ocaml-doc-4.11/0000755000175000017500000000000014003251343012226 5ustar mehdimehdiocaml-doc-4.11/ocaml.html/0000755000175000017500000000000014003251343014264 5ustar mehdimehdiocaml-doc-4.11/ocaml.html/modules.html0000644000175000017500000006222113717225665016650 0ustar mehdimehdi 7.11  Module expressions (module implementations) Previous Up Next

7.11  Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules, thus providing implementations for the specifications expressed in module types.

module-expr::= module-path  
  struct [ module-items ] end  
  functor ( module-name :  module-type ) ->  module-expr  
  module-expr (  module-expr )  
  ( module-expr )  
  ( module-expr :  module-type )  
 
module-items::= {;;} ( definition ∣  expr )  { {;;} ( definition ∣  ;; expr) }  {;;}  
 
definition::= let [reclet-binding  { and let-binding }  
  external value-name :  typexpr =  external-declaration  
  type-definition  
  exception-definition  
  class-definition  
  classtype-definition  
  module module-name  { ( module-name :  module-type ) }  [ : module-type ]  =  module-expr  
  module type modtype-name =  module-type  
  open module-path  
  include module-expr

See also the following language extensions: recursive modules, first-class modules, overriding in open statements, attributes, extension nodes and generative functors.

7.11.1  Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression ( module-expr ) evaluates to the same module as module-expr.

The expression ( module-expr :  module-type ) checks that the type of module-expr is a subtype of module-type, that is, that all components specified in module-type are implemented in module-expr, and their implementation meets the requirements given in module-type. In other terms, it checks that the implementation module-expr meets the type specification module-type. The whole expression evaluates to the same module as module-expr, except that all components not specified in module-type are hidden and can no longer be accessed.

7.11.2  Structures

Structures structend are collections of definitions for value names, type names, exceptions, module names and module type names. The definitions are evaluated in the order in which they appear in the structure. The scopes of the bindings performed by the definitions extend to the end of the structure. As a consequence, a definition may refer to names bound by earlier definitions in the same structure.

For compatibility with toplevel phrases (chapter 10), optional ;; are allowed after and before each definition in a structure. These ;; have no semantic meanings. Similarly, an expr preceded by ;; is allowed as a component of a structure. It is equivalent to let _ = expr, i.e. expr is evaluated for its side-effects but is not bound to any identifier. If expr is the first component of a structure, the preceding ;; can be omitted.

Value definitions

A value definition let [rec] let-binding  { and let-binding } bind value names in the same way as a letin … expression (see section 7.7.2). The value names appearing in the left-hand sides of the bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name :  typexpr =  external-declaration implements value-name as the external function specified in external-declaration (see chapter 20).

Type definitions

A definition of one or several type components is written type typedef  { and typedef } and consists of a sequence of mutually recursive definitions of type names.

Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name =  constr.

Class definitions

A definition of one or several classes is written class class-binding  { and class-binding } and consists of a sequence of mutually recursive definitions of class names. Class definitions are described more precisely in section 7.9.3.

Class type definitions

A definition of one or several classes is written class type classtype-def  { and classtype-def } and consists of a sequence of mutually recursive definitions of class type names. Class type definitions are described more precisely in section 7.9.5.

Module definitions

The basic form for defining a module component is module module-name =  module-expr, which evaluates module-expr and binds the result to the name module-name.

One can write

module module-name :  module-type =  module-expr

instead of

module module-name = (  module-expr :  module-type ).

Another derived form is

module module-name (  name1 :  module-type1 )(  namen :  module-typen ) =  module-expr

which is equivalent to

module module-name = functor (  name1 :  module-type1 ) ->->  module-expr

Module type definitions

A definition for a module type is written module type modtype-name =  module-type. It binds the name modtype-name to the module type denoted by the expression module-type.

Opening a module path

The expression open module-path in a structure does not define any components nor perform any bindings. It simply affects the parsing of the following items of the structure, allowing components of the module denoted by module-path to be referred to by their simple names name instead of path accesses module-path .  name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include module-expr in a structure re-exports in the current structure all definitions of the structure denoted by module-expr. For instance, if you define a module S as below

module S = struct type t = int let x = 2 end

defining the module B as

module B = struct include S let y = (x + 1 : t) end

is equivalent to defining it as

module B = struct type t = S.t let x = S.x let y = (x + 1 : t) end

The difference between open and include is that open simply provides short names for the components of the opened structure, without defining any components of the current structure, while include also adds definitions for the components of the included structure.

7.11.3  Functors

Functor definition

The expression functor ( module-name :  module-type ) ->  module-expr evaluates to a functor that takes as argument modules of the type module-type1, binds module-name to these modules, evaluates module-expr in the extended environment, and returns the resulting modules as results. No restrictions are placed on the type of the functor argument; in particular, a functor may take another functor as argument (“higher-order” functor).

Functor application

The expression module-expr1 (  module-expr2 ) evaluates module-expr1 to a functor and module-expr2 to a module, and applies the former to the latter. The type of module-expr2 must match the type expected for the arguments of the functor module-expr1.


Previous Up Next ocaml-doc-4.11/ocaml.html/locallyabstract.html0000644000175000017500000002604013717225665020362 0ustar mehdimehdi 8.4  Locally abstract types Previous Up Next

8.4  Locally abstract types

(Introduced in OCaml 3.12, short syntax added in 4.03)

parameter::= ...  
  ( type {typeconstr-name}+ )

The expression fun ( type typeconstr-name ) ->  expr introduces a type constructor named typeconstr-name which is considered abstract in the scope of the sub-expression, but then replaced by a fresh type variable. Note that contrary to what the syntax could suggest, the expression fun ( type typeconstr-name ) ->  expr itself does not suspend the evaluation of expr as a regular abstraction would. The syntax has been chosen to fit nicely in the context of function declarations, where it is generally used. It is possible to freely mix regular function parameters with pseudo type parameters, as in:

let f = fun (type t) (foo : t list) -> …

and even use the alternative syntax for declaring functions:

let f (type t) (foo : t list) = …

If several locally abstract types need to be introduced, it is possible to use the syntax fun ( type typeconstr-name1 …  typeconstr-namen ) ->  expr as syntactic sugar for fun ( type typeconstr-name1 ) ->-> fun ( type  typeconstr-namen ) ->  expr. For instance,

let f = fun (type t u v) -> fun (foo : (t * u * v) list) -> … let f' (type t u v) (foo : (t * u * v) list) = …

This construction is useful because the type constructors it introduces can be used in places where a type variable is not allowed. For instance, one can use it to define an exception in a local module within a polymorphic function.

let f (type t) () = let module M = struct exception E of t end in (fun x -> M.E x), (function M.E x -> Some x | _ -> None)

Here is another example:

let sort_uniq (type s) (cmp : s -> s -> int) = let module S = Set.Make(struct type t = s let compare = cmp end) in fun l -> S.elements (List.fold_right S.add l S.empty)

It is also extremely useful for first-class modules (see section 8.5) and generalized algebraic datatypes (GADTs: see section 8.10).

Polymorphic syntax

(Introduced in OCaml 4.00)

let-binding::= ...  
  value-name : type  { typeconstr-name }+ .  typexpr =  expr  
 
class-field::= ...  
  method [privatemethod-name : type  { typeconstr-name }+ .  typexpr =  expr  
  method! [privatemethod-name : type  { typeconstr-name }+ .  typexpr =  expr

The (type typeconstr-name) syntax construction by itself does not make polymorphic the type variable it introduces, but it can be combined with explicit polymorphic annotations where needed. The above rule is provided as syntactic sugar to make this easier:

let rec f : type t1 t2. t1 * t2 list -> t1 = …

is automatically expanded into

let rec f : 't1 't2. 't1 * 't2 list -> 't1 = fun (type t1) (type t2) -> ( … : t1 * t2 list -> t1)

This syntax can be very useful when defining recursive functions involving GADTs, see the section 8.10 for a more detailed explanation.

The same feature is provided for method definitions.


Previous Up Next ocaml-doc-4.11/ocaml.html/types.html0000644000175000017500000006454313717225665016355 0ustar mehdimehdi 7.4  Type expressions Previous Up Next

7.4  Type expressions

typexpr::= ' ident  
  _  
  ( typexpr )  
  [[?]label-name:]  typexpr ->  typexpr  
  typexpr  { * typexpr }+  
  typeconstr  
  typexpr  typeconstr  
  ( typexpr  { , typexpr } )  typeconstr  
  typexpr as '  ident  
  polymorphic-variant-type  
  < [..>  
  < method-type  { ; method-type }  [; ∣  ; ..>  
  # classtype-path  
  typexpr #  class-path  
  ( typexpr  { , typexpr } ) #  class-path  
 
poly-typexpr::= typexpr  
  { ' ident }+ .  typexpr  
 
method-type::= method-name :  poly-typexpr

See also the following language extensions: first-class modules, attributes and extension nodes.

The table below shows the relative precedences and associativity of operators and non-closed type constructions. The constructions with higher precedences come first.

OperatorAssociativity
Type constructor application
#
*
->right
as

Type expressions denote types in definitions of data types as well as in type constraints over patterns and expressions.

Type variables

The type expression ' ident stands for the type variable named ident. The type expression _ stands for either an anonymous type variable or anonymous type parameters. In data type definitions, type variables are names for the data type parameters. In type constraints, they represent unspecified types that can be instantiated by any type to satisfy the type constraint. In general the scope of a named type variable is the whole top-level phrase where it appears, and it can only be generalized when leaving this scope. Anonymous variables have no such restriction. In the following cases, the scope of named type variables is restricted to the type expression where they appear: 1) for universal (explicitly polymorphic) type variables; 2) for type variables that only appear in public method specifications (as those variables will be made universal, as described in section 7.9.1); 3) for variables used as aliases, when the type they are aliased to would be invalid in the scope of the enclosing definition (i.e. when it contains free universal type variables, or locally defined types.)

Parenthesized types

The type expression ( typexpr ) denotes the same type as typexpr.

Function types

The type expression typexpr1 ->  typexpr2 denotes the type of functions mapping arguments of type typexpr1 to results of type typexpr2.

label-name :  typexpr1 ->  typexpr2 denotes the same function type, but the argument is labeled label.

? label-name :  typexpr1 ->  typexpr2 denotes the type of functions mapping an optional labeled argument of type typexpr1 to results of type typexpr2. That is, the physical type of the function will be typexpr1 option ->  typexpr2.

Tuple types

The type expression typexpr1 **  typexprn denotes the type of tuples whose elements belong to types typexpr1, …  typexprn respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.

The type expression typexpr  typeconstr, where typeconstr is a type constructor with one parameter, denotes the application of the unary type constructor typeconstr to the type typexpr.

The type expression (typexpr1,…, typexprn)  typeconstr, where typeconstr is a type constructor with n parameters, denotes the application of the n-ary type constructor typeconstr to the types typexpr1 through typexprn.

In the type expression _ typeconstr , the anonymous type expression _ stands in for anonymous type parameters and is equivalent to (_, …,_) with as many repetitions of _ as the arity of typeconstr.

Aliased and recursive types

The type expression typexpr as '  ident denotes the same type as typexpr, and also binds the type variable ident to type typexpr both in typexpr and in other types. In general the scope of an alias is the same as for a named type variable, and covers the whole enclosing definition. If the type variable ident actually occurs in typexpr, a recursive type is created. Recursive types for which there exists a recursive path that does not contain an object or polymorphic variant type constructor are rejected, except when the -rectypes mode is selected.

If ' ident denotes an explicit polymorphic variable, and typexpr denotes either an object or polymorphic variant type, the row variable of typexpr is captured by ' ident, and quantified upon.

Polymorphic variant types

polymorphic-variant-type::= [ tag-spec-first  { | tag-spec } ]  
  [> [ tag-spec ]  { | tag-spec } ]  
  [< [|tag-spec-full  { | tag-spec-full }  [ > { `tag-name }+ ] ]  
 
tag-spec-first::= `tag-name  [ of typexpr ]  
  [ typexpr ] |  tag-spec  
 
tag-spec::= `tag-name  [ of typexpr ]  
  typexpr  
 
tag-spec-full::= `tag-name  [ of [&typexpr  { & typexpr } ]  
  typexpr

Polymorphic variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types, and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the list of all tags the value could take, with their associated types. This type is still compatible with a variant type containing more tags. A special case is the unknown type, which does not define any tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and their associated types, and which tags are known to potentially appear in values. The exact variant type (first case) is just an abbreviation for a closed variant type where all possible tags are also potentially present.

In all three cases, tags may be either specified directly in the `tag-name  [of typexpr] form, or indirectly through a type expression, which must expand to an exact variant type, whose tag specifications are inserted in its place.

Full specifications of variant tags are only used for non-exact closed types. They can be understood as a conjunctive type for the argument: it is intended to have all the types enumerated in the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may not be used in a value of this type. This does not mean that the whole type is not valid: one can still use other available tags. Conjunctive constraints are mainly intended as output from the type checker. When they are used in source programs, unsolvable constraints may cause early failures.

Object types

An object type < [method-type  { ; method-type }] > is a record of method types.

Each method may have an explicit polymorphic type: { ' ident }+ .  typexpr. Explicit polymorphic variables have a local scope, and an explicit polymorphic type can only be unified to an equivalent one, where only the order and names of polymorphic variables may change.

The type < {method-type ;} .. > is the type of an object whose method names and types are described by method-type1, …,  method-typen, and possibly some other methods represented by the ellipsis. This ellipsis actually is a special kind of type variable (called row variable in the literature) that stands for any number of extra method types.

#-types

The type # classtype-path is a special kind of abbreviation. This abbreviation unifies with the type of any object belonging to a subclass of the class type classtype-path. It is handled in a special way as it usually hides a type variable (an ellipsis, representing the methods that may be added in a subclass). In particular, it vanishes when the ellipsis gets instantiated. Each type expression # classtype-path defines a new type variable, so type # classtype-path -> #  classtype-path is usually not the same as type (# classtype-path as '  ident) -> '  ident.

Use of #-types to abbreviate polymorphic variant types is deprecated. If t is an exact variant type then #t translates to [< t], and #t[> `tag1` tagk] translates to [< t > `tag1` tagk]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are always named, i.e. defined before use and referred to by name. Type definitions are described in section 7.8.1.


Previous Up Next ocaml-doc-4.11/ocaml.html/compilerlibref/0000755000175000017500000000000013717225554017302 5ustar mehdimehdiocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Thing.html0000644000175000017500000001044713717225554023625 0ustar mehdimehdi Identifiable.Thing

Module type Identifiable.Thing

module type Thing = sig .. end

type t 
include Hashtbl.HashedType
include Map.OrderedType
val output : out_channel -> t -> unit
val print : Format.formatter -> t -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/Consistbl.html0000644000175000017500000001303413717225554022131 0ustar mehdimehdi Consistbl

Module Consistbl

module Consistbl: sig .. end

Consistency tables: for checking consistency of module CRCs

Warning: this module is unstable and part of compiler-libs.


module Make: 
functor (Module_name : sig
type t 
module Set: Set.S  with type elt = t
module Map: Map.S  with type key = t
module Tbl: Hashtbl.S  with type key = t
val compare : t -> t -> int
end-> sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.S.Set.html0000644000175000017500000002721613717225554024553 0ustar mehdimehdi Identifiable.S.Set sig
  type elt = T.t
  type t = Set.Make(T).t
  val empty : t
  val is_empty : t -> bool
  val mem : elt -> t -> bool
  val add : elt -> t -> t
  val singleton : elt -> t
  val remove : elt -> t -> t
  val union : t -> t -> t
  val inter : t -> t -> t
  val disjoint : t -> t -> bool
  val diff : t -> t -> t
  val compare : t -> t -> int
  val equal : t -> t -> bool
  val subset : t -> t -> bool
  val iter : (elt -> unit) -> t -> unit
  val fold : (elt -> '-> 'a) -> t -> '-> 'a
  val for_all : (elt -> bool) -> t -> bool
  val exists : (elt -> bool) -> t -> bool
  val filter : (elt -> bool) -> t -> t
  val filter_map : (elt -> elt option) -> t -> t
  val partition : (elt -> bool) -> t -> t * t
  val cardinal : t -> int
  val elements : t -> elt list
  val min_elt : t -> elt
  val min_elt_opt : t -> elt option
  val max_elt : t -> elt
  val max_elt_opt : t -> elt option
  val choose : t -> elt
  val choose_opt : t -> elt option
  val split : elt -> t -> t * bool * t
  val find : elt -> t -> elt
  val find_opt : elt -> t -> elt option
  val find_first : (elt -> bool) -> t -> elt
  val find_first_opt : (elt -> bool) -> t -> elt option
  val find_last : (elt -> bool) -> t -> elt
  val find_last_opt : (elt -> bool) -> t -> elt option
  val to_seq_from : elt -> t -> elt Seq.t
  val to_seq : t -> elt Seq.t
  val add_seq : elt Seq.t -> t -> t
  val of_seq : elt Seq.t -> t
  val output : out_channel -> t -> unit
  val print : Format.formatter -> t -> unit
  val to_string : t -> string
  val of_list : elt list -> t
  val map : (elt -> elt) -> t -> t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.IncrementalEngine.html0000644000175000017500000001323013717225554027760 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine

Module CamlinternalMenhirLib.IncrementalEngine

module IncrementalEngine: sig .. end

type position = Lexing.position 
module type INCREMENTAL_ENGINE = sig .. end
module type SYMBOLS = sig .. end
module type INSPECTION = sig .. end
module type EVERYTHING = sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableInterpreter.html0000644000175000017500000006525313717225554032755 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableInterpreter sig
  module Symbols :
    functor (T : sig type 'a terminal type 'a nonterminal end->
      sig
        type 'a symbol =
            T : 'T.terminal -> 'a symbol
          | N : 'T.nonterminal -> 'a symbol
        type xsymbol = X : 'a symbol -> xsymbol
      end
  module Make :
    functor (TT : TableFormat.TABLES)
      (IT : sig
              type 'a terminal
              type 'a nonterminal
              type 'a symbol =
                  T : 'a terminal -> 'a symbol
                | N : 'a nonterminal -> 'a symbol
              type xsymbol = X : 'a symbol -> xsymbol
              type 'a lr1state = int
              val terminal : int -> xsymbol
              val nonterminal : int -> xsymbol
              val rhs : PackedIntArray.t * PackedIntArray.t
              val lr0_core : PackedIntArray.t
              val lr0_items : PackedIntArray.t * PackedIntArray.t
              val lr0_incoming : PackedIntArray.t
              val nullable : string
              val first : int * string
            end)
      (ET : sig
              type state
              val number : state -> int
              type token
              type terminal = int
              type nonterminal = int
              type semantic_value = Obj.t
              val token2terminal : token -> terminal
              val token2value : token -> semantic_value
              val error_terminal : terminal
              val error_value : semantic_value
              val foreach_terminal : (terminal -> '-> 'a) -> '-> 'a
              type production
              val production_index : production -> int
              val find_production : int -> production
              val default_reduction :
                state ->
                ('env -> production -> 'answer) ->
                ('env -> 'answer) -> 'env -> 'answer
              val action :
                state ->
                terminal ->
                semantic_value ->
                ('env ->
                 bool -> terminal -> semantic_value -> state -> 'answer) ->
                ('env -> production -> 'answer) ->
                ('env -> 'answer) -> 'env -> 'answer
              val goto_nt : state -> nonterminal -> state
              val goto_prod : state -> production -> state
              val maybe_goto_nt : state -> nonterminal -> state option
              val is_start : production -> bool
              exception Error
              type semantic_action =
                  (state, semantic_value, token) EngineTypes.env ->
                  (state, semantic_value) EngineTypes.stack
              val semantic_action : production -> semantic_action
              val may_reduce : state -> production -> bool
              val log : bool
              module Log :
                sig
                  val state : state -> unit
                  val shift : terminal -> state -> unit
                  val reduce_or_accept : production -> unit
                  val lookahead_token :
                    terminal -> Lexing.position -> Lexing.position -> unit
                  val initiating_error_handling : unit -> unit
                  val resuming_error_handling : unit -> unit
                  val handling_error : state -> unit
                end
            end)
      (E : sig
             type 'a env =
                 (ET.state, ET.semantic_value, ET.token)
                 CamlinternalMenhirLib.EngineTypes.env
           end)
      ->
      sig
        type 'a symbol =
            T : 'IT.terminal -> 'a symbol
          | N : 'IT.nonterminal -> 'a symbol
        type xsymbol = X : 'a symbol -> xsymbol
        type item = int * int
        val compare_terminals : 'IT.terminal -> 'IT.terminal -> int
        val compare_nonterminals :
          'IT.nonterminal -> 'IT.nonterminal -> int
        val compare_symbols : xsymbol -> xsymbol -> int
        val compare_productions : int -> int -> int
        val compare_items : item -> item -> int
        val incoming_symbol : 'IT.lr1state -> 'a symbol
        val items : 'IT.lr1state -> item list
        val lhs : int -> xsymbol
        val rhs : int -> xsymbol list
        val nullable : 'IT.nonterminal -> bool
        val first : 'IT.nonterminal -> 'IT.terminal -> bool
        val xfirst : xsymbol -> 'IT.terminal -> bool
        val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
        val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
        val feed :
          'a symbol ->
          IncrementalEngine.position ->
          '-> IncrementalEngine.position -> 'E.env -> 'E.env
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Mb.html0000644000175000017500000001073213717225554022616 0ustar mehdimehdi Ast_helper.Mb

Module Ast_helper.Mb

module Mb: sig .. end

Module bindings


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
Ast_helper.str_opt -> Parsetree.module_expr -> Parsetree.module_binding
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Set.T.html0000644000175000017500000000622213717225554024546 0ustar mehdimehdi Identifiable.Set.T Set.OrderedType ocaml-doc-4.11/ocaml.html/compilerlibref/Numbers.html0000644000175000017500000001212313717225554021602 0ustar mehdimehdi Numbers

Module Numbers

module Numbers: sig .. end

Modules about numbers, some of which satisfy Identifiable.S.

Warning: this module is unstable and part of compiler-libs.


module Int: sig .. end
module Int8: sig .. end
module Int16: sig .. end
module Float: Identifiable.S  with type t = float
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.html0000644000175000017500000011073613717225554027675 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes sig
  type ('state, 'semantic_value) stack = {
    state : 'state;
    semv : 'semantic_value;
    startp : Stdlib.Lexing.position;
    endp : Stdlib.Lexing.position;
    next : ('state, 'semantic_value) CamlinternalMenhirLib.EngineTypes.stack;
  }
  type ('state, 'semantic_value, 'token) env = {
    error : bool;
    triple : 'token * Stdlib.Lexing.position * Stdlib.Lexing.position;
    stack : ('state, 'semantic_value) CamlinternalMenhirLib.EngineTypes.stack;
    current : 'state;
  }
  module type TABLE =
    sig
      type state
      val number : CamlinternalMenhirLib.EngineTypes.TABLE.state -> int
      type token
      type terminal
      type nonterminal
      type semantic_value
      val token2terminal :
        CamlinternalMenhirLib.EngineTypes.TABLE.token ->
        CamlinternalMenhirLib.EngineTypes.TABLE.terminal
      val token2value :
        CamlinternalMenhirLib.EngineTypes.TABLE.token ->
        CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value
      val error_terminal : CamlinternalMenhirLib.EngineTypes.TABLE.terminal
      val error_value :
        CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value
      val foreach_terminal :
        (CamlinternalMenhirLib.EngineTypes.TABLE.terminal -> '-> 'a) ->
        '-> 'a
      type production
      val production_index :
        CamlinternalMenhirLib.EngineTypes.TABLE.production -> int
      val find_production :
        int -> CamlinternalMenhirLib.EngineTypes.TABLE.production
      val default_reduction :
        CamlinternalMenhirLib.EngineTypes.TABLE.state ->
        ('env ->
         CamlinternalMenhirLib.EngineTypes.TABLE.production -> 'answer) ->
        ('env -> 'answer) -> 'env -> 'answer
      val action :
        CamlinternalMenhirLib.EngineTypes.TABLE.state ->
        CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
        CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value ->
        ('env ->
         bool ->
         CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
         CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value ->
         CamlinternalMenhirLib.EngineTypes.TABLE.state -> 'answer) ->
        ('env ->
         CamlinternalMenhirLib.EngineTypes.TABLE.production -> 'answer) ->
        ('env -> 'answer) -> 'env -> 'answer
      val goto_nt :
        CamlinternalMenhirLib.EngineTypes.TABLE.state ->
        CamlinternalMenhirLib.EngineTypes.TABLE.nonterminal ->
        CamlinternalMenhirLib.EngineTypes.TABLE.state
      val goto_prod :
        CamlinternalMenhirLib.EngineTypes.TABLE.state ->
        CamlinternalMenhirLib.EngineTypes.TABLE.production ->
        CamlinternalMenhirLib.EngineTypes.TABLE.state
      val maybe_goto_nt :
        CamlinternalMenhirLib.EngineTypes.TABLE.state ->
        CamlinternalMenhirLib.EngineTypes.TABLE.nonterminal ->
        CamlinternalMenhirLib.EngineTypes.TABLE.state option
      val is_start :
        CamlinternalMenhirLib.EngineTypes.TABLE.production -> bool
      exception Error
      type semantic_action =
          (CamlinternalMenhirLib.EngineTypes.TABLE.state,
           CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value,
           CamlinternalMenhirLib.EngineTypes.TABLE.token)
          CamlinternalMenhirLib.EngineTypes.env ->
          (CamlinternalMenhirLib.EngineTypes.TABLE.state,
           CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value)
          CamlinternalMenhirLib.EngineTypes.stack
      val semantic_action :
        CamlinternalMenhirLib.EngineTypes.TABLE.production ->
        CamlinternalMenhirLib.EngineTypes.TABLE.semantic_action
      val may_reduce :
        CamlinternalMenhirLib.EngineTypes.TABLE.state ->
        CamlinternalMenhirLib.EngineTypes.TABLE.production -> bool
      val log : bool
      module Log :
        sig
          val state : CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
          val shift :
            CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
            CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
          val reduce_or_accept :
            CamlinternalMenhirLib.EngineTypes.TABLE.production -> unit
          val lookahead_token :
            CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
            Stdlib.Lexing.position -> Stdlib.Lexing.position -> unit
          val initiating_error_handling : unit -> unit
          val resuming_error_handling : unit -> unit
          val handling_error :
            CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
        end
    end
  module type MONOLITHIC_ENGINE =
    sig
      type state
      type token
      type semantic_value
      exception Error
      val entry :
        CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.state ->
        (Stdlib.Lexing.lexbuf ->
         CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.token) ->
        Stdlib.Lexing.lexbuf ->
        CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.semantic_value
    end
  module type INCREMENTAL_ENGINE_START =
    sig
      type state
      type semantic_value
      type 'a checkpoint
      val start :
        CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.state ->
        Stdlib.Lexing.position ->
        CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.semantic_value
        CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.checkpoint
    end
  module type ENGINE =
    sig
      type state
      type token
      type semantic_value
      exception Error
      val entry :
        state -> (Lexing.lexbuf -> token) -> Lexing.lexbuf -> semantic_value
      type production
      type 'a env
      type 'a checkpoint = private
          InputNeeded of 'a env
        | Shifting of 'a env * 'a env * bool
        | AboutToReduce of 'a env * production
        | HandlingError of 'a env
        | Accepted of 'a
        | Rejected
      val offer :
        'a checkpoint ->
        token * IncrementalEngine.position * IncrementalEngine.position ->
        'a checkpoint
      val resume : 'a checkpoint -> 'a checkpoint
      type supplier =
          unit ->
          token * IncrementalEngine.position * IncrementalEngine.position
      val lexer_lexbuf_to_supplier :
        (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
      val loop : supplier -> 'a checkpoint -> 'a
      val loop_handle :
        ('-> 'answer) ->
        ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
      val loop_handle_undo :
        ('-> 'answer) ->
        ('a checkpoint -> 'a checkpoint -> 'answer) ->
        supplier -> 'a checkpoint -> 'answer
      val shifts : 'a checkpoint -> 'a env option
      val acceptable :
        'a checkpoint -> token -> IncrementalEngine.position -> bool
      type 'a lr1state = state
      val number : 'a lr1state -> int
      val production_index : production -> int
      val find_production : int -> production
      type element =
          Element : 'a lr1state * 'a * IncrementalEngine.position *
            IncrementalEngine.position -> element
      type stack = element General.stream
      val stack : 'a env -> stack
      val top : 'a env -> element option
      val pop_many : int -> 'a env -> 'a env option
      val get : int -> 'a env -> element option
      val current_state_number : 'a env -> int
      val equal : 'a env -> 'a env -> bool
      val positions :
        'a env -> IncrementalEngine.position * IncrementalEngine.position
      val env_has_default_reduction : 'a env -> bool
      val state_has_default_reduction : 'a lr1state -> bool
      val pop : 'a env -> 'a env option
      val force_reduction : production -> 'a env -> 'a env
      val input_needed : 'a env -> 'a checkpoint
      val start : state -> Lexing.position -> semantic_value checkpoint
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.TableFormat.TABLES.html0000644000175000017500000001420713717225554030610 0ustar mehdimehdi CamlinternalMenhirLib.TableFormat.TABLES sig
  type token
  val token2terminal : CamlinternalMenhirLib.TableFormat.TABLES.token -> int
  val error_terminal : int
  val token2value :
    CamlinternalMenhirLib.TableFormat.TABLES.token -> Stdlib.Obj.t
  val default_reduction : CamlinternalMenhirLib.PackedIntArray.t
  val error : int * string
  val action :
    CamlinternalMenhirLib.PackedIntArray.t *
    CamlinternalMenhirLib.PackedIntArray.t
  val lhs : CamlinternalMenhirLib.PackedIntArray.t
  val goto :
    CamlinternalMenhirLib.PackedIntArray.t *
    CamlinternalMenhirLib.PackedIntArray.t
  val start : int
  val semantic_action :
    ((int, Stdlib.Obj.t, CamlinternalMenhirLib.TableFormat.TABLES.token)
     CamlinternalMenhirLib.EngineTypes.env ->
     (int, Stdlib.Obj.t) CamlinternalMenhirLib.EngineTypes.stack)
    array
  exception Error
  val trace : (string array * string array) option
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.Printers.html0000644000175000017500000001435313717225554027247 0ustar mehdimehdi CamlinternalMenhirLib.Printers sig
  module Make :
    functor (I : IncrementalEngine.EVERYTHING)
      (User : sig
                val print : string -> unit
                val print_symbol : I.xsymbol -> unit
                val print_element : (I.element -> unit) option
              end)
      ->
      sig
        val print_symbols : I.xsymbol list -> unit
        val print_element_as_symbol : I.element -> unit
        val print_stack : 'I.env -> unit
        val print_item : I.item -> unit
        val print_production : I.production -> unit
        val print_current_state : 'I.env -> unit
        val print_env : 'I.env -> unit
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Mtd.html0000644000175000017500000001000213717225554024033 0ustar mehdimehdi Ast_helper.Mtd sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    ?typ:Parsetree.module_type ->
    Ast_helper.str -> Parsetree.module_type_declaration
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Ci.html0000644000175000017500000001050413717225554023651 0ustar mehdimehdi Ast_helper.Ci sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    ?virt:Asttypes.virtual_flag ->
    ?params:(Parsetree.core_type * Asttypes.variance) list ->
    Ast_helper.str -> '-> 'Parsetree.class_infos
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.TableFormat.html0000644000175000017500000001571013717225554027637 0ustar mehdimehdi CamlinternalMenhirLib.TableFormat sig
  module type TABLES =
    sig
      type token
      val token2terminal :
        CamlinternalMenhirLib.TableFormat.TABLES.token -> int
      val error_terminal : int
      val token2value :
        CamlinternalMenhirLib.TableFormat.TABLES.token -> Stdlib.Obj.t
      val default_reduction : CamlinternalMenhirLib.PackedIntArray.t
      val error : int * string
      val action :
        CamlinternalMenhirLib.PackedIntArray.t *
        CamlinternalMenhirLib.PackedIntArray.t
      val lhs : CamlinternalMenhirLib.PackedIntArray.t
      val goto :
        CamlinternalMenhirLib.PackedIntArray.t *
        CamlinternalMenhirLib.PackedIntArray.t
      val start : int
      val semantic_action :
        ((int, Stdlib.Obj.t, CamlinternalMenhirLib.TableFormat.TABLES.token)
         CamlinternalMenhirLib.EngineTypes.env ->
         (int, Stdlib.Obj.t) CamlinternalMenhirLib.EngineTypes.stack)
        array
      exception Error
      val trace : (string array * string array) option
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Attr.html0000644000175000017500000001037713717225554023177 0ustar mehdimehdi Ast_helper.Attr

Module Ast_helper.Attr

module Attr: sig .. end

Attributes


val mk : ?loc:Ast_helper.loc ->
Ast_helper.str -> Parsetree.payload -> Parsetree.attribute
ocaml-doc-4.11/ocaml.html/compilerlibref/Parse.html0000644000175000017500000003022713717225554021246 0ustar mehdimehdi Parse

Module Parse

module Parse: sig .. end

Entry points in the parser

Warning: this module is unstable and part of compiler-libs.


val implementation : Lexing.lexbuf -> Parsetree.structure
val interface : Lexing.lexbuf -> Parsetree.signature
val toplevel_phrase : Lexing.lexbuf -> Parsetree.toplevel_phrase
val use_file : Lexing.lexbuf -> Parsetree.toplevel_phrase list
val core_type : Lexing.lexbuf -> Parsetree.core_type
val expression : Lexing.lexbuf -> Parsetree.expression
val pattern : Lexing.lexbuf -> Parsetree.pattern

The functions below can be used to parse Longident safely.

val longident : Lexing.lexbuf -> Longident.t

The function longident is guaranted to parse all subclasses of Longident.t used in OCaml: values, constructors, simple or extended module paths, and types or module types.

However, this function accepts inputs which are not accepted by the compiler, because they combine functor applications and infix operators. In valid OCaml syntax, only value-level identifiers may end with infix operators Foo.( + ). Moreover, in value-level identifiers the module path Foo must be simple (M.N rather than F(X)): functor applications may only appear in type-level identifiers. As a consequence, a path such as F(X).( + ) is not a valid OCaml identifier; but it is accepted by this function.

The next functions are specialized to a subclass of Longident.t

val val_ident : Lexing.lexbuf -> Longident.t

This function parses a syntactically valid path for a value. For instance, x, M.x, and (+.) are valid. Contrarily, M.A, F(X).x, and true are rejected.

Longident for OCaml's value cannot contain functor application. The last component of the Longident.t is not capitalized, but can be an operator A.Path.To.(.%.%.(;..)<-)

val constr_ident : Lexing.lexbuf -> Longident.t

This function parses a syntactically valid path for a variant constructor. For instance, A, M.A and M.(::) are valid, but both M.a and F(X).A are rejected.

Longident for OCaml's variant constructors cannot contain functor application. The last component of the Longident.t is capitalized, or it may be one the special constructors: true,false,(),[],(::). Among those special constructors, only (::) can be prefixed by a module path (A.B.C.(::)).

val simple_module_path : Lexing.lexbuf -> Longident.t

This function parses a syntactically valid path for a module. For instance, A, and M.A are valid, but both M.a and F(X).A are rejected.

Longident for OCaml's module cannot contain functor application. The last component of the Longident.t is capitalized.

val extended_module_path : Lexing.lexbuf -> Longident.t

This function parse syntactically valid path for an extended module. For instance, A.B and F(A).B are valid. Contrarily, (.%()) or [] are both rejected.

The last component of the Longident.t is capitalized.

val type_ident : Lexing.lexbuf -> Longident.t

This function parse syntactically valid path for a type or a module type. For instance, A, t, M.t and F(X).t are valid. Contrarily, (.%()) or [] are both rejected.

In path for type and module types, only operators and special constructors are rejected.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.StaticVersion.html0000644000175000017500000000634513717225554030240 0ustar mehdimehdi CamlinternalMenhirLib.StaticVersion sig val require_20190924 : unit end ocaml-doc-4.11/ocaml.html/compilerlibref/index.html0000644000175000017500000002320513717225554021301 0ustar mehdimehdi

Warning

This library is part of the internal OCaml compiler API, and is not the language standard library. There are no compatibility guarantees between releases, so code written against these modules must be willing to depend on specific OCaml compiler versions.

Ast_iterator

Ast_iterator.iterator enables AST inspection using open recursion.

CamlinternalMenhirLib
Ast_invariants

Check AST invariants

Ast_mapper

The interface of a -ppx rewriter

Printast

Raw printer for Parsetree

Builtin_attributes

Support for some of the builtin attributes

Pprintast

Pretty-printers for Parsetree

Parse

Entry points in the parser

Location

Source code locations (ranges of positions), used in parsetree

Ast_helper

Helpers to produce Parsetree fragments

Syntaxerr

Auxiliary type for reporting syntax errors

Attr_helper

Helpers for attributes

Asttypes

Auxiliary AST types used by parsetree and typedtree.

Lexer

The lexical analyzer

Longident

Long identifiers, used in parsetree.

Parser
Docstrings

Documentation comments

Parsetree

Abstract syntax tree produced by parsing

Depend

Module dependencies.

Terminfo

Basic interface to the terminfo database

Clflags

Command line flags

Strongly_connected_components

Kosaraju's algorithm for strongly connected components.

Arg_helper

Decipher command line arguments of the form <value> | <key>=<value>,...

Targetint

Target processor-native integers.

Profile

Compiler performance recording

Build_path_prefix_map

Rewrite paths for reproducible builds

Int_replace_polymorphic_compare
Identifiable

Uniform interface for common data structures over various things.

Ccomp

Compiling C files and building C libraries

Misc

Miscellaneous useful types and functions

Numbers

Modules about numbers, some of which satisfy Identifiable.S.

Domainstate
Load_path

Management of include directories.

Consistbl

Consistency tables: for checking consistency of module CRCs

Warnings

Warning definitions

Config

System configuration

Pparse

Driver for the parser and external preprocessors.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Asttypes.html0000644000175000017500000001555213717225554023055 0ustar mehdimehdi Asttypes sig
  type constant =
      Const_int of int
    | Const_char of char
    | Const_string of string * Location.t * string option
    | Const_float of string
    | Const_int32 of int32
    | Const_int64 of int64
    | Const_nativeint of nativeint
  type rec_flag = Nonrecursive | Recursive
  type direction_flag = Upto | Downto
  type private_flag = Private | Public
  type mutable_flag = Immutable | Mutable
  type virtual_flag = Virtual | Concrete
  type override_flag = Override | Fresh
  type closed_flag = Closed | Open
  type label = string
  type arg_label = Nolabel | Labelled of string | Optional of string
  type 'a loc = 'Location.loc = { txt : 'a; loc : Location.t; }
  type variance = Covariant | Contravariant | Invariant
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Error_style.html0000644000175000017500000001107113717225554023373 0ustar mehdimehdi Misc.Error_style

Module Misc.Error_style

module Error_style: sig .. end

type setting = 
| Contextual
| Short
val default_setting : setting
ocaml-doc-4.11/ocaml.html/compilerlibref/Warnings.html0000644000175000017500000007144113717225554021767 0ustar mehdimehdi Warnings

Module Warnings

module Warnings: sig .. end

Warning definitions

Warning: this module is unstable and part of compiler-libs.


type loc = {
   loc_start : Lexing.position;
   loc_end : Lexing.position;
   loc_ghost : bool;
}
type t = 
| Comment_start
| Comment_not_end
| Fragile_match of string
| Partial_application
| Labels_omitted of string list
| Method_override of string list
| Partial_match of string
| Non_closed_record_pattern of string
| Statement_type
| Unused_match
| Unused_pat
| Instance_variable_override of string list
| Illegal_backslash
| Implicit_public_methods of string list
| Unerasable_optional_argument
| Undeclared_virtual_method of string
| Not_principal of string
| Without_principality of string
| Unused_argument
| Nonreturning_statement
| Preprocessor of string
| Useless_record_with
| Bad_module_name of string
| All_clauses_guarded
| Unused_var of string
| Unused_var_strict of string
| Wildcard_arg_to_constant_constr
| Eol_in_string
| Duplicate_definitions of string * string * string * string
| Multiple_definition of string * string * string
| Unused_value_declaration of string
| Unused_open of string
| Unused_type_declaration of string
| Unused_for_index of string
| Unused_ancestor of string
| Unused_constructor of string * bool * bool
| Unused_extension of string * bool * bool * bool
| Unused_rec_flag
| Name_out_of_scope of string * string list * bool
| Ambiguous_name of string list * string list * bool * string
| Disambiguated_name of string
| Nonoptional_label of string
| Open_shadow_identifier of string * string
| Open_shadow_label_constructor of string * string
| Bad_env_variable of string * string
| Attribute_payload of string * string
| Eliminated_optional_arguments of string list
| No_cmi_file of string * string option
| Bad_docstring of bool
| Expect_tailcall
| Fragile_literal_pattern
| Misplaced_attribute of string
| Duplicated_attribute of string
| Inlining_impossible of string
| Unreachable_case
| Ambiguous_pattern of string list
| No_cmx_file of string
| Assignment_to_non_mutable_value
| Unused_module of string
| Unboxable_type_in_prim_decl of string
| Constraint_on_gadt
| Erroneous_printed_signature of string
| Unsafe_without_parsing
| Redefining_unit of string
| Unused_open_bang of string
| Unused_functor_parameter of string
type alert = {
   kind : string;
   message : string;
   def : loc;
   use : loc;
}
val parse_options : bool -> string -> unit
val parse_alert_option : string -> unit

Disable/enable alerts based on the parameter to the -alert command-line option. Raises Arg.Bad if the string is not a valid specification.

val without_warnings : (unit -> 'a) -> 'a

Run the thunk with all warnings and alerts disabled.

val is_active : t -> bool
val is_error : t -> bool
val defaults_w : string
val defaults_warn_error : string
type reporting_information = {
   id : string;
   message : string;
   is_error : bool;
   sub_locs : (loc * string) list;
}
val report : t -> [ `Active of reporting_information | `Inactive ]
val report_alert : alert -> [ `Active of reporting_information | `Inactive ]
exception Errors
val check_fatal : unit -> unit
val reset_fatal : unit -> unit
val help_warnings : unit -> unit
type state 
val backup : unit -> state
val restore : state -> unit
val mk_lazy : (unit -> 'a) -> 'a Lazy.t

Like Lazy.of_fun, but the function is applied with the warning/alert settings at the time mk_lazy is called.

ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Color.html0000644000175000017500000002335513717225554022150 0ustar mehdimehdi Misc.Color

Module Misc.Color

module Color: sig .. end

type color = 
| Black
| Red
| Green
| Yellow
| Blue
| Magenta
| Cyan
| White
type style = 
| FG of color
| BG of color
| Bold
| Reset
val ansi_of_style_l : style list -> string
type styles = {
   error : style list;
   warning : style list;
   loc : style list;
}
val default_styles : styles
val get_styles : unit -> styles
val set_styles : styles -> unit
type setting = 
| Auto
| Always
| Never
val default_setting : setting
val setup : setting option -> unit
val set_color_tag_handling : Format.formatter -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/Strongly_connected_components.S.html0000644000175000017500000001343413717225554026506 0ustar mehdimehdi Strongly_connected_components.S

Module type Strongly_connected_components.S

module type S = sig .. end

module Id: Identifiable.S 
type directed_graph = Id.Set.t Id.Map.t 

If (a -> set) belongs to the map, it means that there are edges from a to every element of set. It is assumed that no edge points to a vertex not represented in the map.

type component = 
| Has_loop of Id.t list
| No_loop of Id.t
val connected_components_sorted_from_roots_to_leaf : directed_graph ->
component array
val component_graph : directed_graph ->
(component * int list) array
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.TABLE.Log.html0000644000175000017500000001261013717225554031233 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.TABLE.Log sig
  val state : CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
  val shift :
    CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
    CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
  val reduce_or_accept :
    CamlinternalMenhirLib.EngineTypes.TABLE.production -> unit
  val lookahead_token :
    CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
    Stdlib.Lexing.position -> Stdlib.Lexing.position -> unit
  val initiating_error_handling : unit -> unit
  val resuming_error_handling : unit -> unit
  val handling_error : CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Build_path_prefix_map.html0000644000175000017500000001456713717225554025533 0ustar mehdimehdi Build_path_prefix_map sig
  type path = string
  type path_prefix = string
  type error_message = string
  val encode_prefix : Build_path_prefix_map.path_prefix -> string
  val decode_prefix :
    string ->
    (Build_path_prefix_map.path_prefix, Build_path_prefix_map.error_message)
    Stdlib.result
  type pair = {
    target : Build_path_prefix_map.path_prefix;
    source : Build_path_prefix_map.path_prefix;
  }
  val encode_pair : Build_path_prefix_map.pair -> string
  val decode_pair :
    string ->
    (Build_path_prefix_map.pair, Build_path_prefix_map.error_message)
    Stdlib.result
  type map = Build_path_prefix_map.pair option list
  val encode_map : Build_path_prefix_map.map -> string
  val decode_map :
    string ->
    (Build_path_prefix_map.map, Build_path_prefix_map.error_message)
    Stdlib.result
  val rewrite_opt :
    Build_path_prefix_map.map ->
    Build_path_prefix_map.path -> Build_path_prefix_map.path option
  val rewrite :
    Build_path_prefix_map.map ->
    Build_path_prefix_map.path -> Build_path_prefix_map.path
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Exp.html0000644000175000017500000005353313717225554023022 0ustar mehdimehdi Ast_helper.Exp

Module Ast_helper.Exp

module Exp: sig .. end

Expressions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression_desc -> Parsetree.expression
val attr : Parsetree.expression -> Parsetree.attribute -> Parsetree.expression
val ident : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.expression
val constant : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.constant -> Parsetree.expression
val let_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.rec_flag ->
Parsetree.value_binding list -> Parsetree.expression -> Parsetree.expression
val fun_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.arg_label ->
Parsetree.expression option ->
Parsetree.pattern -> Parsetree.expression -> Parsetree.expression
val function_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.case list -> Parsetree.expression
val apply : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression ->
(Asttypes.arg_label * Parsetree.expression) list -> Parsetree.expression
val match_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Parsetree.case list -> Parsetree.expression
val try_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Parsetree.case list -> Parsetree.expression
val tuple : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression list -> Parsetree.expression
val construct : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.expression option -> Parsetree.expression
val variant : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.label -> Parsetree.expression option -> Parsetree.expression
val record : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
(Ast_helper.lid * Parsetree.expression) list ->
Parsetree.expression option -> Parsetree.expression
val field : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Ast_helper.lid -> Parsetree.expression
val setfield : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression ->
Ast_helper.lid -> Parsetree.expression -> Parsetree.expression
val array : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression list -> Parsetree.expression
val ifthenelse : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression ->
Parsetree.expression -> Parsetree.expression option -> Parsetree.expression
val sequence : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Parsetree.expression -> Parsetree.expression
val while_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Parsetree.expression -> Parsetree.expression
val for_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.pattern ->
Parsetree.expression ->
Parsetree.expression ->
Asttypes.direction_flag -> Parsetree.expression -> Parsetree.expression
val coerce : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression ->
Parsetree.core_type option -> Parsetree.core_type -> Parsetree.expression
val constraint_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Parsetree.core_type -> Parsetree.expression
val send : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Ast_helper.str -> Parsetree.expression
val new_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.expression
val setinstvar : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str -> Parsetree.expression -> Parsetree.expression
val override : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
(Ast_helper.str * Parsetree.expression) list -> Parsetree.expression
val letmodule : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str_opt ->
Parsetree.module_expr -> Parsetree.expression -> Parsetree.expression
val letexception : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.extension_constructor ->
Parsetree.expression -> Parsetree.expression
val assert_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.expression
val lazy_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.expression
val poly : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.expression -> Parsetree.core_type option -> Parsetree.expression
val object_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.class_structure -> Parsetree.expression
val newtype : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str -> Parsetree.expression -> Parsetree.expression
val pack : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.module_expr -> Parsetree.expression
val open_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.open_declaration -> Parsetree.expression -> Parsetree.expression
val letop : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.binding_op ->
Parsetree.binding_op list -> Parsetree.expression -> Parsetree.expression
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.expression
val unreachable : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> unit -> Parsetree.expression
val case : Parsetree.pattern ->
?guard:Parsetree.expression -> Parsetree.expression -> Parsetree.case
val binding_op : Ast_helper.str ->
Parsetree.pattern ->
Parsetree.expression -> Ast_helper.loc -> Parsetree.binding_op
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.html0000644000175000017500000001220113717225554031311 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE

Module type CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE

module type MONOLITHIC_ENGINE = sig .. end

type state 
type token 
type semantic_value 
exception Error
val entry : state ->
(Lexing.lexbuf ->
token) ->
Lexing.lexbuf ->
semantic_value
ocaml-doc-4.11/ocaml.html/compilerlibref/Longident.html0000644000175000017500000001674313717225554022126 0ustar mehdimehdi Longident

Module Longident

module Longident: sig .. end

Long identifiers, used in parsetree.

Warning: this module is unstable and part of compiler-libs.


type t = 
| Lident of string
| Ldot of t * string
| Lapply of t * t
val flatten : t -> string list
val unflatten : string list -> t option

For a non-empty list l, unflatten l is Some lid where lid is the long identifier created by concatenating the elements of l with Ldot. unflatten [] is None.

val last : t -> string
val parse : string -> t

This function is broken on identifiers that are not just "Word.Word.word"; for example, it returns incorrect results on infix operators and extended module paths.

If you want to generate long identifiers that are a list of dot-separated identifiers, the function Longident.unflatten is safer and faster. Longident.unflatten is available since OCaml 4.06.0.

If you want to parse any identifier correctly, use the long-identifiers functions from the Parse module, in particular Parse.longident. They are available since OCaml 4.11, and also provide proper input-location support.

To print a longident, see Pprintast.longident, using Format.asprintf to convert to a string.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Docstrings.WithMenhir.html0000644000175000017500000002135413717225554025432 0ustar mehdimehdi Docstrings.WithMenhir sig
  val symbol_docs :
    Stdlib.Lexing.position * Stdlib.Lexing.position -> Docstrings.docs
  val symbol_docs_lazy :
    Stdlib.Lexing.position * Stdlib.Lexing.position ->
    Docstrings.docs Stdlib.Lazy.t
  val rhs_docs :
    Stdlib.Lexing.position -> Stdlib.Lexing.position -> Docstrings.docs
  val rhs_docs_lazy :
    Stdlib.Lexing.position ->
    Stdlib.Lexing.position -> Docstrings.docs Stdlib.Lazy.t
  val mark_symbol_docs :
    Stdlib.Lexing.position * Stdlib.Lexing.position -> unit
  val mark_rhs_docs :
    Stdlib.Lexing.position -> Stdlib.Lexing.position -> unit
  val symbol_info : Stdlib.Lexing.position -> Docstrings.info
  val rhs_info : Stdlib.Lexing.position -> Docstrings.info
  val symbol_text : Stdlib.Lexing.position -> Docstrings.text
  val symbol_text_lazy :
    Stdlib.Lexing.position -> Docstrings.text Stdlib.Lazy.t
  val rhs_text : Stdlib.Lexing.position -> Docstrings.text
  val rhs_text_lazy : Stdlib.Lexing.position -> Docstrings.text Stdlib.Lazy.t
  val symbol_pre_extra_text : Stdlib.Lexing.position -> Docstrings.text
  val symbol_post_extra_text : Stdlib.Lexing.position -> Docstrings.text
  val rhs_pre_extra_text : Stdlib.Lexing.position -> Docstrings.text
  val rhs_post_extra_text : Stdlib.Lexing.position -> Docstrings.text
  val rhs_post_text : Stdlib.Lexing.position -> Docstrings.text
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Parsetree.html0000644000175000017500000036101313717225554022126 0ustar mehdimehdi Parsetree

Module Parsetree

module Parsetree: sig .. end

Abstract syntax tree produced by parsing

Warning: this module is unstable and part of compiler-libs.


type constant = 
| Pconst_integer of string * char option
| Pconst_char of char
| Pconst_string of string * Location.t * string option
| Pconst_float of string * char option
type location_stack = Location.t list 

Extension points

type attribute = {
   attr_name : string Asttypes.loc;
   attr_payload : payload;
   attr_loc : Location.t;
}
type extension = string Asttypes.loc * payload 
type attributes = attribute list 
type payload = 
| PStr of structure
| PSig of signature
| PTyp of core_type
| PPat of pattern * expression option

Core language

type core_type = {
   ptyp_desc : core_type_desc;
   ptyp_loc : Location.t;
   ptyp_loc_stack : location_stack;
   ptyp_attributes : attributes;
}
type core_type_desc = 
| Ptyp_any
| Ptyp_var of string
| Ptyp_arrow of Asttypes.arg_label * core_type * core_type
| Ptyp_tuple of core_type list
| Ptyp_constr of Longident.t Asttypes.loc * core_type list
| Ptyp_object of object_field list * Asttypes.closed_flag
| Ptyp_class of Longident.t Asttypes.loc * core_type list
| Ptyp_alias of core_type * string
| Ptyp_variant of row_field list * Asttypes.closed_flag * Asttypes.label list option
| Ptyp_poly of string Asttypes.loc list * core_type
| Ptyp_package of package_type
| Ptyp_extension of extension
type package_type = Longident.t Asttypes.loc *
(Longident.t Asttypes.loc * core_type) list
type row_field = {
   prf_desc : row_field_desc;
   prf_loc : Location.t;
   prf_attributes : attributes;
}
type row_field_desc = 
| Rtag of Asttypes.label Asttypes.loc * bool * core_type list
| Rinherit of core_type
type object_field = {
   pof_desc : object_field_desc;
   pof_loc : Location.t;
   pof_attributes : attributes;
}
type object_field_desc = 
| Otag of Asttypes.label Asttypes.loc * core_type
| Oinherit of core_type
type pattern = {
   ppat_desc : pattern_desc;
   ppat_loc : Location.t;
   ppat_loc_stack : location_stack;
   ppat_attributes : attributes;
}
type pattern_desc = 
| Ppat_any
| Ppat_var of string Asttypes.loc
| Ppat_alias of pattern * string Asttypes.loc
| Ppat_constant of constant
| Ppat_interval of constant * constant
| Ppat_tuple of pattern list
| Ppat_construct of Longident.t Asttypes.loc * pattern option
| Ppat_variant of Asttypes.label * pattern option
| Ppat_record of (Longident.t Asttypes.loc * pattern) list * Asttypes.closed_flag
| Ppat_array of pattern list
| Ppat_or of pattern * pattern
| Ppat_constraint of pattern * core_type
| Ppat_type of Longident.t Asttypes.loc
| Ppat_lazy of pattern
| Ppat_unpack of string option Asttypes.loc
| Ppat_exception of pattern
| Ppat_extension of extension
| Ppat_open of Longident.t Asttypes.loc * pattern
type expression = {
   pexp_desc : expression_desc;
   pexp_loc : Location.t;
   pexp_loc_stack : location_stack;
   pexp_attributes : attributes;
}
type expression_desc = 
| Pexp_ident of Longident.t Asttypes.loc
| Pexp_constant of constant
| Pexp_let of Asttypes.rec_flag * value_binding list * expression
| Pexp_function of case list
| Pexp_fun of Asttypes.arg_label * expression option * pattern
* expression
| Pexp_apply of expression * (Asttypes.arg_label * expression) list
| Pexp_match of expression * case list
| Pexp_try of expression * case list
| Pexp_tuple of expression list
| Pexp_construct of Longident.t Asttypes.loc * expression option
| Pexp_variant of Asttypes.label * expression option
| Pexp_record of (Longident.t Asttypes.loc * expression) list
* expression option
| Pexp_field of expression * Longident.t Asttypes.loc
| Pexp_setfield of expression * Longident.t Asttypes.loc * expression
| Pexp_array of expression list
| Pexp_ifthenelse of expression * expression * expression option
| Pexp_sequence of expression * expression
| Pexp_while of expression * expression
| Pexp_for of pattern * expression * expression
* Asttypes.direction_flag * expression
| Pexp_constraint of expression * core_type
| Pexp_coerce of expression * core_type option * core_type
| Pexp_send of expression * Asttypes.label Asttypes.loc
| Pexp_new of Longident.t Asttypes.loc
| Pexp_setinstvar of Asttypes.label Asttypes.loc * expression
| Pexp_override of (Asttypes.label Asttypes.loc * expression) list
| Pexp_letmodule of string option Asttypes.loc * module_expr * expression
| Pexp_letexception of extension_constructor * expression
| Pexp_assert of expression
| Pexp_lazy of expression
| Pexp_poly of expression * core_type option
| Pexp_object of class_structure
| Pexp_newtype of string Asttypes.loc * expression
| Pexp_pack of module_expr
| Pexp_open of open_declaration * expression
| Pexp_letop of letop
| Pexp_extension of extension
| Pexp_unreachable
type case = {
   pc_lhs : pattern;
   pc_guard : expression option;
   pc_rhs : expression;
}
type letop = {
   let_ : binding_op;
   ands : binding_op list;
   body : expression;
}
type binding_op = {
   pbop_op : string Asttypes.loc;
   pbop_pat : pattern;
   pbop_exp : expression;
   pbop_loc : Location.t;
}
type value_description = {
   pval_name : string Asttypes.loc;
   pval_type : core_type;
   pval_prim : string list;
   pval_attributes : attributes;
   pval_loc : Location.t;
}
type type_declaration = {
   ptype_name : string Asttypes.loc;
   ptype_params : (core_type * Asttypes.variance) list;
   ptype_cstrs : (core_type * core_type * Location.t) list;
   ptype_kind : type_kind;
   ptype_private : Asttypes.private_flag;
   ptype_manifest : core_type option;
   ptype_attributes : attributes;
   ptype_loc : Location.t;
}
type type_kind = 
| Ptype_abstract
| Ptype_variant of constructor_declaration list
| Ptype_record of label_declaration list
| Ptype_open
type label_declaration = {
   pld_name : string Asttypes.loc;
   pld_mutable : Asttypes.mutable_flag;
   pld_type : core_type;
   pld_loc : Location.t;
   pld_attributes : attributes;
}
type constructor_declaration = {
   pcd_name : string Asttypes.loc;
   pcd_args : constructor_arguments;
   pcd_res : core_type option;
   pcd_loc : Location.t;
   pcd_attributes : attributes;
}
type constructor_arguments = 
| Pcstr_tuple of core_type list
| Pcstr_record of label_declaration list
type type_extension = {
   ptyext_path : Longident.t Asttypes.loc;
   ptyext_params : (core_type * Asttypes.variance) list;
   ptyext_constructors : extension_constructor list;
   ptyext_private : Asttypes.private_flag;
   ptyext_loc : Location.t;
   ptyext_attributes : attributes;
}
type extension_constructor = {
   pext_name : string Asttypes.loc;
   pext_kind : extension_constructor_kind;
   pext_loc : Location.t;
   pext_attributes : attributes;
}
type type_exception = {
   ptyexn_constructor : extension_constructor;
   ptyexn_loc : Location.t;
   ptyexn_attributes : attributes;
}
type extension_constructor_kind = 
| Pext_decl of constructor_arguments * core_type option
| Pext_rebind of Longident.t Asttypes.loc

Class language

type class_type = {
   pcty_desc : class_type_desc;
   pcty_loc : Location.t;
   pcty_attributes : attributes;
}
type class_type_desc = 
| Pcty_constr of Longident.t Asttypes.loc * core_type list
| Pcty_signature of class_signature
| Pcty_arrow of Asttypes.arg_label * core_type * class_type
| Pcty_extension of extension
| Pcty_open of open_description * class_type
type class_signature = {
   pcsig_self : core_type;
   pcsig_fields : class_type_field list;
}
type class_type_field = {
   pctf_desc : class_type_field_desc;
   pctf_loc : Location.t;
   pctf_attributes : attributes;
}
type class_type_field_desc = 
| Pctf_inherit of class_type
| Pctf_val of (Asttypes.label Asttypes.loc * Asttypes.mutable_flag *
Asttypes.virtual_flag * core_type)
| Pctf_method of (Asttypes.label Asttypes.loc * Asttypes.private_flag *
Asttypes.virtual_flag * core_type)
| Pctf_constraint of (core_type * core_type)
| Pctf_attribute of attribute
| Pctf_extension of extension
type 'a class_infos = {
   pci_virt : Asttypes.virtual_flag;
   pci_params : (core_type * Asttypes.variance) list;
   pci_name : string Asttypes.loc;
   pci_expr : 'a;
   pci_loc : Location.t;
   pci_attributes : attributes;
}
type class_description = class_type class_infos 
type class_type_declaration = class_type class_infos 
type class_expr = {
   pcl_desc : class_expr_desc;
   pcl_loc : Location.t;
   pcl_attributes : attributes;
}
type class_expr_desc = 
| Pcl_constr of Longident.t Asttypes.loc * core_type list
| Pcl_structure of class_structure
| Pcl_fun of Asttypes.arg_label * expression option * pattern
* class_expr
| Pcl_apply of class_expr * (Asttypes.arg_label * expression) list
| Pcl_let of Asttypes.rec_flag * value_binding list * class_expr
| Pcl_constraint of class_expr * class_type
| Pcl_extension of extension
| Pcl_open of open_description * class_expr
type class_structure = {
   pcstr_self : pattern;
   pcstr_fields : class_field list;
}
type class_field = {
   pcf_desc : class_field_desc;
   pcf_loc : Location.t;
   pcf_attributes : attributes;
}
type class_field_desc = 
| Pcf_inherit of Asttypes.override_flag * class_expr * string Asttypes.loc option
| Pcf_val of (Asttypes.label Asttypes.loc * Asttypes.mutable_flag *
class_field_kind)
| Pcf_method of (Asttypes.label Asttypes.loc * Asttypes.private_flag *
class_field_kind)
| Pcf_constraint of (core_type * core_type)
| Pcf_initializer of expression
| Pcf_attribute of attribute
| Pcf_extension of extension
type class_field_kind = 
| Cfk_virtual of core_type
| Cfk_concrete of Asttypes.override_flag * expression
type class_declaration = class_expr class_infos 

Module language

type module_type = {
   pmty_desc : module_type_desc;
   pmty_loc : Location.t;
   pmty_attributes : attributes;
}
type module_type_desc = 
| Pmty_ident of Longident.t Asttypes.loc
| Pmty_signature of signature
| Pmty_functor of functor_parameter * module_type
| Pmty_with of module_type * with_constraint list
| Pmty_typeof of module_expr
| Pmty_extension of extension
| Pmty_alias of Longident.t Asttypes.loc
type functor_parameter = 
| Unit
| Named of string option Asttypes.loc * module_type
type signature = signature_item list 
type signature_item = {
   psig_desc : signature_item_desc;
   psig_loc : Location.t;
}
type signature_item_desc = 
| Psig_value of value_description
| Psig_type of Asttypes.rec_flag * type_declaration list
| Psig_typesubst of type_declaration list
| Psig_typext of type_extension
| Psig_exception of type_exception
| Psig_module of module_declaration
| Psig_modsubst of module_substitution
| Psig_recmodule of module_declaration list
| Psig_modtype of module_type_declaration
| Psig_open of open_description
| Psig_include of include_description
| Psig_class of class_description list
| Psig_class_type of class_type_declaration list
| Psig_attribute of attribute
| Psig_extension of extension * attributes
type module_declaration = {
   pmd_name : string option Asttypes.loc;
   pmd_type : module_type;
   pmd_attributes : attributes;
   pmd_loc : Location.t;
}
type module_substitution = {
   pms_name : string Asttypes.loc;
   pms_manifest : Longident.t Asttypes.loc;
   pms_attributes : attributes;
   pms_loc : Location.t;
}
type module_type_declaration = {
   pmtd_name : string Asttypes.loc;
   pmtd_type : module_type option;
   pmtd_attributes : attributes;
   pmtd_loc : Location.t;
}
type 'a open_infos = {
   popen_expr : 'a;
   popen_override : Asttypes.override_flag;
   popen_loc : Location.t;
   popen_attributes : attributes;
}
type open_description = Longident.t Asttypes.loc open_infos 
type open_declaration = module_expr open_infos 
type 'a include_infos = {
   pincl_mod : 'a;
   pincl_loc : Location.t;
   pincl_attributes : attributes;
}
type include_description = module_type include_infos 
type include_declaration = module_expr include_infos 
type with_constraint = 
| Pwith_type of Longident.t Asttypes.loc * type_declaration
| Pwith_module of Longident.t Asttypes.loc * Longident.t Asttypes.loc
| Pwith_typesubst of Longident.t Asttypes.loc * type_declaration
| Pwith_modsubst of Longident.t Asttypes.loc * Longident.t Asttypes.loc
type module_expr = {
   pmod_desc : module_expr_desc;
   pmod_loc : Location.t;
   pmod_attributes : attributes;
}
type module_expr_desc = 
| Pmod_ident of Longident.t Asttypes.loc
| Pmod_structure of structure
| Pmod_functor of functor_parameter * module_expr
| Pmod_apply of module_expr * module_expr
| Pmod_constraint of module_expr * module_type
| Pmod_unpack of expression
| Pmod_extension of extension
type structure = structure_item list 
type structure_item = {
   pstr_desc : structure_item_desc;
   pstr_loc : Location.t;
}
type structure_item_desc = 
| Pstr_eval of expression * attributes
| Pstr_value of Asttypes.rec_flag * value_binding list
| Pstr_primitive of value_description
| Pstr_type of Asttypes.rec_flag * type_declaration list
| Pstr_typext of type_extension
| Pstr_exception of type_exception
| Pstr_module of module_binding
| Pstr_recmodule of module_binding list
| Pstr_modtype of module_type_declaration
| Pstr_open of open_declaration
| Pstr_class of class_declaration list
| Pstr_class_type of class_type_declaration list
| Pstr_include of include_declaration
| Pstr_attribute of attribute
| Pstr_extension of extension * attributes
type value_binding = {
   pvb_pat : pattern;
   pvb_expr : expression;
   pvb_attributes : attributes;
   pvb_loc : Location.t;
}
type module_binding = {
   pmb_name : string option Asttypes.loc;
   pmb_expr : module_expr;
   pmb_attributes : attributes;
   pmb_loc : Location.t;
}

Toplevel

type toplevel_phrase = 
| Ptop_def of structure
| Ptop_dir of toplevel_directive
type toplevel_directive = {
   pdir_name : string Asttypes.loc;
   pdir_arg : directive_argument option;
   pdir_loc : Location.t;
}
type directive_argument = {
   pdira_desc : directive_argument_desc;
   pdira_loc : Location.t;
}
type directive_argument_desc = 
| Pdir_string of string
| Pdir_int of string * char option
| Pdir_ident of Longident.t
| Pdir_bool of bool
././@LongLink0000644000000000000000000000014700000000000011605 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.ht0000644000175000017500000001073713717225554032035 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE sig
  type state
  type token
  type semantic_value
  exception Error
  val entry :
    CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.state ->
    (Stdlib.Lexing.lexbuf ->
     CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.token) ->
    Stdlib.Lexing.lexbuf ->
    CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.semantic_value
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.ErrorReports.html0000644000175000017500000001153513717225554030110 0ustar mehdimehdi CamlinternalMenhirLib.ErrorReports sig
  type 'a buffer
  val wrap :
    (Stdlib.Lexing.lexbuf -> 'token) ->
    (Stdlib.Lexing.position * Stdlib.Lexing.position)
    CamlinternalMenhirLib.ErrorReports.buffer *
    (Stdlib.Lexing.lexbuf -> 'token)
  val show :
    ('-> string) -> 'CamlinternalMenhirLib.ErrorReports.buffer -> string
  val last : 'CamlinternalMenhirLib.ErrorReports.buffer -> 'a
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Pat.html0000644000175000017500000003256413717225554024054 0ustar mehdimehdi Ast_helper.Pat sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.pattern_desc -> Parsetree.pattern
  val attr : Parsetree.pattern -> Parsetree.attribute -> Parsetree.pattern
  val any :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> unit -> Parsetree.pattern
  val var :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.str -> Parsetree.pattern
  val alias :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.pattern -> Ast_helper.str -> Parsetree.pattern
  val constant :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.constant -> Parsetree.pattern
  val interval :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.constant -> Parsetree.constant -> Parsetree.pattern
  val tuple :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.pattern list -> Parsetree.pattern
  val construct :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.pattern option -> Parsetree.pattern
  val variant :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.label -> Parsetree.pattern option -> Parsetree.pattern
  val record :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    (Ast_helper.lid * Parsetree.pattern) list ->
    Asttypes.closed_flag -> Parsetree.pattern
  val array :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.pattern list -> Parsetree.pattern
  val or_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.pattern -> Parsetree.pattern -> Parsetree.pattern
  val constraint_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.pattern -> Parsetree.core_type -> Parsetree.pattern
  val type_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.pattern
  val lazy_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.pattern -> Parsetree.pattern
  val unpack :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.str_opt -> Parsetree.pattern
  val open_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.pattern -> Parsetree.pattern
  val exception_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.pattern -> Parsetree.pattern
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.pattern
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Strongly_connected_components.html0000644000175000017500000001176213717225554026307 0ustar mehdimehdi Strongly_connected_components

Module Strongly_connected_components

module Strongly_connected_components: sig .. end

Kosaraju's algorithm for strongly connected components.

Warning: this module is unstable and part of compiler-libs.


module type S = sig .. end
module Make: 
functor (Id : Identifiable.S-> S with module Id := Id
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InspectionTableInterpreter.html0000644000175000017500000001747213717225554031714 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableInterpreter

Module CamlinternalMenhirLib.InspectionTableInterpreter

module InspectionTableInterpreter: sig .. end

module Symbols: 
functor (T : sig
type 'a terminal 
type 'a nonterminal 
end-> CamlinternalMenhirLib.IncrementalEngine.SYMBOLS 
  with type 'a terminal := 'a T.terminal
   and type 'a nonterminal := 'a T.nonterminal
module Make: 
functor (TT : CamlinternalMenhirLib.TableFormat.TABLES-> 
functor (IT : CamlinternalMenhirLib.InspectionTableFormat.TABLES with type 'a lr1state = int-> 
functor (ET : CamlinternalMenhirLib.EngineTypes.TABLE with type terminal = int and type nonterminal = int and type semantic_value = Obj.t-> 
functor (E : sig
type 'a env = (ET.state, ET.semantic_value, ET.token) CamlinternalMenhirLib.EngineTypes.env 
end-> CamlinternalMenhirLib.IncrementalEngine.INSPECTION 
  with type 'a terminal := 'a IT.terminal
   and type 'a nonterminal := 'a IT.nonterminal
   and type 'a lr1state := 'a IT.lr1state
   and type production := int
   and type 'a env := 'a E.env
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.EnvLazy.html0000644000175000017500000001267513717225554022465 0ustar mehdimehdi Misc.EnvLazy

Module Misc.EnvLazy

module EnvLazy: sig .. end

type ('a, 'b) t 
type log 
val force : ('a -> 'b) -> ('a, 'b) t -> 'b
val create : 'a -> ('a, 'b) t
val get_arg : ('a, 'b) t -> 'a option
val create_forced : 'b -> ('a, 'b) t
val create_failed : exn -> ('a, 'b) t
val log : unit -> log
val force_logged : log ->
('a -> ('b, 'c) result) ->
('a, ('b, 'c) result) t -> ('b, 'c) result
val backtrack : log -> unit
././@LongLink0000644000000000000000000000015600000000000011605 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_S0000644000175000017500000001037213717225554031774 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START sig
  type state
  type semantic_value
  type 'a checkpoint
  val start :
    CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.state ->
    Stdlib.Lexing.position ->
    CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.semantic_value
    CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.checkpoint
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.Convert.html0000644000175000017500000002122613717225554027056 0ustar mehdimehdi CamlinternalMenhirLib.Convert sig
  type ('token, 'semantic_value) traditional =
      (Stdlib.Lexing.lexbuf -> 'token) ->
      Stdlib.Lexing.lexbuf -> 'semantic_value
  type ('token, 'semantic_value) revised =
      (unit -> 'token) -> 'semantic_value
  val traditional2revised :
    ('token -> 'raw_token) ->
    ('token -> Stdlib.Lexing.position) ->
    ('token -> Stdlib.Lexing.position) ->
    ('raw_token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional ->
    ('token, 'semantic_value) CamlinternalMenhirLib.Convert.revised
  val revised2traditional :
    ('raw_token -> Stdlib.Lexing.position -> Stdlib.Lexing.position -> 'token) ->
    ('token, 'semantic_value) CamlinternalMenhirLib.Convert.revised ->
    ('raw_token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional
  module Simplified :
    sig
      val traditional2revised :
        ('token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional ->
        ('token * Stdlib.Lexing.position * Stdlib.Lexing.position,
         'semantic_value)
        CamlinternalMenhirLib.Convert.revised
      val revised2traditional :
        ('token * Stdlib.Lexing.position * Stdlib.Lexing.position,
         'semantic_value)
        CamlinternalMenhirLib.Convert.revised ->
        ('token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Magic_number.html0000644000175000017500000005704513717225554023465 0ustar mehdimehdi Misc.Magic_number

Module Misc.Magic_number

module Magic_number: sig .. end

a typical magic number is "Caml1999I011"; it is formed of an alphanumeric prefix, here Caml1990I, followed by a version, here 011. The prefix identifies the kind of the versioned data: here the I indicates that it is the magic number for .cmi files.

All magic numbers have the same byte length, magic_length, and this is important for users as it gives them the number of bytes to read to obtain the byte sequence that should be a magic number. Typical user code will look like:

        let ic = open_in_bin path in
        let magic =
          try really_input_string ic Magic_number.magic_length
          with End_of_file -> ... in
        match Magic_number.parse magic with
        | Error parse_error -> ...
        | Ok info -> ...
      

A given compiler version expects one specific version for each kind of object file, and will fail if given an unsupported version. Because versions grow monotonically, you can compare the parsed version with the expected "current version" for a kind, to tell whether the wrong-magic object file comes from the past or from the future.

An example of code block that expects the "currently supported version" of a given kind of magic numbers, here Cmxa, is as follows:

        let ic = open_in_bin path in
        begin
          try Magic_number.(expect_current Cmxa (get_info ic)) with
          | Parse_error error -> ...
          | Unexpected error -> ...
        end;
        ...
      

Parse errors distinguish inputs that are Not_a_magic_number str, which are likely to come from the file being completely different, and Truncated str, raised by headers that are the (possibly empty) prefix of a valid magic number.

Unexpected errors correspond to valid magic numbers that are not the one expected, either because it corresponds to a different kind, or to a newer or older version.

The helper functions explain_parse_error and explain_unexpected_error will generate a textual explanation of each error, for use in error messages.

type native_obj_config = {
   flambda : bool;
}

native object files have a format and magic number that depend on certain native-compiler configuration parameters. This configuration space is expressed by the native_obj_config type.

val native_obj_config : native_obj_config

the native object file configuration of the active/configured compiler.

type version = int 
type kind = 
| Exec
| Cmi
| Cmo
| Cma
| Cmx of native_obj_config
| Cmxa of native_obj_config
| Cmxs
| Cmt
| Ast_impl
| Ast_intf
type info = {
   kind : kind;
   version : version; (*

Note: some versions of the compiler use the same version suffix for all kinds, but others use different versions counters for different kinds. We may only assume that versions are growing monotonically (not necessarily always by one) between compiler versions.

*)
}
type raw = string 

the type of raw magic numbers, such as "Caml1999A027" for the .cma files of OCaml 4.10

Parsing magic numbers

type parse_error = 
| Truncated of string
| Not_a_magic_number of string
val explain_parse_error : kind option -> parse_error -> string

Produces an explanation for a parse error. If no kind is provided, we use an unspecific formulation suggesting that any compiler-produced object file would have been satisfying.

val parse : raw ->
(info, parse_error) result

Parses a raw magic number

val read_info : in_channel ->
(info, parse_error) result

Read a raw magic number from an input channel.

If the data read str is not a valid magic number, it can be recovered from the Truncated str | Not_a_magic_number str payload of the Error parse_error case.

If parsing succeeds with an Ok info result, we know that exactly magic_length bytes have been consumed from the input_channel.

If you also wish to enforce that the magic number is at the current version, see Misc.Magic_number.read_current_info below.

val magic_length : int

all magic numbers take the same number of bytes

Checking that magic numbers are current

type 'a unexpected = {
   expected : 'a;
   actual : 'a;
}
type unexpected_error = 
| Kind of kind unexpected
| Version of kind
* version unexpected
val check_current : kind ->
info ->
(unit, unexpected_error) result

check_current kind info checks that the provided magic info is the current version of kind's magic header.

val explain_unexpected_error : unexpected_error -> string

Provides an explanation of the unexpected_error.

type error = 
| Parse_error of parse_error
| Unexpected_error of unexpected_error
val read_current_info : expected_kind:kind option ->
in_channel ->
(info, error) result

Read a magic number as read_info, and check that it is the current version as its kind. If the expected_kind argument is None, any kind is accepted.

Information on magic numbers

val string_of_kind : kind -> string

a user-printable string for a kind, eg. "exec" or "cmo", to use in error messages.

val human_name_of_kind : kind -> string

a user-meaningful name for a kind, eg. "executable file" or "bytecode object file", to use in error messages.

val current_raw : kind -> raw

the current magic number of each kind

val current_version : kind -> version

the current version of each kind

Raw representations

Mainly for internal usage and testing.

type raw_kind = string 

the type of raw magic numbers kinds, such as "Caml1999A" for .cma files

val parse_kind : raw_kind -> kind option

parse a raw kind into a kind

val raw_kind : kind -> raw_kind

the current raw representation of a kind.

In some cases the raw representation of a kind has changed over compiler versions, so other files of the same kind may have different raw kinds. Note that all currently known cases are parsed correctly by parse_kind.

val raw : info -> raw

A valid raw representation of the magic number.

Due to past and future changes in the string representation of magic numbers, we cannot guarantee that the raw strings returned for past and future versions actually match the expectations of those compilers. The representation is accurate for current versions, and it is correctly parsed back into the desired version by the parsing functions above.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.RowDisplacement.html0000644000175000017500000001307613717225554030542 0ustar mehdimehdi CamlinternalMenhirLib.RowDisplacement sig
  type 'a table = int array * 'a array
  val compress :
    ('-> '-> bool) ->
    ('-> bool) ->
    '->
    int ->
    int -> 'a array array -> 'CamlinternalMenhirLib.RowDisplacement.table
  val get :
    'CamlinternalMenhirLib.RowDisplacement.table -> int -> int -> 'a
  val getget :
    ('displacement -> int -> int) ->
    ('data -> int -> 'a) -> 'displacement * 'data -> int -> int -> 'a
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ccomp.html0000644000175000017500000001431513717225554021235 0ustar mehdimehdi Ccomp

Module Ccomp

module Ccomp: sig .. end

Compiling C files and building C libraries

Warning: this module is unstable and part of compiler-libs.


val command : string -> int
val run_command : string -> unit
val compile_file : ?output:string -> ?opt:string -> ?stable_name:string -> string -> int
val create_archive : string -> string list -> int
val expand_libname : string -> string
val quote_files : string list -> string
val quote_optfile : string option -> string
type link_mode = 
| Exe
| Dll
| MainDll
| Partial
val call_linker : link_mode -> string -> string list -> string -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Pparse.html0000644000175000017500000002044413717225554022467 0ustar mehdimehdi Pparse sig
  type error = CannotRun of string | WrongMagic of string
  exception Error of Pparse.error
  val preprocess : string -> string
  val remove_preprocessed : string -> unit
  type 'a ast_kind =
      Structure : Parsetree.structure Pparse.ast_kind
    | Signature : Parsetree.signature Pparse.ast_kind
  val read_ast : 'Pparse.ast_kind -> string -> 'a
  val write_ast : 'Pparse.ast_kind -> string -> '-> unit
  val file :
    tool_name:string ->
    string -> (Stdlib.Lexing.lexbuf -> 'a) -> 'Pparse.ast_kind -> 'a
  val apply_rewriters :
    ?restore:bool -> tool_name:string -> 'Pparse.ast_kind -> '-> 'a
  val apply_rewriters_str :
    ?restore:bool ->
    tool_name:string -> Parsetree.structure -> Parsetree.structure
  val apply_rewriters_sig :
    ?restore:bool ->
    tool_name:string -> Parsetree.signature -> Parsetree.signature
  val report_error : Stdlib.Format.formatter -> Pparse.error -> unit
  val parse_implementation :
    tool_name:string -> string -> Parsetree.structure
  val parse_interface : tool_name:string -> string -> Parsetree.signature
  val call_external_preprocessor : string -> string -> string
  val open_and_check_magic : string -> string -> Stdlib.in_channel * bool
end
././@LongLink0000644000000000000000000000014700000000000011605 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InspectionTableInterpreter.Symbols.htmlocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InspectionTableInterpreter.Symbols.ht0000644000175000017500000001627413717225554033011 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableInterpreter.Symbols

Functor CamlinternalMenhirLib.InspectionTableInterpreter.Symbols

module Symbols: 
functor (T : sig
type 'a terminal 
type 'a nonterminal 
end-> CamlinternalMenhirLib.IncrementalEngine.SYMBOLS 
  with type 'a terminal := 'a T.terminal
   and type 'a nonterminal := 'a T.nonterminal
Parameters:
T : sig type 'a terminal type 'a nonterminal end

type 'a terminal 
type 'a nonterminal 
type 'a symbol = 
| T : 'a0 terminal -> 'a0 symbol
| N : 'a1 nonterminal -> 'a1 symbol
type xsymbol = 
| X : 'a symbol -> xsymbol
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Arg_helper.html0000644000175000017500000007310013717225554023302 0ustar mehdimehdi Arg_helper sig
  module Make :
    functor
      (S : sig
             module Key :
               sig
                 type t
                 val of_string : string -> Arg_helper.Make.Key.t
                 module Map :
                   sig
                     type key = t
                     type +'a t
                     val empty : 'a t
                     val is_empty : 'a t -> bool
                     val mem : key -> 'a t -> bool
                     val add : key -> '-> 'a t -> 'a t
                     val update :
                       key -> ('a option -> 'a option) -> 'a t -> 'a t
                     val singleton : key -> '-> 'a t
                     val remove : key -> 'a t -> 'a t
                     val merge :
                       (key -> 'a option -> 'b option -> 'c option) ->
                       'a t -> 'b t -> 'c t
                     val union :
                       (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
                     val compare : ('-> '-> int) -> 'a t -> 'a t -> int
                     val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
                     val iter : (key -> '-> unit) -> 'a t -> unit
                     val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
                     val for_all : (key -> '-> bool) -> 'a t -> bool
                     val exists : (key -> '-> bool) -> 'a t -> bool
                     val filter : (key -> '-> bool) -> 'a t -> 'a t
                     val filter_map :
                       (key -> '-> 'b option) -> 'a t -> 'b t
                     val partition :
                       (key -> '-> bool) -> 'a t -> 'a t * 'a t
                     val cardinal : 'a t -> int
                     val bindings : 'a t -> (key * 'a) list
                     val min_binding : 'a t -> key * 'a
                     val min_binding_opt : 'a t -> (key * 'a) option
                     val max_binding : 'a t -> key * 'a
                     val max_binding_opt : 'a t -> (key * 'a) option
                     val choose : 'a t -> key * 'a
                     val choose_opt : 'a t -> (key * 'a) option
                     val split : key -> 'a t -> 'a t * 'a option * 'a t
                     val find : key -> 'a t -> 'a
                     val find_opt : key -> 'a t -> 'a option
                     val find_first : (key -> bool) -> 'a t -> key * 'a
                     val find_first_opt :
                       (key -> bool) -> 'a t -> (key * 'a) option
                     val find_last : (key -> bool) -> 'a t -> key * 'a
                     val find_last_opt :
                       (key -> bool) -> 'a t -> (key * 'a) option
                     val map : ('-> 'b) -> 'a t -> 'b t
                     val mapi : (key -> '-> 'b) -> 'a t -> 'b t
                     val to_seq : 'a t -> (key * 'a) Seq.t
                     val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
                     val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
                     val of_seq : (key * 'a) Seq.t -> 'a t
                   end
               end
             module Value :
               sig
                 type t
                 val of_string : string -> Arg_helper.Make.Value.t
               end
           end)
      ->
      sig
        type parsed
        val default : S.Value.t -> Arg_helper.Make.parsed
        val set_base_default :
          S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
        val add_base_override :
          S.Key.t ->
          S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
        val reset_base_overrides :
          Arg_helper.Make.parsed -> Arg_helper.Make.parsed
        val set_user_default :
          S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
        val add_user_override :
          S.Key.t ->
          S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
        val parse :
          string -> string -> Arg_helper.Make.parsed Stdlib.ref -> unit
        type parse_result = Ok | Parse_failed of exn
        val parse_no_error :
          string ->
          Arg_helper.Make.parsed Stdlib.ref -> Arg_helper.Make.parse_result
        val get : key:S.Key.t -> Arg_helper.Make.parsed -> S.Value.t
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Cstr.html0000644000175000017500000000700713717225554024235 0ustar mehdimehdi Ast_helper.Cstr sig
  val mk :
    Parsetree.pattern ->
    Parsetree.class_field list -> Parsetree.class_structure
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Typ.html0000644000175000017500000002675113717225554024105 0ustar mehdimehdi Ast_helper.Typ sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.core_type_desc -> Parsetree.core_type
  val attr :
    Parsetree.core_type -> Parsetree.attribute -> Parsetree.core_type
  val any :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> unit -> Parsetree.core_type
  val var :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> string -> Parsetree.core_type
  val arrow :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.arg_label ->
    Parsetree.core_type -> Parsetree.core_type -> Parsetree.core_type
  val tuple :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.core_type list -> Parsetree.core_type
  val constr :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.core_type list -> Parsetree.core_type
  val object_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.object_field list ->
    Asttypes.closed_flag -> Parsetree.core_type
  val class_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.core_type list -> Parsetree.core_type
  val alias :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.core_type -> string -> Parsetree.core_type
  val variant :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.row_field list ->
    Asttypes.closed_flag -> Asttypes.label list option -> Parsetree.core_type
  val poly :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str list -> Parsetree.core_type -> Parsetree.core_type
  val package :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid ->
    (Ast_helper.lid * Parsetree.core_type) list -> Parsetree.core_type
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.core_type
  val force_poly : Parsetree.core_type -> Parsetree.core_type
  val varify_constructors :
    Ast_helper.str list -> Parsetree.core_type -> Parsetree.core_type
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.ENGINE.html0000644000175000017500000003223313717225554030634 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.ENGINE sig
  type state
  type token
  type semantic_value
  exception Error
  val entry :
    state -> (Lexing.lexbuf -> token) -> Lexing.lexbuf -> semantic_value
  type production
  type 'a env
  type 'a checkpoint = private
      InputNeeded of 'a env
    | Shifting of 'a env * 'a env * bool
    | AboutToReduce of 'a env * production
    | HandlingError of 'a env
    | Accepted of 'a
    | Rejected
  val offer :
    'a checkpoint ->
    token * IncrementalEngine.position * IncrementalEngine.position ->
    'a checkpoint
  val resume : 'a checkpoint -> 'a checkpoint
  type supplier =
      unit -> token * IncrementalEngine.position * IncrementalEngine.position
  val lexer_lexbuf_to_supplier :
    (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
  val loop : supplier -> 'a checkpoint -> 'a
  val loop_handle :
    ('-> 'answer) ->
    ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
  val loop_handle_undo :
    ('-> 'answer) ->
    ('a checkpoint -> 'a checkpoint -> 'answer) ->
    supplier -> 'a checkpoint -> 'answer
  val shifts : 'a checkpoint -> 'a env option
  val acceptable :
    'a checkpoint -> token -> IncrementalEngine.position -> bool
  type 'a lr1state = state
  val number : 'a lr1state -> int
  val production_index : production -> int
  val find_production : int -> production
  type element =
      Element : 'a lr1state * 'a * IncrementalEngine.position *
        IncrementalEngine.position -> element
  type stack = element General.stream
  val stack : 'a env -> stack
  val top : 'a env -> element option
  val pop_many : int -> 'a env -> 'a env option
  val get : int -> 'a env -> element option
  val current_state_number : 'a env -> int
  val equal : 'a env -> 'a env -> bool
  val positions :
    'a env -> IncrementalEngine.position * IncrementalEngine.position
  val env_has_default_reduction : 'a env -> bool
  val state_has_default_reduction : 'a lr1state -> bool
  val pop : 'a env -> 'a env option
  val force_reduction : production -> 'a env -> 'a env
  val input_needed : 'a env -> 'a checkpoint
  val start : state -> Lexing.position -> semantic_value checkpoint
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.General.html0000644000175000017500000001321413717225554025750 0ustar mehdimehdi CamlinternalMenhirLib.General

Module CamlinternalMenhirLib.General

module General: sig .. end

val take : int -> 'a list -> 'a list
val drop : int -> 'a list -> 'a list
val uniq : ('a -> 'a -> int) -> 'a list -> 'a list
val weed : ('a -> 'a -> int) -> 'a list -> 'a list
type 'a stream = 'a head Lazy.t 
type 'a head = 
| Nil
| Cons of 'a * 'a stream
val length : 'a stream -> int
val foldr : ('a -> 'b -> 'b) -> 'a stream -> 'b -> 'b
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.TableFormat.TABLES.html0000644000175000017500000001451313717225554027547 0ustar mehdimehdi CamlinternalMenhirLib.TableFormat.TABLES

Module type CamlinternalMenhirLib.TableFormat.TABLES

module type TABLES = sig .. end

type token 
val token2terminal : token -> int
val error_terminal : int
val token2value : token -> Obj.t
val default_reduction : CamlinternalMenhirLib.PackedIntArray.t
val error : int * string
val action : CamlinternalMenhirLib.PackedIntArray.t *
CamlinternalMenhirLib.PackedIntArray.t
val lhs : CamlinternalMenhirLib.PackedIntArray.t
val goto : CamlinternalMenhirLib.PackedIntArray.t *
CamlinternalMenhirLib.PackedIntArray.t
val start : int
val semantic_action : ((int, Obj.t, token)
CamlinternalMenhirLib.EngineTypes.env ->
(int, Obj.t) CamlinternalMenhirLib.EngineTypes.stack)
array
exception Error
val trace : (string array * string array) option
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.String.Tbl.html0000644000175000017500000000726613717225554024303 0ustar mehdimehdi Misc.Stdlib.String.Tbl

Module Misc.Stdlib.String.Tbl

module Tbl: Hashtbl.S  with type key = string

ocaml-doc-4.11/ocaml.html/compilerlibref/Docstrings.html0000644000175000017500000004320613717225554022314 0ustar mehdimehdi Docstrings

Module Docstrings

module Docstrings: sig .. end

Documentation comments

Warning: this module is unstable and part of compiler-libs.


val init : unit -> unit

(Re)Initialise all docstring state

val warn_bad_docstrings : unit -> unit

Emit warnings for unattached and ambiguous docstrings

Docstrings

type docstring 

Documentation comments

val docstring : string -> Location.t -> docstring

Create a docstring

val register : docstring -> unit

Register a docstring

val docstring_body : docstring -> string

Get the text of a docstring

val docstring_loc : docstring -> Location.t

Get the location of a docstring

Set functions

These functions are used by the lexer to associate docstrings to the locations of tokens.

val set_pre_docstrings : Lexing.position -> docstring list -> unit

Docstrings immediately preceding a token

val set_post_docstrings : Lexing.position -> docstring list -> unit

Docstrings immediately following a token

val set_floating_docstrings : Lexing.position -> docstring list -> unit

Docstrings not immediately adjacent to a token

val set_pre_extra_docstrings : Lexing.position -> docstring list -> unit

Docstrings immediately following the token which precedes this one

val set_post_extra_docstrings : Lexing.position -> docstring list -> unit

Docstrings immediately preceding the token which follows this one

Items

The Docstrings.docs type represents documentation attached to an item.

type docs = {
   docs_pre : docstring option;
   docs_post : docstring option;
}
val empty_docs : docs
val docs_attr : docstring -> Parsetree.attribute
val add_docs_attrs : docs -> Parsetree.attributes -> Parsetree.attributes

Convert item documentation to attributes and add them to an attribute list

val symbol_docs : unit -> docs

Fetch the item documentation for the current symbol. This also marks this documentation (for ambiguity warnings).

val symbol_docs_lazy : unit -> docs Lazy.t
val rhs_docs : int -> int -> docs

Fetch the item documentation for the symbols between two positions. This also marks this documentation (for ambiguity warnings).

val rhs_docs_lazy : int -> int -> docs Lazy.t
val mark_symbol_docs : unit -> unit

Mark the item documentation for the current symbol (for ambiguity warnings).

val mark_rhs_docs : int -> int -> unit

Mark as associated the item documentation for the symbols between two positions (for ambiguity warnings)

Fields and constructors

The Docstrings.info type represents documentation attached to a field or constructor.

type info = docstring option 
val empty_info : info
val info_attr : docstring -> Parsetree.attribute
val add_info_attrs : info -> Parsetree.attributes -> Parsetree.attributes

Convert field info to attributes and add them to an attribute list

val symbol_info : unit -> info

Fetch the field info for the current symbol.

val rhs_info : int -> info

Fetch the field info following the symbol at a given position.

Unattached comments

The Docstrings.text type represents documentation which is not attached to anything.

type text = docstring list 
val empty_text : text
val empty_text_lazy : text Lazy.t
val text_attr : docstring -> Parsetree.attribute
val add_text_attrs : text -> Parsetree.attributes -> Parsetree.attributes

Convert text to attributes and add them to an attribute list

val symbol_text : unit -> text

Fetch the text preceding the current symbol.

val symbol_text_lazy : unit -> text Lazy.t
val rhs_text : int -> text

Fetch the text preceding the symbol at the given position.

val rhs_text_lazy : int -> text Lazy.t

Extra text

There may be additional text attached to the delimiters of a block (e.g. struct and end). This is fetched by the following functions, which are applied to the contents of the block rather than the delimiters.

val symbol_pre_extra_text : unit -> text

Fetch additional text preceding the current symbol

val symbol_post_extra_text : unit -> text

Fetch additional text following the current symbol

val rhs_pre_extra_text : int -> text

Fetch additional text preceding the symbol at the given position

val rhs_post_extra_text : int -> text

Fetch additional text following the symbol at the given position

val rhs_post_text : int -> text

Fetch text following the symbol at the given position

module WithMenhir: sig .. end
././@LongLink0000644000000000000000000000015600000000000011605 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_EN0000644000175000017500000005610113717225554032204 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE sig
  type token
  type production
  type 'a env
  type 'a checkpoint = private
      InputNeeded of
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
    | Shifting of
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
        bool
    | AboutToReduce of
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production
    | HandlingError of
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
    | Accepted of 'a
    | Rejected
  val offer :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token *
    CamlinternalMenhirLib.IncrementalEngine.position *
    CamlinternalMenhirLib.IncrementalEngine.position ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
  val resume :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
  type supplier =
      unit ->
      CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token *
      CamlinternalMenhirLib.IncrementalEngine.position *
      CamlinternalMenhirLib.IncrementalEngine.position
  val lexer_lexbuf_to_supplier :
    (Stdlib.Lexing.lexbuf ->
     CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token) ->
    Stdlib.Lexing.lexbuf ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier
  val loop :
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    'a
  val loop_handle :
    ('-> 'answer) ->
    ('CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
     'answer) ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    'answer
  val loop_handle_undo :
    ('-> 'answer) ->
    ('CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
     'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
     'answer) ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    'answer
  val shifts :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env option
  val acceptable :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token ->
    CamlinternalMenhirLib.IncrementalEngine.position -> bool
  type 'a lr1state
  val number :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state ->
    int
  val production_index :
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production ->
    int
  val find_production :
    int ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production
  type element =
      Element :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state *
        'a * CamlinternalMenhirLib.IncrementalEngine.position *
        CamlinternalMenhirLib.IncrementalEngine.position -> CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
  type stack =
      CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
      CamlinternalMenhirLib.General.stream
  val stack :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.stack
  val top :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element option
  val pop_many :
    int ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env option
  val get :
    int ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element option
  val current_state_number :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env -> int
  val equal :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env -> bool
  val positions :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    CamlinternalMenhirLib.IncrementalEngine.position *
    CamlinternalMenhirLib.IncrementalEngine.position
  val env_has_default_reduction :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env -> bool
  val state_has_default_reduction :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state ->
    bool
  val pop :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env option
  val force_reduction :
    CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
  val input_needed :
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
    'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_invariants.html0000644000175000017500000001053613717225554023162 0ustar mehdimehdi Ast_invariants

Module Ast_invariants

module Ast_invariants: sig .. end

Check AST invariants

Warning: this module is unstable and part of compiler-libs.


val structure : Parsetree.structure -> unit
val signature : Parsetree.signature -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Depend.html0000644000175000017500000001551613717225554022440 0ustar mehdimehdi Depend sig
  module String = Misc.Stdlib.String
  type map_tree = Node of String.Set.t * Depend.bound_map
  and bound_map = Depend.map_tree String.Map.t
  val make_leaf : string -> Depend.map_tree
  val make_node : Depend.bound_map -> Depend.map_tree
  val weaken_map : String.Set.t -> Depend.map_tree -> Depend.map_tree
  val free_structure_names : String.Set.t Stdlib.ref
  val pp_deps : string list Stdlib.ref
  val open_module : Depend.bound_map -> Longident.t -> Depend.bound_map
  val add_use_file :
    Depend.bound_map -> Parsetree.toplevel_phrase list -> unit
  val add_signature : Depend.bound_map -> Parsetree.signature -> unit
  val add_implementation : Depend.bound_map -> Parsetree.structure -> unit
  val add_implementation_binding :
    Depend.bound_map -> Parsetree.structure -> Depend.bound_map
  val add_signature_binding :
    Depend.bound_map -> Parsetree.signature -> Depend.bound_map
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Lexer.html0000644000175000017500000002150513717225554021252 0ustar mehdimehdi Lexer

Module Lexer

module Lexer: sig .. end

The lexical analyzer

Warning: this module is unstable and part of compiler-libs.


val init : unit -> unit
val token : Lexing.lexbuf -> Parser.token
val skip_hash_bang : Lexing.lexbuf -> unit
type error = 
| Illegal_character of char
| Illegal_escape of string * string option
| Reserved_sequence of string * string option
| Unterminated_comment of Location.t
| Unterminated_string
| Unterminated_string_in_comment of Location.t * Location.t
| Keyword_as_label of string
| Invalid_literal of string
| Invalid_directive of string * string option
exception Error of error * Location.t
val in_comment : unit -> bool
val in_string : unit -> bool
val print_warnings : bool ref
val handle_docstrings : bool ref
val comments : unit -> (string * Location.t) list
val token_with_comments : Lexing.lexbuf -> Parser.token
val set_preprocessor : (unit -> unit) ->
((Lexing.lexbuf -> Parser.token) ->
Lexing.lexbuf -> Parser.token) ->
unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Config.html0000644000175000017500000002202013717225554022432 0ustar mehdimehdi Config sig
  val version : string
  val standard_library : string
  val ccomp_type : string
  val c_compiler : string
  val c_output_obj : string
  val c_has_debug_prefix_map : bool
  val as_has_debug_prefix_map : bool
  val ocamlc_cflags : string
  val ocamlc_cppflags : string
  val ocamlopt_cflags : string
  val ocamlopt_cppflags : string
  val bytecomp_c_libraries : string
  val native_c_libraries : string
  val native_pack_linker : string
  val mkdll : string
  val mkexe : string
  val mkmaindll : string
  val ranlib : string
  val ar : string
  val interface_suffix : string Stdlib.ref
  val exec_magic_number : string
  val cmi_magic_number : string
  val cmo_magic_number : string
  val cma_magic_number : string
  val cmx_magic_number : string
  val cmxa_magic_number : string
  val ast_intf_magic_number : string
  val ast_impl_magic_number : string
  val cmxs_magic_number : string
  val cmt_magic_number : string
  val max_tag : int
  val lazy_tag : int
  val max_young_wosize : int
  val stack_threshold : int
  val stack_safety_margin : int
  val architecture : string
  val model : string
  val system : string
  val asm : string
  val asm_cfi_supported : bool
  val with_frame_pointers : bool
  val ext_obj : string
  val ext_asm : string
  val ext_lib : string
  val ext_dll : string
  val default_executable_name : string
  val systhread_supported : bool
  val flexdll_dirs : string list
  val host : string
  val target : string
  val flambda : bool
  val with_flambda_invariants : bool
  val spacetime : bool
  val enable_call_counts : bool
  val profinfo : bool
  val profinfo_width : int
  val libunwind_available : bool
  val libunwind_link_flags : string
  val safe_string : bool
  val default_safe_string : bool
  val flat_float_array : bool
  val function_sections : bool
  val windows_unicode : bool
  val supports_shared_libraries : bool
  val afl_instrument : bool
  val print_config : Stdlib.out_channel -> unit
  val config_var : string -> string option
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Opn.html0000644000175000017500000000760213717225554024057 0ustar mehdimehdi Ast_helper.Opn sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?override:Asttypes.override_flag -> '-> 'Parsetree.open_infos
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.PackedIntArray.html0000644000175000017500000001150313717225554027233 0ustar mehdimehdi CamlinternalMenhirLib.PackedIntArray

Module CamlinternalMenhirLib.PackedIntArray

module PackedIntArray: sig .. end

type t = int * string 
val pack : int array -> t
val get : t -> int -> int
val get1 : string -> int -> int
val unflatten1 : int * string -> int -> int -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.LinearizedArray.html0000644000175000017500000001346513717225554027470 0ustar mehdimehdi CamlinternalMenhirLib.LinearizedArray

Module CamlinternalMenhirLib.LinearizedArray

module LinearizedArray: sig .. end

type 'a t = 'a array * int array 
val make : 'a array array -> 'a t
val read : 'a t -> int -> int -> 'a
val write : 'a t -> int -> int -> 'a -> unit
val length : 'a t -> int
val row_length : 'a t -> int -> int
val read_row : 'a t -> int -> 'a list
val row_length_via : (int -> int) -> int -> int
val read_via : (int -> 'a) -> (int -> int) -> int -> int -> 'a
val read_row_via : (int -> 'a) -> (int -> int) -> int -> 'a list
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InspectionTableFormat.html0000644000175000017500000001075013717225554030631 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableFormat

Module CamlinternalMenhirLib.InspectionTableFormat

module InspectionTableFormat: sig .. end

module type TABLES = sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/Builtin_attributes.html0000644000175000017500000002257313717225554024055 0ustar mehdimehdi Builtin_attributes

Module Builtin_attributes

module Builtin_attributes: sig .. end

Support for some of the builtin attributes

Warning: this module is unstable and part of compiler-libs.


val check_alerts : Location.t -> Parsetree.attributes -> string -> unit
val check_alerts_inclusion : def:Location.t ->
use:Location.t ->
Location.t -> Parsetree.attributes -> Parsetree.attributes -> string -> unit
val alerts_of_attrs : Parsetree.attributes -> Misc.alerts
val alerts_of_sig : Parsetree.signature -> Misc.alerts
val alerts_of_str : Parsetree.structure -> Misc.alerts
val check_deprecated_mutable : Location.t -> Parsetree.attributes -> string -> unit
val check_deprecated_mutable_inclusion : def:Location.t ->
use:Location.t ->
Location.t -> Parsetree.attributes -> Parsetree.attributes -> string -> unit
val check_no_alert : Parsetree.attributes -> unit
val error_of_extension : Parsetree.extension -> Location.error
val warning_attribute : ?ppwarning:bool -> Parsetree.attribute -> unit

Apply warning settings from the specified attribute. "ocaml.warning"/"ocaml.warnerror" (and variants without the prefix) are processed and other attributes are ignored.

Also implement ocaml.ppwarning (unless ~ppwarning:false is passed).

val warning_scope : ?ppwarning:bool -> Parsetree.attributes -> (unit -> 'a) -> 'a

Execute a function in a new scope for warning settings. This means that the effect of any call to warning_attribute during the execution of this function will be discarded after execution.

The function also takes a list of attributes which are processed with warning_attribute in the fresh scope before the function is executed.

val warn_on_literal_pattern : Parsetree.attributes -> bool
val explicit_arity : Parsetree.attributes -> bool
val immediate : Parsetree.attributes -> bool
val immediate64 : Parsetree.attributes -> bool
val has_unboxed : Parsetree.attributes -> bool
val has_boxed : Parsetree.attributes -> bool
ocaml-doc-4.11/ocaml.html/compilerlibref/Docstrings.WithMenhir.html0000644000175000017500000002213313717225554024365 0ustar mehdimehdi Docstrings.WithMenhir

Module Docstrings.WithMenhir

module WithMenhir: sig .. end

val symbol_docs : Lexing.position * Lexing.position -> Docstrings.docs

Fetch the item documentation for the current symbol. This also marks this documentation (for ambiguity warnings).

val symbol_docs_lazy : Lexing.position * Lexing.position ->
Docstrings.docs Lazy.t
val rhs_docs : Lexing.position -> Lexing.position -> Docstrings.docs

Fetch the item documentation for the symbols between two positions. This also marks this documentation (for ambiguity warnings).

val rhs_docs_lazy : Lexing.position ->
Lexing.position -> Docstrings.docs Lazy.t
val mark_symbol_docs : Lexing.position * Lexing.position -> unit

Mark the item documentation for the current symbol (for ambiguity warnings).

val mark_rhs_docs : Lexing.position -> Lexing.position -> unit

Mark as associated the item documentation for the symbols between two positions (for ambiguity warnings)

val symbol_info : Lexing.position -> Docstrings.info

Fetch the field info for the current symbol.

val rhs_info : Lexing.position -> Docstrings.info

Fetch the field info following the symbol at a given position.

val symbol_text : Lexing.position -> Docstrings.text

Fetch the text preceding the current symbol.

val symbol_text_lazy : Lexing.position -> Docstrings.text Lazy.t
val rhs_text : Lexing.position -> Docstrings.text

Fetch the text preceding the symbol at the given position.

val rhs_text_lazy : Lexing.position -> Docstrings.text Lazy.t

Extra text

There may be additional text attached to the delimiters of a block (e.g. struct and end). This is fetched by the following functions, which are applied to the contents of the block rather than the delimiters.

val symbol_pre_extra_text : Lexing.position -> Docstrings.text

Fetch additional text preceding the current symbol

val symbol_post_extra_text : Lexing.position -> Docstrings.text

Fetch additional text following the current symbol

val rhs_pre_extra_text : Lexing.position -> Docstrings.text

Fetch additional text preceding the symbol at the given position

val rhs_post_extra_text : Lexing.position -> Docstrings.text

Fetch additional text following the symbol at the given position

val rhs_post_text : Lexing.position -> Docstrings.text

Fetch text following the symbol at the given position

ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Typ.html0000644000175000017500000002546213717225554023042 0ustar mehdimehdi Ast_helper.Typ

Module Ast_helper.Typ

module Typ: sig .. end

Type expressions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.core_type_desc -> Parsetree.core_type
val attr : Parsetree.core_type -> Parsetree.attribute -> Parsetree.core_type
val any : ?loc:Ast_helper.loc -> ?attrs:Ast_helper.attrs -> unit -> Parsetree.core_type
val var : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> string -> Parsetree.core_type
val arrow : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.arg_label ->
Parsetree.core_type -> Parsetree.core_type -> Parsetree.core_type
val tuple : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.core_type list -> Parsetree.core_type
val constr : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.core_type list -> Parsetree.core_type
val object_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.object_field list -> Asttypes.closed_flag -> Parsetree.core_type
val class_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.core_type list -> Parsetree.core_type
val alias : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.core_type -> string -> Parsetree.core_type
val variant : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.row_field list ->
Asttypes.closed_flag -> Asttypes.label list option -> Parsetree.core_type
val poly : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str list -> Parsetree.core_type -> Parsetree.core_type
val package : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid ->
(Ast_helper.lid * Parsetree.core_type) list -> Parsetree.core_type
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.core_type
val force_poly : Parsetree.core_type -> Parsetree.core_type
val varify_constructors : Ast_helper.str list -> Parsetree.core_type -> Parsetree.core_type

varify_constructors newtypes te is type expression te, of which any of nullary type constructor tc is replaced by type variable of the same name, if tc's name appears in newtypes. Raise Syntaxerr.Variable_in_scope if any type variable inside te appears in newtypes.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.General.html0000644000175000017500000001433513717225554027016 0ustar mehdimehdi CamlinternalMenhirLib.General sig
  val take : int -> 'a list -> 'a list
  val drop : int -> 'a list -> 'a list
  val uniq : ('-> '-> int) -> 'a list -> 'a list
  val weed : ('-> '-> int) -> 'a list -> 'a list
  type 'a stream = 'CamlinternalMenhirLib.General.head Stdlib.Lazy.t
  and 'a head = Nil | Cons of 'a * 'CamlinternalMenhirLib.General.stream
  val length : 'CamlinternalMenhirLib.General.stream -> int
  val foldr :
    ('-> '-> 'b) -> 'CamlinternalMenhirLib.General.stream -> '-> 'b
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Opn.html0000644000175000017500000001053113717225554023011 0ustar mehdimehdi Ast_helper.Opn

Module Ast_helper.Opn

module Opn: sig .. end

Opens


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?override:Asttypes.override_flag -> 'a -> 'a Parsetree.open_infos
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Consistbl.html0000644000175000017500000016204213717225554023176 0ustar mehdimehdi Consistbl sig
  module Make :
    functor
      (Module_name : sig
                       type t
                       module Set :
                         sig
                           type elt = t
                           type t
                           val empty : t
                           val is_empty : t -> bool
                           val mem : elt -> t -> bool
                           val add : elt -> t -> t
                           val singleton : elt -> t
                           val remove : elt -> t -> t
                           val union : t -> t -> t
                           val inter : t -> t -> t
                           val disjoint : t -> t -> bool
                           val diff : t -> t -> t
                           val compare : t -> t -> int
                           val equal : t -> t -> bool
                           val subset : t -> t -> bool
                           val iter : (elt -> unit) -> t -> unit
                           val map : (elt -> elt) -> t -> t
                           val fold : (elt -> '-> 'a) -> t -> '-> 'a
                           val for_all : (elt -> bool) -> t -> bool
                           val exists : (elt -> bool) -> t -> bool
                           val filter : (elt -> bool) -> t -> t
                           val filter_map : (elt -> elt option) -> t -> t
                           val partition : (elt -> bool) -> t -> t * t
                           val cardinal : t -> int
                           val elements : t -> elt list
                           val min_elt : t -> elt
                           val min_elt_opt : t -> elt option
                           val max_elt : t -> elt
                           val max_elt_opt : t -> elt option
                           val choose : t -> elt
                           val choose_opt : t -> elt option
                           val split : elt -> t -> t * bool * t
                           val find : elt -> t -> elt
                           val find_opt : elt -> t -> elt option
                           val find_first : (elt -> bool) -> t -> elt
                           val find_first_opt :
                             (elt -> bool) -> t -> elt option
                           val find_last : (elt -> bool) -> t -> elt
                           val find_last_opt :
                             (elt -> bool) -> t -> elt option
                           val of_list : elt list -> t
                           val to_seq_from : elt -> t -> elt Seq.t
                           val to_seq : t -> elt Seq.t
                           val add_seq : elt Seq.t -> t -> t
                           val of_seq : elt Seq.t -> t
                         end
                       module Map :
                         sig
                           type key = t
                           type +'a t
                           val empty : 'a t
                           val is_empty : 'a t -> bool
                           val mem : key -> 'a t -> bool
                           val add : key -> '-> 'a t -> 'a t
                           val update :
                             key -> ('a option -> 'a option) -> 'a t -> 'a t
                           val singleton : key -> '-> 'a t
                           val remove : key -> 'a t -> 'a t
                           val merge :
                             (key -> 'a option -> 'b option -> 'c option) ->
                             'a t -> 'b t -> 'c t
                           val union :
                             (key -> '-> '-> 'a option) ->
                             'a t -> 'a t -> 'a t
                           val compare :
                             ('-> '-> int) -> 'a t -> 'a t -> int
                           val equal :
                             ('-> '-> bool) -> 'a t -> 'a t -> bool
                           val iter : (key -> '-> unit) -> 'a t -> unit
                           val fold :
                             (key -> '-> '-> 'b) -> 'a t -> '-> 'b
                           val for_all : (key -> '-> bool) -> 'a t -> bool
                           val exists : (key -> '-> bool) -> 'a t -> bool
                           val filter : (key -> '-> bool) -> 'a t -> 'a t
                           val filter_map :
                             (key -> '-> 'b option) -> 'a t -> 'b t
                           val partition :
                             (key -> '-> bool) -> 'a t -> 'a t * 'a t
                           val cardinal : 'a t -> int
                           val bindings : 'a t -> (key * 'a) list
                           val min_binding : 'a t -> key * 'a
                           val min_binding_opt : 'a t -> (key * 'a) option
                           val max_binding : 'a t -> key * 'a
                           val max_binding_opt : 'a t -> (key * 'a) option
                           val choose : 'a t -> key * 'a
                           val choose_opt : 'a t -> (key * 'a) option
                           val split : key -> 'a t -> 'a t * 'a option * 'a t
                           val find : key -> 'a t -> 'a
                           val find_opt : key -> 'a t -> 'a option
                           val find_first : (key -> bool) -> 'a t -> key * 'a
                           val find_first_opt :
                             (key -> bool) -> 'a t -> (key * 'a) option
                           val find_last : (key -> bool) -> 'a t -> key * 'a
                           val find_last_opt :
                             (key -> bool) -> 'a t -> (key * 'a) option
                           val map : ('-> 'b) -> 'a t -> 'b t
                           val mapi : (key -> '-> 'b) -> 'a t -> 'b t
                           val to_seq : 'a t -> (key * 'a) Seq.t
                           val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
                           val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
                           val of_seq : (key * 'a) Seq.t -> 'a t
                         end
                       module Tbl :
                         sig
                           type key = t
                           type 'a t
                           val create : int -> 'a t
                           val clear : 'a t -> unit
                           val reset : 'a t -> unit
                           val copy : 'a t -> 'a t
                           val add : 'a t -> key -> '-> unit
                           val remove : 'a t -> key -> unit
                           val find : 'a t -> key -> 'a
                           val find_opt : 'a t -> key -> 'a option
                           val find_all : 'a t -> key -> 'a list
                           val replace : 'a t -> key -> '-> unit
                           val mem : 'a t -> key -> bool
                           val iter : (key -> '-> unit) -> 'a t -> unit
                           val filter_map_inplace :
                             (key -> '-> 'a option) -> 'a t -> unit
                           val fold :
                             (key -> '-> '-> 'b) -> 'a t -> '-> 'b
                           val length : 'a t -> int
                           val stats : 'a t -> Hashtbl.statistics
                           val to_seq : 'a t -> (key * 'a) Seq.t
                           val to_seq_keys : 'a t -> key Seq.t
                           val to_seq_values : 'a t -> 'Seq.t
                           val add_seq : 'a t -> (key * 'a) Seq.t -> unit
                           val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
                           val of_seq : (key * 'a) Seq.t -> 'a t
                         end
                       val compare :
                         Consistbl.Make.t -> Consistbl.Make.t -> int
                     end)
      ->
      sig
        type t
        val create : unit -> Consistbl.Make.t
        val clear : Consistbl.Make.t -> unit
        val check :
          Consistbl.Make.t ->
          Module_name.t -> Stdlib.Digest.t -> Misc.filepath -> unit
        val check_noadd :
          Consistbl.Make.t ->
          Module_name.t -> Stdlib.Digest.t -> Misc.filepath -> unit
        val set :
          Consistbl.Make.t ->
          Module_name.t -> Stdlib.Digest.t -> Misc.filepath -> unit
        val source : Consistbl.Make.t -> Module_name.t -> Misc.filepath
        val extract :
          Module_name.t list ->
          Consistbl.Make.t -> (Module_name.t * Stdlib.Digest.t option) list
        val extract_map :
          Module_name.Set.t ->
          Consistbl.Make.t -> Stdlib.Digest.t option Module_name.Map.t
        val filter : (Module_name.t -> bool) -> Consistbl.Make.t -> unit
        exception Inconsistency of { unit_name : Module_name.t;
                    inconsistent_source : string; original_source : string;
                  }
        exception Not_available of Module_name.t
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.Printers.html0000644000175000017500000001306413717225554026204 0ustar mehdimehdi CamlinternalMenhirLib.Printers

Module CamlinternalMenhirLib.Printers

module Printers: sig .. end

module Make: 
functor (I : CamlinternalMenhirLib.IncrementalEngine.EVERYTHING-> 
functor (User : sig
val print : string -> unit
val print_symbol : I.xsymbol -> unit
val print_element : (I.element -> unit) option
end-> sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Numbers.Int.html0000644000175000017500000012774113717225554023411 0ustar mehdimehdi Numbers.Int sig
  type t = int
  module T :
    sig
      type t = t
      val equal : t -> t -> bool
      val hash : t -> int
      val compare : t -> t -> int
      val output : out_channel -> t -> unit
      val print : Format.formatter -> t -> unit
    end
  val equal : T.t -> T.t -> bool
  val hash : T.t -> int
  val compare : T.t -> T.t -> int
  val output : out_channel -> T.t -> unit
  val print : Format.formatter -> T.t -> unit
  module Set :
    sig
      type elt = T.t
      type t = Set.Make(T).t
      val empty : t
      val is_empty : t -> bool
      val mem : elt -> t -> bool
      val add : elt -> t -> t
      val singleton : elt -> t
      val remove : elt -> t -> t
      val union : t -> t -> t
      val inter : t -> t -> t
      val disjoint : t -> t -> bool
      val diff : t -> t -> t
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val subset : t -> t -> bool
      val iter : (elt -> unit) -> t -> unit
      val fold : (elt -> '-> 'a) -> t -> '-> 'a
      val for_all : (elt -> bool) -> t -> bool
      val exists : (elt -> bool) -> t -> bool
      val filter : (elt -> bool) -> t -> t
      val filter_map : (elt -> elt option) -> t -> t
      val partition : (elt -> bool) -> t -> t * t
      val cardinal : t -> int
      val elements : t -> elt list
      val min_elt : t -> elt
      val min_elt_opt : t -> elt option
      val max_elt : t -> elt
      val max_elt_opt : t -> elt option
      val choose : t -> elt
      val choose_opt : t -> elt option
      val split : elt -> t -> t * bool * t
      val find : elt -> t -> elt
      val find_opt : elt -> t -> elt option
      val find_first : (elt -> bool) -> t -> elt
      val find_first_opt : (elt -> bool) -> t -> elt option
      val find_last : (elt -> bool) -> t -> elt
      val find_last_opt : (elt -> bool) -> t -> elt option
      val to_seq_from : elt -> t -> elt Seq.t
      val to_seq : t -> elt Seq.t
      val add_seq : elt Seq.t -> t -> t
      val of_seq : elt Seq.t -> t
      val output : out_channel -> t -> unit
      val print : Format.formatter -> t -> unit
      val to_string : t -> string
      val of_list : elt list -> t
      val map : (elt -> elt) -> t -> t
    end
  module Map :
    sig
      type key = T.t
      type 'a t = 'Map.Make(T).t
      val empty : 'a t
      val is_empty : 'a t -> bool
      val mem : key -> 'a t -> bool
      val add : key -> '-> 'a t -> 'a t
      val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
      val singleton : key -> '-> 'a t
      val remove : key -> 'a t -> 'a t
      val merge :
        (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
      val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
      val compare : ('-> '-> int) -> 'a t -> 'a t -> int
      val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val for_all : (key -> '-> bool) -> 'a t -> bool
      val exists : (key -> '-> bool) -> 'a t -> bool
      val filter : (key -> '-> bool) -> 'a t -> 'a t
      val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
      val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
      val cardinal : 'a t -> int
      val bindings : 'a t -> (key * 'a) list
      val min_binding : 'a t -> key * 'a
      val min_binding_opt : 'a t -> (key * 'a) option
      val max_binding : 'a t -> key * 'a
      val max_binding_opt : 'a t -> (key * 'a) option
      val choose : 'a t -> key * 'a
      val choose_opt : 'a t -> (key * 'a) option
      val split : key -> 'a t -> 'a t * 'a option * 'a t
      val find : key -> 'a t -> 'a
      val find_opt : key -> 'a t -> 'a option
      val find_first : (key -> bool) -> 'a t -> key * 'a
      val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val find_last : (key -> bool) -> 'a t -> key * 'a
      val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val map : ('-> 'b) -> 'a t -> 'b t
      val mapi : (key -> '-> 'b) -> 'a t -> 'b t
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
      val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
      val of_seq : (key * 'a) Seq.t -> 'a t
      val of_list : (key * 'a) list -> 'a t
      val disjoint_union :
        ?eq:('-> '-> bool) ->
        ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
      val union_right : 'a t -> 'a t -> 'a t
      val union_left : 'a t -> 'a t -> 'a t
      val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
      val rename : key t -> key -> key
      val map_keys : (key -> key) -> 'a t -> 'a t
      val keys : 'a t -> Set.Make(T).t
      val data : 'a t -> 'a list
      val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
      val transpose_keys_and_data : key t -> key t
      val transpose_keys_and_data_set : key t -> Set.Make(T).t t
      val print :
        (Format.formatter -> '-> unit) -> Format.formatter -> 'a t -> unit
    end
  module Tbl :
    sig
      type key = T.t
      type 'a t = 'Hashtbl.Make(T).t
      val create : int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
      val to_list : 'a t -> (T.t * 'a) list
      val of_list : (T.t * 'a) list -> 'a t
      val to_map : 'a t -> 'Map.Make(T).t
      val of_map : 'Map.Make(T).t -> 'a t
      val memoize : 'a t -> (key -> 'a) -> key -> 'a
      val map : 'a t -> ('-> 'b) -> 'b t
    end
  val zero_to_n : int -> Set.t
  val to_string : int -> string
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Parser.MenhirInterpreter.html0000644000175000017500000000765213717225554025103 0ustar mehdimehdi Parser.MenhirInterpreter

Module Parser.MenhirInterpreter

module MenhirInterpreter: sig .. end

include CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.RowDisplacement.html0000644000175000017500000001166313717225554027501 0ustar mehdimehdi CamlinternalMenhirLib.RowDisplacement

Module CamlinternalMenhirLib.RowDisplacement

module RowDisplacement: sig .. end

type 'a table = int array * 'a array 
val compress : ('a -> 'a -> bool) ->
('a -> bool) ->
'a ->
int ->
int -> 'a array array -> 'a table
val get : 'a table -> int -> int -> 'a
val getget : ('displacement -> int -> int) ->
('data -> int -> 'a) -> 'displacement * 'data -> int -> int -> 'a
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.IncrementalEngine.EVERYTHING.html0000644000175000017500000001060713717225554031450 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.EVERYTHING

Module type CamlinternalMenhirLib.IncrementalEngine.EVERYTHING

module type EVERYTHING = sig .. end

include CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE
include CamlinternalMenhirLib.IncrementalEngine.INSPECTION
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Load_path.Dir.html0000644000175000017500000000747213717225554023653 0ustar mehdimehdi Load_path.Dir sig
  type t
  val create : string -> Load_path.Dir.t
  val path : Load_path.Dir.t -> string
  val files : Load_path.Dir.t -> string list
end
././@LongLink0000644000000000000000000000015100000000000011600 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableInterpreter.Make.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableInterpreter.Make.0000644000175000017500000005456213717225554032745 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableInterpreter.Make functor (TT : TableFormat.TABLES)
  (IT : sig
          type 'a terminal
          type 'a nonterminal
          type 'a symbol =
              T : 'a terminal -> 'a symbol
            | N : 'a nonterminal -> 'a symbol
          type xsymbol = X : 'a symbol -> xsymbol
          type 'a lr1state = int
          val terminal : int -> xsymbol
          val nonterminal : int -> xsymbol
          val rhs : PackedIntArray.t * PackedIntArray.t
          val lr0_core : PackedIntArray.t
          val lr0_items : PackedIntArray.t * PackedIntArray.t
          val lr0_incoming : PackedIntArray.t
          val nullable : string
          val first : int * string
        end)
  (ET : sig
          type state
          val number : state -> int
          type token
          type terminal = int
          type nonterminal = int
          type semantic_value = Obj.t
          val token2terminal : token -> terminal
          val token2value : token -> semantic_value
          val error_terminal : terminal
          val error_value : semantic_value
          val foreach_terminal : (terminal -> '-> 'a) -> '-> 'a
          type production
          val production_index : production -> int
          val find_production : int -> production
          val default_reduction :
            state ->
            ('env -> production -> 'answer) ->
            ('env -> 'answer) -> 'env -> 'answer
          val action :
            state ->
            terminal ->
            semantic_value ->
            ('env -> bool -> terminal -> semantic_value -> state -> 'answer) ->
            ('env -> production -> 'answer) ->
            ('env -> 'answer) -> 'env -> 'answer
          val goto_nt : state -> nonterminal -> state
          val goto_prod : state -> production -> state
          val maybe_goto_nt : state -> nonterminal -> state option
          val is_start : production -> bool
          exception Error
          type semantic_action =
              (state, semantic_value, token) EngineTypes.env ->
              (state, semantic_value) EngineTypes.stack
          val semantic_action : production -> semantic_action
          val may_reduce : state -> production -> bool
          val log : bool
          module Log :
            sig
              val state : state -> unit
              val shift : terminal -> state -> unit
              val reduce_or_accept : production -> unit
              val lookahead_token :
                terminal -> Lexing.position -> Lexing.position -> unit
              val initiating_error_handling : unit -> unit
              val resuming_error_handling : unit -> unit
              val handling_error : state -> unit
            end
        end)
  (E : sig
         type 'a env =
             (ET.state, ET.semantic_value, ET.token)
             CamlinternalMenhirLib.EngineTypes.env
       end)
  ->
  sig
    type 'a symbol =
        T : 'IT.terminal -> 'a symbol
      | N : 'IT.nonterminal -> 'a symbol
    type xsymbol = X : 'a symbol -> xsymbol
    type item = int * int
    val compare_terminals : 'IT.terminal -> 'IT.terminal -> int
    val compare_nonterminals : 'IT.nonterminal -> 'IT.nonterminal -> int
    val compare_symbols : xsymbol -> xsymbol -> int
    val compare_productions : int -> int -> int
    val compare_items : item -> item -> int
    val incoming_symbol : 'IT.lr1state -> 'a symbol
    val items : 'IT.lr1state -> item list
    val lhs : int -> xsymbol
    val rhs : int -> xsymbol list
    val nullable : 'IT.nonterminal -> bool
    val first : 'IT.nonterminal -> 'IT.terminal -> bool
    val xfirst : xsymbol -> 'IT.terminal -> bool
    val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
    val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
    val feed :
      'a symbol ->
      IncrementalEngine.position ->
      '-> IncrementalEngine.position -> 'E.env -> 'E.env
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Sig.html0000644000175000017500000002276113717225554023007 0ustar mehdimehdi Ast_helper.Sig

Module Ast_helper.Sig

module Sig: sig .. end

Signature items


val mk : ?loc:Ast_helper.loc ->
Parsetree.signature_item_desc -> Parsetree.signature_item
val value : ?loc:Ast_helper.loc ->
Parsetree.value_description -> Parsetree.signature_item
val type_ : ?loc:Ast_helper.loc ->
Asttypes.rec_flag ->
Parsetree.type_declaration list -> Parsetree.signature_item
val type_subst : ?loc:Ast_helper.loc ->
Parsetree.type_declaration list -> Parsetree.signature_item
val type_extension : ?loc:Ast_helper.loc -> Parsetree.type_extension -> Parsetree.signature_item
val exception_ : ?loc:Ast_helper.loc -> Parsetree.type_exception -> Parsetree.signature_item
val module_ : ?loc:Ast_helper.loc ->
Parsetree.module_declaration -> Parsetree.signature_item
val mod_subst : ?loc:Ast_helper.loc ->
Parsetree.module_substitution -> Parsetree.signature_item
val rec_module : ?loc:Ast_helper.loc ->
Parsetree.module_declaration list -> Parsetree.signature_item
val modtype : ?loc:Ast_helper.loc ->
Parsetree.module_type_declaration -> Parsetree.signature_item
val open_ : ?loc:Ast_helper.loc -> Parsetree.open_description -> Parsetree.signature_item
val include_ : ?loc:Ast_helper.loc ->
Parsetree.include_description -> Parsetree.signature_item
val class_ : ?loc:Ast_helper.loc ->
Parsetree.class_description list -> Parsetree.signature_item
val class_type : ?loc:Ast_helper.loc ->
Parsetree.class_type_declaration list -> Parsetree.signature_item
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.signature_item
val attribute : ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.signature_item
val text : Docstrings.text -> Parsetree.signature_item list
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Map.T.html0000644000175000017500000000622213717225554024530 0ustar mehdimehdi Identifiable.Map.T Map.OrderedType ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_invariants.html0000644000175000017500000000676013717225554024227 0ustar mehdimehdi Ast_invariants sig
  val structure : Parsetree.structure -> unit
  val signature : Parsetree.signature -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Strongly_connected_components.S.Id.html0000644000175000017500000000624113717225554030100 0ustar mehdimehdi Strongly_connected_components.S.Id Identifiable.S ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableFormat.html0000644000175000017500000001471413717225554031676 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableFormat sig
  module type TABLES =
    sig
      type 'a terminal
      type 'a nonterminal
      type 'a symbol =
          T : 'a terminal -> 'a symbol
        | N : 'a nonterminal -> 'a symbol
      type xsymbol = X : 'a symbol -> xsymbol
      type 'a lr1state
      val terminal : int -> xsymbol
      val nonterminal : int -> xsymbol
      val rhs :
        CamlinternalMenhirLib.PackedIntArray.t *
        CamlinternalMenhirLib.PackedIntArray.t
      val lr0_core : CamlinternalMenhirLib.PackedIntArray.t
      val lr0_items :
        CamlinternalMenhirLib.PackedIntArray.t *
        CamlinternalMenhirLib.PackedIntArray.t
      val lr0_incoming : CamlinternalMenhirLib.PackedIntArray.t
      val nullable : string
      val first : int * string
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Clflags.Compiler_pass.html0000644000175000017500000001037013717225554025404 0ustar mehdimehdi Clflags.Compiler_pass sig
  type t = Parsing | Typing | Scheduling
  val of_string : string -> Clflags.Compiler_pass.t option
  val to_string : Clflags.Compiler_pass.t -> string
  val is_compilation_pass : Clflags.Compiler_pass.t -> bool
  val available_pass_names : native:bool -> string list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.Option.html0000644000175000017500000001030413717225554023550 0ustar mehdimehdi Misc.Stdlib.Option

Module Misc.Stdlib.Option

module Option: sig .. end

type 'a t = 'a option 
val print : (Format.formatter -> 'a -> unit) ->
Format.formatter -> 'a t -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/Terminfo.html0000644000175000017500000001274113717225554021760 0ustar mehdimehdi Terminfo

Module Terminfo

module Terminfo: sig .. end

Basic interface to the terminfo database

Warning: this module is unstable and part of compiler-libs.


type status = 
| Uninitialised
| Bad_term
| Good_term
val setup : out_channel -> status
val num_lines : out_channel -> int
val backup : out_channel -> int -> unit
val standout : out_channel -> bool -> unit
val resume : out_channel -> int -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/index_methods.html0000644000175000017500000000627213717225554023031 0ustar mehdimehdi Index of class methods

Index of class methods

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Numbers.Float.html0000644000175000017500000012726513717225554023725 0ustar mehdimehdi Numbers.Float sig
  type t = float
  module T :
    sig
      type t = t
      val equal : t -> t -> bool
      val hash : t -> int
      val compare : t -> t -> int
      val output : out_channel -> t -> unit
      val print : Format.formatter -> t -> unit
    end
  val equal : T.t -> T.t -> bool
  val hash : T.t -> int
  val compare : T.t -> T.t -> int
  val output : out_channel -> T.t -> unit
  val print : Format.formatter -> T.t -> unit
  module Set :
    sig
      type elt = T.t
      type t = Set.Make(T).t
      val empty : t
      val is_empty : t -> bool
      val mem : elt -> t -> bool
      val add : elt -> t -> t
      val singleton : elt -> t
      val remove : elt -> t -> t
      val union : t -> t -> t
      val inter : t -> t -> t
      val disjoint : t -> t -> bool
      val diff : t -> t -> t
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val subset : t -> t -> bool
      val iter : (elt -> unit) -> t -> unit
      val fold : (elt -> '-> 'a) -> t -> '-> 'a
      val for_all : (elt -> bool) -> t -> bool
      val exists : (elt -> bool) -> t -> bool
      val filter : (elt -> bool) -> t -> t
      val filter_map : (elt -> elt option) -> t -> t
      val partition : (elt -> bool) -> t -> t * t
      val cardinal : t -> int
      val elements : t -> elt list
      val min_elt : t -> elt
      val min_elt_opt : t -> elt option
      val max_elt : t -> elt
      val max_elt_opt : t -> elt option
      val choose : t -> elt
      val choose_opt : t -> elt option
      val split : elt -> t -> t * bool * t
      val find : elt -> t -> elt
      val find_opt : elt -> t -> elt option
      val find_first : (elt -> bool) -> t -> elt
      val find_first_opt : (elt -> bool) -> t -> elt option
      val find_last : (elt -> bool) -> t -> elt
      val find_last_opt : (elt -> bool) -> t -> elt option
      val to_seq_from : elt -> t -> elt Seq.t
      val to_seq : t -> elt Seq.t
      val add_seq : elt Seq.t -> t -> t
      val of_seq : elt Seq.t -> t
      val output : out_channel -> t -> unit
      val print : Format.formatter -> t -> unit
      val to_string : t -> string
      val of_list : elt list -> t
      val map : (elt -> elt) -> t -> t
    end
  module Map :
    sig
      type key = T.t
      type 'a t = 'Map.Make(T).t
      val empty : 'a t
      val is_empty : 'a t -> bool
      val mem : key -> 'a t -> bool
      val add : key -> '-> 'a t -> 'a t
      val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
      val singleton : key -> '-> 'a t
      val remove : key -> 'a t -> 'a t
      val merge :
        (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
      val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
      val compare : ('-> '-> int) -> 'a t -> 'a t -> int
      val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val for_all : (key -> '-> bool) -> 'a t -> bool
      val exists : (key -> '-> bool) -> 'a t -> bool
      val filter : (key -> '-> bool) -> 'a t -> 'a t
      val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
      val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
      val cardinal : 'a t -> int
      val bindings : 'a t -> (key * 'a) list
      val min_binding : 'a t -> key * 'a
      val min_binding_opt : 'a t -> (key * 'a) option
      val max_binding : 'a t -> key * 'a
      val max_binding_opt : 'a t -> (key * 'a) option
      val choose : 'a t -> key * 'a
      val choose_opt : 'a t -> (key * 'a) option
      val split : key -> 'a t -> 'a t * 'a option * 'a t
      val find : key -> 'a t -> 'a
      val find_opt : key -> 'a t -> 'a option
      val find_first : (key -> bool) -> 'a t -> key * 'a
      val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val find_last : (key -> bool) -> 'a t -> key * 'a
      val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val map : ('-> 'b) -> 'a t -> 'b t
      val mapi : (key -> '-> 'b) -> 'a t -> 'b t
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
      val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
      val of_seq : (key * 'a) Seq.t -> 'a t
      val of_list : (key * 'a) list -> 'a t
      val disjoint_union :
        ?eq:('-> '-> bool) ->
        ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
      val union_right : 'a t -> 'a t -> 'a t
      val union_left : 'a t -> 'a t -> 'a t
      val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
      val rename : key t -> key -> key
      val map_keys : (key -> key) -> 'a t -> 'a t
      val keys : 'a t -> Set.Make(T).t
      val data : 'a t -> 'a list
      val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
      val transpose_keys_and_data : key t -> key t
      val transpose_keys_and_data_set : key t -> Set.Make(T).t t
      val print :
        (Format.formatter -> '-> unit) -> Format.formatter -> 'a t -> unit
    end
  module Tbl :
    sig
      type key = T.t
      type 'a t = 'Hashtbl.Make(T).t
      val create : int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
      val to_list : 'a t -> (T.t * 'a) list
      val of_list : (T.t * 'a) list -> 'a t
      val to_map : 'a t -> 'Map.Make(T).t
      val of_map : 'Map.Make(T).t -> 'a t
      val memoize : 'a t -> (key -> 'a) -> key -> 'a
      val map : 'a t -> ('-> 'b) -> 'b t
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Cl.html0000644000175000017500000002043613717225554022620 0ustar mehdimehdi Ast_helper.Cl

Module Ast_helper.Cl

module Cl: sig .. end

Class expressions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.class_expr_desc -> Parsetree.class_expr
val attr : Parsetree.class_expr -> Parsetree.attribute -> Parsetree.class_expr
val constr : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.core_type list -> Parsetree.class_expr
val structure : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.class_structure -> Parsetree.class_expr
val fun_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.arg_label ->
Parsetree.expression option ->
Parsetree.pattern -> Parsetree.class_expr -> Parsetree.class_expr
val apply : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.class_expr ->
(Asttypes.arg_label * Parsetree.expression) list -> Parsetree.class_expr
val let_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.rec_flag ->
Parsetree.value_binding list -> Parsetree.class_expr -> Parsetree.class_expr
val constraint_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.class_expr -> Parsetree.class_type -> Parsetree.class_expr
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_expr
val open_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.open_description -> Parsetree.class_expr -> Parsetree.class_expr
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.S.Tbl.html0000644000175000017500000001161313717225554023472 0ustar mehdimehdi Identifiable.S.Tbl

Module Identifiable.S.Tbl

module Tbl: Identifiable.Tbl  with module T := T

module T: sig .. end
include Hashtbl.S
val to_list : 'a t -> (T.t * 'a) list
val of_list : (T.t * 'a) list -> 'a t
val to_map : 'a t -> 'a Stdlib.Map.Make(T).t
val of_map : 'a Stdlib.Map.Make(T).t -> 'a t
val memoize : 'a t -> (key -> 'a) -> key -> 'a
val map : 'a t -> ('a -> 'b) -> 'b t
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Type.html0000644000175000017500000001437713717225554023212 0ustar mehdimehdi Ast_helper.Type

Module Ast_helper.Type

module Type: sig .. end

Type declarations


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
?params:(Parsetree.core_type * Asttypes.variance) list ->
?cstrs:(Parsetree.core_type * Parsetree.core_type * Ast_helper.loc) list ->
?kind:Parsetree.type_kind ->
?priv:Asttypes.private_flag ->
?manifest:Parsetree.core_type -> Ast_helper.str -> Parsetree.type_declaration
val constructor : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?info:Docstrings.info ->
?args:Parsetree.constructor_arguments ->
?res:Parsetree.core_type ->
Ast_helper.str -> Parsetree.constructor_declaration
val field : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?info:Docstrings.info ->
?mut:Asttypes.mutable_flag ->
Ast_helper.str -> Parsetree.core_type -> Parsetree.label_declaration
ocaml-doc-4.11/ocaml.html/compilerlibref/Arg_helper.html0000644000175000017500000001245113717225554022243 0ustar mehdimehdi Arg_helper

Module Arg_helper

module Arg_helper: sig .. end

Decipher command line arguments of the form <value> | <key>=<value>,...

(as used for example for the specification of inlining parameters varying by simplification round).

Warning: this module is unstable and part of compiler-libs.


module Make: 
functor (S : sig
module Key: sig .. end
module Value: sig .. end
end-> sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/Arg_helper.Make.html0000644000175000017500000001775513717225554023133 0ustar mehdimehdi Arg_helper.Make

Functor Arg_helper.Make

module Make: 
functor (S : sig
module Key: sig .. end
module Value: sig .. end
end-> sig .. end
Parameters:
S : sig module Key : sig type t (** The textual representation of a key must not contain '=' or ','. *) val of_string : string -> t module Map : Map.S with type key = t end module Value : sig type t (** The textual representation of a value must not contain ','. *) val of_string : string -> t end end

type parsed 
val default : S.Value.t -> parsed
val set_base_default : S.Value.t -> parsed -> parsed
val add_base_override : S.Key.t -> S.Value.t -> parsed -> parsed
val reset_base_overrides : parsed -> parsed
val set_user_default : S.Value.t -> parsed -> parsed
val add_user_override : S.Key.t -> S.Value.t -> parsed -> parsed
val parse : string -> string -> parsed ref -> unit
type parse_result = 
| Ok
| Parse_failed of exn
val parse_no_error : string -> parsed ref -> parse_result
val get : key:S.Key.t -> parsed -> S.Value.t
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.TABLE.Log.html0000644000175000017500000001265513717225554030203 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.TABLE.Log

Module CamlinternalMenhirLib.EngineTypes.TABLE.Log

module Log: sig .. end

val state : CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
val shift : CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
val reduce_or_accept : CamlinternalMenhirLib.EngineTypes.TABLE.production -> unit
val lookahead_token : CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
Lexing.position -> Lexing.position -> unit
val initiating_error_handling : unit -> unit
val resuming_error_handling : unit -> unit
val handling_error : CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.Printers.Make.html0000644000175000017500000001573213717225554027064 0ustar mehdimehdi CamlinternalMenhirLib.Printers.Make

Functor CamlinternalMenhirLib.Printers.Make

module Make: 
functor (I : CamlinternalMenhirLib.IncrementalEngine.EVERYTHING-> 
functor (User : sig
val print : string -> unit
val print_symbol : I.xsymbol -> unit
val print_element : (I.element -> unit) option
end-> sig .. end
Parameters:
I : CamlinternalMenhirLib.IncrementalEngine.EVERYTHING
User : sig (* [print s] is supposed to send the string [s] to some output channel. *) val print: string -> unit (* [print_symbol s] is supposed to print a representation of the symbol [s]. *) val print_symbol: I.xsymbol -> unit (* [print_element e] is supposed to print a representation of the element [e]. This function is optional; if it is not provided, [print_element_as_symbol] (defined below) is used instead. *) val print_element: (I.element -> unit) option end

val print_symbols : I.xsymbol list -> unit
val print_element_as_symbol : I.element -> unit
val print_stack : 'a I.env -> unit
val print_item : I.item -> unit
val print_production : I.production -> unit
val print_current_state : 'a I.env -> unit
val print_env : 'a I.env -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.S.Tbl.html0000644000175000017500000002631613717225554024541 0ustar mehdimehdi Identifiable.S.Tbl sig
  type key = T.t
  type 'a t = 'Hashtbl.Make(T).t
  val create : int -> 'a t
  val clear : 'a t -> unit
  val reset : 'a t -> unit
  val copy : 'a t -> 'a t
  val add : 'a t -> key -> '-> unit
  val remove : 'a t -> key -> unit
  val find : 'a t -> key -> 'a
  val find_opt : 'a t -> key -> 'a option
  val find_all : 'a t -> key -> 'a list
  val replace : 'a t -> key -> '-> unit
  val mem : 'a t -> key -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val length : 'a t -> int
  val stats : 'a t -> Hashtbl.statistics
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_keys : 'a t -> key Seq.t
  val to_seq_values : 'a t -> 'Seq.t
  val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  val of_seq : (key * 'a) Seq.t -> 'a t
  val to_list : 'a t -> (T.t * 'a) list
  val of_list : (T.t * 'a) list -> 'a t
  val to_map : 'a t -> 'Map.Make(T).t
  val of_map : 'Map.Make(T).t -> 'a t
  val memoize : 'a t -> (key -> 'a) -> key -> 'a
  val map : 'a t -> ('-> 'b) -> 'b t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Mod.html0000644000175000017500000001666113717225554023006 0ustar mehdimehdi Ast_helper.Mod

Module Ast_helper.Mod

module Mod: sig .. end

Module expressions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.module_expr_desc -> Parsetree.module_expr
val attr : Parsetree.module_expr -> Parsetree.attribute -> Parsetree.module_expr
val ident : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_expr
val structure : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.structure -> Parsetree.module_expr
val functor_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.functor_parameter -> Parsetree.module_expr -> Parsetree.module_expr
val apply : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.module_expr -> Parsetree.module_expr -> Parsetree.module_expr
val constraint_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.module_expr -> Parsetree.module_type -> Parsetree.module_expr
val unpack : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.module_expr
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.module_expr
ocaml-doc-4.11/ocaml.html/compilerlibref/Consistbl.Make.html0000644000175000017500000002062513717225554023011 0ustar mehdimehdi Consistbl.Make

Functor Consistbl.Make

module Make: 
functor (Module_name : sig
type t 
module Set: Set.S  with type elt = t
module Map: Map.S  with type key = t
module Tbl: Hashtbl.S  with type key = t
val compare : t -> t -> int
end-> sig .. end
Parameters:
Module_name : sig type t module Set : Set.S with type elt = t module Map : Map.S with type key = t module Tbl : Hashtbl.S with type key = t val compare : t -> t -> int end

type t 
val create : unit -> t
val clear : t -> unit
val check : t -> Module_name.t -> Digest.t -> Misc.filepath -> unit
val check_noadd : t -> Module_name.t -> Digest.t -> Misc.filepath -> unit
val set : t -> Module_name.t -> Digest.t -> Misc.filepath -> unit
val source : t -> Module_name.t -> Misc.filepath
val extract : Module_name.t list ->
t -> (Module_name.t * Digest.t option) list
val extract_map : Module_name.Set.t ->
t -> Digest.t option Module_name.Map.t
val filter : (Module_name.t -> bool) -> t -> unit
exception Inconsistency of {
   unit_name : Module_name.t;
   inconsistent_source : string;
   original_source : string;
}
exception Not_available of Module_name.t
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InfiniteArray.html0000644000175000017500000001470013717225554027140 0ustar mehdimehdi CamlinternalMenhirLib.InfiniteArray

Module CamlinternalMenhirLib.InfiniteArray

module InfiniteArray: sig .. end

type 'a t 

This module implements infinite arrays. *

val make : 'a -> 'a t

make x creates an infinite array, where every slot contains x. *

val get : 'a t -> int -> 'a

get a i returns the element contained at offset i in the array a. Slots are numbered 0 and up. *

val set : 'a t -> int -> 'a -> unit

set a i x sets the element contained at offset i in the array a to x. Slots are numbered 0 and up. *

val extent : 'a t -> int

extent a is the length of an initial segment of the array a that is sufficiently large to contain all set operations ever performed. In other words, all elements beyond that segment have the default value.

val domain : 'a t -> 'a array

domain a is a fresh copy of an initial segment of the array a whose length is extent a.

ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Te.html0000644000175000017500000001612713717225554022634 0ustar mehdimehdi Ast_helper.Te

Module Ast_helper.Te

module Te: sig .. end

Type extensions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?params:(Parsetree.core_type * Asttypes.variance) list ->
?priv:Asttypes.private_flag ->
Ast_helper.lid ->
Parsetree.extension_constructor list -> Parsetree.type_extension
val mk_exception : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
Parsetree.extension_constructor -> Parsetree.type_exception
val constructor : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?info:Docstrings.info ->
Ast_helper.str ->
Parsetree.extension_constructor_kind -> Parsetree.extension_constructor
val decl : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?info:Docstrings.info ->
?args:Parsetree.constructor_arguments ->
?res:Parsetree.core_type -> Ast_helper.str -> Parsetree.extension_constructor
val rebind : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?info:Docstrings.info ->
Ast_helper.str -> Ast_helper.lid -> Parsetree.extension_constructor
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.LinearizedArray.html0000644000175000017500000001512413717225554030523 0ustar mehdimehdi CamlinternalMenhirLib.LinearizedArray sig
  type 'a t = 'a array * int array
  val make : 'a array array -> 'CamlinternalMenhirLib.LinearizedArray.t
  val read : 'CamlinternalMenhirLib.LinearizedArray.t -> int -> int -> 'a
  val write :
    'CamlinternalMenhirLib.LinearizedArray.t -> int -> int -> '-> unit
  val length : 'CamlinternalMenhirLib.LinearizedArray.t -> int
  val row_length : 'CamlinternalMenhirLib.LinearizedArray.t -> int -> int
  val read_row : 'CamlinternalMenhirLib.LinearizedArray.t -> int -> 'a list
  val row_length_via : (int -> int) -> int -> int
  val read_via : (int -> 'a) -> (int -> int) -> int -> int -> 'a
  val read_row_via : (int -> 'a) -> (int -> int) -> int -> 'a list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_mapper.html0000644000175000017500000010314213717225554022264 0ustar mehdimehdi Ast_mapper

Module Ast_mapper

module Ast_mapper: sig .. end

The interface of a -ppx rewriter

A -ppx rewriter is a program that accepts a serialized abstract syntax tree and outputs another, possibly modified, abstract syntax tree. This module encapsulates the interface between the compiler and the -ppx rewriters, handling such details as the serialization format, forwarding of command-line flags, and storing state.

Ast_mapper.mapper enables AST rewriting using open recursion. A typical mapper would be based on Ast_mapper.default_mapper, a deep identity mapper, and will fall back on it for handling the syntax it does not modify. For example:

open Asttypes
open Parsetree
open Ast_mapper

let test_mapper argv =
  { default_mapper with
    expr = fun mapper expr ->
      match expr with
      | { pexp_desc = Pexp_extension ({ txt = "test" }, PStr [])} ->
        Ast_helper.Exp.constant (Const_int 42)
      | other -> default_mapper.expr mapper other; }

let () =
  register "ppx_test" test_mapper

This -ppx rewriter, which replaces [%test] in expressions with the constant 42, can be compiled using ocamlc -o ppx_test -I +compiler-libs ocamlcommon.cma ppx_test.ml.

Warning: this module is unstable and part of compiler-libs.


A generic Parsetree mapper

type mapper = {
   attribute : mapper -> Parsetree.attribute -> Parsetree.attribute;
   attributes : mapper -> Parsetree.attribute list -> Parsetree.attribute list;
   binding_op : mapper -> Parsetree.binding_op -> Parsetree.binding_op;
   case : mapper -> Parsetree.case -> Parsetree.case;
   cases : mapper -> Parsetree.case list -> Parsetree.case list;
   class_declaration : mapper ->
Parsetree.class_declaration -> Parsetree.class_declaration
;
   class_description : mapper ->
Parsetree.class_description -> Parsetree.class_description
;
   class_expr : mapper -> Parsetree.class_expr -> Parsetree.class_expr;
   class_field : mapper -> Parsetree.class_field -> Parsetree.class_field;
   class_signature : mapper -> Parsetree.class_signature -> Parsetree.class_signature;
   class_structure : mapper -> Parsetree.class_structure -> Parsetree.class_structure;
   class_type : mapper -> Parsetree.class_type -> Parsetree.class_type;
   class_type_declaration : mapper ->
Parsetree.class_type_declaration -> Parsetree.class_type_declaration
;
   class_type_field : mapper -> Parsetree.class_type_field -> Parsetree.class_type_field;
   constant : mapper -> Parsetree.constant -> Parsetree.constant;
   constructor_declaration : mapper ->
Parsetree.constructor_declaration -> Parsetree.constructor_declaration
;
   expr : mapper -> Parsetree.expression -> Parsetree.expression;
   extension : mapper -> Parsetree.extension -> Parsetree.extension;
   extension_constructor : mapper ->
Parsetree.extension_constructor -> Parsetree.extension_constructor
;
   include_declaration : mapper ->
Parsetree.include_declaration -> Parsetree.include_declaration
;
   include_description : mapper ->
Parsetree.include_description -> Parsetree.include_description
;
   label_declaration : mapper ->
Parsetree.label_declaration -> Parsetree.label_declaration
;
   location : mapper -> Location.t -> Location.t;
   module_binding : mapper -> Parsetree.module_binding -> Parsetree.module_binding;
   module_declaration : mapper ->
Parsetree.module_declaration -> Parsetree.module_declaration
;
   module_substitution : mapper ->
Parsetree.module_substitution -> Parsetree.module_substitution
;
   module_expr : mapper -> Parsetree.module_expr -> Parsetree.module_expr;
   module_type : mapper -> Parsetree.module_type -> Parsetree.module_type;
   module_type_declaration : mapper ->
Parsetree.module_type_declaration -> Parsetree.module_type_declaration
;
   open_declaration : mapper -> Parsetree.open_declaration -> Parsetree.open_declaration;
   open_description : mapper -> Parsetree.open_description -> Parsetree.open_description;
   pat : mapper -> Parsetree.pattern -> Parsetree.pattern;
   payload : mapper -> Parsetree.payload -> Parsetree.payload;
   signature : mapper -> Parsetree.signature -> Parsetree.signature;
   signature_item : mapper -> Parsetree.signature_item -> Parsetree.signature_item;
   structure : mapper -> Parsetree.structure -> Parsetree.structure;
   structure_item : mapper -> Parsetree.structure_item -> Parsetree.structure_item;
   typ : mapper -> Parsetree.core_type -> Parsetree.core_type;
   type_declaration : mapper -> Parsetree.type_declaration -> Parsetree.type_declaration;
   type_extension : mapper -> Parsetree.type_extension -> Parsetree.type_extension;
   type_exception : mapper -> Parsetree.type_exception -> Parsetree.type_exception;
   type_kind : mapper -> Parsetree.type_kind -> Parsetree.type_kind;
   value_binding : mapper -> Parsetree.value_binding -> Parsetree.value_binding;
   value_description : mapper ->
Parsetree.value_description -> Parsetree.value_description
;
   with_constraint : mapper -> Parsetree.with_constraint -> Parsetree.with_constraint;
}

A mapper record implements one "method" per syntactic category, using an open recursion style: each method takes as its first argument the mapper to be applied to children in the syntax tree.

val default_mapper : mapper

A default mapper, which implements a "deep identity" mapping.

Apply mappers to compilation units

val tool_name : unit -> string

Can be used within a ppx preprocessor to know which tool is calling it "ocamlc", "ocamlopt", "ocamldoc", "ocamldep", "ocaml", ... Some global variables that reflect command-line options are automatically synchronized between the calling tool and the ppx preprocessor: Clflags.include_dirs, Load_path, Clflags.open_modules, Clflags.for_package, Clflags.debug.

val apply : source:string -> target:string -> mapper -> unit

Apply a mapper (parametrized by the unit name) to a dumped parsetree found in the source file and put the result in the target file. The structure or signature field of the mapper is applied to the implementation or interface.

val run_main : (string list -> mapper) -> unit

Entry point to call to implement a standalone -ppx rewriter from a mapper, parametrized by the command line arguments. The current unit name can be obtained from Location.input_name. This function implements proper error reporting for uncaught exceptions.

Registration API

val register_function : (string -> (string list -> mapper) -> unit) ref
val register : string -> (string list -> mapper) -> unit

Apply the register_function. The default behavior is to run the mapper immediately, taking arguments from the process command line. This is to support a scenario where a mapper is linked as a stand-alone executable.

It is possible to overwrite the register_function to define "-ppx drivers", which combine several mappers in a single process. Typically, a driver starts by defining register_function to a custom implementation, then lets ppx rewriters (linked statically or dynamically) register themselves, and then run all or some of them. It is also possible to have -ppx drivers apply rewriters to only specific parts of an AST.

The first argument to register is a symbolic name to be used by the ppx driver.

Convenience functions to write mappers

val map_opt : ('a -> 'b) -> 'a option -> 'b option
val extension_of_error : Location.error -> Parsetree.extension

Encode an error into an 'ocaml.error' extension node which can be inserted in a generated Parsetree. The compiler will be responsible for reporting the error.

val attribute_of_warning : Location.t -> string -> Parsetree.attribute

Encode a warning message into an 'ocaml.ppwarning' attribute which can be inserted in a generated Parsetree. The compiler will be responsible for reporting the warning.

Helper functions to call external mappers

val add_ppx_context_str : tool_name:string -> Parsetree.structure -> Parsetree.structure

Extract information from the current environment and encode it into an attribute which is prepended to the list of structure items in order to pass the information to an external processor.

val add_ppx_context_sig : tool_name:string -> Parsetree.signature -> Parsetree.signature

Same as add_ppx_context_str, but for signatures.

val drop_ppx_context_str : restore:bool -> Parsetree.structure -> Parsetree.structure

Drop the ocaml.ppx.context attribute from a structure. If restore is true, also restore the associated data in the current process.

val drop_ppx_context_sig : restore:bool -> Parsetree.signature -> Parsetree.signature

Same as drop_ppx_context_str, but for signatures.

Cookies

Cookies are used to pass information from a ppx processor to a further invocation of itself, when called from the OCaml toplevel (or other tools that support cookies).

val set_cookie : string -> Parsetree.expression -> unit
val get_cookie : string -> Parsetree.expression option
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.Engine.html0000644000175000017500000001144613717225554025605 0ustar mehdimehdi CamlinternalMenhirLib.Engine

Module CamlinternalMenhirLib.Engine

module Engine: sig .. end

module Make: 
functor (T : CamlinternalMenhirLib.EngineTypes.TABLE-> ENGINE with type state = T.state and type token = T.token and type semantic_value = T.semantic_value and type production = T.production and type 'a env = (T.state, T.semantic_value, T.token) EngineTypes.env
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.html0000644000175000017500000005636113717225554021076 0ustar mehdimehdi Misc

Module Misc

module Misc: sig .. end

Miscellaneous useful types and functions

Warning: this module is unstable and part of compiler-libs.


val fatal_error : string -> 'a
val fatal_errorf : ('a, Format.formatter, unit, 'b) format4 -> 'a
exception Fatal_error
val try_finally : ?always:(unit -> unit) -> ?exceptionally:(unit -> unit) -> (unit -> 'a) -> 'a

try_finally work ~always ~exceptionally is designed to run code in work that may fail with an exception, and has two kind of cleanup routines: always, that must be run after any execution of the function (typically, freeing system resources), and exceptionally, that should be run only if work or always failed with an exception (typically, undoing user-visible state changes that would only make sense if the function completes correctly). For example:

      let objfile = outputprefix ^ ".cmo" in
      let oc = open_out_bin objfile in
      Misc.try_finally
        (fun () ->
           bytecode
           ++ Timings.(accumulate_time (Generate sourcefile))
               (Emitcode.to_file oc modulename objfile);
           Warnings.check_fatal ())
        ~always:(fun () -> close_out oc)
        ~exceptionally:(fun _exn -> remove_file objfile);
    

If exceptionally fail with an exception, it is propagated as usual.

If always or exceptionally use exceptions internally for control-flow but do not raise, then try_finally is careful to preserve any exception backtrace coming from work or always for easier debugging.

val map_end : ('a -> 'b) -> 'a list -> 'b list -> 'b list
val map_left_right : ('a -> 'b) -> 'a list -> 'b list
val for_all2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
val replicate_list : 'a -> int -> 'a list
val list_remove : 'a -> 'a list -> 'a list
val split_last : 'a list -> 'a list * 'a
type ref_and_value = 
| R : 'a ref * 'a -> ref_and_value
val protect_refs : ref_and_value list -> (unit -> 'a) -> 'a

protect_refs l f temporarily sets r to v for each R (r, v) in l while executing f. The previous contents of the references is restored even if f raises an exception, without altering the exception backtrace.

module Stdlib: sig .. end
val find_in_path : string list -> string -> string
val find_in_path_rel : string list -> string -> string
val find_in_path_uncap : string list -> string -> string
val remove_file : string -> unit
val expand_directory : string -> string -> string
val split_path_contents : ?sep:char -> string -> string list
val create_hashtable : int -> ('a * 'b) list -> ('a, 'b) Hashtbl.t
val copy_file : in_channel -> out_channel -> unit
val copy_file_chunk : in_channel -> out_channel -> int -> unit
val string_of_file : in_channel -> string
val output_to_file_via_temporary : ?mode:open_flag list ->
string -> (string -> out_channel -> 'a) -> 'a
val protect_writing_to_file : filename:string -> f:(out_channel -> 'a) -> 'a

Open the given filename for writing (in binary mode), pass the out_channel to the given function, then close the channel. If the function raises an exception then filename will be removed.

val log2 : int -> int
val align : int -> int -> int
val no_overflow_add : int -> int -> bool
val no_overflow_sub : int -> int -> bool
val no_overflow_mul : int -> int -> bool
val no_overflow_lsl : int -> int -> bool
module Int_literal_converter: sig .. end
val chop_extensions : string -> string
val search_substring : string -> string -> int -> int
val replace_substring : before:string -> after:string -> string -> string
val rev_split_words : string -> string list
val get_ref : 'a list ref -> 'a list
val set_or_ignore : ('a -> 'b option) -> 'b option ref -> 'a -> unit
val fst3 : 'a * 'b * 'c -> 'a
val snd3 : 'a * 'b * 'c -> 'b
val thd3 : 'a * 'b * 'c -> 'c
val fst4 : 'a * 'b * 'c * 'd -> 'a
val snd4 : 'a * 'b * 'c * 'd -> 'b
val thd4 : 'a * 'b * 'c * 'd -> 'c
val for4 : 'a * 'b * 'c * 'd -> 'd
module LongString: sig .. end
val edit_distance : string -> string -> int -> int option

edit_distance a b cutoff computes the edit distance between strings a and b. To help efficiency, it uses a cutoff: if the distance d is smaller than cutoff, it returns Some d, else None.

The distance algorithm currently used is Damerau-Levenshtein: it computes the number of insertion, deletion, substitution of letters, or swapping of adjacent letters to go from one word to the other. The particular algorithm may change in the future.

val spellcheck : string list -> string -> string list

spellcheck env name takes a list of names env that exist in the current environment and an erroneous name, and returns a list of suggestions taken from env, that are close enough to name that it may be a typo for one of them.

val did_you_mean : Format.formatter -> (unit -> string list) -> unit

did_you_mean ppf get_choices hints that the user may have meant one of the option returned by calling get_choices. It does nothing if the returned list is empty.

The unit -> ... thunking is meant to delay any potentially-slow computation (typically computing edit-distance with many things from the current environment) to when the hint message is to be printed. You should print an understandable error message before calling did_you_mean, so that users get a clear notification of the failure even if producing the hint is slow.

val cut_at : string -> char -> string * string

String.cut_at s c returns a pair containing the sub-string before the first occurrence of c in s, and the sub-string after the first occurrence of c in s. let (before, after) = String.cut_at s c in
    before ^ String.make 1 c ^ after
is the identity if s contains c.

Raise Not_found if the character does not appear in the string

module Color: sig .. end
module Error_style: sig .. end
val normalise_eol : string -> string

normalise_eol s returns a fresh copy of s with any '\r' characters removed. Intended for pre-processing text which will subsequently be printed on a channel which performs EOL transformations (i.e. Windows)

val delete_eol_spaces : string -> string

delete_eol_spaces s returns a fresh copy of s with any end of line spaces removed. Intended to normalize the output of the toplevel for tests.

val pp_two_columns : ?sep:string ->
?max_lines:int -> Format.formatter -> (string * string) list -> unit

pp_two_columns ?sep ?max_lines ppf l prints the lines in l as two columns separated by sep ("|" by default). max_lines can be used to indicate a maximum number of lines to print -- an ellipsis gets inserted at the middle if the input has too many lines.

Example:

pp_two_columns ~max_lines:3 Format.std_formatter [
      "abc", "hello";
      "def", "zzz";
      "a"  , "bllbl";
      "bb" , "dddddd";
    ]

prints

    abc | hello
    ...
    bb  | dddddd
   
val show_config_and_exit : unit -> unit

configuration variables

val show_config_variable_and_exit : string -> unit
val get_build_path_prefix_map : unit -> Build_path_prefix_map.map option

Returns the map encoded in the BUILD_PATH_PREFIX_MAP environment variable.

val debug_prefix_map_flags : unit -> string list

Returns the list of --debug-prefix-map flags to be passed to the assembler, built from the BUILD_PATH_PREFIX_MAP environment variable.

val print_if : Format.formatter ->
bool ref -> (Format.formatter -> 'a -> unit) -> 'a -> 'a

print_if ppf flag fmt x prints x with fmt on ppf if b is true.

type filepath = string 
type modname = string 
type crcs = (modname * Digest.t option) list 
type alerts = string Stdlib.String.Map.t 
module EnvLazy: sig .. end
module Magic_number: sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Tbl.html0000644000175000017500000003043513717225554024335 0ustar mehdimehdi Identifiable.Tbl sig
  module T :
    sig
      type t
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val hash : t -> int
    end
  type key = T.t
  type 'a t = 'Hashtbl.Make(T).t
  val create : int -> 'a t
  val clear : 'a t -> unit
  val reset : 'a t -> unit
  val copy : 'a t -> 'a t
  val add : 'a t -> key -> '-> unit
  val remove : 'a t -> key -> unit
  val find : 'a t -> key -> 'a
  val find_opt : 'a t -> key -> 'a option
  val find_all : 'a t -> key -> 'a list
  val replace : 'a t -> key -> '-> unit
  val mem : 'a t -> key -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val length : 'a t -> int
  val stats : 'a t -> Hashtbl.statistics
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_keys : 'a t -> key Seq.t
  val to_seq_values : 'a t -> 'Seq.t
  val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  val of_seq : (key * 'a) Seq.t -> 'a t
  val to_list : 'a t -> (Identifiable.Tbl.T.t * 'a) list
  val of_list : (Identifiable.Tbl.T.t * 'a) list -> 'a t
  val to_map : 'a t -> 'Stdlib.Map.Make(T).t
  val of_map : 'Stdlib.Map.Make(T).t -> 'a t
  val memoize : 'a t -> (key -> 'a) -> key -> 'a
  val map : 'a t -> ('-> 'b) -> 'b t
end
././@LongLink0000644000000000000000000000014600000000000011604 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.EVERYTHING.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.EVERYTHING.htm0000644000175000017500000004112213717225554032331 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.EVERYTHING sig
  type token
  type production
  type 'a env
  type 'a checkpoint = private
      InputNeeded of 'a env
    | Shifting of 'a env * 'a env * bool
    | AboutToReduce of 'a env * production
    | HandlingError of 'a env
    | Accepted of 'a
    | Rejected
  val offer : 'a checkpoint -> token * position * position -> 'a checkpoint
  val resume : 'a checkpoint -> 'a checkpoint
  type supplier = unit -> token * position * position
  val lexer_lexbuf_to_supplier :
    (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
  val loop : supplier -> 'a checkpoint -> 'a
  val loop_handle :
    ('-> 'answer) ->
    ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
  val loop_handle_undo :
    ('-> 'answer) ->
    ('a checkpoint -> 'a checkpoint -> 'answer) ->
    supplier -> 'a checkpoint -> 'answer
  val shifts : 'a checkpoint -> 'a env option
  val acceptable : 'a checkpoint -> token -> position -> bool
  type 'a lr1state
  val number : 'a lr1state -> int
  val production_index : production -> int
  val find_production : int -> production
  type element = Element : 'a lr1state * 'a * position * position -> element
  type stack = element General.stream
  val stack : 'a env -> stack
  val top : 'a env -> element option
  val pop_many : int -> 'a env -> 'a env option
  val get : int -> 'a env -> element option
  val current_state_number : 'a env -> int
  val equal : 'a env -> 'a env -> bool
  val positions : 'a env -> position * position
  val env_has_default_reduction : 'a env -> bool
  val state_has_default_reduction : 'a lr1state -> bool
  val pop : 'a env -> 'a env option
  val force_reduction : production -> 'a env -> 'a env
  val input_needed : 'a env -> 'a checkpoint
  type 'a terminal
  type 'a nonterminal
  type 'a symbol =
      T : 'a terminal -> 'a symbol
    | N : 'a nonterminal -> 'a symbol
  type xsymbol = X : 'a symbol -> xsymbol
  type item = production * int
  val compare_terminals : 'a terminal -> 'b terminal -> int
  val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
  val compare_symbols : xsymbol -> xsymbol -> int
  val compare_productions : production -> production -> int
  val compare_items : item -> item -> int
  val incoming_symbol : 'a lr1state -> 'a symbol
  val items : 'a lr1state -> item list
  val lhs : production -> xsymbol
  val rhs : production -> xsymbol list
  val nullable : 'a nonterminal -> bool
  val first : 'a nonterminal -> 'b terminal -> bool
  val xfirst : xsymbol -> 'a terminal -> bool
  val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
  val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
  val feed : 'a symbol -> position -> '-> position -> 'b env -> 'b env
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Pat.html0000644000175000017500000002705113717225554023006 0ustar mehdimehdi Ast_helper.Pat

Module Ast_helper.Pat

module Pat: sig .. end

Patterns


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.pattern_desc -> Parsetree.pattern
val attr : Parsetree.pattern -> Parsetree.attribute -> Parsetree.pattern
val any : ?loc:Ast_helper.loc -> ?attrs:Ast_helper.attrs -> unit -> Parsetree.pattern
val var : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.str -> Parsetree.pattern
val alias : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.pattern -> Ast_helper.str -> Parsetree.pattern
val constant : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.constant -> Parsetree.pattern
val interval : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.constant -> Parsetree.constant -> Parsetree.pattern
val tuple : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.pattern list -> Parsetree.pattern
val construct : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.pattern option -> Parsetree.pattern
val variant : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.label -> Parsetree.pattern option -> Parsetree.pattern
val record : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
(Ast_helper.lid * Parsetree.pattern) list ->
Asttypes.closed_flag -> Parsetree.pattern
val array : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.pattern list -> Parsetree.pattern
val or_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.pattern -> Parsetree.pattern -> Parsetree.pattern
val constraint_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.pattern -> Parsetree.core_type -> Parsetree.pattern
val type_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.pattern
val lazy_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.pattern -> Parsetree.pattern
val unpack : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.str_opt -> Parsetree.pattern
val open_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.pattern -> Parsetree.pattern
val exception_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.pattern -> Parsetree.pattern
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.pattern
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Incl.html0000644000175000017500000001041113717225554023137 0ustar mehdimehdi Ast_helper.Incl

Module Ast_helper.Incl

module Incl: sig .. end

Includes


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs -> 'a -> 'a Parsetree.include_infos
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Tbl.T.html0000644000175000017500000000747313717225554023504 0ustar mehdimehdi Identifiable.Tbl.T

Module Identifiable.Tbl.T

module T: sig .. end

type t 
include Map.OrderedType
include Hashtbl.HashedType
ocaml-doc-4.11/ocaml.html/compilerlibref/Load_path.html0000644000175000017500000001612113717225554022064 0ustar mehdimehdi Load_path

Module Load_path

module Load_path: sig .. end

Management of include directories.

This module offers a high level interface to locating files in the load path, which is constructed from -I command line flags and a few other parameters.

It makes the assumption that the contents of include directories doesn't change during the execution of the compiler.


val add_dir : string -> unit

Add a directory to the load path

val remove_dir : string -> unit

Remove a directory from the load path

val reset : unit -> unit

Remove all directories

val init : string list -> unit

init l is the same as reset (); List.iter add_dir (List.rev l)

val get_paths : unit -> string list

Return the list of directories passed to add_dir so far, in reverse order.

val find : string -> string

Locate a file in the load path. Raise Not_found if the file cannot be found. This function is optimized for the case where the filename is a basename, i.e. doesn't contain a directory separator.

val find_uncap : string -> string

Same as find, but search also for uncapitalized name, i.e. if name is Foo.ml, allow /path/Foo.ml and /path/foo.ml to match.

module Dir: sig .. end
val add : Dir.t -> unit
val get : unit -> Dir.t list

Same as get_paths (), except that it returns a Dir.t list.

ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.String.html0000644000175000017500000001120513717225554023547 0ustar mehdimehdi Misc.Stdlib.String

Module Misc.Stdlib.String

module String: sig .. end

include String
module Set: Set.S  with type elt = string
module Map: Map.S  with type key = string
module Tbl: Hashtbl.S  with type key = string
val print : Format.formatter -> t -> unit
val for_all : (char -> bool) -> t -> bool
ocaml-doc-4.11/ocaml.html/compilerlibref/Clflags.Int_arg_helper.html0000644000175000017500000001250613717225554024470 0ustar mehdimehdi Clflags.Int_arg_helper

Module Clflags.Int_arg_helper

module Int_arg_helper: sig .. end

Optimization parameters represented as ints indexed by round number.


type parsed 
val parse : string -> string -> parsed ref -> unit
type parse_result = 
| Ok
| Parse_failed of exn
val parse_no_error : string ->
parsed ref ->
parse_result
val get : key:int -> parsed -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.Engine.Make.html0000644000175000017500000001112013717225554026446 0ustar mehdimehdi CamlinternalMenhirLib.Engine.Make

Functor CamlinternalMenhirLib.Engine.Make

module Make: 
functor (T : CamlinternalMenhirLib.EngineTypes.TABLE-> ENGINE with type state = T.state and type token = T.token and type semantic_value = T.semantic_value and type production = T.production and type 'a env = (T.state, T.semantic_value, T.token) EngineTypes.env
Parameters:
T : CamlinternalMenhirLib.EngineTypes.TABLE

ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.S.html0000644000175000017500000001153713717225554022757 0ustar mehdimehdi Identifiable.S

Module type Identifiable.S

module type S = sig .. end

type t 
module T: Identifiable.Thing  with type t = t
include Identifiable.Thing
module Set: Identifiable.Set  with module T := T
module Map: Identifiable.Map  with module T := T
module Tbl: Identifiable.Tbl  with module T := T
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.S.Map.html0000644000175000017500000001536313717225554023474 0ustar mehdimehdi Identifiable.S.Map

Module Identifiable.S.Map

module Map: Identifiable.Map  with module T := T

module T: Map.OrderedType 
include Map.S
val of_list : (key * 'a) list -> 'a t
val disjoint_union : ?eq:('a -> 'a -> bool) ->
?print:(Format.formatter -> 'a -> unit) -> 'a t -> 'a t -> 'a t

disjoint_union m1 m2 contains all bindings from m1 and m2. If some binding is present in both and the associated value is not equal, a Fatal_error is raised

val union_right : 'a t -> 'a t -> 'a t

union_right m1 m2 contains all bindings from m1 and m2. If some binding is present in both, the one from m2 is taken

val union_left : 'a t -> 'a t -> 'a t

union_left m1 m2 = union_right m2 m1

val union_merge : ('a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
val rename : key t -> key -> key
val map_keys : (key -> key) -> 'a t -> 'a t
val keys : 'a t -> Stdlib.Set.Make(T).t
val data : 'a t -> 'a list
val of_set : (key -> 'a) -> Stdlib.Set.Make(T).t -> 'a t
val transpose_keys_and_data : key t -> key t
val transpose_keys_and_data_set : key t -> Stdlib.Set.Make(T).t t
val print : (Format.formatter -> 'a -> unit) ->
Format.formatter -> 'a t -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/index_types.html0000644000175000017500000011221113717225554022521 0ustar mehdimehdi Index of types

Index of types

A
alert [Warnings]
alerts [Misc]
arg_label [Asttypes]
ast_kind [Pparse]
attribute [Parsetree]
attributes [Parsetree]
attrs [Ast_helper]
B
binding_op [Parsetree]
bound_map [Depend]
buffer [CamlinternalMenhirLib.ErrorReports]
C
case [Parsetree]
checkpoint [CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START]
checkpoint [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
class_declaration [Parsetree]
class_description [Parsetree]
class_expr [Parsetree]
class_expr_desc [Parsetree]
class_field [Parsetree]
class_field_desc [Parsetree]
class_field_kind [Parsetree]
class_infos [Parsetree]
class_signature [Parsetree]
class_structure [Parsetree]
class_type [Parsetree]
class_type_declaration [Parsetree]
class_type_desc [Parsetree]
class_type_field [Parsetree]
class_type_field_desc [Parsetree]
closed_flag [Asttypes]
color [Misc.Color]
column [Profile]
component [Strongly_connected_components.S]
constant [Parsetree]
constant [Asttypes]
constructor_arguments [Parsetree]
constructor_declaration [Parsetree]
core_type [Parsetree]
core_type_desc [Parsetree]
crcs [Misc]
D
directed_graph [Strongly_connected_components.S]

If (a -> set) belongs to the map, it means that there are edges from a to every element of set.

direction_flag [Asttypes]
directive_argument [Parsetree]
directive_argument_desc [Parsetree]
docs [Docstrings]
docstring [Docstrings]

Documentation comments

E
element [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
env [CamlinternalMenhirLib.EngineTypes]
env [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
env [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
env_reader [Clflags]
error [Syntaxerr]
error [Pparse]
error [Misc.Magic_number]
error [Location]

An error is a report which report_kind must be Report_error.

error [Lexer]
error [Attr_helper]
error_message [Build_path_prefix_map]
expression [Parsetree]
expression_desc [Parsetree]
extension [Parsetree]
extension_constructor [Parsetree]
extension_constructor_kind [Parsetree]
F
file [Profile]
filepath [Misc]
functor_parameter [Parsetree]
H
head [CamlinternalMenhirLib.General]
I
include_declaration [Parsetree]
include_description [Parsetree]
include_infos [Parsetree]
info [Misc.Magic_number]
info [Docstrings]
inlining_arguments [Clflags]
item [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
iterator [Ast_iterator]

A iterator record implements one "method" per syntactic category, using an open recursion style: each method takes as its first argument the iterator to be applied to children in the syntax tree.

K
kind [Misc.Magic_number]
L
label [Asttypes]
label_declaration [Parsetree]
letop [Parsetree]
lid [Ast_helper]
link_mode [Ccomp]
loc [Warnings]
loc [Location]
loc [Asttypes]
loc [Ast_helper]
location_stack [Parsetree]
log [Misc.EnvLazy]
longest_common_prefix_result [Misc.Stdlib.List]
lr1state [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
lr1state [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
lr1state [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
M
map [Build_path_prefix_map]
map_tree [Depend]
mapper [Ast_mapper]

A mapper record implements one "method" per syntactic category, using an open recursion style: each method takes as its first argument the mapper to be applied to children in the syntax tree.

modname [Misc]
module_binding [Parsetree]
module_declaration [Parsetree]
module_expr [Parsetree]
module_expr_desc [Parsetree]
module_substitution [Parsetree]
module_type [Parsetree]
module_type_declaration [Parsetree]
module_type_desc [Parsetree]
msg [Location]
mutable_flag [Asttypes]
N
native_obj_config [Misc.Magic_number]

native object files have a format and magic number that depend on certain native-compiler configuration parameters.

nonterminal [CamlinternalMenhirLib.EngineTypes.TABLE]
nonterminal [CamlinternalMenhirLib.IncrementalEngine.SYMBOLS]
O
object_field [Parsetree]
object_field_desc [Parsetree]
open_declaration [Parsetree]
open_description [Parsetree]
open_infos [Parsetree]
override_flag [Asttypes]
P
package_type [Parsetree]
pair [Build_path_prefix_map]
parse_error [Misc.Magic_number]
parse_result [Clflags.Float_arg_helper]
parse_result [Clflags.Int_arg_helper]
parse_result [Arg_helper.Make]
parsed [Clflags.Float_arg_helper]
parsed [Clflags.Int_arg_helper]
parsed [Arg_helper.Make]
path [Build_path_prefix_map]
path_prefix [Build_path_prefix_map]
pattern [Parsetree]
pattern_desc [Parsetree]
payload [Parsetree]
position [CamlinternalMenhirLib.IncrementalEngine]
private_flag [Asttypes]
production [CamlinternalMenhirLib.EngineTypes.TABLE]
production [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
production [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
R
raw [Misc.Magic_number]

the type of raw magic numbers, such as "Caml1999A027" for the .cma files of OCaml 4.10

raw_kind [Misc.Magic_number]

the type of raw magic numbers kinds, such as "Caml1999A" for .cma files

rec_flag [Asttypes]
ref_and_value [Misc]
report [Location]
report_kind [Location]
report_printer [Location]

A printer for reports, defined using open-recursion.

reporting_information [Warnings]
repr [Targetint]
revised [CamlinternalMenhirLib.Convert]
row_field [Parsetree]
row_field_desc [Parsetree]
S
semantic_action [CamlinternalMenhirLib.EngineTypes.TABLE]
semantic_value [CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START]
semantic_value [CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE]
semantic_value [CamlinternalMenhirLib.EngineTypes.TABLE]
setting [Misc.Error_style]
setting [Misc.Color]
signature [Parsetree]
signature_item [Parsetree]
signature_item_desc [Parsetree]
space_formatter [Pprintast]
stack [CamlinternalMenhirLib.EngineTypes]
stack [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
state [Warnings]
state [CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START]
state [CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE]
state [CamlinternalMenhirLib.EngineTypes.TABLE]
status [Terminfo]
str [Ast_helper]
str_opt [Ast_helper]
stream [CamlinternalMenhirLib.General]
structure [Parsetree]
structure_item [Parsetree]
structure_item_desc [Parsetree]
style [Misc.Color]
styles [Misc.Color]
supplier [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
symbol [CamlinternalMenhirLib.IncrementalEngine.SYMBOLS]
T
t [Warnings]
t [Targetint]

The type of target integers.

t [Numbers.Int16]
t [Numbers.Int8]
t [Misc.EnvLazy]
t [Misc.LongString]
t [Misc.Stdlib.Option]
t [Misc.Stdlib.List]
t [Longident]
t [Location]
t [Load_path.Dir]

Represent one directory in the load path.

t [Identifiable.Tbl.T]
t [Identifiable.S]
t [Identifiable.Thing]
t [Domainstate]
t [Consistbl.Make]
t [Clflags.Compiler_pass]
t [CamlinternalMenhirLib.LinearizedArray]
t [CamlinternalMenhirLib.PackedIntArray]
t [CamlinternalMenhirLib.InfiniteArray]

This module implements infinite arrays.

table [CamlinternalMenhirLib.RowDisplacement]
terminal [CamlinternalMenhirLib.EngineTypes.TABLE]
terminal [CamlinternalMenhirLib.IncrementalEngine.SYMBOLS]
text [Docstrings]
token [Parser]
token [CamlinternalMenhirLib.TableFormat.TABLES]
token [CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE]
token [CamlinternalMenhirLib.EngineTypes.TABLE]
token [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
toplevel_directive [Parsetree]
toplevel_phrase [Parsetree]
traditional [CamlinternalMenhirLib.Convert]
type_declaration [Parsetree]
type_exception [Parsetree]
type_extension [Parsetree]
type_kind [Parsetree]
U
unexpected [Misc.Magic_number]
unexpected_error [Misc.Magic_number]
V
value_binding [Parsetree]
value_description [Parsetree]
variance [Asttypes]
version [Misc.Magic_number]
virtual_flag [Asttypes]
W
with_constraint [Parsetree]
with_loc [Ast_helper]
X
xsymbol [CamlinternalMenhirLib.IncrementalEngine.SYMBOLS]
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.IncrementalEngine.INSPECTION.html0000644000175000017500000002053513717225554031440 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.INSPECTION

Module type CamlinternalMenhirLib.IncrementalEngine.INSPECTION

module type INSPECTION = sig .. end

include CamlinternalMenhirLib.IncrementalEngine.SYMBOLS
type 'a lr1state 
type production 
type item = production * int 
val compare_terminals : 'a terminal -> 'b terminal -> int
val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
val compare_symbols : xsymbol -> xsymbol -> int
val compare_productions : production ->
production -> int
val compare_items : item ->
item -> int
val incoming_symbol : 'a lr1state -> 'a symbol
val items : 'a lr1state ->
item list
val lhs : production -> xsymbol
val rhs : production -> xsymbol list
val nullable : 'a nonterminal -> bool
val first : 'a nonterminal -> 'b terminal -> bool
val xfirst : xsymbol -> 'a terminal -> bool
val foreach_terminal : (xsymbol -> 'a -> 'a) -> 'a -> 'a
val foreach_terminal_but_error : (xsymbol -> 'a -> 'a) -> 'a -> 'a
type 'a env 
val feed : 'a symbol ->
CamlinternalMenhirLib.IncrementalEngine.position ->
'a ->
CamlinternalMenhirLib.IncrementalEngine.position ->
'b env ->
'b env
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.html0000644000175000017500000001764313717225554026637 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes

Module CamlinternalMenhirLib.EngineTypes

module EngineTypes: sig .. end

type ('state, 'semantic_value) stack = {
   state : 'state;
   semv : 'semantic_value;
   startp : Lexing.position;
   endp : Lexing.position;
   next : ('state, 'semantic_value) stack;
}
type ('state, 'semantic_value, 'token) env = {
   error : bool;
   triple : 'token * Lexing.position * Lexing.position;
   stack : ('state, 'semantic_value) stack;
   current : 'state;
}
module type TABLE = sig .. end
module type MONOLITHIC_ENGINE = sig .. end
module type INCREMENTAL_ENGINE_START = sig .. end
module type ENGINE = sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Int_literal_converter.html0000644000175000017500000000725213717225554026466 0ustar mehdimehdi Misc.Int_literal_converter sig
  val int : string -> int
  val int32 : string -> int32
  val int64 : string -> int64
  val nativeint : string -> nativeint
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Numbers.Float.html0000644000175000017500000001143413717225554022652 0ustar mehdimehdi Numbers.Float

Module Numbers.Float

module Float: Identifiable.S  with type t = float

type t 
module T: Identifiable.Thing  with type t = t
include Identifiable.Thing
module Set: Identifiable.Set  with module T := T
module Map: Identifiable.Map  with module T := T
module Tbl: Identifiable.Tbl  with module T := T
ocaml-doc-4.11/ocaml.html/compilerlibref/Clflags.Float_arg_helper.html0000644000175000017500000001275413717225554025010 0ustar mehdimehdi Clflags.Float_arg_helper

Module Clflags.Float_arg_helper

module Float_arg_helper: sig .. end

Optimization parameters represented as floats indexed by round number.


type parsed 
val parse : string -> string -> parsed ref -> unit
type parse_result = 
| Ok
| Parse_failed of exn
val parse_no_error : string ->
parsed ref ->
parse_result
val get : key:int -> parsed -> float
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Rf.html0000644000175000017500000001205013717225554022622 0ustar mehdimehdi Ast_helper.Rf

Module Ast_helper.Rf

module Rf: sig .. end

Row fields


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.row_field_desc -> Parsetree.row_field
val tag : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.label Ast_helper.with_loc ->
bool -> Parsetree.core_type list -> Parsetree.row_field
val inherit_ : ?loc:Ast_helper.loc -> Parsetree.core_type -> Parsetree.row_field
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Te.html0000644000175000017500000001715113717225554023673 0ustar mehdimehdi Ast_helper.Te sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?params:(Parsetree.core_type * Asttypes.variance) list ->
    ?priv:Asttypes.private_flag ->
    Ast_helper.lid ->
    Parsetree.extension_constructor list -> Parsetree.type_extension
  val mk_exception :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    Parsetree.extension_constructor -> Parsetree.type_exception
  val constructor :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?info:Docstrings.info ->
    Ast_helper.str ->
    Parsetree.extension_constructor_kind -> Parsetree.extension_constructor
  val decl :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?info:Docstrings.info ->
    ?args:Parsetree.constructor_arguments ->
    ?res:Parsetree.core_type ->
    Ast_helper.str -> Parsetree.extension_constructor
  val rebind :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?info:Docstrings.info ->
    Ast_helper.str -> Ast_helper.lid -> Parsetree.extension_constructor
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Targetint.html0000644000175000017500000003013713717225554023176 0ustar mehdimehdi Targetint sig
  type t
  val zero : Targetint.t
  val one : Targetint.t
  val minus_one : Targetint.t
  val neg : Targetint.t -> Targetint.t
  val add : Targetint.t -> Targetint.t -> Targetint.t
  val sub : Targetint.t -> Targetint.t -> Targetint.t
  val mul : Targetint.t -> Targetint.t -> Targetint.t
  val div : Targetint.t -> Targetint.t -> Targetint.t
  val unsigned_div : Targetint.t -> Targetint.t -> Targetint.t
  val rem : Targetint.t -> Targetint.t -> Targetint.t
  val unsigned_rem : Targetint.t -> Targetint.t -> Targetint.t
  val succ : Targetint.t -> Targetint.t
  val pred : Targetint.t -> Targetint.t
  val abs : Targetint.t -> Targetint.t
  val size : int
  val max_int : Targetint.t
  val min_int : Targetint.t
  val logand : Targetint.t -> Targetint.t -> Targetint.t
  val logor : Targetint.t -> Targetint.t -> Targetint.t
  val logxor : Targetint.t -> Targetint.t -> Targetint.t
  val lognot : Targetint.t -> Targetint.t
  val shift_left : Targetint.t -> int -> Targetint.t
  val shift_right : Targetint.t -> int -> Targetint.t
  val shift_right_logical : Targetint.t -> int -> Targetint.t
  val of_int : int -> Targetint.t
  val of_int_exn : int -> Targetint.t
  val to_int : Targetint.t -> int
  val of_float : float -> Targetint.t
  val to_float : Targetint.t -> float
  val of_int32 : int32 -> Targetint.t
  val to_int32 : Targetint.t -> int32
  val of_int64 : int64 -> Targetint.t
  val to_int64 : Targetint.t -> int64
  val of_string : string -> Targetint.t
  val to_string : Targetint.t -> string
  val compare : Targetint.t -> Targetint.t -> int
  val unsigned_compare : Targetint.t -> Targetint.t -> int
  val equal : Targetint.t -> Targetint.t -> bool
  type repr = Int32 of int32 | Int64 of int64
  val repr : Targetint.t -> Targetint.repr
  val print : Stdlib.Format.formatter -> Targetint.t -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Domainstate.html0000644000175000017500000002257713717225554023516 0ustar mehdimehdi Domainstate sig
  type t =
      Domain_young_ptr
    | Domain_young_limit
    | Domain_exception_pointer
    | Domain_young_base
    | Domain_young_start
    | Domain_young_end
    | Domain_young_alloc_start
    | Domain_young_alloc_end
    | Domain_young_alloc_mid
    | Domain_young_trigger
    | Domain_minor_heap_wsz
    | Domain_in_minor_collection
    | Domain_extra_heap_resources_minor
    | Domain_ref_table
    | Domain_ephe_ref_table
    | Domain_custom_table
    | Domain_stack_low
    | Domain_stack_high
    | Domain_stack_threshold
    | Domain_extern_sp
    | Domain_trapsp
    | Domain_trap_barrier
    | Domain_external_raise
    | Domain_exn_bucket
    | Domain_top_of_stack
    | Domain_bottom_of_stack
    | Domain_last_return_address
    | Domain_gc_regs
    | Domain_backtrace_active
    | Domain_backtrace_pos
    | Domain_backtrace_buffer
    | Domain_backtrace_last_exn
    | Domain_compare_unordered
    | Domain_requested_major_slice
    | Domain_requested_minor_gc
    | Domain_local_roots
    | Domain_stat_minor_words
    | Domain_stat_promoted_words
    | Domain_stat_major_words
    | Domain_stat_minor_collections
    | Domain_stat_major_collections
    | Domain_stat_heap_wsz
    | Domain_stat_top_heap_wsz
    | Domain_stat_compactions
    | Domain_stat_heap_chunks
    | Domain_eventlog_startup_timestamp
    | Domain_eventlog_startup_pid
    | Domain_eventlog_paused
    | Domain_eventlog_enabled
    | Domain_eventlog_out
  val idx_of_field : Domainstate.t -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.S.Map.html0000644000175000017500000005147513717225554024541 0ustar mehdimehdi Identifiable.S.Map sig
  type key = T.t
  type 'a t = 'Map.Make(T).t
  val empty : 'a t
  val is_empty : 'a t -> bool
  val mem : key -> 'a t -> bool
  val add : key -> '-> 'a t -> 'a t
  val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
  val singleton : key -> '-> 'a t
  val remove : key -> 'a t -> 'a t
  val merge :
    (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
  val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
  val compare : ('-> '-> int) -> 'a t -> 'a t -> int
  val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val for_all : (key -> '-> bool) -> 'a t -> bool
  val exists : (key -> '-> bool) -> 'a t -> bool
  val filter : (key -> '-> bool) -> 'a t -> 'a t
  val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
  val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
  val cardinal : 'a t -> int
  val bindings : 'a t -> (key * 'a) list
  val min_binding : 'a t -> key * 'a
  val min_binding_opt : 'a t -> (key * 'a) option
  val max_binding : 'a t -> key * 'a
  val max_binding_opt : 'a t -> (key * 'a) option
  val choose : 'a t -> key * 'a
  val choose_opt : 'a t -> (key * 'a) option
  val split : key -> 'a t -> 'a t * 'a option * 'a t
  val find : key -> 'a t -> 'a
  val find_opt : key -> 'a t -> 'a option
  val find_first : (key -> bool) -> 'a t -> key * 'a
  val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
  val find_last : (key -> bool) -> 'a t -> key * 'a
  val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
  val map : ('-> 'b) -> 'a t -> 'b t
  val mapi : (key -> '-> 'b) -> 'a t -> 'b t
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
  val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
  val of_seq : (key * 'a) Seq.t -> 'a t
  val of_list : (key * 'a) list -> 'a t
  val disjoint_union :
    ?eq:('-> '-> bool) ->
    ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
  val union_right : 'a t -> 'a t -> 'a t
  val union_left : 'a t -> 'a t -> 'a t
  val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
  val rename : key t -> key -> key
  val map_keys : (key -> key) -> 'a t -> 'a t
  val keys : 'a t -> Set.Make(T).t
  val data : 'a t -> 'a list
  val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
  val transpose_keys_and_data : key t -> key t
  val transpose_keys_and_data_set : key t -> Set.Make(T).t t
  val print :
    (Format.formatter -> '-> unit) -> Format.formatter -> 'a t -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.ErrorReports.html0000644000175000017500000001143713717225554027050 0ustar mehdimehdi CamlinternalMenhirLib.ErrorReports

Module CamlinternalMenhirLib.ErrorReports

module ErrorReports: sig .. end

type 'a buffer 
val wrap : (Lexing.lexbuf -> 'token) ->
(Lexing.position * Lexing.position)
buffer * (Lexing.lexbuf -> 'token)
val show : ('a -> string) -> 'a buffer -> string
val last : 'a buffer -> 'a
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Printast.html0000644000175000017500000001250213717225554023035 0ustar mehdimehdi Printast sig
  val interface :
    Stdlib.Format.formatter -> Parsetree.signature_item list -> unit
  val implementation :
    Stdlib.Format.formatter -> Parsetree.structure_item list -> unit
  val top_phrase :
    Stdlib.Format.formatter -> Parsetree.toplevel_phrase -> unit
  val expression :
    int -> Stdlib.Format.formatter -> Parsetree.expression -> unit
  val structure :
    int -> Stdlib.Format.formatter -> Parsetree.structure -> unit
  val payload : int -> Stdlib.Format.formatter -> Parsetree.payload -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/index_attributes.html0000644000175000017500000000630013717225554023544 0ustar mehdimehdi Index of class attributes

Index of class attributes

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Profile.html0000644000175000017500000001271413717225554022636 0ustar mehdimehdi Profile sig
  type file = string
  val reset : unit -> unit
  val record_call : ?accumulate:bool -> string -> (unit -> 'a) -> 'a
  val record : ?accumulate:bool -> string -> ('-> 'b) -> '-> 'b
  type column = [ `Abs_top_heap | `Alloc | `Time | `Top_heap ]
  val print : Stdlib.Format.formatter -> Profile.column list -> unit
  val options_doc : string
  val all_columns : Profile.column list
  val generate : string
  val transl : string
  val typing : string
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Mb.html0000644000175000017500000000774013717225554023664 0ustar mehdimehdi Ast_helper.Mb sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    Ast_helper.str_opt -> Parsetree.module_expr -> Parsetree.module_binding
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_mapper.html0000644000175000017500000005670113717225554023335 0ustar mehdimehdi Ast_mapper sig
  type mapper = {
    attribute :
      Ast_mapper.mapper -> Parsetree.attribute -> Parsetree.attribute;
    attributes :
      Ast_mapper.mapper ->
      Parsetree.attribute list -> Parsetree.attribute list;
    binding_op :
      Ast_mapper.mapper -> Parsetree.binding_op -> Parsetree.binding_op;
    case : Ast_mapper.mapper -> Parsetree.case -> Parsetree.case;
    cases : Ast_mapper.mapper -> Parsetree.case list -> Parsetree.case list;
    class_declaration :
      Ast_mapper.mapper ->
      Parsetree.class_declaration -> Parsetree.class_declaration;
    class_description :
      Ast_mapper.mapper ->
      Parsetree.class_description -> Parsetree.class_description;
    class_expr :
      Ast_mapper.mapper -> Parsetree.class_expr -> Parsetree.class_expr;
    class_field :
      Ast_mapper.mapper -> Parsetree.class_field -> Parsetree.class_field;
    class_signature :
      Ast_mapper.mapper ->
      Parsetree.class_signature -> Parsetree.class_signature;
    class_structure :
      Ast_mapper.mapper ->
      Parsetree.class_structure -> Parsetree.class_structure;
    class_type :
      Ast_mapper.mapper -> Parsetree.class_type -> Parsetree.class_type;
    class_type_declaration :
      Ast_mapper.mapper ->
      Parsetree.class_type_declaration -> Parsetree.class_type_declaration;
    class_type_field :
      Ast_mapper.mapper ->
      Parsetree.class_type_field -> Parsetree.class_type_field;
    constant : Ast_mapper.mapper -> Parsetree.constant -> Parsetree.constant;
    constructor_declaration :
      Ast_mapper.mapper ->
      Parsetree.constructor_declaration -> Parsetree.constructor_declaration;
    expr : Ast_mapper.mapper -> Parsetree.expression -> Parsetree.expression;
    extension :
      Ast_mapper.mapper -> Parsetree.extension -> Parsetree.extension;
    extension_constructor :
      Ast_mapper.mapper ->
      Parsetree.extension_constructor -> Parsetree.extension_constructor;
    include_declaration :
      Ast_mapper.mapper ->
      Parsetree.include_declaration -> Parsetree.include_declaration;
    include_description :
      Ast_mapper.mapper ->
      Parsetree.include_description -> Parsetree.include_description;
    label_declaration :
      Ast_mapper.mapper ->
      Parsetree.label_declaration -> Parsetree.label_declaration;
    location : Ast_mapper.mapper -> Location.t -> Location.t;
    module_binding :
      Ast_mapper.mapper ->
      Parsetree.module_binding -> Parsetree.module_binding;
    module_declaration :
      Ast_mapper.mapper ->
      Parsetree.module_declaration -> Parsetree.module_declaration;
    module_substitution :
      Ast_mapper.mapper ->
      Parsetree.module_substitution -> Parsetree.module_substitution;
    module_expr :
      Ast_mapper.mapper -> Parsetree.module_expr -> Parsetree.module_expr;
    module_type :
      Ast_mapper.mapper -> Parsetree.module_type -> Parsetree.module_type;
    module_type_declaration :
      Ast_mapper.mapper ->
      Parsetree.module_type_declaration -> Parsetree.module_type_declaration;
    open_declaration :
      Ast_mapper.mapper ->
      Parsetree.open_declaration -> Parsetree.open_declaration;
    open_description :
      Ast_mapper.mapper ->
      Parsetree.open_description -> Parsetree.open_description;
    pat : Ast_mapper.mapper -> Parsetree.pattern -> Parsetree.pattern;
    payload : Ast_mapper.mapper -> Parsetree.payload -> Parsetree.payload;
    signature :
      Ast_mapper.mapper -> Parsetree.signature -> Parsetree.signature;
    signature_item :
      Ast_mapper.mapper ->
      Parsetree.signature_item -> Parsetree.signature_item;
    structure :
      Ast_mapper.mapper -> Parsetree.structure -> Parsetree.structure;
    structure_item :
      Ast_mapper.mapper ->
      Parsetree.structure_item -> Parsetree.structure_item;
    typ : Ast_mapper.mapper -> Parsetree.core_type -> Parsetree.core_type;
    type_declaration :
      Ast_mapper.mapper ->
      Parsetree.type_declaration -> Parsetree.type_declaration;
    type_extension :
      Ast_mapper.mapper ->
      Parsetree.type_extension -> Parsetree.type_extension;
    type_exception :
      Ast_mapper.mapper ->
      Parsetree.type_exception -> Parsetree.type_exception;
    type_kind :
      Ast_mapper.mapper -> Parsetree.type_kind -> Parsetree.type_kind;
    value_binding :
      Ast_mapper.mapper -> Parsetree.value_binding -> Parsetree.value_binding;
    value_description :
      Ast_mapper.mapper ->
      Parsetree.value_description -> Parsetree.value_description;
    with_constraint :
      Ast_mapper.mapper ->
      Parsetree.with_constraint -> Parsetree.with_constraint;
  }
  val default_mapper : Ast_mapper.mapper
  val tool_name : unit -> string
  val apply : source:string -> target:string -> Ast_mapper.mapper -> unit
  val run_main : (string list -> Ast_mapper.mapper) -> unit
  val register_function :
    (string -> (string list -> Ast_mapper.mapper) -> unit) Stdlib.ref
  val register : string -> (string list -> Ast_mapper.mapper) -> unit
  val map_opt : ('-> 'b) -> 'a option -> 'b option
  val extension_of_error : Location.error -> Parsetree.extension
  val attribute_of_warning : Location.t -> string -> Parsetree.attribute
  val add_ppx_context_str :
    tool_name:string -> Parsetree.structure -> Parsetree.structure
  val add_ppx_context_sig :
    tool_name:string -> Parsetree.signature -> Parsetree.signature
  val drop_ppx_context_str :
    restore:bool -> Parsetree.structure -> Parsetree.structure
  val drop_ppx_context_sig :
    restore:bool -> Parsetree.signature -> Parsetree.signature
  val set_cookie : string -> Parsetree.expression -> unit
  val get_cookie : string -> Parsetree.expression option
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Strongly_connected_components.Make.html0000644000175000017500000001470113717225554027157 0ustar mehdimehdi Strongly_connected_components.Make

Functor Strongly_connected_components.Make

module Make: 
functor (Id : Identifiable.S-> S with module Id := Id
Parameters:
Id : Identifiable.S

module Id: Identifiable.S 
type directed_graph = Id.Set.t Id.Map.t 

If (a -> set) belongs to the map, it means that there are edges from a to every element of set. It is assumed that no edge points to a vertex not represented in the map.

type component = 
| Has_loop of Id.t list
| No_loop of Id.t
val connected_components_sorted_from_roots_to_leaf : directed_graph ->
component array
val component_graph : directed_graph ->
(component * int list) array
ocaml-doc-4.11/ocaml.html/compilerlibref/Compiler_libs.html0000644000175000017500000002376013717225554022763 0ustar mehdimehdi Compiler_libs

Compiler_libs

Warning

This library is part of the internal OCaml compiler API, and is not the language standard library. There are no compatibility guarantees between releases, so code written against these modules must be willing to depend on specific OCaml compiler versions.

Ast_iterator

Ast_iterator.iterator enables AST inspection using open recursion.

CamlinternalMenhirLib
Ast_invariants

Check AST invariants

Ast_mapper

The interface of a -ppx rewriter

Printast

Raw printer for Parsetree

Builtin_attributes

Support for some of the builtin attributes

Pprintast

Pretty-printers for Parsetree

Parse

Entry points in the parser

Location

Source code locations (ranges of positions), used in parsetree

Ast_helper

Helpers to produce Parsetree fragments

Syntaxerr

Auxiliary type for reporting syntax errors

Attr_helper

Helpers for attributes

Asttypes

Auxiliary AST types used by parsetree and typedtree.

Lexer

The lexical analyzer

Longident

Long identifiers, used in parsetree.

Parser
Docstrings

Documentation comments

Parsetree

Abstract syntax tree produced by parsing

Depend

Module dependencies.

Terminfo

Basic interface to the terminfo database

Clflags

Command line flags

Strongly_connected_components

Kosaraju's algorithm for strongly connected components.

Arg_helper

Decipher command line arguments of the form <value> | <key>=<value>,...

Targetint

Target processor-native integers.

Profile

Compiler performance recording

Build_path_prefix_map

Rewrite paths for reproducible builds

Int_replace_polymorphic_compare
Identifiable

Uniform interface for common data structures over various things.

Ccomp

Compiling C files and building C libraries

Misc

Miscellaneous useful types and functions

Numbers

Modules about numbers, some of which satisfy Identifiable.S.

Domainstate
Load_path

Management of include directories.

Consistbl

Consistency tables: for checking consistency of module CRCs

Warnings

Warning definitions

Config

System configuration

Pparse

Driver for the parser and external preprocessors.

ocaml-doc-4.11/ocaml.html/compilerlibref/Config.html0000644000175000017500000005234613717225554021407 0ustar mehdimehdi Config

Module Config

module Config: sig .. end

System configuration

Warning: this module is unstable and part of compiler-libs.


val version : string

The current version number of the system

val standard_library : string

The directory containing the standard libraries

val ccomp_type : string

The "kind" of the C compiler, assembler and linker used: one of "cc" (for Unix-style C compilers) "msvc" (for Microsoft Visual C++ and MASM)

val c_compiler : string

The compiler to use for compiling C files

val c_output_obj : string

Name of the option of the C compiler for specifying the output file

val c_has_debug_prefix_map : bool

Whether the C compiler supports -fdebug-prefix-map

val as_has_debug_prefix_map : bool

Whether the assembler supports --debug-prefix-map

val ocamlc_cflags : string

The flags ocamlc should pass to the C compiler

val ocamlc_cppflags : string

The flags ocamlc should pass to the C preprocessor

val ocamlopt_cflags : string
Deprecated.Config.ocamlc_cflags should be used instead. The flags ocamlopt should pass to the C compiler
val ocamlopt_cppflags : string
Deprecated.Config.ocamlc_cppflags should be used instead. The flags ocamlopt should pass to the C preprocessor
val bytecomp_c_libraries : string

The C libraries to link with custom runtimes

val native_c_libraries : string

The C libraries to link with native-code programs

val native_pack_linker : string

The linker to use for packaging (ocamlopt -pack) and for partial links (ocamlopt -output-obj).

val mkdll : string

The linker command line to build dynamic libraries.

val mkexe : string

The linker command line to build executables.

val mkmaindll : string

The linker command line to build main programs as dlls.

val ranlib : string

Command to randomize a library, or "" if not needed

val ar : string

Name of the ar command, or "" if not needed (MSVC)

val interface_suffix : string ref

Suffix for interface file names

val exec_magic_number : string

Magic number for bytecode executable files

val cmi_magic_number : string

Magic number for compiled interface files

val cmo_magic_number : string

Magic number for object bytecode files

val cma_magic_number : string

Magic number for archive files

val cmx_magic_number : string

Magic number for compilation unit descriptions

val cmxa_magic_number : string

Magic number for libraries of compilation unit descriptions

val ast_intf_magic_number : string

Magic number for file holding an interface syntax tree

val ast_impl_magic_number : string

Magic number for file holding an implementation syntax tree

val cmxs_magic_number : string

Magic number for dynamically-loadable plugins

val cmt_magic_number : string

Magic number for compiled interface files

val max_tag : int

Biggest tag that can be stored in the header of a regular block.

val lazy_tag : int

Normally the same as Obj.lazy_tag. Separate definition because of technical reasons for bootstrapping.

val max_young_wosize : int

Maximal size of arrays that are directly allocated in the minor heap

val stack_threshold : int

Size in words of safe area at bottom of VM stack, see runtime/caml/config.h

val stack_safety_margin : int

Size in words of the safety margin between the bottom of the stack and the stack pointer. This margin can be used by intermediate computations of some instructions, or the event handler.

val architecture : string

Name of processor type for the native-code compiler

val model : string

Name of processor submodel for the native-code compiler

val system : string

Name of operating system for the native-code compiler

val asm : string

The assembler (and flags) to use for assembling ocamlopt-generated code.

val asm_cfi_supported : bool

Whether assembler understands CFI directives

val with_frame_pointers : bool

Whether assembler should maintain frame pointers

val ext_obj : string

Extension for object files, e.g. .o under Unix.

val ext_asm : string

Extension for assembler files, e.g. .s under Unix.

val ext_lib : string

Extension for library files, e.g. .a under Unix.

val ext_dll : string

Extension for dynamically-loaded libraries, e.g. .so under Unix.

val default_executable_name : string

Name of executable produced by linking if none is given with -o, e.g. a.out under Unix.

val systhread_supported : bool

Whether the system thread library is implemented

val flexdll_dirs : string list

Directories needed for the FlexDLL objects

val host : string

Whether the compiler is a cross-compiler

val target : string

Whether the compiler is a cross-compiler

val flambda : bool

Whether the compiler was configured for flambda

val with_flambda_invariants : bool

Whether the invariants checks for flambda are enabled

val spacetime : bool

Whether the compiler was configured for Spacetime profiling

val enable_call_counts : bool

Whether call counts are to be available when Spacetime profiling

val profinfo : bool

Whether the compiler was configured for profiling

val profinfo_width : int

How many bits are to be used in values' headers for profiling information

val libunwind_available : bool

Whether the libunwind library is available on the target

val libunwind_link_flags : string

Linker flags to use libunwind

val safe_string : bool

Whether the compiler was configured with -force-safe-string; in that case, the -unsafe-string compile-time option is unavailable

val default_safe_string : bool

Whether the compiler was configured to use the -safe-string or -unsafe-string compile-time option by default.

val flat_float_array : bool

Whether the compiler and runtime automagically flatten float arrays

val function_sections : bool

Whether the compiler was configured to generate each function in a separate section

val windows_unicode : bool

Whether Windows Unicode runtime is enabled

val supports_shared_libraries : bool

Whether shared libraries are supported

val afl_instrument : bool

Whether afl-fuzz instrumentation is generated by default

val print_config : out_channel -> unit

Access to configuration values

val config_var : string -> string option

the configuration value of a variable, if it exists

ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Cstr.html0000644000175000017500000001030413717225554023166 0ustar mehdimehdi Ast_helper.Cstr

Module Ast_helper.Cstr

module Cstr: sig .. end

Class structures


val mk : Parsetree.pattern -> Parsetree.class_field list -> Parsetree.class_structure
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Map.html0000644000175000017500000005237413717225554024337 0ustar mehdimehdi Identifiable.Map sig
  module T : Map.OrderedType
  type key = T.t
  type 'a t = 'Map.Make(T).t
  val empty : 'a t
  val is_empty : 'a t -> bool
  val mem : key -> 'a t -> bool
  val add : key -> '-> 'a t -> 'a t
  val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
  val singleton : key -> '-> 'a t
  val remove : key -> 'a t -> 'a t
  val merge :
    (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
  val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
  val compare : ('-> '-> int) -> 'a t -> 'a t -> int
  val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val for_all : (key -> '-> bool) -> 'a t -> bool
  val exists : (key -> '-> bool) -> 'a t -> bool
  val filter : (key -> '-> bool) -> 'a t -> 'a t
  val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
  val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
  val cardinal : 'a t -> int
  val bindings : 'a t -> (key * 'a) list
  val min_binding : 'a t -> key * 'a
  val min_binding_opt : 'a t -> (key * 'a) option
  val max_binding : 'a t -> key * 'a
  val max_binding_opt : 'a t -> (key * 'a) option
  val choose : 'a t -> key * 'a
  val choose_opt : 'a t -> (key * 'a) option
  val split : key -> 'a t -> 'a t * 'a option * 'a t
  val find : key -> 'a t -> 'a
  val find_opt : key -> 'a t -> 'a option
  val find_first : (key -> bool) -> 'a t -> key * 'a
  val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
  val find_last : (key -> bool) -> 'a t -> key * 'a
  val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
  val map : ('-> 'b) -> 'a t -> 'b t
  val mapi : (key -> '-> 'b) -> 'a t -> 'b t
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
  val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
  val of_seq : (key * 'a) Seq.t -> 'a t
  val of_list : (key * 'a) list -> 'a t
  val disjoint_union :
    ?eq:('-> '-> bool) ->
    ?print:(Stdlib.Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
  val union_right : 'a t -> 'a t -> 'a t
  val union_left : 'a t -> 'a t -> 'a t
  val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
  val rename : key t -> key -> key
  val map_keys : (key -> key) -> 'a t -> 'a t
  val keys : 'a t -> Stdlib.Set.Make(T).t
  val data : 'a t -> 'a list
  val of_set : (key -> 'a) -> Stdlib.Set.Make(T).t -> 'a t
  val transpose_keys_and_data : key t -> key t
  val transpose_keys_and_data_set : key t -> Stdlib.Set.Make(T).t t
  val print :
    (Stdlib.Format.formatter -> '-> unit) ->
    Stdlib.Format.formatter -> 'a t -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Mty.html0000644000175000017500000001654413717225554023040 0ustar mehdimehdi Ast_helper.Mty

Module Ast_helper.Mty

module Mty: sig .. end

Module type expressions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.module_type_desc -> Parsetree.module_type
val attr : Parsetree.module_type -> Parsetree.attribute -> Parsetree.module_type
val ident : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_type
val alias : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_type
val signature : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.signature -> Parsetree.module_type
val functor_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.functor_parameter -> Parsetree.module_type -> Parsetree.module_type
val with_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.module_type ->
Parsetree.with_constraint list -> Parsetree.module_type
val typeof_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.module_expr -> Parsetree.module_type
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.module_type
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.Engine.Make.html0000644000175000017500000003503413717225554027521 0ustar mehdimehdi CamlinternalMenhirLib.Engine.Make functor (T : EngineTypes.TABLE->
  sig
    type state = T.state
    type token = T.token
    type semantic_value = T.semantic_value
    exception Error
    val entry :
      state -> (Lexing.lexbuf -> token) -> Lexing.lexbuf -> semantic_value
    type production = T.production
    type 'a env = (T.state, T.semantic_value, T.token) EngineTypes.env
    type 'a checkpoint = private
        InputNeeded of 'a env
      | Shifting of 'a env * 'a env * bool
      | AboutToReduce of 'a env * production
      | HandlingError of 'a env
      | Accepted of 'a
      | Rejected
    val offer :
      'a checkpoint ->
      token * IncrementalEngine.position * IncrementalEngine.position ->
      'a checkpoint
    val resume : 'a checkpoint -> 'a checkpoint
    type supplier =
        unit ->
        token * IncrementalEngine.position * IncrementalEngine.position
    val lexer_lexbuf_to_supplier :
      (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
    val loop : supplier -> 'a checkpoint -> 'a
    val loop_handle :
      ('-> 'answer) ->
      ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
    val loop_handle_undo :
      ('-> 'answer) ->
      ('a checkpoint -> 'a checkpoint -> 'answer) ->
      supplier -> 'a checkpoint -> 'answer
    val shifts : 'a checkpoint -> 'a env option
    val acceptable :
      'a checkpoint -> token -> IncrementalEngine.position -> bool
    type 'a lr1state = state
    val number : 'a lr1state -> int
    val production_index : production -> int
    val find_production : int -> production
    type element =
        Element : 'a lr1state * 'a * IncrementalEngine.position *
          IncrementalEngine.position -> element
    type stack = element General.stream
    val stack : 'a env -> stack
    val top : 'a env -> element option
    val pop_many : int -> 'a env -> 'a env option
    val get : int -> 'a env -> element option
    val current_state_number : 'a env -> int
    val equal : 'a env -> 'a env -> bool
    val positions :
      'a env -> IncrementalEngine.position * IncrementalEngine.position
    val env_has_default_reduction : 'a env -> bool
    val state_has_default_reduction : 'a lr1state -> bool
    val pop : 'a env -> 'a env option
    val force_reduction : production -> 'a env -> 'a env
    val input_needed : 'a env -> 'a checkpoint
    val start : state -> Lexing.position -> semantic_value checkpoint
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Set.html0000644000175000017500000002762613717225554024357 0ustar mehdimehdi Identifiable.Set sig
  module T : Set.OrderedType
  type elt = T.t
  type t = Set.Make(T).t
  val empty : t
  val is_empty : t -> bool
  val mem : elt -> t -> bool
  val add : elt -> t -> t
  val singleton : elt -> t
  val remove : elt -> t -> t
  val union : t -> t -> t
  val inter : t -> t -> t
  val disjoint : t -> t -> bool
  val diff : t -> t -> t
  val compare : t -> t -> int
  val equal : t -> t -> bool
  val subset : t -> t -> bool
  val iter : (elt -> unit) -> t -> unit
  val fold : (elt -> '-> 'a) -> t -> '-> 'a
  val for_all : (elt -> bool) -> t -> bool
  val exists : (elt -> bool) -> t -> bool
  val filter : (elt -> bool) -> t -> t
  val filter_map : (elt -> elt option) -> t -> t
  val partition : (elt -> bool) -> t -> t * t
  val cardinal : t -> int
  val elements : t -> elt list
  val min_elt : t -> elt
  val min_elt_opt : t -> elt option
  val max_elt : t -> elt
  val max_elt_opt : t -> elt option
  val choose : t -> elt
  val choose_opt : t -> elt option
  val split : elt -> t -> t * bool * t
  val find : elt -> t -> elt
  val find_opt : elt -> t -> elt option
  val find_first : (elt -> bool) -> t -> elt
  val find_first_opt : (elt -> bool) -> t -> elt option
  val find_last : (elt -> bool) -> t -> elt
  val find_last_opt : (elt -> bool) -> t -> elt option
  val to_seq_from : elt -> t -> elt Seq.t
  val to_seq : t -> elt Seq.t
  val add_seq : elt Seq.t -> t -> t
  val of_seq : elt Seq.t -> t
  val output : Stdlib.out_channel -> t -> unit
  val print : Stdlib.Format.formatter -> t -> unit
  val to_string : t -> string
  val of_list : elt list -> t
  val map : (elt -> elt) -> t -> t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Location.html0000644000175000017500000006435213717225554023013 0ustar mehdimehdi Location sig
  type t =
    Warnings.loc = {
    loc_start : Stdlib.Lexing.position;
    loc_end : Stdlib.Lexing.position;
    loc_ghost : bool;
  }
  val none : Location.t
  val is_none : Location.t -> bool
  val in_file : string -> Location.t
  val init : Stdlib.Lexing.lexbuf -> string -> unit
  val curr : Stdlib.Lexing.lexbuf -> Location.t
  val symbol_rloc : unit -> Location.t
  val symbol_gloc : unit -> Location.t
  val rhs_loc : int -> Location.t
  val rhs_interval : int -> int -> Location.t
  val get_pos_info : Stdlib.Lexing.position -> string * int * int
  type 'a loc = { txt : 'a; loc : Location.t; }
  val mknoloc : '-> 'Location.loc
  val mkloc : '-> Location.t -> 'Location.loc
  val input_name : string Stdlib.ref
  val input_lexbuf : Stdlib.Lexing.lexbuf option Stdlib.ref
  val input_phrase_buffer : Stdlib.Buffer.t option Stdlib.ref
  val echo_eof : unit -> unit
  val reset : unit -> unit
  val rewrite_absolute_path : string -> string
  val absolute_path : string -> string
  val show_filename : string -> string
  val print_filename : Stdlib.Format.formatter -> string -> unit
  val print_loc : Stdlib.Format.formatter -> Location.t -> unit
  val print_locs : Stdlib.Format.formatter -> Location.t list -> unit
  val highlight_terminfo :
    Stdlib.Lexing.lexbuf ->
    Stdlib.Format.formatter -> Location.t list -> unit
  type msg = (Stdlib.Format.formatter -> unit) Location.loc
  val msg :
    ?loc:Location.t ->
    ('a, Stdlib.Format.formatter, unit, Location.msg) Stdlib.format4 -> 'a
  type report_kind =
      Report_error
    | Report_warning of string
    | Report_warning_as_error of string
    | Report_alert of string
    | Report_alert_as_error of string
  type report = {
    kind : Location.report_kind;
    main : Location.msg;
    sub : Location.msg list;
  }
  type report_printer = {
    pp :
      Location.report_printer ->
      Stdlib.Format.formatter -> Location.report -> unit;
    pp_report_kind :
      Location.report_printer ->
      Location.report ->
      Stdlib.Format.formatter -> Location.report_kind -> unit;
    pp_main_loc :
      Location.report_printer ->
      Location.report -> Stdlib.Format.formatter -> Location.t -> unit;
    pp_main_txt :
      Location.report_printer ->
      Location.report ->
      Stdlib.Format.formatter -> (Stdlib.Format.formatter -> unit) -> unit;
    pp_submsgs :
      Location.report_printer ->
      Location.report -> Stdlib.Format.formatter -> Location.msg list -> unit;
    pp_submsg :
      Location.report_printer ->
      Location.report -> Stdlib.Format.formatter -> Location.msg -> unit;
    pp_submsg_loc :
      Location.report_printer ->
      Location.report -> Stdlib.Format.formatter -> Location.t -> unit;
    pp_submsg_txt :
      Location.report_printer ->
      Location.report ->
      Stdlib.Format.formatter -> (Stdlib.Format.formatter -> unit) -> unit;
  }
  val batch_mode_printer : Location.report_printer
  val terminfo_toplevel_printer :
    Stdlib.Lexing.lexbuf -> Location.report_printer
  val best_toplevel_printer : unit -> Location.report_printer
  val print_report : Stdlib.Format.formatter -> Location.report -> unit
  val report_printer : (unit -> Location.report_printer) Stdlib.ref
  val default_report_printer : unit -> Location.report_printer
  val report_warning : Location.t -> Warnings.t -> Location.report option
  val warning_reporter :
    (Location.t -> Warnings.t -> Location.report option) Stdlib.ref
  val default_warning_reporter :
    Location.t -> Warnings.t -> Location.report option
  val formatter_for_warnings : Stdlib.Format.formatter Stdlib.ref
  val print_warning :
    Location.t -> Stdlib.Format.formatter -> Warnings.t -> unit
  val prerr_warning : Location.t -> Warnings.t -> unit
  val report_alert : Location.t -> Warnings.alert -> Location.report option
  val alert_reporter :
    (Location.t -> Warnings.alert -> Location.report option) Stdlib.ref
  val default_alert_reporter :
    Location.t -> Warnings.alert -> Location.report option
  val print_alert :
    Location.t -> Stdlib.Format.formatter -> Warnings.alert -> unit
  val prerr_alert : Location.t -> Warnings.alert -> unit
  val deprecated :
    ?def:Location.t -> ?use:Location.t -> Location.t -> string -> unit
  val alert :
    ?def:Location.t ->
    ?use:Location.t -> kind:string -> Location.t -> string -> unit
  type error = Location.report
  val error :
    ?loc:Location.t -> ?sub:Location.msg list -> string -> Location.error
  val errorf :
    ?loc:Location.t ->
    ?sub:Location.msg list ->
    ('a, Stdlib.Format.formatter, unit, Location.error) Stdlib.format4 -> 'a
  val error_of_printer :
    ?loc:Location.t ->
    ?sub:Location.msg list ->
    (Stdlib.Format.formatter -> '-> unit) -> '-> Location.error
  val error_of_printer_file :
    (Stdlib.Format.formatter -> '-> unit) -> '-> Location.error
  val register_error_of_exn : (exn -> Location.error option) -> unit
  val error_of_exn :
    exn -> [ `Already_displayed | `Ok of Location.error ] option
  exception Error of Location.error
  exception Already_displayed_error
  val raise_errorf :
    ?loc:Location.t ->
    ?sub:Location.msg list ->
    ('a, Stdlib.Format.formatter, unit, 'b) Stdlib.format4 -> 'a
  val report_exception : Stdlib.Format.formatter -> exn -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Sig.html0000644000175000017500000002335613717225554024051 0ustar mehdimehdi Ast_helper.Sig sig
  val mk :
    ?loc:Ast_helper.loc ->
    Parsetree.signature_item_desc -> Parsetree.signature_item
  val value :
    ?loc:Ast_helper.loc ->
    Parsetree.value_description -> Parsetree.signature_item
  val type_ :
    ?loc:Ast_helper.loc ->
    Asttypes.rec_flag ->
    Parsetree.type_declaration list -> Parsetree.signature_item
  val type_subst :
    ?loc:Ast_helper.loc ->
    Parsetree.type_declaration list -> Parsetree.signature_item
  val type_extension :
    ?loc:Ast_helper.loc ->
    Parsetree.type_extension -> Parsetree.signature_item
  val exception_ :
    ?loc:Ast_helper.loc ->
    Parsetree.type_exception -> Parsetree.signature_item
  val module_ :
    ?loc:Ast_helper.loc ->
    Parsetree.module_declaration -> Parsetree.signature_item
  val mod_subst :
    ?loc:Ast_helper.loc ->
    Parsetree.module_substitution -> Parsetree.signature_item
  val rec_module :
    ?loc:Ast_helper.loc ->
    Parsetree.module_declaration list -> Parsetree.signature_item
  val modtype :
    ?loc:Ast_helper.loc ->
    Parsetree.module_type_declaration -> Parsetree.signature_item
  val open_ :
    ?loc:Ast_helper.loc ->
    Parsetree.open_description -> Parsetree.signature_item
  val include_ :
    ?loc:Ast_helper.loc ->
    Parsetree.include_description -> Parsetree.signature_item
  val class_ :
    ?loc:Ast_helper.loc ->
    Parsetree.class_description list -> Parsetree.signature_item
  val class_type :
    ?loc:Ast_helper.loc ->
    Parsetree.class_type_declaration list -> Parsetree.signature_item
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.extension -> Parsetree.signature_item
  val attribute :
    ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.signature_item
  val text : Docstrings.text -> Parsetree.signature_item list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Ci.html0000644000175000017500000001116513717225554022614 0ustar mehdimehdi Ast_helper.Ci

Module Ast_helper.Ci

module Ci: sig .. end

Classes


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
?virt:Asttypes.virtual_flag ->
?params:(Parsetree.core_type * Asttypes.variance) list ->
Ast_helper.str -> 'a -> 'a Parsetree.class_infos
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.Engine.html0000644000175000017500000004027213717225554026645 0ustar mehdimehdi CamlinternalMenhirLib.Engine sig
  module Make :
    functor (T : EngineTypes.TABLE->
      sig
        type state = T.state
        type token = T.token
        type semantic_value = T.semantic_value
        exception Error
        val entry :
          state ->
          (Lexing.lexbuf -> token) -> Lexing.lexbuf -> semantic_value
        type production = T.production
        type 'a env = (T.state, T.semantic_value, T.token) EngineTypes.env
        type 'a checkpoint = private
            InputNeeded of 'a env
          | Shifting of 'a env * 'a env * bool
          | AboutToReduce of 'a env * production
          | HandlingError of 'a env
          | Accepted of 'a
          | Rejected
        val offer :
          'a checkpoint ->
          token * IncrementalEngine.position * IncrementalEngine.position ->
          'a checkpoint
        val resume : 'a checkpoint -> 'a checkpoint
        type supplier =
            unit ->
            token * IncrementalEngine.position * IncrementalEngine.position
        val lexer_lexbuf_to_supplier :
          (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
        val loop : supplier -> 'a checkpoint -> 'a
        val loop_handle :
          ('-> 'answer) ->
          ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
        val loop_handle_undo :
          ('-> 'answer) ->
          ('a checkpoint -> 'a checkpoint -> 'answer) ->
          supplier -> 'a checkpoint -> 'answer
        val shifts : 'a checkpoint -> 'a env option
        val acceptable :
          'a checkpoint -> token -> IncrementalEngine.position -> bool
        type 'a lr1state = state
        val number : 'a lr1state -> int
        val production_index : production -> int
        val find_production : int -> production
        type element =
            Element : 'a lr1state * 'a * IncrementalEngine.position *
              IncrementalEngine.position -> element
        type stack = element General.stream
        val stack : 'a env -> stack
        val top : 'a env -> element option
        val pop_many : int -> 'a env -> 'a env option
        val get : int -> 'a env -> element option
        val current_state_number : 'a env -> int
        val equal : 'a env -> 'a env -> bool
        val positions :
          'a env -> IncrementalEngine.position * IncrementalEngine.position
        val env_has_default_reduction : 'a env -> bool
        val state_has_default_reduction : 'a lr1state -> bool
        val pop : 'a env -> 'a env option
        val force_reduction : production -> 'a env -> 'a env
        val input_needed : 'a env -> 'a checkpoint
        val start : state -> Lexing.position -> semantic_value checkpoint
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Syntaxerr.html0000644000175000017500000001327413717225554023237 0ustar mehdimehdi Syntaxerr sig
  type error =
      Unclosed of Location.t * string * Location.t * string
    | Expecting of Location.t * string
    | Not_expecting of Location.t * string
    | Applicative_path of Location.t
    | Variable_in_scope of Location.t * string
    | Other of Location.t
    | Ill_formed_ast of Location.t * string
    | Invalid_package_type of Location.t * string
  exception Error of Syntaxerr.error
  exception Escape_error
  val location_of_error : Syntaxerr.error -> Location.t
  val ill_formed_ast : Location.t -> string -> 'a
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InspectionTableInterpreter.Make.html0000644000175000017500000002677513717225554032576 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableInterpreter.Make

Functor CamlinternalMenhirLib.InspectionTableInterpreter.Make

module Make: 
functor (TT : CamlinternalMenhirLib.TableFormat.TABLES-> 
functor (IT : CamlinternalMenhirLib.InspectionTableFormat.TABLES with type 'a lr1state = int-> 
functor (ET : CamlinternalMenhirLib.EngineTypes.TABLE with type terminal = int and type nonterminal = int and type semantic_value = Obj.t-> 
functor (E : sig
type 'a env = (ET.state, ET.semantic_value, ET.token) CamlinternalMenhirLib.EngineTypes.env 
end-> CamlinternalMenhirLib.IncrementalEngine.INSPECTION 
  with type 'a terminal := 'a IT.terminal
   and type 'a nonterminal := 'a IT.nonterminal
   and type 'a lr1state := 'a IT.lr1state
   and type production := int
   and type 'a env := 'a E.env
Parameters:
TT : CamlinternalMenhirLib.TableFormat.TABLES
IT : InspectionTableFormat.TABLES with type 'a lr1state = int
ET : EngineTypes.TABLE with type terminal = int and type nonterminal = int and type semantic_value = Obj.t
E : sig type 'a env = (ET.state, ET.semantic_value, ET.token) EngineTypes.env end

include CamlinternalMenhirLib.IncrementalEngine.SYMBOLS
type 'a lr1state 
type production 
type item = production * int 
val compare_terminals : 'a terminal -> 'b terminal -> int
val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
val compare_symbols : xsymbol -> xsymbol -> int
val compare_productions : production ->
production -> int
val compare_items : item ->
item -> int
val incoming_symbol : 'a lr1state -> 'a symbol
val items : 'a lr1state ->
item list
val lhs : production -> xsymbol
val rhs : production -> xsymbol list
val nullable : 'a nonterminal -> bool
val first : 'a nonterminal -> 'b terminal -> bool
val xfirst : xsymbol -> 'a terminal -> bool
val foreach_terminal : (xsymbol -> 'a -> 'a) -> 'a -> 'a
val foreach_terminal_but_error : (xsymbol -> 'a -> 'a) -> 'a -> 'a
type 'a env 
val feed : 'a symbol ->
CamlinternalMenhirLib.IncrementalEngine.position ->
'a ->
CamlinternalMenhirLib.IncrementalEngine.position ->
'b env ->
'b env
ocaml-doc-4.11/ocaml.html/compilerlibref/Location.html0000644000175000017500000007577713717225554021767 0ustar mehdimehdi Location

Module Location

module Location: sig .. end

Source code locations (ranges of positions), used in parsetree

Warning: this module is unstable and part of compiler-libs.


type t = Warnings.loc = {
   loc_start : Lexing.position;
   loc_end : Lexing.position;
   loc_ghost : bool;
}

Note on the use of Lexing.position in this module. If pos_fname = "", then use !input_name instead. If pos_lnum = -1, then pos_bol = 0. Use pos_cnum and re-parse the file to get the line and character numbers. Else all fields are correct.

val none : t

An arbitrary value of type t; describes an empty ghost range.

val is_none : t -> bool

True for Location.none, false any other location

val in_file : string -> t

Return an empty ghost range located in a given file.

val init : Lexing.lexbuf -> string -> unit

Set the file name and line number of the lexbuf to be the start of the named file.

val curr : Lexing.lexbuf -> t

Get the location of the current token from the lexbuf.

val symbol_rloc : unit -> t
val symbol_gloc : unit -> t
val rhs_loc : int -> t

rhs_loc n returns the location of the symbol at position n, starting at 1, in the current parser rule.

val rhs_interval : int -> int -> t
val get_pos_info : Lexing.position -> string * int * int

file, line, char

type 'a loc = {
   txt : 'a;
   loc : t;
}
val mknoloc : 'a -> 'a loc
val mkloc : 'a -> t -> 'a loc

Input info

val input_name : string ref
val input_lexbuf : Lexing.lexbuf option ref
val input_phrase_buffer : Buffer.t option ref

Toplevel-specific functions

val echo_eof : unit -> unit
val reset : unit -> unit

Printing locations

val rewrite_absolute_path : string -> string

rewrite absolute path to honor the BUILD_PATH_PREFIX_MAP variable (https://reproducible-builds.org/specs/build-path-prefix-map/) if it is set.

val absolute_path : string -> string
val show_filename : string -> string

In -absname mode, return the absolute path for this filename. Otherwise, returns the filename unchanged.

val print_filename : Format.formatter -> string -> unit
val print_loc : Format.formatter -> t -> unit
val print_locs : Format.formatter -> t list -> unit

Toplevel-specific location highlighting

val highlight_terminfo : Lexing.lexbuf -> Format.formatter -> t list -> unit

Reporting errors and warnings

The type of reports and report printers

type msg = (Format.formatter -> unit) loc 
val msg : ?loc:t ->
('a, Format.formatter, unit, msg) format4 -> 'a
type report_kind = 
| Report_error
| Report_warning of string
| Report_warning_as_error of string
| Report_alert of string
| Report_alert_as_error of string
type report = {
   kind : report_kind;
   main : msg;
   sub : msg list;
}
type report_printer = {
   pp : report_printer -> Format.formatter -> report -> unit;
   pp_report_kind : report_printer ->
report -> Format.formatter -> report_kind -> unit
;
   pp_main_loc : report_printer ->
report -> Format.formatter -> t -> unit
;
   pp_main_txt : report_printer ->
report ->
Format.formatter -> (Format.formatter -> unit) -> unit
;
   pp_submsgs : report_printer ->
report -> Format.formatter -> msg list -> unit
;
   pp_submsg : report_printer ->
report -> Format.formatter -> msg -> unit
;
   pp_submsg_loc : report_printer ->
report -> Format.formatter -> t -> unit
;
   pp_submsg_txt : report_printer ->
report ->
Format.formatter -> (Format.formatter -> unit) -> unit
;
}

A printer for reports, defined using open-recursion. The goal is to make it easy to define new printers by re-using code from existing ones.

Report printers used in the compiler

val batch_mode_printer : report_printer
val terminfo_toplevel_printer : Lexing.lexbuf -> report_printer
val best_toplevel_printer : unit -> report_printer

Detects the terminal capabilities and selects an adequate printer

Printing a report

val print_report : Format.formatter -> report -> unit

Display an error or warning report.

val report_printer : (unit -> report_printer) ref

Hook for redefining the printer of reports.

The hook is a unit -> report_printer and not simply a report_printer: this is useful so that it can detect the type of the output (a file, a terminal, ...) and select a printer accordingly.

val default_report_printer : unit -> report_printer

Original report printer for use in hooks.

Reporting warnings

Converting a Warnings.t into a report

val report_warning : t -> Warnings.t -> report option

report_warning loc w produces a report for the given warning w, or None if the warning is not to be printed.

val warning_reporter : (t -> Warnings.t -> report option) ref

Hook for intercepting warnings.

val default_warning_reporter : t -> Warnings.t -> report option

Original warning reporter for use in hooks.

Printing warnings

val formatter_for_warnings : Format.formatter ref
val print_warning : t -> Format.formatter -> Warnings.t -> unit

Prints a warning. This is simply the composition of report_warning and print_report.

val prerr_warning : t -> Warnings.t -> unit

Same as print_warning, but uses !formatter_for_warnings as output formatter.

Reporting alerts

Converting an Alert.t into a report

val report_alert : t -> Warnings.alert -> report option

report_alert loc w produces a report for the given alert w, or None if the alert is not to be printed.

val alert_reporter : (t -> Warnings.alert -> report option) ref

Hook for intercepting alerts.

val default_alert_reporter : t -> Warnings.alert -> report option

Original alert reporter for use in hooks.

Printing alerts

val print_alert : t -> Format.formatter -> Warnings.alert -> unit

Prints an alert. This is simply the composition of report_alert and print_report.

val prerr_alert : t -> Warnings.alert -> unit

Same as print_alert, but uses !formatter_for_warnings as output formatter.

val deprecated : ?def:t -> ?use:t -> t -> string -> unit

Prints a deprecation alert.

val alert : ?def:t ->
?use:t -> kind:string -> t -> string -> unit

Prints an arbitrary alert.

Reporting errors

type error = report 

An error is a report which report_kind must be Report_error.

val error : ?loc:t -> ?sub:msg list -> string -> error
val errorf : ?loc:t ->
?sub:msg list ->
('a, Format.formatter, unit, error) format4 -> 'a
val error_of_printer : ?loc:t ->
?sub:msg list ->
(Format.formatter -> 'a -> unit) -> 'a -> error
val error_of_printer_file : (Format.formatter -> 'a -> unit) -> 'a -> error

Automatically reporting errors for raised exceptions

val register_error_of_exn : (exn -> error option) -> unit

Each compiler module which defines a custom type of exception which can surface as a user-visible error should register a "printer" for this exception using register_error_of_exn. The result of the printer is an error value containing a location, a message, and optionally sub-messages (each of them being located as well).

val error_of_exn : exn -> [ `Already_displayed | `Ok of error ] option
exception Error of error

Raising Error e signals an error e; the exception will be caught and the error will be printed.

exception Already_displayed_error

Raising Already_displayed_error signals an error which has already been printed. The exception will be caught, but nothing will be printed

val raise_errorf : ?loc:t ->
?sub:msg list ->
('a, Format.formatter, unit, 'b) format4 -> 'a
val report_exception : Format.formatter -> exn -> unit

Reraise the exception if it is unknown.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Clflags.html0000644000175000017500000010330013717225554022601 0ustar mehdimehdi Clflags sig
  module Int_arg_helper :
    sig
      type parsed
      val parse :
        string -> string -> Clflags.Int_arg_helper.parsed Stdlib.ref -> unit
      type parse_result = Ok | Parse_failed of exn
      val parse_no_error :
        string ->
        Clflags.Int_arg_helper.parsed Stdlib.ref ->
        Clflags.Int_arg_helper.parse_result
      val get : key:int -> Clflags.Int_arg_helper.parsed -> int
    end
  module Float_arg_helper :
    sig
      type parsed
      val parse :
        string ->
        string -> Clflags.Float_arg_helper.parsed Stdlib.ref -> unit
      type parse_result = Ok | Parse_failed of exn
      val parse_no_error :
        string ->
        Clflags.Float_arg_helper.parsed Stdlib.ref ->
        Clflags.Float_arg_helper.parse_result
      val get : key:int -> Clflags.Float_arg_helper.parsed -> float
    end
  type inlining_arguments = {
    inline_call_cost : int option;
    inline_alloc_cost : int option;
    inline_prim_cost : int option;
    inline_branch_cost : int option;
    inline_indirect_cost : int option;
    inline_lifting_benefit : int option;
    inline_branch_factor : float option;
    inline_max_depth : int option;
    inline_max_unroll : int option;
    inline_threshold : float option;
    inline_toplevel_threshold : int option;
  }
  val classic_arguments : Clflags.inlining_arguments
  val o1_arguments : Clflags.inlining_arguments
  val o2_arguments : Clflags.inlining_arguments
  val o3_arguments : Clflags.inlining_arguments
  val use_inlining_arguments_set :
    ?round:int -> Clflags.inlining_arguments -> unit
  val objfiles : string list Stdlib.ref
  val ccobjs : string list Stdlib.ref
  val dllibs : string list Stdlib.ref
  val compile_only : bool Stdlib.ref
  val output_name : string option Stdlib.ref
  val include_dirs : string list Stdlib.ref
  val no_std_include : bool Stdlib.ref
  val print_types : bool Stdlib.ref
  val make_archive : bool Stdlib.ref
  val debug : bool Stdlib.ref
  val debug_full : bool Stdlib.ref
  val unsafe : bool Stdlib.ref
  val use_linscan : bool Stdlib.ref
  val link_everything : bool Stdlib.ref
  val custom_runtime : bool Stdlib.ref
  val no_check_prims : bool Stdlib.ref
  val bytecode_compatible_32 : bool Stdlib.ref
  val output_c_object : bool Stdlib.ref
  val output_complete_object : bool Stdlib.ref
  val output_complete_executable : bool Stdlib.ref
  val all_ccopts : string list Stdlib.ref
  val classic : bool Stdlib.ref
  val nopervasives : bool Stdlib.ref
  val match_context_rows : int Stdlib.ref
  val open_modules : string list Stdlib.ref
  val preprocessor : string option Stdlib.ref
  val all_ppx : string list Stdlib.ref
  val absname : bool Stdlib.ref
  val annotations : bool Stdlib.ref
  val binary_annotations : bool Stdlib.ref
  val use_threads : bool Stdlib.ref
  val noassert : bool Stdlib.ref
  val verbose : bool Stdlib.ref
  val noprompt : bool Stdlib.ref
  val nopromptcont : bool Stdlib.ref
  val init_file : string option Stdlib.ref
  val noinit : bool Stdlib.ref
  val noversion : bool Stdlib.ref
  val use_prims : string Stdlib.ref
  val use_runtime : string Stdlib.ref
  val plugin : bool Stdlib.ref
  val principal : bool Stdlib.ref
  val real_paths : bool Stdlib.ref
  val recursive_types : bool Stdlib.ref
  val strict_sequence : bool Stdlib.ref
  val strict_formats : bool Stdlib.ref
  val applicative_functors : bool Stdlib.ref
  val make_runtime : bool Stdlib.ref
  val c_compiler : string option Stdlib.ref
  val no_auto_link : bool Stdlib.ref
  val dllpaths : string list Stdlib.ref
  val make_package : bool Stdlib.ref
  val for_package : string option Stdlib.ref
  val error_size : int Stdlib.ref
  val float_const_prop : bool Stdlib.ref
  val transparent_modules : bool Stdlib.ref
  val unique_ids : bool Stdlib.ref
  val locations : bool Stdlib.ref
  val dump_source : bool Stdlib.ref
  val dump_parsetree : bool Stdlib.ref
  val dump_typedtree : bool Stdlib.ref
  val dump_rawlambda : bool Stdlib.ref
  val dump_lambda : bool Stdlib.ref
  val dump_rawclambda : bool Stdlib.ref
  val dump_clambda : bool Stdlib.ref
  val dump_rawflambda : bool Stdlib.ref
  val dump_flambda : bool Stdlib.ref
  val dump_flambda_let : int option Stdlib.ref
  val dump_instr : bool Stdlib.ref
  val keep_camlprimc_file : bool Stdlib.ref
  val keep_asm_file : bool Stdlib.ref
  val optimize_for_speed : bool Stdlib.ref
  val dump_cmm : bool Stdlib.ref
  val dump_selection : bool Stdlib.ref
  val dump_cse : bool Stdlib.ref
  val dump_live : bool Stdlib.ref
  val dump_avail : bool Stdlib.ref
  val debug_runavail : bool Stdlib.ref
  val dump_spill : bool Stdlib.ref
  val dump_split : bool Stdlib.ref
  val dump_interf : bool Stdlib.ref
  val dump_prefer : bool Stdlib.ref
  val dump_regalloc : bool Stdlib.ref
  val dump_reload : bool Stdlib.ref
  val dump_scheduling : bool Stdlib.ref
  val dump_linear : bool Stdlib.ref
  val dump_interval : bool Stdlib.ref
  val keep_startup_file : bool Stdlib.ref
  val dump_combine : bool Stdlib.ref
  val native_code : bool Stdlib.ref
  val default_inline_threshold : float
  val inline_threshold : Clflags.Float_arg_helper.parsed Stdlib.ref
  val inlining_report : bool Stdlib.ref
  val simplify_rounds : int option Stdlib.ref
  val default_simplify_rounds : int Stdlib.ref
  val rounds : unit -> int
  val default_inline_max_unroll : int
  val inline_max_unroll : Clflags.Int_arg_helper.parsed Stdlib.ref
  val default_inline_toplevel_threshold : int
  val inline_toplevel_threshold : Clflags.Int_arg_helper.parsed Stdlib.ref
  val default_inline_call_cost : int
  val default_inline_alloc_cost : int
  val default_inline_prim_cost : int
  val default_inline_branch_cost : int
  val default_inline_indirect_cost : int
  val default_inline_lifting_benefit : int
  val inline_call_cost : Clflags.Int_arg_helper.parsed Stdlib.ref
  val inline_alloc_cost : Clflags.Int_arg_helper.parsed Stdlib.ref
  val inline_prim_cost : Clflags.Int_arg_helper.parsed Stdlib.ref
  val inline_branch_cost : Clflags.Int_arg_helper.parsed Stdlib.ref
  val inline_indirect_cost : Clflags.Int_arg_helper.parsed Stdlib.ref
  val inline_lifting_benefit : Clflags.Int_arg_helper.parsed Stdlib.ref
  val default_inline_branch_factor : float
  val inline_branch_factor : Clflags.Float_arg_helper.parsed Stdlib.ref
  val dont_write_files : bool Stdlib.ref
  val std_include_flag : string -> string
  val std_include_dir : unit -> string list
  val shared : bool Stdlib.ref
  val dlcode : bool Stdlib.ref
  val pic_code : bool Stdlib.ref
  val runtime_variant : string Stdlib.ref
  val with_runtime : bool Stdlib.ref
  val force_slash : bool Stdlib.ref
  val keep_docs : bool Stdlib.ref
  val keep_locs : bool Stdlib.ref
  val unsafe_string : bool Stdlib.ref
  val opaque : bool Stdlib.ref
  val profile_columns : Profile.column list Stdlib.ref
  val flambda_invariant_checks : bool Stdlib.ref
  val unbox_closures : bool Stdlib.ref
  val unbox_closures_factor : int Stdlib.ref
  val default_unbox_closures_factor : int
  val unbox_free_vars_of_closures : bool Stdlib.ref
  val unbox_specialised_args : bool Stdlib.ref
  val clambda_checks : bool Stdlib.ref
  val default_inline_max_depth : int
  val inline_max_depth : Clflags.Int_arg_helper.parsed Stdlib.ref
  val remove_unused_arguments : bool Stdlib.ref
  val dump_flambda_verbose : bool Stdlib.ref
  val classic_inlining : bool Stdlib.ref
  val afl_instrument : bool Stdlib.ref
  val afl_inst_ratio : int Stdlib.ref
  val function_sections : bool Stdlib.ref
  val all_passes : string list Stdlib.ref
  val dumped_pass : string -> bool
  val set_dumped_pass : string -> bool -> unit
  val dump_into_file : bool Stdlib.ref
  type 'a env_reader = {
    parse : string -> 'a option;
    print : '-> string;
    usage : string;
    env_var : string;
  }
  val color : Misc.Color.setting option Stdlib.ref
  val color_reader : Misc.Color.setting Clflags.env_reader
  val error_style : Misc.Error_style.setting option Stdlib.ref
  val error_style_reader : Misc.Error_style.setting Clflags.env_reader
  val unboxed_types : bool Stdlib.ref
  val insn_sched : bool Stdlib.ref
  val insn_sched_default : bool
  module Compiler_pass :
    sig
      type t = Parsing | Typing | Scheduling
      val of_string : string -> Clflags.Compiler_pass.t option
      val to_string : Clflags.Compiler_pass.t -> string
      val is_compilation_pass : Clflags.Compiler_pass.t -> bool
      val available_pass_names : native:bool -> string list
    end
  val stop_after : Clflags.Compiler_pass.t option Stdlib.ref
  val should_stop_after : Clflags.Compiler_pass.t -> bool
  val arg_spec : (string * Stdlib.Arg.spec * string) list Stdlib.ref
  val add_arguments :
    string -> (string * Stdlib.Arg.spec * string) list -> unit
  val parse_arguments : Stdlib.Arg.anon_fun -> string -> unit
  val print_arguments : string -> unit
  val reset_arguments : unit -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Of.html0000644000175000017500000001122213717225554023660 0ustar mehdimehdi Ast_helper.Of sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.object_field_desc -> Parsetree.object_field
  val tag :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.label Ast_helper.with_loc ->
    Parsetree.core_type -> Parsetree.object_field
  val inherit_ :
    ?loc:Ast_helper.loc -> Parsetree.core_type -> Parsetree.object_field
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.String.Set.html0000644000175000017500000002572013717225554025351 0ustar mehdimehdi Misc.Stdlib.String.Set sig
  type elt = string
  type t
  val empty : t
  val is_empty : t -> bool
  val mem : elt -> t -> bool
  val add : elt -> t -> t
  val singleton : elt -> t
  val remove : elt -> t -> t
  val union : t -> t -> t
  val inter : t -> t -> t
  val disjoint : t -> t -> bool
  val diff : t -> t -> t
  val compare : t -> t -> int
  val equal : t -> t -> bool
  val subset : t -> t -> bool
  val iter : (elt -> unit) -> t -> unit
  val map : (elt -> elt) -> t -> t
  val fold : (elt -> '-> 'a) -> t -> '-> 'a
  val for_all : (elt -> bool) -> t -> bool
  val exists : (elt -> bool) -> t -> bool
  val filter : (elt -> bool) -> t -> t
  val filter_map : (elt -> elt option) -> t -> t
  val partition : (elt -> bool) -> t -> t * t
  val cardinal : t -> int
  val elements : t -> elt list
  val min_elt : t -> elt
  val min_elt_opt : t -> elt option
  val max_elt : t -> elt
  val max_elt_opt : t -> elt option
  val choose : t -> elt
  val choose_opt : t -> elt option
  val split : elt -> t -> t * bool * t
  val find : elt -> t -> elt
  val find_opt : elt -> t -> elt option
  val find_first : (elt -> bool) -> t -> elt
  val find_first_opt : (elt -> bool) -> t -> elt option
  val find_last : (elt -> bool) -> t -> elt
  val find_last_opt : (elt -> bool) -> t -> elt option
  val of_list : elt list -> t
  val to_seq_from : elt -> t -> elt Seq.t
  val to_seq : t -> elt Seq.t
  val add_seq : elt Seq.t -> t -> t
  val of_seq : elt Seq.t -> t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Numbers.Int.html0000644000175000017500000001021313717225554022331 0ustar mehdimehdi Numbers.Int

Module Numbers.Int

module Int: sig .. end

include Identifiable.S
val zero_to_n : int -> Set.t

zero_to_n n is the set of numbers {0, ..., n} (inclusive).

val to_string : int -> string
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ccomp.html0000644000175000017500000001212513717225554022273 0ustar mehdimehdi Ccomp sig
  val command : string -> int
  val run_command : string -> unit
  val compile_file :
    ?output:string -> ?opt:string -> ?stable_name:string -> string -> int
  val create_archive : string -> string list -> int
  val expand_libname : string -> string
  val quote_files : string list -> string
  val quote_optfile : string option -> string
  type link_mode = Exe | Dll | MainDll | Partial
  val call_linker : Ccomp.link_mode -> string -> string list -> string -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/index_extensions.html0000644000175000017500000000626413717225554023566 0ustar mehdimehdi Index of extensions

Index of extensions

ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.html0000644000175000017500000001257513717225554032163 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.SYMBOLS sig
  type 'a terminal
  type 'a nonterminal
  type 'a symbol =
      T :
        'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.terminal -> 
        'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol
    | N :
        'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.nonterminal -> 
        'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol
  type xsymbol =
      X :
        'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol -> 
        CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.xsymbol
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Lexer.html0000644000175000017500000001660313717225554022316 0ustar mehdimehdi Lexer sig
  val init : unit -> unit
  val token : Stdlib.Lexing.lexbuf -> Parser.token
  val skip_hash_bang : Stdlib.Lexing.lexbuf -> unit
  type error =
      Illegal_character of char
    | Illegal_escape of string * string option
    | Reserved_sequence of string * string option
    | Unterminated_comment of Location.t
    | Unterminated_string
    | Unterminated_string_in_comment of Location.t * Location.t
    | Keyword_as_label of string
    | Invalid_literal of string
    | Invalid_directive of string * string option
  exception Error of Lexer.error * Location.t
  val in_comment : unit -> bool
  val in_string : unit -> bool
  val print_warnings : bool Stdlib.ref
  val handle_docstrings : bool Stdlib.ref
  val comments : unit -> (string * Location.t) list
  val token_with_comments : Stdlib.Lexing.lexbuf -> Parser.token
  val set_preprocessor :
    (unit -> unit) ->
    ((Stdlib.Lexing.lexbuf -> Parser.token) ->
     Stdlib.Lexing.lexbuf -> Parser.token) ->
    unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Cty.html0000644000175000017500000001560713717225554024066 0ustar mehdimehdi Ast_helper.Cty sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_type_desc -> Parsetree.class_type
  val attr :
    Parsetree.class_type -> Parsetree.attribute -> Parsetree.class_type
  val constr :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.core_type list -> Parsetree.class_type
  val signature :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_signature -> Parsetree.class_type
  val arrow :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.arg_label ->
    Parsetree.core_type -> Parsetree.class_type -> Parsetree.class_type
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_type
  val open_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.open_description ->
    Parsetree.class_type -> Parsetree.class_type
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Syntaxerr.html0000644000175000017500000001715413717225554022177 0ustar mehdimehdi Syntaxerr

Module Syntaxerr

module Syntaxerr: sig .. end

Auxiliary type for reporting syntax errors

Warning: this module is unstable and part of compiler-libs.


type error = 
| Unclosed of Location.t * string * Location.t * string
| Expecting of Location.t * string
| Not_expecting of Location.t * string
| Applicative_path of Location.t
| Variable_in_scope of Location.t * string
| Other of Location.t
| Ill_formed_ast of Location.t * string
| Invalid_package_type of Location.t * string
exception Error of error
exception Escape_error
val location_of_error : error -> Location.t
val ill_formed_ast : Location.t -> string -> 'a
ocaml-doc-4.11/ocaml.html/compilerlibref/style.css0000644000175000017500000000511113717225554021152 0ustar mehdimehdi/* fira-sans-regular - latin */ @font-face { font-family: 'Fira Sans'; font-style: normal; font-weight: 400; src: url('../fonts/fira-sans-v8-latin-regular.eot'); /* IE9 Compat Modes */ src: local('Fira Sans Regular'), local('FiraSans-Regular'), url('../fonts/fira-sans-v8-latin-regular.eot?#iefix') format('embedded-opentype'), /* IE6-IE8 */ url('../fonts/fira-sans-v8-latin-regular.woff2') format('woff2'), /* Super Modern Browsers */ url('../fonts/fira-sans-v8-latin-regular.woff') format('woff'), /* Modern Browsers */ url('../fonts/fira-sans-v8-latin-regular.ttf') format('truetype'), /* Safari, Android, iOS */ url('../fonts/fira-sans-v8-latin-regular.svg#FiraSans') format('svg'); /* Legacy iOS */ } a:visited {color : #416DFF; text-decoration : none; } a:link {color : #416DFF; text-decoration : none; } a:hover {color : Black; text-decoration : underline; } a:active {color : Black; text-decoration : underline; } .keyword { font-weight : bold ; color : Red } .keywordsign { color : #C04600 } .comment { color : Green } .constructor { color : Blue } .type { color : #5C6585 } .string { color : Maroon } .warning { color : Red ; font-weight : bold } .info { margin-left : 3em; margin-right : 3em } .code { color : #465F91 ; } h1 { font-size : 2rem ; text-align: center; } h2, h3, h4, h5, h6, div.h7, div.h8, div.h9 { font-size: 1.75rem; border: 1px solid #000; margin-top: 20px; margin-bottom: 2px; text-align: center; padding: 8px; font-family: "Fira Sans", sans-serif; font-weight: normal; } h1 { font-family: "Fira Sans", sans-serif; padding: 10px; } h2 { background-color: #90BDFF; } h3 { background-color: #90DDFF; } h4 { background-color: #90EDFF; } h5 { background-color: #90FDFF; } h6 { background-color: #90BDFF; } div.h7 { background-color: #90DDFF; } div.h8 { background-color: #F0FFFF; } div.h9 { background-color: #FFFFFF; } .typetable { border-style : hidden } .indextable { border-style : hidden } .paramstable { border-style : hidden ; padding: 5pt 5pt} body { background-color : #f7f7f7; font-size: 1rem; max-width: 800px; width: 85%; margin: auto; padding-bottom: 30px; } td { font-size: 1rem; } .navbar { /* previous - up - next */ position: absolute; left: 10px; top: 10px; } tr { background-color : #f7f7f7 } td.typefieldcomment { background-color : #f7f7f7 } pre { margin-bottom: 4px; white-space: pre-wrap; } div.sig_block {margin-left: 2em} ul.info-attributes { list-style: none; margin: 0; padding: 0; } div.info > p:first-child{ margin-top:0; } div.info-desc > p:first-child { margin-top:0; margin-bottom:0; } ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Csig.html0000644000175000017500000001033413717225554023143 0ustar mehdimehdi Ast_helper.Csig

Module Ast_helper.Csig

module Csig: sig .. end

Class signatures


val mk : Parsetree.core_type ->
Parsetree.class_type_field list -> Parsetree.class_signature
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Const.html0000644000175000017500000001237513717225554023353 0ustar mehdimehdi Ast_helper.Const

Module Ast_helper.Const

module Const: sig .. end

val char : char -> Parsetree.constant
val string : ?quotation_delimiter:string ->
?loc:Location.t -> string -> Parsetree.constant
val integer : ?suffix:char -> string -> Parsetree.constant
val int : ?suffix:char -> int -> Parsetree.constant
val int32 : ?suffix:char -> int32 -> Parsetree.constant
val int64 : ?suffix:char -> int64 -> Parsetree.constant
val nativeint : ?suffix:char -> nativeint -> Parsetree.constant
val float : ?suffix:char -> string -> Parsetree.constant
ocaml-doc-4.11/ocaml.html/compilerlibref/Depend.String.html0000644000175000017500000001062313717225554022636 0ustar mehdimehdi Depend.String

Module Depend.String

module String: Misc.Stdlib.String

include String
module Set: Set.S  with type elt = string
module Map: Map.S  with type key = string
module Tbl: Hashtbl.S  with type key = string
val print : Format.formatter -> t -> unit
val for_all : (char -> bool) -> t -> bool
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Exp.html0000644000175000017500000006653413717225554024070 0ustar mehdimehdi Ast_helper.Exp sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression_desc -> Parsetree.expression
  val attr :
    Parsetree.expression -> Parsetree.attribute -> Parsetree.expression
  val ident :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.expression
  val constant :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.constant -> Parsetree.expression
  val let_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.rec_flag ->
    Parsetree.value_binding list ->
    Parsetree.expression -> Parsetree.expression
  val fun_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.arg_label ->
    Parsetree.expression option ->
    Parsetree.pattern -> Parsetree.expression -> Parsetree.expression
  val function_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.case list -> Parsetree.expression
  val apply :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression ->
    (Asttypes.arg_label * Parsetree.expression) list -> Parsetree.expression
  val match_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Parsetree.case list -> Parsetree.expression
  val try_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Parsetree.case list -> Parsetree.expression
  val tuple :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression list -> Parsetree.expression
  val construct :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.expression option -> Parsetree.expression
  val variant :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.label -> Parsetree.expression option -> Parsetree.expression
  val record :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    (Ast_helper.lid * Parsetree.expression) list ->
    Parsetree.expression option -> Parsetree.expression
  val field :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Ast_helper.lid -> Parsetree.expression
  val setfield :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression ->
    Ast_helper.lid -> Parsetree.expression -> Parsetree.expression
  val array :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression list -> Parsetree.expression
  val ifthenelse :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression ->
    Parsetree.expression ->
    Parsetree.expression option -> Parsetree.expression
  val sequence :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Parsetree.expression -> Parsetree.expression
  val while_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Parsetree.expression -> Parsetree.expression
  val for_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.pattern ->
    Parsetree.expression ->
    Parsetree.expression ->
    Asttypes.direction_flag -> Parsetree.expression -> Parsetree.expression
  val coerce :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression ->
    Parsetree.core_type option -> Parsetree.core_type -> Parsetree.expression
  val constraint_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Parsetree.core_type -> Parsetree.expression
  val send :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression -> Ast_helper.str -> Parsetree.expression
  val new_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.expression
  val setinstvar :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str -> Parsetree.expression -> Parsetree.expression
  val override :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    (Ast_helper.str * Parsetree.expression) list -> Parsetree.expression
  val letmodule :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str_opt ->
    Parsetree.module_expr -> Parsetree.expression -> Parsetree.expression
  val letexception :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.extension_constructor ->
    Parsetree.expression -> Parsetree.expression
  val assert_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.expression
  val lazy_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.expression
  val poly :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.expression ->
    Parsetree.core_type option -> Parsetree.expression
  val object_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_structure -> Parsetree.expression
  val newtype :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str -> Parsetree.expression -> Parsetree.expression
  val pack :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.module_expr -> Parsetree.expression
  val open_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.open_declaration ->
    Parsetree.expression -> Parsetree.expression
  val letop :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.binding_op ->
    Parsetree.binding_op list -> Parsetree.expression -> Parsetree.expression
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.expression
  val unreachable :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> unit -> Parsetree.expression
  val case :
    Parsetree.pattern ->
    ?guard:Parsetree.expression -> Parsetree.expression -> Parsetree.case
  val binding_op :
    Ast_helper.str ->
    Parsetree.pattern ->
    Parsetree.expression -> Ast_helper.loc -> Parsetree.binding_op
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Numbers.Int16.html0000644000175000017500000001054613717225554022511 0ustar mehdimehdi Numbers.Int16

Module Numbers.Int16

module Int16: sig .. end

type t 
val of_int_exn : int -> t
val of_int64_exn : Int64.t -> t
val to_int : t -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Const.html0000644000175000017500000001216513717225554024411 0ustar mehdimehdi Ast_helper.Const sig
  val char : char -> Parsetree.constant
  val string :
    ?quotation_delimiter:string ->
    ?loc:Location.t -> string -> Parsetree.constant
  val integer : ?suffix:char -> string -> Parsetree.constant
  val int : ?suffix:char -> int -> Parsetree.constant
  val int32 : ?suffix:char -> int32 -> Parsetree.constant
  val int64 : ?suffix:char -> int64 -> Parsetree.constant
  val nativeint : ?suffix:char -> nativeint -> Parsetree.constant
  val float : ?suffix:char -> string -> Parsetree.constant
end
ocaml-doc-4.11/ocaml.html/compilerlibref/index_class_types.html0000644000175000017500000000626613717225554023722 0ustar mehdimehdi Index of class types

Index of class types

ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.StaticVersion.html0000644000175000017500000001001013717225554027157 0ustar mehdimehdi CamlinternalMenhirLib.StaticVersion

Module CamlinternalMenhirLib.StaticVersion

module StaticVersion: sig .. end

val require_20190924 : unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Arg_helper.Make.html0000644000175000017500000006535413717225554024172 0ustar mehdimehdi Arg_helper.Make functor
  (S : sig
         module Key :
           sig
             type t
             val of_string : string -> Arg_helper.Make.Key.t
             module Map :
               sig
                 type key = t
                 type +'a t
                 val empty : 'a t
                 val is_empty : 'a t -> bool
                 val mem : key -> 'a t -> bool
                 val add : key -> '-> 'a t -> 'a t
                 val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
                 val singleton : key -> '-> 'a t
                 val remove : key -> 'a t -> 'a t
                 val merge :
                   (key -> 'a option -> 'b option -> 'c option) ->
                   'a t -> 'b t -> 'c t
                 val union :
                   (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
                 val compare : ('-> '-> int) -> 'a t -> 'a t -> int
                 val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
                 val iter : (key -> '-> unit) -> 'a t -> unit
                 val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
                 val for_all : (key -> '-> bool) -> 'a t -> bool
                 val exists : (key -> '-> bool) -> 'a t -> bool
                 val filter : (key -> '-> bool) -> 'a t -> 'a t
                 val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
                 val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
                 val cardinal : 'a t -> int
                 val bindings : 'a t -> (key * 'a) list
                 val min_binding : 'a t -> key * 'a
                 val min_binding_opt : 'a t -> (key * 'a) option
                 val max_binding : 'a t -> key * 'a
                 val max_binding_opt : 'a t -> (key * 'a) option
                 val choose : 'a t -> key * 'a
                 val choose_opt : 'a t -> (key * 'a) option
                 val split : key -> 'a t -> 'a t * 'a option * 'a t
                 val find : key -> 'a t -> 'a
                 val find_opt : key -> 'a t -> 'a option
                 val find_first : (key -> bool) -> 'a t -> key * 'a
                 val find_first_opt :
                   (key -> bool) -> 'a t -> (key * 'a) option
                 val find_last : (key -> bool) -> 'a t -> key * 'a
                 val find_last_opt :
                   (key -> bool) -> 'a t -> (key * 'a) option
                 val map : ('-> 'b) -> 'a t -> 'b t
                 val mapi : (key -> '-> 'b) -> 'a t -> 'b t
                 val to_seq : 'a t -> (key * 'a) Seq.t
                 val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
                 val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
                 val of_seq : (key * 'a) Seq.t -> 'a t
               end
           end
         module Value :
           sig type t val of_string : string -> Arg_helper.Make.Value.t end
       end)
  ->
  sig
    type parsed
    val default : S.Value.t -> Arg_helper.Make.parsed
    val set_base_default :
      S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
    val add_base_override :
      S.Key.t ->
      S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
    val reset_base_overrides :
      Arg_helper.Make.parsed -> Arg_helper.Make.parsed
    val set_user_default :
      S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
    val add_user_override :
      S.Key.t ->
      S.Value.t -> Arg_helper.Make.parsed -> Arg_helper.Make.parsed
    val parse : string -> string -> Arg_helper.Make.parsed Stdlib.ref -> unit
    type parse_result = Ok | Parse_failed of exn
    val parse_no_error :
      string ->
      Arg_helper.Make.parsed Stdlib.ref -> Arg_helper.Make.parse_result
    val get : key:S.Key.t -> Arg_helper.Make.parsed -> S.Value.t
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Cf.html0000644000175000017500000002206713717225554023655 0ustar mehdimehdi Ast_helper.Cf sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    Parsetree.class_field_desc -> Parsetree.class_field
  val attr :
    Parsetree.class_field -> Parsetree.attribute -> Parsetree.class_field
  val inherit_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.override_flag ->
    Parsetree.class_expr -> Ast_helper.str option -> Parsetree.class_field
  val val_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str ->
    Asttypes.mutable_flag ->
    Parsetree.class_field_kind -> Parsetree.class_field
  val method_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str ->
    Asttypes.private_flag ->
    Parsetree.class_field_kind -> Parsetree.class_field
  val constraint_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.core_type -> Parsetree.core_type -> Parsetree.class_field
  val initializer_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.class_field
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_field
  val attribute :
    ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.class_field
  val text : Docstrings.text -> Parsetree.class_field list
  val virtual_ : Parsetree.core_type -> Parsetree.class_field_kind
  val concrete :
    Asttypes.override_flag ->
    Parsetree.expression -> Parsetree.class_field_kind
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.Array.html0000644000175000017500000001107413717225554023363 0ustar mehdimehdi Misc.Stdlib.Array

Module Misc.Stdlib.Array

module Array: sig .. end

val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
val for_alli : (int -> 'a -> bool) -> 'a array -> bool

Same as Array.for_all, but the function is applied with the index of the element as first argument, and the element itself as second argument.

val all_somes : 'a option array -> 'a array option
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Attr.html0000644000175000017500000000712613717225554024236 0ustar mehdimehdi Ast_helper.Attr sig
  val mk :
    ?loc:Ast_helper.loc ->
    Ast_helper.str -> Parsetree.payload -> Parsetree.attribute
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.TableInterpreter.MakeEngineTable.html0000644000175000017500000002735413717225554032632 0ustar mehdimehdi CamlinternalMenhirLib.TableInterpreter.MakeEngineTable

Functor CamlinternalMenhirLib.TableInterpreter.MakeEngineTable

module MakeEngineTable: 
functor (T : CamlinternalMenhirLib.TableFormat.TABLES-> CamlinternalMenhirLib.EngineTypes.TABLE with type state = int and type token = T.token and type semantic_value = Obj.t and type production = int and type terminal = int and type nonterminal = int
Parameters:
T : CamlinternalMenhirLib.TableFormat.TABLES

type state 
val number : state -> int
type token 
type terminal 
type nonterminal 
type semantic_value 
val token2terminal : token ->
terminal
val token2value : token ->
semantic_value
val error_terminal : terminal
val error_value : semantic_value
val foreach_terminal : (terminal -> 'a -> 'a) -> 'a -> 'a
type production 
val production_index : production -> int
val find_production : int -> production
val default_reduction : state ->
('env -> production -> 'answer) ->
('env -> 'answer) -> 'env -> 'answer
val action : state ->
terminal ->
semantic_value ->
('env ->
bool ->
terminal ->
semantic_value ->
state -> 'answer) ->
('env -> production -> 'answer) ->
('env -> 'answer) -> 'env -> 'answer
val goto_nt : state ->
nonterminal ->
state
val goto_prod : state ->
production ->
state
val maybe_goto_nt : state ->
nonterminal ->
state option
val is_start : production -> bool
exception Error
type semantic_action = (state,
semantic_value,
token)
CamlinternalMenhirLib.EngineTypes.env ->
(state,
semantic_value)
CamlinternalMenhirLib.EngineTypes.stack
val semantic_action : production ->
semantic_action
val may_reduce : state ->
production -> bool
val log : bool
module Log: sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/Domainstate.html0000644000175000017500000004031413717225554022442 0ustar mehdimehdi Domainstate

Module Domainstate

module Domainstate: sig .. end

type t = 
| Domain_young_ptr
| Domain_young_limit
| Domain_exception_pointer
| Domain_young_base
| Domain_young_start
| Domain_young_end
| Domain_young_alloc_start
| Domain_young_alloc_end
| Domain_young_alloc_mid
| Domain_young_trigger
| Domain_minor_heap_wsz
| Domain_in_minor_collection
| Domain_extra_heap_resources_minor
| Domain_ref_table
| Domain_ephe_ref_table
| Domain_custom_table
| Domain_stack_low
| Domain_stack_high
| Domain_stack_threshold
| Domain_extern_sp
| Domain_trapsp
| Domain_trap_barrier
| Domain_external_raise
| Domain_exn_bucket
| Domain_top_of_stack
| Domain_bottom_of_stack
| Domain_last_return_address
| Domain_gc_regs
| Domain_backtrace_active
| Domain_backtrace_pos
| Domain_backtrace_buffer
| Domain_backtrace_last_exn
| Domain_compare_unordered
| Domain_requested_major_slice
| Domain_requested_minor_gc
| Domain_local_roots
| Domain_stat_minor_words
| Domain_stat_promoted_words
| Domain_stat_major_words
| Domain_stat_minor_collections
| Domain_stat_major_collections
| Domain_stat_heap_wsz
| Domain_stat_top_heap_wsz
| Domain_stat_compactions
| Domain_stat_heap_chunks
| Domain_eventlog_startup_timestamp
| Domain_eventlog_startup_pid
| Domain_eventlog_paused
| Domain_eventlog_enabled
| Domain_eventlog_out
val idx_of_field : t -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Str.html0000644000175000017500000002372413717225554024076 0ustar mehdimehdi Ast_helper.Str sig
  val mk :
    ?loc:Ast_helper.loc ->
    Parsetree.structure_item_desc -> Parsetree.structure_item
  val eval :
    ?loc:Ast_helper.loc ->
    ?attrs:Parsetree.attributes ->
    Parsetree.expression -> Parsetree.structure_item
  val value :
    ?loc:Ast_helper.loc ->
    Asttypes.rec_flag ->
    Parsetree.value_binding list -> Parsetree.structure_item
  val primitive :
    ?loc:Ast_helper.loc ->
    Parsetree.value_description -> Parsetree.structure_item
  val type_ :
    ?loc:Ast_helper.loc ->
    Asttypes.rec_flag ->
    Parsetree.type_declaration list -> Parsetree.structure_item
  val type_extension :
    ?loc:Ast_helper.loc ->
    Parsetree.type_extension -> Parsetree.structure_item
  val exception_ :
    ?loc:Ast_helper.loc ->
    Parsetree.type_exception -> Parsetree.structure_item
  val module_ :
    ?loc:Ast_helper.loc ->
    Parsetree.module_binding -> Parsetree.structure_item
  val rec_module :
    ?loc:Ast_helper.loc ->
    Parsetree.module_binding list -> Parsetree.structure_item
  val modtype :
    ?loc:Ast_helper.loc ->
    Parsetree.module_type_declaration -> Parsetree.structure_item
  val open_ :
    ?loc:Ast_helper.loc ->
    Parsetree.open_declaration -> Parsetree.structure_item
  val class_ :
    ?loc:Ast_helper.loc ->
    Parsetree.class_declaration list -> Parsetree.structure_item
  val class_type :
    ?loc:Ast_helper.loc ->
    Parsetree.class_type_declaration list -> Parsetree.structure_item
  val include_ :
    ?loc:Ast_helper.loc ->
    Parsetree.include_declaration -> Parsetree.structure_item
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.extension -> Parsetree.structure_item
  val attribute :
    ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.structure_item
  val text : Docstrings.text -> Parsetree.structure_item list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.String.Map.html0000644000175000017500000004017513717225554025334 0ustar mehdimehdi Misc.Stdlib.String.Map sig
  type key = string
  type +'a t
  val empty : 'a t
  val is_empty : 'a t -> bool
  val mem : key -> 'a t -> bool
  val add : key -> '-> 'a t -> 'a t
  val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
  val singleton : key -> '-> 'a t
  val remove : key -> 'a t -> 'a t
  val merge :
    (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
  val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
  val compare : ('-> '-> int) -> 'a t -> 'a t -> int
  val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val for_all : (key -> '-> bool) -> 'a t -> bool
  val exists : (key -> '-> bool) -> 'a t -> bool
  val filter : (key -> '-> bool) -> 'a t -> 'a t
  val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
  val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
  val cardinal : 'a t -> int
  val bindings : 'a t -> (key * 'a) list
  val min_binding : 'a t -> key * 'a
  val min_binding_opt : 'a t -> (key * 'a) option
  val max_binding : 'a t -> key * 'a
  val max_binding_opt : 'a t -> (key * 'a) option
  val choose : 'a t -> key * 'a
  val choose_opt : 'a t -> (key * 'a) option
  val split : key -> 'a t -> 'a t * 'a option * 'a t
  val find : key -> 'a t -> 'a
  val find_opt : key -> 'a t -> 'a option
  val find_first : (key -> bool) -> 'a t -> key * 'a
  val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
  val find_last : (key -> bool) -> 'a t -> key * 'a
  val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
  val map : ('-> 'b) -> 'a t -> 'b t
  val mapi : (key -> '-> 'b) -> 'a t -> 'b t
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
  val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
  val of_seq : (key * 'a) Seq.t -> 'a t
end
././@LongLink0000644000000000000000000000015200000000000011601 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.TableInterpreter.MakeEngineTable.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.TableInterpreter.MakeEngineTable0000644000175000017500000002607213717225554032724 0ustar mehdimehdi CamlinternalMenhirLib.TableInterpreter.MakeEngineTable functor (T : TableFormat.TABLES->
  sig
    type state = int
    val number : state -> int
    type token = T.token
    type terminal = int
    type nonterminal = int
    type semantic_value = Obj.t
    val token2terminal : token -> terminal
    val token2value : token -> semantic_value
    val error_terminal : terminal
    val error_value : semantic_value
    val foreach_terminal : (terminal -> '-> 'a) -> '-> 'a
    type production = int
    val production_index : production -> int
    val find_production : int -> production
    val default_reduction :
      state ->
      ('env -> production -> 'answer) -> ('env -> 'answer) -> 'env -> 'answer
    val action :
      state ->
      terminal ->
      semantic_value ->
      ('env -> bool -> terminal -> semantic_value -> state -> 'answer) ->
      ('env -> production -> 'answer) -> ('env -> 'answer) -> 'env -> 'answer
    val goto_nt : state -> nonterminal -> state
    val goto_prod : state -> production -> state
    val maybe_goto_nt : state -> nonterminal -> state option
    val is_start : production -> bool
    exception Error
    type semantic_action =
        (state, semantic_value, token) EngineTypes.env ->
        (state, semantic_value) EngineTypes.stack
    val semantic_action : production -> semantic_action
    val may_reduce : state -> production -> bool
    val log : bool
    module Log :
      sig
        val state : state -> unit
        val shift : terminal -> state -> unit
        val reduce_or_accept : production -> unit
        val lookahead_token :
          terminal -> Lexing.position -> Lexing.position -> unit
        val initiating_error_handling : unit -> unit
        val resuming_error_handling : unit -> unit
        val handling_error : state -> unit
      end
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/Build_path_prefix_map.html0000644000175000017500000001743413717225554024466 0ustar mehdimehdi Build_path_prefix_map

Module Build_path_prefix_map

module Build_path_prefix_map: sig .. end

Rewrite paths for reproducible builds

Warning: this module is unstable and part of compiler-libs.


type path = string 
type path_prefix = string 
type error_message = string 
val encode_prefix : path_prefix -> string
val decode_prefix : string ->
(path_prefix, error_message)
result
type pair = {
   target : path_prefix;
   source : path_prefix;
}
val encode_pair : pair -> string
val decode_pair : string ->
(pair, error_message)
result
type map = pair option list 
val encode_map : map -> string
val decode_map : string ->
(map, error_message)
result
val rewrite_opt : map ->
path -> path option

rewrite_opt map path tries to find a source in map that is a prefix of the input path. If it succeeds, it replaces this prefix with the corresponding target. If it fails, it just returns None.

val rewrite : map ->
path -> path
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.List.html0000644000175000017500000002310413717225554023215 0ustar mehdimehdi Misc.Stdlib.List

Module Misc.Stdlib.List

module List: sig .. end

type 'a t = 'a list 
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int

The lexicographic order supported by the provided order. There is no constraint on the relative lengths of the lists.

val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool

Returns true iff the given lists have the same length and content with respect to the given equality function.

val find_map : ('a -> 'b option) -> 'a t -> 'b option

find_map f l returns the first evaluation of f that returns Some, or returns None if there is no such element.

val some_if_all_elements_are_some : 'a option t -> 'a t option

If all elements of the given list are Some _ then Some xs is returned with the xs being the contents of those Somes, with order preserved. Otherwise return None.

val map2_prefix : ('a -> 'b -> 'c) ->
'a t ->
'b t -> 'c t * 'b t

let r1, r2 = map2_prefix f l1 l2 If l1 is of length n and l2 = h2 @ t2 with h2 of length n, r1 is List.map2 f l1 h1 and r2 is t2.

val split_at : int -> 'a t -> 'a t * 'a t

split_at n l returns the pair before, after where before is the n first elements of l and after the remaining ones. If l has less than n elements, raises Invalid_argument.

val is_prefix : equal:('a -> 'a -> bool) -> 'a list -> of_:'a list -> bool

Returns true iff the given list, with respect to the given equality function on list members, is a prefix of the list of_.

type 'a longest_common_prefix_result = private {
   longest_common_prefix : 'a list;
   first_without_longest_common_prefix : 'a list;
   second_without_longest_common_prefix : 'a list;
}
val find_and_chop_longest_common_prefix : equal:('a -> 'a -> bool) ->
first:'a list ->
second:'a list -> 'a longest_common_prefix_result

Returns the longest list that, with respect to the provided equality function, is a prefix of both of the given lists. The input lists, each with such longest common prefix removed, are also returned.

ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Ms.html0000644000175000017500000001072013717225554022634 0ustar mehdimehdi Ast_helper.Ms

Module Ast_helper.Ms

module Ms: sig .. end

Module substitutions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
Ast_helper.str -> Ast_helper.lid -> Parsetree.module_substitution
ocaml-doc-4.11/ocaml.html/compilerlibref/Pparse.html0000644000175000017500000002124713717225554021430 0ustar mehdimehdi Pparse

Module Pparse

module Pparse: sig .. end

Driver for the parser and external preprocessors.

Warning: this module is unstable and part of compiler-libs.


type error = 
| CannotRun of string
| WrongMagic of string
exception Error of error
val preprocess : string -> string
val remove_preprocessed : string -> unit
type 'a ast_kind = 
| Structure : Parsetree.structure ast_kind
| Signature : Parsetree.signature ast_kind
val read_ast : 'a ast_kind -> string -> 'a
val write_ast : 'a ast_kind -> string -> 'a -> unit
val file : tool_name:string ->
string -> (Lexing.lexbuf -> 'a) -> 'a ast_kind -> 'a
val apply_rewriters : ?restore:bool -> tool_name:string -> 'a ast_kind -> 'a -> 'a

If restore = true (the default), cookies set by external rewriters will be kept for later calls.

val apply_rewriters_str : ?restore:bool ->
tool_name:string -> Parsetree.structure -> Parsetree.structure
val apply_rewriters_sig : ?restore:bool ->
tool_name:string -> Parsetree.signature -> Parsetree.signature
val report_error : Format.formatter -> error -> unit
val parse_implementation : tool_name:string -> string -> Parsetree.structure
val parse_interface : tool_name:string -> string -> Parsetree.signature
val call_external_preprocessor : string -> string -> string
val open_and_check_magic : string -> string -> in_channel * bool
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Numbers.Int16.html0000644000175000017500000000760113717225554023550 0ustar mehdimehdi Numbers.Int16 sig
  type t
  val of_int_exn : int -> Numbers.Int16.t
  val of_int64_exn : Stdlib.Int64.t -> Numbers.Int16.t
  val to_int : Numbers.Int16.t -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Parsetree.html0000644000175000017500000021140013717225554023161 0ustar mehdimehdi Parsetree sig
  type constant =
      Pconst_integer of string * char option
    | Pconst_char of char
    | Pconst_string of string * Location.t * string option
    | Pconst_float of string * char option
  type location_stack = Location.t list
  type attribute = {
    attr_name : string Asttypes.loc;
    attr_payload : Parsetree.payload;
    attr_loc : Location.t;
  }
  and extension = string Asttypes.loc * Parsetree.payload
  and attributes = Parsetree.attribute list
  and payload =
      PStr of Parsetree.structure
    | PSig of Parsetree.signature
    | PTyp of Parsetree.core_type
    | PPat of Parsetree.pattern * Parsetree.expression option
  and core_type = {
    ptyp_desc : Parsetree.core_type_desc;
    ptyp_loc : Location.t;
    ptyp_loc_stack : Parsetree.location_stack;
    ptyp_attributes : Parsetree.attributes;
  }
  and core_type_desc =
      Ptyp_any
    | Ptyp_var of string
    | Ptyp_arrow of Asttypes.arg_label * Parsetree.core_type *
        Parsetree.core_type
    | Ptyp_tuple of Parsetree.core_type list
    | Ptyp_constr of Longident.t Asttypes.loc * Parsetree.core_type list
    | Ptyp_object of Parsetree.object_field list * Asttypes.closed_flag
    | Ptyp_class of Longident.t Asttypes.loc * Parsetree.core_type list
    | Ptyp_alias of Parsetree.core_type * string
    | Ptyp_variant of Parsetree.row_field list * Asttypes.closed_flag *
        Asttypes.label list option
    | Ptyp_poly of string Asttypes.loc list * Parsetree.core_type
    | Ptyp_package of Parsetree.package_type
    | Ptyp_extension of Parsetree.extension
  and package_type =
      Longident.t Asttypes.loc *
      (Longident.t Asttypes.loc * Parsetree.core_type) list
  and row_field = {
    prf_desc : Parsetree.row_field_desc;
    prf_loc : Location.t;
    prf_attributes : Parsetree.attributes;
  }
  and row_field_desc =
      Rtag of Asttypes.label Asttypes.loc * bool * Parsetree.core_type list
    | Rinherit of Parsetree.core_type
  and object_field = {
    pof_desc : Parsetree.object_field_desc;
    pof_loc : Location.t;
    pof_attributes : Parsetree.attributes;
  }
  and object_field_desc =
      Otag of Asttypes.label Asttypes.loc * Parsetree.core_type
    | Oinherit of Parsetree.core_type
  and pattern = {
    ppat_desc : Parsetree.pattern_desc;
    ppat_loc : Location.t;
    ppat_loc_stack : Parsetree.location_stack;
    ppat_attributes : Parsetree.attributes;
  }
  and pattern_desc =
      Ppat_any
    | Ppat_var of string Asttypes.loc
    | Ppat_alias of Parsetree.pattern * string Asttypes.loc
    | Ppat_constant of Parsetree.constant
    | Ppat_interval of Parsetree.constant * Parsetree.constant
    | Ppat_tuple of Parsetree.pattern list
    | Ppat_construct of Longident.t Asttypes.loc * Parsetree.pattern option
    | Ppat_variant of Asttypes.label * Parsetree.pattern option
    | Ppat_record of (Longident.t Asttypes.loc * Parsetree.pattern) list *
        Asttypes.closed_flag
    | Ppat_array of Parsetree.pattern list
    | Ppat_or of Parsetree.pattern * Parsetree.pattern
    | Ppat_constraint of Parsetree.pattern * Parsetree.core_type
    | Ppat_type of Longident.t Asttypes.loc
    | Ppat_lazy of Parsetree.pattern
    | Ppat_unpack of string option Asttypes.loc
    | Ppat_exception of Parsetree.pattern
    | Ppat_extension of Parsetree.extension
    | Ppat_open of Longident.t Asttypes.loc * Parsetree.pattern
  and expression = {
    pexp_desc : Parsetree.expression_desc;
    pexp_loc : Location.t;
    pexp_loc_stack : Parsetree.location_stack;
    pexp_attributes : Parsetree.attributes;
  }
  and expression_desc =
      Pexp_ident of Longident.t Asttypes.loc
    | Pexp_constant of Parsetree.constant
    | Pexp_let of Asttypes.rec_flag * Parsetree.value_binding list *
        Parsetree.expression
    | Pexp_function of Parsetree.case list
    | Pexp_fun of Asttypes.arg_label * Parsetree.expression option *
        Parsetree.pattern * Parsetree.expression
    | Pexp_apply of Parsetree.expression *
        (Asttypes.arg_label * Parsetree.expression) list
    | Pexp_match of Parsetree.expression * Parsetree.case list
    | Pexp_try of Parsetree.expression * Parsetree.case list
    | Pexp_tuple of Parsetree.expression list
    | Pexp_construct of Longident.t Asttypes.loc *
        Parsetree.expression option
    | Pexp_variant of Asttypes.label * Parsetree.expression option
    | Pexp_record of (Longident.t Asttypes.loc * Parsetree.expression) list *
        Parsetree.expression option
    | Pexp_field of Parsetree.expression * Longident.t Asttypes.loc
    | Pexp_setfield of Parsetree.expression * Longident.t Asttypes.loc *
        Parsetree.expression
    | Pexp_array of Parsetree.expression list
    | Pexp_ifthenelse of Parsetree.expression * Parsetree.expression *
        Parsetree.expression option
    | Pexp_sequence of Parsetree.expression * Parsetree.expression
    | Pexp_while of Parsetree.expression * Parsetree.expression
    | Pexp_for of Parsetree.pattern * Parsetree.expression *
        Parsetree.expression * Asttypes.direction_flag * Parsetree.expression
    | Pexp_constraint of Parsetree.expression * Parsetree.core_type
    | Pexp_coerce of Parsetree.expression * Parsetree.core_type option *
        Parsetree.core_type
    | Pexp_send of Parsetree.expression * Asttypes.label Asttypes.loc
    | Pexp_new of Longident.t Asttypes.loc
    | Pexp_setinstvar of Asttypes.label Asttypes.loc * Parsetree.expression
    | Pexp_override of
        (Asttypes.label Asttypes.loc * Parsetree.expression) list
    | Pexp_letmodule of string option Asttypes.loc * Parsetree.module_expr *
        Parsetree.expression
    | Pexp_letexception of Parsetree.extension_constructor *
        Parsetree.expression
    | Pexp_assert of Parsetree.expression
    | Pexp_lazy of Parsetree.expression
    | Pexp_poly of Parsetree.expression * Parsetree.core_type option
    | Pexp_object of Parsetree.class_structure
    | Pexp_newtype of string Asttypes.loc * Parsetree.expression
    | Pexp_pack of Parsetree.module_expr
    | Pexp_open of Parsetree.open_declaration * Parsetree.expression
    | Pexp_letop of Parsetree.letop
    | Pexp_extension of Parsetree.extension
    | Pexp_unreachable
  and case = {
    pc_lhs : Parsetree.pattern;
    pc_guard : Parsetree.expression option;
    pc_rhs : Parsetree.expression;
  }
  and letop = {
    let_ : Parsetree.binding_op;
    ands : Parsetree.binding_op list;
    body : Parsetree.expression;
  }
  and binding_op = {
    pbop_op : string Asttypes.loc;
    pbop_pat : Parsetree.pattern;
    pbop_exp : Parsetree.expression;
    pbop_loc : Location.t;
  }
  and value_description = {
    pval_name : string Asttypes.loc;
    pval_type : Parsetree.core_type;
    pval_prim : string list;
    pval_attributes : Parsetree.attributes;
    pval_loc : Location.t;
  }
  and type_declaration = {
    ptype_name : string Asttypes.loc;
    ptype_params : (Parsetree.core_type * Asttypes.variance) list;
    ptype_cstrs :
      (Parsetree.core_type * Parsetree.core_type * Location.t) list;
    ptype_kind : Parsetree.type_kind;
    ptype_private : Asttypes.private_flag;
    ptype_manifest : Parsetree.core_type option;
    ptype_attributes : Parsetree.attributes;
    ptype_loc : Location.t;
  }
  and type_kind =
      Ptype_abstract
    | Ptype_variant of Parsetree.constructor_declaration list
    | Ptype_record of Parsetree.label_declaration list
    | Ptype_open
  and label_declaration = {
    pld_name : string Asttypes.loc;
    pld_mutable : Asttypes.mutable_flag;
    pld_type : Parsetree.core_type;
    pld_loc : Location.t;
    pld_attributes : Parsetree.attributes;
  }
  and constructor_declaration = {
    pcd_name : string Asttypes.loc;
    pcd_args : Parsetree.constructor_arguments;
    pcd_res : Parsetree.core_type option;
    pcd_loc : Location.t;
    pcd_attributes : Parsetree.attributes;
  }
  and constructor_arguments =
      Pcstr_tuple of Parsetree.core_type list
    | Pcstr_record of Parsetree.label_declaration list
  and type_extension = {
    ptyext_path : Longident.t Asttypes.loc;
    ptyext_params : (Parsetree.core_type * Asttypes.variance) list;
    ptyext_constructors : Parsetree.extension_constructor list;
    ptyext_private : Asttypes.private_flag;
    ptyext_loc : Location.t;
    ptyext_attributes : Parsetree.attributes;
  }
  and extension_constructor = {
    pext_name : string Asttypes.loc;
    pext_kind : Parsetree.extension_constructor_kind;
    pext_loc : Location.t;
    pext_attributes : Parsetree.attributes;
  }
  and type_exception = {
    ptyexn_constructor : Parsetree.extension_constructor;
    ptyexn_loc : Location.t;
    ptyexn_attributes : Parsetree.attributes;
  }
  and extension_constructor_kind =
      Pext_decl of Parsetree.constructor_arguments *
        Parsetree.core_type option
    | Pext_rebind of Longident.t Asttypes.loc
  and class_type = {
    pcty_desc : Parsetree.class_type_desc;
    pcty_loc : Location.t;
    pcty_attributes : Parsetree.attributes;
  }
  and class_type_desc =
      Pcty_constr of Longident.t Asttypes.loc * Parsetree.core_type list
    | Pcty_signature of Parsetree.class_signature
    | Pcty_arrow of Asttypes.arg_label * Parsetree.core_type *
        Parsetree.class_type
    | Pcty_extension of Parsetree.extension
    | Pcty_open of Parsetree.open_description * Parsetree.class_type
  and class_signature = {
    pcsig_self : Parsetree.core_type;
    pcsig_fields : Parsetree.class_type_field list;
  }
  and class_type_field = {
    pctf_desc : Parsetree.class_type_field_desc;
    pctf_loc : Location.t;
    pctf_attributes : Parsetree.attributes;
  }
  and class_type_field_desc =
      Pctf_inherit of Parsetree.class_type
    | Pctf_val of
        (Asttypes.label Asttypes.loc * Asttypes.mutable_flag *
         Asttypes.virtual_flag * Parsetree.core_type)
    | Pctf_method of
        (Asttypes.label Asttypes.loc * Asttypes.private_flag *
         Asttypes.virtual_flag * Parsetree.core_type)
    | Pctf_constraint of (Parsetree.core_type * Parsetree.core_type)
    | Pctf_attribute of Parsetree.attribute
    | Pctf_extension of Parsetree.extension
  and 'a class_infos = {
    pci_virt : Asttypes.virtual_flag;
    pci_params : (Parsetree.core_type * Asttypes.variance) list;
    pci_name : string Asttypes.loc;
    pci_expr : 'a;
    pci_loc : Location.t;
    pci_attributes : Parsetree.attributes;
  }
  and class_description = Parsetree.class_type Parsetree.class_infos
  and class_type_declaration = Parsetree.class_type Parsetree.class_infos
  and class_expr = {
    pcl_desc : Parsetree.class_expr_desc;
    pcl_loc : Location.t;
    pcl_attributes : Parsetree.attributes;
  }
  and class_expr_desc =
      Pcl_constr of Longident.t Asttypes.loc * Parsetree.core_type list
    | Pcl_structure of Parsetree.class_structure
    | Pcl_fun of Asttypes.arg_label * Parsetree.expression option *
        Parsetree.pattern * Parsetree.class_expr
    | Pcl_apply of Parsetree.class_expr *
        (Asttypes.arg_label * Parsetree.expression) list
    | Pcl_let of Asttypes.rec_flag * Parsetree.value_binding list *
        Parsetree.class_expr
    | Pcl_constraint of Parsetree.class_expr * Parsetree.class_type
    | Pcl_extension of Parsetree.extension
    | Pcl_open of Parsetree.open_description * Parsetree.class_expr
  and class_structure = {
    pcstr_self : Parsetree.pattern;
    pcstr_fields : Parsetree.class_field list;
  }
  and class_field = {
    pcf_desc : Parsetree.class_field_desc;
    pcf_loc : Location.t;
    pcf_attributes : Parsetree.attributes;
  }
  and class_field_desc =
      Pcf_inherit of Asttypes.override_flag * Parsetree.class_expr *
        string Asttypes.loc option
    | Pcf_val of
        (Asttypes.label Asttypes.loc * Asttypes.mutable_flag *
         Parsetree.class_field_kind)
    | Pcf_method of
        (Asttypes.label Asttypes.loc * Asttypes.private_flag *
         Parsetree.class_field_kind)
    | Pcf_constraint of (Parsetree.core_type * Parsetree.core_type)
    | Pcf_initializer of Parsetree.expression
    | Pcf_attribute of Parsetree.attribute
    | Pcf_extension of Parsetree.extension
  and class_field_kind =
      Cfk_virtual of Parsetree.core_type
    | Cfk_concrete of Asttypes.override_flag * Parsetree.expression
  and class_declaration = Parsetree.class_expr Parsetree.class_infos
  and module_type = {
    pmty_desc : Parsetree.module_type_desc;
    pmty_loc : Location.t;
    pmty_attributes : Parsetree.attributes;
  }
  and module_type_desc =
      Pmty_ident of Longident.t Asttypes.loc
    | Pmty_signature of Parsetree.signature
    | Pmty_functor of Parsetree.functor_parameter * Parsetree.module_type
    | Pmty_with of Parsetree.module_type * Parsetree.with_constraint list
    | Pmty_typeof of Parsetree.module_expr
    | Pmty_extension of Parsetree.extension
    | Pmty_alias of Longident.t Asttypes.loc
  and functor_parameter =
      Unit
    | Named of string option Asttypes.loc * Parsetree.module_type
  and signature = Parsetree.signature_item list
  and signature_item = {
    psig_desc : Parsetree.signature_item_desc;
    psig_loc : Location.t;
  }
  and signature_item_desc =
      Psig_value of Parsetree.value_description
    | Psig_type of Asttypes.rec_flag * Parsetree.type_declaration list
    | Psig_typesubst of Parsetree.type_declaration list
    | Psig_typext of Parsetree.type_extension
    | Psig_exception of Parsetree.type_exception
    | Psig_module of Parsetree.module_declaration
    | Psig_modsubst of Parsetree.module_substitution
    | Psig_recmodule of Parsetree.module_declaration list
    | Psig_modtype of Parsetree.module_type_declaration
    | Psig_open of Parsetree.open_description
    | Psig_include of Parsetree.include_description
    | Psig_class of Parsetree.class_description list
    | Psig_class_type of Parsetree.class_type_declaration list
    | Psig_attribute of Parsetree.attribute
    | Psig_extension of Parsetree.extension * Parsetree.attributes
  and module_declaration = {
    pmd_name : string option Asttypes.loc;
    pmd_type : Parsetree.module_type;
    pmd_attributes : Parsetree.attributes;
    pmd_loc : Location.t;
  }
  and module_substitution = {
    pms_name : string Asttypes.loc;
    pms_manifest : Longident.t Asttypes.loc;
    pms_attributes : Parsetree.attributes;
    pms_loc : Location.t;
  }
  and module_type_declaration = {
    pmtd_name : string Asttypes.loc;
    pmtd_type : Parsetree.module_type option;
    pmtd_attributes : Parsetree.attributes;
    pmtd_loc : Location.t;
  }
  and 'a open_infos = {
    popen_expr : 'a;
    popen_override : Asttypes.override_flag;
    popen_loc : Location.t;
    popen_attributes : Parsetree.attributes;
  }
  and open_description = Longident.t Asttypes.loc Parsetree.open_infos
  and open_declaration = Parsetree.module_expr Parsetree.open_infos
  and 'a include_infos = {
    pincl_mod : 'a;
    pincl_loc : Location.t;
    pincl_attributes : Parsetree.attributes;
  }
  and include_description = Parsetree.module_type Parsetree.include_infos
  and include_declaration = Parsetree.module_expr Parsetree.include_infos
  and with_constraint =
      Pwith_type of Longident.t Asttypes.loc * Parsetree.type_declaration
    | Pwith_module of Longident.t Asttypes.loc * Longident.t Asttypes.loc
    | Pwith_typesubst of Longident.t Asttypes.loc *
        Parsetree.type_declaration
    | Pwith_modsubst of Longident.t Asttypes.loc * Longident.t Asttypes.loc
  and module_expr = {
    pmod_desc : Parsetree.module_expr_desc;
    pmod_loc : Location.t;
    pmod_attributes : Parsetree.attributes;
  }
  and module_expr_desc =
      Pmod_ident of Longident.t Asttypes.loc
    | Pmod_structure of Parsetree.structure
    | Pmod_functor of Parsetree.functor_parameter * Parsetree.module_expr
    | Pmod_apply of Parsetree.module_expr * Parsetree.module_expr
    | Pmod_constraint of Parsetree.module_expr * Parsetree.module_type
    | Pmod_unpack of Parsetree.expression
    | Pmod_extension of Parsetree.extension
  and structure = Parsetree.structure_item list
  and structure_item = {
    pstr_desc : Parsetree.structure_item_desc;
    pstr_loc : Location.t;
  }
  and structure_item_desc =
      Pstr_eval of Parsetree.expression * Parsetree.attributes
    | Pstr_value of Asttypes.rec_flag * Parsetree.value_binding list
    | Pstr_primitive of Parsetree.value_description
    | Pstr_type of Asttypes.rec_flag * Parsetree.type_declaration list
    | Pstr_typext of Parsetree.type_extension
    | Pstr_exception of Parsetree.type_exception
    | Pstr_module of Parsetree.module_binding
    | Pstr_recmodule of Parsetree.module_binding list
    | Pstr_modtype of Parsetree.module_type_declaration
    | Pstr_open of Parsetree.open_declaration
    | Pstr_class of Parsetree.class_declaration list
    | Pstr_class_type of Parsetree.class_type_declaration list
    | Pstr_include of Parsetree.include_declaration
    | Pstr_attribute of Parsetree.attribute
    | Pstr_extension of Parsetree.extension * Parsetree.attributes
  and value_binding = {
    pvb_pat : Parsetree.pattern;
    pvb_expr : Parsetree.expression;
    pvb_attributes : Parsetree.attributes;
    pvb_loc : Location.t;
  }
  and module_binding = {
    pmb_name : string option Asttypes.loc;
    pmb_expr : Parsetree.module_expr;
    pmb_attributes : Parsetree.attributes;
    pmb_loc : Location.t;
  }
  type toplevel_phrase =
      Ptop_def of Parsetree.structure
    | Ptop_dir of Parsetree.toplevel_directive
  and toplevel_directive = {
    pdir_name : string Asttypes.loc;
    pdir_arg : Parsetree.directive_argument option;
    pdir_loc : Location.t;
  }
  and directive_argument = {
    pdira_desc : Parsetree.directive_argument_desc;
    pdira_loc : Location.t;
  }
  and directive_argument_desc =
      Pdir_string of string
    | Pdir_int of string * char option
    | Pdir_ident of Longident.t
    | Pdir_bool of bool
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Pair.html0000644000175000017500000001270413717225554023445 0ustar mehdimehdi Identifiable.Pair

Functor Identifiable.Pair

module Pair: 
functor (A : Thing-> 
functor (B : Thing-> Thing with type t = A.t * B.t
Parameters:
A : Thing
B : Thing

type t 
include Hashtbl.HashedType
include Map.OrderedType
val output : out_channel -> t -> unit
val print : Format.formatter -> t -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Tbl.T.html0000644000175000017500000000724413717225554024541 0ustar mehdimehdi Identifiable.Tbl.T sig
  type t
  val compare : t -> t -> int
  val equal : t -> t -> bool
  val hash : t -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.ENGINE.html0000644000175000017500000001103113717225554027564 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.ENGINE

Module type CamlinternalMenhirLib.EngineTypes.ENGINE

module type ENGINE = sig .. end

include CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE
include CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE
include CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.html0000644000175000017500000057064713717225554025457 0ustar mehdimehdi CamlinternalMenhirLib sig
  module General :
    sig
      val take : int -> 'a list -> 'a list
      val drop : int -> 'a list -> 'a list
      val uniq : ('-> '-> int) -> 'a list -> 'a list
      val weed : ('-> '-> int) -> 'a list -> 'a list
      type 'a stream = 'CamlinternalMenhirLib.General.head Stdlib.Lazy.t
      and 'a head =
          Nil
        | Cons of 'a * 'CamlinternalMenhirLib.General.stream
      val length : 'CamlinternalMenhirLib.General.stream -> int
      val foldr :
        ('-> '-> 'b) ->
        'CamlinternalMenhirLib.General.stream -> '-> 'b
    end
  module Convert :
    sig
      type ('token, 'semantic_value) traditional =
          (Stdlib.Lexing.lexbuf -> 'token) ->
          Stdlib.Lexing.lexbuf -> 'semantic_value
      type ('token, 'semantic_value) revised =
          (unit -> 'token) -> 'semantic_value
      val traditional2revised :
        ('token -> 'raw_token) ->
        ('token -> Stdlib.Lexing.position) ->
        ('token -> Stdlib.Lexing.position) ->
        ('raw_token, 'semantic_value)
        CamlinternalMenhirLib.Convert.traditional ->
        ('token, 'semantic_value) CamlinternalMenhirLib.Convert.revised
      val revised2traditional :
        ('raw_token ->
         Stdlib.Lexing.position -> Stdlib.Lexing.position -> 'token) ->
        ('token, 'semantic_value) CamlinternalMenhirLib.Convert.revised ->
        ('raw_token, 'semantic_value)
        CamlinternalMenhirLib.Convert.traditional
      module Simplified :
        sig
          val traditional2revised :
            ('token, 'semantic_value)
            CamlinternalMenhirLib.Convert.traditional ->
            ('token * Stdlib.Lexing.position * Stdlib.Lexing.position,
             'semantic_value)
            CamlinternalMenhirLib.Convert.revised
          val revised2traditional :
            ('token * Stdlib.Lexing.position * Stdlib.Lexing.position,
             'semantic_value)
            CamlinternalMenhirLib.Convert.revised ->
            ('token, 'semantic_value)
            CamlinternalMenhirLib.Convert.traditional
        end
    end
  module IncrementalEngine :
    sig
      type position = Stdlib.Lexing.position
      module type INCREMENTAL_ENGINE =
        sig
          type token
          type production
          type 'a env
          type 'a checkpoint = private
              InputNeeded of
                'a
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
            | Shifting of
                'a
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
                'a
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
                bool
            | AboutToReduce of
                'a
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production
            | HandlingError of
                'a
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
            | Accepted of 'a
            | Rejected
          val offer :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token *
            CamlinternalMenhirLib.IncrementalEngine.position *
            CamlinternalMenhirLib.IncrementalEngine.position ->
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
          val resume :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
          type supplier =
              unit ->
              CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token *
              CamlinternalMenhirLib.IncrementalEngine.position *
              CamlinternalMenhirLib.IncrementalEngine.position
          val lexer_lexbuf_to_supplier :
            (Stdlib.Lexing.lexbuf ->
             CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token) ->
            Stdlib.Lexing.lexbuf ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier
          val loop :
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            'a
          val loop_handle :
            ('-> 'answer) ->
            ('a
             CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
             'answer) ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            'answer
          val loop_handle_undo :
            ('-> 'answer) ->
            ('a
             CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
             'a
             CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
             'answer) ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            'answer
          val shifts :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
            option
          val acceptable :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token ->
            CamlinternalMenhirLib.IncrementalEngine.position -> bool
          type 'a lr1state
          val number :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state ->
            int
          val production_index :
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production ->
            int
          val find_production :
            int ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production
          type element =
              Element :
                'a
                CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state *
                'a * CamlinternalMenhirLib.IncrementalEngine.position *
                CamlinternalMenhirLib.IncrementalEngine.position -> CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
          type stack =
              CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
              CamlinternalMenhirLib.General.stream
          val stack :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.stack
          val top :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
            option
          val pop_many :
            int ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
            option
          val get :
            int ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
            option
          val current_state_number :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            int
          val equal :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            bool
          val positions :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            CamlinternalMenhirLib.IncrementalEngine.position *
            CamlinternalMenhirLib.IncrementalEngine.position
          val env_has_default_reduction :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            bool
          val state_has_default_reduction :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state ->
            bool
          val pop :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
            option
          val force_reduction :
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
          val input_needed :
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
        end
      module type SYMBOLS =
        sig
          type 'a terminal
          type 'a nonterminal
          type 'a symbol =
              T :
                'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.terminal -> 
                'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol
            | N :
                'a
                CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.nonterminal -> 
                'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol
          type xsymbol =
              X :
                'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol -> 
                CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.xsymbol
        end
      module type INSPECTION =
        sig
          type 'a terminal
          type 'a nonterminal
          type 'a symbol =
              T : 'a terminal -> 'a symbol
            | N : 'a nonterminal -> 'a symbol
          type xsymbol = X : 'a symbol -> xsymbol
          type 'a lr1state
          type production
          type item =
              CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production *
              int
          val compare_terminals : 'a terminal -> 'b terminal -> int
          val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
          val compare_symbols : xsymbol -> xsymbol -> int
          val compare_productions :
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
            int
          val compare_items :
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item ->
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item -> int
          val incoming_symbol :
            'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.lr1state ->
            'a symbol
          val items :
            'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.lr1state ->
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item list
          val lhs :
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
            xsymbol
          val rhs :
            CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
            xsymbol list
          val nullable : 'a nonterminal -> bool
          val first : 'a nonterminal -> 'b terminal -> bool
          val xfirst : xsymbol -> 'a terminal -> bool
          val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
          val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
          type 'a env
          val feed :
            'a symbol ->
            CamlinternalMenhirLib.IncrementalEngine.position ->
            '->
            CamlinternalMenhirLib.IncrementalEngine.position ->
            'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.env ->
            'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.env
        end
      module type EVERYTHING =
        sig
          type token
          type production
          type 'a env
          type 'a checkpoint = private
              InputNeeded of 'a env
            | Shifting of 'a env * 'a env * bool
            | AboutToReduce of 'a env * production
            | HandlingError of 'a env
            | Accepted of 'a
            | Rejected
          val offer :
            'a checkpoint -> token * position * position -> 'a checkpoint
          val resume : 'a checkpoint -> 'a checkpoint
          type supplier = unit -> token * position * position
          val lexer_lexbuf_to_supplier :
            (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
          val loop : supplier -> 'a checkpoint -> 'a
          val loop_handle :
            ('-> 'answer) ->
            ('a checkpoint -> 'answer) ->
            supplier -> 'a checkpoint -> 'answer
          val loop_handle_undo :
            ('-> 'answer) ->
            ('a checkpoint -> 'a checkpoint -> 'answer) ->
            supplier -> 'a checkpoint -> 'answer
          val shifts : 'a checkpoint -> 'a env option
          val acceptable : 'a checkpoint -> token -> position -> bool
          type 'a lr1state
          val number : 'a lr1state -> int
          val production_index : production -> int
          val find_production : int -> production
          type element =
              Element : 'a lr1state * 'a * position * position -> element
          type stack = element General.stream
          val stack : 'a env -> stack
          val top : 'a env -> element option
          val pop_many : int -> 'a env -> 'a env option
          val get : int -> 'a env -> element option
          val current_state_number : 'a env -> int
          val equal : 'a env -> 'a env -> bool
          val positions : 'a env -> position * position
          val env_has_default_reduction : 'a env -> bool
          val state_has_default_reduction : 'a lr1state -> bool
          val pop : 'a env -> 'a env option
          val force_reduction : production -> 'a env -> 'a env
          val input_needed : 'a env -> 'a checkpoint
          type 'a terminal
          type 'a nonterminal
          type 'a symbol =
              T : 'a terminal -> 'a symbol
            | N : 'a nonterminal -> 'a symbol
          type xsymbol = X : 'a symbol -> xsymbol
          type item = production * int
          val compare_terminals : 'a terminal -> 'b terminal -> int
          val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
          val compare_symbols : xsymbol -> xsymbol -> int
          val compare_productions : production -> production -> int
          val compare_items : item -> item -> int
          val incoming_symbol : 'a lr1state -> 'a symbol
          val items : 'a lr1state -> item list
          val lhs : production -> xsymbol
          val rhs : production -> xsymbol list
          val nullable : 'a nonterminal -> bool
          val first : 'a nonterminal -> 'b terminal -> bool
          val xfirst : xsymbol -> 'a terminal -> bool
          val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
          val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
          val feed :
            'a symbol -> position -> '-> position -> 'b env -> 'b env
        end
    end
  module EngineTypes :
    sig
      type ('state, 'semantic_value) stack = {
        state : 'state;
        semv : 'semantic_value;
        startp : Stdlib.Lexing.position;
        endp : Stdlib.Lexing.position;
        next :
          ('state, 'semantic_value) CamlinternalMenhirLib.EngineTypes.stack;
      }
      type ('state, 'semantic_value, 'token) env = {
        error : bool;
        triple : 'token * Stdlib.Lexing.position * Stdlib.Lexing.position;
        stack :
          ('state, 'semantic_value) CamlinternalMenhirLib.EngineTypes.stack;
        current : 'state;
      }
      module type TABLE =
        sig
          type state
          val number : CamlinternalMenhirLib.EngineTypes.TABLE.state -> int
          type token
          type terminal
          type nonterminal
          type semantic_value
          val token2terminal :
            CamlinternalMenhirLib.EngineTypes.TABLE.token ->
            CamlinternalMenhirLib.EngineTypes.TABLE.terminal
          val token2value :
            CamlinternalMenhirLib.EngineTypes.TABLE.token ->
            CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value
          val error_terminal :
            CamlinternalMenhirLib.EngineTypes.TABLE.terminal
          val error_value :
            CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value
          val foreach_terminal :
            (CamlinternalMenhirLib.EngineTypes.TABLE.terminal -> '-> 'a) ->
            '-> 'a
          type production
          val production_index :
            CamlinternalMenhirLib.EngineTypes.TABLE.production -> int
          val find_production :
            int -> CamlinternalMenhirLib.EngineTypes.TABLE.production
          val default_reduction :
            CamlinternalMenhirLib.EngineTypes.TABLE.state ->
            ('env ->
             CamlinternalMenhirLib.EngineTypes.TABLE.production -> 'answer) ->
            ('env -> 'answer) -> 'env -> 'answer
          val action :
            CamlinternalMenhirLib.EngineTypes.TABLE.state ->
            CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
            CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value ->
            ('env ->
             bool ->
             CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
             CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value ->
             CamlinternalMenhirLib.EngineTypes.TABLE.state -> 'answer) ->
            ('env ->
             CamlinternalMenhirLib.EngineTypes.TABLE.production -> 'answer) ->
            ('env -> 'answer) -> 'env -> 'answer
          val goto_nt :
            CamlinternalMenhirLib.EngineTypes.TABLE.state ->
            CamlinternalMenhirLib.EngineTypes.TABLE.nonterminal ->
            CamlinternalMenhirLib.EngineTypes.TABLE.state
          val goto_prod :
            CamlinternalMenhirLib.EngineTypes.TABLE.state ->
            CamlinternalMenhirLib.EngineTypes.TABLE.production ->
            CamlinternalMenhirLib.EngineTypes.TABLE.state
          val maybe_goto_nt :
            CamlinternalMenhirLib.EngineTypes.TABLE.state ->
            CamlinternalMenhirLib.EngineTypes.TABLE.nonterminal ->
            CamlinternalMenhirLib.EngineTypes.TABLE.state option
          val is_start :
            CamlinternalMenhirLib.EngineTypes.TABLE.production -> bool
          exception Error
          type semantic_action =
              (CamlinternalMenhirLib.EngineTypes.TABLE.state,
               CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value,
               CamlinternalMenhirLib.EngineTypes.TABLE.token)
              CamlinternalMenhirLib.EngineTypes.env ->
              (CamlinternalMenhirLib.EngineTypes.TABLE.state,
               CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value)
              CamlinternalMenhirLib.EngineTypes.stack
          val semantic_action :
            CamlinternalMenhirLib.EngineTypes.TABLE.production ->
            CamlinternalMenhirLib.EngineTypes.TABLE.semantic_action
          val may_reduce :
            CamlinternalMenhirLib.EngineTypes.TABLE.state ->
            CamlinternalMenhirLib.EngineTypes.TABLE.production -> bool
          val log : bool
          module Log :
            sig
              val state :
                CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
              val shift :
                CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
                CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
              val reduce_or_accept :
                CamlinternalMenhirLib.EngineTypes.TABLE.production -> unit
              val lookahead_token :
                CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
                Stdlib.Lexing.position -> Stdlib.Lexing.position -> unit
              val initiating_error_handling : unit -> unit
              val resuming_error_handling : unit -> unit
              val handling_error :
                CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
            end
        end
      module type MONOLITHIC_ENGINE =
        sig
          type state
          type token
          type semantic_value
          exception Error
          val entry :
            CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.state ->
            (Stdlib.Lexing.lexbuf ->
             CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.token) ->
            Stdlib.Lexing.lexbuf ->
            CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE.semantic_value
        end
      module type INCREMENTAL_ENGINE_START =
        sig
          type state
          type semantic_value
          type 'a checkpoint
          val start :
            CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.state ->
            Stdlib.Lexing.position ->
            CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.semantic_value
            CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.checkpoint
        end
      module type ENGINE =
        sig
          type state
          type token
          type semantic_value
          exception Error
          val entry :
            state ->
            (Lexing.lexbuf -> token) -> Lexing.lexbuf -> semantic_value
          type production
          type 'a env
          type 'a checkpoint = private
              InputNeeded of 'a env
            | Shifting of 'a env * 'a env * bool
            | AboutToReduce of 'a env * production
            | HandlingError of 'a env
            | Accepted of 'a
            | Rejected
          val offer :
            'a checkpoint ->
            token * IncrementalEngine.position * IncrementalEngine.position ->
            'a checkpoint
          val resume : 'a checkpoint -> 'a checkpoint
          type supplier =
              unit ->
              token * IncrementalEngine.position * IncrementalEngine.position
          val lexer_lexbuf_to_supplier :
            (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
          val loop : supplier -> 'a checkpoint -> 'a
          val loop_handle :
            ('-> 'answer) ->
            ('a checkpoint -> 'answer) ->
            supplier -> 'a checkpoint -> 'answer
          val loop_handle_undo :
            ('-> 'answer) ->
            ('a checkpoint -> 'a checkpoint -> 'answer) ->
            supplier -> 'a checkpoint -> 'answer
          val shifts : 'a checkpoint -> 'a env option
          val acceptable :
            'a checkpoint -> token -> IncrementalEngine.position -> bool
          type 'a lr1state = state
          val number : 'a lr1state -> int
          val production_index : production -> int
          val find_production : int -> production
          type element =
              Element : 'a lr1state * 'a * IncrementalEngine.position *
                IncrementalEngine.position -> element
          type stack = element General.stream
          val stack : 'a env -> stack
          val top : 'a env -> element option
          val pop_many : int -> 'a env -> 'a env option
          val get : int -> 'a env -> element option
          val current_state_number : 'a env -> int
          val equal : 'a env -> 'a env -> bool
          val positions :
            'a env -> IncrementalEngine.position * IncrementalEngine.position
          val env_has_default_reduction : 'a env -> bool
          val state_has_default_reduction : 'a lr1state -> bool
          val pop : 'a env -> 'a env option
          val force_reduction : production -> 'a env -> 'a env
          val input_needed : 'a env -> 'a checkpoint
          val start : state -> Lexing.position -> semantic_value checkpoint
        end
    end
  module Engine :
    sig
      module Make :
        functor (T : EngineTypes.TABLE->
          sig
            type state = T.state
            type token = T.token
            type semantic_value = T.semantic_value
            exception Error
            val entry :
              state ->
              (Lexing.lexbuf -> token) -> Lexing.lexbuf -> semantic_value
            type production = T.production
            type 'a env =
                (T.state, T.semantic_value, T.token) EngineTypes.env
            type 'a checkpoint = private
                InputNeeded of 'a env
              | Shifting of 'a env * 'a env * bool
              | AboutToReduce of 'a env * production
              | HandlingError of 'a env
              | Accepted of 'a
              | Rejected
            val offer :
              'a checkpoint ->
              token * IncrementalEngine.position * IncrementalEngine.position ->
              'a checkpoint
            val resume : 'a checkpoint -> 'a checkpoint
            type supplier =
                unit ->
                token * IncrementalEngine.position *
                IncrementalEngine.position
            val lexer_lexbuf_to_supplier :
              (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
            val loop : supplier -> 'a checkpoint -> 'a
            val loop_handle :
              ('-> 'answer) ->
              ('a checkpoint -> 'answer) ->
              supplier -> 'a checkpoint -> 'answer
            val loop_handle_undo :
              ('-> 'answer) ->
              ('a checkpoint -> 'a checkpoint -> 'answer) ->
              supplier -> 'a checkpoint -> 'answer
            val shifts : 'a checkpoint -> 'a env option
            val acceptable :
              'a checkpoint -> token -> IncrementalEngine.position -> bool
            type 'a lr1state = state
            val number : 'a lr1state -> int
            val production_index : production -> int
            val find_production : int -> production
            type element =
                Element : 'a lr1state * 'a * IncrementalEngine.position *
                  IncrementalEngine.position -> element
            type stack = element General.stream
            val stack : 'a env -> stack
            val top : 'a env -> element option
            val pop_many : int -> 'a env -> 'a env option
            val get : int -> 'a env -> element option
            val current_state_number : 'a env -> int
            val equal : 'a env -> 'a env -> bool
            val positions :
              'a env ->
              IncrementalEngine.position * IncrementalEngine.position
            val env_has_default_reduction : 'a env -> bool
            val state_has_default_reduction : 'a lr1state -> bool
            val pop : 'a env -> 'a env option
            val force_reduction : production -> 'a env -> 'a env
            val input_needed : 'a env -> 'a checkpoint
            val start : state -> Lexing.position -> semantic_value checkpoint
          end
    end
  module ErrorReports :
    sig
      type 'a buffer
      val wrap :
        (Stdlib.Lexing.lexbuf -> 'token) ->
        (Stdlib.Lexing.position * Stdlib.Lexing.position)
        CamlinternalMenhirLib.ErrorReports.buffer *
        (Stdlib.Lexing.lexbuf -> 'token)
      val show :
        ('-> string) ->
        'CamlinternalMenhirLib.ErrorReports.buffer -> string
      val last : 'CamlinternalMenhirLib.ErrorReports.buffer -> 'a
    end
  module Printers :
    sig
      module Make :
        functor (I : IncrementalEngine.EVERYTHING)
          (User : sig
                    val print : string -> unit
                    val print_symbol : I.xsymbol -> unit
                    val print_element : (I.element -> unit) option
                  end)
          ->
          sig
            val print_symbols : I.xsymbol list -> unit
            val print_element_as_symbol : I.element -> unit
            val print_stack : 'I.env -> unit
            val print_item : I.item -> unit
            val print_production : I.production -> unit
            val print_current_state : 'I.env -> unit
            val print_env : 'I.env -> unit
          end
    end
  module InfiniteArray :
    sig
      type 'a t
      val make : '-> 'CamlinternalMenhirLib.InfiniteArray.t
      val get : 'CamlinternalMenhirLib.InfiniteArray.t -> int -> 'a
      val set : 'CamlinternalMenhirLib.InfiniteArray.t -> int -> '-> unit
      val extent : 'CamlinternalMenhirLib.InfiniteArray.t -> int
      val domain : 'CamlinternalMenhirLib.InfiniteArray.t -> 'a array
    end
  module PackedIntArray :
    sig
      type t = int * string
      val pack : int array -> CamlinternalMenhirLib.PackedIntArray.t
      val get : CamlinternalMenhirLib.PackedIntArray.t -> int -> int
      val get1 : string -> int -> int
      val unflatten1 : int * string -> int -> int -> int
    end
  module RowDisplacement :
    sig
      type 'a table = int array * 'a array
      val compress :
        ('-> '-> bool) ->
        ('-> bool) ->
        '->
        int ->
        int ->
        'a array array -> 'CamlinternalMenhirLib.RowDisplacement.table
      val get :
        'CamlinternalMenhirLib.RowDisplacement.table -> int -> int -> 'a
      val getget :
        ('displacement -> int -> int) ->
        ('data -> int -> 'a) -> 'displacement * 'data -> int -> int -> 'a
    end
  module LinearizedArray :
    sig
      type 'a t = 'a array * int array
      val make : 'a array array -> 'CamlinternalMenhirLib.LinearizedArray.t
      val read :
        'CamlinternalMenhirLib.LinearizedArray.t -> int -> int -> 'a
      val write :
        'CamlinternalMenhirLib.LinearizedArray.t ->
        int -> int -> '-> unit
      val length : 'CamlinternalMenhirLib.LinearizedArray.t -> int
      val row_length :
        'CamlinternalMenhirLib.LinearizedArray.t -> int -> int
      val read_row :
        'CamlinternalMenhirLib.LinearizedArray.t -> int -> 'a list
      val row_length_via : (int -> int) -> int -> int
      val read_via : (int -> 'a) -> (int -> int) -> int -> int -> 'a
      val read_row_via : (int -> 'a) -> (int -> int) -> int -> 'a list
    end
  module TableFormat :
    sig
      module type TABLES =
        sig
          type token
          val token2terminal :
            CamlinternalMenhirLib.TableFormat.TABLES.token -> int
          val error_terminal : int
          val token2value :
            CamlinternalMenhirLib.TableFormat.TABLES.token -> Stdlib.Obj.t
          val default_reduction : CamlinternalMenhirLib.PackedIntArray.t
          val error : int * string
          val action :
            CamlinternalMenhirLib.PackedIntArray.t *
            CamlinternalMenhirLib.PackedIntArray.t
          val lhs : CamlinternalMenhirLib.PackedIntArray.t
          val goto :
            CamlinternalMenhirLib.PackedIntArray.t *
            CamlinternalMenhirLib.PackedIntArray.t
          val start : int
          val semantic_action :
            ((int, Stdlib.Obj.t,
              CamlinternalMenhirLib.TableFormat.TABLES.token)
             CamlinternalMenhirLib.EngineTypes.env ->
             (int, Stdlib.Obj.t) CamlinternalMenhirLib.EngineTypes.stack)
            array
          exception Error
          val trace : (string array * string array) option
        end
    end
  module InspectionTableFormat :
    sig
      module type TABLES =
        sig
          type 'a terminal
          type 'a nonterminal
          type 'a symbol =
              T : 'a terminal -> 'a symbol
            | N : 'a nonterminal -> 'a symbol
          type xsymbol = X : 'a symbol -> xsymbol
          type 'a lr1state
          val terminal : int -> xsymbol
          val nonterminal : int -> xsymbol
          val rhs :
            CamlinternalMenhirLib.PackedIntArray.t *
            CamlinternalMenhirLib.PackedIntArray.t
          val lr0_core : CamlinternalMenhirLib.PackedIntArray.t
          val lr0_items :
            CamlinternalMenhirLib.PackedIntArray.t *
            CamlinternalMenhirLib.PackedIntArray.t
          val lr0_incoming : CamlinternalMenhirLib.PackedIntArray.t
          val nullable : string
          val first : int * string
        end
    end
  module InspectionTableInterpreter :
    sig
      module Symbols :
        functor (T : sig type 'a terminal type 'a nonterminal end->
          sig
            type 'a symbol =
                T : 'T.terminal -> 'a symbol
              | N : 'T.nonterminal -> 'a symbol
            type xsymbol = X : 'a symbol -> xsymbol
          end
      module Make :
        functor (TT : TableFormat.TABLES)
          (IT : sig
                  type 'a terminal
                  type 'a nonterminal
                  type 'a symbol =
                      T : 'a terminal -> 'a symbol
                    | N : 'a nonterminal -> 'a symbol
                  type xsymbol = X : 'a symbol -> xsymbol
                  type 'a lr1state = int
                  val terminal : int -> xsymbol
                  val nonterminal : int -> xsymbol
                  val rhs : PackedIntArray.t * PackedIntArray.t
                  val lr0_core : PackedIntArray.t
                  val lr0_items : PackedIntArray.t * PackedIntArray.t
                  val lr0_incoming : PackedIntArray.t
                  val nullable : string
                  val first : int * string
                end)
          (ET : sig
                  type state
                  val number : state -> int
                  type token
                  type terminal = int
                  type nonterminal = int
                  type semantic_value = Obj.t
                  val token2terminal : token -> terminal
                  val token2value : token -> semantic_value
                  val error_terminal : terminal
                  val error_value : semantic_value
                  val foreach_terminal : (terminal -> '-> 'a) -> '-> 'a
                  type production
                  val production_index : production -> int
                  val find_production : int -> production
                  val default_reduction :
                    state ->
                    ('env -> production -> 'answer) ->
                    ('env -> 'answer) -> 'env -> 'answer
                  val action :
                    state ->
                    terminal ->
                    semantic_value ->
                    ('env ->
                     bool -> terminal -> semantic_value -> state -> 'answer) ->
                    ('env -> production -> 'answer) ->
                    ('env -> 'answer) -> 'env -> 'answer
                  val goto_nt : state -> nonterminal -> state
                  val goto_prod : state -> production -> state
                  val maybe_goto_nt : state -> nonterminal -> state option
                  val is_start : production -> bool
                  exception Error
                  type semantic_action =
                      (state, semantic_value, token) EngineTypes.env ->
                      (state, semantic_value) EngineTypes.stack
                  val semantic_action : production -> semantic_action
                  val may_reduce : state -> production -> bool
                  val log : bool
                  module Log :
                    sig
                      val state : state -> unit
                      val shift : terminal -> state -> unit
                      val reduce_or_accept : production -> unit
                      val lookahead_token :
                        terminal ->
                        Lexing.position -> Lexing.position -> unit
                      val initiating_error_handling : unit -> unit
                      val resuming_error_handling : unit -> unit
                      val handling_error : state -> unit
                    end
                end)
          (E : sig
                 type 'a env =
                     (ET.state, ET.semantic_value, ET.token)
                     CamlinternalMenhirLib.EngineTypes.env
               end)
          ->
          sig
            type 'a symbol =
                T : 'IT.terminal -> 'a symbol
              | N : 'IT.nonterminal -> 'a symbol
            type xsymbol = X : 'a symbol -> xsymbol
            type item = int * int
            val compare_terminals : 'IT.terminal -> 'IT.terminal -> int
            val compare_nonterminals :
              'IT.nonterminal -> 'IT.nonterminal -> int
            val compare_symbols : xsymbol -> xsymbol -> int
            val compare_productions : int -> int -> int
            val compare_items : item -> item -> int
            val incoming_symbol : 'IT.lr1state -> 'a symbol
            val items : 'IT.lr1state -> item list
            val lhs : int -> xsymbol
            val rhs : int -> xsymbol list
            val nullable : 'IT.nonterminal -> bool
            val first : 'IT.nonterminal -> 'IT.terminal -> bool
            val xfirst : xsymbol -> 'IT.terminal -> bool
            val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
            val foreach_terminal_but_error :
              (xsymbol -> '-> 'a) -> '-> 'a
            val feed :
              'a symbol ->
              IncrementalEngine.position ->
              '-> IncrementalEngine.position -> 'E.env -> 'E.env
          end
    end
  module TableInterpreter :
    sig
      module MakeEngineTable :
        functor (T : TableFormat.TABLES->
          sig
            type state = int
            val number : state -> int
            type token = T.token
            type terminal = int
            type nonterminal = int
            type semantic_value = Obj.t
            val token2terminal : token -> terminal
            val token2value : token -> semantic_value
            val error_terminal : terminal
            val error_value : semantic_value
            val foreach_terminal : (terminal -> '-> 'a) -> '-> 'a
            type production = int
            val production_index : production -> int
            val find_production : int -> production
            val default_reduction :
              state ->
              ('env -> production -> 'answer) ->
              ('env -> 'answer) -> 'env -> 'answer
            val action :
              state ->
              terminal ->
              semantic_value ->
              ('env -> bool -> terminal -> semantic_value -> state -> 'answer) ->
              ('env -> production -> 'answer) ->
              ('env -> 'answer) -> 'env -> 'answer
            val goto_nt : state -> nonterminal -> state
            val goto_prod : state -> production -> state
            val maybe_goto_nt : state -> nonterminal -> state option
            val is_start : production -> bool
            exception Error
            type semantic_action =
                (state, semantic_value, token) EngineTypes.env ->
                (state, semantic_value) EngineTypes.stack
            val semantic_action : production -> semantic_action
            val may_reduce : state -> production -> bool
            val log : bool
            module Log :
              sig
                val state : state -> unit
                val shift : terminal -> state -> unit
                val reduce_or_accept : production -> unit
                val lookahead_token :
                  terminal -> Lexing.position -> Lexing.position -> unit
                val initiating_error_handling : unit -> unit
                val resuming_error_handling : unit -> unit
                val handling_error : state -> unit
              end
          end
    end
  module StaticVersion : sig val require_20190924 : unit end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Thing.html0000644000175000017500000001047713717225554024671 0ustar mehdimehdi Identifiable.Thing sig
  type t
  val equal : t -> t -> bool
  val hash : t -> int
  val compare : t -> t -> int
  val output : Stdlib.out_channel -> Identifiable.Thing.t -> unit
  val print : Stdlib.Format.formatter -> Identifiable.Thing.t -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/index_exceptions.html0000644000175000017500000001363413717225554023547 0ustar mehdimehdi Index of exceptions

Index of exceptions

A
Already_displayed_error [Location]

Raising Already_displayed_error signals an error which has already been printed.

E
Error [Syntaxerr]
Error [Pparse]
Error [Parser]
Error [Location]

Raising Error e signals an error e; the exception will be caught and the error will be printed.

Error [Lexer]
Error [CamlinternalMenhirLib.TableFormat.TABLES]
Error [CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE]
Error [CamlinternalMenhirLib.EngineTypes.TABLE]
Error [Attr_helper]
Errors [Warnings]
Escape_error [Syntaxerr]
F
Fatal_error [Misc]
I
Inconsistency [Consistbl.Make]
N
Not_available [Consistbl.Make]
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Ctf.html0000644000175000017500000001724513717225554023002 0ustar mehdimehdi Ast_helper.Ctf

Module Ast_helper.Ctf

module Ctf: sig .. end

Class type fields


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
Parsetree.class_type_field_desc -> Parsetree.class_type_field
val attr : Parsetree.class_type_field ->
Parsetree.attribute -> Parsetree.class_type_field
val inherit_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.class_type -> Parsetree.class_type_field
val val_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str ->
Asttypes.mutable_flag ->
Asttypes.virtual_flag -> Parsetree.core_type -> Parsetree.class_type_field
val method_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str ->
Asttypes.private_flag ->
Asttypes.virtual_flag -> Parsetree.core_type -> Parsetree.class_type_field
val constraint_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.core_type -> Parsetree.core_type -> Parsetree.class_type_field
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_type_field
val attribute : ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.class_type_field
val text : Docstrings.text -> Parsetree.class_type_field list
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Cty.html0000644000175000017500000001533313717225554023021 0ustar mehdimehdi Ast_helper.Cty

Module Ast_helper.Cty

module Cty: sig .. end

Class type expressions


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.class_type_desc -> Parsetree.class_type
val attr : Parsetree.class_type -> Parsetree.attribute -> Parsetree.class_type
val constr : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.lid -> Parsetree.core_type list -> Parsetree.class_type
val signature : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.class_signature -> Parsetree.class_type
val arrow : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.arg_label ->
Parsetree.core_type -> Parsetree.class_type -> Parsetree.class_type
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_type
val open_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.open_description -> Parsetree.class_type -> Parsetree.class_type
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Rf.html0000644000175000017500000001130613717225554023666 0ustar mehdimehdi Ast_helper.Rf sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.row_field_desc -> Parsetree.row_field
  val tag :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.label Ast_helper.with_loc ->
    bool -> Parsetree.core_type list -> Parsetree.row_field
  val inherit_ :
    ?loc:Ast_helper.loc -> Parsetree.core_type -> Parsetree.row_field
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.Convert.html0000644000175000017500000001320513717225554026013 0ustar mehdimehdi CamlinternalMenhirLib.Convert

Module CamlinternalMenhirLib.Convert

module Convert: sig .. end

type ('token, 'semantic_value) traditional = (Lexing.lexbuf -> 'token) -> Lexing.lexbuf -> 'semantic_value 
type ('token, 'semantic_value) revised = (unit -> 'token) -> 'semantic_value 
val traditional2revised : ('token -> 'raw_token) ->
('token -> Lexing.position) ->
('token -> Lexing.position) ->
('raw_token, 'semantic_value) traditional ->
('token, 'semantic_value) revised
val revised2traditional : ('raw_token -> Lexing.position -> Lexing.position -> 'token) ->
('token, 'semantic_value) revised ->
('raw_token, 'semantic_value) traditional
module Simplified: sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Parser.MenhirInterpreter.html0000644000175000017500000003174713717225554026146 0ustar mehdimehdi Parser.MenhirInterpreter sig
  type token = token
  type production
  type 'a env
  type 'a checkpoint = private
      InputNeeded of 'a env
    | Shifting of 'a env * 'a env * bool
    | AboutToReduce of 'a env * production
    | HandlingError of 'a env
    | Accepted of 'a
    | Rejected
  val offer :
    'a checkpoint ->
    token * CamlinternalMenhirLib.IncrementalEngine.position *
    CamlinternalMenhirLib.IncrementalEngine.position -> 'a checkpoint
  val resume : 'a checkpoint -> 'a checkpoint
  type supplier =
      unit ->
      token * CamlinternalMenhirLib.IncrementalEngine.position *
      CamlinternalMenhirLib.IncrementalEngine.position
  val lexer_lexbuf_to_supplier :
    (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
  val loop : supplier -> 'a checkpoint -> 'a
  val loop_handle :
    ('-> 'answer) ->
    ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
  val loop_handle_undo :
    ('-> 'answer) ->
    ('a checkpoint -> 'a checkpoint -> 'answer) ->
    supplier -> 'a checkpoint -> 'answer
  val shifts : 'a checkpoint -> 'a env option
  val acceptable :
    'a checkpoint ->
    token -> CamlinternalMenhirLib.IncrementalEngine.position -> bool
  type 'a lr1state
  val number : 'a lr1state -> int
  val production_index : production -> int
  val find_production : int -> production
  type element =
      Element : 'a lr1state * 'a *
        CamlinternalMenhirLib.IncrementalEngine.position *
        CamlinternalMenhirLib.IncrementalEngine.position -> element
  type stack = element CamlinternalMenhirLib.General.stream
  val stack : 'a env -> stack
  val top : 'a env -> element option
  val pop_many : int -> 'a env -> 'a env option
  val get : int -> 'a env -> element option
  val current_state_number : 'a env -> int
  val equal : 'a env -> 'a env -> bool
  val positions :
    'a env ->
    CamlinternalMenhirLib.IncrementalEngine.position *
    CamlinternalMenhirLib.IncrementalEngine.position
  val env_has_default_reduction : 'a env -> bool
  val state_has_default_reduction : 'a lr1state -> bool
  val pop : 'a env -> 'a env option
  val force_reduction : production -> 'a env -> 'a env
  val input_needed : 'a env -> 'a checkpoint
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.String.Tbl.html0000644000175000017500000002217213717225554025335 0ustar mehdimehdi Misc.Stdlib.String.Tbl sig
  type key = string
  type 'a t
  val create : int -> 'a t
  val clear : 'a t -> unit
  val reset : 'a t -> unit
  val copy : 'a t -> 'a t
  val add : 'a t -> key -> '-> unit
  val remove : 'a t -> key -> unit
  val find : 'a t -> key -> 'a
  val find_opt : 'a t -> key -> 'a option
  val find_all : 'a t -> key -> 'a list
  val replace : 'a t -> key -> '-> unit
  val mem : 'a t -> key -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val length : 'a t -> int
  val stats : 'a t -> Hashtbl.statistics
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_keys : 'a t -> key Seq.t
  val to_seq_values : 'a t -> 'Seq.t
  val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  val of_seq : (key * 'a) Seq.t -> 'a t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.Array.html0000644000175000017500000001033313717225554024421 0ustar mehdimehdi Misc.Stdlib.Array sig
  val exists2 : ('-> '-> bool) -> 'a array -> 'b array -> bool
  val for_alli : (int -> '-> bool) -> 'a array -> bool
  val all_somes : 'a option array -> 'a array option
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Attr_helper.html0000644000175000017500000001114613717225554023505 0ustar mehdimehdi Attr_helper sig
  type error = Multiple_attributes of string | No_payload_expected of string
  val get_no_payload_attribute :
    string list -> Parsetree.attributes -> string Asttypes.loc option
  val has_no_payload_attribute : string list -> Parsetree.attributes -> bool
  exception Error of Location.t * Attr_helper.error
  val report_error : Stdlib.Format.formatter -> Attr_helper.error -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Load_path.Dir.html0000644000175000017500000001057613717225554022611 0ustar mehdimehdi Load_path.Dir

Module Load_path.Dir

module Dir: sig .. end

type t 

Represent one directory in the load path.

val create : string -> t
val path : t -> string
val files : t -> string list

All the files in that directory. This doesn't include files in sub-directories of this directory.

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.html0000644000175000017500000042405413717225554023621 0ustar mehdimehdi Identifiable sig
  module type Thing =
    sig
      type t
      val equal : t -> t -> bool
      val hash : t -> int
      val compare : t -> t -> int
      val output : Stdlib.out_channel -> Identifiable.Thing.t -> unit
      val print : Stdlib.Format.formatter -> Identifiable.Thing.t -> unit
    end
  module Pair :
    functor (A : Thing) (B : Thing->
      sig
        type t = A.t * B.t
        val equal : t -> t -> bool
        val hash : t -> int
        val compare : t -> t -> int
        val output : out_channel -> t -> unit
        val print : Format.formatter -> t -> unit
      end
  module type Set =
    sig
      module T : Set.OrderedType
      type elt = T.t
      type t = Set.Make(T).t
      val empty : t
      val is_empty : t -> bool
      val mem : elt -> t -> bool
      val add : elt -> t -> t
      val singleton : elt -> t
      val remove : elt -> t -> t
      val union : t -> t -> t
      val inter : t -> t -> t
      val disjoint : t -> t -> bool
      val diff : t -> t -> t
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val subset : t -> t -> bool
      val iter : (elt -> unit) -> t -> unit
      val fold : (elt -> '-> 'a) -> t -> '-> 'a
      val for_all : (elt -> bool) -> t -> bool
      val exists : (elt -> bool) -> t -> bool
      val filter : (elt -> bool) -> t -> t
      val filter_map : (elt -> elt option) -> t -> t
      val partition : (elt -> bool) -> t -> t * t
      val cardinal : t -> int
      val elements : t -> elt list
      val min_elt : t -> elt
      val min_elt_opt : t -> elt option
      val max_elt : t -> elt
      val max_elt_opt : t -> elt option
      val choose : t -> elt
      val choose_opt : t -> elt option
      val split : elt -> t -> t * bool * t
      val find : elt -> t -> elt
      val find_opt : elt -> t -> elt option
      val find_first : (elt -> bool) -> t -> elt
      val find_first_opt : (elt -> bool) -> t -> elt option
      val find_last : (elt -> bool) -> t -> elt
      val find_last_opt : (elt -> bool) -> t -> elt option
      val to_seq_from : elt -> t -> elt Seq.t
      val to_seq : t -> elt Seq.t
      val add_seq : elt Seq.t -> t -> t
      val of_seq : elt Seq.t -> t
      val output : Stdlib.out_channel -> t -> unit
      val print : Stdlib.Format.formatter -> t -> unit
      val to_string : t -> string
      val of_list : elt list -> t
      val map : (elt -> elt) -> t -> t
    end
  module type Map =
    sig
      module T : Map.OrderedType
      type key = T.t
      type 'a t = 'Map.Make(T).t
      val empty : 'a t
      val is_empty : 'a t -> bool
      val mem : key -> 'a t -> bool
      val add : key -> '-> 'a t -> 'a t
      val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
      val singleton : key -> '-> 'a t
      val remove : key -> 'a t -> 'a t
      val merge :
        (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
      val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
      val compare : ('-> '-> int) -> 'a t -> 'a t -> int
      val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val for_all : (key -> '-> bool) -> 'a t -> bool
      val exists : (key -> '-> bool) -> 'a t -> bool
      val filter : (key -> '-> bool) -> 'a t -> 'a t
      val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
      val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
      val cardinal : 'a t -> int
      val bindings : 'a t -> (key * 'a) list
      val min_binding : 'a t -> key * 'a
      val min_binding_opt : 'a t -> (key * 'a) option
      val max_binding : 'a t -> key * 'a
      val max_binding_opt : 'a t -> (key * 'a) option
      val choose : 'a t -> key * 'a
      val choose_opt : 'a t -> (key * 'a) option
      val split : key -> 'a t -> 'a t * 'a option * 'a t
      val find : key -> 'a t -> 'a
      val find_opt : key -> 'a t -> 'a option
      val find_first : (key -> bool) -> 'a t -> key * 'a
      val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val find_last : (key -> bool) -> 'a t -> key * 'a
      val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val map : ('-> 'b) -> 'a t -> 'b t
      val mapi : (key -> '-> 'b) -> 'a t -> 'b t
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
      val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
      val of_seq : (key * 'a) Seq.t -> 'a t
      val of_list : (key * 'a) list -> 'a t
      val disjoint_union :
        ?eq:('-> '-> bool) ->
        ?print:(Stdlib.Format.formatter -> '-> unit) ->
        'a t -> 'a t -> 'a t
      val union_right : 'a t -> 'a t -> 'a t
      val union_left : 'a t -> 'a t -> 'a t
      val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
      val rename : key t -> key -> key
      val map_keys : (key -> key) -> 'a t -> 'a t
      val keys : 'a t -> Stdlib.Set.Make(T).t
      val data : 'a t -> 'a list
      val of_set : (key -> 'a) -> Stdlib.Set.Make(T).t -> 'a t
      val transpose_keys_and_data : key t -> key t
      val transpose_keys_and_data_set : key t -> Stdlib.Set.Make(T).t t
      val print :
        (Stdlib.Format.formatter -> '-> unit) ->
        Stdlib.Format.formatter -> 'a t -> unit
    end
  module type Tbl =
    sig
      module T :
        sig
          type t
          val compare : t -> t -> int
          val equal : t -> t -> bool
          val hash : t -> int
        end
      type key = T.t
      type 'a t = 'Hashtbl.Make(T).t
      val create : int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
      val to_list : 'a t -> (Identifiable.Tbl.T.t * 'a) list
      val of_list : (Identifiable.Tbl.T.t * 'a) list -> 'a t
      val to_map : 'a t -> 'Stdlib.Map.Make(T).t
      val of_map : 'Stdlib.Map.Make(T).t -> 'a t
      val memoize : 'a t -> (key -> 'a) -> key -> 'a
      val map : 'a t -> ('-> 'b) -> 'b t
    end
  module type S =
    sig
      type t
      module T :
        sig
          type t = t
          val equal : t -> t -> bool
          val hash : t -> int
          val compare : t -> t -> int
          val output : out_channel -> t -> unit
          val print : Format.formatter -> t -> unit
        end
      val equal : T.t -> T.t -> bool
      val hash : T.t -> int
      val compare : T.t -> T.t -> int
      val output : out_channel -> T.t -> unit
      val print : Format.formatter -> T.t -> unit
      module Set :
        sig
          type elt = T.t
          type t = Set.Make(T).t
          val empty : t
          val is_empty : t -> bool
          val mem : elt -> t -> bool
          val add : elt -> t -> t
          val singleton : elt -> t
          val remove : elt -> t -> t
          val union : t -> t -> t
          val inter : t -> t -> t
          val disjoint : t -> t -> bool
          val diff : t -> t -> t
          val compare : t -> t -> int
          val equal : t -> t -> bool
          val subset : t -> t -> bool
          val iter : (elt -> unit) -> t -> unit
          val fold : (elt -> '-> 'a) -> t -> '-> 'a
          val for_all : (elt -> bool) -> t -> bool
          val exists : (elt -> bool) -> t -> bool
          val filter : (elt -> bool) -> t -> t
          val filter_map : (elt -> elt option) -> t -> t
          val partition : (elt -> bool) -> t -> t * t
          val cardinal : t -> int
          val elements : t -> elt list
          val min_elt : t -> elt
          val min_elt_opt : t -> elt option
          val max_elt : t -> elt
          val max_elt_opt : t -> elt option
          val choose : t -> elt
          val choose_opt : t -> elt option
          val split : elt -> t -> t * bool * t
          val find : elt -> t -> elt
          val find_opt : elt -> t -> elt option
          val find_first : (elt -> bool) -> t -> elt
          val find_first_opt : (elt -> bool) -> t -> elt option
          val find_last : (elt -> bool) -> t -> elt
          val find_last_opt : (elt -> bool) -> t -> elt option
          val to_seq_from : elt -> t -> elt Seq.t
          val to_seq : t -> elt Seq.t
          val add_seq : elt Seq.t -> t -> t
          val of_seq : elt Seq.t -> t
          val output : out_channel -> t -> unit
          val print : Format.formatter -> t -> unit
          val to_string : t -> string
          val of_list : elt list -> t
          val map : (elt -> elt) -> t -> t
        end
      module Map :
        sig
          type key = T.t
          type 'a t = 'Map.Make(T).t
          val empty : 'a t
          val is_empty : 'a t -> bool
          val mem : key -> 'a t -> bool
          val add : key -> '-> 'a t -> 'a t
          val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
          val singleton : key -> '-> 'a t
          val remove : key -> 'a t -> 'a t
          val merge :
            (key -> 'a option -> 'b option -> 'c option) ->
            'a t -> 'b t -> 'c t
          val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
          val compare : ('-> '-> int) -> 'a t -> 'a t -> int
          val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val for_all : (key -> '-> bool) -> 'a t -> bool
          val exists : (key -> '-> bool) -> 'a t -> bool
          val filter : (key -> '-> bool) -> 'a t -> 'a t
          val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
          val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
          val cardinal : 'a t -> int
          val bindings : 'a t -> (key * 'a) list
          val min_binding : 'a t -> key * 'a
          val min_binding_opt : 'a t -> (key * 'a) option
          val max_binding : 'a t -> key * 'a
          val max_binding_opt : 'a t -> (key * 'a) option
          val choose : 'a t -> key * 'a
          val choose_opt : 'a t -> (key * 'a) option
          val split : key -> 'a t -> 'a t * 'a option * 'a t
          val find : key -> 'a t -> 'a
          val find_opt : key -> 'a t -> 'a option
          val find_first : (key -> bool) -> 'a t -> key * 'a
          val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val find_last : (key -> bool) -> 'a t -> key * 'a
          val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val map : ('-> 'b) -> 'a t -> 'b t
          val mapi : (key -> '-> 'b) -> 'a t -> 'b t
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
          val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
          val of_seq : (key * 'a) Seq.t -> 'a t
          val of_list : (key * 'a) list -> 'a t
          val disjoint_union :
            ?eq:('-> '-> bool) ->
            ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
          val union_right : 'a t -> 'a t -> 'a t
          val union_left : 'a t -> 'a t -> 'a t
          val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
          val rename : key t -> key -> key
          val map_keys : (key -> key) -> 'a t -> 'a t
          val keys : 'a t -> Set.Make(T).t
          val data : 'a t -> 'a list
          val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
          val transpose_keys_and_data : key t -> key t
          val transpose_keys_and_data_set : key t -> Set.Make(T).t t
          val print :
            (Format.formatter -> '-> unit) ->
            Format.formatter -> 'a t -> unit
        end
      module Tbl :
        sig
          type key = T.t
          type 'a t = 'Hashtbl.Make(T).t
          val create : int -> 'a t
          val clear : 'a t -> unit
          val reset : 'a t -> unit
          val copy : 'a t -> 'a t
          val add : 'a t -> key -> '-> unit
          val remove : 'a t -> key -> unit
          val find : 'a t -> key -> 'a
          val find_opt : 'a t -> key -> 'a option
          val find_all : 'a t -> key -> 'a list
          val replace : 'a t -> key -> '-> unit
          val mem : 'a t -> key -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val length : 'a t -> int
          val stats : 'a t -> Hashtbl.statistics
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_keys : 'a t -> key Seq.t
          val to_seq_values : 'a t -> 'Seq.t
          val add_seq : 'a t -> (key * 'a) Seq.t -> unit
          val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
          val of_seq : (key * 'a) Seq.t -> 'a t
          val to_list : 'a t -> (T.t * 'a) list
          val of_list : (T.t * 'a) list -> 'a t
          val to_map : 'a t -> 'Map.Make(T).t
          val of_map : 'Map.Make(T).t -> 'a t
          val memoize : 'a t -> (key -> 'a) -> key -> 'a
          val map : 'a t -> ('-> 'b) -> 'b t
        end
    end
  module Make :
    functor (T : Thing->
      sig
        module T :
          sig
            type t = T.t
            val equal : t -> t -> bool
            val hash : t -> int
            val compare : t -> t -> int
            val output : out_channel -> t -> unit
            val print : Format.formatter -> t -> unit
          end
        val equal : T.t -> T.t -> bool
        val hash : T.t -> int
        val compare : T.t -> T.t -> int
        val output : out_channel -> T.t -> unit
        val print : Format.formatter -> T.t -> unit
        module Set :
          sig
            type elt = T.t
            type t = Set.Make(T).t
            val empty : t
            val is_empty : t -> bool
            val mem : elt -> t -> bool
            val add : elt -> t -> t
            val singleton : elt -> t
            val remove : elt -> t -> t
            val union : t -> t -> t
            val inter : t -> t -> t
            val disjoint : t -> t -> bool
            val diff : t -> t -> t
            val compare : t -> t -> int
            val equal : t -> t -> bool
            val subset : t -> t -> bool
            val iter : (elt -> unit) -> t -> unit
            val fold : (elt -> '-> 'a) -> t -> '-> 'a
            val for_all : (elt -> bool) -> t -> bool
            val exists : (elt -> bool) -> t -> bool
            val filter : (elt -> bool) -> t -> t
            val filter_map : (elt -> elt option) -> t -> t
            val partition : (elt -> bool) -> t -> t * t
            val cardinal : t -> int
            val elements : t -> elt list
            val min_elt : t -> elt
            val min_elt_opt : t -> elt option
            val max_elt : t -> elt
            val max_elt_opt : t -> elt option
            val choose : t -> elt
            val choose_opt : t -> elt option
            val split : elt -> t -> t * bool * t
            val find : elt -> t -> elt
            val find_opt : elt -> t -> elt option
            val find_first : (elt -> bool) -> t -> elt
            val find_first_opt : (elt -> bool) -> t -> elt option
            val find_last : (elt -> bool) -> t -> elt
            val find_last_opt : (elt -> bool) -> t -> elt option
            val to_seq_from : elt -> t -> elt Seq.t
            val to_seq : t -> elt Seq.t
            val add_seq : elt Seq.t -> t -> t
            val of_seq : elt Seq.t -> t
            val output : out_channel -> t -> unit
            val print : Format.formatter -> t -> unit
            val to_string : t -> string
            val of_list : elt list -> t
            val map : (elt -> elt) -> t -> t
          end
        module Map :
          sig
            type key = T.t
            type 'a t = 'Map.Make(T).t
            val empty : 'a t
            val is_empty : 'a t -> bool
            val mem : key -> 'a t -> bool
            val add : key -> '-> 'a t -> 'a t
            val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
            val singleton : key -> '-> 'a t
            val remove : key -> 'a t -> 'a t
            val merge :
              (key -> 'a option -> 'b option -> 'c option) ->
              'a t -> 'b t -> 'c t
            val union :
              (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
            val compare : ('-> '-> int) -> 'a t -> 'a t -> int
            val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val for_all : (key -> '-> bool) -> 'a t -> bool
            val exists : (key -> '-> bool) -> 'a t -> bool
            val filter : (key -> '-> bool) -> 'a t -> 'a t
            val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
            val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
            val cardinal : 'a t -> int
            val bindings : 'a t -> (key * 'a) list
            val min_binding : 'a t -> key * 'a
            val min_binding_opt : 'a t -> (key * 'a) option
            val max_binding : 'a t -> key * 'a
            val max_binding_opt : 'a t -> (key * 'a) option
            val choose : 'a t -> key * 'a
            val choose_opt : 'a t -> (key * 'a) option
            val split : key -> 'a t -> 'a t * 'a option * 'a t
            val find : key -> 'a t -> 'a
            val find_opt : key -> 'a t -> 'a option
            val find_first : (key -> bool) -> 'a t -> key * 'a
            val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
            val find_last : (key -> bool) -> 'a t -> key * 'a
            val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
            val map : ('-> 'b) -> 'a t -> 'b t
            val mapi : (key -> '-> 'b) -> 'a t -> 'b t
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
            val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
            val of_seq : (key * 'a) Seq.t -> 'a t
            val of_list : (key * 'a) list -> 'a t
            val disjoint_union :
              ?eq:('-> '-> bool) ->
              ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
            val union_right : 'a t -> 'a t -> 'a t
            val union_left : 'a t -> 'a t -> 'a t
            val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
            val rename : key t -> key -> key
            val map_keys : (key -> key) -> 'a t -> 'a t
            val keys : 'a t -> Set.Make(T).t
            val data : 'a t -> 'a list
            val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
            val transpose_keys_and_data : key t -> key t
            val transpose_keys_and_data_set : key t -> Set.Make(T).t t
            val print :
              (Format.formatter -> '-> unit) ->
              Format.formatter -> 'a t -> unit
          end
        module Tbl :
          sig
            type key = T.t
            type 'a t = 'Hashtbl.Make(T).t
            val create : int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val to_list : 'a t -> (T.t * 'a) list
            val of_list : (T.t * 'a) list -> 'a t
            val to_map : 'a t -> 'Map.Make(T).t
            val of_map : 'Map.Make(T).t -> 'a t
            val memoize : 'a t -> (key -> 'a) -> key -> 'a
            val map : 'a t -> ('-> 'b) -> 'b t
          end
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Warnings.html0000644000175000017500000004404713717225554023032 0ustar mehdimehdi Warnings sig
  type loc = {
    loc_start : Stdlib.Lexing.position;
    loc_end : Stdlib.Lexing.position;
    loc_ghost : bool;
  }
  type t =
      Comment_start
    | Comment_not_end
    | Fragile_match of string
    | Partial_application
    | Labels_omitted of string list
    | Method_override of string list
    | Partial_match of string
    | Non_closed_record_pattern of string
    | Statement_type
    | Unused_match
    | Unused_pat
    | Instance_variable_override of string list
    | Illegal_backslash
    | Implicit_public_methods of string list
    | Unerasable_optional_argument
    | Undeclared_virtual_method of string
    | Not_principal of string
    | Without_principality of string
    | Unused_argument
    | Nonreturning_statement
    | Preprocessor of string
    | Useless_record_with
    | Bad_module_name of string
    | All_clauses_guarded
    | Unused_var of string
    | Unused_var_strict of string
    | Wildcard_arg_to_constant_constr
    | Eol_in_string
    | Duplicate_definitions of string * string * string * string
    | Multiple_definition of string * string * string
    | Unused_value_declaration of string
    | Unused_open of string
    | Unused_type_declaration of string
    | Unused_for_index of string
    | Unused_ancestor of string
    | Unused_constructor of string * bool * bool
    | Unused_extension of string * bool * bool * bool
    | Unused_rec_flag
    | Name_out_of_scope of string * string list * bool
    | Ambiguous_name of string list * string list * bool * string
    | Disambiguated_name of string
    | Nonoptional_label of string
    | Open_shadow_identifier of string * string
    | Open_shadow_label_constructor of string * string
    | Bad_env_variable of string * string
    | Attribute_payload of string * string
    | Eliminated_optional_arguments of string list
    | No_cmi_file of string * string option
    | Bad_docstring of bool
    | Expect_tailcall
    | Fragile_literal_pattern
    | Misplaced_attribute of string
    | Duplicated_attribute of string
    | Inlining_impossible of string
    | Unreachable_case
    | Ambiguous_pattern of string list
    | No_cmx_file of string
    | Assignment_to_non_mutable_value
    | Unused_module of string
    | Unboxable_type_in_prim_decl of string
    | Constraint_on_gadt
    | Erroneous_printed_signature of string
    | Unsafe_without_parsing
    | Redefining_unit of string
    | Unused_open_bang of string
    | Unused_functor_parameter of string
  type alert = {
    kind : string;
    message : string;
    def : Warnings.loc;
    use : Warnings.loc;
  }
  val parse_options : bool -> string -> unit
  val parse_alert_option : string -> unit
  val without_warnings : (unit -> 'a) -> 'a
  val is_active : Warnings.t -> bool
  val is_error : Warnings.t -> bool
  val defaults_w : string
  val defaults_warn_error : string
  type reporting_information = {
    id : string;
    message : string;
    is_error : bool;
    sub_locs : (Warnings.loc * string) list;
  }
  val report :
    Warnings.t -> [ `Active of Warnings.reporting_information | `Inactive ]
  val report_alert :
    Warnings.alert ->
    [ `Active of Warnings.reporting_information | `Inactive ]
  exception Errors
  val check_fatal : unit -> unit
  val reset_fatal : unit -> unit
  val help_warnings : unit -> unit
  type state
  val backup : unit -> Warnings.state
  val restore : Warnings.state -> unit
  val mk_lazy : (unit -> 'a) -> 'Stdlib.Lazy.t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Map.html0000644000175000017500000001541213717225554023266 0ustar mehdimehdi Identifiable.Map

Module type Identifiable.Map

module type Map = sig .. end

module T: Map.OrderedType 
include Map.S
val of_list : (key * 'a) list -> 'a t
val disjoint_union : ?eq:('a -> 'a -> bool) ->
?print:(Format.formatter -> 'a -> unit) -> 'a t -> 'a t -> 'a t

disjoint_union m1 m2 contains all bindings from m1 and m2. If some binding is present in both and the associated value is not equal, a Fatal_error is raised

val union_right : 'a t -> 'a t -> 'a t

union_right m1 m2 contains all bindings from m1 and m2. If some binding is present in both, the one from m2 is taken

val union_left : 'a t -> 'a t -> 'a t

union_left m1 m2 = union_right m2 m1

val union_merge : ('a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t
val rename : key t -> key -> key
val map_keys : (key -> key) -> 'a t -> 'a t
val keys : 'a t -> Stdlib.Set.Make(T).t
val data : 'a t -> 'a list
val of_set : (key -> 'a) -> Stdlib.Set.Make(T).t -> 'a t
val transpose_keys_and_data : key t -> key t
val transpose_keys_and_data_set : key t -> Stdlib.Set.Make(T).t t
val print : (Format.formatter -> 'a -> unit) ->
Format.formatter -> 'a t -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.Convert.Simplified.html0000644000175000017500000001114713717225554030102 0ustar mehdimehdi CamlinternalMenhirLib.Convert.Simplified

Module CamlinternalMenhirLib.Convert.Simplified

module Simplified: sig .. end

val traditional2revised : ('token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional ->
('token * Lexing.position * Lexing.position, 'semantic_value)
CamlinternalMenhirLib.Convert.revised
val revised2traditional : ('token * Lexing.position * Lexing.position, 'semantic_value)
CamlinternalMenhirLib.Convert.revised ->
('token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional
ocaml-doc-4.11/ocaml.html/compilerlibref/Parser.Incremental.html0000644000175000017500000001553513717225554023675 0ustar mehdimehdi Parser.Incremental

Module Parser.Incremental

module Incremental: sig .. end

val use_file : Lexing.position ->
Parsetree.toplevel_phrase list Parser.MenhirInterpreter.checkpoint
val toplevel_phrase : Lexing.position ->
Parsetree.toplevel_phrase Parser.MenhirInterpreter.checkpoint
val parse_val_longident : Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
val parse_pattern : Lexing.position ->
Parsetree.pattern Parser.MenhirInterpreter.checkpoint
val parse_mty_longident : Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
val parse_mod_longident : Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
val parse_mod_ext_longident : Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
val parse_expression : Lexing.position ->
Parsetree.expression Parser.MenhirInterpreter.checkpoint
val parse_core_type : Lexing.position ->
Parsetree.core_type Parser.MenhirInterpreter.checkpoint
val parse_constr_longident : Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
val parse_any_longident : Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
val interface : Lexing.position ->
Parsetree.signature Parser.MenhirInterpreter.checkpoint
val implementation : Lexing.position ->
Parsetree.structure Parser.MenhirInterpreter.checkpoint
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Make.html0000644000175000017500000001277113717225554023433 0ustar mehdimehdi Identifiable.Make

Functor Identifiable.Make

module Make: 
functor (T : Thing-> S with type t := T.t
Parameters:
T : Thing

type t 
module T: Identifiable.Thing  with type t = t
include Identifiable.Thing
module Set: Identifiable.Set  with module T := T
module Map: Identifiable.Map  with module T := T
module Tbl: Identifiable.Tbl  with module T := T
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.TableInterpreter.html0000644000175000017500000003073313717225554030714 0ustar mehdimehdi CamlinternalMenhirLib.TableInterpreter sig
  module MakeEngineTable :
    functor (T : TableFormat.TABLES->
      sig
        type state = int
        val number : state -> int
        type token = T.token
        type terminal = int
        type nonterminal = int
        type semantic_value = Obj.t
        val token2terminal : token -> terminal
        val token2value : token -> semantic_value
        val error_terminal : terminal
        val error_value : semantic_value
        val foreach_terminal : (terminal -> '-> 'a) -> '-> 'a
        type production = int
        val production_index : production -> int
        val find_production : int -> production
        val default_reduction :
          state ->
          ('env -> production -> 'answer) ->
          ('env -> 'answer) -> 'env -> 'answer
        val action :
          state ->
          terminal ->
          semantic_value ->
          ('env -> bool -> terminal -> semantic_value -> state -> 'answer) ->
          ('env -> production -> 'answer) ->
          ('env -> 'answer) -> 'env -> 'answer
        val goto_nt : state -> nonterminal -> state
        val goto_prod : state -> production -> state
        val maybe_goto_nt : state -> nonterminal -> state option
        val is_start : production -> bool
        exception Error
        type semantic_action =
            (state, semantic_value, token) EngineTypes.env ->
            (state, semantic_value) EngineTypes.stack
        val semantic_action : production -> semantic_action
        val may_reduce : state -> production -> bool
        val log : bool
        module Log :
          sig
            val state : state -> unit
            val shift : terminal -> state -> unit
            val reduce_or_accept : production -> unit
            val lookahead_token :
              terminal -> Lexing.position -> Lexing.position -> unit
            val initiating_error_handling : unit -> unit
            val resuming_error_handling : unit -> unit
            val handling_error : state -> unit
          end
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/index_modules.html0000644000175000017500000005444513717225554023043 0ustar mehdimehdi Index of modules

Index of modules

A
Arg_helper

Decipher command line arguments of the form <value> | <key>=<value>,...

Array [Misc.Stdlib]
Ast_helper

Helpers to produce Parsetree fragments

Ast_invariants

Check AST invariants

Ast_iterator

Ast_iterator.iterator enables AST inspection using open recursion.

Ast_mapper

The interface of a -ppx rewriter

Asttypes

Auxiliary AST types used by parsetree and typedtree.

Attr [Ast_helper]

Attributes

Attr_helper

Helpers for attributes

B
Build_path_prefix_map

Rewrite paths for reproducible builds

Builtin_attributes

Support for some of the builtin attributes

C
CamlinternalMenhirLib
Ccomp

Compiling C files and building C libraries

Cf [Ast_helper]

Class fields

Ci [Ast_helper]

Classes

Cl [Ast_helper]

Class expressions

Clflags

Command line flags

Color [Misc]
Compiler_libs
Compiler_pass [Clflags]
Config

System configuration

Consistbl

Consistency tables: for checking consistency of module CRCs

Const [Ast_helper]
Convert [CamlinternalMenhirLib]
Csig [Ast_helper]

Class signatures

Cstr [Ast_helper]

Class structures

Ctf [Ast_helper]

Class type fields

Cty [Ast_helper]

Class type expressions

D
Depend

Module dependencies.

