H$T ZLJpD1&gd[@~3u|ƤqH2f_*UQR:ݰ,;Xpm 5,UOr-UJy{Pf 1AqdXre_½4j@]әG“F@7QIiX7en3AvMSH?GB D`|8h 3Täv񴩘\B} 'Rc]-9 %C:[% 8 f'{ |8R+ %_}3Z4TFr2fmOaK;U<Ъq416_װGU jFwh7^}B*/E*s6 Z@S5b0E{J]uWD!ƫ+ɿ,d/Yhu:S5iʃS'H'cʎL^5d X\vD`i7}a¹M>S*[pMz#Fǀ$:=m\So?)? %@g6$P$M,Ba媧 ^AX8yre:,hL$.2avΦ9v^h yn]pB1T}.sNk_'ZQChfͥz2Kil9nmC{A79 U5 =B!1FMfSx!ӧ;ޘc4f灜>̰do~,x|DCol%H.jˊ ?'[f+E d!o% .us)Qƈ{vrxC oΤ+E:r;,o(>md|R :.nfB&ϙϋYc#)S`*q?9c肒 +`AŇ͕n5Srv{i6%,eT!<7PDk 2t8) d#wV7AmS{ ,7lMz]XJʇr8Wp" iYMLK\H[PP{k+LKH7_ļ26dmX-HJ&2v"JzvAhC,eEbˈhjIKF&<9D ĭFK9饇?raw˗Ij :E7z)cObvC(4VT8+hAAI:Fb,DZ Q\1Qµs4g~#hP(1b49ފY5%Ew+kEt?a[1@YlC/[0$;wg9P}z*f}+@V1r[$\zB纺NS ư[?F*RW@cP./{߷Gv(ҭ?eYp6*tj%NANc?~GC*^fd-Fexkb̰U5 Z$d6/-n߄*;ͷDiSn串 Wpߟ~E9Aj$3HpH|[+jڪP:&fJ"<44:/FxR&/;=]vwWym6:wf"$C;:fF lgʝHMُ>٫= x 䥣Qh{.~ Q{?(v,}3aiZ$WD8_'y.XEB%Mւ{ =5'svF kR--}`lm4,/%LJO,Tq,Vw"1*Y ԻEcv3>+$V!dH096 ߠ3ű P<"87G,AB*!2v̟ sU=JhaR _>{,?~M8,ݢ PsFzDiaߎ2q`sU{w vBq~oB^[at=2-&cdj\J[f,g)b|1XdiC3(8^)C#. <vr[PZ(cH`߲q"> WDGE!^G,^S{JPˌ|#>ϓ<]3g 2 t.oެ"P#,r;E+Ŵlj 3B,É'Gy7??vtvѳc9&nY08VFbWߨ<#.pO(Dn <fF0'aDPb(?&Wy0 efGBd\(C(b >1 3R6CgX*g#1~.61/D+kMjMr2C^J̯jcVw'?=8k\F bͽw:1wެ'7 Xxa$MrSӢ`ӌgtASu0TK?m,"`]U*qh^mUu(s]Z)MY2L[y:TRFW?~%3)_@Sǫ BʒY/mOW=_oeWҟ65I4NDŽY7nLt> q1)ބO_4^G݃4; -q[<6,WDdlIӀM-]"m+n,mP]"o F/y/!7lpꍬWٵ!`Cʡ6Ndp$09r[{1"0Ptl[#`Q7jum^`}|K[&2%A4q+㪆-)=سo$F&MjxD7NLE~Mɛ2Jݬ|׶(=!̯ H SxK?H*<zb]°R}ҤkQBrw\t{g`pAV~d"`ߔDW@ɥ+]f:re%Uͽʔ` *zq4/7.C=M 'Tٚf1g|K9-com=֤TK#_Sm<3flmy6˟Wm 3W!ԓ1+\'d<>o+%n3A>79< ڤ3>Z<,=j̪U5LbjtwbgD8N'fzKhaNlE2p _exDE])Yo5~%y9vi[u;j%&*yu+g66LCsAE;ԛ%8v~I֏gtYBKxD1mJ]RBd/٪ ffxq{,SFrY6SwB_z2SٰyfJljM :Wȳ14˜2l}qկ4z8]D[5*br9|e(M˃y?C.ǝl2mA)Ѱl Z}@W-/pヘ`!!-d@ >-F/EUΠFFi?Q7qA+55AI3v+]vVD}M, נ1M1BW„04SugP2FecX]\D`GxfX7(H 8w[V#%f=29_ Z~Et~˙a#Ne=Ik~@%C^Tav.+SU5d$82BƽzaT7Hm]-_Q۽KHԂT4/P?_g,+|Pw/^Em"(2{sd+I1uL._!W5伯SҦ`s E=I2锇6ZПMF  9Ş9«若F艀9Ͱ8; !ʂ%A,?%JE^| hd$3Ldn ^\RhP͗smγ1=b5w^T k>*;ACq$S*?&\*Yx&D~IHbs$ItauV/YhL= W0VVR*|SG]@Lǁ &Q-p;V4&"NU ێrkrᙂ'P|)u[Sl \$IˏC }^l[o|qãrbT(:Djt7)e8ψ'!|܋⢑ ;֭U>$a1<.-2#"Cˏ;V|'z4_C74?>](nJq@-[y>[l!}_ I,Xal聡2BwX}Dȹͯŏ3cy. ˁJ@]5%xyzYFj[״29,J  FaolrVq-RMaVKY|@! 2ktڒr yXB$C s ~qި~Be\4CǏb3iQ{hptZ6/|㛦AϽYȏy`QʶjۺkA7([)/ޞkr]~P,q+ƴeIbe N$%L9 vpy N|e6MRm}ؖ4tR!RCMSz#%lɆ+|BnDHxY!/;&h3%a>+38rRT8`~,7&N/ǖ%~m%!qpkZl27ƫ4|fyNi,Y I/-7\[ݏ6U<.GtJ;:m뷼8FЬ;=^Z!:ON\1=qĭ#OQ\HD+]1Zo4t|ծ/N:8~b+o= fsŤAV5ZT1zGO")rwEF}W#C6pӁ12Ou_tb]LcaR4—FkS(Jl:eX>5t5qc[K 0,7@Gf$pi0lGI>G~'q #*{'і!*ن-A6kb\>*9^0.{SBڒ QVyj!i:p'-3Qx*2`*S sF_ )!IJwbb0@]SR:`8qDSy%p5)œq~ x:\|(c X;7I#ON:;5dX3I|^JupaϏ\f`H5c?XR˾ųZǦ=G;07k5з!Z[K [0$mww$h"/G&^Ro]8MFʤr򹖑LCwL\4("ͽvh)[&(u0z ECiÂʜxsU4IB; roHH+ +,mOn d CXN:Z[nQڞ4q82pEJzM c))I_+gCOͱjK(!ӅCrC^;:œD?kR|Bo*،ѩ s_*Ӳnl\^gWHdlR}2 'u%6/ny>0'* u]ʞ\ʼ hulг^| Ĭzhek! |߻x(--\YA[r.^q(>EqLa\y܈:bHiϟTRs{J5[f38;_rՑ냨w 9b\6n^&47Fy4ѐEYuzM>KaMZo$?Ic+~BneftArżyq7X#"VMLpzIlH%)S'HhjK܁εF/F_EnP(R ]V1c^Z3OH /<&AI"7oH>hQߍZ• Qv瓭j(%)֥UաЃk'#`D"y : GuV-:ݹ̊Z?>O^͡H|B0DoA` ᮤct|}]!NW3G4&|a漆K|Ope ˁڝִ6o_F*~f٭x'L}4n~[-L<ҡ?$C▜> stream xڍXm6H#S$6`06dA:A:$.)oE0:FBAA~AAa66c( '`3#y(C(4DupC@H $.-$!-(. PzB~C$`SFCP:?8A\!)) EW;t('+"!@P_)88Pn^^^@W$?QE9 !H' E tO0v"2!P^@w !tu6@ Y/^ ODP` pu}pGiQ C"@O G;:hCPH~$4cV8 Ik*Pw}>Gx^9@`_4n&pc4D J  o>n0C  :@~H'r+!! B!P8a_ktݡ+A^qbe3EK?1*)!~|R>)qA8@BB <@WFM  M28 th=C#A1AMy~iWwGj0o;_; ֳ =: @@PjQ;u'$/(EA!`}( n #_:JPl$eMd*Aa1qCVz%B*[~89+$(Bh Eo\ { Ѯ0 0Q>?uRC{F@! 9H&UXy"JgtE}6^c%;p5HByԜ?=qGݹK( 5ݎ&0qB"#z[#GUD/EםMK]+䔔9׹Ԃu5l4*Xd)4L=ϚU|Oos3D zkī#(h>dIL}$v\B[e't9S8Ж4(訫|GhG=BlN6gv=Msrom[ t8[, [FgQZvf)I͗Is$!a4YJ0&WtlX+#yVKl5m<@~eN4Iz)v̔[UU5JK 4oTTZdI0!)0&7Խm!4CJL*!ͲiAO>LR1K [c&@@F+ɮT!J4ڴxd1| 1$Жɣ|',aѩ]Ӂk/F;,2Lvpmzk4^bPK*Z? PFX O{FN~ YɈl5~sx 'XY b&2 T!.INl c894SZ>m!Pw;8eDZ ptU&y/񳀹[EDW'fUBtZp,DK# -fG Ul[T#4ipt{!O/t1fg$`\eP= &4tzɤgXR= #R>ctE8L߫83XVV}pX'}- Ӫgּj&wC3A(R;&s׾7l:%Qfe=ի2M&) 5Eg|lKO'[';Q7l`K另l)}OC崅b\'Z[޼A\r8{ئ湾 fE}b6E XsHׅt&}3g4lY5^> ':fQ^/ٝ0aUrԬͦWB`I#ዑI ,N&:'+)nsaԲk$) Eb6"i:=*A/l . }_P;lENڐ8}aa_ny7'6䏊<FnUF.`yɖ,/!=D*tc[k=Z/hg6p;ݝH.~-S\o5$BCOը&C24Hqʝ>0 c﫮,TżU>&7RluM;x [`ލ.z&·.؅Ԅ#5Wt}ĒoN@#ǍU19Z>7qe~{3d?VsVg4ڎOO$wneT6TDTgNMjwkhf_mR@}K^e}6 lW{am$0P۽rQZVg) =yXԗj+Yg`w^juɎXWnɢ.@XG/?ϺQ@:Ml*f-zrzYL"Dˁ{:GH7.Ei^0h[L|$?VUݚb,.W"߮.4+tw`uVqBphHyBCI'Hs !. (KdVAƅ .rhMɁ~b9qv\poǥôII޴fߒi0R^ C=iMό)E0rgHOj>-@8טkRx;;{uHثSf`%|֤Gup X c/0c ]*+Gc?V}+_2{:aXnf6CU˂y]aJG?~E*U߅$ըqW}[7KMc9HrKܔlϖ[ftJf&;0Q F|[ŽlՃwxT=mӉ;dYǗ~;ڶQ][H#<,|xw$?#>1Ӱ])gW73=bz[lRnFG7 ZnYJa12ﳄk3HZF Q+1, ^B':.b9W# u7;Ӂ"]JL'OXT [e Z*yؒ}u}XVIɽ7KSx1LE_^;м]u;gԟ/~֎ܽ*Sgƺ8ꓮ@3u֛| ;˨?Ntej벓Bdio6lTX\|KjPetBΜkpXaFElv2muL l\]"`*NqYG?7LnCq_Liu$9I`QEx#]H.nV,{M<`HdN)Z TquPӃ'>{Y&Rn̶￯s7|[ɔ#/{l@?1{X+${~NނSeQ{iИK9b5# 8Zc(Akܺ(>rO5rW"J?+ʦ*ׅŅZt\pQCڦmp4r|)4̠yhl2J[SwMIbU$KRû)tՊcy0ەzfj}qMu<~6H_\ؕ+odᤥf?me>Z{ zRv\AvwˉæR%Oլo߬PS ^^K9d>W~ "K'ޙe` `.ΓQXrw렭|FFG G29VqaWs̵MVU7rSxGG>'{S.F%X/ :Q{Yuyӌ:&,mZ< yJδS|(>[AOB/1fWY/ /Xh0 4i 5{XLeQY٪C!PBY NÑNI3\%r#f2w<%f☯)K]jN)#l\Iujb24YvRQքȌXvڄƮ'i+$2v jpu<79QkÉB~uMB]+1ۆVԓkX ~#p N3$N4=a< L)ţ*Qw>umy&I{g4m>LI3"=/vsj3 5yD>Q5KNcR̳E'2J6 z)"?ԇz۰X_/kB~ڽ#f.$O@xC'=83]xti:vNl=COEDn]Âz El:I!KDOЈGt-kSG:jÂb7<.fRr}M'"Ȧʛ犈^҆/'_(gc1-)b.?Si$??A 5iG.;i p]r23$O HlXlƳz B:\OlY=̫v2ZU0YkI$zrfcRu2n,?@9.Y൘z?wȇKݒ34ũӵjū8l%ӔIqR3wϝ%jK98DOXUS"dI =/ッ1Z `ưg9-Ww_YR*^lvEX/j?s{R&RbãttTv(1 |+cɆDQij^t C-OBߋ 楋OwܲHeņU}p*q+%uD]$l(|i1YB /D9;G<ݷ4|>pG=c_X28<S2}lma32k6^BK܅0aYOۭ]{Q'^JIFmy9,S_LMG8#;ne.:pz oezQFg_ ϗT7zdBykGtwZJg~޴2xEwrPk#w?$yb.>a}{ &ljJuw b* +v<ۋflLPK&<4{\O>^9_CźJfM(j}̼ <7"ǡΖS,ˠZ;,M rt7hXA{ip7aVwG8&= ķ2*blk$ abI^ƚ2}b]6S{8fnmtNa56URr;ܷyuIrU/i.r5VImї?/wѬ4tǶ(ބ_5F?=Y/G5ﰛ?1;UP{@+2}RU~OܡNlSyIY [Qy䶲e8k dLR(vnZn21BF7%#;Cr]Mm*xK8Y诽H|FFӏĒ24zRѡ/G >^QQ!0 L(|g _x*5oJOBL8Ȝ?sz:CK=RElƂGPe"*OkՁ;pL@0==uoF^ >G W\`*A-ζ%  ޝ%n;N$8Ky$EJwKX>44+):}bE&^0ݲC,崃/q%|cendstream endobj 172 0 obj << /Filter /FlateDecode /Length1 1393 /Length2 5904 /Length3 0 /Length 6854 >> stream xڍtTk.]  H"!ݍt C0t7RJI!! tw"(9kz}|EKGaU@Q< ^>1OMre&bӇ"]a EB(MBǩ#7GH@0k:/@"0[;߯'i'(` v" 0(_%8P(g1 Ãʋ@Jr>xPv+ ;A %b\u6(0 @a("]e53'XOC_xA)WB0d0prý`p[  TPEyp_`GW:9o(Hkhs a(W^W/_eS["p+ѯPz^?u#<>l`pk_ ݜO07_!h?6[( HXXPu@=!v__f4?g3 |\P ߎ@ 5 XAmapP?g0O { ߯F _ <>< !#!ď~]?o A8_e( A~x}!7Gn v9z - uZ5:^e-i-< A^>?vjCAU{8P-+_> 诊+za]PWAXR0D$2z7 G)4F? Ik| J7$@[P'B43< m^!>,ި;R>N ⸋u)`cS \G?},񫬚&ɊnQ٠Tc+BPLvܻWrbiXڨWB7 ?ZAQBk.N5T3# gGjgOYs xM8" B6dعF~ OMHy' B^s(gEdp'2&j JUKiO~AG/¯zi|ڝJlúCYݤO>~&cl>+%L\:[l&xGTJ 6% d_gh.l1T-KHZ0d`a8N0WqPDJ HNiġ})I+VEġ>&@K@JB{wx/rSf)>S3)05@?/SiwǒW:T!Gi$O?87|-B zNGe80+nUX NL%vw QC&{[6̘X1^nCA>} |y!%WV}WaR6cl/YJAkQM\]+^n1Ǎ+vTg|vI1x302'r\l]0?_"mR[snT菍) \ȠYγoswsa]C{,So3't8sĩzP ,`,^ʪ OoQI^wyԸ3t$]S*aLZhJXD.؊>׳s} zIϓS3c{"JGb 1 zBXܟGdMNP+X3+`d_.ђwN yp Yҩ6 ;/+C"}e#b-"E1[8JT>^֪^~](11}ԭ#@yjRlGv+?0^$l6"K}.)yb ݴ{%' ܑM_[!ief?`=90~o7*<;rc5[yP z*D^ #~ iIU*!|d2D0k}w+De!=_Q).Vn|[aq0NI,$kfNqJ@wJ;C>?9ݐAK7uֿ+MUkǤzo5_\҄WXuE\LfS]k5^nM;OO*Gn8bFjxfM1G3TwNyJnjZ{yB"V,Z7LbN-7=)S8~*Z72YT廇CmsLt$K)X̢R+?a ;.OSnGs[\#ˣ[Hqťv5 Vߘ"u1I]oP7CXO#wk}45^~>3d݈=S:!)58EbÖ"x-Ŏ_$ &-󍶒ZXƯ+&xE&wDWHycgB LL.Rk&i>~l߹FwfԆsś2_v[,>5bê_ޛk)I.@9*r 껖v嵝nQk!/B|uK"KxT>*DbglzcƢ. Ҭc$%*7۷l45wL2WlV} dhzel1iݳ0,U8U4JVʂJۥ陛gOqV|fSeiX}IeMqmϸPs"d$ f ] m!g?50K⊪oE,h(V´z@Y Ibi?bu,V%ܣ]x࣌ƹ׫gkWS⊴Jy*_UP[$\ff;, Tgܯ^gTF i9[c}f+d"tIYqiPzYz8mޢO&!npMԉ搘"?WdK #zAPIj *<:\ZOXZsuNA_便ba_g>$:Z;ՠ<1a_KRemٻ=k޳[S"'1|:& 51?g9c|/3%\FAnDY9ό`3HN{Eysw"Ay~3&;{Jr0bWIN=HaSOpSWm_2!&f.(5͐ǔ F2 1^RsvC8j54?Up*ոu ?ƪGX@oē|F;8do =rw%ffEKȏg9? 13Q8|L…-N5L+F^VqOso\A $A4AzGǚ#P`7oGeeu#:+?5vɼ`\ ș p\g4=}M%:{(V1p]J9»$ʃ|GBHCe|/#>I<e&sN$618G}kl` 犌,Ou*m"Zb@I\#^=mVs.S˲X W{0[^`g s2椁F ߤñ7m"^#3Rܤ #m ghg" Y l+V fRz%g3j,.[WRruI?n.>kd#}cYk J1$uHt#Yn:`B)JYl}UFdWK63Pvrk=r?Kر,o1r|UBoɣ!Tr_زٜԺw]:+7´abd1ϰZꋼ~nbF:zC=$eϰ Uq|l|ʨ`!X;ӭ3~'ݏlԼ4!~D<2ܡC i7/f:?4 s|ٱ?9*+ຆ*6%0{NTd_[O㷌lr v:MRmkFlfGKԷ/_D 1R#eֺĽjj#%'\7Z|,CnɞzXPќ+J@ w?2ö,eGq 94K'bpSI< Vi&Z<[Ƚ'q4B"9u,*S1xbt.XqHkk(h~L'zy|kخ UC&^fR8c%Rܞ+f,&A^ȯ"LQTz$6F:}qW;iϾk|21օr--RZNȏYs<%fU='970(GTvy Ǻx7 " YOVd'555_[#Й܎ ~Br|fѹLfï}rֲD5 ;Jo)sW#l"+ٴTJB_F'~7䒗‡ķzTS ?w߼(`4)l {knbu-,gZ2P:>4PZ=3Klj:مxR{%Tl+FiNn<-ZobdZd],9o>.xk36#RO" Bo$tR"i|*6EHJ%;% /pnO>WWFiD4Z]S9!T@3> 7fTcVkY\5Ã-{e-=?+:lS&Y(Pendstream endobj 173 0 obj << /Filter /FlateDecode /Length1 1902 /Length2 14243 /Length3 0 /Length 15416 >> stream xڍPҀ ]w.5ݝ%n^ޢjx^m{Q*(3 mmYy"r*R,ff6&ffVxJJs'+j Gs[Y8 eNr6ig+ #33?