Dir [Load_path]
Docstrings

Documentation comments

Domainstate
E
Engine [CamlinternalMenhirLib]
EngineTypes [CamlinternalMenhirLib]
EnvLazy [Misc]
ErrorReports [CamlinternalMenhirLib]
Error_style [Misc]
Exp [Ast_helper]

Expressions

F
Float [Numbers]
Float_arg_helper [Clflags]

Optimization parameters represented as floats indexed by round number.

G
General [CamlinternalMenhirLib]
I
Id [Strongly_connected_components.S]
Identifiable

Uniform interface for common data structures over various things.

Incl [Ast_helper]

Includes

Incremental [Parser]
IncrementalEngine [CamlinternalMenhirLib]
InfiniteArray [CamlinternalMenhirLib]
InspectionTableFormat [CamlinternalMenhirLib]
InspectionTableInterpreter [CamlinternalMenhirLib]
Int [Numbers]
Int16 [Numbers]
Int8 [Numbers]
Int_arg_helper [Clflags]

Optimization parameters represented as ints indexed by round number.

Int_literal_converter [Misc]
Int_replace_polymorphic_compare
L
Lexer

The lexical analyzer

LinearizedArray [CamlinternalMenhirLib]
List [Misc.Stdlib]
Load_path

Management of include directories.

Location

Source code locations (ranges of positions), used in parsetree

Log [CamlinternalMenhirLib.EngineTypes.TABLE]
LongString [Misc]
Longident

Long identifiers, used in parsetree.

M
Magic_number [Misc]
Make [Strongly_connected_components]
Make [Identifiable]
Make [Consistbl]
Make [CamlinternalMenhirLib.InspectionTableInterpreter]
Make [CamlinternalMenhirLib.Printers]
Make [CamlinternalMenhirLib.Engine]
Make [Arg_helper]
MakeEngineTable [CamlinternalMenhirLib.TableInterpreter]
Map [Identifiable.S]
Map [Misc.Stdlib.String]
Mb [Ast_helper]

Module bindings

Md [Ast_helper]

Module declarations

MenhirInterpreter [Parser]
Misc

Miscellaneous useful types and functions

Mod [Ast_helper]

Module expressions

Ms [Ast_helper]

Module substitutions

Mtd [Ast_helper]

Module type declarations

Mty [Ast_helper]

Module type expressions

N
Numbers

Modules about numbers, some of which satisfy Identifiable.S.

O
Of [Ast_helper]

Object fields

Opn [Ast_helper]

Opens

Option [Misc.Stdlib]
P
PackedIntArray [CamlinternalMenhirLib]
Pair [Identifiable]
Parse

Entry points in the parser

Parser
Parsetree

Abstract syntax tree produced by parsing

Pat [Ast_helper]

Patterns

Pparse

Driver for the parser and external preprocessors.

Pprintast

Pretty-printers for Parsetree

Printast

Raw printer for Parsetree

Printers [CamlinternalMenhirLib]
Profile

Compiler performance recording

R
Rf [Ast_helper]

Row fields

RowDisplacement [CamlinternalMenhirLib]
S
Set [Identifiable.S]
Set [Misc.Stdlib.String]
Sig [Ast_helper]

Signature items

Simplified [CamlinternalMenhirLib.Convert]
StaticVersion [CamlinternalMenhirLib]
Stdlib [Misc]
Str [Ast_helper]

Structure items

String [Misc.Stdlib]
String [Depend]
Strongly_connected_components

Kosaraju's algorithm for strongly connected components.

Symbols [CamlinternalMenhirLib.InspectionTableInterpreter]
Syntaxerr

Auxiliary type for reporting syntax errors

T
T [Identifiable.Tbl]
T [Identifiable.Map]
T [Identifiable.Set]
T [Identifiable.S]
TableFormat [CamlinternalMenhirLib]
TableInterpreter [CamlinternalMenhirLib]
Targetint

Target processor-native integers.

Tbl [Identifiable.S]
Tbl [Misc.Stdlib.String]
Te [Ast_helper]

Type extensions

Terminfo

Basic interface to the terminfo database

Typ [Ast_helper]

Type expressions

Type [Ast_helper]

Type declarations

V
Val [Ast_helper]

Value declarations

Vb [Ast_helper]

Value bindings

W
Warnings

Warning definitions

WithMenhir [Docstrings]
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.Option.html0000644000175000017500000001002413717225554024610 0ustar mehdimehdi Misc.Stdlib.Option sig
  type 'a t = 'a option
  val print :
    (Stdlib.Format.formatter -> '-> unit) ->
    Stdlib.Format.formatter -> 'Misc.Stdlib.Option.t -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Compiler_libs.html0000644000175000017500000000620213717225554024014 0ustar mehdimehdi Compiler_libs sig end ocaml-doc-4.11/ocaml.html/compilerlibref/Printast.html0000644000175000017500000001244413717225554022001 0ustar mehdimehdi Printast

Module Printast

module Printast: sig .. end

Raw printer for Parsetree

Warning: this module is unstable and part of compiler-libs.


val interface : Format.formatter -> Parsetree.signature_item list -> unit
val implementation : Format.formatter -> Parsetree.structure_item list -> unit
val top_phrase : Format.formatter -> Parsetree.toplevel_phrase -> unit
val expression : int -> Format.formatter -> Parsetree.expression -> unit
val structure : int -> Format.formatter -> Parsetree.structure -> unit
val payload : int -> Format.formatter -> Parsetree.payload -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Csig.html0000644000175000017500000000701613717225554024207 0ustar mehdimehdi Ast_helper.Csig sig
  val mk :
    Parsetree.core_type ->
    Parsetree.class_type_field list -> Parsetree.class_signature
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.TableInterpreter.html0000644000175000017500000001177613717225554027661 0ustar mehdimehdi CamlinternalMenhirLib.TableInterpreter

Module CamlinternalMenhirLib.TableInterpreter

module TableInterpreter: sig .. end

module MakeEngineTable: 
functor (T : CamlinternalMenhirLib.TableFormat.TABLES-> CamlinternalMenhirLib.EngineTypes.TABLE with type state = int and type token = T.token and type semantic_value = Obj.t and type production = int and type terminal = int and type nonterminal = int
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.S.T.html0000644000175000017500000001036513717225554023157 0ustar mehdimehdi Identifiable.S.T

Module Identifiable.S.T

module T: Identifiable.Thing  with type t = t

type t 
include Hashtbl.HashedType
include Map.OrderedType
val output : out_channel -> t -> unit
val print : Format.formatter -> t -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Parser.Incremental.html0000644000175000017500000002062313717225554024730 0ustar mehdimehdi Parser.Incremental sig
  val use_file :
    Stdlib.Lexing.position ->
    Parsetree.toplevel_phrase list Parser.MenhirInterpreter.checkpoint
  val toplevel_phrase :
    Stdlib.Lexing.position ->
    Parsetree.toplevel_phrase Parser.MenhirInterpreter.checkpoint
  val parse_val_longident :
    Stdlib.Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
  val parse_pattern :
    Stdlib.Lexing.position ->
    Parsetree.pattern Parser.MenhirInterpreter.checkpoint
  val parse_mty_longident :
    Stdlib.Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
  val parse_mod_longident :
    Stdlib.Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
  val parse_mod_ext_longident :
    Stdlib.Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
  val parse_expression :
    Stdlib.Lexing.position ->
    Parsetree.expression Parser.MenhirInterpreter.checkpoint
  val parse_core_type :
    Stdlib.Lexing.position ->
    Parsetree.core_type Parser.MenhirInterpreter.checkpoint
  val parse_constr_longident :
    Stdlib.Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
  val parse_any_longident :
    Stdlib.Lexing.position -> Longident.t Parser.MenhirInterpreter.checkpoint
  val interface :
    Stdlib.Lexing.position ->
    Parsetree.signature Parser.MenhirInterpreter.checkpoint
  val implementation :
    Stdlib.Lexing.position ->
    Parsetree.structure Parser.MenhirInterpreter.checkpoint
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_iterator.html0000644000175000017500000005260613717225554022641 0ustar mehdimehdi Ast_iterator

Module Ast_iterator

module Ast_iterator: sig .. end

Ast_iterator.iterator enables AST inspection using open recursion. A typical mapper would be based on Ast_iterator.default_iterator, a trivial iterator, and will fall back on it for handling the syntax it does not modify.

Warning: this module is unstable and part of compiler-libs.


A generic Parsetree iterator

type iterator = {
   attribute : iterator -> Parsetree.attribute -> unit;
   attributes : iterator -> Parsetree.attribute list -> unit;
   binding_op : iterator -> Parsetree.binding_op -> unit;
   case : iterator -> Parsetree.case -> unit;
   cases : iterator -> Parsetree.case list -> unit;
   class_declaration : iterator -> Parsetree.class_declaration -> unit;
   class_description : iterator -> Parsetree.class_description -> unit;
   class_expr : iterator -> Parsetree.class_expr -> unit;
   class_field : iterator -> Parsetree.class_field -> unit;
   class_signature : iterator -> Parsetree.class_signature -> unit;
   class_structure : iterator -> Parsetree.class_structure -> unit;
   class_type : iterator -> Parsetree.class_type -> unit;
   class_type_declaration : iterator -> Parsetree.class_type_declaration -> unit;
   class_type_field : iterator -> Parsetree.class_type_field -> unit;
   constructor_declaration : iterator -> Parsetree.constructor_declaration -> unit;
   expr : iterator -> Parsetree.expression -> unit;
   extension : iterator -> Parsetree.extension -> unit;
   extension_constructor : iterator -> Parsetree.extension_constructor -> unit;
   include_declaration : iterator -> Parsetree.include_declaration -> unit;
   include_description : iterator -> Parsetree.include_description -> unit;
   label_declaration : iterator -> Parsetree.label_declaration -> unit;
   location : iterator -> Location.t -> unit;
   module_binding : iterator -> Parsetree.module_binding -> unit;
   module_declaration : iterator -> Parsetree.module_declaration -> unit;
   module_substitution : iterator -> Parsetree.module_substitution -> unit;
   module_expr : iterator -> Parsetree.module_expr -> unit;
   module_type : iterator -> Parsetree.module_type -> unit;
   module_type_declaration : iterator -> Parsetree.module_type_declaration -> unit;
   open_declaration : iterator -> Parsetree.open_declaration -> unit;
   open_description : iterator -> Parsetree.open_description -> unit;
   pat : iterator -> Parsetree.pattern -> unit;
   payload : iterator -> Parsetree.payload -> unit;
   signature : iterator -> Parsetree.signature -> unit;
   signature_item : iterator -> Parsetree.signature_item -> unit;
   structure : iterator -> Parsetree.structure -> unit;
   structure_item : iterator -> Parsetree.structure_item -> unit;
   typ : iterator -> Parsetree.core_type -> unit;
   row_field : iterator -> Parsetree.row_field -> unit;
   object_field : iterator -> Parsetree.object_field -> unit;
   type_declaration : iterator -> Parsetree.type_declaration -> unit;
   type_extension : iterator -> Parsetree.type_extension -> unit;
   type_exception : iterator -> Parsetree.type_exception -> unit;
   type_kind : iterator -> Parsetree.type_kind -> unit;
   value_binding : iterator -> Parsetree.value_binding -> unit;
   value_description : iterator -> Parsetree.value_description -> unit;
   with_constraint : iterator -> Parsetree.with_constraint -> unit;
}

A iterator record implements one "method" per syntactic category, using an open recursion style: each method takes as its first argument the iterator to be applied to children in the syntax tree.

val default_iterator : iterator

A default iterator, which implements a "do not do anything" mapping.

ocaml-doc-4.11/ocaml.html/compilerlibref/Parser.html0000644000175000017500000011103613717225554021426 0ustar mehdimehdi Parser

Module Parser

module Parser: sig .. end

type token = 
| WITH
| WHILE
| WHEN
| VIRTUAL
| VAL
| UNDERSCORE
| UIDENT of string
| TYPE
| TRY
| TRUE
| TO
| TILDE
| THEN
| STRUCT
| STRING of (string * Location.t * string option)
| STAR
| SIG
| SEMISEMI
| SEMI
| RPAREN
| REC
| RBRACKET
| RBRACE
| QUOTED_STRING_ITEM of (string * Location.t * string * Location.t * string option)
| QUOTED_STRING_EXPR of (string * Location.t * string * Location.t * string option)
| QUOTE
| QUESTION
| PRIVATE
| PREFIXOP of string
| PLUSEQ
| PLUSDOT
| PLUS
| PERCENT
| OR
| OPTLABEL of string
| OPEN
| OF
| OBJECT
| NONREC
| NEW
| MUTABLE
| MODULE
| MINUSGREATER
| MINUSDOT
| MINUS
| METHOD
| MATCH
| LPAREN
| LIDENT of string
| LETOP of string
| LET
| LESSMINUS
| LESS
| LBRACKETPERCENTPERCENT
| LBRACKETPERCENT
| LBRACKETLESS
| LBRACKETGREATER
| LBRACKETBAR
| LBRACKETATATAT
| LBRACKETATAT
| LBRACKETAT
| LBRACKET
| LBRACELESS
| LBRACE
| LAZY
| LABEL of string
| INT of (string * char option)
| INITIALIZER
| INHERIT
| INFIXOP4 of string
| INFIXOP3 of string
| INFIXOP2 of string
| INFIXOP1 of string
| INFIXOP0 of string
| INCLUDE
| IN
| IF
| HASHOP of string
| HASH
| GREATERRBRACKET
| GREATERRBRACE
| GREATER
| FUNCTOR
| FUNCTION
| FUN
| FOR
| FLOAT of (string * char option)
| FALSE
| EXTERNAL
| EXCEPTION
| EQUAL
| EOL
| EOF
| END
| ELSE
| DOWNTO
| DOTOP of string
| DOTDOT
| DOT
| DONE
| DOCSTRING of Docstrings.docstring
| DO
| CONSTRAINT
| COMMENT of (string * Location.t)
| COMMA
| COLONGREATER
| COLONEQUAL
| COLONCOLON
| COLON
| CLASS
| CHAR of char
| BEGIN
| BARRBRACKET
| BARBAR
| BAR
| BANG
| BACKQUOTE
| ASSERT
| AS
| ANDOP of string
| AND
| AMPERSAND
| AMPERAMPER
exception Error
val use_file : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.toplevel_phrase list
val toplevel_phrase : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.toplevel_phrase
val parse_val_longident : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Longident.t
val parse_pattern : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.pattern
val parse_mty_longident : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Longident.t
val parse_mod_longident : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Longident.t
val parse_mod_ext_longident : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Longident.t
val parse_expression : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.expression
val parse_core_type : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.core_type
val parse_constr_longident : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Longident.t
val parse_any_longident : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Longident.t
val interface : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.signature
val implementation : (Lexing.lexbuf -> token) ->
Lexing.lexbuf -> Parsetree.structure
module MenhirInterpreter: sig .. end
module Incremental: sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Incl.html0000644000175000017500000000737413717225554024216 0ustar mehdimehdi Ast_helper.Incl sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs -> '-> 'Parsetree.include_infos
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.TableFormat.html0000644000175000017500000001062513717225554026576 0ustar mehdimehdi CamlinternalMenhirLib.TableFormat

Module CamlinternalMenhirLib.TableFormat

module TableFormat: sig .. end

module type TABLES = sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/Numbers.Int8.html0000644000175000017500000001071413717225554022427 0ustar mehdimehdi Numbers.Int8

Module Numbers.Int8

module Int8: sig .. end

type t 
val zero : t
val one : t
val of_int_exn : int -> t
val to_int : t -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Md.html0000644000175000017500000001074313717225554022622 0ustar mehdimehdi Ast_helper.Md

Module Ast_helper.Md

module Md: sig .. end

Module declarations


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
Ast_helper.str_opt -> Parsetree.module_type -> Parsetree.module_declaration
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Pair.html0000644000175000017500000001102513717225554024501 0ustar mehdimehdi Identifiable.Pair functor (A : Thing) (B : Thing->
  sig
    type t = A.t * B.t
    val equal : t -> t -> bool
    val hash : t -> int
    val compare : t -> t -> int
    val output : out_channel -> t -> unit
    val print : Format.formatter -> t -> unit
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Numbers.Int8.html0000644000175000017500000000761213717225554023473 0ustar mehdimehdi Numbers.Int8 sig
  type t
  val zero : Numbers.Int8.t
  val one : Numbers.Int8.t
  val of_int_exn : int -> Numbers.Int8.t
  val to_int : Numbers.Int8.t -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Targetint.html0000644000175000017500000005424713717225554022145 0ustar mehdimehdi Targetint

Module Targetint

module Targetint: sig .. end

Target processor-native integers.

This module provides operations on the type of signed 32-bit integers (on 32-bit target platforms) or signed 64-bit integers (on 64-bit target platforms). This integer type has exactly the same width as that of a pointer type in the C compiler. All arithmetic operations over are taken modulo 232 or 264 depending on the word size of the target architecture.

Warning: this module is unstable and part of compiler-libs.


type t 

The type of target integers.

val zero : t

The target integer 0.

val one : t

The target integer 1.

val minus_one : t

The target integer -1.

val neg : t -> t

Unary negation.

val add : t -> t -> t

Addition.

val sub : t -> t -> t

Subtraction.

val mul : t -> t -> t

Multiplication.

val div : t -> t -> t

Integer division. Raise Division_by_zero if the second argument is zero. This division rounds the real quotient of its arguments towards zero, as specified for Stdlib.(/).

val unsigned_div : t -> t -> t

Same as Targetint.div, except that arguments and result are interpreted as unsigned integers.

val rem : t -> t -> t

Integer remainder. If y is not zero, the result of Targetint.rem x y satisfies the following properties: Targetint.zero <= Nativeint.rem x y < Targetint.abs y and x = Targetint.add (Targetint.mul (Targetint.div x y) y)
                      (Targetint.rem x y)
. If y = 0, Targetint.rem x y raises Division_by_zero.

val unsigned_rem : t -> t -> t

Same as Targetint.rem, except that arguments and result are interpreted as unsigned integers.

val succ : t -> t

Successor. Targetint.succ x is Targetint.add x Targetint.one.

val pred : t -> t

Predecessor. Targetint.pred x is Targetint.sub x Targetint.one.

val abs : t -> t

Return the absolute value of its argument.

val size : int

The size in bits of a target native integer.

val max_int : t

The greatest representable target integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a 64-bit platform.

val min_int : t

The smallest representable target integer, either -231 on a 32-bit platform, or -263 on a 64-bit platform.

val logand : t -> t -> t

Bitwise logical and.

val logor : t -> t -> t

Bitwise logical or.

val logxor : t -> t -> t

Bitwise logical exclusive or.

val lognot : t -> t

Bitwise logical negation.

val shift_left : t -> int -> t

Targetint.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val shift_right : t -> int -> t

Targetint.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= bitsize.

val shift_right_logical : t -> int -> t

Targetint.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= bitsize.

val of_int : int -> t

Convert the given integer (type int) to a target integer (type t), module the target word size.

val of_int_exn : int -> t

Convert the given integer (type int) to a target integer (type t). Raises a fatal error if the conversion is not exact.

val to_int : t -> int

Convert the given target integer (type t) to an integer (type int). The high-order bit is lost during the conversion.

val of_float : float -> t

Convert the given floating-point number to a target integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Targetint.min_int, Targetint.max_int].

val to_float : t -> float

Convert the given target integer to a floating-point number.

val of_int32 : int32 -> t

Convert the given 32-bit integer (type int32) to a target integer.

val to_int32 : t -> int32

Convert the given target integer to a 32-bit integer (type int32). On 64-bit platforms, the 64-bit native integer is taken modulo 232, i.e. the top 32 bits are lost. On 32-bit platforms, the conversion is exact.

val of_int64 : int64 -> t

Convert the given 64-bit integer (type int64) to a target integer.

val to_int64 : t -> int64

Convert the given target integer to a 64-bit integer (type int64).

val of_string : string -> t

Convert the given string to a target integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise Failure "int_of_string" if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type nativeint.

val to_string : t -> string

Return the string representation of its argument, in decimal.

val compare : t -> t -> int

The comparison function for target integers, with the same specification as Stdlib.compare. Along with the type t, this function compare allows the module Targetint to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Targetint.compare, except that arguments are interpreted as unsigned integers.

val equal : t -> t -> bool

The equal function for target ints.

type repr = 
| Int32 of int32
| Int64 of int64
val repr : t -> repr

The concrete representation of a native integer.

val print : Format.formatter -> t -> unit

Print a target integer to a formatter.

ocaml-doc-4.11/ocaml.html/compilerlibref/index_classes.html0000644000175000017500000000625613717225554023025 0ustar mehdimehdi Index of classes

Index of classes

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Strongly_connected_components.S.html0000644000175000017500000001143613717225554027547 0ustar mehdimehdi Strongly_connected_components.S sig
  module Id : Identifiable.S
  type directed_graph = Id.Set.t Id.Map.t
  type component = Has_loop of Id.t list | No_loop of Id.t
  val connected_components_sorted_from_roots_to_leaf :
    Strongly_connected_components.S.directed_graph ->
    Strongly_connected_components.S.component array
  val component_graph :
    Strongly_connected_components.S.directed_graph ->
    (Strongly_connected_components.S.component * int list) array
end
././@LongLink0000644000000000000000000000014600000000000011604 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableFormat.TABLES.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableFormat.TABLES.htm0000644000175000017500000001340213717225554032464 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableFormat.TABLES sig
  type 'a terminal
  type 'a nonterminal
  type 'a symbol =
      T : 'a terminal -> 'a symbol
    | N : 'a nonterminal -> 'a symbol
  type xsymbol = X : 'a symbol -> xsymbol
  type 'a lr1state
  val terminal : int -> xsymbol
  val nonterminal : int -> xsymbol
  val rhs :
    CamlinternalMenhirLib.PackedIntArray.t *
    CamlinternalMenhirLib.PackedIntArray.t
  val lr0_core : CamlinternalMenhirLib.PackedIntArray.t
  val lr0_items :
    CamlinternalMenhirLib.PackedIntArray.t *
    CamlinternalMenhirLib.PackedIntArray.t
  val lr0_incoming : CamlinternalMenhirLib.PackedIntArray.t
  val nullable : string
  val first : int * string
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Depend.html0000644000175000017500000001664113717225554021377 0ustar mehdimehdi Depend

Module Depend

module Depend: sig .. end

Module dependencies.

Warning: this module is unstable and part of compiler-libs.


module String: Misc.Stdlib.String
type map_tree = 
| Node of String.Set.t * bound_map
type bound_map = map_tree String.Map.t 
val make_leaf : string -> map_tree
val make_node : bound_map -> map_tree
val weaken_map : String.Set.t -> map_tree -> map_tree
val free_structure_names : String.Set.t ref
val pp_deps : string list ref

dependencies found by preprocessing tools

val open_module : bound_map -> Longident.t -> bound_map
val add_use_file : bound_map -> Parsetree.toplevel_phrase list -> unit
val add_signature : bound_map -> Parsetree.signature -> unit
val add_implementation : bound_map -> Parsetree.structure -> unit
val add_implementation_binding : bound_map -> Parsetree.structure -> bound_map
val add_signature_binding : bound_map -> Parsetree.signature -> bound_map
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Mtd.html0000644000175000017500000001077413717225554023012 0ustar mehdimehdi Ast_helper.Mtd

Module Ast_helper.Mtd

module Mtd: sig .. end

Module type declarations


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
?typ:Parsetree.module_type ->
Ast_helper.str -> Parsetree.module_type_declaration
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.html0000644000175000017500000032047013717225554022132 0ustar mehdimehdi Misc sig
  val fatal_error : string -> 'a
  val fatal_errorf :
    ('a, Stdlib.Format.formatter, unit, 'b) Stdlib.format4 -> 'a
  exception Fatal_error
  val try_finally :
    ?always:(unit -> unit) ->
    ?exceptionally:(unit -> unit) -> (unit -> 'a) -> 'a
  val map_end : ('-> 'b) -> 'a list -> 'b list -> 'b list
  val map_left_right : ('-> 'b) -> 'a list -> 'b list
  val for_all2 : ('-> '-> bool) -> 'a list -> 'b list -> bool
  val replicate_list : '-> int -> 'a list
  val list_remove : '-> 'a list -> 'a list
  val split_last : 'a list -> 'a list * 'a
  type ref_and_value = R : 'Stdlib.ref * '-> Misc.ref_and_value
  val protect_refs : Misc.ref_and_value list -> (unit -> 'a) -> 'a
  module Stdlib :
    sig
      module List :
        sig
          type 'a t = 'a list
          val compare :
            ('-> '-> int) ->
            'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t -> int
          val equal :
            ('-> '-> bool) ->
            'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t -> bool
          val find_map :
            ('-> 'b option) -> 'Misc.Stdlib.List.t -> 'b option
          val some_if_all_elements_are_some :
            'a option Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t option
          val map2_prefix :
            ('-> '-> 'c) ->
            'Misc.Stdlib.List.t ->
            'Misc.Stdlib.List.t ->
            'Misc.Stdlib.List.t * 'Misc.Stdlib.List.t
          val split_at :
            int ->
            'Misc.Stdlib.List.t ->
            'Misc.Stdlib.List.t * 'Misc.Stdlib.List.t
          val is_prefix :
            equal:('-> '-> bool) -> 'a list -> of_:'a list -> bool
          type 'a longest_common_prefix_result = private {
            longest_common_prefix : 'a list;
            first_without_longest_common_prefix : 'a list;
            second_without_longest_common_prefix : 'a list;
          }
          val find_and_chop_longest_common_prefix :
            equal:('-> '-> bool) ->
            first:'a list ->
            second:'a list ->
            'Misc.Stdlib.List.longest_common_prefix_result
        end
      module Option :
        sig
          type 'a t = 'a option
          val print :
            (Stdlib.Format.formatter -> '-> unit) ->
            Stdlib.Format.formatter -> 'Misc.Stdlib.Option.t -> unit
        end
      module Array :
        sig
          val exists2 : ('-> '-> bool) -> 'a array -> 'b array -> bool
          val for_alli : (int -> '-> bool) -> 'a array -> bool
          val all_somes : 'a option array -> 'a array option
        end
      module String :
        sig
          external length : string -> int = "%string_length"
          external get : string -> int -> char = "%string_safe_get"
          external set : bytes -> int -> char -> unit = "%string_safe_set"
          external create : int -> bytes = "caml_create_string"
          val make : int -> char -> string
          val init : int -> (int -> char) -> string
          val copy : string -> string
          val sub : string -> int -> int -> string
          val fill : bytes -> int -> int -> char -> unit
          val blit : string -> int -> bytes -> int -> int -> unit
          val concat : string -> string list -> string
          val iter : (char -> unit) -> string -> unit
          val iteri : (int -> char -> unit) -> string -> unit
          val map : (char -> char) -> string -> string
          val mapi : (int -> char -> char) -> string -> string
          val trim : string -> string
          val escaped : string -> string
          val index : string -> char -> int
          val index_opt : string -> char -> int option
          val rindex : string -> char -> int
          val rindex_opt : string -> char -> int option
          val index_from : string -> int -> char -> int
          val index_from_opt : string -> int -> char -> int option
          val rindex_from : string -> int -> char -> int
          val rindex_from_opt : string -> int -> char -> int option
          val contains : string -> char -> bool
          val contains_from : string -> int -> char -> bool
          val rcontains_from : string -> int -> char -> bool
          val uppercase : string -> string
          val lowercase : string -> string
          val capitalize : string -> string
          val uncapitalize : string -> string
          val uppercase_ascii : string -> string
          val lowercase_ascii : string -> string
          val capitalize_ascii : string -> string
          val uncapitalize_ascii : string -> string
          type t = string
          val compare : t -> t -> int
          val equal : t -> t -> bool
          val split_on_char : char -> string -> string list
          val to_seq : t -> char Seq.t
          val to_seqi : t -> (int * char) Seq.t
          val of_seq : char Seq.t -> t
          external unsafe_get : string -> int -> char = "%string_unsafe_get"
          external unsafe_set : bytes -> int -> char -> unit
            = "%string_unsafe_set"
          external unsafe_blit : string -> int -> bytes -> int -> int -> unit
            = "caml_blit_string" [@@noalloc]
          external unsafe_fill : bytes -> int -> int -> char -> unit
            = "caml_fill_string" [@@noalloc]
          module Set :
            sig
              type elt = string
              type t
              val empty : t
              val is_empty : t -> bool
              val mem : elt -> t -> bool
              val add : elt -> t -> t
              val singleton : elt -> t
              val remove : elt -> t -> t
              val union : t -> t -> t
              val inter : t -> t -> t
              val disjoint : t -> t -> bool
              val diff : t -> t -> t
              val compare : t -> t -> int
              val equal : t -> t -> bool
              val subset : t -> t -> bool
              val iter : (elt -> unit) -> t -> unit
              val map : (elt -> elt) -> t -> t
              val fold : (elt -> '-> 'a) -> t -> '-> 'a
              val for_all : (elt -> bool) -> t -> bool
              val exists : (elt -> bool) -> t -> bool
              val filter : (elt -> bool) -> t -> t
              val filter_map : (elt -> elt option) -> t -> t
              val partition : (elt -> bool) -> t -> t * t
              val cardinal : t -> int
              val elements : t -> elt list
              val min_elt : t -> elt
              val min_elt_opt : t -> elt option
              val max_elt : t -> elt
              val max_elt_opt : t -> elt option
              val choose : t -> elt
              val choose_opt : t -> elt option
              val split : elt -> t -> t * bool * t
              val find : elt -> t -> elt
              val find_opt : elt -> t -> elt option
              val find_first : (elt -> bool) -> t -> elt
              val find_first_opt : (elt -> bool) -> t -> elt option
              val find_last : (elt -> bool) -> t -> elt
              val find_last_opt : (elt -> bool) -> t -> elt option
              val of_list : elt list -> t
              val to_seq_from : elt -> t -> elt Seq.t
              val to_seq : t -> elt Seq.t
              val add_seq : elt Seq.t -> t -> t
              val of_seq : elt Seq.t -> t
            end
          module Map :
            sig
              type key = string
              type +'a t
              val empty : 'a t
              val is_empty : 'a t -> bool
              val mem : key -> 'a t -> bool
              val add : key -> '-> 'a t -> 'a t
              val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
              val singleton : key -> '-> 'a t
              val remove : key -> 'a t -> 'a t
              val merge :
                (key -> 'a option -> 'b option -> 'c option) ->
                'a t -> 'b t -> 'c t
              val union :
                (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
              val compare : ('-> '-> int) -> 'a t -> 'a t -> int
              val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
              val iter : (key -> '-> unit) -> 'a t -> unit
              val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
              val for_all : (key -> '-> bool) -> 'a t -> bool
              val exists : (key -> '-> bool) -> 'a t -> bool
              val filter : (key -> '-> bool) -> 'a t -> 'a t
              val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
              val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
              val cardinal : 'a t -> int
              val bindings : 'a t -> (key * 'a) list
              val min_binding : 'a t -> key * 'a
              val min_binding_opt : 'a t -> (key * 'a) option
              val max_binding : 'a t -> key * 'a
              val max_binding_opt : 'a t -> (key * 'a) option
              val choose : 'a t -> key * 'a
              val choose_opt : 'a t -> (key * 'a) option
              val split : key -> 'a t -> 'a t * 'a option * 'a t
              val find : key -> 'a t -> 'a
              val find_opt : key -> 'a t -> 'a option
              val find_first : (key -> bool) -> 'a t -> key * 'a
              val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
              val find_last : (key -> bool) -> 'a t -> key * 'a
              val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
              val map : ('-> 'b) -> 'a t -> 'b t
              val mapi : (key -> '-> 'b) -> 'a t -> 'b t
              val to_seq : 'a t -> (key * 'a) Seq.t
              val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
              val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
              val of_seq : (key * 'a) Seq.t -> 'a t
            end
          module Tbl :
            sig
              type key = string
              type 'a t
              val create : int -> 'a t
              val clear : 'a t -> unit
              val reset : 'a t -> unit
              val copy : 'a t -> 'a t
              val add : 'a t -> key -> '-> unit
              val remove : 'a t -> key -> unit
              val find : 'a t -> key -> 'a
              val find_opt : 'a t -> key -> 'a option
              val find_all : 'a t -> key -> 'a list
              val replace : 'a t -> key -> '-> unit
              val mem : 'a t -> key -> bool
              val iter : (key -> '-> unit) -> 'a t -> unit
              val filter_map_inplace :
                (key -> '-> 'a option) -> 'a t -> unit
              val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
              val length : 'a t -> int
              val stats : 'a t -> Hashtbl.statistics
              val to_seq : 'a t -> (key * 'a) Seq.t
              val to_seq_keys : 'a t -> key Seq.t
              val to_seq_values : 'a t -> 'Seq.t
              val add_seq : 'a t -> (key * 'a) Seq.t -> unit
              val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
              val of_seq : (key * 'a) Seq.t -> 'a t
            end
          val print : Stdlib.Format.formatter -> t -> unit
          val for_all : (char -> bool) -> t -> bool
        end
      external compare : '-> '-> int = "%compare"
    end
  val find_in_path : string list -> string -> string
  val find_in_path_rel : string list -> string -> string
  val find_in_path_uncap : string list -> string -> string
  val remove_file : string -> unit
  val expand_directory : string -> string -> string
  val split_path_contents : ?sep:char -> string -> string list
  val create_hashtable : int -> ('a * 'b) list -> ('a, 'b) Stdlib.Hashtbl.t
  val copy_file : Stdlib.in_channel -> Stdlib.out_channel -> unit
  val copy_file_chunk :
    Stdlib.in_channel -> Stdlib.out_channel -> int -> unit
  val string_of_file : Stdlib.in_channel -> string
  val output_to_file_via_temporary :
    ?mode:Stdlib.open_flag list ->
    string -> (string -> Stdlib.out_channel -> 'a) -> 'a
  val protect_writing_to_file :
    filename:string -> f:(Stdlib.out_channel -> 'a) -> 'a
  val log2 : int -> int
  val align : int -> int -> int
  val no_overflow_add : int -> int -> bool
  val no_overflow_sub : int -> int -> bool
  val no_overflow_mul : int -> int -> bool
  val no_overflow_lsl : int -> int -> bool
  module Int_literal_converter :
    sig
      val int : string -> int
      val int32 : string -> int32
      val int64 : string -> int64
      val nativeint : string -> nativeint
    end
  val chop_extensions : string -> string
  val search_substring : string -> string -> int -> int
  val replace_substring : before:string -> after:string -> string -> string
  val rev_split_words : string -> string list
  val get_ref : 'a list Stdlib.ref -> 'a list
  val set_or_ignore : ('-> 'b option) -> 'b option Stdlib.ref -> '-> unit
  val fst3 : 'a * 'b * '-> 'a
  val snd3 : 'a * 'b * '-> 'b
  val thd3 : 'a * 'b * '-> 'c
  val fst4 : 'a * 'b * 'c * '-> 'a
  val snd4 : 'a * 'b * 'c * '-> 'b
  val thd4 : 'a * 'b * 'c * '-> 'c
  val for4 : 'a * 'b * 'c * '-> 'd
  module LongString :
    sig
      type t = bytes array
      val create : int -> Misc.LongString.t
      val length : Misc.LongString.t -> int
      val get : Misc.LongString.t -> int -> char
      val set : Misc.LongString.t -> int -> char -> unit
      val blit :
        Misc.LongString.t -> int -> Misc.LongString.t -> int -> int -> unit
      val blit_string :
        string -> int -> Misc.LongString.t -> int -> int -> unit
      val output :
        Stdlib.out_channel -> Misc.LongString.t -> int -> int -> unit
      val input_bytes_into :
        Misc.LongString.t -> Stdlib.in_channel -> int -> unit
      val input_bytes : Stdlib.in_channel -> int -> Misc.LongString.t
    end
  val edit_distance : string -> string -> int -> int option
  val spellcheck : string list -> string -> string list
  val did_you_mean : Stdlib.Format.formatter -> (unit -> string list) -> unit
  val cut_at : string -> char -> string * string
  module Color :
    sig
      type color =
          Black
        | Red
        | Green
        | Yellow
        | Blue
        | Magenta
        | Cyan
        | White
      type style =
          FG of Misc.Color.color
        | BG of Misc.Color.color
        | Bold
        | Reset
      val ansi_of_style_l : Misc.Color.style list -> string
      type styles = {
        error : Misc.Color.style list;
        warning : Misc.Color.style list;
        loc : Misc.Color.style list;
      }
      val default_styles : Misc.Color.styles
      val get_styles : unit -> Misc.Color.styles
      val set_styles : Misc.Color.styles -> unit
      type setting = Auto | Always | Never
      val default_setting : Misc.Color.setting
      val setup : Misc.Color.setting option -> unit
      val set_color_tag_handling : Stdlib.Format.formatter -> unit
    end
  module Error_style :
    sig
      type setting = Contextual | Short
      val default_setting : Misc.Error_style.setting
    end
  val normalise_eol : string -> string
  val delete_eol_spaces : string -> string
  val pp_two_columns :
    ?sep:string ->
    ?max_lines:int ->
    Stdlib.Format.formatter -> (string * string) list -> unit
  val show_config_and_exit : unit -> unit
  val show_config_variable_and_exit : string -> unit
  val get_build_path_prefix_map : unit -> Build_path_prefix_map.map option
  val debug_prefix_map_flags : unit -> string list
  val print_if :
    Stdlib.Format.formatter ->
    bool Stdlib.ref -> (Stdlib.Format.formatter -> '-> unit) -> '-> 'a
  type filepath = string
  type modname = string
  type crcs = (Misc.modname * Stdlib.Digest.t option) list
  type alerts = string Misc.Stdlib.String.Map.t
  module EnvLazy :
    sig
      type ('a, 'b) t
      type log
      val force : ('-> 'b) -> ('a, 'b) Misc.EnvLazy.t -> 'b
      val create : '-> ('a, 'b) Misc.EnvLazy.t
      val get_arg : ('a, 'b) Misc.EnvLazy.t -> 'a option
      val create_forced : '-> ('a, 'b) Misc.EnvLazy.t
      val create_failed : exn -> ('a, 'b) Misc.EnvLazy.t
      val log : unit -> Misc.EnvLazy.log
      val force_logged :
        Misc.EnvLazy.log ->
        ('-> ('b, 'c) Stdlib.result) ->
        ('a, ('b, 'c) Stdlib.result) Misc.EnvLazy.t -> ('b, 'c) Stdlib.result
      val backtrack : Misc.EnvLazy.log -> unit
    end
  module Magic_number :
    sig
      type native_obj_config = { flambda : bool; }
      val native_obj_config : Misc.Magic_number.native_obj_config
      type version = int
      type kind =
          Exec
        | Cmi
        | Cmo
        | Cma
        | Cmx of Misc.Magic_number.native_obj_config
        | Cmxa of Misc.Magic_number.native_obj_config
        | Cmxs
        | Cmt
        | Ast_impl
        | Ast_intf
      type info = {
        kind : Misc.Magic_number.kind;
        version : Misc.Magic_number.version;
      }
      type raw = string
      type parse_error = Truncated of string | Not_a_magic_number of string
      val explain_parse_error :
        Misc.Magic_number.kind option ->
        Misc.Magic_number.parse_error -> string
      val parse :
        Misc.Magic_number.raw ->
        (Misc.Magic_number.info, Misc.Magic_number.parse_error) Stdlib.result
      val read_info :
        Stdlib.in_channel ->
        (Misc.Magic_number.info, Misc.Magic_number.parse_error) Stdlib.result
      val magic_length : int
      type 'a unexpected = { expected : 'a; actual : 'a; }
      type unexpected_error =
          Kind of Misc.Magic_number.kind Misc.Magic_number.unexpected
        | Version of Misc.Magic_number.kind *
            Misc.Magic_number.version Misc.Magic_number.unexpected
      val check_current :
        Misc.Magic_number.kind ->
        Misc.Magic_number.info ->
        (unit, Misc.Magic_number.unexpected_error) Stdlib.result
      val explain_unexpected_error :
        Misc.Magic_number.unexpected_error -> string
      type error =
          Parse_error of Misc.Magic_number.parse_error
        | Unexpected_error of Misc.Magic_number.unexpected_error
      val read_current_info :
        expected_kind:Misc.Magic_number.kind option ->
        Stdlib.in_channel ->
        (Misc.Magic_number.info, Misc.Magic_number.error) Stdlib.result
      val string_of_kind : Misc.Magic_number.kind -> string
      val human_name_of_kind : Misc.Magic_number.kind -> string
      val current_raw : Misc.Magic_number.kind -> Misc.Magic_number.raw
      val current_version :
        Misc.Magic_number.kind -> Misc.Magic_number.version
      type raw_kind = string
      val parse_kind :
        Misc.Magic_number.raw_kind -> Misc.Magic_number.kind option
      val raw_kind : Misc.Magic_number.kind -> Misc.Magic_number.raw_kind
      val raw : Misc.Magic_number.info -> Misc.Magic_number.raw
      val all_kinds : Misc.Magic_number.kind list
    end
end
././@LongLink0000644000000000000000000000015400000000000011603 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableInterpreter.Symbols.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InspectionTableInterpreter.Symbo0000644000175000017500000001101713717225554033067 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableInterpreter.Symbols functor (T : sig type 'a terminal type 'a nonterminal end->
  sig
    type 'a symbol =
        T : 'T.terminal -> 'a symbol
      | N : 'T.nonterminal -> 'a symbol
    type xsymbol = X : 'a symbol -> xsymbol
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Error_style.html0000644000175000017500000000677413717225554024452 0ustar mehdimehdi Misc.Error_style sig
  type setting = Contextual | Short
  val default_setting : Misc.Error_style.setting
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.html0000644000175000017500000001446713717225554031124 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.SYMBOLS

Module type CamlinternalMenhirLib.IncrementalEngine.SYMBOLS

module type SYMBOLS = sig .. end

type 'a terminal 
type 'a nonterminal 
type 'a symbol = 
| T : 'a0 terminal -> 'a0 symbol
| N : 'a1 nonterminal -> 'a1 symbol
type xsymbol = 
| X : 'a symbol -> xsymbol
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Mty.html0000644000175000017500000001714113717225554024073 0ustar mehdimehdi Ast_helper.Mty sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.module_type_desc -> Parsetree.module_type
  val attr :
    Parsetree.module_type -> Parsetree.attribute -> Parsetree.module_type
  val ident :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_type
  val alias :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_type
  val signature :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.signature -> Parsetree.module_type
  val functor_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.functor_parameter ->
    Parsetree.module_type -> Parsetree.module_type
  val with_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.module_type ->
    Parsetree.with_constraint list -> Parsetree.module_type
  val typeof_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.module_expr -> Parsetree.module_type
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.module_type
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Clflags.Compiler_pass.html0000644000175000017500000001234113717225554024343 0ustar mehdimehdi Clflags.Compiler_pass

Module Clflags.Compiler_pass

module Compiler_pass: sig .. end

type t = 
| Parsing
| Typing
| Scheduling
val of_string : string -> t option
val to_string : t -> string
val is_compilation_pass : t -> bool
val available_pass_names : native:bool -> string list
ocaml-doc-4.11/ocaml.html/compilerlibref/Clflags.html0000644000175000017500000010044713717225554021551 0ustar mehdimehdi Clflags

Module Clflags

module Clflags: sig .. end

Command line flags


module Int_arg_helper: sig .. end

Optimization parameters represented as ints indexed by round number.

module Float_arg_helper: sig .. end

Optimization parameters represented as floats indexed by round number.

type inlining_arguments = {
   inline_call_cost : int option;
   inline_alloc_cost : int option;
   inline_prim_cost : int option;
   inline_branch_cost : int option;
   inline_indirect_cost : int option;
   inline_lifting_benefit : int option;
   inline_branch_factor : float option;
   inline_max_depth : int option;
   inline_max_unroll : int option;
   inline_threshold : float option;
   inline_toplevel_threshold : int option;
}
val classic_arguments : inlining_arguments
val o1_arguments : inlining_arguments
val o2_arguments : inlining_arguments
val o3_arguments : inlining_arguments
val use_inlining_arguments_set : ?round:int -> inlining_arguments -> unit

Set all the inlining arguments for a round. The default is set if no round is provided.

val objfiles : string list ref
val ccobjs : string list ref
val dllibs : string list ref
val compile_only : bool ref
val output_name : string option ref
val include_dirs : string list ref
val no_std_include : bool ref
val print_types : bool ref
val make_archive : bool ref
val debug : bool ref
val debug_full : bool ref
val unsafe : bool ref
val use_linscan : bool ref
val link_everything : bool ref
val custom_runtime : bool ref
val no_check_prims : bool ref
val bytecode_compatible_32 : bool ref
val output_c_object : bool ref
val output_complete_object : bool ref
val output_complete_executable : bool ref
val all_ccopts : string list ref
val classic : bool ref
val nopervasives : bool ref
val match_context_rows : int ref
val open_modules : string list ref
val preprocessor : string option ref
val all_ppx : string list ref
val absname : bool ref
val annotations : bool ref
val binary_annotations : bool ref
val use_threads : bool ref
val noassert : bool ref
val verbose : bool ref
val noprompt : bool ref
val nopromptcont : bool ref
val init_file : string option ref
val noinit : bool ref
val noversion : bool ref
val use_prims : string ref
val use_runtime : string ref
val plugin : bool ref
val principal : bool ref
val real_paths : bool ref
val recursive_types : bool ref
val strict_sequence : bool ref
val strict_formats : bool ref
val applicative_functors : bool ref
val make_runtime : bool ref
val c_compiler : string option ref
val no_auto_link : bool ref
val dllpaths : string list ref
val make_package : bool ref
val for_package : string option ref
val error_size : int ref
val float_const_prop : bool ref
val transparent_modules : bool ref
val unique_ids : bool ref
val locations : bool ref
val dump_source : bool ref
val dump_parsetree : bool ref
val dump_typedtree : bool ref
val dump_rawlambda : bool ref
val dump_lambda : bool ref
val dump_rawclambda : bool ref
val dump_clambda : bool ref
val dump_rawflambda : bool ref
val dump_flambda : bool ref
val dump_flambda_let : int option ref
val dump_instr : bool ref
val keep_camlprimc_file : bool ref
val keep_asm_file : bool ref
val optimize_for_speed : bool ref
val dump_cmm : bool ref
val dump_selection : bool ref
val dump_cse : bool ref
val dump_live : bool ref
val dump_avail : bool ref
val debug_runavail : bool ref
val dump_spill : bool ref
val dump_split : bool ref
val dump_interf : bool ref
val dump_prefer : bool ref
val dump_regalloc : bool ref
val dump_reload : bool ref
val dump_scheduling : bool ref
val dump_linear : bool ref
val dump_interval : bool ref
val keep_startup_file : bool ref
val dump_combine : bool ref
val native_code : bool ref
val default_inline_threshold : float
val inline_threshold : Float_arg_helper.parsed ref
val inlining_report : bool ref
val simplify_rounds : int option ref
val default_simplify_rounds : int ref
val rounds : unit -> int
val default_inline_max_unroll : int
val inline_max_unroll : Int_arg_helper.parsed ref
val default_inline_toplevel_threshold : int
val inline_toplevel_threshold : Int_arg_helper.parsed ref
val default_inline_call_cost : int
val default_inline_alloc_cost : int
val default_inline_prim_cost : int
val default_inline_branch_cost : int
val default_inline_indirect_cost : int
val default_inline_lifting_benefit : int
val inline_call_cost : Int_arg_helper.parsed ref
val inline_alloc_cost : Int_arg_helper.parsed ref
val inline_prim_cost : Int_arg_helper.parsed ref
val inline_branch_cost : Int_arg_helper.parsed ref
val inline_indirect_cost : Int_arg_helper.parsed ref
val inline_lifting_benefit : Int_arg_helper.parsed ref
val default_inline_branch_factor : float
val inline_branch_factor : Float_arg_helper.parsed ref
val dont_write_files : bool ref
val std_include_flag : string -> string
val std_include_dir : unit -> string list
val shared : bool ref
val dlcode : bool ref
val pic_code : bool ref
val runtime_variant : string ref
val with_runtime : bool ref
val force_slash : bool ref
val keep_docs : bool ref
val keep_locs : bool ref
val unsafe_string : bool ref
val opaque : bool ref
val profile_columns : Profile.column list ref
val flambda_invariant_checks : bool ref
val unbox_closures : bool ref
val unbox_closures_factor : int ref
val default_unbox_closures_factor : int
val unbox_free_vars_of_closures : bool ref
val unbox_specialised_args : bool ref
val clambda_checks : bool ref
val default_inline_max_depth : int
val inline_max_depth : Int_arg_helper.parsed ref
val remove_unused_arguments : bool ref
val dump_flambda_verbose : bool ref
val classic_inlining : bool ref
val afl_instrument : bool ref
val afl_inst_ratio : int ref
val function_sections : bool ref
val all_passes : string list ref
val dumped_pass : string -> bool
val set_dumped_pass : string -> bool -> unit
val dump_into_file : bool ref
type 'a env_reader = {
   parse : string -> 'a option;
   print : 'a -> string;
   usage : string;
   env_var : string;
}
val color : Misc.Color.setting option ref
val color_reader : Misc.Color.setting env_reader
val error_style : Misc.Error_style.setting option ref
val error_style_reader : Misc.Error_style.setting env_reader
val unboxed_types : bool ref
val insn_sched : bool ref
val insn_sched_default : bool
module Compiler_pass: sig .. end
val stop_after : Compiler_pass.t option ref
val should_stop_after : Compiler_pass.t -> bool
val arg_spec : (string * Arg.spec * string) list ref
val add_arguments : string -> (string * Arg.spec * string) list -> unit
val parse_arguments : Arg.anon_fun -> string -> unit
val print_arguments : string -> unit
val reset_arguments : unit -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Map.T.html0000644000175000017500000000677013717225554023477 0ustar mehdimehdi Identifiable.Map.T

Module Identifiable.Map.T

module T: Map.OrderedType 

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Terminfo.html0000644000175000017500000001076213717225554023022 0ustar mehdimehdi Terminfo sig
  type status = Uninitialised | Bad_term | Good_term
  val setup : Stdlib.out_channel -> Terminfo.status
  val num_lines : Stdlib.out_channel -> int
  val backup : Stdlib.out_channel -> int -> unit
  val standout : Stdlib.out_channel -> bool -> unit
  val resume : Stdlib.out_channel -> int -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Cf.html0000644000175000017500000002077213717225554022615 0ustar mehdimehdi Ast_helper.Cf

Module Ast_helper.Cf

module Cf: sig .. end

Class fields


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs -> Parsetree.class_field_desc -> Parsetree.class_field
val attr : Parsetree.class_field -> Parsetree.attribute -> Parsetree.class_field
val inherit_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.override_flag ->
Parsetree.class_expr -> Ast_helper.str option -> Parsetree.class_field
val val_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str ->
Asttypes.mutable_flag -> Parsetree.class_field_kind -> Parsetree.class_field
val method_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Ast_helper.str ->
Asttypes.private_flag -> Parsetree.class_field_kind -> Parsetree.class_field
val constraint_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.core_type -> Parsetree.core_type -> Parsetree.class_field
val initializer_ : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.class_field
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_field
val attribute : ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.class_field
val text : Docstrings.text -> Parsetree.class_field list
val virtual_ : Parsetree.core_type -> Parsetree.class_field_kind
val concrete : Asttypes.override_flag -> Parsetree.expression -> Parsetree.class_field_kind
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Mod.html0000644000175000017500000001730613717225554024044 0ustar mehdimehdi Ast_helper.Mod sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.module_expr_desc -> Parsetree.module_expr
  val attr :
    Parsetree.module_expr -> Parsetree.attribute -> Parsetree.module_expr
  val ident :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_expr
  val structure :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.structure -> Parsetree.module_expr
  val functor_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.functor_parameter ->
    Parsetree.module_expr -> Parsetree.module_expr
  val apply :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.module_expr -> Parsetree.module_expr -> Parsetree.module_expr
  val constraint_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.module_expr -> Parsetree.module_type -> Parsetree.module_expr
  val unpack :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.expression -> Parsetree.module_expr
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.module_expr
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Set.html0000644000175000017500000001130713717225554023303 0ustar mehdimehdi Identifiable.Set

Module type Identifiable.Set

module type Set = sig .. end

module T: Set.OrderedType 
include Set.S
val output : out_channel -> t -> unit
val print : Format.formatter -> t -> unit
val to_string : t -> string
val of_list : elt list -> t
val map : (elt -> elt) -> t -> t
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Str.html0000644000175000017500000002310313717225554023024 0ustar mehdimehdi Ast_helper.Str

Module Ast_helper.Str

module Str: sig .. end

Structure items


val mk : ?loc:Ast_helper.loc ->
Parsetree.structure_item_desc -> Parsetree.structure_item
val eval : ?loc:Ast_helper.loc ->
?attrs:Parsetree.attributes ->
Parsetree.expression -> Parsetree.structure_item
val value : ?loc:Ast_helper.loc ->
Asttypes.rec_flag -> Parsetree.value_binding list -> Parsetree.structure_item
val primitive : ?loc:Ast_helper.loc ->
Parsetree.value_description -> Parsetree.structure_item
val type_ : ?loc:Ast_helper.loc ->
Asttypes.rec_flag ->
Parsetree.type_declaration list -> Parsetree.structure_item
val type_extension : ?loc:Ast_helper.loc -> Parsetree.type_extension -> Parsetree.structure_item
val exception_ : ?loc:Ast_helper.loc -> Parsetree.type_exception -> Parsetree.structure_item
val module_ : ?loc:Ast_helper.loc -> Parsetree.module_binding -> Parsetree.structure_item
val rec_module : ?loc:Ast_helper.loc ->
Parsetree.module_binding list -> Parsetree.structure_item
val modtype : ?loc:Ast_helper.loc ->
Parsetree.module_type_declaration -> Parsetree.structure_item
val open_ : ?loc:Ast_helper.loc -> Parsetree.open_declaration -> Parsetree.structure_item
val class_ : ?loc:Ast_helper.loc ->
Parsetree.class_declaration list -> Parsetree.structure_item
val class_type : ?loc:Ast_helper.loc ->
Parsetree.class_type_declaration list -> Parsetree.structure_item
val include_ : ?loc:Ast_helper.loc ->
Parsetree.include_declaration -> Parsetree.structure_item
val extension : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.structure_item
val attribute : ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.structure_item
val text : Docstrings.text -> Parsetree.structure_item list
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Clflags.Float_arg_helper.html0000644000175000017500000001116113717225554026040 0ustar mehdimehdi Clflags.Float_arg_helper sig
  type parsed
  val parse :
    string -> string -> Clflags.Float_arg_helper.parsed Stdlib.ref -> unit
  type parse_result = Ok | Parse_failed of exn
  val parse_no_error :
    string ->
    Clflags.Float_arg_helper.parsed Stdlib.ref ->
    Clflags.Float_arg_helper.parse_result
  val get : key:int -> Clflags.Float_arg_helper.parsed -> float
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.S.T.html0000644000175000017500000001012113717225554024206 0ustar mehdimehdi Identifiable.S.T sig
  type t = t
  val equal : t -> t -> bool
  val hash : t -> int
  val compare : t -> t -> int
  val output : out_channel -> t -> unit
  val print : Format.formatter -> t -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.EngineTypes.TABLE.html0000644000175000017500000004250213717225554030516 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.TABLE sig
  type state
  val number : CamlinternalMenhirLib.EngineTypes.TABLE.state -> int
  type token
  type terminal
  type nonterminal
  type semantic_value
  val token2terminal :
    CamlinternalMenhirLib.EngineTypes.TABLE.token ->
    CamlinternalMenhirLib.EngineTypes.TABLE.terminal
  val token2value :
    CamlinternalMenhirLib.EngineTypes.TABLE.token ->
    CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value
  val error_terminal : CamlinternalMenhirLib.EngineTypes.TABLE.terminal
  val error_value : CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value
  val foreach_terminal :
    (CamlinternalMenhirLib.EngineTypes.TABLE.terminal -> '-> 'a) ->
    '-> 'a
  type production
  val production_index :
    CamlinternalMenhirLib.EngineTypes.TABLE.production -> int
  val find_production :
    int -> CamlinternalMenhirLib.EngineTypes.TABLE.production
  val default_reduction :
    CamlinternalMenhirLib.EngineTypes.TABLE.state ->
    ('env -> CamlinternalMenhirLib.EngineTypes.TABLE.production -> 'answer) ->
    ('env -> 'answer) -> 'env -> 'answer
  val action :
    CamlinternalMenhirLib.EngineTypes.TABLE.state ->
    CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
    CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value ->
    ('env ->
     bool ->
     CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
     CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value ->
     CamlinternalMenhirLib.EngineTypes.TABLE.state -> 'answer) ->
    ('env -> CamlinternalMenhirLib.EngineTypes.TABLE.production -> 'answer) ->
    ('env -> 'answer) -> 'env -> 'answer
  val goto_nt :
    CamlinternalMenhirLib.EngineTypes.TABLE.state ->
    CamlinternalMenhirLib.EngineTypes.TABLE.nonterminal ->
    CamlinternalMenhirLib.EngineTypes.TABLE.state
  val goto_prod :
    CamlinternalMenhirLib.EngineTypes.TABLE.state ->
    CamlinternalMenhirLib.EngineTypes.TABLE.production ->
    CamlinternalMenhirLib.EngineTypes.TABLE.state
  val maybe_goto_nt :
    CamlinternalMenhirLib.EngineTypes.TABLE.state ->
    CamlinternalMenhirLib.EngineTypes.TABLE.nonterminal ->
    CamlinternalMenhirLib.EngineTypes.TABLE.state option
  val is_start : CamlinternalMenhirLib.EngineTypes.TABLE.production -> bool
  exception Error
  type semantic_action =
      (CamlinternalMenhirLib.EngineTypes.TABLE.state,
       CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value,
       CamlinternalMenhirLib.EngineTypes.TABLE.token)
      CamlinternalMenhirLib.EngineTypes.env ->
      (CamlinternalMenhirLib.EngineTypes.TABLE.state,
       CamlinternalMenhirLib.EngineTypes.TABLE.semantic_value)
      CamlinternalMenhirLib.EngineTypes.stack
  val semantic_action :
    CamlinternalMenhirLib.EngineTypes.TABLE.production ->
    CamlinternalMenhirLib.EngineTypes.TABLE.semantic_action
  val may_reduce :
    CamlinternalMenhirLib.EngineTypes.TABLE.state ->
    CamlinternalMenhirLib.EngineTypes.TABLE.production -> bool
  val log : bool
  module Log :
    sig
      val state : CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
      val shift :
        CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
        CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
      val reduce_or_accept :
        CamlinternalMenhirLib.EngineTypes.TABLE.production -> unit
      val lookahead_token :
        CamlinternalMenhirLib.EngineTypes.TABLE.terminal ->
        Stdlib.Lexing.position -> Stdlib.Lexing.position -> unit
      val initiating_error_handling : unit -> unit
      val resuming_error_handling : unit -> unit
      val handling_error :
        CamlinternalMenhirLib.EngineTypes.TABLE.state -> unit
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/index_values.html0000644000175000017500000056464613717225554022703 0ustar mehdimehdi Index of values

Index of values

(<) [Int_replace_polymorphic_compare]
(<=) [Int_replace_polymorphic_compare]
(<>) [Int_replace_polymorphic_compare]
(=) [Int_replace_polymorphic_compare]
(>) [Int_replace_polymorphic_compare]
(>=) [Int_replace_polymorphic_compare]
A
abs [Targetint]

Return the absolute value of its argument.

absname [Clflags]
absolute_path [Location]
acceptable [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
action [CamlinternalMenhirLib.TableFormat.TABLES]
action [CamlinternalMenhirLib.EngineTypes.TABLE]
add [Targetint]

Addition.

add [Load_path]
add_arguments [Clflags]
add_base_override [Arg_helper.Make]
add_dir [Load_path]

Add a directory to the load path

add_docs_attrs [Docstrings]

Convert item documentation to attributes and add them to an attribute list

add_implementation [Depend]
add_implementation_binding [Depend]
add_info_attrs [Docstrings]

Convert field info to attributes and add them to an attribute list

add_ppx_context_sig [Ast_mapper]

Same as add_ppx_context_str, but for signatures.

add_ppx_context_str [Ast_mapper]

Extract information from the current environment and encode it into an attribute which is prepended to the list of structure items in order to pass the information to an external processor.

add_signature [Depend]
add_signature_binding [Depend]
add_text_attrs [Docstrings]

Convert text to attributes and add them to an attribute list

add_use_file [Depend]
add_user_override [Arg_helper.Make]
afl_inst_ratio [Clflags]
afl_instrument [Config]

Whether afl-fuzz instrumentation is generated by default

afl_instrument [Clflags]
alert [Location]

Prints an arbitrary alert.

alert_reporter [Location]

Hook for intercepting alerts.

alerts_of_attrs [Builtin_attributes]
alerts_of_sig [Builtin_attributes]
alerts_of_str [Builtin_attributes]
alias [Ast_helper.Mty]
alias [Ast_helper.Pat]
alias [Ast_helper.Typ]
align [Misc]
all_ccopts [Clflags]
all_columns [Profile]
all_passes [Clflags]
all_ppx [Clflags]
all_somes [Misc.Stdlib.Array]
annotations [Clflags]
ansi_of_style_l [Misc.Color]
any [Ast_helper.Pat]
any [Ast_helper.Typ]
applicative_functors [Clflags]
apply [Ast_mapper]

Apply a mapper (parametrized by the unit name) to a dumped parsetree found in the source file and put the result in the target file.

apply [Ast_helper.Cl]
apply [Ast_helper.Mod]
apply [Ast_helper.Exp]
apply_rewriters [Pparse]

If restore = true (the default), cookies set by external rewriters will be kept for later calls.

apply_rewriters_sig [Pparse]
apply_rewriters_str [Pparse]
ar [Config]

Name of the ar command, or "" if not needed (MSVC)

architecture [Config]

Name of processor type for the native-code compiler

arg_spec [Clflags]
array [Ast_helper.Exp]
array [Ast_helper.Pat]
arrow [Ast_helper.Cty]
arrow [Ast_helper.Typ]
as_has_debug_prefix_map [Config]

Whether the assembler supports --debug-prefix-map

asm [Config]

The assembler (and flags) to use for assembling ocamlopt-generated code.

asm_cfi_supported [Config]

Whether assembler understands CFI directives

assert_ [Ast_helper.Exp]
ast_impl_magic_number [Config]

Magic number for file holding an implementation syntax tree

ast_intf_magic_number [Config]

Magic number for file holding an interface syntax tree

attr [Ast_helper.Cf]
attr [Ast_helper.Cl]
attr [Ast_helper.Ctf]
attr [Ast_helper.Cty]
attr [Ast_helper.Mod]
attr [Ast_helper.Mty]
attr [Ast_helper.Exp]
attr [Ast_helper.Pat]
attr [Ast_helper.Typ]
attribute [Ast_helper.Cf]
attribute [Ast_helper.Ctf]
attribute [Ast_helper.Str]
attribute [Ast_helper.Sig]
attribute_of_warning [Ast_mapper]

Encode a warning message into an 'ocaml.ppwarning' attribute which can be inserted in a generated Parsetree.

available_pass_names [Clflags.Compiler_pass]
B
backtrack [Misc.EnvLazy]
backup [Warnings]
backup [Terminfo]
batch_mode_printer [Location]
best_toplevel_printer [Location]

Detects the terminal capabilities and selects an adequate printer

binary_annotations [Clflags]
binding_op [Ast_helper.Exp]
blit [Misc.LongString]
blit_string [Misc.LongString]
bytecode_compatible_32 [Clflags]
bytecomp_c_libraries [Config]

The C libraries to link with custom runtimes

C
c_compiler [Config]

The compiler to use for compiling C files

c_compiler [Clflags]
c_has_debug_prefix_map [Config]

Whether the C compiler supports -fdebug-prefix-map

c_output_obj [Config]

Name of the option of the C compiler for specifying the output file

call_external_preprocessor [Pparse]
call_linker [Ccomp]
case [Ast_helper.Exp]
ccobjs [Clflags]
ccomp_type [Config]

The "kind" of the C compiler, assembler and linker used: one of "cc" (for Unix-style C compilers) "msvc" (for Microsoft Visual C++ and MASM)

char [Ast_helper.Const]
check [Consistbl.Make]
check_alerts [Builtin_attributes]
check_alerts_inclusion [Builtin_attributes]
check_current [Misc.Magic_number]

check_current kind info checks that the provided magic info is the current version of kind's magic header.

check_deprecated_mutable [Builtin_attributes]
check_deprecated_mutable_inclusion [Builtin_attributes]
check_fatal [Warnings]
check_no_alert [Builtin_attributes]
check_noadd [Consistbl.Make]
chop_extensions [Misc]
clambda_checks [Clflags]
class_ [Ast_helper.Str]
class_ [Ast_helper.Sig]
class_ [Ast_helper.Typ]
class_type [Ast_helper.Str]
class_type [Ast_helper.Sig]
classic [Clflags]
classic_arguments [Clflags]
classic_inlining [Clflags]
clear [Consistbl.Make]
cma_magic_number [Config]

Magic number for archive files

cmi_magic_number [Config]

Magic number for compiled interface files

cmo_magic_number [Config]

Magic number for object bytecode files

cmt_magic_number [Config]

Magic number for compiled interface files

cmx_magic_number [Config]

Magic number for compilation unit descriptions

cmxa_magic_number [Config]

Magic number for libraries of compilation unit descriptions

cmxs_magic_number [Config]

Magic number for dynamically-loadable plugins

coerce [Ast_helper.Exp]
color [Clflags]
color_reader [Clflags]
command [Ccomp]
comments [Lexer]
compare [Targetint]

The comparison function for target integers, with the same specification as Stdlib.compare.

compare [Misc.Stdlib.List]

The lexicographic order supported by the provided order.

compare [Misc.Stdlib]
compare [Int_replace_polymorphic_compare]
compare_items [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
compare_nonterminals [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
compare_productions [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
compare_symbols [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
compare_terminals [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
compile_file [Ccomp]
compile_only [Clflags]
component_graph [Strongly_connected_components.S]
compress [CamlinternalMenhirLib.RowDisplacement]
concrete [Ast_helper.Cf]
config_var [Config]

the configuration value of a variable, if it exists

connected_components_sorted_from_roots_to_leaf [Strongly_connected_components.S]
constant [Ast_helper.Exp]
constant [Ast_helper.Pat]
constr [Ast_helper.Cl]
constr [Ast_helper.Cty]
constr [Ast_helper.Typ]
constr_ident [Parse]

This function parses a syntactically valid path for a variant constructor.

constraint_ [Ast_helper.Cf]
constraint_ [Ast_helper.Cl]
constraint_ [Ast_helper.Ctf]
constraint_ [Ast_helper.Mod]
constraint_ [Ast_helper.Exp]
constraint_ [Ast_helper.Pat]
construct [Ast_helper.Exp]
construct [Ast_helper.Pat]
constructor [Ast_helper.Te]
constructor [Ast_helper.Type]
copy_file [Misc]
copy_file_chunk [Misc]
core_type [Pprintast]
core_type [Parse]
create [Misc.EnvLazy]
create [Misc.LongString]
create [Load_path.Dir]
create [Consistbl.Make]
create_archive [Ccomp]
create_failed [Misc.EnvLazy]
create_forced [Misc.EnvLazy]
create_hashtable [Misc]
curr [Location]

Get the location of the current token from the lexbuf.

current_raw [Misc.Magic_number]

the current magic number of each kind

current_state_number [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
current_version [Misc.Magic_number]

the current version of each kind

custom_runtime [Clflags]
cut_at [Misc]

String.cut_at s c returns a pair containing the sub-string before the first occurrence of c in s, and the sub-string after the first occurrence of c in s.

D
data [Identifiable.Map]
debug [Clflags]
debug_full [Clflags]
debug_prefix_map_flags [Misc]

Returns the list of --debug-prefix-map flags to be passed to the assembler, built from the BUILD_PATH_PREFIX_MAP environment variable.

debug_runavail [Clflags]
decl [Ast_helper.Te]
decode_map [Build_path_prefix_map]
decode_pair [Build_path_prefix_map]
decode_prefix [Build_path_prefix_map]
default [Arg_helper.Make]
default_alert_reporter [Location]

Original alert reporter for use in hooks.

default_executable_name [Config]

Name of executable produced by linking if none is given with -o, e.g.

default_inline_alloc_cost [Clflags]
default_inline_branch_cost [Clflags]
default_inline_branch_factor [Clflags]
default_inline_call_cost [Clflags]
default_inline_indirect_cost [Clflags]
default_inline_lifting_benefit [Clflags]
default_inline_max_depth [Clflags]
default_inline_max_unroll [Clflags]
default_inline_prim_cost [Clflags]
default_inline_threshold [Clflags]
default_inline_toplevel_threshold [Clflags]
default_iterator [Ast_iterator]

A default iterator, which implements a "do not do anything" mapping.

default_loc [Ast_helper]

Default value for all optional location arguments.

default_mapper [Ast_mapper]

A default mapper, which implements a "deep identity" mapping.

default_reduction [CamlinternalMenhirLib.TableFormat.TABLES]
default_reduction [CamlinternalMenhirLib.EngineTypes.TABLE]
default_report_printer [Location]

Original report printer for use in hooks.

default_safe_string [Config]

Whether the compiler was configured to use the -safe-string or -unsafe-string compile-time option by default.

default_setting [Misc.Error_style]
default_setting [Misc.Color]
default_simplify_rounds [Clflags]
default_styles [Misc.Color]
default_unbox_closures_factor [Clflags]
default_warning_reporter [Location]

Original warning reporter for use in hooks.

defaults_w [Warnings]
defaults_warn_error [Warnings]
delete_eol_spaces [Misc]

delete_eol_spaces s returns a fresh copy of s with any end of line spaces removed.

deprecated [Location]

Prints a deprecation alert.

did_you_mean [Misc]

did_you_mean ppf get_choices hints that the user may have meant one of the option returned by calling get_choices.

disjoint_union [Identifiable.Map]

disjoint_union m1 m2 contains all bindings from m1 and m2.

div [Targetint]

Integer division.

dlcode [Clflags]
dllibs [Clflags]
dllpaths [Clflags]
docs_attr [Docstrings]
docstring [Docstrings]

Create a docstring

docstring_body [Docstrings]

Get the text of a docstring

docstring_loc [Docstrings]

Get the location of a docstring

domain [CamlinternalMenhirLib.InfiniteArray]

domain a is a fresh copy of an initial segment of the array a whose length is extent a.

dont_write_files [Clflags]
drop [CamlinternalMenhirLib.General]
drop_ppx_context_sig [Ast_mapper]

Same as drop_ppx_context_str, but for signatures.

drop_ppx_context_str [Ast_mapper]

Drop the ocaml.ppx.context attribute from a structure.

dump_avail [Clflags]
dump_clambda [Clflags]
dump_cmm [Clflags]
dump_combine [Clflags]
dump_cse [Clflags]
dump_flambda [Clflags]
dump_flambda_let [Clflags]
dump_flambda_verbose [Clflags]
dump_instr [Clflags]
dump_interf [Clflags]
dump_interval [Clflags]
dump_into_file [Clflags]
dump_lambda [Clflags]
dump_linear [Clflags]
dump_live [Clflags]
dump_parsetree [Clflags]
dump_prefer [Clflags]
dump_rawclambda [Clflags]
dump_rawflambda [Clflags]
dump_rawlambda [Clflags]
dump_regalloc [Clflags]
dump_reload [Clflags]
dump_scheduling [Clflags]
dump_selection [Clflags]
dump_source [Clflags]
dump_spill [Clflags]
dump_split [Clflags]
dump_typedtree [Clflags]
dumped_pass [Clflags]
E
echo_eof [Location]
edit_distance [Misc]

edit_distance a b cutoff computes the edit distance between strings a and b.

empty_docs [Docstrings]
empty_info [Docstrings]
empty_text [Docstrings]
empty_text_lazy [Docstrings]
enable_call_counts [Config]

Whether call counts are to be available when Spacetime profiling

encode_map [Build_path_prefix_map]
encode_pair [Build_path_prefix_map]
encode_prefix [Build_path_prefix_map]
entry [CamlinternalMenhirLib.EngineTypes.MONOLITHIC_ENGINE]
env_has_default_reduction [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
equal [Targetint]

The equal function for target ints.

equal [Misc.Stdlib.List]

Returns true iff the given lists have the same length and content with respect to the given equality function.

equal [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
error [Location]
error [CamlinternalMenhirLib.TableFormat.TABLES]
error_of_exn [Location]
error_of_extension [Builtin_attributes]
error_of_printer [Location]
error_of_printer_file [Location]
error_size [Clflags]
error_style [Clflags]
error_style_reader [Clflags]
error_terminal [CamlinternalMenhirLib.TableFormat.TABLES]
error_terminal [CamlinternalMenhirLib.EngineTypes.TABLE]
error_value [CamlinternalMenhirLib.EngineTypes.TABLE]
errorf [Location]
eval [Ast_helper.Str]
exception_ [Ast_helper.Str]
exception_ [Ast_helper.Sig]
exception_ [Ast_helper.Pat]
exec_magic_number [Config]

Magic number for bytecode executable files

exists2 [Misc.Stdlib.Array]
expand_directory [Misc]
expand_libname [Ccomp]
explain_parse_error [Misc.Magic_number]

Produces an explanation for a parse error.

explain_unexpected_error [Misc.Magic_number]

Provides an explanation of the unexpected_error.

explicit_arity [Builtin_attributes]
expression [Printast]
expression [Pprintast]
expression [Parse]
ext_asm [Config]

Extension for assembler files, e.g.

ext_dll [Config]

Extension for dynamically-loaded libraries, e.g.

ext_lib [Config]

Extension for library files, e.g.

ext_obj [Config]

Extension for object files, e.g.

extended_module_path [Parse]

This function parse syntactically valid path for an extended module.

extension [Ast_helper.Cf]
extension [Ast_helper.Cl]
extension [Ast_helper.Ctf]
extension [Ast_helper.Cty]
extension [Ast_helper.Str]
extension [Ast_helper.Sig]
extension [Ast_helper.Mod]
extension [Ast_helper.Mty]
extension [Ast_helper.Exp]
extension [Ast_helper.Pat]
extension [Ast_helper.Typ]
extension_of_error [Ast_mapper]

Encode an error into an 'ocaml.error' extension node which can be inserted in a generated Parsetree.

extent [CamlinternalMenhirLib.InfiniteArray]

extent a is the length of an initial segment of the array a that is sufficiently large to contain all set operations ever performed.

extract [Consistbl.Make]
extract_map [Consistbl.Make]
F
fatal_error [Misc]
fatal_errorf [Misc]
feed [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
field [Ast_helper.Type]
field [Ast_helper.Exp]
file [Pparse]
files [Load_path.Dir]

All the files in that directory.

filter [Consistbl.Make]
find [Load_path]

Locate a file in the load path.

find_and_chop_longest_common_prefix [Misc.Stdlib.List]

Returns the longest list that, with respect to the provided equality function, is a prefix of both of the given lists.

find_in_path [Misc]
find_in_path_rel [Misc]
find_in_path_uncap [Misc]
find_map [Misc.Stdlib.List]

find_map f l returns the first evaluation of f that returns Some, or returns None if there is no such element.

find_production [CamlinternalMenhirLib.EngineTypes.TABLE]
find_production [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
find_uncap [Load_path]

Same as find, but search also for uncapitalized name, i.e.

first [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
first [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
flambda [Config]

Whether the compiler was configured for flambda

flambda_invariant_checks [Clflags]
flat_float_array [Config]

Whether the compiler and runtime automagically flatten float arrays

flatten [Longident]
flexdll_dirs [Config]

Directories needed for the FlexDLL objects

float [Ast_helper.Const]
float_const_prop [Clflags]
foldr [CamlinternalMenhirLib.General]
for4 [Misc]
for_ [Ast_helper.Exp]
for_all [Misc.Stdlib.String]
for_all2 [Misc]
for_alli [Misc.Stdlib.Array]

Same as Array.for_all, but the function is applied with the index of the element as first argument, and the element itself as second argument.

for_package [Clflags]
force [Misc.EnvLazy]
force_logged [Misc.EnvLazy]
force_poly [Ast_helper.Typ]
force_reduction [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
force_slash [Clflags]
foreach_terminal [CamlinternalMenhirLib.EngineTypes.TABLE]
foreach_terminal [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
foreach_terminal_but_error [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
formatter_for_warnings [Location]
free_structure_names [Depend]
fst3 [Misc]
fst4 [Misc]
fun_ [Ast_helper.Cl]
fun_ [Ast_helper.Exp]
function_ [Ast_helper.Exp]
function_sections [Config]

Whether the compiler was configured to generate each function in a separate section

function_sections [Clflags]
functor_ [Ast_helper.Mod]
functor_ [Ast_helper.Mty]
G
generate [Profile]
get [Misc.LongString]
get [Load_path]

Same as get_paths (), except that it returns a Dir.t list.

get [Clflags.Float_arg_helper]
get [Clflags.Int_arg_helper]
get [CamlinternalMenhirLib.RowDisplacement]
get [CamlinternalMenhirLib.PackedIntArray]
get [CamlinternalMenhirLib.InfiniteArray]

get a i returns the element contained at offset i in the array a.

get [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
get [Arg_helper.Make]
get1 [CamlinternalMenhirLib.PackedIntArray]
get_arg [Misc.EnvLazy]
get_build_path_prefix_map [Misc]

Returns the map encoded in the BUILD_PATH_PREFIX_MAP environment variable.

get_cookie [Ast_mapper]
get_no_payload_attribute [Attr_helper]

The string list argument of the following functions is a list of alternative names for the attribute we are looking for.

get_paths [Load_path]

Return the list of directories passed to add_dir so far, in reverse order.

get_pos_info [Location]

file, line, char

get_ref [Misc]
get_styles [Misc.Color]
getget [CamlinternalMenhirLib.RowDisplacement]
goto [CamlinternalMenhirLib.TableFormat.TABLES]
goto_nt [CamlinternalMenhirLib.EngineTypes.TABLE]
goto_prod [CamlinternalMenhirLib.EngineTypes.TABLE]
H
handle_docstrings [Lexer]
handling_error [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
has_boxed [Builtin_attributes]
has_no_payload_attribute [Attr_helper]
has_unboxed [Builtin_attributes]
help_warnings [Warnings]
highlight_terminfo [Location]
host [Config]

Whether the compiler is a cross-compiler

human_name_of_kind [Misc.Magic_number]

a user-meaningful name for a kind, eg.

I
ident [Ast_helper.Mod]
ident [Ast_helper.Mty]
ident [Ast_helper.Exp]
idx_of_field [Domainstate]
ifthenelse [Ast_helper.Exp]
ill_formed_ast [Syntaxerr]
immediate [Builtin_attributes]
immediate64 [Builtin_attributes]
implementation [Printast]
implementation [Parser.Incremental]
implementation [Parser]
implementation [Parse]
in_comment [Lexer]
in_file [Location]

Return an empty ghost range located in a given file.

in_string [Lexer]
include_ [Ast_helper.Str]
include_ [Ast_helper.Sig]
include_dirs [Clflags]
incoming_symbol [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
info_attr [Docstrings]
inherit_ [Ast_helper.Of]
inherit_ [Ast_helper.Rf]
inherit_ [Ast_helper.Cf]
inherit_ [Ast_helper.Ctf]
init [Location]

Set the file name and line number of the lexbuf to be the start of the named file.

init [Load_path]

init l is the same as reset (); List.iter add_dir (List.rev l)

init [Lexer]
init [Docstrings]

(Re)Initialise all docstring state

init_file [Clflags]
initializer_ [Ast_helper.Cf]
initiating_error_handling [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
inline_alloc_cost [Clflags]
inline_branch_cost [Clflags]
inline_branch_factor [Clflags]
inline_call_cost [Clflags]
inline_indirect_cost [Clflags]
inline_lifting_benefit [Clflags]
inline_max_depth [Clflags]
inline_max_unroll [Clflags]
inline_prim_cost [Clflags]
inline_threshold [Clflags]
inline_toplevel_threshold [Clflags]
inlining_report [Clflags]
input_bytes [Misc.LongString]
input_bytes_into [Misc.LongString]
input_lexbuf [Location]
input_name [Location]
input_needed [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
input_phrase_buffer [Location]
insn_sched [Clflags]
insn_sched_default [Clflags]
int [Misc.Int_literal_converter]
int [Ast_helper.Const]
int32 [Misc.Int_literal_converter]
int32 [Ast_helper.Const]
int64 [Misc.Int_literal_converter]
int64 [Ast_helper.Const]
integer [Ast_helper.Const]
interface [Printast]
interface [Parser.Incremental]
interface [Parser]
interface [Parse]
interface_suffix [Config]

Suffix for interface file names

interval [Ast_helper.Pat]
is_active [Warnings]
is_compilation_pass [Clflags.Compiler_pass]
is_error [Warnings]
is_none [Location]

True for Location.none, false any other location

is_prefix [Misc.Stdlib.List]

Returns true iff the given list, with respect to the given equality function on list members, is a prefix of the list of_.

is_start [CamlinternalMenhirLib.EngineTypes.TABLE]
items [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
K
keep_asm_file [Clflags]
keep_camlprimc_file [Clflags]
keep_docs [Clflags]
keep_locs [Clflags]
keep_startup_file [Clflags]
keys [Identifiable.Map]
L
last [Longident]
last [CamlinternalMenhirLib.ErrorReports]
lazy_ [Ast_helper.Exp]
lazy_ [Ast_helper.Pat]
lazy_tag [Config]

Normally the same as Obj.lazy_tag.

length [Misc.LongString]
length [CamlinternalMenhirLib.LinearizedArray]
length [CamlinternalMenhirLib.General]
let_ [Ast_helper.Cl]
let_ [Ast_helper.Exp]
letexception [Ast_helper.Exp]
letmodule [Ast_helper.Exp]
letop [Ast_helper.Exp]
lexer_lexbuf_to_supplier [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
lhs [CamlinternalMenhirLib.TableFormat.TABLES]
lhs [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
libunwind_available [Config]

Whether the libunwind library is available on the target

libunwind_link_flags [Config]

Linker flags to use libunwind

link_everything [Clflags]
list_remove [Misc]
location_of_error [Syntaxerr]
locations [Clflags]
log [Misc.EnvLazy]
log [CamlinternalMenhirLib.EngineTypes.TABLE]
log2 [Misc]
logand [Targetint]

Bitwise logical and.

lognot [Targetint]

Bitwise logical negation.

logor [Targetint]

Bitwise logical or.

logxor [Targetint]

Bitwise logical exclusive or.

longident [Pprintast]
longident [Parse]

The function longident is guaranted to parse all subclasses of Longident.t used in OCaml: values, constructors, simple or extended module paths, and types or module types.

lookahead_token [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
loop [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
loop_handle [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
loop_handle_undo [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
lr0_core [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
lr0_incoming [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
lr0_items [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
M
magic_length [Misc.Magic_number]

all magic numbers take the same number of bytes

make [CamlinternalMenhirLib.LinearizedArray]
make [CamlinternalMenhirLib.InfiniteArray]

make x creates an infinite array, where every slot contains x.

make_archive [Clflags]
make_leaf [Depend]
make_node [Depend]
make_package [Clflags]
make_runtime [Clflags]
map [Identifiable.Tbl]
map [Identifiable.Set]
map2_prefix [Misc.Stdlib.List]

let r1, r2 = map2_prefix f l1 l2 If l1 is of length n and l2 = h2 @ t2 with h2 of length n, r1 is List.map2 f l1 h1 and r2 is t2.

map_end [Misc]
map_keys [Identifiable.Map]
map_left_right [Misc]
map_opt [Ast_mapper]
mark_rhs_docs [Docstrings.WithMenhir]

Mark as associated the item documentation for the symbols between two positions (for ambiguity warnings)

mark_rhs_docs [Docstrings]

Mark as associated the item documentation for the symbols between two positions (for ambiguity warnings)

mark_symbol_docs [Docstrings.WithMenhir]

Mark the item documentation for the current symbol (for ambiguity warnings).

mark_symbol_docs [Docstrings]

Mark the item documentation for the current symbol (for ambiguity warnings).

match_ [Ast_helper.Exp]
match_context_rows [Clflags]
max_int [Targetint]

The greatest representable target integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a 64-bit platform.

max_tag [Config]

Biggest tag that can be stored in the header of a regular block.

max_young_wosize [Config]

Maximal size of arrays that are directly allocated in the minor heap

may_reduce [CamlinternalMenhirLib.EngineTypes.TABLE]
maybe_goto_nt [CamlinternalMenhirLib.EngineTypes.TABLE]
memoize [Identifiable.Tbl]
method_ [Ast_helper.Cf]
method_ [Ast_helper.Ctf]
min_int [Targetint]

The smallest representable target integer, either -231 on a 32-bit platform, or -263 on a 64-bit platform.

minus_one [Targetint]

The target integer -1.

mk [Ast_helper.Of]
mk [Ast_helper.Rf]
mk [Ast_helper.Cstr]
mk [Ast_helper.Csig]
mk [Ast_helper.Ci]
mk [Ast_helper.Cf]
mk [Ast_helper.Cl]
mk [Ast_helper.Ctf]
mk [Ast_helper.Cty]
mk [Ast_helper.Vb]
mk [Ast_helper.Incl]
mk [Ast_helper.Opn]
mk [Ast_helper.Mb]
mk [Ast_helper.Mtd]
mk [Ast_helper.Ms]
mk [Ast_helper.Md]
mk [Ast_helper.Str]
mk [Ast_helper.Sig]
mk [Ast_helper.Mod]
mk [Ast_helper.Mty]
mk [Ast_helper.Te]
mk [Ast_helper.Type]
mk [Ast_helper.Val]
mk [Ast_helper.Exp]
mk [Ast_helper.Pat]
mk [Ast_helper.Typ]
mk [Ast_helper.Attr]
mk_exception [Ast_helper.Te]
mk_lazy [Warnings]

Like Lazy.of_fun, but the function is applied with the warning/alert settings at the time mk_lazy is called.

mkdll [Config]

The linker command line to build dynamic libraries.

mkexe [Config]

The linker command line to build executables.

mkloc [Location]
mkmaindll [Config]

The linker command line to build main programs as dlls.

mknoloc [Location]
mod_subst [Ast_helper.Sig]
model [Config]

Name of processor submodel for the native-code compiler

modtype [Ast_helper.Str]
modtype [Ast_helper.Sig]
module_ [Ast_helper.Str]
module_ [Ast_helper.Sig]
msg [Location]
mul [Targetint]

Multiplication.

N
native_c_libraries [Config]

The C libraries to link with native-code programs

native_code [Clflags]
native_obj_config [Misc.Magic_number]

the native object file configuration of the active/configured compiler.

native_pack_linker [Config]

The linker to use for packaging (ocamlopt -pack) and for partial links (ocamlopt -output-obj).

nativeint [Misc.Int_literal_converter]
nativeint [Ast_helper.Const]
neg [Targetint]

Unary negation.

new_ [Ast_helper.Exp]
newtype [Ast_helper.Exp]
no_auto_link [Clflags]
no_check_prims [Clflags]
no_overflow_add [Misc]
no_overflow_lsl [Misc]
no_overflow_mul [Misc]
no_overflow_sub [Misc]
no_std_include [Clflags]
noassert [Clflags]
noinit [Clflags]
none [Location]

An arbitrary value of type t; describes an empty ghost range.

nonterminal [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
nopervasives [Clflags]
noprompt [Clflags]
nopromptcont [Clflags]
normalise_eol [Misc]

normalise_eol s returns a fresh copy of s with any '\r' characters removed.

noversion [Clflags]
nullable [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
nullable [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
num_lines [Terminfo]
number [CamlinternalMenhirLib.EngineTypes.TABLE]
number [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
O
o1_arguments [Clflags]
o2_arguments [Clflags]
o3_arguments [Clflags]
object_ [Ast_helper.Exp]
object_ [Ast_helper.Typ]
objfiles [Clflags]
ocamlc_cflags [Config]

The flags ocamlc should pass to the C compiler

ocamlc_cppflags [Config]

The flags ocamlc should pass to the C preprocessor

ocamlopt_cflags [Config]
ocamlopt_cppflags [Config]
of_float [Targetint]

Convert the given floating-point number to a target integer, discarding the fractional part (truncate towards 0).

of_int [Targetint]

Convert the given integer (type int) to a target integer (type t), module the target word size.

of_int32 [Targetint]

Convert the given 32-bit integer (type int32) to a target integer.

of_int64 [Targetint]

Convert the given 64-bit integer (type int64) to a target integer.

of_int64_exn [Numbers.Int16]
of_int_exn [Targetint]

Convert the given integer (type int) to a target integer (type t).

of_int_exn [Numbers.Int16]
of_int_exn [Numbers.Int8]
of_list [Identifiable.Tbl]
of_list [Identifiable.Map]
of_list [Identifiable.Set]
of_map [Identifiable.Tbl]
of_set [Identifiable.Map]
of_string [Targetint]

Convert the given string to a target integer.

of_string [Clflags.Compiler_pass]
offer [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
one [Targetint]

The target integer 1.

one [Numbers.Int8]
opaque [Clflags]
open_ [Ast_helper.Cl]
open_ [Ast_helper.Cty]
open_ [Ast_helper.Str]
open_ [Ast_helper.Sig]
open_ [Ast_helper.Exp]
open_ [Ast_helper.Pat]
open_and_check_magic [Pparse]
open_module [Depend]
open_modules [Clflags]
optimize_for_speed [Clflags]
options_doc [Profile]
or_ [Ast_helper.Pat]
output [Misc.LongString]
output [Identifiable.Set]
output [Identifiable.Thing]
output_c_object [Clflags]
output_complete_executable [Clflags]
output_complete_object [Clflags]
output_name [Clflags]
output_to_file_via_temporary [Misc]
override [Ast_helper.Exp]
P
pack [CamlinternalMenhirLib.PackedIntArray]
pack [Ast_helper.Exp]
package [Ast_helper.Typ]
parse [Misc.Magic_number]

Parses a raw magic number

parse [Longident]

This function is broken on identifiers that are not just "Word.Word.word"; for example, it returns incorrect results on infix operators and extended module paths.

parse [Clflags.Float_arg_helper]
parse [Clflags.Int_arg_helper]
parse [Arg_helper.Make]
parse_alert_option [Warnings]

Disable/enable alerts based on the parameter to the -alert command-line option.

parse_any_longident [Parser.Incremental]
parse_any_longident [Parser]
parse_arguments [Clflags]
parse_constr_longident [Parser.Incremental]
parse_constr_longident [Parser]
parse_core_type [Parser.Incremental]
parse_core_type [Parser]
parse_expression [Parser.Incremental]
parse_expression [Parser]
parse_implementation [Pparse]
parse_interface [Pparse]
parse_kind [Misc.Magic_number]

parse a raw kind into a kind

parse_mod_ext_longident [Parser.Incremental]
parse_mod_ext_longident [Parser]
parse_mod_longident [Parser.Incremental]
parse_mod_longident [Parser]
parse_mty_longident [Parser.Incremental]
parse_mty_longident [Parser]
parse_no_error [Clflags.Float_arg_helper]
parse_no_error [Clflags.Int_arg_helper]
parse_no_error [Arg_helper.Make]
parse_options [Warnings]
parse_pattern [Parser.Incremental]
parse_pattern [Parser]
parse_val_longident [Parser.Incremental]
parse_val_longident [Parser]
path [Load_path.Dir]
pattern [Pprintast]
pattern [Parse]
payload [Printast]
pic_code [Clflags]
plugin [Clflags]
poly [Ast_helper.Exp]
poly [Ast_helper.Typ]
pop [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
pop_many [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
positions [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
pp_deps [Depend]

dependencies found by preprocessing tools

pp_two_columns [Misc]

pp_two_columns ?sep ?max_lines ppf l prints the lines in l as two columns separated by sep ("|" by default).

pred [Targetint]

Predecessor.

preprocess [Pparse]
preprocessor [Clflags]
prerr_alert [Location]

Same as print_alert, but uses !formatter_for_warnings as output formatter.

prerr_warning [Location]

Same as print_warning, but uses !formatter_for_warnings as output formatter.

primitive [Ast_helper.Str]
principal [Clflags]
print [Targetint]

Print a target integer to a formatter.

print [Profile]

Prints the selected recorded profiling information to the formatter.

print [Misc.Stdlib.Option]
print [Identifiable.Map]
print [Identifiable.Set]
print [Identifiable.Thing]
print [Misc.Stdlib.String]
print_alert [Location]

Prints an alert.

print_arguments [Clflags]
print_config [Config]

Access to configuration values

print_current_state [CamlinternalMenhirLib.Printers.Make]
print_element_as_symbol [CamlinternalMenhirLib.Printers.Make]
print_env [CamlinternalMenhirLib.Printers.Make]
print_filename [Location]
print_if [Misc]

print_if ppf flag fmt x prints x with fmt on ppf if b is true.

print_item [CamlinternalMenhirLib.Printers.Make]
print_loc [Location]
print_locs [Location]
print_production [CamlinternalMenhirLib.Printers.Make]
print_report [Location]

Display an error or warning report.

print_stack [CamlinternalMenhirLib.Printers.Make]
print_symbols [CamlinternalMenhirLib.Printers.Make]
print_types [Clflags]
print_warning [Location]

Prints a warning.

print_warnings [Lexer]
production_index [CamlinternalMenhirLib.EngineTypes.TABLE]
production_index [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
profile_columns [Clflags]
profinfo [Config]

Whether the compiler was configured for profiling

profinfo_width [Config]

How many bits are to be used in values' headers for profiling information

protect_refs [Misc]

protect_refs l f temporarily sets r to v for each R (r, v) in l while executing f.

protect_writing_to_file [Misc]

Open the given filename for writing (in binary mode), pass the out_channel to the given function, then close the channel.

Q
quote_files [Ccomp]
quote_optfile [Ccomp]
R
raise_errorf [Location]
ranlib [Config]

Command to randomize a library, or "" if not needed

raw [Misc.Magic_number]

A valid raw representation of the magic number.

raw_kind [Misc.Magic_number]

the current raw representation of a kind.

read [CamlinternalMenhirLib.LinearizedArray]
read_ast [Pparse]
read_current_info [Misc.Magic_number]

Read a magic number as read_info, and check that it is the current version as its kind.

read_info [Misc.Magic_number]

Read a raw magic number from an input channel.

read_row [CamlinternalMenhirLib.LinearizedArray]
read_row_via [CamlinternalMenhirLib.LinearizedArray]
read_via [CamlinternalMenhirLib.LinearizedArray]
real_paths [Clflags]
rebind [Ast_helper.Te]
rec_module [Ast_helper.Str]
rec_module [Ast_helper.Sig]
record [Profile]

record pass f arg records the profile information of f arg

record [Ast_helper.Exp]
record [Ast_helper.Pat]
record_call [Profile]

record_call pass f calls f and records its profile information.

recursive_types [Clflags]
reduce_or_accept [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
register [Docstrings]

Register a docstring

register [Ast_mapper]

Apply the register_function.

register_error_of_exn [Location]

Each compiler module which defines a custom type of exception which can surface as a user-visible error should register a "printer" for this exception using register_error_of_exn.

register_function [Ast_mapper]
rem [Targetint]

Integer remainder.

remove_dir [Load_path]

Remove a directory from the load path

remove_file [Misc]
remove_preprocessed [Pparse]
remove_unused_arguments [Clflags]
rename [Identifiable.Map]
replace_substring [Misc]
replicate_list [Misc]
report [Warnings]
report_alert [Warnings]
report_alert [Location]

report_alert loc w produces a report for the given alert w, or None if the alert is not to be printed.

report_error [Pparse]
report_error [Attr_helper]
report_exception [Location]

Reraise the exception if it is unknown.

report_printer [Location]

Hook for redefining the printer of reports.

report_warning [Location]

report_warning loc w produces a report for the given warning w, or None if the warning is not to be printed.

repr [Targetint]

The concrete representation of a native integer.

require_20190924 [CamlinternalMenhirLib.StaticVersion]
reset [Profile]

erase all recorded profile information

reset [Location]
reset [Load_path]

Remove all directories

reset_arguments [Clflags]
reset_base_overrides [Arg_helper.Make]
reset_fatal [Warnings]
restore [Warnings]
resume [Terminfo]
resume [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
resuming_error_handling [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
rev_split_words [Misc]
revised2traditional [CamlinternalMenhirLib.Convert.Simplified]
revised2traditional [CamlinternalMenhirLib.Convert]
rewrite [Build_path_prefix_map]
rewrite_absolute_path [Location]

rewrite absolute path to honor the BUILD_PATH_PREFIX_MAP variable (https://reproducible-builds.org/specs/build-path-prefix-map/) if it is set.

rewrite_opt [Build_path_prefix_map]

rewrite_opt map path tries to find a source in map that is a prefix of the input path.

rhs [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
rhs [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
rhs_docs [Docstrings.WithMenhir]

Fetch the item documentation for the symbols between two positions.

rhs_docs [Docstrings]

Fetch the item documentation for the symbols between two positions.

rhs_docs_lazy [Docstrings.WithMenhir]
rhs_docs_lazy [Docstrings]
rhs_info [Docstrings.WithMenhir]

Fetch the field info following the symbol at a given position.

rhs_info [Docstrings]

Fetch the field info following the symbol at a given position.

rhs_interval [Location]
rhs_loc [Location]

rhs_loc n returns the location of the symbol at position n, starting at 1, in the current parser rule.

rhs_post_extra_text [Docstrings.WithMenhir]

Fetch additional text following the symbol at the given position

rhs_post_extra_text [Docstrings]

Fetch additional text following the symbol at the given position

rhs_post_text [Docstrings.WithMenhir]

Fetch text following the symbol at the given position

rhs_post_text [Docstrings]

Fetch text following the symbol at the given position

rhs_pre_extra_text [Docstrings.WithMenhir]

Fetch additional text preceding the symbol at the given position

rhs_pre_extra_text [Docstrings]

Fetch additional text preceding the symbol at the given position

rhs_text [Docstrings.WithMenhir]

Fetch the text preceding the symbol at the given position.

rhs_text [Docstrings]

Fetch the text preceding the symbol at the given position.

rhs_text_lazy [Docstrings.WithMenhir]
rhs_text_lazy [Docstrings]
rounds [Clflags]
row_length [CamlinternalMenhirLib.LinearizedArray]
row_length_via [CamlinternalMenhirLib.LinearizedArray]
run_command [Ccomp]
run_main [Ast_mapper]

Entry point to call to implement a standalone -ppx rewriter from a mapper, parametrized by the command line arguments.

runtime_variant [Clflags]
S
safe_string [Config]

Whether the compiler was configured with -force-safe-string; in that case, the -unsafe-string compile-time option is unavailable

search_substring [Misc]
semantic_action [CamlinternalMenhirLib.TableFormat.TABLES]
semantic_action [CamlinternalMenhirLib.EngineTypes.TABLE]
send [Ast_helper.Exp]
sequence [Ast_helper.Exp]
set [Misc.LongString]
set [Consistbl.Make]
set [CamlinternalMenhirLib.InfiniteArray]

set a i x sets the element contained at offset i in the array a to x.

set_base_default [Arg_helper.Make]
set_color_tag_handling [Misc.Color]
set_cookie [Ast_mapper]
set_dumped_pass [Clflags]
set_floating_docstrings [Docstrings]

Docstrings not immediately adjacent to a token

set_or_ignore [Misc]
set_post_docstrings [Docstrings]

Docstrings immediately following a token

set_post_extra_docstrings [Docstrings]

Docstrings immediately preceding the token which follows this one

set_pre_docstrings [Docstrings]

Docstrings immediately preceding a token

set_pre_extra_docstrings [Docstrings]

Docstrings immediately following the token which precedes this one

set_preprocessor [Lexer]
set_styles [Misc.Color]
set_user_default [Arg_helper.Make]
setfield [Ast_helper.Exp]
setinstvar [Ast_helper.Exp]
setup [Terminfo]
setup [Misc.Color]
shared [Clflags]
shift [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
shift_left [Targetint]

Targetint.shift_left x y shifts x to the left by y bits.

shift_right [Targetint]

Targetint.shift_right x y shifts x to the right by y bits.

shift_right_logical [Targetint]

Targetint.shift_right_logical x y shifts x to the right by y bits.

shifts [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
should_stop_after [Clflags]
show [CamlinternalMenhirLib.ErrorReports]
show_config_and_exit [Misc]

configuration variables

show_config_variable_and_exit [Misc]
show_filename [Location]

In -absname mode, return the absolute path for this filename.

signature [Pprintast]
signature [Ast_invariants]
signature [Ast_helper.Cty]
signature [Ast_helper.Mty]
simple_module_path [Parse]

This function parses a syntactically valid path for a module.

simplify_rounds [Clflags]
size [Targetint]

The size in bits of a target native integer.

skip_hash_bang [Lexer]
snd3 [Misc]
snd4 [Misc]
some_if_all_elements_are_some [Misc.Stdlib.List]

If all elements of the given list are Some _ then Some xs is returned with the xs being the contents of those Somes, with order preserved.

source [Consistbl.Make]
spacetime [Config]

Whether the compiler was configured for Spacetime profiling

spellcheck [Misc]

spellcheck env name takes a list of names env that exist in the current environment and an erroneous name, and returns a list of suggestions taken from env, that are close enough to name that it may be a typo for one of them.

split_at [Misc.Stdlib.List]

split_at n l returns the pair before, after where before is the n first elements of l and after the remaining ones.

split_last [Misc]
split_path_contents [Misc]
stack [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
stack_safety_margin [Config]

Size in words of the safety margin between the bottom of the stack and the stack pointer.

stack_threshold [Config]

Size in words of safe area at bottom of VM stack, see runtime/caml/config.h

standard_library [Config]

The directory containing the standard libraries

standout [Terminfo]
start [CamlinternalMenhirLib.TableFormat.TABLES]
start [CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START]
state [CamlinternalMenhirLib.EngineTypes.TABLE.Log]
state_has_default_reduction [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
std_include_dir [Clflags]
std_include_flag [Clflags]
stop_after [Clflags]
strict_formats [Clflags]
strict_sequence [Clflags]
string [Ast_helper.Const]
string_of_expression [Pprintast]
string_of_file [Misc]
string_of_kind [Misc.Magic_number]

a user-printable string for a kind, eg.

string_of_structure [Pprintast]
structure [Printast]
structure [Pprintast]
structure [Ast_invariants]
structure [Ast_helper.Cl]
structure [Ast_helper.Mod]
sub [Targetint]

Subtraction.

succ [Targetint]

Successor.

supports_shared_libraries [Config]

Whether shared libraries are supported

symbol_docs [Docstrings.WithMenhir]

Fetch the item documentation for the current symbol.

symbol_docs [Docstrings]

Fetch the item documentation for the current symbol.

symbol_docs_lazy [Docstrings.WithMenhir]
symbol_docs_lazy [Docstrings]
symbol_gloc [Location]
symbol_info [Docstrings.WithMenhir]

Fetch the field info for the current symbol.

symbol_info [Docstrings]

Fetch the field info for the current symbol.

symbol_post_extra_text [Docstrings.WithMenhir]

Fetch additional text following the current symbol

symbol_post_extra_text [Docstrings]

Fetch additional text following the current symbol

symbol_pre_extra_text [Docstrings.WithMenhir]

Fetch additional text preceding the current symbol

symbol_pre_extra_text [Docstrings]

Fetch additional text preceding the current symbol

symbol_rloc [Location]
symbol_text [Docstrings.WithMenhir]

Fetch the text preceding the current symbol.

symbol_text [Docstrings]

Fetch the text preceding the current symbol.

symbol_text_lazy [Docstrings.WithMenhir]
symbol_text_lazy [Docstrings]
system [Config]

Name of operating system for the native-code compiler

systhread_supported [Config]

Whether the system thread library is implemented

T
tag [Ast_helper.Of]
tag [Ast_helper.Rf]
take [CamlinternalMenhirLib.General]
target [Config]

Whether the compiler is a cross-compiler

terminal [CamlinternalMenhirLib.InspectionTableFormat.TABLES]
terminfo_toplevel_printer [Location]
text [Ast_helper.Cf]
text [Ast_helper.Ctf]
text [Ast_helper.Str]
text [Ast_helper.Sig]
text_attr [Docstrings]
thd3 [Misc]
thd4 [Misc]
to_float [Targetint]

Convert the given target integer to a floating-point number.

to_int [Targetint]

Convert the given target integer (type t) to an integer (type int).

to_int [Numbers.Int16]
to_int [Numbers.Int8]
to_int32 [Targetint]

Convert the given target integer to a 32-bit integer (type int32).

to_int64 [Targetint]

Convert the given target integer to a 64-bit integer (type int64).

to_list [Identifiable.Tbl]
to_map [Identifiable.Tbl]
to_string [Targetint]

Return the string representation of its argument, in decimal.

to_string [Numbers.Int]
to_string [Identifiable.Set]
to_string [Clflags.Compiler_pass]
token [Lexer]
token2terminal [CamlinternalMenhirLib.TableFormat.TABLES]
token2terminal [CamlinternalMenhirLib.EngineTypes.TABLE]
token2value [CamlinternalMenhirLib.TableFormat.TABLES]
token2value [CamlinternalMenhirLib.EngineTypes.TABLE]
token_with_comments [Lexer]
tool_name [Ast_mapper]

Can be used within a ppx preprocessor to know which tool is calling it "ocamlc", "ocamlopt", "ocamldoc", "ocamldep", "ocaml", ...

top [CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE]
top_phrase [Printast]
top_phrase [Pprintast]
toplevel_phrase [Pprintast]
toplevel_phrase [Parser.Incremental]
toplevel_phrase [Parser]
toplevel_phrase [Parse]
trace [CamlinternalMenhirLib.TableFormat.TABLES]
traditional2revised [CamlinternalMenhirLib.Convert.Simplified]
traditional2revised [CamlinternalMenhirLib.Convert]
transl [Profile]
transparent_modules [Clflags]
transpose_keys_and_data [Identifiable.Map]
transpose_keys_and_data_set [Identifiable.Map]
try_ [Ast_helper.Exp]
try_finally [Misc]

try_finally work ~always ~exceptionally is designed to run code in work that may fail with an exception, and has two kind of cleanup routines: always, that must be run after any execution of the function (typically, freeing system resources), and exceptionally, that should be run only if work or always failed with an exception (typically, undoing user-visible state changes that would only make sense if the function completes correctly).

tuple [Ast_helper.Exp]
tuple [Ast_helper.Pat]
tuple [Ast_helper.Typ]
type_ [Ast_helper.Str]
type_ [Ast_helper.Sig]
type_ [Ast_helper.Pat]
type_extension [Ast_helper.Str]
type_extension [Ast_helper.Sig]
type_ident [Parse]

This function parse syntactically valid path for a type or a module type.

type_subst [Ast_helper.Sig]
typeof_ [Ast_helper.Mty]
typing [Profile]
tyvar [Pprintast]

Print a type variable name, taking care of the special treatment required for the single quote character in second position.

U
unbox_closures [Clflags]
unbox_closures_factor [Clflags]
unbox_free_vars_of_closures [Clflags]
unbox_specialised_args [Clflags]
unboxed_types [Clflags]
unflatten [Longident]

For a non-empty list l, unflatten l is Some lid where lid is the long identifier created by concatenating the elements of l with Ldot.

unflatten1 [CamlinternalMenhirLib.PackedIntArray]
union_left [Identifiable.Map]

union_left m1 m2 = union_right m2 m1

union_merge [Identifiable.Map]
union_right [Identifiable.Map]

union_right m1 m2 contains all bindings from m1 and m2.

uniq [CamlinternalMenhirLib.General]
unique_ids [Clflags]
unpack [Ast_helper.Mod]
unpack [Ast_helper.Pat]
unreachable [Ast_helper.Exp]
unsafe [Clflags]
unsafe_string [Clflags]
unsigned_compare [Targetint]

Same as Targetint.compare, except that arguments are interpreted as unsigned integers.

unsigned_div [Targetint]

Same as Targetint.div, except that arguments and result are interpreted as unsigned integers.

unsigned_rem [Targetint]

Same as Targetint.rem, except that arguments and result are interpreted as unsigned integers.

use_file [Parser.Incremental]
use_file [Parser]
use_file [Parse]
use_inlining_arguments_set [Clflags]

Set all the inlining arguments for a round.

use_linscan [Clflags]
use_prims [Clflags]
use_runtime [Clflags]
use_threads [Clflags]
V
val_ [Ast_helper.Cf]
val_ [Ast_helper.Ctf]
val_ident [Parse]

This function parses a syntactically valid path for a value.

value [Ast_helper.Str]
value [Ast_helper.Sig]
var [Ast_helper.Pat]
var [Ast_helper.Typ]
variant [Ast_helper.Exp]
variant [Ast_helper.Pat]
variant [Ast_helper.Typ]
varify_constructors [Ast_helper.Typ]

varify_constructors newtypes te is type expression te, of which any of nullary type constructor tc is replaced by type variable of the same name, if tc's name appears in newtypes.

verbose [Clflags]
version [Config]

The current version number of the system

virtual_ [Ast_helper.Cf]
W
warn_bad_docstrings [Docstrings]

Emit warnings for unattached and ambiguous docstrings

warn_on_literal_pattern [Builtin_attributes]
warning_attribute [Builtin_attributes]

Apply warning settings from the specified attribute.

warning_reporter [Location]

Hook for intercepting warnings.

warning_scope [Builtin_attributes]

Execute a function in a new scope for warning settings.

weaken_map [Depend]
weed [CamlinternalMenhirLib.General]
while_ [Ast_helper.Exp]
windows_unicode [Config]

Whether Windows Unicode runtime is enabled

with_ [Ast_helper.Mty]
with_default_loc [Ast_helper]

Set the default_loc within the scope of the execution of the provided function.

with_flambda_invariants [Config]

Whether the invariants checks for flambda are enabled

with_frame_pointers [Config]

Whether assembler should maintain frame pointers

with_runtime [Clflags]
without_warnings [Warnings]

Run the thunk with all warnings and alerts disabled.

wrap [CamlinternalMenhirLib.ErrorReports]
write [CamlinternalMenhirLib.LinearizedArray]
write_ast [Pparse]
X
xfirst [CamlinternalMenhirLib.IncrementalEngine.INSPECTION]
Z
zero [Targetint]

The target integer 0.

zero [Numbers.Int8]
zero_to_n [Numbers.Int]

zero_to_n n is the set of numbers {0, ..., n} (inclusive).

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Ms.html0000644000175000017500000000773213717225554023706 0ustar mehdimehdi Ast_helper.Ms sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    Ast_helper.str -> Ast_helper.lid -> Parsetree.module_substitution
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Strongly_connected_components.S.Id.html0000644000175000017500000001141513717225554027036 0ustar mehdimehdi Strongly_connected_components.S.Id

Module Strongly_connected_components.S.Id

module Id: Identifiable.S 

type t 
module T: Identifiable.Thing  with type t = t
include Identifiable.Thing
module Set: Identifiable.Set  with module T := T
module Map: Identifiable.Map  with module T := T
module Tbl: Identifiable.Tbl  with module T := T
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Vb.html0000644000175000017500000000773513717225554023701 0ustar mehdimehdi Ast_helper.Vb sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    Parsetree.pattern -> Parsetree.expression -> Parsetree.value_binding
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Consistbl.Make.html0000644000175000017500000014775413717225554024067 0ustar mehdimehdi Consistbl.Make functor
  (Module_name : sig
                   type t
                   module Set :
                     sig
                       type elt = t
                       type t
                       val empty : t
                       val is_empty : t -> bool
                       val mem : elt -> t -> bool
                       val add : elt -> t -> t
                       val singleton : elt -> t
                       val remove : elt -> t -> t
                       val union : t -> t -> t
                       val inter : t -> t -> t
                       val disjoint : t -> t -> bool
                       val diff : t -> t -> t
                       val compare : t -> t -> int
                       val equal : t -> t -> bool
                       val subset : t -> t -> bool
                       val iter : (elt -> unit) -> t -> unit
                       val map : (elt -> elt) -> t -> t
                       val fold : (elt -> '-> 'a) -> t -> '-> 'a
                       val for_all : (elt -> bool) -> t -> bool
                       val exists : (elt -> bool) -> t -> bool
                       val filter : (elt -> bool) -> t -> t
                       val filter_map : (elt -> elt option) -> t -> t
                       val partition : (elt -> bool) -> t -> t * t
                       val cardinal : t -> int
                       val elements : t -> elt list
                       val min_elt : t -> elt
                       val min_elt_opt : t -> elt option
                       val max_elt : t -> elt
                       val max_elt_opt : t -> elt option
                       val choose : t -> elt
                       val choose_opt : t -> elt option
                       val split : elt -> t -> t * bool * t
                       val find : elt -> t -> elt
                       val find_opt : elt -> t -> elt option
                       val find_first : (elt -> bool) -> t -> elt
                       val find_first_opt : (elt -> bool) -> t -> elt option
                       val find_last : (elt -> bool) -> t -> elt
                       val find_last_opt : (elt -> bool) -> t -> elt option
                       val of_list : elt list -> t
                       val to_seq_from : elt -> t -> elt Seq.t
                       val to_seq : t -> elt Seq.t
                       val add_seq : elt Seq.t -> t -> t
                       val of_seq : elt Seq.t -> t
                     end
                   module Map :
                     sig
                       type key = t
                       type +'a t
                       val empty : 'a t
                       val is_empty : 'a t -> bool
                       val mem : key -> 'a t -> bool
                       val add : key -> '-> 'a t -> 'a t
                       val update :
                         key -> ('a option -> 'a option) -> 'a t -> 'a t
                       val singleton : key -> '-> 'a t
                       val remove : key -> 'a t -> 'a t
                       val merge :
                         (key -> 'a option -> 'b option -> 'c option) ->
                         'a t -> 'b t -> 'c t
                       val union :
                         (key -> '-> '-> 'a option) ->
                         'a t -> 'a t -> 'a t
                       val compare : ('-> '-> int) -> 'a t -> 'a t -> int
                       val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
                       val iter : (key -> '-> unit) -> 'a t -> unit
                       val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
                       val for_all : (key -> '-> bool) -> 'a t -> bool
                       val exists : (key -> '-> bool) -> 'a t -> bool
                       val filter : (key -> '-> bool) -> 'a t -> 'a t
                       val filter_map :
                         (key -> '-> 'b option) -> 'a t -> 'b t
                       val partition :
                         (key -> '-> bool) -> 'a t -> 'a t * 'a t
                       val cardinal : 'a t -> int
                       val bindings : 'a t -> (key * 'a) list
                       val min_binding : 'a t -> key * 'a
                       val min_binding_opt : 'a t -> (key * 'a) option
                       val max_binding : 'a t -> key * 'a
                       val max_binding_opt : 'a t -> (key * 'a) option
                       val choose : 'a t -> key * 'a
                       val choose_opt : 'a t -> (key * 'a) option
                       val split : key -> 'a t -> 'a t * 'a option * 'a t
                       val find : key -> 'a t -> 'a
                       val find_opt : key -> 'a t -> 'a option
                       val find_first : (key -> bool) -> 'a t -> key * 'a
                       val find_first_opt :
                         (key -> bool) -> 'a t -> (key * 'a) option
                       val find_last : (key -> bool) -> 'a t -> key * 'a
                       val find_last_opt :
                         (key -> bool) -> 'a t -> (key * 'a) option
                       val map : ('-> 'b) -> 'a t -> 'b t
                       val mapi : (key -> '-> 'b) -> 'a t -> 'b t
                       val to_seq : 'a t -> (key * 'a) Seq.t
                       val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
                       val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
                       val of_seq : (key * 'a) Seq.t -> 'a t
                     end
                   module Tbl :
                     sig
                       type key = t
                       type 'a t
                       val create : int -> 'a t
                       val clear : 'a t -> unit
                       val reset : 'a t -> unit
                       val copy : 'a t -> 'a t
                       val add : 'a t -> key -> '-> unit
                       val remove : 'a t -> key -> unit
                       val find : 'a t -> key -> 'a
                       val find_opt : 'a t -> key -> 'a option
                       val find_all : 'a t -> key -> 'a list
                       val replace : 'a t -> key -> '-> unit
                       val mem : 'a t -> key -> bool
                       val iter : (key -> '-> unit) -> 'a t -> unit
                       val filter_map_inplace :
                         (key -> '-> 'a option) -> 'a t -> unit
                       val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
                       val length : 'a t -> int
                       val stats : 'a t -> Hashtbl.statistics
                       val to_seq : 'a t -> (key * 'a) Seq.t
                       val to_seq_keys : 'a t -> key Seq.t
                       val to_seq_values : 'a t -> 'Seq.t
                       val add_seq : 'a t -> (key * 'a) Seq.t -> unit
                       val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
                       val of_seq : (key * 'a) Seq.t -> 'a t
                     end
                   val compare : Consistbl.Make.t -> Consistbl.Make.t -> int
                 end)
  ->
  sig
    type t
    val create : unit -> Consistbl.Make.t
    val clear : Consistbl.Make.t -> unit
    val check :
      Consistbl.Make.t ->
      Module_name.t -> Stdlib.Digest.t -> Misc.filepath -> unit
    val check_noadd :
      Consistbl.Make.t ->
      Module_name.t -> Stdlib.Digest.t -> Misc.filepath -> unit
    val set :
      Consistbl.Make.t ->
      Module_name.t -> Stdlib.Digest.t -> Misc.filepath -> unit
    val source : Consistbl.Make.t -> Module_name.t -> Misc.filepath
    val extract :
      Module_name.t list ->
      Consistbl.Make.t -> (Module_name.t * Stdlib.Digest.t option) list
    val extract_map :
      Module_name.Set.t ->
      Consistbl.Make.t -> Stdlib.Digest.t option Module_name.Map.t
    val filter : (Module_name.t -> bool) -> Consistbl.Make.t -> unit
    exception Inconsistency of { unit_name : Module_name.t;
                inconsistent_source : string; original_source : string;
              }
    exception Not_available of Module_name.t
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.Make.html0000644000175000017500000013345513717225554024477 0ustar mehdimehdi Identifiable.Make functor (T : Thing->
  sig
    module T :
      sig
        type t = T.t
        val equal : t -> t -> bool
        val hash : t -> int
        val compare : t -> t -> int
        val output : out_channel -> t -> unit
        val print : Format.formatter -> t -> unit
      end
    val equal : T.t -> T.t -> bool
    val hash : T.t -> int
    val compare : T.t -> T.t -> int
    val output : out_channel -> T.t -> unit
    val print : Format.formatter -> T.t -> unit
    module Set :
      sig
        type elt = T.t
        type t = Set.Make(T).t
        val empty : t
        val is_empty : t -> bool
        val mem : elt -> t -> bool
        val add : elt -> t -> t
        val singleton : elt -> t
        val remove : elt -> t -> t
        val union : t -> t -> t
        val inter : t -> t -> t
        val disjoint : t -> t -> bool
        val diff : t -> t -> t
        val compare : t -> t -> int
        val equal : t -> t -> bool
        val subset : t -> t -> bool
        val iter : (elt -> unit) -> t -> unit
        val fold : (elt -> '-> 'a) -> t -> '-> 'a
        val for_all : (elt -> bool) -> t -> bool
        val exists : (elt -> bool) -> t -> bool
        val filter : (elt -> bool) -> t -> t
        val filter_map : (elt -> elt option) -> t -> t
        val partition : (elt -> bool) -> t -> t * t
        val cardinal : t -> int
        val elements : t -> elt list
        val min_elt : t -> elt
        val min_elt_opt : t -> elt option
        val max_elt : t -> elt
        val max_elt_opt : t -> elt option
        val choose : t -> elt
        val choose_opt : t -> elt option
        val split : elt -> t -> t * bool * t
        val find : elt -> t -> elt
        val find_opt : elt -> t -> elt option
        val find_first : (elt -> bool) -> t -> elt
        val find_first_opt : (elt -> bool) -> t -> elt option
        val find_last : (elt -> bool) -> t -> elt
        val find_last_opt : (elt -> bool) -> t -> elt option
        val to_seq_from : elt -> t -> elt Seq.t
        val to_seq : t -> elt Seq.t
        val add_seq : elt Seq.t -> t -> t
        val of_seq : elt Seq.t -> t
        val output : out_channel -> t -> unit
        val print : Format.formatter -> t -> unit
        val to_string : t -> string
        val of_list : elt list -> t
        val map : (elt -> elt) -> t -> t
      end
    module Map :
      sig
        type key = T.t
        type 'a t = 'Map.Make(T).t
        val empty : 'a t
        val is_empty : 'a t -> bool
        val mem : key -> 'a t -> bool
        val add : key -> '-> 'a t -> 'a t
        val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
        val singleton : key -> '-> 'a t
        val remove : key -> 'a t -> 'a t
        val merge :
          (key -> 'a option -> 'b option -> 'c option) ->
          'a t -> 'b t -> 'c t
        val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
        val compare : ('-> '-> int) -> 'a t -> 'a t -> int
        val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val for_all : (key -> '-> bool) -> 'a t -> bool
        val exists : (key -> '-> bool) -> 'a t -> bool
        val filter : (key -> '-> bool) -> 'a t -> 'a t
        val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
        val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
        val cardinal : 'a t -> int
        val bindings : 'a t -> (key * 'a) list
        val min_binding : 'a t -> key * 'a
        val min_binding_opt : 'a t -> (key * 'a) option
        val max_binding : 'a t -> key * 'a
        val max_binding_opt : 'a t -> (key * 'a) option
        val choose : 'a t -> key * 'a
        val choose_opt : 'a t -> (key * 'a) option
        val split : key -> 'a t -> 'a t * 'a option * 'a t
        val find : key -> 'a t -> 'a
        val find_opt : key -> 'a t -> 'a option
        val find_first : (key -> bool) -> 'a t -> key * 'a
        val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
        val find_last : (key -> bool) -> 'a t -> key * 'a
        val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
        val map : ('-> 'b) -> 'a t -> 'b t
        val mapi : (key -> '-> 'b) -> 'a t -> 'b t
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
        val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
        val of_seq : (key * 'a) Seq.t -> 'a t
        val of_list : (key * 'a) list -> 'a t
        val disjoint_union :
          ?eq:('-> '-> bool) ->
          ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
        val union_right : 'a t -> 'a t -> 'a t
        val union_left : 'a t -> 'a t -> 'a t
        val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
        val rename : key t -> key -> key
        val map_keys : (key -> key) -> 'a t -> 'a t
        val keys : 'a t -> Set.Make(T).t
        val data : 'a t -> 'a list
        val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
        val transpose_keys_and_data : key t -> key t
        val transpose_keys_and_data_set : key t -> Set.Make(T).t t
        val print :
          (Format.formatter -> '-> unit) ->
          Format.formatter -> 'a t -> unit
      end
    module Tbl :
      sig
        type key = T.t
        type 'a t = 'Hashtbl.Make(T).t
        val create : int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val to_list : 'a t -> (T.t * 'a) list
        val of_list : (T.t * 'a) list -> 'a t
        val to_map : 'a t -> 'Map.Make(T).t
        val of_map : 'Map.Make(T).t -> 'a t
        val memoize : 'a t -> (key -> 'a) -> key -> 'a
        val map : 'a t -> ('-> 'b) -> 'b t
      end
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.html0000644000175000017500000001565213717225554022560 0ustar mehdimehdi Identifiable

Module Identifiable

module Identifiable: sig .. end

Uniform interface for common data structures over various things.

Warning: this module is unstable and part of compiler-libs.


module type Thing = sig .. end
module Pair: 
functor (A : Thing-> 
functor (B : Thing-> Thing with type t = A.t * B.t
module type Set = sig .. end
module type Map = sig .. end
module type Tbl = sig .. end
module type S = sig .. end
module Make: 
functor (T : Thing-> S with type t := T.t
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Val.html0000644000175000017500000001066513717225554023007 0ustar mehdimehdi Ast_helper.Val

Module Ast_helper.Val

module Val: sig .. end

Value declarations


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?prim:string list ->
Ast_helper.str -> Parsetree.core_type -> Parsetree.value_description
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.Convert.Simplified.html0000644000175000017500000001150213717225554031136 0ustar mehdimehdi CamlinternalMenhirLib.Convert.Simplified sig
  val traditional2revised :
    ('token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional ->
    ('token * Stdlib.Lexing.position * Stdlib.Lexing.position,
     'semantic_value)
    CamlinternalMenhirLib.Convert.revised
  val revised2traditional :
    ('token * Stdlib.Lexing.position * Stdlib.Lexing.position,
     'semantic_value)
    CamlinternalMenhirLib.Convert.revised ->
    ('token, 'semantic_value) CamlinternalMenhirLib.Convert.traditional
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.html0000644000175000017500000003577013717225554022272 0ustar mehdimehdi Ast_helper

Module Ast_helper

module Ast_helper: sig .. end

Helpers to produce Parsetree fragments

Warning This module is unstable and part of compiler-libs.


type 'a with_loc = 'a Location.loc 
type loc = Location.t 
type lid = Longident.t with_loc 
type str = string with_loc 
type str_opt = string option with_loc 
type attrs = Parsetree.attribute list 

Default locations

val default_loc : loc ref

Default value for all optional location arguments.

val with_default_loc : loc -> (unit -> 'a) -> 'a

Set the default_loc within the scope of the execution of the provided function.

Constants

module Const: sig .. end
module Attr: sig .. end

Attributes

Core language

module Typ: sig .. end

Type expressions

module Pat: sig .. end

Patterns

module Exp: sig .. end

Expressions

module Val: sig .. end

Value declarations

module Type: sig .. end

Type declarations

module Te: sig .. end

Type extensions

Module language

module Mty: sig .. end

Module type expressions

module Mod: sig .. end

Module expressions

module Sig: sig .. end

Signature items

module Str: sig .. end

Structure items

module Md: sig .. end

Module declarations

module Ms: sig .. end

Module substitutions

module Mtd: sig .. end

Module type declarations

module Mb: sig .. end

Module bindings

module Opn: sig .. end

Opens

module Incl: sig .. end

Includes

module Vb: sig .. end

Value bindings

Class language

module Cty: sig .. end

Class type expressions

module Ctf: sig .. end

Class type fields

module Cl: sig .. end

Class expressions

module Cf: sig .. end

Class fields

module Ci: sig .. end

Classes

module Csig: sig .. end

Class signatures

module Cstr: sig .. end

Class structures

module Rf: sig .. end

Row fields

module Of: sig .. end

Object fields

ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Int_literal_converter.html0000644000175000017500000001052113717225554025416 0ustar mehdimehdi Misc.Int_literal_converter

Module Misc.Int_literal_converter

module Int_literal_converter: sig .. end

val int : string -> int
val int32 : string -> int32
val int64 : string -> int64
val nativeint : string -> nativeint
ocaml-doc-4.11/ocaml.html/compilerlibref/Pprintast.html0000644000175000017500000001507513717225554022164 0ustar mehdimehdi Pprintast

Module Pprintast

module Pprintast: sig .. end

Pretty-printers for Parsetree

Warning: this module is unstable and part of compiler-libs.


type space_formatter = (unit, Format.formatter, unit) format 
val longident : Format.formatter -> Longident.t -> unit
val expression : Format.formatter -> Parsetree.expression -> unit
val string_of_expression : Parsetree.expression -> string
val pattern : Format.formatter -> Parsetree.pattern -> unit
val core_type : Format.formatter -> Parsetree.core_type -> unit
val signature : Format.formatter -> Parsetree.signature -> unit
val structure : Format.formatter -> Parsetree.structure -> unit
val string_of_structure : Parsetree.structure -> string
val toplevel_phrase : Format.formatter -> Parsetree.toplevel_phrase -> unit
val top_phrase : Format.formatter -> Parsetree.toplevel_phrase -> unit
val tyvar : Format.formatter -> string -> unit

Print a type variable name, taking care of the special treatment required for the single quote character in second position.

ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.S.Set.html0000644000175000017500000001124413717225554023504 0ustar mehdimehdi Identifiable.S.Set

Module Identifiable.S.Set

module Set: Identifiable.Set  with module T := T

module T: Set.OrderedType 
include Set.S
val output : out_channel -> t -> unit
val print : Format.formatter -> t -> unit
val to_string : t -> string
val of_list : elt list -> t
val map : (elt -> elt) -> t -> t
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.html0000644000175000017500000002201513717225554024373 0ustar mehdimehdi CamlinternalMenhirLib

Module CamlinternalMenhirLib

module CamlinternalMenhirLib: sig .. end

module General: sig .. end
module Convert: sig .. end
module IncrementalEngine: sig .. end
module EngineTypes: sig .. end
module Engine: sig .. end
module ErrorReports: sig .. end
module Printers: sig .. end
module InfiniteArray: sig .. end
module PackedIntArray: sig .. end
module RowDisplacement: sig .. end
module LinearizedArray: sig .. end
module TableFormat: sig .. end
module InspectionTableFormat: sig .. end
module InspectionTableInterpreter: sig .. end
module TableInterpreter: sig .. end
module StaticVersion: sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Cl.html0000644000175000017500000002206713717225554023663 0ustar mehdimehdi Ast_helper.Cl sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_expr_desc -> Parsetree.class_expr
  val attr :
    Parsetree.class_expr -> Parsetree.attribute -> Parsetree.class_expr
  val constr :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.lid -> Parsetree.core_type list -> Parsetree.class_expr
  val structure :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_structure -> Parsetree.class_expr
  val fun_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.arg_label ->
    Parsetree.expression option ->
    Parsetree.pattern -> Parsetree.class_expr -> Parsetree.class_expr
  val apply :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_expr ->
    (Asttypes.arg_label * Parsetree.expression) list -> Parsetree.class_expr
  val let_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Asttypes.rec_flag ->
    Parsetree.value_binding list ->
    Parsetree.class_expr -> Parsetree.class_expr
  val constraint_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_expr -> Parsetree.class_type -> Parsetree.class_expr
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.class_expr
  val open_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.open_description ->
    Parsetree.class_expr -> Parsetree.class_expr
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Int_replace_polymorphic_compare.html0000644000175000017500000001074613717225554027621 0ustar mehdimehdi Int_replace_polymorphic_compare sig
  val ( = ) : int -> int -> bool
  val ( <> ) : int -> int -> bool
  val ( < ) : int -> int -> bool
  val ( > ) : int -> int -> bool
  val ( <= ) : int -> int -> bool
  val ( >= ) : int -> int -> bool
  val compare : int -> int -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.EnvLazy.html0000644000175000017500000001470613717225554023523 0ustar mehdimehdi Misc.EnvLazy sig
  type ('a, 'b) t
  type log
  val force : ('-> 'b) -> ('a, 'b) Misc.EnvLazy.t -> 'b
  val create : '-> ('a, 'b) Misc.EnvLazy.t
  val get_arg : ('a, 'b) Misc.EnvLazy.t -> 'a option
  val create_forced : '-> ('a, 'b) Misc.EnvLazy.t
  val create_failed : exn -> ('a, 'b) Misc.EnvLazy.t
  val log : unit -> Misc.EnvLazy.log
  val force_logged :
    Misc.EnvLazy.log ->
    ('-> ('b, 'c) Stdlib.result) ->
    ('a, ('b, 'c) Stdlib.result) Misc.EnvLazy.t -> ('b, 'c) Stdlib.result
  val backtrack : Misc.EnvLazy.log -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Identifiable.S.html0000644000175000017500000012724413717225554024023 0ustar mehdimehdi Identifiable.S sig
  type t
  module T :
    sig
      type t = t
      val equal : t -> t -> bool
      val hash : t -> int
      val compare : t -> t -> int
      val output : out_channel -> t -> unit
      val print : Format.formatter -> t -> unit
    end
  val equal : T.t -> T.t -> bool
  val hash : T.t -> int
  val compare : T.t -> T.t -> int
  val output : out_channel -> T.t -> unit
  val print : Format.formatter -> T.t -> unit
  module Set :
    sig
      type elt = T.t
      type t = Set.Make(T).t
      val empty : t
      val is_empty : t -> bool
      val mem : elt -> t -> bool
      val add : elt -> t -> t
      val singleton : elt -> t
      val remove : elt -> t -> t
      val union : t -> t -> t
      val inter : t -> t -> t
      val disjoint : t -> t -> bool
      val diff : t -> t -> t
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val subset : t -> t -> bool
      val iter : (elt -> unit) -> t -> unit
      val fold : (elt -> '-> 'a) -> t -> '-> 'a
      val for_all : (elt -> bool) -> t -> bool
      val exists : (elt -> bool) -> t -> bool
      val filter : (elt -> bool) -> t -> t
      val filter_map : (elt -> elt option) -> t -> t
      val partition : (elt -> bool) -> t -> t * t
      val cardinal : t -> int
      val elements : t -> elt list
      val min_elt : t -> elt
      val min_elt_opt : t -> elt option
      val max_elt : t -> elt
      val max_elt_opt : t -> elt option
      val choose : t -> elt
      val choose_opt : t -> elt option
      val split : elt -> t -> t * bool * t
      val find : elt -> t -> elt
      val find_opt : elt -> t -> elt option
      val find_first : (elt -> bool) -> t -> elt
      val find_first_opt : (elt -> bool) -> t -> elt option
      val find_last : (elt -> bool) -> t -> elt
      val find_last_opt : (elt -> bool) -> t -> elt option
      val to_seq_from : elt -> t -> elt Seq.t
      val to_seq : t -> elt Seq.t
      val add_seq : elt Seq.t -> t -> t
      val of_seq : elt Seq.t -> t
      val output : out_channel -> t -> unit
      val print : Format.formatter -> t -> unit
      val to_string : t -> string
      val of_list : elt list -> t
      val map : (elt -> elt) -> t -> t
    end
  module Map :
    sig
      type key = T.t
      type 'a t = 'Map.Make(T).t
      val empty : 'a t
      val is_empty : 'a t -> bool
      val mem : key -> 'a t -> bool
      val add : key -> '-> 'a t -> 'a t
      val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
      val singleton : key -> '-> 'a t
      val remove : key -> 'a t -> 'a t
      val merge :
        (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
      val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
      val compare : ('-> '-> int) -> 'a t -> 'a t -> int
      val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val for_all : (key -> '-> bool) -> 'a t -> bool
      val exists : (key -> '-> bool) -> 'a t -> bool
      val filter : (key -> '-> bool) -> 'a t -> 'a t
      val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
      val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
      val cardinal : 'a t -> int
      val bindings : 'a t -> (key * 'a) list
      val min_binding : 'a t -> key * 'a
      val min_binding_opt : 'a t -> (key * 'a) option
      val max_binding : 'a t -> key * 'a
      val max_binding_opt : 'a t -> (key * 'a) option
      val choose : 'a t -> key * 'a
      val choose_opt : 'a t -> (key * 'a) option
      val split : key -> 'a t -> 'a t * 'a option * 'a t
      val find : key -> 'a t -> 'a
      val find_opt : key -> 'a t -> 'a option
      val find_first : (key -> bool) -> 'a t -> key * 'a
      val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val find_last : (key -> bool) -> 'a t -> key * 'a
      val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val map : ('-> 'b) -> 'a t -> 'b t
      val mapi : (key -> '-> 'b) -> 'a t -> 'b t
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
      val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
      val of_seq : (key * 'a) Seq.t -> 'a t
      val of_list : (key * 'a) list -> 'a t
      val disjoint_union :
        ?eq:('-> '-> bool) ->
        ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
      val union_right : 'a t -> 'a t -> 'a t
      val union_left : 'a t -> 'a t -> 'a t
      val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
      val rename : key t -> key -> key
      val map_keys : (key -> key) -> 'a t -> 'a t
      val keys : 'a t -> Set.Make(T).t
      val data : 'a t -> 'a list
      val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
      val transpose_keys_and_data : key t -> key t
      val transpose_keys_and_data_set : key t -> Set.Make(T).t t
      val print :
        (Format.formatter -> '-> unit) -> Format.formatter -> 'a t -> unit
    end
  module Tbl :
    sig
      type key = T.t
      type 'a t = 'Hashtbl.Make(T).t
      val create : int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
      val to_list : 'a t -> (T.t * 'a) list
      val of_list : (T.t * 'a) list -> 'a t
      val to_map : 'a t -> 'Map.Make(T).t
      val of_map : 'Map.Make(T).t -> 'a t
      val memoize : 'a t -> (key -> 'a) -> key -> 'a
      val map : 'a t -> ('-> 'b) -> 'b t
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.LongString.html0000644000175000017500000001434213717225554024215 0ustar mehdimehdi Misc.LongString sig
  type t = bytes array
  val create : int -> Misc.LongString.t
  val length : Misc.LongString.t -> int
  val get : Misc.LongString.t -> int -> char
  val set : Misc.LongString.t -> int -> char -> unit
  val blit :
    Misc.LongString.t -> int -> Misc.LongString.t -> int -> int -> unit
  val blit_string : string -> int -> Misc.LongString.t -> int -> int -> unit
  val output : Stdlib.out_channel -> Misc.LongString.t -> int -> int -> unit
  val input_bytes_into :
    Misc.LongString.t -> Stdlib.in_channel -> int -> unit
  val input_bytes : Stdlib.in_channel -> int -> Misc.LongString.t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Val.html0000644000175000017500000000767613717225554024060 0ustar mehdimehdi Ast_helper.Val sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?prim:string list ->
    Ast_helper.str -> Parsetree.core_type -> Parsetree.value_description
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Asttypes.html0000644000175000017500000003222613717225554022011 0ustar mehdimehdi Asttypes

Module Asttypes

module Asttypes: sig .. end

Auxiliary AST types used by parsetree and typedtree.

Warning: this module is unstable and part of compiler-libs.


type constant = 
| Const_int of int
| Const_char of char
| Const_string of string * Location.t * string option
| Const_float of string
| Const_int32 of int32
| Const_int64 of int64
| Const_nativeint of nativeint
type rec_flag = 
| Nonrecursive
| Recursive
type direction_flag = 
| Upto
| Downto
type private_flag = 
| Private
| Public
type mutable_flag = 
| Immutable
| Mutable
type virtual_flag = 
| Virtual
| Concrete
type override_flag = 
| Override
| Fresh
type closed_flag = 
| Closed
| Open
type label = string 
type arg_label = 
| Nolabel
| Labelled of string
| Optional of string
type 'a loc = 'a Location.loc = {
   txt : 'a;
   loc : Location.t;
}
type variance = 
| Covariant
| Contravariant
| Invariant
././@LongLink0000644000000000000000000000014600000000000011604 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.INSPECTION.htmlocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.INSPECTION.htm0000644000175000017500000002546113717225554032330 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.INSPECTION sig
  type 'a terminal
  type 'a nonterminal
  type 'a symbol =
      T : 'a terminal -> 'a symbol
    | N : 'a nonterminal -> 'a symbol
  type xsymbol = X : 'a symbol -> xsymbol
  type 'a lr1state
  type production
  type item =
      CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production * int
  val compare_terminals : 'a terminal -> 'b terminal -> int
  val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
  val compare_symbols : xsymbol -> xsymbol -> int
  val compare_productions :
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production -> int
  val compare_items :
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item ->
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item -> int
  val incoming_symbol :
    'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.lr1state ->
    'a symbol
  val items :
    'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.lr1state ->
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item list
  val lhs :
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production -> xsymbol
  val rhs :
    CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
    xsymbol list
  val nullable : 'a nonterminal -> bool
  val first : 'a nonterminal -> 'b terminal -> bool
  val xfirst : xsymbol -> 'a terminal -> bool
  val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
  val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
  type 'a env
  val feed :
    'a symbol ->
    CamlinternalMenhirLib.IncrementalEngine.position ->
    '->
    CamlinternalMenhirLib.IncrementalEngine.position ->
    'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.env ->
    'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.env
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Type.html0000644000175000017500000001473713717225554024253 0ustar mehdimehdi Ast_helper.Type sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    ?params:(Parsetree.core_type * Asttypes.variance) list ->
    ?cstrs:(Parsetree.core_type * Parsetree.core_type * Ast_helper.loc) list ->
    ?kind:Parsetree.type_kind ->
    ?priv:Asttypes.private_flag ->
    ?manifest:Parsetree.core_type ->
    Ast_helper.str -> Parsetree.type_declaration
  val constructor :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?info:Docstrings.info ->
    ?args:Parsetree.constructor_arguments ->
    ?res:Parsetree.core_type ->
    Ast_helper.str -> Parsetree.constructor_declaration
  val field :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?info:Docstrings.info ->
    ?mut:Asttypes.mutable_flag ->
    Ast_helper.str -> Parsetree.core_type -> Parsetree.label_declaration
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Color.html0000644000175000017500000001513513717225554023206 0ustar mehdimehdi Misc.Color sig
  type color = Black | Red | Green | Yellow | Blue | Magenta | Cyan | White
  type style = FG of Misc.Color.color | BG of Misc.Color.color | Bold | Reset
  val ansi_of_style_l : Misc.Color.style list -> string
  type styles = {
    error : Misc.Color.style list;
    warning : Misc.Color.style list;
    loc : Misc.Color.style list;
  }
  val default_styles : Misc.Color.styles
  val get_styles : unit -> Misc.Color.styles
  val set_styles : Misc.Color.styles -> unit
  type setting = Auto | Always | Never
  val default_setting : Misc.Color.setting
  val setup : Misc.Color.setting option -> unit
  val set_color_tag_handling : Stdlib.Format.formatter -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Md.html0000644000175000017500000000777313717225554023674 0ustar mehdimehdi Ast_helper.Md sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    ?text:Docstrings.text ->
    Ast_helper.str_opt ->
    Parsetree.module_type -> Parsetree.module_declaration
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Int_replace_polymorphic_compare.html0000644000175000017500000001133613717225554026554 0ustar mehdimehdi Int_replace_polymorphic_compare

Module Int_replace_polymorphic_compare

module Int_replace_polymorphic_compare: sig .. end

val (=) : int -> int -> bool
val (<>) : int -> int -> bool
val (<) : int -> int -> bool
val (>) : int -> int -> bool
val (<=) : int -> int -> bool
val (>=) : int -> int -> bool
val compare : int -> int -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.List.html0000644000175000017500000002263713717225554024270 0ustar mehdimehdi Misc.Stdlib.List sig
  type 'a t = 'a list
  val compare :
    ('-> '-> int) ->
    'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t -> int
  val equal :
    ('-> '-> bool) ->
    'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t -> bool
  val find_map : ('-> 'b option) -> 'Misc.Stdlib.List.t -> 'b option
  val some_if_all_elements_are_some :
    'a option Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t option
  val map2_prefix :
    ('-> '-> 'c) ->
    'Misc.Stdlib.List.t ->
    'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t * 'Misc.Stdlib.List.t
  val split_at :
    int ->
    'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t * 'Misc.Stdlib.List.t
  val is_prefix : equal:('-> '-> bool) -> 'a list -> of_:'a list -> bool
  type 'a longest_common_prefix_result = private {
    longest_common_prefix : 'a list;
    first_without_longest_common_prefix : 'a list;
    second_without_longest_common_prefix : 'a list;
  }
  val find_and_chop_longest_common_prefix :
    equal:('-> '-> bool) ->
    first:'a list ->
    second:'a list -> 'Misc.Stdlib.List.longest_common_prefix_result
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_iterator.html0000644000175000017500000004051613717225554023677 0ustar mehdimehdi Ast_iterator sig
  type iterator = {
    attribute : Ast_iterator.iterator -> Parsetree.attribute -> unit;
    attributes : Ast_iterator.iterator -> Parsetree.attribute list -> unit;
    binding_op : Ast_iterator.iterator -> Parsetree.binding_op -> unit;
    case : Ast_iterator.iterator -> Parsetree.case -> unit;
    cases : Ast_iterator.iterator -> Parsetree.case list -> unit;
    class_declaration :
      Ast_iterator.iterator -> Parsetree.class_declaration -> unit;
    class_description :
      Ast_iterator.iterator -> Parsetree.class_description -> unit;
    class_expr : Ast_iterator.iterator -> Parsetree.class_expr -> unit;
    class_field : Ast_iterator.iterator -> Parsetree.class_field -> unit;
    class_signature :
      Ast_iterator.iterator -> Parsetree.class_signature -> unit;
    class_structure :
      Ast_iterator.iterator -> Parsetree.class_structure -> unit;
    class_type : Ast_iterator.iterator -> Parsetree.class_type -> unit;
    class_type_declaration :
      Ast_iterator.iterator -> Parsetree.class_type_declaration -> unit;
    class_type_field :
      Ast_iterator.iterator -> Parsetree.class_type_field -> unit;
    constructor_declaration :
      Ast_iterator.iterator -> Parsetree.constructor_declaration -> unit;
    expr : Ast_iterator.iterator -> Parsetree.expression -> unit;
    extension : Ast_iterator.iterator -> Parsetree.extension -> unit;
    extension_constructor :
      Ast_iterator.iterator -> Parsetree.extension_constructor -> unit;
    include_declaration :
      Ast_iterator.iterator -> Parsetree.include_declaration -> unit;
    include_description :
      Ast_iterator.iterator -> Parsetree.include_description -> unit;
    label_declaration :
      Ast_iterator.iterator -> Parsetree.label_declaration -> unit;
    location : Ast_iterator.iterator -> Location.t -> unit;
    module_binding :
      Ast_iterator.iterator -> Parsetree.module_binding -> unit;
    module_declaration :
      Ast_iterator.iterator -> Parsetree.module_declaration -> unit;
    module_substitution :
      Ast_iterator.iterator -> Parsetree.module_substitution -> unit;
    module_expr : Ast_iterator.iterator -> Parsetree.module_expr -> unit;
    module_type : Ast_iterator.iterator -> Parsetree.module_type -> unit;
    module_type_declaration :
      Ast_iterator.iterator -> Parsetree.module_type_declaration -> unit;
    open_declaration :
      Ast_iterator.iterator -> Parsetree.open_declaration -> unit;
    open_description :
      Ast_iterator.iterator -> Parsetree.open_description -> unit;
    pat : Ast_iterator.iterator -> Parsetree.pattern -> unit;
    payload : Ast_iterator.iterator -> Parsetree.payload -> unit;
    signature : Ast_iterator.iterator -> Parsetree.signature -> unit;
    signature_item :
      Ast_iterator.iterator -> Parsetree.signature_item -> unit;
    structure : Ast_iterator.iterator -> Parsetree.structure -> unit;
    structure_item :
      Ast_iterator.iterator -> Parsetree.structure_item -> unit;
    typ : Ast_iterator.iterator -> Parsetree.core_type -> unit;
    row_field : Ast_iterator.iterator -> Parsetree.row_field -> unit;
    object_field : Ast_iterator.iterator -> Parsetree.object_field -> unit;
    type_declaration :
      Ast_iterator.iterator -> Parsetree.type_declaration -> unit;
    type_extension :
      Ast_iterator.iterator -> Parsetree.type_extension -> unit;
    type_exception :
      Ast_iterator.iterator -> Parsetree.type_exception -> unit;
    type_kind : Ast_iterator.iterator -> Parsetree.type_kind -> unit;
    value_binding : Ast_iterator.iterator -> Parsetree.value_binding -> unit;
    value_description :
      Ast_iterator.iterator -> Parsetree.value_description -> unit;
    with_constraint :
      Ast_iterator.iterator -> Parsetree.with_constraint -> unit;
  }
  val default_iterator : Ast_iterator.iterator
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.PackedIntArray.html0000644000175000017500000001027013717225554030274 0ustar mehdimehdi CamlinternalMenhirLib.PackedIntArray sig
  type t = int * string
  val pack : int array -> CamlinternalMenhirLib.PackedIntArray.t
  val get : CamlinternalMenhirLib.PackedIntArray.t -> int -> int
  val get1 : string -> int -> int
  val unflatten1 : int * string -> int -> int -> int
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.String.html0000644000175000017500000012705013717225554024616 0ustar mehdimehdi Misc.Stdlib.String sig
  external length : string -> int = "%string_length"
  external get : string -> int -> char = "%string_safe_get"
  external set : bytes -> int -> char -> unit = "%string_safe_set"
  external create : int -> bytes = "caml_create_string"
  val make : int -> char -> string
  val init : int -> (int -> char) -> string
  val copy : string -> string
  val sub : string -> int -> int -> string
  val fill : bytes -> int -> int -> char -> unit
  val blit : string -> int -> bytes -> int -> int -> unit
  val concat : string -> string list -> string
  val iter : (char -> unit) -> string -> unit
  val iteri : (int -> char -> unit) -> string -> unit
  val map : (char -> char) -> string -> string
  val mapi : (int -> char -> char) -> string -> string
  val trim : string -> string
  val escaped : string -> string
  val index : string -> char -> int
  val index_opt : string -> char -> int option
  val rindex : string -> char -> int
  val rindex_opt : string -> char -> int option
  val index_from : string -> int -> char -> int
  val index_from_opt : string -> int -> char -> int option
  val rindex_from : string -> int -> char -> int
  val rindex_from_opt : string -> int -> char -> int option
  val contains : string -> char -> bool
  val contains_from : string -> int -> char -> bool
  val rcontains_from : string -> int -> char -> bool
  val uppercase : string -> string
  val lowercase : string -> string
  val capitalize : string -> string
  val uncapitalize : string -> string
  val uppercase_ascii : string -> string
  val lowercase_ascii : string -> string
  val capitalize_ascii : string -> string
  val uncapitalize_ascii : string -> string
  type t = string
  val compare : t -> t -> int
  val equal : t -> t -> bool
  val split_on_char : char -> string -> string list
  val to_seq : t -> char Seq.t
  val to_seqi : t -> (int * char) Seq.t
  val of_seq : char Seq.t -> t
  external unsafe_get : string -> int -> char = "%string_unsafe_get"
  external unsafe_set : bytes -> int -> char -> unit = "%string_unsafe_set"
  external unsafe_blit : string -> int -> bytes -> int -> int -> unit
    = "caml_blit_string" [@@noalloc]
  external unsafe_fill : bytes -> int -> int -> char -> unit
    = "caml_fill_string" [@@noalloc]
  module Set :
    sig
      type elt = string
      type t
      val empty : t
      val is_empty : t -> bool
      val mem : elt -> t -> bool
      val add : elt -> t -> t
      val singleton : elt -> t
      val remove : elt -> t -> t
      val union : t -> t -> t
      val inter : t -> t -> t
      val disjoint : t -> t -> bool
      val diff : t -> t -> t
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val subset : t -> t -> bool
      val iter : (elt -> unit) -> t -> unit
      val map : (elt -> elt) -> t -> t
      val fold : (elt -> '-> 'a) -> t -> '-> 'a
      val for_all : (elt -> bool) -> t -> bool
      val exists : (elt -> bool) -> t -> bool
      val filter : (elt -> bool) -> t -> t
      val filter_map : (elt -> elt option) -> t -> t
      val partition : (elt -> bool) -> t -> t * t
      val cardinal : t -> int
      val elements : t -> elt list
      val min_elt : t -> elt
      val min_elt_opt : t -> elt option
      val max_elt : t -> elt
      val max_elt_opt : t -> elt option
      val choose : t -> elt
      val choose_opt : t -> elt option
      val split : elt -> t -> t * bool * t
      val find : elt -> t -> elt
      val find_opt : elt -> t -> elt option
      val find_first : (elt -> bool) -> t -> elt
      val find_first_opt : (elt -> bool) -> t -> elt option
      val find_last : (elt -> bool) -> t -> elt
      val find_last_opt : (elt -> bool) -> t -> elt option
      val of_list : elt list -> t
      val to_seq_from : elt -> t -> elt Seq.t
      val to_seq : t -> elt Seq.t
      val add_seq : elt Seq.t -> t -> t
      val of_seq : elt Seq.t -> t
    end
  module Map :
    sig
      type key = string
      type +'a t
      val empty : 'a t
      val is_empty : 'a t -> bool
      val mem : key -> 'a t -> bool
      val add : key -> '-> 'a t -> 'a t
      val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
      val singleton : key -> '-> 'a t
      val remove : key -> 'a t -> 'a t
      val merge :
        (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
      val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
      val compare : ('-> '-> int) -> 'a t -> 'a t -> int
      val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val for_all : (key -> '-> bool) -> 'a t -> bool
      val exists : (key -> '-> bool) -> 'a t -> bool
      val filter : (key -> '-> bool) -> 'a t -> 'a t
      val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
      val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
      val cardinal : 'a t -> int
      val bindings : 'a t -> (key * 'a) list
      val min_binding : 'a t -> key * 'a
      val min_binding_opt : 'a t -> (key * 'a) option
      val max_binding : 'a t -> key * 'a
      val max_binding_opt : 'a t -> (key * 'a) option
      val choose : 'a t -> key * 'a
      val choose_opt : 'a t -> (key * 'a) option
      val split : key -> 'a t -> 'a t * 'a option * 'a t
      val find : key -> 'a t -> 'a
      val find_opt : key -> 'a t -> 'a option
      val find_first : (key -> bool) -> 'a t -> key * 'a
      val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val find_last : (key -> bool) -> 'a t -> key * 'a
      val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
      val map : ('-> 'b) -> 'a t -> 'b t
      val mapi : (key -> '-> 'b) -> 'a t -> 'b t
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
      val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
      val of_seq : (key * 'a) Seq.t -> 'a t
    end
  module Tbl :
    sig
      type key = string
      type 'a t
      val create : int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
    end
  val print : Stdlib.Format.formatter -> t -> unit
  val for_all : (char -> bool) -> t -> bool
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Numbers.html0000644000175000017500000027554013717225554022661 0ustar mehdimehdi Numbers sig
  module Int :
    sig
      type t = int
      module T :
        sig
          type t = t
          val equal : t -> t -> bool
          val hash : t -> int
          val compare : t -> t -> int
          val output : out_channel -> t -> unit
          val print : Format.formatter -> t -> unit
        end
      val equal : T.t -> T.t -> bool
      val hash : T.t -> int
      val compare : T.t -> T.t -> int
      val output : out_channel -> T.t -> unit
      val print : Format.formatter -> T.t -> unit
      module Set :
        sig
          type elt = T.t
          type t = Set.Make(T).t
          val empty : t
          val is_empty : t -> bool
          val mem : elt -> t -> bool
          val add : elt -> t -> t
          val singleton : elt -> t
          val remove : elt -> t -> t
          val union : t -> t -> t
          val inter : t -> t -> t
          val disjoint : t -> t -> bool
          val diff : t -> t -> t
          val compare : t -> t -> int
          val equal : t -> t -> bool
          val subset : t -> t -> bool
          val iter : (elt -> unit) -> t -> unit
          val fold : (elt -> '-> 'a) -> t -> '-> 'a
          val for_all : (elt -> bool) -> t -> bool
          val exists : (elt -> bool) -> t -> bool
          val filter : (elt -> bool) -> t -> t
          val filter_map : (elt -> elt option) -> t -> t
          val partition : (elt -> bool) -> t -> t * t
          val cardinal : t -> int
          val elements : t -> elt list
          val min_elt : t -> elt
          val min_elt_opt : t -> elt option
          val max_elt : t -> elt
          val max_elt_opt : t -> elt option
          val choose : t -> elt
          val choose_opt : t -> elt option
          val split : elt -> t -> t * bool * t
          val find : elt -> t -> elt
          val find_opt : elt -> t -> elt option
          val find_first : (elt -> bool) -> t -> elt
          val find_first_opt : (elt -> bool) -> t -> elt option
          val find_last : (elt -> bool) -> t -> elt
          val find_last_opt : (elt -> bool) -> t -> elt option
          val to_seq_from : elt -> t -> elt Seq.t
          val to_seq : t -> elt Seq.t
          val add_seq : elt Seq.t -> t -> t
          val of_seq : elt Seq.t -> t
          val output : out_channel -> t -> unit
          val print : Format.formatter -> t -> unit
          val to_string : t -> string
          val of_list : elt list -> t
          val map : (elt -> elt) -> t -> t
        end
      module Map :
        sig
          type key = T.t
          type 'a t = 'Map.Make(T).t
          val empty : 'a t
          val is_empty : 'a t -> bool
          val mem : key -> 'a t -> bool
          val add : key -> '-> 'a t -> 'a t
          val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
          val singleton : key -> '-> 'a t
          val remove : key -> 'a t -> 'a t
          val merge :
            (key -> 'a option -> 'b option -> 'c option) ->
            'a t -> 'b t -> 'c t
          val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
          val compare : ('-> '-> int) -> 'a t -> 'a t -> int
          val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val for_all : (key -> '-> bool) -> 'a t -> bool
          val exists : (key -> '-> bool) -> 'a t -> bool
          val filter : (key -> '-> bool) -> 'a t -> 'a t
          val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
          val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
          val cardinal : 'a t -> int
          val bindings : 'a t -> (key * 'a) list
          val min_binding : 'a t -> key * 'a
          val min_binding_opt : 'a t -> (key * 'a) option
          val max_binding : 'a t -> key * 'a
          val max_binding_opt : 'a t -> (key * 'a) option
          val choose : 'a t -> key * 'a
          val choose_opt : 'a t -> (key * 'a) option
          val split : key -> 'a t -> 'a t * 'a option * 'a t
          val find : key -> 'a t -> 'a
          val find_opt : key -> 'a t -> 'a option
          val find_first : (key -> bool) -> 'a t -> key * 'a
          val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val find_last : (key -> bool) -> 'a t -> key * 'a
          val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val map : ('-> 'b) -> 'a t -> 'b t
          val mapi : (key -> '-> 'b) -> 'a t -> 'b t
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
          val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
          val of_seq : (key * 'a) Seq.t -> 'a t
          val of_list : (key * 'a) list -> 'a t
          val disjoint_union :
            ?eq:('-> '-> bool) ->
            ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
          val union_right : 'a t -> 'a t -> 'a t
          val union_left : 'a t -> 'a t -> 'a t
          val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
          val rename : key t -> key -> key
          val map_keys : (key -> key) -> 'a t -> 'a t
          val keys : 'a t -> Set.Make(T).t
          val data : 'a t -> 'a list
          val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
          val transpose_keys_and_data : key t -> key t
          val transpose_keys_and_data_set : key t -> Set.Make(T).t t
          val print :
            (Format.formatter -> '-> unit) ->
            Format.formatter -> 'a t -> unit
        end
      module Tbl :
        sig
          type key = T.t
          type 'a t = 'Hashtbl.Make(T).t
          val create : int -> 'a t
          val clear : 'a t -> unit
          val reset : 'a t -> unit
          val copy : 'a t -> 'a t
          val add : 'a t -> key -> '-> unit
          val remove : 'a t -> key -> unit
          val find : 'a t -> key -> 'a
          val find_opt : 'a t -> key -> 'a option
          val find_all : 'a t -> key -> 'a list
          val replace : 'a t -> key -> '-> unit
          val mem : 'a t -> key -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val length : 'a t -> int
          val stats : 'a t -> Hashtbl.statistics
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_keys : 'a t -> key Seq.t
          val to_seq_values : 'a t -> 'Seq.t
          val add_seq : 'a t -> (key * 'a) Seq.t -> unit
          val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
          val of_seq : (key * 'a) Seq.t -> 'a t
          val to_list : 'a t -> (T.t * 'a) list
          val of_list : (T.t * 'a) list -> 'a t
          val to_map : 'a t -> 'Map.Make(T).t
          val of_map : 'Map.Make(T).t -> 'a t
          val memoize : 'a t -> (key -> 'a) -> key -> 'a
          val map : 'a t -> ('-> 'b) -> 'b t
        end
      val zero_to_n : int -> Set.t
      val to_string : int -> string
    end
  module Int8 :
    sig
      type t
      val zero : Numbers.Int8.t
      val one : Numbers.Int8.t
      val of_int_exn : int -> Numbers.Int8.t
      val to_int : Numbers.Int8.t -> int
    end
  module Int16 :
    sig
      type t
      val of_int_exn : int -> Numbers.Int16.t
      val of_int64_exn : Stdlib.Int64.t -> Numbers.Int16.t
      val to_int : Numbers.Int16.t -> int
    end
  module Float :
    sig
      type t = float
      module T :
        sig
          type t = t
          val equal : t -> t -> bool
          val hash : t -> int
          val compare : t -> t -> int
          val output : out_channel -> t -> unit
          val print : Format.formatter -> t -> unit
        end
      val equal : T.t -> T.t -> bool
      val hash : T.t -> int
      val compare : T.t -> T.t -> int
      val output : out_channel -> T.t -> unit
      val print : Format.formatter -> T.t -> unit
      module Set :
        sig
          type elt = T.t
          type t = Set.Make(T).t
          val empty : t
          val is_empty : t -> bool
          val mem : elt -> t -> bool
          val add : elt -> t -> t
          val singleton : elt -> t
          val remove : elt -> t -> t
          val union : t -> t -> t
          val inter : t -> t -> t
          val disjoint : t -> t -> bool
          val diff : t -> t -> t
          val compare : t -> t -> int
          val equal : t -> t -> bool
          val subset : t -> t -> bool
          val iter : (elt -> unit) -> t -> unit
          val fold : (elt -> '-> 'a) -> t -> '-> 'a
          val for_all : (elt -> bool) -> t -> bool
          val exists : (elt -> bool) -> t -> bool
          val filter : (elt -> bool) -> t -> t
          val filter_map : (elt -> elt option) -> t -> t
          val partition : (elt -> bool) -> t -> t * t
          val cardinal : t -> int
          val elements : t -> elt list
          val min_elt : t -> elt
          val min_elt_opt : t -> elt option
          val max_elt : t -> elt
          val max_elt_opt : t -> elt option
          val choose : t -> elt
          val choose_opt : t -> elt option
          val split : elt -> t -> t * bool * t
          val find : elt -> t -> elt
          val find_opt : elt -> t -> elt option
          val find_first : (elt -> bool) -> t -> elt
          val find_first_opt : (elt -> bool) -> t -> elt option
          val find_last : (elt -> bool) -> t -> elt
          val find_last_opt : (elt -> bool) -> t -> elt option
          val to_seq_from : elt -> t -> elt Seq.t
          val to_seq : t -> elt Seq.t
          val add_seq : elt Seq.t -> t -> t
          val of_seq : elt Seq.t -> t
          val output : out_channel -> t -> unit
          val print : Format.formatter -> t -> unit
          val to_string : t -> string
          val of_list : elt list -> t
          val map : (elt -> elt) -> t -> t
        end
      module Map :
        sig
          type key = T.t
          type 'a t = 'Map.Make(T).t
          val empty : 'a t
          val is_empty : 'a t -> bool
          val mem : key -> 'a t -> bool
          val add : key -> '-> 'a t -> 'a t
          val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
          val singleton : key -> '-> 'a t
          val remove : key -> 'a t -> 'a t
          val merge :
            (key -> 'a option -> 'b option -> 'c option) ->
            'a t -> 'b t -> 'c t
          val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
          val compare : ('-> '-> int) -> 'a t -> 'a t -> int
          val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val for_all : (key -> '-> bool) -> 'a t -> bool
          val exists : (key -> '-> bool) -> 'a t -> bool
          val filter : (key -> '-> bool) -> 'a t -> 'a t
          val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
          val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
          val cardinal : 'a t -> int
          val bindings : 'a t -> (key * 'a) list
          val min_binding : 'a t -> key * 'a
          val min_binding_opt : 'a t -> (key * 'a) option
          val max_binding : 'a t -> key * 'a
          val max_binding_opt : 'a t -> (key * 'a) option
          val choose : 'a t -> key * 'a
          val choose_opt : 'a t -> (key * 'a) option
          val split : key -> 'a t -> 'a t * 'a option * 'a t
          val find : key -> 'a t -> 'a
          val find_opt : key -> 'a t -> 'a option
          val find_first : (key -> bool) -> 'a t -> key * 'a
          val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val find_last : (key -> bool) -> 'a t -> key * 'a
          val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val map : ('-> 'b) -> 'a t -> 'b t
          val mapi : (key -> '-> 'b) -> 'a t -> 'b t
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
          val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
          val of_seq : (key * 'a) Seq.t -> 'a t
          val of_list : (key * 'a) list -> 'a t
          val disjoint_union :
            ?eq:('-> '-> bool) ->
            ?print:(Format.formatter -> '-> unit) -> 'a t -> 'a t -> 'a t
          val union_right : 'a t -> 'a t -> 'a t
          val union_left : 'a t -> 'a t -> 'a t
          val union_merge : ('-> '-> 'a) -> 'a t -> 'a t -> 'a t
          val rename : key t -> key -> key
          val map_keys : (key -> key) -> 'a t -> 'a t
          val keys : 'a t -> Set.Make(T).t
          val data : 'a t -> 'a list
          val of_set : (key -> 'a) -> Set.Make(T).t -> 'a t
          val transpose_keys_and_data : key t -> key t
          val transpose_keys_and_data_set : key t -> Set.Make(T).t t
          val print :
            (Format.formatter -> '-> unit) ->
            Format.formatter -> 'a t -> unit
        end
      module Tbl :
        sig
          type key = T.t
          type 'a t = 'Hashtbl.Make(T).t
          val create : int -> 'a t
          val clear : 'a t -> unit
          val reset : 'a t -> unit
          val copy : 'a t -> 'a t
          val add : 'a t -> key -> '-> unit
          val remove : 'a t -> key -> unit
          val find : 'a t -> key -> 'a
          val find_opt : 'a t -> key -> 'a option
          val find_all : 'a t -> key -> 'a list
          val replace : 'a t -> key -> '-> unit
          val mem : 'a t -> key -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val length : 'a t -> int
          val stats : 'a t -> Hashtbl.statistics
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_keys : 'a t -> key Seq.t
          val to_seq_values : 'a t -> 'Seq.t
          val add_seq : 'a t -> (key * 'a) Seq.t -> unit
          val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
          val of_seq : (key * 'a) Seq.t -> 'a t
          val to_list : 'a t -> (T.t * 'a) list
          val of_list : (T.t * 'a) list -> 'a t
          val to_map : 'a t -> 'Map.Make(T).t
          val of_map : 'Map.Make(T).t -> 'a t
          val memoize : 'a t -> (key -> 'a) -> key -> 'a
          val map : 'a t -> ('-> 'b) -> 'b t
        end
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.Ctf.html0000644000175000017500000002010313717225554024026 0ustar mehdimehdi Ast_helper.Ctf sig
  val mk :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    ?docs:Docstrings.docs ->
    Parsetree.class_type_field_desc -> Parsetree.class_type_field
  val attr :
    Parsetree.class_type_field ->
    Parsetree.attribute -> Parsetree.class_type_field
  val inherit_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.class_type -> Parsetree.class_type_field
  val val_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str ->
    Asttypes.mutable_flag ->
    Asttypes.virtual_flag ->
    Parsetree.core_type -> Parsetree.class_type_field
  val method_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Ast_helper.str ->
    Asttypes.private_flag ->
    Asttypes.virtual_flag ->
    Parsetree.core_type -> Parsetree.class_type_field
  val constraint_ :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.core_type -> Parsetree.core_type -> Parsetree.class_type_field
  val extension :
    ?loc:Ast_helper.loc ->
    ?attrs:Ast_helper.attrs ->
    Parsetree.extension -> Parsetree.class_type_field
  val attribute :
    ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.class_type_field
  val text : Docstrings.text -> Parsetree.class_type_field list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Builtin_attributes.html0000644000175000017500000002021613717225554025106 0ustar mehdimehdi Builtin_attributes sig
  val check_alerts : Location.t -> Parsetree.attributes -> string -> unit
  val check_alerts_inclusion :
    def:Location.t ->
    use:Location.t ->
    Location.t ->
    Parsetree.attributes -> Parsetree.attributes -> string -> unit
  val alerts_of_attrs : Parsetree.attributes -> Misc.alerts
  val alerts_of_sig : Parsetree.signature -> Misc.alerts
  val alerts_of_str : Parsetree.structure -> Misc.alerts
  val check_deprecated_mutable :
    Location.t -> Parsetree.attributes -> string -> unit
  val check_deprecated_mutable_inclusion :
    def:Location.t ->
    use:Location.t ->
    Location.t ->
    Parsetree.attributes -> Parsetree.attributes -> string -> unit
  val check_no_alert : Parsetree.attributes -> unit
  val error_of_extension : Parsetree.extension -> Location.error
  val warning_attribute : ?ppwarning:bool -> Parsetree.attribute -> unit
  val warning_scope :
    ?ppwarning:bool -> Parsetree.attributes -> (unit -> 'a) -> 'a
  val warn_on_literal_pattern : Parsetree.attributes -> bool
  val explicit_arity : Parsetree.attributes -> bool
  val immediate : Parsetree.attributes -> bool
  val immediate64 : Parsetree.attributes -> bool
  val has_unboxed : Parsetree.attributes -> bool
  val has_boxed : Parsetree.attributes -> bool
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Vb.html0000644000175000017500000001072613717225554022632 0ustar mehdimehdi Ast_helper.Vb

Module Ast_helper.Vb

module Vb: sig .. end

Value bindings


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
?docs:Docstrings.docs ->
?text:Docstrings.text ->
Parsetree.pattern -> Parsetree.expression -> Parsetree.value_binding
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Pprintast.html0000644000175000017500000001512513717225554023221 0ustar mehdimehdi Pprintast sig
  type space_formatter = (unit, Stdlib.Format.formatter, unit) Stdlib.format
  val longident : Stdlib.Format.formatter -> Longident.t -> unit
  val expression : Stdlib.Format.formatter -> Parsetree.expression -> unit
  val string_of_expression : Parsetree.expression -> string
  val pattern : Stdlib.Format.formatter -> Parsetree.pattern -> unit
  val core_type : Stdlib.Format.formatter -> Parsetree.core_type -> unit
  val signature : Stdlib.Format.formatter -> Parsetree.signature -> unit
  val structure : Stdlib.Format.formatter -> Parsetree.structure -> unit
  val string_of_structure : Parsetree.structure -> string
  val toplevel_phrase :
    Stdlib.Format.formatter -> Parsetree.toplevel_phrase -> unit
  val top_phrase :
    Stdlib.Format.formatter -> Parsetree.toplevel_phrase -> unit
  val tyvar : Stdlib.Format.formatter -> string -> unit
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Longident.html0000644000175000017500000001074713717225554023165 0ustar mehdimehdi Longident sig
  type t =
      Lident of string
    | Ldot of Longident.t * string
    | Lapply of Longident.t * Longident.t
  val flatten : Longident.t -> string list
  val unflatten : string list -> Longident.t option
  val last : Longident.t -> string
  val parse : string -> Longident.t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.html0000644000175000017500000001162513717225554022310 0ustar mehdimehdi Misc.Stdlib

Module Misc.Stdlib

module Stdlib: sig .. end

module List: sig .. end
module Option: sig .. end
module Array: sig .. end
module String: sig .. end
val compare : 'a -> 'a -> int
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.String.Set.html0000644000175000017500000000725313717225554024311 0ustar mehdimehdi Misc.Stdlib.String.Set

Module Misc.Stdlib.String.Set

module Set: Set.S  with type elt = string

ocaml-doc-4.11/ocaml.html/compilerlibref/Attr_helper.html0000644000175000017500000001406413717225554022446 0ustar mehdimehdi Attr_helper

Module Attr_helper

module Attr_helper: sig .. end

Helpers for attributes

Warning: this module is unstable and part of compiler-libs.


type error = 
| Multiple_attributes of string
| No_payload_expected of string
val get_no_payload_attribute : string list -> Parsetree.attributes -> string Asttypes.loc option

The string list argument of the following functions is a list of alternative names for the attribute we are looking for. For instance:

      ["foo"; "ocaml.foo"]
    
val has_no_payload_attribute : string list -> Parsetree.attributes -> bool
exception Error of Location.t * error
val report_error : Format.formatter -> error -> unit
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.IncrementalEngine.html0000644000175000017500000015460113717225554031031 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine sig
  type position = Stdlib.Lexing.position
  module type INCREMENTAL_ENGINE =
    sig
      type token
      type production
      type 'a env
      type 'a checkpoint = private
          InputNeeded of
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
        | Shifting of
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
            bool
        | AboutToReduce of
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env *
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production
        | HandlingError of
            'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
        | Accepted of 'a
        | Rejected
      val offer :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token *
        CamlinternalMenhirLib.IncrementalEngine.position *
        CamlinternalMenhirLib.IncrementalEngine.position ->
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
      val resume :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
      type supplier =
          unit ->
          CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token *
          CamlinternalMenhirLib.IncrementalEngine.position *
          CamlinternalMenhirLib.IncrementalEngine.position
      val lexer_lexbuf_to_supplier :
        (Stdlib.Lexing.lexbuf ->
         CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token) ->
        Stdlib.Lexing.lexbuf ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier
      val loop :
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        'a
      val loop_handle :
        ('-> 'answer) ->
        ('a
         CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
         'answer) ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        'answer
      val loop_handle_undo :
        ('-> 'answer) ->
        ('a
         CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
         'a
         CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
         'answer) ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.supplier ->
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        'answer
      val shifts :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
        option
      val acceptable :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.token ->
        CamlinternalMenhirLib.IncrementalEngine.position -> bool
      type 'a lr1state
      val number :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state ->
        int
      val production_index :
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production ->
        int
      val find_production :
        int ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production
      type element =
          Element :
            'a
            CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state *
            'a * CamlinternalMenhirLib.IncrementalEngine.position *
            CamlinternalMenhirLib.IncrementalEngine.position -> CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
      type stack =
          CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
          CamlinternalMenhirLib.General.stream
      val stack :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.stack
      val top :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
        option
      val pop_many :
        int ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
        option
      val get :
        int ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.element
        option
      val current_state_number :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        int
      val equal :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        bool
      val positions :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        CamlinternalMenhirLib.IncrementalEngine.position *
        CamlinternalMenhirLib.IncrementalEngine.position
      val env_has_default_reduction :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        bool
      val state_has_default_reduction :
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.lr1state ->
        bool
      val pop :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
        option
      val force_reduction :
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.production ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env
      val input_needed :
        'CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.env ->
        'a
        CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.checkpoint
    end
  module type SYMBOLS =
    sig
      type 'a terminal
      type 'a nonterminal
      type 'a symbol =
          T :
            'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.terminal -> 
            'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol
        | N :
            'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.nonterminal -> 
            'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol
      type xsymbol =
          X :
            'CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.symbol -> 
            CamlinternalMenhirLib.IncrementalEngine.SYMBOLS.xsymbol
    end
  module type INSPECTION =
    sig
      type 'a terminal
      type 'a nonterminal
      type 'a symbol =
          T : 'a terminal -> 'a symbol
        | N : 'a nonterminal -> 'a symbol
      type xsymbol = X : 'a symbol -> xsymbol
      type 'a lr1state
      type production
      type item =
          CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production * int
      val compare_terminals : 'a terminal -> 'b terminal -> int
      val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
      val compare_symbols : xsymbol -> xsymbol -> int
      val compare_productions :
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production -> int
      val compare_items :
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item ->
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item -> int
      val incoming_symbol :
        'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.lr1state ->
        'a symbol
      val items :
        'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.lr1state ->
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.item list
      val lhs :
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
        xsymbol
      val rhs :
        CamlinternalMenhirLib.IncrementalEngine.INSPECTION.production ->
        xsymbol list
      val nullable : 'a nonterminal -> bool
      val first : 'a nonterminal -> 'b terminal -> bool
      val xfirst : xsymbol -> 'a terminal -> bool
      val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
      val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
      type 'a env
      val feed :
        'a symbol ->
        CamlinternalMenhirLib.IncrementalEngine.position ->
        '->
        CamlinternalMenhirLib.IncrementalEngine.position ->
        'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.env ->
        'CamlinternalMenhirLib.IncrementalEngine.INSPECTION.env
    end
  module type EVERYTHING =
    sig
      type token
      type production
      type 'a env
      type 'a checkpoint = private
          InputNeeded of 'a env
        | Shifting of 'a env * 'a env * bool
        | AboutToReduce of 'a env * production
        | HandlingError of 'a env
        | Accepted of 'a
        | Rejected
      val offer :
        'a checkpoint -> token * position * position -> 'a checkpoint
      val resume : 'a checkpoint -> 'a checkpoint
      type supplier = unit -> token * position * position
      val lexer_lexbuf_to_supplier :
        (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
      val loop : supplier -> 'a checkpoint -> 'a
      val loop_handle :
        ('-> 'answer) ->
        ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
      val loop_handle_undo :
        ('-> 'answer) ->
        ('a checkpoint -> 'a checkpoint -> 'answer) ->
        supplier -> 'a checkpoint -> 'answer
      val shifts : 'a checkpoint -> 'a env option
      val acceptable : 'a checkpoint -> token -> position -> bool
      type 'a lr1state
      val number : 'a lr1state -> int
      val production_index : production -> int
      val find_production : int -> production
      type element =
          Element : 'a lr1state * 'a * position * position -> element
      type stack = element General.stream
      val stack : 'a env -> stack
      val top : 'a env -> element option
      val pop_many : int -> 'a env -> 'a env option
      val get : int -> 'a env -> element option
      val current_state_number : 'a env -> int
      val equal : 'a env -> 'a env -> bool
      val positions : 'a env -> position * position
      val env_has_default_reduction : 'a env -> bool
      val state_has_default_reduction : 'a lr1state -> bool
      val pop : 'a env -> 'a env option
      val force_reduction : production -> 'a env -> 'a env
      val input_needed : 'a env -> 'a checkpoint
      type 'a terminal
      type 'a nonterminal
      type 'a symbol =
          T : 'a terminal -> 'a symbol
        | N : 'a nonterminal -> 'a symbol
      type xsymbol = X : 'a symbol -> xsymbol
      type item = production * int
      val compare_terminals : 'a terminal -> 'b terminal -> int
      val compare_nonterminals : 'a nonterminal -> 'b nonterminal -> int
      val compare_symbols : xsymbol -> xsymbol -> int
      val compare_productions : production -> production -> int
      val compare_items : item -> item -> int
      val incoming_symbol : 'a lr1state -> 'a symbol
      val items : 'a lr1state -> item list
      val lhs : production -> xsymbol
      val rhs : production -> xsymbol list
      val nullable : 'a nonterminal -> bool
      val first : 'a nonterminal -> 'b terminal -> bool
      val xfirst : xsymbol -> 'a terminal -> bool
      val foreach_terminal : (xsymbol -> '-> 'a) -> '-> 'a
      val foreach_terminal_but_error : (xsymbol -> '-> 'a) -> '-> 'a
      val feed : 'a symbol -> position -> '-> position -> 'b env -> 'b env
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Parser.html0000644000175000017500000012567513717225554022505 0ustar mehdimehdi Parser sig
  type token =
      WITH
    | WHILE
    | WHEN
    | VIRTUAL
    | VAL
    | UNDERSCORE
    | UIDENT of string
    | TYPE
    | TRY
    | TRUE
    | TO
    | TILDE
    | THEN
    | STRUCT
    | STRING of (string * Location.t * string option)
    | STAR
    | SIG
    | SEMISEMI
    | SEMI
    | RPAREN
    | REC
    | RBRACKET
    | RBRACE
    | QUOTED_STRING_ITEM of
        (string * Location.t * string * Location.t * string option)
    | QUOTED_STRING_EXPR of
        (string * Location.t * string * Location.t * string option)
    | QUOTE
    | QUESTION
    | PRIVATE
    | PREFIXOP of string
    | PLUSEQ
    | PLUSDOT
    | PLUS
    | PERCENT
    | OR
    | OPTLABEL of string
    | OPEN
    | OF
    | OBJECT
    | NONREC
    | NEW
    | MUTABLE
    | MODULE
    | MINUSGREATER
    | MINUSDOT
    | MINUS
    | METHOD
    | MATCH
    | LPAREN
    | LIDENT of string
    | LETOP of string
    | LET
    | LESSMINUS
    | LESS
    | LBRACKETPERCENTPERCENT
    | LBRACKETPERCENT
    | LBRACKETLESS
    | LBRACKETGREATER
    | LBRACKETBAR
    | LBRACKETATATAT
    | LBRACKETATAT
    | LBRACKETAT
    | LBRACKET
    | LBRACELESS
    | LBRACE
    | LAZY
    | LABEL of string
    | INT of (string * char option)
    | INITIALIZER
    | INHERIT
    | INFIXOP4 of string
    | INFIXOP3 of string
    | INFIXOP2 of string
    | INFIXOP1 of string
    | INFIXOP0 of string
    | INCLUDE
    | IN
    | IF
    | HASHOP of string
    | HASH
    | GREATERRBRACKET
    | GREATERRBRACE
    | GREATER
    | FUNCTOR
    | FUNCTION
    | FUN
    | FOR
    | FLOAT of (string * char option)
    | FALSE
    | EXTERNAL
    | EXCEPTION
    | EQUAL
    | EOL
    | EOF
    | END
    | ELSE
    | DOWNTO
    | DOTOP of string
    | DOTDOT
    | DOT
    | DONE
    | DOCSTRING of Docstrings.docstring
    | DO
    | CONSTRAINT
    | COMMENT of (string * Location.t)
    | COMMA
    | COLONGREATER
    | COLONEQUAL
    | COLONCOLON
    | COLON
    | CLASS
    | CHAR of char
    | BEGIN
    | BARRBRACKET
    | BARBAR
    | BAR
    | BANG
    | BACKQUOTE
    | ASSERT
    | AS
    | ANDOP of string
    | AND
    | AMPERSAND
    | AMPERAMPER
  exception Error
  val use_file :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.toplevel_phrase list
  val toplevel_phrase :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.toplevel_phrase
  val parse_val_longident :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Longident.t
  val parse_pattern :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.pattern
  val parse_mty_longident :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Longident.t
  val parse_mod_longident :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Longident.t
  val parse_mod_ext_longident :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Longident.t
  val parse_expression :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.expression
  val parse_core_type :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.core_type
  val parse_constr_longident :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Longident.t
  val parse_any_longident :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Longident.t
  val interface :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.signature
  val implementation :
    (Stdlib.Lexing.lexbuf -> Parser.token) ->
    Stdlib.Lexing.lexbuf -> Parsetree.structure
  module MenhirInterpreter :
    sig
      type token = token
      type production
      type 'a env
      type 'a checkpoint = private
          InputNeeded of 'a env
        | Shifting of 'a env * 'a env * bool
        | AboutToReduce of 'a env * production
        | HandlingError of 'a env
        | Accepted of 'a
        | Rejected
      val offer :
        'a checkpoint ->
        token * CamlinternalMenhirLib.IncrementalEngine.position *
        CamlinternalMenhirLib.IncrementalEngine.position -> 'a checkpoint
      val resume : 'a checkpoint -> 'a checkpoint
      type supplier =
          unit ->
          token * CamlinternalMenhirLib.IncrementalEngine.position *
          CamlinternalMenhirLib.IncrementalEngine.position
      val lexer_lexbuf_to_supplier :
        (Lexing.lexbuf -> token) -> Lexing.lexbuf -> supplier
      val loop : supplier -> 'a checkpoint -> 'a
      val loop_handle :
        ('-> 'answer) ->
        ('a checkpoint -> 'answer) -> supplier -> 'a checkpoint -> 'answer
      val loop_handle_undo :
        ('-> 'answer) ->
        ('a checkpoint -> 'a checkpoint -> 'answer) ->
        supplier -> 'a checkpoint -> 'answer
      val shifts : 'a checkpoint -> 'a env option
      val acceptable :
        'a checkpoint ->
        token -> CamlinternalMenhirLib.IncrementalEngine.position -> bool
      type 'a lr1state
      val number : 'a lr1state -> int
      val production_index : production -> int
      val find_production : int -> production
      type element =
          Element : 'a lr1state * 'a *
            CamlinternalMenhirLib.IncrementalEngine.position *
            CamlinternalMenhirLib.IncrementalEngine.position -> element
      type stack = element CamlinternalMenhirLib.General.stream
      val stack : 'a env -> stack
      val top : 'a env -> element option
      val pop_many : int -> 'a env -> 'a env option
      val get : int -> 'a env -> element option
      val current_state_number : 'a env -> int
      val equal : 'a env -> 'a env -> bool
      val positions :
        'a env ->
        CamlinternalMenhirLib.IncrementalEngine.position *
        CamlinternalMenhirLib.IncrementalEngine.position
      val env_has_default_reduction : 'a env -> bool
      val state_has_default_reduction : 'a lr1state -> bool
      val pop : 'a env -> 'a env option
      val force_reduction : production -> 'a env -> 'a env
      val input_needed : 'a env -> 'a checkpoint
    end
  module Incremental :
    sig
      val use_file :
        Stdlib.Lexing.position ->
        Parsetree.toplevel_phrase list Parser.MenhirInterpreter.checkpoint
      val toplevel_phrase :
        Stdlib.Lexing.position ->
        Parsetree.toplevel_phrase Parser.MenhirInterpreter.checkpoint
      val parse_val_longident :
        Stdlib.Lexing.position ->
        Longident.t Parser.MenhirInterpreter.checkpoint
      val parse_pattern :
        Stdlib.Lexing.position ->
        Parsetree.pattern Parser.MenhirInterpreter.checkpoint
      val parse_mty_longident :
        Stdlib.Lexing.position ->
        Longident.t Parser.MenhirInterpreter.checkpoint
      val parse_mod_longident :
        Stdlib.Lexing.position ->
        Longident.t Parser.MenhirInterpreter.checkpoint
      val parse_mod_ext_longident :
        Stdlib.Lexing.position ->
        Longident.t Parser.MenhirInterpreter.checkpoint
      val parse_expression :
        Stdlib.Lexing.position ->
        Parsetree.expression Parser.MenhirInterpreter.checkpoint
      val parse_core_type :
        Stdlib.Lexing.position ->
        Parsetree.core_type Parser.MenhirInterpreter.checkpoint
      val parse_constr_longident :
        Stdlib.Lexing.position ->
        Longident.t Parser.MenhirInterpreter.checkpoint
      val parse_any_longident :
        Stdlib.Lexing.position ->
        Longident.t Parser.MenhirInterpreter.checkpoint
      val interface :
        Stdlib.Lexing.position ->
        Parsetree.signature Parser.MenhirInterpreter.checkpoint
      val implementation :
        Stdlib.Lexing.position ->
        Parsetree.structure Parser.MenhirInterpreter.checkpoint
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.InspectionTableFormat.TABLES.html0000644000175000017500000001316513717225554031605 0ustar mehdimehdi CamlinternalMenhirLib.InspectionTableFormat.TABLES

Module type CamlinternalMenhirLib.InspectionTableFormat.TABLES

module type TABLES = sig .. end

include CamlinternalMenhirLib.IncrementalEngine.SYMBOLS
type 'a lr1state 
val terminal : int -> xsymbol
val nonterminal : int -> xsymbol
val rhs : CamlinternalMenhirLib.PackedIntArray.t *
CamlinternalMenhirLib.PackedIntArray.t
val lr0_core : CamlinternalMenhirLib.PackedIntArray.t
val lr0_items : CamlinternalMenhirLib.PackedIntArray.t *
CamlinternalMenhirLib.PackedIntArray.t
val lr0_incoming : CamlinternalMenhirLib.PackedIntArray.t
val nullable : string
val first : int * string
././@LongLink0000644000000000000000000000015100000000000011600 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.htmlocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE.0000644000175000017500000004162613717225554031672 0ustar mehdimehdi CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE

Module type CamlinternalMenhirLib.IncrementalEngine.INCREMENTAL_ENGINE

module type INCREMENTAL_ENGINE = sig .. end

type token 
type production 
type 'a env 
type 'a checkpoint = private 
| InputNeeded of 'a env
| Shifting of 'a env
* 'a env *
bool
| AboutToReduce of 'a env
* production
| HandlingError of 'a env
| Accepted of 'a
| Rejected
val offer : 'a checkpoint ->
token *
CamlinternalMenhirLib.IncrementalEngine.position *
CamlinternalMenhirLib.IncrementalEngine.position ->
'a checkpoint
val resume : 'a checkpoint ->
'a checkpoint
type supplier = unit ->
token *
CamlinternalMenhirLib.IncrementalEngine.position *
CamlinternalMenhirLib.IncrementalEngine.position
val lexer_lexbuf_to_supplier : (Lexing.lexbuf ->
token) ->
Lexing.lexbuf ->
supplier
val loop : supplier ->
'a checkpoint ->
'a
val loop_handle : ('a -> 'answer) ->
('a checkpoint ->
'answer) ->
supplier ->
'a checkpoint ->
'answer
val loop_handle_undo : ('a -> 'answer) ->
('a checkpoint ->
'a checkpoint ->
'answer) ->
supplier ->
'a checkpoint ->
'answer
val shifts : 'a checkpoint ->
'a env option
val acceptable : 'a checkpoint ->
token ->
CamlinternalMenhirLib.IncrementalEngine.position -> bool
type 'a lr1state 
val number : 'a lr1state -> int
val production_index : production -> int
val find_production : int -> production
type element = 
| Element : 'a lr1state * 'a
* CamlinternalMenhirLib.IncrementalEngine.position
* CamlinternalMenhirLib.IncrementalEngine.position
-> element
type stack = element
CamlinternalMenhirLib.General.stream
val stack : 'a env ->
stack
val top : 'a env ->
element option
val pop_many : int ->
'a env ->
'a env option
val get : int ->
'a env ->
element option
val current_state_number : 'a env -> int
val equal : 'a env ->
'a env -> bool
val positions : 'a env ->
CamlinternalMenhirLib.IncrementalEngine.position *
CamlinternalMenhirLib.IncrementalEngine.position
val env_has_default_reduction : 'a env -> bool
val state_has_default_reduction : 'a lr1state ->
bool
val pop : 'a env ->
'a env option
val force_reduction : production ->
'a env ->
'a env
val input_needed : 'a env ->
'a checkpoint
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Strongly_connected_components.Make.html0000644000175000017500000001071313717225554030217 0ustar mehdimehdi Strongly_connected_components.Make functor (Id : Identifiable.S->
  sig
    type directed_graph = Id.Set.t Id.Map.t
    type component = Has_loop of Id.t list | No_loop of Id.t
    val connected_components_sorted_from_roots_to_leaf :
      directed_graph -> component array
    val component_graph : directed_graph -> (component * int list) array
  end
././@LongLink0000644000000000000000000000015100000000000011600 Lustar rootrootocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.htmlocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START.0000644000175000017500000001211413717225554031500 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START

Module type CamlinternalMenhirLib.EngineTypes.INCREMENTAL_ENGINE_START

module type INCREMENTAL_ENGINE_START = sig .. end

type state 
type semantic_value 
type 'a checkpoint 
val start : state ->
Lexing.position ->
semantic_value
checkpoint
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.LongString.html0000644000175000017500000001305213717225554023151 0ustar mehdimehdi Misc.LongString

Module Misc.LongString

module LongString: sig .. end

type t = bytes array 
val create : int -> t
val length : t -> int
val get : t -> int -> char
val set : t -> int -> char -> unit
val blit : t -> int -> t -> int -> int -> unit
val blit_string : string -> int -> t -> int -> int -> unit
val output : out_channel -> t -> int -> int -> unit
val input_bytes_into : t -> in_channel -> int -> unit
val input_bytes : in_channel -> int -> t
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Strongly_connected_components.html0000644000175000017500000001563513717225554027353 0ustar mehdimehdi Strongly_connected_components sig
  module type S =
    sig
      module Id : Identifiable.S
      type directed_graph = Id.Set.t Id.Map.t
      type component = Has_loop of Id.t list | No_loop of Id.t
      val connected_components_sorted_from_roots_to_leaf :
        Strongly_connected_components.S.directed_graph ->
        Strongly_connected_components.S.component array
      val component_graph :
        Strongly_connected_components.S.directed_graph ->
        (Strongly_connected_components.S.component * int list) array
    end
  module Make :
    functor (Id : Identifiable.S->
      sig
        type directed_graph = Id.Set.t Id.Map.t
        type component = Has_loop of Id.t list | No_loop of Id.t
        val connected_components_sorted_from_roots_to_leaf :
          directed_graph -> component array
        val component_graph : directed_graph -> (component * int list) array
      end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Load_path.html0000644000175000017500000001274213717225554023132 0ustar mehdimehdi Load_path sig
  val add_dir : string -> unit
  val remove_dir : string -> unit
  val reset : unit -> unit
  val init : string list -> unit
  val get_paths : unit -> string list
  val find : string -> string
  val find_uncap : string -> string
  module Dir :
    sig
      type t
      val create : string -> Load_path.Dir.t
      val path : Load_path.Dir.t -> string
      val files : Load_path.Dir.t -> string list
    end
  val add : Load_path.Dir.t -> unit
  val get : unit -> Load_path.Dir.t list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Tbl.html0000644000175000017500000001204013717225554023264 0ustar mehdimehdi Identifiable.Tbl

Module type Identifiable.Tbl

module type Tbl = sig .. end

module T: sig .. end
include Hashtbl.S
val to_list : 'a t -> (T.t * 'a) list
val of_list : (T.t * 'a) list -> 'a t
val to_map : 'a t -> 'a Stdlib.Map.Make(T).t
val of_map : 'a Stdlib.Map.Make(T).t -> 'a t
val memoize : 'a t -> (key -> 'a) -> key -> 'a
val map : 'a t -> ('a -> 'b) -> 'b t
ocaml-doc-4.11/ocaml.html/compilerlibref/index_module_types.html0000644000175000017500000001415513717225554024076 0ustar mehdimehdi Index of module types

Index of module types

E
ENGINE [CamlinternalMenhirLib.EngineTypes]
EVERYTHING [CamlinternalMenhirLib.IncrementalEngine]
I
INCREMENTAL_ENGINE [CamlinternalMenhirLib.IncrementalEngine]
INCREMENTAL_ENGINE_START [CamlinternalMenhirLib.EngineTypes]
INSPECTION [CamlinternalMenhirLib.IncrementalEngine]
M
MONOLITHIC_ENGINE [CamlinternalMenhirLib.EngineTypes]
Map [Identifiable]
S
S [Strongly_connected_components]
S [Identifiable]
SYMBOLS [CamlinternalMenhirLib.IncrementalEngine]
Set [Identifiable]
T
TABLE [CamlinternalMenhirLib.EngineTypes]
TABLES [CamlinternalMenhirLib.InspectionTableFormat]
TABLES [CamlinternalMenhirLib.TableFormat]
Tbl [Identifiable]
Thing [Identifiable]
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Docstrings.html0000644000175000017500000004567013717225554023364 0ustar mehdimehdi Docstrings sig
  val init : unit -> unit
  val warn_bad_docstrings : unit -> unit
  type docstring
  val docstring : string -> Location.t -> Docstrings.docstring
  val register : Docstrings.docstring -> unit
  val docstring_body : Docstrings.docstring -> string
  val docstring_loc : Docstrings.docstring -> Location.t
  val set_pre_docstrings :
    Stdlib.Lexing.position -> Docstrings.docstring list -> unit
  val set_post_docstrings :
    Stdlib.Lexing.position -> Docstrings.docstring list -> unit
  val set_floating_docstrings :
    Stdlib.Lexing.position -> Docstrings.docstring list -> unit
  val set_pre_extra_docstrings :
    Stdlib.Lexing.position -> Docstrings.docstring list -> unit
  val set_post_extra_docstrings :
    Stdlib.Lexing.position -> Docstrings.docstring list -> unit
  type docs = {
    docs_pre : Docstrings.docstring option;
    docs_post : Docstrings.docstring option;
  }
  val empty_docs : Docstrings.docs
  val docs_attr : Docstrings.docstring -> Parsetree.attribute
  val add_docs_attrs :
    Docstrings.docs -> Parsetree.attributes -> Parsetree.attributes
  val symbol_docs : unit -> Docstrings.docs
  val symbol_docs_lazy : unit -> Docstrings.docs Stdlib.Lazy.t
  val rhs_docs : int -> int -> Docstrings.docs
  val rhs_docs_lazy : int -> int -> Docstrings.docs Stdlib.Lazy.t
  val mark_symbol_docs : unit -> unit
  val mark_rhs_docs : int -> int -> unit
  type info = Docstrings.docstring option
  val empty_info : Docstrings.info
  val info_attr : Docstrings.docstring -> Parsetree.attribute
  val add_info_attrs :
    Docstrings.info -> Parsetree.attributes -> Parsetree.attributes
  val symbol_info : unit -> Docstrings.info
  val rhs_info : int -> Docstrings.info
  type text = Docstrings.docstring list
  val empty_text : Docstrings.text
  val empty_text_lazy : Docstrings.text Stdlib.Lazy.t
  val text_attr : Docstrings.docstring -> Parsetree.attribute
  val add_text_attrs :
    Docstrings.text -> Parsetree.attributes -> Parsetree.attributes
  val symbol_text : unit -> Docstrings.text
  val symbol_text_lazy : unit -> Docstrings.text Stdlib.Lazy.t
  val rhs_text : int -> Docstrings.text
  val rhs_text_lazy : int -> Docstrings.text Stdlib.Lazy.t
  val symbol_pre_extra_text : unit -> Docstrings.text
  val symbol_post_extra_text : unit -> Docstrings.text
  val rhs_pre_extra_text : int -> Docstrings.text
  val rhs_post_extra_text : int -> Docstrings.text
  val rhs_post_text : int -> Docstrings.text
  module WithMenhir :
    sig
      val symbol_docs :
        Stdlib.Lexing.position * Stdlib.Lexing.position -> Docstrings.docs
      val symbol_docs_lazy :
        Stdlib.Lexing.position * Stdlib.Lexing.position ->
        Docstrings.docs Stdlib.Lazy.t
      val rhs_docs :
        Stdlib.Lexing.position -> Stdlib.Lexing.position -> Docstrings.docs
      val rhs_docs_lazy :
        Stdlib.Lexing.position ->
        Stdlib.Lexing.position -> Docstrings.docs Stdlib.Lazy.t
      val mark_symbol_docs :
        Stdlib.Lexing.position * Stdlib.Lexing.position -> unit
      val mark_rhs_docs :
        Stdlib.Lexing.position -> Stdlib.Lexing.position -> unit
      val symbol_info : Stdlib.Lexing.position -> Docstrings.info
      val rhs_info : Stdlib.Lexing.position -> Docstrings.info
      val symbol_text : Stdlib.Lexing.position -> Docstrings.text
      val symbol_text_lazy :
        Stdlib.Lexing.position -> Docstrings.text Stdlib.Lazy.t
      val rhs_text : Stdlib.Lexing.position -> Docstrings.text
      val rhs_text_lazy :
        Stdlib.Lexing.position -> Docstrings.text Stdlib.Lazy.t
      val symbol_pre_extra_text : Stdlib.Lexing.position -> Docstrings.text
      val symbol_post_extra_text : Stdlib.Lexing.position -> Docstrings.text
      val rhs_pre_extra_text : Stdlib.Lexing.position -> Docstrings.text
      val rhs_post_extra_text : Stdlib.Lexing.position -> Docstrings.text
      val rhs_post_text : Stdlib.Lexing.position -> Docstrings.text
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Ast_helper.html0000644000175000017500000042326013717225554023326 0ustar mehdimehdi Ast_helper sig
  type 'a with_loc = 'Location.loc
  type loc = Location.t
  type lid = Longident.t Ast_helper.with_loc
  type str = string Ast_helper.with_loc
  type str_opt = string option Ast_helper.with_loc
  type attrs = Parsetree.attribute list
  val default_loc : Ast_helper.loc Stdlib.ref
  val with_default_loc : Ast_helper.loc -> (unit -> 'a) -> 'a
  module Const :
    sig
      val char : char -> Parsetree.constant
      val string :
        ?quotation_delimiter:string ->
        ?loc:Location.t -> string -> Parsetree.constant
      val integer : ?suffix:char -> string -> Parsetree.constant
      val int : ?suffix:char -> int -> Parsetree.constant
      val int32 : ?suffix:char -> int32 -> Parsetree.constant
      val int64 : ?suffix:char -> int64 -> Parsetree.constant
      val nativeint : ?suffix:char -> nativeint -> Parsetree.constant
      val float : ?suffix:char -> string -> Parsetree.constant
    end
  module Attr :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        Ast_helper.str -> Parsetree.payload -> Parsetree.attribute
    end
  module Typ :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.core_type_desc -> Parsetree.core_type
      val attr :
        Parsetree.core_type -> Parsetree.attribute -> Parsetree.core_type
      val any :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> unit -> Parsetree.core_type
      val var :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> string -> Parsetree.core_type
      val arrow :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.arg_label ->
        Parsetree.core_type -> Parsetree.core_type -> Parsetree.core_type
      val tuple :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.core_type list -> Parsetree.core_type
      val constr :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.core_type list -> Parsetree.core_type
      val object_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.object_field list ->
        Asttypes.closed_flag -> Parsetree.core_type
      val class_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.core_type list -> Parsetree.core_type
      val alias :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.core_type -> string -> Parsetree.core_type
      val variant :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.row_field list ->
        Asttypes.closed_flag ->
        Asttypes.label list option -> Parsetree.core_type
      val poly :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str list -> Parsetree.core_type -> Parsetree.core_type
      val package :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid ->
        (Ast_helper.lid * Parsetree.core_type) list -> Parsetree.core_type
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.core_type
      val force_poly : Parsetree.core_type -> Parsetree.core_type
      val varify_constructors :
        Ast_helper.str list -> Parsetree.core_type -> Parsetree.core_type
    end
  module Pat :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern_desc -> Parsetree.pattern
      val attr :
        Parsetree.pattern -> Parsetree.attribute -> Parsetree.pattern
      val any :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> unit -> Parsetree.pattern
      val var :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.str -> Parsetree.pattern
      val alias :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern -> Ast_helper.str -> Parsetree.pattern
      val constant :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Parsetree.constant -> Parsetree.pattern
      val interval :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.constant -> Parsetree.constant -> Parsetree.pattern
      val tuple :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern list -> Parsetree.pattern
      val construct :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.pattern option -> Parsetree.pattern
      val variant :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.label -> Parsetree.pattern option -> Parsetree.pattern
      val record :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        (Ast_helper.lid * Parsetree.pattern) list ->
        Asttypes.closed_flag -> Parsetree.pattern
      val array :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern list -> Parsetree.pattern
      val or_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern -> Parsetree.pattern -> Parsetree.pattern
      val constraint_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern -> Parsetree.core_type -> Parsetree.pattern
      val type_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.pattern
      val lazy_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Parsetree.pattern -> Parsetree.pattern
      val unpack :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.str_opt -> Parsetree.pattern
      val open_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.pattern -> Parsetree.pattern
      val exception_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Parsetree.pattern -> Parsetree.pattern
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Parsetree.extension -> Parsetree.pattern
    end
  module Exp :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression_desc -> Parsetree.expression
      val attr :
        Parsetree.expression -> Parsetree.attribute -> Parsetree.expression
      val ident :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.expression
      val constant :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Parsetree.constant -> Parsetree.expression
      val let_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.rec_flag ->
        Parsetree.value_binding list ->
        Parsetree.expression -> Parsetree.expression
      val fun_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.arg_label ->
        Parsetree.expression option ->
        Parsetree.pattern -> Parsetree.expression -> Parsetree.expression
      val function_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.case list -> Parsetree.expression
      val apply :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression ->
        (Asttypes.arg_label * Parsetree.expression) list ->
        Parsetree.expression
      val match_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.case list -> Parsetree.expression
      val try_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.case list -> Parsetree.expression
      val tuple :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression list -> Parsetree.expression
      val construct :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.expression option -> Parsetree.expression
      val variant :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.label -> Parsetree.expression option -> Parsetree.expression
      val record :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        (Ast_helper.lid * Parsetree.expression) list ->
        Parsetree.expression option -> Parsetree.expression
      val field :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Ast_helper.lid -> Parsetree.expression
      val setfield :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression ->
        Ast_helper.lid -> Parsetree.expression -> Parsetree.expression
      val array :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression list -> Parsetree.expression
      val ifthenelse :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression ->
        Parsetree.expression ->
        Parsetree.expression option -> Parsetree.expression
      val sequence :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.expression -> Parsetree.expression
      val while_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.expression -> Parsetree.expression
      val for_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.pattern ->
        Parsetree.expression ->
        Parsetree.expression ->
        Asttypes.direction_flag ->
        Parsetree.expression -> Parsetree.expression
      val coerce :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression ->
        Parsetree.core_type option ->
        Parsetree.core_type -> Parsetree.expression
      val constraint_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.core_type -> Parsetree.expression
      val send :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Ast_helper.str -> Parsetree.expression
      val new_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.expression
      val setinstvar :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str -> Parsetree.expression -> Parsetree.expression
      val override :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        (Ast_helper.str * Parsetree.expression) list -> Parsetree.expression
      val letmodule :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str_opt ->
        Parsetree.module_expr -> Parsetree.expression -> Parsetree.expression
      val letexception :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension_constructor ->
        Parsetree.expression -> Parsetree.expression
      val assert_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.expression
      val lazy_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.expression
      val poly :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression ->
        Parsetree.core_type option -> Parsetree.expression
      val object_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_structure -> Parsetree.expression
      val newtype :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str -> Parsetree.expression -> Parsetree.expression
      val pack :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_expr -> Parsetree.expression
      val open_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.open_declaration ->
        Parsetree.expression -> Parsetree.expression
      val letop :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.binding_op ->
        Parsetree.binding_op list ->
        Parsetree.expression -> Parsetree.expression
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.expression
      val unreachable :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> unit -> Parsetree.expression
      val case :
        Parsetree.pattern ->
        ?guard:Parsetree.expression -> Parsetree.expression -> Parsetree.case
      val binding_op :
        Ast_helper.str ->
        Parsetree.pattern ->
        Parsetree.expression -> Ast_helper.loc -> Parsetree.binding_op
    end
  module Val :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?prim:string list ->
        Ast_helper.str -> Parsetree.core_type -> Parsetree.value_description
    end
  module Type :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        ?params:(Parsetree.core_type * Asttypes.variance) list ->
        ?cstrs:(Parsetree.core_type * Parsetree.core_type * Ast_helper.loc)
               list ->
        ?kind:Parsetree.type_kind ->
        ?priv:Asttypes.private_flag ->
        ?manifest:Parsetree.core_type ->
        Ast_helper.str -> Parsetree.type_declaration
      val constructor :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?info:Docstrings.info ->
        ?args:Parsetree.constructor_arguments ->
        ?res:Parsetree.core_type ->
        Ast_helper.str -> Parsetree.constructor_declaration
      val field :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?info:Docstrings.info ->
        ?mut:Asttypes.mutable_flag ->
        Ast_helper.str -> Parsetree.core_type -> Parsetree.label_declaration
    end
  module Te :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?params:(Parsetree.core_type * Asttypes.variance) list ->
        ?priv:Asttypes.private_flag ->
        Ast_helper.lid ->
        Parsetree.extension_constructor list -> Parsetree.type_extension
      val mk_exception :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        Parsetree.extension_constructor -> Parsetree.type_exception
      val constructor :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?info:Docstrings.info ->
        Ast_helper.str ->
        Parsetree.extension_constructor_kind ->
        Parsetree.extension_constructor
      val decl :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?info:Docstrings.info ->
        ?args:Parsetree.constructor_arguments ->
        ?res:Parsetree.core_type ->
        Ast_helper.str -> Parsetree.extension_constructor
      val rebind :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?info:Docstrings.info ->
        Ast_helper.str -> Ast_helper.lid -> Parsetree.extension_constructor
    end
  module Mty :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_type_desc -> Parsetree.module_type
      val attr :
        Parsetree.module_type -> Parsetree.attribute -> Parsetree.module_type
      val ident :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_type
      val alias :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_type
      val signature :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.signature -> Parsetree.module_type
      val functor_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.functor_parameter ->
        Parsetree.module_type -> Parsetree.module_type
      val with_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_type ->
        Parsetree.with_constraint list -> Parsetree.module_type
      val typeof_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_expr -> Parsetree.module_type
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.module_type
    end
  module Mod :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_expr_desc -> Parsetree.module_expr
      val attr :
        Parsetree.module_expr -> Parsetree.attribute -> Parsetree.module_expr
      val ident :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs -> Ast_helper.lid -> Parsetree.module_expr
      val structure :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.structure -> Parsetree.module_expr
      val functor_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.functor_parameter ->
        Parsetree.module_expr -> Parsetree.module_expr
      val apply :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_expr ->
        Parsetree.module_expr -> Parsetree.module_expr
      val constraint_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.module_expr ->
        Parsetree.module_type -> Parsetree.module_expr
      val unpack :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.module_expr
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.module_expr
    end
  module Sig :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        Parsetree.signature_item_desc -> Parsetree.signature_item
      val value :
        ?loc:Ast_helper.loc ->
        Parsetree.value_description -> Parsetree.signature_item
      val type_ :
        ?loc:Ast_helper.loc ->
        Asttypes.rec_flag ->
        Parsetree.type_declaration list -> Parsetree.signature_item
      val type_subst :
        ?loc:Ast_helper.loc ->
        Parsetree.type_declaration list -> Parsetree.signature_item
      val type_extension :
        ?loc:Ast_helper.loc ->
        Parsetree.type_extension -> Parsetree.signature_item
      val exception_ :
        ?loc:Ast_helper.loc ->
        Parsetree.type_exception -> Parsetree.signature_item
      val module_ :
        ?loc:Ast_helper.loc ->
        Parsetree.module_declaration -> Parsetree.signature_item
      val mod_subst :
        ?loc:Ast_helper.loc ->
        Parsetree.module_substitution -> Parsetree.signature_item
      val rec_module :
        ?loc:Ast_helper.loc ->
        Parsetree.module_declaration list -> Parsetree.signature_item
      val modtype :
        ?loc:Ast_helper.loc ->
        Parsetree.module_type_declaration -> Parsetree.signature_item
      val open_ :
        ?loc:Ast_helper.loc ->
        Parsetree.open_description -> Parsetree.signature_item
      val include_ :
        ?loc:Ast_helper.loc ->
        Parsetree.include_description -> Parsetree.signature_item
      val class_ :
        ?loc:Ast_helper.loc ->
        Parsetree.class_description list -> Parsetree.signature_item
      val class_type :
        ?loc:Ast_helper.loc ->
        Parsetree.class_type_declaration list -> Parsetree.signature_item
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.signature_item
      val attribute :
        ?loc:Ast_helper.loc ->
        Parsetree.attribute -> Parsetree.signature_item
      val text : Docstrings.text -> Parsetree.signature_item list
    end
  module Str :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        Parsetree.structure_item_desc -> Parsetree.structure_item
      val eval :
        ?loc:Ast_helper.loc ->
        ?attrs:Parsetree.attributes ->
        Parsetree.expression -> Parsetree.structure_item
      val value :
        ?loc:Ast_helper.loc ->
        Asttypes.rec_flag ->
        Parsetree.value_binding list -> Parsetree.structure_item
      val primitive :
        ?loc:Ast_helper.loc ->
        Parsetree.value_description -> Parsetree.structure_item
      val type_ :
        ?loc:Ast_helper.loc ->
        Asttypes.rec_flag ->
        Parsetree.type_declaration list -> Parsetree.structure_item
      val type_extension :
        ?loc:Ast_helper.loc ->
        Parsetree.type_extension -> Parsetree.structure_item
      val exception_ :
        ?loc:Ast_helper.loc ->
        Parsetree.type_exception -> Parsetree.structure_item
      val module_ :
        ?loc:Ast_helper.loc ->
        Parsetree.module_binding -> Parsetree.structure_item
      val rec_module :
        ?loc:Ast_helper.loc ->
        Parsetree.module_binding list -> Parsetree.structure_item
      val modtype :
        ?loc:Ast_helper.loc ->
        Parsetree.module_type_declaration -> Parsetree.structure_item
      val open_ :
        ?loc:Ast_helper.loc ->
        Parsetree.open_declaration -> Parsetree.structure_item
      val class_ :
        ?loc:Ast_helper.loc ->
        Parsetree.class_declaration list -> Parsetree.structure_item
      val class_type :
        ?loc:Ast_helper.loc ->
        Parsetree.class_type_declaration list -> Parsetree.structure_item
      val include_ :
        ?loc:Ast_helper.loc ->
        Parsetree.include_declaration -> Parsetree.structure_item
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.structure_item
      val attribute :
        ?loc:Ast_helper.loc ->
        Parsetree.attribute -> Parsetree.structure_item
      val text : Docstrings.text -> Parsetree.structure_item list
    end
  module Md :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        Ast_helper.str_opt ->
        Parsetree.module_type -> Parsetree.module_declaration
    end
  module Ms :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        Ast_helper.str -> Ast_helper.lid -> Parsetree.module_substitution
    end
  module Mtd :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        ?typ:Parsetree.module_type ->
        Ast_helper.str -> Parsetree.module_type_declaration
    end
  module Mb :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        Ast_helper.str_opt ->
        Parsetree.module_expr -> Parsetree.module_binding
    end
  module Opn :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?override:Asttypes.override_flag -> '-> 'Parsetree.open_infos
    end
  module Incl :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs -> '-> 'Parsetree.include_infos
    end
  module Vb :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        Parsetree.pattern -> Parsetree.expression -> Parsetree.value_binding
    end
  module Cty :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_type_desc -> Parsetree.class_type
      val attr :
        Parsetree.class_type -> Parsetree.attribute -> Parsetree.class_type
      val constr :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.core_type list -> Parsetree.class_type
      val signature :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_signature -> Parsetree.class_type
      val arrow :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.arg_label ->
        Parsetree.core_type -> Parsetree.class_type -> Parsetree.class_type
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.class_type
      val open_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.open_description ->
        Parsetree.class_type -> Parsetree.class_type
    end
  module Ctf :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        Parsetree.class_type_field_desc -> Parsetree.class_type_field
      val attr :
        Parsetree.class_type_field ->
        Parsetree.attribute -> Parsetree.class_type_field
      val inherit_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_type -> Parsetree.class_type_field
      val val_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str ->
        Asttypes.mutable_flag ->
        Asttypes.virtual_flag ->
        Parsetree.core_type -> Parsetree.class_type_field
      val method_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str ->
        Asttypes.private_flag ->
        Asttypes.virtual_flag ->
        Parsetree.core_type -> Parsetree.class_type_field
      val constraint_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.core_type ->
        Parsetree.core_type -> Parsetree.class_type_field
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.class_type_field
      val attribute :
        ?loc:Ast_helper.loc ->
        Parsetree.attribute -> Parsetree.class_type_field
      val text : Docstrings.text -> Parsetree.class_type_field list
    end
  module Cl :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_expr_desc -> Parsetree.class_expr
      val attr :
        Parsetree.class_expr -> Parsetree.attribute -> Parsetree.class_expr
      val constr :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.lid -> Parsetree.core_type list -> Parsetree.class_expr
      val structure :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_structure -> Parsetree.class_expr
      val fun_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.arg_label ->
        Parsetree.expression option ->
        Parsetree.pattern -> Parsetree.class_expr -> Parsetree.class_expr
      val apply :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_expr ->
        (Asttypes.arg_label * Parsetree.expression) list ->
        Parsetree.class_expr
      val let_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.rec_flag ->
        Parsetree.value_binding list ->
        Parsetree.class_expr -> Parsetree.class_expr
      val constraint_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.class_expr -> Parsetree.class_type -> Parsetree.class_expr
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.class_expr
      val open_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.open_description ->
        Parsetree.class_expr -> Parsetree.class_expr
    end
  module Cf :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        Parsetree.class_field_desc -> Parsetree.class_field
      val attr :
        Parsetree.class_field -> Parsetree.attribute -> Parsetree.class_field
      val inherit_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.override_flag ->
        Parsetree.class_expr ->
        Ast_helper.str option -> Parsetree.class_field
      val val_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str ->
        Asttypes.mutable_flag ->
        Parsetree.class_field_kind -> Parsetree.class_field
      val method_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Ast_helper.str ->
        Asttypes.private_flag ->
        Parsetree.class_field_kind -> Parsetree.class_field
      val constraint_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.core_type -> Parsetree.core_type -> Parsetree.class_field
      val initializer_ :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.expression -> Parsetree.class_field
      val extension :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.extension -> Parsetree.class_field
      val attribute :
        ?loc:Ast_helper.loc -> Parsetree.attribute -> Parsetree.class_field
      val text : Docstrings.text -> Parsetree.class_field list
      val virtual_ : Parsetree.core_type -> Parsetree.class_field_kind
      val concrete :
        Asttypes.override_flag ->
        Parsetree.expression -> Parsetree.class_field_kind
    end
  module Ci :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        ?docs:Docstrings.docs ->
        ?text:Docstrings.text ->
        ?virt:Asttypes.virtual_flag ->
        ?params:(Parsetree.core_type * Asttypes.variance) list ->
        Ast_helper.str -> '-> 'Parsetree.class_infos
    end
  module Csig :
    sig
      val mk :
        Parsetree.core_type ->
        Parsetree.class_type_field list -> Parsetree.class_signature
    end
  module Cstr :
    sig
      val mk :
        Parsetree.pattern ->
        Parsetree.class_field list -> Parsetree.class_structure
    end
  module Rf :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.row_field_desc -> Parsetree.row_field
      val tag :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.label Ast_helper.with_loc ->
        bool -> Parsetree.core_type list -> Parsetree.row_field
      val inherit_ :
        ?loc:Ast_helper.loc -> Parsetree.core_type -> Parsetree.row_field
    end
  module Of :
    sig
      val mk :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Parsetree.object_field_desc -> Parsetree.object_field
      val tag :
        ?loc:Ast_helper.loc ->
        ?attrs:Ast_helper.attrs ->
        Asttypes.label Ast_helper.with_loc ->
        Parsetree.core_type -> Parsetree.object_field
      val inherit_ :
        ?loc:Ast_helper.loc -> Parsetree.core_type -> Parsetree.object_field
    end
end
ocaml-doc-4.11/ocaml.html/compilerlibref/CamlinternalMenhirLib.EngineTypes.TABLE.html0000644000175000017500000002567513717225554027471 0ustar mehdimehdi CamlinternalMenhirLib.EngineTypes.TABLE

Module type CamlinternalMenhirLib.EngineTypes.TABLE

module type TABLE = sig .. end

type state 
val number : state -> int
type token 
type terminal 
type nonterminal 
type semantic_value 
val token2terminal : token ->
terminal
val token2value : token ->
semantic_value
val error_terminal : terminal
val error_value : semantic_value
val foreach_terminal : (terminal -> 'a -> 'a) -> 'a -> 'a
type production 
val production_index : production -> int
val find_production : int -> production
val default_reduction : state ->
('env -> production -> 'answer) ->
('env -> 'answer) -> 'env -> 'answer
val action : state ->
terminal ->
semantic_value ->
('env ->
bool ->
terminal ->
semantic_value ->
state -> 'answer) ->
('env -> production -> 'answer) ->
('env -> 'answer) -> 'env -> 'answer
val goto_nt : state ->
nonterminal ->
state
val goto_prod : state ->
production ->
state
val maybe_goto_nt : state ->
nonterminal ->
state option
val is_start : production -> bool
exception Error
type semantic_action = (state,
semantic_value,
token)
CamlinternalMenhirLib.EngineTypes.env ->
(state,
semantic_value)
CamlinternalMenhirLib.EngineTypes.stack
val semantic_action : production ->
semantic_action
val may_reduce : state ->
production -> bool
val log : bool
module Log: sig .. end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Magic_number.html0000644000175000017500000003056613717225554024525 0ustar mehdimehdi Misc.Magic_number sig
  type native_obj_config = { flambda : bool; }
  val native_obj_config : Misc.Magic_number.native_obj_config
  type version = int
  type kind =
      Exec
    | Cmi
    | Cmo
    | Cma
    | Cmx of Misc.Magic_number.native_obj_config
    | Cmxa of Misc.Magic_number.native_obj_config
    | Cmxs
    | Cmt
    | Ast_impl
    | Ast_intf
  type info = {
    kind : Misc.Magic_number.kind;
    version : Misc.Magic_number.version;
  }
  type raw = string
  type parse_error = Truncated of string | Not_a_magic_number of string
  val explain_parse_error :
    Misc.Magic_number.kind option -> Misc.Magic_number.parse_error -> string
  val parse :
    Misc.Magic_number.raw ->
    (Misc.Magic_number.info, Misc.Magic_number.parse_error) Stdlib.result
  val read_info :
    Stdlib.in_channel ->
    (Misc.Magic_number.info, Misc.Magic_number.parse_error) Stdlib.result
  val magic_length : int
  type 'a unexpected = { expected : 'a; actual : 'a; }
  type unexpected_error =
      Kind of Misc.Magic_number.kind Misc.Magic_number.unexpected
    | Version of Misc.Magic_number.kind *
        Misc.Magic_number.version Misc.Magic_number.unexpected
  val check_current :
    Misc.Magic_number.kind ->
    Misc.Magic_number.info ->
    (unit, Misc.Magic_number.unexpected_error) Stdlib.result
  val explain_unexpected_error : Misc.Magic_number.unexpected_error -> string
  type error =
      Parse_error of Misc.Magic_number.parse_error
    | Unexpected_error of Misc.Magic_number.unexpected_error
  val read_current_info :
    expected_kind:Misc.Magic_number.kind option ->
    Stdlib.in_channel ->
    (Misc.Magic_number.info, Misc.Magic_number.error) Stdlib.result
  val string_of_kind : Misc.Magic_number.kind -> string
  val human_name_of_kind : Misc.Magic_number.kind -> string
  val current_raw : Misc.Magic_number.kind -> Misc.Magic_number.raw
  val current_version : Misc.Magic_number.kind -> Misc.Magic_number.version
  type raw_kind = string
  val parse_kind :
    Misc.Magic_number.raw_kind -> Misc.Magic_number.kind option
  val raw_kind : Misc.Magic_number.kind -> Misc.Magic_number.raw_kind
  val raw : Misc.Magic_number.info -> Misc.Magic_number.raw
  val all_kinds : Misc.Magic_number.kind list
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.Printers.Make.html0000644000175000017500000001330013717225554030112 0ustar mehdimehdi CamlinternalMenhirLib.Printers.Make functor (I : IncrementalEngine.EVERYTHING)
  (User : sig
            val print : string -> unit
            val print_symbol : I.xsymbol -> unit
            val print_element : (I.element -> unit) option
          end)
  ->
  sig
    val print_symbols : I.xsymbol list -> unit
    val print_element_as_symbol : I.element -> unit
    val print_stack : 'I.env -> unit
    val print_item : I.item -> unit
    val print_production : I.production -> unit
    val print_current_state : 'I.env -> unit
    val print_env : 'I.env -> unit
  end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_CamlinternalMenhirLib.InfiniteArray.html0000644000175000017500000001154713717225554030207 0ustar mehdimehdi CamlinternalMenhirLib.InfiniteArray sig
  type 'a t
  val make : '-> 'CamlinternalMenhirLib.InfiniteArray.t
  val get : 'CamlinternalMenhirLib.InfiniteArray.t -> int -> 'a
  val set : 'CamlinternalMenhirLib.InfiniteArray.t -> int -> '-> unit
  val extent : 'CamlinternalMenhirLib.InfiniteArray.t -> int
  val domain : 'CamlinternalMenhirLib.InfiniteArray.t -> 'a array
end
ocaml-doc-4.11/ocaml.html/compilerlibref/Ast_helper.Of.html0000644000175000017500000001170513717225554022625 0ustar mehdimehdi Ast_helper.Of

Module Ast_helper.Of

module Of: sig .. end

Object fields


val mk : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Parsetree.object_field_desc -> Parsetree.object_field
val tag : ?loc:Ast_helper.loc ->
?attrs:Ast_helper.attrs ->
Asttypes.label Ast_helper.with_loc ->
Parsetree.core_type -> Parsetree.object_field
val inherit_ : ?loc:Ast_helper.loc -> Parsetree.core_type -> Parsetree.object_field
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Parse.html0000644000175000017500000001476413717225554022317 0ustar mehdimehdi Parse sig
  val implementation : Stdlib.Lexing.lexbuf -> Parsetree.structure
  val interface : Stdlib.Lexing.lexbuf -> Parsetree.signature
  val toplevel_phrase : Stdlib.Lexing.lexbuf -> Parsetree.toplevel_phrase
  val use_file : Stdlib.Lexing.lexbuf -> Parsetree.toplevel_phrase list
  val core_type : Stdlib.Lexing.lexbuf -> Parsetree.core_type
  val expression : Stdlib.Lexing.lexbuf -> Parsetree.expression
  val pattern : Stdlib.Lexing.lexbuf -> Parsetree.pattern
  val longident : Stdlib.Lexing.lexbuf -> Longident.t
  val val_ident : Stdlib.Lexing.lexbuf -> Longident.t
  val constr_ident : Stdlib.Lexing.lexbuf -> Longident.t
  val simple_module_path : Stdlib.Lexing.lexbuf -> Longident.t
  val extended_module_path : Stdlib.Lexing.lexbuf -> Longident.t
  val type_ident : Stdlib.Lexing.lexbuf -> Longident.t
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Depend.String.html0000644000175000017500000000633413717225554023703 0ustar mehdimehdi Depend.String (module Misc.Stdlib.String) ocaml-doc-4.11/ocaml.html/compilerlibref/Profile.html0000644000175000017500000001442613717225554021577 0ustar mehdimehdi Profile

Module Profile

module Profile: sig .. end

Compiler performance recording

Warning: this module is unstable and part of compiler-libs.


type file = string 
val reset : unit -> unit

erase all recorded profile information

val record_call : ?accumulate:bool -> string -> (unit -> 'a) -> 'a

record_call pass f calls f and records its profile information.

val record : ?accumulate:bool -> string -> ('a -> 'b) -> 'a -> 'b

record pass f arg records the profile information of f arg

type column = [ `Abs_top_heap | `Alloc | `Time | `Top_heap ] 
val print : Format.formatter -> column list -> unit

Prints the selected recorded profiling information to the formatter.

Command line flags

val options_doc : string
val all_columns : column list

A few pass names that are needed in several places, and shared to avoid typos.

val generate : string
val transl : string
val typing : string
ocaml-doc-4.11/ocaml.html/compilerlibref/Misc.Stdlib.String.Map.html0000644000175000017500000000750213717225554024270 0ustar mehdimehdi Misc.Stdlib.String.Map

Module Misc.Stdlib.String.Map

module Map: Map.S  with type key = string

ocaml-doc-4.11/ocaml.html/compilerlibref/Identifiable.Set.T.html0000644000175000017500000000677013717225554023515 0ustar mehdimehdi Identifiable.Set.T

Module Identifiable.Set.T

module T: Set.OrderedType 

ocaml-doc-4.11/ocaml.html/compilerlibref/type_Misc.Stdlib.html0000644000175000017500000016374013717225554023357 0ustar mehdimehdi Misc.Stdlib sig
  module List :
    sig
      type 'a t = 'a list
      val compare :
        ('-> '-> int) ->
        'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t -> int
      val equal :
        ('-> '-> bool) ->
        'Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t -> bool
      val find_map : ('-> 'b option) -> 'Misc.Stdlib.List.t -> 'b option
      val some_if_all_elements_are_some :
        'a option Misc.Stdlib.List.t -> 'Misc.Stdlib.List.t option
      val map2_prefix :
        ('-> '-> 'c) ->
        'Misc.Stdlib.List.t ->
        'Misc.Stdlib.List.t ->
        'Misc.Stdlib.List.t * 'Misc.Stdlib.List.t
      val split_at :
        int ->
        'Misc.Stdlib.List.t ->
        'Misc.Stdlib.List.t * 'Misc.Stdlib.List.t
      val is_prefix :
        equal:('-> '-> bool) -> 'a list -> of_:'a list -> bool
      type 'a longest_common_prefix_result = private {
        longest_common_prefix : 'a list;
        first_without_longest_common_prefix : 'a list;
        second_without_longest_common_prefix : 'a list;
      }
      val find_and_chop_longest_common_prefix :
        equal:('-> '-> bool) ->
        first:'a list ->
        second:'a list -> 'Misc.Stdlib.List.longest_common_prefix_result
    end
  module Option :
    sig
      type 'a t = 'a option
      val print :
        (Stdlib.Format.formatter -> '-> unit) ->
        Stdlib.Format.formatter -> 'Misc.Stdlib.Option.t -> unit
    end
  module Array :
    sig
      val exists2 : ('-> '-> bool) -> 'a array -> 'b array -> bool
      val for_alli : (int -> '-> bool) -> 'a array -> bool
      val all_somes : 'a option array -> 'a array option
    end
  module String :
    sig
      external length : string -> int = "%string_length"
      external get : string -> int -> char = "%string_safe_get"
      external set : bytes -> int -> char -> unit = "%string_safe_set"
      external create : int -> bytes = "caml_create_string"
      val make : int -> char -> string
      val init : int -> (int -> char) -> string
      val copy : string -> string
      val sub : string -> int -> int -> string
      val fill : bytes -> int -> int -> char -> unit
      val blit : string -> int -> bytes -> int -> int -> unit
      val concat : string -> string list -> string
      val iter : (char -> unit) -> string -> unit
      val iteri : (int -> char -> unit) -> string -> unit
      val map : (char -> char) -> string -> string
      val mapi : (int -> char -> char) -> string -> string
      val trim : string -> string
      val escaped : string -> string
      val index : string -> char -> int
      val index_opt : string -> char -> int option
      val rindex : string -> char -> int
      val rindex_opt : string -> char -> int option
      val index_from : string -> int -> char -> int
      val index_from_opt : string -> int -> char -> int option
      val rindex_from : string -> int -> char -> int
      val rindex_from_opt : string -> int -> char -> int option
      val contains : string -> char -> bool
      val contains_from : string -> int -> char -> bool
      val rcontains_from : string -> int -> char -> bool
      val uppercase : string -> string
      val lowercase : string -> string
      val capitalize : string -> string
      val uncapitalize : string -> string
      val uppercase_ascii : string -> string
      val lowercase_ascii : string -> string
      val capitalize_ascii : string -> string
      val uncapitalize_ascii : string -> string
      type t = string
      val compare : t -> t -> int
      val equal : t -> t -> bool
      val split_on_char : char -> string -> string list
      val to_seq : t -> char Seq.t
      val to_seqi : t -> (int * char) Seq.t
      val of_seq : char Seq.t -> t
      external unsafe_get : string -> int -> char = "%string_unsafe_get"
      external unsafe_set : bytes -> int -> char -> unit
        = "%string_unsafe_set"
      external unsafe_blit : string -> int -> bytes -> int -> int -> unit
        = "caml_blit_string" [@@noalloc]
      external unsafe_fill : bytes -> int -> int -> char -> unit
        = "caml_fill_string" [@@noalloc]
      module Set :
        sig
          type elt = string
          type t
          val empty : t
          val is_empty : t -> bool
          val mem : elt -> t -> bool
          val add : elt -> t -> t
          val singleton : elt -> t
          val remove : elt -> t -> t
          val union : t -> t -> t
          val inter : t -> t -> t
          val disjoint : t -> t -> bool
          val diff : t -> t -> t
          val compare : t -> t -> int
          val equal : t -> t -> bool
          val subset : t -> t -> bool
          val iter : (elt -> unit) -> t -> unit
          val map : (elt -> elt) -> t -> t
          val fold : (elt -> '-> 'a) -> t -> '-> 'a
          val for_all : (elt -> bool) -> t -> bool
          val exists : (elt -> bool) -> t -> bool
          val filter : (elt -> bool) -> t -> t
          val filter_map : (elt -> elt option) -> t -> t
          val partition : (elt -> bool) -> t -> t * t
          val cardinal : t -> int
          val elements : t -> elt list
          val min_elt : t -> elt
          val min_elt_opt : t -> elt option
          val max_elt : t -> elt
          val max_elt_opt : t -> elt option
          val choose : t -> elt
          val choose_opt : t -> elt option
          val split : elt -> t -> t * bool * t
          val find : elt -> t -> elt
          val find_opt : elt -> t -> elt option
          val find_first : (elt -> bool) -> t -> elt
          val find_first_opt : (elt -> bool) -> t -> elt option
          val find_last : (elt -> bool) -> t -> elt
          val find_last_opt : (elt -> bool) -> t -> elt option
          val of_list : elt list -> t
          val to_seq_from : elt -> t -> elt Seq.t
          val to_seq : t -> elt Seq.t
          val add_seq : elt Seq.t -> t -> t
          val of_seq : elt Seq.t -> t
        end
      module Map :
        sig
          type key = string
          type +'a t
          val empty : 'a t
          val is_empty : 'a t -> bool
          val mem : key -> 'a t -> bool
          val add : key -> '-> 'a t -> 'a t
          val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
          val singleton : key -> '-> 'a t
          val remove : key -> 'a t -> 'a t
          val merge :
            (key -> 'a option -> 'b option -> 'c option) ->
            'a t -> 'b t -> 'c t
          val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
          val compare : ('-> '-> int) -> 'a t -> 'a t -> int
          val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val for_all : (key -> '-> bool) -> 'a t -> bool
          val exists : (key -> '-> bool) -> 'a t -> bool
          val filter : (key -> '-> bool) -> 'a t -> 'a t
          val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
          val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
          val cardinal : 'a t -> int
          val bindings : 'a t -> (key * 'a) list
          val min_binding : 'a t -> key * 'a
          val min_binding_opt : 'a t -> (key * 'a) option
          val max_binding : 'a t -> key * 'a
          val max_binding_opt : 'a t -> (key * 'a) option
          val choose : 'a t -> key * 'a
          val choose_opt : 'a t -> (key * 'a) option
          val split : key -> 'a t -> 'a t * 'a option * 'a t
          val find : key -> 'a t -> 'a
          val find_opt : key -> 'a t -> 'a option
          val find_first : (key -> bool) -> 'a t -> key * 'a
          val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val find_last : (key -> bool) -> 'a t -> key * 'a
          val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
          val map : ('-> 'b) -> 'a t -> 'b t
          val mapi : (key -> '-> 'b) -> 'a t -> 'b t
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
          val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
          val of_seq : (key * 'a) Seq.t -> 'a t
        end
      module Tbl :
        sig
          type key = string
          type 'a t
          val create : int -> 'a t
          val clear : 'a t -> unit
          val reset : 'a t -> unit
          val copy : 'a t -> 'a t
          val add : 'a t -> key -> '-> unit
          val remove : 'a t -> key -> unit
          val find : 'a t -> key -> 'a
          val find_opt : 'a t -> key -> 'a option
          val find_all : 'a t -> key -> 'a list
          val replace : 'a t -> key -> '-> unit
          val mem : 'a t -> key -> bool
          val iter : (key -> '-> unit) -> 'a t -> unit
          val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
          val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
          val length : 'a t -> int
          val stats : 'a t -> Hashtbl.statistics
          val to_seq : 'a t -> (key * 'a) Seq.t
          val to_seq_keys : 'a t -> key Seq.t
          val to_seq_values : 'a t -> 'Seq.t
          val add_seq : 'a t -> (key * 'a) Seq.t -> unit
          val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
          val of_seq : (key * 'a) Seq.t -> 'a t
        end
      val print : Stdlib.Format.formatter -> t -> unit
      val for_all : (char -> bool) -> t -> bool
    end
  external compare : '-> '-> int = "%compare"
end
ocaml-doc-4.11/ocaml.html/compilerlibref/type_Clflags.Int_arg_helper.html0000644000175000017500000001114513717225554025527 0ustar mehdimehdi Clflags.Int_arg_helper sig
  type parsed
  val parse :
    string -> string -> Clflags.Int_arg_helper.parsed Stdlib.ref -> unit
  type parse_result = Ok | Parse_failed of exn
  val parse_no_error :
    string ->
    Clflags.Int_arg_helper.parsed Stdlib.ref ->
    Clflags.Int_arg_helper.parse_result
  val get : key:int -> Clflags.Int_arg_helper.parsed -> int
end
ocaml-doc-4.11/ocaml.html/runtime.html0000644000175000017500000005336013717225665016667 0ustar mehdimehdi Chapter 11  The runtime system (ocamlrun) Previous Up Next

Chapter 11  The runtime system (ocamlrun)

The ocamlrun command executes bytecode files produced by the linking phase of the ocamlc command.

11.1  Overview

The ocamlrun command comprises three main parts: the bytecode interpreter, that actually executes bytecode files; the memory allocator and garbage collector; and a set of C functions that implement primitive operations such as input/output.

The usage for ocamlrun is:

        ocamlrun options bytecode-executable arg1 ... argn

The first non-option argument is taken to be the name of the file containing the executable bytecode. (That file is searched in the executable path as well as in the current directory.) The remaining arguments are passed to the OCaml program, in the string array Sys.argv. Element 0 of this array is the name of the bytecode executable file; elements 1 to n are the remaining arguments arg1 to argn.

As mentioned in chapter 9, the bytecode executable files produced by the ocamlc command are self-executable, and manage to launch the ocamlrun command on themselves automatically. That is, assuming a.out is a bytecode executable file,

        a.out arg1 ... argn

works exactly as

        ocamlrun a.out arg1 ... argn

Notice that it is not possible to pass options to ocamlrun when invoking a.out directly.

Windows:   Under several versions of Windows, bytecode executable files are self-executable only if their name ends in .exe. It is recommended to always give .exe names to bytecode executables, e.g. compile with ocamlc -o myprog.exe ... rather than ocamlc -o myprog ....

11.2  Options

The following command-line options are recognized by ocamlrun.

-b
When the program aborts due to an uncaught exception, print a detailed “back trace” of the execution, showing where the exception was raised and which function calls were outstanding at this point. The back trace is printed only if the bytecode executable contains debugging information, i.e. was compiled and linked with the -g option to ocamlc set. This is equivalent to setting the b flag in the OCAMLRUNPARAM environment variable (see below).
-I dir
Search the directory dir for dynamically-loaded libraries, in addition to the standard search path (see section 11.3).
-m
Print the magic number of the bytecode executable given as argument and exit.
-M
Print the magic number expected by this version of the runtime and exit.
-p
Print the names of the primitives known to this version of ocamlrun and exit.
-v
Direct the memory manager to print some progress messages on standard error. This is equivalent to setting v=63 in the OCAMLRUNPARAM environment variable (see below).
-version
Print version string and exit.
-vnum
Print short version number and exit.

The following environment variables are also consulted:

CAML_LD_LIBRARY_PATH
Additional directories to search for dynamically-loaded libraries (see section 11.3).
OCAMLLIB
The directory containing the OCaml standard library. (If OCAMLLIB is not set, CAMLLIB will be used instead.) Used to locate the ld.conf configuration file for dynamic loading (see section 11.3). If not set, default to the library directory specified when compiling OCaml.
OCAMLRUNPARAM
Set the runtime system options and garbage collection parameters. (If OCAMLRUNPARAM is not set, CAMLRUNPARAM will be used instead.) This variable must be a sequence of parameter specifications separated by commas. A parameter specification is an option letter followed by an = sign, a decimal number (or an hexadecimal number prefixed by 0x), and an optional multiplier. The options are documented below; the last six correspond to the fields of the control record documented in Module Gc.
b
(backtrace) Trigger the printing of a stack backtrace when an uncaught exception aborts the program. This option takes no argument.
p
(parser trace) Turn on debugging support for ocamlyacc-generated parsers. When this option is on, the pushdown automaton that executes the parsers prints a trace of its actions. This option takes no argument.
R
(randomize) Turn on randomization of all hash tables by default (see Module Hashtbl). This option takes no argument.
h
The initial size of the major heap (in words).
a
(allocation_policy) The policy used for allocating in the OCaml heap. Possible values are 0 for the next-fit policy, 1 for the first-fit policy, and 2 for the best-fit policy. Best-fit is still experimental, but probably the best of the three. The default is 0 (next-fit). See the Gc module documentation for details.
s
(minor_heap_size) Size of the minor heap. (in words)
i
(major_heap_increment) Default size increment for the major heap. (in words)
o
(space_overhead) The major GC speed setting. See the Gc module documentation for details.
O
(max_overhead) The heap compaction trigger setting.
l
(stack_limit) The limit (in words) of the stack size. This is only relevant to the byte-code runtime, as the native code runtime uses the operating system’s stack.
v
(verbose) What GC messages to print to stderr. This is a sum of values selected from the following:
1 (= 0x001)
Start of major GC cycle.
2 (= 0x002)
Minor collection and major GC slice.
4 (= 0x004)
Growing and shrinking of the heap.
8 (= 0x008)
Resizing of stacks and memory manager tables.
16 (= 0x010)
Heap compaction.
32 (= 0x020)
Change of GC parameters.
64 (= 0x040)
Computation of major GC slice size.
128 (= 0x080)
Calling of finalization functions
256 (= 0x100)
Startup messages (loading the bytecode executable file, resolving shared libraries).
512 (= 0x200)
Computation of compaction-triggering condition.
1024 (= 0x400)
Output GC statistics at program exit.
c
(cleanup_on_exit) Shut the runtime down gracefully on exit (see caml_shutdown in section 20.7.5). The option also enables pooling (as in caml_startup_pooled). This mode can be used to detect leaks with a third-party memory debugger.
M
(custom_major_ratio) Target ratio of floating garbage to major heap size for out-of-heap memory held by custom values (e.g. bigarrays) located in the major heap. The GC speed is adjusted to try to use this much memory for dead values that are not yet collected. Expressed as a percentage of major heap size. Default: 44. Note: this only applies to values allocated with caml_alloc_custom_mem.
m
(custom_minor_ratio) Bound on floating garbage for out-of-heap memory held by custom values in the minor heap. A minor GC is triggered when this much memory is held by custom values located in the minor heap. Expressed as a percentage of minor heap size. Default: 100. Note: this only applies to values allocated with caml_alloc_custom_mem.
n
(custom_minor_max_size) Maximum amount of out-of-heap memory for each custom value allocated in the minor heap. When a custom value is allocated on the minor heap and holds more than this many bytes, only this value is counted against custom_minor_ratio and the rest is directly counted against custom_major_ratio. Default: 8192 bytes. Note: this only applies to values allocated with caml_alloc_custom_mem.
The multiplier is k, M, or G, for multiplication by 210, 220, and 230 respectively.

If the option letter is not recognized, the whole parameter is ignored; if the equal sign or the number is missing, the value is taken as 1; if the multiplier is not recognized, it is ignored.

For example, on a 32-bit machine, under bash the command

        export OCAMLRUNPARAM='b,s=256k,v=0x015'

tells a subsequent ocamlrun to print backtraces for uncaught exceptions, set its initial minor heap size to 1 megabyte and print a message at the start of each major GC cycle, when the heap size changes, and when compaction is triggered.

CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead. If CAMLRUNPARAM is also not found, then the default values will be used.
PATH
List of directories searched to find the bytecode executable file.

11.3  Dynamic loading of shared libraries

On platforms that support dynamic loading, ocamlrun can link dynamically with C shared libraries (DLLs) providing additional C primitives beyond those provided by the standard runtime system. The names for these libraries are provided at link time as described in section 20.1.4), and recorded in the bytecode executable file; ocamlrun, then, locates these libraries and resolves references to their primitives when the bytecode executable program starts.

The ocamlrun command searches shared libraries in the following directories, in the order indicated:

  1. Directories specified on the ocamlrun command line with the -I option.
  2. Directories specified in the CAML_LD_LIBRARY_PATH environment variable.
  3. Directories specified at link-time via the -dllpath option to ocamlc. (These directories are recorded in the bytecode executable file.)
  4. Directories specified in the file ld.conf. This file resides in the OCaml standard library directory, and lists directory names (one per line) to be searched. Typically, it contains only one line naming the stublibs subdirectory of the OCaml standard library directory. Users can add there the names of other directories containing frequently-used shared libraries; however, for consistency of installation, we recommend that shared libraries are installed directly in the system stublibs directory, rather than adding lines to the ld.conf file.
  5. Default directories searched by the system dynamic loader. Under Unix, these generally include /lib and /usr/lib, plus the directories listed in the file /etc/ld.so.conf and the environment variable LD_LIBRARY_PATH. Under Windows, these include the Windows system directories, plus the directories listed in the PATH environment variable.

11.4  Common errors

This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does not exist, or that it failed to run the ocamlrun bytecode interpreter on itself. The second possibility indicates that OCaml has not been properly installed on your system.
Cannot exec ocamlrun
(When launching a self-executable bytecode file.) The ocamlrun could not be found in the executable path. Check that OCaml has been properly installed on your system.
Cannot find the bytecode file
The file that ocamlrun is trying to execute (e.g. the file given as first non-option argument to ocamlrun) either does not exist, or is not a valid executable bytecode file.
Truncated bytecode file
The file that ocamlrun is trying to execute is not a valid executable bytecode file. Probably it has been truncated or mangled since created. Erase and rebuild it.
Uncaught exception
The program being executed contains a “stray” exception. That is, it raises an exception at some point, and this exception is never caught. This causes immediate termination of the program. The name of the exception is printed, along with its string, byte sequence, and integer arguments (arguments of more complex types are not correctly printed). To locate the context of the uncaught exception, compile the program with the -g option and either run it again under the ocamldebug debugger (see chapter 17), or run it with ocamlrun -b or with the OCAMLRUNPARAM environment variable set to b=1.
Out of memory
The program being executed requires more memory than available. Either the program builds excessively large data structures; or the program contains too many nested function calls, and the stack overflows. In some cases, your program is perfectly correct, it just requires more memory than your machine provides. In other cases, the “out of memory” message reveals an error in your program: non-terminating recursive function, allocation of an excessively large array, string or byte sequence, attempts to build an infinite list or other data structure, …

To help you diagnose this error, run your program with the -v option to ocamlrun, or with the OCAMLRUNPARAM environment variable set to v=63. If it displays lots of “Growing stack…” messages, this is probably a looping recursive function. If it displays lots of “Growing heap…” messages, with the heap size growing slowly, this is probably an attempt to construct a data structure with too many (infinitely many?) cells. If it displays few “Growing heap…” messages, but with a huge increment in the heap size, this is probably an attempt to build an excessively large array, string or byte sequence.


Previous Up Next ocaml-doc-4.11/ocaml.html/index.html0000644000175000017500000001375413717225665016316 0ustar mehdimehdi The OCaml system, release 4.11
 The OCaml system
release 4.11
Documentation and user’s manual
Xavier Leroy,
Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy and Jérôme Vouillon
August 19, 2020
  Copyright © 2020 Institut National de Recherche en Informatique et en Automatique

This manual is also available in PDF. plain text, as a bundle of HTML files, and as a bundle of Emacs Info files.

Part I
An introduction to OCaml

Part II
The OCaml language

Part III
The OCaml tools

Part IV
The OCaml library

Part V
Appendix


This document was translated from LATEX by HEVEA.
ocaml-doc-4.11/ocaml.html/depend.html0000644000175000017500000002736513717225665016451 0ustar mehdimehdi Chapter 14  Dependency generator (ocamldep) Previous Up Next

Chapter 14  Dependency generator (ocamldep)

The ocamldep command scans a set of OCaml source files (.ml and .mli files) for references to external compilation units, and outputs dependency lines in a format suitable for the make utility. This ensures that make will compile the source files in the correct order, and recompile those files that need to when a source file is modified.

The typical usage is:

        ocamldep options *.mli *.ml > .depend

where *.mli *.ml expands to all source files in the current directory and .depend is the file that should contain the dependencies. (See below for a typical Makefile.)

Dependencies are generated both for compiling with the bytecode compiler ocamlc and with the native-code compiler ocamlopt.

14.1  Options

The following command-line options are recognized by ocamldep.

-absname
Show absolute filenames in error messages.
-all
Generate dependencies on all required files, rather than assuming implicit dependencies.
-allow-approx
Allow falling back on a lexer-based approximation when parsing fails.
-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-as-map
For the following files, do not include delayed dependencies for module aliases. This option assumes that they are compiled using options -no-alias-deps -w -49, and that those files or their interface are passed with the -map option when computing dependencies for other files. Note also that for dependencies to be correct in the implementation of a map file, its interface should not coerce any of the aliases it contains.
-debug-map
Dump the delayed dependency map for each map file.
-I directory
Add the given directory to the list of directories searched for source files. If a source file foo.ml mentions an external compilation unit Bar, a dependency on that unit’s interface bar.cmi is generated only if the source for bar is found in the current directory or in one of the directories specified with -I. Otherwise, Bar is assumed to be a module from the standard library, and no dependencies are generated. For programs that span multiple directories, it is recommended to pass ocamldep the same -I options that are passed to the compiler.
-nocwd
Do not add current working directory to the list of include directories.
-impl file
Process file as a .ml file.
-intf file
Process file as a .mli file.
-map file
Read an propagate the delayed dependencies for module aliases in file, so that the following files will depend on the exported aliased modules if they use them. See the example below.
-ml-synonym .ext
Consider the given extension (with leading dot) to be a synonym for .ml.
-mli-synonym .ext
Consider the given extension (with leading dot) to be a synonym for .mli.
-modules
Output raw dependencies of the form
      filename: Module1 Module2 ... ModuleN
where Module1, …, ModuleN are the names of the compilation units referenced within the file filename, but these names are not resolved to source file names. Such raw dependencies cannot be used by make, but can be post-processed by other tools such as Omake.
-native
Generate dependencies for a pure native-code program (no bytecode version). When an implementation file (.ml file) has no explicit interface file (.mli file), ocamldep generates dependencies on the bytecode compiled file (.cmo file) to reflect interface changes. This can cause unnecessary bytecode recompilations for programs that are compiled to native-code only. The flag -native causes dependencies on native compiled files (.cmx) to be generated instead of on .cmo files. (This flag makes no difference if all source files have explicit .mli interface files.)
-one-line
Output one line per file, regardless of the length.
-open module
Assume that module module is opened before parsing each of the following files.
-pp command
Cause ocamldep to call the given command as a preprocessor for each source file.
-ppx command
Pipe abstract syntax trees through preprocessor command.
-shared
Generate dependencies for native plugin files (.cmxs) in addition to native compiled files (.cmx).
-slash
Under Windows, use a forward slash (/) as the path separator instead of the usual backward slash (\). Under Unix, this option does nothing.
-sort
Sort files according to their dependencies.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

14.2  A typical Makefile

Here is a template Makefile for a OCaml program.

OCAMLC=ocamlc
OCAMLOPT=ocamlopt
OCAMLDEP=ocamldep
INCLUDES=                 # all relevant -I options here
OCAMLFLAGS=$(INCLUDES)    # add other options for ocamlc here
OCAMLOPTFLAGS=$(INCLUDES) # add other options for ocamlopt here

# prog1 should be compiled to bytecode, and is composed of three
# units: mod1, mod2 and mod3.

# The list of object files for prog1
PROG1_OBJS=mod1.cmo mod2.cmo mod3.cmo

prog1: $(PROG1_OBJS)
        $(OCAMLC) -o prog1 $(OCAMLFLAGS) $(PROG1_OBJS)

# prog2 should be compiled to native-code, and is composed of two
# units: mod4 and mod5.

# The list of object files for prog2
PROG2_OBJS=mod4.cmx mod5.cmx

prog2: $(PROG2_OBJS)
        $(OCAMLOPT) -o prog2 $(OCAMLFLAGS) $(PROG2_OBJS)

# Common rules
.SUFFIXES: .ml .mli .cmo .cmi .cmx

.ml.cmo:
        $(OCAMLC) $(OCAMLFLAGS) -c $<

.mli.cmi:
        $(OCAMLC) $(OCAMLFLAGS) -c $<

.ml.cmx:
        $(OCAMLOPT) $(OCAMLOPTFLAGS) -c $<

# Clean up
clean:
        rm -f prog1 prog2
        rm -f *.cm[iox]

# Dependencies
depend:
        $(OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

include .depend

If you use module aliases to give shorter names to modules, you need to change the above definitions. Assuming that your map file is called mylib.mli, here are minimal modifications.

OCAMLFLAGS=$(INCLUDES) -open Mylib

mylib.cmi: mylib.mli
        $(OCAMLC) $(INCLUDES) -no-alias-deps -w -49 -c $<

depend:
        $(OCAMLDEP) $(INCLUDES) -map mylib.mli $(PROG1_OBJS:.cmo=.ml) > .depend

Note that in this case you should not compute dependencies for mylib.mli together with the other files, hence the need to pass explicitly the list of files to process. If mylib.mli itself has dependencies, you should compute them using -as-map.


Previous Up Next ocaml-doc-4.11/ocaml.html/patterns.html0000644000175000017500000010001113717225665017026 0ustar mehdimehdi 7.6  Patterns Previous Up Next

7.6  Patterns

pattern::= value-name  
  _  
  constant  
  pattern as  value-name  
  ( pattern )  
  ( pattern :  typexpr )  
  pattern |  pattern  
  constr  pattern  
  `tag-name  pattern  
  #typeconstr  
  pattern  { , pattern }+  
  { field  [: typexpr]  [= pattern] { ; field  [: typexpr]  [= pattern] }  [; _ ] [ ; ] }  
  [ pattern  { ; pattern }  [ ; ] ]  
  pattern ::  pattern  
  [| pattern  { ; pattern }  [ ; ] |]  
  char-literal ..  char-literal  
  lazy pattern  
  exception pattern  
  module-path .(  pattern )  
  module-path .[  pattern ]  
  module-path .[|  pattern |]  
  module-path .{  pattern }

See also the following language extensions: first-class modules, attributes and extension nodes.

The table below shows the relative precedences and associativity of operators and non-closed pattern constructions. The constructions with higher precedences come first.

OperatorAssociativity
..
lazy (see section 7.6)
Constructor application, Tag applicationright
::right
,
|left
as

Patterns are templates that allow selecting data structures of a given shape, and binding identifiers to components of the data structure. This selection operation is called pattern matching; its outcome is either “this value does not match this pattern”, or “this value matches this pattern, resulting in the following bindings of names to values”.

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The pattern _ also matches any value, but does not bind any name.

Patterns are linear: a variable cannot be bound several times by a given pattern. In particular, there is no way to test for equality between two parts of a data structure using only a pattern (but when guards can be used for this purpose).

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Alias patterns

The pattern pattern1 as  value-name matches the same values as pattern1. If the matching against pattern1 is successful, the name value-name is bound to the matched value, in addition to the bindings performed by the matching against pattern1.

Parenthesized patterns

The pattern ( pattern1 ) matches the same values as pattern1. A type constraint can appear in a parenthesized pattern, as in ( pattern1 :  typexpr ). This constraint forces the type of pattern1 to be compatible with typexpr.

“Or” patterns

The pattern pattern1 |  pattern2 represents the logical “or” of the two patterns pattern1 and pattern2. A value matches pattern1 |  pattern2 if it matches pattern1 or pattern2. The two sub-patterns pattern1 and pattern2 must bind exactly the same identifiers to values having the same types. Matching is performed from left to right. More precisely, in case some value v matches pattern1 |  pattern2, the bindings performed are those of pattern1 when v matches pattern1. Otherwise, value v matches pattern2 whose bindings are performed.

Variant patterns

The pattern constr (  pattern1 ,,  patternn ) matches all variants whose constructor is equal to constr, and whose arguments match pattern1 …  patternn. It is a type error if n is not the number of arguments expected by the constructor.

The pattern constr _ matches all variants whose constructor is constr.

The pattern pattern1 ::  pattern2 matches non-empty lists whose heads match pattern1, and whose tails match pattern2.

The pattern [ pattern1 ;;  patternn ] matches lists of length n whose elements match pattern1patternn, respectively. This pattern behaves like pattern1 ::::  patternn :: [].

Polymorphic variant patterns

The pattern `tag-name  pattern1 matches all polymorphic variants whose tag is equal to tag-name, and whose argument matches pattern1.

Polymorphic variant abbreviation patterns

If the type [('a,'b,)] typeconstr = [ ` tag-name1  typexpr1 || ` tag-namen  typexprn] is defined, then the pattern #typeconstr is a shorthand for the following or-pattern: ( `tag-name1(_ :  typexpr1) || ` tag-namen(_ :  typexprn)). It matches all values of type [< typeconstr ].

Tuple patterns

The pattern pattern1 ,,  patternn matches n-tuples whose components match the patterns pattern1 through patternn. That is, the pattern matches the tuple values (v1, …, vn) such that patterni matches vi for i = 1,… , n.

Record patterns

The pattern { field1  [= pattern1] ;;  fieldn  [= patternn] } matches records that define at least the fields field1 through fieldn, and such that the value associated to fieldi matches the pattern patterni, for i = 1,… , n. A single identifier fieldk stands for fieldk =  fieldk , and a single qualified identifier module-path .  fieldk stands for module-path .  fieldk =  fieldk . The record value can define more fields than field1fieldn; the values associated to these extra fields are not taken into account for matching. Optionally, a record pattern can be terminated by ; _ to convey the fact that not all fields of the record type are listed in the record pattern and that it is intentional. Optional type constraints can be added field by field with { field1 :  typexpr1 =  pattern1 ;; fieldn :  typexprn =  patternn } to force the type of fieldk to be compatible with typexprk.

Array patterns

The pattern [| pattern1 ;;  patternn |] matches arrays of length n such that the i-th array element matches the pattern patterni, for i = 1,… , n.

Range patterns

The pattern ' c ' .. ' d ' is a shorthand for the pattern

' c ' | ' c1 ' | ' c2 ' || ' cn ' | ' d '

where c1, c2, …, cn are the characters that occur between c and d in the ASCII character set. For instance, the pattern '0'..'9' matches all characters that are digits.

Lazy patterns

(Introduced in Objective Caml 3.11)

pattern::= ...

The pattern lazy pattern matches a value v of type Lazy.t, provided pattern matches the result of forcing v with Lazy.force. A successful match of a pattern containing lazy sub-patterns forces the corresponding parts of the value being matched, even those that imply no test such as lazy value-name or lazy _. Matching a value with a pattern-matching where some patterns contain lazy sub-patterns may imply forcing parts of the value, even when the pattern selected in the end has no lazy sub-pattern.

For more information, see the description of module Lazy in the standard library (module Lazy).

Exception patterns

(Introduced in OCaml 4.02)

A new form of exception pattern, exception pattern , is allowed only as a toplevel pattern or inside a toplevel or-pattern under a match...with pattern-matching (other occurrences are rejected by the type-checker).

Cases with such a toplevel pattern are called “exception cases”, as opposed to regular “value cases”. Exception cases are applied when the evaluation of the matched expression raises an exception. The exception value is then matched against all the exception cases and re-raised if none of them accept the exception (as with a try...with block). Since the bodies of all exception and value cases are outside the scope of the exception handler, they are all considered to be in tail-position: if the match...with block itself is in tail position in the current function, any function call in tail position in one of the case bodies results in an actual tail call.

A pattern match must contain at least one value case. It is an error if all cases are exceptions, because there would be no code to handle the return of a value.

Local opens for patterns

(Introduced in OCaml 4.04)

For patterns, local opens are limited to the module-path.( pattern) construction. This construction locally opens the module referred to by the module path module-path in the scope of the pattern pattern.

When the body of a local open pattern is delimited by [ ], [| |], or { }, the parentheses can be omitted. For example, module-path.[ pattern] is equivalent to module-path.([ pattern]), and module-path.[|  pattern |] is equivalent to module-path.([|  pattern |]).


Previous Up Next ocaml-doc-4.11/ocaml.html/compunit.html0000644000175000017500000001114713717225665017037 0ustar mehdimehdi 7.12  Compilation units Previous Up

7.12  Compilation units

unit-interface::= { specification  [;;] }  
 
unit-implementation::= [ module-items ]

Compilation units bridge the module system and the separate compilation system. A compilation unit is composed of two parts: an interface and an implementation. The interface contains a sequence of specifications, just as the inside of a sigend signature expression. The implementation contains a sequence of definitions and expressions, just as the inside of a structend module expression. A compilation unit also has a name unit-name, derived from the names of the files containing the interface and the implementation (see chapter 9 for more details). A compilation unit behaves roughly as the module definition

module unit-name : sig  unit-interface end = struct  unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular modules. For instance, if U is a compilation unit that defines a type t, other compilation units can refer to that type under the name U.t; they can also refer to U as a whole structure. Except for names of other compilation units, a unit interface or unit implementation must not have any other free variables. In other terms, the type-checking and compilation of an interface or implementation proceeds in the initial environment

name1 : sig  specification1 end …  namen : sig  specificationn end

where name1 …  namen are the names of the other compilation units available in the search path (see chapter 9 for more details) and specification1 …  specificationn are their respective interfaces.


Previous Up ocaml-doc-4.11/ocaml.html/core.html0000644000175000017500000002553613717225665016140 0ustar mehdimehdi Chapter 25  The core library Previous Up Next

Chapter 25  The core library

This chapter describes the OCaml core library, which is composed of declarations for built-in types and exceptions, plus the module Stdlib that provides basic operations on these built-in types. The Stdlib module is special in two ways:

Conventions

The declarations of the built-in types and the components of module Stdlib are printed one by one in typewriter font, followed by a short comment. All library modules and the components they provide are indexed at the end of this report.

25.1  Built-in types and predefined exceptions

The following built-in types and predefined exceptions are always defined in the compilation environment, but are not part of any module. As a consequence, they can only be referred by their short names.

Built-in types

 type int

The type of integer numbers.
 type char

The type of characters.
 type bytes

The type of (writable) byte sequences.
 type string

The type of (read-only) character strings.
 type float

The type of floating-point numbers.
 type bool = false | true

The type of booleans (truth values).
 type unit = ()

The type of the unit value.
 type exn

The type of exception values.
 type 'a array

The type of arrays whose elements have type 'a.
 type 'a list = [] | :: of 'a * 'a list

The type of lists whose elements have type 'a.
type 'a option = None | Some of 'a

The type of optional values of type 'a.
type int32

The type of signed 32-bit integers. Literals for 32-bit integers are suffixed by l. See the Int32 module.
type int64

The type of signed 64-bit integers. Literals for 64-bit integers are suffixed by L. See the Int64 module.
type nativeint

The type of signed, platform-native integers (32 bits on 32-bit processors, 64 bits on 64-bit processors). Literals for native integers are suffixed by n. See the Nativeint module.
type ('a, 'b, 'c, 'd, 'e, 'f) format6

The type of format strings. 'a is the type of the parameters of the format, 'f is the result type for the printf-style functions, 'b is the type of the first argument given to %a and %t printing functions (see module Printf), 'c is the result type of these functions, and also the type of the argument transmitted to the first argument of kprintf-style functions, 'd is the result type for the scanf-style functions (see module Scanf), and 'e is the type of the receiver function for the scanf-style functions.
type 'a lazy_t

This type is used to implement the Lazy module. It should not be used directly.

Predefined exceptions

exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are the location of the match keyword in the source code (file name, line number, column number).
exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the assert keyword in the source code (file name, line number, column number).
exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense. The string gives some information to the programmer. As a general rule, this exception should not be caught, it denotes a programming error and the code should be modified not to trigger it.
exception Failure of string

Exception raised by library functions to signal that they are undefined on the given arguments. The string is meant to give some information to the programmer; you must not pattern match on the string literal because it may change in future versions (use Failure _ instead).
exception Not_found

Exception raised by search functions when the desired object could not be found.
exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the computation. (Not reliable for allocations on the minor heap.)
exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal size. This often indicates infinite or excessively deep recursion in the user’s program. Before 4.10, it was not fully implemented by the native-code compiler.
exception Sys_error of string

Exception raised by the input/output functions to report an operating system error. The string is meant to give some information to the programmer; you must not pattern match on the string literal because it may change in future versions (use Sys_error _ instead).
exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.
exception Division_by_zero

Exception raised by integer division and remainder operations when their second argument is zero.
exception Sys_blocked_io

A special case of Sys_error raised when no I/O is possible on a non-blocking I/O channel.
exception Undefined_recursive_module of (string * int * int)

Exception raised when an ill-founded recursive module definition is evaluated. (See section 8.2.) The arguments are the location of the definition in the source code (file name, line number, column number).

25.2  Module Stdlib: the initially opened module


Previous Up Next ocaml-doc-4.11/ocaml.html/manual.hmanual.kwd.hind0000644000175000017500000002425013717225664020642 0ustar mehdimehdi\begin{indexenv} \indexitem \texttt{and}, \@locref{hevea_manual.kwd21}{7.7}, \@locref{hevea_manual.kwd93}{7.8.1}, \@locref{hevea_manual.kwd122}{7.9.2}, \@locref{hevea_manual.kwd144}{7.9.3}, \@locref{hevea_manual.kwd146}{7.9.4}, \@locref{hevea_manual.kwd149}{7.9.5}, \@locref{hevea_manual.kwd154}{7.10}, \@locref{hevea_manual.kwd183}{7.11}, \@locref{hevea_manual.kwd207}{8.2}, \@locref{hevea_manual.kwd215}{8.5} \indexitem \texttt{as}, \@locref{hevea_manual.kwd7}{7.4}, \@locref{hevea_manual.kwd8}{7.4}, \@locref{hevea_manual.kwd9}{7.4}, \@locref{hevea_manual.kwd15}{7.6}, \@locref{hevea_manual.kwd16}{7.6}, \@locref{hevea_manual.kwd17}{7.6}, \@locref{hevea_manual.kwd124}{7.9.2}, \@locref{hevea_manual.kwd132}{7.9.2} \indexitem \texttt{asr}, \@locref{hevea_manual.kwd6}{7.3}, \@locref{hevea_manual.kwd57}{7.7.1}, \@locref{hevea_manual.kwd76}{7.7.5}, \@locref{hevea_manual.kwd83}{7.7.5} \indexitem \texttt{assert}, \@locref{hevea_manual.kwd86}{7.7.8} \indexspace \indexitem \texttt{begin}, \@locref{hevea_manual.kwd13}{7.5}, \@locref{hevea_manual.kwd38}{7.7}, \@locref{hevea_manual.kwd58}{7.7.2} \indexspace \indexitem \texttt{class}, \@locref{hevea_manual.kwd143}{7.9.3}, \@locref{hevea_manual.kwd145}{7.9.4}, \@locref{hevea_manual.kwd147}{7.9.5}, \@locref{hevea_manual.kwd159}{7.10}, \@locref{hevea_manual.kwd169}{7.10.2}, \@locref{hevea_manual.kwd170}{7.10.2}, \@locref{hevea_manual.kwd187}{7.11}, \@locref{hevea_manual.kwd197}{7.11.2}, \@locref{hevea_manual.kwd198}{7.11.2} \indexitem \texttt{constraint}, \@locref{hevea_manual.kwd97}{7.8.1}, \@locref{hevea_manual.kwd99}{7.8.1}, \@locref{hevea_manual.kwd109}{7.9.1}, \@locref{hevea_manual.kwd117}{7.9.1}, \@locref{hevea_manual.kwd129}{7.9.2}, \@locref{hevea_manual.kwd141}{7.9.2} \indexspace \indexitem \texttt{do}, \see{\texttt{while}, \texttt{for}}{\@locref{hevea_manual.kwd29}{7.7}} \indexitem \texttt{done}, \see{\texttt{while}, \texttt{for}}{\@locref{hevea_manual.kwd28}{7.7}} \indexitem \texttt{downto}, \see{\texttt{for}}{\@locref{hevea_manual.kwd30}{7.7}} \indexspace \indexitem \texttt{else}, \see{\texttt{if}}{\@locref{hevea_manual.kwd33}{7.7}} \indexitem \texttt{end}, \@locref{hevea_manual.kwd14}{7.5}, \@locref{hevea_manual.kwd39}{7.7}, \@locref{hevea_manual.kwd59}{7.7.2}, \@locref{hevea_manual.kwd102}{7.9.1}, \@locref{hevea_manual.kwd119}{7.9.2}, \@locref{hevea_manual.kwd151}{7.10}, \@locref{hevea_manual.kwd164}{7.10.2}, \@locref{hevea_manual.kwd180}{7.11}, \@locref{hevea_manual.kwd192}{7.11.2} \indexitem \texttt{exception}, \@locref{hevea_manual.kwd100}{7.8.2}, \@locref{hevea_manual.kwd158}{7.10}, \@locref{hevea_manual.kwd168}{7.10.2}, \@locref{hevea_manual.kwd186}{7.11}, \@locref{hevea_manual.kwd196}{7.11.2} \indexitem \texttt{external}, \@locref{hevea_manual.kwd156}{7.10}, \@locref{hevea_manual.kwd166}{7.10.2}, \@locref{hevea_manual.kwd184}{7.11}, \@locref{hevea_manual.kwd194}{7.11.2} \indexspace \indexitem \texttt{false}, \@locref{hevea_manual.kwd11}{7.5} \indexitem \texttt{for}, \@locref{hevea_manual.kwd32}{7.7}, \@locref{hevea_manual.kwd68}{7.7.3} \indexitem \texttt{fun}, \@locref{hevea_manual.kwd26}{7.7}, \@locref{hevea_manual.kwd46}{7.7.1}, \@locref{hevea_manual.kwd61}{7.7.2}, \@locref{hevea_manual.kwd120}{7.9.2}, \@locref{hevea_manual.kwd211}{8.4} \indexitem \texttt{function}, \@locref{hevea_manual.kwd25}{7.7}, \@locref{hevea_manual.kwd47}{7.7.1}, \@locref{hevea_manual.kwd60}{7.7.2} \indexitem \texttt{functor}, \@locref{hevea_manual.kwd152}{7.10}, \@locref{hevea_manual.kwd177}{7.10.3}, \@locref{hevea_manual.kwd181}{7.11}, \@locref{hevea_manual.kwd205}{7.11.3} \indexspace \indexitem \texttt{if}, \@locref{hevea_manual.kwd35}{7.7}, \@locref{hevea_manual.kwd45}{7.7.1}, \@locref{hevea_manual.kwd64}{7.7.3} \indexitem \texttt{in}, \see{\texttt{let}}{\@locref{hevea_manual.kwd20}{7.7}} \indexitem \texttt{include}, \@locref{hevea_manual.kwd162}{7.10}, \@locref{hevea_manual.kwd176}{7.10.2}, \@locref{hevea_manual.kwd190}{7.11}, \@locref{hevea_manual.kwd204}{7.11.2}, \@locref{hevea_manual.kwd219}{8.6} \indexitem \texttt{inherit}, \@locref{hevea_manual.kwd103}{7.9.1}, \@locref{hevea_manual.kwd110}{7.9.1}, \@locref{hevea_manual.kwd123}{7.9.2}, \@locref{hevea_manual.kwd131}{7.9.2} \indexitem \texttt{initializer}, \@locref{hevea_manual.kwd130}{7.9.2}, \@locref{hevea_manual.kwd142}{7.9.2} \indexspace \indexitem \texttt{land}, \@locref{hevea_manual.kwd1}{7.3}, \@locref{hevea_manual.kwd52}{7.7.1}, \@locref{hevea_manual.kwd71}{7.7.5}, \@locref{hevea_manual.kwd78}{7.7.5} \indexitem \texttt{lazy}, \@locref{hevea_manual.kwd18}{7.6}, \@locref{hevea_manual.kwd43}{7.7}, \@locref{hevea_manual.kwd87}{7.7.8} \indexitem \texttt{let}, \@locref{hevea_manual.kwd23}{7.7}, \@locref{hevea_manual.kwd50}{7.7.1}, \@locref{hevea_manual.kwd63}{7.7.2}, \@locref{hevea_manual.kwd88}{7.7.8}, \@locref{hevea_manual.kwd90}{7.7.8}, \@locref{hevea_manual.kwd121}{7.9.2}, \@locref{hevea_manual.kwd182}{7.11}, \@locref{hevea_manual.kwd193}{7.11.2} \indexitem \texttt{lor}, \@locref{hevea_manual.kwd2}{7.3}, \@locref{hevea_manual.kwd53}{7.7.1}, \@locref{hevea_manual.kwd72}{7.7.5}, \@locref{hevea_manual.kwd79}{7.7.5} \indexitem \texttt{lsl}, \@locref{hevea_manual.kwd4}{7.3}, \@locref{hevea_manual.kwd55}{7.7.1}, \@locref{hevea_manual.kwd74}{7.7.5}, \@locref{hevea_manual.kwd81}{7.7.5} \indexitem \texttt{lsr}, \@locref{hevea_manual.kwd5}{7.3}, \@locref{hevea_manual.kwd56}{7.7.1}, \@locref{hevea_manual.kwd75}{7.7.5}, \@locref{hevea_manual.kwd82}{7.7.5} \indexitem \texttt{lxor}, \@locref{hevea_manual.kwd3}{7.3}, \@locref{hevea_manual.kwd54}{7.7.1}, \@locref{hevea_manual.kwd73}{7.7.5}, \@locref{hevea_manual.kwd80}{7.7.5} \indexspace \indexitem \texttt{match}, \@locref{hevea_manual.kwd37}{7.7}, \@locref{hevea_manual.kwd48}{7.7.1}, \@locref{hevea_manual.kwd65}{7.7.3}, \@locref{hevea_manual.kwd226}{8.10} \indexitem \texttt{method}, \@locref{hevea_manual.kwd106}{7.9.1}, \@locref{hevea_manual.kwd113}{7.9.1}, \@locref{hevea_manual.kwd115}{7.9.1}, \@locref{hevea_manual.kwd127}{7.9.2}, \@locref{hevea_manual.kwd137}{7.9.2}, \@locref{hevea_manual.kwd139}{7.9.2} \indexitem \texttt{mod}, \@locref{hevea_manual.kwd0}{7.3}, \@locref{hevea_manual.kwd51}{7.7.1}, \@locref{hevea_manual.kwd70}{7.7.5}, \@locref{hevea_manual.kwd77}{7.7.5} \indexitem \texttt{module}, \@locref{hevea_manual.kwd89}{7.7.8}, \@locref{hevea_manual.kwd160}{7.10}, \@locref{hevea_manual.kwd172}{7.10.2}, \@locref{hevea_manual.kwd174}{7.10.2}, \@locref{hevea_manual.kwd188}{7.11}, \@locref{hevea_manual.kwd200}{7.11.2}, \@locref{hevea_manual.kwd202}{7.11.2}, \@locref{hevea_manual.kwd206}{8.2}, \@locref{hevea_manual.kwd212}{8.5}, \@locref{hevea_manual.kwd216}{8.6}, \@locref{hevea_manual.kwd221}{8.7}, \@locref{hevea_manual.kwd223}{8.8} \indexitem \texttt{open}, \@locref{hevea_manual.kwd91}{7.7.8} \indexitem \texttt{mutable}, \@locref{hevea_manual.kwd96}{7.8.1}, \@locref{hevea_manual.kwd98}{7.8.1}, \@locref{hevea_manual.kwd105}{7.9.1}, \@locref{hevea_manual.kwd112}{7.9.1}, \@locref{hevea_manual.kwd126}{7.9.2}, \@locref{hevea_manual.kwd134}{7.9.2}, \@locref{hevea_manual.kwd136}{7.9.2} \indexspace \indexitem \texttt{new}, \@locref{hevea_manual.kwd41}{7.7}, \@locref{hevea_manual.kwd84}{7.7.6} \indexitem \texttt{nonrec}, \@locref{hevea_manual.kwd94}{7.8.1} \indexspace \indexitem \texttt{object}, \@locref{hevea_manual.kwd42}{7.7}, \@locref{hevea_manual.kwd85}{7.7.6}, \@locref{hevea_manual.kwd101}{7.9.1}, \@locref{hevea_manual.kwd118}{7.9.2} \indexitem \texttt{of}, \@locref{hevea_manual.kwd10}{7.4}, \@locref{hevea_manual.kwd95}{7.8.1}, \@locref{hevea_manual.kwd218}{8.6} \indexitem \texttt{open}, \@locref{hevea_manual.kwd19}{7.6}, \@locref{hevea_manual.kwd161}{7.10}, \@locref{hevea_manual.kwd175}{7.10.2}, \@locref{hevea_manual.kwd189}{7.11}, \@locref{hevea_manual.kwd203}{7.11.2} \indexitem \texttt{open\char33}, \@locref{hevea_manual.kwd224}{8.9} \indexitem \texttt{or}, \@locref{hevea_manual.kwd36}{7.7}, \@locref{hevea_manual.kwd44}{7.7.1}, \@locref{hevea_manual.kwd66}{7.7.3} \indexspace \indexitem \texttt{private}, \@locref{hevea_manual.kwd107}{7.9.1}, \@locref{hevea_manual.kwd114}{7.9.1}, \@locref{hevea_manual.kwd116}{7.9.1}, \@locref{hevea_manual.kwd128}{7.9.2}, \@locref{hevea_manual.kwd138}{7.9.2}, \@locref{hevea_manual.kwd140}{7.9.2}, \@locref{hevea_manual.kwd208}{8.3}, \@locref{hevea_manual.kwd209}{8.3.3} \indexspace \indexitem \texttt{rec}, \see{\texttt{let}, \texttt{module}}{\@locref{hevea_manual.kwd22}{7.7}} \indexspace \indexitem \texttt{sig}, \@locref{hevea_manual.kwd150}{7.10}, \@locref{hevea_manual.kwd163}{7.10.2} \indexitem \texttt{struct}, \@locref{hevea_manual.kwd179}{7.11}, \@locref{hevea_manual.kwd191}{7.11.2} \indexspace \indexitem \texttt{then}, \see{\texttt{if}}{\@locref{hevea_manual.kwd34}{7.7}} \indexitem \texttt{to}, \see{\texttt{for}}{\@locref{hevea_manual.kwd31}{7.7}} \indexitem \texttt{true}, \@locref{hevea_manual.kwd12}{7.5} \indexitem \texttt{try}, \@locref{hevea_manual.kwd24}{7.7}, \@locref{hevea_manual.kwd49}{7.7.1}, \@locref{hevea_manual.kwd69}{7.7.3} \indexitem \texttt{type}, \@locref{hevea_manual.kwd92}{7.8.1}, \@locref{hevea_manual.kwd148}{7.9.5}, \@locref{hevea_manual.kwd157}{7.10}, \@locref{hevea_manual.kwd167}{7.10.2}, \@locref{hevea_manual.kwd171}{7.10.2}, \@locref{hevea_manual.kwd173}{7.10.2}, \@locref{hevea_manual.kwd185}{7.11}, \@locref{hevea_manual.kwd195}{7.11.2}, \@locref{hevea_manual.kwd199}{7.11.2}, \@locref{hevea_manual.kwd201}{7.11.2}, \@locref{hevea_manual.kwd210}{8.4}, \@locref{hevea_manual.kwd217}{8.6}, \@locref{hevea_manual.kwd222}{8.7}, \@locref{hevea_manual.kwd225}{8.10} \indexspace \indexitem \texttt{val}, \@locref{hevea_manual.kwd104}{7.9.1}, \@locref{hevea_manual.kwd111}{7.9.1}, \@locref{hevea_manual.kwd125}{7.9.2}, \@locref{hevea_manual.kwd133}{7.9.2}, \@locref{hevea_manual.kwd135}{7.9.2}, \@locref{hevea_manual.kwd155}{7.10}, \@locref{hevea_manual.kwd165}{7.10.2}, \@locref{hevea_manual.kwd213}{8.5} \indexitem \texttt{virtual}, \see{\texttt{val}, \texttt{method}, \texttt{class}}{\@locref{hevea_manual.kwd108}{7.9.1}} \indexspace \indexitem \texttt{when}, \@locref{hevea_manual.kwd40}{7.7}, \@locref{hevea_manual.kwd62}{7.7.2}, \@locref{hevea_manual.kwd227}{8.12} \indexitem \texttt{while}, \@locref{hevea_manual.kwd67}{7.7.3} \indexitem \texttt{with}, \@locref{hevea_manual.kwd27}{7.7}, \@locref{hevea_manual.kwd153}{7.10}, \@locref{hevea_manual.kwd178}{7.10.4}, \@locref{hevea_manual.kwd214}{8.5}, \@locref{hevea_manual.kwd220}{8.7} \end{indexenv} ocaml-doc-4.11/ocaml.html/moduletypeof.html0000644000175000017500000001135613717225665017717 0ustar mehdimehdi 8.6  Recovering the type of a module Previous Up Next

8.6  Recovering the type of a module

(Introduced in OCaml 3.12)

module-type::= ...  
  module type of module-expr

The construction module type of module-expr expands to the module type (signature or functor type) inferred for the module expression module-expr. To make this module type reusable in many situations, it is intentionally not strengthened: abstract types and datatypes are not explicitly related with the types of the original module. For the same reason, module aliases in the inferred type are expanded.

A typical use, in conjunction with the signature-level include construct, is to extend the signature of an existing structure. In that case, one wants to keep the types equal to types in the original module. This can done using the following idiom.

module type MYHASH = sig include module type of struct include Hashtbl end val replace: ('a, 'b) t -> 'a -> 'b -> unit end

The signature MYHASH then contains all the fields of the signature of the module Hashtbl (with strengthened type definitions), plus the new field replace. An implementation of this signature can be obtained easily by using the include construct again, but this time at the structure level:

module MyHash : MYHASH = struct include Hashtbl let replace t k v = remove t k; add t k v end

Another application where the absence of strengthening comes handy, is to provide an alternative implementation for an existing module.

module MySet : module type of Set = structend

This idiom guarantees that Myset is compatible with Set, but allows it to represent sets internally in a different way.


Previous Up Next ocaml-doc-4.11/ocaml.html/bigarray.html0000644000175000017500000002314313717225665017000 0ustar mehdimehdi 8.11  Syntax for Bigarray access Previous Up Next

8.11  Syntax for Bigarray access

(Introduced in Objective Caml 3.00)

expr::= ...  
  expr .{  expr  { , expr } }  
  expr .{  expr  { , expr } } <-  expr

This extension provides syntactic sugar for getting and setting elements in the arrays provided by the Bigarray module.

The short expressions are translated into calls to functions of the Bigarray module as described in the following table.

expressiontranslation
expr0.{ expr1}Bigarray.Array1.get expr0  expr1
expr0.{ expr1} <- exprBigarray.Array1.set expr0  expr1  expr
expr0.{ expr1,  expr2}Bigarray.Array2.get expr0  expr1  expr2
expr0.{ expr1,  expr2} <- exprBigarray.Array2.set expr0  expr1  expr2  expr
expr0.{ expr1,  expr2,  expr3}Bigarray.Array3.get expr0  expr1  expr2  expr3
expr0.{ expr1,  expr2,  expr3} <- exprBigarray.Array3.set expr0  expr1  expr2  expr3  expr
expr0.{ expr1,,  exprn}Bigarray.Genarray.get expr0 [|  expr1,,  exprn |]
expr0.{ expr1,,  exprn} <- exprBigarray.Genarray.set expr0 [|  expr1,,  exprn |]  expr

The last two entries are valid for any n > 3.


Previous Up Next ocaml-doc-4.11/ocaml.html/extensionnodes.html0000644000175000017500000002332513717225665020247 0ustar mehdimehdi 8.13  Extension nodes Previous Up Next

8.13  Extension nodes

(Introduced in OCaml 4.02, infix notations for constructs other than expressions added in 4.03, infix notation (e1 ;%ext e2) added in 4.04. )

Extension nodes are generic placeholders in the syntax tree. They are rejected by the type-checker and are intended to be “expanded” by external tools such as -ppx rewriters.

Extension nodes share the same notion of identifier and payload as attributes 8.12.

The first form of extension node is used for “algebraic” categories:

extension::= [% attr-id  attr-payload ]  
 
expr::= ...  
  extension  
 
typexpr::= ...  
  extension  
 
pattern::= ...  
  extension  
 
module-expr::= ...  
  extension  
 
module-type::= ...  
  extension  
 
class-expr::= ...  
  extension  
 
class-type::= ...  
  extension  
 

A second form of extension node can be used in structures and signatures, both in the module and object languages:

item-extension::= [%% attr-id  attr-payload ]  
 
definition::= ...  
  item-extension  
 
specification::= ...  
  item-extension  
 
class-field-spec::= ...  
  item-extension  
 
class-field::= ...  
  item-extension  
 

An infix form is available for extension nodes when the payload is of the same kind (expression with expression, pattern with pattern ...).

Examples:

let%foo x = 2 in x + 1     === [%foo let x = 2 in x + 1]
begin%foo ... end          === [%foo begin ... end]
x ;%foo 2                  === [%foo x; 2]
module%foo M = ..          === [%%foo module M = ... ]
val%foo x : t              === [%%foo: val x : t]

When this form is used together with the infix syntax for attributes, the attributes are considered to apply to the payload:

fun%foo[@bar] x -> x + 1 === [%foo (fun x -> x + 1)[@bar ] ];

Furthermore, quoted strings {|...|} can be combined with extension nodes to embed foreign syntax fragments. Those fragments can be interpreted by a preprocessor and turned into OCaml code without requiring escaping quotes. A syntax shortcut is available for them:

{%%foo|...|}               === [%%foo{|...|}]
let x = {%foo|...|}        === let x = [%foo{|...|}]
let y = {%foo bar|...|bar} === let y = [%foo{bar|...|bar}]

For instance, you can use {%sql|...|} to represent arbitrary SQL statements – assuming you have a ppx-rewriter that recognizes the %sql extension.

Note that the word-delimited form, for example {sql|...|sql}, should not be used for signaling that an extension is in use. Indeed, the user cannot see from the code whether this string literal has different semantics than they expect. Moreover, giving semantics to a specific delimiter limits the freedom to change the delimiter to avoid escaping issues.

8.13.1  Built-in extension nodes

(Introduced in OCaml 4.03)

Some extension nodes are understood by the compiler itself:

type t = .. type t += X of int | Y of string let x = [%extension_constructor X] let y = [%extension_constructor Y]
x <> y;;
- : bool = true

Previous Up Next ocaml-doc-4.11/ocaml.html/values.html0000644000175000017500000002111113717225665016470 0ustar mehdimehdi 7.2  Values Previous Up Next

7.2  Values

This section describes the kinds of values that are manipulated by OCaml programs.

7.2.1  Base values

Integer numbers

Integer values are integer numbers from −230 to 230−1, that is −1073741824 to 1073741823. The implementation may support a wider range of integer values: on 64-bit platforms, the current implementation supports integers ranging from −262 to 262−1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of mantissa and an exponent ranging from −1022 to 1023.

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between 0 and 127 are interpreted following the ASCII standard. The current implementation interprets character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings containing up to 224 − 5 characters (16777211 characters); on 64-bit platforms, the limit is 257 − 9.

7.2.2  Tuples

Tuples of values are written (v1,, vn), standing for the n-tuple of values v1 to vn. The current implementation supports tuple of up to 222 − 1 elements (4194303 elements).

7.2.3  Records

Record values are labeled tuples of values. The record value written { field1 = v1;;  fieldn = vn } associates the value vi to the record field fieldi, for i = 1 … n. The current implementation supports records with up to 222 − 1 fields (4194303 fields).

7.2.4  Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation supports arrays containing up to 222 − 1 elements (4194303 elements) unless the elements are floating-point numbers (2097151 elements in this case); on 64-bit platforms, the limit is 254 − 1 for all arrays.

7.2.5  Variant values

Variant values are either a constant constructor, or a non-constant constructor applied to a number of values. The former case is written constr; the latter case is written constr (v1, ... , vn ), where the vi are said to be the arguments of the non-constant constructor constr. The parentheses may be omitted if there is only one argument.

The following constants are treated like built-in constant constructors:

ConstantConstructor
falsethe boolean false
truethe boolean true
()the “unit” value
[]the empty list

The current implementation limits each variant type to have at most 246 non-constant constructors and 230−1 constant constructors.

7.2.6  Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined variant type, and following specific typing rules. They can be either constant, written `tag-name, or non-constant, written `tag-name(v).

7.2.7  Functions

Functional values are mappings from values to values.

7.2.8  Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set of methods for accessing and modifying these variables. The structure of an object is described by the toplevel class that created it.


Previous Up Next ocaml-doc-4.11/ocaml.html/bindingops.html0000644000175000017500000002462113717225665017336 0ustar mehdimehdi 8.23  Binding operators Previous Up

8.23  Binding operators

(Introduced in 4.08.0)

let-operator::=  
  let (core-operator-char ∣  <) { dot-operator-char }  
 
and-operator::=  
  and (core-operator-char ∣  <) { dot-operator-char }  
 
operator-name ::= ...  
  let-operator  
  and-operator  
 
expr::= ...  
  let-operator  let-binding  { and-operator  let-binding }  in  expr  
 

Users can define let operators:

let ( let* ) o f = match o with | None -> None | Some x -> f x let return x = Some x
val ( let* ) : 'a option -> ('a -> 'b option) -> 'b option = <fun> val return : 'a -> 'a option = <fun>

and then apply them using this convenient syntax:

let find_and_sum tbl k1 k2 = let* x1 = Hashtbl.find_opt tbl k1 in let* x2 = Hashtbl.find_opt tbl k2 in return (x1 + x2)
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>

which is equivalent to this expanded form:

let find_and_sum tbl k1 k2 = ( let* ) (Hashtbl.find_opt tbl k1) (fun x1 -> ( let* ) (Hashtbl.find_opt tbl k2) (fun x2 -> return (x1 + x2)))
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>

Users can also define and operators:

module ZipSeq = struct type 'a t = 'a Seq.t open Seq let rec return x = fun () -> Cons(x, return x) let rec prod a b = fun () -> match a (), b () with | Nil, _ | _, Nil -> Nil | Cons(x, a), Cons(y, b) -> Cons((x, y), prod a b) let ( let+ ) f s = map s f let ( and+ ) a b = prod a b end
module ZipSeq : sig type 'a t = 'a Seq.t val return : 'a -> 'a Seq.t val prod : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t val ( let+ ) : 'a Seq.t -> ('a -> 'b) -> 'b Seq.t val ( and+ ) : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t end

to support the syntax:

open ZipSeq let sum3 z1 z2 z3 = let+ x1 = z1 and+ x2 = z2 and+ x3 = z3 in x1 + x2 + x3
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>

which is equivalent to this expanded form:

open ZipSeq let sum3 z1 z2 z3 = ( let+ ) (( and+ ) (( and+ ) z1 z2) z3) (fun ((x1, x2), x3) -> x1 + x2 + x3)
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>

8.23.1  Rationale

This extension is intended to provide a convenient syntax for working with monads and applicatives.

An applicative should provide a module implementing the following interface:

module type Applicative_syntax = sig type 'a t val ( let+ ) : 'a t -> ('a -> 'b) -> 'b t val ( and+ ): 'a t -> 'b t -> ('a * 'b) t end

where (let+) is bound to the map operation and (and+) is bound to the monoidal product operation.

A monad should provide a module implementing the following interface:

module type Monad_syntax = sig include Applicative_syntax val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t val ( and* ): 'a t -> 'b t -> ('a * 'b) t end

where (let*) is bound to the bind operation, and (and*) is also bound to the monoidal product operation.


Previous Up ocaml-doc-4.11/ocaml.html/manual.hmanual.hind0000644000175000017500000000404713717225660020054 0ustar mehdimehdi\begin{indexenv} \indexitem \verb`Assert_failure`, \@locref{hevea_manual5}{7.7.8}, \@locref{hevea_manual23}{25.1} \indexitem \verb`array`, \@locref{hevea_manual14}{25.1} \indexspace \indexitem \verb`bool`, \@locref{hevea_manual11}{25.1} \indexitem \verb`bytes`, \@locref{hevea_manual8}{25.1} \indexspace \indexitem \verb`char`, \@locref{hevea_manual7}{25.1} \indexspace \indexitem \verb`Division_by_zero`, \@locref{hevea_manual31}{25.1} \indexspace \indexitem \verb`End_of_file`, \@locref{hevea_manual30}{25.1} \indexitem \verb`exn`, \@locref{hevea_manual13}{25.1} \indexspace \indexitem \verb`Failure`, \@locref{hevea_manual25}{25.1} \indexitem \verb`float`, \@locref{hevea_manual10}{25.1} \indexitem \verb`force`, \@locref{hevea_manual1}{7.6} \indexitem \verb`format4`, \@locref{hevea_manual20}{25.1} \indexspace \indexitem \verb`Invalid_argument`, \@locref{hevea_manual24}{25.1} \indexitem \verb`int`, \@locref{hevea_manual6}{25.1} \indexitem \verb`int32`, \@locref{hevea_manual17}{25.1} \indexitem \verb`int64`, \@locref{hevea_manual18}{25.1} \indexspace \indexitem \verb`Lazy` (module), \@locref{hevea_manual0}{7.6} \indexitem \verb`lazy_t`, \@locref{hevea_manual21}{25.1} \indexitem \verb`list`, \@locref{hevea_manual15}{25.1} \indexspace \indexitem \verb`Match_failure`, \@locref{hevea_manual2}{7.7.2}, \@locref{hevea_manual3}{7.7.2}, \@locref{hevea_manual4}{7.7.3}, \@locref{hevea_manual22}{25.1} \indexspace \indexitem \verb`Not_found`, \@locref{hevea_manual26}{25.1} \indexitem \verb`nativeint`, \@locref{hevea_manual19}{25.1} \indexspace \indexitem \verb`Out_of_memory`, \@locref{hevea_manual27}{25.1} \indexitem \verb`option`, \@locref{hevea_manual16}{25.1} \indexspace \indexitem \verb`Stack_overflow`, \@locref{hevea_manual28}{25.1} \indexitem \verb`Sys_blocked_io`, \@locref{hevea_manual32}{25.1} \indexitem \verb`Sys_error`, \@locref{hevea_manual29}{25.1} \indexitem \verb`string`, \@locref{hevea_manual9}{25.1} \indexspace \indexitem \verb`Undefined_recursive_module`, \@locref{hevea_manual33}{25.1} \indexitem \verb`unit`, \@locref{hevea_manual12}{25.1} \end{indexenv} ocaml-doc-4.11/ocaml.html/letrecvalues.html0000644000175000017500000002665013717225665017704 0ustar mehdimehdi 8.1  Recursive definitions of values Up Next

8.1  Recursive definitions of values

(Introduced in Objective Caml 1.00)

As mentioned in section 7.7.2, the let rec binding construct, in addition to the definition of recursive functions, also supports a certain class of recursive definitions of non-functional values, such as

let rec name1 = 1 ::  name2 and  name2 = 2 ::  name1 in  expr

which binds name1 to the cyclic list 1::2::1::2::…, and name2 to the cyclic list 2::1::2::1::…Informally, the class of accepted definitions consists of those definitions where the defined names occur only inside function bodies or as argument to a data constructor.

More precisely, consider the expression:

let rec name1 =  expr1 andand  namen =  exprn in  expr

It will be accepted if each one of expr1 …  exprn is statically constructive with respect to name1 …  namen, is not immediately linked to any of name1 …  namen, and is not an array constructor whose arguments have abstract type.

An expression e is said to be statically constructive with respect to the variables name1 …  namen if at least one of the following conditions is true:

An expression e is said to be immediately linked to the variable name in the following cases:


Up Next ocaml-doc-4.11/ocaml.html/libbigarray.html0000644000175000017500000000453013717225665017466 0ustar mehdimehdi Chapter 34  The bigarray library Previous Up Next

Chapter 34  The bigarray library

The bigarray library has now been integrated into OCaml’s standard library.

The bigarray functionality may now be found in the standard library Bigarray module, except for the map_file function which is now part of the Unix library. The documentation has been integrated into the documentation for the standard library.

The legacy bigarray library bundled with the compiler is a compatibility library with exactly the same interface as before, i.e. with map_file included.

We strongly recommend that you port your code to use the standard library version instead, as the changes required are minimal.

If you choose to use the compatibility library, you must link your programs as follows:

        ocamlc other options bigarray.cma other files
        ocamlopt other options bigarray.cmxa other files

For interactive use of the bigarray compatibility library, do:

        ocamlmktop -o mytop bigarray.cma
        ./mytop

or (if dynamic linking of C libraries is supported on your platform), start ocaml and type #load "bigarray.cma";;.


Previous Up Next ocaml-doc-4.11/ocaml.html/gadts.html0000644000175000017500000005270313717225665016306 0ustar mehdimehdi 8.10  Generalized algebraic datatypes Previous Up Next

8.10  Generalized algebraic datatypes

(Introduced in OCaml 4.00)

constr-decl::= ...  
  constr-name :  [ constr-args -> ]  typexpr  
 
type-param::= ...  
  [variance_

Generalized algebraic datatypes, or GADTs, extend usual sum types in two ways: constraints on type parameters may change depending on the value constructor, and some type variables may be existentially quantified. Adding constraints is done by giving an explicit return type (the rightmost typexpr in the above syntax), where type parameters are instantiated. This return type must use the same type constructor as the type being defined, and have the same number of parameters. Variables are made existential when they appear inside a constructor’s argument, but not in its return type.

Since the use of a return type often eliminates the need to name type parameters in the left-hand side of a type definition, one can replace them with anonymous types _ in that case.

The constraints associated to each constructor can be recovered through pattern-matching. Namely, if the type of the scrutinee of a pattern-matching contains a locally abstract type, this type can be refined according to the constructor used. These extra constraints are only valid inside the corresponding branch of the pattern-matching. If a constructor has some existential variables, fresh locally abstract types are generated, and they must not escape the scope of this branch.

Recursive functions

Here is a concrete example:

type _ term = | Int : int -> int term | Add : (int -> int -> int) term | App : ('b -> 'a) term * 'b term -> 'a term let rec eval : type a. a term -> a = function | Int n -> n (* a = int *) | Add -> (fun x y -> x+y) (* a = int -> int -> int *) | App(f,x) -> (eval f) (eval x) (* eval called at types (b->a) and b for fresh b *)
let two = eval (App (App (Add, Int 1), Int 1))
val two : int = 2

It is important to remark that the function eval is using the polymorphic syntax for locally abstract types. When defining a recursive function that manipulates a GADT, explicit polymorphic recursion should generally be used. For instance, the following definition fails with a type error:

let rec eval (type a) : a term -> a = function | Int n -> n | Add -> (fun x y -> x+y) | App(f,x) -> (eval f) (eval x)
Error: This expression has type ($App_'b -> a) term but an expression was expected of type 'a The type constructor $App_'b would escape its scope

In absence of an explicit polymorphic annotation, a monomorphic type is inferred for the recursive function. If a recursive call occurs inside the function definition at a type that involves an existential GADT type variable, this variable flows to the type of the recursive function, and thus escapes its scope. In the above example, this happens in the branch App(f,x) when eval is called with f as an argument. In this branch, the type of f is ($App_ 'b-> a). The prefix $ in $App_ 'b denotes an existential type named by the compiler (see 8.10). Since the type of eval is 'a term -> 'a, the call eval f makes the existential type $App_'b flow to the type variable 'a and escape its scope. This triggers the above error.

Type inference

Type inference for GADTs is notoriously hard. This is due to the fact some types may become ambiguous when escaping from a branch. For instance, in the Int case above, n could have either type int or a, and they are not equivalent outside of that branch. As a first approximation, type inference will always work if a pattern-matching is annotated with types containing no free type variables (both on the scrutinee and the return type). This is the case in the above example, thanks to the type annotation containing only locally abstract types.

In practice, type inference is a bit more clever than that: type annotations do not need to be immediately on the pattern-matching, and the types do not have to be always closed. As a result, it is usually enough to only annotate functions, as in the example above. Type annotations are propagated in two ways: for the scrutinee, they follow the flow of type inference, in a way similar to polymorphic methods; for the return type, they follow the structure of the program, they are split on functions, propagated to all branches of a pattern matching, and go through tuples, records, and sum types. Moreover, the notion of ambiguity used is stronger: a type is only seen as ambiguous if it was mixed with incompatible types (equated by constraints), without type annotations between them. For instance, the following program types correctly.

let rec sum : type a. a term -> _ = fun x -> let y = match x with | Int n -> n | Add -> 0 | App(f,x) -> sum f + sum x in y + 1
val sum : 'a term -> int = <fun>

Here the return type int is never mixed with a, so it is seen as non-ambiguous, and can be inferred. When using such partial type annotations we strongly suggest specifying the -principal mode, to check that inference is principal.

The exhaustiveness check is aware of GADT constraints, and can automatically infer that some cases cannot happen. For instance, the following pattern matching is correctly seen as exhaustive (the Add case cannot happen).

let get_int : int term -> int = function | Int n -> n | App(_,_) -> 0
Refutation cases

(Introduced in OCaml 4.03)

Usually, the exhaustiveness check only tries to check whether the cases omitted from the pattern matching are typable or not. However, you can force it to try harder by adding refutation cases:

matching-case::= pattern  [when expr->  expr  
  pattern -> .

In presence of a refutation case, the exhaustiveness check will first compute the intersection of the pattern with the complement of the cases preceding it. It then checks whether the resulting patterns can really match any concrete values by trying to type-check them. Wild cards in the generated patterns are handled in a special way: if their type is a variant type with only GADT constructors, then the pattern is split into the different constructors, in order to check whether any of them is possible (this splitting is not done for arguments of these constructors, to avoid non-termination). We also split tuples and variant types with only one case, since they may contain GADTs inside. For instance, the following code is deemed exhaustive:

type _ t = | Int : int t | Bool : bool t let deep : (char t * int) option -> char = function | None -> 'c' | _ -> .

Namely, the inferred remaining case is Some _, which is split into Some (Int, _) and Some (Bool, _), which are both untypable because deep expects a non-existing char t as the first element of the tuple. Note that the refutation case could be omitted here, because it is automatically added when there is only one case in the pattern matching.

Another addition is that the redundancy check is now aware of GADTs: a case will be detected as redundant if it could be replaced by a refutation case using the same pattern.

Advanced examples

The term type we have defined above is an indexed type, where a type parameter reflects a property of the value contents. Another use of GADTs is singleton types, where a GADT value represents exactly one type. This value can be used as runtime representation for this type, and a function receiving it can have a polytypic behavior.

Here is an example of a polymorphic function that takes the runtime representation of some type t and a value of the same type, then pretty-prints the value as a string:

type _ typ = | Int : int typ | String : string typ | Pair : 'a typ * 'b typ -> ('a * 'b) typ let rec to_string: type t. t typ -> t -> string = fun t x -> match t with | Int -> Int.to_string x | String -> Printf.sprintf "%S" x | Pair(t1,t2) -> let (x1, x2) = x in Printf.sprintf "(%s,%s)" (to_string t1 x1) (to_string t2 x2)

Another frequent application of GADTs is equality witnesses.

type (_,_) eq = Eq : ('a,'a) eq let cast : type a b. (a,b) eq -> a -> b = fun Eq x -> x

Here type eq has only one constructor, and by matching on it one adds a local constraint allowing the conversion between a and b. By building such equality witnesses, one can make equal types which are syntactically different.

Here is an example using both singleton types and equality witnesses to implement dynamic types.

let rec eq_type : type a b. a typ -> b typ -> (a,b) eq option = fun a b -> match a, b with | Int, Int -> Some Eq | String, String -> Some Eq | Pair(a1,a2), Pair(b1,b2) -> begin match eq_type a1 b1, eq_type a2 b2 with | Some Eq, Some Eq -> Some Eq | _ -> None end | _ -> None type dyn = Dyn : 'a typ * 'a -> dyn let get_dyn : type a. a typ -> dyn -> a option = fun a (Dyn(b,x)) -> match eq_type a b with | None -> None | Some Eq -> Some x
Existential type names in error messages

(Updated in OCaml 4.03.0)

The typing of pattern matching in presence of GADT can generate many existential types. When necessary, error messages refer to these existential types using compiler-generated names. Currently, the compiler generates these names according to the following nomenclature:

As shown by the last item, the current behavior is imperfect and may be improved in future versions.

Equations on non-local abstract types

(Introduced in OCaml 4.04)

GADT pattern-matching may also add type equations to non-local abstract types. The behaviour is the same as with local abstract types. Reusing the above eq type, one can write:

module M : sig type t val x : t val e : (t,int) eq end = struct type t = int let x = 33 let e = Eq end let x : int = let Eq = M.e in M.x

Of course, not all abstract types can be refined, as this would contradict the exhaustiveness check. Namely, builtin types (those defined by the compiler itself, such as int or array), and abstract types defined by the local module, are non-instantiable, and as such cause a type error rather than introduce an equation.


Previous Up Next ocaml-doc-4.11/ocaml.html/previous_motif.gif0000644000175000017500000000047513654466302020051 0ustar mehdimehdiGIF89app!# Imported from XPM image: prev.xpm!,@63333# B 0 A0 0 0 0 `0 `0 A   `0 `00000000000000000000000000000000000000000000  000 0000000000000000000000000000000` ;ocaml-doc-4.11/ocaml.html/native.html0000644000175000017500000017617013717225665016477 0ustar mehdimehdi Chapter 12  Native-code compilation (ocamlopt) Previous Up Next

Chapter 12  Native-code compilation (ocamlopt)

This chapter describes the OCaml high-performance native-code compiler ocamlopt, which compiles OCaml source files to native code object files and links these object files to produce standalone executables.

The native-code compiler is only available on certain platforms. It produces code that runs faster than the bytecode produced by ocamlc, at the cost of increased compilation time and executable code size. Compatibility with the bytecode compiler is extremely high: the same source code should run identically when compiled with ocamlc and ocamlopt.

It is not possible to mix native-code object files produced by ocamlopt with bytecode object files produced by ocamlc: a program must be compiled entirely with ocamlopt or entirely with ocamlc. Native-code object files produced by ocamlopt cannot be loaded in the toplevel system ocaml.

12.1  Overview of the compiler

The ocamlopt command has a command-line interface very close to that of ocamlc. It accepts the same types of arguments, and processes them sequentially, after all options have been processed:

The output of the linking phase is a regular Unix or Windows executable file. It does not need ocamlrun to run.

The compiler is able to emit some information on its internal stages. It can output .cmt files for the implementation of the compilation unit and .cmti for signatures if the option -bin-annot is passed to it (see the description of -bin-annot below). Each such file contains a typed abstract syntax tree (AST), that is produced during the type checking procedure. This tree contains all available information about the location and the specific type of each term in the source file. The AST is partial if type checking was unsuccessful.

These .cmt and .cmti files are typically useful for code inspection tools.

12.2  Options

The following command-line options are recognized by ocamlopt. The options -pack, -a, -shared, -c and -output-obj are mutually exclusive.

-a
Build a library(.cmxa and .a/.lib files) with the object files (.cmx and .o/.obj files) given on the command line, instead of linking them into an executable file. The name of the library must be set with the -o option.

If -cclib or -ccopt options are passed on the command line, these options are stored in the resulting .cmxalibrary. Then, linking with this library automatically adds back the -cclib and -ccopt options as if they had been provided on the command line, unless the -noautolink option is given.

-absname
Force error messages to show absolute paths for file names.
-annot
Deprecated since OCaml 4.11. Please use -bin-annot instead.
-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in binary format. The information for file src.ml (resp. src.mli) is put into file src.cmt (resp. src.cmti). In case of a type error, dump all the information inferred by the type-checker before the error. The *.cmt and *.cmti files produced by -bin-annot contain more information and are much more compact than the files produced by -annot.
-c
Compile only. Suppress the linking phase of the compilation. Source code files are turned into compiled files, but no executable file is produced. This option is useful to compile modules separately.
-cc ccomp
Use ccomp as the C linker called to build the final executable and as the C compiler for compiling .c source files.
-cclib -llibname
Pass the -llibname option to the linker . This causes the given C library to be linked with the program.
-ccopt option
Pass the given option to the C compiler and linker. For instance,-ccopt -Ldir causes the C linker to search for C libraries in directory dir.
-color mode
Enable or disable colors in compiler messages (especially warnings and errors). The following modes are supported:
auto
use heuristics to enable colors only if the output supports them (an ANSI-compatible tty terminal);
always
enable colors unconditionally;
never
disable color output.
The default setting is ’auto’, and the current heuristic checks that the TERM environment variable exists and is not empty or dumb, and that ’isatty(stderr)’ holds.

The environment variable OCAML_COLOR is considered if -color is not provided. Its values are auto/always/never as above.

-error-style mode
Control the way error messages and warnings are printed. The following modes are supported:
short
only print the error and its location;
contextual
like short, but also display the source code snippet corresponding to the location of the error.
The default setting is contextual.

The environment variable OCAML_ERROR_STYLE is considered if -error-style is not provided. Its values are short/contextual as above.

-compact
Optimize the produced code for space rather than for time. This results in slightly smaller but slightly slower programs. The default is to optimize for speed.
-config
Print the version number of ocamlopt and a detailed summary of its configuration, then exit.
-config-var var
Print the value of a specific configuration variable from the -config output, then exit. If the variable does not exist, the exit code is non-zero. This option is only available since OCaml 4.08, so script authors should have a fallback for older versions.
-depend ocamldep-args
Compute dependencies, as the ocamldep command would do. The remaining arguments are interpreted as if they were given to the ocamldep command.
-for-pack module-path
Generate an object file (.cmx and .o/.obj files) that can later be included as a sub-module (with the given access path) of a compilation unit constructed with -pack. For instance, ocamlopt -for-pack P -c A.ml will generate a..cmx and a.o files that can later be used with ocamlopt -pack -o P.cmx a.cmx. Note: you can still pack a module that was compiled without -for-pack but in this case exceptions will be printed with the wrong names.
-g
Add debugging information while compiling and linking. This option is required in order to produce stack backtraces when the program terminates on an uncaught exception (see section 11.2).
-i
Cause the compiler to print all defined names (with their inferred types or their definitions) when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are produced. This can be useful to check the types inferred by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to a .mli file, and edit that file to remove all declarations of unexported names.
-I directory
Add the given directory to the list of directories searched for compiled interface files (.cmi), compiled object code files (.cmx), and libraries (.cmxa). By default, the current directory is searched first, then the standard library directory. Directories added with -I are searched after the current directory, in the order in which they were given on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +unix adds the subdirectory unix of the standard library to the search path.

-impl filename
Compile the file filename as an implementation file, even if its extension is not .ml.
-inline n
Set aggressiveness of inlining to n, where n is a positive integer. Specifying -inline 0 prevents all functions from being inlined, except those whose body is smaller than the call site. Thus, inlining causes no expansion in code size. The default aggressiveness, -inline 1, allows slightly larger functions to be inlined, resulting in a slight expansion in code size. Higher values for the -inline option cause larger and larger functions to become candidate for inlining, but can result in a serious increase in code size.
-intf filename
Compile the file filename as an interface file, even if its extension is not .mli.
-intf-suffix string
Recognize file names ending with string as interface files (instead of the default .mli).
-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced modules are not linked in. When building a library (option -a), setting the -linkall option forces all subsequent links of programs involving that library to link all the modules contained in the library. When compiling a module (option -c), setting the -linkall option ensures that this module will always be linked if it is put in a library and this library is linked.
-linscan
Use linear scan register allocation. Compiling with this allocator is faster than with the usual graph coloring allocator, sometimes quite drastically so for long functions and modules. On the other hand, the generated code can be a bit slower.
-match-context-rows
Set the number of rows of context used for optimization during pattern matching compilation. The default value is 32. Lower values cause faster compilation, but less optimized code. This advanced option is meant for use in the event that a pattern-match-heavy program leads to significant increases in compilation time.
-no-alias-deps
Do not record dependencies for module aliases. See section 8.8 for more information.
-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application generates new types in its result and applying the same functor twice to the same argument yields two incompatible structures.
-no-float-const-prop
Deactivates the constant propagation for floating-point operations. This option should be given if the program changes the float rounding mode during its execution.
-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially. This flag has no effect when linking already-compiled files.
-noautolink
When linking .cmxalibraries, ignore -cclib and -ccopt options potentially contained in the libraries (if these options were given when building the libraries). This can be useful if a library contains incorrect specifications of C libraries or C options; in this case, during linking, set -noautolink and pass the correct C libraries and options on the command line.
-nodynlink
Allow the compiler to use some optimizations that are valid only for code that is never dynlinked.
-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
-nostdlib
Do not automatically add the standard library directory to the list of directories searched for compiled interface files (.cmi), compiled object code files (.cmx), and libraries (.cmxa). See also option -I.
-o exec-file
Specify the name of the output file produced by the linker. The default output name is a.out under Unix and camlprog.exe under Windows. If the -a option is given, specify the name of the library produced. If the -pack option is given, specify the name of the packed object file produced. If the -output-obj option is given, specify the name of the output file produced. If the -shared option is given, specify the name of plugin file produced.
-opaque
When the native compiler compiles an implementation, by default it produces a .cmx file containing information for cross-module optimization. It also expects .cmx files to be present for the dependencies of the currently compiled source, and uses them for optimization. Since OCaml 4.03, the compiler will emit a warning if it is unable to locate the .cmx file of one of those dependencies.

The -opaque option, available since 4.04, disables cross-module optimization information for the currently compiled unit. When compiling .mli interface, using -opaque marks the compiled .cmi interface so that subsequent compilations of modules that depend on it will not rely on the corresponding .cmx file, nor warn if it is absent. When the native compiler compiles a .ml implementation, using -opaque generates a .cmx that does not contain any cross-module optimization information.

Using this option may degrade the quality of generated code, but it reduces compilation time, both on clean and incremental builds. Indeed, with the native compiler, when the implementation of a compilation unit changes, all the units that depend on it may need to be recompiled – because the cross-module information may have changed. If the compilation unit whose implementation changed was compiled with -opaque, no such recompilation needs to occur. This option can thus be used, for example, to get faster edit-compile-test feedback loops.

-open Module
Opens the given module before processing the interface or implementation files. If several -open options are given, they are processed in order, just as if the statements open! Module1;; ... open! ModuleN;; were added at the top of each file.
-output-obj
Cause the linker to produce a C object file instead of an executable file. This is useful to wrap OCaml code as a C library, callable from any C program. See chapter 20, section 20.7.5. The name of the output object file must be set with the -o option. This option can also be used to produce a compiled shared/dynamic library (.so extension, .dll under Windows).
-pack
Build an object file (.cmx and .o/.obj files) and its associated compiled interface (.cmi) that combines the .cmx object files given on the command line, making them appear as sub-modules of the output .cmx file. The name of the output .cmx file must be given with the -o option. For instance,
        ocamlopt -pack -o P.cmx A.cmx B.cmx C.cmx
generates compiled files P.cmx, P.o and P.cmi describing a compilation unit having three sub-modules A, B and C, corresponding to the contents of the object files A.cmx, B.cmx and C.cmx. These contents can be referenced as P.A, P.B and P.C in the remainder of the program.

The .cmx object files being combined must have been compiled with the appropriate -for-pack option. In the example above, A.cmx, B.cmx and C.cmx must have been compiled with ocamlopt -for-pack P.

Multiple levels of packing can be achieved by combining -pack with -for-pack. Consider the following example:

        ocamlopt -for-pack P.Q -c A.ml
        ocamlopt -pack -o Q.cmx -for-pack P A.cmx
        ocamlopt -for-pack P -c B.ml
        ocamlopt -pack -o P.cmx Q.cmx B.cmx

The resulting P.cmx object file has sub-modules P.Q, P.Q.A and P.B.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The output of command is redirected to an intermediate file, which is compiled. If there are no compilation errors, the intermediate file is deleted afterwards.
-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module Ast_mapper, described in chapter 27: Ast_mapper , implements the external interface of a preprocessor.
-principal
Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported.Note that once you have created an interface using this flag, you must use it again for all dependencies.
-runtime-variant suffix
Add the suffix string to the name of the runtime library used by the program. Currently, only one such suffix is supported: d, and only if the OCaml compiler was configured with option -with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for debugging pointer problems in low-level code such as C stubs.
-stop-after pass
Stop compilation after the given compilation pass. The currently supported passes are: parsing, typing.
-S
Keep the assembly code produced during the compilation. The assembly code for the source file x.ml is saved in the file x.s.
-shared
Build a plugin (usually .cmxs) that can be dynamically loaded with the Dynlink module. The name of the plugin must be set with the -o option. A plugin can include a number of OCaml modules and libraries, and extra native objects (.o, .obj, .a, .lib files). Building native plugins is only supported for some operating system. Under some systems (currently, only Linux AMD 64), all the OCaml code linked in a plugin must have been compiled without the -nodynlink flag. Some constraints might also apply to the way the extra native objects have been compiled (under Linux AMD 64, they must contain only position-independent code).
-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only. This is the default.
-short-paths
When a type is visible under several module-paths, use the shortest one when printing the type’s name in inferred interfaces and error and warning messages. Identifier names starting with an underscore _ or containing double underscores __ incur a penalty of +10 when computing their length.
-strict-sequence
Force the left-hand part of each sequence to have type unit.
-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use this flag to detect and fix such invalid formats, as they will be rejected by future OCaml versions.
-unboxed-types
When a type is unboxable (i.e. a record with a single argument or a concrete datatype with a single constructor of one argument) it will be unboxed unless annotated with [@@ocaml.boxed].
-no-unboxed-types
When a type is unboxable it will be boxed unless annotated with [@@ocaml.unboxed]. This is the default.
-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds. Additionally, turn off the check for zero divisor in integer division and modulus operations. With -unsafe, an integer division (or modulus) by zero can halt the program or continue with an unspecified result instead of raising a Division_by_zero exception.
-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for compatibility with old source code and should not be used with new software.
-v
Print the version number of the compiler and the location of the standard library directory, then exit.
-verbose
Print all external commands before they are executed, in particular invocations of the assembler, C compiler, and linker. Useful to debug C library problems.
-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.
-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal). If a warning is enabled, it is displayed normally by the compiler whenever the source code triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying it.

The warning-list argument is a sequence of warning specifiers, with no separators between them. A warning specifier is one of the following:

+num
Enable warning number num.
-num
Disable warning number num.
@num
Enable and mark as fatal warning number num.
+num1..num2
Enable warnings in the given range.
-num1..num2
Disable warnings in the given range.
@num1..num2
Enable and mark as fatal warnings in the given range.
+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
-letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
@letter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.
lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined are ignored. The warnings are as follows.

1
Suspicious-looking start-of-comment mark.
2
Suspicious-looking end-of-comment mark.
3
Deprecated synonym for the ’deprecated’ alert.
4
Fragile pattern matching: matching that will remain complete even if additional constructors are added to one of the variant types matched.
5
Partially applied function: expression whose result has function type and is ignored.
6
Label omitted in function application.
7
Method overridden.
8
Partial match: missing cases in pattern-matching.
9
Missing fields in a record pattern.
10
Expression on the left-hand side of a sequence that doesn’t have type unit (and that is not a function, see warning number 5).
11
Redundant case in a pattern matching (unused match case).
12
Redundant sub-pattern in a pattern-matching.
13
Instance variable overridden.
14
Illegal backslash escape in a string constant.
15
Private method made public implicitly.
16
Unerasable optional argument.
17
Undeclared virtual method.
18
Non-principal type.
19
Type without principality.
20
Unused function argument.
21
Non-returning statement.
22
Preprocessor warning.
23
Useless record with clause.
24
Bad module name: the source file name is not a valid OCaml module name.
25
Deprecated: now part of warning 8.
26
Suspicious unused variable: unused variable that is bound with let or as, and doesn’t start with an underscore (_) character.
27
Innocuous unused variable: unused variable that is not bound with let nor as, and doesn’t start with an underscore (_) character.
28
Wildcard pattern given as argument to a constant constructor.
29
Unescaped end-of-line in a string constant (non-portable code).
30
Two labels or constructors of the same name are defined in two mutually recursive types.
31
A module is linked twice in the same executable.
32
Unused value declaration.
33
Unused open statement.
34
Unused type declaration.
35
Unused for-loop index.
36
Unused ancestor variable.
37
Unused constructor.
38
Unused extension constructor.
39
Unused rec flag.
40
Constructor or label name used out of scope.
41
Ambiguous constructor or label name.
42
Disambiguated constructor or label name (compatibility warning).
43
Nonoptional label applied as optional.
44
Open statement shadows an already defined identifier.
45
Open statement shadows an already defined label or constructor.
46
Error in environment variable.
47
Illegal attribute payload.
48
Implicit elimination of optional arguments.
49
Absent cmi file when looking up module alias.
50
Unexpected documentation comment.
51
Warning on non-tail calls if @tailcall present.
52 (see 9.5.2)
Fragile constant pattern.
53
Attribute cannot appear in this context.
54
Attribute used more than once on an expression.
55
Inlining impossible.
56
Unreachable case in a pattern-matching (based on type information).
57 (see 9.5.3)
Ambiguous or-pattern variables under guard.
58
Missing cmx file.
59
Assignment to non-mutable value.
60
Unused module declaration.
61
Unboxable type in primitive declaration.
62
Type constraint on GADT type declaration.
63
Erroneous printed signature.
64
-unsafe used with a preprocessor returning a syntax tree.
65
Type declaration defining a new ’()’ constructor.
66
Unused open! statement.
67
Unused functor parameter.
A
all warnings
C
warnings 1, 2.
D
Alias for warning 3.
E
Alias for warning 4.
F
Alias for warning 5.
K
warnings 32, 33, 34, 35, 36, 37, 38, 39.
L
Alias for warning 6.
M
Alias for warning 7.
P
Alias for warning 8.
R
Alias for warning 9.
S
Alias for warning 10.
U
warnings 11, 12.
V
Alias for warning 13.
X
warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.
Y
Alias for warning 26.
Z
Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by ocamlopt -help. Note that warnings 5 and 10 are not always triggered, depending on the internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error in production code, because this can break your build when future versions of OCaml add some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.
-where
Print the location of the standard library, then exit.
-with-runtime
Include the runtime system in the generated program. This is the default.
-without-runtime
The compiler does not include the runtime system (nor a reference to it) in the generated program; it must be supplied separately.
- file
Process file as a file name, even if it starts with a dash (-) character.
-help or --help
Display a short usage summary and exit.
Options for the IA32 architecture

The IA32 code generator (Intel Pentium, AMD Athlon) supports the following additional option:

-ffast-math
Use the IA32 instructions to compute trigonometric and exponential functions, instead of calling the corresponding library routines. The functions affected are: atan, atan2, cos, log, log10, sin, sqrt and tan. The resulting code runs faster, but the range of supported arguments and the precision of the result can be reduced. In particular, trigonometric operations cos, sin, tan have their range reduced to [−264, 264].
Options for the AMD64 architecture

The AMD64 code generator (64-bit versions of Intel Pentium and AMD Athlon) supports the following additional options:

-fPIC
Generate position-independent machine code. This is the default.
-fno-PIC
Generate position-dependent machine code.
Options for the PowerPC architecture

The PowerPC code generator supports the following additional options:

-flarge-toc
Enables the PowerPC large model allowing the TOC (table of contents) to be arbitrarily large. This is the default since 4.11.
-fsmall-toc
Enables the PowerPC small model allowing the TOC to be up to 64 kbytes per compilation unit. Prior to 4.11 this was the default behaviour.
Contextual control of command-line options

The compiler command line can be modified “from the outside” with the following mechanisms. These are experimental and subject to change. They should be used only for experimental and development work, not in released packages.

OCAMLPARAM (environment variable)
A set of arguments that will be inserted before or after the arguments from the command line. Arguments are specified in a comma-separated list of name=value pairs. A _ is used to specify the position of the command line arguments, i.e. a=x,_,b=y means that a=x should be executed before parsing the arguments, and b=y after. Finally, an alternative separator can be specified as the first character of the string, within the set :|; ,.
ocaml_compiler_internal_params (file in the stdlib directory)
A mapping of file names to lists of arguments that will be added to the command line (and OCAMLPARAM) arguments.
OCAML_FLEXLINK (environment variable)
Alternative executable to use on native Windows for flexlink instead of the configured value. Primarily used for bootstrapping.

12.3  Common errors

The error messages are almost identical to those of ocamlc. See section 9.4.

12.4  Running executables produced by ocamlopt

Executables generated by ocamlopt are native, stand-alone executable files that can be invoked directly. They do not depend on the ocamlrun bytecode runtime system nor on dynamically-loaded C/OCaml stub libraries.

During execution of an ocamlopt-generated executable, the following environment variables are also consulted:

OCAMLRUNPARAM
Same usage as in ocamlrun (see section 11.2), except that option l is ignored (the operating system’s stack size limit is used instead).
CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead. If CAMLRUNPARAM is not found, then the default values will be used.

12.5  Compatibility with the bytecode compiler

This section lists the known incompatibilities between the bytecode compiler and the native-code compiler. Except on those points, the two compilers should generate code that behave identically.


Previous Up Next ocaml-doc-4.11/ocaml.html/toplevel.html0000644000175000017500000015751613717225665017046 0ustar mehdimehdi Chapter 10  The toplevel system or REPL (ocaml) Previous Up Next

Chapter 10  The toplevel system or REPL (ocaml)

This chapter describes the toplevel system for OCaml, that permits interactive use of the OCaml system through a read-eval-print loop (REPL). In this mode, the system repeatedly reads OCaml phrases from the input, then typechecks, compile and evaluate them, then prints the inferred type and result value, if any. The system prints a # (sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The toplevel input consists in one or several toplevel phrases, with the following syntax:

toplevel-input::=definition }+ ;;  
  expr ;;  
  # ident  [ directive-argument ] ;;  
 
directive-argument::= string-literal  
  integer-literal  
  value-path  
  true ∣  false

A phrase can consist of a definition, like those found in implementations of compilation units or in structend module expressions. The definition can bind value names, type names, an exception, a module name, or a module type name. The toplevel system performs the bindings, then prints the types and values (if any) for the names thus defined.

A phrase may also consist in a value expression (section 7.7). It is simply evaluated without performing any bindings, and its value is printed.

Finally, a phrase can also consist in a toplevel directive, starting with # (the sharp sign). These directives control the behavior of the toplevel; they are listed below in section 10.2.

Unix:   The toplevel system is started by the command ocaml, as follows:
        ocaml options objects                # interactive mode
        ocaml options objects scriptfile        # script mode
options are described below. objects are filenames ending in .cmo or .cma; they are loaded into the interpreter immediately after options are set. scriptfile is any file name not ending in .cmo or .cma.

If no scriptfile is given on the command line, the toplevel system enters interactive mode: phrases are read on standard input, results are printed on standard output, errors on standard error. End-of-file on standard input terminates ocaml (see also the #quit directive in section 10.2).

On start-up (before the first phrase is read), if the file .ocamlinit exists in the current directory, its contents are read as a sequence of OCaml phrases and executed as per the #use directive described in section 10.2. The evaluation outcode for each phrase are not displayed. If the current directory does not contain an .ocamlinit file, the file XDG_CONFIG_HOME/ocaml/init.ml is looked up according to the XDG base directory specification and used instead (on Windows this is skipped). If that file doesn’t exist then an [.ocamlinit] file in the users’ home directory (determined via environment variable HOME) is used if existing.

The toplevel system does not perform line editing, but it can easily be used in conjunction with an external line editor such as ledit, or rlwrap. An improved toplevel, utop, is also available. Another option is to use ocaml under Gnu Emacs, which gives the full editing power of Emacs (command run-caml from library inf-caml).

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted by pressing ctrl-C (or, more precisely, by sending the INTR signal to the ocaml process). The toplevel then immediately returns to the # prompt.

If scriptfile is given on the command-line to ocaml, the toplevel system enters script mode: the contents of the file are read as a sequence of OCaml phrases and executed, as per the #use directive (section 10.2). The outcome of the evaluation is not printed. On reaching the end of file, the ocaml command exits immediately. No commands are read from standard input. Sys.argv is transformed, ignoring all OCaml parameters, and starting with the script file name in Sys.argv.(0).

In script mode, the first line of the script is ignored if it starts with #!. Thus, it should be possible to make the script itself executable and put as first line #!/usr/local/bin/ocaml, thus calling the toplevel system automatically when the script is run. However, ocaml itself is a #! script on most installations of OCaml, and Unix kernels usually do not handle nested #! scripts. A better solution is to put the following as the first line of the script:

        #!/usr/local/bin/ocamlrun /usr/local/bin/ocaml

10.1  Options

The following command-line options are recognized by the ocaml command.

-absname
Force error messages to show absolute paths for file names.
-args filename
Read additional newline-terminated command line arguments from filename. It is not possible to pass a scriptfile via file to the toplevel.
-args0 filename
Read additional null character terminated command line arguments from filename. It is not possible to pass a scriptfile via file to the toplevel.
-I directory
Add the given directory to the list of directories searched for source and compiled files. By default, the current directory is searched first, then the standard library directory. Directories added with -I are searched after the current directory, in the order in which they were given on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +unix adds the subdirectory unix of the standard library to the search path.

Directories can also be added to the list once the toplevel is running with the #directory directive (section 10.2).

-init file
Load the given file instead of the default initialization file. The default file is .ocamlinit in the current directory if it exists, otherwise XDG_CONFIG_HOME/ocaml/init.ml or .ocamlinit in the user’s home directory.
-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application generates new types in its result and applying the same functor twice to the same argument yields two incompatible structures.
-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially.
-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
-noprompt
Do not display any prompt when waiting for input.
-nopromptcont
Do not display the secondary prompt when waiting for continuation lines in multi-line inputs. This should be used e.g. when running ocaml in an emacs window.
-nostdlib
Do not include the standard library directory in the list of directories searched for source and compiled files.
-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module Ast_mapper, described in chapter 27: Ast_mapper , implements the external interface of a preprocessor.
-principal
Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported.
-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only. This is the default.
-short-paths
When a type is visible under several module-paths, use the shortest one when printing the type’s name in inferred interfaces and error and warning messages. Identifier names starting with an underscore _ or containing double underscores __ incur a penalty of +10 when computing their length.
-stdin
Read the standard input as a script file rather than starting an interactive session.
-strict-sequence
Force the left-hand part of each sequence to have type unit.
-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use this flag to detect and fix such invalid formats, as they will be rejected by future OCaml versions.
-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds.
-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for compatibility with old source code and should not be used with new software.
-v
Print the version number of the compiler and the location of the standard library directory, then exit.
-verbose
Print all external commands before they are executed, Useful to debug C library problems.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-no-version
Do not print the version banner at startup.
-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal). If a warning is enabled, it is displayed normally by the compiler whenever the source code triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying it.

The warning-list argument is a sequence of warning specifiers, with no separators between them. A warning specifier is one of the following:

+num
Enable warning number num.
-num
Disable warning number num.
@num
Enable and mark as fatal warning number num.
+num1..num2
Enable warnings in the given range.
-num1..num2
Disable warnings in the given range.
@num1..num2
Enable and mark as fatal warnings in the given range.
+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
-letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
@letter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.
lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined are ignored. The warnings are as follows.

1
Suspicious-looking start-of-comment mark.
2
Suspicious-looking end-of-comment mark.
3
Deprecated synonym for the ’deprecated’ alert.
4
Fragile pattern matching: matching that will remain complete even if additional constructors are added to one of the variant types matched.
5
Partially applied function: expression whose result has function type and is ignored.
6
Label omitted in function application.
7
Method overridden.
8
Partial match: missing cases in pattern-matching.
9
Missing fields in a record pattern.
10
Expression on the left-hand side of a sequence that doesn’t have type unit (and that is not a function, see warning number 5).
11
Redundant case in a pattern matching (unused match case).
12
Redundant sub-pattern in a pattern-matching.
13
Instance variable overridden.
14
Illegal backslash escape in a string constant.
15
Private method made public implicitly.
16
Unerasable optional argument.
17
Undeclared virtual method.
18
Non-principal type.
19
Type without principality.
20
Unused function argument.
21
Non-returning statement.
22
Preprocessor warning.
23
Useless record with clause.
24
Bad module name: the source file name is not a valid OCaml module name.
25
Deprecated: now part of warning 8.
26
Suspicious unused variable: unused variable that is bound with let or as, and doesn’t start with an underscore (_) character.
27
Innocuous unused variable: unused variable that is not bound with let nor as, and doesn’t start with an underscore (_) character.
28
Wildcard pattern given as argument to a constant constructor.
29
Unescaped end-of-line in a string constant (non-portable code).
30
Two labels or constructors of the same name are defined in two mutually recursive types.
31
A module is linked twice in the same executable.
32
Unused value declaration.
33
Unused open statement.
34
Unused type declaration.
35
Unused for-loop index.
36
Unused ancestor variable.
37
Unused constructor.
38
Unused extension constructor.
39
Unused rec flag.
40
Constructor or label name used out of scope.
41
Ambiguous constructor or label name.
42
Disambiguated constructor or label name (compatibility warning).
43
Nonoptional label applied as optional.
44
Open statement shadows an already defined identifier.
45
Open statement shadows an already defined label or constructor.
46
Error in environment variable.
47
Illegal attribute payload.
48
Implicit elimination of optional arguments.
49
Absent cmi file when looking up module alias.
50
Unexpected documentation comment.
51
Warning on non-tail calls if @tailcall present.
52 (see 9.5.2)
Fragile constant pattern.
53
Attribute cannot appear in this context.
54
Attribute used more than once on an expression.
55
Inlining impossible.
56
Unreachable case in a pattern-matching (based on type information).
57 (see 9.5.3)
Ambiguous or-pattern variables under guard.
58
Missing cmx file.
59
Assignment to non-mutable value.
60
Unused module declaration.
61
Unboxable type in primitive declaration.
62
Type constraint on GADT type declaration.
63
Erroneous printed signature.
64
-unsafe used with a preprocessor returning a syntax tree.
65
Type declaration defining a new ’()’ constructor.
66
Unused open! statement.
67
Unused functor parameter.
A
all warnings
C
warnings 1, 2.
D
Alias for warning 3.
E
Alias for warning 4.
F
Alias for warning 5.
K
warnings 32, 33, 34, 35, 36, 37, 38, 39.
L
Alias for warning 6.
M
Alias for warning 7.
P
Alias for warning 8.
R
Alias for warning 9.
S
Alias for warning 10.
U
warnings 11, 12.
V
Alias for warning 13.
X
warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.
Y
Alias for warning 26.
Z
Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by -help. Note that warnings 5 and 10 are not always triggered, depending on the internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error in production code, because this can break your build when future versions of OCaml add some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.
- file
Use file as a script file name, even when it starts with a hyphen (-).
-help or --help
Display a short usage summary and exit.
Unix:   The following environment variables are also consulted:
OCAMLTOP_INCLUDE_PATH
Additional directories to search for compiled object code files (.cmi, .cmo and .cma). The specified directories are considered from left to right, after the include directories specified on the command line via -I have been searched. Available since OCaml 4.08.
OCAMLTOP_UTF_8
When printing string values, non-ascii bytes ( > \0x7E ) are printed as decimal escape sequence if OCAMLTOP_UTF_8 is set to false. Otherwise, they are printed unescaped.
TERM
When printing error messages, the toplevel system attempts to underline visually the location of the error. It consults the TERM variable to determines the type of output terminal and look up its capabilities in the terminal database.
XDG_CONFIG_HOME, HOME
.ocamlinit lookup procedure (see above).

10.2  Toplevel directives

The following directives control the toplevel behavior, load files in memory, and trace program execution.

Note: all directives start with a # (sharp) symbol. This # must be typed before the directive, and must not be confused with the # prompt displayed by the interactive loop. For instance, typing #quit;; will exit the toplevel loop, but typing quit;; will result in an “unbound value quit” error.

General
#help;;
Prints a list of all available directives, with corresponding argument type if appropriate.
#quit;;
Exit the toplevel loop and terminate the ocaml command.
Loading codes
#cd "dir-name";;
Change the current working directory.
#directory "dir-name";;
Add the given directory to the list of directories searched for source and compiled files.
#remove_directory "dir-name";;
Remove the given directory from the list of directories searched for source and compiled files. Do nothing if the list does not contain the given directory.
#load "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by the batch compiler ocamlc.
#load_rec "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by the batch compiler ocamlc. When loading an object file that depends on other modules which have not been loaded yet, the .cmo files for these modules are searched and loaded as well, recursively. The loading order is not specified.
#use "file-name";;
Read, compile and execute source phrases from the given file. This is textual inclusion: phrases are processed just as if they were typed on standard input. The reading of the file stops at the first error encountered.
#use_output "command";;
Execute a command and evaluate its output as if it had been captured to a file and passed to #use.
#mod_use "file-name";;
Similar to #use but also wrap the code into a top-level module of the same name as capitalized file name without extensions, following semantics of the compiler.

For directives that take file names as arguments, if the given file name specifies no directory, the file is searched in the following directories:

  1. In script mode, the directory containing the script currently executing; in interactive mode, the current working directory.
  2. Directories added with the #directory directive.
  3. Directories given on the command line with -I options.
  4. The standard library directory.
Environment queries
#show_class class-path;;
#show_class_type class-path;;
#show_exception ident;;
#show_module module-path;;
#show_module_type modtype-path;;
#show_type typeconstr;;
#show_val value-path;;
Print the signature of the corresponding component.
#show ident;;
Print the signatures of components with name ident in all the above categories.
Pretty-printing
#install_printer printer-name;;
This directive registers the function named printer-name (a value path) as a printer for values whose types match the argument type of the function. That is, the toplevel loop will call printer-name when it has such a value to print.

The printing function printer-name should have type Format.formatter -> t -> unit, where t is the type for the values to be printed, and should output its textual representation for the value of type t on the given formatter, using the functions provided by the Format library. For backward compatibility, printer-name can also have type t -> unit and should then output on the standard formatter, but this usage is deprecated.

#print_depth n;;
Limit the printing of values to a maximal depth of n. The parts of values whose depth exceeds n are printed as ... (ellipsis).
#print_length n;;
Limit the number of value nodes printed to at most n. Remaining parts of values are printed as ... (ellipsis).
#remove_printer printer-name;;
Remove the named function from the table of toplevel printers.
Tracing
#trace function-name;;
After executing this directive, all calls to the function named function-name will be “traced”. That is, the argument and the result are displayed for each call, as well as the exceptions escaping out of the function, raised either by the function itself or by another function it calls. If the function is curried, each argument is printed as it is passed to the function.
#untrace function-name;;
Stop tracing the given function.
#untrace_all;;
Stop tracing all functions traced so far.
Compiler options
#labels bool;;
Ignore labels in function types if argument is false, or switch back to default behaviour (commuting style) if argument is true.
#ppx "file-name";;
After parsing, pipe the abstract syntax tree through the preprocessor command.
#principal bool;;
If the argument is true, check information paths during type-checking, to make sure that all types are derived in a principal way. If the argument is false, do not check information paths.
#rectypes;;
Allow arbitrary recursive types during type-checking. Note: once enabled, this option cannot be disabled because that would lead to unsoundness of the type system.
#warn_error "warning-list";;
Treat as errors the warnings enabled by the argument and as normal warnings the warnings disabled by the argument.
#warnings "warning-list";;
Enable or disable warnings according to the argument.

10.3  The toplevel and the module system

Toplevel phrases can refer to identifiers defined in compilation units with the same mechanisms as for separately compiled units: either by using qualified names (Modulename.localname), or by using the open construct and unqualified names (see section 7.3).

However, before referencing another compilation unit, an implementation of that unit must be present in memory. At start-up, the toplevel system contains implementations for all the modules in the the standard library. Implementations for user modules can be entered with the #load directive described above. Referencing a unit for which no implementation has been provided results in the error Reference to undefined global `...'.

Note that entering open Mod merely accesses the compiled interface (.cmi file) for Mod, but does not load the implementation of Mod, and does not cause any error if no implementation of Mod has been loaded. The error “reference to undefined global Mod” will occur only when executing a value or module definition that refers to Mod.

10.4  Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search path.

If filename has the format mod.cmi, this means you have referenced the compilation unit mod, but its compiled interface could not be found. Fix: compile mod.mli or mod.ml first, to create the compiled interface mod.cmi.

If filename has the format mod.cmo, this means you are trying to load with #load a bytecode object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t specified the directories to look into. Fix: use the #directory directive to add the correct directories to the search path.

This expression has type t1, but is used with type t2
See section 9.4.
Reference to undefined global mod
You have neglected to load in memory an implementation for a module with #load. See section 10.3 above.

10.5  Building custom toplevel systems: ocamlmktop

The ocamlmktop command builds OCaml toplevels that contain user code preloaded at start-up.

The ocamlmktop command takes as argument a set of .cmo and .cma files, and links them with the object files that implement the OCaml toplevel. The typical use is:

        ocamlmktop -o mytoplevel foo.cmo bar.cmo gee.cmo

This creates the bytecode file mytoplevel, containing the OCaml toplevel system, plus the code from the three .cmo files. This toplevel is directly executable and is started by:

        ./mytoplevel

This enters a regular toplevel loop, except that the code from foo.cmo, bar.cmo and gee.cmo is already loaded in memory, just as if you had typed:

        #load "foo.cmo";;
        #load "bar.cmo";;
        #load "gee.cmo";;

on entrance to the toplevel. The modules Foo, Bar and Gee are not opened, though; you still have to do

        open Foo;;

yourself, if this is what you wish.

10.5.1  Options

The following command-line options are recognized by ocamlmktop.

-cclib libname
Pass the -llibname option to the C linker when linking in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.
-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.
-custom
Link in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.
-I directory
Add the given directory to the list of directories searched for compiled object code files (.cmo and .cma).
-o exec-file
Specify the name of the toplevel file produced by the linker. The default is a.out.

10.6  The native toplevel: ocamlnat (experimental)

This section describes a tool that is not yet officially supported but may be found useful.

OCaml code executing in the traditional toplevel system uses the bytecode interpreter. When increased performance is required, or for testing programs that will only execute correctly when compiled to native code, the native toplevel may be used instead.

For the majority of installations the native toplevel will not have been installed along with the rest of the OCaml toolchain. In such circumstances it will be necessary to build the OCaml distribution from source. From the built source tree of the distribution you may use make natruntop to build and execute a native toplevel. (Alternatively make ocamlnat can be used, which just performs the build step.)

If the make install command is run after having built the native toplevel then the ocamlnat program (either from the source or the installation directory) may be invoked directly rather than using make natruntop.


Previous Up Next ocaml-doc-4.11/ocaml.html/stdlib.html0000644000175000017500000002162413717225665016463 0ustar mehdimehdi Chapter 26  The standard library Previous Up Next

Chapter 26  The standard library

This chapter describes the functions provided by the OCaml standard library. The modules from the standard library are automatically linked with the user’s object code files by the ocamlc command. Hence, these modules can be used in standalone programs without having to add any .cmo file on the command line for the linking phase. Similarly, in interactive use, these globals can be used in toplevel phrases without having to load any .cmo file in memory.

Unlike the core Stdlib module, submodules are not automatically “opened” when compilation starts, or when the toplevel system is launched. Hence it is necessary to use qualified identifiers to refer to the functions provided by these modules, or to add open directives.

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each module, the declarations from its signature are printed one by one in typewriter font, followed by a short comment. All modules and the identifiers they export are indexed at the end of this report.


Previous Up Next ocaml-doc-4.11/ocaml.html/objectexamples.html0000644000175000017500000035012713717225665020212 0ustar mehdimehdi Chapter 3  Objects in OCaml Previous Up Next

Chapter 3  Objects in OCaml

(Chapter written by Jérôme Vouillon, Didier Rémy and Jacques Garrigue)



This chapter gives an overview of the object-oriented features of OCaml.

Note that the relationship between object, class and type in OCaml is different than in mainstream object-oriented languages such as Java and C++, so you shouldn’t assume that similar keywords mean the same thing. Object-oriented features are used much less frequently in OCaml than in those languages. OCaml has alternatives that are often more appropriate, such as modules and functors. Indeed, many OCaml programs do not use objects at all.

3.1  Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The initial value of the instance variable is 0. The variable x is declared mutable, so the method move can change its value.

class point = object val mutable x = 0 method get_x = x method move d = x <- x + d end;;
class point : object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.

let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the methods of class point along with their types.

We now invoke some methods of p:

p#get_x;;
- : int = 0
p#move 3;;
- : unit = ()
p#get_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in the following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref 0;;
val x0 : int ref = {contents = 0}
class point = object val mutable x = incr x0; !x0 method get_x = x method move d = x <- x + d end;;
class point : object val mutable x : int method get_x : int method move : int -> unit end
new point#get_x;;
- : int = 1
new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init -> object val mutable x = x_init method get_x = x method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_x : int method move : int -> unit end

Like in function definitions, the definition above can be abbreviated as:

class point x_init = object val mutable x = x_init method get_x = x method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_x : int method move : int -> unit end

An instance of the class point is now a function that expects an initial parameter to create a point object:

new point;;
- : int -> point = <fun>
let p = new point 7;;
val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods. For instance, the method get_offset in the class below returns the position of the object relative to its initial position.

class point x_init = object val mutable x = x_init method get_x = x method get_offset = x - x_init method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_offset : int method get_x : int method move : int -> unit end

Expressions can be evaluated and bound before defining the object body of the class. This is useful to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a grid, as follows:

class adjusted_point x_init = let origin = (x_init / 10) * 10 in object val mutable x = origin method get_x = x method get_offset = x - origin method move d = x <- x + d end;;
class adjusted_point : int -> object val mutable x : int method get_offset : int method get_x : int method move : int -> unit end

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same effect could here be obtained by calling the definition of class point with the value of the origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation function:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors can be defined this way to build objects of the same class but with different initialization patterns; an alternative is to use initializers, as described below in section 3.4.

3.2  Immediate objects

There is another, more direct way to create an object: create it without going through a class.

The syntax is exactly the same as for class expressions, but the result is a single object rather than a class. All the constructs described in the rest of this section also apply to immediate objects.

let p = object val mutable x = 0 method get_x = x method move d = x <- x + d end;;
val p : < get_x : int; move : int -> unit > = <obj>
p#get_x;;
- : int = 0
p#move 3;;
- : unit = ()
p#get_x;;
- : int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear anywhere, using variables from their environment.

let minmax x y = if x < y then object method min = x method max = y end else object method min = y method max = x end;;
val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated, and you cannot inherit from them. But these two weaknesses can be advantages in some situations, as we will see in sections 3.3 and 3.10.

3.3  Reference to self

A method or an initializer can invoke methods on self (that is, the current object). For that, self must be explicitly bound, here to the variable s (s could be any identifier, even though we will often choose the name self.)

class printable_point x_init = object (s) val mutable x = x_init method get_x = x method move d = x <- x + d method print = print_int s#get_x end;;
class printable_point : int -> object val mutable x : int method get_x : int method move : int -> unit method print : unit end
let p = new printable_point 7;;
val p : printable_point = <obj>
p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

A common problem with self is that, as its type may be extended in subclasses, you cannot fix it in advance. Here is a simple example.

let ints = ref [];;
val ints : '_weak1 list ref = {contents = []}
class my_int = object (self) method n = 1 method register = ints := self :: !ints end ;;
Error: This expression has type < n : int; register : 'a; .. > but an expression was expected of type 'weak1 Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self into an external reference would make it impossible to extend it through inheritance. We will see in section 3.12 a workaround to this problem. Note however that, since immediate objects are not extensible, the problem does not occur with them.

let my_int = object (self) method n = 1 method register = ints := self :: !ints end;;
val my_int : < n : int; register : unit > = <obj>

3.4  Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible to evaluate an expression immediately after the object has been built. Such code is written as an anonymous hidden method called an initializer. Therefore, it can access self and the instance variables.

class printable_point x_init = let origin = (x_init / 10) * 10 in object (self) val mutable x = origin method get_x = x method move d = x <- x + d method print = print_int self#get_x initializer print_string "new point at "; self#print; print_newline () end;;
class printable_point : int -> object val mutable x : int method get_x : int method move : int -> unit method print : unit end
let p = new printable_point 17;;
new point at 10 val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Initializers are particularly useful to enforce invariants. Another example can be seen in section 6.1.

3.5  Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This method will be provided later in subclasses. A class containing virtual methods must be flagged virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init = object (self) method virtual get_x : int method get_offset = self#get_x - x_init method virtual move : int -> unit end;;
class virtual abstract_point : int -> object method get_offset : int method virtual get_x : int method virtual move : int -> unit end
class point x_init = object inherit abstract_point x_init val mutable x = x_init method get_x = x method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_offset : int method get_x : int method move : int -> unit end

Instance variables can also be declared as virtual, with the same effect as with methods.

class virtual abstract_point2 = object val mutable virtual x : int method move d = x <- x + d end;;
class virtual abstract_point2 : object val mutable virtual x : int method move : int -> unit end
class point2 x_init = object inherit abstract_point2 val mutable x = x_init method get_offset = x - x_init end;;
class point2 : int -> object val mutable x : int method get_offset : int method move : int -> unit end

3.6  Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked from other methods of the same object.

class restricted_point x_init = object (self) val mutable x = x_init method get_x = x method private move d = x <- x + d method bump = self#move 1 end;;
class restricted_point : int -> object val mutable x : int method bump : unit method get_x : int method private move : int -> unit end
let p = new restricted_point 0;;
val p : restricted_point = <obj>
p#move 10 ;;
Error: This expression has type restricted_point It has no method move
p#bump;;
- : unit = ()

Note that this is not the same thing as private and protected methods in Java or C++, which can be called from other objects of the same class. This is a direct consequence of the independence between types and classes in OCaml: two unrelated classes may produce objects of the same type, and there is no way at the type level to ensure that an object comes from a specific class. However a possible encoding of friend methods is given in section 3.17.

Private methods are inherited (they are by default visible in subclasses), unless they are hidden by signature matching, as described below.

Private methods can be made public in a subclass.

class point_again x = object (self) inherit restricted_point x method virtual move : _ end;;
class point_again : int -> object val mutable x : int method bump : unit method get_x : int method move : int -> unit end

The annotation virtual here is only used to mention a method without providing its definition. Since we didn’t add the private annotation, this makes the method public, keeping the original definition.

An alternative definition is

class point_again x = object (self : < move : _; ..> ) inherit restricted_point x end;;
class point_again : int -> object val mutable x : int method bump : unit method get_x : int method move : int -> unit end

The constraint on self’s type is requiring a public move method, and this is sufficient to override private.

One could think that a private method should remain private in a subclass. However, since the method is visible in a subclass, it is always possible to pick its code and define a method of the same name that runs that code, so yet another (heavier) solution would be:

class point_again x = object inherit restricted_point x as super method move = super#move end;;
class point_again : int -> object val mutable x : int method bump : unit method get_x : int method move : int -> unit end

Of course, private methods can also be virtual. Then, the keywords must appear in this order method private virtual.

3.7  Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to restrict the type of a class. Like class declarations, they also define a new type abbreviation.

class type restricted_point_type = object method get_x : int method bump : unit end;;
class type restricted_point_type = object method bump : unit method get_x : int end
fun (x : restricted_point_type) -> x;;
- : restricted_point_type -> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a class. Both concrete instance variables and concrete private methods can be hidden by a class type constraint. Public methods and virtual members, however, cannot.

class restricted_point' x = (restricted_point x : restricted_point_type);;
class restricted_point' : int -> restricted_point_type

Or, equivalently:

class restricted_point' = (restricted_point : int -> restricted_point_type);;
class restricted_point' : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred signature of a module.

module type POINT = sig class restricted_point' : int -> object method get_x : int method bump : unit end end;;
module type POINT = sig class restricted_point' : int -> object method bump : unit method get_x : int end end
module Point : POINT = struct class restricted_point' = restricted_point end;;
module Point : POINT

3.8  Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points. This class has all instance variables and all methods of class point, plus a new instance variable c and a new method color.

class colored_point x (c : string) = object inherit point x val c = c method color = c end;;
class colored_point : int -> string -> object val c : string val mutable x : int method color : string method get_offset : int method get_x : int method move : int -> unit end
let p' = new colored_point 5 "red";;
val p' : colored_point = <obj>
p'#get_x, p'#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However, the function get_x below is a generic function applying method get_x to any object p that has this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it applies to both points and colored points.

let get_succ_x p = p#get_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>
get_succ_x p + get_succ_x p';;
- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
val set_x : < set_x : 'a; .. > -> 'a = <fun>
let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>

3.9  Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a subclass of a method that was visible in the parent class overrides the definition in the parent class. Previous definitions of a method can be reused by binding the related ancestor. Below, super is bound to the ancestor printable_point. The name super is a pseudo value identifier that can only be used to invoke a super-class method, as in super#print.

class printable_colored_point y c = object (self) val c = c method color = c inherit printable_point y as super method! print = print_string "("; super#print; print_string ", "; print_string (self#color); print_string ")" end;;
class printable_colored_point : int -> string -> object val c : string val mutable x : int method color : string method get_x : int method move : int -> unit method print : unit end
let p' = new printable_colored_point 17 "red";;
new point at (10, red) val p' : printable_colored_point = <obj>
p'#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not overridden. Since initializers are treated as private methods, all initializers along the class hierarchy are evaluated, in the order they are introduced.

Note that for clarity’s sake, the method print is explicitly marked as overriding another definition by annotating the method keyword with an exclamation mark !. If the method print were not overriding the print method of printable_point, the compiler would raise an error:

object method! m = () end;;
Error: The method `m' has no previous definition

This explicit overriding annotation also works for val and inherit:

class another_printable_colored_point y c c' = object (self) inherit printable_point y inherit! printable_colored_point y c val! c = c' end;;
class another_printable_colored_point : int -> string -> string -> object val c : string val mutable x : int method color : string method get_x : int method move : int -> unit method print : unit end

3.10  Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

class oref x_init = object val mutable x = x_init method get = x method set y = x <- y end;;
Error: Some type variables are unbound in this type: class oref : 'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end The method get has type 'a where 'a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value stored in the reference cell), thus either the class should be parametric, or the method type should be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

class oref (x_init:int) = object val mutable x = x_init method get = x method set y = x <- y end;;
class oref : int -> object val mutable x : int method get : int method set : int -> unit end

Note that since immediate objects do not define a class type, they have no such restriction.

let new_oref x_init = object val mutable x = x_init method get = x method set y = x <- y end;;
val new_oref : 'a -> < get : 'a; set : 'a -> unit > = <fun>

On the other hand, a class for polymorphic references must explicitly list the type parameters in its declaration. Class type parameters are listed between [ and ]. The type parameters must also be bound somewhere in the class body by a type constraint.

class ['a] oref x_init = object val mutable x = (x_init : 'a) method get = x method set y = x <- y end;;
class ['a] oref : 'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end
let r = new oref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class definition. In the class type, the actual value of the type parameter is displayed in the constraint clause.

class ['a] oref_succ (x_init:'a) = object val mutable x = x_init + 1 method get = x method set y = x <- y end;;
class ['a] oref_succ : 'a -> object constraint 'a = int val mutable x : int method get : int method set : int -> unit end

Let us consider a more complex example: define a circle, whose center may be any kind of point. We put an additional type constraint in method move, since no free variables must remain unaccounted for by the class type parameters.

class ['a] circle (c : 'a) = object val mutable center = c method center = center method set_center c = center <- c method move = (center#move : int -> unit) end;;
class ['a] circle : 'a -> object constraint 'a = < move : int -> unit; .. > val mutable center : 'a method center : 'a method move : int -> unit method set_center : 'a -> unit end

An alternate definition of circle, using a constraint clause in the class definition, is shown below. The type #point used below in the constraint clause is an abbreviation produced by the definition of class point. This abbreviation unifies with the type of any object belonging to a subclass of class point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the following alternate definition of circle, which has slightly stronger constraints on its argument, as we now expect center to have a method get_x.

class ['a] circle (c : 'a) = object constraint 'a = #point val mutable center = c method center = center method set_center c = center <- c method move = center#move end;;
class ['a] circle : 'a -> object constraint 'a = #point val mutable center : 'a method center : 'a method move : int -> unit method set_center : 'a -> unit end

The class colored_circle is a specialized version of class circle that requires the type of the center to unify with #colored_point, and adds a method color. Note that when specializing a parameterized class, the instance of type parameter must always be explicitly given. It is again written between [ and ].

class ['a] colored_circle c = object constraint 'a = #colored_point inherit ['a] circle c method color = center#color end;;
class ['a] colored_circle : 'a -> object constraint 'a = #colored_point val mutable center : 'a method center : 'a method color : string method move : int -> unit method set_center : 'a -> unit end

3.11  Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow polymorphism of method use.

A classical example is defining an iterator.

List.fold_left;;
- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
class ['a] intlist (l : int list) = object method empty = (l = []) method fold f (accu : 'a) = List.fold_left f accu l end;;
class ['a] intlist : int list -> object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

At first look, we seem to have a polymorphic iterator, however this does not work in practice.

let l = new intlist [1; 2; 3];;
val l : '_weak2 intlist = <obj>
l#fold (fun x y -> x+y) 0;;
- : int = 6
l;;
- : int intlist = <obj>
l#fold (fun s x -> s ^ Int.to_string x ^ " ") "" ;;
Error: This expression has type int but an expression was expected of type string

Our iterator works, as shows its first use for summation. However, since objects themselves are not polymorphic (only their constructors are), using the fold method fixes its type for this individual object. Our next attempt to use it as a string iterator fails.

The problem here is that quantification was wrongly located: it is not the class we want to be polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic type in the method definition.

class intlist (l : int list) = object method empty = (l = []) method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a = fun f accu -> List.fold_left f accu l end;;
class intlist : int list -> object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end
let l = new intlist [1; 2; 3];;
val l : intlist = <obj>
l#fold (fun x y -> x+y) 0;;
- : int = 6
l#fold (fun s x -> s ^ Int.to_string x ^ " ") "";;
- : string = "1 2 3 "

As you can see in the class type shown by the compiler, while polymorphic method types must be fully explicit in class definitions (appearing immediately after the method name), quantified type variables can be left implicit in class descriptions. Why require types to be explicit? The problem is that (int -> int -> int) -> int -> int would also be a valid type for fold, and it happens to be incompatible with the polymorphic type we gave (automatic instantiation only works for toplevel types variables, not for inner quantifiers, where it becomes an undecidable problem.) So the compiler cannot choose between those two types, and must be helped.

However, the type can be completely omitted in the class definition if it is already known, through inheritance or type constraints on self. Here is an example of method overriding.

class intlist_rev l = object inherit intlist l method! fold f accu = List.fold_left f accu (List.rev l) end;;

The following idiom separates description and definition.

class type ['a] iterator = object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;
class intlist' l = object (self : int #iterator) method empty = (l = []) method fold f accu = List.fold_left f accu l end;;

Note here the (self : int #iterator) idiom, which ensures that this object implements the interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should be aware of some limitations of type inference. Namely, a polymorphic method can only be called if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic, and given an incompatible type.

let sum lst = lst#fold (fun x y -> x+y) 0;;
val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>
sum l ;;
Error: This expression has type intlist but an expression was expected of type < fold : (int -> int -> int) -> int -> 'a; .. > Types for method fold are incompatible

The workaround is easy: you should put a type constraint on the parameter.

let sum (lst : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurrences of quantified variables are required.

let sum lst = (lst : < fold : 'a. ('a -> _ -> 'a) -> 'a -> 'a; .. >)#fold (+) 0;;
val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>

Another use of polymorphic methods is to allow some form of implicit subtyping in method arguments. We have already seen in section 3.8 how some functions may be polymorphic in the class of their argument. This can be extended to methods.

class type point0 = object method get_x : int end;;
class type point0 = object method get_x : int end
class distance_point x = object inherit point x method distance : 'a. (#point0 as 'a) -> int = fun other -> abs (other#get_x - x) end;;
class distance_point : int -> object val mutable x : int method distance : #point0 -> int method get_offset : int method get_x : int method move : int -> unit end
let p = new distance_point 3 in (p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
- : int * int = (5, 2)

Note here the special syntax (#point0 as 'a) we have to use to quantify the extensible part of #point0. As for the variable binder, it can be omitted in class specifications. If you want polymorphism inside object field it must be quantified independently.

class multi_poly = object method m1 : 'a. (< n1 : 'b. 'b -> 'b; .. > as 'a) -> _ = fun o -> o#n1 true, o#n1 "hello" method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) -> 'b -> _ = fun o x -> o#n2 x end;;
class multi_poly : object method m1 : < n1 : 'b. 'b -> 'b; .. > -> bool * string method m2 : < n2 : 'b -> bool; .. > -> 'b -> bool end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2, the argument of n2 and x must have the same type, which is quantified at the same level as 'a.

3.12  Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general construction is fully explicit: both the domain and the codomain of the type coercion must be given.

We have seen that points and colored points have incompatible types. For instance, they cannot be mixed in the same list. However, a colored point can be coerced to a point, hiding its color method:

let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>
let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj> val q : colored_point = <obj>
let l = [p; (colored_point_to_point q)];;
val l : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t' only if t is a subtype of t'. For instance, a point cannot be seen as a colored point.

(p : point :> colored_point);;
Error: Type point = < get_offset : int; get_x : int; move : int -> unit > is not a subtype of colored_point = < color : string; get_offset : int; get_x : int; move : int -> unit > The first object type has no method color

Indeed, narrowing coercions without runtime checks would be unsafe. Runtime type checks might raise exceptions, and they would require the presence of type information at runtime, which is not the case in the OCaml system. For these reasons, there is no such operation available in the language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation between classes while subtyping is a semantic relation between types. For instance, the class of colored points could have been defined directly, without inheriting from the class of points; the type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can often be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable. Consider, for example, the following class:

class c0 = object method m = {< >} method n = 0 end;;
class c0 : object ('a) method m : 'a method n : int end

The object type c0 is an abbreviation for <m : 'a; n : int> as 'a. Consider now the type declaration:

class type c1 = object method m : c1 end;;
class type c1 = object method m : c1 end

The object type c1 is an abbreviation for the type <m : 'a> as 'a. The coercion from an object of type c0 to an object of type c1 is correct:

fun (x:c0) -> (x : c0 :> c1);;
- : c0 -> c1 = <fun>

However, the domain of the coercion cannot always be omitted. In that case, the solution is to use the explicit form. Sometimes, a change in the class-type definition can also solve the problem

class type c2 = object ('a) method m : 'a end;;
class type c2 = object ('a) method m : 'a end
fun (x:c0) -> (x :> c2);;
- : c0 -> c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object type (same method names and types). Yet, when the domain of a coercion is left implicit and its co-domain is an abbreviation of a known class type, then the class type, rather than the object type, is used to derive the coercion function. This allows leaving the domain implicit in most cases when coercing form a subclass to its superclass. The type of a coercion can always be seen as below:

let to_c1 x = (x :> c1);;
val to_c1 : < m : #c1; .. > -> c1 = <fun>
let to_c2 x = (x :> c2);;
val to_c2 : #c2 -> c2 = <fun>

Note the difference between these two coercions: in the case of to_c2, the type #c2 = < m : 'a; .. > as 'a is polymorphically recursive (according to the explicit recursion in the class type of c2); hence the success of applying this coercion to an object of class c0. On the other hand, in the first case, c1 was only expanded and unrolled twice to obtain < m : < m : c1; .. >; .. > (remember #c1 = < m : c1; .. >), without introducing recursion. You may also note that the type of to_c2 is #c2 -> c2 while the type of to_c1 is more general than #c1 -> c1. This is not always true, since there are class types for which some instances of #c are not subtypes of c, as explained in section 3.16. Yet, for parameterless classes the coercion (_ :> c) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class c while defining class c. The problem is due to the type abbreviation not being completely defined yet, and so its subtypes are not clearly known. Then, a coercion (_ :> c) or (_ : #c :> c) is taken to be the identity function, as in

function x -> (x :> 'a);;
- : 'a -> 'a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is unified with the closed type c (a closed object type is an object type without ellipsis). This would constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed: this would prevent any further extension of the class. Therefore, a type error is generated when the unification of this type with another type would result in a closed object type.

class c = object method m = 1 end and d = object (self) inherit c method n = 2 method as_c = (self :> c) end;;
Error: This expression cannot be coerced to type c = < m : int >; it has type < as_c : c; m : int; n : int; .. > but is here used with type c Self type cannot escape its class

However, the most common instance of this problem, coercing self to its current class, is detected as a special case by the type checker, and properly typed.

class c = object (self) method m = (self :> c) end;;
class c : object method m : c end

This allows the following idiom, keeping a list of all objects belonging to a class or its subclasses:

let all_c = ref [];;
val all_c : '_weak3 list ref = {contents = []}
class c (m : int) = object (self) method m = m initializer all_c := (self :> c) :: !all_c end;;
class c : int -> object method m : int end

This idiom can in turn be used to retrieve an object whose type has been weakened:

let rec lookup_obj obj = function [] -> raise Not_found | obj' :: l -> if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj l ;;
val lookup_obj : < .. > -> (< .. > as 'a) list -> 'a = <fun>
let lookup_c obj = lookup_obj obj !all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of c, due to the use of a reference; we have succeeded in getting back an object of type c.


The previous coercion problem can often be avoided by first defining the abbreviation, using a class type:

class type c' = object method m : int end;;
class type c' = object method m : int end
class c : c' = object method m = 1 end and d = object (self) inherit c method n = 2 method as_c = (self :> c') end;;
class c : c' and d : object method as_c : c' method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously forces all methods of c to have the same type as the methods of c'.

class virtual c' = object method virtual m : int end;;
class virtual c' : object method virtual m : int end
class c = object (self) inherit c' method m = 1 end;;
class c : object method m : int end

One could think of defining the type abbreviation directly:

type c' = <m : int>;;

However, the abbreviation #c' cannot be defined directly in a similar way. It can only be defined by a class or a class-type definition. This is because a #-abbreviation carries an implicit anonymous variable .. that cannot be explicitly named. The closer you get to it is:

type 'a c'_class = 'a constraint 'a = < m : int; .. >;;

with an extra type variable capturing the open object type.

3.13  Functional objects

It is possible to write a version of class point without assignments on the instance variables. The override construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing the value of some instance variables.

class functional_point y = object val x = y method get_x = x method move d = {< x = x + d >} method move_to x = {< x >} end;;
class functional_point : int -> object ('a) val x : int method get_x : int method move : int -> 'a method move_to : int -> 'a end
let p = new functional_point 7;;
val p : functional_point = <obj>
p#get_x;;
- : int = 7
(p#move 3)#get_x;;
- : int = 10
(p#move_to 15)#get_x;;
- : int = 15
p#get_x;;
- : int = 7

As with records, the form {< x >} is an elided version of {< x = x >} which avoids the repetition of the instance variable name. Note that the type abbreviation functional_point is recursive, which can be seen in the class type of functional_point: the type of self is 'a and 'a appears inside the type of the method move.