<Qsc@O)bk`nj?#Z 7G?AF69'3{D#+9\99L֎L Ws'32Q2@wiL3sǿʶ&N d~xP|e,XX82󰁑) ,.01ą]#5pf1c[kk#;r-ml]mxv?)U00;y1pU{SߓA7<463%ߌĝe76r}wC}Cl:诅;[_ۘ9# ;3_rsGqs7_xaenRu4y?tgd8_ٟ*fo\1#[?V``>dyUc۟#2: 0ub99@?D(qb,?JC?/q1 +9;CC8uFV-N﹃I ߳0f_doe-X s/W/_ݿ={\{\{Üq]A@@޿r/YW 2geG꿌SsW {bˋ\݋|D?f-~kfJ^k61aDkTta5q(GXq b<* "M8Sl"ÇԾVRpT#$;#nN|I nS,Muk?㨲 9oni&d_2f,nۺtK*lԥeez?O0}GUqL̜I-`IǨWP\`20mhW),+ bJo-`©Z5E%<@-ЋstT<+y J lDU ?fγ\DIwgU Ȓ@*?&1ׇz;]l yQ%LjdKz:M̼4Az7ڒb1+eY9gs>xȸ7zO^M+6񏝼$_=crŰ&L3e;-H3 %'9d2$yˏKSRt+ 1y{%aP1h(4\Կ:F+@.T|0xU/`3 10+/ُСxcQ(D ?'kI 4Iվ Pts~"ڙ?1APt#3#o#L9TǯMhӋeD8ŭ 9f0DW-*sn=2z 9d/oJw_ʰ& >S/_S&|Gϓf<̎&ټ6Ad^i?Sn$Lbr8KaoPMI}7Qju*I~Ёn?bc%0<,ɂVC9'7CM G a}d)j?Wg'ªLLD8!BɊf6+)xyw_&JTjͦltj3q,&(" tLmTԗi }gO11%P4M7uL&k"/(m@vwsCt'Tv^Lg3'7srrD *:6܀@7]RuxU_Qgt|w+ ryJDZKtk#JdI_ZDϤˇ7umVTJ(Ha&dʂ)!CdgH`aS3ǣۘ(. Z{|`iʣcXhS;1! 쳽QAnZAJñ@ʈj1a iyKW+{IxeV Ae|G/-#i$D. ve}yP۸rK:&[`4L.ǽ=aKD* +@0WKP7yX"!|iFo1ΙX~Փ +_Ԧå1Qc<҉mWo3,#Js/{8e#?yaH ķ;g %גEIv 'l<VO{1EF1$7Q?pH5Wƣ[k`jsƵ[pkW!*.V n2o0J= U=hz(UhT, (JTLd_<tfܟixsXW]2.|ӧz?vJ1qK{Nɜƞ`qy}޹*p T`^`&,SkAH䏲;r(F}S~| 5Zx1ߧPPf8) Gj#wi\L2CO|ng=fWϱ _F\LV+QKjeiԩ4 :|lfg᭴{E6yfP{18csvFDО'jؖ s {s9mHK\~Б`Y!F}6&:hyyҦ6YM04,ʂ-0"5j\N#AMqAFXmSr7SV<:*#V b]]k^z[Q;iiI}kKBLܓ D69 f GCGdG4^a%% ib>@v}Um:3KƎsH( nfS֛.saH䘌\'3Q{ ~x_"z|%Т]-|S,L w縵0(Wz:`]G$ *g j%Shc+Z?cP|187FG+~/NKXnzg~*Rj~xGE8t6;Gq:=BaG* Q<("(-{eb)Nґp}"kȫfGM|VʃP + YQM\U8L-~ l&bP;F o"Mi+Pp*KpMޱ%G#з=ݣ p~J-zv`-gE%AH%0׵ diU`L&đhr2ވc`ARN'閽~"r]rIB7H25?LAg ,=UG5[@I ?1?S@5ovDU8rpZEOHy* (RI@G(  ~L6QEPjYey$nqu~R.pX¬iu"|ż"D#*~NqftFŠsG41pZ9Z\8+YO6鰅jcWs뮃ّ-BlKxI"GBj#s0`>9Ix:"YK?u/_lτsīwKAU.2D+ƺQ@8F ZzPbUY?WL zo m>tm֧?ղƅfXNSy\xM 3XuE >n~~Vo`5Tu?Z=J o7!тmd{u+wI]^ydwIxh9-ܛS#SɈ_I'Dk[7<"O#Dw5DCv -;1,f+\JpXSt6a,Z !moKJiBmk\Xi&agهC`THsc7eq!yʒK9r1>Ix;aB8]S3e玻ʤ]y`7$&Y5}L|p%uOywO6:\R:.5md)$ׁ_pVћ/C&`zo=2OT9cle)_YT-.CheU U╂Jݟ &MTqdccPBTW9+@+KMRصN&x ~[;M/ZsS+/ ܥh ;!Y(4ZͨE>|&C8%y3pohagcO| VoVעp대`@Ty`v[wQɳ3aNr0uT[1Q%훌A؝FlNo 3IB{' 9;S 7=դԕPGK0mtHq_^ty6sc2.fܗgHkjO, y}m;7~ 6N%'Wld`!mZO*&X}k4VPYYNNk>uL>[<>ƒcʥ9SǷX4&JL la1BU jRah,wQ#ظZ LI1: zaTtg>#s%dƙG-;[.M |mN'eZڂ24M'F^G#c4•Opp 邉_YfZ(Iqhȴ@՘|9*51q]UZR1ܔFg2P TuoBЦ_i%XMʤe1_3(oc>+tX~HKMK2|pue(gnjQŸH\B9>}]Cx@6I']Ve5sx`Tk/ ^(:V"v!>!6bts_Bg@lί1fR!sQ{3 4bD{6{E(2se޴krCx0ǒ!AVZ&K2S'n"@bVφG_RWD ѽF]n"d i/z6yFUΘ"*zF4 _ Ը8(COƝɤ8?dEƆ}(?=9iXA6} / Bn$kh'DAa=+sStq ;˽ZbP!̎Lfxa[? 7"\sWC̡~~J %h<ɪ-dyl[e{2@ fRR2 m mL[Sv7h^̦[rVsoemu:[r(R!NN]S8n1oB)2qL<ƅ4* gkqMt֢b#[YzIIT/CG913mU $B(dє58~b'S |ѷ>wyLf >u6oa`_&07bv~ EUIu+*ijmNAfЖ$Vf[|?.E(LBR;g +b ,F)<1x ;*RYWIW#m)Q<8N%etm ma[h3KV«>WٵW0'B>C46p<@T0S-H4|lH`3|%uvߑcLuVM8x" HKэ'RcB1IG ŀGStt6(ɂQ?[55 qD,Re\ɘ>Ex m+5&e$kPc-`l ƶ@?faSss˧]g۞S,?VOs?\neש؝oQ,U<*vdDb) KlދiZR. }<$s2fnG4ϧ9A nN,Bv~nMQ1h+Z6M?Vb&(hn y~贴OI]u:?x#k}v-Uq'Gb; ז"$PRkؓ,E:r41ý.۳Ybڻi4=R/rz&AHz#R?aʴ,0h>?5tes_Ykl|7sY5:[fٞ=lf[ Nlz XdE;3.T(~R+ k:Ωe6<$Glo6X#@#Npȭ [z(anKEƎ#K{79=vꨟ`i8WYSp-T b/4A/ix" Xl6mLݗd 6"KO)':1rCGUGF17>X59-𖑩^cATߡTqigdZgɊa=bܓ0r{+24Yw(rp\ld33|'ENu__޴HnaMEH{R>_~_pPMe#D gX 7ܳ o6Wآїa3 -b@$tg4PB([R,o,>a ay-}]d?aSo5 r5]Z/@J4ud9 ܈MKΠ@ؠk1VM$_,19D@o䏢'MOІP|D9؃9L'bbN ;|@Š,G}!ywQ5W+{"+|YlSOwIeNMA<+S`:|$u%[ہc2|52=nV^I돆2+<48'_HwgԜ]$X Q{i}c5$& Ȓ fʗqc_:F^?-ifLy*5eAa'w{EM%.Aل9F"{ ;lV2PɡC F|A^r<R%E_1&` AWDmm_OC *EdTM)Fҩ4@[ѦD2"6=%åb_Ѹ8:G'D݌x:>ժg@zVjEG˨g=eo)kjonq?̥_f d姒$/>FrHV7hbnHj'vu}BoIsf0ҭo ˒%8OݦL:\${3_cNT+e^?|#%]A SQih[65_z,A{`{̬'dVĀ}ͥT&[(ݞ_eHX?r/SisvYmOv2-0w #m =&Bwy/NP\2_?ʰΟx NTV fx|g"82N.^Ou oC?җ~x~M[$^./uJJYXQbPrp|~il0޷N= /hꗚ%u29^blΦae;/d#όg[Qb[ʕ_9ǓK-wo}̕QRQ*fؘzQ[XĜ.3]džAW)q+6!6.[d !q0M\r{gӕ[ɪQ2VYR>m͟s-tiĄO 'aQ=b_QI-ڤ{yvܑMɽn);yqퟑ~IlYQտ~$`zrrPRnWmcN]`lIN$Nw͂x[|!'Y8~?RE!GV`Noݔ ~qBR$9qń #C YM, Z_]˄IY[39@ыXeE[2yr3K&Prf\UBY`+@M1Zdl l""Tޟuv"v 'qNTĦW~LAwloQސ~AWGJ;B}8c sm▍ѹ쯒Cn}eL\{*9'1E޶CYjqk&ku+gxU?߫ݓkNWQ%c Gpb C|>&rJE,㒥Ga [tQZ;j$ۚb8,!">;]L,yŋ@j}. ~u ɃO6}02HOvW^ lKQ6)aVUb۩#2m4֐CMOY*,XcN=M>^ 7ƚBqgnP+{SE[Xd_Q1Q=k^WM@rO>(, Lr!k(S8V/'AA%xSeXԬg5K=Ycv"*=_l`e'0NN'Dc/(YmdҌ)?h˚X/hy;14?)5`DɛvC!NlvKgog 3skBW~4mWҀYMThw6p:̬I$.E /}"7gǀY'fpO>9eޙ86_ ǥ U,zDq? Ҹ:;7Zi'V – <'Vor+a2) l^ W}E&ܙ̙d~ "zȘ1Ȩ,#3ЯM TC䈖(>9 ""/ 3nEVpgLI͝z7D4^zڡ*K+\" |kEX>]]cѝ_q~TD8yƕ;pÝ޷ LZ'YB>x$FZh[>v)H9v,+$^S]<8f*Cprx9 d&qOhe4πTôE8GݱK[8ĎafCqg5=qC2vs)vL:5K`7Pf!*\j9%pNdT. tAԭϘ:߫T zϺo|7 7+:1>0*x^tRNL"!X3d #,wP\mpՍWNo$uM87& 荁R3EY.W 5695r ylWɀ (2ŻЂWE_5©>弌b%pXta?nY5,§eP(r\GSnTWenipNSx8:Ip dx-FQğ*IhLjfr[Di0dOݎt^Mrq#K @-߲r&_8c~cz#'㥷X0|T@"2!z'B]16Ŕ?رj+~.r L>&-F{Dmq%Ϊ.byzb^d4nMojx#R1`#1$4cYip*qIi+Ewh>{<^V-=x@i7qlaaG?cVAt?ҹ) 66~jU+ކ'L3Ĥ|D^W{/̒JPU4k8BBp{歝@](o}8"MMMm±t8FfW_!fj\,φYՠ+nu.'L4+lako}-ȗ6H 0>CG2 ЏE9#lh? _xbYlMDzM^G'TH#RaV= 6S}uج_%F#ba8A~g<)}춊'Z"_#YO[UR˧8#b4K>򽨿fUف-&4r]>XڹL(M;zw8$_T#Ԛݽ%uVtr/ ANvG?N2k|XKr1a6,L eqz۞oƦS;;!yQ 2hev 55p&$4QN_цC;I6E0*K׷d3|Xk0q O#u3H-[V .߀)keբf1c'| Qb"q/A]ng_~X{=;2G.y;uaO!`mz<|ct[l7(?I1Ќi δ'a-(b:Ã0y8+j3 Soeܡ}jgl˵a 䁅.endstream endobj 174 0 obj << /Filter /FlateDecode /Length1 2263 /Length2 15494 /Length3 0 /Length 16845 >> stream xڌT%lgd۶mMdۓkɜMM̯y1Zu}{wDYA(` SPWga03123QP[#:X9Bh!7v0TpȺX,,\Vff:8čݭ Y{ G|PXxxvL Ʈ@ƶ5S+tuueb`4satpxXZT.@gw௖vGPrBZ]>\̀΀5y#_2 #@V;:9{Y[̭l%IyFWOWz_ƶ.V&n Qt\L]]]l04K؛9]]Ohӿ?64쭜܀2Y]lijWu/GJ=8:8?Y?n@?*̬L]&@ +{??@w1 ~03{[?1ݿ[RT``ecpq8y8~VdVNq8Uߌf+' cX98>,;j{L.p)'I/ѿI0Iq1$  `>bAq?T 6`R>bjAQ:ux>z0/baHobjG?#LJH#agKbggd_Irr?ݛ~oCi gȏ:,T%22l?:SG  vß?;Q:~<9@s?RKu/WAmQ6mQ*\f&CX> [c|$Sǒ1z8CA?oV?9@'ne/ĺ>žV: ϊst MmvЖHH*i[#tx{Jdza~4TѩH !,䀘f xh,E7r!ǀg`xA-K,CFyR(WBZKOۻ9wb:8bm*uV\r\]B[JѣTY%-\fFAb߱n_z2h̶+;+:rGwav1[D7_Ý0n{||<<պ*%ݐࠋR2QЋ2(Fn?t~]Xct:xcU0-Ae+hqBLXvͬFxC tB!װ ̂TH4b^7'skKA-F4nPQQA`(D$e~ |bOTdKGEl ,їZ>! /jsA=qUzI+uzuF=k~jQ%dQ5/t*=}O1]f4|_&nڰ?18yShk]:ЩI<[GdtGw4a<;?an;5P*9Mn.`Rk=;jQK嫝E%aNcZ7B[ VX10:Ⱥ³2R$#_F|(Uv]._}C.ƁĒ[%qWk2%;j|.GvfSPK73DN=ّկэB7&;o+`pfCFPЬ/(AW43CPME(fi}UY;?7[sRZ aD3L;EiOKǷ$JLͶl #`4PJeIɹ+q 6&ye?d)`g*ke{dK v( IYwM1=Xb^ƏLdó#{Zyc"/D%\<[Qt;<[]+QS-ԏ!yT߯fwX&{%Db~@ASW!*H7|~.R\eEcfG^IUjVXA-+ٍȯ:?hNyKAD*p Rt CDmr)Q>OVJf]ul?]4RTQAe<Q!!R fKl++*DI" s~b\0Ҏ X;,dywld\Q1X8QjT]}SCbăd7 ae pT}6Z$hWˉDPGGQQ9t4~ѶTzLBԮ|#Ž􀻥 UcDK]|23'Hu8 #3jA^F3 9nOAt]yvOCR][*1 'T;FRҷ#XEE{kHh' u `oz-͘~tGb8>59 ȁQ^M( PrpQ|Ѯ@ fWKWY@_EI4!~p QfYx. sRzIBmIB+Ty*HU$Ո.md$1 s1m̈́١|<4 S[-3xy@{]@a" A!m.%f=6ߘKgfmCo[)ZN]>뿌1<}Bd߽Z뒇|YXV,)ڎE-wDפ@G9]g 9Pw(zcl}wݫ#Q8/Uγ*m})hs75N-7ۜxJGmX\DC94ÁXTFط?`Iaؘ<nwf3.3Е T-`,љ%ZCoe+nPt<\Q^R3}o[[e}=ޣHJ}ɾUoޢE-"=SMI'1S@GuzB/γX6BhJ 9B:NZF/O$]iqL-$yn~jxK~%⫹}*zN _6qk40$ZUcPN3bDJ _ SkTRYldʑCƵaDX3cRwm,& 3VT0Q e}l6,Uvpda=Ѽ%n5͍O|pC;P[ړP,$Bۘ;m(XdDXBm3)!j@=<H`t˒&I ܚ)&dL)ۭ(^$6jʳthy ҹI -7nP&ED g_<Ԉvfg2;UAMZRF2$W: w21z,ѩFs'A℩s.CMKXSmft Eoi7PëE4A1G 0G{LHTjR%mܑY!?y58a"7$@7qݟ2idǡ{+p%R~N.ioEycD|xu}S~9Kv,,lH^S%Xa3jOTzCqi>(LQ-j:5_ڦuwZ^]#oaڥ\aA3-!=w6t앎XwYK+< B:`IJ/6sӖ<ƮZx~ [Z)@+S38ሢChiu̡qM _ QmSk dڸp| ̜'p< ƉиdfBzr}pNMLmM`A J&dIBՃ[T+苉ΘDAv)%ҡ{2~(zhg-go[mubnh[r{75Ħt뷏mٹMr>)J04.gEj6C5ⳫbO7\ !!;ɦjRvcjR?LKÎOr)= qҊ 3Nƭ]uv'%U"J:^ڵQ>c))<5pTHTʴSĬ?AD1,P/ɜM1YquQW9f5oW1v]bHRJ#Upg-?[Ve}\O${T4qrwj;׎< hW-:-Vӂ[;\K.a終AE2"v1PvK, m~;6/ fFR"_U2j.#2- h+bXw[rj3f'.8Og=' wìK`{Qُq`}zP&U%&B(}1/5ɷ̳Ι.Yjb5`}^z$ %,87PQe߰eAXȲdy)3dCS[ͦte՘Zfa ~S:n&-AB 6? g~I ο,7NDWY،Ip-G(29B"NZ=R3 l;s-h"h҃uEE(a}Q9cTvh$k(ZMdY:tu΍@7x=v[^aIwrn\́FC+ǂ5[bBow'B!JrPEEOkVQ1z[Mga5_ߒ9j˨="($xݣ"GIC[*.?$xbM 5!Mc/.IM\tG ˲uC%3ǖ'<*]Y^S sV8&^61x>%QwRX "B<Ɖs8>OO cw~n9%q4Ʒ CMN]*YNFμr?_o^ J3 Hmڜ1Nu<]XyJ[ zXH4EPWld(+R)D-08`8=hrj_-c2K Co-vXMp[Hd`O\gj)xDD}zzkҔc-/IsGJ0i蚰`N) _I=2h8EqVciG޼Az~L'EƂC[/囕9=" Wv|3 <jgh>9 H 9:U6.mTtY\4!4[vQZ*{\I4 w-aK&I#z:(Yp߰Fxjo*HJ 1<1?+!οod)H$ `slj6h%O)_?Kvؼ̌9 FP17]QU$q[r͒4;)||QҟxFI-&fHy6-@B{zRW 6GM!$ W ?KqFҶB%/ӓK0K&fͦv;Z-l;(t[+a_jɩrQ=*v!|/!]GO[@/nf}>O 5^x.r>oT^+w,"@}KMAGc_=DHeхR}kwgXNT7NˢGe [Ao,F03 LɨS>ٓ~(HHܠKzF}~khׂiYfR(ctB,+9B(@7y&I6~T"2S~349-CɩP[n[@~Κ~6d=oo蝳̯ EKtE[ߪQށ> @H7s;qT~+sWViFHLK3mm[?P]`~N"? ,]Y7i&鷈$K#b )m[ĚQjwia?#=#aræcK5bi~`WiF#JjG UBg0XTXĊ]^."l b6/Z,r5Y˝|[vӉG`q[R%{8W ƾFln^Tw@d.1旭xP\w7NJ_{ʷFH"`>yz zУanR[W;1[YCoLN25Lg;GdQA#T[zmj%bP=kqn+%> vJTG9V]Na,lkС⤒ G- Oح+PY !a4d)׳O(a*}yZj=:=IPji&} dlڜ8Q% R&#}}qņx]ŤkSrU6 ?ecy02ޣ[{m?䌱:3r0* jA6uP߻u6>:FX UnPTQH|}B3Q5Zx3) )n>.O`GP?G3M>r~y3nRECD]Nb/{c( $ 8qs/GG3Zm+@e KRż5!m%f[DABR2Msվ.