The above definition of functional_point is not equivalent to the following:

class bad_functional_point y = object val x = y method get_x = x method move d = new bad_functional_point (x+d) method move_to x = new bad_functional_point x end;;
class bad_functional_point : int -> object val x : int method get_x : int method move : int -> bad_functional_point method move_to : int -> bad_functional_point end

While objects of either class will behave the same, objects of their subclasses will be different. In a subclass of bad_functional_point, the method move will keep returning an object of the parent class. On the contrary, in a subclass of functional_point, the method move will return an object of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section 6.2.1.

3.14  Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo.copy makes a shallow copy of an object. That is, it returns a new object that has the same methods and instance variables as its argument. The instance variables are copied but their contents are shared. Assigning a new value to an instance variable of the copy (using a method call) will not affect instance variables of the original, and conversely. A deeper assignment (for example if the instance variable is a reference cell) will of course affect both the original and the copy.

The type of Oo.copy is the following:

Oo.copy;;
- : (< .. > as 'a) -> 'a = <fun>

The keyword as in that type binds the type variable 'a to the object type < .. >. Therefore, Oo.copy takes an object with any methods (represented by the ellipsis), and returns an object of the same type. The type of Oo.copy is different from type < .. > -> < .. > as each ellipsis represents a different set of methods. Ellipsis actually behaves as a type variable.

let p = new point 5;;
val p : point = <obj>
let q = Oo.copy p;;
val q : point = <obj>
q#move 7; (p#get_x, q#get_x);;
- : int * int = (5, 12)

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >} has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are equal if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val q : point = <obj>
p = q, p = p;;
- : bool * bool = (false, true)

Other generic comparisons such as (<, <=, ...) can also be used on objects. The relation < defines an unspecified but strict ordering on objects. The ordering relationship between two objects is fixed once for all after the two objects have been created and it is not affected by mutation of fields.

Cloning and override have a non empty intersection. They are interchangeable when used within an object and without overriding any field:

class copy = object method copy = {< >} end;;
class copy : object ('a) method copy : 'a end
class copy = object (self) method copy = Oo.copy self end;;
class copy : object ('a) method copy : 'a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be used externally.

Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup = object (self : 'mytype) val mutable copy = None method save = copy <- Some {< copy = None >} method restore = match copy with Some x -> x | None -> self end;;
class backup : object ('a) val mutable copy : 'a option method restore : 'a method save : unit end

The above definition will only backup one level. The backup facility can be added to any class by using multiple inheritance.

class ['a] backup_ref x = object inherit ['a] oref x inherit backup end;;
class ['a] backup_ref : 'a -> object ('b) val mutable copy : 'b option val mutable x : 'a method get : 'a method restore : 'b method save : unit method set : 'a -> unit end
let rec get p n = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>
let p = new backup_ref 0 in p # save; p # set 1; p # save; p # set 2; [get p 0; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 1; 1; 1]

We can define a variant of backup that retains all copies. (We also add a method clear to manually erase all copies.)

class backup = object (self : 'mytype) val mutable copy = None method save = copy <- Some {< >} method restore = match copy with Some x -> x | None -> self method clear = copy <- None end;;
class backup : object ('a) val mutable copy : 'a option method clear : unit method restore : 'a method save : unit end
class ['a] backup_ref x = object inherit ['a] oref x inherit backup end;;
class ['a] backup_ref : 'a -> object ('b) val mutable copy : 'b option val mutable x : 'a method clear : unit method get : 'a method restore : 'b method save : unit method set : 'a -> unit end
let p = new backup_ref 0 in p # save; p # set 1; p # save; p # set 2; [get p 0; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 0; 0; 0]

3.15  Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

class window = object val mutable top_widget = (None : widget option) method top_widget = top_widget end and widget (w : window) = object val window = w method window = window end;;
class window : object val mutable top_widget : widget option method top_widget : widget option end and widget : window -> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves independent.

3.16  Binary methods

A binary method is a method which takes an argument of the same type as self. The class comparable below is a template for classes with a binary method leq of type 'a -> bool where the type variable 'a is bound to the type of self. Therefore, #comparable expands to < leq : 'a -> bool; .. > as 'a. We see here that the binder as also allows writing recursive types.

class virtual comparable = object (_ : 'a) method virtual leq : 'a -> bool end;;
class virtual comparable : object ('a) method virtual leq : 'a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable objects. We will extend it below with more operations. We have to use a type constraint on the class parameter x because the primitive <= is a polymorphic function in OCaml. The inherit clause ensures that the type of objects of this class is an instance of #comparable.

class money (x : float) = object inherit comparable val repr = x method value = repr method leq p = repr <= p#value end;;
class money : float -> object ('a) val repr : float method leq : 'a -> bool method value : float end

Note that the type money is not a subtype of type comparable, as the self type appears in contravariant position in the type of method leq. Indeed, an object m of class money has a method leq that expects an argument of type money since it accesses its value method. Considering m of type comparable would allow a call to method leq on m with an argument that does not have a method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

class money2 x = object inherit money x method times k = {< repr = k *. repr >} end;;
class money2 : float -> object ('a) val repr : float method leq : 'a -> bool method times : float -> 'a method value : float end

It is however possible to define functions that manipulate objects of type either money or money2: the function min will return the minimum of any two objects whose type unifies with #comparable. The type of min is not the same as #comparable -> #comparable -> #comparable, as the abbreviation #comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation generates a new variable.

let min (x : #comparable) y = if x#leq y then x else y;;
val min : (#comparable as 'a) -> 'a -> 'a = <fun>

This function can be applied to objects of type money or money2.

(min (new money 1.3) (new money 3.1))#value;;
- : float = 1.3
(min (new money2 5.0) (new money2 3.14))#value;;
- : float = 3.14

More examples of binary methods can be found in sections 6.2.1 and 6.2.3.

Note the use of override for method times. Writing new money2 (k *. repr) instead of {< repr = k *. repr >} would not behave well with inheritance: in a subclass money3 of money2 the times method would return an object of class money2 but not of class money3 as would be expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x = object (self : 'a) val repr = x method value = repr method print = print_float repr method times k = {< repr = k *. x >} method leq (p : 'a) = repr <= p#value method plus (p : 'a) = {< repr = x +. p#value >} end;;
class money : float -> object ('a) val repr : float method leq : 'a -> bool method plus : 'a -> 'a method print : unit method times : float -> 'a method value : float end

3.17  Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact with other objects of the same class, the representation of money objects must be revealed, using a method such as value. If we remove all binary methods (here plus and leq), the representation can easily be hidden inside objects by removing the method value as well. However, this is not possible as soon as some binary method requires access to the representation of objects of the same class (other than self).

class safe_money x = object (self : 'a) val repr = x method print = print_float repr method times k = {< repr = k *. x >} end;;
class safe_money : float -> object ('a) val repr : float method print : unit method times : float -> 'a end

Here, the representation of the object is known only to a particular object. To make it available to other objects of the same class, we are forced to make it available to the whole world. However we can easily restrict the visibility of the representation using the module system.

module type MONEY = sig type t class c : float -> object ('a) val repr : t method value : t method print : unit method times : float -> 'a method leq : 'a -> bool method plus : 'a -> 'a end end;;
module Euro : MONEY = struct type t = float class c x = object (self : 'a) val repr = x method value = repr method print = print_float repr method times k = {< repr = k *. x >} method leq (p : 'a) = repr <= p#value method plus (p : 'a) = {< repr = x +. p#value >} end end;;

Another example of friend functions may be found in section 6.2.3. These examples occur when a group of objects (here objects of the same class) and functions should see each others internal representation, while their representation should be hidden from the outside. The solution is always to define all friends in the same module, give access to the representation and use a signature constraint to make the representation abstract outside the module.


Previous Up Next ocaml-doc-4.11/ocaml.html/modtypes.html0000644000175000017500000007040413717225665017046 0ustar mehdimehdi 7.10  Module types (module specifications) Previous Up Next

7.10  Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape and type properties of modules.

module-type::= modtype-path  
  sig { specification  [;;] } end  
  functor ( module-name :  module-type ) ->  module-type  
  module-type ->  module-type  
  module-type with  mod-constraint  { and mod-constraint }  
  ( module-type )  
 
mod-constraint::= type [type-params]  typeconstr  type-equation  { type-constraint }  
  module module-path =  extended-module-path  
 
specification::= val value-name :  typexpr  
  external value-name :  typexpr =  external-declaration  
  type-definition  
  exception constr-decl  
  class-specification  
  classtype-definition  
  module module-name :  module-type  
  module module-name  { ( module-name :  module-type ) } :  module-type  
  module type modtype-name  
  module type modtype-name =  module-type  
  open module-path  
  include module-type

See also the following language extensions: recovering the type of a module, substitution inside a signature, type-level module aliases, attributes, extension nodes and generative functors.

7.10.1  Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path. The expression ( module-type ) denotes the same type as module-type.

7.10.2  Signatures

Signatures are type specifications for structures. Signatures sigend are collections of type specifications for value names, type names, exceptions, module names and module type names. A structure will match a signature if the structure provides definitions (implementations) for all the names specified in the signature (and possibly more), and these definitions meet the type requirements given in the signature.

An optional ;; is allowed after each specification in a signature. It serves as a syntactic separator with no semantic meaning.

Value specifications

A specification of a value component in a signature is written val value-name :  typexpr, where value-name is the name of the value and typexpr its expected type.

The form external value-name :  typexpr =  external-declaration is similar, except that it requires in addition the name to be implemented as the external function specified in external-declaration (see chapter 20).

Type specifications

A specification of one or several type components in a signature is written type typedef  { and typedef } and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexpr and an optional type representation = constr-decl … or = { field-decl}. The implementation of the type name in a matching structure must be compatible with the type expression specified in the equation (if given), and have the specified representation (if given). Conversely, users of that signature will be able to rely on the type equation or type representation, if given. More precisely, we have the following four situations:

Abstract type: no equation, no representation.
 
Names that are defined as abstract types in a signature can be implemented in a matching structure by any kind of type definition (provided it has the same number of type parameters). The exact implementation of the type will be hidden to the users of the structure. In particular, if the type is implemented as a variant type or record type, the associated constructors and fields will not be accessible to the users; if the type is implemented as an abbreviation, the type equality between the type name and the right-hand side of the abbreviation will be hidden from the users of the structure. Users of the structure consider that type as incompatible with any other type: a fresh type has been generated.
Type abbreviation: an equation = typexpr, no representation.
 
The type name must be implemented by a type compatible with typexpr. All users of the structure know that the type name is compatible with typexpr.
New variant type or record type: no equation, a representation.
 
The type name must be implemented by a variant type or record type with exactly the constructors or fields specified. All users of the structure have access to the constructors or fields, and can use them to create or inspect values of that type. However, users of the structure consider that type as incompatible with any other type: a fresh type has been generated.
Re-exported variant type or record type: an equation, a representation.
 
This case combines the previous two: the representation of the type is made visible to all users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide an exception with the name and arguments specified in the definition, and makes the exception available to all users of the structure.

Class specifications

A specification of one or several classes in a signature is written class class-spec  { and class-spec } and consists of a sequence of mutually recursive definitions of class names.

Class specifications are described more precisely in section 7.9.4.

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def { and classtype-def } and consists of a sequence of mutually recursive definitions of class type names. Class type specifications are described more precisely in section 7.9.5.

Module specifications

A specification of a module component in a signature is written module module-name :  module-type, where module-name is the name of the module component and module-type its expected type. Modules can be nested arbitrarily; in particular, functors can appear as components of structures and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name (  name1 :  module-type1 )(  namen :  module-typen ) :  module-type

instead of

module module-name : functor (  name1 :  module-type1 ) ->->  module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as an abstract module type.

An abstract module type specification module type modtype-name allows the name modtype-name to be implemented by any module type in a matching signature, but hides the implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name =  module-type requires the name modtype-name to be implemented by the module type module-type in a matching signature, but makes the equality between modtype-name and module-type apparent to all users of the signature.

Opening a module path

The expression open module-path in a signature does not specify any components. It simply affects the parsing of the following items of the signature, allowing components of the module denoted by module-path to be referred to by their simple names name instead of path accesses module-path .  name. The scope of the open stops at the end of the signature expression.

Including a signature

The expression include module-type in a signature performs textual inclusion of the components of the signature denoted by module-type. It behaves as if the components of the included signature were copied at the location of the include. The module-type argument must refer to a module type that is a signature, not a functor type.

7.10.3  Functor types

The module type expression functor ( module-name :  module-type1 ) ->  module-type2 is the type of functors (functions from modules to modules) that take as argument a module of type module-type1 and return as result a module of type module-type2. The module type module-type2 can use the name module-name to refer to type components of the actual argument of the functor. If the type module-type2 does not depend on type components of module-name, the module type expression can be simplified with the alternative short syntax module-type1 ->  module-type2 . No restrictions are placed on the type of the functor argument; in particular, a functor may take another functor as argument (“higher-order” functor).

7.10.4  The with operator

Assuming module-type denotes a signature, the expression module-type with  mod-constraint { and mod-constraint } denotes the same signature where type equations have been added to some of the type specifications, as described by the constraints following the with keyword. The constraint type [type-parameters]  typeconstr =  typexpr adds the type equation = typexpr to the specification of the type component named typeconstr of the constrained signature. The constraint module module-path =  extended-module-path adds type equations to all type components of the sub-structure denoted by module-path, making them equivalent to the corresponding type components of the structure denoted by extended-module-path.

For instance, if the module type name S is bound to the signature

        sig type t module M: (sig type u end) end

then S with type t=int denotes the signature

        sig type t=int module M: (sig type u end) end

and S with module M = N denotes the signature

        sig type t module M: (sig type u=N.u end) end

A functor taking two arguments of type S that share their t component is written

        functor (A: S) (B: S with type t = A.t) ...

Constraints are added left to right. After each constraint has been applied, the resulting signature must be a subtype of the signature before the constraint was applied. Thus, the with operator can only add information on the type components of a signature, but never remove information.


Previous Up Next ocaml-doc-4.11/ocaml.html/manual056.html0000644000175000017500000000224013717225665016703 0ustar mehdimehdi Chapter 19  The ocamlbuild compilation manager Previous Up Next

Chapter 19  The ocamlbuild compilation manager

Since OCaml version 4.03, the ocamlbuild compilation manager is distributed separately from the OCaml compiler. The project is now hosted at https://github.com/ocaml/ocamlbuild/.


Previous Up Next ocaml-doc-4.11/ocaml.html/polymorphism.html0000644000175000017500000012421413717225665017743 0ustar mehdimehdi Chapter 5  Polymorphism and its limitations Previous Up Next

Chapter 5  Polymorphism and its limitations



This chapter covers more advanced questions related to the limitations of polymorphic functions and types. There are some situations in OCaml where the type inferred by the type checker may be less generic than expected. Such non-genericity can stem either from interactions between side-effect and typing or the difficulties of implicit polymorphic recursion and higher-rank polymorphism.

This chapter details each of these situations and, if it is possible, how to recover genericity.

5.1  Weak polymorphism and mutation

5.1.1  Weakly polymorphic types

Maybe the most frequent examples of non-genericity derive from the interactions between polymorphic types and mutation. A simple example appears when typing the following expression

let store = ref None ;;
val store : '_weak1 option ref = {contents = None}

Since the type of None is 'a option and the function ref has type 'b -> 'b ref, a natural deduction for the type of store would be 'a option ref. However, the inferred type, '_weak1 option ref, is different. Type variables whose name starts with a _weak prefix like '_weak1 are weakly polymorphic type variables, sometimes shortened as weak type variables. A weak type variable is a placeholder for a single type that is currently unknown. Once the specific type t behind the placeholder type '_weak1 is known, all occurrences of '_weak1 will be replaced by t. For instance, we can define another option reference and store an int inside:

let another_store = ref None ;;
val another_store : '_weak2 option ref = {contents = None}
another_store := Some 0; another_store ;;
- : int option ref = {contents = Some 0}

After storing an int inside another_store, the type of another_store has been updated from '_weak2 option ref to int option ref. This distinction between weakly and generic polymorphic type variable protects OCaml programs from unsoundness and runtime errors. To understand from where unsoundness might come, consider this simple function which swaps a value x with the value stored inside a store reference, if there is such value:

let swap store x = match !store with | None -> store := Some x; x | Some y -> store := Some x; y;;
val swap : 'a option ref -> 'a -> 'a = <fun>

We can apply this function to our store

let one = swap store 1 let one_again = swap store 2 let two = swap store 3;;
val one : int = 1 val one_again : int = 1 val two : int = 2

After these three swaps the stored value is 3. Everything is fine up to now. We can then try to swap 3 with a more interesting value, for instance a function:

let error = swap store (fun x -> x);;
Error: This expression should not be a function, the expected type is int

At this point, the type checker rightfully complains that it is not possible to swap an integer and a function, and that an int should always be traded for another int. Furthermore, the type checker prevents us to change manually the type of the value stored by store:

store := Some (fun x -> x);;
Error: This expression should not be a function, the expected type is int

Indeed, looking at the type of store, we see that the weak type '_weak1 has been replaced by the type int

store;;
- : int option ref = {contents = Some 3}

Therefore, after placing an int in store, we cannot use it to store any value other than an int. More generally, weak types protect the program from undue mutation of values with a polymorphic type.

Moreover, weak types cannot appear in the signature of toplevel modules: types must be known at compilation time. Otherwise, different compilation units could replace the weak type with different and incompatible types. For this reason, compiling the following small piece of code

let option_ref = ref None

yields a compilation error

Error: The type of this expression, '_weak1 option ref,
       contains type variables that cannot be generalized

To solve this error, it is enough to add an explicit type annotation to specify the type at declaration time:

let option_ref: int option ref = ref None

This is in any case a good practice for such global mutable variables. Otherwise, they will pick out the type of first use. If there is a mistake at this point, this can result in confusing type errors when later, correct uses are flagged as errors.

5.1.2  The value restriction

Identifying the exact context in which polymorphic types should be replaced by weak types in a modular way is a difficult question. Indeed the type system must handle the possibility that functions may hide persistent mutable states. For instance, the following function uses an internal reference to implement a delayed identity function

let make_fake_id () = let store = ref None in fun x -> swap store x ;;
val make_fake_id : unit -> 'a -> 'a = <fun>
let fake_id = make_fake_id();;
val fake_id : '_weak3 -> '_weak3 = <fun>

It would be unsound to apply this fake_id function to values with different types. The function fake_id is therefore rightfully assigned the type '_weak3 -> '_weak3 rather than 'a -> 'a. At the same time, it ought to be possible to use a local mutable state without impacting the type of a function.

To circumvent these dual difficulties, the type checker considers that any value returned by a function might rely on persistent mutable states behind the scene and should be given a weak type. This restriction on the type of mutable values and the results of function application is called the value restriction. Note that this value restriction is conservative: there are situations where the value restriction is too cautious and gives a weak type to a value that could be safely generalized to a polymorphic type:

let not_id = (fun x -> x) (fun x -> x);;
val not_id : '_weak4 -> '_weak4 = <fun>

Quite often, this happens when defining function using higher order function. To avoid this problem, a solution is to add an explicit argument to the function:

let id_again = fun x -> (fun x -> x) (fun x -> x) x;;
val id_again : 'a -> 'a = <fun>

With this argument, id_again is seen as a function definition by the type checker and can therefore be generalized. This kind of manipulation is called eta-expansion in lambda calculus and is sometimes referred under this name.

5.1.3  The relaxed value restriction

There is another partial solution to the problem of unnecessary weak type, which is implemented directly within the type checker. Briefly, it is possible to prove that weak types that only appear as type parameters in covariant positions –also called positive positions– can be safely generalized to polymorphic types. For instance, the type 'a list is covariant in 'a:

let f () = [];;
val f : unit -> 'a list = <fun>
let empty = f ();;
val empty : 'a list = []

Remark that the type inferred for empty is 'a list and not '_weak5 list that should have occurred with the value restriction since f () is a function application.

The value restriction combined with this generalization for covariant type parameters is called the relaxed value restriction.

5.1.4  Variance and value restriction

Variance describes how type constructors behave with respect to subtyping. Consider for instance a pair of type x and xy with x a subtype of xy, denoted x :> xy:

type x = [ `X ];;
type x = [ `X ]
type xy = [ `X | `Y ];;
type xy = [ `X | `Y ]

As x is a subtype of xy, we can convert a value of type x to a value of type xy:

let x:x = `X;;
val x : x = `X
let x' = ( x :> xy);;
val x' : xy = `X

Similarly, if we have a value of type x list, we can convert it to a value of type xy list, since we could convert each element one by one:

let l:x list = [`X; `X];;
val l : x list = [`X; `X]
let l' = ( l :> xy list);;
val l' : xy list = [`X; `X]

In other words, x :> xy implies that x list :> xy list, therefore the type constructor 'a list is covariant (it preserves subtyping) in its parameter 'a.

Contrarily, if we have a function that can handle values of type xy

let f: xy -> unit = function | `X -> () | `Y -> ();;
val f : xy -> unit = <fun>

it can also handle values of type x:

let f' = (f :> x -> unit);;
val f' : x -> unit = <fun>

Note that we can rewrite the type of f and f' as

type 'a proc = 'a -> unit let f' = (f: xy proc :> x proc);;
type 'a proc = 'a -> unit val f' : x proc = <fun>

In this case, we have x :> xy implies xy proc :> x proc. Notice that the second subtyping relation reverse the order of x and xy: the type constructor 'a proc is contravariant in its parameter 'a. More generally, the function type constructor 'a -> 'b is covariant in its return type 'b and contravariant in its argument type 'a.

A type constructor can also be invariant in some of its type parameters, neither covariant nor contravariant. A typical example is a reference:

let x: x ref = ref `X;;
val x : x ref = {contents = `X}

If we were able to coerce x to the type xy ref as a variable xy, we could use xy to store the value `Y inside the reference and then use the x value to read this content as a value of type x, which would break the type system.

More generally, as soon as a type variable appears in a position describing mutable state it becomes invariant. As a corollary, covariant variables will never denote mutable locations and can be safely generalized. For a better description, interested readers can consult the original article by Jacques Garrigue on http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf

Together, the relaxed value restriction and type parameter covariance help to avoid eta-expansion in many situations.

5.1.5  Abstract data types

Moreover, when the type definitions are exposed, the type checker is able to infer variance information on its own and one can benefit from the relaxed value restriction even unknowingly. However, this is not the case anymore when defining new abstract types. As an illustration, we can define a module type collection as:

module type COLLECTION = sig type 'a t val empty: unit -> 'a t end module Implementation = struct type 'a t = 'a list let empty ()= [] end;;
module type COLLECTION = sig type 'a t val empty : unit -> 'a t end module Implementation : sig type 'a t = 'a list val empty : unit -> 'a list end
module List2: COLLECTION = Implementation;;
module List2 : COLLECTION

In this situation, when coercing the module List2 to the module type COLLECTION, the type checker forgets that 'a List2.t was covariant in 'a. Consequently, the relaxed value restriction does not apply anymore:

List2.empty ();;
- : '_weak5 List2.t = <abstr>

To keep the relaxed value restriction, we need to declare the abstract type 'a COLLECTION.t as covariant in 'a:

module type COLLECTION = sig type +'a t val empty: unit -> 'a t end module List2: COLLECTION = Implementation;;
module type COLLECTION = sig type +'a t val empty : unit -> 'a t end module List2 : COLLECTION

We then recover polymorphism:

List2.empty ();;
- : 'a List2.t = <abstr>

5.2  Polymorphic recursion

The second major class of non-genericity is directly related to the problem of type inference for polymorphic functions. In some circumstances, the type inferred by OCaml might be not general enough to allow the definition of some recursive functions, in particular for recursive function acting on non-regular algebraic data type.

With a regular polymorphic algebraic data type, the type parameters of the type constructor are constant within the definition of the type. For instance, we can look at arbitrarily nested list defined as:

type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list let l = Nested[ List [1]; Nested [List[2;3]]; Nested[Nested[]] ];;
type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list val l : int regular_nested = Nested [List [1]; Nested [List [2; 3]]; Nested [Nested []]]

Note that the type constructor regular_nested always appears as 'a regular_nested in the definition above, with the same parameter 'a. Equipped with this type, one can compute a maximal depth with a classic recursive function

let rec maximal_depth = function | List _ -> 1 | Nested [] -> 0 | Nested (a::q) -> 1 + max (maximal_depth a) (maximal_depth (Nested q));;
val maximal_depth : 'a regular_nested -> int = <fun>

Non-regular recursive algebraic data types correspond to polymorphic algebraic data types whose parameter types vary between the left and right side of the type definition. For instance, it might be interesting to define a datatype that ensures that all lists are nested at the same depth:

type 'a nested = List of 'a list | Nested of 'a list nested;;
type 'a nested = List of 'a list | Nested of 'a list nested

Intuitively, a value of type 'a nested is a list of list …of list of elements a with k nested list. We can then adapt the maximal_depth function defined on regular_depth into a depth function that computes this k. As a first try, we may define

let rec depth = function | List _ -> 1 | Nested n -> 1 + depth n;;
Error: This expression has type 'a list nested but an expression was expected of type 'a nested The type variable 'a occurs inside 'a list

The type error here comes from the fact that during the definition of depth, the type checker first assigns to depth the type 'a -> 'b . When typing the pattern matching, 'a -> 'b becomes 'a nested -> 'b, then 'a nested -> int once the List branch is typed. However, when typing the application depth n in the Nested branch, the type checker encounters a problem: depth n is applied to 'a list nested, it must therefore have the type 'a list nested -> 'b. Unifying this constraint with the previous one leads to the impossible constraint 'a list nested = 'a nested. In other words, within its definition, the recursive function depth is applied to values of type 'a t with different types 'a due to the non-regularity of the type constructor nested. This creates a problem because the type checker had introduced a new type variable 'a only at the definition of the function depth whereas, here, we need a different type variable for every application of the function depth.

5.2.1  Explicitly polymorphic annotations

The solution of this conundrum is to use an explicitly polymorphic type annotation for the type 'a:

let rec depth: 'a. 'a nested -> int = function | List _ -> 1 | Nested n -> 1 + depth n;;
val depth : 'a nested -> int = <fun>
depth ( Nested(List [ [7]; [8] ]) );;
- : int = 2

In the type of depth, 'a.'a nested -> int, the type variable 'a is universally quantified. In other words, 'a.'a nested -> int reads as “for all type 'a, depth maps 'a nested values to integers”. Whereas the standard type 'a nested -> int can be interpreted as “let be a type variable 'a, then depth maps 'a nested values to integers”. There are two major differences with these two type expressions. First, the explicit polymorphic annotation indicates to the type checker that it needs to introduce a new type variable every times the function depth is applied. This solves our problem with the definition of the function depth.

Second, it also notifies the type checker that the type of the function should be polymorphic. Indeed, without explicit polymorphic type annotation, the following type annotation is perfectly valid

let sum: 'a -> 'b -> 'c = fun x y -> x + y;;
val sum : int -> int -> int = <fun>

since 'a,'b and 'c denote type variables that may or may not be polymorphic. Whereas, it is an error to unify an explicitly polymorphic type with a non-polymorphic type:

let sum: 'a 'b 'c. 'a -> 'b -> 'c = fun x y -> x + y;;
Error: This definition has type int -> int -> int which is less general than 'a 'b 'c. 'a -> 'b -> 'c

An important remark here is that it is not needed to explicit fully the type of depth: it is sufficient to add annotations only for the universally quantified type variables:

let rec depth: 'a. 'a nested -> _ = function | List _ -> 1 | Nested n -> 1 + depth n;;
val depth : 'a nested -> int = <fun>
depth ( Nested(List [ [7]; [8] ]) );;
- : int = 2

5.2.2  More examples

With explicit polymorphic annotations, it becomes possible to implement any recursive function that depends only on the structure of the nested lists and not on the type of the elements. For instance, a more complex example would be to compute the total number of elements of the nested lists:

let len nested = let map_and_sum f = List.fold_left (fun acc x -> acc + f x) 0 in let rec len: 'a. ('a list -> int ) -> 'a nested -> int = fun nested_len n -> match n with | List l -> nested_len l | Nested n -> len (map_and_sum nested_len) n in len List.length nested;;
val len : 'a nested -> int = <fun>
len (Nested(Nested(List [ [ [1;2]; [3] ]; [ []; [4]; [5;6;7]]; [[]] ])));;
- : int = 7

Similarly, it may be necessary to use more than one explicitly polymorphic type variables, like for computing the nested list of list lengths of the nested list:

let shape n = let rec shape: 'a 'b. ('a nested -> int nested) -> ('b list list -> 'a list) -> 'b nested -> int nested = fun nest nested_shape -> function | List l -> raise (Invalid_argument "shape requires nested_list of depth greater than 1") | Nested (List l) -> nest @@ List (nested_shape l) | Nested n -> let nested_shape = List.map nested_shape in let nest x = nest (Nested x) in shape nest nested_shape n in shape (fun n -> n ) (fun l -> List.map List.length l ) n;;
val shape : 'a nested -> int nested = <fun>
shape (Nested(Nested(List [ [ [1;2]; [3] ]; [ []; [4]; [5;6;7]]; [[]] ])));;
- : int nested = Nested (List [[2; 1]; [0; 1; 3]; [0]])

5.3  Higher-rank polymorphic functions

Explicit polymorphic annotations are however not sufficient to cover all the cases where the inferred type of a function is less general than expected. A similar problem arises when using polymorphic functions as arguments of higher-order functions. For instance, we may want to compute the average depth or length of two nested lists:

let average_depth x y = (depth x + depth y) / 2;;
val average_depth : 'a nested -> 'b nested -> int = <fun>
let average_len x y = (len x + len y) / 2;;
val average_len : 'a nested -> 'b nested -> int = <fun>
let one = average_len (List [2]) (List [[]]);;
val one : int = 1

It would be natural to factorize these two definitions as:

let average f x y = (f x + f y) / 2;;
val average : ('a -> int) -> 'a -> 'a -> int = <fun>

However, the type of average len is less generic than the type of average_len, since it requires the type of the first and second argument to be the same:

average_len (List [2]) (List [[]]);;
- : int = 1
average len (List [2]) (List [[]]);;
Error: This expression has type 'a list but an expression was expected of type int

As previously with polymorphic recursion, the problem stems from the fact that type variables are introduced only at the start of the let definitions. When we compute both f x and f y, the type of x and y are unified together. To avoid this unification, we need to indicate to the type checker that f is polymorphic in its first argument. In some sense, we would want average to have type

val average: ('a. 'a nested -> int) -> 'a nested -> 'b nested -> int

Note that this syntax is not valid within OCaml: average has an universally quantified type 'a inside the type of one of its argument whereas for polymorphic recursion the universally quantified type was introduced before the rest of the type. This position of the universally quantified type means that average is a second-rank polymorphic function. This kind of higher-rank functions is not directly supported by OCaml: type inference for second-rank polymorphic function and beyond is undecidable; therefore using this kind of higher-rank functions requires to handle manually these universally quantified types.

In OCaml, there are two ways to introduce this kind of explicit universally quantified types: universally quantified record fields,

type 'a nested_reduction = { f:'elt. 'elt nested -> 'a };;
type 'a nested_reduction = { f : 'elt. 'elt nested -> 'a; }
let boxed_len = { f = len };;
val boxed_len : int nested_reduction = {f = <fun>}

and universally quantified object methods:

let obj_len = object method f:'a. 'a nested -> 'b = len end;;
val obj_len : < f : 'a. 'a nested -> int > = <obj>

To solve our problem, we can therefore use either the record solution:

let average nsm x y = (nsm.f x + nsm.f y) / 2 ;;
val average : int nested_reduction -> 'a nested -> 'b nested -> int = <fun>

or the object one:

let average (obj:<f:'a. 'a nested -> _ > ) x y = (obj#f x + obj#f y) / 2 ;;
val average : < f : 'a. 'a nested -> int > -> 'b nested -> 'c nested -> int = <fun>

Previous Up Next ocaml-doc-4.11/ocaml.html/extensionsyntax.html0000644000175000017500000001707413717225665020471 0ustar mehdimehdi 8.16  Extension-only syntax Previous Up Next

8.16  Extension-only syntax

(Introduced in OCaml 4.02.2, extended in 4.03)

Some syntactic constructions are accepted during parsing and rejected during type checking. These syntactic constructions can therefore not be used directly in vanilla OCaml. However, -ppx rewriters and other external tools can exploit this parser leniency to extend the language with these new syntactic constructions by rewriting them to vanilla constructions.

8.16.1  Extension operators

(Introduced in OCaml 4.02.2)

infix-symbol::= ...  
  # {operator-chars#   {operator-char | #}  
 

Operator names starting with a # character and containing more than one # character are reserved for extensions.

8.16.2  Extension literals

(Introduced in OCaml 4.03)

float-literal::= ...  
  [-] (09) { 09∣ _ } [. { 09∣ _ }] [(e∣ E) [+∣ -] (09) { 09∣ _ }] [gz∣ GZ]  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ } [. { 09∣ AF∣ af∣ _ }] [(p∣ P) [+∣ -] (09) { 09∣ _ }] [gz∣ GZ]  
 
int-literal::= ...  
  [-] (09) { 09 ∣  _ }[gz∣ GZ]  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ } [gz∣ GZ]  
  [-] (0o∣ 0O) (07) { 07∣ _ } [gz∣ GZ]  
  [-] (0b∣ 0B) (01) { 01∣ _ } [gz∣ GZ]  
 

Int and float literals followed by an one-letter identifier in the range [g..zG..Z] are extension-only literals.


Previous Up Next ocaml-doc-4.11/ocaml.html/debugger.html0000644000175000017500000014015313717225665016765 0ustar mehdimehdi Chapter 17  The debugger (ocamldebug) Previous Up Next

Chapter 17  The debugger (ocamldebug)

This chapter describes the OCaml source-level replay debugger ocamldebug.

Unix:   The debugger is available on Unix systems that provide BSD sockets.
Windows:   The debugger is available under the Cygwin port of OCaml, but not under the native Win32 ports.

17.1  Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all .cmo and .cma files that are part of the program should have been created with ocamlc -g, and they must be linked together with ocamlc -g.

Compiling with -g entails no penalty on the running time of programs: object files and bytecode executable files are bigger and take longer to produce, but the executable files run at exactly the same speed as if they had been compiled without -g.

17.2  Invocation

17.2.1  Starting the debugger

The OCaml debugger is invoked by running the program ocamldebug with the name of the bytecode executable file as first argument:

        ocamldebug [options] program [arguments]

The arguments following program are optional, and are passed as command-line arguments to the program being debugged. (See also the set arguments command.)

The following command-line options are recognized:

-c count
Set the maximum number of simultaneously live checkpoints to count.
-cd dir
Run the debugger program from the working directory dir, instead of the current directory. (See also the cd command.)
-emacs
Tell the debugger it is executed under Emacs. (See section 17.10 for information on how to run the debugger under Emacs.)
-I directory
Add directory to the list of directories searched for source files and compiled files. (See also the directory command.)
-s socket
Use socket for communicating with the debugged program. See the description of the command set socket (section 17.8.8) for the format of socket.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

17.2.2  Initialization file

On start-up, the debugger will read commands from an initialization file before giving control to the user. The default file is .ocamldebug in the current directory if it exists, otherwise .ocamldebug in the user’s home directory.

17.2.3  Exiting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate the action of any debugger command that is in progress and return to the debugger command level.

17.3  Commands

A debugger command is a single line of input. It starts with a command name, which is followed by arguments depending on this name. Examples:

        run
        goto 1000
        set arguments arg1 arg2

A command name can be truncated as long as there is no ambiguity. For instance, go 1000 is understood as goto 1000, since there are no other commands whose name starts with go. For the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands for run even though there are others commands starting with r. You can test the validity of an abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.

17.3.1  Getting help

The OCaml debugger has a simple on-line help system, which gives a brief description of each command and variable.

help
Print the list of commands.
help command
Give help about the command command.
help set variable, help show variable
Give help about the variable variable. The list of all debugger variables can be obtained with help set.
help info topic
Give help about topic. Use help info to get a list of known topics.

17.3.2  Accessing the debugger state

set variable value
Set the debugger variable variable to the value value.
show variable
Print the value of the debugger variable variable.
info subject
Give information about the given subject. For instance, info breakpoints will print the list of all breakpoints.

17.4  Executing a program

17.4.1  Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to the next or previous event encountered in the program execution). Also, breakpoints can only be set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of this counter is referred as the current time. Thanks to reverse execution, it is possible to jump back and forth to any time of the execution.

Here is where the debugger events (written ǧ) are located in the source code:

Exceptions: A function application followed by a function return is replaced by the compiler by a jump (tail-call optimization). In this case, no event is put after the function application.

17.4.2  Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting breakpoints or assigning debugger variables before execution starts. There are several ways to start execution:

run
Run the program until a breakpoint is hit, or the program terminates.
goto 0
Load the program and stop on the first event.
goto time
Load the program and execute it until the given time. Useful when you already know approximately at what time the problem appears. Also useful to set breakpoints on function values that have not been computed at time 0 (see section 17.5).

The execution of a program is affected by certain information it receives when the debugger starts it, such as the command-line arguments to the program and its working directory. The debugger provides commands to specify this information (set arguments and cd). These commands must be used before program execution starts. If you try to change the arguments or the working directory after starting your program, the debugger will kill the program (after asking for confirmation).

17.4.3  Running the program

The following commands execute the program forward or backward, starting at the current time. The execution will stop either when specified by the command or when a breakpoint is encountered.

run
Execute the program forward from current time. Stops at next breakpoint or when the program terminates.
reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint encountered before the current time.
step [count]
Run the program and stop at the next event. With an argument, do it count times. If count is 0, run until the program terminates or a breakpoint is hit.
backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count times.
next [count]
Run the program and stop at the next event, skipping over function calls. With an argument, do it count times.
previous [count]
Run the program backward and stop at the previous event, skipping over function calls. With an argument, do it count times.
finish
Run the program until the current function returns.
start
Run the program backward and stop at the first event before the current function invocation.

17.4.4  Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.

As you move through the program, the debugger maintains an history of the successive times you stop at. The last command can be used to revisit these times: each last command moves one step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.
last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count times.
set history size
Set the size of the execution history.

17.4.5  Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile the program without leaving the debugger.

17.5  Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It can be set in several ways using the break command. Breakpoints are assigned numbers when set, for further reference. The most comfortable way to set breakpoints is through the Emacs interface (see section 17.10).

break
Set a breakpoint at the current position in the program execution. The current position must be on an event (i.e., neither at the beginning, nor at the end of the program).
break function
Set a breakpoint at the beginning of function. This works only when the functional value of the identifier function has been computed and assigned to the identifier. Hence this command cannot be used at the very beginning of the program execution, when all identifiers are still undefined; use goto time to advance execution until the functional value is available.
break @ [module] line
Set a breakpoint in module module (or in the current module if module is not given), at the first event of line line.
break @ [module] line column
Set a breakpoint in module module (or in the current module if module is not given), at the event closest to line line, column column.
break @ [module] # character
Set a breakpoint in module module at the event closest to character number character.
break frag:pc, break pc
Set a breakpoint at code address frag:pc. The integer frag is the identifier of a code fragment, a set of modules that have been loaded at once, either initially or with the Dynlink module. The integer pc is the instruction counter within this code fragment. If frag is omitted, it defaults to 0, which is the code fragment of the program loaded initially.
delete [breakpoint-numbers]
Delete the specified breakpoints. Without argument, all breakpoints are deleted (after asking for confirmation).
info breakpoints
Print the list of all breakpoints.

17.6  The call stack

Each time the program performs a function application, it saves the location of the application (the return address) in a block of data called a stack frame. The frame also contains the local variables of the caller function. All the frames are allocated in a region of memory called the call stack. The command backtrace (or bt) displays parts of the call stack.

At any time, one of the stack frames is “selected” by the debugger; several debugger commands refer implicitly to the selected frame. In particular, whenever you ask the debugger for the value of a local variable, the value is found in the selected frame. The commands frame, up and down select whichever frame you are interested in.

When the program stops, the debugger automatically selects the currently executing frame and describes it briefly as the frame command does.

frame
Describe the currently selected stack frame.
frame frame-number
Select a stack frame by number and describe it. The frame currently executing when the program stopped has number 0; its caller has number 1; and so on up the call stack.
backtrace [count], bt [count]
Print the call stack. This is useful to see which sequence of function calls led to the currently executing frame. With a positive argument, print only the innermost count frames. With a negative argument, print only the outermost -count frames.
up [count]
Select and display the stack frame just “above” the selected frame, that is, the frame that called the selected frame. An argument says how many frames to go up.
down [count]
Select and display the stack frame just “below” the selected frame, that is, the frame that was called by the selected frame. An argument says how many frames to go down.

17.7  Examining variable values

The debugger can print the current value of simple expressions. The expressions can involve program variables: all the identifiers that are in scope at the selected program point can be accessed.

Expressions that can be printed are a subset of OCaml expressions, as described by the following grammar:

simple-expr::= lowercase-ident  
  { capitalized-ident . }  lowercase-ident  
  *  
  $ integer  
  simple-expr .  lowercase-ident  
  simple-expr .(  integer )  
  simple-expr .[  integer ]  
  ! simple-expr  
  ( simple-expr )

The first two cases refer to a value identifier, either unqualified or qualified by the path to the structure that define it. * refers to the result just computed (typically, the value of a function application), and is valid only if the selected event is an “after” event (typically, a function application). $ integer refer to a previously printed value. The remaining four forms select part of an expression: respectively, a record field, an array element, a string element, and the current contents of a reference.

print variables
Print the values of the given variables. print can be abbreviated as p.
display variables
Same as print, but limit the depth of printing to 1. Useful to browse large data structures without printing them in full. display can be abbreviated as d.

When printing a complex expression, a name of the form $integer is automatically assigned to its value. Such names are also assigned to parts of the value that cannot be printed because the maximal printing depth is exceeded. Named values can be printed later on with the commands p $integer or d $integer. Named values are valid only as long as the program is stopped. They are forgotten as soon as the program resumes execution.

set print_depth d
Limit the printing of values to a maximal depth of d.
set print_length l
Limit the printing of values to at most l nodes printed.

17.8  Controlling the debugger

17.8.1  Setting the program name and arguments

set program file
Set the program name to file.
set arguments arguments
Give arguments as command-line arguments for the program.

A shell is used to pass the arguments to the debugged program. You can therefore use wildcards, shell variables, and file redirections inside the arguments. To debug programs that read from standard input, it is recommended to redirect their input from a file (using set arguments < input-file), otherwise input to the program and input to the debugger are not properly separated, and inputs are not properly replayed when running the program backwards.

17.8.2  How programs are loaded

The loadingmode variable controls how the program is executed.

set loadingmode direct
The program is run directly by the debugger. This is the default mode.
set loadingmode runtime
The debugger execute the OCaml runtime ocamlrun on the program. Rarely useful; moreover it prevents the debugging of programs compiled in “custom runtime” mode.
set loadingmode manual
The user starts manually the program, when asked by the debugger. Allows remote debugging (see section 17.8.8).

17.8.3  Search path for files

The debugger searches for source files and compiled interface files in a list of directories, the search path. The search path initially contains the current directory . and the standard library directory. The directory command adds directories to the path.

Whenever the search path is modified, the debugger will clear any information it may have cached about the files.

directory directorynames
Add the given directories to the search path. These directories are added at the front, and will therefore be searched first.
directory directorynames for modulename
Same as directory directorynames, but the given directories will be searched only when looking for the source file of a module that has been packed into modulename.
directory
Reset the search path. This requires confirmation.

17.8.4  Working directory

Each time a program is started in the debugger, it inherits its working directory from the current working directory of the debugger. This working directory is initially whatever it inherited from its parent process (typically the shell), but you can specify a new working directory in the debugger with the cd command or the -cd command-line option.

cd directory
Set the working directory for ocamldebug to directory.
pwd
Print the working directory for ocamldebug.

17.8.5  Turning reverse execution on and off

In some cases, you may want to turn reverse execution off. This speeds up the program execution, and is also sometimes useful for interactive programs.

Normally, the debugger takes checkpoints of the program state from time to time. That is, it makes a copy of the current state of the program (using the Unix system call fork). If the variable checkpoints is set to off, the debugger will not take any checkpoints.

set checkpoints on/off
Select whether the debugger makes checkpoints or not.

17.8.6  Behavior of the debugger with respect to fork

When the program issues a call to fork, the debugger can either follow the child or the parent. By default, the debugger follows the parent process. The variable follow_fork_mode controls this behavior:

set follow_fork_mode child/parent
Select whether to follow the child or the parent in case of a call to fork.

17.8.7  Stopping execution when new code is loaded

The debugger is compatible with the Dynlink module. However, when an external module is not yet loaded, it is impossible to set a breakpoint in its code. In order to facilitate setting breakpoints in dynamically loaded code, the debugger stops the program each time new modules are loaded. This behavior can be disabled using the break_on_load variable:

set break_on_load on/off
Select whether to stop after loading new code.

17.8.8  Communication between the debugger and the program

The debugger communicate with the program being debugged through a Unix socket. You may need to change the socket name, for example if you need to run the debugger on a machine and your program on another.

set socket socket
Use socket for communication with the program. socket can be either a file name, or an Internet port specification host:port, where host is a host name or an Internet address in dot notation, and port is a port number on the host.

On the debugged program side, the socket name is passed through the CAML_DEBUG_SOCKET environment variable.

17.8.9  Fine-tuning the debugger

Several variables enables to fine-tune the debugger. Reasonable defaults are provided, and you should normally not have to change them.

set processcount count
Set the maximum number of checkpoints to count. More checkpoints facilitate going far back in time, but use more memory and create more Unix processes.

As checkpointing is quite expensive, it must not be done too often. On the other hand, backward execution is faster when checkpoints are taken more often. In particular, backward single-stepping is more responsive when many checkpoints have been taken just before the current time. To fine-tune the checkpointing strategy, the debugger does not take checkpoints at the same frequency for long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep and smallstep contain the number of events between two checkpoints in each case.

set bigstep count
Set the number of events between two checkpoints for long displacements.
set smallstep count
Set the number of events between two checkpoints for small displacements.

The following commands display information on checkpoints and events:

info checkpoints
Print a list of checkpoints.
info events [module]
Print the list of events in the given module (the current module, by default).

17.8.10  User-defined printers

Just as in the toplevel system (section 10.2), the user can register functions for printing values of certain types. For technical reasons, the debugger cannot call printing functions that reside in the program being debugged. The code for the printing functions must therefore be loaded explicitly in the debugger.

load_printer "file-name"
Load in the debugger the indicated .cmo or .cma object file. The file is loaded in an environment consisting only of the OCaml standard library plus the definitions provided by object files previously loaded using load_printer. If this file depends on other object files not yet loaded, the debugger automatically loads them if it is able to find them in the search path. The loaded file does not have direct access to the modules of the program being debugged.
install_printer printer-name
Register the function named printer-name (a value path) as a printer for objects whose types match the argument type of the function. That is, the debugger will call printer-name when it has such an object to print. The printing function printer-name must use the Format library module to produce its output, otherwise its output will not be correctly located in the values printed by the toplevel loop.

The value path printer-name must refer to one of the functions defined by the object files loaded using load_printer. It cannot reference the functions of the program being debugged.

remove_printer printer-name
Remove the named function from the table of value printers.

17.9  Miscellaneous commands

list [module] [beginning] [end]
List the source of module module, from line number beginning to line number end. By default, 20 lines of the current module are displayed, starting 10 lines before the current position.
source filename
Read debugger commands from the script filename.

17.10  Running the debugger under Emacs

The most user-friendly way to use the debugger is to run it under Emacs. See the file emacs/README in the distribution for information on how to load the Emacs Lisp files for OCaml support.

The OCaml debugger is started under Emacs by the command M-x camldebug, with argument the name of the executable file progname to debug. Communication with the debugger takes place in an Emacs buffer named *camldebug-progname*. The editing and history facilities of Shell mode are available for interacting with the debugger.

In addition, Emacs displays the source files containing the current event (the current position in the program execution) and highlights the location of the event. This display is updated synchronously with the debugger action.

The following bindings for the most common debugger commands are available in the *camldebug-progname* buffer:

C-c C-s
(command step): execute the program one step forward.
C-c C-k
(command backstep): execute the program one step backward.
C-c C-n
(command next): execute the program one step forward, skipping over function calls.
Middle mouse button
(command display): display named value. $n under mouse cursor (support incremental browsing of large data structures).
C-c C-p
(command print): print value of identifier at point.
C-c C-d
(command display): display value of identifier at point.
C-c C-r
(command run): execute the program forward to next breakpoint.
C-c C-v
(command reverse): execute the program backward to latest breakpoint.
C-c C-l
(command last): go back one step in the command history.
C-c C-t
(command backtrace): display backtrace of function calls.
C-c C-f
(command finish): run forward till the current function returns.
C-c <
(command up): select the stack frame below the current frame.
C-c >
(command down): select the stack frame above the current frame.

In all buffers in OCaml editing mode, the following debugger commands are also available:

C-x C-a C-b
(command break): set a breakpoint at event closest to point
C-x C-a C-p
(command print): print value of identifier at point
C-x C-a C-d
(command display): display value of identifier at point

Previous Up Next ocaml-doc-4.11/ocaml.html/previous_motif.svg0000644000175000017500000000027113717225665020102 0ustar mehdimehdi ocaml-doc-4.11/ocaml.html/generalizedopens.html0000644000175000017500000002444113717225665020540 0ustar mehdimehdi 8.22  Generalized open statements Previous Up Next

8.22  Generalized open statements

(Introduced in 4.08)

definition::= ...  
   open  module-expr  
   open! module-expr  
 
specification::= ...  
   open  extended-module-path  
   open! extended-module-path  
 
expr::= ...  
  let open  module-expr in  expr  
  let open! module-expr in  expr  
 

This extension makes it possible to open any module expression in module structures and expressions. A similar mechanism is also available inside module types, but only for extended module paths (e.g. F(X).G(Y)).

For instance, a module can be constrained when opened with

module M = struct let x = 0 let hidden = 1 end open (M:sig val x: int end) let y = hidden
Error: Unbound value hidden

Another possibility is to immediately open the result of a functor application

let sort (type x) (x:x list) = let open Set.Make(struct type t = x let compare=compare end) in elements (of_list x)
val sort : 'x list -> 'x list = <fun>

Going further, this construction can introduce local components inside a structure,

module M = struct let x = 0 open! struct let x = 0 let y = 1 end let w = x + y end
module M : sig val x : int val w : int end

One important restriction is that types introduced by open struct ... end cannot appear in the signature of the enclosing structure, unless they are defined equal to some non-local type. So:

module M = struct open struct type 'a t = 'a option = None | Some of 'a end let x : int t = Some 1 end
module M : sig val x : int option end

is OK, but:

module M = struct open struct type t = A end let x = A end
Error: The type t/4502 introduced by this open appears in the signature File "exten.etex", line 3, characters 6-7: The value x has no valid type if t/4502 is hidden

is not because x cannot be given any type other than t, which only exists locally. Although the above would be OK if x too was local:

module M: sig end = struct open struct type t = A endopen struct let x = A endend
module M : sig end

Inside signatures, extended opens are limited to extended module paths,

module type S = sig module F: sig end -> sig type t end module X: sig end open F(X) val f: t end
module type S = sig module F : sig end -> sig type t end module X : sig end val f : F(X).t end

and not

  open struct type t = int end

In those situations, local substitutions(see 8.7.2) can be used instead.

Beware that this extension is not available inside class definitions:

class c =
  let open Set.Make(Int) in
  ...

Previous Up Next ocaml-doc-4.11/ocaml.html/language.html0000644000175000017500000000605713717225665016770 0ustar mehdimehdi Chapter 7  The OCaml language Previous Up Next

Chapter 7  The OCaml language

Foreword

This document is intended as a reference manual for the OCaml language. It lists the language constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial introduction to the language: there is not a single example. A good working knowledge of OCaml is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive meaning, without further definition. As a consequence, the typing rules have been left out, by lack of the mathematical framework required to express them, while they are definitely part of a full formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in italic font (like  that). Square brackets […] denote optional components. Curly brackets {…} denotes zero, one or several repetitions of the enclosed components. Curly brackets with a trailing plus sign {…}+ denote one or several repetitions of the enclosed components. Parentheses (…) denote grouping.


Previous Up Next ocaml-doc-4.11/ocaml.html/coreexamples.html0000644000175000017500000023061713717225665017675 0ustar mehdimehdi Chapter 1  The core language Previous Up Next

Chapter 1  The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with programming in a conventional languages (say, C or Java) is assumed, but no prior exposure to functional languages is required. The present chapter introduces the core language. Chapter 2 deals with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced examples.

1.1  Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from the Unix shell, or by launching the OCamlwin.exe application under Windows. This tutorial is presented as the transcript of a session with the interactive system: lines starting with # represent user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or functions).

1+2*3;;
- : int = 7
let pi = 4.0 *. atan 1.0;;
val pi : float = 3.14159265358979312
let square x = x *. x;;
val square : float -> float = <fun>
square (sin pi) +. square (cos pi);;
- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters need no explicit type declaration: the system infers their types from their usage in the function. Notice also that integers and floating-point numbers are distinct types, with distinct operators: + and * operate on integers, but +. and *. operate on floats.

1.0 * 2;;
Error: This expression has type float but an expression was expected of type int

Recursive functions are defined with the let rec binding:

let rec fib n = if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>
fib 10;;
- : int = 55

1.2  Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:

Predefined data structures include tuples, arrays, and lists. There are also general mechanisms for defining your own data structures, such as records and variants, which will be covered in more detail later; for now, we concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated elements, or built from the empty list [] (pronounce “nil”) by adding elements in front using the :: (“cons”) operator.

let l = ["is"; "a"; "tale"; "told"; "etc."];;
val l : string list = ["is"; "a"; "tale"; "told"; "etc."]
"Life" :: l;;
- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated from memory: all memory management is entirely automatic in OCaml. Similarly, there is no explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-matching. List patterns have exactly the same form as list expressions, with identifiers representing unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort lst = match lst with [] -> [] | head :: tail -> insert head (sort tail) and insert elt lst = match lst with [] -> [elt] | head :: tail -> if elt <= head then elt :: lst else head :: insert elt tail ;;
val sort : 'a list -> 'a list = <fun> val insert : 'a -> 'a list -> 'a list = <fun>
sort l;;
- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a list, means that sort can actually apply to lists of any type, and returns a list of the same type. The type 'a is a type variable, and stands for any given type. The reason why sort can apply to lists of any type is that the comparisons (=, <=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This makes sort itself polymorphic over all list types.

sort [6;2;5;3];;
- : int list = [2; 3; 5; 6]
sort [3.14; 2.718];;
- : float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list containing the same elements as the input list, in ascending order. There is actually no way in OCaml to modify a list in-place once it is built: we say that lists are immutable data structures. Most OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that they can be modified in-place at any time.

The OCaml notation for the type of a function with multiple arguments is
arg1_type -> arg2_type -> ... -> return_type. For example, the type inferred for insert, 'a -> 'a list -> 'a list, means that insert takes two arguments, an element of any type 'a and a list with elements of the same type 'a and returns a list of the same type.

1.3  Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can be passed around freely just as any other piece of data. For instance, here is a deriv function that takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>
let sin' = deriv sin 1e-6;;
val sin' : float -> float = <fun>
sin' pi;;
- : float = -1.00000000013961143

Even function composition is definable:

let compose f g = function x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order functions”. Functionals are especially useful to provide iterators or similar generic operations over a data structure. For instance, the standard OCaml library provides a List.map functional that applies a given function to each element of a list, and returns the list of the results:

List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is often useful, but there is nothing magic with it: it can easily be defined as follows.

let rec map f l = match l with [] -> [] | hd :: tl -> f hd :: map f tl;;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1.4  Records and variants

User-defined data structures include records and variants. Both are defined with the type declaration. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }
let add_ratio r1 r2 = {num = r1.num * r2.denom + r2.num * r1.denom; denom = r1.denom * r2.denom};;
val add_ratio : ratio -> ratio -> ratio = <fun>
add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}

Record fields can also be accessed through pattern-matching:

let integer_part r = match r with {num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r in a record pattern:

let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Unneeded fields can be omitted:

let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard _::

let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by eliding the =field part:

let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

let integer_product integer ratio = { ratio with num = integer * ratio.num };;
val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible forms for values of that type. Each case is identified by a name, called a constructor, which serves both for constructing values of the variant type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish them from variable names (which must start with a lowercase letter). For instance, here is a variant type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number, or the constant Error representing the result of an invalid operation (e.g. a division by zero).

Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative
let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two numbers involved:

let add_num n1 n2 = match (n1, n2) with (Int i1, Int i2) -> (* Check for overflow of integer addition *) if sign_int i1 = sign_int i2 && sign_int (i1 + i2) <> sign_int i1 then Float(float i1 +. float i2) else Int(i1 + i2) | (Int i1, Float f2) -> Float(float i1 +. f2) | (Float f1, Int i2) -> Float(f1 +. float i2) | (Float f1, Float f2) -> Float(f1 +. f2) | (Error, _) -> Error | (_, Error) -> Error;;
val add_num : number -> number -> number = <fun>
add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

Another interesting example of variant type is the built-in 'a option type which represents either a value of type 'a or an absence of value:

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

This type is particularly useful when defining function that can fail in common situations, for instance

let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for example the type of binary trees:

type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is either empty, or is a node containing one value of type 'a and two subtrees also containing values of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same structure as the type definition itself. For instance, here are functions performing lookup and insertion in ordered binary trees (elements increase from left to right):

let rec member x btree = match btree with Empty -> false | Node(y, left, right) -> if x = y then true else if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>
let rec insert x btree = match btree with Empty -> Node(x, Empty, Empty) | Node(y, left, right) -> if x <= y then Node(y, insert x left, right) else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

1.4.1  Record and variant disambiguation

( This subsection can be skipped on the first reading )

Astute readers may have wondered what happens when two or more record fields or constructors share the same name

type first_record = { x:int; y:int; z:int } type middle_record = { x:int; z:int } type last_record = { x:int };;
type first_variant = A | B | C type last_variant = A;;

The answer is that when confronted with multiple options, OCaml tries to use locally available information to disambiguate between the various fields and constructors. First, if the type of the record or variant is known, OCaml can pick unambiguously the corresponding field or constructor. For instance:

let look_at_x_then_z (r:first_record) = let x = r.x in x + r.z;;
val look_at_x_then_z : first_record -> int = <fun>
let permute (x:first_variant) = match x with | A -> (B:first_variant) | B -> A | C -> C;;
val permute : first_variant -> first_variant = <fun>
type wrapped = First of first_record let f (First r) = r, r.x;;
type wrapped = First of first_record val f : wrapped -> first_record * int = <fun>

In the first example, (r:first_record) is an explicit annotation telling OCaml that the type of r is first_record. With this annotation, Ocaml knows that r.x refers to the x field of the first record type. Similarly, the type annotation in the second example makes it clear to OCaml that the constructors A, B and C come from the first variant type. Contrarily, in the last example, OCaml has inferred by itself that the type of r can only be first_record and there are no needs for explicit type annotations.

Those explicit type annotations can in fact be used anywhere. Most of the time they are unnecessary, but they are useful to guide disambiguation, to debug unexpected type errors, or combined with some of the more advanced features of OCaml described in later chapters.

Secondly, for records, OCaml can also deduce the right record type by looking at the whole set of fields used in a expression or pattern:

let project_and_rotate {x;y; _ } = { x= - y; y = x ; z = 0} ;;
val project_and_rotate : first_record -> first_record = <fun>

Since the fields x and y can only appear simultaneously in the first record type, OCaml infers that the type of project_and_rotate is first_record -> first_record.

In last resort, if there is not enough information to disambiguate between different fields or constructors, Ocaml picks the last defined type amongst all locally valid choices:

let look_at_xz {x;z} = x;;
val look_at_xz : middle_record -> int = <fun>

Here, OCaml has inferred that the possible choices for the type of {x;z} are first_record and middle_record, since the type last_record has no field z. Ocaml then picks the type middle_record as the last defined type between the two possibilities.

Beware that this last resort disambiguation is local: once Ocaml has chosen a disambiguation, it sticks to this choice, even if it leads to an ulterior type error:

let look_at_x_then_y r = let x = r.x in (* Ocaml deduces [r: last_record] *) x + r.y;;
Error: This expression has type last_record The field y does not belong to type last_record
let is_a_or_b x = match x with | A -> true (* OCaml infers [x: last_variant] *) | B -> true;;
Error: This variant pattern is expected to have type last_variant The constructor B does not belong to type last_variant

Moreover, being the last defined type is a quite unstable position that may change surreptitiously after adding or moving around a type definition, or after opening a module (see chapter 2). Consequently, adding explicit type annotations to guide disambiguation is more robust than relying on the last defined type disambiguation.

1.5  Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with full imperative features. This includes the usual while and for loops, as well as mutable data structures such as arrays. Arrays are either created by listing semicolon-separated element values between [| and |] brackets, or allocated and initialized with the Array.make function, then filled up later by assignments. For instance, the function below sums two vectors (represented as float arrays) componentwise.

let add_vect v1 v2 = let len = min (Array.length v1) (Array.length v2) in let res = Array.make len 0.0 in for i = 0 to len - 1 do res.(i) <- v1.(i) +. v2.(i) done; res;;
val add_vect : float array -> float array -> float array = <fun>
add_vect [| 1.0; 2.0 |] [| 3.0; 4.0 |];;
- : float array = [|4.; 6.|]

Record fields can also be modified by assignment, provided they are declared mutable in the definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }
let translate p dx dy = p.x <- p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>
let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}
translate mypoint 1.0 2.0;;
- : unit = ()
mypoint;;
- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable – identifiers whose current value can be changed by assignment. (The let binding is not an assignment, it introduces a new identifier with a new scope.) However, the standard library provides references, which are mutable indirection cells, with operators ! to fetch the current contents of the reference and := to assign the contents. Variables can then be emulated by let-binding a reference. For instance, here is an in-place insertion sort over arrays:

let insertion_sort a = for i = 1 to Array.length a - 1 do let val_i = a.(i) in let j = ref i in while !j > 0 && val_i < a.(!j - 1) do a.(!j) <- a.(!j - 1); j := !j - 1 done; a.(!j) <- val_i done;;
val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to the function. For instance, the following pseudo-random number generator keeps the last returned number in a reference:

let current_rand = ref 0;;
val current_rand : int ref = {contents = 0}
let random () = current_rand := !current_rand * 25713 + 1345; !current_rand;;
val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable record, as follows.

type 'a ref = { mutable contents: 'a };;
type 'a ref = { mutable contents : 'a; }
let ( ! ) r = r.contents;;
val ( ! ) : 'a ref -> 'a = <fun>
let ( := ) r newval = r.contents <- newval;;
val ( := ) : 'a ref -> 'a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping its polymorphism. Doing this requires user-provided type annotations, since polymorphism is only introduced automatically for global definitions. However, you can explicitly give polymorphic types to record fields.

type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }
let r = {id = fun x -> x};;
val r : idref = {id = <fun>}
let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>
r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()
g r;;
called id called id - : int * bool = (1, true)

1.6  Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can also be used as a general-purpose non-local control structure, although this should not be overused since it can make the code harder to understand. Exceptions are declared with the exception construct, and signalled with the raise operator. For instance, the function below for taking the head of a list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list
let head l = match l with [] -> raise Empty_list | hd :: tl -> hd;;
val head : 'a list -> 'a = <fun>
head [1;2];;
- : int = 1
head [];;
Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions cannot complete normally. For instance, the List.assoc function, which returns the data associated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"
List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.

Exceptions can be trapped with the trywith construct:

let name_of_binary_digit digit = try List.assoc digit [0, "zero"; 1, "one"] with Not_found -> "not a binary digit";;
val name_of_binary_digit : int -> string = <fun>
name_of_binary_digit 0;;
- : string = "zero"
name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part does pattern matching on the exception value with the same syntax and behavior as match. Thus, several exceptions can be caught by one trywith construct:

let rec first_named_value values names = try List.assoc (head values) names with | Empty_list -> "no named value" | Not_found -> first_named_value (List.tl values) names;;
val first_named_value : 'a list -> ('a * string) list -> string = <fun>
first_named_value [ 0; 10 ] [ 1, "one"; 10, "ten"];;
- : string = "ten"

Also, finalization can be performed by trapping all exceptions, performing the finalization, then re-raising the exception:

let temporarily_set_reference ref newval funct = let oldval = !ref in try ref := newval; let res = funct () in ref := oldval; res with x -> ref := oldval; raise x;;
val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

An alternative to trywith is to catch the exception while pattern matching:

let assoc_may_map f x l = match List.assoc x l with | exception Not_found -> None | y -> f y;;
val assoc_may_map : ('a -> 'b option) -> 'c -> ('c * 'a) list -> 'b option = <fun>

Note that this construction is only useful if the exception is raised between matchwith. Exception patterns can be combined with ordinary patterns at the toplevel,

let flat_assoc_opt x l = match List.assoc x l with | None | exception Not_found -> None | Some _ as v -> v;;
val flat_assoc_opt : 'a -> ('a * 'b option) list -> 'b option = <fun>

but they cannot be nested inside other patterns. For instance, the pattern Some (exception A) is invalid.

When exceptions are used as a control structure, it can be useful to make them as local as possible by using a locally defined exception. For instance, with

let fixpoint f x = let exception Done in let x = ref x in try while true do let y = f !x in if !x = y then raise Done else x := y done; assert false with Done -> !x;;
val fixpoint : ('a -> 'a) -> 'a -> 'a = <fun>

the function f cannot raise a Done exception, which removes an entire class of misbehaving functions.

1.7  Lazy expressions

OCaml allows us to defer some computation until later when we need the result of that computation.

We use lazy (expr) to delay the evaluation of some expression expr. For example, we can defer the computation of 1+1 until we need the result of that expression, 2. Let us see how we initialize a lazy expression.

let lazy_two = lazy ( print_endline "lazy_two evaluation"; 1 + 1 );;
val lazy_two : int lazy_t = <lazy>

We added print_endline "lazy_two evaluation" to see when the lazy expression is being evaluated.

The value of lazy_two is displayed as <lazy>, which means the expression has not been evaluated yet, and its final value is unknown.

Note that lazy_two has type int lazy_t. However, the type 'a lazy_t is an internal type name, so the type 'a Lazy.t should be preferred when possible.

When we finally need the result of a lazy expression, we can call Lazy.force on that expression to force its evaluation. The function force comes from standard-library module Lazy.

Lazy.force lazy_two;;
lazy_two evaluation - : int = 2

Notice that our function call above prints “lazy_two evaluation” and then returns the plain value of the computation.

Now if we look at the value of lazy_two, we see that it is not displayed as <lazy> anymore but as lazy 2.

lazy_two;;
- : int lazy_t = lazy 2

This is because Lazy.force memoizes the result of the forced expression. In other words, every subsequent call of Lazy.force on that expression returns the result of the first computation without recomputing the lazy expression. Let us force lazy_two once again.

Lazy.force lazy_two;;
- : int = 2

The expression is not evaluated this time; notice that “lazy_two evaluation” is not printed. The result of the initial computation is simply returned.

Lazy patterns provide another way to force a lazy expression.

let lazy_l = lazy ([1; 2] @ [3; 4]);;
val lazy_l : int list lazy_t = <lazy>
let lazy l = lazy_l;;
val l : int list = [1; 2; 3; 4]

We can also use lazy patterns in pattern matching.

let maybe_eval lazy_guard lazy_expr = match lazy_guard, lazy_expr with | lazy false, _ -> "matches if (Lazy.force lazy_guard = false); lazy_expr not forced" | lazy true, lazy _ -> "matches if (Lazy.force lazy_guard = true); lazy_expr forced";;
val maybe_eval : bool lazy_t -> 'a lazy_t -> string = <fun>

The lazy expression lazy_expr is forced only if the lazy_guard value yields true once computed. Indeed, a simple wildcard pattern (not lazy) never forces the lazy expression’s evaluation. However, a pattern with keyword lazy, even if it is wildcard, always forces the evaluation of the deferred computation.

1.8  Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml for symbolic processing: formal manipulations of arithmetic expressions containing variables. The following variant type describes the expressions we shall manipulate:

type expression = Const of float | Var of string | Sum of expression * expression (* e1 + e2 *) | Diff of expression * expression (* e1 - e2 *) | Prod of expression * expression (* e1 * e2 *) | Quot of expression * expression (* e1 / e2 *) ;;
type expression = Const of float | Var of string | Sum of expression * expression | Diff of expression * expression | Prod of expression * expression | Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string
let rec eval env exp = match exp with Const c -> c | Var v -> (try List.assoc v env with Not_found -> raise (Unbound_variable v)) | Sum(f, g) -> eval env f +. eval env g | Diff(f, g) -> eval env f -. eval env g | Prod(f, g) -> eval env f *. eval env g | Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a variable dv:

let rec deriv exp dv = match exp with Const c -> Const 0.0 | Var v -> if v = dv then Const 1.0 else Const 0.0 | Sum(f, g) -> Sum(deriv f dv, deriv g dv) | Diff(f, g) -> Diff(deriv f dv, deriv g dv) | Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g)) | Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)), Prod(g, g)) ;;
val deriv : expression -> string -> expression = <fun>
deriv (Quot(Const 1.0, Var "x")) "x";;
- : expression = Quot (Diff (Prod (Const 0., Var "x"), Prod (Const 1., Const 1.)), Prod (Var "x", Var "x"))

1.9  Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntax) of expressions quickly becomes hard to read and write as the expressions get larger. We need a printer and a parser to go back and forth between the abstract syntax and the concrete syntax, which in the case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator precedence and print parentheses around an operator only if its precedence is less than the current precedence.

let print_expr exp = (* Local function definitions *) let open_paren prec op_prec = if prec > op_prec then print_string "(" in let close_paren prec op_prec = if prec > op_prec then print_string ")" in let rec print prec exp = (* prec is the current precedence *) match exp with Const c -> print_float c | Var v -> print_string v | Sum(f, g) -> open_paren prec 0; print 0 f; print_string " + "; print 0 g; close_paren prec 0 | Diff(f, g) -> open_paren prec 0; print 0 f; print_string " - "; print 1 g; close_paren prec 0 | Prod(f, g) -> open_paren prec 2; print 2 f; print_string " * "; print 2 g; close_paren prec 2 | Quot(f, g) -> open_paren prec 2; print 2 f; print_string " / "; print 3 g; close_paren prec 2 in print 0 exp;;
val print_expr : expression -> unit = <fun>
let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)
print_expr e; print_newline ();;
2. * x + 1. - : unit = ()
print_expr (deriv e "x"); print_newline ();;
2. * 1. + 0. * x + 0. - : unit = ()

1.10  Printf formats

There is a printf function in the Printf module (see chapter 2) that allows you to make formatted output more concisely. It follows the behavior of the printf function from the C standard library. The printf function takes a format string that describes the desired output as a text interspered with specifiers (for instance %d, %f). Next, the specifiers are substituted by the following arguments in their order of apparition in the format string:

Printf.printf "%i + %i is an integer value, %F * %F is a float, %S\n" 3 2 4.5 1. "this is a string";;
3 + 2 is an integer value, 4.5 * 1. is a float, "this is a string" - : unit = ()

The OCaml type system checks that the type of the arguments and the specifiers are compatible. If you pass it an argument of a type that does not correspond to the format specifier, the compiler will display an error message:

Printf.printf "Float value: %F" 42;;
Error: This expression has type int but an expression was expected of type float Hint: Did you mean `42.'?

The fprintf function is like printf except that it takes an output channel as the first argument. The %a specifier can be useful to define custom printer (for custom types). For instance, we can create a printing template that converts an integer argument to signed decimal:

let pp_int ppf n = Printf.fprintf ppf "%d" n;;
val pp_int : out_channel -> int -> unit = <fun>
Printf.printf "Outputting an integer using a custom printer: %a " pp_int 42;;
Outputting an integer using a custom printer: 42 - : unit = ()

The advantage of those printers based on the %a specifier is that they can be composed together to create more complex printers step by step. We can define a combinator that can turn a printer for 'a type into a printer for 'a optional:

let pp_option printer ppf = function | None -> Printf.fprintf ppf "None" | Some v -> Printf.fprintf ppf "Some(%a)" printer v;;
val pp_option : (out_channel -> 'a -> unit) -> out_channel -> 'a option -> unit = <fun>
Printf.fprintf stdout "The current setting is %a. \nThere is only %a\n" (pp_option pp_int) (Some 3) (pp_option pp_int) None ;;
The current setting is Some(3). There is only None - : unit = ()

If the value of its argument its None, the printer returned by pp_option printer prints None otherwise it uses the provided printer to print Some .

Here is how to rewrite the pretty-printer using fprintf:

let pp_expr ppf expr = let open_paren prec op_prec output = if prec > op_prec then Printf.fprintf output "%s" "(" in let close_paren prec op_prec output = if prec > op_prec then Printf.fprintf output "%s" ")" in let rec print prec ppf expr = match expr with | Const c -> Printf.fprintf ppf "%F" c | Var v -> Printf.fprintf ppf "%s" v | Sum(f, g) -> open_paren prec 0 ppf; Printf.fprintf ppf "%a + %a" (print 0) f (print 0) g; close_paren prec 0 ppf | Diff(f, g) -> open_paren prec 0 ppf; Printf.fprintf ppf "%a - %a" (print 0) f (print 1) g; close_paren prec 0 ppf | Prod(f, g) -> open_paren prec 2 ppf; Printf.fprintf ppf "%a * %a" (print 2) f (print 2) g; close_paren prec 2 ppf | Quot(f, g) -> open_paren prec 2 ppf; Printf.fprintf ppf "%a / %a" (print 2) f (print 3) g; close_paren prec 2 ppf in print 0 ppf expr;;
val pp_expr : out_channel -> expression -> unit = <fun>
pp_expr stdout e; print_newline ();;
2. * x + 1. - : unit = ()
pp_expr stdout (deriv e "x"); print_newline ();;
2. * 1. + 0. * x + 0. - : unit = ()

Due to the way that format string are build, storing a format string requires an explicit type annotation:

let str : _ format = "%i is an integer value, %F is a float, %S\n";;
Printf.printf str 3 4.5 "string value";;
3 is an integer value, 4.5 is a float, "string value" - : unit = ()

1.11  Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be compiled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt. The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive mode, types and values are not printed automatically; the program must call printing functions explicitly to produce some output. The ;; used in the interactive examples is not required in source files created for use with OCaml compilers, but can be helpful to mark the end of a top-level expression unambiguously even when there are syntax errors. Here is a sample standalone program to print the greatest common divisor (gcd) of two numbers:

(* File gcd.ml *)
let rec gcd a b =
  if b = 0 then a
  else gcd b (a mod b);;

let main () =
  let a = int_of_string Sys.argv.(1) in
  let b = int_of_string Sys.argv.(2) in
  Printf.printf "%d\n" (gcd a b);
  exit 0;;
main ();;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv.(1) is thus the first command-line parameter. The program above is compiled and executed with the following shell commands:

$ ocamlc -o gcd gcd.ml
$ ./gcd 6 9
3
$ ./fib 7 11
1

More complex standalone OCaml programs are typically composed of multiple source files, and can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-party build systems, such as the ocamlbuild compilation manager.


Previous Up Next ocaml-doc-4.11/ocaml.html/libunix.html0000644000175000017500000001562013717225665016653 0ustar mehdimehdi Chapter 28  The unix library: Unix system calls Previous Up Next

Chapter 28  The unix library: Unix system calls

The unix library makes many Unix system calls and system-related library functions available to OCaml programs. This chapter describes briefly the functions provided. Refer to sections 2 and 3 of the Unix manual for more details on the behavior of these functions.

Not all functions are provided by all Unix variants. If some functions are not available, they will raise Invalid_arg when called.

Programs that use the unix library must be linked as follows:

        ocamlc other options unix.cma other files
        ocamlopt other options unix.cmxa other files

For interactive use of the unix library, do:

        ocamlmktop -o mytop unix.cma
        ./mytop

or (if dynamic linking of C libraries is supported on your platform), start ocaml and type #load "unix.cma";;.

Windows:   A fairly complete emulation of the Unix system calls is provided in the Windows version of OCaml. The end of this chapter gives more information on the functions that are not supported under Windows.
Windows:   The Cygwin port of OCaml fully implements all functions from the Unix module. The native Win32 ports implement a subset of them. Below is a list of the functions that are not implemented, or only partially implemented, by the Win32 ports. Functions not mentioned are fully implemented and behave as described previously in this chapter.
FunctionsComment
forknot implemented, use create_process or threads
waitnot implemented, use waitpid
waitpidcan only wait for a given PID, not any child process
getppidnot implemented (meaningless under Windows)
nicenot implemented
truncate, ftruncatenot implemented
linkimplemented (since 3.02)
symlink, readlinkimplemented (since 4.03.0)
accessexecute permission X_OK cannot be tested, it just tests for read permission instead
fchmodnot implemented
chown, fchownnot implemented (make no sense on a DOS file system)
umasknot implemented
mkfifonot implemented
killpartially implemented (since 4.00.0): only the sigkill signal is implemented
pausenot implemented (no inter-process signals in Windows)
alarmnot implemented
timespartially implemented, will not report timings for child processes
getitimer, setitimernot implemented
getuid, geteuid, getgid, getegidalways return 1
getgroupsalways returns [|1|] (since 2.00)
setuid, setgid, setgroupsnot implemented
getpwnam, getpwuidalways raise Not_found
getgrnam, getgrgidalways raise Not_found
type socket_domainPF_INET is fully supported; PF_INET6 is fully supported (since 4.01.0); PF_UNIX is not supported
establish_servernot implemented; use threads
terminal functions (tc*)not implemented

Previous Up Next ocaml-doc-4.11/ocaml.html/contents_motif.svg0000644000175000017500000000027113717225665020063 0ustar mehdimehdi ocaml-doc-4.11/ocaml.html/firstclassmodules.html0000644000175000017500000003473613717225665020760 0ustar mehdimehdi 8.5  First-class modules Previous Up Next

8.5  First-class modules

(Introduced in OCaml 3.12; pattern syntax and package type inference introduced in 4.00; structural comparison of package types introduced in 4.02.; fewer parens required starting from 4.05)

typexpr::= ...  
  (module package-type)  
 
module-expr::= ...  
  (val expr  [: package-type])  
 
expr::= ...  
  (module module-expr  [: package-type])  
 
pattern::= ...  
  (module module-name  [: package-type])  
 
package-type::= modtype-path  
  modtype-path with  package-constraint  { and package-constraint }  
 
package-constraint::= type typeconstr =  typexpr  
 

Modules are typically thought of as static components. This extension makes it possible to pack a module as a first-class value, which can later be dynamically unpacked into a module.

The expression ( module module-expr :  package-type ) converts the module (structure or functor) denoted by module expression module-expr to a value of the core language that encapsulates this module. The type of this core language value is ( module package-type ). The package-type annotation can be omitted if it can be inferred from the context.

Conversely, the module expression ( val expr :  package-type ) evaluates the core language expression expr to a value, which must have type module package-type, and extracts the module that was encapsulated in this value. Again package-type can be omitted if the type of expr is known. If the module expression is already parenthesized, like the arguments of functors are, no additional parens are needed: Map.Make(val key).

The pattern ( module module-name :  package-type ) matches a package with type package-type and binds it to module-name. It is not allowed in toplevel let bindings. Again package-type can be omitted if it can be inferred from the enclosing pattern.

The package-type syntactic class appearing in the ( module package-type ) type expression and in the annotated forms represents a subset of module types. This subset consists of named module types with optional constraints of a limited form: only non-parametrized types can be specified.

For type-checking purposes (and starting from OCaml 4.02), package types are compared using the structural comparison of module types.

In general, the module expression ( val expr :  package-type ) cannot be used in the body of a functor, because this could cause unsoundness in conjunction with applicative functors. Since OCaml 4.02, this is relaxed in two ways: if package-type does not contain nominal type declarations (i.e. types that are created with a proper identity), then this expression can be used anywhere, and even if it contains such types it can be used inside the body of a generative functor, described in section 8.15. It can also be used anywhere in the context of a local module binding let module module-name = ( val  expr1 :  package-type ) in  expr2.

Basic example

A typical use of first-class modules is to select at run-time among several implementations of a signature. Each implementation is a structure that we can encapsulate as a first-class module, then store in a data structure such as a hash table:

type picture = … module type DEVICE = sig val draw : picture -> unit … end let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17 module SVG = structend let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE) module PDF = structend let _ = Hashtbl.add devices "PDF" (module PDF : DEVICE)

We can then select one implementation based on command-line arguments, for instance:

let parse_cmdline () = … module Device = (val (let device_name = parse_cmdline () in try Hashtbl.find devices device_name with Not_found -> Printf.eprintf "Unknown device %s\n" device_name; exit 2) : DEVICE)

Alternatively, the selection can be performed within a function:

let draw_using_device device_name picture = let module Device = (val (Hashtbl.find devices device_name) : DEVICE) in Device.draw picture
Advanced examples

With first-class modules, it is possible to parametrize some code over the implementation of a module without using a functor.

let sort (type s) (module Set : Set.S with type elt = s) l = Set.elements (List.fold_right Set.add l Set.empty)
val sort : (module Set.S with type elt = 's) -> 's list -> 's list = <fun>

To use this function, one can wrap the Set.Make functor:

let make_set (type s) cmp = let module S = Set.Make(struct type t = s let compare = cmp end) in (module S : Set.S with type elt = s)
val make_set : ('s -> 's -> int) -> (module Set.S with type elt = 's) = <fun>

Previous Up Next ocaml-doc-4.11/ocaml.html/extensiblevariants.html0000644000175000017500000002602113717225665021110 0ustar mehdimehdi 8.14  Extensible variant types Previous Up Next

8.14  Extensible variant types

(Introduced in OCaml 4.02)

type-representation::= ...  
  = ..  
 
specification::= ...  
  type [type-params]  typeconstr  type-extension-spec  
 
definition::= ...  
  type [type-params]  typeconstr  type-extension-def  
 
type-extension-spec::= += [private] [|constr-decl  { | constr-decl }  
 
type-extension-def::= += [private] [|constr-def  { | constr-def }  
 
constr-def::= constr-decl  
  constr-name =  constr  
 

Extensible variant types are variant types which can be extended with new variant constructors. Extensible variant types are defined using ... New variant constructors are added using +=.

module Expr = struct type attr = .. type attr += Str of string type attr += | Int of int | Float of float end

Pattern matching on an extensible variant type requires a default case to handle unknown variant constructors:

let to_string = function | Expr.Str s -> s | Expr.Int i -> Int.to_string i | Expr.Float f -> string_of_float f | _ -> "?"

A preexisting example of an extensible variant type is the built-in exn type used for exceptions. Indeed, exception constructors can be declared using the type extension syntax:

type exn += Exc of int

Extensible variant constructors can be rebound to a different name. This allows exporting variants from another module.

let not_in_scope = Str "Foo";;
Error: Unbound constructor Str
type Expr.attr += Str = Expr.Str
let now_works = Str "foo";;
val now_works : Expr.attr = Expr.Str "foo"

Extensible variant constructors can be declared private. As with regular variants, this prevents them from being constructed directly by constructor application while still allowing them to be de-structured in pattern-matching.

module B : sig type Expr.attr += private Bool of int val bool : bool -> Expr.attr end = struct type Expr.attr += Bool of int let bool p = if p then Bool 1 else Bool 0 end
let inspection_works = function | B.Bool p -> (p = 1) | _ -> true;;
val inspection_works : Expr.attr -> bool = <fun>
let construction_is_forbidden = B.Bool 1;;
Error: Cannot use private constructor Bool to create values of type Expr.attr

8.14.1  Private extensible variant types

(Introduced in OCaml 4.06)

type-representation::= ...  
  = private ..  
 

Extensible variant types can be declared private. This prevents new constructors from being declared directly, but allows extension constructors to be referred to in interfaces.

module Msg : sig type t = private .. module MkConstr (X : sig type t end) : sig type t += C of X.t end end = struct type t = .. module MkConstr (X : sig type t end) = struct type t += C of X.t end end

Previous Up Next ocaml-doc-4.11/ocaml.html/libgraph.html0000644000175000017500000000300313717225665016761 0ustar mehdimehdi Chapter 32  The graphics library Previous Up Next

Chapter 32  The graphics library

Since OCaml 4.09, the graphics library is distributed as an external package. Its new home is:

https://github.com/ocaml/graphics

If you are using the opam package manager, you should install the corresponding graphics package:

        opam install graphics

Before OCaml 4.09, this package simply ensures that the graphics library was installed by the compiler, and starting from OCaml 4.09 this package effectively provides the graphics library.


Previous Up Next ocaml-doc-4.11/ocaml.html/lexyacc.html0000644000175000017500000013057113717225665016634 0ustar mehdimehdi Chapter 13  Lexer and parser generators (ocamllex, ocamlyacc) Previous Up Next

Chapter 13  Lexer and parser generators (ocamllex, ocamlyacc)

This chapter describes two program generators: ocamllex, that produces a lexical analyzer from a set of regular expressions with associated semantic actions, and ocamlyacc, that produces a parser from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can be found in most C programming environments. This chapter assumes a working knowledge of lex and yacc: while it describes the input syntax for ocamllex and ocamlyacc and the main differences with lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques, and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), or “Lex & Yacc”, by Levine, Mason and Brown (O’Reilly, 1992).

13.1  Overview of ocamllex

The ocamllex command produces a lexical analyzer from a set of regular expressions with attached semantic actions, in the style of lex. Assuming the input file is lexer.mll, executing

        ocamllex lexer.mll

produces OCaml code for a lexical analyzer in file lexer.ml. This file defines one lexing function per entry point in the lexer definition. These functions have the same names as the entry points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the corresponding entry point.

Lexer buffers are an abstract data type implemented in the standard library module Lexing. The functions Lexing.from_channel, Lexing.from_string and Lexing.from_function create lexer buffers that read from an input channel, a character string, or any reading function, respectively. (See the description of module Lexing in chapter 26.)

When used in conjunction with a parser generated by ocamlyacc, the semantic actions compute a value belonging to the type token defined by the generated parsing module. (See the description of ocamlyacc below.)

13.1.1  Options

The following command-line options are recognized by ocamllex.

-ml
Output code that does not use OCaml’s built-in automata interpreter. Instead, the automaton is encoded by OCaml functions. This option improves performance when using the native compiler, but decreases it when using the bytecode compiler.
-o output-file
Specify the name of the output file produced by ocamllex. The default is the input file name with its extension replaced by .ml.
-q
Quiet mode. ocamllex normally outputs informational messages to standard output. They are suppressed if option -q is used.
-v or -version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

13.2  Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
let ident = regexp …
[refill { refill-handler }]
rule entrypoint [arg1argn] =
  parse regexp { action }
      | …
      | regexp { action }
and entrypoint [arg1argn] =
  parse …
and …
{ trailer }

Comments are delimited by (* and *), as in OCaml. The parse keyword, can be replaced by the shortest keyword, with the semantic consequences explained below.

Refill handlers are a recent (optional) feature introduced in 4.02, documented below in subsection 13.2.7.

13.2.1  Header and trailer

The header and trailer sections are arbitrary OCaml text enclosed in curly braces. Either or both can be omitted. If present, the header text is copied as is at the beginning of the output file and the trailer text at the end. Typically, the header section contains the open directives required by the actions, and possibly some auxiliary functions used in the actions.

13.2.2  Naming regular expressions

Between the header and the entry points, one can give names to frequently-occurring regular expressions. This is written let ident =  regexp. In regular expressions that follow this declaration, the identifier ident can be used as shorthand for regexp.

13.2.3  Entry points

The names of the entry points must be valid identifiers for OCaml values (starting with a lowercase letter). Similarly, the arguments arg1argn must be valid identifiers for OCaml. Each entry point becomes an OCaml function that takes n+1 arguments, the extra implicit last argument being of type Lexing.lexbuf. Characters are read from the Lexing.lexbuf argument and matched against the regular expressions provided in the rule, until a prefix of the input matches one of the rule. The corresponding action is then evaluated and returned as the result of the function.

If several regular expressions match a prefix of the input, the “longest match” rule applies: the regular expression that matches the longest prefix of the input is selected. In case of tie, the regular expression that occurs earlier in the rule is selected.

However, if lexer rules are introduced with the shortest keyword in place of the parse keyword, then the “shortest match” rule applies: the shortest prefix of the input is selected. In case of tie, the regular expression that occurs earlier in the rule is still selected. This feature is not intended for use in ordinary lexical analyzers, it may facilitate the use of ocamllex as a simple text processing tool.

13.2.4  Regular expressions

The regular expressions are in the style of lex, with a more OCaml-like syntax.

regexp::=
' regular-charescape-sequence '
A character constant, with the same syntax as OCaml character constants. Match the denoted character.
_
(underscore) Match any character.
eof
Match the end of the lexer input.
Note: On some systems, with interactive input, an end-of-file may be followed by more characters. However, ocamllex will not correctly handle regular expressions that contain eof followed by something else.
" { string-character } "
A string constant, with the same syntax as OCaml string constants. Match the corresponding sequence of characters.
[ character-set ]
Match any single character belonging to the given character set. Valid character sets are: single character constants ' c '; ranges of characters ' c1 ' - ' c2 ' (all characters between c1 and c2, inclusive); and the union of two or more character sets, denoted by concatenation.
[ ^ character-set ]
Match any single character not belonging to the given character set.
regexp1 #  regexp2
(difference of character sets) Regular expressions regexp1 and regexp2 must be character sets defined with [] (or a single character expression or underscore _). Match the difference of the two specified character sets.
regexp *
(repetition) Match the concatenation of zero or more strings that match regexp.
regexp +
(strict repetition) Match the concatenation of one or more strings that match regexp.
regexp ?
(option) Match the empty string, or a string matching regexp.
regexp1 |  regexp2
(alternative) Match any string that matches regexp1 or regexp2
regexp1  regexp2
(concatenation) Match the concatenation of two strings, the first matching regexp1, the second matching regexp2.
( regexp )
Match the same strings as regexp.
ident
Reference the regular expression bound to ident by an earlier let ident =  regexp definition.
regexp as  ident
Bind the substring matched by regexp to identifier ident.

Concerning the precedences of operators, # has the highest precedence, followed by *, + and ?, then concatenation, then | (alternation), then as.

13.2.5  Actions

The actions are arbitrary OCaml expressions. They are evaluated in a context where the identifiers defined by using the as construct are bound to subparts of the matched string. Additionally, lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction with the operations on lexer buffers provided by the Lexing standard library module, are listed below.

Lexing.lexeme lexbuf
Return the matched string.
Lexing.lexeme_char lexbuf n
Return the nth character in the matched string. The first character corresponds to n = 0.
Lexing.lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string (i.e. the offset of the first character of the matched string). The first character read from the input text has offset 0.
Lexing.lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string (i.e. the offset of the first character after the matched string). The first character read from the input text has offset 0.
entrypoint [exp1expn] lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively call the lexer on the given entry point. Notice that lexbuf is the last argument. Useful for lexing nested comments, for example.

13.2.6  Variables in regular expressions

The as construct is similar to “groups” as provided by numerous regular expression packages. The type of these variables can be string, char, string option or char option.

We first consider the case of linear patterns, that is the case when all as bound variables are distinct. In regexp as  ident, the type of ident normally is string (or string option) except when regexp is a character constant, an underscore, a string constant of length one, a character set specification, or an alternation of those. Then, the type of ident is char (or char option). Option types are introduced when overall rule matching does not imply matching of the bound sub-pattern. This is in particular the case of ( regexp as  ident ) ? and of regexp1 | (  regexp2 as  ident ).

There is no linearity restriction over as bound variables. When a variable is bound more than once, the previous rules are to be extended as follows:

For instance, in ('a' as x) | ( 'a' (_ as x) ) the variable x is of type char, whereas in ("ab" as x) | ( 'a' (_ as x) ? ) the variable x is of type string option.

In some cases, a successful match may not yield a unique set of bindings. For instance the matching of aba by the regular expression (('a'|"ab") as x) (("ba"|'a') as y) may result in binding either x to "ab" and y to "a", or x to "a" and y to "ba". The automata produced ocamllex on such ambiguous regular expressions will select one of the possible resulting sets of bindings. The selected set of bindings is purposely left unspecified.

13.2.7  Refill handlers

By default, when ocamllex reaches the end of its lexing buffer, it will silently call the refill_buff function of lexbuf structure and continue lexing. It is sometimes useful to be able to take control of refilling action; typically, if you use a library for asynchronous computation, you may want to wrap the refilling action in a delaying function to avoid blocking synchronous operations.

Since OCaml 4.02, it is possible to specify a refill-handler, a function that will be called when refill happens. It is passed the continuation of the lexing, on which it has total control. The OCaml expression used as refill action should have a type that is an instance of

   (Lexing.lexbuf -> 'a) -> Lexing.lexbuf -> 'a

where the first argument is the continuation which captures the processing ocamllex would usually perform (refilling the buffer, then calling the lexing function again), and the result type that instantiates [’a] should unify with the result type of all lexing rules.

As an example, consider the following lexer that is parametrized over an arbitrary monad:

{
type token = EOL | INT of int | PLUS

module Make (M : sig
               type 'a t
               val return: 'a -> 'a t
               val bind: 'a t -> ('a -> 'b t) -> 'b t
               val fail : string -> 'a t

               (* Set up lexbuf *)
               val on_refill : Lexing.lexbuf -> unit t
             end)
= struct

let refill_handler k lexbuf =
    M.bind (M.on_refill lexbuf) (fun () -> k lexbuf)

}

refill {refill_handler}

rule token = parse
| [' ' '\t']
    { token lexbuf }
| '\n'
    { M.return EOL }
| ['0'-'9']+ as i
    { M.return (INT (int_of_string i)) }
| '+'
    { M.return PLUS }
| _
    { M.fail "unexpected character" }
{
end
}

13.2.8  Reserved identifiers

All identifiers starting with __ocaml_lex are reserved for use by ocamllex; do not use any such identifier in your programs.

13.3  Overview of ocamlyacc

The ocamlyacc command produces a parser from a context-free grammar specification with attached semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

        ocamlyacc options grammar.mly

produces OCaml code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These functions have the same names as the entry points. Parsing functions take as arguments a lexical analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a lexer specification by the ocamllex program. Lexer buffers are an abstract data type implemented in the standard library module Lexing. Tokens are values from the concrete type token, defined in the interface file grammar.mli produced by ocamlyacc.

13.4  Syntax of grammar definitions

Grammar definitions have the following format:

%{
  header
%}
  declarations
%%
  rules
%%
  trailer

Comments are enclosed between /* and */ (as in C) in the “declarations” and “rules” sections, and between (* and *) (as in OCaml) in the “header” and “trailer” sections.

13.4.1  Header and trailer

The header and the trailer sections are OCaml code that is copied as is into file grammar.ml. Both sections are optional. The header goes at the beginning of the output file; it usually contains open directives and auxiliary functions required by the semantic actions of the rules. The trailer goes at the end of the output file.

13.4.2  Declarations

Declarations are given one per line. They all start with a % sign.

%token constr …  constr
Declare the given symbols constr …  constr as tokens (terminal symbols). These symbols are added as constant constructors for the token concrete type.
%token < typexpr >  constr …  constr
Declare the given symbols constr …  constr as tokens with an attached attribute of the given type. These symbols are added as constructors with arguments of the given type for the token concrete type. The typexpr part is an arbitrary OCaml type expression, except that all type constructor names must be fully qualified (e.g. Modname.typename) for all types except standard built-in types, even if the proper open directives (e.g. open Modname) were given in the header section. That’s because the header is copied only to the .ml output file, but not to the .mli output file, while the typexpr part of a %token declaration is copied to both.
%start symbol …  symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing function with the same name is defined in the output module. Non-terminals that are not declared as entry points have no such parsing function. Start symbols must be given a type with the %type directive below.
%type < typexpr >  symbol …  symbol
Specify the type of the semantic attributes for the given symbols. This is mandatory for start symbols only. Other nonterminal symbols need not be given types by hand: these types will be inferred when running the output files through the OCaml compiler (unless the -s option is in effect). The typexpr part is an arbitrary OCaml type expression, except that all type constructor names must be fully qualified, as explained above for %token.
%left symbol …  symbol
%right symbol …  symbol
%nonassoc symbol …  symbol

Associate precedences and associativities to the given symbols. All symbols on the same line are given the same precedence. They have higher precedence than symbols declared before in a %left, %right or %nonassoc line. They have lower precedence than symbols declared after in a %left, %right or %nonassoc line. The symbols are declared to associate to the left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside the rules.

The precedence declarations are used in the following way to resolve reduce/reduce and shift/reduce conflicts:

13.4.3  Rules

The syntax for rules is as usual:

nonterminal :
    symbolsymbol { semantic-action }
  | …
  | symbolsymbol { semantic-action }
;

Rules can also contain the %prec symbol directive in the right-hand side part, to override the default precedence and associativity of the rule with the precedence and associativity of the given symbol.

Semantic actions are arbitrary OCaml expressions, that are evaluated to produce the semantic attribute attached to the defined nonterminal. The semantic actions can access the semantic attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

The rules may contain the special symbol error to indicate resynchronization points, as in yacc.

Actions occurring in the middle of rules are not supported.

Nonterminal symbols are like regular OCaml symbols, except that they cannot end with ' (single quote).

13.4.4  Error handling

Error recovery is supported as follows: when the parser reaches an error state (no grammar rules can apply), it calls a function named parse_error with the string "syntax error" as argument. The default parse_error function does nothing and returns, thus initiating error recovery (see below). The user can define a customized parse_error function in the header section of the grammar file.

The parser also enters error recovery mode if one of the grammar actions raises the Parsing.Parse_error exception.

In error recovery mode, the parser discards states from the stack until it reaches a place where the error token can be shifted. It then discards tokens from the input until it finds three successive tokens that can be accepted, and starts processing with the first of these. If no state can be uncovered where the error token can be shifted, then the parser aborts by raising the Parsing.Parse_error exception.

Refer to documentation on yacc for more details and guidance in how to use error recovery.

13.5  Options

The ocamlyacc command recognizes the following options:

-bprefix
Name the output files prefix.ml, prefix.mli, prefix.output, instead of the default naming convention.
-q
This option has no effect.
-v
Generate a description of the parsing tables and a report on conflicts resulting from ambiguities in the grammar. The description is put in file grammar.output.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-
Read the grammar specification from standard input. The default output file names are stdin.ml and stdin.mli.
-- file
Process file as the grammar specification, even if its name starts with a dash (-) character. This option must be the last on the command line.

At run-time, the ocamlyacc-generated parser can be debugged by setting the p option in the OCAMLRUNPARAM environment variable (see section 11.2). This causes the pushdown automaton executing the parser to print a trace of its action (tokens shifted, rules reduced, etc). The trace mentions rule numbers and state numbers that can be interpreted by looking at the file grammar.output generated by ocamlyacc -v.

13.6  A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard input, one per line, and prints their values. Here is the grammar definition:

        /* File parser.mly */
        %token <int> INT
        %token PLUS MINUS TIMES DIV
        %token LPAREN RPAREN
        %token EOL
        %left PLUS MINUS        /* lowest precedence */
        %left TIMES DIV         /* medium precedence */
        %nonassoc UMINUS        /* highest precedence */
        %start main             /* the entry point */
        %type <int> main
        %%
        main:
            expr EOL                { $1 }
        ;
        expr:
            INT                     { $1 }
          | LPAREN expr RPAREN      { $2 }
          | expr PLUS expr          { $1 + $3 }
          | expr MINUS expr         { $1 - $3 }
          | expr TIMES expr         { $1 * $3 }
          | expr DIV expr           { $1 / $3 }
          | MINUS expr %prec UMINUS { - $2 }
        ;

Here is the definition for the corresponding lexer:

        (* File lexer.mll *)
        {
        open Parser        (* The type token is defined in parser.mli *)
        exception Eof
        }
        rule token = parse
            [' ' '\t']     { token lexbuf }     (* skip blanks *)
          | ['\n' ]        { EOL }
          | ['0'-'9']+ as lxm { INT(int_of_string lxm) }
          | '+'            { PLUS }
          | '-'            { MINUS }
          | '*'            { TIMES }
          | '/'            { DIV }
          | '('            { LPAREN }
          | ')'            { RPAREN }
          | eof            { raise Eof }

Here is the main program, that combines the parser with the lexer:

        (* File calc.ml *)
        let _ =
          try
            let lexbuf = Lexing.from_channel stdin in
            while true do
              let result = Parser.main Lexer.token lexbuf in
                print_int result; print_newline(); flush stdout
            done
          with Lexer.Eof ->
            exit 0

To compile everything, execute:

        ocamllex lexer.mll       # generates lexer.ml
        ocamlyacc parser.mly     # generates parser.ml and parser.mli
        ocamlc -c parser.mli
        ocamlc -c lexer.ml
        ocamlc -c parser.ml
        ocamlc -c calc.ml
        ocamlc -o calc lexer.cmo parser.cmo calc.cmo

13.7  Common errors

ocamllex: transition table overflow, automaton is too big

The deterministic automata generated by ocamllex are limited to at most 32767 transitions. The message above indicates that your lexer definition is too complex and overflows this limit. This is commonly caused by lexer definitions that have separate rules for each of the alphabetic keywords of the language, as in the following example.

rule token = parse
  "keyword1"   { KWD1 }
| "keyword2"   { KWD2 }
| ...
| "keyword100" { KWD100 }
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
               { IDENT id}

To keep the generated automata small, rewrite those definitions with only one general “identifier” rule, followed by a hashtable lookup to separate keywords from identifiers:

{ let keyword_table = Hashtbl.create 53
  let _ =
    List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)
              [ "keyword1", KWD1;
                "keyword2", KWD2; ...
                "keyword100", KWD100 ]
}
rule token = parse
  ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
               { try
                   Hashtbl.find keyword_table id
                 with Not_found ->
                   IDENT id }
ocamllex: Position memory overflow, too many bindings
The deterministic automata generated by ocamllex maintain a table of positions inside the scanned lexer buffer. The size of this table is limited to at most 255 cells. This error should not show up in normal situations.

Previous Up Next ocaml-doc-4.11/ocaml.html/browser.html0000644000175000017500000000227513717225665016666 0ustar mehdimehdi Chapter 15  The browser/editor (ocamlbrowser) Previous Up Next

Chapter 15  The browser/editor (ocamlbrowser)

Since OCaml version 4.02, the OCamlBrowser tool and the Labltk library are distributed separately from the OCaml compiler. The project is now hosted at https://forge.ocamlcore.org/projects/labltk/.


Previous Up Next ocaml-doc-4.11/ocaml.html/manual024.html0000644000175000017500000002317313717225665016706 0ustar mehdimehdi 8.2  Recursive modules Previous Up Next

8.2  Recursive modules

(Introduced in Objective Caml 3.07)

definition::= ...  
  module rec module-name :  module-type =  module-expr   { and module-name :  module-type =  module-expr }  
 
specification::= ...  
  module rec module-name :  module-type  { and module-name:  module-type }

Recursive module definitions, introduced by the module recand … construction, generalize regular module definitions module module-name =  module-expr and module specifications module module-name :  module-type by allowing the defining module-expr and the module-type to refer recursively to the module identifiers being defined. A typical example of a recursive module definition is:

module rec A : sig type t = Leaf of string | Node of ASet.t val compare: t -> t -> int end = struct type t = Leaf of string | Node of ASet.t let compare t1 t2 = match (t1, t2) with | (Leaf s1, Leaf s2) -> Stdlib.compare s1 s2 | (Leaf _, Node _) -> 1 | (Node _, Leaf _) -> -1 | (Node n1, Node n2) -> ASet.compare n1 n2 end and ASet : Set.S with type elt = A.t = Set.Make(A)

It can be given the following specification:

module rec A : sig type t = Leaf of string | Node of ASet.t val compare: t -> t -> int end and ASet : Set.S with type elt = A.t

This is an experimental extension of OCaml: the class of recursive definitions accepted, as well as its dynamic semantics are not final and subject to change in future releases.

Currently, the compiler requires that all dependency cycles between the recursively-defined module identifiers go through at least one “safe” module. A module is “safe” if all value definitions that it contains have function types typexpr1 ->  typexpr2. Evaluation of a recursive module definition proceeds by building initial values for the safe modules involved, binding all (functional) values to fun _ -> raise Undefined_recursive_module. The defining module expressions are then evaluated, and the initial values for the safe modules are replaced by the values thus computed. If a function component of a safe module is applied during this computation (which corresponds to an ill-founded recursive definition), the Undefined_recursive_module exception is raised at runtime:

module rec M: sig val f: unit -> int end = struct let f () = N.x end and N:sig val x: int end = struct let x = M.f () end
Exception: Undefined_recursive_module ("exten.etex", 1, 43).

If there are no safe modules along a dependency cycle, an error is raised

module rec M: sig val x: int end = struct let x = N.y end and N:sig val x: int val y:int end = struct let x = M.x let y = 0 end
Error: Cannot safely evaluate the definition of the following cycle of recursively-defined modules: M -> N -> M. There are no safe modules in this cycle (see manual section 8.2). Module M defines an unsafe value, x . Module N defines an unsafe value, x .

Note that, in the specification case, the module-types must be parenthesized if they use the with mod-constraint construct.


Previous Up Next ocaml-doc-4.11/ocaml.html/overridingopen.html0000644000175000017500000001003413717225665020225 0ustar mehdimehdi 8.9  Overriding in open statements Previous Up Next

8.9  Overriding in open statements

(Introduced in OCaml 4.01)

definition::= ...  
   open! module-path  
 
specification::= ...  
   open! module-path  
 
expr::= ...  
  let open! module-path in  expr  
 
class-body-type::= ...  
   let open! module-path in  class-body-type  
 
class-expr::= ...  
   let open! module-path in  class-expr  
 

Since OCaml 4.01, open statements shadowing an existing identifier (which is later used) trigger the warning 44. Adding a ! character after the open keyword indicates that such a shadowing is intentional and should not trigger the warning.

This is also available (since OCaml 4.06) for local opens in class expressions and class type expressions.


Previous Up Next ocaml-doc-4.11/ocaml.html/inlinerecords.html0000644000175000017500000000663313717225665020045 0ustar mehdimehdi 8.17  Inline records Previous Up Next

8.17  Inline records

(Introduced in OCaml 4.03)

constr-args::= ...  
  record-decl  
 

The arguments of sum-type constructors can now be defined using the same syntax as records. Mutable and polymorphic fields are allowed. GADT syntax is supported. Attributes can be specified on individual fields.

Syntactically, building or matching constructors with such an inline record argument is similar to working with a unary constructor whose unique argument is a declared record type. A pattern can bind the inline record as a pseudo-value, but the record cannot escape the scope of the binding and can only be used with the dot-notation to extract or modify fields or to build new constructor values.

type t = | Point of {width: int; mutable x: float; mutable y: float} | Other let v = Point {width = 10; x = 0.; y = 0.} let scale l = function | Point p -> Point {p with x = l *. p.x; y = l *. p.y} | Other -> Other let print = function | Point {x; y; _} -> Printf.printf "%f/%f" x y | Other -> () let reset = function | Point p -> p.x <- 0.; p.y <- 0. | Other -> ()
let invalid = function | Point p -> p
Error: This form is not allowed as the type of the inlined record could escape.

Previous Up Next ocaml-doc-4.11/ocaml.html/extn.html0000644000175000017500000000522213717225665016154 0ustar mehdimehdi Chapter 8  Language extensions Previous Up Next

Chapter 8  Language extensions

This chapter describes language extensions and convenience features that are implemented in OCaml, but not described in the OCaml reference manual.


Previous Up Next ocaml-doc-4.11/ocaml.html/next_motif.gif0000644000175000017500000000047513654466302017153 0ustar mehdimehdiGIF89app!# Imported from XPM image: next.xpm!,@63333B! 0 A0 0 0  0 `0 `0 A @ `0 `00000000000000000000000000000000000000000000  000000 0000000000000000000000000000` ;ocaml-doc-4.11/ocaml.html/libnum.html0000644000175000017500000000340713717225665016467 0ustar mehdimehdi Chapter 29  The num library: arbitrary-precision rational arithmetic Previous Up Next

Chapter 29  The num library: arbitrary-precision rational arithmetic

The num library implements integer arithmetic and rational arithmetic in arbitrary precision. It was split off the core OCaml distribution starting with the 4.06.0 release, and can now be found at https://github.com/ocaml/num.

New applications that need arbitrary-precision arithmetic should use the Zarith library (https://github.com/ocaml/Zarith) instead of the Num library, and older applications that already use Num are encouraged to switch to Zarith. Zarith delivers much better performance than Num and has a nicer API.


Previous Up Next ocaml-doc-4.11/ocaml.html/flambda.html0000644000175000017500000023104213717225665016565 0ustar mehdimehdi Chapter 21  Optimisation with Flambda Previous Up Next

Chapter 21  Optimisation with Flambda

21.1  Overview

Flambda is the term used to describe a series of optimisation passes provided by the native code compilers as of OCaml 4.03.

Flambda aims to make it easier to write idiomatic OCaml code without incurring performance penalties.

To use the Flambda optimisers it is necessary to pass the -flambda option to the OCaml configure script. (There is no support for a single compiler that can operate in both Flambda and non-Flambda modes.) Code compiled with Flambda cannot be linked into the same program as code compiled without Flambda. Attempting to do this will result in a compiler error.

Whether or not a particular ocamlopt uses Flambda may be determined by invoking it with the -config option and looking for any line starting with “flambda:”. If such a line is present and says “true”, then Flambda is supported, otherwise it is not.

Flambda provides full optimisation across different compilation units, so long as the .cmx files for the dependencies of the unit currently being compiled are available. (A compilation unit corresponds to a single .ml source file.) However it does not yet act entirely as a whole-program compiler: for example, elimination of dead code across a complete set of compilation units is not supported.

Optimisation with Flambda is not currently supported when generating bytecode.

Flambda should not in general affect the semantics of existing programs. Two exceptions to this rule are: possible elimination of pure code that is being benchmarked (see section 21.14) and changes in behaviour of code using unsafe operations (see section 21.15).

Flambda does not yet optimise array or string bounds checks. Neither does it take hints for optimisation from any assertions written by the user in the code.

Consult the Glossary at the end of this chapter for definitions of technical terms used below.

21.2  Command-line flags

The Flambda optimisers provide a variety of command-line flags that may be used to control their behaviour. Detailed descriptions of each flag are given in the referenced sections. Those sections also describe any arguments which the particular flags take.

Commonly-used options:

-O2
Perform more optimisation than usual. Compilation times may be lengthened. (This flag is an abbreviation for a certain set of parameters described in section 21.5.)
-O3
Perform even more optimisation than usual, possibly including unrolling of recursive functions. Compilation times may be significantly lengthened.
-Oclassic
Make inlining decisions at the point of definition of a function rather than at the call site(s). This mirrors the behaviour of OCaml compilers not using Flambda. Compared to compilation using the new Flambda inlining heuristics (for example at -O2) it produces smaller .cmx files, shorter compilation times and code that probably runs rather slower. When using -Oclassic, only the following options described in this section are relevant: -inlining-report and -inline. If any other of the options described in this section are used, the behaviour is undefined and may cause an error in future versions of the compiler.
-inlining-report
Emit .inlining files (one per round of optimisation) showing all of the inliner’s decisions.

Less commonly-used options:

-remove-unused-arguments
Remove unused function arguments even when the argument is not specialised. This may have a small performance penalty. See section 21.10.3.
-unbox-closures
Pass free variables via specialised arguments rather than closures (an optimisation for reducing allocation). See section 21.9.3. This may have a small performance penalty.

Advanced options, only needed for detailed tuning:

-inline
The behaviour depends on whether -Oclassic is used.
-inline-toplevel
The equivalent of -inline but used when speculative inlining starts at toplevel. See section 21.3.6. Not used in -Oclassic mode.
-inline-branch-factor
Controls how the inliner assesses whether a code path is likely to be hot or cold. See section 21.3.5.
-inline-alloc-cost, -inline-branch-cost, -inline-call-cost
Controls how the inliner assesses the runtime performance penalties associated with various operations. See section 21.3.5.
-inline-indirect-cost, -inline-prim-cost
Likewise.
-inline-lifting-benefit
Controls inlining of functors at toplevel. See section 21.3.5.
-inline-max-depth
The maximum depth of any speculative inlining search. See section 21.3.6.
-inline-max-unroll
The maximum depth of any unrolling of recursive functions during any speculative inlining search. See section 21.3.6.
-no-unbox-free-vars-of-closures
Do not unbox closure variables. See section 21.9.1.
-no-unbox-specialised-args
Do not unbox arguments to which functions have been specialised. See section 21.9.2.
-rounds
How many rounds of optimisation to perform. See section 21.2.1.
-unbox-closures-factor
Scaling factor for benefit calculation when using -unbox-closures. See section 21.9.3.
Notes

21.2.1  Specification of optimisation parameters by round

Flambda operates in rounds: one round consists of a certain sequence of transformations that may then be repeated in order to achieve more satisfactory results. The number of rounds can be set manually using the -rounds parameter (although this is not necessary when using predefined optimisation levels such as with -O2 and -O3). For high optimisation the number of rounds might be set at 3 or 4.

Command-line flags that may apply per round, for example those with -cost in the name, accept arguments of the form:

n | round=n[,...]

The flags -Oclassic, -O2 and -O3 are applied before all other flags, meaning that certain parameters may be overridden without having to specify every parameter usually invoked by the given optimisation level.

21.3  Inlining

Inlining refers to the copying of the code of a function to a place where the function is called. The code of the function will be surrounded by bindings of its parameters to the corresponding arguments.

The aims of inlining are:

These goals are often reached not just by inlining itself but also by other optimisations that the compiler is able to perform as a result of inlining.

When a recursive call to a function (within the definition of that function or another in the same mutually-recursive group) is inlined, the procedure is also known as unrolling. This is somewhat akin to loop peeling. For example, given the following code:

let rec fact x =
  if x = 0 then
    1
  else
    x * fact (x - 1)

let n = fact 4

unrolling once at the call site fact 4 produces (with the body of fact unchanged):

let n =
  if 4 = 0 then
    1
  else
    4 * fact (4 - 1)

This simplifies to:

let n = 4 * fact 3

Flambda provides significantly enhanced inlining capabilities relative to previous versions of the compiler.

Aside: when inlining is performed

Inlining is performed together with all of the other Flambda optimisation passes, that is to say, after closure conversion. This has three particular advantages over a potentially more straightforward implementation prior to closure conversion:

21.3.1  Classic inlining heuristic

In -Oclassic mode the behaviour of the Flambda inliner mimics previous versions of the compiler. (Code may still be subject to further optimisations not performed by previous versions of the compiler: functors may be inlined, constants are lifted and unused code is eliminated all as described elsewhere in this chapter. See sections 21.3.3, 21.8.1 and 21.10. At the definition site of a function, the body of the function is measured. It will then be marked as eligible for inlining (and hence inlined at every direct call site) if:

Non-Flambda versions of the compiler cannot inline functions that contain a definition of another function. However -Oclassic does permit this. Further, non-Flambda versions also cannot inline functions that are only themselves exposed as a result of a previous pass of inlining, but again this is permitted by -Oclassic. For example:

module M : sig
  val i : int
end = struct
  let f x =
    let g y = x + y in
    g
  let h = f 3
  let i = h 4  (* h is correctly discovered to be g and inlined *)
end

All of this contrasts with the normal Flambda mode, that is to say without -Oclassic, where:

The Flambda mode is described in the next section.

21.3.2  Overview of “Flambda” inlining heuristics

The Flambda inlining heuristics, used whenever the compiler is configured for Flambda and -Oclassic was not specified, make inlining decisions at call sites. This helps in situations where the context is important. For example:

let f b x =
  if b then
    x
  else
    ... big expression ...

let g x = f true x

In this case, we would like to inline f into g, because a conditional jump can be eliminated and the code size should reduce. If the inlining decision has been made after the declaration of f without seeing the use, its size would have probably made it ineligible for inlining; but at the call site, its final size can be known. Further, this function should probably not be inlined systematically: if b is unknown, or indeed false, there is little benefit to trade off against a large increase in code size. In the existing non-Flambda inliner this isn’t a great problem because chains of inlining were cut off fairly quickly. However it has led to excessive use of overly-large inlining parameters such as -inline 10000.

In more detail, at each call site the following procedure is followed:

Inlining within recursive functions of calls to other functions in the same mutually-recursive group is kept in check by an unrolling depth, described below. This ensures that functions are not unrolled to excess. (Unrolling is only enabled if -O3 optimisation level is selected and/or the -inline-max-unroll flag is passed with an argument greater than zero.)

21.3.3  Handling of specific language constructs

Functors

There is nothing particular about functors that inhibits inlining compared to normal functions. To the inliner, these both look the same, except that functors are marked as such.

Applications of functors at toplevel are biased in favour of inlining. (This bias may be adjusted: see the documentation for -inline-lifting-benefit below.)

Applications of functors not at toplevel, for example in a local module inside some other expression, are treated by the inliner identically to normal function calls.

First-class modules

The inliner will be able to consider inlining a call to a function in a first class module if it knows which particular function is going to be called. The presence of the first-class module record that wraps the set of functions in the module does not per se inhibit inlining.

Objects

Method calls to objects are not at present inlined by Flambda.

21.3.4  Inlining reports

If the -inlining-report option is provided to the compiler then a file will be emitted corresponding to each round of optimisation. For the OCaml source file basename.ml the files are named basename.round.inlining.org, with round a zero-based integer. Inside the files, which are formatted as “org mode”, will be found English prose describing the decisions that the inliner took.

21.3.5  Assessment of inlining benefit

Inlining typically results in an increase in code size, which if left unchecked, may not only lead to grossly large executables and excessive compilation times but also a decrease in performance due to worse locality. As such, the Flambda inliner trades off the change in code size against the expected runtime performance benefit, with the benefit being computed based on the number of operations that the compiler observes may be removed as a result of inlining.

For example given the following code:

let f b x =
  if b then
    x
  else
    ... big expression ...

let g x = f true x

it would be observed that inlining of f would remove:

Formally, an estimate of runtime performance benefit is computed by first summing the cost of the operations that are known to be removed as a result of the inlining and subsequent simplification of the inlined body. The individual costs for the various kinds of operations may be adjusted using the various -inline-...-cost flags as follows. Costs are specified as integers. All of these flags accept a single argument describing such integers using the conventions detailed in section 21.2.1.

-inline-alloc-cost
The cost of an allocation.
-inline-branch-cost
The cost of a branch.
-inline-call-cost
The cost of a direct function call.
-inline-indirect-cost
The cost of an indirect function call.
-inline-prim-cost
The cost of a primitive. Primitives encompass operations including arithmetic and memory access.

(Default values are described in section 21.5 below.)

The initial benefit value is then scaled by a factor that attempts to compensate for the fact that the current point in the code, if under some number of conditional branches, may be cold. (Flambda does not currently compute hot and cold paths.) The factor—the estimated probability that the inliner really is on a hot path—is calculated as 1/(1 + f)d, where f is set by -inline-branch-factor and d is the nesting depth of branches at the current point. As the inliner descends into more deeply-nested branches, the benefit of inlining thus lessens.

The resulting benefit value is known as the estimated benefit.

The change in code size is also estimated: morally speaking it should be the change in machine code size, but since that is not available to the inliner, an approximation is used.

If the estimated benefit exceeds the increase in code size then the inlined version of the function will be kept. Otherwise the function will not be inlined.

Applications of functors at toplevel will be given an additional benefit (which may be controlled by the -inline-lifting-benefit flag) to bias inlining in such situations towards keeping the inlined version.

21.3.6  Control of speculation

As described above, there are three parameters that restrict the search for inlining opportunities during speculation:

These parameters are ultimately bounded by the arguments provided to the corresponding command-line flags (or their default values):

Note in particular that -inline does not have the meaning that it has in the previous compiler or in -Oclassic mode. In both of those situations -inline was effectively some kind of basic assessment of inlining benefit. However in Flambda inlining mode it corresponds to a constraint on the search; the assessment of benefit is independent, as described above.

When speculation starts the inlining threshold starts at the value set by -inline (or -inline-toplevel if appropriate, see above). Upon making a speculative inlining decision the threshold is reduced by the code size of the function being inlined. If the threshold becomes exhausted, at or below zero, no further speculation will be performed.

The inlining depth starts at zero and is increased by one every time the inliner descends into another function. It is then decreased by one every time the inliner leaves such function. If the depth exceeds the value set by -inline-max-depth then speculation stops. This parameter is intended as a general backstop for situations where the inlining threshold does not control the search sufficiently.

The unrolling depth applies to calls within the same mutually-recursive group of functions. Each time an inlining of such a call is performed the depth is incremented by one when examining the resulting body. If the depth reaches the limit set by -inline-max-unroll then speculation stops.

21.4  Specialisation

The inliner may discover a call site to a recursive function where something is known about the arguments: for example, they may be equal to some other variables currently in scope. In this situation it may be beneficial to specialise the function to those arguments. This is done by copying the declaration of the function (and any others involved in any same mutually-recursive declaration) and noting the extra information about the arguments. The arguments augmented by this information are known as specialised arguments. In order to try to ensure that specialisation is not performed uselessly, arguments are only specialised if it can be shown that they are invariant: in other words, during the execution of the recursive function(s) themselves, the arguments never change.

Unless overridden by an attribute (see below), specialisation of a function will not be attempted if:

The compiler can prove invariance of function arguments across multiple functions within a recursive group (although this has some limitations, as shown by the example below).

It should be noted that the unboxing of closures pass (see below) can introduce specialised arguments on non-recursive functions. (No other place in the compiler currently does this.)

Example: the well-known List.iter function

This function might be written like so:

let rec iter f l =
  match l with
  | [] -> ()
  | h :: t ->
    f h;
    iter f t

and used like this:

let print_int x =
  print_endline (Int.to_string x)

let run xs =
  iter print_int (List.rev xs)

The argument f to iter is invariant so the function may be specialised:

let run xs =
  let rec iter' f l =
    (* The compiler knows: f holds the same value as foo throughout iter'. *)
    match l with
    | [] -> ()
    | h :: t ->
      f h;
      iter' f t
  in
  iter' print_int (List.rev xs)

The compiler notes down that for the function iter’, the argument f is specialised to the constant closure print_int. This means that the body of iter’ may be simplified:

let run xs =
  let rec iter' f l =
    (* The compiler knows: f holds the same value as foo throughout iter'. *)
    match l with
    | [] -> ()
    | h :: t ->
      print_int h;  (* this is now a direct call *)
      iter' f t
  in
  iter' print_int (List.rev xs)

The call to print_int can indeed be inlined:

let run xs =
  let rec iter' f l =
    (* The compiler knows: f holds the same value as foo throughout iter'. *)
    match l with
    | [] -> ()
    | h :: t ->
      print_endline (Int.to_string h);
      iter' f t
  in
  iter' print_int (List.rev xs)

The unused specialised argument f may now be removed, leaving:

let run xs =
  let rec iter' l =
    match l with
    | [] -> ()
    | h :: t ->
      print_endline (Int.to_string h);
      iter' t
  in
  iter' (List.rev xs)
Aside on invariant parameters.

The compiler cannot currently detect invariance in cases such as the following.

let rec iter_swap f g l =
  match l with
  | [] -> ()
  | 0 :: t ->
    iter_swap g f l
  | h :: t ->
    f h;
    iter_swap f g t

21.4.1  Assessment of specialisation benefit

The benefit of specialisation is assessed in a similar way as for inlining. Specialised argument information may mean that the body of the function being specialised can be simplified: the removed operations are accumulated into a benefit. This, together with the size of the duplicated (specialised) function declaration, is then assessed against the size of the call to the original function.

21.5  Default settings of parameters

The default settings (when not using -Oclassic) are for one round of optimisation using the following parameters.

ParameterSetting
-inline10
-inline-branch-factor0.1
-inline-alloc-cost7
-inline-branch-cost5
-inline-call-cost5
-inline-indirect-cost4
-inline-prim-cost3
-inline-lifting-benefit1300
-inline-toplevel160
-inline-max-depth1
-inline-max-unroll0
-unbox-closures-factor10

21.5.1  Settings at -O2 optimisation level

When -O2 is specified two rounds of optimisation are performed. The first round uses the default parameters (see above). The second uses the following parameters.

ParameterSetting
-inline25
-inline-branch-factorSame as default
-inline-alloc-costDouble the default
-inline-branch-costDouble the default
-inline-call-costDouble the default
-inline-indirect-costDouble the default
-inline-prim-costDouble the default
-inline-lifting-benefitSame as default
-inline-toplevel400
-inline-max-depth2
-inline-max-unrollSame as default
-unbox-closures-factorSame as default

21.5.2  Settings at -O3 optimisation level

When -O3 is specified three rounds of optimisation are performed. The first two rounds are as for -O2. The third round uses the following parameters.

ParameterSetting
-inline50
-inline-branch-factorSame as default
-inline-alloc-costTriple the default
-inline-branch-costTriple the default
-inline-call-costTriple the default
-inline-indirect-costTriple the default
-inline-prim-costTriple the default
-inline-lifting-benefitSame as default
-inline-toplevel800
-inline-max-depth3
-inline-max-unroll1
-unbox-closures-factorSame as default

21.6  Manual control of inlining and specialisation

Should the inliner prove recalcitrant and refuse to inline a particular function, or if the observed inlining decisions are not to the programmer’s satisfaction for some other reason, inlining behaviour can be dictated by the programmer directly in the source code. One example where this might be appropriate is when the programmer, but not the compiler, knows that a particular function call is on a cold code path. It might be desirable to prevent inlining of the function so that the code size along the hot path is kept smaller, so as to increase locality.

The inliner is directed using attributes. For non-recursive functions (and one-step unrolling of recursive functions, although @unroll is more clear for this purpose) the following are supported:

@@inline always or @@inline never
Attached to a declaration of a function or functor, these direct the inliner to either always or never inline, irrespective of the size/benefit calculation. (If the function is recursive then the body is substituted and no special action is taken for the recursive call site(s).) @@inline with no argument is equivalent to @@inline always.
@inlined always or @inlined never
Attached to a function application, these direct the inliner likewise. These attributes at call sites override any other attribute that may be present on the corresponding declaration. @inlined with no argument is equivalent to @inlined always. @@inlined hint is equivalent to @@inline always except that it will not trigger warning 55 if the function application cannot be inlined.

For recursive functions the relevant attributes are:

@@specialise always or @@specialise never
Attached to a declaration of a function or functor, this directs the inliner to either always or never specialise the function so long as it has appropriate contextual knowledge, irrespective of the size/benefit calculation. @@specialise with no argument is equivalent to @@specialise always.
@specialised always or @specialised never
Attached to a function application, this directs the inliner likewise. This attribute at a call site overrides any other attribute that may be present on the corresponding declaration. (Note that the function will still only be specialised if there exist one or more invariant parameters whose values are known.) @specialised with no argument is equivalent to @specialised always.
@unrolled n
This attribute is attached to a function application and always takes an integer argument. Each time the inliner sees the attribute it behaves as follows: As such, n behaves as the “maximum depth of unrolling”.

A compiler warning will be emitted if it was found impossible to obey an annotation from an @inlined or @specialised attribute.

Example showing correct placement of attributes
module F (M : sig type t end) = struct
  let[@inline never] bar x =
    x * 3

  let foo x =
    (bar [@inlined]) (42 + x)
end [@@inline never]

module X = F [@inlined] (struct type t = int end)

21.7  Simplification

Simplification, which is run in conjunction with inlining, propagates information (known as approximations) about which variables hold what values at runtime. Certain relationships between variables and symbols are also tracked: for example, some variable may be known to always hold the same value as some other variable; or perhaps some variable may be known to always hold the value pointed to by some symbol.

The propagation can help to eliminate allocations in cases such as:

let f x y =
  ...
  let p = x, y in
  ...
  ... (fst p) ... (snd p) ...

The projections from p may be replaced by uses of the variables x and y, potentially meaning that p becomes unused.

The propagation performed by the simplification pass is also important for discovering which functions flow to indirect call sites. This can enable the transformation of such call sites into direct call sites, which makes them eligible for an inlining transformation.

Note that no information is propagated about the contents of strings, even in safe-string mode, because it cannot yet be guaranteed that they are immutable throughout a given program.

21.8  Other code motion transformations

21.8.1  Lifting of constants

Expressions found to be constant will be lifted to symbol bindings—that is to say, they will be statically allocated in the object file—when they evaluate to boxed values. Such constants may be straightforward numeric constants, such as the floating-point number 42.0, or more complicated values such as constant closures.

Lifting of constants to toplevel reduces allocation at runtime.

The compiler aims to share constants lifted to toplevel such that there are no duplicate definitions. However if .cmx files are hidden from the compiler then maximal sharing may not be possible.

Notes about float arrays

The following language semantics apply specifically to constant float arrays. (By “constant float array” is meant an array consisting entirely of floating point numbers that are known at compile time. A common case is a literal such as [| 42.0; 43.0; |].

21.8.2  Lifting of toplevel let bindings

Toplevel let-expressions may be lifted to symbol bindings to ensure that the corresponding bound variables are not captured by closures. If the defining expression of a given binding is found to be constant, it is bound as such (the technical term is a let-symbol binding).

Otherwise, the symbol is bound to a (statically-allocated) preallocated block containing one field. At runtime, the defining expression will be evaluated and the first field of the block filled with the resulting value. This initialise-symbol binding causes one extra indirection but ensures, by virtue of the symbol’s address being known at compile time, that uses of the value are not captured by closures.

It should be noted that the blocks corresponding to initialise-symbol bindings are kept alive forever, by virtue of them occurring in a static table of GC roots within the object file. This extended lifetime of expressions may on occasion be surprising. If it is desired to create some non-constant value (for example when writing GC tests) that does not have this extended lifetime, then it may be created and used inside a function, with the application point of that function (perhaps at toplevel)—or indeed the function declaration itself—marked as to never be inlined. This technique prevents lifting of the definition of the value in question (assuming of course that it is not constant).

21.9  Unboxing transformations

The transformations in this section relate to the splitting apart of boxed (that is to say, non-immediate) values. They are largely intended to reduce allocation, which tends to result in a runtime performance profile with lower variance and smaller tails.

21.9.1  Unboxing of closure variables

This transformation is enabled unless -no-unbox-free-vars-of-closures is provided.

Variables that appear in closure environments may themselves be boxed values. As such, they may be split into further closure variables, each of which corresponds to some projection from the original closure variable(s). This transformation is called unboxing of closure variables or unboxing of free variables of closures. It is only applied when there is reasonable certainty that there are no uses of the boxed free variable itself within the corresponding function bodies.

Example:

In the following code, the compiler observes that the closure returned from the function f contains a variable pair (free in the body of f) that may be split into two separate variables.

let f x0 x1 =
  let pair = x0, x1 in
  Printf.printf "foo\n";
  fun y ->
    fst pair + snd pair + y

After some simplification one obtains:

let f x0 x1 =
  let pair_0 = x0 in
  let pair_1 = x1 in
  Printf.printf "foo\n";
  fun y ->
    pair_0 + pair_1 + y

and then:

let f x0 x1 =
  Printf.printf "foo\n";
  fun y ->
    x0 + x1 + y

The allocation of the pair has been eliminated.

This transformation does not operate if it would cause the closure to contain more than twice as many closure variables as it did beforehand.

21.9.2  Unboxing of specialised arguments

This transformation is enabled unless -no-unbox-specialised-args is provided.

It may become the case during compilation that one or more invariant arguments to a function become specialised to a particular value. When such values are themselves boxed the corresponding specialised arguments may be split into more specialised arguments corresponding to the projections out of the boxed value that occur within the function body. This transformation is called unboxing of specialised arguments. It is only applied when there is reasonable certainty that the boxed argument itself is unused within the function.

If the function in question is involved in a recursive group then unboxing of specialised arguments may be immediately replicated across the group based on the dataflow between invariant arguments.

Example:

Having been given the following code, the compiler will inline loop into f, and then observe inv being invariant and always the pair formed by adding 42 and 43 to the argument x of the function f.

let rec loop inv xs =
  match xs with
  | [] -> fst inv + snd inv
  | x::xs -> x + loop2 xs inv
and loop2 ys inv =
  match ys with
  | [] -> 4
  | y::ys -> y - loop inv ys

let f x =
  Printf.printf "%d\n" (loop (x + 42, x + 43) [1; 2; 3])

Since the functions have sufficiently few arguments, more specialised arguments will be added. After some simplification one obtains:

let f x =
  let rec loop' xs inv_0 inv_1 =
    match xs with
    | [] -> inv_0 + inv_1
    | x::xs -> x + loop2' xs inv_0 inv_1
  and loop2' ys inv_0 inv_1 =
    match ys with
    | [] -> 4
    | y::ys -> y - loop' ys inv_0 inv_1
  in
  Printf.printf "%d\n" (loop' [1; 2; 3] (x + 42) (x + 43))

The allocation of the pair within f has been removed. (Since the two closures for loop’ and loop2’ are constant they will also be lifted to toplevel with no runtime allocation penalty. This would also happen without having run the transformation to unbox specialise arguments.)

The transformation to unbox specialised arguments never introduces extra allocation.

The transformation will not unbox arguments if it would result in the original function having sufficiently many arguments so as to inhibit tail-call optimisation.

The transformation is implemented by creating a wrapper function that accepts the original arguments. Meanwhile, the original function is renamed and extra arguments are added corresponding to the unboxed specialised arguments; this new function is called from the wrapper. The wrapper will then be inlined at direct call sites. Indeed, all call sites will be direct unless -unbox-closures is being used, since they will have been generated by the compiler when originally specialising the function. (In the case of -unbox-closures other functions may appear with specialised arguments; in this case there may be indirect calls and these will incur a small penalty owing to having to bounce through the wrapper. The technique of direct call surrogates used for -unbox-closures is not used by the transformation to unbox specialised arguments.)

21.9.3  Unboxing of closures

This transformation is not enabled by default. It may be enabled using the -unbox-closures flag.

The transformation replaces closure variables by specialised arguments. The aim is to cause more closures to become closed. It is particularly applicable, as a means of reducing allocation, where the function concerned cannot be inlined or specialised. For example, some non-recursive function might be too large to inline; or some recursive function might offer no opportunities for specialisation perhaps because its only argument is one of type unit.

At present there may be a small penalty in terms of actual runtime performance when this transformation is enabled, although more stable performance may be obtained due to reduced allocation. It is recommended that developers experiment to determine whether the option is beneficial for their code. (It is expected that in the future it will be possible for the performance degradation to be removed.)

Simple example:

In the following code (which might typically occur when g is too large to inline) the value of x would usually be communicated to the application of the + function via the closure of g.

let f x =
  let g y =
    x + y
  in
  (g [@inlined never]) 42

Unboxing of the closure causes the value for x inside g to be passed as an argument to g rather than through its closure. This means that the closure of g becomes constant and may be lifted to toplevel, eliminating the runtime allocation.

The transformation is implemented by adding a new wrapper function in the manner of that used when unboxing specialised arguments. The closure variables are still free in the wrapper, but the intention is that when the wrapper is inlined at direct call sites, the relevant values are passed directly to the main function via the new specialised arguments.

Adding such a wrapper will penalise indirect calls to the function (which might exist in arbitrary places; remember that this transformation is not for example applied only on functions the compiler has produced as a result of specialisation) since such calls will bounce through the wrapper. To mitigate this, if a function is small enough when weighed up against the number of free variables being removed, it will be duplicated by the transformation to obtain two versions: the original (used for indirect calls, since we can do no better) and the wrapper/rewritten function pair as described in the previous paragraph. The wrapper/rewritten function pair will only be used at direct call sites of the function. (The wrapper in this case is known as a direct call surrogate, since it takes the place of another function—the unchanged version used for indirect calls—at direct call sites.)

The -unbox-closures-factor command line flag, which takes an integer, may be used to adjust the point at which a function is deemed large enough to be ineligible for duplication. The benefit of duplication is scaled by the integer before being evaluated against the size.

Harder example:

In the following code, there are two closure variables that would typically cause closure allocations. One is called fv and occurs inside the function baz; the other is called z and occurs inside the function bar. In this toy (yet sophisticated) example we again use an attribute to simulate the typical situation where the first argument of baz is too large to inline.

let foo c =
  let rec bar zs fv =
    match zs with
    | [] -> []
    | z::zs ->
      let rec baz f = function
        | [] -> []
        | a::l -> let r = fv + ((f [@inlined never]) a) in r :: baz f l
      in
      (map2 (fun y -> z + y) [z; 2; 3; 4]) @ bar zs fv
  in
  Printf.printf "%d" (List.length (bar [1; 2; 3; 4] c))

The code resulting from applying -O3 -unbox-closures to this code passes the free variables via function arguments in order to eliminate all closure allocation in this example (aside from any that might be performed inside printf).

21.10  Removal of unused code and values

21.10.1  Removal of redundant let expressions

The simplification pass removes unused let bindings so long as their corresponding defining expressions have “no effects”. See the section “Treatment of effects” below for the precise definition of this term.

21.10.2  Removal of redundant program constructs

This transformation is analogous to the removal of let-expressions whose defining expressions have no effects. It operates instead on symbol bindings, removing those that have no effects.

21.10.3  Removal of unused arguments

This transformation is only enabled by default for specialised arguments. It may be enabled for all arguments using the -remove-unused-arguments flag.

The pass analyses functions to determine which arguments are unused. Removal is effected by creating a wrapper function, which will be inlined at every direct call site, that accepts the original arguments and then discards the unused ones before calling the original function. As a consequence, this transformation may be detrimental if the original function is usually indirectly called, since such calls will now bounce through the wrapper. (The technique of direct call surrogates used to reduce this penalty during unboxing of closure variables (see above) does not yet apply to the pass that removes unused arguments.)

21.10.4  Removal of unused closure variables

This transformation performs an analysis across the whole compilation unit to determine whether there exist closure variables that are never used. Such closure variables are then eliminated. (Note that this has to be a whole-unit analysis because a projection of a closure variable from some particular closure may have propagated to an arbitrary location within the code due to inlining.)

21.11  Other code transformations

21.11.1  Transformation of non-escaping references into mutable variables

Flambda performs a simple analysis analogous to that performed elsewhere in the compiler that can transform refs into mutable variables that may then be held in registers (or on the stack as appropriate) rather than being allocated on the OCaml heap. This only happens so long as the reference concerned can be shown to not escape from its defining scope.

21.11.2  Substitution of closure variables for specialised arguments

This transformation discovers closure variables that are known to be equal to specialised arguments. Such closure variables are replaced by the specialised arguments; the closure variables may then be removed by the “removal of unused closure variables” pass (see below).

21.12  Treatment of effects

The Flambda optimisers classify expressions in order to determine whether an expression:

This is done by forming judgements on the effects and the coeffects that might be performed were the expression to be executed. Effects talk about how the expression might affect the world; coeffects talk about how the world might affect the expression.

Effects are classified as follows:

No effects:
The expression does not change the observable state of the world. For example, it must not write to any mutable storage, call arbitrary external functions or change control flow (e.g. by raising an exception). Note that allocation is not classed as having “no effects” (see below).
Only generative effects:
The expression does not change the observable state of the world save for possibly affecting the state of the garbage collector by performing an allocation. Expressions that only have generative effects and whose results are unused may be eliminated by the compiler. However, unlike expressions with “no effects”, such expressions will never be eligible for duplication.
Arbitrary effects:
All other expressions.

There is a single classification for coeffects:

No coeffects:
The expression does not observe the effects (in the sense described above) of other expressions. For example, it must not read from any mutable storage or call arbitrary external functions.

It is assumed in the compiler that, subject to data dependencies, expressions with neither effects nor coeffects may be reordered with respect to other expressions.

21.13  Compilation of statically-allocated modules

Compilation of modules that are able to be statically allocated (for example, the module corresponding to an entire compilation unit, as opposed to a first class module dependent on values computed at runtime) initially follows the strategy used for bytecode. A sequence of let-bindings, which may be interspersed with arbitrary effects, surrounds a record creation that becomes the module block. The Flambda-specific transformation follows: these bindings are lifted to toplevel symbols, as described above.

21.14  Inhibition of optimisation

Especially when writing benchmarking suites that run non-side-effecting algorithms in loops, it may be found that the optimiser entirely elides the code being benchmarked. This behaviour can be prevented by using the Sys.opaque_identity function (which indeed behaves as a normal OCaml function and does not possess any “magic” semantics). The documentation of the Sys module should be consulted for further details.

21.15  Use of unsafe operations

The behaviour of the Flambda simplification pass means that certain unsafe operations, which may without Flambda or when using previous versions of the compiler be safe, must not be used. This specifically refers to functions found in the Obj module.

In particular, it is forbidden to change any value (for example using Obj.set_field or Obj.set_tag) that is not mutable. (Values returned from C stubs are always treated as mutable.) The compiler will emit warning 59 if it detects such a write—but it cannot warn in all cases. Here is an example of code that will trigger the warning:

let f x =
  let a = 42, x in
  (Obj.magic a : int ref) := 1;
  fst a

The reason this is unsafe is because the simplification pass believes that fst a holds the value 42; and indeed it must, unless type soundness has been broken via unsafe operations.

If it must be the case that code has to be written that triggers warning 59, but the code is known to actually be correct (for some definition of correct), then Sys.opaque_identity may be used to wrap the value before unsafe operations are performed upon it. Great care must be taken when doing this to ensure that the opacity is added at the correct place. It must be emphasised that this use of Sys.opaque_identity is only for exceptional cases. It should not be used in normal code or to try to guide the optimiser.

As an example, this code will return the integer 1:

let f x =
  let a = Sys.opaque_identity (42, x) in
  (Obj.magic a : int ref) := 1;
  fst a

However the following code will still return 42:

let f x =
  let a = 42, x in
  Sys.opaque_identity (Obj.magic a : int ref) := 1;
  fst a

High levels of inlining performed by Flambda may expose bugs in code thought previously to be correct. Take care, for example, not to add type annotations that claim some mutable value is always immediate if it might be possible for an unsafe operation to update it to a boxed value.

21.16  Glossary

The following terminology is used in this chapter of the manual.

Call site
See direct call site and indirect call site below.
Closed function
A function whose body has no free variables except its parameters and any to which are bound other functions within the same (possibly mutually-recursive) declaration.
Closure
The runtime representation of a function. This includes pointers to the code of the function together with the values of any variables that are used in the body of the function but actually defined outside of the function, in the enclosing scope. The values of such variables, collectively known as the environment, are required because the function may be invoked from a place where the original bindings of such variables are no longer in scope. A group of possibly mutually-recursive functions defined using let rec all share a single closure. (Note to developers: in the Flambda source code a closure always corresponds to a single function; a set of closures refers to a group of such.)
Closure variable
A member of the environment held within the closure of a given function.
Constant
Some entity (typically an expression) the value of which is known by the compiler at compile time. Constantness may be explicit from the source code or inferred by the Flambda optimisers.
Constant closure
A closure that is statically allocated in an object file. It is almost always the case that the environment portion of such a closure is empty.
Defining expression
The expression e in let x = e in e’.
Direct call site
A place in a program’s code where a function is called and it is known at compile time which function it will always be.
Indirect call site
A place in a program’s code where a function is called but is not known to be a direct call site.
Program
A collection of symbol bindings forming the definition of a single compilation unit (i.e. .cmx file).
Specialised argument
An argument to a function that is known to always hold a particular value at runtime. These are introduced by the inliner when specialising recursive functions; and the unbox-closures pass. (See section 21.4.)
Symbol
A name referencing a particular place in an object file or executable image. At that particular place will be some constant value. Symbols may be examined using operating system-specific tools (for example objdump on Linux).
Symbol binding
Analogous to a let-expression but working at the level of symbols defined in the object file. The address of a symbol is fixed, but it may be bound to both constant and non-constant expressions.
Toplevel
An expression in the current program which is not enclosed within any function declaration.
Variable
A named entity to which some OCaml value is bound by a let expression, pattern-matching construction, or similar.

Previous Up Next ocaml-doc-4.11/ocaml.html/manual.hmanual0000644000175000017500000000460313717225565017135 0ustar mehdimehdi\indexentry{Lazy (module)@\verb`Lazy` (module)}{\@locref{hevea_manual0}{7.6}} \indexentry{force@\verb`force`}{\@locref{hevea_manual1}{7.6}} \indexentry{Matchfailure@\verb`Match_failure`}{\@locref{hevea_manual2}{7.7.2}} \indexentry{Matchfailure@\verb`Match_failure`}{\@locref{hevea_manual3}{7.7.2}} \indexentry{Matchfailure@\verb`Match_failure`}{\@locref{hevea_manual4}{7.7.3}} \indexentry{Assertfailure@\verb`Assert_failure`}{\@locref{hevea_manual5}{7.7.8}} \indexentry{int@\verb`int`}{\@locref{hevea_manual6}{25.1}} \indexentry{char@\verb`char`}{\@locref{hevea_manual7}{25.1}} \indexentry{bytes@\verb`bytes`}{\@locref{hevea_manual8}{25.1}} \indexentry{string@\verb`string`}{\@locref{hevea_manual9}{25.1}} \indexentry{float@\verb`float`}{\@locref{hevea_manual10}{25.1}} \indexentry{bool@\verb`bool`}{\@locref{hevea_manual11}{25.1}} \indexentry{unit@\verb`unit`}{\@locref{hevea_manual12}{25.1}} \indexentry{exn@\verb`exn`}{\@locref{hevea_manual13}{25.1}} \indexentry{array@\verb`array`}{\@locref{hevea_manual14}{25.1}} \indexentry{list@\verb`list`}{\@locref{hevea_manual15}{25.1}} \indexentry{option@\verb`option`}{\@locref{hevea_manual16}{25.1}} \indexentry{int32@\verb`int32`}{\@locref{hevea_manual17}{25.1}} \indexentry{int64@\verb`int64`}{\@locref{hevea_manual18}{25.1}} \indexentry{nativeint@\verb`nativeint`}{\@locref{hevea_manual19}{25.1}} \indexentry{format4@\verb`format4`}{\@locref{hevea_manual20}{25.1}} \indexentry{lazyt@\verb`lazy_t`}{\@locref{hevea_manual21}{25.1}} \indexentry{Matchfailure@\verb`Match_failure`}{\@locref{hevea_manual22}{25.1}} \indexentry{Assertfailure@\verb`Assert_failure`}{\@locref{hevea_manual23}{25.1}} \indexentry{Invalidargument@\verb`Invalid_argument`}{\@locref{hevea_manual24}{25.1}} \indexentry{Failure@\verb`Failure`}{\@locref{hevea_manual25}{25.1}} \indexentry{Notfound@\verb`Not_found`}{\@locref{hevea_manual26}{25.1}} \indexentry{Outofmemory@\verb`Out_of_memory`}{\@locref{hevea_manual27}{25.1}} \indexentry{Stackoverflow@\verb`Stack_overflow`}{\@locref{hevea_manual28}{25.1}} \indexentry{Syserror@\verb`Sys_error`}{\@locref{hevea_manual29}{25.1}} \indexentry{Endoffile@\verb`End_of_file`}{\@locref{hevea_manual30}{25.1}} \indexentry{Divisionbyzero@\verb`Division_by_zero`}{\@locref{hevea_manual31}{25.1}} \indexentry{Sysblockedio@\verb`Sys_blocked_io`}{\@locref{hevea_manual32}{25.1}} \indexentry{Undefinedrecursivemodule@\verb`Undefined_recursive_module`}{\@locref{hevea_manual33}{25.1}} ocaml-doc-4.11/ocaml.html/lex.html0000644000175000017500000007520113717225665015772 0ustar mehdimehdi 7.1  Lexical conventions Up Next

7.1  Lexical conventions

Blanks

The following characters are considered as blanks: space, horizontal tabulation, carriage return, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated by the characters *), with no intervening blanks. Comments are treated as blank characters. Comments do not occur inside string or character literals. Nested comments are handled correctly.

Identifiers

ident::= ( letter ∣  _ ) { letter ∣  0 … 9 ∣  _ ∣  ' }  
 
capitalized-ident::= (A … Z) { letter ∣  0 … 9 ∣  _ ∣  ' }  
 
lowercase-ident::= (a … z ∣  _) { letter ∣  0 … 9 ∣  _ ∣  ' }  
 
letter::= A … Z ∣  a … z

Identifiers are sequences of letters, digits, _ (the underscore character), and ' (the single quote), starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase letters from the ASCII set. The current implementation also recognizes as letters some characters from the ISO 8859-1 set (characters 192–214 and 216–222 as uppercase letters; characters 223–246 and 248–255 as lowercase letters). This feature is deprecated and should be avoided for future compatibility.

All characters in an identifier are meaningful. The current implementation accepts identifiers up to 16000000 characters in length.

In many places, OCaml makes a distinction between capitalized identifiers and identifiers that begin with a lowercase letter. The underscore character is considered a lowercase letter for this purpose.

Integer literals

integer-literal::= [-] (09) { 09 ∣  _ }  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ }  
  [-] (0o∣ 0O) (07) { 07∣ _ }  
  [-] (0b∣ 0B) (01) { 01∣ _ }  
 
int32-literal::= integer-literal l  
 
int64-literal::= integer-literal L  
 
nativeint-literal::= integer-literal n

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

PrefixRadix
0x, 0Xhexadecimal (radix 16)
0o, 0Ooctal (radix 8)
0b, 0Bbinary (radix 2)

(The initial 0 is the digit zero; the O for octal is the letter O.) An integer literal can be followed by one of the letters l, L or n to indicate that this integer has type int32, int64 or nativeint respectively, instead of the default type int for integer literals. The interpretation of integer literals that fall outside the range of representable integer values is undefined.

For convenience and readability, underscore characters (_) are accepted (and ignored) within integer literals.

Floating-point literals

float-literal::= [-] (09) { 09∣ _ } [. { 09∣ _ }] [(e∣ E) [+∣ -] (09) { 09∣ _ }]  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ }  [. { 09∣ AF∣ af∣ _ }] [(p∣ P) [+∣ -] (09) { 09∣ _ }]

Floating-point decimal literals consist in an integer part, a fractional part and an exponent part. The integer part is a sequence of one or more digits, optionally preceded by a minus sign. The fractional part is a decimal point followed by zero, one or more digits. The exponent part is the character e or E followed by an optional + or - sign, followed by one or more digits. It is interpreted as a power of 10. The fractional part or the exponent part can be omitted but not both, to avoid ambiguity with integer literals. The interpretation of floating-point literals that fall outside the range of representable floating-point values is undefined.

Floating-point hexadecimal literals are denoted with the 0x or 0X prefix. The syntax is similar to that of floating-point decimal literals, with the following differences. The integer part and the fractional part use hexadecimal digits. The exponent part starts with the character p or P. It is written in decimal and interpreted as a power of 2.

For convenience and readability, underscore characters (_) are accepted (and ignored) within floating-point literals.

Character literals

char-literal::= ' regular-char '  
  ' escape-sequence '  
 
escape-sequence::= \ ( \ ∣  " ∣  ' ∣  n ∣  t ∣  b ∣  r ∣  space )  
  \ (09) (09) (09)  
  \x (09∣ AF∣ af) (09∣ AF∣ af)  
  \o (03) (07) (07)

Character literals are delimited by ' (single quote) characters. The two single quotes enclose either one character different from ' and \, or one of the escape sequences below:

SequenceCharacter denoted
\\backslash (\)
\"double quote (")
\'single quote (')
\nlinefeed (LF)
\rcarriage return (CR)
\thorizontal tabulation (TAB)
\bbackspace (BS)
\spacespace (SPC)
\dddthe character with ASCII code ddd in decimal
\xhhthe character with ASCII code hh in hexadecimal
\oooothe character with ASCII code ooo in octal

String literals

string-literal::= " { string-character } "  
   { quoted-string-id |   { any-char } |  quoted-string-id }  
 
quoted-string-id::=a...z ∣  _ }  
 
 
 
string-character::= regular-string-char  
  escape-sequence  
  \u{ { 09∣ AF∣ af }+ }  
  \ newline  { space ∣  tab }

String literals are delimited by " (double quote) characters. The two double quotes enclose a sequence of either characters different from " and \, or escape sequences from the table given above for character literals, or a Unicode character escape sequence.

A Unicode character escape sequence is substituted by the UTF-8 encoding of the specified Unicode scalar value. The Unicode scalar value, an integer in the ranges 0x0000...0xD7FF or 0xE000...0x10FFFF, is defined using 1 to 6 hexadecimal digits; leading zeros are allowed.

To allow splitting long string literals across lines, the sequence \newline spaces-or-tabs (a backslash at the end of a line followed by any number of spaces and horizontal tabulations at the beginning of the next line) is ignored inside string literals.

Quoted string literals provide an alternative lexical syntax for string literals. They are useful to represent strings of arbitrary content without escaping. Quoted strings are delimited by a matching pair of { quoted-string-id | and | quoted-string-id } with the same quoted-string-id on both sides. Quoted strings do not interpret any character in a special way but requires that the sequence | quoted-string-id } does not occur in the string itself. The identifier quoted-string-id is a (possibly empty) sequence of lowercase letters and underscores that can be freely chosen to avoid such issue (e.g. {|hello|}, {ext|hello {|world|}|ext}, ...).

The current implementation places practically no restrictions on the length of string literals.

Naming labels

To avoid ambiguities, naming labels in expressions cannot just be defined syntactically as the sequence of the three tokens ~, ident and :, and have to be defined at the lexical level.

label-name::= lowercase-ident  
 
label::= ~ label-name :  
 
optlabel::= ? label-name :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones. They are simply distinguished by their first character, either ~ or ?.

Despite label and optlabel being lexical entities in expressions, their expansions ~ label-name : and ? label-name : will be used in grammars, for the sake of readability. Note also that inside type expressions, this expansion can be taken literally, i.e. there are really 3 tokens, with optional blanks between them.

Prefix and infix symbols

infix-symbol::=core-operator-char ∣  % ∣  < ) { operator-char }  
  # { operator-char }+  
 
prefix-symbol::= ! { operator-char }  
  (? ∣  ~) { operator-char }+  
 
operator-char::= ~ ∣  ! ∣  ? ∣  core-operator-char ∣  % ∣  < ∣  : ∣  .  
 
core-operator-char::= $ ∣  & ∣  * ∣  + ∣  - ∣  / ∣  = ∣  > ∣  @ ∣  ^ ∣  |

See also the following language extensions: extension operators, extended indexing operators, and binding operators.

Sequences of “operator characters”, such as <=> or !!, are read as a single token from the infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside expressions, but otherwise behave like normal identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

      and         as          assert      asr         begin       class
      constraint  do          done        downto      else        end
      exception   external    false       for         fun         function
      functor     if          in          include     inherit     initializer
      land        lazy        let         lor         lsl         lsr
      lxor        match       method      mod         module      mutable
      new         nonrec      object      of          open        or
      private     rec         sig         struct      then        to
      true        try         type        val         virtual     when
      while       with


The following character sequences are also keywords:

    !=    #     &     &&    '     (     )     *     +     ,     -
    -.    ->    .     ..    .~    :     ::    :=    :>    ;     ;;
    <     <-    =     >     >]    >}    ?     [     [<    [>    [|
    ]     _     `     {     {<    |     |]    ||    }     ~

Note that the following identifiers are keywords of the Camlp4 extensions and should be avoided for compatibility reasons.

    parser    value    $     $$    $:    <:    <<    >>    ??

Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence can be decomposed into two tokens in several different ways, the decomposition retained is the one with the longest first token.

Line number directives

linenum-directive::= # {0 … 9}+  
  # {0 … 9}+ " { string-character } "

Preprocessors that generate OCaml source code can insert line number directives in their output so that error messages produced by the compiler contain line numbers and file names referring to the source file before preprocessing, instead of after preprocessing. A line number directive is composed of a # (sharp sign), followed by a positive integer (the source line number), optionally followed by a character string (the source file name). Line number directives are treated as blanks during lexical analysis.


Up Next ocaml-doc-4.11/ocaml.html/comp.html0000644000175000017500000023541413717225665016144 0ustar mehdimehdi Chapter 9  Batch compilation (ocamlc) Previous Up Next

Chapter 9  Batch compilation (ocamlc)

This chapter describes the OCaml batch compiler ocamlc, which compiles OCaml source files to bytecode object files and links these object files to produce standalone bytecode executable files. These executable files are then run by the bytecode interpreter ocamlrun.

9.1  Overview of the compiler

The ocamlc command has a command-line interface similar to the one of most C compilers. It accepts several types of arguments and processes them sequentially, after all options have been processed:

The output of the linking phase is a file containing compiled bytecode that can be executed by the OCaml bytecode interpreter: the command named ocamlrun. If a.out is the name of the file produced by the linking phase, the command

        ocamlrun a.out arg1 arg2argn

executes the compiled code contained in a.out, passing it as arguments the character strings arg1 to argn. (See chapter 11 for more details.)

On most systems, the file produced by the linking phase can be run directly, as in:

        ./a.out arg1 arg2argn

The produced file has the executable bit set, and it manages to launch the bytecode interpreter by itself.

The compiler is able to emit some information on its internal stages. It can output .cmt files for the implementation of the compilation unit and .cmti for signatures if the option -bin-annot is passed to it (see the description of -bin-annot below). Each such file contains a typed abstract syntax tree (AST), that is produced during the type checking procedure. This tree contains all available information about the location and the specific type of each term in the source file. The AST is partial if type checking was unsuccessful.

These .cmt and .cmti files are typically useful for code inspection tools.

9.2  Options

The following command-line options are recognized by ocamlc. The options -pack, -a, -c and -output-obj are mutually exclusive.

-a
Build a library(.cma file) with the object files ( .cmo files) given on the command line, instead of linking them into an executable file. The name of the library must be set with the -o option.

If -custom, -cclib or -ccopt options are passed on the command line, these options are stored in the resulting .cmalibrary. Then, linking with this library automatically adds back the -custom, -cclib and -ccopt options as if they had been provided on the command line, unless the -noautolink option is given.

-absname
Force error messages to show absolute paths for file names.
-annot
Deprecated since OCaml 4.11. Please use -bin-annot instead.
-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in binary format. The information for file src.ml (resp. src.mli) is put into file src.cmt (resp. src.cmti). In case of a type error, dump all the information inferred by the type-checker before the error. The *.cmt and *.cmti files produced by -bin-annot contain more information and are much more compact than the files produced by -annot.
-c
Compile only. Suppress the linking phase of the compilation. Source code files are turned into compiled files, but no executable file is produced. This option is useful to compile modules separately.
-cc ccomp
Use ccomp as the C linker when linking in “custom runtime” mode (see the -custom option) and as the C compiler for compiling .c source files.
-cclib -llibname
Pass the -llibname option to the C linker when linking in “custom runtime” mode (see the -custom option). This causes the given C library to be linked with the program.
-ccopt option
Pass the given option to the C compiler and linker. When linking in “custom runtime” mode, for instance-ccopt -Ldir causes the C linker to search for C libraries in directory dir.(See the -custom option.)
-color mode
Enable or disable colors in compiler messages (especially warnings and errors). The following modes are supported:
auto
use heuristics to enable colors only if the output supports them (an ANSI-compatible tty terminal);
always
enable colors unconditionally;
never
disable color output.
The default setting is ’auto’, and the current heuristic checks that the TERM environment variable exists and is not empty or dumb, and that ’isatty(stderr)’ holds.

The environment variable OCAML_COLOR is considered if -color is not provided. Its values are auto/always/never as above.

-error-style mode
Control the way error messages and warnings are printed. The following modes are supported:
short
only print the error and its location;
contextual
like short, but also display the source code snippet corresponding to the location of the error.
The default setting is contextual.

The environment variable OCAML_ERROR_STYLE is considered if -error-style is not provided. Its values are short/contextual as above.

-compat-32
Check that the generated bytecode executable can run on 32-bit platforms and signal an error if it cannot. This is useful when compiling bytecode on a 64-bit machine.
-config
Print the version number of ocamlc and a detailed summary of its configuration, then exit.
-config-var var
Print the value of a specific configuration variable from the -config output, then exit. If the variable does not exist, the exit code is non-zero. This option is only available since OCaml 4.08, so script authors should have a fallback for older versions.
-custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode that is intended to be executed with the shared runtime system, ocamlrun. In the custom runtime mode, the linker produces an output file that contains both the runtime system and the bytecode for the program. The resulting file is larger, but it can be executed directly, even if the ocamlrun command is not installed. Moreover, the “custom runtime” mode enables static linking of OCaml code with user-defined C functions, as described in chapter 20.
Unix:   Never use the strip command on executables produced by ocamlc -custom, this would remove the bytecode part of the executable.
Unix:   Security warning: never set the “setuid” or “setgid” bits on executables produced by ocamlc -custom, this would make them vulnerable to attacks.
-depend ocamldep-args
Compute dependencies, as the ocamldep command would do. The remaining arguments are interpreted as if they were given to the ocamldep command.
-dllib -llibname
Arrange for the C shared library dlllibname.so (dlllibname.dll under Windows) to be loaded dynamically by the run-time system ocamlrun at program start-up time.
-dllpath dir
Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared libraries are searched in the standard search path (the one corresponding to the -I option). The -dllpath option simply stores dir in the produced executable file, where ocamlrun can find it and use it as described in section 11.3.
-for-pack module-path
Generate an object file (.cmo) that can later be included as a sub-module (with the given access path) of a compilation unit constructed with -pack. For instance, ocamlc -for-pack P -c A.ml will generate a..cmo that can later be used with ocamlc -pack -o P.cmo a.cmo. Note: you can still pack a module that was compiled without -for-pack but in this case exceptions will be printed with the wrong names.
-g
Add debugging information while compiling and linking. This option is required in order to be able to debug the program with ocamldebug (see chapter 17), and to produce stack backtraces when the program terminates on an uncaught exception (see section 11.2).
-i
Cause the compiler to print all defined names (with their inferred types or their definitions) when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are produced. This can be useful to check the types inferred by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to a .mli file, and edit that file to remove all declarations of unexported names.
-I directory
Add the given directory to the list of directories searched for compiled interface files (.cmi), compiled object code files .cmo, libraries (.cma) and C libraries specified with -cclib -lxxx. By default, the current directory is searched first, then the standard library directory. Directories added with -I are searched after the current directory, in the order in which they were given on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +unix adds the subdirectory unix of the standard library to the search path.

-impl filename
Compile the file filename as an implementation file, even if its extension is not .ml.
-intf filename
Compile the file filename as an interface file, even if its extension is not .mli.
-intf-suffix string
Recognize file names ending with string as interface files (instead of the default .mli).
-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced modules are not linked in. When building a library (option -a), setting the -linkall option forces all subsequent links of programs involving that library to link all the modules contained in the library. When compiling a module (option -c), setting the -linkall option ensures that this module will always be linked if it is put in a library and this library is linked.
-make-runtime
Build a custom runtime system (in the file specified by option -o) incorporating the C object files and libraries given on the command line. This custom runtime system can be used later to execute bytecode executables produced with the ocamlc -use-runtime runtime-name option. See section 20.1.6 for more information.
-match-context-rows
Set the number of rows of context used for optimization during pattern matching compilation. The default value is 32. Lower values cause faster compilation, but less optimized code. This advanced option is meant for use in the event that a pattern-match-heavy program leads to significant increases in compilation time.
-no-alias-deps
Do not record dependencies for module aliases. See section 8.8 for more information.
-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application generates new types in its result and applying the same functor twice to the same argument yields two incompatible structures.
-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially. This flag has no effect when linking already-compiled files.
-noautolink
When linking .cmalibraries, ignore -custom, -cclib and -ccopt options potentially contained in the libraries (if these options were given when building the libraries). This can be useful if a library contains incorrect specifications of C libraries or C options; in this case, during linking, set -noautolink and pass the correct C libraries and options on the command line.
-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
-nostdlib
Do not include the standard library directory in the list of directories searched for compiled interface files (.cmi), compiled object code files (.cmo), libraries (.cma), and C libraries specified with -cclib -lxxx. See also option -I.
-o exec-file
Specify the name of the output file produced by the compiler. The default output name is a.out under Unix and camlprog.exe under Windows. If the -a option is given, specify the name of the library produced. If the -pack option is given, specify the name of the packed object file produced. If the -output-obj option is given, specify the name of the output file produced. If the -c option is given, specify the name of the object file produced for the next source file that appears on the command line.
-opaque
When the native compiler compiles an implementation, by default it produces a .cmx file containing information for cross-module optimization. It also expects .cmx files to be present for the dependencies of the currently compiled source, and uses them for optimization. Since OCaml 4.03, the compiler will emit a warning if it is unable to locate the .cmx file of one of those dependencies.

The -opaque option, available since 4.04, disables cross-module optimization information for the currently compiled unit. When compiling .mli interface, using -opaque marks the compiled .cmi interface so that subsequent compilations of modules that depend on it will not rely on the corresponding .cmx file, nor warn if it is absent. When the native compiler compiles a .ml implementation, using -opaque generates a .cmx that does not contain any cross-module optimization information.

Using this option may degrade the quality of generated code, but it reduces compilation time, both on clean and incremental builds. Indeed, with the native compiler, when the implementation of a compilation unit changes, all the units that depend on it may need to be recompiled – because the cross-module information may have changed. If the compilation unit whose implementation changed was compiled with -opaque, no such recompilation needs to occur. This option can thus be used, for example, to get faster edit-compile-test feedback loops.

-open Module
Opens the given module before processing the interface or implementation files. If several -open options are given, they are processed in order, just as if the statements open! Module1;; ... open! ModuleN;; were added at the top of each file.
-output-obj
Cause the linker to produce a C object file instead of a bytecode executable file. This is useful to wrap OCaml code as a C library, callable from any C program. See chapter 20, section 20.7.5. The name of the output object file must be set with the -o option. This option can also be used to produce a C source file (.c extension) or a compiled shared/dynamic library (.so extension, .dll under Windows).
-output-complete-exe
Build a self-contained executable by linking a C object file containing the bytecode program, the OCaml runtime system and any other static C code given to ocamlc. The resulting effect is similar to -custom, except that the bytecode is embedded in the C code so it is no longer accessible to tools such as ocamldebug. On the other hand, the resulting binary is resistant to strip.
-pack
Build a bytecode object file (.cmo file) and its associated compiled interface (.cmi) that combines the object files given on the command line, making them appear as sub-modules of the output .cmo file. The name of the output .cmo file must be given with the -o option. For instance,
        ocamlc -pack -o p.cmo a.cmo b.cmo c.cmo
generates compiled files p.cmo and p.cmi describing a compilation unit having three sub-modules A, B and C, corresponding to the contents of the object files a.cmo, b.cmo and c.cmo. These contents can be referenced as P.A, P.B and P.C in the remainder of the program.
-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The output of command is redirected to an intermediate file, which is compiled. If there are no compilation errors, the intermediate file is deleted afterwards.
-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module Ast_mapper, described in chapter 27: Ast_mapper , implements the external interface of a preprocessor.
-principal
Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported.Note that once you have created an interface using this flag, you must use it again for all dependencies.
-runtime-variant suffix
Add the suffix string to the name of the runtime library used by the program. Currently, only one such suffix is supported: d, and only if the OCaml compiler was configured with option -with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for debugging pointer problems in low-level code such as C stubs.
-stop-after pass
Stop compilation after the given compilation pass. The currently supported passes are: parsing, typing.
-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only. This is the default.
-short-paths
When a type is visible under several module-paths, use the shortest one when printing the type’s name in inferred interfaces and error and warning messages. Identifier names starting with an underscore _ or containing double underscores __ incur a penalty of +10 when computing their length.
-strict-sequence
Force the left-hand part of each sequence to have type unit.
-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use this flag to detect and fix such invalid formats, as they will be rejected by future OCaml versions.
-unboxed-types
When a type is unboxable (i.e. a record with a single argument or a concrete datatype with a single constructor of one argument) it will be unboxed unless annotated with [@@ocaml.boxed].
-no-unboxed-types
When a type is unboxable it will be boxed unless annotated with [@@ocaml.unboxed]. This is the default.
-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds. Additionally, turn off the check for zero divisor in integer division and modulus operations. With -unsafe, an integer division (or modulus) by zero can halt the program or continue with an unspecified result instead of raising a Division_by_zero exception.
-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for compatibility with old source code and should not be used with new software.
-use-runtime runtime-name
Generate a bytecode executable file that can be executed on the custom runtime system runtime-name, built earlier with ocamlc -make-runtime runtime-name. See section 20.1.6 for more information.
-v
Print the version number of the compiler and the location of the standard library directory, then exit.
-verbose
Print all external commands before they are executed, in particular invocations of the C compiler and linker in -custom mode. Useful to debug C library problems.
-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.
-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal). If a warning is enabled, it is displayed normally by the compiler whenever the source code triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying it.

The warning-list argument is a sequence of warning specifiers, with no separators between them. A warning specifier is one of the following:

+num
Enable warning number num.
-num
Disable warning number num.
@num
Enable and mark as fatal warning number num.
+num1..num2
Enable warnings in the given range.
-num1..num2
Disable warnings in the given range.
@num1..num2
Enable and mark as fatal warnings in the given range.
+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
-letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
@letter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.
lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined are ignored. The warnings are as follows.

1
Suspicious-looking start-of-comment mark.
2
Suspicious-looking end-of-comment mark.
3
Deprecated synonym for the ’deprecated’ alert.
4
Fragile pattern matching: matching that will remain complete even if additional constructors are added to one of the variant types matched.
5
Partially applied function: expression whose result has function type and is ignored.
6
Label omitted in function application.
7
Method overridden.
8
Partial match: missing cases in pattern-matching.
9
Missing fields in a record pattern.
10
Expression on the left-hand side of a sequence that doesn’t have type unit (and that is not a function, see warning number 5).
11
Redundant case in a pattern matching (unused match case).
12
Redundant sub-pattern in a pattern-matching.
13
Instance variable overridden.
14
Illegal backslash escape in a string constant.
15
Private method made public implicitly.
16
Unerasable optional argument.
17
Undeclared virtual method.
18
Non-principal type.
19
Type without principality.
20
Unused function argument.
21
Non-returning statement.
22
Preprocessor warning.
23
Useless record with clause.
24
Bad module name: the source file name is not a valid OCaml module name.
25
Deprecated: now part of warning 8.
26
Suspicious unused variable: unused variable that is bound with let or as, and doesn’t start with an underscore (_) character.
27
Innocuous unused variable: unused variable that is not bound with let nor as, and doesn’t start with an underscore (_) character.
28
Wildcard pattern given as argument to a constant constructor.
29
Unescaped end-of-line in a string constant (non-portable code).
30
Two labels or constructors of the same name are defined in two mutually recursive types.
31
A module is linked twice in the same executable.
32
Unused value declaration.
33
Unused open statement.
34
Unused type declaration.
35
Unused for-loop index.
36
Unused ancestor variable.
37
Unused constructor.
38
Unused extension constructor.
39
Unused rec flag.
40
Constructor or label name used out of scope.
41
Ambiguous constructor or label name.
42
Disambiguated constructor or label name (compatibility warning).
43
Nonoptional label applied as optional.
44
Open statement shadows an already defined identifier.
45
Open statement shadows an already defined label or constructor.
46
Error in environment variable.
47
Illegal attribute payload.
48
Implicit elimination of optional arguments.
49
Absent cmi file when looking up module alias.
50
Unexpected documentation comment.
51
Warning on non-tail calls if @tailcall present.
52 (see 9.5.2)
Fragile constant pattern.
53
Attribute cannot appear in this context.
54
Attribute used more than once on an expression.
55
Inlining impossible.
56
Unreachable case in a pattern-matching (based on type information).
57 (see 9.5.3)
Ambiguous or-pattern variables under guard.
58
Missing cmx file.
59
Assignment to non-mutable value.
60
Unused module declaration.
61
Unboxable type in primitive declaration.
62
Type constraint on GADT type declaration.
63
Erroneous printed signature.
64
-unsafe used with a preprocessor returning a syntax tree.
65
Type declaration defining a new ’()’ constructor.
66
Unused open! statement.
67
Unused functor parameter.
A
all warnings
C
warnings 1, 2.
D
Alias for warning 3.
E
Alias for warning 4.
F
Alias for warning 5.
K
warnings 32, 33, 34, 35, 36, 37, 38, 39.
L
Alias for warning 6.
M
Alias for warning 7.
P
Alias for warning 8.
R
Alias for warning 9.
S
Alias for warning 10.
U
warnings 11, 12.
V
Alias for warning 13.
X
warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.
Y
Alias for warning 26.
Z
Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by ocamlc -help. Note that warnings 5 and 10 are not always triggered, depending on the internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error in production code, because this can break your build when future versions of OCaml add some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.
-where
Print the location of the standard library, then exit.
-with-runtime
Include the runtime system in the generated program. This is the default.
-without-runtime
The compiler does not include the runtime system (nor a reference to it) in the generated program; it must be supplied separately.
- file
Process file as a file name, even if it starts with a dash (-) character.
-help or --help
Display a short usage summary and exit.
contextual-cli-control

Contextual control of command-line options

The compiler command line can be modified “from the outside” with the following mechanisms. These are experimental and subject to change. They should be used only for experimental and development work, not in released packages.

OCAMLPARAM (environment variable)
A set of arguments that will be inserted before or after the arguments from the command line. Arguments are specified in a comma-separated list of name=value pairs. A _ is used to specify the position of the command line arguments, i.e. a=x,_,b=y means that a=x should be executed before parsing the arguments, and b=y after. Finally, an alternative separator can be specified as the first character of the string, within the set :|; ,.
ocaml_compiler_internal_params (file in the stdlib directory)
A mapping of file names to lists of arguments that will be added to the command line (and OCAMLPARAM) arguments.
OCAML_FLEXLINK (environment variable)
Alternative executable to use on native Windows for flexlink instead of the configured value. Primarily used for bootstrapping.

9.3  Modules and the file system

This short section is intended to clarify the relationship between the names of the modules corresponding to compilation units and the names of the files that contain their compiled interface and compiled implementation.

The compiler always derives the module name by taking the capitalized base name of the source file (.ml or .mli file). That is, it strips the leading directory name, if any, as well as the .ml or .mli suffix; then, it set the first letter to uppercase, in order to comply with the requirement that module names must be capitalized. For instance, compiling the file mylib/misc.ml provides an implementation for the module named Misc. Other compilation units may refer to components defined in mylib/misc.ml under the names Misc.name; they can also do open Misc, then use unqualified names name.

The .cmi and .cmo files produced by the compiler have the same base name as the source file. Hence, the compiled files always have their base name equal (modulo capitalization of the first letter) to the name of the module they describe (for .cmi files) or implement (for .cmo files).

When the compiler encounters a reference to a free module identifier Mod, it looks in the search path for a file named Mod.cmi or mod.cmi and loads the compiled interface contained in that file. As a consequence, renaming .cmi files is not advised: the name of a .cmi file must always correspond to the name of the compilation unit it implements. It is admissible to move them to another directory, if their base name is preserved, and the correct -I options are given to the compiler. The compiler will flag an error if it loads a .cmi file that has been renamed.

Compiled bytecode files (.cmo files), on the other hand, can be freely renamed once created. That’s because the linker never attempts to find by itself the .cmo file that implements a module with a given name: it relies instead on the user providing the list of .cmo files by hand.

9.4  Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search path. The filename is either a compiled interface file (.cmi file), or a compiled bytecode file (.cmo file). If filename has the format mod.cmi, this means you are trying to compile a file that references identifiers from module mod, but you have not yet compiled an interface for module mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface mod.cmi.

If filename has the format mod.cmo, this means you are trying to link a bytecode object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface filename
The compiler produces this error when it tries to read a compiled interface file (.cmi file) that has the wrong structure. This means something went wrong when this .cmi file was written: the disk was full, the compiler was interrupted in the middle of the file creation, and so on. This error can also appear if a .cmi file is modified after its creation by the compiler. Fix: remove the corrupted .cmi file, and rebuild it.
This expression has type t1, but is used with type t2
This is by far the most common type error in programs. Type t1 is the type inferred for the expression (the part of the program that is displayed in the error message), by looking at the expression itself. Type t2 is the type expected by the context of the expression; it is deduced by looking at how the value of this expression is used in the rest of the program. If the two types t1 and t2 are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types t1 and t2 are incompatible. For instance, the compiler can report that “expression of type foo cannot be used with type foo”, and it really seems that the two types foo are compatible. This is not always true. Two type constructors can have the same name, but actually represent different types. This can happen if a type constructor is redefined. Example:

        type foo = A | B
        let f = function A -> 0 | B -> 1
        type foo = C | D
        f C

This result in the error message “expression C of type foo cannot be used with type foo”.

The type of this expression, t, contains type variables that cannot be generalized
Type variables ('a, 'b, …) in a type t can be in either of two states: generalized (which means that the type t is valid for all possible instantiations of the variables) and not generalized (which means that the type t is valid only for one instantiation of the variables). In a let binding let name = expr, the type-checker normally generalizes as many type variables as possible in the type of expr. However, this leads to unsoundness (a well-typed program can crash) in conjunction with polymorphic mutable data structures. To avoid this, generalization is performed at let bindings only if the bound expression expr belongs to the class of “syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values, etc. In all other cases (for instance, expr is a function application), a polymorphic mutable could have been created and generalization is therefore turned off for all variables occurring in contravariant or non-variant branches of the type. For instance, if the type of a non-value is 'a list the variable is generalizable (list is a covariant type constructor), but not in 'a list -> 'a list (the left branch of -> is contravariant) or 'a ref (ref is non-variant).

Non-generalized type variables in a type cause no difficulties inside a given structure or compilation unit (the contents of a .ml file, or an interactive session), but they cannot be allowed inside signatures nor in compiled interfaces (.cmi file), because they could be used inconsistently later. Therefore, the compiler flags an error when a structure or compilation unit defines a value name whose type contains non-generalized type variables. There are two ways to fix this error:

Reference to undefined global mod
This error appears when trying to link an incomplete or incorrectly ordered set of files. Either you have forgotten to provide an implementation for the compilation unit named mod on the command line (typically, the file named mod.cmo, or a library containing that file). Fix: add the missing .ml or .cmo file to the command line. Or, you have provided an implementation for the module named mod, but it comes too late on the command line: the implementation of mod must come before all bytecode object files that reference mod. Fix: change the order of .ml and .cmo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across modules. That is, function Mod1.f calls function Mod2.g, and function Mod2.g calls function Mod1.f. In this case, no matter what permutations you perform on the command line, the program will be rejected at link-time. Fixes:

The external function f is not available
This error appears when trying to link code that calls external functions written in C. As explained in chapter 20, such code must be linked with C libraries that implement the required f C function. If the C libraries in question are not shared libraries (DLLs), the code must be linked in “custom runtime” mode. Fix: add the required C libraries to the command line, and possibly the -custom option.

9.5  Warning reference

This section describes and explains in detail some warnings:

9.5.1  Warning 9: missing fields in a record pattern

When pattern matching on records, it can be useful to match only few fields of a record. Eliding fields can be done either implicitly or explicitly by ending the record pattern with ; _. However, implicit field elision is at odd with pattern matching exhaustiveness checks. Enabling warning 9 prioritizes exhaustiveness checks over the convenience of implicit field elision and will warn on implicit field elision in record patterns. In particular, this warning can help to spot exhaustive record pattern that may need to be updated after the addition of new fields to a record type.

type 'a point = {x : 'a; y : 'a}
let dx { x } = x (* implicit field elision: trigger warning 9 *)
let dy { y; _ } = y (* explicit field elision: do not trigger warning 9 *)

9.5.2  Warning 52: fragile constant pattern

Some constructors, such as the exception constructors Failure and Invalid_argument, take as parameter a string value holding a text message intended for the user.

These text messages are usually not stable over time: call sites building these constructors may refine the message in a future version to make it more explicit, etc. Therefore, it is dangerous to match over the precise value of the message. For example, until OCaml 4.02, Array.iter2 would raise the exception

  Invalid_argument "arrays must have the same length"

Since 4.03 it raises the more helpful message

  Invalid_argument "Array.iter2: arrays must have the same length"

but this means that any code of the form

  try ...
  with Invalid_argument "arrays must have the same length" -> ...

is now broken and may suffer from uncaught exceptions.

Warning 52 is there to prevent users from writing such fragile code in the first place. It does not occur on every matching on a literal string, but only in the case in which library authors expressed their intent to possibly change the constructor parameter value in the future, by using the attribute ocaml.warn_on_literal_pattern (see the manual section on builtin attributes in 8.12.1):

  type t =
    | Foo of string [@ocaml.warn_on_literal_pattern]
    | Bar of string

  let no_warning = function
    | Bar "specific value" -> 0
    | _ -> 1

  let warning = function
    | Foo "specific value" -> 0
    | _ -> 1

>    | Foo "specific value" -> 0
>          ^^^^^^^^^^^^^^^^
> Warning 52: Code should not depend on the actual values of
> this constructor's arguments. They are only for information
> and may change in future versions. (See manual section 8.5)

In particular, all built-in exceptions with a string argument have this attribute set: Invalid_argument, Failure, Sys_error will all raise this warning if you match for a specific string argument.

Additionally, built-in exceptions with a structured argument that includes a string also have the attribute set: Assert_failure and Match_failure will raise the warning for a pattern that uses a literal string to match the first element of their tuple argument.

If your code raises this warning, you should not change the way you test for the specific string to avoid the warning (for example using a string equality inside the right-hand-side instead of a literal pattern), as your code would remain fragile. You should instead enlarge the scope of the pattern by matching on all possible values.

let warning = function
  | Foo _ -> 0
  | _ -> 1

This may require some care: if the scrutinee may return several different cases of the same pattern, or raise distinct instances of the same exception, you may need to modify your code to separate those several cases.

For example,

try (int_of_string count_str, bool_of_string choice_str) with
  | Failure "int_of_string" -> (0, true)
  | Failure "bool_of_string" -> (-1, false)

should be rewritten into more atomic tests. For example, using the exception patterns documented in Section 7.6, one can write:

match int_of_string count_str with
  | exception (Failure _) -> (0, true)
  | count ->
    begin match bool_of_string choice_str with
    | exception (Failure _) -> (-1, false)
    | choice -> (count, choice)
    end

The only case where that transformation is not possible is if a given function call may raise distinct exceptions with the same constructor but different string values. In this case, you will have to check for specific string values. This is dangerous API design and it should be discouraged: it’s better to define more precise exception constructors than store useful information in strings.

9.5.3  Warning 57: Ambiguous or-pattern variables under guard

The semantics of or-patterns in OCaml is specified with a left-to-right bias: a value v matches the pattern p | q if it matches p or q, but if it matches both, the environment captured by the match is the environment captured by p, never the one captured by q.

While this property is generally intuitive, there is at least one specific case where a different semantics might be expected. Consider a pattern followed by a when-guard: | p when g -> e, for example:

     | ((Const x, _) | (_, Const x)) when is_neutral x -> branch

The semantics is clear: match the scrutinee against the pattern, if it matches, test the guard, and if the guard passes, take the branch. In particular, consider the input (Const a, Const b), where a fails the test is_neutral a, while b passes the test is_neutral b. With the left-to-right semantics, the clause above is not taken by its input: matching (Const a, Const b) against the or-pattern succeeds in the left branch, it returns the environment x -> a, and then the guard is_neutral a is tested and fails, the branch is not taken.

However, another semantics may be considered more natural here: any pair that has one side passing the test will take the branch. With this semantics the previous code fragment would be equivalent to

     | (Const x, _) when is_neutral x -> branch
     | (_, Const x) when is_neutral x -> branch

This is not the semantics adopted by OCaml.

Warning 57 is dedicated to these confusing cases where the specified left-to-right semantics is not equivalent to a non-deterministic semantics (any branch can be taken) relatively to a specific guard. More precisely, it warns when guard uses “ambiguous” variables, that are bound to different parts of the scrutinees by different sides of a or-pattern.


Previous Up Next ocaml-doc-4.11/ocaml.html/libdynlink.html0000644000175000017500000000505513717225665017341 0ustar mehdimehdi Chapter 33  The dynlink library: dynamic loading and linking of object files Previous Up Next

Chapter 33  The dynlink library: dynamic loading and linking of object files

The dynlink library supports type-safe dynamic loading and linking of bytecode object files (.cmo and .cma files) in a running bytecode program, or of native plugins (usually .cmxs files) in a running native program. Type safety is ensured by limiting the set of modules from the running program that the loaded object file can access, and checking that the running program and the loaded object file have been compiled against the same interfaces for these modules. In native code, there are also some compatibility checks on the implementations (to avoid errors with cross-module optimizations); it might be useful to hide .cmx files when building native plugins so that they remain independent of the implementation of modules in the main program.

Programs that use the dynlink library simply need to link dynlink.cma or dynlink.cmxa with their object files and other libraries.

Note: in order to insure that the dynamically-loaded modules have access to all the libraries that are visible to the main program (and not just to the parts of those libraries that are actually used in the main program), programs using the dynlink library should be linked with -linkall.


Previous Up Next ocaml-doc-4.11/ocaml.html/generativefunctors.html0000644000175000017500000001156013717225665021115 0ustar mehdimehdi 8.15  Generative functors Previous Up Next

8.15  Generative functors

(Introduced in OCaml 4.02)

module-expr::= ...  
  functor () -> module-expr  
  module-expr ()  
 
definition::= ...  
  module module-name  { ( module-name :  module-type ) ∣  () } [ : module-type ]  =  module-expr  
 
module-type::= ...  
  functor () -> module-type  
 
specification::= ...  
  module module-name  { ( module-name :  module-type ) ∣  () } : module-type  
 

A generative functor takes a unit () argument. In order to use it, one must necessarily apply it to this unit argument, ensuring that all type components in the result of the functor behave in a generative way, i.e. they are different from types obtained by other applications of the same functor. This is equivalent to taking an argument of signature sig end, and always applying to struct end, but not to some defined module (in the latter case, applying twice to the same module would return identical types).

As a side-effect of this generativity, one is allowed to unpack first-class modules in the body of generative functors.


Previous Up Next ocaml-doc-4.11/ocaml.html/manual.htoc0000644000175000017500000015512413717225660016446 0ustar mehdimehdi\begin{tocenv} \tocitem \@locref{sec6}{\begin{@norefs}\@print{Part I}\quad{}An introduction to OCaml{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{sec7}{\begin{@norefs}\@print{Chapter 1}\quad{}The core language{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:basics}{\begin{@norefs}\@print{1.1}\quad{}\label{s:basics}Basics{}\end{@norefs}} \tocitem \@locref{s:datatypes}{\begin{@norefs}\@print{1.2}\quad{}\label{s:datatypes}Data types{}\end{@norefs}} \tocitem \@locref{s:functions-as-values}{\begin{@norefs}\@print{1.3}\quad{}\label{s:functions-as-values}Functions as values{}\end{@norefs}} \tocitem \@locref{s:tut-recvariants}{\begin{@norefs}\@print{1.4}\quad{}\label{s:tut-recvariants}Records and variants{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:record-and-variant-disambiguation}{\begin{@norefs}\@print{1.4.1}\quad{}\label{ss:record-and-variant-disambiguation}Record and variant disambiguation{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:imperative-features}{\begin{@norefs}\@print{1.5}\quad{}\label{s:imperative-features}Imperative features{}\end{@norefs}} \tocitem \@locref{s:exceptions}{\begin{@norefs}\@print{1.6}\quad{}\label{s:exceptions}Exceptions{}\end{@norefs}} \tocitem \@locref{s:lazy-expr}{\begin{@norefs}\@print{1.7}\quad{}\label{s:lazy-expr}Lazy expressions{}\end{@norefs}} \tocitem \@locref{s:symb-expr}{\begin{@norefs}\@print{1.8}\quad{}\label{s:symb-expr}Symbolic processing of expressions{}\end{@norefs}} \tocitem \@locref{s:pretty-printing}{\begin{@norefs}\@print{1.9}\quad{}\label{s:pretty-printing}Pretty-printing{}\end{@norefs}} \tocitem \@locref{s:printf}{\begin{@norefs}\@print{1.10}\quad{}\label{s:printf}Printf formats{}\end{@norefs}} \tocitem \@locref{s:standalone-programs}{\begin{@norefs}\@print{1.11}\quad{}\label{s:standalone-programs}Standalone OCaml programs{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec20}{\begin{@norefs}\@print{Chapter 2}\quad{}The module system{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:module:structures}{\begin{@norefs}\@print{2.1}\quad{}\label{s:module:structures}Structures{}\end{@norefs}} \tocitem \@locref{s:signature}{\begin{@norefs}\@print{2.2}\quad{}\label{s:signature}Signatures{}\end{@norefs}} \tocitem \@locref{s:functors}{\begin{@norefs}\@print{2.3}\quad{}\label{s:functors}Functors{}\end{@norefs}} \tocitem \@locref{s:functors-and-abstraction}{\begin{@norefs}\@print{2.4}\quad{}\label{s:functors-and-abstraction}Functors and type abstraction{}\end{@norefs}} \tocitem \@locref{s:separate-compilation}{\begin{@norefs}\@print{2.5}\quad{}\label{s:separate-compilation}Modules and separate compilation{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec26}{\begin{@norefs}\@print{Chapter 3}\quad{}Objects in OCaml{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:classes-and-objects}{\begin{@norefs}\@print{3.1}\quad{}\label{s:classes-and-objects}Classes and objects{}\end{@norefs}} \tocitem \@locref{s:immediate-objects}{\begin{@norefs}\@print{3.2}\quad{}\label{s:immediate-objects}Immediate objects{}\end{@norefs}} \tocitem \@locref{s:reference-to-self}{\begin{@norefs}\@print{3.3}\quad{}\label{s:reference-to-self}Reference to self{}\end{@norefs}} \tocitem \@locref{s:initializers}{\begin{@norefs}\@print{3.4}\quad{}\label{s:initializers}Initializers{}\end{@norefs}} \tocitem \@locref{s:virtual-methods}{\begin{@norefs}\@print{3.5}\quad{}\label{s:virtual-methods}Virtual methods{}\end{@norefs}} \tocitem \@locref{s:private-methods}{\begin{@norefs}\@print{3.6}\quad{}\label{s:private-methods}Private methods{}\end{@norefs}} \tocitem \@locref{s:class-interfaces}{\begin{@norefs}\@print{3.7}\quad{}\label{s:class-interfaces}Class interfaces{}\end{@norefs}} \tocitem \@locref{s:inheritance}{\begin{@norefs}\@print{3.8}\quad{}\label{s:inheritance}Inheritance{}\end{@norefs}} \tocitem \@locref{s:multiple-inheritance}{\begin{@norefs}\@print{3.9}\quad{}\label{s:multiple-inheritance}Multiple inheritance{}\end{@norefs}} \tocitem \@locref{s:parameterized-classes}{\begin{@norefs}\@print{3.10}\quad{}\label{s:parameterized-classes}Parameterized classes{}\end{@norefs}} \tocitem \@locref{s:polymorphic-methods}{\begin{@norefs}\@print{3.11}\quad{}\label{s:polymorphic-methods}Polymorphic methods{}\end{@norefs}} \tocitem \@locref{s:using-coercions}{\begin{@norefs}\@print{3.12}\quad{}\label{s:using-coercions}Using coercions{}\end{@norefs}} \tocitem \@locref{s:functional-objects}{\begin{@norefs}\@print{3.13}\quad{}\label{s:functional-objects}Functional objects{}\end{@norefs}} \tocitem \@locref{s:cloning-objects}{\begin{@norefs}\@print{3.14}\quad{}\label{s:cloning-objects}Cloning objects{}\end{@norefs}} \tocitem \@locref{s:recursive-classes}{\begin{@norefs}\@print{3.15}\quad{}\label{s:recursive-classes}Recursive classes{}\end{@norefs}} \tocitem \@locref{s:binary-methods}{\begin{@norefs}\@print{3.16}\quad{}\label{s:binary-methods}Binary methods{}\end{@norefs}} \tocitem \@locref{s:friends}{\begin{@norefs}\@print{3.17}\quad{}\label{s:friends}Friends{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec44}{\begin{@norefs}\@print{Chapter 4}\quad{}Labels and variants{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:labels}{\begin{@norefs}\@print{4.1}\quad{}\label{s:labels}Labels{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:optional-arguments}{\begin{@norefs}\@print{4.1.1}\quad{}\label{ss:optional-arguments}Optional arguments{}\end{@norefs}} \tocitem \@locref{ss:label-inference}{\begin{@norefs}\@print{4.1.2}\quad{}\label{ss:label-inference}Labels and type inference{}\end{@norefs}} \tocitem \@locref{ss:label-suggestions}{\begin{@norefs}\@print{4.1.3}\quad{}\label{ss:label-suggestions}Suggestions for labeling{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:polymorphic-variants}{\begin{@norefs}\@print{4.2}\quad{}\label{s:polymorphic-variants}Polymorphic variants{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:polyvariant-weaknesses}{\begin{@norefs}\@print{4.2.1}\quad{}\label{ss:polyvariant-weaknesses}Weaknesses of polymorphic variants{}\end{@norefs}} \end{tocenv} \end{tocenv} \tocitem \@locref{sec53}{\begin{@norefs}\@print{Chapter 5}\quad{}Polymorphism and its limitations{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:weak-polymorphism}{\begin{@norefs}\@print{5.1}\quad{}\label{s:weak-polymorphism}Weak polymorphism and mutation{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:weak-types}{\begin{@norefs}\@print{5.1.1}\quad{}\label{ss:weak-types}Weakly polymorphic types{}\end{@norefs}} \tocitem \@locref{ss:valuerestriction}{\begin{@norefs}\@print{5.1.2}\quad{}\label{ss:valuerestriction}The value restriction{}\end{@norefs}} \tocitem \@locref{ss:relaxed-value-restriction}{\begin{@norefs}\@print{5.1.3}\quad{}\label{ss:relaxed-value-restriction}The relaxed value restriction{}\end{@norefs}} \tocitem \@locref{ss:variance-and-value-restriction}{\begin{@norefs}\@print{5.1.4}\quad{}\label{ss:variance-and-value-restriction}Variance and value restriction{}\end{@norefs}} \tocitem \@locref{ss:variance:abstract-data-types}{\begin{@norefs}\@print{5.1.5}\quad{}\label{ss:variance:abstract-data-types}Abstract data types{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:polymorphic-recursion}{\begin{@norefs}\@print{5.2}\quad{}\label{s:polymorphic-recursion}Polymorphic recursion{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:explicit-polymorphism}{\begin{@norefs}\@print{5.2.1}\quad{}\label{ss:explicit-polymorphism}Explicitly polymorphic annotations{}\end{@norefs}} \tocitem \@locref{ss:recursive-poly-examples}{\begin{@norefs}\@print{5.2.2}\quad{}\label{ss:recursive-poly-examples}More examples{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:higher-rank-poly}{\begin{@norefs}\@print{5.3}\quad{}\label{s:higher-rank-poly}Higher-rank polymorphic functions{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec64}{\begin{@norefs}\@print{Chapter 6}\quad{}Advanced examples with classes and modules{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:extended-bank-accounts}{\begin{@norefs}\@print{6.1}\quad{}\label{s:extended-bank-accounts}Extended example: bank accounts{}\end{@norefs}} \tocitem \@locref{s:modules-as-classes}{\begin{@norefs}\@print{6.2}\quad{}\label{s:modules-as-classes}Simple modules as classes{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:string-as-class}{\begin{@norefs}\@print{6.2.1}\quad{}\label{ss:string-as-class}Strings{}\end{@norefs}} \tocitem \@locref{ss:hashtbl-as-class}{\begin{@norefs}\@print{6.2.2}\quad{}\label{ss:hashtbl-as-class}Hashtbl{}\end{@norefs}} \tocitem \@locref{ss:set-as-class}{\begin{@norefs}\@print{6.2.3}\quad{}\label{ss:set-as-class}Sets{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:subject-observer}{\begin{@norefs}\@print{6.3}\quad{}\label{s:subject-observer}The subject/observer pattern{}\end{@norefs}} \end{tocenv} \end{tocenv} \tocitem \@locref{sec72}{\begin{@norefs}\@print{Part II}\quad{}The OCaml language{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{sec73}{\begin{@norefs}\@print{Chapter 7}\quad{}The OCaml language{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:lexical-conventions}{\begin{@norefs}\@print{7.1}\quad{}\label{s:lexical-conventions}Lexical conventions{}\end{@norefs}} \tocitem \@locref{s:values}{\begin{@norefs}\@print{7.2}\quad{}\label{s:values}Values{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:values:base}{\begin{@norefs}\@print{7.2.1}\quad{}\label{ss:values:base}Base values{}\end{@norefs}} \tocitem \@locref{ss:values:tuple}{\begin{@norefs}\@print{7.2.2}\quad{}\label{ss:values:tuple}Tuples{}\end{@norefs}} \tocitem \@locref{ss:values:records}{\begin{@norefs}\@print{7.2.3}\quad{}\label{ss:values:records}Records{}\end{@norefs}} \tocitem \@locref{ss:values:array}{\begin{@norefs}\@print{7.2.4}\quad{}\label{ss:values:array}Arrays{}\end{@norefs}} \tocitem \@locref{ss:values:variant}{\begin{@norefs}\@print{7.2.5}\quad{}\label{ss:values:variant}Variant values{}\end{@norefs}} \tocitem \@locref{ss:values:polyvars}{\begin{@norefs}\@print{7.2.6}\quad{}\label{ss:values:polyvars}Polymorphic variants{}\end{@norefs}} \tocitem \@locref{ss:values:fun}{\begin{@norefs}\@print{7.2.7}\quad{}\label{ss:values:fun}Functions{}\end{@norefs}} \tocitem \@locref{ss:values:obj}{\begin{@norefs}\@print{7.2.8}\quad{}\label{ss:values:obj}Objects{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:names}{\begin{@norefs}\@print{7.3}\quad{}\label{s:names}Names{}\end{@norefs}} \tocitem \@locref{s:typexpr}{\begin{@norefs}\@print{7.4}\quad{}\label{s:typexpr}Type expressions{}\end{@norefs}} \tocitem \@locref{s:const}{\begin{@norefs}\@print{7.5}\quad{}\label{s:const}Constants{}\end{@norefs}} \tocitem \@locref{s:patterns}{\begin{@norefs}\@print{7.6}\quad{}\label{s:patterns}Patterns{}\end{@norefs}} \tocitem \@locref{s:value-expr}{\begin{@norefs}\@print{7.7}\quad{}\label{s:value-expr}Expressions{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:precedence-and-associativity}{\begin{@norefs}\@print{7.7.1}\quad{}\label{ss:precedence-and-associativity}Precedence and associativity{}\end{@norefs}} \tocitem \@locref{ss:expr-basic}{\begin{@norefs}\@print{7.7.2}\quad{}\label{ss:expr-basic}Basic expressions{}\end{@norefs}} \tocitem \@locref{ss:expr-control}{\begin{@norefs}\@print{7.7.3}\quad{}\label{ss:expr-control}Control structures{}\end{@norefs}} \tocitem \@locref{ss:expr-ops-on-data}{\begin{@norefs}\@print{7.7.4}\quad{}\label{ss:expr-ops-on-data}Operations on data structures{}\end{@norefs}} \tocitem \@locref{ss:expr-operators}{\begin{@norefs}\@print{7.7.5}\quad{}\label{ss:expr-operators}Operators{}\end{@norefs}} \tocitem \@locref{ss:expr-obj}{\begin{@norefs}\@print{7.7.6}\quad{}\label{ss:expr-obj}Objects{}\end{@norefs}} \tocitem \@locref{ss:expr-coercions}{\begin{@norefs}\@print{7.7.7}\quad{}\label{ss:expr-coercions}Coercions{}\end{@norefs}} \tocitem \@locref{ss:expr-other}{\begin{@norefs}\@print{7.7.8}\quad{}\label{ss:expr-other}Other{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:tydef}{\begin{@norefs}\@print{7.8}\quad{}\label{s:tydef}Type and exception definitions{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:typedefs}{\begin{@norefs}\@print{7.8.1}\quad{}\label{ss:typedefs}Type definitions{}\end{@norefs}} \tocitem \@locref{ss:exndef}{\begin{@norefs}\@print{7.8.2}\quad{}\label{ss:exndef}Exception definitions{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:classes}{\begin{@norefs}\@print{7.9}\quad{}\label{s:classes}Classes{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:classes:class-types}{\begin{@norefs}\@print{7.9.1}\quad{}\label{ss:classes:class-types}Class types{}\end{@norefs}} \tocitem \@locref{ss:class-expr}{\begin{@norefs}\@print{7.9.2}\quad{}\label{ss:class-expr}Class expressions{}\end{@norefs}} \tocitem \@locref{ss:class-def}{\begin{@norefs}\@print{7.9.3}\quad{}\label{ss:class-def}Class definitions{}\end{@norefs}} \tocitem \@locref{ss:class-spec}{\begin{@norefs}\@print{7.9.4}\quad{}\label{ss:class-spec}Class specifications{}\end{@norefs}} \tocitem \@locref{ss:classtype}{\begin{@norefs}\@print{7.9.5}\quad{}\label{ss:classtype}Class type definitions{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:modtypes}{\begin{@norefs}\@print{7.10}\quad{}\label{s:modtypes}Module types (module specifications){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:mty-simple}{\begin{@norefs}\@print{7.10.1}\quad{}\label{ss:mty-simple}Simple module types{}\end{@norefs}} \tocitem \@locref{ss:mty-signatures}{\begin{@norefs}\@print{7.10.2}\quad{}\label{ss:mty-signatures}Signatures{}\end{@norefs}} \tocitem \@locref{ss:mty-functors}{\begin{@norefs}\@print{7.10.3}\quad{}\label{ss:mty-functors}Functor types{}\end{@norefs}} \tocitem \@locref{ss:mty-with}{\begin{@norefs}\@print{7.10.4}\quad{}\label{ss:mty-with}The {\machine{with}} operator{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:module-expr}{\begin{@norefs}\@print{7.11}\quad{}\label{s:module-expr}Module expressions (module implementations){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:mexpr-simple}{\begin{@norefs}\@print{7.11.1}\quad{}\label{ss:mexpr-simple}Simple module expressions{}\end{@norefs}} \tocitem \@locref{ss:mexpr-structures}{\begin{@norefs}\@print{7.11.2}\quad{}\label{ss:mexpr-structures}Structures{}\end{@norefs}} \tocitem \@locref{ss:mexpr-functors}{\begin{@norefs}\@print{7.11.3}\quad{}\label{ss:mexpr-functors}Functors{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:compilation-units}{\begin{@norefs}\@print{7.12}\quad{}\label{s:compilation-units}Compilation units{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec238}{\begin{@norefs}\@print{Chapter 8}\quad{}Language extensions{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:letrecvalues}{\begin{@norefs}\@print{8.1}\quad{}\label{s:letrecvalues}Recursive definitions of values{}\end{@norefs}} \tocitem \@locref{s:recursive-modules}{\begin{@norefs}\@print{8.2}\quad{}\label{s:recursive-modules}Recursive modules{}\end{@norefs}} \tocitem \@locref{s:private-types}{\begin{@norefs}\@print{8.3}\quad{}\label{s:private-types}Private types{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:private-types-variant}{\begin{@norefs}\@print{8.3.1}\quad{}\label{ss:private-types-variant}Private variant and record types{}\end{@norefs}} \tocitem \@locref{ss:private-types-abbrev}{\begin{@norefs}\@print{8.3.2}\quad{}\label{ss:private-types-abbrev}Private type abbreviations{}\end{@norefs}} \tocitem \@locref{ss:private-rows}{\begin{@norefs}\@print{8.3.3}\quad{}\label{ss:private-rows}Private row types{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:locally-abstract}{\begin{@norefs}\@print{8.4}\quad{}\label{s:locally-abstract}Locally abstract types{}\end{@norefs}} \tocitem \@locref{s:first-class-modules}{\begin{@norefs}\@print{8.5}\quad{}\label{s:first-class-modules}First-class modules{}\end{@norefs}} \tocitem \@locref{s:module-type-of}{\begin{@norefs}\@print{8.6}\quad{}\label{s:module-type-of}Recovering the type of a module{}\end{@norefs}} \tocitem \@locref{s:signature-substitution}{\begin{@norefs}\@print{8.7}\quad{}\label{s:signature-substitution}Substituting inside a signature{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:destructive-substitution}{\begin{@norefs}\@print{8.7.1}\quad{}\label{ss:destructive-substitution}Destructive substitutions{}\end{@norefs}} \tocitem \@locref{ss:local-substitution}{\begin{@norefs}\@print{8.7.2}\quad{}\label{ss:local-substitution}Local substitution declarations{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:module-alias}{\begin{@norefs}\@print{8.8}\quad{}\label{s:module-alias}Type-level module aliases{}\end{@norefs}} \tocitem \@locref{s:explicit-overriding-open}{\begin{@norefs}\@print{8.9}\quad{}\label{s:explicit-overriding-open}Overriding in open statements{}\end{@norefs}} \tocitem \@locref{s:gadts}{\begin{@norefs}\@print{8.10}\quad{}\label{s:gadts}Generalized algebraic datatypes{}\end{@norefs}} \tocitem \@locref{s:bigarray-access}{\begin{@norefs}\@print{8.11}\quad{}\label{s:bigarray-access}Syntax for Bigarray access{}\end{@norefs}} \tocitem \@locref{s:attributes}{\begin{@norefs}\@print{8.12}\quad{}\label{s:attributes}Attributes{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:builtin-attributes}{\begin{@norefs}\@print{8.12.1}\quad{}\label{ss:builtin-attributes}Built-in attributes{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:extension-nodes}{\begin{@norefs}\@print{8.13}\quad{}\label{s:extension-nodes}Extension nodes{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:builtin-extension-nodes}{\begin{@norefs}\@print{8.13.1}\quad{}\label{ss:builtin-extension-nodes}Built-in extension nodes{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:extensible-variants}{\begin{@norefs}\@print{8.14}\quad{}\label{s:extensible-variants}Extensible variant types{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:private-extensible}{\begin{@norefs}\@print{8.14.1}\quad{}\label{ss:private-extensible}Private extensible variant types{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:generative-functors}{\begin{@norefs}\@print{8.15}\quad{}\label{s:generative-functors}Generative functors{}\end{@norefs}} \tocitem \@locref{s:extension-syntax}{\begin{@norefs}\@print{8.16}\quad{}\label{s:extension-syntax}Extension-only syntax{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:extension-operators}{\begin{@norefs}\@print{8.16.1}\quad{}\label{ss:extension-operators}Extension operators{}\end{@norefs}} \tocitem \@locref{ss:extension-literals}{\begin{@norefs}\@print{8.16.2}\quad{}\label{ss:extension-literals}Extension literals{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:inline-records}{\begin{@norefs}\@print{8.17}\quad{}\label{s:inline-records}Inline records{}\end{@norefs}} \tocitem \@locref{s:doc-comments}{\begin{@norefs}\@print{8.18}\quad{}\label{s:doc-comments}Documentation comments{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:floating-comments}{\begin{@norefs}\@print{8.18.1}\quad{}\label{ss:floating-comments}Floating comments{}\end{@norefs}} \tocitem \@locref{ss:item-comments}{\begin{@norefs}\@print{8.18.2}\quad{}\label{ss:item-comments}Item comments{}\end{@norefs}} \tocitem \@locref{ss:label-comments}{\begin{@norefs}\@print{8.18.3}\quad{}\label{ss:label-comments}Label comments{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:index-operators}{\begin{@norefs}\@print{8.19}\quad{}\label{s:index-operators}Extended indexing operators {}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:multiindexing}{\begin{@norefs}\@print{8.19.1}\quad{}\label{ss:multiindexing}Multi-index notation{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:empty-variants}{\begin{@norefs}\@print{8.20}\quad{}\label{s:empty-variants}Empty variant types{}\end{@norefs}} \tocitem \@locref{s:alerts}{\begin{@norefs}\@print{8.21}\quad{}\label{s:alerts}Alerts{}\end{@norefs}} \tocitem \@locref{s:generalized-open}{\begin{@norefs}\@print{8.22}\quad{}\label{s:generalized-open}Generalized open statements{}\end{@norefs}} \tocitem \@locref{s:binding-operators}{\begin{@norefs}\@print{8.23}\quad{}\label{s:binding-operators}Binding operators{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:letops-rationale}{\begin{@norefs}\@print{8.23.1}\quad{}\label{ss:letops-rationale}Rationale{}\end{@norefs}} \end{tocenv} \end{tocenv} \end{tocenv} \tocitem \@locref{sec286}{\begin{@norefs}\@print{Part III}\quad{}The OCaml tools{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{sec287}{\begin{@norefs}\@print{Chapter 9}\quad{}Batch compilation (ocamlc){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:comp-overview}{\begin{@norefs}\@print{9.1}\quad{}\label{s:comp-overview}Overview of the compiler{}\end{@norefs}} \tocitem \@locref{s:comp-options}{\begin{@norefs}\@print{9.2}\quad{}\label{s:comp-options}Options{}\end{@norefs}} \tocitem \@locref{s:modules-file-system}{\begin{@norefs}\@print{9.3}\quad{}\label{s:modules-file-system}Modules and the file system{}\end{@norefs}} \tocitem \@locref{s:comp-errors}{\begin{@norefs}\@print{9.4}\quad{}\label{s:comp-errors}Common errors{}\end{@norefs}} \tocitem \@locref{s:comp-warnings}{\begin{@norefs}\@print{9.5}\quad{}\label{s:comp-warnings}Warning reference{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:warn9}{\begin{@norefs}\@print{9.5.1}\quad{}\label{ss:warn9}Warning 9: missing fields in a record pattern{}\end{@norefs}} \tocitem \@locref{ss:warn52}{\begin{@norefs}\@print{9.5.2}\quad{}\label{ss:warn52}Warning 52: fragile constant pattern{}\end{@norefs}} \tocitem \@locref{ss:warn57}{\begin{@norefs}\@print{9.5.3}\quad{}\label{ss:warn57}Warning 57: Ambiguous or-pattern variables under guard{}\end{@norefs}} \end{tocenv} \end{tocenv} \tocitem \@locref{sec297}{\begin{@norefs}\@print{Chapter 10}\quad{}The toplevel system or REPL (ocaml){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:toplevel-options}{\begin{@norefs}\@print{10.1}\quad{}\label{s:toplevel-options}Options{}\end{@norefs}} \tocitem \@locref{s:toplevel-directives}{\begin{@norefs}\@print{10.2}\quad{}\label{s:toplevel-directives}Toplevel directives{}\end{@norefs}} \tocitem \@locref{s:toplevel-modules}{\begin{@norefs}\@print{10.3}\quad{}\label{s:toplevel-modules}The toplevel and the module system{}\end{@norefs}} \tocitem \@locref{s:toplevel-common-errors}{\begin{@norefs}\@print{10.4}\quad{}\label{s:toplevel-common-errors}Common errors{}\end{@norefs}} \tocitem \@locref{s:custom-toplevel}{\begin{@norefs}\@print{10.5}\quad{}\label{s:custom-toplevel}Building custom toplevel systems: \texttt{ocamlmktop}{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamlmktop-options}{\begin{@norefs}\@print{10.5.1}\quad{}\label{ss:ocamlmktop-options}Options{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamlnat}{\begin{@norefs}\@print{10.6}\quad{}\label{s:ocamlnat}The native toplevel: \texttt{ocamlnat}\ (experimental){}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec305}{\begin{@norefs}\@print{Chapter 11}\quad{}The runtime system (ocamlrun){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:ocamlrun-overview}{\begin{@norefs}\@print{11.1}\quad{}\label{s:ocamlrun-overview}Overview{}\end{@norefs}} \tocitem \@locref{s:ocamlrun-options}{\begin{@norefs}\@print{11.2}\quad{}\label{s:ocamlrun-options}Options{}\end{@norefs}} \tocitem \@locref{s:ocamlrun-dllpath}{\begin{@norefs}\@print{11.3}\quad{}\label{s:ocamlrun-dllpath}Dynamic loading of shared libraries{}\end{@norefs}} \tocitem \@locref{s:ocamlrun-common-errors}{\begin{@norefs}\@print{11.4}\quad{}\label{s:ocamlrun-common-errors}Common errors{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec310}{\begin{@norefs}\@print{Chapter 12}\quad{}Native-code compilation (ocamlopt){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:native-overview}{\begin{@norefs}\@print{12.1}\quad{}\label{s:native-overview}Overview of the compiler{}\end{@norefs}} \tocitem \@locref{s:native-options}{\begin{@norefs}\@print{12.2}\quad{}\label{s:native-options}Options{}\end{@norefs}} \tocitem \@locref{s:native-common-errors}{\begin{@norefs}\@print{12.3}\quad{}\label{s:native-common-errors}Common errors{}\end{@norefs}} \tocitem \@locref{s:native:running-executable}{\begin{@norefs}\@print{12.4}\quad{}\label{s:native:running-executable}Running executables produced by ocamlopt{}\end{@norefs}} \tocitem \@locref{s:compat-native-bytecode}{\begin{@norefs}\@print{12.5}\quad{}\label{s:compat-native-bytecode}Compatibility with the bytecode compiler{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec320}{\begin{@norefs}\@print{Chapter 13}\quad{}Lexer and parser generators (ocamllex, ocamlyacc){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:ocamllex-overview}{\begin{@norefs}\@print{13.1}\quad{}\label{s:ocamllex-overview}Overview of \texttt{ocamllex}{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamllex-options}{\begin{@norefs}\@print{13.1.1}\quad{}\label{ss:ocamllex-options}Options{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamllex-syntax}{\begin{@norefs}\@print{13.2}\quad{}\label{s:ocamllex-syntax}Syntax of lexer definitions{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamllex-header-trailer}{\begin{@norefs}\@print{13.2.1}\quad{}\label{ss:ocamllex-header-trailer}Header and trailer{}\end{@norefs}} \tocitem \@locref{ss:ocamllex-named-regexp}{\begin{@norefs}\@print{13.2.2}\quad{}\label{ss:ocamllex-named-regexp}Naming regular expressions{}\end{@norefs}} \tocitem \@locref{ss:ocamllex-entry-points}{\begin{@norefs}\@print{13.2.3}\quad{}\label{ss:ocamllex-entry-points}Entry points{}\end{@norefs}} \tocitem \@locref{ss:ocamllex-regexp}{\begin{@norefs}\@print{13.2.4}\quad{}\label{ss:ocamllex-regexp}Regular expressions{}\end{@norefs}} \tocitem \@locref{ss:ocamllex-actions}{\begin{@norefs}\@print{13.2.5}\quad{}\label{ss:ocamllex-actions}Actions{}\end{@norefs}} \tocitem \@locref{ss:ocamllex-variables}{\begin{@norefs}\@print{13.2.6}\quad{}\label{ss:ocamllex-variables}Variables in regular expressions{}\end{@norefs}} \tocitem \@locref{ss:refill-handlers}{\begin{@norefs}\@print{13.2.7}\quad{}\label{ss:refill-handlers}Refill handlers{}\end{@norefs}} \tocitem \@locref{ss:ocamllex-reserved-ident}{\begin{@norefs}\@print{13.2.8}\quad{}\label{ss:ocamllex-reserved-ident}Reserved identifiers{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamlyacc-overview}{\begin{@norefs}\@print{13.3}\quad{}\label{s:ocamlyacc-overview}Overview of \texttt{ocamlyacc}{}\end{@norefs}} \tocitem \@locref{s:ocamlyacc-syntax}{\begin{@norefs}\@print{13.4}\quad{}\label{s:ocamlyacc-syntax}Syntax of grammar definitions{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamlyacc-header-trailer}{\begin{@norefs}\@print{13.4.1}\quad{}\label{ss:ocamlyacc-header-trailer}Header and trailer{}\end{@norefs}} \tocitem \@locref{ss:ocamlyacc-declarations}{\begin{@norefs}\@print{13.4.2}\quad{}\label{ss:ocamlyacc-declarations}Declarations{}\end{@norefs}} \tocitem \@locref{ss:ocamlyacc-rules}{\begin{@norefs}\@print{13.4.3}\quad{}\label{ss:ocamlyacc-rules}Rules{}\end{@norefs}} \tocitem \@locref{ss:ocamlyacc-error-handling}{\begin{@norefs}\@print{13.4.4}\quad{}\label{ss:ocamlyacc-error-handling}Error handling{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamlyacc-options}{\begin{@norefs}\@print{13.5}\quad{}\label{s:ocamlyacc-options}Options{}\end{@norefs}} \tocitem \@locref{s:lexyacc-example}{\begin{@norefs}\@print{13.6}\quad{}\label{s:lexyacc-example}A complete example{}\end{@norefs}} \tocitem \@locref{s:lexyacc-common-errors}{\begin{@norefs}\@print{13.7}\quad{}\label{s:lexyacc-common-errors}Common errors{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec341}{\begin{@norefs}\@print{Chapter 14}\quad{}Dependency generator (ocamldep){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:ocamldep-options}{\begin{@norefs}\@print{14.1}\quad{}\label{s:ocamldep-options}Options{}\end{@norefs}} \tocitem \@locref{s:ocamldep-makefile}{\begin{@norefs}\@print{14.2}\quad{}\label{s:ocamldep-makefile}A typical Makefile{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec344}{\begin{@norefs}\@print{Chapter 15}\quad{}The browser/editor (ocamlbrowser){}\end{@norefs}} \tocitem \@locref{sec345}{\begin{@norefs}\@print{Chapter 16}\quad{}The documentation generator (ocamldoc){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:ocamldoc-usage}{\begin{@norefs}\@print{16.1}\quad{}\label{s:ocamldoc-usage}Usage{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamldoc-invocation}{\begin{@norefs}\@print{16.1.1}\quad{}\label{ss:ocamldoc-invocation}Invocation{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-merge}{\begin{@norefs}\@print{16.1.2}\quad{}\label{ss:ocamldoc-merge}Merging of module information{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-rules}{\begin{@norefs}\@print{16.1.3}\quad{}\label{ss:ocamldoc-rules}Coding rules{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamldoc-comments}{\begin{@norefs}\@print{16.2}\quad{}\label{s:ocamldoc-comments}Syntax of documentation comments{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamldoc-placement}{\begin{@norefs}\@print{16.2.1}\quad{}\label{ss:ocamldoc-placement}Placement of documentation comments{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-stop}{\begin{@norefs}\@print{16.2.2}\quad{}\label{ss:ocamldoc-stop}The Stop special comment{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-syntax}{\begin{@norefs}\@print{16.2.3}\quad{}\label{ss:ocamldoc-syntax}Syntax of documentation comments{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-formatting}{\begin{@norefs}\@print{16.2.4}\quad{}\label{ss:ocamldoc-formatting}Text formatting{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-tags}{\begin{@norefs}\@print{16.2.5}\quad{}\label{ss:ocamldoc-tags}Documentation tags (@-tags){}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamldoc-custom-generators}{\begin{@norefs}\@print{16.3}\quad{}\label{s:ocamldoc-custom-generators}Custom generators{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamldoc-generators}{\begin{@norefs}\@print{16.3.1}\quad{}\label{ss:ocamldoc-generators}The generator modules{}\end{@norefs}} \tocitem \@locref{ss:ocamldoc-handling-custom-tags}{\begin{@norefs}\@print{16.3.2}\quad{}\label{ss:ocamldoc-handling-custom-tags}Handling custom tags{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:ocamldoc-adding-flags}{\begin{@norefs}\@print{16.4}\quad{}\label{s:ocamldoc-adding-flags}Adding command line options{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:ocamldoc-compilation-and-usage}{\begin{@norefs}\@print{16.4.1}\quad{}\label{ss:ocamldoc-compilation-and-usage}Compilation and usage{}\end{@norefs}} \end{tocenv} \end{tocenv} \tocitem \@locref{sec382}{\begin{@norefs}\@print{Chapter 17}\quad{}The debugger (ocamldebug){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:debugger-compilation}{\begin{@norefs}\@print{17.1}\quad{}\label{s:debugger-compilation}Compiling for debugging{}\end{@norefs}} \tocitem \@locref{s:debugger-invocation}{\begin{@norefs}\@print{17.2}\quad{}\label{s:debugger-invocation}Invocation{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:debugger-start}{\begin{@norefs}\@print{17.2.1}\quad{}\label{ss:debugger-start}Starting the debugger{}\end{@norefs}} \tocitem \@locref{ss:debugger-init-file}{\begin{@norefs}\@print{17.2.2}\quad{}\label{ss:debugger-init-file}Initialization file{}\end{@norefs}} \tocitem \@locref{ss:debugger-exut}{\begin{@norefs}\@print{17.2.3}\quad{}\label{ss:debugger-exut}Exiting the debugger{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:debugger-commands}{\begin{@norefs}\@print{17.3}\quad{}\label{s:debugger-commands}Commands{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:debugger-help}{\begin{@norefs}\@print{17.3.1}\quad{}\label{ss:debugger-help}Getting help{}\end{@norefs}} \tocitem \@locref{ss:debugger-state}{\begin{@norefs}\@print{17.3.2}\quad{}\label{ss:debugger-state}Accessing the debugger state{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:debugger-execution}{\begin{@norefs}\@print{17.4}\quad{}\label{s:debugger-execution}Executing a program{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:debugger-events}{\begin{@norefs}\@print{17.4.1}\quad{}\label{ss:debugger-events}Events{}\end{@norefs}} \tocitem \@locref{ss:debugger-starting-program}{\begin{@norefs}\@print{17.4.2}\quad{}\label{ss:debugger-starting-program}Starting the debugged program{}\end{@norefs}} \tocitem \@locref{ss:debugger-running}{\begin{@norefs}\@print{17.4.3}\quad{}\label{ss:debugger-running}Running the program{}\end{@norefs}} \tocitem \@locref{ss:debugger-time-travel}{\begin{@norefs}\@print{17.4.4}\quad{}\label{ss:debugger-time-travel}Time travel{}\end{@norefs}} \tocitem \@locref{ss:debugger-kill}{\begin{@norefs}\@print{17.4.5}\quad{}\label{ss:debugger-kill}Killing the program{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:breakpoints}{\begin{@norefs}\@print{17.5}\quad{}\label{s:breakpoints}Breakpoints{}\end{@norefs}} \tocitem \@locref{s:debugger-callstack}{\begin{@norefs}\@print{17.6}\quad{}\label{s:debugger-callstack}The call stack{}\end{@norefs}} \tocitem \@locref{s:debugger-examining-values}{\begin{@norefs}\@print{17.7}\quad{}\label{s:debugger-examining-values}Examining variable values{}\end{@norefs}} \tocitem \@locref{s:debugger-control}{\begin{@norefs}\@print{17.8}\quad{}\label{s:debugger-control}Controlling the debugger{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:debugger-name-and-arguments}{\begin{@norefs}\@print{17.8.1}\quad{}\label{ss:debugger-name-and-arguments}Setting the program name and arguments{}\end{@norefs}} \tocitem \@locref{ss:debugger-loading}{\begin{@norefs}\@print{17.8.2}\quad{}\label{ss:debugger-loading}How programs are loaded{}\end{@norefs}} \tocitem \@locref{ss:debugger-search-path}{\begin{@norefs}\@print{17.8.3}\quad{}\label{ss:debugger-search-path}Search path for files{}\end{@norefs}} \tocitem \@locref{ss:debugger-working-dir}{\begin{@norefs}\@print{17.8.4}\quad{}\label{ss:debugger-working-dir}Working directory{}\end{@norefs}} \tocitem \@locref{ss:debugger-reverse-execution}{\begin{@norefs}\@print{17.8.5}\quad{}\label{ss:debugger-reverse-execution}Turning reverse execution on and off{}\end{@norefs}} \tocitem \@locref{ss:debugger-fork}{\begin{@norefs}\@print{17.8.6}\quad{}\label{ss:debugger-fork}Behavior of the debugger with respect to {\machine{fork}}{}\end{@norefs}} \tocitem \@locref{ss:debugger-stop-at-new-load}{\begin{@norefs}\@print{17.8.7}\quad{}\label{ss:debugger-stop-at-new-load}Stopping execution when new code is loaded{}\end{@norefs}} \tocitem \@locref{ss:debugger-communication}{\begin{@norefs}\@print{17.8.8}\quad{}\label{ss:debugger-communication}Communication between the debugger and the program{}\end{@norefs}} \tocitem \@locref{ss:debugger-fine-tuning}{\begin{@norefs}\@print{17.8.9}\quad{}\label{ss:debugger-fine-tuning}Fine-tuning the debugger{}\end{@norefs}} \tocitem \@locref{ss:debugger-printers}{\begin{@norefs}\@print{17.8.10}\quad{}\label{ss:debugger-printers}User-defined printers{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:debugger-misc-cmds}{\begin{@norefs}\@print{17.9}\quad{}\label{s:debugger-misc-cmds}Miscellaneous commands{}\end{@norefs}} \tocitem \@locref{s:inf-debugger}{\begin{@norefs}\@print{17.10}\quad{}\label{s:inf-debugger}Running the debugger under Emacs{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec413}{\begin{@norefs}\@print{Chapter 18}\quad{}Profiling (ocamlprof){}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:ocamlprof-compiling}{\begin{@norefs}\@print{18.1}\quad{}\label{s:ocamlprof-compiling}Compiling for profiling{}\end{@norefs}} \tocitem \@locref{s:ocamlprof-profiling}{\begin{@norefs}\@print{18.2}\quad{}\label{s:ocamlprof-profiling}Profiling an execution{}\end{@norefs}} \tocitem \@locref{s:ocamlprof-printing}{\begin{@norefs}\@print{18.3}\quad{}\label{s:ocamlprof-printing}Printing profiling information{}\end{@norefs}} \tocitem \@locref{s:ocamlprof-time-profiling}{\begin{@norefs}\@print{18.4}\quad{}\label{s:ocamlprof-time-profiling}Time profiling{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec421}{\begin{@norefs}\@print{Chapter 19}\quad{}The ocamlbuild compilation manager{}\end{@norefs}} \tocitem \@locref{c:intf-c}{\begin{@norefs}\@print{Chapter 20}\quad{}Interfacing\label{c:intf-c} C with OCaml{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:c-overview}{\begin{@norefs}\@print{20.1}\quad{}\label{s:c-overview}Overview and compilation information{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-prim-decl}{\begin{@norefs}\@print{20.1.1}\quad{}\label{ss:c-prim-decl}Declaring primitives{}\end{@norefs}} \tocitem \@locref{ss:c-prim-impl}{\begin{@norefs}\@print{20.1.2}\quad{}\label{ss:c-prim-impl}Implementing primitives{}\end{@norefs}} \tocitem \@locref{ss:staticlink-c-code}{\begin{@norefs}\@print{20.1.3}\quad{}\label{ss:staticlink-c-code}Statically linking C code with OCaml code{}\end{@norefs}} \tocitem \@locref{ss:dynlink-c-code}{\begin{@norefs}\@print{20.1.4}\quad{}\label{ss:dynlink-c-code}Dynamically linking C code with OCaml code{}\end{@norefs}} \tocitem \@locref{ss:c-static-vs-dynamic}{\begin{@norefs}\@print{20.1.5}\quad{}\label{ss:c-static-vs-dynamic}Choosing between static linking and dynamic linking{}\end{@norefs}} \tocitem \@locref{ss:custom-runtime}{\begin{@norefs}\@print{20.1.6}\quad{}\label{ss:custom-runtime}Building standalone custom runtime systems{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:c-value}{\begin{@norefs}\@print{20.2}\quad{}\label{s:c-value}The \texttt{value} type{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-int}{\begin{@norefs}\@print{20.2.1}\quad{}\label{ss:c-int}Integer values{}\end{@norefs}} \tocitem \@locref{ss:c-blocks}{\begin{@norefs}\@print{20.2.2}\quad{}\label{ss:c-blocks}Blocks{}\end{@norefs}} \tocitem \@locref{ss:c-outside-head}{\begin{@norefs}\@print{20.2.3}\quad{}\label{ss:c-outside-head}Pointers outside the heap{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:c-ocaml-datatype-repr}{\begin{@norefs}\@print{20.3}\quad{}\label{s:c-ocaml-datatype-repr}Representation of OCaml data types{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-atomic}{\begin{@norefs}\@print{20.3.1}\quad{}\label{ss:c-atomic}Atomic types{}\end{@norefs}} \tocitem \@locref{ss:c-tuples-and-records}{\begin{@norefs}\@print{20.3.2}\quad{}\label{ss:c-tuples-and-records}Tuples and records{}\end{@norefs}} \tocitem \@locref{ss:c-arrays}{\begin{@norefs}\@print{20.3.3}\quad{}\label{ss:c-arrays}Arrays{}\end{@norefs}} \tocitem \@locref{ss:c-concrete-datatypes}{\begin{@norefs}\@print{20.3.4}\quad{}\label{ss:c-concrete-datatypes}Concrete data types{}\end{@norefs}} \tocitem \@locref{ss:c-objects}{\begin{@norefs}\@print{20.3.5}\quad{}\label{ss:c-objects}Objects{}\end{@norefs}} \tocitem \@locref{ss:c-polyvar}{\begin{@norefs}\@print{20.3.6}\quad{}\label{ss:c-polyvar}Polymorphic variants{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:c-ops-on-values}{\begin{@norefs}\@print{20.4}\quad{}\label{s:c-ops-on-values}Operations on values{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-kind-tests}{\begin{@norefs}\@print{20.4.1}\quad{}\label{ss:c-kind-tests}Kind tests{}\end{@norefs}} \tocitem \@locref{ss:c-int-ops}{\begin{@norefs}\@print{20.4.2}\quad{}\label{ss:c-int-ops}Operations on integers{}\end{@norefs}} \tocitem \@locref{ss:c-block-access}{\begin{@norefs}\@print{20.4.3}\quad{}\label{ss:c-block-access}Accessing blocks{}\end{@norefs}} \tocitem \@locref{ss:c-block-allocation}{\begin{@norefs}\@print{20.4.4}\quad{}\label{ss:c-block-allocation}Allocating blocks{}\end{@norefs}} \tocitem \@locref{ss:c-exceptions}{\begin{@norefs}\@print{20.4.5}\quad{}\label{ss:c-exceptions}Raising exceptions{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:c-gc-harmony}{\begin{@norefs}\@print{20.5}\quad{}\label{s:c-gc-harmony}Living in harmony with the garbage collector{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-simple-gc-harmony}{\begin{@norefs}\@print{20.5.1}\quad{}\label{ss:c-simple-gc-harmony}Simple interface{}\end{@norefs}} \tocitem \@locref{ss:c-low-level-gc-harmony}{\begin{@norefs}\@print{20.5.2}\quad{}\label{ss:c-low-level-gc-harmony}Low-level interface{}\end{@norefs}} \tocitem \@locref{ss:c-process-pending-actions}{\begin{@norefs}\@print{20.5.3}\quad{}\label{ss:c-process-pending-actions}Pending actions and asynchronous exceptions{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:c-intf-example}{\begin{@norefs}\@print{20.6}\quad{}\label{s:c-intf-example}A complete example{}\end{@norefs}} \tocitem \@locref{s:c-callback}{\begin{@norefs}\@print{20.7}\quad{}\label{s:c-callback}Advanced topic: callbacks from C to OCaml{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-callbacks}{\begin{@norefs}\@print{20.7.1}\quad{}\label{ss:c-callbacks}Applying OCaml closures from C{}\end{@norefs}} \tocitem \@locref{ss:c-closures}{\begin{@norefs}\@print{20.7.2}\quad{}\label{ss:c-closures}Obtaining or registering OCaml closures for use in C functions{}\end{@norefs}} \tocitem \@locref{ss:c-register-exn}{\begin{@norefs}\@print{20.7.3}\quad{}\label{ss:c-register-exn}Registering OCaml exceptions for use in C functions{}\end{@norefs}} \tocitem \@locref{ss:main-c}{\begin{@norefs}\@print{20.7.4}\quad{}\label{ss:main-c}Main program in C{}\end{@norefs}} \tocitem \@locref{ss:c-embedded-code}{\begin{@norefs}\@print{20.7.5}\quad{}\label{ss:c-embedded-code}Embedding the OCaml code in the C code{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:c-advexample}{\begin{@norefs}\@print{20.8}\quad{}\label{s:c-advexample}Advanced example with callbacks{}\end{@norefs}} \tocitem \@locref{s:c-custom}{\begin{@norefs}\@print{20.9}\quad{}\label{s:c-custom}Advanced topic: custom blocks{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-custom-ops}{\begin{@norefs}\@print{20.9.1}\quad{}\label{ss:c-custom-ops}The {\machine{struct\ custom{\char95}operations}}{}\end{@norefs}} \tocitem \@locref{ss:c-custom-alloc}{\begin{@norefs}\@print{20.9.2}\quad{}\label{ss:c-custom-alloc}Allocating custom blocks{}\end{@norefs}} \tocitem \@locref{ss:c-custom-access}{\begin{@norefs}\@print{20.9.3}\quad{}\label{ss:c-custom-access}Accessing custom blocks{}\end{@norefs}} \tocitem \@locref{ss:c-custom-serialization}{\begin{@norefs}\@print{20.9.4}\quad{}\label{ss:c-custom-serialization}Writing custom serialization and deserialization functions{}\end{@norefs}} \tocitem \@locref{ss:c-custom-idents}{\begin{@norefs}\@print{20.9.5}\quad{}\label{ss:c-custom-idents}Choosing identifiers{}\end{@norefs}} \tocitem \@locref{ss:c-finalized}{\begin{@norefs}\@print{20.9.6}\quad{}\label{ss:c-finalized}Finalized blocks{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:C-Bigarrays}{\begin{@norefs}\@print{20.10}\quad{}\label{s:C-Bigarrays}Advanced topic: Bigarrays and the OCaml-C interface{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:C-Bigarrays-include}{\begin{@norefs}\@print{20.10.1}\quad{}\label{ss:C-Bigarrays-include}Include file{}\end{@norefs}} \tocitem \@locref{ss:C-Bigarrays-access}{\begin{@norefs}\@print{20.10.2}\quad{}\label{ss:C-Bigarrays-access}Accessing an OCaml bigarray from C or Fortran{}\end{@norefs}} \tocitem \@locref{ss:C-Bigarrays-wrap}{\begin{@norefs}\@print{20.10.3}\quad{}\label{ss:C-Bigarrays-wrap}Wrapping a C or Fortran array as an OCaml Bigarray{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:C-cheaper-call}{\begin{@norefs}\@print{20.11}\quad{}\label{s:C-cheaper-call}Advanced topic: cheaper C call{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-unboxed}{\begin{@norefs}\@print{20.11.1}\quad{}\label{ss:c-unboxed}Passing unboxed values{}\end{@norefs}} \tocitem \@locref{ss:c-direct-call}{\begin{@norefs}\@print{20.11.2}\quad{}\label{ss:c-direct-call}Direct C call{}\end{@norefs}} \tocitem \@locref{ss:c-direct-call-example}{\begin{@norefs}\@print{20.11.3}\quad{}\label{ss:c-direct-call-example}Example: calling C library functions without indirection{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:C-multithreading}{\begin{@norefs}\@print{20.12}\quad{}\label{s:C-multithreading}Advanced topic: multithreading{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-thread-register}{\begin{@norefs}\@print{20.12.1}\quad{}\label{ss:c-thread-register}Registering threads created from C{}\end{@norefs}} \tocitem \@locref{ss:parallel-execution-long-running-c-code}{\begin{@norefs}\@print{20.12.2}\quad{}\label{ss:parallel-execution-long-running-c-code}Parallel execution of long-running C code{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:interfacing-windows-unicode-apis}{\begin{@norefs}\@print{20.13}\quad{}\label{s:interfacing-windows-unicode-apis}Advanced topic: interfacing with Windows Unicode APIs{}\end{@norefs}} \tocitem \@locref{s:ocamlmklib}{\begin{@norefs}\@print{20.14}\quad{}\label{s:ocamlmklib}Building mixed C/OCaml libraries: \texttt{ocamlmklib}{}\end{@norefs}} \tocitem \@locref{s:c-internal-guidelines}{\begin{@norefs}\@print{20.15}\quad{}\label{s:c-internal-guidelines}Cautionary words: the internal runtime API{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:c-internals}{\begin{@norefs}\@print{20.15.1}\quad{}\label{ss:c-internals}Internal variables and CAML_INTERNALS{}\end{@norefs}} \tocitem \@locref{ss:c-internal-macros}{\begin{@norefs}\@print{20.15.2}\quad{}\label{ss:c-internal-macros}OCaml version macros{}\end{@norefs}} \end{tocenv} \end{tocenv} \tocitem \@locref{sec496}{\begin{@norefs}\@print{Chapter 21}\quad{}Optimisation with Flambda{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:flambda-overview}{\begin{@norefs}\@print{21.1}\quad{}\label{s:flambda-overview}Overview{}\end{@norefs}} \tocitem \@locref{s:flambda-cli}{\begin{@norefs}\@print{21.2}\quad{}\label{s:flambda-cli}Command-line flags{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-rounds}{\begin{@norefs}\@print{21.2.1}\quad{}\label{ss:flambda-rounds}Specification of optimisation parameters by round{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-inlining}{\begin{@norefs}\@print{21.3}\quad{}\label{s:flambda-inlining}Inlining{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-classic}{\begin{@norefs}\@print{21.3.1}\quad{}\label{ss:flambda-classic}Classic inlining heuristic{}\end{@norefs}} \tocitem \@locref{ss:flambda-inlining-overview}{\begin{@norefs}\@print{21.3.2}\quad{}\label{ss:flambda-inlining-overview}Overview of ``Flambda'' inlining heuristics{}\end{@norefs}} \tocitem \@locref{ss:flambda-by-constructs}{\begin{@norefs}\@print{21.3.3}\quad{}\label{ss:flambda-by-constructs}Handling of specific language constructs{}\end{@norefs}} \tocitem \@locref{ss:flambda-inlining-reports}{\begin{@norefs}\@print{21.3.4}\quad{}\label{ss:flambda-inlining-reports}Inlining reports{}\end{@norefs}} \tocitem \@locref{ss:flambda-assessment-inlining}{\begin{@norefs}\@print{21.3.5}\quad{}\label{ss:flambda-assessment-inlining}Assessment of inlining benefit{}\end{@norefs}} \tocitem \@locref{ss:flambda-speculation}{\begin{@norefs}\@print{21.3.6}\quad{}\label{ss:flambda-speculation}Control of speculation{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-specialisation}{\begin{@norefs}\@print{21.4}\quad{}\label{s:flambda-specialisation}Specialisation{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-assessment-specialisation}{\begin{@norefs}\@print{21.4.1}\quad{}\label{ss:flambda-assessment-specialisation}Assessment of specialisation benefit{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-defaults}{\begin{@norefs}\@print{21.5}\quad{}\label{s:flambda-defaults}Default settings of parameters{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-o2}{\begin{@norefs}\@print{21.5.1}\quad{}\label{ss:flambda-o2}Settings at -O2 optimisation level{}\end{@norefs}} \tocitem \@locref{ss:flambda-o3}{\begin{@norefs}\@print{21.5.2}\quad{}\label{ss:flambda-o3}Settings at -O3 optimisation level{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-manual-control}{\begin{@norefs}\@print{21.6}\quad{}\label{s:flambda-manual-control}Manual control of inlining and specialisation{}\end{@norefs}} \tocitem \@locref{s:flambda-simplification}{\begin{@norefs}\@print{21.7}\quad{}\label{s:flambda-simplification}Simplification{}\end{@norefs}} \tocitem \@locref{s:flambda-other-transfs}{\begin{@norefs}\@print{21.8}\quad{}\label{s:flambda-other-transfs}Other code motion transformations{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-lift-const}{\begin{@norefs}\@print{21.8.1}\quad{}\label{ss:flambda-lift-const}Lifting of constants{}\end{@norefs}} \tocitem \@locref{ss:flambda-lift-toplevel-let}{\begin{@norefs}\@print{21.8.2}\quad{}\label{ss:flambda-lift-toplevel-let}Lifting of toplevel let bindings{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-unboxing}{\begin{@norefs}\@print{21.9}\quad{}\label{s:flambda-unboxing}Unboxing transformations{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-unbox-fvs}{\begin{@norefs}\@print{21.9.1}\quad{}\label{ss:flambda-unbox-fvs}Unboxing of closure variables{}\end{@norefs}} \tocitem \@locref{ss:flambda-unbox-spec-args}{\begin{@norefs}\@print{21.9.2}\quad{}\label{ss:flambda-unbox-spec-args}Unboxing of specialised arguments{}\end{@norefs}} \tocitem \@locref{ss:flambda-unbox-closures}{\begin{@norefs}\@print{21.9.3}\quad{}\label{ss:flambda-unbox-closures}Unboxing of closures{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-remove-unused}{\begin{@norefs}\@print{21.10}\quad{}\label{s:flambda-remove-unused}Removal of unused code and values{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-redundant-let}{\begin{@norefs}\@print{21.10.1}\quad{}\label{ss:flambda-redundant-let}Removal of redundant let expressions{}\end{@norefs}} \tocitem \@locref{ss:flambda-redundant}{\begin{@norefs}\@print{21.10.2}\quad{}\label{ss:flambda-redundant}Removal of redundant program constructs{}\end{@norefs}} \tocitem \@locref{ss:flambda-remove-unused-args}{\begin{@norefs}\@print{21.10.3}\quad{}\label{ss:flambda-remove-unused-args}Removal of unused arguments{}\end{@norefs}} \tocitem \@locref{ss:flambda-removal-closure-vars}{\begin{@norefs}\@print{21.10.4}\quad{}\label{ss:flambda-removal-closure-vars}Removal of unused closure variables{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-other}{\begin{@norefs}\@print{21.11}\quad{}\label{s:flambda-other}Other code transformations{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:flambda-non-escaping-refs}{\begin{@norefs}\@print{21.11.1}\quad{}\label{ss:flambda-non-escaping-refs}Transformation of non-escaping references into mutable variables{}\end{@norefs}} \tocitem \@locref{ss:flambda-subst-closure-vars}{\begin{@norefs}\@print{21.11.2}\quad{}\label{ss:flambda-subst-closure-vars}Substitution of closure variables for specialised arguments{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:flambda-effects}{\begin{@norefs}\@print{21.12}\quad{}\label{s:flambda-effects}Treatment of effects{}\end{@norefs}} \tocitem \@locref{s:flambda-static-modules}{\begin{@norefs}\@print{21.13}\quad{}\label{s:flambda-static-modules}Compilation of statically-allocated modules{}\end{@norefs}} \tocitem \@locref{s:flambda-inhibition}{\begin{@norefs}\@print{21.14}\quad{}\label{s:flambda-inhibition}Inhibition of optimisation{}\end{@norefs}} \tocitem \@locref{s:flambda-unsafe}{\begin{@norefs}\@print{21.15}\quad{}\label{s:flambda-unsafe}Use of unsafe operations{}\end{@norefs}} \tocitem \@locref{s:flambda-glossary}{\begin{@norefs}\@print{21.16}\quad{}\label{s:flambda-glossary}Glossary{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec547}{\begin{@norefs}\@print{Chapter 22}\quad{}Memory profiling with Spacetime{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:spacetime-overview}{\begin{@norefs}\@print{22.1}\quad{}\label{s:spacetime-overview}Overview{}\end{@norefs}} \tocitem \@locref{s:spacetime-howto}{\begin{@norefs}\@print{22.2}\quad{}\label{s:spacetime-howto}How to use it{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:spacetime-building}{\begin{@norefs}\@print{22.2.1}\quad{}\label{ss:spacetime-building}Building{}\end{@norefs}} \tocitem \@locref{ss:spacetime-running}{\begin{@norefs}\@print{22.2.2}\quad{}\label{ss:spacetime-running}Running{}\end{@norefs}} \tocitem \@locref{ss:spacetime-analysis}{\begin{@norefs}\@print{22.2.3}\quad{}\label{ss:spacetime-analysis}Analysis{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:spacetime-runtimeoverhead}{\begin{@norefs}\@print{22.3}\quad{}\label{s:spacetime-runtimeoverhead}Runtime overhead{}\end{@norefs}} \tocitem \@locref{s:spacetime-dev}{\begin{@norefs}\@print{22.4}\quad{}\label{s:spacetime-dev}For developers{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec555}{\begin{@norefs}\@print{Chapter 23}\quad{}Fuzzing with afl-fuzz{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:afl-overview}{\begin{@norefs}\@print{23.1}\quad{}\label{s:afl-overview}Overview{}\end{@norefs}} \tocitem \@locref{s:afl-generate}{\begin{@norefs}\@print{23.2}\quad{}\label{s:afl-generate}Generating instrumentation{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:afl-advanced}{\begin{@norefs}\@print{23.2.1}\quad{}\label{ss:afl-advanced}Advanced options{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:afl-example}{\begin{@norefs}\@print{23.3}\quad{}\label{s:afl-example}Example{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec560}{\begin{@norefs}\@print{Chapter 24}\quad{}Runtime tracing with the instrumented runtime{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:instr-runtime-overview}{\begin{@norefs}\@print{24.1}\quad{}\label{s:instr-runtime-overview}Overview{}\end{@norefs}} \tocitem \@locref{s:instr-runtime-enabling}{\begin{@norefs}\@print{24.2}\quad{}\label{s:instr-runtime-enabling}Enabling runtime instrumentation{}\end{@norefs}} \tocitem \@locref{s:instr-runtime-read}{\begin{@norefs}\@print{24.3}\quad{}\label{s:instr-runtime-read}Reading traces{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:instr-runtime-tools}{\begin{@norefs}\@print{24.3.1}\quad{}\label{ss:instr-runtime-tools}eventlog-tools{}\end{@norefs}} \tocitem \@locref{ss:instr-runtime-babeltrace}{\begin{@norefs}\@print{24.3.2}\quad{}\label{ss:instr-runtime-babeltrace}babeltrace{}\end{@norefs}} \end{tocenv} \tocitem \@locref{s:instr-runtime-more}{\begin{@norefs}\@print{24.4}\quad{}\label{s:instr-runtime-more}Controlling instrumentation and limitations{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{ss:instr-runtime-prefix}{\begin{@norefs}\@print{24.4.1}\quad{}\label{ss:instr-runtime-prefix}Trace filename{}\end{@norefs}} \tocitem \@locref{ss:instr-runtime-pause}{\begin{@norefs}\@print{24.4.2}\quad{}\label{ss:instr-runtime-pause}Pausing and resuming tracing{}\end{@norefs}} \tocitem \@locref{ss:instr-runtime-limitations}{\begin{@norefs}\@print{24.4.3}\quad{}\label{ss:instr-runtime-limitations}Limitations{}\end{@norefs}} \end{tocenv} \end{tocenv} \end{tocenv} \tocitem \@locref{sec571}{\begin{@norefs}\@print{Part IV}\quad{}The OCaml library{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{sec572}{\begin{@norefs}\@print{Chapter 25}\quad{}The core library{}\end{@norefs}} \begin{tocenv} \tocitem \@locref{s:core-builtins}{\begin{@norefs}\@print{25.1}\quad{}\label{s:core-builtins}Built-in types and predefined exceptions{}\end{@norefs}} \tocitem \@locref{s:stdlib-module}{\begin{@norefs}\@print{25.2}\quad{}\label{s:stdlib-module}Module {\tt Stdlib}: the initially opened module{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec578}{\begin{@norefs}\@print{Chapter 26}\quad{}The standard library{}\end{@norefs}} \tocitem \@locref{sec580}{\begin{@norefs}\@print{Chapter 27}\quad{}The compiler front-end{}\end{@norefs}} \tocitem \@locref{sec581}{\begin{@norefs}\@print{Chapter 28}\quad{}The unix library: Unix system calls{}\end{@norefs}} \tocitem \@locref{sec582}{\begin{@norefs}\@print{Chapter 29}\quad{}The num library: arbitrary-precision rational arithmetic{}\end{@norefs}} \tocitem \@locref{sec583}{\begin{@norefs}\@print{Chapter 30}\quad{}The str library: regular expressions and string processing{}\end{@norefs}} \tocitem \@locref{sec584}{\begin{@norefs}\@print{Chapter 31}\quad{}The threads library{}\end{@norefs}} \tocitem \@locref{sec585}{\begin{@norefs}\@print{Chapter 32}\quad{}The graphics library{}\end{@norefs}} \tocitem \@locref{sec586}{\begin{@norefs}\@print{Chapter 33}\quad{}The dynlink library: dynamic loading and linking of object files{}\end{@norefs}} \tocitem \@locref{sec587}{\begin{@norefs}\@print{Chapter 34}\quad{}The bigarray library{}\end{@norefs}} \end{tocenv} \tocitem \@locref{sec588}{\begin{@norefs}\@print{Part V}\quad{}Appendix{}\end{@norefs}} \end{tocenv} ocaml-doc-4.11/ocaml.html/libthreads.html0000644000175000017500000000740013717225665017317 0ustar mehdimehdi Chapter 31  The threads library Previous Up Next

Chapter 31  The threads library

Warning: the threads library is deprecated since version 4.08.0 of OCaml. Please switch to system threads, which have the same API. Lightweight threads with VM-level scheduling are provided by third-party libraries such as Lwt, but with a different API.

The threads library allows concurrent programming in OCaml. It provides multiple threads of control (also called lightweight processes) that execute concurrently in the same memory space. Threads communicate by in-place modification of shared data structures, or by sending and receiving data on communication channels.

The threads library is implemented by time-sharing on a single processor. It will not take advantage of multi-processor machines. Using this library will therefore never make programs run faster. However, many programs are easier to write when structured as several communicating processes.

Two implementations of the threads library are available, depending on the capabilities of the operating system:

Programs that use system threads must be linked as follows:

        ocamlc -I +threads other options unix.cma threads.cma other files
        ocamlopt -I +threads other options unix.cmxa threads.cmxa other files

Compilation units that use the threads library must also be compiled with the -I +threads option (see chapter 9).


Previous Up Next ocaml-doc-4.11/ocaml.html/libgraph.gif0000644000175000017500000000414513654466302016565 0ustar mehdimehdiGIF87a!V,!Vڋ޼H扦ʶ L ĢL*̦ JԪjܮ N (8HXhx)9IYiy *:JZjzJ ;K[k{*Л++ l 컻\0܊*=m}͜-9P|| =@|\.N,M/_Ύ<^S6[ b+:" rXnȑ<<2ʕ,[| 3̙4kڼiD#ΝhL)'С\D=(ҥU1}T)ԩJ&R*֭H$rS+ر=,=,ڵ:t};-ܹڍ{7 z70 _ l8Ċ7`8rD g叙c ys^Ӊ畝G;sZi\E 6*WSnn*v&M'pĮz`9 yDZmbvNm?7n>omwlQWd(ee]NHa^anaz9 k٭W!(] .b5i5Ruf9Bd=2cA"5bEuaI`M_Q4^Ut]YҴ%]]6xRܘdh!_XznXlyDE~ڦ*NE5iuʧ_}E\:1ƹC&FA*zڪ t~w7 ŭS ۖB _{C iV-GO4ƀfųKiGy;C?;kMf3oMn7ik20ۯ''jvEl-q-,!4+%t*)po˧\ <  П.t" *ӛH.gR ֗xMd\#L6%i,vkoc]N w6tCyط#{7}3rȅ"8w#2ʑCWs_.\x>3nG'u-+no jjMtYN}s>޳_K>=@{Gk o$"[~̋t/$[#c=|cTxlF}G=>#Jj0~4O/^oV?P(!ZZaqk խS `` dA]pse@ b椆yOWæq6QC6E @cT&/Z"b x+jth BF:1k[ؑ:&l>@ r"z3KCyHdv(n&;<~Nv,%IYTz28lec&WAg\P+M6NR`T%/ei7fr10L+ļ1@˲%l,i홡Ħ}YLm~3#9jT7MsB3r,'yMaQg:Ϲ|%? ЂvS L۴yQ 5C#:}~jͦDPgZT-GZQ32I)҄t48=R iCЕơpS*Z7|+O{TD-UgҚfԨE*I6%Pծ4p-Pְ^Ek*8uvkRR&b:լ&VOx)e754Έ FYG~k[ f+qn[2l-">p]%v}j''q͝jHk)3mLGYˑNݞ\W<@$6<r}wnkg( i]oWY̖%-Ia7ݝ5.c17Vع\EሽHg#pD V$T6s@X"" 걉[JK$x *5N \lX:>gge&` iNx*9I dW9,\LCf@3LJ"7bhGE*4lLkzӜ? PzԤ.OTzլn_ XzִfJ;ocaml-doc-4.11/ocaml.html/manual072.html0000644000175000017500000004047513717225665016715 0ustar mehdimehdi Index of keywords Previous Up

Index of keywords


Previous Up ocaml-doc-4.11/ocaml.html/names.html0000644000175000017500000003631213717225665016305 0ustar mehdimehdi 7.3  Names Previous Up Next

7.3  Names

Identifiers are used to give names to several classes of language objects and refer to these objects by name later:

These eleven name spaces are distinguished both by the context and by the capitalization of the identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below) or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this purpose.

Naming objects

value-name::= lowercase-ident  
  ( operator-name )  
 
operator-name::= prefix-symbol ∣  infix-op  
 
infix-op::= infix-symbol  
  * ∣  + ∣  - ∣  -. ∣  = ∣  != ∣  < ∣  > ∣  or ∣  || ∣  & ∣  && ∣  :=  
  mod ∣  land ∣  lor ∣  lxor ∣  lsl ∣  lsr ∣  asr  
 
constr-name::= capitalized-ident  
 
tag-name::= capitalized-ident  
 
typeconstr-name::= lowercase-ident  
 
field-name::= lowercase-ident  
 
module-name::= capitalized-ident  
 
modtype-name::= ident  
 
class-name::= lowercase-ident  
 
inst-var-name::= lowercase-ident  
 
method-name::= lowercase-ident

See also the following language extension: extended indexing operators.

As shown above, prefix and infix symbols as well as some keywords can be used as value names, provided they are written between parentheses. The capitalization rules are summarized in the table below.

Name spaceCase of first letter
Valueslowercase
Constructorsuppercase
Labelslowercase
Polymorphic variant tagsuppercase
Exceptionsuppercase
Type constructorslowercase
Record fieldslowercase
Classeslowercase
Instance variableslowercase
Methodslowercase
Modulesuppercase
Module typesany

Note on polymorphic variant tags: the current implementation accepts lowercase variant tags in addition to capitalized variant tags, but we suggest you avoid lowercase variant tags for portability and compatibility with future OCaml versions.

Referring to named objects

value-path::=module-path . ]  value-name  
 
constr::=module-path . ]  constr-name  
 
typeconstr::=extended-module-path . ]  typeconstr-name  
 
field::=module-path . ]  field-name  
 
modtype-path::=extended-module-path . ]  modtype-name  
 
class-path::=module-path . ]  class-name  
 
classtype-path::=extended-module-path . ]  class-name  
 
module-path::= module-name  { . module-name }  
 
extended-module-path::= extended-module-name  { . extended-module-name }  
 
extended-module-name::= module-name  { ( extended-module-path ) }

A named object can be referred to either by its name (following the usual static scoping rules for names) or by an access path prefix .  name, where prefix designates a module and name is the name of an object defined in that module. The first component of the path, prefix, is either a simple module name or an access path name1 .  name2 …, in case the defining module is itself nested inside other modules. For referring to type constructors, module types, or class types, the prefix can also contain simple functor applications (as in the syntactic class extended-module-path above) in case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the former three are global labels, while the latter are local to a class.


Previous Up Next ocaml-doc-4.11/ocaml.html/next_motif.svg0000644000175000017500000000027613717225665017211 0ustar mehdimehdi ocaml-doc-4.11/ocaml.html/contents_motif.gif0000644000175000017500000000047413654466302020031 0ustar mehdimehdiGIF89ap!" Imported from XPM image: toc.xpm!,@6313c B0 0 A0 0 0 0 `0@`0 `  `0@`0 `0@`0000000000 0000000000 00000000 000000 0000 000000000 00000000000 00000000000000` ;ocaml-doc-4.11/ocaml.html/manual001.html0000644000175000017500000012572313717225665016705 0ustar mehdimehdi Contents Up Next

Contents


Up Next ocaml-doc-4.11/ocaml.html/lablexamples.html0000644000175000017500000012064313717225665017654 0ustar mehdimehdi Chapter 4  Labels and variants Previous Up Next

Chapter 4  Labels and variants

(Chapter written by Jacques Garrigue)



This chapter gives an overview of the new features in OCaml 3: labels, and polymorphic variants.

4.1  Labels

If you have a look at modules ending in Labels in the standard library, you will see that function types have annotations you did not have in the functions you defined yourself.

ListLabels.map;;
- : f:('a -> 'b) -> 'a list -> 'b list = <fun>
StringLabels.sub;;
- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code, allow more checking, and give more flexibility to function application. You can give such names to arguments in your programs, by prefixing them with a tilde ~.

let f ~x ~y = x - y;;
val f : x:int -> y:int -> int = <fun>
let x = 3 and y = 2 in f ~x ~y;;
- : int = 1

When you want to use distinct names for the variable and the label appearing in the type, you can use a naming label of the form ~name:. This also applies when the argument is not a variable.

let f ~x:x1 ~y:y1 = x1 - y1;;
val f : x:int -> y:int -> int = <fun>
f ~x:3 ~y:2;;
- : int = 1

Labels obey the same rules as other identifiers in OCaml, that is you cannot use a reserved keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labels1, the absence of label being interpreted as the empty label. This allows commuting arguments in applications. One can also partially apply a function on any argument, creating a new function of the remaining parameters.

let f ~x ~y = x - y;;
val f : x:int -> y:int -> int = <fun>
f ~y:2 ~x:3;;
- : int = 1
ListLabels.fold_left;;
- : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a = <fun>
ListLabels.fold_left [1;2;3] ~init:0 ~f:( + );;
- : int = 6
ListLabels.fold_left ~init:0;;
- : f:(int -> 'a -> int) -> 'a list -> int = <fun>

If several arguments of a function bear the same label (or no label), they will not commute among themselves, and order matters. But they can still commute with other arguments.

let hline ~x:x1 ~x:x2 ~y = (x1, x2, y);;
val hline : x:'a -> x:'b -> y:'c -> 'a * 'b * 'c = <fun>
hline ~x:3 ~y:2 ~x:5;;
- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total (omitting all optional arguments), labels may be omitted. In practice, many applications are total, so that labels can often be omitted.

f 3 2;;
- : int = 1
ListLabels.map succ [1;2;3];;
- : int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will never be considered as totally applied.

ListLabels.fold_left ( + ) 0 [1;2;3];;
Error: This expression has type int -> int -> int but an expression was expected of type 'a list

When a function is passed as an argument to a higher-order function, labels must match in both types. Neither adding nor removing labels are allowed.

let h g = g ~x:3 ~y:2;;
val h : (x:int -> y:int -> 'a) -> 'a = <fun>
h f;;
- : int = 1
h ( + ) ;;
Error: This expression has type int -> int -> int but an expression was expected of type x:int -> y:int -> 'a

Note that when you don’t need an argument, you can still use a wildcard pattern, but you must prefix it with the label.

h (fun ~x:_ ~y -> y+1);;
- : int = 3

4.1.1  Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also prefixed by ? in the function type. Default values may be given for such optional parameters.

let bump ?(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>
bump 2;;
- : int = 3
bump ~step:3 2;;
- : int = 5

A function taking some optional arguments must also take at least one non-optional argument. The criterion for deciding whether an optional argument has been omitted is the non-labeled application of an argument appearing after this optional argument in the function type. Note that if that argument is labeled, you will only be able to eliminate optional arguments by totally applying the function, omitting all optional arguments and omitting all labels for all remaining arguments.

let test ?(x = 0) ?(y = 0) () ?(z = 0) () = (x, y, z);;
val test : ?x:int -> ?y:int -> unit -> ?z:int -> unit -> int * int * int = <fun>
test ();;
- : ?z:int -> unit -> int * int * int = <fun>
test ~x:2 () ~z:3 ();;
- : int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabeled ones, as long as they are applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments applied independently.

test ~y:2 ~x:3 () ();;
- : int * int * int = (3, 2, 0)
test () () ~z:1 ~y:2 ~x:3;;
- : int * int * int = (3, 2, 1)
(test () ()) ~z:1 ;;
Error: This expression has type int * int * int This is not a function; it cannot be applied.

Here (test () ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default value, you have access to their internal representation, type 'a option = None | Some of 'a. You can then provide different behaviors when an argument is present or not.

let bump ?step x = match step with | None -> x * 2 | Some y -> x + y ;;
val bump : ?step:int -> int -> int = <fun>

It may also be useful to relay an optional argument from a function call to another. This can be done by prefixing the applied argument with ?. This question mark disables the wrapping of optional argument in an option type.

let test2 ?x ?y () = test ?x ?y () ();;
val test2 : ?x:int -> ?y:int -> unit -> int * int * int = <fun>
test2 ?x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2  Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional arguments have the pitfall that they cannot be inferred as completely as the rest of the language.

You can see it in the following two examples.

let h' g = g ~y:2 ~x:3;;
val h' : (y:int -> x:int -> 'a) -> 'a = <fun>
h' f ;;
Error: This expression has type x:int -> y:int -> int but an expression was expected of type y:int -> x:int -> 'a
let bump_it bump x = bump ~step:2 x;;
val bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <fun>
bump_it bump 1 ;;
Error: This expression has type ?step:int -> int -> int but an expression was expected of type step:int -> 'a -> 'b

The first case is simple: g is passed ~y and then ~x, but f expects ~x and then ~y. This is correctly handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this causes the above type clash. The simplest workaround is to apply formal parameters in a standard order.

The second example is more subtle: while we intended the argument bump to be of type ?step:int -> int -> int, it is inferred as step:int -> int -> 'a. These two types being incompatible (internally normal and optional arguments are different), a type error occurs when applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand that there is not enough information in the above program to deduce the correct type of g or bump. That is, there is no way to know whether an argument is optional or not, or which is the correct order, by looking only at how a function is applied. The strategy used by the compiler is to assume that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the argument bump.

let bump_it (bump : ?step:int -> int -> int) x = bump ~step:2 x;;
val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
bump_it bump 1;;
- : int = 3

In practice, such problems appear mostly when using objects whose methods have optional arguments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter whose type is different from the expected one. However, in the specific case where the expected type is a non-labeled function type, and the argument is a function expecting optional parameters, the compiler will attempt to transform the argument to have it match the expected type, by passing None for all optional parameters.

let twice f (x : int) = f(f x);;
val twice : (int -> int) -> int -> int = <fun>
twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if the application of optional parameters shall produce side-effects, these are delayed until the received function is really applied to an argument.

4.1.3  Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling which

We explain here the rules we applied when labeling OCaml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument, its object, and other arguments related with its action, the parameters. To permit the combination of functions through functionals in commuting label mode, the object will not be labeled. Its role is clear from the function itself. The parameters are labeled with names reminding of their nature or their role. The best labels combine nature and role. When this is not possible the role is to be preferred, since the nature will often be given by the type itself. Obscure abbreviations should be avoided.

ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list
UnixLabels.write : file_descr -> buf:bytes -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.

ListLabels.iter2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> unit

When there is no preferable object, all arguments are labeled.

BytesLabels.blit :
  src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.

BytesLabels.create : int -> bytes

This principle also applies to functions of several arguments whose return type is a type variable, as long as the role of each argument is not ambiguous. Labeling such functions may lead to awkward error messages when one attempts to omit labels in an application, as we have seen with ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

LabelMeaning
f:a function to be applied
pos:a position in a string, array or byte sequence
len:a length
buf:a byte sequence or string used as buffer
src:the source of an operation
dst:the destination of an operation
init:the initial value for an iterator
cmp:a comparison function, e.g. Stdlib.compare
mode:an operation mode or a flag list

All these are only suggestions, but keep in mind that the choice of labels is essential for readability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels should be enough to understand the function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel, the documentation is only used when a more detailed specification is needed.

4.2  Polymorphic variants

Variants as presented in section 1.4 are a powerful tool to build data structures and algorithms. However they sometimes lack flexibility when used in modular programming. This is due to the fact that every constructor is assigned to a unique type when defined and used. Even if the same name appears in the definition of multiple types, the constructor itself belongs to only one type. Therefore, one cannot decide that a given constructor belongs to multiple types, or consider a value of some type to belong to some other type with more constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does not belong to any type in particular, the type system will just check that it is an admissible value according to its use. You need not define a type before using a variant tag. A variant type will be inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with a backquote character `.

[`On; `Off];;
- : [> `Off | `On ] list = [`On; `Off]
`Number 1;;
- : [> `Number of int ] = `Number 1
let f = function `On -> 1 | `Off -> 0 | `Number n -> n;;
val f : [< `Number of int | `Off | `On ] -> int = <fun>
List.map f [`On; `Off];;
- : int list = [1; 0]

[>`Off|`On] list means that to match this list, you should at least be able to match `Off and `On, without argument. [<`On|`Off|`Number of int] means that f may be applied to `Off, `On (both without argument), or `Number n where n is an integer. The > and < inside the variant types show that they may still be refined, either by defining more tags or by allowing less. As such, they contain an implicit type variable. Because each of the variant types appears only once in the whole type, their implicit type variables are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type annotations, one will most often describe fixed variant types, that is types that cannot be refined. This is also the case for type abbreviations. Such types do not contain < or >, but just an enumeration of the tags and their associated types, just like in a normal datatype definition.

type 'a vlist = [`Nil | `Cons of 'a * 'a vlist];;
type 'a vlist = [ `Cons of 'a * 'a vlist | `Nil ]
let rec map f : 'a vlist -> 'b vlist = function | `Nil -> `Nil | `Cons(a, l) -> `Cons(f a, map f l) ;;
val map : ('a -> 'b) -> 'a vlist -> 'b vlist = <fun>

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more complex type information.

let f = function `A -> `C | `B -> `D | x -> x;;
val f : ([> `A | `B | `C | `D ] as 'a) -> 'a = <fun>
f `E;;
- : [> `A | `B | `C | `D | `E ] = `E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any tag), we obtain the type [> `A | `B] rather than [< `A | `B] in a closed matching. Then, since x is returned as is, input and return types are identical. The notation as 'a denotes such type sharing. If we apply f to yet another tag `E, it gets added to the list.

let f1 = function `A x -> x = 1 | `B -> true | `C -> false let f2 = function `A x -> x = "a" | `B -> true ;;
val f1 : [< `A of int | `B | `C ] -> bool = <fun> val f2 : [< `A of string | `B ] -> bool = <fun>
let f x = f1 x && f2 x;;
val f : [< `A of string & int | `B ] -> bool = <fun>

Here f1 and f2 both accept the variant tags `A and `B, but the argument of `A is int for f1 and string for f2. In f’s type `C, only accepted by f1, disappears, but both argument types appear for `A as int & string. This means that if we pass the variant tag `A to f, its argument should be both int and string. Since there is no such value, f cannot be applied to `A, and `B is the only accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions. Coercions are normally written with both the source type and the destination type, but in simple cases the source type may be omitted.

type 'a wlist = [`Nil | `Cons of 'a * 'a wlist | `Snoc of 'a wlist * 'a];;
type 'a wlist = [ `Cons of 'a * 'a wlist | `Nil | `Snoc of 'a wlist * 'a ]
let wlist_of_vlist l = (l : 'a vlist :> 'a wlist);;
val wlist_of_vlist : 'a vlist -> 'a wlist = <fun>
let open_vlist l = (l : 'a vlist :> [> 'a vlist]);;
val open_vlist : 'a vlist -> [> 'a vlist ] = <fun>
fun x -> (x :> [`A|`B|`C]);;
- : [< `A | `B | `C ] -> [ `A | `B | `C ] = <fun>

You may also selectively coerce values through pattern matching.

let split_cases = function | `Nil | `Cons _ as x -> `A x | `Snoc _ as x -> `B x ;;
val split_cases : [< `Cons of 'a | `Nil | `Snoc of 'b ] -> [> `A of [> `Cons of 'a | `Nil ] | `B of [> `Snoc of 'b ] ] = <fun>

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms, like incremental definition of functions.

let num x = `Num x let eval1 eval (`Num x) = x let rec eval x = eval1 eval x ;;
val num : 'a -> [> `Num of 'a ] = <fun> val eval1 : 'a -> [< `Num of 'b ] -> 'b = <fun> val eval : [< `Num of 'a ] -> 'a = <fun>
let plus x y = `Plus(x,y) let eval2 eval = function | `Plus(x,y) -> eval x + eval y | `Num _ as x -> eval1 eval x let rec eval x = eval2 eval x ;;
val plus : 'a -> 'b -> [> `Plus of 'a * 'b ] = <fun> val eval2 : ('a -> int) -> [< `Num of int | `Plus of 'a * 'a ] -> int = <fun> val eval : ([< `Num of int | `Plus of 'a * 'a ] as 'a) -> int = <fun>

To make this even more comfortable, you may use type definitions as abbreviations for or-patterns. That is, if you have defined type myvariant = [`Tag1 of int | `Tag2 of bool], then the pattern #myvariant is equivalent to writing (`Tag1(_ : int) | `Tag2(_ : bool)).

Such abbreviations may be used alone,

let f = function | #myvariant -> "myvariant" | `Tag3 -> "Tag3";;
val f : [< `Tag1 of int | `Tag2 of bool | `Tag3 ] -> string = <fun>

or combined with with aliases.

let g1 = function `Tag1 _ -> "Tag1" | `Tag2 _ -> "Tag2";;
val g1 : [< `Tag1 of 'a | `Tag2 of 'b ] -> string = <fun>
let g = function | #myvariant as x -> g1 x | `Tag3 -> "Tag3";;
val g : [< `Tag1 of int | `Tag2 of bool | `Tag3 ] -> string = <fun>

4.2.1  Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core language variants, rather than replacing them.

The answer is twofold. One first aspect is that while being pretty efficient, the lack of static type information allows for less optimizations, and makes polymorphic variants slightly heavier than core language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker type discipline. That is, core language variants do actually much more than ensuring type-safety, they also check that you use only declared constructors, that all constructors present in a data-structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic variants. When you write a library, this is easy since you can describe exact types in interfaces, but for simple programs you are probably better off with core language variants.

Beware also that some idioms make trivial errors very hard to find. For instance, the following code is probably wrong but the compiler has no way to see it.

type abc = [`A | `B | `C] ;;
type abc = [ `A | `B | `C ]
let f = function | `As -> "A" | #abc -> "other" ;;
val f : [< `A | `As | `B | `C ] -> string = <fun>
let f : abc -> string = f ;;
val f : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

let f : abc -> string = function | `As -> "A" | #abc -> "other" ;;
Error: This pattern matches values of type [? `As ] but a pattern was expected which matches values of type abc The second variant type does not allow tag(s) `As

1
This correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexibility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.

Previous Up Next ocaml-doc-4.11/ocaml.html/intfc.html0000644000175000017500000051324213717225665016307 0ustar mehdimehdi Chapter 20  Interfacing C with OCaml Previous Up Next

Chapter 20  Interfacing C with OCaml

This chapter describes how user-defined primitives, written in C, can be linked with OCaml code and called from OCaml functions, and how these C functions can call back to OCaml code.

20.1  Overview and compilation information

20.1.1  Declaring primitives

definition::= ...  
  external value-name :  typexpr =  external-declaration  
 
external-declaration::= string-literal  [ string-literal  [ string-literal ] ]

User primitives are declared in an implementation file or structend module expression using the external keyword:

        external name : type = C-function-name

This defines the value name name as a function with type type that executes by calling the given C function. For instance, here is how the int_of_string primitive is declared in the standard library module Stdlib:

        external int_of_string : string -> int = "caml_int_of_string"

Primitives with several arguments are always curried. The C function does not necessarily have the same name as the ML function.

External functions thus defined can be specified in interface files or sigend signatures either as regular values

        val name : type

thus hiding their implementation as C functions, or explicitly as “manifest” external functions

        external name : type = C-function-name

The latter is slightly more efficient, as it allows clients of the module to call directly the C function instead of going through the corresponding OCaml function. On the other hand, it should not be used in library modules if they have side-effects at toplevel, as this direct call interferes with the linker’s algorithm for removing unused modules from libraries at link-time.

The arity (number of arguments) of a primitive is automatically determined from its OCaml type in the external declaration, by counting the number of function arrows in the type. For instance, input above has arity 4, and the input C function is called with four arguments. Similarly,

    external input2 : in_channel * bytes * int * int -> int = "input2"

has arity 1, and the input2 C function receives one argument (which is a quadruple of OCaml values).

Type abbreviations are not expanded when determining the arity of a primitive. For instance,

        type int_endo = int -> int
        external f : int_endo -> int_endo = "f"
        external g : (int -> int) -> (int -> int) = "f"

f has arity 1, but g has arity 2. This allows a primitive to return a functional value (as in the f example above): just remember to name the functional return type in a type abbreviation.

The language accepts external declarations with one or two flag strings in addition to the C function’s name. These flags are reserved for the implementation of the standard library.

20.1.2  Implementing primitives

User primitives with arity n ≤ 5 are implemented by C functions that take n arguments of type value, and return a result of type value. The type value is the type of the representations for OCaml values. It encodes objects of several base types (integers, floating-point numbers, strings, …) as well as OCaml data structures. The type value and the associated conversion functions and macros are described in detail below. For instance, here is the declaration for the C function implementing the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
  ...
}

When the primitive function is applied in an OCaml program, the C function is called with the values of the expressions to which the primitive is applied as arguments. The value returned by the function is passed back to the OCaml program as the result of the function application.

User primitives with arity greater than 5 should be implemented by two C functions. The first function, to be used in conjunction with the bytecode compiler ocamlc, receives two arguments: a pointer to an array of OCaml values (the values for the arguments), and an integer which is the number of arguments provided. The other function, to be used in conjunction with the native-code compiler ocamlopt, takes its arguments directly. For instance, here are the two C functions for the 7-argument primitive Nat.add_nat:

CAMLprim value add_nat_native(value nat1, value ofs1, value len1,
                              value nat2, value ofs2, value len2,
                              value carry_in)
{
  ...
}
CAMLprim value add_nat_bytecode(value * argv, int argn)
{
  return add_nat_native(argv[0], argv[1], argv[2], argv[3],
                        argv[4], argv[5], argv[6]);
}

The names of the two C functions must be given in the primitive declaration, as follows:

        external name : type =
                 bytecode-C-function-name native-code-C-function-name

For instance, in the case of add_nat, the declaration is:

        external add_nat: nat -> int -> int -> nat -> int -> int -> int -> int
                        = "add_nat_bytecode" "add_nat_native"

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the arguments to extract C values from the given OCaml values, and encoding the return value as an OCaml value; on the other hand, actually computing the result from the arguments. Except for very simple primitives, it is often preferable to have two distinct C functions to implement these two tasks. The first function actually implements the primitive, taking native C values as arguments and returning a native C value. The second function, often called the “stub code”, is a simple wrapper around the first function that converts its arguments from OCaml values to C values, call the first function, and convert the returned C value to OCaml value. For instance, here is the stub code for the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
  return Val_long(getblock((struct channel *) channel,
                           &Byte(buffer, Long_val(offset)),
                           Long_val(length)));
}

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be described later. The CAMLprim macro expands to the required compiler directives to ensure that the function is exported and accessible from OCaml.) The hard work is performed by the function getblock, which is declared as:

long getblock(struct channel * channel, char * p, long n)
{
  ...
}

To write C code that operates on OCaml values, the following include files are provided:

Include fileProvides
caml/mlvalues.hdefinition of the value type, and conversion macros
caml/alloc.hallocation functions (to create structured OCaml objects)
caml/memory.hmiscellaneous memory-related functions and macros (for GC interface, in-place modification of structures, etc).
caml/fail.hfunctions for raising exceptions (see section 20.4.5)
caml/callback.hcallback from C to OCaml (see section 20.7).
caml/custom.hoperations on custom blocks (see section 20.9).
caml/intext.hoperations for writing user-defined serialization and deserialization functions for custom blocks (see section 20.9).
caml/threads.hoperations for interfacing in the presence of multiple threads (see section 20.12).

Before including any of these files, you should define the OCAML_NAME_SPACE macro. For instance,

#define CAML_NAME_SPACE
#include "caml/mlvalues.h"
#include "caml/fail.h"

These files reside in the caml/ subdirectory of the OCaml standard library directory, which is returned by the command ocamlc -where (usually /usr/local/lib/ocaml or /usr/lib/ocaml).

Note: Including the header files without first defining CAML_NAME_SPACE introduces in scope short names for most functions. Those short names are deprecated, and may be removed in the future because they usually produce clashes with names defined by other C libraries.

The OCaml runtime system comprises three main parts: the bytecode interpreter, the memory manager, and a set of C functions that implement the primitive operations. Some bytecode instructions are provided to call these C functions, designated by their offset in a table of functions (the table of primitives).

In the default mode, the OCaml linker produces bytecode for the standard runtime system, with a standard set of primitives. References to primitives that are not in this standard set result in the “unavailable C primitive” error. (Unless dynamic loading of C libraries is supported – see section 20.1.4 below.)

In the “custom runtime” mode, the OCaml linker scans the object files and determines the set of required primitives. Then, it builds a suitable runtime system, by calling the native code linker with:

This builds a runtime system with the required primitives. The OCaml linker generates bytecode for this custom runtime system. The bytecode is appended to the end of the custom runtime system, so that it will be automatically executed when the output file (custom runtime + bytecode) is launched.

To link in “custom runtime” mode, execute the ocamlc command with:

If you are using the native-code compiler ocamlopt, the -custom flag is not needed, as the final linking phase of ocamlopt always builds a standalone executable. To build a mixed OCaml/C executable, execute the ocamlopt command with:

Starting with Objective Caml 3.00, it is possible to record the -custom option as well as the names of C libraries in an OCaml library file .cma or .cmxa. For instance, consider an OCaml library mylib.cma, built from the OCaml object files a.cmo and b.cmo, which reference C code in libmylib.a. If the library is built as follows:

        ocamlc -a -o mylib.cma -custom a.cmo b.cmo -cclib -lmylib

users of the library can simply link with mylib.cma:

        ocamlc -o myprog mylib.cma ...

and the system will automatically add the -custom and -cclib -lmylib options, achieving the same effect as

        ocamlc -o myprog -custom a.cmo b.cmo ... -cclib -lmylib

The alternative is of course to build the library without extra options:

        ocamlc -a -o mylib.cma a.cmo b.cmo

and then ask users to provide the -custom and -cclib -lmylib options themselves at link-time:

        ocamlc -o myprog -custom mylib.cma ... -cclib -lmylib

The former alternative is more convenient for the final users of the library, however.

Starting with Objective Caml 3.03, an alternative to static linking of C code using the -custom code is provided. In this mode, the OCaml linker generates a pure bytecode executable (no embedded custom runtime system) that simply records the names of dynamically-loaded libraries containing the C code. The standard OCaml runtime system ocamlrun then loads dynamically these libraries, and resolves references to the required primitives, before executing the bytecode.

This facility is currently available on all platforms supported by OCaml except Cygwin 64 bits.

To dynamically link C code with OCaml code, the C code must first be compiled into a shared library (under Unix) or DLL (under Windows). This involves 1- compiling the C files with appropriate C compiler flags for producing position-independent code (when required by the operating system), and 2- building a shared library from the resulting object files. The resulting shared library or DLL file must be installed in a place where ocamlrun can find it later at program start-up time (see section 11.3). Finally (step 3), execute the ocamlc command with

Do not set the -custom flag, otherwise you’re back to static linking as described in section 20.1.3. The ocamlmklib tool (see section 20.14) automates steps 2 and 3.

As in the case of static linking, it is possible (and recommended) to record the names of C libraries in an OCaml .cma library archive. Consider again an OCaml library mylib.cma, built from the OCaml object files a.cmo and b.cmo, which reference C code in dllmylib.so. If the library is built as follows:

        ocamlc -a -o mylib.cma a.cmo b.cmo -dllib -lmylib

users of the library can simply link with mylib.cma:

        ocamlc -o myprog mylib.cma ...

and the system will automatically add the -dllib -lmylib option, achieving the same effect as

        ocamlc -o myprog a.cmo b.cmo ... -dllib -lmylib

Using this mechanism, users of the library mylib.cma do not need to known that it references C code, nor whether this C code must be statically linked (using -custom) or dynamically linked.

20.1.5  Choosing between static linking and dynamic linking

After having described two different ways of linking C code with OCaml code, we now review the pros and cons of each, to help developers of mixed OCaml/C libraries decide.

The main advantage of dynamic linking is that it preserves the platform-independence of bytecode executables. That is, the bytecode executable contains no machine code, and can therefore be compiled on platform A and executed on other platforms B, C, …, as long as the required shared libraries are available on all these platforms. In contrast, executables generated by ocamlc -custom run only on the platform on which they were created, because they embark a custom-tailored runtime system specific to that platform. In addition, dynamic linking results in smaller executables.

Another advantage of dynamic linking is that the final users of the library do not need to have a C compiler, C linker, and C runtime libraries installed on their machines. This is no big deal under Unix and Cygwin, but many Windows users are reluctant to install Microsoft Visual C just to be able to do ocamlc -custom.

There are two drawbacks to dynamic linking. The first is that the resulting executable is not stand-alone: it requires the shared libraries, as well as ocamlrun, to be installed on the machine executing the code. If you wish to distribute a stand-alone executable, it is better to link it statically, using ocamlc -custom -ccopt -static or ocamlopt -ccopt -static. Dynamic linking also raises the “DLL hell” problem: some care must be taken to ensure that the right versions of the shared libraries are found at start-up time.

The second drawback of dynamic linking is that it complicates the construction of the library. The C compiler and linker flags to compile to position-independent code and build a shared library vary wildly between different Unix systems. Also, dynamic linking is not supported on all Unix systems, requiring a fall-back case to static linking in the Makefile for the library. The ocamlmklib command (see section 20.14) tries to hide some of these system dependencies.

In conclusion: dynamic linking is highly recommended under the native Windows port, because there are no portability problems and it is much more convenient for the end users. Under Unix, dynamic linking should be considered for mature, frequently used libraries because it enhances platform-independence of bytecode executables. For new or rarely-used libraries, static linking is much simpler to set up in a portable way.

20.1.6  Building standalone custom runtime systems

It is sometimes inconvenient to build a custom runtime system each time OCaml code is linked with C libraries, like ocamlc -custom does. For one thing, the building of the runtime system is slow on some systems (that have bad linkers or slow remote file systems); for another thing, the platform-independence of bytecode files is lost, forcing to perform one ocamlc -custom link per platform of interest.

An alternative to ocamlc -custom is to build separately a custom runtime system integrating the desired C libraries, then generate “pure” bytecode executables (not containing their own runtime system) that can run on this custom runtime. This is achieved by the -make-runtime and -use-runtime flags to ocamlc. For example, to build a custom runtime system integrating the C parts of the “Unix” and “Threads” libraries, do:

        ocamlc -make-runtime -o /home/me/ocamlunixrun unix.cma threads.cma

To generate a bytecode executable that runs on this runtime system, do:

        ocamlc -use-runtime /home/me/ocamlunixrun -o myprog \
                unix.cma threads.cma your .cmo and .cma files

The bytecode executable myprog can then be launched as usual: myprog args or /home/me/ocamlunixrun myprog args.

Notice that the bytecode libraries unix.cma and threads.cma must be given twice: when building the runtime system (so that ocamlc knows which C primitives are required) and also when building the bytecode executable (so that the bytecode from unix.cma and threads.cma is actually linked in).

20.2  The value type

All OCaml objects are represented by the C type value, defined in the include file caml/mlvalues.h, along with macros to manipulate values of that type. An object of type value is either:

20.2.1  Integer values

Integer values encode 63-bit signed integers (31-bit on 32-bit architectures). They are unboxed (unallocated).

20.2.2  Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Each block includes a header containing the size of the block (in words), and the tag of the block. The tag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicates a structured block, containing well-formed values, which is recursively traversed by the garbage collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are not scanned by the garbage collector. For the benefit of ad-hoc polymorphic primitives such as equality and structured input-output, structured and raw blocks are further classified according to their tags as follows:

TagContents of the block
0 to No_scan_tag−1A structured block (an array of OCaml objects). Each field is a value.
Closure_tagA closure representing a functional value. The first word is a pointer to a piece of code, the remaining words are value containing the environment.
String_tagA character string or a byte sequence.
Double_tagA double-precision floating-point number.
Double_array_tagAn array or record of double-precision floating-point numbers.
Abstract_tagA block representing an abstract datatype.
Custom_tagA block representing an abstract datatype with user-defined finalization, comparison, hashing, serialization and deserialization functions attached.

20.2.3  Pointers outside the heap

In earlier versions of OCaml, it was possible to use word-aligned pointers to addresses outside the heap as OCaml values, just by casting the pointer to type value. Starting with OCaml 4.11, this usage is deprecated and will stop being supported in OCaml 5.00.

A correct way to manipulate pointers to out-of-heap blocks from OCaml is to store those pointers in OCaml blocks with tag Abstract_tag or Custom_tag, then use the blocks as the OCaml values.

Here is an example of encapsulation of out-of-heap pointers of C type ty * inside Abstract_tag blocks. Section 20.6 gives a more complete example using Custom_tag blocks.

/* Create an OCaml value encapsulating the pointer p */
static value val_of_typtr(ty * p)
{
  value v = caml_alloc(1, Abstract_tag);
  *((ty **) Data_abstract_val(v)) = p;
  return v;
}

/* Extract the pointer encapsulated in the given OCaml value */
static ty * typtr_of_val(value v)
{
  return *((ty **) Data_abstract_val(v));
}

Alternatively, out-of-heap pointers can be treated as “native” integers, that is, boxed 32-bit integers on a 32-bit platform and boxed 64-bit integers on a 64-bit platform.

/* Create an OCaml value encapsulating the pointer p */
static value val_of_typtr(ty * p)
{
  return caml_copy_nativeint((intnat) p);
}

/* Extract the pointer encapsulated in the given OCaml value */
static ty * typtr_of_val(value v)
{
  return (ty *) Nativeint_val(v);
}

For pointers that are at least 2-aligned (the low bit is guaranteed to be zero), we have yet another valid representation as an OCaml tagged integer.

/* Create an OCaml value encapsulating the pointer p */
static value val_of_typtr(ty * p)
{
  assert (((uintptr_t) p & 1) == 0);  /* check correct alignment */
  return (value) p | 1;
}

/* Extract the pointer encapsulated in the given OCaml value */
static ty * typtr_of_val(value v)
{
  return (ty *) (v & ~1);
}

20.3  Representation of OCaml data types

This section describes how OCaml data types are encoded in the value type.

20.3.1  Atomic types

OCaml typeEncoding
intUnboxed integer values.
charUnboxed integer values (ASCII code).
floatBlocks with tag Double_tag.
bytesBlocks with tag String_tag.
stringBlocks with tag String_tag.
int32Blocks with tag Custom_tag.
int64Blocks with tag Custom_tag.
nativeintBlocks with tag Custom_tag.

20.3.2  Tuples and records

Tuples are represented by pointers to blocks, with tag 0.

Records are also represented by zero-tagged blocks. The ordering of labels in the record type declaration determines the layout of the record fields: the value associated to the label declared first is stored in field 0 of the block, the value associated to the second label goes in field 1, and so on.

As an optimization, records whose fields all have static type float are represented as arrays of floating-point numbers, with tag Double_array_tag. (See the section below on arrays.)

As another optimization, unboxable record types are represented specially; unboxable record types are the immutable record types that have only one field. An unboxable type will be represented in one of two ways: boxed or unboxed. Boxed record types are represented as described above (by a block with tag 0 or Double_array_tag). An unboxed record type is represented directly by the value of its field (i.e. there is no block to represent the record itself).

The representation is chosen according to the following, in decreasing order of priority:

20.3.3  Arrays

Arrays of integers and pointers are represented like tuples, that is, as pointers to blocks tagged 0. They are accessed with the Field macro for reading and the caml_modify function for writing.

Arrays of floating-point numbers (type float array) have a special, unboxed, more efficient representation. These arrays are represented by pointers to blocks with tag Double_array_tag. They should be accessed with the Double_field and Store_double_field macros.

20.3.4  Concrete data types

Constructed terms are represented either by unboxed integers (for constant constructors) or by blocks whose tag encode the constructor (for non-constant constructors). The constant constructors and the non-constant constructors for a given concrete type are numbered separately, starting from 0, in the order in which they appear in the concrete type declaration. A constant constructor is represented by the unboxed integer equal to its constructor number. A non-constant constructor declared with n arguments is represented by a block of size n, tagged with the constructor number; the n fields contain its arguments. Example:

Constructed termRepresentation
()Val_int(0)
falseVal_int(0)
trueVal_int(1)
[]Val_int(0)
h::tBlock with size = 2 and tag = 0; first field contains h, second field t.

As a convenience, caml/mlvalues.h defines the macros Val_unit, Val_false and Val_true to refer to (), false and true.

The following example illustrates the assignment of integers and block tags to constructors:

type t =
  | A             (* First constant constructor -> integer "Val_int(0)" *)
  | B of string   (* First non-constant constructor -> block with tag 0 *)
  | C             (* Second constant constructor -> integer "Val_int(1)" *)
  | D of bool     (* Second non-constant constructor -> block with tag 1 *)
  | E of t * t    (* Third non-constant constructor -> block with tag 2 *)

As an optimization, unboxable concrete data types are represented specially; a concrete data type is unboxable if it has exactly one constructor and this constructor has exactly one argument. Unboxable concrete data types are represented in the same ways as unboxable record types: see the description in section 20.3.2.

20.3.5  Objects

Objects are represented as blocks with tag Object_tag. The first field of the block refers to the object’s class and associated method suite, in a format that cannot easily be exploited from C. The second field contains a unique object ID, used for comparisons. The remaining fields of the object contain the values of the instance variables of the object. It is unsafe to access directly instance variables, as the type system provides no guarantee about the instance variables contained by an object.

One may extract a public method from an object using the C function caml_get_public_method (declared in <caml/mlvalues.h>.) Since public method tags are hashed in the same way as variant tags, and methods are functions taking self as first argument, if you want to do the method call foo#bar from the C side, you should call:

  callback(caml_get_public_method(foo, hash_variant("bar")), foo);

20.3.6  Polymorphic variants

Like constructed terms, polymorphic variant values are represented either as integers (for polymorphic variants without argument), or as blocks (for polymorphic variants with an argument). Unlike constructed terms, variant constructors are not numbered starting from 0, but identified by a hash value (an OCaml integer), as computed by the C function hash_variant (declared in <caml/mlvalues.h>): the hash value for a variant constructor named, say, VConstr is hash_variant("VConstr").

The variant value `VConstr is represented by hash_variant("VConstr"). The variant value `VConstr(v) is represented by a block of size 2 and tag 0, with field number 0 containing hash_variant("VConstr") and field number 1 containing v.

Unlike constructed values, polymorphic variant values taking several arguments are not flattened. That is, `VConstr(v, w) is represented by a block of size 2, whose field number 1 contains the representation of the pair (v, w), rather than a block of size 3 containing v and w in fields 1 and 2.

20.4  Operations on values

20.4.1  Kind tests

20.4.2  Operations on integers

20.4.3  Accessing blocks

The expressions Field(v, n), Byte(v, n) and Byte_u(v, n) are valid l-values. Hence, they can be assigned to, resulting in an in-place modification of value v. Assigning directly to Field(v, n) must be done with care to avoid confusing the garbage collector (see below).

20.4.4  Allocating blocks

Simple interface

Low-level interface

The following functions are slightly more efficient than caml_alloc, but also much more difficult to use.

From the standpoint of the allocation functions, blocks are divided according to their size as zero-sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks (with size greater than Max_young_wosize). The constant Max_young_wosize is declared in the include file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant size less than or equal to 64 can be assumed to be small. For blocks whose size is computed at run-time, the size must be compared against Max_young_wosize to determine the correct allocation procedure.

20.4.5  Raising exceptions

Two functions are provided to raise two standard exceptions:

Raising arbitrary exceptions from C is more delicate: the exception identifier is dynamically allocated by the OCaml program, and therefore must be communicated to the C function using the registration facility described below in section 20.7.3. Once the exception identifier is recovered in C, the following functions actually raise the exception:

20.5  Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some cooperation from C code that manipulates heap-allocated blocks.

20.5.1  Simple interface

All the macros described in this section are declared in the memory.h header file.

Rule 1   A function that has parameters or local variables of type value must begin with a call to one of the CAMLparam macros and return with CAMLreturn, CAMLreturn0, or CAMLreturnT. In particular, CAMLlocal and CAMLxparam can only be called after CAMLparam.

There are six CAMLparam macros: CAMLparam0 to CAMLparam5, which take zero to five arguments respectively. If your function has no more than 5 parameters of type value, use the corresponding macros with these parameters as arguments. If your function has more than 5 parameters of type value, use CAMLparam5 with five of these parameters, and use one or more calls to the CAMLxparam macros for the remaining parameters (CAMLxparam1 to CAMLxparam5).

The macros CAMLreturn, CAMLreturn0, and CAMLreturnT are used to replace the C keyword return. Every occurrence of return x must be replaced by CAMLreturn (x) if x has type value, or CAMLreturnT (t, x) (where t is the type of x); every occurrence of return without argument must be replaced by CAMLreturn0. If your C function is a procedure (i.e. if it returns void), you must insert CAMLreturn0 at the end (to replace C’s implicit return).

Note:

some C compilers give bogus warnings about unused variables caml__dummy_xxx at each use of CAMLparam and CAMLlocal. You should ignore them.


Example:

void foo (value v1, value v2, value v3)
{
  CAMLparam3 (v1, v2, v3);
  ...
  CAMLreturn0;
}
Note:

if your function is a primitive with more than 5 arguments for use with the byte-code runtime, its arguments are not values and must not be declared (they have types value * and int).

Rule 2   Local variables of type value must be declared with one of the CAMLlocal macros. Arrays of values are declared with CAMLlocalN. These macros must be used at the beginning of the function, not in a nested block.

The macros CAMLlocal1 to CAMLlocal5 declare and initialize one to five local variables of type value. The variable names are given as arguments to the macros. CAMLlocalN(x, n) declares and initializes a local variable of type value [n]. You can use several calls to these macros if you have more than 5 local variables.

Example:

value bar (value v1, value v2, value v3)
{
  CAMLparam3 (v1, v2, v3);
  CAMLlocal1 (result);
  result = caml_alloc (3, 0);
  ...
  CAMLreturn (result);
}
Rule 3   Assignments to the fields of structured blocks must be done with the Store_field macro (for normal blocks) or Store_double_field macro (for arrays and records of floating-point numbers). Other assignments must not use Store_field nor Store_double_field.

Store_field (b, n, v) stores the value v in the field number n of value b, which must be a block (i.e. Is_block(b) must be true).

Example:

value bar (value v1, value v2, value v3)
{
  CAMLparam3 (v1, v2, v3);
  CAMLlocal1 (result);
  result = caml_alloc (3, 0);
  Store_field (result, 0, v1);
  Store_field (result, 1, v2);
  Store_field (result, 2, v3);
  CAMLreturn (result);
}
Warning:

The first argument of Store_field and Store_double_field must be a variable declared by CAMLparam* or a parameter declared by CAMLlocal* to ensure that a garbage collection triggered by the evaluation of the other arguments will not invalidate the first argument after it is computed.

Use with CAMLlocalN:

Arrays of values declared using CAMLlocalN must not be written to using Store_field. Use the normal C array syntax instead.

Rule 4   Global variables containing values must be registered with the garbage collector using the caml_register_global_root function, save that global variables and locations that will only ever contain OCaml integers (and never pointers) do not have to be registered.

The same is true for any memory location outside the OCaml heap that contains a value and is not guaranteed to be reachable—for as long as it contains such value—from either another registered global variable or location, local variable declared with CAMLlocal or function parameter declared with CAMLparam.

Registration of a global variable v is achieved by calling caml_register_global_root(&v) just before or just after a valid value is stored in v for the first time; likewise, registration of an arbitrary location p is achieved by calling caml_register_global_root(p).

You must not call any of the OCaml runtime functions or macros between registering and storing the value. Neither must you store anything in the variable v (likewise, the location p) that is not a valid value.

The registration causes the contents of the variable or memory location to be updated by the garbage collector whenever the value in such variable or location is moved within the OCaml heap. In the presence of threads care must be taken to ensure appropriate synchronisation with the OCaml runtime to avoid a race condition against the garbage collector when reading or writing the value. (See section 20.12.2.)

A registered global variable v can be un-registered by calling caml_remove_global_root(&v).

If the contents of the global variable v are seldom modified after registration, better performance can be achieved by calling caml_register_generational_global_root(&v) to register v (after its initialization with a valid value, but before any allocation or call to the GC functions), and caml_remove_generational_global_root(&v) to un-register it. In this case, you must not modify the value of v directly, but you must use caml_modify_generational_global_root(&v,x) to set it to x. The garbage collector takes advantage of the guarantee that v is not modified between calls to caml_modify_generational_global_root to scan it less often. This improves performance if the modifications of v happen less often than minor collections.

Note:

The CAML macros use identifiers (local variables, type identifiers, structure tags) that start with caml__. Do not use any identifier starting with caml__ in your programs.

20.5.2  Low-level interface

We now give the GC rules corresponding to the low-level allocation functions caml_alloc_small and caml_alloc_shr. You can ignore those rules if you stick to the simplified allocation function caml_alloc.

Rule 5   After a structured block (a block with tag less than No_scan_tag) is allocated with the low-level functions, all fields of this block must be filled with well-formed values before the next allocation operation. If the block has been allocated with caml_alloc_small, filling is performed by direct assignment to the fields of the block:

        Field(v, n) = vn;
If the block has been allocated with caml_alloc_shr, filling is performed through the caml_initialize function:

        caml_initialize(&Field(v, n), vn);

The next allocation can trigger a garbage collection. The garbage collector assumes that all structured blocks contain well-formed values. Newly created blocks contain random data, which generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with a constant value (e.g. Val_unit), then allocate, then modify the fields with the correct value (see rule 6).

Rule 6   Direct assignment to a field of a block, as in

        Field(v, n) = w;
is safe only if v is a block newly allocated by caml_alloc_small; that is, if no allocation took place between the allocation of v and the assignment to the field. In all other cases, never assign directly. If the block has just been allocated by caml_alloc_shr, use caml_initialize to assign a value to a field for the first time:

        caml_initialize(&Field(v, n), w);
Otherwise, you are updating a field that previously contained a well-formed value; then, call the caml_modify function:

        caml_modify(&Field(v, n), w);

To illustrate the rules above, here is a C function that builds and returns a list containing the two integers given as parameters. First, we write it using the simplified allocation functions:

value alloc_list_int(int i1, int i2)
{
  CAMLparam0 ();
  CAMLlocal2 (result, r);

  r = caml_alloc(2, 0);                   /* Allocate a cons cell */
  Store_field(r, 0, Val_int(i2));         /* car = the integer i2 */
  Store_field(r, 1, Val_int(0));          /* cdr = the empty list [] */
  result = caml_alloc(2, 0);              /* Allocate the other cons cell */
  Store_field(result, 0, Val_int(i1));    /* car = the integer i1 */
  Store_field(result, 1, r);              /* cdr = the first cons cell */
  CAMLreturn (result);
}

Here, the registering of result is not strictly needed, because no allocation takes place after it gets its value, but it’s easier and safer to simply register all the local variables that have type value.

Here is the same function written using the low-level allocation functions. We notice that the cons cells are small blocks and can be allocated with caml_alloc_small, and filled by direct assignments on their fields.

value alloc_list_int(int i1, int i2)
{
  CAMLparam0 ();
  CAMLlocal2 (result, r);

  r = caml_alloc_small(2, 0);             /* Allocate a cons cell */
  Field(r, 0) = Val_int(i2);              /* car = the integer i2 */
  Field(r, 1) = Val_int(0);               /* cdr = the empty list [] */
  result = caml_alloc_small(2, 0);        /* Allocate the other cons cell */
  Field(result, 0) = Val_int(i1);         /* car = the integer i1 */
  Field(result, 1) = r;                   /* cdr = the first cons cell */
  CAMLreturn (result);
}

In the two examples above, the list is built bottom-up. Here is an alternate way, that proceeds top-down. It is less efficient, but illustrates the use of caml_modify.

value alloc_list_int(int i1, int i2)
{
  CAMLparam0 ();
  CAMLlocal2 (tail, r);

  r = caml_alloc_small(2, 0);             /* Allocate a cons cell */
  Field(r, 0) = Val_int(i1);              /* car = the integer i1 */
  Field(r, 1) = Val_int(0);               /* A dummy value
  tail = caml_alloc_small(2, 0);          /* Allocate the other cons cell */
  Field(tail, 0) = Val_int(i2);           /* car = the integer i2 */
  Field(tail, 1) = Val_int(0);            /* cdr = the empty list [] */
  caml_modify(&Field(r, 1), tail);        /* cdr of the result = tail */
  CAMLreturn (r);
}

It would be incorrect to perform Field(r, 1) = tail directly, because the allocation of tail has taken place since r was allocated.

20.5.3  Pending actions and asynchronous exceptions

Since 4.10, allocation functions are guaranteed not to call any OCaml callbacks from C, including finalisers and signal handlers, and delay their execution instead.

The function caml_process_pending_actions from <caml/signals.h> executes any pending signal handlers and finalisers, Memprof callbacks, and requested minor and major garbage collections. In particular, it can raise asynchronous exceptions. It is recommended to call it regularly at safe points inside long-running non-blocking C code.

The variant caml_process_pending_actions_exn is provided, that returns the exception instead of raising it directly into OCaml code. Its result must be tested using Is_exception_result, and followed by Extract_exception if appropriate. It is typically used for clean up before re-raising:

    CAMLlocal1(exn);
    ...
    exn = caml_process_pending_actions_exn();
    if(Is_exception_result(exn)) {
      exn = Extract_exception(exn);
      ...cleanup...
      caml_raise(exn);
    }

Correct use of exceptional return, in particular in the presence of garbage collection, is further detailed in Section 20.7.1.

20.6  A complete example

This section outlines how the functions from the Unix curses library can be made available to OCaml programs. First of all, here is the interface curses.ml that declares the curses primitives and data types:

(* File curses.ml -- declaration of primitives and data types *)
type window                   (* The type "window" remains abstract *)
external initscr: unit -> window = "caml_curses_initscr"
external endwin: unit -> unit = "caml_curses_endwin"
external refresh: unit -> unit = "caml_curses_refresh"
external wrefresh : window -> unit = "caml_curses_wrefresh"
external newwin: int -> int -> int -> int -> window = "caml_curses_newwin"
external addch: char -> unit = "caml_curses_addch"
external mvwaddch: window -> int -> int -> char -> unit = "caml_curses_mvwaddch"
external addstr: string -> unit = "caml_curses_addstr"
external mvwaddstr: window -> int -> int -> string -> unit
         = "caml_curses_mvwaddstr"
(* lots more omitted *)

To compile this interface:

        ocamlc -c curses.ml

To implement these functions, we just have to provide the stub code; the core functions are already implemented in the curses library. The stub code file, curses_stubs.c, looks like this:

/* File curses_stubs.c -- stub code for curses */
#include <curses.h>
#define CAML_NAME_SPACE
#include <caml/mlvalues.h>
#include <caml/memory.h>
#include <caml/alloc.h>
#include <caml/custom.h>

/* Encapsulation of opaque window handles (of type WINDOW *)
   as OCaml custom blocks. */

static struct custom_operations curses_window_ops = {
  "fr.inria.caml.curses_windows",
  custom_finalize_default,
  custom_compare_default,
  custom_hash_default,
  custom_serialize_default,
  custom_deserialize_default,
  custom_compare_ext_default,
  custom_fixed_length_default
};

/* Accessing the WINDOW * part of an OCaml custom block */
#define Window_val(v) (*((WINDOW **) Data_custom_val(v)))

/* Allocating an OCaml custom block to hold the given WINDOW * */
static value alloc_window(WINDOW * w)
{
  value v = caml_alloc_custom(&curses_window_ops, sizeof(WINDOW *), 0, 1);
  Window_val(v) = w;
  return v;
}

value caml_curses_initscr(value unit)
{
  CAMLparam1 (unit);
  CAMLreturn (alloc_window(initscr()));
}

value caml_curses_endwin(value unit)
{
  CAMLparam1 (unit);
  endwin();
  CAMLreturn (Val_unit);
}

value caml_curses_refresh(value unit)
{
  CAMLparam1 (unit);
  refresh();
  CAMLreturn (Val_unit);
}

value caml_curses_wrefresh(value win)
{
  CAMLparam1 (win);
  wrefresh(Window_val(win));
  CAMLreturn (Val_unit);
}

value caml_curses_newwin(value nlines, value ncols, value x0, value y0)
{
  CAMLparam4 (nlines, ncols, x0, y0);
  CAMLreturn (alloc_window(newwin(Int_val(nlines), Int_val(ncols),
                                  Int_val(x0), Int_val(y0))));
}

value caml_curses_addch(value c)
{
  CAMLparam1 (c);
  addch(Int_val(c));            /* Characters are encoded like integers */
  CAMLreturn (Val_unit);
}

value caml_curses_mvwaddch(value win, value x, value y, value c)
{
  CAMLparam4 (win, x, y, c);
  mvwaddch(Window_val(win), Int_val(x), Int_val(y), Int_val(c));
  CAMLreturn (Val_unit);
}

value caml_curses_addstr(value s)
{
  CAMLparam1 (s);
  addstr(String_val(s));
  CAMLreturn (Val_unit);
}

value caml_curses_mvwaddstr(value win, value x, value y, value s)
{
  CAMLparam4 (win, x, y, s);
  mvwaddstr(Window_val(win), Int_val(x), Int_val(y), String_val(s));
  CAMLreturn (Val_unit);
}

/* This goes on for pages. */

The file curses_stubs.c can be compiled with:

        cc -c -I`ocamlc -where` curses_stubs.c

or, even simpler,

        ocamlc -c curses_stubs.c

(When passed a .c file, the ocamlc command simply calls the C compiler on that file, with the right -I option.)

Now, here is a sample OCaml program prog.ml that uses the curses module:

(* File prog.ml -- main program using curses *)
open Curses;;
let main_window = initscr () in
let small_window = newwin 10 5 20 10 in
  mvwaddstr main_window 10 2 "Hello";
  mvwaddstr small_window 4 3 "world";
  refresh();
  Unix.sleep 5;
  endwin()

To compile and link this program, run:

       ocamlc -custom -o prog unix.cma curses.cmo prog.ml curses_stubs.o -cclib -lcurses

(On some machines, you may need to put -cclib -lcurses -cclib -ltermcap or -cclib -ltermcap instead of -cclib -lcurses.)

20.7  Advanced topic: callbacks from C to OCaml

So far, we have described how to call C functions from OCaml. In this section, we show how C functions can call OCaml functions, either as callbacks (OCaml calls C which calls OCaml), or with the main program written in C.

20.7.1  Applying OCaml closures from C

C functions can apply OCaml function values (closures) to OCaml values. The following functions are provided to perform the applications:

If the function f does not return, but raises an exception that escapes the scope of the application, then this exception is propagated to the next enclosing OCaml code, skipping over the C code. That is, if an OCaml function f calls a C function g that calls back an OCaml function h that raises a stray exception, then the execution of g is interrupted and the exception is propagated back into f.

If the C code wishes to catch exceptions escaping the OCaml function, it can use the functions caml_callback_exn, caml_callback2_exn, caml_callback3_exn, caml_callbackN_exn. These functions take the same arguments as their non-_exn counterparts, but catch escaping exceptions and return them to the C code. The return value v of the caml_callback*_exn functions must be tested with the macro Is_exception_result(v). If the macro returns “false”, no exception occurred, and v is the value returned by the OCaml function. If Is_exception_result(v) returns “true”, an exception escaped, and its value (the exception descriptor) can be recovered using Extract_exception(v).

Warning:

If the OCaml function returned with an exception, Extract_exception should be applied to the exception result prior to calling a function that may trigger garbage collection. Otherwise, if v is reachable during garbage collection, the runtime can crash since v does not contain a valid value.

Example:

    value call_caml_f_ex(value closure, value arg)
    {
      CAMLparam2(closure, arg);
      CAMLlocal2(res, tmp);
      res = caml_callback_exn(closure, arg);
      if(Is_exception_result(res)) {
        res = Extract_exception(res);
        tmp = caml_alloc(3, 0); /* Safe to allocate: res contains valid value. */
        ...
      }
      CAMLreturn (res);
    }

20.7.2  Obtaining or registering OCaml closures for use in C functions

There are two ways to obtain OCaml function values (closures) to be passed to the callback functions described above. One way is to pass the OCaml function as an argument to a primitive function. For example, if the OCaml code contains the declaration

    external apply : ('a -> 'b) -> 'a -> 'b = "caml_apply"

the corresponding C stub can be written as follows:

    CAMLprim value caml_apply(value vf, value vx)
    {
      CAMLparam2(vf, vx);
      CAMLlocal1(vy);
      vy = caml_callback(vf, vx);
      CAMLreturn(vy);
    }

Another possibility is to use the registration mechanism provided by OCaml. This registration mechanism enables OCaml code to register OCaml functions under some global name, and C code to retrieve the corresponding closure by this global name.

On the OCaml side, registration is performed by evaluating Callback.register n v. Here, n is the global name (an arbitrary string) and v the OCaml value. For instance:

    let f x = print_string "f is applied to "; print_int x; print_newline()
    let _ = Callback.register "test function" f

On the C side, a pointer to the value registered under name n is obtained by calling caml_named_value(n). The returned pointer must then be dereferenced to recover the actual OCaml value. If no value is registered under the name n, the null pointer is returned. For example, here is a C wrapper that calls the OCaml function f above:

    void call_caml_f(int arg)
    {
        caml_callback(*caml_named_value("test function"), Val_int(arg));
    }

The pointer returned by caml_named_value is constant and can safely be cached in a C variable to avoid repeated name lookups. The value pointed to cannot be changed from C. However, it might change during garbage collection, so must always be recomputed at the point of use. Here is a more efficient variant of call_caml_f above that calls caml_named_value only once:

    void call_caml_f(int arg)
    {
        static const value * closure_f = NULL;
        if (closure_f == NULL) {
            /* First time around, look up by name */
            closure_f = caml_named_value("test function");
        }
        caml_callback(*closure_f, Val_int(arg));
    }

20.7.3  Registering OCaml exceptions for use in C functions

The registration mechanism described above can also be used to communicate exception identifiers from OCaml to C. The OCaml code registers the exception by evaluating Callback.register_exception n exn, where n is an arbitrary name and exn is an exception value of the exception to register. For example:

    exception Error of string
    let _ = Callback.register_exception "test exception" (Error "any string")

The C code can then recover the exception identifier using caml_named_value and pass it as first argument to the functions raise_constant, raise_with_arg, and raise_with_string (described in section 20.4.5) to actually raise the exception. For example, here is a C function that raises the Error exception with the given argument:

    void raise_error(char * msg)
    {
        caml_raise_with_string(*caml_named_value("test exception"), msg);
    }

20.7.4  Main program in C

In normal operation, a mixed OCaml/C program starts by executing the OCaml initialization code, which then may proceed to call C functions. We say that the main program is the OCaml code. In some applications, it is desirable that the C code plays the role of the main program, calling OCaml functions when needed. This can be achieved as follows:

20.7.5  Embedding the OCaml code in the C code

The bytecode compiler in custom runtime mode (ocamlc -custom) normally appends the bytecode to the executable file containing the custom runtime. This has two consequences. First, the final linking step must be performed by ocamlc. Second, the OCaml runtime library must be able to find the name of the executable file from the command-line arguments. When using caml_main(argv) as in section 20.7.4, this means that argv[0] or argv[1] must contain the executable file name.

An alternative is to embed the bytecode in the C code. The -output-obj option to ocamlc is provided for this purpose. It causes the ocamlc compiler to output a C object file (.o file, .obj under Windows) containing the bytecode for the OCaml part of the program, as well as a caml_startup function. The C object file produced by ocamlc -output-obj can then be linked with C code using the standard C compiler, or stored in a C library.

The caml_startup function must be called from the main C program in order to initialize the OCaml runtime and execute the OCaml initialization code. Just like caml_main, it takes one argv parameter containing the command-line parameters. Unlike caml_main, this argv parameter is used only to initialize Sys.argv, but not for finding the name of the executable file.

The caml_startup function calls the uncaught exception handler (or enters the debugger, if running under ocamldebug) if an exception escapes from a top-level module initialiser. Such exceptions may be caught in the C code by instead using the caml_startup_exn function and testing the result using Is_exception_result (followed by Extract_exception if appropriate).

The -output-obj option can also be used to obtain the C source file. More interestingly, the same option can also produce directly a shared library (.so file, .dll under Windows) that contains the OCaml code, the OCaml runtime system and any other static C code given to ocamlc (.o, .a, respectively, .obj, .lib). This use of -output-obj is very similar to a normal linking step, but instead of producing a main program that automatically runs the OCaml code, it produces a shared library that can run the OCaml code on demand. The three possible behaviors of -output-obj are selected according to the extension of the resulting file (given with -o).

The native-code compiler ocamlopt also supports the -output-obj option, causing it to output a C object file or a shared library containing the native code for all OCaml modules on the command-line, as well as the OCaml startup code. Initialization is performed by calling caml_startup (or caml_startup_exn) as in the case of the bytecode compiler.

For the final linking phase, in addition to the object file produced by -output-obj, you will have to provide the OCaml runtime library (libcamlrun.a for bytecode, libasmrun.a for native-code), as well as all C libraries that are required by the OCaml libraries used. For instance, assume the OCaml part of your program uses the Unix library. With ocamlc, you should do:

        ocamlc -output-obj -o camlcode.o unix.cma other .cmo and .cma files
        cc -o myprog C objects and libraries \
           camlcode.o -L‘ocamlc -where‘ -lunix -lcamlrun

With ocamlopt, you should do:

        ocamlopt -output-obj -o camlcode.o unix.cmxa other .cmx and .cmxa files
        cc -o myprog C objects and libraries \
           camlcode.o -L‘ocamlc -where‘ -lunix -lasmrun
Warning:

On some ports, special options are required on the final linking phase that links together the object file produced by the -output-obj option and the remainder of the program. Those options are shown in the configuration file Makefile.config generated during compilation of OCaml, as the variable OC_LDFLAGS.

Stack backtraces.

When OCaml bytecode produced by ocamlc -g is embedded in a C program, no debugging information is included, and therefore it is impossible to print stack backtraces on uncaught exceptions. This is not the case when native code produced by ocamlopt -g is embedded in a C program: stack backtrace information is available, but the backtrace mechanism needs to be turned on programmatically. This can be achieved from the OCaml side by calling Printexc.record_backtrace true in the initialization of one of the OCaml modules. This can also be achieved from the C side by calling caml_record_backtrace(Val_int(1)); in the OCaml-C glue code.

Unloading the runtime.

In case the shared library produced with -output-obj is to be loaded and unloaded repeatedly by a single process, care must be taken to unload the OCaml runtime explicitly, in order to avoid various system resource leaks.

Since 4.05, caml_shutdown function can be used to shut the runtime down gracefully, which equals the following:

As a shared library may have several clients simultaneously, it is made for convenience that caml_startup (and caml_startup_pooled) may be called multiple times, given that each such call is paired with a corresponding call to caml_shutdown (in a nested fashion). The runtime will be unloaded once there are no outstanding calls to caml_startup.

Once a runtime is unloaded, it cannot be started up again without reloading the shared library and reinitializing its static data. Therefore, at the moment, the facility is only useful for building reloadable shared libraries.

20.8  Advanced example with callbacks

This section illustrates the callback facilities described in section 20.7. We are going to package some OCaml functions in such a way that they can be linked with C code and called from C just like any C functions. The OCaml functions are defined in the following mod.ml OCaml source:

(* File mod.ml -- some "useful" OCaml functions *)

let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2)

let format_result n = Printf.sprintf "Result is: %d\n" n

(* Export those two functions to C *)

let _ = Callback.register "fib" fib
let _ = Callback.register "format_result" format_result

Here is the C stub code for calling these functions from C:

/* File modwrap.c -- wrappers around the OCaml functions */

#include <stdio.h>
#include <string.h>
#include <caml/mlvalues.h>
#include <caml/callback.h>

int fib(int n)
{
  static const value * fib_closure = NULL;
  if (fib_closure == NULL) fib_closure = caml_named_value("fib");
  return Int_val(caml_callback(*fib_closure, Val_int(n)));
}

char * format_result(int n)
{
  static const value * format_result_closure = NULL;
  if (format_result_closure == NULL)
    format_result_closure = caml_named_value("format_result");
  return strdup(String_val(caml_callback(*format_result_closure, Val_int(n))));
  /* We copy the C string returned by String_val to the C heap
     so that it remains valid after garbage collection. */
}

We now compile the OCaml code to a C object file and put it in a C library along with the stub code in modwrap.c and the OCaml runtime system:

        ocamlc -custom -output-obj -o modcaml.o mod.ml
        ocamlc -c modwrap.c
        cp `ocamlc -where`/libcamlrun.a mod.a && chmod +w mod.a
        ar r mod.a modcaml.o modwrap.o

(One can also use ocamlopt -output-obj instead of ocamlc -custom -output-obj. In this case, replace libcamlrun.a (the bytecode runtime library) by libasmrun.a (the native-code runtime library).)

Now, we can use the two functions fib and format_result in any C program, just like regular C functions. Just remember to call caml_startup (or caml_startup_exn) once before.

/* File main.c -- a sample client for the OCaml functions */

#include <stdio.h>
#include <caml/callback.h>

extern int fib(int n);
extern char * format_result(int n);

int main(int argc, char ** argv)
{
  int result;

  /* Initialize OCaml code */
  caml_startup(argv);
  /* Do some computation */
  result = fib(10);
  printf("fib(10) = %s\n", format_result(result));
  return 0;
}

To build the whole program, just invoke the C compiler as follows:

        cc -o prog -I `ocamlc -where` main.c mod.a -lcurses

(On some machines, you may need to put -ltermcap or -lcurses -ltermcap instead of -lcurses.)

20.9  Advanced topic: custom blocks

Blocks with tag Custom_tag contain both arbitrary user data and a pointer to a C struct, with type struct custom_operations, that associates user-provided finalization, comparison, hashing, serialization and deserialization functions to this block.

20.9.1  The struct custom_operations

The struct custom_operations is defined in <caml/custom.h> and contains the following fields:

Note: the finalize, compare, hash, serialize and deserialize functions attached to custom block descriptors must never trigger a garbage collection. Within these functions, do not call any of the OCaml allocation functions, and do not perform a callback into OCaml code. Do not use CAMLparam to register the parameters to these functions, and do not use CAMLreturn to return the result.

20.9.2  Allocating custom blocks

Custom blocks must be allocated via caml_alloc_custom or caml_alloc_custom_mem:

caml_alloc_custom(ops, size, used, max)

returns a fresh custom block, with room for size bytes of user data, and whose associated operations are given by ops (a pointer to a struct custom_operations, usually statically allocated as a C global variable).

The two parameters used and max are used to control the speed of garbage collection when the finalized object contains pointers to out-of-heap resources. Generally speaking, the OCaml incremental major collector adjusts its speed relative to the allocation rate of the program. The faster the program allocates, the harder the GC works in order to reclaim quickly unreachable blocks and avoid having large amount of “floating garbage” (unreferenced objects that the GC has not yet collected).

Normally, the allocation rate is measured by counting the in-heap size of allocated blocks. However, it often happens that finalized objects contain pointers to out-of-heap memory blocks and other resources (such as file descriptors, X Windows bitmaps, etc.). For those blocks, the in-heap size of blocks is not a good measure of the quantity of resources allocated by the program.

The two arguments used and max give the GC an idea of how much out-of-heap resources are consumed by the finalized block being allocated: you give the amount of resources allocated to this object as parameter used, and the maximum amount that you want to see in floating garbage as parameter max. The units are arbitrary: the GC cares only about the ratio used / max.

For instance, if you are allocating a finalized block holding an X Windows bitmap of w by h pixels, and you’d rather not have more than 1 mega-pixels of unreclaimed bitmaps, specify used = w * h and max = 1000000.

Another way to describe the effect of the used and max parameters is in terms of full GC cycles. If you allocate many custom blocks with used / max = 1 / N, the GC will then do one full cycle (examining every object in the heap and calling finalization functions on those that are unreachable) every N allocations. For instance, if used = 1 and max = 1000, the GC will do one full cycle at least every 1000 allocations of custom blocks.

If your finalized blocks contain no pointers to out-of-heap resources, or if the previous discussion made little sense to you, just take used = 0 and max = 1. But if you later find that the finalization functions are not called “often enough”, consider increasing the used / max ratio.

caml_alloc_custom_mem(ops, size, used)

Use this function when your custom block holds only out-of-heap memory (memory allocated with malloc or caml_stat_alloc) and no other resources. used should be the number of bytes of out-of-heap memory that are held by your custom block. This function works like caml_alloc_custom except that the max parameter is under the control of the user (via the custom_major_ratio, custom_minor_ratio, and custom_minor_max_size parameters) and proportional to the heap sizes.

20.9.3  Accessing custom blocks

The data part of a custom block v can be accessed via the pointer Data_custom_val(v). This pointer has type void * and should be cast to the actual type of the data stored in the custom block.

The contents of custom blocks are not scanned by the garbage collector, and must therefore not contain any pointer inside the OCaml heap. In other terms, never store an OCaml value in a custom block, and do not use Field, Store_field nor caml_modify to access the data part of a custom block. Conversely, any C data structure (not containing heap pointers) can be stored in a custom block.

20.9.4  Writing custom serialization and deserialization functions

The following functions, defined in <caml/intext.h>, are provided to write and read back the contents of custom blocks in a portable way. Those functions handle endianness conversions when e.g. data is written on a little-endian machine and read back on a big-endian machine.

FunctionAction
caml_serialize_int_1Write a 1-byte integer
caml_serialize_int_2Write a 2-byte integer
caml_serialize_int_4Write a 4-byte integer
caml_serialize_int_8Write a 8-byte integer
caml_serialize_float_4Write a 4-byte float
caml_serialize_float_8Write a 8-byte float
caml_serialize_block_1Write an array of 1-byte quantities
caml_serialize_block_2Write an array of 2-byte quantities
caml_serialize_block_4Write an array of 4-byte quantities
caml_serialize_block_8Write an array of 8-byte quantities
caml_deserialize_uint_1Read an unsigned 1-byte integer
caml_deserialize_sint_1Read a signed 1-byte integer
caml_deserialize_uint_2Read an unsigned 2-byte integer
caml_deserialize_sint_2Read a signed 2-byte integer
caml_deserialize_uint_4Read an unsigned 4-byte integer
caml_deserialize_sint_4Read a signed 4-byte integer
caml_deserialize_uint_8Read an unsigned 8-byte integer
caml_deserialize_sint_8Read a signed 8-byte integer
caml_deserialize_float_4Read a 4-byte float
caml_deserialize_float_8Read an 8-byte float
caml_deserialize_block_1Read an array of 1-byte quantities
caml_deserialize_block_2Read an array of 2-byte quantities
caml_deserialize_block_4Read an array of 4-byte quantities
caml_deserialize_block_8Read an array of 8-byte quantities
caml_deserialize_errorSignal an error during deserialization; input_value or Marshal.from_... raise a Failure exception after cleaning up their internal data structures

Serialization functions are attached to the custom blocks to which they apply. Obviously, deserialization functions cannot be attached this way, since the custom block does not exist yet when deserialization begins! Thus, the struct custom_operations that contain deserialization functions must be registered with the deserializer in advance, using the register_custom_operations function declared in <caml/custom.h>. Deserialization proceeds by reading the identifier off the input stream, allocating a custom block of the size specified in the input stream, searching the registered struct custom_operation blocks for one with the same identifier, and calling its deserialize function to fill the data part of the custom block.

20.9.5  Choosing identifiers

Identifiers in struct custom_operations must be chosen carefully, since they must identify uniquely the data structure for serialization and deserialization operations. In particular, consider including a version number in the identifier; this way, the format of the data can be changed later, yet backward-compatible deserialisation functions can be provided.

Identifiers starting with _ (an underscore character) are reserved for the OCaml runtime system; do not use them for your custom data. We recommend to use a URL (http://mymachine.mydomain.com/mylibrary/version-number) or a Java-style package name (com.mydomain.mymachine.mylibrary.version-number) as identifiers, to minimize the risk of identifier collision.

20.9.6  Finalized blocks

Custom blocks generalize the finalized blocks that were present in OCaml prior to version 3.00. For backward compatibility, the format of custom blocks is compatible with that of finalized blocks, and the alloc_final function is still available to allocate a custom block with a given finalization function, but default comparison, hashing and serialization functions. caml_alloc_final(n, f, used, max) returns a fresh custom block of size n+1 words, with finalization function f. The first word is reserved for storing the custom operations; the other n words are available for your data. The two parameters used and max are used to control the speed of garbage collection, as described for caml_alloc_custom.

20.10  Advanced topic: Bigarrays and the OCaml-C interface

This section explains how C stub code that interfaces C or Fortran code with OCaml code can use Bigarrays.

20.10.1  Include file

The include file <caml/bigarray.h> must be included in the C stub file. It declares the functions, constants and macros discussed below.

20.10.2  Accessing an OCaml bigarray from C or Fortran

If v is a OCaml value representing a Bigarray, the expression Caml_ba_data_val(v) returns a pointer to the data part of the array. This pointer is of type void * and can be cast to the appropriate C type for the array (e.g. double [], char [][10], etc).

Various characteristics of the OCaml Bigarray can be consulted from C as follows:

C expressionReturns
Caml_ba_array_val(v)->num_dimsnumber of dimensions
Caml_ba_array_val(v)->dim[i]i-th dimension
Caml_ba_array_val(v)->flags & BIGARRAY_KIND_MASKkind of array elements

The kind of array elements is one of the following constants:

ConstantElement kind
CAML_BA_FLOAT3232-bit single-precision floats
CAML_BA_FLOAT6464-bit double-precision floats
CAML_BA_SINT88-bit signed integers
CAML_BA_UINT88-bit unsigned integers
CAML_BA_SINT1616-bit signed integers
CAML_BA_UINT1616-bit unsigned integers
CAML_BA_INT3232-bit signed integers
CAML_BA_INT6464-bit signed integers
CAML_BA_CAML_INT31- or 63-bit signed integers
CAML_BA_NATIVE_INT32- or 64-bit (platform-native) integers

The following example shows the passing of a two-dimensional Bigarray to a C function and a Fortran function.

    extern void my_c_function(double * data, int dimx, int dimy);
    extern void my_fortran_function_(double * data, int * dimx, int * dimy);

    value caml_stub(value bigarray)
    {
      int dimx = Caml_ba_array_val(bigarray)->dim[0];
      int dimy = Caml_ba_array_val(bigarray)->dim[1];
      /* C passes scalar parameters by value */
      my_c_function(Caml_ba_data_val(bigarray), dimx, dimy);
      /* Fortran passes all parameters by reference */
      my_fortran_function_(Caml_ba_data_val(bigarray), &dimx, &dimy);
      return Val_unit;
    }

20.10.3  Wrapping a C or Fortran array as an OCaml Bigarray

A pointer p to an already-allocated C or Fortran array can be wrapped and returned to OCaml as a Bigarray using the caml_ba_alloc or caml_ba_alloc_dims functions.

The following example illustrates how statically-allocated C and Fortran arrays can be made available to OCaml.

    extern long my_c_array[100][200];
    extern float my_fortran_array_[300][400];

    value caml_get_c_array(value unit)
    {
      long dims[2];
      dims[0] = 100; dims[1] = 200;
      return caml_ba_alloc(CAML_BA_NATIVE_INT | CAML_BA_C_LAYOUT,
                           2, my_c_array, dims);
    }

    value caml_get_fortran_array(value unit)
    {
      return caml_ba_alloc_dims(CAML_BA_FLOAT32 | CAML_BA_FORTRAN_LAYOUT,
                                2, my_fortran_array_, 300L, 400L);
    }

20.11  Advanced topic: cheaper C call

This section describe how to make calling C functions cheaper.

Note: this only applies to the native compiler. So whenever you use any of these methods, you have to provide an alternative byte-code stub that ignores all the special annotations.

20.11.1  Passing unboxed values

We said earlier that all OCaml objects are represented by the C type value, and one has to use macros such as Int_val to decode data from the value type. It is however possible to tell the OCaml native-code compiler to do this for us and pass arguments unboxed to the C function. Similarly it is possible to tell OCaml to expect the result unboxed and box it for us.

The motivation is that, by letting ‘ocamlopt‘ deal with boxing, it can often decide to suppress it entirely.

For instance let’s consider this example:

external foo : float -> float -> float = "foo"

let f a b =
  let len = Array.length a in
  assert (Array.length b = len);
  let res = Array.make len 0. in
  for i = 0 to len - 1 do
    res.(i) <- foo a.(i) b.(i)
  done

Float arrays are unboxed in OCaml, however the C function foo expect its arguments as boxed floats and returns a boxed float. Hence the OCaml compiler has no choice but to box a.(i) and b.(i) and unbox the result of foo. This results in the allocation of 3 * len temporary float values.

Now if we annotate the arguments and result with [@unboxed], the native-code compiler will be able to avoid all these allocations:

external foo
  :  (float [@unboxed])
  -> (float [@unboxed])
  -> (float [@unboxed])
  = "foo_byte" "foo"

In this case the C functions must look like:

CAMLprim double foo(double a, double b)
{
  ...
}

CAMLprim value foo_byte(value a, value b)
{
  return caml_copy_double(foo(Double_val(a), Double_val(b)))
}

For convenicence, when all arguments and the result are annotated with [@unboxed], it is possible to put the attribute only once on the declaration itself. So we can also write instead:

external foo : float -> float -> float = "foo_byte" "foo" [@@unboxed]

The following table summarize what OCaml types can be unboxed, and what C types should be used in correspondence:

OCaml typeC type
floatdouble
int32int32_t
int64int64_t
nativeintintnat

Similarly, it is possible to pass untagged OCaml integers between OCaml and C. This is done by annotating the arguments and/or result with [@untagged]:

external f : string -> (int [@untagged]) = "f_byte" "f"

The corresponding C type must be intnat.

Note: do not use the C int type in correspondence with (int [@untagged]). This is because they often differ in size.

20.11.2  Direct C call

In order to be able to run the garbage collector in the middle of a C function, the OCaml native-code compiler generates some bookkeeping code around C calls. Technically it wraps every C call with the C function caml_c_call which is part of the OCaml runtime.

For small functions that are called repeatedly, this indirection can have a big impact on performances. However this is not needed if we know that the C function doesn’t allocate, doesn’t raise exceptions, and doesn’t release the master lock (see section 20.12.2). We can instruct the OCaml native-code compiler of this fact by annotating the external declaration with the attribute [@@noalloc]:

external bar : int -> int -> int = "foo" [@@noalloc]

In this case calling bar from OCaml is as cheap as calling any other OCaml function, except for the fact that the OCaml compiler can’t inline C functions...

20.11.3  Example: calling C library functions without indirection

Using these attributes, it is possible to call C library functions with no indirection. For instance many math functions are defined this way in the OCaml standard library:

external sqrt : float -> float = "caml_sqrt_float" "sqrt"
  [@@unboxed] [@@noalloc]
(** Square root. *)

external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)

external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)

20.12  Advanced topic: multithreading

Using multiple threads (shared-memory concurrency) in a mixed OCaml/C application requires special precautions, which are described in this section.

20.12.1  Registering threads created from C

Callbacks from C to OCaml are possible only if the calling thread is known to the OCaml run-time system. Threads created from OCaml (through the Thread.create function of the system threads library) are automatically known to the run-time system. If the application creates additional threads from C and wishes to callback into OCaml code from these threads, it must first register them with the run-time system. The following functions are declared in the include file <caml/threads.h>.

20.12.2  Parallel execution of long-running C code

The OCaml run-time system is not reentrant: at any time, at most one thread can be executing OCaml code or C code that uses the OCaml run-time system. Technically, this is enforced by a “master lock” that any thread must hold while executing such code.

When OCaml calls the C code implementing a primitive, the master lock is held, therefore the C code has full access to the facilities of the run-time system. However, no other thread can execute OCaml code concurrently with the C code of the primitive.

If a C primitive runs for a long time or performs potentially blocking input-output operations, it can explicitly release the master lock, enabling other OCaml threads to run concurrently with its operations. The C code must re-acquire the master lock before returning to OCaml. This is achieved with the following functions, declared in the include file <caml/threads.h>.

These functions poll for pending signals by calling asynchronous callbacks (section 20.5.3) before releasing and after acquiring the lock. They can therefore execute arbitrary OCaml code including raising an asynchronous exception.

After caml_release_runtime_system() was called and until caml_acquire_runtime_system() is called, the C code must not access any OCaml data, nor call any function of the run-time system, nor call back into OCaml code. Consequently, arguments provided by OCaml to the C primitive must be copied into C data structures before calling caml_release_runtime_system(), and results to be returned to OCaml must be encoded as OCaml values after caml_acquire_runtime_system() returns.

Example: the following C primitive invokes gethostbyname to find the IP address of a host name. The gethostbyname function can block for a long time, so we choose to release the OCaml run-time system while it is running.

CAMLprim stub_gethostbyname(value vname)
{
  CAMLparam1 (vname);
  CAMLlocal1 (vres);
  struct hostent * h;
  char * name;

  /* Copy the string argument to a C string, allocated outside the
     OCaml heap. */
  name = caml_stat_strdup(String_val(vname));
  /* Release the OCaml run-time system */
  caml_release_runtime_system();
  /* Resolve the name */
  h = gethostbyname(name);
  /* Free the copy of the string, which we might as well do before
     acquiring the runtime system to benefit from parallelism. */
  caml_stat_free(name);
  /* Re-acquire the OCaml run-time system */
  caml_acquire_runtime_system();
  /* Encode the relevant fields of h as the OCaml value vres */
  ... /* Omitted */
  /* Return to OCaml */
  CAMLreturn (vres);
}

Callbacks from C to OCaml must be performed while holding the master lock to the OCaml run-time system. This is naturally the case if the callback is performed by a C primitive that did not release the run-time system. If the C primitive released the run-time system previously, or the callback is performed from other C code that was not invoked from OCaml (e.g. an event loop in a GUI application), the run-time system must be acquired before the callback and released after:

  caml_acquire_runtime_system();
  /* Resolve OCaml function vfun to be invoked */
  /* Build OCaml argument varg to the callback */
  vres = callback(vfun, varg);
  /* Copy relevant parts of result vres to C data structures */
  caml_release_runtime_system();

Note: the acquire and release functions described above were introduced in OCaml 3.12. Older code uses the following historical names, declared in <caml/signals.h>:

Intuition: a “blocking section” is a piece of C code that does not use the OCaml run-time system, typically a blocking input/output operation.

20.13  Advanced topic: interfacing with Windows Unicode APIs

This section contains some general guidelines for writing C stubs that use Windows Unicode APIs.

Note: This is an experimental feature of OCaml: the set of APIs below, as well as their exact semantics are not final and subject to change in future releases.

The OCaml system under Windows can be configured at build time in one of two modes:

In what follows, we say that a string has the OCaml encoding if it is encoded in UTF-8 when in Unicode mode, in the current code page in legacy mode, or is an arbitrary string under Unix. A string has the platform encoding if it is encoded in UTF-16 under Windows or is an arbitrary string under Unix.

From the point of view of the writer of C stubs, the challenges of interacting with Windows Unicode APIs are twofold:

The native C character type under Windows is WCHAR, two bytes wide, while under Unix it is char, one byte wide. A type char_os is defined in <caml/misc.h> that stands for the concrete C character type of each platform. Strings in the platform encoding are of type char_os *.

The following functions are exposed to help write compatible C stubs. To use them, you need to include both <caml/misc.h> and <caml/osdeps.h>.

Note: The strings returned by caml_stat_strdup_to_os and caml_stat_strdup_of_os are allocated using caml_stat_alloc, so they need to be deallocated using caml_stat_free when they are no longer needed.

Example

We want to bind the function getenv in a way that works both under Unix and Windows. Under Unix this function has the prototype:

    char *getenv(const char *);

While the Unicode version under Windows has the prototype:

    WCHAR *_wgetenv(const WCHAR *);

In terms of char_os, both functions take an argument of type char_os * and return a result of the same type. We begin by choosing the right implementation of the function to bind:

#ifdef _WIN32
#define getenv_os _wgetenv
#else
#define getenv_os getenv
#endif

The rest of the binding is the same for both platforms:

/* The following define is necessary because the API is experimental */
#define CAML_NAME_SPACE
#define CAML_INTERNALS

#include <caml/mlvalues.h>
#include <caml/misc.h>
#include <caml/alloc.h>
#include <caml/fail.h>
#include <caml/osdeps.h>
#include <stdlib.h>

CAMLprim value stub_getenv(value var_name)
{
  CAMLparam1(var_name);
  CAMLlocal1(var_value);
  char_os *var_name_os, *var_value_os;

  var_name_os = caml_stat_strdup_to_os(String_val(var_name));
  var_value_os = getenv_os(var_name_os);
  caml_stat_free(var_name_os);

  if (var_value_os == NULL)
    caml_raise_not_found();

  var_value = caml_copy_string_of_os(var_value_os);

  CAMLreturn(var_value);
}

20.14  Building mixed C/OCaml libraries: ocamlmklib

The ocamlmklib command facilitates the construction of libraries containing both OCaml code and C code, and usable both in static linking and dynamic linking modes. This command is available under Windows since Objective Caml 3.11 and under other operating systems since Objective Caml 3.03.

The ocamlmklib command takes three kinds of arguments:

It generates the following outputs:

In addition, the following options are recognized:

-cclib, -ccopt, -I, -linkall
These options are passed as is to ocamlc or ocamlopt. See the documentation of these commands.
-rpath, -R, -Wl,-rpath, -Wl,-R
These options are passed as is to the C compiler. Refer to the documentation of the C compiler.
-custom
Force the construction of a statically linked library only, even if dynamic linking is supported.
-failsafe
Fall back to building a statically linked library if a problem occurs while building the shared library (e.g. some of the support libraries are not available as shared libraries).
-Ldir
Add dir to the search path for support libraries (-llib).
-ocamlc cmd
Use cmd instead of ocamlc to call the bytecode compiler.
-ocamlopt cmd
Use cmd instead of ocamlopt to call the native-code compiler.
-o output
Set the name of the generated OCaml library. ocamlmklib will generate output.cma and/or output.cmxa. If not specified, defaults to a.
-oc outputc
Set the name of the generated C library. ocamlmklib will generate liboutputc.so (if shared libraries are supported) and liboutputc.a. If not specified, defaults to the output name given with -o.

On native Windows, the following environment variable is also consulted:

OCAML_FLEXLINK
Alternative executable to use instead of the configured value. Primarily used for bootstrapping.
Example

Consider an OCaml interface to the standard libz C library for reading and writing compressed files. Assume this library resides in /usr/local/zlib. This interface is composed of an OCaml part zip.cmo/zip.cmx and a C part zipstubs.o containing the stub code around the libz entry points. The following command builds the OCaml libraries zip.cma and zip.cmxa, as well as the companion C libraries dllzip.so and libzip.a:

ocamlmklib -o zip zip.cmo zip.cmx zipstubs.o -lz -L/usr/local/zlib

If shared libraries are supported, this performs the following commands:

ocamlc -a -o zip.cma zip.cmo -dllib -lzip \
        -cclib -lzip -cclib -lz -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -cclib -lzip \
        -cclib -lzip -cclib -lz -ccopt -L/usr/local/zlib
gcc -shared -o dllzip.so zipstubs.o -lz -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Note: This example is on a Unix system. The exact command lines may be different on other systems.

If shared libraries are not supported, the following commands are performed instead:

ocamlc -a -custom -o zip.cma zip.cmo -cclib -lzip \
        -cclib -lz -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -lzip \
        -cclib -lz -ccopt -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Instead of building simultaneously the bytecode library, the native-code library and the C libraries, ocamlmklib can be called three times to build each separately. Thus,

ocamlmklib -o zip zip.cmo -lz -L/usr/local/zlib

builds the bytecode library zip.cma, and

ocamlmklib -o zip zip.cmx -lz -L/usr/local/zlib

builds the native-code library zip.cmxa, and

ocamlmklib -o zip zipstubs.o -lz -L/usr/local/zlib

builds the C libraries dllzip.so and libzip.a. Notice that the support libraries (-lz) and the corresponding options (-L/usr/local/zlib) must be given on all three invocations of ocamlmklib, because they are needed at different times depending on whether shared libraries are supported.

20.15  Cautionary words: the internal runtime API

Not all header available in the caml/ directory were described in previous sections. All those unmentioned headers are part of the internal runtime API, for which there is no stability guarantee. If you really need access to this internal runtime API, this section provides some guidelines that may help you to write code that might not break on every new version of OCaml.

Note

Programmers which come to rely on the internal API for a use-case which they find realistic and useful are encouraged to open a request for improvement on the bug tracker.

20.15.1  Internal variables and CAML_INTERNALS

Since OCaml 4.04, it is possible to get access to every part of the internal runtime API by defining the CAML_INTERNALS macro before loading caml header files. If this macro is not defined, parts of the internal runtime API are hidden.

If you are using internal C variables, do not redefine them by hand. You should import those variables by including the corresponding header files. The representation of those variables has already changed once in OCaml 4.10, and is still under evolution. If your code relies on such internal and brittle properties, it will be broken at some point in time.

For instance, rather than redefining caml_young_limit:

extern int caml_young_limit;

which breaks in OCaml ≥ 4.10, you should include the minor_gc header:

#include <caml/minor_gc.h>

20.15.2  OCaml version macros

Finally, if including the right headers is not enough, or if you need to support version older than OCaml 4.04, the header file caml/version.h should help you to define your own compatibility layer. This file provides few macros defining the current OCaml version. In particular, the OCAML_VERSION macro describes the current version, its format is MmmPP. For example, if you need some specific handling for versions older than 4.10.0, you could write

#include <caml/version.h>
#if OCAML_VERSION >= 41000
...
#else
...
#endif

Previous Up Next ocaml-doc-4.11/ocaml.html/instrumented-runtime.html0000644000175000017500000003514413717225665021406 0ustar mehdimehdi Chapter 24  Runtime tracing with the instrumented runtime Previous Up Next

Chapter 24  Runtime tracing with the instrumented runtime

This chapter describes the OCaml instrumented runtime, a runtime variant allowing the collection of events and metrics.

Collected metrics include time spent executing the garbage collector. The overall execution time of individual pauses are measured down to the time spent in specific parts of the garbage collection. Insight is also given on memory allocation and motion by recording the size of allocated memory blocks, as well as value promotions from the minor heap to the major heap.

24.1  Overview

Once compiled and linked with the instrumented runtime, any OCaml program can generate trace files that can then be read and analyzed by users in order to understand specific runtime behaviors.

The generated trace files are stored using the Common Trace Format, which is a general purpose binary tracing format. A complete trace consists of:

For more information on the Common Trace Format, see https://diamon.org/ctf/.

24.2  Enabling runtime instrumentation

For the following examples, we will use the following example program:

module SMap = Map.Make(String) let s i = String.make 512 (Char.chr (i mod 256)) let clear map = SMap.fold (fun k _ m -> SMap.remove k m) map map let rec seq i = if i = 0 then Seq.empty else fun () -> (Seq.Cons (i, seq (i - 1))) let () = seq 1_000_000 |> Seq.fold_left (fun m i -> SMap.add (s i) i m) SMap.empty |> clear |> ignore

The next step is to compile and link the program with the instrumented runtime. This can be done by using the -runtime-variant flag:

       ocamlopt -runtime-variant i program.ml -o program

Note that the instrumented runtime is an alternative runtime for OCaml programs. It is only referenced during the linking stage of the final executable. This means that the compilation stage does not need to be altered to enable instrumentation.

The resulting program can then be traced by running it with the environment variable OCAML_EVENTLOG_ENABLED:

        OCAML_EVENTLOG_ENABLED=1 ./program

During execution, a trace file will be generated in the program’s current working directory.

More build examples

When using the dune build system, this compiler invocation can be replicated using the flags stanza when building an executable.

       (executable
         (name program)
         (flags "-runtime-variant=i"))

The instrumented runtime can also be used with the OCaml bytecode interpreter. This can be done by either using the -runtime-variant=i flag when linking the program with ocamlc, or by running the generated bytecode through ocamlruni:

       ocamlc program.ml -o program.byte
       OCAML_EVENTLOG_ENABLED=1 ocamlruni program.byte

See chapter 9 and chapter 11 for more information about ocamlc and ocamlrun.

24.3  Reading traces

Traces generated by the instrumented runtime can be analyzed with tooling available outside of the OCaml distribution.

A complete trace consists of a metadata file and a trace file. Two simple ways to work with the traces are the eventlog-tools and babeltrace libraries.

24.3.1  eventlog-tools

eventlog-tools is a library implementing a parser, as well as a a set of tools that allows to perform basic format conversions and analysis.

For more information about eventlog-tools, refer to the project’s main page: https://github.com/ocaml-multicore/eventlog-tools

24.3.2  babeltrace

babeltrace is a C library, as well as a Python binding and set of tools that serve as the reference implementation for the Common Trace Format. The babeltrace command line utility allows for a basic rendering of a trace’s content, while the high level Python API can be used to decode the trace and process them programmatically with libraries such as numpy or Jupyter.

Unlike eventlog-tools, which possesses a specific knowledge of OCaml’s Common Trace Format schema, it is required to provide the OCaml metadata file to babeltrace.

The metadata file is available in the OCaml installation. Its location can be obtained using the following command:

        ocamlc -where

The eventlog_metadata file can be found at this path and copied in the same directory as the generated trace file. However, babeltrace expects the file to be named metadata in order to process the trace. Thus, it will need to be renamed when copied to the trace’s directory.

Here is a naive decoder example, using babeltrace’s Python library, and Python 3.8:

import subprocess
import shutil
import sys
import babeltrace as bt

def print_event(ev):
    print(ev['timestamp'])
    print(ev['pid'])
    if ev.name == "entry":
        print('entry_event')
        print(ev['phase'])
    if ev.name == "exit":
        print('exit_event')
        print(ev['phase'])
    if ev.name == "alloc":
        print(ev['count'])
        print(ev['bucket'])
    if ev.name == "counter":
        print(ev['count'])
        print(ev['kind'])
    if ev.name == "flush":
        print("flush")

def get_ocaml_dir():
    # Fetching OCaml's installation directory to extract the CTF metadata
    ocamlc_where = subprocess.run(['ocamlc', '-where'], stdout=subprocess.PIPE)
    ocaml_dir = ocamlc_where.stdout.decode('utf-8').rstrip('\n')
    return(ocaml_dir)

def main():
    trace_dir = sys.argv[1]
    ocaml_dir = get_ocaml_dir()
    metadata_path = ocaml_dir + "/eventlog_metadata"
    # copying the metadata to the trace's directory,
    # and renaming it to 'metadata'.
    shutil.copyfile(metadata_path, trace_dir + "/metadata")
    tr = bt.TraceCollection()
    tr.add_trace(trace_dir, 'ctf')
    for event in tr.events:
        print_event(event)

if __name__ == '__main__':
    main()

This script expect to receive as an argument the directory containing the trace file. It will then copy the CTF metadata file to the trace’s directory, and then decode the trace, printing each event in the process.

For more information on babeltrace, see the website at: https://babeltrace.org/

24.4  Controlling instrumentation and limitations

24.4.1  Trace filename

The default trace filename is caml-{PID}.eventlog, where {PID} is the process identifier of the traced program.

This filename can also be specified using the OCAML_EVENTLOG_PREFIX environment variable. The given path will be suffixed with {.PID}.eventlog.

        OCAML_EVENTLOG_PREFIX=/tmp/a_prefix OCAML_EVENTLOG_ENABLED=1 ./program

In this example, the trace will be available at path /tmp/a_prefix.{PID}.eventlog.

Note that this will only affect the prefix of the trace file, there is no option to specify the full effective file name. This restriction is in place to make room for future improvements to the instrumented runtime, where the single trace file per session design may be replaced.

For scripting purpose, matching against ‘{PID}‘, as well as the .eventlog file extension should provide enough control over the generated files.

Note as well that parent directories in the given path will not be created when opening the trace. The runtime assumes the path is accessible for creating and writing the trace. The program will fail to start if this requirement isn’t met.

24.4.2  Pausing and resuming tracing

Mechanisms are available to control event collection at runtime.

OCAML_EVENTLOG_ENABLED can be set to the p flag in order to start the program with event collection paused.

        OCAML_EVENTLOG_ENABLED=p ./program

The program will have to start event collection explicitly. Starting and stopping event collection programmatically can be done by calling Gc.eventlog_resume and Gc.eventlog_pause) from within the program. Refer to the Gc module documentation for more information.

Running the program provided earlier with OCAML_EVENTLOG_ENABLED=p will for example yield the following result.

$ OCAML_EVENTLOG_ENABLED=p ./program
$ ocaml-eventlog-report caml-{PID}.eventlog
==== eventlog/flush
median flush time: 58ns
total flush time: 58ns
flush count: 1

The resulting trace contains only one event payload, namely a flush event, indicating how much time was spent flushing the trace file to disk.

However, if the program is changed to include a call to Gc.eventlog_resume, events payloads can be seen again in the trace file.

let () = Gc.eventlog_resume(); seq 1_000_000 |> Seq.fold_left (fun m i -> SMap.add (s i) i m) SMap.empty |> clear |> ignore

The resulting trace will contain all events encountered during the program’s execution:

        $ ocaml-eventlog-report caml-{PID}.eventlog
        [..omitted..]
        ==== force_minor/alloc_small
        100.0K..200.0K: 174
        20.0K..30.0K: 1
        0..100: 1

        ==== eventlog/flush
        median flush time: 207.8us
        total flush time: 938.1us
        flush count: 5

24.4.3  Limitations

The instrumented runtime does not support the fork system call. A child process forked from an instrumented program will not be traced.

The instrumented runtime aims to provide insight into the runtime’s execution while maintaining a low overhead. However, this overhead may become more noticeable depending on how a program executes. The instrumented runtime currently puts a strong emphasis on tracing garbage collection events. This means that programs with heavy garbage collection activity may be more susceptible to tracing induced performance penalties.

While providing an accurate estimate of potential performance loss is difficult, test on various OCaml programs showed a total running time increase ranging from 1% to 8%.

For a program with an extended running time where the collection of only a small sample of events is required, using the eventlog_resume and eventlog_pause primitives may help relieve some of the tracing induced performance impact.


Previous Up Next ocaml-doc-4.11/ocaml.html/manual.html0000644000175000017500000662740313717225665016474 0ustar mehdimehdi The OCaml system, release 4.11
 The OCaml system
release 4.11
Documentation and user’s manual
Xavier Leroy,
Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy and Jérôme Vouillon
August 19, 2020
  Copyright © 2020 Institut National de Recherche en Informatique et en Automatique

This manual is also available in PDF. plain text, as a bundle of HTML files, and as a bundle of Emacs Info files.

Contents

Foreword

This manual documents the release 4.11 of the OCaml system. It is organized as follows.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one operating system are presented as shown below:

Unix:   This is material specific to the Unix family of operating systems, including Linux and macOS.
Windows:   This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright © 1996–2020 Institut National de Recherche en Informatique et en Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the distribution for licensing information.

The OCaml documentation and user’s manual is copyright © 2020 Institut National de Recherche en Informatique et en Automatique (INRIA).

The OCaml documentation and user's manual is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Availability

The complete OCaml distribution can be accessed via the ocaml.org website. This site contains a lot of additional information on OCaml.

Part I
An introduction to OCaml

Chapter 1  The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with programming in a conventional languages (say, C or Java) is assumed, but no prior exposure to functional languages is required. The present chapter introduces the core language. Chapter 2 deals with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced examples.

1.1  Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from the Unix shell, or by launching the OCamlwin.exe application under Windows. This tutorial is presented as the transcript of a session with the interactive system: lines starting with # represent user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or functions).

1+2*3;;
- : int = 7
let pi = 4.0 *. atan 1.0;;
val pi : float = 3.14159265358979312
let square x = x *. x;;
val square : float -> float = <fun>
square (sin pi) +. square (cos pi);;
- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters need no explicit type declaration: the system infers their types from their usage in the function. Notice also that integers and floating-point numbers are distinct types, with distinct operators: + and * operate on integers, but +. and *. operate on floats.

1.0 * 2;;
Error: This expression has type float but an expression was expected of type int

Recursive functions are defined with the let rec binding:

let rec fib n = if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>
fib 10;;
- : int = 55

1.2  Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:

Predefined data structures include tuples, arrays, and lists. There are also general mechanisms for defining your own data structures, such as records and variants, which will be covered in more detail later; for now, we concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated elements, or built from the empty list [] (pronounce “nil”) by adding elements in front using the :: (“cons”) operator.

let l = ["is"; "a"; "tale"; "told"; "etc."];;
val l : string list = ["is"; "a"; "tale"; "told"; "etc."]
"Life" :: l;;
- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated from memory: all memory management is entirely automatic in OCaml. Similarly, there is no explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-matching. List patterns have exactly the same form as list expressions, with identifiers representing unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort lst = match lst with [] -> [] | head :: tail -> insert head (sort tail) and insert elt lst = match lst with [] -> [elt] | head :: tail -> if elt <= head then elt :: lst else head :: insert elt tail ;;
val sort : 'a list -> 'a list = <fun> val insert : 'a -> 'a list -> 'a list = <fun>
sort l;;
- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a list, means that sort can actually apply to lists of any type, and returns a list of the same type. The type 'a is a type variable, and stands for any given type. The reason why sort can apply to lists of any type is that the comparisons (=, <=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This makes sort itself polymorphic over all list types.

sort [6;2;5;3];;
- : int list = [2; 3; 5; 6]
sort [3.14; 2.718];;
- : float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list containing the same elements as the input list, in ascending order. There is actually no way in OCaml to modify a list in-place once it is built: we say that lists are immutable data structures. Most OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that they can be modified in-place at any time.

The OCaml notation for the type of a function with multiple arguments is
arg1_type -> arg2_type -> ... -> return_type. For example, the type inferred for insert, 'a -> 'a list -> 'a list, means that insert takes two arguments, an element of any type 'a and a list with elements of the same type 'a and returns a list of the same type.

1.3  Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can be passed around freely just as any other piece of data. For instance, here is a deriv function that takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>
let sin' = deriv sin 1e-6;;
val sin' : float -> float = <fun>
sin' pi;;
- : float = -1.00000000013961143

Even function composition is definable:

let compose f g = function x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order functions”. Functionals are especially useful to provide iterators or similar generic operations over a data structure. For instance, the standard OCaml library provides a List.map functional that applies a given function to each element of a list, and returns the list of the results:

List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is often useful, but there is nothing magic with it: it can easily be defined as follows.

let rec map f l = match l with [] -> [] | hd :: tl -> f hd :: map f tl;;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1.4  Records and variants

User-defined data structures include records and variants. Both are defined with the type declaration. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }
let add_ratio r1 r2 = {num = r1.num * r2.denom + r2.num * r1.denom; denom = r1.denom * r2.denom};;
val add_ratio : ratio -> ratio -> ratio = <fun>
add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}

Record fields can also be accessed through pattern-matching:

let integer_part r = match r with {num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r in a record pattern:

let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Unneeded fields can be omitted:

let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard _::

let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by eliding the =field part:

let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

let integer_product integer ratio = { ratio with num = integer * ratio.num };;
val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible forms for values of that type. Each case is identified by a name, called a constructor, which serves both for constructing values of the variant type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish them from variable names (which must start with a lowercase letter). For instance, here is a variant type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number, or the constant Error representing the result of an invalid operation (e.g. a division by zero).

Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative
let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two numbers involved:

let add_num n1 n2 = match (n1, n2) with (Int i1, Int i2) -> (* Check for overflow of integer addition *) if sign_int i1 = sign_int i2 && sign_int (i1 + i2) <> sign_int i1 then Float(float i1 +. float i2) else Int(i1 + i2) | (Int i1, Float f2) -> Float(float i1 +. f2) | (Float f1, Int i2) -> Float(f1 +. float i2) | (Float f1, Float f2) -> Float(f1 +. f2) | (Error, _) -> Error | (_, Error) -> Error;;
val add_num : number -> number -> number = <fun>
add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

Another interesting example of variant type is the built-in 'a option type which represents either a value of type 'a or an absence of value:

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

This type is particularly useful when defining function that can fail in common situations, for instance

let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for example the type of binary trees:

type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is either empty, or is a node containing one value of type 'a and two subtrees also containing values of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same structure as the type definition itself. For instance, here are functions performing lookup and insertion in ordered binary trees (elements increase from left to right):

let rec member x btree = match btree with Empty -> false | Node(y, left, right) -> if x = y then true else if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>
let rec insert x btree = match btree with Empty -> Node(x, Empty, Empty) | Node(y, left, right) -> if x <= y then Node(y, insert x left, right) else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

1.4.1  Record and variant disambiguation

( This subsection can be skipped on the first reading )

Astute readers may have wondered what happens when two or more record fields or constructors share the same name

type first_record = { x:int; y:int; z:int } type middle_record = { x:int; z:int } type last_record = { x:int };;
type first_variant = A | B | C type last_variant = A;;

The answer is that when confronted with multiple options, OCaml tries to use locally available information to disambiguate between the various fields and constructors. First, if the type of the record or variant is known, OCaml can pick unambiguously the corresponding field or constructor. For instance:

let look_at_x_then_z (r:first_record) = let x = r.x in x + r.z;;
val look_at_x_then_z : first_record -> int = <fun>
let permute (x:first_variant) = match x with | A -> (B:first_variant) | B -> A | C -> C;;
val permute : first_variant -> first_variant = <fun>
type wrapped = First of first_record let f (First r) = r, r.x;;
type wrapped = First of first_record val f : wrapped -> first_record * int = <fun>

In the first example, (r:first_record) is an explicit annotation telling OCaml that the type of r is first_record. With this annotation, Ocaml knows that r.x refers to the x field of the first record type. Similarly, the type annotation in the second example makes it clear to OCaml that the constructors A, B and C come from the first variant type. Contrarily, in the last example, OCaml has inferred by itself that the type of r can only be first_record and there are no needs for explicit type annotations.

Those explicit type annotations can in fact be used anywhere. Most of the time they are unnecessary, but they are useful to guide disambiguation, to debug unexpected type errors, or combined with some of the more advanced features of OCaml described in later chapters.

Secondly, for records, OCaml can also deduce the right record type by looking at the whole set of fields used in a expression or pattern:

let project_and_rotate {x;y; _ } = { x= - y; y = x ; z = 0} ;;
val project_and_rotate : first_record -> first_record = <fun>

Since the fields x and y can only appear simultaneously in the first record type, OCaml infers that the type of project_and_rotate is first_record -> first_record.

In last resort, if there is not enough information to disambiguate between different fields or constructors, Ocaml picks the last defined type amongst all locally valid choices:

let look_at_xz {x;z} = x;;
val look_at_xz : middle_record -> int = <fun>

Here, OCaml has inferred that the possible choices for the type of {x;z} are first_record and middle_record, since the type last_record has no field z. Ocaml then picks the type middle_record as the last defined type between the two possibilities.

Beware that this last resort disambiguation is local: once Ocaml has chosen a disambiguation, it sticks to this choice, even if it leads to an ulterior type error:

let look_at_x_then_y r = let x = r.x in (* Ocaml deduces [r: last_record] *) x + r.y;;
Error: This expression has type last_record The field y does not belong to type last_record
let is_a_or_b x = match x with | A -> true (* OCaml infers [x: last_variant] *) | B -> true;;
Error: This variant pattern is expected to have type last_variant The constructor B does not belong to type last_variant

Moreover, being the last defined type is a quite unstable position that may change surreptitiously after adding or moving around a type definition, or after opening a module (see chapter 2). Consequently, adding explicit type annotations to guide disambiguation is more robust than relying on the last defined type disambiguation.

1.5  Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with full imperative features. This includes the usual while and for loops, as well as mutable data structures such as arrays. Arrays are either created by listing semicolon-separated element values between [| and |] brackets, or allocated and initialized with the Array.make function, then filled up later by assignments. For instance, the function below sums two vectors (represented as float arrays) componentwise.

let add_vect v1 v2 = let len = min (Array.length v1) (Array.length v2) in let res = Array.make len 0.0 in for i = 0 to len - 1 do res.(i) <- v1.(i) +. v2.(i) done; res;;
val add_vect : float array -> float array -> float array = <fun>
add_vect [| 1.0; 2.0 |] [| 3.0; 4.0 |];;
- : float array = [|4.; 6.|]

Record fields can also be modified by assignment, provided they are declared mutable in the definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }
let translate p dx dy = p.x <- p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>
let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}
translate mypoint 1.0 2.0;;
- : unit = ()
mypoint;;
- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable – identifiers whose current value can be changed by assignment. (The let binding is not an assignment, it introduces a new identifier with a new scope.) However, the standard library provides references, which are mutable indirection cells, with operators ! to fetch the current contents of the reference and := to assign the contents. Variables can then be emulated by let-binding a reference. For instance, here is an in-place insertion sort over arrays:

let insertion_sort a = for i = 1 to Array.length a - 1 do let val_i = a.(i) in let j = ref i in while !j > 0 && val_i < a.(!j - 1) do a.(!j) <- a.(!j - 1); j := !j - 1 done; a.(!j) <- val_i done;;
val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to the function. For instance, the following pseudo-random number generator keeps the last returned number in a reference:

let current_rand = ref 0;;
val current_rand : int ref = {contents = 0}
let random () = current_rand := !current_rand * 25713 + 1345; !current_rand;;
val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable record, as follows.

type 'a ref = { mutable contents: 'a };;
type 'a ref = { mutable contents : 'a; }
let ( ! ) r = r.contents;;
val ( ! ) : 'a ref -> 'a = <fun>
let ( := ) r newval = r.contents <- newval;;
val ( := ) : 'a ref -> 'a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping its polymorphism. Doing this requires user-provided type annotations, since polymorphism is only introduced automatically for global definitions. However, you can explicitly give polymorphic types to record fields.

type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }
let r = {id = fun x -> x};;
val r : idref = {id = <fun>}
let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>
r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()
g r;;
called id called id - : int * bool = (1, true)

1.6  Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can also be used as a general-purpose non-local control structure, although this should not be overused since it can make the code harder to understand. Exceptions are declared with the exception construct, and signalled with the raise operator. For instance, the function below for taking the head of a list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list
let head l = match l with [] -> raise Empty_list | hd :: tl -> hd;;
val head : 'a list -> 'a = <fun>
head [1;2];;
- : int = 1
head [];;
Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions cannot complete normally. For instance, the List.assoc function, which returns the data associated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"
List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.

Exceptions can be trapped with the trywith construct:

let name_of_binary_digit digit = try List.assoc digit [0, "zero"; 1, "one"] with Not_found -> "not a binary digit";;
val name_of_binary_digit : int -> string = <fun>
name_of_binary_digit 0;;
- : string = "zero"
name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part does pattern matching on the exception value with the same syntax and behavior as match. Thus, several exceptions can be caught by one trywith construct:

let rec first_named_value values names = try List.assoc (head values) names with | Empty_list -> "no named value" | Not_found -> first_named_value (List.tl values) names;;
val first_named_value : 'a list -> ('a * string) list -> string = <fun>
first_named_value [ 0; 10 ] [ 1, "one"; 10, "ten"];;
- : string = "ten"

Also, finalization can be performed by trapping all exceptions, performing the finalization, then re-raising the exception:

let temporarily_set_reference ref newval funct = let oldval = !ref in try ref := newval; let res = funct () in ref := oldval; res with x -> ref := oldval; raise x;;
val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

An alternative to trywith is to catch the exception while pattern matching:

let assoc_may_map f x l = match List.assoc x l with | exception Not_found -> None | y -> f y;;
val assoc_may_map : ('a -> 'b option) -> 'c -> ('c * 'a) list -> 'b option = <fun>

Note that this construction is only useful if the exception is raised between matchwith. Exception patterns can be combined with ordinary patterns at the toplevel,

let flat_assoc_opt x l = match List.assoc x l with | None | exception Not_found -> None | Some _ as v -> v;;
val flat_assoc_opt : 'a -> ('a * 'b option) list -> 'b option = <fun>

but they cannot be nested inside other patterns. For instance, the pattern Some (exception A) is invalid.

When exceptions are used as a control structure, it can be useful to make them as local as possible by using a locally defined exception. For instance, with

let fixpoint f x = let exception Done in let x = ref x in try while true do let y = f !x in if !x = y then raise Done else x := y done; assert false with Done -> !x;;
val fixpoint : ('a -> 'a) -> 'a -> 'a = <fun>

the function f cannot raise a Done exception, which removes an entire class of misbehaving functions.

1.7  Lazy expressions

OCaml allows us to defer some computation until later when we need the result of that computation.

We use lazy (expr) to delay the evaluation of some expression expr. For example, we can defer the computation of 1+1 until we need the result of that expression, 2. Let us see how we initialize a lazy expression.

let lazy_two = lazy ( print_endline "lazy_two evaluation"; 1 + 1 );;
val lazy_two : int lazy_t = <lazy>

We added print_endline "lazy_two evaluation" to see when the lazy expression is being evaluated.

The value of lazy_two is displayed as <lazy>, which means the expression has not been evaluated yet, and its final value is unknown.

Note that lazy_two has type int lazy_t. However, the type 'a lazy_t is an internal type name, so the type 'a Lazy.t should be preferred when possible.

When we finally need the result of a lazy expression, we can call Lazy.force on that expression to force its evaluation. The function force comes from standard-library module Lazy.

Lazy.force lazy_two;;
lazy_two evaluation - : int = 2

Notice that our function call above prints “lazy_two evaluation” and then returns the plain value of the computation.

Now if we look at the value of lazy_two, we see that it is not displayed as <lazy> anymore but as lazy 2.

lazy_two;;
- : int lazy_t = lazy 2

This is because Lazy.force memoizes the result of the forced expression. In other words, every subsequent call of Lazy.force on that expression returns the result of the first computation without recomputing the lazy expression. Let us force lazy_two once again.

Lazy.force lazy_two;;
- : int = 2

The expression is not evaluated this time; notice that “lazy_two evaluation” is not printed. The result of the initial computation is simply returned.

Lazy patterns provide another way to force a lazy expression.

let lazy_l = lazy ([1; 2] @ [3; 4]);;
val lazy_l : int list lazy_t = <lazy>
let lazy l = lazy_l;;
val l : int list = [1; 2; 3; 4]

We can also use lazy patterns in pattern matching.

let maybe_eval lazy_guard lazy_expr = match lazy_guard, lazy_expr with | lazy false, _ -> "matches if (Lazy.force lazy_guard = false); lazy_expr not forced" | lazy true, lazy _ -> "matches if (Lazy.force lazy_guard = true); lazy_expr forced";;
val maybe_eval : bool lazy_t -> 'a lazy_t -> string = <fun>

The lazy expression lazy_expr is forced only if the lazy_guard value yields true once computed. Indeed, a simple wildcard pattern (not lazy) never forces the lazy expression’s evaluation. However, a pattern with keyword lazy, even if it is wildcard, always forces the evaluation of the deferred computation.

1.8  Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml for symbolic processing: formal manipulations of arithmetic expressions containing variables. The following variant type describes the expressions we shall manipulate:

type expression = Const of float | Var of string | Sum of expression * expression (* e1 + e2 *) | Diff of expression * expression (* e1 - e2 *) | Prod of expression * expression (* e1 * e2 *) | Quot of expression * expression (* e1 / e2 *) ;;
type expression = Const of float | Var of string | Sum of expression * expression | Diff of expression * expression | Prod of expression * expression | Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string
let rec eval env exp = match exp with Const c -> c | Var v -> (try List.assoc v env with Not_found -> raise (Unbound_variable v)) | Sum(f, g) -> eval env f +. eval env g | Diff(f, g) -> eval env f -. eval env g | Prod(f, g) -> eval env f *. eval env g | Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a variable dv:

let rec deriv exp dv = match exp with Const c -> Const 0.0 | Var v -> if v = dv then Const 1.0 else Const 0.0 | Sum(f, g) -> Sum(deriv f dv, deriv g dv) | Diff(f, g) -> Diff(deriv f dv, deriv g dv) | Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g)) | Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)), Prod(g, g)) ;;
val deriv : expression -> string -> expression = <fun>
deriv (Quot(Const 1.0, Var "x")) "x";;
- : expression = Quot (Diff (Prod (Const 0., Var "x"), Prod (Const 1., Const 1.)), Prod (Var "x", Var "x"))

1.9  Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntax) of expressions quickly becomes hard to read and write as the expressions get larger. We need a printer and a parser to go back and forth between the abstract syntax and the concrete syntax, which in the case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator precedence and print parentheses around an operator only if its precedence is less than the current precedence.

let print_expr exp = (* Local function definitions *) let open_paren prec op_prec = if prec > op_prec then print_string "(" in let close_paren prec op_prec = if prec > op_prec then print_string ")" in let rec print prec exp = (* prec is the current precedence *) match exp with Const c -> print_float c | Var v -> print_string v | Sum(f, g) -> open_paren prec 0; print 0 f; print_string " + "; print 0 g; close_paren prec 0 | Diff(f, g) -> open_paren prec 0; print 0 f; print_string " - "; print 1 g; close_paren prec 0 | Prod(f, g) -> open_paren prec 2; print 2 f; print_string " * "; print 2 g; close_paren prec 2 | Quot(f, g) -> open_paren prec 2; print 2 f; print_string " / "; print 3 g; close_paren prec 2 in print 0 exp;;
val print_expr : expression -> unit = <fun>
let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)
print_expr e; print_newline ();;
2. * x + 1. - : unit = ()
print_expr (deriv e "x"); print_newline ();;
2. * 1. + 0. * x + 0. - : unit = ()

1.10  Printf formats

There is a printf function in the Printf module (see chapter 2) that allows you to make formatted output more concisely. It follows the behavior of the printf function from the C standard library. The printf function takes a format string that describes the desired output as a text interspered with specifiers (for instance %d, %f). Next, the specifiers are substituted by the following arguments in their order of apparition in the format string:

Printf.printf "%i + %i is an integer value, %F * %F is a float, %S\n" 3 2 4.5 1. "this is a string";;
3 + 2 is an integer value, 4.5 * 1. is a float, "this is a string" - : unit = ()

The OCaml type system checks that the type of the arguments and the specifiers are compatible. If you pass it an argument of a type that does not correspond to the format specifier, the compiler will display an error message:

Printf.printf "Float value: %F" 42;;
Error: This expression has type int but an expression was expected of type float Hint: Did you mean `42.'?

The fprintf function is like printf except that it takes an output channel as the first argument. The %a specifier can be useful to define custom printer (for custom types). For instance, we can create a printing template that converts an integer argument to signed decimal:

let pp_int ppf n = Printf.fprintf ppf "%d" n;;
val pp_int : out_channel -> int -> unit = <fun>
Printf.printf "Outputting an integer using a custom printer: %a " pp_int 42;;
Outputting an integer using a custom printer: 42 - : unit = ()

The advantage of those printers based on the %a specifier is that they can be composed together to create more complex printers step by step. We can define a combinator that can turn a printer for 'a type into a printer for 'a optional:

let pp_option printer ppf = function | None -> Printf.fprintf ppf "None" | Some v -> Printf.fprintf ppf "Some(%a)" printer v;;
val pp_option : (out_channel -> 'a -> unit) -> out_channel -> 'a option -> unit = <fun>
Printf.fprintf stdout "The current setting is %a. \nThere is only %a\n" (pp_option pp_int) (Some 3) (pp_option pp_int) None ;;
The current setting is Some(3). There is only None - : unit = ()

If the value of its argument its None, the printer returned by pp_option printer prints None otherwise it uses the provided printer to print Some .

Here is how to rewrite the pretty-printer using fprintf:

let pp_expr ppf expr = let open_paren prec op_prec output = if prec > op_prec then Printf.fprintf output "%s" "(" in let close_paren prec op_prec output = if prec > op_prec then Printf.fprintf output "%s" ")" in let rec print prec ppf expr = match expr with | Const c -> Printf.fprintf ppf "%F" c | Var v -> Printf.fprintf ppf "%s" v | Sum(f, g) -> open_paren prec 0 ppf; Printf.fprintf ppf "%a + %a" (print 0) f (print 0) g; close_paren prec 0 ppf | Diff(f, g) -> open_paren prec 0 ppf; Printf.fprintf ppf "%a - %a" (print 0) f (print 1) g; close_paren prec 0 ppf | Prod(f, g) -> open_paren prec 2 ppf; Printf.fprintf ppf "%a * %a" (print 2) f (print 2) g; close_paren prec 2 ppf | Quot(f, g) -> open_paren prec 2 ppf; Printf.fprintf ppf "%a / %a" (print 2) f (print 3) g; close_paren prec 2 ppf in print 0 ppf expr;;
val pp_expr : out_channel -> expression -> unit = <fun>
pp_expr stdout e; print_newline ();;
2. * x + 1. - : unit = ()
pp_expr stdout (deriv e "x"); print_newline ();;
2. * 1. + 0. * x + 0. - : unit = ()

Due to the way that format string are build, storing a format string requires an explicit type annotation:

let str : _ format = "%i is an integer value, %F is a float, %S\n";;
Printf.printf str 3 4.5 "string value";;
3 is an integer value, 4.5 is a float, "string value" - : unit = ()

1.11  Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be compiled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt. The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive mode, types and values are not printed automatically; the program must call printing functions explicitly to produce some output. The ;; used in the interactive examples is not required in source files created for use with OCaml compilers, but can be helpful to mark the end of a top-level expression unambiguously even when there are syntax errors. Here is a sample standalone program to print the greatest common divisor (gcd) of two numbers:

(* File gcd.ml *)
let rec gcd a b =
  if b = 0 then a
  else gcd b (a mod b);;

let main () =
  let a = int_of_string Sys.argv.(1) in
  let b = int_of_string Sys.argv.(2) in
  Printf.printf "%d\n" (gcd a b);
  exit 0;;
main ();;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv.(1) is thus the first command-line parameter. The program above is compiled and executed with the following shell commands:

$ ocamlc -o gcd gcd.ml
$ ./gcd 6 9
3
$ ./fib 7 11
1

More complex standalone OCaml programs are typically composed of multiple source files, and can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-party build systems, such as the ocamlbuild compilation manager.

Chapter 2  The module system

This chapter introduces the module system of OCaml.

2.1  Structures

A primary motivation for modules is to package together related definitions (such as the definitions of a data type and associated operations over that type) and enforce a consistent naming scheme for these definitions. This avoids running out of names or accidentally confusing names. Such a package is called a structure and is introduced by the structend construct, which contains an arbitrary sequence of definitions. The structure is usually given a name with the module binding. Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue = struct type priority = int type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue let empty = Empty let rec insert queue prio elt = match queue with Empty -> Node(prio, elt, Empty, Empty) | Node(p, e, left, right) -> if prio <= p then Node(prio, elt, insert right p e, left) else Node(p, e, insert right prio elt, left) exception Queue_is_empty let rec remove_top = function Empty -> raise Queue_is_empty | Node(prio, elt, left, Empty) -> left | Node(prio, elt, Empty, right) -> right | Node(prio, elt, (Node(lprio, lelt, _, _) as left), (Node(rprio, relt, _, _) as right)) -> if lprio <= rprio then Node(lprio, lelt, remove_top left, right) else Node(rprio, relt, left, remove_top right) let extract = function Empty -> raise Queue_is_empty | Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue) end;;
module PrioQueue : sig type priority = int type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue val empty : 'a queue val insert : 'a queue -> priority -> 'a -> 'a queue exception Queue_is_empty val remove_top : 'a queue -> 'a queue val extract : 'a queue -> priority * 'a * 'a queue end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers qualified by a structure name. For instance, PrioQueue.insert is the function insert defined inside the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string PrioQueue.queue = PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module in the scope of the current structure.

open PrioQueue;;
insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to identify in which module a identifier has been defined. In particular, opened modules can shadow identifiers present in the current scope, potentially leading to confusing errors:

let empty = [] open PrioQueue;;
val empty : 'a list = []
let x = 1 :: empty ;;
Error: This expression has type 'a PrioQueue.queue but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of the module available only in the concerned expression. This can also make the code easier to read – the open statement is closer to where it is used– and to refactor – the code fragment is more self-contained. Two constructions are available for this purpose:

let open PrioQueue in insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

and

PrioQueue.(insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or bracket, the parentheses of the local open can be omitted. For instance,

PrioQueue.[empty] = PrioQueue.([empty]);;
- : bool = true
PrioQueue.[|empty|] = PrioQueue.([|empty|]);;
- : bool = true
PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty });;
- : bool = true

becomes

PrioQueue.[insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

This second form also works for patterns:

let at_most_one_element x = match x with | PrioQueue.( Empty| Node (_,_, Empty,Empty) ) -> true | _ -> false ;;
val at_most_one_element : 'a PrioQueue.queue -> bool = <fun>

It is also possible to copy the components of a module inside another module by using an include statement. This can be particularly useful to extend existing modules. As an illustration, we could add functions that returns an optional value rather than an exception when the priority queue is empty.

module PrioQueueOpt = struct include PrioQueue let remove_top_opt x = try Some(remove_top x) with Queue_is_empty -> None let extract_opt x = try Some(extract x) with Queue_is_empty -> None end;;
module PrioQueueOpt : sig type priority = int type 'a queue = 'a PrioQueue.queue = Empty | Node of priority * 'a * 'a queue * 'a queue val empty : 'a queue val insert : 'a queue -> priority -> 'a -> 'a queue exception Queue_is_empty val remove_top : 'a queue -> 'a queue val extract : 'a queue -> priority * 'a * 'a queue val remove_top_opt : 'a queue -> 'a queue option val extract_opt : 'a queue -> (priority * 'a * 'a queue) option end

2.2  Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure are accessible from the outside, and with which type. It can be used to hide some components of a structure (e.g. local function definitions) or export some components with a restricted type. For instance, the signature below specifies the three priority queue operations empty, insert and extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract (by not providing its actual representation as a concrete type).

module type PRIOQUEUE = sig type priority = int (* still concrete *) type 'a queue (* now abstract *) val empty : 'a queue val insert : 'a queue -> int -> 'a -> 'a queue val extract : 'a queue -> int * 'a * 'a queue exception Queue_is_empty end;;
module type PRIOQUEUE = sig type priority = int type 'a queue val empty : 'a queue val insert : 'a queue -> int -> 'a -> 'a queue val extract : 'a queue -> int * 'a * 'a queue exception Queue_is_empty end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue structure where the remove_top function is not accessible and the actual representation of priority queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE
AbstractPrioQueue.remove_top ;;
Error: Unbound value AbstractPrioQueue.remove_top
AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in

module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:

module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:

module type PRIOQUEUE_WITH_OPT = sig include PRIOQUEUE val extract_opt : 'a queue -> (int * 'a * 'a queue) option end;;
module type PRIOQUEUE_WITH_OPT = sig type priority = int type 'a queue val empty : 'a queue val insert : 'a queue -> int -> 'a -> 'a queue val extract : 'a queue -> int * 'a * 'a queue exception Queue_is_empty val extract_opt : 'a queue -> (int * 'a * 'a queue) option end

2.3  Functors

Functors are “functions” from modules to modules. Functors let you create parameterized modules and then provide other modules as parameter(s) to get a specific implementation. For instance, a Set module implementing sets as sorted lists could be parameterized to work with any module that provides an element type and a comparison function compare (such as OrderedString):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater
module type ORDERED_TYPE = sig type t val compare: t -> t -> comparison end;;
module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end
module Set = functor (Elt: ORDERED_TYPE) -> struct type element = Elt.t type set = element list let empty = [] let rec add x s = match s with [] -> [x] | hd::tl -> match Elt.compare x hd with Equal -> s (* x is already in s *) | Less -> x :: s (* x is smaller than all elements of s *) | Greater -> hd :: add x tl let rec member x s = match s with [] -> false | hd::tl -> match Elt.compare x hd with Equal -> true (* x belongs to s *) | Less -> false (* x is smaller than all elements of s *) | Greater -> member x tl end;;
module Set : functor (Elt : ORDERED_TYPE) -> sig type element = Elt.t type set = element list val empty : 'a list val add : Elt.t -> Elt.t list -> Elt.t list val member : Elt.t -> Elt.t list -> bool end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations for this type:

module OrderedString = struct type t = string let compare x y = if x = y then Equal else if x < y then Less else Greater end;;
module OrderedString : sig type t = string val compare : 'a -> 'a -> comparison end
module StringSet = Set(OrderedString);;
module StringSet : sig type element = OrderedString.t type set = element list val empty : 'a list val add : OrderedString.t -> OrderedString.t list -> OrderedString.t list val member : OrderedString.t -> OrderedString.t list -> bool end
StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4  Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the type set, so that users of the structure will not rely on sets being lists, and we can switch later to another, more efficient representation of sets without breaking their code. This can be achieved by restricting Set by a suitable functor signature:

module type SETFUNCTOR = functor (Elt: ORDERED_TYPE) -> sig type element = Elt.t (* concrete *) type set (* abstract *) val empty : set val add : element -> set -> set val member : element -> set -> bool end;;
module type SETFUNCTOR = functor (Elt : ORDERED_TYPE) -> sig type element = Elt.t type set val empty : set val add : element -> set -> set val member : element -> set -> bool end
module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR
module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet : sig type element = OrderedString.t type set = AbstractSet(OrderedString).set val empty : set val add : element -> set -> set val member : element -> set -> bool end
AbstractStringSet.add "gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the signature of the structure returned by the functor, then use that signature in the constraint:

module type SET = sig type element type set val empty : set val add : element -> set -> set val member : element -> set -> bool end;;
module type SET = sig type element type set val empty : set val add : element -> set -> set val member : element -> set -> bool end
module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (Elt : ORDERED_TYPE) -> SET
module WrongStringSet = WrongSet(OrderedString);;
module WrongStringSet : sig type element = WrongSet(OrderedString).element type set = WrongSet(OrderedString).set val empty : set val add : element -> set -> set val member : element -> set -> bool end
WrongStringSet.add "gee" WrongStringSet.empty ;;
Error: This expression has type string but an expression was expected of type WrongStringSet.element = WrongSet(OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality between element in the result of the functor and t in its argument is forgotten. Consequently, WrongStringSet.element is not the same type as string, and the operations of WrongStringSet cannot be applied to strings. As demonstrated above, it is important that the type element in the signature SET be declared equal to Elt.t; unfortunately, this is impossible above since SET is defined in a context where Elt does not exist. To overcome this difficulty, OCaml provides a with type construct over signatures that allows enriching a signature with extra type equalities:

module AbstractSet2 = (Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet2 : functor (Elt : ORDERED_TYPE) -> sig type element = Elt.t type set val empty : set val add : element -> set -> set val member : element -> set -> bool end

As in the case of simple structures, an alternate syntax is provided for defining functors and restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
  struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high degree of type safety, as we now illustrate. Consider an ordering over character strings that is different from the standard ordering implemented in the OrderedString structure. For instance, we compare strings without distinguishing upper and lower case.

module NoCaseString = struct type t = string let compare s1 s2 = OrderedString.compare (String.lowercase_ascii s1) (String.lowercase_ascii s2) end;;
module NoCaseString : sig type t = string val compare : string -> string -> comparison end
module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet : sig type element = NoCaseString.t type set = AbstractSet(NoCaseString).set val empty : set val add : element -> set -> set val member : element -> set -> bool end
NoCaseStringSet.add "FOO" AbstractStringSet.empty ;;
Error: This expression has type AbstractStringSet.set = AbstractSet(OrderedString).set but an expression was expected of type NoCaseStringSet.set = AbstractSet(NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible, and values of these two types do not match. This is the correct behavior: even though both set types contain elements of the same type (strings), they are built upon different orderings of that type, and different invariants need to be maintained by the operations (being strictly increasing for the standard ordering and for the case-insensitive ordering). Applying operations from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or build lists that violate the invariants of NoCaseStringSet.

2.5  Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However, modules are most useful for large, batch-compiled programs. For these programs, it is a practical necessity to split the source into several files, called compilation units, that can be compiled separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship between the units can be explained easily in terms of the module system. A compilation unit A comprises two files:

These two files together define a structure named A as if the following definition was entered at top-level:

module A: sig (* contents of file A.mli *) end
        = struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c command (the -c option means “compile only, do not try to link”); this produces compiled interface files (with extension .cmi) and compiled object code files (with extension .cmo). When all units have been compiled, their .cmo files are linked together using the ocamlc command. For instance, the following commands compile and link a program composed of two compilation units Aux and Main:

$ ocamlc -c Aux.mli                     # produces aux.cmi
$ ocamlc -c Aux.ml                      # produces aux.cmo
$ ocamlc -c Main.mli                    # produces main.cmi
$ ocamlc -c Main.ml                     # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end
          = struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end
           = struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions are exported in Aux.mli.

The order in which the .cmo files are given to ocamlc during the linking phase determines the order in which the module definitions occur. Hence, in the example above, Aux appears first and Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither functors nor module types. However, all module-class objects can appear as components of a structure, so the solution is to put the functor or module type inside a structure, which can then be mapped to a file.

Chapter 3  Objects in OCaml

(Chapter written by Jérôme Vouillon, Didier Rémy and Jacques Garrigue)



This chapter gives an overview of the object-oriented features of OCaml.

Note that the relationship between object, class and type in OCaml is different than in mainstream object-oriented languages such as Java and C++, so you shouldn’t assume that similar keywords mean the same thing. Object-oriented features are used much less frequently in OCaml than in those languages. OCaml has alternatives that are often more appropriate, such as modules and functors. Indeed, many OCaml programs do not use objects at all.

3.1  Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The initial value of the instance variable is 0. The variable x is declared mutable, so the method move can change its value.

class point = object val mutable x = 0 method get_x = x method move d = x <- x + d end;;
class point : object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.

let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the methods of class point along with their types.

We now invoke some methods of p:

p#get_x;;
- : int = 0
p#move 3;;
- : unit = ()
p#get_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in the following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref 0;;
val x0 : int ref = {contents = 0}
class point = object val mutable x = incr x0; !x0 method get_x = x method move d = x <- x + d end;;
class point : object val mutable x : int method get_x : int method move : int -> unit end
new point#get_x;;
- : int = 1
new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init -> object val mutable x = x_init method get_x = x method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_x : int method move : int -> unit end

Like in function definitions, the definition above can be abbreviated as:

class point x_init = object val mutable x = x_init method get_x = x method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_x : int method move : int -> unit end

An instance of the class point is now a function that expects an initial parameter to create a point object:

new point;;
- : int -> point = <fun>
let p = new point 7;;
val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods. For instance, the method get_offset in the class below returns the position of the object relative to its initial position.

class point x_init = object val mutable x = x_init method get_x = x method get_offset = x - x_init method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_offset : int method get_x : int method move : int -> unit end

Expressions can be evaluated and bound before defining the object body of the class. This is useful to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a grid, as follows:

class adjusted_point x_init = let origin = (x_init / 10) * 10 in object val mutable x = origin method get_x = x method get_offset = x - origin method move d = x <- x + d end;;
class adjusted_point : int -> object val mutable x : int method get_offset : int method get_x : int method move : int -> unit end

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same effect could here be obtained by calling the definition of class point with the value of the origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation function:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors can be defined this way to build objects of the same class but with different initialization patterns; an alternative is to use initializers, as described below in section 3.4.

3.2  Immediate objects

There is another, more direct way to create an object: create it without going through a class.

The syntax is exactly the same as for class expressions, but the result is a single object rather than a class. All the constructs described in the rest of this section also apply to immediate objects.

let p = object val mutable x = 0 method get_x = x method move d = x <- x + d end;;
val p : < get_x : int; move : int -> unit > = <obj>
p#get_x;;
- : int = 0
p#move 3;;
- : unit = ()
p#get_x;;
- : int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear anywhere, using variables from their environment.

let minmax x y = if x < y then object method min = x method max = y end else object method min = y method max = x end;;
val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated, and you cannot inherit from them. But these two weaknesses can be advantages in some situations, as we will see in sections 3.3 and 3.10.

3.3  Reference to self

A method or an initializer can invoke methods on self (that is, the current object). For that, self must be explicitly bound, here to the variable s (s could be any identifier, even though we will often choose the name self.)

class printable_point x_init = object (s) val mutable x = x_init method get_x = x method move d = x <- x + d method print = print_int s#get_x end;;
class printable_point : int -> object val mutable x : int method get_x : int method move : int -> unit method print : unit end
let p = new printable_point 7;;
val p : printable_point = <obj>
p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

A common problem with self is that, as its type may be extended in subclasses, you cannot fix it in advance. Here is a simple example.

let ints = ref [];;
val ints : '_weak1 list ref = {contents = []}
class my_int = object (self) method n = 1 method register = ints := self :: !ints end ;;
Error: This expression has type < n : int; register : 'a; .. > but an expression was expected of type 'weak1 Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self into an external reference would make it impossible to extend it through inheritance. We will see in section 3.12 a workaround to this problem. Note however that, since immediate objects are not extensible, the problem does not occur with them.

let my_int = object (self) method n = 1 method register = ints := self :: !ints end;;
val my_int : < n : int; register : unit > = <obj>

3.4  Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible to evaluate an expression immediately after the object has been built. Such code is written as an anonymous hidden method called an initializer. Therefore, it can access self and the instance variables.

class printable_point x_init = let origin = (x_init / 10) * 10 in object (self) val mutable x = origin method get_x = x method move d = x <- x + d method print = print_int self#get_x initializer print_string "new point at "; self#print; print_newline () end;;
class printable_point : int -> object val mutable x : int method get_x : int method move : int -> unit method print : unit end
let p = new printable_point 17;;
new point at 10 val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Initializers are particularly useful to enforce invariants. Another example can be seen in section 6.1.

3.5  Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This method will be provided later in subclasses. A class containing virtual methods must be flagged virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init = object (self) method virtual get_x : int method get_offset = self#get_x - x_init method virtual move : int -> unit end;;
class virtual abstract_point : int -> object method get_offset : int method virtual get_x : int method virtual move : int -> unit end
class point x_init = object inherit abstract_point x_init val mutable x = x_init method get_x = x method move d = x <- x + d end;;
class point : int -> object val mutable x : int method get_offset : int method get_x : int method move : int -> unit end

Instance variables can also be declared as virtual, with the same effect as with methods.

class virtual abstract_point2 = object val mutable virtual x : int method move d = x <- x + d end;;
class virtual abstract_point2 : object val mutable virtual x : int method move : int -> unit end
class point2 x_init = object inherit abstract_point2 val mutable x = x_init method get_offset = x - x_init end;;
class point2 : int -> object val mutable x : int method get_offset : int method move : int -> unit end

3.6  Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked from other methods of the same object.

class restricted_point x_init = object (self) val mutable x = x_init method get_x = x method private move d = x <- x + d method bump = self#move 1 end;;
class restricted_point : int -> object val mutable x : int method bump : unit method get_x : int method private move : int -> unit end
let p = new restricted_point 0;;
val p : restricted_point = <obj>
p#move 10 ;;
Error: This expression has type restricted_point It has no method move
p#bump;;
- : unit = ()

Note that this is not the same thing as private and protected methods in Java or C++, which can be called from other objects of the same class. This is a direct consequence of the independence between types and classes in OCaml: two unrelated classes may produce objects of the same type, and there is no way at the type level to ensure that an object comes from a specific class. However a possible encoding of friend methods is given in section 3.17.

Private methods are inherited (they are by default visible in subclasses), unless they are hidden by signature matching, as described below.

Private methods can be made public in a subclass.

class point_again x = object (self) inherit restricted_point x method virtual move : _ end;;
class point_again : int -> object val mutable x : int method bump : unit method get_x : int method move : int -> unit end

The annotation virtual here is only used to mention a method without providing its definition. Since we didn’t add the private annotation, this makes the method public, keeping the original definition.

An alternative definition is

class point_again x = object (self : < move : _; ..> ) inherit restricted_point x end;;
class point_again : int -> object val mutable x : int method bump : unit method get_x : int method move : int -> unit end

The constraint on self’s type is requiring a public move method, and this is sufficient to override private.

One could think that a private method should remain private in a subclass. However, since the method is visible in a subclass, it is always possible to pick its code and define a method of the same name that runs that code, so yet another (heavier) solution would be:

class point_again x = object inherit restricted_point x as super method move = super#move end;;
class point_again : int -> object val mutable x : int method bump : unit method get_x : int method move : int -> unit end

Of course, private methods can also be virtual. Then, the keywords must appear in this order method private virtual.

3.7  Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to restrict the type of a class. Like class declarations, they also define a new type abbreviation.

class type restricted_point_type = object method get_x : int method bump : unit end;;
class type restricted_point_type = object method bump : unit method get_x : int end
fun (x : restricted_point_type) -> x;;
- : restricted_point_type -> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a class. Both concrete instance variables and concrete private methods can be hidden by a class type constraint. Public methods and virtual members, however, cannot.

class restricted_point' x = (restricted_point x : restricted_point_type);;
class restricted_point' : int -> restricted_point_type

Or, equivalently:

class restricted_point' = (restricted_point : int -> restricted_point_type);;
class restricted_point' : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred signature of a module.

module type POINT = sig class restricted_point' : int -> object method get_x : int method bump : unit end end;;
module type POINT = sig class restricted_point' : int -> object method bump : unit method get_x : int end end
module Point : POINT = struct class restricted_point' = restricted_point end;;
module Point : POINT

3.8  Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points. This class has all instance variables and all methods of class point, plus a new instance variable c and a new method color.

class colored_point x (c : string) = object inherit point x val c = c method color = c end;;
class colored_point : int -> string -> object val c : string val mutable x : int method color : string method get_offset : int method get_x : int method move : int -> unit end
let p' = new colored_point 5 "red";;
val p' : colored_point = <obj>
p'#get_x, p'#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However, the function get_x below is a generic function applying method get_x to any object p that has this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it applies to both points and colored points.

let get_succ_x p = p#get_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>
get_succ_x p + get_succ_x p';;
- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
val set_x : < set_x : 'a; .. > -> 'a = <fun>
let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>

3.9  Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a subclass of a method that was visible in the parent class overrides the definition in the parent class. Previous definitions of a method can be reused by binding the related ancestor. Below, super is bound to the ancestor printable_point. The name super is a pseudo value identifier that can only be used to invoke a super-class method, as in super#print.

class printable_colored_point y c = object (self) val c = c method color = c inherit printable_point y as super method! print = print_string "("; super#print; print_string ", "; print_string (self#color); print_string ")" end;;
class printable_colored_point : int -> string -> object val c : string val mutable x : int method color : string method get_x : int method move : int -> unit method print : unit end
let p' = new printable_colored_point 17 "red";;
new point at (10, red) val p' : printable_colored_point = <obj>
p'#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not overridden. Since initializers are treated as private methods, all initializers along the class hierarchy are evaluated, in the order they are introduced.

Note that for clarity’s sake, the method print is explicitly marked as overriding another definition by annotating the method keyword with an exclamation mark !. If the method print were not overriding the print method of printable_point, the compiler would raise an error:

object method! m = () end;;
Error: The method `m' has no previous definition

This explicit overriding annotation also works for val and inherit:

class another_printable_colored_point y c c' = object (self) inherit printable_point y inherit! printable_colored_point y c val! c = c' end;;
class another_printable_colored_point : int -> string -> string -> object val c : string val mutable x : int method color : string method get_x : int method move : int -> unit method print : unit end

3.10  Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

class oref x_init = object val mutable x = x_init method get = x method set y = x <- y end;;
Error: Some type variables are unbound in this type: class oref : 'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end The method get has type 'a where 'a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value stored in the reference cell), thus either the class should be parametric, or the method type should be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

class oref (x_init:int) = object val mutable x = x_init method get = x method set y = x <- y end;;
class oref : int -> object val mutable x : int method get : int method set : int -> unit end

Note that since immediate objects do not define a class type, they have no such restriction.

let new_oref x_init = object val mutable x = x_init method get = x method set y = x <- y end;;
val new_oref : 'a -> < get : 'a; set : 'a -> unit > = <fun>

On the other hand, a class for polymorphic references must explicitly list the type parameters in its declaration. Class type parameters are listed between [ and ]. The type parameters must also be bound somewhere in the class body by a type constraint.

class ['a] oref x_init = object val mutable x = (x_init : 'a) method get = x method set y = x <- y end;;
class ['a] oref : 'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end
let r = new oref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class definition. In the class type, the actual value of the type parameter is displayed in the constraint clause.

class ['a] oref_succ (x_init:'a) = object val mutable x = x_init + 1 method get = x method set y = x <- y end;;
class ['a] oref_succ : 'a -> object constraint 'a = int val mutable x : int method get : int method set : int -> unit end

Let us consider a more complex example: define a circle, whose center may be any kind of point. We put an additional type constraint in method move, since no free variables must remain unaccounted for by the class type parameters.

class ['a] circle (c : 'a) = object val mutable center = c method center = center method set_center c = center <- c method move = (center#move : int -> unit) end;;
class ['a] circle : 'a -> object constraint 'a = < move : int -> unit; .. > val mutable center : 'a method center : 'a method move : int -> unit method set_center : 'a -> unit end

An alternate definition of circle, using a constraint clause in the class definition, is shown below. The type #point used below in the constraint clause is an abbreviation produced by the definition of class point. This abbreviation unifies with the type of any object belonging to a subclass of class point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the following alternate definition of circle, which has slightly stronger constraints on its argument, as we now expect center to have a method get_x.

class ['a] circle (c : 'a) = object constraint 'a = #point val mutable center = c method center = center method set_center c = center <- c method move = center#move end;;
class ['a] circle : 'a -> object constraint 'a = #point val mutable center : 'a method center : 'a method move : int -> unit method set_center : 'a -> unit end

The class colored_circle is a specialized version of class circle that requires the type of the center to unify with #colored_point, and adds a method color. Note that when specializing a parameterized class, the instance of type parameter must always be explicitly given. It is again written between [ and ].

class ['a] colored_circle c = object constraint 'a = #colored_point inherit ['a] circle c method color = center#color end;;
class ['a] colored_circle : 'a -> object constraint 'a = #colored_point val mutable center : 'a method center : 'a method color : string method move : int -> unit method set_center : 'a -> unit end

3.11  Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow polymorphism of method use.

A classical example is defining an iterator.

List.fold_left;;
- : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
class ['a] intlist (l : int list) = object method empty = (l = []) method fold f (accu : 'a) = List.fold_left f accu l end;;
class ['a] intlist : int list -> object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

At first look, we seem to have a polymorphic iterator, however this does not work in practice.

let l = new intlist [1; 2; 3];;
val l : '_weak2 intlist = <obj>
l#fold (fun x y -> x+y) 0;;
- : int = 6
l;;
- : int intlist = <obj>
l#fold (fun s x -> s ^ Int.to_string x ^ " ") "" ;;
Error: This expression has type int but an expression was expected of type string

Our iterator works, as shows its first use for summation. However, since objects themselves are not polymorphic (only their constructors are), using the fold method fixes its type for this individual object. Our next attempt to use it as a string iterator fails.

The problem here is that quantification was wrongly located: it is not the class we want to be polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic type in the method definition.

class intlist (l : int list) = object method empty = (l = []) method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a = fun f accu -> List.fold_left f accu l end;;
class intlist : int list -> object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end
let l = new intlist [1; 2; 3];;
val l : intlist = <obj>
l#fold (fun x y -> x+y) 0;;
- : int = 6
l#fold (fun s x -> s ^ Int.to_string x ^ " ") "";;
- : string = "1 2 3 "

As you can see in the class type shown by the compiler, while polymorphic method types must be fully explicit in class definitions (appearing immediately after the method name), quantified type variables can be left implicit in class descriptions. Why require types to be explicit? The problem is that (int -> int -> int) -> int -> int would also be a valid type for fold, and it happens to be incompatible with the polymorphic type we gave (automatic instantiation only works for toplevel types variables, not for inner quantifiers, where it becomes an undecidable problem.) So the compiler cannot choose between those two types, and must be helped.

However, the type can be completely omitted in the class definition if it is already known, through inheritance or type constraints on self. Here is an example of method overriding.

class intlist_rev l = object inherit intlist l method! fold f accu = List.fold_left f accu (List.rev l) end;;

The following idiom separates description and definition.

class type ['a] iterator = object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;
class intlist' l = object (self : int #iterator) method empty = (l = []) method fold f accu = List.fold_left f accu l end;;

Note here the (self : int #iterator) idiom, which ensures that this object implements the interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should be aware of some limitations of type inference. Namely, a polymorphic method can only be called if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic, and given an incompatible type.

let sum lst = lst#fold (fun x y -> x+y) 0;;
val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>
sum l ;;
Error: This expression has type intlist but an expression was expected of type < fold : (int -> int -> int) -> int -> 'a; .. > Types for method fold are incompatible

The workaround is easy: you should put a type constraint on the parameter.

let sum (lst : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurrences of quantified variables are required.

let sum lst = (lst : < fold : 'a. ('a -> _ -> 'a) -> 'a -> 'a; .. >)#fold (+) 0;;
val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>

Another use of polymorphic methods is to allow some form of implicit subtyping in method arguments. We have already seen in section 3.8 how some functions may be polymorphic in the class of their argument. This can be extended to methods.

class type point0 = object method get_x : int end;;
class type point0 = object method get_x : int end
class distance_point x = object inherit point x method distance : 'a. (#point0 as 'a) -> int = fun other -> abs (other#get_x - x) end;;
class distance_point : int -> object val mutable x : int method distance : #point0 -> int method get_offset : int method get_x : int method move : int -> unit end
let p = new distance_point 3 in (p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
- : int * int = (5, 2)

Note here the special syntax (#point0 as 'a) we have to use to quantify the extensible part of #point0. As for the variable binder, it can be omitted in class specifications. If you want polymorphism inside object field it must be quantified independently.

class multi_poly = object method m1 : 'a. (< n1 : 'b. 'b -> 'b; .. > as 'a) -> _ = fun o -> o#n1 true, o#n1 "hello" method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) -> 'b -> _ = fun o x -> o#n2 x end;;
class multi_poly : object method m1 : < n1 : 'b. 'b -> 'b; .. > -> bool * string method m2 : < n2 : 'b -> bool; .. > -> 'b -> bool end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2, the argument of n2 and x must have the same type, which is quantified at the same level as 'a.

3.12  Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general construction is fully explicit: both the domain and the codomain of the type coercion must be given.

We have seen that points and colored points have incompatible types. For instance, they cannot be mixed in the same list. However, a colored point can be coerced to a point, hiding its color method:

let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>
let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj> val q : colored_point = <obj>
let l = [p; (colored_point_to_point q)];;
val l : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t' only if t is a subtype of t'. For instance, a point cannot be seen as a colored point.

(p : point :> colored_point);;
Error: Type point = < get_offset : int; get_x : int; move : int -> unit > is not a subtype of colored_point = < color : string; get_offset : int; get_x : int; move : int -> unit > The first object type has no method color

Indeed, narrowing coercions without runtime checks would be unsafe. Runtime type checks might raise exceptions, and they would require the presence of type information at runtime, which is not the case in the OCaml system. For these reasons, there is no such operation available in the language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation between classes while subtyping is a semantic relation between types. For instance, the class of colored points could have been defined directly, without inheriting from the class of points; the type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can often be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable. Consider, for example, the following class:

class c0 = object method m = {< >} method n = 0 end;;
class c0 : object ('a) method m : 'a method n : int end

The object type c0 is an abbreviation for <m : 'a; n : int> as 'a. Consider now the type declaration:

class type c1 = object method m : c1 end;;
class type c1 = object method m : c1 end

The object type c1 is an abbreviation for the type <m : 'a> as 'a. The coercion from an object of type c0 to an object of type c1 is correct:

fun (x:c0) -> (x : c0 :> c1);;
- : c0 -> c1 = <fun>

However, the domain of the coercion cannot always be omitted. In that case, the solution is to use the explicit form. Sometimes, a change in the class-type definition can also solve the problem

class type c2 = object ('a) method m : 'a end;;
class type c2 = object ('a) method m : 'a end
fun (x:c0) -> (x :> c2);;
- : c0 -> c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object type (same method names and types). Yet, when the domain of a coercion is left implicit and its co-domain is an abbreviation of a known class type, then the class type, rather than the object type, is used to derive the coercion function. This allows leaving the domain implicit in most cases when coercing form a subclass to its superclass. The type of a coercion can always be seen as below:

let to_c1 x = (x :> c1);;
val to_c1 : < m : #c1; .. > -> c1 = <fun>
let to_c2 x = (x :> c2);;
val to_c2 : #c2 -> c2 = <fun>

Note the difference between these two coercions: in the case of to_c2, the type #c2 = < m : 'a; .. > as 'a is polymorphically recursive (according to the explicit recursion in the class type of c2); hence the success of applying this coercion to an object of class c0. On the other hand, in the first case, c1 was only expanded and unrolled twice to obtain < m : < m : c1; .. >; .. > (remember #c1 = < m : c1; .. >), without introducing recursion. You may also note that the type of to_c2 is #c2 -> c2 while the type of to_c1 is more general than #c1 -> c1. This is not always true, since there are class types for which some instances of #c are not subtypes of c, as explained in section 3.16. Yet, for parameterless classes the coercion (_ :> c) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class c while defining class c. The problem is due to the type abbreviation not being completely defined yet, and so its subtypes are not clearly known. Then, a coercion (_ :> c) or (_ : #c :> c) is taken to be the identity function, as in

function x -> (x :> 'a);;
- : 'a -> 'a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is unified with the closed type c (a closed object type is an object type without ellipsis). This would constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed: this would prevent any further extension of the class. Therefore, a type error is generated when the unification of this type with another type would result in a closed object type.

class c = object method m = 1 end and d = object (self) inherit c method n = 2 method as_c = (self :> c) end;;
Error: This expression cannot be coerced to type c = < m : int >; it has type < as_c : c; m : int; n : int; .. > but is here used with type c Self type cannot escape its class

However, the most common instance of this problem, coercing self to its current class, is detected as a special case by the type checker, and properly typed.

class c = object (self) method m = (self :> c) end;;
class c : object method m : c end

This allows the following idiom, keeping a list of all objects belonging to a class or its subclasses:

let all_c = ref [];;
val all_c : '_weak3 list ref = {contents = []}
class c (m : int) = object (self) method m = m initializer all_c := (self :> c) :: !all_c end;;
class c : int -> object method m : int end

This idiom can in turn be used to retrieve an object whose type has been weakened:

let rec lookup_obj obj = function [] -> raise Not_found | obj' :: l -> if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj l ;;
val lookup_obj : < .. > -> (< .. > as 'a) list -> 'a = <fun>
let lookup_c obj = lookup_obj obj !all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of c, due to the use of a reference; we have succeeded in getting back an object of type c.


The previous coercion problem can often be avoided by first defining the abbreviation, using a class type:

class type c' = object method m : int end;;
class type c' = object method m : int end
class c : c' = object method m = 1 end and d = object (self) inherit c method n = 2 method as_c = (self :> c') end;;
class c : c' and d : object method as_c : c' method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously forces all methods of c to have the same type as the methods of c'.

class virtual c' = object method virtual m : int end;;
class virtual c' : object method virtual m : int end
class c = object (self) inherit c' method m = 1 end;;
class c : object method m : int end

One could think of defining the type abbreviation directly:

type c' = <m : int>;;

However, the abbreviation #c' cannot be defined directly in a similar way. It can only be defined by a class or a class-type definition. This is because a #-abbreviation carries an implicit anonymous variable .. that cannot be explicitly named. The closer you get to it is:

type 'a c'_class = 'a constraint 'a = < m : int; .. >;;

with an extra type variable capturing the open object type.

3.13  Functional objects

It is possible to write a version of class point without assignments on the instance variables. The override construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing the value of some instance variables.

class functional_point y = object val x = y method get_x = x method move d = {< x = x + d >} method move_to x = {< x >} end;;
class functional_point : int -> object ('a) val x : int method get_x : int method move : int -> 'a method move_to : int -> 'a end
let p = new functional_point 7;;
val p : functional_point = <obj>
p#get_x;;
- : int = 7
(p#move 3)#get_x;;
- : int = 10
(p#move_to 15)#get_x;;
- : int = 15
p#get_x;;
- : int = 7

As with records, the form {< x >} is an elided version of {< x = x >} which avoids the repetition of the instance variable name. Note that the type abbreviation functional_point is recursive, which can be seen in the class type of functional_point: the type of self is 'a and 'a appears inside the type of the method move.

The above definition of functional_point is not equivalent to the following:

class bad_functional_point y = object val x = y method get_x = x method move d = new bad_functional_point (x+d) method move_to x = new bad_functional_point x end;;
class bad_functional_point : int -> object val x : int method get_x : int method move : int -> bad_functional_point method move_to : int -> bad_functional_point end

While objects of either class will behave the same, objects of their subclasses will be different. In a subclass of bad_functional_point, the method move will keep returning an object of the parent class. On the contrary, in a subclass of functional_point, the method move will return an object of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section 6.2.1.

3.14  Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo.copy makes a shallow copy of an object. That is, it returns a new object that has the same methods and instance variables as its argument. The instance variables are copied but their contents are shared. Assigning a new value to an instance variable of the copy (using a method call) will not affect instance variables of the original, and conversely. A deeper assignment (for example if the instance variable is a reference cell) will of course affect both the original and the copy.

The type of Oo.copy is the following:

Oo.copy;;
- : (< .. > as 'a) -> 'a = <fun>

The keyword as in that type binds the type variable 'a to the object type < .. >. Therefore, Oo.copy takes an object with any methods (represented by the ellipsis), and returns an object of the same type. The type of Oo.copy is different from type < .. > -> < .. > as each ellipsis represents a different set of methods. Ellipsis actually behaves as a type variable.

let p = new point 5;;
val p : point = <obj>
let q = Oo.copy p;;
val q : point = <obj>
q#move 7; (p#get_x, q#get_x);;
- : int * int = (5, 12)

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >} has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are equal if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val q : point = <obj>
p = q, p = p;;
- : bool * bool = (false, true)

Other generic comparisons such as (<, <=, ...) can also be used on objects. The relation < defines an unspecified but strict ordering on objects. The ordering relationship between two objects is fixed once for all after the two objects have been created and it is not affected by mutation of fields.

Cloning and override have a non empty intersection. They are interchangeable when used within an object and without overriding any field:

class copy = object method copy = {< >} end;;
class copy : object ('a) method copy : 'a end
class copy = object (self) method copy = Oo.copy self end;;
class copy : object ('a) method copy : 'a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be used externally.

Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup = object (self : 'mytype) val mutable copy = None method save = copy <- Some {< copy = None >} method restore = match copy with Some x -> x | None -> self end;;
class backup : object ('a) val mutable copy : 'a option method restore : 'a method save : unit end

The above definition will only backup one level. The backup facility can be added to any class by using multiple inheritance.

class ['a] backup_ref x = object inherit ['a] oref x inherit backup end;;
class ['a] backup_ref : 'a -> object ('b) val mutable copy : 'b option val mutable x : 'a method get : 'a method restore : 'b method save : unit method set : 'a -> unit end
let rec get p n = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>
let p = new backup_ref 0 in p # save; p # set 1; p # save; p # set 2; [get p 0; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 1; 1; 1]

We can define a variant of backup that retains all copies. (We also add a method clear to manually erase all copies.)

class backup = object (self : 'mytype) val mutable copy = None method save = copy <- Some {< >} method restore = match copy with Some x -> x | None -> self method clear = copy <- None end;;
class backup : object ('a) val mutable copy : 'a option method clear : unit method restore : 'a method save : unit end
class ['a] backup_ref x = object inherit ['a] oref x inherit backup end;;
class ['a] backup_ref : 'a -> object ('b) val mutable copy : 'b option val mutable x : 'a method clear : unit method get : 'a method restore : 'b method save : unit method set : 'a -> unit end
let p = new backup_ref 0 in p # save; p # set 1; p # save; p # set 2; [get p 0; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 0; 0; 0]

3.15  Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

class window = object val mutable top_widget = (None : widget option) method top_widget = top_widget end and widget (w : window) = object val window = w method window = window end;;
class window : object val mutable top_widget : widget option method top_widget : widget option end and widget : window -> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves independent.

3.16  Binary methods

A binary method is a method which takes an argument of the same type as self. The class comparable below is a template for classes with a binary method leq of type 'a -> bool where the type variable 'a is bound to the type of self. Therefore, #comparable expands to < leq : 'a -> bool; .. > as 'a. We see here that the binder as also allows writing recursive types.

class virtual comparable = object (_ : 'a) method virtual leq : 'a -> bool end;;
class virtual comparable : object ('a) method virtual leq : 'a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable objects. We will extend it below with more operations. We have to use a type constraint on the class parameter x because the primitive <= is a polymorphic function in OCaml. The inherit clause ensures that the type of objects of this class is an instance of #comparable.

class money (x : float) = object inherit comparable val repr = x method value = repr method leq p = repr <= p#value end;;
class money : float -> object ('a) val repr : float method leq : 'a -> bool method value : float end

Note that the type money is not a subtype of type comparable, as the self type appears in contravariant position in the type of method leq. Indeed, an object m of class money has a method leq that expects an argument of type money since it accesses its value method. Considering m of type comparable would allow a call to method leq on m with an argument that does not have a method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

class money2 x = object inherit money x method times k = {< repr = k *. repr >} end;;
class money2 : float -> object ('a) val repr : float method leq : 'a -> bool method times : float -> 'a method value : float end

It is however possible to define functions that manipulate objects of type either money or money2: the function min will return the minimum of any two objects whose type unifies with #comparable. The type of min is not the same as #comparable -> #comparable -> #comparable, as the abbreviation #comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation generates a new variable.

let min (x : #comparable) y = if x#leq y then x else y;;
val min : (#comparable as 'a) -> 'a -> 'a = <fun>

This function can be applied to objects of type money or money2.

(min (new money 1.3) (new money 3.1))#value;;
- : float = 1.3
(min (new money2 5.0) (new money2 3.14))#value;;
- : float = 3.14

More examples of binary methods can be found in sections 6.2.1 and 6.2.3.

Note the use of override for method times. Writing new money2 (k *. repr) instead of {< repr = k *. repr >} would not behave well with inheritance: in a subclass money3 of money2 the times method would return an object of class money2 but not of class money3 as would be expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x = object (self : 'a) val repr = x method value = repr method print = print_float repr method times k = {< repr = k *. x >} method leq (p : 'a) = repr <= p#value method plus (p : 'a) = {< repr = x +. p#value >} end;;
class money : float -> object ('a) val repr : float method leq : 'a -> bool method plus : 'a -> 'a method print : unit method times : float -> 'a method value : float end

3.17  Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact with other objects of the same class, the representation of money objects must be revealed, using a method such as value. If we remove all binary methods (here plus and leq), the representation can easily be hidden inside objects by removing the method value as well. However, this is not possible as soon as some binary method requires access to the representation of objects of the same class (other than self).

class safe_money x = object (self : 'a) val repr = x method print = print_float repr method times k = {< repr = k *. x >} end;;
class safe_money : float -> object ('a) val repr : float method print : unit method times : float -> 'a end

Here, the representation of the object is known only to a particular object. To make it available to other objects of the same class, we are forced to make it available to the whole world. However we can easily restrict the visibility of the representation using the module system.

module type MONEY = sig type t class c : float -> object ('a) val repr : t method value : t method print : unit method times : float -> 'a method leq : 'a -> bool method plus : 'a -> 'a end end;;
module Euro : MONEY = struct type t = float class c x = object (self : 'a) val repr = x method value = repr method print = print_float repr method times k = {< repr = k *. x >} method leq (p : 'a) = repr <= p#value method plus (p : 'a) = {< repr = x +. p#value >} end end;;

Another example of friend functions may be found in section 6.2.3. These examples occur when a group of objects (here objects of the same class) and functions should see each others internal representation, while their representation should be hidden from the outside. The solution is always to define all friends in the same module, give access to the representation and use a signature constraint to make the representation abstract outside the module.

Chapter 4  Labels and variants

(Chapter written by Jacques Garrigue)



This chapter gives an overview of the new features in OCaml 3: labels, and polymorphic variants.

4.1  Labels

If you have a look at modules ending in Labels in the standard library, you will see that function types have annotations you did not have in the functions you defined yourself.

ListLabels.map;;
- : f:('a -> 'b) -> 'a list -> 'b list = <fun>
StringLabels.sub;;
- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code, allow more checking, and give more flexibility to function application. You can give such names to arguments in your programs, by prefixing them with a tilde ~.

let f ~x ~y = x - y;;
val f : x:int -> y:int -> int = <fun>
let x = 3 and y = 2 in f ~x ~y;;
- : int = 1

When you want to use distinct names for the variable and the label appearing in the type, you can use a naming label of the form ~name:. This also applies when the argument is not a variable.

let f ~x:x1 ~y:y1 = x1 - y1;;
val f : x:int -> y:int -> int = <fun>
f ~x:3 ~y:2;;
- : int = 1

Labels obey the same rules as other identifiers in OCaml, that is you cannot use a reserved keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labels1, the absence of label being interpreted as the empty label. This allows commuting arguments in applications. One can also partially apply a function on any argument, creating a new function of the remaining parameters.

let f ~x ~y = x - y;;
val f : x:int -> y:int -> int = <fun>
f ~y:2 ~x:3;;
- : int = 1
ListLabels.fold_left;;
- : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a = <fun>
ListLabels.fold_left [1;2;3] ~init:0 ~f:( + );;
- : int = 6
ListLabels.fold_left ~init:0;;
- : f:(int -> 'a -> int) -> 'a list -> int = <fun>

If several arguments of a function bear the same label (or no label), they will not commute among themselves, and order matters. But they can still commute with other arguments.

let hline ~x:x1 ~x:x2 ~y = (x1, x2, y);;
val hline : x:'a -> x:'b -> y:'c -> 'a * 'b * 'c = <fun>
hline ~x:3 ~y:2 ~x:5;;
- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total (omitting all optional arguments), labels may be omitted. In practice, many applications are total, so that labels can often be omitted.

f 3 2;;
- : int = 1
ListLabels.map succ [1;2;3];;
- : int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will never be considered as totally applied.

ListLabels.fold_left ( + ) 0 [1;2;3];;
Error: This expression has type int -> int -> int but an expression was expected of type 'a list

When a function is passed as an argument to a higher-order function, labels must match in both types. Neither adding nor removing labels are allowed.

let h g = g ~x:3 ~y:2;;
val h : (x:int -> y:int -> 'a) -> 'a = <fun>
h f;;
- : int = 1
h ( + ) ;;
Error: This expression has type int -> int -> int but an expression was expected of type x:int -> y:int -> 'a

Note that when you don’t need an argument, you can still use a wildcard pattern, but you must prefix it with the label.

h (fun ~x:_ ~y -> y+1);;
- : int = 3

4.1.1  Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also prefixed by ? in the function type. Default values may be given for such optional parameters.

let bump ?(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>
bump 2;;
- : int = 3
bump ~step:3 2;;
- : int = 5

A function taking some optional arguments must also take at least one non-optional argument. The criterion for deciding whether an optional argument has been omitted is the non-labeled application of an argument appearing after this optional argument in the function type. Note that if that argument is labeled, you will only be able to eliminate optional arguments by totally applying the function, omitting all optional arguments and omitting all labels for all remaining arguments.

let test ?(x = 0) ?(y = 0) () ?(z = 0) () = (x, y, z);;
val test : ?x:int -> ?y:int -> unit -> ?z:int -> unit -> int * int * int = <fun>
test ();;
- : ?z:int -> unit -> int * int * int = <fun>
test ~x:2 () ~z:3 ();;
- : int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabeled ones, as long as they are applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments applied independently.

test ~y:2 ~x:3 () ();;
- : int * int * int = (3, 2, 0)
test () () ~z:1 ~y:2 ~x:3;;
- : int * int * int = (3, 2, 1)
(test () ()) ~z:1 ;;
Error: This expression has type int * int * int This is not a function; it cannot be applied.

Here (test () ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default value, you have access to their internal representation, type 'a option = None | Some of 'a. You can then provide different behaviors when an argument is present or not.

let bump ?step x = match step with | None -> x * 2 | Some y -> x + y ;;
val bump : ?step:int -> int -> int = <fun>

It may also be useful to relay an optional argument from a function call to another. This can be done by prefixing the applied argument with ?. This question mark disables the wrapping of optional argument in an option type.

let test2 ?x ?y () = test ?x ?y () ();;
val test2 : ?x:int -> ?y:int -> unit -> int * int * int = <fun>
test2 ?x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2  Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional arguments have the pitfall that they cannot be inferred as completely as the rest of the language.

You can see it in the following two examples.

let h' g = g ~y:2 ~x:3;;
val h' : (y:int -> x:int -> 'a) -> 'a = <fun>
h' f ;;
Error: This expression has type x:int -> y:int -> int but an expression was expected of type y:int -> x:int -> 'a
let bump_it bump x = bump ~step:2 x;;
val bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <fun>
bump_it bump 1 ;;
Error: This expression has type ?step:int -> int -> int but an expression was expected of type step:int -> 'a -> 'b

The first case is simple: g is passed ~y and then ~x, but f expects ~x and then ~y. This is correctly handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this causes the above type clash. The simplest workaround is to apply formal parameters in a standard order.

The second example is more subtle: while we intended the argument bump to be of type ?step:int -> int -> int, it is inferred as step:int -> int -> 'a. These two types being incompatible (internally normal and optional arguments are different), a type error occurs when applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand that there is not enough information in the above program to deduce the correct type of g or bump. That is, there is no way to know whether an argument is optional or not, or which is the correct order, by looking only at how a function is applied. The strategy used by the compiler is to assume that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the argument bump.

let bump_it (bump : ?step:int -> int -> int) x = bump ~step:2 x;;
val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
bump_it bump 1;;
- : int = 3

In practice, such problems appear mostly when using objects whose methods have optional arguments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter whose type is different from the expected one. However, in the specific case where the expected type is a non-labeled function type, and the argument is a function expecting optional parameters, the compiler will attempt to transform the argument to have it match the expected type, by passing None for all optional parameters.

let twice f (x : int) = f(f x);;
val twice : (int -> int) -> int -> int = <fun>
twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if the application of optional parameters shall produce side-effects, these are delayed until the received function is really applied to an argument.

4.1.3  Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling which

We explain here the rules we applied when labeling OCaml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument, its object, and other arguments related with its action, the parameters. To permit the combination of functions through functionals in commuting label mode, the object will not be labeled. Its role is clear from the function itself. The parameters are labeled with names reminding of their nature or their role. The best labels combine nature and role. When this is not possible the role is to be preferred, since the nature will often be given by the type itself. Obscure abbreviations should be avoided.

ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list
UnixLabels.write : file_descr -> buf:bytes -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.

ListLabels.iter2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> unit

When there is no preferable object, all arguments are labeled.

BytesLabels.blit :
  src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.

BytesLabels.create : int -> bytes

This principle also applies to functions of several arguments whose return type is a type variable, as long as the role of each argument is not ambiguous. Labeling such functions may lead to awkward error messages when one attempts to omit labels in an application, as we have seen with ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

LabelMeaning
f:a function to be applied
pos:a position in a string, array or byte sequence
len:a length
buf:a byte sequence or string used as buffer
src:the source of an operation
dst:the destination of an operation
init:the initial value for an iterator
cmp:a comparison function, e.g. Stdlib.compare
mode:an operation mode or a flag list

All these are only suggestions, but keep in mind that the choice of labels is essential for readability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels should be enough to understand the function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel, the documentation is only used when a more detailed specification is needed.

4.2  Polymorphic variants

Variants as presented in section 1.4 are a powerful tool to build data structures and algorithms. However they sometimes lack flexibility when used in modular programming. This is due to the fact that every constructor is assigned to a unique type when defined and used. Even if the same name appears in the definition of multiple types, the constructor itself belongs to only one type. Therefore, one cannot decide that a given constructor belongs to multiple types, or consider a value of some type to belong to some other type with more constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does not belong to any type in particular, the type system will just check that it is an admissible value according to its use. You need not define a type before using a variant tag. A variant type will be inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with a backquote character `.

[`On; `Off];;
- : [> `Off | `On ] list = [`On; `Off]
`Number 1;;
- : [> `Number of int ] = `Number 1
let f = function `On -> 1 | `Off -> 0 | `Number n -> n;;
val f : [< `Number of int | `Off | `On ] -> int = <fun>
List.map f [`On; `Off];;
- : int list = [1; 0]

[>`Off|`On] list means that to match this list, you should at least be able to match `Off and `On, without argument. [<`On|`Off|`Number of int] means that f may be applied to `Off, `On (both without argument), or `Number n where n is an integer. The > and < inside the variant types show that they may still be refined, either by defining more tags or by allowing less. As such, they contain an implicit type variable. Because each of the variant types appears only once in the whole type, their implicit type variables are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type annotations, one will most often describe fixed variant types, that is types that cannot be refined. This is also the case for type abbreviations. Such types do not contain < or >, but just an enumeration of the tags and their associated types, just like in a normal datatype definition.

type 'a vlist = [`Nil | `Cons of 'a * 'a vlist];;
type 'a vlist = [ `Cons of 'a * 'a vlist | `Nil ]
let rec map f : 'a vlist -> 'b vlist = function | `Nil -> `Nil | `Cons(a, l) -> `Cons(f a, map f l) ;;
val map : ('a -> 'b) -> 'a vlist -> 'b vlist = <fun>

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more complex type information.

let f = function `A -> `C | `B -> `D | x -> x;;
val f : ([> `A | `B | `C | `D ] as 'a) -> 'a = <fun>
f `E;;
- : [> `A | `B | `C | `D | `E ] = `E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any tag), we obtain the type [> `A | `B] rather than [< `A | `B] in a closed matching. Then, since x is returned as is, input and return types are identical. The notation as 'a denotes such type sharing. If we apply f to yet another tag `E, it gets added to the list.

let f1 = function `A x -> x = 1 | `B -> true | `C -> false let f2 = function `A x -> x = "a" | `B -> true ;;
val f1 : [< `A of int | `B | `C ] -> bool = <fun> val f2 : [< `A of string | `B ] -> bool = <fun>
let f x = f1 x && f2 x;;
val f : [< `A of string & int | `B ] -> bool = <fun>

Here f1 and f2 both accept the variant tags `A and `B, but the argument of `A is int for f1 and string for f2. In f’s type `C, only accepted by f1, disappears, but both argument types appear for `A as int & string. This means that if we pass the variant tag `A to f, its argument should be both int and string. Since there is no such value, f cannot be applied to `A, and `B is the only accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions. Coercions are normally written with both the source type and the destination type, but in simple cases the source type may be omitted.

type 'a wlist = [`Nil | `Cons of 'a * 'a wlist | `Snoc of 'a wlist * 'a];;
type 'a wlist = [ `Cons of 'a * 'a wlist | `Nil | `Snoc of 'a wlist * 'a ]
let wlist_of_vlist l = (l : 'a vlist :> 'a wlist);;
val wlist_of_vlist : 'a vlist -> 'a wlist = <fun>
let open_vlist l = (l : 'a vlist :> [> 'a vlist]);;
val open_vlist : 'a vlist -> [> 'a vlist ] = <fun>
fun x -> (x :> [`A|`B|`C]);;
- : [< `A | `B | `C ] -> [ `A | `B | `C ] = <fun>

You may also selectively coerce values through pattern matching.

let split_cases = function | `Nil | `Cons _ as x -> `A x | `Snoc _ as x -> `B x ;;
val split_cases : [< `Cons of 'a | `Nil | `Snoc of 'b ] -> [> `A of [> `Cons of 'a | `Nil ] | `B of [> `Snoc of 'b ] ] = <fun>

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms, like incremental definition of functions.

let num x = `Num x let eval1 eval (`Num x) = x let rec eval x = eval1 eval x ;;
val num : 'a -> [> `Num of 'a ] = <fun> val eval1 : 'a -> [< `Num of 'b ] -> 'b = <fun> val eval : [< `Num of 'a ] -> 'a = <fun>
let plus x y = `Plus(x,y) let eval2 eval = function | `Plus(x,y) -> eval x + eval y | `Num _ as x -> eval1 eval x let rec eval x = eval2 eval x ;;
val plus : 'a -> 'b -> [> `Plus of 'a * 'b ] = <fun> val eval2 : ('a -> int) -> [< `Num of int | `Plus of 'a * 'a ] -> int = <fun> val eval : ([< `Num of int | `Plus of 'a * 'a ] as 'a) -> int = <fun>

To make this even more comfortable, you may use type definitions as abbreviations for or-patterns. That is, if you have defined type myvariant = [`Tag1 of int | `Tag2 of bool], then the pattern #myvariant is equivalent to writing (`Tag1(_ : int) | `Tag2(_ : bool)).

Such abbreviations may be used alone,

let f = function | #myvariant -> "myvariant" | `Tag3 -> "Tag3";;
val f : [< `Tag1 of int | `Tag2 of bool | `Tag3 ] -> string = <fun>

or combined with with aliases.

let g1 = function `Tag1 _ -> "Tag1" | `Tag2 _ -> "Tag2";;
val g1 : [< `Tag1 of 'a | `Tag2 of 'b ] -> string = <fun>
let g = function | #myvariant as x -> g1 x | `Tag3 -> "Tag3";;
val g : [< `Tag1 of int | `Tag2 of bool | `Tag3 ] -> string = <fun>

4.2.1  Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core language variants, rather than replacing them.

The answer is twofold. One first aspect is that while being pretty efficient, the lack of static type information allows for less optimizations, and makes polymorphic variants slightly heavier than core language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker type discipline. That is, core language variants do actually much more than ensuring type-safety, they also check that you use only declared constructors, that all constructors present in a data-structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic variants. When you write a library, this is easy since you can describe exact types in interfaces, but for simple programs you are probably better off with core language variants.

Beware also that some idioms make trivial errors very hard to find. For instance, the following code is probably wrong but the compiler has no way to see it.

type abc = [`A | `B | `C] ;;
type abc = [ `A | `B | `C ]
let f = function | `As -> "A" | #abc -> "other" ;;
val f : [< `A | `As | `B | `C ] -> string = <fun>
let f : abc -> string = f ;;
val f : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

let f : abc -> string = function | `As -> "A" | #abc -> "other" ;;
Error: This pattern matches values of type [? `As ] but a pattern was expected which matches values of type abc The second variant type does not allow tag(s) `As

1
This correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexibility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.

Chapter 5  Polymorphism and its limitations



This chapter covers more advanced questions related to the limitations of polymorphic functions and types. There are some situations in OCaml where the type inferred by the type checker may be less generic than expected. Such non-genericity can stem either from interactions between side-effect and typing or the difficulties of implicit polymorphic recursion and higher-rank polymorphism.

This chapter details each of these situations and, if it is possible, how to recover genericity.

5.1  Weak polymorphism and mutation

5.1.1  Weakly polymorphic types

Maybe the most frequent examples of non-genericity derive from the interactions between polymorphic types and mutation. A simple example appears when typing the following expression

let store = ref None ;;
val store : '_weak1 option ref = {contents = None}

Since the type of None is 'a option and the function ref has type 'b -> 'b ref, a natural deduction for the type of store would be 'a option ref. However, the inferred type, '_weak1 option ref, is different. Type variables whose name starts with a _weak prefix like '_weak1 are weakly polymorphic type variables, sometimes shortened as weak type variables. A weak type variable is a placeholder for a single type that is currently unknown. Once the specific type t behind the placeholder type '_weak1 is known, all occurrences of '_weak1 will be replaced by t. For instance, we can define another option reference and store an int inside:

let another_store = ref None ;;
val another_store : '_weak2 option ref = {contents = None}
another_store := Some 0; another_store ;;
- : int option ref = {contents = Some 0}

After storing an int inside another_store, the type of another_store has been updated from '_weak2 option ref to int option ref. This distinction between weakly and generic polymorphic type variable protects OCaml programs from unsoundness and runtime errors. To understand from where unsoundness might come, consider this simple function which swaps a value x with the value stored inside a store reference, if there is such value:

let swap store x = match !store with | None -> store := Some x; x | Some y -> store := Some x; y;;
val swap : 'a option ref -> 'a -> 'a = <fun>

We can apply this function to our store

let one = swap store 1 let one_again = swap store 2 let two = swap store 3;;
val one : int = 1 val one_again : int = 1 val two : int = 2

After these three swaps the stored value is 3. Everything is fine up to now. We can then try to swap 3 with a more interesting value, for instance a function:

let error = swap store (fun x -> x);;
Error: This expression should not be a function, the expected type is int

At this point, the type checker rightfully complains that it is not possible to swap an integer and a function, and that an int should always be traded for another int. Furthermore, the type checker prevents us to change manually the type of the value stored by store:

store := Some (fun x -> x);;
Error: This expression should not be a function, the expected type is int

Indeed, looking at the type of store, we see that the weak type '_weak1 has been replaced by the type int

store;;
- : int option ref = {contents = Some 3}

Therefore, after placing an int in store, we cannot use it to store any value other than an int. More generally, weak types protect the program from undue mutation of values with a polymorphic type.

Moreover, weak types cannot appear in the signature of toplevel modules: types must be known at compilation time. Otherwise, different compilation units could replace the weak type with different and incompatible types. For this reason, compiling the following small piece of code

let option_ref = ref None

yields a compilation error

Error: The type of this expression, '_weak1 option ref,
       contains type variables that cannot be generalized

To solve this error, it is enough to add an explicit type annotation to specify the type at declaration time:

let option_ref: int option ref = ref None

This is in any case a good practice for such global mutable variables. Otherwise, they will pick out the type of first use. If there is a mistake at this point, this can result in confusing type errors when later, correct uses are flagged as errors.

5.1.2  The value restriction

Identifying the exact context in which polymorphic types should be replaced by weak types in a modular way is a difficult question. Indeed the type system must handle the possibility that functions may hide persistent mutable states. For instance, the following function uses an internal reference to implement a delayed identity function

let make_fake_id () = let store = ref None in fun x -> swap store x ;;
val make_fake_id : unit -> 'a -> 'a = <fun>
let fake_id = make_fake_id();;
val fake_id : '_weak3 -> '_weak3 = <fun>

It would be unsound to apply this fake_id function to values with different types. The function fake_id is therefore rightfully assigned the type '_weak3 -> '_weak3 rather than 'a -> 'a. At the same time, it ought to be possible to use a local mutable state without impacting the type of a function.

To circumvent these dual difficulties, the type checker considers that any value returned by a function might rely on persistent mutable states behind the scene and should be given a weak type. This restriction on the type of mutable values and the results of function application is called the value restriction. Note that this value restriction is conservative: there are situations where the value restriction is too cautious and gives a weak type to a value that could be safely generalized to a polymorphic type:

let not_id = (fun x -> x) (fun x -> x);;
val not_id : '_weak4 -> '_weak4 = <fun>

Quite often, this happens when defining function using higher order function. To avoid this problem, a solution is to add an explicit argument to the function:

let id_again = fun x -> (fun x -> x) (fun x -> x) x;;
val id_again : 'a -> 'a = <fun>

With this argument, id_again is seen as a function definition by the type checker and can therefore be generalized. This kind of manipulation is called eta-expansion in lambda calculus and is sometimes referred under this name.

5.1.3  The relaxed value restriction

There is another partial solution to the problem of unnecessary weak type, which is implemented directly within the type checker. Briefly, it is possible to prove that weak types that only appear as type parameters in covariant positions –also called positive positions– can be safely generalized to polymorphic types. For instance, the type 'a list is covariant in 'a:

let f () = [];;
val f : unit -> 'a list = <fun>
let empty = f ();;
val empty : 'a list = []

Remark that the type inferred for empty is 'a list and not '_weak5 list that should have occurred with the value restriction since f () is a function application.

The value restriction combined with this generalization for covariant type parameters is called the relaxed value restriction.

5.1.4  Variance and value restriction

Variance describes how type constructors behave with respect to subtyping. Consider for instance a pair of type x and xy with x a subtype of xy, denoted x :> xy:

type x = [ `X ];;
type x = [ `X ]
type xy = [ `X | `Y ];;
type xy = [ `X | `Y ]

As x is a subtype of xy, we can convert a value of type x to a value of type xy:

let x:x = `X;;
val x : x = `X
let x' = ( x :> xy);;
val x' : xy = `X

Similarly, if we have a value of type x list, we can convert it to a value of type xy list, since we could convert each element one by one:

let l:x list = [`X; `X];;
val l : x list = [`X; `X]
let l' = ( l :> xy list);;
val l' : xy list = [`X; `X]

In other words, x :> xy implies that x list :> xy list, therefore the type constructor 'a list is covariant (it preserves subtyping) in its parameter 'a.

Contrarily, if we have a function that can handle values of type xy

let f: xy -> unit = function | `X -> () | `Y -> ();;
val f : xy -> unit = <fun>

it can also handle values of type x:

let f' = (f :> x -> unit);;
val f' : x -> unit = <fun>

Note that we can rewrite the type of f and f' as

type 'a proc = 'a -> unit let f' = (f: xy proc :> x proc);;
type 'a proc = 'a -> unit val f' : x proc = <fun>

In this case, we have x :> xy implies xy proc :> x proc. Notice that the second subtyping relation reverse the order of x and xy: the type constructor 'a proc is contravariant in its parameter 'a. More generally, the function type constructor 'a -> 'b is covariant in its return type 'b and contravariant in its argument type 'a.

A type constructor can also be invariant in some of its type parameters, neither covariant nor contravariant. A typical example is a reference:

let x: x ref = ref `X;;
val x : x ref = {contents = `X}

If we were able to coerce x to the type xy ref as a variable xy, we could use xy to store the value `Y inside the reference and then use the x value to read this content as a value of type x, which would break the type system.

More generally, as soon as a type variable appears in a position describing mutable state it becomes invariant. As a corollary, covariant variables will never denote mutable locations and can be safely generalized. For a better description, interested readers can consult the original article by Jacques Garrigue on http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf

Together, the relaxed value restriction and type parameter covariance help to avoid eta-expansion in many situations.

5.1.5  Abstract data types

Moreover, when the type definitions are exposed, the type checker is able to infer variance information on its own and one can benefit from the relaxed value restriction even unknowingly. However, this is not the case anymore when defining new abstract types. As an illustration, we can define a module type collection as:

module type COLLECTION = sig type 'a t val empty: unit -> 'a t end module Implementation = struct type 'a t = 'a list let empty ()= [] end;;
module type COLLECTION = sig type 'a t val empty : unit -> 'a t end module Implementation : sig type 'a t = 'a list val empty : unit -> 'a list end
module List2: COLLECTION = Implementation;;
module List2 : COLLECTION

In this situation, when coercing the module List2 to the module type COLLECTION, the type checker forgets that 'a List2.t was covariant in 'a. Consequently, the relaxed value restriction does not apply anymore:

List2.empty ();;
- : '_weak5 List2.t = <abstr>

To keep the relaxed value restriction, we need to declare the abstract type 'a COLLECTION.t as covariant in 'a:

module type COLLECTION = sig type +'a t val empty: unit -> 'a t end module List2: COLLECTION = Implementation;;
module type COLLECTION = sig type +'a t val empty : unit -> 'a t end module List2 : COLLECTION

We then recover polymorphism:

List2.empty ();;
- : 'a List2.t = <abstr>

5.2  Polymorphic recursion

The second major class of non-genericity is directly related to the problem of type inference for polymorphic functions. In some circumstances, the type inferred by OCaml might be not general enough to allow the definition of some recursive functions, in particular for recursive function acting on non-regular algebraic data type.

With a regular polymorphic algebraic data type, the type parameters of the type constructor are constant within the definition of the type. For instance, we can look at arbitrarily nested list defined as:

type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list let l = Nested[ List [1]; Nested [List[2;3]]; Nested[Nested[]] ];;
type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list val l : int regular_nested = Nested [List [1]; Nested [List [2; 3]]; Nested [Nested []]]

Note that the type constructor regular_nested always appears as 'a regular_nested in the definition above, with the same parameter 'a. Equipped with this type, one can compute a maximal depth with a classic recursive function

let rec maximal_depth = function | List _ -> 1 | Nested [] -> 0 | Nested (a::q) -> 1 + max (maximal_depth a) (maximal_depth (Nested q));;
val maximal_depth : 'a regular_nested -> int = <fun>

Non-regular recursive algebraic data types correspond to polymorphic algebraic data types whose parameter types vary between the left and right side of the type definition. For instance, it might be interesting to define a datatype that ensures that all lists are nested at the same depth:

type 'a nested = List of 'a list | Nested of 'a list nested;;
type 'a nested = List of 'a list | Nested of 'a list nested

Intuitively, a value of type 'a nested is a list of list …of list of elements a with k nested list. We can then adapt the maximal_depth function defined on regular_depth into a depth function that computes this k. As a first try, we may define

let rec depth = function | List _ -> 1 | Nested n -> 1 + depth n;;
Error: This expression has type 'a list nested but an expression was expected of type 'a nested The type variable 'a occurs inside 'a list

The type error here comes from the fact that during the definition of depth, the type checker first assigns to depth the type 'a -> 'b . When typing the pattern matching, 'a -> 'b becomes 'a nested -> 'b, then 'a nested -> int once the List branch is typed. However, when typing the application depth n in the Nested branch, the type checker encounters a problem: depth n is applied to 'a list nested, it must therefore have the type 'a list nested -> 'b. Unifying this constraint with the previous one leads to the impossible constraint 'a list nested = 'a nested. In other words, within its definition, the recursive function depth is applied to values of type 'a t with different types 'a due to the non-regularity of the type constructor nested. This creates a problem because the type checker had introduced a new type variable 'a only at the definition of the function depth whereas, here, we need a different type variable for every application of the function depth.

5.2.1  Explicitly polymorphic annotations

The solution of this conundrum is to use an explicitly polymorphic type annotation for the type 'a:

let rec depth: 'a. 'a nested -> int = function | List _ -> 1 | Nested n -> 1 + depth n;;
val depth : 'a nested -> int = <fun>
depth ( Nested(List [ [7]; [8] ]) );;
- : int = 2

In the type of depth, 'a.'a nested -> int, the type variable 'a is universally quantified. In other words, 'a.'a nested -> int reads as “for all type 'a, depth maps 'a nested values to integers”. Whereas the standard type 'a nested -> int can be interpreted as “let be a type variable 'a, then depth maps 'a nested values to integers”. There are two major differences with these two type expressions. First, the explicit polymorphic annotation indicates to the type checker that it needs to introduce a new type variable every times the function depth is applied. This solves our problem with the definition of the function depth.

Second, it also notifies the type checker that the type of the function should be polymorphic. Indeed, without explicit polymorphic type annotation, the following type annotation is perfectly valid

let sum: 'a -> 'b -> 'c = fun x y -> x + y;;
val sum : int -> int -> int = <fun>

since 'a,'b and 'c denote type variables that may or may not be polymorphic. Whereas, it is an error to unify an explicitly polymorphic type with a non-polymorphic type:

let sum: 'a 'b 'c. 'a -> 'b -> 'c = fun x y -> x + y;;
Error: This definition has type int -> int -> int which is less general than 'a 'b 'c. 'a -> 'b -> 'c

An important remark here is that it is not needed to explicit fully the type of depth: it is sufficient to add annotations only for the universally quantified type variables:

let rec depth: 'a. 'a nested -> _ = function | List _ -> 1 | Nested n -> 1 + depth n;;
val depth : 'a nested -> int = <fun>
depth ( Nested(List [ [7]; [8] ]) );;
- : int = 2

5.2.2  More examples

With explicit polymorphic annotations, it becomes possible to implement any recursive function that depends only on the structure of the nested lists and not on the type of the elements. For instance, a more complex example would be to compute the total number of elements of the nested lists:

let len nested = let map_and_sum f = List.fold_left (fun acc x -> acc + f x) 0 in let rec len: 'a. ('a list -> int ) -> 'a nested -> int = fun nested_len n -> match n with | List l -> nested_len l | Nested n -> len (map_and_sum nested_len) n in len List.length nested;;
val len : 'a nested -> int = <fun>
len (Nested(Nested(List [ [ [1;2]; [3] ]; [ []; [4]; [5;6;7]]; [[]] ])));;
- : int = 7

Similarly, it may be necessary to use more than one explicitly polymorphic type variables, like for computing the nested list of list lengths of the nested list:

let shape n = let rec shape: 'a 'b. ('a nested -> int nested) -> ('b list list -> 'a list) -> 'b nested -> int nested = fun nest nested_shape -> function | List l -> raise (Invalid_argument "shape requires nested_list of depth greater than 1") | Nested (List l) -> nest @@ List (nested_shape l) | Nested n -> let nested_shape = List.map nested_shape in let nest x = nest (Nested x) in shape nest nested_shape n in shape (fun n -> n ) (fun l -> List.map List.length l ) n;;
val shape : 'a nested -> int nested = <fun>
shape (Nested(Nested(List [ [ [1;2]; [3] ]; [ []; [4]; [5;6;7]]; [[]] ])));;
- : int nested = Nested (List [[2; 1]; [0; 1; 3]; [0]])

5.3  Higher-rank polymorphic functions

Explicit polymorphic annotations are however not sufficient to cover all the cases where the inferred type of a function is less general than expected. A similar problem arises when using polymorphic functions as arguments of higher-order functions. For instance, we may want to compute the average depth or length of two nested lists:

let average_depth x y = (depth x + depth y) / 2;;
val average_depth : 'a nested -> 'b nested -> int = <fun>
let average_len x y = (len x + len y) / 2;;
val average_len : 'a nested -> 'b nested -> int = <fun>
let one = average_len (List [2]) (List [[]]);;
val one : int = 1

It would be natural to factorize these two definitions as:

let average f x y = (f x + f y) / 2;;
val average : ('a -> int) -> 'a -> 'a -> int = <fun>

However, the type of average len is less generic than the type of average_len, since it requires the type of the first and second argument to be the same:

average_len (List [2]) (List [[]]);;
- : int = 1
average len (List [2]) (List [[]]);;
Error: This expression has type 'a list but an expression was expected of type int

As previously with polymorphic recursion, the problem stems from the fact that type variables are introduced only at the start of the let definitions. When we compute both f x and f y, the type of x and y are unified together. To avoid this unification, we need to indicate to the type checker that f is polymorphic in its first argument. In some sense, we would want average to have type

val average: ('a. 'a nested -> int) -> 'a nested -> 'b nested -> int

Note that this syntax is not valid within OCaml: average has an universally quantified type 'a inside the type of one of its argument whereas for polymorphic recursion the universally quantified type was introduced before the rest of the type. This position of the universally quantified type means that average is a second-rank polymorphic function. This kind of higher-rank functions is not directly supported by OCaml: type inference for second-rank polymorphic function and beyond is undecidable; therefore using this kind of higher-rank functions requires to handle manually these universally quantified types.

In OCaml, there are two ways to introduce this kind of explicit universally quantified types: universally quantified record fields,

type 'a nested_reduction = { f:'elt. 'elt nested -> 'a };;
type 'a nested_reduction = { f : 'elt. 'elt nested -> 'a; }
let boxed_len = { f = len };;
val boxed_len : int nested_reduction = {f = <fun>}

and universally quantified object methods:

let obj_len = object method f:'a. 'a nested -> 'b = len end;;
val obj_len : < f : 'a. 'a nested -> int > = <obj>

To solve our problem, we can therefore use either the record solution:

let average nsm x y = (nsm.f x + nsm.f y) / 2 ;;
val average : int nested_reduction -> 'a nested -> 'b nested -> int = <fun>

or the object one:

let average (obj:<f:'a. 'a nested -> _ > ) x y = (obj#f x + obj#f y) / 2 ;;
val average : < f : 'a. 'a nested -> int > -> 'b nested -> 'c nested -> int = <fun>

Chapter 6  Advanced examples with classes and modules

(Chapter written by Didier Rémy)



In this chapter, we show some larger examples using objects, classes and modules. We review many of the object features simultaneously on the example of a bank account. We show how modules taken from the standard library can be expressed as classes. Lastly, we describe a programming pattern known as virtual types through the example of window managers.

6.1  Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and specializing the following initial naive definition of a simple bank account. (We reuse the module Euro defined at the end of chapter 3.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>
let zero = euro 0.;;
val zero : Euro.c = <obj>
let neg x = x#times (-1.);;
val neg : < times : float -> 'a; .. > -> 'a = <fun>
class account = object val mutable balance = zero method balance = balance method deposit x = balance <- balance # plus x method withdraw x = if x#leq balance then (balance <- balance # plus (neg x); x) else zero end;;
class account : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method withdraw : Euro.c -> Euro.c end
let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests = object (self) inherit account method private interest = self # deposit (self # balance # times 0.03) end;;
class account_with_interests : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method private interest : unit method withdraw : Euro.c -> Euro.c end

We make the method interest private, since clearly it should not be called freely from the outside. Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the account.

We should soon fix a bug in the current definition: the deposit method can be used for withdrawing money by depositing negative amounts. We can fix this directly:

class safe_account = object inherit account method deposit x = if zero#leq x then balance <- balance#plus x end;;
class safe_account : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method withdraw : Euro.c -> Euro.c end

However, the bug might be fixed more safely by the following definition:

class safe_account = object inherit account as unsafe method deposit x = if zero#leq x then unsafe # deposit x else raise (Invalid_argument "deposit") end;;
class safe_account : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method withdraw : Euro.c -> Euro.c end

In particular, this does not require the knowledge of the implementation of the method deposit.

To keep track of operations, we extend the class with a mutable field history and a private method trace to add an operation in the log. Then each method to be traced is redefined.

type 'a operation = Deposit of 'a | Retrieval of 'a;;
type 'a operation = Deposit of 'a | Retrieval of 'a
class account_with_history = object (self) inherit safe_account as super val mutable history = [] method private trace x = history <- x :: history method deposit x = self#trace (Deposit x); super#deposit x method withdraw x = self#trace (Retrieval x); super#withdraw x method history = List.rev history end;;
class account_with_history : object val mutable balance : Euro.c val mutable history : Euro.c operation list method balance : Euro.c method deposit : Euro.c -> unit method history : Euro.c operation list method private trace : Euro.c operation -> unit method withdraw : Euro.c -> Euro.c end

One may wish to open an account and simultaneously deposit some initial amount. Although the initial implementation did not address this requirement, it can be achieved by using an initializer.

class account_with_deposit x = object inherit account_with_history initializer balance <- x end;;
class account_with_deposit : Euro.c -> object val mutable balance : Euro.c val mutable history : Euro.c operation list method balance : Euro.c method deposit : Euro.c -> unit method history : Euro.c operation list method private trace : Euro.c operation -> unit method withdraw : Euro.c -> Euro.c end

A better alternative is:

class account_with_deposit x = object (self) inherit account_with_history initializer self#deposit x end;;
class account_with_deposit : Euro.c -> object val mutable balance : Euro.c val mutable history : Euro.c operation list method balance : Euro.c method deposit : Euro.c -> unit method history : Euro.c operation list method private trace : Euro.c operation -> unit method withdraw : Euro.c -> Euro.c end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks and from the trace. Let’s test it:

let ccp = new account_with_deposit (euro 100.) in let _balance = ccp#withdraw (euro 50.) in ccp#history;;
- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

let close c = c#withdraw c#balance;;
val close : < balance : 'a; withdraw : 'a -> 'b; .. > -> 'b = <fun>

Of course, this applies to all sorts of accounts.

Finally, we gather several versions of the account into a module Account abstracted over some currency.

let today () = (01,01,2000) (* an approximation *) module Account (M:MONEY) = struct type m = M.c let m = new M.c let zero = m 0. class bank = object (self) val mutable balance = zero method balance = balance val mutable history = [] method private trace x = history <- x::history method deposit x = self#trace (Deposit x); if zero#leq x then balance <- balance # plus x else raise (Invalid_argument "deposit") method withdraw x = if x#leq balance then (balance <- balance # plus (neg x); self#trace (Retrieval x); x) else zero method history = List.rev history end class type client_view = object method deposit : m -> unit method history : m operation list method withdraw : m -> m method balance : m end class virtual check_client x = let y = if (m 100.)#leq x then x else raise (Failure "Insufficient initial deposit") in object (self) initializer self#deposit y method virtual deposit: m -> unit end module Client (B : sig class bank : client_view end) = struct class account x : client_view = object inherit B.bank inherit check_client x end let discount x = let c = new account x in if today() < (1998,10,30) then c # deposit (m 100.); c end end;;

This shows the use of modules to group several class definitions that can in fact be thought of as a single unit. This unit would be provided by a bank for both internal and external uses. This is implemented as a functor that abstracts over the currency so that the same code can be used to provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined). This is the one that will be used for further extensions, refinements, etc. Conversely, the client will only be given the client view.

module Euro_account = Account(Euro);;
module Client = Euro_account.Client (Euro_account);;
new Client.account (new Euro.c 100.);;

Hence, the clients do not have direct access to the balance, nor the history of their own accounts. Their only way to change their balance is to deposit or withdraw money. It is important to give the clients a class and not just the ability to create accounts (such as the promotional discount account), so that they can personalize their account. For instance, a client may refine the deposit and withdraw methods so as to do his own financial bookkeeping, automatically. On the other hand, the function discount is given as such, with no possibility for further personalization.

It is important to provide the client’s view as a functor Client so that client accounts can still be built after a possible specialization of the bank. The functor Client may remain unchanged and be passed the new definition to initialize a client’s view of the extended account.

module Investment_account (M : MONEY) = struct type m = M.c module A = Account(M) class bank = object inherit A.bank as super method deposit x = if (new M.c 1000.)#leq x then print_string "Would you like to invest?"; super#deposit x end module Client = A.Client end;;

The functor Client may also be redefined when some new features of the account can be given to the client.

module Internet_account (M : MONEY) = struct type m = M.c module A = Account(M) class bank = object inherit A.bank method mail s = print_string s end class type client_view = object method deposit : m -> unit method history : m operation list method withdraw : m -> m method balance : m method mail : string -> unit end module Client (B : sig class bank : client_view end) = struct class account x : client_view = object inherit B.bank inherit A.check_client x end end end;;

6.2  Simple modules as classes

One may wonder whether it is possible to treat primitive types such as integers and strings as objects. Although this is usually uninteresting for integers or strings, there may be some situations where this is desirable. The class money above is such an example. We show here how to do it for strings.

6.2.1  Strings

A naive definition of strings as objects could be:

class ostring s = object method get n = String.get s n method print = print_string s method escaped = new ostring (String.escaped s) end;;
class ostring : string -> object method escaped : ostring method get : int -> char method print : unit end

However, the method escaped returns an object of the class ostring, and not an object of the current class. Hence, if the class is further extended, the method escaped will only return an object of the parent class.

class sub_string s = object inherit ostring s method sub start len = new sub_string (String.sub s start len) end;;
class sub_string : string -> object method escaped : ostring method get : int -> char method print : unit method sub : int -> int -> sub_string end

As seen in section 3.16, the solution is to use functional update instead. We need to create an instance variable containing the representation s of the string.

class better_string s = object val repr = s method get n = String.get repr n method print = print_string repr method escaped = {< repr = String.escaped repr >} method sub start len = {< repr = String.sub s start len >} end;;
class better_string : string -> object ('a) val repr : string method escaped : 'a method get : int -> char method print : unit method sub : int -> int -> 'a end

As shown in the inferred type, the methods escaped and sub now return objects of the same type as the one of the class.

Another difficulty is the implementation of the method concat. In order to concatenate a string with another string of the same class, one must be able to access the instance variable externally. Thus, a method repr returning s must be defined. Here is the correct definition of strings:

class ostring s = object (self : 'mytype) val repr = s method repr = repr method get n = String.get repr n method print = print_string repr method escaped = {< repr = String.escaped repr >} method sub start len = {< repr = String.sub s start len >} method concat (t : 'mytype) = {< repr = repr ^ t#repr >} end;;
class ostring : string -> object ('a) val repr : string method concat : 'a -> 'a method escaped : 'a method get : int -> char method print : unit method repr : string method sub : int -> int -> 'a end

Another constructor of the class string can be defined to return a new string of a given length:

class cstring n = ostring (String.make n ' ');;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the representation of strings as we hid the currency in the class money of section 3.17.

Stacks

There is sometimes an alternative between using modules or classes for parametric data types. Indeed, there are situations when the two approaches are quite similar. For instance, a stack can be straightforwardly implemented as a class:

exception Empty;;
exception Empty
class ['a] stack = object val mutable l = ([] : 'a list) method push x = l <- x::l method pop = match l with [] -> raise Empty | a::l' -> l <- l'; a method clear = l <- [] method length = List.length l end;;
class ['a] stack : object val mutable l : 'a list method clear : unit method length : int method pop : 'a method push : 'a -> unit end

However, writing a method for iterating over a stack is more problematic. A method fold would have type ('b -> 'a -> 'b) -> 'b -> 'b. Here 'a is the parameter of the stack. The parameter 'b is not related to the class 'a stack but to the argument that will be passed to the method fold. A naive approach is to make 'b an extra parameter of class stack:

class ['a, 'b] stack2 = object inherit ['a] stack method fold f (x : 'b) = List.fold_left f x l end;;
class ['a, 'b] stack2 : object val mutable l : 'a list method clear : unit method fold : ('b -> 'a -> 'b) -> 'b -> 'b method length : int method pop : 'a method push : 'a -> unit end

However, the method fold of a given object can only be applied to functions that all have the same type:

let s = new stack2;;
val s : ('_weak1, '_weak2) stack2 = <obj>
s#fold ( + ) 0;;
- : int = 0
s;;
- : (int, int) stack2 = <obj>

A better solution is to use polymorphic methods, which were introduced in OCaml version 3.05. Polymorphic methods makes it possible to treat the type variable 'b in the type of fold as universally quantified, giving fold the polymorphic type Forall 'b. ('b -> 'a -> 'b) -> 'b -> 'b. An explicit type declaration on the method fold is required, since the type checker cannot infer the polymorphic type by itself.

class ['a] stack3 = object inherit ['a] stack method fold : 'b. ('b -> 'a -> 'b) -> 'b -> 'b = fun f x -> List.fold_left f x l end;;
class ['a] stack3 : object val mutable l : 'a list method clear : unit method fold : ('b -> 'a -> 'b) -> 'b -> 'b method length : int method pop : 'a method push : 'a -> unit end

6.2.2  Hashtbl

A simplified version of object-oriented hash tables should have the following class type.

class type ['a, 'b] hash_table = object method find : 'a -> 'b method add : 'a -> 'b -> unit end;;
class type ['a, 'b] hash_table = object method add : 'a -> 'b -> unit method find : 'a -> 'b end

A simple implementation, which is quite reasonable for small hash tables is to use an association list:

class ['a, 'b] small_hashtbl : ['a, 'b] hash_table = object val mutable table = [] method find key = List.assoc key table method add key valeur = table <- (key, valeur) :: table end;;
class ['a, 'b] small_hashtbl : ['a, 'b] hash_table

A better implementation, and one that scales up better, is to use a true hash table… whose elements are small hash tables!

class ['a, 'b] hashtbl size : ['a, 'b] hash_table = object (self) val table = Array.init size (fun i -> new small_hashtbl) method private hash key = (Hashtbl.hash key) mod (Array.length table) method find key = table.(self#hash key) # find key method add key = table.(self#hash key) # add key end;;
class ['a, 'b] hashtbl : int -> ['a, 'b] hash_table

6.2.3  Sets

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access the internal representation of another object of the same class.

This is another instance of friend functions as seen in section 3.17. Indeed, this is the same mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return the representation of a set. Since sets are parametric in the type of elements, the method tag has a parametric type 'a tag, concrete within the module definition but abstract in its signature. From outside, it will then be guaranteed that two objects with a method tag of the same type will share the same representation.

module type SET = sig type 'a tag class ['a] c : object ('b) method is_empty : bool method mem : 'a -> bool method add : 'a -> 'b method union : 'b -> 'b method iter : ('a -> unit) -> unit method tag : 'a tag end end;;
module Set : SET = struct let rec merge l1 l2 = match l1 with [] -> l2 | h1 :: t1 -> match l2 with [] -> l1 | h2 :: t2 -> if h1 < h2 then h1 :: merge t1 l2 else if h1 > h2 then h2 :: merge l1 t2 else merge t1 l2 type 'a tag = 'a list class ['a] c = object (_ : 'b) val repr = ([] : 'a list) method is_empty = (repr = []) method mem x = List.exists (( = ) x) repr method add x = {< repr = merge [x] repr >} method union (s : 'b) = {< repr = merge repr s#tag >} method iter (f : 'a -> unit) = List.iter f repr method tag = repr end end;;

6.3  The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the definition a pair of two classes that recursively interact with one another.

The class observer has a distinguished method notify that requires two arguments, a subject and an event to execute an action.

class virtual ['subject, 'event] observer = object method virtual notify : 'subject -> 'event -> unit end;;
class virtual ['subject, 'event] observer : object method virtual notify : 'subject -> 'event -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished method notify_observers to broadcast the message notify to all observers with a particular event e.

class ['observer, 'event] subject = object (self) val mutable observers = ([]:'observer list) method add_observer obs = observers <- (obs :: observers) method notify_observers (e : 'event) = List.iter (fun x -> x#notify self e) observers end;;
class ['a, 'event] subject : object ('b) constraint 'a = < notify : 'b -> 'event -> unit; .. > val mutable observers : 'a list method add_observer : 'a -> unit method notify_observers : 'event -> unit end

The difficulty usually lies in defining instances of the pattern above by inheritance. This can be done in a natural and obvious manner in OCaml, as shown on the following example manipulating windows.

type event = Raise | Resize | Move;;
type event = Raise | Resize | Move
let string_of_event = function Raise -> "Raise" | Resize -> "Resize" | Move -> "Move";;
val string_of_event : event -> string = <fun>
let count = ref 0;;
val count : int ref = {contents = 0}
class ['observer] window_subject = let id = count := succ !count; !count in object (self) inherit ['observer, event] subject val mutable position = 0 method identity = id method move x = position <- position + x; self#notify_observers Move method draw = Printf.printf "{Position = %d}\n" position; end;;
class ['a] window_subject : object ('b) constraint 'a = < notify : 'b -> event -> unit; .. > val mutable observers : 'a list val mutable position : int method add_observer : 'a -> unit method draw : unit method identity : int method move : int -> unit method notify_observers : event -> unit end
class ['subject] window_observer = object inherit ['subject, event] observer method notify s e = s#draw end;;
class ['a] window_observer : object constraint 'a = < draw : unit; .. > method notify : 'a -> event -> unit end

As can be expected, the type of window is recursive.

let window = new window_subject;;
val window : < notify : 'a -> event -> unit; _.. > window_subject as 'a = <obj>

However, the two classes of window_subject and window_observer are not mutually recursive.

let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>
window#add_observer window_observer;;
- : unit = ()
window#move 1;;
{Position = 1} - : unit = ()

Classes window_observer and window_subject can still be extended by inheritance. For instance, one may enrich the subject with new behaviors and refine the behavior of the observer.

class ['observer] richer_window_subject = object (self) inherit ['observer] window_subject val mutable size = 1 method resize x = size <- size + x; self#notify_observers Resize val mutable top = false method raise = top <- true; self#notify_observers Raise method draw = Printf.printf "{Position = %d; Size = %d}\n" position size; end;;
class ['a] richer_window_subject : object ('b) constraint 'a = < notify : 'b -> event -> unit; .. > val mutable observers : 'a list val mutable position : int val mutable size : int val mutable top : bool method add_observer : 'a -> unit method draw : unit method identity : int method move : int -> unit method notify_observers : event -> unit method raise : unit method resize : int -> unit end
class ['subject] richer_window_observer = object inherit ['subject] window_observer as super method notify s e = if e <> Raise then s#raise; super#notify s e end;;
class ['a] richer_window_observer : object constraint 'a = < draw : unit; raise : unit; .. > method notify : 'a -> event -> unit end

We can also create a different kind of observer:

class ['subject] trace_observer = object inherit ['subject, event] observer method notify s e = Printf.printf "<Window %d <== %s>\n" s#identity (string_of_event e) end;;
class ['a] trace_observer : object constraint 'a = < identity : int; .. > method notify : 'a -> event -> unit end

and attach several observers to the same object:

let window = new richer_window_subject;;
val window : < notify : 'a -> event -> unit; _.. > richer_window_subject as 'a = <obj>
window#add_observer (new richer_window_observer);;
- : unit = ()
window#add_observer (new trace_observer);;
- : unit = ()
window#move 1; window#resize 2;;
<Window 1 <== Move> <Window 1 <== Raise> {Position = 1; Size = 1} {Position = 1; Size = 1} <Window 1 <== Resize> <Window 1 <== Raise> {Position = 1; Size = 3} {Position = 1; Size = 3} - : unit = ()

Part II
The OCaml language

Chapter 7  The OCaml language

Foreword

This document is intended as a reference manual for the OCaml language. It lists the language constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial introduction to the language: there is not a single example. A good working knowledge of OCaml is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive meaning, without further definition. As a consequence, the typing rules have been left out, by lack of the mathematical framework required to express them, while they are definitely part of a full formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in italic font (like  that). Square brackets […] denote optional components. Curly brackets {…} denotes zero, one or several repetitions of the enclosed components. Curly brackets with a trailing plus sign {…}+ denote one or several repetitions of the enclosed components. Parentheses (…) denote grouping.

7.1  Lexical conventions

Blanks

The following characters are considered as blanks: space, horizontal tabulation, carriage return, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated by the characters *), with no intervening blanks. Comments are treated as blank characters. Comments do not occur inside string or character literals. Nested comments are handled correctly.

Identifiers

ident::= ( letter ∣  _ ) { letter ∣  0 … 9 ∣  _ ∣  ' }  
 
capitalized-ident::= (A … Z) { letter ∣  0 … 9 ∣  _ ∣  ' }  
 
lowercase-ident::= (a … z ∣  _) { letter ∣  0 … 9 ∣  _ ∣  ' }  
 
letter::= A … Z ∣  a … z

Identifiers are sequences of letters, digits, _ (the underscore character), and ' (the single quote), starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase letters from the ASCII set. The current implementation also recognizes as letters some characters from the ISO 8859-1 set (characters 192–214 and 216–222 as uppercase letters; characters 223–246 and 248–255 as lowercase letters). This feature is deprecated and should be avoided for future compatibility.

All characters in an identifier are meaningful. The current implementation accepts identifiers up to 16000000 characters in length.

In many places, OCaml makes a distinction between capitalized identifiers and identifiers that begin with a lowercase letter. The underscore character is considered a lowercase letter for this purpose.

Integer literals

integer-literal::= [-] (09) { 09 ∣  _ }  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ }  
  [-] (0o∣ 0O) (07) { 07∣ _ }  
  [-] (0b∣ 0B) (01) { 01∣ _ }  
 
int32-literal::= integer-literal l  
 
int64-literal::= integer-literal L  
 
nativeint-literal::= integer-literal n

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

PrefixRadix
0x, 0Xhexadecimal (radix 16)
0o, 0Ooctal (radix 8)
0b, 0Bbinary (radix 2)

(The initial 0 is the digit zero; the O for octal is the letter O.) An integer literal can be followed by one of the letters l, L or n to indicate that this integer has type int32, int64 or nativeint respectively, instead of the default type int for integer literals. The interpretation of integer literals that fall outside the range of representable integer values is undefined.

For convenience and readability, underscore characters (_) are accepted (and ignored) within integer literals.

Floating-point literals

float-literal::= [-] (09) { 09∣ _ } [. { 09∣ _ }] [(e∣ E) [+∣ -] (09) { 09∣ _ }]  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ }  [. { 09∣ AF∣ af∣ _ }] [(p∣ P) [+∣ -] (09) { 09∣ _ }]

Floating-point decimal literals consist in an integer part, a fractional part and an exponent part. The integer part is a sequence of one or more digits, optionally preceded by a minus sign. The fractional part is a decimal point followed by zero, one or more digits. The exponent part is the character e or E followed by an optional + or - sign, followed by one or more digits. It is interpreted as a power of 10. The fractional part or the exponent part can be omitted but not both, to avoid ambiguity with integer literals. The interpretation of floating-point literals that fall outside the range of representable floating-point values is undefined.

Floating-point hexadecimal literals are denoted with the 0x or 0X prefix. The syntax is similar to that of floating-point decimal literals, with the following differences. The integer part and the fractional part use hexadecimal digits. The exponent part starts with the character p or P. It is written in decimal and interpreted as a power of 2.

For convenience and readability, underscore characters (_) are accepted (and ignored) within floating-point literals.

Character literals

char-literal::= ' regular-char '  
  ' escape-sequence '  
 
escape-sequence::= \ ( \ ∣  " ∣  ' ∣  n ∣  t ∣  b ∣  r ∣  space )  
  \ (09) (09) (09)  
  \x (09∣ AF∣ af) (09∣ AF∣ af)  
  \o (03) (07) (07)

Character literals are delimited by ' (single quote) characters. The two single quotes enclose either one character different from ' and \, or one of the escape sequences below:

SequenceCharacter denoted
\\backslash (\)
\"double quote (")
\'single quote (')
\nlinefeed (LF)
\rcarriage return (CR)
\thorizontal tabulation (TAB)
\bbackspace (BS)
\spacespace (SPC)
\dddthe character with ASCII code ddd in decimal
\xhhthe character with ASCII code hh in hexadecimal
\oooothe character with ASCII code ooo in octal

String literals

string-literal::= " { string-character } "  
   { quoted-string-id |   { any-char } |  quoted-string-id }  
 
quoted-string-id::=a...z ∣  _ }  
 
 
 
string-character::= regular-string-char  
  escape-sequence  
  \u{ { 09∣ AF∣ af }+ }  
  \ newline  { space ∣  tab }

String literals are delimited by " (double quote) characters. The two double quotes enclose a sequence of either characters different from " and \, or escape sequences from the table given above for character literals, or a Unicode character escape sequence.

A Unicode character escape sequence is substituted by the UTF-8 encoding of the specified Unicode scalar value. The Unicode scalar value, an integer in the ranges 0x0000...0xD7FF or 0xE000...0x10FFFF, is defined using 1 to 6 hexadecimal digits; leading zeros are allowed.

To allow splitting long string literals across lines, the sequence \newline spaces-or-tabs (a backslash at the end of a line followed by any number of spaces and horizontal tabulations at the beginning of the next line) is ignored inside string literals.

Quoted string literals provide an alternative lexical syntax for string literals. They are useful to represent strings of arbitrary content without escaping. Quoted strings are delimited by a matching pair of { quoted-string-id | and | quoted-string-id } with the same quoted-string-id on both sides. Quoted strings do not interpret any character in a special way but requires that the sequence | quoted-string-id } does not occur in the string itself. The identifier quoted-string-id is a (possibly empty) sequence of lowercase letters and underscores that can be freely chosen to avoid such issue (e.g. {|hello|}, {ext|hello {|world|}|ext}, ...).

The current implementation places practically no restrictions on the length of string literals.

Naming labels

To avoid ambiguities, naming labels in expressions cannot just be defined syntactically as the sequence of the three tokens ~, ident and :, and have to be defined at the lexical level.

label-name::= lowercase-ident  
 
label::= ~ label-name :  
 
optlabel::= ? label-name :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones. They are simply distinguished by their first character, either ~ or ?.

Despite label and optlabel being lexical entities in expressions, their expansions ~ label-name : and ? label-name : will be used in grammars, for the sake of readability. Note also that inside type expressions, this expansion can be taken literally, i.e. there are really 3 tokens, with optional blanks between them.

Prefix and infix symbols

infix-symbol::=core-operator-char ∣  % ∣  < ) { operator-char }  
  # { operator-char }+  
 
prefix-symbol::= ! { operator-char }  
  (? ∣  ~) { operator-char }+  
 
operator-char::= ~ ∣  ! ∣  ? ∣  core-operator-char ∣  % ∣  < ∣  : ∣  .  
 
core-operator-char::= $ ∣  & ∣  * ∣  + ∣  - ∣  / ∣  = ∣  > ∣  @ ∣  ^ ∣  |

See also the following language extensions: extension operators, extended indexing operators, and binding operators.

Sequences of “operator characters”, such as <=> or !!, are read as a single token from the infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside expressions, but otherwise behave like normal identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

      and         as          assert      asr         begin       class
      constraint  do          done        downto      else        end
      exception   external    false       for         fun         function
      functor     if          in          include     inherit     initializer
      land        lazy        let         lor         lsl         lsr
      lxor        match       method      mod         module      mutable
      new         nonrec      object      of          open        or
      private     rec         sig         struct      then        to
      true        try         type        val         virtual     when
      while       with


The following character sequences are also keywords:

    !=    #     &     &&    '     (     )     *     +     ,     -
    -.    ->    .     ..    .~    :     ::    :=    :>    ;     ;;
    <     <-    =     >     >]    >}    ?     [     [<    [>    [|
    ]     _     `     {     {<    |     |]    ||    }     ~

Note that the following identifiers are keywords of the Camlp4 extensions and should be avoided for compatibility reasons.

    parser    value    $     $$    $:    <:    <<    >>    ??

Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence can be decomposed into two tokens in several different ways, the decomposition retained is the one with the longest first token.

Line number directives

linenum-directive::= # {0 … 9}+  
  # {0 … 9}+ " { string-character } "

Preprocessors that generate OCaml source code can insert line number directives in their output so that error messages produced by the compiler contain line numbers and file names referring to the source file before preprocessing, instead of after preprocessing. A line number directive is composed of a # (sharp sign), followed by a positive integer (the source line number), optionally followed by a character string (the source file name). Line number directives are treated as blanks during lexical analysis.

7.2  Values

This section describes the kinds of values that are manipulated by OCaml programs.

7.2.1  Base values

Integer numbers

Integer values are integer numbers from −230 to 230−1, that is −1073741824 to 1073741823. The implementation may support a wider range of integer values: on 64-bit platforms, the current implementation supports integers ranging from −262 to 262−1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of mantissa and an exponent ranging from −1022 to 1023.

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between 0 and 127 are interpreted following the ASCII standard. The current implementation interprets character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings containing up to 224 − 5 characters (16777211 characters); on 64-bit platforms, the limit is 257 − 9.

7.2.2  Tuples

Tuples of values are written (v1,, vn), standing for the n-tuple of values v1 to vn. The current implementation supports tuple of up to 222 − 1 elements (4194303 elements).

7.2.3  Records

Record values are labeled tuples of values. The record value written { field1 = v1;;  fieldn = vn } associates the value vi to the record field fieldi, for i = 1 … n. The current implementation supports records with up to 222 − 1 fields (4194303 fields).

7.2.4  Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation supports arrays containing up to 222 − 1 elements (4194303 elements) unless the elements are floating-point numbers (2097151 elements in this case); on 64-bit platforms, the limit is 254 − 1 for all arrays.

7.2.5  Variant values

Variant values are either a constant constructor, or a non-constant constructor applied to a number of values. The former case is written constr; the latter case is written constr (v1, ... , vn ), where the vi are said to be the arguments of the non-constant constructor constr. The parentheses may be omitted if there is only one argument.

The following constants are treated like built-in constant constructors:

ConstantConstructor
falsethe boolean false
truethe boolean true
()the “unit” value
[]the empty list

The current implementation limits each variant type to have at most 246 non-constant constructors and 230−1 constant constructors.

7.2.6  Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined variant type, and following specific typing rules. They can be either constant, written `tag-name, or non-constant, written `tag-name(v).

7.2.7  Functions

Functional values are mappings from values to values.

7.2.8  Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set of methods for accessing and modifying these variables. The structure of an object is described by the toplevel class that created it.

7.3  Names

Identifiers are used to give names to several classes of language objects and refer to these objects by name later:

These eleven name spaces are distinguished both by the context and by the capitalization of the identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below) or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this purpose.

Naming objects

value-name::= lowercase-ident  
  ( operator-name )  
 
operator-name::= prefix-symbol ∣  infix-op  
 
infix-op::= infix-symbol  
  * ∣  + ∣  - ∣  -. ∣  = ∣  != ∣  < ∣  > ∣  or ∣  || ∣  & ∣  && ∣  :=  
  mod ∣  land ∣  lor ∣  lxor ∣  lsl ∣  lsr ∣  asr  
 
constr-name::= capitalized-ident  
 
tag-name::= capitalized-ident  
 
typeconstr-name::= lowercase-ident  
 
field-name::= lowercase-ident  
 
module-name::= capitalized-ident  
 
modtype-name::= ident  
 
class-name::= lowercase-ident  
 
inst-var-name::= lowercase-ident  
 
method-name::= lowercase-ident

See also the following language extension: extended indexing operators.

As shown above, prefix and infix symbols as well as some keywords can be used as value names, provided they are written between parentheses. The capitalization rules are summarized in the table below.

Name spaceCase of first letter
Valueslowercase
Constructorsuppercase
Labelslowercase
Polymorphic variant tagsuppercase
Exceptionsuppercase
Type constructorslowercase
Record fieldslowercase
Classeslowercase
Instance variableslowercase
Methodslowercase
Modulesuppercase
Module typesany

Note on polymorphic variant tags: the current implementation accepts lowercase variant tags in addition to capitalized variant tags, but we suggest you avoid lowercase variant tags for portability and compatibility with future OCaml versions.

Referring to named objects

value-path::=module-path . ]  value-name  
 
constr::=module-path . ]  constr-name  
 
typeconstr::=extended-module-path . ]  typeconstr-name  
 
field::=module-path . ]  field-name  
 
modtype-path::=extended-module-path . ]  modtype-name  
 
class-path::=module-path . ]  class-name  
 
classtype-path::=extended-module-path . ]  class-name  
 
module-path::= module-name  { . module-name }  
 
extended-module-path::= extended-module-name  { . extended-module-name }  
 
extended-module-name::= module-name  { ( extended-module-path ) }

A named object can be referred to either by its name (following the usual static scoping rules for names) or by an access path prefix .  name, where prefix designates a module and name is the name of an object defined in that module. The first component of the path, prefix, is either a simple module name or an access path name1 .  name2 …, in case the defining module is itself nested inside other modules. For referring to type constructors, module types, or class types, the prefix can also contain simple functor applications (as in the syntactic class extended-module-path above) in case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the former three are global labels, while the latter are local to a class.

7.4  Type expressions

typexpr::= ' ident  
  _  
  ( typexpr )  
  [[?]label-name:]  typexpr ->  typexpr  
  typexpr  { * typexpr }+  
  typeconstr  
  typexpr  typeconstr  
  ( typexpr  { , typexpr } )  typeconstr  
  typexpr as '  ident  
  polymorphic-variant-type  
  < [..>  
  < method-type  { ; method-type }  [; ∣  ; ..>  
  # classtype-path  
  typexpr #  class-path  
  ( typexpr  { , typexpr } ) #  class-path  
 
poly-typexpr::= typexpr  
  { ' ident }+ .  typexpr  
 
method-type::= method-name :  poly-typexpr

See also the following language extensions: first-class modules, attributes and extension nodes.

The table below shows the relative precedences and associativity of operators and non-closed type constructions. The constructions with higher precedences come first.

OperatorAssociativity
Type constructor application
#
*
->right
as

Type expressions denote types in definitions of data types as well as in type constraints over patterns and expressions.

Type variables

The type expression ' ident stands for the type variable named ident. The type expression _ stands for either an anonymous type variable or anonymous type parameters. In data type definitions, type variables are names for the data type parameters. In type constraints, they represent unspecified types that can be instantiated by any type to satisfy the type constraint. In general the scope of a named type variable is the whole top-level phrase where it appears, and it can only be generalized when leaving this scope. Anonymous variables have no such restriction. In the following cases, the scope of named type variables is restricted to the type expression where they appear: 1) for universal (explicitly polymorphic) type variables; 2) for type variables that only appear in public method specifications (as those variables will be made universal, as described in section 7.9.1); 3) for variables used as aliases, when the type they are aliased to would be invalid in the scope of the enclosing definition (i.e. when it contains free universal type variables, or locally defined types.)

Parenthesized types

The type expression ( typexpr ) denotes the same type as typexpr.

Function types

The type expression typexpr1 ->  typexpr2 denotes the type of functions mapping arguments of type typexpr1 to results of type typexpr2.

label-name :  typexpr1 ->  typexpr2 denotes the same function type, but the argument is labeled label.

? label-name :  typexpr1 ->  typexpr2 denotes the type of functions mapping an optional labeled argument of type typexpr1 to results of type typexpr2. That is, the physical type of the function will be typexpr1 option ->  typexpr2.

Tuple types

The type expression typexpr1 **  typexprn denotes the type of tuples whose elements belong to types typexpr1, …  typexprn respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.

The type expression typexpr  typeconstr, where typeconstr is a type constructor with one parameter, denotes the application of the unary type constructor typeconstr to the type typexpr.

The type expression (typexpr1,…, typexprn)  typeconstr, where typeconstr is a type constructor with n parameters, denotes the application of the n-ary type constructor typeconstr to the types typexpr1 through typexprn.

In the type expression _ typeconstr , the anonymous type expression _ stands in for anonymous type parameters and is equivalent to (_, …,_) with as many repetitions of _ as the arity of typeconstr.

Aliased and recursive types

The type expression typexpr as '  ident denotes the same type as typexpr, and also binds the type variable ident to type typexpr both in typexpr and in other types. In general the scope of an alias is the same as for a named type variable, and covers the whole enclosing definition. If the type variable ident actually occurs in typexpr, a recursive type is created. Recursive types for which there exists a recursive path that does not contain an object or polymorphic variant type constructor are rejected, except when the -rectypes mode is selected.

If ' ident denotes an explicit polymorphic variable, and typexpr denotes either an object or polymorphic variant type, the row variable of typexpr is captured by ' ident, and quantified upon.

Polymorphic variant types

polymorphic-variant-type::= [ tag-spec-first  { | tag-spec } ]  
  [> [ tag-spec ]  { | tag-spec } ]  
  [< [|tag-spec-full  { | tag-spec-full }  [ > { `tag-name }+ ] ]  
 
tag-spec-first::= `tag-name  [ of typexpr ]  
  [ typexpr ] |  tag-spec  
 
tag-spec::= `tag-name  [ of typexpr ]  
  typexpr  
 
tag-spec-full::= `tag-name  [ of [&typexpr  { & typexpr } ]  
  typexpr

Polymorphic variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types, and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the list of all tags the value could take, with their associated types. This type is still compatible with a variant type containing more tags. A special case is the unknown type, which does not define any tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and their associated types, and which tags are known to potentially appear in values. The exact variant type (first case) is just an abbreviation for a closed variant type where all possible tags are also potentially present.

In all three cases, tags may be either specified directly in the `tag-name  [of typexpr] form, or indirectly through a type expression, which must expand to an exact variant type, whose tag specifications are inserted in its place.

Full specifications of variant tags are only used for non-exact closed types. They can be understood as a conjunctive type for the argument: it is intended to have all the types enumerated in the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may not be used in a value of this type. This does not mean that the whole type is not valid: one can still use other available tags. Conjunctive constraints are mainly intended as output from the type checker. When they are used in source programs, unsolvable constraints may cause early failures.

Object types

An object type < [method-type  { ; method-type }] > is a record of method types.

Each method may have an explicit polymorphic type: { ' ident }+ .  typexpr. Explicit polymorphic variables have a local scope, and an explicit polymorphic type can only be unified to an equivalent one, where only the order and names of polymorphic variables may change.

The type < {method-type ;} .. > is the type of an object whose method names and types are described by method-type1, …,  method-typen, and possibly some other methods represented by the ellipsis. This ellipsis actually is a special kind of type variable (called row variable in the literature) that stands for any number of extra method types.

#-types

The type # classtype-path is a special kind of abbreviation. This abbreviation unifies with the type of any object belonging to a subclass of the class type classtype-path. It is handled in a special way as it usually hides a type variable (an ellipsis, representing the methods that may be added in a subclass). In particular, it vanishes when the ellipsis gets instantiated. Each type expression # classtype-path defines a new type variable, so type # classtype-path -> #  classtype-path is usually not the same as type (# classtype-path as '  ident) -> '  ident.

Use of #-types to abbreviate polymorphic variant types is deprecated. If t is an exact variant type then #t translates to [< t], and #t[> `tag1` tagk] translates to [< t > `tag1` tagk]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are always named, i.e. defined before use and referred to by name. Type definitions are described in section 7.8.1.

7.5  Constants

constant::= integer-literal  
  int32-literal  
  int64-literal  
  nativeint-literal  
  float-literal  
  char-literal  
  string-literal  
  constr  
  false  
  true  
  ()  
  begin end  
  []  
  [||]  
  `tag-name

See also the following language extension: extension literals.

The syntactic class of constants comprises literals from the four base types (integers, floating-point numbers, characters, character strings), the integer variants, and constant constructors from both normal and polymorphic variants, as well as the special constants false, true, (), [], and [||], which behave like constant constructors, and begin end, which is equivalent to ().

7.6  Patterns

pattern::= value-name  
  _  
  constant  
  pattern as  value-name  
  ( pattern )  
  ( pattern :  typexpr )  
  pattern |  pattern  
  constr  pattern  
  `tag-name  pattern  
  #typeconstr  
  pattern  { , pattern }+  
  { field  [: typexpr]  [= pattern] { ; field  [: typexpr]  [= pattern] }  [; _ ] [ ; ] }  
  [ pattern  { ; pattern }  [ ; ] ]  
  pattern ::  pattern  
  [| pattern  { ; pattern }  [ ; ] |]  
  char-literal ..  char-literal  
  lazy pattern  
  exception pattern  
  module-path .(  pattern )  
  module-path .[  pattern ]  
  module-path .[|  pattern |]  
  module-path .{  pattern }

See also the following language extensions: first-class modules, attributes and extension nodes.

The table below shows the relative precedences and associativity of operators and non-closed pattern constructions. The constructions with higher precedences come first.

OperatorAssociativity
..
lazy (see section 7.6)
Constructor application, Tag applicationright
::right
,
|left
as

Patterns are templates that allow selecting data structures of a given shape, and binding identifiers to components of the data structure. This selection operation is called pattern matching; its outcome is either “this value does not match this pattern”, or “this value matches this pattern, resulting in the following bindings of names to values”.

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The pattern _ also matches any value, but does not bind any name.

Patterns are linear: a variable cannot be bound several times by a given pattern. In particular, there is no way to test for equality between two parts of a data structure using only a pattern (but when guards can be used for this purpose).

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Alias patterns

The pattern pattern1 as  value-name matches the same values as pattern1. If the matching against pattern1 is successful, the name value-name is bound to the matched value, in addition to the bindings performed by the matching against pattern1.

Parenthesized patterns

The pattern ( pattern1 ) matches the same values as pattern1. A type constraint can appear in a parenthesized pattern, as in ( pattern1 :  typexpr ). This constraint forces the type of pattern1 to be compatible with typexpr.

“Or” patterns

The pattern pattern1 |  pattern2 represents the logical “or” of the two patterns pattern1 and pattern2. A value matches pattern1 |  pattern2 if it matches pattern1 or pattern2. The two sub-patterns pattern1 and pattern2 must bind exactly the same identifiers to values having the same types. Matching is performed from left to right. More precisely, in case some value v matches pattern1 |  pattern2, the bindings performed are those of pattern1 when v matches pattern1. Otherwise, value v matches pattern2 whose bindings are performed.

Variant patterns

The pattern constr (  pattern1 ,,  patternn ) matches all variants whose constructor is equal to constr, and whose arguments match pattern1 …  patternn. It is a type error if n is not the number of arguments expected by the constructor.

The pattern constr _ matches all variants whose constructor is constr.

The pattern pattern1 ::  pattern2 matches non-empty lists whose heads match pattern1, and whose tails match pattern2.

The pattern [ pattern1 ;;  patternn ] matches lists of length n whose elements match pattern1patternn, respectively. This pattern behaves like pattern1 ::::  patternn :: [].

Polymorphic variant patterns

The pattern `tag-name  pattern1 matches all polymorphic variants whose tag is equal to tag-name, and whose argument matches pattern1.

Polymorphic variant abbreviation patterns

If the type [('a,'b,)] typeconstr = [ ` tag-name1  typexpr1 || ` tag-namen  typexprn] is defined, then the pattern #typeconstr is a shorthand for the following or-pattern: ( `tag-name1(_ :  typexpr1) || ` tag-namen(_ :  typexprn)). It matches all values of type [< typeconstr ].

Tuple patterns

The pattern pattern1 ,,  patternn matches n-tuples whose components match the patterns pattern1 through patternn. That is, the pattern matches the tuple values (v1, …, vn) such that patterni matches vi for i = 1,… , n.

Record patterns

The pattern { field1  [= pattern1] ;;  fieldn  [= patternn] } matches records that define at least the fields field1 through fieldn, and such that the value associated to fieldi matches the pattern patterni, for i = 1,… , n. A single identifier fieldk stands for fieldk =  fieldk , and a single qualified identifier module-path .  fieldk stands for module-path .  fieldk =  fieldk . The record value can define more fields than field1fieldn; the values associated to these extra fields are not taken into account for matching. Optionally, a record pattern can be terminated by ; _ to convey the fact that not all fields of the record type are listed in the record pattern and that it is intentional. Optional type constraints can be added field by field with { field1 :  typexpr1 =  pattern1 ;; fieldn :  typexprn =  patternn } to force the type of fieldk to be compatible with typexprk.

Array patterns

The pattern [| pattern1 ;;  patternn |] matches arrays of length n such that the i-th array element matches the pattern patterni, for i = 1,… , n.

Range patterns

The pattern ' c ' .. ' d ' is a shorthand for the pattern

' c ' | ' c1 ' | ' c2 ' || ' cn ' | ' d '

where c1, c2, …, cn are the characters that occur between c and d in the ASCII character set. For instance, the pattern '0'..'9' matches all characters that are digits.

Lazy patterns

(Introduced in Objective Caml 3.11)

pattern::= ...

The pattern lazy pattern matches a value v of type Lazy.t, provided pattern matches the result of forcing v with Lazy.force. A successful match of a pattern containing lazy sub-patterns forces the corresponding parts of the value being matched, even those that imply no test such as lazy value-name or lazy _. Matching a value with a pattern-matching where some patterns contain lazy sub-patterns may imply forcing parts of the value, even when the pattern selected in the end has no lazy sub-pattern.

For more information, see the description of module Lazy in the standard library (module Lazy).

Exception patterns

(Introduced in OCaml 4.02)

A new form of exception pattern, exception pattern , is allowed only as a toplevel pattern or inside a toplevel or-pattern under a match...with pattern-matching (other occurrences are rejected by the type-checker).

Cases with such a toplevel pattern are called “exception cases”, as opposed to regular “value cases”. Exception cases are applied when the evaluation of the matched expression raises an exception. The exception value is then matched against all the exception cases and re-raised if none of them accept the exception (as with a try...with block). Since the bodies of all exception and value cases are outside the scope of the exception handler, they are all considered to be in tail-position: if the match...with block itself is in tail position in the current function, any function call in tail position in one of the case bodies results in an actual tail call.

A pattern match must contain at least one value case. It is an error if all cases are exceptions, because there would be no code to handle the return of a value.

Local opens for patterns

(Introduced in OCaml 4.04)

For patterns, local opens are limited to the module-path.( pattern) construction. This construction locally opens the module referred to by the module path module-path in the scope of the pattern pattern.

When the body of a local open pattern is delimited by [ ], [| |], or { }, the parentheses can be omitted. For example, module-path.[ pattern] is equivalent to module-path.([ pattern]), and module-path.[|  pattern |] is equivalent to module-path.([|  pattern |]).

7.7  Expressions

expr::= value-path  
  constant  
  ( expr )  
  begin expr end  
  ( expr :  typexpr )  
  expr  {, expr}+  
  constr  expr  
  `tag-name  expr  
  expr ::  expr  
  [ expr  { ; expr }  [;]  
  [| expr  { ; expr }  [;|]  
  { field  [: typexpr]  [= expr] { ; field  [: typexpr]  [= expr] }  [;}  
  { expr with  field  [: typexpr]  [= expr] { ; field  [: typexpr]  [= expr] }  [;}  
  expr  { argument }+  
  prefix-symbol  expr  
  - expr  
  -. expr  
  expr  infix-op  expr  
  expr .  field  
  expr .  field <-  expr  
  expr .(  expr )  
  expr .(  expr ) <-  expr  
  expr .[  expr ]  
  expr .[  expr ] <-  expr  
  if expr then  expr  [ else expr ]  
  while expr do  expr done  
  for value-name =  expr  ( to ∣  downto ) expr do  expr done  
  expr ;  expr  
  match expr with  pattern-matching  
  function pattern-matching  
  fun { parameter }+  [ : typexpr ] ->  expr  
  try expr with  pattern-matching  
  let [reclet-binding  { and let-binding } in  expr  
  let exception constr-decl in  expr  
  let module module-name  { ( module-name :  module-type ) }  [ : module-type ]  =  module-expr in  expr  
  ( expr :>  typexpr )  
  ( expr :  typexpr :>  typexpr )  
  assert expr  
  lazy expr  
  local-open  
  object-expr  
 
argument::= expr  
  ~ label-name  
  ~ label-name :  expr  
  ? label-name  
  ? label-name :  expr  
 
pattern-matching::=| ] pattern  [when expr->  expr  { | pattern  [when expr->  expr }  
 
let-binding::= pattern =  expr  
  value-name  { parameter }  [: typexpr]  [:> typexpr=  expr  
  value-name :  poly-typexpr =  expr  
 
parameter::= pattern  
  ~ label-name  
  ~ ( label-name  [: typexpr)  
  ~ label-name :  pattern  
  ? label-name  
  ? ( label-name  [: typexpr]  [= expr)  
  ? label-name :  pattern  
  ? label-name : (  pattern  [: typexpr]  [= expr)  
 
local-open::=  
  let open module-path in  expr  
  module-path .(  expr )  
  module-path .[  expr ]  
  module-path .[|  expr |]  
  module-path .{  expr }  
  module-path .{<  expr >}  
 
object-expr::=  
  new class-path  
  object class-body end  
  expr #  method-name  
  inst-var-name  
  inst-var-name <-  expr  
  {< [ inst-var-name  [= expr]  { ; inst-var-name  [= expr] }  [;] ] >}

See also the following language extensions: first-class modules, overriding in open statements, syntax for Bigarray access, attributes, extension nodes and extended indexing operators.

7.7.1  Precedence and associativity

The table below shows the relative precedences and associativity of operators and non-closed constructions. The constructions with higher precedence come first. For infix and prefix symbols, we write “*…” to mean “any symbol starting with *”.

Construction or operatorAssociativity
prefix-symbol
. .( .[ .{ (see section 8.11)
#left
function application, constructor application, tag application, assert, lazyleft
- -. (prefix)
** lsl lsr asrright
* / % mod land lor lxorleft
+ -left
::right
@ ^right
= < > | & $ !=left
& &&right
or ||right
,
<- :=right
if
;right
let match fun function try

7.7.2  Basic expressions

Constants

An expression consisting in a constant evaluates to this constant.

Value paths

An expression consisting in an access path evaluates to the value bound to this path in the current evaluation environment. The path can be either a value name or an access path to a value component of a module.

Parenthesized expressions

The expressions ( expr ) and begin expr end have the same value as expr. The two constructs are semantically equivalent, but it is good style to use beginend inside control structures:

        if … then begin … ; … end else begin … ; … end

and () for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in ( expr :  typexpr ). This constraint forces the type of expr to be compatible with typexpr.

Parenthesized expressions can also contain coercions ( expr  [: typexpr] :>  typexpr) (see subsection 7.7.7 below).

Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression expr  argument1 …  argumentn evaluates the expression expr and those appearing in argument1 to argumentn. The expression expr must evaluate to a functional value f, which is then applied to the values of argument1, …,  argumentn.

The order in which the expressions expr,  argument1, …,  argumentn are evaluated is not specified.

Arguments and parameters are matched according to their respective labels. Argument order is irrelevant, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?) in the type of expr, the corresponding argument will be automatically wrapped with the constructor Some, except if the argument itself is also prefixed by ?, in which case it is passed as is. If a non-labeled argument is passed, and its corresponding parameter is preceded by one or several optional parameters, then these parameters are defaulted, i.e. the value None will be passed for them. All other missing parameters (without corresponding argument), both optional and non-optional, will be kept, and the result of the function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their number matches the number of non-optional parameters, then labels are ignored and non-optional parameters are matched in their definition order. Optional arguments are defaulted.

In all cases but exact match of order and labels, without optional parameters, the function type should be known at the application point. This can be ensured by adding a type constraint. Principality of the derivation can be checked in the -principal mode.

Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword function:

functionpattern1->expr1 
|… 
|patternn->exprn

This expression evaluates to a functional value with one argument. When this function is applied to a value v, this value is matched against each pattern pattern1 to patternn. If one of these matchings succeeds, that is, if the value v matches the pattern patterni for some i, then the expression expri associated to the selected pattern is evaluated, and its value becomes the value of the function application. The evaluation of expri takes place in an environment enriched by the bindings performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is selected. If none of the patterns matches the argument, the exception Match_failure is raised.


The other form of function definition is introduced by the keyword fun:

fun parameter1 …  parametern ->  expr

This expression is equivalent to:

fun parameter1 ->fun  parametern ->  expr

An optional type constraint typexpr can be added before -> to enforce the type of the result to be compatible with the constraint typexpr:

fun parameter1 …  parametern :  typexpr ->  expr

is equivalent to

fun parameter1 ->fun  parametern ->  (expr :  typexpr )

Beware of the small syntactic difference between a type constraint on the last parameter

fun parameter1 …  (parametern: typexpr)->  expr

and one on the result

fun parameter1 …  parametern:  typexpr ->  expr

The parameter patterns ~lab and ~(lab  [: typ]) are shorthands for respectively ~lab: lab and ~lab:( lab  [: typ]), and similarly for their optional counterparts.

A function of the form fun ? lab :(  pattern =  expr0 ) ->  expr is equivalent to

fun ? lab :  ident -> let  pattern = match  ident with Some  ident ->  ident | None ->  expr0 in  expr

where ident is a fresh variable, except that it is unspecified when expr0 is evaluated.

After these two transformations, expressions are of the form

fun [label1]  pattern1 ->fun  [labeln]  patternn ->  expr

If we ignore labels, which will only be meaningful at function application, this is equivalent to

function pattern1 ->function  patternn ->  expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying this function n times to the values v1vn, the values will be matched in parallel against the patterns pattern1 …  patternn. If the matching succeeds, the function returns the value of expr in an environment enriched by the bindings performed during the matchings. If the matching fails, the exception Match_failure is raised.

Guards in pattern-matchings

The cases of a pattern matching (in the function, match and try constructs) can include guard expressions, which are arbitrary boolean expressions that must evaluate to true for the match case to be selected. Guards occur just before the -> token and are introduced by the when keyword:

functionpattern1   [when   cond1]->expr1 
|… 
|patternn    [when   condn]->exprn

Matching proceeds as described before, except that if the value matches some pattern patterni which has a guard condi, then the expression condi is evaluated (in an environment enriched by the bindings performed during matching). If condi evaluates to true, then expri is evaluated and its value returned as the result of the matching, as usual. But if condi evaluates to false, the matching is resumed against the patterns following patterni.

Local definitions

The let and let rec constructs bind value names locally. The construct

let pattern1 =  expr1 andand  patternn =  exprn in  expr

evaluates expr1 …  exprn in some unspecified order and matches their values against the patterns pattern1 …  patternn. If the matchings succeed, expr is evaluated in the environment enriched by the bindings performed during matching, and the value of expr is returned as the value of the whole let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun  parameter1 …  parameterm ->  expr

in a let expression, one may instead write

let ident  parameter1 …  parameterm =  expr


Recursive definitions of names are introduced by let rec:

let rec pattern1 =  expr1 andand  patternn =  exprn in  expr

The only difference with the let construct described above is that the bindings of names to values performed by the pattern-matching are considered already performed when the expressions expr1 to exprn are evaluated. That is, the expressions expr1 to exprn can reference identifiers that are bound by one of the patterns pattern1, …,  patternn, and expect them to have the same value as in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr1 to exprn are function definitions (fun … or function …), and the patterns pattern1 …  patternn are just value names, as in:

let rec name1 = funandand  namen = funin  expr

This defines name1 …  namen as mutually recursive functions local to expr.

The behavior of other forms of let rec definitions is implementation-dependent. The current implementation also supports a certain class of recursive definitions of non-functional values, as explained in section 8.1.

Explicit polymorphic type annotations

(Introduced in OCaml 3.12)

Polymorphic type annotations in let-definitions behave in a way similar to polymorphic methods:

let pattern1 :  typ1 …  typn .  typeexpr =  expr

These annotations explicitly require the defined value to be polymorphic, and allow one to use this polymorphism in recursive occurrences (when using let rec). Note however that this is a normal polymorphic type, unifiable with any instance of itself.

It is possible to define local exceptions in expressions: let exception  constr-decl in  expr . The syntactic scope of the exception constructor is the inner expression, but nothing prevents exception values created with this constructor from escaping this scope. Two executions of the definition above result in two incompatible exception constructors (as for any exception definition). For instance, the following assertion is true:

  let gen () = let exception A in A
  let () = assert(gen () <> gen ())

7.7.3  Control structures

Sequence

The expression expr1 ;  expr2 evaluates expr1 first, then expr2, and returns the value of expr2.

Conditional

The expression if expr1 then  expr2 else  expr3 evaluates to the value of expr2 if expr1 evaluates to the boolean true, and to the value of expr3 if expr1 evaluates to the boolean false.

The else expr3 part can be omitted, in which case it defaults to else ().

Case expression

The expression

matchexpr 
withpattern1->expr1 
|… 
|patternn->exprn

matches the value of expr against the patterns pattern1 to patternn. If the matching against patterni succeeds, the associated expression expri is evaluated, and its value becomes the value of the whole match expression. The evaluation of expri takes place in an environment enriched by the bindings performed during matching. If several patterns match the value of expr, the one that occurs first in the match expression is selected. If none of the patterns match the value of expr, the exception Match_failure is raised.

Boolean operators

The expression expr1 &&  expr2 evaluates to true if both expr1 and expr2 evaluate to true; otherwise, it evaluates to false. The first component, expr1, is evaluated first. The second component, expr2, is not evaluated if the first component evaluates to false. Hence, the expression expr1 &&  expr2 behaves exactly as

if expr1 then  expr2 else false.

The expression expr1 ||  expr2 evaluates to true if one of the expressions expr1 and expr2 evaluates to true; otherwise, it evaluates to false. The first component, expr1, is evaluated first. The second component, expr2, is not evaluated if the first component evaluates to true. Hence, the expression expr1 ||  expr2 behaves exactly as

if expr1 then true else  expr2.

The boolean operators & and or are deprecated synonyms for (respectively) && and ||.

Loops

The expression while expr1 do  expr2 done repeatedly evaluates expr2 while expr1 evaluates to true. The loop condition expr1 is evaluated and tested at the beginning of each iteration. The whole whiledone expression evaluates to the unit value ().

The expression for name =  expr1 to  expr2 do  expr3 done first evaluates the expressions expr1 and expr2 (the boundaries) into integer values n and p. Then, the loop body expr3 is repeatedly evaluated in an environment where name is successively bound to the values n, n+1, …, p−1, p. The loop body is never evaluated if n > p.

The expression for name =  expr1 downto  expr2 do  expr3 done evaluates similarly, except that name is successively bound to the values n, n−1, …, p+1, p. The loop body is never evaluated if n < p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression

try expr 
withpattern1->expr1 
|… 
|patternn->exprn

evaluates the expression expr and returns its value if the evaluation of expr does not raise any exception. If the evaluation of expr raises an exception, the exception value is matched against the patterns pattern1 to patternn. If the matching against patterni succeeds, the associated expression expri is evaluated, and its value becomes the value of the whole try expression. The evaluation of expri takes place in an environment enriched by the bindings performed during matching. If several patterns match the value of expr, the one that occurs first in the try expression is selected. If none of the patterns matches the value of expr, the exception value is raised again, thereby transparently “passing through” the try construct.

7.7.4  Operations on data structures

Products

The expression expr1 ,,  exprn evaluates to the n-tuple of the values of expressions expr1 to exprn. The evaluation order of the subexpressions is not specified.

Variants

The expression constr  expr evaluates to the unary variant value whose constructor is constr, and whose argument is the value of expr. Similarly, the expression constr (  expr1 ,,  exprn ) evaluates to the n-ary variant value whose constructor is constr and whose arguments are the values of expr1, …,  exprn.

The expression constr ( expr1, …,  exprn) evaluates to the variant value whose constructor is constr, and whose arguments are the values of expr1 …  exprn.

For lists, some syntactic sugar is provided. The expression expr1 ::  expr2 stands for the constructor ( :: ) applied to the arguments ( expr1 ,  expr2 ), and therefore evaluates to the list whose head is the value of expr1 and whose tail is the value of expr2. The expression [ expr1 ;;  exprn ] is equivalent to expr1 ::::  exprn :: [], and therefore evaluates to the list whose elements are the values of expr1 to exprn.

Polymorphic variants

The expression `tag-name  expr evaluates to the polymorphic variant value whose tag is tag-name, and whose argument is the value of expr.

Records

The expression { field1  [= expr1] ;;  fieldn  [= exprn ]} evaluates to the record value { field1 = v1; …; fieldn = vn } where vi is the value of expri for i = 1,… , n. A single identifier fieldk stands for fieldk =  fieldk, and a qualified identifier module-path .  fieldk stands for module-path .  fieldk =  fieldk. The fields field1 to fieldn must all belong to the same record type; each field of this record type must appear exactly once in the record expression, though they can appear in any order. The order in which expr1 to exprn are evaluated is not specified. Optional type constraints can be added after each field { field1 :  typexpr1 =  expr1 ;;  fieldn :  typexprn =  exprn } to force the type of fieldk to be compatible with typexprk.

The expression { expr with  field1  [= expr1] ;;  fieldn  [= exprn] } builds a fresh record with fields field1 …  fieldn equal to expr1 …  exprn, and all other fields having the same value as in the record expr. In other terms, it returns a shallow copy of the record expr, except for the fields field1 …  fieldn, which are initialized to expr1 …  exprn. As previously, single identifier fieldk stands for fieldk =  fieldk, a qualified identifier module-path .  fieldk stands for module-path .  fieldk =  fieldk and it is possible to add an optional type constraint on each field being updated with { expr with  field1 :  typexpr1 =  expr1 ;;  fieldn :  typexprn =  exprn }.

The expression expr1 .  field evaluates expr1 to a record value, and returns the value associated to field in this record value.

The expression expr1 .  field <-  expr2 evaluates expr1 to a record value, which is then modified in-place by replacing the value associated to field in this record by the value of expr2. This operation is permitted only if field has been declared mutable in the definition of the record type. The whole expression expr1 .  field <-  expr2 evaluates to the unit value ().

Arrays

The expression [| expr1 ;;  exprn |] evaluates to a n-element array, whose elements are initialized with the values of expr1 to exprn respectively. The order in which these expressions are evaluated is unspecified.

The expression expr1 .(  expr2 ) returns the value of element number expr2 in the array denoted by expr1. The first element has number 0; the last element has number n−1, where n is the size of the array. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr1 .(  expr2 ) <-  expr3 modifies in-place the array denoted by expr1, replacing element number expr2 by the value of expr3. The exception Invalid_argument is raised if the access is out of bounds. The value of the whole expression is ().

Strings

The expression expr1 .[  expr2 ] returns the value of character number expr2 in the string denoted by expr1. The first character has number 0; the last character has number n−1, where n is the length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr1 .[  expr2 ] <-  expr3 modifies in-place the string denoted by expr1, replacing character number expr2 by the value of expr3. The exception Invalid_argument is raised if the access is out of bounds. The value of the whole expression is ().

Note: this possibility is offered only for backward compatibility with older versions of OCaml and will be removed in a future version. New code should use byte sequences and the Bytes.set function.

7.7.5  Operators

Symbols from the class infix-symbol, as well as the keywords *, +, -, -., =, !=, <, >, or, ||, &, &&, :=, mod, land, lor, lxor, lsl, lsr, and asr can appear in infix position (between two expressions). Symbols from the class prefix-symbol, as well as the keywords - and -. can appear in prefix position (in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as applications of functions bound to the names corresponding to the symbols. The expression prefix-symbol  expr is interpreted as the application ( prefix-symbol )  expr. Similarly, the expression expr1  infix-symbol  expr2 is interpreted as the application ( infix-symbol )  expr1  expr2.

The table below lists the symbols defined in the initial environment and their initial meaning. (See the description of the core library module Stdlib in chapter 25 for more details). Their meaning may be changed at any time using let ( infix-op )  name1  name2 =

Note: the operators &&, ||, and ~- are handled specially and it is not advisable to change their meaning.

The keywords - and -. can appear both as infix and prefix operators. When they appear as prefix operators, they are interpreted respectively as the functions (~-) and (~-.).

OperatorInitial meaning
+Integer addition.
- (infix)Integer subtraction.
~- - (prefix)Integer negation.
*Integer multiplication.
/Integer division. Raise Division_by_zero if second argument is zero.
modInteger modulus. Raise Division_by_zero if second argument is zero.
landBitwise logical “and” on integers.
lorBitwise logical “or” on integers.
lxorBitwise logical “exclusive or” on integers.
lslBitwise logical shift left on integers.
lsrBitwise logical shift right on integers.
asrBitwise arithmetic shift right on integers.
+.Floating-point addition.
-. (infix)Floating-point subtraction.
~-. -. (prefix)Floating-point negation.
*.Floating-point multiplication.
/.Floating-point division.
**Floating-point exponentiation.
@ List concatenation.
^ String concatenation.
! Dereferencing (return the current contents of a reference).
:=Reference assignment (update the reference given as first argument with the value of the second argument).
= Structural equality test.
<> Structural inequality test.
== Physical equality test.
!= Physical inequality test.
< Test “less than”.
<= Test “less than or equal”.
> Test “greater than”.
>= Test “greater than or equal”.
&& &Boolean conjunction.
|| orBoolean disjunction.

7.7.6  Objects

Object creation

When class-path evaluates to a class body, new class-path evaluates to a new object containing the instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting the same number of arguments and returning a new object of this class.

Immediate object creation

Creating directly an object through the object class-body end construct is operationally equivalent to defining locally a class class-name = object  class-body end —see sections 7.9.2 and following for the syntax of class-body— and immediately creating a single object from it by new class-name.

The typing of immediate objects is slightly different from explicitly defining a class in two respects. First, the inferred object type may contain free type variables. Second, since the class body of an immediate object will never be extended, its self type can be unified with a closed object type.

Method invocation

The expression expr #  method-name invokes the method method-name of the object denoted by expr.

If method-name is a polymorphic method, its type should be known at the invocation site. This is true for instance if expr is the name of a fresh object (let ident = new  class-path … ) or if there is a type constraint. Principality of the derivation can be checked in the -principal mode.

Accessing and modifying instance variables

The instance variables of a class are visible only in the body of the methods defined in the same class or a class that inherits from the class defining the instance variables. The expression inst-var-name evaluates to the value of the given instance variable. The expression inst-var-name <-  expr assigns the value of expr to the instance variable inst-var-name, which must be mutable. The whole expression inst-var-name <-  expr evaluates to ().

Object duplication

An object can be duplicated using the library function Oo.copy (see module Oo). Inside a method, the expression {< [inst-var-name  [= expr]  { ; inst-var-name  [= expr] }] >} returns a copy of self with the given instance variables replaced by the values of the associated expressions. A single instance variable name id stands for id =  id. Other instance variables have the same value in the returned object as in self.

7.7.7  Coercions

Expressions whose type contains object or polymorphic variant types can be explicitly coerced (weakened) to a supertype. The expression (expr :>  typexpr) coerces the expression expr to type typexpr. The expression (expr :  typexpr1 :>  typexpr2) coerces the expression expr from type typexpr1 to type typexpr2.

The former operator will sometimes fail to coerce an expression expr from a type typ1 to a type typ2 even if type typ1 is a subtype of type typ2: in the current implementation it only expands two levels of type abbreviations containing objects and/or polymorphic variants, keeping only recursion when it is explicit in the class type (for objects). As an exception to the above algorithm, if both the inferred type of expr and typ are ground (i.e. do not contain type variables), the former operator behaves as the latter one, taking the inferred type of expr as typ1. In case of failure with the former operator, the latter one should be used.

It is only possible to coerce an expression expr from type typ1 to type typ2, if the type of expr is an instance of typ1 (like for a type annotation), and typ1 is a subtype of typ2. The type of the coerced expression is an instance of typ2. If the types contain variables, they may be instantiated by the subtyping algorithm, but this is only done after determining whether typ1 is a potential subtype of typ2. This means that typing may fail during this latter unification step, even if some instance of typ1 is a subtype of some instance of typ2. In the following paragraphs we describe the subtyping relation used.

Object types

A fixed object type admits as subtype any object type that includes all its methods. The types of the methods shall be subtypes of those in the supertype. Namely,

< met1 :  typ1 ;;  metn :  typn >

is a supertype of

< met1 :  typ1 ;; metn :  typn ; metn+1 : typn+1 ;; metn+m : typn+m  [; ..] >

which may contain an ellipsis .. if every typi is a supertype of the corresponding typi.

A monomorphic method type can be a supertype of a polymorphic method type. Namely, if typ is an instance of typ′, then 'a1'an . typ′ is a subtype of typ.

Inside a class definition, newly defined types are not available for subtyping, as the type abbreviations are not yet completely defined. There is an exception for coercing self to the (exact) type of its class: this is allowed if the type of self does not appear in a contravariant position in the class type, i.e. if there are no binary methods.

Polymorphic variant types

A polymorphic variant type typ is a subtype of another polymorphic variant type typ′ if the upper bound of typ (i.e. the maximum set of constructors that may appear in an instance of typ) is included in the lower bound of typ′, and the types of arguments for the constructors of typ are subtypes of those in typ′. Namely,

[[<] `C1 of  typ1 || ` Cn of  typn ]

which may be a shrinkable type, is a subtype of

[[>] `C1 of  typ1 || `Cn of  typn | `Cn+1 of typn+1 || `Cn+m of typn+m ]

which may be an extensible type, if every typi is a subtype of typi.

Variance

Other types do not introduce new subtyping, but they may propagate the subtyping of their arguments. For instance, typ1 *  typ2 is a subtype of typ1 * typ2 when typ1 and typ2 are respectively subtypes of typ1 and typ2. For function types, the relation is more subtle: typ1 ->  typ2 is a subtype of typ1 -> typ2 if typ1 is a supertype of typ1 and typ2 is a subtype of typ2. For this reason, function types are covariant in their second argument (like tuples), but contravariant in their first argument. Mutable types, like array or ref are neither covariant nor contravariant, they are nonvariant, that is they do not propagate subtyping.

For user-defined types, the variance is automatically inferred: a parameter is covariant if it has only covariant occurrences, contravariant if it has only contravariant occurrences, variance-free if it has no occurrences, and nonvariant otherwise. A variance-free parameter may change freely through subtyping, it does not have to be a subtype or a supertype. For abstract and private types, the variance must be given explicitly (see section 7.8.1), otherwise the default is nonvariant. This is also the case for constrained arguments in type definitions.

7.7.8  Other

Assertion checking

OCaml supports the assert construct to check debugging assertions. The expression assert expr evaluates the expression expr and returns () if expr evaluates to true. If it evaluates to false the exception Assert_failure is raised with the source file name and the location of expr as arguments. Assertion checking can be turned off with the -noassert compiler option. In this case, expr is not evaluated at all.

As a special case, assert false is reduced to raise (Assert_failure ...), which gives it a polymorphic type. This means that it can be used in place of any expression (for example as a branch of any pattern-matching). It also means that the assert false “assertions” cannot be turned off by the -noassert option.

Lazy expressions

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation of expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation will be performed the first time the function Lazy.force is applied to the value v, returning the actual value of expr. Subsequent applications of Lazy.force to v do not evaluate expr again. Applications of Lazy.force may be implicit through pattern matching (see 7.6).

Local modules

The expression let module module-name =  module-expr in  expr locally binds the module expression module-expr to the identifier module-name during the evaluation of the expression expr. It then returns the value of expr. For example:

let remove_duplicates comparison_fun string_list = let module StringSet = Set.Make(struct type t = string let compare = comparison_fun end) in StringSet.elements (List.fold_right StringSet.add string_list StringSet.empty)
val remove_duplicates : (string -> string -> int) -> string list -> string list = <fun>

Local opens

The expressions let open module-path in  expr and module-path.( expr) are strictly equivalent. These constructions locally open the module referred to by the module path module-path in the respective scope of the expression expr.

When the body of a local open expression is delimited by [ ], [| |], or { }, the parentheses can be omitted. For expression, parentheses can also be omitted for {< >}. For example, module-path.[ expr] is equivalent to module-path.([ expr]), and module-path.[|  expr |] is equivalent to module-path.([|  expr |]).

7.8  Type and exception definitions

7.8.1  Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type abbreviations, or abstract data types. They also bind the value constructors and record fields associated with the definition.

type-definition::= type [nonrectypedef  { and typedef }  
 
typedef::= [type-params]  typeconstr-name  type-information  
 
type-information::= [type-equation]  [type-representation]  { type-constraint }  
 
type-equation::= = typexpr  
 
type-representation::= = [|constr-decl  { | constr-decl }  
  = record-decl  
  = |  
 
type-params::= type-param  
  ( type-param  { , type-param } )  
 
type-param::= [variance'  ident  
 
variance::= +  
  -  
 
record-decl::= { field-decl  { ; field-decl }  [;}  
 
constr-decl::= (constr-name ∣  [] ∣  (::)) [ of constr-args ]  
 
constr-args::= typexpr  { * typexpr }  
 
field-decl::= [mutablefield-name :  poly-typexpr  
 
type-constraint::= constraint ' ident =  typexpr

See also the following language extensions: private types, generalized algebraic datatypes, attributes, extension nodes, extensible variant types and inline records.

Type definitions are introduced by the type keyword, and consist in one or several simple definitions, possibly mutually recursive, separated by the and keyword. Each simple definition defines one type constructor.

A simple definition consists in a lowercase identifier, possibly preceded by one or several type parameters, and followed by an optional type equation, then an optional type representation, and then a constraint clause. The identifier is the name of the type constructor being defined.

In the right-hand side of type definitions, references to one of the type constructor name being defined are considered as recursive, unless type is followed by nonrec. The nonrec keyword was introduced in OCaml 4.02.2.

The optional type parameters are either one type variable ' ident, for type constructors with one parameter, or a list of type variables ('ident1,…,' identn), for type constructors with several parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating that the parameter is covariant (resp. contravariant). These type parameters can appear in the type expressions of the right-hand side of the definition, optionally restricted by a variance constraint ; i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely, follow the left branch of an even number of arrows), and a contravariant parameter only the left side (left branch of an odd number of arrows). If the type has a representation or an equation, and the parameter is free (i.e. not bound via a type constraint to a constructed type), its variance constraint is checked but subtyping etc. will use the inferred variance of the parameter, which may be less restrictive; otherwise (i.e. for abstract types or non-free parameters), the variance must be given explicitly, and the parameter is invariant if no variance is given.

The optional type equation = typexpr makes the defined type equivalent to the type expression typexpr: one can be substituted for the other during typing. If no type equation is given, a new type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record type). If no type representation is given, nothing is assumed on the structure of the type besides what is stated in the optional type equation.

The type representation = [|] constr-decl  { | constr-decl } describes a variant type. The constructor declarations constr-decl1, …,  constr-decln describe the constructors associated to this variant type. The constructor declaration constr-name of  typexpr1 **  typexprn declares the name constr-name as a non-constant constructor, whose arguments have types typexpr1typexprn. The constructor declaration constr-name declares the name constr-name as a constant constructor. Constructor names must be capitalized.

The type representation = { field-decl  { ; field-decl }  [;] } describes a record type. The field declarations field-decl1, …,  field-decln describe the fields associated to this record type. The field declaration field-name :  poly-typexpr declares field-name as a field whose argument has type poly-typexpr. The field declaration mutable field-name :  poly-typexpr behaves similarly; in addition, it allows physical modification of this field. Immutable fields are covariant, mutable fields are non-variant. Both mutable and immutable fields may have explicitly polymorphic types. The polymorphism of the contents is statically checked whenever a record value is created or modified. Extracted values may have their types instantiated.

The two components of a type definition, the optional equation and the optional representation, can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
 
When appearing in a module signature, this definition specifies nothing on the type constructor, besides its number of parameters: its representation is hidden and it is assumed incompatible with any other type.
Type abbreviation: an equation, no representation.
 
This defines the type constructor as an abbreviation for the type expression on the right of the = sign.
New variant type or record type: no equation, a representation.
 
This generates a new type constructor and defines associated constructors or fields, through which values of that type can be directly built or inspected.
Re-exported variant type or record type: an equation, a representation.
 
In this case, the type constructor is defined as an abbreviation for the type expression given in the equation, but in addition the constructors or fields given in the representation remain attached to the defined type constructor. The type expression in the equation part must agree with the representation: it must be of the same kind (record or variant) and have exactly the same constructors or fields, in the same order, with the same arguments. Moreover, the new type constructor must have the same arity and the same type constraints as the original type constructor.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate that the type constructor is covariant or contravariant with respect to this parameter. This variance information is used to decide subtyping relations when checking the validity of :> coercions (see section 7.7.7).

For instance, type +'a t declares t as an abstract type that is covariant in its parameter; this means that if the type τ is a subtype of the type σ, then τ t is a subtype of σ t. Similarly, type -'a t declares that the abstract type t is contravariant in its parameter: if τ is a subtype of σ, then σ t is a subtype of τ t. If no + or - variance annotation is given, the type constructor is assumed non-variant in the corresponding parameter. For instance, the abstract type declaration type 'a t means that τ t is neither a subtype nor a supertype of σ t if τ is subtype of σ.

The variance indicated by the + and - annotations on parameters is enforced only for abstract and private types, or when there are type constraints. Otherwise, for abbreviations, variant and record types without type constraints, the variance properties of the type constructor are inferred from its definition, and the variance annotations are only checked for conformance with the definition.

The construct constraint ' ident =  typexpr allows the specification of type parameters. Any actual type argument corresponding to the type parameter ident has to be an instance of typexpr (more precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type equation and the type declaration.

7.8.2  Exception definitions

exception-definition::= exception constr-decl  
  exception constr-name =  constr

Exception definitions add new constructors to the built-in variant type exn of exception values. The constructors are declared as for a definition of a variant type.

The form exception constr-decl generates a new exception, distinct from all other exceptions in the system. The form exception constr-name =  constr gives an alternate name to an existing exception.

7.9  Classes

Classes are defined using a small language, similar to the module language.

7.9.1  Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and type properties of classes.

class-type::= [[?]label-name:]  typexpr ->  class-type  
    class-body-type  
 
class-body-type::= object [( typexpr )]  {class-field-specend  
   [[ typexpr  {, typexpr]]  classtype-path  
   let open module-path in  class-body-type  
 
class-field-spec::= inherit class-body-type  
   val [mutable] [virtualinst-var-name :  typexpr  
   val virtual mutable inst-var-name :  typexpr  
   method [private] [virtualmethod-name :  poly-typexpr  
   method virtual private method-name :  poly-typexpr  
   constraint typexpr =  typexpr

See also the following language extensions: attributes and extension nodes.

Simple class expressions

The expression classtype-path is equivalent to the class type bound to the name classtype-path. Similarly, the expression [ typexpr1 , …  typexprn ]  classtype-path is equivalent to the parametric class type bound to the name classtype-path, in which type parameters have been instantiated to respectively typexpr1, …typexprn.

Class function type

The class type expression typexpr ->  class-type is the type of class functions (functions from values to classes) that take as argument a value of type typexpr and return as result a class of type class-type.

Class body type

The class type expression object [( typexpr )]  {class-field-spec} end is the type of a class body. It specifies its instance variables and methods. In this type, typexpr is matched against the self type, therefore providing a name for the self type.

A class body will match a class body type if it provides definitions for all the components specified in the class body type, and these definitions meet the type requirements given in the class body type. Furthermore, all methods either virtual or public present in the class body must also be present in the class body type (on the other hand, some instance variables and concrete private methods may be omitted). A virtual method will match a concrete method, which makes it possible to forget its implementation. An immutable instance variable will match a mutable instance variable.

Local opens

Local opens are supported in class types since OCaml 4.06.

Inheritance

The inheritance construct inherit class-body-type provides for inclusion of methods and instance variables from other class types. The instance variable and method types from class-body-type are added into the current class type.

Instance variable specification

A specification of an instance variable is written val [mutable] [virtual] inst-var-name :  typexpr, where inst-var-name is the name of the instance variable and typexpr its expected type. The flag mutable indicates whether this instance variable can be physically modified. The flag virtual indicates that this instance variable is not initialized. It can be initialized later through inheritance.

An instance variable specification will hide any previous specification of an instance variable of the same name.

Method specification

The specification of a method is written method [private] method-name :  poly-typexpr, where method-name is the name of the method and poly-typexpr its expected type, possibly polymorphic. The flag private indicates that the method cannot be accessed from outside the object.

The polymorphism may be left implicit in public method specifications: any type variable which is not bound to a class parameter and does not appear elsewhere inside the class specification will be assumed to be universal, and made polymorphic in the resulting method type. Writing an explicit polymorphic type will disable this behaviour.

If several specifications are present for the same method, they must have compatible types. Any non-private specification of a method forces it to be public.

Virtual method specification

A virtual method specification is written method [private] virtual method-name :  poly-typexpr, where method-name is the name of the method and poly-typexpr its expected type.

Constraints on type parameters

The construct constraint typexpr1 =  typexpr2 forces the two type expressions to be equal. This is typically used to specify type parameters: in this way, they can be bound to specific type expressions.

7.9.2  Class expressions

Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus providing implementations for the specifications expressed in class types.

class-expr::= class-path  
   [ typexpr  {, typexpr]  class-path  
   ( class-expr )  
   ( class-expr :  class-type )  
   class-expr  {argument}+  
   fun {parameter}+ ->  class-expr  
   let [reclet-binding  {and let-bindingin  class-expr  
   object class-body end  
   let open module-path in  class-expr  
 
class-field::= inherit class-expr  [as lowercase-ident]  
   inherit! class-expr  [as lowercase-ident]  
   val [mutableinst-var-name  [: typexpr=  expr  
   val! [mutableinst-var-name  [: typexpr=  expr  
   val [mutablevirtual inst-var-name :  typexpr  
   val virtual mutable inst-var-name :  typexpr  
   method [privatemethod-name  {parameter}  [: typexpr=  expr  
   method! [privatemethod-name  {parameter}  [: typexpr=  expr  
   method [privatemethod-name :  poly-typexpr =  expr  
   method! [privatemethod-name :  poly-typexpr =  expr  
   method [privatevirtual method-name :  poly-typexpr  
   method virtual private method-name :  poly-typexpr  
   constraint typexpr =  typexpr  
   initializer expr

See also the following language extensions: locally abstract types, attributes and extension nodes.

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the expression [ typexpr1 , …  typexprn ]  class-path evaluates to the parametric class bound to the name class-path, in which type parameters have been instantiated respectively to typexpr1, …typexprn.

The expression ( class-expr ) evaluates to the same module as class-expr.

The expression ( class-expr :  class-type ) checks that class-type matches the type of class-expr (that is, that the implementation class-expr meets the type specification class-type). The whole expression evaluates to the same class as class-expr, except that all components not specified in class-type are hidden and can no longer be accessed.

Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. It denotes the class whose constructor is the first expression applied to the given arguments. The arguments are evaluated as for expression application, but the constructor itself will only be evaluated when objects are created. In particular, side-effects caused by the application of the constructor will only occur at object creation time.

Class function

The expression fun [[?]label-name:pattern ->  class-expr evaluates to a function from values to classes. When this function is applied to a value v, this value is matched against the pattern pattern and the result is the result of the evaluation of class-expr in the extended environment.

Conversion from functions with default values to functions with patterns only works identically for class functions as for normal functions.

The expression

fun parameter1 …  parametern ->  class-expr

is a short form for

fun parameter1 ->fun  parametern ->  expr

Local definitions

The let and let rec constructs bind value names locally, as for the core language expressions.

If a local definition occurs at the very beginning of a class definition, it will be evaluated when the class is created (just as if the definition was outside of the class). Otherwise, it will be evaluated when the object constructor is called.

Local opens

Local opens are supported in class expressions since OCaml 4.06.

Class body

class-body::=  [( pattern  [: typexpr)]  { class-field }

The expression object class-body end denotes a class body. This is the prototype for an object : it lists the instance variables and methods of an object of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated each time an object is created.

In a class body, the pattern ( pattern  [: typexpr] ) is matched against self, therefore providing a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Since OCaml 4.01, it is an error if the same method or instance variable name is defined several times in the same class body.

Inheritance

The inheritance construct inherit class-expr allows reusing methods and instance variables from other classes. The class expression class-expr must evaluate to a class body. The instance variables, methods and initializers from this class body are added into the current class. The addition of a method will override any previously defined method of the same name.

An ancestor can be bound by appending as lowercase-ident to the inheritance construct. lowercase-ident is not a true variable and can only be used to select a method, i.e. in an expression lowercase-ident #  method-name. This gives access to the method method-name as it was defined in the parent class even if it is redefined in the current class. The scope of this ancestor binding is limited to the current class. The ancestor method may be called from a subclass but only indirectly.

Instance variable definition

The definition val [mutable] inst-var-name =  expr adds an instance variable inst-var-name whose initial value is the value of expression expr. The flag mutable allows physical modification of this variable by methods.

An instance variable can only be used in the methods and initializers that follow its definition.

Since version 3.10, redefinitions of a visible instance variable with the same name do not create a new variable, but are merged, using the last value for initialization. They must have identical types and mutability. However, if an instance variable is hidden by omitting it from an interface, it will be kept distinct from other instance variables with the same name.

Virtual instance variable definition

A variable specification is written val [mutable] virtual inst-var-name :  typexpr. It specifies whether the variable is modifiable, and gives its type.

Virtual instance variables were added in version 3.10.

Method definition

A method definition is written method method-name =  expr. The definition of a method overrides any previous definition of this method. The method will be public (that is, not private) if any of the definition states so.

A private method, method private method-name =  expr, is a method that can only be invoked on self (from other methods of the same object, defined in this class or one of its subclasses). This invocation is performed using the expression value-name #  method-name, where value-name is directly bound to self at the beginning of the class definition. Private methods do not appear in object types. A method may have both public and private definitions, but as soon as there is a public one, all subsequent definitions will be made public.

Methods may have an explicitly polymorphic type, allowing them to be used polymorphically in programs (even for the same object). The explicit declaration may be done in one of three ways: (1) by giving an explicit polymorphic type in the method definition, immediately after the method name, i.e. method [private] method-name :  {' ident}+ .  typexpr =  expr; (2) by a forward declaration of the explicit polymorphic type through a virtual method definition; (3) by importing such a declaration through inheritance and/or constraining the type of self.

Some special expressions are available in method bodies for manipulating instance variables and duplicating self:

expr::= …  
  inst-var-name <-  expr  
  {< [ inst-var-name =  expr  { ; inst-var-name =  expr }  [;] ] >}

The expression inst-var-name <-  expr modifies in-place the current object by replacing the value associated to inst-var-name by the value of expr. Of course, this instance variable must have been declared mutable.

The expression {< inst-var-name1 =  expr1 ;;  inst-var-namen =  exprn >} evaluates to a copy of the current object in which the values of instance variables inst-var-name1, …,  inst-var-namen have been replaced by the values of the corresponding expressions expr1, …,  exprn.

Virtual method definition

A method specification is written method [private] virtual method-name :  poly-typexpr. It specifies whether the method is public or private, and gives its type. If the method is intended to be polymorphic, the type must be explicitly polymorphic.

Explicit overriding

Since Ocaml 3.12, the keywords inherit!, val! and method! have the same semantics as inherit, val and method, but they additionally require the definition they introduce to be overriding. Namely, method! requires method-name to be already defined in this class, val! requires inst-var-name to be already defined in this class, and inherit! requires class-expr to override some definitions. If no such overriding occurs, an error is signaled.

As a side-effect, these 3 keywords avoid the warnings 7 (method override) and 13 (instance variable override). Note that warning 7 is disabled by default.

Constraints on type parameters

The construct constraint typexpr1 =  typexpr2 forces the two type expressions to be equals. This is typically used to specify type parameters: in that way they can be bound to specific type expressions.

Initializers

A class initializer initializer expr specifies an expression that will be evaluated whenever an object is created from the class, once all its instance variables have been initialized.

7.9.3  Class definitions

class-definition::= class class-binding  { and class-binding }  
 
class-binding::= [virtual] [[ type-parameters ]]  class-name  {parameter}  [: class-type]  =  class-expr  
 
type-parameters::= ' ident  { , ' ident }

A class definition class class-binding  { and class-binding } is recursive. Each class-binding defines a class-name that can be used in the whole expression except for inheritance. It can also be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also binds the class type class-name to the type of the class, and defines two type abbreviations : class-name and # class-name. The first one is the type of objects of this class, while the second is more general as it unifies with the type of any object belonging to a subclass (see section 7.4).

Virtual class

A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type, but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations defined by the class binding. They must be bound to actual types in the class definition using type constraints. So that the abbreviations are well-formed, type variables of the inferred type of the class must either be type parameters or be bound in the constraint clause.

7.9.4  Class specifications

class-specification::= class class-spec  { and class-spec }  
 
class-spec::= [virtual] [[ type-parameters ]]  class-name :  class-type

This is the counterpart in signatures of class definitions. A class specification matches a class definition if they have the same type parameters and their types match.

7.9.5  Class type definitions

classtype-definition::= class type classtype-def  { and classtype-def }  
 
classtype-def::= [virtual] [[ type-parameters ]]  class-name =  class-body-type

A class type definition class class-name =  class-body-type defines an abbreviation class-name for the class body type class-body-type. As for class definitions, two type abbreviations class-name and # class-name are also defined. The definition can be parameterized by some type parameters. If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and they expand to matching types.

7.10  Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape and type properties of modules.

module-type::= modtype-path  
  sig { specification  [;;] } end  
  functor ( module-name :  module-type ) ->  module-type  
  module-type ->  module-type  
  module-type with  mod-constraint  { and mod-constraint }  
  ( module-type )  
 
mod-constraint::= type [type-params]  typeconstr  type-equation  { type-constraint }  
  module module-path =  extended-module-path  
 
specification::= val value-name :  typexpr  
  external value-name :  typexpr =  external-declaration  
  type-definition  
  exception constr-decl  
  class-specification  
  classtype-definition  
  module module-name :  module-type  
  module module-name  { ( module-name :  module-type ) } :  module-type  
  module type modtype-name  
  module type modtype-name =  module-type  
  open module-path  
  include module-type

See also the following language extensions: recovering the type of a module, substitution inside a signature, type-level module aliases, attributes, extension nodes and generative functors.

7.10.1  Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path. The expression ( module-type ) denotes the same type as module-type.

7.10.2  Signatures

Signatures are type specifications for structures. Signatures sigend are collections of type specifications for value names, type names, exceptions, module names and module type names. A structure will match a signature if the structure provides definitions (implementations) for all the names specified in the signature (and possibly more), and these definitions meet the type requirements given in the signature.

An optional ;; is allowed after each specification in a signature. It serves as a syntactic separator with no semantic meaning.

Value specifications

A specification of a value component in a signature is written val value-name :  typexpr, where value-name is the name of the value and typexpr its expected type.

The form external value-name :  typexpr =  external-declaration is similar, except that it requires in addition the name to be implemented as the external function specified in external-declaration (see chapter 20).

Type specifications

A specification of one or several type components in a signature is written type typedef  { and typedef } and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexpr and an optional type representation = constr-decl … or = { field-decl}. The implementation of the type name in a matching structure must be compatible with the type expression specified in the equation (if given), and have the specified representation (if given). Conversely, users of that signature will be able to rely on the type equation or type representation, if given. More precisely, we have the following four situations:

Abstract type: no equation, no representation.
 
Names that are defined as abstract types in a signature can be implemented in a matching structure by any kind of type definition (provided it has the same number of type parameters). The exact implementation of the type will be hidden to the users of the structure. In particular, if the type is implemented as a variant type or record type, the associated constructors and fields will not be accessible to the users; if the type is implemented as an abbreviation, the type equality between the type name and the right-hand side of the abbreviation will be hidden from the users of the structure. Users of the structure consider that type as incompatible with any other type: a fresh type has been generated.
Type abbreviation: an equation = typexpr, no representation.
 
The type name must be implemented by a type compatible with typexpr. All users of the structure know that the type name is compatible with typexpr.
New variant type or record type: no equation, a representation.
 
The type name must be implemented by a variant type or record type with exactly the constructors or fields specified. All users of the structure have access to the constructors or fields, and can use them to create or inspect values of that type. However, users of the structure consider that type as incompatible with any other type: a fresh type has been generated.
Re-exported variant type or record type: an equation, a representation.
 
This case combines the previous two: the representation of the type is made visible to all users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide an exception with the name and arguments specified in the definition, and makes the exception available to all users of the structure.

Class specifications

A specification of one or several classes in a signature is written class class-spec  { and class-spec } and consists of a sequence of mutually recursive definitions of class names.

Class specifications are described more precisely in section 7.9.4.

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def { and classtype-def } and consists of a sequence of mutually recursive definitions of class type names. Class type specifications are described more precisely in section 7.9.5.

Module specifications

A specification of a module component in a signature is written module module-name :  module-type, where module-name is the name of the module component and module-type its expected type. Modules can be nested arbitrarily; in particular, functors can appear as components of structures and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name (  name1 :  module-type1 )(  namen :  module-typen ) :  module-type

instead of

module module-name : functor (  name1 :  module-type1 ) ->->  module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as an abstract module type.

An abstract module type specification module type modtype-name allows the name modtype-name to be implemented by any module type in a matching signature, but hides the implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name =  module-type requires the name modtype-name to be implemented by the module type module-type in a matching signature, but makes the equality between modtype-name and module-type apparent to all users of the signature.

Opening a module path

The expression open module-path in a signature does not specify any components. It simply affects the parsing of the following items of the signature, allowing components of the module denoted by module-path to be referred to by their simple names name instead of path accesses module-path .  name. The scope of the open stops at the end of the signature expression.

Including a signature

The expression include module-type in a signature performs textual inclusion of the components of the signature denoted by module-type. It behaves as if the components of the included signature were copied at the location of the include. The module-type argument must refer to a module type that is a signature, not a functor type.

7.10.3  Functor types

The module type expression functor ( module-name :  module-type1 ) ->  module-type2 is the type of functors (functions from modules to modules) that take as argument a module of type module-type1 and return as result a module of type module-type2. The module type module-type2 can use the name module-name to refer to type components of the actual argument of the functor. If the type module-type2 does not depend on type components of module-name, the module type expression can be simplified with the alternative short syntax module-type1 ->  module-type2 . No restrictions are placed on the type of the functor argument; in particular, a functor may take another functor as argument (“higher-order” functor).

7.10.4  The with operator

Assuming module-type denotes a signature, the expression module-type with  mod-constraint { and mod-constraint } denotes the same signature where type equations have been added to some of the type specifications, as described by the constraints following the with keyword. The constraint type [type-parameters]  typeconstr =  typexpr adds the type equation = typexpr to the specification of the type component named typeconstr of the constrained signature. The constraint module module-path =  extended-module-path adds type equations to all type components of the sub-structure denoted by module-path, making them equivalent to the corresponding type components of the structure denoted by extended-module-path.

For instance, if the module type name S is bound to the signature

        sig type t module M: (sig type u end) end

then S with type t=int denotes the signature

        sig type t=int module M: (sig type u end) end

and S with module M = N denotes the signature

        sig type t module M: (sig type u=N.u end) end

A functor taking two arguments of type S that share their t component is written

        functor (A: S) (B: S with type t = A.t) ...

Constraints are added left to right. After each constraint has been applied, the resulting signature must be a subtype of the signature before the constraint was applied. Thus, the with operator can only add information on the type components of a signature, but never remove information.

7.11  Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules, thus providing implementations for the specifications expressed in module types.

module-expr::= module-path  
  struct [ module-items ] end  
  functor ( module-name :  module-type ) ->  module-expr  
  module-expr (  module-expr )  
  ( module-expr )  
  ( module-expr :  module-type )  
 
module-items::= {;;} ( definition ∣  expr )  { {;;} ( definition ∣  ;; expr) }  {;;}  
 
definition::= let [reclet-binding  { and let-binding }  
  external value-name :  typexpr =  external-declaration  
  type-definition  
  exception-definition  
  class-definition  
  classtype-definition  
  module module-name  { ( module-name :  module-type ) }  [ : module-type ]  =  module-expr  
  module type modtype-name =  module-type  
  open module-path  
  include module-expr

See also the following language extensions: recursive modules, first-class modules, overriding in open statements, attributes, extension nodes and generative functors.

7.11.1  Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression ( module-expr ) evaluates to the same module as module-expr.

The expression ( module-expr :  module-type ) checks that the type of module-expr is a subtype of module-type, that is, that all components specified in module-type are implemented in module-expr, and their implementation meets the requirements given in module-type. In other terms, it checks that the implementation module-expr meets the type specification module-type. The whole expression evaluates to the same module as module-expr, except that all components not specified in module-type are hidden and can no longer be accessed.

7.11.2  Structures

Structures structend are collections of definitions for value names, type names, exceptions, module names and module type names. The definitions are evaluated in the order in which they appear in the structure. The scopes of the bindings performed by the definitions extend to the end of the structure. As a consequence, a definition may refer to names bound by earlier definitions in the same structure.

For compatibility with toplevel phrases (chapter 10), optional ;; are allowed after and before each definition in a structure. These ;; have no semantic meanings. Similarly, an expr preceded by ;; is allowed as a component of a structure. It is equivalent to let _ = expr, i.e. expr is evaluated for its side-effects but is not bound to any identifier. If expr is the first component of a structure, the preceding ;; can be omitted.

Value definitions

A value definition let [rec] let-binding  { and let-binding } bind value names in the same way as a letin … expression (see section 7.7.2). The value names appearing in the left-hand sides of the bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name :  typexpr =  external-declaration implements value-name as the external function specified in external-declaration (see chapter 20).

Type definitions

A definition of one or several type components is written type typedef  { and typedef } and consists of a sequence of mutually recursive definitions of type names.

Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name =  constr.

Class definitions

A definition of one or several classes is written class class-binding  { and class-binding } and consists of a sequence of mutually recursive definitions of class names. Class definitions are described more precisely in section 7.9.3.

Class type definitions

A definition of one or several classes is written class type classtype-def  { and classtype-def } and consists of a sequence of mutually recursive definitions of class type names. Class type definitions are described more precisely in section 7.9.5.

Module definitions

The basic form for defining a module component is module module-name =  module-expr, which evaluates module-expr and binds the result to the name module-name.

One can write

module module-name :  module-type =  module-expr

instead of

module module-name = (  module-expr :  module-type ).

Another derived form is

module module-name (  name1 :  module-type1 )(  namen :  module-typen ) =  module-expr

which is equivalent to

module module-name = functor (  name1 :  module-type1 ) ->->  module-expr

Module type definitions

A definition for a module type is written module type modtype-name =  module-type. It binds the name modtype-name to the module type denoted by the expression module-type.

Opening a module path

The expression open module-path in a structure does not define any components nor perform any bindings. It simply affects the parsing of the following items of the structure, allowing components of the module denoted by module-path to be referred to by their simple names name instead of path accesses module-path .  name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include module-expr in a structure re-exports in the current structure all definitions of the structure denoted by module-expr. For instance, if you define a module S as below

module S = struct type t = int let x = 2 end

defining the module B as

module B = struct include S let y = (x + 1 : t) end

is equivalent to defining it as

module B = struct type t = S.t let x = S.x let y = (x + 1 : t) end

The difference between open and include is that open simply provides short names for the components of the opened structure, without defining any components of the current structure, while include also adds definitions for the components of the included structure.

7.11.3  Functors

Functor definition

The expression functor ( module-name :  module-type ) ->  module-expr evaluates to a functor that takes as argument modules of the type module-type1, binds module-name to these modules, evaluates module-expr in the extended environment, and returns the resulting modules as results. No restrictions are placed on the type of the functor argument; in particular, a functor may take another functor as argument (“higher-order” functor).

Functor application

The expression module-expr1 (  module-expr2 ) evaluates module-expr1 to a functor and module-expr2 to a module, and applies the former to the latter. The type of module-expr2 must match the type expected for the arguments of the functor module-expr1.

7.12  Compilation units

unit-interface::= { specification  [;;] }  
 
unit-implementation::= [ module-items ]

Compilation units bridge the module system and the separate compilation system. A compilation unit is composed of two parts: an interface and an implementation. The interface contains a sequence of specifications, just as the inside of a sigend signature expression. The implementation contains a sequence of definitions and expressions, just as the inside of a structend module expression. A compilation unit also has a name unit-name, derived from the names of the files containing the interface and the implementation (see chapter 9 for more details). A compilation unit behaves roughly as the module definition

module unit-name : sig  unit-interface end = struct  unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular modules. For instance, if U is a compilation unit that defines a type t, other compilation units can refer to that type under the name U.t; they can also refer to U as a whole structure. Except for names of other compilation units, a unit interface or unit implementation must not have any other free variables. In other terms, the type-checking and compilation of an interface or implementation proceeds in the initial environment

name1 : sig  specification1 end …  namen : sig  specificationn end

where name1 …  namen are the names of the other compilation units available in the search path (see chapter 9 for more details) and specification1 …  specificationn are their respective interfaces.

Chapter 8  Language extensions

This chapter describes language extensions and convenience features that are implemented in OCaml, but not described in the OCaml reference manual.

8.1  Recursive definitions of values

(Introduced in Objective Caml 1.00)

As mentioned in section 7.7.2, the let rec binding construct, in addition to the definition of recursive functions, also supports a certain class of recursive definitions of non-functional values, such as

let rec name1 = 1 ::  name2 and  name2 = 2 ::  name1 in  expr

which binds name1 to the cyclic list 1::2::1::2::…, and name2 to the cyclic list 2::1::2::1::…Informally, the class of accepted definitions consists of those definitions where the defined names occur only inside function bodies or as argument to a data constructor.

More precisely, consider the expression:

let rec name1 =  expr1 andand  namen =  exprn in  expr

It will be accepted if each one of expr1 …  exprn is statically constructive with respect to name1 …  namen, is not immediately linked to any of name1 …  namen, and is not an array constructor whose arguments have abstract type.

An expression e is said to be statically constructive with respect to the variables name1 …  namen if at least one of the following conditions is true:

An expression e is said to be immediately linked to the variable name in the following cases:

8.2  Recursive modules

(Introduced in Objective Caml 3.07)

definition::= ...  
  module rec module-name :  module-type =  module-expr   { and module-name :  module-type =  module-expr }  
 
specification::= ...  
  module rec module-name :  module-type  { and module-name:  module-type }

Recursive module definitions, introduced by the module recand … construction, generalize regular module definitions module module-name =  module-expr and module specifications module module-name :  module-type by allowing the defining module-expr and the module-type to refer recursively to the module identifiers being defined. A typical example of a recursive module definition is:

module rec A : sig type t = Leaf of string | Node of ASet.t val compare: t -> t -> int end = struct type t = Leaf of string | Node of ASet.t let compare t1 t2 = match (t1, t2) with | (Leaf s1, Leaf s2) -> Stdlib.compare s1 s2 | (Leaf _, Node _) -> 1 | (Node _, Leaf _) -> -1 | (Node n1, Node n2) -> ASet.compare n1 n2 end and ASet : Set.S with type elt = A.t = Set.Make(A)

It can be given the following specification:

module rec A : sig type t = Leaf of string | Node of ASet.t val compare: t -> t -> int end and ASet : Set.S with type elt = A.t

This is an experimental extension of OCaml: the class of recursive definitions accepted, as well as its dynamic semantics are not final and subject to change in future releases.

Currently, the compiler requires that all dependency cycles between the recursively-defined module identifiers go through at least one “safe” module. A module is “safe” if all value definitions that it contains have function types typexpr1 ->  typexpr2. Evaluation of a recursive module definition proceeds by building initial values for the safe modules involved, binding all (functional) values to fun _ -> raise Undefined_recursive_module. The defining module expressions are then evaluated, and the initial values for the safe modules are replaced by the values thus computed. If a function component of a safe module is applied during this computation (which corresponds to an ill-founded recursive definition), the Undefined_recursive_module exception is raised at runtime:

module rec M: sig val f: unit -> int end = struct let f () = N.x end and N:sig val x: int end = struct let x = M.f () end
Exception: Undefined_recursive_module ("exten.etex", 1, 43).

If there are no safe modules along a dependency cycle, an error is raised

module rec M: sig val x: int end = struct let x = N.y end and N:sig val x: int val y:int end = struct let x = M.x let y = 0 end
Error: Cannot safely evaluate the definition of the following cycle of recursively-defined modules: M -> N -> M. There are no safe modules in this cycle (see manual section 8.2). Module M defines an unsafe value, x . Module N defines an unsafe value, x .

Note that, in the specification case, the module-types must be parenthesized if they use the with mod-constraint construct.

8.3  Private types

Private type declarations in module signatures, of the form type t = private ..., enable libraries to reveal some, but not all aspects of the implementation of a type to clients of the library. In this respect, they strike a middle ground between abstract type declarations, where no information is revealed on the type implementation, and data type definitions and type abbreviations, where all aspects of the type implementation are publicized. Private type declarations come in three flavors: for variant and record types (section 8.3.1), for type abbreviations (section 8.3.2), and for row types (section 8.3.3).

8.3.1  Private variant and record types

(Introduced in Objective Caml 3.07)

type-representation::= ...  
  = private [ | ] constr-decl  { | constr-decl }  
  = private record-decl

Values of a variant or record type declared private can be de-structured normally in pattern-matching or via the expr .  field notation for record accesses. However, values of these types cannot be constructed directly by constructor application or record construction. Moreover, assignment on a mutable field of a private record type is not allowed.

The typical use of private types is in the export signature of a module, to ensure that construction of values of the private type always go through the functions provided by the module, while still allowing pattern-matching outside the defining module. For example:

module M : sig type t = private A | B of int val a : t val b : int -> t end = struct type t = A | B of int let a = A let b n = assert (n > 0); B n end

Here, the private declaration ensures that in any value of type M.t, the argument to the B constructor is always a positive integer.

With respect to the variance of their parameters, private types are handled like abstract types. That is, if a private type has parameters, their variance is the one explicitly given by prefixing the parameter by a ‘+’ or a ‘-’, it is invariant otherwise.

8.3.2  Private type abbreviations

(Introduced in Objective Caml 3.11)

type-equation::= ...  
  = private typexpr

Unlike a regular type abbreviation, a private type abbreviation declares a type that is distinct from its implementation type typexpr. However, coercions from the type to typexpr are permitted. Moreover, the compiler “knows” the implementation type and can take advantage of this knowledge to perform type-directed optimizations.

The following example uses a private type abbreviation to define a module of nonnegative integers:

module N : sig type t = private int val of_int: int -> t val to_int: t -> int end = struct type t = int let of_int n = assert (n >= 0); n let to_int n = n end

The type N.t is incompatible with int, ensuring that nonnegative integers and regular integers are not confused. However, if x has type N.t, the coercion (x :> int) is legal and returns the underlying integer, just like N.to_int x. Deep coercions are also supported: if l has type N.t list, the coercion (l :> int list) returns the list of underlying integers, like List.map N.to_int l but without copying the list l.

Note that the coercion ( expr :>  typexpr ) is actually an abbreviated form, and will only work in presence of private abbreviations if neither the type of expr nor typexpr contain any type variables. If they do, you must use the full form ( expr :  typexpr1 :>  typexpr2 ) where typexpr1 is the expected type of expr. Concretely, this would be (x : N.t :> int) and (l : N.t list :> int list) for the above examples.

8.3.3  Private row types

(Introduced in Objective Caml 3.09)

type-equation::= ...  
  = private typexpr

Private row types are type abbreviations where part of the structure of the type is left abstract. Concretely typexpr in the above should denote either an object type or a polymorphic variant type, with some possibility of refinement left. If the private declaration is used in an interface, the corresponding implementation may either provide a ground instance, or a refined private type.

module M : sig type c = private < x : int; .. > val o : c end = struct class c = object method x = 3 method y = 2 end let o = new c end

This declaration does more than hiding the y method, it also makes the type c incompatible with any other closed object type, meaning that only o will be of type c. In that respect it behaves similarly to private record types. But private row types are more flexible with respect to incremental refinement. This feature can be used in combination with functors.

module F(X : sig type c = private < x : int; .. > end) = struct let get_x (o : X.c) = o#x end module G(X : sig type c = private < x : int; y : int; .. > end) = struct include F(X) let get_y (o : X.c) = o#y end

A polymorphic variant type [t], for example

type t = [ `A of int | `B of bool ]

can be refined in two ways. A definition [u] may add new field to [t], and the declaration

type u = private [> t]

will keep those new fields abstract. Construction of values of type [u] is possible using the known variants of [t], but any pattern-matching will require a default case to handle the potential extra fields. Dually, a declaration [u] may restrict the fields of [t] through abstraction: the declaration

type v = private [< t > `A]

corresponds to private variant types. One cannot create a value of the private type [v], except using the constructors that are explicitly listed as present, (`A n) in this example; yet, when patter-matching on a [v], one should assume that any of the constructors of [t] could be present.

Similarly to abstract types, the variance of type parameters is not inferred, and must be given explicitly.

8.4  Locally abstract types

(Introduced in OCaml 3.12, short syntax added in 4.03)

parameter::= ...  
  ( type {typeconstr-name}+ )

The expression fun ( type typeconstr-name ) ->  expr introduces a type constructor named typeconstr-name which is considered abstract in the scope of the sub-expression, but then replaced by a fresh type variable. Note that contrary to what the syntax could suggest, the expression fun ( type typeconstr-name ) ->  expr itself does not suspend the evaluation of expr as a regular abstraction would. The syntax has been chosen to fit nicely in the context of function declarations, where it is generally used. It is possible to freely mix regular function parameters with pseudo type parameters, as in:

let f = fun (type t) (foo : t list) -> …

and even use the alternative syntax for declaring functions:

let f (type t) (foo : t list) = …

If several locally abstract types need to be introduced, it is possible to use the syntax fun ( type typeconstr-name1 …  typeconstr-namen ) ->  expr as syntactic sugar for fun ( type typeconstr-name1 ) ->-> fun ( type  typeconstr-namen ) ->  expr. For instance,

let f = fun (type t u v) -> fun (foo : (t * u * v) list) -> … let f' (type t u v) (foo : (t * u * v) list) = …

This construction is useful because the type constructors it introduces can be used in places where a type variable is not allowed. For instance, one can use it to define an exception in a local module within a polymorphic function.

let f (type t) () = let module M = struct exception E of t end in (fun x -> M.E x), (function M.E x -> Some x | _ -> None)

Here is another example:

let sort_uniq (type s) (cmp : s -> s -> int) = let module S = Set.Make(struct type t = s let compare = cmp end) in fun l -> S.elements (List.fold_right S.add l S.empty)

It is also extremely useful for first-class modules (see section 8.5) and generalized algebraic datatypes (GADTs: see section 8.10).

Polymorphic syntax

(Introduced in OCaml 4.00)

let-binding::= ...  
  value-name : type  { typeconstr-name }+ .  typexpr =  expr  
 
class-field::= ...  
  method [privatemethod-name : type  { typeconstr-name }+ .  typexpr =  expr  
  method! [privatemethod-name : type  { typeconstr-name }+ .  typexpr =  expr

The (type typeconstr-name) syntax construction by itself does not make polymorphic the type variable it introduces, but it can be combined with explicit polymorphic annotations where needed. The above rule is provided as syntactic sugar to make this easier:

let rec f : type t1 t2. t1 * t2 list -> t1 = …

is automatically expanded into

let rec f : 't1 't2. 't1 * 't2 list -> 't1 = fun (type t1) (type t2) -> ( … : t1 * t2 list -> t1)

This syntax can be very useful when defining recursive functions involving GADTs, see the section 8.10 for a more detailed explanation.

The same feature is provided for method definitions.

8.5  First-class modules

(Introduced in OCaml 3.12; pattern syntax and package type inference introduced in 4.00; structural comparison of package types introduced in 4.02.; fewer parens required starting from 4.05)

typexpr::= ...  
  (module package-type)  
 
module-expr::= ...  
  (val expr  [: package-type])  
 
expr::= ...  
  (module module-expr  [: package-type])  
 
pattern::= ...  
  (module module-name  [: package-type])  
 
package-type::= modtype-path  
  modtype-path with  package-constraint  { and package-constraint }  
 
package-constraint::= type typeconstr =  typexpr  
 

Modules are typically thought of as static components. This extension makes it possible to pack a module as a first-class value, which can later be dynamically unpacked into a module.

The expression ( module module-expr :  package-type ) converts the module (structure or functor) denoted by module expression module-expr to a value of the core language that encapsulates this module. The type of this core language value is ( module package-type ). The package-type annotation can be omitted if it can be inferred from the context.

Conversely, the module expression ( val expr :  package-type ) evaluates the core language expression expr to a value, which must have type module package-type, and extracts the module that was encapsulated in this value. Again package-type can be omitted if the type of expr is known. If the module expression is already parenthesized, like the arguments of functors are, no additional parens are needed: Map.Make(val key).

The pattern ( module module-name :  package-type ) matches a package with type package-type and binds it to module-name. It is not allowed in toplevel let bindings. Again package-type can be omitted if it can be inferred from the enclosing pattern.

The package-type syntactic class appearing in the ( module package-type ) type expression and in the annotated forms represents a subset of module types. This subset consists of named module types with optional constraints of a limited form: only non-parametrized types can be specified.

For type-checking purposes (and starting from OCaml 4.02), package types are compared using the structural comparison of module types.

In general, the module expression ( val expr :  package-type ) cannot be used in the body of a functor, because this could cause unsoundness in conjunction with applicative functors. Since OCaml 4.02, this is relaxed in two ways: if package-type does not contain nominal type declarations (i.e. types that are created with a proper identity), then this expression can be used anywhere, and even if it contains such types it can be used inside the body of a generative functor, described in section 8.15. It can also be used anywhere in the context of a local module binding let module module-name = ( val  expr1 :  package-type ) in  expr2.

Basic example

A typical use of first-class modules is to select at run-time among several implementations of a signature. Each implementation is a structure that we can encapsulate as a first-class module, then store in a data structure such as a hash table:

type picture = … module type DEVICE = sig val draw : picture -> unit … end let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17 module SVG = structend let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE) module PDF = structend let _ = Hashtbl.add devices "PDF" (module PDF : DEVICE)

We can then select one implementation based on command-line arguments, for instance:

let parse_cmdline () = … module Device = (val (let device_name = parse_cmdline () in try Hashtbl.find devices device_name with Not_found -> Printf.eprintf "Unknown device %s\n" device_name; exit 2) : DEVICE)

Alternatively, the selection can be performed within a function:

let draw_using_device device_name picture = let module Device = (val (Hashtbl.find devices device_name) : DEVICE) in Device.draw picture
Advanced examples

With first-class modules, it is possible to parametrize some code over the implementation of a module without using a functor.

let sort (type s) (module Set : Set.S with type elt = s) l = Set.elements (List.fold_right Set.add l Set.empty)
val sort : (module Set.S with type elt = 's) -> 's list -> 's list = <fun>

To use this function, one can wrap the Set.Make functor:

let make_set (type s) cmp = let module S = Set.Make(struct type t = s let compare = cmp end) in (module S : Set.S with type elt = s)
val make_set : ('s -> 's -> int) -> (module Set.S with type elt = 's) = <fun>

8.6  Recovering the type of a module

(Introduced in OCaml 3.12)

module-type::= ...  
  module type of module-expr

The construction module type of module-expr expands to the module type (signature or functor type) inferred for the module expression module-expr. To make this module type reusable in many situations, it is intentionally not strengthened: abstract types and datatypes are not explicitly related with the types of the original module. For the same reason, module aliases in the inferred type are expanded.

A typical use, in conjunction with the signature-level include construct, is to extend the signature of an existing structure. In that case, one wants to keep the types equal to types in the original module. This can done using the following idiom.

module type MYHASH = sig include module type of struct include Hashtbl end val replace: ('a, 'b) t -> 'a -> 'b -> unit end

The signature MYHASH then contains all the fields of the signature of the module Hashtbl (with strengthened type definitions), plus the new field replace. An implementation of this signature can be obtained easily by using the include construct again, but this time at the structure level:

module MyHash : MYHASH = struct include Hashtbl let replace t k v = remove t k; add t k v end

Another application where the absence of strengthening comes handy, is to provide an alternative implementation for an existing module.

module MySet : module type of Set = structend

This idiom guarantees that Myset is compatible with Set, but allows it to represent sets internally in a different way.

8.7  Substituting inside a signature

8.7.1  Destructive substitutions

(Introduced in OCaml 3.12, generalized in 4.06)

mod-constraint::= ...  
  type [type-params]  typeconstr-name :=  typexpr  
  module module-path :=  extended-module-path

A “destructive” substitution (with ... := ...) behaves essentially like normal signature constraints (with ... = ...), but it additionally removes the redefined type or module from the signature.

Prior to OCaml 4.06, there were a number of restrictions: one could only remove types and modules at the outermost level (not inside submodules), and in the case of with type the definition had to be another type constructor with the same type parameters.

A natural application of destructive substitution is merging two signatures sharing a type name.

module type Printable = sig type t val print : Format.formatter -> t -> unit end module type Comparable = sig type t val compare : t -> t -> int end module type PrintableComparable = sig include Printable include Comparable with type t := t end

One can also use this to completely remove a field:

module type S = Comparable with type t := int
module type S = sig val compare : int -> int -> int end

or to rename one:

module type S = sig type u include Comparable with type t := u end
module type S = sig type u val compare : u -> u -> int end

Note that you can also remove manifest types, by substituting with the same type.

module type ComparableInt = Comparable with type t = int ;;
module type ComparableInt = sig type t = int val compare : t -> t -> int end
module type CompareInt = ComparableInt with type t := int
module type CompareInt = sig val compare : int -> int -> int end

8.7.2  Local substitution declarations

(Introduced in OCaml 4.08)

specification::= ...  
  type type-subst  { and type-subst }  
  module module-name :=  extended-module-path  
 
type-subst::= [type-params]  typeconstr-name :=  typexpr  { type-constraint }

Local substitutions behave like destructive substitutions (with ... := ...) but instead of being applied to a whole signature after the fact, they are introduced during the specification of the signature, and will apply to all the items that follow.

This provides a convenient way to introduce local names for types and modules when defining a signature:

module type S = sig type t module Sub : sig type outer := t type t val to_outer : t -> outer end end
module type S = sig type t module Sub : sig type t val to_outer : t/1 -> t/2 end end

Note that, unlike type declarations, type substitution declarations are not recursive, so substitutions like the following are rejected:

module type S = sig type 'a poly_list := [ `Cons of 'a * 'a poly_list | `Nil ] end ;;
Error: Unbound type constructor poly_list

8.8  Type-level module aliases

(Introduced in OCaml 4.02)

specification::= ...  
  module module-name =  module-path

The above specification, inside a signature, only matches a module definition equal to module-path. Conversely, a type-level module alias can be matched by itself, or by any supertype of the type of the module it references.

There are several restrictions on module-path:

  1. it should be of the form M0.M1...Mn (i.e. without functor applications);
  2. inside the body of a functor, M0 should not be one of the functor parameters;
  3. inside a recursive module definition, M0 should not be one of the recursively defined modules.

Such specifications are also inferred. Namely, when P is a path satisfying the above constraints,

module N = P

has type

module N = P

Type-level module aliases are used when checking module path equalities. That is, in a context where module name N is known to be an alias for P, not only these two module paths check as equal, but F (N) and F (P) are also recognized as equal. In the default compilation mode, this is the only difference with the previous approach of module aliases having just the same module type as the module they reference.

When the compiler flag -no-alias-deps is enabled, type-level module aliases are also exploited to avoid introducing dependencies between compilation units. Namely, a module alias referring to a module inside another compilation unit does not introduce a link-time dependency on that compilation unit, as long as it is not dereferenced; it still introduces a compile-time dependency if the interface needs to be read, i.e. if the module is a submodule of the compilation unit, or if some type components are referred to. Additionally, accessing a module alias introduces a link-time dependency on the compilation unit containing the module referenced by the alias, rather than the compilation unit containing the alias. Note that these differences in link-time behavior may be incompatible with the previous behavior, as some compilation units might not be extracted from libraries, and their side-effects ignored.

These weakened dependencies make possible to use module aliases in place of the -pack mechanism. Suppose that you have a library Mylib composed of modules A and B. Using -pack, one would issue the command line

ocamlc -pack a.cmo b.cmo -o mylib.cmo

and as a result obtain a Mylib compilation unit, containing physically A and B as submodules, and with no dependencies on their respective compilation units. Here is a concrete example of a possible alternative approach:

  1. Rename the files containing A and B to Mylib__A and Mylib__B.
  2. Create a packing interface Mylib.ml, containing the following lines.
    module A = Mylib__A
    module B = Mylib__B
    
  3. Compile Mylib.ml using -no-alias-deps, and the other files using -no-alias-deps and -open Mylib (the last one is equivalent to adding the line open! Mylib at the top of each file).
    ocamlc -c -no-alias-deps Mylib.ml
    ocamlc -c -no-alias-deps -open Mylib Mylib__*.mli Mylib__*.ml
    
  4. Finally, create a library containing all the compilation units, and export all the compiled interfaces.
    ocamlc -a Mylib*.cmo -o Mylib.cma
    

This approach lets you access A and B directly inside the library, and as Mylib.A and Mylib.B from outside. It also has the advantage that Mylib is no longer monolithic: if you use Mylib.A, only Mylib__A will be linked in, not Mylib__B.

Note the use of double underscores in Mylib__A and Mylib__B. These were chosen on purpose; the compiler uses the following heuristic when printing paths: given a path Lib__fooBar, if Lib.FooBar exists and is an alias for Lib__fooBar, then the compiler will always display Lib.FooBar instead of Lib__fooBar. This way the long Mylib__ names stay hidden and all the user sees is the nicer dot names. This is how the OCaml standard library is compiled.

8.9  Overriding in open statements

(Introduced in OCaml 4.01)

definition::= ...  
   open! module-path  
 
specification::= ...  
   open! module-path  
 
expr::= ...  
  let open! module-path in  expr  
 
class-body-type::= ...  
   let open! module-path in  class-body-type  
 
class-expr::= ...  
   let open! module-path in  class-expr  
 

Since OCaml 4.01, open statements shadowing an existing identifier (which is later used) trigger the warning 44. Adding a ! character after the open keyword indicates that such a shadowing is intentional and should not trigger the warning.

This is also available (since OCaml 4.06) for local opens in class expressions and class type expressions.

8.10  Generalized algebraic datatypes

(Introduced in OCaml 4.00)

constr-decl::= ...  
  constr-name :  [ constr-args -> ]  typexpr  
 
type-param::= ...  
  [variance_

Generalized algebraic datatypes, or GADTs, extend usual sum types in two ways: constraints on type parameters may change depending on the value constructor, and some type variables may be existentially quantified. Adding constraints is done by giving an explicit return type (the rightmost typexpr in the above syntax), where type parameters are instantiated. This return type must use the same type constructor as the type being defined, and have the same number of parameters. Variables are made existential when they appear inside a constructor’s argument, but not in its return type.

Since the use of a return type often eliminates the need to name type parameters in the left-hand side of a type definition, one can replace them with anonymous types _ in that case.

The constraints associated to each constructor can be recovered through pattern-matching. Namely, if the type of the scrutinee of a pattern-matching contains a locally abstract type, this type can be refined according to the constructor used. These extra constraints are only valid inside the corresponding branch of the pattern-matching. If a constructor has some existential variables, fresh locally abstract types are generated, and they must not escape the scope of this branch.

Recursive functions

Here is a concrete example:

type _ term = | Int : int -> int term | Add : (int -> int -> int) term | App : ('b -> 'a) term * 'b term -> 'a term let rec eval : type a. a term -> a = function | Int n -> n (* a = int *) | Add -> (fun x y -> x+y) (* a = int -> int -> int *) | App(f,x) -> (eval f) (eval x) (* eval called at types (b->a) and b for fresh b *)
let two = eval (App (App (Add, Int 1), Int 1))
val two : int = 2

It is important to remark that the function eval is using the polymorphic syntax for locally abstract types. When defining a recursive function that manipulates a GADT, explicit polymorphic recursion should generally be used. For instance, the following definition fails with a type error:

let rec eval (type a) : a term -> a = function | Int n -> n | Add -> (fun x y -> x+y) | App(f,x) -> (eval f) (eval x)
Error: This expression has type ($App_'b -> a) term but an expression was expected of type 'a The type constructor $App_'b would escape its scope

In absence of an explicit polymorphic annotation, a monomorphic type is inferred for the recursive function. If a recursive call occurs inside the function definition at a type that involves an existential GADT type variable, this variable flows to the type of the recursive function, and thus escapes its scope. In the above example, this happens in the branch App(f,x) when eval is called with f as an argument. In this branch, the type of f is ($App_ 'b-> a). The prefix $ in $App_ 'b denotes an existential type named by the compiler (see 8.10). Since the type of eval is 'a term -> 'a, the call eval f makes the existential type $App_'b flow to the type variable 'a and escape its scope. This triggers the above error.

Type inference

Type inference for GADTs is notoriously hard. This is due to the fact some types may become ambiguous when escaping from a branch. For instance, in the Int case above, n could have either type int or a, and they are not equivalent outside of that branch. As a first approximation, type inference will always work if a pattern-matching is annotated with types containing no free type variables (both on the scrutinee and the return type). This is the case in the above example, thanks to the type annotation containing only locally abstract types.

In practice, type inference is a bit more clever than that: type annotations do not need to be immediately on the pattern-matching, and the types do not have to be always closed. As a result, it is usually enough to only annotate functions, as in the example above. Type annotations are propagated in two ways: for the scrutinee, they follow the flow of type inference, in a way similar to polymorphic methods; for the return type, they follow the structure of the program, they are split on functions, propagated to all branches of a pattern matching, and go through tuples, records, and sum types. Moreover, the notion of ambiguity used is stronger: a type is only seen as ambiguous if it was mixed with incompatible types (equated by constraints), without type annotations between them. For instance, the following program types correctly.

let rec sum : type a. a term -> _ = fun x -> let y = match x with | Int n -> n | Add -> 0 | App(f,x) -> sum f + sum x in y + 1
val sum : 'a term -> int = <fun>

Here the return type int is never mixed with a, so it is seen as non-ambiguous, and can be inferred. When using such partial type annotations we strongly suggest specifying the -principal mode, to check that inference is principal.

The exhaustiveness check is aware of GADT constraints, and can automatically infer that some cases cannot happen. For instance, the following pattern matching is correctly seen as exhaustive (the Add case cannot happen).

let get_int : int term -> int = function | Int n -> n | App(_,_) -> 0
Refutation cases

(Introduced in OCaml 4.03)

Usually, the exhaustiveness check only tries to check whether the cases omitted from the pattern matching are typable or not. However, you can force it to try harder by adding refutation cases:

matching-case::= pattern  [when expr->  expr  
  pattern -> .

In presence of a refutation case, the exhaustiveness check will first compute the intersection of the pattern with the complement of the cases preceding it. It then checks whether the resulting patterns can really match any concrete values by trying to type-check them. Wild cards in the generated patterns are handled in a special way: if their type is a variant type with only GADT constructors, then the pattern is split into the different constructors, in order to check whether any of them is possible (this splitting is not done for arguments of these constructors, to avoid non-termination). We also split tuples and variant types with only one case, since they may contain GADTs inside. For instance, the following code is deemed exhaustive:

type _ t = | Int : int t | Bool : bool t let deep : (char t * int) option -> char = function | None -> 'c' | _ -> .

Namely, the inferred remaining case is Some _, which is split into Some (Int, _) and Some (Bool, _), which are both untypable because deep expects a non-existing char t as the first element of the tuple. Note that the refutation case could be omitted here, because it is automatically added when there is only one case in the pattern matching.

Another addition is that the redundancy check is now aware of GADTs: a case will be detected as redundant if it could be replaced by a refutation case using the same pattern.

Advanced examples

The term type we have defined above is an indexed type, where a type parameter reflects a property of the value contents. Another use of GADTs is singleton types, where a GADT value represents exactly one type. This value can be used as runtime representation for this type, and a function receiving it can have a polytypic behavior.

Here is an example of a polymorphic function that takes the runtime representation of some type t and a value of the same type, then pretty-prints the value as a string:

type _ typ = | Int : int typ | String : string typ | Pair : 'a typ * 'b typ -> ('a * 'b) typ let rec to_string: type t. t typ -> t -> string = fun t x -> match t with | Int -> Int.to_string x | String -> Printf.sprintf "%S" x | Pair(t1,t2) -> let (x1, x2) = x in Printf.sprintf "(%s,%s)" (to_string t1 x1) (to_string t2 x2)

Another frequent application of GADTs is equality witnesses.

type (_,_) eq = Eq : ('a,'a) eq let cast : type a b. (a,b) eq -> a -> b = fun Eq x -> x

Here type eq has only one constructor, and by matching on it one adds a local constraint allowing the conversion between a and b. By building such equality witnesses, one can make equal types which are syntactically different.

Here is an example using both singleton types and equality witnesses to implement dynamic types.

let rec eq_type : type a b. a typ -> b typ -> (a,b) eq option = fun a b -> match a, b with | Int, Int -> Some Eq | String, String -> Some Eq | Pair(a1,a2), Pair(b1,b2) -> begin match eq_type a1 b1, eq_type a2 b2 with | Some Eq, Some Eq -> Some Eq | _ -> None end | _ -> None type dyn = Dyn : 'a typ * 'a -> dyn let get_dyn : type a. a typ -> dyn -> a option = fun a (Dyn(b,x)) -> match eq_type a b with | None -> None | Some Eq -> Some x
Existential type names in error messages

(Updated in OCaml 4.03.0)

The typing of pattern matching in presence of GADT can generate many existential types. When necessary, error messages refer to these existential types using compiler-generated names. Currently, the compiler generates these names according to the following nomenclature:

As shown by the last item, the current behavior is imperfect and may be improved in future versions.

Equations on non-local abstract types

(Introduced in OCaml 4.04)

GADT pattern-matching may also add type equations to non-local abstract types. The behaviour is the same as with local abstract types. Reusing the above eq type, one can write:

module M : sig type t val x : t val e : (t,int) eq end = struct type t = int let x = 33 let e = Eq end let x : int = let Eq = M.e in M.x

Of course, not all abstract types can be refined, as this would contradict the exhaustiveness check. Namely, builtin types (those defined by the compiler itself, such as int or array), and abstract types defined by the local module, are non-instantiable, and as such cause a type error rather than introduce an equation.

8.11  Syntax for Bigarray access

(Introduced in Objective Caml 3.00)

expr::= ...  
  expr .{  expr  { , expr } }  
  expr .{  expr  { , expr } } <-  expr

This extension provides syntactic sugar for getting and setting elements in the arrays provided by the Bigarray module.

The short expressions are translated into calls to functions of the Bigarray module as described in the following table.

expressiontranslation
expr0.{ expr1}Bigarray.Array1.get expr0  expr1
expr0.{ expr1} <- exprBigarray.Array1.set expr0  expr1  expr
expr0.{ expr1,  expr2}Bigarray.Array2.get expr0  expr1  expr2
expr0.{ expr1,  expr2} <- exprBigarray.Array2.set expr0  expr1  expr2  expr
expr0.{ expr1,  expr2,  expr3}Bigarray.Array3.get expr0  expr1  expr2  expr3
expr0.{ expr1,  expr2,  expr3} <- exprBigarray.Array3.set expr0  expr1  expr2  expr3  expr
expr0.{ expr1,,  exprn}Bigarray.Genarray.get expr0 [|  expr1,,  exprn |]
expr0.{ expr1,,  exprn} <- exprBigarray.Genarray.set expr0 [|  expr1,,  exprn |]  expr

The last two entries are valid for any n > 3.

8.12  Attributes

(Introduced in OCaml 4.02, infix notations for constructs other than expressions added in 4.03)

Attributes are “decorations” of the syntax tree which are mostly ignored by the type-checker but can be used by external tools. An attribute is made of an identifier and a payload, which can be a structure, a type expression (prefixed with :), a signature (prefixed with :) or a pattern (prefixed with ?) optionally followed by a when clause:

attr-id::= lowercase-ident  
   capitalized-ident  
   attr-id .  attr-id  
 
attr-payload::=module-items ]  
   : typexpr  
   : [ specification ]  
   ? pattern  [when expr]  
 

The first form of attributes is attached with a postfix notation on “algebraic” categories:

attribute::= [@ attr-id  attr-payload ]  
 
expr::= ...  
  expr  attribute  
 
typexpr::= ...  
  typexpr  attribute  
 
pattern::= ...  
  pattern  attribute  
 
module-expr::= ...  
  module-expr  attribute  
 
module-type::= ...  
  module-type  attribute  
 
class-expr::= ...  
  class-expr  attribute  
 
class-type::= ...  
  class-type  attribute  
 

This form of attributes can also be inserted after the `tag-name in polymorphic variant type expressions (tag-spec-first, tag-spec, tag-spec-full) or after the method-name in method-type.

The same syntactic form is also used to attach attributes to labels and constructors in type declarations:

field-decl::= [mutablefield-name :  poly-typexpr  {attribute}  
 
constr-decl::= (constr-name ∣  ()) [ of constr-args ]  {attribute}  
 

Note: when a label declaration is followed by a semi-colon, attributes can also be put after the semi-colon (in which case they are merged to those specified before).

The second form of attributes are attached to “blocks” such as type declarations, class fields, etc:

item-attribute::= [@@ attr-id  attr-payload ]  
 
typedef::= ...  
  typedef  item-attribute  
 
exception-definition::= exception constr-decl  
  exception constr-name =  constr  
 
module-items::= [;;] ( definition ∣  expr  { item-attribute } )  { [;;definition ∣  ;; expr  { item-attribute } }  [;;]  
 
class-binding::= ...  
  class-binding  item-attribute  
 
class-spec::= ...  
  class-spec  item-attribute  
 
classtype-def::= ...  
  classtype-def  item-attribute  
 
definition::= let [reclet-binding  { and let-binding }  
  external value-name :  typexpr =  external-declaration  { item-attribute }  
  type-definition  
  exception-definition  { item-attribute }  
  class-definition  
  classtype-definition  
  module module-name  { ( module-name :  module-type ) }  [ : module-type ]  =  module-expr  { item-attribute }  
  module type modtype-name =  module-type  { item-attribute }  
  open module-path  { item-attribute }  
  include module-expr  { item-attribute }  
  module rec module-name :  module-type =   module-expr  { item-attribute }   { and module-name :  module-type =  module-expr   { item-attribute } }  
 
specification::= val value-name :  typexpr  { item-attribute }  
  external value-name :  typexpr =  external-declaration  { item-attribute }  
  type-definition  
  exception constr-decl  { item-attribute }  
  class-specification  
  classtype-definition  
  module module-name :  module-type  { item-attribute }  
  module module-name  { ( module-name :  module-type ) } :  module-type  { item-attribute }  
  module type modtype-name  { item-attribute }  
  module type modtype-name =  module-type  { item-attribute }  
  open module-path  { item-attribute }  
  include module-type  { item-attribute }  
 
class-field-spec::= ...  
  class-field-spec  item-attribute  
 
class-field::= ...  
  class-field  item-attribute  
 

A third form of attributes appears as stand-alone structure or signature items in the module or class sub-languages. They are not attached to any specific node in the syntax tree:

floating-attribute::= [@@@ attr-id  attr-payload ]  
 
definition::= ...  
  floating-attribute  
 
specification::= ...  
  floating-attribute  
 
class-field-spec::= ...  
  floating-attribute  
 
class-field::= ...  
  floating-attribute  
 

(Note: contrary to what the grammar above describes, item-attributes cannot be attached to these floating attributes in class-field-spec and class-field.)

It is also possible to specify attributes using an infix syntax. For instance:

let[@foo] x = 2 in x + 1          === (let x = 2 [@@foo] in x + 1)
begin[@foo][@bar x] ... end       === (begin ... end)[@foo][@bar x]
module[@foo] M = ...              === module M = ... [@@foo]
type[@foo] t = T                  === type t = T [@@foo]
method[@foo] m = ...              === method m = ... [@@foo]

For let, the attributes are applied to each bindings:

let[@foo] x = 2 and y = 3 in x + y === (let x = 2 [@@foo] and y = 3 in x + y)
let[@foo] x = 2
and[@bar] y = 3 in x + y           === (let x = 2 [@@foo] and y = 3 [@@bar] in x + y)

8.12.1  Built-in attributes

Some attributes are understood by the type-checker:

module X = struct [@@@warning "+9"] (* locally enable warning 9 in this structure *)end [@@deprecated "Please use module 'Y' instead."] let x = begin[@warning "+9"] […] end type t = A | B [@@deprecated "Please use type 's' instead."]
let fires_warning_22 x = assert (x >= 0) [@ppwarning "TODO: remove this later"]
Warning 22: TODO: remove this later
let rec is_a_tail_call = function | [] -> () | _ :: q -> (is_a_tail_call[@tailcall]) q let rec not_a_tail_call = function | [] -> [] | x :: q -> x :: (not_a_tail_call[@tailcall]) q
Warning 51: expected tailcall
let f x = x [@@inline] let () = (f[@inlined]) ()
type fragile = | Int of int [@warn_on_literal_pattern] | String of string [@warn_on_literal_pattern]
let fragile_match_1 = function | Int 0 -> () | _ -> ()
Warning 52: Code should not depend on the actual values of this constructor's arguments. They are only for information and may change in future versions. (See manual section 9.5) val fragile_match_1 : fragile -> unit = <fun>
let fragile_match_2 = function | String "constant" -> () | _ -> ()
Warning 52: Code should not depend on the actual values of this constructor's arguments. They are only for information and may change in future versions. (See manual section 9.5) val fragile_match_2 : fragile -> unit = <fun>
module Immediate: sig type t [@@immediate] val x: t ref end = struct type t = A | B let x = ref A end
module Int_or_int64 : sig type t [@@immediate64] val zero : t val one : t val add : t -> t -> t end = struct include Sys.Immediate64.Make(Int)(Int64) module type S = sig val zero : t val one : t val add : t -> t -> t end let impl : (module S) = match repr with | Immediate -> (module Int : S) | Non_immediate -> (module Int64 : S) include (val impl : S) end

8.13  Extension nodes

(Introduced in OCaml 4.02, infix notations for constructs other than expressions added in 4.03, infix notation (e1 ;%ext e2) added in 4.04. )

Extension nodes are generic placeholders in the syntax tree. They are rejected by the type-checker and are intended to be “expanded” by external tools such as -ppx rewriters.

Extension nodes share the same notion of identifier and payload as attributes 8.12.

The first form of extension node is used for “algebraic” categories:

extension::= [% attr-id  attr-payload ]  
 
expr::= ...  
  extension  
 
typexpr::= ...  
  extension  
 
pattern::= ...  
  extension  
 
module-expr::= ...  
  extension  
 
module-type::= ...  
  extension  
 
class-expr::= ...  
  extension  
 
class-type::= ...  
  extension  
 

A second form of extension node can be used in structures and signatures, both in the module and object languages:

item-extension::= [%% attr-id  attr-payload ]  
 
definition::= ...  
  item-extension  
 
specification::= ...  
  item-extension  
 
class-field-spec::= ...  
  item-extension  
 
class-field::= ...  
  item-extension  
 

An infix form is available for extension nodes when the payload is of the same kind (expression with expression, pattern with pattern ...).

Examples:

let%foo x = 2 in x + 1     === [%foo let x = 2 in x + 1]
begin%foo ... end          === [%foo begin ... end]
x ;%foo 2                  === [%foo x; 2]
module%foo M = ..          === [%%foo module M = ... ]
val%foo x : t              === [%%foo: val x : t]

When this form is used together with the infix syntax for attributes, the attributes are considered to apply to the payload:

fun%foo[@bar] x -> x + 1 === [%foo (fun x -> x + 1)[@bar ] ];

Furthermore, quoted strings {|...|} can be combined with extension nodes to embed foreign syntax fragments. Those fragments can be interpreted by a preprocessor and turned into OCaml code without requiring escaping quotes. A syntax shortcut is available for them:

{%%foo|...|}               === [%%foo{|...|}]
let x = {%foo|...|}        === let x = [%foo{|...|}]
let y = {%foo bar|...|bar} === let y = [%foo{bar|...|bar}]

For instance, you can use {%sql|...|} to represent arbitrary SQL statements – assuming you have a ppx-rewriter that recognizes the %sql extension.

Note that the word-delimited form, for example {sql|...|sql}, should not be used for signaling that an extension is in use. Indeed, the user cannot see from the code whether this string literal has different semantics than they expect. Moreover, giving semantics to a specific delimiter limits the freedom to change the delimiter to avoid escaping issues.

8.13.1  Built-in extension nodes

(Introduced in OCaml 4.03)

Some extension nodes are understood by the compiler itself:

type t = .. type t += X of int | Y of string let x = [%extension_constructor X] let y = [%extension_constructor Y]
x <> y;;
- : bool = true

8.14  Extensible variant types

(Introduced in OCaml 4.02)

type-representation::= ...  
  = ..  
 
specification::= ...  
  type [type-params]  typeconstr  type-extension-spec  
 
definition::= ...  
  type [type-params]  typeconstr  type-extension-def  
 
type-extension-spec::= += [private] [|constr-decl  { | constr-decl }  
 
type-extension-def::= += [private] [|constr-def  { | constr-def }  
 
constr-def::= constr-decl  
  constr-name =  constr  
 

Extensible variant types are variant types which can be extended with new variant constructors. Extensible variant types are defined using ... New variant constructors are added using +=.

module Expr = struct type attr = .. type attr += Str of string type attr += | Int of int | Float of float end

Pattern matching on an extensible variant type requires a default case to handle unknown variant constructors:

let to_string = function | Expr.Str s -> s | Expr.Int i -> Int.to_string i | Expr.Float f -> string_of_float f | _ -> "?"

A preexisting example of an extensible variant type is the built-in exn type used for exceptions. Indeed, exception constructors can be declared using the type extension syntax:

type exn += Exc of int

Extensible variant constructors can be rebound to a different name. This allows exporting variants from another module.

let not_in_scope = Str "Foo";;
Error: Unbound constructor Str
type Expr.attr += Str = Expr.Str
let now_works = Str "foo";;
val now_works : Expr.attr = Expr.Str "foo"

Extensible variant constructors can be declared private. As with regular variants, this prevents them from being constructed directly by constructor application while still allowing them to be de-structured in pattern-matching.

module B : sig type Expr.attr += private Bool of int val bool : bool -> Expr.attr end = struct type Expr.attr += Bool of int let bool p = if p then Bool 1 else Bool 0 end
let inspection_works = function | B.Bool p -> (p = 1) | _ -> true;;
val inspection_works : Expr.attr -> bool = <fun>
let construction_is_forbidden = B.Bool 1;;
Error: Cannot use private constructor Bool to create values of type Expr.attr

8.14.1  Private extensible variant types

(Introduced in OCaml 4.06)

type-representation::= ...  
  = private ..  
 

Extensible variant types can be declared private. This prevents new constructors from being declared directly, but allows extension constructors to be referred to in interfaces.

module Msg : sig type t = private .. module MkConstr (X : sig type t end) : sig type t += C of X.t end end = struct type t = .. module MkConstr (X : sig type t end) = struct type t += C of X.t end end

8.15  Generative functors

(Introduced in OCaml 4.02)

module-expr::= ...  
  functor () -> module-expr  
  module-expr ()  
 
definition::= ...  
  module module-name  { ( module-name :  module-type ) ∣  () } [ : module-type ]  =  module-expr  
 
module-type::= ...  
  functor () -> module-type  
 
specification::= ...  
  module module-name  { ( module-name :  module-type ) ∣  () } : module-type  
 

A generative functor takes a unit () argument. In order to use it, one must necessarily apply it to this unit argument, ensuring that all type components in the result of the functor behave in a generative way, i.e. they are different from types obtained by other applications of the same functor. This is equivalent to taking an argument of signature sig end, and always applying to struct end, but not to some defined module (in the latter case, applying twice to the same module would return identical types).

As a side-effect of this generativity, one is allowed to unpack first-class modules in the body of generative functors.

8.16  Extension-only syntax

(Introduced in OCaml 4.02.2, extended in 4.03)

Some syntactic constructions are accepted during parsing and rejected during type checking. These syntactic constructions can therefore not be used directly in vanilla OCaml. However, -ppx rewriters and other external tools can exploit this parser leniency to extend the language with these new syntactic constructions by rewriting them to vanilla constructions.

8.16.1  Extension operators

(Introduced in OCaml 4.02.2)

infix-symbol::= ...  
  # {operator-chars#   {operator-char | #}  
 

Operator names starting with a # character and containing more than one # character are reserved for extensions.

8.16.2  Extension literals

(Introduced in OCaml 4.03)

float-literal::= ...  
  [-] (09) { 09∣ _ } [. { 09∣ _ }] [(e∣ E) [+∣ -] (09) { 09∣ _ }] [gz∣ GZ]  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ } [. { 09∣ AF∣ af∣ _ }] [(p∣ P) [+∣ -] (09) { 09∣ _ }] [gz∣ GZ]  
 
int-literal::= ...  
  [-] (09) { 09 ∣  _ }[gz∣ GZ]  
  [-] (0x∣ 0X) (09∣ AF∣ af) { 09∣ AF∣ af∣ _ } [gz∣ GZ]  
  [-] (0o∣ 0O) (07) { 07∣ _ } [gz∣ GZ]  
  [-] (0b∣ 0B) (01) { 01∣ _ } [gz∣ GZ]  
 

Int and float literals followed by an one-letter identifier in the range [g..zG..Z] are extension-only literals.

8.17  Inline records

(Introduced in OCaml 4.03)

constr-args::= ...  
  record-decl  
 

The arguments of sum-type constructors can now be defined using the same syntax as records. Mutable and polymorphic fields are allowed. GADT syntax is supported. Attributes can be specified on individual fields.

Syntactically, building or matching constructors with such an inline record argument is similar to working with a unary constructor whose unique argument is a declared record type. A pattern can bind the inline record as a pseudo-value, but the record cannot escape the scope of the binding and can only be used with the dot-notation to extract or modify fields or to build new constructor values.

type t = | Point of {width: int; mutable x: float; mutable y: float} | Other let v = Point {width = 10; x = 0.; y = 0.} let scale l = function | Point p -> Point {p with x = l *. p.x; y = l *. p.y} | Other -> Other let print = function | Point {x; y; _} -> Printf.printf "%f/%f" x y | Other -> () let reset = function | Point p -> p.x <- 0.; p.y <- 0. | Other -> ()
let invalid = function | Point p -> p
Error: This form is not allowed as the type of the inlined record could escape.

8.18  Documentation comments

(Introduced in OCaml 4.03)

Comments which start with ** are treated specially by the compiler. They are automatically converted during parsing into attributes (see 8.12) to allow tools to process them as documentation.

Such comments can take three forms: floating comments, item comments and label comments. Any comment starting with ** which does not match one of these forms will cause the compiler to emit warning 50.

Comments which start with ** are also used by the ocamldoc documentation generator (see 16). The three comment forms recognised by the compiler are a subset of the forms accepted by ocamldoc (see 16.2).

8.18.1  Floating comments

Comments surrounded by blank lines that appear within structures, signatures, classes or class types are converted into floating-attributes. For example:

type t = T (** Now some definitions for [t] *) let mkT = T

will be converted to:

type t = T [@@@ocaml.text " Now some definitions for [t] "] let mkT = T

8.18.2  Item comments

Comments which appear immediately before or immediately after a structure item, signature item, class item or class type item are converted into item-attributes. Immediately before or immediately after means that there must be no blank lines, ;;, or other documentation comments between them. For example:

type t = T (** A description of [t] *)

or

(** A description of [t] *) type t = T

will be converted to:

type t = T [@@ocaml.doc " A description of [t] "]

Note that, if a comment appears immediately next to multiple items, as in:

type t = T (** An ambiguous comment *) type s = S

then it will be attached to both items:

type t = T [@@ocaml.doc " An ambiguous comment "] type s = S [@@ocaml.doc " An ambiguous comment "]

and the compiler will emit warning 50.

8.18.3  Label comments

Comments which appear immediately after a labelled argument, record field, variant constructor, object method or polymorphic variant constructor are are converted into attributes. Immediately after means that there must be no blank lines or other documentation comments between them. For example:

type t1 = lbl:int (** Labelled argument *) -> unit type t2 = { fld: int; (** Record field *) fld2: float; } type t3 = | Cstr of string (** Variant constructor *) | Cstr2 of string type t4 = < meth: int * int; (** Object method *) > type t5 = [ `PCstr (** Polymorphic variant constructor *) ]

will be converted to:

type t1 = lbl:(int [@ocaml.doc " Labelled argument "]) -> unit type t2 = { fld: int [@ocaml.doc " Record field "]; fld2: float; } type t3 = | Cstr of string [@ocaml.doc " Variant constructor "] | Cstr2 of string type t4 = < meth : int * int [@ocaml.doc " Object method "] > type t5 = [ `PCstr [@ocaml.doc " Polymorphic variant constructor "] ]

Note that label comments take precedence over item comments, so:

type t = T of string (** Attaches to T not t *)

will be converted to:

type t = T of string [@ocaml.doc " Attaches to T not t "]

whilst:

type t = T of string (** Attaches to T not t *) (** Attaches to t *)

will be converted to:

type t = T of string [@ocaml.doc " Attaches to T not t "] [@@ocaml.doc " Attaches to t "]

In the absence of meaningful comment on the last constructor of a type, an empty comment (**) can be used instead:

type t = T of string (**) (** Attaches to t *)

will be converted directly to

type t = T of string [@@ocaml.doc " Attaches to t "]

8.19  Extended indexing operators

(Introduced in 4.06)

dot-ext::=  
  dot-operator-char  { operator-char }  
 
dot-operator-char::= ! ∣   ? ∣  core-operator-char ∣  % ∣  :  
 
expr::= ...  
  expr .  [module-path .]  dot-ext  ( ( expr ) ∣  [ expr ] ∣  { expr } )  [ <- expr ]  
 
operator-name::= ...  
  . dot-ext  (() ∣  [] ∣  {}) [<-]  
 

This extension provides syntactic sugar for getting and setting elements for user-defined indexed types. For instance, we can define python-like dictionaries with

module Dict = struct include Hashtbl let ( .%{} ) tabl index = find tabl index let ( .%{}<- ) tabl index value = add tabl index value end let dict = let dict = Dict.create 10 in let () = dict.Dict.%{"one"} <- 1; let open Dict in dict.%{"two"} <- 2 in dict
dict.Dict.%{"one"};;
- : int = 1
let open Dict in dict.%{"two"};;
- : int = 2

8.19.1  Multi-index notation

expr::= ...  
  expr .  [module-path .]  dot-ext (  expr  {; expr }+ )  [ <- expr ]  
  expr .  [module-path .]  dot-ext [  expr  {; expr }+ ]  [ <- expr ]  
  expr .  [module-path .]  dot-ext {  expr  {; expr }+ }  [ <- expr ]  
 
operator-name::= ...  
  . dot-ext  ((;..) ∣  [;..] ∣  {;..}) [<-]  
 

Multi-index are also supported through a second variant of indexing operators

let (.%[;..]) = Bigarray.Genarray.get let (.%{;..}) = Bigarray.Genarray.get let (.%(;..)) = Bigarray.Genarray.get

which is called when an index literals contain a semicolon separated list of expressions with two and more elements:

let sum x y = x.%[1;2;3] + y.%[1;2] (* is equivalent to *) let sum x y = (.%[;..]) x [|1;2;3|] + (.%[;..]) y [|1;2|]

In particular this multi-index notation makes it possible to uniformly handle indexing Genarray and other implementations of multidimensional arrays.

module A = Bigarray.Genarray let (.%{;..}) = A.get let (.%{;..}<- ) = A.set let (.%{ }) a k = A.get a [|k|] let (.%{ }<-) a k x = A.set a [|k|] x let syntax_compare vec mat t3 t4 = vec.%{0} = A.get vec [|0|] && mat.%{0;0} = A.get mat [|0;0|] && t3.%{0;0;0} = A.get t3 [|0;0;0|] && t4.%{0;0;0;0} = t4.{0,0,0,0}

8.20  Empty variant types

(Introduced in 4.07.0)

type-representation::= ...  
  = |

This extension allows user to define empty variants. Empty variant type can be eliminated by refutation case of pattern matching.

type t = | let f (x: t) = match x with _ -> .

8.21  Alerts

(Introduced in 4.08)

Since OCaml 4.08, it is possible to mark components (such as value or type declarations) in signatures with “alerts” that will be reported when those components are referenced. This generalizes the notion of “deprecated” components which were previously reported as warning 3. Those alerts can be used for instance to report usage of unsafe features, or of features which are only available on some platforms, etc.

Alert categories are identified by a symbolic identifier (a lowercase identifier, following the usual lexical rules) and an optional message. The identifier is used to control which alerts are enabled, and which ones are turned into fatal errors. The message is reported to the user when the alert is triggered (i.e. when the marked component is referenced).

The ocaml.alert or alert attribute serves two purposes: (i) to mark component with an alert to be triggered when the component is referenced, and (ii) to control which alert names are enabled. In the first form, the attribute takes an identifier possibly followed by a message. Here is an example of a value declaration marked with an alert:

module U: sig
  val fork: unit -> bool
    [@@alert unix "This function is only available under Unix."]
end

Here unix is the identifier for the alert. If this alert category is enabled, any reference to U.fork will produce a message at compile time, which can be turned or not into a fatal error.

And here is another example as a floating attribute on top of an “.mli” file (i.e. before any other non-attribute item) or on top of an “.ml” file without a corresponding interface file, so that any reference to that unit will trigger the alert:

[@@@alert unsafe "This module is unsafe!"]

Controlling which alerts are enabled and whether they are turned into fatal errors is done either through the compiler’s command-line option -alert <spec> or locally in the code through the alert or ocaml.alert attribute taking a single string payload <spec>. In both cases, the syntax for <spec> is a concatenation of items of the form:

As a special case, if id is all, it stands for all alerts.

Here are some examples:

(* Disable all alerts, reenables just unix (as a soft alert) and window
   (as a fatal-error), for the rest of the current structure *)

[@@@alert "-all--all+unix@window"]
 ...

let x =
  (* Locally disable the window alert *)
  begin[@alert "-window"]
      ...
  end

Before OCaml 4.08, there was support for a single kind of deprecation alert. It is now known as the deprecated alert, but legacy attributes to trigger it and the legacy ways to control it as warning 3 are still supported. For instance, passing -w +3 on the command-line is equivant to -alert +deprecated, and:

val x: int
  [@@@ocaml.deprecated "Please do something else"]

is equivalent to:

val x: int
  [@@@ocaml.alert deprecated "Please do something else"]

8.22  Generalized open statements

(Introduced in 4.08)

definition::= ...  
   open  module-expr  
   open! module-expr  
 
specification::= ...  
   open  extended-module-path  
   open! extended-module-path  
 
expr::= ...  
  let open  module-expr in  expr  
  let open! module-expr in  expr  
 

This extension makes it possible to open any module expression in module structures and expressions. A similar mechanism is also available inside module types, but only for extended module paths (e.g. F(X).G(Y)).

For instance, a module can be constrained when opened with

module M = struct let x = 0 let hidden = 1 end open (M:sig val x: int end) let y = hidden
Error: Unbound value hidden

Another possibility is to immediately open the result of a functor application

let sort (type x) (x:x list) = let open Set.Make(struct type t = x let compare=compare end) in elements (of_list x)
val sort : 'x list -> 'x list = <fun>

Going further, this construction can introduce local components inside a structure,

module M = struct let x = 0 open! struct let x = 0 let y = 1 end let w = x + y end
module M : sig val x : int val w : int end

One important restriction is that types introduced by open struct ... end cannot appear in the signature of the enclosing structure, unless they are defined equal to some non-local type. So:

module M = struct open struct type 'a t = 'a option = None | Some of 'a end let x : int t = Some 1 end
module M : sig val x : int option end

is OK, but:

module M = struct open struct type t = A end let x = A end
Error: The type t/4502 introduced by this open appears in the signature File "exten.etex", line 3, characters 6-7: The value x has no valid type if t/4502 is hidden

is not because x cannot be given any type other than t, which only exists locally. Although the above would be OK if x too was local:

module M: sig end = struct open struct type t = A endopen struct let x = A endend
module M : sig end

Inside signatures, extended opens are limited to extended module paths,

module type S = sig module F: sig end -> sig type t end module X: sig end open F(X) val f: t end
module type S = sig module F : sig end -> sig type t end module X : sig end val f : F(X).t end

and not

  open struct type t = int end

In those situations, local substitutions(see 8.7.2) can be used instead.

Beware that this extension is not available inside class definitions:

class c =
  let open Set.Make(Int) in
  ...

8.23  Binding operators

(Introduced in 4.08.0)

let-operator::=  
  let (core-operator-char ∣  <) { dot-operator-char }  
 
and-operator::=  
  and (core-operator-char ∣  <) { dot-operator-char }  
 
operator-name ::= ...  
  let-operator  
  and-operator  
 
expr::= ...  
  let-operator  let-binding  { and-operator  let-binding }  in  expr  
 

Users can define let operators:

let ( let* ) o f = match o with | None -> None | Some x -> f x let return x = Some x
val ( let* ) : 'a option -> ('a -> 'b option) -> 'b option = <fun> val return : 'a -> 'a option = <fun>

and then apply them using this convenient syntax:

let find_and_sum tbl k1 k2 = let* x1 = Hashtbl.find_opt tbl k1 in let* x2 = Hashtbl.find_opt tbl k2 in return (x1 + x2)
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>

which is equivalent to this expanded form:

let find_and_sum tbl k1 k2 = ( let* ) (Hashtbl.find_opt tbl k1) (fun x1 -> ( let* ) (Hashtbl.find_opt tbl k2) (fun x2 -> return (x1 + x2)))
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>

Users can also define and operators:

module ZipSeq = struct type 'a t = 'a Seq.t open Seq let rec return x = fun () -> Cons(x, return x) let rec prod a b = fun () -> match a (), b () with | Nil, _ | _, Nil -> Nil | Cons(x, a), Cons(y, b) -> Cons((x, y), prod a b) let ( let+ ) f s = map s f let ( and+ ) a b = prod a b end
module ZipSeq : sig type 'a t = 'a Seq.t val return : 'a -> 'a Seq.t val prod : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t val ( let+ ) : 'a Seq.t -> ('a -> 'b) -> 'b Seq.t val ( and+ ) : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t end

to support the syntax:

open ZipSeq let sum3 z1 z2 z3 = let+ x1 = z1 and+ x2 = z2 and+ x3 = z3 in x1 + x2 + x3
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>

which is equivalent to this expanded form:

open ZipSeq let sum3 z1 z2 z3 = ( let+ ) (( and+ ) (( and+ ) z1 z2) z3) (fun ((x1, x2), x3) -> x1 + x2 + x3)
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>

8.23.1  Rationale

This extension is intended to provide a convenient syntax for working with monads and applicatives.

An applicative should provide a module implementing the following interface:

module type Applicative_syntax = sig type 'a t val ( let+ ) : 'a t -> ('a -> 'b) -> 'b t val ( and+ ): 'a t -> 'b t -> ('a * 'b) t end

where (let+) is bound to the map operation and (and+) is bound to the monoidal product operation.

A monad should provide a module implementing the following interface:

module type Monad_syntax = sig include Applicative_syntax val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t val ( and* ): 'a t -> 'b t -> ('a * 'b) t end

where (let*) is bound to the bind operation, and (and*) is also bound to the monoidal product operation.

Part III
The OCaml tools

Chapter 9  Batch compilation (ocamlc)

This chapter describes the OCaml batch compiler ocamlc, which compiles OCaml source files to bytecode object files and links these object files to produce standalone bytecode executable files. These executable files are then run by the bytecode interpreter ocamlrun.

9.1  Overview of the compiler

The ocamlc command has a command-line interface similar to the one of most C compilers. It accepts several types of arguments and processes them sequentially, after all options have been processed:

The output of the linking phase is a file containing compiled bytecode that can be executed by the OCaml bytecode interpreter: the command named ocamlrun. If a.out is the name of the file produced by the linking phase, the command

        ocamlrun a.out arg1 arg2argn

executes the compiled code contained in a.out, passing it as arguments the character strings arg1 to argn. (See chapter 11 for more details.)

On most systems, the file produced by the linking phase can be run directly, as in:

        ./a.out arg1 arg2argn

The produced file has the executable bit set, and it manages to launch the bytecode interpreter by itself.

The compiler is able to emit some information on its internal stages. It can output .cmt files for the implementation of the compilation unit and .cmti for signatures if the option -bin-annot is passed to it (see the description of -bin-annot below). Each such file contains a typed abstract syntax tree (AST), that is produced during the type checking procedure. This tree contains all available information about the location and the specific type of each term in the source file. The AST is partial if type checking was unsuccessful.

These .cmt and .cmti files are typically useful for code inspection tools.

9.2  Options

The following command-line options are recognized by ocamlc. The options -pack, -a, -c and -output-obj are mutually exclusive.

-a
Build a library(.cma file) with the object files ( .cmo files) given on the command line, instead of linking them into an executable file. The name of the library must be set with the -o option.

If -custom, -cclib or -ccopt options are passed on the command line, these options are stored in the resulting .cmalibrary. Then, linking with this library automatically adds back the -custom, -cclib and -ccopt options as if they had been provided on the command line, unless the -noautolink option is given.

-absname
Force error messages to show absolute paths for file names.
-annot
Deprecated since OCaml 4.11. Please use -bin-annot instead.
-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in binary format. The information for file src.ml (resp. src.mli) is put into file src.cmt (resp. src.cmti). In case of a type error, dump all the information inferred by the type-checker before the error. The *.cmt and *.cmti files produced by -bin-annot contain more information and are much more compact than the files produced by -annot.
-c
Compile only. Suppress the linking phase of the compilation. Source code files are turned into compiled files, but no executable file is produced. This option is useful to compile modules separately.
-cc ccomp
Use ccomp as the C linker when linking in “custom runtime” mode (see the -custom option) and as the C compiler for compiling .c source files.
-cclib -llibname
Pass the -llibname option to the C linker when linking in “custom runtime” mode (see the -custom option). This causes the given C library to be linked with the program.
-ccopt option
Pass the given option to the C compiler and linker. When linking in “custom runtime” mode, for instance-ccopt -Ldir causes the C linker to search for C libraries in directory dir.(See the -custom option.)
-color mode
Enable or disable colors in compiler messages (especially warnings and errors). The following modes are supported:
auto
use heuristics to enable colors only if the output supports them (an ANSI-compatible tty terminal);
always
enable colors unconditionally;
never
disable color output.
The default setting is ’auto’, and the current heuristic checks that the TERM environment variable exists and is not empty or dumb, and that ’isatty(stderr)’ holds.

The environment variable OCAML_COLOR is considered if -color is not provided. Its values are auto/always/never as above.

-error-style mode
Control the way error messages and warnings are printed. The following modes are supported:
short
only print the error and its location;
contextual
like short, but also display the source code snippet corresponding to the location of the error.
The default setting is contextual.

The environment variable OCAML_ERROR_STYLE is considered if -error-style is not provided. Its values are short/contextual as above.

-compat-32
Check that the generated bytecode executable can run on 32-bit platforms and signal an error if it cannot. This is useful when compiling bytecode on a 64-bit machine.
-config
Print the version number of ocamlc and a detailed summary of its configuration, then exit.
-config-var var
Print the value of a specific configuration variable from the -config output, then exit. If the variable does not exist, the exit code is non-zero. This option is only available since OCaml 4.08, so script authors should have a fallback for older versions.
-custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode that is intended to be executed with the shared runtime system, ocamlrun. In the custom runtime mode, the linker produces an output file that contains both the runtime system and the bytecode for the program. The resulting file is larger, but it can be executed directly, even if the ocamlrun command is not installed. Moreover, the “custom runtime” mode enables static linking of OCaml code with user-defined C functions, as described in chapter 20.
Unix:   Never use the strip command on executables produced by ocamlc -custom, this would remove the bytecode part of the executable.
Unix:   Security warning: never set the “setuid” or “setgid” bits on executables produced by ocamlc -custom, this would make them vulnerable to attacks.
-depend ocamldep-args
Compute dependencies, as the ocamldep command would do. The remaining arguments are interpreted as if they were given to the ocamldep command.
-dllib -llibname
Arrange for the C shared library dlllibname.so (dlllibname.dll under Windows) to be loaded dynamically by the run-time system ocamlrun at program start-up time.
-dllpath dir
Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared libraries are searched in the standard search path (the one corresponding to the -I option). The -dllpath option simply stores dir in the produced executable file, where ocamlrun can find it and use it as described in section 11.3.
-for-pack module-path
Generate an object file (.cmo) that can later be included as a sub-module (with the given access path) of a compilation unit constructed with -pack. For instance, ocamlc -for-pack P -c A.ml will generate a..cmo that can later be used with ocamlc -pack -o P.cmo a.cmo. Note: you can still pack a module that was compiled without -for-pack but in this case exceptions will be printed with the wrong names.
-g
Add debugging information while compiling and linking. This option is required in order to be able to debug the program with ocamldebug (see chapter 17), and to produce stack backtraces when the program terminates on an uncaught exception (see section 11.2).
-i
Cause the compiler to print all defined names (with their inferred types or their definitions) when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are produced. This can be useful to check the types inferred by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to a .mli file, and edit that file to remove all declarations of unexported names.
-I directory
Add the given directory to the list of directories searched for compiled interface files (.cmi), compiled object code files .cmo, libraries (.cma) and C libraries specified with -cclib -lxxx. By default, the current directory is searched first, then the standard library directory. Directories added with -I are searched after the current directory, in the order in which they were given on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +unix adds the subdirectory unix of the standard library to the search path.

-impl filename
Compile the file filename as an implementation file, even if its extension is not .ml.
-intf filename
Compile the file filename as an interface file, even if its extension is not .mli.
-intf-suffix string
Recognize file names ending with string as interface files (instead of the default .mli).
-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced modules are not linked in. When building a library (option -a), setting the -linkall option forces all subsequent links of programs involving that library to link all the modules contained in the library. When compiling a module (option -c), setting the -linkall option ensures that this module will always be linked if it is put in a library and this library is linked.
-make-runtime
Build a custom runtime system (in the file specified by option -o) incorporating the C object files and libraries given on the command line. This custom runtime system can be used later to execute bytecode executables produced with the ocamlc -use-runtime runtime-name option. See section 20.1.6 for more information.
-match-context-rows
Set the number of rows of context used for optimization during pattern matching compilation. The default value is 32. Lower values cause faster compilation, but less optimized code. This advanced option is meant for use in the event that a pattern-match-heavy program leads to significant increases in compilation time.
-no-alias-deps
Do not record dependencies for module aliases. See section 8.8 for more information.
-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application generates new types in its result and applying the same functor twice to the same argument yields two incompatible structures.
-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially. This flag has no effect when linking already-compiled files.
-noautolink
When linking .cmalibraries, ignore -custom, -cclib and -ccopt options potentially contained in the libraries (if these options were given when building the libraries). This can be useful if a library contains incorrect specifications of C libraries or C options; in this case, during linking, set -noautolink and pass the correct C libraries and options on the command line.
-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
-nostdlib
Do not include the standard library directory in the list of directories searched for compiled interface files (.cmi), compiled object code files (.cmo), libraries (.cma), and C libraries specified with -cclib -lxxx. See also option -I.
-o exec-file
Specify the name of the output file produced by the compiler. The default output name is a.out under Unix and camlprog.exe under Windows. If the -a option is given, specify the name of the library produced. If the -pack option is given, specify the name of the packed object file produced. If the -output-obj option is given, specify the name of the output file produced. If the -c option is given, specify the name of the object file produced for the next source file that appears on the command line.
-opaque
When the native compiler compiles an implementation, by default it produces a .cmx file containing information for cross-module optimization. It also expects .cmx files to be present for the dependencies of the currently compiled source, and uses them for optimization. Since OCaml 4.03, the compiler will emit a warning if it is unable to locate the .cmx file of one of those dependencies.

The -opaque option, available since 4.04, disables cross-module optimization information for the currently compiled unit. When compiling .mli interface, using -opaque marks the compiled .cmi interface so that subsequent compilations of modules that depend on it will not rely on the corresponding .cmx file, nor warn if it is absent. When the native compiler compiles a .ml implementation, using -opaque generates a .cmx that does not contain any cross-module optimization information.

Using this option may degrade the quality of generated code, but it reduces compilation time, both on clean and incremental builds. Indeed, with the native compiler, when the implementation of a compilation unit changes, all the units that depend on it may need to be recompiled – because the cross-module information may have changed. If the compilation unit whose implementation changed was compiled with -opaque, no such recompilation needs to occur. This option can thus be used, for example, to get faster edit-compile-test feedback loops.

-open Module
Opens the given module before processing the interface or implementation files. If several -open options are given, they are processed in order, just as if the statements open! Module1;; ... open! ModuleN;; were added at the top of each file.
-output-obj
Cause the linker to produce a C object file instead of a bytecode executable file. This is useful to wrap OCaml code as a C library, callable from any C program. See chapter 20, section 20.7.5. The name of the output object file must be set with the -o option. This option can also be used to produce a C source file (.c extension) or a compiled shared/dynamic library (.so extension, .dll under Windows).
-output-complete-exe
Build a self-contained executable by linking a C object file containing the bytecode program, the OCaml runtime system and any other static C code given to ocamlc. The resulting effect is similar to -custom, except that the bytecode is embedded in the C code so it is no longer accessible to tools such as ocamldebug. On the other hand, the resulting binary is resistant to strip.
-pack
Build a bytecode object file (.cmo file) and its associated compiled interface (.cmi) that combines the object files given on the command line, making them appear as sub-modules of the output .cmo file. The name of the output .cmo file must be given with the -o option. For instance,
        ocamlc -pack -o p.cmo a.cmo b.cmo c.cmo
generates compiled files p.cmo and p.cmi describing a compilation unit having three sub-modules A, B and C, corresponding to the contents of the object files a.cmo, b.cmo and c.cmo. These contents can be referenced as P.A, P.B and P.C in the remainder of the program.
-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The output of command is redirected to an intermediate file, which is compiled. If there are no compilation errors, the intermediate file is deleted afterwards.
-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module Ast_mapper, described in chapter 27: Ast_mapper , implements the external interface of a preprocessor.
-principal
Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported.Note that once you have created an interface using this flag, you must use it again for all dependencies.
-runtime-variant suffix
Add the suffix string to the name of the runtime library used by the program. Currently, only one such suffix is supported: d, and only if the OCaml compiler was configured with option -with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for debugging pointer problems in low-level code such as C stubs.
-stop-after pass
Stop compilation after the given compilation pass. The currently supported passes are: parsing, typing.
-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only. This is the default.
-short-paths
When a type is visible under several module-paths, use the shortest one when printing the type’s name in inferred interfaces and error and warning messages. Identifier names starting with an underscore _ or containing double underscores __ incur a penalty of +10 when computing their length.
-strict-sequence
Force the left-hand part of each sequence to have type unit.
-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use this flag to detect and fix such invalid formats, as they will be rejected by future OCaml versions.
-unboxed-types
When a type is unboxable (i.e. a record with a single argument or a concrete datatype with a single constructor of one argument) it will be unboxed unless annotated with [@@ocaml.boxed].
-no-unboxed-types
When a type is unboxable it will be boxed unless annotated with [@@ocaml.unboxed]. This is the default.
-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds. Additionally, turn off the check for zero divisor in integer division and modulus operations. With -unsafe, an integer division (or modulus) by zero can halt the program or continue with an unspecified result instead of raising a Division_by_zero exception.
-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for compatibility with old source code and should not be used with new software.
-use-runtime runtime-name
Generate a bytecode executable file that can be executed on the custom runtime system runtime-name, built earlier with ocamlc -make-runtime runtime-name. See section 20.1.6 for more information.
-v
Print the version number of the compiler and the location of the standard library directory, then exit.
-verbose
Print all external commands before they are executed, in particular invocations of the C compiler and linker in -custom mode. Useful to debug C library problems.
-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.
-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal). If a warning is enabled, it is displayed normally by the compiler whenever the source code triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying it.

The warning-list argument is a sequence of warning specifiers, with no separators between them. A warning specifier is one of the following:

+num
Enable warning number num.
-num
Disable warning number num.
@num
Enable and mark as fatal warning number num.
+num1..num2
Enable warnings in the given range.
-num1..num2
Disable warnings in the given range.
@num1..num2
Enable and mark as fatal warnings in the given range.
+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
-letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
@letter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.
lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined are ignored. The warnings are as follows.

1
Suspicious-looking start-of-comment mark.
2
Suspicious-looking end-of-comment mark.
3
Deprecated synonym for the ’deprecated’ alert.
4
Fragile pattern matching: matching that will remain complete even if additional constructors are added to one of the variant types matched.
5
Partially applied function: expression whose result has function type and is ignored.
6
Label omitted in function application.
7
Method overridden.
8
Partial match: missing cases in pattern-matching.
9
Missing fields in a record pattern.
10
Expression on the left-hand side of a sequence that doesn’t have type unit (and that is not a function, see warning number 5).
11
Redundant case in a pattern matching (unused match case).
12
Redundant sub-pattern in a pattern-matching.
13
Instance variable overridden.
14
Illegal backslash escape in a string constant.
15
Private method made public implicitly.
16
Unerasable optional argument.
17
Undeclared virtual method.
18
Non-principal type.
19
Type without principality.
20
Unused function argument.
21
Non-returning statement.
22
Preprocessor warning.
23
Useless record with clause.
24
Bad module name: the source file name is not a valid OCaml module name.
25
Deprecated: now part of warning 8.
26
Suspicious unused variable: unused variable that is bound with let or as, and doesn’t start with an underscore (_) character.
27
Innocuous unused variable: unused variable that is not bound with let nor as, and doesn’t start with an underscore (_) character.
28
Wildcard pattern given as argument to a constant constructor.
29
Unescaped end-of-line in a string constant (non-portable code).
30
Two labels or constructors of the same name are defined in two mutually recursive types.
31
A module is linked twice in the same executable.
32
Unused value declaration.
33
Unused open statement.
34
Unused type declaration.
35
Unused for-loop index.
36
Unused ancestor variable.
37
Unused constructor.
38
Unused extension constructor.
39
Unused rec flag.
40
Constructor or label name used out of scope.
41
Ambiguous constructor or label name.
42
Disambiguated constructor or label name (compatibility warning).
43
Nonoptional label applied as optional.
44
Open statement shadows an already defined identifier.
45
Open statement shadows an already defined label or constructor.
46
Error in environment variable.
47
Illegal attribute payload.
48
Implicit elimination of optional arguments.
49
Absent cmi file when looking up module alias.
50
Unexpected documentation comment.
51
Warning on non-tail calls if @tailcall present.
52 (see 9.5.2)
Fragile constant pattern.
53
Attribute cannot appear in this context.
54
Attribute used more than once on an expression.
55
Inlining impossible.
56
Unreachable case in a pattern-matching (based on type information).
57 (see 9.5.3)
Ambiguous or-pattern variables under guard.
58
Missing cmx file.
59
Assignment to non-mutable value.
60
Unused module declaration.
61
Unboxable type in primitive declaration.
62
Type constraint on GADT type declaration.
63
Erroneous printed signature.
64
-unsafe used with a preprocessor returning a syntax tree.
65
Type declaration defining a new ’()’ constructor.
66
Unused open! statement.
67
Unused functor parameter.
A
all warnings
C
warnings 1, 2.
D
Alias for warning 3.
E
Alias for warning 4.
F
Alias for warning 5.
K
warnings 32, 33, 34, 35, 36, 37, 38, 39.
L
Alias for warning 6.
M
Alias for warning 7.
P
Alias for warning 8.
R
Alias for warning 9.
S
Alias for warning 10.
U
warnings 11, 12.
V
Alias for warning 13.
X
warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.
Y
Alias for warning 26.
Z
Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by ocamlc -help. Note that warnings 5 and 10 are not always triggered, depending on the internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error in production code, because this can break your build when future versions of OCaml add some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.
-where
Print the location of the standard library, then exit.
-with-runtime
Include the runtime system in the generated program. This is the default.
-without-runtime
The compiler does not include the runtime system (nor a reference to it) in the generated program; it must be supplied separately.
- file
Process file as a file name, even if it starts with a dash (-) character.
-help or --help
Display a short usage summary and exit.
contextual-cli-control

Contextual control of command-line options

The compiler command line can be modified “from the outside” with the following mechanisms. These are experimental and subject to change. They should be used only for experimental and development work, not in released packages.

OCAMLPARAM (environment variable)
A set of arguments that will be inserted before or after the arguments from the command line. Arguments are specified in a comma-separated list of name=value pairs. A _ is used to specify the position of the command line arguments, i.e. a=x,_,b=y means that a=x should be executed before parsing the arguments, and b=y after. Finally, an alternative separator can be specified as the first character of the string, within the set :|; ,.
ocaml_compiler_internal_params (file in the stdlib directory)
A mapping of file names to lists of arguments that will be added to the command line (and OCAMLPARAM) arguments.
OCAML_FLEXLINK (environment variable)
Alternative executable to use on native Windows for flexlink instead of the configured value. Primarily used for bootstrapping.

9.3  Modules and the file system

This short section is intended to clarify the relationship between the names of the modules corresponding to compilation units and the names of the files that contain their compiled interface and compiled implementation.

The compiler always derives the module name by taking the capitalized base name of the source file (.ml or .mli file). That is, it strips the leading directory name, if any, as well as the .ml or .mli suffix; then, it set the first letter to uppercase, in order to comply with the requirement that module names must be capitalized. For instance, compiling the file mylib/misc.ml provides an implementation for the module named Misc. Other compilation units may refer to components defined in mylib/misc.ml under the names Misc.name; they can also do open Misc, then use unqualified names name.

The .cmi and .cmo files produced by the compiler have the same base name as the source file. Hence, the compiled files always have their base name equal (modulo capitalization of the first letter) to the name of the module they describe (for .cmi files) or implement (for .cmo files).

When the compiler encounters a reference to a free module identifier Mod, it looks in the search path for a file named Mod.cmi or mod.cmi and loads the compiled interface contained in that file. As a consequence, renaming .cmi files is not advised: the name of a .cmi file must always correspond to the name of the compilation unit it implements. It is admissible to move them to another directory, if their base name is preserved, and the correct -I options are given to the compiler. The compiler will flag an error if it loads a .cmi file that has been renamed.

Compiled bytecode files (.cmo files), on the other hand, can be freely renamed once created. That’s because the linker never attempts to find by itself the .cmo file that implements a module with a given name: it relies instead on the user providing the list of .cmo files by hand.

9.4  Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search path. The filename is either a compiled interface file (.cmi file), or a compiled bytecode file (.cmo file). If filename has the format mod.cmi, this means you are trying to compile a file that references identifiers from module mod, but you have not yet compiled an interface for module mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface mod.cmi.

If filename has the format mod.cmo, this means you are trying to link a bytecode object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface filename
The compiler produces this error when it tries to read a compiled interface file (.cmi file) that has the wrong structure. This means something went wrong when this .cmi file was written: the disk was full, the compiler was interrupted in the middle of the file creation, and so on. This error can also appear if a .cmi file is modified after its creation by the compiler. Fix: remove the corrupted .cmi file, and rebuild it.
This expression has type t1, but is used with type t2
This is by far the most common type error in programs. Type t1 is the type inferred for the expression (the part of the program that is displayed in the error message), by looking at the expression itself. Type t2 is the type expected by the context of the expression; it is deduced by looking at how the value of this expression is used in the rest of the program. If the two types t1 and t2 are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types t1 and t2 are incompatible. For instance, the compiler can report that “expression of type foo cannot be used with type foo”, and it really seems that the two types foo are compatible. This is not always true. Two type constructors can have the same name, but actually represent different types. This can happen if a type constructor is redefined. Example:

        type foo = A | B
        let f = function A -> 0 | B -> 1
        type foo = C | D
        f C

This result in the error message “expression C of type foo cannot be used with type foo”.

The type of this expression, t, contains type variables that cannot be generalized
Type variables ('a, 'b, …) in a type t can be in either of two states: generalized (which means that the type t is valid for all possible instantiations of the variables) and not generalized (which means that the type t is valid only for one instantiation of the variables). In a let binding let name = expr, the type-checker normally generalizes as many type variables as possible in the type of expr. However, this leads to unsoundness (a well-typed program can crash) in conjunction with polymorphic mutable data structures. To avoid this, generalization is performed at let bindings only if the bound expression expr belongs to the class of “syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values, etc. In all other cases (for instance, expr is a function application), a polymorphic mutable could have been created and generalization is therefore turned off for all variables occurring in contravariant or non-variant branches of the type. For instance, if the type of a non-value is 'a list the variable is generalizable (list is a covariant type constructor), but not in 'a list -> 'a list (the left branch of -> is contravariant) or 'a ref (ref is non-variant).

Non-generalized type variables in a type cause no difficulties inside a given structure or compilation unit (the contents of a .ml file, or an interactive session), but they cannot be allowed inside signatures nor in compiled interfaces (.cmi file), because they could be used inconsistently later. Therefore, the compiler flags an error when a structure or compilation unit defines a value name whose type contains non-generalized type variables. There are two ways to fix this error:

Reference to undefined global mod
This error appears when trying to link an incomplete or incorrectly ordered set of files. Either you have forgotten to provide an implementation for the compilation unit named mod on the command line (typically, the file named mod.cmo, or a library containing that file). Fix: add the missing .ml or .cmo file to the command line. Or, you have provided an implementation for the module named mod, but it comes too late on the command line: the implementation of mod must come before all bytecode object files that reference mod. Fix: change the order of .ml and .cmo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across modules. That is, function Mod1.f calls function Mod2.g, and function Mod2.g calls function Mod1.f. In this case, no matter what permutations you perform on the command line, the program will be rejected at link-time. Fixes:

The external function f is not available
This error appears when trying to link code that calls external functions written in C. As explained in chapter 20, such code must be linked with C libraries that implement the required f C function. If the C libraries in question are not shared libraries (DLLs), the code must be linked in “custom runtime” mode. Fix: add the required C libraries to the command line, and possibly the -custom option.

9.5  Warning reference

This section describes and explains in detail some warnings:

9.5.1  Warning 9: missing fields in a record pattern

When pattern matching on records, it can be useful to match only few fields of a record. Eliding fields can be done either implicitly or explicitly by ending the record pattern with ; _. However, implicit field elision is at odd with pattern matching exhaustiveness checks. Enabling warning 9 prioritizes exhaustiveness checks over the convenience of implicit field elision and will warn on implicit field elision in record patterns. In particular, this warning can help to spot exhaustive record pattern that may need to be updated after the addition of new fields to a record type.

type 'a point = {x : 'a; y : 'a}
let dx { x } = x (* implicit field elision: trigger warning 9 *)
let dy { y; _ } = y (* explicit field elision: do not trigger warning 9 *)

9.5.2  Warning 52: fragile constant pattern

Some constructors, such as the exception constructors Failure and Invalid_argument, take as parameter a string value holding a text message intended for the user.

These text messages are usually not stable over time: call sites building these constructors may refine the message in a future version to make it more explicit, etc. Therefore, it is dangerous to match over the precise value of the message. For example, until OCaml 4.02, Array.iter2 would raise the exception

  Invalid_argument "arrays must have the same length"

Since 4.03 it raises the more helpful message

  Invalid_argument "Array.iter2: arrays must have the same length"

but this means that any code of the form

  try ...
  with Invalid_argument "arrays must have the same length" -> ...

is now broken and may suffer from uncaught exceptions.

Warning 52 is there to prevent users from writing such fragile code in the first place. It does not occur on every matching on a literal string, but only in the case in which library authors expressed their intent to possibly change the constructor parameter value in the future, by using the attribute ocaml.warn_on_literal_pattern (see the manual section on builtin attributes in 8.12.1):

  type t =
    | Foo of string [@ocaml.warn_on_literal_pattern]
    | Bar of string

  let no_warning = function
    | Bar "specific value" -> 0
    | _ -> 1

  let warning = function
    | Foo "specific value" -> 0
    | _ -> 1

>    | Foo "specific value" -> 0
>          ^^^^^^^^^^^^^^^^
> Warning 52: Code should not depend on the actual values of
> this constructor's arguments. They are only for information
> and may change in future versions. (See manual section 8.5)

In particular, all built-in exceptions with a string argument have this attribute set: Invalid_argument, Failure, Sys_error will all raise this warning if you match for a specific string argument.

Additionally, built-in exceptions with a structured argument that includes a string also have the attribute set: Assert_failure and Match_failure will raise the warning for a pattern that uses a literal string to match the first element of their tuple argument.

If your code raises this warning, you should not change the way you test for the specific string to avoid the warning (for example using a string equality inside the right-hand-side instead of a literal pattern), as your code would remain fragile. You should instead enlarge the scope of the pattern by matching on all possible values.

let warning = function
  | Foo _ -> 0
  | _ -> 1

This may require some care: if the scrutinee may return several different cases of the same pattern, or raise distinct instances of the same exception, you may need to modify your code to separate those several cases.

For example,

try (int_of_string count_str, bool_of_string choice_str) with
  | Failure "int_of_string" -> (0, true)
  | Failure "bool_of_string" -> (-1, false)

should be rewritten into more atomic tests. For example, using the exception patterns documented in Section 7.6, one can write:

match int_of_string count_str with
  | exception (Failure _) -> (0, true)
  | count ->
    begin match bool_of_string choice_str with
    | exception (Failure _) -> (-1, false)
    | choice -> (count, choice)
    end

The only case where that transformation is not possible is if a given function call may raise distinct exceptions with the same constructor but different string values. In this case, you will have to check for specific string values. This is dangerous API design and it should be discouraged: it’s better to define more precise exception constructors than store useful information in strings.

9.5.3  Warning 57: Ambiguous or-pattern variables under guard

The semantics of or-patterns in OCaml is specified with a left-to-right bias: a value v matches the pattern p | q if it matches p or q, but if it matches both, the environment captured by the match is the environment captured by p, never the one captured by q.

While this property is generally intuitive, there is at least one specific case where a different semantics might be expected. Consider a pattern followed by a when-guard: | p when g -> e, for example:

     | ((Const x, _) | (_, Const x)) when is_neutral x -> branch

The semantics is clear: match the scrutinee against the pattern, if it matches, test the guard, and if the guard passes, take the branch. In particular, consider the input (Const a, Const b), where a fails the test is_neutral a, while b passes the test is_neutral b. With the left-to-right semantics, the clause above is not taken by its input: matching (Const a, Const b) against the or-pattern succeeds in the left branch, it returns the environment x -> a, and then the guard is_neutral a is tested and fails, the branch is not taken.

However, another semantics may be considered more natural here: any pair that has one side passing the test will take the branch. With this semantics the previous code fragment would be equivalent to

     | (Const x, _) when is_neutral x -> branch
     | (_, Const x) when is_neutral x -> branch

This is not the semantics adopted by OCaml.

Warning 57 is dedicated to these confusing cases where the specified left-to-right semantics is not equivalent to a non-deterministic semantics (any branch can be taken) relatively to a specific guard. More precisely, it warns when guard uses “ambiguous” variables, that are bound to different parts of the scrutinees by different sides of a or-pattern.

Chapter 10  The toplevel system or REPL (ocaml)

This chapter describes the toplevel system for OCaml, that permits interactive use of the OCaml system through a read-eval-print loop (REPL). In this mode, the system repeatedly reads OCaml phrases from the input, then typechecks, compile and evaluate them, then prints the inferred type and result value, if any. The system prints a # (sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The toplevel input consists in one or several toplevel phrases, with the following syntax:

toplevel-input::=definition }+ ;;  
  expr ;;  
  # ident  [ directive-argument ] ;;  
 
directive-argument::= string-literal  
  integer-literal  
  value-path  
  true ∣  false

A phrase can consist of a definition, like those found in implementations of compilation units or in structend module expressions. The definition can bind value names, type names, an exception, a module name, or a module type name. The toplevel system performs the bindings, then prints the types and values (if any) for the names thus defined.

A phrase may also consist in a value expression (section 7.7). It is simply evaluated without performing any bindings, and its value is printed.

Finally, a phrase can also consist in a toplevel directive, starting with # (the sharp sign). These directives control the behavior of the toplevel; they are listed below in section 10.2.

Unix:   The toplevel system is started by the command ocaml, as follows:
        ocaml options objects                # interactive mode
        ocaml options objects scriptfile        # script mode
options are described below. objects are filenames ending in .cmo or .cma; they are loaded into the interpreter immediately after options are set. scriptfile is any file name not ending in .cmo or .cma.

If no scriptfile is given on the command line, the toplevel system enters interactive mode: phrases are read on standard input, results are printed on standard output, errors on standard error. End-of-file on standard input terminates ocaml (see also the #quit directive in section 10.2).

On start-up (before the first phrase is read), if the file .ocamlinit exists in the current directory, its contents are read as a sequence of OCaml phrases and executed as per the #use directive described in section 10.2. The evaluation outcode for each phrase are not displayed. If the current directory does not contain an .ocamlinit file, the file XDG_CONFIG_HOME/ocaml/init.ml is looked up according to the XDG base directory specification and used instead (on Windows this is skipped). If that file doesn’t exist then an [.ocamlinit] file in the users’ home directory (determined via environment variable HOME) is used if existing.

The toplevel system does not perform line editing, but it can easily be used in conjunction with an external line editor such as ledit, or rlwrap. An improved toplevel, utop, is also available. Another option is to use ocaml under Gnu Emacs, which gives the full editing power of Emacs (command run-caml from library inf-caml).

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted by pressing ctrl-C (or, more precisely, by sending the INTR signal to the ocaml process). The toplevel then immediately returns to the # prompt.

If scriptfile is given on the command-line to ocaml, the toplevel system enters script mode: the contents of the file are read as a sequence of OCaml phrases and executed, as per the #use directive (section 10.2). The outcome of the evaluation is not printed. On reaching the end of file, the ocaml command exits immediately. No commands are read from standard input. Sys.argv is transformed, ignoring all OCaml parameters, and starting with the script file name in Sys.argv.(0).

In script mode, the first line of the script is ignored if it starts with #!. Thus, it should be possible to make the script itself executable and put as first line #!/usr/local/bin/ocaml, thus calling the toplevel system automatically when the script is run. However, ocaml itself is a #! script on most installations of OCaml, and Unix kernels usually do not handle nested #! scripts. A better solution is to put the following as the first line of the script:

        #!/usr/local/bin/ocamlrun /usr/local/bin/ocaml

10.1  Options

The following command-line options are recognized by the ocaml command.

-absname
Force error messages to show absolute paths for file names.
-args filename
Read additional newline-terminated command line arguments from filename. It is not possible to pass a scriptfile via file to the toplevel.
-args0 filename
Read additional null character terminated command line arguments from filename. It is not possible to pass a scriptfile via file to the toplevel.
-I directory
Add the given directory to the list of directories searched for source and compiled files. By default, the current directory is searched first, then the standard library directory. Directories added with -I are searched after the current directory, in the order in which they were given on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +unix adds the subdirectory unix of the standard library to the search path.

Directories can also be added to the list once the toplevel is running with the #directory directive (section 10.2).

-init file
Load the given file instead of the default initialization file. The default file is .ocamlinit in the current directory if it exists, otherwise XDG_CONFIG_HOME/ocaml/init.ml or .ocamlinit in the user’s home directory.
-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application generates new types in its result and applying the same functor twice to the same argument yields two incompatible structures.
-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially.
-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
-noprompt
Do not display any prompt when waiting for input.
-nopromptcont
Do not display the secondary prompt when waiting for continuation lines in multi-line inputs. This should be used e.g. when running ocaml in an emacs window.
-nostdlib
Do not include the standard library directory in the list of directories searched for source and compiled files.
-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module Ast_mapper, described in chapter 27: Ast_mapper , implements the external interface of a preprocessor.
-principal
Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported.
-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only. This is the default.
-short-paths
When a type is visible under several module-paths, use the shortest one when printing the type’s name in inferred interfaces and error and warning messages. Identifier names starting with an underscore _ or containing double underscores __ incur a penalty of +10 when computing their length.
-stdin
Read the standard input as a script file rather than starting an interactive session.
-strict-sequence
Force the left-hand part of each sequence to have type unit.
-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use this flag to detect and fix such invalid formats, as they will be rejected by future OCaml versions.
-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds.
-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for compatibility with old source code and should not be used with new software.
-v
Print the version number of the compiler and the location of the standard library directory, then exit.
-verbose
Print all external commands before they are executed, Useful to debug C library problems.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-no-version
Do not print the version banner at startup.
-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal). If a warning is enabled, it is displayed normally by the compiler whenever the source code triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying it.

The warning-list argument is a sequence of warning specifiers, with no separators between them. A warning specifier is one of the following:

+num
Enable warning number num.
-num
Disable warning number num.
@num
Enable and mark as fatal warning number num.
+num1..num2
Enable warnings in the given range.
-num1..num2
Disable warnings in the given range.
@num1..num2
Enable and mark as fatal warnings in the given range.
+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
-letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
@letter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.
lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined are ignored. The warnings are as follows.

1
Suspicious-looking start-of-comment mark.
2
Suspicious-looking end-of-comment mark.
3
Deprecated synonym for the ’deprecated’ alert.
4
Fragile pattern matching: matching that will remain complete even if additional constructors are added to one of the variant types matched.
5
Partially applied function: expression whose result has function type and is ignored.
6
Label omitted in function application.
7
Method overridden.
8
Partial match: missing cases in pattern-matching.
9
Missing fields in a record pattern.
10
Expression on the left-hand side of a sequence that doesn’t have type unit (and that is not a function, see warning number 5).
11
Redundant case in a pattern matching (unused match case).
12
Redundant sub-pattern in a pattern-matching.
13
Instance variable overridden.
14
Illegal backslash escape in a string constant.
15
Private method made public implicitly.
16
Unerasable optional argument.
17
Undeclared virtual method.
18
Non-principal type.
19
Type without principality.
20
Unused function argument.
21
Non-returning statement.
22
Preprocessor warning.
23
Useless record with clause.
24
Bad module name: the source file name is not a valid OCaml module name.
25
Deprecated: now part of warning 8.
26
Suspicious unused variable: unused variable that is bound with let or as, and doesn’t start with an underscore (_) character.
27
Innocuous unused variable: unused variable that is not bound with let nor as, and doesn’t start with an underscore (_) character.
28
Wildcard pattern given as argument to a constant constructor.
29
Unescaped end-of-line in a string constant (non-portable code).
30
Two labels or constructors of the same name are defined in two mutually recursive types.
31
A module is linked twice in the same executable.
32
Unused value declaration.
33
Unused open statement.
34
Unused type declaration.
35
Unused for-loop index.
36
Unused ancestor variable.
37
Unused constructor.
38
Unused extension constructor.
39
Unused rec flag.
40
Constructor or label name used out of scope.
41
Ambiguous constructor or label name.
42
Disambiguated constructor or label name (compatibility warning).
43
Nonoptional label applied as optional.
44
Open statement shadows an already defined identifier.
45
Open statement shadows an already defined label or constructor.
46
Error in environment variable.
47
Illegal attribute payload.
48
Implicit elimination of optional arguments.
49
Absent cmi file when looking up module alias.
50
Unexpected documentation comment.
51
Warning on non-tail calls if @tailcall present.
52 (see 9.5.2)
Fragile constant pattern.
53
Attribute cannot appear in this context.
54
Attribute used more than once on an expression.
55
Inlining impossible.
56
Unreachable case in a pattern-matching (based on type information).
57 (see 9.5.3)
Ambiguous or-pattern variables under guard.
58
Missing cmx file.
59
Assignment to non-mutable value.
60
Unused module declaration.
61
Unboxable type in primitive declaration.
62
Type constraint on GADT type declaration.
63
Erroneous printed signature.
64
-unsafe used with a preprocessor returning a syntax tree.
65
Type declaration defining a new ’()’ constructor.
66
Unused open! statement.
67
Unused functor parameter.
A
all warnings
C
warnings 1, 2.
D
Alias for warning 3.
E
Alias for warning 4.
F
Alias for warning 5.
K
warnings 32, 33, 34, 35, 36, 37, 38, 39.
L
Alias for warning 6.
M
Alias for warning 7.
P
Alias for warning 8.
R
Alias for warning 9.
S
Alias for warning 10.
U
warnings 11, 12.
V
Alias for warning 13.
X
warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.
Y
Alias for warning 26.
Z
Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by -help. Note that warnings 5 and 10 are not always triggered, depending on the internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error in production code, because this can break your build when future versions of OCaml add some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.
- file
Use file as a script file name, even when it starts with a hyphen (-).
-help or --help
Display a short usage summary and exit.
Unix:   The following environment variables are also consulted:
OCAMLTOP_INCLUDE_PATH
Additional directories to search for compiled object code files (.cmi, .cmo and .cma). The specified directories are considered from left to right, after the include directories specified on the command line via -I have been searched. Available since OCaml 4.08.
OCAMLTOP_UTF_8
When printing string values, non-ascii bytes ( > \0x7E ) are printed as decimal escape sequence if OCAMLTOP_UTF_8 is set to false. Otherwise, they are printed unescaped.
TERM
When printing error messages, the toplevel system attempts to underline visually the location of the error. It consults the TERM variable to determines the type of output terminal and look up its capabilities in the terminal database.
XDG_CONFIG_HOME, HOME
.ocamlinit lookup procedure (see above).

10.2  Toplevel directives

The following directives control the toplevel behavior, load files in memory, and trace program execution.

Note: all directives start with a # (sharp) symbol. This # must be typed before the directive, and must not be confused with the # prompt displayed by the interactive loop. For instance, typing #quit;; will exit the toplevel loop, but typing quit;; will result in an “unbound value quit” error.

General
#help;;
Prints a list of all available directives, with corresponding argument type if appropriate.
#quit;;
Exit the toplevel loop and terminate the ocaml command.
Loading codes
#cd "dir-name";;
Change the current working directory.
#directory "dir-name";;
Add the given directory to the list of directories searched for source and compiled files.
#remove_directory "dir-name";;
Remove the given directory from the list of directories searched for source and compiled files. Do nothing if the list does not contain the given directory.
#load "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by the batch compiler ocamlc.
#load_rec "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by the batch compiler ocamlc. When loading an object file that depends on other modules which have not been loaded yet, the .cmo files for these modules are searched and loaded as well, recursively. The loading order is not specified.
#use "file-name";;
Read, compile and execute source phrases from the given file. This is textual inclusion: phrases are processed just as if they were typed on standard input. The reading of the file stops at the first error encountered.
#use_output "command";;
Execute a command and evaluate its output as if it had been captured to a file and passed to #use.
#mod_use "file-name";;
Similar to #use but also wrap the code into a top-level module of the same name as capitalized file name without extensions, following semantics of the compiler.

For directives that take file names as arguments, if the given file name specifies no directory, the file is searched in the following directories:

  1. In script mode, the directory containing the script currently executing; in interactive mode, the current working directory.
  2. Directories added with the #directory directive.
  3. Directories given on the command line with -I options.
  4. The standard library directory.
Environment queries
#show_class class-path;;
#show_class_type class-path;;
#show_exception ident;;
#show_module module-path;;
#show_module_type modtype-path;;
#show_type typeconstr;;
#show_val value-path;;
Print the signature of the corresponding component.
#show ident;;
Print the signatures of components with name ident in all the above categories.
Pretty-printing
#install_printer printer-name;;
This directive registers the function named printer-name (a value path) as a printer for values whose types match the argument type of the function. That is, the toplevel loop will call printer-name when it has such a value to print.

The printing function printer-name should have type Format.formatter -> t -> unit, where t is the type for the values to be printed, and should output its textual representation for the value of type t on the given formatter, using the functions provided by the Format library. For backward compatibility, printer-name can also have type t -> unit and should then output on the standard formatter, but this usage is deprecated.

#print_depth n;;
Limit the printing of values to a maximal depth of n. The parts of values whose depth exceeds n are printed as ... (ellipsis).
#print_length n;;
Limit the number of value nodes printed to at most n. Remaining parts of values are printed as ... (ellipsis).
#remove_printer printer-name;;
Remove the named function from the table of toplevel printers.
Tracing
#trace function-name;;
After executing this directive, all calls to the function named function-name will be “traced”. That is, the argument and the result are displayed for each call, as well as the exceptions escaping out of the function, raised either by the function itself or by another function it calls. If the function is curried, each argument is printed as it is passed to the function.
#untrace function-name;;
Stop tracing the given function.
#untrace_all;;
Stop tracing all functions traced so far.
Compiler options
#labels bool;;
Ignore labels in function types if argument is false, or switch back to default behaviour (commuting style) if argument is true.
#ppx "file-name";;
After parsing, pipe the abstract syntax tree through the preprocessor command.
#principal bool;;
If the argument is true, check information paths during type-checking, to make sure that all types are derived in a principal way. If the argument is false, do not check information paths.
#rectypes;;
Allow arbitrary recursive types during type-checking. Note: once enabled, this option cannot be disabled because that would lead to unsoundness of the type system.
#warn_error "warning-list";;
Treat as errors the warnings enabled by the argument and as normal warnings the warnings disabled by the argument.
#warnings "warning-list";;
Enable or disable warnings according to the argument.

10.3  The toplevel and the module system

Toplevel phrases can refer to identifiers defined in compilation units with the same mechanisms as for separately compiled units: either by using qualified names (Modulename.localname), or by using the open construct and unqualified names (see section 7.3).

However, before referencing another compilation unit, an implementation of that unit must be present in memory. At start-up, the toplevel system contains implementations for all the modules in the the standard library. Implementations for user modules can be entered with the #load directive described above. Referencing a unit for which no implementation has been provided results in the error Reference to undefined global `...'.

Note that entering open Mod merely accesses the compiled interface (.cmi file) for Mod, but does not load the implementation of Mod, and does not cause any error if no implementation of Mod has been loaded. The error “reference to undefined global Mod” will occur only when executing a value or module definition that refers to Mod.

10.4  Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search path.

If filename has the format mod.cmi, this means you have referenced the compilation unit mod, but its compiled interface could not be found. Fix: compile mod.mli or mod.ml first, to create the compiled interface mod.cmi.

If filename has the format mod.cmo, this means you are trying to load with #load a bytecode object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t specified the directories to look into. Fix: use the #directory directive to add the correct directories to the search path.

This expression has type t1, but is used with type t2
See section 9.4.
Reference to undefined global mod
You have neglected to load in memory an implementation for a module with #load. See section 10.3 above.

10.5  Building custom toplevel systems: ocamlmktop

The ocamlmktop command builds OCaml toplevels that contain user code preloaded at start-up.

The ocamlmktop command takes as argument a set of .cmo and .cma files, and links them with the object files that implement the OCaml toplevel. The typical use is:

        ocamlmktop -o mytoplevel foo.cmo bar.cmo gee.cmo

This creates the bytecode file mytoplevel, containing the OCaml toplevel system, plus the code from the three .cmo files. This toplevel is directly executable and is started by:

        ./mytoplevel

This enters a regular toplevel loop, except that the code from foo.cmo, bar.cmo and gee.cmo is already loaded in memory, just as if you had typed:

        #load "foo.cmo";;
        #load "bar.cmo";;
        #load "gee.cmo";;

on entrance to the toplevel. The modules Foo, Bar and Gee are not opened, though; you still have to do

        open Foo;;

yourself, if this is what you wish.

10.5.1  Options

The following command-line options are recognized by ocamlmktop.

-cclib libname
Pass the -llibname option to the C linker when linking in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.
-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.
-custom
Link in “custom runtime” mode. See the corresponding option for ocamlc, in chapter 9.
-I directory
Add the given directory to the list of directories searched for compiled object code files (.cmo and .cma).
-o exec-file
Specify the name of the toplevel file produced by the linker. The default is a.out.

10.6  The native toplevel: ocamlnat (experimental)

This section describes a tool that is not yet officially supported but may be found useful.

OCaml code executing in the traditional toplevel system uses the bytecode interpreter. When increased performance is required, or for testing programs that will only execute correctly when compiled to native code, the native toplevel may be used instead.

For the majority of installations the native toplevel will not have been installed along with the rest of the OCaml toolchain. In such circumstances it will be necessary to build the OCaml distribution from source. From the built source tree of the distribution you may use make natruntop to build and execute a native toplevel. (Alternatively make ocamlnat can be used, which just performs the build step.)

If the make install command is run after having built the native toplevel then the ocamlnat program (either from the source or the installation directory) may be invoked directly rather than using make natruntop.

Chapter 11  The runtime system (ocamlrun)

The ocamlrun command executes bytecode files produced by the linking phase of the ocamlc command.

11.1  Overview

The ocamlrun command comprises three main parts: the bytecode interpreter, that actually executes bytecode files; the memory allocator and garbage collector; and a set of C functions that implement primitive operations such as input/output.

The usage for ocamlrun is:

        ocamlrun options bytecode-executable arg1 ... argn

The first non-option argument is taken to be the name of the file containing the executable bytecode. (That file is searched in the executable path as well as in the current directory.) The remaining arguments are passed to the OCaml program, in the string array Sys.argv. Element 0 of this array is the name of the bytecode executable file; elements 1 to n are the remaining arguments arg1 to argn.

As mentioned in chapter 9, the bytecode executable files produced by the ocamlc command are self-executable, and manage to launch the ocamlrun command on themselves automatically. That is, assuming a.out is a bytecode executable file,

        a.out arg1 ... argn

works exactly as

        ocamlrun a.out arg1 ... argn

Notice that it is not possible to pass options to ocamlrun when invoking a.out directly.

Windows:   Under several versions of Windows, bytecode executable files are self-executable only if their name ends in .exe. It is recommended to always give .exe names to bytecode executables, e.g. compile with ocamlc -o myprog.exe ... rather than ocamlc -o myprog ....

11.2  Options

The following command-line options are recognized by ocamlrun.

-b
When the program aborts due to an uncaught exception, print a detailed “back trace” of the execution, showing where the exception was raised and which function calls were outstanding at this point. The back trace is printed only if the bytecode executable contains debugging information, i.e. was compiled and linked with the -g option to ocamlc set. This is equivalent to setting the b flag in the OCAMLRUNPARAM environment variable (see below).
-I dir
Search the directory dir for dynamically-loaded libraries, in addition to the standard search path (see section 11.3).
-m
Print the magic number of the bytecode executable given as argument and exit.
-M
Print the magic number expected by this version of the runtime and exit.
-p
Print the names of the primitives known to this version of ocamlrun and exit.
-v
Direct the memory manager to print some progress messages on standard error. This is equivalent to setting v=63 in the OCAMLRUNPARAM environment variable (see below).
-version
Print version string and exit.
-vnum
Print short version number and exit.

The following environment variables are also consulted:

CAML_LD_LIBRARY_PATH
Additional directories to search for dynamically-loaded libraries (see section 11.3).
OCAMLLIB
The directory containing the OCaml standard library. (If OCAMLLIB is not set, CAMLLIB will be used instead.) Used to locate the ld.conf configuration file for dynamic loading (see section 11.3). If not set, default to the library directory specified when compiling OCaml.
OCAMLRUNPARAM
Set the runtime system options and garbage collection parameters. (If OCAMLRUNPARAM is not set, CAMLRUNPARAM will be used instead.) This variable must be a sequence of parameter specifications separated by commas. A parameter specification is an option letter followed by an = sign, a decimal number (or an hexadecimal number prefixed by 0x), and an optional multiplier. The options are documented below; the last six correspond to the fields of the control record documented in Module Gc.
b
(backtrace) Trigger the printing of a stack backtrace when an uncaught exception aborts the program. This option takes no argument.
p
(parser trace) Turn on debugging support for ocamlyacc-generated parsers. When this option is on, the pushdown automaton that executes the parsers prints a trace of its actions. This option takes no argument.
R
(randomize) Turn on randomization of all hash tables by default (see Module Hashtbl). This option takes no argument.
h
The initial size of the major heap (in words).
a
(allocation_policy) The policy used for allocating in the OCaml heap. Possible values are 0 for the next-fit policy, 1 for the first-fit policy, and 2 for the best-fit policy. Best-fit is still experimental, but probably the best of the three. The default is 0 (next-fit). See the Gc module documentation for details.
s
(minor_heap_size) Size of the minor heap. (in words)
i
(major_heap_increment) Default size increment for the major heap. (in words)
o
(space_overhead) The major GC speed setting. See the Gc module documentation for details.
O
(max_overhead) The heap compaction trigger setting.
l
(stack_limit) The limit (in words) of the stack size. This is only relevant to the byte-code runtime, as the native code runtime uses the operating system’s stack.
v
(verbose) What GC messages to print to stderr. This is a sum of values selected from the following:
1 (= 0x001)
Start of major GC cycle.
2 (= 0x002)
Minor collection and major GC slice.
4 (= 0x004)
Growing and shrinking of the heap.
8 (= 0x008)
Resizing of stacks and memory manager tables.
16 (= 0x010)
Heap compaction.
32 (= 0x020)
Change of GC parameters.
64 (= 0x040)
Computation of major GC slice size.
128 (= 0x080)
Calling of finalization functions
256 (= 0x100)
Startup messages (loading the bytecode executable file, resolving shared libraries).
512 (= 0x200)
Computation of compaction-triggering condition.
1024 (= 0x400)
Output GC statistics at program exit.
c
(cleanup_on_exit) Shut the runtime down gracefully on exit (see caml_shutdown in section 20.7.5). The option also enables pooling (as in caml_startup_pooled). This mode can be used to detect leaks with a third-party memory debugger.
M
(custom_major_ratio) Target ratio of floating garbage to major heap size for out-of-heap memory held by custom values (e.g. bigarrays) located in the major heap. The GC speed is adjusted to try to use this much memory for dead values that are not yet collected. Expressed as a percentage of major heap size. Default: 44. Note: this only applies to values allocated with caml_alloc_custom_mem.
m
(custom_minor_ratio) Bound on floating garbage for out-of-heap memory held by custom values in the minor heap. A minor GC is triggered when this much memory is held by custom values located in the minor heap. Expressed as a percentage of minor heap size. Default: 100. Note: this only applies to values allocated with caml_alloc_custom_mem.
n
(custom_minor_max_size) Maximum amount of out-of-heap memory for each custom value allocated in the minor heap. When a custom value is allocated on the minor heap and holds more than this many bytes, only this value is counted against custom_minor_ratio and the rest is directly counted against custom_major_ratio. Default: 8192 bytes. Note: this only applies to values allocated with caml_alloc_custom_mem.
The multiplier is k, M, or G, for multiplication by 210, 220, and 230 respectively.

If the option letter is not recognized, the whole parameter is ignored; if the equal sign or the number is missing, the value is taken as 1; if the multiplier is not recognized, it is ignored.

For example, on a 32-bit machine, under bash the command

        export OCAMLRUNPARAM='b,s=256k,v=0x015'

tells a subsequent ocamlrun to print backtraces for uncaught exceptions, set its initial minor heap size to 1 megabyte and print a message at the start of each major GC cycle, when the heap size changes, and when compaction is triggered.

CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead. If CAMLRUNPARAM is also not found, then the default values will be used.
PATH
List of directories searched to find the bytecode executable file.

11.3  Dynamic loading of shared libraries

On platforms that support dynamic loading, ocamlrun can link dynamically with C shared libraries (DLLs) providing additional C primitives beyond those provided by the standard runtime system. The names for these libraries are provided at link time as described in section 20.1.4), and recorded in the bytecode executable file; ocamlrun, then, locates these libraries and resolves references to their primitives when the bytecode executable program starts.

The ocamlrun command searches shared libraries in the following directories, in the order indicated:

  1. Directories specified on the ocamlrun command line with the -I option.
  2. Directories specified in the CAML_LD_LIBRARY_PATH environment variable.
  3. Directories specified at link-time via the -dllpath option to ocamlc. (These directories are recorded in the bytecode executable file.)
  4. Directories specified in the file ld.conf. This file resides in the OCaml standard library directory, and lists directory names (one per line) to be searched. Typically, it contains only one line naming the stublibs subdirectory of the OCaml standard library directory. Users can add there the names of other directories containing frequently-used shared libraries; however, for consistency of installation, we recommend that shared libraries are installed directly in the system stublibs directory, rather than adding lines to the ld.conf file.
  5. Default directories searched by the system dynamic loader. Under Unix, these generally include /lib and /usr/lib, plus the directories listed in the file /etc/ld.so.conf and the environment variable LD_LIBRARY_PATH. Under Windows, these include the Windows system directories, plus the directories listed in the PATH environment variable.

11.4  Common errors

This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does not exist, or that it failed to run the ocamlrun bytecode interpreter on itself. The second possibility indicates that OCaml has not been properly installed on your system.
Cannot exec ocamlrun
(When launching a self-executable bytecode file.) The ocamlrun could not be found in the executable path. Check that OCaml has been properly installed on your system.
Cannot find the bytecode file
The file that ocamlrun is trying to execute (e.g. the file given as first non-option argument to ocamlrun) either does not exist, or is not a valid executable bytecode file.
Truncated bytecode file
The file that ocamlrun is trying to execute is not a valid executable bytecode file. Probably it has been truncated or mangled since created. Erase and rebuild it.
Uncaught exception
The program being executed contains a “stray” exception. That is, it raises an exception at some point, and this exception is never caught. This causes immediate termination of the program. The name of the exception is printed, along with its string, byte sequence, and integer arguments (arguments of more complex types are not correctly printed). To locate the context of the uncaught exception, compile the program with the -g option and either run it again under the ocamldebug debugger (see chapter 17), or run it with ocamlrun -b or with the OCAMLRUNPARAM environment variable set to b=1.
Out of memory
The program being executed requires more memory than available. Either the program builds excessively large data structures; or the program contains too many nested function calls, and the stack overflows. In some cases, your program is perfectly correct, it just requires more memory than your machine provides. In other cases, the “out of memory” message reveals an error in your program: non-terminating recursive function, allocation of an excessively large array, string or byte sequence, attempts to build an infinite list or other data structure, …

To help you diagnose this error, run your program with the -v option to ocamlrun, or with the OCAMLRUNPARAM environment variable set to v=63. If it displays lots of “Growing stack…” messages, this is probably a looping recursive function. If it displays lots of “Growing heap…” messages, with the heap size growing slowly, this is probably an attempt to construct a data structure with too many (infinitely many?) cells. If it displays few “Growing heap…” messages, but with a huge increment in the heap size, this is probably an attempt to build an excessively large array, string or byte sequence.

Chapter 12  Native-code compilation (ocamlopt)

This chapter describes the OCaml high-performance native-code compiler ocamlopt, which compiles OCaml source files to native code object files and links these object files to produce standalone executables.

The native-code compiler is only available on certain platforms. It produces code that runs faster than the bytecode produced by ocamlc, at the cost of increased compilation time and executable code size. Compatibility with the bytecode compiler is extremely high: the same source code should run identically when compiled with ocamlc and ocamlopt.

It is not possible to mix native-code object files produced by ocamlopt with bytecode object files produced by ocamlc: a program must be compiled entirely with ocamlopt or entirely with ocamlc. Native-code object files produced by ocamlopt cannot be loaded in the toplevel system ocaml.

12.1  Overview of the compiler

The ocamlopt command has a command-line interface very close to that of ocamlc. It accepts the same types of arguments, and processes them sequentially, after all options have been processed:

The output of the linking phase is a regular Unix or Windows executable file. It does not need ocamlrun to run.

The compiler is able to emit some information on its internal stages. It can output .cmt files for the implementation of the compilation unit and .cmti for signatures if the option -bin-annot is passed to it (see the description of -bin-annot below). Each such file contains a typed abstract syntax tree (AST), that is produced during the type checking procedure. This tree contains all available information about the location and the specific type of each term in the source file. The AST is partial if type checking was unsuccessful.

These .cmt and .cmti files are typically useful for code inspection tools.

12.2  Options

The following command-line options are recognized by ocamlopt. The options -pack, -a, -shared, -c and -output-obj are mutually exclusive.

-a
Build a library(.cmxa and .a/.lib files) with the object files (.cmx and .o/.obj files) given on the command line, instead of linking them into an executable file. The name of the library must be set with the -o option.

If -cclib or -ccopt options are passed on the command line, these options are stored in the resulting .cmxalibrary. Then, linking with this library automatically adds back the -cclib and -ccopt options as if they had been provided on the command line, unless the -noautolink option is given.

-absname
Force error messages to show absolute paths for file names.
-annot
Deprecated since OCaml 4.11. Please use -bin-annot instead.
-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in binary format. The information for file src.ml (resp. src.mli) is put into file src.cmt (resp. src.cmti). In case of a type error, dump all the information inferred by the type-checker before the error. The *.cmt and *.cmti files produced by -bin-annot contain more information and are much more compact than the files produced by -annot.
-c
Compile only. Suppress the linking phase of the compilation. Source code files are turned into compiled files, but no executable file is produced. This option is useful to compile modules separately.
-cc ccomp
Use ccomp as the C linker called to build the final executable and as the C compiler for compiling .c source files.
-cclib -llibname
Pass the -llibname option to the linker . This causes the given C library to be linked with the program.
-ccopt option
Pass the given option to the C compiler and linker. For instance,-ccopt -Ldir causes the C linker to search for C libraries in directory dir.
-color mode
Enable or disable colors in compiler messages (especially warnings and errors). The following modes are supported:
auto
use heuristics to enable colors only if the output supports them (an ANSI-compatible tty terminal);
always
enable colors unconditionally;
never
disable color output.
The default setting is ’auto’, and the current heuristic checks that the TERM environment variable exists and is not empty or dumb, and that ’isatty(stderr)’ holds.

The environment variable OCAML_COLOR is considered if -color is not provided. Its values are auto/always/never as above.

-error-style mode
Control the way error messages and warnings are printed. The following modes are supported:
short
only print the error and its location;
contextual
like short, but also display the source code snippet corresponding to the location of the error.
The default setting is contextual.

The environment variable OCAML_ERROR_STYLE is considered if -error-style is not provided. Its values are short/contextual as above.

-compact
Optimize the produced code for space rather than for time. This results in slightly smaller but slightly slower programs. The default is to optimize for speed.
-config
Print the version number of ocamlopt and a detailed summary of its configuration, then exit.
-config-var var
Print the value of a specific configuration variable from the -config output, then exit. If the variable does not exist, the exit code is non-zero. This option is only available since OCaml 4.08, so script authors should have a fallback for older versions.
-depend ocamldep-args
Compute dependencies, as the ocamldep command would do. The remaining arguments are interpreted as if they were given to the ocamldep command.
-for-pack module-path
Generate an object file (.cmx and .o/.obj files) that can later be included as a sub-module (with the given access path) of a compilation unit constructed with -pack. For instance, ocamlopt -for-pack P -c A.ml will generate a..cmx and a.o files that can later be used with ocamlopt -pack -o P.cmx a.cmx. Note: you can still pack a module that was compiled without -for-pack but in this case exceptions will be printed with the wrong names.
-g
Add debugging information while compiling and linking. This option is required in order to produce stack backtraces when the program terminates on an uncaught exception (see section 11.2).
-i
Cause the compiler to print all defined names (with their inferred types or their definitions) when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are produced. This can be useful to check the types inferred by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to a .mli file, and edit that file to remove all declarations of unexported names.
-I directory
Add the given directory to the list of directories searched for compiled interface files (.cmi), compiled object code files (.cmx), and libraries (.cmxa). By default, the current directory is searched first, then the standard library directory. Directories added with -I are searched after the current directory, in the order in which they were given on the command line, but before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For instance, -I +unix adds the subdirectory unix of the standard library to the search path.

-impl filename
Compile the file filename as an implementation file, even if its extension is not .ml.
-inline n
Set aggressiveness of inlining to n, where n is a positive integer. Specifying -inline 0 prevents all functions from being inlined, except those whose body is smaller than the call site. Thus, inlining causes no expansion in code size. The default aggressiveness, -inline 1, allows slightly larger functions to be inlined, resulting in a slight expansion in code size. Higher values for the -inline option cause larger and larger functions to become candidate for inlining, but can result in a serious increase in code size.
-intf filename
Compile the file filename as an interface file, even if its extension is not .mli.
-intf-suffix string
Recognize file names ending with string as interface files (instead of the default .mli).
-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters can be given in any order. This is the default.
-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced modules are not linked in. When building a library (option -a), setting the -linkall option forces all subsequent links of programs involving that library to link all the modules contained in the library. When compiling a module (option -c), setting the -linkall option ensures that this module will always be linked if it is put in a library and this library is linked.
-linscan
Use linear scan register allocation. Compiling with this allocator is faster than with the usual graph coloring allocator, sometimes quite drastically so for long functions and modules. On the other hand, the generated code can be a bit slower.
-match-context-rows
Set the number of rows of context used for optimization during pattern matching compilation. The default value is 32. Lower values cause faster compilation, but less optimized code. This advanced option is meant for use in the event that a pattern-match-heavy program leads to significant increases in compilation time.
-no-alias-deps
Do not record dependencies for module aliases. See section 8.8 for more information.
-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application generates new types in its result and applying the same functor twice to the same argument yields two incompatible structures.
-no-float-const-prop
Deactivates the constant propagation for floating-point operations. This option should be given if the program changes the float rounding mode during its execution.
-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled because it is typed specially. This flag has no effect when linking already-compiled files.
-noautolink
When linking .cmxalibraries, ignore -cclib and -ccopt options potentially contained in the libraries (if these options were given when building the libraries). This can be useful if a library contains incorrect specifications of C libraries or C options; in this case, during linking, set -noautolink and pass the correct C libraries and options on the command line.
-nodynlink
Allow the compiler to use some optimizations that are valid only for code that is never dynlinked.
-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter order becomes strict.
-nostdlib
Do not automatically add the standard library directory to the list of directories searched for compiled interface files (.cmi), compiled object code files (.cmx), and libraries (.cmxa). See also option -I.
-o exec-file
Specify the name of the output file produced by the linker. The default output name is a.out under Unix and camlprog.exe under Windows. If the -a option is given, specify the name of the library produced. If the -pack option is given, specify the name of the packed object file produced. If the -output-obj option is given, specify the name of the output file produced. If the -shared option is given, specify the name of plugin file produced.
-opaque
When the native compiler compiles an implementation, by default it produces a .cmx file containing information for cross-module optimization. It also expects .cmx files to be present for the dependencies of the currently compiled source, and uses them for optimization. Since OCaml 4.03, the compiler will emit a warning if it is unable to locate the .cmx file of one of those dependencies.

The -opaque option, available since 4.04, disables cross-module optimization information for the currently compiled unit. When compiling .mli interface, using -opaque marks the compiled .cmi interface so that subsequent compilations of modules that depend on it will not rely on the corresponding .cmx file, nor warn if it is absent. When the native compiler compiles a .ml implementation, using -opaque generates a .cmx that does not contain any cross-module optimization information.

Using this option may degrade the quality of generated code, but it reduces compilation time, both on clean and incremental builds. Indeed, with the native compiler, when the implementation of a compilation unit changes, all the units that depend on it may need to be recompiled – because the cross-module information may have changed. If the compilation unit whose implementation changed was compiled with -opaque, no such recompilation needs to occur. This option can thus be used, for example, to get faster edit-compile-test feedback loops.

-open Module
Opens the given module before processing the interface or implementation files. If several -open options are given, they are processed in order, just as if the statements open! Module1;; ... open! ModuleN;; were added at the top of each file.
-output-obj
Cause the linker to produce a C object file instead of an executable file. This is useful to wrap OCaml code as a C library, callable from any C program. See chapter 20, section 20.7.5. The name of the output object file must be set with the -o option. This option can also be used to produce a compiled shared/dynamic library (.so extension, .dll under Windows).
-pack
Build an object file (.cmx and .o/.obj files) and its associated compiled interface (.cmi) that combines the .cmx object files given on the command line, making them appear as sub-modules of the output .cmx file. The name of the output .cmx file must be given with the -o option. For instance,
        ocamlopt -pack -o P.cmx A.cmx B.cmx C.cmx
generates compiled files P.cmx, P.o and P.cmi describing a compilation unit having three sub-modules A, B and C, corresponding to the contents of the object files A.cmx, B.cmx and C.cmx. These contents can be referenced as P.A, P.B and P.C in the remainder of the program.

The .cmx object files being combined must have been compiled with the appropriate -for-pack option. In the example above, A.cmx, B.cmx and C.cmx must have been compiled with ocamlopt -for-pack P.

Multiple levels of packing can be achieved by combining -pack with -for-pack. Consider the following example:

        ocamlopt -for-pack P.Q -c A.ml
        ocamlopt -pack -o Q.cmx -for-pack P A.cmx
        ocamlopt -for-pack P -c B.ml
        ocamlopt -pack -o P.cmx Q.cmx B.cmx

The resulting P.cmx object file has sub-modules P.Q, P.Q.A and P.B.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The output of command is redirected to an intermediate file, which is compiled. If there are no compilation errors, the intermediate file is deleted afterwards.
-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The module Ast_mapper, described in chapter 27: Ast_mapper , implements the external interface of a preprocessor.
-principal
Check information path during type-checking, to make sure that all types are derived in a principal way. When using labelled arguments and/or polymorphic methods, this flag is required to ensure future versions of the compiler will be able to infer types correctly, even if internal algorithms change. All programs accepted in -principal mode are also accepted in the default mode with equivalent types, but different binary signatures, and this may slow down type checking; yet it is a good idea to use it once before publishing source code.
-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where the recursion goes through an object type are supported.Note that once you have created an interface using this flag, you must use it again for all dependencies.
-runtime-variant suffix
Add the suffix string to the name of the runtime library used by the program. Currently, only one such suffix is supported: d, and only if the OCaml compiler was configured with option -with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for debugging pointer problems in low-level code such as C stubs.
-stop-after pass
Stop compilation after the given compilation pass. The currently supported passes are: parsing, typing.
-S
Keep the assembly code produced during the compilation. The assembly code for the source file x.ml is saved in the file x.s.
-shared
Build a plugin (usually .cmxs) that can be dynamically loaded with the Dynlink module. The name of the plugin must be set with the -o option. A plugin can include a number of OCaml modules and libraries, and extra native objects (.o, .obj, .a, .lib files). Building native plugins is only supported for some operating system. Under some systems (currently, only Linux AMD 64), all the OCaml code linked in a plugin must have been compiled without the -nodynlink flag. Some constraints might also apply to the way the extra native objects have been compiled (under Linux AMD 64, they must contain only position-independent code).
-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only. This is the default.
-short-paths
When a type is visible under several module-paths, use the shortest one when printing the type’s name in inferred interfaces and error and warning messages. Identifier names starting with an underscore _ or containing double underscores __ incur a penalty of +10 when computing their length.
-strict-sequence
Force the left-hand part of each sequence to have type unit.
-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use this flag to detect and fix such invalid formats, as they will be rejected by future OCaml versions.
-unboxed-types
When a type is unboxable (i.e. a record with a single argument or a concrete datatype with a single constructor of one argument) it will be unboxed unless annotated with [@@ocaml.boxed].
-no-unboxed-types
When a type is unboxable it will be boxed unless annotated with [@@ocaml.unboxed]. This is the default.
-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if the program accesses an array or string outside of its bounds. Additionally, turn off the check for zero divisor in integer division and modulus operations. With -unsafe, an integer division (or modulus) by zero can halt the program or continue with an unspecified result instead of raising a Division_by_zero exception.
-unsafe-string
Identify the types string and bytes, thereby making strings writable. This is intended for compatibility with old source code and should not be used with new software.
-v
Print the version number of the compiler and the location of the standard library directory, then exit.
-verbose
Print all external commands before they are executed, in particular invocations of the assembler, C compiler, and linker. Useful to debug C library problems.
-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.
-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal). If a warning is enabled, it is displayed normally by the compiler whenever the source code triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying it.

The warning-list argument is a sequence of warning specifiers, with no separators between them. A warning specifier is one of the following:

+num
Enable warning number num.
-num
Disable warning number num.
@num
Enable and mark as fatal warning number num.
+num1..num2
Enable warnings in the given range.
-num1..num2
Disable warnings in the given range.
@num1..num2
Enable and mark as fatal warnings in the given range.
+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
-letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
@letter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be uppercase or lowercase.
uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.
lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.

Warning numbers and letters which are out of the range of warnings that are currently defined are ignored. The warnings are as follows.

1
Suspicious-looking start-of-comment mark.
2
Suspicious-looking end-of-comment mark.
3
Deprecated synonym for the ’deprecated’ alert.
4
Fragile pattern matching: matching that will remain complete even if additional constructors are added to one of the variant types matched.
5
Partially applied function: expression whose result has function type and is ignored.
6
Label omitted in function application.
7
Method overridden.
8
Partial match: missing cases in pattern-matching.
9
Missing fields in a record pattern.
10
Expression on the left-hand side of a sequence that doesn’t have type unit (and that is not a function, see warning number 5).
11
Redundant case in a pattern matching (unused match case).
12
Redundant sub-pattern in a pattern-matching.
13
Instance variable overridden.
14
Illegal backslash escape in a string constant.
15
Private method made public implicitly.
16
Unerasable optional argument.
17
Undeclared virtual method.
18
Non-principal type.
19
Type without principality.
20
Unused function argument.
21
Non-returning statement.
22
Preprocessor warning.
23
Useless record with clause.
24
Bad module name: the source file name is not a valid OCaml module name.
25
Deprecated: now part of warning 8.
26
Suspicious unused variable: unused variable that is bound with let or as, and doesn’t start with an underscore (_) character.
27
Innocuous unused variable: unused variable that is not bound with let nor as, and doesn’t start with an underscore (_) character.
28
Wildcard pattern given as argument to a constant constructor.
29
Unescaped end-of-line in a string constant (non-portable code).
30
Two labels or constructors of the same name are defined in two mutually recursive types.
31
A module is linked twice in the same executable.
32
Unused value declaration.
33
Unused open statement.
34
Unused type declaration.
35
Unused for-loop index.
36
Unused ancestor variable.
37
Unused constructor.
38
Unused extension constructor.
39
Unused rec flag.
40
Constructor or label name used out of scope.
41
Ambiguous constructor or label name.
42
Disambiguated constructor or label name (compatibility warning).
43
Nonoptional label applied as optional.
44
Open statement shadows an already defined identifier.
45
Open statement shadows an already defined label or constructor.
46
Error in environment variable.
47
Illegal attribute payload.
48
Implicit elimination of optional arguments.
49
Absent cmi file when looking up module alias.
50
Unexpected documentation comment.
51
Warning on non-tail calls if @tailcall present.
52 (see 9.5.2)
Fragile constant pattern.
53
Attribute cannot appear in this context.
54
Attribute used more than once on an expression.
55
Inlining impossible.
56
Unreachable case in a pattern-matching (based on type information).
57 (see 9.5.3)
Ambiguous or-pattern variables under guard.
58
Missing cmx file.
59
Assignment to non-mutable value.
60
Unused module declaration.
61
Unboxable type in primitive declaration.
62
Type constraint on GADT type declaration.
63
Erroneous printed signature.
64
-unsafe used with a preprocessor returning a syntax tree.
65
Type declaration defining a new ’()’ constructor.
66
Unused open! statement.
67
Unused functor parameter.
A
all warnings
C
warnings 1, 2.
D
Alias for warning 3.
E
Alias for warning 4.
F
Alias for warning 5.
K
warnings 32, 33, 34, 35, 36, 37, 38, 39.
L
Alias for warning 6.
M
Alias for warning 7.
P
Alias for warning 8.
R
Alias for warning 9.
S
Alias for warning 10.
U
warnings 11, 12.
V
Alias for warning 13.
X
warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30.
Y
Alias for warning 26.
Z
Alias for warning 27.

The default setting is -w +a-4-6-7-9-27-29-32..42-44-45-48-50-60. It is displayed by ocamlopt -help. Note that warnings 5 and 10 are not always triggered, depending on the internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop with an error when one of these warnings is emitted. The warning-list has the same meaning as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error in production code, because this can break your build when future versions of OCaml add some new warnings.

The default setting is -warn-error -a+31 (only warning 31 is fatal).

-warn-help
Show the description of all available warning numbers.
-where
Print the location of the standard library, then exit.
-with-runtime
Include the runtime system in the generated program. This is the default.
-without-runtime
The compiler does not include the runtime system (nor a reference to it) in the generated program; it must be supplied separately.
- file
Process file as a file name, even if it starts with a dash (-) character.
-help or --help
Display a short usage summary and exit.
Options for the IA32 architecture

The IA32 code generator (Intel Pentium, AMD Athlon) supports the following additional option:

-ffast-math
Use the IA32 instructions to compute trigonometric and exponential functions, instead of calling the corresponding library routines. The functions affected are: atan, atan2, cos, log, log10, sin, sqrt and tan. The resulting code runs faster, but the range of supported arguments and the precision of the result can be reduced. In particular, trigonometric operations cos, sin, tan have their range reduced to [−264, 264].
Options for the AMD64 architecture

The AMD64 code generator (64-bit versions of Intel Pentium and AMD Athlon) supports the following additional options:

-fPIC
Generate position-independent machine code. This is the default.
-fno-PIC
Generate position-dependent machine code.
Options for the PowerPC architecture

The PowerPC code generator supports the following additional options:

-flarge-toc
Enables the PowerPC large model allowing the TOC (table of contents) to be arbitrarily large. This is the default since 4.11.
-fsmall-toc
Enables the PowerPC small model allowing the TOC to be up to 64 kbytes per compilation unit. Prior to 4.11 this was the default behaviour.
Contextual control of command-line options

The compiler command line can be modified “from the outside” with the following mechanisms. These are experimental and subject to change. They should be used only for experimental and development work, not in released packages.

OCAMLPARAM (environment variable)
A set of arguments that will be inserted before or after the arguments from the command line. Arguments are specified in a comma-separated list of name=value pairs. A _ is used to specify the position of the command line arguments, i.e. a=x,_,b=y means that a=x should be executed before parsing the arguments, and b=y after. Finally, an alternative separator can be specified as the first character of the string, within the set :|; ,.
ocaml_compiler_internal_params (file in the stdlib directory)
A mapping of file names to lists of arguments that will be added to the command line (and OCAMLPARAM) arguments.
OCAML_FLEXLINK (environment variable)
Alternative executable to use on native Windows for flexlink instead of the configured value. Primarily used for bootstrapping.

12.3  Common errors

The error messages are almost identical to those of ocamlc. See section 9.4.

12.4  Running executables produced by ocamlopt

Executables generated by ocamlopt are native, stand-alone executable files that can be invoked directly. They do not depend on the ocamlrun bytecode runtime system nor on dynamically-loaded C/OCaml stub libraries.

During execution of an ocamlopt-generated executable, the following environment variables are also consulted:

OCAMLRUNPARAM
Same usage as in ocamlrun (see section 11.2), except that option l is ignored (the operating system’s stack size limit is used instead).
CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead. If CAMLRUNPARAM is not found, then the default values will be used.

12.5  Compatibility with the bytecode compiler

This section lists the known incompatibilities between the bytecode compiler and the native-code compiler. Except on those points, the two compilers should generate code that behave identically.

Chapter 13  Lexer and parser generators (ocamllex, ocamlyacc)

This chapter describes two program generators: ocamllex, that produces a lexical analyzer from a set of regular expressions with associated semantic actions, and ocamlyacc, that produces a parser from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can be found in most C programming environments. This chapter assumes a working knowledge of lex and yacc: while it describes the input syntax for ocamllex and ocamlyacc and the main differences with lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques, and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), or “Lex & Yacc”, by Levine, Mason and Brown (O’Reilly, 1992).

13.1  Overview of ocamllex

The ocamllex command produces a lexical analyzer from a set of regular expressions with attached semantic actions, in the style of lex. Assuming the input file is lexer.mll, executing

        ocamllex lexer.mll

produces OCaml code for a lexical analyzer in file lexer.ml. This file defines one lexing function per entry point in the lexer definition. These functions have the same names as the entry points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the corresponding entry point.

Lexer buffers are an abstract data type implemented in the standard library module Lexing. The functions Lexing.from_channel, Lexing.from_string and Lexing.from_function create lexer buffers that read from an input channel, a character string, or any reading function, respectively. (See the description of module Lexing in chapter 26.)

When used in conjunction with a parser generated by ocamlyacc, the semantic actions compute a value belonging to the type token defined by the generated parsing module. (See the description of ocamlyacc below.)

13.1.1  Options

The following command-line options are recognized by ocamllex.

-ml
Output code that does not use OCaml’s built-in automata interpreter. Instead, the automaton is encoded by OCaml functions. This option improves performance when using the native compiler, but decreases it when using the bytecode compiler.
-o output-file
Specify the name of the output file produced by ocamllex. The default is the input file name with its extension replaced by .ml.
-q
Quiet mode. ocamllex normally outputs informational messages to standard output. They are suppressed if option -q is used.
-v or -version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

13.2  Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
let ident = regexp …
[refill { refill-handler }]
rule entrypoint [arg1argn] =
  parse regexp { action }
      | …
      | regexp { action }
and entrypoint [arg1argn] =
  parse …
and …
{ trailer }

Comments are delimited by (* and *), as in OCaml. The parse keyword, can be replaced by the shortest keyword, with the semantic consequences explained below.

Refill handlers are a recent (optional) feature introduced in 4.02, documented below in subsection 13.2.7.

13.2.1  Header and trailer

The header and trailer sections are arbitrary OCaml text enclosed in curly braces. Either or both can be omitted. If present, the header text is copied as is at the beginning of the output file and the trailer text at the end. Typically, the header section contains the open directives required by the actions, and possibly some auxiliary functions used in the actions.

13.2.2  Naming regular expressions

Between the header and the entry points, one can give names to frequently-occurring regular expressions. This is written let ident =  regexp. In regular expressions that follow this declaration, the identifier ident can be used as shorthand for regexp.

13.2.3  Entry points

The names of the entry points must be valid identifiers for OCaml values (starting with a lowercase letter). Similarly, the arguments arg1argn must be valid identifiers for OCaml. Each entry point becomes an OCaml function that takes n+1 arguments, the extra implicit last argument being of type Lexing.lexbuf. Characters are read from the Lexing.lexbuf argument and matched against the regular expressions provided in the rule, until a prefix of the input matches one of the rule. The corresponding action is then evaluated and returned as the result of the function.

If several regular expressions match a prefix of the input, the “longest match” rule applies: the regular expression that matches the longest prefix of the input is selected. In case of tie, the regular expression that occurs earlier in the rule is selected.

However, if lexer rules are introduced with the shortest keyword in place of the parse keyword, then the “shortest match” rule applies: the shortest prefix of the input is selected. In case of tie, the regular expression that occurs earlier in the rule is still selected. This feature is not intended for use in ordinary lexical analyzers, it may facilitate the use of ocamllex as a simple text processing tool.

13.2.4  Regular expressions

The regular expressions are in the style of lex, with a more OCaml-like syntax.

regexp::=
' regular-charescape-sequence '
A character constant, with the same syntax as OCaml character constants. Match the denoted character.
_
(underscore) Match any character.
eof
Match the end of the lexer input.
Note: On some systems, with interactive input, an end-of-file may be followed by more characters. However, ocamllex will not correctly handle regular expressions that contain eof followed by something else.
" { string-character } "
A string constant, with the same syntax as OCaml string constants. Match the corresponding sequence of characters.
[ character-set ]
Match any single character belonging to the given character set. Valid character sets are: single character constants ' c '; ranges of characters ' c1 ' - ' c2 ' (all characters between c1 and c2, inclusive); and the union of two or more character sets, denoted by concatenation.
[ ^ character-set ]
Match any single character not belonging to the given character set.
regexp1 #  regexp2
(difference of character sets) Regular expressions regexp1 and regexp2 must be character sets defined with [] (or a single character expression or underscore _). Match the difference of the two specified character sets.
regexp *
(repetition) Match the concatenation of zero or more strings that match regexp.
regexp +
(strict repetition) Match the concatenation of one or more strings that match regexp.
regexp ?
(option) Match the empty string, or a string matching regexp.
regexp1 |  regexp2
(alternative) Match any string that matches regexp1 or regexp2
regexp1  regexp2
(concatenation) Match the concatenation of two strings, the first matching regexp1, the second matching regexp2.
( regexp )
Match the same strings as regexp.
ident
Reference the regular expression bound to ident by an earlier let ident =  regexp definition.
regexp as  ident
Bind the substring matched by regexp to identifier ident.

Concerning the precedences of operators, # has the highest precedence, followed by *, + and ?, then concatenation, then | (alternation), then as.

13.2.5  Actions

The actions are arbitrary OCaml expressions. They are evaluated in a context where the identifiers defined by using the as construct are bound to subparts of the matched string. Additionally, lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction with the operations on lexer buffers provided by the Lexing standard library module, are listed below.

Lexing.lexeme lexbuf
Return the matched string.
Lexing.lexeme_char lexbuf n
Return the nth character in the matched string. The first character corresponds to n = 0.
Lexing.lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string (i.e. the offset of the first character of the matched string). The first character read from the input text has offset 0.
Lexing.lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string (i.e. the offset of the first character after the matched string). The first character read from the input text has offset 0.
entrypoint [exp1expn] lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively call the lexer on the given entry point. Notice that lexbuf is the last argument. Useful for lexing nested comments, for example.

13.2.6  Variables in regular expressions

The as construct is similar to “groups” as provided by numerous regular expression packages. The type of these variables can be string, char, string option or char option.

We first consider the case of linear patterns, that is the case when all as bound variables are distinct. In regexp as  ident, the type of ident normally is string (or string option) except when regexp is a character constant, an underscore, a string constant of length one, a character set specification, or an alternation of those. Then, the type of ident is char (or char option). Option types are introduced when overall rule matching does not imply matching of the bound sub-pattern. This is in particular the case of ( regexp as  ident ) ? and of regexp1 | (  regexp2 as  ident ).

There is no linearity restriction over as bound variables. When a variable is bound more than once, the previous rules are to be extended as follows:

For instance, in ('a' as x) | ( 'a' (_ as x) ) the variable x is of type char, whereas in ("ab" as x) | ( 'a' (_ as x) ? ) the variable x is of type string option.

In some cases, a successful match may not yield a unique set of bindings. For instance the matching of aba by the regular expression (('a'|"ab") as x) (("ba"|'a') as y) may result in binding either x to "ab" and y to "a", or x to "a" and y to "ba". The automata produced ocamllex on such ambiguous regular expressions will select one of the possible resulting sets of bindings. The selected set of bindings is purposely left unspecified.

13.2.7  Refill handlers

By default, when ocamllex reaches the end of its lexing buffer, it will silently call the refill_buff function of lexbuf structure and continue lexing. It is sometimes useful to be able to take control of refilling action; typically, if you use a library for asynchronous computation, you may want to wrap the refilling action in a delaying function to avoid blocking synchronous operations.

Since OCaml 4.02, it is possible to specify a refill-handler, a function that will be called when refill happens. It is passed the continuation of the lexing, on which it has total control. The OCaml expression used as refill action should have a type that is an instance of

   (Lexing.lexbuf -> 'a) -> Lexing.lexbuf -> 'a

where the first argument is the continuation which captures the processing ocamllex would usually perform (refilling the buffer, then calling the lexing function again), and the result type that instantiates [’a] should unify with the result type of all lexing rules.

As an example, consider the following lexer that is parametrized over an arbitrary monad:

{
type token = EOL | INT of int | PLUS

module Make (M : sig
               type 'a t
               val return: 'a -> 'a t
               val bind: 'a t -> ('a -> 'b t) -> 'b t
               val fail : string -> 'a t

               (* Set up lexbuf *)
               val on_refill : Lexing.lexbuf -> unit t
             end)
= struct

let refill_handler k lexbuf =
    M.bind (M.on_refill lexbuf) (fun () -> k lexbuf)

}

refill {refill_handler}

rule token = parse
| [' ' '\t']
    { token lexbuf }
| '\n'
    { M.return EOL }
| ['0'-'9']+ as i
    { M.return (INT (int_of_string i)) }
| '+'
    { M.return PLUS }
| _
    { M.fail "unexpected character" }
{
end
}

13.2.8  Reserved identifiers

All identifiers starting with __ocaml_lex are reserved for use by ocamllex; do not use any such identifier in your programs.

13.3  Overview of ocamlyacc

The ocamlyacc command produces a parser from a context-free grammar specification with attached semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

        ocamlyacc options grammar.mly

produces OCaml code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These functions have the same names as the entry points. Parsing functions take as arguments a lexical analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a lexer specification by the ocamllex program. Lexer buffers are an abstract data type implemented in the standard library module Lexing. Tokens are values from the concrete type token, defined in the interface file grammar.mli produced by ocamlyacc.

13.4  Syntax of grammar definitions

Grammar definitions have the following format:

%{
  header
%}
  declarations
%%
  rules
%%
  trailer

Comments are enclosed between /* and */ (as in C) in the “declarations” and “rules” sections, and between (* and *) (as in OCaml) in the “header” and “trailer” sections.

13.4.1  Header and trailer

The header and the trailer sections are OCaml code that is copied as is into file grammar.ml. Both sections are optional. The header goes at the beginning of the output file; it usually contains open directives and auxiliary functions required by the semantic actions of the rules. The trailer goes at the end of the output file.

13.4.2  Declarations

Declarations are given one per line. They all start with a % sign.

%token constr …  constr
Declare the given symbols constr …  constr as tokens (terminal symbols). These symbols are added as constant constructors for the token concrete type.
%token < typexpr >  constr …  constr
Declare the given symbols constr …  constr as tokens with an attached attribute of the given type. These symbols are added as constructors with arguments of the given type for the token concrete type. The typexpr part is an arbitrary OCaml type expression, except that all type constructor names must be fully qualified (e.g. Modname.typename) for all types except standard built-in types, even if the proper open directives (e.g. open Modname) were given in the header section. That’s because the header is copied only to the .ml output file, but not to the .mli output file, while the typexpr part of a %token declaration is copied to both.
%start symbol …  symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing function with the same name is defined in the output module. Non-terminals that are not declared as entry points have no such parsing function. Start symbols must be given a type with the %type directive below.
%type < typexpr >  symbol …  symbol
Specify the type of the semantic attributes for the given symbols. This is mandatory for start symbols only. Other nonterminal symbols need not be given types by hand: these types will be inferred when running the output files through the OCaml compiler (unless the -s option is in effect). The typexpr part is an arbitrary OCaml type expression, except that all type constructor names must be fully qualified, as explained above for %token.
%left symbol …  symbol
%right symbol …  symbol
%nonassoc symbol …  symbol

Associate precedences and associativities to the given symbols. All symbols on the same line are given the same precedence. They have higher precedence than symbols declared before in a %left, %right or %nonassoc line. They have lower precedence than symbols declared after in a %left, %right or %nonassoc line. The symbols are declared to associate to the left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside the rules.

The precedence declarations are used in the following way to resolve reduce/reduce and shift/reduce conflicts:

13.4.3  Rules

The syntax for rules is as usual:

nonterminal :
    symbolsymbol { semantic-action }
  | …
  | symbolsymbol { semantic-action }
;

Rules can also contain the %prec symbol directive in the right-hand side part, to override the default precedence and associativity of the rule with the precedence and associativity of the given symbol.

Semantic actions are arbitrary OCaml expressions, that are evaluated to produce the semantic attribute attached to the defined nonterminal. The semantic actions can access the semantic attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

The rules may contain the special symbol error to indicate resynchronization points, as in yacc.

Actions occurring in the middle of rules are not supported.

Nonterminal symbols are like regular OCaml symbols, except that they cannot end with ' (single quote).

13.4.4  Error handling

Error recovery is supported as follows: when the parser reaches an error state (no grammar rules can apply), it calls a function named parse_error with the string "syntax error" as argument. The default parse_error function does nothing and returns, thus initiating error recovery (see below). The user can define a customized parse_error function in the header section of the grammar file.

The parser also enters error recovery mode if one of the grammar actions raises the Parsing.Parse_error exception.

In error recovery mode, the parser discards states from the stack until it reaches a place where the error token can be shifted. It then discards tokens from the input until it finds three successive tokens that can be accepted, and starts processing with the first of these. If no state can be uncovered where the error token can be shifted, then the parser aborts by raising the Parsing.Parse_error exception.

Refer to documentation on yacc for more details and guidance in how to use error recovery.

13.5  Options

The ocamlyacc command recognizes the following options:

-bprefix
Name the output files prefix.ml, prefix.mli, prefix.output, instead of the default naming convention.
-q
This option has no effect.
-v
Generate a description of the parsing tables and a report on conflicts resulting from ambiguities in the grammar. The description is put in file grammar.output.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-
Read the grammar specification from standard input. The default output file names are stdin.ml and stdin.mli.
-- file
Process file as the grammar specification, even if its name starts with a dash (-) character. This option must be the last on the command line.

At run-time, the ocamlyacc-generated parser can be debugged by setting the p option in the OCAMLRUNPARAM environment variable (see section 11.2). This causes the pushdown automaton executing the parser to print a trace of its action (tokens shifted, rules reduced, etc). The trace mentions rule numbers and state numbers that can be interpreted by looking at the file grammar.output generated by ocamlyacc -v.

13.6  A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard input, one per line, and prints their values. Here is the grammar definition:

        /* File parser.mly */
        %token <int> INT
        %token PLUS MINUS TIMES DIV
        %token LPAREN RPAREN
        %token EOL
        %left PLUS MINUS        /* lowest precedence */
        %left TIMES DIV         /* medium precedence */
        %nonassoc UMINUS        /* highest precedence */
        %start main             /* the entry point */
        %type <int> main
        %%
        main:
            expr EOL                { $1 }
        ;
        expr:
            INT                     { $1 }
          | LPAREN expr RPAREN      { $2 }
          | expr PLUS expr          { $1 + $3 }
          | expr MINUS expr         { $1 - $3 }
          | expr TIMES expr         { $1 * $3 }
          | expr DIV expr           { $1 / $3 }
          | MINUS expr %prec UMINUS { - $2 }
        ;

Here is the definition for the corresponding lexer:

        (* File lexer.mll *)
        {
        open Parser        (* The type token is defined in parser.mli *)
        exception Eof
        }
        rule token = parse
            [' ' '\t']     { token lexbuf }     (* skip blanks *)
          | ['\n' ]        { EOL }
          | ['0'-'9']+ as lxm { INT(int_of_string lxm) }
          | '+'            { PLUS }
          | '-'            { MINUS }
          | '*'            { TIMES }
          | '/'            { DIV }
          | '('            { LPAREN }
          | ')'            { RPAREN }
          | eof            { raise Eof }

Here is the main program, that combines the parser with the lexer:

        (* File calc.ml *)
        let _ =
          try
            let lexbuf = Lexing.from_channel stdin in
            while true do
              let result = Parser.main Lexer.token lexbuf in
                print_int result; print_newline(); flush stdout
            done
          with Lexer.Eof ->
            exit 0

To compile everything, execute:

        ocamllex lexer.mll       # generates lexer.ml
        ocamlyacc parser.mly     # generates parser.ml and parser.mli
        ocamlc -c parser.mli
        ocamlc -c lexer.ml
        ocamlc -c parser.ml
        ocamlc -c calc.ml
        ocamlc -o calc lexer.cmo parser.cmo calc.cmo

13.7  Common errors

ocamllex: transition table overflow, automaton is too big

The deterministic automata generated by ocamllex are limited to at most 32767 transitions. The message above indicates that your lexer definition is too complex and overflows this limit. This is commonly caused by lexer definitions that have separate rules for each of the alphabetic keywords of the language, as in the following example.

rule token = parse
  "keyword1"   { KWD1 }
| "keyword2"   { KWD2 }
| ...
| "keyword100" { KWD100 }
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
               { IDENT id}

To keep the generated automata small, rewrite those definitions with only one general “identifier” rule, followed by a hashtable lookup to separate keywords from identifiers:

{ let keyword_table = Hashtbl.create 53
  let _ =
    List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)
              [ "keyword1", KWD1;
                "keyword2", KWD2; ...
                "keyword100", KWD100 ]
}
rule token = parse
  ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
               { try
                   Hashtbl.find keyword_table id
                 with Not_found ->
                   IDENT id }
ocamllex: Position memory overflow, too many bindings
The deterministic automata generated by ocamllex maintain a table of positions inside the scanned lexer buffer. The size of this table is limited to at most 255 cells. This error should not show up in normal situations.

Chapter 14  Dependency generator (ocamldep)

The ocamldep command scans a set of OCaml source files (.ml and .mli files) for references to external compilation units, and outputs dependency lines in a format suitable for the make utility. This ensures that make will compile the source files in the correct order, and recompile those files that need to when a source file is modified.

The typical usage is:

        ocamldep options *.mli *.ml > .depend

where *.mli *.ml expands to all source files in the current directory and .depend is the file that should contain the dependencies. (See below for a typical Makefile.)

Dependencies are generated both for compiling with the bytecode compiler ocamlc and with the native-code compiler ocamlopt.

14.1  Options

The following command-line options are recognized by ocamldep.

-absname
Show absolute filenames in error messages.
-all
Generate dependencies on all required files, rather than assuming implicit dependencies.
-allow-approx
Allow falling back on a lexer-based approximation when parsing fails.
-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-as-map
For the following files, do not include delayed dependencies for module aliases. This option assumes that they are compiled using options -no-alias-deps -w -49, and that those files or their interface are passed with the -map option when computing dependencies for other files. Note also that for dependencies to be correct in the implementation of a map file, its interface should not coerce any of the aliases it contains.
-debug-map
Dump the delayed dependency map for each map file.
-I directory
Add the given directory to the list of directories searched for source files. If a source file foo.ml mentions an external compilation unit Bar, a dependency on that unit’s interface bar.cmi is generated only if the source for bar is found in the current directory or in one of the directories specified with -I. Otherwise, Bar is assumed to be a module from the standard library, and no dependencies are generated. For programs that span multiple directories, it is recommended to pass ocamldep the same -I options that are passed to the compiler.
-nocwd
Do not add current working directory to the list of include directories.
-impl file
Process file as a .ml file.
-intf file
Process file as a .mli file.
-map file
Read an propagate the delayed dependencies for module aliases in file, so that the following files will depend on the exported aliased modules if they use them. See the example below.
-ml-synonym .ext
Consider the given extension (with leading dot) to be a synonym for .ml.
-mli-synonym .ext
Consider the given extension (with leading dot) to be a synonym for .mli.
-modules
Output raw dependencies of the form
      filename: Module1 Module2 ... ModuleN
where Module1, …, ModuleN are the names of the compilation units referenced within the file filename, but these names are not resolved to source file names. Such raw dependencies cannot be used by make, but can be post-processed by other tools such as Omake.
-native
Generate dependencies for a pure native-code program (no bytecode version). When an implementation file (.ml file) has no explicit interface file (.mli file), ocamldep generates dependencies on the bytecode compiled file (.cmo file) to reflect interface changes. This can cause unnecessary bytecode recompilations for programs that are compiled to native-code only. The flag -native causes dependencies on native compiled files (.cmx) to be generated instead of on .cmo files. (This flag makes no difference if all source files have explicit .mli interface files.)
-one-line
Output one line per file, regardless of the length.
-open module
Assume that module module is opened before parsing each of the following files.
-pp command
Cause ocamldep to call the given command as a preprocessor for each source file.
-ppx command
Pipe abstract syntax trees through preprocessor command.
-shared
Generate dependencies for native plugin files (.cmxs) in addition to native compiled files (.cmx).
-slash
Under Windows, use a forward slash (/) as the path separator instead of the usual backward slash (\). Under Unix, this option does nothing.
-sort
Sort files according to their dependencies.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

14.2  A typical Makefile

Here is a template Makefile for a OCaml program.

OCAMLC=ocamlc
OCAMLOPT=ocamlopt
OCAMLDEP=ocamldep
INCLUDES=                 # all relevant -I options here
OCAMLFLAGS=$(INCLUDES)    # add other options for ocamlc here
OCAMLOPTFLAGS=$(INCLUDES) # add other options for ocamlopt here

# prog1 should be compiled to bytecode, and is composed of three
# units: mod1, mod2 and mod3.

# The list of object files for prog1
PROG1_OBJS=mod1.cmo mod2.cmo mod3.cmo

prog1: $(PROG1_OBJS)
        $(OCAMLC) -o prog1 $(OCAMLFLAGS) $(PROG1_OBJS)

# prog2 should be compiled to native-code, and is composed of two
# units: mod4 and mod5.

# The list of object files for prog2
PROG2_OBJS=mod4.cmx mod5.cmx

prog2: $(PROG2_OBJS)
        $(OCAMLOPT) -o prog2 $(OCAMLFLAGS) $(PROG2_OBJS)

# Common rules
.SUFFIXES: .ml .mli .cmo .cmi .cmx

.ml.cmo:
        $(OCAMLC) $(OCAMLFLAGS) -c $<

.mli.cmi:
        $(OCAMLC) $(OCAMLFLAGS) -c $<

.ml.cmx:
        $(OCAMLOPT) $(OCAMLOPTFLAGS) -c $<

# Clean up
clean:
        rm -f prog1 prog2
        rm -f *.cm[iox]

# Dependencies
depend:
        $(OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

include .depend

If you use module aliases to give shorter names to modules, you need to change the above definitions. Assuming that your map file is called mylib.mli, here are minimal modifications.

OCAMLFLAGS=$(INCLUDES) -open Mylib

mylib.cmi: mylib.mli
        $(OCAMLC) $(INCLUDES) -no-alias-deps -w -49 -c $<

depend:
        $(OCAMLDEP) $(INCLUDES) -map mylib.mli $(PROG1_OBJS:.cmo=.ml) > .depend

Note that in this case you should not compute dependencies for mylib.mli together with the other files, hence the need to pass explicitly the list of files to process. If mylib.mli itself has dependencies, you should compute them using -as-map.

Chapter 15  The browser/editor (ocamlbrowser)

Since OCaml version 4.02, the OCamlBrowser tool and the Labltk library are distributed separately from the OCaml compiler. The project is now hosted at https://forge.ocamlcore.org/projects/labltk/.

Chapter 16  The documentation generator (ocamldoc)

This chapter describes OCamldoc, a tool that generates documentation from special comments embedded in source files. The comments used by OCamldoc are of the form (***) and follow the format described in section 16.2.

OCamldoc can produce documentation in various formats: HTML, LATEX, TeXinfo, Unix man pages, and dot dependency graphs. Moreover, users can add their own custom generators, as explained in section 16.3.

In this chapter, we use the word element to refer to any of the following parts of an OCaml source file: a type declaration, a value, a module, an exception, a module type, a type constructor, a record field, a class, a class type, a class method, a class value or a class inheritance clause.

16.1  Usage

16.1.1  Invocation

OCamldoc is invoked via the command ocamldoc, as follows:

        ocamldoc options sourcefiles

Options for choosing the output format

The following options determine the format for the generated documentation.

-html
Generate documentation in HTML default format. The generated HTML pages are stored in the current directory, or in the directory specified with the -d option. You can customize the style of the generated pages by editing the generated style.css file, or by providing your own style sheet using option -css-style. The file style.css is not generated if it already exists or if -css-style is used.
-latex
Generate documentation in LATEX default format. The generated LATEX document is saved in file ocamldoc.out, or in the file specified with the -o option. The document uses the style file ocamldoc.sty. This file is generated when using the -latex option, if it does not already exist. You can change this file to customize the style of your LATEX documentation.
-texi
Generate documentation in TeXinfo default format. The generated LATEX document is saved in file ocamldoc.out, or in the file specified with the -o option.
-man
Generate documentation as a set of Unix man pages. The generated pages are stored in the current directory, or in the directory specified with the -d option.
-dot
Generate a dependency graph for the toplevel modules, in a format suitable for displaying and processing by dot. The dot tool is available from https://graphviz.org/. The textual representation of the graph is written to the file ocamldoc.out, or to the file specified with the -o option. Use dot ocamldoc.out to display it.
-g file.cm[o,a,xs]
Dynamically load the given file, which defines a custom documentation generator. See section 16.4.1. This option is supported by the ocamldoc command (to load .cmo and .cma files) and by its native-code version ocamldoc.opt (to load .cmxs files). If the given file is a simple one and does not exist in the current directory, then ocamldoc looks for it in the custom generators default directory, and in the directories specified with optional -i options.
-customdir
Display the custom generators default directory.
-i directory
Add the given directory to the path where to look for custom generators.

General options

-d dir
Generate files in directory dir, rather than the current directory.
-dump file
Dump collected information into file. This information can be read with the -load option in a subsequent invocation of ocamldoc.
-hide modules
Hide the given complete module names in the generated documentation. modules is a list of complete module names separated by ’,’, without blanks. For instance: Stdlib,M2.M3.
-inv-merge-ml-mli
Reverse the precedence of implementations and interfaces when merging. All elements in implementation files are kept, and the -m option indicates which parts of the comments in interface files are merged with the comments in implementation files.
-keep-code
Always keep the source code for values, methods and instance variables, when available.
-load file
Load information from file, which has been produced by ocamldoc -dump. Several -load options can be given.
-m flags
Specify merge options between interfaces and implementations. (see section 16.1.2 for details). flags can be one or several of the following characters:
d
merge description
a
merge @author
v
merge @version
l
merge @see
s
merge @since
b
merge @before
o
merge @deprecated
p
merge @param
e
merge @raise
r
merge @return
A
merge everything
-no-custom-tags
Do not allow custom @-tags (see section 16.2.5).
-no-stop
Keep elements placed after/between the (**/**) special comment(s) (see section 16.2).
-o file
Output the generated documentation to file instead of ocamldoc.out. This option is meaningful only in conjunction with the -latex, -texi, or -dot options.
-pp command
Pipe sources through preprocessor command.
-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.
-intf filename
Process the file filename as an interface file, even if its extension is not .mli.
-text filename
Process the file filename as a text file, even if its extension is not .txt.
-sort
Sort the list of top-level modules before generating the documentation.
-stars
Remove blank characters until the first asterisk (’*’) in each line of comments.
-t title
Use title as the title for the generated documentation.
-intro file
Use content of file as ocamldoc text to use as introduction (HTML, LATEX and TeXinfo only). For HTML, the file is used to create the whole index.html file.
-v
Verbose mode. Display progress information.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-warn-error
Treat Ocamldoc warnings as errors.
-hide-warnings
Do not print OCamldoc warnings.
-help or --help
Display a short usage summary and exit.

Type-checking options

OCamldoc calls the OCaml type-checker to obtain type information. The following options impact the type-checking phase. They have the same meaning as for the ocamlc and ocamlopt commands.

-I directory
Add directory to the list of directories search for compiled interface files (.cmi files).
-nolabels
Ignore non-optional labels in types.
-rectypes
Allow arbitrary recursive types. (See the -rectypes option to ocamlc.)

Options for generating HTML pages

The following options apply in conjunction with the -html option:

-all-params
Display the complete list of parameters for functions and methods.
-charset charset
Add information about character encoding being charset (default is iso-8859-1).
-colorize-code
Colorize the OCaml code enclosed in [ ] and {[ ]}, using colors to emphasize keywords, etc. If the code fragments are not syntactically correct, no color is added.
-css-style filename
Use filename as the Cascading Style Sheet file.
-index-only
Generate only index files.
-short-functors
Use a short form to display functors:
module M : functor (A:Module) -> functor (B:Module2) -> sig .. end
is displayed as:
module M (A:Module) (B:Module2) : sig .. end

Options for generating LATEX files

The following options apply in conjunction with the -latex option:

-latex-value-prefix prefix
Give a prefix to use for the labels of the values in the generated LATEX document. The default prefix is the empty string. You can also use the options -latex-type-prefix, -latex-exception-prefix, -latex-module-prefix, -latex-module-type-prefix, -latex-class-prefix, -latex-class-type-prefix, -latex-attribute-prefix and -latex-method-prefix.

These options are useful when you have, for example, a type and a value with the same name. If you do not specify prefixes, LATEX will complain about multiply defined labels.

-latextitle n,style
Associate style number n to the given LATEX sectioning command style, e.g. section or subsection. (LATEX only.) This is useful when including the generated document in another LATEX document, at a given sectioning level. The default association is 1 for section, 2 for subsection, 3 for subsubsection, 4 for paragraph and 5 for subparagraph.
-noheader
Suppress header in generated documentation.
-notoc
Do not generate a table of contents.
-notrailer
Suppress trailer in generated documentation.
-sepfiles
Generate one .tex file per toplevel module, instead of the global ocamldoc.out file.

Options for generating TeXinfo files

The following options apply in conjunction with the -texi option:

-esc8
Escape accented characters in Info files.
-info-entry
Specify Info directory entry.
-info-section
Specify section of Info directory.
-noheader
Suppress header in generated documentation.
-noindex
Do not build index for Info files.
-notrailer
Suppress trailer in generated documentation.

Options for generating dot graphs

The following options apply in conjunction with the -dot option:

-dot-colors colors
Specify the colors to use in the generated dot code. When generating module dependencies, ocamldoc uses different colors for modules, depending on the directories in which they reside. When generating types dependencies, ocamldoc uses different colors for types, depending on the modules in which they are defined. colors is a list of color names separated by ’,’, as in Red,Blue,Green. The available colors are the ones supported by the dot tool.
-dot-include-all
Include all modules in the dot output, not only modules given on the command line or loaded with the -load option.
-dot-reduce
Perform a transitive reduction of the dependency graph before outputting the dot code. This can be useful if there are a lot of transitive dependencies that clutter the graph.
-dot-types
Output dot code describing the type dependency graph instead of the module dependency graph.

Options for generating man files

The following options apply in conjunction with the -man option:

-man-mini
Generate man pages only for modules, module types, classes and class types, instead of pages for all elements.
-man-suffix suffix
Set the suffix used for generated man filenames. Default is ’3o’, as in List.3o.
-man-section section
Set the section number used for generated man filenames. Default is ’3’.

16.1.2  Merging of module information

Information on a module can be extracted either from the .mli or .ml file, or both, depending on the files given on the command line. When both .mli and .ml files are given for the same module, information extracted from these files is merged according to the following rules:

16.1.3  Coding rules

The following rules must be respected in order to avoid name clashes resulting in cross-reference errors:

16.2  Syntax of documentation comments

Comments containing documentation material are called special comments and are written between (** and *). Special comments must start exactly with (**. Comments beginning with ( and more than two * are ignored.

16.2.1  Placement of documentation comments

OCamldoc can associate comments to some elements of the language encountered in the source files. The association is made according to the locations of comments with respect to the language elements. The locations of comments in .mli and .ml files are different.

Comments in .mli files

A special comment is associated to an element if it is placed before or after the element.
A special comment before an element is associated to this element if :

A special comment after an element is associated to this element if there is no blank line or comment between the special comment and the element.

There are two exceptions: for constructors and record fields in type definitions, the associated comment can only be placed after the constructor or field definition, without blank lines or other comments between them. The special comment for a constructor with another constructor following must be placed before the ’|’ character separating the two constructors.

The following sample interface file foo.mli illustrates the placement rules for comments in .mli files.

(** The first special comment of the file is the comment associated with the whole module.*) (** Special comments can be placed between elements and are kept by the OCamldoc tool, but are not associated to any element. @-tags in these comments are ignored.*) (*******************************************************************) (** Comments like the one above, with more than two asterisks, are ignored. *) (** The comment for function f. *) val f : int -> int -> int (** The continuation of the comment for function f. *) (** Comment for exception My_exception, even with a simple comment between the special comment and the exception.*) (* Hello, I'm a simple comment :-) *) exception My_exception of (int -> int) * int (** Comment for type weather *) type weather = | Rain of int (** The comment for constructor Rain *) | Sun (** The comment for constructor Sun *) (** Comment for type weather2 *) type weather2 = | Rain of int (** The comment for constructor Rain *) | Sun (** The comment for constructor Sun *) (** I can continue the comment for type weather2 here because there is already a comment associated to the last constructor.*) (** The comment for type my_record *) type my_record = { foo : int ; (** Comment for field foo *) bar : string ; (** Comment for field bar *) } (** Continuation of comment for type my_record *) (** Comment for foo *) val foo : string (** This comment is associated to foo and not to bar. *) val bar : string (** This comment is associated to bar. *) (** The comment for class my_class *) class my_class : object (** A comment to describe inheritance from cl *) inherit cl (** The comment for attribute tutu *) val mutable tutu : string (** The comment for attribute toto. *) val toto : int (** This comment is not attached to titi since there is a blank line before titi, but is kept as a comment in the class. *) val titi : string (** Comment for method toto *) method toto : string (** Comment for method m *) method m : float -> int end (** The comment for the class type my_class_type *) class type my_class_type = object (** The comment for variable x. *) val mutable x : int (** The comment for method m. *) method m : int -> int end (** The comment for module Foo *) module Foo : sig (** The comment for x *) val x : int (** A special comment that is kept but not associated to any element *) end (** The comment for module type my_module_type. *) module type my_module_type = sig (** The comment for value x. *) val x : int (** The comment for module M. *) module M : sig (** The comment for value y. *) val y : int (* ... *) end end

Comments in .ml files

A special comment is associated to an element if it is placed before the element and there is no blank line between the comment and the element. Meanwhile, there can be a simple comment between the special comment and the element. There are two exceptions, for constructors and record fields in type definitions, whose associated comment must be placed after the constructor or field definition, without blank line between them. The special comment for a constructor with another constructor following must be placed before the ’|’ character separating the two constructors.

The following example of file toto.ml shows where to place comments in a .ml file.

(** The first special comment of the file is the comment associated to the whole module. *) (** The comment for function f *) let f x y = x + y (** This comment is not attached to any element since there is another special comment just before the next element. *) (** Comment for exception My_exception, even with a simple comment between the special comment and the exception.*) (* A simple comment. *) exception My_exception of (int -> int) * int (** Comment for type weather *) type weather = | Rain of int (** The comment for constructor Rain *) | Sun (** The comment for constructor Sun *) (** The comment for type my_record *) type my_record = { foo : int ; (** Comment for field foo *) bar : string ; (** Comment for field bar *) } (** The comment for class my_class *) class my_class = object (** A comment to describe inheritance from cl *) inherit cl (** The comment for the instance variable tutu *) val mutable tutu = "tutu" (** The comment for toto *) val toto = 1 val titi = "titi" (** Comment for method toto *) method toto = tutu ^ "!" (** Comment for method m *) method m (f : float) = 1 end (** The comment for class type my_class_type *) class type my_class_type = object (** The comment for the instance variable x. *) val mutable x : int (** The comment for method m. *) method m : int -> int end (** The comment for module Foo *) module Foo = struct (** The comment for x *) let x = 0 (** A special comment in the class, but not associated to any element. *) end (** The comment for module type my_module_type. *) module type my_module_type = sig (* Comment for value x. *) val x : int (* ... *) end

16.2.2  The Stop special comment

The special comment (**/**) tells OCamldoc to discard elements placed after this comment, up to the end of the current class, class type, module or module type, or up to the next stop comment. For instance:

class type foo = object (** comment for method m *) method m : string (**/**) (** This method won't appear in the documentation *) method bar : int end (** This value appears in the documentation, since the Stop special comment in the class does not affect the parent module of the class.*) val foo : string (**/**) (** The value bar does not appear in the documentation.*) val bar : string (**/**) (** The type t appears since in the documentation since the previous stop comment toggled off the "no documentation mode". *) type t = string

The -no-stop option to ocamldoc causes the Stop special comments to be ignored.

16.2.3  Syntax of documentation comments

The inside of documentation comments (***) consists of free-form text with optional formatting annotations, followed by optional tags giving more specific information about parameters, version, authors, … The tags are distinguished by a leading @ character. Thus, a documentation comment has the following shape:

(** The comment begins with a description, which is text formatted
   according to the rules described in the next section.
   The description continues until the first non-escaped '@' character.
   @author Mr Smith
   @param x description for parameter x
*)

Some elements support only a subset of all @-tags. Tags that are not relevant to the documented element are simply ignored. For instance, all tags are ignored when documenting type constructors, record fields, and class inheritance clauses. Similarly, a @param tag on a class instance variable is ignored.

At last, (**) is the empty documentation comment.

16.2.4  Text formatting

Here is the BNF grammar for the simple markup language used to format text descriptions.

text::= {text-element}+  
 
text-element::=
{ { 09 }+ text } format text as a section header; the integer following { indicates the sectioning level.
{ { 09 }+ : label text } same, but also associate the name label to the current point. This point can be referenced by its fully-qualified label in a {! command, just like any other element.
{b text } set text in bold.
{i text } set text in italic.
{e text } emphasize text.
{C text } center text.
{L text } left align text.
{R text } right align text.
{ul list } build a list.
{ol list } build an enumerated list.
{{: string }  text } put a link to the given address (given as string) on the given text.
[ string ] set the given string in source code style.
{[ string ]} set the given string in preformatted source code style.
{v string v} set the given string in verbatim style.
{% string %} target-specific content (LATEX code by default, see details in 16.2.4.4)
{! string } insert a cross-reference to an element (see section 16.2.4.2 for the syntax of cross-references).
{!modules: string  string ... } insert an index table for the given module names. Used in HTML only.
{!indexlist} insert a table of links to the various indexes (types, values, modules, ...). Used in HTML only.
{^ text } set text in superscript.
{_ text } set text in subscript.
escaped-stringtypeset the given string as is; special characters (’{’, ’}’, ’[’, ’]’ and ’@’) must be escaped by a ’\
blank-lineforce a new line.


16.2.4.1  List formatting

list::=  
  { {- text } }+  
  { {li text } }+

A shortcut syntax exists for lists and enumerated lists:

(** Here is a {b list}
- item 1
- item 2
- item 3

The list is ended by the blank line.*)

is equivalent to:

(** Here is a {b list}
{ul {- item 1}
{- item 2}
{- item 3}}
The list is ended by the blank line.*)

The same shortcut is available for enumerated lists, using ’+’ instead of ’-’. Note that only one list can be defined by this shortcut in nested lists.

16.2.4.2  Cross-reference formatting

Cross-references are fully qualified element names, as in the example {!Foo.Bar.t}. This is an ambiguous reference as it may designate a type name, a value name, a class name, etc. It is possible to make explicit the intended syntactic class, using {!type:Foo.Bar.t} to designate a type, and {!val:Foo.Bar.t} a value of the same name.

The list of possible syntactic class is as follows:

tagsyntactic class
module:module
modtype:module type
class:class
classtype:class type
val:value
type:type
exception:exception
attribute:attribute
method:class method
section:ocamldoc section
const:variant constructor
recfield:record field

In the case of variant constructors or record field, the constructor or field name should be preceded by the name of the correspond type – to avoid the ambiguity of several types having the same constructor names. For example, the constructor Node of the type tree will be referenced as {!tree.Node} or {!const:tree.Node}, or possibly {!Mod1.Mod2.tree.Node} from outside the module.

16.2.4.3  First sentence

In the description of a value, type, exception, module, module type, class or class type, the first sentence is sometimes used in indexes, or when just a part of the description is needed. The first sentence is composed of the first characters of the description, until

outside of the following text formatting : {ul list } , {ol list } , [ string ] , {[ string ]} , {v string v} , {% string %} , {! string } , {^ text } , {_ text } .

16.2.4.4  Target-specific formatting

The content inside {%foo: ... %} is target-specific and will only be interpreted by the backend foo, and ignored by the others. The backends of the distribution are latex, html, texi and man. If no target is specified (syntax {% ... %}), latex is chosen by default. Custom generators may support their own target prefix.

16.2.4.5  Recognized HTML tags

The HTML tags <b>..</b>, <code>..</code>, <i>..</i>, <ul>..</ul>, <ol>..</ol>, <li>..</li>, <center>..</center> and <h[0-9]>..</h[0-9]> can be used instead of, respectively, {b ..} , [..] , {i ..} , {ul ..} , {ol ..} , {li ..} , {C ..} and {[0-9] ..}.

16.2.5  Documentation tags (@-tags)

Predefined tags

The following table gives the list of predefined @-tags, with their syntax and meaning.

@author string The author of the element. One author per @author tag. There may be several @author tags for the same element.
@deprecated text The text should describe when the element was deprecated, what to use as a replacement, and possibly the reason for deprecation.
@param id  text Associate the given description (text) to the given parameter name id. This tag is used for functions, methods, classes and functors.
@raise Exc  text Explain that the element may raise the exception Exc.
@return text Describe the return value and its possible values. This tag is used for functions and methods.
@see < URL >  text Add a reference to the URL with the given text as comment.
@see 'filename' text Add a reference to the given file name (written between single quotes), with the given text as comment.
@see "document-name" text Add a reference to the given document name (written between double quotes), with the given text as comment.
@since string Indicate when the element was introduced.
@before version text Associate the given description (text) to the given version in order to document compatibility issues.
@version string The version number for the element.

Custom tags

You can use custom tags in the documentation comments, but they will have no effect if the generator used does not handle them. To use a custom tag, for example foo, just put @foo with some text in your comment, as in:

(** My comment to show you a custom tag.
@foo this is the text argument to the [foo] custom tag.
*)

To handle custom tags, you need to define a custom generator, as explained in section 16.3.2.

16.3  Custom generators

OCamldoc operates in two steps:

  1. analysis of the source files;
  2. generation of documentation, through a documentation generator, which is an object of class Odoc_args.class_generator.

Users can provide their own documentation generator to be used during step 2 instead of the default generators. All the information retrieved during the analysis step is available through the Odoc_info module, which gives access to all the types and functions representing the elements found in the given modules, with their associated description.

The files you can use to define custom generators are installed in the ocamldoc sub-directory of the OCaml standard library.

16.3.1  The generator modules

The type of a generator module depends on the kind of generated documentation. Here is the list of generator module types, with the name of the generator class in the module :

That is, to define a new generator, one must implement a module with the expected signature, and with the given generator class, providing the generate method as entry point to make the generator generates documentation for a given list of modules :

        method generate : Odoc_info.Module.t_module list -> unit

This method will be called with the list of analysed and possibly merged Odoc_info.t_module structures.

It is recommended to inherit from the current generator of the same kind as the one you want to define. Doing so, it is possible to load various custom generators to combine improvements brought by each one.

This is done using first class modules (see chapter 8.5).

The easiest way to define a custom generator is the following this example, here extending the current HTML generator. We don’t have to know if this is the original HTML generator defined in ocamldoc or if it has been extended already by a previously loaded custom generator :

module Generator (G : Odoc_html.Html_generator) =
struct
  class html =
    object(self)
      inherit G.html as html
      (* ... *)

      method generate module_list =
        (* ... *)
        ()

      (* ... *)
  end
end;;

let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

To know which methods to override and/or which methods are available, have a look at the different base implementations, depending on the kind of generator you are extending :

16.3.2  Handling custom tags

Making a custom generator handle custom tags (see 16.2.5) is very simple.

For HTML

Here is how to develop a HTML generator handling your custom tags.

The class Odoc_html.Generator.html inherits from the class Odoc_html.info, containing a field tag_functions which is a list pairs composed of a custom tag (e.g. "foo") and a function taking a text and returning HTML code (of type string). To handle a new tag bar, extend the current HTML generator and complete the tag_functions field:

module Generator (G : Odoc_html.Html_generator) =
struct
  class html =
    object(self)
      inherit G.html

      (** Return HTML code for the given text of a bar tag. *)
      method html_of_bar t = (* your code here *)

      initializer
        tag_functions <- ("bar", self#html_of_bar) :: tag_functions
  end
end
let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

Another method of the class Odoc_html.info will look for the function associated to a custom tag and apply it to the text given to the tag. If no function is associated to a custom tag, then the method prints a warning message on stderr.

For other generators

You can act the same way for other kinds of generators.

16.4  Adding command line options

The command line analysis is performed after loading the module containing the documentation generator, thus allowing command line options to be added to the list of existing ones. Adding an option can be done with the function

        Odoc_args.add_option : string * Arg.spec * string -> unit

Note: Existing command line options can be redefined using this function.

16.4.1  Compilation and usage

Defining a custom generator class in one file

Let custom.ml be the file defining a new generator class. Compilation of custom.ml can be performed by the following command :

        ocamlc -I +ocamldoc -c custom.ml

The file custom.cmo is created and can be used this way :

        ocamldoc -g custom.cmo other-options source-files

Options selecting a built-in generator to ocamldoc, such as -html, have no effect if a custom generator of the same kind is provided using -g. If the kinds do not match, the selected built-in generator is used and the custom one is ignored.

Defining a custom generator class in several files

It is possible to define a generator class in several modules, which are defined in several files file1.ml[i], file2.ml[i], ..., filen.ml[i]. A .cma library file must be created, including all these files.

The following commands create the custom.cma file from files file1.ml[i], ..., filen.ml[i] :

ocamlc -I +ocamldoc -c file1.ml[i]
ocamlc -I +ocamldoc -c file2.ml[i]
...
ocamlc -I +ocamldoc -c filen.ml[i]
ocamlc -o custom.cma -a file1.cmo file2.cmo ... filen.cmo

Then, the following command uses custom.cma as custom generator:

        ocamldoc -g custom.cma other-options source-files

Chapter 17  The debugger (ocamldebug)

This chapter describes the OCaml source-level replay debugger ocamldebug.

Unix:   The debugger is available on Unix systems that provide BSD sockets.
Windows:   The debugger is available under the Cygwin port of OCaml, but not under the native Win32 ports.

17.1  Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all .cmo and .cma files that are part of the program should have been created with ocamlc -g, and they must be linked together with ocamlc -g.

Compiling with -g entails no penalty on the running time of programs: object files and bytecode executable files are bigger and take longer to produce, but the executable files run at exactly the same speed as if they had been compiled without -g.

17.2  Invocation

17.2.1  Starting the debugger

The OCaml debugger is invoked by running the program ocamldebug with the name of the bytecode executable file as first argument:

        ocamldebug [options] program [arguments]

The arguments following program are optional, and are passed as command-line arguments to the program being debugged. (See also the set arguments command.)

The following command-line options are recognized:

-c count
Set the maximum number of simultaneously live checkpoints to count.
-cd dir
Run the debugger program from the working directory dir, instead of the current directory. (See also the cd command.)
-emacs
Tell the debugger it is executed under Emacs. (See section 17.10 for information on how to run the debugger under Emacs.)
-I directory
Add directory to the list of directories searched for source files and compiled files. (See also the directory command.)
-s socket
Use socket for communicating with the debugged program. See the description of the command set socket (section 17.8.8) for the format of socket.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

17.2.2  Initialization file

On start-up, the debugger will read commands from an initialization file before giving control to the user. The default file is .ocamldebug in the current directory if it exists, otherwise .ocamldebug in the user’s home directory.

17.2.3  Exiting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate the action of any debugger command that is in progress and return to the debugger command level.

17.3  Commands

A debugger command is a single line of input. It starts with a command name, which is followed by arguments depending on this name. Examples:

        run
        goto 1000
        set arguments arg1 arg2

A command name can be truncated as long as there is no ambiguity. For instance, go 1000 is understood as goto 1000, since there are no other commands whose name starts with go. For the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands for run even though there are others commands starting with r. You can test the validity of an abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.

17.3.1  Getting help

The OCaml debugger has a simple on-line help system, which gives a brief description of each command and variable.

help
Print the list of commands.
help command
Give help about the command command.
help set variable, help show variable
Give help about the variable variable. The list of all debugger variables can be obtained with help set.
help info topic
Give help about topic. Use help info to get a list of known topics.

17.3.2  Accessing the debugger state

set variable value
Set the debugger variable variable to the value value.
show variable
Print the value of the debugger variable variable.
info subject
Give information about the given subject. For instance, info breakpoints will print the list of all breakpoints.

17.4  Executing a program

17.4.1  Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to the next or previous event encountered in the program execution). Also, breakpoints can only be set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of this counter is referred as the current time. Thanks to reverse execution, it is possible to jump back and forth to any time of the execution.

Here is where the debugger events (written ǧ) are located in the source code:

Exceptions: A function application followed by a function return is replaced by the compiler by a jump (tail-call optimization). In this case, no event is put after the function application.

17.4.2  Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting breakpoints or assigning debugger variables before execution starts. There are several ways to start execution:

run
Run the program until a breakpoint is hit, or the program terminates.
goto 0
Load the program and stop on the first event.
goto time
Load the program and execute it until the given time. Useful when you already know approximately at what time the problem appears. Also useful to set breakpoints on function values that have not been computed at time 0 (see section 17.5).

The execution of a program is affected by certain information it receives when the debugger starts it, such as the command-line arguments to the program and its working directory. The debugger provides commands to specify this information (set arguments and cd). These commands must be used before program execution starts. If you try to change the arguments or the working directory after starting your program, the debugger will kill the program (after asking for confirmation).

17.4.3  Running the program

The following commands execute the program forward or backward, starting at the current time. The execution will stop either when specified by the command or when a breakpoint is encountered.

run
Execute the program forward from current time. Stops at next breakpoint or when the program terminates.
reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint encountered before the current time.
step [count]
Run the program and stop at the next event. With an argument, do it count times. If count is 0, run until the program terminates or a breakpoint is hit.
backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count times.
next [count]
Run the program and stop at the next event, skipping over function calls. With an argument, do it count times.
previous [count]
Run the program backward and stop at the previous event, skipping over function calls. With an argument, do it count times.
finish
Run the program until the current function returns.
start
Run the program backward and stop at the first event before the current function invocation.

17.4.4  Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.

As you move through the program, the debugger maintains an history of the successive times you stop at. The last command can be used to revisit these times: each last command moves one step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.
last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count times.
set history size
Set the size of the execution history.

17.4.5  Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile the program without leaving the debugger.