%5FW˴({V0Eή]#)=^0{kw=}`/{UY*k",\4xГr(hu,]zv]saj!KtZ4z s`^$VO$k4Y䗸t8PvM\{S$XЍ 7W`E4ūNpA#-^ 'W4O]8b>)i`DG()6##6)ȹnkMrҫd[$nQ~4}9s'9N(ʔ!uGCǏCl`O{v_(5ngifHt h@6lE~!4(>XB(Y/*qی՛!k \ xg8ϻęYt,Y9JD6,@ΕϤh)@˖ӜPP嚎r$Gc͹:-8/[ Cx@qU )2VW3!FFWOA*8h{AMm|L 0nvDY Kfx X JaJAZ#7G7>7dt!35B^wvJĤ0 Z;9_>%ֽ^@/2cn}J\gwrncJ WR R8Cܜ4Sꌛ KZBn`@hHeU>ɩذ6Ng״i uspd=d(ޭ,aWuK<*o-.Vn6XʠRDEǶ,'T~߶c(Y2zݛ){76G~W}to"W{(}pi{X_0>T)0`gD0*:ƪ7Up {:v۰Qj=^UQ2A0w.E#hy?gzBw^Txzc\{rяE)!P9tw@f'dro5+>DSxHea]s%lyU5/]cmQ+3 d16>^q;vM+TlǑdmB<&ӼVl*En)0v M#UIW<wӤ%2YWr$Ei(7ZEED.xeܳCsHJ[G]ʺ+LLFʊa1"nh둊I*!9䙊Ly чܙQvUh0P[{>i$CXMlQk +Osc 3ZuGPa+ ҆Eލf,AvWֱc}#gLZ@ %ghryr6{'aEoBup VgLḻCo-u 83Cw(V+Pڈ 'ƣcM*?ŝzӣm&P"[ZM˶+'Eϡ]nRw{09ʧ?7FI#'1SR lgӞ8¼pqQ3 uQK=ғn:a#Av޷e(Ŗ"cj"R+Z0D;$du>rmrX`RYj=|VaU9fhӬs4#0sRߙv6UCIQ*F\JEMmv= v>D&_-4~_17nᎌ("6*W;615&[Frpi>Q)![w;#ĵ~f4q&*Kaj _[BvCoEKH8 %ZQׯ~h:7-A(пR\4CIxwCb.@Ek3H@5 黣-ҙuu0ˬ*vÆB^tvL>B4&siiT([0 R M;Zvoqyzc{f:{\(R7 H_+'!,_139=H6QVʃ3lkl-6&*j :ʦ4XZ`vS2bʢUQ3a 3LtP yVK82?ds&]+$h68,_flT{5|SŜ=zg}rDLLq+ʄR3-,C]aIs'ODwU>6ys<}3K%b ~߳;]Pd$0SG%"D]bO:=sr=WT;RI|xÓƀl]L0 6#Ea1;7 teɋ$Ugk-'#-= qEg:dFCQ-! PHR1 W[5P塓7s Kػ[kg[Ij DoE[wj_ .$nR >ӔcՀ߽ƾU,xQ8;zBD MDqgJbn46r,tֶ4>ǘ܀_ ;w\6Г/u/)K9m*|jN YPRsM d,wg3.!xJ$17nx4,BośWy%p~[*K=wPJ~g >0PZ3I_vD 5=[y4k]3oGBz—CO$Y_дhe2hžx>y^ k0a3p^XnR?Hj\ څ@1nfV =oiYY4OFk\שM!6LcGs7nZUZЕtu3'~TI:)@2PJUo1 SJD\Zб,Ocbn(/+ZFJYEU-z YtǰZ[.Xx1R{5-UU1ֽ[iѧev~O^M&PԦ1n1~#MʴL,];ݰ)uC@Ay0&e%3V16vKʗe.d}:۩i'O@rG7u@?)-YoCZOAe5p <+=O#ʆ0&r8ynSzGۋ Tq祘*I})I]6LAVl]$ "!1g #o0l:9 {)]x#*7h?/f& 7׿BgRŒu,Od“3~¸,2lpk( .i/ቾ+6 |鋵֍İmO>[k?i/F$2кiAkK2\ 6nfgs|32jeM*5 k2;ЙG&޻ĉzT} Zn"{V.w(?Fh!g!4l;L`Nkt ?d#4C L !RCOYaqn^e|_bN\ V)%bgp Ğj̱/H#GM?ּr1wGd; (FΡСꌪ.҂y U;aA%j@y&^B]>DU: Z`S[ICI=Abմ-rD+ٞϔH SEb?R}xu؆8Iz!3j+0KM;׽+fjCN|ktۇ*T$vSEmzr$\W"[&;`3hfYq50P݅h> BZO4#.HE ǟM 6SUR9hVK:>q™v؉yTX0885vky*|CcJFu4m70UzO3&(:7:e(E΅m0F[& tʚϨtIfՂ z4$;qDՋpL*ޞ'R{L3oĄ6qRz)EƫW̛|U%ǿbR¡ Xys=$0_?̘fUԮ2|'d;O?gm\wJa9KnK-8oJr`ZCQQ?Pp!ԶǞ@`>Rrb(=T[FWi1^¬h, Ѱol'4%/7nrdkxMTd?+M>l2Õ6ӯr k>RJʆB,WF+ssr\1v% YX8ōIOu$/l 9|8X(!2b)$+'_?)n*Z~uyR)K7l.k4/r_p6M$҃g K.`yAmO9mz|Ђ4T?MMg ߋKs܁L2 R:}GLR=g뵡¾TD,j>A^MN1@@)|(a.4䜈%'u l:~6Wn|.g݁򊦞  YBPˇl꾸#ZqpD+?="(ఏKctUrYa m6#hPBgbt .g:]e}]-Hf5'?=/PRL៥ ~̈"z}gIԋ3ؿs]Q[},suw?QA4ڋH;j`0Izu!ARpyB9>7'ppw5[MΞ!3 ެ |+Ϻ q2v"ry]{|t\\d>%i.Kiwv2?t#*JL&8SegP?UaU-RV,_Z߳]B ֬#?wm,f7 SE7EDݵx8ZB5zӫUR_||> Ojֺ<OHxÑF /5Hxu2+E.S3+l8G.0,ȓc!"*S?_CwZw@5 iB0 <9 h.5}QoXJV.&b\ F n\ }ۤE屴{<*m=KYhuճx{dM0;8TeX.j%.Y: V)i(UԹ`ׄD4Tx 3zqdiXm x@cc01:aSW01 UlZk{kŦl|0}#yM FO]]K%ZNMms'1Gș.O sҞ0?)Gb'/S-0`Beq Cb}P[ mՓ{}w{Zx,oIľYObSirD~k^hexO'XI`g;acOپ;c BpOB5-Q`!KADd'EfaYȲ)/䱀[Ie?]~P<ݗ9Q5I\5iK0FDQ_$k^ ~Mb[Xp43G@ z@{h:9{Gu:I :;W$εs4_s3vKErw^YU~VvRHy7͸qaȀ^UPWF,: Eq(E8EҾ8q9#"Aj~ʇѴ$#q e> 1Yh ]f iw,^lhL`n]\CR,]L17+k ½,ZQuJ:XHO 7,9 ߵendstream endobj 175 0 obj << /Filter /FlateDecode /Length1 721 /Length2 5043 /Length3 0 /Length 5634 >> stream xmRg4j %26B z 3$BtQ"%^D5:ѽn{﻾9g}g?Uy:A| ~I&H@@ /D[ch5. 0pgH ( "(=1;{,8YH`vB#)wwwYwW7~ M.'8@AKX VT(8 f㄀4P8EcN'(Cɕ;fA#JzrZ=c=5 PiGa]%op(v#'##~"C@E/Ph0ҍ }y0 bHg7,D@FòF"<_jXPv7 !\p6{cӍEpC !ܐoQߑ7kXAN@_SVBA0SֶF}=X `*yǒG{x%|B HXD !$B08 ]MOڰw~JyCwxy'@8;6{/}=mo-`a>pί|Yiemz$r{'r:3 ~QԥPBmUTr|>~jcEfru|>4w4nxv{;Í lP]G=uT\_ ȏؿ"O.Dp?3^tE}h>2#$GF {2uЉ-$;.͗:BD|W>~!45n‘\&WX z>Bvdɬ1QlTtR><{,\Wtqd>Y١E\ZcrSCQ*4rϜzϔifr5Ԫ%..ez>s=#qƀɝ6lDŹ44KTGUgͥsD-f [_Nl˳lǂ]4ٻߪ# M%Ҥegt#@b؊]*YA0ІlES󚎲8QHI|<\_m%K9MԳy1N\Ve W/AuNf3|UƧ-aojn7$=K=y6QrU2fu[F&3N)$DQ3:4ǯI\Ƌe?( Pҏ~n #,y&^m[3H>oLiM1RtG\PqKŠC;qߪ]n)=}y&N([T/w_ 0ſ}gUR*Y+. Z[ hs߁ X{'kG ?rȗ*A׃HǿUu2B)= k)jYz$a6M}Af(Ez`29c< p?ʌCBFǬ-7I˿*jtNReA}8CNϦ{r.t#>!g 60,4Uu8\>9($N1JK87[+SM횊j "Iht]3~E[Y_]-sKz͔=;' [Ja}޴ܧ6T?#U曺Xn"V}~ahm[ gJ瓣roPݤUh(LNA4{>+S"9 S^˗?͆ʢGn/˄4hi ERS*Z2u3Wu^"YNg wQZְARӡW׃ca_gn >,1|B8V]}R1gRW:U^!Zsa<tf#!)wIy4UX%hg셖KQP -^htH&Hlj WQvؠekes解fDtg=a2Ϫɺ-)wU TaemN i?ai{̽>>V慑iÌ^L 1cP:5bI^Eb^M-^n2a oTUCd.I濌y﯍/~22{=1ʖ0~P\ZO\OeM}O#[*ad3 J5zn%p6-\}W\js&Assh;;/ /:7?%P"=8{[pE,W}Tgq4;\F'WjM~x^eyQWBrWZ~01%!XRI ~T~mgޚB΃CWdXwjZkfq 1G1 ,@3W wݢ.HVs ~ǒ^Z8Kc79" 0hUDlî0.؋/⛈&}~=)'ʾ@e *|zU83icڪoiM>#plY~0Ya2{̸cT|*`&8JpH+L~_S8f_J9sp%g{if(gч%yίdga*9-\gyqEzQ=(Ȱ7 |v tǓ7^k|;X?):}[{ƹIE+uv9 <$8Q~@֯ 2lI ;'(!O|}j˖1950's󾫋bIVT2rTx4teT!,7XSQdZ~.\JYfw-ZEb#gJ^cM8AY}Tuz0ueH1ZOhEhj]@\I7i[9yىȱdcO+Miml^oSh,+RA: / |s];6z>v6?i7̃OEO7^wz+ +)BdPK%ۧ1t%C%FγTEHUm ?@d rAx }e{ͬ.tUr!J񑽷M ӝTiކW ^Ȣtw{P>xG21ep 1n=uA-^i,Z~ո"p췌یE{GvaC)j#4N }Î)F~ES0"P%əqW+r\/ '3SHWo!1g풠1_ KBï'Yto-yS⃃07;O:;ӨE!S_=8fٗތRؗޟC5{U/J)xg^y~>nϚ(ڦI^9K$xul) M~MJ *2\jN<  ^Ì1:$L" XLXEu{ٴ<$4R%ejr- bqJgv} .V9B> D_c.>jN9RxV#^kD?S[`B:G{A W^̒J.Rw.D@o5$foD'-r mCvR1[rXS^MI56&VRܪh׷Tk9:G&XߣA#N}QIG[u~Ŕl%_b}qL+eiOS! |z7$6",P泽Uri a=MdO^o6~0^ PK/ YZs)f\FSѬ 2%MHC!nou܏@0Oɉ׍4_9 '_{6F]2%Sx/_Iap馸l4H=EHD;OW?Z%}saeT5]a(A[2Uw}%FQUL3Ӯf>?X0uX>֪>$\ Oe<w9Sw =BV_  7FS jwYA-]+2f*TjXk}i1Wup7᪬[䏞)JDJ9=пz[<{QXL~<$!ez_5*ß2r9 {@yHX5l8Um;``T #KB5zKb7uH~n ]KiKMÍҕl̞{7 V=󦃫؉>OU.$ϧCdGiw>ZwNur*z_ψq?)YuoDuYuA}pM}F37 ҞV?VV~--O vNLzS[CgOX ɏ>|Bj‡T' eaoF=8q+w|ҿũfUNUOyuW/;ޡy,h1PF2.ˁ%ў~m#UbL4r^L|aG꒒UC CZѪug^L8+m]A-d̖խ ,IT(Is¨> stream xZKW𐪀U7(VUV`%.H $ϻ)sՋ^iD|qu4BiZ/~N*-W`)>E於Z&2ٵTkqLh 5y>y}ewaaOVzZW4 %&.f6BSg(-\6o@9L|֬CFjwƺ멅J3( /ח):xA-Oz}^Eᡦ">ZLֱz>ђ2P)F%NuLa( F_a-w7՝Q#3{g}pٚm}؜Dr#5?QXC8"2D)*C]t֬| F\H4Ԣ_#ܙhG,hgMr9<g&LA4nd*LN6lT%Q5 J]E5<Zߒ p`ۚ^ WӾ sWY.t%peV]Ϧ@ ``@q6=iohAC? ~["UJ #i"KMS6 |Myξ -< y Z(hECt*@Pӧ m&%uQ22FwW/~HT6\KeM9 rƀkPv]OжavĚ%LB\+4w{YJ )V9ݺs?84SؤgTT2Q T `sk/*?x0ceva?Hz{0iߖi8};:t# burH`I0Tc¼*ޟ)H5ySp[ytgUzlT:EGs0=}=Vak-p=bDrnD}svw]_3Y)GzVfERj)LVߨ*` Q :?T>av<|лm`%O"u@!( AU(M7y'9[jZ MzQ~[Qٳ-k< uc엫D?>$kww> stream xڝY[sۺ~ϯf"`^:>I3Ih\FwoEi,`wNJ 2&y8ɝO5 ]OHMTLJ~Nd *|qKivϼhq*atR۶؋3lNrCojpREs<]v2U!5A.'$xcc πx\'gx2Z˜JE(˒wH'S[DgC]ۛ }sO^x [E[K(Z0 (gQ.аWjSX Q]͠Mr`{Z~) Zj胈@!iPX~Оx%;YOtD4W&*%uLuRضuҸ[Zٸň Ѿ:}ld{3<̐m@/On0 >|3 X֨-Fr66frfp0θr=+1=nmljKw|6yO~'FfA2A":(#< Y;|ږVm/ⶌ\O2 [(/ݟQ=vh(,A-q2b6kPiL@|8v4f/* *+c>>I N:Ce*#תJ#Pۉ˓r!s E+谨KI, [ 1DfNdV خur<`ȵO_86ؑpR0\Fw0D2UGʬ`3x/v['DO?svTF CyjqUWɗJ":8 MX,]6Nۆ-=FrQD(\.дA)<™ !D'H/y1c$3Uj{@m&Θ,.2}YoV=隓 Êln}H656XN -|93nB/LH^5]~Ah|!K9hN{gyFR='fx*}'ыc0d&T3\w/n+dR3mzk-пNUwzzs!$|׳hTB23RPQ I_EbivM&R@M$V$\j3T4lP䇖1bWD %b hNDČY!'?D]W~U#" rm_&LCE wh >z┒σWP Ĩ>?~WʐيvC7s{õ52( W9"M^ {EZwD;1"-aNH#JNƒ<( V.+ b/\c[xJDhW ]]MuRct)S Nn<>sI6K$" a7kyF)}AWg4(;]:N|I!fCXWF:yd]*%^`5%yN>!JedZE jpȩQ|{%wrpd!{=V̨lI#ܰb7 e\C-4ۤjf_){MtWLg3kHXEʅPTCCq^* Pg]ُU1FKq/grYTL-A~DqlPu_x`v:͊IW<ݗ\sb7R |}5@a|/UzT7-Rf|-Xendstream endobj 178 0 obj << /Filter /FlateDecode /Length1 1848 /Length2 11595 /Length3 0 /Length 12741 >> stream xڍP荻 R) 5;bŽkq/nšP܋=szͼ7I[{Oh(TYMҎ.,l %qv'+ ?r-0A7 "*9:]vv^66 !I9@ vFptX[Zz3;??/1{0 PX_V4ͬ.^Itwwg;:B,E.V536Q2@d4V_ uG w xY_\\u9E['_Ɗ0;+?#ß 33G{'% x+ 9asv|@/H@/]řyf)s G{{3IZCf/ pmCat~ EfccfV?tdCR @\޿+Pf.Sʿ_`!}cK;:yk4ud.`gr|;?;Ύ߈rxٽwg=6 ^A߀yt?_3vSOG⥟]]^fCeBT@;ڙN2!bvl\&)v8:[qXG2sf/Y/)`hqp@8/Cj@VGKq G' J!@x@OcU?T^hC/~zKLпC/:3GM䏽 7|I7|7~Cn7|I7|Y7|I_dI㷬^n?bMo7|7|:%-%_a ܝNK`✣`͗j1wqo4;i ,ދv_) UCRzV,?z6!Wmy0NTiEY|(V Eͮ;@[fNyw|*y8}2_KGvTwxPJYb5c fhrMf )\XȐO=0gagO<'2,[爻Z-p"&#$O'... 3ki㪡\*!a(Q5oI#>N=;h8Yc+b#$XH#<7u(B~~<Q^W~ig7 . 3߉ OG"PCTav+lAOڃ϶"$%S0 65;0{?. ޽AY`^˰vQPϫO>%n-:Z򅷪GGnyYtB&0^7U2üJ+utSgrL(MHi'eH\9hS*f0UHMUP=S{Cuv2Dִ.iN{O+ 1s;c,0ƛRԎ8O u⍹NWc&dNq* ʮ9EaW٠Aܖnh"_&rmq/MƱל{~[^;0CscSxf-nJ3x2g2j1y=ief薿2˃G/Ӛ |~nT3DIfcF^8$g` 琞|svCf@h [Ki |쇴:vYх +B?LKۢ&X`!X2m:xZ?fqH8N\tg){IJ 50޹oǕCC/p(~021}=KuB\d-I=%T*㼦\? כӹxw~LZ^{1?V;"2 0jIr~!joO);(c>Zk}S4H?z,\` o.Q^cdR!O]yzEǘY rz$A/ 44$md|^`M$&y#;"WDhB"̲~FeК"U~ ReYpC&f>pܶ%gXލgCAjRJ~^~+;]TуO@K\NeG$& [Iu{&)ߦ!s p·rPğHd"TK+h2X1%lI}]Wh43J"KZ"B4{Ҥr_7i@¯v< <0w}76CuSБk7w(SY߰ E!Hic }Z._y]GUm1I8G-d#N~vϥ"ne/{i-TY`&E T7NhP rk`1X~R9][S"$֬9 6WRͼ;bS,L\k"͟ӄ*oaڤ"\XۓPM/OKSDx(9m;f5(,-{08 jI^TeT螇pǖ'n>A `"9ݭ~ طq4^tT(4,6ᧅB?e;E`El{u_b_1}7>8n$^P hωdT𽎴q5BlP sS%1RcS>P{qM;m\xUQ"HNTU˹U$Ui!B7T㛽U>Ϸh>9n& {X%HI9swSSp̜_2RW{$ Z׿=G/@o5A,L)iTJ_vT5m6 bq)Sd`B膧;Qǀ^`DZМ^DsG B7~j\#,B(jRUfX Ֆl3iu$,e:-[1ߨ$)>_S9St*b(|2( 3}j YA?p1 2h'Ȅ/_KVC>+*Nşʜv<suvo(T$B0ӱ|E0{Ur)[MGE5h$?3GÒ"}V#JY>mDWw7"}`ZG%GQbsL%ejy p  (e&0f0sMeXŚct5 'dSf*r 7v936C46*u(ǭ^C5kJL !̔+@N*T< ow#˞M@C*x]g1=V]jsh yiCF.:o╞mH~$Hhh7h t'XU<B֜z8^6c\#xk< A`3Tj/G0aZΔ92\Q4Dy4{͂Kh6{wL`)i͐,߸`J2b8+W0j5t̄=߸9S}2fK5t(䩙\ `-6Owax3[v$ j.LƺYĸ8Qx*J9s&$<,GFrz65:ݔ CfeەOm2cx}˺Pl ʤ$#[;/'-+4O 4 ڳp=+pg.