17.5  Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It can be set in several ways using the break command. Breakpoints are assigned numbers when set, for further reference. The most comfortable way to set breakpoints is through the Emacs interface (see section 17.10).

break
Set a breakpoint at the current position in the program execution. The current position must be on an event (i.e., neither at the beginning, nor at the end of the program).
break function
Set a breakpoint at the beginning of function. This works only when the functional value of the identifier function has been computed and assigned to the identifier. Hence this command cannot be used at the very beginning of the program execution, when all identifiers are still undefined; use goto time to advance execution until the functional value is available.
break @ [module] line
Set a breakpoint in module module (or in the current module if module is not given), at the first event of line line.
break @ [module] line column
Set a breakpoint in module module (or in the current module if module is not given), at the event closest to line line, column column.
break @ [module] # character
Set a breakpoint in module module at the event closest to character number character.
break frag:pc, break pc
Set a breakpoint at code address frag:pc. The integer frag is the identifier of a code fragment, a set of modules that have been loaded at once, either initially or with the Dynlink module. The integer pc is the instruction counter within this code fragment. If frag is omitted, it defaults to 0, which is the code fragment of the program loaded initially.
delete [breakpoint-numbers]
Delete the specified breakpoints. Without argument, all breakpoints are deleted (after asking for confirmation).
info breakpoints
Print the list of all breakpoints.

17.6  The call stack

Each time the program performs a function application, it saves the location of the application (the return address) in a block of data called a stack frame. The frame also contains the local variables of the caller function. All the frames are allocated in a region of memory called the call stack. The command backtrace (or bt) displays parts of the call stack.

At any time, one of the stack frames is “selected” by the debugger; several debugger commands refer implicitly to the selected frame. In particular, whenever you ask the debugger for the value of a local variable, the value is found in the selected frame. The commands frame, up and down select whichever frame you are interested in.

When the program stops, the debugger automatically selects the currently executing frame and describes it briefly as the frame command does.

frame
Describe the currently selected stack frame.
frame frame-number
Select a stack frame by number and describe it. The frame currently executing when the program stopped has number 0; its caller has number 1; and so on up the call stack.
backtrace [count], bt [count]
Print the call stack. This is useful to see which sequence of function calls led to the currently executing frame. With a positive argument, print only the innermost count frames. With a negative argument, print only the outermost -count frames.
up [count]
Select and display the stack frame just “above” the selected frame, that is, the frame that called the selected frame. An argument says how many frames to go up.
down [count]
Select and display the stack frame just “below” the selected frame, that is, the frame that was called by the selected frame. An argument says how many frames to go down.

17.7  Examining variable values

The debugger can print the current value of simple expressions. The expressions can involve program variables: all the identifiers that are in scope at the selected program point can be accessed.

Expressions that can be printed are a subset of OCaml expressions, as described by the following grammar:

simple-expr::= lowercase-ident  
  { capitalized-ident . }  lowercase-ident  
  *  
  $ integer  
  simple-expr .  lowercase-ident  
  simple-expr .(  integer )  
  simple-expr .[  integer ]  
  ! simple-expr  
  ( simple-expr )

The first two cases refer to a value identifier, either unqualified or qualified by the path to the structure that define it. * refers to the result just computed (typically, the value of a function application), and is valid only if the selected event is an “after” event (typically, a function application). $ integer refer to a previously printed value. The remaining four forms select part of an expression: respectively, a record field, an array element, a string element, and the current contents of a reference.

print variables
Print the values of the given variables. print can be abbreviated as p.
display variables
Same as print, but limit the depth of printing to 1. Useful to browse large data structures without printing them in full. display can be abbreviated as d.

When printing a complex expression, a name of the form $integer is automatically assigned to its value. Such names are also assigned to parts of the value that cannot be printed because the maximal printing depth is exceeded. Named values can be printed later on with the commands p $integer or d $integer. Named values are valid only as long as the program is stopped. They are forgotten as soon as the program resumes execution.

set print_depth d
Limit the printing of values to a maximal depth of d.
set print_length l
Limit the printing of values to at most l nodes printed.

17.8  Controlling the debugger

17.8.1  Setting the program name and arguments

set program file
Set the program name to file.
set arguments arguments
Give arguments as command-line arguments for the program.

A shell is used to pass the arguments to the debugged program. You can therefore use wildcards, shell variables, and file redirections inside the arguments. To debug programs that read from standard input, it is recommended to redirect their input from a file (using set arguments < input-file), otherwise input to the program and input to the debugger are not properly separated, and inputs are not properly replayed when running the program backwards.

17.8.2  How programs are loaded

The loadingmode variable controls how the program is executed.

set loadingmode direct
The program is run directly by the debugger. This is the default mode.
set loadingmode runtime
The debugger execute the OCaml runtime ocamlrun on the program. Rarely useful; moreover it prevents the debugging of programs compiled in “custom runtime” mode.
set loadingmode manual
The user starts manually the program, when asked by the debugger. Allows remote debugging (see section 17.8.8).

17.8.3  Search path for files

The debugger searches for source files and compiled interface files in a list of directories, the search path. The search path initially contains the current directory . and the standard library directory. The directory command adds directories to the path.

Whenever the search path is modified, the debugger will clear any information it may have cached about the files.

directory directorynames
Add the given directories to the search path. These directories are added at the front, and will therefore be searched first.
directory directorynames for modulename
Same as directory directorynames, but the given directories will be searched only when looking for the source file of a module that has been packed into modulename.
directory
Reset the search path. This requires confirmation.

17.8.4  Working directory

Each time a program is started in the debugger, it inherits its working directory from the current working directory of the debugger. This working directory is initially whatever it inherited from its parent process (typically the shell), but you can specify a new working directory in the debugger with the cd command or the -cd command-line option.

cd directory
Set the working directory for ocamldebug to directory.
pwd
Print the working directory for ocamldebug.

17.8.5  Turning reverse execution on and off

In some cases, you may want to turn reverse execution off. This speeds up the program execution, and is also sometimes useful for interactive programs.

Normally, the debugger takes checkpoints of the program state from time to time. That is, it makes a copy of the current state of the program (using the Unix system call fork). If the variable checkpoints is set to off, the debugger will not take any checkpoints.

set checkpoints on/off
Select whether the debugger makes checkpoints or not.

17.8.6  Behavior of the debugger with respect to fork

When the program issues a call to fork, the debugger can either follow the child or the parent. By default, the debugger follows the parent process. The variable follow_fork_mode controls this behavior:

set follow_fork_mode child/parent
Select whether to follow the child or the parent in case of a call to fork.

17.8.7  Stopping execution when new code is loaded

The debugger is compatible with the Dynlink module. However, when an external module is not yet loaded, it is impossible to set a breakpoint in its code. In order to facilitate setting breakpoints in dynamically loaded code, the debugger stops the program each time new modules are loaded. This behavior can be disabled using the break_on_load variable:

set break_on_load on/off
Select whether to stop after loading new code.

17.8.8  Communication between the debugger and the program

The debugger communicate with the program being debugged through a Unix socket. You may need to change the socket name, for example if you need to run the debugger on a machine and your program on another.

set socket socket
Use socket for communication with the program. socket can be either a file name, or an Internet port specification host:port, where host is a host name or an Internet address in dot notation, and port is a port number on the host.

On the debugged program side, the socket name is passed through the CAML_DEBUG_SOCKET environment variable.

17.8.9  Fine-tuning the debugger

Several variables enables to fine-tune the debugger. Reasonable defaults are provided, and you should normally not have to change them.

set processcount count
Set the maximum number of checkpoints to count. More checkpoints facilitate going far back in time, but use more memory and create more Unix processes.

As checkpointing is quite expensive, it must not be done too often. On the other hand, backward execution is faster when checkpoints are taken more often. In particular, backward single-stepping is more responsive when many checkpoints have been taken just before the current time. To fine-tune the checkpointing strategy, the debugger does not take checkpoints at the same frequency for long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep and smallstep contain the number of events between two checkpoints in each case.

set bigstep count
Set the number of events between two checkpoints for long displacements.
set smallstep count
Set the number of events between two checkpoints for small displacements.

The following commands display information on checkpoints and events:

info checkpoints
Print a list of checkpoints.
info events [module]
Print the list of events in the given module (the current module, by default).

17.8.10  User-defined printers

Just as in the toplevel system (section 10.2), the user can register functions for printing values of certain types. For technical reasons, the debugger cannot call printing functions that reside in the program being debugged. The code for the printing functions must therefore be loaded explicitly in the debugger.

load_printer "file-name"
Load in the debugger the indicated .cmo or .cma object file. The file is loaded in an environment consisting only of the OCaml standard library plus the definitions provided by object files previously loaded using load_printer. If this file depends on other object files not yet loaded, the debugger automatically loads them if it is able to find them in the search path. The loaded file does not have direct access to the modules of the program being debugged.
install_printer printer-name
Register the function named printer-name (a value path) as a printer for objects whose types match the argument type of the function. That is, the debugger will call printer-name when it has such an object to print. The printing function printer-name must use the Format library module to produce its output, otherwise its output will not be correctly located in the values printed by the toplevel loop.

The value path printer-name must refer to one of the functions defined by the object files loaded using load_printer. It cannot reference the functions of the program being debugged.

remove_printer printer-name
Remove the named function from the table of value printers.

17.9  Miscellaneous commands

list [module] [beginning] [end]
List the source of module module, from line number beginning to line number end. By default, 20 lines of the current module are displayed, starting 10 lines before the current position.
source filename
Read debugger commands from the script filename.

17.10  Running the debugger under Emacs

The most user-friendly way to use the debugger is to run it under Emacs. See the file emacs/README in the distribution for information on how to load the Emacs Lisp files for OCaml support.

The OCaml debugger is started under Emacs by the command M-x camldebug, with argument the name of the executable file progname to debug. Communication with the debugger takes place in an Emacs buffer named *camldebug-progname*. The editing and history facilities of Shell mode are available for interacting with the debugger.

In addition, Emacs displays the source files containing the current event (the current position in the program execution) and highlights the location of the event. This display is updated synchronously with the debugger action.

The following bindings for the most common debugger commands are available in the *camldebug-progname* buffer:

C-c C-s
(command step): execute the program one step forward.
C-c C-k
(command backstep): execute the program one step backward.
C-c C-n
(command next): execute the program one step forward, skipping over function calls.
Middle mouse button
(command display): display named value. $n under mouse cursor (support incremental browsing of large data structures).
C-c C-p
(command print): print value of identifier at point.
C-c C-d
(command display): display value of identifier at point.
C-c C-r
(command run): execute the program forward to next breakpoint.
C-c C-v
(command reverse): execute the program backward to latest breakpoint.
C-c C-l
(command last): go back one step in the command history.
C-c C-t
(command backtrace): display backtrace of function calls.
C-c C-f
(command finish): run forward till the current function returns.
C-c <
(command up): select the stack frame below the current frame.
C-c >
(command down): select the stack frame above the current frame.

In all buffers in OCaml editing mode, the following debugger commands are also available:

C-x C-a C-b
(command break): set a breakpoint at event closest to point
C-x C-a C-p
(command print): print value of identifier at point
C-x C-a C-d
(command display): display value of identifier at point

Chapter 18  Profiling (ocamlprof)

This chapter describes how the execution of OCaml programs can be profiled, by recording how many times functions are called, branches of conditionals are taken, …

18.1  Compiling for profiling

Before profiling an execution, the program must be compiled in profiling mode, using the ocamlcp front-end to the ocamlc compiler (see chapter 9) or the ocamloptp front-end to the ocamlopt compiler (see chapter 12). When compiling modules separately, ocamlcp or ocamloptp must be used when compiling the modules (production of .cmo or .cmx files), and can also be used (though this is not strictly necessary) when linking them together.

Note

If a module (.ml file) doesn’t have a corresponding interface (.mli file), then compiling it with ocamlcp will produce object files (.cmi and .cmo) that are not compatible with the ones produced by ocamlc, which may lead to problems (if the .cmi or .cmo is still around) when switching between profiling and non-profiling compilations. To avoid this problem, you should always have a .mli file for each .ml file. The same problem exists with ocamloptp.

Note

To make sure your programs can be compiled in profiling mode, avoid using any identifier that begins with __ocaml_prof.

The amount of profiling information can be controlled through the -P option to ocamlcp or ocamloptp, followed by one or several letters indicating which parts of the program should be profiled:

a
all options
f
function calls : a count point is set at the beginning of each function body
i
if …then …else … : count points are set in both then branch and else branch
l
while, for loops: a count point is set at the beginning of the loop body
m
match branches: a count point is set at the beginning of the body of each branch
t
try …with … branches: a count point is set at the beginning of the body of each branch

For instance, compiling with ocamlcp -P film profiles function calls, if…then…else…, loops and pattern matching.

Calling ocamlcp or ocamloptp without the -P option defaults to -P fm, meaning that only function calls and pattern matching are profiled.

Note

For compatibility with previous releases, ocamlcp also accepts the -p option, with the same arguments and behaviour as -P.

The ocamlcp and ocamloptp commands also accept all the options of the corresponding ocamlc or ocamlopt compiler, except the -pp (preprocessing) option.

18.2  Profiling an execution

Running an executable that has been compiled with ocamlcp or ocamloptp records the execution counts for the specified parts of the program and saves them in a file called ocamlprof.dump in the current directory.

If the environment variable OCAMLPROF_DUMP is set when the program exits, its value is used as the file name instead of ocamlprof.dump.

The dump file is written only if the program terminates normally (by calling exit or by falling through). It is not written if the program terminates with an uncaught exception.

If a compatible dump file already exists in the current directory, then the profiling information is accumulated in this dump file. This allows, for instance, the profiling of several executions of a program on different inputs. Note that dump files produced by byte-code executables (compiled with ocamlcp) are compatible with the dump files produced by native executables (compiled with ocamloptp).

18.3  Printing profiling information

The ocamlprof command produces a source listing of the program modules where execution counts have been inserted as comments. For instance,

        ocamlprof foo.ml

prints the source code for the foo module, with comments indicating how many times the functions in this module have been called. Naturally, this information is accurate only if the source file has not been modified after it was compiled.

The following options are recognized by ocamlprof:

-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-f dumpfile
Specifies an alternate dump file of profiling information to be read.
-F string
Specifies an additional string to be output with profiling information. By default, ocamlprof will annotate programs with comments of the form (* n *) where n is the counter value for a profiling point. With option -F s, the annotation will be (* sn *).
-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.
-intf filename
Process the file filename as an interface file, even if its extension is not .mli.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

18.4  Time profiling

Profiling with ocamlprof only records execution counts, not the actual time spent within each function. There is currently no way to perform time profiling on bytecode programs generated by ocamlc. For time profiling of native code, users are recommended to use standard tools such as perf (on Linux), Instruments (on macOS) and DTrace. Profiling with gprof is no longer supported.

Chapter 19  The ocamlbuild compilation manager

Since OCaml version 4.03, the ocamlbuild compilation manager is distributed separately from the OCaml compiler. The project is now hosted at https://github.com/ocaml/ocamlbuild/.

Chapter 20  Interfacing C with OCaml

This chapter describes how user-defined primitives, written in C, can be linked with OCaml code and called from OCaml functions, and how these C functions can call back to OCaml code.

20.1  Overview and compilation information

20.1.1  Declaring primitives

definition::= ...  
  external value-name :  typexpr =  external-declaration  
 
external-declaration::= string-literal  [ string-literal  [ string-literal ] ]

User primitives are declared in an implementation file or structend module expression using the external keyword:

        external name : type = C-function-name

This defines the value name name as a function with type type that executes by calling the given C function. For instance, here is how the int_of_string primitive is declared in the standard library module Stdlib:

        external int_of_string : string -> int = "caml_int_of_string"

Primitives with several arguments are always curried. The C function does not necessarily have the same name as the ML function.

External functions thus defined can be specified in interface files or sigend signatures either as regular values

        val name : type

thus hiding their implementation as C functions, or explicitly as “manifest” external functions

        external name : type = C-function-name

The latter is slightly more efficient, as it allows clients of the module to call directly the C function instead of going through the corresponding OCaml function. On the other hand, it should not be used in library modules if they have side-effects at toplevel, as this direct call interferes with the linker’s algorithm for removing unused modules from libraries at link-time.

The arity (number of arguments) of a primitive is automatically determined from its OCaml type in the external declaration, by counting the number of function arrows in the type. For instance, input above has arity 4, and the input C function is called with four arguments. Similarly,

    external input2 : in_channel * bytes * int * int -> int = "input2"

has arity 1, and the input2 C function receives one argument (which is a quadruple of OCaml values).

Type abbreviations are not expanded when determining the arity of a primitive. For instance,

        type int_endo = int -> int
        external f : int_endo -> int_endo = "f"
        external g : (int -> int) -> (int -> int) = "f"

f has arity 1, but g has arity 2. This allows a primitive to return a functional value (as in the f example above): just remember to name the functional return type in a type abbreviation.

The language accepts external declarations with one or two flag strings in addition to the C function’s name. These flags are reserved for the implementation of the standard library.

20.1.2  Implementing primitives

User primitives with arity n ≤ 5 are implemented by C functions that take n arguments of type value, and return a result of type value. The type value is the type of the representations for OCaml values. It encodes objects of several base types (integers, floating-point numbers, strings, …) as well as OCaml data structures. The type value and the associated conversion functions and macros are described in detail below. For instance, here is the declaration for the C function implementing the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
  ...
}

When the primitive function is applied in an OCaml program, the C function is called with the values of the expressions to which the primitive is applied as arguments. The value returned by the function is passed back to the OCaml program as the result of the function application.

User primitives with arity greater than 5 should be implemented by two C functions. The first function, to be used in conjunction with the bytecode compiler ocamlc, receives two arguments: a pointer to an array of OCaml values (the values for the arguments), and an integer which is the number of arguments provided. The other function, to be used in conjunction with the native-code compiler ocamlopt, takes its arguments directly. For instance, here are the two C functions for the 7-argument primitive Nat.add_nat:

CAMLprim value add_nat_native(value nat1, value ofs1, value len1,
                              value nat2, value ofs2, value len2,
                              value carry_in)
{
  ...
}
CAMLprim value add_nat_bytecode(value * argv, int argn)
{
  return add_nat_native(argv[0], argv[1], argv[2], argv[3],
                        argv[4], argv[5], argv[6]);
}

The names of the two C functions must be given in the primitive declaration, as follows:

        external name : type =
                 bytecode-C-function-name native-code-C-function-name

For instance, in the case of add_nat, the declaration is:

        external add_nat: nat -> int -> int -> nat -> int -> int -> int -> int
                        = "add_nat_bytecode" "add_nat_native"

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the arguments to extract C values from the given OCaml values, and encoding the return value as an OCaml value; on the other hand, actually computing the result from the arguments. Except for very simple primitives, it is often preferable to have two distinct C functions to implement these two tasks. The first function actually implements the primitive, taking native C values as arguments and returning a native C value. The second function, often called the “stub code”, is a simple wrapper around the first function that converts its arguments from OCaml values to C values, call the first function, and convert the returned C value to OCaml value. For instance, here is the stub code for the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
  return Val_long(getblock((struct channel *) channel,
                           &Byte(buffer, Long_val(offset)),
                           Long_val(length)));
}

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be described later. The CAMLprim macro expands to the required compiler directives to ensure that the function is exported and accessible from OCaml.) The hard work is performed by the function getblock, which is declared as:

long getblock(struct channel * channel, char * p, long n)
{
  ...
}

To write C code that operates on OCaml values, the following include files are provided:

Include fileProvides
caml/mlvalues.hdefinition of the value type, and conversion macros
caml/alloc.hallocation functions (to create structured OCaml objects)
caml/memory.hmiscellaneous memory-related functions and macros (for GC interface, in-place modification of structures, etc).
caml/fail.hfunctions for raising exceptions (see section 20.4.5)
caml/callback.hcallback from C to OCaml (see section 20.7).
caml/custom.hoperations on custom blocks (see section 20.9).
caml/intext.hoperations for writing user-defined serialization and deserialization functions for custom blocks (see section 20.9).
caml/threads.hoperations for interfacing in the presence of multiple threads (see section 20.12).

Before including any of these files, you should define the OCAML_NAME_SPACE macro. For instance,

#define CAML_NAME_SPACE
#include "caml/mlvalues.h"
#include "caml/fail.h"

These files reside in the caml/ subdirectory of the OCaml standard library directory, which is returned by the command ocamlc -where (usually /usr/local/lib/ocaml or /usr/lib/ocaml).

Note: Including the header files without first defining CAML_NAME_SPACE introduces in scope short names for most functions. Those short names are deprecated, and may be removed in the future because they usually produce clashes with names defined by other C libraries.

The OCaml runtime system comprises three main parts: the bytecode interpreter, the memory manager, and a set of C functions that implement the primitive operations. Some bytecode instructions are provided to call these C functions, designated by their offset in a table of functions (the table of primitives).

In the default mode, the OCaml linker produces bytecode for the standard runtime system, with a standard set of primitives. References to primitives that are not in this standard set result in the “unavailable C primitive” error. (Unless dynamic loading of C libraries is supported – see section 20.1.4 below.)

In the “custom runtime” mode, the OCaml linker scans the object files and determines the set of required primitives. Then, it builds a suitable runtime system, by calling the native code linker with:

This builds a runtime system with the required primitives. The OCaml linker generates bytecode for this custom runtime system. The bytecode is appended to the end of the custom runtime system, so that it will be automatically executed when the output file (custom runtime + bytecode) is launched.

To link in “custom runtime” mode, execute the ocamlc command with:

If you are using the native-code compiler ocamlopt, the -custom flag is not needed, as the final linking phase of ocamlopt always builds a standalone executable. To build a mixed OCaml/C executable, execute the ocamlopt command with:

Starting with Objective Caml 3.00, it is possible to record the -custom option as well as the names of C libraries in an OCaml library file .cma or .cmxa. For instance, consider an OCaml library mylib.cma, built from the OCaml object files a.cmo and b.cmo, which reference C code in libmylib.a. If the library is built as follows:

        ocamlc -a -o mylib.cma -custom a.cmo b.cmo -cclib -lmylib

users of the library can simply link with mylib.cma:

        ocamlc -o myprog mylib.cma ...

and the system will automatically add the -custom and -cclib -lmylib options, achieving the same effect as

        ocamlc -o myprog -custom a.cmo b.cmo ... -cclib -lmylib

The alternative is of course to build the library without extra options:

        ocamlc -a -o mylib.cma a.cmo b.cmo

and then ask users to provide the -custom and -cclib -lmylib options themselves at link-time:

        ocamlc -o myprog -custom mylib.cma ... -cclib -lmylib

The former alternative is more convenient for the final users of the library, however.

Starting with Objective Caml 3.03, an alternative to static linking of C code using the -custom code is provided. In this mode, the OCaml linker generates a pure bytecode executable (no embedded custom runtime system) that simply records the names of dynamically-loaded libraries containing the C code. The standard OCaml runtime system ocamlrun then loads dynamically these libraries, and resolves references to the required primitives, before executing the bytecode.

This facility is currently available on all platforms supported by OCaml except Cygwin 64 bits.

To dynamically link C code with OCaml code, the C code must first be compiled into a shared library (under Unix) or DLL (under Windows). This involves 1- compiling the C files with appropriate C compiler flags for producing position-independent code (when required by the operating system), and 2- building a shared library from the resulting object files. The resulting shared library or DLL file must be installed in a place where ocamlrun can find it later at program start-up time (see section 11.3). Finally (step 3), execute the ocamlc command with

Do not set the -custom flag, otherwise you’re back to static linking as described in section 20.1.3. The ocamlmklib tool (see section 20.14) automates steps 2 and 3.

As in the case of static linking, it is possible (and recommended) to record the names of C libraries in an OCaml .cma library archive. Consider again an OCaml library mylib.cma, built from the OCaml object files a.cmo and b.cmo, which reference C code in dllmylib.so. If the library is built as follows:

        ocamlc -a -o mylib.cma a.cmo b.cmo -dllib -lmylib

users of the library can simply link with mylib.cma:

        ocamlc -o myprog mylib.cma ...

and the system will automatically add the -dllib -lmylib option, achieving the same effect as

        ocamlc -o myprog a.cmo b.cmo ... -dllib -lmylib

Using this mechanism, users of the library mylib.cma do not need to known that it references C code, nor whether this C code must be statically linked (using -custom) or dynamically linked.

20.1.5  Choosing between static linking and dynamic linking

After having described two different ways of linking C code with OCaml code, we now review the pros and cons of each, to help developers of mixed OCaml/C libraries decide.

The main advantage of dynamic linking is that it preserves the platform-independence of bytecode executables. That is, the bytecode executable contains no machine code, and can therefore be compiled on platform A and executed on other platforms B, C, …, as long as the required shared libraries are available on all these platforms. In contrast, executables generated by ocamlc -custom run only on the platform on which they were created, because they embark a custom-tailored runtime system specific to that platform. In addition, dynamic linking results in smaller executables.

Another advantage of dynamic linking is that the final users of the library do not need to have a C compiler, C linker, and C runtime libraries installed on their machines. This is no big deal under Unix and Cygwin, but many Windows users are reluctant to install Microsoft Visual C just to be able to do ocamlc -custom.

There are two drawbacks to dynamic linking. The first is that the resulting executable is not stand-alone: it requires the shared libraries, as well as ocamlrun, to be installed on the machine executing the code. If you wish to distribute a stand-alone executable, it is better to link it statically, using ocamlc -custom -ccopt -static or ocamlopt -ccopt -static. Dynamic linking also raises the “DLL hell” problem: some care must be taken to ensure that the right versions of the shared libraries are found at start-up time.

The second drawback of dynamic linking is that it complicates the construction of the library. The C compiler and linker flags to compile to position-independent code and build a shared library vary wildly between different Unix systems. Also, dynamic linking is not supported on all Unix systems, requiring a fall-back case to static linking in the Makefile for the library. The ocamlmklib command (see section 20.14) tries to hide some of these system dependencies.

In conclusion: dynamic linking is highly recommended under the native Windows port, because there are no portability problems and it is much more convenient for the end users. Under Unix, dynamic linking should be considered for mature, frequently used libraries because it enhances platform-independence of bytecode executables. For new or rarely-used libraries, static linking is much simpler to set up in a portable way.

20.1.6  Building standalone custom runtime systems

It is sometimes inconvenient to build a custom runtime system each time OCaml code is linked with C libraries, like ocamlc -custom does. For one thing, the building of the runtime system is slow on some systems (that have bad linkers or slow remote file systems); for another thing, the platform-independence of bytecode files is lost, forcing to perform one ocamlc -custom link per platform of interest.

An alternative to ocamlc -custom is to build separately a custom runtime system integrating the desired C libraries, then generate “pure” bytecode executables (not containing their own runtime system) that can run on this custom runtime. This is achieved by the -make-runtime and -use-runtime flags to ocamlc. For example, to build a custom runtime system integrating the C parts of the “Unix” and “Threads” libraries, do:

        ocamlc -make-runtime -o /home/me/ocamlunixrun unix.cma threads.cma

To generate a bytecode executable that runs on this runtime system, do:

        ocamlc -use-runtime /home/me/ocamlunixrun -o myprog \
                unix.cma threads.cma your .cmo and .cma files

The bytecode executable myprog can then be launched as usual: myprog args or /home/me/ocamlunixrun myprog args.

Notice that the bytecode libraries unix.cma and threads.cma must be given twice: when building the runtime system (so that ocamlc knows which C primitives are required) and also when building the bytecode executable (so that the bytecode from unix.cma and threads.cma is actually linked in).

20.2  The value type

All OCaml objects are represented by the C type value, defined in the include file caml/mlvalues.h, along with macros to manipulate values of that type. An object of type value is either:

20.2.1  Integer values

Integer values encode 63-bit signed integers (31-bit on 32-bit architectures). They are unboxed (unallocated).

20.2.2  Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Each block includes a header containing the size of the block (in words), and the tag of the block. The tag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicates a structured block, containing well-formed values, which is recursively traversed by the garbage collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are not scanned by the garbage collector. For the benefit of ad-hoc polymorphic primitives such as equality and structured input-output, structured and raw blocks are further classified according to their tags as follows:

TagContents of the block
0 to No_scan_tag−1A structured block (an array of OCaml objects). Each field is a value.
Closure_tagA closure representing a functional value. The first word is a pointer to a piece of code, the remaining words are value containing the environment.
String_tagA character string or a byte sequence.
Double_tagA double-precision floating-point number.
Double_array_tagAn array or record of double-precision floating-point numbers.
Abstract_tagA block representing an abstract datatype.
Custom_tagA block representing an abstract datatype with user-defined finalization, comparison, hashing, serialization and deserialization functions attached.

20.2.3  Pointers outside the heap

In earlier versions of OCaml, it was possible to use word-aligned pointers to addresses outside the heap as OCaml values, just by casting the pointer to type value. Starting with OCaml 4.11, this usage is deprecated and will stop being supported in OCaml 5.00.

A correct way to manipulate pointers to out-of-heap blocks from OCaml is to store those pointers in OCaml blocks with tag Abstract_tag or Custom_tag, then use the blocks as the OCaml values.

Here is an example of encapsulation of out-of-heap pointers of C type ty * inside Abstract_tag blocks. Section 20.6 gives a more complete example using Custom_tag blocks.

/* Create an OCaml value encapsulating the pointer p */
static value val_of_typtr(ty * p)
{
  value v = caml_alloc(1, Abstract_tag);
  *((ty **) Data_abstract_val(v)) = p;
  return v;
}

/* Extract the pointer encapsulated in the given OCaml value */
static ty * typtr_of_val(value v)
{
  return *((ty **) Data_abstract_val(v));
}

Alternatively, out-of-heap pointers can be treated as “native” integers, that is, boxed 32-bit integers on a 32-bit platform and boxed 64-bit integers on a 64-bit platform.

/* Create an OCaml value encapsulating the pointer p */
static value val_of_typtr(ty * p)
{
  return caml_copy_nativeint((intnat) p);
}

/* Extract the pointer encapsulated in the given OCaml value */
static ty * typtr_of_val(value v)
{
  return (ty *) Nativeint_val(v);
}

For pointers that are at least 2-aligned (the low bit is guaranteed to be zero), we have yet another valid representation as an OCaml tagged integer.

/* Create an OCaml value encapsulating the pointer p */
static value val_of_typtr(ty * p)
{
  assert (((uintptr_t) p & 1) == 0);  /* check correct alignment */
  return (value) p | 1;
}

/* Extract the pointer encapsulated in the given OCaml value */
static ty * typtr_of_val(value v)
{
  return (ty *) (v & ~1);
}

20.3  Representation of OCaml data types

This section describes how OCaml data types are encoded in the value type.

20.3.1  Atomic types

OCaml typeEncoding
intUnboxed integer values.
charUnboxed integer values (ASCII code).
floatBlocks with tag Double_tag.
bytesBlocks with tag String_tag.
stringBlocks with tag String_tag.
int32Blocks with tag Custom_tag.
int64Blocks with tag Custom_tag.
nativeintBlocks with tag Custom_tag.

20.3.2  Tuples and records

Tuples are represented by pointers to blocks, with tag 0.

Records are also represented by zero-tagged blocks. The ordering of labels in the record type declaration determines the layout of the record fields: the value associated to the label declared first is stored in field 0 of the block, the value associated to the second label goes in field 1, and so on.

As an optimization, records whose fields all have static type float are represented as arrays of floating-point numbers, with tag Double_array_tag. (See the section below on arrays.)

As another optimization, unboxable record types are represented specially; unboxable record types are the immutable record types that have only one field. An unboxable type will be represented in one of two ways: boxed or unboxed. Boxed record types are represented as described above (by a block with tag 0 or Double_array_tag). An unboxed record type is represented directly by the value of its field (i.e. there is no block to represent the record itself).

The representation is chosen according to the following, in decreasing order of priority:

20.3.3  Arrays

Arrays of integers and pointers are represented like tuples, that is, as pointers to blocks tagged 0. They are accessed with the Field macro for reading and the caml_modify function for writing.

Arrays of floating-point numbers (type float array) have a special, unboxed, more efficient representation. These arrays are represented by pointers to blocks with tag Double_array_tag. They should be accessed with the Double_field and Store_double_field macros.

20.3.4  Concrete data types

Constructed terms are represented either by unboxed integers (for constant constructors) or by blocks whose tag encode the constructor (for non-constant constructors). The constant constructors and the non-constant constructors for a given concrete type are numbered separately, starting from 0, in the order in which they appear in the concrete type declaration. A constant constructor is represented by the unboxed integer equal to its constructor number. A non-constant constructor declared with n arguments is represented by a block of size n, tagged with the constructor number; the n fields contain its arguments. Example:

Constructed termRepresentation
()Val_int(0)
falseVal_int(0)
trueVal_int(1)
[]Val_int(0)
h::tBlock with size = 2 and tag = 0; first field contains h, second field t.

As a convenience, caml/mlvalues.h defines the macros Val_unit, Val_false and Val_true to refer to (), false and true.

The following example illustrates the assignment of integers and block tags to constructors:

type t =
  | A             (* First constant constructor -> integer "Val_int(0)" *)
  | B of string   (* First non-constant constructor -> block with tag 0 *)
  | C             (* Second constant constructor -> integer "Val_int(1)" *)
  | D of bool     (* Second non-constant constructor -> block with tag 1 *)
  | E of t * t    (* Third non-constant constructor -> block with tag 2 *)

As an optimization, unboxable concrete data types are represented specially; a concrete data type is unboxable if it has exactly one constructor and this constructor has exactly one argument. Unboxable concrete data types are represented in the same ways as unboxable record types: see the description in section 20.3.2.

20.3.5  Objects

Objects are represented as blocks with tag Object_tag. The first field of the block refers to the object’s class and associated method suite, in a format that cannot easily be exploited from C. The second field contains a unique object ID, used for comparisons. The remaining fields of the object contain the values of the instance variables of the object. It is unsafe to access directly instance variables, as the type system provides no guarantee about the instance variables contained by an object.

One may extract a public method from an object using the C function caml_get_public_method (declared in <caml/mlvalues.h>.) Since public method tags are hashed in the same way as variant tags, and methods are functions taking self as first argument, if you want to do the method call foo#bar from the C side, you should call:

  callback(caml_get_public_method(foo, hash_variant("bar")), foo);

20.3.6  Polymorphic variants

Like constructed terms, polymorphic variant values are represented either as integers (for polymorphic variants without argument), or as blocks (for polymorphic variants with an argument). Unlike constructed terms, variant constructors are not numbered starting from 0, but identified by a hash value (an OCaml integer), as computed by the C function hash_variant (declared in <caml/mlvalues.h>): the hash value for a variant constructor named, say, VConstr is hash_variant("VConstr").

The variant value `VConstr is represented by hash_variant("VConstr"). The variant value `VConstr(v) is represented by a block of size 2 and tag 0, with field number 0 containing hash_variant("VConstr") and field number 1 containing v.

Unlike constructed values, polymorphic variant values taking several arguments are not flattened. That is, `VConstr(v, w) is represented by a block of size 2, whose field number 1 contains the representation of the pair (v, w), rather than a block of size 3 containing v and w in fields 1 and 2.

20.4  Operations on values

20.4.1  Kind tests

20.4.2  Operations on integers

20.4.3  Accessing blocks

The expressions Field(v, n), Byte(v, n) and Byte_u(v, n) are valid l-values. Hence, they can be assigned to, resulting in an in-place modification of value v. Assigning directly to Field(v, n) must be done with care to avoid confusing the garbage collector (see below).

20.4.4  Allocating blocks

Simple interface

Low-level interface

The following functions are slightly more efficient than caml_alloc, but also much more difficult to use.

From the standpoint of the allocation functions, blocks are divided according to their size as zero-sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks (with size greater than Max_young_wosize). The constant Max_young_wosize is declared in the include file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant size less than or equal to 64 can be assumed to be small. For blocks whose size is computed at run-time, the size must be compared against Max_young_wosize to determine the correct allocation procedure.

20.4.5  Raising exceptions

Two functions are provided to raise two standard exceptions:

Raising arbitrary exceptions from C is more delicate: the exception identifier is dynamically allocated by the OCaml program, and therefore must be communicated to the C function using the registration facility described below in section 20.7.3. Once the exception identifier is recovered in C, the following functions actually raise the exception:

20.5  Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some cooperation from C code that manipulates heap-allocated blocks.

20.5.1  Simple interface

All the macros described in this section are declared in the memory.h header file.

Rule 1   A function that has parameters or local variables of type value must begin with a call to one of the CAMLparam macros and return with CAMLreturn, CAMLreturn0, or CAMLreturnT. In particular, CAMLlocal and CAMLxparam can only be called after CAMLparam.

There are six CAMLparam macros: CAMLparam0 to CAMLparam5, which take zero to five arguments respectively. If your function has no more than 5 parameters of type value, use the corresponding macros with these parameters as arguments. If your function has more than 5 parameters of type value, use CAMLparam5 with five of these parameters, and use one or more calls to the CAMLxparam macros for the remaining parameters (CAMLxparam1 to CAMLxparam5).

The macros CAMLreturn, CAMLreturn0, and CAMLreturnT are used to replace the C keyword return. Every occurrence of return x must be replaced by CAMLreturn (x) if x has type value, or CAMLreturnT (t, x) (where t is the type of x); every occurrence of return without argument must be replaced by CAMLreturn0. If your C function is a procedure (i.e. if it returns void), you must insert CAMLreturn0 at the end (to replace C’s implicit return).

Note:

some C compilers give bogus warnings about unused variables caml__dummy_xxx at each use of CAMLparam and CAMLlocal. You should ignore them.


Example:

void foo (value v1, value v2, value v3)
{
  CAMLparam3 (v1, v2, v3);
  ...
  CAMLreturn0;
}
Note:

if your function is a primitive with more than 5 arguments for use with the byte-code runtime, its arguments are not values and must not be declared (they have types value * and int).

Rule 2   Local variables of type value must be declared with one of the CAMLlocal macros. Arrays of values are declared with CAMLlocalN. These macros must be used at the beginning of the function, not in a nested block.

The macros CAMLlocal1 to CAMLlocal5 declare and initialize one to five local variables of type value. The variable names are given as arguments to the macros. CAMLlocalN(x, n) declares and initializes a local variable of type value [n]. You can use several calls to these macros if you have more than 5 local variables.

Example:

value bar (value v1, value v2, value v3)
{
  CAMLparam3 (v1, v2, v3);
  CAMLlocal1 (result);
  result = caml_alloc (3, 0);
  ...
  CAMLreturn (result);
}
Rule 3   Assignments to the fields of structured blocks must be done with the Store_field macro (for normal blocks) or Store_double_field macro (for arrays and records of floating-point numbers). Other assignments must not use Store_field nor Store_double_field.

Store_field (b, n, v) stores the value v in the field number n of value b, which must be a block (i.e. Is_block(b) must be true).

Example:

value bar (value v1, value v2, value v3)
{
  CAMLparam3 (v1, v2, v3);
  CAMLlocal1 (result);
  result = caml_alloc (3, 0);
  Store_field (result, 0, v1);
  Store_field (result, 1, v2);
  Store_field (result, 2, v3);
  CAMLreturn (result);
}
Warning:

The first argument of Store_field and Store_double_field must be a variable declared by CAMLparam* or a parameter declared by CAMLlocal* to ensure that a garbage collection triggered by the evaluation of the other arguments will not invalidate the first argument after it is computed.

Use with CAMLlocalN:

Arrays of values declared using CAMLlocalN must not be written to using Store_field. Use the normal C array syntax instead.

Rule 4   Global variables containing values must be registered with the garbage collector using the caml_register_global_root function, save that global variables and locations that will only ever contain OCaml integers (and never pointers) do not have to be registered.

The same is true for any memory location outside the OCaml heap that contains a value and is not guaranteed to be reachable—for as long as it contains such value—from either another registered global variable or location, local variable declared with CAMLlocal or function parameter declared with CAMLparam.

Registration of a global variable v is achieved by calling caml_register_global_root(&v) just before or just after a valid value is stored in v for the first time; likewise, registration of an arbitrary location p is achieved by calling caml_register_global_root(p).

You must not call any of the OCaml runtime functions or macros between registering and storing the value. Neither must you store anything in the variable v (likewise, the location p) that is not a valid value.

The registration causes the contents of the variable or memory location to be updated by the garbage collector whenever the value in such variable or location is moved within the OCaml heap. In the presence of threads care must be taken to ensure appropriate synchronisation with the OCaml runtime to avoid a race condition against the garbage collector when reading or writing the value. (See section 20.12.2.)

A registered global variable v can be un-registered by calling caml_remove_global_root(&v).

If the contents of the global variable v are seldom modified after registration, better performance can be achieved by calling caml_register_generational_global_root(&v) to register v (after its initialization with a valid value, but before any allocation or call to the GC functions), and caml_remove_generational_global_root(&v) to un-register it. In this case, you must not modify the value of v directly, but you must use caml_modify_generational_global_root(&v,x) to set it to x. The garbage collector takes advantage of the guarantee that v is not modified between calls to caml_modify_generational_global_root to scan it less often. This improves performance if the modifications of v happen less often than minor collections.

Note:

The CAML macros use identifiers (local variables, type identifiers, structure tags) that start with caml__. Do not use any identifier starting with caml__ in your programs.

20.5.2  Low-level interface

We now give the GC rules corresponding to the low-level allocation functions caml_alloc_small and caml_alloc_shr. You can ignore those rules if you stick to the simplified allocation function caml_alloc.

Rule 5   After a structured block (a block with tag less than No_scan_tag) is allocated with the low-level functions, all fields of this block must be filled with well-formed values before the next allocation operation. If the block has been allocated with caml_alloc_small, filling is performed by direct assignment to the fields of the block:

        Field(v, n) = vn;
If the block has been allocated with caml_alloc_shr, filling is performed through the caml_initialize function:

        caml_initialize(&Field(v, n), vn);

The next allocation can trigger a garbage collection. The garbage collector assumes that all structured blocks contain well-formed values. Newly created blocks contain random data, which generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with a constant value (e.g. Val_unit), then allocate, then modify the fields with the correct value (see rule 6).

Rule 6   Direct assignment to a field of a block, as in

        Field(v, n) = w;
is safe only if v is a block newly allocated by caml_alloc_small; that is, if no allocation took place between the allocation of v and the assignment to the field. In all other cases, never assign directly. If the block has just been allocated by caml_alloc_shr, use caml_initialize to assign a value to a field for the first time:

        caml_initialize(&Field(v, n), w);
Otherwise, you are updating a field that previously contained a well-formed value; then, call the caml_modify function:

        caml_modify(&Field(v, n), w);

To illustrate the rules above, here is a C function that builds and returns a list containing the two integers given as parameters. First, we write it using the simplified allocation functions:

value alloc_list_int(int i1, int i2)
{
  CAMLparam0 ();
  CAMLlocal2 (result, r);

  r = caml_alloc(2, 0);                   /* Allocate a cons cell */
  Store_field(r, 0, Val_int(i2));         /* car = the integer i2 */
  Store_field(r, 1, Val_int(0));          /* cdr = the empty list [] */
  result = caml_alloc(2, 0);              /* Allocate the other cons cell */
  Store_field(result, 0, Val_int(i1));    /* car = the integer i1 */
  Store_field(result, 1, r);              /* cdr = the first cons cell */
  CAMLreturn (result);
}

Here, the registering of result is not strictly needed, because no allocation takes place after it gets its value, but it’s easier and safer to simply register all the local variables that have type value.

Here is the same function written using the low-level allocation functions. We notice that the cons cells are small blocks and can be allocated with caml_alloc_small, and filled by direct assignments on their fields.

value alloc_list_int(int i1, int i2)
{
  CAMLparam0 ();
  CAMLlocal2 (result, r);

  r = caml_alloc_small(2, 0);             /* Allocate a cons cell */
  Field(r, 0) = Val_int(i2);              /* car = the integer i2 */
  Field(r, 1) = Val_int(0);               /* cdr = the empty list [] */
  result = caml_alloc_small(2, 0);        /* Allocate the other cons cell */
  Field(result, 0) = Val_int(i1);         /* car = the integer i1 */
  Field(result, 1) = r;                   /* cdr = the first cons cell */
  CAMLreturn (result);
}

In the two examples above, the list is built bottom-up. Here is an alternate way, that proceeds top-down. It is less efficient, but illustrates the use of caml_modify.

value alloc_list_int(int i1, int i2)
{
  CAMLparam0 ();
  CAMLlocal2 (tail, r);

  r = caml_alloc_small(2, 0);             /* Allocate a cons cell */
  Field(r, 0) = Val_int(i1);              /* car = the integer i1 */
  Field(r, 1) = Val_int(0);               /* A dummy value
  tail = caml_alloc_small(2, 0);          /* Allocate the other cons cell */
  Field(tail, 0) = Val_int(i2);           /* car = the integer i2 */
  Field(tail, 1) = Val_int(0);            /* cdr = the empty list [] */
  caml_modify(&Field(r, 1), tail);        /* cdr of the result = tail */
  CAMLreturn (r);
}

It would be incorrect to perform Field(r, 1) = tail directly, because the allocation of tail has taken place since r was allocated.

20.5.3  Pending actions and asynchronous exceptions

Since 4.10, allocation functions are guaranteed not to call any OCaml callbacks from C, including finalisers and signal handlers, and delay their execution instead.

The function caml_process_pending_actions from <caml/signals.h> executes any pending signal handlers and finalisers, Memprof callbacks, and requested minor and major garbage collections. In particular, it can raise asynchronous exceptions. It is recommended to call it regularly at safe points inside long-running non-blocking C code.

The variant caml_process_pending_actions_exn is provided, that returns the exception instead of raising it directly into OCaml code. Its result must be tested using Is_exception_result, and followed by Extract_exception if appropriate. It is typically used for clean up before re-raising:

    CAMLlocal1(exn);
    ...
    exn = caml_process_pending_actions_exn();
    if(Is_exception_result(exn)) {
      exn = Extract_exception(exn);
      ...cleanup...
      caml_raise(exn);
    }

Correct use of exceptional return, in particular in the presence of garbage collection, is further detailed in Section 20.7.1.

20.6  A complete example

This section outlines how the functions from the Unix curses library can be made available to OCaml programs. First of all, here is the interface curses.ml that declares the curses primitives and data types:

(* File curses.ml -- declaration of primitives and data types *)
type window                   (* The type "window" remains abstract *)
external initscr: unit -> window = "caml_curses_initscr"
external endwin: unit -> unit = "caml_curses_endwin"
external refresh: unit -> unit = "caml_curses_refresh"
external wrefresh : window -> unit = "caml_curses_wrefresh"
external newwin: int -> int -> int -> int -> window = "caml_curses_newwin"
external addch: char -> unit = "caml_curses_addch"
external mvwaddch: window -> int -> int -> char -> unit = "caml_curses_mvwaddch"
external addstr: string -> unit = "caml_curses_addstr"
external mvwaddstr: window -> int -> int -> string -> unit
         = "caml_curses_mvwaddstr"
(* lots more omitted *)

To compile this interface:

        ocamlc -c curses.ml

To implement these functions, we just have to provide the stub code; the core functions are already implemented in the curses library. The stub code file, curses_stubs.c, looks like this:

/* File curses_stubs.c -- stub code for curses */
#include <curses.h>
#define CAML_NAME_SPACE
#include <caml/mlvalues.h>
#include <caml/memory.h>
#include <caml/alloc.h>
#include <caml/custom.h>

/* Encapsulation of opaque window handles (of type WINDOW *)
   as OCaml custom blocks. */

static struct custom_operations curses_window_ops = {
  "fr.inria.caml.curses_windows",
  custom_finalize_default,
  custom_compare_default,
  custom_hash_default,
  custom_serialize_default,
  custom_deserialize_default,
  custom_compare_ext_default,
  custom_fixed_length_default
};

/* Accessing the WINDOW * part of an OCaml custom block */
#define Window_val(v) (*((WINDOW **) Data_custom_val(v)))

/* Allocating an OCaml custom block to hold the given WINDOW * */
static value alloc_window(WINDOW * w)
{
  value v = caml_alloc_custom(&curses_window_ops, sizeof(WINDOW *), 0, 1);
  Window_val(v) = w;
  return v;
}

value caml_curses_initscr(value unit)
{
  CAMLparam1 (unit);
  CAMLreturn (alloc_window(initscr()));
}

value caml_curses_endwin(value unit)
{
  CAMLparam1 (unit);
  endwin();
  CAMLreturn (Val_unit);
}

value caml_curses_refresh(value unit)
{
  CAMLparam1 (unit);
  refresh();
  CAMLreturn (Val_unit);
}

value caml_curses_wrefresh(value win)
{
  CAMLparam1 (win);
  wrefresh(Window_val(win));
  CAMLreturn (Val_unit);
}

value caml_curses_newwin(value nlines, value ncols, value x0, value y0)
{
  CAMLparam4 (nlines, ncols, x0, y0);
  CAMLreturn (alloc_window(newwin(Int_val(nlines), Int_val(ncols),
                                  Int_val(x0), Int_val(y0))));
}

value caml_curses_addch(value c)
{
  CAMLparam1 (c);
  addch(Int_val(c));            /* Characters are encoded like integers */
  CAMLreturn (Val_unit);
}

value caml_curses_mvwaddch(value win, value x, value y, value c)
{
  CAMLparam4 (win, x, y, c);
  mvwaddch(Window_val(win), Int_val(x), Int_val(y), Int_val(c));
  CAMLreturn (Val_unit);
}

value caml_curses_addstr(value s)
{
  CAMLparam1 (s);
  addstr(String_val(s));
  CAMLreturn (Val_unit);
}

value caml_curses_mvwaddstr(value win, value x, value y, value s)
{
  CAMLparam4 (win, x, y, s);
  mvwaddstr(Window_val(win), Int_val(x), Int_val(y), String_val(s));
  CAMLreturn (Val_unit);
}

/* This goes on for pages. */

The file curses_stubs.c can be compiled with:

        cc -c -I`ocamlc -where` curses_stubs.c

or, even simpler,

        ocamlc -c curses_stubs.c

(When passed a .c file, the ocamlc command simply calls the C compiler on that file, with the right -I option.)

Now, here is a sample OCaml program prog.ml that uses the curses module:

(* File prog.ml -- main program using curses *)
open Curses;;
let main_window = initscr () in
let small_window = newwin 10 5 20 10 in
  mvwaddstr main_window 10 2 "Hello";
  mvwaddstr small_window 4 3 "world";
  refresh();
  Unix.sleep 5;
  endwin()

To compile and link this program, run:

       ocamlc -custom -o prog unix.cma curses.cmo prog.ml curses_stubs.o -cclib -lcurses

(On some machines, you may need to put -cclib -lcurses -cclib -ltermcap or -cclib -ltermcap instead of -cclib -lcurses.)

20.7  Advanced topic: callbacks from C to OCaml

So far, we have described how to call C functions from OCaml. In this section, we show how C functions can call OCaml functions, either as callbacks (OCaml calls C which calls OCaml), or with the main program written in C.

20.7.1  Applying OCaml closures from C

C functions can apply OCaml function values (closures) to OCaml values. The following functions are provided to perform the applications:

If the function f does not return, but raises an exception that escapes the scope of the application, then this exception is propagated to the next enclosing OCaml code, skipping over the C code. That is, if an OCaml function f calls a C function g that calls back an OCaml function h that raises a stray exception, then the execution of g is interrupted and the exception is propagated back into f.

If the C code wishes to catch exceptions escaping the OCaml function, it can use the functions caml_callback_exn, caml_callback2_exn, caml_callback3_exn, caml_callbackN_exn. These functions take the same arguments as their non-_exn counterparts, but catch escaping exceptions and return them to the C code. The return value v of the caml_callback*_exn functions must be tested with the macro Is_exception_result(v). If the macro returns “false”, no exception occurred, and v is the value returned by the OCaml function. If Is_exception_result(v) returns “true”, an exception escaped, and its value (the exception descriptor) can be recovered using Extract_exception(v).

Warning:

If the OCaml function returned with an exception, Extract_exception should be applied to the exception result prior to calling a function that may trigger garbage collection. Otherwise, if v is reachable during garbage collection, the runtime can crash since v does not contain a valid value.

Example:

    value call_caml_f_ex(value closure, value arg)
    {
      CAMLparam2(closure, arg);
      CAMLlocal2(res, tmp);
      res = caml_callback_exn(closure, arg);
      if(Is_exception_result(res)) {
        res = Extract_exception(res);
        tmp = caml_alloc(3, 0); /* Safe to allocate: res contains valid value. */
        ...
      }
      CAMLreturn (res);
    }

20.7.2  Obtaining or registering OCaml closures for use in C functions

There are two ways to obtain OCaml function values (closures) to be passed to the callback functions described above. One way is to pass the OCaml function as an argument to a primitive function. For example, if the OCaml code contains the declaration

    external apply : ('a -> 'b) -> 'a -> 'b = "caml_apply"

the corresponding C stub can be written as follows:

    CAMLprim value caml_apply(value vf, value vx)
    {
      CAMLparam2(vf, vx);
      CAMLlocal1(vy);
      vy = caml_callback(vf, vx);
      CAMLreturn(vy);
    }

Another possibility is to use the registration mechanism provided by OCaml. This registration mechanism enables OCaml code to register OCaml functions under some global name, and C code to retrieve the corresponding closure by this global name.

On the OCaml side, registration is performed by evaluating Callback.register n v. Here, n is the global name (an arbitrary string) and v the OCaml value. For instance:

    let f x = print_string "f is applied to "; print_int x; print_newline()
    let _ = Callback.register "test function" f

On the C side, a pointer to the value registered under name n is obtained by calling caml_named_value(n). The returned pointer must then be dereferenced to recover the actual OCaml value. If no value is registered under the name n, the null pointer is returned. For example, here is a C wrapper that calls the OCaml function f above:

    void call_caml_f(int arg)
    {
        caml_callback(*caml_named_value("test function"), Val_int(arg));
    }

The pointer returned by caml_named_value is constant and can safely be cached in a C variable to avoid repeated name lookups. The value pointed to cannot be changed from C. However, it might change during garbage collection, so must always be recomputed at the point of use. Here is a more efficient variant of call_caml_f above that calls caml_named_value only once:

    void call_caml_f(int arg)
    {
        static const value * closure_f = NULL;
        if (closure_f == NULL) {
            /* First time around, look up by name */
            closure_f = caml_named_value("test function");
        }
        caml_callback(*closure_f, Val_int(arg));
    }

20.7.3  Registering OCaml exceptions for use in C functions

The registration mechanism described above can also be used to communicate exception identifiers from OCaml to C. The OCaml code registers the exception by evaluating Callback.register_exception n exn, where n is an arbitrary name and exn is an exception value of the exception to register. For example:

    exception Error of string
    let _ = Callback.register_exception "test exception" (Error "any string")

The C code can then recover the exception identifier using caml_named_value and pass it as first argument to the functions raise_constant, raise_with_arg, and raise_with_string (described in section 20.4.5) to actually raise the exception. For example, here is a C function that raises the Error exception with the given argument:

    void raise_error(char * msg)
    {
        caml_raise_with_string(*caml_named_value("test exception"), msg);
    }

20.7.4  Main program in C

In normal operation, a mixed OCaml/C program starts by executing the OCaml initialization code, which then may proceed to call C functions. We say that the main program is the OCaml code. In some applications, it is desirable that the C code plays the role of the main program, calling OCaml functions when needed. This can be achieved as follows:

20.7.5  Embedding the OCaml code in the C code

The bytecode compiler in custom runtime mode (ocamlc -custom) normally appends the bytecode to the executable file containing the custom runtime. This has two consequences. First, the final linking step must be performed by ocamlc. Second, the OCaml runtime library must be able to find the name of the executable file from the command-line arguments. When using caml_main(argv) as in section 20.7.4, this means that argv[0] or argv[1] must contain the executable file name.

An alternative is to embed the bytecode in the C code. The -output-obj option to ocamlc is provided for this purpose. It causes the ocamlc compiler to output a C object file (.o file, .obj under Windows) containing the bytecode for the OCaml part of the program, as well as a caml_startup function. The C object file produced by ocamlc -output-obj can then be linked with C code using the standard C compiler, or stored in a C library.

The caml_startup function must be called from the main C program in order to initialize the OCaml runtime and execute the OCaml initialization code. Just like caml_main, it takes one argv parameter containing the command-line parameters. Unlike caml_main, this argv parameter is used only to initialize Sys.argv, but not for finding the name of the executable file.

The caml_startup function calls the uncaught exception handler (or enters the debugger, if running under ocamldebug) if an exception escapes from a top-level module initialiser. Such exceptions may be caught in the C code by instead using the caml_startup_exn function and testing the result using Is_exception_result (followed by Extract_exception if appropriate).

The -output-obj option can also be used to obtain the C source file. More interestingly, the same option can also produce directly a shared library (.so file, .dll under Windows) that contains the OCaml code, the OCaml runtime system and any other static C code given to ocamlc (.o, .a, respectively, .obj, .lib). This use of -output-obj is very similar to a normal linking step, but instead of producing a main program that automatically runs the OCaml code, it produces a shared library that can run the OCaml code on demand. The three possible behaviors of -output-obj are selected according to the extension of the resulting file (given with -o).

The native-code compiler ocamlopt also supports the -output-obj option, causing it to output a C object file or a shared library containing the native code for all OCaml modules on the command-line, as well as the OCaml startup code. Initialization is performed by calling caml_startup (or caml_startup_exn) as in the case of the bytecode compiler.

For the final linking phase, in addition to the object file produced by -output-obj, you will have to provide the OCaml runtime library (libcamlrun.a for bytecode, libasmrun.a for native-code), as well as all C libraries that are required by the OCaml libraries used. For instance, assume the OCaml part of your program uses the Unix library. With ocamlc, you should do:

        ocamlc -output-obj -o camlcode.o unix.cma other .cmo and .cma files
        cc -o myprog C objects and libraries \
           camlcode.o -L‘ocamlc -where‘ -lunix -lcamlrun

With ocamlopt, you should do:

        ocamlopt -output-obj -o camlcode.o unix.cmxa other .cmx and .cmxa files
        cc -o myprog C objects and libraries \
           camlcode.o -L‘ocamlc -where‘ -lunix -lasmrun
Warning:

On some ports, special options are required on the final linking phase that links together the object file produced by the -output-obj option and the remainder of the program. Those options are shown in the configuration file Makefile.config generated during compilation of OCaml, as the variable OC_LDFLAGS.

Stack backtraces.

When OCaml bytecode produced by ocamlc -g is embedded in a C program, no debugging information is included, and therefore it is impossible to print stack backtraces on uncaught exceptions. This is not the case when native code produced by ocamlopt -g is embedded in a C program: stack backtrace information is available, but the backtrace mechanism needs to be turned on programmatically. This can be achieved from the OCaml side by calling Printexc.record_backtrace true in the initialization of one of the OCaml modules. This can also be achieved from the C side by calling caml_record_backtrace(Val_int(1)); in the OCaml-C glue code.

Unloading the runtime.

In case the shared library produced with -output-obj is to be loaded and unloaded repeatedly by a single process, care must be taken to unload the OCaml runtime explicitly, in order to avoid various system resource leaks.

Since 4.05, caml_shutdown function can be used to shut the runtime down gracefully, which equals the following:

As a shared library may have several clients simultaneously, it is made for convenience that caml_startup (and caml_startup_pooled) may be called multiple times, given that each such call is paired with a corresponding call to caml_shutdown (in a nested fashion). The runtime will be unloaded once there are no outstanding calls to caml_startup.

Once a runtime is unloaded, it cannot be started up again without reloading the shared library and reinitializing its static data. Therefore, at the moment, the facility is only useful for building reloadable shared libraries.

20.8  Advanced example with callbacks

This section illustrates the callback facilities described in section 20.7. We are going to package some OCaml functions in such a way that they can be linked with C code and called from C just like any C functions. The OCaml functions are defined in the following mod.ml OCaml source:

(* File mod.ml -- some "useful" OCaml functions *)

let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2)

let format_result n = Printf.sprintf "Result is: %d\n" n

(* Export those two functions to C *)

let _ = Callback.register "fib" fib
let _ = Callback.register "format_result" format_result

Here is the C stub code for calling these functions from C:

/* File modwrap.c -- wrappers around the OCaml functions */

#include <stdio.h>
#include <string.h>
#include <caml/mlvalues.h>
#include <caml/callback.h>

int fib(int n)
{
  static const value * fib_closure = NULL;
  if (fib_closure == NULL) fib_closure = caml_named_value("fib");
  return Int_val(caml_callback(*fib_closure, Val_int(n)));
}

char * format_result(int n)
{
  static const value * format_result_closure = NULL;
  if (format_result_closure == NULL)
    format_result_closure = caml_named_value("format_result");
  return strdup(String_val(caml_callback(*format_result_closure, Val_int(n))));
  /* We copy the C string returned by String_val to the C heap
     so that it remains valid after garbage collection. */
}

We now compile the OCaml code to a C object file and put it in a C library along with the stub code in modwrap.c and the OCaml runtime system:

        ocamlc -custom -output-obj -o modcaml.o mod.ml
        ocamlc -c modwrap.c
        cp `ocamlc -where`/libcamlrun.a mod.a && chmod +w mod.a
        ar r mod.a modcaml.o modwrap.o

(One can also use ocamlopt -output-obj instead of ocamlc -custom -output-obj. In this case, replace libcamlrun.a (the bytecode runtime library) by libasmrun.a (the native-code runtime library).)

Now, we can use the two functions fib and format_result in any C program, just like regular C functions. Just remember to call caml_startup (or caml_startup_exn) once before.

/* File main.c -- a sample client for the OCaml functions */

#include <stdio.h>
#include <caml/callback.h>

extern int fib(int n);
extern char * format_result(int n);

int main(int argc, char ** argv)
{
  int result;

  /* Initialize OCaml code */
  caml_startup(argv);
  /* Do some computation */
  result = fib(10);
  printf("fib(10) = %s\n", format_result(result));
  return 0;
}

To build the whole program, just invoke the C compiler as follows:

        cc -o prog -I `ocamlc -where` main.c mod.a -lcurses

(On some machines, you may need to put -ltermcap or -lcurses -ltermcap instead of -lcurses.)

20.9  Advanced topic: custom blocks

Blocks with tag Custom_tag contain both arbitrary user data and a pointer to a C struct, with type struct custom_operations, that associates user-provided finalization, comparison, hashing, serialization and deserialization functions to this block.

20.9.1  The struct custom_operations

The struct custom_operations is defined in <caml/custom.h> and contains the following fields:

Note: the finalize, compare, hash, serialize and deserialize functions attached to custom block descriptors must never trigger a garbage collection. Within these functions, do not call any of the OCaml allocation functions, and do not perform a callback into OCaml code. Do not use CAMLparam to register the parameters to these functions, and do not use CAMLreturn to return the result.

20.9.2  Allocating custom blocks

Custom blocks must be allocated via caml_alloc_custom or caml_alloc_custom_mem:

caml_alloc_custom(ops, size, used, max)

returns a fresh custom block, with room for size bytes of user data, and whose associated operations are given by ops (a pointer to a struct custom_operations, usually statically allocated as a C global variable).

The two parameters used and max are used to control the speed of garbage collection when the finalized object contains pointers to out-of-heap resources. Generally speaking, the OCaml incremental major collector adjusts its speed relative to the allocation rate of the program. The faster the program allocates, the harder the GC works in order to reclaim quickly unreachable blocks and avoid having large amount of “floating garbage” (unreferenced objects that the GC has not yet collected).

Normally, the allocation rate is measured by counting the in-heap size of allocated blocks. However, it often happens that finalized objects contain pointers to out-of-heap memory blocks and other resources (such as file descriptors, X Windows bitmaps, etc.). For those blocks, the in-heap size of blocks is not a good measure of the quantity of resources allocated by the program.

The two arguments used and max give the GC an idea of how much out-of-heap resources are consumed by the finalized block being allocated: you give the amount of resources allocated to this object as parameter used, and the maximum amount that you want to see in floating garbage as parameter max. The units are arbitrary: the GC cares only about the ratio used / max.

For instance, if you are allocating a finalized block holding an X Windows bitmap of w by h pixels, and you’d rather not have more than 1 mega-pixels of unreclaimed bitmaps, specify used = w * h and max = 1000000.

Another way to describe the effect of the used and max parameters is in terms of full GC cycles. If you allocate many custom blocks with used / max = 1 / N, the GC will then do one full cycle (examining every object in the heap and calling finalization functions on those that are unreachable) every N allocations. For instance, if used = 1 and max = 1000, the GC will do one full cycle at least every 1000 allocations of custom blocks.

If your finalized blocks contain no pointers to out-of-heap resources, or if the previous discussion made little sense to you, just take used = 0 and max = 1. But if you later find that the finalization functions are not called “often enough”, consider increasing the used / max ratio.

caml_alloc_custom_mem(ops, size, used)

Use this function when your custom block holds only out-of-heap memory (memory allocated with malloc or caml_stat_alloc) and no other resources. used should be the number of bytes of out-of-heap memory that are held by your custom block. This function works like caml_alloc_custom except that the max parameter is under the control of the user (via the custom_major_ratio, custom_minor_ratio, and custom_minor_max_size parameters) and proportional to the heap sizes.

20.9.3  Accessing custom blocks

The data part of a custom block v can be accessed via the pointer Data_custom_val(v). This pointer has type void * and should be cast to the actual type of the data stored in the custom block.

The contents of custom blocks are not scanned by the garbage collector, and must therefore not contain any pointer inside the OCaml heap. In other terms, never store an OCaml value in a custom block, and do not use Field, Store_field nor caml_modify to access the data part of a custom block. Conversely, any C data structure (not containing heap pointers) can be stored in a custom block.

20.9.4  Writing custom serialization and deserialization functions

The following functions, defined in <caml/intext.h>, are provided to write and read back the contents of custom blocks in a portable way. Those functions handle endianness conversions when e.g. data is written on a little-endian machine and read back on a big-endian machine.

FunctionAction
caml_serialize_int_1Write a 1-byte integer
caml_serialize_int_2Write a 2-byte integer
caml_serialize_int_4Write a 4-byte integer
caml_serialize_int_8Write a 8-byte integer
caml_serialize_float_4Write a 4-byte float
caml_serialize_float_8Write a 8-byte float
caml_serialize_block_1Write an array of 1-byte quantities
caml_serialize_block_2Write an array of 2-byte quantities
caml_serialize_block_4Write an array of 4-byte quantities
caml_serialize_block_8Write an array of 8-byte quantities
caml_deserialize_uint_1Read an unsigned 1-byte integer
caml_deserialize_sint_1Read a signed 1-byte integer
caml_deserialize_uint_2Read an unsigned 2-byte integer
caml_deserialize_sint_2Read a signed 2-byte integer
caml_deserialize_uint_4Read an unsigned 4-byte integer
caml_deserialize_sint_4Read a signed 4-byte integer
caml_deserialize_uint_8Read an unsigned 8-byte integer
caml_deserialize_sint_8Read a signed 8-byte integer
caml_deserialize_float_4Read a 4-byte float
caml_deserialize_float_8Read an 8-byte float
caml_deserialize_block_1Read an array of 1-byte quantities
caml_deserialize_block_2Read an array of 2-byte quantities
caml_deserialize_block_4Read an array of 4-byte quantities
caml_deserialize_block_8Read an array of 8-byte quantities
caml_deserialize_errorSignal an error during deserialization; input_value or Marshal.from_... raise a Failure exception after cleaning up their internal data structures

Serialization functions are attached to the custom blocks to which they apply. Obviously, deserialization functions cannot be attached this way, since the custom block does not exist yet when deserialization begins! Thus, the struct custom_operations that contain deserialization functions must be registered with the deserializer in advance, using the register_custom_operations function declared in <caml/custom.h>. Deserialization proceeds by reading the identifier off the input stream, allocating a custom block of the size specified in the input stream, searching the registered struct custom_operation blocks for one with the same identifier, and calling its deserialize function to fill the data part of the custom block.

20.9.5  Choosing identifiers

Identifiers in struct custom_operations must be chosen carefully, since they must identify uniquely the data structure for serialization and deserialization operations. In particular, consider including a version number in the identifier; this way, the format of the data can be changed later, yet backward-compatible deserialisation functions can be provided.

Identifiers starting with _ (an underscore character) are reserved for the OCaml runtime system; do not use them for your custom data. We recommend to use a URL (http://mymachine.mydomain.com/mylibrary/version-number) or a Java-style package name (com.mydomain.mymachine.mylibrary.version-number) as identifiers, to minimize the risk of identifier collision.

20.9.6  Finalized blocks

Custom blocks generalize the finalized blocks that were present in OCaml prior to version 3.00. For backward compatibility, the format of custom blocks is compatible with that of finalized blocks, and the alloc_final function is still available to allocate a custom block with a given finalization function, but default comparison, hashing and serialization functions. caml_alloc_final(n, f, used, max) returns a fresh custom block of size n+1 words, with finalization function f. The first word is reserved for storing the custom operations; the other n words are available for your data. The two parameters used and max are used to control the speed of garbage collection, as described for caml_alloc_custom.

20.10  Advanced topic: Bigarrays and the OCaml-C interface

This section explains how C stub code that interfaces C or Fortran code with OCaml code can use Bigarrays.

20.10.1  Include file

The include file <caml/bigarray.h> must be included in the C stub file. It declares the functions, constants and macros discussed below.

20.10.2  Accessing an OCaml bigarray from C or Fortran

If v is a OCaml value representing a Bigarray, the expression Caml_ba_data_val(v) returns a pointer to the data part of the array. This pointer is of type void * and can be cast to the appropriate C type for the array (e.g. double [], char [][10], etc).

Various characteristics of the OCaml Bigarray can be consulted from C as follows:

C expressionReturns
Caml_ba_array_val(v)->num_dimsnumber of dimensions
Caml_ba_array_val(v)->dim[i]i-th dimension
Caml_ba_array_val(v)->flags & BIGARRAY_KIND_MASKkind of array elements

The kind of array elements is one of the following constants:

ConstantElement kind
CAML_BA_FLOAT3232-bit single-precision floats
CAML_BA_FLOAT6464-bit double-precision floats
CAML_BA_SINT88-bit signed integers
CAML_BA_UINT88-bit unsigned integers
CAML_BA_SINT1616-bit signed integers
CAML_BA_UINT1616-bit unsigned integers
CAML_BA_INT3232-bit signed integers
CAML_BA_INT6464-bit signed integers
CAML_BA_CAML_INT31- or 63-bit signed integers
CAML_BA_NATIVE_INT32- or 64-bit (platform-native) integers

The following example shows the passing of a two-dimensional Bigarray to a C function and a Fortran function.

    extern void my_c_function(double * data, int dimx, int dimy);
    extern void my_fortran_function_(double * data, int * dimx, int * dimy);

    value caml_stub(value bigarray)
    {
      int dimx = Caml_ba_array_val(bigarray)->dim[0];
      int dimy = Caml_ba_array_val(bigarray)->dim[1];
      /* C passes scalar parameters by value */
      my_c_function(Caml_ba_data_val(bigarray), dimx, dimy);
      /* Fortran passes all parameters by reference */
      my_fortran_function_(Caml_ba_data_val(bigarray), &dimx, &dimy);
      return Val_unit;
    }

20.10.3  Wrapping a C or Fortran array as an OCaml Bigarray

A pointer p to an already-allocated C or Fortran array can be wrapped and returned to OCaml as a Bigarray using the caml_ba_alloc or caml_ba_alloc_dims functions.

The following example illustrates how statically-allocated C and Fortran arrays can be made available to OCaml.

    extern long my_c_array[100][200];
    extern float my_fortran_array_[300][400];

    value caml_get_c_array(value unit)
    {
      long dims[2];
      dims[0] = 100; dims[1] = 200;
      return caml_ba_alloc(CAML_BA_NATIVE_INT | CAML_BA_C_LAYOUT,
                           2, my_c_array, dims);
    }

    value caml_get_fortran_array(value unit)
    {
      return caml_ba_alloc_dims(CAML_BA_FLOAT32 | CAML_BA_FORTRAN_LAYOUT,
                                2, my_fortran_array_, 300L, 400L);
    }

20.11  Advanced topic: cheaper C call

This section describe how to make calling C functions cheaper.

Note: this only applies to the native compiler. So whenever you use any of these methods, you have to provide an alternative byte-code stub that ignores all the special annotations.

20.11.1  Passing unboxed values

We said earlier that all OCaml objects are represented by the C type value, and one has to use macros such as Int_val to decode data from the value type. It is however possible to tell the OCaml native-code compiler to do this for us and pass arguments unboxed to the C function. Similarly it is possible to tell OCaml to expect the result unboxed and box it for us.

The motivation is that, by letting ‘ocamlopt‘ deal with boxing, it can often decide to suppress it entirely.

For instance let’s consider this example:

external foo : float -> float -> float = "foo"

let f a b =
  let len = Array.length a in
  assert (Array.length b = len);
  let res = Array.make len 0. in
  for i = 0 to len - 1 do
    res.(i) <- foo a.(i) b.(i)
  done

Float arrays are unboxed in OCaml, however the C function foo expect its arguments as boxed floats and returns a boxed float. Hence the OCaml compiler has no choice but to box a.(i) and b.(i) and unbox the result of foo. This results in the allocation of 3 * len temporary float values.

Now if we annotate the arguments and result with [@unboxed], the native-code compiler will be able to avoid all these allocations:

external foo
  :  (float [@unboxed])
  -> (float [@unboxed])
  -> (float [@unboxed])
  = "foo_byte" "foo"

In this case the C functions must look like:

CAMLprim double foo(double a, double b)
{
  ...
}

CAMLprim value foo_byte(value a, value b)
{
  return caml_copy_double(foo(Double_val(a), Double_val(b)))
}

For convenicence, when all arguments and the result are annotated with [@unboxed], it is possible to put the attribute only once on the declaration itself. So we can also write instead:

external foo : float -> float -> float = "foo_byte" "foo" [@@unboxed]

The following table summarize what OCaml types can be unboxed, and what C types should be used in correspondence:

OCaml typeC type
floatdouble
int32int32_t
int64int64_t
nativeintintnat

Similarly, it is possible to pass untagged OCaml integers between OCaml and C. This is done by annotating the arguments and/or result with [@untagged]:

external f : string -> (int [@untagged]) = "f_byte" "f"

The corresponding C type must be intnat.

Note: do not use the C int type in correspondence with (int [@untagged]). This is because they often differ in size.

20.11.2  Direct C call

In order to be able to run the garbage collector in the middle of a C function, the OCaml native-code compiler generates some bookkeeping code around C calls. Technically it wraps every C call with the C function caml_c_call which is part of the OCaml runtime.

For small functions that are called repeatedly, this indirection can have a big impact on performances. However this is not needed if we know that the C function doesn’t allocate, doesn’t raise exceptions, and doesn’t release the master lock (see section 20.12.2). We can instruct the OCaml native-code compiler of this fact by annotating the external declaration with the attribute [@@noalloc]:

external bar : int -> int -> int = "foo" [@@noalloc]

In this case calling bar from OCaml is as cheap as calling any other OCaml function, except for the fact that the OCaml compiler can’t inline C functions...

20.11.3  Example: calling C library functions without indirection

Using these attributes, it is possible to call C library functions with no indirection. For instance many math functions are defined this way in the OCaml standard library:

external sqrt : float -> float = "caml_sqrt_float" "sqrt"
  [@@unboxed] [@@noalloc]
(** Square root. *)

external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)

external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)

20.12  Advanced topic: multithreading

Using multiple threads (shared-memory concurrency) in a mixed OCaml/C application requires special precautions, which are described in this section.

20.12.1  Registering threads created from C

Callbacks from C to OCaml are possible only if the calling thread is known to the OCaml run-time system. Threads created from OCaml (through the Thread.create function of the system threads library) are automatically known to the run-time system. If the application creates additional threads from C and wishes to callback into OCaml code from these threads, it must first register them with the run-time system. The following functions are declared in the include file <caml/threads.h>.

20.12.2  Parallel execution of long-running C code

The OCaml run-time system is not reentrant: at any time, at most one thread can be executing OCaml code or C code that uses the OCaml run-time system. Technically, this is enforced by a “master lock” that any thread must hold while executing such code.

When OCaml calls the C code implementing a primitive, the master lock is held, therefore the C code has full access to the facilities of the run-time system. However, no other thread can execute OCaml code concurrently with the C code of the primitive.

If a C primitive runs for a long time or performs potentially blocking input-output operations, it can explicitly release the master lock, enabling other OCaml threads to run concurrently with its operations. The C code must re-acquire the master lock before returning to OCaml. This is achieved with the following functions, declared in the include file <caml/threads.h>.

These functions poll for pending signals by calling asynchronous callbacks (section 20.5.3) before releasing and after acquiring the lock. They can therefore execute arbitrary OCaml code including raising an asynchronous exception.

After caml_release_runtime_system() was called and until caml_acquire_runtime_system() is called, the C code must not access any OCaml data, nor call any function of the run-time system, nor call back into OCaml code. Consequently, arguments provided by OCaml to the C primitive must be copied into C data structures before calling caml_release_runtime_system(), and results to be returned to OCaml must be encoded as OCaml values after caml_acquire_runtime_system() returns.

Example: the following C primitive invokes gethostbyname to find the IP address of a host name. The gethostbyname function can block for a long time, so we choose to release the OCaml run-time system while it is running.

CAMLprim stub_gethostbyname(value vname)
{
  CAMLparam1 (vname);
  CAMLlocal1 (vres);
  struct hostent * h;
  char * name;

  /* Copy the string argument to a C string, allocated outside the
     OCaml heap. */
  name = caml_stat_strdup(String_val(vname));
  /* Release the OCaml run-time system */
  caml_release_runtime_system();
  /* Resolve the name */
  h = gethostbyname(name);
  /* Free the copy of the string, which we might as well do before
     acquiring the runtime system to benefit from parallelism. */
  caml_stat_free(name);
  /* Re-acquire the OCaml run-time system */
  caml_acquire_runtime_system();
  /* Encode the relevant fields of h as the OCaml value vres */
  ... /* Omitted */
  /* Return to OCaml */
  CAMLreturn (vres);
}

Callbacks from C to OCaml must be performed while holding the master lock to the OCaml run-time system. This is naturally the case if the callback is performed by a C primitive that did not release the run-time system. If the C primitive released the run-time system previously, or the callback is performed from other C code that was not invoked from OCaml (e.g. an event loop in a GUI application), the run-time system must be acquired before the callback and released after:

  caml_acquire_runtime_system();
  /* Resolve OCaml function vfun to be invoked */
  /* Build OCaml argument varg to the callback */
  vres = callback(vfun, varg);
  /* Copy relevant parts of result vres to C data structures */
  caml_release_runtime_system();

Note: the acquire and release functions described above were introduced in OCaml 3.12. Older code uses the following historical names, declared in <caml/signals.h>:

Intuition: a “blocking section” is a piece of C code that does not use the OCaml run-time system, typically a blocking input/output operation.

20.13  Advanced topic: interfacing with Windows Unicode APIs

This section contains some general guidelines for writing C stubs that use Windows Unicode APIs.

Note: This is an experimental feature of OCaml: the set of APIs below, as well as their exact semantics are not final and subject to change in future releases.

The OCaml system under Windows can be configured at build time in one of two modes:

In what follows, we say that a string has the OCaml encoding if it is encoded in UTF-8 when in Unicode mode, in the current code page in legacy mode, or is an arbitrary string under Unix. A string has the platform encoding if it is encoded in UTF-16 under Windows or is an arbitrary string under Unix.

From the point of view of the writer of C stubs, the challenges of interacting with Windows Unicode APIs are twofold:

The native C character type under Windows is WCHAR, two bytes wide, while under Unix it is char, one byte wide. A type char_os is defined in <caml/misc.h> that stands for the concrete C character type of each platform. Strings in the platform encoding are of type char_os *.

The following functions are exposed to help write compatible C stubs. To use them, you need to include both <caml/misc.h> and <caml/osdeps.h>.

Note: The strings returned by caml_stat_strdup_to_os and caml_stat_strdup_of_os are allocated using caml_stat_alloc, so they need to be deallocated using caml_stat_free when they are no longer needed.

Example

We want to bind the function getenv in a way that works both under Unix and Windows. Under Unix this function has the prototype:

    char *getenv(const char *);

While the Unicode version under Windows has the prototype:

    WCHAR *_wgetenv(const WCHAR *);

In terms of char_os, both functions take an argument of type char_os * and return a result of the same type. We begin by choosing the right implementation of the function to bind:

#ifdef _WIN32
#define getenv_os _wgetenv
#else
#define getenv_os getenv
#endif

The rest of the binding is the same for both platforms:

/* The following define is necessary because the API is experimental */
#define CAML_NAME_SPACE
#define CAML_INTERNALS

#include <caml/mlvalues.h>
#include <caml/misc.h>
#include <caml/alloc.h>
#include <caml/fail.h>
#include <caml/osdeps.h>
#include <stdlib.h>

CAMLprim value stub_getenv(value var_name)
{
  CAMLparam1(var_name);
  CAMLlocal1(var_value);
  char_os *var_name_os, *var_value_os;

  var_name_os = caml_stat_strdup_to_os(String_val(var_name));
  var_value_os = getenv_os(var_name_os);
  caml_stat_free(var_name_os);

  if (var_value_os == NULL)
    caml_raise_not_found();

  var_value = caml_copy_string_of_os(var_value_os);

  CAMLreturn(var_value);
}

20.14  Building mixed C/OCaml libraries: ocamlmklib

The ocamlmklib command facilitates the construction of libraries containing both OCaml code and C code, and usable both in static linking and dynamic linking modes. This command is available under Windows since Objective Caml 3.11 and under other operating systems since Objective Caml 3.03.

The ocamlmklib command takes three kinds of arguments:

It generates the following outputs:

In addition, the following options are recognized:

-cclib, -ccopt, -I, -linkall
These options are passed as is to ocamlc or ocamlopt. See the documentation of these commands.
-rpath, -R, -Wl,-rpath, -Wl,-R
These options are passed as is to the C compiler. Refer to the documentation of the C compiler.
-custom
Force the construction of a statically linked library only, even if dynamic linking is supported.
-failsafe
Fall back to building a statically linked library if a problem occurs while building the shared library (e.g. some of the support libraries are not available as shared libraries).
-Ldir
Add dir to the search path for support libraries (-llib).
-ocamlc cmd
Use cmd instead of ocamlc to call the bytecode compiler.
-ocamlopt cmd
Use cmd instead of ocamlopt to call the native-code compiler.
-o output
Set the name of the generated OCaml library. ocamlmklib will generate output.cma and/or output.cmxa. If not specified, defaults to a.
-oc outputc
Set the name of the generated C library. ocamlmklib will generate liboutputc.so (if shared libraries are supported) and liboutputc.a. If not specified, defaults to the output name given with -o.

On native Windows, the following environment variable is also consulted:

OCAML_FLEXLINK
Alternative executable to use instead of the configured value. Primarily used for bootstrapping.
Example

Consider an OCaml interface to the standard libz C library for reading and writing compressed files. Assume this library resides in /usr/local/zlib. This interface is composed of an OCaml part zip.cmo/zip.cmx and a C part zipstubs.o containing the stub code around the libz entry points. The following command builds the OCaml libraries zip.cma and zip.cmxa, as well as the companion C libraries dllzip.so and libzip.a:

ocamlmklib -o zip zip.cmo zip.cmx zipstubs.o -lz -L/usr/local/zlib

If shared libraries are supported, this performs the following commands:

ocamlc -a -o zip.cma zip.cmo -dllib -lzip \
        -cclib -lzip -cclib -lz -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -cclib -lzip \
        -cclib -lzip -cclib -lz -ccopt -L/usr/local/zlib
gcc -shared -o dllzip.so zipstubs.o -lz -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Note: This example is on a Unix system. The exact command lines may be different on other systems.

If shared libraries are not supported, the following commands are performed instead:

ocamlc -a -custom -o zip.cma zip.cmo -cclib -lzip \
        -cclib -lz -ccopt -L/usr/local/zlib
ocamlopt -a -o zip.cmxa zip.cmx -lzip \
        -cclib -lz -ccopt -L/usr/local/zlib
ar rc libzip.a zipstubs.o

Instead of building simultaneously the bytecode library, the native-code library and the C libraries, ocamlmklib can be called three times to build each separately. Thus,

ocamlmklib -o zip zip.cmo -lz -L/usr/local/zlib

builds the bytecode library zip.cma, and

ocamlmklib -o zip zip.cmx -lz -L/usr/local/zlib

builds the native-code library zip.cmxa, and

ocamlmklib -o zip zipstubs.o -lz -L/usr/local/zlib

builds the C libraries dllzip.so and libzip.a. Notice that the support libraries (-lz) and the corresponding options (-L/usr/local/zlib) must be given on all three invocations of ocamlmklib, because they are needed at different times depending on whether shared libraries are supported.

20.15  Cautionary words: the internal runtime API

Not all header available in the caml/ directory were described in previous sections. All those unmentioned headers are part of the internal runtime API, for which there is no stability guarantee. If you really need access to this internal runtime API, this section provides some guidelines that may help you to write code that might not break on every new version of OCaml.

Note

Programmers which come to rely on the internal API for a use-case which they find realistic and useful are encouraged to open a request for improvement on the bug tracker.

20.15.1  Internal variables and CAML_INTERNALS

Since OCaml 4.04, it is possible to get access to every part of the internal runtime API by defining the CAML_INTERNALS macro before loading caml header files. If this macro is not defined, parts of the internal runtime API are hidden.

If you are using internal C variables, do not redefine them by hand. You should import those variables by including the corresponding header files. The representation of those variables has already changed once in OCaml 4.10, and is still under evolution. If your code relies on such internal and brittle properties, it will be broken at some point in time.

For instance, rather than redefining caml_young_limit:

extern int caml_young_limit;

which breaks in OCaml ≥ 4.10, you should include the minor_gc header:

#include <caml/minor_gc.h>

20.15.2  OCaml version macros

Finally, if including the right headers is not enough, or if you need to support version older than OCaml 4.04, the header file caml/version.h should help you to define your own compatibility layer. This file provides few macros defining the current OCaml version. In particular, the OCAML_VERSION macro describes the current version, its format is MmmPP. For example, if you need some specific handling for versions older than 4.10.0, you could write

#include <caml/version.h>
#if OCAML_VERSION >= 41000
...
#else
...
#endif

Chapter 21  Optimisation with Flambda

21.1  Overview

Flambda is the term used to describe a series of optimisation passes provided by the native code compilers as of OCaml 4.03.

Flambda aims to make it easier to write idiomatic OCaml code without incurring performance penalties.

To use the Flambda optimisers it is necessary to pass the -flambda option to the OCaml configure script. (There is no support for a single compiler that can operate in both Flambda and non-Flambda modes.) Code compiled with Flambda cannot be linked into the same program as code compiled without Flambda. Attempting to do this will result in a compiler error.

Whether or not a particular ocamlopt uses Flambda may be determined by invoking it with the -config option and looking for any line starting with “flambda:”. If such a line is present and says “true”, then Flambda is supported, otherwise it is not.

Flambda provides full optimisation across different compilation units, so long as the .cmx files for the dependencies of the unit currently being compiled are available. (A compilation unit corresponds to a single .ml source file.) However it does not yet act entirely as a whole-program compiler: for example, elimination of dead code across a complete set of compilation units is not supported.

Optimisation with Flambda is not currently supported when generating bytecode.

Flambda should not in general affect the semantics of existing programs. Two exceptions to this rule are: possible elimination of pure code that is being benchmarked (see section 21.14) and changes in behaviour of code using unsafe operations (see section 21.15).

Flambda does not yet optimise array or string bounds checks. Neither does it take hints for optimisation from any assertions written by the user in the code.

Consult the Glossary at the end of this chapter for definitions of technical terms used below.

21.2  Command-line flags

The Flambda optimisers provide a variety of command-line flags that may be used to control their behaviour. Detailed descriptions of each flag are given in the referenced sections. Those sections also describe any arguments which the particular flags take.

Commonly-used options:

-O2
Perform more optimisation than usual. Compilation times may be lengthened. (This flag is an abbreviation for a certain set of parameters described in section 21.5.)
-O3
Perform even more optimisation than usual, possibly including unrolling of recursive functions. Compilation times may be significantly lengthened.
-Oclassic
Make inlining decisions at the point of definition of a function rather than at the call site(s). This mirrors the behaviour of OCaml compilers not using Flambda. Compared to compilation using the new Flambda inlining heuristics (for example at -O2) it produces smaller .cmx files, shorter compilation times and code that probably runs rather slower. When using -Oclassic, only the following options described in this section are relevant: -inlining-report and -inline. If any other of the options described in this section are used, the behaviour is undefined and may cause an error in future versions of the compiler.
-inlining-report
Emit .inlining files (one per round of optimisation) showing all of the inliner’s decisions.

Less commonly-used options:

-remove-unused-arguments
Remove unused function arguments even when the argument is not specialised. This may have a small performance penalty. See section 21.10.3.
-unbox-closures
Pass free variables via specialised arguments rather than closures (an optimisation for reducing allocation). See section 21.9.3. This may have a small performance penalty.

Advanced options, only needed for detailed tuning:

-inline
The behaviour depends on whether -Oclassic is used.
-inline-toplevel
The equivalent of -inline but used when speculative inlining starts at toplevel. See section 21.3.6. Not used in -Oclassic mode.
-inline-branch-factor
Controls how the inliner assesses whether a code path is likely to be hot or cold. See section 21.3.5.
-inline-alloc-cost, -inline-branch-cost, -inline-call-cost
Controls how the inliner assesses the runtime performance penalties associated with various operations. See section 21.3.5.
-inline-indirect-cost, -inline-prim-cost
Likewise.
-inline-lifting-benefit
Controls inlining of functors at toplevel. See section 21.3.5.
-inline-max-depth
The maximum depth of any speculative inlining search. See section 21.3.6.
-inline-max-unroll
The maximum depth of any unrolling of recursive functions during any speculative inlining search. See section 21.3.6.
-no-unbox-free-vars-of-closures
Do not unbox closure variables. See section 21.9.1.
-no-unbox-specialised-args
Do not unbox arguments to which functions have been specialised. See section 21.9.2.
-rounds
How many rounds of optimisation to perform. See section 21.2.1.
-unbox-closures-factor
Scaling factor for benefit calculation when using -unbox-closures. See section 21.9.3.
Notes

21.2.1  Specification of optimisation parameters by round

Flambda operates in rounds: one round consists of a certain sequence of transformations that may then be repeated in order to achieve more satisfactory results. The number of rounds can be set manually using the -rounds parameter (although this is not necessary when using predefined optimisation levels such as with -O2 and -O3). For high optimisation the number of rounds might be set at 3 or 4.

Command-line flags that may apply per round, for example those with -cost in the name, accept arguments of the form:

n | round=n[,...]

The flags -Oclassic, -O2 and -O3 are applied before all other flags, meaning that certain parameters may be overridden without having to specify every parameter usually invoked by the given optimisation level.

21.3  Inlining

Inlining refers to the copying of the code of a function to a place where the function is called. The code of the function will be surrounded by bindings of its parameters to the corresponding arguments.

The aims of inlining are:

These goals are often reached not just by inlining itself but also by other optimisations that the compiler is able to perform as a result of inlining.

When a recursive call to a function (within the definition of that function or another in the same mutually-recursive group) is inlined, the procedure is also known as unrolling. This is somewhat akin to loop peeling. For example, given the following code:

let rec fact x =
  if x = 0 then
    1
  else
    x * fact (x - 1)

let n = fact 4

unrolling once at the call site fact 4 produces (with the body of fact unchanged):

let n =
  if 4 = 0 then
    1
  else
    4 * fact (4 - 1)

This simplifies to:

let n = 4 * fact 3

Flambda provides significantly enhanced inlining capabilities relative to previous versions of the compiler.

Aside: when inlining is performed

Inlining is performed together with all of the other Flambda optimisation passes, that is to say, after closure conversion. This has three particular advantages over a potentially more straightforward implementation prior to closure conversion:

21.3.1  Classic inlining heuristic

In -Oclassic mode the behaviour of the Flambda inliner mimics previous versions of the compiler. (Code may still be subject to further optimisations not performed by previous versions of the compiler: functors may be inlined, constants are lifted and unused code is eliminated all as described elsewhere in this chapter. See sections 21.3.3, 21.8.1 and 21.10. At the definition site of a function, the body of the function is measured. It will then be marked as eligible for inlining (and hence inlined at every direct call site) if:

Non-Flambda versions of the compiler cannot inline functions that contain a definition of another function. However -Oclassic does permit this. Further, non-Flambda versions also cannot inline functions that are only themselves exposed as a result of a previous pass of inlining, but again this is permitted by -Oclassic. For example:

module M : sig
  val i : int
end = struct
  let f x =
    let g y = x + y in
    g
  let h = f 3
  let i = h 4  (* h is correctly discovered to be g and inlined *)
end

All of this contrasts with the normal Flambda mode, that is to say without -Oclassic, where:

The Flambda mode is described in the next section.

21.3.2  Overview of “Flambda” inlining heuristics

The Flambda inlining heuristics, used whenever the compiler is configured for Flambda and -Oclassic was not specified, make inlining decisions at call sites. This helps in situations where the context is important. For example:

let f b x =
  if b then
    x
  else
    ... big expression ...

let g x = f true x

In this case, we would like to inline f into g, because a conditional jump can be eliminated and the code size should reduce. If the inlining decision has been made after the declaration of f without seeing the use, its size would have probably made it ineligible for inlining; but at the call site, its final size can be known. Further, this function should probably not be inlined systematically: if b is unknown, or indeed false, there is little benefit to trade off against a large increase in code size. In the existing non-Flambda inliner this isn’t a great problem because chains of inlining were cut off fairly quickly. However it has led to excessive use of overly-large inlining parameters such as -inline 10000.

In more detail, at each call site the following procedure is followed:

Inlining within recursive functions of calls to other functions in the same mutually-recursive group is kept in check by an unrolling depth, described below. This ensures that functions are not unrolled to excess. (Unrolling is only enabled if -O3 optimisation level is selected and/or the -inline-max-unroll flag is passed with an argument greater than zero.)

21.3.3  Handling of specific language constructs

Functors

There is nothing particular about functors that inhibits inlining compared to normal functions. To the inliner, these both look the same, except that functors are marked as such.

Applications of functors at toplevel are biased in favour of inlining. (This bias may be adjusted: see the documentation for -inline-lifting-benefit below.)

Applications of functors not at toplevel, for example in a local module inside some other expression, are treated by the inliner identically to normal function calls.

First-class modules

The inliner will be able to consider inlining a call to a function in a first class module if it knows which particular function is going to be called. The presence of the first-class module record that wraps the set of functions in the module does not per se inhibit inlining.

Objects

Method calls to objects are not at present inlined by Flambda.

21.3.4  Inlining reports

If the -inlining-report option is provided to the compiler then a file will be emitted corresponding to each round of optimisation. For the OCaml source file basename.ml the files are named basename.round.inlining.org, with round a zero-based integer. Inside the files, which are formatted as “org mode”, will be found English prose describing the decisions that the inliner took.

21.3.5  Assessment of inlining benefit

Inlining typically results in an increase in code size, which if left unchecked, may not only lead to grossly large executables and excessive compilation times but also a decrease in performance due to worse locality. As such, the Flambda inliner trades off the change in code size against the expected runtime performance benefit, with the benefit being computed based on the number of operations that the compiler observes may be removed as a result of inlining.

For example given the following code:

let f b x =
  if b then
    x
  else
    ... big expression ...

let g x = f true x

it would be observed that inlining of f would remove:

Formally, an estimate of runtime performance benefit is computed by first summing the cost of the operations that are known to be removed as a result of the inlining and subsequent simplification of the inlined body. The individual costs for the various kinds of operations may be adjusted using the various -inline-...-cost flags as follows. Costs are specified as integers. All of these flags accept a single argument describing such integers using the conventions detailed in section 21.2.1.

-inline-alloc-cost
The cost of an allocation.
-inline-branch-cost
The cost of a branch.
-inline-call-cost
The cost of a direct function call.
-inline-indirect-cost
The cost of an indirect function call.
-inline-prim-cost
The cost of a primitive. Primitives encompass operations including arithmetic and memory access.

(Default values are described in section 21.5 below.)

The initial benefit value is then scaled by a factor that attempts to compensate for the fact that the current point in the code, if under some number of conditional branches, may be cold. (Flambda does not currently compute hot and cold paths.) The factor—the estimated probability that the inliner really is on a hot path—is calculated as 1/(1 + f)d, where f is set by -inline-branch-factor and d is the nesting depth of branches at the current point. As the inliner descends into more deeply-nested branches, the benefit of inlining thus lessens.

The resulting benefit value is known as the estimated benefit.

The change in code size is also estimated: morally speaking it should be the change in machine code size, but since that is not available to the inliner, an approximation is used.

If the estimated benefit exceeds the increase in code size then the inlined version of the function will be kept. Otherwise the function will not be inlined.

Applications of functors at toplevel will be given an additional benefit (which may be controlled by the -inline-lifting-benefit flag) to bias inlining in such situations towards keeping the inlined version.

21.3.6  Control of speculation

As described above, there are three parameters that restrict the search for inlining opportunities during speculation:

These parameters are ultimately bounded by the arguments provided to the corresponding command-line flags (or their default values):

Note in particular that -inline does not have the meaning that it has in the previous compiler or in -Oclassic mode. In both of those situations -inline was effectively some kind of basic assessment of inlining benefit. However in Flambda inlining mode it corresponds to a constraint on the search; the assessment of benefit is independent, as described above.

When speculation starts the inlining threshold starts at the value set by -inline (or -inline-toplevel if appropriate, see above). Upon making a speculative inlining decision the threshold is reduced by the code size of the function being inlined. If the threshold becomes exhausted, at or below zero, no further speculation will be performed.

The inlining depth starts at zero and is increased by one every time the inliner descends into another function. It is then decreased by one every time the inliner leaves such function. If the depth exceeds the value set by -inline-max-depth then speculation stops. This parameter is intended as a general backstop for situations where the inlining threshold does not control the search sufficiently.

The unrolling depth applies to calls within the same mutually-recursive group of functions. Each time an inlining of such a call is performed the depth is incremented by one when examining the resulting body. If the depth reaches the limit set by -inline-max-unroll then speculation stops.

21.4  Specialisation

The inliner may discover a call site to a recursive function where something is known about the arguments: for example, they may be equal to some other variables currently in scope. In this situation it may be beneficial to specialise the function to those arguments. This is done by copying the declaration of the function (and any others involved in any same mutually-recursive declaration) and noting the extra information about the arguments. The arguments augmented by this information are known as specialised arguments. In order to try to ensure that specialisation is not performed uselessly, arguments are only specialised if it can be shown that they are invariant: in other words, during the execution of the recursive function(s) themselves, the arguments never change.

Unless overridden by an attribute (see below), specialisation of a function will not be attempted if:

The compiler can prove invariance of function arguments across multiple functions within a recursive group (although this has some limitations, as shown by the example below).

It should be noted that the unboxing of closures pass (see below) can introduce specialised arguments on non-recursive functions. (No other place in the compiler currently does this.)

Example: the well-known List.iter function

This function might be written like so:

let rec iter f l =
  match l with
  | [] -> ()
  | h :: t ->
    f h;
    iter f t

and used like this:

let print_int x =
  print_endline (Int.to_string x)

let run xs =
  iter print_int (List.rev xs)

The argument f to iter is invariant so the function may be specialised:

let run xs =
  let rec iter' f l =
    (* The compiler knows: f holds the same value as foo throughout iter'. *)
    match l with
    | [] -> ()
    | h :: t ->
      f h;
      iter' f t
  in
  iter' print_int (List.rev xs)

The compiler notes down that for the function iter’, the argument f is specialised to the constant closure print_int. This means that the body of iter’ may be simplified:

let run xs =
  let rec iter' f l =
    (* The compiler knows: f holds the same value as foo throughout iter'. *)
    match l with
    | [] -> ()
    | h :: t ->
      print_int h;  (* this is now a direct call *)
      iter' f t
  in
  iter' print_int (List.rev xs)

The call to print_int can indeed be inlined:

let run xs =
  let rec iter' f l =
    (* The compiler knows: f holds the same value as foo throughout iter'. *)
    match l with
    | [] -> ()
    | h :: t ->
      print_endline (Int.to_string h);
      iter' f t
  in
  iter' print_int (List.rev xs)

The unused specialised argument f may now be removed, leaving:

let run xs =
  let rec iter' l =
    match l with
    | [] -> ()
    | h :: t ->
      print_endline (Int.to_string h);
      iter' t
  in
  iter' (List.rev xs)
Aside on invariant parameters.

The compiler cannot currently detect invariance in cases such as the following.

let rec iter_swap f g l =
  match l with
  | [] -> ()
  | 0 :: t ->
    iter_swap g f l
  | h :: t ->
    f h;
    iter_swap f g t

21.4.1  Assessment of specialisation benefit

The benefit of specialisation is assessed in a similar way as for inlining. Specialised argument information may mean that the body of the function being specialised can be simplified: the removed operations are accumulated into a benefit. This, together with the size of the duplicated (specialised) function declaration, is then assessed against the size of the call to the original function.

21.5  Default settings of parameters

The default settings (when not using -Oclassic) are for one round of optimisation using the following parameters.

ParameterSetting
-inline10
-inline-branch-factor0.1
-inline-alloc-cost7
-inline-branch-cost5
-inline-call-cost5
-inline-indirect-cost4
-inline-prim-cost3
-inline-lifting-benefit1300
-inline-toplevel160
-inline-max-depth1
-inline-max-unroll0
-unbox-closures-factor10

21.5.1  Settings at -O2 optimisation level

When -O2 is specified two rounds of optimisation are performed. The first round uses the default parameters (see above). The second uses the following parameters.

ParameterSetting
-inline25
-inline-branch-factorSame as default
-inline-alloc-costDouble the default
-inline-branch-costDouble the default
-inline-call-costDouble the default
-inline-indirect-costDouble the default
-inline-prim-costDouble the default
-inline-lifting-benefitSame as default
-inline-toplevel400
-inline-max-depth2
-inline-max-unrollSame as default
-unbox-closures-factorSame as default

21.5.2  Settings at -O3 optimisation level

When -O3 is specified three rounds of optimisation are performed. The first two rounds are as for -O2. The third round uses the following parameters.

ParameterSetting
-inline50
-inline-branch-factorSame as default
-inline-alloc-costTriple the default
-inline-branch-costTriple the default
-inline-call-costTriple the default
-inline-indirect-costTriple the default
-inline-prim-costTriple the default
-inline-lifting-benefitSame as default
-inline-toplevel800
-inline-max-depth3
-inline-max-unroll1
-unbox-closures-factorSame as default

21.6  Manual control of inlining and specialisation

Should the inliner prove recalcitrant and refuse to inline a particular function, or if the observed inlining decisions are not to the programmer’s satisfaction for some other reason, inlining behaviour can be dictated by the programmer directly in the source code. One example where this might be appropriate is when the programmer, but not the compiler, knows that a particular function call is on a cold code path. It might be desirable to prevent inlining of the function so that the code size along the hot path is kept smaller, so as to increase locality.

The inliner is directed using attributes. For non-recursive functions (and one-step unrolling of recursive functions, although @unroll is more clear for this purpose) the following are supported:

@@inline always or @@inline never
Attached to a declaration of a function or functor, these direct the inliner to either always or never inline, irrespective of the size/benefit calculation. (If the function is recursive then the body is substituted and no special action is taken for the recursive call site(s).) @@inline with no argument is equivalent to @@inline always.
@inlined always or @inlined never
Attached to a function application, these direct the inliner likewise. These attributes at call sites override any other attribute that may be present on the corresponding declaration. @inlined with no argument is equivalent to @inlined always. @@inlined hint is equivalent to @@inline always except that it will not trigger warning 55 if the function application cannot be inlined.

For recursive functions the relevant attributes are:

@@specialise always or @@specialise never
Attached to a declaration of a function or functor, this directs the inliner to either always or never specialise the function so long as it has appropriate contextual knowledge, irrespective of the size/benefit calculation. @@specialise with no argument is equivalent to @@specialise always.
@specialised always or @specialised never
Attached to a function application, this directs the inliner likewise. This attribute at a call site overrides any other attribute that may be present on the corresponding declaration. (Note that the function will still only be specialised if there exist one or more invariant parameters whose values are known.) @specialised with no argument is equivalent to @specialised always.
@unrolled n
This attribute is attached to a function application and always takes an integer argument. Each time the inliner sees the attribute it behaves as follows: As such, n behaves as the “maximum depth of unrolling”.

A compiler warning will be emitted if it was found impossible to obey an annotation from an @inlined or @specialised attribute.

Example showing correct placement of attributes
module F (M : sig type t end) = struct
  let[@inline never] bar x =
    x * 3

  let foo x =
    (bar [@inlined]) (42 + x)
end [@@inline never]

module X = F [@inlined] (struct type t = int end)

21.7  Simplification

Simplification, which is run in conjunction with inlining, propagates information (known as approximations) about which variables hold what values at runtime. Certain relationships between variables and symbols are also tracked: for example, some variable may be known to always hold the same value as some other variable; or perhaps some variable may be known to always hold the value pointed to by some symbol.

The propagation can help to eliminate allocations in cases such as:

let f x y =
  ...
  let p = x, y in
  ...
  ... (fst p) ... (snd p) ...

The projections from p may be replaced by uses of the variables x and y, potentially meaning that p becomes unused.

The propagation performed by the simplification pass is also important for discovering which functions flow to indirect call sites. This can enable the transformation of such call sites into direct call sites, which makes them eligible for an inlining transformation.

Note that no information is propagated about the contents of strings, even in safe-string mode, because it cannot yet be guaranteed that they are immutable throughout a given program.

21.8  Other code motion transformations

21.8.1  Lifting of constants

Expressions found to be constant will be lifted to symbol bindings—that is to say, they will be statically allocated in the object file—when they evaluate to boxed values. Such constants may be straightforward numeric constants, such as the floating-point number 42.0, or more complicated values such as constant closures.

Lifting of constants to toplevel reduces allocation at runtime.

The compiler aims to share constants lifted to toplevel such that there are no duplicate definitions. However if .cmx files are hidden from the compiler then maximal sharing may not be possible.

Notes about float arrays

The following language semantics apply specifically to constant float arrays. (By “constant float array” is meant an array consisting entirely of floating point numbers that are known at compile time. A common case is a literal such as [| 42.0; 43.0; |].

21.8.2  Lifting of toplevel let bindings

Toplevel let-expressions may be lifted to symbol bindings to ensure that the corresponding bound variables are not captured by closures. If the defining expression of a given binding is found to be constant, it is bound as such (the technical term is a let-symbol binding).

Otherwise, the symbol is bound to a (statically-allocated) preallocated block containing one field. At runtime, the defining expression will be evaluated and the first field of the block filled with the resulting value. This initialise-symbol binding causes one extra indirection but ensures, by virtue of the symbol’s address being known at compile time, that uses of the value are not captured by closures.

It should be noted that the blocks corresponding to initialise-symbol bindings are kept alive forever, by virtue of them occurring in a static table of GC roots within the object file. This extended lifetime of expressions may on occasion be surprising. If it is desired to create some non-constant value (for example when writing GC tests) that does not have this extended lifetime, then it may be created and used inside a function, with the application point of that function (perhaps at toplevel)—or indeed the function declaration itself—marked as to never be inlined. This technique prevents lifting of the definition of the value in question (assuming of course that it is not constant).

21.9  Unboxing transformations

The transformations in this section relate to the splitting apart of boxed (that is to say, non-immediate) values. They are largely intended to reduce allocation, which tends to result in a runtime performance profile with lower variance and smaller tails.

21.9.1  Unboxing of closure variables

This transformation is enabled unless -no-unbox-free-vars-of-closures is provided.

Variables that appear in closure environments may themselves be boxed values. As such, they may be split into further closure variables, each of which corresponds to some projection from the original closure variable(s). This transformation is called unboxing of closure variables or unboxing of free variables of closures. It is only applied when there is reasonable certainty that there are no uses of the boxed free variable itself within the corresponding function bodies.

Example:

In the following code, the compiler observes that the closure returned from the function f contains a variable pair (free in the body of f) that may be split into two separate variables.

let f x0 x1 =
  let pair = x0, x1 in
  Printf.printf "foo\n";
  fun y ->
    fst pair + snd pair + y

After some simplification one obtains:

let f x0 x1 =
  let pair_0 = x0 in
  let pair_1 = x1 in
  Printf.printf "foo\n";
  fun y ->
    pair_0 + pair_1 + y

and then:

let f x0 x1 =
  Printf.printf "foo\n";
  fun y ->
    x0 + x1 + y

The allocation of the pair has been eliminated.

This transformation does not operate if it would cause the closure to contain more than twice as many closure variables as it did beforehand.

21.9.2  Unboxing of specialised arguments

This transformation is enabled unless -no-unbox-specialised-args is provided.

It may become the case during compilation that one or more invariant arguments to a function become specialised to a particular value. When such values are themselves boxed the corresponding specialised arguments may be split into more specialised arguments corresponding to the projections out of the boxed value that occur within the function body. This transformation is called unboxing of specialised arguments. It is only applied when there is reasonable certainty that the boxed argument itself is unused within the function.

If the function in question is involved in a recursive group then unboxing of specialised arguments may be immediately replicated across the group based on the dataflow between invariant arguments.

Example:

Having been given the following code, the compiler will inline loop into f, and then observe inv being invariant and always the pair formed by adding 42 and 43 to the argument x of the function f.

let rec loop inv xs =
  match xs with
  | [] -> fst inv + snd inv
  | x::xs -> x + loop2 xs inv
and loop2 ys inv =
  match ys with
  | [] -> 4
  | y::ys -> y - loop inv ys

let f x =
  Printf.printf "%d\n" (loop (x + 42, x + 43) [1; 2; 3])

Since the functions have sufficiently few arguments, more specialised arguments will be added. After some simplification one obtains:

let f x =
  let rec loop' xs inv_0 inv_1 =
    match xs with
    | [] -> inv_0 + inv_1
    | x::xs -> x + loop2' xs inv_0 inv_1
  and loop2' ys inv_0 inv_1 =
    match ys with
    | [] -> 4
    | y::ys -> y - loop' ys inv_0 inv_1
  in
  Printf.printf "%d\n" (loop' [1; 2; 3] (x + 42) (x + 43))

The allocation of the pair within f has been removed. (Since the two closures for loop’ and loop2’ are constant they will also be lifted to toplevel with no runtime allocation penalty. This would also happen without having run the transformation to unbox specialise arguments.)

The transformation to unbox specialised arguments never introduces extra allocation.

The transformation will not unbox arguments if it would result in the original function having sufficiently many arguments so as to inhibit tail-call optimisation.

The transformation is implemented by creating a wrapper function that accepts the original arguments. Meanwhile, the original function is renamed and extra arguments are added corresponding to the unboxed specialised arguments; this new function is called from the wrapper. The wrapper will then be inlined at direct call sites. Indeed, all call sites will be direct unless -unbox-closures is being used, since they will have been generated by the compiler when originally specialising the function. (In the case of -unbox-closures other functions may appear with specialised arguments; in this case there may be indirect calls and these will incur a small penalty owing to having to bounce through the wrapper. The technique of direct call surrogates used for -unbox-closures is not used by the transformation to unbox specialised arguments.)

21.9.3  Unboxing of closures

This transformation is not enabled by default. It may be enabled using the -unbox-closures flag.

The transformation replaces closure variables by specialised arguments. The aim is to cause more closures to become closed. It is particularly applicable, as a means of reducing allocation, where the function concerned cannot be inlined or specialised. For example, some non-recursive function might be too large to inline; or some recursive function might offer no opportunities for specialisation perhaps because its only argument is one of type unit.

At present there may be a small penalty in terms of actual runtime performance when this transformation is enabled, although more stable performance may be obtained due to reduced allocation. It is recommended that developers experiment to determine whether the option is beneficial for their code. (It is expected that in the future it will be possible for the performance degradation to be removed.)

Simple example:

In the following code (which might typically occur when g is too large to inline) the value of x would usually be communicated to the application of the + function via the closure of g.

let f x =
  let g y =
    x + y
  in
  (g [@inlined never]) 42

Unboxing of the closure causes the value for x inside g to be passed as an argument to g rather than through its closure. This means that the closure of g becomes constant and may be lifted to toplevel, eliminating the runtime allocation.

The transformation is implemented by adding a new wrapper function in the manner of that used when unboxing specialised arguments. The closure variables are still free in the wrapper, but the intention is that when the wrapper is inlined at direct call sites, the relevant values are passed directly to the main function via the new specialised arguments.

Adding such a wrapper will penalise indirect calls to the function (which might exist in arbitrary places; remember that this transformation is not for example applied only on functions the compiler has produced as a result of specialisation) since such calls will bounce through the wrapper. To mitigate this, if a function is small enough when weighed up against the number of free variables being removed, it will be duplicated by the transformation to obtain two versions: the original (used for indirect calls, since we can do no better) and the wrapper/rewritten function pair as described in the previous paragraph. The wrapper/rewritten function pair will only be used at direct call sites of the function. (The wrapper in this case is known as a direct call surrogate, since it takes the place of another function—the unchanged version used for indirect calls—at direct call sites.)

The -unbox-closures-factor command line flag, which takes an integer, may be used to adjust the point at which a function is deemed large enough to be ineligible for duplication. The benefit of duplication is scaled by the integer before being evaluated against the size.

Harder example:

In the following code, there are two closure variables that would typically cause closure allocations. One is called fv and occurs inside the function baz; the other is called z and occurs inside the function bar. In this toy (yet sophisticated) example we again use an attribute to simulate the typical situation where the first argument of baz is too large to inline.

let foo c =
  let rec bar zs fv =
    match zs with
    | [] -> []
    | z::zs ->
      let rec baz f = function
        | [] -> []
        | a::l -> let r = fv + ((f [@inlined never]) a) in r :: baz f l
      in
      (map2 (fun y -> z + y) [z; 2; 3; 4]) @ bar zs fv
  in
  Printf.printf "%d" (List.length (bar [1; 2; 3; 4] c))

The code resulting from applying -O3 -unbox-closures to this code passes the free variables via function arguments in order to eliminate all closure allocation in this example (aside from any that might be performed inside printf).

21.10  Removal of unused code and values

21.10.1  Removal of redundant let expressions

The simplification pass removes unused let bindings so long as their corresponding defining expressions have “no effects”. See the section “Treatment of effects” below for the precise definition of this term.

21.10.2  Removal of redundant program constructs

This transformation is analogous to the removal of let-expressions whose defining expressions have no effects. It operates instead on symbol bindings, removing those that have no effects.

21.10.3  Removal of unused arguments

This transformation is only enabled by default for specialised arguments. It may be enabled for all arguments using the -remove-unused-arguments flag.

The pass analyses functions to determine which arguments are unused. Removal is effected by creating a wrapper function, which will be inlined at every direct call site, that accepts the original arguments and then discards the unused ones before calling the original function. As a consequence, this transformation may be detrimental if the original function is usually indirectly called, since such calls will now bounce through the wrapper. (The technique of direct call surrogates used to reduce this penalty during unboxing of closure variables (see above) does not yet apply to the pass that removes unused arguments.)

21.10.4  Removal of unused closure variables

This transformation performs an analysis across the whole compilation unit to determine whether there exist closure variables that are never used. Such closure variables are then eliminated. (Note that this has to be a whole-unit analysis because a projection of a closure variable from some particular closure may have propagated to an arbitrary location within the code due to inlining.)

21.11  Other code transformations

21.11.1  Transformation of non-escaping references into mutable variables

Flambda performs a simple analysis analogous to that performed elsewhere in the compiler that can transform refs into mutable variables that may then be held in registers (or on the stack as appropriate) rather than being allocated on the OCaml heap. This only happens so long as the reference concerned can be shown to not escape from its defining scope.

21.11.2  Substitution of closure variables for specialised arguments

This transformation discovers closure variables that are known to be equal to specialised arguments. Such closure variables are replaced by the specialised arguments; the closure variables may then be removed by the “removal of unused closure variables” pass (see below).

21.12  Treatment of effects

The Flambda optimisers classify expressions in order to determine whether an expression:

This is done by forming judgements on the effects and the coeffects that might be performed were the expression to be executed. Effects talk about how the expression might affect the world; coeffects talk about how the world might affect the expression.

Effects are classified as follows:

No effects:
The expression does not change the observable state of the world. For example, it must not write to any mutable storage, call arbitrary external functions or change control flow (e.g. by raising an exception). Note that allocation is not classed as having “no effects” (see below).
Only generative effects:
The expression does not change the observable state of the world save for possibly affecting the state of the garbage collector by performing an allocation. Expressions that only have generative effects and whose results are unused may be eliminated by the compiler. However, unlike expressions with “no effects”, such expressions will never be eligible for duplication.
Arbitrary effects:
All other expressions.

There is a single classification for coeffects:

No coeffects:
The expression does not observe the effects (in the sense described above) of other expressions. For example, it must not read from any mutable storage or call arbitrary external functions.

It is assumed in the compiler that, subject to data dependencies, expressions with neither effects nor coeffects may be reordered with respect to other expressions.

21.13  Compilation of statically-allocated modules

Compilation of modules that are able to be statically allocated (for example, the module corresponding to an entire compilation unit, as opposed to a first class module dependent on values computed at runtime) initially follows the strategy used for bytecode. A sequence of let-bindings, which may be interspersed with arbitrary effects, surrounds a record creation that becomes the module block. The Flambda-specific transformation follows: these bindings are lifted to toplevel symbols, as described above.

21.14  Inhibition of optimisation

Especially when writing benchmarking suites that run non-side-effecting algorithms in loops, it may be found that the optimiser entirely elides the code being benchmarked. This behaviour can be prevented by using the Sys.opaque_identity function (which indeed behaves as a normal OCaml function and does not possess any “magic” semantics). The documentation of the Sys module should be consulted for further details.

21.15  Use of unsafe operations

The behaviour of the Flambda simplification pass means that certain unsafe operations, which may without Flambda or when using previous versions of the compiler be safe, must not be used. This specifically refers to functions found in the Obj module.

In particular, it is forbidden to change any value (for example using Obj.set_field or Obj.set_tag) that is not mutable. (Values returned from C stubs are always treated as mutable.) The compiler will emit warning 59 if it detects such a write—but it cannot warn in all cases. Here is an example of code that will trigger the warning:

let f x =
  let a = 42, x in
  (Obj.magic a : int ref) := 1;
  fst a

The reason this is unsafe is because the simplification pass believes that fst a holds the value 42; and indeed it must, unless type soundness has been broken via unsafe operations.

If it must be the case that code has to be written that triggers warning 59, but the code is known to actually be correct (for some definition of correct), then Sys.opaque_identity may be used to wrap the value before unsafe operations are performed upon it. Great care must be taken when doing this to ensure that the opacity is added at the correct place. It must be emphasised that this use of Sys.opaque_identity is only for exceptional cases. It should not be used in normal code or to try to guide the optimiser.

As an example, this code will return the integer 1:

let f x =
  let a = Sys.opaque_identity (42, x) in
  (Obj.magic a : int ref) := 1;
  fst a

However the following code will still return 42:

let f x =
  let a = 42, x in
  Sys.opaque_identity (Obj.magic a : int ref) := 1;
  fst a

High levels of inlining performed by Flambda may expose bugs in code thought previously to be correct. Take care, for example, not to add type annotations that claim some mutable value is always immediate if it might be possible for an unsafe operation to update it to a boxed value.

21.16  Glossary

The following terminology is used in this chapter of the manual.

Call site
See direct call site and indirect call site below.
Closed function
A function whose body has no free variables except its parameters and any to which are bound other functions within the same (possibly mutually-recursive) declaration.
Closure
The runtime representation of a function. This includes pointers to the code of the function together with the values of any variables that are used in the body of the function but actually defined outside of the function, in the enclosing scope. The values of such variables, collectively known as the environment, are required because the function may be invoked from a place where the original bindings of such variables are no longer in scope. A group of possibly mutually-recursive functions defined using let rec all share a single closure. (Note to developers: in the Flambda source code a closure always corresponds to a single function; a set of closures refers to a group of such.)
Closure variable
A member of the environment held within the closure of a given function.
Constant
Some entity (typically an expression) the value of which is known by the compiler at compile time. Constantness may be explicit from the source code or inferred by the Flambda optimisers.
Constant closure
A closure that is statically allocated in an object file. It is almost always the case that the environment portion of such a closure is empty.
Defining expression
The expression e in let x = e in e’.
Direct call site
A place in a program’s code where a function is called and it is known at compile time which function it will always be.
Indirect call site
A place in a program’s code where a function is called but is not known to be a direct call site.
Program
A collection of symbol bindings forming the definition of a single compilation unit (i.e. .cmx file).
Specialised argument
An argument to a function that is known to always hold a particular value at runtime. These are introduced by the inliner when specialising recursive functions; and the unbox-closures pass. (See section 21.4.)
Symbol
A name referencing a particular place in an object file or executable image. At that particular place will be some constant value. Symbols may be examined using operating system-specific tools (for example objdump on Linux).
Symbol binding
Analogous to a let-expression but working at the level of symbols defined in the object file. The address of a symbol is fixed, but it may be bound to both constant and non-constant expressions.
Toplevel
An expression in the current program which is not enclosed within any function declaration.
Variable
A named entity to which some OCaml value is bound by a let expression, pattern-matching construction, or similar.

Chapter 22  Memory profiling with Spacetime

22.1  Overview

Spacetime is the name given to functionality within the OCaml compiler that provides for accurate profiling of the memory behaviour of a program. Using Spacetime it is possible to determine the source of memory leaks and excess memory allocation quickly and easily. Excess allocation slows programs down both by imposing a higher load on the garbage collector and reducing the cache locality of the program’s code. Spacetime provides full backtraces for every allocation that occurred on the OCaml heap during the lifetime of the program including those in C stubs.

Spacetime only analyses the memory behaviour of a program with respect to the OCaml heap allocators and garbage collector. It does not analyse allocation on the C heap. Spacetime does not affect the memory behaviour of a program being profiled with the exception of any change caused by the overhead of profiling (see section 22.3)—for example the program running slower might cause it to allocate less memory in total.

Spacetime is currently only available for x86-64 targets and has only been tested on Linux systems (although it is expected to work on most modern Unix-like systems and provision has been made for running under Windows). It is expected that the set of supported platforms will be extended in the future.

22.2  How to use it

22.2.1  Building

To use Spacetime it is necessary to use an OCaml compiler that was configured with the -spacetime option. It is not possible to select Spacetime on a per-source-file basis or for a subset of files in a project; all files involved in the executable being profiled must be built with the Spacetime compiler. Only native code compilation is supported (not bytecode).

If the libunwind library is not available on the system then it will not be possible for Spacetime to profile allocations occurring within C stubs. If the libunwind library is available but in an unusual location then that location may be specified to the configure script using the -libunwinddir option (or alternatively, using separate -libunwindinclude and -libunwindlib options).

OPAM switches will be provided for Spacetime-configured compilers.

Once the appropriate compiler has been selected the program should be built as normal (ensuring that all files are built with the Spacetime compiler—there is currently no protection to ensure this is the case, but it is essential). For many uses it will not be necessary to change the code of the program to use the profiler.

Spacetime-configured compilers run slower and occupy more memory than their counterparts. It is hoped this will be fixed in the future as part of improved cross compilation support.

22.2.2  Running

Programs built with Spacetime instrumentation have a dependency on the libunwind library unless that was unavailable at configure time or the -disable-libunwind option was specified (see section 22.3).

Setting the OCAML_SPACETIME_INTERVAL environment variable to an integer representing a number of milliseconds before running a program built with Spacetime will cause memory profiling to be in operation when the program is started. The contents of the OCaml heap will be sampled each time the number of milliseconds that the program has spent executing since the last sample exceeds the given number. (Note that the time base is combined user plus system time—not wall clock time. This peculiarity may be changed in future.)

The program being profiled must exit normally or be caused to exit using the SIGINT signal (e.g. by pressing Ctrl+C). When the program exits files will be written in the directory that was the working directory when the program was started. One Spacetime file will be written for each process that was involved, indexed by process ID; there will normally only be one such. The Spacetime files may be substantial. The directory to which they are written may be overridden by setting the OCAML_SPACETIME_SNAPSHOT_DIR environment variable before the program is started.

Instead of using the automatic snapshot facility described above it is also possible to manually control Spacetime profiling. (The environment variables OCAML_SPACETIME_INTERVAL and OCAML_SPACETIME_SNAPSHOT_DIR are then not relevant.) Full documentation as regards this method of profiling is provided in the standard library documentation (section 26) for the Spacetime module.

22.2.3  Analysis

The compiler distribution does not itself provide the facility for analysing Spacetime output files; this is left to external tools. The first such tool will appear in OPAM as a package called prof_spacetime. That tool will provide interactive graphical and terminal-based visualisation of the results of profiling.

22.3  Runtime overhead

The runtime overhead imposed by Spacetime varies considerably depending on the particular program being profiled. The overhead may be as low as ten percent—but more usually programs should be expected to run at perhaps a third or quarter of their normal speed. It is expected that this overhead will be reduced in future versions of the compiler.

Execution speed of instrumented programs may be increased by using a compiler configured with the -disable-libunwind option. This prevents collection of profiling information from C stubs.

Programs running with Spacetime instrumentation consume significantly more memory than their non-instrumented counterparts. It is expected that this memory overhead will also be reduced in the future.

22.4  For developers

The compiler distribution provides an “otherlibs” library called raw_spacetime_lib for decoding Spacetime files. This library provides facilities to read not only memory profiling information but also the full dynamic call graph of the profiled program which is written into Spacetime output files.

A library package spacetime_lib will be provided in OPAM to provide an interface for decoding profiling information at a higher level than that provided by raw_spacetime_lib.

Chapter 23  Fuzzing with afl-fuzz

23.1  Overview

American fuzzy lop (“afl-fuzz”) is a fuzzer, a tool for testing software by providing randomly-generated inputs, searching for those inputs which cause the program to crash.

Unlike most fuzzers, afl-fuzz observes the internal behaviour of the program being tested, and adjusts the test cases it generates to trigger unexplored execution paths. As a result, test cases generated by afl-fuzz cover more of the possible behaviours of the tested program than other fuzzers.

This requires that programs to be tested are instrumented to communicate with afl-fuzz. The native-code compiler “ocamlopt” can generate such instrumentation, allowing afl-fuzz to be used against programs written in OCaml.

For more information on afl-fuzz, see the website at http://lcamtuf.coredump.cx/afl/.

23.2  Generating instrumentation

The instrumentation that afl-fuzz requires is not generated by default, and must be explicitly enabled, by passing the -afl-instrument option to ocamlopt.

To fuzz a large system without modifying build tools, OCaml’s configure script also accepts the afl-instrument option. If OCaml is configured with afl-instrument, then all programs compiled by ocamlopt will be instrumented.

23.2.1  Advanced options

In rare cases, it is useful to control the amount of instrumentation generated. By passing the -afl-inst-ratio N argument to ocamlopt with N less than 100, instrumentation can be generated for only N% of branches. (See the afl-fuzz documentation on the parameter AFL_INST_RATIO for the precise effect of this).

23.3  Example

As an example, we fuzz-test the following program, readline.ml:

let _ =
  let s = read_line () in
  match Array.to_list (Array.init (String.length s) (String.get s)) with
    ['s'; 'e'; 'c'; 'r'; 'e'; 't'; ' '; 'c'; 'o'; 'd'; 'e'] -> failwith "uh oh"
  | _ -> ()

There is a single input (the string “secret code”) which causes this program to crash, but finding it by blind random search is infeasible.

Instead, we compile with afl-fuzz instrumentation enabled:

ocamlopt -afl-instrument readline.ml -o readline

Next, we run the program under afl-fuzz:

mkdir input
echo asdf > input/testcase
mkdir output
afl-fuzz -i input -o output ./readline

By inspecting instrumentation output, the fuzzer finds the crashing input quickly.

Chapter 24  Runtime tracing with the instrumented runtime

This chapter describes the OCaml instrumented runtime, a runtime variant allowing the collection of events and metrics.

Collected metrics include time spent executing the garbage collector. The overall execution time of individual pauses are measured down to the time spent in specific parts of the garbage collection. Insight is also given on memory allocation and motion by recording the size of allocated memory blocks, as well as value promotions from the minor heap to the major heap.

24.1  Overview

Once compiled and linked with the instrumented runtime, any OCaml program can generate trace files that can then be read and analyzed by users in order to understand specific runtime behaviors.

The generated trace files are stored using the Common Trace Format, which is a general purpose binary tracing format. A complete trace consists of:

For more information on the Common Trace Format, see https://diamon.org/ctf/.

24.2  Enabling runtime instrumentation

For the following examples, we will use the following example program:

module SMap = Map.Make(String) let s i = String.make 512 (Char.chr (i mod 256)) let clear map = SMap.fold (fun k _ m -> SMap.remove k m) map map let rec seq i = if i = 0 then Seq.empty else fun () -> (Seq.Cons (i, seq (i - 1))) let () = seq 1_000_000 |> Seq.fold_left (fun m i -> SMap.add (s i) i m) SMap.empty |> clear |> ignore

The next step is to compile and link the program with the instrumented runtime. This can be done by using the -runtime-variant flag:

       ocamlopt -runtime-variant i program.ml -o program

Note that the instrumented runtime is an alternative runtime for OCaml programs. It is only referenced during the linking stage of the final executable. This means that the compilation stage does not need to be altered to enable instrumentation.

The resulting program can then be traced by running it with the environment variable OCAML_EVENTLOG_ENABLED:

        OCAML_EVENTLOG_ENABLED=1 ./program

During execution, a trace file will be generated in the program’s current working directory.

More build examples

When using the dune build system, this compiler invocation can be replicated using the flags stanza when building an executable.

       (executable
         (name program)
         (flags "-runtime-variant=i"))

The instrumented runtime can also be used with the OCaml bytecode interpreter. This can be done by either using the -runtime-variant=i flag when linking the program with ocamlc, or by running the generated bytecode through ocamlruni:

       ocamlc program.ml -o program.byte
       OCAML_EVENTLOG_ENABLED=1 ocamlruni program.byte

See chapter 9 and chapter 11 for more information about ocamlc and ocamlrun.

24.3  Reading traces

Traces generated by the instrumented runtime can be analyzed with tooling available outside of the OCaml distribution.

A complete trace consists of a metadata file and a trace file. Two simple ways to work with the traces are the eventlog-tools and babeltrace libraries.

24.3.1  eventlog-tools

eventlog-tools is a library implementing a parser, as well as a a set of tools that allows to perform basic format conversions and analysis.

For more information about eventlog-tools, refer to the project’s main page: https://github.com/ocaml-multicore/eventlog-tools

24.3.2  babeltrace

babeltrace is a C library, as well as a Python binding and set of tools that serve as the reference implementation for the Common Trace Format. The babeltrace command line utility allows for a basic rendering of a trace’s content, while the high level Python API can be used to decode the trace and process them programmatically with libraries such as numpy or Jupyter.

Unlike eventlog-tools, which possesses a specific knowledge of OCaml’s Common Trace Format schema, it is required to provide the OCaml metadata file to babeltrace.

The metadata file is available in the OCaml installation. Its location can be obtained using the following command:

        ocamlc -where

The eventlog_metadata file can be found at this path and copied in the same directory as the generated trace file. However, babeltrace expects the file to be named metadata in order to process the trace. Thus, it will need to be renamed when copied to the trace’s directory.

Here is a naive decoder example, using babeltrace’s Python library, and Python 3.8:

import subprocess
import shutil
import sys
import babeltrace as bt

def print_event(ev):
    print(ev['timestamp'])
    print(ev['pid'])
    if ev.name == "entry":
        print('entry_event')
        print(ev['phase'])
    if ev.name == "exit":
        print('exit_event')
        print(ev['phase'])
    if ev.name == "alloc":
        print(ev['count'])
        print(ev['bucket'])
    if ev.name == "counter":
        print(ev['count'])
        print(ev['kind'])
    if ev.name == "flush":
        print("flush")

def get_ocaml_dir():
    # Fetching OCaml's installation directory to extract the CTF metadata
    ocamlc_where = subprocess.run(['ocamlc', '-where'], stdout=subprocess.PIPE)
    ocaml_dir = ocamlc_where.stdout.decode('utf-8').rstrip('\n')
    return(ocaml_dir)

def main():
    trace_dir = sys.argv[1]
    ocaml_dir = get_ocaml_dir()
    metadata_path = ocaml_dir + "/eventlog_metadata"
    # copying the metadata to the trace's directory,
    # and renaming it to 'metadata'.
    shutil.copyfile(metadata_path, trace_dir + "/metadata")
    tr = bt.TraceCollection()
    tr.add_trace(trace_dir, 'ctf')
    for event in tr.events:
        print_event(event)

if __name__ == '__main__':
    main()

This script expect to receive as an argument the directory containing the trace file. It will then copy the CTF metadata file to the trace’s directory, and then decode the trace, printing each event in the process.

For more information on babeltrace, see the website at: https://babeltrace.org/

24.4  Controlling instrumentation and limitations

24.4.1  Trace filename

The default trace filename is caml-{PID}.eventlog, where {PID} is the process identifier of the traced program.

This filename can also be specified using the OCAML_EVENTLOG_PREFIX environment variable. The given path will be suffixed with {.PID}.eventlog.

        OCAML_EVENTLOG_PREFIX=/tmp/a_prefix OCAML_EVENTLOG_ENABLED=1 ./program

In this example, the trace will be available at path /tmp/a_prefix.{PID}.eventlog.

Note that this will only affect the prefix of the trace file, there is no option to specify the full effective file name. This restriction is in place to make room for future improvements to the instrumented runtime, where the single trace file per session design may be replaced.

For scripting purpose, matching against ‘{PID}‘, as well as the .eventlog file extension should provide enough control over the generated files.

Note as well that parent directories in the given path will not be created when opening the trace. The runtime assumes the path is accessible for creating and writing the trace. The program will fail to start if this requirement isn’t met.

24.4.2  Pausing and resuming tracing

Mechanisms are available to control event collection at runtime.

OCAML_EVENTLOG_ENABLED can be set to the p flag in order to start the program with event collection paused.

        OCAML_EVENTLOG_ENABLED=p ./program

The program will have to start event collection explicitly. Starting and stopping event collection programmatically can be done by calling Gc.eventlog_resume and Gc.eventlog_pause) from within the program. Refer to the Gc module documentation for more information.

Running the program provided earlier with OCAML_EVENTLOG_ENABLED=p will for example yield the following result.

$ OCAML_EVENTLOG_ENABLED=p ./program
$ ocaml-eventlog-report caml-{PID}.eventlog
==== eventlog/flush
median flush time: 58ns
total flush time: 58ns
flush count: 1

The resulting trace contains only one event payload, namely a flush event, indicating how much time was spent flushing the trace file to disk.

However, if the program is changed to include a call to Gc.eventlog_resume, events payloads can be seen again in the trace file.

let () = Gc.eventlog_resume(); seq 1_000_000 |> Seq.fold_left (fun m i -> SMap.add (s i) i m) SMap.empty |> clear |> ignore

The resulting trace will contain all events encountered during the program’s execution:

        $ ocaml-eventlog-report caml-{PID}.eventlog
        [..omitted..]
        ==== force_minor/alloc_small
        100.0K..200.0K: 174
        20.0K..30.0K: 1
        0..100: 1

        ==== eventlog/flush
        median flush time: 207.8us
        total flush time: 938.1us
        flush count: 5

24.4.3  Limitations

The instrumented runtime does not support the fork system call. A child process forked from an instrumented program will not be traced.

The instrumented runtime aims to provide insight into the runtime’s execution while maintaining a low overhead. However, this overhead may become more noticeable depending on how a program executes. The instrumented runtime currently puts a strong emphasis on tracing garbage collection events. This means that programs with heavy garbage collection activity may be more susceptible to tracing induced performance penalties.

While providing an accurate estimate of potential performance loss is difficult, test on various OCaml programs showed a total running time increase ranging from 1% to 8%.

For a program with an extended running time where the collection of only a small sample of events is required, using the eventlog_resume and eventlog_pause primitives may help relieve some of the tracing induced performance impact.

Part IV
The OCaml library

Chapter 25  The core library

This chapter describes the OCaml core library, which is composed of declarations for built-in types and exceptions, plus the module Stdlib that provides basic operations on these built-in types. The Stdlib module is special in two ways:

Conventions

The declarations of the built-in types and the components of module Stdlib are printed one by one in typewriter font, followed by a short comment. All library modules and the components they provide are indexed at the end of this report.

25.1  Built-in types and predefined exceptions

The following built-in types and predefined exceptions are always defined in the compilation environment, but are not part of any module. As a consequence, they can only be referred by their short names.

Built-in types

 type int

The type of integer numbers.
 type char

The type of characters.
 type bytes

The type of (writable) byte sequences.
 type string

The type of (read-only) character strings.
 type float

The type of floating-point numbers.
 type bool = false | true

The type of booleans (truth values).
 type unit = ()

The type of the unit value.
 type exn

The type of exception values.
 type 'a array

The type of arrays whose elements have type 'a.
 type 'a list = [] | :: of 'a * 'a list

The type of lists whose elements have type 'a.
type 'a option = None | Some of 'a

The type of optional values of type 'a.
type int32

The type of signed 32-bit integers. Literals for 32-bit integers are suffixed by l. See the Int32 module.
type int64

The type of signed 64-bit integers. Literals for 64-bit integers are suffixed by L. See the Int64 module.
type nativeint

The type of signed, platform-native integers (32 bits on 32-bit processors, 64 bits on 64-bit processors). Literals for native integers are suffixed by n. See the Nativeint module.
type ('a, 'b, 'c, 'd, 'e, 'f) format6

The type of format strings. 'a is the type of the parameters of the format, 'f is the result type for the printf-style functions, 'b is the type of the first argument given to %a and %t printing functions (see module Printf), 'c is the result type of these functions, and also the type of the argument transmitted to the first argument of kprintf-style functions, 'd is the result type for the scanf-style functions (see module Scanf), and 'e is the type of the receiver function for the scanf-style functions.
type 'a lazy_t

This type is used to implement the Lazy module. It should not be used directly.

Predefined exceptions

exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are the location of the match keyword in the source code (file name, line number, column number).
exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the assert keyword in the source code (file name, line number, column number).
exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense. The string gives some information to the programmer. As a general rule, this exception should not be caught, it denotes a programming error and the code should be modified not to trigger it.
exception Failure of string

Exception raised by library functions to signal that they are undefined on the given arguments. The string is meant to give some information to the programmer; you must not pattern match on the string literal because it may change in future versions (use Failure _ instead).
exception Not_found

Exception raised by search functions when the desired object could not be found.
exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the computation. (Not reliable for allocations on the minor heap.)
exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal size. This often indicates infinite or excessively deep recursion in the user’s program. Before 4.10, it was not fully implemented by the native-code compiler.
exception Sys_error of string

Exception raised by the input/output functions to report an operating system error. The string is meant to give some information to the programmer; you must not pattern match on the string literal because it may change in future versions (use Sys_error _ instead).
exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.
exception Division_by_zero

Exception raised by integer division and remainder operations when their second argument is zero.
exception Sys_blocked_io

A special case of Sys_error raised when no I/O is possible on a non-blocking I/O channel.
exception Undefined_recursive_module of (string * int * int)

Exception raised when an ill-founded recursive module definition is evaluated. (See section 8.2.) The arguments are the location of the definition in the source code (file name, line number, column number).

25.2  Module Stdlib: the initially opened module

Chapter 26  The standard library

This chapter describes the functions provided by the OCaml standard library. The modules from the standard library are automatically linked with the user’s object code files by the ocamlc command. Hence, these modules can be used in standalone programs without having to add any .cmo file on the command line for the linking phase. Similarly, in interactive use, these globals can be used in toplevel phrases without having to load any .cmo file in memory.

Unlike the core Stdlib module, submodules are not automatically “opened” when compilation starts, or when the toplevel system is launched. Hence it is necessary to use qualified identifiers to refer to the functions provided by these modules, or to add open directives.

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each module, the declarations from its signature are printed one by one in typewriter font, followed by a short comment. All modules and the identifiers they export are indexed at the end of this report.

Chapter 27  The compiler front-end

This chapter describes the OCaml front-end, which declares the abstract syntax tree used by the compiler, provides a way to parse, print and pretty-print OCaml code, and ultimately allows one to write abstract syntax tree preprocessors invoked via the -ppx flag (see chapters 9 and 12).

It is important to note that the exported front-end interface follows the evolution of the OCaml language and implementation, and thus does not provide any backwards compatibility guarantees.

The front-end is a part of compiler-libs library. Programs that use the compiler-libs library should be built as follows:

        ocamlfind ocamlc other options -package compiler-libs.common other files
        ocamlfind ocamlopt other options -package compiler-libs.common other files

Use of the ocamlfind utility is recommended. However, if this is not possible, an alternative method may be used:

        ocamlc other options -I +compiler-libs ocamlcommon.cma other files
        ocamlopt other options -I +compiler-libs ocamlcommon.cmxa other files

For interactive use of the compiler-libs library, start ocaml and type
#load "compiler-libs/ocamlcommon.cma";;.

Chapter 28  The unix library: Unix system calls

The unix library makes many Unix system calls and system-related library functions available to OCaml programs. This chapter describes briefly the functions provided. Refer to sections 2 and 3 of the Unix manual for more details on the behavior of these functions.

Not all functions are provided by all Unix variants. If some functions are not available, they will raise Invalid_arg when called.

Programs that use the unix library must be linked as follows:

        ocamlc other options unix.cma other files
        ocamlopt other options unix.cmxa other files

For interactive use of the unix library, do:

        ocamlmktop -o mytop unix.cma
        ./mytop

or (if dynamic linking of C libraries is supported on your platform), start ocaml and type #load "unix.cma";;.

Windows:   A fairly complete emulation of the Unix system calls is provided in the Windows version of OCaml. The end of this chapter gives more information on the functions that are not supported under Windows.
Windows:   The Cygwin port of OCaml fully implements all functions from the Unix module. The native Win32 ports implement a subset of them. Below is a list of the functions that are not implemented, or only partially implemented, by the Win32 ports. Functions not mentioned are fully implemented and behave as described previously in this chapter.
FunctionsComment
forknot implemented, use create_process or threads
waitnot implemented, use waitpid
waitpidcan only wait for a given PID, not any child process
getppidnot implemented (meaningless under Windows)
nicenot implemented
truncate, ftruncatenot implemented
linkimplemented (since 3.02)
symlink, readlinkimplemented (since 4.03.0)
accessexecute permission X_OK cannot be tested, it just tests for read permission instead
fchmodnot implemented
chown, fchownnot implemented (make no sense on a DOS file system)
umasknot implemented
mkfifonot implemented
killpartially implemented (since 4.00.0): only the sigkill signal is implemented
pausenot implemented (no inter-process signals in Windows)
alarmnot implemented
timespartially implemented, will not report timings for child processes
getitimer, setitimernot implemented
getuid, geteuid, getgid, getegidalways return 1
getgroupsalways returns [|1|] (since 2.00)
setuid, setgid, setgroupsnot implemented
getpwnam, getpwuidalways raise Not_found
getgrnam, getgrgidalways raise Not_found
type socket_domainPF_INET is fully supported; PF_INET6 is fully supported (since 4.01.0); PF_UNIX is not supported
establish_servernot implemented; use threads
terminal functions (tc*)not implemented

Chapter 29  The num library: arbitrary-precision rational arithmetic

The num library implements integer arithmetic and rational arithmetic in arbitrary precision. It was split off the core OCaml distribution starting with the 4.06.0 release, and can now be found at https://github.com/ocaml/num.

New applications that need arbitrary-precision arithmetic should use the Zarith library (https://github.com/ocaml/Zarith) instead of the Num library, and older applications that already use Num are encouraged to switch to Zarith. Zarith delivers much better performance than Num and has a nicer API.

Chapter 30  The str library: regular expressions and string processing

The str library provides high-level string processing functions, some based on regular expressions. It is intended to support the kind of file processing that is usually performed with scripting languages such as awk, perl or sed.

Programs that use the str library must be linked as follows:

        ocamlc other options str.cma other files
        ocamlopt other options str.cmxa other files

For interactive use of the str library, do:

        ocamlmktop -o mytop str.cma
        ./mytop

or (if dynamic linking of C libraries is supported on your platform), start ocaml and type #load "str.cma";;.

Chapter 31  The threads library

Warning: the threads library is deprecated since version 4.08.0 of OCaml. Please switch to system threads, which have the same API. Lightweight threads with VM-level scheduling are provided by third-party libraries such as Lwt, but with a different API.

The threads library allows concurrent programming in OCaml. It provides multiple threads of control (also called lightweight processes) that execute concurrently in the same memory space. Threads communicate by in-place modification of shared data structures, or by sending and receiving data on communication channels.

The threads library is implemented by time-sharing on a single processor. It will not take advantage of multi-processor machines. Using this library will therefore never make programs run faster. However, many programs are easier to write when structured as several communicating processes.

Two implementations of the threads library are available, depending on the capabilities of the operating system:

Programs that use system threads must be linked as follows:

        ocamlc -I +threads other options unix.cma threads.cma other files
        ocamlopt -I +threads other options unix.cmxa threads.cmxa other files

Compilation units that use the threads library must also be compiled with the -I +threads option (see chapter 9).

Chapter 32  The graphics library

Since OCaml 4.09, the graphics library is distributed as an external package. Its new home is:

https://github.com/ocaml/graphics

If you are using the opam package manager, you should install the corresponding graphics package:

        opam install graphics

Before OCaml 4.09, this package simply ensures that the graphics library was installed by the compiler, and starting from OCaml 4.09 this package effectively provides the graphics library.

Chapter 33  The dynlink library: dynamic loading and linking of object files

The dynlink library supports type-safe dynamic loading and linking of bytecode object files (.cmo and .cma files) in a running bytecode program, or of native plugins (usually .cmxs files) in a running native program. Type safety is ensured by limiting the set of modules from the running program that the loaded object file can access, and checking that the running program and the loaded object file have been compiled against the same interfaces for these modules. In native code, there are also some compatibility checks on the implementations (to avoid errors with cross-module optimizations); it might be useful to hide .cmx files when building native plugins so that they remain independent of the implementation of modules in the main program.

Programs that use the dynlink library simply need to link dynlink.cma or dynlink.cmxa with their object files and other libraries.

Note: in order to insure that the dynamically-loaded modules have access to all the libraries that are visible to the main program (and not just to the parts of those libraries that are actually used in the main program), programs using the dynlink library should be linked with -linkall.

Chapter 34  The bigarray library

The bigarray library has now been integrated into OCaml’s standard library.

The bigarray functionality may now be found in the standard library Bigarray module, except for the map_file function which is now part of the Unix library. The documentation has been integrated into the documentation for the standard library.

The legacy bigarray library bundled with the compiler is a compatibility library with exactly the same interface as before, i.e. with map_file included.

We strongly recommend that you port your code to use the standard library version instead, as the changes required are minimal.

If you choose to use the compatibility library, you must link your programs as follows:

        ocamlc other options bigarray.cma other files
        ocamlopt other options bigarray.cmxa other files

For interactive use of the bigarray compatibility library, do:

        ocamlmktop -o mytop bigarray.cma
        ./mytop

or (if dynamic linking of C libraries is supported on your platform), start ocaml and type #load "bigarray.cma";;.

Part V
Appendix

Index of keywords


This document was translated from LATEX by HEVEA.
ocaml-doc-4.11/ocaml.html/attributes.html0000644000175000017500000011573313717225665017375 0ustar mehdimehdi 8.12  Attributes Previous Up Next

8.12  Attributes

(Introduced in OCaml 4.02, infix notations for constructs other than expressions added in 4.03)

Attributes are “decorations” of the syntax tree which are mostly ignored by the type-checker but can be used by external tools. An attribute is made of an identifier and a payload, which can be a structure, a type expression (prefixed with :), a signature (prefixed with :) or a pattern (prefixed with ?) optionally followed by a when clause:

attr-id::= lowercase-ident  
   capitalized-ident  
   attr-id .  attr-id  
 
attr-payload::=module-items ]  
   : typexpr  
   : [ specification ]  
   ? pattern  [when expr]  
 

The first form of attributes is attached with a postfix notation on “algebraic” categories:

attribute::= [@ attr-id  attr-payload ]  
 
expr::= ...  
  expr  attribute  
 
typexpr::= ...  
  typexpr  attribute  
 
pattern::= ...  
  pattern  attribute  
 
module-expr::= ...  
  module-expr  attribute  
 
module-type::= ...  
  module-type  attribute  
 
class-expr::= ...  
  class-expr  attribute  
 
class-type::= ...  
  class-type  attribute  
 

This form of attributes can also be inserted after the `tag-name in polymorphic variant type expressions (tag-spec-first, tag-spec, tag-spec-full) or after the method-name in method-type.

The same syntactic form is also used to attach attributes to labels and constructors in type declarations:

field-decl::= [mutablefield-name :  poly-typexpr  {attribute}  
 
constr-decl::= (constr-name ∣  ()) [ of constr-args ]  {attribute}  
 

Note: when a label declaration is followed by a semi-colon, attributes can also be put after the semi-colon (in which case they are merged to those specified before).

The second form of attributes are attached to “blocks” such as type declarations, class fields, etc:

item-attribute::= [@@ attr-id  attr-payload ]  
 
typedef::= ...  
  typedef  item-attribute  
 
exception-definition::= exception constr-decl  
  exception constr-name =  constr  
 
module-items::= [;;] ( definition ∣  expr  { item-attribute } )  { [;;definition ∣  ;; expr  { item-attribute } }  [;;]  
 
class-binding::= ...  
  class-binding  item-attribute  
 
class-spec::= ...  
  class-spec  item-attribute  
 
classtype-def::= ...  
  classtype-def  item-attribute  
 
definition::= let [reclet-binding  { and let-binding }  
  external value-name :  typexpr =  external-declaration  { item-attribute }  
  type-definition  
  exception-definition  { item-attribute }  
  class-definition  
  classtype-definition  
  module module-name  { ( module-name :  module-type ) }  [ : module-type ]  =  module-expr  { item-attribute }  
  module type modtype-name =  module-type  { item-attribute }  
  open module-path  { item-attribute }  
  include module-expr  { item-attribute }  
  module rec module-name :  module-type =   module-expr  { item-attribute }   { and module-name :  module-type =  module-expr   { item-attribute } }  
 
specification::= val value-name :  typexpr  { item-attribute }  
  external value-name :  typexpr =  external-declaration  { item-attribute }  
  type-definition  
  exception constr-decl  { item-attribute }  
  class-specification  
  classtype-definition  
  module module-name :  module-type  { item-attribute }  
  module module-name  { ( module-name :  module-type ) } :  module-type  { item-attribute }  
  module type modtype-name  { item-attribute }  
  module type modtype-name =  module-type  { item-attribute }  
  open module-path  { item-attribute }  
  include module-type  { item-attribute }  
 
class-field-spec::= ...  
  class-field-spec  item-attribute  
 
class-field::= ...  
  class-field  item-attribute  
 

A third form of attributes appears as stand-alone structure or signature items in the module or class sub-languages. They are not attached to any specific node in the syntax tree:

floating-attribute::= [@@@ attr-id  attr-payload ]  
 
definition::= ...  
  floating-attribute  
 
specification::= ...  
  floating-attribute  
 
class-field-spec::= ...  
  floating-attribute  
 
class-field::= ...  
  floating-attribute  
 

(Note: contrary to what the grammar above describes, item-attributes cannot be attached to these floating attributes in class-field-spec and class-field.)

It is also possible to specify attributes using an infix syntax. For instance:

let[@foo] x = 2 in x + 1          === (let x = 2 [@@foo] in x + 1)
begin[@foo][@bar x] ... end       === (begin ... end)[@foo][@bar x]
module[@foo] M = ...              === module M = ... [@@foo]
type[@foo] t = T                  === type t = T [@@foo]
method[@foo] m = ...              === method m = ... [@@foo]

For let, the attributes are applied to each bindings:

let[@foo] x = 2 and y = 3 in x + y === (let x = 2 [@@foo] and y = 3 in x + y)
let[@foo] x = 2
and[@bar] y = 3 in x + y           === (let x = 2 [@@foo] and y = 3 [@@bar] in x + y)

8.12.1  Built-in attributes

Some attributes are understood by the type-checker:

module X = struct [@@@warning "+9"] (* locally enable warning 9 in this structure *)end [@@deprecated "Please use module 'Y' instead."] let x = begin[@warning "+9"] […] end type t = A | B [@@deprecated "Please use type 's' instead."]
let fires_warning_22 x = assert (x >= 0) [@ppwarning "TODO: remove this later"]
Warning 22: TODO: remove this later
let rec is_a_tail_call = function | [] -> () | _ :: q -> (is_a_tail_call[@tailcall]) q let rec not_a_tail_call = function | [] -> [] | x :: q -> x :: (not_a_tail_call[@tailcall]) q
Warning 51: expected tailcall
let f x = x [@@inline] let () = (f[@inlined]) ()
type fragile = | Int of int [@warn_on_literal_pattern] | String of string [@warn_on_literal_pattern]
let fragile_match_1 = function | Int 0 -> () | _ -> ()
Warning 52: Code should not depend on the actual values of this constructor's arguments. They are only for information and may change in future versions. (See manual section 9.5) val fragile_match_1 : fragile -> unit = <fun>
let fragile_match_2 = function | String "constant" -> () | _ -> ()
Warning 52: Code should not depend on the actual values of this constructor's arguments. They are only for information and may change in future versions. (See manual section 9.5) val fragile_match_2 : fragile -> unit = <fun>
module Immediate: sig type t [@@immediate] val x: t ref end = struct type t = A | B let x = ref A end
module Int_or_int64 : sig type t [@@immediate64] val zero : t val one : t val add : t -> t -> t end = struct include Sys.Immediate64.Make(Int)(Int64) module type S = sig val zero : t val one : t val add : t -> t -> t end let impl : (module S) = match repr with | Immediate -> (module Int : S) | Non_immediate -> (module Int64 : S) include (val impl : S) end

Previous Up Next ocaml-doc-4.11/ocaml.html/ocamldoc.html0000644000175000017500000022014213717225665016757 0ustar mehdimehdi Chapter 16  The documentation generator (ocamldoc) Previous Up Next

Chapter 16  The documentation generator (ocamldoc)

This chapter describes OCamldoc, a tool that generates documentation from special comments embedded in source files. The comments used by OCamldoc are of the form (***) and follow the format described in section 16.2.

OCamldoc can produce documentation in various formats: HTML, LATEX, TeXinfo, Unix man pages, and dot dependency graphs. Moreover, users can add their own custom generators, as explained in section 16.3.

In this chapter, we use the word element to refer to any of the following parts of an OCaml source file: a type declaration, a value, a module, an exception, a module type, a type constructor, a record field, a class, a class type, a class method, a class value or a class inheritance clause.

16.1  Usage

16.1.1  Invocation

OCamldoc is invoked via the command ocamldoc, as follows:

        ocamldoc options sourcefiles

Options for choosing the output format

The following options determine the format for the generated documentation.

-html
Generate documentation in HTML default format. The generated HTML pages are stored in the current directory, or in the directory specified with the -d option. You can customize the style of the generated pages by editing the generated style.css file, or by providing your own style sheet using option -css-style. The file style.css is not generated if it already exists or if -css-style is used.
-latex
Generate documentation in LATEX default format. The generated LATEX document is saved in file ocamldoc.out, or in the file specified with the -o option. The document uses the style file ocamldoc.sty. This file is generated when using the -latex option, if it does not already exist. You can change this file to customize the style of your LATEX documentation.
-texi
Generate documentation in TeXinfo default format. The generated LATEX document is saved in file ocamldoc.out, or in the file specified with the -o option.
-man
Generate documentation as a set of Unix man pages. The generated pages are stored in the current directory, or in the directory specified with the -d option.
-dot
Generate a dependency graph for the toplevel modules, in a format suitable for displaying and processing by dot. The dot tool is available from https://graphviz.org/. The textual representation of the graph is written to the file ocamldoc.out, or to the file specified with the -o option. Use dot ocamldoc.out to display it.
-g file.cm[o,a,xs]
Dynamically load the given file, which defines a custom documentation generator. See section 16.4.1. This option is supported by the ocamldoc command (to load .cmo and .cma files) and by its native-code version ocamldoc.opt (to load .cmxs files). If the given file is a simple one and does not exist in the current directory, then ocamldoc looks for it in the custom generators default directory, and in the directories specified with optional -i options.
-customdir
Display the custom generators default directory.
-i directory
Add the given directory to the path where to look for custom generators.

General options

-d dir
Generate files in directory dir, rather than the current directory.
-dump file
Dump collected information into file. This information can be read with the -load option in a subsequent invocation of ocamldoc.
-hide modules
Hide the given complete module names in the generated documentation. modules is a list of complete module names separated by ’,’, without blanks. For instance: Stdlib,M2.M3.
-inv-merge-ml-mli
Reverse the precedence of implementations and interfaces when merging. All elements in implementation files are kept, and the -m option indicates which parts of the comments in interface files are merged with the comments in implementation files.
-keep-code
Always keep the source code for values, methods and instance variables, when available.
-load file
Load information from file, which has been produced by ocamldoc -dump. Several -load options can be given.
-m flags
Specify merge options between interfaces and implementations. (see section 16.1.2 for details). flags can be one or several of the following characters:
d
merge description
a
merge @author
v
merge @version
l
merge @see
s
merge @since
b
merge @before
o
merge @deprecated
p
merge @param
e
merge @raise
r
merge @return
A
merge everything
-no-custom-tags
Do not allow custom @-tags (see section 16.2.5).
-no-stop
Keep elements placed after/between the (**/**) special comment(s) (see section 16.2).
-o file
Output the generated documentation to file instead of ocamldoc.out. This option is meaningful only in conjunction with the -latex, -texi, or -dot options.
-pp command
Pipe sources through preprocessor command.
-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.
-intf filename
Process the file filename as an interface file, even if its extension is not .mli.
-text filename
Process the file filename as a text file, even if its extension is not .txt.
-sort
Sort the list of top-level modules before generating the documentation.
-stars
Remove blank characters until the first asterisk (’*’) in each line of comments.
-t title
Use title as the title for the generated documentation.
-intro file
Use content of file as ocamldoc text to use as introduction (HTML, LATEX and TeXinfo only). For HTML, the file is used to create the whole index.html file.
-v
Verbose mode. Display progress information.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-warn-error
Treat Ocamldoc warnings as errors.
-hide-warnings
Do not print OCamldoc warnings.
-help or --help
Display a short usage summary and exit.

Type-checking options

OCamldoc calls the OCaml type-checker to obtain type information. The following options impact the type-checking phase. They have the same meaning as for the ocamlc and ocamlopt commands.

-I directory
Add directory to the list of directories search for compiled interface files (.cmi files).
-nolabels
Ignore non-optional labels in types.
-rectypes
Allow arbitrary recursive types. (See the -rectypes option to ocamlc.)

Options for generating HTML pages

The following options apply in conjunction with the -html option:

-all-params
Display the complete list of parameters for functions and methods.
-charset charset
Add information about character encoding being charset (default is iso-8859-1).
-colorize-code
Colorize the OCaml code enclosed in [ ] and {[ ]}, using colors to emphasize keywords, etc. If the code fragments are not syntactically correct, no color is added.
-css-style filename
Use filename as the Cascading Style Sheet file.
-index-only
Generate only index files.
-short-functors
Use a short form to display functors:
module M : functor (A:Module) -> functor (B:Module2) -> sig .. end
is displayed as:
module M (A:Module) (B:Module2) : sig .. end

Options for generating LATEX files

The following options apply in conjunction with the -latex option:

-latex-value-prefix prefix
Give a prefix to use for the labels of the values in the generated LATEX document. The default prefix is the empty string. You can also use the options -latex-type-prefix, -latex-exception-prefix, -latex-module-prefix, -latex-module-type-prefix, -latex-class-prefix, -latex-class-type-prefix, -latex-attribute-prefix and -latex-method-prefix.

These options are useful when you have, for example, a type and a value with the same name. If you do not specify prefixes, LATEX will complain about multiply defined labels.

-latextitle n,style
Associate style number n to the given LATEX sectioning command style, e.g. section or subsection. (LATEX only.) This is useful when including the generated document in another LATEX document, at a given sectioning level. The default association is 1 for section, 2 for subsection, 3 for subsubsection, 4 for paragraph and 5 for subparagraph.
-noheader
Suppress header in generated documentation.
-notoc
Do not generate a table of contents.
-notrailer
Suppress trailer in generated documentation.
-sepfiles
Generate one .tex file per toplevel module, instead of the global ocamldoc.out file.

Options for generating TeXinfo files

The following options apply in conjunction with the -texi option:

-esc8
Escape accented characters in Info files.
-info-entry
Specify Info directory entry.
-info-section
Specify section of Info directory.
-noheader
Suppress header in generated documentation.
-noindex
Do not build index for Info files.
-notrailer
Suppress trailer in generated documentation.

Options for generating dot graphs

The following options apply in conjunction with the -dot option:

-dot-colors colors
Specify the colors to use in the generated dot code. When generating module dependencies, ocamldoc uses different colors for modules, depending on the directories in which they reside. When generating types dependencies, ocamldoc uses different colors for types, depending on the modules in which they are defined. colors is a list of color names separated by ’,’, as in Red,Blue,Green. The available colors are the ones supported by the dot tool.
-dot-include-all
Include all modules in the dot output, not only modules given on the command line or loaded with the -load option.
-dot-reduce
Perform a transitive reduction of the dependency graph before outputting the dot code. This can be useful if there are a lot of transitive dependencies that clutter the graph.
-dot-types
Output dot code describing the type dependency graph instead of the module dependency graph.

Options for generating man files

The following options apply in conjunction with the -man option:

-man-mini
Generate man pages only for modules, module types, classes and class types, instead of pages for all elements.
-man-suffix suffix
Set the suffix used for generated man filenames. Default is ’3o’, as in List.3o.
-man-section section
Set the section number used for generated man filenames. Default is ’3’.

16.1.2  Merging of module information

Information on a module can be extracted either from the .mli or .ml file, or both, depending on the files given on the command line. When both .mli and .ml files are given for the same module, information extracted from these files is merged according to the following rules:

16.1.3  Coding rules

The following rules must be respected in order to avoid name clashes resulting in cross-reference errors:

16.2  Syntax of documentation comments

Comments containing documentation material are called special comments and are written between (** and *). Special comments must start exactly with (**. Comments beginning with ( and more than two * are ignored.

16.2.1  Placement of documentation comments

OCamldoc can associate comments to some elements of the language encountered in the source files. The association is made according to the locations of comments with respect to the language elements. The locations of comments in .mli and .ml files are different.

Comments in .mli files

A special comment is associated to an element if it is placed before or after the element.
A special comment before an element is associated to this element if :

A special comment after an element is associated to this element if there is no blank line or comment between the special comment and the element.

There are two exceptions: for constructors and record fields in type definitions, the associated comment can only be placed after the constructor or field definition, without blank lines or other comments between them. The special comment for a constructor with another constructor following must be placed before the ’|’ character separating the two constructors.

The following sample interface file foo.mli illustrates the placement rules for comments in .mli files.

(** The first special comment of the file is the comment associated with the whole module.*) (** Special comments can be placed between elements and are kept by the OCamldoc tool, but are not associated to any element. @-tags in these comments are ignored.*) (*******************************************************************) (** Comments like the one above, with more than two asterisks, are ignored. *) (** The comment for function f. *) val f : int -> int -> int (** The continuation of the comment for function f. *) (** Comment for exception My_exception, even with a simple comment between the special comment and the exception.*) (* Hello, I'm a simple comment :-) *) exception My_exception of (int -> int) * int (** Comment for type weather *) type weather = | Rain of int (** The comment for constructor Rain *) | Sun (** The comment for constructor Sun *) (** Comment for type weather2 *) type weather2 = | Rain of int (** The comment for constructor Rain *) | Sun (** The comment for constructor Sun *) (** I can continue the comment for type weather2 here because there is already a comment associated to the last constructor.*) (** The comment for type my_record *) type my_record = { foo : int ; (** Comment for field foo *) bar : string ; (** Comment for field bar *) } (** Continuation of comment for type my_record *) (** Comment for foo *) val foo : string (** This comment is associated to foo and not to bar. *) val bar : string (** This comment is associated to bar. *) (** The comment for class my_class *) class my_class : object (** A comment to describe inheritance from cl *) inherit cl (** The comment for attribute tutu *) val mutable tutu : string (** The comment for attribute toto. *) val toto : int (** This comment is not attached to titi since there is a blank line before titi, but is kept as a comment in the class. *) val titi : string (** Comment for method toto *) method toto : string (** Comment for method m *) method m : float -> int end (** The comment for the class type my_class_type *) class type my_class_type = object (** The comment for variable x. *) val mutable x : int (** The comment for method m. *) method m : int -> int end (** The comment for module Foo *) module Foo : sig (** The comment for x *) val x : int (** A special comment that is kept but not associated to any element *) end (** The comment for module type my_module_type. *) module type my_module_type = sig (** The comment for value x. *) val x : int (** The comment for module M. *) module M : sig (** The comment for value y. *) val y : int (* ... *) end end

Comments in .ml files

A special comment is associated to an element if it is placed before the element and there is no blank line between the comment and the element. Meanwhile, there can be a simple comment between the special comment and the element. There are two exceptions, for constructors and record fields in type definitions, whose associated comment must be placed after the constructor or field definition, without blank line between them. The special comment for a constructor with another constructor following must be placed before the ’|’ character separating the two constructors.

The following example of file toto.ml shows where to place comments in a .ml file.

(** The first special comment of the file is the comment associated to the whole module. *) (** The comment for function f *) let f x y = x + y (** This comment is not attached to any element since there is another special comment just before the next element. *) (** Comment for exception My_exception, even with a simple comment between the special comment and the exception.*) (* A simple comment. *) exception My_exception of (int -> int) * int (** Comment for type weather *) type weather = | Rain of int (** The comment for constructor Rain *) | Sun (** The comment for constructor Sun *) (** The comment for type my_record *) type my_record = { foo : int ; (** Comment for field foo *) bar : string ; (** Comment for field bar *) } (** The comment for class my_class *) class my_class = object (** A comment to describe inheritance from cl *) inherit cl (** The comment for the instance variable tutu *) val mutable tutu = "tutu" (** The comment for toto *) val toto = 1 val titi = "titi" (** Comment for method toto *) method toto = tutu ^ "!" (** Comment for method m *) method m (f : float) = 1 end (** The comment for class type my_class_type *) class type my_class_type = object (** The comment for the instance variable x. *) val mutable x : int (** The comment for method m. *) method m : int -> int end (** The comment for module Foo *) module Foo = struct (** The comment for x *) let x = 0 (** A special comment in the class, but not associated to any element. *) end (** The comment for module type my_module_type. *) module type my_module_type = sig (* Comment for value x. *) val x : int (* ... *) end

16.2.2  The Stop special comment

The special comment (**/**) tells OCamldoc to discard elements placed after this comment, up to the end of the current class, class type, module or module type, or up to the next stop comment. For instance:

class type foo = object (** comment for method m *) method m : string (**/**) (** This method won't appear in the documentation *) method bar : int end (** This value appears in the documentation, since the Stop special comment in the class does not affect the parent module of the class.*) val foo : string (**/**) (** The value bar does not appear in the documentation.*) val bar : string (**/**) (** The type t appears since in the documentation since the previous stop comment toggled off the "no documentation mode". *) type t = string

The -no-stop option to ocamldoc causes the Stop special comments to be ignored.

16.2.3  Syntax of documentation comments

The inside of documentation comments (***) consists of free-form text with optional formatting annotations, followed by optional tags giving more specific information about parameters, version, authors, … The tags are distinguished by a leading @ character. Thus, a documentation comment has the following shape:

(** The comment begins with a description, which is text formatted
   according to the rules described in the next section.
   The description continues until the first non-escaped '@' character.
   @author Mr Smith
   @param x description for parameter x
*)

Some elements support only a subset of all @-tags. Tags that are not relevant to the documented element are simply ignored. For instance, all tags are ignored when documenting type constructors, record fields, and class inheritance clauses. Similarly, a @param tag on a class instance variable is ignored.

At last, (**) is the empty documentation comment.

16.2.4  Text formatting

Here is the BNF grammar for the simple markup language used to format text descriptions.

text::= {text-element}+  
 
text-element::=
{ { 09 }+ text } format text as a section header; the integer following { indicates the sectioning level.
{ { 09 }+ : label text } same, but also associate the name label to the current point. This point can be referenced by its fully-qualified label in a {! command, just like any other element.
{b text } set text in bold.
{i text } set text in italic.
{e text } emphasize text.
{C text } center text.
{L text } left align text.
{R text } right align text.
{ul list } build a list.
{ol list } build an enumerated list.
{{: string }  text } put a link to the given address (given as string) on the given text.
[ string ] set the given string in source code style.
{[ string ]} set the given string in preformatted source code style.
{v string v} set the given string in verbatim style.
{% string %} target-specific content (LATEX code by default, see details in 16.2.4.4)
{! string } insert a cross-reference to an element (see section 16.2.4.2 for the syntax of cross-references).
{!modules: string  string ... } insert an index table for the given module names. Used in HTML only.
{!indexlist} insert a table of links to the various indexes (types, values, modules, ...). Used in HTML only.
{^ text } set text in superscript.
{_ text } set text in subscript.
escaped-stringtypeset the given string as is; special characters (’{’, ’}’, ’[’, ’]’ and ’@’) must be escaped by a ’\
blank-lineforce a new line.


16.2.4.1  List formatting

list::=  
  { {- text } }+  
  { {li text } }+

A shortcut syntax exists for lists and enumerated lists:

(** Here is a {b list}
- item 1
- item 2
- item 3

The list is ended by the blank line.*)

is equivalent to:

(** Here is a {b list}
{ul {- item 1}
{- item 2}
{- item 3}}
The list is ended by the blank line.*)

The same shortcut is available for enumerated lists, using ’+’ instead of ’-’. Note that only one list can be defined by this shortcut in nested lists.

16.2.4.2  Cross-reference formatting

Cross-references are fully qualified element names, as in the example {!Foo.Bar.t}. This is an ambiguous reference as it may designate a type name, a value name, a class name, etc. It is possible to make explicit the intended syntactic class, using {!type:Foo.Bar.t} to designate a type, and {!val:Foo.Bar.t} a value of the same name.

The list of possible syntactic class is as follows:

tagsyntactic class
module:module
modtype:module type
class:class
classtype:class type
val:value
type:type
exception:exception
attribute:attribute
method:class method
section:ocamldoc section
const:variant constructor
recfield:record field

In the case of variant constructors or record field, the constructor or field name should be preceded by the name of the correspond type – to avoid the ambiguity of several types having the same constructor names. For example, the constructor Node of the type tree will be referenced as {!tree.Node} or {!const:tree.Node}, or possibly {!Mod1.Mod2.tree.Node} from outside the module.

16.2.4.3  First sentence

In the description of a value, type, exception, module, module type, class or class type, the first sentence is sometimes used in indexes, or when just a part of the description is needed. The first sentence is composed of the first characters of the description, until

outside of the following text formatting : {ul list } , {ol list } , [ string ] , {[ string ]} , {v string v} , {% string %} , {! string } , {^ text } , {_ text } .

16.2.4.4  Target-specific formatting

The content inside {%foo: ... %} is target-specific and will only be interpreted by the backend foo, and ignored by the others. The backends of the distribution are latex, html, texi and man. If no target is specified (syntax {% ... %}), latex is chosen by default. Custom generators may support their own target prefix.

16.2.4.5  Recognized HTML tags

The HTML tags <b>..</b>, <code>..</code>, <i>..</i>, <ul>..</ul>, <ol>..</ol>, <li>..</li>, <center>..</center> and <h[0-9]>..</h[0-9]> can be used instead of, respectively, {b ..} , [..] , {i ..} , {ul ..} , {ol ..} , {li ..} , {C ..} and {[0-9] ..}.

16.2.5  Documentation tags (@-tags)

Predefined tags

The following table gives the list of predefined @-tags, with their syntax and meaning.

@author string The author of the element. One author per @author tag. There may be several @author tags for the same element.
@deprecated text The text should describe when the element was deprecated, what to use as a replacement, and possibly the reason for deprecation.
@param id  text Associate the given description (text) to the given parameter name id. This tag is used for functions, methods, classes and functors.
@raise Exc  text Explain that the element may raise the exception Exc.
@return text Describe the return value and its possible values. This tag is used for functions and methods.
@see < URL >  text Add a reference to the URL with the given text as comment.
@see 'filename' text Add a reference to the given file name (written between single quotes), with the given text as comment.
@see "document-name" text Add a reference to the given document name (written between double quotes), with the given text as comment.
@since string Indicate when the element was introduced.
@before version text Associate the given description (text) to the given version in order to document compatibility issues.
@version string The version number for the element.

Custom tags

You can use custom tags in the documentation comments, but they will have no effect if the generator used does not handle them. To use a custom tag, for example foo, just put @foo with some text in your comment, as in:

(** My comment to show you a custom tag.
@foo this is the text argument to the [foo] custom tag.
*)

To handle custom tags, you need to define a custom generator, as explained in section 16.3.2.

16.3  Custom generators

OCamldoc operates in two steps:

  1. analysis of the source files;
  2. generation of documentation, through a documentation generator, which is an object of class Odoc_args.class_generator.

Users can provide their own documentation generator to be used during step 2 instead of the default generators. All the information retrieved during the analysis step is available through the Odoc_info module, which gives access to all the types and functions representing the elements found in the given modules, with their associated description.

The files you can use to define custom generators are installed in the ocamldoc sub-directory of the OCaml standard library.

16.3.1  The generator modules

The type of a generator module depends on the kind of generated documentation. Here is the list of generator module types, with the name of the generator class in the module :

That is, to define a new generator, one must implement a module with the expected signature, and with the given generator class, providing the generate method as entry point to make the generator generates documentation for a given list of modules :

        method generate : Odoc_info.Module.t_module list -> unit

This method will be called with the list of analysed and possibly merged Odoc_info.t_module structures.

It is recommended to inherit from the current generator of the same kind as the one you want to define. Doing so, it is possible to load various custom generators to combine improvements brought by each one.

This is done using first class modules (see chapter 8.5).

The easiest way to define a custom generator is the following this example, here extending the current HTML generator. We don’t have to know if this is the original HTML generator defined in ocamldoc or if it has been extended already by a previously loaded custom generator :

module Generator (G : Odoc_html.Html_generator) =
struct
  class html =
    object(self)
      inherit G.html as html
      (* ... *)

      method generate module_list =
        (* ... *)
        ()

      (* ... *)
  end
end;;

let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

To know which methods to override and/or which methods are available, have a look at the different base implementations, depending on the kind of generator you are extending :

16.3.2  Handling custom tags

Making a custom generator handle custom tags (see 16.2.5) is very simple.

For HTML

Here is how to develop a HTML generator handling your custom tags.

The class Odoc_html.Generator.html inherits from the class Odoc_html.info, containing a field tag_functions which is a list pairs composed of a custom tag (e.g. "foo") and a function taking a text and returning HTML code (of type string). To handle a new tag bar, extend the current HTML generator and complete the tag_functions field:

module Generator (G : Odoc_html.Html_generator) =
struct
  class html =
    object(self)
      inherit G.html

      (** Return HTML code for the given text of a bar tag. *)
      method html_of_bar t = (* your code here *)

      initializer
        tag_functions <- ("bar", self#html_of_bar) :: tag_functions
  end
end
let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

Another method of the class Odoc_html.info will look for the function associated to a custom tag and apply it to the text given to the tag. If no function is associated to a custom tag, then the method prints a warning message on stderr.

For other generators

You can act the same way for other kinds of generators.

16.4  Adding command line options

The command line analysis is performed after loading the module containing the documentation generator, thus allowing command line options to be added to the list of existing ones. Adding an option can be done with the function

        Odoc_args.add_option : string * Arg.spec * string -> unit

Note: Existing command line options can be redefined using this function.

16.4.1  Compilation and usage

Defining a custom generator class in one file

Let custom.ml be the file defining a new generator class. Compilation of custom.ml can be performed by the following command :

        ocamlc -I +ocamldoc -c custom.ml

The file custom.cmo is created and can be used this way :

        ocamldoc -g custom.cmo other-options source-files

Options selecting a built-in generator to ocamldoc, such as -html, have no effect if a custom generator of the same kind is provided using -g. If the kinds do not match, the selected built-in generator is used and the custom one is ignored.

Defining a custom generator class in several files

It is possible to define a generator class in several modules, which are defined in several files file1.ml[i], file2.ml[i], ..., filen.ml[i]. A .cma library file must be created, including all these files.

The following commands create the custom.cma file from files file1.ml[i], ..., filen.ml[i] :

ocamlc -I +ocamldoc -c file1.ml[i]
ocamlc -I +ocamldoc -c file2.ml[i]
...
ocamlc -I +ocamldoc -c filen.ml[i]
ocamlc -o custom.cma -a file1.cmo file2.cmo ... filen.cmo

Then, the following command uses custom.cma as custom generator:

        ocamldoc -g custom.cma other-options source-files

Previous Up Next ocaml-doc-4.11/ocaml.html/doccomments.html0000644000175000017500000002250713717225665017516 0ustar mehdimehdi 8.18  Documentation comments Previous Up Next

8.18  Documentation comments

(Introduced in OCaml 4.03)

Comments which start with ** are treated specially by the compiler. They are automatically converted during parsing into attributes (see 8.12) to allow tools to process them as documentation.

Such comments can take three forms: floating comments, item comments and label comments. Any comment starting with ** which does not match one of these forms will cause the compiler to emit warning 50.

Comments which start with ** are also used by the ocamldoc documentation generator (see 16). The three comment forms recognised by the compiler are a subset of the forms accepted by ocamldoc (see 16.2).

8.18.1  Floating comments

Comments surrounded by blank lines that appear within structures, signatures, classes or class types are converted into floating-attributes. For example:

type t = T (** Now some definitions for [t] *) let mkT = T

will be converted to:

type t = T [@@@ocaml.text " Now some definitions for [t] "] let mkT = T

8.18.2  Item comments

Comments which appear immediately before or immediately after a structure item, signature item, class item or class type item are converted into item-attributes. Immediately before or immediately after means that there must be no blank lines, ;;, or other documentation comments between them. For example:

type t = T (** A description of [t] *)

or

(** A description of [t] *) type t = T

will be converted to:

type t = T [@@ocaml.doc " A description of [t] "]

Note that, if a comment appears immediately next to multiple items, as in:

type t = T (** An ambiguous comment *) type s = S

then it will be attached to both items:

type t = T [@@ocaml.doc " An ambiguous comment "] type s = S [@@ocaml.doc " An ambiguous comment "]

and the compiler will emit warning 50.

8.18.3  Label comments

Comments which appear immediately after a labelled argument, record field, variant constructor, object method or polymorphic variant constructor are are converted into attributes. Immediately after means that there must be no blank lines or other documentation comments between them. For example:

type t1 = lbl:int (** Labelled argument *) -> unit type t2 = { fld: int; (** Record field *) fld2: float; } type t3 = | Cstr of string (** Variant constructor *) | Cstr2 of string type t4 = < meth: int * int; (** Object method *) > type t5 = [ `PCstr (** Polymorphic variant constructor *) ]

will be converted to:

type t1 = lbl:(int [@ocaml.doc " Labelled argument "]) -> unit type t2 = { fld: int [@ocaml.doc " Record field "]; fld2: float; } type t3 = | Cstr of string [@ocaml.doc " Variant constructor "] | Cstr2 of string type t4 = < meth : int * int [@ocaml.doc " Object method "] > type t5 = [ `PCstr [@ocaml.doc " Polymorphic variant constructor "] ]

Note that label comments take precedence over item comments, so:

type t = T of string (** Attaches to T not t *)

will be converted to:

type t = T of string [@ocaml.doc " Attaches to T not t "]

whilst:

type t = T of string (** Attaches to T not t *) (** Attaches to t *)

will be converted to:

type t = T of string [@ocaml.doc " Attaches to T not t "] [@@ocaml.doc " Attaches to t "]

In the absence of meaningful comment on the last constructor of a type, an empty comment (**) can be used instead:

type t = T of string (**) (** Attaches to t *)

will be converted directly to

type t = T of string [@@ocaml.doc " Attaches to t "]

Previous Up Next ocaml-doc-4.11/ocaml.html/const.html0000644000175000017500000001045513717225665016330 0ustar mehdimehdi 7.5  Constants Previous Up Next

7.5  Constants

constant::= integer-literal  
  int32-literal  
  int64-literal  
  nativeint-literal  
  float-literal  
  char-literal  
  string-literal  
  constr  
  false  
  true  
  ()  
  begin end  
  []  
  [||]  
  `tag-name

See also the following language extension: extension literals.

The syntactic class of constants comprises literals from the four base types (integers, floating-point numbers, characters, character strings), the integer variants, and constant constructors from both normal and polymorphic variants, as well as the special constants false, true, (), [], and [||], which behave like constant constructors, and begin end, which is equivalent to ().


Previous Up Next ocaml-doc-4.11/ocaml.html/profil.html0000644000175000017500000002552213717225665016476 0ustar mehdimehdi Chapter 18  Profiling (ocamlprof) Previous Up Next

Chapter 18  Profiling (ocamlprof)

This chapter describes how the execution of OCaml programs can be profiled, by recording how many times functions are called, branches of conditionals are taken, …

18.1  Compiling for profiling

Before profiling an execution, the program must be compiled in profiling mode, using the ocamlcp front-end to the ocamlc compiler (see chapter 9) or the ocamloptp front-end to the ocamlopt compiler (see chapter 12). When compiling modules separately, ocamlcp or ocamloptp must be used when compiling the modules (production of .cmo or .cmx files), and can also be used (though this is not strictly necessary) when linking them together.

Note

If a module (.ml file) doesn’t have a corresponding interface (.mli file), then compiling it with ocamlcp will produce object files (.cmi and .cmo) that are not compatible with the ones produced by ocamlc, which may lead to problems (if the .cmi or .cmo is still around) when switching between profiling and non-profiling compilations. To avoid this problem, you should always have a .mli file for each .ml file. The same problem exists with ocamloptp.

Note

To make sure your programs can be compiled in profiling mode, avoid using any identifier that begins with __ocaml_prof.

The amount of profiling information can be controlled through the -P option to ocamlcp or ocamloptp, followed by one or several letters indicating which parts of the program should be profiled:

a
all options
f
function calls : a count point is set at the beginning of each function body
i
if …then …else … : count points are set in both then branch and else branch
l
while, for loops: a count point is set at the beginning of the loop body
m
match branches: a count point is set at the beginning of the body of each branch
t
try …with … branches: a count point is set at the beginning of the body of each branch

For instance, compiling with ocamlcp -P film profiles function calls, if…then…else…, loops and pattern matching.

Calling ocamlcp or ocamloptp without the -P option defaults to -P fm, meaning that only function calls and pattern matching are profiled.

Note

For compatibility with previous releases, ocamlcp also accepts the -p option, with the same arguments and behaviour as -P.

The ocamlcp and ocamloptp commands also accept all the options of the corresponding ocamlc or ocamlopt compiler, except the -pp (preprocessing) option.

18.2  Profiling an execution

Running an executable that has been compiled with ocamlcp or ocamloptp records the execution counts for the specified parts of the program and saves them in a file called ocamlprof.dump in the current directory.

If the environment variable OCAMLPROF_DUMP is set when the program exits, its value is used as the file name instead of ocamlprof.dump.

The dump file is written only if the program terminates normally (by calling exit or by falling through). It is not written if the program terminates with an uncaught exception.

If a compatible dump file already exists in the current directory, then the profiling information is accumulated in this dump file. This allows, for instance, the profiling of several executions of a program on different inputs. Note that dump files produced by byte-code executables (compiled with ocamlcp) are compatible with the dump files produced by native executables (compiled with ocamloptp).

18.3  Printing profiling information

The ocamlprof command produces a source listing of the program modules where execution counts have been inserted as comments. For instance,

        ocamlprof foo.ml

prints the source code for the foo module, with comments indicating how many times the functions in this module have been called. Naturally, this information is accurate only if the source file has not been modified after it was compiled.

The following options are recognized by ocamlprof:

-args filename
Read additional newline-terminated command line arguments from filename.
-args0 filename
Read additional null character terminated command line arguments from filename.
-f dumpfile
Specifies an alternate dump file of profiling information to be read.
-F string
Specifies an additional string to be output with profiling information. By default, ocamlprof will annotate programs with comments of the form (* n *) where n is the counter value for a profiling point. With option -F s, the annotation will be (* sn *).
-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.
-intf filename
Process the file filename as an interface file, even if its extension is not .mli.
-version
Print version string and exit.
-vnum
Print short version number and exit.
-help or --help
Display a short usage summary and exit.

18.4  Time profiling

Profiling with ocamlprof only records execution counts, not the actual time spent within each function. There is currently no way to perform time profiling on bytecode programs generated by ocamlc. For time profiling of native code, users are recommended to use standard tools such as perf (on Linux), Instruments (on macOS) and DTrace. Profiling with gprof is no longer supported.


Previous Up Next ocaml-doc-4.11/ocaml.html/manual.css0000644000175000017500000001077413717225665016307 0ustar mehdimehdi.c000{border-spacing:0;width:80%} .c001{border-spacing:6px;border-collapse:separate;} .c002{color:blue} .c003{font-family:monospace} .c004{font-family:monospace;color:blue} .c005{font-family:monospace;font-style:italic} .c006{font-family:monospace;font-weight:bold} .c007{font-family:sans-serif} .c008{font-size:small} .c009{font-style:italic} .c010{font-style:italic;color:maroon} .c011{font-style:italic;font-weight:bold} .c012{font-style:oblique} .c013{font-weight:bold} .c014{text-align:center;border:solid 1px;white-space:nowrap} .c015{text-align:center;white-space:nowrap} .c016{text-align:left;border:solid 1px;white-space:nowrap} .c017{text-align:left;white-space:nowrap} .c018{text-align:right;white-space:nowrap} .c019{vertical-align:middle} .c020{vertical-align:top;text-align:left;} .c021{vertical-align:top;text-align:left;border:solid 1px;} .c022{vertical-align:top;text-align:left;border:solid 1px;white-space:nowrap} .c023{vertical-align:top;text-align:left;white-space:nowrap} .c024{vertical-align:top;text-align:right;white-space:nowrap} .li-itemize{margin:1ex 0ex;} .li-enumerate{margin:1ex 0ex;} .dd-description{margin:0ex 0ex 1ex 4ex;} .dt-description{margin:0ex;} .toc{list-style:none;} .footnotetext{margin:0ex; padding:0ex;} div.footnotetext P{margin:0px; text-indent:1em;} .thefootnotes{text-align:left;margin:0ex;} .dt-thefootnotes{margin:0em;} .dd-thefootnotes{margin:0em 0em 0em 2em;} .footnoterule{margin:1em auto 1em 0px;width:50%;} .center{text-align:center;margin-left:auto;margin-right:auto;} div table{margin-left:inherit;margin-right:inherit;margin-bottom:2px;margin-top:2px} td table{margin:auto;} table{border-collapse:collapse;} td{padding:0;} .cellpadding1 tr td{padding:1px;} pre{text-align:left;margin-left:0ex;margin-right:auto;} blockquote{margin-left:4ex;margin-right:4ex;text-align:left;} td p{margin:0px;} .hbar{border:none;height:2px;width:100%;background-color:black;} .display{border-collapse:separate;border-spacing:2px;width:auto; border:none;} .dcell{white-space:nowrap;padding:0px; border:none;} .dcenter{margin:0ex auto;} .theorem{text-align:left;margin:1ex auto 1ex 0ex;} .part{margin:2ex auto;text-align:center} a.section-anchor::after{content:"🔗"; font-size:smaller; margin-left:-1.5em; padding-right:0.5em; } a.section-anchor{visibility:hidden; color:grey !important; text-decoration:none !important; } *:hover>a.section-anchor{visibility:visible; } a:link{color:#4286f4;text-decoration:underline;} a:visited{color:#0d46a3;text-decoration:underline;} a:hover{color:black;text-decoration:underline;} @media all{@font-face { /* fira-sans-regular - latin */ font-family: 'Fira Sans'; font-style: normal; font-weight: 400; src: url('fonts/fira-sans-v8-latin-regular.eot'); /* IE9 Compat Modes */ src: local('Fira Sans Regular'), local('FiraSans-Regular'), url('fonts/fira-sans-v8-latin-regular.eot?#iefix') format('embedded-opentype'), /* IE6-IE8 */ url('fonts/fira-sans-v8-latin-regular.woff2') format('woff2'), /* Super Modern Browsers */ url('fonts/fira-sans-v8-latin-regular.woff') format('woff'), /* Modern Browsers */ url('fonts/fira-sans-v8-latin-regular.ttf') format('truetype'), /* Safari, Android, iOS */ url('fonts/fira-sans-v8-latin-regular.svg#FiraSans') format('svg'); /* Legacy iOS */ } } body{max-width:750px; width: 85%; margin: auto; background: #f7f7f7; margin-top: 80px; font-size: 1rem; } .maintitle{font-family: "Fira Sans", sans-serif; text-align: center; } h1, h2, h3{font-family: "Fira Sans", sans-serif; font-weight: normal; border-bottom: 1px solid black; } div.ocaml{margin:2ex 0px; font-size: 1rem; background: beige; border: 1px solid grey; padding: 10px; overflow-y:auto; display:flex; flex-direction: column; flex-wrap: nowrap; } div.ocaml .pre{white-space: pre; font-family: monospace; } .ocamlkeyword{font-weight:bold; } .ocamlhighlight{font-weight:bold; text-decoration:underline; } .ocamlerror{font-weight:bold; color:red; } .ocamlwarning{font-weight:bold; color:purple; } .ocamlcomment{color:grey; } .ocamlstring{opacity:0.75; } #cc_license_logo{float:left; margin-right: 1em; } p,ul{line-height:1.3em} .cellpadding1 tr td{padding:1px 4px} div.caml-output{color:maroon;} div.caml-example.toplevel div.caml-input::before{content:"#"; color:black;} div.caml-example.toplevel div.caml-input{color:#006000;} .tableau, .syntax, .syntaxleft{/* same width as body */ max-width: 750px; overflow-y: auto; } .li-links{margin:0ex 0ex;} a.syntax:link{color:maroon;text-decoration:underline} a.syntax:visited{color:maroon;text-decoration:underline} a.syntax:hover{color:black;text-decoration:none;background-color:#FF6060} ocaml-doc-4.11/ocaml.html/expr.html0000644000175000017500000037355113717225665016171 0ustar mehdimehdi 7.7  Expressions Previous Up Next

7.7  Expressions

expr::= value-path  
  constant  
  ( expr )  
  begin expr end  
  ( expr :  typexpr )  
  expr  {, expr}+  
  constr  expr  
  `tag-name  expr  
  expr ::  expr  
  [ expr  { ; expr }  [;]  
  [| expr  { ; expr }  [;|]  
  { field  [: typexpr]  [= expr] { ; field  [: typexpr]  [= expr] }  [;}  
  { expr with  field  [: typexpr]  [= expr] { ; field  [: typexpr]  [= expr] }  [;}  
  expr  { argument }+  
  prefix-symbol  expr  
  - expr  
  -. expr  
  expr  infix-op  expr  
  expr .  field  
  expr .  field <-  expr  
  expr .(  expr )  
  expr .(  expr ) <-  expr  
  expr .[  expr ]  
  expr .[  expr ] <-  expr  
  if expr then  expr  [ else expr ]  
  while expr do  expr done  
  for value-name =  expr  ( to ∣  downto ) expr do  expr done  
  expr ;  expr  
  match expr with  pattern-matching  
  function pattern-matching  
  fun { parameter }+  [ : typexpr ] ->  expr  
  try expr with  pattern-matching  
  let [reclet-binding  { and let-binding } in  expr  
  let exception constr-decl in  expr  
  let module module-name  { ( module-name :  module-type ) }  [ : module-type ]  =  module-expr in  expr  
  ( expr :>  typexpr )  
  ( expr :  typexpr :>  typexpr )  
  assert expr  
  lazy expr  
  local-open  
  object-expr  
 
argument::= expr  
  ~ label-name  
  ~ label-name :  expr  
  ? label-name  
  ? label-name :  expr  
 
pattern-matching::=| ] pattern  [when expr->  expr  { | pattern  [when expr->  expr }  
 
let-binding::= pattern =  expr  
  value-name  { parameter }  [: typexpr]  [:> typexpr=  expr  
  value-name :  poly-typexpr =  expr  
 
parameter::= pattern  
  ~ label-name  
  ~ ( label-name  [: typexpr)  
  ~ label-name :  pattern  
  ? label-name  
  ? ( label-name  [: typexpr]  [= expr)  
  ? label-name :  pattern  
  ? label-name : (  pattern  [: typexpr]  [= expr)  
 
local-open::=  
  let open module-path in  expr  
  module-path .(  expr )  
  module-path .[  expr ]  
  module-path .[|  expr |]  
  module-path .{  expr }  
  module-path .{<  expr >}  
 
object-expr::=  
  new class-path  
  object class-body end  
  expr #  method-name  
  inst-var-name  
  inst-var-name <-  expr  
  {< [ inst-var-name  [= expr]  { ; inst-var-name  [= expr] }  [;] ] >}

See also the following language extensions: first-class modules, overriding in open statements, syntax for Bigarray access, attributes, extension nodes and extended indexing operators.

7.7.1  Precedence and associativity

The table below shows the relative precedences and associativity of operators and non-closed constructions. The constructions with higher precedence come first. For infix and prefix symbols, we write “*…” to mean “any symbol starting with *”.

Construction or operatorAssociativity
prefix-symbol
. .( .[ .{ (see section 8.11)
#left
function application, constructor application, tag application, assert, lazyleft
- -. (prefix)
** lsl lsr asrright
* / % mod land lor lxorleft
+ -left
::right
@ ^right
= < > | & $ !=left
& &&right
or ||right
,
<- :=right
if
;right
let match fun function try

7.7.2  Basic expressions

Constants

An expression consisting in a constant evaluates to this constant.

Value paths

An expression consisting in an access path evaluates to the value bound to this path in the current evaluation environment. The path can be either a value name or an access path to a value component of a module.

Parenthesized expressions

The expressions ( expr ) and begin expr end have the same value as expr. The two constructs are semantically equivalent, but it is good style to use beginend inside control structures:

        if … then begin … ; … end else begin … ; … end

and () for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in ( expr :  typexpr ). This constraint forces the type of expr to be compatible with typexpr.

Parenthesized expressions can also contain coercions ( expr  [: typexpr] :>  typexpr) (see subsection 7.7.7 below).

Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression expr  argument1 …  argumentn evaluates the expression expr and those appearing in argument1 to argumentn. The expression expr must evaluate to a functional value f, which is then applied to the values of argument1, …,  argumentn.

The order in which the expressions expr,  argument1, …,  argumentn are evaluated is not specified.

Arguments and parameters are matched according to their respective labels. Argument order is irrelevant, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?) in the type of expr, the corresponding argument will be automatically wrapped with the constructor Some, except if the argument itself is also prefixed by ?, in which case it is passed as is. If a non-labeled argument is passed, and its corresponding parameter is preceded by one or several optional parameters, then these parameters are defaulted, i.e. the value None will be passed for them. All other missing parameters (without corresponding argument), both optional and non-optional, will be kept, and the result of the function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their number matches the number of non-optional parameters, then labels are ignored and non-optional parameters are matched in their definition order. Optional arguments are defaulted.

In all cases but exact match of order and labels, without optional parameters, the function type should be known at the application point. This can be ensured by adding a type constraint. Principality of the derivation can be checked in the -principal mode.

Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword function:

functionpattern1->expr1 
|… 
|patternn->exprn

This expression evaluates to a functional value with one argument. When this function is applied to a value v, this value is matched against each pattern pattern1 to patternn. If one of these matchings succeeds, that is, if the value v matches the pattern patterni for some i, then the expression expri associated to the selected pattern is evaluated, and its value becomes the value of the function application. The evaluation of expri takes place in an environment enriched by the bindings performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is selected. If none of the patterns matches the argument, the exception Match_failure is raised.


The other form of function definition is introduced by the keyword fun:

fun parameter1 …  parametern ->  expr

This expression is equivalent to:

fun parameter1 ->fun  parametern ->  expr

An optional type constraint typexpr can be added before -> to enforce the type of the result to be compatible with the constraint typexpr:

fun parameter1 …  parametern :  typexpr ->  expr

is equivalent to

fun parameter1 ->fun  parametern ->  (expr :  typexpr )

Beware of the small syntactic difference between a type constraint on the last parameter

fun parameter1 …  (parametern: typexpr)->  expr

and one on the result

fun parameter1 …  parametern:  typexpr ->  expr

The parameter patterns ~lab and ~(lab  [: typ]) are shorthands for respectively ~lab: lab and ~lab:( lab  [: typ]), and similarly for their optional counterparts.

A function of the form fun ? lab :(  pattern =  expr0 ) ->  expr is equivalent to

fun ? lab :  ident -> let  pattern = match  ident with Some  ident ->  ident | None ->  expr0 in  expr

where ident is a fresh variable, except that it is unspecified when expr0 is evaluated.

After these two transformations, expressions are of the form

fun [label1]  pattern1 ->fun  [labeln]  patternn ->  expr

If we ignore labels, which will only be meaningful at function application, this is equivalent to

function pattern1 ->function  patternn ->  expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying this function n times to the values v1vn, the values will be matched in parallel against the patterns pattern1 …  patternn. If the matching succeeds, the function returns the value of expr in an environment enriched by the bindings performed during the matchings. If the matching fails, the exception Match_failure is raised.

Guards in pattern-matchings

The cases of a pattern matching (in the function, match and try constructs) can include guard expressions, which are arbitrary boolean expressions that must evaluate to true for the match case to be selected. Guards occur just before the -> token and are introduced by the when keyword:

functionpattern1   [when   cond1]->expr1 
|… 
|patternn    [when   condn]->exprn

Matching proceeds as described before, except that if the value matches some pattern patterni which has a guard condi, then the expression condi is evaluated (in an environment enriched by the bindings performed during matching). If condi evaluates to true, then expri is evaluated and its value returned as the result of the matching, as usual. But if condi evaluates to false, the matching is resumed against the patterns following patterni.

Local definitions

The let and let rec constructs bind value names locally. The construct

let pattern1 =  expr1 andand  patternn =  exprn in  expr

evaluates expr1 …  exprn in some unspecified order and matches their values against the patterns pattern1 …  patternn. If the matchings succeed, expr is evaluated in the environment enriched by the bindings performed during matching, and the value of expr is returned as the value of the whole let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun  parameter1 …  parameterm ->  expr

in a let expression, one may instead write

let ident  parameter1 …  parameterm =  expr


Recursive definitions of names are introduced by let rec:

let rec pattern1 =  expr1 andand  patternn =  exprn in  expr

The only difference with the let construct described above is that the bindings of names to values performed by the pattern-matching are considered already performed when the expressions expr1 to exprn are evaluated. That is, the expressions expr1 to exprn can reference identifiers that are bound by one of the patterns pattern1, …,  patternn, and expect them to have the same value as in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr1 to exprn are function definitions (fun … or function …), and the patterns pattern1 …  patternn are just value names, as in:

let rec name1 = funandand  namen = funin  expr

This defines name1 …  namen as mutually recursive functions local to expr.

The behavior of other forms of let rec definitions is implementation-dependent. The current implementation also supports a certain class of recursive definitions of non-functional values, as explained in section 8.1.

Explicit polymorphic type annotations

(Introduced in OCaml 3.12)

Polymorphic type annotations in let-definitions behave in a way similar to polymorphic methods:

let pattern1 :  typ1 …  typn .  typeexpr =  expr

These annotations explicitly require the defined value to be polymorphic, and allow one to use this polymorphism in recursive occurrences (when using let rec). Note however that this is a normal polymorphic type, unifiable with any instance of itself.

It is possible to define local exceptions in expressions: let exception  constr-decl in  expr . The syntactic scope of the exception constructor is the inner expression, but nothing prevents exception values created with this constructor from escaping this scope. Two executions of the definition above result in two incompatible exception constructors (as for any exception definition). For instance, the following assertion is true:

  let gen () = let exception A in A
  let () = assert(gen () <> gen ())

7.7.3  Control structures

Sequence

The expression expr1 ;  expr2 evaluates expr1 first, then expr2, and returns the value of expr2.

Conditional

The expression if expr1 then  expr2 else  expr3 evaluates to the value of expr2 if expr1 evaluates to the boolean true, and to the value of expr3 if expr1 evaluates to the boolean false.

The else expr3 part can be omitted, in which case it defaults to else ().

Case expression

The expression

matchexpr 
withpattern1->expr1 
|… 
|patternn->exprn

matches the value of expr against the patterns pattern1 to patternn. If the matching against patterni succeeds, the associated expression expri is evaluated, and its value becomes the value of the whole match expression. The evaluation of expri takes place in an environment enriched by the bindings performed during matching. If several patterns match the value of expr, the one that occurs first in the match expression is selected. If none of the patterns match the value of expr, the exception Match_failure is raised.

Boolean operators

The expression expr1 &&  expr2 evaluates to true if both expr1 and expr2 evaluate to true; otherwise, it evaluates to false. The first component, expr1, is evaluated first. The second component, expr2, is not evaluated if the first component evaluates to false. Hence, the expression expr1 &&  expr2 behaves exactly as

if expr1 then  expr2 else false.

The expression expr1 ||  expr2 evaluates to true if one of the expressions expr1 and expr2 evaluates to true; otherwise, it evaluates to false. The first component, expr1, is evaluated first. The second component, expr2, is not evaluated if the first component evaluates to true. Hence, the expression expr1 ||  expr2 behaves exactly as

if expr1 then true else  expr2.

The boolean operators & and or are deprecated synonyms for (respectively) && and ||.

Loops

The expression while expr1 do  expr2 done repeatedly evaluates expr2 while expr1 evaluates to true. The loop condition expr1 is evaluated and tested at the beginning of each iteration. The whole whiledone expression evaluates to the unit value ().

The expression for name =  expr1 to  expr2 do  expr3 done first evaluates the expressions expr1 and expr2 (the boundaries) into integer values n and p. Then, the loop body expr3 is repeatedly evaluated in an environment where name is successively bound to the values n, n+1, …, p−1, p. The loop body is never evaluated if n > p.

The expression for name =  expr1 downto  expr2 do  expr3 done evaluates similarly, except that name is successively bound to the values n, n−1, …, p+1, p. The loop body is never evaluated if n < p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression

try expr 
withpattern1->expr1 
|… 
|patternn->exprn

evaluates the expression expr and returns its value if the evaluation of expr does not raise any exception. If the evaluation of expr raises an exception, the exception value is matched against the patterns pattern1 to patternn. If the matching against patterni succeeds, the associated expression expri is evaluated, and its value becomes the value of the whole try expression. The evaluation of expri takes place in an environment enriched by the bindings performed during matching. If several patterns match the value of expr, the one that occurs first in the try expression is selected. If none of the patterns matches the value of expr, the exception value is raised again, thereby transparently “passing through” the try construct.

7.7.4  Operations on data structures

Products

The expression expr1 ,,  exprn evaluates to the n-tuple of the values of expressions expr1 to exprn. The evaluation order of the subexpressions is not specified.

Variants

The expression constr  expr evaluates to the unary variant value whose constructor is constr, and whose argument is the value of expr. Similarly, the expression constr (  expr1 ,,  exprn ) evaluates to the n-ary variant value whose constructor is constr and whose arguments are the values of expr1, …,  exprn.

The expression constr ( expr1, …,  exprn) evaluates to the variant value whose constructor is constr, and whose arguments are the values of expr1 …  exprn.

For lists, some syntactic sugar is provided. The expression expr1 ::  expr2 stands for the constructor ( :: ) applied to the arguments ( expr1 ,  expr2 ), and therefore evaluates to the list whose head is the value of expr1 and whose tail is the value of expr2. The expression [ expr1 ;;  exprn ] is equivalent to expr1 ::::  exprn :: [], and therefore evaluates to the list whose elements are the values of expr1 to exprn.

Polymorphic variants

The expression `tag-name  expr evaluates to the polymorphic variant value whose tag is tag-name, and whose argument is the value of expr.

Records

The expression { field1  [= expr1] ;;  fieldn  [= exprn ]} evaluates to the record value { field1 = v1; …; fieldn = vn } where vi is the value of expri for i = 1,… , n. A single identifier fieldk stands for fieldk =  fieldk, and a qualified identifier module-path .  fieldk stands for module-path .  fieldk =  fieldk. The fields field1 to fieldn must all belong to the same record type; each field of this record type must appear exactly once in the record expression, though they can appear in any order. The order in which expr1 to exprn are evaluated is not specified. Optional type constraints can be added after each field { field1 :  typexpr1 =  expr1 ;;  fieldn :  typexprn =  exprn } to force the type of fieldk to be compatible with typexprk.

The expression { expr with  field1  [= expr1] ;;  fieldn  [= exprn] } builds a fresh record with fields field1 …  fieldn equal to expr1 …  exprn, and all other fields having the same value as in the record expr. In other terms, it returns a shallow copy of the record expr, except for the fields field1 …  fieldn, which are initialized to expr1 …  exprn. As previously, single identifier fieldk stands for fieldk =  fieldk, a qualified identifier module-path .  fieldk stands for module-path .  fieldk =  fieldk and it is possible to add an optional type constraint on each field being updated with { expr with  field1 :  typexpr1 =  expr1 ;;  fieldn :  typexprn =  exprn }.

The expression expr1 .  field evaluates expr1 to a record value, and returns the value associated to field in this record value.

The expression expr1 .  field <-  expr2 evaluates expr1 to a record value, which is then modified in-place by replacing the value associated to field in this record by the value of expr2. This operation is permitted only if field has been declared mutable in the definition of the record type. The whole expression expr1 .  field <-  expr2 evaluates to the unit value ().

Arrays

The expression [| expr1 ;;  exprn |] evaluates to a n-element array, whose elements are initialized with the values of expr1 to exprn respectively. The order in which these expressions are evaluated is unspecified.

The expression expr1 .(  expr2 ) returns the value of element number expr2 in the array denoted by expr1. The first element has number 0; the last element has number n−1, where n is the size of the array. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr1 .(  expr2 ) <-  expr3 modifies in-place the array denoted by expr1, replacing element number expr2 by the value of expr3. The exception Invalid_argument is raised if the access is out of bounds. The value of the whole expression is ().

Strings

The expression expr1 .[  expr2 ] returns the value of character number expr2 in the string denoted by expr1. The first character has number 0; the last character has number n−1, where n is the length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr1 .[  expr2 ] <-  expr3 modifies in-place the string denoted by expr1, replacing character number expr2 by the value of expr3. The exception Invalid_argument is raised if the access is out of bounds. The value of the whole expression is ().

Note: this possibility is offered only for backward compatibility with older versions of OCaml and will be removed in a future version. New code should use byte sequences and the Bytes.set function.

7.7.5  Operators

Symbols from the class infix-symbol, as well as the keywords *, +, -, -., =, !=, <, >, or, ||, &, &&, :=, mod, land, lor, lxor, lsl, lsr, and asr can appear in infix position (between two expressions). Symbols from the class prefix-symbol, as well as the keywords - and -. can appear in prefix position (in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as applications of functions bound to the names corresponding to the symbols. The expression prefix-symbol  expr is interpreted as the application ( prefix-symbol )  expr. Similarly, the expression expr1  infix-symbol  expr2 is interpreted as the application ( infix-symbol )  expr1  expr2.

The table below lists the symbols defined in the initial environment and their initial meaning. (See the description of the core library module Stdlib in chapter 25 for more details). Their meaning may be changed at any time using let ( infix-op )  name1  name2 =

Note: the operators &&, ||, and ~- are handled specially and it is not advisable to change their meaning.

The keywords - and -. can appear both as infix and prefix operators. When they appear as prefix operators, they are interpreted respectively as the functions (~-) and (~-.).

OperatorInitial meaning
+Integer addition.
- (infix)Integer subtraction.
~- - (prefix)Integer negation.
*Integer multiplication.
/Integer division. Raise Division_by_zero if second argument is zero.
modInteger modulus. Raise Division_by_zero if second argument is zero.
landBitwise logical “and” on integers.
lorBitwise logical “or” on integers.
lxorBitwise logical “exclusive or” on integers.
lslBitwise logical shift left on integers.
lsrBitwise logical shift right on integers.
asrBitwise arithmetic shift right on integers.
+.Floating-point addition.
-. (infix)Floating-point subtraction.
~-. -. (prefix)Floating-point negation.
*.Floating-point multiplication.
/.Floating-point division.
**Floating-point exponentiation.
@ List concatenation.
^ String concatenation.
! Dereferencing (return the current contents of a reference).
:=Reference assignment (update the reference given as first argument with the value of the second argument).
= Structural equality test.
<> Structural inequality test.
== Physical equality test.
!= Physical inequality test.
< Test “less than”.
<= Test “less than or equal”.
> Test “greater than”.
>= Test “greater than or equal”.
&& &Boolean conjunction.
|| orBoolean disjunction.

7.7.6  Objects

Object creation

When class-path evaluates to a class body, new class-path evaluates to a new object containing the instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting the same number of arguments and returning a new object of this class.

Immediate object creation

Creating directly an object through the object class-body end construct is operationally equivalent to defining locally a class class-name = object  class-body end —see sections 7.9.2 and following for the syntax of class-body— and immediately creating a single object from it by new class-name.

The typing of immediate objects is slightly different from explicitly defining a class in two respects. First, the inferred object type may contain free type variables. Second, since the class body of an immediate object will never be extended, its self type can be unified with a closed object type.

Method invocation

The expression expr #  method-name invokes the method method-name of the object denoted by expr.

If method-name is a polymorphic method, its type should be known at the invocation site. This is true for instance if expr is the name of a fresh object (let ident = new  class-path … ) or if there is a type constraint. Principality of the derivation can be checked in the -principal mode.

Accessing and modifying instance variables

The instance variables of a class are visible only in the body of the methods defined in the same class or a class that inherits from the class defining the instance variables. The expression inst-var-name evaluates to the value of the given instance variable. The expression inst-var-name <-  expr assigns the value of expr to the instance variable inst-var-name, which must be mutable. The whole expression inst-var-name <-  expr evaluates to ().

Object duplication

An object can be duplicated using the library function Oo.copy (see module Oo). Inside a method, the expression {< [inst-var-name  [= expr]  { ; inst-var-name  [= expr] }] >} returns a copy of self with the given instance variables replaced by the values of the associated expressions. A single instance variable name id stands for id =  id. Other instance variables have the same value in the returned object as in self.

7.7.7  Coercions

Expressions whose type contains object or polymorphic variant types can be explicitly coerced (weakened) to a supertype. The expression (expr :>  typexpr) coerces the expression expr to type typexpr. The expression (expr :  typexpr1 :>  typexpr2) coerces the expression expr from type typexpr1 to type typexpr2.

The former operator will sometimes fail to coerce an expression expr from a type typ1 to a type typ2 even if type typ1 is a subtype of type typ2: in the current implementation it only expands two levels of type abbreviations containing objects and/or polymorphic variants, keeping only recursion when it is explicit in the class type (for objects). As an exception to the above algorithm, if both the inferred type of expr and typ are ground (i.e. do not contain type variables), the former operator behaves as the latter one, taking the inferred type of expr as typ1. In case of failure with the former operator, the latter one should be used.

It is only possible to coerce an expression expr from type typ1 to type typ2, if the type of expr is an instance of typ1 (like for a type annotation), and typ1 is a subtype of typ2. The type of the coerced expression is an instance of typ2. If the types contain variables, they may be instantiated by the subtyping algorithm, but this is only done after determining whether typ1 is a potential subtype of typ2. This means that typing may fail during this latter unification step, even if some instance of typ1 is a subtype of some instance of typ2. In the following paragraphs we describe the subtyping relation used.

Object types

A fixed object type admits as subtype any object type that includes all its methods. The types of the methods shall be subtypes of those in the supertype. Namely,

< met1 :  typ1 ;;  metn :  typn >

is a supertype of

< met1 :  typ1 ;; metn :  typn ; metn+1 : typn+1 ;; metn+m : typn+m  [; ..] >

which may contain an ellipsis .. if every typi is a supertype of the corresponding typi.

A monomorphic method type can be a supertype of a polymorphic method type. Namely, if typ is an instance of typ′, then 'a1'an . typ′ is a subtype of typ.

Inside a class definition, newly defined types are not available for subtyping, as the type abbreviations are not yet completely defined. There is an exception for coercing self to the (exact) type of its class: this is allowed if the type of self does not appear in a contravariant position in the class type, i.e. if there are no binary methods.

Polymorphic variant types

A polymorphic variant type typ is a subtype of another polymorphic variant type typ′ if the upper bound of typ (i.e. the maximum set of constructors that may appear in an instance of typ) is included in the lower bound of typ′, and the types of arguments for the constructors of typ are subtypes of those in typ′. Namely,

[[<] `C1 of  typ1 || ` Cn of  typn ]

which may be a shrinkable type, is a subtype of

[[>] `C1 of  typ1 || `Cn of  typn | `Cn+1 of typn+1 || `Cn+m of typn+m ]

which may be an extensible type, if every typi is a subtype of typi.

Variance

Other types do not introduce new subtyping, but they may propagate the subtyping of their arguments. For instance, typ1 *  typ2 is a subtype of typ1 * typ2 when typ1 and typ2 are respectively subtypes of typ1 and typ2. For function types, the relation is more subtle: typ1 ->  typ2 is a subtype of typ1 -> typ2 if typ1 is a supertype of typ1 and typ2 is a subtype of typ2. For this reason, function types are covariant in their second argument (like tuples), but contravariant in their first argument. Mutable types, like array or ref are neither covariant nor contravariant, they are nonvariant, that is they do not propagate subtyping.

For user-defined types, the variance is automatically inferred: a parameter is covariant if it has only covariant occurrences, contravariant if it has only contravariant occurrences, variance-free if it has no occurrences, and nonvariant otherwise. A variance-free parameter may change freely through subtyping, it does not have to be a subtype or a supertype. For abstract and private types, the variance must be given explicitly (see section 7.8.1), otherwise the default is nonvariant. This is also the case for constrained arguments in type definitions.

7.7.8  Other

Assertion checking

OCaml supports the assert construct to check debugging assertions. The expression assert expr evaluates the expression expr and returns () if expr evaluates to true. If it evaluates to false the exception Assert_failure is raised with the source file name and the location of expr as arguments. Assertion checking can be turned off with the -noassert compiler option. In this case, expr is not evaluated at all.

As a special case, assert false is reduced to raise (Assert_failure ...), which gives it a polymorphic type. This means that it can be used in place of any expression (for example as a branch of any pattern-matching). It also means that the assert false “assertions” cannot be turned off by the -noassert option.

Lazy expressions

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation of expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation will be performed the first time the function Lazy.force is applied to the value v, returning the actual value of expr. Subsequent applications of Lazy.force to v do not evaluate expr again. Applications of Lazy.force may be implicit through pattern matching (see 7.6).

Local modules

The expression let module module-name =  module-expr in  expr locally binds the module expression module-expr to the identifier module-name during the evaluation of the expression expr. It then returns the value of expr. For example:

let remove_duplicates comparison_fun string_list = let module StringSet = Set.Make(struct type t = string let compare = comparison_fun end) in StringSet.elements (List.fold_right StringSet.add string_list StringSet.empty)
val remove_duplicates : (string -> string -> int) -> string list -> string list = <fun>

Local opens

The expressions let open module-path in  expr and module-path.( expr) are strictly equivalent. These constructions locally open the module referred to by the module path module-path in the respective scope of the expression expr.

When the body of a local open expression is delimited by [ ], [| |], or { }, the parentheses can be omitted. For expression, parentheses can also be omitted for {< >}. For example, module-path.[ expr] is equivalent to module-path.([ expr]), and module-path.[|  expr |] is equivalent to module-path.([|  expr |]).


Previous Up Next ocaml-doc-4.11/ocaml.html/foreword.html0000644000175000017500000000712713717225665017033 0ustar mehdimehdi Foreword Previous Up Next

Foreword

This manual documents the release 4.11 of the OCaml system. It is organized as follows.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one operating system are presented as shown below:

Unix:   This is material specific to the Unix family of operating systems, including Linux and macOS.
Windows:   This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright © 1996–2020 Institut National de Recherche en Informatique et en Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the distribution for licensing information.

The OCaml documentation and user’s manual is copyright © 2020 Institut National de Recherche en Informatique et en Automatique (INRIA).

The OCaml documentation and user's manual is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Availability

The complete OCaml distribution can be accessed via the ocaml.org website. This site contains a lot of additional information on OCaml.


Previous Up Next ocaml-doc-4.11/ocaml.html/modulealias.html0000644000175000017500000001703413717225665017501 0ustar mehdimehdi 8.8  Type-level module aliases Previous Up Next

8.8  Type-level module aliases

(Introduced in OCaml 4.02)

specification::= ...  
  module module-name =  module-path

The above specification, inside a signature, only matches a module definition equal to module-path. Conversely, a type-level module alias can be matched by itself, or by any supertype of the type of the module it references.

There are several restrictions on module-path:

  1. it should be of the form M0.M1...Mn (i.e. without functor applications);
  2. inside the body of a functor, M0 should not be one of the functor parameters;
  3. inside a recursive module definition, M0 should not be one of the recursively defined modules.

Such specifications are also inferred. Namely, when P is a path satisfying the above constraints,

module N = P

has type

module N = P

Type-level module aliases are used when checking module path equalities. That is, in a context where module name N is known to be an alias for P, not only these two module paths check as equal, but F (N) and F (P) are also recognized as equal. In the default compilation mode, this is the only difference with the previous approach of module aliases having just the same module type as the module they reference.

When the compiler flag -no-alias-deps is enabled, type-level module aliases are also exploited to avoid introducing dependencies between compilation units. Namely, a module alias referring to a module inside another compilation unit does not introduce a link-time dependency on that compilation unit, as long as it is not dereferenced; it still introduces a compile-time dependency if the interface needs to be read, i.e. if the module is a submodule of the compilation unit, or if some type components are referred to. Additionally, accessing a module alias introduces a link-time dependency on the compilation unit containing the module referenced by the alias, rather than the compilation unit containing the alias. Note that these differences in link-time behavior may be incompatible with the previous behavior, as some compilation units might not be extracted from libraries, and their side-effects ignored.

These weakened dependencies make possible to use module aliases in place of the -pack mechanism. Suppose that you have a library Mylib composed of modules A and B. Using -pack, one would issue the command line

ocamlc -pack a.cmo b.cmo -o mylib.cmo

and as a result obtain a Mylib compilation unit, containing physically A and B as submodules, and with no dependencies on their respective compilation units. Here is a concrete example of a possible alternative approach:

  1. Rename the files containing A and B to Mylib__A and Mylib__B.
  2. Create a packing interface Mylib.ml, containing the following lines.
    module A = Mylib__A
    module B = Mylib__B
    
  3. Compile Mylib.ml using -no-alias-deps, and the other files using -no-alias-deps and -open Mylib (the last one is equivalent to adding the line open! Mylib at the top of each file).
    ocamlc -c -no-alias-deps Mylib.ml
    ocamlc -c -no-alias-deps -open Mylib Mylib__*.mli Mylib__*.ml
    
  4. Finally, create a library containing all the compilation units, and export all the compiled interfaces.
    ocamlc -a Mylib*.cmo -o Mylib.cma
    

This approach lets you access A and B directly inside the library, and as Mylib.A and Mylib.B from outside. It also has the advantage that Mylib is no longer monolithic: if you use Mylib.A, only Mylib__A will be linked in, not Mylib__B.

Note the use of double underscores in Mylib__A and Mylib__B. These were chosen on purpose; the compiler uses the following heuristic when printing paths: given a path Lib__fooBar, if Lib.FooBar exists and is an alias for Lib__fooBar, then the compiler will always display Lib.FooBar instead of Lib__fooBar. This way the long Mylib__ names stay hidden and all the user sees is the nicer dot names. This is how the OCaml standard library is compiled.


Previous Up Next ocaml-doc-4.11/ocaml.html/fonts/0000755000175000017500000000000013654466302015433 5ustar mehdimehdiocaml-doc-4.11/ocaml.html/fonts/fira-sans-v8-latin-regular.ttf0000644000175000017500000015142013654466302023137 0ustar mehdimehdiGDEFj.GPOS\iGGSUBv<)OS/2]ЗWk`cmap#2l Lcvt b|H0fpgmvdnX gaspglyf߀*cthead z?f6hheak$hmtxz#g hlocadnd6maxpd name'VD2}xposti`cprepa{p{%1 @ *&0+!!!#"&556654&#"#"&5463#"&5463\n7i3-2 5&# ;"x4@35:- T!)!$  7 ,@) Jf`KaL  +!'!#3%344`xzkOh7"7"7~"7"7"7":@7Iee]`K]aL +%3!'!#!!!#3(Aa 8TLLLL=kd3 <@9 Je]`K]aL'!# +!#32'32654&#654&##3XᆪK6hU,4?FVihV,B%/$)./"04 4XWkqR $=3<dM,@)]`K]aL   $ +##332654&&#1M`x>`AĿLvmu'Y <@9e]`K ]aL   $ +###533654&&##3#3\\|x>`AFMĿ>F-vmu'Fd /@,e]`K]aL  +!3#!! LLLd"d"d~"d"d )@&e]`KaL  +3!!3#dn LK79A@>Je_hK_iL"%% +&&#"3275#'3#"&54663_/8%D.5Y8_]L7z kvQQ%':9}`M=pSdD '@$e`KaL  +!!#3!3__"_C Od@`KaL +#_O ")8"V5~"S"w @G`L +7'>53Y[.._`ffE*<0MdM +@(J`KaL   +#!#_uOpAd@`K^aL +!! Sd" 3+>(@%J~`KaL +!#&'##33\Y Z97b} dG@ J`KaL +!##3&&53GY| YIEuS6xdG""&7},@)_hK_iL& +#"&&5466332#IIWWIIVZdeYSrpTRqoUN7}"$7}"$7}"$7}~"$7}"$7}3'H@E%$ JH G_hK_iL  ' &*% +#"''7&&5466327&#4&'3.OIW$#O(GOIV%%O*dR**twpTz(voU},= cz7}"$7K&KPX@!e _hK_aLKPX@5e _hK ]`K]aK_iL@1e _hK]`K]aK_iLYY@$""&! +!!#"&&546632!!3#!$32654&#"KK"'P~HH~P(% &.1+DQbRT`_USa RqoU L&sHLJy)}d% 0@-e]`KaL   $ +###3654&##3yW_PWWQUSkjqn@SJBd% 4@1ee`KaL   $ +###33654&##3yW__VQVWQUS;lmtovBUMC75@2G~_hK_iL&% +$&&#"&&546632$32#"Z*>AV5;oL[4*V5@T?<\4Y:"#?<"-$ ZM4R.!@]`KaL +###5 _Q`QZ<@`K_iL## +%#"&5332653<9mLs}_HIJH`Ei;j3PPOQZ<"3Z<"3Z<~"3 Z<"3&!@J`KaL +#3&ffOJ! '@$ J`KaL  +##33!zw]oesOA^^ @ J`KaL +##33ElfϽlft1oB!#@ J`KaL +#3!`iXU!"; /@,J]`K]aL  +!!5!5U LXMQLP-%F@CJGg_kK_iL%$&##$' +$&&'#"&5463354&#"'63275#"3)2 5hNZyoQ68:TbT]\-E.-[@$&OXGTZ'80C$[TBRyl/0-!">-">-">-!">-D">-">-(/;K&PX@#2 J@#2  JYK&PX@*  g  e_kK _iL@4  g  e_kK_iK  _iLY@000;0:74/.%"##$$$" +!3267#"&'#"&5463354&#"'632632'4&#"367&55#"3L<&@#(Td?a$Z>O\|oQ68:TbTr+9ffo[>>q UCE.-WR7B2/4-XGTZ'80C$TTzNR,00<l/0_KPX@ J H@ J HYKPX@_kK_iL@_kKaK_iLY@% +#"'#763654&#"3j2^?S9 Q\9\E@;F5="R}EF: N"chk_R!&94@1J_kK_iL$$% +&&#"3267#"&54663NN$,5 @GFA4 *HYk{8gG:fdd_<:T~F9-?@<, -  Jgc_kL$%'$' +#"&'732654&&546632&&#"3267M0-F60!*/ Yd8gG/N$,5 @GFA4 *-/"04 4ZrT~F:fdd_<>`@JHKPX@_kK_aL@_kKaK_iLY@ (%# +#'#"&54663267&&#"3Q N0^i2^?Q=X<;%=C>:I(-}Q~GAO''"#fefd9+;@8#J Hg_iL+*'%&% +#"&&546632&&''7&'77654'&&#"3L:hD>e:-[A[8 92H?J4=U@F6?KE.yD:TS}E:pM>nDC?a'F K FJ/Ajc&''V\93@0 Je_kK_iL%%$" +!3267#"&546632'4&#"3L<&@#(Tdn{5cCip[>>q WR7B~RHzNR9!"K9"K9"K9!"K a@ JKPX@_bK]cKaL@g]cKaLY@# +3###5354632&#$ v\^^WN$9!-/%'IG8GHDS C+J8C@ - J8HKPX@8  ~~g  _kK]aK_eL@6  ~~ge  _kK_eLY@999C9B(+4#%5$ +##"'332#"&&5332654&##"&5467&&5466366732654#H4]l]$ ET5R-~yUc*S>9SG82SCE.+5]9>T7(9:569q *[Od +&B*MS#F7 %))%&9+0G35T/ qA56A?9u_-@* JH_kKaL# +#4&#"#763Q\+))@\\>^VKm8.0, UL "T_@cKaL +#\!"T#3"TQ/"TML "T!"T-, "[, @GcL +7'>53$E>'*\ IX7C#?7_ '@$JHcKaL   +##7\n Z %@" J H_iL ' +&57327#;\!( =7{ |@Zj"] 3+_Y@  JKPX@_cKaL@cK_kKaLY@""" +#4#"#4#"#3632663N\J'6\J(6\O;]1EK3WJmf-0mf./MY2-.1_M JKPX@_cKaL@cK_kKaLY@ # +#4&#"#3663Q\*)*@\OS2VKm8.0-N*0(] !KPX@ J@ JYKPX@_bK_cKaLKPX@"_bKcK_kKaL@ ecK_kKaLYY@!   +#7&5463#4&#"#3663! )5"Q\*)*@\OS2  Vt VKm8.0-N*0_"`9 ,@)_kK_iL % +#"&546633254#{8jIo|8jJR}ER}EJ9!"c9 "c9"c9"c9!"c9~&F@C$# JH G_kK_iL&%*% +#"''7&&5466327&#54&'398jI'K*6:8jJ'K*0|{}VR}E{!~UR}Ez~+ʁ-umCT9"c9`$,F@C  Je_kK _iL%%%,%+#%"%"$" +!3267#"'#"&546632632'4&#"354#"3`L<&@#(Td}<>zo|8jJ~;;sfn[=:v WR7BmmR}EjjzNR_+h@ J GKPX@_cK_iL@cK_kK_iLY@$ +#"'366354#"3^lcX2\OR-`w'@<$|< G(+$.$!_+B@? J H G_kK_iL$ +#"'766354#"3^lcX2\\N,`w'@<$|< %'$.$!>+KPX@JG@JGYKPX@_kK_iL@cK_kK_iLY@%% +'#"&546632767&&#"3\M/^i2^?T@e<;%=C>: '+}Q~GG;.''"#fefd_xeKPX@ JH@  JYKPX@_cKaL@cK_kKaLY@ # +&#"#3663`1<\O H0ZHLk;<%4@1J_kK_iL%$#*% +&&#"#"'732654&&'&&54663$V''$A$-41@XWyWxO1CQ4=64TK1W6:% $LBNRE83+%!J9)C%_)3KPX@ J@ JYKPX@_bK_iLKPX@_bKaK_iL@gaK_iLYY@32/.,* +#"'732654&'&&54676654&#"#463_Q," "#&/"1R/;+(*3/.+-5(l\i`&A()0"*D04O+@ 41-8!4(!&$%'do i.@+J H]cK_iL#! +%#"&5#53573#327i4BCK\\\} s"'$MI>Gw G)%ZEJKPX@cK`aL@cKaK`iLY## +!#'#"&533273ON8EN\&+M7\R1-TMz6-[xZ!"sZ"sZ"sZ!"s !@JcKaL +#3odC '@$ JcKaL  +##33x}\_z{\_hgc`D11 @ JcKaL +#'#'373)ohlnoh +@ JGcKaL +'>7#332og 4>%b_\k H "5-4 +!"{ +"{ /@,J]cK]aL  +!!5#5 FME|N d@ JKPX@_bK]cKaL@g]cKaLY@$ +&#"!####535463>E# 4;5(&\\TTZ\@&(F8GEFT <$@$JKPX@"_bK]cK_iLKPX@&_bK]cKaK_iL@$g]cKaK_iLYY@ &#%! +%#"&5&&#"3###53546327327<%)364 1' v\TTYU"7![;9+ $(IG8GHER A%)@JK PX@'g g_K]LK PX@%gg g]LKPX@'g g_K]L@%gg g]LYYY@)('&%$!+## +54&#"'632&&'#"&546375#"3!!9(+1@NH#+ A(?Ic[!0j"x ' >=C7@D5PH M8 K PX@ g_K]LK PX@gg]LKPX@ g_K]L@gg]LYYY@    $ +#"&54633254&#5!Weg[\fh[dcc11xob_rpa_rEHDMM_+-@* JGOK_UL"( +$&&'5#"&'33273V G+#- [\OP1\PP ' *8<.j Y`l7 LK1PX@_`K_iL@g_iLY@   $ +#"&546332654&#qqooqqoA??A@@@@I#C9JKPX@ `KaL@ ]aLY@  +#'7C\(c;_AQ@  JK1PX@_`K]aL@g]aLY@ ' +!!5>54&#"'663 [27rt- up0<2)>#<)d>0S4=ptMI`74;"'032)h@'&JK1PX@g_`K_iL@gg_iLY@)($!$%, +#"&'732654&##732654&#"'63Y/G;CT8hD=f&7!E)?HDA2 "4E<3'A"0Uj.N.=OTH:^5--3" G8/7 7O(2@/J He]aL +%##5!5373WYMPIB gm@ JKPX@%~g]`K_iL@#~eg_iLY@ $%%" +!632#"&'732654&#"#!38Vh:iE=`)6 D+@IB8,HjUqcBg9+*5 PIIB Q7#o@ JK1PX@g_`K_iL@gg_iLY@#"#%& +#"&546632&#"63654#"3gT29a;ul=rNL>$/8HT>c>l,J?B0`EGm;m[)=tXXK1+nhB@ JGKPX@ ]`L@U]MY@  +'!5TE@K-'5V@ /! JK1PX@_`K_iL@g_iLY@(((5(4'&,$ +#"&&5467&&546632&6654&#654&&''3;jCDh9CA539]54]:8:=;A-(;6=I>820H>.{7W10V7>TM46N(&M62H6202:*/8@5$1% I67=- ]@  JGK1PX@c_`L@gW_OY@ , +'667#"&&5466376&#"3mnJN14T1:a;E6;@;@<3yc&E&l$,5aADd5SoaNHFG.b *@'g_BL   $ +#"&546332654&#NNLLNNL&##&&$$&oiippiio;HUVHHVVGA!@J];L +#'7Mb"_R95S7X.@+ Jg];L' +3!5>54&#"'63K!JHTH$&17UD4"?PA>:QM6"&D4\%C@@#" Jgg_BL%$$!$#* +#"'732654&##732654&#"'63I.(,8UHW4-&4%+)'"  ($*(:L<-&2 4.7I<*)&!$8!,4*e2@/J He];L +%##5#5373e5LBqjD<``6ii4\>@;  J~eg_BL##$" +#632#"'732654#"#53A!"8EXHP8.%3&,H9ghH>AP:+(+)N1_F@C Jgg_BL#$$ +#"&54632&#"63654#"3ES@PK^R5)!+3)< #?/""'H@BUk_i~1H@/1*Q-C<CM*@'JGU]M +'#5MG7T=*f!-2@/( Jg_BL"""-",! )# +$#"&5467&54632&6654&#654&''3fXGGV+)BR;;QHb#!$ !$*$/6*$I4ED4%4"@1<82;# !#!9"2^?@< JGgW_O, +'667#"&546376&#"3N5kZVZ14FV?(!&"&#WJUlA8G=J>@L-?6+')'.b 3+A!@J]:L +#'7Mb"_R95S7X-@* Ja_AL' +3!5>54&#"'63K!JHTH$&17UD4"?PA>:QM6"&D4\%D@A#" Jc_AK_<L%$$!$#* +#"'732654&##732654&#"'63I.(,8UHW4-&4%+)'"  ($*(:L<-&2 4.7I<*)&!$8!,4*e2@/J He]<L +##5#5373e5LBqjD<``6ii4\?@<  J~c]:K_CL##$" +#632#"'732654#"#53A!"8EXHP8.%3&,H9whH>AP:+(+)N1_ 3+CM$@!JG]:L +'#5MG7T=*f 3+2^ 3+ABB B3+7BXB B3+49\B B3+*BeB B3+Y+0+';j<Al"#Ay"#4y"#g*@  GKPXbLtY +''7'7'37hHONHgZ1!t54u!R=?i'0+O'}2| @W_O $ +#"&5463((((|())(2 @W_O $ +#"&5463@@00@@0A00@A00@2"p p3+&Z %@"JW]M  +6#7&&5463(CB( ((( (2##3,@)]`K_iL  +##"&5463 Q R((((5())(36 PK.PX@g]eL@gU]MY@   $ +#"&5463#(((() f )(()?KPX@(e  `K ]  cKaLK1PX@(  e ]  cKaL@&    feaLYY@ +#3##7##7#537#537337337#LCMNN@JAJNNCEEF2 @_iL $ +6#"&5463((((())((<@9J~_hK_iL('#!* +#546676654&#"'63#"&5463*W,& **[(!&$6/P;?T|((((+H)'7"1)-2+<$( )-H1c())() (;@8&%J~g`eL ( '$" $ +&54632#&&5466766553327#((((]W,( ))[(!&%6/P;?T|d())(+H)(7"/').*:#) )-H1c<S"<@]`L +3Kc&Z"p p3+i'0+'QNO'r&dD@U]M +D5!OOxD2@/JggW_O +"3"&554�3,$'(#,3dR''Rd%3- *3%GEP*"L$*PE-x)D8@5JggW_O +3"#52655467&&554R''Rd3,#('$,3DEP*$L"*PEG%3* -3%GA0(@%eU]M +#3#xx0ML20(@%eU]M +#53#5xx0\L Ms0+.54667.++.1'//'F~\\~F!9TnFFnT9s0+'6654&'7//'1.++.1TnFFnT9!F~\\~F!s 3+s 3+(oM 0+.546674=##=4:BG11GB%Mygf{L(^yooy^(oM0+'>54&&'7G11GB:4=##=4:yooy^(L{fgyM( `@U]M +5! NN `@U]M +5! NN<W`@U]M +5!<NN<W`@U]M +5!<NN7'"7'"7'0+'577&&?7'0+'7'n7?&(djk",n LJKPX@]bL@U_OY@  +&546773#2&546773#R& C<('& C<('% %% %(j'3+3+, <JKPX@ ]bL@U_OY@  +&546773#R& C<('% %( 3+(dk %@"JW]M  +6#7&5463& C<('k% %9f.@+ Ja]`L$& +%#5&&546753&&#"32678?PZfgZOA6,5 @GFA4 .- ss -:fdd_XS'j@!  JH GK1PX@c_kL@gW_OY@ '&+,% +'#"''7&547'76327654&#"3%L7N5CB4N5N$#M7N1CE4O5L%??<;??;6K7L #O7N5CA6P7P"!O7M4FHAAHI@AHe8,6@3JIg_iL'# +$#5&'732654&&'&&546753&&#"`UP{R6Hd?Q>:g_bPP0M#5"I+5C>9!," WJF^ %!: 1.'!.N<'%@JK1PX@) e  e_`K_iL@'g e  e_iLY@%$#"! $"%! +63267#"&'#735#736632&&#"!#3#PK'A$&H,gXFUJ_cS$&@({$ҐOP|w=Z>p{8?>Z=(!b@ JK1PX@e_`K]aL@ge]aLY@ %# +6!!5>55#5354632&&#"3##@ [#" BBdY7X$<6%15Й8MI /+uZ==Z>C'Y+JTGE -@*Ue]M  +3##5#535[[G[[EYAWWAYJF@U]M +753JAAJpF(/@,eU]M +75353J??y??JiGZ 3+JF 3+JF= 3+> '@$e]cL  +3##5#535#TLL>&s@U]M +5!>x&MMH 0+''7'7t8xx8x|8xx8x9x|8||8x|9}>#w'/'/3+3+>&__3+3+2s'0+'%%So!G'^J2s'0+%5!G!'LJ^>'ڰ3+3+#<dD@1JWg_O$#$ +D$&'&&#"'6323267#"+ '!82W* $ 7/W 6a [>i%@"U]M +#5!5Si܏M_+- &1@JGK1PX@)g  g _`K_iL@' gg  g_iLY@"'''1'0-+&%!( +'#"&54633254&##"&54633254&#e@1@[[HG[[G,%%,Q$-ZZHH[[H,%%,Q$-*D*\MM\\MM\>;954$&$%$$% +#"&'#"&546323254&&#"327#"&&5466375&#"3bda8? G6P]xb*J)""jLknXUr_a8c?ssЅ)!!&0.kk>),9xd~>3aOcoo_"GoΈyVKNQ+5D@A54%   JG_hK_iL 20 + * +67'#"&&5467&&54636654&#3267'dS.KB(V#6pBa+lFBe9FE2/_T)0&)342*P0M?/L#'F+;U'QXtQi6^//.U8>],0L0DWD0&$9'=%*/E,7>$$Z)R &@#G]`L  +#&&5463RSrSqor ? nXajF/@V@=4/ JK*PX@c_`L@gW_OY@ $"$# +$#"'732654&&'&&5467&&54632&&#"&6654&&'&'lWaG#A),835SH)$hSaJ#!@(-243SIL'8+$--# =CO2="@9$?1"CM6:#B5E3r$( *\y8cdD@X".#/J g ggW_O  8 720,*&$& +D#"&&54663326654&&#&#"3267#"&54663SSVVTTVHsBBsHGsBBsG&6#&()21*' 4CJZ,J-QZZPPZZQ4BxLLvBBvLLxBG/@B?@0.dZ,4cdD@X"J~ g  ge W _O42/-+)('&%$#& +D#"&&546636654&&#"36#'##323254&##uCCuGEtCCtE:[33[:8Z33Z8m$JC=9Nz6EvFFuDDuFFvE15^;;_66_;;^5' sjjT**7}8dD@-gW_O& +D&&546632#6654&#"3K..K++K..K+%22%%23$}&I11I&&J11I%>2//32//3'@t +#S's'0@-eU]M +##SSS'll(H'dD@Jt +D#'#7baH9(xk'@@= g eg_BL'&" "%# +##"&5466323267#5$6654&#xp dDvJ8U.iahJ(t/,Lpr\K+I.dm YTLB8gE L@'- 4dD@)W_O   $ +D#"&54632#"&5463!!!!!!!!!!!!!!!!a 'dD@W_O $ +D#"&5463B$$$$ $##$~!0+'!r1V~!0+'G)!MV1zdD@Gt +D'73''=(~z-qq-TpD 7dD@,gW_O   $ +D#"&546332654&#^@@22@@2D=--==--=2<dD@1 JWg_O%%$ +D&'&&#"'66323267#  87#88" (0  *, dD@U]M +D!5!E 8dD@-  JgW_O$% +D#"&'732654I{0-F60!*/;8/"04 4s ~ ,@)W_O   $ +#"&54632#"&5463!!!!!!!!~!!!!!!!!0+'k1O0+'F(MO1@Gt +'73'(='-nn-Q /@,gW_O   $ +#"&546332654&#^@@22@@2=--==--=24@1 JWg_O%%$ +&'&&#"'66323267#  87#88" (0  *,~!,,j c~~~3+,/^M~~3+ ~~3+l~~3+zjc~!,A 0+'H- /0+'H-//MpD l7^8I RRR Y8U9K)57q;5f O [ g s  H ] h t  %1=]%n@LXdp|Pp#/;GSw E#Xiu3V f>Y#2AP_q 2 D p !!!"Y"e""""# #Q#w#####$ $C$_${$$$$$$%%S%j%%%%&"&&'k'(&(.(Y(t((((())+)E)Z)q)))** *+(++,U,-X---. .g....//S///040E0V0q0001111&1/1=1K1Y1b1k1t1}111113DG_<. Rf# PP{  =======0`d0707dddddddw7d'd''''1Mddd >dd777777777EdEd7]d!ZZZZZ,:&&  - - - - - - -Q-R_99V>:9!9!9!9!9!9O J_L_L_%ZLZY_J_(J_H9H9H9H9H9H9H9H99R_R_V>_Q_i FZFZFZFZFZ    ? P A8L_.7#(7'- -.A74*41C*2.A74*41C*2A74*YAA4i2D22&2332<<&iBB-BAB2ssssD(D(  <<?767T7T7(,(,(( 90@(YJJJJJJ>>H>>22>#>L_:-FQZF*\C 7((a ,,,M ,M  YP.XKX^2< 'CTDB "  8,  /9~1S    " & : D t "" 0:1R    " & 9 D t ""T#L>=b1,*F !"$-/012389:;=>FGIKPQRSZ\]_`clnoprsxyz{~  #)%'+(*7456<.qB?@DACEHOLMNYUVWJbhdfjgiwtuv|m},kΰ, UXEY KQKSZX4(Y`f UX%acc#b!!YC#DC`B-, `f-, d P&Z( CEcEEX!%YR[X!#!X PPX!@Y 8PX!8YY  CEcEad(PX! CEcE 0PX!0Y PX f a PX` PX! ` 6PX!6``YYY+YY#PXeYY-, E %ad CPX#B#B!!Y`-,#!#! dbB #BEX CEc C`Ec*! C +0%&QX`PaRYX#Y!Y @SX+!@Y#PXeY-,C+C`B-,#B# #Babfc`*-, E Ccb PX@`Yfc`D`-, CEB*!C`B- ,C#DC`B- , E +#C%` E#a d PX!0PX @YY#PXeY%#aDD`- , E +#C%` E#a d$PX@Y#PXeY%#aDD`- , #B EX!#!Y*!- ,EdaD-,` CJPX #BY CJRX #BY-, bfc c#aC` ` #B#-,KTXdDY$ e#x-,KQXKSXdDY!Y$e#x-,CUXCaB+YC%B %B %B# %PXC`%B #a*!#a #a*!C`%B%a*!Y CG CG`b PX@`Yfc Ccb PX@`Yfc`#DC>C`B-,ETX#B E #B #`B `aBB`++"Y-,+-,+-,+-,+-,+-,+-,+-,+-,+-, +-),# bfc`KTX# .]!!Y-*,# bfc`KTX# .q!!Y-+,# bfc&`KTX# .r!!Y-, +ETX#B E #B #`B `aBB`++"Y-,+- ,+-!,+-",+-#,+-$,+-%,+-&,+-',+-(, +-,, <`--, `` C#`C%a`,*!-.,-+-*-/, G Ccb PX@`Yfc`#a8# UX G Ccb PX@`Yfc`#a8!Y-0,ETX/*EX0Y"Y-1, +ETX/*EX0Y"Y-2, 5`-3,Ecb PX@`Yfc+ Ccb PX@`Yfc+D>#82*!-4, < G Ccb PX@`Yfc`Ca8-5,.<-6, < G Ccb PX@`Yfc`CaCc8-7,% . G#B%IG#G#a Xb!Y#B6*-8,#B%%G#G#a C+e.# <8-9,#B%% .G#G#a #B C+ `PX @QX  &YBB# C #G#G#a#F`Cb PX@`Yfc` + a C`d#CadPXCaC`Y%b PX@`Yfca# &#Fa8#CF%CG#G#a` Cb PX@`Yfc`# +#C`+%a%b PX@`Yfc&a %`d#%`dPX!#!Y# &#Fa8Y-:,#B & .G#G#a#<8-;,#B #B F#G+#a8-<,#B%%G#G#aTX. <#!%%G#G#a %%G#G#a%%I%acc# Xb!Ycb PX@`Yfc`#.# <8#!Y-=,#B C .G#G#a ` `fb PX@`Yfc# <8->,# .F%FCXPRYX +-o,:+?+-p,:+@+-q,:+>+-r,:+?+-s,:+@+-t,;+..+-u,;+>+-v,;+?+-w,;+@+-x,;+>+-y,;+?+-z,;+@+-{,<+..+-|,<+>+-},<+?+-~,<+@+-,<+>+-,<+?+-,<+@+-,=+..+-,=+>+-,=+?+-,=+@+-,=+>+-,=+?+-,=+@+-, EX!#!YB+e$PxEX0Y-KRXYcpB@ kWC1*B@r^J8**B@|hTA1$*BA !@  *BA @@@@@@@ *D$QX@XdD&QX@cTXDYYYY@t`L:,  *DdDDaaII4>aaII4>ccJJ++ccJJ++ccJJ+ +ccJJ6+- +ccJJBZ!9 Z+f    6 "   . 4NDigitized data copyright 2012-2016, The Mozilla Foundation and Telefonica S.A.Fira SansRegular4.203;CTDB;FiraSans-RegularFira Sans RegularVersion 4.203FiraSans-Regularhttp://scripts.sil.org/OFL2$bc%&d'(e)*+,-./01f2g345678h9:;<=DikljnmEFoGHprsqIJKLtvwuMNOPQxRy{|z}STUVWX~YZ[\]      ! ?" B^`>@"#$% &'()*+,-./ !a0# _A123456789:;<=>?@ABCDEFGHCIJLdotOacute.loclPLK i.loclTRKuni0237ldot napostropheoacute.loclPLKuni03BC zero.dnomone.dnomtwo.dnom three.dnom four.dnom five.dnomsix.dnom seven.dnom eight.dnom nine.dnom zero.numrone.numrtwo.numr three.numr four.numr five.numrsix.numr seven.numr eight.numr nine.numruni00B9uni00B2uni00B3uni2074parenleft.dnomparenright.dnomparenleft.numrparenright.numruni00ADuni00A0Eurouni2215 plus.dnom minus.dnom equal.dnom plus.numr minus.numr equal.numruni00B5ampersand.ss03uni0308uni0307 gravecomb acutecombuni0302uni030A tildecombuni0304uni0327 uni0308.casegravecomb.caseacutecomb.case uni0302.case uni030A.casetildecomb.case acute.case cedilla.casecircumflex.case dieresis.case grave.case macron.case ring.case tilde.case acute.loclPLKacute.case.loclPLK Z\~ TvDFLTcyrl&grek2latn>kernkernkernkern*    (08@HPX`hpxB"X-/5>9V9:*:;D2x # V   u   !" Hp$         #  u    !"# 4 #    !$( u     " ! &&,2@F ./PJ J{  B   %%+      =;     !! "#$+ ,,-- ..// 00 1122378899::;<==%&&&&&&&&/333333333+,/<2;;;<;0/1/2223333333332/324/677777$8!$$$9++:#5)>>>>>>>>>>  = " >>?-.-.3A>>>****2('@@t8  + EFJOZZcm ~~EFJOZZcm~~O # $11228899;<==>E GO-QQ5UW YY aack-nn-pprrsw7xxyyzz{}~~1* /)  634",".4'(6+!+!""-0666&2 %` @8  2 2F<$$<0P!  // %/         >DGIPY \bn}+-.>DGHIIPPQQRR SSTTUWXXYY\\]^ _b nn oo pp qqrrswxxyyzz{} ;772 26/---6-"22////2/#2&* $4 ,++++++++++(.5(!% ++0 )+++/3'11  !  $,//11228899::;<==>EGOPPaa cknnpprrxx yy zz{} ~~  !  / %   / %   /$+ $     /   $,//1122378899::;<==>EGO PPQQTTUWYYZZ]]_`aa bbck llnn oopprr swxx yy zz{} ~~     !$( -  $,//1122378899 ::;<==>EGOPP QQTTUWYYZZ_`aabbckllnnoopprrswxxyyzz {}~~ *F(J # $L  #'   Pd 8 v5   t  t  @     M   (($,(//(112237)8899*::;<== >EGO/PP QQ-ZZ aa0ck/nn/pprrsw2xxyyzz{}~~ 3%1!44+ #0$& 4..0/ '4",+X "&   LDFLTcyrl0grekFlatn\ $0D %1E&2F4AFK FAZE ZCAT nCRT KAZ PLK TAT TRK '3G(4<H)5=I*6>J+7?K ,8@L !-9AM ".:BN #/;COPcaltcaltcaltcaltcaltcaltcaltcaltcaltcaltcaltcaltccmpccmpccmpccmpccmpccmpccmpccmpccmpccmpccmpccmpdnomdnomdnomdnomdnomdnomdnomdnomdnomdnomdnomdnomfracfracfracfracfracfracfracfracfracfracfracfracligaligaligaligaligaligaligaligaligaligaligaligalocllocllocllocllocl locl&locl,locl2numr8numr8numr8numr8numr8numr8numr8numr8numr8numr8numr8numr8   *L<PhL&e%d  $.]S a`P$  "4 S]P x4"   ffT= .$   ^]6T     $>Scocaml-doc-4.11/ocaml.html/fonts/fira-sans-v8-latin-regular.eot0000644000175000017500000006010313654466302023126 0ustar mehdimehdiC`o_ LP' GĀDFira SansRegularVersion 4.203"Fira Sans RegularBSGP0LVN`giSzwxy&U:476H8(b"`iZC)]K7]u7-A)FƨSO-Dei!KDm4D&E-XdNgHwoF V -6D!BFs}\Rygrȟ `7iAja֍pd?,\3.\> Ƽs\!9ri7[u`AuYfPbQ#1;;kE+⺀MG~mt-`!3͕i8`O|Ăk,<]́%}"ml-RqF@tLᕉܨ 0p"5<$XhT[ođ &bO`j' 4A>rH vT"tqϕZ3JIsn(EZ2>Ixg%\ lLT#eWY-Gv4ǢR;pLp 'AZN/ gNp r!-E0FF.ͮ9=CD-켙ő4JGNVI.GW4Q{Xc`kB7YGpSN8A=f:1uz DoaQ]C+<\G"t):F`T_$¿dr" cwcЂVH^.aʷ$*@"k .4aHZkaA}JH Jr,-Q¦oۦ:0SJ \ ʟ}2ED<3 ^%`T(5=ԝ&'@hhOP }ȼ+ZD7>g8+_<ݵ $ii9Θ XgĸDE_8Y88t xt1-](930gPƤن;eR'ħv\aa—Qc^]$]J] f}-X 4Si ?VAZsmNU­X֬ <: ? _#@! RGE$fC&5;!~mRI31Iߊn\'"EA:}#YT-,8L d̶|pvi>R=( īpLt tnCDhh[80 L;-)+VJnTDPA0=˸2!L'K[† &dL a^'fHI|h `!Pp`^@ޜWS@j @륤L?rHFZ ne%[Q-=Ka(HkpqBkڅ"+_Ѿ `ZS\ i RrD2'= 5r߬T@LDeU|*~5/A*MKm@<fn#YbQ-oA0[GE#ීSE˽by7">J G*# ;u]nY:qU5Utj#%Exlh{\TKqX\ ]꠵ !$ p,IA+\[HK= F1՜$#>JQMz0^0&gN6ɧL&7mp.OBm0qheVйA1("XE\?oBxXARG Y{p 6&j5܅"۫DB0 CLV@" @zlZiW#fqlqe.|pDr%c xz_fx P𷃭yNr.\~NlMYh}}=nķgݡ{@Rhx>>DHϢ7eFMFg4S%hf1'0Ηdb5 D'  mو*yh㉈`Y.ds&C HJp1 jb+?))e8;@i'BЂEی(&l S1FV#tѪ6<=X.y]2rkLs;`=4aj @v>-,#)³~A\U: h Z(yπg|a,d#oӊ,6[N>w}a-5^CZ*}6?6sAmA7Y.ގ / ]@2 .@@Gie"c>eUd>2m! :#4򱐷Ɩ/<C_ ~Y0mFdZg[Ӛr܎iQ֡\ ח!a)[h}Ai7TCaA%r8`|05}JD*#jҦat񓍞J (I4`2#2sb11VOMq5YE`, EYezկax:CЯ7Wx<+aSD@sl8,P] Ze.m{w4|6eJ*-GD%5]|UNr[E ^^c:=l"IA}&g篞-%Nֻ|"ojb!+(~<|؁P f+&es\8Me!q32ldC}H`IkVoMz bX]s)=e!:i[Te=[!"EU=Hl cq4]`)j0E`>'_ٸ֌e$k4%QJҐh)0?J@og!l'Fn*M,G{J}ZmZ[a[=ma=5Gɭ[Csq.:.\v&춵uVi\pYqWsrf_m$8 %3"<"xKx8n"n~Té.~-E8ĊVLeR4Y'dĩYf:A#)Ǭ)5F4ndڭZHQFsD8U 9+KV gȒV-ꓐdzYp?7I2l񬆰p%%h#2p)+ Ҩz^$gMHchfg͇M[ תGxfG,&DSk7dtO( ƏKv!c[؞ 0 DDzK":,Vk" rdSшMћpP f +jԄ9NX'? w4IJMX:j/@4?֚M+5 19F 1eR1gAJSl#( 8fG~`( Td3hdPK_`|aƘrmA$X!G' r1 yf *"ч4ՃI<]0R'9[p? P:؊<~]YHnJ $\{" @ p$,,Yi~S'-d15&Ã*1'CU U. ÀB48Tę#tR|L(ᢅk[k,‚ #8f"/B+Gڱ(EbA2ZN6ADCU3۸O" hh-1} (‚v P;$"jSEl"a)צs:6z{L'pMɜqJtj' j|H-@&0 TOW P hХqgڲ|sA fϻ݈JS@v+_ .i2 !Rl=c*aXnч#F$Xdr JȤ~% ɚ2C("CQ[r о\)lAIOBY6Y U ISC0Xs)*2wYP18 zN'P%NQt8  <{oqwF,OxF3M_r꾑aT.n*|`!)5E= ([#B/17yhZ;SDgC=sOZj'Hϵ Ñז4hMTsÃ;+ɋq2q.0v ڐ3f4C#{D9ԟ5rB-*0.q P>Rhvik4M~5C)C&=e/pC6\_% a;dCpHpHO!qm${=%Qh!y#̝qj "Ql6v v ;)tX gѭp`iuЩ3~Gv} RV"8V8;+ޘ-Je)(r*}VHr#f )3/$/Fg(`;8 [ q \ e:8Lg B%=G@1"\l㺨L:`f2B3ˁeȢFX/f凌)Mh⨫Ȩ"|Sȉd iS;A?&X?ـfЯژ:LmyB(0x T:m'Hȝў*D6,CIk޵;3֘{Ó8SZbl9`FgG3ȈMD/ ^O>cцhj"Tc<ʪzv*`ǘoﲜCOepL1h).D +g<7!bB\#pzOFB\:ċhYAzHb _(9pwc_v^D~T;%F BZZR[Tܙ2x uzݩ8OR: z%H7$ OEQUd?Eη4Akn"ڞw~۠XJp4'1f0t3V/^1; ~`24}Y)Alz;' :$X0%2 %nmf \ ȣ2`P0QE҄[;QFxF%~=*C t zE؂F2tVN_&Q%jN&RH)V}q"ABNUGyX.O2)*V itbOZ0u$UP߆sGfp-AŮOzqé~H̯/3T&tFp%Pya$ϖ 1 ]bV JG< N ={ax7 ̮Zp}KkTjٛ8Wp8IB,,RБֈيVr)Ư&F7AH"W<٘v90-f0&U}a L)$-IҺXZmO.pj=O)ZRaB=3ŠSp[U3ﱚ'S?οݞ"()$o*6nbX’j) (M^qho)ލj"^a&_<#yphD9qAg`6 Gt W"R-BA.('*Kà9Ŋ2SFiHSa(\Rmay.}G@9T訅PcCqFq?G/((-H }+;Җ'b %t&N%a{Oygq4Y4dx\^T+NIPf&ai9D M9ph08F INY0\V;oβUȊ?!k&]?oQl*BM|1Mܣ 6lxܲp^Qi$ޟ8L]ap cF Ҹ Q~3(U [s%%UOo2gb5iR1}6ҐClׂfT3|cTkMFS+ʘGsMf㬇Msl*Ew)4$Z<gA/g%U 2YS{i#JRa'JHtxΧ:9Qn ͚RFǛXEE @N&}-l_7Z7xm7xhXxT J)8[> ݪGI8s-@QI&a[؊Lo&eILznM  *`Jx MB`ȁ)pS JV| JARP\M/ ؅^uSQ\(C͠#=l+AMm0))9=<`"b2IgbQGOD{d=,u˪`S"p x@ FGI8^]Y?1@rCO9j$ ߇06wQ5Eevc)HL%k2㢜t,xO`^]\)912ۢQw4C_Ȼn#d9ildvءչAªzT; 9g @Ëk hgAZ,XG{NEAAj!Ms!P:PpO*힋vNlfu+6J^$7#Q"w 'y-HEdHr)..0"u=0oa@5[L{qqpȲ@{XH<|#4j!a1ˢ,' qqcS8W M>2Th9q v4rg,`+vDL35x C5P{-S؜wssy{G"rjLPdH p9\nX2|q Dc,(x3RjRB蕶K7 Y ^D($rAȋK~*{J %nƢ*l9M!G <HQK6L4 Ilb87$"X6iV!{c>*/@6fm$|q gՌ7i7z)=*;{7e)et[8$pg 4;@)a FMa:<%k0ǎKAЭ2@m~pbֲG3|ˬ]ci \SzN>Ҧ+`cB 5p<,"x1"m(}k(",m-Hښm٩T\]m5&ԉ!?k`qmcg7!UPvxiЗ-NUj .}zJ5lYpF15<\1tPifXX0 #u4TS슖AHp< s,"ۤArFhp^4Jh$V[J2hT"tl nGHiZrWC\aU8HnƟ Ntc:rC&ݚH* 5r@yTpg*H|T ɧ՛*EG7KLI+@Q[YtY-!Mqm-cwΫYV-&4J8t>?)źS jV%K" ]N/[7ҲG)`wlGp<@A3ex )@vށY#,?u0OBZ[Qj`Jb>NߎjIdgua="ڲT?1<|%%la+y^}.*;;Օj:]P58XC Zv-r#Zv?=pAeR *Ym>A(e16>9:֤ (IaCC1ZV9m+6@Ya56ld!LƟ64E3S1+$(9/(s'w<ҥoR1, $8}& v%("^M @ԊR Aڈ$iyǟ耤}8ݪ%@K週"G uErZ%tˠ=!wM0$V2"~~Z^cS}rܗCi `Ht  Iffn0e@G-!uQDPQāϕU^0>`L9ʧ=~;,ZNv'*8q:~㍈bA`WW8rj|05|rjg)ЖGa\YZ vK5H$GEDxح%pLL^80AQV;|I|4BU 'ٷ}&o$5{E㉮Ep.nm0Ĵjn'xoީĨ}ag[f ߣ @FPB!<^ &ӑS8챒 _ *'!6 gb a=d)p;S4Yy馰h-!$[gqhD/+z=1^dUSd"ru, -QuS( q.S]df(e9cSXMA׻V52< HTId%3Qvsշe})VY*~XRrW|b|^T ~*:lHk3{9dv)(e#OJ Nf`$ ۸p p" el>y|H^5e|gu.UPqfe%jS#[e22caEm6P ?ώ&re8I?`Rq.d$`YxKEtb4`,fRhՎBCK]eS1~ 耚RpXd$Ȉf羦DxFqzf'%mjy!Whh@'4T3k Z'xd1? 6R?+usiX3KcGVLd ^m3'd+=aHO+NѤ>vV"È0e!tx!p;9s?g8d +ul32&O8t S#O9:-Lؓ^e h>隐A T) eL#1WBYRJ <':ƷZ V&CHżK2Vvҙ%aZBjij4* /BЮn4 1! 꾼j$Ԑz H|׍F h _V dj ;Jf)DY+eVlŌfW"1GN(}@|ACYAhk)5&A|s0) І p٠ G :bY~ HU Lg;X' Am  XFD &BCps }Xʶ:8Kr򿌳22-D686# n39uE7|Mt8!8qQܺ93tD #%8g(&t>1Z S|Hç=2.Lt\0l=C@h-(5# k)C'.P% 3#ADC-~,Vy2 X8{&3QX#T\~n~?RI\)3 ZɘG> =lhI|Z]% yp=SL~bv @H+;ICb)k5oIdYVJO^ST!wn҃=&oc,C)D,LyAH6v%rzwpaI^M`$ C;XFo9*T$G>Hdz ˱D!ഢ81^:ae^ y8'WR*Wn*RPq,,hwi bB ?}XzjءE6=[QSM b 7B`39x5|AE6:jd@n/z ɐr*RpjL{nE" xZk@ A+"{ޮ `R۲6Q`k_BGe# VH8P9b4M,?);fU<p[ #c2J8œ'މ:>x3Qȡ& Gė໊#>ފTQ\Գ0 Tid=tnB>H%[=iQIg^꥽ Z:)k龭161P?fLƏžd'L<`:IQa6A1VuQqNُbS-X`.r-^&x>I馫-t©yЫl|T xu"zC Z #片I [D;NYflP]UO!R$I20E0Ze-vʼIa_,;$^n4Ck :oX[jRsMg:_G%,PE_trYhE i+ê_EEWl[J&&29 Ejnww8'čؾ˺g2M '3y<8xjfFD eEU:mpaA2`GO 6 [eJ8VNM~nJŸv4J5؏/!I WQ4y)GoKѹw\ZL\N$l] #. aS*`O/I(U/DLaZuE [ Z`ޠuREwTk/;j!:vmF(|Oa<%?>=SĠz2EWhgZ\Q"7m`JR*c\kgy2mF2 "Gb7uF/~94k](A 5_(Ok~?ĪB1_Vbg?Xa5"(mb1(ߣ!dBA0*#  %|T#B;QJ)4BDz u3q,FqvV᎐6 ũ;LPxW+j#bi*s$`-d)KLQD@h*HMYnZ!4!MC*C$89sšj}Z|j>ҁn/!R'f7҇,3cS*QF{Z8}G:}dAׄtܕON$PqzqSF@XN2.p@>lB|;ORPO=<&y>k%H域7Դٔ=/q GחNhTh ,`6Ď&R0ma@L+ 8=@A vۚLyGW&&R[> X( Yy7"r0zullHxl3\T@E6% dY \&9"\z> Z^k呔]7%wVM*ޡ< ]m䠰*IO 0ke*Ԯań~C7!\!> ̄Q2ݩs +1bAt"z]b$x82Cg/@FCbq۩7`]0i*҃ŁPwYOl쯵2,hoV\Iߋ_ <#O{3>10ff&`pY{.g u2 IT;e&aLesW[!Z)*eM-8UHIK̕d?2ȍ ̂ sITCB H4RADI:==ڭNV5JEtR# jZڭeboG}'*cÁ>iV(F•8#i?>fqyë^ Bb' ?",(!2v I;bėivRvv!z^ʷMP)Hhc<}@`{BJ, B|8M. \ٷ nbuA13MP40:@v'kr@0 !t:̞5s.n؈& $*ڜ^fHY01]4G _uf8-X*ϓ92H|G_+ ,'~I5Yk4fez<]J$n xUͥUeH$F Y0JS3B Ap(l@"?9Վa3:J<X\SE̝ ""Q)'fBc* 8:kF c d_Kx Ll^ `*%(G?0t5Ct)w5eد&:[ ibn6CBi8s|+!>~e㓥 9hLR5`k0$5D1;$Du) s0&c ta# 5_\O@u0LL:\'3 "@Ҟ˟MƀMH@-3ҒQS4fWC㋐ĝ~|'2*&c5 : _=Z i&8@ONQrw C{)%ƛ%^eU9JL(Ljϋ;(RܠOfV=EP%6(9(9l ~쎎sۧX KckkJ:Mth!Ex ZF+B:&j$1Rƙ[᪐#MY>,Ud^K긐<4TS viMA8楃E5>Pdߜ$ ᤯ |otńqhbCgoHj;5,D(Ug#@.6&"UFa(#';`\@/,n)&޼I|8R#]bq8 Z{{F+~z+0L@~Xy9%1x-(z_h!#D̸Dhy$8w ʓQ0qyw(RO)Y<U7 !I[ nue. ;\#ZڱױM-0րJ=E~ϼ +SAf2L"'˝taTaG1z8EFo5)Z-5f/8"kR (&3^v۵#j`a:}ka7uٲ,O[%b4I#J37w>c]{*o4*C`&>*o 0YcW E8 K[`Q "IuI[$#9ɵKӶt€b*tտ:OCN=N4.7ag͆]!%'#MwZhvq/l$}g>=1C  kmvK)NOZ (sq oql4B땊 iQl޷aDY'hvp@mtW`UFD+ϩj'Gޭ v`Q- w O zcW):g)*d2g.O3 A33_`7O `2cy 5\#H=-IKTXN2 &0K Ƨ1mBX#Yb Wk@mYEo@ouDzk6PڒD^i"Sti-1n8kxN8B+<;eb-hgbwSAs@㪶gDB٧3zc444 7lv֒XP6I_>_ )rL *Q뼴K:ЅK61(͡ȵ@K6,kq3ѐIjg||&KzKa fHff#jp^/^$.9vT :,nݍ tÚ P4 '"Bp[sAJB<<%lDw3@ÒQ=(WvzF*} npG0HU` l5HlaT'ʝLj75ɘ(""hⶆmPF^E(`Nx(ARAqp#M ԺpQ31GKыzksAG递d̗}643yLa F xɈSmCч[2a &rB/,3&=P]d0ԀEI} P%ME\ +Pf!~|z y% B4Vںhi.! *EH,q}@ LF ުtj>qpD_1㲿-ː2KMbC8UٌOI@' ӱ #E,zV2H+Pz#0'x]t9< Ts]bhiR H3Tqdc!I$? ),Ӎ(L*yԫi2qʴQ<ô%=d4&2ݎa@iB]`ntQA5P6(Œݑww ]?grTUӀjT9=I.Yף%"!s-*NEGRH_>OVҮ#AA#ĥ-֐-ZVMQ} , 0 "24@GrpazƉ #b@|V ط"C2 Kg`:J) _|̇6¹ uU=4i Z7t o> PS+,ïIz-|6ȨJ?6Ҹ;]3@QU1} 4ͪrP( >aw2q&ײ S"B B[dxE+1b4~YC\FQQ2i2Ee,[wp{b3Hfz;Y (Tf\ xa9n+yd]\OO@ay詂"Èa4-4B&&O(Fn>܀&U0Sԋ qIOchJHbvz\$IV\mg"zb{?kVƉȆo$&pԢ5~l7ٚc1ʫAwѣ)n1qKcR$zDt-C/U3b^ŏoa&FҘ_$s桌z<_UG@A&$f"@ IK)(Nn^s]҅ ;!R)ؒDxXBU`xʾ((RZ[t /"% }M F-9먡QUHXkvc ԘPV nHQOMa5k?&SBli4ջu!9-jpDā4'v_:I08/3i¸w+apBb)m1ɤCNm />G'7 9ZAܷ&G3Wǥgb#x$0-u[z)l$8LGgr;M ΏWen  pa@uu}oX C̗`QȖ 6]ApEj X 6zKz nۦ ̩,hHw6&y?4U E TZ } Lz8\ClXDT)z&vUC`+NKSE1hscȡGa"j5ـҐ*{q&V7 mB[DHv1ue}y3/ǟS>؎G-ܖ0Qk`=mMHp̭;CbXjGvH71T?반=ҽA0LWFBx?z"}T:7Ϗ8/vXf8&~=cYVeeqzfd|褟KeoM8Q"KH% Gܺj k\ayA ,o8XeGWlղOpzGzc"zF@ =F=Ux\38. vV4V޸ZIqO@I#-& .Ch$BțQ(plfʢ#?HD-LȪ̫b_DbԤEUX1rrt<gC[a*]?ѥV/kPp,(Ă\I@@y@V3?PTR d)JturZFSYQꛍ"=e2p̡3 ߈1m:] - >@Dj|d] o BaxE_} o4;F!ުQ Hk"DP.^W8͵|lGaPbMRv8<䓱G2[ՍpY2shFcl$!_-ƓfFWhKrE^(Wꅴtx_j`Xz#B޹0Z2@pԥN~R*򉡕:>DhA.0n@ BHq6Ua>X1[֝v2!& cU7V,u1 _ ּ'.q3KNxqZY JpܓW?8#BlQ)$Qq X} ޹_4 Y$4 0 sweΐ#r̃1AB27Ɣwasj3OKX V N7HiP1jSl"k? X>~jA+䰤l:2J@:ocaml-doc-4.11/ocaml.html/fonts/fira-sans-v8-latin-regular.woff20000644000175000017500000005103013654466302023361 0ustar mehdimehdiwOF2RQ.z`L0  ` 66$h hc U:ZNlٽrmvc6Nqܐ!Pݪ"9kUTMˑ5gvc}59o϶Q{iK[z>;SĒ/DWтJ7U _[lj<.dhN6?#pSɑ9#ʣ|gņoE XMXОz);F$'/<{߫ݞCQh ʉF!Ckdo"RjY(]tgrI13;6@GO#"BCfh{:u Qך}&aOLFn:gtлAiz^4" !"PCQ>Ig?`Q0z GlWyP( !iAAHCݐ{׭1|] $=jɸ{g(F?YBJૹ"aXHU$*R2{ŖI-+lmy'[^[?nr6x|GkJ:Xs2@RƚnL?XW7yhgh 4C\Ze^޴: /»A3DK\' ݏb+`ՉR.eE4V wpG榈sk53πaoD^ɡjzzG418^'1 CX'Y門7߁aE %Y#M쁄aq5J.eFVYm6lmvm}83Y-34ڜ9o9BZ解kgc޶"6mC:}|Y2Ŭ@()>am6q#d`M Il#*駷Dw̻@gJPV1]IBPD/VPC1DE$銌:'Ռ셃&*vrȕ1=HE2;)ʞ}ҳA0A$Ms((͂g3kggN|vBEbcKQ[Üx bPC1pF@F2hƙ3R8NBw|C<qe@92Ёc;0Dx\\e BhB"^>u톜^"EB%w7HPo,r@7z5Bހlk]X(uP688k~2~zr3Nぱq$SK;rN#Ddp4S{kgq4^BK(8$mP".BXIH/ވN!hrLI'-M֏Mƨ3mmvWA'ִ\7vk6f̹<"^޶?qL ݇RUsU*n!tkw9ATJ9XF#dmؼ$eU0~[^Ѽ|1Ԣlm@8AO;y`pk#KH?g~x9s H`c43HFӰ KfRvn=f#r'$?OpcF{qm28%1(0ް"6XC~fH@)6 k5(r@iO<83`H%'oqhrK_}x㱥::"s6EpQL{6*eFl]ݧ کE=J?+F-0t*[n Ä(BTIc ?V5(zʠ&!H2[@"5AezI9` H {{(5nQpVc=[~zu m?~v]_ :Un%V }wFBAzŐ; x)"tHQ ɰBʈ1U,DtAa E|DJ!_ %KakK`V+Nađ$p+w{Ǟz,"\@[p$Dt n7:;ԛᣫV;G.=u3/{ptH>gyͽ &"`UqlڜKA`N0f7 &Z{)K |磄9/l,`RfV C>@vQ[]ڝ1G49d _#h],+:6^kD+IP fV<Tkcөo:QPvP+wHؕRY%EXU . VeA]u`!!pGiTAK)AkR[gY^pa56٩V>CXʬãx4!ԌP^)ІG{u*KԃNOz 0&ͭbK\R'2alD[2gkYnh[m%-^Ff'좴^ǭ☓(ٜ,s?2*받b܊Q',#%xϷ {~?# .ZfFvSp'6}޴5M3k˃Pr du8Xx6 .m‚yZe'9RE~nw3NؕCٻbB#[aBHVSyڙXbhfR|D]DTi $P#hy+VPIҝ z doйS[U .[WT6 ^_DׄMNѫRƶD uV2,"aU׫LgbeF]Zȧ^_ 7;f$|UUHP5h%iVr-ɑBtB1l%+HZ\pj}Ndqx:3I||T>g>tpn=>S'Ɛ:krE QlfWf6&+$r *sFf́@^$lv|C53 |b`Ԥt퍳Gv[^[iT*-F ~ =;cVC$! tYYb \ Ԣ.Є(MVb*#N|*~ŒHd( EJO'SNpvǻDAmHK.UŠG T1`fy|(tmwuDݹKnC+;)*V>tjUD&<[y$c4oiM-/9ǥCt;K莸0r/ST }i(mS^Y*aDjRGbF؇t)8gnr>0B0m͎ֆh[0!k$R^EZtP&>X"ӖG \K-Tr:^G5#A 7oz!~ `Aݭj8zKT*%{#]d9ş{AMbq4A-zriVNFY ]? H=+4 tߺ`t߂9o6ڞkD!"/nyVQQ- Qq(4 -2RnҐax h^g^ YmlcHE r;9|4.3BRAgyyD``ʡo]P8O%)E~Drp0Y)dM`qX,{ Qm/kmQnoxdyƺ1]~f 5\Lㇾ7 D!(Dc(D( Ѡocx$C*ïH#ct1W?PDdƴr{Z_ݽ:}ukM|qˆZ\iքXԪ SM!]`&UJ|PoUHt}‘k=T6 ~2:VBD~m-N sc]W1 L8.%p )4L ):bzۙk-iWmBy]SW~jZj +q"TU$h1pH຋< ,PN քP$8 NxYxc NL7_ !p%VR~%fw&"ﻁC^;(EGW71; "BBb0Xm01<9Ksbjbw({2-vFEDtĪ1LL/(MBp[Bh̆B= _AaIPª޾gM pq<}kTM1/]49H 2TP(S,%hIQHVnW jw>*`W,kk}4oz%cN苋Cv?.  |fn=Ży(%[(8Q= DB ̄Z$]~D*8+ߺ"ɥ(x0I{s7J-wY7YsmЂ55@>G:`lK}o]34ls5| ,䱭=Ю8g&hɦj}wuFb,GSgDKv=w t -Ty{.w:B@CфXKR׆ ?}/9ոBD{|8V(-|wPqq8BHg>bB+1 m\4Y*|ZŶ ͆?cC< !!up$AR)CG5m٪doK5M"3pqV)9@9:GYx" 0XdEINly~_t~zx81)fK+!('G7s7n&z!~1@ys@hͮ{E_-vYg'lfŤJqHC;GA$YTYmɒ!x1jnꩯZʑ@[uQgz詗㫐W䪛ߒrv;-IA]-2i+,6 CcDdt $" H%HITʪZjkƚ._BZ+T誛>+ZsDq5Պ {'\':Pt Ы)Dy_L,;e䤼;w~S3wKvEa<S`ٷQy?H:K[8! L}44(ߘ0rwcͻ~N]ݴUSᚲj o Q8?XdJVtRvw!_ k`WUi>"iyZUbN;ߥSU.ڔ:W.! E5sa|J3|ʛ2oYn3>dl9sFiB*ᴿBo>ؑkI2ie8=qjm0fyΔn1y2OL3W;7bT]bچ !d|rv>S(ĥ U6)DvL*"z5<}-'l{ke?zuxvsޫeT/u T=&fP1ģ cU\73[>V靷#xLHsbh24[B&x تջ@U{M)_DJH>݆{l8qRVbeW]hO՘Uס[q57z!G˺Z:g{u=d ل:͍M0jB{k֍d;ΩuspϪj:Ar.*ue^B6Ѻ2c]W[nFt(ʄ`fd]RCFuiek/쌕lch猀36԰Ϥmͥaig9 H3 hqztT&"R7F6u  Džk ܛŶ.tTYq? zdc+[Yv òeY NT#޼;{ .Q=*e7OGv|H?vݑ S! vcH.;K-cܭ;ˮjV&2+`%Xh)AXEB-%+ O~j,LVc!ry5J;*!@UՖԕd#NQV3A[Mv]5k&m*^eR1C.cϦ|5^+EkX6} 8>g6@s4^7\84\86\8`%@O {8CvQ5~T5 }7?F1`… a-(J$<4rvK0.$F@}AnTr@1s5{~OX獗/~a@@4+/A;'!8zR4;gcښ>s>rt`/cyxN=#ԛs`o\s챆4 'P^]`weGHM#+`pFc51l Ý5F(aͬh`曞~w&%"$k|:]îq4[~{=SCGz"9'tQeU7Q-K+RnE:#lI7ch%]@{Ԣp>ލp#outZF~8SmPĵQKTdRt7!f}8nknR߱/a(HqwW\NPe.-ט p&frCwa#V2F/xȅ[mno90`k\Bum9~?a,2}cŹgy+F%g3K!ebg;2lPoW+T'w90v. Q1ڹCi~GYsȪq]ɢOfam[ތt%]3Hf52Z],N76~#ϮN=q?jOXQ HݻeoƧ&`a8⨼ LO1Zf5߁XXCpQ 'ʵDbOgYGi:[-*Ђ;~Z Uu/[ۨ`B OGiR2.YVODd,dHZK2KGѨ0ӥ"Mk15`| sd:_Xc#>n.eBF~GeqEA'{4ddt?Wn ExNq3Oecu%mPVVP`˼Lj` ]1ClXH`2Q9"mpZ'cټ 6)oo+/ENīkS\|6/ @~G 5@I Rվm\tME_ȅKbZz _˾WT 'fGIL|$0(+xmy?7} OηKv uMJ^k0i='Hv'ܺĭE|rے'ݹ07ĶQD zrꬵq6@nՌ=[(+N΍9^Q{slUzI6 hbC[<eKآuNI g5?:MxQ RP]]μo`7dž%ϳq oϙ/?8u$k")]E>Rvc'1/AYuO1m0L3,ung-leymqڬ9NQH # bH={+a5;5evϪd?t_6/[99;"=Kpoͯ7x-xz/\^)us&%_P+U^Ԭ y^x[hZ15ָA'l-}}&( ^IC4]*/ъKrdgo%;.tGk!?xtvfw9<3A#m./VF%21X[gHU4Ybpx %ߢ֔TN%;T;Y }< A-ž.m7[k1* FOƽY<]uf0+~_ݝN^$[3HrXߦX׮ᔃ947/tu,Kr5 .53`\vVsY#ٿpA5Usr_$S"C.ߐ[1o }%,K6u,ܝt(rпkg|b4lv6^PȐ_v|WwAƃ *rS`:Zv{Μ 5MfpZbJK&`DU+Q0$&*E^mzqTSikXٟEr(*O+40>ba氅]dKaꞷ=o5b(۰PͷPelW= q [uhkEu}·L7ӪPH}IT8lؚ\QΓr;cɮNmU0VCO_AjKorߔ'gKLc+pV%̙ȼ$EC7ik<{כj\VTV3'Out+ҡ|tBcB#?j}s #]}5_k+Z+ JcLTe&R߾n/H8Z ~_y’wDH+D˽4WwC)TcRKrivB-Af;rCgP.3w1J5[rGY9 C ?#taΦD]xb)r3K.uxG <PTS.KЁZV%/#11D +4i/rwGu ~];[r ^s}`ƺKo.t9C/7!qUdmxo{^4\1 FThN7^M۞mMvY=ArI(_AlG7܋ddK-!1~ 4ל5!IHZh\i*zޢ)B"-9PSy  1:?Х{|}Ւ~5T_wOe4ѽAOeՑc3phhX//I%K'7RPkG'p yMcXآpDzH jW/ykL K H% QEjiyժV7z.V$HPȘj4[).po6CKӯOî_- x*6n&I5FV&!j-m 4WSۄ:+ƺnAD YK&nwR RfBHٹbUZcrq ,gr]zI/JxH;Z.,H8e:4\@(v_=n&K 3,l+^+Slc UJHYՙGPs3A(FvO -R5o?dF-%qGu 65WXMxQ ;5F@?rmSN%sl ^j/F'Ӡ"Sȩk/IԒؤlfJ7<% 9S7 {`8?[ HԤk6W[8^EdLtE4Khߡf&"_ѲJ+ؘKe%RY LM )r#KSEg.~d3(٭-RW,:8db]/}EqlM/KP//4em6V(y ߽QL\W 2MEE}a? y N'E6dϕo4\9kN ,y,`/~{,B1JIUZ@rR\,$cY'~qfD@1k@bދ$VrQTZ7'=\r=7G:~ī NW@w'ò3qP:<2lHLhgfz% X1/YiIqsě&2e*0pK7<0^:Է>-~#ϽEQ=mEmj5xѦwߡc,5 76~ZG??g%|62 XCcwht╽K ԯ!u|)Il9䆏J6DJ&F!nt1";ɖCeiҵ~C$ҰɕɸIyzSUz]7*LȠ B2Xn-kĀL7 bQѶx41`6U@bKFoL6 k:ژ4e,CiGN||„ߏ z4i2ƥ=OnS]nx̀o?K_='+?۶T ֒ ?$u˅:]㞺]/;EWլGŝj8=m}tUɪs:=!GV} Gw F'n66O[p" G*sA8:z(1=݂ PZzc>,JOGXk?|R0Kb: 'g+^o‹MY1&^sNw4X z$[B5| uP&g_jo]?=]KRMH:6}qO?>mh s m'tzkKԑ B]y㣾U;ܵ5= ,EEl28SӞpL&L+U-Px6XQT=]YsYjC,&4% $4}i[/*AKiIP[oEs'Or2ODZ_6?V4VCy<%G,Ggu;NK̼?"ve:?3Ynؘ7ZXX2Y/ʺ1 @zh\JI(t.[HkI]JyZ-RnPwDf3fSsqvyGok;~a6F(.'f(*a(#)F"ݾh4mn̵֠3#Y^+7wŎ;Qx6"EC IZ\d: dZ.AKqOҴy(b|\=yzVAY8͎H 77(ni"P(08ײ>{)vQZ[piMr $IAhG*5x)SK1m!2<2vKx8?ueyYGLwqy}ܸ~,</tP߾?h+,Y[4ZRKBO-Fe "EcjрZX$W~i}URd1[= Β补b,SgNؿywwNp5-kKe4<D(eCfH&PkkrnQcQXpw^e7w{V$x%(.8 2E&px XYLX7&T`pӖ8,'KC8.Ucvgp#\6U3T>Lu2=n|#q04':Ota-ɵ$B#4eթhz:6_P];.ȴۊqw+&&BǶo}. KJҭ_i(g@7qp_m^tuam4|絍5 Y'~聳RbfXE{85'B F)4.\gm ]A<`onM * C : kNf@VXdrZ 먆䨽h{$cIBsUl"RIqO y3'\9SEBOpA({%8g Wzܴ<WothS#d#30nU뉕Ue \^w b k$8a7UBC3 G;5ų(qy8j{VȀ5v9FNJ&n}&NvoŊt|Zd\ʂ\ !SjŁU@(ԲR rN}'n/pÃ0clB@ Xwpkh EXv3`!))%&08E1[kdԩP{/w\ÔmAa.kQ QkFW aDj^VҠ4E+CZ4X^1n 8`u#W 3}k8^LVN]YK*o8m _FL߄*7+d0W3E lOQ6͈ҨаjXHP/_T]kz`Vu2yԄEb .rՑe9.\eVL>T8b f)i4Ajt k'+Q]r|EESUXBe6b\S8HCW (ŽOЂOfy&V\"2+"4kО>ujZp ۟:9I8eg..>VyrK0+2kt(uIԡAo_w J빤6"艈\_$E_GZ[7&h qBIEN7h{[%E !xwXP~>#a̹X go?l@a5"S*zv^.o6 kȞD]cF(|^sBݧ Bmf4c:YEnZr6O/cZ9( F]oaow̅IP6W @=_}N`x*ڦ.68u GIx2y.M<,o!Z!?̃tK.KT⠐2a78=T(ɕSlV0*;",afʸYD( ^Ti<[M&fC.+)21&!\.a"̒+j~ωe7}tLC jR&Dx$;'} O~>Rps& bot9[qw%T?[WJ&4'̣ƖłW9DW]eX1^՚!'9EB%5A&5VbcXVc bg>F}+ZUǫl9fVSAK=\tr'D.x̢@ja4DZ>]GgZ"N#EYG2:@(˞$q|v;Ғ.ݕĽKmHqI"U*~Z-x 4܎f?R+!`ѕbXv2hZsu2GGCrm xp=x/}Pϫ:aYAUB;2YcttSwJ֘"-8:YfM=RNsbK:(JLx##<}I|uo=Ybvct#,\_Rs`0 a$Tp )DO[N暻V >c]XCyn^Ҫ-X(6yX/{/:3L<aU`i\gDMln6;qe6YQ5[*MҠTԵC9eҋyL|h*hCkN{]Uτ'h5Kղ'B GN#@a'D[uh@ }ʬGzcr.hM 6QJkㇼB8^a)S Mz>^se۳]6ep9R)*,JqvUMh }O\dBx~d+=}BX2Jm:8O*;RڙXpkP>;$ezW>0´\U4e.8;;W__RuGihP p:?q%A(&dpXdEF>, )!- lAɳmdykL_SFp@w 1VMnN\da8IMlnʳs&@P383>!,8vm0zMguv lk:ta:B(7gϬ8>Ams?KӦ_ASeҥ`eqB#+R5m~Qe͹ ǜu);$q'Tܖ e ([0h1,r0RV˙x"a5 Ħědp0/:@U ߢI櫄Dav=hl)2d¿lKǥ㏄Y S`̗*R~UE 2z uwؕa1z VjL(KOe2?yL (̓exD5ys5Ɨan|̎wNqB+ ?bIt&GVuŇ@(!d)cQPubV.;u䂈OJH4Rhp] `v2<"x6{4G&b MHv䣇WJ]9{iͰu72aGq g3pU>!tk7P C!yτ [Hp~<  GewXWۯ"%c;-k>x_g_Kd(Ì[뢸KrOS—vȎε: !,g1\/% U]"E G&-,pC΁;Bl4 T#ihth JջW&V?ٚ"~qJ۔Yu:bwYI*kЗz*frD`Δ M7lr?TK{[ ]?UxS ?-Oun-%.&@@[?Jpl(2kv轤󶘭Va%>+ UXWb80C2+bSp uR;`[R)4k.4!l$[Jms!\\(`3,rrSrȨ4%X0F|+ Ty- `bSe󬑌`pr\>+'WA!5Ou2wQo+ >%_$= STsUJj`eK,]xj1x2 !Du*3/bHpeJ2 %}8غY^=fKs[r"dF?VɽLafZ2%X叉-ܞVLIWR'P٦I3egK XTgpXK UMlD-j3mLrہοaϳߏO2YFiֳ[WdV\ 0$Ռ|26 hgr"7$LlI{N"}:OI4ksbPI]H!k(O tQO4go'fհEA/ej+ \Wեtx2+E*R e`y)ЙOlj: 8*j R%` NeuӍ EEG)||X~Ag%|  3e@N:.Z֙ Kp/9"D팳9˗8߅eA%H䊫J],E4Lm^; TATQg:jn'NzY=3I[,F P#DS 0P̈́4tAs -QmQc 8633DVTqP㋿͔L$V#-F[3\06DVgjd{1qjZ#E5>bF"^xMy\X|&Dd``1)xGFCFUNJ*F"e(i`WDƾxH#F$S=س`?|QIyk4Cx| 17| 'NgXKQ֞lVFӞ·N_O-U ݚn8ep#Ż?J &ÿT{dŘJFkOUF׺X@[p-n)43JU]Cŝ|E] #por'ZT ocaml-doc-4.11/ocaml.html/fonts/fira-sans-v8-latin-regular.woff0000644000175000017500000006160013654466302023303 0ustar mehdimehdiwOFFcGDEF+.jGPOShG\iGSUBv<)OS/2U`]ЗWcmap8L#2cvt v0bfpgmH vdgasp!\glyf!d8ct߀*headZ66 z?hheaZ@ $hmtxZ`hz#loca\t36dnmaxp^ name^'VD2post_ciprepbax=RaF-Gx|ED7ۑ @!xԙt[G?K '27eff8T^233ʭRެW7Pd?ytf]ܙs* |C>W>6?}k_`_笭ϓI~+_`by $װ) I-L24L vc7>·_[(l״.L )´0yTzy7L89Lܡ>{5LC"9Sߢ.p9w*nu݊l;.BMɉoƭ4^F-rl]8+\]ǝZYlFy9iikژ3wHNFqr LDts]fu$i>Q^.k .쑋丂qہh"[mޥ>~ ,g$''bmZ/jY&$(u, *g|j7H(+ePLebOH)"gLV/6"X fd4Q0DTG1^M N%kZ"h=݊SNa- ׼Vzv.]FgE]-.c! b|${J(Iq졝o>atKWn {JKψEg^g]X_#I>r6enq۵koVI Q *˰޳U#IqMK %=]@9Nm$IFo6{&]iVhzG[D Tf&1FRc vb*s(U7.<"GIR# OX:u+I ~mÝ@ۙYnf1p:cB |1-7۩^3ql|k?}6*oOq_[W v֟uKMa e`A"OOY>JR8֘$]r~ q 'rŗ1MdX?ef=^{_Z~Haaj&g~-zB0׆,36PԹ|=hܤrWouFMqy[h~q+<`{FYImrJ_tmWvVmX#7~kqeݚRP*, Ah`s= ;҃j1dmǴX]5-+( YT [6kw-g_I 공((1R=[ [{?voEFl, *^kl$}\9fk %K7ũn/0[3>:KUg-/W^˥oi}v5V7nUX헖*^y*PAA%9fXn,KwXݦ; (S_HUݩigZ5۞>ڷkۧ·C{F4kC1([ښ2^K3o+>K+4"5Z e>x+W1x5b_`Jl&٭ւ}Jamd#Mh<-(VtϯҔ0QR8*3OKJsH~ZFm|OP! qʝ)Q>O--e,y$>X*듰>NZ$ I*o IlYj 5fjWa3'38h  #U0c*d&ma"&]~&υ&~!Xvys+ 9O؞Fj\ u QM4ns N)tr0]L_#OB yHؖG_}k)y^aG^: *t򺰳 vc0پڷ6w, ,_ !jaku"ߧgٟp5og%9-x{TղId'Lg܇~Y6Уn0}Ulӵ>c1Qn[5O%Rm%+b/R!7qjuK=l_&|/jmQ݀ @V55^i}^Z|n- + EͲeD🧡n؎uo@%Y/ܪj=[ֶm5C׻xضmvY5Sy7;̉ 3#r)~;'6cFչDlSHcg؝ ֱcwS]v{/'ݹDKzR/@:=1l1|{'r1徭#6ުqF׏|~}T')BՏ5_Ϛ_7msm 5> )ch,#KB_1eoKL56XY֯U`ͪ~c,8kgl@Ms lk ֺGGJjz7h+v4_uZo&'еjfMCsUݗ;i~IO6MY Zɓe9u1Y6IkS(W>ۂب9@S,g+SJA&v?U,z 'N6l0l{"ƾn2UYJ6=Xc!4I,!f5PJB++D,HdcC$ڬm;F5ڢ)>)S$QhHĢ%bфX4%m$gA@ND@G"F2"̜د Z+Pqڤ^:_rgCLj%c#'4: GWdpHZ;.Xۛ͘Ww>8s.{%]1ԋ%qbt{Dw!;#qAGZ:W0t z+=6@:dۋhחyv&1[mG.u?+6$oj"1z^U]LS@%:XJ T!T%T#Tב"m,։d2H9Y,R.ciQ61TuUmmGU#jnϩ]ښ9ښBiӐٌ%3LcS3L?5cUf\?76" <.9Թ:WQ\A[s:Oy uf ~`TSYH t5ڀ݉q-3e9}? ;1ן<>1-*t0P/ u8:G,+4pPǁ*ͩ}?K|]Fln7Qu"ثmj^hŤ^"Jq+Ĝ9*V8*F% Tb h*@ZC>Ї6BC }h34C}Ї1!ER>ݩPmVf>NwiwJ{kh֍,Zem7pOkGUhTOCF}ÁBe +YbJ;ie{)ƛV UR<33Kgxfxfg+33<333<3is?NM@6.w:1~-xߏRc%7nkL(FP#EԂĈBBRePi>%JQ~ͽ5[STF6E3BcЈw>a -qwݷ[r|;,<+puKO| %BJAFG?YY[yl=:\%TZYTVEUuS_C4NuEWG_ZQ's3C<2.87M6% %10LC1W%T2饑V:_~wşr&WgETH1U\)S^UWCMe4J3-UMw=^kkm;`k}`xc $'' ߙ@ T.6200{aCW(Pw1`c Yý u1:E100*{h TS$cxڬUvFm&)db{G^f6*hYpwɿ`?ͷ@v%]*VX͈׶ҝKNթ8"V^=R bc0Ň Ε/YAsɵfpm~:ڱӐx}&(NT'bOd ݤ qzCCb떧g,(l(ҬÃ(ly*U#b+b4Xc@rGc@)(=r#d3 uD[!l6{\5GT0UQXi?![{肫SwV{+j$/Ǒīy樣GM9˜Ewr5S3 Rl0%z 终R*䀎zhdRU 7x)x~}rĩ' `N = 4&iWaV_r߁!j#|U(m\?l25@V+;M^Ӈ?lk0OSN9ag#&oA{~T 0SjDeYFT=n)F_,կ|??4 l#c&Dg&+|d*D&:E~d.k1`kyA<:c?1~W3c>HD>D>u9 |"?>O14gPv(@(!Ȯ6 {.{x ]3ELkoZ|*ZcA|X0syg5/aEjg%VtpO@iUL{4&=~v+6x15^Xiy-^iKtB.` 3m *uniCͧ7sޅE.@OX.4Y "ĝsoscе\fwAx"hBIajTX>JLWRECrUQ=o׋f?恠NA܉;snIQ|ۖ9fXm ׎ M[#qzq^ 蝹>^8IU^x0m|2i>jd kxu^?g]2M}3ndZW D9dMd5SCOg]ŽOrEkBg6ĉ{lLMmpq}̄>c ~]iϟ_t?K!^ oMLkNL6¸a B}d0Ja 3Ì3S~w;WXRqnH0T&L 4`Ҁk!6(]VV栰.`mM![4#6 ء4 ܀'^l@Cyyywd̏J=⹱WQFI9H+h5Fhll;hKCZO<@ Oj=3Z -Ӓi-|ohWKZPH-qXYh+5JQdn޺>x|Y\Ti?1 w&$dq0g0DQpP[[^vwoowwwworܙ˻Թ= ÝkY\ X ˡ,!QJz=/9/?7/GVa`Kzg +LSQpgrT=0WTu _7X@EdP›q7?ڡw6GMN>3#[>=9q@H_7a2T!ѻJYnȼL"cEo!^IU\$>o۲UCL,[ko78~߆{ ѕ/Cuв\k IB6X,"ILbJ9"+C@% 0T~@YPF=FQ(ncBg`,:]ᬪ 펍7mRpGWzwX0^ 0m+xt)»2rcEl6M+AKTux[@Lεh^|7\Xq涁A?+XeGoN0$= 9d*˴>R|ny9@yuyUOOsmM~TRK < @y/RLM]K1Wl4$!l]|C/Hg @V dIqG rCėQՂxX?=EF,dUEoJ &QY(HMz 2q` LDa;JX6M@KR kCȟr7 KxCPQDd]΂ %>yndrsP<jš+#aAk6$i˷ֶ&{#;:|˩ec3?X{W~]׽f-[+|DA"s2*pi4Fi>k_WLIWpBN`q:hD> *WnW;2NYbFI<:RZ򛓻\uJYd Ĭ"WNdlBKe1<~W 7GP[~~JH@Ptq$i Cؼv.-$`{7\JؗL%4fb&.!,n*R^I*Vw߷a}۷;M><{W_6pAK44>/tՖL:cK= ~{30!; $)2<1*BE44 x>PS dP0J’H O-:~7Z—dmDLʠWUp+rBF޷ԅd6e[蛽v?V_Iޞٲ#TPY[@[`=*MG,⫰A fpwyX{&'3pح5-S MQ|~*j ERNυ[4-6Pѽ[g+86V4|YOONG8r'ٻoϯ޶q/a/%DxRNIM $ *jU~u<dj^l/s_"T%8* Joz.wf2fCQشKapVx>*- 1];"uyl;=dsRndm޽wN%'؛&]a%Θ#Ŝ'UQRA5*>R?1dȲRH!o$RȒTRlrKs^Up3?)twznsnm_03br4ngtsn}ȫ^3GΞǛs\"J\n+D2 rR2,@6tfJF;Њo߆΂󊂿"\Go?<"LR,ǘ 86QGM=Jˇҿ8ܡSq/#̻Rb0Y#^DV2EfL +(Đz8"JkkkcQhBjJ7?Ic)IU?I),u`ۏvOOn]wuW5DwߙY5[o?A4BC 1 Et|iځ]zz;WeVzeW^v>6蹱8plU{C @ِVm\|áYozݻoj[c ckoGu`{pÙ3̹qm97l Sp$#( qCxkƎ)%v+HZF8r8Rpp9(oh[hLCXLa!՜9Y^>\2{+`mE:z%y~_B` O'H :؏ _FE @]wra2V^2K 5wm7鎻4CN7Hw2÷{ZfI?5>tU; A|]!?BqhQ˭ f8gXlY%±0jgűY"=LfJ[w,Xq]+nM>eqG \:dr` &N+d"FA|suü|x[G9sI+lB$b q8C Rʸܼצͦ,=ef˥Dg^)}ܹ{ !3nXpWSUm3Xiv& IL2=3kԎUM3Vc؎zmo 9[77_*ߝd O%NY),GG;Vs琥tl>Zj3e"иyP_[(6o# -Tgd g u:_YU>kNXE>TH#w3m},{Vae ,I+q&]^&S,]Aj*=i-Gl3tAq)`+nY 5&j4l֫ù69ϗkH#>zBK"%pQvy#hf5scўvs2>>LӹbyuU}XgsUW[=>q < ԂHZIP ya V-T P(C5V5rf Id*5G)IWֻ&莮jl jXcC8bwj=S;7s@Xc5ަXؒG#iWm<[^Oωm>F' ; 0̆ l,[ 0!U\q^{}ܢĝJ9ܵ;;Sv@>ljU̔]zE~ ¦B,7YnH$!RrLMN#U^;l98 \'b~^7xb{eQnG9r [3A-ٹfz Ij*ض>n. +XtwM'!^rR,0߃w8o:;2<{_ZIKLu'>]}?[{j(-̔T v+JǨw*gtT]BNNEV[vo &zÙ,"Xs`{%JծXWkJ3+x`_F˲m:HͭWi?8:mLg3Ύ=5Bg7i7peC{ݾvX4w#Oߝ)ł(/~`8 "m0r`D+O9ܷS}̐\oR*ր X4jŠ cH *sH68ZQ>3}X̬M^_fZ Ԣ{xrrpbO)mh7VvdLŠH#! X[˨Z gP'gk BVP./ȩbFgYK΀y4ER X'n.X]/șB^T}z3]j/RFμXcrk9r ok["r ?Z$9Ռ3/#oˆ=`#Y((F),Ӕ V\X%saBoU$M2R9BNr%jp-یy#0Ƚ]؍ݬ`ܛkohKƱxKx{Ϳa^z6 ߚEr?vp_j;]=JÉ;_ZӝsQ|F05Oj엂x6pgz),)I09f(p:^p8A# s?J&D/.]wLzJ5*_ppnnԜ*C^ucboMҷ}OwBpppS&y=oG^q~Q>wKjY_4 wʷKj%K ,[%/ޓOSzՍ+P Bʡ\ dw &G Qb8,la ,^2$:Y:-Q_='y*Z@XZih(# 'fE l<)uSKCY3ؾ1y :v{I-iA_8@j=C?:1~h#6l1Wf5h5>No}}Q7 y]\IWqxƢo>YCi&! @Jv$8W;aVvB!Tw&}[!i&)C6](Ad< gbmqDpR Fљ /8OX}Z M m 5 ^f`U'bydq?BO! nS}25ۅRnQ 6y֠?[mp9|ddLNny<.bvFKPdqeMKe/ZWrLo51)ތ6"L0HTkAo̡Id % akt&e(m,˜&A +XW xc[WՊbBX2{W;з!7} %aIgfقP,A0);ra N;"<$<$) X' zcB/;f 0B aj\N @dmxl&jnB Z΅Esp L\,OF// M秆6h%h)WhՌ+u+ pCTlt:EI#{[.9\bÕwlσ&?gb{F`E5|Mud|s{!0u%!`{7nkC9nHJlv'l>*JUd21ԝw'WV⑂4ʽ?O˷;Ew.MU.z[@˫dm0|̊I#tjP X݀,kBm5&#`UB*gʯ.i Ԉ5jʫMG6:k|E2)("܁j=O >1jD )Jzq\t˺9~a . 'HTKЁ&ζR[lKֲM.(}o{gGUeADIQ ,| D~o2Vu!ש^G ?\~dѦH:PŃj"XBj2.+ +VkP!Q0,:V(EQ ^.G}IEqjؒm)2̗m&2R;pj4Mz=#hO_|,1{C:֕\ZvFwe3]Yo4C2t)rG (H!}KD-bU^7Xibu٭+;NoYiēp/'zm㱽;*jEkGޭߨyo>ײ:{! QƐYm=FZ@T7TjůPfTURB"@Tg/LH*|^U:\ԌOr>3I=JKN1SץlƵ ^&piW +ӾcuNr~7cljAP%EY> R0Zv0syfFh]GgKd!k(?'?#5̔6x[ץz۬I_4/=6,p4j۷z6j״$] s̰&M^J2߮BD~SY)u6: ͭǰL%nf6tqP`ñń{g{3?T,%S#=i!aaXdِD9@8Dh?dBIFmA:Ca طkrk4s{[Cla  Чc?h @&x 4#Dj>켦IAd={Km/Y'H{io;A\:8~. %!KN#+zx` ~xfOwZ:p#Q\ [\zz~_пrůWepNq6JP "4 O8 7ڸ55xU$d2_faL'襊praZ.͓X]aV'4˓z}E qv;Al $dB@I)> y^.ޱy|hdBgc'ExQ@*" ̖ Qjx-TTrRg1A4rySE#eܢhUU)bTlm~UvC,(gQT id[&ܼaCv ze7?[>mCzCɩ)vu56nh}?[χ,$g&MXB) Q !` %)aFRTw i ȻYA8WT$@3B'{^+2FC-:I{<вl !o&~vNa ⊹-۽k{?v7Wg:¡C_=romj gw|-';-s[ܩ7.t~=70}[rͅk^($+qR`YDW-/ըUJ ±g{47ՅBtAWToaɟҐ3$oƊuuP Orm-}͍&0oQq/n?rm;&W7 7N6-bm/ԘH_}O4HV;P,\T }_t:C/ jjv:{y ޵wqzH>5C- =XgQPP! W |vNUobW+=HY9 =SuI^g}$Ӵ50mI#Y grOc٠VcA+4ˇ&^Yx {ƚۍwYeZf}3\f2zjv;;WVkmuUE!d`5א/߁j! 3\uB!JE#]h $](PRM-q%R \ձUuTsS}ﭪrZ29DJ"0 n_0[ؚ5Ǐ>`Ph ߭<~+}e{nxF[V55l]߶H9PP,f4PJEr[W]͍0rz%/C =%AI҅i&$jiU==W 9ܷlC,aYz},>}1nm3isɹ\4u:nmݘ9kC!U x#?=iyNQ, 8HJFG_\SFJy/ 54 knc^<]һ1.?aK *=/ڇ4MwH=fg=ۖ${d҄锹qυ;y,dA"]@y [9P3 Aށ[nmY!_[@#"d2$DE25+QP w7J wzHeflT{Adx^/l=}z0=ҳ;7XՎ܋7ybޡWj֍pwzOU:#$9:xu[S!bT\ʱiL.$YPSwUZrU^V.+]t|froSN{vky<6s$G蜮k`teG f\#klZ: *piU `GS1`xg]#ȁqJOTMe K.S@1inW^muثH]Κ'( }Ҷ AM;Yo_&Tu ˛Y%ӵZ6<&A0ThiCMWV@L{eOȏ@:iqAWE&.gUԑ'?*0$hjo;>.Ů[xRekz1J )%oYW 8dep}ﱅ<~K8;:voYc#c2FG<*/` _{?NFZdJνS7{Hk%VoT_XZVJ;'9\Fz'dFEe^ *ڂhǼ(T]RP3Tx3S@^8B3 jl6h8t-I=mo)~2P^K2(@PbҖ.)Rwdo҈3{[Dx] ld2'GBe[S\T p\>3DG_<. Rf# PPxc`d``^;떿<#Y"(Q 9,xڍA7l۶mmAmvڱkmݾٞ˛1d&+@-n~"nx9mg RqkzϲʀD#~юzE̦lf/3b7Y^$sX9c8"T‘R#I734b[} ڐNh>y”M>T2z㈷jVX,\Ʊq̑pfUz]z].p곮˟ѐjH ;Oq<%HT)1/3qwfofOcqxG=6A&SnV9Zn!R!e]Lk/>\-GgU]r.yV!u1)^Sf"^<dxޓZVj Q'gK2X~(Sh&7Q}HD\Mi\ń̏yV_ZAWXMzP͡ym)敮kzS? LxtP]+Nbm۶ٶm۶m6:AP(hZ킎.<<`d59GnZMzt7z}Xy,¶ap(n9b"7ѕXC$ȍ=)IQۨCG2]nMw#)2-Ά.ÕptMutOqqpb`LA!3a5#"\ׂ p/*ZwRɞoIln`P 415=\+<1*"FZEGE EDgGEF !PT"4 8apQx,lb 7ߥ4_-ו[ yP>JU2K٭Q^+TQ-6VS zWZu6_[n>I>唡qØe4vǍ&c%zfWs9|SiNLQ'cnƶGqgu|I\~dUfYۭv]j?ڿX:@AP@{ 7^8I x,Ʊ@@=!DFB%kPT [/ʌF>,ZS=/?b͏8/(X{ݒd݈qwSeȐ2fq3qQL*H{ 8ch`h+;o{3C9p*5y3wj{KutQA)9;p-z=4V5 e`rz9[CF1o?{lHxdCtE'5mֶmۧm۶uhOg02p5@"NCM '<$(I$3e 8)&4 ׼a(o"rI c#hF2C?d,8-yD&3EL,hMYҖvb*&kf0`':҉, ]\1nt=Ezqlalp<'[^r"W]򔗼#|'(PA 2uӀb18qsva ![p%B(Ta {NqgEp\w8rۊdWR ٤h(VqWq/8O~Vքbȩ(RLJQҔ e*KQRE*VJUrUg%R5Bn"a ^*[H$ INBq%v*vD9[ZgoRŞry}~nEY3sQ-\N%ƺYb`ޟ<P\tAYh HxYhu2 [ %@dBt`D >ZZ]kYԫDc1NK5za-:;J6<|z:mG>H!Pj-^\%WJ2ՍiײKnъ$-͆=9XH4K}SЁ\Rygk{dRxo(iVn\Nvfxcp"(b##c_Ɲ  ؝8'g;23hmEq^Zr,P l5ll!l*L`a>'GN2s:~h 'PB( ! .U;#68tDldNq٨h``dqH)+vVv[7ndbp̚ĕ2ocaml-doc-4.11/ocaml.html/fonts/fira-sans-v8-latin-regular.svg0000644000175000017500000015061413654466302023145 0ustar mehdimehdi ocaml-doc-4.11/ocaml.html/alerts.html0000644000175000017500000001155313717225665016474 0ustar mehdimehdi 8.21  Alerts Previous Up Next

8.21  Alerts

(Introduced in 4.08)

Since OCaml 4.08, it is possible to mark components (such as value or type declarations) in signatures with “alerts” that will be reported when those components are referenced. This generalizes the notion of “deprecated” components which were previously reported as warning 3. Those alerts can be used for instance to report usage of unsafe features, or of features which are only available on some platforms, etc.

Alert categories are identified by a symbolic identifier (a lowercase identifier, following the usual lexical rules) and an optional message. The identifier is used to control which alerts are enabled, and which ones are turned into fatal errors. The message is reported to the user when the alert is triggered (i.e. when the marked component is referenced).

The ocaml.alert or alert attribute serves two purposes: (i) to mark component with an alert to be triggered when the component is referenced, and (ii) to control which alert names are enabled. In the first form, the attribute takes an identifier possibly followed by a message. Here is an example of a value declaration marked with an alert:

module U: sig
  val fork: unit -> bool
    [@@alert unix "This function is only available under Unix."]
end

Here unix is the identifier for the alert. If this alert category is enabled, any reference to U.fork will produce a message at compile time, which can be turned or not into a fatal error.

And here is another example as a floating attribute on top of an “.mli” file (i.e. before any other non-attribute item) or on top of an “.ml” file without a corresponding interface file, so that any reference to that unit will trigger the alert:

[@@@alert unsafe "This module is unsafe!"]

Controlling which alerts are enabled and whether they are turned into fatal errors is done either through the compiler’s command-line option -alert <spec> or locally in the code through the alert or ocaml.alert attribute taking a single string payload <spec>. In both cases, the syntax for <spec> is a concatenation of items of the form:

  • +id enables alert id.
  • -id disables alert id.
  • ++id turns alert id into a fatal error.
  • --id turns alert id into non-fatal mode.
  • @id equivalent to ++id+id (enables id and turns it into a fatal-error)

As a special case, if id is all, it stands for all alerts.

Here are some examples:

(* Disable all alerts, reenables just unix (as a soft alert) and window
   (as a fatal-error), for the rest of the current structure *)

[@@@alert "-all--all+unix@window"]
 ...

let x =
  (* Locally disable the window alert *)
  begin[@alert "-window"]
      ...
  end

Before OCaml 4.08, there was support for a single kind of deprecation alert. It is now known as the deprecated alert, but legacy attributes to trigger it and the legacy ways to control it as warning 3 are still supported. For instance, passing -w +3 on the command-line is equivant to -alert +deprecated, and:

val x: int
  [@@@ocaml.deprecated "Please do something else"]

is equivalent to:

val x: int
  [@@@ocaml.alert deprecated "Please do something else"]

Previous Up Next ocaml-doc-4.11/ocaml.html/typedecl.html0000644000175000017500000005206713717225665017020 0ustar mehdimehdi 7.8  Type and exception definitions Previous Up Next

7.8  Type and exception definitions

7.8.1  Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type abbreviations, or abstract data types. They also bind the value constructors and record fields associated with the definition.

type-definition::= type [nonrectypedef  { and typedef }  
 
typedef::= [type-params]  typeconstr-name  type-information  
 
type-information::= [type-equation]  [type-representation]  { type-constraint }  
 
type-equation::= = typexpr  
 
type-representation::= = [|constr-decl  { | constr-decl }  
  = record-decl  
  = |  
 
type-params::= type-param  
  ( type-param  { , type-param } )  
 
type-param::= [variance'  ident  
 
variance::= +  
  -  
 
record-decl::= { field-decl  { ; field-decl }  [;}  
 
constr-decl::= (constr-name ∣  [] ∣  (::)) [ of constr-args ]  
 
constr-args::= typexpr  { * typexpr }  
 
field-decl::= [mutablefield-name :  poly-typexpr  
 
type-constraint::= constraint ' ident =  typexpr

See also the following language extensions: private types, generalized algebraic datatypes, attributes, extension nodes, extensible variant types and inline records.

Type definitions are introduced by the type keyword, and consist in one or several simple definitions, possibly mutually recursive, separated by the and keyword. Each simple definition defines one type constructor.

A simple definition consists in a lowercase identifier, possibly preceded by one or several type parameters, and followed by an optional type equation, then an optional type representation, and then a constraint clause. The identifier is the name of the type constructor being defined.

In the right-hand side of type definitions, references to one of the type constructor name being defined are considered as recursive, unless type is followed by nonrec. The nonrec keyword was introduced in OCaml 4.02.2.

The optional type parameters are either one type variable ' ident, for type constructors with one parameter, or a list of type variables ('ident1,…,' identn), for type constructors with several parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating that the parameter is covariant (resp. contravariant). These type parameters can appear in the type expressions of the right-hand side of the definition, optionally restricted by a variance constraint ; i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely, follow the left branch of an even number of arrows), and a contravariant parameter only the left side (left branch of an odd number of arrows). If the type has a representation or an equation, and the parameter is free (i.e. not bound via a type constraint to a constructed type), its variance constraint is checked but subtyping etc. will use the inferred variance of the parameter, which may be less restrictive; otherwise (i.e. for abstract types or non-free parameters), the variance must be given explicitly, and the parameter is invariant if no variance is given.

The optional type equation = typexpr makes the defined type equivalent to the type expression typexpr: one can be substituted for the other during typing. If no type equation is given, a new type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record type). If no type representation is given, nothing is assumed on the structure of the type besides what is stated in the optional type equation.

The type representation = [|] constr-decl  { | constr-decl } describes a variant type. The constructor declarations constr-decl1, …,  constr-decln describe the constructors associated to this variant type. The constructor declaration constr-name of  typexpr1 **  typexprn declares the name constr-name as a non-constant constructor, whose arguments have types typexpr1typexprn. The constructor declaration constr-name declares the name constr-name as a constant constructor. Constructor names must be capitalized.

The type representation = { field-decl  { ; field-decl }  [;] } describes a record type. The field declarations field-decl1, …,  field-decln describe the fields associated to this record type. The field declaration field-name :  poly-typexpr declares field-name as a field whose argument has type poly-typexpr. The field declaration mutable field-name :  poly-typexpr behaves similarly; in addition, it allows physical modification of this field. Immutable fields are covariant, mutable fields are non-variant. Both mutable and immutable fields may have explicitly polymorphic types. The polymorphism of the contents is statically checked whenever a record value is created or modified. Extracted values may have their types instantiated.

The two components of a type definition, the optional equation and the optional representation, can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
 
When appearing in a module signature, this definition specifies nothing on the type constructor, besides its number of parameters: its representation is hidden and it is assumed incompatible with any other type.
Type abbreviation: an equation, no representation.
 
This defines the type constructor as an abbreviation for the type expression on the right of the = sign.
New variant type or record type: no equation, a representation.
 
This generates a new type constructor and defines associated constructors or fields, through which values of that type can be directly built or inspected.
Re-exported variant type or record type: an equation, a representation.
 
In this case, the type constructor is defined as an abbreviation for the type expression given in the equation, but in addition the constructors or fields given in the representation remain attached to the defined type constructor. The type expression in the equation part must agree with the representation: it must be of the same kind (record or variant) and have exactly the same constructors or fields, in the same order, with the same arguments. Moreover, the new type constructor must have the same arity and the same type constraints as the original type constructor.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate that the type constructor is covariant or contravariant with respect to this parameter. This variance information is used to decide subtyping relations when checking the validity of :> coercions (see section 7.7.7).

For instance, type +'a t declares t as an abstract type that is covariant in its parameter; this means that if the type τ is a subtype of the type σ, then τ t is a subtype of σ t. Similarly, type -'a t declares that the abstract type t is contravariant in its parameter: if τ is a subtype of σ, then σ t is a subtype of τ t. If no + or - variance annotation is given, the type constructor is assumed non-variant in the corresponding parameter. For instance, the abstract type declaration type 'a t means that τ t is neither a subtype nor a supertype of σ t if τ is subtype of σ.

The variance indicated by the + and - annotations on parameters is enforced only for abstract and private types, or when there are type constraints. Otherwise, for abbreviations, variant and record types without type constraints, the variance properties of the type constructor are inferred from its definition, and the variance annotations are only checked for conformance with the definition.

The construct constraint ' ident =  typexpr allows the specification of type parameters. Any actual type argument corresponding to the type parameter ident has to be an instance of typexpr (more precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type equation and the type declaration.

7.8.2  Exception definitions

exception-definition::= exception constr-decl  
  exception constr-name =  constr

Exception definitions add new constructors to the built-in variant type exn of exception values. The constructors are declared as for a definition of a variant type.

The form exception constr-decl generates a new exception, distinct from all other exceptions in the system. The form exception constr-name =  constr gives an alternate name to an existing exception.


Previous Up Next ocaml-doc-4.11/ocaml.html/afl-fuzz.html0000644000175000017500000001044513717225665016737 0ustar mehdimehdi Chapter 23  Fuzzing with afl-fuzz Previous Up Next

Chapter 23  Fuzzing with afl-fuzz

23.1  Overview

American fuzzy lop (“afl-fuzz”) is a fuzzer, a tool for testing software by providing randomly-generated inputs, searching for those inputs which cause the program to crash.

Unlike most fuzzers, afl-fuzz observes the internal behaviour of the program being tested, and adjusts the test cases it generates to trigger unexplored execution paths. As a result, test cases generated by afl-fuzz cover more of the possible behaviours of the tested program than other fuzzers.

This requires that programs to be tested are instrumented to communicate with afl-fuzz. The native-code compiler “ocamlopt” can generate such instrumentation, allowing afl-fuzz to be used against programs written in OCaml.

For more information on afl-fuzz, see the website at http://lcamtuf.coredump.cx/afl/.

23.2  Generating instrumentation

The instrumentation that afl-fuzz requires is not generated by default, and must be explicitly enabled, by passing the -afl-instrument option to ocamlopt.

To fuzz a large system without modifying build tools, OCaml’s configure script also accepts the afl-instrument option. If OCaml is configured with afl-instrument, then all programs compiled by ocamlopt will be instrumented.

23.2.1  Advanced options

In rare cases, it is useful to control the amount of instrumentation generated. By passing the -afl-inst-ratio N argument to ocamlopt with N less than 100, instrumentation can be generated for only N% of branches. (See the afl-fuzz documentation on the parameter AFL_INST_RATIO for the precise effect of this).

23.3  Example

As an example, we fuzz-test the following program, readline.ml:

let _ =
  let s = read_line () in
  match Array.to_list (Array.init (String.length s) (String.get s)) with
    ['s'; 'e'; 'c'; 'r'; 'e'; 't'; ' '; 'c'; 'o'; 'd'; 'e'] -> failwith "uh oh"
  | _ -> ()

There is a single input (the string “secret code”) which causes this program to crash, but finding it by blind random search is infeasible.

Instead, we compile with afl-fuzz instrumentation enabled:

ocamlopt -afl-instrument readline.ml -o readline

Next, we run the program under afl-fuzz:

mkdir input
echo asdf > input/testcase
mkdir output
afl-fuzz -i input -o output ./readline

By inspecting instrumentation output, the fuzzer finds the crashing input quickly.


Previous Up Next ocaml-doc-4.11/ocaml.html/spacetime.html0000644000175000017500000002134513717225665017154 0ustar mehdimehdi Chapter 22  Memory profiling with Spacetime Previous Up Next

Chapter 22  Memory profiling with Spacetime

22.1  Overview

Spacetime is the name given to functionality within the OCaml compiler that provides for accurate profiling of the memory behaviour of a program. Using Spacetime it is possible to determine the source of memory leaks and excess memory allocation quickly and easily. Excess allocation slows programs down both by imposing a higher load on the garbage collector and reducing the cache locality of the program’s code. Spacetime provides full backtraces for every allocation that occurred on the OCaml heap during the lifetime of the program including those in C stubs.

Spacetime only analyses the memory behaviour of a program with respect to the OCaml heap allocators and garbage collector. It does not analyse allocation on the C heap. Spacetime does not affect the memory behaviour of a program being profiled with the exception of any change caused by the overhead of profiling (see section 22.3)—for example the program running slower might cause it to allocate less memory in total.

Spacetime is currently only available for x86-64 targets and has only been tested on Linux systems (although it is expected to work on most modern Unix-like systems and provision has been made for running under Windows). It is expected that the set of supported platforms will be extended in the future.

22.2  How to use it

22.2.1  Building

To use Spacetime it is necessary to use an OCaml compiler that was configured with the -spacetime option. It is not possible to select Spacetime on a per-source-file basis or for a subset of files in a project; all files involved in the executable being profiled must be built with the Spacetime compiler. Only native code compilation is supported (not bytecode).

If the libunwind library is not available on the system then it will not be possible for Spacetime to profile allocations occurring within C stubs. If the libunwind library is available but in an unusual location then that location may be specified to the configure script using the -libunwinddir option (or alternatively, using separate -libunwindinclude and -libunwindlib options).

OPAM switches will be provided for Spacetime-configured compilers.

Once the appropriate compiler has been selected the program should be built as normal (ensuring that all files are built with the Spacetime compiler—there is currently no protection to ensure this is the case, but it is essential). For many uses it will not be necessary to change the code of the program to use the profiler.

Spacetime-configured compilers run slower and occupy more memory than their counterparts. It is hoped this will be fixed in the future as part of improved cross compilation support.

22.2.2  Running

Programs built with Spacetime instrumentation have a dependency on the libunwind library unless that was unavailable at configure time or the -disable-libunwind option was specified (see section 22.3).

Setting the OCAML_SPACETIME_INTERVAL environment variable to an integer representing a number of milliseconds before running a program built with Spacetime will cause memory profiling to be in operation when the program is started. The contents of the OCaml heap will be sampled each time the number of milliseconds that the program has spent executing since the last sample exceeds the given number. (Note that the time base is combined user plus system time—not wall clock time. This peculiarity may be changed in future.)

The program being profiled must exit normally or be caused to exit using the SIGINT signal (e.g. by pressing Ctrl+C). When the program exits files will be written in the directory that was the working directory when the program was started. One Spacetime file will be written for each process that was involved, indexed by process ID; there will normally only be one such. The Spacetime files may be substantial. The directory to which they are written may be overridden by setting the OCAML_SPACETIME_SNAPSHOT_DIR environment variable before the program is started.

Instead of using the automatic snapshot facility described above it is also possible to manually control Spacetime profiling. (The environment variables OCAML_SPACETIME_INTERVAL and OCAML_SPACETIME_SNAPSHOT_DIR are then not relevant.) Full documentation as regards this method of profiling is provided in the standard library documentation (section 26) for the Spacetime module.

22.2.3  Analysis

The compiler distribution does not itself provide the facility for analysing Spacetime output files; this is left to external tools. The first such tool will appear in OPAM as a package called prof_spacetime. That tool will provide interactive graphical and terminal-based visualisation of the results of profiling.

22.3  Runtime overhead

The runtime overhead imposed by Spacetime varies considerably depending on the particular program being profiled. The overhead may be as low as ten percent—but more usually programs should be expected to run at perhaps a third or quarter of their normal speed. It is expected that this overhead will be reduced in future versions of the compiler.

Execution speed of instrumented programs may be increased by using a compiler configured with the -disable-libunwind option. This prevents collection of profiling information from C stubs.

Programs running with Spacetime instrumentation consume significantly more memory than their non-instrumented counterparts. It is expected that this memory overhead will also be reduced in the future.

22.4  For developers

The compiler distribution provides an “otherlibs” library called raw_spacetime_lib for decoding Spacetime files. This library provides facilities to read not only memory profiling information but also the full dynamic call graph of the profiled program which is written into Spacetime output files.

A library package spacetime_lib will be provided in OPAM to provide an interface for decoding profiling information at a higher level than that provided by raw_spacetime_lib.


Previous Up Next ocaml-doc-4.11/ocaml.html/signaturesubstitution.html0000644000175000017500000002565413717225665021707 0ustar mehdimehdi 8.7  Substituting inside a signature Previous Up Next

8.7  Substituting inside a signature

8.7.1  Destructive substitutions

(Introduced in OCaml 3.12, generalized in 4.06)

mod-constraint::= ...  
  type [type-params]  typeconstr-name :=  typexpr  
  module module-path :=  extended-module-path

A “destructive” substitution (with ... := ...) behaves essentially like normal signature constraints (with ... = ...), but it additionally removes the redefined type or module from the signature.

Prior to OCaml 4.06, there were a number of restrictions: one could only remove types and modules at the outermost level (not inside submodules), and in the case of with type the definition had to be another type constructor with the same type parameters.

A natural application of destructive substitution is merging two signatures sharing a type name.

module type Printable = sig type t val print : Format.formatter -> t -> unit end module type Comparable = sig type t val compare : t -> t -> int end module type PrintableComparable = sig include Printable include Comparable with type t := t end

One can also use this to completely remove a field:

module type S = Comparable with type t := int
module type S = sig val compare : int -> int -> int end

or to rename one:

module type S = sig type u include Comparable with type t := u end
module type S = sig type u val compare : u -> u -> int end

Note that you can also remove manifest types, by substituting with the same type.

module type ComparableInt = Comparable with type t = int ;;
module type ComparableInt = sig type t = int val compare : t -> t -> int end
module type CompareInt = ComparableInt with type t := int
module type CompareInt = sig val compare : int -> int -> int end

8.7.2  Local substitution declarations

(Introduced in OCaml 4.08)

specification::= ...  
  type type-subst  { and type-subst }  
  module module-name :=  extended-module-path  
 
type-subst::= [type-params]  typeconstr-name :=  typexpr  { type-constraint }

Local substitutions behave like destructive substitutions (with ... := ...) but instead of being applied to a whole signature after the fact, they are introduced during the specification of the signature, and will apply to all the items that follow.

This provides a convenient way to introduce local names for types and modules when defining a signature:

module type S = sig type t module Sub : sig type outer := t type t val to_outer : t -> outer end end
module type S = sig type t module Sub : sig type t val to_outer : t/1 -> t/2 end end

Note that, unlike type declarations, type substitution declarations are not recursive, so substitutions like the following are rejected:

module type S = sig type 'a poly_list := [ `Cons of 'a * 'a poly_list | `Nil ] end ;;
Error: Unbound type constructor poly_list

Previous Up Next ocaml-doc-4.11/ocaml.html/parsing.html0000644000175000017500000000727013717225665016646 0ustar mehdimehdi Chapter 27  The compiler front-end Previous Up Next

Chapter 27  The compiler front-end

This chapter describes the OCaml front-end, which declares the abstract syntax tree used by the compiler, provides a way to parse, print and pretty-print OCaml code, and ultimately allows one to write abstract syntax tree preprocessors invoked via the -ppx flag (see chapters 9 and 12).

It is important to note that the exported front-end interface follows the evolution of the OCaml language and implementation, and thus does not provide any backwards compatibility guarantees.

The front-end is a part of compiler-libs library. Programs that use the compiler-libs library should be built as follows:

        ocamlfind ocamlc other options -package compiler-libs.common other files
        ocamlfind ocamlopt other options -package compiler-libs.common other files

Use of the ocamlfind utility is recommended. However, if this is not possible, an alternative method may be used:

        ocamlc other options -I +compiler-libs ocamlcommon.cma other files
        ocamlopt other options -I +compiler-libs ocamlcommon.cmxa other files

For interactive use of the compiler-libs library, start ocaml and type
#load "compiler-libs/ocamlcommon.cma";;.


Previous Up Next ocaml-doc-4.11/ocaml.html/indexops.html0000644000175000017500000002431413717225665017032 0ustar mehdimehdi 8.19  Extended indexing operators Previous Up Next

8.19  Extended indexing operators

(Introduced in 4.06)

dot-ext::=  
  dot-operator-char  { operator-char }  
 
dot-operator-char::= ! ∣   ? ∣  core-operator-char ∣  % ∣  :  
 
expr::= ...  
  expr .  [module-path .]  dot-ext  ( ( expr ) ∣  [ expr ] ∣  { expr } )  [ <- expr ]  
 
operator-name::= ...  
  . dot-ext  (() ∣  [] ∣  {}) [<-]  
 

This extension provides syntactic sugar for getting and setting elements for user-defined indexed types. For instance, we can define python-like dictionaries with

module Dict = struct include Hashtbl let ( .%{} ) tabl index = find tabl index let ( .%{}<- ) tabl index value = add tabl index value end let dict = let dict = Dict.create 10 in let () = dict.Dict.%{"one"} <- 1; let open Dict in dict.%{"two"} <- 2 in dict
dict.Dict.%{"one"};;
- : int = 1
let open Dict in dict.%{"two"};;
- : int = 2

8.19.1  Multi-index notation

expr::= ...  
  expr .  [module-path .]  dot-ext (  expr  {; expr }+ )  [ <- expr ]  
  expr .  [module-path .]  dot-ext [  expr  {; expr }+ ]  [ <- expr ]  
  expr .  [module-path .]  dot-ext {  expr  {; expr }+ }  [ <- expr ]  
 
operator-name::= ...  
  . dot-ext  ((;..) ∣  [;..] ∣  {;..}) [<-]  
 

Multi-index are also supported through a second variant of indexing operators

let (.%[;..]) = Bigarray.Genarray.get let (.%{;..}) = Bigarray.Genarray.get let (.%(;..)) = Bigarray.Genarray.get

which is called when an index literals contain a semicolon separated list of expressions with two and more elements:

let sum x y = x.%[1;2;3] + y.%[1;2] (* is equivalent to *) let sum x y = (.%[;..]) x [|1;2;3|] + (.%[;..]) y [|1;2|]

In particular this multi-index notation makes it possible to uniformly handle indexing Genarray and other implementations of multidimensional arrays.

module A = Bigarray.Genarray let (.%{;..}) = A.get let (.%{;..}<- ) = A.set let (.%{ }) a k = A.get a [|k|] let (.%{ }<-) a k x = A.set a [|k|] x let syntax_compare vec mat t3 t4 = vec.%{0} = A.get vec [|0|] && mat.%{0;0} = A.get mat [|0;0|] && t3.%{0;0;0} = A.get t3 [|0;0;0|] && t4.%{0;0;0;0} = t4.{0,0,0,0}

Previous Up Next ocaml-doc-4.11/ocaml.html/libref/0000755000175000017500000000000013717225553015546 5ustar mehdimehdiocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Oo.html0000644000175000017500000001126013717225553021272 0ustar mehdimehdi Stdlib.Oo (module Stdlib__oo) ocaml-doc-4.11/ocaml.html/libref/type_StdLabels.html0000644000175000017500000001240313717225552021351 0ustar mehdimehdi StdLabels sig
  module Array = ArrayLabels
  module Bytes = BytesLabels
  module List = ListLabels
  module String = StringLabels
end
ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.Make.html0000644000175000017500000002616613717225552021750 0ustar mehdimehdi Hashtbl.Make functor (H : HashedType->
  sig
    type key = H.t
    type 'a t
    val create : int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
  end
ocaml-doc-4.11/ocaml.html/libref/type_Gc.html0000644000175000017500000003560613717225552020037 0ustar mehdimehdi Gc sig
  type stat = {
    minor_words : float;
    promoted_words : float;
    major_words : float;
    minor_collections : int;
    major_collections : int;
    heap_words : int;
    heap_chunks : int;
    live_words : int;
    live_blocks : int;
    free_words : int;
    free_blocks : int;
    largest_free : int;
    fragments : int;
    compactions : int;
    top_heap_words : int;
    stack_size : int;
  }
  type control = {
    mutable minor_heap_size : int;
    mutable major_heap_increment : int;
    mutable space_overhead : int;
    mutable verbose : int;
    mutable max_overhead : int;
    mutable stack_limit : int;
    mutable allocation_policy : int;
    window_size : int;
    custom_major_ratio : int;
    custom_minor_ratio : int;
    custom_minor_max_size : int;
  }
  external stat : unit -> Gc.stat = "caml_gc_stat"
  external quick_stat : unit -> Gc.stat = "caml_gc_quick_stat"
  external counters : unit -> float * float * float = "caml_gc_counters"
  external minor_words : unit -> (float [@unboxed]) = "caml_gc_minor_words"
    "caml_gc_minor_words_unboxed"
  external get : unit -> Gc.control = "caml_gc_get"
  external set : Gc.control -> unit = "caml_gc_set"
  external minor : unit -> unit = "caml_gc_minor"
  external major_slice : int -> int = "caml_gc_major_slice"
  external major : unit -> unit = "caml_gc_major"
  external full_major : unit -> unit = "caml_gc_full_major"
  external compact : unit -> unit = "caml_gc_compaction"
  val print_stat : Stdlib.out_channel -> unit
  val allocated_bytes : unit -> float
  external get_minor_free : unit -> int = "caml_get_minor_free"
  external get_bucket : int -> int = "caml_get_major_bucket" [@@noalloc]
  external get_credit : unit -> int = "caml_get_major_credit" [@@noalloc]
  external huge_fallback_count : unit -> int = "caml_gc_huge_fallback_count"
  val finalise : ('-> unit) -> '-> unit
  val finalise_last : (unit -> unit) -> '-> unit
  val finalise_release : unit -> unit
  type alarm
  val create_alarm : (unit -> unit) -> Gc.alarm
  val delete_alarm : Gc.alarm -> unit
  external eventlog_pause : unit -> unit = "caml_eventlog_pause"
  external eventlog_resume : unit -> unit = "caml_eventlog_resume"
  module Memprof :
    sig
      type allocation = private {
        n_samples : int;
        size : int;
        unmarshalled : bool;
        callstack : Stdlib.Printexc.raw_backtrace;
      }
      type ('minor, 'major) tracker = {
        alloc_minor : Gc.Memprof.allocation -> 'minor option;
        alloc_major : Gc.Memprof.allocation -> 'major option;
        promote : 'minor -> 'major option;
        dealloc_minor : 'minor -> unit;
        dealloc_major : 'major -> unit;
      }
      val null_tracker : ('minor, 'major) Gc.Memprof.tracker
      val start :
        sampling_rate:float ->
        ?callstack_size:int -> ('minor, 'major) Gc.Memprof.tracker -> unit
      val stop : unit -> unit
    end
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.ListLabels.html0000644000175000017500000001130013717225553022746 0ustar mehdimehdi Stdlib.ListLabels (module Stdlib__listLabels) ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.MakeSeeded.html0000644000175000017500000002630013717225553023051 0ustar mehdimehdi Hashtbl.MakeSeeded functor (H : SeededHashedType->
  sig
    type key = H.t
    type 'a t
    val create : ?random:bool -> int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
  end
ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.html0000644000175000017500000015023613717225552021070 0ustar mehdimehdi Hashtbl sig
  type ('a, 'b) t
  val create : ?random:bool -> int -> ('a, 'b) Hashtbl.t
  val clear : ('a, 'b) Hashtbl.t -> unit
  val reset : ('a, 'b) Hashtbl.t -> unit
  val copy : ('a, 'b) Hashtbl.t -> ('a, 'b) Hashtbl.t
  val add : ('a, 'b) Hashtbl.t -> '-> '-> unit
  val find : ('a, 'b) Hashtbl.t -> '-> 'b
  val find_opt : ('a, 'b) Hashtbl.t -> '-> 'b option
  val find_all : ('a, 'b) Hashtbl.t -> '-> 'b list
  val mem : ('a, 'b) Hashtbl.t -> '-> bool
  val remove : ('a, 'b) Hashtbl.t -> '-> unit
  val replace : ('a, 'b) Hashtbl.t -> '-> '-> unit
  val iter : ('-> '-> unit) -> ('a, 'b) Hashtbl.t -> unit
  val filter_map_inplace :
    ('-> '-> 'b option) -> ('a, 'b) Hashtbl.t -> unit
  val fold : ('-> '-> '-> 'c) -> ('a, 'b) Hashtbl.t -> '-> 'c
  val length : ('a, 'b) Hashtbl.t -> int
  val randomize : unit -> unit
  val is_randomized : unit -> bool
  type statistics = {
    num_bindings : int;
    num_buckets : int;
    max_bucket_length : int;
    bucket_histogram : int array;
  }
  val stats : ('a, 'b) Hashtbl.t -> Hashtbl.statistics
  val to_seq : ('a, 'b) Hashtbl.t -> ('a * 'b) Stdlib.Seq.t
  val to_seq_keys : ('a, 'b) Hashtbl.t -> 'Stdlib.Seq.t
  val to_seq_values : ('a, 'b) Hashtbl.t -> 'Stdlib.Seq.t
  val add_seq : ('a, 'b) Hashtbl.t -> ('a * 'b) Stdlib.Seq.t -> unit
  val replace_seq : ('a, 'b) Hashtbl.t -> ('a * 'b) Stdlib.Seq.t -> unit
  val of_seq : ('a * 'b) Stdlib.Seq.t -> ('a, 'b) Hashtbl.t
  module type HashedType =
    sig
      type t
      val equal : Hashtbl.HashedType.t -> Hashtbl.HashedType.t -> bool
      val hash : Hashtbl.HashedType.t -> int
    end
  module type S =
    sig
      type key
      type 'a t
      val create : int -> 'Hashtbl.S.t
      val clear : 'Hashtbl.S.t -> unit
      val reset : 'Hashtbl.S.t -> unit
      val copy : 'Hashtbl.S.t -> 'Hashtbl.S.t
      val add : 'Hashtbl.S.t -> Hashtbl.S.key -> '-> unit
      val remove : 'Hashtbl.S.t -> Hashtbl.S.key -> unit
      val find : 'Hashtbl.S.t -> Hashtbl.S.key -> 'a
      val find_opt : 'Hashtbl.S.t -> Hashtbl.S.key -> 'a option
      val find_all : 'Hashtbl.S.t -> Hashtbl.S.key -> 'a list
      val replace : 'Hashtbl.S.t -> Hashtbl.S.key -> '-> unit
      val mem : 'Hashtbl.S.t -> Hashtbl.S.key -> bool
      val iter : (Hashtbl.S.key -> '-> unit) -> 'Hashtbl.S.t -> unit
      val filter_map_inplace :
        (Hashtbl.S.key -> '-> 'a option) -> 'Hashtbl.S.t -> unit
      val fold :
        (Hashtbl.S.key -> '-> '-> 'b) -> 'Hashtbl.S.t -> '-> 'b
      val length : 'Hashtbl.S.t -> int
      val stats : 'Hashtbl.S.t -> Hashtbl.statistics
      val to_seq : 'Hashtbl.S.t -> (Hashtbl.S.key * 'a) Stdlib.Seq.t
      val to_seq_keys : 'Hashtbl.S.t -> Hashtbl.S.key Stdlib.Seq.t
      val to_seq_values : 'Hashtbl.S.t -> 'Stdlib.Seq.t
      val add_seq :
        'Hashtbl.S.t -> (Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
      val replace_seq :
        'Hashtbl.S.t -> (Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
      val of_seq : (Hashtbl.S.key * 'a) Stdlib.Seq.t -> 'Hashtbl.S.t
    end
  module Make :
    functor (H : HashedType->
      sig
        type key = H.t
        type 'a t
        val create : int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
      end
  module type SeededHashedType =
    sig
      type t
      val equal :
        Hashtbl.SeededHashedType.t -> Hashtbl.SeededHashedType.t -> bool
      val hash : int -> Hashtbl.SeededHashedType.t -> int
    end
  module type SeededS =
    sig
      type key
      type 'a t
      val create : ?random:bool -> int -> 'Hashtbl.SeededS.t
      val clear : 'Hashtbl.SeededS.t -> unit
      val reset : 'Hashtbl.SeededS.t -> unit
      val copy : 'Hashtbl.SeededS.t -> 'Hashtbl.SeededS.t
      val add : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> '-> unit
      val remove : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> unit
      val find : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> 'a
      val find_opt : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> 'a option
      val find_all : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> 'a list
      val replace : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> '-> unit
      val mem : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> bool
      val iter :
        (Hashtbl.SeededS.key -> '-> unit) -> 'Hashtbl.SeededS.t -> unit
      val filter_map_inplace :
        (Hashtbl.SeededS.key -> '-> 'a option) ->
        'Hashtbl.SeededS.t -> unit
      val fold :
        (Hashtbl.SeededS.key -> '-> '-> 'b) ->
        'Hashtbl.SeededS.t -> '-> 'b
      val length : 'Hashtbl.SeededS.t -> int
      val stats : 'Hashtbl.SeededS.t -> Hashtbl.statistics
      val to_seq :
        'Hashtbl.SeededS.t -> (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t
      val to_seq_keys :
        'Hashtbl.SeededS.t -> Hashtbl.SeededS.key Stdlib.Seq.t
      val to_seq_values : 'Hashtbl.SeededS.t -> 'Stdlib.Seq.t
      val add_seq :
        'Hashtbl.SeededS.t ->
        (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
      val replace_seq :
        'Hashtbl.SeededS.t ->
        (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
      val of_seq :
        (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> 'Hashtbl.SeededS.t
    end
  module MakeSeeded :
    functor (H : SeededHashedType->
      sig
        type key = H.t
        type 'a t
        val create : ?random:bool -> int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
      end
  val hash : '-> int
  val seeded_hash : int -> '-> int
  val hash_param : int -> int -> '-> int
  val seeded_hash_param : int -> int -> int -> '-> int
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Char.html0000644000175000017500000001126413717225552021575 0ustar mehdimehdi Stdlib.Char (module Stdlib__char) ocaml-doc-4.11/ocaml.html/libref/type_Unix.html0000644000175000017500000023116013717225553020423 0ustar mehdimehdi Unix sig
  type error =
      E2BIG
    | EACCES
    | EAGAIN
    | EBADF
    | EBUSY
    | ECHILD
    | EDEADLK
    | EDOM
    | EEXIST
    | EFAULT
    | EFBIG
    | EINTR
    | EINVAL
    | EIO
    | EISDIR
    | EMFILE
    | EMLINK
    | ENAMETOOLONG
    | ENFILE
    | ENODEV
    | ENOENT
    | ENOEXEC
    | ENOLCK
    | ENOMEM
    | ENOSPC
    | ENOSYS
    | ENOTDIR
    | ENOTEMPTY
    | ENOTTY
    | ENXIO
    | EPERM
    | EPIPE
    | ERANGE
    | EROFS
    | ESPIPE
    | ESRCH
    | EXDEV
    | EWOULDBLOCK
    | EINPROGRESS
    | EALREADY
    | ENOTSOCK
    | EDESTADDRREQ
    | EMSGSIZE
    | EPROTOTYPE
    | ENOPROTOOPT
    | EPROTONOSUPPORT
    | ESOCKTNOSUPPORT
    | EOPNOTSUPP
    | EPFNOSUPPORT
    | EAFNOSUPPORT
    | EADDRINUSE
    | EADDRNOTAVAIL
    | ENETDOWN
    | ENETUNREACH
    | ENETRESET
    | ECONNABORTED
    | ECONNRESET
    | ENOBUFS
    | EISCONN
    | ENOTCONN
    | ESHUTDOWN
    | ETOOMANYREFS
    | ETIMEDOUT
    | ECONNREFUSED
    | EHOSTDOWN
    | EHOSTUNREACH
    | ELOOP
    | EOVERFLOW
    | EUNKNOWNERR of int
  exception Unix_error of Unix.error * string * string
  val error_message : Unix.error -> string
  val handle_unix_error : ('-> 'b) -> '-> 'b
  val environment : unit -> string array
  val unsafe_environment : unit -> string array
  val getenv : string -> string
  val unsafe_getenv : string -> string
  val putenv : string -> string -> unit
  type process_status = WEXITED of int | WSIGNALED of int | WSTOPPED of int
  type wait_flag = WNOHANG | WUNTRACED
  val execv : string -> string array -> 'a
  val execve : string -> string array -> string array -> 'a
  val execvp : string -> string array -> 'a
  val execvpe : string -> string array -> string array -> 'a
  val fork : unit -> int
  val wait : unit -> int * Unix.process_status
  val waitpid : Unix.wait_flag list -> int -> int * Unix.process_status
  val system : string -> Unix.process_status
  val getpid : unit -> int
  val getppid : unit -> int
  val nice : int -> int
  type file_descr
  val stdin : Unix.file_descr
  val stdout : Unix.file_descr
  val stderr : Unix.file_descr
  type open_flag =
      O_RDONLY
    | O_WRONLY
    | O_RDWR
    | O_NONBLOCK
    | O_APPEND
    | O_CREAT
    | O_TRUNC
    | O_EXCL
    | O_NOCTTY
    | O_DSYNC
    | O_SYNC
    | O_RSYNC
    | O_SHARE_DELETE
    | O_CLOEXEC
    | O_KEEPEXEC
  type file_perm = int
  val openfile :
    string -> Unix.open_flag list -> Unix.file_perm -> Unix.file_descr
  val close : Unix.file_descr -> unit
  val fsync : Unix.file_descr -> unit
  val read : Unix.file_descr -> bytes -> int -> int -> int
  val write : Unix.file_descr -> bytes -> int -> int -> int
  val single_write : Unix.file_descr -> bytes -> int -> int -> int
  val write_substring : Unix.file_descr -> string -> int -> int -> int
  val single_write_substring : Unix.file_descr -> string -> int -> int -> int
  val in_channel_of_descr : Unix.file_descr -> Stdlib.in_channel
  val out_channel_of_descr : Unix.file_descr -> Stdlib.out_channel
  val descr_of_in_channel : Stdlib.in_channel -> Unix.file_descr
  val descr_of_out_channel : Stdlib.out_channel -> Unix.file_descr
  type seek_command = SEEK_SET | SEEK_CUR | SEEK_END
  val lseek : Unix.file_descr -> int -> Unix.seek_command -> int
  val truncate : string -> int -> unit
  val ftruncate : Unix.file_descr -> int -> unit
  type file_kind = S_REG | S_DIR | S_CHR | S_BLK | S_LNK | S_FIFO | S_SOCK
  type stats = {
    st_dev : int;
    st_ino : int;
    st_kind : Unix.file_kind;
    st_perm : Unix.file_perm;
    st_nlink : int;
    st_uid : int;
    st_gid : int;
    st_rdev : int;
    st_size : int;
    st_atime : float;
    st_mtime : float;
    st_ctime : float;
  }
  val stat : string -> Unix.stats
  val lstat : string -> Unix.stats
  val fstat : Unix.file_descr -> Unix.stats
  val isatty : Unix.file_descr -> bool
  module LargeFile :
    sig
      val lseek : Unix.file_descr -> int64 -> Unix.seek_command -> int64
      val truncate : string -> int64 -> unit
      val ftruncate : Unix.file_descr -> int64 -> unit
      type stats = {
        st_dev : int;
        st_ino : int;
        st_kind : Unix.file_kind;
        st_perm : Unix.file_perm;
        st_nlink : int;
        st_uid : int;
        st_gid : int;
        st_rdev : int;
        st_size : int64;
        st_atime : float;
        st_mtime : float;
        st_ctime : float;
      }
      val stat : string -> Unix.LargeFile.stats
      val lstat : string -> Unix.LargeFile.stats
      val fstat : Unix.file_descr -> Unix.LargeFile.stats
    end
  val map_file :
    Unix.file_descr ->
    ?pos:int64 ->
    ('a, 'b) Stdlib.Bigarray.kind ->
    'Stdlib.Bigarray.layout ->
    bool -> int array -> ('a, 'b, 'c) Stdlib.Bigarray.Genarray.t
  val unlink : string -> unit
  val rename : string -> string -> unit
  val link : ?follow:bool -> string -> string -> unit
  type access_permission = R_OK | W_OK | X_OK | F_OK
  val chmod : string -> Unix.file_perm -> unit
  val fchmod : Unix.file_descr -> Unix.file_perm -> unit
  val chown : string -> int -> int -> unit
  val fchown : Unix.file_descr -> int -> int -> unit
  val umask : int -> int
  val access : string -> Unix.access_permission list -> unit
  val dup : ?cloexec:bool -> Unix.file_descr -> Unix.file_descr
  val dup2 : ?cloexec:bool -> Unix.file_descr -> Unix.file_descr -> unit
  val set_nonblock : Unix.file_descr -> unit
  val clear_nonblock : Unix.file_descr -> unit
  val set_close_on_exec : Unix.file_descr -> unit
  val clear_close_on_exec : Unix.file_descr -> unit
  val mkdir : string -> Unix.file_perm -> unit
  val rmdir : string -> unit
  val chdir : string -> unit
  val getcwd : unit -> string
  val chroot : string -> unit
  type dir_handle
  val opendir : string -> Unix.dir_handle
  val readdir : Unix.dir_handle -> string
  val rewinddir : Unix.dir_handle -> unit
  val closedir : Unix.dir_handle -> unit
  val pipe : ?cloexec:bool -> unit -> Unix.file_descr * Unix.file_descr
  val mkfifo : string -> Unix.file_perm -> unit
  val create_process :
    string ->
    string array ->
    Unix.file_descr -> Unix.file_descr -> Unix.file_descr -> int
  val create_process_env :
    string ->
    string array ->
    string array ->
    Unix.file_descr -> Unix.file_descr -> Unix.file_descr -> int
  val open_process_in : string -> Stdlib.in_channel
  val open_process_out : string -> Stdlib.out_channel
  val open_process : string -> Stdlib.in_channel * Stdlib.out_channel
  val open_process_full :
    string ->
    string array ->
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel
  val open_process_args_in : string -> string array -> Stdlib.in_channel
  val open_process_args_out : string -> string array -> Stdlib.out_channel
  val open_process_args :
    string -> string array -> Stdlib.in_channel * Stdlib.out_channel
  val open_process_args_full :
    string ->
    string array ->
    string array ->
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel
  val process_in_pid : Stdlib.in_channel -> int
  val process_out_pid : Stdlib.out_channel -> int
  val process_pid : Stdlib.in_channel * Stdlib.out_channel -> int
  val process_full_pid :
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel -> int
  val close_process_in : Stdlib.in_channel -> Unix.process_status
  val close_process_out : Stdlib.out_channel -> Unix.process_status
  val close_process :
    Stdlib.in_channel * Stdlib.out_channel -> Unix.process_status
  val close_process_full :
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel ->
    Unix.process_status
  val symlink : ?to_dir:bool -> string -> string -> unit
  val has_symlink : unit -> bool
  val readlink : string -> string
  val select :
    Unix.file_descr list ->
    Unix.file_descr list ->
    Unix.file_descr list ->
    float ->
    Unix.file_descr list * Unix.file_descr list * Unix.file_descr list
  type lock_command =
      F_ULOCK
    | F_LOCK
    | F_TLOCK
    | F_TEST
    | F_RLOCK
    | F_TRLOCK
  val lockf : Unix.file_descr -> Unix.lock_command -> int -> unit
  val kill : int -> int -> unit
  type sigprocmask_command = SIG_SETMASK | SIG_BLOCK | SIG_UNBLOCK
  val sigprocmask : Unix.sigprocmask_command -> int list -> int list
  val sigpending : unit -> int list
  val sigsuspend : int list -> unit
  val pause : unit -> unit
  type process_times = {
    tms_utime : float;
    tms_stime : float;
    tms_cutime : float;
    tms_cstime : float;
  }
  type tm = {
    tm_sec : int;
    tm_min : int;
    tm_hour : int;
    tm_mday : int;
    tm_mon : int;
    tm_year : int;
    tm_wday : int;
    tm_yday : int;
    tm_isdst : bool;
  }
  val time : unit -> float
  val gettimeofday : unit -> float
  val gmtime : float -> Unix.tm
  val localtime : float -> Unix.tm
  val mktime : Unix.tm -> float * Unix.tm
  val alarm : int -> int
  val sleep : int -> unit
  val sleepf : float -> unit
  val times : unit -> Unix.process_times
  val utimes : string -> float -> float -> unit
  type interval_timer = ITIMER_REAL | ITIMER_VIRTUAL | ITIMER_PROF
  type interval_timer_status = { it_interval : float; it_value : float; }
  val getitimer : Unix.interval_timer -> Unix.interval_timer_status
  val setitimer :
    Unix.interval_timer ->
    Unix.interval_timer_status -> Unix.interval_timer_status
  val getuid : unit -> int
  val geteuid : unit -> int
  val setuid : int -> unit
  val getgid : unit -> int
  val getegid : unit -> int
  val setgid : int -> unit
  val getgroups : unit -> int array
  val setgroups : int array -> unit
  val initgroups : string -> int -> unit
  type passwd_entry = {
    pw_name : string;
    pw_passwd : string;
    pw_uid : int;
    pw_gid : int;
    pw_gecos : string;
    pw_dir : string;
    pw_shell : string;
  }
  type group_entry = {
    gr_name : string;
    gr_passwd : string;
    gr_gid : int;
    gr_mem : string array;
  }
  val getlogin : unit -> string
  val getpwnam : string -> Unix.passwd_entry
  val getgrnam : string -> Unix.group_entry
  val getpwuid : int -> Unix.passwd_entry
  val getgrgid : int -> Unix.group_entry
  type inet_addr
  val inet_addr_of_string : string -> Unix.inet_addr
  val string_of_inet_addr : Unix.inet_addr -> string
  val inet_addr_any : Unix.inet_addr
  val inet_addr_loopback : Unix.inet_addr
  val inet6_addr_any : Unix.inet_addr
  val inet6_addr_loopback : Unix.inet_addr
  type socket_domain = PF_UNIX | PF_INET | PF_INET6
  type socket_type = SOCK_STREAM | SOCK_DGRAM | SOCK_RAW | SOCK_SEQPACKET
  type sockaddr = ADDR_UNIX of string | ADDR_INET of Unix.inet_addr * int
  val socket :
    ?cloexec:bool ->
    Unix.socket_domain -> Unix.socket_type -> int -> Unix.file_descr
  val domain_of_sockaddr : Unix.sockaddr -> Unix.socket_domain
  val socketpair :
    ?cloexec:bool ->
    Unix.socket_domain ->
    Unix.socket_type -> int -> Unix.file_descr * Unix.file_descr
  val accept :
    ?cloexec:bool -> Unix.file_descr -> Unix.file_descr * Unix.sockaddr
  val bind : Unix.file_descr -> Unix.sockaddr -> unit
  val connect : Unix.file_descr -> Unix.sockaddr -> unit
  val listen : Unix.file_descr -> int -> unit
  type shutdown_command = SHUTDOWN_RECEIVE | SHUTDOWN_SEND | SHUTDOWN_ALL
  val shutdown : Unix.file_descr -> Unix.shutdown_command -> unit
  val getsockname : Unix.file_descr -> Unix.sockaddr
  val getpeername : Unix.file_descr -> Unix.sockaddr
  type msg_flag = MSG_OOB | MSG_DONTROUTE | MSG_PEEK
  val recv :
    Unix.file_descr -> bytes -> int -> int -> Unix.msg_flag list -> int
  val recvfrom :
    Unix.file_descr ->
    bytes -> int -> int -> Unix.msg_flag list -> int * Unix.sockaddr
  val send :
    Unix.file_descr -> bytes -> int -> int -> Unix.msg_flag list -> int
  val send_substring :
    Unix.file_descr -> string -> int -> int -> Unix.msg_flag list -> int
  val sendto :
    Unix.file_descr ->
    bytes -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int
  val sendto_substring :
    Unix.file_descr ->
    string -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int
  type socket_bool_option =
      SO_DEBUG
    | SO_BROADCAST
    | SO_REUSEADDR
    | SO_KEEPALIVE
    | SO_DONTROUTE
    | SO_OOBINLINE
    | SO_ACCEPTCONN
    | TCP_NODELAY
    | IPV6_ONLY
  type socket_int_option =
      SO_SNDBUF
    | SO_RCVBUF
    | SO_ERROR
    | SO_TYPE
    | SO_RCVLOWAT
    | SO_SNDLOWAT
  type socket_optint_option = SO_LINGER
  type socket_float_option = SO_RCVTIMEO | SO_SNDTIMEO
  val getsockopt : Unix.file_descr -> Unix.socket_bool_option -> bool
  val setsockopt : Unix.file_descr -> Unix.socket_bool_option -> bool -> unit
  val getsockopt_int : Unix.file_descr -> Unix.socket_int_option -> int
  val setsockopt_int :
    Unix.file_descr -> Unix.socket_int_option -> int -> unit
  val getsockopt_optint :
    Unix.file_descr -> Unix.socket_optint_option -> int option
  val setsockopt_optint :
    Unix.file_descr -> Unix.socket_optint_option -> int option -> unit
  val getsockopt_float : Unix.file_descr -> Unix.socket_float_option -> float
  val setsockopt_float :
    Unix.file_descr -> Unix.socket_float_option -> float -> unit
  val getsockopt_error : Unix.file_descr -> Unix.error option
  val open_connection :
    Unix.sockaddr -> Stdlib.in_channel * Stdlib.out_channel
  val shutdown_connection : Stdlib.in_channel -> unit
  val establish_server :
    (Stdlib.in_channel -> Stdlib.out_channel -> unit) ->
    Unix.sockaddr -> unit
  type host_entry = {
    h_name : string;
    h_aliases : string array;
    h_addrtype : Unix.socket_domain;
    h_addr_list : Unix.inet_addr array;
  }
  type protocol_entry = {
    p_name : string;
    p_aliases : string array;
    p_proto : int;
  }
  type service_entry = {
    s_name : string;
    s_aliases : string array;
    s_port : int;
    s_proto : string;
  }
  val gethostname : unit -> string
  val gethostbyname : string -> Unix.host_entry
  val gethostbyaddr : Unix.inet_addr -> Unix.host_entry
  val getprotobyname : string -> Unix.protocol_entry
  val getprotobynumber : int -> Unix.protocol_entry
  val getservbyname : string -> string -> Unix.service_entry
  val getservbyport : int -> string -> Unix.service_entry
  type addr_info = {
    ai_family : Unix.socket_domain;
    ai_socktype : Unix.socket_type;
    ai_protocol : int;
    ai_addr : Unix.sockaddr;
    ai_canonname : string;
  }
  type getaddrinfo_option =
      AI_FAMILY of Unix.socket_domain
    | AI_SOCKTYPE of Unix.socket_type
    | AI_PROTOCOL of int
    | AI_NUMERICHOST
    | AI_CANONNAME
    | AI_PASSIVE
  val getaddrinfo :
    string -> string -> Unix.getaddrinfo_option list -> Unix.addr_info list
  type name_info = { ni_hostname : string; ni_service : string; }
  type getnameinfo_option =
      NI_NOFQDN
    | NI_NUMERICHOST
    | NI_NAMEREQD
    | NI_NUMERICSERV
    | NI_DGRAM
  val getnameinfo :
    Unix.sockaddr -> Unix.getnameinfo_option list -> Unix.name_info
  type terminal_io = {
    mutable c_ignbrk : bool;
    mutable c_brkint : bool;
    mutable c_ignpar : bool;
    mutable c_parmrk : bool;
    mutable c_inpck : bool;
    mutable c_istrip : bool;
    mutable c_inlcr : bool;
    mutable c_igncr : bool;
    mutable c_icrnl : bool;
    mutable c_ixon : bool;
    mutable c_ixoff : bool;
    mutable c_opost : bool;
    mutable c_obaud : int;
    mutable c_ibaud : int;
    mutable c_csize : int;
    mutable c_cstopb : int;
    mutable c_cread : bool;
    mutable c_parenb : bool;
    mutable c_parodd : bool;
    mutable c_hupcl : bool;
    mutable c_clocal : bool;
    mutable c_isig : bool;
    mutable c_icanon : bool;
    mutable c_noflsh : bool;
    mutable c_echo : bool;
    mutable c_echoe : bool;
    mutable c_echok : bool;
    mutable c_echonl : bool;
    mutable c_vintr : char;
    mutable c_vquit : char;
    mutable c_verase : char;
    mutable c_vkill : char;
    mutable c_veof : char;
    mutable c_veol : char;
    mutable c_vmin : int;
    mutable c_vtime : int;
    mutable c_vstart : char;
    mutable c_vstop : char;
  }
  val tcgetattr : Unix.file_descr -> Unix.terminal_io
  type setattr_when = TCSANOW | TCSADRAIN | TCSAFLUSH
  val tcsetattr :
    Unix.file_descr -> Unix.setattr_when -> Unix.terminal_io -> unit
  val tcsendbreak : Unix.file_descr -> int -> unit
  val tcdrain : Unix.file_descr -> unit
  type flush_queue = TCIFLUSH | TCOFLUSH | TCIOFLUSH
  val tcflush : Unix.file_descr -> Unix.flush_queue -> unit
  type flow_action = TCOOFF | TCOON | TCIOFF | TCION
  val tcflow : Unix.file_descr -> Unix.flow_action -> unit
  val setsid : unit -> int
end
ocaml-doc-4.11/ocaml.html/libref/Marshal.html0000644000175000017500000005175413717225552020036 0ustar mehdimehdi Marshal

Module Marshal

module Marshal: sig .. end

Marshaling of data structures.

This module provides functions to encode arbitrary data structures as sequences of bytes, which can then be written on a file or sent over a pipe or network connection. The bytes can then be read back later, possibly in another process, and decoded back into a data structure. The format for the byte sequences is compatible across all machines for a given version of OCaml.

Warning: marshaling is currently not type-safe. The type of marshaled data is not transmitted along the value of the data, making it impossible to check that the data read back possesses the type expected by the context. In particular, the result type of the Marshal.from_* functions is given as 'a, but this is misleading: the returned OCaml value does not possess type 'a for all 'a; it has one, unique type which cannot be determined at compile-time. The programmer should explicitly give the expected type of the returned value, using the following syntax:

  • (Marshal.from_channel chan : type). Anything can happen at run-time if the object in the file does not belong to the given type.

Values of extensible variant types, for example exceptions (of extensible type exn), returned by the unmarshaller should not be pattern-matched over through match ... with or try ... with, because unmarshalling does not preserve the information required for matching their constructors. Structural equalities with other extensible variant values does not work either. Most other uses such as Printexc.to_string, will still work as expected.

The representation of marshaled values is not human-readable, and uses bytes that are not printable characters. Therefore, input and output channels used in conjunction with Marshal.to_channel and Marshal.from_channel must be opened in binary mode, using e.g. open_out_bin or open_in_bin; channels opened in text mode will cause unmarshaling errors on platforms where text channels behave differently than binary channels, e.g. Windows.


type extern_flags = 
| No_sharing (*

Don't preserve sharing

*)
| Closures (*

Send function closures

*)
| Compat_32 (*

Ensure 32-bit compatibility

*)

The flags to the Marshal.to_* functions below.

val to_channel : out_channel -> 'a -> extern_flags list -> unit

Marshal.to_channel chan v flags writes the representation of v on channel chan. The flags argument is a possibly empty list of flags that governs the marshaling behavior with respect to sharing, functional values, and compatibility between 32- and 64-bit platforms.

If flags does not contain Marshal.No_sharing, circularities and sharing inside the value v are detected and preserved in the sequence of bytes produced. In particular, this guarantees that marshaling always terminates. Sharing between values marshaled by successive calls to Marshal.to_channel is neither detected nor preserved, though. If flags contains Marshal.No_sharing, sharing is ignored. This results in faster marshaling if v contains no shared substructures, but may cause slower marshaling and larger byte representations if v actually contains sharing, or even non-termination if v contains cycles.

If flags does not contain Marshal.Closures, marshaling fails when it encounters a functional value inside v: only 'pure' data structures, containing neither functions nor objects, can safely be transmitted between different programs. If flags contains Marshal.Closures, functional values will be marshaled as a the position in the code of the program together with the values corresponding to the free variables captured in the closure. In this case, the output of marshaling can only be read back in processes that run exactly the same program, with exactly the same compiled code. (This is checked at un-marshaling time, using an MD5 digest of the code transmitted along with the code position.)

The exact definition of which free variables are captured in a closure is not specified and can vary between bytecode and native code (and according to optimization flags). In particular, a function value accessing a global reference may or may not include the reference in its closure. If it does, unmarshaling the corresponding closure will create a new reference, different from the global one.

If flags contains Marshal.Compat_32, marshaling fails when it encounters an integer value outside the range [-2{^30}, 2{^30}-1] of integers that are representable on a 32-bit platform. This ensures that marshaled data generated on a 64-bit platform can be safely read back on a 32-bit platform. If flags does not contain Marshal.Compat_32, integer values outside the range [-2{^30}, 2{^30}-1] are marshaled, and can be read back on a 64-bit platform, but will cause an error at un-marshaling time when read back on a 32-bit platform. The Mashal.Compat_32 flag only matters when marshaling is performed on a 64-bit platform; it has no effect if marshaling is performed on a 32-bit platform.

val to_bytes : 'a -> extern_flags list -> bytes

Marshal.to_bytes v flags returns a byte sequence containing the representation of v. The flags argument has the same meaning as for Marshal.to_channel.

  • Since 4.02.0
val to_string : 'a -> extern_flags list -> string

Same as to_bytes but return the result as a string instead of a byte sequence.

val to_buffer : bytes -> int -> int -> 'a -> extern_flags list -> int

Marshal.to_buffer buff ofs len v flags marshals the value v, storing its byte representation in the sequence buff, starting at index ofs, and writing at most len bytes. It returns the number of bytes actually written to the sequence. If the byte representation of v does not fit in len characters, the exception Failure is raised.

val from_channel : in_channel -> 'a

Marshal.from_channel chan reads from channel chan the byte representation of a structured value, as produced by one of the Marshal.to_* functions, and reconstructs and returns the corresponding value.

It raises End_of_file if the function has already reached the end of file when starting to read from the channel, and raises Failure "input_value: truncated object" if it reaches the end of file later during the unmarshalling.

val from_bytes : bytes -> int -> 'a

Marshal.from_bytes buff ofs unmarshals a structured value like Marshal.from_channel does, except that the byte representation is not read from a channel, but taken from the byte sequence buff, starting at position ofs. The byte sequence is not mutated.

  • Since 4.02.0
val from_string : string -> int -> 'a

Same as from_bytes but take a string as argument instead of a byte sequence.

val header_size : int

The bytes representing a marshaled value are composed of a fixed-size header and a variable-sized data part, whose size can be determined from the header. Marshal.header_size is the size, in bytes, of the header. Marshal.data_size buff ofs is the size, in bytes, of the data part, assuming a valid header is stored in buff starting at position ofs. Finally, Marshal.total_size buff ofs is the total size, in bytes, of the marshaled value. Both Marshal.data_size and Marshal.total_size raise Failure if buff, ofs does not contain a valid header.

To read the byte representation of a marshaled value into a byte sequence, the program needs to read first Marshal.header_size bytes into the sequence, then determine the length of the remainder of the representation using Marshal.data_size, make sure the sequence is large enough to hold the remaining data, then read it, and finally call Marshal.from_bytes to unmarshal the value.

val data_size : bytes -> int -> int
val total_size : bytes -> int -> int
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Option.html0000644000175000017500000001127013717225553022166 0ustar mehdimehdi Stdlib.Option (module Stdlib__option) ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.S.html0000644000175000017500000002514213717225553022252 0ustar mehdimehdi MoreLabels.Hashtbl.S

Module type MoreLabels.Hashtbl.S

module type S = sig .. end

type key 
type 'a t 
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key:key -> data:'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key:key -> data:'a -> unit
val mem : 'a t -> key -> bool
val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit
val filter_map_inplace : f:(key:key -> data:'a -> 'a option) ->
'a t -> unit
val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val length : 'a t -> int
val stats : 'a t -> MoreLabels.Hashtbl.statistics
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_keys : 'a t -> key Seq.t
val to_seq_values : 'a t -> 'a Seq.t
val add_seq : 'a t ->
(key * 'a) Seq.t -> unit
val replace_seq : 'a t ->
(key * 'a) Seq.t -> unit
val of_seq : (key * 'a) Seq.t -> 'a t
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Float.html0000644000175000017500000001126613717225552021767 0ustar mehdimehdi Stdlib.Float (module Stdlib__float) ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Bytes.html0000644000175000017500000001126613717225552022010 0ustar mehdimehdi Stdlib.Bytes (module Stdlib__bytes) ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.SeededHashedType.html0000644000175000017500000001131613717225553026257 0ustar mehdimehdi MoreLabels.Hashtbl.SeededHashedType Hashtbl.SeededHashedType ocaml-doc-4.11/ocaml.html/libref/Sys.Immediate64.Immediate.html0000644000175000017500000001267413717225553023170 0ustar mehdimehdi Sys.Immediate64.Immediate

Module type Sys.Immediate64.Immediate

module type Immediate = sig .. end

type t 
ocaml-doc-4.11/ocaml.html/libref/type_StringLabels.html0000644000175000017500000003622513717225553022076 0ustar mehdimehdi StringLabels sig
  external length : string -> int = "%string_length"
  external get : string -> int -> char = "%string_safe_get"
  external set : bytes -> int -> char -> unit = "%string_safe_set"
  external create : int -> bytes = "caml_create_string"
  val make : int -> char -> string
  val init : int -> f:(int -> char) -> string
  val copy : string -> string
  val sub : string -> pos:int -> len:int -> string
  val fill : bytes -> pos:int -> len:int -> char -> unit
  val blit :
    src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
  val concat : sep:string -> string list -> string
  val iter : f:(char -> unit) -> string -> unit
  val iteri : f:(int -> char -> unit) -> string -> unit
  val map : f:(char -> char) -> string -> string
  val mapi : f:(int -> char -> char) -> string -> string
  val trim : string -> string
  val escaped : string -> string
  val index : string -> char -> int
  val index_opt : string -> char -> int option
  val rindex : string -> char -> int
  val rindex_opt : string -> char -> int option
  val index_from : string -> int -> char -> int
  val index_from_opt : string -> int -> char -> int option
  val rindex_from : string -> int -> char -> int
  val rindex_from_opt : string -> int -> char -> int option
  val contains : string -> char -> bool
  val contains_from : string -> int -> char -> bool
  val rcontains_from : string -> int -> char -> bool
  val uppercase : string -> string
  val lowercase : string -> string
  val capitalize : string -> string
  val uncapitalize : string -> string
  val uppercase_ascii : string -> string
  val lowercase_ascii : string -> string
  val capitalize_ascii : string -> string
  val uncapitalize_ascii : string -> string
  type t = string
  val compare : StringLabels.t -> StringLabels.t -> int
  val equal : StringLabels.t -> StringLabels.t -> bool
  val split_on_char : sep:char -> string -> string list
  val to_seq : StringLabels.t -> char Stdlib.Seq.t
  val to_seqi : StringLabels.t -> (int * char) Stdlib.Seq.t
  val of_seq : char Stdlib.Seq.t -> StringLabels.t
  external unsafe_get : string -> int -> char = "%string_unsafe_get"
  external unsafe_set : bytes -> int -> char -> unit = "%string_unsafe_set"
  external unsafe_blit :
    src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
    = "caml_blit_string" [@@noalloc]
  external unsafe_fill : bytes -> pos:int -> len:int -> char -> unit
    = "caml_fill_string" [@@noalloc]
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Option.html0000644000175000017500000003424413717225553021133 0ustar mehdimehdi Stdlib.Option

Module Stdlib.Option

module Option: Option

Options

type 'a t = 'a option = 
| None
| Some of 'a

The type for option values. Either None or a value Some v.

val none : 'a option

none is None.

val some : 'a -> 'a option

some v is Some v.

val value : 'a option -> default:'a -> 'a

value o ~default is v if o is Some v and default otherwise.

val get : 'a option -> 'a

get o is v if o is Some v and

  • Raises Invalid_argument otherwise.
val bind : 'a option -> ('a -> 'b option) -> 'b option

bind o f is f v if o is Some v and None if o is None.

val join : 'a option option -> 'a option

join oo is Some v if oo is Some (Some v) and None otherwise.

val map : ('a -> 'b) -> 'a option -> 'b option

map f o is None if o is None and Some (f v) is o is Some v.

val fold : none:'a -> some:('b -> 'a) -> 'b option -> 'a

fold ~none ~some o is none if o is None and some v if o is Some v.

val iter : ('a -> unit) -> 'a option -> unit

iter f o is f v if o is Some v and () otherwise.

Predicates and comparisons

val is_none : 'a option -> bool

is_none o is true iff o is None.

val is_some : 'a option -> bool

is_some o is true iff o is Some o.

val equal : ('a -> 'a -> bool) -> 'a option -> 'a option -> bool

equal eq o0 o1 is true iff o0 and o1 are both None or if they are Some v0 and Some v1 and eq v0 v1 is true.

val compare : ('a -> 'a -> int) -> 'a option -> 'a option -> int

compare cmp o0 o1 is a total order on options using cmp to compare values wrapped by Some _. None is smaller than Some _ values.

Converting

val to_result : none:'e -> 'a option -> ('a, 'e) result

to_result ~none o is Ok v if o is Some v and Error none otherwise.

val to_list : 'a option -> 'a list

to_list o is [] if o is None and [v] if o is Some v.

val to_seq : 'a option -> 'a Seq.t

to_seq o is o as a sequence. None is the empty sequence and Some v is the singleton sequence containing v.

ocaml-doc-4.11/ocaml.html/libref/index.html0000644000175000017500000003501213717225553017544 0ustar mehdimehdi
Arg

Parsing of command line arguments.

Array
ArrayLabels

Array operations

Bigarray

Large, multi-dimensional, numerical arrays.

Bool

Boolean values.

Buffer

Extensible buffers.

Bytes

Byte sequence operations.

BytesLabels

Byte sequence operations.

Callback

Registering OCaml values with the C runtime.

CamlinternalFormat
CamlinternalFormatBasics
CamlinternalLazy

Run-time support for lazy values.

CamlinternalMod

Run-time support for recursive modules.

CamlinternalOO

Run-time support for objects and classes.

Char

Character operations.

Complex

Complex numbers.

Condition

Condition variables to synchronize between threads.

Digest

MD5 message digest.

Dynlink

Dynamic loading of .cmo, .cma and .cmxs files.

Ephemeron

Ephemerons and weak hash tables

Event

First-class synchronous communication.

Filename

Operations on file names.

Float

Floating-point arithmetic

Format

Pretty-printing.

Fun

Function manipulation.

Gc

Memory management control and statistics; finalised values.

Genlex

A generic lexical analyzer.

Hashtbl

Hash tables and hash functions.

Int

Integer values.

Int32

32-bit integers.

Int64

64-bit integers.

Lazy

Deferred computations.

Lexing

The run-time library for lexers generated by ocamllex.

List

List operations.

ListLabels
Map

Association tables over ordered types.

Marshal

Marshaling of data structures.

MoreLabels

Extra labeled libraries.

Mutex

Locks for mutual exclusion.

Nativeint

Processor-native integers.

Obj

Operations on internal representations of values.

Ocaml_operators

Precedence level and associativity of operators

Oo

Operations on objects

Option

Option values.

Parsing

The run-time library for parsers generated by ocamlyacc.

Printexc

Facilities for printing exceptions and inspecting current call stack.

Printf

Formatted output functions.

Queue

First-in first-out queues.

Random

Pseudo-random number generators (PRNG).

Result

Result values.

Scanf

Formatted input functions.

Seq

Functional Iterators

Set

Sets over ordered types.

Spacetime

Profiling of a program's space behaviour over time.

Stack

Last-in first-out stacks.

StdLabels

Standard labeled libraries.

Stdlib

The OCaml Standard library.

Str

Regular expressions and high-level string processing

Stream

Streams and parsers.

String

String operations.

StringLabels

String operations.

Sys

System interface.

Thread

Lightweight threads for Posix 1003.1c and Win32.

ThreadUnix

Thread-compatible system calls.

Uchar

Unicode characters.

Unit

Unit values.

Unix

Interface to the Unix system.

UnixLabels

Interface to the Unix system.

Weak

Arrays of weak pointers and hash sets of weak pointers.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Uchar.html0000644000175000017500000002732213717225553020724 0ustar mehdimehdi Stdlib.Uchar

Module Stdlib.Uchar

module Uchar: Uchar

type t 

The type for Unicode characters.

A value of this type represents a Unicode scalar value which is an integer in the ranges 0x0000...0xD7FF or 0xE000...0x10FFFF.

val min : t

min is U+0000.

val max : t

max is U+10FFFF.

val bom : t

bom is U+FEFF, the byte order mark (BOM) character.

  • Since 4.06.0
val rep : t

rep is U+FFFD, the replacement character.

  • Since 4.06.0
val succ : t -> t

succ u is the scalar value after u in the set of Unicode scalar values.

val pred : t -> t

pred u is the scalar value before u in the set of Unicode scalar values.

val is_valid : int -> bool

is_valid n is true iff n is a Unicode scalar value (i.e. in the ranges 0x0000...0xD7FF or 0xE000...0x10FFFF).

val of_int : int -> t

of_int i is i as a Unicode character.

val to_int : t -> int

to_int u is u as an integer.

val is_char : t -> bool

is_char u is true iff u is a latin1 OCaml character.

val of_char : char -> t

of_char c is c as a Unicode character.

val to_char : t -> char

to_char u is u as an OCaml latin1 character.

val equal : t -> t -> bool

equal u u' is u = u'.

val compare : t -> t -> int

compare u u' is Stdlib.compare u u'.

val hash : t -> int

hash u associates a non-negative integer to u.

ocaml-doc-4.11/ocaml.html/libref/ListLabels.html0000644000175000017500000011502513717225552020475 0ustar mehdimehdi ListLabels

Module ListLabels

module ListLabels: sig .. end

type 'a t = 'a list = 
| []
| :: of 'a * 'a list

An alias for the type of lists.

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a problem with very long lists. When the function takes several list arguments, an approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.

This module is intended to be used through StdLabels which replaces Array, Bytes, List and String with their labeled counterparts.

For example:

      open StdLabels

      let seq len = List.init ~f:(function i -> i) ~len
   
val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the first element of the given list.

  • Raises Failure if the list is empty.
val compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to compare (length l1) (length l2), except that the computation stops after itering on the shortest list.

  • Since 4.05.0
val compare_length_with : 'a list -> len:int -> int

Compare the length of a list to an integer. compare_length_with l n is equivalent to compare (length l) n, except that the computation stops after at most n iterations on the list.

  • Since 4.05.0
val cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs

  • Since 4.05.0
val tl : 'a list -> 'a list

Return the given list without its first element.

  • Raises Failure if the list is empty.
val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0.

  • Raises
    • Failure if the list is too short.
    • Invalid_argument if n is negative.
val nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the list is too short.

  • Since 4.05
  • Raises Invalid_argument if n is negative.
val rev : 'a list -> 'a list

List reversal.

val init : len:int -> f:(int -> 'a) -> 'a list

List.init len f is f 0; f 1; ...; f (len-1), evaluated left to right.

  • Since 4.06.0
  • Raises Invalid_argument if len < 0.
val append : 'a list -> 'a list -> 'a list

Catenate two lists. Same function as the infix operator @. Not tail-recursive (length of the first argument). The @ operator is not tail-recursive either.

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it with l2. This is equivalent to (List.rev l1) @ l2, but rev_append is tail-recursive and more efficient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

val flatten : 'a list list -> 'a list

Same as concat. Not tail-recursive (length of the argument + length of the longest sub-list).

Iterators

val iter : f:('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to begin f a1; f a2; ...; f an; () end.

val iteri : f:(int -> 'a -> unit) -> 'a list -> unit

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val map : f:('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f. Not tail-recursive.

val mapi : f:(int -> 'a -> 'b) -> 'a list -> 'b list

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val rev_map : f:('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

val filter_map : f:('a -> 'b option) -> 'a list -> 'b list

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

  • Since 4.08.0
val concat_map : f:('a -> 'b list) -> 'a list -> 'b list

List.concat_map f l gives the same result as List.concat (List.map f l). Tail-recursive.

  • Since 4.10.0
val fold_left_map : f:('a -> 'b -> 'a * 'c) -> init:'a -> 'b list -> 'a * 'c list

fold_left_map is a combination of fold_left and map hat threads an accumulator through calls to f

  • Since 4.11.0
val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : f:('a -> 'b -> 'b) -> 'a list -> init:'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

Iterators on two lists

val iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.
val rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

val fold_left2 : f:('a -> 'b -> 'c -> 'a) -> init:'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val fold_right2 : f:('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> init:'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.

List scanning

val for_all : f:('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an).

val exists : f:('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

val for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val mem : 'a -> set:'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> set:'a list -> bool

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

List searching

val find : f:('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p.

  • Raises Not_found if there is no value that satisfies p in the list l.
val find_opt : f:('a -> bool) -> 'a list -> 'a option

find p l returns the first element of the list l that satisfies the predicate p. Returns None if there is no value that satisfies p in the list l.

  • Since 4.05
val find_map : f:('a -> 'b option) -> 'a list -> 'b option

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

  • Since 4.10.0
val filter : f:('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of the elements in the input list is preserved.

val find_all : f:('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val filteri : f:(int -> 'a -> bool) -> 'a list -> 'a list

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.11.0
val partition : f:('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p. The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.

  • Raises Not_found if there is no value associated with a in the list l.
val assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Returns None if there is no value associated with a in the list l.

  • Since 4.05
val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

val assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

  • Since 4.05.0
val mem_assoc : 'a -> map:('a * 'b) list -> bool

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

val mem_assq : 'a -> map:('a * 'b) list -> bool

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

  • Raises Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, compare is a suitable comparison function. The resulting list is sorted in increasing order. List.sort is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val fast_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but also remove duplicates.

  • Since 4.03.0
val merge : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2. If several elements compare equal, the elements of l1 will be before the elements of l2. Not tail-recursive (sum of the lengths of the arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t

Iterate on the list

  • Since 4.07
val of_seq : 'a Seq.t -> 'a list

Create a list from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Lazy.html0000644000175000017500000003215713717225552017362 0ustar mehdimehdi Lazy

Module Lazy

module Lazy: sig .. end

Deferred computations.


type 'a t = 'a CamlinternalLazy.t 

A value of type 'Lazy.t is a deferred computation, called a suspension, that has a result of type 'a. The special expression syntax lazy (expr) makes a suspension of the computation of expr, without computing expr itself yet. "Forcing" the suspension will then compute expr and return its result. Matching a suspension with the special pattern syntax lazy(pattern) also computes the underlying expression and tries to bind it to pattern:

    let lazy_option_map f x =
    match x with
    | lazy (Some x) -> Some (Lazy.force f x)
    | _ -> None
  

Note: If lazy patterns appear in multiple cases in a pattern-matching, lazy expressions may be forced even outside of the case ultimately selected by the pattern matching. In the example above, the suspension x is always computed.

Note: lazy_t is the built-in type constructor used by the compiler for the lazy keyword. You should not use it directly. Always use Lazy.t instead.

Note: Lazy.force is not thread-safe. If you use this module in a multi-threaded program, you will need to add some locks.

Note: if the program is compiled with the -rectypes option, ill-founded recursive definitions of the form let rec x = lazy x or let rec x = lazy(lazy(...(lazy x))) are accepted by the type-checker and lead, when forced, to ill-formed values that trigger infinite loops in the garbage collector and other parts of the run-time system. Without the -rectypes option, such ill-founded recursive definitions are rejected by the type-checker.

exception Undefined
val force : 'a t -> 'a

force x forces the suspension x and returns its result. If x has already been forced, Lazy.force x returns the same value again without recomputing it. If it raised an exception, the same exception is raised again.

  • Raises Undefined if the forcing of x tries to force x itself recursively.
val force_val : 'a t -> 'a

force_val x forces the suspension x and returns its result. If x has already been forced, force_val x returns the same value again without recomputing it.

If the computation of x raises an exception, it is unspecified whether force_val x raises the same exception or Lazy.Undefined.

  • Raises Undefined if the forcing of x tries to force x itself recursively.
val from_fun : (unit -> 'a) -> 'a t

from_fun f is the same as lazy (f ()) but slightly more efficient.

from_fun should only be used if the function f is already defined. In particular it is always less efficient to write from_fun (fun () -> expr) than lazy expr.

  • Since 4.00.0
val from_val : 'a -> 'a t

from_val v returns an already-forced suspension of v. This is for special purposes only and should not be confused with lazy (v).

  • Since 4.00.0
val is_val : 'a t -> bool

is_val x returns true if x has already been forced and did not raise an exception.

  • Since 4.00.0
val lazy_from_fun : (unit -> 'a) -> 'a t
Deprecated.synonym for from_fun.
val lazy_from_val : 'a -> 'a t
Deprecated.synonym for from_val.
val lazy_is_val : 'a t -> bool
Deprecated.synonym for is_val.
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Seq.html0000644000175000017500000003156413717225553020415 0ustar mehdimehdi Stdlib.Seq

Module Stdlib.Seq

module Seq: Seq

The type 'a t is a delayed list, i.e. a list where some evaluation is needed to access the next element. This makes it possible to build infinite sequences, to build sequences as we traverse them, and to transform them in a lazy fashion rather than upfront.

type 'a t = unit -> 'a node 

The type of delayed lists containing elements of type 'a. Note that the concrete list node 'a node is delayed under a closure, not a lazy block, which means it might be recomputed every time we access it.

type 'a node = 
| Nil
| Cons of 'a * 'a t

A fully-evaluated list node, either empty or containing an element and a delayed tail.

val empty : 'a t

The empty sequence, containing no elements.

val return : 'a -> 'a t

The singleton sequence containing only the given element.

val cons : 'a -> 'a t -> 'a t

cons x xs is the sequence containing the element x followed by the sequence xs

  • Since 4.11
val append : 'a t -> 'a t -> 'a t

append xs ys is the sequence xs followed by the sequence ys

  • Since 4.11
val map : ('a -> 'b) -> 'a t -> 'b t

map f seq returns a new sequence whose elements are the elements of seq, transformed by f. This transformation is lazy, it only applies when the result is traversed.

If seq = [1;2;3], then map f seq = [f 1; f 2; f 3].

val filter : ('a -> bool) -> 'a t -> 'a t

Remove from the sequence the elements that do not satisfy the given predicate. This transformation is lazy, it only applies when the result is traversed.

val filter_map : ('a -> 'b option) -> 'a t -> 'b t

Apply the function to every element; if f x = None then x is dropped; if f x = Some y then y is returned. This transformation is lazy, it only applies when the result is traversed.

val flat_map : ('a -> 'b t) -> 'a t -> 'b t

Map each element to a subsequence, then return each element of this sub-sequence in turn. This transformation is lazy, it only applies when the result is traversed.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a

Traverse the sequence from left to right, combining each element with the accumulator using the given function. The traversal happens immediately and will not terminate on infinite sequences.

Also see List.fold_left

val iter : ('a -> unit) -> 'a t -> unit

Iterate on the sequence, calling the (imperative) function on every element. The traversal happens immediately and will not terminate on infinite sequences.

val unfold : ('b -> ('a * 'b) option) -> 'b -> 'a t

Build a sequence from a step function and an initial value. unfold f u returns empty if f u returns None, or fun () -> Cons (x, unfold f y) if f u returns Some (x, y).

For example, unfold (function [] -> None | h::t -> Some (h,t)) l is equivalent to List.to_seq l.

  • Since 4.11
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Digest.html0000644000175000017500000002626713717225552021107 0ustar mehdimehdi Stdlib.Digest

Module Stdlib.Digest

module Digest: Digest

type t = string 

The type of digests: 16-character strings.

val compare : t -> t -> int

The comparison function for 16-character digest, with the same specification as compare and the implementation shared with String.compare. Along with the type t, this function compare allows the module Digest to be passed as argument to the functors Set.Make and Map.Make.

  • Since 4.00.0
val equal : t -> t -> bool

The equal function for 16-character digest.

  • Since 4.03.0
val string : string -> t

Return the digest of the given string.

val bytes : bytes -> t

Return the digest of the given byte sequence.

  • Since 4.02.0
val substring : string -> int -> int -> t

Digest.substring s ofs len returns the digest of the substring of s starting at index ofs and containing len characters.

val subbytes : bytes -> int -> int -> t

Digest.subbytes s ofs len returns the digest of the subsequence of s starting at index ofs and containing len bytes.

  • Since 4.02.0
val channel : in_channel -> int -> t

If len is nonnegative, Digest.channel ic len reads len characters from channel ic and returns their digest, or raises End_of_file if end-of-file is reached before len characters are read. If len is negative, Digest.channel ic len reads all characters from ic until end-of-file is reached and return their digest.

val file : string -> t

Return the digest of the file whose name is given.

val output : out_channel -> t -> unit

Write a digest on the given output channel.

val input : in_channel -> t

Read a digest from the given input channel.

val to_hex : t -> string

Return the printable hexadecimal representation of the given digest.

  • Raises Invalid_argument if the argument is not exactly 16 bytes.
val from_hex : string -> t

Convert a hexadecimal representation back into the corresponding digest.

  • Since 4.00.0
  • Raises Invalid_argument if the argument is not exactly 32 hexadecimal characters.
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Unit.html0000644000175000017500000001126413717225553021640 0ustar mehdimehdi Stdlib.Unit (module Stdlib__unit) ocaml-doc-4.11/ocaml.html/libref/type_Condition.html0000644000175000017500000001274313717225552021431 0ustar mehdimehdi Condition sig
  type t
  val create : unit -> Condition.t
  val wait : Condition.t -> Mutex.t -> unit
  val signal : Condition.t -> unit
  val broadcast : Condition.t -> unit
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Spacetime.html0000644000175000017500000001127613717225553022636 0ustar mehdimehdi Stdlib.Spacetime (module Stdlib__spacetime) ocaml-doc-4.11/ocaml.html/libref/Buffer.html0000644000175000017500000006662313717225552017661 0ustar mehdimehdi Buffer

Module Buffer

module Buffer: sig .. end

Extensible buffers.

This module implements buffers that automatically expand as necessary. It provides accumulative concatenation of strings in quasi-linear time (instead of quadratic time when strings are concatenated pairwise).


type t 

The abstract type of buffers.

val create : int -> t

create n returns a fresh buffer, initially empty. The n parameter is the initial size of the internal byte sequence that holds the buffer contents. That byte sequence is automatically reallocated when more than n characters are stored in the buffer, but shrinks back to n characters when reset is called. For best performance, n should be of the same order of magnitude as the number of characters that are expected to be stored in the buffer (for instance, 80 for a buffer that holds one output line). Nothing bad will happen if the buffer grows beyond that limit, however. In doubt, take n = 16 for instance. If n is not between 1 and Sys.max_string_length, it will be clipped to that interval.

val contents : t -> string

Return a copy of the current contents of the buffer. The buffer itself is unchanged.

val to_bytes : t -> bytes

Return a copy of the current contents of the buffer. The buffer itself is unchanged.

  • Since 4.02
val sub : t -> int -> int -> string

Buffer.sub b off len returns a copy of len bytes from the current contents of the buffer b, starting at offset off.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of b.
val blit : t -> int -> bytes -> int -> int -> unit

Buffer.blit src srcoff dst dstoff len copies len characters from the current contents of the buffer src, starting at offset srcoff to dst, starting at character dstoff.

  • Since 3.11.2
  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val nth : t -> int -> char

Get the n-th character of the buffer.

  • Raises Invalid_argument if index out of bounds
val length : t -> int

Return the number of characters currently contained in the buffer.

val clear : t -> unit

Empty the buffer.

val reset : t -> unit

Empty the buffer and deallocate the internal byte sequence holding the buffer contents, replacing it with the initial internal byte sequence of length n that was allocated by Buffer.create n. For long-lived buffers that may have grown a lot, reset allows faster reclamation of the space used by the buffer.

val add_char : t -> char -> unit

add_char b c appends the character c at the end of buffer b.

val add_utf_8_uchar : t -> Uchar.t -> unit

add_utf_8_uchar b u appends the UTF-8 encoding of u at the end of buffer b.

  • Since 4.06.0
val add_utf_16le_uchar : t -> Uchar.t -> unit

add_utf_16le_uchar b u appends the UTF-16LE encoding of u at the end of buffer b.

  • Since 4.06.0
val add_utf_16be_uchar : t -> Uchar.t -> unit

add_utf_16be_uchar b u appends the UTF-16BE encoding of u at the end of buffer b.

  • Since 4.06.0
val add_string : t -> string -> unit

add_string b s appends the string s at the end of buffer b.

val add_bytes : t -> bytes -> unit

add_bytes b s appends the byte sequence s at the end of buffer b.

  • Since 4.02
val add_substring : t -> string -> int -> int -> unit

add_substring b s ofs len takes len characters from offset ofs in string s and appends them at the end of buffer b.

val add_subbytes : t -> bytes -> int -> int -> unit

add_subbytes b s ofs len takes len characters from offset ofs in byte sequence s and appends them at the end of buffer b.

  • Since 4.02
val add_substitute : t -> (string -> string) -> string -> unit

add_substitute b f s appends the string pattern s at the end of buffer b with substitution. The substitution process looks for variables into the pattern and substitutes each variable name by its value, as obtained by applying the mapping f to the variable name. Inside the string pattern, a variable name immediately follows a non-escaped $ character and is one of the following:

  • a non empty sequence of alphanumeric or _ characters,
  • an arbitrary sequence of characters enclosed by a pair of matching parentheses or curly brackets. An escaped $ character is a $ that immediately follows a backslash character; it then stands for a plain $.
  • Raises Not_found if the closing character of a parenthesized variable cannot be found.
val add_buffer : t -> t -> unit

add_buffer b1 b2 appends the current contents of buffer b2 at the end of buffer b1. b2 is not modified.

val add_channel : t -> in_channel -> int -> unit

add_channel b ic n reads at most n characters from the input channel ic and stores them at the end of buffer b.

  • Raises End_of_file if the channel contains fewer than n characters. In this case, the characters are still added to the buffer, so as to avoid loss of data.
val output_buffer : out_channel -> t -> unit

output_buffer oc b writes the current contents of buffer b on the output channel oc.

val truncate : t -> int -> unit

truncate b len truncates the length of b to len Note: the internal byte sequence is not shortened.

  • Since 4.05.0
  • Raises Invalid_argument if len < 0 or len > length b.

Iterators

val to_seq : t -> char Seq.t

Iterate on the buffer, in increasing order. Modification of the buffer during iteration is undefined behavior.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the buffer, in increasing order, yielding indices along chars. Modification of the buffer during iteration is undefined behavior.

  • Since 4.07
val add_seq : t -> char Seq.t -> unit

Add chars to the buffer

  • Since 4.07
val of_seq : char Seq.t -> t

Create a buffer from the generator

  • Since 4.07

Binary encoding of integers

The functions in this section append binary encodings of integers to buffers.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. Functions that encode these values truncate their inputs to their least significant bytes.

val add_uint8 : t -> int -> unit

add_uint8 b i appends a binary unsigned 8-bit integer i to b.

  • Since 4.08
val add_int8 : t -> int -> unit

add_int8 b i appends a binary signed 8-bit integer i to b.

  • Since 4.08
val add_uint16_ne : t -> int -> unit

add_uint16_ne b i appends a binary native-endian unsigned 16-bit integer i to b.

  • Since 4.08
val add_uint16_be : t -> int -> unit

add_uint16_be b i appends a binary big-endian unsigned 16-bit integer i to b.

  • Since 4.08
val add_uint16_le : t -> int -> unit

add_uint16_le b i appends a binary little-endian unsigned 16-bit integer i to b.

  • Since 4.08
val add_int16_ne : t -> int -> unit

add_int16_ne b i appends a binary native-endian signed 16-bit integer i to b.

  • Since 4.08
val add_int16_be : t -> int -> unit

add_int16_be b i appends a binary big-endian signed 16-bit integer i to b.

  • Since 4.08
val add_int16_le : t -> int -> unit

add_int16_le b i appends a binary little-endian signed 16-bit integer i to b.

  • Since 4.08
val add_int32_ne : t -> int32 -> unit

add_int32_ne b i appends a binary native-endian 32-bit integer i to b.

  • Since 4.08
val add_int32_be : t -> int32 -> unit

add_int32_be b i appends a binary big-endian 32-bit integer i to b.

  • Since 4.08
val add_int32_le : t -> int32 -> unit

add_int32_le b i appends a binary little-endian 32-bit integer i to b.

  • Since 4.08
val add_int64_ne : t -> int64 -> unit

add_int64_ne b i appends a binary native-endian 64-bit integer i to b.

  • Since 4.08
val add_int64_be : t -> int64 -> unit

add_int64_be b i appends a binary big-endian 64-bit integer i to b.

  • Since 4.08
val add_int64_le : t -> int64 -> unit

add_int64_ne b i appends a binary little-endian 64-bit integer i to b.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/type_Random.State.html0000644000175000017500000001705313717225553022002 0ustar mehdimehdi Random.State sig
  type t
  val make : int array -> Random.State.t
  val make_self_init : unit -> Random.State.t
  val copy : Random.State.t -> Random.State.t
  val bits : Random.State.t -> int
  val int : Random.State.t -> int -> int
  val int32 : Random.State.t -> Stdlib.Int32.t -> Stdlib.Int32.t
  val nativeint : Random.State.t -> Stdlib.Nativeint.t -> Stdlib.Nativeint.t
  val int64 : Random.State.t -> Stdlib.Int64.t -> Stdlib.Int64.t
  val float : Random.State.t -> float -> float
  val bool : Random.State.t -> bool
end
ocaml-doc-4.11/ocaml.html/libref/StringLabels.html0000644000175000017500000010157513717225553021036 0ustar mehdimehdi StringLabels

Module StringLabels

module StringLabels: sig .. end

String operations. This module is intended to be used through StdLabels which replaces Array, Bytes, List and String with their labeled counterparts

For example:

      open StdLabels

      let to_upper = String.map ~f:Char.uppercase_ascii
   

val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

String.get s n returns the character at index n in string s. You can also write s.[n] instead of String.get s n.

  • Raises Invalid_argument if n not a valid index in s.
val set : bytes -> int -> char -> unit
Deprecated.This is a deprecated alias of BytesLabels.set.

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c. You can also write s.[n] <- c instead of String.set s n c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes
Deprecated.This is a deprecated alias of BytesLabels.create.

String.create n returns a fresh byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> string

String.make n c returns a fresh string of length n, filled with the character c.

val init : int -> f:(int -> char) -> string

init n f returns a string of length n, with character i initialized to the result of f i.

val copy : string -> string

Return a copy of the given string.

val sub : string -> pos:int -> len:int -> string

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val fill : bytes -> pos:int -> len:int -> char -> unit
Deprecated.This is a deprecated alias of BytesLabels.fill.

String.fill s start len c modifies byte sequence s in place, replacing len bytes by c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val blit : src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

String.blit src srcoff dst dstoff len copies len bytes from the string src, starting at index srcoff, to byte sequence dst, starting at character number dstoff.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : sep:string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

val iter : f:(char -> unit) -> string -> unit

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ().

val iteri : f:(int -> char -> unit) -> string -> unit

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

  • Since 4.00.0
val map : f:(char -> char) -> string -> string

String.map f s applies function f in turn to all the characters of s and stores the results in a new string that is returned.

  • Since 4.00.0
val mapi : f:(int -> char -> char) -> string -> string

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.02.0
val trim : string -> string

Return a copy of the argument, without leading and trailing whitespace. The characters regarded as whitespace are: ' ', '\012', '\n', '\r', and '\t'. If there is no leading nor trailing whitespace character in the argument, return the original string itself, not a copy.

  • Since 4.00.0
val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. If there is no special character in the argument, return the original string itself, not a copy. Its inverse function is Scanf.unescaped.

val index : string -> char -> int

String.index s c returns the index of the first occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val index_opt : string -> char -> int option

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val rindex : string -> char -> int

String.rindex s c returns the index of the last occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : string -> char -> int option

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val index_from : string -> int -> char -> int

String.index_from s i c returns the index of the first occurrence of character c in string s after position i. String.index s c is equivalent to String.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : string -> int -> char -> int option

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

String.index_opt s c is equivalent to String.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : string -> int -> char -> int

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1. String.rindex s c is equivalent to String.rindex_from s (String.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : string -> int -> char -> int option

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

String.rindex_opt s c is equivalent to String.rindex_from_opt s (String.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in s after position start. String.contains s c is equivalent to String.contains_from s 0 c.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val lowercase_ascii : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.05.0
val capitalize_ascii : string -> string

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val uncapitalize_ascii : string -> string

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.05.0
type t = string 

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same specification as compare. Along with the type t, this function compare allows the module String to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for strings.

  • Since 4.05.0
val split_on_char : sep:char -> string -> string list

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

The function's output is specified by the following invariants:

  • The list is not empty.
  • Concatenating its elements using sep as a separator returns a string equal to the input (String.concat (String.make 1 sep)
          (String.split_on_char sep s) = s
    ).
  • No string in the result contains the sep character.
  • Since 4.05.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Bigarray.Array1.html0000644000175000017500000003742713717225552021346 0ustar mehdimehdi Bigarray.Array1

Module Bigarray.Array1

module Array1: sig .. end

One-dimensional arrays. The Array1 structure provides operations similar to those of Bigarray.Genarray, but specialized to the case of one-dimensional arrays. (The Bigarray.Array2 and Bigarray.Array3 structures below provide operations specialized for two- and three-dimensional arrays.) Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.


type ('a, 'b, 'c) t 

The type of one-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

val create : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int -> ('a, 'b, 'c) t

Array1.create kind layout dim returns a new Bigarray of one dimension, whose size is dim. kind and layout determine the array element kind and the array layout as described for Bigarray.Genarray.create.

val dim : ('a, 'b, 'c) t -> int

Return the size (dimension) of the given one-dimensional Bigarray.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given Bigarray.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given Bigarray.

val change_layout : ('a, 'b, 'c) t ->
'd Bigarray.layout -> ('a, 'b, 'd) t

Array1.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimension as a). No copying of elements is involved: the new array and the original array share the same storage space.

  • Since 4.06.0
val size_in_bytes : ('a, 'b, 'c) t -> int

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

  • Since 4.03.0
val get : ('a, 'b, 'c) t -> int -> 'a

Array1.get a x, or alternatively a.{x}, returns the element of a at index x. x must be greater or equal than 0 and strictly less than Array1.dim a if a has C layout. If a has Fortran layout, x must be greater or equal than 1 and less or equal than Array1.dim a. Otherwise, Invalid_argument is raised.

val set : ('a, 'b, 'c) t -> int -> 'a -> unit

Array1.set a x v, also written a.{x} <- v, stores the value v at index x in a. x must be inside the bounds of a as described in Bigarray.Array1.get; otherwise, Invalid_argument is raised.

val sub : ('a, 'b, 'c) t ->
int -> int -> ('a, 'b, 'c) t

Extract a sub-array of the given one-dimensional Bigarray. See Bigarray.Genarray.sub_left for more details.

val slice : ('a, 'b, 'c) t -> int -> ('a, 'b, 'c) Bigarray.Array0.t

Extract a scalar (zero-dimensional slice) of the given one-dimensional Bigarray. The integer parameter is the index of the scalar to extract. See Bigarray.Genarray.slice_left and Bigarray.Genarray.slice_right for more details.

  • Since 4.05.0
val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the first Bigarray to the second Bigarray. See Bigarray.Genarray.blit for more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given Bigarray with the given value. See Bigarray.Genarray.fill for more details.

val of_array : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a array -> ('a, 'b, 'c) t

Build a one-dimensional Bigarray initialized from the given array.

val unsafe_get : ('a, 'b, 'c) t -> int -> 'a

Like Bigarray.Array1.get, but bounds checking is not always performed. Use with caution and only when the program logic guarantees that the access is within bounds.

val unsafe_set : ('a, 'b, 'c) t -> int -> 'a -> unit

Like Bigarray.Array1.set, but bounds checking is not always performed. Use with caution and only when the program logic guarantees that the access is within bounds.

ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Map.html0000644000175000017500000013771713717225553022256 0ustar mehdimehdi MoreLabels.Map sig
  module type OrderedType = Map.OrderedType
  module type S =
    sig
      type key
      and +'a t
      val empty : 'MoreLabels.Map.S.t
      val is_empty : 'MoreLabels.Map.S.t -> bool
      val mem : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> bool
      val add :
        key:MoreLabels.Map.S.key ->
        data:'-> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val update :
        key:MoreLabels.Map.S.key ->
        f:('a option -> 'a option) ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val singleton : MoreLabels.Map.S.key -> '-> 'MoreLabels.Map.S.t
      val remove :
        MoreLabels.Map.S.key ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val merge :
        f:(MoreLabels.Map.S.key -> 'a option -> 'b option -> 'c option) ->
        'MoreLabels.Map.S.t ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val union :
        f:(MoreLabels.Map.S.key -> '-> '-> 'a option) ->
        'MoreLabels.Map.S.t ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val compare :
        cmp:('-> '-> int) ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> int
      val equal :
        cmp:('-> '-> bool) ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> bool
      val iter :
        f:(key:MoreLabels.Map.S.key -> data:'-> unit) ->
        'MoreLabels.Map.S.t -> unit
      val fold :
        f:(key:MoreLabels.Map.S.key -> data:'-> '-> 'b) ->
        'MoreLabels.Map.S.t -> init:'-> 'b
      val for_all :
        f:(MoreLabels.Map.S.key -> '-> bool) ->
        'MoreLabels.Map.S.t -> bool
      val exists :
        f:(MoreLabels.Map.S.key -> '-> bool) ->
        'MoreLabels.Map.S.t -> bool
      val filter :
        f:(MoreLabels.Map.S.key -> '-> bool) ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val filter_map :
        f:(MoreLabels.Map.S.key -> '-> 'b option) ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val partition :
        f:(MoreLabels.Map.S.key -> '-> bool) ->
        'MoreLabels.Map.S.t ->
        'MoreLabels.Map.S.t * 'MoreLabels.Map.S.t
      val cardinal : 'MoreLabels.Map.S.t -> int
      val bindings :
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) list
      val min_binding : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
      val min_binding_opt :
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
      val max_binding : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
      val max_binding_opt :
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
      val choose : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
      val choose_opt :
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
      val split :
        MoreLabels.Map.S.key ->
        'MoreLabels.Map.S.t ->
        'MoreLabels.Map.S.t * 'a option * 'MoreLabels.Map.S.t
      val find : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'a
      val find_opt :
        MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'a option
      val find_first :
        f:(MoreLabels.Map.S.key -> bool) ->
        'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
      val find_first_opt :
        f:(MoreLabels.Map.S.key -> bool) ->
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
      val find_last :
        f:(MoreLabels.Map.S.key -> bool) ->
        'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
      val find_last_opt :
        f:(MoreLabels.Map.S.key -> bool) ->
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
      val map :
        f:('-> 'b) -> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val mapi :
        f:(MoreLabels.Map.S.key -> '-> 'b) ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val to_seq :
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t
      val to_seq_from :
        MoreLabels.Map.S.key ->
        'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t
      val add_seq :
        (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t ->
        'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
      val of_seq :
        (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t -> 'MoreLabels.Map.S.t
    end
  module Make :
    functor (Ord : OrderedType->
      sig
        type key = Ord.t
        and 'a t = 'Map.Make(Ord).t
        val empty : 'a t
        val is_empty : 'a t -> bool
        val mem : key -> 'a t -> bool
        val add : key:key -> data:'-> 'a t -> 'a t
        val update : key:key -> f:('a option -> 'a option) -> 'a t -> 'a t
        val singleton : key -> '-> 'a t
        val remove : key -> 'a t -> 'a t
        val merge :
          f:(key -> 'a option -> 'b option -> 'c option) ->
          'a t -> 'b t -> 'c t
        val union : f:(key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
        val compare : cmp:('-> '-> int) -> 'a t -> 'a t -> int
        val equal : cmp:('-> '-> bool) -> 'a t -> 'a t -> bool
        val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
        val fold :
          f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
        val for_all : f:(key -> '-> bool) -> 'a t -> bool
        val exists : f:(key -> '-> bool) -> 'a t -> bool
        val filter : f:(key -> '-> bool) -> 'a t -> 'a t
        val filter_map : f:(key -> '-> 'b option) -> 'a t -> 'b t
        val partition : f:(key -> '-> bool) -> 'a t -> 'a t * 'a t
        val cardinal : 'a t -> int
        val bindings : 'a t -> (key * 'a) list
        val min_binding : 'a t -> key * 'a
        val min_binding_opt : 'a t -> (key * 'a) option
        val max_binding : 'a t -> key * 'a
        val max_binding_opt : 'a t -> (key * 'a) option
        val choose : 'a t -> key * 'a
        val choose_opt : 'a t -> (key * 'a) option
        val split : key -> 'a t -> 'a t * 'a option * 'a t
        val find : key -> 'a t -> 'a
        val find_opt : key -> 'a t -> 'a option
        val find_first : f:(key -> bool) -> 'a t -> key * 'a
        val find_first_opt : f:(key -> bool) -> 'a t -> (key * 'a) option
        val find_last : f:(key -> bool) -> 'a t -> key * 'a
        val find_last_opt : f:(key -> bool) -> 'a t -> (key * 'a) option
        val map : f:('-> 'b) -> 'a t -> 'b t
        val mapi : f:(key -> '-> 'b) -> 'a t -> 'b t
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
        val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
        val of_seq : (key * 'a) Seq.t -> 'a t
      end
end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.K1.Make.html0000644000175000017500000002715413717225552022555 0ustar mehdimehdi Ephemeron.K1.Make functor (H : Hashtbl.HashedType->
  sig
    type key = H.t
    type 'a t
    val create : int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/type_Set.S.html0000644000175000017500000004732613717225553020445 0ustar mehdimehdi Set.S sig
  type elt
  type t
  val empty : Set.S.t
  val is_empty : Set.S.t -> bool
  val mem : Set.S.elt -> Set.S.t -> bool
  val add : Set.S.elt -> Set.S.t -> Set.S.t
  val singleton : Set.S.elt -> Set.S.t
  val remove : Set.S.elt -> Set.S.t -> Set.S.t
  val union : Set.S.t -> Set.S.t -> Set.S.t
  val inter : Set.S.t -> Set.S.t -> Set.S.t
  val disjoint : Set.S.t -> Set.S.t -> bool
  val diff : Set.S.t -> Set.S.t -> Set.S.t
  val compare : Set.S.t -> Set.S.t -> int
  val equal : Set.S.t -> Set.S.t -> bool
  val subset : Set.S.t -> Set.S.t -> bool
  val iter : (Set.S.elt -> unit) -> Set.S.t -> unit
  val map : (Set.S.elt -> Set.S.elt) -> Set.S.t -> Set.S.t
  val fold : (Set.S.elt -> '-> 'a) -> Set.S.t -> '-> 'a
  val for_all : (Set.S.elt -> bool) -> Set.S.t -> bool
  val exists : (Set.S.elt -> bool) -> Set.S.t -> bool
  val filter : (Set.S.elt -> bool) -> Set.S.t -> Set.S.t
  val filter_map : (Set.S.elt -> Set.S.elt option) -> Set.S.t -> Set.S.t
  val partition : (Set.S.elt -> bool) -> Set.S.t -> Set.S.t * Set.S.t
  val cardinal : Set.S.t -> int
  val elements : Set.S.t -> Set.S.elt list
  val min_elt : Set.S.t -> Set.S.elt
  val min_elt_opt : Set.S.t -> Set.S.elt option
  val max_elt : Set.S.t -> Set.S.elt
  val max_elt_opt : Set.S.t -> Set.S.elt option
  val choose : Set.S.t -> Set.S.elt
  val choose_opt : Set.S.t -> Set.S.elt option
  val split : Set.S.elt -> Set.S.t -> Set.S.t * bool * Set.S.t
  val find : Set.S.elt -> Set.S.t -> Set.S.elt
  val find_opt : Set.S.elt -> Set.S.t -> Set.S.elt option
  val find_first : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt
  val find_first_opt : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt option
  val find_last : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt
  val find_last_opt : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt option
  val of_list : Set.S.elt list -> Set.S.t
  val to_seq_from : Set.S.elt -> Set.S.t -> Set.S.elt Stdlib.Seq.t
  val to_seq : Set.S.t -> Set.S.elt Stdlib.Seq.t
  val add_seq : Set.S.elt Stdlib.Seq.t -> Set.S.t -> Set.S.t
  val of_seq : Set.S.elt Stdlib.Seq.t -> Set.S.t
end
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.S.html0000644000175000017500000003753713717225553023326 0ustar mehdimehdi MoreLabels.Hashtbl.S sig
  type key
  and 'a t
  val create : int -> 'MoreLabels.Hashtbl.S.t
  val clear : 'MoreLabels.Hashtbl.S.t -> unit
  val reset : 'MoreLabels.Hashtbl.S.t -> unit
  val copy : 'MoreLabels.Hashtbl.S.t -> 'MoreLabels.Hashtbl.S.t
  val add :
    'MoreLabels.Hashtbl.S.t ->
    key:MoreLabels.Hashtbl.S.key -> data:'-> unit
  val remove : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> unit
  val find : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a
  val find_opt :
    'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a option
  val find_all :
    'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a list
  val replace :
    'MoreLabels.Hashtbl.S.t ->
    key:MoreLabels.Hashtbl.S.key -> data:'-> unit
  val mem : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> bool
  val iter :
    f:(key:MoreLabels.Hashtbl.S.key -> data:'-> unit) ->
    'MoreLabels.Hashtbl.S.t -> unit
  val filter_map_inplace :
    f:(key:MoreLabels.Hashtbl.S.key -> data:'-> 'a option) ->
    'MoreLabels.Hashtbl.S.t -> unit
  val fold :
    f:(key:MoreLabels.Hashtbl.S.key -> data:'-> '-> 'b) ->
    'MoreLabels.Hashtbl.S.t -> init:'-> 'b
  val length : 'MoreLabels.Hashtbl.S.t -> int
  val stats : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.statistics
  val to_seq :
    'MoreLabels.Hashtbl.S.t -> (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t
  val to_seq_keys :
    'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key Stdlib.Seq.t
  val to_seq_values : 'MoreLabels.Hashtbl.S.t -> 'Stdlib.Seq.t
  val add_seq :
    'MoreLabels.Hashtbl.S.t ->
    (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
  val replace_seq :
    'MoreLabels.Hashtbl.S.t ->
    (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
  val of_seq :
    (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> 'MoreLabels.Hashtbl.S.t
end
ocaml-doc-4.11/ocaml.html/libref/type_ArrayLabels.html0000644000175000017500000005074013717225552021703 0ustar mehdimehdi ArrayLabels sig
  type 'a t = 'a array
  external length : 'a array -> int = "%array_length"
  external get : 'a array -> int -> 'a = "%array_safe_get"
  external set : 'a array -> int -> '-> unit = "%array_safe_set"
  external make : int -> '-> 'a array = "caml_make_vect"
  external create : int -> '-> 'a array = "caml_make_vect"
  val init : int -> f:(int -> 'a) -> 'a array
  val make_matrix : dimx:int -> dimy:int -> '-> 'a array array
  val create_matrix : dimx:int -> dimy:int -> '-> 'a array array
  val append : 'a array -> 'a array -> 'a array
  val concat : 'a array list -> 'a array
  val sub : 'a array -> pos:int -> len:int -> 'a array
  val copy : 'a array -> 'a array
  val fill : 'a array -> pos:int -> len:int -> '-> unit
  val blit :
    src:'a array ->
    src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unit
  val to_list : 'a array -> 'a list
  val of_list : 'a list -> 'a array
  val iter : f:('-> unit) -> 'a array -> unit
  val map : f:('-> 'b) -> 'a array -> 'b array
  val iteri : f:(int -> '-> unit) -> 'a array -> unit
  val mapi : f:(int -> '-> 'b) -> 'a array -> 'b array
  val fold_left : f:('-> '-> 'a) -> init:'-> 'b array -> 'a
  val fold_right : f:('-> '-> 'a) -> 'b array -> init:'-> 'a
  val iter2 : f:('-> '-> unit) -> 'a array -> 'b array -> unit
  val map2 : f:('-> '-> 'c) -> 'a array -> 'b array -> 'c array
  val exists : f:('-> bool) -> 'a array -> bool
  val for_all : f:('-> bool) -> 'a array -> bool
  val for_all2 : f:('-> '-> bool) -> 'a array -> 'b array -> bool
  val exists2 : f:('-> '-> bool) -> 'a array -> 'b array -> bool
  val mem : '-> set:'a array -> bool
  val memq : '-> set:'a array -> bool
  external create_float : int -> float array = "caml_make_float_vect"
  val make_float : int -> float array
  val sort : cmp:('-> '-> int) -> 'a array -> unit
  val stable_sort : cmp:('-> '-> int) -> 'a array -> unit
  val fast_sort : cmp:('-> '-> int) -> 'a array -> unit
  val to_seq : 'a array -> 'Stdlib.Seq.t
  val to_seqi : 'a array -> (int * 'a) Stdlib.Seq.t
  val of_seq : 'Stdlib.Seq.t -> 'a array
  external unsafe_get : 'a array -> int -> 'a = "%array_unsafe_get"
  external unsafe_set : 'a array -> int -> '-> unit = "%array_unsafe_set"
  module Floatarray :
    sig
      external create : int -> floatarray = "caml_floatarray_create"
      external length : floatarray -> int = "%floatarray_length"
      external get : floatarray -> int -> float = "%floatarray_safe_get"
      external set : floatarray -> int -> float -> unit
        = "%floatarray_safe_set"
      external unsafe_get : floatarray -> int -> float
        = "%floatarray_unsafe_get"
      external unsafe_set : floatarray -> int -> float -> unit
        = "%floatarray_unsafe_set"
    end
end
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.K1.MakeSeeded.html0000644000175000017500000001612213717225552022617 0ustar mehdimehdi Ephemeron.K1.MakeSeeded

Functor Ephemeron.K1.MakeSeeded

module MakeSeeded: 
functor (H : Hashtbl.SeededHashedType-> Ephemeron.SeededS with type key = H.t

Functor building an implementation of a weak hash table. The seed is similar to the one of Hashtbl.MakeSeeded.

Parameters:
H : Hashtbl.SeededHashedType

include Hashtbl.SeededS
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/Dynlink.html0000644000175000017500000004515013717225552020050 0ustar mehdimehdi Dynlink

Module Dynlink

module Dynlink: sig .. end

Dynamic loading of .cmo, .cma and .cmxs files.


val is_native : bool

true if the program is native, false if the program is bytecode.

Dynamic loading of compiled files

val loadfile : string -> unit

In bytecode: load the given bytecode object file (.cmo file) or bytecode library file (.cma file), and link it with the running program. In native code: load the given OCaml plugin file (usually .cmxs), and link it with the running program.

All toplevel expressions in the loaded compilation units are evaluated. No facilities are provided to access value names defined by the unit. Therefore, the unit must itself register its entry points with the main program (or a previously-loaded library) e.g. by modifying tables of functions.

An exception will be raised if the given library defines toplevel modules whose names clash with modules existing either in the main program or a shared library previously loaded with loadfile. Modules from shared libraries previously loaded with loadfile_private are not included in this restriction.

The compilation units loaded by this function are added to the "allowed units" list (see Dynlink.set_allowed_units).

val loadfile_private : string -> unit

Same as loadfile, except that the compilation units just loaded are hidden (cannot be referenced) from other modules dynamically loaded afterwards.

An exception will be raised if the given library defines toplevel modules whose names clash with modules existing in either the main program or a shared library previously loaded with loadfile. Modules from shared libraries previously loaded with loadfile_private are not included in this restriction.

An exception will also be raised if the given library defines toplevel modules whose name matches that of an interface depended on by a module existing in either the main program or a shared library previously loaded with loadfile. This applies even if such dependency is only a "module alias" dependency (i.e. just on the name rather than the contents of the interface).

The compilation units loaded by this function are not added to the "allowed units" list (see Dynlink.set_allowed_units) since they cannot be referenced from other compilation units.

val adapt_filename : string -> string

In bytecode, the identity function. In native code, replace the last extension with .cmxs.

Access control

val set_allowed_units : string list -> unit

Set the list of compilation units that may be referenced from units that are dynamically loaded in the future to be exactly the given value.

Initially all compilation units composing the program currently running are available for reference from dynamically-linked units. set_allowed_units can be used to restrict access to a subset of these units, e.g. to the units that compose the API for dynamically-linked code, and prevent access to all other units, e.g. private, internal modules of the running program.

Note that Dynlink.loadfile changes the allowed-units list.

val allow_only : string list -> unit

allow_only units sets the list of allowed units to be the intersection of the existing allowed units and the given list of units. As such it can never increase the set of allowed units.

val prohibit : string list -> unit

prohibit units prohibits dynamically-linked units from referencing the units named in list units by removing such units from the allowed units list. This can be used to prevent access to selected units, e.g. private, internal modules of the running program.

val main_program_units : unit -> string list

Return the list of compilation units that form the main program (i.e. are not dynamically linked).

val public_dynamically_loaded_units : unit -> string list

Return the list of compilation units that have been dynamically loaded via loadfile (and not via loadfile_private). Note that compilation units loaded dynamically cannot be unloaded.

val all_units : unit -> string list

Return the list of compilation units that form the main program together with those that have been dynamically loaded via loadfile (and not via loadfile_private).

val allow_unsafe_modules : bool -> unit

Govern whether unsafe object files are allowed to be dynamically linked. A compilation unit is 'unsafe' if it contains declarations of external functions, which can break type safety. By default, dynamic linking of unsafe object files is not allowed. In native code, this function does nothing; object files with external functions are always allowed to be dynamically linked.

Error reporting

type linking_error = private 
| Undefined_global of string
| Unavailable_primitive of string
| Uninitialized_global of string
type error = private 
| Not_a_bytecode_file of string
| Inconsistent_import of string
| Unavailable_unit of string
| Unsafe_file
| Linking_error of string * linking_error
| Corrupted_interface of string
| Cannot_open_dynamic_library of exn
| Library's_module_initializers_failed of exn
| Inconsistent_implementation of string
| Module_already_loaded of string
| Private_library_cannot_implement_interface of string
exception Error of error

Errors in dynamic linking are reported by raising the Error exception with a description of the error. A common case is the dynamic library not being found on the system: this is reported via Cannot_open_dynamic_library (the enclosed exception may be platform-specific).

val error_message : error -> string

Convert an error description to a printable message.

ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.Kn.Make.html0000644000175000017500000002716713717225552022656 0ustar mehdimehdi Ephemeron.Kn.Make functor (H : Hashtbl.HashedType->
  sig
    type key = H.t array
    type 'a t
    val create : int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Map.S.html0000644000175000017500000007326613717225553022455 0ustar mehdimehdi MoreLabels.Map.S sig
  type key
  and +'a t
  val empty : 'MoreLabels.Map.S.t
  val is_empty : 'MoreLabels.Map.S.t -> bool
  val mem : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> bool
  val add :
    key:MoreLabels.Map.S.key ->
    data:'-> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val update :
    key:MoreLabels.Map.S.key ->
    f:('a option -> 'a option) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val singleton : MoreLabels.Map.S.key -> '-> 'MoreLabels.Map.S.t
  val remove :
    MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val merge :
    f:(MoreLabels.Map.S.key -> 'a option -> 'b option -> 'c option) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val union :
    f:(MoreLabels.Map.S.key -> '-> '-> 'a option) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val compare :
    cmp:('-> '-> int) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> int
  val equal :
    cmp:('-> '-> bool) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> bool
  val iter :
    f:(key:MoreLabels.Map.S.key -> data:'-> unit) ->
    'MoreLabels.Map.S.t -> unit
  val fold :
    f:(key:MoreLabels.Map.S.key -> data:'-> '-> 'b) ->
    'MoreLabels.Map.S.t -> init:'-> 'b
  val for_all :
    f:(MoreLabels.Map.S.key -> '-> bool) -> 'MoreLabels.Map.S.t -> bool
  val exists :
    f:(MoreLabels.Map.S.key -> '-> bool) -> 'MoreLabels.Map.S.t -> bool
  val filter :
    f:(MoreLabels.Map.S.key -> '-> bool) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val filter_map :
    f:(MoreLabels.Map.S.key -> '-> 'b option) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val partition :
    f:(MoreLabels.Map.S.key -> '-> bool) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t * 'MoreLabels.Map.S.t
  val cardinal : 'MoreLabels.Map.S.t -> int
  val bindings : 'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) list
  val min_binding : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
  val min_binding_opt :
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
  val max_binding : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
  val max_binding_opt :
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
  val choose : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
  val choose_opt :
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
  val split :
    MoreLabels.Map.S.key ->
    'MoreLabels.Map.S.t ->
    'MoreLabels.Map.S.t * 'a option * 'MoreLabels.Map.S.t
  val find : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'a
  val find_opt : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'a option
  val find_first :
    f:(MoreLabels.Map.S.key -> bool) ->
    'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
  val find_first_opt :
    f:(MoreLabels.Map.S.key -> bool) ->
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
  val find_last :
    f:(MoreLabels.Map.S.key -> bool) ->
    'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
  val find_last_opt :
    f:(MoreLabels.Map.S.key -> bool) ->
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
  val map : f:('-> 'b) -> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val mapi :
    f:(MoreLabels.Map.S.key -> '-> 'b) ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val to_seq :
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t
  val to_seq_from :
    MoreLabels.Map.S.key ->
    'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t
  val add_seq :
    (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t ->
    'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
  val of_seq :
    (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t -> 'MoreLabels.Map.S.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Thread.html0000644000175000017500000002041313717225553020704 0ustar mehdimehdi Thread sig
  type t
  val create : ('-> 'b) -> '-> Thread.t
  val self : unit -> Thread.t
  val id : Thread.t -> int
  val exit : unit -> unit
  val kill : Thread.t -> unit
  val delay : float -> unit
  val join : Thread.t -> unit
  val wait_read : Unix.file_descr -> unit
  val wait_write : Unix.file_descr -> unit
  val wait_timed_read : Unix.file_descr -> float -> bool
  val wait_timed_write : Unix.file_descr -> float -> bool
  val select :
    Unix.file_descr list ->
    Unix.file_descr list ->
    Unix.file_descr list ->
    float ->
    Unix.file_descr list * Unix.file_descr list * Unix.file_descr list
  val wait_pid : int -> int * Unix.process_status
  val yield : unit -> unit
  val sigmask : Unix.sigprocmask_command -> int list -> int list
  val wait_signal : int list -> int
end
ocaml-doc-4.11/ocaml.html/libref/type_Int.html0000644000175000017500000002250213717225552020227 0ustar mehdimehdi Int sig
  type t = int
  val zero : int
  val one : int
  val minus_one : int
  external neg : int -> int = "%negint"
  external add : int -> int -> int = "%addint"
  external sub : int -> int -> int = "%subint"
  external mul : int -> int -> int = "%mulint"
  external div : int -> int -> int = "%divint"
  external rem : int -> int -> int = "%modint"
  external succ : int -> int = "%succint"
  external pred : int -> int = "%predint"
  val abs : int -> int
  val max_int : int
  val min_int : int
  external logand : int -> int -> int = "%andint"
  external logor : int -> int -> int = "%orint"
  external logxor : int -> int -> int = "%xorint"
  val lognot : int -> int
  external shift_left : int -> int -> int = "%lslint"
  external shift_right : int -> int -> int = "%asrint"
  external shift_right_logical : int -> int -> int = "%lsrint"
  val equal : int -> int -> bool
  val compare : int -> int -> int
  external to_float : int -> float = "%floatofint"
  external of_float : float -> int = "%intoffloat"
  val to_string : int -> string
end
ocaml-doc-4.11/ocaml.html/libref/type_Oo.html0000644000175000017500000001273613717225552020062 0ustar mehdimehdi Oo sig
  val copy : (< .. > as 'a) -> 'a
  external id : < .. > -> int = "%field1"
  val new_method : string -> CamlinternalOO.tag
  val public_method_label : string -> CamlinternalOO.tag
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Fun.html0000644000175000017500000002350613717225552020411 0ustar mehdimehdi Stdlib.Fun

Module Stdlib.Fun

module Fun: Fun

Combinators

val id : 'a -> 'a

id is the identity function. For any argument x, id x is x.

val const : 'a -> 'b -> 'a

const c is a function that always returns the value c. For any argument x, (const c) x is c.

val flip : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c

flip f reverses the argument order of the binary function f. For any arguments x and y, (flip f) x y is f y x.

val negate : ('a -> bool) -> 'a -> bool

negate p is the negation of the predicate function p. For any argument x, (negate p) x is not (p x).

Exception handling

val protect : finally:(unit -> unit) -> (unit -> 'a) -> 'a

protect ~finally work invokes work () and then finally () before work () returns with its value or an exception. In the latter case the exception is re-raised after finally (). If finally () raises an exception, then the exception Fun.Finally_raised is raised instead.

protect can be used to enforce local invariants whether work () returns normally or raises an exception. However, it does not protect against unexpected exceptions raised inside finally () such as Out_of_memory, Stack_overflow, or asynchronous exceptions raised by signal handlers (e.g. Sys.Break).

Note: It is a programming error if other kinds of exceptions are raised by finally, as any exception raised in work () will be lost in the event of a Fun.Finally_raised exception. Therefore, one should make sure to handle those inside the finally.

exception Finally_raised of exn

Finally_raised exn is raised by protect ~finally work when finally raises an exception exn. This exception denotes either an unexpected exception or a programming error. As a general rule, one should not catch a Finally_raised exception except as part of a catch-all handler.

ocaml-doc-4.11/ocaml.html/libref/type_Obj.html0000644000175000017500000004373313717225552020220 0ustar mehdimehdi Obj sig
  type t
  external repr : '-> Obj.t = "%identity"
  external obj : Obj.t -> 'a = "%identity"
  external magic : '-> 'b = "%identity"
  val is_block : Obj.t -> bool
  external is_int : Obj.t -> bool = "%obj_is_int"
  external tag : Obj.t -> int = "caml_obj_tag"
  external size : Obj.t -> int = "%obj_size"
  external reachable_words : Obj.t -> int = "caml_obj_reachable_words"
  external field : Obj.t -> int -> Obj.t = "%obj_field"
  external set_field : Obj.t -> int -> Obj.t -> unit = "%obj_set_field"
  external set_tag : Obj.t -> int -> unit = "caml_obj_set_tag"
  val double_field : Obj.t -> int -> float
  val set_double_field : Obj.t -> int -> float -> unit
  external new_block : int -> int -> Obj.t = "caml_obj_block"
  external dup : Obj.t -> Obj.t = "caml_obj_dup"
  external truncate : Obj.t -> int -> unit = "caml_obj_truncate"
  external add_offset : Obj.t -> Stdlib.Int32.t -> Obj.t
    = "caml_obj_add_offset"
  external with_tag : int -> Obj.t -> Obj.t = "caml_obj_with_tag"
  val first_non_constant_constructor_tag : int
  val last_non_constant_constructor_tag : int
  val lazy_tag : int
  val closure_tag : int
  val object_tag : int
  val infix_tag : int
  val forward_tag : int
  val no_scan_tag : int
  val abstract_tag : int
  val string_tag : int
  val double_tag : int
  val double_array_tag : int
  val custom_tag : int
  val final_tag : int
  val int_tag : int
  val out_of_heap_tag : int
  val unaligned_tag : int
  module Extension_constructor :
    sig
      type t = extension_constructor
      val of_val : '-> Obj.Extension_constructor.t
      val name : Obj.Extension_constructor.t -> string
      val id : Obj.Extension_constructor.t -> int
    end
  val extension_constructor : '-> extension_constructor
  val extension_name : extension_constructor -> string
  val extension_id : extension_constructor -> int
  val marshal : Obj.t -> bytes
  val unmarshal : bytes -> int -> Obj.t * int
  module Ephemeron :
    sig
      type obj_t = Obj.t
      type t
      val create : int -> Obj.Ephemeron.t
      val length : Obj.Ephemeron.t -> int
      val get_key : Obj.Ephemeron.t -> int -> Obj.Ephemeron.obj_t option
      val get_key_copy : Obj.Ephemeron.t -> int -> Obj.Ephemeron.obj_t option
      val set_key : Obj.Ephemeron.t -> int -> Obj.Ephemeron.obj_t -> unit
      val unset_key : Obj.Ephemeron.t -> int -> unit
      val check_key : Obj.Ephemeron.t -> int -> bool
      val blit_key :
        Obj.Ephemeron.t -> int -> Obj.Ephemeron.t -> int -> int -> unit
      val get_data : Obj.Ephemeron.t -> Obj.Ephemeron.obj_t option
      val get_data_copy : Obj.Ephemeron.t -> Obj.Ephemeron.obj_t option
      val set_data : Obj.Ephemeron.t -> Obj.Ephemeron.obj_t -> unit
      val unset_data : Obj.Ephemeron.t -> unit
      val check_data : Obj.Ephemeron.t -> bool
      val blit_data : Obj.Ephemeron.t -> Obj.Ephemeron.t -> unit
      val max_ephe_length : int
    end
end
ocaml-doc-4.11/ocaml.html/libref/Str.html0000644000175000017500000007636213717225553017222 0ustar mehdimehdi Str

Module Str

module Str: sig .. end

Regular expressions and high-level string processing


Regular expressions

type regexp 

The type of compiled regular expressions.

val regexp : string -> regexp

Compile a regular expression. The following constructs are recognized:

  • .      Matches any character except newline.
  • *      (postfix) Matches the preceding expression zero, one or several times
  • +      (postfix) Matches the preceding expression one or several times
  • ?      (postfix) Matches the preceding expression once or not at all
  • [..]   Character set. Ranges are denoted with -, as in [a-z]. An initial ^, as in [^0-9], complements the set. To include a ] character in a set, make it the first character of the set. To include a - character in a set, make it the first or the last character of the set.
  • ^      Matches at beginning of line: either at the beginning of the matched string, or just after a '\n' character.
  • $      Matches at end of line: either at the end of the matched string, or just before a '\n' character.
  • \| (infix) Alternative between two expressions.
  • \(..\) Grouping and naming of the enclosed expression.
  • \1 The text matched by the first \(...\) expression (\2 for the second expression, and so on up to \9).
  • \b Matches word boundaries.
  • \ Quotes special characters. The special characters are $^\.*+?[].

Note: the argument to regexp is usually a string literal. In this case, any backslash character in the regular expression must be doubled to make it past the OCaml string parser. For example, the following expression:

 let r = Str.regexp "hello \\([A-Za-z]+\\)" in
      Str.replace_first r "\\1" "hello world" 

returns the string "world".

In particular, if you want a regular expression that matches a single backslash character, you need to quote it in the argument to regexp (according to the last item of the list above) by adding a second backslash. Then you need to quote both backslashes (according to the syntax of string constants in OCaml) by doubling them again, so you need to write four backslash characters: Str.regexp "\\\\".

val regexp_case_fold : string -> regexp

Same as regexp, but the compiled expression will match text in a case-insensitive way: uppercase and lowercase letters will be considered equivalent.

val quote : string -> string

Str.quote s returns a regexp string that matches exactly s and nothing else.

val regexp_string : string -> regexp

Str.regexp_string s returns a regular expression that matches exactly s and nothing else.

val regexp_string_case_fold : string -> regexp

Str.regexp_string_case_fold is similar to Str.regexp_string, but the regexp matches in a case-insensitive way.

String matching and searching

val string_match : regexp -> string -> int -> bool

string_match r s start tests whether a substring of s that starts at position start matches the regular expression r. The first character of a string has position 0, as usual.

val search_forward : regexp -> string -> int -> int

search_forward r s start searches the string s for a substring matching the regular expression r. The search starts at position start and proceeds towards the end of the string. Return the position of the first character of the matched substring.

  • Raises Not_found if no substring matches.
val search_backward : regexp -> string -> int -> int

search_backward r s last searches the string s for a substring matching the regular expression r. The search first considers substrings that start at position last and proceeds towards the beginning of string. Return the position of the first character of the matched substring.

  • Raises Not_found if no substring matches.
val string_partial_match : regexp -> string -> int -> bool

Similar to Str.string_match, but also returns true if the argument string is a prefix of a string that matches. This includes the case of a true complete match.

val matched_string : string -> string

matched_string s returns the substring of s that was matched by the last call to one of the following matching or searching functions:

provided that none of the following functions was called in between:

Note: in the case of global_substitute and substitute_first, a call to matched_string is only valid within the subst argument, not after global_substitute or substitute_first returns.

The user must make sure that the parameter s is the same string that was passed to the matching or searching function.

val match_beginning : unit -> int

match_beginning() returns the position of the first character of the substring that was matched by the last call to a matching or searching function (see Str.matched_string for details).

val match_end : unit -> int

match_end() returns the position of the character following the last character of the substring that was matched by the last call to a matching or searching function (see Str.matched_string for details).

val matched_group : int -> string -> string

matched_group n s returns the substring of s that was matched by the nth group \(...\) of the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details). The user must make sure that the parameter s is the same string that was passed to the matching or searching function.

  • Raises Not_found if the nth group of the regular expression was not matched. This can happen with groups inside alternatives \|, options ? or repetitions *. For instance, the empty string will match \(a\)*, but matched_group 1 "" will raise Not_found because the first group itself was not matched.
val group_beginning : int -> int

group_beginning n returns the position of the first character of the substring that was matched by the nth group of the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details).

  • Raises
    • Not_found if the nth group of the regular expression was not matched.
    • Invalid_argument if there are fewer than n groups in the regular expression.
val group_end : int -> int

group_end n returns the position of the character following the last character of substring that was matched by the nth group of the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details).

  • Raises
    • Not_found if the nth group of the regular expression was not matched.
    • Invalid_argument if there are fewer than n groups in the regular expression.

Replacement

val global_replace : regexp -> string -> string -> string

global_replace regexp templ s returns a string identical to s, except that all substrings of s that match regexp have been replaced by templ. The replacement template templ can contain \1, \2, etc; these sequences will be replaced by the text matched by the corresponding group in the regular expression. \0 stands for the text matched by the whole regular expression.

val replace_first : regexp -> string -> string -> string

Same as Str.global_replace, except that only the first substring matching the regular expression is replaced.

val global_substitute : regexp -> (string -> string) -> string -> string

global_substitute regexp subst s returns a string identical to s, except that all substrings of s that match regexp have been replaced by the result of function subst. The function subst is called once for each matching substring, and receives s (the whole text) as argument.

val substitute_first : regexp -> (string -> string) -> string -> string

Same as Str.global_substitute, except that only the first substring matching the regular expression is replaced.

val replace_matched : string -> string -> string

replace_matched repl s returns the replacement text repl in which \1, \2, etc. have been replaced by the text matched by the corresponding groups in the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details). s must be the same string that was passed to the matching or searching function.

Splitting

val split : regexp -> string -> string list

split r s splits s into substrings, taking as delimiters the substrings that match r, and returns the list of substrings. For instance, split (regexp "[ \t]+") s splits s into blank-separated words. An occurrence of the delimiter at the beginning or at the end of the string is ignored.

val bounded_split : regexp -> string -> int -> string list

Same as Str.split, but splits into at most n substrings, where n is the extra integer parameter.

val split_delim : regexp -> string -> string list

Same as Str.split but occurrences of the delimiter at the beginning and at the end of the string are recognized and returned as empty strings in the result. For instance, split_delim (regexp " "" abc " returns ["""abc"""], while split with the same arguments returns ["abc"].

val bounded_split_delim : regexp -> string -> int -> string list

Same as Str.bounded_split, but occurrences of the delimiter at the beginning and at the end of the string are recognized and returned as empty strings in the result.

type split_result = 
| Text of string
| Delim of string
val full_split : regexp -> string -> split_result list

Same as Str.split_delim, but returns the delimiters as well as the substrings contained between delimiters. The former are tagged Delim in the result list; the latter are tagged Text. For instance, full_split (regexp "[{}]""{ab}" returns [Delim "{"Text "ab"Delim "}"].

val bounded_full_split : regexp -> string -> int -> split_result list

Same as Str.bounded_split_delim, but returns the delimiters as well as the substrings contained between delimiters. The former are tagged Delim in the result list; the latter are tagged Text.

Extracting substrings

val string_before : string -> int -> string

string_before s n returns the substring of all characters of s that precede position n (excluding the character at position n).

val string_after : string -> int -> string

string_after s n returns the substring of all characters of s that follow position n (including the character at position n).

val first_chars : string -> int -> string

first_chars s n returns the first n characters of s. This is the same function as Str.string_before.

val last_chars : string -> int -> string

last_chars s n returns the last n characters of s.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Nativeint.html0000644000175000017500000001127613717225553022665 0ustar mehdimehdi Stdlib.Nativeint (module Stdlib__nativeint) ocaml-doc-4.11/ocaml.html/libref/type_Sys.html0000644000175000017500000004036613717225553020264 0ustar mehdimehdi Sys sig
  external argv : string array = "%sys_argv"
  val executable_name : string
  external file_exists : string -> bool = "caml_sys_file_exists"
  external is_directory : string -> bool = "caml_sys_is_directory"
  external remove : string -> unit = "caml_sys_remove"
  external rename : string -> string -> unit = "caml_sys_rename"
  external getenv : string -> string = "caml_sys_getenv"
  val getenv_opt : string -> string option
  external command : string -> int = "caml_sys_system_command"
  external time : unit -> (float [@unboxed]) = "caml_sys_time"
    "caml_sys_time_unboxed" [@@noalloc]
  external chdir : string -> unit = "caml_sys_chdir"
  external getcwd : unit -> string = "caml_sys_getcwd"
  external readdir : string -> string array = "caml_sys_read_directory"
  val interactive : bool Stdlib.ref
  val os_type : string
  type backend_type = Native | Bytecode | Other of string
  val backend_type : Sys.backend_type
  val unix : bool
  val win32 : bool
  val cygwin : bool
  val word_size : int
  val int_size : int
  val big_endian : bool
  val max_string_length : int
  val max_array_length : int
  val max_floatarray_length : int
  external runtime_variant : unit -> string = "caml_runtime_variant"
  external runtime_parameters : unit -> string = "caml_runtime_parameters"
  type signal_behavior =
      Signal_default
    | Signal_ignore
    | Signal_handle of (int -> unit)
  external signal : int -> Sys.signal_behavior -> Sys.signal_behavior
    = "caml_install_signal_handler"
  val set_signal : int -> Sys.signal_behavior -> unit
  val sigabrt : int
  val sigalrm : int
  val sigfpe : int
  val sighup : int
  val sigill : int
  val sigint : int
  val sigkill : int
  val sigpipe : int
  val sigquit : int
  val sigsegv : int
  val sigterm : int
  val sigusr1 : int
  val sigusr2 : int
  val sigchld : int
  val sigcont : int
  val sigstop : int
  val sigtstp : int
  val sigttin : int
  val sigttou : int
  val sigvtalrm : int
  val sigprof : int
  val sigbus : int
  val sigpoll : int
  val sigsys : int
  val sigtrap : int
  val sigurg : int
  val sigxcpu : int
  val sigxfsz : int
  exception Break
  val catch_break : bool -> unit
  val ocaml_version : string
  val enable_runtime_warnings : bool -> unit
  val runtime_warnings_enabled : unit -> bool
  external opaque_identity : '-> 'a = "%opaque"
  module Immediate64 :
    sig
      module type Non_immediate = sig type t end
      module type Immediate = sig type t [@@immediate] end
      module Make :
        functor (Immediate : Immediate) (Non_immediate : Non_immediate->
          sig
            type t [@@immediate64]
            type 'a repr =
                Immediate :
                  Sys.Immediate64.Immediate.t Sys.Immediate64.Make.repr
              | Non_immediate :
                  Sys.Immediate64.Non_immediate.t Sys.Immediate64.Make.repr
            val repr : Sys.Immediate64.Make.t Sys.Immediate64.Make.repr
          end
    end
end
ocaml-doc-4.11/ocaml.html/libref/Weak.html0000644000175000017500000003661413717225553017335 0ustar mehdimehdi Weak

Module Weak

module Weak: sig .. end

Arrays of weak pointers and hash sets of weak pointers.


Low-level functions

type 'a t 

The type of arrays of weak pointers (weak arrays). A weak pointer is a value that the garbage collector may erase whenever the value is not used any more (through normal pointers) by the program. Note that finalisation functions are run before the weak pointers are erased, because the finalisation functions can make values alive again (before 4.03 the finalisation functions were run after).

A weak pointer is said to be full if it points to a value, empty if the value was erased by the GC.

Notes:

  • Integers are not allocated and cannot be stored in weak arrays.
  • Weak arrays cannot be marshaled using output_value nor the functions of the Marshal module.
val create : int -> 'a t

Weak.create n returns a new weak array of length n. All the pointers are initially empty.

val length : 'a t -> int

Weak.length ar returns the length (number of elements) of ar.

val set : 'a t -> int -> 'a option -> unit

Weak.set ar n (Some el) sets the nth cell of ar to be a (full) pointer to el; Weak.set ar n None sets the nth cell of ar to empty.

  • Raises Invalid_argument if n is not in the range 0 to Weak.length a - 1.
val get : 'a t -> int -> 'a option

Weak.get ar n returns None if the nth cell of ar is empty, Some x (where x is the value) if it is full.

  • Raises Invalid_argument if n is not in the range 0 to Weak.length a - 1.
val get_copy : 'a t -> int -> 'a option

Weak.get_copy ar n returns None if the nth cell of ar is empty, Some x (where x is a (shallow) copy of the value) if it is full. In addition to pitfalls with mutable values, the interesting difference with get is that get_copy does not prevent the incremental GC from erasing the value in its current cycle (get may delay the erasure to the next GC cycle).

  • Raises Invalid_argument if n is not in the range 0 to Weak.length a - 1. If the element is a custom block it is not copied.
val check : 'a t -> int -> bool

Weak.check ar n returns true if the nth cell of ar is full, false if it is empty. Note that even if Weak.check ar n returns true, a subsequent Weak.get ar n can return None.

val fill : 'a t -> int -> int -> 'a option -> unit

Weak.fill ar ofs len el sets to el all pointers of ar from ofs to ofs + len - 1.

  • Raises Invalid_argument if ofs and len do not designate a valid subarray of a.
val blit : 'a t -> int -> 'a t -> int -> int -> unit

Weak.blit ar1 off1 ar2 off2 len copies len weak pointers from ar1 (starting at off1) to ar2 (starting at off2). It works correctly even if ar1 and ar2 are the same.

  • Raises Invalid_argument if off1 and len do not designate a valid subarray of ar1, or if off2 and len do not designate a valid subarray of ar2.

Weak hash sets

A weak hash set is a hashed set of values. Each value may magically disappear from the set when it is not used by the rest of the program any more. This is normally used to share data structures without inducing memory leaks. Weak hash sets are defined on values from a Hashtbl.HashedType module; the equal relation and hash function are taken from that module. We will say that v is an instance of x if equal x v is true.

The equal relation must be able to work on a shallow copy of the values and give the same result as with the values themselves.

module type S = sig .. end

The output signature of the functor Weak.Make.

module Make: 
functor (H : Hashtbl.HashedType-> S with type data = H.t

Functor building an implementation of the weak hash set structure.

ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Set.OrderedType.html0000644000175000017500000001127413717225553024506 0ustar mehdimehdi MoreLabels.Set.OrderedType Set.OrderedType ocaml-doc-4.11/ocaml.html/libref/Float.html0000644000175000017500000011521113717225552017501 0ustar mehdimehdi Float

Module Float

module Float: sig .. end

Floating-point arithmetic

OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /. 0.0, neg_infinity for -1.0 /. 0.0, and nan ('not a number') for 0.0 /. 0.0. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity is 0.0, and any arithmetic operation with nan as argument returns nan as result.

  • Since 4.07.0

val zero : float

The floating point 0.

  • Since 4.08.0
val one : float

The floating-point 1.

  • Since 4.08.0
val minus_one : float

The floating-point -1.

  • Since 4.08.0
val neg : float -> float

Unary negation.

val add : float -> float -> float

Floating-point addition.

val sub : float -> float -> float

Floating-point subtraction.

val mul : float -> float -> float

Floating-point multiplication.

val div : float -> float -> float

Floating-point division.

val fma : float -> float -> float -> float

fma x y z returns x * y + z, with a best effort for computing this expression with a single rounding, using either hardware instructions (providing full IEEE compliance) or a software emulation. Note: since software emulation of the fma is costly, make sure that you are using hardware fma support if performance matters.

  • Since 4.08.0
val rem : float -> float -> float

rem a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.

val succ : float -> float

succ x returns the floating point number right after x i.e., the smallest floating-point number greater than x. See also Float.next_after.

  • Since 4.08.0
val pred : float -> float

pred x returns the floating-point number right before x i.e., the greatest floating-point number smaller than x. See also Float.next_after.

  • Since 4.08.0
val abs : float -> float

abs f returns the absolute value of f.

val infinity : float

Positive infinity.

val neg_infinity : float

Negative infinity.

val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for 'not a number'. Any floating-point operation with nan as argument returns nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <> returns true if one or both of their arguments is nan.

val pi : float

The constant pi.

val max_float : float

The largest positive finite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon : float

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

val is_finite : float -> bool

is_finite x is true iff x is finite i.e., not infinite and not Float.nan.

  • Since 4.08.0
val is_infinite : float -> bool

is_infinite x is true iff x is Float.infinity or Float.neg_infinity.

  • Since 4.08.0
val is_nan : float -> bool

is_nan x is true iff x is not a number (see Float.nan).

  • Since 4.08.0
val is_integer : float -> bool

is_integer x is true iff x is an integer.

  • Since 4.08.0
val of_int : int -> float

Convert an integer to floating-point.

val to_int : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val of_string : string -> float

Convert the given string to a float. The string is read in decimal (by default) or in hexadecimal (marked by 0x or 0X). The format of decimal floating-point numbers is  [-] dd.ddd (e|E) [+|-] dd , where d stands for a decimal digit. The format of hexadecimal floating-point numbers is  [-] 0(x|X) hh.hhh (p|P) [+|-] dd , where h stands for an hexadecimal digit and d for a decimal digit. In both cases, at least one of the integer and fractional parts must be given; the exponent part is optional. The _ (underscore) character can appear anywhere in the string and is ignored. Depending on the execution platforms, other representations of floating-point numbers can be accepted, but should not be relied upon.

  • Raises Failure if the given string is not a valid representation of a float.
val of_string_opt : string -> float option

Same as of_string, but returns None instead of raising.

val to_string : float -> string

Return the string representation of a floating-point number.

type fpclass = fpclass = 
| FP_normal (*

Normal number, none of the below

*)
| FP_subnormal (*

Number very close to 0.0, has reduced precision

*)
| FP_zero (*

Number is 0.0 or -0.0

*)
| FP_infinite (*

Number is positive or negative infinity

*)
| FP_nan (*

Not a number: result of an undefined operation

*)

The five classes of floating-point numbers, as determined by the Float.classify_float function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

val pow : float -> float -> float

Exponentiation.

val sqrt : float -> float

Square root.

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

val expm1 : float -> float

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

val log1p : float -> float

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

val cos : float -> float

Cosine. Argument is in radians.

val sin : float -> float

Sine. Argument is in radians.

val tan : float -> float

Tangent. Argument is in radians.

val acos : float -> float

Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between 0.0 and pi.

val asin : float -> float

Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between -pi/2 and pi/2.

val atan : float -> float

Arc tangent. Result is in radians and is between -pi/2 and pi/2.

val atan2 : float -> float -> float

atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine the quadrant of the result. Result is in radians and is between -pi and pi.

val hypot : float -> float -> float

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin. If one of x or y is infinite, returns infinity even if the other is nan.

val cosh : float -> float

Hyperbolic cosine. Argument is in radians.

val sinh : float -> float

Hyperbolic sine. Argument is in radians.

val tanh : float -> float

Hyperbolic tangent. Argument is in radians.

val trunc : float -> float

trunc x rounds x to the nearest integer whose absolute value is less than or equal to x.

  • Since 4.08.0
val round : float -> float

round x rounds x to the nearest integer with ties (fractional values of 0.5) rounded away from zero, regardless of the current rounding direction. If x is an integer, +0., -0., nan, or infinite, x itself is returned.

  • Since 4.08.0
val ceil : float -> float

Round above to an integer value. ceil f returns the least integer value greater than or equal to f. The result is returned as a float.

val floor : float -> float

Round below to an integer value. floor f returns the greatest integer value less than or equal to f. The result is returned as a float.

val next_after : float -> float -> float

next_after x y returns the next representable floating-point value following x in the direction of y. More precisely, if y is greater (resp. less) than x, it returns the smallest (resp. largest) representable number greater (resp. less) than x. If x equals y, the function returns y. If x or y is nan, a nan is returned. Note that next_after max_float infinity = infinity and that next_after 0. infinity is the smallest denormalized positive number. If x is the smallest denormalized positive number, next_after x 0. = 0.

  • Since 4.08.0
val copy_sign : float -> float -> float

copy_sign x y returns a float whose absolute value is that of x and whose sign is that of y. If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.

val sign_bit : float -> bool

sign_bit x is true iff the sign bit of x is set. For example sign_bit 1. and signbit 0. are false while sign_bit (-1.) and sign_bit (-0.) are true.

  • Since 4.08.0
val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

type t = float 

An alias for the type of floating-point numbers.

val compare : t -> t -> int

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y. compare treats nan as equal to itself and less than any other float value. This treatment of nan ensures that compare defines a total ordering relation.

val equal : t -> t -> bool

The equal function for floating-point numbers, compared using Float.compare.

val min : t -> t -> t

min x y returns the minimum of x and y. It returns nan when x or y is nan. Moreover min (-0.) (+0.) = -0.

  • Since 4.08.0
val max : float -> float -> float

max x y returns the maximum of x and y. It returns nan when x or y is nan. Moreover max (-0.) (+0.) = +0.

  • Since 4.08.0
val min_max : float -> float -> float * float

min_max x y is (min x y, max x y), just more efficient.

  • Since 4.08.0
val min_num : t -> t -> t

min_num x y returns the minimum of x and y treating nan as missing values. If both x and y are nan, nan is returned. Moreover min_num (-0.) (+0.) = -0.

  • Since 4.08.0
val max_num : t -> t -> t

max_num x y returns the maximum of x and y treating nan as missing values. If both x and y are nan nan is returned. Moreover max_num (-0.) (+0.) = +0.

  • Since 4.08.0
val min_max_num : float -> float -> float * float

min_max_num x y is (min_num x y, max_num x y), just more efficient. Note that in particular min_max_num x nan = (x, x) and min_max_num nan y = (y, y).

  • Since 4.08.0
val hash : t -> int

The hash function for floating-point numbers.

module Array: sig .. end
module ArrayLabels: sig .. end
ocaml-doc-4.11/ocaml.html/libref/CamlinternalMod.html0000644000175000017500000001667413717225552021522 0ustar mehdimehdi CamlinternalMod

Module CamlinternalMod

module CamlinternalMod: sig .. end

Run-time support for recursive modules. All functions in this module are for system use only, not for the casual user.


type shape = 
| Function
| Lazy
| Class
| Module of shape array
| Value of Obj.t
val init_mod : string * int * int -> shape -> Obj.t
val update_mod : shape -> Obj.t -> Obj.t -> unit
ocaml-doc-4.11/ocaml.html/libref/type_Option.html0000644000175000017500000002342513717225552020752 0ustar mehdimehdi Option sig
  type 'a t = 'a option = None | Some of 'a
  val none : 'a option
  val some : '-> 'a option
  val value : 'a option -> default:'-> 'a
  val get : 'a option -> 'a
  val bind : 'a option -> ('-> 'b option) -> 'b option
  val join : 'a option option -> 'a option
  val map : ('-> 'b) -> 'a option -> 'b option
  val fold : none:'-> some:('-> 'a) -> 'b option -> 'a
  val iter : ('-> unit) -> 'a option -> unit
  val is_none : 'a option -> bool
  val is_some : 'a option -> bool
  val equal : ('-> '-> bool) -> 'a option -> 'a option -> bool
  val compare : ('-> '-> int) -> 'a option -> 'a option -> int
  val to_result : none:'-> 'a option -> ('a, 'e) Stdlib.result
  val to_list : 'a option -> 'a list
  val to_seq : 'a option -> 'Stdlib.Seq.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Mutex.html0000644000175000017500000001256413717225552020606 0ustar mehdimehdi Mutex sig
  type t
  val create : unit -> Mutex.t
  val lock : Mutex.t -> unit
  val try_lock : Mutex.t -> bool
  val unlock : Mutex.t -> unit
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Genlex.html0000644000175000017500000001127013717225552022137 0ustar mehdimehdi Stdlib.Genlex (module Stdlib__genlex) ocaml-doc-4.11/ocaml.html/libref/Digest.html0000644000175000017500000002736113717225552017663 0ustar mehdimehdi Digest

Module Digest

module Digest: sig .. end

MD5 message digest.

This module provides functions to compute 128-bit 'digests' of arbitrary-length strings or files. The digests are of cryptographic quality: it is very hard, given a digest, to forge a string having that digest. The algorithm used is MD5. This module should not be used for secure and sensitive cryptographic applications. For these kind of applications more recent and stronger cryptographic primitives should be used instead.


type t = string 

The type of digests: 16-character strings.

val compare : t -> t -> int

The comparison function for 16-character digest, with the same specification as compare and the implementation shared with String.compare. Along with the type t, this function compare allows the module Digest to be passed as argument to the functors Set.Make and Map.Make.

  • Since 4.00.0
val equal : t -> t -> bool

The equal function for 16-character digest.

  • Since 4.03.0
val string : string -> t

Return the digest of the given string.

val bytes : bytes -> t

Return the digest of the given byte sequence.

  • Since 4.02.0
val substring : string -> int -> int -> t

Digest.substring s ofs len returns the digest of the substring of s starting at index ofs and containing len characters.

val subbytes : bytes -> int -> int -> t

Digest.subbytes s ofs len returns the digest of the subsequence of s starting at index ofs and containing len bytes.

  • Since 4.02.0
val channel : in_channel -> int -> t

If len is nonnegative, Digest.channel ic len reads len characters from channel ic and returns their digest, or raises End_of_file if end-of-file is reached before len characters are read. If len is negative, Digest.channel ic len reads all characters from ic until end-of-file is reached and return their digest.

val file : string -> t

Return the digest of the file whose name is given.

val output : out_channel -> t -> unit

Write a digest on the given output channel.

val input : in_channel -> t

Read a digest from the given input channel.

val to_hex : t -> string

Return the printable hexadecimal representation of the given digest.

  • Raises Invalid_argument if the argument is not exactly 16 bytes.
val from_hex : string -> t

Convert a hexadecimal representation back into the corresponding digest.

  • Since 4.00.0
  • Raises Invalid_argument if the argument is not exactly 32 hexadecimal characters.
ocaml-doc-4.11/ocaml.html/libref/StdLabels.html0000644000175000017500000001545613717225552020323 0ustar mehdimehdi StdLabels

Module StdLabels

module StdLabels: sig .. end

Standard labeled libraries.

This meta-module provides labelized version of the Array, Bytes, List and String modules.

They only differ by their labels. Detailed interfaces can be found in arrayLabels.mli, bytesLabels.mli, listLabels.mli and stringLabels.mli.


module Array: ArrayLabels
module Bytes: BytesLabels
module List: ListLabels
module String: StringLabels
ocaml-doc-4.11/ocaml.html/libref/type_Uchar.html0000644000175000017500000001677013717225553020552 0ustar mehdimehdi Uchar sig
  type t
  val min : Uchar.t
  val max : Uchar.t
  val bom : Uchar.t
  val rep : Uchar.t
  val succ : Uchar.t -> Uchar.t
  val pred : Uchar.t -> Uchar.t
  val is_valid : int -> bool
  val of_int : int -> Uchar.t
  val unsafe_of_int : int -> Uchar.t
  val to_int : Uchar.t -> int
  val is_char : Uchar.t -> bool
  val of_char : char -> Uchar.t
  val to_char : Uchar.t -> char
  val unsafe_to_char : Uchar.t -> char
  val equal : Uchar.t -> Uchar.t -> bool
  val compare : Uchar.t -> Uchar.t -> int
  val hash : Uchar.t -> int
end
ocaml-doc-4.11/ocaml.html/libref/Map.S.html0000644000175000017500000010343713717225553017362 0ustar mehdimehdi Map.S

Module type Map.S

module type S = sig .. end

Output signature of the functor Map.Make.


type key 

The type of the map keys.

type +'a t 

The type of maps from type key to type 'a.

val empty : 'a t

The empty map.

val is_empty : 'a t -> bool

Test whether a map is empty or not.

val mem : key -> 'a t -> bool

mem x m returns true if m contains a binding for x, and false otherwise.

val add : key -> 'a -> 'a t -> 'a t

add x y m returns a map containing the same bindings as m, plus a binding of x to y. If x was already bound in m to a value that is physically equal to y, m is returned unchanged (the result of the function is then physically equal to m). Otherwise, the previous binding of x in m disappears.

  • Before 4.03 Physical equality was not ensured.
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t

update x f m returns a map containing the same bindings as m, except for the binding of x. Depending on the value of y where y is f (find_opt x m), the binding of x is added, removed or updated. If y is None, the binding is removed if it exists; otherwise, if y is Some z then x is associated to z in the resulting map. If x was already bound in m to a value that is physically equal to z, m is returned unchanged (the result of the function is then physically equal to m).

  • Since 4.06.0
val singleton : key -> 'a -> 'a t

singleton x y returns the one-element map that contains a binding y for x.

  • Since 3.12.0
val remove : key -> 'a t -> 'a t

remove x m returns a map containing the same bindings as m, except for x which is unbound in the returned map. If x was not in m, m is returned unchanged (the result of the function is then physically equal to m).

  • Before 4.03 Physical equality was not ensured.
val merge : (key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t

merge f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2. The presence of each such binding, and the corresponding value, is determined with the function f. In terms of the find_opt operation, we have find_opt x (merge f m1 m2) = f x (find_opt x m1) (find_opt x m2) for any key x, provided that f x None None = None.

  • Since 3.12.0
val union : (key -> 'a -> 'a -> 'a option) ->
'a t -> 'a t -> 'a t

union f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2. When the same binding is defined in both arguments, the function f is used to combine them. This is a special case of merge: union f m1 m2 is equivalent to merge f' m1 m2, where

  • f' _key None None = None
  • f' _key (Some v) None = Some v
  • f' _key None (Some v) = Some v
  • f' key (Some v1) (Some v2) = f key v1 v2
  • Since 4.03.0
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int

Total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps.

val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool

equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain equal keys and associate them with equal data. cmp is the equality predicate used to compare the data associated with the keys.

val iter : (key -> 'a -> unit) -> 'a t -> unit

iter f m applies f to all bindings in map m. f receives the key as first argument, and the associated value as second argument. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b

fold f m a computes (f kN dN ... (f k1 d1 a)...), where k1 ... kN are the keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

val for_all : (key -> 'a -> bool) -> 'a t -> bool

for_all p m checks if all the bindings of the map satisfy the predicate p.

  • Since 3.12.0
val exists : (key -> 'a -> bool) -> 'a t -> bool

exists p m checks if at least one binding of the map satisfies the predicate p.

  • Since 3.12.0
val filter : (key -> 'a -> bool) -> 'a t -> 'a t

filter p m returns the map with all the bindings in m that satisfy predicate p. If every binding in m satisfies p, m is returned unchanged (the result of the function is then physically equal to m)

  • Before 4.03 Physical equality was not ensured.
  • Since 3.12.0
val filter_map : (key -> 'a -> 'b option) -> 'a t -> 'b t

filter_map f m applies the function f to every binding of m, and builds a map from the results. For each binding (k, v) in the input map:

  • if f k v is None then k is not in the result,
  • if f k v is Some v' then the binding (k, v') is in the output map.

For example, the following function on maps whose values are lists

        filter_map
          (fun _k li -> match li with [] -> None | _::tl -> Some tl)
          m
        

drops all bindings of m whose value is an empty list, and pops the first element of each value that is non-empty.

  • Since 4.11.0
val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t

partition p m returns a pair of maps (m1, m2), where m1 contains all the bindings of m that satisfy the predicate p, and m2 is the map with all the bindings of m that do not satisfy p.

  • Since 3.12.0
val cardinal : 'a t -> int

Return the number of bindings of a map.

  • Since 3.12.0
val bindings : 'a t -> (key * 'a) list

Return the list of all bindings of the given map. The returned list is sorted in increasing order of keys with respect to the ordering Ord.compare, where Ord is the argument given to Map.Make.

  • Since 3.12.0
val min_binding : 'a t -> key * 'a

Return the binding with the smallest key in a given map (with respect to the Ord.compare ordering), or raise Not_found if the map is empty.

  • Since 3.12.0
val min_binding_opt : 'a t -> (key * 'a) option

Return the binding with the smallest key in the given map (with respect to the Ord.compare ordering), or None if the map is empty.

  • Since 4.05
val max_binding : 'a t -> key * 'a

Same as Map.S.min_binding, but returns the binding with the largest key in the given map.

  • Since 3.12.0
val max_binding_opt : 'a t -> (key * 'a) option

Same as Map.S.min_binding_opt, but returns the binding with the largest key in the given map.

  • Since 4.05
val choose : 'a t -> key * 'a

Return one binding of the given map, or raise Not_found if the map is empty. Which binding is chosen is unspecified, but equal bindings will be chosen for equal maps.

  • Since 3.12.0
val choose_opt : 'a t -> (key * 'a) option

Return one binding of the given map, or None if the map is empty. Which binding is chosen is unspecified, but equal bindings will be chosen for equal maps.

  • Since 4.05
val split : key -> 'a t -> 'a t * 'a option * 'a t

split x m returns a triple (l, data, r), where l is the map with all the bindings of m whose key is strictly less than x; r is the map with all the bindings of m whose key is strictly greater than x; data is None if m contains no binding for x, or Some v if m binds v to x.

  • Since 3.12.0
val find : key -> 'a t -> 'a

find x m returns the current value of x in m, or raises Not_found if no binding for x exists.

val find_opt : key -> 'a t -> 'a option

find_opt x m returns Some v if the current value of x in m is v, or None if no binding for x exists.

  • Since 4.05
val find_first : (key -> bool) -> 'a t -> key * 'a

find_first f m, where f is a monotonically increasing function, returns the binding of m with the lowest key k such that f k, or raises Not_found if no such key exists.

For example, find_first (fun k -> Ord.compare k x >= 0) m will return the first binding k, v of m where Ord.compare k x >= 0 (intuitively: k >= x), or raise Not_found if x is greater than any element of m.

  • Since 4.05
val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option

find_first_opt f m, where f is a monotonically increasing function, returns an option containing the binding of m with the lowest key k such that f k, or None if no such key exists.

  • Since 4.05
val find_last : (key -> bool) -> 'a t -> key * 'a

find_last f m, where f is a monotonically decreasing function, returns the binding of m with the highest key k such that f k, or raises Not_found if no such key exists.

  • Since 4.05
val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option

find_last_opt f m, where f is a monotonically decreasing function, returns an option containing the binding of m with the highest key k such that f k, or None if no such key exists.

  • Since 4.05
val map : ('a -> 'b) -> 'a t -> 'b t

map f m returns a map with same domain as m, where the associated value a of all bindings of m has been replaced by the result of the application of f to a. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t

Same as Map.S.map, but the function receives as arguments both the key and the associated value for each binding of the map.

Iterators

val to_seq : 'a t -> (key * 'a) Seq.t

Iterate on the whole map, in ascending order of keys

  • Since 4.07
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t

to_seq_from k m iterates on a subset of the bindings of m, in ascending order of keys, from key k or above.

  • Since 4.07
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t

Add the given bindings to the map, in order.

  • Since 4.07
val of_seq : (key * 'a) Seq.t -> 'a t

Build a map from the given bindings

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Hashtbl.Make.html0000644000175000017500000003044613717225552020703 0ustar mehdimehdi Hashtbl.Make

Functor Hashtbl.Make

module Make: 
functor (H : HashedType-> S with type key = H.t

Functor building an implementation of the hashtable structure. The functor Hashtbl.Make returns a structure containing a type key of keys and a type 'a t of hash tables associating data of type 'a to keys of type key. The operations perform similarly to those of the generic interface, but use the hashing and equality functions specified in the functor argument H instead of generic equality and hashing. Since the hash function is not seeded, the create operation of the result structure always returns non-randomized hash tables.

Parameters:
H : HashedType

type key 
type 'a t 
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
  • Since 4.00.0
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
  • Since 4.05.0
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace : (key -> 'a -> 'a option) -> 'a t -> unit
  • Since 4.03.0
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
  • Since 4.00.0
val to_seq : 'a t -> (key * 'a) Seq.t
  • Since 4.07
val to_seq_keys : 'a t -> key Seq.t
  • Since 4.07
val to_seq_values : 'a t -> 'a Seq.t
  • Since 4.07
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val of_seq : (key * 'a) Seq.t -> 'a t
  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Ocaml_operators.html0000644000175000017500000001557013717225552021574 0ustar mehdimehdi Ocaml_operators

Ocaml_operators

Precedence level and associativity of operators

The following table lists the precedence level of all operator classes from the highest to the lowest precedence. A few other syntactic constructions are also listed as references.

Operator classAssociativity
!… ~…
.…() .…[] .…{}
#… left
function application left
- -.
**… lsl lsr asr right
*… /… %… mod land lor lxor left
+… -… left
:: right
@… ^… right
=… <… >… |… &… $… != left
& && right
or || right
,
<- := right
if
; right

ocaml-doc-4.11/ocaml.html/libref/StdLabels.Array.html0000644000175000017500000007124713717225553021401 0ustar mehdimehdi StdLabels.Array

Module StdLabels.Array

module Array: ArrayLabels

type 'a t = 'a array 

An alias for the type of arrays.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

get a n returns the element number n of array a. The first element has number 0. The last element has number length a - 1. You can also write a.(n) instead of get a n.

  • Raises Invalid_argument if n is outside the range 0 to (length a - 1).
val set : 'a array -> int -> 'a -> unit

set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of set a n x.

  • Raises Invalid_argument if n is outside the range 0 to length a - 1.
val make : int -> 'a -> 'a array

make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create : int -> 'a -> 'a array
Deprecated.create is an alias for ArrayLabels.make.
val init : int -> f:(int -> 'a) -> 'a array

init n ~f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, init n ~f tabulates the results of f applied to the integers 0 to n-1.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

make_matrix ~dimx ~dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

  • Raises Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
Deprecated.create_matrix is an alias for ArrayLabels.make_matrix.
val append : 'a array -> 'a array -> 'a array

append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

val concat : 'a array list -> 'a array

Same as ArrayLabels.append, but concatenates a list of arrays.

val sub : 'a array -> pos:int -> len:int -> 'a array

sub a ~pos ~len returns a fresh array of length len, containing the elements number pos to pos + len - 1 of array a.

  • Raises Invalid_argument if pos and len do not designate a valid subarray of a; that is, if pos < 0, or len < 0, or pos + len > length a.
val copy : 'a array -> 'a array

copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> pos:int -> len:int -> 'a -> unit

fill a ~pos ~len x modifies the array a in place, storing x in elements number pos to pos + len - 1.

  • Raises Invalid_argument if pos and len do not designate a valid subarray of a.
val blit : src:'a array -> src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unit

blit ~src ~src_pos ~dst ~dst_pos ~len copies len elements from array src, starting at element number src_pos, to array dst, starting at element number dst_pos. It works correctly even if src and dst are the same array, and the source and destination chunks overlap.

  • Raises Invalid_argument if src_pos and len do not designate a valid subarray of src, or if dst_pos and len do not designate a valid subarray of dst.
val to_list : 'a array -> 'a list

to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

of_list l returns a fresh array containing the elements of l.

val iter : f:('a -> unit) -> 'a array -> unit

iter ~f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(length a - 1); ().

val map : f:('a -> 'b) -> 'a array -> 'b array

map ~f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(length a - 1) |].

val iteri : f:(int -> 'a -> unit) -> 'a array -> unit

Same as ArrayLabels.iter, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array

Same as ArrayLabels.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a

fold_left ~f ~init a computes f (... (f (f init a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'a

fold_right ~f a ~init computes f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...)), where n is the length of the array a.

Iterators on two arrays

val iter2 : f:('a -> 'b -> unit) -> 'a array -> 'b array -> unit

iter2 ~f a b applies function f to all the elements of a and b.

  • Since 4.05.0
  • Raises Invalid_argument if the arrays are not the same size.
val map2 : f:('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array

map2 ~f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|].

  • Since 4.05.0
  • Raises Invalid_argument if the arrays are not the same size.

Array scanning

val exists : f:('a -> bool) -> 'a array -> bool

exists ~f [|a1; ...; an|] checks if at least one element of the array satisfies the predicate f. That is, it returns (f a1) || (f a2) || ... || (f an).

  • Since 4.03.0
val for_all : f:('a -> bool) -> 'a array -> bool

for_all ~f [|a1; ...; an|] checks if all elements of the array satisfy the predicate f. That is, it returns (f a1) && (f a2) && ... && (f an).

  • Since 4.03.0
val for_all2 : f:('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as ArrayLabels.for_all, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val exists2 : f:('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as ArrayLabels.exists, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val mem : 'a -> set:'a array -> bool

mem x ~set is true if and only if x is equal to an element of set.

  • Since 4.03.0
val memq : 'a -> set:'a array -> bool

Same as ArrayLabels.mem, but uses physical equality instead of structural equality to compare list elements.

  • Since 4.03.0
val create_float : int -> float array

create_float n returns a fresh float array of length n, with uninitialized data.

  • Since 4.03
val make_float : int -> float array

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, compare is a suitable comparison function, provided there are no floating-point NaN values in the data. After calling sort, the array is sorted in place in increasing order. sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is the length of the array. It is usually faster than the current implementation of ArrayLabels.sort.

val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort or ArrayLabels.stable_sort, whichever is faster on typical input.

Iterators

val to_seq : 'a array -> 'a Seq.t

Iterate on the array, in increasing order

  • Since 4.07
val to_seqi : 'a array -> (int * 'a) Seq.t

Iterate on the array, in increasing order, yielding indices along elements

  • Since 4.07
val of_seq : 'a Seq.t -> 'a array

Create an array from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Bigarray.Array3.html0000644000175000017500000005031713717225552021341 0ustar mehdimehdi Bigarray.Array3

Module Bigarray.Array3

module Array3: sig .. end

Three-dimensional arrays. The Array3 structure provides operations similar to those of Bigarray.Genarray, but specialized to the case of three-dimensional arrays.


type ('a, 'b, 'c) t 

The type of three-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

val create : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int -> int -> int -> ('a, 'b, 'c) t

Array3.create kind layout dim1 dim2 dim3 returns a new Bigarray of three dimension, whose size is dim1 in the first dimension, dim2 in the second dimension, and dim3 in the third. kind and layout determine the array element kind and the array layout as described for Bigarray.Genarray.create.

val dim1 : ('a, 'b, 'c) t -> int

Return the first dimension of the given three-dimensional Bigarray.

val dim2 : ('a, 'b, 'c) t -> int

Return the second dimension of the given three-dimensional Bigarray.

val dim3 : ('a, 'b, 'c) t -> int

Return the third dimension of the given three-dimensional Bigarray.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given Bigarray.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given Bigarray.

val change_layout : ('a, 'b, 'c) t ->
'd Bigarray.layout -> ('a, 'b, 'd) t

Array3.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimensions as a). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that get v [| a; b; c |] in C layout becomes get v [| c+1; b+1; a+1 |] in Fortran layout.

  • Since 4.06.0
val size_in_bytes : ('a, 'b, 'c) t -> int

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

  • Since 4.03.0
val get : ('a, 'b, 'c) t -> int -> int -> int -> 'a

Array3.get a x y z, also written a.{x,y,z}, returns the element of a at coordinates (x, y, z). x, y and z must be within the bounds of a, as described for Bigarray.Genarray.get; otherwise, Invalid_argument is raised.

val set : ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit

Array3.set a x y v, or alternatively a.{x,y,z} <- v, stores the value v at coordinates (x, y, z) in a. x, y and z must be within the bounds of a, as described for Bigarray.Genarray.set; otherwise, Invalid_argument is raised.

val sub_left : ('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t

Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the first dimension. See Bigarray.Genarray.sub_left for more details. Array3.sub_left applies only to arrays with C layout.

val sub_right : ('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t

Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the second dimension. See Bigarray.Genarray.sub_right for more details. Array3.sub_right applies only to arrays with Fortran layout.

val slice_left_1 : ('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t

Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the first two coordinates. The integer parameters are the coordinates of the slice to extract. See Bigarray.Genarray.slice_left for more details. Array3.slice_left_1 applies only to arrays with C layout.

val slice_right_1 : ('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t

Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the last two coordinates. The integer parameters are the coordinates of the slice to extract. See Bigarray.Genarray.slice_right for more details. Array3.slice_right_1 applies only to arrays with Fortran layout.

val slice_left_2 : ('a, 'b, Bigarray.c_layout) t ->
int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t

Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the first coordinate. The integer parameter is the first coordinate of the slice to extract. See Bigarray.Genarray.slice_left for more details. Array3.slice_left_2 applies only to arrays with C layout.

val slice_right_2 : ('a, 'b, Bigarray.fortran_layout) t ->
int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t

Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the last coordinate. The integer parameter is the coordinate of the slice to extract. See Bigarray.Genarray.slice_right for more details. Array3.slice_right_2 applies only to arrays with Fortran layout.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the first Bigarray to the second Bigarray. See Bigarray.Genarray.blit for more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given Bigarray with the given value. See Bigarray.Genarray.fill for more details.

val of_array : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a array array array -> ('a, 'b, 'c) t

Build a three-dimensional Bigarray initialized from the given array of arrays of arrays.

val unsafe_get : ('a, 'b, 'c) t -> int -> int -> int -> 'a

Like Bigarray.Array3.get, but bounds checking is not always performed.

val unsafe_set : ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit

Like Bigarray.Array3.set, but bounds checking is not always performed.

ocaml-doc-4.11/ocaml.html/libref/String.html0000644000175000017500000010602213717225553017703 0ustar mehdimehdi String

Module String

module String: sig .. end

String operations.

A string is an immutable data structure that contains a fixed-length sequence of (single-byte) characters. Each character can be accessed in constant time through its index.

Given a string s of length l, we can access each of the l characters of s via its index in the sequence. Indexes start at 0, and we will call an index valid in s if it falls within the range [0...l-1] (inclusive). A position is the point between two characters or at the beginning or end of the string. We call a position valid in s if it falls within the range [0...l] (inclusive). Note that the character at index n is between positions n and n+1.

Two parameters start and len are said to designate a valid substring of s if len >= 0 and start and start+len are valid positions in s.

Note: OCaml strings used to be modifiable in place, for instance via the String.set and String.blit functions described below. This usage is only possible when the compiler is put in "unsafe-string" mode by giving the -unsafe-string command-line option. This compatibility mode makes the types string and bytes (see module Bytes) interchangeable so that functions expecting byte sequences can also accept strings as arguments and modify them.

The distinction between bytes and string was introduced in OCaml 4.02, and the "unsafe-string" compatibility mode was the default until OCaml 4.05. Starting with 4.06, the compatibility mode is opt-in; we intend to remove the option in the future.


val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

String.get s n returns the character at index n in string s. You can also write s.[n] instead of String.get s n.

  • Raises Invalid_argument if n not a valid index in s.
val set : bytes -> int -> char -> unit
Deprecated.This is a deprecated alias of Bytes.set. 

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c. You can also write s.[n] <- c instead of String.set s n c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes
Deprecated.This is a deprecated alias of Bytes.create. 

String.create n returns a fresh byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> string

String.make n c returns a fresh string of length n, filled with the character c.

val init : int -> (int -> char) -> string

String.init n f returns a string of length n, with character i initialized to the result of f i (called in increasing index order).

val copy : string -> string
Deprecated.Because strings are immutable, it doesn't make much sense to make identical copies of them.

Return a copy of the given string.

val sub : string -> int -> int -> string

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val fill : bytes -> int -> int -> char -> unit
Deprecated.This is a deprecated alias of Bytes.fill. 

String.fill s start len c modifies byte sequence s in place, replacing len bytes with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : string -> int -> bytes -> int -> int -> unit
val concat : string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

val iter : (char -> unit) -> string -> unit

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ().

val iteri : (int -> char -> unit) -> string -> unit

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

  • Since 4.00.0
val map : (char -> char) -> string -> string

String.map f s applies function f in turn to all the characters of s (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.00.0
val mapi : (int -> char -> char) -> string -> string

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.02.0
val trim : string -> string

Return a copy of the argument, without leading and trailing whitespace. The characters regarded as whitespace are: ' ', '\012', '\n', '\r', and '\t'. If there is neither leading nor trailing whitespace character in the argument, return the original string itself, not a copy.

  • Since 4.00.0
val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash and double-quote.

If there is no special character in the argument that needs escaping, return the original string itself, not a copy.

  • Raises Invalid_argument if the result is longer than Sys.max_string_length bytes. The function Scanf.unescaped is a left inverse of escaped, i.e. Scanf.unescaped (escaped s) = s for any string s (unless escape s fails).
val index : string -> char -> int

String.index s c returns the index of the first occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val index_opt : string -> char -> int option

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val rindex : string -> char -> int

String.rindex s c returns the index of the last occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : string -> char -> int option

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val index_from : string -> int -> char -> int

String.index_from s i c returns the index of the first occurrence of character c in string s after position i. String.index s c is equivalent to String.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : string -> int -> char -> int option

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

String.index_opt s c is equivalent to String.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : string -> int -> char -> int

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1. String.rindex s c is equivalent to String.rindex_from s (String.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : string -> int -> char -> int option

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

String.rindex_opt s c is equivalent to String.rindex_from_opt s (String.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in s after position start. String.contains s c is equivalent to String.contains_from s 0 c.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val lowercase_ascii : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.03.0
val capitalize_ascii : string -> string

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val uncapitalize_ascii : string -> string

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.03.0
type t = string 

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same specification as compare. Along with the type t, this function compare allows the module String to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for strings.

  • Since 4.03.0
val split_on_char : char -> string -> string list

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

The function's output is specified by the following invariants:

  • The list is not empty.
  • Concatenating its elements using sep as a separator returns a string equal to the input (String.concat (String.make 1 sep)
          (String.split_on_char sep s) = s
    ).
  • No string in the result contains the sep character.
  • Since 4.04.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Obj.html0000644000175000017500000003165113717225553020374 0ustar mehdimehdi Stdlib.Obj

Module Stdlib.Obj

module Obj: Obj

type t 
val repr : 'a -> t
val obj : t -> 'a
val magic : 'a -> 'b
val is_block : t -> bool
val is_int : t -> bool
val tag : t -> int
val size : t -> int
val reachable_words : t -> int

Computes the total size (in words, including the headers) of all heap blocks accessible from the argument. Statically allocated blocks are excluded.

@Since 4.04

val field : t -> int -> t
val set_field : t -> int -> t -> unit

When using flambda:

set_field MUST NOT be called on immutable blocks. (Blocks allocated in C stubs, or with new_block below, are always considered mutable.)

The same goes for set_double_field and set_tag. However, for set_tag, in the case of immutable blocks where the middle-end optimizers never see code that discriminates on their tag (for example records), the operation should be safe. Such uses are nonetheless discouraged.

For experts only: set_field et al can be made safe by first wrapping the block in Sys.opaque_identity, so any information about its contents will not be propagated.

val set_tag : t -> int -> unit
val double_field : t -> int -> float
val set_double_field : t -> int -> float -> unit
val new_block : int -> int -> t
val dup : t -> t
val truncate : t -> int -> unit
val add_offset : t -> Int32.t -> t
val with_tag : int -> t -> t
val first_non_constant_constructor_tag : int
val last_non_constant_constructor_tag : int
val lazy_tag : int
val closure_tag : int
val object_tag : int
val infix_tag : int
val forward_tag : int
val no_scan_tag : int
val abstract_tag : int
val string_tag : int
val double_tag : int
val double_array_tag : int
val custom_tag : int
val final_tag : int
val int_tag : int
val out_of_heap_tag : int
val unaligned_tag : int
module Extension_constructor: sig .. end
val extension_constructor : 'a -> extension_constructor
val extension_name : extension_constructor -> string
val extension_id : extension_constructor -> int

The following two functions are deprecated. Use module Marshal instead.

val marshal : t -> bytes
val unmarshal : bytes -> int -> t * int
module Ephemeron: sig .. end
ocaml-doc-4.11/ocaml.html/libref/Unix.html0000644000175000017500000077365413717225553017405 0ustar mehdimehdi Unix

Module Unix

module Unix: sig .. end

Interface to the Unix system.

Note: all the functions of this module (except Unix.error_message and Unix.handle_unix_error) are liable to raise the Unix.Unix_error exception whenever the underlying system call signals an error.


Error report

type error = 
| E2BIG (*

Argument list too long

*)
| EACCES (*

Permission denied

*)
| EAGAIN (*

Resource temporarily unavailable; try again

*)
| EBADF (*

Bad file descriptor

*)
| EBUSY (*

Resource unavailable

*)
| ECHILD (*

No child process

*)
| EDEADLK (*

Resource deadlock would occur

*)
| EDOM (*

Domain error for math functions, etc.

*)
| EEXIST (*

File exists

*)
| EFAULT (*

Bad address

*)
| EFBIG (*

File too large

*)
| EINTR (*

Function interrupted by signal

*)
| EINVAL (*

Invalid argument

*)
| EIO (*

Hardware I/O error

*)
| EISDIR (*

Is a directory

*)
| EMFILE (*

Too many open files by the process

*)
| EMLINK (*

Too many links

*)
| ENAMETOOLONG (*

Filename too long

*)
| ENFILE (*

Too many open files in the system

*)
| ENODEV (*

No such device

*)
| ENOENT (*

No such file or directory

*)
| ENOEXEC (*

Not an executable file

*)
| ENOLCK (*

No locks available

*)
| ENOMEM (*

Not enough memory

*)
| ENOSPC (*

No space left on device

*)
| ENOSYS (*

Function not supported

*)
| ENOTDIR (*

Not a directory

*)
| ENOTEMPTY (*

Directory not empty

*)
| ENOTTY (*

Inappropriate I/O control operation

*)
| ENXIO (*

No such device or address

*)
| EPERM (*

Operation not permitted

*)
| EPIPE (*

Broken pipe

*)
| ERANGE (*

Result too large

*)
| EROFS (*

Read-only file system

*)
| ESPIPE (*

Invalid seek e.g. on a pipe

*)
| ESRCH (*

No such process

*)
| EXDEV (*

Invalid link

*)
| EWOULDBLOCK (*

Operation would block

*)
| EINPROGRESS (*

Operation now in progress

*)
| EALREADY (*

Operation already in progress

*)
| ENOTSOCK (*

Socket operation on non-socket

*)
| EDESTADDRREQ (*

Destination address required

*)
| EMSGSIZE (*

Message too long

*)
| EPROTOTYPE (*

Protocol wrong type for socket

*)
| ENOPROTOOPT (*

Protocol not available

*)
| EPROTONOSUPPORT (*

Protocol not supported

*)
| ESOCKTNOSUPPORT (*

Socket type not supported

*)
| EOPNOTSUPP (*

Operation not supported on socket

*)
| EPFNOSUPPORT (*

Protocol family not supported

*)
| EAFNOSUPPORT (*

Address family not supported by protocol family

*)
| EADDRINUSE (*

Address already in use

*)
| EADDRNOTAVAIL (*

Can't assign requested address

*)
| ENETDOWN (*

Network is down

*)
| ENETUNREACH (*

Network is unreachable

*)
| ENETRESET (*

Network dropped connection on reset

*)
| ECONNABORTED (*

Software caused connection abort

*)
| ECONNRESET (*

Connection reset by peer

*)
| ENOBUFS (*

No buffer space available

*)
| EISCONN (*

Socket is already connected

*)
| ENOTCONN (*

Socket is not connected

*)
| ESHUTDOWN (*

Can't send after socket shutdown

*)
| ETOOMANYREFS (*

Too many references: can't splice

*)
| ETIMEDOUT (*

Connection timed out

*)
| ECONNREFUSED (*

Connection refused

*)
| EHOSTDOWN (*

Host is down

*)
| EHOSTUNREACH (*

No route to host

*)
| ELOOP (*

Too many levels of symbolic links

*)
| EOVERFLOW (*

File size or position not representable

*)
| EUNKNOWNERR of int (*

Unknown error

*)

The type of error codes. Errors defined in the POSIX standard and additional errors from UNIX98 and BSD. All other errors are mapped to EUNKNOWNERR.

exception Unix_error of error * string * string

Raised by the system calls below when an error is encountered. The first component is the error code; the second component is the function name; the third component is the string parameter to the function, if it has one, or the empty string otherwise.

val error_message : error -> string

Return a string describing the given error code.

val handle_unix_error : ('a -> 'b) -> 'a -> 'b

handle_unix_error f x applies f to x and returns the result. If the exception Unix.Unix_error is raised, it prints a message describing the error and exits with code 2.

Access to the process environment

val environment : unit -> string array

Return the process environment, as an array of strings with the format ``variable=value''. The returned array is empty if the process has special privileges.

val unsafe_environment : unit -> string array

Return the process environment, as an array of strings with the format ``variable=value''. Unlike Unix.environment, this function returns a populated array even if the process has special privileges. See the documentation for Unix.unsafe_getenv for more details.

  • Since 4.06.0
val getenv : string -> string

Return the value associated to a variable in the process environment, unless the process has special privileges.

  • Raises Not_found if the variable is unbound or the process has special privileges. (This function is identical to Sys.getenv.
val unsafe_getenv : string -> string

Return the value associated to a variable in the process environment.

Unlike Unix.getenv, this function returns the value even if the process has special privileges. It is considered unsafe because the programmer of a setuid or setgid program must be careful to avoid using maliciously crafted environment variables in the search path for executables, the locations for temporary files or logs, and the like.

  • Since 4.06.0
  • Raises Not_found if the variable is unbound.
val putenv : string -> string -> unit

Unix.putenv name value sets the value associated to a variable in the process environment. name is the name of the environment variable, and value its new associated value.

Process handling

type process_status = 
| WEXITED of int (*

The process terminated normally by exit; the argument is the return code.

*)
| WSIGNALED of int (*

The process was killed by a signal; the argument is the signal number.

*)
| WSTOPPED of int (*

The process was stopped by a signal; the argument is the signal number.

*)

The termination status of a process. See module Sys for the definitions of the standard signal numbers. Note that they are not the numbers used by the OS.

type wait_flag = 
| WNOHANG (*

Do not block if no child has died yet, but immediately return with a pid equal to 0.

*)
| WUNTRACED (*

Report also the children that receive stop signals.

*)

Flags for Unix.waitpid.

val execv : string -> string array -> 'a

execv prog args execute the program in file prog, with the arguments args, and the current process environment. These execv* functions never return: on success, the current program is replaced by the new one.

  • Raises Unix.Unix_error on failure.
val execve : string -> string array -> string array -> 'a

Same as Unix.execv, except that the third argument provides the environment to the program executed.

val execvp : string -> string array -> 'a

Same as Unix.execv, except that the program is searched in the path.

val execvpe : string -> string array -> string array -> 'a

Same as Unix.execve, except that the program is searched in the path.

val fork : unit -> int

Fork a new process. The returned integer is 0 for the child process, the pid of the child process for the parent process.

On Windows: not implemented, use Unix.create_process or threads.

val wait : unit -> int * process_status

Wait until one of the children processes die, and return its pid and termination status.

On Windows: Not implemented, use Unix.waitpid.

val waitpid : wait_flag list -> int -> int * process_status

Same as Unix.wait, but waits for the child process whose pid is given. A pid of -1 means wait for any child. A pid of 0 means wait for any child in the same process group as the current process. Negative pid arguments represent process groups. The list of options indicates whether waitpid should return immediately without waiting, and whether it should report stopped children.

On Windows, this function can only wait for a given PID, not any child process.

val system : string -> process_status

Execute the given command, wait until it terminates, and return its termination status. The string is interpreted by the shell /bin/sh (or the command interpreter cmd.exe on Windows) and therefore can contain redirections, quotes, variables, etc. To properly quote whitespace and shell special characters occurring in file names or command arguments, the use of Filename.quote_command is recommended. The result WEXITED 127 indicates that the shell couldn't be executed.

val getpid : unit -> int

Return the pid of the process.

val getppid : unit -> int

Return the pid of the parent process. On Windows: not implemented (because it is meaningless).

val nice : int -> int

Change the process priority. The integer argument is added to the ``nice'' value. (Higher values of the ``nice'' value mean lower priorities.) Return the new nice value.

On Windows: not implemented.

Basic file input/output

type file_descr 

The abstract type of file descriptors.

val stdin : file_descr

File descriptor for standard input.

val stdout : file_descr

File descriptor for standard output.

val stderr : file_descr

File descriptor for standard error.

type open_flag = 
| O_RDONLY (*

Open for reading

*)
| O_WRONLY (*

Open for writing

*)
| O_RDWR (*

Open for reading and writing

*)
| O_NONBLOCK (*

Open in non-blocking mode

*)
| O_APPEND (*

Open for append

*)
| O_CREAT (*

Create if nonexistent

*)
| O_TRUNC (*

Truncate to 0 length if existing

*)
| O_EXCL (*

Fail if existing

*)
| O_NOCTTY (*

Don't make this dev a controlling tty

*)
| O_DSYNC (*

Writes complete as `Synchronised I/O data integrity completion'

*)
| O_SYNC (*

Writes complete as `Synchronised I/O file integrity completion'

*)
| O_RSYNC (*

Reads complete as writes (depending on O_SYNC/O_DSYNC)

*)
| O_SHARE_DELETE (*

Windows only: allow the file to be deleted while still open

*)
| O_CLOEXEC (*

Set the close-on-exec flag on the descriptor returned by Unix.openfile. See Unix.set_close_on_exec for more information.

*)
| O_KEEPEXEC (*

Clear the close-on-exec flag. This is currently the default.

*)

The flags to Unix.openfile.

type file_perm = int 

The type of file access rights, e.g. 0o640 is read and write for user, read for group, none for others

val openfile : string -> open_flag list -> file_perm -> file_descr

Open the named file with the given flags. Third argument is the permissions to give to the file if it is created (see Unix.umask). Return a file descriptor on the named file.

val close : file_descr -> unit

Close a file descriptor.

val fsync : file_descr -> unit

Flush file buffers to disk.

val read : file_descr -> bytes -> int -> int -> int

read fd buff ofs len reads len bytes from descriptor fd, storing them in byte sequence buff, starting at position ofs in buff. Return the number of bytes actually read.

val write : file_descr -> bytes -> int -> int -> int

write fd buff ofs len writes len bytes to descriptor fd, taking them from byte sequence buff, starting at position ofs in buff. Return the number of bytes actually written. write repeats the writing operation until all bytes have been written or an error occurs.

val single_write : file_descr -> bytes -> int -> int -> int

Same as write, but attempts to write only once. Thus, if an error occurs, single_write guarantees that no data has been written.

val write_substring : file_descr -> string -> int -> int -> int

Same as write, but take the data from a string instead of a byte sequence.

  • Since 4.02.0
val single_write_substring : file_descr -> string -> int -> int -> int

Same as single_write, but take the data from a string instead of a byte sequence.

  • Since 4.02.0

Interfacing with the standard input/output library

val in_channel_of_descr : file_descr -> in_channel

Create an input channel reading from the given descriptor. The channel is initially in binary mode; use set_binary_mode_in ic false if text mode is desired. Text mode is supported only if the descriptor refers to a file or pipe, but is not supported if it refers to a socket. On Windows, set_binary_mode_in always fails on channels created with this function.

Beware that channels are buffered so more characters may have been read from the file descriptor than those accessed using channel functions. Channels also keep a copy of the current position in the file.

You need to explicitly close all channels created with this function. Closing the channel also closes the underlying file descriptor (unless it was already closed).

val out_channel_of_descr : file_descr -> out_channel

Create an output channel writing on the given descriptor. The channel is initially in binary mode; use set_binary_mode_out oc false if text mode is desired. Text mode is supported only if the descriptor refers to a file or pipe, but is not supported if it refers to a socket. On Windows, set_binary_mode_out always fails on channels created with this function.

Beware that channels are buffered so you may have to flush them to ensure that all data has been sent to the file descriptor. Channels also keep a copy of the current position in the file.

You need to explicitly close all channels created with this function. Closing the channel flushes the data and closes the underlying file descriptor (unless it has already been closed, in which case the buffered data is lost).

val descr_of_in_channel : in_channel -> file_descr

Return the descriptor corresponding to an input channel.

val descr_of_out_channel : out_channel -> file_descr

Return the descriptor corresponding to an output channel.

Seeking and truncating

type seek_command = 
| SEEK_SET (*

indicates positions relative to the beginning of the file

*)
| SEEK_CUR (*

indicates positions relative to the current position

*)
| SEEK_END (*

indicates positions relative to the end of the file

*)

Positioning modes for Unix.lseek.

val lseek : file_descr -> int -> seek_command -> int

Set the current position for a file descriptor, and return the resulting offset (from the beginning of the file).

val truncate : string -> int -> unit

Truncates the named file to the given size.

val ftruncate : file_descr -> int -> unit

Truncates the file corresponding to the given descriptor to the given size.

File status

type file_kind = 
| S_REG (*

Regular file

*)
| S_DIR (*

Directory

*)
| S_CHR (*

Character device

*)
| S_BLK (*

Block device

*)
| S_LNK (*

Symbolic link

*)
| S_FIFO (*

Named pipe

*)
| S_SOCK (*

Socket

*)
type stats = {
   st_dev : int; (*

Device number

*)
   st_ino : int; (*

Inode number

*)
   st_kind : file_kind; (*

Kind of the file

*)
   st_perm : file_perm; (*

Access rights

*)
   st_nlink : int; (*

Number of links

*)
   st_uid : int; (*

User id of the owner

*)
   st_gid : int; (*

Group ID of the file's group

*)
   st_rdev : int; (*

Device ID (if special file)

*)
   st_size : int; (*

Size in bytes

*)
   st_atime : float; (*

Last access time

*)
   st_mtime : float; (*

Last modification time

*)
   st_ctime : float; (*

Last status change time

*)
}

The information returned by the Unix.stat calls.

val stat : string -> stats

Return the information for the named file.

val lstat : string -> stats

Same as Unix.stat, but in case the file is a symbolic link, return the information for the link itself.

val fstat : file_descr -> stats

Return the information for the file associated with the given descriptor.

val isatty : file_descr -> bool

Return true if the given file descriptor refers to a terminal or console window, false otherwise.

File operations on large files

module LargeFile: sig .. end

File operations on large files.

Mapping files into memory

val map_file : file_descr ->
?pos:int64 ->
('a, 'b) Bigarray.kind ->
'c Bigarray.layout ->
bool -> int array -> ('a, 'b, 'c) Bigarray.Genarray.t

Memory mapping of a file as a Bigarray. map_file fd kind layout shared dims returns a Bigarray of kind kind, layout layout, and dimensions as specified in dims. The data contained in this Bigarray are the contents of the file referred to by the file descriptor fd (as opened previously with Unix.openfile, for example). The optional pos parameter is the byte offset in the file of the data being mapped; it defaults to 0 (map from the beginning of the file).

If shared is true, all modifications performed on the array are reflected in the file. This requires that fd be opened with write permissions. If shared is false, modifications performed on the array are done in memory only, using copy-on-write of the modified pages; the underlying file is not affected.

Genarray.map_file is much more efficient than reading the whole file in a Bigarray, modifying that Bigarray, and writing it afterwards.

To adjust automatically the dimensions of the Bigarray to the actual size of the file, the major dimension (that is, the first dimension for an array with C layout, and the last dimension for an array with Fortran layout) can be given as -1. Genarray.map_file then determines the major dimension from the size of the file. The file must contain an integral number of sub-arrays as determined by the non-major dimensions, otherwise Failure is raised.

If all dimensions of the Bigarray are given, the file size is matched against the size of the Bigarray. If the file is larger than the Bigarray, only the initial portion of the file is mapped to the Bigarray. If the file is smaller than the big array, the file is automatically grown to the size of the Bigarray. This requires write permissions on fd.

Array accesses are bounds-checked, but the bounds are determined by the initial call to map_file. Therefore, you should make sure no other process modifies the mapped file while you're accessing it, or a SIGBUS signal may be raised. This happens, for instance, if the file is shrunk.

Invalid_argument or Failure may be raised in cases where argument validation fails.

  • Since 4.06.0

Operations on file names

val unlink : string -> unit

Removes the named file.

If the named file is a directory, raises:

  • EPERM on POSIX compliant system
  • EISDIR on Linux >= 2.1.132
  • EACCESS on Windows
val rename : string -> string -> unit

rename old new changes the name of a file from old to new, moving it between directories if needed. If new already exists, its contents will be replaced with those of old. Depending on the operating system, the metadata (permissions, owner, etc) of new can either be preserved or be replaced by those of old.

val link : ?follow:bool -> string -> string -> unit

link ?follow source dest creates a hard link named dest to the file named source.

  • Raises
    • ENOSYS On Unix if ~follow:_ is requested, but linkat is unavailable.
    • ENOSYS On Windows if ~follow:false is requested.
follow : indicates whether a source symlink is followed or a hardlink to source itself will be created. On Unix systems this is done using the linkat(2) function. If ?follow is not provided, then the link(2) function is used whose behaviour is OS-dependent, but more widely available.

File permissions and ownership

type access_permission = 
| R_OK (*

Read permission

*)
| W_OK (*

Write permission

*)
| X_OK (*

Execution permission

*)
| F_OK (*

File exists

*)

Flags for the Unix.access call.

val chmod : string -> file_perm -> unit

Change the permissions of the named file.

val fchmod : file_descr -> file_perm -> unit

Change the permissions of an opened file. On Windows: not implemented.

val chown : string -> int -> int -> unit

Change the owner uid and owner gid of the named file. On Windows: not implemented (make no sense on a DOS file system).

val fchown : file_descr -> int -> int -> unit

Change the owner uid and owner gid of an opened file. On Windows: not implemented (make no sense on a DOS file system).

val umask : int -> int

Set the process's file mode creation mask, and return the previous mask. On Windows: not implemented.

val access : string -> access_permission list -> unit

Check that the process has the given permissions over the named file.

  • Raises Unix_error otherwise. On Windows, execute permission X_OK, cannot be tested, it just tests for read permission instead.

Operations on file descriptors

val dup : ?cloexec:bool -> file_descr -> file_descr

Return a new file descriptor referencing the same file as the given descriptor. See Unix.set_close_on_exec for documentation on the cloexec optional argument.

val dup2 : ?cloexec:bool -> file_descr -> file_descr -> unit

dup2 fd1 fd2 duplicates fd1 to fd2, closing fd2 if already opened. See Unix.set_close_on_exec for documentation on the cloexec optional argument.

val set_nonblock : file_descr -> unit

Set the ``non-blocking'' flag on the given descriptor. When the non-blocking flag is set, reading on a descriptor on which there is temporarily no data available raises the EAGAIN or EWOULDBLOCK error instead of blocking; writing on a descriptor on which there is temporarily no room for writing also raises EAGAIN or EWOULDBLOCK.

val clear_nonblock : file_descr -> unit

Clear the ``non-blocking'' flag on the given descriptor. See Unix.set_nonblock.

val set_close_on_exec : file_descr -> unit

Set the ``close-on-exec'' flag on the given descriptor. A descriptor with the close-on-exec flag is automatically closed when the current process starts another program with one of the exec, create_process and open_process functions.

It is often a security hole to leak file descriptors opened on, say, a private file to an external program: the program, then, gets access to the private file and can do bad things with it. Hence, it is highly recommended to set all file descriptors ``close-on-exec'', except in the very few cases where a file descriptor actually needs to be transmitted to another program.

The best way to set a file descriptor ``close-on-exec'' is to create it in this state. To this end, the openfile function has O_CLOEXEC and O_KEEPEXEC flags to enforce ``close-on-exec'' mode or ``keep-on-exec'' mode, respectively. All other operations in the Unix module that create file descriptors have an optional argument ?cloexec:bool to indicate whether the file descriptor should be created in ``close-on-exec'' mode (by writing ~cloexec:true) or in ``keep-on-exec'' mode (by writing ~cloexec:false). For historical reasons, the default file descriptor creation mode is ``keep-on-exec'', if no cloexec optional argument is given. This is not a safe default, hence it is highly recommended to pass explicit cloexec arguments to operations that create file descriptors.

The cloexec optional arguments and the O_KEEPEXEC flag were introduced in OCaml 4.05. Earlier, the common practice was to create file descriptors in the default, ``keep-on-exec'' mode, then call set_close_on_exec on those freshly-created file descriptors. This is not as safe as creating the file descriptor in ``close-on-exec'' mode because, in multithreaded programs, a window of vulnerability exists between the time when the file descriptor is created and the time set_close_on_exec completes. If another thread spawns another program during this window, the descriptor will leak, as it is still in the ``keep-on-exec'' mode.

Regarding the atomicity guarantees given by ~cloexec:true or by the use of the O_CLOEXEC flag: on all platforms it is guaranteed that a concurrently-executing Caml thread cannot leak the descriptor by starting a new process. On Linux, this guarantee extends to concurrently-executing C threads. As of Feb 2017, other operating systems lack the necessary system calls and still expose a window of vulnerability during which a C thread can see the newly-created file descriptor in ``keep-on-exec'' mode.

val clear_close_on_exec : file_descr -> unit

Clear the ``close-on-exec'' flag on the given descriptor. See Unix.set_close_on_exec.

Directories

val mkdir : string -> file_perm -> unit

Create a directory with the given permissions (see Unix.umask).

val rmdir : string -> unit

Remove an empty directory.

val chdir : string -> unit

Change the process working directory.

val getcwd : unit -> string

Return the name of the current working directory.

val chroot : string -> unit

Change the process root directory. On Windows: not implemented.

type dir_handle 

The type of descriptors over opened directories.

val opendir : string -> dir_handle

Open a descriptor on a directory

val readdir : dir_handle -> string

Return the next entry in a directory.

  • Raises End_of_file when the end of the directory has been reached.
val rewinddir : dir_handle -> unit

Reposition the descriptor to the beginning of the directory

val closedir : dir_handle -> unit

Close a directory descriptor.

Pipes and redirections

val pipe : ?cloexec:bool -> unit -> file_descr * file_descr

Create a pipe. The first component of the result is opened for reading, that's the exit to the pipe. The second component is opened for writing, that's the entrance to the pipe. See Unix.set_close_on_exec for documentation on the cloexec optional argument.

val mkfifo : string -> file_perm -> unit

Create a named pipe with the given permissions (see Unix.umask). On Windows: not implemented.

High-level process and redirection management

val create_process : string ->
string array -> file_descr -> file_descr -> file_descr -> int

create_process prog args new_stdin new_stdout new_stderr forks a new process that executes the program in file prog, with arguments args. The pid of the new process is returned immediately; the new process executes concurrently with the current process. The standard input and outputs of the new process are connected to the descriptors new_stdin, new_stdout and new_stderr. Passing e.g. stdout for new_stdout prevents the redirection and causes the new process to have the same standard output as the current process. The executable file prog is searched in the path. The new process has the same environment as the current process.

val create_process_env : string ->
string array ->
string array -> file_descr -> file_descr -> file_descr -> int

create_process_env prog args env new_stdin new_stdout new_stderr works as Unix.create_process, except that the extra argument env specifies the environment passed to the program.

val open_process_in : string -> in_channel

High-level pipe and process management. This function runs the given command in parallel with the program. The standard output of the command is redirected to a pipe, which can be read via the returned input channel. The command is interpreted by the shell /bin/sh (or cmd.exe on Windows), cf. Unix.system. The Filename.quote_command function can be used to quote the command and its arguments as appropriate for the shell being used. If the command does not need to be run through the shell, Unix.open_process_args_in can be used as a more robust and more efficient alternative to Unix.open_process_in.

val open_process_out : string -> out_channel

Same as Unix.open_process_in, but redirect the standard input of the command to a pipe. Data written to the returned output channel is sent to the standard input of the command. Warning: writes on output channels are buffered, hence be careful to call flush at the right times to ensure correct synchronization. If the command does not need to be run through the shell, Unix.open_process_args_out can be used instead of Unix.open_process_out.

val open_process : string -> in_channel * out_channel

Same as Unix.open_process_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels. The input channel is connected to the output of the command, and the output channel to the input of the command. If the command does not need to be run through the shell, Unix.open_process_args can be used instead of Unix.open_process.

val open_process_full : string ->
string array -> in_channel * out_channel * in_channel

Similar to Unix.open_process, but the second argument specifies the environment passed to the command. The result is a triple of channels connected respectively to the standard output, standard input, and standard error of the command. If the command does not need to be run through the shell, Unix.open_process_args_full can be used instead of Unix.open_process_full.

val open_process_args_in : string -> string array -> in_channel

High-level pipe and process management. The first argument specifies the command to run, and the second argument specifies the argument array passed to the command. This function runs the command in parallel with the program. The standard output of the command is redirected to a pipe, which can be read via the returned input channel.

  • Since 4.08.0
val open_process_args_out : string -> string array -> out_channel

Same as Unix.open_process_args_in, but redirect the standard input of the command to a pipe. Data written to the returned output channel is sent to the standard input of the command. Warning: writes on output channels are buffered, hence be careful to call flush at the right times to ensure correct synchronization.

  • Since 4.08.0
val open_process_args : string -> string array -> in_channel * out_channel

Same as Unix.open_process_args_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels. The input channel is connected to the output of the command, and the output channel to the input of the command.

  • Since 4.08.0
val open_process_args_full : string ->
string array ->
string array -> in_channel * out_channel * in_channel

Similar to Unix.open_process_args, but the third argument specifies the environment passed to the command. The result is a triple of channels connected respectively to the standard output, standard input, and standard error of the command.

  • Since 4.08.0
val process_in_pid : in_channel -> int

Return the pid of a process opened via Unix.open_process_in or Unix.open_process_args_in.

  • Since 4.08.0
val process_out_pid : out_channel -> int

Return the pid of a process opened via Unix.open_process_out or Unix.open_process_args_out.

  • Since 4.08.0
val process_pid : in_channel * out_channel -> int

Return the pid of a process opened via Unix.open_process or Unix.open_process_args.

  • Since 4.08.0
val process_full_pid : in_channel * out_channel * in_channel -> int

Return the pid of a process opened via Unix.open_process_full or Unix.open_process_args_full.

  • Since 4.08.0
val close_process_in : in_channel -> process_status

Close channels opened by Unix.open_process_in, wait for the associated command to terminate, and return its termination status.

val close_process_out : out_channel -> process_status

Close channels opened by Unix.open_process_out, wait for the associated command to terminate, and return its termination status.

val close_process : in_channel * out_channel -> process_status

Close channels opened by Unix.open_process, wait for the associated command to terminate, and return its termination status.

val close_process_full : in_channel * out_channel * in_channel ->
process_status

Close channels opened by Unix.open_process_full, wait for the associated command to terminate, and return its termination status.

val symlink : ?to_dir:bool -> string -> string -> unit

symlink ?to_dir source dest creates the file dest as a symbolic link to the file source. On Windows, ~to_dir indicates if the symbolic link points to a directory or a file; if omitted, symlink examines source using stat and picks appropriately, if source does not exist then false is assumed (for this reason, it is recommended that the ~to_dir parameter be specified in new code). On Unix, ~to_dir is ignored.

Windows symbolic links are available in Windows Vista onwards. There are some important differences between Windows symlinks and their POSIX counterparts.

Windows symbolic links come in two flavours: directory and regular, which designate whether the symbolic link points to a directory or a file. The type must be correct - a directory symlink which actually points to a file cannot be selected with chdir and a file symlink which actually points to a directory cannot be read or written (note that Cygwin's emulation layer ignores this distinction).

When symbolic links are created to existing targets, this distinction doesn't matter and symlink will automatically create the correct kind of symbolic link. The distinction matters when a symbolic link is created to a non-existent target.

The other caveat is that by default symbolic links are a privileged operation. Administrators will always need to be running elevated (or with UAC disabled) and by default normal user accounts need to be granted the SeCreateSymbolicLinkPrivilege via Local Security Policy (secpol.msc) or via Active Directory.

Unix.has_symlink can be used to check that a process is able to create symbolic links.

val has_symlink : unit -> bool

Returns true if the user is able to create symbolic links. On Windows, this indicates that the user not only has the SeCreateSymbolicLinkPrivilege but is also running elevated, if necessary. On other platforms, this is simply indicates that the symlink system call is available.

  • Since 4.03.0
val readlink : string -> string

Read the contents of a symbolic link.

Polling

val select : file_descr list ->
file_descr list ->
file_descr list ->
float -> file_descr list * file_descr list * file_descr list

Wait until some input/output operations become possible on some channels. The three list arguments are, respectively, a set of descriptors to check for reading (first argument), for writing (second argument), or for exceptional conditions (third argument). The fourth argument is the maximal timeout, in seconds; a negative fourth argument means no timeout (unbounded wait). The result is composed of three sets of descriptors: those ready for reading (first component), ready for writing (second component), and over which an exceptional condition is pending (third component).

Locking

type lock_command = 
| F_ULOCK (*

Unlock a region

*)
| F_LOCK (*

Lock a region for writing, and block if already locked

*)
| F_TLOCK (*

Lock a region for writing, or fail if already locked

*)
| F_TEST (*

Test a region for other process locks

*)
| F_RLOCK (*

Lock a region for reading, and block if already locked

*)
| F_TRLOCK (*

Lock a region for reading, or fail if already locked

*)

Commands for Unix.lockf.

val lockf : file_descr -> lock_command -> int -> unit

lockf fd cmd size puts a lock on a region of the file opened as fd. The region starts at the current read/write position for fd (as set by Unix.lseek), and extends size bytes forward if size is positive, size bytes backwards if size is negative, or to the end of the file if size is zero. A write lock prevents any other process from acquiring a read or write lock on the region. A read lock prevents any other process from acquiring a write lock on the region, but lets other processes acquire read locks on it.

The F_LOCK and F_TLOCK commands attempts to put a write lock on the specified region. The F_RLOCK and F_TRLOCK commands attempts to put a read lock on the specified region. If one or several locks put by another process prevent the current process from acquiring the lock, F_LOCK and F_RLOCK block until these locks are removed, while F_TLOCK and F_TRLOCK fail immediately with an exception. The F_ULOCK removes whatever locks the current process has on the specified region. Finally, the F_TEST command tests whether a write lock can be acquired on the specified region, without actually putting a lock. It returns immediately if successful, or fails otherwise.

What happens when a process tries to lock a region of a file that is already locked by the same process depends on the OS. On POSIX-compliant systems, the second lock operation succeeds and may "promote" the older lock from read lock to write lock. On Windows, the second lock operation will block or fail.

Signals

Note: installation of signal handlers is performed via the functions Sys.signal and Sys.set_signal.

val kill : int -> int -> unit

kill pid sig sends signal number sig to the process with id pid. On Windows, only the Sys.sigkill signal is emulated.

type sigprocmask_command = 
| SIG_SETMASK
| SIG_BLOCK
| SIG_UNBLOCK
val sigprocmask : sigprocmask_command -> int list -> int list

sigprocmask cmd sigs changes the set of blocked signals. If cmd is SIG_SETMASK, blocked signals are set to those in the list sigs. If cmd is SIG_BLOCK, the signals in sigs are added to the set of blocked signals. If cmd is SIG_UNBLOCK, the signals in sigs are removed from the set of blocked signals. sigprocmask returns the set of previously blocked signals.

When the systhreads version of the Thread module is loaded, this function redirects to Thread.sigmask. I.e., sigprocmask only changes the mask of the current thread.

On Windows: not implemented (no inter-process signals on Windows).

val sigpending : unit -> int list

Return the set of blocked signals that are currently pending.

On Windows: not implemented (no inter-process signals on Windows).

val sigsuspend : int list -> unit

sigsuspend sigs atomically sets the blocked signals to sigs and waits for a non-ignored, non-blocked signal to be delivered. On return, the blocked signals are reset to their initial value.

On Windows: not implemented (no inter-process signals on Windows).

val pause : unit -> unit

Wait until a non-ignored, non-blocked signal is delivered.

On Windows: not implemented (no inter-process signals on Windows).

Time functions

type process_times = {
   tms_utime : float; (*

User time for the process

*)
   tms_stime : float; (*

System time for the process

*)
   tms_cutime : float; (*

User time for the children processes

*)
   tms_cstime : float; (*

System time for the children processes

*)
}

The execution times (CPU times) of a process.

type tm = {
   tm_sec : int; (*

Seconds 0..60

*)
   tm_min : int; (*

Minutes 0..59

*)
   tm_hour : int; (*

Hours 0..23

*)
   tm_mday : int; (*

Day of month 1..31

*)
   tm_mon : int; (*

Month of year 0..11

*)
   tm_year : int; (*

Year - 1900

*)
   tm_wday : int; (*

Day of week (Sunday is 0)

*)
   tm_yday : int; (*

Day of year 0..365

*)
   tm_isdst : bool; (*

Daylight time savings in effect

*)
}

The type representing wallclock time and calendar date.

val time : unit -> float

Return the current time since 00:00:00 GMT, Jan. 1, 1970, in seconds.

val gettimeofday : unit -> float

Same as Unix.time, but with resolution better than 1 second.

val gmtime : float -> tm

Convert a time in seconds, as returned by Unix.time, into a date and a time. Assumes UTC (Coordinated Universal Time), also known as GMT. To perform the inverse conversion, set the TZ environment variable to "UTC", use Unix.mktime, and then restore the original value of TZ.

val localtime : float -> tm

Convert a time in seconds, as returned by Unix.time, into a date and a time. Assumes the local time zone. The function performing the inverse conversion is Unix.mktime.

val mktime : tm -> float * tm

Convert a date and time, specified by the tm argument, into a time in seconds, as returned by Unix.time. The tm_isdst, tm_wday and tm_yday fields of tm are ignored. Also return a normalized copy of the given tm record, with the tm_wday, tm_yday, and tm_isdst fields recomputed from the other fields, and the other fields normalized (so that, e.g., 40 October is changed into 9 November). The tm argument is interpreted in the local time zone.

val alarm : int -> int

Schedule a SIGALRM signal after the given number of seconds.

On Windows: not implemented.

val sleep : int -> unit

Stop execution for the given number of seconds.

val sleepf : float -> unit

Stop execution for the given number of seconds. Like sleep, but fractions of seconds are supported.

  • Since 4.03.0
val times : unit -> process_times

Return the execution times of the process. On Windows, it is partially implemented, will not report timings for child processes.

val utimes : string -> float -> float -> unit

Set the last access time (second arg) and last modification time (third arg) for a file. Times are expressed in seconds from 00:00:00 GMT, Jan. 1, 1970. If both times are 0.0, the access and last modification times are both set to the current time.

type interval_timer = 
| ITIMER_REAL (*

decrements in real time, and sends the signal SIGALRM when expired.

*)
| ITIMER_VIRTUAL (*

decrements in process virtual time, and sends SIGVTALRM when expired.

*)
| ITIMER_PROF (*

(for profiling) decrements both when the process is running and when the system is running on behalf of the process; it sends SIGPROF when expired.

*)

The three kinds of interval timers.

type interval_timer_status = {
   it_interval : float; (*

Period

*)
   it_value : float; (*

Current value of the timer

*)
}

The type describing the status of an interval timer

val getitimer : interval_timer -> interval_timer_status

Return the current status of the given interval timer.

On Windows: not implemented.

val setitimer : interval_timer ->
interval_timer_status -> interval_timer_status

setitimer t s sets the interval timer t and returns its previous status. The s argument is interpreted as follows: s.it_value, if nonzero, is the time to the next timer expiration; s.it_interval, if nonzero, specifies a value to be used in reloading it_value when the timer expires. Setting s.it_value to zero disables the timer. Setting s.it_interval to zero causes the timer to be disabled after its next expiration.

On Windows: not implemented.

User id, group id

val getuid : unit -> int

Return the user id of the user executing the process. On Windows, always return 1.

val geteuid : unit -> int

Return the effective user id under which the process runs. On Windows, always return 1.

val setuid : int -> unit

Set the real user id and effective user id for the process. On Windows: not implemented.

val getgid : unit -> int

Return the group id of the user executing the process. On Windows, always return 1.

val getegid : unit -> int

Return the effective group id under which the process runs. On Windows, always return 1.

val setgid : int -> unit

Set the real group id and effective group id for the process. On Windows: not implemented.

val getgroups : unit -> int array

Return the list of groups to which the user executing the process belongs. On Windows, always return [|1|].

val setgroups : int array -> unit

setgroups groups sets the supplementary group IDs for the calling process. Appropriate privileges are required. On Windows: not implemented.

val initgroups : string -> int -> unit

initgroups user group initializes the group access list by reading the group database /etc/group and using all groups of which user is a member. The additional group group is also added to the list. On Windows: not implemented.

type passwd_entry = {
   pw_name : string;
   pw_passwd : string;
   pw_uid : int;
   pw_gid : int;
   pw_gecos : string;
   pw_dir : string;
   pw_shell : string;
}

Structure of entries in the passwd database.

type group_entry = {
   gr_name : string;
   gr_passwd : string;
   gr_gid : int;
   gr_mem : string array;
}

Structure of entries in the groups database.

val getlogin : unit -> string

Return the login name of the user executing the process.

val getpwnam : string -> passwd_entry

Find an entry in passwd with the given name.

  • Raises Not_found if no such entry exist. On Windows, always raise Not_found.
val getgrnam : string -> group_entry

Find an entry in group with the given name.

  • Raises Not_found if no such entry exist. On Windows, always raise Not_found.
val getpwuid : int -> passwd_entry

Find an entry in passwd with the given user id.

  • Raises Not_found if no such entry exist. On Windows, always raise Not_found.
val getgrgid : int -> group_entry

Find an entry in group with the given group id.

  • Raises Not_found if no such entry exist. On Windows, always raise Not_found.

Internet addresses

type inet_addr 

The abstract type of Internet addresses.

val inet_addr_of_string : string -> inet_addr

Conversion from the printable representation of an Internet address to its internal representation. The argument string consists of 4 numbers separated by periods (XXX.YYY.ZZZ.TTT) for IPv4 addresses, and up to 8 numbers separated by colons for IPv6 addresses.

  • Raises Failure when given a string that does not match these formats.
val string_of_inet_addr : inet_addr -> string

Return the printable representation of the given Internet address. See Unix.inet_addr_of_string for a description of the printable representation.

val inet_addr_any : inet_addr

A special IPv4 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

val inet_addr_loopback : inet_addr

A special IPv4 address representing the host machine (127.0.0.1).

val inet6_addr_any : inet_addr

A special IPv6 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

val inet6_addr_loopback : inet_addr

A special IPv6 address representing the host machine (::1).

Sockets

type socket_domain = 
| PF_UNIX (*

Unix domain

*)
| PF_INET (*

Internet domain (IPv4)

*)
| PF_INET6 (*

Internet domain (IPv6)

*)

The type of socket domains. Not all platforms support IPv6 sockets (type PF_INET6). Windows does not support PF_UNIX.

type socket_type = 
| SOCK_STREAM (*

Stream socket

*)
| SOCK_DGRAM (*

Datagram socket

*)
| SOCK_RAW (*

Raw socket

*)
| SOCK_SEQPACKET (*

Sequenced packets socket

*)

The type of socket kinds, specifying the semantics of communications. SOCK_SEQPACKET is included for completeness, but is rarely supported by the OS, and needs system calls that are not available in this library.

type sockaddr = 
| ADDR_UNIX of string
| ADDR_INET of inet_addr * int

The type of socket addresses. ADDR_UNIX name is a socket address in the Unix domain; name is a file name in the file system. ADDR_INET(addr,port) is a socket address in the Internet domain; addr is the Internet address of the machine, and port is the port number.

val socket : ?cloexec:bool ->
socket_domain -> socket_type -> int -> file_descr

Create a new socket in the given domain, and with the given kind. The third argument is the protocol type; 0 selects the default protocol for that kind of sockets. See Unix.set_close_on_exec for documentation on the cloexec optional argument.

val domain_of_sockaddr : sockaddr -> socket_domain

Return the socket domain adequate for the given socket address.

val socketpair : ?cloexec:bool ->
socket_domain ->
socket_type -> int -> file_descr * file_descr

Create a pair of unnamed sockets, connected together. See Unix.set_close_on_exec for documentation on the cloexec optional argument.

val accept : ?cloexec:bool -> file_descr -> file_descr * sockaddr

Accept connections on the given socket. The returned descriptor is a socket connected to the client; the returned address is the address of the connecting client. See Unix.set_close_on_exec for documentation on the cloexec optional argument.

val bind : file_descr -> sockaddr -> unit

Bind a socket to an address.

val connect : file_descr -> sockaddr -> unit

Connect a socket to an address.

val listen : file_descr -> int -> unit

Set up a socket for receiving connection requests. The integer argument is the maximal number of pending requests.

type shutdown_command = 
| SHUTDOWN_RECEIVE (*

Close for receiving

*)
| SHUTDOWN_SEND (*

Close for sending

*)
| SHUTDOWN_ALL (*

Close both

*)

The type of commands for shutdown.

val shutdown : file_descr -> shutdown_command -> unit

Shutdown a socket connection. SHUTDOWN_SEND as second argument causes reads on the other end of the connection to return an end-of-file condition. SHUTDOWN_RECEIVE causes writes on the other end of the connection to return a closed pipe condition (SIGPIPE signal).

val getsockname : file_descr -> sockaddr

Return the address of the given socket.

val getpeername : file_descr -> sockaddr

Return the address of the host connected to the given socket.

type msg_flag = 
| MSG_OOB
| MSG_DONTROUTE
| MSG_PEEK
val recv : file_descr -> bytes -> int -> int -> msg_flag list -> int

Receive data from a connected socket.

val recvfrom : file_descr ->
bytes -> int -> int -> msg_flag list -> int * sockaddr

Receive data from an unconnected socket.

val send : file_descr -> bytes -> int -> int -> msg_flag list -> int

Send data over a connected socket.

val send_substring : file_descr -> string -> int -> int -> msg_flag list -> int

Same as send, but take the data from a string instead of a byte sequence.

  • Since 4.02.0
val sendto : file_descr ->
bytes -> int -> int -> msg_flag list -> sockaddr -> int

Send data over an unconnected socket.

val sendto_substring : file_descr ->
string -> int -> int -> msg_flag list -> sockaddr -> int

Same as sendto, but take the data from a string instead of a byte sequence.

  • Since 4.02.0

Socket options

type socket_bool_option = 
| SO_DEBUG (*

Record debugging information

*)
| SO_BROADCAST (*

Permit sending of broadcast messages

*)
| SO_REUSEADDR (*

Allow reuse of local addresses for bind

*)
| SO_KEEPALIVE (*

Keep connection active

*)
| SO_DONTROUTE (*

Bypass the standard routing algorithms

*)
| SO_OOBINLINE (*

Leave out-of-band data in line

*)
| SO_ACCEPTCONN (*

Report whether socket listening is enabled

*)
| TCP_NODELAY (*

Control the Nagle algorithm for TCP sockets

*)
| IPV6_ONLY (*

Forbid binding an IPv6 socket to an IPv4 address

*)

The socket options that can be consulted with Unix.getsockopt and modified with Unix.setsockopt. These options have a boolean (true/false) value.

type socket_int_option = 
| SO_SNDBUF (*

Size of send buffer

*)
| SO_RCVBUF (*

Size of received buffer

*)
| SO_ERROR (*

Deprecated. Use Unix.getsockopt_error instead.

*)
| SO_TYPE (*

Report the socket type

*)
| SO_RCVLOWAT (*

Minimum number of bytes to process for input operations

*)
| SO_SNDLOWAT (*

Minimum number of bytes to process for output operations

*)

The socket options that can be consulted with Unix.getsockopt_int and modified with Unix.setsockopt_int. These options have an integer value.

type socket_optint_option = 
| SO_LINGER (*

Whether to linger on closed connections that have data present, and for how long (in seconds)

*)

The socket options that can be consulted with Unix.getsockopt_optint and modified with Unix.setsockopt_optint. These options have a value of type int option, with None meaning ``disabled''.

type socket_float_option = 
| SO_RCVTIMEO (*

Timeout for input operations

*)
| SO_SNDTIMEO (*

Timeout for output operations

*)

The socket options that can be consulted with Unix.getsockopt_float and modified with Unix.setsockopt_float. These options have a floating-point value representing a time in seconds. The value 0 means infinite timeout.

val getsockopt : file_descr -> socket_bool_option -> bool

Return the current status of a boolean-valued option in the given socket.

val setsockopt : file_descr -> socket_bool_option -> bool -> unit

Set or clear a boolean-valued option in the given socket.

val getsockopt_int : file_descr -> socket_int_option -> int

Same as Unix.getsockopt for an integer-valued socket option.

val setsockopt_int : file_descr -> socket_int_option -> int -> unit

Same as Unix.setsockopt for an integer-valued socket option.

val getsockopt_optint : file_descr -> socket_optint_option -> int option

Same as Unix.getsockopt for a socket option whose value is an int option.

val setsockopt_optint : file_descr -> socket_optint_option -> int option -> unit

Same as Unix.setsockopt for a socket option whose value is an int option.

val getsockopt_float : file_descr -> socket_float_option -> float

Same as Unix.getsockopt for a socket option whose value is a floating-point number.

val setsockopt_float : file_descr -> socket_float_option -> float -> unit

Same as Unix.setsockopt for a socket option whose value is a floating-point number.

val getsockopt_error : file_descr -> error option

Return the error condition associated with the given socket, and clear it.

High-level network connection functions

val open_connection : sockaddr -> in_channel * out_channel

Connect to a server at the given address. Return a pair of buffered channels connected to the server. Remember to call flush on the output channel at the right times to ensure correct synchronization.

val shutdown_connection : in_channel -> unit

``Shut down'' a connection established with Unix.open_connection; that is, transmit an end-of-file condition to the server reading on the other side of the connection. This does not fully close the file descriptor associated with the channel, which you must remember to free via close_in.

val establish_server : (in_channel -> out_channel -> unit) -> sockaddr -> unit

Establish a server on the given address. The function given as first argument is called for each connection with two buffered channels connected to the client. A new process is created for each connection. The function Unix.establish_server never returns normally.

On Windows, it is not implemented. Use threads.

Host and protocol databases

type host_entry = {
   h_name : string;
   h_aliases : string array;
   h_addrtype : socket_domain;
   h_addr_list : inet_addr array;
}

Structure of entries in the hosts database.

type protocol_entry = {
   p_name : string;
   p_aliases : string array;
   p_proto : int;
}

Structure of entries in the protocols database.

type service_entry = {
   s_name : string;
   s_aliases : string array;
   s_port : int;
   s_proto : string;
}

Structure of entries in the services database.

val gethostname : unit -> string

Return the name of the local host.

val gethostbyname : string -> host_entry

Find an entry in hosts with the given name.

  • Raises Not_found if no such entry exist.
val gethostbyaddr : inet_addr -> host_entry

Find an entry in hosts with the given address.

  • Raises Not_found if no such entry exist.
val getprotobyname : string -> protocol_entry

Find an entry in protocols with the given name.

  • Raises Not_found if no such entry exist.
val getprotobynumber : int -> protocol_entry

Find an entry in protocols with the given protocol number.

  • Raises Not_found if no such entry exist.
val getservbyname : string -> string -> service_entry

Find an entry in services with the given name.

  • Raises Not_found if no such entry exist.
val getservbyport : int -> string -> service_entry

Find an entry in services with the given service number.

  • Raises Not_found if no such entry exist.
type addr_info = {
   ai_family : socket_domain; (*

Socket domain

*)
   ai_socktype : socket_type; (*

Socket type

*)
   ai_protocol : int; (*

Socket protocol number

*)
   ai_addr : sockaddr; (*

Address

*)
   ai_canonname : string; (*

Canonical host name

*)
}

Address information returned by Unix.getaddrinfo.

type getaddrinfo_option = 
| AI_FAMILY of socket_domain (*

Impose the given socket domain

*)
| AI_SOCKTYPE of socket_type (*

Impose the given socket type

*)
| AI_PROTOCOL of int (*

Impose the given protocol

*)
| AI_NUMERICHOST (*

Do not call name resolver, expect numeric IP address

*)
| AI_CANONNAME (*

Fill the ai_canonname field of the result

*)
| AI_PASSIVE (*

Set address to ``any'' address for use with Unix.bind

*)

Options to Unix.getaddrinfo.

val getaddrinfo : string -> string -> getaddrinfo_option list -> addr_info list

getaddrinfo host service opts returns a list of Unix.addr_info records describing socket parameters and addresses suitable for communicating with the given host and service. The empty list is returned if the host or service names are unknown, or the constraints expressed in opts cannot be satisfied.

host is either a host name or the string representation of an IP address. host can be given as the empty string; in this case, the ``any'' address or the ``loopback'' address are used, depending whether opts contains AI_PASSIVE. service is either a service name or the string representation of a port number. service can be given as the empty string; in this case, the port field of the returned addresses is set to 0. opts is a possibly empty list of options that allows the caller to force a particular socket domain (e.g. IPv6 only or IPv4 only) or a particular socket type (e.g. TCP only or UDP only).

type name_info = {
   ni_hostname : string; (*

Name or IP address of host

*)
   ni_service : string; (*

Name of service or port number

*)
}

Host and service information returned by Unix.getnameinfo.

type getnameinfo_option = 
| NI_NOFQDN (*

Do not qualify local host names

*)
| NI_NUMERICHOST (*

Always return host as IP address

*)
| NI_NAMEREQD (*

Fail if host name cannot be determined

*)
| NI_NUMERICSERV (*

Always return service as port number

*)
| NI_DGRAM (*

Consider the service as UDP-based instead of the default TCP

*)

Options to Unix.getnameinfo.

val getnameinfo : sockaddr -> getnameinfo_option list -> name_info

getnameinfo addr opts returns the host name and service name corresponding to the socket address addr. opts is a possibly empty list of options that governs how these names are obtained.

  • Raises Not_found if an error occurs.

Terminal interface

The following functions implement the POSIX standard terminal interface. They provide control over asynchronous communication ports and pseudo-terminals. Refer to the termios man page for a complete description.

type terminal_io = {
   mutable c_ignbrk : bool; (*

Ignore the break condition.

*)
   mutable c_brkint : bool; (*

Signal interrupt on break condition.

*)
   mutable c_ignpar : bool; (*

Ignore characters with parity errors.

*)
   mutable c_parmrk : bool; (*

Mark parity errors.

*)
   mutable c_inpck : bool; (*

Enable parity check on input.

*)
   mutable c_istrip : bool; (*

Strip 8th bit on input characters.

*)
   mutable c_inlcr : bool; (*

Map NL to CR on input.

*)
   mutable c_igncr : bool; (*

Ignore CR on input.

*)
   mutable c_icrnl : bool; (*

Map CR to NL on input.

*)
   mutable c_ixon : bool; (*

Recognize XON/XOFF characters on input.

*)
   mutable c_ixoff : bool; (*

Emit XON/XOFF chars to control input flow.

*)
   mutable c_opost : bool; (*

Enable output processing.

*)
   mutable c_obaud : int; (*

Output baud rate (0 means close connection).

*)
   mutable c_ibaud : int; (*

Input baud rate.

*)
   mutable c_csize : int; (*

Number of bits per character (5-8).

*)
   mutable c_cstopb : int; (*

Number of stop bits (1-2).

*)
   mutable c_cread : bool; (*

Reception is enabled.

*)
   mutable c_parenb : bool; (*

Enable parity generation and detection.

*)
   mutable c_parodd : bool; (*

Specify odd parity instead of even.

*)
   mutable c_hupcl : bool; (*

Hang up on last close.

*)
   mutable c_clocal : bool; (*

Ignore modem status lines.

*)
   mutable c_isig : bool; (*

Generate signal on INTR, QUIT, SUSP.

*)
   mutable c_icanon : bool; (*

Enable canonical processing (line buffering and editing)

*)
   mutable c_noflsh : bool; (*

Disable flush after INTR, QUIT, SUSP.

*)
   mutable c_echo : bool; (*

Echo input characters.

*)
   mutable c_echoe : bool; (*

Echo ERASE (to erase previous character).

*)
   mutable c_echok : bool; (*

Echo KILL (to erase the current line).

*)
   mutable c_echonl : bool; (*

Echo NL even if c_echo is not set.

*)
   mutable c_vintr : char; (*

Interrupt character (usually ctrl-C).

*)
   mutable c_vquit : char; (*

Quit character (usually ctrl-\).

*)
   mutable c_verase : char; (*

Erase character (usually DEL or ctrl-H).

*)
   mutable c_vkill : char; (*

Kill line character (usually ctrl-U).

*)
   mutable c_veof : char; (*

End-of-file character (usually ctrl-D).

*)
   mutable c_veol : char; (*

Alternate end-of-line char. (usually none).

*)
   mutable c_vmin : int; (*

Minimum number of characters to read before the read request is satisfied.

*)
   mutable c_vtime : int; (*

Maximum read wait (in 0.1s units).

*)
   mutable c_vstart : char; (*

Start character (usually ctrl-Q).

*)
   mutable c_vstop : char; (*

Stop character (usually ctrl-S).

*)
}
val tcgetattr : file_descr -> terminal_io

Return the status of the terminal referred to by the given file descriptor. On Windows, not implemented.

type setattr_when = 
| TCSANOW
| TCSADRAIN
| TCSAFLUSH
val tcsetattr : file_descr -> setattr_when -> terminal_io -> unit

Set the status of the terminal referred to by the given file descriptor. The second argument indicates when the status change takes place: immediately (TCSANOW), when all pending output has been transmitted (TCSADRAIN), or after flushing all input that has been received but not read (TCSAFLUSH). TCSADRAIN is recommended when changing the output parameters; TCSAFLUSH, when changing the input parameters.

On Windows, not implemented.

val tcsendbreak : file_descr -> int -> unit

Send a break condition on the given file descriptor. The second argument is the duration of the break, in 0.1s units; 0 means standard duration (0.25s).

On Windows, not implemented.

val tcdrain : file_descr -> unit

Waits until all output written on the given file descriptor has been transmitted.

On Windows, not implemented.

type flush_queue = 
| TCIFLUSH
| TCOFLUSH
| TCIOFLUSH
val tcflush : file_descr -> flush_queue -> unit

Discard data written on the given file descriptor but not yet transmitted, or data received but not yet read, depending on the second argument: TCIFLUSH flushes data received but not read, TCOFLUSH flushes data written but not transmitted, and TCIOFLUSH flushes both.

On Windows, not implemented.

type flow_action = 
| TCOOFF
| TCOON
| TCIOFF
| TCION
val tcflow : file_descr -> flow_action -> unit

Suspend or restart reception or transmission of data on the given file descriptor, depending on the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmits a STOP character to suspend input, and TCION transmits a START character to restart input.

On Windows, not implemented.

val setsid : unit -> int

Put the calling process in a new session and detach it from its controlling terminal.

On Windows, not implemented.

ocaml-doc-4.11/ocaml.html/libref/MoreLabels.html0000644000175000017500000001524313717225552020465 0ustar mehdimehdi MoreLabels

Module MoreLabels

module MoreLabels: sig .. end

Extra labeled libraries.

This meta-module provides labelized version of the Hashtbl, Map and Set modules.

They only differ by their labels. They are provided to help porting from previous versions of OCaml. The contents of this module are subject to change.


module Hashtbl: sig .. end
module Map: sig .. end
module Set: sig .. end
ocaml-doc-4.11/ocaml.html/libref/type_Genlex.html0000644000175000017500000001403213717225552020716 0ustar mehdimehdi Genlex sig
  type token =
      Kwd of string
    | Ident of string
    | Int of int
    | Float of float
    | String of string
    | Char of char
  val make_lexer :
    string list -> char Stdlib.Stream.t -> Genlex.token Stdlib.Stream.t
end
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Set.html0000644000175000017500000011222213717225553022254 0ustar mehdimehdi MoreLabels.Set sig
  module type OrderedType = Set.OrderedType
  module type S =
    sig
      type elt
      and t
      val empty : MoreLabels.Set.S.t
      val is_empty : MoreLabels.Set.S.t -> bool
      val mem : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> bool
      val add :
        MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val singleton : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t
      val remove :
        MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val union :
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val inter :
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val disjoint : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
      val diff :
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val compare : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> int
      val equal : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
      val subset : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
      val iter :
        f:(MoreLabels.Set.S.elt -> unit) -> MoreLabels.Set.S.t -> unit
      val map :
        f:(MoreLabels.Set.S.elt -> MoreLabels.Set.S.elt) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val fold :
        f:(MoreLabels.Set.S.elt -> '-> 'a) ->
        MoreLabels.Set.S.t -> init:'-> 'a
      val for_all :
        f:(MoreLabels.Set.S.elt -> bool) -> MoreLabels.Set.S.t -> bool
      val exists :
        f:(MoreLabels.Set.S.elt -> bool) -> MoreLabels.Set.S.t -> bool
      val filter :
        f:(MoreLabels.Set.S.elt -> bool) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val filter_map :
        f:(MoreLabels.Set.S.elt -> MoreLabels.Set.S.elt option) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val partition :
        f:(MoreLabels.Set.S.elt -> bool) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t * MoreLabels.Set.S.t
      val cardinal : MoreLabels.Set.S.t -> int
      val elements : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt list
      val min_elt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
      val min_elt_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
      val max_elt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
      val max_elt_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
      val choose : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
      val choose_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
      val split :
        MoreLabels.Set.S.elt ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t * bool * MoreLabels.Set.S.t
      val find :
        MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
      val find_opt :
        MoreLabels.Set.S.elt ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
      val find_first :
        f:(MoreLabels.Set.S.elt -> bool) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
      val find_first_opt :
        f:(MoreLabels.Set.S.elt -> bool) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
      val find_last :
        f:(MoreLabels.Set.S.elt -> bool) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
      val find_last_opt :
        f:(MoreLabels.Set.S.elt -> bool) ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
      val of_list : MoreLabels.Set.S.elt list -> MoreLabels.Set.S.t
      val to_seq_from :
        MoreLabels.Set.S.elt ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.elt Stdlib.Seq.t
      val to_seq : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt Stdlib.Seq.t
      val add_seq :
        MoreLabels.Set.S.elt Stdlib.Seq.t ->
        MoreLabels.Set.S.t -> MoreLabels.Set.S.t
      val of_seq : MoreLabels.Set.S.elt Stdlib.Seq.t -> MoreLabels.Set.S.t
    end
  module Make :
    functor (Ord : OrderedType->
      sig
        type elt = Ord.t
        and t = Set.Make(Ord).t
        val empty : t
        val is_empty : t -> bool
        val mem : elt -> t -> bool
        val add : elt -> t -> t
        val singleton : elt -> t
        val remove : elt -> t -> t
        val union : t -> t -> t
        val inter : t -> t -> t
        val disjoint : t -> t -> bool
        val diff : t -> t -> t
        val compare : t -> t -> int
        val equal : t -> t -> bool
        val subset : t -> t -> bool
        val iter : f:(elt -> unit) -> t -> unit
        val map : f:(elt -> elt) -> t -> t
        val fold : f:(elt -> '-> 'a) -> t -> init:'-> 'a
        val for_all : f:(elt -> bool) -> t -> bool
        val exists : f:(elt -> bool) -> t -> bool
        val filter : f:(elt -> bool) -> t -> t
        val filter_map : f:(elt -> elt option) -> t -> t
        val partition : f:(elt -> bool) -> t -> t * t
        val cardinal : t -> int
        val elements : t -> elt list
        val min_elt : t -> elt
        val min_elt_opt : t -> elt option
        val max_elt : t -> elt
        val max_elt_opt : t -> elt option
        val choose : t -> elt
        val choose_opt : t -> elt option
        val split : elt -> t -> t * bool * t
        val find : elt -> t -> elt
        val find_opt : elt -> t -> elt option
        val find_first : f:(elt -> bool) -> t -> elt
        val find_first_opt : f:(elt -> bool) -> t -> elt option
        val find_last : f:(elt -> bool) -> t -> elt
        val find_last_opt : f:(elt -> bool) -> t -> elt option
        val of_list : elt list -> t
        val to_seq_from : elt -> t -> elt Seq.t
        val to_seq : t -> elt Seq.t
        val add_seq : elt Seq.t -> t -> t
        val of_seq : elt Seq.t -> t
      end
end
ocaml-doc-4.11/ocaml.html/libref/StdLabels.Bytes.html0000644000175000017500000013430513717225553021404 0ustar mehdimehdi StdLabels.Bytes

Module StdLabels.Bytes

module Bytes: BytesLabels

val length : bytes -> int

Return the length (number of bytes) of the argument.

val get : bytes -> int -> char

get s n returns the byte at index n in argument s.

  • Raises Invalid_argument if n is not a valid index in s.
val set : bytes -> int -> char -> unit

set s n c modifies s in place, replacing the byte at index n with c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes

create n returns a new byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> bytes

make n c returns a new byte sequence of length n, filled with the byte c.

val init : int -> f:(int -> char) -> bytes

init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i.

val empty : bytes

A byte sequence of size 0.

val copy : bytes -> bytes

Return a new byte sequence that contains the same bytes as the argument.

val of_string : string -> bytes

Return a new byte sequence that contains the same bytes as the given string.

val to_string : bytes -> string

Return a new string that contains the same bytes as the given byte sequence.

val sub : bytes -> pos:int -> len:int -> bytes

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val sub_string : bytes -> pos:int -> len:int -> string

Same as sub but return a string instead of a byte sequence.

val extend : bytes -> left:int -> right:int -> bytes

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it. If left or right is negative, then bytes are removed (instead of appended) from the corresponding side of s.

  • Since 4.05.0
  • Raises Invalid_argument if the result length is negative or longer than Sys.max_string_length bytes.
val fill : bytes -> pos:int -> len:int -> char -> unit

fill s start len c modifies s in place, replacing len characters with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff. It works correctly even if src and dst are the same byte sequence, and the source and destination intervals overlap.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val blit_string : src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

blit src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

  • Since 4.05.0
  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : sep:bytes -> bytes list -> bytes

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

val cat : bytes -> bytes -> bytes

cat s1 s2 concatenates s1 and s2 and returns the result as new byte sequence.

val iter : f:(char -> unit) -> bytes -> unit

iter f s applies function f in turn to all the bytes of s. It is equivalent to f (get s 0); f (get s 1); ...; f (get s
    (length s - 1)); ()
.

val iteri : f:(int -> char -> unit) -> bytes -> unit

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

val map : f:(char -> char) -> bytes -> bytes

map f s applies function f in turn to all the bytes of s and stores the resulting bytes in a new sequence that is returned as the result.

val mapi : f:(int -> char -> char) -> bytes -> bytes

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val trim : bytes -> bytes

Return a copy of the argument, without leading and trailing whitespace. The bytes regarded as whitespace are the ASCII characters ' ', '\012', '\n', '\r', and '\t'.

val escaped : bytes -> bytes

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

val index : bytes -> char -> int

index s c returns the index of the first occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val index_opt : bytes -> char -> int option

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val rindex : bytes -> char -> int

rindex s c returns the index of the last occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : bytes -> char -> int option

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val index_from : bytes -> int -> char -> int

index_from s i c returns the index of the first occurrence of byte c in s after position i. Bytes.index s c is equivalent to Bytes.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : bytes -> int -> char -> int option

index_from _opts i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i. Bytes.index_opt s c is equivalent to Bytes.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : bytes -> int -> char -> int

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1. rindex s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : bytes -> int -> char -> int option

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1. rindex_opt s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : bytes -> char -> bool

contains s c tests if byte c appears in s.

val contains_from : bytes -> int -> char -> bool

contains_from s start c tests if byte c appears in s after position start. contains s c is equivalent to contains_from
    s 0 c
.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : bytes -> int -> char -> bool

rcontains_from s stop c tests if byte c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : bytes -> bytes

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val lowercase_ascii : bytes -> bytes

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.05.0
val capitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val uncapitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.05.0
type t = bytes 

An alias for the type of byte sequences.

val compare : t -> t -> int

The comparison function for byte sequences, with the same specification as compare. Along with the type t, this function compare allows the module Bytes to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equality function for byte sequences.

  • Since 4.05.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07

Binary encoding/decoding of integers

The functions in this section binary encode and decode integers to and from byte sequences.

All following functions raise Invalid_argument if the space needed at index i to decode or encode the integer is not available.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. These extra bits are handled as follows:

  • Functions that decode signed (resp. unsigned) 8-bit or 16-bit integers represented by int values sign-extend (resp. zero-extend) their result.
  • Functions that encode 8-bit or 16-bit integers represented by int values truncate their input to their least significant bytes.
val get_uint8 : bytes -> int -> int

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

  • Since 4.08
val get_int8 : bytes -> int -> int

get_int8 b i is b's signed 8-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_ne : bytes -> int -> int

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_be : bytes -> int -> int

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_le : bytes -> int -> int

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_ne : bytes -> int -> int

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_be : bytes -> int -> int

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_le : bytes -> int -> int

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int32_ne : bytes -> int -> int32

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_be : bytes -> int -> int32

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_le : bytes -> int -> int32

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int64_ne : bytes -> int -> int64

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_be : bytes -> int -> int64

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_le : bytes -> int -> int64

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

  • Since 4.08
val set_uint8 : bytes -> int -> int -> unit

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_int8 : bytes -> int -> int -> unit

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_ne : bytes -> int -> int -> unit

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_be : bytes -> int -> int -> unit

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_le : bytes -> int -> int -> unit

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_ne : bytes -> int -> int -> unit

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_be : bytes -> int -> int -> unit

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_le : bytes -> int -> int -> unit

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_ne : bytes -> int -> int32 -> unit

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_be : bytes -> int -> int32 -> unit

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_le : bytes -> int -> int32 -> unit

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_ne : bytes -> int -> int64 -> unit

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_be : bytes -> int -> int64 -> unit

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_le : bytes -> int -> int64 -> unit

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Printexc.html0000644000175000017500000001127413717225553022516 0ustar mehdimehdi Stdlib.Printexc (module Stdlib__printexc) ocaml-doc-4.11/ocaml.html/libref/type_Queue.html0000644000175000017500000002426213717225552020566 0ustar mehdimehdi Queue sig
  type 'a t
  exception Empty
  val create : unit -> 'Queue.t
  val add : '-> 'Queue.t -> unit
  val push : '-> 'Queue.t -> unit
  val take : 'Queue.t -> 'a
  val take_opt : 'Queue.t -> 'a option
  val pop : 'Queue.t -> 'a
  val peek : 'Queue.t -> 'a
  val peek_opt : 'Queue.t -> 'a option
  val top : 'Queue.t -> 'a
  val clear : 'Queue.t -> unit
  val copy : 'Queue.t -> 'Queue.t
  val is_empty : 'Queue.t -> bool
  val length : 'Queue.t -> int
  val iter : ('-> unit) -> 'Queue.t -> unit
  val fold : ('-> '-> 'b) -> '-> 'Queue.t -> 'b
  val transfer : 'Queue.t -> 'Queue.t -> unit
  val to_seq : 'Queue.t -> 'Stdlib.Seq.t
  val add_seq : 'Queue.t -> 'Stdlib.Seq.t -> unit
  val of_seq : 'Stdlib.Seq.t -> 'Queue.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.S.html0000644000175000017500000002605513717225552021627 0ustar mehdimehdi Ephemeron.S sig
  type key
  type 'a t
  val create : int -> 'a t
  val clear : 'a t -> unit
  val reset : 'a t -> unit
  val copy : 'a t -> 'a t
  val add : 'a t -> key -> '-> unit
  val remove : 'a t -> key -> unit
  val find : 'a t -> key -> 'a
  val find_opt : 'a t -> key -> 'a option
  val find_all : 'a t -> key -> 'a list
  val replace : 'a t -> key -> '-> unit
  val mem : 'a t -> key -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val length : 'a t -> int
  val stats : 'a t -> Hashtbl.statistics
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_keys : 'a t -> key Seq.t
  val to_seq_values : 'a t -> 'Seq.t
  val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  val of_seq : (key * 'a) Seq.t -> 'a t
  val clean : 'a t -> unit
  val stats_alive : 'a t -> Stdlib.Hashtbl.statistics
end
ocaml-doc-4.11/ocaml.html/libref/type_Printexc.Slot.html0000644000175000017500000001370613717225553022220 0ustar mehdimehdi Printexc.Slot sig
  type t = Printexc.backtrace_slot
  val is_raise : Printexc.Slot.t -> bool
  val is_inline : Printexc.Slot.t -> bool
  val location : Printexc.Slot.t -> Printexc.location option
  val name : Printexc.Slot.t -> string option
  val format : int -> Printexc.Slot.t -> string option
end
ocaml-doc-4.11/ocaml.html/libref/type_CamlinternalFormatBasics.html0000644000175000017500000042572313717225552024420 0ustar mehdimehdi CamlinternalFormatBasics sig
  type padty = Left | Right | Zeros
  type int_conv =
      Int_d
    | Int_pd
    | Int_sd
    | Int_i
    | Int_pi
    | Int_si
    | Int_x
    | Int_Cx
    | Int_X
    | Int_CX
    | Int_o
    | Int_Co
    | Int_u
    | Int_Cd
    | Int_Ci
    | Int_Cu
  type float_flag_conv = Float_flag_ | Float_flag_p | Float_flag_s
  type float_kind_conv =
      Float_f
    | Float_e
    | Float_E
    | Float_g
    | Float_G
    | Float_F
    | Float_h
    | Float_H
    | Float_CF
  type float_conv =
      CamlinternalFormatBasics.float_flag_conv *
      CamlinternalFormatBasics.float_kind_conv
  type char_set = string
  type counter = Line_counter | Char_counter | Token_counter
  type ('a, 'b) padding =
      No_padding : ('a, 'a) CamlinternalFormatBasics.padding
    | Lit_padding : CamlinternalFormatBasics.padty *
        int -> ('a, 'a) CamlinternalFormatBasics.padding
    | Arg_padding :
        CamlinternalFormatBasics.padty -> (int -> 'a, 'a)
                                          CamlinternalFormatBasics.padding
  type pad_option = int option
  type ('a, 'b) precision =
      No_precision : ('a, 'a) CamlinternalFormatBasics.precision
    | Lit_precision : int -> ('a, 'a) CamlinternalFormatBasics.precision
    | Arg_precision : (int -> 'a, 'a) CamlinternalFormatBasics.precision
  type prec_option = int option
  type ('a, 'b, 'c) custom_arity =
      Custom_zero : ('a, string, 'a) CamlinternalFormatBasics.custom_arity
    | Custom_succ :
        ('a, 'b, 'c) CamlinternalFormatBasics.custom_arity -> ('a, '-> 'b,
                                                               '-> 'c)
                                                              CamlinternalFormatBasics.custom_arity
  type block_type =
      Pp_hbox
    | Pp_vbox
    | Pp_hvbox
    | Pp_hovbox
    | Pp_box
    | Pp_fits
  type formatting_lit =
      Close_box
    | Close_tag
    | Break of string * int * int
    | FFlush
    | Force_newline
    | Flush_newline
    | Magic_size of string * int
    | Escaped_at
    | Escaped_percent
    | Scan_indic of char
  type ('a, 'b, 'c, 'd, 'e, 'f) formatting_gen =
      Open_tag :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6 -> 
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.formatting_gen
    | Open_box :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6 -> 
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.formatting_gen
  and ('a, 'b, 'c, 'd, 'e, 'f) fmtty =
      ('a, 'b, 'c, 'd, 'e, 'f, 'a, 'b, 'c, 'd, 'e, 'f)
      CamlinternalFormatBasics.fmtty_rel
  and ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2) fmtty_rel =
      Char_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (char -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, char -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | String_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (string -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, string -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Int_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (int -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, int -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Int32_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (int32 -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, int32 -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Nativeint_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (nativeint -> 'a1, 'b1, 'c1,
                                               'd1, 'e1, 'f1,
                                               nativeint -> 'a2, 'b2, 'c2,
                                               'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Int64_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (int64 -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, int64 -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Float_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (float -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, float -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Bool_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (bool -> 'a1, 'b1, 'c1, 'd1,
                                               'e1, 'f1, bool -> 'a2, 'b2,
                                               'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Format_arg_ty :
        ('g, 'h, 'i, 'j, 'k, 'l) CamlinternalFormatBasics.fmtty *
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (('g, 'h, 'i, 'j, 'k, 'l)
                                               CamlinternalFormatBasics.format6 ->
                                               'a1, 'b1, 'c1, 'd1, 'e1, 'f1,
                                               ('g, 'h, 'i, 'j, 'k, 'l)
                                               CamlinternalFormatBasics.format6 ->
                                               'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Format_subst_ty :
        ('g, 'h, 'i, 'j, 'k, 'l, 'g1, 'b1, 'c1, 'j1, 'd1, 'a1)
        CamlinternalFormatBasics.fmtty_rel *
        ('g, 'h, 'i, 'j, 'k, 'l, 'g2, 'b2, 'c2, 'j2, 'd2, 'a2)
        CamlinternalFormatBasics.fmtty_rel *
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (('g, 'h, 'i, 'j, 'k, 'l)
                                               CamlinternalFormatBasics.format6 ->
                                               'g1, 'b1, 'c1, 'j1, 'e1, 'f1,
                                               ('g, 'h, 'i, 'j, 'k, 'l)
                                               CamlinternalFormatBasics.format6 ->
                                               'g2, 'b2, 'c2, 'j2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Alpha_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (('b1 -> '-> 'c1) ->
                                               '-> 'a1, 'b1, 'c1, 'd1, 'e1,
                                               'f1,
                                               ('b2 -> '-> 'c2) ->
                                               '-> 'a2, 'b2, 'c2, 'd2, 'e2,
                                               'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Theta_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> (('b1 -> 'c1) -> 'a1, 'b1, 'c1,
                                               'd1, 'e1, 'f1,
                                               ('b2 -> 'c2) -> 'a2, 'b2, 'c2,
                                               'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Any_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> ('-> 'a1, 'b1, 'c1, 'd1, 'e1,
                                               'f1, '-> 'a2, 'b2, 'c2, 'd2,
                                               'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Reader_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> ('-> 'a1, 'b1, 'c1,
                                               ('b1 -> 'x) -> 'd1, 'e1, 'f1,
                                               '-> 'a2, 'b2, 'c2,
                                               ('b2 -> 'x) -> 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | Ignored_reader_ty :
        ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
        CamlinternalFormatBasics.fmtty_rel -> ('a1, 'b1, 'c1,
                                               ('b1 -> 'x) -> 'd1, 'e1, 'f1,
                                               'a2, 'b2, 'c2,
                                               ('b2 -> 'x) -> 'd2, 'e2, 'f2)
                                              CamlinternalFormatBasics.fmtty_rel
    | End_of_fmtty :
        ('f1, 'b1, 'c1, 'd1, 'd1, 'f1, 'f2, 'b2, 'c2, 'd2, 'd2, 'f2)
        CamlinternalFormatBasics.fmtty_rel
  and ('a, 'b, 'c, 'd, 'e, 'f) fmt =
      Char :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (char -> 'a,
                                                                  'b, 'c, 'd,
                                                                  'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Caml_char :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (char -> 'a,
                                                                  'b, 'c, 'd,
                                                                  'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | String : ('x, string -> 'a) CamlinternalFormatBasics.padding *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Caml_string : ('x, string -> 'a) CamlinternalFormatBasics.padding *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Int : CamlinternalFormatBasics.int_conv *
        ('x, 'y) CamlinternalFormatBasics.padding *
        ('y, int -> 'a) CamlinternalFormatBasics.precision *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Int32 : CamlinternalFormatBasics.int_conv *
        ('x, 'y) CamlinternalFormatBasics.padding *
        ('y, int32 -> 'a) CamlinternalFormatBasics.precision *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Nativeint : CamlinternalFormatBasics.int_conv *
        ('x, 'y) CamlinternalFormatBasics.padding *
        ('y, nativeint -> 'a) CamlinternalFormatBasics.precision *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Int64 : CamlinternalFormatBasics.int_conv *
        ('x, 'y) CamlinternalFormatBasics.padding *
        ('y, int64 -> 'a) CamlinternalFormatBasics.precision *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Float : CamlinternalFormatBasics.float_conv *
        ('x, 'y) CamlinternalFormatBasics.padding *
        ('y, float -> 'a) CamlinternalFormatBasics.precision *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Bool : ('x, bool -> 'a) CamlinternalFormatBasics.padding *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('x, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Flush :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | String_literal : string *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Char_literal : char *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Format_arg : CamlinternalFormatBasics.pad_option *
        ('g, 'h, 'i, 'j, 'k, 'l) CamlinternalFormatBasics.fmtty *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (('g, 'h,
                                                                   'i, 'j,
                                                                   'k, 'l)
                                                                  CamlinternalFormatBasics.format6 ->
                                                                  'a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Format_subst : CamlinternalFormatBasics.pad_option *
        ('g, 'h, 'i, 'j, 'k, 'l, 'g2, 'b, 'c, 'j2, 'd, 'a)
        CamlinternalFormatBasics.fmtty_rel *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (('g, 'h,
                                                                   'i, 'j,
                                                                   'k, 'l)
                                                                  CamlinternalFormatBasics.format6 ->
                                                                  'g2, 'b,
                                                                  'c, 'j2,
                                                                  'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Alpha :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (('->
                                                                   '-> 'c) ->
                                                                  '-> 'a,
                                                                  'b, 'c, 'd,
                                                                  'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Theta :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (('-> 'c) ->
                                                                  'a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Formatting_lit : CamlinternalFormatBasics.formatting_lit *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Formatting_gen :
        ('a1, 'b, 'c, 'd1, 'e1, 'f1) CamlinternalFormatBasics.formatting_gen *
        ('f1, 'b, 'c, 'e1, 'e2, 'f2) CamlinternalFormatBasics.fmt -> 
        ('a1, 'b, 'c, 'd1, 'e2, 'f2) CamlinternalFormatBasics.fmt
    | Reader :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('-> 'a,
                                                                  'b, 'c,
                                                                  ('-> 'x) ->
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Scan_char_set : CamlinternalFormatBasics.pad_option *
        CamlinternalFormatBasics.char_set *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (string ->
                                                                  'a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Scan_get_counter : CamlinternalFormatBasics.counter *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (int -> 'a,
                                                                  'b, 'c, 'd,
                                                                  'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Scan_next_char :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> (char -> 'a,
                                                                  'b, 'c, 'd,
                                                                  'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Ignored_param :
        ('a, 'b, 'c, 'd, 'y, 'x) CamlinternalFormatBasics.ignored *
        ('x, 'b, 'c, 'y, 'e, 'f) CamlinternalFormatBasics.fmt -> ('a, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | Custom : ('a, 'x, 'y) CamlinternalFormatBasics.custom_arity *
        (unit -> 'x) *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('y, 'b, 'c,
                                                                  'd, 'e, 'f)
                                                                 CamlinternalFormatBasics.fmt
    | End_of_format : ('f, 'b, 'c, 'e, 'e, 'f) CamlinternalFormatBasics.fmt
  and ('a, 'b, 'c, 'd, 'e, 'f) ignored =
      Ignored_char :
        ('a, 'b, 'c, 'd, 'd, 'a) CamlinternalFormatBasics.ignored
    | Ignored_caml_char :
        ('a, 'b, 'c, 'd, 'd, 'a) CamlinternalFormatBasics.ignored
    | Ignored_string :
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_caml_string :
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_int : CamlinternalFormatBasics.int_conv *
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_int32 : CamlinternalFormatBasics.int_conv *
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_nativeint : CamlinternalFormatBasics.int_conv *
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_int64 : CamlinternalFormatBasics.int_conv *
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_float : CamlinternalFormatBasics.pad_option *
        CamlinternalFormatBasics.prec_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                                CamlinternalFormatBasics.ignored
    | Ignored_bool :
        CamlinternalFormatBasics.pad_option -> ('a, 'b, 'c, 'd, 'd, 'a)
                                               CamlinternalFormatBasics.ignored
    | Ignored_format_arg : CamlinternalFormatBasics.pad_option *
        ('g, 'h, 'i, 'j, 'k, 'l) CamlinternalFormatBasics.fmtty -> ('a, 'b,
                                                                    'c, 'd,
                                                                    'd, 'a)
                                                                   CamlinternalFormatBasics.ignored
    | Ignored_format_subst : CamlinternalFormatBasics.pad_option *
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty -> ('a, 'b,
                                                                    'c, 'd,
                                                                    'e, 'f)
                                                                   CamlinternalFormatBasics.ignored
    | Ignored_reader :
        ('a, 'b, 'c, ('-> 'x) -> 'd, 'd, 'a)
        CamlinternalFormatBasics.ignored
    | Ignored_scan_char_set : CamlinternalFormatBasics.pad_option *
        CamlinternalFormatBasics.char_set -> ('a, 'b, 'c, 'd, 'd, 'a)
                                             CamlinternalFormatBasics.ignored
    | Ignored_scan_get_counter :
        CamlinternalFormatBasics.counter -> ('a, 'b, 'c, 'd, 'd, 'a)
                                            CamlinternalFormatBasics.ignored
    | Ignored_scan_next_char :
        ('a, 'b, 'c, 'd, 'd, 'a) CamlinternalFormatBasics.ignored
  and ('a, 'b, 'c, 'd, 'e, 'f) format6 =
      Format of ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt *
        string
  val concat_fmtty :
    ('g1, 'b1, 'c1, 'j1, 'd1, 'a1, 'g2, 'b2, 'c2, 'j2, 'd2, 'a2)
    CamlinternalFormatBasics.fmtty_rel ->
    ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
    CamlinternalFormatBasics.fmtty_rel ->
    ('g1, 'b1, 'c1, 'j1, 'e1, 'f1, 'g2, 'b2, 'c2, 'j2, 'e2, 'f2)
    CamlinternalFormatBasics.fmtty_rel
  val erase_rel :
    ('a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l)
    CamlinternalFormatBasics.fmtty_rel ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty
  val concat_fmt :
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt ->
    ('f, 'b, 'c, 'e, 'g, 'h) CamlinternalFormatBasics.fmt ->
    ('a, 'b, 'c, 'd, 'g, 'h) CamlinternalFormatBasics.fmt
end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.GenHashTable.MakeSeeded.html0000644000175000017500000004001713717225552025672 0ustar mehdimehdi Ephemeron.GenHashTable.MakeSeeded functor
  (H : sig
         type t
         type 'a container
         val hash : int -> Ephemeron.GenHashTable.MakeSeeded.t -> int
         val equal :
           'Ephemeron.GenHashTable.MakeSeeded.container ->
           Ephemeron.GenHashTable.MakeSeeded.t ->
           Ephemeron.GenHashTable.equal
         val create :
           Ephemeron.GenHashTable.MakeSeeded.t ->
           '-> 'Ephemeron.GenHashTable.MakeSeeded.container
         val get_key :
           'Ephemeron.GenHashTable.MakeSeeded.container ->
           Ephemeron.GenHashTable.MakeSeeded.t option
         val get_data :
           'Ephemeron.GenHashTable.MakeSeeded.container -> 'a option
         val set_key_data :
           'Ephemeron.GenHashTable.MakeSeeded.container ->
           Ephemeron.GenHashTable.MakeSeeded.t -> '-> unit
         val check_key :
           'Ephemeron.GenHashTable.MakeSeeded.container -> bool
       end)
  ->
  sig
    type key = H.t
    type 'a t
    val create : ?random:bool -> int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/type_Unix.LargeFile.html0000644000175000017500000001557713717225553022270 0ustar mehdimehdi Unix.LargeFile sig
  val lseek : Unix.file_descr -> int64 -> Unix.seek_command -> int64
  val truncate : string -> int64 -> unit
  val ftruncate : Unix.file_descr -> int64 -> unit
  type stats = {
    st_dev : int;
    st_ino : int;
    st_kind : Unix.file_kind;
    st_perm : Unix.file_perm;
    st_nlink : int;
    st_uid : int;
    st_gid : int;
    st_rdev : int;
    st_size : int64;
    st_atime : float;
    st_mtime : float;
    st_ctime : float;
  }
  val stat : string -> Unix.LargeFile.stats
  val lstat : string -> Unix.LargeFile.stats
  val fstat : Unix.file_descr -> Unix.LargeFile.stats
end
ocaml-doc-4.11/ocaml.html/libref/type_Bigarray.Array3.html0000644000175000017500000004345013717225552022402 0ustar mehdimehdi Bigarray.Array3 sig
  type ('a, 'b, 'c) t
  val create :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> int -> int -> int -> ('a, 'b, 'c) Bigarray.Array3.t
  external dim1 : ('a, 'b, 'c) Bigarray.Array3.t -> int = "%caml_ba_dim_1"
  external dim2 : ('a, 'b, 'c) Bigarray.Array3.t -> int = "%caml_ba_dim_2"
  external dim3 : ('a, 'b, 'c) Bigarray.Array3.t -> int = "%caml_ba_dim_3"
  external kind : ('a, 'b, 'c) Bigarray.Array3.t -> ('a, 'b) Bigarray.kind
    = "caml_ba_kind"
  external layout : ('a, 'b, 'c) Bigarray.Array3.t -> 'Bigarray.layout
    = "caml_ba_layout"
  val change_layout :
    ('a, 'b, 'c) Bigarray.Array3.t ->
    'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array3.t
  val size_in_bytes : ('a, 'b, 'c) Bigarray.Array3.t -> int
  external get : ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> 'a
    = "%caml_ba_ref_3"
  external set :
    ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> '-> unit
    = "%caml_ba_set_3"
  external sub_left :
    ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t ->
    int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t
    = "caml_ba_sub"
  external sub_right :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t ->
    int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t
    = "caml_ba_sub"
  val slice_left_1 :
    ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t ->
    int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t
  val slice_right_1 :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t ->
    int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t
  val slice_left_2 :
    ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t ->
    int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t
  val slice_right_2 :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t ->
    int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t
  external blit :
    ('a, 'b, 'c) Bigarray.Array3.t -> ('a, 'b, 'c) Bigarray.Array3.t -> unit
    = "caml_ba_blit"
  external fill : ('a, 'b, 'c) Bigarray.Array3.t -> '-> unit
    = "caml_ba_fill"
  val of_array :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout ->
    'a array array array -> ('a, 'b, 'c) Bigarray.Array3.t
  external unsafe_get :
    ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> 'a
    = "%caml_ba_unsafe_ref_3"
  external unsafe_set :
    ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> '-> unit
    = "%caml_ba_unsafe_set_3"
end
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.MakeSeeded.html0000644000175000017500000002704613717225553024044 0ustar mehdimehdi MoreLabels.Hashtbl.MakeSeeded

Functor MoreLabels.Hashtbl.MakeSeeded

module MakeSeeded: 
functor (H : SeededHashedType-> SeededS with type key = H.t and type 'a t = 'a Hashtbl.MakeSeeded(H).t
Parameters:
H : SeededHashedType

type key 
type 'a t 
val create : ?random:bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t ->
key:key -> data:'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t ->
key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t ->
key:key -> data:'a -> unit
val mem : 'a t -> key -> bool
val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit
val filter_map_inplace : f:(key:key -> data:'a -> 'a option) ->
'a t -> unit
val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val length : 'a t -> int
val stats : 'a t -> MoreLabels.Hashtbl.statistics
val to_seq : 'a t ->
(key * 'a) Seq.t
val to_seq_keys : 'a t ->
key Seq.t
val to_seq_values : 'a t -> 'a Seq.t
val add_seq : 'a t ->
(key * 'a) Seq.t -> unit
val replace_seq : 'a t ->
(key * 'a) Seq.t -> unit
val of_seq : (key * 'a) Seq.t ->
'a t
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Uchar.html0000644000175000017500000001126613717225553021765 0ustar mehdimehdi Stdlib.Uchar (module Stdlib__uchar) ocaml-doc-4.11/ocaml.html/libref/Sys.html0000644000175000017500000007716313717225553017230 0ustar mehdimehdi Sys

Module Sys

module Sys: sig .. end

System interface.

Every function in this module raises Sys_error with an informative message when the underlying system call signal an error.


val argv : string array

The command line arguments given to the process. The first element is the command name used to invoke the program. The following elements are the command-line arguments given to the program.

val executable_name : string

The name of the file containing the executable currently running. This name may be absolute or relative to the current directory, depending on the platform and whether the program was compiled to bytecode or a native executable.

val file_exists : string -> bool

Test if a file with the given name exists.

val is_directory : string -> bool

Returns true if the given name refers to a directory, false if it refers to another kind of file.

  • Since 3.10.0
  • Raises Sys_error if no file exists with the given name.
val remove : string -> unit

Remove the given file name from the file system.

val rename : string -> string -> unit

Rename a file. rename oldpath newpath renames the file called oldpath, giving it newpath as its new name, moving it between directories if needed. If newpath already exists, its contents will be replaced with those of oldpath. Depending on the operating system, the metadata (permissions, owner, etc) of newpath can either be preserved or be replaced by those of oldpath.

  • Since 4.06 concerning the "replace existing file" behavior
val getenv : string -> string

Return the value associated to a variable in the process environment.

  • Raises Not_found if the variable is unbound.
val getenv_opt : string -> string option

Return the value associated to a variable in the process environment or None if the variable is unbound.

  • Since 4.05
val command : string -> int

Execute the given shell command and return its exit code.

The argument of Sys.command is generally the name of a command followed by zero, one or several arguments, separated by whitespace. The given argument is interpreted by a shell: either the Windows shell cmd.exe for the Win32 ports of OCaml, or the POSIX shell sh for other ports. It can contain shell builtin commands such as echo, and also special characters such as file redirections > and <, which will be honored by the shell.

Conversely, whitespace or special shell characters occurring in command names or in their arguments must be quoted or escaped so that the shell does not interpret them. The quoting rules vary between the POSIX shell and the Windows shell. The Filename.quote_command performs the appropriate quoting given a command name, a list of arguments, and optional file redirections.

val time : unit -> float

Return the processor time, in seconds, used by the program since the beginning of execution.

val chdir : string -> unit

Change the current working directory of the process.

val getcwd : unit -> string

Return the current working directory of the process.

val readdir : string -> string array

Return the names of all files present in the given directory. Names denoting the current directory and the parent directory ("." and ".." in Unix) are not returned. Each string in the result is a file name rather than a complete path. There is no guarantee that the name strings in the resulting array will appear in any specific order; they are not, in particular, guaranteed to appear in alphabetical order.

val interactive : bool ref

This reference is initially set to false in standalone programs and to true if the code is being executed under the interactive toplevel system ocaml.

val os_type : string

Operating system currently executing the OCaml program. One of

  • "Unix" (for all Unix versions, including Linux and Mac OS X),
  • "Win32" (for MS-Windows, OCaml compiled with MSVC++ or Mingw),
  • "Cygwin" (for MS-Windows, OCaml compiled with Cygwin).
type backend_type = 
| Native
| Bytecode
| Other of string

Currently, the official distribution only supports Native and Bytecode, but it can be other backends with alternative compilers, for example, javascript.

  • Since 4.04.0
val backend_type : backend_type

Backend type currently executing the OCaml program.

  • Since 4.04.0
val unix : bool

True if Sys.os_type = "Unix".

  • Since 4.01.0
val win32 : bool

True if Sys.os_type = "Win32".

  • Since 4.01.0
val cygwin : bool

True if Sys.os_type = "Cygwin".

  • Since 4.01.0
val word_size : int

Size of one word on the machine currently executing the OCaml program, in bits: 32 or 64.

val int_size : int

Size of int, in bits. It is 31 (resp. 63) when using OCaml on a 32-bit (resp. 64-bit) platform. It may differ for other implementations, e.g. it can be 32 bits when compiling to JavaScript.

  • Since 4.03.0
val big_endian : bool

Whether the machine currently executing the Caml program is big-endian.

  • Since 4.00.0
val max_string_length : int

Maximum length of strings and byte sequences.

val max_array_length : int

Maximum length of a normal array (i.e. any array whose elements are not of type float). The maximum length of a float array is max_floatarray_length if OCaml was configured with --enable-flat-float-array and max_array_length if configured with --disable-flat-float-array.

val max_floatarray_length : int

Maximum length of a floatarray. This is also the maximum length of a float array when OCaml is configured with --enable-flat-float-array.

val runtime_variant : unit -> string

Return the name of the runtime variant the program is running on. This is normally the argument given to -runtime-variant at compile time, but for byte-code it can be changed after compilation.

  • Since 4.03.0
val runtime_parameters : unit -> string

Return the value of the runtime parameters, in the same format as the contents of the OCAMLRUNPARAM environment variable.

  • Since 4.03.0

Signal handling

type signal_behavior = 
| Signal_default
| Signal_ignore
| Signal_handle of (int -> unit)

What to do when receiving a signal:

  • Signal_default: take the default behavior (usually: abort the program)
  • Signal_ignore: ignore the signal
  • Signal_handle f: call function f, giving it the signal number as argument.
val signal : int -> signal_behavior -> signal_behavior

Set the behavior of the system on receipt of a given signal. The first argument is the signal number. Return the behavior previously associated with the signal. If the signal number is invalid (or not available on your system), an Invalid_argument exception is raised.

val set_signal : int -> signal_behavior -> unit

Same as Sys.signal but return value is ignored.

Signal numbers for the standard POSIX signals.

val sigabrt : int

Abnormal termination

val sigalrm : int

Timeout

val sigfpe : int

Arithmetic exception

val sighup : int

Hangup on controlling terminal

val sigill : int

Invalid hardware instruction

val sigint : int

Interactive interrupt (ctrl-C)

val sigkill : int

Termination (cannot be ignored)

val sigpipe : int

Broken pipe

val sigquit : int

Interactive termination

val sigsegv : int

Invalid memory reference

val sigterm : int

Termination

val sigusr1 : int

Application-defined signal 1

val sigusr2 : int

Application-defined signal 2

val sigchld : int

Child process terminated

val sigcont : int

Continue

val sigstop : int

Stop

val sigtstp : int

Interactive stop

val sigttin : int

Terminal read from background process

val sigttou : int

Terminal write from background process

val sigvtalrm : int

Timeout in virtual time

val sigprof : int

Profiling interrupt

val sigbus : int

Bus error

  • Since 4.03
val sigpoll : int

Pollable event

  • Since 4.03
val sigsys : int

Bad argument to routine

  • Since 4.03
val sigtrap : int

Trace/breakpoint trap

  • Since 4.03
val sigurg : int

Urgent condition on socket

  • Since 4.03
val sigxcpu : int

Timeout in cpu time

  • Since 4.03
val sigxfsz : int

File size limit exceeded

  • Since 4.03
exception Break

Exception raised on interactive interrupt if Sys.catch_break is on.

val catch_break : bool -> unit

catch_break governs whether interactive interrupt (ctrl-C) terminates the program or raises the Break exception. Call catch_break true to enable raising Break, and catch_break false to let the system terminate the program on user interrupt.

val ocaml_version : string

ocaml_version is the version of OCaml. It is a string of the form "major.minor[.patchlevel][(+|~)additional-info]", where major, minor, and patchlevel are integers, and additional-info is an arbitrary string. The [.patchlevel] part is absent for versions anterior to 3.08.0. The [(+|~)additional-info] part may be absent.

val enable_runtime_warnings : bool -> unit

Control whether the OCaml runtime system can emit warnings on stderr. Currently, the only supported warning is triggered when a channel created by open_* functions is finalized without being closed. Runtime warnings are disabled by default.

  • Since 4.03.0
val runtime_warnings_enabled : unit -> bool

Return whether runtime warnings are currently enabled.

  • Since 4.03.0

Optimization

val opaque_identity : 'a -> 'a

For the purposes of optimization, opaque_identity behaves like an unknown (and thus possibly side-effecting) function.

At runtime, opaque_identity disappears altogether.

A typical use of this function is to prevent pure computations from being optimized away in benchmarking loops. For example:

      for _round = 1 to 100_000 do
        ignore (Sys.opaque_identity (my_pure_computation ()))
      done
    
  • Since 4.03.0
module Immediate64: sig .. end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.K1.html0000644000175000017500000006173713717225552021706 0ustar mehdimehdi Ephemeron.K1 sig
  type ('k, 'd) t
  val create : unit -> ('k, 'd) Ephemeron.K1.t
  val get_key : ('k, 'd) Ephemeron.K1.t -> 'k option
  val get_key_copy : ('k, 'd) Ephemeron.K1.t -> 'k option
  val set_key : ('k, 'd) Ephemeron.K1.t -> '-> unit
  val unset_key : ('k, 'd) Ephemeron.K1.t -> unit
  val check_key : ('k, 'd) Ephemeron.K1.t -> bool
  val blit_key : ('k, 'a) Ephemeron.K1.t -> ('k, 'b) Ephemeron.K1.t -> unit
  val get_data : ('k, 'd) Ephemeron.K1.t -> 'd option
  val get_data_copy : ('k, 'd) Ephemeron.K1.t -> 'd option
  val set_data : ('k, 'd) Ephemeron.K1.t -> '-> unit
  val unset_data : ('k, 'd) Ephemeron.K1.t -> unit
  val check_data : ('k, 'd) Ephemeron.K1.t -> bool
  val blit_data : ('a, 'd) Ephemeron.K1.t -> ('b, 'd) Ephemeron.K1.t -> unit
  module Make :
    functor (H : Hashtbl.HashedType->
      sig
        type key = H.t
        type 'a t
        val create : int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
  module MakeSeeded :
    functor (H : Hashtbl.SeededHashedType->
      sig
        type key = H.t
        type 'a t
        val create : ?random:bool -> int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Fun.html0000644000175000017500000001126213717225552021446 0ustar mehdimehdi Stdlib.Fun (module Stdlib__fun) ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Buffer.html0000644000175000017500000001127013717225552022126 0ustar mehdimehdi Stdlib.Buffer (module Stdlib__buffer) ocaml-doc-4.11/ocaml.html/libref/type_CamlinternalMod.html0000644000175000017500000001436713717225552022560 0ustar mehdimehdi CamlinternalMod sig
  type shape =
      Function
    | Lazy
    | Class
    | Module of CamlinternalMod.shape array
    | Value of Stdlib.Obj.t
  val init_mod : string * int * int -> CamlinternalMod.shape -> Stdlib.Obj.t
  val update_mod :
    CamlinternalMod.shape -> Stdlib.Obj.t -> Stdlib.Obj.t -> unit
end
ocaml-doc-4.11/ocaml.html/libref/Event.html0000644000175000017500000002646013717225552017524 0ustar mehdimehdi Event

Module Event

module Event: sig .. end

First-class synchronous communication.

This module implements synchronous inter-thread communications over channels. As in John Reppy's Concurrent ML system, the communication events are first-class values: they can be built and combined independently before being offered for communication.


type 'a channel 

The type of communication channels carrying values of type 'a.

val new_channel : unit -> 'a channel

Return a new channel.

type +'a event 

The type of communication events returning a result of type 'a.

val send : 'a channel -> 'a -> unit event

send ch v returns the event consisting in sending the value v over the channel ch. The result value of this event is ().

val receive : 'a channel -> 'a event

receive ch returns the event consisting in receiving a value from the channel ch. The result value of this event is the value received.

val always : 'a -> 'a event

always v returns an event that is always ready for synchronization. The result value of this event is v.

val choose : 'a event list -> 'a event

choose evl returns the event that is the alternative of all the events in the list evl.

val wrap : 'a event -> ('a -> 'b) -> 'b event

wrap ev fn returns the event that performs the same communications as ev, then applies the post-processing function fn on the return value.

val wrap_abort : 'a event -> (unit -> unit) -> 'a event

wrap_abort ev fn returns the event that performs the same communications as ev, but if it is not selected the function fn is called after the synchronization.

val guard : (unit -> 'a event) -> 'a event

guard fn returns the event that, when synchronized, computes fn() and behaves as the resulting event. This enables computing events with side-effects at the time of the synchronization operation.

val sync : 'a event -> 'a

'Synchronize' on an event: offer all the communication possibilities specified in the event to the outside world, and block until one of the communications succeed. The result value of that communication is returned.

val select : 'a event list -> 'a

'Synchronize' on an alternative of events. select evl is shorthand for sync(choose evl).

val poll : 'a event -> 'a option

Non-blocking version of Event.sync: offer all the communication possibilities specified in the event to the outside world, and if one can take place immediately, perform it and return Some r where r is the result value of that communication. Otherwise, return None without blocking.

ocaml-doc-4.11/ocaml.html/libref/type_Unit.html0000644000175000017500000001263613717225553020424 0ustar mehdimehdi Unit sig
  type t = unit = ()
  val equal : Unit.t -> Unit.t -> bool
  val compare : Unit.t -> Unit.t -> int
  val to_string : Unit.t -> string
end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.K2.html0000644000175000017500000007225613717225552021705 0ustar mehdimehdi Ephemeron.K2 sig
  type ('k1, 'k2, 'd) t
  val create : unit -> ('k1, 'k2, 'd) Ephemeron.K2.t
  val get_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k1 option
  val get_key1_copy : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k1 option
  val set_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k1 -> unit
  val unset_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
  val check_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> bool
  val get_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k2 option
  val get_key2_copy : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k2 option
  val set_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k2 -> unit
  val unset_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
  val check_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> bool
  val blit_key1 :
    ('k1, 'a, 'b) Ephemeron.K2.t -> ('k1, 'c, 'd) Ephemeron.K2.t -> unit
  val blit_key2 :
    ('a, 'k2, 'b) Ephemeron.K2.t -> ('c, 'k2, 'd) Ephemeron.K2.t -> unit
  val blit_key12 :
    ('k1, 'k2, 'a) Ephemeron.K2.t -> ('k1, 'k2, 'b) Ephemeron.K2.t -> unit
  val get_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'd option
  val get_data_copy : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'd option
  val set_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> '-> unit
  val unset_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
  val check_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> bool
  val blit_data :
    ('k1, 'k2, 'd) Ephemeron.K2.t -> ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
  module Make :
    functor (H1 : Hashtbl.HashedType) (H2 : Hashtbl.HashedType->
      sig
        type key = H1.t * H2.t
        type 'a t
        val create : int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
  module MakeSeeded :
    functor (H1 : Hashtbl.SeededHashedType) (H2 : Hashtbl.SeededHashedType)
      ->
      sig
        type key = H1.t * H2.t
        type 'a t
        val create : ?random:bool -> int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
end
ocaml-doc-4.11/ocaml.html/libref/Hashtbl.SeededS.html0000644000175000017500000002614013717225553021337 0ustar mehdimehdi Hashtbl.SeededS

Module type Hashtbl.SeededS

module type SeededS = sig .. end

The output signature of the functor Hashtbl.MakeSeeded.

  • Since 4.00.0

type key 
type 'a t 
val create : ?random:bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
  • Since 4.05.0
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace : (key -> 'a -> 'a option) -> 'a t -> unit
  • Since 4.03.0
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
val to_seq : 'a t -> (key * 'a) Seq.t
  • Since 4.07
val to_seq_keys : 'a t -> key Seq.t
  • Since 4.07
val to_seq_values : 'a t -> 'a Seq.t
  • Since 4.07
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val of_seq : (key * 'a) Seq.t -> 'a t
  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stdlib.ListLabels.html0000644000175000017500000011500313717225553021712 0ustar mehdimehdi Stdlib.ListLabels

Module Stdlib.ListLabels

module ListLabels: ListLabels

type 'a t = 'a list = 
| []
| :: of 'a * 'a list

An alias for the type of lists.

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a problem with very long lists. When the function takes several list arguments, an approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.

This module is intended to be used through StdLabels which replaces Array, Bytes, List and String with their labeled counterparts.

For example:

      open StdLabels

      let seq len = List.init ~f:(function i -> i) ~len
   
val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the first element of the given list.

  • Raises Failure if the list is empty.
val compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to compare (length l1) (length l2), except that the computation stops after itering on the shortest list.

  • Since 4.05.0
val compare_length_with : 'a list -> len:int -> int

Compare the length of a list to an integer. compare_length_with l n is equivalent to compare (length l) n, except that the computation stops after at most n iterations on the list.

  • Since 4.05.0
val cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs

  • Since 4.05.0
val tl : 'a list -> 'a list

Return the given list without its first element.

  • Raises Failure if the list is empty.
val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0.

  • Raises
    • Failure if the list is too short.
    • Invalid_argument if n is negative.
val nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the list is too short.

  • Since 4.05
  • Raises Invalid_argument if n is negative.
val rev : 'a list -> 'a list

List reversal.

val init : len:int -> f:(int -> 'a) -> 'a list

List.init len f is f 0; f 1; ...; f (len-1), evaluated left to right.

  • Since 4.06.0
  • Raises Invalid_argument if len < 0.
val append : 'a list -> 'a list -> 'a list

Catenate two lists. Same function as the infix operator @. Not tail-recursive (length of the first argument). The @ operator is not tail-recursive either.

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it with l2. This is equivalent to (List.rev l1) @ l2, but rev_append is tail-recursive and more efficient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

val flatten : 'a list list -> 'a list

Same as concat. Not tail-recursive (length of the argument + length of the longest sub-list).

Iterators

val iter : f:('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to begin f a1; f a2; ...; f an; () end.

val iteri : f:(int -> 'a -> unit) -> 'a list -> unit

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val map : f:('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f. Not tail-recursive.

val mapi : f:(int -> 'a -> 'b) -> 'a list -> 'b list

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val rev_map : f:('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

val filter_map : f:('a -> 'b option) -> 'a list -> 'b list

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

  • Since 4.08.0
val concat_map : f:('a -> 'b list) -> 'a list -> 'b list

List.concat_map f l gives the same result as List.concat (List.map f l). Tail-recursive.

  • Since 4.10.0
val fold_left_map : f:('a -> 'b -> 'a * 'c) -> init:'a -> 'b list -> 'a * 'c list

fold_left_map is a combination of fold_left and map hat threads an accumulator through calls to f

  • Since 4.11.0
val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : f:('a -> 'b -> 'b) -> 'a list -> init:'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

Iterators on two lists

val iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.
val rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

val fold_left2 : f:('a -> 'b -> 'c -> 'a) -> init:'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val fold_right2 : f:('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> init:'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.

List scanning

val for_all : f:('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an).

val exists : f:('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

val for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val mem : 'a -> set:'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> set:'a list -> bool

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

List searching

val find : f:('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p.

  • Raises Not_found if there is no value that satisfies p in the list l.
val find_opt : f:('a -> bool) -> 'a list -> 'a option

find p l returns the first element of the list l that satisfies the predicate p. Returns None if there is no value that satisfies p in the list l.

  • Since 4.05
val find_map : f:('a -> 'b option) -> 'a list -> 'b option

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

  • Since 4.10.0
val filter : f:('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of the elements in the input list is preserved.

val find_all : f:('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val filteri : f:(int -> 'a -> bool) -> 'a list -> 'a list

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.11.0
val partition : f:('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p. The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.

  • Raises Not_found if there is no value associated with a in the list l.
val assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Returns None if there is no value associated with a in the list l.

  • Since 4.05
val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

val assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

  • Since 4.05.0
val mem_assoc : 'a -> map:('a * 'b) list -> bool

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

val mem_assq : 'a -> map:('a * 'b) list -> bool

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

  • Raises Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, compare is a suitable comparison function. The resulting list is sorted in increasing order. List.sort is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val fast_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but also remove duplicates.

  • Since 4.03.0
val merge : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2. If several elements compare equal, the elements of l1 will be before the elements of l2. Not tail-recursive (sum of the lengths of the arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t

Iterate on the list

  • Since 4.07
val of_seq : 'a Seq.t -> 'a list

Create a list from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Map.html0000644000175000017500000001546413717225553020403 0ustar mehdimehdi Stdlib.Map

Module Stdlib.Map

module Map: Map

module type OrderedType = sig .. end

Input signature of the functor Map.Make.

module type S = sig .. end

Output signature of the functor Map.Make.

module Make: 
functor (Ord : OrderedType-> S with type key = Ord.t

Functor building an implementation of the map structure given a totally ordered type.

ocaml-doc-4.11/ocaml.html/libref/Oo.html0000644000175000017500000001456613717225552017024 0ustar mehdimehdi Oo

Module Oo

module Oo: sig .. end

Operations on objects


val copy : (< .. > as 'a) -> 'a

Oo.copy o returns a copy of object o, that is a fresh object with the same methods and instance variables as o.

val id : < .. > -> int

Return an integer identifying this object, unique for the current execution of the program. The generic comparison and hashing functions are based on this integer. When an object is obtained by unmarshaling, the id is refreshed, and thus different from the original object. As a consequence, the internal invariants of data structures such as hash table or sets containing objects are broken after unmarshaling the data structures.

ocaml-doc-4.11/ocaml.html/libref/type_UnixLabels.LargeFile.html0000644000175000017500000001613113717225553023376 0ustar mehdimehdi UnixLabels.LargeFile sig
  val lseek :
    UnixLabels.file_descr -> int64 -> mode:UnixLabels.seek_command -> int64
  val truncate : string -> len:int64 -> unit
  val ftruncate : UnixLabels.file_descr -> len:int64 -> unit
  type stats =
    Unix.LargeFile.stats = {
    st_dev : int;
    st_ino : int;
    st_kind : UnixLabels.file_kind;
    st_perm : UnixLabels.file_perm;
    st_nlink : int;
    st_uid : int;
    st_gid : int;
    st_rdev : int;
    st_size : int64;
    st_atime : float;
    st_mtime : float;
    st_ctime : float;
  }
  val stat : string -> UnixLabels.LargeFile.stats
  val lstat : string -> UnixLabels.LargeFile.stats
  val fstat : UnixLabels.file_descr -> UnixLabels.LargeFile.stats
end
ocaml-doc-4.11/ocaml.html/libref/Queue.html0000644000175000017500000003362413717225552017527 0ustar mehdimehdi Queue

Module Queue

module Queue: sig .. end

First-in first-out queues.

This module implements queues (FIFOs), with in-place modification.

Warning This module is not thread-safe: each Queue.t value must be protected from concurrent access (e.g. with a Mutex.t). Failure to do so can lead to a crash.


type 'a t 

The type of queues containing elements of type 'a.

exception Empty

Raised when Queue.take or Queue.peek is applied to an empty queue.

val create : unit -> 'a t

Return a new queue, initially empty.

val add : 'a -> 'a t -> unit

add x q adds the element x at the end of the queue q.

val push : 'a -> 'a t -> unit

push is a synonym for add.

val take : 'a t -> 'a

take q removes and returns the first element in queue q, or raises Queue.Empty if the queue is empty.

val take_opt : 'a t -> 'a option

take_opt q removes and returns the first element in queue q, or returns None if the queue is empty.

  • Since 4.08
val pop : 'a t -> 'a

pop is a synonym for take.

val peek : 'a t -> 'a

peek q returns the first element in queue q, without removing it from the queue, or raises Queue.Empty if the queue is empty.

val peek_opt : 'a t -> 'a option

peek_opt q returns the first element in queue q, without removing it from the queue, or returns None if the queue is empty.

  • Since 4.08
val top : 'a t -> 'a

top is a synonym for peek.

val clear : 'a t -> unit

Discard all elements from a queue.

val copy : 'a t -> 'a t

Return a copy of the given queue.

val is_empty : 'a t -> bool

Return true if the given queue is empty, false otherwise.

val length : 'a t -> int

Return the number of elements in a queue.

val iter : ('a -> unit) -> 'a t -> unit

iter f q applies f in turn to all elements of q, from the least recently entered to the most recently entered. The queue itself is unchanged.

val fold : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b

fold f accu q is equivalent to List.fold_left f accu l, where l is the list of q's elements. The queue remains unchanged.

val transfer : 'a t -> 'a t -> unit

transfer q1 q2 adds all of q1's elements at the end of the queue q2, then clears q1. It is equivalent to the sequence iter (fun x -> add x q2) q1; clear q1, but runs in constant time.

Iterators

val to_seq : 'a t -> 'a Seq.t

Iterate on the queue, in front-to-back order. The behavior is not defined if the queue is modified during the iteration.

  • Since 4.07
val add_seq : 'a t -> 'a Seq.t -> unit

Add the elements from the generator to the end of the queue

  • Since 4.07
val of_seq : 'a Seq.t -> 'a t

Create a queue from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Bytes.html0000644000175000017500000005537613717225552020602 0ustar mehdimehdi Bytes sig
  external length : bytes -> int = "%bytes_length"
  external get : bytes -> int -> char = "%bytes_safe_get"
  external set : bytes -> int -> char -> unit = "%bytes_safe_set"
  external create : int -> bytes = "caml_create_bytes"
  val make : int -> char -> bytes
  val init : int -> (int -> char) -> bytes
  val empty : bytes
  val copy : bytes -> bytes
  val of_string : string -> bytes
  val to_string : bytes -> string
  val sub : bytes -> int -> int -> bytes
  val sub_string : bytes -> int -> int -> string
  val extend : bytes -> int -> int -> bytes
  val fill : bytes -> int -> int -> char -> unit
  val blit : bytes -> int -> bytes -> int -> int -> unit
  val blit_string : string -> int -> bytes -> int -> int -> unit
  val concat : bytes -> bytes list -> bytes
  val cat : bytes -> bytes -> bytes
  val iter : (char -> unit) -> bytes -> unit
  val iteri : (int -> char -> unit) -> bytes -> unit
  val map : (char -> char) -> bytes -> bytes
  val mapi : (int -> char -> char) -> bytes -> bytes
  val trim : bytes -> bytes
  val escaped : bytes -> bytes
  val index : bytes -> char -> int
  val index_opt : bytes -> char -> int option
  val rindex : bytes -> char -> int
  val rindex_opt : bytes -> char -> int option
  val index_from : bytes -> int -> char -> int
  val index_from_opt : bytes -> int -> char -> int option
  val rindex_from : bytes -> int -> char -> int
  val rindex_from_opt : bytes -> int -> char -> int option
  val contains : bytes -> char -> bool
  val contains_from : bytes -> int -> char -> bool
  val rcontains_from : bytes -> int -> char -> bool
  val uppercase : bytes -> bytes
  val lowercase : bytes -> bytes
  val capitalize : bytes -> bytes
  val uncapitalize : bytes -> bytes
  val uppercase_ascii : bytes -> bytes
  val lowercase_ascii : bytes -> bytes
  val capitalize_ascii : bytes -> bytes
  val uncapitalize_ascii : bytes -> bytes
  type t = bytes
  val compare : Bytes.t -> Bytes.t -> int
  val equal : Bytes.t -> Bytes.t -> bool
  val unsafe_to_string : bytes -> string
  val unsafe_of_string : string -> bytes
  val to_seq : Bytes.t -> char Stdlib.Seq.t
  val to_seqi : Bytes.t -> (int * char) Stdlib.Seq.t
  val of_seq : char Stdlib.Seq.t -> Bytes.t
  val get_uint8 : bytes -> int -> int
  val get_int8 : bytes -> int -> int
  val get_uint16_ne : bytes -> int -> int
  val get_uint16_be : bytes -> int -> int
  val get_uint16_le : bytes -> int -> int
  val get_int16_ne : bytes -> int -> int
  val get_int16_be : bytes -> int -> int
  val get_int16_le : bytes -> int -> int
  val get_int32_ne : bytes -> int -> int32
  val get_int32_be : bytes -> int -> int32
  val get_int32_le : bytes -> int -> int32
  val get_int64_ne : bytes -> int -> int64
  val get_int64_be : bytes -> int -> int64
  val get_int64_le : bytes -> int -> int64
  val set_uint8 : bytes -> int -> int -> unit
  val set_int8 : bytes -> int -> int -> unit
  val set_uint16_ne : bytes -> int -> int -> unit
  val set_uint16_be : bytes -> int -> int -> unit
  val set_uint16_le : bytes -> int -> int -> unit
  val set_int16_ne : bytes -> int -> int -> unit
  val set_int16_be : bytes -> int -> int -> unit
  val set_int16_le : bytes -> int -> int -> unit
  val set_int32_ne : bytes -> int -> int32 -> unit
  val set_int32_be : bytes -> int -> int32 -> unit
  val set_int32_le : bytes -> int -> int32 -> unit
  val set_int64_ne : bytes -> int -> int64 -> unit
  val set_int64_be : bytes -> int -> int64 -> unit
  val set_int64_le : bytes -> int -> int64 -> unit
  external unsafe_get : bytes -> int -> char = "%bytes_unsafe_get"
  external unsafe_set : bytes -> int -> char -> unit = "%bytes_unsafe_set"
  external unsafe_blit : bytes -> int -> bytes -> int -> int -> unit
    = "caml_blit_bytes" [@@noalloc]
  external unsafe_blit_string : string -> int -> bytes -> int -> int -> unit
    = "caml_blit_string" [@@noalloc]
  external unsafe_fill : bytes -> int -> int -> char -> unit
    = "caml_fill_bytes" [@@noalloc]
end
ocaml-doc-4.11/ocaml.html/libref/CamlinternalLazy.html0000644000175000017500000001452413717225552021712 0ustar mehdimehdi CamlinternalLazy

Module CamlinternalLazy

module CamlinternalLazy: sig .. end

Run-time support for lazy values. All functions in this module are for system use only, not for the casual user.


exception Undefined
type 'a t = 'a lazy_t 
val force_lazy_block : 'a lazy_t -> 'a
val force_val_lazy_block : 'a lazy_t -> 'a
val force : 'a lazy_t -> 'a
val force_val : 'a lazy_t -> 'a
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.K1.Make.html0000644000175000017500000001654313717225552021514 0ustar mehdimehdi Ephemeron.K1.Make

Functor Ephemeron.K1.Make

module Make: 
functor (H : Hashtbl.HashedType-> Ephemeron.S with type key = H.t

Functor building an implementation of a weak hash table

Parameters:
H : Hashtbl.HashedType

Propose the same interface as usual hash table. However since the bindings are weak, even if mem h k is true, a subsequent find h k may raise Not_found because the garbage collector can run between the two.

Moreover, the table shouldn't be modified during a call to iter. Use filter_map_inplace in this case.

include Hashtbl.S
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/Bool.html0000644000175000017500000002467613717225552017345 0ustar mehdimehdi Bool

Module Bool

module Bool: sig .. end

Boolean values.

  • Since 4.08

Booleans

type t = bool = 
| false
| true

The type of booleans (truth values).

The constructors false and true are included here so that they have paths, but they are not intended to be used in user-defined data types.

val not : bool -> bool

not b is the boolean negation of b.

val (&&) : bool -> bool -> bool

e0 && e1 is the lazy boolean conjunction of expressions e0 and e1. If e0 evaluates to false, e1 is not evaluated. Right-associative operator at precedence level 3/11.

val (||) : bool -> bool -> bool

e0 || e1 is the lazy boolean disjunction of expressions e0 and e1. If e0 evaluates to true, e1 is not evaluated. Right-associative operator at precedence level 2/11.

Predicates and comparisons

val equal : bool -> bool -> bool

equal b0 b1 is true iff b0 and b1 are both either true or false.

val compare : bool -> bool -> int

compare b0 b1 is a total order on boolean values. false is smaller than true.

Converting

val to_int : bool -> int

to_int b is 0 if b is false and 1 if b is true.

val to_float : bool -> float

to_float b is 0. if b is false and 1. if b is true.

val to_string : bool -> string

to_string b is "true" if b is true and "false" if b is false.

ocaml-doc-4.11/ocaml.html/libref/type_Lazy.html0000644000175000017500000001571213717225552020421 0ustar mehdimehdi Lazy sig
  type 'a t = 'CamlinternalLazy.t
  exception Undefined
  external force : 'Lazy.t -> 'a = "%lazy_force"
  val force_val : 'Lazy.t -> 'a
  val from_fun : (unit -> 'a) -> 'Lazy.t
  val from_val : '-> 'Lazy.t
  val is_val : 'Lazy.t -> bool
  val lazy_from_fun : (unit -> 'a) -> 'Lazy.t
  val lazy_from_val : '-> 'Lazy.t
  val lazy_is_val : 'Lazy.t -> bool
end
ocaml-doc-4.11/ocaml.html/libref/Bigarray.Array2.html0000644000175000017500000004341613717225552021342 0ustar mehdimehdi Bigarray.Array2

Module Bigarray.Array2

module Array2: sig .. end

Two-dimensional arrays. The Array2 structure provides operations similar to those of Bigarray.Genarray, but specialized to the case of two-dimensional arrays.


type ('a, 'b, 'c) t 

The type of two-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

val create : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int -> int -> ('a, 'b, 'c) t

Array2.create kind layout dim1 dim2 returns a new Bigarray of two dimension, whose size is dim1 in the first dimension and dim2 in the second dimension. kind and layout determine the array element kind and the array layout as described for Bigarray.Genarray.create.

val dim1 : ('a, 'b, 'c) t -> int

Return the first dimension of the given two-dimensional Bigarray.

val dim2 : ('a, 'b, 'c) t -> int

Return the second dimension of the given two-dimensional Bigarray.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given Bigarray.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given Bigarray.

val change_layout : ('a, 'b, 'c) t ->
'd Bigarray.layout -> ('a, 'b, 'd) t

Array2.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimensions as a). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that get v [| a; b |] in C layout becomes get v [| b+1; a+1 |] in Fortran layout.

  • Since 4.06.0
val size_in_bytes : ('a, 'b, 'c) t -> int

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

  • Since 4.03.0
val get : ('a, 'b, 'c) t -> int -> int -> 'a

Array2.get a x y, also written a.{x,y}, returns the element of a at coordinates (x, y). x and y must be within the bounds of a, as described for Bigarray.Genarray.get; otherwise, Invalid_argument is raised.

val set : ('a, 'b, 'c) t -> int -> int -> 'a -> unit

Array2.set a x y v, or alternatively a.{x,y} <- v, stores the value v at coordinates (x, y) in a. x and y must be within the bounds of a, as described for Bigarray.Genarray.set; otherwise, Invalid_argument is raised.

val sub_left : ('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t

Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the first dimension. See Bigarray.Genarray.sub_left for more details. Array2.sub_left applies only to arrays with C layout.

val sub_right : ('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t

Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the second dimension. See Bigarray.Genarray.sub_right for more details. Array2.sub_right applies only to arrays with Fortran layout.

val slice_left : ('a, 'b, Bigarray.c_layout) t ->
int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t

Extract a row (one-dimensional slice) of the given two-dimensional Bigarray. The integer parameter is the index of the row to extract. See Bigarray.Genarray.slice_left for more details. Array2.slice_left applies only to arrays with C layout.

val slice_right : ('a, 'b, Bigarray.fortran_layout) t ->
int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t

Extract a column (one-dimensional slice) of the given two-dimensional Bigarray. The integer parameter is the index of the column to extract. See Bigarray.Genarray.slice_right for more details. Array2.slice_right applies only to arrays with Fortran layout.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the first Bigarray to the second Bigarray. See Bigarray.Genarray.blit for more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given Bigarray with the given value. See Bigarray.Genarray.fill for more details.

val of_array : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a array array -> ('a, 'b, 'c) t

Build a two-dimensional Bigarray initialized from the given array of arrays.

val unsafe_get : ('a, 'b, 'c) t -> int -> int -> 'a

Like Bigarray.Array2.get, but bounds checking is not always performed.

val unsafe_set : ('a, 'b, 'c) t -> int -> int -> 'a -> unit

Like Bigarray.Array2.set, but bounds checking is not always performed.

ocaml-doc-4.11/ocaml.html/libref/Float.Array.html0000644000175000017500000006766213717225552020576 0ustar mehdimehdi Float.Array

Module Float.Array

module Array: sig .. end

type t = floatarray 

The type of float arrays with packed representation.

  • Since 4.08.0
val length : t -> int

Return the length (number of elements) of the given floatarray.

val get : t -> int -> float

get a n returns the element number n of floatarray a.

  • Raises Invalid_argument if n is outside the range 0 to (length a - 1).
val set : t -> int -> float -> unit

set a n x modifies floatarray a in place, replacing element number n with x.

  • Raises Invalid_argument if n is outside the range 0 to (length a - 1).
val make : int -> float -> t

make n x returns a fresh floatarray of length n, initialized with x.

  • Raises Invalid_argument if n < 0 or n > Sys.max_floatarray_length.
val create : int -> t

create n returns a fresh floatarray of length n, with uninitialized data.

  • Raises Invalid_argument if n < 0 or n > Sys.max_floatarray_length.
val init : int -> (int -> float) -> t

init n f returns a fresh floatarray of length n, with element number i initialized to the result of f i. In other terms, init n f tabulates the results of f applied to the integers 0 to n-1.

  • Raises Invalid_argument if n < 0 or n > Sys.max_floatarray_length.
val append : t -> t -> t

append v1 v2 returns a fresh floatarray containing the concatenation of the floatarrays v1 and v2.

  • Raises Invalid_argument if length v1 + length v2 > Sys.max_floatarray_length.
val concat : t list -> t

Same as Float.Array.append, but concatenates a list of floatarrays.

val sub : t -> int -> int -> t

sub a start len returns a fresh floatarray of length len, containing the elements number start to start + len - 1 of floatarray a.

  • Raises Invalid_argument if start and len do not designate a valid subarray of a; that is, if start < 0, or len < 0, or start + len > length a.
val copy : t -> t

copy a returns a copy of a, that is, a fresh floatarray containing the same elements as a.

val fill : t -> int -> int -> float -> unit

fill a ofs len x modifies the floatarray a in place, storing x in elements number ofs to ofs + len - 1.

  • Raises Invalid_argument if ofs and len do not designate a valid subarray of a.
val blit : t -> int -> t -> int -> int -> unit

blit v1 o1 v2 o2 len copies len elements from floatarray v1, starting at element number o1, to floatarray v2, starting at element number o2. It works correctly even if v1 and v2 are the same floatarray, and the source and destination chunks overlap.

  • Raises Invalid_argument if o1 and len do not designate a valid subarray of v1, or if o2 and len do not designate a valid subarray of v2.
val to_list : t -> float list

to_list a returns the list of all the elements of a.

val of_list : float list -> t

of_list l returns a fresh floatarray containing the elements of l.

  • Raises Invalid_argument if the length of l is greater than Sys.max_floatarray_length.

Iterators

val iter : (float -> unit) -> t -> unit

iter f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(length a - 1); ().

val iteri : (int -> float -> unit) -> t -> unit

Same as Float.Array.iter, but the function is applied with the index of the element as first argument, and the element itself as second argument.

val map : (float -> float) -> t -> t

map f a applies function f to all the elements of a, and builds a floatarray with the results returned by f.

val mapi : (int -> float -> float) -> t -> t

Same as Float.Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : ('a -> float -> 'a) -> 'a -> t -> 'a

fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the floatarray a.

val fold_right : (float -> 'a -> 'a) -> t -> 'a -> 'a

fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the floatarray a.

Iterators on two arrays

val iter2 : (float -> float -> unit) -> t -> t -> unit

Array.iter2 f a b applies function f to all the elements of a and b.

  • Raises Invalid_argument if the floatarrays are not the same size.
val map2 : (float -> float -> float) -> t -> t -> t

map2 f a b applies function f to all the elements of a and b, and builds a floatarray with the results returned by f: [| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|].

  • Raises Invalid_argument if the floatarrays are not the same size.

Array scanning

val for_all : (float -> bool) -> t -> bool

for_all p [|a1; ...; an|] checks if all elements of the floatarray satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an).

val exists : (float -> bool) -> t -> bool

exists p [|a1; ...; an|] checks if at least one element of the floatarray satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

val mem : float -> t -> bool

mem a l is true if and only if there is an element of l that is structurally equal to a, i.e. there is an x in l such that compare a x = 0.

val mem_ieee : float -> t -> bool

Same as Float.Array.mem, but uses IEEE equality instead of structural equality.

Sorting

val sort : (float -> float -> int) -> t -> unit

Sort a floatarray in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, compare is a suitable comparison function. After calling sort, the array is sorted in place in increasing order. sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the floatarray and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : (float -> float -> int) -> t -> unit

Same as Float.Array.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses a temporary floatarray of length n/2, where n is the length of the floatarray. It is usually faster than the current implementation of Float.Array.sort.

val fast_sort : (float -> float -> int) -> t -> unit

Same as Float.Array.sort or Float.Array.stable_sort, whichever is faster on typical input.

Iterators

val to_seq : t -> float Seq.t

Iterate on the floatarray, in increasing order. Modifications of the floatarray during iteration will be reflected in the iterator.

val to_seqi : t -> (int * float) Seq.t

Iterate on the floatarray, in increasing order, yielding indices along elements. Modifications of the floatarray during iteration will be reflected in the iterator.

val of_seq : float Seq.t -> t

Create an array from the generator.

val map_to_array : (float -> 'a) -> t -> 'a array

map_to_array f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(length a - 1) |].

val map_from_array : ('a -> float) -> 'a array -> t

map_from_array f a applies function f to all the elements of a, and builds a floatarray with the results returned by f.

Undocumented functions

val unsafe_get : t -> int -> float
val unsafe_set : t -> int -> float -> unit
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.K2.MakeSeeded.html0000644000175000017500000002757413717225552023676 0ustar mehdimehdi Ephemeron.K2.MakeSeeded functor (H1 : Hashtbl.SeededHashedType) (H2 : Hashtbl.SeededHashedType->
  sig
    type key = H1.t * H2.t
    type 'a t
    val create : ?random:bool -> int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.K2.Make.html0000644000175000017500000002745413717225552022561 0ustar mehdimehdi Ephemeron.K2.Make functor (H1 : Hashtbl.HashedType) (H2 : Hashtbl.HashedType->
  sig
    type key = H1.t * H2.t
    type 'a t
    val create : int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/Random.State.html0000644000175000017500000001717213717225553020743 0ustar mehdimehdi Random.State

Module Random.State

module State: sig .. end

type t 

The type of PRNG states.

val make : int array -> t

Create a new state and initialize it with the given seed.

val make_self_init : unit -> t

Create a new state and initialize it with a system-dependent low-entropy seed.

val copy : t -> t

Return a copy of the given state.

val bits : t -> int
val int : t -> int -> int
val int32 : t -> Int32.t -> Int32.t
val nativeint : t -> Nativeint.t -> Nativeint.t
val int64 : t -> Int64.t -> Int64.t
val float : t -> float -> float
val bool : t -> bool

These functions are the same as the basic functions, except that they use (and update) the given PRNG state instead of the default one.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.ArrayLabels.html0000644000175000017500000001130213717225552023112 0ustar mehdimehdi Stdlib.ArrayLabels (module Stdlib__arrayLabels) ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Scanf.html0000644000175000017500000001126613717225553021755 0ustar mehdimehdi Stdlib.Scanf (module Stdlib__scanf) ocaml-doc-4.11/ocaml.html/libref/Int32.html0000644000175000017500000005247313717225552017345 0ustar mehdimehdi Int32

Module Int32

module Int32: sig .. end

32-bit integers.

This module provides operations on the type int32 of signed 32-bit integers. Unlike the built-in int type, the type int32 is guaranteed to be exactly 32-bit wide on all platforms. All arithmetic operations over int32 are taken modulo 232.

Performance notice: values of type int32 occupy more memory space than values of type int, and arithmetic operations on int32 are generally slower than those on int. Use int32 only when the application requires exact 32-bit arithmetic.

Literals for 32-bit integers are suffixed by l:

      let zero: int32 = 0l
      let one: int32 = 1l
      let m_one: int32 = -1l
    

val zero : int32

The 32-bit integer 0.

val one : int32

The 32-bit integer 1.

val minus_one : int32

The 32-bit integer -1.

val neg : int32 -> int32

Unary negation.

val add : int32 -> int32 -> int32

Addition.

val sub : int32 -> int32 -> int32

Subtraction.

val mul : int32 -> int32 -> int32

Multiplication.

val div : int32 -> int32 -> int32

Integer division. This division rounds the real quotient of its arguments towards zero, as specified for (/).

  • Raises Division_by_zero if the second argument is zero.
val unsigned_div : int32 -> int32 -> int32

Same as Int32.div, except that arguments and result are interpreted as unsigned 32-bit integers.

  • Since 4.08.0
val rem : int32 -> int32 -> int32

Integer remainder. If y is not zero, the result of Int32.rem x y satisfies the following property: x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y). If y = 0, Int32.rem x y raises Division_by_zero.

val unsigned_rem : int32 -> int32 -> int32

Same as Int32.rem, except that arguments and result are interpreted as unsigned 32-bit integers.

  • Since 4.08.0
val succ : int32 -> int32

Successor. Int32.succ x is Int32.add x Int32.one.

val pred : int32 -> int32

Predecessor. Int32.pred x is Int32.sub x Int32.one.

val abs : int32 -> int32

Return the absolute value of its argument.

val max_int : int32

The greatest representable 32-bit integer, 231 - 1.

val min_int : int32

The smallest representable 32-bit integer, -231.

val logand : int32 -> int32 -> int32

Bitwise logical and.

val logor : int32 -> int32 -> int32

Bitwise logical or.

val logxor : int32 -> int32 -> int32

Bitwise logical exclusive or.

val lognot : int32 -> int32

Bitwise logical negation.

val shift_left : int32 -> int -> int32

Int32.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= 32.

val shift_right : int32 -> int -> int32

Int32.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= 32.

val shift_right_logical : int32 -> int -> int32

Int32.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= 32.

val of_int : int -> int32

Convert the given integer (type int) to a 32-bit integer (type int32). On 64-bit platforms, the argument is taken modulo 232.

val to_int : int32 -> int

Convert the given 32-bit integer (type int32) to an integer (type int). On 32-bit platforms, the 32-bit integer is taken modulo 231, i.e. the high-order bit is lost during the conversion. On 64-bit platforms, the conversion is exact.

val unsigned_to_int : int32 -> int option

Same as Int32.to_int, but interprets the argument as an unsigned integer. Returns None if the unsigned value of the argument cannot fit into an int.

  • Since 4.08.0
val of_float : float -> int32

Convert the given floating-point number to a 32-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Int32.min_int, Int32.max_int].

val to_float : int32 -> float

Convert the given 32-bit integer to a floating-point number.

val of_string : string -> int32

Convert the given string to a 32-bit integer. The string is read in decimal (by default, or if the string begins with 0u) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively.

The 0u prefix reads the input as an unsigned integer in the range [0, 2*Int32.max_int+1]. If the input exceeds Int32.max_int it is converted to the signed integer Int32.min_int + input - Int32.max_int - 1.

The _ (underscore) character can appear anywhere in the string and is ignored.

  • Raises Failure if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int32.
val of_string_opt : string -> int32 option

Same as of_string, but return None instead of raising.

  • Since 4.05
val to_string : int32 -> string

Return the string representation of its argument, in signed decimal.

val bits_of_float : float -> int32

Return the internal representation of the given float according to the IEEE 754 floating-point 'single format' bit layout. Bit 31 of the result represents the sign of the float; bits 30 to 23 represent the (biased) exponent; bits 22 to 0 represent the mantissa.

val float_of_bits : int32 -> float

Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'single format' bit layout, is the given int32.

type t = int32 

An alias for the type of 32-bit integers.

val compare : t -> t -> int

The comparison function for 32-bit integers, with the same specification as compare. Along with the type t, this function compare allows the module Int32 to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Int32.compare, except that arguments are interpreted as unsigned 32-bit integers.

  • Since 4.08.0
val equal : t -> t -> bool

The equal function for int32s.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/ArrayLabels.html0000644000175000017500000007334213717225552020645 0ustar mehdimehdi ArrayLabels

Module ArrayLabels

module ArrayLabels: sig .. end

Array operations

This module is intended to be used via StdLabels which replaces Array, Bytes, List and String with their labeled counterparts

For example:

      open StdLabels

      let everything = Array.create_matrix ~dimx:42 ~dimy:42 42
   

type 'a t = 'a array 

An alias for the type of arrays.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

get a n returns the element number n of array a. The first element has number 0. The last element has number length a - 1. You can also write a.(n) instead of get a n.

  • Raises Invalid_argument if n is outside the range 0 to (length a - 1).
val set : 'a array -> int -> 'a -> unit

set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of set a n x.

  • Raises Invalid_argument if n is outside the range 0 to length a - 1.
val make : int -> 'a -> 'a array

make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create : int -> 'a -> 'a array
Deprecated.create is an alias for ArrayLabels.make.
val init : int -> f:(int -> 'a) -> 'a array

init n ~f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, init n ~f tabulates the results of f applied to the integers 0 to n-1.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

make_matrix ~dimx ~dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

  • Raises Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
Deprecated.create_matrix is an alias for ArrayLabels.make_matrix.
val append : 'a array -> 'a array -> 'a array

append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

val concat : 'a array list -> 'a array

Same as ArrayLabels.append, but concatenates a list of arrays.

val sub : 'a array -> pos:int -> len:int -> 'a array

sub a ~pos ~len returns a fresh array of length len, containing the elements number pos to pos + len - 1 of array a.

  • Raises Invalid_argument if pos and len do not designate a valid subarray of a; that is, if pos < 0, or len < 0, or pos + len > length a.
val copy : 'a array -> 'a array

copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> pos:int -> len:int -> 'a -> unit

fill a ~pos ~len x modifies the array a in place, storing x in elements number pos to pos + len - 1.

  • Raises Invalid_argument if pos and len do not designate a valid subarray of a.
val blit : src:'a array -> src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unit

blit ~src ~src_pos ~dst ~dst_pos ~len copies len elements from array src, starting at element number src_pos, to array dst, starting at element number dst_pos. It works correctly even if src and dst are the same array, and the source and destination chunks overlap.

  • Raises Invalid_argument if src_pos and len do not designate a valid subarray of src, or if dst_pos and len do not designate a valid subarray of dst.
val to_list : 'a array -> 'a list

to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

of_list l returns a fresh array containing the elements of l.

val iter : f:('a -> unit) -> 'a array -> unit

iter ~f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(length a - 1); ().

val map : f:('a -> 'b) -> 'a array -> 'b array

map ~f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(length a - 1) |].

val iteri : f:(int -> 'a -> unit) -> 'a array -> unit

Same as ArrayLabels.iter, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array

Same as ArrayLabels.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a

fold_left ~f ~init a computes f (... (f (f init a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'a

fold_right ~f a ~init computes f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...)), where n is the length of the array a.

Iterators on two arrays

val iter2 : f:('a -> 'b -> unit) -> 'a array -> 'b array -> unit

iter2 ~f a b applies function f to all the elements of a and b.

  • Since 4.05.0
  • Raises Invalid_argument if the arrays are not the same size.
val map2 : f:('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array

map2 ~f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|].

  • Since 4.05.0
  • Raises Invalid_argument if the arrays are not the same size.

Array scanning

val exists : f:('a -> bool) -> 'a array -> bool

exists ~f [|a1; ...; an|] checks if at least one element of the array satisfies the predicate f. That is, it returns (f a1) || (f a2) || ... || (f an).

  • Since 4.03.0
val for_all : f:('a -> bool) -> 'a array -> bool

for_all ~f [|a1; ...; an|] checks if all elements of the array satisfy the predicate f. That is, it returns (f a1) && (f a2) && ... && (f an).

  • Since 4.03.0
val for_all2 : f:('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as ArrayLabels.for_all, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val exists2 : f:('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as ArrayLabels.exists, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val mem : 'a -> set:'a array -> bool

mem x ~set is true if and only if x is equal to an element of set.

  • Since 4.03.0
val memq : 'a -> set:'a array -> bool

Same as ArrayLabels.mem, but uses physical equality instead of structural equality to compare list elements.

  • Since 4.03.0
val create_float : int -> float array

create_float n returns a fresh float array of length n, with uninitialized data.

  • Since 4.03
val make_float : int -> float array

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, compare is a suitable comparison function, provided there are no floating-point NaN values in the data. After calling sort, the array is sorted in place in increasing order. sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is the length of the array. It is usually faster than the current implementation of ArrayLabels.sort.

val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort or ArrayLabels.stable_sort, whichever is faster on typical input.

Iterators

val to_seq : 'a array -> 'a Seq.t

Iterate on the array, in increasing order

  • Since 4.07
val to_seqi : 'a array -> (int * 'a) Seq.t

Iterate on the array, in increasing order, yielding indices along elements

  • Since 4.07
val of_seq : 'a Seq.t -> 'a array

Create an array from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Fun.html0000644000175000017500000002377713717225552017203 0ustar mehdimehdi Fun

Module Fun

module Fun: sig .. end

Function manipulation.

  • Since 4.08

Combinators

val id : 'a -> 'a

id is the identity function. For any argument x, id x is x.

val const : 'a -> 'b -> 'a

const c is a function that always returns the value c. For any argument x, (const c) x is c.

val flip : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c

flip f reverses the argument order of the binary function f. For any arguments x and y, (flip f) x y is f y x.

val negate : ('a -> bool) -> 'a -> bool

negate p is the negation of the predicate function p. For any argument x, (negate p) x is not (p x).

Exception handling

val protect : finally:(unit -> unit) -> (unit -> 'a) -> 'a

protect ~finally work invokes work () and then finally () before work () returns with its value or an exception. In the latter case the exception is re-raised after finally (). If finally () raises an exception, then the exception Fun.Finally_raised is raised instead.

protect can be used to enforce local invariants whether work () returns normally or raises an exception. However, it does not protect against unexpected exceptions raised inside finally () such as Out_of_memory, Stack_overflow, or asynchronous exceptions raised by signal handlers (e.g. Sys.Break).

Note: It is a programming error if other kinds of exceptions are raised by finally, as any exception raised in work () will be lost in the event of a Fun.Finally_raised exception. Therefore, one should make sure to handle those inside the finally.

exception Finally_raised of exn

Finally_raised exn is raised by protect ~finally work when finally raises an exception exn. This exception denotes either an unexpected exception or a programming error. As a general rule, one should not catch a Finally_raised exception except as part of a catch-all handler.

ocaml-doc-4.11/ocaml.html/libref/Printexc.Slot.html0000644000175000017500000002151313717225553021152 0ustar mehdimehdi Printexc.Slot

Module Printexc.Slot

module Slot: sig .. end
  • Since 4.02.0

type t = Printexc.backtrace_slot 
val is_raise : t -> bool

is_raise slot is true when slot refers to a raising point in the code, and false when it comes from a simple function call.

  • Since 4.02
val is_inline : t -> bool

is_inline slot is true when slot refers to a call that got inlined by the compiler, and false when it comes from any other context.

  • Since 4.04.0
val location : t -> Printexc.location option

location slot returns the location information of the slot, if available, and None otherwise.

Some possible reasons for failing to return a location are as follow:

  • the slot corresponds to a compiler-inserted raise
  • the slot corresponds to a part of the program that has not been compiled with debug information (-g)
  • Since 4.02
val name : t -> string option

name slot returns the name of the function or definition enclosing the location referred to by the slot.

name slot returns None if the name is unavailable, which may happen for the same reasons as location returning None.

  • Since 4.11
val format : int -> t -> string option

format pos slot returns the string representation of slot as raw_backtrace_to_string would format it, assuming it is the pos-th element of the backtrace: the 0-th element is pretty-printed differently than the others.

Whole-backtrace printing functions also skip some uninformative slots; in that case, format pos slot returns None.

  • Since 4.02
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.html0000644000175000017500000044547513717225552021544 0ustar mehdimehdi MoreLabels sig
  module Hashtbl :
    sig
      type ('a, 'b) t = ('a, 'b) Stdlib.Hashtbl.t
      val create : ?random:bool -> int -> ('a, 'b) MoreLabels.Hashtbl.t
      val clear : ('a, 'b) MoreLabels.Hashtbl.t -> unit
      val reset : ('a, 'b) MoreLabels.Hashtbl.t -> unit
      val copy :
        ('a, 'b) MoreLabels.Hashtbl.t -> ('a, 'b) MoreLabels.Hashtbl.t
      val add : ('a, 'b) MoreLabels.Hashtbl.t -> key:'-> data:'-> unit
      val find : ('a, 'b) MoreLabels.Hashtbl.t -> '-> 'b
      val find_opt : ('a, 'b) MoreLabels.Hashtbl.t -> '-> 'b option
      val find_all : ('a, 'b) MoreLabels.Hashtbl.t -> '-> 'b list
      val mem : ('a, 'b) MoreLabels.Hashtbl.t -> '-> bool
      val remove : ('a, 'b) MoreLabels.Hashtbl.t -> '-> unit
      val replace :
        ('a, 'b) MoreLabels.Hashtbl.t -> key:'-> data:'-> unit
      val iter :
        f:(key:'-> data:'-> unit) ->
        ('a, 'b) MoreLabels.Hashtbl.t -> unit
      val filter_map_inplace :
        f:(key:'-> data:'-> 'b option) ->
        ('a, 'b) MoreLabels.Hashtbl.t -> unit
      val fold :
        f:(key:'-> data:'-> '-> 'c) ->
        ('a, 'b) MoreLabels.Hashtbl.t -> init:'-> 'c
      val length : ('a, 'b) MoreLabels.Hashtbl.t -> int
      val randomize : unit -> unit
      val is_randomized : unit -> bool
      type statistics = Stdlib.Hashtbl.statistics
      val stats :
        ('a, 'b) MoreLabels.Hashtbl.t -> MoreLabels.Hashtbl.statistics
      val to_seq : ('a, 'b) MoreLabels.Hashtbl.t -> ('a * 'b) Stdlib.Seq.t
      val to_seq_keys : ('a, 'b) MoreLabels.Hashtbl.t -> 'Stdlib.Seq.t
      val to_seq_values : ('a, 'b) MoreLabels.Hashtbl.t -> 'Stdlib.Seq.t
      val add_seq :
        ('a, 'b) MoreLabels.Hashtbl.t -> ('a * 'b) Stdlib.Seq.t -> unit
      val replace_seq :
        ('a, 'b) MoreLabels.Hashtbl.t -> ('a * 'b) Stdlib.Seq.t -> unit
      val of_seq : ('a * 'b) Stdlib.Seq.t -> ('a, 'b) MoreLabels.Hashtbl.t
      module type HashedType = Hashtbl.HashedType
      module type SeededHashedType = Hashtbl.SeededHashedType
      module type S =
        sig
          type key
          and 'a t
          val create : int -> 'MoreLabels.Hashtbl.S.t
          val clear : 'MoreLabels.Hashtbl.S.t -> unit
          val reset : 'MoreLabels.Hashtbl.S.t -> unit
          val copy : 'MoreLabels.Hashtbl.S.t -> 'MoreLabels.Hashtbl.S.t
          val add :
            'MoreLabels.Hashtbl.S.t ->
            key:MoreLabels.Hashtbl.S.key -> data:'-> unit
          val remove :
            'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> unit
          val find :
            'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a
          val find_opt :
            'MoreLabels.Hashtbl.S.t ->
            MoreLabels.Hashtbl.S.key -> 'a option
          val find_all :
            'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a list
          val replace :
            'MoreLabels.Hashtbl.S.t ->
            key:MoreLabels.Hashtbl.S.key -> data:'-> unit
          val mem :
            'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> bool
          val iter :
            f:(key:MoreLabels.Hashtbl.S.key -> data:'-> unit) ->
            'MoreLabels.Hashtbl.S.t -> unit
          val filter_map_inplace :
            f:(key:MoreLabels.Hashtbl.S.key -> data:'-> 'a option) ->
            'MoreLabels.Hashtbl.S.t -> unit
          val fold :
            f:(key:MoreLabels.Hashtbl.S.key -> data:'-> '-> 'b) ->
            'MoreLabels.Hashtbl.S.t -> init:'-> 'b
          val length : 'MoreLabels.Hashtbl.S.t -> int
          val stats :
            'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.statistics
          val to_seq :
            'MoreLabels.Hashtbl.S.t ->
            (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t
          val to_seq_keys :
            'MoreLabels.Hashtbl.S.t ->
            MoreLabels.Hashtbl.S.key Stdlib.Seq.t
          val to_seq_values : 'MoreLabels.Hashtbl.S.t -> 'Stdlib.Seq.t
          val add_seq :
            'MoreLabels.Hashtbl.S.t ->
            (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
          val replace_seq :
            'MoreLabels.Hashtbl.S.t ->
            (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
          val of_seq :
            (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t ->
            'MoreLabels.Hashtbl.S.t
        end
      module type SeededS =
        sig
          type key
          and 'a t
          val create : ?random:bool -> int -> 'MoreLabels.Hashtbl.SeededS.t
          val clear : 'MoreLabels.Hashtbl.SeededS.t -> unit
          val reset : 'MoreLabels.Hashtbl.SeededS.t -> unit
          val copy :
            'MoreLabels.Hashtbl.SeededS.t ->
            'MoreLabels.Hashtbl.SeededS.t
          val add :
            'MoreLabels.Hashtbl.SeededS.t ->
            key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit
          val remove :
            'MoreLabels.Hashtbl.SeededS.t ->
            MoreLabels.Hashtbl.SeededS.key -> unit
          val find :
            'MoreLabels.Hashtbl.SeededS.t ->
            MoreLabels.Hashtbl.SeededS.key -> 'a
          val find_opt :
            'MoreLabels.Hashtbl.SeededS.t ->
            MoreLabels.Hashtbl.SeededS.key -> 'a option
          val find_all :
            'MoreLabels.Hashtbl.SeededS.t ->
            MoreLabels.Hashtbl.SeededS.key -> 'a list
          val replace :
            'MoreLabels.Hashtbl.SeededS.t ->
            key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit
          val mem :
            'MoreLabels.Hashtbl.SeededS.t ->
            MoreLabels.Hashtbl.SeededS.key -> bool
          val iter :
            f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit) ->
            'MoreLabels.Hashtbl.SeededS.t -> unit
          val filter_map_inplace :
            f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> 'a option) ->
            'MoreLabels.Hashtbl.SeededS.t -> unit
          val fold :
            f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> '-> 'b) ->
            'MoreLabels.Hashtbl.SeededS.t -> init:'-> 'b
          val length : 'MoreLabels.Hashtbl.SeededS.t -> int
          val stats :
            'MoreLabels.Hashtbl.SeededS.t -> MoreLabels.Hashtbl.statistics
          val to_seq :
            'MoreLabels.Hashtbl.SeededS.t ->
            (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t
          val to_seq_keys :
            'MoreLabels.Hashtbl.SeededS.t ->
            MoreLabels.Hashtbl.SeededS.key Stdlib.Seq.t
          val to_seq_values :
            'MoreLabels.Hashtbl.SeededS.t -> 'Stdlib.Seq.t
          val add_seq :
            'MoreLabels.Hashtbl.SeededS.t ->
            (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
          val replace_seq :
            'MoreLabels.Hashtbl.SeededS.t ->
            (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
          val of_seq :
            (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t ->
            'MoreLabels.Hashtbl.SeededS.t
        end
      module Make :
        functor (H : HashedType->
          sig
            type key = H.t
            and 'a t = 'Hashtbl.Make(H).t
            val create : int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key:key -> data:'-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key:key -> data:'-> unit
            val mem : 'a t -> key -> bool
            val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
            val filter_map_inplace :
              f:(key:key -> data:'-> 'a option) -> 'a t -> unit
            val fold :
              f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
            val length : 'a t -> int
            val stats : 'a t -> statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
          end
      module MakeSeeded :
        functor (H : SeededHashedType->
          sig
            type key = H.t
            and 'a t = 'Hashtbl.MakeSeeded(H).t
            val create : ?random:bool -> int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key:key -> data:'-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key:key -> data:'-> unit
            val mem : 'a t -> key -> bool
            val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
            val filter_map_inplace :
              f:(key:key -> data:'-> 'a option) -> 'a t -> unit
            val fold :
              f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
            val length : 'a t -> int
            val stats : 'a t -> statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
          end
      val hash : '-> int
      val seeded_hash : int -> '-> int
      val hash_param : int -> int -> '-> int
      val seeded_hash_param : int -> int -> int -> '-> int
    end
  module Map :
    sig
      module type OrderedType = Map.OrderedType
      module type S =
        sig
          type key
          and +'a t
          val empty : 'MoreLabels.Map.S.t
          val is_empty : 'MoreLabels.Map.S.t -> bool
          val mem : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> bool
          val add :
            key:MoreLabels.Map.S.key ->
            data:'-> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val update :
            key:MoreLabels.Map.S.key ->
            f:('a option -> 'a option) ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val singleton : MoreLabels.Map.S.key -> '-> 'MoreLabels.Map.S.t
          val remove :
            MoreLabels.Map.S.key ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val merge :
            f:(MoreLabels.Map.S.key -> 'a option -> 'b option -> 'c option) ->
            'MoreLabels.Map.S.t ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val union :
            f:(MoreLabels.Map.S.key -> '-> '-> 'a option) ->
            'MoreLabels.Map.S.t ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val compare :
            cmp:('-> '-> int) ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> int
          val equal :
            cmp:('-> '-> bool) ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t -> bool
          val iter :
            f:(key:MoreLabels.Map.S.key -> data:'-> unit) ->
            'MoreLabels.Map.S.t -> unit
          val fold :
            f:(key:MoreLabels.Map.S.key -> data:'-> '-> 'b) ->
            'MoreLabels.Map.S.t -> init:'-> 'b
          val for_all :
            f:(MoreLabels.Map.S.key -> '-> bool) ->
            'MoreLabels.Map.S.t -> bool
          val exists :
            f:(MoreLabels.Map.S.key -> '-> bool) ->
            'MoreLabels.Map.S.t -> bool
          val filter :
            f:(MoreLabels.Map.S.key -> '-> bool) ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val filter_map :
            f:(MoreLabels.Map.S.key -> '-> 'b option) ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val partition :
            f:(MoreLabels.Map.S.key -> '-> bool) ->
            'MoreLabels.Map.S.t ->
            'MoreLabels.Map.S.t * 'MoreLabels.Map.S.t
          val cardinal : 'MoreLabels.Map.S.t -> int
          val bindings :
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) list
          val min_binding :
            'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
          val min_binding_opt :
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
          val max_binding :
            'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
          val max_binding_opt :
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
          val choose : 'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
          val choose_opt :
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
          val split :
            MoreLabels.Map.S.key ->
            'MoreLabels.Map.S.t ->
            'MoreLabels.Map.S.t * 'a option * 'MoreLabels.Map.S.t
          val find : MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'a
          val find_opt :
            MoreLabels.Map.S.key -> 'MoreLabels.Map.S.t -> 'a option
          val find_first :
            f:(MoreLabels.Map.S.key -> bool) ->
            'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
          val find_first_opt :
            f:(MoreLabels.Map.S.key -> bool) ->
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
          val find_last :
            f:(MoreLabels.Map.S.key -> bool) ->
            'MoreLabels.Map.S.t -> MoreLabels.Map.S.key * 'a
          val find_last_opt :
            f:(MoreLabels.Map.S.key -> bool) ->
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) option
          val map :
            f:('-> 'b) -> 'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val mapi :
            f:(MoreLabels.Map.S.key -> '-> 'b) ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val to_seq :
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t
          val to_seq_from :
            MoreLabels.Map.S.key ->
            'MoreLabels.Map.S.t -> (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t
          val add_seq :
            (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t ->
            'MoreLabels.Map.S.t -> 'MoreLabels.Map.S.t
          val of_seq :
            (MoreLabels.Map.S.key * 'a) Stdlib.Seq.t -> 'MoreLabels.Map.S.t
        end
      module Make :
        functor (Ord : OrderedType->
          sig
            type key = Ord.t
            and 'a t = 'Map.Make(Ord).t
            val empty : 'a t
            val is_empty : 'a t -> bool
            val mem : key -> 'a t -> bool
            val add : key:key -> data:'-> 'a t -> 'a t
            val update :
              key:key -> f:('a option -> 'a option) -> 'a t -> 'a t
            val singleton : key -> '-> 'a t
            val remove : key -> 'a t -> 'a t
            val merge :
              f:(key -> 'a option -> 'b option -> 'c option) ->
              'a t -> 'b t -> 'c t
            val union :
              f:(key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
            val compare : cmp:('-> '-> int) -> 'a t -> 'a t -> int
            val equal : cmp:('-> '-> bool) -> 'a t -> 'a t -> bool
            val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
            val fold :
              f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
            val for_all : f:(key -> '-> bool) -> 'a t -> bool
            val exists : f:(key -> '-> bool) -> 'a t -> bool
            val filter : f:(key -> '-> bool) -> 'a t -> 'a t
            val filter_map : f:(key -> '-> 'b option) -> 'a t -> 'b t
            val partition : f:(key -> '-> bool) -> 'a t -> 'a t * 'a t
            val cardinal : 'a t -> int
            val bindings : 'a t -> (key * 'a) list
            val min_binding : 'a t -> key * 'a
            val min_binding_opt : 'a t -> (key * 'a) option
            val max_binding : 'a t -> key * 'a
            val max_binding_opt : 'a t -> (key * 'a) option
            val choose : 'a t -> key * 'a
            val choose_opt : 'a t -> (key * 'a) option
            val split : key -> 'a t -> 'a t * 'a option * 'a t
            val find : key -> 'a t -> 'a
            val find_opt : key -> 'a t -> 'a option
            val find_first : f:(key -> bool) -> 'a t -> key * 'a
            val find_first_opt : f:(key -> bool) -> 'a t -> (key * 'a) option
            val find_last : f:(key -> bool) -> 'a t -> key * 'a
            val find_last_opt : f:(key -> bool) -> 'a t -> (key * 'a) option
            val map : f:('-> 'b) -> 'a t -> 'b t
            val mapi : f:(key -> '-> 'b) -> 'a t -> 'b t
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
            val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
            val of_seq : (key * 'a) Seq.t -> 'a t
          end
    end
  module Set :
    sig
      module type OrderedType = Set.OrderedType
      module type S =
        sig
          type elt
          and t
          val empty : MoreLabels.Set.S.t
          val is_empty : MoreLabels.Set.S.t -> bool
          val mem : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> bool
          val add :
            MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val singleton : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t
          val remove :
            MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val union :
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val inter :
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val disjoint : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
          val diff :
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val compare : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> int
          val equal : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
          val subset : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
          val iter :
            f:(MoreLabels.Set.S.elt -> unit) -> MoreLabels.Set.S.t -> unit
          val map :
            f:(MoreLabels.Set.S.elt -> MoreLabels.Set.S.elt) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val fold :
            f:(MoreLabels.Set.S.elt -> '-> 'a) ->
            MoreLabels.Set.S.t -> init:'-> 'a
          val for_all :
            f:(MoreLabels.Set.S.elt -> bool) -> MoreLabels.Set.S.t -> bool
          val exists :
            f:(MoreLabels.Set.S.elt -> bool) -> MoreLabels.Set.S.t -> bool
          val filter :
            f:(MoreLabels.Set.S.elt -> bool) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val filter_map :
            f:(MoreLabels.Set.S.elt -> MoreLabels.Set.S.elt option) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val partition :
            f:(MoreLabels.Set.S.elt -> bool) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t * MoreLabels.Set.S.t
          val cardinal : MoreLabels.Set.S.t -> int
          val elements : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt list
          val min_elt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
          val min_elt_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
          val max_elt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
          val max_elt_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
          val choose : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
          val choose_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
          val split :
            MoreLabels.Set.S.elt ->
            MoreLabels.Set.S.t ->
            MoreLabels.Set.S.t * bool * MoreLabels.Set.S.t
          val find :
            MoreLabels.Set.S.elt ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
          val find_opt :
            MoreLabels.Set.S.elt ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
          val find_first :
            f:(MoreLabels.Set.S.elt -> bool) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
          val find_first_opt :
            f:(MoreLabels.Set.S.elt -> bool) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
          val find_last :
            f:(MoreLabels.Set.S.elt -> bool) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
          val find_last_opt :
            f:(MoreLabels.Set.S.elt -> bool) ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
          val of_list : MoreLabels.Set.S.elt list -> MoreLabels.Set.S.t
          val to_seq_from :
            MoreLabels.Set.S.elt ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt Stdlib.Seq.t
          val to_seq :
            MoreLabels.Set.S.t -> MoreLabels.Set.S.elt Stdlib.Seq.t
          val add_seq :
            MoreLabels.Set.S.elt Stdlib.Seq.t ->
            MoreLabels.Set.S.t -> MoreLabels.Set.S.t
          val of_seq :
            MoreLabels.Set.S.elt Stdlib.Seq.t -> MoreLabels.Set.S.t
        end
      module Make :
        functor (Ord : OrderedType->
          sig
            type elt = Ord.t
            and t = Set.Make(Ord).t
            val empty : t
            val is_empty : t -> bool
            val mem : elt -> t -> bool
            val add : elt -> t -> t
            val singleton : elt -> t
            val remove : elt -> t -> t
            val union : t -> t -> t
            val inter : t -> t -> t
            val disjoint : t -> t -> bool
            val diff : t -> t -> t
            val compare : t -> t -> int
            val equal : t -> t -> bool
            val subset : t -> t -> bool
            val iter : f:(elt -> unit) -> t -> unit
            val map : f:(elt -> elt) -> t -> t
            val fold : f:(elt -> '-> 'a) -> t -> init:'-> 'a
            val for_all : f:(elt -> bool) -> t -> bool
            val exists : f:(elt -> bool) -> t -> bool
            val filter : f:(elt -> bool) -> t -> t
            val filter_map : f:(elt -> elt option) -> t -> t
            val partition : f:(elt -> bool) -> t -> t * t
            val cardinal : t -> int
            val elements : t -> elt list
            val min_elt : t -> elt
            val min_elt_opt : t -> elt option
            val max_elt : t -> elt
            val max_elt_opt : t -> elt option
            val choose : t -> elt
            val choose_opt : t -> elt option
            val split : elt -> t -> t * bool * t
            val find : elt -> t -> elt
            val find_opt : elt -> t -> elt option
            val find_first : f:(elt -> bool) -> t -> elt
            val find_first_opt : f:(elt -> bool) -> t -> elt option
            val find_last : f:(elt -> bool) -> t -> elt
            val find_last_opt : f:(elt -> bool) -> t -> elt option
            val of_list : elt list -> t
            val to_seq_from : elt -> t -> elt Seq.t
            val to_seq : t -> elt Seq.t
            val add_seq : elt Seq.t -> t -> t
            val of_seq : elt Seq.t -> t
          end
    end
end
ocaml-doc-4.11/ocaml.html/libref/type_Bigarray.Array1.html0000644000175000017500000003254313717225552022401 0ustar mehdimehdi Bigarray.Array1 sig
  type ('a, 'b, 'c) t
  val create :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> int -> ('a, 'b, 'c) Bigarray.Array1.t
  external dim : ('a, 'b, 'c) Bigarray.Array1.t -> int = "%caml_ba_dim_1"
  external kind : ('a, 'b, 'c) Bigarray.Array1.t -> ('a, 'b) Bigarray.kind
    = "caml_ba_kind"
  external layout : ('a, 'b, 'c) Bigarray.Array1.t -> 'Bigarray.layout
    = "caml_ba_layout"
  val change_layout :
    ('a, 'b, 'c) Bigarray.Array1.t ->
    'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array1.t
  val size_in_bytes : ('a, 'b, 'c) Bigarray.Array1.t -> int
  external get : ('a, 'b, 'c) Bigarray.Array1.t -> int -> 'a
    = "%caml_ba_ref_1"
  external set : ('a, 'b, 'c) Bigarray.Array1.t -> int -> '-> unit
    = "%caml_ba_set_1"
  external sub :
    ('a, 'b, 'c) Bigarray.Array1.t ->
    int -> int -> ('a, 'b, 'c) Bigarray.Array1.t = "caml_ba_sub"
  val slice :
    ('a, 'b, 'c) Bigarray.Array1.t -> int -> ('a, 'b, 'c) Bigarray.Array0.t
  external blit :
    ('a, 'b, 'c) Bigarray.Array1.t -> ('a, 'b, 'c) Bigarray.Array1.t -> unit
    = "caml_ba_blit"
  external fill : ('a, 'b, 'c) Bigarray.Array1.t -> '-> unit
    = "caml_ba_fill"
  val of_array :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> 'a array -> ('a, 'b, 'c) Bigarray.Array1.t
  external unsafe_get : ('a, 'b, 'c) Bigarray.Array1.t -> int -> 'a
    = "%caml_ba_unsafe_ref_1"
  external unsafe_set : ('a, 'b, 'c) Bigarray.Array1.t -> int -> '-> unit
    = "%caml_ba_unsafe_set_1"
end
ocaml-doc-4.11/ocaml.html/libref/Parsing.html0000644000175000017500000002476313717225552020052 0ustar mehdimehdi Parsing

Module Parsing

module Parsing: sig .. end

The run-time library for parsers generated by ocamlyacc.


val symbol_start : unit -> int

symbol_start and Parsing.symbol_end are to be called in the action part of a grammar rule only. They return the offset of the string that matches the left-hand side of the rule: symbol_start() returns the offset of the first character; symbol_end() returns the offset after the last character. The first character in a file is at offset 0.

val symbol_end : unit -> int
val rhs_start : int -> int

Same as Parsing.symbol_start and Parsing.symbol_end, but return the offset of the string matching the nth item on the right-hand side of the rule, where n is the integer parameter to rhs_start and rhs_end. n is 1 for the leftmost item.

val rhs_end : int -> int
val symbol_start_pos : unit -> Lexing.position

Same as symbol_start, but return a position instead of an offset.

val symbol_end_pos : unit -> Lexing.position

Same as symbol_end, but return a position instead of an offset.

val rhs_start_pos : int -> Lexing.position

Same as rhs_start, but return a position instead of an offset.

val rhs_end_pos : int -> Lexing.position

Same as rhs_end, but return a position instead of an offset.

val clear_parser : unit -> unit

Empty the parser stack. Call it just after a parsing function has returned, to remove all pointers from the parser stack to structures that were built by semantic actions during parsing. This is optional, but lowers the memory requirements of the programs.

exception Parse_error

Raised when a parser encounters a syntax error. Can also be raised from the action part of a grammar rule, to initiate error recovery.

val set_trace : bool -> bool

Control debugging support for ocamlyacc-generated parsers. After Parsing.set_trace true, the pushdown automaton that executes the parsers prints a trace of its actions (reading a token, shifting a state, reducing by a rule) on standard output. Parsing.set_trace false turns this debugging trace off. The boolean returned is the previous state of the trace flag.

  • Since 3.11.0
ocaml-doc-4.11/ocaml.html/libref/Bigarray.Array0.html0000644000175000017500000002641613717225552021341 0ustar mehdimehdi Bigarray.Array0

Module Bigarray.Array0

module Array0: sig .. end

Zero-dimensional arrays. The Array0 structure provides operations similar to those of Bigarray.Genarray, but specialized to the case of zero-dimensional arrays that only contain a single scalar value. Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.

  • Since 4.05.0

type ('a, 'b, 'c) t 

The type of zero-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

val create : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> ('a, 'b, 'c) t

Array0.create kind layout returns a new Bigarray of zero dimension. kind and layout determine the array element kind and the array layout as described for Bigarray.Genarray.create.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given Bigarray.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given Bigarray.

val change_layout : ('a, 'b, 'c) t ->
'd Bigarray.layout -> ('a, 'b, 'd) t

Array0.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a. No copying of elements is involved: the new array and the original array share the same storage space.

  • Since 4.06.0
val size_in_bytes : ('a, 'b, 'c) t -> int

size_in_bytes a is a's Bigarray.kind_size_in_bytes.

val get : ('a, 'b, 'c) t -> 'a

Array0.get a returns the only element in a.

val set : ('a, 'b, 'c) t -> 'a -> unit

Array0.set a x v stores the value v in a.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the first Bigarray to the second Bigarray. See Bigarray.Genarray.blit for more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given Bigarray with the given value. See Bigarray.Genarray.fill for more details.

val of_value : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a -> ('a, 'b, 'c) t

Build a zero-dimensional Bigarray initialized from the given value.

ocaml-doc-4.11/ocaml.html/libref/Ephemeron.GenHashTable.html0000644000175000017500000002373513717225552022653 0ustar mehdimehdi Ephemeron.GenHashTable

Module Ephemeron.GenHashTable

module GenHashTable: sig .. end

Define a hash table on generic containers which have a notion of "death" and aliveness. If a binding is dead the hash table can automatically remove it.

type equal = 
| ETrue
| EFalse
| EDead (*

the container is dead

*)
module MakeSeeded: 
functor (H : sig
type t 

keys

type 'a container 

contains keys and the associated data

val hash : int -> t -> int

same as Hashtbl.SeededHashedType

val equal : 'a container ->
t -> Ephemeron.GenHashTable.equal

equality predicate used to compare a key with the one in a container. Can return EDead if the keys in the container are dead

val create : t ->
'a -> 'a container

create key data creates a container from some initials keys and one data

val get_key : 'a container ->
t option

get_key cont returns the keys if they are all alive

val get_data : 'a container -> 'a option

get_data cont returns the data if it is alive

val set_key_data : 'a container ->
t -> 'a -> unit

set_key_data cont modifies the key and data

val check_key : 'a container -> bool

check_key cont checks if all the keys contained in the data are alive

end-> Ephemeron.SeededS  with type key = H.t

Functor building an implementation of an hash table that use the container for keeping the information given

ocaml-doc-4.11/ocaml.html/libref/index_methods.html0000644000175000017500000001133413717225553021270 0ustar mehdimehdi Index of class methods

Index of class methods

ocaml-doc-4.11/ocaml.html/libref/Spacetime.Snapshot.html0000644000175000017500000001451313717225553022150 0ustar mehdimehdi Spacetime.Snapshot

Module Spacetime.Snapshot

module Snapshot: sig .. end

val take : ?time:float -> Spacetime.Series.t -> unit

take series takes a snapshot of the profiling annotations on the values in the minor and major heaps, together with GC stats, and write the result to the series file. This function triggers a minor GC but does not allocate any memory itself. If the optional time is specified, it will be used instead of the result of Sys.time as the timestamp of the snapshot. Such times should start from zero and be monotonically increasing. This parameter is intended to be used so that snapshots can be correlated against wall clock time (which is not supported in the standard library) rather than elapsed CPU time.

ocaml-doc-4.11/ocaml.html/libref/type_Fun.html0000644000175000017500000001476713717225552020243 0ustar mehdimehdi Fun sig
  external id : '-> 'a = "%identity"
  val const : '-> '-> 'a
  val flip : ('-> '-> 'c) -> '-> '-> 'c
  val negate : ('-> bool) -> '-> bool
  val protect : finally:(unit -> unit) -> (unit -> 'a) -> 'a
  exception Finally_raised of exn
end
ocaml-doc-4.11/ocaml.html/libref/Lexing.html0000644000175000017500000005252613717225552017673 0ustar mehdimehdi Lexing

Module Lexing

module Lexing: sig .. end

The run-time library for lexers generated by ocamllex.


Positions

type position = {
   pos_fname : string;
   pos_lnum : int;
   pos_bol : int;
   pos_cnum : int;
}

A value of type position describes a point in a source file. pos_fname is the file name; pos_lnum is the line number; pos_bol is the offset of the beginning of the line (number of characters between the beginning of the lexbuf and the beginning of the line); pos_cnum is the offset of the position (number of characters between the beginning of the lexbuf and the position). The difference between pos_cnum and pos_bol is the character offset within the line (i.e. the column number, assuming each character is one column wide).

See the documentation of type lexbuf for information about how the lexing engine will manage positions.

val dummy_pos : position

A value of type position, guaranteed to be different from any valid position.

Lexer buffers

type lexbuf = {
   refill_buff : lexbuf -> unit;
   mutable lex_buffer : bytes;
   mutable lex_buffer_len : int;
   mutable lex_abs_pos : int;
   mutable lex_start_pos : int;
   mutable lex_curr_pos : int;
   mutable lex_last_pos : int;
   mutable lex_last_action : int;
   mutable lex_eof_reached : bool;
   mutable lex_mem : int array;
   mutable lex_start_p : position;
   mutable lex_curr_p : position;
}

The type of lexer buffers. A lexer buffer is the argument passed to the scanning functions defined by the generated scanners. The lexer buffer holds the current state of the scanner, plus a function to refill the buffer from the input.

Lexers can optionally maintain the lex_curr_p and lex_start_p position fields. This "position tracking" mode is the default, and it corresponds to passing ~with_position:true to functions that create lexer buffers. In this mode, the lexing engine and lexer actions are co-responsible for properly updating the position fields, as described in the next paragraph. When the mode is explicitly disabled (with ~with_position:false), the lexing engine will not touch the position fields and the lexer actions should be careful not to do it either; the lex_curr_p and lex_start_p field will then always hold the dummy_pos invalid position. Not tracking positions avoids allocations and memory writes and can significantly improve the performance of the lexer in contexts where lex_start_p and lex_curr_p are not needed.

Position tracking mode works as follows. At each token, the lexing engine will copy lex_curr_p to lex_start_p, then change the pos_cnum field of lex_curr_p by updating it with the number of characters read since the start of the lexbuf. The other fields are left unchanged by the lexing engine. In order to keep them accurate, they must be initialised before the first use of the lexbuf, and updated by the relevant lexer actions (i.e. at each end of line -- see also new_line).

val from_channel : ?with_positions:bool -> in_channel -> lexbuf

Create a lexer buffer on the given input channel. Lexing.from_channel inchan returns a lexer buffer which reads from the input channel inchan, at the current reading position.

val from_string : ?with_positions:bool -> string -> lexbuf

Create a lexer buffer which reads from the given string. Reading starts from the first character in the string. An end-of-input condition is generated when the end of the string is reached.

val from_function : ?with_positions:bool -> (bytes -> int -> int) -> lexbuf

Create a lexer buffer with the given function as its reading method. When the scanner needs more characters, it will call the given function, giving it a byte sequence s and a byte count n. The function should put n bytes or fewer in s, starting at index 0, and return the number of bytes provided. A return value of 0 means end of input.

val set_position : lexbuf -> position -> unit

Set the initial tracked input position for lexbuf to a custom value. Ignores pos_fname. See Lexing.set_filename for changing this field.

  • Since 4.11
val set_filename : lexbuf -> string -> unit

Set filename in the initial tracked position to file in lexbuf.

  • Since 4.11
val with_positions : lexbuf -> bool

Tell whether the lexer buffer keeps track of position fields lex_curr_p / lex_start_p, as determined by the corresponding optional argument for functions that create lexer buffers (whose default value is true).

When with_positions is false, lexer actions should not modify position fields. Doing it nevertheless could re-enable the with_position mode and degrade performances.

Functions for lexer semantic actions

The following functions can be called from the semantic actions of lexer definitions (the ML code enclosed in braces that computes the value returned by lexing functions). They give access to the character string matched by the regular expression associated with the semantic action. These functions must be applied to the argument lexbuf, which, in the code generated by ocamllex, is bound to the lexer buffer passed to the parsing function.

val lexeme : lexbuf -> string

Lexing.lexeme lexbuf returns the string matched by the regular expression.

val lexeme_char : lexbuf -> int -> char

Lexing.lexeme_char lexbuf i returns character number i in the matched string.

val lexeme_start : lexbuf -> int

Lexing.lexeme_start lexbuf returns the offset in the input stream of the first character of the matched string. The first character of the stream has offset 0.

val lexeme_end : lexbuf -> int

Lexing.lexeme_end lexbuf returns the offset in the input stream of the character following the last character of the matched string. The first character of the stream has offset 0.

val lexeme_start_p : lexbuf -> position

Like lexeme_start, but return a complete position instead of an offset. When position tracking is disabled, the function returns dummy_pos.

val lexeme_end_p : lexbuf -> position

Like lexeme_end, but return a complete position instead of an offset. When position tracking is disabled, the function returns dummy_pos.

val new_line : lexbuf -> unit

Update the lex_curr_p field of the lexbuf to reflect the start of a new line. You can call this function in the semantic action of the rule that matches the end-of-line character. The function does nothing when position tracking is disabled.

  • Since 3.11.0

Miscellaneous functions

val flush_input : lexbuf -> unit

Discard the contents of the buffer and reset the current position to 0. The next use of the lexbuf will trigger a refill.

ocaml-doc-4.11/ocaml.html/libref/type_Digest.html0000644000175000017500000001664013717225552020722 0ustar mehdimehdi Digest sig
  type t = string
  val compare : Digest.t -> Digest.t -> int
  val equal : Digest.t -> Digest.t -> bool
  val string : string -> Digest.t
  val bytes : bytes -> Digest.t
  val substring : string -> int -> int -> Digest.t
  val subbytes : bytes -> int -> int -> Digest.t
  external channel : Stdlib.in_channel -> int -> Digest.t = "caml_md5_chan"
  val file : string -> Digest.t
  val output : Stdlib.out_channel -> Digest.t -> unit
  val input : Stdlib.in_channel -> Digest.t
  val to_hex : Digest.t -> string
  val from_hex : string -> Digest.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Format.html0000644000175000017500000014012713717225552020731 0ustar mehdimehdi Format sig
  type formatter
  val pp_open_box : Format.formatter -> int -> unit
  val open_box : int -> unit
  val pp_close_box : Format.formatter -> unit -> unit
  val close_box : unit -> unit
  val pp_open_hbox : Format.formatter -> unit -> unit
  val open_hbox : unit -> unit
  val pp_open_vbox : Format.formatter -> int -> unit
  val open_vbox : int -> unit
  val pp_open_hvbox : Format.formatter -> int -> unit
  val open_hvbox : int -> unit
  val pp_open_hovbox : Format.formatter -> int -> unit
  val open_hovbox : int -> unit
  val pp_print_string : Format.formatter -> string -> unit
  val print_string : string -> unit
  val pp_print_as : Format.formatter -> int -> string -> unit
  val print_as : int -> string -> unit
  val pp_print_int : Format.formatter -> int -> unit
  val print_int : int -> unit
  val pp_print_float : Format.formatter -> float -> unit
  val print_float : float -> unit
  val pp_print_char : Format.formatter -> char -> unit
  val print_char : char -> unit
  val pp_print_bool : Format.formatter -> bool -> unit
  val print_bool : bool -> unit
  val pp_print_space : Format.formatter -> unit -> unit
  val print_space : unit -> unit
  val pp_print_cut : Format.formatter -> unit -> unit
  val print_cut : unit -> unit
  val pp_print_break : Format.formatter -> int -> int -> unit
  val print_break : int -> int -> unit
  val pp_print_custom_break :
    Format.formatter ->
    fits:string * int * string -> breaks:string * int * string -> unit
  val pp_force_newline : Format.formatter -> unit -> unit
  val force_newline : unit -> unit
  val pp_print_if_newline : Format.formatter -> unit -> unit
  val print_if_newline : unit -> unit
  val pp_print_flush : Format.formatter -> unit -> unit
  val print_flush : unit -> unit
  val pp_print_newline : Format.formatter -> unit -> unit
  val print_newline : unit -> unit
  val pp_set_margin : Format.formatter -> int -> unit
  val set_margin : int -> unit
  val pp_get_margin : Format.formatter -> unit -> int
  val get_margin : unit -> int
  val pp_set_max_indent : Format.formatter -> int -> unit
  val set_max_indent : int -> unit
  val pp_get_max_indent : Format.formatter -> unit -> int
  val get_max_indent : unit -> int
  type geometry = { max_indent : int; margin : int; }
  val check_geometry : Format.geometry -> bool
  val pp_set_geometry :
    Format.formatter -> max_indent:int -> margin:int -> unit
  val set_geometry : max_indent:int -> margin:int -> unit
  val pp_safe_set_geometry :
    Format.formatter -> max_indent:int -> margin:int -> unit
  val safe_set_geometry : max_indent:int -> margin:int -> unit
  val pp_update_geometry :
    Format.formatter -> (Format.geometry -> Format.geometry) -> unit
  val update_geometry : (Format.geometry -> Format.geometry) -> unit
  val pp_get_geometry : Format.formatter -> unit -> Format.geometry
  val get_geometry : unit -> Format.geometry
  val pp_set_max_boxes : Format.formatter -> int -> unit
  val set_max_boxes : int -> unit
  val pp_get_max_boxes : Format.formatter -> unit -> int
  val get_max_boxes : unit -> int
  val pp_over_max_boxes : Format.formatter -> unit -> bool
  val over_max_boxes : unit -> bool
  val pp_open_tbox : Format.formatter -> unit -> unit
  val open_tbox : unit -> unit
  val pp_close_tbox : Format.formatter -> unit -> unit
  val close_tbox : unit -> unit
  val pp_set_tab : Format.formatter -> unit -> unit
  val set_tab : unit -> unit
  val pp_print_tab : Format.formatter -> unit -> unit
  val print_tab : unit -> unit
  val pp_print_tbreak : Format.formatter -> int -> int -> unit
  val print_tbreak : int -> int -> unit
  val pp_set_ellipsis_text : Format.formatter -> string -> unit
  val set_ellipsis_text : string -> unit
  val pp_get_ellipsis_text : Format.formatter -> unit -> string
  val get_ellipsis_text : unit -> string
  type stag = ..
  type tag = string
  type stag += String_tag of Format.tag
  val pp_open_stag : Format.formatter -> Format.stag -> unit
  val open_stag : Format.stag -> unit
  val pp_close_stag : Format.formatter -> unit -> unit
  val close_stag : unit -> unit
  val pp_set_tags : Format.formatter -> bool -> unit
  val set_tags : bool -> unit
  val pp_set_print_tags : Format.formatter -> bool -> unit
  val set_print_tags : bool -> unit
  val pp_set_mark_tags : Format.formatter -> bool -> unit
  val set_mark_tags : bool -> unit
  val pp_get_print_tags : Format.formatter -> unit -> bool
  val get_print_tags : unit -> bool
  val pp_get_mark_tags : Format.formatter -> unit -> bool
  val get_mark_tags : unit -> bool
  val pp_set_formatter_out_channel :
    Format.formatter -> Stdlib.out_channel -> unit
  val set_formatter_out_channel : Stdlib.out_channel -> unit
  val pp_set_formatter_output_functions :
    Format.formatter ->
    (string -> int -> int -> unit) -> (unit -> unit) -> unit
  val set_formatter_output_functions :
    (string -> int -> int -> unit) -> (unit -> unit) -> unit
  val pp_get_formatter_output_functions :
    Format.formatter ->
    unit -> (string -> int -> int -> unit) * (unit -> unit)
  val get_formatter_output_functions :
    unit -> (string -> int -> int -> unit) * (unit -> unit)
  type formatter_out_functions = {
    out_string : string -> int -> int -> unit;
    out_flush : unit -> unit;
    out_newline : unit -> unit;
    out_spaces : int -> unit;
    out_indent : int -> unit;
  }
  val pp_set_formatter_out_functions :
    Format.formatter -> Format.formatter_out_functions -> unit
  val set_formatter_out_functions : Format.formatter_out_functions -> unit
  val pp_get_formatter_out_functions :
    Format.formatter -> unit -> Format.formatter_out_functions
  val get_formatter_out_functions : unit -> Format.formatter_out_functions
  type formatter_stag_functions = {
    mark_open_stag : Format.stag -> string;
    mark_close_stag : Format.stag -> string;
    print_open_stag : Format.stag -> unit;
    print_close_stag : Format.stag -> unit;
  }
  val pp_set_formatter_stag_functions :
    Format.formatter -> Format.formatter_stag_functions -> unit
  val set_formatter_stag_functions : Format.formatter_stag_functions -> unit
  val pp_get_formatter_stag_functions :
    Format.formatter -> unit -> Format.formatter_stag_functions
  val get_formatter_stag_functions : unit -> Format.formatter_stag_functions
  val formatter_of_out_channel : Stdlib.out_channel -> Format.formatter
  val std_formatter : Format.formatter
  val err_formatter : Format.formatter
  val formatter_of_buffer : Stdlib.Buffer.t -> Format.formatter
  val stdbuf : Stdlib.Buffer.t
  val str_formatter : Format.formatter
  val flush_str_formatter : unit -> string
  val make_formatter :
    (string -> int -> int -> unit) -> (unit -> unit) -> Format.formatter
  val formatter_of_out_functions :
    Format.formatter_out_functions -> Format.formatter
  type symbolic_output_item =
      Output_flush
    | Output_newline
    | Output_string of string
    | Output_spaces of int
    | Output_indent of int
  type symbolic_output_buffer
  val make_symbolic_output_buffer : unit -> Format.symbolic_output_buffer
  val clear_symbolic_output_buffer : Format.symbolic_output_buffer -> unit
  val get_symbolic_output_buffer :
    Format.symbolic_output_buffer -> Format.symbolic_output_item list
  val flush_symbolic_output_buffer :
    Format.symbolic_output_buffer -> Format.symbolic_output_item list
  val add_symbolic_output_item :
    Format.symbolic_output_buffer -> Format.symbolic_output_item -> unit
  val formatter_of_symbolic_output_buffer :
    Format.symbolic_output_buffer -> Format.formatter
  val pp_print_list :
    ?pp_sep:(Format.formatter -> unit -> unit) ->
    (Format.formatter -> '-> unit) -> Format.formatter -> 'a list -> unit
  val pp_print_text : Format.formatter -> string -> unit
  val pp_print_option :
    ?none:(Format.formatter -> unit -> unit) ->
    (Format.formatter -> '-> unit) -> Format.formatter -> 'a option -> unit
  val pp_print_result :
    ok:(Format.formatter -> '-> unit) ->
    error:(Format.formatter -> '-> unit) ->
    Format.formatter -> ('a, 'e) Stdlib.result -> unit
  val fprintf :
    Format.formatter -> ('a, Format.formatter, unit) Stdlib.format -> 'a
  val printf : ('a, Format.formatter, unit) Stdlib.format -> 'a
  val eprintf : ('a, Format.formatter, unit) Stdlib.format -> 'a
  val sprintf : ('a, unit, string) Stdlib.format -> 'a
  val asprintf : ('a, Format.formatter, unit, string) Stdlib.format4 -> 'a
  val dprintf :
    ('a, Format.formatter, unit, Format.formatter -> unit) Stdlib.format4 ->
    'a
  val ifprintf :
    Format.formatter -> ('a, Format.formatter, unit) Stdlib.format -> 'a
  val kfprintf :
    (Format.formatter -> 'a) ->
    Format.formatter -> ('b, Format.formatter, unit, 'a) Stdlib.format4 -> 'b
  val kdprintf :
    ((Format.formatter -> unit) -> 'a) ->
    ('b, Format.formatter, unit, 'a) Stdlib.format4 -> 'b
  val ikfprintf :
    (Format.formatter -> 'a) ->
    Format.formatter -> ('b, Format.formatter, unit, 'a) Stdlib.format4 -> 'b
  val ksprintf :
    (string -> 'a) -> ('b, unit, string, 'a) Stdlib.format4 -> 'b
  val kasprintf :
    (string -> 'a) -> ('b, Format.formatter, unit, 'a) Stdlib.format4 -> 'b
  val bprintf :
    Stdlib.Buffer.t -> ('a, Format.formatter, unit) Stdlib.format -> 'a
  val kprintf : (string -> 'a) -> ('b, unit, string, 'a) Stdlib.format4 -> 'b
  val set_all_formatter_output_functions :
    out:(string -> int -> int -> unit) ->
    flush:(unit -> unit) ->
    newline:(unit -> unit) -> spaces:(int -> unit) -> unit
  val get_all_formatter_output_functions :
    unit ->
    (string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
    (int -> unit)
  val pp_set_all_formatter_output_functions :
    Format.formatter ->
    out:(string -> int -> int -> unit) ->
    flush:(unit -> unit) ->
    newline:(unit -> unit) -> spaces:(int -> unit) -> unit
  val pp_get_all_formatter_output_functions :
    Format.formatter ->
    unit ->
    (string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
    (int -> unit)
  val pp_open_tag : Format.formatter -> Format.tag -> unit
  val open_tag : Format.tag -> unit
  val pp_close_tag : Format.formatter -> unit -> unit
  val close_tag : unit -> unit
  type formatter_tag_functions = {
    mark_open_tag : Format.tag -> string;
    mark_close_tag : Format.tag -> string;
    print_open_tag : Format.tag -> unit;
    print_close_tag : Format.tag -> unit;
  }
  val pp_set_formatter_tag_functions :
    Format.formatter -> Format.formatter_tag_functions -> unit
  val set_formatter_tag_functions : Format.formatter_tag_functions -> unit
  val pp_get_formatter_tag_functions :
    Format.formatter -> unit -> Format.formatter_tag_functions
  val get_formatter_tag_functions : unit -> Format.formatter_tag_functions
end
ocaml-doc-4.11/ocaml.html/libref/Int.html0000644000175000017500000003703213717225552017172 0ustar mehdimehdi Int

Module Int

module Int: sig .. end

Integer values.

Integers are Sys.int_size bits wide and use two's complement representation. All operations are taken modulo 2Sys.int_size. They do not fail on overflow.

  • Since 4.08

Integers

type t = int 

The type for integer values.

val zero : int

zero is the integer 0.

val one : int

one is the integer 1.

val minus_one : int

minus_one is the integer -1.

val neg : int -> int

neg x is ~-x.

val add : int -> int -> int

add x y is the addition x + y.

val sub : int -> int -> int

sub x y is the subtraction x - y.

val mul : int -> int -> int

mul x y is the multiplication x * y.

val div : int -> int -> int

div x y is the division x / y. See (/) for details.

val rem : int -> int -> int

rem x y is the remainder mod y. See (mod) for details.

val succ : int -> int

succ x is add x 1.

val pred : int -> int

pred x is sub x 1.

val abs : int -> int

abs x is the absolute value of x. That is x if x is positive and neg x if x is negative. Warning. This may be negative if the argument is Int.min_int.

val max_int : int

max_int is the greatest representable integer, 2{^[Sys.int_size - 1]} - 1.

val min_int : int

min_int is the smallest representable integer, -2{^[Sys.int_size - 1]}.

val logand : int -> int -> int

logand x y is the bitwise logical and of x and y.

val logor : int -> int -> int

logor x y is the bitwise logical or of x and y.

val logxor : int -> int -> int

logxor x y is the bitwise logical exclusive or of x and y.

val lognot : int -> int

lognot x is the bitwise logical negation of x.

val shift_left : int -> int -> int

shift_left x n shifts x to the left by n bits. The result is unspecified if n < 0 or n > Sys.int_size.

val shift_right : int -> int -> int

shift_right x n shifts x to the right by n bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if n < 0 or n > Sys.int_size.

val shift_right_logical : int -> int -> int

shift_right x n shifts x to the right by n bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if n < 0 or n > Sys.int_size.

Predicates and comparisons

val equal : int -> int -> bool

equal x y is true iff x = y.

val compare : int -> int -> int

compare x y is compare x y but more efficient.

Converting

val to_float : int -> float

to_float x is x as a floating point number.

val of_float : float -> int

of_float x truncates x to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val to_string : int -> string

to_string x is the written representation of x in decimal.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.LargeFile.html0000644000175000017500000001354213717225552022553 0ustar mehdimehdi Stdlib.LargeFile sig
  val seek_out : Stdlib.out_channel -> int64 -> unit
  val pos_out : Stdlib.out_channel -> int64
  val out_channel_length : Stdlib.out_channel -> int64
  val seek_in : Stdlib.in_channel -> int64 -> unit
  val pos_in : Stdlib.in_channel -> int64
  val in_channel_length : Stdlib.in_channel -> int64
end
ocaml-doc-4.11/ocaml.html/libref/Bigarray.html0000644000175000017500000013342013717225552020176 0ustar mehdimehdi Bigarray

Module Bigarray

module Bigarray: sig .. end

Large, multi-dimensional, numerical arrays.

This module implements multi-dimensional arrays of integers and floating-point numbers, thereafter referred to as 'Bigarrays', to distinguish them from the standard OCaml arrays described in Array.

The implementation allows efficient sharing of large numerical arrays between OCaml code and C or Fortran numerical libraries.

The main differences between 'Bigarrays' and standard OCaml arrays are as follows:

  • Bigarrays are not limited in size, unlike OCaml arrays. (Normal float arrays are limited to 2,097,151 elements on a 32-bit platform, and normal arrays of other types to 4,194,303 elements.)
  • Bigarrays are multi-dimensional. Any number of dimensions between 0 and 16 is supported. In contrast, OCaml arrays are mono-dimensional and require encoding multi-dimensional arrays as arrays of arrays.
  • Bigarrays can only contain integers and floating-point numbers, while OCaml arrays can contain arbitrary OCaml data types.
  • Bigarrays provide more space-efficient storage of integer and floating-point elements than normal OCaml arrays, in particular because they support 'small' types such as single-precision floats and 8 and 16-bit integers, in addition to the standard OCaml types of double-precision floats and 32 and 64-bit integers.
  • The memory layout of Bigarrays is entirely compatible with that of arrays in C and Fortran, allowing large arrays to be passed back and forth between OCaml code and C / Fortran code with no data copying at all.
  • Bigarrays support interesting high-level operations that normal arrays do not provide efficiently, such as extracting sub-arrays and 'slicing' a multi-dimensional array along certain dimensions, all without any copying.

Users of this module are encouraged to do open Bigarray in their source, then refer to array types and operations via short dot notation, e.g. Array1.t or Array2.sub.

Bigarrays support all the OCaml ad-hoc polymorphic operations:


Element kinds

Bigarrays can contain elements of the following kinds:

Each element kind is represented at the type level by one of the *_elt types defined below (defined with a single constructor instead of abstract types for technical injectivity reasons).

type float32_elt = 
| Float32_elt
type float64_elt = 
| Float64_elt
type int8_signed_elt = 
| Int8_signed_elt
type int8_unsigned_elt = 
| Int8_unsigned_elt
type int16_signed_elt = 
| Int16_signed_elt
type int16_unsigned_elt = 
| Int16_unsigned_elt
type int32_elt = 
| Int32_elt
type int64_elt = 
| Int64_elt
type int_elt = 
| Int_elt
type nativeint_elt = 
| Nativeint_elt
type complex32_elt = 
| Complex32_elt
type complex64_elt = 
| Complex64_elt
type ('a, 'b) kind = 
| Float32 : (float, float32_elt) kind
| Float64 : (float, float64_elt) kind
| Int8_signed : (int, int8_signed_elt) kind
| Int8_unsigned : (int, int8_unsigned_elt) kind
| Int16_signed : (int, int16_signed_elt) kind
| Int16_unsigned : (int, int16_unsigned_elt) kind
| Int32 : (int32, int32_elt) kind
| Int64 : (int64, int64_elt) kind
| Int : (int, int_elt) kind
| Nativeint : (nativeint, nativeint_elt) kind
| Complex32 : (Complex.t, complex32_elt) kind
| Complex64 : (Complex.t, complex64_elt) kind
| Char : (char, int8_unsigned_elt) kind

To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a Bigarray whose elements are of kind float32_elt contains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml type float, which is 64-bit double precision floats.

The GADT type ('a, 'b) kind captures this association of an OCaml type 'a for values read or written in the Bigarray, and of an element kind 'b which represents the actual contents of the Bigarray. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons.

Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:

  let zero : type a b. (a, b) kind -> a = function
    | Float32 -> 0.0 | Complex32 -> Complex.zero
    | Float64 -> 0.0 | Complex64 -> Complex.zero
    | Int8_signed -> 0 | Int8_unsigned -> 0
    | Int16_signed -> 0 | Int16_unsigned -> 0
    | Int32 -> 0l | Int64 -> 0L
    | Int -> 0 | Nativeint -> 0n
    | Char -> '\000'
val float32 : (float, float32_elt) kind
val float64 : (float, float64_elt) kind
val complex32 : (Complex.t, complex32_elt) kind
val complex64 : (Complex.t, complex64_elt) kind
val int8_signed : (int, int8_signed_elt) kind
val int8_unsigned : (int, int8_unsigned_elt) kind
val int16_signed : (int, int16_signed_elt) kind
val int16_unsigned : (int, int16_unsigned_elt) kind
val int : (int, int_elt) kind
val int32 : (int32, int32_elt) kind
val int64 : (int64, int64_elt) kind
val nativeint : (nativeint, nativeint_elt) kind
val char : (char, int8_unsigned_elt) kind

As shown by the types of the values above, Bigarrays of kind float32_elt and float64_elt are accessed using the OCaml type float. Bigarrays of complex kinds complex32_elt, complex64_elt are accessed with the OCaml type Complex.t. Bigarrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements: int for 8- and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays; int32 for 32-bit integer Bigarrays; int64 for 64-bit integer Bigarrays; and nativeint for platform-native integer Bigarrays. Finally, Bigarrays of kind int8_unsigned_elt can also be accessed as arrays of characters instead of arrays of small integers, by using the kind value char instead of int8_unsigned.

val kind_size_in_bytes : ('a, 'b) kind -> int

kind_size_in_bytes k is the number of bytes used to store an element of type k.

  • Since 4.03.0

Array layouts

type c_layout = 
| C_layout_typ
type fortran_layout = 
| Fortran_layout_typ

To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.

In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at (x,y) and (x, y+1) are adjacent in memory.

In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at (x,y) and (x+1, y) are adjacent in memory.

Each layout style is identified at the type level by the phantom types Bigarray.c_layout and Bigarray.fortran_layout respectively.

Supported layouts

The GADT type 'a layout represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons.

type 'a layout = 
| C_layout : c_layout layout
| Fortran_layout : fortran_layout layout
val c_layout : c_layout layout
val fortran_layout : fortran_layout layout

Generic arrays (of arbitrarily many dimensions)

module Genarray: sig .. end

Zero-dimensional arrays

module Array0: sig .. end

Zero-dimensional arrays.

One-dimensional arrays

module Array1: sig .. end

One-dimensional arrays.

Two-dimensional arrays

module Array2: sig .. end

Two-dimensional arrays.

Three-dimensional arrays

module Array3: sig .. end

Three-dimensional arrays.

Coercions between generic Bigarrays and fixed-dimension Bigarrays

val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.

  • Since 4.05.0
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given one-dimensional Bigarray.

val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given two-dimensional Bigarray.

val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given three-dimensional Bigarray.

val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.

  • Since 4.05.0
  • Raises Invalid_argument if the generic Bigarray does not have exactly zero dimension.
val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t

Return the one-dimensional Bigarray corresponding to the given generic Bigarray.

  • Raises Invalid_argument if the generic Bigarray does not have exactly one dimension.
val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t

Return the two-dimensional Bigarray corresponding to the given generic Bigarray.

  • Raises Invalid_argument if the generic Bigarray does not have exactly two dimensions.
val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t

Return the three-dimensional Bigarray corresponding to the given generic Bigarray.

  • Raises Invalid_argument if the generic Bigarray does not have exactly three dimensions.

Re-shaping Bigarrays

val reshape : ('a, 'b, 'c) Genarray.t ->
int array -> ('a, 'b, 'c) Genarray.t

reshape b [|d1;...;dN|] converts the Bigarray b to a N-dimensional array of dimensions d1...dN. The returned array and the original array b share their data and have the same layout. For instance, assuming that b is a one-dimensional array of dimension 12, reshape b [|3;4|] returns a two-dimensional array b' of dimensions 3 and 4. If b has C layout, the element (x,y) of b' corresponds to the element x * 3 + y of b. If b has Fortran layout, the element (x,y) of b' corresponds to the element x + (y - 1) * 4 of b. The returned Bigarray must have exactly the same number of elements as the original Bigarray b. That is, the product of the dimensions of b must be equal to i1 * ... * iN. Otherwise, Invalid_argument is raised.

val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

Specialized version of Bigarray.reshape for reshaping to zero-dimensional arrays.

  • Since 4.05.0
val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t

Specialized version of Bigarray.reshape for reshaping to one-dimensional arrays.

val reshape_2 : ('a, 'b, 'c) Genarray.t ->
int -> int -> ('a, 'b, 'c) Array2.t

Specialized version of Bigarray.reshape for reshaping to two-dimensional arrays.

val reshape_3 : ('a, 'b, 'c) Genarray.t ->
int -> int -> int -> ('a, 'b, 'c) Array3.t

Specialized version of Bigarray.reshape for reshaping to three-dimensional arrays.

ocaml-doc-4.11/ocaml.html/libref/Spacetime.html0000644000175000017500000002160713717225552020353 0ustar mehdimehdi Spacetime

Module Spacetime

module Spacetime: sig .. end

Profiling of a program's space behaviour over time. Currently only supported on x86-64 platforms running 64-bit code.

To use the functions in this module you must:

  • configure the compiler with "-spacetime";
  • compile to native code. Without these conditions being satisfied the functions in this module will have no effect.

Instead of manually taking profiling heap snapshots with this module it is possible to use an automatic snapshot facility that writes profiling information at fixed intervals to a file. To enable this, all that needs to be done is to build the relevant program using a compiler configured with -spacetime; and set the environment variable OCAML_SPACETIME_INTERVAL to an integer number of milliseconds giving the interval between profiling heap snapshots. This interval should not be made excessively small relative to the running time of the program. A typical interval to start with might be 1/100 of the running time of the program. The program must exit "normally" (i.e. by calling exit, with whatever exit code, rather than being abnormally terminated by a signal) so that the snapshot file is correctly completed.

When using the automatic snapshot mode the profiling output is written to a file called "spacetime-<pid>" where <pid> is the process ID of the program. (If the program forks and continues executing then multiple files may be produced with different pid numbers.) The profiling output is by default written to the current working directory when the program starts. This may be customised by setting the OCAML_SPACETIME_SNAPSHOT_DIR environment variable to the name of the desired directory.

If using automatic snapshots the presence of the save_event_for_automatic_snapshots function, below, should be noted.

The functions in this module are thread safe.

For functions to decode the information recorded by the profiler, see the Spacetime offline library in otherlibs/.


val enabled : bool

enabled is true if the compiler is configured with spacetime and false otherwise

module Series: sig .. end
module Snapshot: sig .. end
val save_event_for_automatic_snapshots : event_name:string -> unit

Like Spacetime.Series.save_event, but writes to the automatic snapshot file. This function is a no-op if OCAML_SPACETIME_INTERVAL was not set.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Bigarray.html0000644000175000017500000012521113717225552021415 0ustar mehdimehdi Stdlib.Bigarray

Module Stdlib.Bigarray

module Bigarray: Bigarray

Element kinds

Bigarrays can contain elements of the following kinds:

Each element kind is represented at the type level by one of the *_elt types defined below (defined with a single constructor instead of abstract types for technical injectivity reasons).

type float32_elt = 
| Float32_elt
type float64_elt = 
| Float64_elt
type int8_signed_elt = 
| Int8_signed_elt
type int8_unsigned_elt = 
| Int8_unsigned_elt
type int16_signed_elt = 
| Int16_signed_elt
type int16_unsigned_elt = 
| Int16_unsigned_elt
type int32_elt = 
| Int32_elt
type int64_elt = 
| Int64_elt
type int_elt = 
| Int_elt
type nativeint_elt = 
| Nativeint_elt
type complex32_elt = 
| Complex32_elt
type complex64_elt = 
| Complex64_elt
type ('a, 'b) kind = 
| Float32 : (float, float32_elt) kind
| Float64 : (float, float64_elt) kind
| Int8_signed : (int, int8_signed_elt) kind
| Int8_unsigned : (int, int8_unsigned_elt) kind
| Int16_signed : (int, int16_signed_elt) kind
| Int16_unsigned : (int, int16_unsigned_elt) kind
| Int32 : (int32, int32_elt) kind
| Int64 : (int64, int64_elt) kind
| Int : (int, int_elt) kind
| Nativeint : (nativeint, nativeint_elt) kind
| Complex32 : (Complex.t, complex32_elt) kind
| Complex64 : (Complex.t, complex64_elt) kind
| Char : (char, int8_unsigned_elt) kind

To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a Bigarray whose elements are of kind float32_elt contains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml type float, which is 64-bit double precision floats.

The GADT type ('a, 'b) kind captures this association of an OCaml type 'a for values read or written in the Bigarray, and of an element kind 'b which represents the actual contents of the Bigarray. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons.

Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:

  let zero : type a b. (a, b) kind -> a = function
    | Float32 -> 0.0 | Complex32 -> Complex.zero
    | Float64 -> 0.0 | Complex64 -> Complex.zero
    | Int8_signed -> 0 | Int8_unsigned -> 0
    | Int16_signed -> 0 | Int16_unsigned -> 0
    | Int32 -> 0l | Int64 -> 0L
    | Int -> 0 | Nativeint -> 0n
    | Char -> '\000'
val float32 : (float, float32_elt) kind
val float64 : (float, float64_elt) kind
val complex32 : (Complex.t, complex32_elt) kind
val complex64 : (Complex.t, complex64_elt) kind
val int8_signed : (int, int8_signed_elt) kind
val int8_unsigned : (int, int8_unsigned_elt) kind
val int16_signed : (int, int16_signed_elt) kind
val int16_unsigned : (int, int16_unsigned_elt) kind
val int : (int, int_elt) kind
val int32 : (int32, int32_elt) kind
val int64 : (int64, int64_elt) kind
val nativeint : (nativeint, nativeint_elt) kind
val char : (char, int8_unsigned_elt) kind

As shown by the types of the values above, Bigarrays of kind float32_elt and float64_elt are accessed using the OCaml type float. Bigarrays of complex kinds complex32_elt, complex64_elt are accessed with the OCaml type Complex.t. Bigarrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements: int for 8- and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays; int32 for 32-bit integer Bigarrays; int64 for 64-bit integer Bigarrays; and nativeint for platform-native integer Bigarrays. Finally, Bigarrays of kind int8_unsigned_elt can also be accessed as arrays of characters instead of arrays of small integers, by using the kind value char instead of int8_unsigned.

val kind_size_in_bytes : ('a, 'b) kind -> int

kind_size_in_bytes k is the number of bytes used to store an element of type k.

  • Since 4.03.0

Array layouts

type c_layout = 
| C_layout_typ
type fortran_layout = 
| Fortran_layout_typ

To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.

In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at (x,y) and (x, y+1) are adjacent in memory.

In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at (x,y) and (x+1, y) are adjacent in memory.

Each layout style is identified at the type level by the phantom types Bigarray.c_layout and Bigarray.fortran_layout respectively.

Supported layouts

The GADT type 'a layout represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons.

type 'a layout = 
| C_layout : c_layout layout
| Fortran_layout : fortran_layout layout
val c_layout : c_layout layout
val fortran_layout : fortran_layout layout

Generic arrays (of arbitrarily many dimensions)

module Genarray: sig .. end

Zero-dimensional arrays

module Array0: sig .. end

Zero-dimensional arrays.

One-dimensional arrays

module Array1: sig .. end

One-dimensional arrays.

Two-dimensional arrays

module Array2: sig .. end

Two-dimensional arrays.

Three-dimensional arrays

module Array3: sig .. end

Three-dimensional arrays.

Coercions between generic Bigarrays and fixed-dimension Bigarrays

val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.

  • Since 4.05.0
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given one-dimensional Bigarray.

val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given two-dimensional Bigarray.

val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given three-dimensional Bigarray.

val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.

  • Since 4.05.0
  • Raises Invalid_argument if the generic Bigarray does not have exactly zero dimension.
val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t

Return the one-dimensional Bigarray corresponding to the given generic Bigarray.

  • Raises Invalid_argument if the generic Bigarray does not have exactly one dimension.
val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t

Return the two-dimensional Bigarray corresponding to the given generic Bigarray.

  • Raises Invalid_argument if the generic Bigarray does not have exactly two dimensions.
val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t

Return the three-dimensional Bigarray corresponding to the given generic Bigarray.

  • Raises Invalid_argument if the generic Bigarray does not have exactly three dimensions.

Re-shaping Bigarrays

val reshape : ('a, 'b, 'c) Genarray.t ->
int array -> ('a, 'b, 'c) Genarray.t

reshape b [|d1;...;dN|] converts the Bigarray b to a N-dimensional array of dimensions d1...dN. The returned array and the original array b share their data and have the same layout. For instance, assuming that b is a one-dimensional array of dimension 12, reshape b [|3;4|] returns a two-dimensional array b' of dimensions 3 and 4. If b has C layout, the element (x,y) of b' corresponds to the element x * 3 + y of b. If b has Fortran layout, the element (x,y) of b' corresponds to the element x + (y - 1) * 4 of b. The returned Bigarray must have exactly the same number of elements as the original Bigarray b. That is, the product of the dimensions of b must be equal to i1 * ... * iN. Otherwise, Invalid_argument is raised.

val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

Specialized version of Bigarray.reshape for reshaping to zero-dimensional arrays.

  • Since 4.05.0
val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t

Specialized version of Bigarray.reshape for reshaping to one-dimensional arrays.

val reshape_2 : ('a, 'b, 'c) Genarray.t ->
int -> int -> ('a, 'b, 'c) Array2.t

Specialized version of Bigarray.reshape for reshaping to two-dimensional arrays.

val reshape_3 : ('a, 'b, 'c) Genarray.t ->
int -> int -> int -> ('a, 'b, 'c) Array3.t

Specialized version of Bigarray.reshape for reshaping to three-dimensional arrays.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Map.html0000644000175000017500000001126213717225553021434 0ustar mehdimehdi Stdlib.Map (module Stdlib__map) ocaml-doc-4.11/ocaml.html/libref/type_String.html0000644000175000017500000003572513717225553020757 0ustar mehdimehdi String sig
  external length : string -> int = "%string_length"
  external get : string -> int -> char = "%string_safe_get"
  external set : bytes -> int -> char -> unit = "%string_safe_set"
  external create : int -> bytes = "caml_create_string"
  val make : int -> char -> string
  val init : int -> (int -> char) -> string
  val copy : string -> string
  val sub : string -> int -> int -> string
  val fill : bytes -> int -> int -> char -> unit
  val blit : string -> int -> bytes -> int -> int -> unit
  val concat : string -> string list -> string
  val iter : (char -> unit) -> string -> unit
  val iteri : (int -> char -> unit) -> string -> unit
  val map : (char -> char) -> string -> string
  val mapi : (int -> char -> char) -> string -> string
  val trim : string -> string
  val escaped : string -> string
  val index : string -> char -> int
  val index_opt : string -> char -> int option
  val rindex : string -> char -> int
  val rindex_opt : string -> char -> int option
  val index_from : string -> int -> char -> int
  val index_from_opt : string -> int -> char -> int option
  val rindex_from : string -> int -> char -> int
  val rindex_from_opt : string -> int -> char -> int option
  val contains : string -> char -> bool
  val contains_from : string -> int -> char -> bool
  val rcontains_from : string -> int -> char -> bool
  val uppercase : string -> string
  val lowercase : string -> string
  val capitalize : string -> string
  val uncapitalize : string -> string
  val uppercase_ascii : string -> string
  val lowercase_ascii : string -> string
  val capitalize_ascii : string -> string
  val uncapitalize_ascii : string -> string
  type t = string
  val compare : String.t -> String.t -> int
  val equal : String.t -> String.t -> bool
  val split_on_char : char -> string -> string list
  val to_seq : String.t -> char Stdlib.Seq.t
  val to_seqi : String.t -> (int * char) Stdlib.Seq.t
  val of_seq : char Stdlib.Seq.t -> String.t
  external unsafe_get : string -> int -> char = "%string_unsafe_get"
  external unsafe_set : bytes -> int -> char -> unit = "%string_unsafe_set"
  external unsafe_blit : string -> int -> bytes -> int -> int -> unit
    = "caml_blit_string" [@@noalloc]
  external unsafe_fill : bytes -> int -> int -> char -> unit
    = "caml_fill_string" [@@noalloc]
end
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.K1.html0000644000175000017500000004054313717225552020635 0ustar mehdimehdi Ephemeron.K1

Module Ephemeron.K1

module K1: sig .. end

type ('k, 'd) t 

an ephemeron with one key

val create : unit -> ('k, 'd) t

Ephemeron.K1.create () creates an ephemeron with one key. The data and the key are empty

val get_key : ('k, 'd) t -> 'k option

Ephemeron.K1.get_key eph returns None if the key of eph is empty, Some x (where x is the key) if it is full.

val get_key_copy : ('k, 'd) t -> 'k option

Ephemeron.K1.get_key_copy eph returns None if the key of eph is empty, Some x (where x is a (shallow) copy of the key) if it is full. This function has the same GC friendliness as Weak.get_copy

If the element is a custom block it is not copied.

val set_key : ('k, 'd) t -> 'k -> unit

Ephemeron.K1.set_key eph el sets the key of eph to be a (full) key to el

val unset_key : ('k, 'd) t -> unit

Ephemeron.K1.unset_key eph el sets the key of eph to be an empty key. Since there is only one key, the ephemeron starts behaving like a reference on the data.

val check_key : ('k, 'd) t -> bool

Ephemeron.K1.check_key eph returns true if the key of the eph is full, false if it is empty. Note that even if Ephemeron.K1.check_key eph returns true, a subsequent Ephemeron.K1.get_keyeph can return None.

val blit_key : ('k, 'a) t -> ('k, 'b) t -> unit

Ephemeron.K1.blit_key eph1 eph2 sets the key of eph2 with the key of eph1. Contrary to using Ephemeron.K1.get_key followed by Ephemeron.K1.set_key or Ephemeron.K1.unset_key this function does not prevent the incremental GC from erasing the value in its current cycle.

val get_data : ('k, 'd) t -> 'd option

Ephemeron.K1.get_data eph returns None if the data of eph is empty, Some x (where x is the data) if it is full.

val get_data_copy : ('k, 'd) t -> 'd option

Ephemeron.K1.get_data_copy eph returns None if the data of eph is empty, Some x (where x is a (shallow) copy of the data) if it is full. This function has the same GC friendliness as Weak.get_copy

If the element is a custom block it is not copied.

val set_data : ('k, 'd) t -> 'd -> unit

Ephemeron.K1.set_data eph el sets the data of eph to be a (full) data to el

val unset_data : ('k, 'd) t -> unit

Ephemeron.K1.unset_data eph el sets the key of eph to be an empty key. The ephemeron starts behaving like a weak pointer.

val check_data : ('k, 'd) t -> bool

Ephemeron.K1.check_data eph returns true if the data of the eph is full, false if it is empty. Note that even if Ephemeron.K1.check_data eph returns true, a subsequent Ephemeron.K1.get_dataeph can return None.

val blit_data : ('a, 'd) t -> ('b, 'd) t -> unit

Ephemeron.K1.blit_data eph1 eph2 sets the data of eph2 with the data of eph1. Contrary to using Ephemeron.K1.get_data followed by Ephemeron.K1.set_data or Ephemeron.K1.unset_data this function does not prevent the incremental GC from erasing the value in its current cycle.

module Make: 
functor (H : Hashtbl.HashedType-> Ephemeron.S with type key = H.t

Functor building an implementation of a weak hash table

module MakeSeeded: 
functor (H : Hashtbl.SeededHashedType-> Ephemeron.SeededS with type key = H.t

Functor building an implementation of a weak hash table.

ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.Make.html0000644000175000017500000002660513717225553023773 0ustar mehdimehdi MoreLabels.Hashtbl.Make functor (H : HashedType->
  sig
    type key = H.t
    and 'a t = 'Hashtbl.Make(H).t
    val create : int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key:key -> data:'-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key:key -> data:'-> unit
    val mem : 'a t -> key -> bool
    val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
    val filter_map_inplace :
      f:(key:key -> data:'-> 'a option) -> 'a t -> unit
    val fold : f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
    val length : 'a t -> int
    val stats : 'a t -> statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
  end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Bigarray.html0000644000175000017500000001127413717225552022461 0ustar mehdimehdi Stdlib.Bigarray (module Stdlib__bigarray) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Marshal.html0000644000175000017500000004417413717225553021255 0ustar mehdimehdi Stdlib.Marshal

Module Stdlib.Marshal

module Marshal: Marshal

type extern_flags = 
| No_sharing (*

Don't preserve sharing

*)
| Closures (*

Send function closures

*)
| Compat_32 (*

Ensure 32-bit compatibility

*)

The flags to the Marshal.to_* functions below.

val to_channel : out_channel -> 'a -> extern_flags list -> unit

Marshal.to_channel chan v flags writes the representation of v on channel chan. The flags argument is a possibly empty list of flags that governs the marshaling behavior with respect to sharing, functional values, and compatibility between 32- and 64-bit platforms.

If flags does not contain Marshal.No_sharing, circularities and sharing inside the value v are detected and preserved in the sequence of bytes produced. In particular, this guarantees that marshaling always terminates. Sharing between values marshaled by successive calls to Marshal.to_channel is neither detected nor preserved, though. If flags contains Marshal.No_sharing, sharing is ignored. This results in faster marshaling if v contains no shared substructures, but may cause slower marshaling and larger byte representations if v actually contains sharing, or even non-termination if v contains cycles.

If flags does not contain Marshal.Closures, marshaling fails when it encounters a functional value inside v: only 'pure' data structures, containing neither functions nor objects, can safely be transmitted between different programs. If flags contains Marshal.Closures, functional values will be marshaled as a the position in the code of the program together with the values corresponding to the free variables captured in the closure. In this case, the output of marshaling can only be read back in processes that run exactly the same program, with exactly the same compiled code. (This is checked at un-marshaling time, using an MD5 digest of the code transmitted along with the code position.)

The exact definition of which free variables are captured in a closure is not specified and can vary between bytecode and native code (and according to optimization flags). In particular, a function value accessing a global reference may or may not include the reference in its closure. If it does, unmarshaling the corresponding closure will create a new reference, different from the global one.

If flags contains Marshal.Compat_32, marshaling fails when it encounters an integer value outside the range [-2{^30}, 2{^30}-1] of integers that are representable on a 32-bit platform. This ensures that marshaled data generated on a 64-bit platform can be safely read back on a 32-bit platform. If flags does not contain Marshal.Compat_32, integer values outside the range [-2{^30}, 2{^30}-1] are marshaled, and can be read back on a 64-bit platform, but will cause an error at un-marshaling time when read back on a 32-bit platform. The Mashal.Compat_32 flag only matters when marshaling is performed on a 64-bit platform; it has no effect if marshaling is performed on a 32-bit platform.

val to_bytes : 'a -> extern_flags list -> bytes

Marshal.to_bytes v flags returns a byte sequence containing the representation of v. The flags argument has the same meaning as for Marshal.to_channel.

  • Since 4.02.0
val to_string : 'a -> extern_flags list -> string

Same as to_bytes but return the result as a string instead of a byte sequence.

val to_buffer : bytes -> int -> int -> 'a -> extern_flags list -> int

Marshal.to_buffer buff ofs len v flags marshals the value v, storing its byte representation in the sequence buff, starting at index ofs, and writing at most len bytes. It returns the number of bytes actually written to the sequence. If the byte representation of v does not fit in len characters, the exception Failure is raised.

val from_channel : in_channel -> 'a

Marshal.from_channel chan reads from channel chan the byte representation of a structured value, as produced by one of the Marshal.to_* functions, and reconstructs and returns the corresponding value.

It raises End_of_file if the function has already reached the end of file when starting to read from the channel, and raises Failure "input_value: truncated object" if it reaches the end of file later during the unmarshalling.

val from_bytes : bytes -> int -> 'a

Marshal.from_bytes buff ofs unmarshals a structured value like Marshal.from_channel does, except that the byte representation is not read from a channel, but taken from the byte sequence buff, starting at position ofs. The byte sequence is not mutated.

  • Since 4.02.0
val from_string : string -> int -> 'a

Same as from_bytes but take a string as argument instead of a byte sequence.

val header_size : int

The bytes representing a marshaled value are composed of a fixed-size header and a variable-sized data part, whose size can be determined from the header. Marshal.header_size is the size, in bytes, of the header. Marshal.data_size buff ofs is the size, in bytes, of the data part, assuming a valid header is stored in buff starting at position ofs. Finally, Marshal.total_size buff ofs is the total size, in bytes, of the marshaled value. Both Marshal.data_size and Marshal.total_size raise Failure if buff, ofs does not contain a valid header.

To read the byte representation of a marshaled value into a byte sequence, the program needs to read first Marshal.header_size bytes into the sequence, then determine the length of the remainder of the representation using Marshal.data_size, make sure the sequence is large enough to hold the remaining data, then read it, and finally call Marshal.from_bytes to unmarshal the value.

val data_size : bytes -> int -> int
val total_size : bytes -> int -> int
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Queue.html0000644000175000017500000003260113717225553020742 0ustar mehdimehdi Stdlib.Queue

Module Stdlib.Queue

module Queue: Queue

type 'a t 

The type of queues containing elements of type 'a.

exception Empty

Raised when Queue.take or Queue.peek is applied to an empty queue.

val create : unit -> 'a t

Return a new queue, initially empty.

val add : 'a -> 'a t -> unit

add x q adds the element x at the end of the queue q.

val push : 'a -> 'a t -> unit

push is a synonym for add.

val take : 'a t -> 'a

take q removes and returns the first element in queue q, or raises Queue.Empty if the queue is empty.

val take_opt : 'a t -> 'a option

take_opt q removes and returns the first element in queue q, or returns None if the queue is empty.

  • Since 4.08
val pop : 'a t -> 'a

pop is a synonym for take.

val peek : 'a t -> 'a

peek q returns the first element in queue q, without removing it from the queue, or raises Queue.Empty if the queue is empty.

val peek_opt : 'a t -> 'a option

peek_opt q returns the first element in queue q, without removing it from the queue, or returns None if the queue is empty.

  • Since 4.08
val top : 'a t -> 'a

top is a synonym for peek.

val clear : 'a t -> unit

Discard all elements from a queue.

val copy : 'a t -> 'a t

Return a copy of the given queue.

val is_empty : 'a t -> bool

Return true if the given queue is empty, false otherwise.

val length : 'a t -> int

Return the number of elements in a queue.

val iter : ('a -> unit) -> 'a t -> unit

iter f q applies f in turn to all elements of q, from the least recently entered to the most recently entered. The queue itself is unchanged.

val fold : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b

fold f accu q is equivalent to List.fold_left f accu l, where l is the list of q's elements. The queue remains unchanged.

val transfer : 'a t -> 'a t -> unit

transfer q1 q2 adds all of q1's elements at the end of the queue q2, then clears q1. It is equivalent to the sequence iter (fun x -> add x q2) q1; clear q1, but runs in constant time.

Iterators

val to_seq : 'a t -> 'a Seq.t

Iterate on the queue, in front-to-back order. The behavior is not defined if the queue is modified during the iteration.

  • Since 4.07
val add_seq : 'a t -> 'a Seq.t -> unit

Add the elements from the generator to the end of the queue

  • Since 4.07
val of_seq : 'a Seq.t -> 'a t

Create a queue from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.SeededS.html0000644000175000017500000003422413717225553022402 0ustar mehdimehdi Hashtbl.SeededS sig
  type key
  type 'a t
  val create : ?random:bool -> int -> 'Hashtbl.SeededS.t
  val clear : 'Hashtbl.SeededS.t -> unit
  val reset : 'Hashtbl.SeededS.t -> unit
  val copy : 'Hashtbl.SeededS.t -> 'Hashtbl.SeededS.t
  val add : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> '-> unit
  val remove : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> unit
  val find : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> 'a
  val find_opt : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> 'a option
  val find_all : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> 'a list
  val replace : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> '-> unit
  val mem : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key -> bool
  val iter :
    (Hashtbl.SeededS.key -> '-> unit) -> 'Hashtbl.SeededS.t -> unit
  val filter_map_inplace :
    (Hashtbl.SeededS.key -> '-> 'a option) -> 'Hashtbl.SeededS.t -> unit
  val fold :
    (Hashtbl.SeededS.key -> '-> '-> 'b) ->
    'Hashtbl.SeededS.t -> '-> 'b
  val length : 'Hashtbl.SeededS.t -> int
  val stats : 'Hashtbl.SeededS.t -> Hashtbl.statistics
  val to_seq :
    'Hashtbl.SeededS.t -> (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t
  val to_seq_keys : 'Hashtbl.SeededS.t -> Hashtbl.SeededS.key Stdlib.Seq.t
  val to_seq_values : 'Hashtbl.SeededS.t -> 'Stdlib.Seq.t
  val add_seq :
    'Hashtbl.SeededS.t -> (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
  val replace_seq :
    'Hashtbl.SeededS.t -> (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
  val of_seq :
    (Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> 'Hashtbl.SeededS.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Dynlink.html0000644000175000017500000002257413717225552021116 0ustar mehdimehdi Dynlink sig
  val is_native : bool
  val loadfile : string -> unit
  val loadfile_private : string -> unit
  val adapt_filename : string -> string
  val set_allowed_units : string list -> unit
  val allow_only : string list -> unit
  val prohibit : string list -> unit
  val main_program_units : unit -> string list
  val public_dynamically_loaded_units : unit -> string list
  val all_units : unit -> string list
  val allow_unsafe_modules : bool -> unit
  type linking_error = private
      Undefined_global of string
    | Unavailable_primitive of string
    | Uninitialized_global of string
  type error = private
      Not_a_bytecode_file of string
    | Inconsistent_import of string
    | Unavailable_unit of string
    | Unsafe_file
    | Linking_error of string * Dynlink.linking_error
    | Corrupted_interface of string
    | Cannot_open_dynamic_library of exn
    | Library's_module_initializers_failed of exn
    | Inconsistent_implementation of string
    | Module_already_loaded of string
    | Private_library_cannot_implement_interface of string
  exception Error of Dynlink.error
  val error_message : Dynlink.error -> string
  val unsafe_get_global_value :
    bytecode_or_asm_symbol:string -> Stdlib.Obj.t option
end
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Map.html0000644000175000017500000001475613717225553021212 0ustar mehdimehdi MoreLabels.Map

Module MoreLabels.Map

module Map: sig .. end

module type OrderedType = Map.OrderedType
module type S = sig .. end
module Make: 
functor (Ord : OrderedType-> S with type key = Ord.t and type 'a t = 'a Map.Make(Ord).t
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.SeededS.html0000644000175000017500000002535513717225553023372 0ustar mehdimehdi MoreLabels.Hashtbl.SeededS

Module type MoreLabels.Hashtbl.SeededS

module type SeededS = sig .. end

type key 
type 'a t 
val create : ?random:bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t ->
key:key -> data:'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t ->
key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t ->
key:key -> data:'a -> unit
val mem : 'a t -> key -> bool
val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit
val filter_map_inplace : f:(key:key -> data:'a -> 'a option) ->
'a t -> unit
val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val length : 'a t -> int
val stats : 'a t -> MoreLabels.Hashtbl.statistics
val to_seq : 'a t ->
(key * 'a) Seq.t
val to_seq_keys : 'a t ->
key Seq.t
val to_seq_values : 'a t -> 'a Seq.t
val add_seq : 'a t ->
(key * 'a) Seq.t -> unit
val replace_seq : 'a t ->
(key * 'a) Seq.t -> unit
val of_seq : (key * 'a) Seq.t ->
'a t
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Hashtbl.html0000644000175000017500000001127213717225553022305 0ustar mehdimehdi Stdlib.Hashtbl (module Stdlib__hashtbl) ocaml-doc-4.11/ocaml.html/libref/type_BytesLabels.html0000644000175000017500000005606313717225552021717 0ustar mehdimehdi BytesLabels sig
  external length : bytes -> int = "%bytes_length"
  external get : bytes -> int -> char = "%bytes_safe_get"
  external set : bytes -> int -> char -> unit = "%bytes_safe_set"
  external create : int -> bytes = "caml_create_bytes"
  val make : int -> char -> bytes
  val init : int -> f:(int -> char) -> bytes
  val empty : bytes
  val copy : bytes -> bytes
  val of_string : string -> bytes
  val to_string : bytes -> string
  val sub : bytes -> pos:int -> len:int -> bytes
  val sub_string : bytes -> pos:int -> len:int -> string
  val extend : bytes -> left:int -> right:int -> bytes
  val fill : bytes -> pos:int -> len:int -> char -> unit
  val blit :
    src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
  val blit_string :
    src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
  val concat : sep:bytes -> bytes list -> bytes
  val cat : bytes -> bytes -> bytes
  val iter : f:(char -> unit) -> bytes -> unit
  val iteri : f:(int -> char -> unit) -> bytes -> unit
  val map : f:(char -> char) -> bytes -> bytes
  val mapi : f:(int -> char -> char) -> bytes -> bytes
  val trim : bytes -> bytes
  val escaped : bytes -> bytes
  val index : bytes -> char -> int
  val index_opt : bytes -> char -> int option
  val rindex : bytes -> char -> int
  val rindex_opt : bytes -> char -> int option
  val index_from : bytes -> int -> char -> int
  val index_from_opt : bytes -> int -> char -> int option
  val rindex_from : bytes -> int -> char -> int
  val rindex_from_opt : bytes -> int -> char -> int option
  val contains : bytes -> char -> bool
  val contains_from : bytes -> int -> char -> bool
  val rcontains_from : bytes -> int -> char -> bool
  val uppercase : bytes -> bytes
  val lowercase : bytes -> bytes
  val capitalize : bytes -> bytes
  val uncapitalize : bytes -> bytes
  val uppercase_ascii : bytes -> bytes
  val lowercase_ascii : bytes -> bytes
  val capitalize_ascii : bytes -> bytes
  val uncapitalize_ascii : bytes -> bytes
  type t = bytes
  val compare : BytesLabels.t -> BytesLabels.t -> int
  val equal : BytesLabels.t -> BytesLabels.t -> bool
  val to_seq : BytesLabels.t -> char Stdlib.Seq.t
  val to_seqi : BytesLabels.t -> (int * char) Stdlib.Seq.t
  val of_seq : char Stdlib.Seq.t -> BytesLabels.t
  val get_uint8 : bytes -> int -> int
  val get_int8 : bytes -> int -> int
  val get_uint16_ne : bytes -> int -> int
  val get_uint16_be : bytes -> int -> int
  val get_uint16_le : bytes -> int -> int
  val get_int16_ne : bytes -> int -> int
  val get_int16_be : bytes -> int -> int
  val get_int16_le : bytes -> int -> int
  val get_int32_ne : bytes -> int -> int32
  val get_int32_be : bytes -> int -> int32
  val get_int32_le : bytes -> int -> int32
  val get_int64_ne : bytes -> int -> int64
  val get_int64_be : bytes -> int -> int64
  val get_int64_le : bytes -> int -> int64
  val set_uint8 : bytes -> int -> int -> unit
  val set_int8 : bytes -> int -> int -> unit
  val set_uint16_ne : bytes -> int -> int -> unit
  val set_uint16_be : bytes -> int -> int -> unit
  val set_uint16_le : bytes -> int -> int -> unit
  val set_int16_ne : bytes -> int -> int -> unit
  val set_int16_be : bytes -> int -> int -> unit
  val set_int16_le : bytes -> int -> int -> unit
  val set_int32_ne : bytes -> int -> int32 -> unit
  val set_int32_be : bytes -> int -> int32 -> unit
  val set_int32_le : bytes -> int -> int32 -> unit
  val set_int64_ne : bytes -> int -> int64 -> unit
  val set_int64_be : bytes -> int -> int64 -> unit
  val set_int64_le : bytes -> int -> int64 -> unit
  external unsafe_get : bytes -> int -> char = "%bytes_unsafe_get"
  external unsafe_set : bytes -> int -> char -> unit = "%bytes_unsafe_set"
  external unsafe_blit :
    src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
    = "caml_blit_bytes" [@@noalloc]
  external unsafe_blit_string :
    src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit
    = "caml_blit_string" [@@noalloc]
  external unsafe_fill : bytes -> pos:int -> len:int -> char -> unit
    = "caml_fill_bytes" [@@noalloc]
  val unsafe_to_string : bytes -> string
  val unsafe_of_string : string -> bytes
end
ocaml-doc-4.11/ocaml.html/libref/Weak.Make.html0000644000175000017500000003227713717225553020212 0ustar mehdimehdi Weak.Make

Functor Weak.Make

module Make: 
functor (H : Hashtbl.HashedType-> S with type data = H.t

Functor building an implementation of the weak hash set structure. H.equal can't be the physical equality, since only shallow copies of the elements in the set are given to it.

Parameters:
H : Hashtbl.HashedType

type data 

The type of the elements stored in the table.

type t 

The type of tables that contain elements of type data. Note that weak hash sets cannot be marshaled using output_value or the functions of the Marshal module.

val create : int -> t

create n creates a new empty weak hash set, of initial size n. The table will grow as needed.

val clear : t -> unit

Remove all elements from the table.

val merge : t -> data -> data

merge t x returns an instance of x found in t if any, or else adds x to t and return x.

val add : t -> data -> unit

add t x adds x to t. If there is already an instance of x in t, it is unspecified which one will be returned by subsequent calls to find and merge.

val remove : t -> data -> unit

remove t x removes from t one instance of x. Does nothing if there is no instance of x in t.

val find : t -> data -> data

find t x returns an instance of x found in t.

  • Raises Not_found if there is no such element.
val find_opt : t -> data -> data option

find_opt t x returns an instance of x found in t or None if there is no such element.

  • Since 4.05
val find_all : t -> data -> data list

find_all t x returns a list of all the instances of x found in t.

val mem : t -> data -> bool

mem t x returns true if there is at least one instance of x in t, false otherwise.

val iter : (data -> unit) -> t -> unit

iter f t calls f on each element of t, in some unspecified order. It is not specified what happens if f tries to change t itself.

val fold : (data -> 'a -> 'a) -> t -> 'a -> 'a

fold f t init computes (f d1 (... (f dN init))) where d1 ... dN are the elements of t in some unspecified order. It is not specified what happens if f tries to change t itself.

val count : t -> int

Count the number of elements in the table. count t gives the same result as fold (fun _ n -> n+1) t 0 but does not delay the deallocation of the dead elements.

val stats : t -> int * int * int * int * int * int

Return statistics on the table. The numbers are, in order: table length, number of entries, sum of bucket lengths, smallest bucket length, median bucket length, biggest bucket length.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Gc.html0000644000175000017500000001126013717225552021245 0ustar mehdimehdi Stdlib.Gc (module Stdlib__gc) ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.Kn.html0000644000175000017500000006271213717225552021775 0ustar mehdimehdi Ephemeron.Kn sig
  type ('k, 'd) t
  val create : int -> ('k, 'd) Ephemeron.Kn.t
  val get_key : ('k, 'd) Ephemeron.Kn.t -> int -> 'k option
  val get_key_copy : ('k, 'd) Ephemeron.Kn.t -> int -> 'k option
  val set_key : ('k, 'd) Ephemeron.Kn.t -> int -> '-> unit
  val unset_key : ('k, 'd) Ephemeron.Kn.t -> int -> unit
  val check_key : ('k, 'd) Ephemeron.Kn.t -> int -> bool
  val blit_key :
    ('k, 'a) Ephemeron.Kn.t ->
    int -> ('k, 'b) Ephemeron.Kn.t -> int -> int -> unit
  val get_data : ('k, 'd) Ephemeron.Kn.t -> 'd option
  val get_data_copy : ('k, 'd) Ephemeron.Kn.t -> 'd option
  val set_data : ('k, 'd) Ephemeron.Kn.t -> '-> unit
  val unset_data : ('k, 'd) Ephemeron.Kn.t -> unit
  val check_data : ('k, 'd) Ephemeron.Kn.t -> bool
  val blit_data : ('k, 'd) Ephemeron.Kn.t -> ('k, 'd) Ephemeron.Kn.t -> unit
  module Make :
    functor (H : Hashtbl.HashedType->
      sig
        type key = H.t array
        type 'a t
        val create : int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
  module MakeSeeded :
    functor (H : Hashtbl.SeededHashedType->
      sig
        type key = H.t array
        type 'a t
        val create : ?random:bool -> int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
end
ocaml-doc-4.11/ocaml.html/libref/type_Bigarray.Genarray.html0000644000175000017500000003465313717225552023016 0ustar mehdimehdi Bigarray.Genarray sig
  type ('a, 'b, 'c) t
  external create :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> int array -> ('a, 'b, 'c) Bigarray.Genarray.t
    = "caml_ba_create"
  external num_dims : ('a, 'b, 'c) Bigarray.Genarray.t -> int
    = "caml_ba_num_dims"
  val dims : ('a, 'b, 'c) Bigarray.Genarray.t -> int array
  external nth_dim : ('a, 'b, 'c) Bigarray.Genarray.t -> int -> int
    = "caml_ba_dim"
  external kind : ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b) Bigarray.kind
    = "caml_ba_kind"
  external layout : ('a, 'b, 'c) Bigarray.Genarray.t -> 'Bigarray.layout
    = "caml_ba_layout"
  external change_layout :
    ('a, 'b, 'c) Bigarray.Genarray.t ->
    'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Genarray.t
    = "caml_ba_change_layout"
  val size_in_bytes : ('a, 'b, 'c) Bigarray.Genarray.t -> int
  external get : ('a, 'b, 'c) Bigarray.Genarray.t -> int array -> 'a
    = "caml_ba_get_generic"
  external set : ('a, 'b, 'c) Bigarray.Genarray.t -> int array -> '-> unit
    = "caml_ba_set_generic"
  external sub_left :
    ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t ->
    int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t
    = "caml_ba_sub"
  external sub_right :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t ->
    int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t
    = "caml_ba_sub"
  external slice_left :
    ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t ->
    int array -> ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t
    = "caml_ba_slice"
  external slice_right :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t ->
    int array -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t
    = "caml_ba_slice"
  external blit :
    ('a, 'b, 'c) Bigarray.Genarray.t ->
    ('a, 'b, 'c) Bigarray.Genarray.t -> unit = "caml_ba_blit"
  external fill : ('a, 'b, 'c) Bigarray.Genarray.t -> '-> unit
    = "caml_ba_fill"
end
ocaml-doc-4.11/ocaml.html/libref/Printf.html0000644000175000017500000005400513717225552017701 0ustar mehdimehdi Printf

Module Printf

module Printf: sig .. end

Formatted output functions.


val fprintf : out_channel -> ('a, out_channel, unit) format -> 'a

fprintf outchan format arg1 ... argN formats the arguments arg1 to argN according to the format string format, and outputs the resulting string on the channel outchan.

The format string is a character string which contains two types of objects: plain characters, which are simply copied to the output channel, and conversion specifications, each of which causes conversion and printing of arguments.

Conversion specifications have the following form:

% [flags] [width] [.precision] type

In short, a conversion specification consists in the % character, followed by optional modifiers and a type which is made of one or two characters.

The types and their meanings are:

  • d, i: convert an integer argument to signed decimal. The flag # adds underscores to large values for readability.
  • u, n, l, L, or N: convert an integer argument to unsigned decimal. Warning: n, l, L, and N are used for scanf, and should not be used for printf. The flag # adds underscores to large values for readability.
  • x: convert an integer argument to unsigned hexadecimal, using lowercase letters. The flag # adds a 0x prefix to non zero values.
  • X: convert an integer argument to unsigned hexadecimal, using uppercase letters. The flag # adds a 0X prefix to non zero values.
  • o: convert an integer argument to unsigned octal. The flag # adds a 0 prefix to non zero values.
  • s: insert a string argument.
  • S: convert a string argument to OCaml syntax (double quotes, escapes).
  • c: insert a character argument.
  • C: convert a character argument to OCaml syntax (single quotes, escapes).
  • f: convert a floating-point argument to decimal notation, in the style dddd.ddd.
  • F: convert a floating-point argument to OCaml syntax (dddd. or dddd.ddd or d.ddd e+-dd). Converts to hexadecimal with the # flag (see h).
  • e or E: convert a floating-point argument to decimal notation, in the style d.ddd e+-dd (mantissa and exponent).
  • g or G: convert a floating-point argument to decimal notation, in style f or e, E (whichever is more compact). Moreover, any trailing zeros are removed from the fractional part of the result and the decimal-point character is removed if there is no fractional part remaining.
  • h or H: convert a floating-point argument to hexadecimal notation, in the style 0xh.hhhh p+-dd (hexadecimal mantissa, exponent in decimal and denotes a power of 2).
  • B: convert a boolean argument to the string true or false
  • b: convert a boolean argument (deprecated; do not use in new programs).
  • ld, li, lu, lx, lX, lo: convert an int32 argument to the format specified by the second letter (decimal, hexadecimal, etc).
  • nd, ni, nu, nx, nX, no: convert a nativeint argument to the format specified by the second letter.
  • Ld, Li, Lu, Lx, LX, Lo: convert an int64 argument to the format specified by the second letter.
  • a: user-defined printer. Take two arguments and apply the first one to outchan (the current output channel) and to the second argument. The first argument must therefore have type out_channel -> '-> unit and the second 'b. The output produced by the function is inserted in the output of fprintf at the current point.
  • t: same as %a, but take only one argument (with type out_channel -> unit) and apply it to outchan.
  • { fmt %}: convert a format string argument to its type digest. The argument must have the same type as the internal format string fmt.
  • ( fmt %): format string substitution. Take a format string argument and substitute it to the internal format string fmt to print following arguments. The argument must have the same type as the internal format string fmt.
  • !: take no argument and flush the output.
  • %: take no argument and output one % character.
  • @: take no argument and output one @ character.
  • ,: take no argument and output nothing: a no-op delimiter for conversion specifications.

The optional flags are:

  • -: left-justify the output (default is right justification).
  • 0: for numerical conversions, pad with zeroes instead of spaces.
  • +: for signed numerical conversions, prefix number with a + sign if positive.
  • space: for signed numerical conversions, prefix number with a space if positive.
  • #: request an alternate formatting style for the integer types and the floating-point type F.

The optional width is an integer indicating the minimal width of the result. For instance, %6d prints an integer, prefixing it with spaces to fill at least 6 characters.

The optional precision is a dot . followed by an integer indicating how many digits follow the decimal point in the %f, %e, %E, %h, and %H conversions or the maximum number of significant digits to appear for the %F, %g and %G conversions. For instance, %.4f prints a float with 4 fractional digits.

The integer in a width or precision can also be specified as *, in which case an extra integer argument is taken to specify the corresponding width or precision. This integer argument precedes immediately the argument to print. For instance, %.*f prints a float with as many fractional digits as the value of the argument given before the float.

val printf : ('a, out_channel, unit) format -> 'a

Same as Printf.fprintf, but output on stdout.

val eprintf : ('a, out_channel, unit) format -> 'a

Same as Printf.fprintf, but output on stderr.

val sprintf : ('a, unit, string) format -> 'a

Same as Printf.fprintf, but instead of printing on an output channel, return a string containing the result of formatting the arguments.

val bprintf : Buffer.t -> ('a, Buffer.t, unit) format -> 'a

Same as Printf.fprintf, but instead of printing on an output channel, append the formatted arguments to the given extensible buffer (see module Buffer).

val ifprintf : 'b -> ('a, 'b, 'c, unit) format4 -> 'a

Same as Printf.fprintf, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 3.10.0
val ibprintf : Buffer.t -> ('a, Buffer.t, unit) format -> 'a

Same as Printf.bprintf, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 4.11.0

Formatted output functions with continuations.

val kfprintf : (out_channel -> 'd) ->
out_channel -> ('a, out_channel, unit, 'd) format4 -> 'a

Same as fprintf, but instead of returning immediately, passes the out channel to its first argument at the end of printing.

  • Since 3.09.0
val ikfprintf : ('b -> 'd) -> 'b -> ('a, 'b, 'c, 'd) format4 -> 'a

Same as kfprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 4.01.0
val ksprintf : (string -> 'd) -> ('a, unit, string, 'd) format4 -> 'a

Same as sprintf above, but instead of returning the string, passes it to the first argument.

  • Since 3.09.0
val kbprintf : (Buffer.t -> 'd) ->
Buffer.t -> ('a, Buffer.t, unit, 'd) format4 -> 'a

Same as bprintf, but instead of returning immediately, passes the buffer to its first argument at the end of printing.

  • Since 3.10.0
val ikbprintf : (Buffer.t -> 'd) ->
Buffer.t -> ('a, Buffer.t, unit, 'd) format4 -> 'a

Same as kbprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 4.11.0

Deprecated

val kprintf : (string -> 'b) -> ('a, unit, string, 'b) format4 -> 'a

A deprecated synonym for ksprintf.

ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Set.OrderedType.html0000644000175000017500000001464413717225553023451 0ustar mehdimehdi MoreLabels.Set.OrderedType

Module type MoreLabels.Set.OrderedType

module type OrderedType = Set.OrderedType

type t 

The type of the set elements.

val compare : t -> t -> int

A total ordering function over the set elements. This is a two-argument function f such that f e1 e2 is zero if the elements e1 and e2 are equal, f e1 e2 is strictly negative if e1 is smaller than e2, and f e1 e2 is strictly positive if e1 is greater than e2. Example: a suitable ordering function is the generic structural comparison function compare.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.List.html0000644000175000017500000011172213717225553020573 0ustar mehdimehdi Stdlib.List

Module Stdlib.List

module List: List

type 'a t = 'a list = 
| []
| :: of 'a * 'a list

An alias for the type of lists.

val length : 'a list -> int

Return the length (number of elements) of the given list.

val compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to compare (length l1) (length l2), except that the computation stops after itering on the shortest list.

  • Since 4.05.0
val compare_length_with : 'a list -> int -> int

Compare the length of a list to an integer. compare_length_with l n is equivalent to compare (length l) n, except that the computation stops after at most n iterations on the list.

  • Since 4.05.0
val cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs

  • Since 4.03.0
val hd : 'a list -> 'a

Return the first element of the given list.

  • Raises Failure if the list is empty.
val tl : 'a list -> 'a list

Return the given list without its first element.

  • Raises Failure if the list is empty.
val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0.

  • Raises
    • Failure if the list is too short.
    • Invalid_argument if n is negative.
val nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the list is too short.

  • Since 4.05
  • Raises Invalid_argument if n is negative.
val rev : 'a list -> 'a list

List reversal.

val init : int -> (int -> 'a) -> 'a list

List.init len f is [f 0; f 1; ...; f (len-1)], evaluated left to right.

  • Since 4.06.0
  • Raises Invalid_argument if len < 0.
val append : 'a list -> 'a list -> 'a list

Concatenate two lists. Same as the infix operator @. Not tail-recursive (length of the first argument).

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it to l2. This is equivalent to List.rev l1 @ l2, but rev_append is tail-recursive and more efficient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

val flatten : 'a list list -> 'a list

An alias for concat.

Iterators

val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to begin f a1; f a2; ...; f an; () end.

val iteri : (int -> 'a -> unit) -> 'a list -> unit

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val map : ('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f. Not tail-recursive.

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument. Not tail-recursive.

  • Since 4.00.0
val rev_map : ('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

val filter_map : ('a -> 'b option) -> 'a list -> 'b list

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

  • Since 4.08.0
val concat_map : ('a -> 'b list) -> 'a list -> 'b list

List.concat_map f l gives the same result as List.concat (List.map f l). Tail-recursive.

  • Since 4.10.0
val fold_left_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list

fold_left_map is a combination of fold_left and map that threads an accumulator through calls to f

  • Since 4.11.0
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

Iterators on two lists

val iter2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.
val rev_map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

val fold_left2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val fold_right2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.

List scanning

val for_all : ('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an) for a non-empty list and true if the list is empty.

val exists : ('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an) for a non-empty list and false if the list is empty.

val for_all2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val exists2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val mem : 'a -> 'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> 'a list -> bool

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

List searching

val find : ('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p.

  • Raises Not_found if there is no value that satisfies p in the list l.
val find_opt : ('a -> bool) -> 'a list -> 'a option

find_opt p l returns the first element of the list l that satisfies the predicate p, or None if there is no value that satisfies p in the list l.

  • Since 4.05
val find_map : ('a -> 'b option) -> 'a list -> 'b option

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

  • Since 4.10.0
val filter : ('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of the elements in the input list is preserved.

val find_all : ('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val filteri : (int -> 'a -> bool) -> 'a list -> 'a list

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.11.0
val partition : ('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p. The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.

  • Raises Not_found if there is no value associated with a in the list l.
val assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That is, assoc_opt a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Returns None if there is no value associated with a in the list l.

  • Since 4.05
val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

val assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

  • Since 4.05
val mem_assoc : 'a -> ('a * 'b) list -> bool

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

val mem_assq : 'a -> ('a * 'b) list -> bool

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

  • Raises Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting

val sort : ('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, compare is a suitable comparison function. The resulting list is sorted in increasing order. List.sort is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but also remove duplicates.

  • Since 4.02.0
val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2. If several elements compare equal, the elements of l1 will be before the elements of l2. Not tail-recursive (sum of the lengths of the arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t

Iterate on the list

  • Since 4.07
val of_seq : 'a Seq.t -> 'a list

Create a list from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Spacetime.Series.html0000644000175000017500000001310213717225553022635 0ustar mehdimehdi Spacetime.Series sig
  type t
  val create : path:string -> Spacetime.Series.t
  val save_event :
    ?time:float -> Spacetime.Series.t -> event_name:string -> unit
  val save_and_close : ?time:float -> Spacetime.Series.t -> unit
end
ocaml-doc-4.11/ocaml.html/libref/Complex.html0000644000175000017500000003036613717225552020052 0ustar mehdimehdi Complex

Module Complex

module Complex: sig .. end

Complex numbers.