޵,[RfKhd2z~5/Ke$ΆvLՂ1߉ }`@U%S39 fE 8,?:I.ƊO)kk_`kvvrG.dq޺e|Z8ԗYV>rsJ PU̷| ipoa R 1{*5B%߱(Ss11pYjald9q0jW;t$:5۰1gC\V畩NJmڊ!ZKY]^qՓS_@Y=tB?kiII=X1_*lA*~"~knݛFϔH :{$VA e/%4sn+n{\<׉Oʗ6yoȊq;LWw>7BJ{\ўx_3E'kBajxzeFABXMJN'V989K+Jİ8EWey=y1k.o!;@Ӽ-3 6 8\~\\(eLWc 4rcFxge#"W99zJTTsuӊJMRdB9SlPQӯb{/YCюFnjA4~ [ 3e9^ayYayrI5H^ņV~X<Nf!Z9$1P}4}i\KvYm]Wi+R[ i(X\~0$`Y^\ M9d(}DBm:]s'jlY˝璽.Ʌ@I_ΜeUDV2gxn b醾iL[*4v"0)㕈a2MPs1\3G﨣@c d tuiMPVMrXѝ:*U@s1Edu>HCk5c8Gm4LZ9gzӢXrQXGfqP<àqB=U\/Tǣ]6v~j #cqH`Pm1L2 *8jptw&TE@03YxqMOA JRfBG ث۾ b-Z>KU9u)rAhې Oϊai/Wjƹ8=ܫ+PtXԚʼo>npvT5еL,%35aQW&WG? +96OX̕<O,n7}+NIUQO:=1wRZ5wM Z=}:"[cfu-4_IMho[`WP 5 '~HaP$2~LvP.|X+}3J'gU.fC4 ʈGڦ'HLՌo:U߸0=,RS[|P#i͢.q]`ujp_E0'aHg^ƼJ k5D-n׊~ڒL>2<_<Mpud PNqβ@(R/IR6Y%fGV 'M=.)Bz)=Ý$]Nq% Q8fOxn&n>}S[Wh*$bX:SZ ahZllO ivc}=V!g;zdŗ1! ipИ vJFvxMcIm8r>_R<>Ae7}>hİP9tw!]ɲ^1`*$(W.K")\&ʟ`d)%`Y+y;D j1i/"$^!ⳞJtAP.9NMRE00V-?բ%_*?D$WgyV!%\é4\f]w7OWc0,/pdX(mx~&"Nߏ@6 HOիo:i3@O!rYs?fᜈl &p8m֧$ W}Y;?q!Ta^V;~ǞJT4G C}<܃BTsַ zX[T),Kzg tvLWRM0䣢]!ۙy;Ej[ × [lR qgi!ta3.kL/\ YPfe~^.3sӓ^.\+y8t`TځsE}Q1R&;.zf mP82${7WlN?R﷣䔳[c2ۃtceaݶUV>Hk;ǨX_uVBDCC̶4G|TUq`]'-B>rR0z"'2ڧ-MTtSџB<"I|ˀ'XFVߌ{cNbmmr"p#+ðڢCfk-6nUL0g{O2pr7x+tl=aR;q"^0h^r\MHC9AL]0 >] b'zj(-$E3.o1RI5~|Pa,}v`t1Sճ;"ƻ-GDe$DI3/C؎ q2&~<ƆR%JZ~Z.q)YSDUIe dzǎS в3A&2Ff_3=Ii.K3<T`Ge|.uww[O4+„! k4,QĶkBj(u.Ra. |pKgA/ ru)[≉)'O hI^4;it:bmʥ oٷ6`LeBU+){g씵T :g[M!As}.zMj&"gULu E tDhӒ xm­ <~le߁1 SOR98Jϖ^N6mo#}eekaS9h'eɏqsbsq_˅{so`guoݛ{}va\z.<2QY$2v|ݓG4e]bXhtPz%l/v49 >+x݅B"b0_2A93-\q#A%k`5 %Z='Z5D!;e'*"Յp8Iy+A2m3Z0[<9YˣBJs`LeV2B>2Fhuh(/5m/'e眏A1שdIs(vn&pS_rwJMF:bgnL/{sfLx2ãM 䑎e(fH.si6c@]hǤag]?9L&vޮF9J"vsj@zOL8AX+|ߴ|*-Kb7[{y)Zg z۰\*$1mH^EwjS),Vˬ7z~ٖ_KT4y%!I#UrQH`JJZ>c:D`2|KQ2y36EB[[Siߠ`߶s8FZ!ixv`-2DCC|AS#eR¹Z/͟pCrh"[bT15|R/&+œ.WH6 L0OGv i\?~b 8ͪ( w ԙO펖eѨlRZ`/Gn(8ݚ&\%?>#%#dsfԁ"LoCu0X{OܗKn:t4;=}dtX STBNf_Ǘ^ˀG?uC Su&9[QKdVy,6TaY(h)5+(zu5ԬfNqx46b2ЎM~EƲ}Q#Hhw|tOϛRiWmZri XA JpQC.984(ȓ[e`.o⒥zҚCMUʘ~Mdnѷ <3Qf&VBZOαǘ:bPEdϟK',eX'~(`<T퓁 *z8RPUj k5TOVvL%z?%ȚV2UKgװrD=[I@>[G[Xi$ͽj;R֜h&PO%l?r&[2H?Y_6.Z4G>YӘ[t~xO띏Tg8@[TgP26{'7X n=ly>Ԇ:,iÖg~ EXbZ^= c۶]}@|=gOy+*b֦0nLUK#pĽJէoܨU:"PB*XG@PvEY£y7t99qu1o2.{:V/٢Ȟ7R}=[dTvP+We~~&on.xܵܝ%&)2.npsDGNf`,BgyCm8.ŘK_Xș_9,}9o?O]-LQ!;GioVZz*20֏횃* 8u[s%R噽|j4t Io`4$@ʢMAA?hczl#38ц3jس˓=3&eڬ5k߱hWA=!f){bO鸢 Y`eqj%秀jU]AQvCŖ VOMC\|Rb yL Bm} ed&X?R33p\,PZMhla;&LѺ{U2:(_ BlT>'橕msU!.V3k?-rݦ*#ɶRVQ #W}ү,{УCg7dCggcFoH"ر~T툄S{R;=j82u/F~]pvnj̦X3Fd0`b:ՖJSl-dl@%۪d*\uCͯDGVo>L+= 8K,rql4=**U쨹2RfB M<ʀ74QϾF ]߅n%vdم '@Na@Skj!SP4NRM_K!۷nfo~+a<"| U2?؈b„Nx,$,h V`&xlQRD"a6,YWDb3Q}|3two<7 ȵZэ3TJ mܩsоx{)/X"ʛ"#g]X\؃U ɇ jp5^MrCgy0Vi]uLSi*_6JUbpڤde}r6ΖȔVyvLDNbQg[xw*Թ˝Z8.]ᗛX-rNv,w?|"NM9o(*3x7?6FBoMbPmLP|Lqb Or6ԝxWr] B ,I-H{MB‹3*6#b\F=+m'[P- Do}D:JKL XUuqO~zN7NjbEj ,`I+7 %hϿLj6&7y~a0dI1*g HFkDVE#:gW8eȉcvɈT^_#q5 Ϗ/2pkĤM7/mch[(d(w%#f- 799=ضŏrhb';ӣ 8 > stream xڍTTfQV/D $"ːL`$̤AEqA ,> Ei"k[PT@"E0`{{wrd-wt:QX\1 Ǹ; Ȉ A ;*#c~:D$Fq+%o%,!8VЍ&fd:Ef`%r#1DLұ2+!2g1?"B90a/Ot|sPD"W"hR r!_Q J`-쏌Rt/*py),B);pwNv0TrB(6 s8d(x(NTIW bȇa{a`r0p#B1Ui21`\k$br.^K1b\7@@PabrCH_|>0!Zjd!@84ew ҕnChA EyG ÁZ$:pQx#>(FRp#O6q"4l}~D(c|m\<\ F)ZYA Bd,ƦLmǸxatt6K={O8 ,vXjF#)M*SOdɟQlA9@Bl#N=t=i.}^|ۢAp|G3v Du>!θU~oAň1qY#!بo;`\=",#AL&;EF hT )` xR:dh>Jߨ4+s)񿘄iW1IFofDĺȆx6 H!=9.GbiJ) ƒiъ)l~ lwem1(}#Vgf>g1s䷹1>9s '[ C\6\xkӗzSXQx_xn~닾}r**웬tʄ" K+*zj9txfW4.Ď5ljtQ{KQNu>|z} 'pQ~U/0Z+]M"}6ȩuVS2S; -6PlYd3xz`ϒ~=՘~=8 ~EoZ֤ÏBS+WeV}I,)oZ&yoHx} yNKkHygua n[1[\KR$]Et,zO^HjOtY[e4sj{KKbWly 5:loWL̖1;8fƺJƥ]&.t;ܒu3S3R~0wBmN2&8UUnCC s4}vDg ,YНKΈ^%EԴCkPXٚUYSۋ]y8NA0VP 䩺Ey;+r7 1ii\ZUbډUt!Ӗv01>;ue+y͡]1A WwU^O8nRenb!hQX)1򥆲=Y9kzb}kz)vKӛ7(:{SU;"H(0O81'ڡ. qE4^eN~܁A_η1]{91' ?:^];eѩ4SZ3XO-]li/qKVTq7fG/L[jO8`nyBO^n /|~rKy7UMEEY"'V7l о3YhQw;E6CVY > /W [ 1 3 1 ] /Info 76 0 R /Root 75 0 R /Size 181 /ID [<9b558df9b04ee16f0c4ae4b28b14e71a>] >> stream xcb&F~0 $8JI?m@6(6[$3(oA1R":A d ""̡ mB i "Á$s[&,DƙHYnijR# VY "@Xt Ridf17~B endstream endobj startxref 204724 %%EOF Zelig/inst/doc/manual-bayes.pdf0000644000176000001440000107120512217153457016164 0ustar ripleyusers%PDF-1.5 % 173 0 obj << /Length 2296 /Filter /FlateDecode >> stream xڭY[~_a(*cHY " $ȶ@2Z4}myXۚJNsn(Kޝ,P|3(U+Ҋ:vi=Ms)jE( ƣ9 Fe$&IC,,bmg0ށ;|Gy}>c!/5}ͺx$sLS H͘7T$t(i?nX;Tr z{gO.*LqZ-<|m׻w]. ?Q̞>GIsdyBsO}$l#2* elPiQۖ T*/t_AT8Xם0[HzBA%/_@PS NDqKGj^ Xς(q̸3 O?Ї |(7D V/X5WgQ\X kvbTMt}"VfȀג{y YACI_A=%dEzh.yhލsi9lSЭ`Y`XJBMy1@>o*{{:3SIȖˡotԄo8:Rr3xz͝,|h}$x[_'_1h1N~j:d[C*_8@tI4>?"Q=Q% EErJ 'Ǹcjx^ Bwnk$s7ǭgUFQ:(ʨNҋh &~֨tvlD0v҄ A3!A*17S'l࿛yUwl ͍nO AG&#w-^=kLQl :DP&*]1ZILX H z+z3*="[Ӓk `Z|Krh)4M[gC;ΝޑV}EߴUKcثhU8J,V 2M"䣧#g2KF5-/[Rv=  ]F&sn*:D䠢[z~>Ucۦ䌗jSF 4%`lVal8ƁAⲦBrk&]vSS'&DC.L6ؙApzyqR*8?0^K]z'ןPiSP$Dv2kΡRkuJ~P=5sC'ơόi:9o{9~T_%%zn9b<"[oSh|]E}K:x4#B'~MQZx>f-/\1X,FO Jpac_"2k8D"b>}/Ql/@pzb xpoUe4 ^ *FM1pҨeAO5KZ0 P?@6PqN1yT|D *}G1 mmjVQA+}~ endstream endobj 186 0 obj << /Length 1556 /Filter /FlateDecode >> stream xXYoD~ϯ!$<"v; $l`;Bshž#3N6C:M He:M"΃Lă4 ;7IDs5.0cCt9(6 ae-jk[%[|>YMzCwH+dVq&&yħ vJrMKT7QR#x-F:fQB_OxPê$AxNK˫-.rLNCޘ7t±/T!1Y}E; ,GCV*B6>4e Q. ?. T^HbܨؠЯpXHӫa+%՘UNk dlFZ^.sP H#BgI K_ԺV^x-T;HB z .*1:G'ݩIXAIi#n2W:=s#di%M-a4PU{KpIz漶ڸ\[$g5'saYn64G:|hom0W6ge ǚd񢃄,nYٟk cިl_6aIm4 ,u, MD,4Gsm{A{ KZLꝎr/a\rt\Gc{{nE>1J9Z{|kZU8j{{- c> stream xڭXo6_a+ +J"%[umk0lˎN,9s򰿽(m:6<%~ߍ.^bL`4pQ2YK31Mߢ<*u5XYo"uHr3y H?SEb} ĜJ Ưjb6=M|(>LA֊7&G[Q}#V=,X) N3Vqm0I^D#CY ?p?жc")ryniީ:?__Q. NG)}RьدCQ7"? ZXL7YhݮAM);"ì)z\H;,џBYYy uqEAդr#~ OKXoЎ[v 4I>0UB(HBKSƜ,35ZfTi< s1^I|0`>mx֬w2#^ޑyŤѥYD^> EYeI&,S?NDp^jt1d3HN>uV(>gMi=N3'OBq0"qBs{Hw~R |!= ^'(GM̿%&/RC[n|Cc*uնBc}F_: OILOw23rs\̯4̉!oS{/|NS1 YuxjKJנɿڰ{R H *^@:Qa2v e|:c0jױЩpD*\ 1\eӊ*(4!JqĊQB˽9ʒX?'e螨pas<2'𼡹 }imKIMG`hb!dTbQэ~OaUcޛC(mͤaQWmܷF~jrEz ڛ@mUbޢvM gw{h4s2,aZFkg(M-);34Opuf +,%Fh>CnީgŕY6_@GݯmC]*'X%AkEXu&֮WVw}m=5}=]MhA#wO}:]V`cGZȿIǿ s EKxG#Rwe]O ]-THU=F5F9Tokm%BqB yG6'zN.~cq5u endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 800 /Length 1047 /Filter /FlateDecode >> stream xڭOoFsL.4uQ n\(>kIC 8VlW[CMEDZCZG҆cI Xa1넇ٌq {2ȸ 9 CVadM8/SXL,s#$r#oQ*6!g)dHS:Q)bOPrPp&IxDhDJq1z"c;`1bw#%a#Ԭ#'qN F$4xAaUJΑ8ТEvcWNv6 8d2)O{ԆB"6Ұ!Ԣ@̌ڈ"v(%EBe%lщq0{XI b%JakQhW92-F5X U$eY0f(f#(GZh9Q\"P$> Vrc() \ p]P-eGGSKsP޵MW5Bwc@e>c:+oeb6Oɾ;aG,?.+tmfCqw*wE!Yn}S**[jAI] ݎ~eAQ6V6Ə^~YuUU 2r;83%Xp~>WuY73ЛЛYtf&~\r8sIS~,v:|{|;x}S-?֧Rw3Ytn&1?~,~:ss?tZ(?+pt%m?58kY~Vf}S}/˪<Х‚_eH^t\1co^u@\oVcM}Xh4KhV_(]c #}l[?]06~A4NCj'8n:ŧK8򡣧^0Btړ-܎]ACw>)Ÿ[s"N7:mzHz_F`Ko[ڿg-u endstream endobj 197 0 obj << /Length 1021 /Filter /FlateDecode >> stream xWo0_Q!&d' b< 6 $iY3dwO'{:ead49 =TB%hr2»:*f@ O@K彅iT|Pc#}zG[4y&$@0lUʕ(^MքNa aũ'aOf3m4 Y$1wʤ8 CN٬ƛhHfB`*/c+9X#@3GC,;J&5wNB)jUI 2 Fu˱byÁ~y@ I}* B+ؠ) ɳD{@g7ĵjf[2k?2nTϨ fEm<0sFS+,+[Hn)` ]2.r9(o  Wa:+_ ȏW4<mO\f nhI =zF@ֿVBu}_Cڄ6657cŖ[t8N\ln _k/_s@&]e~ZrHV--Yf8EIN{BFiHSXy%w]>Џaдf@ί,\I^U-wו9> s\]Ʒ x儯vw:^|ؽMҝPURunIO00Bѧ6]fJޔ[EѲg tw8Э杷Վ,y(3n94eGX_9OqMAl>w₪? Yz,DDaۇXһ;%o?3>٨nF-) nnz84Q8Ʃ8*+C<ٰC{lfe3]v8tN̜ZXKtEL1L 'τgm(k+> stream xڵXKo7W  r1HQH R-Ē\Il?Kj)[+rH|3q'gJ68uslDhe9l޷)khstƩS-/3 k)Oi94Oq:/ 8vcqM/(nd#m >ymh38x]2mvvJ\}NC?šwxmXk(/M L(Dt <65nVG)?P_m ml0u򃽙׋Q"垗)Cψn{(qt$=#I4]`fNFf Ȟ}Ue_[cҙ5Pq2q=6+.@ȤG֘3wa h<WPNڦP4iⶻ~(ƚXS-?A[tm_7:7Ԙj̤2C:iE$sԙP-y(k0jNNeiB9[Aڗz [euyV 4wϛ]R+}h2*T 8Hcǭ8<0q;lV0T6;fk'%u!tJ: ;-1%+7H_(IHba=ݨ]袴$kjӞTj'DĹ/i|_=s~bbЇG7c" TM?(E.{ldYR%/X.j|)t{gxHaRX'R<3_#rn%;StJūA=1Thw:hRIg` I](Ru.|z&0:>k{? > stream xZKsܸW|xAn⋓unUjQmmb@P$aI{oO7 PieWjs$@яo-`18,Rٲ1Lq>+ގOz㾆X._rfKԣoێ.yjUVZ?fDL"N IO]ίqD+;jnx"e|B1zA74$%3Y>X*i20%t_o5 F(jۗ?Yi^ْ 1te,=Z%MfaAR3+*r~1EQHcJЊC_4"[;#T[W(t~4%D0'b" `r/7uePJҙ1*7tUf(0|JP'^XV9Ub'ìC2]q~lWz(<0niqA('KjЕ&:p]GJCweb>/[QHp zܪ@= cq$ O;\z * rJ;we8r~wu{ ,ܱ"X fJ@b]s_2.% JKۊ"7hRGr5EcV)׸wa |Q[w]SkV tW"*4(LC( 3 YjG >yI v8 5tR֋ê?,s yh/![fkegҏߣQGi 6o">9KSd/Okn4%A^<_y]؅?3KW,EITI, QVHo)PJ>@Sch9hJuM)~"XJ,՞[͉un5e)&Rz딨ڒj"7$ $9πS|yl|ĜG#1?G|]xED]h~y\i&澾d=jfGz758@6 reN@N}ug- +oac剂hpw`2h1OzsÀh5z3.('%*`}Igti~9Ĉ{)9WANݟr.%j)T=~nTxg  vGo% %k=ԇ?nu v 7hME_A=:eOpeylmrB}2 (UCؖ-HDdc1n%V6y&GclLsmϻ mE{tqmZ 1*Y2%u4t>B5{_$덇]mtu3 ߩoKk^_M{;.OάAN2ʿ@JE(taR`ޝK?(13JXI_dF\W],c!9X$h(\e8o+Xf> endstream endobj 221 0 obj << /Length 1972 /Filter /FlateDecode >> stream xXYsF~`mmU*Ɯ\gIvCb?@$$3 ~$HYJ9zzg?zҸY^L<ɔy%FΗZw_=ybKRrۨ^ccLW9;XfM, U ~W{]M>oan ;먾E?u*uY;T"A;AjTy_:Gr3%.% o^J߶ĉ\WQ1-Rs}09NrNGT[5 "J>ޛE26@6Sráit"dl9 N=WY(ԸOܷ>)S ۱,p菱Ʉ\_!.D*6 4&6K Y!16 UbSQ'a\>Eb\ދQ]}9]|d fi6*;s-J:^OܣS"O|Toct$:7;"dÚ] [@,8>xYrcr 8gYzTfTJV7ԭG2!6tხPp2?| #  kHc:WCg}Hv\7%\MeTe]5?[;~{xM}I FV}%i 7uUBsؚ]`tC_?iB)OT{wنkSx:F|T/}ѴCG>UUT}208f&E+٢^;z[D_K> stream xڭn}B(P@B hlY$EYh-Ѷ: "yDΜs껫W߼~ΛL[*fj=,wo:CLaflz~ |ᣮy>_1DrWy!̿c kvikX:_/O۸yϛDDV{lK]S{ V;0UGJhZ@l*  oiv%%Fǖ`wLsZwK9}w$f 5ѝDht%zev`dD JhUY(!,2X=@?!~"uK]G2YnE|ww&bMi 1B @4#LQ[biK7!` dTLQ>AA% jfȆ_ \6>!eD;{~9"Q\7uYV 9oÐ]ZBk\va}wbt?EEЌTpF^=c\rؠ,Ȏ ȧ㲇t!e?aL>_1׭YiR 3[94ײ"/ʡ!1L^$鄒#I?gyTOUжV'oV+N(̈8QkpOjGhB ) |رo h(z*5͋tĎ7ʻnX 尪(5^u{ )^wg"-YΕt.vJa(0re#Cd8?.Y RNE}b/bXE-](@ oeH! S TNx_hwQ\S>6hCp=UUSFapbUH/>МvgRC"kcLԬ%J4C( H"A!m \oB~' (YxƁs.)PED|8UC7LzP4IGˡ^9ORR" qd4@(t`;ahu Il}[C^LԽgywzY.wEZK[XGAOQ<EAᬯSɋJJùPPo0sʙ \a^0fA3d"19"ʔ{v=("ޤ,0IՎdW4:;Kڡ7`ۧʸ ϗ\v}w<& S"-gfƜ M֤w. oC&C>_F>Cg}'NVƘ2I'P8e}Rq*~ $ [,iێk1ڎ2W*|gk5'c~iq%ͺԹD 3ekl4FoX*k[VuY^&^.h ըR K6A2?bwͫHMK PeÓC'TlmҒ<6B}EԁeTM Ջ*z}I 4i,z=<ҧ>NC1jj!d~RI{KHF;Ad£x2_:Y06hu2*^ZMc[e%)JU$YDc&o*&B*ʇœy>olQulTl^J9b?hє%H%D7r|ޙ]bZb_"QNyoŰcy3 MWwHp~1iI]w3\R)Vn.dFnLdoxóf ci8DEwӍTw ՀI&}{'Ӡ*xtPEyv. YhmC^54JJ*B,2&Onqv=[9~OS3voj  7K6qnAo[nl/y2] .)VN[q>Gyz$OƧCaд'XWG;!6n h endstream endobj 234 0 obj << /Length 2059 /Filter /FlateDecode >> stream xYYoF~_a,Zv6≳qN q$}HDXQ!=uux8sfuwu_M_xUajub"MryhajyGښho^~&j-IkLPs'UBHmh19n6͓$ giT[ tQW0`uS{bs=EvyMX5Hv2­vAgVBYPd.j̍ Tvg 7E^WN0FY#a;k\Un~A%ud2c?SFENl0I>ibۃ؜C䪫U [y&. Hu#nuIU p ŕ .=YPepy .]oR!G)IN7]"b.㚜3 :^G:f<6%w Nb~j&eF"qs[~G&@w1 g>yF+-P )_qH씧1#Vw. 7]ň1솗ᎺZN E =8uCў+zރԡ]2= tI!\~QI]&HdnTa;Jn]4J0 M[B_@7w,7I}|킘 p??̙4,2l_ 뺛0D4ODfЙ{ wwA F;;~ȯ.&0T,?`{Q\U'9l-rWI_[^в_xo<:=$6LE)wP̝W N&v˶TVضOK~%'v8t?uL:=ټG++-BD*ԂLՂ8*¨0D,Ϫy:N­煟E,yPI7ylq}G_ n4~ߡTN74o.ƻʡqJꋳ~n3M/[*UW6nL GNݕBM3(}LQ1L]{wPHx2q>*u;AnRUX&BSCg"12P?(Y Tbw,jƲE% gIXk3:!tW5MaevqX*'$ /_W/PYc endstream endobj 239 0 obj << /Length 1163 /Filter /FlateDecode >> stream xڵXێ6}߯H)Q@ӴMТ~kek4uVMrH eka`3ᜑLN^"ʤɚWd0QgI%d L_1mdDOIӂhJZB\UqZJ&F94Jz$ORƲF`1Db7p%0Uq :Gq$܋8W,^f䎐X{B`p,ߏzfK@Ӕ,00XIr ϳs F+Hl^umڏkl}]r9P=TUGX+X^Xiߍ)3rA@QW1ߩWJet`v>1YgEh{C\0X My)G`zJ4g:fƅMc-!- {$G kѵMĒP@{V4SGccTJKGakiP8C{3Kv|a)#E>r$9gy7]OvvzgQD(z,e~ʇ2iKhvDBLEh3F֐)=TyOCkk/fi@7/|nv]xKlB}G>b9Pw<3u `5h۝җ\<l> dyǔo()-kpiZh6]C!‡K۝U3%mkH=%.9oH7?eh봘>p˰ 䜄;qBM#p\K.2e $D[^ZH_`^P^=sºunu&K=V;-AW\.ܿmX7k%74#n7{-!N2aƦad T_vQJR9[6tifϓoH^ endstream endobj 243 0 obj << /Length 1400 /Filter /FlateDecode >> stream xڽX[o6~0JE%0,:`ECJ,'Fl+%s!MItbhivnIO<Yھ'ꒋqys=dxq#] *:L HHm70߲}z+UdR({d8eS>(|4_GzfRr,Fáy:&د_=9o=Kbe\+ү\as9uE6A0CгO?$<̓H;<)ErXٷX&\>`*M)OśtӁ]Hβ.Ie\<-*C:hn"1vr=Ž8=іia,߳̏fl> s. t :K3"ÎxjY4hVDmG眷*IlA8.cMHI/XZQ\7k|-HyH(v-*51]QLH*ˬӨlum8.xF g^ NB_TYF&9X`Ý-SFQEao6b1bS%¹QY ߱ug:0> stream xWKo6W h.CERrKQh9,IWkocw6@|gJMzh{H"fgg.]"1.W>Ļd6Oޤ/&&"͑*djtҵ| 逤JOrn?y7{dj*7rw2u/½Y' hM3`UaDJdF5F,3}jGՇx^#c)ƅ}ߊToee! =}4oiMfSD*R@HY e6cA|z/\GgD.k~/5 p/JU3?[Dz5r,"d ǞY'=[;5.B0hU@h"Ix2 _6"7.ӻ/ڷVBRP/62AEF]kI_:%I˒< )]HJ6[O7|" /[qc$;r-sh!%=u a@@.%?Bmӹ&FߏN* Id)7 2u2=>ZFiT fP18[(yKSl. R"6p Z8tUlNdEQ*+ĂP#sEF) >4: ->g4ޥ%Ͷ>U<3(@{3>NOK>W^I-mYqdoH :L#JymSs ` 9kmZn ||CqSN4FSǨjj{ آ0"! XCHǬC8g#x qϧχE %y:Sc16h`P5f17XqN\l'e=.1뉃tU3;ZD̠GQ">qF-93k/R~pP$ڎk=~p\q ?hiZǔaŹZzdFyn4ٵ l*MUL@ijvm6u< Ƕ$r\>ܳSͽE;r33'CmjT:x *iaVf?ƨ`.F˱Q9s#b9S<^bv^o: endstream endobj 252 0 obj << /Length 2660 /Filter /FlateDecode >> stream xZIsW! %._TEUIe!lhisQDV}Cp(9HbFׯ|vykqL rڼaq"ڸeD:&߆i6舱&=9 R5g7/q'ua}^pR#`&%eNMZX0gKb ˳?Kp DRLg/^f //J.툶og=Uӑ0v?DA[Naڅ9mZCZ}lES{j qjSM6UT$XeSEi,x֓]RL;9okRPNokdD~rcGNG:&>9o6oC>HD梤 ' BzFv\}4_}x Ine<_Ά1)2tƛ"jL^&1yNAMGM=ozօkSⴛd)V&FNK$Dn:bt=>0ȷT/u-D EZATwgM?yc^mk}c*BQwj\Wb拦TܔSΊY*r  j>.XMcd&&Q89j& g:)~|JB)ᄜޝn-њ(-M~(kEs|LRl j3UOJ>09ƫj:P]|?*@+@@ "9fȒ!wkLrc*\{AbΚx#{}+iOfӿ VS1~&3dKm5d)&H{_H19% q9nY(s/Dk#G?tnw:1YY_% o~ A|h_F'OD})/`LuʺN慇\/ab}fägۛuށtS|N@ҋƷm ̱iw%ٽ _013j2ل Ô:~ux'(7a 2H3x굖C~v_q/}:ahF+͡^ :ڣ}@}')-%}-}J_˜Ҁ=!w@}{FZa7`[+QBQ}?%ζEÄC 5_C_a71PFϋiy-~Z%J 8A8VxJ~ sR]iI?=T]Q!^aO1GbљtOԲ8E dEbxb'b1$ lS8O5F 3FaU"=GtPSG#M My*`U^ȳ?·cA) \,x/-[Y8ɉen.+Xe `u655Eٽ)b/F1`lfCtf)[x$=]%Uxa5-C.,ѩ_ 9Ɠo endstream endobj 258 0 obj << /Length 2703 /Filter /FlateDecode >> stream xZKϯh,||^L$5F-a{6@~{d7)Q:XǪ7jXc׎+-RWӇ1[3~÷o8OZT=ʰJ=$Ӎ&F^K+]kUe}h7HGS,g-\~ uXMqmq컚+ַa~xKUca9uI/aT_@1Fzy J1,D458(1T1fp "lVbɮa/bک#مud'nIp^zyA*kQuA(͎dT&˔%A6 n mslЊH!PzmAZfA4$)o V Rث_vp&uRXP ^΅WRZf2ܰC|^)inx-̯Lj D$4mQ~փG!Mvxip / ;0A c+ Z̙^㿄?hO-`u='7o^V) 9=hsܥiz{WU< a2"_pL]JȆ *mffu5F9టkWqrUWٔ3j?W͔O偊KXOU x _zi&5dZI%Xfp^j+|ve@XQ&It@k.Ua6Gl bM&sa8N2yO 6l$Yc@+ZJ9cQHgQ¤Ѵ3)}rT 0([O~J} quw:#8aW@)k5 1M"Z1#1&Jqw@[=˸QOm 8E1VsCqGK ׁ1pwNgsB'02kZc* B0F/ hDP(,, zJތ Rwjr'HBhYZnjkrD_g/^vay?!3nŒ$ A}f|S/ / " sz(L4 MӢېs.N7=iBS ^yj} ޻ nˀvQRs%zuvփO8u#Q/=[IV<;f{FDu4Y6 ],;} H[ Exj`\Y2ы op{N4pRdQ-UZ~#{N*@L;:#<Į-CI1A,}t n ؐ7Mۺ؃1'G,CGPF%TrHezQ(vs lmXzL;1 C.4YKe(2T{t> rRRL46%3U٤aEI,MZ?SAiL=SXۤi!C!SٓHp 5Uo:,!})6Xxb\3,G"i{G 뾍\MFb]X1CV kǹ!mDu:ô'6F2heê덻B\PIqOڞUaȓ: $]Iib] 47WcE(5(*r4}JB(8Dm'тZ%8"]7;=}L.( ꦏvAASI?=8Hk=ʘr <(JT yXrIܐTR~dS|}Ou扚:_:h,d]X <s,AI,_k]3:};z\@ar*fvLy!Pь |qm(k*_Lo "2d>A^3as?*MT}zr[i-v$=⋨%]fPK<&WSy,d^ sv)̻hs:aJ8(.谞\Lq!*PC@;0HAx7!Vd8xn ]yUK'V9dɎ-1![G(ޟPۥoqz^c\0mq9bi S^<싸Sр ř,[K ,iJ!ATlg<@V*=e &ȏn<7 (>f#> ,¸nP9< QըRW( G29-WDi6DzP?gMo6l?G&zXbنi%wOyQ|FdQ"_1#{o~>r?MA{HZ?aZ\|}Eht-[Q%d)> stream xڵnFz)Z g!9 qISYD˂%R%%Ρ޷ =Hͼ}''>3D0c=99(c4q$NCmb.yjjTq:3 vW+p; 5 LW9}_A<]VK_"%.x`Q̇IfNbm,J'3B`d:*| _+,q{ә:QPg.xݬR4;HA*<-7=A29Q)I6 (xQywļ Ug8yIP,0r&cLׄT(G9ߔUM b ~"{ȈuVpº88W,#a9hE I ZP`YMST\wg芥zUk w/V(rk5im-ANGib0JAQp,"#!A3Q9A۾s@.y.(#=ߒd&yH-I+B ^$kk΅M=! LiТ01?FH Qdc+)xW\} (14[9AiwsB!\oN7GpENu'PckaB$On:/8;hҮyp|ۇK1m26Nebp*$-hHvSHcif|,5 NeT6MtE؈%n\o9a2j^10QfL$TuiQgheAS;lx"@WhM~Q|Ȑm@1_tXmH)).G0Mb ; (8\ spszI\R-HK*^ǔ`+FYKfUk9-!v$ԏhc67R)ك셿-ޥ 8i ?H>(j@:g/[7:LL#`0Va HPrBZ~iC5umiؤfΟ9 \3 eK旳^,ƛ6.La3^|~&LBH*}pYut<C`4ETНI H}\oOa8jk]`iOƊ/ϛOX RKxRgw Ehe ]\I&%jϳCVDڰ.O4DSF'  `!}7`cL|S)o})^b;OS`WkFj.ZyL]cW2_A[VxWCqa˚#eq0cƆNgLz~ lga2ov\4K, mSÈثa` SSĀjQB|/0/KaG1?7݊*6gH+qJ2FxY&wA]|!,94nD2WJJv$V*Ez/pD*w9puA7M-12-FxAŏ8eT7֮o|>ctj!%^R9{()d`c⑜65=(8U(u|?ʃ\H#JfS4ZEc7=Z/ փ& c5Lem嶢 :+Y6QRd_'dZ:\7΄%#N|XnW*ƽ?<7 endstream endobj 273 0 obj << /Length 2395 /Filter /FlateDecode >> stream xڭYYs~ׯ`*a [tQˮ8pw^Yb9VbTz h>~uժ.lqv<3YJy,\/|F/_YD-sfsn9IUDk*_ϲ,MLi4ngH,Mm[w-}//i6;4ž:hHB<&";?\/R7H>:}/Zka,!lfj}HF` N~4-l*tpI"AIwn{Bj;`Qh QBgϸx>􀔭iBrd>cjZl!k4#-DZ0t؎tfKt@S.yrnY?ƕ"% ˱TVDls{i"x4ZeYdxs1PUj6k=Sr]gÏRk#p‡`,;)Y 82GɭW,­cr-A-جNUiw8ΩԹZ^Ӳ :Kz|9?mԉKQ8@ ®sEۦw&M1_|Aa+o"S 8L)-`) !ڀWfÀ9DZH!J4~!x2Ca~qܭ% :pKqoCqJq,ʆ17bC竉)_Fb=7*C{e6!QkIP?Bc֧c.Ć6\d#֥9 3O׫ޒKRD"`! !bp<˜P‹Gm*Bm˒{+F<}йp !>oO:xdTY^>cyZ15wNNMT))aY:0A#w4-#?M~Du8!CD{tuό'\q*-9dMac܆s&d2aVf9O0}6&y ?;q̀xh=MXwv*g,ʶHE~JA6˶-ڨ(ygw9vH|Tt>EӸ]ˎnuAƆ$ʐFje9&LUNظAnv'?J>#hV#oZWAD^s% tl|$=O1yg98F[Zg%A. Čyv'ͥ j|EYGm#h#]("@*s@eﱶC$Z.Dnp$MaU(qfMrrQYi'q)۬/DN/u/?n_1q"D)R\ᐛOkМb 6SjrSh}c/z*j1(m4>Q'U)߰ۄ [Kvo[ Eވ-e@LΏVxbC+~70iOdp'MmU2)0 z>e#?x=xAEpi0 !rK%HP9ul@˼>}],1gY Ԧi0w2(Ԏ/EVC^x+{3[VUUI/{ endstream endobj 278 0 obj << /Length 1091 /Filter /FlateDecode >> stream xXQo6~ϯ0>褈HI`m:l߶=(R#,gQ!xy1*H3GB|`18Y.4b%2ES+L]ʘLl%lܸ$el(V7l++d'yoS3[q;)88sh"#6O0qc􆙬}PP]a3}etE']}r Ł_np;"ؠվ)C],ʑAExtVR-;9] RW%N=Sz RAM OD~0%=T}O(!}HNVӜ-eI7 Uzs*d?/wƺF9xɟ0T⑬+dwͷ}s< Xׂ\{1E[MuxwW- e^,?Xnz)ǁdb3w_D?`㮼+}1g' Z|8c)mK&#A ݑpq*Z;ncZM:H;: , endstream endobj 282 0 obj << /Length 1434 /Filter /FlateDecode >> stream xXn6}W,^Y$E]E"RQH {޲.%Hurfx9/wW:i]bp7]E.SǹqCTPw}еXL^$U :6>_V HQ}r`dm RK]$uG$;%O\dP;мg't(}5>[%,7+f,:I3#׮.uݦ0#8 &PǏ;jKx<씡u"q&ˬx.VCY%ǥGU|::y7SyHNqo6+;vf =im(5;v)2„vf ~ ]>+Y"f!-q)L}4hD/D$O^{JUʛT|o~r;o3%QQ:P1~?I&3Հ9ޟcc1h<H9/yTMHՉO{ BX֬Hʖ^! 6rNՌeA{$>6~Ҵﰟ=fki*ýӏտXc'ډnZ2q/NUP5ړڣr̮SvSTes8HʎEg[zj[|ݸ֎{gO@Zg #|3h2B-RGL\viL Q͋ehj%5C&牽{m2-탘ffE!+9$gVu`Eգ`Î`ܙQ,5!j0WUJnڜ<_pɫOW 4f2cMM'oˍ,n2;r)VDkHcQK_;Z$o_b:D,οD^P|Ã}GeO][/M^E S`)GpZ u7wh~9 endstream endobj 287 0 obj << /Length 1113 /Filter /FlateDecode >> stream xWKo7W, X^z&ǡ @"E"n YM\wj)B- 0<g׮a1cueeBj:W^ost?KQx Fk)[σ>:\] k(;akKLCWD}=~vKV k v"B0aH)b2蹸62hZ4U6zǀe bh!