This module provides arithmetic operations on complex numbers. Complex numbers are represented by their real and imaginary parts (cartesian representation). Each part is represented by a double-precision floating-point number (type float).


type t = {
   re : float;
   im : float;
}

The type of complex numbers. re is the real part and im the imaginary part.

val zero : t

The complex number 0.

val one : t

The complex number 1.

val i : t

The complex number i.

val neg : t -> t

Unary negation.

val conj : t -> t

Conjugate: given the complex x + i.y, returns x - i.y.

val add : t -> t -> t

Addition

val sub : t -> t -> t

Subtraction

val mul : t -> t -> t

Multiplication

val inv : t -> t

Multiplicative inverse (1/z).

val div : t -> t -> t

Division

val sqrt : t -> t

Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0. This function has a discontinuity along the negative real axis.

val norm2 : t -> float

Norm squared: given x + i.y, returns x^2 + y^2.

val norm : t -> float

Norm: given x + i.y, returns sqrt(x^2 + y^2).

val arg : t -> float

Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from -pi to pi. This function has a discontinuity along the negative real axis.

val polar : float -> float -> t

polar norm arg returns the complex having norm norm and argument arg.

val exp : t -> t

Exponentiation. exp z returns e to the z power.

val log : t -> t

Natural logarithm (in base e).

val pow : t -> t -> t

Power function. pow z1 z2 returns z1 to the z2 power.

ocaml-doc-4.11/ocaml.html/libref/type_Map.OrderedType.html0000644000175000017500000001204113717225553022435 0ustar mehdimehdi Map.OrderedType sig type t val compare : Map.OrderedType.t -> Map.OrderedType.t -> int end ocaml-doc-4.11/ocaml.html/libref/index_types.html0000644000175000017500000017625213717225553021004 0ustar mehdimehdi Index of types

Index of types

A
acc [CamlinternalFormat]
acc_formatting_gen [CamlinternalFormat]
access_permission [UnixLabels]

Flags for the UnixLabels.access call.

access_permission [Unix]

Flags for the Unix.access call.

addr_info [UnixLabels]

Address information returned by Unix.getaddrinfo.

addr_info [Unix]

Address information returned by Unix.getaddrinfo.

alarm [Gc]

An alarm is a piece of data that calls a user function at the end of each major GC cycle.

allocation [Gc.Memprof]

The type of metadata associated with allocations.

anon_fun [Arg]
B
backend_type [Sys]

Currently, the official distribution only supports Native and Bytecode, but it can be other backends with alternative compilers, for example, javascript.

backtrace_slot [Printexc]

The abstract type backtrace_slot represents a single slot of a backtrace.

block_type [CamlinternalFormatBasics]
C
c_layout [Bigarray]
channel [Event]

The type of communication channels carrying values of type 'a.

char_set [CamlinternalFormatBasics]
closure [CamlinternalOO]
complex32_elt [Bigarray]
complex64_elt [Bigarray]
control [Gc]

The GC parameters are given as a control record.

counter [CamlinternalFormatBasics]
custom_arity [CamlinternalFormatBasics]
D
data [Weak.S]

The type of the elements stored in the table.

dir_handle [UnixLabels]

The type of descriptors over opened directories.

dir_handle [Unix]

The type of descriptors over opened directories.

doc [Arg]
E
elt [Set.S]

The type of the set elements.

elt [MoreLabels.Set.S]
equal [Ephemeron.GenHashTable]
error [UnixLabels]

The type of error codes.

error [Unix]

The type of error codes.

error [Dynlink]
event [Event]

The type of communication events returning a result of type 'a.

extern_flags [Marshal]

The flags to the Marshal.to_* functions below.

F
file_descr [UnixLabels]

The abstract type of file descriptors.

file_descr [Unix]

The abstract type of file descriptors.

file_kind [UnixLabels]
file_kind [Unix]
file_name [Scanf.Scanning]

A convenient alias to designate a file name.

file_perm [UnixLabels]

The type of file access rights, e.g.

file_perm [Unix]

The type of file access rights, e.g.

float32_elt [Bigarray]
float64_elt [Bigarray]
float_conv [CamlinternalFormatBasics]
float_flag_conv [CamlinternalFormatBasics]
float_kind_conv [CamlinternalFormatBasics]
flow_action [UnixLabels]
flow_action [Unix]
flush_queue [UnixLabels]
flush_queue [Unix]
fmt [CamlinternalFormatBasics]

List of format elements.

fmt_ebb [CamlinternalFormat]
fmtty [CamlinternalFormatBasics]
fmtty_rel [CamlinternalFormatBasics]
format [Stdlib]
format4 [Stdlib]
format6 [Stdlib]
format6 [CamlinternalFormatBasics]
formatter [Format]

Abstract data corresponding to a pretty-printer (also called a formatter) and all its machinery.

formatter_out_functions [Format]

The set of output functions specific to a formatter: the out_string function performs all the pretty-printer string output. It is called with a string s, a start position p, and a number of characters n; it is supposed to output characters p to p + n - 1 of s., the out_flush function flushes the pretty-printer output device., out_newline is called to open a new line when the pretty-printer splits the line., the out_spaces function outputs spaces when a break hint leads to spaces instead of a line split. It is called with the number of spaces to output., the out_indent function performs new line indentation when the pretty-printer splits the line. It is called with the indentation value of the new line. By default: fields out_string and out_flush are output device specific; (e.g. output_string and flush for a out_channel device, or Buffer.add_substring and ignore for a Buffer.t output device),, field out_newline is equivalent to out_string "\n" 0 1;, fields out_spaces and out_indent are equivalent to out_string (String.make n ' ') 0 n.

formatter_stag_functions [Format]

The semantic tag handling functions specific to a formatter: mark versions are the 'tag-marking' functions that associate a string marker to a tag in order for the pretty-printing engine to write those markers as 0 length tokens in the output device of the formatter.

formatter_tag_functions [Format]
formatting_gen [CamlinternalFormatBasics]
formatting_lit [CamlinternalFormatBasics]
fortran_layout [Bigarray]

To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.

fpclass [Stdlib]

The five classes of floating-point numbers, as determined by the classify_float function.

fpclass [Float]

The five classes of floating-point numbers, as determined by the Float.classify_float function.

G
geometry [Format]
getaddrinfo_option [UnixLabels]

Options to Unix.getaddrinfo.

getaddrinfo_option [Unix]

Options to Unix.getaddrinfo.

getnameinfo_option [UnixLabels]

Options to Unix.getnameinfo.

getnameinfo_option [Unix]

Options to Unix.getnameinfo.

group_entry [UnixLabels]

Structure of entries in the groups database.

group_entry [Unix]

Structure of entries in the groups database.

H
heter_list [CamlinternalFormat]
host_entry [UnixLabels]

Structure of entries in the hosts database.

host_entry [Unix]

Structure of entries in the hosts database.

I
ignored [CamlinternalFormatBasics]
impl [CamlinternalOO]
in_channel [Stdlib]

The type of input channel.

in_channel [Scanf.Scanning]

The notion of input channel for the Scanf module: those channels provide all the machinery necessary to read from any source of characters, including a in_channel value.

inet_addr [UnixLabels]

The abstract type of Internet addresses.

inet_addr [Unix]

The abstract type of Internet addresses.

init_table [CamlinternalOO]
int16_signed_elt [Bigarray]
int16_unsigned_elt [Bigarray]
int32_elt [Bigarray]
int64_elt [Bigarray]
int8_signed_elt [Bigarray]
int8_unsigned_elt [Bigarray]
int_conv [CamlinternalFormatBasics]
int_elt [Bigarray]
interval_timer [UnixLabels]

The three kinds of interval timers.

interval_timer [Unix]

The three kinds of interval timers.

interval_timer_status [UnixLabels]

The type describing the status of an interval timer

interval_timer_status [Unix]

The type describing the status of an interval timer

K
key [MoreLabels.Map.S]
key [MoreLabels.Hashtbl.SeededS]
key [MoreLabels.Hashtbl.S]
key [Map.S]

The type of the map keys.

key [Hashtbl.SeededS]
key [Hashtbl.S]
key [Arg]
kind [Bigarray]

To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it.

L
label [CamlinternalOO]
layout [Bigarray]
lexbuf [Lexing]

The type of lexer buffers.

linking_error [Dynlink]
location [Printexc]

The type of location information found in backtraces.

lock_command [UnixLabels]

Commands for UnixLabels.lockf.

lock_command [Unix]

Commands for Unix.lockf.

M
meth [CamlinternalOO]
msg_flag [UnixLabels]
msg_flag [Unix]
mutable_char_set [CamlinternalFormat]
N
name_info [UnixLabels]

Host and service information returned by Unix.getnameinfo.

name_info [Unix]

Host and service information returned by Unix.getnameinfo.

nativeint_elt [Bigarray]
node [Seq]

A fully-evaluated list node, either empty or containing an element and a delayed tail.

O
obj [CamlinternalOO]
obj_t [Obj.Ephemeron]

alias for Obj.t

open_flag [UnixLabels]

The flags to UnixLabels.openfile.

open_flag [Unix]

The flags to Unix.openfile.

open_flag [Stdlib]

Opening modes for open_out_gen and open_in_gen.

out_channel [Stdlib]

The type of output channel.

P
pad_option [CamlinternalFormatBasics]
padding [CamlinternalFormatBasics]
padty [CamlinternalFormatBasics]
param_format_ebb [CamlinternalFormat]
params [CamlinternalOO]
passwd_entry [UnixLabels]

Structure of entries in the passwd database.

passwd_entry [Unix]

Structure of entries in the passwd database.

position [Lexing]

A value of type position describes a point in a source file.

prec_option [CamlinternalFormatBasics]
precision [CamlinternalFormatBasics]
process_status [UnixLabels]

The termination status of a process.

process_status [Unix]

The termination status of a process.

process_times [UnixLabels]

The execution times (CPU times) of a process.

process_times [Unix]

The execution times (CPU times) of a process.

protocol_entry [UnixLabels]

Structure of entries in the protocols database.

protocol_entry [Unix]

Structure of entries in the protocols database.

R
raw_backtrace [Printexc]

The abstract type raw_backtrace stores a backtrace in a low-level format, instead of directly exposing them as string as the get_backtrace() function does.

raw_backtrace_slot [Printexc]

This type allows direct access to raw backtrace slots, without any conversion in an OCaml-usable data-structure.

ref [Stdlib]

The type of references (mutable indirection cells) containing a value of type 'a.

regexp [Str]

The type of compiled regular expressions.

repr [Sys.Immediate64.Make]
result [Stdlib]
S
scanbuf [Scanf.Scanning]

The type of scanning buffers.

scanner [Scanf]

The type of formatted input scanners: ('a, 'b, 'c, 'd) scanner is the type of a formatted input function that reads from some formatted input channel according to some format string; more precisely, if scan is some formatted input function, then scan
    ic fmt f
applies f to all the arguments specified by format string fmt, when scan has read those arguments from the Scanf.Scanning.in_channel formatted input channel ic.

seek_command [UnixLabels]

Positioning modes for UnixLabels.lseek.

seek_command [Unix]

Positioning modes for Unix.lseek.

service_entry [UnixLabels]

Structure of entries in the services database.

service_entry [Unix]

Structure of entries in the services database.

setattr_when [UnixLabels]
setattr_when [Unix]
shape [CamlinternalMod]
shutdown_command [UnixLabels]

The type of commands for shutdown.

shutdown_command [Unix]

The type of commands for shutdown.

signal_behavior [Sys]

What to do when receiving a signal: Signal_default: take the default behavior (usually: abort the program), Signal_ignore: ignore the signal, Signal_handle f: call function f, giving it the signal number as argument.

sigprocmask_command [UnixLabels]
sigprocmask_command [Unix]
sockaddr [UnixLabels]

The type of socket addresses.

sockaddr [Unix]

The type of socket addresses.

socket_bool_option [UnixLabels]

The socket options that can be consulted with UnixLabels.getsockopt and modified with UnixLabels.setsockopt.

socket_bool_option [Unix]

The socket options that can be consulted with Unix.getsockopt and modified with Unix.setsockopt.

socket_domain [UnixLabels]

The type of socket domains.

socket_domain [Unix]

The type of socket domains.

socket_float_option [UnixLabels]

The socket options that can be consulted with UnixLabels.getsockopt_float and modified with UnixLabels.setsockopt_float.

socket_float_option [Unix]

The socket options that can be consulted with Unix.getsockopt_float and modified with Unix.setsockopt_float.

socket_int_option [UnixLabels]

The socket options that can be consulted with UnixLabels.getsockopt_int and modified with UnixLabels.setsockopt_int.

socket_int_option [Unix]

The socket options that can be consulted with Unix.getsockopt_int and modified with Unix.setsockopt_int.

socket_optint_option [UnixLabels]

The socket options that can be consulted with Unix.getsockopt_optint and modified with Unix.setsockopt_optint.

socket_optint_option [Unix]

The socket options that can be consulted with Unix.getsockopt_optint and modified with Unix.setsockopt_optint.

socket_type [UnixLabels]

The type of socket kinds, specifying the semantics of communications.

socket_type [Unix]

The type of socket kinds, specifying the semantics of communications.

spec [Arg]

The concrete type describing the behavior associated with a keyword.

split_result [Str]
stag [Format]

Semantic tags (or simply tags) are user's defined annotations to associate user's specific operations to printed entities.

stat [Gc]

The memory management counters are returned in a stat record.

statistics [MoreLabels.Hashtbl]
statistics [Hashtbl]
stats [UnixLabels.LargeFile]
stats [UnixLabels]

The information returned by the UnixLabels.stat calls.

stats [Unix.LargeFile]
stats [Unix]

The information returned by the Unix.stat calls.

stats [CamlinternalOO]
symbolic_output_buffer [Format]

The output buffer of a symbolic pretty-printer.

symbolic_output_item [Format]

Items produced by symbolic pretty-printers

T
t [Thread]

The type of thread handles.

t [Weak.S]

The type of tables that contain elements of type data.

t [Weak]

The type of arrays of weak pointers (weak arrays).

t [Unit]

The unit type.

t [Uchar]

The type for Unicode characters.

t [Sys.Immediate64.Immediate]
t [Sys.Immediate64.Non_immediate]
t [Sys.Immediate64.Make]
t [String]

An alias for the type of strings.

t [Stream]

The type of streams holding values of type 'a.

t [StringLabels]

An alias for the type of strings.

t [Stack]

The type of stacks containing elements of type 'a.

t [Spacetime.Series]

Type representing a file that will hold a series of heap snapshots together with additional information required to interpret those snapshots.

t [Set.S]

The type of sets.

t [Seq]

The type of delayed lists containing elements of type 'a.

t [Result]

The type for result values.

t [Random.State]

The type of PRNG states.

t [Queue]

The type of queues containing elements of type 'a.

t [Printexc.Slot]
t [Printexc]

The type of exception values.

t [Option]

The type for option values.

t [Obj.Ephemeron]

an ephemeron cf Ephemeron

t [Obj.Extension_constructor]
t [Obj]
t [Nativeint]

An alias for the type of native integers.

t [Mutex]

The type of mutexes.

t [Set.OrderedType]

The type of the set elements.

t [MoreLabels.Set.S]
t [MoreLabels.Map.S]
t [MoreLabels.Hashtbl.SeededS]
t [MoreLabels.Hashtbl.S]
t [MoreLabels.Hashtbl]
t [Map.OrderedType]

The type of the map keys.

t [Map.S]

The type of maps from type key to type 'a.

t [ListLabels]

An alias for the type of lists.

t [List]

An alias for the type of lists.

t [Lazy]

A value of type 'Lazy.t is a deferred computation, called a suspension, that has a result of type 'a.

t [Int64]

An alias for the type of 64-bit integers.

t [Int32]

An alias for the type of 32-bit integers.

t [Int]

The type for integer values.

t [Hashtbl.SeededHashedType]

The type of the hashtable keys.

t [Hashtbl.HashedType]

The type of the hashtable keys.

t [Hashtbl.SeededS]
t [Hashtbl.S]
t [Hashtbl]

The type of hash tables from type 'a to type 'b.

t [Float.ArrayLabels]
t [Float.Array]

The type of float arrays with packed representation.

t [Float]

An alias for the type of floating-point numbers.

t [Ephemeron.Kn]

an ephemeron with an arbitrary number of keys of the same type

t [Ephemeron.K2]

an ephemeron with two keys

t [Ephemeron.K1]

an ephemeron with one key

t [Digest]

The type of digests: 16-character strings.

t [Condition]

The type of condition variables.

t [Complex]

The type of complex numbers.

t [Char]

An alias for the type of characters.

t [CamlinternalOO]
t [CamlinternalLazy]
t [BytesLabels]

An alias for the type of byte sequences.

t [Bytes]

An alias for the type of byte sequences.

t [Buffer]

The abstract type of buffers.

t [Bool]

The type of booleans (truth values).

t [Bigarray.Array3]

The type of three-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

t [Bigarray.Array2]

The type of two-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

t [Bigarray.Array1]

The type of one-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

t [Bigarray.Array0]

The type of zero-dimensional Bigarrays whose elements have OCaml type 'a, representation kind 'b, and memory layout 'c.

t [Bigarray.Genarray]

The type Genarray.t is the type of Bigarrays with variable numbers of dimensions.

t [ArrayLabels]

An alias for the type of arrays.

t [Array]

An alias for the type of arrays.

table [CamlinternalOO]
tables [CamlinternalOO]
tag [Format]
tag [CamlinternalOO]
terminal_io [UnixLabels]
terminal_io [Unix]
tm [UnixLabels]

The type representing wallclock time and calendar date.

tm [Unix]

The type representing wallclock time and calendar date.

token [Genlex]

The type of tokens.

tracker [Gc.Memprof]

A ('minor, 'major) tracker describes how memprof should track sampled blocks over their lifetime, keeping a user-defined piece of metadata for each of them: 'minor is the type of metadata to keep for minor blocks, and 'major the type of metadata for major blocks.

U
usage_msg [Arg]
W
wait_flag [UnixLabels]

Flags for UnixLabels.waitpid.

wait_flag [Unix]

Flags for Unix.waitpid.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Printf.html0000644000175000017500000001127013717225553022160 0ustar mehdimehdi Stdlib.Printf (module Stdlib__printf) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Scanf.html0000644000175000017500000012623713717225553020721 0ustar mehdimehdi Stdlib.Scanf

Module Stdlib.Scanf

module Scanf: Scanf

Introduction

Functional input with format strings

The module Scanf provides formatted input functions or scanners.

The formatted input functions can read from any kind of input, including strings, files, or anything that can return characters. The more general source of characters is named a formatted input channel (or scanning buffer) and has type Scanf.Scanning.in_channel. The more general formatted input function reads from any scanning buffer and is named bscanf.

Generally speaking, the formatted input functions have 3 arguments:

  • the first argument is a source of characters for the input,
  • the second argument is a format string that specifies the values to read,
  • the third argument is a receiver function that is applied to the values read.

Hence, a typical call to the formatted input function Scanf.bscanf is bscanf ic fmt f, where:

  • fmt is a format string (the same format strings as those used to print material with module Printf or Format),
  • f is a function that has as many arguments as the number of values to read in the input according to fmt.

A simple example

As suggested above, the expression bscanf ic "%d" f reads a decimal integer n from the source of characters ic and returns f n.

For instance,

  • if we use stdin as the source of characters (Scanf.Scanning.stdin is the predefined formatted input channel that reads from standard input),
  • if we define the receiver f as let f x = x + 1,

then bscanf Scanning.stdin "%d" f reads an integer n from the standard input and returns f n (that is n + 1). Thus, if we evaluate bscanf stdin "%d" f, and then enter 41 at the keyboard, the result we get is 42.

Formatted input as a functional feature

The OCaml scanning facility is reminiscent of the corresponding C feature. However, it is also largely different, simpler, and yet more powerful: the formatted input functions are higher-order functionals and the parameter passing mechanism is just the regular function application not the variable assignment based mechanism which is typical for formatted input in imperative languages; the OCaml format strings also feature useful additions to easily define complex tokens; as expected within a functional programming language, the formatted input functions also support polymorphism, in particular arbitrary interaction with polymorphic user-defined scanners. Furthermore, the OCaml formatted input facility is fully type-checked at compile time.

Formatted input channel

module Scanning: sig .. end

Type of formatted input functions

type ('a, 'b, 'c, 'd) scanner = ('a, Scanning.in_channel, 'b, 'c, 'a -> 'd, 'd) format6 -> 'c 

The type of formatted input scanners: ('a, 'b, 'c, 'd) scanner is the type of a formatted input function that reads from some formatted input channel according to some format string; more precisely, if scan is some formatted input function, then scan
    ic fmt f
applies f to all the arguments specified by format string fmt, when scan has read those arguments from the Scanf.Scanning.in_channel formatted input channel ic.

For instance, the Scanf.scanf function below has type ('a, 'b, 'c, 'd) scanner, since it is a formatted input function that reads from Scanf.Scanning.stdin: scanf fmt f applies f to the arguments specified by fmt, reading those arguments from stdin as expected.

If the format fmt has some %r indications, the corresponding formatted input functions must be provided before receiver function f. For instance, if read_elem is an input function for values of type t, then bscanf ic "%r;" read_elem f reads a value v of type t followed by a ';' character, and returns f v.

  • Since 3.10.0
exception Scan_failure of string

When the input can not be read according to the format string specification, formatted input functions typically raise exception Scan_failure.

The general formatted input function

val bscanf : Scanning.in_channel -> ('a, 'b, 'c, 'd) scanner

bscanf ic fmt r1 ... rN f reads characters from the Scanf.Scanning.in_channel formatted input channel ic and converts them to values according to format string fmt. As a final step, receiver function f is applied to the values read and gives the result of the bscanf call.

For instance, if f is the function fun s i -> i + 1, then Scanf.sscanf "x= 1" "%s = %i" f returns 2.

Arguments r1 to rN are user-defined input functions that read the argument corresponding to the %r conversions specified in the format string.

Format string description

The format string is a character string which contains three types of objects:

The space character in format strings

As mentioned above, a plain character in the format string is just matched with the next character of the input; however, two characters are special exceptions to this rule: the space character (' ' or ASCII code 32) and the line feed character ('\n' or ASCII code 10). A space does not match a single space character, but any amount of 'whitespace' in the input. More precisely, a space inside the format string matches any number of tab, space, line feed and carriage return characters. Similarly, a line feed character in the format string matches either a single line feed or a carriage return followed by a line feed.

Matching any amount of whitespace, a space in the format string also matches no amount of whitespace at all; hence, the call bscanf ib
    "Price = %d $" (fun p -> p)
succeeds and returns 1 when reading an input with various whitespace in it, such as Price = 1 $, Price  =  1    $, or even Price=1$.

Conversion specifications in format strings

Conversion specifications consist in the % character, followed by an optional flag, an optional field width, and followed by one or two conversion characters.

The conversion characters and their meanings are:

  • d: reads an optionally signed decimal integer (0-9+).
  • i: reads an optionally signed integer (usual input conventions for decimal (0-9+), hexadecimal (0x[0-9a-f]+ and 0X[0-9A-F]+), octal (0o[0-7]+), and binary (0b[0-1]+) notations are understood).
  • u: reads an unsigned decimal integer.
  • x or X: reads an unsigned hexadecimal integer ([0-9a-fA-F]+).
  • o: reads an unsigned octal integer ([0-7]+).
  • s: reads a string argument that spreads as much as possible, until the following bounding condition holds: Hence, this conversion always succeeds: it returns an empty string if the bounding condition holds when the scan begins.
  • S: reads a delimited string argument (delimiters and special escaped characters follow the lexical conventions of OCaml).
  • c: reads a single character. To test the current input character without reading it, specify a null field width, i.e. use specification %0c. Raise Invalid_argument, if the field width specification is greater than 1.
  • C: reads a single delimited character (delimiters and special escaped characters follow the lexical conventions of OCaml).
  • f, e, E, g, G: reads an optionally signed floating-point number in decimal notation, in the style dddd.ddd
          e/E+-dd
    .
  • h, H: reads an optionally signed floating-point number in hexadecimal notation.
  • F: reads a floating point number according to the lexical conventions of OCaml (hence the decimal point is mandatory if the exponent part is not mentioned).
  • B: reads a boolean argument (true or false).
  • b: reads a boolean argument (for backward compatibility; do not use in new programs).
  • ld, li, lu, lx, lX, lo: reads an int32 argument to the format specified by the second letter for regular integers.
  • nd, ni, nu, nx, nX, no: reads a nativeint argument to the format specified by the second letter for regular integers.
  • Ld, Li, Lu, Lx, LX, Lo: reads an int64 argument to the format specified by the second letter for regular integers.
  • [ range ]: reads characters that matches one of the characters mentioned in the range of characters range (or not mentioned in it, if the range starts with ^). Reads a string that can be empty, if the next input character does not match the range. The set of characters from c1 to c2 (inclusively) is denoted by c1-c2. Hence, %[0-9] returns a string representing a decimal number or an empty string if no decimal digit is found; similarly, %[0-9a-f] returns a string of hexadecimal digits. If a closing bracket appears in a range, it must occur as the first character of the range (or just after the ^ in case of range negation); hence []] matches a ] character and [^]] matches any character that is not ]. Use %% and %@ to include a % or a @ in a range.
  • r: user-defined reader. Takes the next ri formatted input function and applies it to the scanning buffer ib to read the next argument. The input function ri must therefore have type Scanning.in_channel -> 'a and the argument read has type 'a.
  • { fmt %}: reads a format string argument. The format string read must have the same type as the format string specification fmt. For instance, "%{ %i %}" reads any format string that can read a value of type int; hence, if s is the string "fmt:\"number is %u\"", then Scanf.sscanf s "fmt: %{%i%}" succeeds and returns the format string "number is %u".
  • ( fmt %): scanning sub-format substitution. Reads a format string rf in the input, then goes on scanning with rf instead of scanning with fmt. The format string rf must have the same type as the format string specification fmt that it replaces. For instance, "%( %i %)" reads any format string that can read a value of type int. The conversion returns the format string read rf, and then a value read using rf. Hence, if s is the string "\"%4d\"1234.00", then Scanf.sscanf s "%(%i%)" (fun fmt i -> fmt, i) evaluates to ("%4d", 1234). This behaviour is not mere format substitution, since the conversion returns the format string read as additional argument. If you need pure format substitution, use special flag _ to discard the extraneous argument: conversion %_( fmt %) reads a format string rf and then behaves the same as format string rf. Hence, if s is the string "\"%4d\"1234.00", then Scanf.sscanf s "%_(%i%)" is simply equivalent to Scanf.sscanf "1234.00" "%4d".
  • l: returns the number of lines read so far.
  • n: returns the number of characters read so far.
  • N or L: returns the number of tokens read so far.
  • !: matches the end of input condition.
  • %: matches one % character in the input.
  • @: matches one @ character in the input.
  • ,: does nothing.

Following the % character that introduces a conversion, there may be the special flag _: the conversion that follows occurs as usual, but the resulting value is discarded. For instance, if f is the function fun i -> i + 1, and s is the string "x = 1", then Scanf.sscanf s "%_s = %i" f returns 2.

The field width is composed of an optional integer literal indicating the maximal width of the token to read. For instance, %6d reads an integer, having at most 6 decimal digits; %4f reads a float with at most 4 characters; and %8[\000-\255] returns the next 8 characters (or all the characters still available, if fewer than 8 characters are available in the input).

Notes:

  • as mentioned above, a %s conversion always succeeds, even if there is nothing to read in the input: in this case, it simply returns "".
  • in addition to the relevant digits, '_' characters may appear inside numbers (this is reminiscent to the usual OCaml lexical conventions). If stricter scanning is desired, use the range conversion facility instead of the number conversions.
  • the scanf facility is not intended for heavy duty lexical analysis and parsing. If it appears not expressive enough for your needs, several alternative exists: regular expressions (module Str), stream parsers, ocamllex-generated lexers, ocamlyacc-generated parsers.

Scanning indications in format strings

Scanning indications appear just after the string conversions %s and %[ range ] to delimit the end of the token. A scanning indication is introduced by a @ character, followed by some plain character c. It means that the string token should end just before the next matching c (which is skipped). If no c character is encountered, the string token spreads as much as possible. For instance, "%s@\t" reads a string up to the next tab character or to the end of input. If a @ character appears anywhere else in the format string, it is treated as a plain character.

Note:

  • As usual in format strings, % and @ characters must be escaped using %% and %@; this rule still holds within range specifications and scanning indications. For instance, format "%s@%%" reads a string up to the next % character, and format "%s@%@" reads a string up to the next @.
  • The scanning indications introduce slight differences in the syntax of Scanf format strings, compared to those used for the Printf module. However, the scanning indications are similar to those used in the Format module; hence, when producing formatted text to be scanned by Scanf.bscanf, it is wise to use printing functions from the Format module (or, if you need to use functions from Printf, banish or carefully double check the format strings that contain '@' characters).

Exceptions during scanning

Scanners may raise the following exceptions when the input cannot be read according to the format string:

  • Raise Failure if a conversion to a number is not possible.
  • Raise End_of_file if the end of input is encountered while some more characters are needed to read the current conversion specification.
  • Raise Invalid_argument if the format string is invalid.

Note:

  • as a consequence, scanning a %s conversion never raises exception End_of_file: if the end of input is reached the conversion succeeds and simply returns the characters read so far, or "" if none were ever read.

Specialised formatted input functions

val sscanf : string -> ('a, 'b, 'c, 'd) scanner

Same as Scanf.bscanf, but reads from the given string.

val scanf : ('a, 'b, 'c, 'd) scanner

Same as Scanf.bscanf, but reads from the predefined formatted input channel Scanf.Scanning.stdin that is connected to stdin.

val kscanf : Scanning.in_channel ->
(Scanning.in_channel -> exn -> 'd) -> ('a, 'b, 'c, 'd) scanner

Same as Scanf.bscanf, but takes an additional function argument ef that is called in case of error: if the scanning process or some conversion fails, the scanning function aborts and calls the error handling function ef with the formatted input channel and the exception that aborted the scanning process as arguments.

val ksscanf : string ->
(Scanning.in_channel -> exn -> 'd) -> ('a, 'b, 'c, 'd) scanner

Same as Scanf.kscanf but reads from the given string.

  • Since 4.02.0

Reading format strings from input

val bscanf_format : Scanning.in_channel ->
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
(('a, 'b, 'c, 'd, 'e, 'f) format6 -> 'g) -> 'g

bscanf_format ic fmt f reads a format string token from the formatted input channel ic, according to the given format string fmt, and applies f to the resulting format string value.

  • Since 3.09.0
  • Raises Scan_failure if the format string value read does not have the same type as fmt.
val sscanf_format : string ->
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
(('a, 'b, 'c, 'd, 'e, 'f) format6 -> 'g) -> 'g

Same as Scanf.bscanf_format, but reads from the given string.

  • Since 3.09.0
val format_from_string : string ->
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('a, 'b, 'c, 'd, 'e, 'f) format6

format_from_string s fmt converts a string argument to a format string, according to the given format string fmt.

  • Since 3.10.0
  • Raises Scan_failure if s, considered as a format string, does not have the same type as fmt.
val unescaped : string -> string

unescaped s return a copy of s with escape sequences (according to the lexical conventions of OCaml) replaced by their corresponding special characters. More precisely, Scanf.unescaped has the following property: for all string s, Scanf.unescaped (String.escaped s) = s.

Always return a copy of the argument, even if there is no escape sequence in the argument.

  • Since 4.00.0
  • Raises Scan_failure if s is not properly escaped (i.e. s has invalid escape sequences or special characters that are not properly escaped). For instance, Scanf.unescaped "\"" will fail.

Deprecated

val fscanf : in_channel -> ('a, 'b, 'c, 'd) scanner
Deprecated.Scanf.fscanf is error prone and deprecated since 4.03.0. This function violates the following invariant of the Scanf module: To preserve scanning semantics, all scanning functions defined in Scanf must read from a user defined Scanf.Scanning.in_channel formatted input channel. If you need to read from a in_channel input channel ic, simply define a Scanf.Scanning.in_channel formatted input channel as in let ib = Scanning.from_channel ic, then use Scanf.bscanf ib as usual.
val kfscanf : in_channel ->
(Scanning.in_channel -> exn -> 'd) -> ('a, 'b, 'c, 'd) scanner
Deprecated.Scanf.kfscanf is error prone and deprecated since 4.03.0.
ocaml-doc-4.11/ocaml.html/libref/type_Char.html0000644000175000017500000001461413717225552020357 0ustar mehdimehdi Char sig
  external code : char -> int = "%identity"
  val chr : int -> char
  val escaped : char -> string
  val lowercase : char -> char
  val uppercase : char -> char
  val lowercase_ascii : char -> char
  val uppercase_ascii : char -> char
  type t = char
  val compare : Char.t -> Char.t -> int
  val equal : Char.t -> Char.t -> bool
  external unsafe_chr : int -> char = "%identity"
end
ocaml-doc-4.11/ocaml.html/libref/Map.Make.html0000644000175000017500000010436713717225553020040 0ustar mehdimehdi Map.Make

Functor Map.Make

module Make: 
functor (Ord : OrderedType-> S with type key = Ord.t

Functor building an implementation of the map structure given a totally ordered type.

Parameters:
Ord : OrderedType

type key 

The type of the map keys.

type +'a t 

The type of maps from type key to type 'a.

val empty : 'a t

The empty map.

val is_empty : 'a t -> bool

Test whether a map is empty or not.

val mem : key -> 'a t -> bool

mem x m returns true if m contains a binding for x, and false otherwise.

val add : key -> 'a -> 'a t -> 'a t

add x y m returns a map containing the same bindings as m, plus a binding of x to y. If x was already bound in m to a value that is physically equal to y, m is returned unchanged (the result of the function is then physically equal to m). Otherwise, the previous binding of x in m disappears.

  • Before 4.03 Physical equality was not ensured.
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t

update x f m returns a map containing the same bindings as m, except for the binding of x. Depending on the value of y where y is f (find_opt x m), the binding of x is added, removed or updated. If y is None, the binding is removed if it exists; otherwise, if y is Some z then x is associated to z in the resulting map. If x was already bound in m to a value that is physically equal to z, m is returned unchanged (the result of the function is then physically equal to m).

  • Since 4.06.0
val singleton : key -> 'a -> 'a t

singleton x y returns the one-element map that contains a binding y for x.

  • Since 3.12.0
val remove : key -> 'a t -> 'a t

remove x m returns a map containing the same bindings as m, except for x which is unbound in the returned map. If x was not in m, m is returned unchanged (the result of the function is then physically equal to m).

  • Before 4.03 Physical equality was not ensured.
val merge : (key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t

merge f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2. The presence of each such binding, and the corresponding value, is determined with the function f. In terms of the find_opt operation, we have find_opt x (merge f m1 m2) = f x (find_opt x m1) (find_opt x m2) for any key x, provided that f x None None = None.

  • Since 3.12.0
val union : (key -> 'a -> 'a -> 'a option) ->
'a t -> 'a t -> 'a t

union f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2. When the same binding is defined in both arguments, the function f is used to combine them. This is a special case of merge: union f m1 m2 is equivalent to merge f' m1 m2, where

  • f' _key None None = None
  • f' _key (Some v) None = Some v
  • f' _key None (Some v) = Some v
  • f' key (Some v1) (Some v2) = f key v1 v2
  • Since 4.03.0
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int

Total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps.

val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool

equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain equal keys and associate them with equal data. cmp is the equality predicate used to compare the data associated with the keys.

val iter : (key -> 'a -> unit) -> 'a t -> unit

iter f m applies f to all bindings in map m. f receives the key as first argument, and the associated value as second argument. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b

fold f m a computes (f kN dN ... (f k1 d1 a)...), where k1 ... kN are the keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

val for_all : (key -> 'a -> bool) -> 'a t -> bool

for_all p m checks if all the bindings of the map satisfy the predicate p.

  • Since 3.12.0
val exists : (key -> 'a -> bool) -> 'a t -> bool

exists p m checks if at least one binding of the map satisfies the predicate p.

  • Since 3.12.0
val filter : (key -> 'a -> bool) -> 'a t -> 'a t

filter p m returns the map with all the bindings in m that satisfy predicate p. If every binding in m satisfies p, m is returned unchanged (the result of the function is then physically equal to m)

  • Before 4.03 Physical equality was not ensured.
  • Since 3.12.0
val filter_map : (key -> 'a -> 'b option) -> 'a t -> 'b t

filter_map f m applies the function f to every binding of m, and builds a map from the results. For each binding (k, v) in the input map:

  • if f k v is None then k is not in the result,
  • if f k v is Some v' then the binding (k, v') is in the output map.

For example, the following function on maps whose values are lists

        filter_map
          (fun _k li -> match li with [] -> None | _::tl -> Some tl)
          m
        

drops all bindings of m whose value is an empty list, and pops the first element of each value that is non-empty.

  • Since 4.11.0
val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t

partition p m returns a pair of maps (m1, m2), where m1 contains all the bindings of m that satisfy the predicate p, and m2 is the map with all the bindings of m that do not satisfy p.

  • Since 3.12.0
val cardinal : 'a t -> int

Return the number of bindings of a map.

  • Since 3.12.0
val bindings : 'a t -> (key * 'a) list

Return the list of all bindings of the given map. The returned list is sorted in increasing order of keys with respect to the ordering Ord.compare, where Ord is the argument given to Map.Make.

  • Since 3.12.0
val min_binding : 'a t -> key * 'a

Return the binding with the smallest key in a given map (with respect to the Ord.compare ordering), or raise Not_found if the map is empty.

  • Since 3.12.0
val min_binding_opt : 'a t -> (key * 'a) option

Return the binding with the smallest key in the given map (with respect to the Ord.compare ordering), or None if the map is empty.

  • Since 4.05
val max_binding : 'a t -> key * 'a

Same as Map.S.min_binding, but returns the binding with the largest key in the given map.

  • Since 3.12.0
val max_binding_opt : 'a t -> (key * 'a) option

Same as Map.S.min_binding_opt, but returns the binding with the largest key in the given map.

  • Since 4.05
val choose : 'a t -> key * 'a

Return one binding of the given map, or raise Not_found if the map is empty. Which binding is chosen is unspecified, but equal bindings will be chosen for equal maps.

  • Since 3.12.0
val choose_opt : 'a t -> (key * 'a) option

Return one binding of the given map, or None if the map is empty. Which binding is chosen is unspecified, but equal bindings will be chosen for equal maps.

  • Since 4.05
val split : key -> 'a t -> 'a t * 'a option * 'a t

split x m returns a triple (l, data, r), where l is the map with all the bindings of m whose key is strictly less than x; r is the map with all the bindings of m whose key is strictly greater than x; data is None if m contains no binding for x, or Some v if m binds v to x.

  • Since 3.12.0
val find : key -> 'a t -> 'a

find x m returns the current value of x in m, or raises Not_found if no binding for x exists.

val find_opt : key -> 'a t -> 'a option

find_opt x m returns Some v if the current value of x in m is v, or None if no binding for x exists.

  • Since 4.05
val find_first : (key -> bool) -> 'a t -> key * 'a

find_first f m, where f is a monotonically increasing function, returns the binding of m with the lowest key k such that f k, or raises Not_found if no such key exists.

For example, find_first (fun k -> Ord.compare k x >= 0) m will return the first binding k, v of m where Ord.compare k x >= 0 (intuitively: k >= x), or raise Not_found if x is greater than any element of m.

  • Since 4.05
val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option

find_first_opt f m, where f is a monotonically increasing function, returns an option containing the binding of m with the lowest key k such that f k, or None if no such key exists.

  • Since 4.05
val find_last : (key -> bool) -> 'a t -> key * 'a

find_last f m, where f is a monotonically decreasing function, returns the binding of m with the highest key k such that f k, or raises Not_found if no such key exists.

  • Since 4.05
val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option

find_last_opt f m, where f is a monotonically decreasing function, returns an option containing the binding of m with the highest key k such that f k, or None if no such key exists.

  • Since 4.05
val map : ('a -> 'b) -> 'a t -> 'b t

map f m returns a map with same domain as m, where the associated value a of all bindings of m has been replaced by the result of the application of f to a. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t

Same as Map.S.map, but the function receives as arguments both the key and the associated value for each binding of the map.

Iterators

val to_seq : 'a t -> (key * 'a) Seq.t

Iterate on the whole map, in ascending order of keys

  • Since 4.07
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t

to_seq_from k m iterates on a subset of the bindings of m, in ascending order of keys, from key k or above.

  • Since 4.07
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t

Add the given bindings to the map, in order.

  • Since 4.07
val of_seq : (key * 'a) Seq.t -> 'a t

Build a map from the given bindings

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Format.html0000644000175000017500000034634013717225552017675 0ustar mehdimehdi Format

Module Format

module Format: sig .. end

Pretty-printing.

This module implements a pretty-printing facility to format values within 'pretty-printing boxes' and 'semantic tags' combined with a set of printf-like functions. The pretty-printer splits lines at specified break hints, and indents lines according to the box structure. Similarly, semantic tags can be used to decouple text presentation from its contents.

This pretty-printing facility is implemented as an overlay on top of abstract formatters which provide basic output functions. Some formatters are predefined, notably:

Most functions in the Format module come in two variants: a short version that operates on Format.std_formatter and the generic version prefixed by pp_ that takes a formatter as its first argument.

More formatters can be created with Format.formatter_of_out_channel, Format.formatter_of_buffer, Format.formatter_of_symbolic_output_buffer or using custom formatters.


Introduction

For a gentle introduction to the basics of pretty-printing using Format, read http://caml.inria.fr/resources/doc/guides/format.en.html.

You may consider this module as providing an extension to the printf facility to provide automatic line splitting. The addition of pretty-printing annotations to your regular printf format strings gives you fancy indentation and line breaks. Pretty-printing annotations are described below in the documentation of the function Format.fprintf.

You may also use the explicit pretty-printing box management and printing functions provided by this module. This style is more basic but more verbose than the concise fprintf format strings.

For instance, the sequence open_box 0; print_string "x ="; print_space ();
    print_int 1; close_box (); print_newline ()
that prints x = 1 within a pretty-printing box, can be abbreviated as printf "@[%s@ %i@]@." "x =" 1, or even shorter printf "@[x =@ %i@]@." 1.

Rule of thumb for casual users of this library:

  • use simple pretty-printing boxes (as obtained by open_box 0);
  • use simple break hints as obtained by print_cut () that outputs a simple break hint, or by print_space () that outputs a space indicating a break hint;
  • once a pretty-printing box is open, display its material with basic printing functions (e. g. print_int and print_string);
  • when the material for a pretty-printing box has been printed, call close_box () to close the box;
  • at the end of pretty-printing, flush the pretty-printer to display all the remaining material, e.g. evaluate print_newline ().

The behavior of pretty-printing commands is unspecified if there is no open pretty-printing box. Each box opened by one of the open_ functions below must be closed using close_box for proper formatting. Otherwise, some of the material printed in the boxes may not be output, or may be formatted incorrectly.

In case of interactive use, each phrase is executed in the initial state of the standard pretty-printer: after each phrase execution, the interactive system closes all open pretty-printing boxes, flushes all pending text, and resets the standard pretty-printer.

Warning: mixing calls to pretty-printing functions of this module with calls to Stdlib low level output functions is error prone.

The pretty-printing functions output material that is delayed in the pretty-printer queue and stacks in order to compute proper line splitting. In contrast, basic I/O output functions write directly in their output device. As a consequence, the output of a basic I/O function may appear before the output of a pretty-printing function that has been called before. For instance,
    Stdlib.print_string "<";
    Format.print_string "PRETTY";
    Stdlib.print_string ">";
    Format.print_string "TEXT";
   
leads to output <>PRETTYTEXT.

type formatter 

Abstract data corresponding to a pretty-printer (also called a formatter) and all its machinery. See also Defining formatters.

Pretty-printing boxes

The pretty-printing engine uses the concepts of pretty-printing box and break hint to drive indentation and line splitting behavior of the pretty-printer.

Each different pretty-printing box kind introduces a specific line splitting policy:

  • within an horizontal box, break hints never split the line (but the line may be split in a box nested deeper),
  • within a vertical box, break hints always split the line,
  • within an horizontal/vertical box, if the box fits on the current line then break hints never split the line, otherwise break hint always split the line,
  • within a compacting box, a break hint never splits the line, unless there is no more room on the current line.

Note that line splitting policy is box specific: the policy of a box does not rule the policy of inner boxes. For instance, if a vertical box is nested in an horizontal box, all break hints within the vertical box will split the line.

Moreover, opening a box after the maximum indentation limit splits the line whether or not the box would end up fitting on the line.

val pp_open_box : formatter -> int -> unit
val open_box : int -> unit

pp_open_box ppf d opens a new compacting pretty-printing box with offset d in the formatter ppf.

Within this box, the pretty-printer prints as much as possible material on every line.

A break hint splits the line if there is no more room on the line to print the remainder of the box.

Within this box, the pretty-printer emphasizes the box structure: if a structural box does not fit fully on a simple line, a break hint also splits the line if the splitting ``moves to the left'' (i.e. the new line gets an indentation smaller than the one of the current line).

This box is the general purpose pretty-printing box.

If the pretty-printer splits the line in the box, offset d is added to the current indentation.

val pp_close_box : formatter -> unit -> unit
val close_box : unit -> unit

Closes the most recently open pretty-printing box.

val pp_open_hbox : formatter -> unit -> unit
val open_hbox : unit -> unit

pp_open_hbox ppf () opens a new 'horizontal' pretty-printing box.

This box prints material on a single line.

Break hints in a horizontal box never split the line. (Line splitting may still occur inside boxes nested deeper).

val pp_open_vbox : formatter -> int -> unit
val open_vbox : int -> unit

pp_open_vbox ppf d opens a new 'vertical' pretty-printing box with offset d.

This box prints material on as many lines as break hints in the box.

Every break hint in a vertical box splits the line.

If the pretty-printer splits the line in the box, d is added to the current indentation.

val pp_open_hvbox : formatter -> int -> unit
val open_hvbox : int -> unit

pp_open_hvbox ppf d opens a new 'horizontal/vertical' pretty-printing box with offset d.

This box behaves as an horizontal box if it fits on a single line, otherwise it behaves as a vertical box.

If the pretty-printer splits the line in the box, d is added to the current indentation.

val pp_open_hovbox : formatter -> int -> unit
val open_hovbox : int -> unit

pp_open_hovbox ppf d opens a new 'horizontal-or-vertical' pretty-printing box with offset d.

This box prints material as much as possible on every line.

A break hint splits the line if there is no more room on the line to print the remainder of the box.

If the pretty-printer splits the line in the box, d is added to the current indentation.

Formatting functions

val pp_print_string : formatter -> string -> unit
val print_string : string -> unit

pp_print_string ppf s prints s in the current pretty-printing box.

val pp_print_as : formatter -> int -> string -> unit
val print_as : int -> string -> unit

pp_print_as ppf len s prints s in the current pretty-printing box. The pretty-printer formats s as if it were of length len.

val pp_print_int : formatter -> int -> unit
val print_int : int -> unit

Print an integer in the current pretty-printing box.

val pp_print_float : formatter -> float -> unit
val print_float : float -> unit

Print a floating point number in the current pretty-printing box.

val pp_print_char : formatter -> char -> unit
val print_char : char -> unit

Print a character in the current pretty-printing box.

val pp_print_bool : formatter -> bool -> unit
val print_bool : bool -> unit

Print a boolean in the current pretty-printing box.

Break hints

A 'break hint' tells the pretty-printer to output some space or split the line whichever way is more appropriate to the current pretty-printing box splitting rules.

Break hints are used to separate printing items and are mandatory to let the pretty-printer correctly split lines and indent items.

Simple break hints are:

  • the 'space': output a space or split the line if appropriate,
  • the 'cut': split the line if appropriate.

Note: the notions of space and line splitting are abstract for the pretty-printing engine, since those notions can be completely redefined by the programmer. However, in the pretty-printer default setting, ``output a space'' simply means printing a space character (ASCII code 32) and ``split the line'' means printing a newline character (ASCII code 10).

val pp_print_space : formatter -> unit -> unit
val print_space : unit -> unit

pp_print_space ppf () emits a 'space' break hint: the pretty-printer may split the line at this point, otherwise it prints one space.

pp_print_space ppf () is equivalent to pp_print_break ppf 1 0.

val pp_print_cut : formatter -> unit -> unit
val print_cut : unit -> unit

pp_print_cut ppf () emits a 'cut' break hint: the pretty-printer may split the line at this point, otherwise it prints nothing.

pp_print_cut ppf () is equivalent to pp_print_break ppf 0 0.

val pp_print_break : formatter -> int -> int -> unit
val print_break : int -> int -> unit

pp_print_break ppf nspaces offset emits a 'full' break hint: the pretty-printer may split the line at this point, otherwise it prints nspaces spaces.

If the pretty-printer splits the line, offset is added to the current indentation.

val pp_print_custom_break : formatter ->
fits:string * int * string -> breaks:string * int * string -> unit

pp_print_custom_break ppf ~fits:(s1, n, s2) ~breaks:(s3, m, s4) emits a custom break hint: the pretty-printer may split the line at this point.

If it does not split the line, then the s1 is emitted, then n spaces, then s2.

If it splits the line, then it emits the s3 string, then an indent (according to the box rules), then an offset of m spaces, then the s4 string.

While n and m are handled by formatter_out_functions.out_indent, the strings will be handled by formatter_out_functions.out_string. This allows for a custom formatter that handles indentation distinctly, for example, outputs <br/> tags or &nbsp; entities.

The custom break is useful if you want to change which visible (non-whitespace) characters are printed in case of break or no break. For example, when printing a list

 [a; b; c] 

, you might want to add a trailing semicolon when it is printed vertically:

[
  a;
  b;
  c;
]
   

You can do this as follows:

printf "@[<v 0>[@;<0 2>@[<v 0>a;@,b;@,c@]%t]@]@\n"
  (pp_print_custom_break ~fits:("", 0, "") ~breaks:(";", 0, ""))
   
  • Since 4.08.0
val pp_force_newline : formatter -> unit -> unit
val force_newline : unit -> unit

Force a new line in the current pretty-printing box.

The pretty-printer must split the line at this point,

Not the normal way of pretty-printing, since imperative line splitting may interfere with current line counters and box size calculation. Using break hints within an enclosing vertical box is a better alternative.

val pp_print_if_newline : formatter -> unit -> unit
val print_if_newline : unit -> unit

Execute the next formatting command if the preceding line has just been split. Otherwise, ignore the next formatting command.

Pretty-printing termination

val pp_print_flush : formatter -> unit -> unit
val print_flush : unit -> unit

End of pretty-printing: resets the pretty-printer to initial state.

All open pretty-printing boxes are closed, all pending text is printed. In addition, the pretty-printer low level output device is flushed to ensure that all pending text is really displayed.

Note: never use print_flush in the normal course of a pretty-printing routine, since the pretty-printer uses a complex buffering machinery to properly indent the output; manually flushing those buffers at random would conflict with the pretty-printer strategy and result to poor rendering.

Only consider using print_flush when displaying all pending material is mandatory (for instance in case of interactive use when you want the user to read some text) and when resetting the pretty-printer state will not disturb further pretty-printing.

Warning: If the output device of the pretty-printer is an output channel, repeated calls to print_flush means repeated calls to flush to flush the out channel; these explicit flush calls could foil the buffering strategy of output channels and could dramatically impact efficiency.

val pp_print_newline : formatter -> unit -> unit
val print_newline : unit -> unit

End of pretty-printing: resets the pretty-printer to initial state.

All open pretty-printing boxes are closed, all pending text is printed.

Equivalent to Format.print_flush followed by a new line. See corresponding words of caution for Format.print_flush.

Note: this is not the normal way to output a new line; the preferred method is using break hints within a vertical pretty-printing box.

Margin

val pp_set_margin : formatter -> int -> unit
val set_margin : int -> unit

pp_set_margin ppf d sets the right margin to d (in characters): the pretty-printer splits lines that overflow the right margin according to the break hints given. Setting the margin to d means that the formatting engine aims at printing at most d-1 characters per line. Nothing happens if d is smaller than 2. If d is too large, the right margin is set to the maximum admissible value (which is greater than 10 ^ 9). If d is less than the current maximum indentation limit, the maximum indentation limit is decreased while trying to preserve a minimal ratio max_indent/margin>=50% and if possible the current difference margin - max_indent.

See also Format.pp_set_geometry.

val pp_get_margin : formatter -> unit -> int
val get_margin : unit -> int

Returns the position of the right margin.

Maximum indentation limit

val pp_set_max_indent : formatter -> int -> unit
val set_max_indent : int -> unit

pp_set_max_indent ppf d sets the maximum indentation limit of lines to d (in characters): once this limit is reached, new pretty-printing boxes are rejected to the left, unless the enclosing box fully fits on the current line. As an illustration,

 set_margin 10; set_max_indent 5; printf "@[123456@[7@]89A@]@." 

yields

    123456
    789A
  

because the nested box "@[7@]" is opened after the maximum indentation limit (7>5) and its parent box does not fit on the current line. Either decreasing the length of the parent box to make it fit on a line:

 printf "@[123456@[7@]89@]@." 

or opening an intermediary box before the maximum indentation limit which fits on the current line

 printf "@[123@[456@[7@]89@]A@]@." 

avoids the rejection to the left of the inner boxes and print respectively "123456789" and "123456789A" . Note also that vertical boxes never fit on a line whereas horizontal boxes always fully fit on the current line. Opening a box may split a line whereas the contents may have fit. If this behavior is problematic, it can be curtailed by setting the maximum indentation limit to margin - 1. Note that setting the maximum indentation limit to margin is invalid.

Nothing happens if d is smaller than 2.

If d is too large, the limit is set to the maximum admissible value (which is greater than 10 ^ 9).

If d is greater or equal than the current margin, it is ignored, and the current maximum indentation limit is kept.

See also Format.pp_set_geometry.

val pp_get_max_indent : formatter -> unit -> int
val get_max_indent : unit -> int

Return the maximum indentation limit (in characters).

Geometry

Geometric functions can be used to manipulate simultaneously the coupled variables, margin and maxixum indentation limit.

type geometry = {
   max_indent : int;
   margin : int;
}
val check_geometry : geometry -> bool

Check if the formatter geometry is valid: 1 < max_indent < margin

val pp_set_geometry : formatter -> max_indent:int -> margin:int -> unit
val set_geometry : max_indent:int -> margin:int -> unit
val pp_safe_set_geometry : formatter -> max_indent:int -> margin:int -> unit
val safe_set_geometry : max_indent:int -> margin:int -> unit

pp_set_geometry ppf ~max_indent ~margin sets both the margin and maximum indentation limit for ppf.

When 1 < max_indent < margin, pp_set_geometry ppf ~max_indent ~margin is equivalent to pp_set_margin ppf margin; pp_set_max_indent ppf max_indent; and avoids the subtly incorrect pp_set_max_indent ppf max_indent; pp_set_margin ppf margin;

Outside of this domain, pp_set_geometry raises an invalid argument exception whereas pp_safe_set_geometry does nothing.

  • Since 4.08.0
val pp_update_geometry : formatter -> (geometry -> geometry) -> unit

pp_update_geometry ppf (fun geo -> { geo with ... }) lets you update a formatter's geometry in a way that is robust to extension of the geometry record with new fields.

Raises an invalid argument exception if the returned geometry does not satisfy Format.check_geometry.

  • Since 4.11.0
val update_geometry : (geometry -> geometry) -> unit
val pp_get_geometry : formatter -> unit -> geometry
val get_geometry : unit -> geometry

Return the current geometry of the formatter

  • Since 4.08.0

Maximum formatting depth

The maximum formatting depth is the maximum number of pretty-printing boxes simultaneously open.

Material inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by Format.get_ellipsis_text ()).

val pp_set_max_boxes : formatter -> int -> unit
val set_max_boxes : int -> unit

pp_set_max_boxes ppf max sets the maximum number of pretty-printing boxes simultaneously open.

Material inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by Format.get_ellipsis_text ()).

Nothing happens if max is smaller than 2.

val pp_get_max_boxes : formatter -> unit -> int
val get_max_boxes : unit -> int

Returns the maximum number of pretty-printing boxes allowed before ellipsis.

val pp_over_max_boxes : formatter -> unit -> bool
val over_max_boxes : unit -> bool

Tests if the maximum number of pretty-printing boxes allowed have already been opened.

Tabulation boxes

A tabulation box prints material on lines divided into cells of fixed length. A tabulation box provides a simple way to display vertical columns of left adjusted text.

This box features command set_tab to define cell boundaries, and command print_tab to move from cell to cell and split the line when there is no more cells to print on the line.

Note: printing within tabulation box is line directed, so arbitrary line splitting inside a tabulation box leads to poor rendering. Yet, controlled use of tabulation boxes allows simple printing of columns within module Format.

val pp_open_tbox : formatter -> unit -> unit
val open_tbox : unit -> unit

open_tbox () opens a new tabulation box.

This box prints lines separated into cells of fixed width.

Inside a tabulation box, special tabulation markers defines points of interest on the line (for instance to delimit cell boundaries). Function Format.set_tab sets a tabulation marker at insertion point.

A tabulation box features specific tabulation breaks to move to next tabulation marker or split the line. Function Format.print_tbreak prints a tabulation break.

val pp_close_tbox : formatter -> unit -> unit
val close_tbox : unit -> unit

Closes the most recently opened tabulation box.

val pp_set_tab : formatter -> unit -> unit
val set_tab : unit -> unit

Sets a tabulation marker at current insertion point.

val pp_print_tab : formatter -> unit -> unit
val print_tab : unit -> unit

print_tab () emits a 'next' tabulation break hint: if not already set on a tabulation marker, the insertion point moves to the first tabulation marker on the right, or the pretty-printer splits the line and insertion point moves to the leftmost tabulation marker.

It is equivalent to print_tbreak 0 0.

val pp_print_tbreak : formatter -> int -> int -> unit
val print_tbreak : int -> int -> unit

print_tbreak nspaces offset emits a 'full' tabulation break hint.

If not already set on a tabulation marker, the insertion point moves to the first tabulation marker on the right and the pretty-printer prints nspaces spaces.

If there is no next tabulation marker on the right, the pretty-printer splits the line at this point, then insertion point moves to the leftmost tabulation marker of the box.

If the pretty-printer splits the line, offset is added to the current indentation.

Ellipsis

val pp_set_ellipsis_text : formatter -> string -> unit
val set_ellipsis_text : string -> unit

Set the text of the ellipsis printed when too many pretty-printing boxes are open (a single dot, ., by default).

val pp_get_ellipsis_text : formatter -> unit -> string
val get_ellipsis_text : unit -> string

Return the text of the ellipsis.

Semantic tags

type stag = ..

Semantic tags (or simply tags) are user's defined annotations to associate user's specific operations to printed entities.

Common usage of semantic tags is text decoration to get specific font or text size rendering for a display device, or marking delimitation of entities (e.g. HTML or TeX elements or terminal escape sequences). More sophisticated usage of semantic tags could handle dynamic modification of the pretty-printer behavior to properly print the material within some specific tags. For instance, we can define an RGB tag like so:

type stag += RGB of {r:int;g:int;b:int}

In order to properly delimit printed entities, a semantic tag must be opened before and closed after the entity. Semantic tags must be properly nested like parentheses using Format.pp_open_stag and Format.pp_close_stag.

Tag specific operations occur any time a tag is opened or closed, At each occurrence, two kinds of operations are performed tag-marking and tag-printing:

  • The tag-marking operation is the simpler tag specific operation: it simply writes a tag specific string into the output device of the formatter. Tag-marking does not interfere with line-splitting computation.
  • The tag-printing operation is the more involved tag specific operation: it can print arbitrary material to the formatter. Tag-printing is tightly linked to the current pretty-printer operations.

Roughly speaking, tag-marking is commonly used to get a better rendering of texts in the rendering device, while tag-printing allows fine tuning of printing routines to print the same entity differently according to the semantic tags (i.e. print additional material or even omit parts of the output).

More precisely: when a semantic tag is opened or closed then both and successive 'tag-printing' and 'tag-marking' operations occur:

  • Tag-printing a semantic tag means calling the formatter specific function print_open_stag (resp. print_close_stag) with the name of the tag as argument: that tag-printing function can then print any regular material to the formatter (so that this material is enqueued as usual in the formatter queue for further line splitting computation).
  • Tag-marking a semantic tag means calling the formatter specific function mark_open_stag (resp. mark_close_stag) with the name of the tag as argument: that tag-marking function can then return the 'tag-opening marker' (resp. `tag-closing marker') for direct output into the output device of the formatter.

Being written directly into the output device of the formatter, semantic tag marker strings are not considered as part of the printing material that drives line splitting (in other words, the length of the strings corresponding to tag markers is considered as zero for line splitting).

Thus, semantic tag handling is in some sense transparent to pretty-printing and does not interfere with usual indentation. Hence, a single pretty-printing routine can output both simple 'verbatim' material or richer decorated output depending on the treatment of tags. By default, tags are not active, hence the output is not decorated with tag information. Once set_tags is set to true, the pretty-printer engine honors tags and decorates the output accordingly.

Default tag-marking functions behave the HTML way: string tags are enclosed in "<" and ">" while other tags are ignored; hence, opening marker for tag string "t" is "<t>" and closing marker is "</t>".

Default tag-printing functions just do nothing.

Tag-marking and tag-printing functions are user definable and can be set by calling Format.set_formatter_stag_functions.

Semantic tag operations may be set on or off with Format.set_tags. Tag-marking operations may be set on or off with Format.set_mark_tags. Tag-printing operations may be set on or off with Format.set_print_tags.

type tag = string 
type stag += 
| String_tag of tag (*

String_tag s is a string tag s. String tags can be inserted either by explicitly using the constructor String_tag or by using the dedicated format syntax "@{<s> ... @}".

*)
val pp_open_stag : formatter -> stag -> unit
val open_stag : stag -> unit

pp_open_stag ppf t opens the semantic tag named t.

The print_open_stag tag-printing function of the formatter is called with t as argument; then the opening tag marker for t, as given by mark_open_stag t, is written into the output device of the formatter.

val pp_close_stag : formatter -> unit -> unit
val close_stag : unit -> unit

pp_close_stag ppf () closes the most recently opened semantic tag t.

The closing tag marker, as given by mark_close_stag t, is written into the output device of the formatter; then the print_close_stag tag-printing function of the formatter is called with t as argument.

val pp_set_tags : formatter -> bool -> unit
val set_tags : bool -> unit

pp_set_tags ppf b turns on or off the treatment of semantic tags (default is off).

val pp_set_print_tags : formatter -> bool -> unit
val set_print_tags : bool -> unit

pp_set_print_tags ppf b turns on or off the tag-printing operations.

val pp_set_mark_tags : formatter -> bool -> unit
val set_mark_tags : bool -> unit

pp_set_mark_tags ppf b turns on or off the tag-marking operations.

val pp_get_print_tags : formatter -> unit -> bool
val get_print_tags : unit -> bool

Return the current status of tag-printing operations.

val pp_get_mark_tags : formatter -> unit -> bool
val get_mark_tags : unit -> bool

Return the current status of tag-marking operations.

val pp_set_formatter_out_channel : formatter -> out_channel -> unit

Redirecting the standard formatter output

val set_formatter_out_channel : out_channel -> unit

Redirect the standard pretty-printer output to the given channel. (All the output functions of the standard formatter are set to the default output functions printing to the given channel.)

set_formatter_out_channel is equivalent to Format.pp_set_formatter_out_channel std_formatter.

val pp_set_formatter_output_functions : formatter -> (string -> int -> int -> unit) -> (unit -> unit) -> unit
val set_formatter_output_functions : (string -> int -> int -> unit) -> (unit -> unit) -> unit

pp_set_formatter_output_functions ppf out flush redirects the standard pretty-printer output functions to the functions out and flush.

The out function performs all the pretty-printer string output. It is called with a string s, a start position p, and a number of characters n; it is supposed to output characters p to p + n - 1 of s.

The flush function is called whenever the pretty-printer is flushed (via conversion %!, or pretty-printing indications @? or @., or using low level functions print_flush or print_newline).

val pp_get_formatter_output_functions : formatter -> unit -> (string -> int -> int -> unit) * (unit -> unit)
val get_formatter_output_functions : unit -> (string -> int -> int -> unit) * (unit -> unit)

Return the current output functions of the standard pretty-printer.

Redefining formatter output

The Format module is versatile enough to let you completely redefine the meaning of pretty-printing output: you may provide your own functions to define how to handle indentation, line splitting, and even printing of all the characters that have to be printed!

Redefining output functions

type formatter_out_functions = {
   out_string : string -> int -> int -> unit;
   out_flush : unit -> unit;
   out_newline : unit -> unit;
   out_spaces : int -> unit;
   out_indent : int -> unit;
}

The set of output functions specific to a formatter:

  • the out_string function performs all the pretty-printer string output. It is called with a string s, a start position p, and a number of characters n; it is supposed to output characters p to p + n - 1 of s.
  • the out_flush function flushes the pretty-printer output device.
  • out_newline is called to open a new line when the pretty-printer splits the line.
  • the out_spaces function outputs spaces when a break hint leads to spaces instead of a line split. It is called with the number of spaces to output.
  • the out_indent function performs new line indentation when the pretty-printer splits the line. It is called with the indentation value of the new line.

By default:

  • fields out_string and out_flush are output device specific; (e.g. output_string and flush for a out_channel device, or Buffer.add_substring and ignore for a Buffer.t output device),
  • field out_newline is equivalent to out_string "\n" 0 1;
  • fields out_spaces and out_indent are equivalent to out_string (String.make n ' ') 0 n.
  • Since 4.01.0
val pp_set_formatter_out_functions : formatter -> formatter_out_functions -> unit
val set_formatter_out_functions : formatter_out_functions -> unit

pp_set_formatter_out_functions ppf out_funs Set all the pretty-printer output functions of ppf to those of argument out_funs,

This way, you can change the meaning of indentation (which can be something else than just printing space characters) and the meaning of new lines opening (which can be connected to any other action needed by the application at hand).

Reasonable defaults for functions out_spaces and out_newline are respectively out_funs.out_string (String.make n ' ') 0 n and out_funs.out_string "\n" 0 1.

  • Since 4.01.0
val pp_get_formatter_out_functions : formatter -> unit -> formatter_out_functions
val get_formatter_out_functions : unit -> formatter_out_functions

Return the current output functions of the pretty-printer, including line splitting and indentation functions. Useful to record the current setting and restore it afterwards.

  • Since 4.01.0

Redefining semantic tag operations

type formatter_stag_functions = {
   mark_open_stag : stag -> string;
   mark_close_stag : stag -> string;
   print_open_stag : stag -> unit;
   print_close_stag : stag -> unit;
}

The semantic tag handling functions specific to a formatter: mark versions are the 'tag-marking' functions that associate a string marker to a tag in order for the pretty-printing engine to write those markers as 0 length tokens in the output device of the formatter. print versions are the 'tag-printing' functions that can perform regular printing when a tag is closed or opened.

val pp_set_formatter_stag_functions : formatter -> formatter_stag_functions -> unit
val set_formatter_stag_functions : formatter_stag_functions -> unit

pp_set_formatter_stag_functions ppf tag_funs changes the meaning of opening and closing semantic tag operations to use the functions in tag_funs when printing on ppf.

When opening a semantic tag with name t, the string t is passed to the opening tag-marking function (the mark_open_stag field of the record tag_funs), that must return the opening tag marker for that name. When the next call to close_stag () happens, the semantic tag name t is sent back to the closing tag-marking function (the mark_close_stag field of record tag_funs), that must return a closing tag marker for that name.

The print_ field of the record contains the tag-printing functions that are called at tag opening and tag closing time, to output regular material in the pretty-printer queue.

val pp_get_formatter_stag_functions : formatter -> unit -> formatter_stag_functions
val get_formatter_stag_functions : unit -> formatter_stag_functions

Return the current semantic tag operation functions of the standard pretty-printer.

Defining formatters

Defining new formatters permits unrelated output of material in parallel on several output devices. All the parameters of a formatter are local to the formatter: right margin, maximum indentation limit, maximum number of pretty-printing boxes simultaneously open, ellipsis, and so on, are specific to each formatter and may be fixed independently.

For instance, given a Buffer.t buffer b, Format.formatter_of_buffer b returns a new formatter using buffer b as its output device. Similarly, given a out_channel output channel oc, Format.formatter_of_out_channel oc returns a new formatter using channel oc as its output device.

Alternatively, given out_funs, a complete set of output functions for a formatter, then Format.formatter_of_out_functions out_funs computes a new formatter using those functions for output.

val formatter_of_out_channel : out_channel -> formatter

formatter_of_out_channel oc returns a new formatter writing to the corresponding output channel oc.

val std_formatter : formatter

The standard formatter to write to standard output.

It is defined as Format.formatter_of_out_channel stdout.

val err_formatter : formatter

A formatter to write to standard error.

It is defined as Format.formatter_of_out_channel stderr.

val formatter_of_buffer : Buffer.t -> formatter

formatter_of_buffer b returns a new formatter writing to buffer b. At the end of pretty-printing, the formatter must be flushed using Format.pp_print_flush or Format.pp_print_newline, to print all the pending material into the buffer.

val stdbuf : Buffer.t

The string buffer in which str_formatter writes.

val str_formatter : formatter

A formatter to output to the Format.stdbuf string buffer.

str_formatter is defined as Format.formatter_of_buffer Format.stdbuf.

val flush_str_formatter : unit -> string

Returns the material printed with str_formatter, flushes the formatter and resets the corresponding buffer.

val make_formatter : (string -> int -> int -> unit) -> (unit -> unit) -> formatter

make_formatter out flush returns a new formatter that outputs with function out, and flushes with function flush.

For instance,

    make_formatter
      (Stdlib.output oc)
      (fun () -> Stdlib.flush oc) 

returns a formatter to the out_channel oc.

val formatter_of_out_functions : formatter_out_functions -> formatter

formatter_of_out_functions out_funs returns a new formatter that writes with the set of output functions out_funs.

See definition of type Format.formatter_out_functions for the meaning of argument out_funs.

  • Since 4.06.0

Symbolic pretty-printing

Symbolic pretty-printing is pretty-printing using a symbolic formatter, i.e. a formatter that outputs symbolic pretty-printing items.

When using a symbolic formatter, all regular pretty-printing activities occur but output material is symbolic and stored in a buffer of output items. At the end of pretty-printing, flushing the output buffer allows post-processing of symbolic output before performing low level output operations.

In practice, first define a symbolic output buffer b using:

  • let sob = make_symbolic_output_buffer (). Then define a symbolic formatter with:
  • let ppf = formatter_of_symbolic_output_buffer sob

Use symbolic formatter ppf as usual, and retrieve symbolic items at end of pretty-printing by flushing symbolic output buffer sob with:

  • flush_symbolic_output_buffer sob.
type symbolic_output_item = 
| Output_flush (*

symbolic flush command

*)
| Output_newline (*

symbolic newline command

*)
| Output_string of string (*

Output_string s: symbolic output for string s

*)
| Output_spaces of int (*

Output_spaces n: symbolic command to output n spaces

*)
| Output_indent of int (*

Output_indent i: symbolic indentation of size i

*)

Items produced by symbolic pretty-printers

  • Since 4.06.0
type symbolic_output_buffer 

The output buffer of a symbolic pretty-printer.

  • Since 4.06.0
val make_symbolic_output_buffer : unit -> symbolic_output_buffer

make_symbolic_output_buffer () returns a fresh buffer for symbolic output.

  • Since 4.06.0
val clear_symbolic_output_buffer : symbolic_output_buffer -> unit

clear_symbolic_output_buffer sob resets buffer sob.

  • Since 4.06.0
val get_symbolic_output_buffer : symbolic_output_buffer -> symbolic_output_item list

get_symbolic_output_buffer sob returns the contents of buffer sob.

  • Since 4.06.0
val flush_symbolic_output_buffer : symbolic_output_buffer -> symbolic_output_item list

flush_symbolic_output_buffer sob returns the contents of buffer sob and resets buffer sob. flush_symbolic_output_buffer sob is equivalent to let items = get_symbolic_output_buffer sob in
   clear_symbolic_output_buffer sob; items

  • Since 4.06.0
val add_symbolic_output_item : symbolic_output_buffer -> symbolic_output_item -> unit

add_symbolic_output_item sob itm adds item itm to buffer sob.

  • Since 4.06.0
val formatter_of_symbolic_output_buffer : symbolic_output_buffer -> formatter

formatter_of_symbolic_output_buffer sob returns a symbolic formatter that outputs to symbolic_output_buffer sob.

  • Since 4.06.0

Convenience formatting functions.

val pp_print_list : ?pp_sep:(formatter -> unit -> unit) ->
(formatter -> 'a -> unit) -> formatter -> 'a list -> unit

pp_print_list ?pp_sep pp_v ppf l prints items of list l, using pp_v to print each item, and calling pp_sep between items (pp_sep defaults to Format.pp_print_cut. Does nothing on empty lists.

  • Since 4.02.0
val pp_print_text : formatter -> string -> unit

pp_print_text ppf s prints s with spaces and newlines respectively printed using Format.pp_print_space and Format.pp_force_newline.

  • Since 4.02.0
val pp_print_option : ?none:(formatter -> unit -> unit) ->
(formatter -> 'a -> unit) -> formatter -> 'a option -> unit

pp_print_option ?none pp_v ppf o prints o on ppf using pp_v if o is Some v and none if it is None. none prints nothing by default.

  • Since 4.08
val pp_print_result : ok:(formatter -> 'a -> unit) ->
error:(formatter -> 'e -> unit) ->
formatter -> ('a, 'e) result -> unit

pp_print_result ~ok ~error ppf r prints r on ppf using ok if r is Ok _ and error if r is Error _.

  • Since 4.08

Formatted pretty-printing

Module Format provides a complete set of printf like functions for pretty-printing using format string specifications.

Specific annotations may be added in the format strings to give pretty-printing commands to the pretty-printing engine.

Those annotations are introduced in the format strings using the @ character. For instance, means a space break, @, means a cut, @[ opens a new box, and @] closes the last open box.

val fprintf : formatter -> ('a, formatter, unit) format -> 'a

fprintf ff fmt arg1 ... argN formats the arguments arg1 to argN according to the format string fmt, and outputs the resulting string on the formatter ff.

The format string fmt is a character string which contains three types of objects: plain characters and conversion specifications as specified in the Printf module, and pretty-printing indications specific to the Format module.

The pretty-printing indication characters are introduced by a @ character, and their meanings are:

  • @[: open a pretty-printing box. The type and offset of the box may be optionally specified with the following syntax: the < character, followed by an optional box type indication, then an optional integer offset, and the closing > character. Pretty-printing box type is one of h, v, hv, b, or hov. 'h' stands for an 'horizontal' pretty-printing box, 'v' stands for a 'vertical' pretty-printing box, 'hv' stands for an 'horizontal/vertical' pretty-printing box, 'b' stands for an 'horizontal-or-vertical' pretty-printing box demonstrating indentation, 'hov' stands a simple 'horizontal-or-vertical' pretty-printing box. For instance, @[<hov 2> opens an 'horizontal-or-vertical' pretty-printing box with indentation 2 as obtained with open_hovbox 2. For more details about pretty-printing boxes, see the various box opening functions open_*box.
  • @]: close the most recently opened pretty-printing box.
  • @,: output a 'cut' break hint, as with print_cut ().
  • : output a 'space' break hint, as with print_space ().
  • @;: output a 'full' break hint as with print_break. The nspaces and offset parameters of the break hint may be optionally specified with the following syntax: the < character, followed by an integer nspaces value, then an integer offset, and a closing > character. If no parameters are provided, the good break defaults to a 'space' break hint.
  • @.: flush the pretty-printer and split the line, as with print_newline ().
  • @<n>: print the following item as if it were of length n. Hence, printf "@<0>%s" arg prints arg as a zero length string. If @<n> is not followed by a conversion specification, then the following character of the format is printed as if it were of length n.
  • @{: open a semantic tag. The name of the tag may be optionally specified with the following syntax: the < character, followed by an optional string specification, and the closing > character. The string specification is any character string that does not contain the closing character '>'. If omitted, the tag name defaults to the empty string. For more details about semantic tags, see the functions Format.open_stag and Format.close_stag.
  • @}: close the most recently opened semantic tag.
  • @?: flush the pretty-printer as with print_flush (). This is equivalent to the conversion %!.
  • @\n: force a newline, as with force_newline (), not the normal way of pretty-printing, you should prefer using break hints inside a vertical pretty-printing box.

Note: To prevent the interpretation of a @ character as a pretty-printing indication, escape it with a % character. Old quotation mode @@ is deprecated since it is not compatible with formatted input interpretation of character '@'.

Example: printf "@[%s@ %d@]@." "x =" 1 is equivalent to open_box (); print_string "x ="; print_space ();
   print_int 1; close_box (); print_newline ()
. It prints x = 1 within a pretty-printing 'horizontal-or-vertical' box.

val printf : ('a, formatter, unit) format -> 'a

Same as fprintf above, but output on std_formatter.

val eprintf : ('a, formatter, unit) format -> 'a

Same as fprintf above, but output on err_formatter.

val sprintf : ('a, unit, string) format -> 'a

Same as printf above, but instead of printing on a formatter, returns a string containing the result of formatting the arguments. Note that the pretty-printer queue is flushed at the end of each call to sprintf.

In case of multiple and related calls to sprintf to output material on a single string, you should consider using fprintf with the predefined formatter str_formatter and call flush_str_formatter () to get the final result.

Alternatively, you can use Format.fprintf with a formatter writing to a buffer of your own: flushing the formatter and the buffer at the end of pretty-printing returns the desired string.

val asprintf : ('a, formatter, unit, string) format4 -> 'a

Same as printf above, but instead of printing on a formatter, returns a string containing the result of formatting the arguments. The type of asprintf is general enough to interact nicely with %a conversions.

  • Since 4.01.0
val dprintf : ('a, formatter, unit, formatter -> unit) format4 -> 'a

Same as Format.fprintf, except the formatter is the last argument. dprintf "..." a b c is a function of type formatter -> unit which can be given to a format specifier %t.

This can be used as a replacement for Format.asprintf to delay formatting decisions. Using the string returned by Format.asprintf in a formatting context forces formatting decisions to be taken in isolation, and the final string may be created prematurely. Format.dprintf allows delay of formatting decisions until the final formatting context is known. For example:

  let t = Format.dprintf "%i@ %i@ %i" 1 2 3 in
  ...
  Format.printf "@[<v>%t@]" t
  • Since 4.08.0
val ifprintf : formatter -> ('a, formatter, unit) format -> 'a

Same as fprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 3.10.0

Formatted Pretty-Printing with continuations.

val kfprintf : (formatter -> 'a) ->
formatter -> ('b, formatter, unit, 'a) format4 -> 'b

Same as fprintf above, but instead of returning immediately, passes the formatter to its first argument at the end of printing.

val kdprintf : ((formatter -> unit) -> 'a) ->
('b, formatter, unit, 'a) format4 -> 'b

Same as Format.dprintf above, but instead of returning immediately, passes the suspended printer to its first argument at the end of printing.

  • Since 4.08.0
val ikfprintf : (formatter -> 'a) ->
formatter -> ('b, formatter, unit, 'a) format4 -> 'b

Same as kfprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 3.12.0
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b

Same as sprintf above, but instead of returning the string, passes it to the first argument.

val kasprintf : (string -> 'a) -> ('b, formatter, unit, 'a) format4 -> 'b

Same as asprintf above, but instead of returning the string, passes it to the first argument.

  • Since 4.03

Deprecated

val bprintf : Buffer.t -> ('a, formatter, unit) format -> 'a
Deprecated.This function is error prone. Do not use it. This function is neither compositional nor incremental, since it flushes the pretty-printer queue at each call. If you need to print to some buffer b, you must first define a formatter writing to b, using let to_b = formatter_of_buffer b; then use regular calls to Format.fprintf with formatter to_b.
val kprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b
Deprecated.An alias for ksprintf.
val set_all_formatter_output_functions : out:(string -> int -> int -> unit) ->
flush:(unit -> unit) ->
newline:(unit -> unit) -> spaces:(int -> unit) -> unit
Deprecated.Subsumed by set_formatter_out_functions.
val get_all_formatter_output_functions : unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)
Deprecated.Subsumed by get_formatter_out_functions.
val pp_set_all_formatter_output_functions : formatter ->
out:(string -> int -> int -> unit) ->
flush:(unit -> unit) ->
newline:(unit -> unit) -> spaces:(int -> unit) -> unit
Deprecated.Subsumed by pp_set_formatter_out_functions.
val pp_get_all_formatter_output_functions : formatter ->
unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)
Deprecated.Subsumed by pp_get_formatter_out_functions.

String tags

val pp_open_tag : formatter -> tag -> unit
Deprecated.Subsumed by Format.pp_open_stag.
val open_tag : tag -> unit
Deprecated.Subsumed by Format.open_stag.
val pp_close_tag : formatter -> unit -> unit
Deprecated.Subsumed by Format.pp_close_stag.
val close_tag : unit -> unit
Deprecated.Subsumed by Format.close_stag.
type formatter_tag_functions = {
   mark_open_tag : tag -> string;
   mark_close_tag : tag -> string;
   print_open_tag : tag -> unit;
   print_close_tag : tag -> unit;
}
Deprecated.Subsumed by Format.formatter_stag_functions.
val pp_set_formatter_tag_functions : formatter -> formatter_tag_functions -> unit

This function will erase non-string tag formatting functions.

val set_formatter_tag_functions : formatter_tag_functions -> unit
Deprecated.Subsumed by Format.set_formatter_stag_functions.
val pp_get_formatter_tag_functions : formatter -> unit -> formatter_tag_functions
val get_formatter_tag_functions : unit -> formatter_tag_functions
Deprecated.Subsumed by Format.get_formatter_stag_functions.
ocaml-doc-4.11/ocaml.html/libref/Uchar.html0000644000175000017500000002763313717225553017511 0ustar mehdimehdi Uchar

Module Uchar

module Uchar: sig .. end

Unicode characters.

  • Since 4.03

type t 

The type for Unicode characters.

A value of this type represents a Unicode scalar value which is an integer in the ranges 0x0000...0xD7FF or 0xE000...0x10FFFF.

val min : t

min is U+0000.

val max : t

max is U+10FFFF.

val bom : t

bom is U+FEFF, the byte order mark (BOM) character.

  • Since 4.06.0
val rep : t

rep is U+FFFD, the replacement character.

  • Since 4.06.0
val succ : t -> t

succ u is the scalar value after u in the set of Unicode scalar values.

val pred : t -> t

pred u is the scalar value before u in the set of Unicode scalar values.

val is_valid : int -> bool

is_valid n is true iff n is a Unicode scalar value (i.e. in the ranges 0x0000...0xD7FF or 0xE000...0x10FFFF).

val of_int : int -> t

of_int i is i as a Unicode character.

val to_int : t -> int

to_int u is u as an integer.

val is_char : t -> bool

is_char u is true iff u is a latin1 OCaml character.

val of_char : char -> t

of_char c is c as a Unicode character.

val to_char : t -> char

to_char u is u as an OCaml latin1 character.

val equal : t -> t -> bool

equal u u' is u = u'.

val compare : t -> t -> int

compare u u' is Stdlib.compare u u'.

val hash : t -> int

hash u associates a non-negative integer to u.

ocaml-doc-4.11/ocaml.html/libref/type_Stack.html0000644000175000017500000002213313717225552020542 0ustar mehdimehdi Stack sig
  type 'a t
  exception Empty
  val create : unit -> 'Stack.t
  val push : '-> 'Stack.t -> unit
  val pop : 'Stack.t -> 'a
  val pop_opt : 'Stack.t -> 'a option
  val top : 'Stack.t -> 'a
  val top_opt : 'Stack.t -> 'a option
  val clear : 'Stack.t -> unit
  val copy : 'Stack.t -> 'Stack.t
  val is_empty : 'Stack.t -> bool
  val length : 'Stack.t -> int
  val iter : ('-> unit) -> 'Stack.t -> unit
  val fold : ('-> '-> 'b) -> '-> 'Stack.t -> 'b
  val to_seq : 'Stack.t -> 'Stdlib.Seq.t
  val add_seq : 'Stack.t -> 'Stdlib.Seq.t -> unit
  val of_seq : 'Stdlib.Seq.t -> 'Stack.t
end
ocaml-doc-4.11/ocaml.html/libref/type_CamlinternalLazy.html0000644000175000017500000001337513717225552022756 0ustar mehdimehdi CamlinternalLazy sig
  exception Undefined
  type 'a t = 'a lazy_t
  val force_lazy_block : 'a lazy_t -> 'a
  val force_val_lazy_block : 'a lazy_t -> 'a
  val force : 'a lazy_t -> 'a
  val force_val : 'a lazy_t -> 'a
end
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Map.S.html0000644000175000017500000003631213717225553021403 0ustar mehdimehdi MoreLabels.Map.S

Module type MoreLabels.Map.S

module type S = sig .. end

type key 
type +'a t 
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key:key ->
data:'a -> 'a t -> 'a t
val update : key:key ->
f:('a option -> 'a option) -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge : f:(key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t
val union : f:(key -> 'a -> 'a -> 'a option) ->
'a t -> 'a t -> 'a t
val compare : cmp:('a -> 'a -> int) ->
'a t -> 'a t -> int
val equal : cmp:('a -> 'a -> bool) ->
'a t -> 'a t -> bool
val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit
val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val for_all : f:(key -> 'a -> bool) -> 'a t -> bool
val exists : f:(key -> 'a -> bool) -> 'a t -> bool
val filter : f:(key -> 'a -> bool) ->
'a t -> 'a t
val filter_map : f:(key -> 'a -> 'b option) ->
'a t -> 'b t
val partition : f:(key -> 'a -> bool) ->
'a t -> 'a t * 'a t
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> key * 'a
val min_binding_opt : 'a t -> (key * 'a) option
val max_binding : 'a t -> key * 'a
val max_binding_opt : 'a t -> (key * 'a) option
val choose : 'a t -> key * 'a
val choose_opt : 'a t -> (key * 'a) option
val split : key ->
'a t ->
'a t * 'a option * 'a t
val find : key -> 'a t -> 'a
val find_opt : key -> 'a t -> 'a option
val find_first : f:(key -> bool) ->
'a t -> key * 'a
val find_first_opt : f:(key -> bool) ->
'a t -> (key * 'a) option
val find_last : f:(key -> bool) ->
'a t -> key * 'a
val find_last_opt : f:(key -> bool) ->
'a t -> (key * 'a) option
val map : f:('a -> 'b) -> 'a t -> 'b t
val mapi : f:(key -> 'a -> 'b) ->
'a t -> 'b t
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_from : key ->
'a t -> (key * 'a) Seq.t
val add_seq : (key * 'a) Seq.t ->
'a t -> 'a t
val of_seq : (key * 'a) Seq.t -> 'a t
ocaml-doc-4.11/ocaml.html/libref/Scanf.html0000644000175000017500000012643413717225552017477 0ustar mehdimehdi Scanf

Module Scanf

module Scanf: sig .. end

Formatted input functions.


Introduction

Functional input with format strings

The module Scanf provides formatted input functions or scanners.

The formatted input functions can read from any kind of input, including strings, files, or anything that can return characters. The more general source of characters is named a formatted input channel (or scanning buffer) and has type Scanf.Scanning.in_channel. The more general formatted input function reads from any scanning buffer and is named bscanf.

Generally speaking, the formatted input functions have 3 arguments:

  • the first argument is a source of characters for the input,
  • the second argument is a format string that specifies the values to read,
  • the third argument is a receiver function that is applied to the values read.

Hence, a typical call to the formatted input function Scanf.bscanf is bscanf ic fmt f, where:

  • fmt is a format string (the same format strings as those used to print material with module Printf or Format),
  • f is a function that has as many arguments as the number of values to read in the input according to fmt.

A simple example

As suggested above, the expression bscanf ic "%d" f reads a decimal integer n from the source of characters ic and returns f n.

For instance,

  • if we use stdin as the source of characters (Scanf.Scanning.stdin is the predefined formatted input channel that reads from standard input),
  • if we define the receiver f as let f x = x + 1,

then bscanf Scanning.stdin "%d" f reads an integer n from the standard input and returns f n (that is n + 1). Thus, if we evaluate bscanf stdin "%d" f, and then enter 41 at the keyboard, the result we get is 42.

Formatted input as a functional feature

The OCaml scanning facility is reminiscent of the corresponding C feature. However, it is also largely different, simpler, and yet more powerful: the formatted input functions are higher-order functionals and the parameter passing mechanism is just the regular function application not the variable assignment based mechanism which is typical for formatted input in imperative languages; the OCaml format strings also feature useful additions to easily define complex tokens; as expected within a functional programming language, the formatted input functions also support polymorphism, in particular arbitrary interaction with polymorphic user-defined scanners. Furthermore, the OCaml formatted input facility is fully type-checked at compile time.

Formatted input channel

module Scanning: sig .. end

Type of formatted input functions

type ('a, 'b, 'c, 'd) scanner = ('a, Scanning.in_channel, 'b, 'c, 'a -> 'd, 'd) format6 -> 'c 

The type of formatted input scanners: ('a, 'b, 'c, 'd) scanner is the type of a formatted input function that reads from some formatted input channel according to some format string; more precisely, if scan is some formatted input function, then scan
    ic fmt f
applies f to all the arguments specified by format string fmt, when scan has read those arguments from the Scanf.Scanning.in_channel formatted input channel ic.

For instance, the Scanf.scanf function below has type ('a, 'b, 'c, 'd) scanner, since it is a formatted input function that reads from Scanf.Scanning.stdin: scanf fmt f applies f to the arguments specified by fmt, reading those arguments from stdin as expected.

If the format fmt has some %r indications, the corresponding formatted input functions must be provided before receiver function f. For instance, if read_elem is an input function for values of type t, then bscanf ic "%r;" read_elem f reads a value v of type t followed by a ';' character, and returns f v.

  • Since 3.10.0
exception Scan_failure of string

When the input can not be read according to the format string specification, formatted input functions typically raise exception Scan_failure.

The general formatted input function

val bscanf : Scanning.in_channel -> ('a, 'b, 'c, 'd) scanner

bscanf ic fmt r1 ... rN f reads characters from the Scanf.Scanning.in_channel formatted input channel ic and converts them to values according to format string fmt. As a final step, receiver function f is applied to the values read and gives the result of the bscanf call.

For instance, if f is the function fun s i -> i + 1, then Scanf.sscanf "x= 1" "%s = %i" f returns 2.

Arguments r1 to rN are user-defined input functions that read the argument corresponding to the %r conversions specified in the format string.

Format string description

The format string is a character string which contains three types of objects:

The space character in format strings

As mentioned above, a plain character in the format string is just matched with the next character of the input; however, two characters are special exceptions to this rule: the space character (' ' or ASCII code 32) and the line feed character ('\n' or ASCII code 10). A space does not match a single space character, but any amount of 'whitespace' in the input. More precisely, a space inside the format string matches any number of tab, space, line feed and carriage return characters. Similarly, a line feed character in the format string matches either a single line feed or a carriage return followed by a line feed.

Matching any amount of whitespace, a space in the format string also matches no amount of whitespace at all; hence, the call bscanf ib
    "Price = %d $" (fun p -> p)
succeeds and returns 1 when reading an input with various whitespace in it, such as Price = 1 $, Price  =  1    $, or even Price=1$.

Conversion specifications in format strings

Conversion specifications consist in the % character, followed by an optional flag, an optional field width, and followed by one or two conversion characters.

The conversion characters and their meanings are:

  • d: reads an optionally signed decimal integer (0-9+).
  • i: reads an optionally signed integer (usual input conventions for decimal (0-9+), hexadecimal (0x[0-9a-f]+ and 0X[0-9A-F]+), octal (0o[0-7]+), and binary (0b[0-1]+) notations are understood).
  • u: reads an unsigned decimal integer.
  • x or X: reads an unsigned hexadecimal integer ([0-9a-fA-F]+).
  • o: reads an unsigned octal integer ([0-7]+).
  • s: reads a string argument that spreads as much as possible, until the following bounding condition holds: Hence, this conversion always succeeds: it returns an empty string if the bounding condition holds when the scan begins.
  • S: reads a delimited string argument (delimiters and special escaped characters follow the lexical conventions of OCaml).
  • c: reads a single character. To test the current input character without reading it, specify a null field width, i.e. use specification %0c. Raise Invalid_argument, if the field width specification is greater than 1.
  • C: reads a single delimited character (delimiters and special escaped characters follow the lexical conventions of OCaml).
  • f, e, E, g, G: reads an optionally signed floating-point number in decimal notation, in the style dddd.ddd
          e/E+-dd
    .
  • h, H: reads an optionally signed floating-point number in hexadecimal notation.
  • F: reads a floating point number according to the lexical conventions of OCaml (hence the decimal point is mandatory if the exponent part is not mentioned).
  • B: reads a boolean argument (true or false).
  • b: reads a boolean argument (for backward compatibility; do not use in new programs).
  • ld, li, lu, lx, lX, lo: reads an int32 argument to the format specified by the second letter for regular integers.
  • nd, ni, nu, nx, nX, no: reads a nativeint argument to the format specified by the second letter for regular integers.
  • Ld, Li, Lu, Lx, LX, Lo: reads an int64 argument to the format specified by the second letter for regular integers.
  • [ range ]: reads characters that matches one of the characters mentioned in the range of characters range (or not mentioned in it, if the range starts with ^). Reads a string that can be empty, if the next input character does not match the range. The set of characters from c1 to c2 (inclusively) is denoted by c1-c2. Hence, %[0-9] returns a string representing a decimal number or an empty string if no decimal digit is found; similarly, %[0-9a-f] returns a string of hexadecimal digits. If a closing bracket appears in a range, it must occur as the first character of the range (or just after the ^ in case of range negation); hence []] matches a ] character and [^]] matches any character that is not ]. Use %% and %@ to include a % or a @ in a range.
  • r: user-defined reader. Takes the next ri formatted input function and applies it to the scanning buffer ib to read the next argument. The input function ri must therefore have type Scanning.in_channel -> 'a and the argument read has type 'a.
  • { fmt %}: reads a format string argument. The format string read must have the same type as the format string specification fmt. For instance, "%{ %i %}" reads any format string that can read a value of type int; hence, if s is the string "fmt:\"number is %u\"", then Scanf.sscanf s "fmt: %{%i%}" succeeds and returns the format string "number is %u".
  • ( fmt %): scanning sub-format substitution. Reads a format string rf in the input, then goes on scanning with rf instead of scanning with fmt. The format string rf must have the same type as the format string specification fmt that it replaces. For instance, "%( %i %)" reads any format string that can read a value of type int. The conversion returns the format string read rf, and then a value read using rf. Hence, if s is the string "\"%4d\"1234.00", then Scanf.sscanf s "%(%i%)" (fun fmt i -> fmt, i) evaluates to ("%4d", 1234). This behaviour is not mere format substitution, since the conversion returns the format string read as additional argument. If you need pure format substitution, use special flag _ to discard the extraneous argument: conversion %_( fmt %) reads a format string rf and then behaves the same as format string rf. Hence, if s is the string "\"%4d\"1234.00", then Scanf.sscanf s "%_(%i%)" is simply equivalent to Scanf.sscanf "1234.00" "%4d".
  • l: returns the number of lines read so far.
  • n: returns the number of characters read so far.
  • N or L: returns the number of tokens read so far.
  • !: matches the end of input condition.
  • %: matches one % character in the input.
  • @: matches one @ character in the input.
  • ,: does nothing.

Following the % character that introduces a conversion, there may be the special flag _: the conversion that follows occurs as usual, but the resulting value is discarded. For instance, if f is the function fun i -> i + 1, and s is the string "x = 1", then Scanf.sscanf s "%_s = %i" f returns 2.

The field width is composed of an optional integer literal indicating the maximal width of the token to read. For instance, %6d reads an integer, having at most 6 decimal digits; %4f reads a float with at most 4 characters; and %8[\000-\255] returns the next 8 characters (or all the characters still available, if fewer than 8 characters are available in the input).

Notes:

  • as mentioned above, a %s conversion always succeeds, even if there is nothing to read in the input: in this case, it simply returns "".
  • in addition to the relevant digits, '_' characters may appear inside numbers (this is reminiscent to the usual OCaml lexical conventions). If stricter scanning is desired, use the range conversion facility instead of the number conversions.
  • the scanf facility is not intended for heavy duty lexical analysis and parsing. If it appears not expressive enough for your needs, several alternative exists: regular expressions (module Str), stream parsers, ocamllex-generated lexers, ocamlyacc-generated parsers.

Scanning indications in format strings

Scanning indications appear just after the string conversions %s and %[ range ] to delimit the end of the token. A scanning indication is introduced by a @ character, followed by some plain character c. It means that the string token should end just before the next matching c (which is skipped). If no c character is encountered, the string token spreads as much as possible. For instance, "%s@\t" reads a string up to the next tab character or to the end of input. If a @ character appears anywhere else in the format string, it is treated as a plain character.

Note:

  • As usual in format strings, % and @ characters must be escaped using %% and %@; this rule still holds within range specifications and scanning indications. For instance, format "%s@%%" reads a string up to the next % character, and format "%s@%@" reads a string up to the next @.
  • The scanning indications introduce slight differences in the syntax of Scanf format strings, compared to those used for the Printf module. However, the scanning indications are similar to those used in the Format module; hence, when producing formatted text to be scanned by Scanf.bscanf, it is wise to use printing functions from the Format module (or, if you need to use functions from Printf, banish or carefully double check the format strings that contain '@' characters).

Exceptions during scanning

Scanners may raise the following exceptions when the input cannot be read according to the format string:

  • Raise Failure if a conversion to a number is not possible.
  • Raise End_of_file if the end of input is encountered while some more characters are needed to read the current conversion specification.
  • Raise Invalid_argument if the format string is invalid.

Note:

  • as a consequence, scanning a %s conversion never raises exception End_of_file: if the end of input is reached the conversion succeeds and simply returns the characters read so far, or "" if none were ever read.

Specialised formatted input functions

val sscanf : string -> ('a, 'b, 'c, 'd) scanner

Same as Scanf.bscanf, but reads from the given string.

val scanf : ('a, 'b, 'c, 'd) scanner

Same as Scanf.bscanf, but reads from the predefined formatted input channel Scanf.Scanning.stdin that is connected to stdin.

val kscanf : Scanning.in_channel ->
(Scanning.in_channel -> exn -> 'd) -> ('a, 'b, 'c, 'd) scanner

Same as Scanf.bscanf, but takes an additional function argument ef that is called in case of error: if the scanning process or some conversion fails, the scanning function aborts and calls the error handling function ef with the formatted input channel and the exception that aborted the scanning process as arguments.

val ksscanf : string ->
(Scanning.in_channel -> exn -> 'd) -> ('a, 'b, 'c, 'd) scanner

Same as Scanf.kscanf but reads from the given string.

  • Since 4.02.0

Reading format strings from input

val bscanf_format : Scanning.in_channel ->
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
(('a, 'b, 'c, 'd, 'e, 'f) format6 -> 'g) -> 'g

bscanf_format ic fmt f reads a format string token from the formatted input channel ic, according to the given format string fmt, and applies f to the resulting format string value.

  • Since 3.09.0
  • Raises Scan_failure if the format string value read does not have the same type as fmt.
val sscanf_format : string ->
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
(('a, 'b, 'c, 'd, 'e, 'f) format6 -> 'g) -> 'g

Same as Scanf.bscanf_format, but reads from the given string.

  • Since 3.09.0
val format_from_string : string ->
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('a, 'b, 'c, 'd, 'e, 'f) format6

format_from_string s fmt converts a string argument to a format string, according to the given format string fmt.

  • Since 3.10.0
  • Raises Scan_failure if s, considered as a format string, does not have the same type as fmt.
val unescaped : string -> string

unescaped s return a copy of s with escape sequences (according to the lexical conventions of OCaml) replaced by their corresponding special characters. More precisely, Scanf.unescaped has the following property: for all string s, Scanf.unescaped (String.escaped s) = s.

Always return a copy of the argument, even if there is no escape sequence in the argument.

  • Since 4.00.0
  • Raises Scan_failure if s is not properly escaped (i.e. s has invalid escape sequences or special characters that are not properly escaped). For instance, Scanf.unescaped "\"" will fail.

Deprecated

val fscanf : in_channel -> ('a, 'b, 'c, 'd) scanner
Deprecated.Scanf.fscanf is error prone and deprecated since 4.03.0. This function violates the following invariant of the Scanf module: To preserve scanning semantics, all scanning functions defined in Scanf must read from a user defined Scanf.Scanning.in_channel formatted input channel. If you need to read from a in_channel input channel ic, simply define a Scanf.Scanning.in_channel formatted input channel as in let ib = Scanning.from_channel ic, then use Scanf.bscanf ib as usual.
val kfscanf : in_channel ->
(Scanning.in_channel -> exn -> 'd) -> ('a, 'b, 'c, 'd) scanner
Deprecated.Scanf.kfscanf is error prone and deprecated since 4.03.0.
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.Make.html0000644000175000017500000002626313717225553022732 0ustar mehdimehdi MoreLabels.Hashtbl.Make

Functor MoreLabels.Hashtbl.Make

module Make: 
functor (H : HashedType-> S with type key = H.t and type 'a t = 'a Hashtbl.Make(H).t
Parameters:
H : HashedType

type key 
type 'a t 
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key:key -> data:'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key:key -> data:'a -> unit
val mem : 'a t -> key -> bool
val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit
val filter_map_inplace : f:(key:key -> data:'a -> 'a option) ->
'a t -> unit
val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val length : 'a t -> int
val stats : 'a t -> MoreLabels.Hashtbl.statistics
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_keys : 'a t -> key Seq.t
val to_seq_values : 'a t -> 'a Seq.t
val add_seq : 'a t ->
(key * 'a) Seq.t -> unit
val replace_seq : 'a t ->
(key * 'a) Seq.t -> unit
val of_seq : (key * 'a) Seq.t -> 'a t
ocaml-doc-4.11/ocaml.html/libref/type_Bigarray.Array2.html0000644000175000017500000003717113717225552022404 0ustar mehdimehdi Bigarray.Array2 sig
  type ('a, 'b, 'c) t
  val create :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> int -> int -> ('a, 'b, 'c) Bigarray.Array2.t
  external dim1 : ('a, 'b, 'c) Bigarray.Array2.t -> int = "%caml_ba_dim_1"
  external dim2 : ('a, 'b, 'c) Bigarray.Array2.t -> int = "%caml_ba_dim_2"
  external kind : ('a, 'b, 'c) Bigarray.Array2.t -> ('a, 'b) Bigarray.kind
    = "caml_ba_kind"
  external layout : ('a, 'b, 'c) Bigarray.Array2.t -> 'Bigarray.layout
    = "caml_ba_layout"
  val change_layout :
    ('a, 'b, 'c) Bigarray.Array2.t ->
    'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array2.t
  val size_in_bytes : ('a, 'b, 'c) Bigarray.Array2.t -> int
  external get : ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> 'a
    = "%caml_ba_ref_2"
  external set : ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> '-> unit
    = "%caml_ba_set_2"
  external sub_left :
    ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t ->
    int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t
    = "caml_ba_sub"
  external sub_right :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t ->
    int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t
    = "caml_ba_sub"
  val slice_left :
    ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t ->
    int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t
  val slice_right :
    ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t ->
    int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t
  external blit :
    ('a, 'b, 'c) Bigarray.Array2.t -> ('a, 'b, 'c) Bigarray.Array2.t -> unit
    = "caml_ba_blit"
  external fill : ('a, 'b, 'c) Bigarray.Array2.t -> '-> unit
    = "caml_ba_fill"
  val of_array :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> 'a array array -> ('a, 'b, 'c) Bigarray.Array2.t
  external unsafe_get : ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> 'a
    = "%caml_ba_unsafe_ref_2"
  external unsafe_set :
    ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> '-> unit
    = "%caml_ba_unsafe_set_2"
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Lexing.html0000644000175000017500000001127013717225553022144 0ustar mehdimehdi Stdlib.Lexing (module Stdlib__lexing) ocaml-doc-4.11/ocaml.html/libref/CamlinternalFormatBasics.html0000644000175000017500000017513113717225552023352 0ustar mehdimehdi CamlinternalFormatBasics

Module CamlinternalFormatBasics

module CamlinternalFormatBasics: sig .. end

type padty = 
| Left
| Right
| Zeros
type int_conv = 
| Int_d
| Int_pd
| Int_sd
| Int_i
| Int_pi
| Int_si
| Int_x
| Int_Cx
| Int_X
| Int_CX
| Int_o
| Int_Co
| Int_u
| Int_Cd
| Int_Ci
| Int_Cu
type float_flag_conv = 
| Float_flag_
| Float_flag_p
| Float_flag_s
type float_kind_conv = 
| Float_f
| Float_e
| Float_E
| Float_g
| Float_G
| Float_F
| Float_h
| Float_H
| Float_CF
type float_conv = float_flag_conv *
float_kind_conv
type char_set = string 
type counter = 
| Line_counter
| Char_counter
| Token_counter
type ('a, 'b) padding = 
| No_padding : ('a0, 'a0) padding
| Lit_padding : padty * int -> ('a1, 'a1) padding
| Arg_padding : padty -> (int -> 'a2, 'a2) padding
type pad_option = int option 
type ('a, 'b) precision = 
| No_precision : ('a0, 'a0) precision
| Lit_precision : int -> ('a1, 'a1) precision
| Arg_precision : (int -> 'a2, 'a2) precision
type prec_option = int option 
type ('a, 'b, 'c) custom_arity = 
| Custom_zero : ('a0, string, 'a0) custom_arity
| Custom_succ : ('a1, 'b0, 'c0) custom_arity -> ('a1, 'x -> 'b0, 'x -> 'c0) custom_arity
type block_type = 
| Pp_hbox
| Pp_vbox
| Pp_hvbox
| Pp_hovbox
| Pp_box
| Pp_fits
type formatting_lit = 
| Close_box
| Close_tag
| Break of string * int * int
| FFlush
| Force_newline
| Flush_newline
| Magic_size of string * int
| Escaped_at
| Escaped_percent
| Scan_indic of char
type ('a, 'b, 'c, 'd, 'e, 'f) formatting_gen = 
| Open_tag : ('a0, 'b0, 'c0, 'd0, 'e0, 'f0) format6 -> ('a0, 'b0, 'c0, 'd0, 'e0, 'f0) formatting_gen
| Open_box : ('a1, 'b1, 'c1, 'd1, 'e1, 'f1) format6 -> ('a1, 'b1, 'c1, 'd1, 'e1, 'f1) formatting_gen
type ('a, 'b, 'c, 'd, 'e, 'f) fmtty = ('a, 'b, 'c, 'd, 'e, 'f, 'a, 'b, 'c, 'd, 'e, 'f)
fmtty_rel
type ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2) fmtty_rel = 
| Char_ty : ('a10, 'b10, 'c10, 'd10, 'e10, 'f10, 'a20, 'b20, 'c20, 'd20, 'e20, 'f20)
fmtty_rel
-> (char -> 'a10, 'b10, 'c10, 'd10, 'e10, 'f10, char -> 'a20, 'b20, 'c20, 'd20,
'e20, 'f20)
fmtty_rel
| String_ty : ('a11, 'b11, 'c11, 'd11, 'e11, 'f11, 'a21, 'b21, 'c21, 'd21, 'e21, 'f21)
fmtty_rel
-> (string -> 'a11, 'b11, 'c11, 'd11, 'e11, 'f11, string -> 'a21, 'b21, 'c21,
'd21, 'e21, 'f21)
fmtty_rel
| Int_ty : ('a12, 'b12, 'c12, 'd12, 'e12, 'f12, 'a22, 'b22, 'c22, 'd22, 'e22, 'f22)
fmtty_rel
-> (int -> 'a12, 'b12, 'c12, 'd12, 'e12, 'f12, int -> 'a22, 'b22, 'c22, 'd22,
'e22, 'f22)
fmtty_rel
| Int32_ty : ('a13, 'b13, 'c13, 'd13, 'e13, 'f13, 'a23, 'b23, 'c23, 'd23, 'e23, 'f23)
fmtty_rel
-> (int32 -> 'a13, 'b13, 'c13, 'd13, 'e13, 'f13, int32 -> 'a23, 'b23, 'c23,
'd23, 'e23, 'f23)
fmtty_rel
| Nativeint_ty : ('a14, 'b14, 'c14, 'd14, 'e14, 'f14, 'a24, 'b24, 'c24, 'd24, 'e24, 'f24)
fmtty_rel
-> (nativeint -> 'a14, 'b14, 'c14, 'd14, 'e14, 'f14, nativeint -> 'a24, 'b24,
'c24, 'd24, 'e24, 'f24)
fmtty_rel
| Int64_ty : ('a15, 'b15, 'c15, 'd15, 'e15, 'f15, 'a25, 'b25, 'c25, 'd25, 'e25, 'f25)
fmtty_rel
-> (int64 -> 'a15, 'b15, 'c15, 'd15, 'e15, 'f15, int64 -> 'a25, 'b25, 'c25,
'd25, 'e25, 'f25)
fmtty_rel
| Float_ty : ('a16, 'b16, 'c16, 'd16, 'e16, 'f16, 'a26, 'b26, 'c26, 'd26, 'e26, 'f26)
fmtty_rel
-> (float -> 'a16, 'b16, 'c16, 'd16, 'e16, 'f16, float -> 'a26, 'b26, 'c26,
'd26, 'e26, 'f26)
fmtty_rel
| Bool_ty : ('a17, 'b17, 'c17, 'd17, 'e17, 'f17, 'a27, 'b27, 'c27, 'd27, 'e27, 'f27)
fmtty_rel
-> (bool -> 'a17, 'b17, 'c17, 'd17, 'e17, 'f17, bool -> 'a27, 'b27, 'c27, 'd27,
'e27, 'f27)
fmtty_rel
| Format_arg_ty : ('g, 'h, 'i, 'j, 'k, 'l) fmtty
* ('a18, 'b18, 'c18, 'd18, 'e18, 'f18, 'a28, 'b28, 'c28, 'd28, 'e28, 'f28)
fmtty_rel
-> (('g, 'h, 'i, 'j, 'k, 'l) format6 -> 'a18, 'b18,
'c18, 'd18, 'e18, 'f18,
('g, 'h, 'i, 'j, 'k, 'l) format6 -> 'a28, 'b28,
'c28, 'd28, 'e28, 'f28)
fmtty_rel
| Format_subst_ty : ('g0, 'h0, 'i0, 'j0, 'k0, 'l0, 'g1, 'b19, 'c19, 'j1, 'd19, 'a19)
fmtty_rel
* ('g0, 'h0, 'i0, 'j0, 'k0, 'l0, 'g2, 'b29, 'c29, 'j2, 'd29, 'a29)
fmtty_rel
* ('a19, 'b19, 'c19, 'd19, 'e19, 'f19, 'a29, 'b29, 'c29, 'd29, 'e29, 'f29)
fmtty_rel
-> (('g0, 'h0, 'i0, 'j0, 'k0, 'l0) format6 -> 'g1,
'b19, 'c19, 'j1, 'e19, 'f19,
('g0, 'h0, 'i0, 'j0, 'k0, 'l0) format6 -> 'g2,
'b29, 'c29, 'j2, 'e29, 'f29)
fmtty_rel
| Alpha_ty : ('a110, 'b110, 'c110, 'd110, 'e110, 'f110, 'a210, 'b210, 'c210, 'd210, 'e210,
'f210)
fmtty_rel
-> (('b110 -> 'x -> 'c110) -> 'x -> 'a110, 'b110, 'c110, 'd110, 'e110, 'f110,
('b210 -> 'x -> 'c210) -> 'x -> 'a210, 'b210, 'c210, 'd210, 'e210, 'f210)
fmtty_rel
| Theta_ty : ('a111, 'b111, 'c111, 'd111, 'e111, 'f111, 'a211, 'b211, 'c211, 'd211, 'e211,
'f211)
fmtty_rel
-> (('b111 -> 'c111) -> 'a111, 'b111, 'c111, 'd111, 'e111, 'f111,
('b211 -> 'c211) -> 'a211, 'b211, 'c211, 'd211, 'e211, 'f211)
fmtty_rel
| Any_ty : ('a112, 'b112, 'c112, 'd112, 'e112, 'f112, 'a212, 'b212, 'c212, 'd212, 'e212,
'f212)
fmtty_rel
-> ('x0 -> 'a112, 'b112, 'c112, 'd112, 'e112, 'f112, 'x0 -> 'a212, 'b212, 'c212,
'd212, 'e212, 'f212)
fmtty_rel
| Reader_ty : ('a113, 'b113, 'c113, 'd113, 'e113, 'f113, 'a213, 'b213, 'c213, 'd213, 'e213,
'f213)
fmtty_rel
-> ('x1 -> 'a113, 'b113, 'c113, ('b113 -> 'x1) -> 'd113, 'e113, 'f113,
'x1 -> 'a213, 'b213, 'c213, ('b213 -> 'x1) -> 'd213, 'e213, 'f213)
fmtty_rel
| Ignored_reader_ty : ('a114, 'b114, 'c114, 'd114, 'e114, 'f114, 'a214, 'b214, 'c214, 'd214, 'e214,
'f214)
fmtty_rel
-> ('a114, 'b114, 'c114, ('b114 -> 'x2) -> 'd114, 'e114, 'f114, 'a214, 'b214,
'c214, ('b214 -> 'x2) -> 'd214, 'e214, 'f214)
fmtty_rel
| End_of_fmtty : ('f115, 'b115, 'c115, 'd115, 'd115, 'f115, 'f215, 'b215, 'c215, 'd215, 'd215,
'f215)
fmtty_rel
type ('a, 'b, 'c, 'd, 'e, 'f) fmt = 
| Char : ('a0, 'b0, 'c0, 'd0, 'e0, 'f0) fmt -> (char -> 'a0, 'b0, 'c0, 'd0, 'e0, 'f0) fmt
| Caml_char : ('a1, 'b1, 'c1, 'd1, 'e1, 'f1) fmt -> (char -> 'a1, 'b1, 'c1, 'd1, 'e1, 'f1) fmt
| String : ('x, string -> 'a2) padding
* ('a2, 'b2, 'c2, 'd2, 'e2, 'f2) fmt
-> ('x, 'b2, 'c2, 'd2, 'e2, 'f2) fmt
| Caml_string : ('x0, string -> 'a3) padding
* ('a3, 'b3, 'c3, 'd3, 'e3, 'f3) fmt
-> ('x0, 'b3, 'c3, 'd3, 'e3, 'f3) fmt
| Int : int_conv
* ('x1, 'y) padding
* ('y, int -> 'a4) precision
* ('a4, 'b4, 'c4, 'd4, 'e4, 'f4) fmt
-> ('x1, 'b4, 'c4, 'd4, 'e4, 'f4) fmt
| Int32 : int_conv
* ('x2, 'y0) padding
* ('y0, int32 -> 'a5) precision
* ('a5, 'b5, 'c5, 'd5, 'e5, 'f5) fmt
-> ('x2, 'b5, 'c5, 'd5, 'e5, 'f5) fmt
| Nativeint : int_conv
* ('x3, 'y1) padding
* ('y1, nativeint -> 'a6) precision
* ('a6, 'b6, 'c6, 'd6, 'e6, 'f6) fmt
-> ('x3, 'b6, 'c6, 'd6, 'e6, 'f6) fmt
| Int64 : int_conv
* ('x4, 'y2) padding
* ('y2, int64 -> 'a7) precision
* ('a7, 'b7, 'c7, 'd7, 'e7, 'f7) fmt
-> ('x4, 'b7, 'c7, 'd7, 'e7, 'f7) fmt
| Float : float_conv
* ('x5, 'y3) padding
* ('y3, float -> 'a8) precision
* ('a8, 'b8, 'c8, 'd8, 'e8, 'f8) fmt
-> ('x5, 'b8, 'c8, 'd8, 'e8, 'f8) fmt
| Bool : ('x6, bool -> 'a9) padding
* ('a9, 'b9, 'c9, 'd9, 'e9, 'f9) fmt
-> ('x6, 'b9, 'c9, 'd9, 'e9, 'f9) fmt
| Flush : ('a10, 'b10, 'c10, 'd10, 'e10, 'f10) fmt -> ('a10, 'b10, 'c10, 'd10, 'e10, 'f10) fmt
| String_literal : string * ('a11, 'b11, 'c11, 'd11, 'e11, 'f11) fmt -> ('a11, 'b11, 'c11, 'd11, 'e11, 'f11) fmt
| Char_literal : char * ('a12, 'b12, 'c12, 'd12, 'e12, 'f12) fmt -> ('a12, 'b12, 'c12, 'd12, 'e12, 'f12) fmt
| Format_arg : pad_option
* ('g, 'h, 'i, 'j, 'k, 'l) fmtty
* ('a13, 'b13, 'c13, 'd13, 'e13, 'f13) fmt
-> (('g, 'h, 'i, 'j, 'k, 'l) format6 -> 'a13, 'b13,
'c13, 'd13, 'e13, 'f13)
fmt
| Format_subst : pad_option
* ('g0, 'h0, 'i0, 'j0, 'k0, 'l0, 'g2, 'b14, 'c14, 'j2, 'd14, 'a14)
fmtty_rel
* ('a14, 'b14, 'c14, 'd14, 'e14, 'f14) fmt
-> (('g0, 'h0, 'i0, 'j0, 'k0, 'l0) format6 -> 'g2,
'b14, 'c14, 'j2, 'e14, 'f14)
fmt
| Alpha : ('a15, 'b15, 'c15, 'd15, 'e15, 'f15) fmt -> (('b15 -> 'x7 -> 'c15) -> 'x7 -> 'a15, 'b15, 'c15, 'd15, 'e15, 'f15)
fmt
| Theta : ('a16, 'b16, 'c16, 'd16, 'e16, 'f16) fmt -> (('b16 -> 'c16) -> 'a16, 'b16, 'c16, 'd16, 'e16, 'f16)
fmt
| Formatting_lit : formatting_lit
* ('a17, 'b17, 'c17, 'd17, 'e17, 'f17) fmt
-> ('a17, 'b17, 'c17, 'd17, 'e17, 'f17) fmt
| Formatting_gen : ('a18, 'b18, 'c18, 'd18, 'e18, 'f18) formatting_gen
* ('f18, 'b18, 'c18, 'e18, 'e20, 'f20) fmt
-> ('a18, 'b18, 'c18, 'd18, 'e20, 'f20) fmt
| Reader : ('a19, 'b19, 'c19, 'd19, 'e19, 'f19) fmt -> ('x8 -> 'a19, 'b19, 'c19, ('b19 -> 'x8) -> 'd19, 'e19, 'f19)
fmt
| Scan_char_set : pad_option * char_set
* ('a20, 'b20, 'c20, 'd20, 'e21, 'f21) fmt
-> (string -> 'a20, 'b20, 'c20, 'd20, 'e21, 'f21) fmt
| Scan_get_counter : counter
* ('a21, 'b21, 'c21, 'd21, 'e22, 'f22) fmt
-> (int -> 'a21, 'b21, 'c21, 'd21, 'e22, 'f22) fmt
| Scan_next_char : ('a22, 'b22, 'c22, 'd22, 'e23, 'f23) fmt -> (char -> 'a22, 'b22, 'c22, 'd22, 'e23, 'f23) fmt
| Ignored_param : ('a23, 'b23, 'c23, 'd23, 'y4, 'x9) ignored
* ('x9, 'b23, 'c23, 'y4, 'e24, 'f24) fmt
-> ('a23, 'b23, 'c23, 'd23, 'e24, 'f24) fmt
| Custom : ('a24, 'x10, 'y5) custom_arity * (unit -> 'x10)
* ('a24, 'b24, 'c24, 'd24, 'e25, 'f25) fmt
-> ('y5, 'b24, 'c24, 'd24, 'e25, 'f25) fmt
| End_of_format : ('f26, 'b25, 'c25, 'e26, 'e26, 'f26) fmt

List of format elements.

type ('a, 'b, 'c, 'd, 'e, 'f) ignored = 
| Ignored_char : ('a0, 'b0, 'c0, 'd0, 'd0, 'a0) ignored
| Ignored_caml_char : ('a1, 'b1, 'c1, 'd1, 'd1, 'a1) ignored
| Ignored_string : pad_option -> ('a2, 'b2, 'c2, 'd2, 'd2, 'a2) ignored
| Ignored_caml_string : pad_option -> ('a3, 'b3, 'c3, 'd3, 'd3, 'a3) ignored
| Ignored_int : int_conv * pad_option -> ('a4, 'b4, 'c4, 'd4, 'd4, 'a4) ignored
| Ignored_int32 : int_conv * pad_option -> ('a5, 'b5, 'c5, 'd5, 'd5, 'a5) ignored
| Ignored_nativeint : int_conv * pad_option -> ('a6, 'b6, 'c6, 'd6, 'd6, 'a6) ignored
| Ignored_int64 : int_conv * pad_option -> ('a7, 'b7, 'c7, 'd7, 'd7, 'a7) ignored
| Ignored_float : pad_option * prec_option -> ('a8, 'b8, 'c8, 'd8, 'd8, 'a8) ignored
| Ignored_bool : pad_option -> ('a9, 'b9, 'c9, 'd9, 'd9, 'a9) ignored
| Ignored_format_arg : pad_option
* ('g, 'h, 'i, 'j, 'k, 'l) fmtty
-> ('a10, 'b10, 'c10, 'd10, 'd10, 'a10) ignored
| Ignored_format_subst : pad_option
* ('a11, 'b11, 'c11, 'd11, 'e0, 'f0) fmtty
-> ('a11, 'b11, 'c11, 'd11, 'e0, 'f0) ignored
| Ignored_reader : ('a12, 'b12, 'c12, ('b12 -> 'x) -> 'd12, 'd12, 'a12)
ignored
| Ignored_scan_char_set : pad_option * char_set -> ('a13, 'b13, 'c13, 'd13, 'd13, 'a13) ignored
| Ignored_scan_get_counter : counter -> ('a14, 'b14, 'c14, 'd14, 'd14, 'a14) ignored
| Ignored_scan_next_char : ('a15, 'b15, 'c15, 'd15, 'd15, 'a15) ignored
type ('a, 'b, 'c, 'd, 'e, 'f) format6 = 
| Format of ('a, 'b, 'c, 'd, 'e, 'f) fmt * string
val concat_fmtty : ('g1, 'b1, 'c1, 'j1, 'd1, 'a1, 'g2, 'b2, 'c2, 'j2, 'd2, 'a2)
fmtty_rel ->
('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
fmtty_rel ->
('g1, 'b1, 'c1, 'j1, 'e1, 'f1, 'g2, 'b2, 'c2, 'j2, 'e2, 'f2)
fmtty_rel
val erase_rel : ('a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'l)
fmtty_rel ->
('a, 'b, 'c, 'd, 'e, 'f) fmtty
val concat_fmt : ('a, 'b, 'c, 'd, 'e, 'f) fmt ->
('f, 'b, 'c, 'e, 'g, 'h) fmt ->
('a, 'b, 'c, 'd, 'g, 'h) fmt
ocaml-doc-4.11/ocaml.html/libref/type_Weak.S.html0000644000175000017500000002223513717225553020571 0ustar mehdimehdi Weak.S sig
  type data
  type t
  val create : int -> Weak.S.t
  val clear : Weak.S.t -> unit
  val merge : Weak.S.t -> Weak.S.data -> Weak.S.data
  val add : Weak.S.t -> Weak.S.data -> unit
  val remove : Weak.S.t -> Weak.S.data -> unit
  val find : Weak.S.t -> Weak.S.data -> Weak.S.data
  val find_opt : Weak.S.t -> Weak.S.data -> Weak.S.data option
  val find_all : Weak.S.t -> Weak.S.data -> Weak.S.data list
  val mem : Weak.S.t -> Weak.S.data -> bool
  val iter : (Weak.S.data -> unit) -> Weak.S.t -> unit
  val fold : (Weak.S.data -> '-> 'a) -> Weak.S.t -> '-> 'a
  val count : Weak.S.t -> int
  val stats : Weak.S.t -> int * int * int * int * int * int
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Int.html0000644000175000017500000001126213717225553021451 0ustar mehdimehdi Stdlib.Int (module Stdlib__int) ocaml-doc-4.11/ocaml.html/libref/index_attributes.html0000644000175000017500000001134213717225553022012 0ustar mehdimehdi Index of class attributes

Index of class attributes

ocaml-doc-4.11/ocaml.html/libref/UnixLabels.LargeFile.html0000644000175000017500000003360513717225553022342 0ustar mehdimehdi UnixLabels.LargeFile

Module UnixLabels.LargeFile

module LargeFile: sig .. end

File operations on large files. This sub-module provides 64-bit variants of the functions UnixLabels.lseek (for positioning a file descriptor), UnixLabels.truncate and UnixLabels.ftruncate (for changing the size of a file), and UnixLabels.stat, UnixLabels.lstat and UnixLabels.fstat (for obtaining information on files). These alternate functions represent positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), thus allowing operating on files whose sizes are greater than max_int.


val lseek : UnixLabels.file_descr -> int64 -> mode:UnixLabels.seek_command -> int64
val truncate : string -> len:int64 -> unit
val ftruncate : UnixLabels.file_descr -> len:int64 -> unit
type stats = Unix.LargeFile.stats = {
   st_dev : int; (*

Device number

*)
   st_ino : int; (*

Inode number

*)
   st_kind : UnixLabels.file_kind; (*

Kind of the file

*)
   st_perm : UnixLabels.file_perm; (*

Access rights

*)
   st_nlink : int; (*

Number of links

*)
   st_uid : int; (*

User id of the owner

*)
   st_gid : int; (*

Group ID of the file's group

*)
   st_rdev : int; (*

Device ID (if special file)

*)
   st_size : int64; (*

Size in bytes

*)
   st_atime : float; (*

Last access time

*)
   st_mtime : float; (*

Last modification time

*)
   st_ctime : float; (*

Last status change time

*)
}
val stat : string -> stats
val lstat : string -> stats
val fstat : UnixLabels.file_descr -> stats
ocaml-doc-4.11/ocaml.html/libref/type_StdLabels.List.html0000644000175000017500000001126513717225553022271 0ustar mehdimehdi StdLabels.List (module ListLabels) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Nativeint.html0000644000175000017500000005231513717225553021623 0ustar mehdimehdi Stdlib.Nativeint

Module Stdlib.Nativeint

module Nativeint: Nativeint

val zero : nativeint

The native integer 0.

val one : nativeint

The native integer 1.

val minus_one : nativeint

The native integer -1.

val neg : nativeint -> nativeint

Unary negation.

val add : nativeint -> nativeint -> nativeint

Addition.

val sub : nativeint -> nativeint -> nativeint

Subtraction.

val mul : nativeint -> nativeint -> nativeint

Multiplication.

val div : nativeint -> nativeint -> nativeint

Integer division. This division rounds the real quotient of its arguments towards zero, as specified for (/).

  • Raises Division_by_zero if the second argument is zero.
val unsigned_div : nativeint -> nativeint -> nativeint

Same as Nativeint.div, except that arguments and result are interpreted as unsigned native integers.

  • Since 4.08.0
val rem : nativeint -> nativeint -> nativeint

Integer remainder. If y is not zero, the result of Nativeint.rem x y satisfies the following properties: Nativeint.zero <= Nativeint.rem x y < Nativeint.abs y and x = Nativeint.add (Nativeint.mul (Nativeint.div x y) y)
                      (Nativeint.rem x y)
. If y = 0, Nativeint.rem x y raises Division_by_zero.

val unsigned_rem : nativeint -> nativeint -> nativeint

Same as Nativeint.rem, except that arguments and result are interpreted as unsigned native integers.

  • Since 4.08.0
val succ : nativeint -> nativeint

Successor. Nativeint.succ x is Nativeint.add x Nativeint.one.

val pred : nativeint -> nativeint

Predecessor. Nativeint.pred x is Nativeint.sub x Nativeint.one.

val abs : nativeint -> nativeint

Return the absolute value of its argument.

val size : int

The size in bits of a native integer. This is equal to 32 on a 32-bit platform and to 64 on a 64-bit platform.

val max_int : nativeint

The greatest representable native integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a 64-bit platform.

val min_int : nativeint

The smallest representable native integer, either -231 on a 32-bit platform, or -263 on a 64-bit platform.

val logand : nativeint -> nativeint -> nativeint

Bitwise logical and.

val logor : nativeint -> nativeint -> nativeint

Bitwise logical or.

val logxor : nativeint -> nativeint -> nativeint

Bitwise logical exclusive or.

val lognot : nativeint -> nativeint

Bitwise logical negation.

val shift_left : nativeint -> int -> nativeint

Nativeint.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val shift_right : nativeint -> int -> nativeint

Nativeint.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= bitsize.

val shift_right_logical : nativeint -> int -> nativeint

Nativeint.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= bitsize.

val of_int : int -> nativeint

Convert the given integer (type int) to a native integer (type nativeint).

val to_int : nativeint -> int

Convert the given native integer (type nativeint) to an integer (type int). The high-order bit is lost during the conversion.

val unsigned_to_int : nativeint -> int option

Same as Nativeint.to_int, but interprets the argument as an unsigned integer. Returns None if the unsigned value of the argument cannot fit into an int.

  • Since 4.08.0
val of_float : float -> nativeint

Convert the given floating-point number to a native integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Nativeint.min_int, Nativeint.max_int].

val to_float : nativeint -> float

Convert the given native integer to a floating-point number.

val of_int32 : int32 -> nativeint

Convert the given 32-bit integer (type int32) to a native integer.

val to_int32 : nativeint -> int32

Convert the given native integer to a 32-bit integer (type int32). On 64-bit platforms, the 64-bit native integer is taken modulo 232, i.e. the top 32 bits are lost. On 32-bit platforms, the conversion is exact.

val of_string : string -> nativeint

Convert the given string to a native integer. The string is read in decimal (by default, or if the string begins with 0u) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively.

The 0u prefix reads the input as an unsigned integer in the range [0, 2*Nativeint.max_int+1]. If the input exceeds Nativeint.max_int it is converted to the signed integer Int64.min_int + input - Nativeint.max_int - 1.

  • Raises Failure if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type nativeint.
val of_string_opt : string -> nativeint option

Same as of_string, but return None instead of raising.

  • Since 4.05
val to_string : nativeint -> string

Return the string representation of its argument, in decimal.

type t = nativeint 

An alias for the type of native integers.

val compare : t -> t -> int

The comparison function for native integers, with the same specification as compare. Along with the type t, this function compare allows the module Nativeint to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Nativeint.compare, except that arguments are interpreted as unsigned native integers.

  • Since 4.08.0
val equal : t -> t -> bool

The equal function for native ints.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Set.Make.html0000644000175000017500000003260013717225553023131 0ustar mehdimehdi MoreLabels.Set.Make functor (Ord : OrderedType->
  sig
    type elt = Ord.t
    and t = Set.Make(Ord).t
    val empty : t
    val is_empty : t -> bool
    val mem : elt -> t -> bool
    val add : elt -> t -> t
    val singleton : elt -> t
    val remove : elt -> t -> t
    val union : t -> t -> t
    val inter : t -> t -> t
    val disjoint : t -> t -> bool
    val diff : t -> t -> t
    val compare : t -> t -> int
    val equal : t -> t -> bool
    val subset : t -> t -> bool
    val iter : f:(elt -> unit) -> t -> unit
    val map : f:(elt -> elt) -> t -> t
    val fold : f:(elt -> '-> 'a) -> t -> init:'-> 'a
    val for_all : f:(elt -> bool) -> t -> bool
    val exists : f:(elt -> bool) -> t -> bool
    val filter : f:(elt -> bool) -> t -> t
    val filter_map : f:(elt -> elt option) -> t -> t
    val partition : f:(elt -> bool) -> t -> t * t
    val cardinal : t -> int
    val elements : t -> elt list
    val min_elt : t -> elt
    val min_elt_opt : t -> elt option
    val max_elt : t -> elt
    val max_elt_opt : t -> elt option
    val choose : t -> elt
    val choose_opt : t -> elt option
    val split : elt -> t -> t * bool * t
    val find : elt -> t -> elt
    val find_opt : elt -> t -> elt option
    val find_first : f:(elt -> bool) -> t -> elt
    val find_first_opt : f:(elt -> bool) -> t -> elt option
    val find_last : f:(elt -> bool) -> t -> elt
    val find_last_opt : f:(elt -> bool) -> t -> elt option
    val of_list : elt list -> t
    val to_seq_from : elt -> t -> elt Seq.t
    val to_seq : t -> elt Seq.t
    val add_seq : elt Seq.t -> t -> t
    val of_seq : elt Seq.t -> t
  end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.html0000644000175000017500000032355113717225552021427 0ustar mehdimehdi Ephemeron sig
  module type S =
    sig
      type key
      type 'a t
      val create : int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
      val clean : 'a t -> unit
      val stats_alive : 'a t -> Stdlib.Hashtbl.statistics
    end
  module type SeededS =
    sig
      type key
      type 'a t
      val create : ?random:bool -> int -> 'a t
      val clear : 'a t -> unit
      val reset : 'a t -> unit
      val copy : 'a t -> 'a t
      val add : 'a t -> key -> '-> unit
      val remove : 'a t -> key -> unit
      val find : 'a t -> key -> 'a
      val find_opt : 'a t -> key -> 'a option
      val find_all : 'a t -> key -> 'a list
      val replace : 'a t -> key -> '-> unit
      val mem : 'a t -> key -> bool
      val iter : (key -> '-> unit) -> 'a t -> unit
      val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
      val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
      val length : 'a t -> int
      val stats : 'a t -> Hashtbl.statistics
      val to_seq : 'a t -> (key * 'a) Seq.t
      val to_seq_keys : 'a t -> key Seq.t
      val to_seq_values : 'a t -> 'Seq.t
      val add_seq : 'a t -> (key * 'a) Seq.t -> unit
      val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
      val of_seq : (key * 'a) Seq.t -> 'a t
      val clean : 'a t -> unit
      val stats_alive : 'a t -> Stdlib.Hashtbl.statistics
    end
  module K1 :
    sig
      type ('k, 'd) t
      val create : unit -> ('k, 'd) Ephemeron.K1.t
      val get_key : ('k, 'd) Ephemeron.K1.t -> 'k option
      val get_key_copy : ('k, 'd) Ephemeron.K1.t -> 'k option
      val set_key : ('k, 'd) Ephemeron.K1.t -> '-> unit
      val unset_key : ('k, 'd) Ephemeron.K1.t -> unit
      val check_key : ('k, 'd) Ephemeron.K1.t -> bool
      val blit_key :
        ('k, 'a) Ephemeron.K1.t -> ('k, 'b) Ephemeron.K1.t -> unit
      val get_data : ('k, 'd) Ephemeron.K1.t -> 'd option
      val get_data_copy : ('k, 'd) Ephemeron.K1.t -> 'd option
      val set_data : ('k, 'd) Ephemeron.K1.t -> '-> unit
      val unset_data : ('k, 'd) Ephemeron.K1.t -> unit
      val check_data : ('k, 'd) Ephemeron.K1.t -> bool
      val blit_data :
        ('a, 'd) Ephemeron.K1.t -> ('b, 'd) Ephemeron.K1.t -> unit
      module Make :
        functor (H : Hashtbl.HashedType->
          sig
            type key = H.t
            type 'a t
            val create : int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
      module MakeSeeded :
        functor (H : Hashtbl.SeededHashedType->
          sig
            type key = H.t
            type 'a t
            val create : ?random:bool -> int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
    end
  module K2 :
    sig
      type ('k1, 'k2, 'd) t
      val create : unit -> ('k1, 'k2, 'd) Ephemeron.K2.t
      val get_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k1 option
      val get_key1_copy : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k1 option
      val set_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k1 -> unit
      val unset_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
      val check_key1 : ('k1, 'k2, 'd) Ephemeron.K2.t -> bool
      val get_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k2 option
      val get_key2_copy : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k2 option
      val set_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'k2 -> unit
      val unset_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
      val check_key2 : ('k1, 'k2, 'd) Ephemeron.K2.t -> bool
      val blit_key1 :
        ('k1, 'a, 'b) Ephemeron.K2.t -> ('k1, 'c, 'd) Ephemeron.K2.t -> unit
      val blit_key2 :
        ('a, 'k2, 'b) Ephemeron.K2.t -> ('c, 'k2, 'd) Ephemeron.K2.t -> unit
      val blit_key12 :
        ('k1, 'k2, 'a) Ephemeron.K2.t ->
        ('k1, 'k2, 'b) Ephemeron.K2.t -> unit
      val get_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'd option
      val get_data_copy : ('k1, 'k2, 'd) Ephemeron.K2.t -> 'd option
      val set_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> '-> unit
      val unset_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
      val check_data : ('k1, 'k2, 'd) Ephemeron.K2.t -> bool
      val blit_data :
        ('k1, 'k2, 'd) Ephemeron.K2.t ->
        ('k1, 'k2, 'd) Ephemeron.K2.t -> unit
      module Make :
        functor (H1 : Hashtbl.HashedType) (H2 : Hashtbl.HashedType->
          sig
            type key = H1.t * H2.t
            type 'a t
            val create : int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
      module MakeSeeded :
        functor (H1 : Hashtbl.SeededHashedType)
          (H2 : Hashtbl.SeededHashedType->
          sig
            type key = H1.t * H2.t
            type 'a t
            val create : ?random:bool -> int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
    end
  module Kn :
    sig
      type ('k, 'd) t
      val create : int -> ('k, 'd) Ephemeron.Kn.t
      val get_key : ('k, 'd) Ephemeron.Kn.t -> int -> 'k option
      val get_key_copy : ('k, 'd) Ephemeron.Kn.t -> int -> 'k option
      val set_key : ('k, 'd) Ephemeron.Kn.t -> int -> '-> unit
      val unset_key : ('k, 'd) Ephemeron.Kn.t -> int -> unit
      val check_key : ('k, 'd) Ephemeron.Kn.t -> int -> bool
      val blit_key :
        ('k, 'a) Ephemeron.Kn.t ->
        int -> ('k, 'b) Ephemeron.Kn.t -> int -> int -> unit
      val get_data : ('k, 'd) Ephemeron.Kn.t -> 'd option
      val get_data_copy : ('k, 'd) Ephemeron.Kn.t -> 'd option
      val set_data : ('k, 'd) Ephemeron.Kn.t -> '-> unit
      val unset_data : ('k, 'd) Ephemeron.Kn.t -> unit
      val check_data : ('k, 'd) Ephemeron.Kn.t -> bool
      val blit_data :
        ('k, 'd) Ephemeron.Kn.t -> ('k, 'd) Ephemeron.Kn.t -> unit
      module Make :
        functor (H : Hashtbl.HashedType->
          sig
            type key = H.t array
            type 'a t
            val create : int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
      module MakeSeeded :
        functor (H : Hashtbl.SeededHashedType->
          sig
            type key = H.t array
            type 'a t
            val create : ?random:bool -> int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
    end
  module GenHashTable :
    sig
      type equal = ETrue | EFalse | EDead
      module MakeSeeded :
        functor
          (H : sig
                 type t
                 type 'a container
                 val hash : int -> Ephemeron.GenHashTable.MakeSeeded.t -> int
                 val equal :
                   'Ephemeron.GenHashTable.MakeSeeded.container ->
                   Ephemeron.GenHashTable.MakeSeeded.t ->
                   Ephemeron.GenHashTable.equal
                 val create :
                   Ephemeron.GenHashTable.MakeSeeded.t ->
                   '-> 'Ephemeron.GenHashTable.MakeSeeded.container
                 val get_key :
                   'Ephemeron.GenHashTable.MakeSeeded.container ->
                   Ephemeron.GenHashTable.MakeSeeded.t option
                 val get_data :
                   'Ephemeron.GenHashTable.MakeSeeded.container ->
                   'a option
                 val set_key_data :
                   'Ephemeron.GenHashTable.MakeSeeded.container ->
                   Ephemeron.GenHashTable.MakeSeeded.t -> '-> unit
                 val check_key :
                   'Ephemeron.GenHashTable.MakeSeeded.container -> bool
               end)
          ->
          sig
            type key = H.t
            type 'a t
            val create : ?random:bool -> int -> 'a t
            val clear : 'a t -> unit
            val reset : 'a t -> unit
            val copy : 'a t -> 'a t
            val add : 'a t -> key -> '-> unit
            val remove : 'a t -> key -> unit
            val find : 'a t -> key -> 'a
            val find_opt : 'a t -> key -> 'a option
            val find_all : 'a t -> key -> 'a list
            val replace : 'a t -> key -> '-> unit
            val mem : 'a t -> key -> bool
            val iter : (key -> '-> unit) -> 'a t -> unit
            val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
            val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
            val length : 'a t -> int
            val stats : 'a t -> Hashtbl.statistics
            val to_seq : 'a t -> (key * 'a) Seq.t
            val to_seq_keys : 'a t -> key Seq.t
            val to_seq_values : 'a t -> 'Seq.t
            val add_seq : 'a t -> (key * 'a) Seq.t -> unit
            val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
            val of_seq : (key * 'a) Seq.t -> 'a t
            val clean : 'a t -> unit
            val stats_alive : 'a t -> Hashtbl.statistics
          end
    end
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.String.html0000644000175000017500000001127013717225553022164 0ustar mehdimehdi Stdlib.String (module Stdlib__string) ocaml-doc-4.11/ocaml.html/libref/Ephemeron.GenHashTable.MakeSeeded.html0000644000175000017500000002476413717225552024644 0ustar mehdimehdi Ephemeron.GenHashTable.MakeSeeded

Functor Ephemeron.GenHashTable.MakeSeeded

module MakeSeeded: 
functor (H : sig
type t 

keys

type 'a container 

contains keys and the associated data

val hash : int -> t -> int

same as Hashtbl.SeededHashedType

val equal : 'a container ->
t -> Ephemeron.GenHashTable.equal

equality predicate used to compare a key with the one in a container. Can return EDead if the keys in the container are dead

val create : t ->
'a -> 'a container

create key data creates a container from some initials keys and one data

val get_key : 'a container ->
t option

get_key cont returns the keys if they are all alive

val get_data : 'a container -> 'a option

get_data cont returns the data if it is alive

val set_key_data : 'a container ->
t -> 'a -> unit

set_key_data cont modifies the key and data

val check_key : 'a container -> bool

check_key cont checks if all the keys contained in the data are alive

end-> Ephemeron.SeededS  with type key = H.t

Functor building an implementation of an hash table that use the container for keeping the information given

Parameters:
H : sig type t (** keys *) type 'a container (** contains keys and the associated data *) val hash: int -> t -> int (** same as {!Hashtbl.SeededHashedType} *) val equal: 'a container -> t -> equal (** equality predicate used to compare a key with the one in a container. Can return [EDead] if the keys in the container are dead *) val create: t -> 'a -> 'a container (** [create key data] creates a container from some initials keys and one data *) val get_key: 'a container -> t option (** [get_key cont] returns the keys if they are all alive *) val get_data: 'a container -> 'a option (** [get_data cont] returns the data if it is alive *) val set_key_data: 'a container -> t -> 'a -> unit (** [set_key_data cont] modifies the key and data *) val check_key: 'a container -> bool (** [check_key cont] checks if all the keys contained in the data are alive *) end

include Hashtbl.SeededS
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/type_Lexing.html0000644000175000017500000003012213717225552020720 0ustar mehdimehdi Lexing sig
  type position = {
    pos_fname : string;
    pos_lnum : int;
    pos_bol : int;
    pos_cnum : int;
  }
  val dummy_pos : Lexing.position
  type lexbuf = {
    refill_buff : Lexing.lexbuf -> unit;
    mutable lex_buffer : bytes;
    mutable lex_buffer_len : int;
    mutable lex_abs_pos : int;
    mutable lex_start_pos : int;
    mutable lex_curr_pos : int;
    mutable lex_last_pos : int;
    mutable lex_last_action : int;
    mutable lex_eof_reached : bool;
    mutable lex_mem : int array;
    mutable lex_start_p : Lexing.position;
    mutable lex_curr_p : Lexing.position;
  }
  val from_channel :
    ?with_positions:bool -> Stdlib.in_channel -> Lexing.lexbuf
  val from_string : ?with_positions:bool -> string -> Lexing.lexbuf
  val from_function :
    ?with_positions:bool -> (bytes -> int -> int) -> Lexing.lexbuf
  val set_position : Lexing.lexbuf -> Lexing.position -> unit
  val set_filename : Lexing.lexbuf -> string -> unit
  val with_positions : Lexing.lexbuf -> bool
  val lexeme : Lexing.lexbuf -> string
  val lexeme_char : Lexing.lexbuf -> int -> char
  val lexeme_start : Lexing.lexbuf -> int
  val lexeme_end : Lexing.lexbuf -> int
  val lexeme_start_p : Lexing.lexbuf -> Lexing.position
  val lexeme_end_p : Lexing.lexbuf -> Lexing.position
  val new_line : Lexing.lexbuf -> unit
  val flush_input : Lexing.lexbuf -> unit
  val sub_lexeme : Lexing.lexbuf -> int -> int -> string
  val sub_lexeme_opt : Lexing.lexbuf -> int -> int -> string option
  val sub_lexeme_char : Lexing.lexbuf -> int -> char
  val sub_lexeme_char_opt : Lexing.lexbuf -> int -> char option
  type lex_tables = {
    lex_base : string;
    lex_backtrk : string;
    lex_default : string;
    lex_trans : string;
    lex_check : string;
    lex_base_code : string;
    lex_backtrk_code : string;
    lex_default_code : string;
    lex_trans_code : string;
    lex_check_code : string;
    lex_code : string;
  }
  val engine : Lexing.lex_tables -> int -> Lexing.lexbuf -> int
  val new_engine : Lexing.lex_tables -> int -> Lexing.lexbuf -> int
end
ocaml-doc-4.11/ocaml.html/libref/Hashtbl.S.html0000644000175000017500000002606613717225553020234 0ustar mehdimehdi Hashtbl.S

Module type Hashtbl.S

module type S = sig .. end

The output signature of the functor Hashtbl.Make.


type key 
type 'a t 
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
  • Since 4.00.0
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
  • Since 4.05.0
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace : (key -> 'a -> 'a option) -> 'a t -> unit
  • Since 4.03.0
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
  • Since 4.00.0
val to_seq : 'a t -> (key * 'a) Seq.t
  • Since 4.07
val to_seq_keys : 'a t -> key Seq.t
  • Since 4.07
val to_seq_values : 'a t -> 'a Seq.t
  • Since 4.07
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val of_seq : (key * 'a) Seq.t -> 'a t
  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Ephemeron.html0000644000175000017500000001127613717225552022645 0ustar mehdimehdi Stdlib.Ephemeron (module Stdlib__ephemeron) ocaml-doc-4.11/ocaml.html/libref/type_Sys.Immediate64.Make.html0000644000175000017500000001451113717225553023200 0ustar mehdimehdi Sys.Immediate64.Make functor (Immediate : Immediate) (Non_immediate : Non_immediate->
  sig
    type t [@@immediate64]
    type 'a repr =
        Immediate : Sys.Immediate64.Immediate.t Sys.Immediate64.Make.repr
      | Non_immediate :
          Sys.Immediate64.Non_immediate.t Sys.Immediate64.Make.repr
    val repr : Sys.Immediate64.Make.t Sys.Immediate64.Make.repr
  end
ocaml-doc-4.11/ocaml.html/libref/Arg.html0000644000175000017500000010137113717225552017147 0ustar mehdimehdi Arg

Module Arg

module Arg: sig .. end

Parsing of command line arguments.

This module provides a general mechanism for extracting options and arguments from the command line to the program.

Syntax of command lines: A keyword is a character string starting with a -. An option is a keyword alone or followed by an argument. The types of keywords are: Unit, Bool, Set, Clear, String, Set_string, Int, Set_int, Float, Set_float, Tuple, Symbol, and Rest. Unit, Set and Clear keywords take no argument. A Rest keyword takes the remaining of the command line as arguments. Every other keyword takes the following word on the command line as argument. For compatibility with GNU getopt_long, keyword=arg is also allowed. Arguments not preceded by a keyword are called anonymous arguments.

Examples (cmd is assumed to be the command name):

  • cmd -flag           (a unit option)
  • cmd -int 1          (an int option with argument 1)
  • cmd -string foobar  (a string option with argument "foobar")
  • cmd -float 12.34    (a float option with argument 12.34)
  • cmd a b c           (three anonymous arguments: "a", "b", and "c")
  • cmd a b -- c d      (two anonymous arguments and a rest option with two arguments)

type spec = 
| Unit of (unit -> unit) (*

Call the function with unit argument

*)
| Bool of (bool -> unit) (*

Call the function with a bool argument

*)
| Set of bool ref (*

Set the reference to true

*)
| Clear of bool ref (*

Set the reference to false

*)
| String of (string -> unit) (*

Call the function with a string argument

*)
| Set_string of string ref (*

Set the reference to the string argument

*)
| Int of (int -> unit) (*

Call the function with an int argument

*)
| Set_int of int ref (*

Set the reference to the int argument

*)
| Float of (float -> unit) (*

Call the function with a float argument

*)
| Set_float of float ref (*

Set the reference to the float argument

*)
| Tuple of spec list (*

Take several arguments according to the spec list

*)
| Symbol of string list * (string -> unit) (*

Take one of the symbols as argument and call the function with the symbol

*)
| Rest of (string -> unit) (*

Stop interpreting keywords and call the function with each remaining argument

*)
| Expand of (string -> string array) (*

If the remaining arguments to process are of the form ["-foo""arg"] @ rest where "foo" is registered as Expand f, then the arguments "arg" @ rest are processed. Only allowed in parse_and_expand_argv_dynamic.

*)

The concrete type describing the behavior associated with a keyword.

type key = string 
type doc = string 
type usage_msg = string 
type anon_fun = string -> unit 
val parse : (key * spec * doc) list -> anon_fun -> usage_msg -> unit

Arg.parse speclist anon_fun usage_msg parses the command line. speclist is a list of triples (key, spec, doc). key is the option keyword, it must start with a '-' character. spec gives the option type and the function to call when this option is found on the command line. doc is a one-line description of this option. anon_fun is called on anonymous arguments. The functions in spec and anon_fun are called in the same order as their arguments appear on the command line.

If an error occurs, Arg.parse exits the program, after printing to standard error an error message as follows:

  • The reason for the error: unknown option, invalid or missing argument, etc.
  • usage_msg
  • The list of options, each followed by the corresponding doc string. Beware: options that have an empty doc string will not be included in the list.

For the user to be able to specify anonymous arguments starting with a -, include for example ("-"String anon_fun, doc) in speclist.

By default, parse recognizes two unit options, -help and --help, which will print to standard output usage_msg and the list of options, and exit the program. You can override this behaviour by specifying your own -help and --help options in speclist.

val parse_dynamic : (key * spec * doc) list ref ->
anon_fun -> usage_msg -> unit

Same as Arg.parse, except that the speclist argument is a reference and may be updated during the parsing. A typical use for this feature is to parse command lines of the form:

  • command subcommand options where the list of options depends on the value of the subcommand argument.
  • Since 4.01.0
val parse_argv : ?current:int ref ->
string array ->
(key * spec * doc) list -> anon_fun -> usage_msg -> unit

Arg.parse_argv ~current args speclist anon_fun usage_msg parses the array args as if it were the command line. It uses and updates the value of ~current (if given), or Arg.current. You must set it before calling parse_argv. The initial value of current is the index of the program name (argument 0) in the array. If an error occurs, Arg.parse_argv raises Arg.Bad with the error message as argument. If option -help or --help is given, Arg.parse_argv raises Arg.Help with the help message as argument.

val parse_argv_dynamic : ?current:int ref ->
string array ->
(key * spec * doc) list ref ->
anon_fun -> string -> unit

Same as Arg.parse_argv, except that the speclist argument is a reference and may be updated during the parsing. See Arg.parse_dynamic.

  • Since 4.01.0
val parse_and_expand_argv_dynamic : int ref ->
string array ref ->
(key * spec * doc) list ref ->
anon_fun -> string -> unit

Same as Arg.parse_argv_dynamic, except that the argv argument is a reference and may be updated during the parsing of Expand arguments. See Arg.parse_argv_dynamic.

  • Since 4.05.0
val parse_expand : (key * spec * doc) list -> anon_fun -> usage_msg -> unit

Same as Arg.parse, except that the Expand arguments are allowed and the Arg.current reference is not updated.

  • Since 4.05.0
exception Help of string

Raised by Arg.parse_argv when the user asks for help.

exception Bad of string

Functions in spec or anon_fun can raise Arg.Bad with an error message to reject invalid arguments. Arg.Bad is also raised by Arg.parse_argv in case of an error.

val usage : (key * spec * doc) list -> usage_msg -> unit

Arg.usage speclist usage_msg prints to standard error an error message that includes the list of valid options. This is the same message that Arg.parse prints in case of error. speclist and usage_msg are the same as for Arg.parse.

val usage_string : (key * spec * doc) list -> usage_msg -> string

Returns the message that would have been printed by Arg.usage, if provided with the same parameters.

val align : ?limit:int ->
(key * spec * doc) list -> (key * spec * doc) list

Align the documentation strings by inserting spaces at the first alignment separator (tab or, if tab is not found, space), according to the length of the keyword. Use a alignment separator as the first character in a doc string if you want to align the whole string. The doc strings corresponding to Symbol arguments are aligned on the next line.

limit : options with keyword and message longer than limit will not be used to compute the alignment.
val current : int ref

Position (in Sys.argv) of the argument being processed. You can change this value, e.g. to force Arg.parse to skip some arguments. Arg.parse uses the initial value of Arg.current as the index of argument 0 (the program name) and starts parsing arguments at the next element.

val read_arg : string -> string array

Arg.read_arg file reads newline-terminated command line arguments from file file.

  • Since 4.05.0
val read_arg0 : string -> string array

Identical to Arg.read_arg but assumes null character terminated command line arguments.

  • Since 4.05.0
val write_arg : string -> string array -> unit

Arg.write_arg file args writes the arguments args newline-terminated into the file file. If the any of the arguments in args contains a newline, use Arg.write_arg0 instead.

  • Since 4.05.0
val write_arg0 : string -> string array -> unit

Identical to Arg.write_arg but uses the null character for terminator instead of newline.

  • Since 4.05.0
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Complex.html0000644000175000017500000001127213717225552022326 0ustar mehdimehdi Stdlib.Complex (module Stdlib__complex) ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Digest.html0000644000175000017500000001127013717225552022134 0ustar mehdimehdi Stdlib.Digest (module Stdlib__digest) ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Set.Make.html0000644000175000017500000003716313717225553022101 0ustar mehdimehdi MoreLabels.Set.Make

Functor MoreLabels.Set.Make

module Make: 
functor (Ord : OrderedType-> S with type elt = Ord.t and type t = Set.Make(Ord).t
Parameters:
Ord : OrderedType

type elt 
type t 
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : f:(elt -> unit) -> t -> unit
val map : f:(elt -> elt) ->
t -> t
val fold : f:(elt -> 'a -> 'a) -> t -> init:'a -> 'a
val for_all : f:(elt -> bool) -> t -> bool
val exists : f:(elt -> bool) -> t -> bool
val filter : f:(elt -> bool) -> t -> t
val filter_map : f:(elt -> elt option) ->
t -> t
val partition : f:(elt -> bool) ->
t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt ->
t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : f:(elt -> bool) ->
t -> elt
val find_first_opt : f:(elt -> bool) ->
t -> elt option
val find_last : f:(elt -> bool) ->
t -> elt
val find_last_opt : f:(elt -> bool) ->
t -> elt option
val of_list : elt list -> t
val to_seq_from : elt ->
t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
ocaml-doc-4.11/ocaml.html/libref/Unit.html0000644000175000017500000001605313717225553017360 0ustar mehdimehdi Unit

Module Unit

module Unit: sig .. end

Unit values.

  • Since 4.08

The unit type

type t = unit = 
| ()

The unit type.

The constructor () is included here so that it has a path, but it is not intended to be used in user-defined data types.

val equal : t -> t -> bool

equal u1 u2 is true.

val compare : t -> t -> int

compare u1 u2 is 0.

val to_string : t -> string

to_string b is "()".

ocaml-doc-4.11/ocaml.html/libref/type_Parsing.html0000644000175000017500000002223013717225552021076 0ustar mehdimehdi Parsing sig
  val symbol_start : unit -> int
  val symbol_end : unit -> int
  val rhs_start : int -> int
  val rhs_end : int -> int
  val symbol_start_pos : unit -> Stdlib.Lexing.position
  val symbol_end_pos : unit -> Stdlib.Lexing.position
  val rhs_start_pos : int -> Stdlib.Lexing.position
  val rhs_end_pos : int -> Stdlib.Lexing.position
  val clear_parser : unit -> unit
  exception Parse_error
  val set_trace : bool -> bool
  type parser_env
  type parse_tables = {
    actions : (Parsing.parser_env -> Stdlib.Obj.t) array;
    transl_const : int array;
    transl_block : int array;
    lhs : string;
    len : string;
    defred : string;
    dgoto : string;
    sindex : string;
    rindex : string;
    gindex : string;
    tablesize : int;
    table : string;
    check : string;
    error_function : string -> unit;
    names_const : string;
    names_block : string;
  }
  exception YYexit of Stdlib.Obj.t
  val yyparse :
    Parsing.parse_tables ->
    int -> (Stdlib.Lexing.lexbuf -> 'a) -> Stdlib.Lexing.lexbuf -> 'b
  val peek_val : Parsing.parser_env -> int -> 'a
  val is_current_lookahead : '-> bool
  val parse_error : string -> unit
end
ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.K1.MakeSeeded.html0000644000175000017500000002726613717225552023673 0ustar mehdimehdi Ephemeron.K1.MakeSeeded functor (H : Hashtbl.SeededHashedType->
  sig
    type key = H.t
    type 'a t
    val create : ?random:bool -> int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/Condition.html0000644000175000017500000002045613717225552020370 0ustar mehdimehdi Condition

Module Condition

module Condition: sig .. end

Condition variables to synchronize between threads.

Condition variables are used when one thread wants to wait until another thread has finished doing something: the former thread 'waits' on the condition variable, the latter thread 'signals' the condition when it is done. Condition variables should always be protected by a mutex. The typical use is (if D is a shared data structure, m its mutex, and c is a condition variable):

     Mutex.lock m;
     while (* some predicate P over D is not satisfied *) do
       Condition.wait c m
     done;
     (* Modify D *)
     if (* the predicate P over D is now satisfied *) then Condition.signal c;
     Mutex.unlock m
   

type t 

The type of condition variables.

val create : unit -> t

Return a new condition variable.

val wait : t -> Mutex.t -> unit

wait c m atomically unlocks the mutex m and suspends the calling process on the condition variable c. The process will restart after the condition variable c has been signalled. The mutex m is locked again before wait returns.

val signal : t -> unit

signal c restarts one of the processes waiting on the condition variable c.

val broadcast : t -> unit

broadcast c restarts all processes waiting on the condition variable c.

ocaml-doc-4.11/ocaml.html/libref/Obj.Ephemeron.html0000644000175000017500000003016113717225553021070 0ustar mehdimehdi Obj.Ephemeron

Module Obj.Ephemeron

module Ephemeron: sig .. end

Ephemeron with arbitrary arity and untyped

type obj_t = Obj.t 

alias for Obj.t

type t 

an ephemeron cf Ephemeron

val create : int -> t

create n returns an ephemeron with n keys. All the keys and the data are initially empty. The argument n must be between zero and Obj.Ephemeron.max_ephe_length (limits included).

val length : t -> int

return the number of keys

val get_key : t -> int -> obj_t option
val get_key_copy : t -> int -> obj_t option
val set_key : t -> int -> obj_t -> unit
val unset_key : t -> int -> unit
val check_key : t -> int -> bool
val blit_key : t -> int -> t -> int -> int -> unit
val get_data : t -> obj_t option
val get_data_copy : t -> obj_t option
val set_data : t -> obj_t -> unit
val unset_data : t -> unit
val check_data : t -> bool
val blit_data : t -> t -> unit
val max_ephe_length : int

Maximum length of an ephemeron, ie the maximum number of keys an ephemeron could contain

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Stream.html0000644000175000017500000002720013717225553021110 0ustar mehdimehdi Stdlib.Stream

Module Stdlib.Stream

module Stream: Stream

type 'a t 

The type of streams holding values of type 'a.

exception Failure

Raised by parsers when none of the first components of the stream patterns is accepted.

exception Error of string

Raised by parsers when the first component of a stream pattern is accepted, but one of the following components is rejected.

Stream builders

val from : (int -> 'a option) -> 'a t

Stream.from f returns a stream built from the function f. To create a new stream element, the function f is called with the current stream count. The user function f must return either Some <value> for a value or None to specify the end of the stream.

Do note that the indices passed to f may not start at 0 in the general case. For example, [< '0; '1; Stream.from f >] would call f the first time with count 2.

val of_list : 'a list -> 'a t

Return the stream holding the elements of the list in the same order.

val of_string : string -> char t

Return the stream of the characters of the string parameter.

val of_bytes : bytes -> char t

Return the stream of the characters of the bytes parameter.

  • Since 4.02.0
val of_channel : in_channel -> char t

Return the stream of the characters read from the input channel.

Stream iterator

val iter : ('a -> unit) -> 'a t -> unit

Stream.iter f s scans the whole stream s, applying function f in turn to each stream element encountered.

Predefined parsers

val next : 'a t -> 'a

Return the first element of the stream and remove it from the stream.

  • Raises Stream.Failure if the stream is empty.
val empty : 'a t -> unit

Return () if the stream is empty, else raise Stream.Failure.

Useful functions

val peek : 'a t -> 'a option

Return Some of "the first element" of the stream, or None if the stream is empty.

val junk : 'a t -> unit

Remove the first element of the stream, possibly unfreezing it before.

val count : 'a t -> int

Return the current count of the stream elements, i.e. the number of the stream elements discarded.

val npeek : int -> 'a t -> 'a list

npeek n returns the list of the n first elements of the stream, or all its remaining elements if less than n elements are available.

ocaml-doc-4.11/ocaml.html/libref/type_Scanf.Scanning.html0000644000175000017500000002007513717225553022272 0ustar mehdimehdi Scanf.Scanning sig
  type in_channel
  type scanbuf = Scanf.Scanning.in_channel
  val stdin : Scanf.Scanning.in_channel
  type file_name = string
  val open_in : Scanf.Scanning.file_name -> Scanf.Scanning.in_channel
  val open_in_bin : Scanf.Scanning.file_name -> Scanf.Scanning.in_channel
  val close_in : Scanf.Scanning.in_channel -> unit
  val from_file : Scanf.Scanning.file_name -> Scanf.Scanning.in_channel
  val from_file_bin : string -> Scanf.Scanning.in_channel
  val from_string : string -> Scanf.Scanning.in_channel
  val from_function : (unit -> char) -> Scanf.Scanning.in_channel
  val from_channel : Stdlib.in_channel -> Scanf.Scanning.in_channel
  val end_of_input : Scanf.Scanning.in_channel -> bool
  val beginning_of_input : Scanf.Scanning.in_channel -> bool
  val name_of_input : Scanf.Scanning.in_channel -> string
  val stdib : Scanf.Scanning.in_channel
end
ocaml-doc-4.11/ocaml.html/libref/type_Nativeint.html0000644000175000017500000003054213717225552021441 0ustar mehdimehdi Nativeint sig
  val zero : nativeint
  val one : nativeint
  val minus_one : nativeint
  external neg : nativeint -> nativeint = "%nativeint_neg"
  external add : nativeint -> nativeint -> nativeint = "%nativeint_add"
  external sub : nativeint -> nativeint -> nativeint = "%nativeint_sub"
  external mul : nativeint -> nativeint -> nativeint = "%nativeint_mul"
  external div : nativeint -> nativeint -> nativeint = "%nativeint_div"
  val unsigned_div : nativeint -> nativeint -> nativeint
  external rem : nativeint -> nativeint -> nativeint = "%nativeint_mod"
  val unsigned_rem : nativeint -> nativeint -> nativeint
  val succ : nativeint -> nativeint
  val pred : nativeint -> nativeint
  val abs : nativeint -> nativeint
  val size : int
  val max_int : nativeint
  val min_int : nativeint
  external logand : nativeint -> nativeint -> nativeint = "%nativeint_and"
  external logor : nativeint -> nativeint -> nativeint = "%nativeint_or"
  external logxor : nativeint -> nativeint -> nativeint = "%nativeint_xor"
  val lognot : nativeint -> nativeint
  external shift_left : nativeint -> int -> nativeint = "%nativeint_lsl"
  external shift_right : nativeint -> int -> nativeint = "%nativeint_asr"
  external shift_right_logical : nativeint -> int -> nativeint
    = "%nativeint_lsr"
  external of_int : int -> nativeint = "%nativeint_of_int"
  external to_int : nativeint -> int = "%nativeint_to_int"
  val unsigned_to_int : nativeint -> int option
  external of_float : float -> nativeint = "caml_nativeint_of_float"
    "caml_nativeint_of_float_unboxed" [@@unboxed] [@@noalloc]
  external to_float : nativeint -> float = "caml_nativeint_to_float"
    "caml_nativeint_to_float_unboxed" [@@unboxed] [@@noalloc]
  external of_int32 : int32 -> nativeint = "%nativeint_of_int32"
  external to_int32 : nativeint -> int32 = "%nativeint_to_int32"
  external of_string : string -> nativeint = "caml_nativeint_of_string"
  val of_string_opt : string -> nativeint option
  val to_string : nativeint -> string
  type t = nativeint
  val compare : Nativeint.t -> Nativeint.t -> int
  val unsigned_compare : Nativeint.t -> Nativeint.t -> int
  val equal : Nativeint.t -> Nativeint.t -> bool
  external format : string -> nativeint -> string = "caml_nativeint_format"
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Complex.html0000644000175000017500000002753513717225552021276 0ustar mehdimehdi Stdlib.Complex

Module Stdlib.Complex

module Complex: Complex

type t = {
   re : float;
   im : float;
}

The type of complex numbers. re is the real part and im the imaginary part.

val zero : t

The complex number 0.

val one : t

The complex number 1.

val i : t

The complex number i.

val neg : t -> t

Unary negation.

val conj : t -> t

Conjugate: given the complex x + i.y, returns x - i.y.

val add : t -> t -> t

Addition

val sub : t -> t -> t

Subtraction

val mul : t -> t -> t

Multiplication

val inv : t -> t

Multiplicative inverse (1/z).

val div : t -> t -> t

Division

val sqrt : t -> t

Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0. This function has a discontinuity along the negative real axis.

val norm2 : t -> float

Norm squared: given x + i.y, returns x^2 + y^2.

val norm : t -> float

Norm: given x + i.y, returns sqrt(x^2 + y^2).

val arg : t -> float

Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from -pi to pi. This function has a discontinuity along the negative real axis.

val polar : float -> float -> t

polar norm arg returns the complex having norm norm and argument arg.

val exp : t -> t

Exponentiation. exp z returns e to the z power.

val log : t -> t

Natural logarithm (in base e).

val pow : t -> t -> t

Power function. pow z1 z2 returns z1 to the z2 power.

ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.html0000644000175000017500000003213613717225553022052 0ustar mehdimehdi MoreLabels.Hashtbl

Module MoreLabels.Hashtbl

module Hashtbl: sig .. end

type ('a, 'b) t = ('a, 'b) Hashtbl.t 
val create : ?random:bool -> int -> ('a, 'b) t
val clear : ('a, 'b) t -> unit
val reset : ('a, 'b) t -> unit
val copy : ('a, 'b) t -> ('a, 'b) t
val add : ('a, 'b) t -> key:'a -> data:'b -> unit
val find : ('a, 'b) t -> 'a -> 'b
val find_opt : ('a, 'b) t -> 'a -> 'b option
val find_all : ('a, 'b) t -> 'a -> 'b list
val mem : ('a, 'b) t -> 'a -> bool
val remove : ('a, 'b) t -> 'a -> unit
val replace : ('a, 'b) t -> key:'a -> data:'b -> unit
val iter : f:(key:'a -> data:'b -> unit) -> ('a, 'b) t -> unit
val filter_map_inplace : f:(key:'a -> data:'b -> 'b option) -> ('a, 'b) t -> unit
val fold : f:(key:'a -> data:'b -> 'c -> 'c) ->
('a, 'b) t -> init:'c -> 'c
val length : ('a, 'b) t -> int
val randomize : unit -> unit
val is_randomized : unit -> bool
type statistics = Hashtbl.statistics 
val stats : ('a, 'b) t -> statistics
val to_seq : ('a, 'b) t -> ('a * 'b) Seq.t
val to_seq_keys : ('a, 'b) t -> 'a Seq.t
val to_seq_values : ('a, 'b) t -> 'b Seq.t
val add_seq : ('a, 'b) t -> ('a * 'b) Seq.t -> unit
val replace_seq : ('a, 'b) t -> ('a * 'b) Seq.t -> unit
val of_seq : ('a * 'b) Seq.t -> ('a, 'b) t
module type HashedType = Hashtbl.HashedType
module type SeededHashedType = Hashtbl.SeededHashedType
module type S = sig .. end
module type SeededS = sig .. end
module Make: 
functor (H : HashedType-> S with type key = H.t and type 'a t = 'a Hashtbl.Make(H).t
module MakeSeeded: 
functor (H : SeededHashedType-> SeededS with type key = H.t and type 'a t = 'a Hashtbl.MakeSeeded(H).t
val hash : 'a -> int
val seeded_hash : int -> 'a -> int
val hash_param : int -> int -> 'a -> int
val seeded_hash_param : int -> int -> int -> 'a -> int
ocaml-doc-4.11/ocaml.html/libref/type_Filename.html0000644000175000017500000002100313717225552021210 0ustar mehdimehdi Filename sig
  val current_dir_name : string
  val parent_dir_name : string
  val dir_sep : string
  val concat : string -> string -> string
  val is_relative : string -> bool
  val is_implicit : string -> bool
  val check_suffix : string -> string -> bool
  val chop_suffix : string -> string -> string
  val chop_suffix_opt : suffix:string -> string -> string option
  val extension : string -> string
  val remove_extension : string -> string
  val chop_extension : string -> string
  val basename : string -> string
  val dirname : string -> string
  val null : string
  val temp_file : ?temp_dir:string -> string -> string -> string
  val open_temp_file :
    ?mode:Stdlib.open_flag list ->
    ?perms:int ->
    ?temp_dir:string -> string -> string -> string * Stdlib.out_channel
  val get_temp_dir_name : unit -> string
  val set_temp_dir_name : string -> unit
  val temp_dir_name : string
  val quote : string -> string
  val quote_command :
    string ->
    ?stdin:string ->
    ?stdout:string -> ?stderr:string -> string list -> string
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Unit.html0000644000175000017500000001557513717225553020610 0ustar mehdimehdi Stdlib.Unit

Module Stdlib.Unit

module Unit: Unit

The unit type

type t = unit = 
| ()

The unit type.

The constructor () is included here so that it has a path, but it is not intended to be used in user-defined data types.

val equal : t -> t -> bool

equal u1 u2 is true.

val compare : t -> t -> int

compare u1 u2 is 0.

val to_string : t -> string

to_string b is "()".

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.List.html0000644000175000017500000001126413717225553021634 0ustar mehdimehdi Stdlib.List (module Stdlib__list) ocaml-doc-4.11/ocaml.html/libref/Map.html0000644000175000017500000002165113717225552017155 0ustar mehdimehdi Map

Module Map

module Map: sig .. end

Association tables over ordered types.

This module implements applicative association tables, also known as finite maps or dictionaries, given a total ordering function over the keys. All operations over maps are purely applicative (no side-effects). The implementation uses balanced binary trees, and therefore searching and insertion take time logarithmic in the size of the map.

For instance:

     module IntPairs =
       struct
         type t = int * int
         let compare (x0,y0) (x1,y1) =
           match Stdlib.compare x0 x1 with
               0 -> Stdlib.compare y0 y1
             | c -> c
       end

     module PairsMap = Map.Make(IntPairs)

     let m = PairsMap.(empty |> add (0,1) "hello" |> add (1,0) "world")
   

This creates a new module PairsMap, with a new type 'PairsMap.t of maps from int * int to 'a. In this example, m contains string values so its type is string PairsMap.t.


module type OrderedType = sig .. end

Input signature of the functor Map.Make.

module type S = sig .. end

Output signature of the functor Map.Make.

module Make: 
functor (Ord : OrderedType-> S with type key = Ord.t

Functor building an implementation of the map structure given a totally ordered type.

ocaml-doc-4.11/ocaml.html/libref/index_extensions.html0000644000175000017500000001157213717225553022030 0ustar mehdimehdi Index of extensions

Index of extensions

S
String_tag [Format]
ocaml-doc-4.11/ocaml.html/libref/type_Printexc.html0000644000175000017500000003067313717225552021301 0ustar mehdimehdi Printexc sig
  type t = exn = ..
  val to_string : exn -> string
  val to_string_default : exn -> string
  val print : ('-> 'b) -> '-> 'b
  val catch : ('-> 'b) -> '-> 'b
  val print_backtrace : Stdlib.out_channel -> unit
  val get_backtrace : unit -> string
  val record_backtrace : bool -> unit
  val backtrace_status : unit -> bool
  val register_printer : (exn -> string option) -> unit
  val use_printers : exn -> string option
  type raw_backtrace
  val get_raw_backtrace : unit -> Printexc.raw_backtrace
  val print_raw_backtrace :
    Stdlib.out_channel -> Printexc.raw_backtrace -> unit
  val raw_backtrace_to_string : Printexc.raw_backtrace -> string
  external raise_with_backtrace : exn -> Printexc.raw_backtrace -> 'a
    = "%raise_with_backtrace"
  external get_callstack : int -> Printexc.raw_backtrace
    = "caml_get_current_callstack"
  val default_uncaught_exception_handler :
    exn -> Printexc.raw_backtrace -> unit
  val set_uncaught_exception_handler :
    (exn -> Printexc.raw_backtrace -> unit) -> unit
  type backtrace_slot
  val backtrace_slots :
    Printexc.raw_backtrace -> Printexc.backtrace_slot array option
  type location = {
    filename : string;
    line_number : int;
    start_char : int;
    end_char : int;
  }
  module Slot :
    sig
      type t = Printexc.backtrace_slot
      val is_raise : Printexc.Slot.t -> bool
      val is_inline : Printexc.Slot.t -> bool
      val location : Printexc.Slot.t -> Printexc.location option
      val name : Printexc.Slot.t -> string option
      val format : int -> Printexc.Slot.t -> string option
    end
  type raw_backtrace_slot
  val raw_backtrace_length : Printexc.raw_backtrace -> int
  val get_raw_backtrace_slot :
    Printexc.raw_backtrace -> int -> Printexc.raw_backtrace_slot
  val convert_raw_backtrace_slot :
    Printexc.raw_backtrace_slot -> Printexc.backtrace_slot
  val get_raw_backtrace_next_slot :
    Printexc.raw_backtrace_slot -> Printexc.raw_backtrace_slot option
  val exn_slot_id : exn -> int
  val exn_slot_name : exn -> string
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Stack.html0000644000175000017500000001126613717225553021770 0ustar mehdimehdi Stdlib.Stack (module Stdlib__stack) ocaml-doc-4.11/ocaml.html/libref/style.css0000644000175000017500000000511113717225553017416 0ustar mehdimehdi/* fira-sans-regular - latin */ @font-face { font-family: 'Fira Sans'; font-style: normal; font-weight: 400; src: url('../fonts/fira-sans-v8-latin-regular.eot'); /* IE9 Compat Modes */ src: local('Fira Sans Regular'), local('FiraSans-Regular'), url('../fonts/fira-sans-v8-latin-regular.eot?#iefix') format('embedded-opentype'), /* IE6-IE8 */ url('../fonts/fira-sans-v8-latin-regular.woff2') format('woff2'), /* Super Modern Browsers */ url('../fonts/fira-sans-v8-latin-regular.woff') format('woff'), /* Modern Browsers */ url('../fonts/fira-sans-v8-latin-regular.ttf') format('truetype'), /* Safari, Android, iOS */ url('../fonts/fira-sans-v8-latin-regular.svg#FiraSans') format('svg'); /* Legacy iOS */ } a:visited {color : #416DFF; text-decoration : none; } a:link {color : #416DFF; text-decoration : none; } a:hover {color : Black; text-decoration : underline; } a:active {color : Black; text-decoration : underline; } .keyword { font-weight : bold ; color : Red } .keywordsign { color : #C04600 } .comment { color : Green } .constructor { color : Blue } .type { color : #5C6585 } .string { color : Maroon } .warning { color : Red ; font-weight : bold } .info { margin-left : 3em; margin-right : 3em } .code { color : #465F91 ; } h1 { font-size : 2rem ; text-align: center; } h2, h3, h4, h5, h6, div.h7, div.h8, div.h9 { font-size: 1.75rem; border: 1px solid #000; margin-top: 20px; margin-bottom: 2px; text-align: center; padding: 8px; font-family: "Fira Sans", sans-serif; font-weight: normal; } h1 { font-family: "Fira Sans", sans-serif; padding: 10px; } h2 { background-color: #90BDFF; } h3 { background-color: #90DDFF; } h4 { background-color: #90EDFF; } h5 { background-color: #90FDFF; } h6 { background-color: #90BDFF; } div.h7 { background-color: #90DDFF; } div.h8 { background-color: #F0FFFF; } div.h9 { background-color: #FFFFFF; } .typetable { border-style : hidden } .indextable { border-style : hidden } .paramstable { border-style : hidden ; padding: 5pt 5pt} body { background-color : #f7f7f7; font-size: 1rem; max-width: 800px; width: 85%; margin: auto; padding-bottom: 30px; } td { font-size: 1rem; } .navbar { /* previous - up - next */ position: absolute; left: 10px; top: 10px; } tr { background-color : #f7f7f7 } td.typefieldcomment { background-color : #f7f7f7 } pre { margin-bottom: 4px; white-space: pre-wrap; } div.sig_block {margin-left: 2em} ul.info-attributes { list-style: none; margin: 0; padding: 0; } div.info > p:first-child{ margin-top:0; } div.info-desc > p:first-child { margin-top:0; margin-bottom:0; } ocaml-doc-4.11/ocaml.html/libref/Hashtbl.HashedType.html0000644000175000017500000001673313717225553022070 0ustar mehdimehdi Hashtbl.HashedType

Module type Hashtbl.HashedType

module type HashedType = sig .. end

The input signature of the functor Hashtbl.Make.


type t 

The type of the hashtable keys.

val equal : t -> t -> bool

The equality predicate used to compare keys.

val hash : t -> int

A hashing function on keys. It must be such that if two keys are equal according to equal, then they have identical hash values as computed by hash. Examples: suitable (equal, hash) pairs for arbitrary key types include

  • ((=), Hashtbl.hash) for comparing objects by structure (provided objects do not contain floats)
  • ((fun x y -> compare x y = 0), Hashtbl.hash) for comparing objects by structure and handling nan correctly
  • ((==), Hashtbl.hash) for comparing objects by physical equality (e.g. for mutable or cyclic objects).
ocaml-doc-4.11/ocaml.html/libref/Filename.html0000644000175000017500000005430513717225552020162 0ustar mehdimehdi Filename

Module Filename

module Filename: sig .. end

Operations on file names.


val current_dir_name : string

The conventional name for the current directory (e.g. . in Unix).

val parent_dir_name : string

The conventional name for the parent of the current directory (e.g. .. in Unix).

val dir_sep : string

The directory separator (e.g. / in Unix).

  • Since 3.11.2
val concat : string -> string -> string

concat dir file returns a file name that designates file file in directory dir.

val is_relative : string -> bool

Return true if the file name is relative to the current directory, false if it is absolute (i.e. in Unix, starts with /).

val is_implicit : string -> bool

Return true if the file name is relative and does not start with an explicit reference to the current directory (./ or ../ in Unix), false if it starts with an explicit reference to the root directory or the current directory.

val check_suffix : string -> string -> bool

check_suffix name suff returns true if the filename name ends with the suffix suff.

Under Windows ports (including Cygwin), comparison is case-insensitive, relying on String.lowercase_ascii. Note that this does not match exactly the interpretation of case-insensitive filename equivalence from Windows.

val chop_suffix : string -> string -> string

chop_suffix name suff removes the suffix suff from the filename name. The behavior is undefined if name does not end with the suffix suff. chop_suffix_opt is thus recommended instead.

val chop_suffix_opt : suffix:string -> string -> string option

chop_suffix_opt ~suffix filename removes the suffix from the filename if possible, or returns None if the filename does not end with the suffix.

Under Windows ports (including Cygwin), comparison is case-insensitive, relying on String.lowercase_ascii. Note that this does not match exactly the interpretation of case-insensitive filename equivalence from Windows.

  • Since 4.08
val extension : string -> string

extension name is the shortest suffix ext of name0 where:

  • name0 is the longest suffix of name that does not contain a directory separator;
  • ext starts with a period;
  • ext is preceded by at least one non-period character in name0.

If such a suffix does not exist, extension name is the empty string.

  • Since 4.04
val remove_extension : string -> string

Return the given file name without its extension, as defined in Filename.extension. If the extension is empty, the function returns the given file name.

The following invariant holds for any file name s:

remove_extension s ^ extension s = s

  • Since 4.04
val chop_extension : string -> string

Same as Filename.remove_extension, but raise Invalid_argument if the given name has an empty extension.

val basename : string -> string

Split a file name into directory name / base file name. If name is a valid file name, then concat (dirname name) (basename name) returns a file name which is equivalent to name. Moreover, after setting the current directory to dirname name (with Sys.chdir), references to basename name (which is a relative file name) designate the same file as name before the call to Sys.chdir.

This function conforms to the specification of POSIX.1-2008 for the basename utility.

val dirname : string -> string

See Filename.basename. This function conforms to the specification of POSIX.1-2008 for the dirname utility.

val null : string

null is "/dev/null" on POSIX and "NUL" on Windows. It represents a file on the OS that discards all writes and returns end of file on reads.

  • Since 4.10.0
val temp_file : ?temp_dir:string -> string -> string -> string

temp_file prefix suffix returns the name of a fresh temporary file in the temporary directory. The base name of the temporary file is formed by concatenating prefix, then a suitably chosen integer number, then suffix. The optional argument temp_dir indicates the temporary directory to use, defaulting to the current result of Filename.get_temp_dir_name. The temporary file is created empty, with permissions 0o600 (readable and writable only by the file owner). The file is guaranteed to be different from any other file that existed when temp_file was called.

  • Before 3.11.2 no ?temp_dir optional argument
  • Raises Sys_error if the file could not be created.
val open_temp_file : ?mode:open_flag list ->
?perms:int ->
?temp_dir:string -> string -> string -> string * out_channel

Same as Filename.temp_file, but returns both the name of a fresh temporary file, and an output channel opened (atomically) on this file. This function is more secure than temp_file: there is no risk that the temporary file will be modified (e.g. replaced by a symbolic link) before the program opens it. The optional argument mode is a list of additional flags to control the opening of the file. It can contain one or several of Open_append, Open_binary, and Open_text. The default is [Open_text] (open in text mode). The file is created with permissions perms (defaults to readable and writable only by the file owner, 0o600).

  • Before 4.03.0 no ?perms optional argument
  • Before 3.11.2 no ?temp_dir optional argument
  • Raises Sys_error if the file could not be opened.
val get_temp_dir_name : unit -> string

The name of the temporary directory: Under Unix, the value of the TMPDIR environment variable, or "/tmp" if the variable is not set. Under Windows, the value of the TEMP environment variable, or "." if the variable is not set. The temporary directory can be changed with Filename.set_temp_dir_name.

  • Since 4.00.0
val set_temp_dir_name : string -> unit

Change the temporary directory returned by Filename.get_temp_dir_name and used by Filename.temp_file and Filename.open_temp_file.

  • Since 4.00.0
val temp_dir_name : string
Deprecated.You should use Filename.get_temp_dir_name instead.

The name of the initial temporary directory: Under Unix, the value of the TMPDIR environment variable, or "/tmp" if the variable is not set. Under Windows, the value of the TEMP environment variable, or "." if the variable is not set.

  • Since 3.09.1
val quote : string -> string

Return a quoted version of a file name, suitable for use as one argument in a command line, escaping all meta-characters. Warning: under Windows, the output is only suitable for use with programs that follow the standard Windows quoting conventions.

val quote_command : string ->
?stdin:string -> ?stdout:string -> ?stderr:string -> string list -> string

quote_command cmd args returns a quoted command line, suitable for use as an argument to Sys.command, Unix.system, and the Unix.open_process functions.

The string cmd is the command to call. The list args is the list of arguments to pass to this command. It can be empty.

The optional arguments ?stdin and ?stdout and ?stderr are file names used to redirect the standard input, the standard output, or the standard error of the command. If ~stdin:f is given, a redirection < f is performed and the standard input of the command reads from file f. If ~stdout:f is given, a redirection > f is performed and the standard output of the command is written to file f. If ~stderr:f is given, a redirection 2> f is performed and the standard error of the command is written to file f. If both ~stdout:f and ~stderr:f are given, with the exact same file name f, a 2>&1 redirection is performed so that the standard output and the standard error of the command are interleaved and redirected to the same file f.

Under Unix and Cygwin, the command, the arguments, and the redirections if any are quoted using Filename.quote, then concatenated. Under Win32, additional quoting is performed as required by the cmd.exe shell that is called by Sys.command.

  • Raises Failure if the command cannot be escaped on the current platform.
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Lazy.html0000644000175000017500000001126413717225553021640 0ustar mehdimehdi Stdlib.Lazy (module Stdlib__lazy) ocaml-doc-4.11/ocaml.html/libref/Sys.Immediate64.html0000644000175000017500000001575213717225553021273 0ustar mehdimehdi Sys.Immediate64

Module Sys.Immediate64

module Immediate64: sig .. end

This module allows to define a type t with the immediate64 attribute. This attribute means that the type is immediate on 64 bit architectures. On other architectures, it might or might not be immediate.

module type Non_immediate = sig .. end
module type Immediate = sig .. end
module Make: 
functor (Immediate : Immediate-> 
functor (Non_immediate : Non_immediate-> sig .. end
ocaml-doc-4.11/ocaml.html/libref/Set.S.html0000644000175000017500000007275413717225553017407 0ustar mehdimehdi Set.S

Module type Set.S

module type S = sig .. end

Output signature of the functor Set.Make.


type elt 

The type of the set elements.

type t 

The type of sets.

val empty : t

The empty set.

val is_empty : t -> bool

Test whether a set is empty or not.

val mem : elt -> t -> bool

mem x s tests whether x belongs to the set s.

val add : elt -> t -> t

add x s returns a set containing all elements of s, plus x. If x was already in s, s is returned unchanged (the result of the function is then physically equal to s).

  • Before 4.03 Physical equality was not ensured.
val singleton : elt -> t

singleton x returns the one-element set containing only x.

val remove : elt -> t -> t

remove x s returns a set containing all elements of s, except x. If x was not in s, s is returned unchanged (the result of the function is then physically equal to s).

  • Before 4.03 Physical equality was not ensured.
val union : t -> t -> t

Set union.

val inter : t -> t -> t

Set intersection.

val disjoint : t -> t -> bool

Test if two sets are disjoint.

  • Since 4.08.0
val diff : t -> t -> t

Set difference: diff s1 s2 contains the elements of s1 that are not in s2.

val compare : t -> t -> int

Total ordering between sets. Can be used as the ordering function for doing sets of sets.

val equal : t -> t -> bool

equal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain equal elements.

val subset : t -> t -> bool

subset s1 s2 tests whether the set s1 is a subset of the set s2.

val iter : (elt -> unit) -> t -> unit

iter f s applies f in turn to all elements of s. The elements of s are presented to f in increasing order with respect to the ordering over the type of the elements.

val map : (elt -> elt) -> t -> t

map f s is the set whose elements are f a0,f a1... f
        aN
, where a0,a1...aN are the elements of s.

The elements are passed to f in increasing order with respect to the ordering over the type of the elements.

If no element of s is changed by f, s is returned unchanged. (If each output of f is physically equal to its input, the returned set is physically equal to s.)

  • Since 4.04.0
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a

fold f s a computes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are the elements of s, in increasing order.

val for_all : (elt -> bool) -> t -> bool

for_all p s checks if all elements of the set satisfy the predicate p.

val exists : (elt -> bool) -> t -> bool

exists p s checks if at least one element of the set satisfies the predicate p.

val filter : (elt -> bool) -> t -> t

filter p s returns the set of all elements in s that satisfy predicate p. If p satisfies every element in s, s is returned unchanged (the result of the function is then physically equal to s).

  • Before 4.03 Physical equality was not ensured.
val filter_map : (elt -> elt option) -> t -> t

filter_map f s returns the set of all v such that f x = Some v for some element x of s.

For example,

filter_map (fun n -> if n mod 2 = 0 then Some (n / 2) else None) s

is the set of halves of the even elements of s.

If no element of s is changed or dropped by f (if f x = Some x for each element x), then s is returned unchanged: the result of the function is then physically equal to s.

  • Since 4.11.0
val partition : (elt -> bool) -> t -> t * t

partition p s returns a pair of sets (s1, s2), where s1 is the set of all the elements of s that satisfy the predicate p, and s2 is the set of all the elements of s that do not satisfy p.

val cardinal : t -> int

Return the number of elements of a set.

val elements : t -> elt list

Return the list of all elements of the given set. The returned list is sorted in increasing order with respect to the ordering Ord.compare, where Ord is the argument given to Set.Make.

val min_elt : t -> elt

Return the smallest element of the given set (with respect to the Ord.compare ordering), or raise Not_found if the set is empty.

val min_elt_opt : t -> elt option

Return the smallest element of the given set (with respect to the Ord.compare ordering), or None if the set is empty.

  • Since 4.05
val max_elt : t -> elt

Same as Set.S.min_elt, but returns the largest element of the given set.

val max_elt_opt : t -> elt option

Same as Set.S.min_elt_opt, but returns the largest element of the given set.

  • Since 4.05
val choose : t -> elt

Return one element of the given set, or raise Not_found if the set is empty. Which element is chosen is unspecified, but equal elements will be chosen for equal sets.

val choose_opt : t -> elt option

Return one element of the given set, or None if the set is empty. Which element is chosen is unspecified, but equal elements will be chosen for equal sets.

  • Since 4.05
val split : elt -> t -> t * bool * t

split x s returns a triple (l, present, r), where l is the set of elements of s that are strictly less than x; r is the set of elements of s that are strictly greater than x; present is false if s contains no element equal to x, or true if s contains an element equal to x.

val find : elt -> t -> elt

find x s returns the element of s equal to x (according to Ord.compare), or raise Not_found if no such element exists.

  • Since 4.01.0
val find_opt : elt -> t -> elt option

find_opt x s returns the element of s equal to x (according to Ord.compare), or None if no such element exists.

  • Since 4.05
val find_first : (elt -> bool) -> t -> elt

find_first f s, where f is a monotonically increasing function, returns the lowest element e of s such that f e, or raises Not_found if no such element exists.

For example, find_first (fun e -> Ord.compare e x >= 0) s will return the first element e of s where Ord.compare e x >= 0 (intuitively: e >= x), or raise Not_found if x is greater than any element of s.

  • Since 4.05
val find_first_opt : (elt -> bool) -> t -> elt option

find_first_opt f s, where f is a monotonically increasing function, returns an option containing the lowest element e of s such that f e, or None if no such element exists.

  • Since 4.05
val find_last : (elt -> bool) -> t -> elt

find_last f s, where f is a monotonically decreasing function, returns the highest element e of s such that f e, or raises Not_found if no such element exists.

  • Since 4.05
val find_last_opt : (elt -> bool) -> t -> elt option

find_last_opt f s, where f is a monotonically decreasing function, returns an option containing the highest element e of s such that f e, or None if no such element exists.

  • Since 4.05
val of_list : elt list -> t

of_list l creates a set from a list of elements. This is usually more efficient than folding add over the list, except perhaps for lists with many duplicated elements.

  • Since 4.02.0

Iterators

val to_seq_from : elt -> t -> elt Seq.t

to_seq_from x s iterates on a subset of the elements of s in ascending order, from x or above.

  • Since 4.07
val to_seq : t -> elt Seq.t

Iterate on the whole set, in ascending order

  • Since 4.07
val add_seq : elt Seq.t -> t -> t

Add the given elements to the set, in order.

  • Since 4.07
val of_seq : elt Seq.t -> t

Build a set from the given bindings

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Marshal.html0000644000175000017500000001127213717225553022307 0ustar mehdimehdi Stdlib.Marshal (module Stdlib__marshal) ocaml-doc-4.11/ocaml.html/libref/Unix.LargeFile.html0000644000175000017500000003415713717225553021222 0ustar mehdimehdi Unix.LargeFile

Module Unix.LargeFile

module LargeFile: sig .. end

File operations on large files. This sub-module provides 64-bit variants of the functions Unix.lseek (for positioning a file descriptor), Unix.truncate and Unix.ftruncate (for changing the size of a file), and Unix.stat, Unix.lstat and Unix.fstat (for obtaining information on files). These alternate functions represent positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), thus allowing operating on files whose sizes are greater than max_int.


val lseek : Unix.file_descr -> int64 -> Unix.seek_command -> int64

See Unix.lseek.

val truncate : string -> int64 -> unit
val ftruncate : Unix.file_descr -> int64 -> unit
type stats = {
   st_dev : int; (*

Device number

*)
   st_ino : int; (*

Inode number

*)
   st_kind : Unix.file_kind; (*

Kind of the file

*)
   st_perm : Unix.file_perm; (*

Access rights

*)
   st_nlink : int; (*

Number of links

*)
   st_uid : int; (*

User id of the owner

*)
   st_gid : int; (*

Group ID of the file's group

*)
   st_rdev : int; (*

Device ID (if special file)

*)
   st_size : int64; (*

Size in bytes

*)
   st_atime : float; (*

Last access time

*)
   st_mtime : float; (*

Last modification time

*)
   st_ctime : float; (*

Last status change time

*)
}
val stat : string -> stats
val lstat : string -> stats
val fstat : Unix.file_descr -> stats
ocaml-doc-4.11/ocaml.html/libref/index_class_types.html0000644000175000017500000001133013717225553022152 0ustar mehdimehdi Index of class types

Index of class types

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Parsing.html0000644000175000017500000001127213717225553022323 0ustar mehdimehdi Stdlib.Parsing (module Stdlib__parsing) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Float.html0000644000175000017500000011304213717225552020721 0ustar mehdimehdi Stdlib.Float

Module Stdlib.Float

module Float: Float

val zero : float

The floating point 0.

  • Since 4.08.0
val one : float

The floating-point 1.

  • Since 4.08.0
val minus_one : float

The floating-point -1.

  • Since 4.08.0
val neg : float -> float

Unary negation.

val add : float -> float -> float

Floating-point addition.

val sub : float -> float -> float

Floating-point subtraction.

val mul : float -> float -> float

Floating-point multiplication.

val div : float -> float -> float

Floating-point division.

val fma : float -> float -> float -> float

fma x y z returns x * y + z, with a best effort for computing this expression with a single rounding, using either hardware instructions (providing full IEEE compliance) or a software emulation. Note: since software emulation of the fma is costly, make sure that you are using hardware fma support if performance matters.

  • Since 4.08.0
val rem : float -> float -> float

rem a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.

val succ : float -> float

succ x returns the floating point number right after x i.e., the smallest floating-point number greater than x. See also Float.next_after.

  • Since 4.08.0
val pred : float -> float

pred x returns the floating-point number right before x i.e., the greatest floating-point number smaller than x. See also Float.next_after.

  • Since 4.08.0
val abs : float -> float

abs f returns the absolute value of f.

val infinity : float

Positive infinity.

val neg_infinity : float

Negative infinity.

val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for 'not a number'. Any floating-point operation with nan as argument returns nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <> returns true if one or both of their arguments is nan.

val pi : float

The constant pi.

val max_float : float

The largest positive finite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon : float

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

val is_finite : float -> bool

is_finite x is true iff x is finite i.e., not infinite and not Float.nan.

  • Since 4.08.0
val is_infinite : float -> bool

is_infinite x is true iff x is Float.infinity or Float.neg_infinity.

  • Since 4.08.0
val is_nan : float -> bool

is_nan x is true iff x is not a number (see Float.nan).

  • Since 4.08.0
val is_integer : float -> bool

is_integer x is true iff x is an integer.

  • Since 4.08.0
val of_int : int -> float

Convert an integer to floating-point.

val to_int : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val of_string : string -> float

Convert the given string to a float. The string is read in decimal (by default) or in hexadecimal (marked by 0x or 0X). The format of decimal floating-point numbers is  [-] dd.ddd (e|E) [+|-] dd , where d stands for a decimal digit. The format of hexadecimal floating-point numbers is  [-] 0(x|X) hh.hhh (p|P) [+|-] dd , where h stands for an hexadecimal digit and d for a decimal digit. In both cases, at least one of the integer and fractional parts must be given; the exponent part is optional. The _ (underscore) character can appear anywhere in the string and is ignored. Depending on the execution platforms, other representations of floating-point numbers can be accepted, but should not be relied upon.

  • Raises Failure if the given string is not a valid representation of a float.
val of_string_opt : string -> float option

Same as of_string, but returns None instead of raising.

val to_string : float -> string

Return the string representation of a floating-point number.

type fpclass = fpclass = 
| FP_normal (*

Normal number, none of the below

*)
| FP_subnormal (*

Number very close to 0.0, has reduced precision

*)
| FP_zero (*

Number is 0.0 or -0.0

*)
| FP_infinite (*

Number is positive or negative infinity

*)
| FP_nan (*

Not a number: result of an undefined operation

*)

The five classes of floating-point numbers, as determined by the Float.classify_float function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

val pow : float -> float -> float

Exponentiation.

val sqrt : float -> float

Square root.

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

val expm1 : float -> float

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

val log1p : float -> float

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

val cos : float -> float

Cosine. Argument is in radians.

val sin : float -> float

Sine. Argument is in radians.

val tan : float -> float

Tangent. Argument is in radians.

val acos : float -> float

Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between 0.0 and pi.

val asin : float -> float

Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between -pi/2 and pi/2.

val atan : float -> float

Arc tangent. Result is in radians and is between -pi/2 and pi/2.

val atan2 : float -> float -> float

atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine the quadrant of the result. Result is in radians and is between -pi and pi.

val hypot : float -> float -> float

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin. If one of x or y is infinite, returns infinity even if the other is nan.

val cosh : float -> float

Hyperbolic cosine. Argument is in radians.

val sinh : float -> float

Hyperbolic sine. Argument is in radians.

val tanh : float -> float

Hyperbolic tangent. Argument is in radians.

val trunc : float -> float

trunc x rounds x to the nearest integer whose absolute value is less than or equal to x.

  • Since 4.08.0
val round : float -> float

round x rounds x to the nearest integer with ties (fractional values of 0.5) rounded away from zero, regardless of the current rounding direction. If x is an integer, +0., -0., nan, or infinite, x itself is returned.

  • Since 4.08.0
val ceil : float -> float

Round above to an integer value. ceil f returns the least integer value greater than or equal to f. The result is returned as a float.

val floor : float -> float

Round below to an integer value. floor f returns the greatest integer value less than or equal to f. The result is returned as a float.

val next_after : float -> float -> float

next_after x y returns the next representable floating-point value following x in the direction of y. More precisely, if y is greater (resp. less) than x, it returns the smallest (resp. largest) representable number greater (resp. less) than x. If x equals y, the function returns y. If x or y is nan, a nan is returned. Note that next_after max_float infinity = infinity and that next_after 0. infinity is the smallest denormalized positive number. If x is the smallest denormalized positive number, next_after x 0. = 0.

  • Since 4.08.0
val copy_sign : float -> float -> float

copy_sign x y returns a float whose absolute value is that of x and whose sign is that of y. If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.

val sign_bit : float -> bool

sign_bit x is true iff the sign bit of x is set. For example sign_bit 1. and signbit 0. are false while sign_bit (-1.) and sign_bit (-0.) are true.

  • Since 4.08.0
val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

type t = float 

An alias for the type of floating-point numbers.

val compare : t -> t -> int

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y. compare treats nan as equal to itself and less than any other float value. This treatment of nan ensures that compare defines a total ordering relation.

val equal : t -> t -> bool

The equal function for floating-point numbers, compared using Float.compare.

val min : t -> t -> t

min x y returns the minimum of x and y. It returns nan when x or y is nan. Moreover min (-0.) (+0.) = -0.

  • Since 4.08.0
val max : float -> float -> float

max x y returns the maximum of x and y. It returns nan when x or y is nan. Moreover max (-0.) (+0.) = +0.

  • Since 4.08.0
val min_max : float -> float -> float * float

min_max x y is (min x y, max x y), just more efficient.

  • Since 4.08.0
val min_num : t -> t -> t

min_num x y returns the minimum of x and y treating nan as missing values. If both x and y are nan, nan is returned. Moreover min_num (-0.) (+0.) = -0.

  • Since 4.08.0
val max_num : t -> t -> t

max_num x y returns the maximum of x and y treating nan as missing values. If both x and y are nan nan is returned. Moreover max_num (-0.) (+0.) = +0.

  • Since 4.08.0
val min_max_num : float -> float -> float * float

min_max_num x y is (min_num x y, max_num x y), just more efficient. Note that in particular min_max_num x nan = (x, x) and min_max_num nan y = (y, y).

  • Since 4.08.0
val hash : t -> int

The hash function for floating-point numbers.

module Array: sig .. end
module ArrayLabels: sig .. end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Printf.html0000644000175000017500000005361013717225553021123 0ustar mehdimehdi Stdlib.Printf

Module Stdlib.Printf

module Printf: Printf

val fprintf : out_channel -> ('a, out_channel, unit) format -> 'a

fprintf outchan format arg1 ... argN formats the arguments arg1 to argN according to the format string format, and outputs the resulting string on the channel outchan.

The format string is a character string which contains two types of objects: plain characters, which are simply copied to the output channel, and conversion specifications, each of which causes conversion and printing of arguments.

Conversion specifications have the following form:

% [flags] [width] [.precision] type

In short, a conversion specification consists in the % character, followed by optional modifiers and a type which is made of one or two characters.

The types and their meanings are:

  • d, i: convert an integer argument to signed decimal. The flag # adds underscores to large values for readability.
  • u, n, l, L, or N: convert an integer argument to unsigned decimal. Warning: n, l, L, and N are used for scanf, and should not be used for printf. The flag # adds underscores to large values for readability.
  • x: convert an integer argument to unsigned hexadecimal, using lowercase letters. The flag # adds a 0x prefix to non zero values.
  • X: convert an integer argument to unsigned hexadecimal, using uppercase letters. The flag # adds a 0X prefix to non zero values.
  • o: convert an integer argument to unsigned octal. The flag # adds a 0 prefix to non zero values.
  • s: insert a string argument.
  • S: convert a string argument to OCaml syntax (double quotes, escapes).
  • c: insert a character argument.
  • C: convert a character argument to OCaml syntax (single quotes, escapes).
  • f: convert a floating-point argument to decimal notation, in the style dddd.ddd.
  • F: convert a floating-point argument to OCaml syntax (dddd. or dddd.ddd or d.ddd e+-dd). Converts to hexadecimal with the # flag (see h).
  • e or E: convert a floating-point argument to decimal notation, in the style d.ddd e+-dd (mantissa and exponent).
  • g or G: convert a floating-point argument to decimal notation, in style f or e, E (whichever is more compact). Moreover, any trailing zeros are removed from the fractional part of the result and the decimal-point character is removed if there is no fractional part remaining.
  • h or H: convert a floating-point argument to hexadecimal notation, in the style 0xh.hhhh p+-dd (hexadecimal mantissa, exponent in decimal and denotes a power of 2).
  • B: convert a boolean argument to the string true or false
  • b: convert a boolean argument (deprecated; do not use in new programs).
  • ld, li, lu, lx, lX, lo: convert an int32 argument to the format specified by the second letter (decimal, hexadecimal, etc).
  • nd, ni, nu, nx, nX, no: convert a nativeint argument to the format specified by the second letter.
  • Ld, Li, Lu, Lx, LX, Lo: convert an int64 argument to the format specified by the second letter.
  • a: user-defined printer. Take two arguments and apply the first one to outchan (the current output channel) and to the second argument. The first argument must therefore have type out_channel -> '-> unit and the second 'b. The output produced by the function is inserted in the output of fprintf at the current point.
  • t: same as %a, but take only one argument (with type out_channel -> unit) and apply it to outchan.
  • { fmt %}: convert a format string argument to its type digest. The argument must have the same type as the internal format string fmt.
  • ( fmt %): format string substitution. Take a format string argument and substitute it to the internal format string fmt to print following arguments. The argument must have the same type as the internal format string fmt.
  • !: take no argument and flush the output.
  • %: take no argument and output one % character.
  • @: take no argument and output one @ character.
  • ,: take no argument and output nothing: a no-op delimiter for conversion specifications.

The optional flags are:

  • -: left-justify the output (default is right justification).
  • 0: for numerical conversions, pad with zeroes instead of spaces.
  • +: for signed numerical conversions, prefix number with a + sign if positive.
  • space: for signed numerical conversions, prefix number with a space if positive.
  • #: request an alternate formatting style for the integer types and the floating-point type F.

The optional width is an integer indicating the minimal width of the result. For instance, %6d prints an integer, prefixing it with spaces to fill at least 6 characters.

The optional precision is a dot . followed by an integer indicating how many digits follow the decimal point in the %f, %e, %E, %h, and %H conversions or the maximum number of significant digits to appear for the %F, %g and %G conversions. For instance, %.4f prints a float with 4 fractional digits.

The integer in a width or precision can also be specified as *, in which case an extra integer argument is taken to specify the corresponding width or precision. This integer argument precedes immediately the argument to print. For instance, %.*f prints a float with as many fractional digits as the value of the argument given before the float.

val printf : ('a, out_channel, unit) format -> 'a

Same as Printf.fprintf, but output on stdout.

val eprintf : ('a, out_channel, unit) format -> 'a

Same as Printf.fprintf, but output on stderr.

val sprintf : ('a, unit, string) format -> 'a

Same as Printf.fprintf, but instead of printing on an output channel, return a string containing the result of formatting the arguments.

val bprintf : Buffer.t -> ('a, Buffer.t, unit) format -> 'a

Same as Printf.fprintf, but instead of printing on an output channel, append the formatted arguments to the given extensible buffer (see module Buffer).

val ifprintf : 'b -> ('a, 'b, 'c, unit) format4 -> 'a

Same as Printf.fprintf, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 3.10.0
val ibprintf : Buffer.t -> ('a, Buffer.t, unit) format -> 'a

Same as Printf.bprintf, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 4.11.0

Formatted output functions with continuations.

val kfprintf : (out_channel -> 'd) ->
out_channel -> ('a, out_channel, unit, 'd) format4 -> 'a

Same as fprintf, but instead of returning immediately, passes the out channel to its first argument at the end of printing.

  • Since 3.09.0
val ikfprintf : ('b -> 'd) -> 'b -> ('a, 'b, 'c, 'd) format4 -> 'a

Same as kfprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 4.01.0
val ksprintf : (string -> 'd) -> ('a, unit, string, 'd) format4 -> 'a

Same as sprintf above, but instead of returning the string, passes it to the first argument.

  • Since 3.09.0
val kbprintf : (Buffer.t -> 'd) ->
Buffer.t -> ('a, Buffer.t, unit, 'd) format4 -> 'a

Same as bprintf, but instead of returning immediately, passes the buffer to its first argument at the end of printing.

  • Since 3.10.0
val ikbprintf : (Buffer.t -> 'd) ->
Buffer.t -> ('a, Buffer.t, unit, 'd) format4 -> 'a

Same as kbprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 4.11.0

Deprecated

val kprintf : (string -> 'b) -> ('a, unit, string, 'b) format4 -> 'a

A deprecated synonym for ksprintf.

ocaml-doc-4.11/ocaml.html/libref/type_Int32.html0000644000175000017500000003024613717225552020400 0ustar mehdimehdi Int32 sig
  val zero : int32
  val one : int32
  val minus_one : int32
  external neg : int32 -> int32 = "%int32_neg"
  external add : int32 -> int32 -> int32 = "%int32_add"
  external sub : int32 -> int32 -> int32 = "%int32_sub"
  external mul : int32 -> int32 -> int32 = "%int32_mul"
  external div : int32 -> int32 -> int32 = "%int32_div"
  val unsigned_div : int32 -> int32 -> int32
  external rem : int32 -> int32 -> int32 = "%int32_mod"
  val unsigned_rem : int32 -> int32 -> int32
  val succ : int32 -> int32
  val pred : int32 -> int32
  val abs : int32 -> int32
  val max_int : int32
  val min_int : int32
  external logand : int32 -> int32 -> int32 = "%int32_and"
  external logor : int32 -> int32 -> int32 = "%int32_or"
  external logxor : int32 -> int32 -> int32 = "%int32_xor"
  val lognot : int32 -> int32
  external shift_left : int32 -> int -> int32 = "%int32_lsl"
  external shift_right : int32 -> int -> int32 = "%int32_asr"
  external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
  external of_int : int -> int32 = "%int32_of_int"
  external to_int : int32 -> int = "%int32_to_int"
  val unsigned_to_int : int32 -> int option
  external of_float : float -> int32 = "caml_int32_of_float"
    "caml_int32_of_float_unboxed" [@@unboxed] [@@noalloc]
  external to_float : int32 -> float = "caml_int32_to_float"
    "caml_int32_to_float_unboxed" [@@unboxed] [@@noalloc]
  external of_string : string -> int32 = "caml_int32_of_string"
  val of_string_opt : string -> int32 option
  val to_string : int32 -> string
  external bits_of_float : float -> int32 = "caml_int32_bits_of_float"
    "caml_int32_bits_of_float_unboxed" [@@unboxed] [@@noalloc]
  external float_of_bits : int32 -> float = "caml_int32_float_of_bits"
    "caml_int32_float_of_bits_unboxed" [@@unboxed] [@@noalloc]
  type t = int32
  val compare : Int32.t -> Int32.t -> int
  val unsigned_compare : Int32.t -> Int32.t -> int
  val equal : Int32.t -> Int32.t -> bool
  external format : string -> int32 -> string = "caml_int32_format"
end
ocaml-doc-4.11/ocaml.html/libref/type_CamlinternalFormat.html0000644000175000017500000007063013717225552023264 0ustar mehdimehdi CamlinternalFormat sig
  val is_in_char_set : CamlinternalFormatBasics.char_set -> char -> bool
  val rev_char_set :
    CamlinternalFormatBasics.char_set -> CamlinternalFormatBasics.char_set
  type mutable_char_set = bytes
  val create_char_set : unit -> CamlinternalFormat.mutable_char_set
  val add_in_char_set : CamlinternalFormat.mutable_char_set -> char -> unit
  val freeze_char_set :
    CamlinternalFormat.mutable_char_set -> CamlinternalFormatBasics.char_set
  type ('a, 'b, 'c, 'd, 'e, 'f) param_format_ebb =
      Param_format_EBB :
        ('-> 'a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> 
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormat.param_format_ebb
  val param_format_of_ignored_format :
    ('a, 'b, 'c, 'd, 'y, 'x) CamlinternalFormatBasics.ignored ->
    ('x, 'b, 'c, 'y, 'e, 'f) CamlinternalFormatBasics.fmt ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormat.param_format_ebb
  type ('b, 'c) acc_formatting_gen =
      Acc_open_tag of ('b, 'c) CamlinternalFormat.acc
    | Acc_open_box of ('b, 'c) CamlinternalFormat.acc
  and ('b, 'c) acc =
      Acc_formatting_lit of ('b, 'c) CamlinternalFormat.acc *
        CamlinternalFormatBasics.formatting_lit
    | Acc_formatting_gen of ('b, 'c) CamlinternalFormat.acc *
        ('b, 'c) CamlinternalFormat.acc_formatting_gen
    | Acc_string_literal of ('b, 'c) CamlinternalFormat.acc * string
    | Acc_char_literal of ('b, 'c) CamlinternalFormat.acc * char
    | Acc_data_string of ('b, 'c) CamlinternalFormat.acc * string
    | Acc_data_char of ('b, 'c) CamlinternalFormat.acc * char
    | Acc_delay of ('b, 'c) CamlinternalFormat.acc * ('-> 'c)
    | Acc_flush of ('b, 'c) CamlinternalFormat.acc
    | Acc_invalid_arg of ('b, 'c) CamlinternalFormat.acc * string
    | End_of_acc
  type ('a, 'b) heter_list =
      Cons : 'c *
        ('a, 'b) CamlinternalFormat.heter_list -> ('-> 'a, 'b)
                                                  CamlinternalFormat.heter_list
    | Nil : ('b, 'b) CamlinternalFormat.heter_list
  type ('b, 'c, 'e, 'f) fmt_ebb =
      Fmt_EBB :
        ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> ('b, 'c, 'e,
                                                                  'f)
                                                                 CamlinternalFormat.fmt_ebb
  val make_printf :
    (('b, 'c) CamlinternalFormat.acc -> 'd) ->
    ('b, 'c) CamlinternalFormat.acc ->
    ('a, 'b, 'c, 'c, 'c, 'd) CamlinternalFormatBasics.fmt -> 'a
  val make_iprintf :
    ('-> 'f) ->
    '-> ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> 'a
  val output_acc :
    Stdlib.out_channel ->
    (Stdlib.out_channel, unit) CamlinternalFormat.acc -> unit
  val bufput_acc :
    Stdlib.Buffer.t -> (Stdlib.Buffer.t, unit) CamlinternalFormat.acc -> unit
  val strput_acc :
    Stdlib.Buffer.t -> (unit, string) CamlinternalFormat.acc -> unit
  val type_format :
    ('x, 'b, 'c, 't, 'u, 'v) CamlinternalFormatBasics.fmt ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt
  val fmt_ebb_of_string :
    ?legacy_behavior:bool ->
    string -> ('b, 'c, 'e, 'f) CamlinternalFormat.fmt_ebb
  val format_of_string_fmtty :
    string ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
  val format_of_string_format :
    string ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6 ->
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
  val char_of_iconv : CamlinternalFormatBasics.int_conv -> char
  val string_of_formatting_lit :
    CamlinternalFormatBasics.formatting_lit -> string
  val string_of_fmtty :
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty -> string
  val string_of_fmt :
    ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> string
  val open_box_of_string :
    string -> int * CamlinternalFormatBasics.block_type
  val symm :
    ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
    CamlinternalFormatBasics.fmtty_rel ->
    ('a2, 'b2, 'c2, 'd2, 'e2, 'f2, 'a1, 'b1, 'c1, 'd1, 'e1, 'f1)
    CamlinternalFormatBasics.fmtty_rel
  val trans :
    ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
    CamlinternalFormatBasics.fmtty_rel ->
    ('a2, 'b2, 'c2, 'd2, 'e2, 'f2, 'a3, 'b3, 'c3, 'd3, 'e3, 'f3)
    CamlinternalFormatBasics.fmtty_rel ->
    ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a3, 'b3, 'c3, 'd3, 'e3, 'f3)
    CamlinternalFormatBasics.fmtty_rel
  val recast :
    ('a1, 'b1, 'c1, 'd1, 'e1, 'f1) CamlinternalFormatBasics.fmt ->
    ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
    CamlinternalFormatBasics.fmtty_rel ->
    ('a2, 'b2, 'c2, 'd2, 'e2, 'f2) CamlinternalFormatBasics.fmt
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Obj.html0000644000175000017500000001126213717225553021431 0ustar mehdimehdi Stdlib.Obj (module Stdlib__obj) ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.GenHashTable.html0000644000175000017500000004326313717225552023712 0ustar mehdimehdi Ephemeron.GenHashTable sig
  type equal = ETrue | EFalse | EDead
  module MakeSeeded :
    functor
      (H : sig
             type t
             type 'a container
             val hash : int -> Ephemeron.GenHashTable.MakeSeeded.t -> int
             val equal :
               'Ephemeron.GenHashTable.MakeSeeded.container ->
               Ephemeron.GenHashTable.MakeSeeded.t ->
               Ephemeron.GenHashTable.equal
             val create :
               Ephemeron.GenHashTable.MakeSeeded.t ->
               '-> 'Ephemeron.GenHashTable.MakeSeeded.container
             val get_key :
               'Ephemeron.GenHashTable.MakeSeeded.container ->
               Ephemeron.GenHashTable.MakeSeeded.t option
             val get_data :
               'Ephemeron.GenHashTable.MakeSeeded.container -> 'a option
             val set_key_data :
               'Ephemeron.GenHashTable.MakeSeeded.container ->
               Ephemeron.GenHashTable.MakeSeeded.t -> '-> unit
             val check_key :
               'Ephemeron.GenHashTable.MakeSeeded.container -> bool
           end)
      ->
      sig
        type key = H.t
        type 'a t
        val create : ?random:bool -> int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key -> '-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key -> '-> unit
        val mem : 'a t -> key -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val length : 'a t -> int
        val stats : 'a t -> Hashtbl.statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
        val clean : 'a t -> unit
        val stats_alive : 'a t -> Hashtbl.statistics
      end
end
ocaml-doc-4.11/ocaml.html/libref/StdLabels.String.html0000644000175000017500000007747113717225553021576 0ustar mehdimehdi StdLabels.String

Module StdLabels.String

module String: StringLabels

val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

String.get s n returns the character at index n in string s. You can also write s.[n] instead of String.get s n.

  • Raises Invalid_argument if n not a valid index in s.
val set : bytes -> int -> char -> unit
Deprecated.This is a deprecated alias of BytesLabels.set.

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c. You can also write s.[n] <- c instead of String.set s n c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes
Deprecated.This is a deprecated alias of BytesLabels.create.

String.create n returns a fresh byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> string

String.make n c returns a fresh string of length n, filled with the character c.

val init : int -> f:(int -> char) -> string

init n f returns a string of length n, with character i initialized to the result of f i.

val copy : string -> string

Return a copy of the given string.

val sub : string -> pos:int -> len:int -> string

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val fill : bytes -> pos:int -> len:int -> char -> unit
Deprecated.This is a deprecated alias of BytesLabels.fill.

String.fill s start len c modifies byte sequence s in place, replacing len bytes by c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val blit : src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

String.blit src srcoff dst dstoff len copies len bytes from the string src, starting at index srcoff, to byte sequence dst, starting at character number dstoff.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : sep:string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

val iter : f:(char -> unit) -> string -> unit

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ().

val iteri : f:(int -> char -> unit) -> string -> unit

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

  • Since 4.00.0
val map : f:(char -> char) -> string -> string

String.map f s applies function f in turn to all the characters of s and stores the results in a new string that is returned.

  • Since 4.00.0
val mapi : f:(int -> char -> char) -> string -> string

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.02.0
val trim : string -> string

Return a copy of the argument, without leading and trailing whitespace. The characters regarded as whitespace are: ' ', '\012', '\n', '\r', and '\t'. If there is no leading nor trailing whitespace character in the argument, return the original string itself, not a copy.

  • Since 4.00.0
val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. If there is no special character in the argument, return the original string itself, not a copy. Its inverse function is Scanf.unescaped.

val index : string -> char -> int

String.index s c returns the index of the first occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val index_opt : string -> char -> int option

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val rindex : string -> char -> int

String.rindex s c returns the index of the last occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : string -> char -> int option

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val index_from : string -> int -> char -> int

String.index_from s i c returns the index of the first occurrence of character c in string s after position i. String.index s c is equivalent to String.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : string -> int -> char -> int option

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

String.index_opt s c is equivalent to String.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : string -> int -> char -> int

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1. String.rindex s c is equivalent to String.rindex_from s (String.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : string -> int -> char -> int option

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

String.rindex_opt s c is equivalent to String.rindex_from_opt s (String.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in s after position start. String.contains s c is equivalent to String.contains_from s 0 c.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val lowercase_ascii : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.05.0
val capitalize_ascii : string -> string

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val uncapitalize_ascii : string -> string

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.05.0
type t = string 

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same specification as compare. Along with the type t, this function compare allows the module String to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for strings.

  • Since 4.05.0
val split_on_char : sep:char -> string -> string list

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

The function's output is specified by the following invariants:

  • The list is not empty.
  • Concatenating its elements using sep as a separator returns a string equal to the input (String.concat (String.make 1 sep)
          (String.split_on_char sep s) = s
    ).
  • No string in the result contains the sep character.
  • Since 4.05.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Float.Array.html0000644000175000017500000004226313717225552021625 0ustar mehdimehdi Float.Array sig
  type t = floatarray
  val length : Float.Array.t -> int
  val get : Float.Array.t -> int -> float
  val set : Float.Array.t -> int -> float -> unit
  val make : int -> float -> Float.Array.t
  val create : int -> Float.Array.t
  val init : int -> (int -> float) -> Float.Array.t
  val append : Float.Array.t -> Float.Array.t -> Float.Array.t
  val concat : Float.Array.t list -> Float.Array.t
  val sub : Float.Array.t -> int -> int -> Float.Array.t
  val copy : Float.Array.t -> Float.Array.t
  val fill : Float.Array.t -> int -> int -> float -> unit
  val blit : Float.Array.t -> int -> Float.Array.t -> int -> int -> unit
  val to_list : Float.Array.t -> float list
  val of_list : float list -> Float.Array.t
  val iter : (float -> unit) -> Float.Array.t -> unit
  val iteri : (int -> float -> unit) -> Float.Array.t -> unit
  val map : (float -> float) -> Float.Array.t -> Float.Array.t
  val mapi : (int -> float -> float) -> Float.Array.t -> Float.Array.t
  val fold_left : ('-> float -> 'a) -> '-> Float.Array.t -> 'a
  val fold_right : (float -> '-> 'a) -> Float.Array.t -> '-> 'a
  val iter2 :
    (float -> float -> unit) -> Float.Array.t -> Float.Array.t -> unit
  val map2 :
    (float -> float -> float) ->
    Float.Array.t -> Float.Array.t -> Float.Array.t
  val for_all : (float -> bool) -> Float.Array.t -> bool
  val exists : (float -> bool) -> Float.Array.t -> bool
  val mem : float -> Float.Array.t -> bool
  val mem_ieee : float -> Float.Array.t -> bool
  val sort : (float -> float -> int) -> Float.Array.t -> unit
  val stable_sort : (float -> float -> int) -> Float.Array.t -> unit
  val fast_sort : (float -> float -> int) -> Float.Array.t -> unit
  val to_seq : Float.Array.t -> float Stdlib.Seq.t
  val to_seqi : Float.Array.t -> (int * float) Stdlib.Seq.t
  val of_seq : float Stdlib.Seq.t -> Float.Array.t
  val map_to_array : (float -> 'a) -> Float.Array.t -> 'a array
  val map_from_array : ('-> float) -> 'a array -> Float.Array.t
  external unsafe_get : Float.Array.t -> int -> float
    = "%floatarray_unsafe_get"
  external unsafe_set : Float.Array.t -> int -> float -> unit
    = "%floatarray_unsafe_set"
end
ocaml-doc-4.11/ocaml.html/libref/Bigarray.Genarray.html0000644000175000017500000006433413717225552021754 0ustar mehdimehdi Bigarray.Genarray

Module Bigarray.Genarray

module Genarray: sig .. end

type ('a, 'b, 'c) t 

The type Genarray.t is the type of Bigarrays with variable numbers of dimensions. Any number of dimensions between 0 and 16 is supported.

The three type parameters to Genarray.t identify the array element kind and layout, as follows:

  • the first parameter, 'a, is the OCaml type for accessing array elements (float, int, int32, int64, nativeint);
  • the second parameter, 'b, is the actual kind of array elements (float32_elt, float64_elt, int8_signed_elt, int8_unsigned_elt, etc);
  • the third parameter, 'c, identifies the array layout (c_layout or fortran_layout).

For instance, (float, float32_elt, fortran_layout) Genarray.t is the type of generic Bigarrays containing 32-bit floats in Fortran layout; reads and writes in this array use the OCaml type float.

val create : ('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int array -> ('a, 'b, 'c) t

Genarray.create kind layout dimensions returns a new Bigarray whose element kind is determined by the parameter kind (one of float32, float64, int8_signed, etc) and whose layout is determined by the parameter layout (one of c_layout or fortran_layout). The dimensions parameter is an array of integers that indicate the size of the Bigarray in each dimension. The length of dimensions determines the number of dimensions of the Bigarray.

For instance, Genarray.create int32 c_layout [|4;6;8|] returns a fresh Bigarray of 32-bit integers, in C layout, having three dimensions, the three dimensions being 4, 6 and 8 respectively.

Bigarrays returned by Genarray.create are not initialized: the initial values of array elements is unspecified.

Genarray.create raises Invalid_argument if the number of dimensions is not in the range 0 to 16 inclusive, or if one of the dimensions is negative.

val num_dims : ('a, 'b, 'c) t -> int

Return the number of dimensions of the given Bigarray.

val dims : ('a, 'b, 'c) t -> int array

Genarray.dims a returns all dimensions of the Bigarray a, as an array of integers of length Genarray.num_dims a.

val nth_dim : ('a, 'b, 'c) t -> int -> int

Genarray.nth_dim a n returns the n-th dimension of the Bigarray a. The first dimension corresponds to n = 0; the second dimension corresponds to n = 1; the last dimension, to n = Genarray.num_dims a - 1.

  • Raises Invalid_argument if n is less than 0 or greater or equal than Genarray.num_dims a.
val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given Bigarray.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given Bigarray.

val change_layout : ('a, 'b, 'c) t ->
'd Bigarray.layout -> ('a, 'b, 'd) t

Genarray.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimensions as a). No copying of elements is involved: the new array and the original array share the same storage space. The dimensions are reversed, such that get v [| a; b |] in C layout becomes get v [| b+1; a+1 |] in Fortran layout.

  • Since 4.04.0
val size_in_bytes : ('a, 'b, 'c) t -> int

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

  • Since 4.03.0
val get : ('a, 'b, 'c) t -> int array -> 'a

Read an element of a generic Bigarray. Genarray.get a [|i1; ...; iN|] returns the element of a whose coordinates are i1 in the first dimension, i2 in the second dimension, ..., iN in the N-th dimension.

If a has C layout, the coordinates must be greater or equal than 0 and strictly less than the corresponding dimensions of a. If a has Fortran layout, the coordinates must be greater or equal than 1 and less or equal than the corresponding dimensions of a.

If N > 3, alternate syntax is provided: you can write a.{i1, i2, ..., iN} instead of Genarray.get a [|i1; ...; iN|]. (The syntax a.{...} with one, two or three coordinates is reserved for accessing one-, two- and three-dimensional arrays as described below.)

  • Raises Invalid_argument if the array a does not have exactly N dimensions, or if the coordinates are outside the array bounds.
val set : ('a, 'b, 'c) t -> int array -> 'a -> unit

Assign an element of a generic Bigarray. Genarray.set a [|i1; ...; iN|] v stores the value v in the element of a whose coordinates are i1 in the first dimension, i2 in the second dimension, ..., iN in the N-th dimension.

The array a must have exactly N dimensions, and all coordinates must lie inside the array bounds, as described for Genarray.get; otherwise, Invalid_argument is raised.

If N > 3, alternate syntax is provided: you can write a.{i1, i2, ..., iN} <- v instead of Genarray.set a [|i1; ...; iN|] v. (The syntax a.{...} <- v with one, two or three coordinates is reserved for updating one-, two- and three-dimensional arrays as described below.)

val sub_left : ('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t

Extract a sub-array of the given Bigarray by restricting the first (left-most) dimension. Genarray.sub_left a ofs len returns a Bigarray with the same number of dimensions as a, and the same dimensions as a, except the first dimension, which corresponds to the interval [ofs ... ofs + len - 1] of the first dimension of a. No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [|i1; ...; iN|] of the sub-array is identical to the element at coordinates [|i1+ofs; ...; iN|] of the original array a.

Genarray.sub_left applies only to Bigarrays in C layout.

  • Raises Invalid_argument if ofs and len do not designate a valid sub-array of a, that is, if ofs < 0, or len < 0, or ofs + len > Genarray.nth_dim a 0.
val sub_right : ('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t

Extract a sub-array of the given Bigarray by restricting the last (right-most) dimension. Genarray.sub_right a ofs len returns a Bigarray with the same number of dimensions as a, and the same dimensions as a, except the last dimension, which corresponds to the interval [ofs ... ofs + len - 1] of the last dimension of a. No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [|i1; ...; iN|] of the sub-array is identical to the element at coordinates [|i1; ...; iN+ofs|] of the original array a.

Genarray.sub_right applies only to Bigarrays in Fortran layout.

  • Raises Invalid_argument if ofs and len do not designate a valid sub-array of a, that is, if ofs < 1, or len < 0, or ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1).
val slice_left : ('a, 'b, Bigarray.c_layout) t ->
int array -> ('a, 'b, Bigarray.c_layout) t

Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the first (left-most) coordinates. Genarray.slice_left a [|i1; ... ; iM|] returns the 'slice' of a obtained by setting the first M coordinates to i1, ..., iM. If a has N dimensions, the slice has dimension N - M, and the element at coordinates [|j1; ...; j(N-M)|] in the slice is identical to the element at coordinates [|i1; ...; iM; j1; ...; j(N-M)|] in the original array a. No copying of elements is involved: the slice and the original array share the same storage space.

Genarray.slice_left applies only to Bigarrays in C layout.

  • Raises Invalid_argument if M >= N, or if [|i1; ... ; iM|] is outside the bounds of a.
val slice_right : ('a, 'b, Bigarray.fortran_layout) t ->
int array -> ('a, 'b, Bigarray.fortran_layout) t

Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the last (right-most) coordinates. Genarray.slice_right a [|i1; ... ; iM|] returns the 'slice' of a obtained by setting the last M coordinates to i1, ..., iM. If a has N dimensions, the slice has dimension N - M, and the element at coordinates [|j1; ...; j(N-M)|] in the slice is identical to the element at coordinates [|j1; ...; j(N-M); i1; ...; iM|] in the original array a. No copying of elements is involved: the slice and the original array share the same storage space.

Genarray.slice_right applies only to Bigarrays in Fortran layout.

  • Raises Invalid_argument if M >= N, or if [|i1; ... ; iM|] is outside the bounds of a.
val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy all elements of a Bigarray in another Bigarray. Genarray.blit src dst copies all elements of src into dst. Both arrays src and dst must have the same number of dimensions and equal dimensions. Copying a sub-array of src to a sub-array of dst can be achieved by applying Genarray.blit to sub-array or slices of src and dst.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Set all elements of a Bigarray to a given value. Genarray.fill a v stores the value v in all elements of the Bigarray a. Setting only some elements of a to v can be achieved by applying Genarray.fill to a sub-array or a slice of a.

ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Set.S.html0000644000175000017500000003603213717225553021420 0ustar mehdimehdi MoreLabels.Set.S

Module type MoreLabels.Set.S

module type S = sig .. end

type elt 
type t 
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : f:(elt -> unit) -> t -> unit
val map : f:(elt -> elt) ->
t -> t
val fold : f:(elt -> 'a -> 'a) -> t -> init:'a -> 'a
val for_all : f:(elt -> bool) -> t -> bool
val exists : f:(elt -> bool) -> t -> bool
val filter : f:(elt -> bool) -> t -> t
val filter_map : f:(elt -> elt option) ->
t -> t
val partition : f:(elt -> bool) ->
t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt ->
t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : f:(elt -> bool) ->
t -> elt
val find_first_opt : f:(elt -> bool) ->
t -> elt option
val find_last : f:(elt -> bool) ->
t -> elt
val find_last_opt : f:(elt -> bool) ->
t -> elt option
val of_list : elt list -> t
val to_seq_from : elt ->
t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Random.html0000644000175000017500000002601013717225553021073 0ustar mehdimehdi Stdlib.Random

Module Stdlib.Random

module Random: Random

Basic functions

val init : int -> unit

Initialize the generator, using the argument as a seed. The same seed will always yield the same sequence of numbers.

val full_init : int array -> unit

Same as Random.init but takes more data as seed.

val self_init : unit -> unit

Initialize the generator with a random seed chosen in a system-dependent way. If /dev/urandom is available on the host machine, it is used to provide a highly random initial seed. Otherwise, a less random seed is computed from system parameters (current time, process IDs).

val bits : unit -> int

Return 30 random bits in a nonnegative integer.

  • Before 3.12.0 used a different algorithm (affects all the following functions)
val int : int -> int

Random.int bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0 and less than 230.

val int32 : Int32.t -> Int32.t

Random.int32 bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.

val nativeint : Nativeint.t -> Nativeint.t

Random.nativeint bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.

val int64 : Int64.t -> Int64.t

Random.int64 bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.

val float : float -> float

Random.float bound returns a random floating-point number between 0 and bound (inclusive). If bound is negative, the result is negative or zero. If bound is 0, the result is 0.

val bool : unit -> bool

Random.bool () returns true or false with probability 0.5 each.

Advanced functions

The functions from module Random.State manipulate the current state of the random generator explicitly. This allows using one or several deterministic PRNGs, even in a multi-threaded program, without interference from other parts of the program.

module State: sig .. end
val get_state : unit -> State.t

Return the current state of the generator used by the basic functions.

val set_state : State.t -> unit

Set the state of the generator used by the basic functions.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Int.html0000644000175000017500000003600613717225553020413 0ustar mehdimehdi Stdlib.Int

Module Stdlib.Int

module Int: Int

Integers

type t = int 

The type for integer values.

val zero : int

zero is the integer 0.

val one : int

one is the integer 1.

val minus_one : int

minus_one is the integer -1.

val neg : int -> int

neg x is ~-x.

val add : int -> int -> int

add x y is the addition x + y.

val sub : int -> int -> int

sub x y is the subtraction x - y.

val mul : int -> int -> int

mul x y is the multiplication x * y.

val div : int -> int -> int

div x y is the division x / y. See (/) for details.

val rem : int -> int -> int

rem x y is the remainder mod y. See (mod) for details.

val succ : int -> int

succ x is add x 1.

val pred : int -> int

pred x is sub x 1.

val abs : int -> int

abs x is the absolute value of x. That is x if x is positive and neg x if x is negative. Warning. This may be negative if the argument is Int.min_int.

val max_int : int

max_int is the greatest representable integer, 2{^[Sys.int_size - 1]} - 1.

val min_int : int

min_int is the smallest representable integer, -2{^[Sys.int_size - 1]}.

val logand : int -> int -> int

logand x y is the bitwise logical and of x and y.

val logor : int -> int -> int

logor x y is the bitwise logical or of x and y.

val logxor : int -> int -> int

logxor x y is the bitwise logical exclusive or of x and y.

val lognot : int -> int

lognot x is the bitwise logical negation of x.

val shift_left : int -> int -> int

shift_left x n shifts x to the left by n bits. The result is unspecified if n < 0 or n > Sys.int_size.

val shift_right : int -> int -> int

shift_right x n shifts x to the right by n bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if n < 0 or n > Sys.int_size.

val shift_right_logical : int -> int -> int

shift_right x n shifts x to the right by n bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if n < 0 or n > Sys.int_size.

Predicates and comparisons

val equal : int -> int -> bool

equal x y is true iff x = y.

val compare : int -> int -> int

compare x y is compare x y but more efficient.

Converting

val to_float : int -> float

to_float x is x as a floating point number.

val of_float : float -> int

of_float x truncates x to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val to_string : int -> string

to_string x is the written representation of x in decimal.

ocaml-doc-4.11/ocaml.html/libref/type_ThreadUnix.html0000644000175000017500000003463013717225553021556 0ustar mehdimehdi ThreadUnix sig
  val execv : string -> string array -> unit
  val execve : string -> string array -> string array -> unit
  val execvp : string -> string array -> unit
  val wait : unit -> int * Unix.process_status
  val waitpid : Unix.wait_flag list -> int -> int * Unix.process_status
  val system : string -> Unix.process_status
  val read : Unix.file_descr -> bytes -> int -> int -> int
  val write : Unix.file_descr -> bytes -> int -> int -> int
  val write_substring : Unix.file_descr -> string -> int -> int -> int
  val timed_read : Unix.file_descr -> bytes -> int -> int -> float -> int
  val timed_write : Unix.file_descr -> bytes -> int -> int -> float -> int
  val timed_write_substring :
    Unix.file_descr -> string -> int -> int -> float -> int
  val select :
    Unix.file_descr list ->
    Unix.file_descr list ->
    Unix.file_descr list ->
    float ->
    Unix.file_descr list * Unix.file_descr list * Unix.file_descr list
  val pipe : ?cloexec:bool -> unit -> Unix.file_descr * Unix.file_descr
  val open_process_in : string -> Stdlib.in_channel
  val open_process_out : string -> Stdlib.out_channel
  val open_process : string -> Stdlib.in_channel * Stdlib.out_channel
  val sleep : int -> unit
  val socket :
    ?cloexec:bool ->
    Unix.socket_domain -> Unix.socket_type -> int -> Unix.file_descr
  val accept :
    ?cloexec:bool -> Unix.file_descr -> Unix.file_descr * Unix.sockaddr
  val connect : Unix.file_descr -> Unix.sockaddr -> unit
  val recv :
    Unix.file_descr -> bytes -> int -> int -> Unix.msg_flag list -> int
  val recvfrom :
    Unix.file_descr ->
    bytes -> int -> int -> Unix.msg_flag list -> int * Unix.sockaddr
  val send :
    Unix.file_descr -> bytes -> int -> int -> Unix.msg_flag list -> int
  val send_substring :
    Unix.file_descr -> string -> int -> int -> Unix.msg_flag list -> int
  val sendto :
    Unix.file_descr ->
    bytes -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int
  val sendto_substring :
    Unix.file_descr ->
    string -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int
  val open_connection :
    Unix.sockaddr -> Stdlib.in_channel * Stdlib.out_channel
end
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Map.OrderedType.html0000644000175000017500000001127413717225553024470 0ustar mehdimehdi MoreLabels.Map.OrderedType Map.OrderedType ocaml-doc-4.11/ocaml.html/libref/type_CamlinternalOO.html0000644000175000017500000005356113717225552022355 0ustar mehdimehdi CamlinternalOO sig
  type tag
  type label
  type table
  type meth
  type t
  type obj
  type closure
  val public_method_label : string -> CamlinternalOO.tag
  val new_method : CamlinternalOO.table -> CamlinternalOO.label
  val new_variable : CamlinternalOO.table -> string -> int
  val new_methods_variables :
    CamlinternalOO.table ->
    string array -> string array -> CamlinternalOO.label array
  val get_variable : CamlinternalOO.table -> string -> int
  val get_variables : CamlinternalOO.table -> string array -> int array
  val get_method_label :
    CamlinternalOO.table -> string -> CamlinternalOO.label
  val get_method_labels :
    CamlinternalOO.table -> string array -> CamlinternalOO.label array
  val get_method :
    CamlinternalOO.table -> CamlinternalOO.label -> CamlinternalOO.meth
  val set_method :
    CamlinternalOO.table ->
    CamlinternalOO.label -> CamlinternalOO.meth -> unit
  val set_methods :
    CamlinternalOO.table -> CamlinternalOO.label array -> unit
  val narrow :
    CamlinternalOO.table ->
    string array -> string array -> string array -> unit
  val widen : CamlinternalOO.table -> unit
  val add_initializer :
    CamlinternalOO.table -> (CamlinternalOO.obj -> unit) -> unit
  val dummy_table : CamlinternalOO.table
  val create_table : string array -> CamlinternalOO.table
  val init_class : CamlinternalOO.table -> unit
  val inherits :
    CamlinternalOO.table ->
    string array ->
    string array ->
    string array ->
    CamlinternalOO.t *
    (CamlinternalOO.table -> CamlinternalOO.obj -> Stdlib.Obj.t) *
    CamlinternalOO.t * CamlinternalOO.obj -> bool -> Stdlib.Obj.t array
  val make_class :
    string array ->
    (CamlinternalOO.table -> Stdlib.Obj.t -> CamlinternalOO.t) ->
    CamlinternalOO.t *
    (CamlinternalOO.table -> Stdlib.Obj.t -> CamlinternalOO.t) *
    (Stdlib.Obj.t -> CamlinternalOO.t) * Stdlib.Obj.t
  type init_table
  val make_class_store :
    string array ->
    (CamlinternalOO.table -> CamlinternalOO.t) ->
    CamlinternalOO.init_table -> unit
  val dummy_class :
    string * int * int ->
    CamlinternalOO.t *
    (CamlinternalOO.table -> Stdlib.Obj.t -> CamlinternalOO.t) *
    (Stdlib.Obj.t -> CamlinternalOO.t) * Stdlib.Obj.t
  val copy : (< .. > as 'a) -> 'a
  val create_object : CamlinternalOO.table -> CamlinternalOO.obj
  val create_object_opt :
    CamlinternalOO.obj -> CamlinternalOO.table -> CamlinternalOO.obj
  val run_initializers : CamlinternalOO.obj -> CamlinternalOO.table -> unit
  val run_initializers_opt :
    CamlinternalOO.obj ->
    CamlinternalOO.obj -> CamlinternalOO.table -> CamlinternalOO.obj
  val create_object_and_run_initializers :
    CamlinternalOO.obj -> CamlinternalOO.table -> CamlinternalOO.obj
  external send :
    CamlinternalOO.obj -> CamlinternalOO.tag -> CamlinternalOO.t = "%send"
  external sendcache :
    CamlinternalOO.obj ->
    CamlinternalOO.tag -> CamlinternalOO.t -> int -> CamlinternalOO.t
    = "%sendcache"
  external sendself :
    CamlinternalOO.obj -> CamlinternalOO.label -> CamlinternalOO.t
    = "%sendself"
  external get_public_method :
    CamlinternalOO.obj -> CamlinternalOO.tag -> CamlinternalOO.closure
    = "caml_get_public_method" [@@noalloc]
  type tables
  val lookup_tables :
    CamlinternalOO.tables ->
    CamlinternalOO.closure array -> CamlinternalOO.tables
  type impl =
      GetConst
    | GetVar
    | GetEnv
    | GetMeth
    | SetVar
    | AppConst
    | AppVar
    | AppEnv
    | AppMeth
    | AppConstConst
    | AppConstVar
    | AppConstEnv
    | AppConstMeth
    | AppVarConst
    | AppEnvConst
    | AppMethConst
    | MethAppConst
    | MethAppVar
    | MethAppEnv
    | MethAppMeth
    | SendConst
    | SendVar
    | SendEnv
    | SendMeth
    | Closure of CamlinternalOO.closure
  type params = {
    mutable compact_table : bool;
    mutable copy_parent : bool;
    mutable clean_when_copying : bool;
    mutable retry_count : int;
    mutable bucket_small_size : int;
  }
  val params : CamlinternalOO.params
  type stats = { classes : int; methods : int; inst_vars : int; }
  val stats : unit -> CamlinternalOO.stats
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Int32.html0000644000175000017500000001126613717225553021622 0ustar mehdimehdi Stdlib.Int32 (module Stdlib__int32) ocaml-doc-4.11/ocaml.html/libref/Printexc.html0000644000175000017500000006705513717225552020244 0ustar mehdimehdi Printexc

Module Printexc

module Printexc: sig .. end

Facilities for printing exceptions and inspecting current call stack.


type t = exn = ..

The type of exception values.

val to_string : exn -> string

Printexc.to_string e returns a string representation of the exception e.

val to_string_default : exn -> string

Printexc.to_string_default e returns a string representation of the exception e, ignoring all registered exception printers.

  • Since 4.09
val print : ('a -> 'b) -> 'a -> 'b

Printexc.print fn x applies fn to x and returns the result. If the evaluation of fn x raises any exception, the name of the exception is printed on standard error output, and the exception is raised again. The typical use is to catch and report exceptions that escape a function application.

val catch : ('a -> 'b) -> 'a -> 'b

Printexc.catch fn x is similar to Printexc.print, but aborts the program with exit code 2 after printing the uncaught exception. This function is deprecated: the runtime system is now able to print uncaught exceptions as precisely as Printexc.catch does. Moreover, calling Printexc.catch makes it harder to track the location of the exception using the debugger or the stack backtrace facility. So, do not use Printexc.catch in new code.

val print_backtrace : out_channel -> unit

Printexc.print_backtrace oc prints an exception backtrace on the output channel oc. The backtrace lists the program locations where the most-recently raised exception was raised and where it was propagated through function calls.

If the call is not inside an exception handler, the returned backtrace is unspecified. If the call is after some exception-catching code (before in the handler, or in a when-guard during the matching of the exception handler), the backtrace may correspond to a later exception than the handled one.

  • Since 3.11.0
val get_backtrace : unit -> string

Printexc.get_backtrace () returns a string containing the same exception backtrace that Printexc.print_backtrace would print. Same restriction usage than Printexc.print_backtrace.

  • Since 3.11.0
val record_backtrace : bool -> unit

Printexc.record_backtrace b turns recording of exception backtraces on (if b = true) or off (if b = false). Initially, backtraces are not recorded, unless the b flag is given to the program through the OCAMLRUNPARAM variable.

  • Since 3.11.0
val backtrace_status : unit -> bool

Printexc.backtrace_status() returns true if exception backtraces are currently recorded, false if not.

  • Since 3.11.0
val register_printer : (exn -> string option) -> unit

Printexc.register_printer fn registers fn as an exception printer. The printer should return None or raise an exception if it does not know how to convert the passed exception, and Some
    s
with s the resulting string if it can convert the passed exception. Exceptions raised by the printer are ignored.

When converting an exception into a string, the printers will be invoked in the reverse order of their registrations, until a printer returns a Some s value (if no such printer exists, the runtime will use a generic printer).

When using this mechanism, one should be aware that an exception backtrace is attached to the thread that saw it raised, rather than to the exception itself. Practically, it means that the code related to fn should not use the backtrace if it has itself raised an exception before.

  • Since 3.11.2
val use_printers : exn -> string option

Printexc.use_printers e returns None if there are no registered printers and Some s with else as the resulting string otherwise.

  • Since 4.09

Raw backtraces

type raw_backtrace 

The abstract type raw_backtrace stores a backtrace in a low-level format, instead of directly exposing them as string as the get_backtrace() function does.

This allows delaying the formatting of backtraces to when they are actually printed, which may be useful if you record more backtraces than you print.

Raw backtraces cannot be marshalled. If you need marshalling, you should use the array returned by the backtrace_slots function of the next section.

  • Since 4.01.0
val get_raw_backtrace : unit -> raw_backtrace

Printexc.get_raw_backtrace () returns the same exception backtrace that Printexc.print_backtrace would print, but in a raw format. Same restriction usage than Printexc.print_backtrace.

  • Since 4.01.0
val print_raw_backtrace : out_channel -> raw_backtrace -> unit

Print a raw backtrace in the same format Printexc.print_backtrace uses.

  • Since 4.01.0
val raw_backtrace_to_string : raw_backtrace -> string

Return a string from a raw backtrace, in the same format Printexc.get_backtrace uses.

  • Since 4.01.0
val raise_with_backtrace : exn -> raw_backtrace -> 'a

Reraise the exception using the given raw_backtrace for the origin of the exception

  • Since 4.05.0

Current call stack

val get_callstack : int -> raw_backtrace

Printexc.get_callstack n returns a description of the top of the call stack on the current program point (for the current thread), with at most n entries. (Note: this function is not related to exceptions at all, despite being part of the Printexc module.)

  • Since 4.01.0

Uncaught exceptions

val default_uncaught_exception_handler : exn -> raw_backtrace -> unit

Printexc.default_uncaught_exception_handler prints the exception and backtrace on standard error output.

  • Since 4.11
val set_uncaught_exception_handler : (exn -> raw_backtrace -> unit) -> unit

Printexc.set_uncaught_exception_handler fn registers fn as the handler for uncaught exceptions. The default handler is Printexc.default_uncaught_exception_handler.

Note that when fn is called all the functions registered with at_exit have already been called. Because of this you must make sure any output channel fn writes on is flushed.

Also note that exceptions raised by user code in the interactive toplevel are not passed to this function as they are caught by the toplevel itself.

If fn raises an exception, both the exceptions passed to fn and raised by fn will be printed with their respective backtrace.

  • Since 4.02.0

Manipulation of backtrace information

These functions are used to traverse the slots of a raw backtrace and extract information from them in a programmer-friendly format.

type backtrace_slot 

The abstract type backtrace_slot represents a single slot of a backtrace.

  • Since 4.02
val backtrace_slots : raw_backtrace -> backtrace_slot array option

Returns the slots of a raw backtrace, or None if none of them contain useful information.

In the return array, the slot at index 0 corresponds to the most recent function call, raise, or primitive get_backtrace call in the trace.

Some possible reasons for returning None are as follow:

  • none of the slots in the trace come from modules compiled with debug information (-g)
  • the program is a bytecode program that has not been linked with debug information enabled (ocamlc -g)
  • Since 4.02.0
type location = {
   filename : string;
   line_number : int;
   start_char : int;
   end_char : int;
}

The type of location information found in backtraces. start_char and end_char are positions relative to the beginning of the line.

  • Since 4.02
module Slot: sig .. end

Raw backtrace slots

type raw_backtrace_slot 

This type allows direct access to raw backtrace slots, without any conversion in an OCaml-usable data-structure. Being process-specific, they must absolutely not be marshalled, and are unsafe to use for this reason (marshalling them may not fail, but un-marshalling and using the result will result in undefined behavior).

Elements of this type can still be compared and hashed: when two elements are equal, then they represent the same source location (the converse is not necessarily true in presence of inlining, for example).

  • Since 4.02.0
val raw_backtrace_length : raw_backtrace -> int

raw_backtrace_length bckt returns the number of slots in the backtrace bckt.

  • Since 4.02
val get_raw_backtrace_slot : raw_backtrace -> int -> raw_backtrace_slot

get_raw_backtrace_slot bckt pos returns the slot in position pos in the backtrace bckt.

  • Since 4.02
val convert_raw_backtrace_slot : raw_backtrace_slot -> backtrace_slot

Extracts the user-friendly backtrace_slot from a low-level raw_backtrace_slot.

  • Since 4.02
val get_raw_backtrace_next_slot : raw_backtrace_slot -> raw_backtrace_slot option

get_raw_backtrace_next_slot slot returns the next slot inlined, if any.

Sample code to iterate over all frames (inlined and non-inlined):

      (* Iterate over inlined frames *)
      let rec iter_raw_backtrace_slot f slot =
        f slot;
        match get_raw_backtrace_next_slot slot with
        | None -> ()
        | Some slot' -> iter_raw_backtrace_slot f slot'

      (* Iterate over stack frames *)
      let iter_raw_backtrace f bt =
        for i = 0 to raw_backtrace_length bt - 1 do
          iter_raw_backtrace_slot f (get_raw_backtrace_slot bt i)
        done
    
  • Since 4.04.0

Exception slots

val exn_slot_id : exn -> int

Printexc.exn_slot_id returns an integer which uniquely identifies the constructor used to create the exception value exn (in the current runtime).

  • Since 4.02.0
val exn_slot_name : exn -> string

Printexc.exn_slot_name exn returns the internal name of the constructor used to create the exception value exn.

  • Since 4.02.0
ocaml-doc-4.11/ocaml.html/libref/type_Weak.html0000644000175000017500000004005113717225553020364 0ustar mehdimehdi Weak sig
  type 'a t
  val create : int -> 'Weak.t
  val length : 'Weak.t -> int
  val set : 'Weak.t -> int -> 'a option -> unit
  val get : 'Weak.t -> int -> 'a option
  val get_copy : 'Weak.t -> int -> 'a option
  val check : 'Weak.t -> int -> bool
  val fill : 'Weak.t -> int -> int -> 'a option -> unit
  val blit : 'Weak.t -> int -> 'Weak.t -> int -> int -> unit
  module type S =
    sig
      type data
      type t
      val create : int -> Weak.S.t
      val clear : Weak.S.t -> unit
      val merge : Weak.S.t -> Weak.S.data -> Weak.S.data
      val add : Weak.S.t -> Weak.S.data -> unit
      val remove : Weak.S.t -> Weak.S.data -> unit
      val find : Weak.S.t -> Weak.S.data -> Weak.S.data
      val find_opt : Weak.S.t -> Weak.S.data -> Weak.S.data option
      val find_all : Weak.S.t -> Weak.S.data -> Weak.S.data list
      val mem : Weak.S.t -> Weak.S.data -> bool
      val iter : (Weak.S.data -> unit) -> Weak.S.t -> unit
      val fold : (Weak.S.data -> '-> 'a) -> Weak.S.t -> '-> 'a
      val count : Weak.S.t -> int
      val stats : Weak.S.t -> int * int * int * int * int * int
    end
  module Make :
    functor (H : Hashtbl.HashedType->
      sig
        type data = H.t
        type t
        val create : int -> t
        val clear : t -> unit
        val merge : t -> data -> data
        val add : t -> data -> unit
        val remove : t -> data -> unit
        val find : t -> data -> data
        val find_opt : t -> data -> data option
        val find_all : t -> data -> data list
        val mem : t -> data -> bool
        val iter : (data -> unit) -> t -> unit
        val fold : (data -> '-> 'a) -> t -> '-> 'a
        val count : t -> int
        val stats : t -> int * int * int * int * int * int
      end
end
ocaml-doc-4.11/ocaml.html/libref/Gc.html0000644000175000017500000013127113717225552016771 0ustar mehdimehdi Gc

Module Gc

module Gc: sig .. end

Memory management control and statistics; finalised values.


type stat = {
   minor_words : float; (*

Number of words allocated in the minor heap since the program was started.

*)
   promoted_words : float; (*

Number of words allocated in the minor heap that survived a minor collection and were moved to the major heap since the program was started.

*)
   major_words : float; (*

Number of words allocated in the major heap, including the promoted words, since the program was started.

*)
   minor_collections : int; (*

Number of minor collections since the program was started.

*)
   major_collections : int; (*

Number of major collection cycles completed since the program was started.

*)
   heap_words : int; (*

Total size of the major heap, in words.

*)
   heap_chunks : int; (*

Number of contiguous pieces of memory that make up the major heap.

*)
   live_words : int; (*

Number of words of live data in the major heap, including the header words.

*)
   live_blocks : int; (*

Number of live blocks in the major heap.

*)
   free_words : int; (*

Number of words in the free list.

*)
   free_blocks : int; (*

Number of blocks in the free list.

*)
   largest_free : int; (*

Size (in words) of the largest block in the free list.

*)
   fragments : int; (*

Number of wasted words due to fragmentation. These are 1-words free blocks placed between two live blocks. They are not available for allocation.

*)
   compactions : int; (*

Number of heap compactions since the program was started.

*)
   top_heap_words : int; (*

Maximum size reached by the major heap, in words.

*)
   stack_size : int; (*

Current size of the stack, in words.

  • Since 3.12.0
*)
}

The memory management counters are returned in a stat record.

The total amount of memory allocated by the program since it was started is (in words) minor_words + major_words - promoted_words. Multiply by the word size (4 on a 32-bit machine, 8 on a 64-bit machine) to get the number of bytes.

type control = {
   mutable minor_heap_size : int; (*

The size (in words) of the minor heap. Changing this parameter will trigger a minor collection. Default: 256k.

*)
   mutable major_heap_increment : int; (*

How much to add to the major heap when increasing it. If this number is less than or equal to 1000, it is a percentage of the current heap size (i.e. setting it to 100 will double the heap size at each increase). If it is more than 1000, it is a fixed number of words that will be added to the heap. Default: 15.

*)
   mutable space_overhead : int; (*

The major GC speed is computed from this parameter. This is the memory that will be "wasted" because the GC does not immediately collect unreachable blocks. It is expressed as a percentage of the memory used for live data. The GC will work more (use more CPU time and collect blocks more eagerly) if space_overhead is smaller. Default: 80.

*)
   mutable verbose : int; (*

This value controls the GC messages on standard error output. It is a sum of some of the following flags, to print messages on the corresponding events:

  • 0x001 Start of major GC cycle.
  • 0x002 Minor collection and major GC slice.
  • 0x004 Growing and shrinking of the heap.
  • 0x008 Resizing of stacks and memory manager tables.
  • 0x010 Heap compaction.
  • 0x020 Change of GC parameters.
  • 0x040 Computation of major GC slice size.
  • 0x080 Calling of finalisation functions.
  • 0x100 Bytecode executable and shared library search at start-up.
  • 0x200 Computation of compaction-triggering condition.
  • 0x400 Output GC statistics at program exit. Default: 0.
*)
   mutable max_overhead : int; (*

Heap compaction is triggered when the estimated amount of "wasted" memory is more than max_overhead percent of the amount of live data. If max_overhead is set to 0, heap compaction is triggered at the end of each major GC cycle (this setting is intended for testing purposes only). If max_overhead >= 1000000, compaction is never triggered. If compaction is permanently disabled, it is strongly suggested to set allocation_policy to 2. Default: 500.

*)
   mutable stack_limit : int; (*

The maximum size of the stack (in words). This is only relevant to the byte-code runtime, as the native code runtime uses the operating system's stack. Default: 1024k.

*)
   mutable allocation_policy : int; (*

The policy used for allocating in the major heap. Possible values are 0, 1 and 2.

  • 0 is the next-fit policy, which is usually fast but can result in fragmentation, increasing memory consumption.
  • 1 is the first-fit policy, which avoids fragmentation but has corner cases (in certain realistic workloads) where it is sensibly slower.
  • 2 is the best-fit policy, which is fast and avoids fragmentation. In our experiments it is faster and uses less memory than both next-fit and first-fit. (since OCaml 4.10)

The current default is next-fit, as the best-fit policy is new and not yet widely tested. We expect best-fit to become the default in the future.

On one example that was known to be bad for next-fit and first-fit, next-fit takes 28s using 855Mio of memory, first-fit takes 47s using 566Mio of memory, best-fit takes 27s using 545Mio of memory.

Note: When changing to a low-fragmentation policy, you may need to augment the space_overhead setting, for example using 100 instead of the default 80 which is tuned for next-fit. Indeed, the difference in fragmentation behavior means that different policies will have different proportion of "wasted space" for a given program. Less fragmentation means a smaller heap so, for the same amount of wasted space, a higher proportion of wasted space. This makes the GC work harder, unless you relax it by increasing space_overhead.

Note: changing the allocation policy at run-time forces a heap compaction, which is a lengthy operation unless the heap is small (e.g. at the start of the program).

Default: 0.

  • Since 3.11.0
*)
   window_size : int; (*

The size of the window used by the major GC for smoothing out variations in its workload. This is an integer between 1 and 50. Default: 1.

  • Since 4.03.0
*)
   custom_major_ratio : int; (*

Target ratio of floating garbage to major heap size for out-of-heap memory held by custom values located in the major heap. The GC speed is adjusted to try to use this much memory for dead values that are not yet collected. Expressed as a percentage of major heap size. The default value keeps the out-of-heap floating garbage about the same size as the in-heap overhead. Note: this only applies to values allocated with caml_alloc_custom_mem (e.g. bigarrays). Default: 44.

  • Since 4.08.0
*)
   custom_minor_ratio : int; (*

Bound on floating garbage for out-of-heap memory held by custom values in the minor heap. A minor GC is triggered when this much memory is held by custom values located in the minor heap. Expressed as a percentage of minor heap size. Note: this only applies to values allocated with caml_alloc_custom_mem (e.g. bigarrays). Default: 100.

  • Since 4.08.0
*)
   custom_minor_max_size : int; (*

Maximum amount of out-of-heap memory for each custom value allocated in the minor heap. When a custom value is allocated on the minor heap and holds more than this many bytes, only this value is counted against custom_minor_ratio and the rest is directly counted against custom_major_ratio. Note: this only applies to values allocated with caml_alloc_custom_mem (e.g. bigarrays). Default: 8192 bytes.

  • Since 4.08.0
*)
}

The GC parameters are given as a control record. Note that these parameters can also be initialised by setting the OCAMLRUNPARAM environment variable. See the documentation of ocamlrun.

val stat : unit -> stat

Return the current values of the memory management counters in a stat record. This function examines every heap block to get the statistics.

val quick_stat : unit -> stat

Same as stat except that live_words, live_blocks, free_words, free_blocks, largest_free, and fragments are set to 0. This function is much faster than stat because it does not need to go through the heap.

val counters : unit -> float * float * float

Return (minor_words, promoted_words, major_words). This function is as fast as quick_stat.

val minor_words : unit -> float

Number of words allocated in the minor heap since the program was started. This number is accurate in byte-code programs, but only an approximation in programs compiled to native code.

In native code this function does not allocate.

  • Since 4.04
val get : unit -> control

Return the current values of the GC parameters in a control record.

val set : control -> unit

set r changes the GC parameters according to the control record r. The normal usage is: Gc.set { (Gc.get()) with Gc.verbose = 0x00d }

val minor : unit -> unit

Trigger a minor collection.

val major_slice : int -> int

major_slice n Do a minor collection and a slice of major collection. n is the size of the slice: the GC will do enough work to free (on average) n words of memory. If n = 0, the GC will try to do enough work to ensure that the next automatic slice has no work to do. This function returns an unspecified integer (currently: 0).

val major : unit -> unit

Do a minor collection and finish the current major collection cycle.

val full_major : unit -> unit

Do a minor collection, finish the current major collection cycle, and perform a complete new cycle. This will collect all currently unreachable blocks.

val compact : unit -> unit

Perform a full major collection and compact the heap. Note that heap compaction is a lengthy operation.

val print_stat : out_channel -> unit

Print the current values of the memory management counters (in human-readable form) into the channel argument.

val allocated_bytes : unit -> float

Return the total number of bytes allocated since the program was started. It is returned as a float to avoid overflow problems with int on 32-bit machines.

val get_minor_free : unit -> int

Return the current size of the free space inside the minor heap.

  • Since 4.03.0
val get_bucket : int -> int

get_bucket n returns the current size of the n-th future bucket of the GC smoothing system. The unit is one millionth of a full GC.

  • Since 4.03.0
  • Raises Invalid_argument if n is negative, return 0 if n is larger than the smoothing window.
val get_credit : unit -> int

get_credit () returns the current size of the "work done in advance" counter of the GC smoothing system. The unit is one millionth of a full GC.

  • Since 4.03.0
val huge_fallback_count : unit -> int

Return the number of times we tried to map huge pages and had to fall back to small pages. This is always 0 if OCAMLRUNPARAM contains H=1.

  • Since 4.03.0
val finalise : ('a -> unit) -> 'a -> unit

finalise f v registers f as a finalisation function for v. v must be heap-allocated. f will be called with v as argument at some point between the first time v becomes unreachable (including through weak pointers) and the time v is collected by the GC. Several functions can be registered for the same value, or even several instances of the same function. Each instance will be called once (or never, if the program terminates before v becomes unreachable).

The GC will call the finalisation functions in the order of deallocation. When several values become unreachable at the same time (i.e. during the same GC cycle), the finalisation functions will be called in the reverse order of the corresponding calls to finalise. If finalise is called in the same order as the values are allocated, that means each value is finalised before the values it depends upon. Of course, this becomes false if additional dependencies are introduced by assignments.

In the presence of multiple OCaml threads it should be assumed that any particular finaliser may be executed in any of the threads.

Anything reachable from the closure of finalisation functions is considered reachable, so the following code will not work as expected:

  •  let v = ... in Gc.finalise (fun _ -> ...v...) v 

Instead you should make sure that v is not in the closure of the finalisation function by writing:

  •  let f = fun x -> ...  let v = ... in Gc.finalise f v 

The f function can use all features of OCaml, including assignments that make the value reachable again. It can also loop forever (in this case, the other finalisation functions will not be called during the execution of f, unless it calls finalise_release). It can call finalise on v or other values to register other functions or even itself. It can raise an exception; in this case the exception will interrupt whatever the program was doing when the function was called.

finalise will raise Invalid_argument if v is not guaranteed to be heap-allocated. Some examples of values that are not heap-allocated are integers, constant constructors, booleans, the empty array, the empty list, the unit value. The exact list of what is heap-allocated or not is implementation-dependent. Some constant values can be heap-allocated but never deallocated during the lifetime of the program, for example a list of integer constants; this is also implementation-dependent. Note that values of types float are sometimes allocated and sometimes not, so finalising them is unsafe, and finalise will also raise Invalid_argument for them. Values of type 'Lazy.t (for any 'a) are like float in this respect, except that the compiler sometimes optimizes them in a way that prevents finalise from detecting them. In this case, it will not raise Invalid_argument, but you should still avoid calling finalise on lazy values.

The results of calling String.make, Bytes.make, Bytes.create, Array.make, and ref are guaranteed to be heap-allocated and non-constant except when the length argument is 0.

val finalise_last : (unit -> unit) -> 'a -> unit

same as Gc.finalise except the value is not given as argument. So you can't use the given value for the computation of the finalisation function. The benefit is that the function is called after the value is unreachable for the last time instead of the first time. So contrary to Gc.finalise the value will never be reachable again or used again. In particular every weak pointer and ephemeron that contained this value as key or data is unset before running the finalisation function. Moreover the finalisation functions attached with Gc.finalise are always called before the finalisation functions attached with Gc.finalise_last.

  • Since 4.04
val finalise_release : unit -> unit

A finalisation function may call finalise_release to tell the GC that it can launch the next finalisation function without waiting for the current one to return.

type alarm 

An alarm is a piece of data that calls a user function at the end of each major GC cycle. The following functions are provided to create and delete alarms.

val create_alarm : (unit -> unit) -> alarm

create_alarm f will arrange for f to be called at the end of each major GC cycle, starting with the current cycle or the next one. A value of type alarm is returned that you can use to call delete_alarm.

val delete_alarm : alarm -> unit

delete_alarm a will stop the calls to the function associated to a. Calling delete_alarm a again has no effect.

val eventlog_pause : unit -> unit

eventlog_pause () will pause the collection of traces in the runtime. Traces are collected if the program is linked to the instrumented runtime and started with the environment variable OCAML_EVENTLOG_ENABLED. Events are flushed to disk after pausing, and no new events will be recorded until eventlog_resume is called.

val eventlog_resume : unit -> unit

eventlog_resume () will resume the collection of traces in the runtime. Traces are collected if the program is linked to the instrumented runtime and started with the environment variable OCAML_EVENTLOG_ENABLED. This call can be used after calling eventlog_pause, or if the program was started with OCAML_EVENTLOG_ENABLED=p. (which pauses the collection of traces before the first event.)

module Memprof: sig .. end

Memprof is a sampling engine for allocated memory words.

ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.SeededHashedType.html0000644000175000017500000001256513717225553024242 0ustar mehdimehdi Hashtbl.SeededHashedType sig
  type t
  val equal :
    Hashtbl.SeededHashedType.t -> Hashtbl.SeededHashedType.t -> bool
  val hash : int -> Hashtbl.SeededHashedType.t -> int
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Seq.html0000644000175000017500000001126213717225553021447 0ustar mehdimehdi Stdlib.Seq (module Stdlib__seq) ocaml-doc-4.11/ocaml.html/libref/Bytes.html0000644000175000017500000016172113717225552017531 0ustar mehdimehdi Bytes

Module Bytes

module Bytes: sig .. end

Byte sequence operations.

A byte sequence is a mutable data structure that contains a fixed-length sequence of bytes. Each byte can be indexed in constant time for reading or writing.

Given a byte sequence s of length l, we can access each of the l bytes of s via its index in the sequence. Indexes start at 0, and we will call an index valid in s if it falls within the range [0...l-1] (inclusive). A position is the point between two bytes or at the beginning or end of the sequence. We call a position valid in s if it falls within the range [0...l] (inclusive). Note that the byte at index n is between positions n and n+1.

Two parameters start and len are said to designate a valid range of s if len >= 0 and start and start+len are valid positions in s.

Byte sequences can be modified in place, for instance via the set and blit functions described below. See also strings (module String), which are almost the same data structure, but cannot be modified in place.

Bytes are represented by the OCaml type char.

  • Since 4.02.0

val length : bytes -> int

Return the length (number of bytes) of the argument.

val get : bytes -> int -> char

get s n returns the byte at index n in argument s.

  • Raises Invalid_argument if n is not a valid index in s.
val set : bytes -> int -> char -> unit

set s n c modifies s in place, replacing the byte at index n with c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes

create n returns a new byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> bytes

make n c returns a new byte sequence of length n, filled with the byte c.

val init : int -> (int -> char) -> bytes

Bytes.init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i (in increasing index order).

val empty : bytes

A byte sequence of size 0.

val copy : bytes -> bytes

Return a new byte sequence that contains the same bytes as the argument.

val of_string : string -> bytes

Return a new byte sequence that contains the same bytes as the given string.

val to_string : bytes -> string

Return a new string that contains the same bytes as the given byte sequence.

val sub : bytes -> int -> int -> bytes

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val sub_string : bytes -> int -> int -> string

Same as sub but return a string instead of a byte sequence.

val extend : bytes -> int -> int -> bytes

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it. If left or right is negative, then bytes are removed (instead of appended) from the corresponding side of s.

val fill : bytes -> int -> int -> char -> unit

fill s start len c modifies s in place, replacing len characters with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : bytes -> int -> bytes -> int -> int -> unit

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff. It works correctly even if src and dst are the same byte sequence, and the source and destination intervals overlap.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val blit_string : string -> int -> bytes -> int -> int -> unit

blit_string src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : bytes -> bytes list -> bytes

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

val cat : bytes -> bytes -> bytes

cat s1 s2 concatenates s1 and s2 and returns the result as a new byte sequence.

val iter : (char -> unit) -> bytes -> unit

iter f s applies function f in turn to all the bytes of s. It is equivalent to f (get s 0); f (get s 1); ...; f (get s
    (length s - 1)); ()
.

val iteri : (int -> char -> unit) -> bytes -> unit

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

val map : (char -> char) -> bytes -> bytes

map f s applies function f in turn to all the bytes of s (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val mapi : (int -> char -> char) -> bytes -> bytes

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val trim : bytes -> bytes

Return a copy of the argument, without leading and trailing whitespace. The bytes regarded as whitespace are the ASCII characters ' ', '\012', '\n', '\r', and '\t'.

val escaped : bytes -> bytes

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash and double-quote.

val index : bytes -> char -> int

index s c returns the index of the first occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val index_opt : bytes -> char -> int option

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val rindex : bytes -> char -> int

rindex s c returns the index of the last occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : bytes -> char -> int option

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val index_from : bytes -> int -> char -> int

index_from s i c returns the index of the first occurrence of byte c in s after position i. Bytes.index s c is equivalent to Bytes.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : bytes -> int -> char -> int option

index_from_opt s i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i. Bytes.index_opt s c is equivalent to Bytes.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : bytes -> int -> char -> int

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1. rindex s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : bytes -> int -> char -> int option

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1. rindex_opt s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : bytes -> char -> bool

contains s c tests if byte c appears in s.

val contains_from : bytes -> int -> char -> bool

contains_from s start c tests if byte c appears in s after position start. contains s c is equivalent to contains_from
    s 0 c
.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : bytes -> int -> char -> bool

rcontains_from s stop c tests if byte c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : bytes -> bytes

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val lowercase_ascii : bytes -> bytes

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.03.0
val capitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val uncapitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.03.0
type t = bytes 

An alias for the type of byte sequences.

val compare : t -> t -> int

The comparison function for byte sequences, with the same specification as compare. Along with the type t, this function compare allows the module Bytes to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equality function for byte sequences.

  • Since 4.03.0

Unsafe conversions (for advanced users)

This section describes unsafe, low-level conversion functions between bytes and string. They do not copy the internal data; used improperly, they can break the immutability invariant on strings provided by the -safe-string option. They are available for expert library authors, but for most purposes you should use the always-correct Bytes.to_string and Bytes.of_string instead.

val unsafe_to_string : bytes -> string

Unsafely convert a byte sequence into a string.

To reason about the use of unsafe_to_string, it is convenient to consider an "ownership" discipline. A piece of code that manipulates some data "owns" it; there are several disjoint ownership modes, including:

  • Unique ownership: the data may be accessed and mutated
  • Shared ownership: the data has several owners, that may only access it, not mutate it.

Unique ownership is linear: passing the data to another piece of code means giving up ownership (we cannot write the data again). A unique owner may decide to make the data shared (giving up mutation rights on it), but shared data may not become uniquely-owned again.

unsafe_to_string s can only be used when the caller owns the byte sequence s -- either uniquely or as shared immutable data. The caller gives up ownership of s, and gains ownership of the returned string.

There are two valid use-cases that respect this ownership discipline:

1. Creating a string by initializing and mutating a byte sequence that is never changed after initialization is performed.

let string_init len f : string =
  let s = Bytes.create len in
  for i = 0 to len - 1 do Bytes.set s i (f i) done;
  Bytes.unsafe_to_string s
   

This function is safe because the byte sequence s will never be accessed or mutated after unsafe_to_string is called. The string_init code gives up ownership of s, and returns the ownership of the resulting string to its caller.

Note that it would be unsafe if s was passed as an additional parameter to the function f as it could escape this way and be mutated in the future -- string_init would give up ownership of s to pass it to f, and could not call unsafe_to_string safely.

We have provided the String.init, String.map and String.mapi functions to cover most cases of building new strings. You should prefer those over to_string or unsafe_to_string whenever applicable.

2. Temporarily giving ownership of a byte sequence to a function that expects a uniquely owned string and returns ownership back, so that we can mutate the sequence again after the call ended.

let bytes_length (s : bytes) =
  String.length (Bytes.unsafe_to_string s)
   

In this use-case, we do not promise that s will never be mutated after the call to bytes_length s. The String.length function temporarily borrows unique ownership of the byte sequence (and sees it as a string), but returns this ownership back to the caller, which may assume that s is still a valid byte sequence after the call. Note that this is only correct because we know that String.length does not capture its argument -- it could escape by a side-channel such as a memoization combinator.

The caller may not mutate s while the string is borrowed (it has temporarily given up ownership). This affects concurrent programs, but also higher-order functions: if String.length returned a closure to be called later, s should not be mutated until this closure is fully applied and returns ownership.

val unsafe_of_string : string -> bytes

Unsafely convert a shared string to a byte sequence that should not be mutated.

The same ownership discipline that makes unsafe_to_string correct applies to unsafe_of_string: you may use it if you were the owner of the string value, and you will own the return bytes in the same mode.

In practice, unique ownership of string values is extremely difficult to reason about correctly. You should always assume strings are shared, never uniquely owned.

For example, string literals are implicitly shared by the compiler, so you never uniquely own them.

let incorrect = Bytes.unsafe_of_string "hello"
let s = Bytes.of_string "hello"
    

The first declaration is incorrect, because the string literal "hello" could be shared by the compiler with other parts of the program, and mutating incorrect is a bug. You must always use the second version, which performs a copy and is thus correct.

Assuming unique ownership of strings that are not string literals, but are (partly) built from string literals, is also incorrect. For example, mutating unsafe_of_string ("foo" ^ s) could mutate the shared string "foo" -- assuming a rope-like representation of strings. More generally, functions operating on strings will assume shared ownership, they do not preserve unique ownership. It is thus incorrect to assume unique ownership of the result of unsafe_of_string.

The only case we have reasonable confidence is safe is if the produced bytes is shared -- used as an immutable byte sequence. This is possibly useful for incremental migration of low-level programs that manipulate immutable sequences of bytes (for example Marshal.from_bytes) and previously used the string type for this purpose.

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07

Binary encoding/decoding of integers

The functions in this section binary encode and decode integers to and from byte sequences.

All following functions raise Invalid_argument if the space needed at index i to decode or encode the integer is not available.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. These extra bits are handled as follows:

  • Functions that decode signed (resp. unsigned) 8-bit or 16-bit integers represented by int values sign-extend (resp. zero-extend) their result.
  • Functions that encode 8-bit or 16-bit integers represented by int values truncate their input to their least significant bytes.
val get_uint8 : bytes -> int -> int

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

  • Since 4.08
val get_int8 : bytes -> int -> int

get_int8 b i is b's signed 8-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_ne : bytes -> int -> int

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_be : bytes -> int -> int

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_le : bytes -> int -> int

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_ne : bytes -> int -> int

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_be : bytes -> int -> int

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_le : bytes -> int -> int

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int32_ne : bytes -> int -> int32

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_be : bytes -> int -> int32

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_le : bytes -> int -> int32

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int64_ne : bytes -> int -> int64

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_be : bytes -> int -> int64

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_le : bytes -> int -> int64

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

  • Since 4.08
val set_uint8 : bytes -> int -> int -> unit

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_int8 : bytes -> int -> int -> unit

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_ne : bytes -> int -> int -> unit

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_be : bytes -> int -> int -> unit

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_le : bytes -> int -> int -> unit

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_ne : bytes -> int -> int -> unit

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_be : bytes -> int -> int -> unit

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_le : bytes -> int -> int -> unit

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_ne : bytes -> int -> int32 -> unit

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_be : bytes -> int -> int32 -> unit

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_le : bytes -> int -> int32 -> unit

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_ne : bytes -> int -> int64 -> unit

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_be : bytes -> int -> int64 -> unit

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_le : bytes -> int -> int64 -> unit

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/Float.ArrayLabels.html0000644000175000017500000003032213717225552021700 0ustar mehdimehdi Float.ArrayLabels

Module Float.ArrayLabels

module ArrayLabels: sig .. end

type t = floatarray 
val length : t -> int
val get : t -> int -> float
val set : t -> int -> float -> unit
val make : int -> float -> t
val create : int -> t
val init : int -> f:(int -> float) -> t
val append : t -> t -> t
val concat : t list -> t
val sub : t -> pos:int -> len:int -> t
val copy : t -> t
val fill : t -> pos:int -> len:int -> float -> unit
val blit : src:t ->
src_pos:int -> dst:t -> dst_pos:int -> len:int -> unit
val to_list : t -> float list
val of_list : float list -> t
val iter : f:(float -> unit) -> t -> unit
val iteri : f:(int -> float -> unit) -> t -> unit
val map : f:(float -> float) -> t -> t
val mapi : f:(int -> float -> float) -> t -> t
val fold_left : f:('a -> float -> 'a) -> init:'a -> t -> 'a
val fold_right : f:(float -> 'a -> 'a) -> t -> init:'a -> 'a
val iter2 : f:(float -> float -> unit) ->
t -> t -> unit
val map2 : f:(float -> float -> float) ->
t -> t -> t
val for_all : f:(float -> bool) -> t -> bool
val exists : f:(float -> bool) -> t -> bool
val mem : float -> set:t -> bool
val mem_ieee : float -> set:t -> bool
val sort : cmp:(float -> float -> int) -> t -> unit
val stable_sort : cmp:(float -> float -> int) -> t -> unit
val fast_sort : cmp:(float -> float -> int) -> t -> unit
val to_seq : t -> float Seq.t
val to_seqi : t -> (int * float) Seq.t
val of_seq : float Seq.t -> t
val map_to_array : f:(float -> 'a) -> t -> 'a array
val map_from_array : f:('a -> float) -> 'a array -> t
val unsafe_get : t -> int -> float
val unsafe_set : t -> int -> float -> unit
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Weak.html0000644000175000017500000003631213717225553020550 0ustar mehdimehdi Stdlib.Weak

Module Stdlib.Weak

module Weak: Weak

Low-level functions

type 'a t 

The type of arrays of weak pointers (weak arrays). A weak pointer is a value that the garbage collector may erase whenever the value is not used any more (through normal pointers) by the program. Note that finalisation functions are run before the weak pointers are erased, because the finalisation functions can make values alive again (before 4.03 the finalisation functions were run after).

A weak pointer is said to be full if it points to a value, empty if the value was erased by the GC.

Notes:

  • Integers are not allocated and cannot be stored in weak arrays.
  • Weak arrays cannot be marshaled using output_value nor the functions of the Marshal module.
val create : int -> 'a t

Weak.create n returns a new weak array of length n. All the pointers are initially empty.

val length : 'a t -> int

Weak.length ar returns the length (number of elements) of ar.

val set : 'a t -> int -> 'a option -> unit

Weak.set ar n (Some el) sets the nth cell of ar to be a (full) pointer to el; Weak.set ar n None sets the nth cell of ar to empty.

  • Raises Invalid_argument if n is not in the range 0 to Weak.length a - 1.
val get : 'a t -> int -> 'a option

Weak.get ar n returns None if the nth cell of ar is empty, Some x (where x is the value) if it is full.

  • Raises Invalid_argument if n is not in the range 0 to Weak.length a - 1.
val get_copy : 'a t -> int -> 'a option

Weak.get_copy ar n returns None if the nth cell of ar is empty, Some x (where x is a (shallow) copy of the value) if it is full. In addition to pitfalls with mutable values, the interesting difference with get is that get_copy does not prevent the incremental GC from erasing the value in its current cycle (get may delay the erasure to the next GC cycle).

  • Raises Invalid_argument if n is not in the range 0 to Weak.length a - 1. If the element is a custom block it is not copied.
val check : 'a t -> int -> bool

Weak.check ar n returns true if the nth cell of ar is full, false if it is empty. Note that even if Weak.check ar n returns true, a subsequent Weak.get ar n can return None.

val fill : 'a t -> int -> int -> 'a option -> unit

Weak.fill ar ofs len el sets to el all pointers of ar from ofs to ofs + len - 1.

  • Raises Invalid_argument if ofs and len do not designate a valid subarray of a.
val blit : 'a t -> int -> 'a t -> int -> int -> unit

Weak.blit ar1 off1 ar2 off2 len copies len weak pointers from ar1 (starting at off1) to ar2 (starting at off2). It works correctly even if ar1 and ar2 are the same.

  • Raises Invalid_argument if off1 and len do not designate a valid subarray of ar1, or if off2 and len do not designate a valid subarray of ar2.

Weak hash sets

A weak hash set is a hashed set of values. Each value may magically disappear from the set when it is not used by the rest of the program any more. This is normally used to share data structures without inducing memory leaks. Weak hash sets are defined on values from a Hashtbl.HashedType module; the equal relation and hash function are taken from that module. We will say that v is an instance of x if equal x v is true.

The equal relation must be able to work on a shallow copy of the values and give the same result as with the values themselves.

module type S = sig .. end

The output signature of the functor Weak.Make.

module Make: 
functor (H : Hashtbl.HashedType-> S with type data = H.t

Functor building an implementation of the weak hash set structure.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Hashtbl.html0000644000175000017500000011132413717225552021242 0ustar mehdimehdi Stdlib.Hashtbl

Module Stdlib.Hashtbl

module Hashtbl: Hashtbl

Generic interface

type ('a, 'b) t 

The type of hash tables from type 'a to type 'b.

val create : ?random:bool -> int -> ('a, 'b) t

Hashtbl.create n creates a new, empty hash table, with initial size n. For best results, n should be on the order of the expected number of elements that will be in the table. The table grows as needed, so n is just an initial guess.

The optional random parameter (a boolean) controls whether the internal organization of the hash table is randomized at each execution of Hashtbl.create or deterministic over all executions.

A hash table that is created with ~random:false uses a fixed hash function (Hashtbl.hash) to distribute keys among buckets. As a consequence, collisions between keys happen deterministically. In Web-facing applications or other security-sensitive applications, the deterministic collision patterns can be exploited by a malicious user to create a denial-of-service attack: the attacker sends input crafted to create many collisions in the table, slowing the application down.

A hash table that is created with ~random:true uses the seeded hash function Hashtbl.seeded_hash with a seed that is randomly chosen at hash table creation time. In effect, the hash function used is randomly selected among 2^{30} different hash functions. All these hash functions have different collision patterns, rendering ineffective the denial-of-service attack described above. However, because of randomization, enumerating all elements of the hash table using Hashtbl.fold or Hashtbl.iter is no longer deterministic: elements are enumerated in different orders at different runs of the program.

If no ~random parameter is given, hash tables are created in non-random mode by default. This default can be changed either programmatically by calling Hashtbl.randomize or by setting the R flag in the OCAMLRUNPARAM environment variable.

  • Before 4.00.0 the random parameter was not present and all hash tables were created in non-randomized mode.
val clear : ('a, 'b) t -> unit

Empty a hash table. Use reset instead of clear to shrink the size of the bucket table to its initial size.

val reset : ('a, 'b) t -> unit

Empty a hash table and shrink the size of the bucket table to its initial size.

  • Since 4.00.0
val copy : ('a, 'b) t -> ('a, 'b) t

Return a copy of the given hashtable.

val add : ('a, 'b) t -> 'a -> 'b -> unit

Hashtbl.add tbl x y adds a binding of x to y in table tbl. Previous bindings for x are not removed, but simply hidden. That is, after performing Hashtbl.remove tbl x, the previous binding for x, if any, is restored. (Same behavior as with association lists.)

val find : ('a, 'b) t -> 'a -> 'b

Hashtbl.find tbl x returns the current binding of x in tbl, or raises Not_found if no such binding exists.

val find_opt : ('a, 'b) t -> 'a -> 'b option

Hashtbl.find_opt tbl x returns the current binding of x in tbl, or None if no such binding exists.

  • Since 4.05
val find_all : ('a, 'b) t -> 'a -> 'b list

Hashtbl.find_all tbl x returns the list of all data associated with x in tbl. The current binding is returned first, then the previous bindings, in reverse order of introduction in the table.

val mem : ('a, 'b) t -> 'a -> bool

Hashtbl.mem tbl x checks if x is bound in tbl.

val remove : ('a, 'b) t -> 'a -> unit

Hashtbl.remove tbl x removes the current binding of x in tbl, restoring the previous binding if it exists. It does nothing if x is not bound in tbl.

val replace : ('a, 'b) t -> 'a -> 'b -> unit

Hashtbl.replace tbl x y replaces the current binding of x in tbl by a binding of x to y. If x is unbound in tbl, a binding of x to y is added to tbl. This is functionally equivalent to Hashtbl.remove tbl x followed by Hashtbl.add tbl x y.

val iter : ('a -> 'b -> unit) -> ('a, 'b) t -> unit

Hashtbl.iter f tbl applies f to all bindings in table tbl. f receives the key as first argument, and the associated value as second argument. Each binding is presented exactly once to f.

The order in which the bindings are passed to f is unspecified. However, if the table contains several bindings for the same key, they are passed to f in reverse order of introduction, that is, the most recent binding is passed first.

If the hash table was created in non-randomized mode, the order in which the bindings are enumerated is reproducible between successive runs of the program, and even between minor versions of OCaml. For randomized hash tables, the order of enumeration is entirely random.

The behavior is not defined if the hash table is modified by f during the iteration.

val filter_map_inplace : ('a -> 'b -> 'b option) -> ('a, 'b) t -> unit

Hashtbl.filter_map_inplace f tbl applies f to all bindings in table tbl and update each binding depending on the result of f. If f returns None, the binding is discarded. If it returns Some new_val, the binding is update to associate the key to new_val.

Other comments for Hashtbl.iter apply as well.

  • Since 4.03.0
val fold : ('a -> 'b -> 'c -> 'c) -> ('a, 'b) t -> 'c -> 'c

Hashtbl.fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN are the keys of all bindings in tbl, and d1 ... dN are the associated values. Each binding is presented exactly once to f.

The order in which the bindings are passed to f is unspecified. However, if the table contains several bindings for the same key, they are passed to f in reverse order of introduction, that is, the most recent binding is passed first.

If the hash table was created in non-randomized mode, the order in which the bindings are enumerated is reproducible between successive runs of the program, and even between minor versions of OCaml. For randomized hash tables, the order of enumeration is entirely random.

The behavior is not defined if the hash table is modified by f during the iteration.

val length : ('a, 'b) t -> int

Hashtbl.length tbl returns the number of bindings in tbl. It takes constant time. Multiple bindings are counted once each, so Hashtbl.length gives the number of times Hashtbl.iter calls its first argument.

val randomize : unit -> unit

After a call to Hashtbl.randomize(), hash tables are created in randomized mode by default: Hashtbl.create returns randomized hash tables, unless the ~random:false optional parameter is given. The same effect can be achieved by setting the R parameter in the OCAMLRUNPARAM environment variable.

It is recommended that applications or Web frameworks that need to protect themselves against the denial-of-service attack described in Hashtbl.create call Hashtbl.randomize() at initialization time.

Note that once Hashtbl.randomize() was called, there is no way to revert to the non-randomized default behavior of Hashtbl.create. This is intentional. Non-randomized hash tables can still be created using Hashtbl.create ~random:false.

  • Since 4.00.0
val is_randomized : unit -> bool

return if the tables are currently created in randomized mode by default

  • Since 4.03.0
type statistics = {
   num_bindings : int; (*

Number of bindings present in the table. Same value as returned by Hashtbl.length.

*)
   num_buckets : int; (*

Number of buckets in the table.

*)
   max_bucket_length : int; (*

Maximal number of bindings per bucket.

*)
   bucket_histogram : int array; (*

Histogram of bucket sizes. This array histo has length max_bucket_length + 1. The value of histo.(i) is the number of buckets whose size is i.

*)
}
  • Since 4.00.0
val stats : ('a, 'b) t -> statistics

Hashtbl.stats tbl returns statistics about the table tbl: number of buckets, size of the biggest bucket, distribution of buckets by size.

  • Since 4.00.0

Iterators

val to_seq : ('a, 'b) t -> ('a * 'b) Seq.t

Iterate on the whole table. The order in which the bindings appear in the sequence is unspecified. However, if the table contains several bindings for the same key, they appear in reversed order of introduction, that is, the most recent binding appears first.

The behavior is not defined if the hash table is modified during the iteration.

  • Since 4.07
val to_seq_keys : ('a, 'b) t -> 'a Seq.t

Same as Seq.map fst (to_seq m)

  • Since 4.07
val to_seq_values : ('a, 'b) t -> 'b Seq.t

Same as Seq.map snd (to_seq m)

  • Since 4.07
val add_seq : ('a, 'b) t -> ('a * 'b) Seq.t -> unit

Add the given bindings to the table, using Hashtbl.add

  • Since 4.07
val replace_seq : ('a, 'b) t -> ('a * 'b) Seq.t -> unit

Add the given bindings to the table, using Hashtbl.replace

  • Since 4.07
val of_seq : ('a * 'b) Seq.t -> ('a, 'b) t

Build a table from the given bindings. The bindings are added in the same order they appear in the sequence, using Hashtbl.replace_seq, which means that if two pairs have the same key, only the latest one will appear in the table.

  • Since 4.07

Functorial interface

The functorial interface allows the use of specific comparison and hash functions, either for performance/security concerns, or because keys are not hashable/comparable with the polymorphic builtins.

For instance, one might want to specialize a table for integer keys:

      module IntHash =
        struct
          type t = int
          let equal i j = i=j
          let hash i = i land max_int
        end

      module IntHashtbl = Hashtbl.Make(IntHash)

      let h = IntHashtbl.create 17 in
      IntHashtbl.add h 12 "hello"
    

This creates a new module IntHashtbl, with a new type 'a
    IntHashtbl.t
of tables from int to 'a. In this example, h contains string values so its type is string IntHashtbl.t.

Note that the new type 'IntHashtbl.t is not compatible with the type ('a,'b) Hashtbl.t of the generic interface. For example, Hashtbl.length h would not type-check, you must use IntHashtbl.length.

module type HashedType = sig .. end

The input signature of the functor Hashtbl.Make.

module type S = sig .. end

The output signature of the functor Hashtbl.Make.

module Make: 
functor (H : HashedType-> S with type key = H.t

Functor building an implementation of the hashtable structure.

module type SeededHashedType = sig .. end

The input signature of the functor Hashtbl.MakeSeeded.

module type SeededS = sig .. end

The output signature of the functor Hashtbl.MakeSeeded.

module MakeSeeded: 
functor (H : SeededHashedType-> SeededS with type key = H.t

Functor building an implementation of the hashtable structure.

The polymorphic hash functions

val hash : 'a -> int

Hashtbl.hash x associates a nonnegative integer to any value of any type. It is guaranteed that if x = y or Stdlib.compare x y = 0, then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.

val seeded_hash : int -> 'a -> int

A variant of Hashtbl.hash that is further parameterized by an integer seed.

  • Since 4.00.0
val hash_param : int -> int -> 'a -> int

Hashtbl.hash_param meaningful total x computes a hash value for x, with the same properties as for hash. The two extra integer parameters meaningful and total give more precise control over hashing. Hashing performs a breadth-first, left-to-right traversal of the structure x, stopping after meaningful meaningful nodes were encountered, or total nodes (meaningful or not) were encountered. If total as specified by the user exceeds a certain value, currently 256, then it is capped to that value. Meaningful nodes are: integers; floating-point numbers; strings; characters; booleans; and constant constructors. Larger values of meaningful and total means that more nodes are taken into account to compute the final hash value, and therefore collisions are less likely to happen. However, hashing takes longer. The parameters meaningful and total govern the tradeoff between accuracy and speed. As default choices, Hashtbl.hash and Hashtbl.seeded_hash take meaningful = 10 and total = 100.

val seeded_hash_param : int -> int -> int -> 'a -> int

A variant of Hashtbl.hash_param that is further parameterized by an integer seed. Usage: Hashtbl.seeded_hash_param meaningful total seed x.

  • Since 4.00.0
ocaml-doc-4.11/ocaml.html/libref/Sys.Immediate64.Make.html0000644000175000017500000001732613717225553022146 0ustar mehdimehdi Sys.Immediate64.Make

Functor Sys.Immediate64.Make

module Make: 
functor (Immediate : Immediate-> 
functor (Non_immediate : Non_immediate-> sig .. end
Parameters:
Immediate : Immediate
Non_immediate : Non_immediate

type t 
type 'a repr = 
| Immediate : Sys.Immediate64.Immediate.t repr
| Non_immediate : Sys.Immediate64.Non_immediate.t repr
val repr : t repr
ocaml-doc-4.11/ocaml.html/libref/type_Bigarray.Array0.html0000644000175000017500000002434613717225552022402 0ustar mehdimehdi Bigarray.Array0 sig
  type ('a, 'b, 'c) t
  val create :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> ('a, 'b, 'c) Bigarray.Array0.t
  external kind : ('a, 'b, 'c) Bigarray.Array0.t -> ('a, 'b) Bigarray.kind
    = "caml_ba_kind"
  external layout : ('a, 'b, 'c) Bigarray.Array0.t -> 'Bigarray.layout
    = "caml_ba_layout"
  val change_layout :
    ('a, 'b, 'c) Bigarray.Array0.t ->
    'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array0.t
  val size_in_bytes : ('a, 'b, 'c) Bigarray.Array0.t -> int
  val get : ('a, 'b, 'c) Bigarray.Array0.t -> 'a
  val set : ('a, 'b, 'c) Bigarray.Array0.t -> '-> unit
  external blit :
    ('a, 'b, 'c) Bigarray.Array0.t -> ('a, 'b, 'c) Bigarray.Array0.t -> unit
    = "caml_ba_blit"
  external fill : ('a, 'b, 'c) Bigarray.Array0.t -> '-> unit
    = "caml_ba_fill"
  val of_value :
    ('a, 'b) Bigarray.kind ->
    'Bigarray.layout -> '-> ('a, 'b, 'c) Bigarray.Array0.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Scanf.html0000644000175000017500000004042513717225552020533 0ustar mehdimehdi Scanf sig
  module Scanning :
    sig
      type in_channel
      type scanbuf = Scanf.Scanning.in_channel
      val stdin : Scanf.Scanning.in_channel
      type file_name = string
      val open_in : Scanf.Scanning.file_name -> Scanf.Scanning.in_channel
      val open_in_bin : Scanf.Scanning.file_name -> Scanf.Scanning.in_channel
      val close_in : Scanf.Scanning.in_channel -> unit
      val from_file : Scanf.Scanning.file_name -> Scanf.Scanning.in_channel
      val from_file_bin : string -> Scanf.Scanning.in_channel
      val from_string : string -> Scanf.Scanning.in_channel
      val from_function : (unit -> char) -> Scanf.Scanning.in_channel
      val from_channel : Stdlib.in_channel -> Scanf.Scanning.in_channel
      val end_of_input : Scanf.Scanning.in_channel -> bool
      val beginning_of_input : Scanf.Scanning.in_channel -> bool
      val name_of_input : Scanf.Scanning.in_channel -> string
      val stdib : Scanf.Scanning.in_channel
    end
  type ('a, 'b, 'c, 'd) scanner =
      ('a, Scanf.Scanning.in_channel, 'b, 'c, '-> 'd, 'd) Stdlib.format6 ->
      'c
  exception Scan_failure of string
  val bscanf : Scanf.Scanning.in_channel -> ('a, 'b, 'c, 'd) Scanf.scanner
  val sscanf : string -> ('a, 'b, 'c, 'd) Scanf.scanner
  val scanf : ('a, 'b, 'c, 'd) Scanf.scanner
  val kscanf :
    Scanf.Scanning.in_channel ->
    (Scanf.Scanning.in_channel -> exn -> 'd) ->
    ('a, 'b, 'c, 'd) Scanf.scanner
  val ksscanf :
    string ->
    (Scanf.Scanning.in_channel -> exn -> 'd) ->
    ('a, 'b, 'c, 'd) Scanf.scanner
  val bscanf_format :
    Scanf.Scanning.in_channel ->
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 ->
    (('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 -> 'g) -> 'g
  val sscanf_format :
    string ->
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 ->
    (('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 -> 'g) -> 'g
  val format_from_string :
    string ->
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 ->
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6
  val unescaped : string -> string
  val fscanf : Stdlib.in_channel -> ('a, 'b, 'c, 'd) Scanf.scanner
  val kfscanf :
    Stdlib.in_channel ->
    (Scanf.Scanning.in_channel -> exn -> 'd) ->
    ('a, 'b, 'c, 'd) Scanf.scanner
end
ocaml-doc-4.11/ocaml.html/libref/Set.html0000644000175000017500000002142413717225552017171 0ustar mehdimehdi Set

Module Set

module Set: sig .. end

Sets over ordered types.

This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.

The Set.Make functor constructs implementations for any type, given a compare function. For instance:

     module IntPairs =
       struct
         type t = int * int
         let compare (x0,y0) (x1,y1) =
           match Stdlib.compare x0 x1 with
               0 -> Stdlib.compare y0 y1
             | c -> c
       end

     module PairsSet = Set.Make(IntPairs)

     let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
   

This creates a new module PairsSet, with a new type PairsSet.t of sets of int * int.


module type OrderedType = sig .. end

Input signature of the functor Set.Make.

module type S = sig .. end

Output signature of the functor Set.Make.

module Make: 
functor (Ord : OrderedType-> S with type elt = Ord.t

Functor building an implementation of the set structure given a totally ordered type.

ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.Kn.MakeSeeded.html0000644000175000017500000002730113717225552023756 0ustar mehdimehdi Ephemeron.Kn.MakeSeeded functor (H : Hashtbl.SeededHashedType->
  sig
    type key = H.t array
    type 'a t
    val create : ?random:bool -> int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key -> '-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key -> '-> unit
    val mem : 'a t -> key -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val length : 'a t -> int
    val stats : 'a t -> Hashtbl.statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
    val clean : 'a t -> unit
    val stats_alive : 'a t -> Hashtbl.statistics
  end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Buffer.html0000644000175000017500000006607213717225552021077 0ustar mehdimehdi Stdlib.Buffer

Module Stdlib.Buffer

module Buffer: Buffer

type t 

The abstract type of buffers.

val create : int -> t

create n returns a fresh buffer, initially empty. The n parameter is the initial size of the internal byte sequence that holds the buffer contents. That byte sequence is automatically reallocated when more than n characters are stored in the buffer, but shrinks back to n characters when reset is called. For best performance, n should be of the same order of magnitude as the number of characters that are expected to be stored in the buffer (for instance, 80 for a buffer that holds one output line). Nothing bad will happen if the buffer grows beyond that limit, however. In doubt, take n = 16 for instance. If n is not between 1 and Sys.max_string_length, it will be clipped to that interval.

val contents : t -> string

Return a copy of the current contents of the buffer. The buffer itself is unchanged.

val to_bytes : t -> bytes

Return a copy of the current contents of the buffer. The buffer itself is unchanged.

  • Since 4.02
val sub : t -> int -> int -> string

Buffer.sub b off len returns a copy of len bytes from the current contents of the buffer b, starting at offset off.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of b.
val blit : t -> int -> bytes -> int -> int -> unit

Buffer.blit src srcoff dst dstoff len copies len characters from the current contents of the buffer src, starting at offset srcoff to dst, starting at character dstoff.

  • Since 3.11.2
  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val nth : t -> int -> char

Get the n-th character of the buffer.

  • Raises Invalid_argument if index out of bounds
val length : t -> int

Return the number of characters currently contained in the buffer.

val clear : t -> unit

Empty the buffer.

val reset : t -> unit

Empty the buffer and deallocate the internal byte sequence holding the buffer contents, replacing it with the initial internal byte sequence of length n that was allocated by Buffer.create n. For long-lived buffers that may have grown a lot, reset allows faster reclamation of the space used by the buffer.

val add_char : t -> char -> unit

add_char b c appends the character c at the end of buffer b.

val add_utf_8_uchar : t -> Uchar.t -> unit

add_utf_8_uchar b u appends the UTF-8 encoding of u at the end of buffer b.

  • Since 4.06.0
val add_utf_16le_uchar : t -> Uchar.t -> unit

add_utf_16le_uchar b u appends the UTF-16LE encoding of u at the end of buffer b.

  • Since 4.06.0
val add_utf_16be_uchar : t -> Uchar.t -> unit

add_utf_16be_uchar b u appends the UTF-16BE encoding of u at the end of buffer b.

  • Since 4.06.0
val add_string : t -> string -> unit

add_string b s appends the string s at the end of buffer b.

val add_bytes : t -> bytes -> unit

add_bytes b s appends the byte sequence s at the end of buffer b.

  • Since 4.02
val add_substring : t -> string -> int -> int -> unit

add_substring b s ofs len takes len characters from offset ofs in string s and appends them at the end of buffer b.

val add_subbytes : t -> bytes -> int -> int -> unit

add_subbytes b s ofs len takes len characters from offset ofs in byte sequence s and appends them at the end of buffer b.

  • Since 4.02
val add_substitute : t -> (string -> string) -> string -> unit

add_substitute b f s appends the string pattern s at the end of buffer b with substitution. The substitution process looks for variables into the pattern and substitutes each variable name by its value, as obtained by applying the mapping f to the variable name. Inside the string pattern, a variable name immediately follows a non-escaped $ character and is one of the following:

  • a non empty sequence of alphanumeric or _ characters,
  • an arbitrary sequence of characters enclosed by a pair of matching parentheses or curly brackets. An escaped $ character is a $ that immediately follows a backslash character; it then stands for a plain $.
  • Raises Not_found if the closing character of a parenthesized variable cannot be found.
val add_buffer : t -> t -> unit

add_buffer b1 b2 appends the current contents of buffer b2 at the end of buffer b1. b2 is not modified.

val add_channel : t -> in_channel -> int -> unit

add_channel b ic n reads at most n characters from the input channel ic and stores them at the end of buffer b.

  • Raises End_of_file if the channel contains fewer than n characters. In this case, the characters are still added to the buffer, so as to avoid loss of data.
val output_buffer : out_channel -> t -> unit

output_buffer oc b writes the current contents of buffer b on the output channel oc.

val truncate : t -> int -> unit

truncate b len truncates the length of b to len Note: the internal byte sequence is not shortened.

  • Since 4.05.0
  • Raises Invalid_argument if len < 0 or len > length b.

Iterators

val to_seq : t -> char Seq.t

Iterate on the buffer, in increasing order. Modification of the buffer during iteration is undefined behavior.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the buffer, in increasing order, yielding indices along chars. Modification of the buffer during iteration is undefined behavior.

  • Since 4.07
val add_seq : t -> char Seq.t -> unit

Add chars to the buffer

  • Since 4.07
val of_seq : char Seq.t -> t

Create a buffer from the generator

  • Since 4.07

Binary encoding of integers

The functions in this section append binary encodings of integers to buffers.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. Functions that encode these values truncate their inputs to their least significant bytes.

val add_uint8 : t -> int -> unit

add_uint8 b i appends a binary unsigned 8-bit integer i to b.

  • Since 4.08
val add_int8 : t -> int -> unit

add_int8 b i appends a binary signed 8-bit integer i to b.

  • Since 4.08
val add_uint16_ne : t -> int -> unit

add_uint16_ne b i appends a binary native-endian unsigned 16-bit integer i to b.

  • Since 4.08
val add_uint16_be : t -> int -> unit

add_uint16_be b i appends a binary big-endian unsigned 16-bit integer i to b.

  • Since 4.08
val add_uint16_le : t -> int -> unit

add_uint16_le b i appends a binary little-endian unsigned 16-bit integer i to b.

  • Since 4.08
val add_int16_ne : t -> int -> unit

add_int16_ne b i appends a binary native-endian signed 16-bit integer i to b.

  • Since 4.08
val add_int16_be : t -> int -> unit

add_int16_be b i appends a binary big-endian signed 16-bit integer i to b.

  • Since 4.08
val add_int16_le : t -> int -> unit

add_int16_le b i appends a binary little-endian signed 16-bit integer i to b.

  • Since 4.08
val add_int32_ne : t -> int32 -> unit

add_int32_ne b i appends a binary native-endian 32-bit integer i to b.

  • Since 4.08
val add_int32_be : t -> int32 -> unit

add_int32_be b i appends a binary big-endian 32-bit integer i to b.

  • Since 4.08
val add_int32_le : t -> int32 -> unit

add_int32_le b i appends a binary little-endian 32-bit integer i to b.

  • Since 4.08
val add_int64_ne : t -> int64 -> unit

add_int64_ne b i appends a binary native-endian 64-bit integer i to b.

  • Since 4.08
val add_int64_be : t -> int64 -> unit

add_int64_be b i appends a binary big-endian 64-bit integer i to b.

  • Since 4.08
val add_int64_le : t -> int64 -> unit

add_int64_ne b i appends a binary little-endian 64-bit integer i to b.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/index_exceptions.html0000644000175000017500000003105013717225553022003 0ustar mehdimehdi Index of exceptions

Index of exceptions

A
Assert_failure [Stdlib]

Exception raised when an assertion fails.

B
Bad [Arg]

Functions in spec or anon_fun can raise Arg.Bad with an error message to reject invalid arguments.

Break [Sys]

Exception raised on interactive interrupt if Sys.catch_break is on.

D
Division_by_zero [Stdlib]

Exception raised by integer division and remainder operations when their second argument is zero.

E
Empty [Stack]

Raised when Stack.pop or Stack.top is applied to an empty stack.

Empty [Queue]

Raised when Queue.take or Queue.peek is applied to an empty queue.

End_of_file [Stdlib]

Exception raised by input functions to signal that the end of file has been reached.

Error [Stream]

Raised by parsers when the first component of a stream pattern is accepted, but one of the following components is rejected.

Error [Dynlink]

Errors in dynamic linking are reported by raising the Error exception with a description of the error.

Exit [Stdlib]

The Exit exception is not raised by any library function.

F
Failure [Stream]

Raised by parsers when none of the first components of the stream patterns is accepted.

Failure [Stdlib]

Exception raised by library functions to signal that they are undefined on the given arguments.

Finally_raised [Fun]

Finally_raised exn is raised by protect ~finally work when finally raises an exception exn.

H
Help [Arg]

Raised by Arg.parse_argv when the user asks for help.

I
Invalid_argument [Stdlib]

Exception raised by library functions to signal that the given arguments do not make sense.

M
Match_failure [Stdlib]

Exception raised when none of the cases of a pattern-matching apply.

N
Not_found [Stdlib]

Exception raised by search functions when the desired object could not be found.

O
Out_of_memory [Stdlib]

Exception raised by the garbage collector when there is insufficient memory to complete the computation.

P
Parse_error [Parsing]

Raised when a parser encounters a syntax error.

S
Scan_failure [Scanf]

When the input can not be read according to the format string specification, formatted input functions typically raise exception Scan_failure.

Stack_overflow [Stdlib]

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal size.

Sys_blocked_io [Stdlib]

A special case of Sys_error raised when no I/O is possible on a non-blocking I/O channel.

Sys_error [Stdlib]

Exception raised by the input/output functions to report an operating system error.

U
Undefined [Lazy]
Undefined [CamlinternalLazy]
Undefined_recursive_module [Stdlib]

Exception raised when an ill-founded recursive module definition is evaluated.

Unix_error [UnixLabels]

Raised by the system calls below when an error is encountered.

Unix_error [Unix]

Raised by the system calls below when an error is encountered.

ocaml-doc-4.11/ocaml.html/libref/Scanf.Scanning.html0000644000175000017500000004045713717225553021237 0ustar mehdimehdi Scanf.Scanning

Module Scanf.Scanning

module Scanning: sig .. end

type in_channel 

The notion of input channel for the Scanf module: those channels provide all the machinery necessary to read from any source of characters, including a in_channel value. A Scanf.Scanning.in_channel value is also called a formatted input channel or equivalently a scanning buffer. The type Scanf.Scanning.scanbuf below is an alias for Scanning.in_channel.

  • Since 3.12.0
type scanbuf = in_channel 

The type of scanning buffers. A scanning buffer is the source from which a formatted input function gets characters. The scanning buffer holds the current state of the scan, plus a function to get the next char from the input, and a token buffer to store the string matched so far.

Note: a scanning action may often require to examine one character in advance; when this 'lookahead' character does not belong to the token read, it is stored back in the scanning buffer and becomes the next character yet to be read.

val stdin : in_channel

The standard input notion for the Scanf module. Scanning.stdin is the Scanf.Scanning.in_channel formatted input channel attached to stdin.

Note: in the interactive system, when input is read from stdin, the newline character that triggers evaluation is part of the input; thus, the scanning specifications must properly skip this additional newline character (for instance, simply add a '\n' as the last character of the format string).

  • Since 3.12.0
type file_name = string 

A convenient alias to designate a file name.

  • Since 4.00.0
val open_in : file_name -> in_channel

Scanning.open_in fname returns a Scanf.Scanning.in_channel formatted input channel for bufferized reading in text mode from file fname.

Note: open_in returns a formatted input channel that efficiently reads characters in large chunks; in contrast, from_channel below returns formatted input channels that must read one character at a time, leading to a much slower scanning rate.

  • Since 3.12.0
val open_in_bin : file_name -> in_channel

Scanning.open_in_bin fname returns a Scanf.Scanning.in_channel formatted input channel for bufferized reading in binary mode from file fname.

  • Since 3.12.0
val close_in : in_channel -> unit

Closes the in_channel associated with the given Scanf.Scanning.in_channel formatted input channel.

  • Since 3.12.0
val from_file : file_name -> in_channel

An alias for Scanf.Scanning.open_in above.

val from_file_bin : string -> in_channel

An alias for Scanf.Scanning.open_in_bin above.

val from_string : string -> in_channel

Scanning.from_string s returns a Scanf.Scanning.in_channel formatted input channel which reads from the given string. Reading starts from the first character in the string. The end-of-input condition is set when the end of the string is reached.

val from_function : (unit -> char) -> in_channel

Scanning.from_function f returns a Scanf.Scanning.in_channel formatted input channel with the given function as its reading method.

When scanning needs one more character, the given function is called.

When the function has no more character to provide, it must signal an end-of-input condition by raising the exception End_of_file.

val from_channel : in_channel -> in_channel

Scanning.from_channel ic returns a Scanf.Scanning.in_channel formatted input channel which reads from the regular in_channel input channel ic argument. Reading starts at current reading position of ic.

val end_of_input : in_channel -> bool

Scanning.end_of_input ic tests the end-of-input condition of the given Scanf.Scanning.in_channel formatted input channel.

val beginning_of_input : in_channel -> bool

Scanning.beginning_of_input ic tests the beginning of input condition of the given Scanf.Scanning.in_channel formatted input channel.

val name_of_input : in_channel -> string

Scanning.name_of_input ic returns the name of the character source for the given Scanf.Scanning.in_channel formatted input channel.

  • Since 3.09.0
val stdib : in_channel

A deprecated alias for Scanf.Scanning.stdin, the scanning buffer reading from stdin.

ocaml-doc-4.11/ocaml.html/libref/List.html0000644000175000017500000011314313717225552017351 0ustar mehdimehdi List

Module List

module List: sig .. end

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a problem with very long lists. When the function takes several list arguments, an approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.


type 'a t = 'a list = 
| []
| :: of 'a * 'a list

An alias for the type of lists.

val length : 'a list -> int

Return the length (number of elements) of the given list.

val compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to compare (length l1) (length l2), except that the computation stops after itering on the shortest list.

  • Since 4.05.0
val compare_length_with : 'a list -> int -> int

Compare the length of a list to an integer. compare_length_with l n is equivalent to compare (length l) n, except that the computation stops after at most n iterations on the list.

  • Since 4.05.0
val cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs

  • Since 4.03.0
val hd : 'a list -> 'a

Return the first element of the given list.

  • Raises Failure if the list is empty.
val tl : 'a list -> 'a list

Return the given list without its first element.

  • Raises Failure if the list is empty.
val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0.

  • Raises
    • Failure if the list is too short.
    • Invalid_argument if n is negative.
val nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the list is too short.

  • Since 4.05
  • Raises Invalid_argument if n is negative.
val rev : 'a list -> 'a list

List reversal.

val init : int -> (int -> 'a) -> 'a list

List.init len f is [f 0; f 1; ...; f (len-1)], evaluated left to right.

  • Since 4.06.0
  • Raises Invalid_argument if len < 0.
val append : 'a list -> 'a list -> 'a list

Concatenate two lists. Same as the infix operator @. Not tail-recursive (length of the first argument).

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it to l2. This is equivalent to List.rev l1 @ l2, but rev_append is tail-recursive and more efficient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

val flatten : 'a list list -> 'a list

An alias for concat.

Iterators

val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to begin f a1; f a2; ...; f an; () end.

val iteri : (int -> 'a -> unit) -> 'a list -> unit

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val map : ('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f. Not tail-recursive.

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument. Not tail-recursive.

  • Since 4.00.0
val rev_map : ('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

val filter_map : ('a -> 'b option) -> 'a list -> 'b list

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

  • Since 4.08.0
val concat_map : ('a -> 'b list) -> 'a list -> 'b list

List.concat_map f l gives the same result as List.concat (List.map f l). Tail-recursive.

  • Since 4.10.0
val fold_left_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list

fold_left_map is a combination of fold_left and map that threads an accumulator through calls to f

  • Since 4.11.0
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

Iterators on two lists

val iter2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.
val rev_map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

val fold_left2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val fold_right2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.

List scanning

val for_all : ('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an) for a non-empty list and true if the list is empty.

val exists : ('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an) for a non-empty list and false if the list is empty.

val for_all2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val exists2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val mem : 'a -> 'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> 'a list -> bool

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

List searching

val find : ('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p.

  • Raises Not_found if there is no value that satisfies p in the list l.
val find_opt : ('a -> bool) -> 'a list -> 'a option

find_opt p l returns the first element of the list l that satisfies the predicate p, or None if there is no value that satisfies p in the list l.

  • Since 4.05
val find_map : ('a -> 'b option) -> 'a list -> 'b option

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

  • Since 4.10.0
val filter : ('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of the elements in the input list is preserved.

val find_all : ('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val filteri : (int -> 'a -> bool) -> 'a list -> 'a list

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.11.0
val partition : ('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p. The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.

  • Raises Not_found if there is no value associated with a in the list l.
val assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That is, assoc_opt a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Returns None if there is no value associated with a in the list l.

  • Since 4.05
val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

val assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

  • Since 4.05
val mem_assoc : 'a -> ('a * 'b) list -> bool

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

val mem_assq : 'a -> ('a * 'b) list -> bool

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

  • Raises Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting

val sort : ('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, compare is a suitable comparison function. The resulting list is sorted in increasing order. List.sort is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but also remove duplicates.

  • Since 4.02.0
val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2. If several elements compare equal, the elements of l1 will be before the elements of l2. Not tail-recursive (sum of the lengths of the arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t

Iterate on the list

  • Since 4.07
val of_seq : 'a Seq.t -> 'a list

Create a list from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Float.html0000644000175000017500000014211713717225552020547 0ustar mehdimehdi Float sig
  val zero : float
  val one : float
  val minus_one : float
  external neg : float -> float = "%negfloat"
  external add : float -> float -> float = "%addfloat"
  external sub : float -> float -> float = "%subfloat"
  external mul : float -> float -> float = "%mulfloat"
  external div : float -> float -> float = "%divfloat"
  external fma : float -> float -> float -> float = "caml_fma_float"
    "caml_fma" [@@unboxed] [@@noalloc]
  external rem : float -> float -> float = "caml_fmod_float" "fmod"
    [@@unboxed] [@@noalloc]
  val succ : float -> float
  val pred : float -> float
  external abs : float -> float = "%absfloat"
  val infinity : float
  val neg_infinity : float
  val nan : float
  val pi : float
  val max_float : float
  val min_float : float
  val epsilon : float
  val is_finite : float -> bool
  val is_infinite : float -> bool
  val is_nan : float -> bool
  val is_integer : float -> bool
  external of_int : int -> float = "%floatofint"
  external to_int : float -> int = "%intoffloat"
  external of_string : string -> float = "caml_float_of_string"
  val of_string_opt : string -> float option
  val to_string : float -> string
  type fpclass =
    Stdlib.fpclass =
      FP_normal
    | FP_subnormal
    | FP_zero
    | FP_infinite
    | FP_nan
  external classify_float : (float [@unboxed]) -> Float.fpclass
    = "caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
  external pow : float -> float -> float = "caml_power_float" "pow"
    [@@unboxed] [@@noalloc]
  external sqrt : float -> float = "caml_sqrt_float" "sqrt" [@@unboxed]
    [@@noalloc]
  external exp : float -> float = "caml_exp_float" "exp" [@@unboxed]
    [@@noalloc]
  external log : float -> float = "caml_log_float" "log" [@@unboxed]
    [@@noalloc]
  external log10 : float -> float = "caml_log10_float" "log10" [@@unboxed]
    [@@noalloc]
  external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
    [@@unboxed] [@@noalloc]
  external log1p : float -> float = "caml_log1p_float" "caml_log1p"
    [@@unboxed] [@@noalloc]
  external cos : float -> float = "caml_cos_float" "cos" [@@unboxed]
    [@@noalloc]
  external sin : float -> float = "caml_sin_float" "sin" [@@unboxed]
    [@@noalloc]
  external tan : float -> float = "caml_tan_float" "tan" [@@unboxed]
    [@@noalloc]
  external acos : float -> float = "caml_acos_float" "acos" [@@unboxed]
    [@@noalloc]
  external asin : float -> float = "caml_asin_float" "asin" [@@unboxed]
    [@@noalloc]
  external atan : float -> float = "caml_atan_float" "atan" [@@unboxed]
    [@@noalloc]
  external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
    [@@unboxed] [@@noalloc]
  external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
    [@@unboxed] [@@noalloc]
  external cosh : float -> float = "caml_cosh_float" "cosh" [@@unboxed]
    [@@noalloc]
  external sinh : float -> float = "caml_sinh_float" "sinh" [@@unboxed]
    [@@noalloc]
  external tanh : float -> float = "caml_tanh_float" "tanh" [@@unboxed]
    [@@noalloc]
  external trunc : float -> float = "caml_trunc_float" "caml_trunc"
    [@@unboxed] [@@noalloc]
  external round : float -> float = "caml_round_float" "caml_round"
    [@@unboxed] [@@noalloc]
  external ceil : float -> float = "caml_ceil_float" "ceil" [@@unboxed]
    [@@noalloc]
  external floor : float -> float = "caml_floor_float" "floor" [@@unboxed]
    [@@noalloc]
  external next_after : float -> float -> float = "caml_nextafter_float"
    "caml_nextafter" [@@unboxed] [@@noalloc]
  external copy_sign : float -> float -> float = "caml_copysign_float"
    "caml_copysign" [@@unboxed] [@@noalloc]
  external sign_bit : (float [@unboxed]) -> bool = "caml_signbit_float"
    "caml_signbit" [@@noalloc]
  external frexp : float -> float * int = "caml_frexp_float"
  external ldexp :
    (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed])
    = "caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
  external modf : float -> float * float = "caml_modf_float"
  type t = float
  val compare : Float.t -> Float.t -> int
  val equal : Float.t -> Float.t -> bool
  val min : Float.t -> Float.t -> Float.t
  val max : float -> float -> float
  val min_max : float -> float -> float * float
  val min_num : Float.t -> Float.t -> Float.t
  val max_num : Float.t -> Float.t -> Float.t
  val min_max_num : float -> float -> float * float
  val hash : Float.t -> int
  module Array :
    sig
      type t = floatarray
      val length : Float.Array.t -> int
      val get : Float.Array.t -> int -> float
      val set : Float.Array.t -> int -> float -> unit
      val make : int -> float -> Float.Array.t
      val create : int -> Float.Array.t
      val init : int -> (int -> float) -> Float.Array.t
      val append : Float.Array.t -> Float.Array.t -> Float.Array.t
      val concat : Float.Array.t list -> Float.Array.t
      val sub : Float.Array.t -> int -> int -> Float.Array.t
      val copy : Float.Array.t -> Float.Array.t
      val fill : Float.Array.t -> int -> int -> float -> unit
      val blit : Float.Array.t -> int -> Float.Array.t -> int -> int -> unit
      val to_list : Float.Array.t -> float list
      val of_list : float list -> Float.Array.t
      val iter : (float -> unit) -> Float.Array.t -> unit
      val iteri : (int -> float -> unit) -> Float.Array.t -> unit
      val map : (float -> float) -> Float.Array.t -> Float.Array.t
      val mapi : (int -> float -> float) -> Float.Array.t -> Float.Array.t
      val fold_left : ('-> float -> 'a) -> '-> Float.Array.t -> 'a
      val fold_right : (float -> '-> 'a) -> Float.Array.t -> '-> 'a
      val iter2 :
        (float -> float -> unit) -> Float.Array.t -> Float.Array.t -> unit
      val map2 :
        (float -> float -> float) ->
        Float.Array.t -> Float.Array.t -> Float.Array.t
      val for_all : (float -> bool) -> Float.Array.t -> bool
      val exists : (float -> bool) -> Float.Array.t -> bool
      val mem : float -> Float.Array.t -> bool
      val mem_ieee : float -> Float.Array.t -> bool
      val sort : (float -> float -> int) -> Float.Array.t -> unit
      val stable_sort : (float -> float -> int) -> Float.Array.t -> unit
      val fast_sort : (float -> float -> int) -> Float.Array.t -> unit
      val to_seq : Float.Array.t -> float Stdlib.Seq.t
      val to_seqi : Float.Array.t -> (int * float) Stdlib.Seq.t
      val of_seq : float Stdlib.Seq.t -> Float.Array.t
      val map_to_array : (float -> 'a) -> Float.Array.t -> 'a array
      val map_from_array : ('-> float) -> 'a array -> Float.Array.t
      external unsafe_get : Float.Array.t -> int -> float
        = "%floatarray_unsafe_get"
      external unsafe_set : Float.Array.t -> int -> float -> unit
        = "%floatarray_unsafe_set"
    end
  module ArrayLabels :
    sig
      type t = floatarray
      val length : Float.ArrayLabels.t -> int
      val get : Float.ArrayLabels.t -> int -> float
      val set : Float.ArrayLabels.t -> int -> float -> unit
      val make : int -> float -> Float.ArrayLabels.t
      val create : int -> Float.ArrayLabels.t
      val init : int -> f:(int -> float) -> Float.ArrayLabels.t
      val append :
        Float.ArrayLabels.t -> Float.ArrayLabels.t -> Float.ArrayLabels.t
      val concat : Float.ArrayLabels.t list -> Float.ArrayLabels.t
      val sub :
        Float.ArrayLabels.t -> pos:int -> len:int -> Float.ArrayLabels.t
      val copy : Float.ArrayLabels.t -> Float.ArrayLabels.t
      val fill : Float.ArrayLabels.t -> pos:int -> len:int -> float -> unit
      val blit :
        src:Float.ArrayLabels.t ->
        src_pos:int ->
        dst:Float.ArrayLabels.t -> dst_pos:int -> len:int -> unit
      val to_list : Float.ArrayLabels.t -> float list
      val of_list : float list -> Float.ArrayLabels.t
      val iter : f:(float -> unit) -> Float.ArrayLabels.t -> unit
      val iteri : f:(int -> float -> unit) -> Float.ArrayLabels.t -> unit
      val map :
        f:(float -> float) -> Float.ArrayLabels.t -> Float.ArrayLabels.t
      val mapi :
        f:(int -> float -> float) ->
        Float.ArrayLabels.t -> Float.ArrayLabels.t
      val fold_left :
        f:('-> float -> 'a) -> init:'-> Float.ArrayLabels.t -> 'a
      val fold_right :
        f:(float -> '-> 'a) -> Float.ArrayLabels.t -> init:'-> 'a
      val iter2 :
        f:(float -> float -> unit) ->
        Float.ArrayLabels.t -> Float.ArrayLabels.t -> unit
      val map2 :
        f:(float -> float -> float) ->
        Float.ArrayLabels.t -> Float.ArrayLabels.t -> Float.ArrayLabels.t
      val for_all : f:(float -> bool) -> Float.ArrayLabels.t -> bool
      val exists : f:(float -> bool) -> Float.ArrayLabels.t -> bool
      val mem : float -> set:Float.ArrayLabels.t -> bool
      val mem_ieee : float -> set:Float.ArrayLabels.t -> bool
      val sort : cmp:(float -> float -> int) -> Float.ArrayLabels.t -> unit
      val stable_sort :
        cmp:(float -> float -> int) -> Float.ArrayLabels.t -> unit
      val fast_sort :
        cmp:(float -> float -> int) -> Float.ArrayLabels.t -> unit
      val to_seq : Float.ArrayLabels.t -> float Stdlib.Seq.t
      val to_seqi : Float.ArrayLabels.t -> (int * float) Stdlib.Seq.t
      val of_seq : float Stdlib.Seq.t -> Float.ArrayLabels.t
      val map_to_array : f:(float -> 'a) -> Float.ArrayLabels.t -> 'a array
      val map_from_array : f:('-> float) -> 'a array -> Float.ArrayLabels.t
      external unsafe_get : Float.ArrayLabels.t -> int -> float
        = "%floatarray_unsafe_get"
      external unsafe_set : Float.ArrayLabels.t -> int -> float -> unit
        = "%floatarray_unsafe_set"
    end
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Ephemeron.html0000644000175000017500000002453113717225552021602 0ustar mehdimehdi Stdlib.Ephemeron

Module Stdlib.Ephemeron

module Ephemeron: Ephemeron

Ephemerons and weak hash tables are useful when one wants to cache or memorize the computation of a function, as long as the arguments and the function are used, without creating memory leaks by continuously keeping old computation results that are not useful anymore because one argument or the function is freed. An implementation using Hashtbl.t is not suitable because all associations would keep the arguments and the result in memory.

Ephemerons can also be used for "adding" a field to an arbitrary boxed OCaml value: you can attach some information to a value created by an external library without memory leaks.

Ephemerons hold some keys and one or no data. They are all boxed OCaml values. The keys of an ephemeron have the same behavior as weak pointers according to the garbage collector. In fact OCaml weak pointers are implemented as ephemerons without data.

The keys and data of an ephemeron are said to be full if they point to a value, or empty if the value has never been set, has been unset, or was erased by the GC. In the function that accesses the keys or data these two states are represented by the option type.

The data is considered by the garbage collector alive if all the full keys are alive and if the ephemeron is alive. When one of the keys is not considered alive anymore by the GC, the data is emptied from the ephemeron. The data could be alive for another reason and in that case the GC will not free it, but the ephemeron will not hold the data anymore.

The ephemerons complicate the notion of liveness of values, because it is not anymore an equivalence with the reachability from root value by usual pointers (not weak and not ephemerons). With ephemerons the notion of liveness is constructed by the least fixpoint of: A value is alive if:

  • it is a root value
  • it is reachable from alive value by usual pointers
  • it is the data of an alive ephemeron with all its full keys alive

Notes:

  • All the types defined in this module cannot be marshaled using output_value or the functions of the Marshal module.

Ephemerons are defined in a language agnostic way in this paper: B. Hayes, Ephemerons: A New Finalization Mechanism, OOPSLA'97

module type S = sig .. end

The output signature of the functor Ephemeron.K1.Make and Ephemeron.K2.Make.

module type SeededS = sig .. end

The output signature of the functor Ephemeron.K1.MakeSeeded and Ephemeron.K2.MakeSeeded.

module K1: sig .. end
module K2: sig .. end
module Kn: sig .. end
module GenHashTable: sig .. end
ocaml-doc-4.11/ocaml.html/libref/CamlinternalFormat.html0000644000175000017500000004772213717225552022231 0ustar mehdimehdi CamlinternalFormat

Module CamlinternalFormat

module CamlinternalFormat: sig .. end

val is_in_char_set : CamlinternalFormatBasics.char_set -> char -> bool
val rev_char_set : CamlinternalFormatBasics.char_set -> CamlinternalFormatBasics.char_set
type mutable_char_set = bytes 
val create_char_set : unit -> mutable_char_set
val add_in_char_set : mutable_char_set -> char -> unit
val freeze_char_set : mutable_char_set -> CamlinternalFormatBasics.char_set
type ('a, 'b, 'c, 'd, 'e, 'f) param_format_ebb = 
| Param_format_EBB : ('x -> 'a0, 'b0, 'c0, 'd0, 'e0, 'f0) CamlinternalFormatBasics.fmt -> ('a0, 'b0, 'c0, 'd0, 'e0, 'f0) param_format_ebb
val param_format_of_ignored_format : ('a, 'b, 'c, 'd, 'y, 'x) CamlinternalFormatBasics.ignored ->
('x, 'b, 'c, 'y, 'e, 'f) CamlinternalFormatBasics.fmt ->
('a, 'b, 'c, 'd, 'e, 'f) param_format_ebb
type ('b, 'c) acc_formatting_gen = 
| Acc_open_tag of ('b, 'c) acc
| Acc_open_box of ('b, 'c) acc
type ('b, 'c) acc = 
| Acc_formatting_lit of ('b, 'c) acc * CamlinternalFormatBasics.formatting_lit
| Acc_formatting_gen of ('b, 'c) acc
* ('b, 'c) acc_formatting_gen
| Acc_string_literal of ('b, 'c) acc * string
| Acc_char_literal of ('b, 'c) acc * char
| Acc_data_string of ('b, 'c) acc * string
| Acc_data_char of ('b, 'c) acc * char
| Acc_delay of ('b, 'c) acc * ('b -> 'c)
| Acc_flush of ('b, 'c) acc
| Acc_invalid_arg of ('b, 'c) acc * string
| End_of_acc
type ('a, 'b) heter_list = 
| Cons : 'c * ('a0, 'b0) heter_list -> ('c -> 'a0, 'b0) heter_list
| Nil : ('b1, 'b1) heter_list
type ('b, 'c, 'e, 'f) fmt_ebb = 
| Fmt_EBB : ('a, 'b0, 'c0, 'd, 'e0, 'f0) CamlinternalFormatBasics.fmt -> ('b0, 'c0, 'e0, 'f0) fmt_ebb
val make_printf : (('b, 'c) acc -> 'd) ->
('b, 'c) acc ->
('a, 'b, 'c, 'c, 'c, 'd) CamlinternalFormatBasics.fmt -> 'a
val make_iprintf : ('s -> 'f) ->
's -> ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> 'a
val output_acc : out_channel ->
(out_channel, unit) acc -> unit
val bufput_acc : Buffer.t -> (Buffer.t, unit) acc -> unit
val strput_acc : Buffer.t -> (unit, string) acc -> unit
val type_format : ('x, 'b, 'c, 't, 'u, 'v) CamlinternalFormatBasics.fmt ->
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty ->
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt
val fmt_ebb_of_string : ?legacy_behavior:bool ->
string -> ('b, 'c, 'e, 'f) fmt_ebb
val format_of_string_fmtty : string ->
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty ->
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
val format_of_string_format : string ->
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6 ->
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
val char_of_iconv : CamlinternalFormatBasics.int_conv -> char
val string_of_formatting_lit : CamlinternalFormatBasics.formatting_lit -> string
val string_of_fmtty : ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmtty -> string
val string_of_fmt : ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.fmt -> string
val open_box_of_string : string -> int * CamlinternalFormatBasics.block_type
val symm : ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
CamlinternalFormatBasics.fmtty_rel ->
('a2, 'b2, 'c2, 'd2, 'e2, 'f2, 'a1, 'b1, 'c1, 'd1, 'e1, 'f1)
CamlinternalFormatBasics.fmtty_rel
val trans : ('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
CamlinternalFormatBasics.fmtty_rel ->
('a2, 'b2, 'c2, 'd2, 'e2, 'f2, 'a3, 'b3, 'c3, 'd3, 'e3, 'f3)
CamlinternalFormatBasics.fmtty_rel ->
('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a3, 'b3, 'c3, 'd3, 'e3, 'f3)
CamlinternalFormatBasics.fmtty_rel
val recast : ('a1, 'b1, 'c1, 'd1, 'e1, 'f1) CamlinternalFormatBasics.fmt ->
('a1, 'b1, 'c1, 'd1, 'e1, 'f1, 'a2, 'b2, 'c2, 'd2, 'e2, 'f2)
CamlinternalFormatBasics.fmtty_rel ->
('a2, 'b2, 'c2, 'd2, 'e2, 'f2) CamlinternalFormatBasics.fmt
ocaml-doc-4.11/ocaml.html/libref/type_Stream.html0000644000175000017500000002554313717225553020741 0ustar mehdimehdi Stream sig
  type 'a t
  exception Failure
  exception Error of string
  val from : (int -> 'a option) -> 'Stream.t
  val of_list : 'a list -> 'Stream.t
  val of_string : string -> char Stream.t
  val of_bytes : bytes -> char Stream.t
  val of_channel : Stdlib.in_channel -> char Stream.t
  val iter : ('-> unit) -> 'Stream.t -> unit
  val next : 'Stream.t -> 'a
  val empty : 'Stream.t -> unit
  val peek : 'Stream.t -> 'a option
  val junk : 'Stream.t -> unit
  val count : 'Stream.t -> int
  val npeek : int -> 'Stream.t -> 'a list
  val iapp : 'Stream.t -> 'Stream.t -> 'Stream.t
  val icons : '-> 'Stream.t -> 'Stream.t
  val ising : '-> 'Stream.t
  val lapp : (unit -> 'Stream.t) -> 'Stream.t -> 'Stream.t
  val lcons : (unit -> 'a) -> 'Stream.t -> 'Stream.t
  val lsing : (unit -> 'a) -> 'Stream.t
  val sempty : 'Stream.t
  val slazy : (unit -> 'Stream.t) -> 'Stream.t
  val dump : ('-> unit) -> 'Stream.t -> unit
end
ocaml-doc-4.11/ocaml.html/libref/type_Int64.html0000644000175000017500000003173213717225552020406 0ustar mehdimehdi Int64 sig
  val zero : int64
  val one : int64
  val minus_one : int64
  external neg : int64 -> int64 = "%int64_neg"
  external add : int64 -> int64 -> int64 = "%int64_add"
  external sub : int64 -> int64 -> int64 = "%int64_sub"
  external mul : int64 -> int64 -> int64 = "%int64_mul"
  external div : int64 -> int64 -> int64 = "%int64_div"
  val unsigned_div : int64 -> int64 -> int64
  external rem : int64 -> int64 -> int64 = "%int64_mod"
  val unsigned_rem : int64 -> int64 -> int64
  val succ : int64 -> int64
  val pred : int64 -> int64
  val abs : int64 -> int64
  val max_int : int64
  val min_int : int64
  external logand : int64 -> int64 -> int64 = "%int64_and"
  external logor : int64 -> int64 -> int64 = "%int64_or"
  external logxor : int64 -> int64 -> int64 = "%int64_xor"
  val lognot : int64 -> int64
  external shift_left : int64 -> int -> int64 = "%int64_lsl"
  external shift_right : int64 -> int -> int64 = "%int64_asr"
  external shift_right_logical : int64 -> int -> int64 = "%int64_lsr"
  external of_int : int -> int64 = "%int64_of_int"
  external to_int : int64 -> int = "%int64_to_int"
  val unsigned_to_int : int64 -> int option
  external of_float : float -> int64 = "caml_int64_of_float"
    "caml_int64_of_float_unboxed" [@@unboxed] [@@noalloc]
  external to_float : int64 -> float = "caml_int64_to_float"
    "caml_int64_to_float_unboxed" [@@unboxed] [@@noalloc]
  external of_int32 : int32 -> int64 = "%int64_of_int32"
  external to_int32 : int64 -> int32 = "%int64_to_int32"
  external of_nativeint : nativeint -> int64 = "%int64_of_nativeint"
  external to_nativeint : int64 -> nativeint = "%int64_to_nativeint"
  external of_string : string -> int64 = "caml_int64_of_string"
  val of_string_opt : string -> int64 option
  val to_string : int64 -> string
  external bits_of_float : float -> int64 = "caml_int64_bits_of_float"
    "caml_int64_bits_of_float_unboxed" [@@unboxed] [@@noalloc]
  external float_of_bits : int64 -> float = "caml_int64_float_of_bits"
    "caml_int64_float_of_bits_unboxed" [@@unboxed] [@@noalloc]
  type t = int64
  val compare : Int64.t -> Int64.t -> int
  val unsigned_compare : Int64.t -> Int64.t -> int
  val equal : Int64.t -> Int64.t -> bool
  external format : string -> int64 -> string = "caml_int64_format"
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Pervasives.html0000644000175000017500000001130013717225553023037 0ustar mehdimehdi Stdlib.Pervasives (module Stdlib__pervasives) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Lexing.html0000644000175000017500000005224413717225553021111 0ustar mehdimehdi Stdlib.Lexing

Module Stdlib.Lexing

module Lexing: Lexing

Positions

type position = {
   pos_fname : string;
   pos_lnum : int;
   pos_bol : int;
   pos_cnum : int;
}

A value of type position describes a point in a source file. pos_fname is the file name; pos_lnum is the line number; pos_bol is the offset of the beginning of the line (number of characters between the beginning of the lexbuf and the beginning of the line); pos_cnum is the offset of the position (number of characters between the beginning of the lexbuf and the position). The difference between pos_cnum and pos_bol is the character offset within the line (i.e. the column number, assuming each character is one column wide).

See the documentation of type lexbuf for information about how the lexing engine will manage positions.

val dummy_pos : position

A value of type position, guaranteed to be different from any valid position.

Lexer buffers

type lexbuf = {
   refill_buff : lexbuf -> unit;
   mutable lex_buffer : bytes;
   mutable lex_buffer_len : int;
   mutable lex_abs_pos : int;
   mutable lex_start_pos : int;
   mutable lex_curr_pos : int;
   mutable lex_last_pos : int;
   mutable lex_last_action : int;
   mutable lex_eof_reached : bool;
   mutable lex_mem : int array;
   mutable lex_start_p : position;
   mutable lex_curr_p : position;
}

The type of lexer buffers. A lexer buffer is the argument passed to the scanning functions defined by the generated scanners. The lexer buffer holds the current state of the scanner, plus a function to refill the buffer from the input.

Lexers can optionally maintain the lex_curr_p and lex_start_p position fields. This "position tracking" mode is the default, and it corresponds to passing ~with_position:true to functions that create lexer buffers. In this mode, the lexing engine and lexer actions are co-responsible for properly updating the position fields, as described in the next paragraph. When the mode is explicitly disabled (with ~with_position:false), the lexing engine will not touch the position fields and the lexer actions should be careful not to do it either; the lex_curr_p and lex_start_p field will then always hold the dummy_pos invalid position. Not tracking positions avoids allocations and memory writes and can significantly improve the performance of the lexer in contexts where lex_start_p and lex_curr_p are not needed.

Position tracking mode works as follows. At each token, the lexing engine will copy lex_curr_p to lex_start_p, then change the pos_cnum field of lex_curr_p by updating it with the number of characters read since the start of the lexbuf. The other fields are left unchanged by the lexing engine. In order to keep them accurate, they must be initialised before the first use of the lexbuf, and updated by the relevant lexer actions (i.e. at each end of line -- see also new_line).

val from_channel : ?with_positions:bool -> in_channel -> lexbuf

Create a lexer buffer on the given input channel. Lexing.from_channel inchan returns a lexer buffer which reads from the input channel inchan, at the current reading position.

val from_string : ?with_positions:bool -> string -> lexbuf

Create a lexer buffer which reads from the given string. Reading starts from the first character in the string. An end-of-input condition is generated when the end of the string is reached.

val from_function : ?with_positions:bool -> (bytes -> int -> int) -> lexbuf

Create a lexer buffer with the given function as its reading method. When the scanner needs more characters, it will call the given function, giving it a byte sequence s and a byte count n. The function should put n bytes or fewer in s, starting at index 0, and return the number of bytes provided. A return value of 0 means end of input.

val set_position : lexbuf -> position -> unit

Set the initial tracked input position for lexbuf to a custom value. Ignores pos_fname. See Lexing.set_filename for changing this field.

  • Since 4.11
val set_filename : lexbuf -> string -> unit

Set filename in the initial tracked position to file in lexbuf.

  • Since 4.11
val with_positions : lexbuf -> bool

Tell whether the lexer buffer keeps track of position fields lex_curr_p / lex_start_p, as determined by the corresponding optional argument for functions that create lexer buffers (whose default value is true).

When with_positions is false, lexer actions should not modify position fields. Doing it nevertheless could re-enable the with_position mode and degrade performances.

Functions for lexer semantic actions

The following functions can be called from the semantic actions of lexer definitions (the ML code enclosed in braces that computes the value returned by lexing functions). They give access to the character string matched by the regular expression associated with the semantic action. These functions must be applied to the argument lexbuf, which, in the code generated by ocamllex, is bound to the lexer buffer passed to the parsing function.

val lexeme : lexbuf -> string

Lexing.lexeme lexbuf returns the string matched by the regular expression.

val lexeme_char : lexbuf -> int -> char

Lexing.lexeme_char lexbuf i returns character number i in the matched string.

val lexeme_start : lexbuf -> int

Lexing.lexeme_start lexbuf returns the offset in the input stream of the first character of the matched string. The first character of the stream has offset 0.

val lexeme_end : lexbuf -> int

Lexing.lexeme_end lexbuf returns the offset in the input stream of the character following the last character of the matched string. The first character of the stream has offset 0.

val lexeme_start_p : lexbuf -> position

Like lexeme_start, but return a complete position instead of an offset. When position tracking is disabled, the function returns dummy_pos.

val lexeme_end_p : lexbuf -> position

Like lexeme_end, but return a complete position instead of an offset. When position tracking is disabled, the function returns dummy_pos.

val new_line : lexbuf -> unit

Update the lex_curr_p field of the lexbuf to reflect the start of a new line. You can call this function in the semantic action of the rule that matches the end-of-line character. The function does nothing when position tracking is disabled.

  • Since 3.11.0

Miscellaneous functions

val flush_input : lexbuf -> unit

Discard the contents of the buffer and reset the current position to 0. The next use of the lexbuf will trigger a refill.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Char.html0000644000175000017500000002237213717225552020536 0ustar mehdimehdi Stdlib.Char

Module Stdlib.Char

module Char: Char

val code : char -> int

Return the ASCII code of the argument.

val chr : int -> char

Return the character with the given ASCII code.

  • Raises Invalid_argument if the argument is outside the range 0--255.
val escaped : char -> string

Return a string representing the given character, with special characters escaped following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash, double-quote, and single-quote.

val lowercase : char -> char
Deprecated.Functions operating on Latin-1 character set are deprecated.

Convert the given character to its equivalent lowercase character, using the ISO Latin-1 (8859-1) character set.

val uppercase : char -> char
Deprecated.Functions operating on Latin-1 character set are deprecated.

Convert the given character to its equivalent uppercase character, using the ISO Latin-1 (8859-1) character set.

val lowercase_ascii : char -> char

Convert the given character to its equivalent lowercase character, using the US-ASCII character set.

  • Since 4.03.0
val uppercase_ascii : char -> char

Convert the given character to its equivalent uppercase character, using the US-ASCII character set.

  • Since 4.03.0
type t = char 

An alias for the type of characters.

val compare : t -> t -> int

The comparison function for characters, with the same specification as compare. Along with the type t, this function compare allows the module Char to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for chars.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.SeededHashedType.html0000644000175000017500000001532613717225553025223 0ustar mehdimehdi MoreLabels.Hashtbl.SeededHashedType

Module type MoreLabels.Hashtbl.SeededHashedType

module type SeededHashedType = Hashtbl.SeededHashedType

type t 

The type of the hashtable keys.

val equal : t -> t -> bool

The equality predicate used to compare keys.

val hash : int -> t -> int

A seeded hashing function on keys. The first argument is the seed. It must be the case that if equal x y is true, then hash seed x = hash seed y for any value of seed. A suitable choice for hash is the function Hashtbl.seeded_hash below.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Spacetime.html0000644000175000017500000001531413717225553021572 0ustar mehdimehdi Stdlib.Spacetime

Module Stdlib.Spacetime

module Spacetime: Spacetime

val enabled : bool

enabled is true if the compiler is configured with spacetime and false otherwise

module Series: sig .. end
module Snapshot: sig .. end
val save_event_for_automatic_snapshots : event_name:string -> unit

Like Spacetime.Series.save_event, but writes to the automatic snapshot file. This function is a no-op if OCAML_SPACETIME_INTERVAL was not set.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.LargeFile.html0000644000175000017500000001537313717225552021516 0ustar mehdimehdi Stdlib.LargeFile

Module Stdlib.LargeFile

module LargeFile: sig .. end

Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), these alternate functions allow operating on files whose sizes are greater than max_int.


val seek_out : out_channel -> int64 -> unit
val pos_out : out_channel -> int64
val out_channel_length : out_channel -> int64
val seek_in : in_channel -> int64 -> unit
val pos_in : in_channel -> int64
val in_channel_length : in_channel -> int64
ocaml-doc-4.11/ocaml.html/libref/type_Map.S.html0000644000175000017500000006116413717225553020423 0ustar mehdimehdi Map.S sig
  type key
  type +'a t
  val empty : 'Map.S.t
  val is_empty : 'Map.S.t -> bool
  val mem : Map.S.key -> 'Map.S.t -> bool
  val add : Map.S.key -> '-> 'Map.S.t -> 'Map.S.t
  val update :
    Map.S.key -> ('a option -> 'a option) -> 'Map.S.t -> 'Map.S.t
  val singleton : Map.S.key -> '-> 'Map.S.t
  val remove : Map.S.key -> 'Map.S.t -> 'Map.S.t
  val merge :
    (Map.S.key -> 'a option -> 'b option -> 'c option) ->
    'Map.S.t -> 'Map.S.t -> 'Map.S.t
  val union :
    (Map.S.key -> '-> '-> 'a option) ->
    'Map.S.t -> 'Map.S.t -> 'Map.S.t
  val compare : ('-> '-> int) -> 'Map.S.t -> 'Map.S.t -> int
  val equal : ('-> '-> bool) -> 'Map.S.t -> 'Map.S.t -> bool
  val iter : (Map.S.key -> '-> unit) -> 'Map.S.t -> unit
  val fold : (Map.S.key -> '-> '-> 'b) -> 'Map.S.t -> '-> 'b
  val for_all : (Map.S.key -> '-> bool) -> 'Map.S.t -> bool
  val exists : (Map.S.key -> '-> bool) -> 'Map.S.t -> bool
  val filter : (Map.S.key -> '-> bool) -> 'Map.S.t -> 'Map.S.t
  val filter_map : (Map.S.key -> '-> 'b option) -> 'Map.S.t -> 'Map.S.t
  val partition :
    (Map.S.key -> '-> bool) -> 'Map.S.t -> 'Map.S.t * 'Map.S.t
  val cardinal : 'Map.S.t -> int
  val bindings : 'Map.S.t -> (Map.S.key * 'a) list
  val min_binding : 'Map.S.t -> Map.S.key * 'a
  val min_binding_opt : 'Map.S.t -> (Map.S.key * 'a) option
  val max_binding : 'Map.S.t -> Map.S.key * 'a
  val max_binding_opt : 'Map.S.t -> (Map.S.key * 'a) option
  val choose : 'Map.S.t -> Map.S.key * 'a
  val choose_opt : 'Map.S.t -> (Map.S.key * 'a) option
  val split : Map.S.key -> 'Map.S.t -> 'Map.S.t * 'a option * 'Map.S.t
  val find : Map.S.key -> 'Map.S.t -> 'a
  val find_opt : Map.S.key -> 'Map.S.t -> 'a option
  val find_first : (Map.S.key -> bool) -> 'Map.S.t -> Map.S.key * 'a
  val find_first_opt :
    (Map.S.key -> bool) -> 'Map.S.t -> (Map.S.key * 'a) option
  val find_last : (Map.S.key -> bool) -> 'Map.S.t -> Map.S.key * 'a
  val find_last_opt :
    (Map.S.key -> bool) -> 'Map.S.t -> (Map.S.key * 'a) option
  val map : ('-> 'b) -> 'Map.S.t -> 'Map.S.t
  val mapi : (Map.S.key -> '-> 'b) -> 'Map.S.t -> 'Map.S.t
  val to_seq : 'Map.S.t -> (Map.S.key * 'a) Stdlib.Seq.t
  val to_seq_from : Map.S.key -> 'Map.S.t -> (Map.S.key * 'a) Stdlib.Seq.t
  val add_seq : (Map.S.key * 'a) Stdlib.Seq.t -> 'Map.S.t -> 'Map.S.t
  val of_seq : (Map.S.key * 'a) Stdlib.Seq.t -> 'Map.S.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.MoreLabels.html0000644000175000017500000001130013717225553022735 0ustar mehdimehdi Stdlib.MoreLabels (module Stdlib__moreLabels) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Format.html0000644000175000017500000034203613717225552021113 0ustar mehdimehdi Stdlib.Format

Module Stdlib.Format

module Format: Format

Introduction

For a gentle introduction to the basics of pretty-printing using Format, read http://caml.inria.fr/resources/doc/guides/format.en.html.

You may consider this module as providing an extension to the printf facility to provide automatic line splitting. The addition of pretty-printing annotations to your regular printf format strings gives you fancy indentation and line breaks. Pretty-printing annotations are described below in the documentation of the function Format.fprintf.

You may also use the explicit pretty-printing box management and printing functions provided by this module. This style is more basic but more verbose than the concise fprintf format strings.

For instance, the sequence open_box 0; print_string "x ="; print_space ();
    print_int 1; close_box (); print_newline ()
that prints x = 1 within a pretty-printing box, can be abbreviated as printf "@[%s@ %i@]@." "x =" 1, or even shorter printf "@[x =@ %i@]@." 1.

Rule of thumb for casual users of this library:

  • use simple pretty-printing boxes (as obtained by open_box 0);
  • use simple break hints as obtained by print_cut () that outputs a simple break hint, or by print_space () that outputs a space indicating a break hint;
  • once a pretty-printing box is open, display its material with basic printing functions (e. g. print_int and print_string);
  • when the material for a pretty-printing box has been printed, call close_box () to close the box;
  • at the end of pretty-printing, flush the pretty-printer to display all the remaining material, e.g. evaluate print_newline ().

The behavior of pretty-printing commands is unspecified if there is no open pretty-printing box. Each box opened by one of the open_ functions below must be closed using close_box for proper formatting. Otherwise, some of the material printed in the boxes may not be output, or may be formatted incorrectly.

In case of interactive use, each phrase is executed in the initial state of the standard pretty-printer: after each phrase execution, the interactive system closes all open pretty-printing boxes, flushes all pending text, and resets the standard pretty-printer.

Warning: mixing calls to pretty-printing functions of this module with calls to Stdlib low level output functions is error prone.

The pretty-printing functions output material that is delayed in the pretty-printer queue and stacks in order to compute proper line splitting. In contrast, basic I/O output functions write directly in their output device. As a consequence, the output of a basic I/O function may appear before the output of a pretty-printing function that has been called before. For instance,
    Stdlib.print_string "<";
    Format.print_string "PRETTY";
    Stdlib.print_string ">";
    Format.print_string "TEXT";
   
leads to output <>PRETTYTEXT.

type formatter 

Abstract data corresponding to a pretty-printer (also called a formatter) and all its machinery. See also Defining formatters.

Pretty-printing boxes

The pretty-printing engine uses the concepts of pretty-printing box and break hint to drive indentation and line splitting behavior of the pretty-printer.

Each different pretty-printing box kind introduces a specific line splitting policy:

  • within an horizontal box, break hints never split the line (but the line may be split in a box nested deeper),
  • within a vertical box, break hints always split the line,
  • within an horizontal/vertical box, if the box fits on the current line then break hints never split the line, otherwise break hint always split the line,
  • within a compacting box, a break hint never splits the line, unless there is no more room on the current line.

Note that line splitting policy is box specific: the policy of a box does not rule the policy of inner boxes. For instance, if a vertical box is nested in an horizontal box, all break hints within the vertical box will split the line.

Moreover, opening a box after the maximum indentation limit splits the line whether or not the box would end up fitting on the line.

val pp_open_box : formatter -> int -> unit
val open_box : int -> unit

pp_open_box ppf d opens a new compacting pretty-printing box with offset d in the formatter ppf.

Within this box, the pretty-printer prints as much as possible material on every line.

A break hint splits the line if there is no more room on the line to print the remainder of the box.

Within this box, the pretty-printer emphasizes the box structure: if a structural box does not fit fully on a simple line, a break hint also splits the line if the splitting ``moves to the left'' (i.e. the new line gets an indentation smaller than the one of the current line).

This box is the general purpose pretty-printing box.

If the pretty-printer splits the line in the box, offset d is added to the current indentation.

val pp_close_box : formatter -> unit -> unit
val close_box : unit -> unit

Closes the most recently open pretty-printing box.

val pp_open_hbox : formatter -> unit -> unit
val open_hbox : unit -> unit

pp_open_hbox ppf () opens a new 'horizontal' pretty-printing box.

This box prints material on a single line.

Break hints in a horizontal box never split the line. (Line splitting may still occur inside boxes nested deeper).

val pp_open_vbox : formatter -> int -> unit
val open_vbox : int -> unit

pp_open_vbox ppf d opens a new 'vertical' pretty-printing box with offset d.

This box prints material on as many lines as break hints in the box.

Every break hint in a vertical box splits the line.

If the pretty-printer splits the line in the box, d is added to the current indentation.

val pp_open_hvbox : formatter -> int -> unit
val open_hvbox : int -> unit

pp_open_hvbox ppf d opens a new 'horizontal/vertical' pretty-printing box with offset d.

This box behaves as an horizontal box if it fits on a single line, otherwise it behaves as a vertical box.

If the pretty-printer splits the line in the box, d is added to the current indentation.

val pp_open_hovbox : formatter -> int -> unit
val open_hovbox : int -> unit

pp_open_hovbox ppf d opens a new 'horizontal-or-vertical' pretty-printing box with offset d.

This box prints material as much as possible on every line.

A break hint splits the line if there is no more room on the line to print the remainder of the box.

If the pretty-printer splits the line in the box, d is added to the current indentation.

Formatting functions

val pp_print_string : formatter -> string -> unit
val print_string : string -> unit

pp_print_string ppf s prints s in the current pretty-printing box.

val pp_print_as : formatter -> int -> string -> unit
val print_as : int -> string -> unit

pp_print_as ppf len s prints s in the current pretty-printing box. The pretty-printer formats s as if it were of length len.

val pp_print_int : formatter -> int -> unit
val print_int : int -> unit

Print an integer in the current pretty-printing box.

val pp_print_float : formatter -> float -> unit
val print_float : float -> unit

Print a floating point number in the current pretty-printing box.

val pp_print_char : formatter -> char -> unit
val print_char : char -> unit

Print a character in the current pretty-printing box.

val pp_print_bool : formatter -> bool -> unit
val print_bool : bool -> unit

Print a boolean in the current pretty-printing box.

Break hints

A 'break hint' tells the pretty-printer to output some space or split the line whichever way is more appropriate to the current pretty-printing box splitting rules.

Break hints are used to separate printing items and are mandatory to let the pretty-printer correctly split lines and indent items.

Simple break hints are:

  • the 'space': output a space or split the line if appropriate,
  • the 'cut': split the line if appropriate.

Note: the notions of space and line splitting are abstract for the pretty-printing engine, since those notions can be completely redefined by the programmer. However, in the pretty-printer default setting, ``output a space'' simply means printing a space character (ASCII code 32) and ``split the line'' means printing a newline character (ASCII code 10).

val pp_print_space : formatter -> unit -> unit
val print_space : unit -> unit

pp_print_space ppf () emits a 'space' break hint: the pretty-printer may split the line at this point, otherwise it prints one space.

pp_print_space ppf () is equivalent to pp_print_break ppf 1 0.

val pp_print_cut : formatter -> unit -> unit
val print_cut : unit -> unit

pp_print_cut ppf () emits a 'cut' break hint: the pretty-printer may split the line at this point, otherwise it prints nothing.

pp_print_cut ppf () is equivalent to pp_print_break ppf 0 0.

val pp_print_break : formatter -> int -> int -> unit
val print_break : int -> int -> unit

pp_print_break ppf nspaces offset emits a 'full' break hint: the pretty-printer may split the line at this point, otherwise it prints nspaces spaces.

If the pretty-printer splits the line, offset is added to the current indentation.

val pp_print_custom_break : formatter ->
fits:string * int * string -> breaks:string * int * string -> unit

pp_print_custom_break ppf ~fits:(s1, n, s2) ~breaks:(s3, m, s4) emits a custom break hint: the pretty-printer may split the line at this point.

If it does not split the line, then the s1 is emitted, then n spaces, then s2.

If it splits the line, then it emits the s3 string, then an indent (according to the box rules), then an offset of m spaces, then the s4 string.

While n and m are handled by formatter_out_functions.out_indent, the strings will be handled by formatter_out_functions.out_string. This allows for a custom formatter that handles indentation distinctly, for example, outputs <br/> tags or &nbsp; entities.

The custom break is useful if you want to change which visible (non-whitespace) characters are printed in case of break or no break. For example, when printing a list

 [a; b; c] 

, you might want to add a trailing semicolon when it is printed vertically:

[
  a;
  b;
  c;
]
   

You can do this as follows:

printf "@[<v 0>[@;<0 2>@[<v 0>a;@,b;@,c@]%t]@]@\n"
  (pp_print_custom_break ~fits:("", 0, "") ~breaks:(";", 0, ""))
   
  • Since 4.08.0
val pp_force_newline : formatter -> unit -> unit
val force_newline : unit -> unit

Force a new line in the current pretty-printing box.

The pretty-printer must split the line at this point,

Not the normal way of pretty-printing, since imperative line splitting may interfere with current line counters and box size calculation. Using break hints within an enclosing vertical box is a better alternative.

val pp_print_if_newline : formatter -> unit -> unit
val print_if_newline : unit -> unit

Execute the next formatting command if the preceding line has just been split. Otherwise, ignore the next formatting command.

Pretty-printing termination

val pp_print_flush : formatter -> unit -> unit
val print_flush : unit -> unit

End of pretty-printing: resets the pretty-printer to initial state.

All open pretty-printing boxes are closed, all pending text is printed. In addition, the pretty-printer low level output device is flushed to ensure that all pending text is really displayed.

Note: never use print_flush in the normal course of a pretty-printing routine, since the pretty-printer uses a complex buffering machinery to properly indent the output; manually flushing those buffers at random would conflict with the pretty-printer strategy and result to poor rendering.

Only consider using print_flush when displaying all pending material is mandatory (for instance in case of interactive use when you want the user to read some text) and when resetting the pretty-printer state will not disturb further pretty-printing.

Warning: If the output device of the pretty-printer is an output channel, repeated calls to print_flush means repeated calls to flush to flush the out channel; these explicit flush calls could foil the buffering strategy of output channels and could dramatically impact efficiency.

val pp_print_newline : formatter -> unit -> unit
val print_newline : unit -> unit

End of pretty-printing: resets the pretty-printer to initial state.

All open pretty-printing boxes are closed, all pending text is printed.

Equivalent to Format.print_flush followed by a new line. See corresponding words of caution for Format.print_flush.

Note: this is not the normal way to output a new line; the preferred method is using break hints within a vertical pretty-printing box.

Margin

val pp_set_margin : formatter -> int -> unit
val set_margin : int -> unit

pp_set_margin ppf d sets the right margin to d (in characters): the pretty-printer splits lines that overflow the right margin according to the break hints given. Setting the margin to d means that the formatting engine aims at printing at most d-1 characters per line. Nothing happens if d is smaller than 2. If d is too large, the right margin is set to the maximum admissible value (which is greater than 10 ^ 9). If d is less than the current maximum indentation limit, the maximum indentation limit is decreased while trying to preserve a minimal ratio max_indent/margin>=50% and if possible the current difference margin - max_indent.

See also Format.pp_set_geometry.

val pp_get_margin : formatter -> unit -> int
val get_margin : unit -> int

Returns the position of the right margin.

Maximum indentation limit

val pp_set_max_indent : formatter -> int -> unit
val set_max_indent : int -> unit

pp_set_max_indent ppf d sets the maximum indentation limit of lines to d (in characters): once this limit is reached, new pretty-printing boxes are rejected to the left, unless the enclosing box fully fits on the current line. As an illustration,

 set_margin 10; set_max_indent 5; printf "@[123456@[7@]89A@]@." 

yields

    123456
    789A
  

because the nested box "@[7@]" is opened after the maximum indentation limit (7>5) and its parent box does not fit on the current line. Either decreasing the length of the parent box to make it fit on a line:

 printf "@[123456@[7@]89@]@." 

or opening an intermediary box before the maximum indentation limit which fits on the current line

 printf "@[123@[456@[7@]89@]A@]@." 

avoids the rejection to the left of the inner boxes and print respectively "123456789" and "123456789A" . Note also that vertical boxes never fit on a line whereas horizontal boxes always fully fit on the current line. Opening a box may split a line whereas the contents may have fit. If this behavior is problematic, it can be curtailed by setting the maximum indentation limit to margin - 1. Note that setting the maximum indentation limit to margin is invalid.

Nothing happens if d is smaller than 2.

If d is too large, the limit is set to the maximum admissible value (which is greater than 10 ^ 9).

If d is greater or equal than the current margin, it is ignored, and the current maximum indentation limit is kept.

See also Format.pp_set_geometry.

val pp_get_max_indent : formatter -> unit -> int
val get_max_indent : unit -> int

Return the maximum indentation limit (in characters).

Geometry

Geometric functions can be used to manipulate simultaneously the coupled variables, margin and maxixum indentation limit.

type geometry = {
   max_indent : int;
   margin : int;
}
val check_geometry : geometry -> bool

Check if the formatter geometry is valid: 1 < max_indent < margin

val pp_set_geometry : formatter -> max_indent:int -> margin:int -> unit
val set_geometry : max_indent:int -> margin:int -> unit
val pp_safe_set_geometry : formatter -> max_indent:int -> margin:int -> unit
val safe_set_geometry : max_indent:int -> margin:int -> unit

pp_set_geometry ppf ~max_indent ~margin sets both the margin and maximum indentation limit for ppf.

When 1 < max_indent < margin, pp_set_geometry ppf ~max_indent ~margin is equivalent to pp_set_margin ppf margin; pp_set_max_indent ppf max_indent; and avoids the subtly incorrect pp_set_max_indent ppf max_indent; pp_set_margin ppf margin;

Outside of this domain, pp_set_geometry raises an invalid argument exception whereas pp_safe_set_geometry does nothing.

  • Since 4.08.0
val pp_update_geometry : formatter -> (geometry -> geometry) -> unit

pp_update_geometry ppf (fun geo -> { geo with ... }) lets you update a formatter's geometry in a way that is robust to extension of the geometry record with new fields.

Raises an invalid argument exception if the returned geometry does not satisfy Format.check_geometry.

  • Since 4.11.0
val update_geometry : (geometry -> geometry) -> unit
val pp_get_geometry : formatter -> unit -> geometry
val get_geometry : unit -> geometry

Return the current geometry of the formatter

  • Since 4.08.0

Maximum formatting depth

The maximum formatting depth is the maximum number of pretty-printing boxes simultaneously open.

Material inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by Format.get_ellipsis_text ()).

val pp_set_max_boxes : formatter -> int -> unit
val set_max_boxes : int -> unit

pp_set_max_boxes ppf max sets the maximum number of pretty-printing boxes simultaneously open.

Material inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by Format.get_ellipsis_text ()).

Nothing happens if max is smaller than 2.

val pp_get_max_boxes : formatter -> unit -> int
val get_max_boxes : unit -> int

Returns the maximum number of pretty-printing boxes allowed before ellipsis.

val pp_over_max_boxes : formatter -> unit -> bool
val over_max_boxes : unit -> bool

Tests if the maximum number of pretty-printing boxes allowed have already been opened.

Tabulation boxes

A tabulation box prints material on lines divided into cells of fixed length. A tabulation box provides a simple way to display vertical columns of left adjusted text.

This box features command set_tab to define cell boundaries, and command print_tab to move from cell to cell and split the line when there is no more cells to print on the line.

Note: printing within tabulation box is line directed, so arbitrary line splitting inside a tabulation box leads to poor rendering. Yet, controlled use of tabulation boxes allows simple printing of columns within module Format.

val pp_open_tbox : formatter -> unit -> unit
val open_tbox : unit -> unit

open_tbox () opens a new tabulation box.

This box prints lines separated into cells of fixed width.

Inside a tabulation box, special tabulation markers defines points of interest on the line (for instance to delimit cell boundaries). Function Format.set_tab sets a tabulation marker at insertion point.