`wiu ͟si;>.D<#8s!0`%qtRxEC $IL:wI{Z[gWdƏ$)U-1wq-Q wBO&8%%-ݹxhu-S{NLvn87+K`a3bHnaw #L(#kd*'I)I@$4M`s@> ZZfR+c'J3&@P}ClҶi-<7d-bCg9Etf3>˸g:܌ߎRR5GR1\@Νs{R1Qa&7hk _Љ$YsiL|![ q";1G܎= _)ݳ5_rpt/en 큞`V7Ťb_[q*u}Ss;?h?^c-jQnڍim7-(UӞ$L~v>pyatCfPK& ˮbC\?rgEO?-sGT&=Odo/hZ0Ϥ:ii*tLB#2}%_ww+ PjFYpqزeLH0;rt+hh,,q_7Rhxwcс;B_=EoUܻF1nE|[YX0o fÙ:D%WM+ q,WC|VTmUřH[ȥAD^/c%cGnw5,/tqv5=J5 endstream endobj 292 0 obj << /Length 2562 /Filter /FlateDecode >> stream xZK6ϯaRU )_6s-F3V2&;~ q}eHhzq}K_լVw0Yg*kT׷هws1[c/_ "=s^V<}ÅxeYAq`a:J{]%caQXˀ<ŵN1̨t7rxI[XS¥ 0Zx&k&jW+ v7͌Ù?_HlrPΖs#g;878j{,,7u;F`fx\jwf.עndu=U*s}>ֺV6Ӧ¨WCr ܫT5d"־CYM>n3vpwwWvS/r{kM]ܮ&[ERIn+8e-E!Vϛ-Lt[Rd*!%l6ff2}-h)T8lM!tIE8Ap,# q=<[Iii?}k]=Ŏʸ~& #"ZPy5ްOSk7)aIR Lti $SgC8 qf k<5Lq7Cj&V,OadWsM7{ǪdF8 @[q*_nR); |^-,spҤDSqQ &nw472˭ z_$æ.8Kʛm M u םRv晑ࡎ),V 뫟dx%*=aSF:Zn^-/U!I SNL&+Dd4NSD? )n٧@٥͊pݵ9 0`Rd'}gI G7/J4WwPu 3UWYkS e i;TߞlHF*Ih- nGz]&BN;ψ"^]gdeK>2}R`3 }Z ;$ҦznGBΎъxVTmxh⋏dfj@i]:˔/7qMݱMͱ <.pRqS\dv7SrMt@Yx Oob1dtلJ}/~ Dx?&ՌB"B(ͦ7mԳ7*JP1٫n`ȁ2,ؐXxj6^"UNa6y\KH k0e_gUX2 A\UȠxxB&>%wE_']Q>uq|b'yX ̝jS1 V 3"m|SZDΜO:},}RfSryOlO D)Ħ>=COEx!V*v6i'(^iA)]1=d=! i__ fc)=3&R,C1F(4 |z🥗ʢLY)"%5V' ;C]AԺwsGKHFsﯨR-Kh 6IGZX}en4@Rh;MQC j|}C pH8R.vƈD0o=g"JR5F2Dig2YyBRm[# $sQ$LBΓ_*3/eo@Aa6wma. 9i?+̃s(sLD@8ǎ.*\CZw+֛I{L8B5I&+Fw521@1h ANMKh&ߖT)XbRYG. 25!eav۝*M[~5YsPhKR)mm<0ۖ'އ)ǯcoHs~ux†g5yO%aBZCr> stream xڵYYsF~`\Jc\݇8s؉bV}HP$lkJQy _?{ڦU$frhkU4ɔ|19jt:ڸao7=YcZf_'*R"x2ӹfbװE5ӂ>{\⯍r>5Yto5,Y hfSnw;ihlBLk5{ ɸ˝=ZDj\_LjMCgU|8$N. 2Fcliv9Y'bոFm:D5\o< ^S@;U:6[ b ) x'#]t'$| /4/E!R.E}/e T6a@w+DwMrO[bVޠWאM =fܩ$IpCXU'Q]r }k'|7pCqCNLkj@mk\>)CFSV3=^hJzaITP&mч5"鼳熷 m!Y H"@+&܎9»6`HN(] EfjI+.El-/@EfsKLJ( EK`Æ(1.,hB Nn؍i`#R._ &E{P#\ CN:F~ =vT ߘDs 3<7n'W9^4W@A4LA "(u? < f4M=mxbxMbeaDf5"~.qhXnTR#y@?\VbCiV \p"aU#j`8e|^X`l慡ܗ'ЋBI(듔}Sjtu^;]4&850Sm\+tɏm׈~ e#%v=h Kۃ{A~ H }%f$m[=QȤ\*d&7F/sJɢ$\$]a7?R`-m&~zed.7Xd*ɥv0.+2ϯHT]!ǖa|y<R!>G8w_Is*5|5|Fo$Yud8Â#O mV$f)/ g|D!q- 5:zK/W 0wFZ-!7T>+eGR!\F(ohjCWZIqCmy`݇:O8S8z}!UnIue]EjǍlw^|0fߌBW]yB" i}!rC#=T*n +^^J4T<7-ɥ,(vUKIQH(}bc6&xԬ:^_윚( K.ꌦm̨n8FAں+:8>MkF2F| ETa=4gj5&>A:5P?>a N~ \L*t%LHME) e8K| ^\krQvˡ;e,@9]4jcKVH+<K+Ɔ)g)%_l6߰ 6sG %\w$VOߓۉgcdk9^Ʒ"ˣT[-]y#ՙ6L=pF"QPRg:kё1_JT@TF ̼0B[Rma dg_?{ endstream endobj 307 0 obj << /Length 2282 /Filter /FlateDecode >> stream xڭXY~ׯ "xHbHk+q%:H`aHr ܕߞծ=,g2HrN7#eLZ(wEM_M3&X%~v~UiWf*SS*^"0eZlwkɡ%ĺ>\pG^a a|E?zcZΞh3d&pgW0NQHa"+\TSɂ.wkڍ?geW̓,P81G\giA. _lcT! C ~12O%^CKk82q-bo6 fW--O^!;D>pDVaJ@ZB%MC[sv k1m -XhL+`=JB)"W ]bʥe_1&y 3:%ͺ"A% izg\LH2QEZG-|'D8*-ҢVedHY% 횙t pBl`3}/Py r0E݉oOKH主1AVJ8,;yw Lp,`Ka5gɻ1ɔ;.}P\Xcgن%&2(N -uy's<˦~%%Y'v?8e#JAI6Y Ah#^*VK_23 --z'-q{?lPˍ׳hݩ,y5.-auSG(\M:_,ab5iaLwFf ` kXA}~gJ|DĔ0r3t'@f@8k阅Wv`/0s.<#Ti*"pY 0נƔ=ۖ.v[YRf]K񤻱d\]J!b)[_O%q1JPRI)8Qd%% be$`@dPZSB2w1푯(N-;ܤð#L>*s+O"Rvi/&^A!*~>e91[,xć 5زNDM//ClYqh_츸?PulR DhrXg==5ES=M+RL{`z1oԖ3{T3r\De0K3ǣE!˺֌hr_!slh\4w_X 6ӧ4;%ɫ?`&O5qf0 XU*.A1ۼ"cPwfv 3u~_;smk'BۅhX=g-~5L#5]kRrUI*TEEWM~6&0GOi)by߇8Τ'=Ӑ+= [Sā 9;!wr[NOPI"UOa쌉h/JG .&ǢX/Km) `Iй}|dMS;!egM"KUQEd`]%{0R䙧6j Z_u;;+"%3$ZRt晀5=z endstream endobj 200 0 obj << /Type /ObjStm /N 100 /First 866 /Length 1799 /Filter /FlateDecode >> stream xZo6~_"y<9銭@tö YbAHl'Vdu6}pDI;*$/ƥOi;G\0!5b}n#zc6I"L19$< & n;h >š!gcOP'4l %42C=}H2 jaxPhv/XA>ft l ?D{jD.rAu`|ƂFu QI"} ;CI);avf\# fh)jDt@C]LL:eƄL,:ќ4 URACh`'0$kD%Ī_ NأfbxN`Lh z>3zPiD!FR 0,JvhV+QFFFbIh>55HvSEM% BIe j, Ahd}N93O>ukd#Fx O&ջ>NMb:^glqc4H9Tӛ^x7ͱÃ$%L}{Vz~ V¤I,ղl |[ޞdݲV-@]>c/LnۊC4ÌASV_.qY`̔!xE3_ n[geu#Vmje-k;!1"X=G)D>%F6njxy#v7N;`Kc|3-g9T{ڢ[ z>>^׺I}zq֜a6cĎ+6VO 3nX@gCWP-._,>~WU~]^m)fJwޱN7p!i]:łn@j#SDٓԾ9S 1|Fp,;Zxm۫ӛ~5 %\֔].p 0%]kJ;q]-Z%Aesee@&;HO1Q|}X#7wMmd^io(zl(D۰+6S9tWwM Х :5vة6~:A:6c00d 1M + $!ٔ]l L]@vCrw6&QED3KmqwF4![BAd1#il;XN4֣խ~u ;@ĥX=2LS'l.ep9qaP9z 62 ^f&Isɶ 2v dTX,RL_eǖc)MMU M X GL0r?Yb #z*FEJ"ܬn}R<9ŏݩdmI&S;-_T6 ,@dhAhZnS> stream xڝXIoFWAP5 w-N6A)4=eDE8[fHJf}E|$\dR$*JFۦOHX 땞SU.h+؎mӓr]~`^plT/]Zfz~O-^Ht/O_hFC5BD$}+$NHB:s}Bx'yG -VFO0;ZM~t-^mQMY}fT<בMifrnQw7Z4 ^Awm6w"(ַni9%I+ H5kp%}*N"bg":lӭѮ0{%sQF~Ȋs\i!cyB"T0hLx4$ʂ펑^ ZֆQssaVB/r C5nN܏+XBعC}ĭ3!A&^k`FѥvGn%|mGJ6S"G[VlU?|HSyډ4>e"Z_=Iָk|[s8L?`H@lfH-]b(EF#.4]б&`}$@抵 _76&*EqQ;]KW!y «:WP\UCh7&!P 0Ȱ%xB s/-ѽT(acklcKGڵ5i2IE"b=Dpݎ>5BT:-:HJ9XcC^yWyh;IĤ" #g&{K8Y[TnDlsi\PBidtgݟ<Le-)g4D Xz4U@bN<б~-.N>H0i M)xtMܳQm_7sظkYY;1'K󴸴Ā=$A$+z8on %Kp20LqTVGYEY'0o(s)#٪B݌G&n Y𽖝\w|C #3oat',$ |aO{D_D"dbQB pm Q|I&KoY!"xSs e{t~C endstream endobj 318 0 obj << /Length 1352 /Filter /FlateDecode >> stream xڭXo6_a+`"R%[um m~ 'c Sɜkv#hG:lT+BFw~{pvBZ^u58cBp!'aas3Vd߼db{!TJӒLRlۀLE)'ePgLYnl0AGp[k#A~q•ٯnVdkg;Tg'Uw'X<{iI⚂%圣;e |`0C,ݵ8+ԩ,QM:nEiYUN ̂P1| fA*TGk1)S-0_{X:ް-F(Xz&2BwC'=VSY])Ȯ]SD [~.V1c(U@ƃp۩n![F}W{"pĞub ▄L Ʈ_N}! ɬhXe^b35YyJ8-Yex6+_m 6eΈUsC$ v&SzFAyKE$>nʋ('Wn(lUH >wڪ}5` Ăk033jj&q+X[#ݞ#[㮧p߽Ɍ;u9lT)MYN/89:6lwtktthwx:>vJ.Ꜳ$ RpN=,K|gU)ILԸ2@gfv滄5~&۠ʃ( H[mZ![M.hJ0DZR-A{\Qn=zON:Z> stream xWߋ6~b P;lvHPz 4$;߭[]BFlB y]{<HV'TJKX].*]VE"3X],F?-E' Z'Xykd>5DQ5'=.߯^.E,DR)xEnXPXɌu^#To!Buݱ=AiO0-/Buql i"]0΋XƙGаXjQtͶh*tU ]Hi,& VBHKf0b:LWqF[yO唄^ 0v\O׿A(,ա[Xs8L+!5 Q*KVeylt62T^tZj;KCA'`}LsNx!Ul7+ū- wt,-l>OW:8$MSȝL&-A圿; uc1yr%5I3|[ו?cGk;shG]%R}t+ Ӕr:Fsg8 CGLHpR;cU%ZdTI2Ϋ*zmJYF7|RcrwE,:ûI3<޻Td5g@p>B&E35G}ؑ͡y&')ޘqΝtΖQ`7&C7ae8=n`ǔ=$*k]y{hD#yXƧ3wɥ}HêhC&Π|Ŏ Zq1I14}}?T|ÄOˬ̬JwY-`V>2Gy<~DĬW鶁S28= ۦJ瑮{"!eh M6m}N#}X`$Ӓl^1#]?> stream xZKoW!X _ `wCۇEɴEJKR~Tc{`9XtWWW}UmqamT!\y=nf/77T˿~lɈhx lPRGYO0(Q68#,hBh0Apr4 (ǂkz.p_.7sngwpc8&Ȱ5|çWVG  ?whM{ i,ϘW>"mpufj*akM4o&¯J]T.#a,xl8L\8qFK+ tPNa" $;z :˹-sXP&x…FUܖ+/]p&0[Am/;Ovse.E4 PcL1$Ķ8l4%fxu*I2aÎ-o@Hcʹ#'><3WaAeӼ]WQl5'kWA"e9Rezc2,հ'`Ǜ+'ZYzPY"2b,  (1AtY; |#xH DТGdR1PqܘHcU% hjdEvq+$**Up QQ<vQZY FK rWAd3J.&$ˑ9"u aюq [*f\yz1ZO:U%Qy9'dZfwopg'1Hظ<GK8~n LJI[8LLIB)g>&.&mYMa&*$>{Z}wEJj\3")x;PEb!*h !\FEeE;V >)T孅 V?af!a jzc8+cVpxĘ3xkxGPcf u-nVCmT*WGȐ%p?GyQt$ޕD&dV@٩ U4oAdžz^Sԕ\H@5350hAسI=k0[r|HT]UƓg"_Y%|sqfNҷNq)}X1 A4J :fi Ŧ Z';ЪBhjGQ'Pd o1Dk  eX^T}?}'x<7L+.<캧y*?ݲqW34?{htqC&;5W-}UP jU6.F_r 7ߠ::[ϱ~s8=<x0j>%bP,/~ߡ k:&نƕrs-m!ܻ'/aů/ XPRhO0Fs'`Y$rI?8p]Fg7 !Z(J0tI`1Vr Lq8ivΠ *Ia vyQck *dSDe=:[y2 i1s&ujnk_ײ>$6sۚ)9P ŏv*idg~1ͩkŜP9c%;KgyKy"^{mL0FATfhDN_.`2A-`Hbh!ͷқd R*fóN1UՎFBO`&z'w'Z^&vSЉ- 19>?MF¯4`{(t1|v Sw$,E$FM"+2X endstream endobj 337 0 obj << /Length 2741 /Filter /FlateDecode >> stream xZY~_A,^n:k ~"$HGf蘕4>6&x<"%::.}mՊQMuIS5 =WG%˷W}員x': rjj;m7r2ky[;}|stxl!0%_єfc>jLX&`'v;.'nMB۶*`_bW?]ҭP htB/޼9tυn}+Y/5vXv' jǪ+`Z`2(LkUR~RMn+3& VjZù+)%S'\목Sa t@iQ6ƹd^uPvf n3 h!qqKy*nA}"F ׸H?p$Q3cUɘ@Ü9:~6 n ̤DIVMMf}3j](YY x?M3F-iRqߝЀρM4x Bꑇ10&ųn,7]# I`Gu{\':\` S8<ٰ܄gdL+jmcepeZ/Zp`$@5c gpC[]_%q?_h#t9/֑ǻcusFώNBFxs ՠEEYP6,⥣v q{\\q!L)*;p3*p˱mwÃi!B?2ԭh`zPXs Uf=qw;;ek(X[1w@ 9B1HX { B"S9Cberg&͂ 0=0HzQg{ WIp"-A8J@#5) {9&xd'.TMzDn XlNм\dM\ڼ(Ѹ+N~y;rB{۟YFʀ-81k^q>̥5k? (o IdYf4`lS) vH}>rnhWcԨEAap*!J Fzh HM)pv; Y֧dz kdQ6* Јۮ;C%'uq5rv:aIq# L ^9cv)|`Kfh@oԐJmk A;K"ztn(ϩ\HjI+=Ed|cnPvà4sA?r\7"M#̠.tl-i%$ȁg Qnb#C4eJ-sKQ$ȊXc%ZP.nUJ?:Δ`PK*Tb( )HF Έs| j7ijDB]v,@65@%v7]߿Kjerv2!":ux0x{G-!KL$&x\= >f3^wI-S-siòe Yq<{'lcUY 1L.J֯#jA(i=K)8|SQ X=f-Ѧ#7wRa]Nx< _HZm;lg3էeG,N,Xgܑa-Wn;`7*o/0-OJak .7so޳?,OZ|N7"\ȿzn !/*R(mn)DgqZY:]2r4<Ң 6B^3l_*Ԁ> 2zrHM{gf8O^z3cSуx4 P8T/8On p8 rŒe%4DO|:lP*|qi!RNFNG.#t=qT8/ji?1<|C ǫg.ǘ,IvXOWzo֧S@TwΙx(^'8hՃ8hU% PJu%,Ћ9J03Vh[Xu Xئg]CEՍn:tZo%$'“H~陆(|g"X3;cA[iʮʮ+֖و_( b endstream endobj 344 0 obj << /Length 2158 /Filter /FlateDecode >> stream xڵXKs6Whr)5̴N&k7v2M(5E(C{>,I=Hbvk(҃@'Qk Qpd[W<º[~={udz<p0jFWi71gwkfj?MȊ9nG(NŜ7A꧱qHEWa >(~#F:|bo@pf >QFqxʄhMGG!;#m&wVWԸ+O!tXA"G B=<M|؃C@&"F!"ixM2!"!;=PfVvXZEbV#T2XƑ$o֊:Mx[Z9S[ϙH쫭ط63o σ(*5!SK-9TIYEa ǬDWW{jTHHr΁S ݫ8x%&vW#RW˒]|Yi-]^w,7)&|xZTjZ0m VR\mXzDZ0ys BSLQьž1 Yt9@.-BTRev|6RZHrPSf6V(.x 7 M;4A:')l"y%=hB|;G0>evB]<X)ΎBT7SM 4ل*1&'5du(e Wԭg|EED.Jw1!Mf:ǒZVKT>8&Ӓ#b`6oEcG !\NJq3p'-EVj!ke[VE+G2ELW_]q&nCKDL. \:hĹ"0$sȷr<:q}Òg+w4U>e>P1*fđN KS'egn։k MٔRAM^q=nruҊf󂊁"oo&n;?A6fa|Bi9Uj͉EƴFĴFsHugҘ#0orX؀))y#< 3}*u/ۻbִ. PP\$- leQ+lSq'qM28Ac `T%ordNU0M`,֮Yf WOUsb%g$HZ$evl9rp.{-7v\{r##b㻃k ;Np$k<#'?_QUݞwGJCvl-U^ ҆jh_ކoj*_e+W|b˃ͷrNpT:ɏ%^$!\.R6)Q :DIքz6;Ίzgu9ٻ>"}w Ls^%(zVZnGJso4'1_b{jJ!Bxxɤ _R5s2s>hnb20|Za5XP_ o>c &|u0×ҦvP̨wa'q>[˵M/ nJ iu~ISs"Wq#ѱ*Aoaв7BI߮<#Vqm'>:2AǍ/0RDjtP]zCif .kB?qS\{ٓ"ĥ endstream endobj 353 0 obj << /Length 2373 /Filter /FlateDecode >> stream xڭYY7~"a%Ii./ƉOxRk$DR+jil'C<.l2)Ttr8W'i)#ɯӷFG~Us'9tO΃&RynEDӳ_p+ny&&# EU;w>8_'=.ʢ%LFMUhyꑭ +{xs3R#@zs| ~+9 Q;M8J!qlvSJ«^ҧZ$]3 6t ɋtOb9$@w#B?%XKE@ULJ΋XNX gIĩwᵔ(BvÎ'*B mPCyLGc?O#ª]}.x=ֈf_]a` .q)UNJ~}=F6;IA2*q0q(vrBp{ѝ#<8{'.8mK-,uIpQ惧?P'n;rG :ĄBaPDI?lEtj( b$R>zы׌#RqQF;|?D)W -K$ۺ r'MbcbjP2mx1ܲf&;Di7] SS|vI!9=٤ Mk4GƎ;흰4K^d䩚#%?)H-s<]tW9`pˠpAPI%M"iSXT31Mrg`9pyM6M. _˦I`#Ia!1Cm ^JuW%GPcͽR.2ϒHE6E6oDi^-Bu—1eYG]B#^GnR{k8؞UzKxoI8TL0]4"㎳{4JXB9,;,7DmI.&p(MUjΆ)]lE(kII&AŜA"l ^oa[?PBPi(cdU40v!q|,U6!Q-NI7 K:iچơf2Z"J٪q\pز>h3ǯμ( _Kٰks^V~G' LӺy,8L-)ɹ_ĆWd!`wk hpC+⺕Kvt޸>"ZTˈ Nt^~ҧD@ e]ADNN+!v}#P:\bX PZBe)[[1?GO$~/ﲕH)'0-",*, ϯhoi7{oρiokȪ"ޜFV[el;_\;N(h%s{핌WҾZUb2%Ty.idyvs]X= endstream endobj 358 0 obj << /Length 1163 /Filter /FlateDecode >> stream xXn7+ 팇whM-]HكXǣ*K(>/j~rzVM.d1'"'E^2'LLLVϝnU;EiNVZzvi9]͹ꇝ/3Ejd뭭9g۶P\~'z^E0c,/w$ꗄ_/gHR"HW|?|ߓM;Y?Z?9s!4,ԑv+@z$I8FB:svǥO2(X }Y٠5QkvK^t޲±iqḏxr댦ρq1 o04\3,aal3a$*n=߹q2P=;/-!L?4jѕXZ}$j XPWxOxq[~ٲ9}uV4|`^*.Xr1 #lv_t;]<1|8:WH_:h +B}Ϫ@k+l͎.:Vؒc'UyJ̪ItS> stream xVێ6}߯0".6EvHQF"Ƀ|]K-+ΐ%KShr.gș՝NFET2M#Ҩ(Y$M۱4Jq(SQ B M;y۵Й g}'?,TB!B܇Xɟ5a@ciZ =lnN$ JhIF۠b;.)k3vdGȡq*Şi;>%iq)v %qd"HgwqdBgv} aSt܍mZ2_WwwqI:wuqĕYZJ: Rs**u1x.͉/N8.^G *N캜/o[T } rL9s˕qFvVy NTV'n6f,~p8ʂ?k m0"'gX[s#?yJx9 {/\y]e`gk_Ӂ9m+^&.J%4<қͪ')7l^'[ ^7jxE1v CRZa)z٪E0=wZ^ZÍ+$ljCEY˿Ctt,3'E%h@1]M_3̷.K}ҫWeӴ\!P O5ol!o{u%x.sJ3=֗+m4 iM_15;K -6;@Z&tBymVY:wm9rCKExgC`Y3aV%HNW1bv?B!Lv}hNQ&oC,i ~CT:~xVa1TsI8T i[u};kߧD9%2WYAivOp7!Q6{e,b Tx{ Yx~XM&Sc6214qe)i6xf܄&U:^DeB`M|c^@>+8} ]]iGf=-PSDn)}GL}X;oʯBC\^7"1tIHk{OՑ(ϔզ ﺺ\ݗ endstream endobj 368 0 obj << /Length 1219 /Filter /FlateDecode >> stream xWkG_!  z(Ԇ BBuE-ԁݙ;Iز]Hof~93zXҎ󑰁 aG8&MgsnDYlA5%ߒLŤ2Rj;!jIn'*CFOΪTBBf1r $ܖ¡E!YP+K)c1O"K>Xgn@ G>K|+s"Nj+g:݅_yx0k[:+Ɠ3)6[b.pTl#˂S>ZWLVõ"2/֝:UuzW@RM. q6 쾧 _@9Lnm6d&Gw؝Vy5>ιmJ1Z.#4Egkr!ڦ')?7.ET晔3 2K%N Vu. Z#2 F/fv,b*cVQ#!/q&u"s:Tlb9ι*&sm] la2e7KS XQ(Wm&JFOJzA\6OK<e8SUMxWQb?ODz2/IuBl+#!Bg]?e] fHFG (3o_q&L%ԲA%6Z PlR!.(v9x`{ZxO |ga"*c>KeF-MY/ȿKǠ~!nRXڭ *oGr)ݩ=p[ô[88Ux`]|J)dVpo) K~XF1oPҨa=Tyq]?/S4 endstream endobj 372 0 obj << /Length 2290 /Filter /FlateDecode >> stream xZKo7W4=if;Hg]ۇLKV2E3c)9oߪ"͞aK FCVQ_}Ba,rrUmE|#x={{/\bO/;o22܂5|6 ZDĊ-r #[|Ss.`Y%,L[c(̈́-t#3p`X#0 qVê]°JR0\QqYҞauf ,LQ9VV6R1aͨ|S HUyI\046 p0g4± P_ wѤ7݊Ʊ~7As\X; !b~9⮴_˜(4' =`|SЪ]lL < KfOCi{h>K6 CNiS8]0<"7HP]cZ=Ł؁" hrSjrĒr˸.C " ==!nХӸ ɄMk9L Ycx|@¶nCQgN2s|5md,Xp''M=,(LDDXZ3xEp- Y\ӟ.įqV>4}똏X0"*UR+rͬ)պE-d orP:Is_»BC^<5p722PP)rQRi{_̜c&.̲ ~!. T3N%Q]=˥A͌BF4s"!z$W&-M?f2/<@ m[3!Ʌ.qS+؜^ O=އ}ce:>,G Zˏұ DE7J.g4 - 2 %s RCG˯^E@2 UqKPaJhqy)T)u@EtPa`9YeX ʰz(z=s &^fw=!* ޶$‚etMS끴揥Qre NX~޵]ȍkbf.{8~a& K ڿ)z PRM)ZdEa~(bY 3`56j jDT:&3aYKٝ>ߧ_YDͳ\ DKxЬci oh\D@pKyلws#oGr$f ]ޞG"UVX(.œ4Lm>.ņ6oGd7mS.N;yE\~4qAHB2ո893Ѻjn i$cu:p 4;\ n+bY쇳x 6”0*t &u\ȯƍ$|g9ϊ&5q9-b]T-Q* rȟeځq>˜q\3ى%}9y! ڭV0wp]ؘSO&S0%{O0#gNq*%q-xFO͹ŲwD@wF_@S;yҩcjmGh:)/kR { Zv?҉ju`H?@(T" Q;f̞䊅磹ߞАgy(v>lj"xĝTM5LG?%I$l^f$#16y}Է dkoĕ G^Gȣo*H:/5ON d RlJ7L:E!GRiyX!I(܄B;nx]ATio($QH r\UbQN':T'PC|R e]٠uԟZOkEe /*{JC[,WE5^`6\gJYUARE_N endstream endobj 380 0 obj << /Length 2222 /Filter /FlateDecode >> stream xYmo_! \]rm@-QRE)>\R8>"ugf/Ϟ<& SLΖm*0)|Ԅlsleu=5%4Κ_:WRi/Gp*S]86w=AM^*$gNϞfs8t[iP>SKJRUNg8`2.W7+ȷ #劄*/}G7-7.qNә)M.bK7x+T+`xؠXʃk SP2xƴ6WC8TTrV^C8aց:7]^aECZlQ܄:5w,5cC3&gUtz vB[;pVe3MHjWT(Avv;lm W'W:6ҹN<=y뺁"WeC;f90kـ_LgEŐ!L.ợ}MdI,;p^&1y\[|6ѢqZ4Oj@c Mڵ1ә`*ڝjO'{Lz;gSnb%2H԰_r4|9&*+7jEO"3ol{9+=Q hgT,0#"g8f;b=p+Rv9X M+zsb*|~2qG UhF p!Q5.Urjcbl1a2;.,J$[#e4Vg7X:>0=%uTzD6V6|ꫬmR5,xlLIBwb+T.&A Q%̄2# AF.ǃ›23y^*fuRuǍg{^^i,jZ]?q8LmC,` BʃA#5OOH1\>UkP>#|7FM0#`/{%M> stream xڭY[6~ϯ0XTƎU(hHͤ͢hAeۚZɸ(Qy-|UK6HhsOj0U15^Nj%H96b iWrC|5^SRvz`6I|nthI5plxsGqMp)?,S(|ĔGEoQB^bc>Nvtjkшi1K6BR*T`Pkr5+VVL &Gj ¦G23߇KG ׼4L<b֟ Dq/4**q9|RATbh؀*; ts5VYRy0Ulk]}Ӹ[x1Uy)PΥ8FpA8.KI`JVŝfkP޲=7N]sE'?V'|wx [ٝ2 ^.YѠWDx[q= H͘{EzP33V;.IO wa -e+ Wpn.Uq]~+~E+ TjM8[Ϙ6[el:\ymcq*?ѕFV7Ri|ݖHx$`#@D3CAc;bayxI.ͷ"܄p ZJa,v6q1v5ךhB@ Hn"˰IltU8k9 uM*gD]\nY*}sѕtU0߷!ռAԎj7 q蔅2^THY p"9pզݹ98V~(_{)_4ދ a9uN0!'qjf`j'i#6+ó&RD[1Y>i+ea[y8jB7xseDiocւ"zRX97tCG]-'~-]9DetUgF-bH2n8x{*xМ/4^`ht\4(qlge>mS3^#;&eMlcL蟇gj_I'uO,T l ПPϾ~0 endstream endobj 393 0 obj << /Length 1823 /Filter /FlateDecode >> stream xXKoFWERp-v6E94MDYB$Qe;ΡEpzaI2!a#܁Hs5?,y` Kv>"eMޯ',%`MĬDA5|X^WSU@e*eQZZ6@ oa\ tY= f f:RP@BUFI)lv鐆Č  "/#8ji{9O~c{;NFVOG?3ɵiv$ kQ76 q  #yq?C:QE"ʹ1t| Ӑl⌶\m~E Q6B,I$۹LGRwiΜU]P#Û{gډHoEjc4l>`sQd=N3Lu)㔦GLp"m>m{? w#ao+"~Ņs~d \z#΍Uw _, #cjs\P~|~'y #E¤[Sh$.l'hWhnnz[W&"aH'I?0K9wHBƍDwt$32\2|UnPj_~b;ft!AAYn[|\{=;&>I8x5Z{#gQj%~:}ї\BAGxNɸKj>\Y뽇yJP5V9LΌlݪki&g2ףPe:e\UtkTE{fGRcy/e$d$-d/1v> H;[R%c%Tko:ȞM]ΕAǜe> stream xڭXKoFWAHHpo-4 ZDJT䈲-y,g%J\c^;ͬߎ/|HA@kzyt0 2RgCsCfvfX(Q8A4 ˔Q a42;@r4yU7PCT2l`Ɩch(70%Peǖd6`0: T:etB5 *۩ݒіKK:U 鑟KD?Fb1 RՏȅ5?>#= R+葖7d=)IܜXO[j8zЎJ^m$xñ,amWf򍡠:EN̬&$n"L`7Ll&"3icG ֠, 1$I`M߻؁鉈53py'vksd30V3+g;e9_Tz q0*>}S~'(A.t?N .ï F|o?K PNcYUU?xYTRK(ͩ(q aD0v~N\ _9X8PB4_s: BQ0jDuN}03-|2LV u:JT ix"@c_Wl[xpcӢ#>`?ёŅ qzln|2Oup{W~"K p߉[~~918 e!,Fİω[*[&"CXiݗaTd~{ZSn[~I/8pgʋ0oPzv >j92>iP8X1YQIZBό'd蕞(.{#:R1ˬ^ES]/N[N$hZfʦ-娝ڱwmzo.(x\DVuՄil73H@S+F:7ȁj]v?S׹G} cV}߆8-:xbx=~N#kkNdwml݉4 mos3VxdGTMpHzqF%ewC'op꼱%3EiUk=vݷ>j) <|v{#]ڶݕU;P"+A-.Ƌ< endstream endobj 403 0 obj << /Length 1032 /Filter /FlateDecode >> stream xWnF}WFR@p\^EmZ$H K-]ߙR8hH9g.{~y$",RΖ3e0,5Yc3[nfoWsH*=IIFAMsi_(L5[(E&"Iv$L4$k1NJ5u$$BEIfm@l9,0Bd@T4K$7d$ZvTgSc0i!;?'LoP3G3O"!7;ͫp v% }{0b)0NˍNUst2 $*ʣ5DgA}vhda 0,%y%nG3G6ҟrBÈB _l!l]MZ:* S*9dim L5MT.tH{FQ/t"}@~ػHť ZvS[6韈y5InyYJ&OSmz0&b9hhug2o;lwXqz)+j."6xwL3θa?+Ac,}j |'f1XyوfC0p'mqݍM׳ܟ<>+Da;`pfnJNoqN{ D؟w=(bs֣pO}<U"/3_ec|&}\K|/0TBӜ"s}qG'ˣ?M3 endstream endobj 408 0 obj << /Length 1617 /Filter /FlateDecode >> stream xڽXKo7W,XY74>mQ$s-bI'1"c'uCr|3''Z5y#Lsh@;fnLHݜ͚w B<> > o:uZ1EOilqsO8.qlp3ZKwIcoϙ-׎O{Uԟ!5s3^⇯8>&$Lx_ik7ӯ˽#Ǜ܇1PZ\O:6zg5ӆo,;tXW; zDiCU4Kry*b3ñ|%0)D23Cmt{W=A2#CdcC +a:adлo)'<W{ʦM W#6eCzp\`"YVi2t;lX[^1|6.'ؠp|gdp 9 p =ҩ]ڕ #V1)c3Cɩ4MTLPqb[|ZvCjL&l~׻5t)?ED?Xf<ʼM1[HB3nŔWQj9>0m\)S$OW]6P?Fy0I'ڠ8-^q[z 2K'Q$llR@inBI3?q, S3yo]z{$hODz]\]9(5f^J1vp]JӑYW֘11`Zr8n`ʯ}ULF}rlE͏gX&# @Chp:XjuS !ib#vڕH"]$Eun.v=^dJ$41]įA*̗FIu|_nB\s.2cՈ - $/22"Ň?q endstream endobj 412 0 obj << /Length 2235 /Filter /FlateDecode >> stream xZK@rVyD%VS[8X+1CC!=3\kC 0ϯ{꫗UQJ[T:SXTwעo߿z)D2EVU[?NU8@3l1L~PcTE2f'JrOײ*=l͝]f. *5؟#z%|uCز"m6hֳ0M\P. %$(VTȈJcB#[͉vke ]kg7(7~m(6YH(G57v[6Fq%Jdd8~2 ӎJ |-%nob+fMjߥe0\".?4ı;Y<3.ioځ w{IY**#E\JDD) Ar6> R$g1A>DV 5Lj%fq_tW0JZ&jpF~.HtXn B._{U /a[{4odT46Tal{З@Z։|xskO9z2$ "up0#W;V0'@ҩ{n1\2^4=悏iv#+G"U¥KÚ:ǡ蜊rF;ҘH#Sx bkp}uCQa|n4cjhQԬ:s[vtfJBpWB> >#,&Bk9ܔёLKۇ.XoYS!g54.bHv 7[y`~A<9,XG3(aT:t22m0͢>"|9ne,>D׻ 7C5i(RF- D P;;tv>|p5< `wKMo> T Zd{Yw1iws/o!{Ⱕ\'*n,kbW=/aߐH0K,? Hȉ\9.E@Q!?j:5$ܕDV>bOG%ttLB&(L{8P%cX99|.lOf]B\Ŷv5=G"z"w։zDΡ/p}F!ֲc;\qV<3xj\_m2/nֱ&tMW10ƥ)DSC2R*RDDrGxS唊\W83faZ6'9Z|j0JggF` 3R yr8GPpFl\}}sbBCWLWWbA*➆ k,~vzH%@N!VL`җW4\X=W8j%UYz& EEAQO1Gg:RuP] Y`"guFWQPns %( Cp#pu>WfuTv\eL-F vm[fx&KUN6!%?_vSk[Cm.JSNpjmm|OuA߱( +4fP3v_[AWQpݡé/ԥkY}a euw$, --L7jp1J}|Dq^aJK=Y]Ѯ|4~JORFK@Q:Rfh! -~ JiIXٞA)1(<J/B)9bNA3 ybNzf!c{Gux@4+z#e82o[$.-Ji,x׀6d ຿[׀:bȃ_ѳ@qΥ-򣺓m@ia6⋎,qMx3$8ѐAl EU< endstream endobj 310 0 obj << /Type /ObjStm /N 100 /First 878 /Length 1782 /Filter /FlateDecode >> stream xZMoG W1$p8-> @۴kjW:}5pGΐOBƙ. 7| S0)$ 㓌Γ !᳘)XaO&%d*t>}2Dq1HGCdLH2V̘ 3SdC99,?JK H}/8zpXj8`sP|2-v'|8&,jSu%4l &s㘱n~G9dԁˣ7Rp#.Cx*uc1" 0QTcDtUDC"sb# }.O6irfNbW2ކ PBBp(H8{e2 gIQe=e(ΚBzx08ONg}srSLE\ $%7/aOϧ/27 ;GԔb"K`]C.PSh0(L=)vn6NƻIW5k-^a T#^>GK1t;[F$';г`o@3ֵΡHc]r(vE688:qlj TNqn@6In,iIU O|~[GDzmyOv0AahӺW%UW؉-fAl >% I~<'p, oyg 8]=`X^sǯ؎n kWG>Yi}:aÙLYR$uMdă!xOt=oxrZq4 5Hs U6m#(JAYڦ_y@[%aW8]¢uzj\)ힶiKAʀt!VANj)*mm~D{ĵF_sMM-_D-tBr84=APzP.|g~ԏEZIȍE-ue%LE> stream xY[~ h̹b/nmuɶE]+Qil{nC%jo2M0H(;pTm^@<ЖCuh?c>S3mv-xLәS*ڝjO' FE w kVu,BW,Rd/X^}epu#\r:& T*oLGi K vPq*uTw;DC58jېRR7KtzlJp $8sI xSeI"Kq9]^}`Wa8#[h%#a+p`0Eb\RjOy:9HEH@/#LFۯiv],`^Np̙{ֈKت:4YfұYQQXCu(,|$иv(83FBmQ5pJhy@,UjӒX3Xzt}3t/KRɎslj/DO65\( k;p,({)rp5Cn]4|HWhe¦PvE9FS*닞NF_,T S1{d i>,2ڟv%1悛%?X/͍Ylۆ^3'TY z{/ )/Yz%9FqY(D,.pPd. qbd&B=]5sJ\U9Hpfq[̩yjE㫅Xτ0i9+[Trgw萬WWw!,OjӰd}j.mW]*(aC-]~B-gRSF^$hVؓ_`Q%LcO\$uK L4S8,s|ULT&g =퓷7dR4}/|D>@BY-ړ\Gr.kx^ɳ" ˯gToAGarga P^%O4aij{+rX,V0/Op&r1%&hB%ToQxvjCɅ>"U߯zh Ws22`ѲLa$f֕q=;ItQ#rJ<(LDȅX}˅L9F%Pڳxud^7<.J%Ї2 @r)(z< x{3D endstream endobj 427 0 obj << /Length 996 /Filter /FlateDecode >> stream x}VrF+P9 1fIrZI"!%`\{ަߛ/gbR骰E2OL(CRR[2>nujԻ4Ua`ڨ z3HfDen`A=f_xi!<6#< K]w5L>HдGvFw0'Apޗ8*nʏ_geW/0G6`;9?- 1 ?P(\z#mN39kE m CÊD}$W UKe6l?$uxB0i+!Y Ť Ͳ+/5H[~ ׂD+E_1S<62b6Ȃ]OI+_+=|Evtgue6x4u] 1_ktx@ym.Fۗ/ؿ8CE~i;)޷"qxJdCݧ ΈGRfJ8f)(Mo e?NRAZ͐HIon^"Rd/hIZW0L5B(x1ֽXHV]u=cqyuFNgR7 Ծ^BGen0V-Oˋ9p)5,ri<#~x[_ {'Kh2 endstream endobj 450 0 obj << /Length1 1418 /Length2 7733 /Length3 0 /Length 8698 /Filter /FlateDecode >> stream xڍwT.R Nqw/ ,R )ZhiqbŊwmqO>?޵]Y+ޙgfgfo0sˁ6`e+O%obf6 ر08* 00`S"ZPW3_/,/"@uñn>0?6[vןp CE[3@j #|#&t@a\/a`7e675,fCj3 pa}5M37_`Ϳ\W' B]܀>W{ xɃFp@3B6?Wt n8#4mVr)@]\8)B``ۇ=\'W?';+7 +7o=x'", ޶ 88Av4;  `??ElWg0:?=?_O:gļT9/<T-/,yx# -B\j KPgȹ;2 ҁ lZ ց!_8n~>=hARYR =a0NO~"6x< AaX'/ } ;v ?6VQ{P㟝xG`7knj+ұeeֈ$q*;5z2{Ż+sN %3y;ZDf1nLjnm;w'F6uwQ<W1zEj&K$Mˮ) #J@ "n`6bl/ 6/P.*tuH` A~xdB?fgą\x53P1o p\E-iq^İ~n^?<6ϬW. nGTpe.loQrow*IHCZ"6"_r }+SO]"qS^Lǻe&2[, }E`[LIs y)z%d#_1%͒X74-Q|*ԗ0EД d3N+`t;䐵;z[*zoG4L5tTOaJy7T<ځEFVXsyti'F jraOĀ-Vˬ,ʊT?\z:G4(QA2$pi^S2`͋NH3d$Gߊp~݆+oyOKߍ/QwH5UI\SgÒ' /Ne̼JPbXPe.WA`)d ]܉Wyj~y!`<[j[;|tdt=Lo@QKB[MrGBAzeffAԯqoIc~%&ֿyTK7u.k~8+Wfach9JĂd8Kh:Q]r\-}K&؜wSZZFin]m2T|o}SؙҕF앋Ewϙq*fi}vȆ;ZͣxY^La~Ʊ&{+Ze,Yǯۘ8ْOӝ)WyP؈b8U!-\SOU?':/L'Ÿ!end#RO{mm"*$jLüdb5uKH-a#[#sMd 5/8Z+h%+Gck59r&~nD>?dp`D-Y0X۝c+q`r۶-=y:ލE NJϝ*>y;5g qA46q]+|HL©p/YZr#9IB2[: H+l=:e>Jp53}ۓolqqUh'qz$mzGi}T?P4c eBtә,Z9E`}l MIzeUD5;+%մ^?[?]!40Ca'+ʐRB`6ZmWq|)U­аwk;cri<*a=ߟE0wG+`^b-4Q6sjEpiqт5wV iA rn/8;Gl n%uߏ/dLO>n_Cn|8>\0R2sp֗}D%1Hm'bB(Ϳ"f.\B4+6sY$ f D5S,m`qSUT`^ZEY{qSbin6ۯ#ۤc|>+ߊ(c1|+KT"7aD勔1IRt_FZ(gwN饯UI? Q!~Y tMPCd4W.}i4H<#Y\e+1 .-''AϋJT|? VlP719_X8a]"KI^FA[.glRR=W9_lDMpӴ*?FAbWS{aE89K?ӱ;gޤKJ*,'?ler鴻;6ԝJC#GWm/kejOQ6W:fZW+.si2u1~ײK\+n`sz j:1uD߅JP GTgQ>vlp&cp:".=3E͋l_3g35mUy\մ("Feb}a18u ze.KE$J>c~h҇1b$9v'歲!{ѣ2.%wBm[11 SZ+knؼfwYsMs84']m1#5C-3Q)sf>\$~ޓчzK(\!jCҝ!o.+Wxfq=mE*I+@2I!wT`#L*xKȔHTWk~G{'( ¤Yuq)mᢂQ&"Ys?FNel\%bo?̧++.4SCB^Ou ՝#C(\_S SwjŎJW0ļ[Yg"O䐝,`A.#Fݐjma1bxr%_VM%<9Wh*l6'p,!yK}01דͰ09`\mI.sz\ݞ '}M|{AQI -4OcLpy?Y⿉ZW&Rd|1o5u_ _J1dr@đ>B8`*unG 3(3! _=%t(qj2BA�n^)H|C8r6[@*MT"xcH )0%Wh uɓwBcmaioe~w9%C.{"c8dYw8w+%Bi%"Gy c q4  T p~,b*G&UKK|= ڊba^&!}bn9#bR>rz63r&V.#2Cb>4TaVΛiK8DyI je qvs%hUZ+t2&POݕQ41_k2)EMh<K8 [0Ze0ZU}\@NK#3*Kcyd=g;9BhoT9ml`'~= Hi&i}P˜ 1╔36IIB)'ԅ{GRjs &w_f5>:u Ll݈Hظ%9YLD{70β5M ȃWH Q:[vEii ;!sq!\ /FZ|+=_* !vU?59ÆJƎ*@wcvQ.Dέ8] ɯЮ!i )w?w*қ.Ni(ROv\mIPQdҍ5 E"9DLHf}`kVBc`̖NWa Z`mgqţ]/5rG9qŴj9:{2!.`*h5%ii0!B(ޅ-.RCHִF/05NKܯ'LFAQlbe4WP4|E7;}sUҜ0x$LF8:zeM~98v$漪Pۙmr.Wũ, pMv쬇BGK:ԍF\>HD`(1CZoˉEԡxG5 'ѓfj{T؂V!fjr R2{HL*ED!|pͧgsH#{t?=^s" O[y^`inC?(U4j |L{Ewё'Psce˥v" j/Uo,NĖ7>I]"Ic_mםLʾ2oF5hHvl"vx?>m[hc6@ʮ`a܂%bao>Vz3CS0O%>4H:$OUq5XpfJ)Omqr(~HHf}^Yc? ۀ9 Aɷ u)}CK7PS_v Oe0۸#[POs={CU?° {]ϭ2`2u[˩⟀kgPR_X/+pr}+ÓRt^Ӧ0h/j~uA-^mH p|R m.)ˇixíJ)6L7[My&Td.֩BO2k=EpWފ*s%\. jᜮw!yG; p$vn$H,3l 8YF!XZ(Gtnژ7:lΡ,8*&23ra34H]ȲW|M8$,c YO3#º ;ntPwvJ# ɣP.O!m羬:52*Չ ?josX*#K]z cbyiyX滅D2,$vqcX3o;_L DU&}h"!@i,Vŭ=zOb,c'Xtu,hאv~xJs6Szr]6n>IFC nϽfu7(C*?"GJsR:w<<7ꯁe._۫*' xyW{ bL8W8e84\/pgIw՚`RF)ARN.!hoDbj4h"SIvR.DOZ'oQ $M2?O;<'3L^nD+TZhTXG/ds@XH=_fjE7S(hQ Iœۙg+xpX?h={MH,N[( /-> $U&lH@qz4iáD(7ˤ&;6liH~9/4~XAGKt&t !R<UX40cF>(w"6նz6cj^QynĒlf{S3CS%jRB\D<GbBr2Ut(C@7)]?n5d4A̠N"ъ |2pZZ@|:bhtl7\֣CEt֡F ,G&Cr5_~wy6=aWmWLH6cg+$TE=%V)Zn̥P4=hU (lK_Jr^-V/H't5IwEI*HqjVT%[׳+zJFSV 'p\Jb``-'!T7+k*2hSˋps}i[GQt,7XN̴t-Dէ硼j Bh?ļrǮgZ> stream xڍPk CqwN)nmpww(Nqn-/E~Lku'3&WQg5w0I9;3 t9ll,llζ@`'k{XA@7P b ` 8cH],9{"-LD@`k3=@l{h;Y='+ Ήl)Dpv@`W9/%XVNR;X8 dbo޲eʎ +ˀ 7ܿ dm3hamo Xݝ@{ No@W-ҁ)QU9XmWc7w;;!U5dvn_4]Y5?d%m&B#9xyO_ 4<A+qrtpXX[> 3O"Dvv3dim'd/;@mlmm=bVyQueESRL `fsx>'KUODY{ H{26͠6 ݟ7`f3{{cHo=ݿ @;k[[ͳn(:m5klN!=Fk')kwտ?]x nkmRqp0Ιټ]*No[z[M)io`qp`0m8^oKjr{,o.7r> 0_%AV?*_`82'UzTJ[">6Oz˧SiE޲[v"7[[#;oJV=_j?L,V\omp3?[ol@bbu[o V?R~G U7n.ooo?a=5?G2C\w0{.Vȍyw]4zf%p*\2}MV:F4y}e[Zd먵.-I8Amzqq w`HYCdV T+du'>T|;?BwUjx䑞gc4 JfLS:33`^̙|%K`D9,\p!"';H[*- * 1oD~J޽$X>:98@m{:4LuZlzN>fn=o3qj3gTl8HxD#,[-i50lAA"A@? mC⫟H"i~ݹ䤴=|0%p݊<=I@5櫍$QY;c_=Q_)e / ݋ Xh^( k=*Iɡ_)X"dCpoM)XOKfyUrB"00]6˼F<{Z|w["Zu$RBKvRAOe .B,`1EP0R)p';y+2SYcUp#c[6SUη-Mm%":S=ξN TYQ [ct2PrX un o&.$7*[CJ.yz.Ves3CKym*QF%>-d0==;̥ ?I9+}oe]e2yBGaַ{6>kI1פVj/˧86 oip-:W>gI$ frDZc8Z%gY;J0gӏdul skێ/jm lQD8+O16ÙO,ȱc2 V(ߩ/zبx1\P4A(݈"7R9*,YKJnJۅJ ӄg?' @b6\Ka6f M눷˰޻\v|/W{lMx2voKE $r5QFd݀G|]?a>9`W9L;7yx&l$MlEW3⬡N6~[ iCuӒ-C.q#0MrBc^oue$fy:{k {s'&Uu S Еc;$]ش A'ͽsd?#X=ۏ੹ =tzZyFeGpg_w~U[Z'#(g7+n?{NkIF}"cd5;*OP\^X!=X2#ea쬒A-2KY̋kߒwҔdFpc`䪧Z+i-L@Y g~!Q m<,yɔd R<*,%.*IYvTVi%"+˜1W?rK@,˽?c4C ##x! ীUBHwxܼD?Ud@0Dz;.[0^UTŔ$oRc0d7Xˍ[g|M,:s=!Q}n"x܀͐xTvuzDF slJj2n2((wL|0d*,(+,}^Tp`_E- ~N*2 ";ՄE"3oi/Y*!W2^׈> &1p AO 2g1s_W%FOaɔK8! 8;EF U:L|4@sd$#gVm̀En%\-^K!B%:̅AzKɄ 4DW8JG nT2uOSP[׀zj;OsWP = :2a*> pJSp 2NAܴ~ z=*㤎C M!x`0ڄB-3Q?Fy-O$>mr^}向лy\h5.7Ee 'QU /8ǀN+j-j% 4.je苟T LB9{aS)dL֠΢Z*8&K5yi5 fN_TȮo޲B~SҀӔc"|sp +o7)UFը#6SĚE _yD~Y`Ih#{ӤQ ^Yu޾^)~ه+A^$:z.5+l.q$ rTkFϬ]ԽշJm\{{cks>ꡛ?sΆb"8/%.:g,YōHzJ=xY05LԳ"pP˜1>c&9hD;d&aN̞mwޔsJW em!ga"(֤uJʭA Cp!]2Pxke+$ww[:g>^N` ϶ w%6i~%ёuT4& )h;Y{#\Xiu*R7B [&sMGaZR֤> k xbBÐ0\O[_M%s ٛfM(Mいmc9k\Fc6t^V_ Ar͋ɣfs8_sƬo1'"20K=!O_Z.8 ,ыr֢h}qH Y]̅ZwAt2N7Vʜ#7p]HCEys?r TUd zyMoF߲a$#o8, EbxݩZ 5 }T2+"zG0ާΓe2kQL~+2HHg.-YC݈ ʏI/4r-j5txgYYCp5ÙnxO&<7?؁]3Ub)QsM/ڷoۋG|A-O FVa8R?0Z]"jΙnP)ph>VhD˔ǘ0ktzu0Oiȹxk ^D f<V=?e3L{L P }:fk}Uxߟ7@&Qc2Ii'Rnak sԅ^9ͩץ>^\bDMm;{vHj$5U 5|}wJ!x_# ) D.x RoS5nwC3m_dccE(k|9`oB&*T2)qf|g+k@@7S;tV\x#:8 Mp,mZ"ĝ c)Z+0K0> mBC1ŷ/t@^{H33&?jDKh ,` aP~զvAh #X/6g-^.RL6Y;8n WH^_?Jgb jlE^c)']J. /`TE#9)I7+x樨O#O@II.bAJ^^Ŷ}V&ڪ7(S1d[ Hݶ=R^L87Y{EXLBAGz>ԚFcGfB!X$8,k2'|n/=ti+!Y4 ,lο+-ήf/yacm3vuQZ9(GG:xdkfm羲EvWU5L}C!"i`b2Q"Q^8_F㽴.5JQΆk(] l[ .0?=Lwjj*'uJ9MԗC:4V<]_!Q=kNJ3KB,&7bfpvR3sJ(!=>jP!ϫ S]NQZW$a'eZQIYO&%!{ZJ5oM J=7YJwboٵ9Cطʤ  5&S#߉;xХF  DJҾ<ևvWn`rɡ=j$y_Q-幪ߔ=Uqq`_Uۋ[h~ɑjW˚ECT*(*bLf-#žGik:jR5Ǎm{^\R_m Fosmi:v8 l8.y:y9 \()rKDɛd8Y|!$ GW_v?i%tJnt;b"rF)Ν1.NZew7n(h>px2[cְCVwnrG\}j'jj1uęQ*:8}(1 %%; ^6 CH<1p OM_RTVsĆ}pN5$G&`rK|S McW{-I=9-m޹J{f\ Ӻ/0AdL/2wQס-\F eyb{}OpҭZ~aXuF>0~:q/!WEɝN%by/C s"tϠh/F=|t$z&]PghYmc!zQfx#!\*""møKpQmNJ$lnh"U0=8IQĽvpt1}fA;M}7>øMl}Ô6Y>e#PaՇ~I9 hVY  \A >&F6k/9]^ڦ%aKpӛH9#Bڸ,Kc:+ ՘s'e ˫YNo 1bߌrx QUYJ*rۨ[9/97 ICaf(ֱamYu4dX/J[ӂ[ED-3aHj V'].?rq/-4S\$0:tL)t??}cΟ5Zb" љgTC"r \x2ʻ+ o%NBYg2P fMW&if׻4qˁCdeܭ#fYO|isR_FINz`J>TS_!fFekWsV1NhdE{ cR5KPyƤWYrgg9(-0{w,`çW* UtnNPߙTAä'F]2K  92gq.۴ݹVB+]\In!hZ>$*N%n tw8ŞEz]i?|)_qrc^ryD{0.W2y%dp;CGѢ77Zb!6۴1 X'"Zk؃̷^E{y ĥ=FVyJRdsu'=/EҤi1VQiEDZ60^z쩙rN‚j/|6_~VHz%Bۨl?2ρ)}8UvsiQ=:|Gk CNYM 0;Ve P7pV~ ?aJqQq=,=PEKO:*x} \1=RS#5АG0:"~603 Ya& } '>-*߸TNM 9J1FV{DJ|2YZvy#~V[8h6\:%Dxd=j~0Y 7e-*_>(PP%/8zy)“(n\km^lAH4,pݒ̸JvBag4 %Ц ğ( >Tn-gmUYGAa{ŋ$du(A I,/۰%1&u 4C2s^WK.1PRs@ _T3&N6: d%p[wP|Eb/v q}4 F6Uʼnc n.;ܯH $l(Ny-:$mRPp.SvILc"z1Ǥ%x5QX#gMm~#;A8HF6VH*ONdKgZN͛"{qJa"qyT:MSKƊEqiw8DY 3:,t{&<]!9+]Xy;VB+B3<5َNaJ0dh3-ńY7k%΋# 8R*I&"R%MǑr2zYWxGbSM lE B/s!( !P{Gٴ9n=5O'9;xp [bRD&ӂ^*euVB('S*ꅍ ábC3дoQ0~|5Kޥ+ɸɆߊyPՙm@:@Gx;aDDmEo=X8x2t^721F1w3)1OۉUiTM0 gYB yɕq6w6X\8E(`2R7BAJU喑h5ho$8gN|ND4 %$Nyt"p-Gd F ;#(e <4Kn)8] ɜޱh%*bu|q`tIzW9}MhHr))Z Y}GArݸȑ:CtŇ5b 2d{˔aWIQ`'ϤTu^>RtזN3a A`48O]򠧴VD$[ٮRP>Uq04">Kޏ$Bj)cNPsC&!7~%LY04燷reOΦq*Y5Y;G±i:YjIι*c!T-_J1;hg`Vp߅GBODM6!^"z׌:)mFA0"郈_&m)JhշesQ Wl^L^Ͽ0JHn4:~1Hܪ_t(!{ .?WЫ VG,DK,ID$יƭ_I:9,Mi6Ȕ$6ŌW3w͠3H_ђ=mϧÞĆ}Z#%G(HrWiDBTaǷjf02nq,|%m8]VL5hh\5*ժڊUe jW]D0W%5KJuaIu- k\ t0ХƼ?PoJL2!0%1o(Q^e] =;eoBҢs*«SH{j{A)G@8vZdž0L)9뷬]jDqV}N4oR;|_ݼ8bQ4&uY齓.$]N:.0CFo x͚:U lj0X}>K=C7"N#_yHf*йA|+v(xN ء3;qel:Amr<5Crۢpe{eQCWͩ]>rA=%0 `90Yvt\Al{Ѿgzaң*]cADC7xI32I9?=qJ4ƒR KFN6j&Ҵw/aG@]&j R5`c=~(LNot珸@8Ly8Hɧ RW%5bd{RBM%h=;I_1`kYy,,9wj,Wؗ)'B}. ܝe"f2$=w4&"_=-ֵilL Wj[d?+%&Y(K_ȀWOדÁ,OҌ| s2" Y"YI Syz,S"M_s=dqgE[4R{pmKA97Êt|PjcllRD5;;L}qOYtfBu4/O4Sa/zÆ n/:Hbf{cg#x30.>ɒ =RIϟ2.7[YLrz! 6.ffɂɵcXL ZLr6Q .rd=yĤc;v@ږU5vSO&QW mUp1\^eXRe@˫ 6M v뜇 y5̰sH T:MY>)'FR`YăfiGϞ8/;` ˝f;-f\3{{?nco?>LcH>Y謍><]u%9gp~A?tn\:'P)g8z>CbJIt%Mni  %Tќh.2o\C&d8ہl{lClovSTu1=|ʚ^YȚSRY֋-;07UD r[1ɫ\^\iQ8