A tabulation box features specific tabulation breaks to move to next tabulation marker or split the line. Function Format.print_tbreak prints a tabulation break.

val pp_close_tbox : formatter -> unit -> unit
val close_tbox : unit -> unit

Closes the most recently opened tabulation box.

val pp_set_tab : formatter -> unit -> unit
val set_tab : unit -> unit

Sets a tabulation marker at current insertion point.

val pp_print_tab : formatter -> unit -> unit
val print_tab : unit -> unit

print_tab () emits a 'next' tabulation break hint: if not already set on a tabulation marker, the insertion point moves to the first tabulation marker on the right, or the pretty-printer splits the line and insertion point moves to the leftmost tabulation marker.

It is equivalent to print_tbreak 0 0.

val pp_print_tbreak : formatter -> int -> int -> unit
val print_tbreak : int -> int -> unit

print_tbreak nspaces offset emits a 'full' tabulation break hint.

If not already set on a tabulation marker, the insertion point moves to the first tabulation marker on the right and the pretty-printer prints nspaces spaces.

If there is no next tabulation marker on the right, the pretty-printer splits the line at this point, then insertion point moves to the leftmost tabulation marker of the box.

If the pretty-printer splits the line, offset is added to the current indentation.

Ellipsis

val pp_set_ellipsis_text : formatter -> string -> unit
val set_ellipsis_text : string -> unit

Set the text of the ellipsis printed when too many pretty-printing boxes are open (a single dot, ., by default).

val pp_get_ellipsis_text : formatter -> unit -> string
val get_ellipsis_text : unit -> string

Return the text of the ellipsis.

Semantic tags

type stag = ..

Semantic tags (or simply tags) are user's defined annotations to associate user's specific operations to printed entities.

Common usage of semantic tags is text decoration to get specific font or text size rendering for a display device, or marking delimitation of entities (e.g. HTML or TeX elements or terminal escape sequences). More sophisticated usage of semantic tags could handle dynamic modification of the pretty-printer behavior to properly print the material within some specific tags. For instance, we can define an RGB tag like so:

type stag += RGB of {r:int;g:int;b:int}

In order to properly delimit printed entities, a semantic tag must be opened before and closed after the entity. Semantic tags must be properly nested like parentheses using Format.pp_open_stag and Format.pp_close_stag.

Tag specific operations occur any time a tag is opened or closed, At each occurrence, two kinds of operations are performed tag-marking and tag-printing:

  • The tag-marking operation is the simpler tag specific operation: it simply writes a tag specific string into the output device of the formatter. Tag-marking does not interfere with line-splitting computation.
  • The tag-printing operation is the more involved tag specific operation: it can print arbitrary material to the formatter. Tag-printing is tightly linked to the current pretty-printer operations.

Roughly speaking, tag-marking is commonly used to get a better rendering of texts in the rendering device, while tag-printing allows fine tuning of printing routines to print the same entity differently according to the semantic tags (i.e. print additional material or even omit parts of the output).

More precisely: when a semantic tag is opened or closed then both and successive 'tag-printing' and 'tag-marking' operations occur:

  • Tag-printing a semantic tag means calling the formatter specific function print_open_stag (resp. print_close_stag) with the name of the tag as argument: that tag-printing function can then print any regular material to the formatter (so that this material is enqueued as usual in the formatter queue for further line splitting computation).
  • Tag-marking a semantic tag means calling the formatter specific function mark_open_stag (resp. mark_close_stag) with the name of the tag as argument: that tag-marking function can then return the 'tag-opening marker' (resp. `tag-closing marker') for direct output into the output device of the formatter.

Being written directly into the output device of the formatter, semantic tag marker strings are not considered as part of the printing material that drives line splitting (in other words, the length of the strings corresponding to tag markers is considered as zero for line splitting).

Thus, semantic tag handling is in some sense transparent to pretty-printing and does not interfere with usual indentation. Hence, a single pretty-printing routine can output both simple 'verbatim' material or richer decorated output depending on the treatment of tags. By default, tags are not active, hence the output is not decorated with tag information. Once set_tags is set to true, the pretty-printer engine honors tags and decorates the output accordingly.

Default tag-marking functions behave the HTML way: string tags are enclosed in "<" and ">" while other tags are ignored; hence, opening marker for tag string "t" is "<t>" and closing marker is "</t>".

Default tag-printing functions just do nothing.

Tag-marking and tag-printing functions are user definable and can be set by calling Format.set_formatter_stag_functions.

Semantic tag operations may be set on or off with Format.set_tags. Tag-marking operations may be set on or off with Format.set_mark_tags. Tag-printing operations may be set on or off with Format.set_print_tags.

type tag = string 
type Format.stag += 
| String_tag of tag (*

String_tag s is a string tag s. String tags can be inserted either by explicitly using the constructor String_tag or by using the dedicated format syntax "@{<s> ... @}".

*)
val pp_open_stag : formatter -> stag -> unit
val open_stag : stag -> unit

pp_open_stag ppf t opens the semantic tag named t.

The print_open_stag tag-printing function of the formatter is called with t as argument; then the opening tag marker for t, as given by mark_open_stag t, is written into the output device of the formatter.

val pp_close_stag : formatter -> unit -> unit
val close_stag : unit -> unit

pp_close_stag ppf () closes the most recently opened semantic tag t.

The closing tag marker, as given by mark_close_stag t, is written into the output device of the formatter; then the print_close_stag tag-printing function of the formatter is called with t as argument.

val pp_set_tags : formatter -> bool -> unit
val set_tags : bool -> unit

pp_set_tags ppf b turns on or off the treatment of semantic tags (default is off).

val pp_set_print_tags : formatter -> bool -> unit
val set_print_tags : bool -> unit

pp_set_print_tags ppf b turns on or off the tag-printing operations.

val pp_set_mark_tags : formatter -> bool -> unit
val set_mark_tags : bool -> unit

pp_set_mark_tags ppf b turns on or off the tag-marking operations.

val pp_get_print_tags : formatter -> unit -> bool
val get_print_tags : unit -> bool

Return the current status of tag-printing operations.

val pp_get_mark_tags : formatter -> unit -> bool
val get_mark_tags : unit -> bool

Return the current status of tag-marking operations.

val pp_set_formatter_out_channel : formatter -> out_channel -> unit

Redirecting the standard formatter output

val set_formatter_out_channel : out_channel -> unit

Redirect the standard pretty-printer output to the given channel. (All the output functions of the standard formatter are set to the default output functions printing to the given channel.)

set_formatter_out_channel is equivalent to Format.pp_set_formatter_out_channel std_formatter.

val pp_set_formatter_output_functions : formatter -> (string -> int -> int -> unit) -> (unit -> unit) -> unit
val set_formatter_output_functions : (string -> int -> int -> unit) -> (unit -> unit) -> unit

pp_set_formatter_output_functions ppf out flush redirects the standard pretty-printer output functions to the functions out and flush.

The out function performs all the pretty-printer string output. It is called with a string s, a start position p, and a number of characters n; it is supposed to output characters p to p + n - 1 of s.

The flush function is called whenever the pretty-printer is flushed (via conversion %!, or pretty-printing indications @? or @., or using low level functions print_flush or print_newline).

val pp_get_formatter_output_functions : formatter -> unit -> (string -> int -> int -> unit) * (unit -> unit)
val get_formatter_output_functions : unit -> (string -> int -> int -> unit) * (unit -> unit)

Return the current output functions of the standard pretty-printer.

Redefining formatter output

The Format module is versatile enough to let you completely redefine the meaning of pretty-printing output: you may provide your own functions to define how to handle indentation, line splitting, and even printing of all the characters that have to be printed!

Redefining output functions

type formatter_out_functions = {
   out_string : string -> int -> int -> unit;
   out_flush : unit -> unit;
   out_newline : unit -> unit;
   out_spaces : int -> unit;
   out_indent : int -> unit;
}

The set of output functions specific to a formatter:

  • the out_string function performs all the pretty-printer string output. It is called with a string s, a start position p, and a number of characters n; it is supposed to output characters p to p + n - 1 of s.
  • the out_flush function flushes the pretty-printer output device.
  • out_newline is called to open a new line when the pretty-printer splits the line.
  • the out_spaces function outputs spaces when a break hint leads to spaces instead of a line split. It is called with the number of spaces to output.
  • the out_indent function performs new line indentation when the pretty-printer splits the line. It is called with the indentation value of the new line.

By default:

  • fields out_string and out_flush are output device specific; (e.g. output_string and flush for a out_channel device, or Buffer.add_substring and ignore for a Buffer.t output device),
  • field out_newline is equivalent to out_string "\n" 0 1;
  • fields out_spaces and out_indent are equivalent to out_string (String.make n ' ') 0 n.
  • Since 4.01.0
val pp_set_formatter_out_functions : formatter -> formatter_out_functions -> unit
val set_formatter_out_functions : formatter_out_functions -> unit

pp_set_formatter_out_functions ppf out_funs Set all the pretty-printer output functions of ppf to those of argument out_funs,

This way, you can change the meaning of indentation (which can be something else than just printing space characters) and the meaning of new lines opening (which can be connected to any other action needed by the application at hand).

Reasonable defaults for functions out_spaces and out_newline are respectively out_funs.out_string (String.make n ' ') 0 n and out_funs.out_string "\n" 0 1.

  • Since 4.01.0
val pp_get_formatter_out_functions : formatter -> unit -> formatter_out_functions
val get_formatter_out_functions : unit -> formatter_out_functions

Return the current output functions of the pretty-printer, including line splitting and indentation functions. Useful to record the current setting and restore it afterwards.

  • Since 4.01.0

Redefining semantic tag operations

type formatter_stag_functions = {
   mark_open_stag : stag -> string;
   mark_close_stag : stag -> string;
   print_open_stag : stag -> unit;
   print_close_stag : stag -> unit;
}

The semantic tag handling functions specific to a formatter: mark versions are the 'tag-marking' functions that associate a string marker to a tag in order for the pretty-printing engine to write those markers as 0 length tokens in the output device of the formatter. print versions are the 'tag-printing' functions that can perform regular printing when a tag is closed or opened.

val pp_set_formatter_stag_functions : formatter -> formatter_stag_functions -> unit
val set_formatter_stag_functions : formatter_stag_functions -> unit

pp_set_formatter_stag_functions ppf tag_funs changes the meaning of opening and closing semantic tag operations to use the functions in tag_funs when printing on ppf.

When opening a semantic tag with name t, the string t is passed to the opening tag-marking function (the mark_open_stag field of the record tag_funs), that must return the opening tag marker for that name. When the next call to close_stag () happens, the semantic tag name t is sent back to the closing tag-marking function (the mark_close_stag field of record tag_funs), that must return a closing tag marker for that name.

The print_ field of the record contains the tag-printing functions that are called at tag opening and tag closing time, to output regular material in the pretty-printer queue.

val pp_get_formatter_stag_functions : formatter -> unit -> formatter_stag_functions
val get_formatter_stag_functions : unit -> formatter_stag_functions

Return the current semantic tag operation functions of the standard pretty-printer.

Defining formatters

Defining new formatters permits unrelated output of material in parallel on several output devices. All the parameters of a formatter are local to the formatter: right margin, maximum indentation limit, maximum number of pretty-printing boxes simultaneously open, ellipsis, and so on, are specific to each formatter and may be fixed independently.

For instance, given a Buffer.t buffer b, Format.formatter_of_buffer b returns a new formatter using buffer b as its output device. Similarly, given a out_channel output channel oc, Format.formatter_of_out_channel oc returns a new formatter using channel oc as its output device.

Alternatively, given out_funs, a complete set of output functions for a formatter, then Format.formatter_of_out_functions out_funs computes a new formatter using those functions for output.

val formatter_of_out_channel : out_channel -> formatter

formatter_of_out_channel oc returns a new formatter writing to the corresponding output channel oc.

val std_formatter : formatter

The standard formatter to write to standard output.

It is defined as Format.formatter_of_out_channel stdout.

val err_formatter : formatter

A formatter to write to standard error.

It is defined as Format.formatter_of_out_channel stderr.

val formatter_of_buffer : Buffer.t -> formatter

formatter_of_buffer b returns a new formatter writing to buffer b. At the end of pretty-printing, the formatter must be flushed using Format.pp_print_flush or Format.pp_print_newline, to print all the pending material into the buffer.

val stdbuf : Buffer.t

The string buffer in which str_formatter writes.

val str_formatter : formatter

A formatter to output to the Format.stdbuf string buffer.

str_formatter is defined as Format.formatter_of_buffer Format.stdbuf.

val flush_str_formatter : unit -> string

Returns the material printed with str_formatter, flushes the formatter and resets the corresponding buffer.

val make_formatter : (string -> int -> int -> unit) -> (unit -> unit) -> formatter

make_formatter out flush returns a new formatter that outputs with function out, and flushes with function flush.

For instance,

    make_formatter
      (Stdlib.output oc)
      (fun () -> Stdlib.flush oc) 

returns a formatter to the out_channel oc.

val formatter_of_out_functions : formatter_out_functions -> formatter

formatter_of_out_functions out_funs returns a new formatter that writes with the set of output functions out_funs.

See definition of type Format.formatter_out_functions for the meaning of argument out_funs.

  • Since 4.06.0

Symbolic pretty-printing

Symbolic pretty-printing is pretty-printing using a symbolic formatter, i.e. a formatter that outputs symbolic pretty-printing items.

When using a symbolic formatter, all regular pretty-printing activities occur but output material is symbolic and stored in a buffer of output items. At the end of pretty-printing, flushing the output buffer allows post-processing of symbolic output before performing low level output operations.

In practice, first define a symbolic output buffer b using:

  • let sob = make_symbolic_output_buffer (). Then define a symbolic formatter with:
  • let ppf = formatter_of_symbolic_output_buffer sob

Use symbolic formatter ppf as usual, and retrieve symbolic items at end of pretty-printing by flushing symbolic output buffer sob with:

  • flush_symbolic_output_buffer sob.
type symbolic_output_item = 
| Output_flush (*

symbolic flush command

*)
| Output_newline (*

symbolic newline command

*)
| Output_string of string (*

Output_string s: symbolic output for string s

*)
| Output_spaces of int (*

Output_spaces n: symbolic command to output n spaces

*)
| Output_indent of int (*

Output_indent i: symbolic indentation of size i

*)

Items produced by symbolic pretty-printers

  • Since 4.06.0
type symbolic_output_buffer 

The output buffer of a symbolic pretty-printer.

  • Since 4.06.0
val make_symbolic_output_buffer : unit -> symbolic_output_buffer

make_symbolic_output_buffer () returns a fresh buffer for symbolic output.

  • Since 4.06.0
val clear_symbolic_output_buffer : symbolic_output_buffer -> unit

clear_symbolic_output_buffer sob resets buffer sob.

  • Since 4.06.0
val get_symbolic_output_buffer : symbolic_output_buffer -> symbolic_output_item list

get_symbolic_output_buffer sob returns the contents of buffer sob.

  • Since 4.06.0
val flush_symbolic_output_buffer : symbolic_output_buffer -> symbolic_output_item list

flush_symbolic_output_buffer sob returns the contents of buffer sob and resets buffer sob. flush_symbolic_output_buffer sob is equivalent to let items = get_symbolic_output_buffer sob in
   clear_symbolic_output_buffer sob; items

  • Since 4.06.0
val add_symbolic_output_item : symbolic_output_buffer -> symbolic_output_item -> unit

add_symbolic_output_item sob itm adds item itm to buffer sob.

  • Since 4.06.0
val formatter_of_symbolic_output_buffer : symbolic_output_buffer -> formatter

formatter_of_symbolic_output_buffer sob returns a symbolic formatter that outputs to symbolic_output_buffer sob.

  • Since 4.06.0

Convenience formatting functions.

val pp_print_list : ?pp_sep:(formatter -> unit -> unit) ->
(formatter -> 'a -> unit) -> formatter -> 'a list -> unit

pp_print_list ?pp_sep pp_v ppf l prints items of list l, using pp_v to print each item, and calling pp_sep between items (pp_sep defaults to Format.pp_print_cut. Does nothing on empty lists.

  • Since 4.02.0
val pp_print_text : formatter -> string -> unit

pp_print_text ppf s prints s with spaces and newlines respectively printed using Format.pp_print_space and Format.pp_force_newline.

  • Since 4.02.0
val pp_print_option : ?none:(formatter -> unit -> unit) ->
(formatter -> 'a -> unit) -> formatter -> 'a option -> unit

pp_print_option ?none pp_v ppf o prints o on ppf using pp_v if o is Some v and none if it is None. none prints nothing by default.

  • Since 4.08
val pp_print_result : ok:(formatter -> 'a -> unit) ->
error:(formatter -> 'e -> unit) ->
formatter -> ('a, 'e) result -> unit

pp_print_result ~ok ~error ppf r prints r on ppf using ok if r is Ok _ and error if r is Error _.

  • Since 4.08

Formatted pretty-printing

Module Format provides a complete set of printf like functions for pretty-printing using format string specifications.

Specific annotations may be added in the format strings to give pretty-printing commands to the pretty-printing engine.

Those annotations are introduced in the format strings using the @ character. For instance, means a space break, @, means a cut, @[ opens a new box, and @] closes the last open box.

val fprintf : formatter -> ('a, formatter, unit) format -> 'a

fprintf ff fmt arg1 ... argN formats the arguments arg1 to argN according to the format string fmt, and outputs the resulting string on the formatter ff.

The format string fmt is a character string which contains three types of objects: plain characters and conversion specifications as specified in the Printf module, and pretty-printing indications specific to the Format module.

The pretty-printing indication characters are introduced by a @ character, and their meanings are:

  • @[: open a pretty-printing box. The type and offset of the box may be optionally specified with the following syntax: the < character, followed by an optional box type indication, then an optional integer offset, and the closing > character. Pretty-printing box type is one of h, v, hv, b, or hov. 'h' stands for an 'horizontal' pretty-printing box, 'v' stands for a 'vertical' pretty-printing box, 'hv' stands for an 'horizontal/vertical' pretty-printing box, 'b' stands for an 'horizontal-or-vertical' pretty-printing box demonstrating indentation, 'hov' stands a simple 'horizontal-or-vertical' pretty-printing box. For instance, @[<hov 2> opens an 'horizontal-or-vertical' pretty-printing box with indentation 2 as obtained with open_hovbox 2. For more details about pretty-printing boxes, see the various box opening functions open_*box.
  • @]: close the most recently opened pretty-printing box.
  • @,: output a 'cut' break hint, as with print_cut ().
  • : output a 'space' break hint, as with print_space ().
  • @;: output a 'full' break hint as with print_break. The nspaces and offset parameters of the break hint may be optionally specified with the following syntax: the < character, followed by an integer nspaces value, then an integer offset, and a closing > character. If no parameters are provided, the good break defaults to a 'space' break hint.
  • @.: flush the pretty-printer and split the line, as with print_newline ().
  • @<n>: print the following item as if it were of length n. Hence, printf "@<0>%s" arg prints arg as a zero length string. If @<n> is not followed by a conversion specification, then the following character of the format is printed as if it were of length n.
  • @{: open a semantic tag. The name of the tag may be optionally specified with the following syntax: the < character, followed by an optional string specification, and the closing > character. The string specification is any character string that does not contain the closing character '>'. If omitted, the tag name defaults to the empty string. For more details about semantic tags, see the functions Format.open_stag and Format.close_stag.
  • @}: close the most recently opened semantic tag.
  • @?: flush the pretty-printer as with print_flush (). This is equivalent to the conversion %!.
  • @\n: force a newline, as with force_newline (), not the normal way of pretty-printing, you should prefer using break hints inside a vertical pretty-printing box.

Note: To prevent the interpretation of a @ character as a pretty-printing indication, escape it with a % character. Old quotation mode @@ is deprecated since it is not compatible with formatted input interpretation of character '@'.

Example: printf "@[%s@ %d@]@." "x =" 1 is equivalent to open_box (); print_string "x ="; print_space ();
   print_int 1; close_box (); print_newline ()
. It prints x = 1 within a pretty-printing 'horizontal-or-vertical' box.

val printf : ('a, formatter, unit) format -> 'a

Same as fprintf above, but output on std_formatter.

val eprintf : ('a, formatter, unit) format -> 'a

Same as fprintf above, but output on err_formatter.

val sprintf : ('a, unit, string) format -> 'a

Same as printf above, but instead of printing on a formatter, returns a string containing the result of formatting the arguments. Note that the pretty-printer queue is flushed at the end of each call to sprintf.

In case of multiple and related calls to sprintf to output material on a single string, you should consider using fprintf with the predefined formatter str_formatter and call flush_str_formatter () to get the final result.

Alternatively, you can use Format.fprintf with a formatter writing to a buffer of your own: flushing the formatter and the buffer at the end of pretty-printing returns the desired string.

val asprintf : ('a, formatter, unit, string) format4 -> 'a

Same as printf above, but instead of printing on a formatter, returns a string containing the result of formatting the arguments. The type of asprintf is general enough to interact nicely with %a conversions.

  • Since 4.01.0
val dprintf : ('a, formatter, unit, formatter -> unit) format4 -> 'a

Same as Format.fprintf, except the formatter is the last argument. dprintf "..." a b c is a function of type formatter -> unit which can be given to a format specifier %t.

This can be used as a replacement for Format.asprintf to delay formatting decisions. Using the string returned by Format.asprintf in a formatting context forces formatting decisions to be taken in isolation, and the final string may be created prematurely. Format.dprintf allows delay of formatting decisions until the final formatting context is known. For example:

  let t = Format.dprintf "%i@ %i@ %i" 1 2 3 in
  ...
  Format.printf "@[<v>%t@]" t
  • Since 4.08.0
val ifprintf : formatter -> ('a, formatter, unit) format -> 'a

Same as fprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 3.10.0

Formatted Pretty-Printing with continuations.

val kfprintf : (formatter -> 'a) ->
formatter -> ('b, formatter, unit, 'a) format4 -> 'b

Same as fprintf above, but instead of returning immediately, passes the formatter to its first argument at the end of printing.

val kdprintf : ((formatter -> unit) -> 'a) ->
('b, formatter, unit, 'a) format4 -> 'b

Same as Format.dprintf above, but instead of returning immediately, passes the suspended printer to its first argument at the end of printing.

  • Since 4.08.0
val ikfprintf : (formatter -> 'a) ->
formatter -> ('b, formatter, unit, 'a) format4 -> 'b

Same as kfprintf above, but does not print anything. Useful to ignore some material when conditionally printing.

  • Since 3.12.0
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b

Same as sprintf above, but instead of returning the string, passes it to the first argument.

val kasprintf : (string -> 'a) -> ('b, formatter, unit, 'a) format4 -> 'b

Same as asprintf above, but instead of returning the string, passes it to the first argument.

  • Since 4.03

Deprecated

val bprintf : Buffer.t -> ('a, formatter, unit) format -> 'a
Deprecated.This function is error prone. Do not use it. This function is neither compositional nor incremental, since it flushes the pretty-printer queue at each call. If you need to print to some buffer b, you must first define a formatter writing to b, using let to_b = formatter_of_buffer b; then use regular calls to Format.fprintf with formatter to_b.
val kprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b
Deprecated.An alias for ksprintf.
val set_all_formatter_output_functions : out:(string -> int -> int -> unit) ->
flush:(unit -> unit) ->
newline:(unit -> unit) -> spaces:(int -> unit) -> unit
Deprecated.Subsumed by set_formatter_out_functions.
val get_all_formatter_output_functions : unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)
Deprecated.Subsumed by get_formatter_out_functions.
val pp_set_all_formatter_output_functions : formatter ->
out:(string -> int -> int -> unit) ->
flush:(unit -> unit) ->
newline:(unit -> unit) -> spaces:(int -> unit) -> unit
Deprecated.Subsumed by pp_set_formatter_out_functions.
val pp_get_all_formatter_output_functions : formatter ->
unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)
Deprecated.Subsumed by pp_get_formatter_out_functions.

String tags

val pp_open_tag : formatter -> tag -> unit
Deprecated.Subsumed by Format.pp_open_stag.
val open_tag : tag -> unit
Deprecated.Subsumed by Format.open_stag.
val pp_close_tag : formatter -> unit -> unit
Deprecated.Subsumed by Format.pp_close_stag.
val close_tag : unit -> unit
Deprecated.Subsumed by Format.close_stag.
type formatter_tag_functions = {
   mark_open_tag : tag -> string;
   mark_close_tag : tag -> string;
   print_open_tag : tag -> unit;
   print_close_tag : tag -> unit;
}
Deprecated.Subsumed by Format.formatter_stag_functions.
val pp_set_formatter_tag_functions : formatter -> formatter_tag_functions -> unit

This function will erase non-string tag formatting functions.

val set_formatter_tag_functions : formatter_tag_functions -> unit
Deprecated.Subsumed by Format.set_formatter_stag_functions.
val pp_get_formatter_tag_functions : formatter -> unit -> formatter_tag_functions
val get_formatter_tag_functions : unit -> formatter_tag_functions
Deprecated.Subsumed by Format.get_formatter_stag_functions.
ocaml-doc-4.11/ocaml.html/libref/Stdlib.BytesLabels.html0000644000175000017500000013430413717225552022071 0ustar mehdimehdi Stdlib.BytesLabels

Module Stdlib.BytesLabels

module BytesLabels: BytesLabels

val length : bytes -> int

Return the length (number of bytes) of the argument.

val get : bytes -> int -> char

get s n returns the byte at index n in argument s.

  • Raises Invalid_argument if n is not a valid index in s.
val set : bytes -> int -> char -> unit

set s n c modifies s in place, replacing the byte at index n with c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes

create n returns a new byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> bytes

make n c returns a new byte sequence of length n, filled with the byte c.

val init : int -> f:(int -> char) -> bytes

init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i.

val empty : bytes

A byte sequence of size 0.

val copy : bytes -> bytes

Return a new byte sequence that contains the same bytes as the argument.

val of_string : string -> bytes

Return a new byte sequence that contains the same bytes as the given string.

val to_string : bytes -> string

Return a new string that contains the same bytes as the given byte sequence.

val sub : bytes -> pos:int -> len:int -> bytes

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val sub_string : bytes -> pos:int -> len:int -> string

Same as sub but return a string instead of a byte sequence.

val extend : bytes -> left:int -> right:int -> bytes

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it. If left or right is negative, then bytes are removed (instead of appended) from the corresponding side of s.

  • Since 4.05.0
  • Raises Invalid_argument if the result length is negative or longer than Sys.max_string_length bytes.
val fill : bytes -> pos:int -> len:int -> char -> unit

fill s start len c modifies s in place, replacing len characters with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff. It works correctly even if src and dst are the same byte sequence, and the source and destination intervals overlap.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val blit_string : src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

blit src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

  • Since 4.05.0
  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : sep:bytes -> bytes list -> bytes

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

val cat : bytes -> bytes -> bytes

cat s1 s2 concatenates s1 and s2 and returns the result as new byte sequence.

val iter : f:(char -> unit) -> bytes -> unit

iter f s applies function f in turn to all the bytes of s. It is equivalent to f (get s 0); f (get s 1); ...; f (get s
    (length s - 1)); ()
.

val iteri : f:(int -> char -> unit) -> bytes -> unit

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

val map : f:(char -> char) -> bytes -> bytes

map f s applies function f in turn to all the bytes of s and stores the resulting bytes in a new sequence that is returned as the result.

val mapi : f:(int -> char -> char) -> bytes -> bytes

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val trim : bytes -> bytes

Return a copy of the argument, without leading and trailing whitespace. The bytes regarded as whitespace are the ASCII characters ' ', '\012', '\n', '\r', and '\t'.

val escaped : bytes -> bytes

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

val index : bytes -> char -> int

index s c returns the index of the first occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val index_opt : bytes -> char -> int option

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val rindex : bytes -> char -> int

rindex s c returns the index of the last occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : bytes -> char -> int option

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val index_from : bytes -> int -> char -> int

index_from s i c returns the index of the first occurrence of byte c in s after position i. Bytes.index s c is equivalent to Bytes.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : bytes -> int -> char -> int option

index_from _opts i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i. Bytes.index_opt s c is equivalent to Bytes.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : bytes -> int -> char -> int

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1. rindex s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : bytes -> int -> char -> int option

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1. rindex_opt s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : bytes -> char -> bool

contains s c tests if byte c appears in s.

val contains_from : bytes -> int -> char -> bool

contains_from s start c tests if byte c appears in s after position start. contains s c is equivalent to contains_from
    s 0 c
.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : bytes -> int -> char -> bool

rcontains_from s stop c tests if byte c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : bytes -> bytes

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val lowercase_ascii : bytes -> bytes

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.05.0
val capitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val uncapitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.05.0
type t = bytes 

An alias for the type of byte sequences.

val compare : t -> t -> int

The comparison function for byte sequences, with the same specification as compare. Along with the type t, this function compare allows the module Bytes to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equality function for byte sequences.

  • Since 4.05.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07

Binary encoding/decoding of integers

The functions in this section binary encode and decode integers to and from byte sequences.

All following functions raise Invalid_argument if the space needed at index i to decode or encode the integer is not available.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. These extra bits are handled as follows:

  • Functions that decode signed (resp. unsigned) 8-bit or 16-bit integers represented by int values sign-extend (resp. zero-extend) their result.
  • Functions that encode 8-bit or 16-bit integers represented by int values truncate their input to their least significant bytes.
val get_uint8 : bytes -> int -> int

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

  • Since 4.08
val get_int8 : bytes -> int -> int

get_int8 b i is b's signed 8-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_ne : bytes -> int -> int

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_be : bytes -> int -> int

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_le : bytes -> int -> int

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_ne : bytes -> int -> int

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_be : bytes -> int -> int

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_le : bytes -> int -> int

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int32_ne : bytes -> int -> int32

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_be : bytes -> int -> int32

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_le : bytes -> int -> int32

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int64_ne : bytes -> int -> int64

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_be : bytes -> int -> int64

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_le : bytes -> int -> int64

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

  • Since 4.08
val set_uint8 : bytes -> int -> int -> unit

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_int8 : bytes -> int -> int -> unit

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_ne : bytes -> int -> int -> unit

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_be : bytes -> int -> int -> unit

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_le : bytes -> int -> int -> unit

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_ne : bytes -> int -> int -> unit

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_be : bytes -> int -> int -> unit

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_le : bytes -> int -> int -> unit

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_ne : bytes -> int -> int32 -> unit

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_be : bytes -> int -> int32 -> unit

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_le : bytes -> int -> int32 -> unit

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_ne : bytes -> int -> int64 -> unit

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_be : bytes -> int -> int64 -> unit

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_le : bytes -> int -> int64 -> unit

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/Stdlib.StdLabels.html0000644000175000017500000001377413717225553021545 0ustar mehdimehdi Stdlib.StdLabels

Module Stdlib.StdLabels

module StdLabels: StdLabels

module Array: ArrayLabels
module Bytes: BytesLabels
module List: ListLabels
module String: StringLabels
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Int64.html0000644000175000017500000005331413717225553020566 0ustar mehdimehdi Stdlib.Int64

Module Stdlib.Int64

module Int64: Int64

val zero : int64

The 64-bit integer 0.

val one : int64

The 64-bit integer 1.

val minus_one : int64

The 64-bit integer -1.

val neg : int64 -> int64

Unary negation.

val add : int64 -> int64 -> int64

Addition.

val sub : int64 -> int64 -> int64

Subtraction.

val mul : int64 -> int64 -> int64

Multiplication.

val div : int64 -> int64 -> int64

Integer division.

  • Raises Division_by_zero if the second argument is zero. This division rounds the real quotient of its arguments towards zero, as specified for (/).
val unsigned_div : int64 -> int64 -> int64

Same as Int64.div, except that arguments and result are interpreted as unsigned 64-bit integers.

  • Since 4.08.0
val rem : int64 -> int64 -> int64

Integer remainder. If y is not zero, the result of Int64.rem x y satisfies the following property: x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y). If y = 0, Int64.rem x y raises Division_by_zero.

val unsigned_rem : int64 -> int64 -> int64

Same as Int64.rem, except that arguments and result are interpreted as unsigned 64-bit integers.

  • Since 4.08.0
val succ : int64 -> int64

Successor. Int64.succ x is Int64.add x Int64.one.

val pred : int64 -> int64

Predecessor. Int64.pred x is Int64.sub x Int64.one.

val abs : int64 -> int64

Return the absolute value of its argument.

val max_int : int64

The greatest representable 64-bit integer, 263 - 1.

val min_int : int64

The smallest representable 64-bit integer, -263.

val logand : int64 -> int64 -> int64

Bitwise logical and.

val logor : int64 -> int64 -> int64

Bitwise logical or.

val logxor : int64 -> int64 -> int64

Bitwise logical exclusive or.

val lognot : int64 -> int64

Bitwise logical negation.

val shift_left : int64 -> int -> int64

Int64.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= 64.

val shift_right : int64 -> int -> int64

Int64.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= 64.

val shift_right_logical : int64 -> int -> int64

Int64.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= 64.

val of_int : int -> int64

Convert the given integer (type int) to a 64-bit integer (type int64).

val to_int : int64 -> int

Convert the given 64-bit integer (type int64) to an integer (type int). On 64-bit platforms, the 64-bit integer is taken modulo 263, i.e. the high-order bit is lost during the conversion. On 32-bit platforms, the 64-bit integer is taken modulo 231, i.e. the top 33 bits are lost during the conversion.

val unsigned_to_int : int64 -> int option

Same as Int64.to_int, but interprets the argument as an unsigned integer. Returns None if the unsigned value of the argument cannot fit into an int.

  • Since 4.08.0
val of_float : float -> int64

Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Int64.min_int, Int64.max_int].

val to_float : int64 -> float

Convert the given 64-bit integer to a floating-point number.

val of_int32 : int32 -> int64

Convert the given 32-bit integer (type int32) to a 64-bit integer (type int64).

val to_int32 : int64 -> int32

Convert the given 64-bit integer (type int64) to a 32-bit integer (type int32). The 64-bit integer is taken modulo 232, i.e. the top 32 bits are lost during the conversion.

val of_nativeint : nativeint -> int64

Convert the given native integer (type nativeint) to a 64-bit integer (type int64).

val to_nativeint : int64 -> nativeint

Convert the given 64-bit integer (type int64) to a native integer. On 32-bit platforms, the 64-bit integer is taken modulo 232. On 64-bit platforms, the conversion is exact.

val of_string : string -> int64

Convert the given string to a 64-bit integer. The string is read in decimal (by default, or if the string begins with 0u) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively.

The 0u prefix reads the input as an unsigned integer in the range [0, 2*Int64.max_int+1]. If the input exceeds Int64.max_int it is converted to the signed integer Int64.min_int + input - Int64.max_int - 1.

The _ (underscore) character can appear anywhere in the string and is ignored.

  • Raises Failure if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int64.
val of_string_opt : string -> int64 option

Same as of_string, but return None instead of raising.

  • Since 4.05
val to_string : int64 -> string

Return the string representation of its argument, in decimal.

val bits_of_float : float -> int64

Return the internal representation of the given float according to the IEEE 754 floating-point 'double format' bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa.

val float_of_bits : int64 -> float

Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'double format' bit layout, is the given int64.

type t = int64 

An alias for the type of 64-bit integers.

val compare : t -> t -> int

The comparison function for 64-bit integers, with the same specification as compare. Along with the type t, this function compare allows the module Int64 to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Int64.compare, except that arguments are interpreted as unsigned 64-bit integers.

  • Since 4.08.0
val equal : t -> t -> bool

The equal function for int64s.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/Genlex.html0000644000175000017500000003015313717225552017657 0ustar mehdimehdi Genlex

Module Genlex

module Genlex: sig .. end

A generic lexical analyzer.

This module implements a simple 'standard' lexical analyzer, presented as a function from character streams to token streams. It implements roughly the lexical conventions of OCaml, but is parameterized by the set of keywords of your language.

Example: a lexer suitable for a desk calculator is obtained by

     let lexer = make_lexer ["+";"-";"*";"/";"let";"="; "("; ")"]  

The associated parser would be a function from token stream to, for instance, int, and would have rules such as:

           let rec parse_expr = parser
             | [< n1 = parse_atom; n2 = parse_remainder n1 >] -> n2
           and parse_atom = parser
             | [< 'Int n >] -> n
             | [< 'Kwd "("; n = parse_expr; 'Kwd ")" >] -> n
           and parse_remainder n1 = parser
             | [< 'Kwd "+"; n2 = parse_expr >] -> n1+n2
             | [< >] -> n1
   

One should notice that the use of the parser keyword and associated notation for streams are only available through camlp4 extensions. This means that one has to preprocess its sources e. g. by using the "-pp" command-line switch of the compilers.


type token = 
| Kwd of string
| Ident of string
| Int of int
| Float of float
| String of string
| Char of char

The type of tokens. The lexical classes are: Int and Float for integer and floating-point numbers; String for string literals, enclosed in double quotes; Char for character literals, enclosed in single quotes; Ident for identifiers (either sequences of letters, digits, underscores and quotes, or sequences of 'operator characters' such as +, *, etc); and Kwd for keywords (either identifiers or single 'special characters' such as (, }, etc).

val make_lexer : string list -> char Stream.t -> token Stream.t

Construct the lexer function. The first argument is the list of keywords. An identifier s is returned as Kwd s if s belongs to this list, and as Ident s otherwise. A special character s is returned as Kwd s if s belongs to this list, and cause a lexical error (exception Stream.Error with the offending lexeme as its parameter) otherwise. Blanks and newlines are skipped. Comments delimited by (* and *) are skipped as well, and can be nested. A Stream.Failure exception is raised if end of stream is unexpectedly reached.

ocaml-doc-4.11/ocaml.html/libref/type_Ephemeron.SeededS.html0000644000175000017500000002616113717225552022737 0ustar mehdimehdi Ephemeron.SeededS sig
  type key
  type 'a t
  val create : ?random:bool -> int -> 'a t
  val clear : 'a t -> unit
  val reset : 'a t -> unit
  val copy : 'a t -> 'a t
  val add : 'a t -> key -> '-> unit
  val remove : 'a t -> key -> unit
  val find : 'a t -> key -> 'a
  val find_opt : 'a t -> key -> 'a option
  val find_all : 'a t -> key -> 'a list
  val replace : 'a t -> key -> '-> unit
  val mem : 'a t -> key -> bool
  val iter : (key -> '-> unit) -> 'a t -> unit
  val filter_map_inplace : (key -> '-> 'a option) -> 'a t -> unit
  val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
  val length : 'a t -> int
  val stats : 'a t -> Hashtbl.statistics
  val to_seq : 'a t -> (key * 'a) Seq.t
  val to_seq_keys : 'a t -> key Seq.t
  val to_seq_values : 'a t -> 'Seq.t
  val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  val of_seq : (key * 'a) Seq.t -> 'a t
  val clean : 'a t -> unit
  val stats_alive : 'a t -> Stdlib.Hashtbl.statistics
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Pervasives.html0000644000175000017500000001234513717225553022010 0ustar mehdimehdi Stdlib.Pervasives

Module Stdlib.Pervasives

module Pervasives: Pervasives

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Random.html0000644000175000017500000001127013717225553022136 0ustar mehdimehdi Stdlib.Random (module Stdlib__random) ocaml-doc-4.11/ocaml.html/libref/type_Array.html0000644000175000017500000005046413717225552020563 0ustar mehdimehdi Array sig
  type 'a t = 'a array
  external length : 'a array -> int = "%array_length"
  external get : 'a array -> int -> 'a = "%array_safe_get"
  external set : 'a array -> int -> '-> unit = "%array_safe_set"
  external make : int -> '-> 'a array = "caml_make_vect"
  external create : int -> '-> 'a array = "caml_make_vect"
  external create_float : int -> float array = "caml_make_float_vect"
  val make_float : int -> float array
  val init : int -> (int -> 'a) -> 'a array
  val make_matrix : int -> int -> '-> 'a array array
  val create_matrix : int -> int -> '-> 'a array array
  val append : 'a array -> 'a array -> 'a array
  val concat : 'a array list -> 'a array
  val sub : 'a array -> int -> int -> 'a array
  val copy : 'a array -> 'a array
  val fill : 'a array -> int -> int -> '-> unit
  val blit : 'a array -> int -> 'a array -> int -> int -> unit
  val to_list : 'a array -> 'a list
  val of_list : 'a list -> 'a array
  val iter : ('-> unit) -> 'a array -> unit
  val iteri : (int -> '-> unit) -> 'a array -> unit
  val map : ('-> 'b) -> 'a array -> 'b array
  val mapi : (int -> '-> 'b) -> 'a array -> 'b array
  val fold_left : ('-> '-> 'a) -> '-> 'b array -> 'a
  val fold_right : ('-> '-> 'a) -> 'b array -> '-> 'a
  val iter2 : ('-> '-> unit) -> 'a array -> 'b array -> unit
  val map2 : ('-> '-> 'c) -> 'a array -> 'b array -> 'c array
  val for_all : ('-> bool) -> 'a array -> bool
  val exists : ('-> bool) -> 'a array -> bool
  val for_all2 : ('-> '-> bool) -> 'a array -> 'b array -> bool
  val exists2 : ('-> '-> bool) -> 'a array -> 'b array -> bool
  val mem : '-> 'a array -> bool
  val memq : '-> 'a array -> bool
  val sort : ('-> '-> int) -> 'a array -> unit
  val stable_sort : ('-> '-> int) -> 'a array -> unit
  val fast_sort : ('-> '-> int) -> 'a array -> unit
  val to_seq : 'a array -> 'Stdlib.Seq.t
  val to_seqi : 'a array -> (int * 'a) Stdlib.Seq.t
  val of_seq : 'Stdlib.Seq.t -> 'a array
  external unsafe_get : 'a array -> int -> 'a = "%array_unsafe_get"
  external unsafe_set : 'a array -> int -> '-> unit = "%array_unsafe_set"
  module Floatarray :
    sig
      external create : int -> floatarray = "caml_floatarray_create"
      external length : floatarray -> int = "%floatarray_length"
      external get : floatarray -> int -> float = "%floatarray_safe_get"
      external set : floatarray -> int -> float -> unit
        = "%floatarray_safe_set"
      external unsafe_get : floatarray -> int -> float
        = "%floatarray_unsafe_get"
      external unsafe_set : floatarray -> int -> float -> unit
        = "%floatarray_unsafe_set"
    end
end
ocaml-doc-4.11/ocaml.html/libref/Int64.html0000644000175000017500000005570713717225552017355 0ustar mehdimehdi Int64

Module Int64

module Int64: sig .. end

64-bit integers.

This module provides operations on the type int64 of signed 64-bit integers. Unlike the built-in int type, the type int64 is guaranteed to be exactly 64-bit wide on all platforms. All arithmetic operations over int64 are taken modulo 264

Performance notice: values of type int64 occupy more memory space than values of type int, and arithmetic operations on int64 are generally slower than those on int. Use int64 only when the application requires exact 64-bit arithmetic.

Literals for 64-bit integers are suffixed by L:

      let zero: int64 = 0L
      let one: int64 = 1L
      let m_one: int64 = -1L
    

val zero : int64

The 64-bit integer 0.

val one : int64

The 64-bit integer 1.

val minus_one : int64

The 64-bit integer -1.

val neg : int64 -> int64

Unary negation.

val add : int64 -> int64 -> int64

Addition.

val sub : int64 -> int64 -> int64

Subtraction.

val mul : int64 -> int64 -> int64

Multiplication.

val div : int64 -> int64 -> int64

Integer division.

  • Raises Division_by_zero if the second argument is zero. This division rounds the real quotient of its arguments towards zero, as specified for (/).
val unsigned_div : int64 -> int64 -> int64

Same as Int64.div, except that arguments and result are interpreted as unsigned 64-bit integers.

  • Since 4.08.0
val rem : int64 -> int64 -> int64

Integer remainder. If y is not zero, the result of Int64.rem x y satisfies the following property: x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y). If y = 0, Int64.rem x y raises Division_by_zero.

val unsigned_rem : int64 -> int64 -> int64

Same as Int64.rem, except that arguments and result are interpreted as unsigned 64-bit integers.

  • Since 4.08.0
val succ : int64 -> int64

Successor. Int64.succ x is Int64.add x Int64.one.

val pred : int64 -> int64

Predecessor. Int64.pred x is Int64.sub x Int64.one.

val abs : int64 -> int64

Return the absolute value of its argument.

val max_int : int64

The greatest representable 64-bit integer, 263 - 1.

val min_int : int64

The smallest representable 64-bit integer, -263.

val logand : int64 -> int64 -> int64

Bitwise logical and.

val logor : int64 -> int64 -> int64

Bitwise logical or.

val logxor : int64 -> int64 -> int64

Bitwise logical exclusive or.

val lognot : int64 -> int64

Bitwise logical negation.

val shift_left : int64 -> int -> int64

Int64.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= 64.

val shift_right : int64 -> int -> int64

Int64.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= 64.

val shift_right_logical : int64 -> int -> int64

Int64.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= 64.

val of_int : int -> int64

Convert the given integer (type int) to a 64-bit integer (type int64).

val to_int : int64 -> int

Convert the given 64-bit integer (type int64) to an integer (type int). On 64-bit platforms, the 64-bit integer is taken modulo 263, i.e. the high-order bit is lost during the conversion. On 32-bit platforms, the 64-bit integer is taken modulo 231, i.e. the top 33 bits are lost during the conversion.

val unsigned_to_int : int64 -> int option

Same as Int64.to_int, but interprets the argument as an unsigned integer. Returns None if the unsigned value of the argument cannot fit into an int.

  • Since 4.08.0
val of_float : float -> int64

Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Int64.min_int, Int64.max_int].

val to_float : int64 -> float

Convert the given 64-bit integer to a floating-point number.

val of_int32 : int32 -> int64

Convert the given 32-bit integer (type int32) to a 64-bit integer (type int64).

val to_int32 : int64 -> int32

Convert the given 64-bit integer (type int64) to a 32-bit integer (type int32). The 64-bit integer is taken modulo 232, i.e. the top 32 bits are lost during the conversion.

val of_nativeint : nativeint -> int64

Convert the given native integer (type nativeint) to a 64-bit integer (type int64).

val to_nativeint : int64 -> nativeint

Convert the given 64-bit integer (type int64) to a native integer. On 32-bit platforms, the 64-bit integer is taken modulo 232. On 64-bit platforms, the conversion is exact.

val of_string : string -> int64

Convert the given string to a 64-bit integer. The string is read in decimal (by default, or if the string begins with 0u) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively.

The 0u prefix reads the input as an unsigned integer in the range [0, 2*Int64.max_int+1]. If the input exceeds Int64.max_int it is converted to the signed integer Int64.min_int + input - Int64.max_int - 1.

The _ (underscore) character can appear anywhere in the string and is ignored.

  • Raises Failure if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int64.
val of_string_opt : string -> int64 option

Same as of_string, but return None instead of raising.

  • Since 4.05
val to_string : int64 -> string

Return the string representation of its argument, in decimal.

val bits_of_float : float -> int64

Return the internal representation of the given float according to the IEEE 754 floating-point 'double format' bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa.

val float_of_bits : int64 -> float

Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'double format' bit layout, is the given int64.

type t = int64 

An alias for the type of 64-bit integers.

val compare : t -> t -> int

The comparison function for 64-bit integers, with the same specification as compare. Along with the type t, this function compare allows the module Int64 to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Int64.compare, except that arguments are interpreted as unsigned 64-bit integers.

  • Since 4.08.0
val equal : t -> t -> bool

The equal function for int64s.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/Char.html0000644000175000017500000002260513717225552017315 0ustar mehdimehdi Char

Module Char

module Char: sig .. end

Character operations.


val code : char -> int

Return the ASCII code of the argument.

val chr : int -> char

Return the character with the given ASCII code.

  • Raises Invalid_argument if the argument is outside the range 0--255.
val escaped : char -> string

Return a string representing the given character, with special characters escaped following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash, double-quote, and single-quote.

val lowercase : char -> char
Deprecated.Functions operating on Latin-1 character set are deprecated.

Convert the given character to its equivalent lowercase character, using the ISO Latin-1 (8859-1) character set.

val uppercase : char -> char
Deprecated.Functions operating on Latin-1 character set are deprecated.

Convert the given character to its equivalent uppercase character, using the ISO Latin-1 (8859-1) character set.

val lowercase_ascii : char -> char

Convert the given character to its equivalent lowercase character, using the US-ASCII character set.

  • Since 4.03.0
val uppercase_ascii : char -> char

Convert the given character to its equivalent uppercase character, using the US-ASCII character set.

  • Since 4.03.0
type t = char 

An alias for the type of characters.

val compare : t -> t -> int

The comparison function for characters, with the same specification as compare. Along with the type t, this function compare allows the module Char to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for chars.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.S.html0000644000175000017500000001623013717225552020560 0ustar mehdimehdi Ephemeron.S

Module type Ephemeron.S

module type S = sig .. end

The output signature of the functor Ephemeron.K1.Make and Ephemeron.K2.Make. These hash tables are weak in the keys. If all the keys of a binding are alive the binding is kept, but if one of the keys of the binding is dead then the binding is removed.


Propose the same interface as usual hash table. However since the bindings are weak, even if mem h k is true, a subsequent find h k may raise Not_found because the garbage collector can run between the two.

Moreover, the table shouldn't be modified during a call to iter. Use filter_map_inplace in this case.

include Hashtbl.S
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/type_Gc.Memprof.html0000644000175000017500000001612613717225552021437 0ustar mehdimehdi Gc.Memprof sig
  type allocation = private {
    n_samples : int;
    size : int;
    unmarshalled : bool;
    callstack : Stdlib.Printexc.raw_backtrace;
  }
  type ('minor, 'major) tracker = {
    alloc_minor : Gc.Memprof.allocation -> 'minor option;
    alloc_major : Gc.Memprof.allocation -> 'major option;
    promote : 'minor -> 'major option;
    dealloc_minor : 'minor -> unit;
    dealloc_major : 'major -> unit;
  }
  val null_tracker : ('minor, 'major) Gc.Memprof.tracker
  val start :
    sampling_rate:float ->
    ?callstack_size:int -> ('minor, 'major) Gc.Memprof.tracker -> unit
  val stop : unit -> unit
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Stack.html0000644000175000017500000002762113717225553020731 0ustar mehdimehdi Stdlib.Stack

Module Stdlib.Stack

module Stack: Stack

type 'a t 

The type of stacks containing elements of type 'a.

exception Empty

Raised when Stack.pop or Stack.top is applied to an empty stack.

val create : unit -> 'a t

Return a new stack, initially empty.

val push : 'a -> 'a t -> unit

push x s adds the element x at the top of stack s.

val pop : 'a t -> 'a

pop s removes and returns the topmost element in stack s, or raises Stack.Empty if the stack is empty.

val pop_opt : 'a t -> 'a option

pop_opt s removes and returns the topmost element in stack s, or returns None if the stack is empty.

  • Since 4.08
val top : 'a t -> 'a

top s returns the topmost element in stack s, or raises Stack.Empty if the stack is empty.

val top_opt : 'a t -> 'a option

top_opt s returns the topmost element in stack s, or None if the stack is empty.

  • Since 4.08
val clear : 'a t -> unit

Discard all elements from a stack.

val copy : 'a t -> 'a t

Return a copy of the given stack.

val is_empty : 'a t -> bool

Return true if the given stack is empty, false otherwise.

val length : 'a t -> int

Return the number of elements in a stack. Time complexity O(1)

val iter : ('a -> unit) -> 'a t -> unit

iter f s applies f in turn to all elements of s, from the element at the top of the stack to the element at the bottom of the stack. The stack itself is unchanged.

val fold : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b

fold f accu s is (f (... (f (f accu x1) x2) ...) xn) where x1 is the top of the stack, x2 the second element, and xn the bottom element. The stack is unchanged.

  • Since 4.03

Iterators

val to_seq : 'a t -> 'a Seq.t

Iterate on the stack, top to bottom. It is safe to modify the stack during iteration.

  • Since 4.07
val add_seq : 'a t -> 'a Seq.t -> unit

Add the elements from the iterator on the top of the stack.

  • Since 4.07
val of_seq : 'a Seq.t -> 'a t

Create a stack from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Callback.html0000644000175000017500000001473113717225552021355 0ustar mehdimehdi Stdlib.Callback

Module Stdlib.Callback

module Callback: Callback

val register : string -> 'a -> unit

Callback.register n v registers the value v under the name n. C code can later retrieve a handle to v by calling caml_named_value(n).

val register_exception : string -> exn -> unit

Callback.register_exception n exn registers the exception contained in the exception value exn under the name n. C code can later retrieve a handle to the exception by calling caml_named_value(n). The exception value thus obtained is suitable for passing as first argument to raise_constant or raise_with_arg.

ocaml-doc-4.11/ocaml.html/libref/Result.html0000644000175000017500000004243613717225552017722 0ustar mehdimehdi Result

Module Result

module Result: sig .. end

Result values.

Result values handle computation results and errors in an explicit and declarative manner without resorting to exceptions.

  • Since 4.08

Results

type ('a, 'e) t = ('a, 'e) result = 
| Ok of 'a
| Error of 'e

The type for result values. Either a value Ok v or an error Error e.

val ok : 'a -> ('a, 'e) result

ok v is Ok v.

val error : 'e -> ('a, 'e) result

error e is Error e.

val value : ('a, 'e) result -> default:'a -> 'a

value r ~default is v if r is Ok v and default otherwise.

val get_ok : ('a, 'e) result -> 'a

get_ok r is v if r is Ok v and

  • Raises Invalid_argument otherwise.
val get_error : ('a, 'e) result -> 'e

get_error r is e if r is Error e and

  • Raises Invalid_argument otherwise.
val bind : ('a, 'e) result ->
('a -> ('b, 'e) result) -> ('b, 'e) result

bind r f is f v if r is Ok v and r if r is Error _.

val join : (('a, 'e) result, 'e) result -> ('a, 'e) result

join rr is r if rr is Ok r and rr if rr is Error _.

val map : ('a -> 'b) -> ('a, 'e) result -> ('b, 'e) result

map f r is Ok (f v) if r is Ok v and r if r is Error _.

val map_error : ('e -> 'f) -> ('a, 'e) result -> ('a, 'f) result

map_error f r is Error (f e) if r is Error e and r if r is Ok _.

val fold : ok:('a -> 'c) -> error:('e -> 'c) -> ('a, 'e) result -> 'c

fold ~ok ~error r is ok v if r is Ok v and error e if r is Error e.

val iter : ('a -> unit) -> ('a, 'e) result -> unit

iter f r is f v if r is Ok v and () otherwise.

val iter_error : ('e -> unit) -> ('a, 'e) result -> unit

iter_error f r is f e if r is Error e and () otherwise.

Predicates and comparisons

val is_ok : ('a, 'e) result -> bool

is_ok r is true iff r is Ok _.

val is_error : ('a, 'e) result -> bool

is_error r is true iff r is Error _.

val equal : ok:('a -> 'a -> bool) ->
error:('e -> 'e -> bool) ->
('a, 'e) result -> ('a, 'e) result -> bool

equal ~ok ~error r0 r1 tests equality of r0 and r1 using ok and error to respectively compare values wrapped by Ok _ and Error _.

val compare : ok:('a -> 'a -> int) ->
error:('e -> 'e -> int) ->
('a, 'e) result -> ('a, 'e) result -> int

compare ~ok ~error r0 r1 totally orders r0 and r1 using ok and error to respectively compare values wrapped by Ok _  and Error _. Ok _ values are smaller than Error _ values.

Converting

val to_option : ('a, 'e) result -> 'a option

to_option r is r as an option, mapping Ok v to Some v and Error _ to None.

val to_list : ('a, 'e) result -> 'a list

to_list r is [v] if r is Ok v and [] otherwise.

val to_seq : ('a, 'e) result -> 'a Seq.t

to_seq r is r as a sequence. Ok v is the singleton sequence containing v and Error _ is the empty sequence.

ocaml-doc-4.11/ocaml.html/libref/Set.OrderedType.html0000644000175000017500000001517513717225553021425 0ustar mehdimehdi Set.OrderedType

Module type Set.OrderedType

module type OrderedType = sig .. end

Input signature of the functor Set.Make.


type t 

The type of the set elements.

val compare : t -> t -> int

A total ordering function over the set elements. This is a two-argument function f such that f e1 e2 is zero if the elements e1 and e2 are equal, f e1 e2 is strictly negative if e1 is smaller than e2, and f e1 e2 is strictly positive if e1 is greater than e2. Example: a suitable ordering function is the generic structural comparison function compare.

ocaml-doc-4.11/ocaml.html/libref/index_modules.html0000644000175000017500000005172113717225553021301 0ustar mehdimehdi Index of modules

Index of modules

A
Arg

Parsing of command line arguments.

Array [StdLabels]
Array [Float]
Array
Array0 [Bigarray]

Zero-dimensional arrays.

Array1 [Bigarray]

One-dimensional arrays.

Array2 [Bigarray]

Two-dimensional arrays.

Array3 [Bigarray]

Three-dimensional arrays.

ArrayLabels [Float]
ArrayLabels

Array operations

B
Bigarray

Large, multi-dimensional, numerical arrays.

Bool

Boolean values.

Buffer

Extensible buffers.

Bytes [StdLabels]
Bytes

Byte sequence operations.

BytesLabels

Byte sequence operations.

C
Callback

Registering OCaml values with the C runtime.

CamlinternalFormat
CamlinternalFormatBasics
CamlinternalLazy

Run-time support for lazy values.

CamlinternalMod

Run-time support for recursive modules.

CamlinternalOO

Run-time support for objects and classes.

Char

Character operations.

Complex

Complex numbers.

Condition

Condition variables to synchronize between threads.

D
Digest

MD5 message digest.

Dynlink

Dynamic loading of .cmo, .cma and .cmxs files.

E
Ephemeron [Obj]
Ephemeron

Ephemerons and weak hash tables

Event

First-class synchronous communication.

Extension_constructor [Obj]
F
Filename

Operations on file names.

Float

Floating-point arithmetic

Format

Pretty-printing.

Fun

Function manipulation.

G
Gc

Memory management control and statistics; finalised values.

GenHashTable [Ephemeron]
Genarray [Bigarray]
Genlex

A generic lexical analyzer.

H
Hashtbl [MoreLabels]
Hashtbl

Hash tables and hash functions.

I
Immediate64 [Sys]
Int

Integer values.

Int32

32-bit integers.

Int64

64-bit integers.

K
K1 [Ephemeron]
K2 [Ephemeron]
Kn [Ephemeron]
L
LargeFile [UnixLabels]

File operations on large files.

LargeFile [Unix]

File operations on large files.

Lazy

Deferred computations.

Lexing

The run-time library for lexers generated by ocamllex.

List [StdLabels]
List

List operations.

ListLabels
M
Make [Weak]

Functor building an implementation of the weak hash set structure.

Make [Sys.Immediate64]
Make [Set]

Functor building an implementation of the set structure given a totally ordered type.

Make [MoreLabels.Set]
Make [MoreLabels.Map]
Make [MoreLabels.Hashtbl]
Make [Map]

Functor building an implementation of the map structure given a totally ordered type.

Make [Hashtbl]

Functor building an implementation of the hashtable structure.

Make [Ephemeron.Kn]

Functor building an implementation of a weak hash table

Make [Ephemeron.K2]

Functor building an implementation of a weak hash table

Make [Ephemeron.K1]

Functor building an implementation of a weak hash table

MakeSeeded [MoreLabels.Hashtbl]
MakeSeeded [Hashtbl]

Functor building an implementation of the hashtable structure.

MakeSeeded [Ephemeron.GenHashTable]

Functor building an implementation of an hash table that use the container for keeping the information given

MakeSeeded [Ephemeron.Kn]

Functor building an implementation of a weak hash table.

MakeSeeded [Ephemeron.K2]

Functor building an implementation of a weak hash table.

MakeSeeded [Ephemeron.K1]

Functor building an implementation of a weak hash table.

Map [MoreLabels]
Map

Association tables over ordered types.

Marshal

Marshaling of data structures.

Memprof [Gc]

Memprof is a sampling engine for allocated memory words.

MoreLabels

Extra labeled libraries.

Mutex

Locks for mutual exclusion.

N
Nativeint

Processor-native integers.

O
Obj

Operations on internal representations of values.

Ocaml_operators

Precedence level and associativity of operators

Oo

Operations on objects

Option

Option values.

P
Parsing

The run-time library for parsers generated by ocamlyacc.

Printexc

Facilities for printing exceptions and inspecting current call stack.

Printf

Formatted output functions.

Q
Queue

First-in first-out queues.

R
Random

Pseudo-random number generators (PRNG).

Result

Result values.

S
Scanf

Formatted input functions.

Scanning [Scanf]
Seq

Functional Iterators

Series [Spacetime]
Set

Sets over ordered types.

Set [MoreLabels]
Slot [Printexc]
Snapshot [Spacetime]
Spacetime

Profiling of a program's space behaviour over time.

Stack

Last-in first-out stacks.

State [Random]
StdLabels

Standard labeled libraries.

Stdlib

The OCaml Standard library.

Str

Regular expressions and high-level string processing

Stream

Streams and parsers.

String

String operations.

String [StdLabels]
StringLabels

String operations.

Sys

System interface.

T
Thread

Lightweight threads for Posix 1003.1c and Win32.

ThreadUnix

Thread-compatible system calls.

U
Uchar

Unicode characters.

Unit

Unit values.

Unix

Interface to the Unix system.

UnixLabels

Interface to the Unix system.

W
Weak

Arrays of weak pointers and hash sets of weak pointers.

ocaml-doc-4.11/ocaml.html/libref/Mutex.html0000644000175000017500000001717513717225552017550 0ustar mehdimehdi Mutex

Module Mutex

module Mutex: sig .. end

Locks for mutual exclusion.

Mutexes (mutual-exclusion locks) are used to implement critical sections and protect shared mutable data structures against concurrent accesses. The typical use is (if m is the mutex associated with the data structure D):

     Mutex.lock m;
     (* Critical section that operates over D *);
     Mutex.unlock m
   

type t 

The type of mutexes.

val create : unit -> t

Return a new mutex.

val lock : t -> unit

Lock the given mutex. Only one thread can have the mutex locked at any time. A thread that attempts to lock a mutex already locked by another thread will suspend until the other thread unlocks the mutex.

val try_lock : t -> bool

Same as Mutex.lock, but does not suspend the calling thread if the mutex is already locked: just return false immediately in that case. If the mutex is unlocked, lock it and return true.

val unlock : t -> unit

Unlock the given mutex. Other threads suspended trying to lock the mutex will restart.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Bytes.html0000644000175000017500000015610413717225552020750 0ustar mehdimehdi Stdlib.Bytes

Module Stdlib.Bytes

module Bytes: Bytes

val length : bytes -> int

Return the length (number of bytes) of the argument.

val get : bytes -> int -> char

get s n returns the byte at index n in argument s.

  • Raises Invalid_argument if n is not a valid index in s.
val set : bytes -> int -> char -> unit

set s n c modifies s in place, replacing the byte at index n with c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes

create n returns a new byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> bytes

make n c returns a new byte sequence of length n, filled with the byte c.

val init : int -> (int -> char) -> bytes

Bytes.init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i (in increasing index order).

val empty : bytes

A byte sequence of size 0.

val copy : bytes -> bytes

Return a new byte sequence that contains the same bytes as the argument.

val of_string : string -> bytes

Return a new byte sequence that contains the same bytes as the given string.

val to_string : bytes -> string

Return a new string that contains the same bytes as the given byte sequence.

val sub : bytes -> int -> int -> bytes

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val sub_string : bytes -> int -> int -> string

Same as sub but return a string instead of a byte sequence.

val extend : bytes -> int -> int -> bytes

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it. If left or right is negative, then bytes are removed (instead of appended) from the corresponding side of s.

val fill : bytes -> int -> int -> char -> unit

fill s start len c modifies s in place, replacing len characters with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : bytes -> int -> bytes -> int -> int -> unit

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff. It works correctly even if src and dst are the same byte sequence, and the source and destination intervals overlap.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val blit_string : string -> int -> bytes -> int -> int -> unit

blit_string src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : bytes -> bytes list -> bytes

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

val cat : bytes -> bytes -> bytes

cat s1 s2 concatenates s1 and s2 and returns the result as a new byte sequence.

val iter : (char -> unit) -> bytes -> unit

iter f s applies function f in turn to all the bytes of s. It is equivalent to f (get s 0); f (get s 1); ...; f (get s
    (length s - 1)); ()
.

val iteri : (int -> char -> unit) -> bytes -> unit

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

val map : (char -> char) -> bytes -> bytes

map f s applies function f in turn to all the bytes of s (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val mapi : (int -> char -> char) -> bytes -> bytes

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val trim : bytes -> bytes

Return a copy of the argument, without leading and trailing whitespace. The bytes regarded as whitespace are the ASCII characters ' ', '\012', '\n', '\r', and '\t'.

val escaped : bytes -> bytes

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash and double-quote.

val index : bytes -> char -> int

index s c returns the index of the first occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val index_opt : bytes -> char -> int option

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val rindex : bytes -> char -> int

rindex s c returns the index of the last occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : bytes -> char -> int option

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val index_from : bytes -> int -> char -> int

index_from s i c returns the index of the first occurrence of byte c in s after position i. Bytes.index s c is equivalent to Bytes.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : bytes -> int -> char -> int option

index_from_opt s i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i. Bytes.index_opt s c is equivalent to Bytes.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : bytes -> int -> char -> int

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1. rindex s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : bytes -> int -> char -> int option

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1. rindex_opt s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : bytes -> char -> bool

contains s c tests if byte c appears in s.

val contains_from : bytes -> int -> char -> bool

contains_from s start c tests if byte c appears in s after position start. contains s c is equivalent to contains_from
    s 0 c
.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : bytes -> int -> char -> bool

rcontains_from s stop c tests if byte c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : bytes -> bytes

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val lowercase_ascii : bytes -> bytes

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.03.0
val capitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val uncapitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.03.0
type t = bytes 

An alias for the type of byte sequences.

val compare : t -> t -> int

The comparison function for byte sequences, with the same specification as compare. Along with the type t, this function compare allows the module Bytes to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equality function for byte sequences.

  • Since 4.03.0

Unsafe conversions (for advanced users)

This section describes unsafe, low-level conversion functions between bytes and string. They do not copy the internal data; used improperly, they can break the immutability invariant on strings provided by the -safe-string option. They are available for expert library authors, but for most purposes you should use the always-correct Bytes.to_string and Bytes.of_string instead.

val unsafe_to_string : bytes -> string

Unsafely convert a byte sequence into a string.

To reason about the use of unsafe_to_string, it is convenient to consider an "ownership" discipline. A piece of code that manipulates some data "owns" it; there are several disjoint ownership modes, including:

  • Unique ownership: the data may be accessed and mutated
  • Shared ownership: the data has several owners, that may only access it, not mutate it.

Unique ownership is linear: passing the data to another piece of code means giving up ownership (we cannot write the data again). A unique owner may decide to make the data shared (giving up mutation rights on it), but shared data may not become uniquely-owned again.

unsafe_to_string s can only be used when the caller owns the byte sequence s -- either uniquely or as shared immutable data. The caller gives up ownership of s, and gains ownership of the returned string.

There are two valid use-cases that respect this ownership discipline:

1. Creating a string by initializing and mutating a byte sequence that is never changed after initialization is performed.

let string_init len f : string =
  let s = Bytes.create len in
  for i = 0 to len - 1 do Bytes.set s i (f i) done;
  Bytes.unsafe_to_string s
   

This function is safe because the byte sequence s will never be accessed or mutated after unsafe_to_string is called. The string_init code gives up ownership of s, and returns the ownership of the resulting string to its caller.

Note that it would be unsafe if s was passed as an additional parameter to the function f as it could escape this way and be mutated in the future -- string_init would give up ownership of s to pass it to f, and could not call unsafe_to_string safely.

We have provided the String.init, String.map and String.mapi functions to cover most cases of building new strings. You should prefer those over to_string or unsafe_to_string whenever applicable.

2. Temporarily giving ownership of a byte sequence to a function that expects a uniquely owned string and returns ownership back, so that we can mutate the sequence again after the call ended.

let bytes_length (s : bytes) =
  String.length (Bytes.unsafe_to_string s)
   

In this use-case, we do not promise that s will never be mutated after the call to bytes_length s. The String.length function temporarily borrows unique ownership of the byte sequence (and sees it as a string), but returns this ownership back to the caller, which may assume that s is still a valid byte sequence after the call. Note that this is only correct because we know that String.length does not capture its argument -- it could escape by a side-channel such as a memoization combinator.

The caller may not mutate s while the string is borrowed (it has temporarily given up ownership). This affects concurrent programs, but also higher-order functions: if String.length returned a closure to be called later, s should not be mutated until this closure is fully applied and returns ownership.

val unsafe_of_string : string -> bytes

Unsafely convert a shared string to a byte sequence that should not be mutated.

The same ownership discipline that makes unsafe_to_string correct applies to unsafe_of_string: you may use it if you were the owner of the string value, and you will own the return bytes in the same mode.

In practice, unique ownership of string values is extremely difficult to reason about correctly. You should always assume strings are shared, never uniquely owned.

For example, string literals are implicitly shared by the compiler, so you never uniquely own them.

let incorrect = Bytes.unsafe_of_string "hello"
let s = Bytes.of_string "hello"
    

The first declaration is incorrect, because the string literal "hello" could be shared by the compiler with other parts of the program, and mutating incorrect is a bug. You must always use the second version, which performs a copy and is thus correct.

Assuming unique ownership of strings that are not string literals, but are (partly) built from string literals, is also incorrect. For example, mutating unsafe_of_string ("foo" ^ s) could mutate the shared string "foo" -- assuming a rope-like representation of strings. More generally, functions operating on strings will assume shared ownership, they do not preserve unique ownership. It is thus incorrect to assume unique ownership of the result of unsafe_of_string.

The only case we have reasonable confidence is safe is if the produced bytes is shared -- used as an immutable byte sequence. This is possibly useful for incremental migration of low-level programs that manipulate immutable sequences of bytes (for example Marshal.from_bytes) and previously used the string type for this purpose.

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07

Binary encoding/decoding of integers

The functions in this section binary encode and decode integers to and from byte sequences.

All following functions raise Invalid_argument if the space needed at index i to decode or encode the integer is not available.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. These extra bits are handled as follows:

  • Functions that decode signed (resp. unsigned) 8-bit or 16-bit integers represented by int values sign-extend (resp. zero-extend) their result.
  • Functions that encode 8-bit or 16-bit integers represented by int values truncate their input to their least significant bytes.
val get_uint8 : bytes -> int -> int

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

  • Since 4.08
val get_int8 : bytes -> int -> int

get_int8 b i is b's signed 8-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_ne : bytes -> int -> int

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_be : bytes -> int -> int

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_le : bytes -> int -> int

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_ne : bytes -> int -> int

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_be : bytes -> int -> int

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_le : bytes -> int -> int

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int32_ne : bytes -> int -> int32

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_be : bytes -> int -> int32

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_le : bytes -> int -> int32

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int64_ne : bytes -> int -> int64

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_be : bytes -> int -> int64

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_le : bytes -> int -> int64

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

  • Since 4.08
val set_uint8 : bytes -> int -> int -> unit

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_int8 : bytes -> int -> int -> unit

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_ne : bytes -> int -> int -> unit

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_be : bytes -> int -> int -> unit

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_le : bytes -> int -> int -> unit

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_ne : bytes -> int -> int -> unit

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_be : bytes -> int -> int -> unit

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_le : bytes -> int -> int -> unit

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_ne : bytes -> int -> int32 -> unit

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_be : bytes -> int -> int32 -> unit

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_le : bytes -> int -> int32 -> unit

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_ne : bytes -> int -> int64 -> unit

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_be : bytes -> int -> int64 -> unit

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_le : bytes -> int -> int64 -> unit

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/type_Map.html0000644000175000017500000012355213717225552020221 0ustar mehdimehdi Map sig
  module type OrderedType =
    sig
      type t
      val compare : Map.OrderedType.t -> Map.OrderedType.t -> int
    end
  module type S =
    sig
      type key
      type +'a t
      val empty : 'Map.S.t
      val is_empty : 'Map.S.t -> bool
      val mem : Map.S.key -> 'Map.S.t -> bool
      val add : Map.S.key -> '-> 'Map.S.t -> 'Map.S.t
      val update :
        Map.S.key -> ('a option -> 'a option) -> 'Map.S.t -> 'Map.S.t
      val singleton : Map.S.key -> '-> 'Map.S.t
      val remove : Map.S.key -> 'Map.S.t -> 'Map.S.t
      val merge :
        (Map.S.key -> 'a option -> 'b option -> 'c option) ->
        'Map.S.t -> 'Map.S.t -> 'Map.S.t
      val union :
        (Map.S.key -> '-> '-> 'a option) ->
        'Map.S.t -> 'Map.S.t -> 'Map.S.t
      val compare : ('-> '-> int) -> 'Map.S.t -> 'Map.S.t -> int
      val equal : ('-> '-> bool) -> 'Map.S.t -> 'Map.S.t -> bool
      val iter : (Map.S.key -> '-> unit) -> 'Map.S.t -> unit
      val fold : (Map.S.key -> '-> '-> 'b) -> 'Map.S.t -> '-> 'b
      val for_all : (Map.S.key -> '-> bool) -> 'Map.S.t -> bool
      val exists : (Map.S.key -> '-> bool) -> 'Map.S.t -> bool
      val filter : (Map.S.key -> '-> bool) -> 'Map.S.t -> 'Map.S.t
      val filter_map :
        (Map.S.key -> '-> 'b option) -> 'Map.S.t -> 'Map.S.t
      val partition :
        (Map.S.key -> '-> bool) -> 'Map.S.t -> 'Map.S.t * 'Map.S.t
      val cardinal : 'Map.S.t -> int
      val bindings : 'Map.S.t -> (Map.S.key * 'a) list
      val min_binding : 'Map.S.t -> Map.S.key * 'a
      val min_binding_opt : 'Map.S.t -> (Map.S.key * 'a) option
      val max_binding : 'Map.S.t -> Map.S.key * 'a
      val max_binding_opt : 'Map.S.t -> (Map.S.key * 'a) option
      val choose : 'Map.S.t -> Map.S.key * 'a
      val choose_opt : 'Map.S.t -> (Map.S.key * 'a) option
      val split :
        Map.S.key -> 'Map.S.t -> 'Map.S.t * 'a option * 'Map.S.t
      val find : Map.S.key -> 'Map.S.t -> 'a
      val find_opt : Map.S.key -> 'Map.S.t -> 'a option
      val find_first : (Map.S.key -> bool) -> 'Map.S.t -> Map.S.key * 'a
      val find_first_opt :
        (Map.S.key -> bool) -> 'Map.S.t -> (Map.S.key * 'a) option
      val find_last : (Map.S.key -> bool) -> 'Map.S.t -> Map.S.key * 'a
      val find_last_opt :
        (Map.S.key -> bool) -> 'Map.S.t -> (Map.S.key * 'a) option
      val map : ('-> 'b) -> 'Map.S.t -> 'Map.S.t
      val mapi : (Map.S.key -> '-> 'b) -> 'Map.S.t -> 'Map.S.t
      val to_seq : 'Map.S.t -> (Map.S.key * 'a) Stdlib.Seq.t
      val to_seq_from :
        Map.S.key -> 'Map.S.t -> (Map.S.key * 'a) Stdlib.Seq.t
      val add_seq : (Map.S.key * 'a) Stdlib.Seq.t -> 'Map.S.t -> 'Map.S.t
      val of_seq : (Map.S.key * 'a) Stdlib.Seq.t -> 'Map.S.t
    end
  module Make :
    functor (Ord : OrderedType->
      sig
        type key = Ord.t
        type +'a t
        val empty : 'a t
        val is_empty : 'a t -> bool
        val mem : key -> 'a t -> bool
        val add : key -> '-> 'a t -> 'a t
        val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
        val singleton : key -> '-> 'a t
        val remove : key -> 'a t -> 'a t
        val merge :
          (key -> 'a option -> 'b option -> 'c option) ->
          'a t -> 'b t -> 'c t
        val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
        val compare : ('-> '-> int) -> 'a t -> 'a t -> int
        val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
        val iter : (key -> '-> unit) -> 'a t -> unit
        val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
        val for_all : (key -> '-> bool) -> 'a t -> bool
        val exists : (key -> '-> bool) -> 'a t -> bool
        val filter : (key -> '-> bool) -> 'a t -> 'a t
        val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
        val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
        val cardinal : 'a t -> int
        val bindings : 'a t -> (key * 'a) list
        val min_binding : 'a t -> key * 'a
        val min_binding_opt : 'a t -> (key * 'a) option
        val max_binding : 'a t -> key * 'a
        val max_binding_opt : 'a t -> (key * 'a) option
        val choose : 'a t -> key * 'a
        val choose_opt : 'a t -> (key * 'a) option
        val split : key -> 'a t -> 'a t * 'a option * 'a t
        val find : key -> 'a t -> 'a
        val find_opt : key -> 'a t -> 'a option
        val find_first : (key -> bool) -> 'a t -> key * 'a
        val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
        val find_last : (key -> bool) -> 'a t -> key * 'a
        val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
        val map : ('-> 'b) -> 'a t -> 'b t
        val mapi : (key -> '-> 'b) -> 'a t -> 'b t
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
        val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
        val of_seq : (key * 'a) Seq.t -> 'a t
      end
end
ocaml-doc-4.11/ocaml.html/libref/type_Sys.Immediate64.Immediate.html0000644000175000017500000001136113717225553024221 0ustar mehdimehdi Sys.Immediate64.Immediate sig type t [@@immediate] end ocaml-doc-4.11/ocaml.html/libref/Hashtbl.html0000644000175000017500000011164313717225552020026 0ustar mehdimehdi Hashtbl

Module Hashtbl

module Hashtbl: sig .. end

Hash tables and hash functions.

Hash tables are hashed association tables, with in-place modification.


Generic interface

type ('a, 'b) t 

The type of hash tables from type 'a to type 'b.

val create : ?random:bool -> int -> ('a, 'b) t

Hashtbl.create n creates a new, empty hash table, with initial size n. For best results, n should be on the order of the expected number of elements that will be in the table. The table grows as needed, so n is just an initial guess.

The optional random parameter (a boolean) controls whether the internal organization of the hash table is randomized at each execution of Hashtbl.create or deterministic over all executions.

A hash table that is created with ~random:false uses a fixed hash function (Hashtbl.hash) to distribute keys among buckets. As a consequence, collisions between keys happen deterministically. In Web-facing applications or other security-sensitive applications, the deterministic collision patterns can be exploited by a malicious user to create a denial-of-service attack: the attacker sends input crafted to create many collisions in the table, slowing the application down.

A hash table that is created with ~random:true uses the seeded hash function Hashtbl.seeded_hash with a seed that is randomly chosen at hash table creation time. In effect, the hash function used is randomly selected among 2^{30} different hash functions. All these hash functions have different collision patterns, rendering ineffective the denial-of-service attack described above. However, because of randomization, enumerating all elements of the hash table using Hashtbl.fold or Hashtbl.iter is no longer deterministic: elements are enumerated in different orders at different runs of the program.

If no ~random parameter is given, hash tables are created in non-random mode by default. This default can be changed either programmatically by calling Hashtbl.randomize or by setting the R flag in the OCAMLRUNPARAM environment variable.

  • Before 4.00.0 the random parameter was not present and all hash tables were created in non-randomized mode.
val clear : ('a, 'b) t -> unit

Empty a hash table. Use reset instead of clear to shrink the size of the bucket table to its initial size.

val reset : ('a, 'b) t -> unit

Empty a hash table and shrink the size of the bucket table to its initial size.

  • Since 4.00.0
val copy : ('a, 'b) t -> ('a, 'b) t

Return a copy of the given hashtable.

val add : ('a, 'b) t -> 'a -> 'b -> unit

Hashtbl.add tbl x y adds a binding of x to y in table tbl. Previous bindings for x are not removed, but simply hidden. That is, after performing Hashtbl.remove tbl x, the previous binding for x, if any, is restored. (Same behavior as with association lists.)

val find : ('a, 'b) t -> 'a -> 'b

Hashtbl.find tbl x returns the current binding of x in tbl, or raises Not_found if no such binding exists.

val find_opt : ('a, 'b) t -> 'a -> 'b option

Hashtbl.find_opt tbl x returns the current binding of x in tbl, or None if no such binding exists.

  • Since 4.05
val find_all : ('a, 'b) t -> 'a -> 'b list

Hashtbl.find_all tbl x returns the list of all data associated with x in tbl. The current binding is returned first, then the previous bindings, in reverse order of introduction in the table.

val mem : ('a, 'b) t -> 'a -> bool

Hashtbl.mem tbl x checks if x is bound in tbl.

val remove : ('a, 'b) t -> 'a -> unit

Hashtbl.remove tbl x removes the current binding of x in tbl, restoring the previous binding if it exists. It does nothing if x is not bound in tbl.

val replace : ('a, 'b) t -> 'a -> 'b -> unit

Hashtbl.replace tbl x y replaces the current binding of x in tbl by a binding of x to y. If x is unbound in tbl, a binding of x to y is added to tbl. This is functionally equivalent to Hashtbl.remove tbl x followed by Hashtbl.add tbl x y.

val iter : ('a -> 'b -> unit) -> ('a, 'b) t -> unit

Hashtbl.iter f tbl applies f to all bindings in table tbl. f receives the key as first argument, and the associated value as second argument. Each binding is presented exactly once to f.

The order in which the bindings are passed to f is unspecified. However, if the table contains several bindings for the same key, they are passed to f in reverse order of introduction, that is, the most recent binding is passed first.

If the hash table was created in non-randomized mode, the order in which the bindings are enumerated is reproducible between successive runs of the program, and even between minor versions of OCaml. For randomized hash tables, the order of enumeration is entirely random.

The behavior is not defined if the hash table is modified by f during the iteration.

val filter_map_inplace : ('a -> 'b -> 'b option) -> ('a, 'b) t -> unit

Hashtbl.filter_map_inplace f tbl applies f to all bindings in table tbl and update each binding depending on the result of f. If f returns None, the binding is discarded. If it returns Some new_val, the binding is update to associate the key to new_val.

Other comments for Hashtbl.iter apply as well.

  • Since 4.03.0
val fold : ('a -> 'b -> 'c -> 'c) -> ('a, 'b) t -> 'c -> 'c

Hashtbl.fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN are the keys of all bindings in tbl, and d1 ... dN are the associated values. Each binding is presented exactly once to f.

The order in which the bindings are passed to f is unspecified. However, if the table contains several bindings for the same key, they are passed to f in reverse order of introduction, that is, the most recent binding is passed first.

If the hash table was created in non-randomized mode, the order in which the bindings are enumerated is reproducible between successive runs of the program, and even between minor versions of OCaml. For randomized hash tables, the order of enumeration is entirely random.

The behavior is not defined if the hash table is modified by f during the iteration.

val length : ('a, 'b) t -> int

Hashtbl.length tbl returns the number of bindings in tbl. It takes constant time. Multiple bindings are counted once each, so Hashtbl.length gives the number of times Hashtbl.iter calls its first argument.

val randomize : unit -> unit

After a call to Hashtbl.randomize(), hash tables are created in randomized mode by default: Hashtbl.create returns randomized hash tables, unless the ~random:false optional parameter is given. The same effect can be achieved by setting the R parameter in the OCAMLRUNPARAM environment variable.

It is recommended that applications or Web frameworks that need to protect themselves against the denial-of-service attack described in Hashtbl.create call Hashtbl.randomize() at initialization time.

Note that once Hashtbl.randomize() was called, there is no way to revert to the non-randomized default behavior of Hashtbl.create. This is intentional. Non-randomized hash tables can still be created using Hashtbl.create ~random:false.

  • Since 4.00.0
val is_randomized : unit -> bool

return if the tables are currently created in randomized mode by default

  • Since 4.03.0
type statistics = {
   num_bindings : int; (*

Number of bindings present in the table. Same value as returned by Hashtbl.length.

*)
   num_buckets : int; (*

Number of buckets in the table.

*)
   max_bucket_length : int; (*

Maximal number of bindings per bucket.

*)
   bucket_histogram : int array; (*

Histogram of bucket sizes. This array histo has length max_bucket_length + 1. The value of histo.(i) is the number of buckets whose size is i.

*)
}
  • Since 4.00.0
val stats : ('a, 'b) t -> statistics

Hashtbl.stats tbl returns statistics about the table tbl: number of buckets, size of the biggest bucket, distribution of buckets by size.

  • Since 4.00.0

Iterators

val to_seq : ('a, 'b) t -> ('a * 'b) Seq.t

Iterate on the whole table. The order in which the bindings appear in the sequence is unspecified. However, if the table contains several bindings for the same key, they appear in reversed order of introduction, that is, the most recent binding appears first.

The behavior is not defined if the hash table is modified during the iteration.

  • Since 4.07
val to_seq_keys : ('a, 'b) t -> 'a Seq.t

Same as Seq.map fst (to_seq m)

  • Since 4.07
val to_seq_values : ('a, 'b) t -> 'b Seq.t

Same as Seq.map snd (to_seq m)

  • Since 4.07
val add_seq : ('a, 'b) t -> ('a * 'b) Seq.t -> unit

Add the given bindings to the table, using Hashtbl.add

  • Since 4.07
val replace_seq : ('a, 'b) t -> ('a * 'b) Seq.t -> unit

Add the given bindings to the table, using Hashtbl.replace

  • Since 4.07
val of_seq : ('a * 'b) Seq.t -> ('a, 'b) t

Build a table from the given bindings. The bindings are added in the same order they appear in the sequence, using Hashtbl.replace_seq, which means that if two pairs have the same key, only the latest one will appear in the table.

  • Since 4.07

Functorial interface

The functorial interface allows the use of specific comparison and hash functions, either for performance/security concerns, or because keys are not hashable/comparable with the polymorphic builtins.

For instance, one might want to specialize a table for integer keys:

      module IntHash =
        struct
          type t = int
          let equal i j = i=j
          let hash i = i land max_int
        end

      module IntHashtbl = Hashtbl.Make(IntHash)

      let h = IntHashtbl.create 17 in
      IntHashtbl.add h 12 "hello"
    

This creates a new module IntHashtbl, with a new type 'a
    IntHashtbl.t
of tables from int to 'a. In this example, h contains string values so its type is string IntHashtbl.t.

Note that the new type 'IntHashtbl.t is not compatible with the type ('a,'b) Hashtbl.t of the generic interface. For example, Hashtbl.length h would not type-check, you must use IntHashtbl.length.

module type HashedType = sig .. end

The input signature of the functor Hashtbl.Make.

module type S = sig .. end

The output signature of the functor Hashtbl.Make.

module Make: 
functor (H : HashedType-> S with type key = H.t

Functor building an implementation of the hashtable structure.

module type SeededHashedType = sig .. end

The input signature of the functor Hashtbl.MakeSeeded.

module type SeededS = sig .. end

The output signature of the functor Hashtbl.MakeSeeded.

module MakeSeeded: 
functor (H : SeededHashedType-> SeededS with type key = H.t

Functor building an implementation of the hashtable structure.

The polymorphic hash functions

val hash : 'a -> int

Hashtbl.hash x associates a nonnegative integer to any value of any type. It is guaranteed that if x = y or Stdlib.compare x y = 0, then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.

val seeded_hash : int -> 'a -> int

A variant of Hashtbl.hash that is further parameterized by an integer seed.

  • Since 4.00.0
val hash_param : int -> int -> 'a -> int

Hashtbl.hash_param meaningful total x computes a hash value for x, with the same properties as for hash. The two extra integer parameters meaningful and total give more precise control over hashing. Hashing performs a breadth-first, left-to-right traversal of the structure x, stopping after meaningful meaningful nodes were encountered, or total nodes (meaningful or not) were encountered. If total as specified by the user exceeds a certain value, currently 256, then it is capped to that value. Meaningful nodes are: integers; floating-point numbers; strings; characters; booleans; and constant constructors. Larger values of meaningful and total means that more nodes are taken into account to compute the final hash value, and therefore collisions are less likely to happen. However, hashing takes longer. The parameters meaningful and total govern the tradeoff between accuracy and speed. As default choices, Hashtbl.hash and Hashtbl.seeded_hash take meaningful = 10 and total = 100.

val seeded_hash_param : int -> int -> int -> 'a -> int

A variant of Hashtbl.hash_param that is further parameterized by an integer seed. Usage: Hashtbl.seeded_hash_param meaningful total seed x.

  • Since 4.00.0
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Result.html0000644000175000017500000004175113717225553021142 0ustar mehdimehdi Stdlib.Result

Module Stdlib.Result

module Result: Result

Results

type ('a, 'e) t = ('a, 'e) result = 
| Ok of 'a
| Error of 'e

The type for result values. Either a value Ok v or an error Error e.

val ok : 'a -> ('a, 'e) result

ok v is Ok v.

val error : 'e -> ('a, 'e) result

error e is Error e.

val value : ('a, 'e) result -> default:'a -> 'a

value r ~default is v if r is Ok v and default otherwise.

val get_ok : ('a, 'e) result -> 'a

get_ok r is v if r is Ok v and

  • Raises Invalid_argument otherwise.
val get_error : ('a, 'e) result -> 'e

get_error r is e if r is Error e and

  • Raises Invalid_argument otherwise.
val bind : ('a, 'e) result ->
('a -> ('b, 'e) result) -> ('b, 'e) result

bind r f is f v if r is Ok v and r if r is Error _.

val join : (('a, 'e) result, 'e) result -> ('a, 'e) result

join rr is r if rr is Ok r and rr if rr is Error _.

val map : ('a -> 'b) -> ('a, 'e) result -> ('b, 'e) result

map f r is Ok (f v) if r is Ok v and r if r is Error _.

val map_error : ('e -> 'f) -> ('a, 'e) result -> ('a, 'f) result

map_error f r is Error (f e) if r is Error e and r if r is Ok _.

val fold : ok:('a -> 'c) -> error:('e -> 'c) -> ('a, 'e) result -> 'c

fold ~ok ~error r is ok v if r is Ok v and error e if r is Error e.

val iter : ('a -> unit) -> ('a, 'e) result -> unit

iter f r is f v if r is Ok v and () otherwise.

val iter_error : ('e -> unit) -> ('a, 'e) result -> unit

iter_error f r is f e if r is Error e and () otherwise.

Predicates and comparisons

val is_ok : ('a, 'e) result -> bool

is_ok r is true iff r is Ok _.

val is_error : ('a, 'e) result -> bool

is_error r is true iff r is Error _.

val equal : ok:('a -> 'a -> bool) ->
error:('e -> 'e -> bool) ->
('a, 'e) result -> ('a, 'e) result -> bool

equal ~ok ~error r0 r1 tests equality of r0 and r1 using ok and error to respectively compare values wrapped by Ok _ and Error _.

val compare : ok:('a -> 'a -> int) ->
error:('e -> 'e -> int) ->
('a, 'e) result -> ('a, 'e) result -> int

compare ~ok ~error r0 r1 totally orders r0 and r1 using ok and error to respectively compare values wrapped by Ok _  and Error _. Ok _ values are smaller than Error _ values.

Converting

val to_option : ('a, 'e) result -> 'a option

to_option r is r as an option, mapping Ok v to Some v and Error _ to None.

val to_list : ('a, 'e) result -> 'a list

to_list r is [v] if r is Ok v and [] otherwise.

val to_seq : ('a, 'e) result -> 'a Seq.t

to_seq r is r as a sequence. Ok v is the singleton sequence containing v and Error _ is the empty sequence.

ocaml-doc-4.11/ocaml.html/libref/ThreadUnix.html0000644000175000017500000003416713717225553020522 0ustar mehdimehdi ThreadUnix

Module ThreadUnix

module ThreadUnix: sig .. end
Deprecated.The functionality of this module has been merged back into the Unix module. Threaded programs can now call the functions from module Unix directly, and still get the correct behavior (block the calling thread, if required, but do not block all threads in the process).

Thread-compatible system calls.


Process handling

val execv : string -> string array -> unit
val execve : string -> string array -> string array -> unit
val execvp : string -> string array -> unit
val wait : unit -> int * Unix.process_status
val waitpid : Unix.wait_flag list -> int -> int * Unix.process_status
val system : string -> Unix.process_status

Basic input/output

val read : Unix.file_descr -> bytes -> int -> int -> int
val write : Unix.file_descr -> bytes -> int -> int -> int
val write_substring : Unix.file_descr -> string -> int -> int -> int

Input/output with timeout

val timed_read : Unix.file_descr -> bytes -> int -> int -> float -> int
val timed_write : Unix.file_descr -> bytes -> int -> int -> float -> int

Behave as ThreadUnix.read and ThreadUnix.write, except that Unix_error(ETIMEDOUT,_,_) is raised if no data is available for reading or ready for writing after d seconds. The delay d is given in the fifth argument, in seconds.

val timed_write_substring : Unix.file_descr -> string -> int -> int -> float -> int

Polling

val select : Unix.file_descr list ->
Unix.file_descr list ->
Unix.file_descr list ->
float -> Unix.file_descr list * Unix.file_descr list * Unix.file_descr list

Pipes and redirections

val pipe : ?cloexec:bool -> unit -> Unix.file_descr * Unix.file_descr
val open_process_in : string -> in_channel
val open_process_out : string -> out_channel
val open_process : string -> in_channel * out_channel

Time

val sleep : int -> unit

Sockets

val socket : ?cloexec:bool ->
Unix.socket_domain -> Unix.socket_type -> int -> Unix.file_descr
val accept : ?cloexec:bool -> Unix.file_descr -> Unix.file_descr * Unix.sockaddr
val connect : Unix.file_descr -> Unix.sockaddr -> unit
val recv : Unix.file_descr -> bytes -> int -> int -> Unix.msg_flag list -> int
val recvfrom : Unix.file_descr ->
bytes -> int -> int -> Unix.msg_flag list -> int * Unix.sockaddr
val send : Unix.file_descr -> bytes -> int -> int -> Unix.msg_flag list -> int
val send_substring : Unix.file_descr -> string -> int -> int -> Unix.msg_flag list -> int
val sendto : Unix.file_descr ->
bytes -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int
val sendto_substring : Unix.file_descr ->
string -> int -> int -> Unix.msg_flag list -> Unix.sockaddr -> int
val open_connection : Unix.sockaddr -> in_channel * out_channel
ocaml-doc-4.11/ocaml.html/libref/Random.html0000644000175000017500000002622113717225552017656 0ustar mehdimehdi Random

Module Random

module Random: sig .. end

Pseudo-random number generators (PRNG).


Basic functions

val init : int -> unit

Initialize the generator, using the argument as a seed. The same seed will always yield the same sequence of numbers.

val full_init : int array -> unit

Same as Random.init but takes more data as seed.

val self_init : unit -> unit

Initialize the generator with a random seed chosen in a system-dependent way. If /dev/urandom is available on the host machine, it is used to provide a highly random initial seed. Otherwise, a less random seed is computed from system parameters (current time, process IDs).

val bits : unit -> int

Return 30 random bits in a nonnegative integer.

  • Before 3.12.0 used a different algorithm (affects all the following functions)
val int : int -> int

Random.int bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0 and less than 230.

val int32 : Int32.t -> Int32.t

Random.int32 bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.

val nativeint : Nativeint.t -> Nativeint.t

Random.nativeint bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.

val int64 : Int64.t -> Int64.t

Random.int64 bound returns a random integer between 0 (inclusive) and bound (exclusive). bound must be greater than 0.

val float : float -> float

Random.float bound returns a random floating-point number between 0 and bound (inclusive). If bound is negative, the result is negative or zero. If bound is 0, the result is 0.

val bool : unit -> bool

Random.bool () returns true or false with probability 0.5 each.

Advanced functions

The functions from module Random.State manipulate the current state of the random generator explicitly. This allows using one or several deterministic PRNGs, even in a multi-threaded program, without interference from other parts of the program.

module State: sig .. end
val get_state : unit -> State.t

Return the current state of the generator used by the basic functions.

val set_state : State.t -> unit

Set the state of the generator used by the basic functions.

ocaml-doc-4.11/ocaml.html/libref/type_Spacetime.html0000644000175000017500000001514213717225552021411 0ustar mehdimehdi Spacetime sig
  val enabled : bool
  module Series :
    sig
      type t
      val create : path:string -> Spacetime.Series.t
      val save_event :
        ?time:float -> Spacetime.Series.t -> event_name:string -> unit
      val save_and_close : ?time:float -> Spacetime.Series.t -> unit
    end
  module Snapshot :
    sig val take : ?time:float -> Spacetime.Series.t -> unit end
  val save_event_for_automatic_snapshots : event_name:string -> unit
end
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.html0000644000175000017500000002472113717225552020363 0ustar mehdimehdi Ephemeron

Module Ephemeron

module Ephemeron: sig .. end

Ephemerons and weak hash tables


Ephemerons and weak hash tables are useful when one wants to cache or memorize the computation of a function, as long as the arguments and the function are used, without creating memory leaks by continuously keeping old computation results that are not useful anymore because one argument or the function is freed. An implementation using Hashtbl.t is not suitable because all associations would keep the arguments and the result in memory.

Ephemerons can also be used for "adding" a field to an arbitrary boxed OCaml value: you can attach some information to a value created by an external library without memory leaks.

Ephemerons hold some keys and one or no data. They are all boxed OCaml values. The keys of an ephemeron have the same behavior as weak pointers according to the garbage collector. In fact OCaml weak pointers are implemented as ephemerons without data.

The keys and data of an ephemeron are said to be full if they point to a value, or empty if the value has never been set, has been unset, or was erased by the GC. In the function that accesses the keys or data these two states are represented by the option type.

The data is considered by the garbage collector alive if all the full keys are alive and if the ephemeron is alive. When one of the keys is not considered alive anymore by the GC, the data is emptied from the ephemeron. The data could be alive for another reason and in that case the GC will not free it, but the ephemeron will not hold the data anymore.

The ephemerons complicate the notion of liveness of values, because it is not anymore an equivalence with the reachability from root value by usual pointers (not weak and not ephemerons). With ephemerons the notion of liveness is constructed by the least fixpoint of: A value is alive if:

  • it is a root value
  • it is reachable from alive value by usual pointers
  • it is the data of an alive ephemeron with all its full keys alive

Notes:

  • All the types defined in this module cannot be marshaled using output_value or the functions of the Marshal module.

Ephemerons are defined in a language agnostic way in this paper: B. Hayes, Ephemerons: A New Finalization Mechanism, OOPSLA'97

module type S = sig .. end

The output signature of the functor Ephemeron.K1.Make and Ephemeron.K2.Make.

module type SeededS = sig .. end

The output signature of the functor Ephemeron.K1.MakeSeeded and Ephemeron.K2.MakeSeeded.

module K1: sig .. end
module K2: sig .. end
module Kn: sig .. end
module GenHashTable: sig .. end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Set.html0000644000175000017500000001126213717225553021452 0ustar mehdimehdi Stdlib.Set (module Stdlib__set) ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Set.S.html0000644000175000017500000006133513717225553022465 0ustar mehdimehdi MoreLabels.Set.S sig
  type elt
  and t
  val empty : MoreLabels.Set.S.t
  val is_empty : MoreLabels.Set.S.t -> bool
  val mem : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> bool
  val add : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val singleton : MoreLabels.Set.S.elt -> MoreLabels.Set.S.t
  val remove :
    MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val union : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val inter : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val disjoint : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
  val diff : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val compare : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> int
  val equal : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
  val subset : MoreLabels.Set.S.t -> MoreLabels.Set.S.t -> bool
  val iter : f:(MoreLabels.Set.S.elt -> unit) -> MoreLabels.Set.S.t -> unit
  val map :
    f:(MoreLabels.Set.S.elt -> MoreLabels.Set.S.elt) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val fold :
    f:(MoreLabels.Set.S.elt -> '-> 'a) ->
    MoreLabels.Set.S.t -> init:'-> 'a
  val for_all :
    f:(MoreLabels.Set.S.elt -> bool) -> MoreLabels.Set.S.t -> bool
  val exists : f:(MoreLabels.Set.S.elt -> bool) -> MoreLabels.Set.S.t -> bool
  val filter :
    f:(MoreLabels.Set.S.elt -> bool) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val filter_map :
    f:(MoreLabels.Set.S.elt -> MoreLabels.Set.S.elt option) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val partition :
    f:(MoreLabels.Set.S.elt -> bool) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.t * MoreLabels.Set.S.t
  val cardinal : MoreLabels.Set.S.t -> int
  val elements : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt list
  val min_elt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
  val min_elt_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
  val max_elt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
  val max_elt_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
  val choose : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
  val choose_opt : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
  val split :
    MoreLabels.Set.S.elt ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.t * bool * MoreLabels.Set.S.t
  val find :
    MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
  val find_opt :
    MoreLabels.Set.S.elt -> MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
  val find_first :
    f:(MoreLabels.Set.S.elt -> bool) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
  val find_first_opt :
    f:(MoreLabels.Set.S.elt -> bool) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
  val find_last :
    f:(MoreLabels.Set.S.elt -> bool) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.elt
  val find_last_opt :
    f:(MoreLabels.Set.S.elt -> bool) ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.elt option
  val of_list : MoreLabels.Set.S.elt list -> MoreLabels.Set.S.t
  val to_seq_from :
    MoreLabels.Set.S.elt ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.elt Stdlib.Seq.t
  val to_seq : MoreLabels.Set.S.t -> MoreLabels.Set.S.elt Stdlib.Seq.t
  val add_seq :
    MoreLabels.Set.S.elt Stdlib.Seq.t ->
    MoreLabels.Set.S.t -> MoreLabels.Set.S.t
  val of_seq : MoreLabels.Set.S.elt Stdlib.Seq.t -> MoreLabels.Set.S.t
end
ocaml-doc-4.11/ocaml.html/libref/type_UnixLabels.html0000644000175000017500000024206313717225553021552 0ustar mehdimehdi UnixLabels sig
  type error =
    Unix.error =
      E2BIG
    | EACCES
    | EAGAIN
    | EBADF
    | EBUSY
    | ECHILD
    | EDEADLK
    | EDOM
    | EEXIST
    | EFAULT
    | EFBIG
    | EINTR
    | EINVAL
    | EIO
    | EISDIR
    | EMFILE
    | EMLINK
    | ENAMETOOLONG
    | ENFILE
    | ENODEV
    | ENOENT
    | ENOEXEC
    | ENOLCK
    | ENOMEM
    | ENOSPC
    | ENOSYS
    | ENOTDIR
    | ENOTEMPTY
    | ENOTTY
    | ENXIO
    | EPERM
    | EPIPE
    | ERANGE
    | EROFS
    | ESPIPE
    | ESRCH
    | EXDEV
    | EWOULDBLOCK
    | EINPROGRESS
    | EALREADY
    | ENOTSOCK
    | EDESTADDRREQ
    | EMSGSIZE
    | EPROTOTYPE
    | ENOPROTOOPT
    | EPROTONOSUPPORT
    | ESOCKTNOSUPPORT
    | EOPNOTSUPP
    | EPFNOSUPPORT
    | EAFNOSUPPORT
    | EADDRINUSE
    | EADDRNOTAVAIL
    | ENETDOWN
    | ENETUNREACH
    | ENETRESET
    | ECONNABORTED
    | ECONNRESET
    | ENOBUFS
    | EISCONN
    | ENOTCONN
    | ESHUTDOWN
    | ETOOMANYREFS
    | ETIMEDOUT
    | ECONNREFUSED
    | EHOSTDOWN
    | EHOSTUNREACH
    | ELOOP
    | EOVERFLOW
    | EUNKNOWNERR of int
  exception Unix_error of UnixLabels.error * string * string
  val error_message : UnixLabels.error -> string
  val handle_unix_error : ('-> 'b) -> '-> 'b
  val environment : unit -> string array
  val getenv : string -> string
  val unsafe_getenv : string -> string
  val putenv : string -> string -> unit
  type process_status =
    Unix.process_status =
      WEXITED of int
    | WSIGNALED of int
    | WSTOPPED of int
  type wait_flag = Unix.wait_flag = WNOHANG | WUNTRACED
  val execv : prog:string -> args:string array -> 'a
  val execve : prog:string -> args:string array -> env:string array -> 'a
  val execvp : prog:string -> args:string array -> 'a
  val execvpe : prog:string -> args:string array -> env:string array -> 'a
  val fork : unit -> int
  val wait : unit -> int * UnixLabels.process_status
  val waitpid :
    mode:UnixLabels.wait_flag list -> int -> int * UnixLabels.process_status
  val system : string -> UnixLabels.process_status
  val getpid : unit -> int
  val getppid : unit -> int
  val nice : int -> int
  type file_descr = Unix.file_descr
  val stdin : UnixLabels.file_descr
  val stdout : UnixLabels.file_descr
  val stderr : UnixLabels.file_descr
  type open_flag =
    Unix.open_flag =
      O_RDONLY
    | O_WRONLY
    | O_RDWR
    | O_NONBLOCK
    | O_APPEND
    | O_CREAT
    | O_TRUNC
    | O_EXCL
    | O_NOCTTY
    | O_DSYNC
    | O_SYNC
    | O_RSYNC
    | O_SHARE_DELETE
    | O_CLOEXEC
    | O_KEEPEXEC
  type file_perm = int
  val openfile :
    string ->
    mode:UnixLabels.open_flag list ->
    perm:UnixLabels.file_perm -> UnixLabels.file_descr
  val close : UnixLabels.file_descr -> unit
  val read : UnixLabels.file_descr -> buf:bytes -> pos:int -> len:int -> int
  val write : UnixLabels.file_descr -> buf:bytes -> pos:int -> len:int -> int
  val single_write :
    UnixLabels.file_descr -> buf:bytes -> pos:int -> len:int -> int
  val write_substring :
    UnixLabels.file_descr -> buf:string -> pos:int -> len:int -> int
  val single_write_substring :
    UnixLabels.file_descr -> buf:string -> pos:int -> len:int -> int
  val in_channel_of_descr : UnixLabels.file_descr -> Stdlib.in_channel
  val out_channel_of_descr : UnixLabels.file_descr -> Stdlib.out_channel
  val descr_of_in_channel : Stdlib.in_channel -> UnixLabels.file_descr
  val descr_of_out_channel : Stdlib.out_channel -> UnixLabels.file_descr
  type seek_command = Unix.seek_command = SEEK_SET | SEEK_CUR | SEEK_END
  val lseek :
    UnixLabels.file_descr -> int -> mode:UnixLabels.seek_command -> int
  val truncate : string -> len:int -> unit
  val ftruncate : UnixLabels.file_descr -> len:int -> unit
  type file_kind =
    Unix.file_kind =
      S_REG
    | S_DIR
    | S_CHR
    | S_BLK
    | S_LNK
    | S_FIFO
    | S_SOCK
  type stats =
    Unix.stats = {
    st_dev : int;
    st_ino : int;
    st_kind : UnixLabels.file_kind;
    st_perm : UnixLabels.file_perm;
    st_nlink : int;
    st_uid : int;
    st_gid : int;
    st_rdev : int;
    st_size : int;
    st_atime : float;
    st_mtime : float;
    st_ctime : float;
  }
  val stat : string -> UnixLabels.stats
  val lstat : string -> UnixLabels.stats
  val fstat : UnixLabels.file_descr -> UnixLabels.stats
  val isatty : UnixLabels.file_descr -> bool
  module LargeFile :
    sig
      val lseek :
        UnixLabels.file_descr ->
        int64 -> mode:UnixLabels.seek_command -> int64
      val truncate : string -> len:int64 -> unit
      val ftruncate : UnixLabels.file_descr -> len:int64 -> unit
      type stats =
        Unix.LargeFile.stats = {
        st_dev : int;
        st_ino : int;
        st_kind : UnixLabels.file_kind;
        st_perm : UnixLabels.file_perm;
        st_nlink : int;
        st_uid : int;
        st_gid : int;
        st_rdev : int;
        st_size : int64;
        st_atime : float;
        st_mtime : float;
        st_ctime : float;
      }
      val stat : string -> UnixLabels.LargeFile.stats
      val lstat : string -> UnixLabels.LargeFile.stats
      val fstat : UnixLabels.file_descr -> UnixLabels.LargeFile.stats
    end
  val map_file :
    UnixLabels.file_descr ->
    ?pos:int64 ->
    kind:('a, 'b) Stdlib.Bigarray.kind ->
    layout:'Stdlib.Bigarray.layout ->
    shared:bool -> dims:int array -> ('a, 'b, 'c) Stdlib.Bigarray.Genarray.t
  val unlink : string -> unit
  val rename : src:string -> dst:string -> unit
  val link : ?follow:bool -> src:string -> dst:string -> unit
  type access_permission = Unix.access_permission = R_OK | W_OK | X_OK | F_OK
  val chmod : string -> perm:UnixLabels.file_perm -> unit
  val fchmod : UnixLabels.file_descr -> perm:UnixLabels.file_perm -> unit
  val chown : string -> uid:int -> gid:int -> unit
  val fchown : UnixLabels.file_descr -> uid:int -> gid:int -> unit
  val umask : int -> int
  val access : string -> perm:UnixLabels.access_permission list -> unit
  val dup : ?cloexec:bool -> UnixLabels.file_descr -> UnixLabels.file_descr
  val dup2 :
    ?cloexec:bool ->
    src:UnixLabels.file_descr -> dst:UnixLabels.file_descr -> unit
  val set_nonblock : UnixLabels.file_descr -> unit
  val clear_nonblock : UnixLabels.file_descr -> unit
  val set_close_on_exec : UnixLabels.file_descr -> unit
  val clear_close_on_exec : UnixLabels.file_descr -> unit
  val mkdir : string -> perm:UnixLabels.file_perm -> unit
  val rmdir : string -> unit
  val chdir : string -> unit
  val getcwd : unit -> string
  val chroot : string -> unit
  type dir_handle = Unix.dir_handle
  val opendir : string -> UnixLabels.dir_handle
  val readdir : UnixLabels.dir_handle -> string
  val rewinddir : UnixLabels.dir_handle -> unit
  val closedir : UnixLabels.dir_handle -> unit
  val pipe :
    ?cloexec:bool -> unit -> UnixLabels.file_descr * UnixLabels.file_descr
  val mkfifo : string -> perm:UnixLabels.file_perm -> unit
  val create_process :
    prog:string ->
    args:string array ->
    stdin:UnixLabels.file_descr ->
    stdout:UnixLabels.file_descr -> stderr:UnixLabels.file_descr -> int
  val create_process_env :
    prog:string ->
    args:string array ->
    env:string array ->
    stdin:UnixLabels.file_descr ->
    stdout:UnixLabels.file_descr -> stderr:UnixLabels.file_descr -> int
  val open_process_in : string -> Stdlib.in_channel
  val open_process_out : string -> Stdlib.out_channel
  val open_process : string -> Stdlib.in_channel * Stdlib.out_channel
  val open_process_full :
    string ->
    env:string array ->
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel
  val open_process_args_in : string -> string array -> Stdlib.in_channel
  val open_process_args_out : string -> string array -> Stdlib.out_channel
  val open_process_args :
    string -> string array -> Stdlib.in_channel * Stdlib.out_channel
  val open_process_args_full :
    string ->
    string array ->
    string array ->
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel
  val close_process_in : Stdlib.in_channel -> UnixLabels.process_status
  val close_process_out : Stdlib.out_channel -> UnixLabels.process_status
  val close_process :
    Stdlib.in_channel * Stdlib.out_channel -> UnixLabels.process_status
  val close_process_full :
    Stdlib.in_channel * Stdlib.out_channel * Stdlib.in_channel ->
    UnixLabels.process_status
  val symlink : ?to_dir:bool -> src:string -> dst:string -> unit
  val has_symlink : unit -> bool
  val readlink : string -> string
  val select :
    read:UnixLabels.file_descr list ->
    write:UnixLabels.file_descr list ->
    except:UnixLabels.file_descr list ->
    timeout:float ->
    UnixLabels.file_descr list * UnixLabels.file_descr list *
    UnixLabels.file_descr list
  type lock_command =
    Unix.lock_command =
      F_ULOCK
    | F_LOCK
    | F_TLOCK
    | F_TEST
    | F_RLOCK
    | F_TRLOCK
  val lockf :
    UnixLabels.file_descr -> mode:UnixLabels.lock_command -> len:int -> unit
  val kill : pid:int -> signal:int -> unit
  type sigprocmask_command =
    Unix.sigprocmask_command =
      SIG_SETMASK
    | SIG_BLOCK
    | SIG_UNBLOCK
  val sigprocmask :
    mode:UnixLabels.sigprocmask_command -> int list -> int list
  val sigpending : unit -> int list
  val sigsuspend : int list -> unit
  val pause : unit -> unit
  type process_times =
    Unix.process_times = {
    tms_utime : float;
    tms_stime : float;
    tms_cutime : float;
    tms_cstime : float;
  }
  type tm =
    Unix.tm = {
    tm_sec : int;
    tm_min : int;
    tm_hour : int;
    tm_mday : int;
    tm_mon : int;
    tm_year : int;
    tm_wday : int;
    tm_yday : int;
    tm_isdst : bool;
  }
  val time : unit -> float
  val gettimeofday : unit -> float
  val gmtime : float -> UnixLabels.tm
  val localtime : float -> UnixLabels.tm
  val mktime : UnixLabels.tm -> float * UnixLabels.tm
  val alarm : int -> int
  val sleep : int -> unit
  val times : unit -> UnixLabels.process_times
  val utimes : string -> access:float -> modif:float -> unit
  type interval_timer =
    Unix.interval_timer =
      ITIMER_REAL
    | ITIMER_VIRTUAL
    | ITIMER_PROF
  type interval_timer_status =
    Unix.interval_timer_status = {
    it_interval : float;
    it_value : float;
  }
  val getitimer :
    UnixLabels.interval_timer -> UnixLabels.interval_timer_status
  val setitimer :
    UnixLabels.interval_timer ->
    UnixLabels.interval_timer_status -> UnixLabels.interval_timer_status
  val getuid : unit -> int
  val geteuid : unit -> int
  val setuid : int -> unit
  val getgid : unit -> int
  val getegid : unit -> int
  val setgid : int -> unit
  val getgroups : unit -> int array
  val setgroups : int array -> unit
  val initgroups : string -> int -> unit
  type passwd_entry =
    Unix.passwd_entry = {
    pw_name : string;
    pw_passwd : string;
    pw_uid : int;
    pw_gid : int;
    pw_gecos : string;
    pw_dir : string;
    pw_shell : string;
  }
  type group_entry =
    Unix.group_entry = {
    gr_name : string;
    gr_passwd : string;
    gr_gid : int;
    gr_mem : string array;
  }
  val getlogin : unit -> string
  val getpwnam : string -> UnixLabels.passwd_entry
  val getgrnam : string -> UnixLabels.group_entry
  val getpwuid : int -> UnixLabels.passwd_entry
  val getgrgid : int -> UnixLabels.group_entry
  type inet_addr = Unix.inet_addr
  val inet_addr_of_string : string -> UnixLabels.inet_addr
  val string_of_inet_addr : UnixLabels.inet_addr -> string
  val inet_addr_any : UnixLabels.inet_addr
  val inet_addr_loopback : UnixLabels.inet_addr
  val inet6_addr_any : UnixLabels.inet_addr
  val inet6_addr_loopback : UnixLabels.inet_addr
  type socket_domain = Unix.socket_domain = PF_UNIX | PF_INET | PF_INET6
  type socket_type =
    Unix.socket_type =
      SOCK_STREAM
    | SOCK_DGRAM
    | SOCK_RAW
    | SOCK_SEQPACKET
  type sockaddr =
    Unix.sockaddr =
      ADDR_UNIX of string
    | ADDR_INET of UnixLabels.inet_addr * int
  val socket :
    ?cloexec:bool ->
    domain:UnixLabels.socket_domain ->
    kind:UnixLabels.socket_type -> protocol:int -> UnixLabels.file_descr
  val domain_of_sockaddr : UnixLabels.sockaddr -> UnixLabels.socket_domain
  val socketpair :
    ?cloexec:bool ->
    domain:UnixLabels.socket_domain ->
    kind:UnixLabels.socket_type ->
    protocol:int -> UnixLabels.file_descr * UnixLabels.file_descr
  val accept :
    ?cloexec:bool ->
    UnixLabels.file_descr -> UnixLabels.file_descr * UnixLabels.sockaddr
  val bind : UnixLabels.file_descr -> addr:UnixLabels.sockaddr -> unit
  val connect : UnixLabels.file_descr -> addr:UnixLabels.sockaddr -> unit
  val listen : UnixLabels.file_descr -> max:int -> unit
  type shutdown_command =
    Unix.shutdown_command =
      SHUTDOWN_RECEIVE
    | SHUTDOWN_SEND
    | SHUTDOWN_ALL
  val shutdown :
    UnixLabels.file_descr -> mode:UnixLabels.shutdown_command -> unit
  val getsockname : UnixLabels.file_descr -> UnixLabels.sockaddr
  val getpeername : UnixLabels.file_descr -> UnixLabels.sockaddr
  type msg_flag = Unix.msg_flag = MSG_OOB | MSG_DONTROUTE | MSG_PEEK
  val recv :
    UnixLabels.file_descr ->
    buf:bytes -> pos:int -> len:int -> mode:UnixLabels.msg_flag list -> int
  val recvfrom :
    UnixLabels.file_descr ->
    buf:bytes ->
    pos:int ->
    len:int -> mode:UnixLabels.msg_flag list -> int * UnixLabels.sockaddr
  val send :
    UnixLabels.file_descr ->
    buf:bytes -> pos:int -> len:int -> mode:UnixLabels.msg_flag list -> int
  val send_substring :
    UnixLabels.file_descr ->
    buf:string -> pos:int -> len:int -> mode:UnixLabels.msg_flag list -> int
  val sendto :
    UnixLabels.file_descr ->
    buf:bytes ->
    pos:int ->
    len:int ->
    mode:UnixLabels.msg_flag list -> addr:UnixLabels.sockaddr -> int
  val sendto_substring :
    UnixLabels.file_descr ->
    buf:string ->
    pos:int ->
    len:int -> mode:UnixLabels.msg_flag list -> UnixLabels.sockaddr -> int
  type socket_bool_option =
      SO_DEBUG
    | SO_BROADCAST
    | SO_REUSEADDR
    | SO_KEEPALIVE
    | SO_DONTROUTE
    | SO_OOBINLINE
    | SO_ACCEPTCONN
    | TCP_NODELAY
    | IPV6_ONLY
  type socket_int_option =
      SO_SNDBUF
    | SO_RCVBUF
    | SO_ERROR
    | SO_TYPE
    | SO_RCVLOWAT
    | SO_SNDLOWAT
  type socket_optint_option = SO_LINGER
  type socket_float_option = SO_RCVTIMEO | SO_SNDTIMEO
  val getsockopt :
    UnixLabels.file_descr -> UnixLabels.socket_bool_option -> bool
  val setsockopt :
    UnixLabels.file_descr -> UnixLabels.socket_bool_option -> bool -> unit
  val getsockopt_int :
    UnixLabels.file_descr -> UnixLabels.socket_int_option -> int
  val setsockopt_int :
    UnixLabels.file_descr -> UnixLabels.socket_int_option -> int -> unit
  val getsockopt_optint :
    UnixLabels.file_descr -> UnixLabels.socket_optint_option -> int option
  val setsockopt_optint :
    UnixLabels.file_descr ->
    UnixLabels.socket_optint_option -> int option -> unit
  val getsockopt_float :
    UnixLabels.file_descr -> UnixLabels.socket_float_option -> float
  val setsockopt_float :
    UnixLabels.file_descr -> UnixLabels.socket_float_option -> float -> unit
  val getsockopt_error : UnixLabels.file_descr -> UnixLabels.error option
  val open_connection :
    UnixLabels.sockaddr -> Stdlib.in_channel * Stdlib.out_channel
  val shutdown_connection : Stdlib.in_channel -> unit
  val establish_server :
    (Stdlib.in_channel -> Stdlib.out_channel -> unit) ->
    addr:UnixLabels.sockaddr -> unit
  type host_entry =
    Unix.host_entry = {
    h_name : string;
    h_aliases : string array;
    h_addrtype : UnixLabels.socket_domain;
    h_addr_list : UnixLabels.inet_addr array;
  }
  type protocol_entry =
    Unix.protocol_entry = {
    p_name : string;
    p_aliases : string array;
    p_proto : int;
  }
  type service_entry =
    Unix.service_entry = {
    s_name : string;
    s_aliases : string array;
    s_port : int;
    s_proto : string;
  }
  val gethostname : unit -> string
  val gethostbyname : string -> UnixLabels.host_entry
  val gethostbyaddr : UnixLabels.inet_addr -> UnixLabels.host_entry
  val getprotobyname : string -> UnixLabels.protocol_entry
  val getprotobynumber : int -> UnixLabels.protocol_entry
  val getservbyname : string -> protocol:string -> UnixLabels.service_entry
  val getservbyport : int -> protocol:string -> UnixLabels.service_entry
  type addr_info = {
    ai_family : UnixLabels.socket_domain;
    ai_socktype : UnixLabels.socket_type;
    ai_protocol : int;
    ai_addr : UnixLabels.sockaddr;
    ai_canonname : string;
  }
  type getaddrinfo_option =
      AI_FAMILY of UnixLabels.socket_domain
    | AI_SOCKTYPE of UnixLabels.socket_type
    | AI_PROTOCOL of int
    | AI_NUMERICHOST
    | AI_CANONNAME
    | AI_PASSIVE
  val getaddrinfo :
    string ->
    string -> UnixLabels.getaddrinfo_option list -> UnixLabels.addr_info list
  type name_info = { ni_hostname : string; ni_service : string; }
  type getnameinfo_option =
      NI_NOFQDN
    | NI_NUMERICHOST
    | NI_NAMEREQD
    | NI_NUMERICSERV
    | NI_DGRAM
  val getnameinfo :
    UnixLabels.sockaddr ->
    UnixLabels.getnameinfo_option list -> UnixLabels.name_info
  type terminal_io =
    Unix.terminal_io = {
    mutable c_ignbrk : bool;
    mutable c_brkint : bool;
    mutable c_ignpar : bool;
    mutable c_parmrk : bool;
    mutable c_inpck : bool;
    mutable c_istrip : bool;
    mutable c_inlcr : bool;
    mutable c_igncr : bool;
    mutable c_icrnl : bool;
    mutable c_ixon : bool;
    mutable c_ixoff : bool;
    mutable c_opost : bool;
    mutable c_obaud : int;
    mutable c_ibaud : int;
    mutable c_csize : int;
    mutable c_cstopb : int;
    mutable c_cread : bool;
    mutable c_parenb : bool;
    mutable c_parodd : bool;
    mutable c_hupcl : bool;
    mutable c_clocal : bool;
    mutable c_isig : bool;
    mutable c_icanon : bool;
    mutable c_noflsh : bool;
    mutable c_echo : bool;
    mutable c_echoe : bool;
    mutable c_echok : bool;
    mutable c_echonl : bool;
    mutable c_vintr : char;
    mutable c_vquit : char;
    mutable c_verase : char;
    mutable c_vkill : char;
    mutable c_veof : char;
    mutable c_veol : char;
    mutable c_vmin : int;
    mutable c_vtime : int;
    mutable c_vstart : char;
    mutable c_vstop : char;
  }
  val tcgetattr : UnixLabels.file_descr -> UnixLabels.terminal_io
  type setattr_when = Unix.setattr_when = TCSANOW | TCSADRAIN | TCSAFLUSH
  val tcsetattr :
    UnixLabels.file_descr ->
    mode:UnixLabels.setattr_when -> UnixLabels.terminal_io -> unit
  val tcsendbreak : UnixLabels.file_descr -> duration:int -> unit
  val tcdrain : UnixLabels.file_descr -> unit
  type flush_queue = Unix.flush_queue = TCIFLUSH | TCOFLUSH | TCIOFLUSH
  val tcflush : UnixLabels.file_descr -> mode:UnixLabels.flush_queue -> unit
  type flow_action = Unix.flow_action = TCOOFF | TCOON | TCIOFF | TCION
  val tcflow : UnixLabels.file_descr -> mode:UnixLabels.flow_action -> unit
  val setsid : unit -> int
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Bool.html0000644000175000017500000002441513717225552020554 0ustar mehdimehdi Stdlib.Bool

Module Stdlib.Bool

module Bool: Bool

Booleans

type t = bool = 
| false
| true

The type of booleans (truth values).

The constructors false and true are included here so that they have paths, but they are not intended to be used in user-defined data types.

val not : bool -> bool

not b is the boolean negation of b.

val (&&) : bool -> bool -> bool

e0 && e1 is the lazy boolean conjunction of expressions e0 and e1. If e0 evaluates to false, e1 is not evaluated. Right-associative operator at precedence level 3/11.

val (||) : bool -> bool -> bool

e0 || e1 is the lazy boolean disjunction of expressions e0 and e1. If e0 evaluates to true, e1 is not evaluated. Right-associative operator at precedence level 2/11.

Predicates and comparisons

val equal : bool -> bool -> bool

equal b0 b1 is true iff b0 and b1 are both either true or false.

val compare : bool -> bool -> int

compare b0 b1 is a total order on boolean values. false is smaller than true.

Converting

val to_int : bool -> int

to_int b is 0 if b is false and 1 if b is true.

val to_float : bool -> float

to_float b is 0. if b is false and 1. if b is true.

val to_string : bool -> string

to_string b is "true" if b is true and "false" if b is false.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Result.html0000644000175000017500000001127013717225553022174 0ustar mehdimehdi Stdlib.Result (module Stdlib__result) ocaml-doc-4.11/ocaml.html/libref/Hashtbl.SeededHashedType.html0000644000175000017500000001572413717225553023201 0ustar mehdimehdi Hashtbl.SeededHashedType

Module type Hashtbl.SeededHashedType

module type SeededHashedType = sig .. end

The input signature of the functor Hashtbl.MakeSeeded.

  • Since 4.00.0

type t 

The type of the hashtable keys.

val equal : t -> t -> bool

The equality predicate used to compare keys.

val hash : int -> t -> int

A seeded hashing function on keys. The first argument is the seed. It must be the case that if equal x y is true, then hash seed x = hash seed y for any value of seed. A suitable choice for hash is the function Hashtbl.seeded_hash below.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Filename.html0000644000175000017500000005413013717225552021376 0ustar mehdimehdi Stdlib.Filename

Module Stdlib.Filename

module Filename: Filename

val current_dir_name : string

The conventional name for the current directory (e.g. . in Unix).

val parent_dir_name : string

The conventional name for the parent of the current directory (e.g. .. in Unix).

val dir_sep : string

The directory separator (e.g. / in Unix).

  • Since 3.11.2
val concat : string -> string -> string

concat dir file returns a file name that designates file file in directory dir.

val is_relative : string -> bool

Return true if the file name is relative to the current directory, false if it is absolute (i.e. in Unix, starts with /).

val is_implicit : string -> bool

Return true if the file name is relative and does not start with an explicit reference to the current directory (./ or ../ in Unix), false if it starts with an explicit reference to the root directory or the current directory.

val check_suffix : string -> string -> bool

check_suffix name suff returns true if the filename name ends with the suffix suff.

Under Windows ports (including Cygwin), comparison is case-insensitive, relying on String.lowercase_ascii. Note that this does not match exactly the interpretation of case-insensitive filename equivalence from Windows.

val chop_suffix : string -> string -> string

chop_suffix name suff removes the suffix suff from the filename name. The behavior is undefined if name does not end with the suffix suff. chop_suffix_opt is thus recommended instead.

val chop_suffix_opt : suffix:string -> string -> string option

chop_suffix_opt ~suffix filename removes the suffix from the filename if possible, or returns None if the filename does not end with the suffix.

Under Windows ports (including Cygwin), comparison is case-insensitive, relying on String.lowercase_ascii. Note that this does not match exactly the interpretation of case-insensitive filename equivalence from Windows.

  • Since 4.08
val extension : string -> string

extension name is the shortest suffix ext of name0 where:

  • name0 is the longest suffix of name that does not contain a directory separator;
  • ext starts with a period;
  • ext is preceded by at least one non-period character in name0.

If such a suffix does not exist, extension name is the empty string.

  • Since 4.04
val remove_extension : string -> string

Return the given file name without its extension, as defined in Filename.extension. If the extension is empty, the function returns the given file name.

The following invariant holds for any file name s:

remove_extension s ^ extension s = s

  • Since 4.04
val chop_extension : string -> string

Same as Filename.remove_extension, but raise Invalid_argument if the given name has an empty extension.

val basename : string -> string

Split a file name into directory name / base file name. If name is a valid file name, then concat (dirname name) (basename name) returns a file name which is equivalent to name. Moreover, after setting the current directory to dirname name (with Sys.chdir), references to basename name (which is a relative file name) designate the same file as name before the call to Sys.chdir.

This function conforms to the specification of POSIX.1-2008 for the basename utility.

val dirname : string -> string

See Filename.basename. This function conforms to the specification of POSIX.1-2008 for the dirname utility.

val null : string

null is "/dev/null" on POSIX and "NUL" on Windows. It represents a file on the OS that discards all writes and returns end of file on reads.

  • Since 4.10.0
val temp_file : ?temp_dir:string -> string -> string -> string

temp_file prefix suffix returns the name of a fresh temporary file in the temporary directory. The base name of the temporary file is formed by concatenating prefix, then a suitably chosen integer number, then suffix. The optional argument temp_dir indicates the temporary directory to use, defaulting to the current result of Filename.get_temp_dir_name. The temporary file is created empty, with permissions 0o600 (readable and writable only by the file owner). The file is guaranteed to be different from any other file that existed when temp_file was called.

  • Before 3.11.2 no ?temp_dir optional argument
  • Raises Sys_error if the file could not be created.
val open_temp_file : ?mode:open_flag list ->
?perms:int ->
?temp_dir:string -> string -> string -> string * out_channel

Same as Filename.temp_file, but returns both the name of a fresh temporary file, and an output channel opened (atomically) on this file. This function is more secure than temp_file: there is no risk that the temporary file will be modified (e.g. replaced by a symbolic link) before the program opens it. The optional argument mode is a list of additional flags to control the opening of the file. It can contain one or several of Open_append, Open_binary, and Open_text. The default is [Open_text] (open in text mode). The file is created with permissions perms (defaults to readable and writable only by the file owner, 0o600).

  • Before 4.03.0 no ?perms optional argument
  • Before 3.11.2 no ?temp_dir optional argument
  • Raises Sys_error if the file could not be opened.
val get_temp_dir_name : unit -> string

The name of the temporary directory: Under Unix, the value of the TMPDIR environment variable, or "/tmp" if the variable is not set. Under Windows, the value of the TEMP environment variable, or "." if the variable is not set. The temporary directory can be changed with Filename.set_temp_dir_name.

  • Since 4.00.0
val set_temp_dir_name : string -> unit

Change the temporary directory returned by Filename.get_temp_dir_name and used by Filename.temp_file and Filename.open_temp_file.

  • Since 4.00.0
val temp_dir_name : string
Deprecated.You should use Filename.get_temp_dir_name instead.

The name of the initial temporary directory: Under Unix, the value of the TMPDIR environment variable, or "/tmp" if the variable is not set. Under Windows, the value of the TEMP environment variable, or "." if the variable is not set.

  • Since 3.09.1
val quote : string -> string

Return a quoted version of a file name, suitable for use as one argument in a command line, escaping all meta-characters. Warning: under Windows, the output is only suitable for use with programs that follow the standard Windows quoting conventions.

val quote_command : string ->
?stdin:string -> ?stdout:string -> ?stderr:string -> string list -> string

quote_command cmd args returns a quoted command line, suitable for use as an argument to Sys.command, Unix.system, and the Unix.open_process functions.

The string cmd is the command to call. The list args is the list of arguments to pass to this command. It can be empty.

The optional arguments ?stdin and ?stdout and ?stderr are file names used to redirect the standard input, the standard output, or the standard error of the command. If ~stdin:f is given, a redirection < f is performed and the standard input of the command reads from file f. If ~stdout:f is given, a redirection > f is performed and the standard output of the command is written to file f. If ~stderr:f is given, a redirection 2> f is performed and the standard error of the command is written to file f. If both ~stdout:f and ~stderr:f are given, with the exact same file name f, a 2>&1 redirection is performed so that the standard output and the standard error of the command are interleaved and redirected to the same file f.

Under Unix and Cygwin, the command, the arguments, and the redirections if any are quoted using Filename.quote, then concatenated. Under Win32, additional quoting is performed as required by the cmd.exe shell that is called by Sys.command.

  • Raises Failure if the command cannot be escaped on the current platform.
ocaml-doc-4.11/ocaml.html/libref/CamlinternalOO.html0000644000175000017500000005750113717225552021312 0ustar mehdimehdi CamlinternalOO

Module CamlinternalOO

module CamlinternalOO: sig .. end

Run-time support for objects and classes. All functions in this module are for system use only, not for the casual user.


Classes

type tag 
type label 
type table 
type meth 
type t 
type obj 
type closure 
val public_method_label : string -> tag
val new_method : table -> label
val new_variable : table -> string -> int
val new_methods_variables : table ->
string array -> string array -> label array
val get_variable : table -> string -> int
val get_variables : table -> string array -> int array
val get_method_label : table -> string -> label
val get_method_labels : table -> string array -> label array
val get_method : table -> label -> meth
val set_method : table -> label -> meth -> unit
val set_methods : table -> label array -> unit
val narrow : table -> string array -> string array -> string array -> unit
val widen : table -> unit
val add_initializer : table -> (obj -> unit) -> unit
val dummy_table : table
val create_table : string array -> table
val init_class : table -> unit
val inherits : table ->
string array ->
string array ->
string array ->
t *
(table -> obj -> Obj.t) *
t * obj -> bool -> Obj.t array
val make_class : string array ->
(table -> Obj.t -> t) ->
t *
(table -> Obj.t -> t) *
(Obj.t -> t) * Obj.t
type init_table 
val make_class_store : string array ->
(table -> t) ->
init_table -> unit
val dummy_class : string * int * int ->
t *
(table -> Obj.t -> t) *
(Obj.t -> t) * Obj.t

Objects

val copy : (< .. > as 'a) -> 'a
val create_object : table -> obj
val create_object_opt : obj -> table -> obj
val run_initializers : obj -> table -> unit
val run_initializers_opt : obj ->
obj -> table -> obj
val create_object_and_run_initializers : obj -> table -> obj
val send : obj -> tag -> t
val sendcache : obj ->
tag -> t -> int -> t
val sendself : obj -> label -> t
val get_public_method : obj -> tag -> closure

Table cache

type tables 
val lookup_tables : tables ->
closure array -> tables

Builtins to reduce code size

type impl = 
| GetConst
| GetVar
| GetEnv
| GetMeth
| SetVar
| AppConst
| AppVar
| AppEnv
| AppMeth
| AppConstConst
| AppConstVar
| AppConstEnv
| AppConstMeth
| AppVarConst
| AppEnvConst
| AppMethConst
| MethAppConst
| MethAppVar
| MethAppEnv
| MethAppMeth
| SendConst
| SendVar
| SendEnv
| SendMeth
| Closure of closure

Parameters

type params = {
   mutable compact_table : bool;
   mutable copy_parent : bool;
   mutable clean_when_copying : bool;
   mutable retry_count : int;
   mutable bucket_small_size : int;
}
val params : params

Statistics

type stats = {
   classes : int;
   methods : int;
   inst_vars : int;
}
val stats : unit -> stats
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Gc.html0000644000175000017500000013103013717225552020202 0ustar mehdimehdi Stdlib.Gc

Module Stdlib.Gc

module Gc: Gc

type stat = {
   minor_words : float; (*

Number of words allocated in the minor heap since the program was started.

*)
   promoted_words : float; (*

Number of words allocated in the minor heap that survived a minor collection and were moved to the major heap since the program was started.

*)
   major_words : float; (*

Number of words allocated in the major heap, including the promoted words, since the program was started.

*)
   minor_collections : int; (*

Number of minor collections since the program was started.

*)
   major_collections : int; (*

Number of major collection cycles completed since the program was started.

*)
   heap_words : int; (*

Total size of the major heap, in words.

*)
   heap_chunks : int; (*

Number of contiguous pieces of memory that make up the major heap.

*)
   live_words : int; (*

Number of words of live data in the major heap, including the header words.

*)
   live_blocks : int; (*

Number of live blocks in the major heap.

*)
   free_words : int; (*

Number of words in the free list.

*)
   free_blocks : int; (*

Number of blocks in the free list.

*)
   largest_free : int; (*

Size (in words) of the largest block in the free list.

*)
   fragments : int; (*

Number of wasted words due to fragmentation. These are 1-words free blocks placed between two live blocks. They are not available for allocation.

*)
   compactions : int; (*

Number of heap compactions since the program was started.

*)
   top_heap_words : int; (*

Maximum size reached by the major heap, in words.

*)
   stack_size : int; (*

Current size of the stack, in words.

  • Since 3.12.0
*)
}

The memory management counters are returned in a stat record.

The total amount of memory allocated by the program since it was started is (in words) minor_words + major_words - promoted_words. Multiply by the word size (4 on a 32-bit machine, 8 on a 64-bit machine) to get the number of bytes.

type control = {
   mutable minor_heap_size : int; (*

The size (in words) of the minor heap. Changing this parameter will trigger a minor collection. Default: 256k.

*)
   mutable major_heap_increment : int; (*

How much to add to the major heap when increasing it. If this number is less than or equal to 1000, it is a percentage of the current heap size (i.e. setting it to 100 will double the heap size at each increase). If it is more than 1000, it is a fixed number of words that will be added to the heap. Default: 15.

*)
   mutable space_overhead : int; (*

The major GC speed is computed from this parameter. This is the memory that will be "wasted" because the GC does not immediately collect unreachable blocks. It is expressed as a percentage of the memory used for live data. The GC will work more (use more CPU time and collect blocks more eagerly) if space_overhead is smaller. Default: 80.

*)
   mutable verbose : int; (*

This value controls the GC messages on standard error output. It is a sum of some of the following flags, to print messages on the corresponding events:

  • 0x001 Start of major GC cycle.
  • 0x002 Minor collection and major GC slice.
  • 0x004 Growing and shrinking of the heap.
  • 0x008 Resizing of stacks and memory manager tables.
  • 0x010 Heap compaction.
  • 0x020 Change of GC parameters.
  • 0x040 Computation of major GC slice size.
  • 0x080 Calling of finalisation functions.
  • 0x100 Bytecode executable and shared library search at start-up.
  • 0x200 Computation of compaction-triggering condition.
  • 0x400 Output GC statistics at program exit. Default: 0.
*)
   mutable max_overhead : int; (*

Heap compaction is triggered when the estimated amount of "wasted" memory is more than max_overhead percent of the amount of live data. If max_overhead is set to 0, heap compaction is triggered at the end of each major GC cycle (this setting is intended for testing purposes only). If max_overhead >= 1000000, compaction is never triggered. If compaction is permanently disabled, it is strongly suggested to set allocation_policy to 2. Default: 500.

*)
   mutable stack_limit : int; (*

The maximum size of the stack (in words). This is only relevant to the byte-code runtime, as the native code runtime uses the operating system's stack. Default: 1024k.

*)
   mutable allocation_policy : int; (*

The policy used for allocating in the major heap. Possible values are 0, 1 and 2.

  • 0 is the next-fit policy, which is usually fast but can result in fragmentation, increasing memory consumption.
  • 1 is the first-fit policy, which avoids fragmentation but has corner cases (in certain realistic workloads) where it is sensibly slower.
  • 2 is the best-fit policy, which is fast and avoids fragmentation. In our experiments it is faster and uses less memory than both next-fit and first-fit. (since OCaml 4.10)

The current default is next-fit, as the best-fit policy is new and not yet widely tested. We expect best-fit to become the default in the future.

On one example that was known to be bad for next-fit and first-fit, next-fit takes 28s using 855Mio of memory, first-fit takes 47s using 566Mio of memory, best-fit takes 27s using 545Mio of memory.

Note: When changing to a low-fragmentation policy, you may need to augment the space_overhead setting, for example using 100 instead of the default 80 which is tuned for next-fit. Indeed, the difference in fragmentation behavior means that different policies will have different proportion of "wasted space" for a given program. Less fragmentation means a smaller heap so, for the same amount of wasted space, a higher proportion of wasted space. This makes the GC work harder, unless you relax it by increasing space_overhead.

Note: changing the allocation policy at run-time forces a heap compaction, which is a lengthy operation unless the heap is small (e.g. at the start of the program).

Default: 0.

  • Since 3.11.0
*)
   window_size : int; (*

The size of the window used by the major GC for smoothing out variations in its workload. This is an integer between 1 and 50. Default: 1.

  • Since 4.03.0
*)
   custom_major_ratio : int; (*

Target ratio of floating garbage to major heap size for out-of-heap memory held by custom values located in the major heap. The GC speed is adjusted to try to use this much memory for dead values that are not yet collected. Expressed as a percentage of major heap size. The default value keeps the out-of-heap floating garbage about the same size as the in-heap overhead. Note: this only applies to values allocated with caml_alloc_custom_mem (e.g. bigarrays). Default: 44.

  • Since 4.08.0
*)
   custom_minor_ratio : int; (*

Bound on floating garbage for out-of-heap memory held by custom values in the minor heap. A minor GC is triggered when this much memory is held by custom values located in the minor heap. Expressed as a percentage of minor heap size. Note: this only applies to values allocated with caml_alloc_custom_mem (e.g. bigarrays). Default: 100.

  • Since 4.08.0
*)
   custom_minor_max_size : int; (*

Maximum amount of out-of-heap memory for each custom value allocated in the minor heap. When a custom value is allocated on the minor heap and holds more than this many bytes, only this value is counted against custom_minor_ratio and the rest is directly counted against custom_major_ratio. Note: this only applies to values allocated with caml_alloc_custom_mem (e.g. bigarrays). Default: 8192 bytes.

  • Since 4.08.0
*)
}

The GC parameters are given as a control record. Note that these parameters can also be initialised by setting the OCAMLRUNPARAM environment variable. See the documentation of ocamlrun.

val stat : unit -> stat

Return the current values of the memory management counters in a stat record. This function examines every heap block to get the statistics.

val quick_stat : unit -> stat

Same as stat except that live_words, live_blocks, free_words, free_blocks, largest_free, and fragments are set to 0. This function is much faster than stat because it does not need to go through the heap.

val counters : unit -> float * float * float

Return (minor_words, promoted_words, major_words). This function is as fast as quick_stat.

val minor_words : unit -> float

Number of words allocated in the minor heap since the program was started. This number is accurate in byte-code programs, but only an approximation in programs compiled to native code.

In native code this function does not allocate.

  • Since 4.04
val get : unit -> control

Return the current values of the GC parameters in a control record.

val set : control -> unit

set r changes the GC parameters according to the control record r. The normal usage is: Gc.set { (Gc.get()) with Gc.verbose = 0x00d }

val minor : unit -> unit

Trigger a minor collection.

val major_slice : int -> int

major_slice n Do a minor collection and a slice of major collection. n is the size of the slice: the GC will do enough work to free (on average) n words of memory. If n = 0, the GC will try to do enough work to ensure that the next automatic slice has no work to do. This function returns an unspecified integer (currently: 0).

val major : unit -> unit

Do a minor collection and finish the current major collection cycle.

val full_major : unit -> unit

Do a minor collection, finish the current major collection cycle, and perform a complete new cycle. This will collect all currently unreachable blocks.

val compact : unit -> unit

Perform a full major collection and compact the heap. Note that heap compaction is a lengthy operation.

val print_stat : out_channel -> unit

Print the current values of the memory management counters (in human-readable form) into the channel argument.

val allocated_bytes : unit -> float

Return the total number of bytes allocated since the program was started. It is returned as a float to avoid overflow problems with int on 32-bit machines.

val get_minor_free : unit -> int

Return the current size of the free space inside the minor heap.

  • Since 4.03.0
val get_bucket : int -> int

get_bucket n returns the current size of the n-th future bucket of the GC smoothing system. The unit is one millionth of a full GC.

  • Since 4.03.0
  • Raises Invalid_argument if n is negative, return 0 if n is larger than the smoothing window.
val get_credit : unit -> int

get_credit () returns the current size of the "work done in advance" counter of the GC smoothing system. The unit is one millionth of a full GC.

  • Since 4.03.0
val huge_fallback_count : unit -> int

Return the number of times we tried to map huge pages and had to fall back to small pages. This is always 0 if OCAMLRUNPARAM contains H=1.

  • Since 4.03.0
val finalise : ('a -> unit) -> 'a -> unit

finalise f v registers f as a finalisation function for v. v must be heap-allocated. f will be called with v as argument at some point between the first time v becomes unreachable (including through weak pointers) and the time v is collected by the GC. Several functions can be registered for the same value, or even several instances of the same function. Each instance will be called once (or never, if the program terminates before v becomes unreachable).

The GC will call the finalisation functions in the order of deallocation. When several values become unreachable at the same time (i.e. during the same GC cycle), the finalisation functions will be called in the reverse order of the corresponding calls to finalise. If finalise is called in the same order as the values are allocated, that means each value is finalised before the values it depends upon. Of course, this becomes false if additional dependencies are introduced by assignments.

In the presence of multiple OCaml threads it should be assumed that any particular finaliser may be executed in any of the threads.

Anything reachable from the closure of finalisation functions is considered reachable, so the following code will not work as expected:

  •  let v = ... in Gc.finalise (fun _ -> ...v...) v 

Instead you should make sure that v is not in the closure of the finalisation function by writing:

  •  let f = fun x -> ...  let v = ... in Gc.finalise f v 

The f function can use all features of OCaml, including assignments that make the value reachable again. It can also loop forever (in this case, the other finalisation functions will not be called during the execution of f, unless it calls finalise_release). It can call finalise on v or other values to register other functions or even itself. It can raise an exception; in this case the exception will interrupt whatever the program was doing when the function was called.

finalise will raise Invalid_argument if v is not guaranteed to be heap-allocated. Some examples of values that are not heap-allocated are integers, constant constructors, booleans, the empty array, the empty list, the unit value. The exact list of what is heap-allocated or not is implementation-dependent. Some constant values can be heap-allocated but never deallocated during the lifetime of the program, for example a list of integer constants; this is also implementation-dependent. Note that values of types float are sometimes allocated and sometimes not, so finalising them is unsafe, and finalise will also raise Invalid_argument for them. Values of type 'Lazy.t (for any 'a) are like float in this respect, except that the compiler sometimes optimizes them in a way that prevents finalise from detecting them. In this case, it will not raise Invalid_argument, but you should still avoid calling finalise on lazy values.

The results of calling String.make, Bytes.make, Bytes.create, Array.make, and ref are guaranteed to be heap-allocated and non-constant except when the length argument is 0.

val finalise_last : (unit -> unit) -> 'a -> unit

same as Gc.finalise except the value is not given as argument. So you can't use the given value for the computation of the finalisation function. The benefit is that the function is called after the value is unreachable for the last time instead of the first time. So contrary to Gc.finalise the value will never be reachable again or used again. In particular every weak pointer and ephemeron that contained this value as key or data is unset before running the finalisation function. Moreover the finalisation functions attached with Gc.finalise are always called before the finalisation functions attached with Gc.finalise_last.

  • Since 4.04
val finalise_release : unit -> unit

A finalisation function may call finalise_release to tell the GC that it can launch the next finalisation function without waiting for the current one to return.

type alarm 

An alarm is a piece of data that calls a user function at the end of each major GC cycle. The following functions are provided to create and delete alarms.

val create_alarm : (unit -> unit) -> alarm

create_alarm f will arrange for f to be called at the end of each major GC cycle, starting with the current cycle or the next one. A value of type alarm is returned that you can use to call delete_alarm.

val delete_alarm : alarm -> unit

delete_alarm a will stop the calls to the function associated to a. Calling delete_alarm a again has no effect.

val eventlog_pause : unit -> unit

eventlog_pause () will pause the collection of traces in the runtime. Traces are collected if the program is linked to the instrumented runtime and started with the environment variable OCAML_EVENTLOG_ENABLED. Events are flushed to disk after pausing, and no new events will be recorded until eventlog_resume is called.

val eventlog_resume : unit -> unit

eventlog_resume () will resume the collection of traces in the runtime. Traces are collected if the program is linked to the instrumented runtime and started with the environment variable OCAML_EVENTLOG_ENABLED. This call can be used after calling eventlog_pause, or if the program was started with OCAML_EVENTLOG_ENABLED=p. (which pauses the collection of traces before the first event.)

module Memprof: sig .. end

Memprof is a sampling engine for allocated memory words.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Oo.html0000644000175000017500000001432713717225553020240 0ustar mehdimehdi Stdlib.Oo

Module Stdlib.Oo

module Oo: Oo

val copy : (< .. > as 'a) -> 'a

Oo.copy o returns a copy of object o, that is a fresh object with the same methods and instance variables as o.

val id : < .. > -> int

Return an integer identifying this object, unique for the current execution of the program. The generic comparison and hashing functions are based on this integer. When an object is obtained by unmarshaling, the id is refreshed, and thus different from the original object. As a consequence, the internal invariants of data structures such as hash table or sets containing objects are broken after unmarshaling the data structures.

ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.SeededS.html0000644000175000017500000004055513717225553024432 0ustar mehdimehdi MoreLabels.Hashtbl.SeededS sig
  type key
  and 'a t
  val create : ?random:bool -> int -> 'MoreLabels.Hashtbl.SeededS.t
  val clear : 'MoreLabels.Hashtbl.SeededS.t -> unit
  val reset : 'MoreLabels.Hashtbl.SeededS.t -> unit
  val copy :
    'MoreLabels.Hashtbl.SeededS.t -> 'MoreLabels.Hashtbl.SeededS.t
  val add :
    'MoreLabels.Hashtbl.SeededS.t ->
    key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit
  val remove :
    'MoreLabels.Hashtbl.SeededS.t -> MoreLabels.Hashtbl.SeededS.key -> unit
  val find :
    'MoreLabels.Hashtbl.SeededS.t -> MoreLabels.Hashtbl.SeededS.key -> 'a
  val find_opt :
    'MoreLabels.Hashtbl.SeededS.t ->
    MoreLabels.Hashtbl.SeededS.key -> 'a option
  val find_all :
    'MoreLabels.Hashtbl.SeededS.t ->
    MoreLabels.Hashtbl.SeededS.key -> 'a list
  val replace :
    'MoreLabels.Hashtbl.SeededS.t ->
    key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit
  val mem :
    'MoreLabels.Hashtbl.SeededS.t -> MoreLabels.Hashtbl.SeededS.key -> bool
  val iter :
    f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit) ->
    'MoreLabels.Hashtbl.SeededS.t -> unit
  val filter_map_inplace :
    f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> 'a option) ->
    'MoreLabels.Hashtbl.SeededS.t -> unit
  val fold :
    f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> '-> 'b) ->
    'MoreLabels.Hashtbl.SeededS.t -> init:'-> 'b
  val length : 'MoreLabels.Hashtbl.SeededS.t -> int
  val stats :
    'MoreLabels.Hashtbl.SeededS.t -> MoreLabels.Hashtbl.statistics
  val to_seq :
    'MoreLabels.Hashtbl.SeededS.t ->
    (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t
  val to_seq_keys :
    'MoreLabels.Hashtbl.SeededS.t ->
    MoreLabels.Hashtbl.SeededS.key Stdlib.Seq.t
  val to_seq_values : 'MoreLabels.Hashtbl.SeededS.t -> 'Stdlib.Seq.t
  val add_seq :
    'MoreLabels.Hashtbl.SeededS.t ->
    (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
  val replace_seq :
    'MoreLabels.Hashtbl.SeededS.t ->
    (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
  val of_seq :
    (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t ->
    'MoreLabels.Hashtbl.SeededS.t
end
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.MakeSeeded.html0000644000175000017500000002672513717225553025110 0ustar mehdimehdi MoreLabels.Hashtbl.MakeSeeded functor (H : SeededHashedType->
  sig
    type key = H.t
    and 'a t = 'Hashtbl.MakeSeeded(H).t
    val create : ?random:bool -> int -> 'a t
    val clear : 'a t -> unit
    val reset : 'a t -> unit
    val copy : 'a t -> 'a t
    val add : 'a t -> key:key -> data:'-> unit
    val remove : 'a t -> key -> unit
    val find : 'a t -> key -> 'a
    val find_opt : 'a t -> key -> 'a option
    val find_all : 'a t -> key -> 'a list
    val replace : 'a t -> key:key -> data:'-> unit
    val mem : 'a t -> key -> bool
    val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
    val filter_map_inplace :
      f:(key:key -> data:'-> 'a option) -> 'a t -> unit
    val fold : f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
    val length : 'a t -> int
    val stats : 'a t -> statistics
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_keys : 'a t -> key Seq.t
    val to_seq_values : 'a t -> 'Seq.t
    val add_seq : 'a t -> (key * 'a) Seq.t -> unit
    val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
    val of_seq : (key * 'a) Seq.t -> 'a t
  end
ocaml-doc-4.11/ocaml.html/libref/type_Str.html0000644000175000017500000002743513717225553020260 0ustar mehdimehdi Str sig
  type regexp
  val regexp : string -> Str.regexp
  val regexp_case_fold : string -> Str.regexp
  val quote : string -> string
  val regexp_string : string -> Str.regexp
  val regexp_string_case_fold : string -> Str.regexp
  val string_match : Str.regexp -> string -> int -> bool
  val search_forward : Str.regexp -> string -> int -> int
  val search_backward : Str.regexp -> string -> int -> int
  val string_partial_match : Str.regexp -> string -> int -> bool
  val matched_string : string -> string
  val match_beginning : unit -> int
  val match_end : unit -> int
  val matched_group : int -> string -> string
  val group_beginning : int -> int
  val group_end : int -> int
  val global_replace : Str.regexp -> string -> string -> string
  val replace_first : Str.regexp -> string -> string -> string
  val global_substitute :
    Str.regexp -> (string -> string) -> string -> string
  val substitute_first : Str.regexp -> (string -> string) -> string -> string
  val replace_matched : string -> string -> string
  val split : Str.regexp -> string -> string list
  val bounded_split : Str.regexp -> string -> int -> string list
  val split_delim : Str.regexp -> string -> string list
  val bounded_split_delim : Str.regexp -> string -> int -> string list
  type split_result = Text of string | Delim of string
  val full_split : Str.regexp -> string -> Str.split_result list
  val bounded_full_split :
    Str.regexp -> string -> int -> Str.split_result list
  val string_before : string -> int -> string
  val string_after : string -> int -> string
  val first_chars : string -> int -> string
  val last_chars : string -> int -> string
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Int64.html0000644000175000017500000001126613717225553021627 0ustar mehdimehdi Stdlib.Int64 (module Stdlib__int64) ocaml-doc-4.11/ocaml.html/libref/type_Sys.Immediate64.Non_immediate.html0000644000175000017500000001134213717225553025072 0ustar mehdimehdi Sys.Immediate64.Non_immediate sig type t end ocaml-doc-4.11/ocaml.html/libref/type_Sys.Immediate64.html0000644000175000017500000001637313717225553022334 0ustar mehdimehdi Sys.Immediate64 sig
  module type Non_immediate = sig type t end
  module type Immediate = sig type t [@@immediate] end
  module Make :
    functor (Immediate : Immediate) (Non_immediate : Non_immediate->
      sig
        type t [@@immediate64]
        type 'a repr =
            Immediate : Sys.Immediate64.Immediate.t Sys.Immediate64.Make.repr
          | Non_immediate :
              Sys.Immediate64.Non_immediate.t Sys.Immediate64.Make.repr
        val repr : Sys.Immediate64.Make.t Sys.Immediate64.Make.repr
      end
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Arg.html0000644000175000017500000001126213717225552021427 0ustar mehdimehdi Stdlib.Arg (module Stdlib__arg) ocaml-doc-4.11/ocaml.html/libref/type_List.html0000644000175000017500000006524213717225552020420 0ustar mehdimehdi List sig
  type 'a t = 'a list = [] | (::) of 'a * 'a list
  val length : 'a list -> int
  val compare_lengths : 'a list -> 'b list -> int
  val compare_length_with : 'a list -> int -> int
  val cons : '-> 'a list -> 'a list
  val hd : 'a list -> 'a
  val tl : 'a list -> 'a list
  val nth : 'a list -> int -> 'a
  val nth_opt : 'a list -> int -> 'a option
  val rev : 'a list -> 'a list
  val init : int -> (int -> 'a) -> 'a list
  val append : 'a list -> 'a list -> 'a list
  val rev_append : 'a list -> 'a list -> 'a list
  val concat : 'a list list -> 'a list
  val flatten : 'a list list -> 'a list
  val iter : ('-> unit) -> 'a list -> unit
  val iteri : (int -> '-> unit) -> 'a list -> unit
  val map : ('-> 'b) -> 'a list -> 'b list
  val mapi : (int -> '-> 'b) -> 'a list -> 'b list
  val rev_map : ('-> 'b) -> 'a list -> 'b list
  val filter_map : ('-> 'b option) -> 'a list -> 'b list
  val concat_map : ('-> 'b list) -> 'a list -> 'b list
  val fold_left_map : ('-> '-> 'a * 'c) -> '-> 'b list -> 'a * 'c list
  val fold_left : ('-> '-> 'a) -> '-> 'b list -> 'a
  val fold_right : ('-> '-> 'b) -> 'a list -> '-> 'b
  val iter2 : ('-> '-> unit) -> 'a list -> 'b list -> unit
  val map2 : ('-> '-> 'c) -> 'a list -> 'b list -> 'c list
  val rev_map2 : ('-> '-> 'c) -> 'a list -> 'b list -> 'c list
  val fold_left2 : ('-> '-> '-> 'a) -> '-> 'b list -> 'c list -> 'a
  val fold_right2 : ('-> '-> '-> 'c) -> 'a list -> 'b list -> '-> 'c
  val for_all : ('-> bool) -> 'a list -> bool
  val exists : ('-> bool) -> 'a list -> bool
  val for_all2 : ('-> '-> bool) -> 'a list -> 'b list -> bool
  val exists2 : ('-> '-> bool) -> 'a list -> 'b list -> bool
  val mem : '-> 'a list -> bool
  val memq : '-> 'a list -> bool
  val find : ('-> bool) -> 'a list -> 'a
  val find_opt : ('-> bool) -> 'a list -> 'a option
  val find_map : ('-> 'b option) -> 'a list -> 'b option
  val filter : ('-> bool) -> 'a list -> 'a list
  val find_all : ('-> bool) -> 'a list -> 'a list
  val filteri : (int -> '-> bool) -> 'a list -> 'a list
  val partition : ('-> bool) -> 'a list -> 'a list * 'a list
  val assoc : '-> ('a * 'b) list -> 'b
  val assoc_opt : '-> ('a * 'b) list -> 'b option
  val assq : '-> ('a * 'b) list -> 'b
  val assq_opt : '-> ('a * 'b) list -> 'b option
  val mem_assoc : '-> ('a * 'b) list -> bool
  val mem_assq : '-> ('a * 'b) list -> bool
  val remove_assoc : '-> ('a * 'b) list -> ('a * 'b) list
  val remove_assq : '-> ('a * 'b) list -> ('a * 'b) list
  val split : ('a * 'b) list -> 'a list * 'b list
  val combine : 'a list -> 'b list -> ('a * 'b) list
  val sort : ('-> '-> int) -> 'a list -> 'a list
  val stable_sort : ('-> '-> int) -> 'a list -> 'a list
  val fast_sort : ('-> '-> int) -> 'a list -> 'a list
  val sort_uniq : ('-> '-> int) -> 'a list -> 'a list
  val merge : ('-> '-> int) -> 'a list -> 'a list -> 'a list
  val to_seq : 'a list -> 'Stdlib.Seq.t
  val of_seq : 'Stdlib.Seq.t -> 'a list
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.StdLabels.html0000644000175000017500000001127613717225553022601 0ustar mehdimehdi Stdlib.StdLabels (module Stdlib__stdLabels) ocaml-doc-4.11/ocaml.html/libref/type_Obj.Extension_constructor.html0000644000175000017500000001267313717225553024640 0ustar mehdimehdi Obj.Extension_constructor sig
  type t = extension_constructor
  val of_val : '-> Obj.Extension_constructor.t
  val name : Obj.Extension_constructor.t -> string
  val id : Obj.Extension_constructor.t -> int
end
ocaml-doc-4.11/ocaml.html/libref/index_classes.html0000644000175000017500000001132013717225553021255 0ustar mehdimehdi Index of classes

Index of classes

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Weak.html0000644000175000017500000001126413717225553021610 0ustar mehdimehdi Stdlib.Weak (module Stdlib__weak) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Parsing.html0000644000175000017500000002450613717225553021266 0ustar mehdimehdi Stdlib.Parsing

Module Stdlib.Parsing

module Parsing: Parsing

val symbol_start : unit -> int

symbol_start and Parsing.symbol_end are to be called in the action part of a grammar rule only. They return the offset of the string that matches the left-hand side of the rule: symbol_start() returns the offset of the first character; symbol_end() returns the offset after the last character. The first character in a file is at offset 0.

val symbol_end : unit -> int
val rhs_start : int -> int

Same as Parsing.symbol_start and Parsing.symbol_end, but return the offset of the string matching the nth item on the right-hand side of the rule, where n is the integer parameter to rhs_start and rhs_end. n is 1 for the leftmost item.

val rhs_end : int -> int
val symbol_start_pos : unit -> Lexing.position

Same as symbol_start, but return a position instead of an offset.

val symbol_end_pos : unit -> Lexing.position

Same as symbol_end, but return a position instead of an offset.

val rhs_start_pos : int -> Lexing.position

Same as rhs_start, but return a position instead of an offset.

val rhs_end_pos : int -> Lexing.position

Same as rhs_end, but return a position instead of an offset.

val clear_parser : unit -> unit

Empty the parser stack. Call it just after a parsing function has returned, to remove all pointers from the parser stack to structures that were built by semantic actions during parsing. This is optional, but lowers the memory requirements of the programs.

exception Parse_error

Raised when a parser encounters a syntax error. Can also be raised from the action part of a grammar rule, to initiate error recovery.

val set_trace : bool -> bool

Control debugging support for ocamlyacc-generated parsers. After Parsing.set_trace true, the pushdown automaton that executes the parsers prints a trace of its actions (reading a token, shifting a state, reducing by a rule) on standard output. Parsing.set_trace false turns this debugging trace off. The boolean returned is the previous state of the trace flag.

  • Since 3.11.0
ocaml-doc-4.11/ocaml.html/libref/Hashtbl.MakeSeeded.html0000644000175000017500000003135713717225553022020 0ustar mehdimehdi Hashtbl.MakeSeeded

Functor Hashtbl.MakeSeeded

module MakeSeeded: 
functor (H : SeededHashedType-> SeededS with type key = H.t

Functor building an implementation of the hashtable structure. The functor Hashtbl.MakeSeeded returns a structure containing a type key of keys and a type 'a t of hash tables associating data of type 'a to keys of type key. The operations perform similarly to those of the generic interface, but use the seeded hashing and equality functions specified in the functor argument H instead of generic equality and hashing. The create operation of the result structure supports the ~random optional parameter and returns randomized hash tables if ~random:true is passed or if randomization is globally on (see Hashtbl.randomize).

  • Since 4.00.0
Parameters:
H : SeededHashedType

type key 
type 'a t 
val create : ?random:bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
  • Since 4.05.0
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace : (key -> 'a -> 'a option) -> 'a t -> unit
  • Since 4.03.0
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats : 'a t -> Hashtbl.statistics
val to_seq : 'a t -> (key * 'a) Seq.t
  • Since 4.07
val to_seq_keys : 'a t -> key Seq.t
  • Since 4.07
val to_seq_values : 'a t -> 'a Seq.t
  • Since 4.07
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
  • Since 4.07
val of_seq : (key * 'a) Seq.t -> 'a t
  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.html0000644000175000017500000016337613717225553023126 0ustar mehdimehdi MoreLabels.Hashtbl sig
  type ('a, 'b) t = ('a, 'b) Stdlib.Hashtbl.t
  val create : ?random:bool -> int -> ('a, 'b) MoreLabels.Hashtbl.t
  val clear : ('a, 'b) MoreLabels.Hashtbl.t -> unit
  val reset : ('a, 'b) MoreLabels.Hashtbl.t -> unit
  val copy : ('a, 'b) MoreLabels.Hashtbl.t -> ('a, 'b) MoreLabels.Hashtbl.t
  val add : ('a, 'b) MoreLabels.Hashtbl.t -> key:'-> data:'-> unit
  val find : ('a, 'b) MoreLabels.Hashtbl.t -> '-> 'b
  val find_opt : ('a, 'b) MoreLabels.Hashtbl.t -> '-> 'b option
  val find_all : ('a, 'b) MoreLabels.Hashtbl.t -> '-> 'b list
  val mem : ('a, 'b) MoreLabels.Hashtbl.t -> '-> bool
  val remove : ('a, 'b) MoreLabels.Hashtbl.t -> '-> unit
  val replace : ('a, 'b) MoreLabels.Hashtbl.t -> key:'-> data:'-> unit
  val iter :
    f:(key:'-> data:'-> unit) -> ('a, 'b) MoreLabels.Hashtbl.t -> unit
  val filter_map_inplace :
    f:(key:'-> data:'-> 'b option) ->
    ('a, 'b) MoreLabels.Hashtbl.t -> unit
  val fold :
    f:(key:'-> data:'-> '-> 'c) ->
    ('a, 'b) MoreLabels.Hashtbl.t -> init:'-> 'c
  val length : ('a, 'b) MoreLabels.Hashtbl.t -> int
  val randomize : unit -> unit
  val is_randomized : unit -> bool
  type statistics = Stdlib.Hashtbl.statistics
  val stats : ('a, 'b) MoreLabels.Hashtbl.t -> MoreLabels.Hashtbl.statistics
  val to_seq : ('a, 'b) MoreLabels.Hashtbl.t -> ('a * 'b) Stdlib.Seq.t
  val to_seq_keys : ('a, 'b) MoreLabels.Hashtbl.t -> 'Stdlib.Seq.t
  val to_seq_values : ('a, 'b) MoreLabels.Hashtbl.t -> 'Stdlib.Seq.t
  val add_seq :
    ('a, 'b) MoreLabels.Hashtbl.t -> ('a * 'b) Stdlib.Seq.t -> unit
  val replace_seq :
    ('a, 'b) MoreLabels.Hashtbl.t -> ('a * 'b) Stdlib.Seq.t -> unit
  val of_seq : ('a * 'b) Stdlib.Seq.t -> ('a, 'b) MoreLabels.Hashtbl.t
  module type HashedType = Hashtbl.HashedType
  module type SeededHashedType = Hashtbl.SeededHashedType
  module type S =
    sig
      type key
      and 'a t
      val create : int -> 'MoreLabels.Hashtbl.S.t
      val clear : 'MoreLabels.Hashtbl.S.t -> unit
      val reset : 'MoreLabels.Hashtbl.S.t -> unit
      val copy : 'MoreLabels.Hashtbl.S.t -> 'MoreLabels.Hashtbl.S.t
      val add :
        'MoreLabels.Hashtbl.S.t ->
        key:MoreLabels.Hashtbl.S.key -> data:'-> unit
      val remove :
        'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> unit
      val find : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a
      val find_opt :
        'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a option
      val find_all :
        'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> 'a list
      val replace :
        'MoreLabels.Hashtbl.S.t ->
        key:MoreLabels.Hashtbl.S.key -> data:'-> unit
      val mem : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key -> bool
      val iter :
        f:(key:MoreLabels.Hashtbl.S.key -> data:'-> unit) ->
        'MoreLabels.Hashtbl.S.t -> unit
      val filter_map_inplace :
        f:(key:MoreLabels.Hashtbl.S.key -> data:'-> 'a option) ->
        'MoreLabels.Hashtbl.S.t -> unit
      val fold :
        f:(key:MoreLabels.Hashtbl.S.key -> data:'-> '-> 'b) ->
        'MoreLabels.Hashtbl.S.t -> init:'-> 'b
      val length : 'MoreLabels.Hashtbl.S.t -> int
      val stats : 'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.statistics
      val to_seq :
        'MoreLabels.Hashtbl.S.t ->
        (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t
      val to_seq_keys :
        'MoreLabels.Hashtbl.S.t -> MoreLabels.Hashtbl.S.key Stdlib.Seq.t
      val to_seq_values : 'MoreLabels.Hashtbl.S.t -> 'Stdlib.Seq.t
      val add_seq :
        'MoreLabels.Hashtbl.S.t ->
        (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
      val replace_seq :
        'MoreLabels.Hashtbl.S.t ->
        (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
      val of_seq :
        (MoreLabels.Hashtbl.S.key * 'a) Stdlib.Seq.t ->
        'MoreLabels.Hashtbl.S.t
    end
  module type SeededS =
    sig
      type key
      and 'a t
      val create : ?random:bool -> int -> 'MoreLabels.Hashtbl.SeededS.t
      val clear : 'MoreLabels.Hashtbl.SeededS.t -> unit
      val reset : 'MoreLabels.Hashtbl.SeededS.t -> unit
      val copy :
        'MoreLabels.Hashtbl.SeededS.t -> 'MoreLabels.Hashtbl.SeededS.t
      val add :
        'MoreLabels.Hashtbl.SeededS.t ->
        key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit
      val remove :
        'MoreLabels.Hashtbl.SeededS.t ->
        MoreLabels.Hashtbl.SeededS.key -> unit
      val find :
        'MoreLabels.Hashtbl.SeededS.t ->
        MoreLabels.Hashtbl.SeededS.key -> 'a
      val find_opt :
        'MoreLabels.Hashtbl.SeededS.t ->
        MoreLabels.Hashtbl.SeededS.key -> 'a option
      val find_all :
        'MoreLabels.Hashtbl.SeededS.t ->
        MoreLabels.Hashtbl.SeededS.key -> 'a list
      val replace :
        'MoreLabels.Hashtbl.SeededS.t ->
        key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit
      val mem :
        'MoreLabels.Hashtbl.SeededS.t ->
        MoreLabels.Hashtbl.SeededS.key -> bool
      val iter :
        f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> unit) ->
        'MoreLabels.Hashtbl.SeededS.t -> unit
      val filter_map_inplace :
        f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> 'a option) ->
        'MoreLabels.Hashtbl.SeededS.t -> unit
      val fold :
        f:(key:MoreLabels.Hashtbl.SeededS.key -> data:'-> '-> 'b) ->
        'MoreLabels.Hashtbl.SeededS.t -> init:'-> 'b
      val length : 'MoreLabels.Hashtbl.SeededS.t -> int
      val stats :
        'MoreLabels.Hashtbl.SeededS.t -> MoreLabels.Hashtbl.statistics
      val to_seq :
        'MoreLabels.Hashtbl.SeededS.t ->
        (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t
      val to_seq_keys :
        'MoreLabels.Hashtbl.SeededS.t ->
        MoreLabels.Hashtbl.SeededS.key Stdlib.Seq.t
      val to_seq_values : 'MoreLabels.Hashtbl.SeededS.t -> 'Stdlib.Seq.t
      val add_seq :
        'MoreLabels.Hashtbl.SeededS.t ->
        (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
      val replace_seq :
        'MoreLabels.Hashtbl.SeededS.t ->
        (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t -> unit
      val of_seq :
        (MoreLabels.Hashtbl.SeededS.key * 'a) Stdlib.Seq.t ->
        'MoreLabels.Hashtbl.SeededS.t
    end
  module Make :
    functor (H : HashedType->
      sig
        type key = H.t
        and 'a t = 'Hashtbl.Make(H).t
        val create : int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key:key -> data:'-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key:key -> data:'-> unit
        val mem : 'a t -> key -> bool
        val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
        val filter_map_inplace :
          f:(key:key -> data:'-> 'a option) -> 'a t -> unit
        val fold :
          f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
        val length : 'a t -> int
        val stats : 'a t -> statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
      end
  module MakeSeeded :
    functor (H : SeededHashedType->
      sig
        type key = H.t
        and 'a t = 'Hashtbl.MakeSeeded(H).t
        val create : ?random:bool -> int -> 'a t
        val clear : 'a t -> unit
        val reset : 'a t -> unit
        val copy : 'a t -> 'a t
        val add : 'a t -> key:key -> data:'-> unit
        val remove : 'a t -> key -> unit
        val find : 'a t -> key -> 'a
        val find_opt : 'a t -> key -> 'a option
        val find_all : 'a t -> key -> 'a list
        val replace : 'a t -> key:key -> data:'-> unit
        val mem : 'a t -> key -> bool
        val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
        val filter_map_inplace :
          f:(key:key -> data:'-> 'a option) -> 'a t -> unit
        val fold :
          f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
        val length : 'a t -> int
        val stats : 'a t -> statistics
        val to_seq : 'a t -> (key * 'a) Seq.t
        val to_seq_keys : 'a t -> key Seq.t
        val to_seq_values : 'a t -> 'Seq.t
        val add_seq : 'a t -> (key * 'a) Seq.t -> unit
        val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
        val of_seq : (key * 'a) Seq.t -> 'a t
      end
  val hash : '-> int
  val seeded_hash : int -> '-> int
  val hash_param : int -> int -> '-> int
  val seeded_hash_param : int -> int -> int -> '-> int
end
ocaml-doc-4.11/ocaml.html/libref/type_Ocaml_operators.html0000644000175000017500000001124613717225552022631 0ustar mehdimehdi Ocaml_operators sig end ocaml-doc-4.11/ocaml.html/libref/Sys.Immediate64.Non_immediate.html0000644000175000017500000001270113717225553024031 0ustar mehdimehdi Sys.Immediate64.Non_immediate

Module type Sys.Immediate64.Non_immediate

module type Non_immediate = sig .. end

type t 
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Hashtbl.HashedType.html0000644000175000017500000001644613717225553024115 0ustar mehdimehdi MoreLabels.Hashtbl.HashedType

Module type MoreLabels.Hashtbl.HashedType

module type HashedType = Hashtbl.HashedType

type t 

The type of the hashtable keys.

val equal : t -> t -> bool

The equality predicate used to compare keys.

val hash : t -> int

A hashing function on keys. It must be such that if two keys are equal according to equal, then they have identical hash values as computed by hash. Examples: suitable (equal, hash) pairs for arbitrary key types include

  • ((=), Hashtbl.hash) for comparing objects by structure (provided objects do not contain floats)
  • ((fun x y -> compare x y = 0), Hashtbl.hash) for comparing objects by structure and handling nan correctly
  • ((==), Hashtbl.hash) for comparing objects by physical equality (e.g. for mutable or cyclic objects).
ocaml-doc-4.11/ocaml.html/libref/type_Map.Make.html0000644000175000017500000004457313717225553021103 0ustar mehdimehdi Map.Make functor (Ord : OrderedType->
  sig
    type key = Ord.t
    type +'a t
    val empty : 'a t
    val is_empty : 'a t -> bool
    val mem : key -> 'a t -> bool
    val add : key -> '-> 'a t -> 'a t
    val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
    val singleton : key -> '-> 'a t
    val remove : key -> 'a t -> 'a t
    val merge :
      (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
    val union : (key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
    val compare : ('-> '-> int) -> 'a t -> 'a t -> int
    val equal : ('-> '-> bool) -> 'a t -> 'a t -> bool
    val iter : (key -> '-> unit) -> 'a t -> unit
    val fold : (key -> '-> '-> 'b) -> 'a t -> '-> 'b
    val for_all : (key -> '-> bool) -> 'a t -> bool
    val exists : (key -> '-> bool) -> 'a t -> bool
    val filter : (key -> '-> bool) -> 'a t -> 'a t
    val filter_map : (key -> '-> 'b option) -> 'a t -> 'b t
    val partition : (key -> '-> bool) -> 'a t -> 'a t * 'a t
    val cardinal : 'a t -> int
    val bindings : 'a t -> (key * 'a) list
    val min_binding : 'a t -> key * 'a
    val min_binding_opt : 'a t -> (key * 'a) option
    val max_binding : 'a t -> key * 'a
    val max_binding_opt : 'a t -> (key * 'a) option
    val choose : 'a t -> key * 'a
    val choose_opt : 'a t -> (key * 'a) option
    val split : key -> 'a t -> 'a t * 'a option * 'a t
    val find : key -> 'a t -> 'a
    val find_opt : key -> 'a t -> 'a option
    val find_first : (key -> bool) -> 'a t -> key * 'a
    val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
    val find_last : (key -> bool) -> 'a t -> key * 'a
    val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
    val map : ('-> 'b) -> 'a t -> 'b t
    val mapi : (key -> '-> 'b) -> 'a t -> 'b t
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
    val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
    val of_seq : (key * 'a) Seq.t -> 'a t
  end
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Set.html0000644000175000017500000001454413717225553021223 0ustar mehdimehdi MoreLabels.Set

Module MoreLabels.Set

module Set: sig .. end

module type OrderedType = Set.OrderedType
module type S = sig .. end
module Make: 
functor (Ord : OrderedType-> S with type elt = Ord.t and type t = Set.Make(Ord).t
ocaml-doc-4.11/ocaml.html/libref/Stdlib.String.html0000644000175000017500000010103013717225553021115 0ustar mehdimehdi Stdlib.String

Module Stdlib.String

module String: String

val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

String.get s n returns the character at index n in string s. You can also write s.[n] instead of String.get s n.

  • Raises Invalid_argument if n not a valid index in s.
val set : bytes -> int -> char -> unit
Deprecated.This is a deprecated alias of Bytes.set. 

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c. You can also write s.[n] <- c instead of String.set s n c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes
Deprecated.This is a deprecated alias of Bytes.create. 

String.create n returns a fresh byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> string

String.make n c returns a fresh string of length n, filled with the character c.

val init : int -> (int -> char) -> string

String.init n f returns a string of length n, with character i initialized to the result of f i (called in increasing index order).

val copy : string -> string
Deprecated.Because strings are immutable, it doesn't make much sense to make identical copies of them.

Return a copy of the given string.

val sub : string -> int -> int -> string

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val fill : bytes -> int -> int -> char -> unit
Deprecated.This is a deprecated alias of Bytes.fill. 

String.fill s start len c modifies byte sequence s in place, replacing len bytes with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : string -> int -> bytes -> int -> int -> unit
val concat : string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

val iter : (char -> unit) -> string -> unit

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ().

val iteri : (int -> char -> unit) -> string -> unit

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

  • Since 4.00.0
val map : (char -> char) -> string -> string

String.map f s applies function f in turn to all the characters of s (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.00.0
val mapi : (int -> char -> char) -> string -> string

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.02.0
val trim : string -> string

Return a copy of the argument, without leading and trailing whitespace. The characters regarded as whitespace are: ' ', '\012', '\n', '\r', and '\t'. If there is neither leading nor trailing whitespace character in the argument, return the original string itself, not a copy.

  • Since 4.00.0
val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash and double-quote.

If there is no special character in the argument that needs escaping, return the original string itself, not a copy.

  • Raises Invalid_argument if the result is longer than Sys.max_string_length bytes. The function Scanf.unescaped is a left inverse of escaped, i.e. Scanf.unescaped (escaped s) = s for any string s (unless escape s fails).
val index : string -> char -> int

String.index s c returns the index of the first occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val index_opt : string -> char -> int option

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val rindex : string -> char -> int

String.rindex s c returns the index of the last occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : string -> char -> int option

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val index_from : string -> int -> char -> int

String.index_from s i c returns the index of the first occurrence of character c in string s after position i. String.index s c is equivalent to String.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : string -> int -> char -> int option

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

String.index_opt s c is equivalent to String.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : string -> int -> char -> int

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1. String.rindex s c is equivalent to String.rindex_from s (String.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : string -> int -> char -> int option

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

String.rindex_opt s c is equivalent to String.rindex_from_opt s (String.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in s after position start. String.contains s c is equivalent to String.contains_from s 0 c.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val lowercase_ascii : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.03.0
val capitalize_ascii : string -> string

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.03.0
val uncapitalize_ascii : string -> string

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.03.0
type t = string 

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same specification as compare. Along with the type t, this function compare allows the module String to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for strings.

  • Since 4.03.0
val split_on_char : char -> string -> string list

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

The function's output is specified by the following invariants:

  • The list is not empty.
  • Concatenating its elements using sep as a separator returns a string equal to the input (String.concat (String.make 1 sep)
          (String.split_on_char sep s) = s
    ).
  • No string in the result contains the sep character.
  • Since 4.04.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stdlib.StringLabels.html0000644000175000017500000007764713717225553022272 0ustar mehdimehdi Stdlib.StringLabels

Module Stdlib.StringLabels

module StringLabels: StringLabels

val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

String.get s n returns the character at index n in string s. You can also write s.[n] instead of String.get s n.

  • Raises Invalid_argument if n not a valid index in s.
val set : bytes -> int -> char -> unit
Deprecated.This is a deprecated alias of BytesLabels.set.

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c. You can also write s.[n] <- c instead of String.set s n c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes
Deprecated.This is a deprecated alias of BytesLabels.create.

String.create n returns a fresh byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> string

String.make n c returns a fresh string of length n, filled with the character c.

val init : int -> f:(int -> char) -> string

init n f returns a string of length n, with character i initialized to the result of f i.

val copy : string -> string

Return a copy of the given string.

val sub : string -> pos:int -> len:int -> string

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val fill : bytes -> pos:int -> len:int -> char -> unit
Deprecated.This is a deprecated alias of BytesLabels.fill.

String.fill s start len c modifies byte sequence s in place, replacing len bytes by c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid substring of s.
val blit : src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

String.blit src srcoff dst dstoff len copies len bytes from the string src, starting at index srcoff, to byte sequence dst, starting at character number dstoff.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : sep:string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

val iter : f:(char -> unit) -> string -> unit

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ().

val iteri : f:(int -> char -> unit) -> string -> unit

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

  • Since 4.00.0
val map : f:(char -> char) -> string -> string

String.map f s applies function f in turn to all the characters of s and stores the results in a new string that is returned.

  • Since 4.00.0
val mapi : f:(int -> char -> char) -> string -> string

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

  • Since 4.02.0
val trim : string -> string

Return a copy of the argument, without leading and trailing whitespace. The characters regarded as whitespace are: ' ', '\012', '\n', '\r', and '\t'. If there is no leading nor trailing whitespace character in the argument, return the original string itself, not a copy.

  • Since 4.00.0
val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. If there is no special character in the argument, return the original string itself, not a copy. Its inverse function is Scanf.unescaped.

val index : string -> char -> int

String.index s c returns the index of the first occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val index_opt : string -> char -> int option

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val rindex : string -> char -> int

String.rindex s c returns the index of the last occurrence of character c in string s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : string -> char -> int option

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

  • Since 4.05
val index_from : string -> int -> char -> int

String.index_from s i c returns the index of the first occurrence of character c in string s after position i. String.index s c is equivalent to String.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : string -> int -> char -> int option

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

String.index_opt s c is equivalent to String.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : string -> int -> char -> int

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1. String.rindex s c is equivalent to String.rindex_from s (String.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : string -> int -> char -> int option

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

String.rindex_opt s c is equivalent to String.rindex_from_opt s (String.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in s after position start. String.contains s c is equivalent to String.contains_from s 0 c.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : string -> string
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val lowercase_ascii : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.05.0
val capitalize_ascii : string -> string

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val uncapitalize_ascii : string -> string

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.05.0
type t = string 

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same specification as compare. Along with the type t, this function compare allows the module String to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equal function for strings.

  • Since 4.05.0
val split_on_char : sep:char -> string -> string list

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

The function's output is specified by the following invariants:

  • The list is not empty.
  • Concatenating its elements using sep as a separator returns a string equal to the input (String.concat (String.make 1 sep)
          (String.split_on_char sep s) = s
    ).
  • No string in the result contains the sep character.
  • Since 4.05.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.html0000644000175000017500000017176513717225553020737 0ustar mehdimehdi Stdlib sig
  external raise : exn -> 'a = "%raise"
  external raise_notrace : exn -> 'a = "%raise_notrace"
  val invalid_arg : string -> 'a
  val failwith : string -> 'a
  exception Exit
  exception Match_failure of (string * int * int)
  exception Assert_failure of (string * int * int)
  exception Invalid_argument of string
  exception Failure of string
  exception Not_found
  exception Out_of_memory
  exception Stack_overflow
  exception Sys_error of string
  exception End_of_file
  exception Division_by_zero
  exception Sys_blocked_io
  exception Undefined_recursive_module of (string * int * int)
  external ( = ) : '-> '-> bool = "%equal"
  external ( <> ) : '-> '-> bool = "%notequal"
  external ( < ) : '-> '-> bool = "%lessthan"
  external ( > ) : '-> '-> bool = "%greaterthan"
  external ( <= ) : '-> '-> bool = "%lessequal"
  external ( >= ) : '-> '-> bool = "%greaterequal"
  external compare : '-> '-> int = "%compare"
  val min : '-> '-> 'a
  val max : '-> '-> 'a
  external ( == ) : '-> '-> bool = "%eq"
  external ( != ) : '-> '-> bool = "%noteq"
  external not : bool -> bool = "%boolnot"
  external ( && ) : bool -> bool -> bool = "%sequand"
  external ( & ) : bool -> bool -> bool = "%sequand"
  external ( || ) : bool -> bool -> bool = "%sequor"
  external ( or ) : bool -> bool -> bool = "%sequor"
  external __LOC__ : string = "%loc_LOC"
  external __FILE__ : string = "%loc_FILE"
  external __LINE__ : int = "%loc_LINE"
  external __MODULE__ : string = "%loc_MODULE"
  external __POS__ : string * int * int * int = "%loc_POS"
  external __LOC_OF__ : '-> string * 'a = "%loc_LOC"
  external __LINE_OF__ : '-> int * 'a = "%loc_LINE"
  external __POS_OF__ : '-> (string * int * int * int) * 'a = "%loc_POS"
  external ( |> ) : '-> ('-> 'b) -> 'b = "%revapply"
  external ( @@ ) : ('-> 'b) -> '-> 'b = "%apply"
  external ( ~- ) : int -> int = "%negint"
  external ( ~+ ) : int -> int = "%identity"
  external succ : int -> int = "%succint"
  external pred : int -> int = "%predint"
  external ( + ) : int -> int -> int = "%addint"
  external ( - ) : int -> int -> int = "%subint"
  external ( * ) : int -> int -> int = "%mulint"
  external ( / ) : int -> int -> int = "%divint"
  external ( mod ) : int -> int -> int = "%modint"
  val abs : int -> int
  val max_int : int
  val min_int : int
  external ( land ) : int -> int -> int = "%andint"
  external ( lor ) : int -> int -> int = "%orint"
  external ( lxor ) : int -> int -> int = "%xorint"
  val lnot : int -> int
  external ( lsl ) : int -> int -> int = "%lslint"
  external ( lsr ) : int -> int -> int = "%lsrint"
  external ( asr ) : int -> int -> int = "%asrint"
  external ( ~-. ) : float -> float = "%negfloat"
  external ( ~+. ) : float -> float = "%identity"
  external ( +. ) : float -> float -> float = "%addfloat"
  external ( -. ) : float -> float -> float = "%subfloat"
  external ( *. ) : float -> float -> float = "%mulfloat"
  external ( /. ) : float -> float -> float = "%divfloat"
  external ( ** ) : float -> float -> float = "caml_power_float" "pow"
    [@@unboxed] [@@noalloc]
  external sqrt : float -> float = "caml_sqrt_float" "sqrt" [@@unboxed]
    [@@noalloc]
  external exp : float -> float = "caml_exp_float" "exp" [@@unboxed]
    [@@noalloc]
  external log : float -> float = "caml_log_float" "log" [@@unboxed]
    [@@noalloc]
  external log10 : float -> float = "caml_log10_float" "log10" [@@unboxed]
    [@@noalloc]
  external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
    [@@unboxed] [@@noalloc]
  external log1p : float -> float = "caml_log1p_float" "caml_log1p"
    [@@unboxed] [@@noalloc]
  external cos : float -> float = "caml_cos_float" "cos" [@@unboxed]
    [@@noalloc]
  external sin : float -> float = "caml_sin_float" "sin" [@@unboxed]
    [@@noalloc]
  external tan : float -> float = "caml_tan_float" "tan" [@@unboxed]
    [@@noalloc]
  external acos : float -> float = "caml_acos_float" "acos" [@@unboxed]
    [@@noalloc]
  external asin : float -> float = "caml_asin_float" "asin" [@@unboxed]
    [@@noalloc]
  external atan : float -> float = "caml_atan_float" "atan" [@@unboxed]
    [@@noalloc]
  external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
    [@@unboxed] [@@noalloc]
  external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
    [@@unboxed] [@@noalloc]
  external cosh : float -> float = "caml_cosh_float" "cosh" [@@unboxed]
    [@@noalloc]
  external sinh : float -> float = "caml_sinh_float" "sinh" [@@unboxed]
    [@@noalloc]
  external tanh : float -> float = "caml_tanh_float" "tanh" [@@unboxed]
    [@@noalloc]
  external ceil : float -> float = "caml_ceil_float" "ceil" [@@unboxed]
    [@@noalloc]
  external floor : float -> float = "caml_floor_float" "floor" [@@unboxed]
    [@@noalloc]
  external abs_float : float -> float = "%absfloat"
  external copysign : float -> float -> float = "caml_copysign_float"
    "caml_copysign" [@@unboxed] [@@noalloc]
  external mod_float : float -> float -> float = "caml_fmod_float" "fmod"
    [@@unboxed] [@@noalloc]
  external frexp : float -> float * int = "caml_frexp_float"
  external ldexp :
    (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed])
    = "caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
  external modf : float -> float * float = "caml_modf_float"
  external float : int -> float = "%floatofint"
  external float_of_int : int -> float = "%floatofint"
  external truncate : float -> int = "%intoffloat"
  external int_of_float : float -> int = "%intoffloat"
  val infinity : float
  val neg_infinity : float
  val nan : float
  val max_float : float
  val min_float : float
  val epsilon_float : float
  type fpclass = FP_normal | FP_subnormal | FP_zero | FP_infinite | FP_nan
  external classify_float : (float [@unboxed]) -> Stdlib.fpclass
    = "caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
  val ( ^ ) : string -> string -> string
  external int_of_char : char -> int = "%identity"
  val char_of_int : int -> char
  external ignore : '-> unit = "%ignore"
  val string_of_bool : bool -> string
  val bool_of_string_opt : string -> bool option
  val bool_of_string : string -> bool
  val string_of_int : int -> string
  val int_of_string_opt : string -> int option
  external int_of_string : string -> int = "caml_int_of_string"
  val string_of_float : float -> string
  val float_of_string_opt : string -> float option
  external float_of_string : string -> float = "caml_float_of_string"
  external fst : 'a * '-> 'a = "%field0"
  external snd : 'a * '-> 'b = "%field1"
  val ( @ ) : 'a list -> 'a list -> 'a list
  type in_channel
  type out_channel
  val stdin : Stdlib.in_channel
  val stdout : Stdlib.out_channel
  val stderr : Stdlib.out_channel
  val print_char : char -> unit
  val print_string : string -> unit
  val print_bytes : bytes -> unit
  val print_int : int -> unit
  val print_float : float -> unit
  val print_endline : string -> unit
  val print_newline : unit -> unit
  val prerr_char : char -> unit
  val prerr_string : string -> unit
  val prerr_bytes : bytes -> unit
  val prerr_int : int -> unit
  val prerr_float : float -> unit
  val prerr_endline : string -> unit
  val prerr_newline : unit -> unit
  val read_line : unit -> string
  val read_int_opt : unit -> int option
  val read_int : unit -> int
  val read_float_opt : unit -> float option
  val read_float : unit -> float
  type open_flag =
      Open_rdonly
    | Open_wronly
    | Open_append
    | Open_creat
    | Open_trunc
    | Open_excl
    | Open_binary
    | Open_text
    | Open_nonblock
  val open_out : string -> Stdlib.out_channel
  val open_out_bin : string -> Stdlib.out_channel
  val open_out_gen :
    Stdlib.open_flag list -> int -> string -> Stdlib.out_channel
  val flush : Stdlib.out_channel -> unit
  val flush_all : unit -> unit
  val output_char : Stdlib.out_channel -> char -> unit
  val output_string : Stdlib.out_channel -> string -> unit
  val output_bytes : Stdlib.out_channel -> bytes -> unit
  val output : Stdlib.out_channel -> bytes -> int -> int -> unit
  val output_substring : Stdlib.out_channel -> string -> int -> int -> unit
  val output_byte : Stdlib.out_channel -> int -> unit
  val output_binary_int : Stdlib.out_channel -> int -> unit
  val output_value : Stdlib.out_channel -> '-> unit
  val seek_out : Stdlib.out_channel -> int -> unit
  val pos_out : Stdlib.out_channel -> int
  val out_channel_length : Stdlib.out_channel -> int
  val close_out : Stdlib.out_channel -> unit
  val close_out_noerr : Stdlib.out_channel -> unit
  val set_binary_mode_out : Stdlib.out_channel -> bool -> unit
  val open_in : string -> Stdlib.in_channel
  val open_in_bin : string -> Stdlib.in_channel
  val open_in_gen :
    Stdlib.open_flag list -> int -> string -> Stdlib.in_channel
  val input_char : Stdlib.in_channel -> char
  val input_line : Stdlib.in_channel -> string
  val input : Stdlib.in_channel -> bytes -> int -> int -> int
  val really_input : Stdlib.in_channel -> bytes -> int -> int -> unit
  val really_input_string : Stdlib.in_channel -> int -> string
  val input_byte : Stdlib.in_channel -> int
  val input_binary_int : Stdlib.in_channel -> int
  val input_value : Stdlib.in_channel -> 'a
  val seek_in : Stdlib.in_channel -> int -> unit
  val pos_in : Stdlib.in_channel -> int
  val in_channel_length : Stdlib.in_channel -> int
  val close_in : Stdlib.in_channel -> unit
  val close_in_noerr : Stdlib.in_channel -> unit
  val set_binary_mode_in : Stdlib.in_channel -> bool -> unit
  module LargeFile :
    sig
      val seek_out : Stdlib.out_channel -> int64 -> unit
      val pos_out : Stdlib.out_channel -> int64
      val out_channel_length : Stdlib.out_channel -> int64
      val seek_in : Stdlib.in_channel -> int64 -> unit
      val pos_in : Stdlib.in_channel -> int64
      val in_channel_length : Stdlib.in_channel -> int64
    end
  type 'a ref = { mutable contents : 'a; }
  external ref : '-> 'Stdlib.ref = "%makemutable"
  external ( ! ) : 'Stdlib.ref -> 'a = "%field0"
  external ( := ) : 'Stdlib.ref -> '-> unit = "%setfield0"
  external incr : int Stdlib.ref -> unit = "%incr"
  external decr : int Stdlib.ref -> unit = "%decr"
  type ('a, 'b) result = Ok of '| Error of 'b
  type ('a, 'b, 'c, 'd, 'e, 'f) format6 =
      ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
  type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) Stdlib.format6
  type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) Stdlib.format4
  val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 -> string
  external format_of_string :
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 ->
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 = "%identity"
  val ( ^^ ) :
    ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6 ->
    ('f, 'b, 'c, 'e, 'g, 'h) Stdlib.format6 ->
    ('a, 'b, 'c, 'd, 'g, 'h) Stdlib.format6
  val exit : int -> 'a
  val at_exit : (unit -> unit) -> unit
  val valid_float_lexem : string -> string
  val unsafe_really_input : Stdlib.in_channel -> bytes -> int -> int -> unit
  val do_at_exit : unit -> unit
  module Arg = Arg
  module Array = Array
  module ArrayLabels = ArrayLabels
  module Bigarray = Bigarray
  module Bool = Bool
  module Buffer = Buffer
  module Bytes = Bytes
  module BytesLabels = BytesLabels
  module Callback = Callback
  module Char = Char
  module Complex = Complex
  module Digest = Digest
  module Ephemeron = Ephemeron
  module Filename = Filename
  module Float = Float
  module Format = Format
  module Fun = Fun
  module Gc = Gc
  module Genlex = Genlex
  module Hashtbl = Hashtbl
  module Int = Int
  module Int32 = Int32
  module Int64 = Int64
  module Lazy = Lazy
  module Lexing = Lexing
  module List = List
  module ListLabels = ListLabels
  module Map = Map
  module Marshal = Marshal
  module MoreLabels = MoreLabels
  module Nativeint = Nativeint
  module Obj = Obj
  module Oo = Oo
  module Option = Option
  module Parsing = Parsing
  module Pervasives = Pervasives
  module Printexc = Printexc
  module Printf = Printf
  module Queue = Queue
  module Random = Random
  module Result = Result
  module Scanf = Scanf
  module Seq = Seq
  module Set = Set
  module Spacetime = Spacetime
  module Stack = Stack
  module StdLabels = StdLabels
  module Stream = Stream
  module String = String
  module StringLabels = StringLabels
  module Sys = Sys
  module Uchar = Uchar
  module Unit = Unit
  module Weak = Weak
end
ocaml-doc-4.11/ocaml.html/libref/Nativeint.html0000644000175000017500000005501613717225552020403 0ustar mehdimehdi Nativeint

Module Nativeint

module Nativeint: sig .. end

Processor-native integers.

This module provides operations on the type nativeint of signed 32-bit integers (on 32-bit platforms) or signed 64-bit integers (on 64-bit platforms). This integer type has exactly the same width as that of a pointer type in the C compiler. All arithmetic operations over nativeint are taken modulo 232 or 264 depending on the word size of the architecture.

Performance notice: values of type nativeint occupy more memory space than values of type int, and arithmetic operations on nativeint are generally slower than those on int. Use nativeint only when the application requires the extra bit of precision over the int type.

Literals for native integers are suffixed by n:

      let zero: nativeint = 0n
      let one: nativeint = 1n
      let m_one: nativeint = -1n
    

val zero : nativeint

The native integer 0.

val one : nativeint

The native integer 1.

val minus_one : nativeint

The native integer -1.

val neg : nativeint -> nativeint

Unary negation.

val add : nativeint -> nativeint -> nativeint

Addition.

val sub : nativeint -> nativeint -> nativeint

Subtraction.

val mul : nativeint -> nativeint -> nativeint

Multiplication.

val div : nativeint -> nativeint -> nativeint

Integer division. This division rounds the real quotient of its arguments towards zero, as specified for (/).

  • Raises Division_by_zero if the second argument is zero.
val unsigned_div : nativeint -> nativeint -> nativeint

Same as Nativeint.div, except that arguments and result are interpreted as unsigned native integers.

  • Since 4.08.0
val rem : nativeint -> nativeint -> nativeint

Integer remainder. If y is not zero, the result of Nativeint.rem x y satisfies the following properties: Nativeint.zero <= Nativeint.rem x y < Nativeint.abs y and x = Nativeint.add (Nativeint.mul (Nativeint.div x y) y)
                      (Nativeint.rem x y)
. If y = 0, Nativeint.rem x y raises Division_by_zero.

val unsigned_rem : nativeint -> nativeint -> nativeint

Same as Nativeint.rem, except that arguments and result are interpreted as unsigned native integers.

  • Since 4.08.0
val succ : nativeint -> nativeint

Successor. Nativeint.succ x is Nativeint.add x Nativeint.one.

val pred : nativeint -> nativeint

Predecessor. Nativeint.pred x is Nativeint.sub x Nativeint.one.

val abs : nativeint -> nativeint

Return the absolute value of its argument.

val size : int

The size in bits of a native integer. This is equal to 32 on a 32-bit platform and to 64 on a 64-bit platform.

val max_int : nativeint

The greatest representable native integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a 64-bit platform.

val min_int : nativeint

The smallest representable native integer, either -231 on a 32-bit platform, or -263 on a 64-bit platform.

val logand : nativeint -> nativeint -> nativeint

Bitwise logical and.

val logor : nativeint -> nativeint -> nativeint

Bitwise logical or.

val logxor : nativeint -> nativeint -> nativeint

Bitwise logical exclusive or.

val lognot : nativeint -> nativeint

Bitwise logical negation.

val shift_left : nativeint -> int -> nativeint

Nativeint.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val shift_right : nativeint -> int -> nativeint

Nativeint.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= bitsize.

val shift_right_logical : nativeint -> int -> nativeint

Nativeint.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= bitsize.

val of_int : int -> nativeint

Convert the given integer (type int) to a native integer (type nativeint).

val to_int : nativeint -> int

Convert the given native integer (type nativeint) to an integer (type int). The high-order bit is lost during the conversion.

val unsigned_to_int : nativeint -> int option

Same as Nativeint.to_int, but interprets the argument as an unsigned integer. Returns None if the unsigned value of the argument cannot fit into an int.

  • Since 4.08.0
val of_float : float -> nativeint

Convert the given floating-point number to a native integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Nativeint.min_int, Nativeint.max_int].

val to_float : nativeint -> float

Convert the given native integer to a floating-point number.

val of_int32 : int32 -> nativeint

Convert the given 32-bit integer (type int32) to a native integer.

val to_int32 : nativeint -> int32

Convert the given native integer to a 32-bit integer (type int32). On 64-bit platforms, the 64-bit native integer is taken modulo 232, i.e. the top 32 bits are lost. On 32-bit platforms, the conversion is exact.

val of_string : string -> nativeint

Convert the given string to a native integer. The string is read in decimal (by default, or if the string begins with 0u) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively.

The 0u prefix reads the input as an unsigned integer in the range [0, 2*Nativeint.max_int+1]. If the input exceeds Nativeint.max_int it is converted to the signed integer Int64.min_int + input - Nativeint.max_int - 1.

  • Raises Failure if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type nativeint.
val of_string_opt : string -> nativeint option

Same as of_string, but return None instead of raising.

  • Since 4.05
val to_string : nativeint -> string

Return the string representation of its argument, in decimal.

type t = nativeint 

An alias for the type of native integers.

val compare : t -> t -> int

The comparison function for native integers, with the same specification as compare. Along with the type t, this function compare allows the module Nativeint to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Nativeint.compare, except that arguments are interpreted as unsigned native integers.

  • Since 4.08.0
val equal : t -> t -> bool

The equal function for native ints.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Stream.html0000644000175000017500000001127013717225553022151 0ustar mehdimehdi Stdlib.Stream (module Stdlib__stream) ocaml-doc-4.11/ocaml.html/libref/index_values.html0000644000175000017500000252416213717225553021136 0ustar mehdimehdi Index of values

Index of values

( * ) [Stdlib]

Integer multiplication.

( ** ) [Stdlib]

Exponentiation.

( *. ) [Stdlib]

Floating-point multiplication.

(!) [Stdlib]

!r returns the current contents of reference r.

(!=) [Stdlib]

Negation of (==).

(&&) [Stdlib]

The boolean 'and'.

(&&) [Bool]

e0 && e1 is the lazy boolean conjunction of expressions e0 and e1.

(&) [Stdlib]
(+) [Stdlib]

Integer addition.

(+.) [Stdlib]

Floating-point addition.

(-) [Stdlib]

Integer subtraction.

(-.) [Stdlib]

Floating-point subtraction.

(/) [Stdlib]

Integer division.

(/.) [Stdlib]

Floating-point division.

(:=) [Stdlib]

r := a stores the value of a in reference r.

(<) [Stdlib]

See (>=).

(<=) [Stdlib]

See (>=).

(<>) [Stdlib]

Negation of (=).

(=) [Stdlib]

e1 = e2 tests for structural equality of e1 and e2.

(==) [Stdlib]

e1 == e2 tests for physical equality of e1 and e2.

(>) [Stdlib]

See (>=).

(>=) [Stdlib]

Structural ordering functions.

(@) [Stdlib]

List concatenation.

(@@) [Stdlib]

Application operator: g @@ f @@ x is exactly equivalent to g (f (x)).

(^) [Stdlib]

String concatenation.

(^^) [Stdlib]

f1 ^^ f2 catenates format strings f1 and f2.

(asr) [Stdlib]

asr m shifts n to the right by m bits.

(land) [Stdlib]

Bitwise logical and.

(lor) [Stdlib]

Bitwise logical or.

(lsl) [Stdlib]

lsl m shifts n to the left by m bits.

(lsr) [Stdlib]

lsr m shifts n to the right by m bits.

(lxor) [Stdlib]

Bitwise logical exclusive or.

(mod) [Stdlib]

Integer remainder.

(or) [Stdlib]
(|>) [Stdlib]

Reverse-application operator: x |> f |> g is exactly equivalent to g (f (x)).

(||) [Stdlib]

The boolean 'or'.

(||) [Bool]

e0 || e1 is the lazy boolean disjunction of expressions e0 and e1.

(~+) [Stdlib]

Unary addition.

(~+.) [Stdlib]

Unary addition.

(~-) [Stdlib]

Unary negation.

(~-.) [Stdlib]

Unary negation.

__FILE__ [Stdlib]

__FILE__ returns the name of the file currently being parsed by the compiler.

__LINE_OF__ [Stdlib]

__LINE_OF__ expr returns a pair (line, expr), where line is the line number at which the expression expr appears in the file currently being parsed by the compiler.

__LINE__ [Stdlib]

__LINE__ returns the line number at which this expression appears in the file currently being parsed by the compiler.

__LOC_OF__ [Stdlib]

__LOC_OF__ expr returns a pair (loc, expr) where loc is the location of expr in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d".

__LOC__ [Stdlib]

__LOC__ returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d".

__MODULE__ [Stdlib]

__MODULE__ returns the module name of the file being parsed by the compiler.

__POS_OF__ [Stdlib]

__POS_OF__ expr returns a pair (loc,expr), where loc is a tuple (file,lnum,cnum,enum) corresponding to the location at which the expression expr appears in the file currently being parsed by the compiler.

__POS__ [Stdlib]

__POS__ returns a tuple (file,lnum,cnum,enum), corresponding to the location at which this expression appears in the file currently being parsed by the compiler.

A
abs [Stdlib]

Return the absolute value of the argument.

abs [Nativeint]

Return the absolute value of its argument.

abs [Int64]

Return the absolute value of its argument.

abs [Int32]

Return the absolute value of its argument.

abs [Int]

abs x is the absolute value of x.

abs [Float]

abs f returns the absolute value of f.

abs_float [Stdlib]

abs_float f returns the absolute value of f.

abstract_tag [Obj]
accept [UnixLabels]

Accept connections on the given socket.

accept [Unix]

Accept connections on the given socket.

accept [ThreadUnix]
access [UnixLabels]

Check that the process has the given permissions over the named file.

access [Unix]

Check that the process has the given permissions over the named file.

acos [Stdlib]

Arc cosine.

acos [Float]

Arc cosine.

adapt_filename [Dynlink]

In bytecode, the identity function.

add [Weak.S]

add t x adds x to t.

add [Set.S]

add x s returns a set containing all elements of s, plus x.

add [Queue]

add x q adds the element x at the end of the queue q.

add [Nativeint]

Addition.

add [MoreLabels.Set.S]
add [MoreLabels.Map.S]
add [MoreLabels.Hashtbl.SeededS]
add [MoreLabels.Hashtbl.S]
add [MoreLabels.Hashtbl]
add [Map.S]

add x y m returns a map containing the same bindings as m, plus a binding of x to y.

add [Int64]

Addition.

add [Int32]

Addition.

add [Int]

add x y is the addition x + y.

add [Hashtbl.SeededS]
add [Hashtbl.S]
add [Hashtbl]

Hashtbl.add tbl x y adds a binding of x to y in table tbl.

add [Float]

Floating-point addition.

add [Complex]

Addition

add_buffer [Buffer]

add_buffer b1 b2 appends the current contents of buffer b2 at the end of buffer b1.

add_bytes [Buffer]

add_bytes b s appends the byte sequence s at the end of buffer b.

add_channel [Buffer]

add_channel b ic n reads at most n characters from the input channel ic and stores them at the end of buffer b.

add_char [Buffer]

add_char b c appends the character c at the end of buffer b.

add_in_char_set [CamlinternalFormat]
add_initializer [CamlinternalOO]
add_int16_be [Buffer]

add_int16_be b i appends a binary big-endian signed 16-bit integer i to b.

add_int16_le [Buffer]

add_int16_le b i appends a binary little-endian signed 16-bit integer i to b.

add_int16_ne [Buffer]

add_int16_ne b i appends a binary native-endian signed 16-bit integer i to b.

add_int32_be [Buffer]

add_int32_be b i appends a binary big-endian 32-bit integer i to b.

add_int32_le [Buffer]

add_int32_le b i appends a binary little-endian 32-bit integer i to b.

add_int32_ne [Buffer]

add_int32_ne b i appends a binary native-endian 32-bit integer i to b.

add_int64_be [Buffer]

add_int64_be b i appends a binary big-endian 64-bit integer i to b.

add_int64_le [Buffer]

add_int64_ne b i appends a binary little-endian 64-bit integer i to b.

add_int64_ne [Buffer]

add_int64_ne b i appends a binary native-endian 64-bit integer i to b.

add_int8 [Buffer]

add_int8 b i appends a binary signed 8-bit integer i to b.

add_offset [Obj]
add_seq [Stack]

Add the elements from the iterator on the top of the stack.

add_seq [Set.S]

Add the given elements to the set, in order.

add_seq [Queue]

Add the elements from the generator to the end of the queue

add_seq [MoreLabels.Set.S]
add_seq [MoreLabels.Map.S]
add_seq [MoreLabels.Hashtbl.SeededS]
add_seq [MoreLabels.Hashtbl.S]
add_seq [MoreLabels.Hashtbl]
add_seq [Map.S]

Add the given bindings to the map, in order.

add_seq [Hashtbl.SeededS]
add_seq [Hashtbl.S]
add_seq [Hashtbl]

Add the given bindings to the table, using Hashtbl.add

add_seq [Buffer]

Add chars to the buffer

add_string [Buffer]

add_string b s appends the string s at the end of buffer b.

add_subbytes [Buffer]

add_subbytes b s ofs len takes len characters from offset ofs in byte sequence s and appends them at the end of buffer b.

add_substitute [Buffer]

add_substitute b f s appends the string pattern s at the end of buffer b with substitution.

add_substring [Buffer]

add_substring b s ofs len takes len characters from offset ofs in string s and appends them at the end of buffer b.

add_symbolic_output_item [Format]

add_symbolic_output_item sob itm adds item itm to buffer sob.

add_uint16_be [Buffer]

add_uint16_be b i appends a binary big-endian unsigned 16-bit integer i to b.

add_uint16_le [Buffer]

add_uint16_le b i appends a binary little-endian unsigned 16-bit integer i to b.

add_uint16_ne [Buffer]

add_uint16_ne b i appends a binary native-endian unsigned 16-bit integer i to b.

add_uint8 [Buffer]

add_uint8 b i appends a binary unsigned 8-bit integer i to b.

add_utf_16be_uchar [Buffer]

add_utf_16be_uchar b u appends the UTF-16BE encoding of u at the end of buffer b.

add_utf_16le_uchar [Buffer]

add_utf_16le_uchar b u appends the UTF-16LE encoding of u at the end of buffer b.

add_utf_8_uchar [Buffer]

add_utf_8_uchar b u appends the UTF-8 encoding of u at the end of buffer b.

alarm [UnixLabels]

Schedule a SIGALRM signal after the given number of seconds.

alarm [Unix]

Schedule a SIGALRM signal after the given number of seconds.

align [Arg]

Align the documentation strings by inserting spaces at the first alignment separator (tab or, if tab is not found, space), according to the length of the keyword.

all_units [Dynlink]

Return the list of compilation units that form the main program together with those that have been dynamically loaded via loadfile (and not via loadfile_private).

allocated_bytes [Gc]

Return the total number of bytes allocated since the program was started.

allow_only [Dynlink]

allow_only units sets the list of allowed units to be the intersection of the existing allowed units and the given list of units.

allow_unsafe_modules [Dynlink]

Govern whether unsafe object files are allowed to be dynamically linked.

always [Event]

always v returns an event that is always ready for synchronization.

append [Seq]

append xs ys is the sequence xs followed by the sequence ys

append [ListLabels]

Catenate two lists.

append [List]

Concatenate two lists.

append [Float.ArrayLabels]
append [Float.Array]

append v1 v2 returns a fresh floatarray containing the concatenation of the floatarrays v1 and v2.

append [ArrayLabels]

append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

append [Array]

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

arg [Complex]

Argument.

argv [Sys]

The command line arguments given to the process.

array0_of_genarray [Bigarray]

Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.

array1_of_genarray [Bigarray]

Return the one-dimensional Bigarray corresponding to the given generic Bigarray.

array2_of_genarray [Bigarray]

Return the two-dimensional Bigarray corresponding to the given generic Bigarray.

array3_of_genarray [Bigarray]

Return the three-dimensional Bigarray corresponding to the given generic Bigarray.

asin [Stdlib]

Arc sine.

asin [Float]

Arc sine.

asprintf [Format]

Same as printf above, but instead of printing on a formatter, returns a string containing the result of formatting the arguments.

assoc [ListLabels]

assoc a l returns the value associated with key a in the list of pairs l.

assoc [List]

assoc a l returns the value associated with key a in the list of pairs l.

assoc_opt [ListLabels]

assoc_opt a l returns the value associated with key a in the list of pairs l.

assoc_opt [List]

assoc_opt a l returns the value associated with key a in the list of pairs l.

assq [ListLabels]

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

assq [List]

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

assq_opt [ListLabels]

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

assq_opt [List]

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

at_exit [Stdlib]

Register the given function to be called at program termination time.

atan [Stdlib]

Arc tangent.

atan [Float]

Arc tangent.

atan2 [Stdlib]

atan2 y x returns the arc tangent of y /. x.

atan2 [Float]

atan2 y x returns the arc tangent of y /. x.

B
backend_type [Sys]

Backend type currently executing the OCaml program.

backtrace_slots [Printexc]

Returns the slots of a raw backtrace, or None if none of them contain useful information.

backtrace_status [Printexc]

Printexc.backtrace_status() returns true if exception backtraces are currently recorded, false if not.

basename [Filename]

Split a file name into directory name / base file name.

beginning_of_input [Scanf.Scanning]

Scanning.beginning_of_input ic tests the beginning of input condition of the given Scanf.Scanning.in_channel formatted input channel.

big_endian [Sys]

Whether the machine currently executing the Caml program is big-endian.

bind [UnixLabels]

Bind a socket to an address.

bind [Unix]

Bind a socket to an address.

bind [Result]

bind r f is f v if r is Ok v and r if r is Error _.

bind [Option]

bind o f is f v if o is Some v and None if o is None.

bindings [MoreLabels.Map.S]
bindings [Map.S]

Return the list of all bindings of the given map.

bits [Random.State]
bits [Random]

Return 30 random bits in a nonnegative integer.

bits_of_float [Int64]

Return the internal representation of the given float according to the IEEE 754 floating-point 'double format' bit layout.

bits_of_float [Int32]

Return the internal representation of the given float according to the IEEE 754 floating-point 'single format' bit layout.

blit [Weak]

Weak.blit ar1 off1 ar2 off2 len copies len weak pointers from ar1 (starting at off1) to ar2 (starting at off2).

blit [String]
blit [StringLabels]

String.blit src srcoff dst dstoff len copies len bytes from the string src, starting at index srcoff, to byte sequence dst, starting at character number dstoff.

blit [Float.ArrayLabels]
blit [Float.Array]

blit v1 o1 v2 o2 len copies len elements from floatarray v1, starting at element number o1, to floatarray v2, starting at element number o2.

blit [BytesLabels]

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff.

blit [Bytes]

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff.

blit [Buffer]

Buffer.blit src srcoff dst dstoff len copies len characters from the current contents of the buffer src, starting at offset srcoff to dst, starting at character dstoff.

blit [Bigarray.Array3]

Copy the first Bigarray to the second Bigarray.

blit [Bigarray.Array2]

Copy the first Bigarray to the second Bigarray.

blit [Bigarray.Array1]

Copy the first Bigarray to the second Bigarray.

blit [Bigarray.Array0]

Copy the first Bigarray to the second Bigarray.

blit [Bigarray.Genarray]

Copy all elements of a Bigarray in another Bigarray.

blit [ArrayLabels]

blit ~src ~src_pos ~dst ~dst_pos ~len copies len elements from array src, starting at element number src_pos, to array dst, starting at element number dst_pos.

blit [Array]

Array.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element number o1, to array v2, starting at element number o2.

blit_data [Obj.Ephemeron]
blit_data [Ephemeron.Kn]
blit_data [Ephemeron.K2]
blit_data [Ephemeron.K1]

Ephemeron.K1.blit_data eph1 eph2 sets the data of eph2 with the data of eph1.

blit_key [Obj.Ephemeron]
blit_key [Ephemeron.Kn]
blit_key [Ephemeron.K1]

Ephemeron.K1.blit_key eph1 eph2 sets the key of eph2 with the key of eph1.

blit_key1 [Ephemeron.K2]
blit_key12 [Ephemeron.K2]
blit_key2 [Ephemeron.K2]
blit_string [BytesLabels]

blit src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

blit_string [Bytes]

blit_string src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

bom [Uchar]

bom is U+FEFF, the byte order mark (BOM) character.

bool [Random.State]

These functions are the same as the basic functions, except that they use (and update) the given PRNG state instead of the default one.

bool [Random]

Random.bool () returns true or false with probability 0.5 each.

bool_of_string [Stdlib]

Same as bool_of_string_opt, but raise Invalid_argument "bool_of_string" instead of returning None.

bool_of_string_opt [Stdlib]

Convert the given string to a boolean.

bounded_full_split [Str]

Same as Str.bounded_split_delim, but returns the delimiters as well as the substrings contained between delimiters.

bounded_split [Str]

Same as Str.split, but splits into at most n substrings, where n is the extra integer parameter.

bounded_split_delim [Str]

Same as Str.bounded_split, but occurrences of the delimiter at the beginning and at the end of the string are recognized and returned as empty strings in the result.

bprintf [Printf]

Same as Printf.fprintf, but instead of printing on an output channel, append the formatted arguments to the given extensible buffer (see module Buffer).

bprintf [Format]
broadcast [Condition]

broadcast c restarts all processes waiting on the condition variable c.

bscanf [Scanf]
bscanf_format [Scanf]

bscanf_format ic fmt f reads a format string token from the formatted input channel ic, according to the given format string fmt, and applies f to the resulting format string value.

bufput_acc [CamlinternalFormat]
bytes [Digest]

Return the digest of the given byte sequence.

C
c_layout [Bigarray]
capitalize [String]

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

capitalize [StringLabels]

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

capitalize [BytesLabels]

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

capitalize [Bytes]

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

capitalize_ascii [String]

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

capitalize_ascii [StringLabels]

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

capitalize_ascii [BytesLabels]

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

capitalize_ascii [Bytes]

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

cardinal [Set.S]

Return the number of elements of a set.

cardinal [MoreLabels.Set.S]
cardinal [MoreLabels.Map.S]
cardinal [Map.S]

Return the number of bindings of a map.

cat [BytesLabels]

cat s1 s2 concatenates s1 and s2 and returns the result as new byte sequence.

cat [Bytes]

cat s1 s2 concatenates s1 and s2 and returns the result as a new byte sequence.

catch [Printexc]

Printexc.catch fn x is similar to Printexc.print, but aborts the program with exit code 2 after printing the uncaught exception.

catch_break [Sys]

catch_break governs whether interactive interrupt (ctrl-C) terminates the program or raises the Break exception.

ceil [Stdlib]

Round above to an integer value.

ceil [Float]

Round above to an integer value.

change_layout [Bigarray.Array3]

Array3.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimensions as a).

change_layout [Bigarray.Array2]

Array2.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimensions as a).

change_layout [Bigarray.Array1]

Array1.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimension as a).

change_layout [Bigarray.Array0]

Array0.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a.

change_layout [Bigarray.Genarray]

Genarray.change_layout a layout returns a Bigarray with the specified layout, sharing the data with a (and hence having the same dimensions as a).

channel [Digest]

If len is nonnegative, Digest.channel ic len reads len characters from channel ic and returns their digest, or raises End_of_file if end-of-file is reached before len characters are read.

char [Bigarray]

As shown by the types of the values above, Bigarrays of kind float32_elt and float64_elt are accessed using the OCaml type float.

char_of_iconv [CamlinternalFormat]
char_of_int [Stdlib]

Return the character with the given ASCII code.

chdir [UnixLabels]

Change the process working directory.

chdir [Unix]

Change the process working directory.

chdir [Sys]

Change the current working directory of the process.

check [Weak]

Weak.check ar n returns true if the nth cell of ar is full, false if it is empty.

check_data [Obj.Ephemeron]
check_data [Ephemeron.Kn]
check_data [Ephemeron.K2]
check_data [Ephemeron.K1]

Ephemeron.K1.check_data eph returns true if the data of the eph is full, false if it is empty.

check_geometry [Format]

Check if the formatter geometry is valid: 1 < max_indent < margin

check_key [Obj.Ephemeron]
check_key [Ephemeron.Kn]
check_key [Ephemeron.K1]

Ephemeron.K1.check_key eph returns true if the key of the eph is full, false if it is empty.

check_key1 [Ephemeron.K2]
check_key2 [Ephemeron.K2]
check_suffix [Filename]

check_suffix name suff returns true if the filename name ends with the suffix suff.

chmod [UnixLabels]

Change the permissions of the named file.

chmod [Unix]

Change the permissions of the named file.

choose [Set.S]

Return one element of the given set, or raise Not_found if the set is empty.

choose [MoreLabels.Set.S]
choose [MoreLabels.Map.S]
choose [Map.S]

Return one binding of the given map, or raise Not_found if the map is empty.

choose [Event]

choose evl returns the event that is the alternative of all the events in the list evl.

choose_opt [Set.S]

Return one element of the given set, or None if the set is empty.

choose_opt [MoreLabels.Set.S]
choose_opt [MoreLabels.Map.S]
choose_opt [Map.S]

Return one binding of the given map, or None if the map is empty.

chop_extension [Filename]

Same as Filename.remove_extension, but raise Invalid_argument if the given name has an empty extension.

chop_suffix [Filename]

chop_suffix name suff removes the suffix suff from the filename name.

chop_suffix_opt [Filename]

chop_suffix_opt ~suffix filename removes the suffix from the filename if possible, or returns None if the filename does not end with the suffix.

chown [UnixLabels]

Change the owner uid and owner gid of the named file.

chown [Unix]

Change the owner uid and owner gid of the named file.

chr [Char]

Return the character with the given ASCII code.

chroot [UnixLabels]

Change the process root directory.

chroot [Unix]

Change the process root directory.

classify_float [Stdlib]

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

classify_float [Float]

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

clean [Ephemeron.SeededS]

remove all dead bindings.

clean [Ephemeron.S]

remove all dead bindings.

clear [Weak.S]

Remove all elements from the table.

clear [Stack]

Discard all elements from a stack.

clear [Queue]

Discard all elements from a queue.

clear [MoreLabels.Hashtbl.SeededS]
clear [MoreLabels.Hashtbl.S]
clear [MoreLabels.Hashtbl]
clear [Hashtbl.SeededS]
clear [Hashtbl.S]
clear [Hashtbl]

Empty a hash table.

clear [Buffer]

Empty the buffer.

clear_close_on_exec [UnixLabels]

Clear the ``close-on-exec'' flag on the given descriptor.

clear_close_on_exec [Unix]

Clear the ``close-on-exec'' flag on the given descriptor.

clear_nonblock [UnixLabels]

Clear the ``non-blocking'' flag on the given descriptor.

clear_nonblock [Unix]

Clear the ``non-blocking'' flag on the given descriptor.

clear_parser [Parsing]

Empty the parser stack.

clear_symbolic_output_buffer [Format]

clear_symbolic_output_buffer sob resets buffer sob.

close [UnixLabels]

Close a file descriptor.

close [Unix]

Close a file descriptor.

close_box [Format]

Closes the most recently open pretty-printing box.

close_in [Stdlib]

Close the given channel.

close_in [Scanf.Scanning]

Closes the in_channel associated with the given Scanf.Scanning.in_channel formatted input channel.

close_in_noerr [Stdlib]

Same as close_in, but ignore all errors.

close_out [Stdlib]

Close the given channel, flushing all buffered write operations.

close_out_noerr [Stdlib]

Same as close_out, but ignore all errors.

close_process [UnixLabels]

Close channels opened by UnixLabels.open_process, wait for the associated command to terminate, and return its termination status.

close_process [Unix]

Close channels opened by Unix.open_process, wait for the associated command to terminate, and return its termination status.

close_process_full [UnixLabels]

Close channels opened by UnixLabels.open_process_full, wait for the associated command to terminate, and return its termination status.

close_process_full [Unix]

Close channels opened by Unix.open_process_full, wait for the associated command to terminate, and return its termination status.

close_process_in [UnixLabels]

Close channels opened by UnixLabels.open_process_in, wait for the associated command to terminate, and return its termination status.

close_process_in [Unix]

Close channels opened by Unix.open_process_in, wait for the associated command to terminate, and return its termination status.

close_process_out [UnixLabels]

Close channels opened by UnixLabels.open_process_out, wait for the associated command to terminate, and return its termination status.

close_process_out [Unix]

Close channels opened by Unix.open_process_out, wait for the associated command to terminate, and return its termination status.

close_stag [Format]

pp_close_stag ppf () closes the most recently opened semantic tag t.

close_tag [Format]
close_tbox [Format]

Closes the most recently opened tabulation box.

closedir [UnixLabels]

Close a directory descriptor.

closedir [Unix]

Close a directory descriptor.

closure_tag [Obj]
code [Char]

Return the ASCII code of the argument.

combine [ListLabels]

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

combine [List]

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

command [Sys]

Execute the given shell command and return its exit code.

compact [Gc]

Perform a full major collection and compact the heap.

compare [Unit]

compare u1 u2 is 0.

compare [Uchar]

compare u u' is Stdlib.compare u u'.

compare [String]

The comparison function for strings, with the same specification as compare.

compare [Stdlib]

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y.

compare [StringLabels]

The comparison function for strings, with the same specification as compare.

compare [Set.S]

Total ordering between sets.

compare [Result]

compare ~ok ~error r0 r1 totally orders r0 and r1 using ok and error to respectively compare values wrapped by Ok _  and Error _.

compare [Option]

compare cmp o0 o1 is a total order on options using cmp to compare values wrapped by Some _.

compare [Nativeint]

The comparison function for native integers, with the same specification as compare.

compare [Set.OrderedType]

A total ordering function over the set elements.

compare [MoreLabels.Set.S]
compare [MoreLabels.Map.S]
compare [Map.OrderedType]

A total ordering function over the keys.

compare [Map.S]

Total ordering between maps.

compare [Int64]

The comparison function for 64-bit integers, with the same specification as compare.

compare [Int32]

The comparison function for 32-bit integers, with the same specification as compare.

compare [Int]

compare x y is compare x y but more efficient.

compare [Float]

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y.

compare [Digest]

The comparison function for 16-character digest, with the same specification as compare and the implementation shared with String.compare.

compare [Char]

The comparison function for characters, with the same specification as compare.

compare [BytesLabels]

The comparison function for byte sequences, with the same specification as compare.

compare [Bytes]

The comparison function for byte sequences, with the same specification as compare.

compare [Bool]

compare b0 b1 is a total order on boolean values.

compare_length_with [ListLabels]

Compare the length of a list to an integer.

compare_length_with [List]

Compare the length of a list to an integer.

compare_lengths [ListLabels]

Compare the lengths of two lists.

compare_lengths [List]

Compare the lengths of two lists.

complex32 [Bigarray]
complex64 [Bigarray]
concat [String]

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

concat [StringLabels]

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep between each.

concat [ListLabels]

Concatenate a list of lists.

concat [List]

Concatenate a list of lists.

concat [Float.ArrayLabels]
concat [Float.Array]

Same as Float.Array.append, but concatenates a list of floatarrays.

concat [Filename]

concat dir file returns a file name that designates file file in directory dir.

concat [BytesLabels]

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

concat [Bytes]

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

concat [ArrayLabels]

Same as ArrayLabels.append, but concatenates a list of arrays.

concat [Array]

Same as Array.append, but concatenates a list of arrays.

concat_fmt [CamlinternalFormatBasics]
concat_fmtty [CamlinternalFormatBasics]
concat_map [ListLabels]

List.concat_map f l gives the same result as List.concat (List.map f l).

concat_map [List]

List.concat_map f l gives the same result as List.concat (List.map f l).

conj [Complex]

Conjugate: given the complex x + i.y, returns x - i.y.

connect [UnixLabels]

Connect a socket to an address.

connect [Unix]

Connect a socket to an address.

connect [ThreadUnix]
cons [Seq]

cons x xs is the sequence containing the element x followed by the sequence xs

cons [ListLabels]

cons x xs is x :: xs

cons [List]

cons x xs is x :: xs

const [Fun]

const c is a function that always returns the value c.

contains [String]

String.contains s c tests if character c appears in the string s.

contains [StringLabels]

String.contains s c tests if character c appears in the string s.

contains [BytesLabels]

contains s c tests if byte c appears in s.

contains [Bytes]

contains s c tests if byte c appears in s.

contains_from [String]

String.contains_from s start c tests if character c appears in s after position start.

contains_from [StringLabels]

String.contains_from s start c tests if character c appears in s after position start.

contains_from [BytesLabels]

contains_from s start c tests if byte c appears in s after position start.

contains_from [Bytes]

contains_from s start c tests if byte c appears in s after position start.

contents [Buffer]

Return a copy of the current contents of the buffer.

convert_raw_backtrace_slot [Printexc]

Extracts the user-friendly backtrace_slot from a low-level raw_backtrace_slot.

copy [String]

Return a copy of the given string.

copy [StringLabels]

Return a copy of the given string.

copy [Stack]

Return a copy of the given stack.

copy [Random.State]

Return a copy of the given state.

copy [Queue]

Return a copy of the given queue.

copy [Oo]

Oo.copy o returns a copy of object o, that is a fresh object with the same methods and instance variables as o.

copy [MoreLabels.Hashtbl.SeededS]
copy [MoreLabels.Hashtbl.S]
copy [MoreLabels.Hashtbl]
copy [Hashtbl.SeededS]
copy [Hashtbl.S]
copy [Hashtbl]

Return a copy of the given hashtable.

copy [Float.ArrayLabels]
copy [Float.Array]

copy a returns a copy of a, that is, a fresh floatarray containing the same elements as a.

copy [CamlinternalOO]
copy [BytesLabels]

Return a new byte sequence that contains the same bytes as the argument.

copy [Bytes]

Return a new byte sequence that contains the same bytes as the argument.

copy [ArrayLabels]

copy a returns a copy of a, that is, a fresh array containing the same elements as a.

copy [Array]

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

copy_sign [Float]

copy_sign x y returns a float whose absolute value is that of x and whose sign is that of y.

copysign [Stdlib]

copysign x y returns a float whose absolute value is that of x and whose sign is that of y.

cos [Stdlib]

Cosine.

cos [Float]

Cosine.

cosh [Stdlib]

Hyperbolic cosine.

cosh [Float]

Hyperbolic cosine.

count [Weak.S]

Count the number of elements in the table.

count [Stream]

Return the current count of the stream elements, i.e.

counters [Gc]

Return (minor_words, promoted_words, major_words).

create [Thread]

Thread.create funct arg creates a new thread of control, in which the function application funct arg is executed concurrently with the other threads of the program.

create [Weak.S]

create n creates a new empty weak hash set, of initial size n.

create [Weak]

Weak.create n returns a new weak array of length n.

create [String]

String.create n returns a fresh byte sequence of length n.

create [StringLabels]

String.create n returns a fresh byte sequence of length n.

create [Stack]

Return a new stack, initially empty.

create [Spacetime.Series]

create ~path creates a series file at path.

create [Queue]

Return a new queue, initially empty.

create [Obj.Ephemeron]

create n returns an ephemeron with n keys.

create [Mutex]

Return a new mutex.

create [MoreLabels.Hashtbl.SeededS]
create [MoreLabels.Hashtbl.S]
create [MoreLabels.Hashtbl]
create [Hashtbl.SeededS]
create [Hashtbl.S]
create [Hashtbl]

Hashtbl.create n creates a new, empty hash table, with initial size n.

create [Float.ArrayLabels]
create [Float.Array]

create n returns a fresh floatarray of length n, with uninitialized data.

create [Ephemeron.Kn]
create [Ephemeron.K2]
create [Ephemeron.K1]

Ephemeron.K1.create () creates an ephemeron with one key.

create [Condition]

Return a new condition variable.

create [BytesLabels]

create n returns a new byte sequence of length n.

create [Bytes]

create n returns a new byte sequence of length n.

create [Buffer]

create n returns a fresh buffer, initially empty.

create [Bigarray.Array3]

Array3.create kind layout dim1 dim2 dim3 returns a new Bigarray of three dimension, whose size is dim1 in the first dimension, dim2 in the second dimension, and dim3 in the third.

create [Bigarray.Array2]

Array2.create kind layout dim1 dim2 returns a new Bigarray of two dimension, whose size is dim1 in the first dimension and dim2 in the second dimension.

create [Bigarray.Array1]

Array1.create kind layout dim returns a new Bigarray of one dimension, whose size is dim.

create [Bigarray.Array0]

Array0.create kind layout returns a new Bigarray of zero dimension.

create [Bigarray.Genarray]

Genarray.create kind layout dimensions returns a new Bigarray whose element kind is determined by the parameter kind (one of float32, float64, int8_signed, etc) and whose layout is determined by the parameter layout (one of c_layout or fortran_layout).

create [ArrayLabels]
create [Array]
create_alarm [Gc]

create_alarm f will arrange for f to be called at the end of each major GC cycle, starting with the current cycle or the next one.

create_char_set [CamlinternalFormat]
create_float [ArrayLabels]

create_float n returns a fresh float array of length n, with uninitialized data.

create_float [Array]

Array.create_float n returns a fresh float array of length n, with uninitialized data.

create_matrix [ArrayLabels]
create_matrix [Array]
create_object [CamlinternalOO]
create_object_and_run_initializers [CamlinternalOO]
create_object_opt [CamlinternalOO]
create_process [UnixLabels]

create_process prog args new_stdin new_stdout new_stderr forks a new process that executes the program in file prog, with arguments args.

create_process [Unix]

create_process prog args new_stdin new_stdout new_stderr forks a new process that executes the program in file prog, with arguments args.

create_process_env [UnixLabels]

create_process_env prog args env new_stdin new_stdout new_stderr works as UnixLabels.create_process, except that the extra argument env specifies the environment passed to the program.

create_process_env [Unix]

create_process_env prog args env new_stdin new_stdout new_stderr works as Unix.create_process, except that the extra argument env specifies the environment passed to the program.

create_table [CamlinternalOO]
current [Arg]

Position (in Sys.argv) of the argument being processed.

current_dir_name [Filename]

The conventional name for the current directory (e.g.

custom_tag [Obj]
cygwin [Sys]

True if Sys.os_type = "Cygwin".

D
data_size [Marshal]
decr [Stdlib]

Decrement the integer contained in the given reference.

default_uncaught_exception_handler [Printexc]

Printexc.default_uncaught_exception_handler prints the exception and backtrace on standard error output.

delay [Thread]

delay d suspends the execution of the calling thread for d seconds.

delete_alarm [Gc]

delete_alarm a will stop the calls to the function associated to a.

descr_of_in_channel [UnixLabels]

Return the descriptor corresponding to an input channel.

descr_of_in_channel [Unix]

Return the descriptor corresponding to an input channel.

descr_of_out_channel [UnixLabels]

Return the descriptor corresponding to an output channel.

descr_of_out_channel [Unix]

Return the descriptor corresponding to an output channel.

diff [Set.S]

Set difference: diff s1 s2 contains the elements of s1 that are not in s2.

diff [MoreLabels.Set.S]
dim [Bigarray.Array1]

Return the size (dimension) of the given one-dimensional Bigarray.

dim1 [Bigarray.Array3]

Return the first dimension of the given three-dimensional Bigarray.

dim1 [Bigarray.Array2]

Return the first dimension of the given two-dimensional Bigarray.

dim2 [Bigarray.Array3]

Return the second dimension of the given three-dimensional Bigarray.

dim2 [Bigarray.Array2]

Return the second dimension of the given two-dimensional Bigarray.

dim3 [Bigarray.Array3]

Return the third dimension of the given three-dimensional Bigarray.

dims [Bigarray.Genarray]

Genarray.dims a returns all dimensions of the Bigarray a, as an array of integers of length Genarray.num_dims a.

dir_sep [Filename]

The directory separator (e.g.

dirname [Filename]
disjoint [Set.S]

Test if two sets are disjoint.

disjoint [MoreLabels.Set.S]
div [Nativeint]

Integer division.

div [Int64]

Integer division.

div [Int32]

Integer division.

div [Int]

div x y is the division x / y.

div [Float]

Floating-point division.

div [Complex]

Division

domain_of_sockaddr [UnixLabels]

Return the socket domain adequate for the given socket address.

domain_of_sockaddr [Unix]

Return the socket domain adequate for the given socket address.

double_array_tag [Obj]
double_field [Obj]
double_tag [Obj]
dprintf [Format]

Same as Format.fprintf, except the formatter is the last argument.

dummy_class [CamlinternalOO]
dummy_pos [Lexing]

A value of type position, guaranteed to be different from any valid position.

dummy_table [CamlinternalOO]
dup [UnixLabels]

Return a new file descriptor referencing the same file as the given descriptor.

dup [Unix]

Return a new file descriptor referencing the same file as the given descriptor.

dup [Obj]
dup2 [UnixLabels]

dup2 fd1 fd2 duplicates fd1 to fd2, closing fd2 if already opened.

dup2 [Unix]

dup2 fd1 fd2 duplicates fd1 to fd2, closing fd2 if already opened.

E
elements [Set.S]

Return the list of all elements of the given set.

elements [MoreLabels.Set.S]
empty [Stream]

Return () if the stream is empty, else raise Stream.Failure.

empty [Set.S]

The empty set.

empty [Seq]

The empty sequence, containing no elements.

empty [MoreLabels.Set.S]
empty [MoreLabels.Map.S]
empty [Map.S]

The empty map.

empty [BytesLabels]

A byte sequence of size 0.

empty [Bytes]

A byte sequence of size 0.

enable_runtime_warnings [Sys]

Control whether the OCaml runtime system can emit warnings on stderr.

enabled [Spacetime]

enabled is true if the compiler is configured with spacetime and false otherwise

end_of_input [Scanf.Scanning]

Scanning.end_of_input ic tests the end-of-input condition of the given Scanf.Scanning.in_channel formatted input channel.

environment [UnixLabels]

Return the process environment, as an array of strings with the format ``variable=value''.

environment [Unix]

Return the process environment, as an array of strings with the format ``variable=value''.

eprintf [Printf]

Same as Printf.fprintf, but output on stderr.

eprintf [Format]

Same as fprintf above, but output on err_formatter.

epsilon [Float]

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

epsilon_float [Stdlib]

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

equal [Unit]

equal u1 u2 is true.

equal [Uchar]

equal u u' is u = u'.

equal [String]

The equal function for strings.

equal [StringLabels]

The equal function for strings.

equal [Set.S]

equal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain equal elements.

equal [Result]

equal ~ok ~error r0 r1 tests equality of r0 and r1 using ok and error to respectively compare values wrapped by Ok _ and Error _.

equal [Option]

equal eq o0 o1 is true iff o0 and o1 are both None or if they are Some v0 and Some v1 and eq v0 v1 is true.

equal [Nativeint]

The equal function for native ints.

equal [MoreLabels.Set.S]
equal [MoreLabels.Map.S]
equal [Map.S]

equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain equal keys and associate them with equal data.

equal [Int64]

The equal function for int64s.

equal [Int32]

The equal function for int32s.

equal [Int]

equal x y is true iff x = y.

equal [Hashtbl.SeededHashedType]

The equality predicate used to compare keys.

equal [Hashtbl.HashedType]

The equality predicate used to compare keys.

equal [Float]

The equal function for floating-point numbers, compared using Float.compare.

equal [Digest]

The equal function for 16-character digest.

equal [Char]

The equal function for chars.

equal [BytesLabels]

The equality function for byte sequences.

equal [Bytes]

The equality function for byte sequences.

equal [Bool]

equal b0 b1 is true iff b0 and b1 are both either true or false.

erase_rel [CamlinternalFormatBasics]
err_formatter [Format]

A formatter to write to standard error.

error [Result]

error e is Error e.

error_message [UnixLabels]

Return a string describing the given error code.

error_message [Unix]

Return a string describing the given error code.

error_message [Dynlink]

Convert an error description to a printable message.

escaped [String]

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

escaped [StringLabels]

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

escaped [Char]

Return a string representing the given character, with special characters escaped following the lexical conventions of OCaml.

escaped [BytesLabels]

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

escaped [Bytes]

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

establish_server [UnixLabels]

Establish a server on the given address.

establish_server [Unix]

Establish a server on the given address.

eventlog_pause [Gc]

eventlog_pause () will pause the collection of traces in the runtime.

eventlog_resume [Gc]

eventlog_resume () will resume the collection of traces in the runtime.

executable_name [Sys]

The name of the file containing the executable currently running.

execv [UnixLabels]

execv prog args execute the program in file prog, with the arguments args, and the current process environment.

execv [Unix]

execv prog args execute the program in file prog, with the arguments args, and the current process environment.

execv [ThreadUnix]
execve [UnixLabels]

Same as UnixLabels.execv, except that the third argument provides the environment to the program executed.

execve [Unix]

Same as Unix.execv, except that the third argument provides the environment to the program executed.

execve [ThreadUnix]
execvp [UnixLabels]

Same as UnixLabels.execv, except that the program is searched in the path.

execvp [Unix]

Same as Unix.execv, except that the program is searched in the path.

execvp [ThreadUnix]
execvpe [UnixLabels]

Same as UnixLabels.execve, except that the program is searched in the path.

execvpe [Unix]

Same as Unix.execve, except that the program is searched in the path.

exists [Set.S]

exists p s checks if at least one element of the set satisfies the predicate p.

exists [MoreLabels.Set.S]
exists [MoreLabels.Map.S]
exists [Map.S]

exists p m checks if at least one binding of the map satisfies the predicate p.

exists [ListLabels]

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p.

exists [List]

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p.

exists [Float.ArrayLabels]
exists [Float.Array]

exists p [|a1; ...; an|] checks if at least one element of the floatarray satisfies the predicate p.

exists [ArrayLabels]

exists ~f [|a1; ...; an|] checks if at least one element of the array satisfies the predicate f.

exists [Array]

Array.exists p [|a1; ...; an|] checks if at least one element of the array satisfies the predicate p.

exists2 [ListLabels]

Same as List.exists, but for a two-argument predicate.

exists2 [List]

Same as List.exists, but for a two-argument predicate.

exists2 [ArrayLabels]

Same as ArrayLabels.exists, but for a two-argument predicate.

exists2 [Array]

Same as Array.exists, but for a two-argument predicate.

exit [Thread]

Terminate prematurely the currently executing thread.

exit [Stdlib]

Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure.

exn_slot_id [Printexc]

Printexc.exn_slot_id returns an integer which uniquely identifies the constructor used to create the exception value exn (in the current runtime).

exn_slot_name [Printexc]

Printexc.exn_slot_name exn returns the internal name of the constructor used to create the exception value exn.

exp [Stdlib]

Exponential.

exp [Float]

Exponential.

exp [Complex]

Exponentiation.

expm1 [Stdlib]

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

expm1 [Float]

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

extend [BytesLabels]

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it.

extend [Bytes]

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it.

extension [Filename]

extension name is the shortest suffix ext of name0 where:

extension_constructor [Obj]
extension_id [Obj]
extension_name [Obj]
F
failwith [Stdlib]

Raise exception Failure with the given string.

fast_sort [ListLabels]

Same as List.sort or List.stable_sort, whichever is faster on typical input.

fast_sort [List]

Same as List.sort or List.stable_sort, whichever is faster on typical input.

fast_sort [Float.ArrayLabels]
fast_sort [Float.Array]

Same as Float.Array.sort or Float.Array.stable_sort, whichever is faster on typical input.

fast_sort [ArrayLabels]

Same as ArrayLabels.sort or ArrayLabels.stable_sort, whichever is faster on typical input.

fast_sort [Array]

Same as Array.sort or Array.stable_sort, whichever is faster on typical input.

fchmod [UnixLabels]

Change the permissions of an opened file.

fchmod [Unix]

Change the permissions of an opened file.

fchown [UnixLabels]

Change the owner uid and owner gid of an opened file.

fchown [Unix]

Change the owner uid and owner gid of an opened file.

field [Obj]
file [Digest]

Return the digest of the file whose name is given.

file_exists [Sys]

Test if a file with the given name exists.

fill [Weak]

Weak.fill ar ofs len el sets to el all pointers of ar from ofs to ofs + len - 1.

fill [String]

String.fill s start len c modifies byte sequence s in place, replacing len bytes with c, starting at start.

fill [StringLabels]

String.fill s start len c modifies byte sequence s in place, replacing len bytes by c, starting at start.

fill [Float.ArrayLabels]
fill [Float.Array]

fill a ofs len x modifies the floatarray a in place, storing x in elements number ofs to ofs + len - 1.

fill [BytesLabels]

fill s start len c modifies s in place, replacing len characters with c, starting at start.

fill [Bytes]

fill s start len c modifies s in place, replacing len characters with c, starting at start.

fill [Bigarray.Array3]

Fill the given Bigarray with the given value.

fill [Bigarray.Array2]

Fill the given Bigarray with the given value.

fill [Bigarray.Array1]

Fill the given Bigarray with the given value.

fill [Bigarray.Array0]

Fill the given Bigarray with the given value.

fill [Bigarray.Genarray]

Set all elements of a Bigarray to a given value.

fill [ArrayLabels]

fill a ~pos ~len x modifies the array a in place, storing x in elements number pos to pos + len - 1.

fill [Array]

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs to ofs + len - 1.

filter [Set.S]

filter p s returns the set of all elements in s that satisfy predicate p.

filter [Seq]

Remove from the sequence the elements that do not satisfy the given predicate.

filter [MoreLabels.Set.S]
filter [MoreLabels.Map.S]
filter [Map.S]

filter p m returns the map with all the bindings in m that satisfy predicate p.

filter [ListLabels]

filter p l returns all the elements of the list l that satisfy the predicate p.

filter [List]

filter p l returns all the elements of the list l that satisfy the predicate p.

filter_map [Set.S]

filter_map f s returns the set of all v such that f x = Some v for some element x of s.

filter_map [Seq]

Apply the function to every element; if f x = None then x is dropped; if f x = Some y then y is returned.

filter_map [MoreLabels.Set.S]
filter_map [MoreLabels.Map.S]
filter_map [Map.S]

filter_map f m applies the function f to every binding of m, and builds a map from the results.

filter_map [ListLabels]

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

filter_map [List]

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

filter_map_inplace [MoreLabels.Hashtbl.SeededS]
filter_map_inplace [MoreLabels.Hashtbl.S]
filter_map_inplace [MoreLabels.Hashtbl]
filter_map_inplace [Hashtbl.SeededS]
filter_map_inplace [Hashtbl.S]
filter_map_inplace [Hashtbl]

Hashtbl.filter_map_inplace f tbl applies f to all bindings in table tbl and update each binding depending on the result of f.

filteri [ListLabels]

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

filteri [List]

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

final_tag [Obj]
finalise [Gc]

finalise f v registers f as a finalisation function for v.

finalise_last [Gc]

same as Gc.finalise except the value is not given as argument.

finalise_release [Gc]

A finalisation function may call finalise_release to tell the GC that it can launch the next finalisation function without waiting for the current one to return.

find [Weak.S]

find t x returns an instance of x found in t.

find [Set.S]

find x s returns the element of s equal to x (according to Ord.compare), or raise Not_found if no such element exists.

find [MoreLabels.Set.S]
find [MoreLabels.Map.S]
find [MoreLabels.Hashtbl.SeededS]
find [MoreLabels.Hashtbl.S]
find [MoreLabels.Hashtbl]
find [Map.S]

find x m returns the current value of x in m, or raises Not_found if no binding for x exists.

find [ListLabels]

find p l returns the first element of the list l that satisfies the predicate p.

find [List]

find p l returns the first element of the list l that satisfies the predicate p.

find [Hashtbl.SeededS]
find [Hashtbl.S]
find [Hashtbl]

Hashtbl.find tbl x returns the current binding of x in tbl, or raises Not_found if no such binding exists.

find_all [Weak.S]

find_all t x returns a list of all the instances of x found in t.

find_all [MoreLabels.Hashtbl.SeededS]
find_all [MoreLabels.Hashtbl.S]
find_all [MoreLabels.Hashtbl]
find_all [ListLabels]

find_all is another name for List.filter.

find_all [List]

find_all is another name for List.filter.

find_all [Hashtbl.SeededS]
find_all [Hashtbl.S]
find_all [Hashtbl]

Hashtbl.find_all tbl x returns the list of all data associated with x in tbl.

find_first [Set.S]

find_first f s, where f is a monotonically increasing function, returns the lowest element e of s such that f e, or raises Not_found if no such element exists.

find_first [MoreLabels.Set.S]
find_first [MoreLabels.Map.S]
find_first [Map.S]

find_first f m, where f is a monotonically increasing function, returns the binding of m with the lowest key k such that f k, or raises Not_found if no such key exists.

find_first_opt [Set.S]

find_first_opt f s, where f is a monotonically increasing function, returns an option containing the lowest element e of s such that f e, or None if no such element exists.

find_first_opt [MoreLabels.Set.S]
find_first_opt [MoreLabels.Map.S]
find_first_opt [Map.S]

find_first_opt f m, where f is a monotonically increasing function, returns an option containing the binding of m with the lowest key k such that f k, or None if no such key exists.

find_last [Set.S]

find_last f s, where f is a monotonically decreasing function, returns the highest element e of s such that f e, or raises Not_found if no such element exists.

find_last [MoreLabels.Set.S]
find_last [MoreLabels.Map.S]
find_last [Map.S]

find_last f m, where f is a monotonically decreasing function, returns the binding of m with the highest key k such that f k, or raises Not_found if no such key exists.

find_last_opt [Set.S]

find_last_opt f s, where f is a monotonically decreasing function, returns an option containing the highest element e of s such that f e, or None if no such element exists.

find_last_opt [MoreLabels.Set.S]
find_last_opt [MoreLabels.Map.S]
find_last_opt [Map.S]

find_last_opt f m, where f is a monotonically decreasing function, returns an option containing the binding of m with the highest key k such that f k, or None if no such key exists.

find_map [ListLabels]

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

find_map [List]

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

find_opt [Weak.S]

find_opt t x returns an instance of x found in t or None if there is no such element.

find_opt [Set.S]

find_opt x s returns the element of s equal to x (according to Ord.compare), or None if no such element exists.

find_opt [MoreLabels.Set.S]
find_opt [MoreLabels.Map.S]
find_opt [MoreLabels.Hashtbl.SeededS]
find_opt [MoreLabels.Hashtbl.S]
find_opt [MoreLabels.Hashtbl]
find_opt [Map.S]

find_opt x m returns Some v if the current value of x in m is v, or None if no binding for x exists.

find_opt [ListLabels]

find p l returns the first element of the list l that satisfies the predicate p.

find_opt [List]

find_opt p l returns the first element of the list l that satisfies the predicate p, or None if there is no value that satisfies p in the list l.

find_opt [Hashtbl.SeededS]
find_opt [Hashtbl.S]
find_opt [Hashtbl]

Hashtbl.find_opt tbl x returns the current binding of x in tbl, or None if no such binding exists.

first_chars [Str]

first_chars s n returns the first n characters of s.

first_non_constant_constructor_tag [Obj]
flat_map [Seq]

Map each element to a subsequence, then return each element of this sub-sequence in turn.

flatten [ListLabels]

Same as concat.

flatten [List]

An alias for concat.

flip [Fun]

flip f reverses the argument order of the binary function f.

float [Stdlib]

Same as float_of_int.

float [Random.State]
float [Random]

Random.float bound returns a random floating-point number between 0 and bound (inclusive).

float32 [Bigarray]
float64 [Bigarray]
float_of_bits [Int64]

Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'double format' bit layout, is the given int64.

float_of_bits [Int32]

Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'single format' bit layout, is the given int32.

float_of_int [Stdlib]

Convert an integer to floating-point.

float_of_string [Stdlib]

Same as float_of_string_opt, but raise Failure "float_of_string" instead of returning None.

float_of_string_opt [Stdlib]

Convert the given string to a float.

floor [Stdlib]

Round below to an integer value.

floor [Float]

Round below to an integer value.

flush [Stdlib]

Flush the buffer associated with the given output channel, performing all pending writes on that channel.

flush_all [Stdlib]

Flush all open output channels; ignore errors.

flush_input [Lexing]

Discard the contents of the buffer and reset the current position to 0.

flush_str_formatter [Format]

Returns the material printed with str_formatter, flushes the formatter and resets the corresponding buffer.

flush_symbolic_output_buffer [Format]

flush_symbolic_output_buffer sob returns the contents of buffer sob and resets buffer sob.

fma [Float]

fma x y z returns x * y + z, with a best effort for computing this expression with a single rounding, using either hardware instructions (providing full IEEE compliance) or a software emulation.

fmt_ebb_of_string [CamlinternalFormat]
fold [Weak.S]

fold f t init computes (f d1 (... (f dN init))) where d1 ... dN are the elements of t in some unspecified order.

fold [Stack]

fold f accu s is (f (... (f (f accu x1) x2) ...) xn) where x1 is the top of the stack, x2 the second element, and xn the bottom element.

fold [Set.S]

fold f s a computes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are the elements of s, in increasing order.

fold [Result]

fold ~ok ~error r is ok v if r is Ok v and error e if r is Error e.

fold [Queue]

fold f accu q is equivalent to List.fold_left f accu l, where l is the list of q's elements.

fold [Option]

fold ~none ~some o is none if o is None and some v if o is Some v.

fold [MoreLabels.Set.S]
fold [MoreLabels.Map.S]
fold [MoreLabels.Hashtbl.SeededS]
fold [MoreLabels.Hashtbl.S]
fold [MoreLabels.Hashtbl]
fold [Map.S]

fold f m a computes (f kN dN ... (f k1 d1 a)...), where k1 ... kN are the keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

fold [Hashtbl.SeededS]
fold [Hashtbl.S]
fold [Hashtbl]

Hashtbl.fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN are the keys of all bindings in tbl, and d1 ... dN are the associated values.

fold_left [Seq]

Traverse the sequence from left to right, combining each element with the accumulator using the given function.

fold_left [ListLabels]

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

fold_left [List]

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

fold_left [Float.ArrayLabels]
fold_left [Float.Array]

fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the floatarray a.

fold_left [ArrayLabels]

fold_left ~f ~init a computes f (... (f (f init a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

fold_left [Array]

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

fold_left2 [ListLabels]

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

fold_left2 [List]

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

fold_left_map [ListLabels]

fold_left_map is a combination of fold_left and map hat threads an accumulator through calls to f

fold_left_map [List]

fold_left_map is a combination of fold_left and map that threads an accumulator through calls to f

fold_right [ListLabels]

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)).

fold_right [List]

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)).

fold_right [Float.ArrayLabels]
fold_right [Float.Array]

fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the floatarray a.

fold_right [ArrayLabels]

fold_right ~f a ~init computes f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...)), where n is the length of the array a.

fold_right [Array]

Array.fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the array a.

fold_right2 [ListLabels]

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

fold_right2 [List]

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

for_all [Set.S]

for_all p s checks if all elements of the set satisfy the predicate p.

for_all [MoreLabels.Set.S]
for_all [MoreLabels.Map.S]
for_all [Map.S]

for_all p m checks if all the bindings of the map satisfy the predicate p.

for_all [ListLabels]

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p.

for_all [List]

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p.

for_all [Float.ArrayLabels]
for_all [Float.Array]

for_all p [|a1; ...; an|] checks if all elements of the floatarray satisfy the predicate p.

for_all [ArrayLabels]

for_all ~f [|a1; ...; an|] checks if all elements of the array satisfy the predicate f.

for_all [Array]

Array.for_all p [|a1; ...; an|] checks if all elements of the array satisfy the predicate p.

for_all2 [ListLabels]

Same as List.for_all, but for a two-argument predicate.

for_all2 [List]

Same as List.for_all, but for a two-argument predicate.

for_all2 [ArrayLabels]

Same as ArrayLabels.for_all, but for a two-argument predicate.

for_all2 [Array]

Same as Array.for_all, but for a two-argument predicate.

force [Lazy]

force x forces the suspension x and returns its result.

force [CamlinternalLazy]
force_lazy_block [CamlinternalLazy]
force_newline [Format]

Force a new line in the current pretty-printing box.

force_val [Lazy]

force_val x forces the suspension x and returns its result.

force_val [CamlinternalLazy]
force_val_lazy_block [CamlinternalLazy]
fork [UnixLabels]

Fork a new process.

fork [Unix]

Fork a new process.

format [Printexc.Slot]

format pos slot returns the string representation of slot as raw_backtrace_to_string would format it, assuming it is the pos-th element of the backtrace: the 0-th element is pretty-printed differently than the others.

format_from_string [Scanf]

format_from_string s fmt converts a string argument to a format string, according to the given format string fmt.

format_of_string [Stdlib]

format_of_string s returns a format string read from the string literal s.

format_of_string_fmtty [CamlinternalFormat]
format_of_string_format [CamlinternalFormat]
formatter_of_buffer [Format]

formatter_of_buffer b returns a new formatter writing to buffer b.

formatter_of_out_channel [Format]

formatter_of_out_channel oc returns a new formatter writing to the corresponding output channel oc.

formatter_of_out_functions [Format]

formatter_of_out_functions out_funs returns a new formatter that writes with the set of output functions out_funs.

formatter_of_symbolic_output_buffer [Format]

formatter_of_symbolic_output_buffer sob returns a symbolic formatter that outputs to symbolic_output_buffer sob.

fortran_layout [Bigarray]
forward_tag [Obj]
fprintf [Printf]

fprintf outchan format arg1 ... argN formats the arguments arg1 to argN according to the format string format, and outputs the resulting string on the channel outchan.

fprintf [Format]
freeze_char_set [CamlinternalFormat]
frexp [Stdlib]

frexp f returns the pair of the significant and the exponent of f.

frexp [Float]

frexp f returns the pair of the significant and the exponent of f.

from [Stream]

Stream.from f returns a stream built from the function f.

from_bytes [Marshal]

Marshal.from_bytes buff ofs unmarshals a structured value like Marshal.from_channel does, except that the byte representation is not read from a channel, but taken from the byte sequence buff, starting at position ofs.

from_channel [Scanf.Scanning]

Scanning.from_channel ic returns a Scanf.Scanning.in_channel formatted input channel which reads from the regular in_channel input channel ic argument.

from_channel [Marshal]

Marshal.from_channel chan reads from channel chan the byte representation of a structured value, as produced by one of the Marshal.to_* functions, and reconstructs and returns the corresponding value.

from_channel [Lexing]

Create a lexer buffer on the given input channel.

from_file [Scanf.Scanning]

An alias for Scanf.Scanning.open_in above.

from_file_bin [Scanf.Scanning]

An alias for Scanf.Scanning.open_in_bin above.

from_fun [Lazy]

from_fun f is the same as lazy (f ()) but slightly more efficient.

from_function [Scanf.Scanning]

Scanning.from_function f returns a Scanf.Scanning.in_channel formatted input channel with the given function as its reading method.

from_function [Lexing]

Create a lexer buffer with the given function as its reading method.

from_hex [Digest]

Convert a hexadecimal representation back into the corresponding digest.

from_string [Scanf.Scanning]

Scanning.from_string s returns a Scanf.Scanning.in_channel formatted input channel which reads from the given string.

from_string [Marshal]

Same as from_bytes but take a string as argument instead of a byte sequence.

from_string [Lexing]

Create a lexer buffer which reads from the given string.

from_val [Lazy]

from_val v returns an already-forced suspension of v.

fscanf [Scanf]
fst [Stdlib]

Return the first component of a pair.

fstat [UnixLabels.LargeFile]
fstat [UnixLabels]

Return the information for the file associated with the given descriptor.

fstat [Unix.LargeFile]
fstat [Unix]

Return the information for the file associated with the given descriptor.

fsync [Unix]

Flush file buffers to disk.

ftruncate [UnixLabels.LargeFile]
ftruncate [UnixLabels]

Truncates the file corresponding to the given descriptor to the given size.

ftruncate [Unix.LargeFile]
ftruncate [Unix]

Truncates the file corresponding to the given descriptor to the given size.

full_init [Random]

Same as Random.init but takes more data as seed.

full_major [Gc]

Do a minor collection, finish the current major collection cycle, and perform a complete new cycle.

full_split [Str]

Same as Str.split_delim, but returns the delimiters as well as the substrings contained between delimiters.

G
genarray_of_array0 [Bigarray]

Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.

genarray_of_array1 [Bigarray]

Return the generic Bigarray corresponding to the given one-dimensional Bigarray.

genarray_of_array2 [Bigarray]

Return the generic Bigarray corresponding to the given two-dimensional Bigarray.

genarray_of_array3 [Bigarray]

Return the generic Bigarray corresponding to the given three-dimensional Bigarray.

get [Weak]

Weak.get ar n returns None if the nth cell of ar is empty, Some x (where x is the value) if it is full.

get [String]

String.get s n returns the character at index n in string s.

get [StringLabels]

String.get s n returns the character at index n in string s.

get [Option]

get o is v if o is Some v and

get [Gc]

Return the current values of the GC parameters in a control record.

get [Float.ArrayLabels]
get [Float.Array]

get a n returns the element number n of floatarray a.

get [BytesLabels]

get s n returns the byte at index n in argument s.

get [Bytes]

get s n returns the byte at index n in argument s.

get [Bigarray.Array3]

Array3.get a x y z, also written a.{x,y,z}, returns the element of a at coordinates (x, y, z).

get [Bigarray.Array2]

Array2.get a x y, also written a.{x,y}, returns the element of a at coordinates (x, y).

get [Bigarray.Array1]

Array1.get a x, or alternatively a.{x}, returns the element of a at index x.

get [Bigarray.Array0]

Array0.get a returns the only element in a.

get [Bigarray.Genarray]

Read an element of a generic Bigarray.

get [ArrayLabels]

get a n returns the element number n of array a.

get [Array]

Array.get a n returns the element number n of array a.

get_all_formatter_output_functions [Format]
get_backtrace [Printexc]

Printexc.get_backtrace () returns a string containing the same exception backtrace that Printexc.print_backtrace would print.

get_bucket [Gc]

get_bucket n returns the current size of the n-th future bucket of the GC smoothing system.

get_callstack [Printexc]

Printexc.get_callstack n returns a description of the top of the call stack on the current program point (for the current thread), with at most n entries.

get_copy [Weak]

Weak.get_copy ar n returns None if the nth cell of ar is empty, Some x (where x is a (shallow) copy of the value) if it is full.

get_credit [Gc]

get_credit () returns the current size of the "work done in advance" counter of the GC smoothing system.

get_data [Obj.Ephemeron]
get_data [Ephemeron.Kn]
get_data [Ephemeron.K2]
get_data [Ephemeron.K1]

Ephemeron.K1.get_data eph returns None if the data of eph is empty, Some x (where x is the data) if it is full.

get_data_copy [Obj.Ephemeron]
get_data_copy [Ephemeron.Kn]
get_data_copy [Ephemeron.K2]
get_data_copy [Ephemeron.K1]

Ephemeron.K1.get_data_copy eph returns None if the data of eph is empty, Some x (where x is a (shallow) copy of the data) if it is full.

get_ellipsis_text [Format]

Return the text of the ellipsis.

get_error [Result]

get_error r is e if r is Error e and

get_formatter_out_functions [Format]

Return the current output functions of the pretty-printer, including line splitting and indentation functions.

get_formatter_output_functions [Format]

Return the current output functions of the standard pretty-printer.

get_formatter_stag_functions [Format]

Return the current semantic tag operation functions of the standard pretty-printer.

get_formatter_tag_functions [Format]
get_geometry [Format]

Return the current geometry of the formatter

get_int16_be [BytesLabels]

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

get_int16_be [Bytes]

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

get_int16_le [BytesLabels]

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

get_int16_le [Bytes]

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

get_int16_ne [BytesLabels]

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

get_int16_ne [Bytes]

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

get_int32_be [BytesLabels]

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

get_int32_be [Bytes]

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

get_int32_le [BytesLabels]

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

get_int32_le [Bytes]

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

get_int32_ne [BytesLabels]

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

get_int32_ne [Bytes]

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

get_int64_be [BytesLabels]

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

get_int64_be [Bytes]

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

get_int64_le [BytesLabels]

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

get_int64_le [Bytes]

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

get_int64_ne [BytesLabels]

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

get_int64_ne [Bytes]

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

get_int8 [BytesLabels]

get_int8 b i is b's signed 8-bit integer starting at byte index i.

get_int8 [Bytes]

get_int8 b i is b's signed 8-bit integer starting at byte index i.

get_key [Obj.Ephemeron]
get_key [Ephemeron.Kn]
get_key [Ephemeron.K1]

Ephemeron.K1.get_key eph returns None if the key of eph is empty, Some x (where x is the key) if it is full.

get_key1 [Ephemeron.K2]
get_key1_copy [Ephemeron.K2]
get_key2 [Ephemeron.K2]
get_key2_copy [Ephemeron.K2]
get_key_copy [Obj.Ephemeron]
get_key_copy [Ephemeron.Kn]
get_key_copy [Ephemeron.K1]

Ephemeron.K1.get_key_copy eph returns None if the key of eph is empty, Some x (where x is a (shallow) copy of the key) if it is full.

get_margin [Format]

Returns the position of the right margin.

get_mark_tags [Format]

Return the current status of tag-marking operations.

get_max_boxes [Format]

Returns the maximum number of pretty-printing boxes allowed before ellipsis.

get_max_indent [Format]

Return the maximum indentation limit (in characters).

get_method [CamlinternalOO]
get_method_label [CamlinternalOO]
get_method_labels [CamlinternalOO]
get_minor_free [Gc]

Return the current size of the free space inside the minor heap.

get_ok [Result]

get_ok r is v if r is Ok v and

get_print_tags [Format]

Return the current status of tag-printing operations.

get_public_method [CamlinternalOO]
get_raw_backtrace [Printexc]

Printexc.get_raw_backtrace () returns the same exception backtrace that Printexc.print_backtrace would print, but in a raw format.

get_raw_backtrace_next_slot [Printexc]

get_raw_backtrace_next_slot slot returns the next slot inlined, if any.

get_raw_backtrace_slot [Printexc]

get_raw_backtrace_slot bckt pos returns the slot in position pos in the backtrace bckt.

get_state [Random]

Return the current state of the generator used by the basic functions.

get_symbolic_output_buffer [Format]

get_symbolic_output_buffer sob returns the contents of buffer sob.

get_temp_dir_name [Filename]

The name of the temporary directory: Under Unix, the value of the TMPDIR environment variable, or "/tmp" if the variable is not set.

get_uint16_be [BytesLabels]

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

get_uint16_be [Bytes]

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

get_uint16_le [BytesLabels]

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

get_uint16_le [Bytes]

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

get_uint16_ne [BytesLabels]

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

get_uint16_ne [Bytes]

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

get_uint8 [BytesLabels]

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

get_uint8 [Bytes]

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

get_variable [CamlinternalOO]
get_variables [CamlinternalOO]
getaddrinfo [UnixLabels]

getaddrinfo host service opts returns a list of Unix.addr_info records describing socket parameters and addresses suitable for communicating with the given host and service.

getaddrinfo [Unix]

getaddrinfo host service opts returns a list of Unix.addr_info records describing socket parameters and addresses suitable for communicating with the given host and service.

getcwd [UnixLabels]

Return the name of the current working directory.

getcwd [Unix]

Return the name of the current working directory.

getcwd [Sys]

Return the current working directory of the process.

getegid [UnixLabels]

Return the effective group id under which the process runs.

getegid [Unix]

Return the effective group id under which the process runs.

getenv [UnixLabels]

Return the value associated to a variable in the process environment.

getenv [Unix]

Return the value associated to a variable in the process environment, unless the process has special privileges.

getenv [Sys]

Return the value associated to a variable in the process environment.

getenv_opt [Sys]

Return the value associated to a variable in the process environment or None if the variable is unbound.

geteuid [UnixLabels]

Return the effective user id under which the process runs.

geteuid [Unix]

Return the effective user id under which the process runs.

getgid [UnixLabels]

Return the group id of the user executing the process.

getgid [Unix]

Return the group id of the user executing the process.

getgrgid [UnixLabels]

Find an entry in group with the given group id, or raise Not_found if the matching entry is not found.

getgrgid [Unix]

Find an entry in group with the given group id.

getgrnam [UnixLabels]

Find an entry in group with the given name, or raise Not_found if the matching entry is not found.

getgrnam [Unix]

Find an entry in group with the given name.

getgroups [UnixLabels]

Return the list of groups to which the user executing the process belongs.

getgroups [Unix]

Return the list of groups to which the user executing the process belongs.

gethostbyaddr [UnixLabels]

Find an entry in hosts with the given address, or raise Not_found.

gethostbyaddr [Unix]

Find an entry in hosts with the given address.

gethostbyname [UnixLabels]

Find an entry in hosts with the given name, or raise Not_found.

gethostbyname [Unix]

Find an entry in hosts with the given name.

gethostname [UnixLabels]

Return the name of the local host.

gethostname [Unix]

Return the name of the local host.

getitimer [UnixLabels]

Return the current status of the given interval timer.

getitimer [Unix]

Return the current status of the given interval timer.

getlogin [UnixLabels]

Return the login name of the user executing the process.

getlogin [Unix]

Return the login name of the user executing the process.

getnameinfo [UnixLabels]

getnameinfo addr opts returns the host name and service name corresponding to the socket address addr.

getnameinfo [Unix]

getnameinfo addr opts returns the host name and service name corresponding to the socket address addr.

getpeername [UnixLabels]

Return the address of the host connected to the given socket.

getpeername [Unix]

Return the address of the host connected to the given socket.

getpid [UnixLabels]

Return the pid of the process.

getpid [Unix]

Return the pid of the process.

getppid [UnixLabels]

Return the pid of the parent process.

getppid [Unix]

Return the pid of the parent process.

getprotobyname [UnixLabels]

Find an entry in protocols with the given name, or raise Not_found.

getprotobyname [Unix]

Find an entry in protocols with the given name.

getprotobynumber [UnixLabels]

Find an entry in protocols with the given protocol number, or raise Not_found.

getprotobynumber [Unix]

Find an entry in protocols with the given protocol number.

getpwnam [UnixLabels]

Find an entry in passwd with the given name, or raise Not_found if the matching entry is not found.

getpwnam [Unix]

Find an entry in passwd with the given name.

getpwuid [UnixLabels]

Find an entry in passwd with the given user id, or raise Not_found if the matching entry is not found.

getpwuid [Unix]

Find an entry in passwd with the given user id.

getservbyname [UnixLabels]

Find an entry in services with the given name, or raise Not_found.

getservbyname [Unix]

Find an entry in services with the given name.

getservbyport [UnixLabels]

Find an entry in services with the given service number, or raise Not_found.

getservbyport [Unix]

Find an entry in services with the given service number.

getsockname [UnixLabels]

Return the address of the given socket.

getsockname [Unix]

Return the address of the given socket.

getsockopt [UnixLabels]

Return the current status of a boolean-valued option in the given socket.

getsockopt [Unix]

Return the current status of a boolean-valued option in the given socket.

getsockopt_error [UnixLabels]

Return the error condition associated with the given socket, and clear it.

getsockopt_error [Unix]

Return the error condition associated with the given socket, and clear it.

getsockopt_float [UnixLabels]

Same as Unix.getsockopt for a socket option whose value is a floating-point number.

getsockopt_float [Unix]

Same as Unix.getsockopt for a socket option whose value is a floating-point number.

getsockopt_int [UnixLabels]

Same as Unix.getsockopt for an integer-valued socket option.

getsockopt_int [Unix]

Same as Unix.getsockopt for an integer-valued socket option.

getsockopt_optint [UnixLabels]

Same as Unix.getsockopt for a socket option whose value is an int option.

getsockopt_optint [Unix]

Same as Unix.getsockopt for a socket option whose value is an int option.

gettimeofday [UnixLabels]

Same as UnixLabels.time, but with resolution better than 1 second.

gettimeofday [Unix]

Same as Unix.time, but with resolution better than 1 second.

getuid [UnixLabels]

Return the user id of the user executing the process.

getuid [Unix]

Return the user id of the user executing the process.

global_replace [Str]

global_replace regexp templ s returns a string identical to s, except that all substrings of s that match regexp have been replaced by templ.

global_substitute [Str]

global_substitute regexp subst s returns a string identical to s, except that all substrings of s that match regexp have been replaced by the result of function subst.

gmtime [UnixLabels]

Convert a time in seconds, as returned by UnixLabels.time, into a date and a time.

gmtime [Unix]

Convert a time in seconds, as returned by Unix.time, into a date and a time.

group_beginning [Str]

group_beginning n returns the position of the first character of the substring that was matched by the nth group of the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details).

group_end [Str]

group_end n returns the position of the character following the last character of substring that was matched by the nth group of the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details).

guard [Event]

guard fn returns the event that, when synchronized, computes fn() and behaves as the resulting event.

H
handle_unix_error [UnixLabels]

handle_unix_error f x applies f to x and returns the result.

handle_unix_error [Unix]

handle_unix_error f x applies f to x and returns the result.

has_symlink [UnixLabels]

Returns true if the user is able to create symbolic links.

has_symlink [Unix]

Returns true if the user is able to create symbolic links.

hash [Uchar]

hash u associates a non-negative integer to u.

hash [MoreLabels.Hashtbl]
hash [Hashtbl.SeededHashedType]

A seeded hashing function on keys.

hash [Hashtbl.HashedType]

A hashing function on keys.

hash [Hashtbl]

Hashtbl.hash x associates a nonnegative integer to any value of any type.

hash [Float]

The hash function for floating-point numbers.

hash_param [MoreLabels.Hashtbl]
hash_param [Hashtbl]

Hashtbl.hash_param meaningful total x computes a hash value for x, with the same properties as for hash.

hd [ListLabels]

Return the first element of the given list.

hd [List]

Return the first element of the given list.

header_size [Marshal]

The bytes representing a marshaled value are composed of a fixed-size header and a variable-sized data part, whose size can be determined from the header.

huge_fallback_count [Gc]

Return the number of times we tried to map huge pages and had to fall back to small pages.

hypot [Stdlib]

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin.

hypot [Float]

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin.

I
i [Complex]

The complex number i.

ibprintf [Printf]

Same as Printf.bprintf, but does not print anything.

id [Thread]

Return the identifier of the given thread.

id [Oo]

Return an integer identifying this object, unique for the current execution of the program.

id [Obj.Extension_constructor]
id [Fun]

id is the identity function.

ifprintf [Printf]

Same as Printf.fprintf, but does not print anything.

ifprintf [Format]

Same as fprintf above, but does not print anything.

ignore [Stdlib]

Discard the value of its argument and return ().

ikbprintf [Printf]

Same as kbprintf above, but does not print anything.

ikfprintf [Printf]

Same as kfprintf above, but does not print anything.

ikfprintf [Format]

Same as kfprintf above, but does not print anything.

in_channel_length [Stdlib.LargeFile]
in_channel_length [Stdlib]

Return the size (number of characters) of the regular file on which the given channel is opened.

in_channel_of_descr [UnixLabels]

Create an input channel reading from the given descriptor.

in_channel_of_descr [Unix]

Create an input channel reading from the given descriptor.

incr [Stdlib]

Increment the integer contained in the given reference.

index [String]

String.index s c returns the index of the first occurrence of character c in string s.

index [StringLabels]

String.index s c returns the index of the first occurrence of character c in string s.

index [BytesLabels]

index s c returns the index of the first occurrence of byte c in s.

index [Bytes]

index s c returns the index of the first occurrence of byte c in s.

index_from [String]

String.index_from s i c returns the index of the first occurrence of character c in string s after position i.

index_from [StringLabels]

String.index_from s i c returns the index of the first occurrence of character c in string s after position i.

index_from [BytesLabels]

index_from s i c returns the index of the first occurrence of byte c in s after position i.

index_from [Bytes]

index_from s i c returns the index of the first occurrence of byte c in s after position i.

index_from_opt [String]

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

index_from_opt [StringLabels]

String.index_from_opt s i c returns the index of the first occurrence of character c in string s after position i or None if c does not occur in s after position i.

index_from_opt [BytesLabels]

index_from _opts i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i.

index_from_opt [Bytes]

index_from_opt s i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i.

index_opt [String]

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

index_opt [StringLabels]

String.index_opt s c returns the index of the first occurrence of character c in string s, or None if c does not occur in s.

index_opt [BytesLabels]

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

index_opt [Bytes]

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

inet6_addr_any [UnixLabels]

A special IPv6 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

inet6_addr_any [Unix]

A special IPv6 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

inet6_addr_loopback [UnixLabels]

A special IPv6 address representing the host machine (::1).

inet6_addr_loopback [Unix]

A special IPv6 address representing the host machine (::1).

inet_addr_any [UnixLabels]

A special IPv4 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

inet_addr_any [Unix]

A special IPv4 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

inet_addr_loopback [UnixLabels]

A special IPv4 address representing the host machine (127.0.0.1).

inet_addr_loopback [Unix]

A special IPv4 address representing the host machine (127.0.0.1).

inet_addr_of_string [UnixLabels]

Conversion from the printable representation of an Internet address to its internal representation.

inet_addr_of_string [Unix]

Conversion from the printable representation of an Internet address to its internal representation.

infinity [Stdlib]

Positive infinity.

infinity [Float]

Positive infinity.

infix_tag [Obj]
inherits [CamlinternalOO]
init [String]

String.init n f returns a string of length n, with character i initialized to the result of f i (called in increasing index order).

init [StringLabels]

init n f returns a string of length n, with character i initialized to the result of f i.

init [Random]

Initialize the generator, using the argument as a seed.

init [ListLabels]

List.init len f is f 0; f 1; ...; f (len-1), evaluated left to right.

init [List]

List.init len f is [f 0; f 1; ...; f (len-1)], evaluated left to right.

init [Float.ArrayLabels]
init [Float.Array]

init n f returns a fresh floatarray of length n, with element number i initialized to the result of f i.

init [BytesLabels]

init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i.

init [Bytes]

Bytes.init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i (in increasing index order).

init [ArrayLabels]

init n ~f returns a fresh array of length n, with element number i initialized to the result of f i.

init [Array]

Array.init n f returns a fresh array of length n, with element number i initialized to the result of f i.

init_class [CamlinternalOO]
init_mod [CamlinternalMod]
initgroups [UnixLabels]

initgroups user group initializes the group access list by reading the group database /etc/group and using all groups of which user is a member.

initgroups [Unix]

initgroups user group initializes the group access list by reading the group database /etc/group and using all groups of which user is a member.

input [Stdlib]

input ic buf pos len reads up to len characters from the given channel ic, storing them in byte sequence buf, starting at character number pos.

input [Digest]

Read a digest from the given input channel.

input_binary_int [Stdlib]

Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel.

input_byte [Stdlib]

Same as input_char, but return the 8-bit integer representing the character.

input_char [Stdlib]

Read one character from the given input channel.

input_line [Stdlib]

Read characters from the given input channel, until a newline character is encountered.

input_value [Stdlib]

Read the representation of a structured value, as produced by output_value, and return the corresponding value.

int [Random.State]
int [Random]

Random.int bound returns a random integer between 0 (inclusive) and bound (exclusive).

int [Bigarray]
int16_signed [Bigarray]
int16_unsigned [Bigarray]
int32 [Random.State]
int32 [Random]

Random.int32 bound returns a random integer between 0 (inclusive) and bound (exclusive).

int32 [Bigarray]
int64 [Random.State]
int64 [Random]

Random.int64 bound returns a random integer between 0 (inclusive) and bound (exclusive).

int64 [Bigarray]
int8_signed [Bigarray]
int8_unsigned [Bigarray]
int_of_char [Stdlib]

Return the ASCII code of the argument.

int_of_float [Stdlib]

Truncate the given floating-point number to an integer.

int_of_string [Stdlib]

Same as int_of_string_opt, but raise Failure "int_of_string" instead of returning None.

int_of_string_opt [Stdlib]

Convert the given string to an integer.

int_size [Sys]

Size of int, in bits.

int_tag [Obj]
inter [Set.S]

Set intersection.

inter [MoreLabels.Set.S]
interactive [Sys]

This reference is initially set to false in standalone programs and to true if the code is being executed under the interactive toplevel system ocaml.

inv [Complex]

Multiplicative inverse (1/z).

invalid_arg [Stdlib]

Raise exception Invalid_argument with the given string.

is_block [Obj]
is_char [Uchar]

is_char u is true iff u is a latin1 OCaml character.

is_directory [Sys]

Returns true if the given name refers to a directory, false if it refers to another kind of file.

is_empty [Stack]

Return true if the given stack is empty, false otherwise.

is_empty [Set.S]

Test whether a set is empty or not.

is_empty [Queue]

Return true if the given queue is empty, false otherwise.

is_empty [MoreLabels.Set.S]
is_empty [MoreLabels.Map.S]
is_empty [Map.S]

Test whether a map is empty or not.

is_error [Result]

is_error r is true iff r is Error _.

is_finite [Float]

is_finite x is true iff x is finite i.e., not infinite and not Float.nan.

is_implicit [Filename]

Return true if the file name is relative and does not start with an explicit reference to the current directory (./ or ../ in Unix), false if it starts with an explicit reference to the root directory or the current directory.

is_in_char_set [CamlinternalFormat]
is_infinite [Float]

is_infinite x is true iff x is Float.infinity or Float.neg_infinity.

is_inline [Printexc.Slot]

is_inline slot is true when slot refers to a call that got inlined by the compiler, and false when it comes from any other context.

is_int [Obj]
is_integer [Float]

is_integer x is true iff x is an integer.

is_nan [Float]

is_nan x is true iff x is not a number (see Float.nan).

is_native [Dynlink]

true if the program is native, false if the program is bytecode.

is_none [Option]

is_none o is true iff o is None.

is_ok [Result]

is_ok r is true iff r is Ok _.

is_raise [Printexc.Slot]

is_raise slot is true when slot refers to a raising point in the code, and false when it comes from a simple function call.

is_randomized [MoreLabels.Hashtbl]
is_randomized [Hashtbl]

return if the tables are currently created in randomized mode by default

is_relative [Filename]

Return true if the file name is relative to the current directory, false if it is absolute (i.e.

is_some [Option]

is_some o is true iff o is Some o.

is_val [Lazy]

is_val x returns true if x has already been forced and did not raise an exception.

is_valid [Uchar]

is_valid n is true iff n is a Unicode scalar value (i.e.

isatty [UnixLabels]

Return true if the given file descriptor refers to a terminal or console window, false otherwise.

isatty [Unix]

Return true if the given file descriptor refers to a terminal or console window, false otherwise.

iter [Weak.S]

iter f t calls f on each element of t, in some unspecified order.

iter [String]

String.iter f s applies function f in turn to all the characters of s.

iter [Stream]

Stream.iter f s scans the whole stream s, applying function f in turn to each stream element encountered.

iter [StringLabels]

String.iter f s applies function f in turn to all the characters of s.

iter [Stack]

iter f s applies f in turn to all elements of s, from the element at the top of the stack to the element at the bottom of the stack.

iter [Set.S]

iter f s applies f in turn to all elements of s.

iter [Seq]

Iterate on the sequence, calling the (imperative) function on every element.

iter [Result]

iter f r is f v if r is Ok v and () otherwise.

iter [Queue]

iter f q applies f in turn to all elements of q, from the least recently entered to the most recently entered.

iter [Option]

iter f o is f v if o is Some v and () otherwise.

iter [MoreLabels.Set.S]
iter [MoreLabels.Map.S]
iter [MoreLabels.Hashtbl.SeededS]
iter [MoreLabels.Hashtbl.S]
iter [MoreLabels.Hashtbl]
iter [Map.S]

iter f m applies f to all bindings in map m.

iter [ListLabels]

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an.

iter [List]

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an.

iter [Hashtbl.SeededS]
iter [Hashtbl.S]
iter [Hashtbl]

Hashtbl.iter f tbl applies f to all bindings in table tbl.

iter [Float.ArrayLabels]
iter [Float.Array]

iter f a applies function f in turn to all the elements of a.

iter [BytesLabels]

iter f s applies function f in turn to all the bytes of s.

iter [Bytes]

iter f s applies function f in turn to all the bytes of s.

iter [ArrayLabels]

iter ~f a applies function f in turn to all the elements of a.

iter [Array]

Array.iter f a applies function f in turn to all the elements of a.

iter2 [ListLabels]

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

iter2 [List]

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

iter2 [Float.ArrayLabels]
iter2 [Float.Array]

Array.iter2 f a b applies function f to all the elements of a and b.

iter2 [ArrayLabels]

iter2 ~f a b applies function f to all the elements of a and b.

iter2 [Array]

Array.iter2 f a b applies function f to all the elements of a and b.

iter_error [Result]

iter_error f r is f e if r is Error e and () otherwise.

iteri [String]

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

iteri [StringLabels]

Same as String.iter, but the function is applied to the index of the element as first argument (counting from 0), and the character itself as second argument.

iteri [ListLabels]

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

iteri [List]

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

iteri [Float.ArrayLabels]
iteri [Float.Array]

Same as Float.Array.iter, but the function is applied with the index of the element as first argument, and the element itself as second argument.

iteri [BytesLabels]

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

iteri [Bytes]

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

iteri [ArrayLabels]

Same as ArrayLabels.iter, but the function is applied to the index of the element as first argument, and the element itself as second argument.

iteri [Array]

Same as Array.iter, but the function is applied with the index of the element as first argument, and the element itself as second argument.

J
join [Thread]

join th suspends the execution of the calling thread until the thread th has terminated.

join [Result]

join rr is r if rr is Ok r and rr if rr is Error _.

join [Option]

join oo is Some v if oo is Some (Some v) and None otherwise.

junk [Stream]

Remove the first element of the stream, possibly unfreezing it before.

K
kasprintf [Format]

Same as asprintf above, but instead of returning the string, passes it to the first argument.

kbprintf [Printf]

Same as bprintf, but instead of returning immediately, passes the buffer to its first argument at the end of printing.

kdprintf [Format]

Same as Format.dprintf above, but instead of returning immediately, passes the suspended printer to its first argument at the end of printing.

kfprintf [Printf]

Same as fprintf, but instead of returning immediately, passes the out channel to its first argument at the end of printing.

kfprintf [Format]

Same as fprintf above, but instead of returning immediately, passes the formatter to its first argument at the end of printing.

kfscanf [Scanf]
kill [UnixLabels]

kill pid sig sends signal number sig to the process with id pid.

kill [Unix]

kill pid sig sends signal number sig to the process with id pid.

kill [Thread]

Terminate prematurely the thread whose handle is given.

kind [Bigarray.Array3]

Return the kind of the given Bigarray.

kind [Bigarray.Array2]

Return the kind of the given Bigarray.

kind [Bigarray.Array1]

Return the kind of the given Bigarray.

kind [Bigarray.Array0]

Return the kind of the given Bigarray.

kind [Bigarray.Genarray]

Return the kind of the given Bigarray.

kind_size_in_bytes [Bigarray]

kind_size_in_bytes k is the number of bytes used to store an element of type k.

kprintf [Printf]

A deprecated synonym for ksprintf.

kprintf [Format]
kscanf [Scanf]

Same as Scanf.bscanf, but takes an additional function argument ef that is called in case of error: if the scanning process or some conversion fails, the scanning function aborts and calls the error handling function ef with the formatted input channel and the exception that aborted the scanning process as arguments.

ksprintf [Printf]

Same as sprintf above, but instead of returning the string, passes it to the first argument.

ksprintf [Format]

Same as sprintf above, but instead of returning the string, passes it to the first argument.

ksscanf [Scanf]

Same as Scanf.kscanf but reads from the given string.

L
last_chars [Str]

last_chars s n returns the last n characters of s.

last_non_constant_constructor_tag [Obj]
layout [Bigarray.Array3]

Return the layout of the given Bigarray.

layout [Bigarray.Array2]

Return the layout of the given Bigarray.

layout [Bigarray.Array1]

Return the layout of the given Bigarray.

layout [Bigarray.Array0]

Return the layout of the given Bigarray.

layout [Bigarray.Genarray]

Return the layout of the given Bigarray.

lazy_from_fun [Lazy]
lazy_from_val [Lazy]
lazy_is_val [Lazy]
lazy_tag [Obj]
ldexp [Stdlib]

ldexp x n returns x *. 2 ** n.

ldexp [Float]

ldexp x n returns x *. 2 ** n.

length [Weak]

Weak.length ar returns the length (number of elements) of ar.

length [String]

Return the length (number of characters) of the given string.

length [StringLabels]

Return the length (number of characters) of the given string.

length [Stack]

Return the number of elements in a stack.

length [Queue]

Return the number of elements in a queue.

length [Obj.Ephemeron]

return the number of keys

length [MoreLabels.Hashtbl.SeededS]
length [MoreLabels.Hashtbl.S]
length [MoreLabels.Hashtbl]
length [ListLabels]

Return the length (number of elements) of the given list.

length [List]

Return the length (number of elements) of the given list.

length [Hashtbl.SeededS]
length [Hashtbl.S]
length [Hashtbl]

Hashtbl.length tbl returns the number of bindings in tbl.

length [Float.ArrayLabels]
length [Float.Array]

Return the length (number of elements) of the given floatarray.

length [BytesLabels]

Return the length (number of bytes) of the argument.

length [Bytes]

Return the length (number of bytes) of the argument.

length [Buffer]

Return the number of characters currently contained in the buffer.

length [ArrayLabels]

Return the length (number of elements) of the given array.

length [Array]

Return the length (number of elements) of the given array.

lexeme [Lexing]

Lexing.lexeme lexbuf returns the string matched by the regular expression.

lexeme_char [Lexing]

Lexing.lexeme_char lexbuf i returns character number i in the matched string.

lexeme_end [Lexing]

Lexing.lexeme_end lexbuf returns the offset in the input stream of the character following the last character of the matched string.

lexeme_end_p [Lexing]

Like lexeme_end, but return a complete position instead of an offset.

lexeme_start [Lexing]

Lexing.lexeme_start lexbuf returns the offset in the input stream of the first character of the matched string.

lexeme_start_p [Lexing]

Like lexeme_start, but return a complete position instead of an offset.

link [UnixLabels]

link ?follow source dest creates a hard link named dest to the file named source.

link [Unix]

link ?follow source dest creates a hard link named dest to the file named source.

listen [UnixLabels]

Set up a socket for receiving connection requests.

listen [Unix]

Set up a socket for receiving connection requests.

lnot [Stdlib]

Bitwise logical negation.

loadfile [Dynlink]

In bytecode: load the given bytecode object file (.cmo file) or bytecode library file (.cma file), and link it with the running program.

loadfile_private [Dynlink]

Same as loadfile, except that the compilation units just loaded are hidden (cannot be referenced) from other modules dynamically loaded afterwards.

localtime [UnixLabels]

Convert a time in seconds, as returned by UnixLabels.time, into a date and a time.

localtime [Unix]

Convert a time in seconds, as returned by Unix.time, into a date and a time.

location [Printexc.Slot]

location slot returns the location information of the slot, if available, and None otherwise.

lock [Mutex]

Lock the given mutex.

lockf [UnixLabels]

lockf fd cmd size puts a lock on a region of the file opened as fd.

lockf [Unix]

lockf fd cmd size puts a lock on a region of the file opened as fd.

log [Stdlib]

Natural logarithm.

log [Float]

Natural logarithm.

log [Complex]

Natural logarithm (in base e).

log10 [Stdlib]

Base 10 logarithm.

log10 [Float]

Base 10 logarithm.

log1p [Stdlib]

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

log1p [Float]

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

logand [Nativeint]

Bitwise logical and.

logand [Int64]

Bitwise logical and.

logand [Int32]

Bitwise logical and.

logand [Int]

logand x y is the bitwise logical and of x and y.

lognot [Nativeint]

Bitwise logical negation.

lognot [Int64]

Bitwise logical negation.

lognot [Int32]

Bitwise logical negation.

lognot [Int]

lognot x is the bitwise logical negation of x.

logor [Nativeint]

Bitwise logical or.

logor [Int64]

Bitwise logical or.

logor [Int32]

Bitwise logical or.

logor [Int]

logor x y is the bitwise logical or of x and y.

logxor [Nativeint]

Bitwise logical exclusive or.

logxor [Int64]

Bitwise logical exclusive or.

logxor [Int32]

Bitwise logical exclusive or.

logxor [Int]

logxor x y is the bitwise logical exclusive or of x and y.

lookup_tables [CamlinternalOO]
lowercase [String]

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

lowercase [StringLabels]

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

lowercase [Char]

Convert the given character to its equivalent lowercase character, using the ISO Latin-1 (8859-1) character set.

lowercase [BytesLabels]

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

lowercase [Bytes]

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

lowercase_ascii [String]

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

lowercase_ascii [StringLabels]

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

lowercase_ascii [Char]

Convert the given character to its equivalent lowercase character, using the US-ASCII character set.

lowercase_ascii [BytesLabels]

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

lowercase_ascii [Bytes]

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

lseek [UnixLabels.LargeFile]
lseek [UnixLabels]

Set the current position for a file descriptor, and return the resulting offset (from the beginning of the file).

lseek [Unix.LargeFile]

See Unix.lseek.

lseek [Unix]

Set the current position for a file descriptor, and return the resulting offset (from the beginning of the file).

lstat [UnixLabels.LargeFile]
lstat [UnixLabels]

Same as UnixLabels.stat, but in case the file is a symbolic link, return the information for the link itself.

lstat [Unix.LargeFile]
lstat [Unix]

Same as Unix.stat, but in case the file is a symbolic link, return the information for the link itself.

M
magic [Obj]
main_program_units [Dynlink]

Return the list of compilation units that form the main program (i.e.

major [Gc]

Do a minor collection and finish the current major collection cycle.

major_slice [Gc]

major_slice n Do a minor collection and a slice of major collection.

make [String]

String.make n c returns a fresh string of length n, filled with the character c.

make [StringLabels]

String.make n c returns a fresh string of length n, filled with the character c.

make [Random.State]

Create a new state and initialize it with the given seed.

make [Float.ArrayLabels]
make [Float.Array]

make n x returns a fresh floatarray of length n, initialized with x.

make [BytesLabels]

make n c returns a new byte sequence of length n, filled with the byte c.

make [Bytes]

make n c returns a new byte sequence of length n, filled with the byte c.

make [ArrayLabels]

make n x returns a fresh array of length n, initialized with x.

make [Array]

Array.make n x returns a fresh array of length n, initialized with x.

make_class [CamlinternalOO]
make_class_store [CamlinternalOO]
make_float [ArrayLabels]
make_float [Array]
make_formatter [Format]

make_formatter out flush returns a new formatter that outputs with function out, and flushes with function flush.

make_iprintf [CamlinternalFormat]
make_lexer [Genlex]

Construct the lexer function.

make_matrix [ArrayLabels]

make_matrix ~dimx ~dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy.

make_matrix [Array]

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy.

make_printf [CamlinternalFormat]
make_self_init [Random.State]

Create a new state and initialize it with a system-dependent low-entropy seed.

make_symbolic_output_buffer [Format]

make_symbolic_output_buffer () returns a fresh buffer for symbolic output.

map [String]

String.map f s applies function f in turn to all the characters of s (in increasing index order) and stores the results in a new string that is returned.

map [StringLabels]

String.map f s applies function f in turn to all the characters of s and stores the results in a new string that is returned.

map [Set.S]

map f s is the set whose elements are f a0,f a1...

map [Seq]

map f seq returns a new sequence whose elements are the elements of seq, transformed by f.

map [Result]

map f r is Ok (f v) if r is Ok v and r if r is Error _.

map [Option]

map f o is None if o is None and Some (f v) is o is Some v.

map [MoreLabels.Set.S]
map [MoreLabels.Map.S]
map [Map.S]

map f m returns a map with same domain as m, where the associated value a of all bindings of m has been replaced by the result of the application of f to a.

map [ListLabels]

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f.

map [List]

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f.

map [Float.ArrayLabels]
map [Float.Array]

map f a applies function f to all the elements of a, and builds a floatarray with the results returned by f.

map [BytesLabels]

map f s applies function f in turn to all the bytes of s and stores the resulting bytes in a new sequence that is returned as the result.

map [Bytes]

map f s applies function f in turn to all the bytes of s (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

map [ArrayLabels]

map ~f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(length a - 1) |].

map [Array]

Array.map f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

map2 [ListLabels]

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

map2 [List]

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

map2 [Float.ArrayLabels]
map2 [Float.Array]

map2 f a b applies function f to all the elements of a and b, and builds a floatarray with the results returned by f: [| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|].

map2 [ArrayLabels]

map2 ~f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|].

map2 [Array]

Array.map2 f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(Array.length a - 1) b.(Array.length b - 1)|].

map_error [Result]

map_error f r is Error (f e) if r is Error e and r if r is Ok _.

map_file [UnixLabels]

Memory mapping of a file as a Bigarray.

map_file [Unix]

Memory mapping of a file as a Bigarray.

map_from_array [Float.ArrayLabels]
map_from_array [Float.Array]

map_from_array f a applies function f to all the elements of a, and builds a floatarray with the results returned by f.

map_to_array [Float.ArrayLabels]
map_to_array [Float.Array]

map_to_array f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(length a - 1) |].

mapi [String]

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

mapi [StringLabels]

String.mapi f s calls f with each character of s and its index (in increasing index order) and stores the results in a new string that is returned.

mapi [MoreLabels.Map.S]
mapi [Map.S]

Same as Map.S.map, but the function receives as arguments both the key and the associated value for each binding of the map.

mapi [ListLabels]

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

mapi [List]

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

mapi [Float.ArrayLabels]
mapi [Float.Array]

Same as Float.Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

mapi [BytesLabels]

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

mapi [Bytes]

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

mapi [ArrayLabels]

Same as ArrayLabels.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

mapi [Array]

Same as Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

marshal [Obj]
match_beginning [Str]

match_beginning() returns the position of the first character of the substring that was matched by the last call to a matching or searching function (see Str.matched_string for details).

match_end [Str]

match_end() returns the position of the character following the last character of the substring that was matched by the last call to a matching or searching function (see Str.matched_string for details).

matched_group [Str]

matched_group n s returns the substring of s that was matched by the nth group \(...\) of the regular expression that was matched by the last call to a matching or searching function (see Str.matched_string for details).

matched_string [Str]

matched_string s returns the substring of s that was matched by the last call to one of the following matching or searching functions: Str.string_match, Str.search_forward, Str.search_backward, Str.string_partial_match, Str.global_substitute, Str.substitute_first provided that none of the following functions was called in between: Str.global_replace, Str.replace_first, Str.split, Str.bounded_split, Str.split_delim, Str.bounded_split_delim, Str.full_split, Str.bounded_full_split Note: in the case of global_substitute and substitute_first, a call to matched_string is only valid within the subst argument, not after global_substitute or substitute_first returns.

max [Uchar]

max is U+10FFFF.

max [Stdlib]

Return the greater of the two arguments.

max [Float]

max x y returns the maximum of x and y.

max_array_length [Sys]

Maximum length of a normal array (i.e.

max_binding [MoreLabels.Map.S]
max_binding [Map.S]

Same as Map.S.min_binding, but returns the binding with the largest key in the given map.

max_binding_opt [MoreLabels.Map.S]
max_binding_opt [Map.S]

Same as Map.S.min_binding_opt, but returns the binding with the largest key in the given map.

max_elt [Set.S]

Same as Set.S.min_elt, but returns the largest element of the given set.

max_elt [MoreLabels.Set.S]
max_elt_opt [Set.S]

Same as Set.S.min_elt_opt, but returns the largest element of the given set.

max_elt_opt [MoreLabels.Set.S]
max_ephe_length [Obj.Ephemeron]

Maximum length of an ephemeron, ie the maximum number of keys an ephemeron could contain

max_float [Stdlib]

The largest positive finite value of type float.

max_float [Float]

The largest positive finite value of type float.

max_floatarray_length [Sys]

Maximum length of a floatarray.

max_int [Stdlib]

The greatest representable integer.

max_int [Nativeint]

The greatest representable native integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a 64-bit platform.

max_int [Int64]

The greatest representable 64-bit integer, 263 - 1.

max_int [Int32]

The greatest representable 32-bit integer, 231 - 1.

max_int [Int]

max_int is the greatest representable integer, 2{^[Sys.int_size - 1]} - 1.

max_num [Float]

max_num x y returns the maximum of x and y treating nan as missing values.

max_string_length [Sys]

Maximum length of strings and byte sequences.

mem [Weak.S]

mem t x returns true if there is at least one instance of x in t, false otherwise.

mem [Set.S]

mem x s tests whether x belongs to the set s.

mem [MoreLabels.Set.S]
mem [MoreLabels.Map.S]
mem [MoreLabels.Hashtbl.SeededS]
mem [MoreLabels.Hashtbl.S]
mem [MoreLabels.Hashtbl]
mem [Map.S]

mem x m returns true if m contains a binding for x, and false otherwise.

mem [ListLabels]

mem a l is true if and only if a is equal to an element of l.

mem [List]

mem a l is true if and only if a is equal to an element of l.

mem [Hashtbl.SeededS]
mem [Hashtbl.S]
mem [Hashtbl]

Hashtbl.mem tbl x checks if x is bound in tbl.

mem [Float.ArrayLabels]
mem [Float.Array]

mem a l is true if and only if there is an element of l that is structurally equal to a, i.e.

mem [ArrayLabels]

mem x ~set is true if and only if x is equal to an element of set.

mem [Array]

mem a l is true if and only if a is structurally equal to an element of l (i.e.

mem_assoc [ListLabels]

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

mem_assoc [List]

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

mem_assq [ListLabels]

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

mem_assq [List]

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

mem_ieee [Float.ArrayLabels]
mem_ieee [Float.Array]

Same as Float.Array.mem, but uses IEEE equality instead of structural equality.

memq [ListLabels]

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

memq [List]

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

memq [ArrayLabels]

Same as ArrayLabels.mem, but uses physical equality instead of structural equality to compare list elements.

memq [Array]

Same as Array.mem, but uses physical equality instead of structural equality to compare elements.

merge [Weak.S]

merge t x returns an instance of x found in t if any, or else adds x to t and return x.

merge [MoreLabels.Map.S]
merge [Map.S]

merge f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2.

merge [ListLabels]

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2.

merge [List]

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2.

min [Uchar]

min is U+0000.

min [Stdlib]

Return the smaller of the two arguments.

min [Float]

min x y returns the minimum of x and y.

min_binding [MoreLabels.Map.S]
min_binding [Map.S]

Return the binding with the smallest key in a given map (with respect to the Ord.compare ordering), or raise Not_found if the map is empty.

min_binding_opt [MoreLabels.Map.S]
min_binding_opt [Map.S]

Return the binding with the smallest key in the given map (with respect to the Ord.compare ordering), or None if the map is empty.

min_elt [Set.S]

Return the smallest element of the given set (with respect to the Ord.compare ordering), or raise Not_found if the set is empty.

min_elt [MoreLabels.Set.S]
min_elt_opt [Set.S]

Return the smallest element of the given set (with respect to the Ord.compare ordering), or None if the set is empty.

min_elt_opt [MoreLabels.Set.S]
min_float [Stdlib]

The smallest positive, non-zero, non-denormalized value of type float.

min_float [Float]

The smallest positive, non-zero, non-denormalized value of type float.

min_int [Stdlib]

The smallest representable integer.

min_int [Nativeint]

The smallest representable native integer, either -231 on a 32-bit platform, or -263 on a 64-bit platform.

min_int [Int64]

The smallest representable 64-bit integer, -263.

min_int [Int32]

The smallest representable 32-bit integer, -231.

min_int [Int]

min_int is the smallest representable integer, -2{^[Sys.int_size - 1]}.

min_max [Float]

min_max x y is (min x y, max x y), just more efficient.

min_max_num [Float]

min_max_num x y is (min_num x y, max_num x y), just more efficient.

min_num [Float]

min_num x y returns the minimum of x and y treating nan as missing values.

minor [Gc]

Trigger a minor collection.

minor_words [Gc]

Number of words allocated in the minor heap since the program was started.

minus_one [Nativeint]

The native integer -1.

minus_one [Int64]

The 64-bit integer -1.

minus_one [Int32]

The 32-bit integer -1.

minus_one [Int]

minus_one is the integer -1.

minus_one [Float]

The floating-point -1.

mkdir [UnixLabels]

Create a directory with the given permissions.

mkdir [Unix]

Create a directory with the given permissions (see Unix.umask).

mkfifo [UnixLabels]

Create a named pipe with the given permissions.

mkfifo [Unix]

Create a named pipe with the given permissions (see Unix.umask).

mktime [UnixLabels]

Convert a date and time, specified by the tm argument, into a time in seconds, as returned by UnixLabels.time.

mktime [Unix]

Convert a date and time, specified by the tm argument, into a time in seconds, as returned by Unix.time.

mod_float [Stdlib]

mod_float a b returns the remainder of a with respect to b.

modf [Stdlib]

modf f returns the pair of the fractional and integral part of f.

modf [Float]

modf f returns the pair of the fractional and integral part of f.

mul [Nativeint]

Multiplication.

mul [Int64]

Multiplication.

mul [Int32]

Multiplication.

mul [Int]

mul x y is the multiplication x * y.

mul [Float]

Floating-point multiplication.

mul [Complex]

Multiplication

N
name [Printexc.Slot]

name slot returns the name of the function or definition enclosing the location referred to by the slot.

name [Obj.Extension_constructor]
name_of_input [Scanf.Scanning]

Scanning.name_of_input ic returns the name of the character source for the given Scanf.Scanning.in_channel formatted input channel.

nan [Stdlib]

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0.

nan [Float]

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0.

narrow [CamlinternalOO]
nativeint [Random.State]
nativeint [Random]

Random.nativeint bound returns a random integer between 0 (inclusive) and bound (exclusive).

nativeint [Bigarray]
neg [Nativeint]

Unary negation.

neg [Int64]

Unary negation.

neg [Int32]

Unary negation.

neg [Int]

neg x is ~-x.

neg [Float]

Unary negation.

neg [Complex]

Unary negation.

neg_infinity [Stdlib]

Negative infinity.

neg_infinity [Float]

Negative infinity.

negate [Fun]

negate p is the negation of the predicate function p.

new_block [Obj]
new_channel [Event]

Return a new channel.

new_line [Lexing]

Update the lex_curr_p field of the lexbuf to reflect the start of a new line.

new_method [CamlinternalOO]
new_methods_variables [CamlinternalOO]
new_variable [CamlinternalOO]
next [Stream]

Return the first element of the stream and remove it from the stream.

next_after [Float]

next_after x y returns the next representable floating-point value following x in the direction of y.

nice [UnixLabels]

Change the process priority.

nice [Unix]

Change the process priority.

no_scan_tag [Obj]
none [Option]

none is None.

norm [Complex]

Norm: given x + i.y, returns sqrt(x^2 + y^2).

norm2 [Complex]

Norm squared: given x + i.y, returns x^2 + y^2.

not [Stdlib]

The boolean negation.

not [Bool]

not b is the boolean negation of b.

npeek [Stream]

npeek n returns the list of the n first elements of the stream, or all its remaining elements if less than n elements are available.

nth [ListLabels]

Return the n-th element of the given list.

nth [List]

Return the n-th element of the given list.

nth [Buffer]

Get the n-th character of the buffer.

nth_dim [Bigarray.Genarray]

Genarray.nth_dim a n returns the n-th dimension of the Bigarray a.

nth_opt [ListLabels]

Return the n-th element of the given list.

nth_opt [List]

Return the n-th element of the given list.

null [Filename]

null is "/dev/null" on POSIX and "NUL" on Windows.

null_tracker [Gc.Memprof]

Default callbacks simply return None or ()

num_dims [Bigarray.Genarray]

Return the number of dimensions of the given Bigarray.

O
obj [Obj]
object_tag [Obj]
ocaml_version [Sys]

ocaml_version is the version of OCaml.

of_array [Bigarray.Array3]

Build a three-dimensional Bigarray initialized from the given array of arrays of arrays.

of_array [Bigarray.Array2]

Build a two-dimensional Bigarray initialized from the given array of arrays.

of_array [Bigarray.Array1]

Build a one-dimensional Bigarray initialized from the given array.

of_bytes [Stream]

Return the stream of the characters of the bytes parameter.

of_channel [Stream]

Return the stream of the characters read from the input channel.

of_char [Uchar]

of_char c is c as a Unicode character.

of_float [Nativeint]

Convert the given floating-point number to a native integer, discarding the fractional part (truncate towards 0).

of_float [Int64]

Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0).

of_float [Int32]

Convert the given floating-point number to a 32-bit integer, discarding the fractional part (truncate towards 0).

of_float [Int]

of_float x truncates x to an integer.

of_int [Uchar]

of_int i is i as a Unicode character.

of_int [Nativeint]

Convert the given integer (type int) to a native integer (type nativeint).

of_int [Int64]

Convert the given integer (type int) to a 64-bit integer (type int64).

of_int [Int32]

Convert the given integer (type int) to a 32-bit integer (type int32).

of_int [Float]

Convert an integer to floating-point.

of_int32 [Nativeint]

Convert the given 32-bit integer (type int32) to a native integer.

of_int32 [Int64]

Convert the given 32-bit integer (type int32) to a 64-bit integer (type int64).

of_list [Stream]

Return the stream holding the elements of the list in the same order.

of_list [Set.S]

of_list l creates a set from a list of elements.

of_list [MoreLabels.Set.S]
of_list [Float.ArrayLabels]
of_list [Float.Array]

of_list l returns a fresh floatarray containing the elements of l.

of_list [ArrayLabels]

of_list l returns a fresh array containing the elements of l.

of_list [Array]

Array.of_list l returns a fresh array containing the elements of l.

of_nativeint [Int64]

Convert the given native integer (type nativeint) to a 64-bit integer (type int64).

of_seq [String]

Create a string from the generator

of_seq [StringLabels]

Create a string from the generator

of_seq [Stack]

Create a stack from the iterator

of_seq [Set.S]

Build a set from the given bindings

of_seq [Queue]

Create a queue from the generator

of_seq [MoreLabels.Set.S]
of_seq [MoreLabels.Map.S]
of_seq [MoreLabels.Hashtbl.SeededS]
of_seq [MoreLabels.Hashtbl.S]
of_seq [MoreLabels.Hashtbl]
of_seq [Map.S]

Build a map from the given bindings

of_seq [ListLabels]

Create a list from the iterator

of_seq [List]

Create a list from the iterator

of_seq [Hashtbl.SeededS]
of_seq [Hashtbl.S]
of_seq [Hashtbl]

Build a table from the given bindings.

of_seq [Float.ArrayLabels]
of_seq [Float.Array]

Create an array from the generator.

of_seq [BytesLabels]

Create a string from the generator

of_seq [Bytes]

Create a string from the generator

of_seq [Buffer]

Create a buffer from the generator

of_seq [ArrayLabels]

Create an array from the generator

of_seq [Array]

Create an array from the generator

of_string [Stream]

Return the stream of the characters of the string parameter.

of_string [Nativeint]

Convert the given string to a native integer.

of_string [Int64]

Convert the given string to a 64-bit integer.

of_string [Int32]

Convert the given string to a 32-bit integer.

of_string [Float]

Convert the given string to a float.

of_string [BytesLabels]

Return a new byte sequence that contains the same bytes as the given string.

of_string [Bytes]

Return a new byte sequence that contains the same bytes as the given string.

of_string_opt [Nativeint]

Same as of_string, but return None instead of raising.

of_string_opt [Int64]

Same as of_string, but return None instead of raising.

of_string_opt [Int32]

Same as of_string, but return None instead of raising.

of_string_opt [Float]

Same as of_string, but returns None instead of raising.

of_val [Obj.Extension_constructor]
of_value [Bigarray.Array0]

Build a zero-dimensional Bigarray initialized from the given value.

ok [Result]

ok v is Ok v.

one [Nativeint]

The native integer 1.

one [Int64]

The 64-bit integer 1.

one [Int32]

The 32-bit integer 1.

one [Int]

one is the integer 1.

one [Float]

The floating-point 1.

one [Complex]

The complex number 1.

opaque_identity [Sys]

For the purposes of optimization, opaque_identity behaves like an unknown (and thus possibly side-effecting) function.

open_box [Format]

pp_open_box ppf d opens a new compacting pretty-printing box with offset d in the formatter ppf.

open_box_of_string [CamlinternalFormat]
open_connection [UnixLabels]

Connect to a server at the given address.

open_connection [Unix]

Connect to a server at the given address.

open_connection [ThreadUnix]
open_hbox [Format]

pp_open_hbox ppf () opens a new 'horizontal' pretty-printing box.

open_hovbox [Format]

pp_open_hovbox ppf d opens a new 'horizontal-or-vertical' pretty-printing box with offset d.

open_hvbox [Format]

pp_open_hvbox ppf d opens a new 'horizontal/vertical' pretty-printing box with offset d.

open_in [Stdlib]

Open the named file for reading, and return a new input channel on that file, positioned at the beginning of the file.

open_in [Scanf.Scanning]

Scanning.open_in fname returns a Scanf.Scanning.in_channel formatted input channel for bufferized reading in text mode from file fname.

open_in_bin [Stdlib]

Same as open_in, but the file is opened in binary mode, so that no translation takes place during reads.

open_in_bin [Scanf.Scanning]

Scanning.open_in_bin fname returns a Scanf.Scanning.in_channel formatted input channel for bufferized reading in binary mode from file fname.

open_in_gen [Stdlib]

open_in_gen mode perm filename opens the named file for reading, as described above.

open_out [Stdlib]

Open the named file for writing, and return a new output channel on that file, positioned at the beginning of the file.

open_out_bin [Stdlib]

Same as open_out, but the file is opened in binary mode, so that no translation takes place during writes.

open_out_gen [Stdlib]

open_out_gen mode perm filename opens the named file for writing, as described above.

open_process [UnixLabels]

Same as UnixLabels.open_process_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels.

open_process [Unix]

Same as Unix.open_process_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels.

open_process [ThreadUnix]
open_process_args [UnixLabels]

Same as Unix.open_process_args_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels.

open_process_args [Unix]

Same as Unix.open_process_args_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels.

open_process_args_full [UnixLabels]

Similar to Unix.open_process_args, but the third argument specifies the environment passed to the command.

open_process_args_full [Unix]

Similar to Unix.open_process_args, but the third argument specifies the environment passed to the command.

open_process_args_in [UnixLabels]

High-level pipe and process management.

open_process_args_in [Unix]

High-level pipe and process management.

open_process_args_out [UnixLabels]

Same as Unix.open_process_args_in, but redirect the standard input of the command to a pipe.

open_process_args_out [Unix]

Same as Unix.open_process_args_in, but redirect the standard input of the command to a pipe.

open_process_full [UnixLabels]

Similar to UnixLabels.open_process, but the second argument specifies the environment passed to the command.

open_process_full [Unix]

Similar to Unix.open_process, but the second argument specifies the environment passed to the command.

open_process_in [UnixLabels]

High-level pipe and process management.

open_process_in [Unix]

High-level pipe and process management.

open_process_in [ThreadUnix]
open_process_out [UnixLabels]

Same as UnixLabels.open_process_in, but redirect the standard input of the command to a pipe.

open_process_out [Unix]

Same as Unix.open_process_in, but redirect the standard input of the command to a pipe.

open_process_out [ThreadUnix]
open_stag [Format]

pp_open_stag ppf t opens the semantic tag named t.

open_tag [Format]
open_tbox [Format]

open_tbox () opens a new tabulation box.

open_temp_file [Filename]

Same as Filename.temp_file, but returns both the name of a fresh temporary file, and an output channel opened (atomically) on this file.

open_vbox [Format]

pp_open_vbox ppf d opens a new 'vertical' pretty-printing box with offset d.

opendir [UnixLabels]

Open a descriptor on a directory

opendir [Unix]

Open a descriptor on a directory

openfile [UnixLabels]

Open the named file with the given flags.

openfile [Unix]

Open the named file with the given flags.

os_type [Sys]

Operating system currently executing the OCaml program.

out_channel_length [Stdlib.LargeFile]
out_channel_length [Stdlib]

Return the size (number of characters) of the regular file on which the given channel is opened.

out_channel_of_descr [UnixLabels]

Create an output channel writing on the given descriptor.

out_channel_of_descr [Unix]

Create an output channel writing on the given descriptor.

out_of_heap_tag [Obj]
output [Stdlib]

output oc buf pos len writes len characters from byte sequence buf, starting at offset pos, to the given output channel oc.

output [Digest]

Write a digest on the given output channel.

output_acc [CamlinternalFormat]
output_binary_int [Stdlib]

Write one integer in binary format (4 bytes, big-endian) on the given output channel.

output_buffer [Buffer]

output_buffer oc b writes the current contents of buffer b on the output channel oc.

output_byte [Stdlib]

Write one 8-bit integer (as the single character with that code) on the given output channel.

output_bytes [Stdlib]

Write the byte sequence on the given output channel.

output_char [Stdlib]

Write the character on the given output channel.

output_string [Stdlib]

Write the string on the given output channel.

output_substring [Stdlib]

Same as output but take a string as argument instead of a byte sequence.

output_value [Stdlib]

Write the representation of a structured value of any type to a channel.

over_max_boxes [Format]

Tests if the maximum number of pretty-printing boxes allowed have already been opened.

P
param_format_of_ignored_format [CamlinternalFormat]
params [CamlinternalOO]
parent_dir_name [Filename]

The conventional name for the parent of the current directory (e.g.

parse [Arg]

Arg.parse speclist anon_fun usage_msg parses the command line.

parse_and_expand_argv_dynamic [Arg]

Same as Arg.parse_argv_dynamic, except that the argv argument is a reference and may be updated during the parsing of Expand arguments.

parse_argv [Arg]

Arg.parse_argv ~current args speclist anon_fun usage_msg parses the array args as if it were the command line.

parse_argv_dynamic [Arg]

Same as Arg.parse_argv, except that the speclist argument is a reference and may be updated during the parsing.

parse_dynamic [Arg]

Same as Arg.parse, except that the speclist argument is a reference and may be updated during the parsing.

parse_expand [Arg]

Same as Arg.parse, except that the Expand arguments are allowed and the Arg.current reference is not updated.

partition [Set.S]

partition p s returns a pair of sets (s1, s2), where s1 is the set of all the elements of s that satisfy the predicate p, and s2 is the set of all the elements of s that do not satisfy p.

partition [MoreLabels.Set.S]
partition [MoreLabels.Map.S]
partition [Map.S]

partition p m returns a pair of maps (m1, m2), where m1 contains all the bindings of m that satisfy the predicate p, and m2 is the map with all the bindings of m that do not satisfy p.

partition [ListLabels]

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p.

partition [List]

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p.

pause [UnixLabels]

Wait until a non-ignored, non-blocked signal is delivered.

pause [Unix]

Wait until a non-ignored, non-blocked signal is delivered.

peek [Stream]

Return Some of "the first element" of the stream, or None if the stream is empty.

peek [Queue]

peek q returns the first element in queue q, without removing it from the queue, or raises Queue.Empty if the queue is empty.

peek_opt [Queue]

peek_opt q returns the first element in queue q, without removing it from the queue, or returns None if the queue is empty.

pi [Float]

The constant pi.

pipe [UnixLabels]

Create a pipe.

pipe [Unix]

Create a pipe.

pipe [ThreadUnix]
polar [Complex]

polar norm arg returns the complex having norm norm and argument arg.

poll [Event]

Non-blocking version of Event.sync: offer all the communication possibilities specified in the event to the outside world, and if one can take place immediately, perform it and return Some r where r is the result value of that communication.

pop [Stack]

pop s removes and returns the topmost element in stack s, or raises Stack.Empty if the stack is empty.

pop [Queue]

pop is a synonym for take.

pop_opt [Stack]

pop_opt s removes and returns the topmost element in stack s, or returns None if the stack is empty.

pos_in [Stdlib.LargeFile]
pos_in [Stdlib]

Return the current reading position for the given channel.

pos_out [Stdlib.LargeFile]
pos_out [Stdlib]

Return the current writing position for the given channel.

pow [Float]

Exponentiation.

pow [Complex]

Power function.

pp_close_box [Format]
pp_close_stag [Format]
pp_close_tag [Format]
pp_close_tbox [Format]
pp_force_newline [Format]
pp_get_all_formatter_output_functions [Format]
pp_get_ellipsis_text [Format]
pp_get_formatter_out_functions [Format]
pp_get_formatter_output_functions [Format]
pp_get_formatter_stag_functions [Format]
pp_get_formatter_tag_functions [Format]
pp_get_geometry [Format]
pp_get_margin [Format]
pp_get_mark_tags [Format]
pp_get_max_boxes [Format]
pp_get_max_indent [Format]
pp_get_print_tags [Format]
pp_open_box [Format]
pp_open_hbox [Format]
pp_open_hovbox [Format]
pp_open_hvbox [Format]
pp_open_stag [Format]
pp_open_tag [Format]
pp_open_tbox [Format]
pp_open_vbox [Format]
pp_over_max_boxes [Format]
pp_print_as [Format]
pp_print_bool [Format]
pp_print_break [Format]
pp_print_char [Format]
pp_print_custom_break [Format]

pp_print_custom_break ppf ~fits:(s1, n, s2) ~breaks:(s3, m, s4) emits a custom break hint: the pretty-printer may split the line at this point.

pp_print_cut [Format]
pp_print_float [Format]
pp_print_flush [Format]
pp_print_if_newline [Format]
pp_print_int [Format]
pp_print_list [Format]

pp_print_list ?pp_sep pp_v ppf l prints items of list l, using pp_v to print each item, and calling pp_sep between items (pp_sep defaults to Format.pp_print_cut.

pp_print_newline [Format]
pp_print_option [Format]

pp_print_option ?none pp_v ppf o prints o on ppf using pp_v if o is Some v and none if it is None.

pp_print_result [Format]

pp_print_result ~ok ~error ppf r prints r on ppf using ok if r is Ok _ and error if r is Error _.

pp_print_space [Format]
pp_print_string [Format]
pp_print_tab [Format]
pp_print_tbreak [Format]
pp_print_text [Format]

pp_print_text ppf s prints s with spaces and newlines respectively printed using Format.pp_print_space and Format.pp_force_newline.

pp_safe_set_geometry [Format]
pp_set_all_formatter_output_functions [Format]
pp_set_ellipsis_text [Format]
pp_set_formatter_out_channel [Format]

Redirecting the standard formatter output

pp_set_formatter_out_functions [Format]
pp_set_formatter_output_functions [Format]
pp_set_formatter_stag_functions [Format]
pp_set_formatter_tag_functions [Format]

This function will erase non-string tag formatting functions.

pp_set_geometry [Format]
pp_set_margin [Format]
pp_set_mark_tags [Format]
pp_set_max_boxes [Format]
pp_set_max_indent [Format]
pp_set_print_tags [Format]
pp_set_tab [Format]
pp_set_tags [Format]
pp_update_geometry [Format]

pp_update_geometry ppf (fun geo -> { geo with ... }) lets you update a formatter's geometry in a way that is robust to extension of the geometry record with new fields.

pred [Uchar]

pred u is the scalar value before u in the set of Unicode scalar values.

pred [Stdlib]

pred x is x - 1.

pred [Nativeint]

Predecessor.

pred [Int64]

Predecessor.

pred [Int32]

Predecessor.

pred [Int]

pred x is sub x 1.

pred [Float]

pred x returns the floating-point number right before x i.e., the greatest floating-point number smaller than x.

prerr_bytes [Stdlib]

Print a byte sequence on standard error.

prerr_char [Stdlib]

Print a character on standard error.

prerr_endline [Stdlib]

Print a string, followed by a newline character on standard error and flush standard error.

prerr_float [Stdlib]

Print a floating-point number, in decimal, on standard error.

prerr_int [Stdlib]

Print an integer, in decimal, on standard error.

prerr_newline [Stdlib]

Print a newline character on standard error, and flush standard error.

prerr_string [Stdlib]

Print a string on standard error.

print [Printexc]

Printexc.print fn x applies fn to x and returns the result.

print_as [Format]

pp_print_as ppf len s prints s in the current pretty-printing box.

print_backtrace [Printexc]

Printexc.print_backtrace oc prints an exception backtrace on the output channel oc.

print_bool [Format]

Print a boolean in the current pretty-printing box.

print_break [Format]

pp_print_break ppf nspaces offset emits a 'full' break hint: the pretty-printer may split the line at this point, otherwise it prints nspaces spaces.

print_bytes [Stdlib]

Print a byte sequence on standard output.

print_char [Stdlib]

Print a character on standard output.

print_char [Format]

Print a character in the current pretty-printing box.

print_cut [Format]

pp_print_cut ppf () emits a 'cut' break hint: the pretty-printer may split the line at this point, otherwise it prints nothing.

print_endline [Stdlib]

Print a string, followed by a newline character, on standard output and flush standard output.

print_float [Stdlib]

Print a floating-point number, in decimal, on standard output.

print_float [Format]

Print a floating point number in the current pretty-printing box.

print_flush [Format]

End of pretty-printing: resets the pretty-printer to initial state.

print_if_newline [Format]

Execute the next formatting command if the preceding line has just been split.

print_int [Stdlib]

Print an integer, in decimal, on standard output.

print_int [Format]

Print an integer in the current pretty-printing box.

print_newline [Stdlib]

Print a newline character on standard output, and flush standard output.

print_newline [Format]

End of pretty-printing: resets the pretty-printer to initial state.

print_raw_backtrace [Printexc]

Print a raw backtrace in the same format Printexc.print_backtrace uses.

print_space [Format]

pp_print_space ppf () emits a 'space' break hint: the pretty-printer may split the line at this point, otherwise it prints one space.

print_stat [Gc]

Print the current values of the memory management counters (in human-readable form) into the channel argument.

print_string [Stdlib]

Print a string on standard output.

print_string [Format]

pp_print_string ppf s prints s in the current pretty-printing box.

print_tab [Format]

print_tab () emits a 'next' tabulation break hint: if not already set on a tabulation marker, the insertion point moves to the first tabulation marker on the right, or the pretty-printer splits the line and insertion point moves to the leftmost tabulation marker.

print_tbreak [Format]

print_tbreak nspaces offset emits a 'full' tabulation break hint.

printf [Printf]

Same as Printf.fprintf, but output on stdout.

printf [Format]

Same as fprintf above, but output on std_formatter.

process_full_pid [Unix]

Return the pid of a process opened via Unix.open_process_full or Unix.open_process_args_full.

process_in_pid [Unix]

Return the pid of a process opened via Unix.open_process_in or Unix.open_process_args_in.

process_out_pid [Unix]

Return the pid of a process opened via Unix.open_process_out or Unix.open_process_args_out.

process_pid [Unix]

Return the pid of a process opened via Unix.open_process or Unix.open_process_args.

prohibit [Dynlink]

prohibit units prohibits dynamically-linked units from referencing the units named in list units by removing such units from the allowed units list.

protect [Fun]

protect ~finally work invokes work () and then finally () before work () returns with its value or an exception.

public_dynamically_loaded_units [Dynlink]

Return the list of compilation units that have been dynamically loaded via loadfile (and not via loadfile_private).

public_method_label [CamlinternalOO]
push [Stack]

push x s adds the element x at the top of stack s.

push [Queue]

push is a synonym for add.

putenv [UnixLabels]

Unix.putenv name value sets the value associated to a variable in the process environment.

putenv [Unix]

Unix.putenv name value sets the value associated to a variable in the process environment.

Q
quick_stat [Gc]

Same as stat except that live_words, live_blocks, free_words, free_blocks, largest_free, and fragments are set to 0.

quote [Str]

Str.quote s returns a regexp string that matches exactly s and nothing else.

quote [Filename]

Return a quoted version of a file name, suitable for use as one argument in a command line, escaping all meta-characters.

quote_command [Filename]

quote_command cmd args returns a quoted command line, suitable for use as an argument to Sys.command, Unix.system, and the Unix.open_process functions.

R
raise [Stdlib]

Raise the given exception value

raise_notrace [Stdlib]

A faster version raise which does not record the backtrace.

raise_with_backtrace [Printexc]

Reraise the exception using the given raw_backtrace for the origin of the exception

randomize [MoreLabels.Hashtbl]
randomize [Hashtbl]

After a call to Hashtbl.randomize(), hash tables are created in randomized mode by default: Hashtbl.create returns randomized hash tables, unless the ~random:false optional parameter is given.

raw_backtrace_length [Printexc]

raw_backtrace_length bckt returns the number of slots in the backtrace bckt.

raw_backtrace_to_string [Printexc]

Return a string from a raw backtrace, in the same format Printexc.get_backtrace uses.

rcontains_from [String]

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

rcontains_from [StringLabels]

String.rcontains_from s stop c tests if character c appears in s before position stop+1.

rcontains_from [BytesLabels]

rcontains_from s stop c tests if byte c appears in s before position stop+1.

rcontains_from [Bytes]

rcontains_from s stop c tests if byte c appears in s before position stop+1.

reachable_words [Obj]

Computes the total size (in words, including the headers) of all heap blocks accessible from the argument.

read [UnixLabels]

read fd buff ofs len reads len bytes from descriptor fd, storing them in byte sequence buff, starting at position ofs in buff.

read [Unix]

read fd buff ofs len reads len bytes from descriptor fd, storing them in byte sequence buff, starting at position ofs in buff.

read [ThreadUnix]
read_arg [Arg]

Arg.read_arg file reads newline-terminated command line arguments from file file.

read_arg0 [Arg]

Identical to Arg.read_arg but assumes null character terminated command line arguments.

read_float [Stdlib]

Same as read_float_opt, but raise Failure "float_of_string" instead of returning None.

read_float_opt [Stdlib]

Flush standard output, then read one line from standard input and convert it to a floating-point number.

read_int [Stdlib]

Same as read_int_opt, but raise Failure "int_of_string" instead of returning None.

read_int_opt [Stdlib]

Flush standard output, then read one line from standard input and convert it to an integer.

read_line [Stdlib]

Flush standard output, then read characters from standard input until a newline character is encountered.

readdir [UnixLabels]

Return the next entry in a directory.

readdir [Unix]

Return the next entry in a directory.

readdir [Sys]

Return the names of all files present in the given directory.

readlink [UnixLabels]

Read the contents of a link.

readlink [Unix]

Read the contents of a symbolic link.

really_input [Stdlib]

really_input ic buf pos len reads len characters from channel ic, storing them in byte sequence buf, starting at character number pos.

really_input_string [Stdlib]

really_input_string ic len reads len characters from channel ic and returns them in a new string.

recast [CamlinternalFormat]
receive [Event]

receive ch returns the event consisting in receiving a value from the channel ch.

record_backtrace [Printexc]

Printexc.record_backtrace b turns recording of exception backtraces on (if b = true) or off (if b = false).

recv [UnixLabels]

Receive data from a connected socket.

recv [Unix]

Receive data from a connected socket.

recv [ThreadUnix]
recvfrom [UnixLabels]

Receive data from an unconnected socket.

recvfrom [Unix]

Receive data from an unconnected socket.

recvfrom [ThreadUnix]
ref [Stdlib]

Return a fresh reference containing the given value.

regexp [Str]

Compile a regular expression.

regexp_case_fold [Str]

Same as regexp, but the compiled expression will match text in a case-insensitive way: uppercase and lowercase letters will be considered equivalent.

regexp_string [Str]

Str.regexp_string s returns a regular expression that matches exactly s and nothing else.

regexp_string_case_fold [Str]

Str.regexp_string_case_fold is similar to Str.regexp_string, but the regexp matches in a case-insensitive way.

register [Callback]

Callback.register n v registers the value v under the name n.

register_exception [Callback]

Callback.register_exception n exn registers the exception contained in the exception value exn under the name n.

register_printer [Printexc]

Printexc.register_printer fn registers fn as an exception printer.

rem [Nativeint]

Integer remainder.

rem [Int64]

Integer remainder.

rem [Int32]

Integer remainder.

rem [Int]

rem x y is the remainder mod y.

rem [Float]

rem a b returns the remainder of a with respect to b.

remove [Weak.S]

remove t x removes from t one instance of x.

remove [Sys]

Remove the given file name from the file system.

remove [Set.S]

remove x s returns a set containing all elements of s, except x.

remove [MoreLabels.Set.S]
remove [MoreLabels.Map.S]
remove [MoreLabels.Hashtbl.SeededS]
remove [MoreLabels.Hashtbl.S]
remove [MoreLabels.Hashtbl]
remove [Map.S]

remove x m returns a map containing the same bindings as m, except for x which is unbound in the returned map.

remove [Hashtbl.SeededS]
remove [Hashtbl.S]
remove [Hashtbl]

Hashtbl.remove tbl x removes the current binding of x in tbl, restoring the previous binding if it exists.

remove_assoc [ListLabels]

remove_assoc a l returns the list of pairs l without the first pair with key a, if any.

remove_assoc [List]

remove_assoc a l returns the list of pairs l without the first pair with key a, if any.

remove_assq [ListLabels]

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys.

remove_assq [List]

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys.

remove_extension [Filename]

Return the given file name without its extension, as defined in Filename.extension.

rename [UnixLabels]

rename old new changes the name of a file from old to new.

rename [Unix]

rename old new changes the name of a file from old to new, moving it between directories if needed.

rename [Sys]

Rename a file.

rep [Uchar]

rep is U+FFFD, the replacement character.

replace [MoreLabels.Hashtbl.SeededS]
replace [MoreLabels.Hashtbl.S]
replace [MoreLabels.Hashtbl]
replace [Hashtbl.SeededS]
replace [Hashtbl.S]
replace [Hashtbl]

Hashtbl.replace tbl x y replaces the current binding of x in tbl by a binding of x to y.

replace_first [Str]

Same as Str.global_replace, except that only the first substring matching the regular expression is replaced.

replace_matched [Str]

replace_matched repl s returns the replacement text repl in which \1, \2, etc.

replace_seq [MoreLabels.Hashtbl.SeededS]
replace_seq [MoreLabels.Hashtbl.S]
replace_seq [MoreLabels.Hashtbl]
replace_seq [Hashtbl.SeededS]
replace_seq [Hashtbl.S]
replace_seq [Hashtbl]

Add the given bindings to the table, using Hashtbl.replace

repr [Sys.Immediate64.Make]
repr [Obj]
reset [MoreLabels.Hashtbl.SeededS]
reset [MoreLabels.Hashtbl.S]
reset [MoreLabels.Hashtbl]
reset [Hashtbl.SeededS]
reset [Hashtbl.S]
reset [Hashtbl]

Empty a hash table and shrink the size of the bucket table to its initial size.

reset [Buffer]

Empty the buffer and deallocate the internal byte sequence holding the buffer contents, replacing it with the initial internal byte sequence of length n that was allocated by Buffer.create n.

reshape [Bigarray]

reshape b [|d1;...;dN|] converts the Bigarray b to a N-dimensional array of dimensions d1...

reshape_0 [Bigarray]

Specialized version of Bigarray.reshape for reshaping to zero-dimensional arrays.

reshape_1 [Bigarray]

Specialized version of Bigarray.reshape for reshaping to one-dimensional arrays.

reshape_2 [Bigarray]

Specialized version of Bigarray.reshape for reshaping to two-dimensional arrays.

reshape_3 [Bigarray]

Specialized version of Bigarray.reshape for reshaping to three-dimensional arrays.

return [Seq]

The singleton sequence containing only the given element.

rev [ListLabels]

List reversal.

rev [List]

List reversal.

rev_append [ListLabels]

List.rev_append l1 l2 reverses l1 and concatenates it with l2.

rev_append [List]

List.rev_append l1 l2 reverses l1 and concatenates it to l2.

rev_char_set [CamlinternalFormat]
rev_map [ListLabels]

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

rev_map [List]

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

rev_map2 [ListLabels]

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

rev_map2 [List]

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

rewinddir [UnixLabels]

Reposition the descriptor to the beginning of the directory

rewinddir [Unix]

Reposition the descriptor to the beginning of the directory

rhs_end [Parsing]
rhs_end_pos [Parsing]

Same as rhs_end, but return a position instead of an offset.

rhs_start [Parsing]

Same as Parsing.symbol_start and Parsing.symbol_end, but return the offset of the string matching the nth item on the right-hand side of the rule, where n is the integer parameter to rhs_start and rhs_end.

rhs_start_pos [Parsing]

Same as rhs_start, but return a position instead of an offset.

rindex [String]

String.rindex s c returns the index of the last occurrence of character c in string s.

rindex [StringLabels]

String.rindex s c returns the index of the last occurrence of character c in string s.

rindex [BytesLabels]

rindex s c returns the index of the last occurrence of byte c in s.

rindex [Bytes]

rindex s c returns the index of the last occurrence of byte c in s.

rindex_from [String]

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1.

rindex_from [StringLabels]

String.rindex_from s i c returns the index of the last occurrence of character c in string s before position i+1.

rindex_from [BytesLabels]

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1.

rindex_from [Bytes]

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1.

rindex_from_opt [String]

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

rindex_from_opt [StringLabels]

String.rindex_from_opt s i c returns the index of the last occurrence of character c in string s before position i+1 or None if c does not occur in s before position i+1.

rindex_from_opt [BytesLabels]

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1.

rindex_from_opt [Bytes]

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1.

rindex_opt [String]

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

rindex_opt [StringLabels]

String.rindex_opt s c returns the index of the last occurrence of character c in string s, or None if c does not occur in s.

rindex_opt [BytesLabels]

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

rindex_opt [Bytes]

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

rmdir [UnixLabels]

Remove an empty directory.

rmdir [Unix]

Remove an empty directory.

round [Float]

round x rounds x to the nearest integer with ties (fractional values of 0.5) rounded away from zero, regardless of the current rounding direction.

run_initializers [CamlinternalOO]
run_initializers_opt [CamlinternalOO]
runtime_parameters [Sys]

Return the value of the runtime parameters, in the same format as the contents of the OCAMLRUNPARAM environment variable.

runtime_variant [Sys]

Return the name of the runtime variant the program is running on.

runtime_warnings_enabled [Sys]

Return whether runtime warnings are currently enabled.

S
safe_set_geometry [Format]

pp_set_geometry ppf ~max_indent ~margin sets both the margin and maximum indentation limit for ppf.

save_and_close [Spacetime.Series]

save_and_close series writes information into series required for interpreting the snapshots that series contains and then closes the series file.

save_event [Spacetime.Series]

save_event writes an event, which is an arbitrary string, into the given series file.

save_event_for_automatic_snapshots [Spacetime]

Like Spacetime.Series.save_event, but writes to the automatic snapshot file.

scanf [Scanf]

Same as Scanf.bscanf, but reads from the predefined formatted input channel Scanf.Scanning.stdin that is connected to stdin.

search_backward [Str]

search_backward r s last searches the string s for a substring matching the regular expression r.

search_forward [Str]

search_forward r s start searches the string s for a substring matching the regular expression r.

seeded_hash [MoreLabels.Hashtbl]
seeded_hash [Hashtbl]

A variant of Hashtbl.hash that is further parameterized by an integer seed.

seeded_hash_param [MoreLabels.Hashtbl]
seeded_hash_param [Hashtbl]

A variant of Hashtbl.hash_param that is further parameterized by an integer seed.

seek_in [Stdlib.LargeFile]
seek_in [Stdlib]

seek_in chan pos sets the current reading position to pos for channel chan.

seek_out [Stdlib.LargeFile]
seek_out [Stdlib]

seek_out chan pos sets the current writing position to pos for channel chan.

select [UnixLabels]

Wait until some input/output operations become possible on some channels.

select [Unix]

Wait until some input/output operations become possible on some channels.

select [ThreadUnix]
select [Thread]

Suspend the execution of the calling thread until input/output becomes possible on the given Unix file descriptors.

select [Event]

'Synchronize' on an alternative of events.

self [Thread]

Return the thread currently executing.

self_init [Random]

Initialize the generator with a random seed chosen in a system-dependent way.

send [UnixLabels]

Send data over a connected socket.

send [Unix]

Send data over a connected socket.

send [ThreadUnix]
send [Event]

send ch v returns the event consisting in sending the value v over the channel ch.

send [CamlinternalOO]
send_substring [UnixLabels]

Same as send, but take the data from a string instead of a byte sequence.

send_substring [Unix]

Same as send, but take the data from a string instead of a byte sequence.

send_substring [ThreadUnix]
sendcache [CamlinternalOO]
sendself [CamlinternalOO]
sendto [UnixLabels]

Send data over an unconnected socket.

sendto [Unix]

Send data over an unconnected socket.

sendto [ThreadUnix]
sendto_substring [UnixLabels]

Same as sendto, but take the data from a string instead of a byte sequence.

sendto_substring [Unix]

Same as sendto, but take the data from a string instead of a byte sequence.

sendto_substring [ThreadUnix]
set [Weak]

Weak.set ar n (Some el) sets the nth cell of ar to be a (full) pointer to el; Weak.set ar n None sets the nth cell of ar to empty.

set [String]

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c.

set [StringLabels]

String.set s n c modifies byte sequence s in place, replacing the byte at index n with c.

set [Gc]

set r changes the GC parameters according to the control record r.

set [Float.ArrayLabels]
set [Float.Array]

set a n x modifies floatarray a in place, replacing element number n with x.

set [BytesLabels]

set s n c modifies s in place, replacing the byte at index n with c.

set [Bytes]

set s n c modifies s in place, replacing the byte at index n with c.

set [Bigarray.Array3]

Array3.set a x y v, or alternatively a.{x,y,z} <- v, stores the value v at coordinates (x, y, z) in a.

set [Bigarray.Array2]

Array2.set a x y v, or alternatively a.{x,y} <- v, stores the value v at coordinates (x, y) in a.

set [Bigarray.Array1]

Array1.set a x v, also written a.{x} <- v, stores the value v at index x in a.

set [Bigarray.Array0]

Array0.set a x v stores the value v in a.

set [Bigarray.Genarray]

Assign an element of a generic Bigarray.

set [ArrayLabels]

set a n x modifies array a in place, replacing element number n with x.

set [Array]

Array.set a n x modifies array a in place, replacing element number n with x.

set_all_formatter_output_functions [Format]
set_allowed_units [Dynlink]

Set the list of compilation units that may be referenced from units that are dynamically loaded in the future to be exactly the given value.

set_binary_mode_in [Stdlib]

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take place during input.

set_binary_mode_out [Stdlib]

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take place during output.

set_close_on_exec [UnixLabels]

Set the ``close-on-exec'' flag on the given descriptor.

set_close_on_exec [Unix]

Set the ``close-on-exec'' flag on the given descriptor.

set_data [Obj.Ephemeron]
set_data [Ephemeron.Kn]
set_data [Ephemeron.K2]
set_data [Ephemeron.K1]

Ephemeron.K1.set_data eph el sets the data of eph to be a (full) data to el

set_double_field [Obj]
set_ellipsis_text [Format]

Set the text of the ellipsis printed when too many pretty-printing boxes are open (a single dot, ., by default).

set_field [Obj]

When using flambda:

set_filename [Lexing]

Set filename in the initial tracked position to file in lexbuf.

set_formatter_out_channel [Format]

Redirect the standard pretty-printer output to the given channel.

set_formatter_out_functions [Format]

pp_set_formatter_out_functions ppf out_funs Set all the pretty-printer output functions of ppf to those of argument out_funs,

set_formatter_output_functions [Format]

pp_set_formatter_output_functions ppf out flush redirects the standard pretty-printer output functions to the functions out and flush.

set_formatter_stag_functions [Format]

pp_set_formatter_stag_functions ppf tag_funs changes the meaning of opening and closing semantic tag operations to use the functions in tag_funs when printing on ppf.

set_formatter_tag_functions [Format]
set_geometry [Format]
set_int16_be [BytesLabels]

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

set_int16_be [Bytes]

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

set_int16_le [BytesLabels]

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

set_int16_le [Bytes]

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

set_int16_ne [BytesLabels]

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

set_int16_ne [Bytes]

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

set_int32_be [BytesLabels]

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

set_int32_be [Bytes]

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

set_int32_le [BytesLabels]

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

set_int32_le [Bytes]

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

set_int32_ne [BytesLabels]

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

set_int32_ne [Bytes]

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

set_int64_be [BytesLabels]

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

set_int64_be [Bytes]

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

set_int64_le [BytesLabels]

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

set_int64_le [Bytes]

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

set_int64_ne [BytesLabels]

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

set_int64_ne [Bytes]

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

set_int8 [BytesLabels]

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

set_int8 [Bytes]

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

set_key [Obj.Ephemeron]
set_key [Ephemeron.Kn]
set_key [Ephemeron.K1]

Ephemeron.K1.set_key eph el sets the key of eph to be a (full) key to el

set_key1 [Ephemeron.K2]
set_key2 [Ephemeron.K2]
set_margin [Format]

pp_set_margin ppf d sets the right margin to d (in characters): the pretty-printer splits lines that overflow the right margin according to the break hints given.

set_mark_tags [Format]

pp_set_mark_tags ppf b turns on or off the tag-marking operations.

set_max_boxes [Format]

pp_set_max_boxes ppf max sets the maximum number of pretty-printing boxes simultaneously open.

set_max_indent [Format]

pp_set_max_indent ppf d sets the maximum indentation limit of lines to d (in characters): once this limit is reached, new pretty-printing boxes are rejected to the left, unless the enclosing box fully fits on the current line.

set_method [CamlinternalOO]
set_methods [CamlinternalOO]
set_nonblock [UnixLabels]

Set the ``non-blocking'' flag on the given descriptor.

set_nonblock [Unix]

Set the ``non-blocking'' flag on the given descriptor.

set_position [Lexing]

Set the initial tracked input position for lexbuf to a custom value.

set_print_tags [Format]

pp_set_print_tags ppf b turns on or off the tag-printing operations.

set_signal [Sys]

Same as Sys.signal but return value is ignored.

set_state [Random]

Set the state of the generator used by the basic functions.

set_tab [Format]

Sets a tabulation marker at current insertion point.

set_tag [Obj]
set_tags [Format]

pp_set_tags ppf b turns on or off the treatment of semantic tags (default is off).

set_temp_dir_name [Filename]

Change the temporary directory returned by Filename.get_temp_dir_name and used by Filename.temp_file and Filename.open_temp_file.

set_trace [Parsing]

Control debugging support for ocamlyacc-generated parsers.

set_uint16_be [BytesLabels]

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

set_uint16_be [Bytes]

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

set_uint16_le [BytesLabels]

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

set_uint16_le [Bytes]

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

set_uint16_ne [BytesLabels]

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

set_uint16_ne [Bytes]

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

set_uint8 [BytesLabels]

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

set_uint8 [Bytes]

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

set_uncaught_exception_handler [Printexc]

Printexc.set_uncaught_exception_handler fn registers fn as the handler for uncaught exceptions.

setgid [UnixLabels]

Set the real group id and effective group id for the process.

setgid [Unix]

Set the real group id and effective group id for the process.

setgroups [UnixLabels]

setgroups groups sets the supplementary group IDs for the calling process.

setgroups [Unix]

setgroups groups sets the supplementary group IDs for the calling process.

setitimer [UnixLabels]

setitimer t s sets the interval timer t and returns its previous status.

setitimer [Unix]

setitimer t s sets the interval timer t and returns its previous status.

setsid [UnixLabels]

Put the calling process in a new session and detach it from its controlling terminal.

setsid [Unix]

Put the calling process in a new session and detach it from its controlling terminal.

setsockopt [UnixLabels]

Set or clear a boolean-valued option in the given socket.

setsockopt [Unix]

Set or clear a boolean-valued option in the given socket.

setsockopt_float [UnixLabels]

Same as Unix.setsockopt for a socket option whose value is a floating-point number.

setsockopt_float [Unix]

Same as Unix.setsockopt for a socket option whose value is a floating-point number.

setsockopt_int [UnixLabels]

Same as Unix.setsockopt for an integer-valued socket option.

setsockopt_int [Unix]

Same as Unix.setsockopt for an integer-valued socket option.

setsockopt_optint [UnixLabels]

Same as Unix.setsockopt for a socket option whose value is an int option.

setsockopt_optint [Unix]

Same as Unix.setsockopt for a socket option whose value is an int option.

setuid [UnixLabels]

Set the real user id and effective user id for the process.

setuid [Unix]

Set the real user id and effective user id for the process.

shift_left [Nativeint]

Nativeint.shift_left x y shifts x to the left by y bits.

shift_left [Int64]

Int64.shift_left x y shifts x to the left by y bits.

shift_left [Int32]

Int32.shift_left x y shifts x to the left by y bits.

shift_left [Int]

shift_left x n shifts x to the left by n bits.

shift_right [Nativeint]

Nativeint.shift_right x y shifts x to the right by y bits.

shift_right [Int64]

Int64.shift_right x y shifts x to the right by y bits.

shift_right [Int32]

Int32.shift_right x y shifts x to the right by y bits.

shift_right [Int]

shift_right x n shifts x to the right by n bits.

shift_right_logical [Nativeint]

Nativeint.shift_right_logical x y shifts x to the right by y bits.

shift_right_logical [Int64]

Int64.shift_right_logical x y shifts x to the right by y bits.

shift_right_logical [Int32]

Int32.shift_right_logical x y shifts x to the right by y bits.

shift_right_logical [Int]

shift_right x n shifts x to the right by n bits.

shutdown [UnixLabels]

Shutdown a socket connection.

shutdown [Unix]

Shutdown a socket connection.

shutdown_connection [UnixLabels]

``Shut down'' a connection established with UnixLabels.open_connection; that is, transmit an end-of-file condition to the server reading on the other side of the connection.

shutdown_connection [Unix]

``Shut down'' a connection established with Unix.open_connection; that is, transmit an end-of-file condition to the server reading on the other side of the connection.

sigabrt [Sys]

Abnormal termination

sigalrm [Sys]

Timeout

sigbus [Sys]

Bus error

sigchld [Sys]

Child process terminated

sigcont [Sys]

Continue

sigfpe [Sys]

Arithmetic exception

sighup [Sys]

Hangup on controlling terminal

sigill [Sys]

Invalid hardware instruction

sigint [Sys]

Interactive interrupt (ctrl-C)

sigkill [Sys]

Termination (cannot be ignored)

sigmask [Thread]

sigmask cmd sigs changes the set of blocked signals for the calling thread.

sign_bit [Float]

sign_bit x is true iff the sign bit of x is set.

signal [Sys]

Set the behavior of the system on receipt of a given signal.

signal [Condition]

signal c restarts one of the processes waiting on the condition variable c.

sigpending [UnixLabels]

Return the set of blocked signals that are currently pending.

sigpending [Unix]

Return the set of blocked signals that are currently pending.

sigpipe [Sys]

Broken pipe

sigpoll [Sys]

Pollable event

sigprocmask [UnixLabels]

sigprocmask cmd sigs changes the set of blocked signals.

sigprocmask [Unix]

sigprocmask cmd sigs changes the set of blocked signals.

sigprof [Sys]

Profiling interrupt

sigquit [Sys]

Interactive termination

sigsegv [Sys]

Invalid memory reference

sigstop [Sys]

Stop

sigsuspend [UnixLabels]

sigsuspend sigs atomically sets the blocked signals to sigs and waits for a non-ignored, non-blocked signal to be delivered.

sigsuspend [Unix]

sigsuspend sigs atomically sets the blocked signals to sigs and waits for a non-ignored, non-blocked signal to be delivered.

sigsys [Sys]

Bad argument to routine

sigterm [Sys]

Termination

sigtrap [Sys]

Trace/breakpoint trap

sigtstp [Sys]

Interactive stop

sigttin [Sys]

Terminal read from background process

sigttou [Sys]

Terminal write from background process

sigurg [Sys]

Urgent condition on socket

sigusr1 [Sys]

Application-defined signal 1

sigusr2 [Sys]

Application-defined signal 2

sigvtalrm [Sys]

Timeout in virtual time

sigxcpu [Sys]

Timeout in cpu time

sigxfsz [Sys]

File size limit exceeded

sin [Stdlib]

Sine.

sin [Float]

Sine.

single_write [UnixLabels]

Same as write, but attempts to write only once.

single_write [Unix]

Same as write, but attempts to write only once.

single_write_substring [UnixLabels]

Same as single_write, but take the data from a string instead of a byte sequence.

single_write_substring [Unix]

Same as single_write, but take the data from a string instead of a byte sequence.

singleton [Set.S]

singleton x returns the one-element set containing only x.

singleton [MoreLabels.Set.S]
singleton [MoreLabels.Map.S]
singleton [Map.S]

singleton x y returns the one-element map that contains a binding y for x.

sinh [Stdlib]

Hyperbolic sine.

sinh [Float]

Hyperbolic sine.

size [Obj]
size [Nativeint]

The size in bits of a native integer.

size_in_bytes [Bigarray.Array3]

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

size_in_bytes [Bigarray.Array2]

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

size_in_bytes [Bigarray.Array1]

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

size_in_bytes [Bigarray.Array0]

size_in_bytes a is a's Bigarray.kind_size_in_bytes.

size_in_bytes [Bigarray.Genarray]

size_in_bytes a is the number of elements in a multiplied by a's Bigarray.kind_size_in_bytes.

sleep [UnixLabels]

Stop execution for the given number of seconds.

sleep [Unix]

Stop execution for the given number of seconds.

sleep [ThreadUnix]
sleepf [Unix]

Stop execution for the given number of seconds.

slice [Bigarray.Array1]

Extract a scalar (zero-dimensional slice) of the given one-dimensional Bigarray.

slice_left [Bigarray.Array2]

Extract a row (one-dimensional slice) of the given two-dimensional Bigarray.

slice_left [Bigarray.Genarray]

Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the first (left-most) coordinates.

slice_left_1 [Bigarray.Array3]

Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the first two coordinates.

slice_left_2 [Bigarray.Array3]

Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the first coordinate.

slice_right [Bigarray.Array2]

Extract a column (one-dimensional slice) of the given two-dimensional Bigarray.

slice_right [Bigarray.Genarray]

Extract a sub-array of lower dimension from the given Bigarray by fixing one or several of the last (right-most) coordinates.

slice_right_1 [Bigarray.Array3]

Extract a one-dimensional slice of the given three-dimensional Bigarray by fixing the last two coordinates.

slice_right_2 [Bigarray.Array3]

Extract a two-dimensional slice of the given three-dimensional Bigarray by fixing the last coordinate.

snd [Stdlib]

Return the second component of a pair.

socket [UnixLabels]

Create a new socket in the given domain, and with the given kind.

socket [Unix]

Create a new socket in the given domain, and with the given kind.

socket [ThreadUnix]
socketpair [UnixLabels]

Create a pair of unnamed sockets, connected together.

socketpair [Unix]

Create a pair of unnamed sockets, connected together.

some [Option]

some v is Some v.

sort [ListLabels]

Sort a list in increasing order according to a comparison function.

sort [List]

Sort a list in increasing order according to a comparison function.

sort [Float.ArrayLabels]
sort [Float.Array]

Sort a floatarray in increasing order according to a comparison function.

sort [ArrayLabels]

Sort an array in increasing order according to a comparison function.

sort [Array]

Sort an array in increasing order according to a comparison function.

sort_uniq [ListLabels]

Same as List.sort, but also remove duplicates.

sort_uniq [List]

Same as List.sort, but also remove duplicates.

split [Str]

split r s splits s into substrings, taking as delimiters the substrings that match r, and returns the list of substrings.

split [Set.S]

split x s returns a triple (l, present, r), where l is the set of elements of s that are strictly less than x; r is the set of elements of s that are strictly greater than x; present is false if s contains no element equal to x, or true if s contains an element equal to x.

split [MoreLabels.Set.S]
split [MoreLabels.Map.S]
split [Map.S]

split x m returns a triple (l, data, r), where l is the map with all the bindings of m whose key is strictly less than x; r is the map with all the bindings of m whose key is strictly greater than x; data is None if m contains no binding for x, or Some v if m binds v to x.

split [ListLabels]

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]).

split [List]

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]).

split_delim [Str]

Same as Str.split but occurrences of the delimiter at the beginning and at the end of the string are recognized and returned as empty strings in the result.

split_on_char [String]

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

split_on_char [StringLabels]

String.split_on_char sep s returns the list of all (possibly empty) substrings of s that are delimited by the sep character.

sprintf [Printf]

Same as Printf.fprintf, but instead of printing on an output channel, return a string containing the result of formatting the arguments.

sprintf [Format]

Same as printf above, but instead of printing on a formatter, returns a string containing the result of formatting the arguments.

sqrt [Stdlib]

Square root.

sqrt [Float]

Square root.

sqrt [Complex]

Square root.

sscanf [Scanf]

Same as Scanf.bscanf, but reads from the given string.

sscanf_format [Scanf]

Same as Scanf.bscanf_format, but reads from the given string.

stable_sort [ListLabels]

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e.

stable_sort [List]

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e.

stable_sort [Float.ArrayLabels]
stable_sort [Float.Array]

Same as Float.Array.sort, but the sorting algorithm is stable (i.e.

stable_sort [ArrayLabels]

Same as ArrayLabels.sort, but the sorting algorithm is stable (i.e.

stable_sort [Array]

Same as Array.sort, but the sorting algorithm is stable (i.e.

start [Gc.Memprof]

Start the sampling with the given parameters.

stat [UnixLabels.LargeFile]
stat [UnixLabels]

Return the information for the named file.

stat [Unix.LargeFile]
stat [Unix]

Return the information for the named file.

stat [Gc]

Return the current values of the memory management counters in a stat record.

stats [Weak.S]

Return statistics on the table.

stats [MoreLabels.Hashtbl.SeededS]
stats [MoreLabels.Hashtbl.S]
stats [MoreLabels.Hashtbl]
stats [Hashtbl.SeededS]
stats [Hashtbl.S]
stats [Hashtbl]

Hashtbl.stats tbl returns statistics about the table tbl: number of buckets, size of the biggest bucket, distribution of buckets by size.

stats [CamlinternalOO]
stats_alive [Ephemeron.SeededS]

same as Hashtbl.SeededS.stats but only count the alive bindings

stats_alive [Ephemeron.S]

same as Hashtbl.SeededS.stats but only count the alive bindings

std_formatter [Format]

The standard formatter to write to standard output.

stdbuf [Format]

The string buffer in which str_formatter writes.

stderr [UnixLabels]

File descriptor for standard error.

stderr [Unix]

File descriptor for standard error.

stderr [Stdlib]

The standard error output for the process.

stdib [Scanf.Scanning]

A deprecated alias for Scanf.Scanning.stdin, the scanning buffer reading from stdin.

stdin [UnixLabels]

File descriptor for standard input.

stdin [Unix]

File descriptor for standard input.

stdin [Stdlib]

The standard input for the process.

stdin [Scanf.Scanning]

The standard input notion for the Scanf module.

stdout [UnixLabels]

File descriptor for standard output.

stdout [Unix]

File descriptor for standard output.

stdout [Stdlib]

The standard output for the process.

stop [Gc.Memprof]

Stop the sampling.

str_formatter [Format]

A formatter to output to the Format.stdbuf string buffer.

string [Digest]

Return the digest of the given string.

string_after [Str]

string_after s n returns the substring of all characters of s that follow position n (including the character at position n).

string_before [Str]

string_before s n returns the substring of all characters of s that precede position n (excluding the character at position n).

string_match [Str]

string_match r s start tests whether a substring of s that starts at position start matches the regular expression r.

string_of_bool [Stdlib]

Return the string representation of a boolean.

string_of_float [Stdlib]

Return the string representation of a floating-point number.

string_of_fmt [CamlinternalFormat]
string_of_fmtty [CamlinternalFormat]
string_of_format [Stdlib]

Converts a format string into a string.

string_of_formatting_lit [CamlinternalFormat]
string_of_inet_addr [UnixLabels]

Return the printable representation of the given Internet address.

string_of_inet_addr [Unix]

Return the printable representation of the given Internet address.

string_of_int [Stdlib]

Return the string representation of an integer, in decimal.

string_partial_match [Str]

Similar to Str.string_match, but also returns true if the argument string is a prefix of a string that matches.

string_tag [Obj]
strput_acc [CamlinternalFormat]
sub [String]

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

sub [StringLabels]

String.sub s start len returns a fresh string of length len, containing the substring of s that starts at position start and has length len.

sub [Nativeint]

Subtraction.

sub [Int64]

Subtraction.

sub [Int32]

Subtraction.

sub [Int]

sub x y is the subtraction x - y.

sub [Float.ArrayLabels]
sub [Float.Array]

sub a start len returns a fresh floatarray of length len, containing the elements number start to start + len - 1 of floatarray a.

sub [Float]

Floating-point subtraction.

sub [Complex]

Subtraction

sub [BytesLabels]

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

sub [Bytes]

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

sub [Buffer]

Buffer.sub b off len returns a copy of len bytes from the current contents of the buffer b, starting at offset off.

sub [Bigarray.Array1]

Extract a sub-array of the given one-dimensional Bigarray.

sub [ArrayLabels]

sub a ~pos ~len returns a fresh array of length len, containing the elements number pos to pos + len - 1 of array a.

sub [Array]

Array.sub a start len returns a fresh array of length len, containing the elements number start to start + len - 1 of array a.

sub_left [Bigarray.Array3]

Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the first dimension.

sub_left [Bigarray.Array2]

Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the first dimension.

sub_left [Bigarray.Genarray]

Extract a sub-array of the given Bigarray by restricting the first (left-most) dimension.

sub_right [Bigarray.Array3]

Extract a three-dimensional sub-array of the given three-dimensional Bigarray by restricting the second dimension.

sub_right [Bigarray.Array2]

Extract a two-dimensional sub-array of the given two-dimensional Bigarray by restricting the second dimension.

sub_right [Bigarray.Genarray]

Extract a sub-array of the given Bigarray by restricting the last (right-most) dimension.

sub_string [BytesLabels]

Same as sub but return a string instead of a byte sequence.

sub_string [Bytes]

Same as sub but return a string instead of a byte sequence.

subbytes [Digest]

Digest.subbytes s ofs len returns the digest of the subsequence of s starting at index ofs and containing len bytes.

subset [Set.S]

subset s1 s2 tests whether the set s1 is a subset of the set s2.

subset [MoreLabels.Set.S]
substitute_first [Str]

Same as Str.global_substitute, except that only the first substring matching the regular expression is replaced.

substring [Digest]

Digest.substring s ofs len returns the digest of the substring of s starting at index ofs and containing len characters.

succ [Uchar]

succ u is the scalar value after u in the set of Unicode scalar values.

succ [Stdlib]

succ x is x + 1.

succ [Nativeint]

Successor.

succ [Int64]

Successor.

succ [Int32]

Successor.

succ [Int]

succ x is add x 1.

succ [Float]

succ x returns the floating point number right after x i.e., the smallest floating-point number greater than x.

symbol_end [Parsing]
symbol_end_pos [Parsing]

Same as symbol_end, but return a position instead of an offset.

symbol_start [Parsing]

symbol_start and Parsing.symbol_end are to be called in the action part of a grammar rule only.

symbol_start_pos [Parsing]

Same as symbol_start, but return a position instead of an offset.

symlink [UnixLabels]

symlink source dest creates the file dest as a symbolic link to the file source.

symlink [Unix]

symlink ?to_dir source dest creates the file dest as a symbolic link to the file source.

symm [CamlinternalFormat]
sync [Event]

'Synchronize' on an event: offer all the communication possibilities specified in the event to the outside world, and block until one of the communications succeed.

system [UnixLabels]

Execute the given command, wait until it terminates, and return its termination status.

system [Unix]

Execute the given command, wait until it terminates, and return its termination status.

system [ThreadUnix]
T
tag [Obj]
take [Spacetime.Snapshot]

take series takes a snapshot of the profiling annotations on the values in the minor and major heaps, together with GC stats, and write the result to the series file.

take [Queue]

take q removes and returns the first element in queue q, or raises Queue.Empty if the queue is empty.

take_opt [Queue]

take_opt q removes and returns the first element in queue q, or returns None if the queue is empty.

tan [Stdlib]

Tangent.

tan [Float]

Tangent.

tanh [Stdlib]

Hyperbolic tangent.

tanh [Float]

Hyperbolic tangent.

tcdrain [UnixLabels]

Waits until all output written on the given file descriptor has been transmitted.

tcdrain [Unix]

Waits until all output written on the given file descriptor has been transmitted.

tcflow [UnixLabels]

Suspend or restart reception or transmission of data on the given file descriptor, depending on the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmits a STOP character to suspend input, and TCION transmits a START character to restart input.

tcflow [Unix]

Suspend or restart reception or transmission of data on the given file descriptor, depending on the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmits a STOP character to suspend input, and TCION transmits a START character to restart input.

tcflush [UnixLabels]

Discard data written on the given file descriptor but not yet transmitted, or data received but not yet read, depending on the second argument: TCIFLUSH flushes data received but not read, TCOFLUSH flushes data written but not transmitted, and TCIOFLUSH flushes both.

tcflush [Unix]

Discard data written on the given file descriptor but not yet transmitted, or data received but not yet read, depending on the second argument: TCIFLUSH flushes data received but not read, TCOFLUSH flushes data written but not transmitted, and TCIOFLUSH flushes both.

tcgetattr [UnixLabels]

Return the status of the terminal referred to by the given file descriptor.

tcgetattr [Unix]

Return the status of the terminal referred to by the given file descriptor.

tcsendbreak [UnixLabels]

Send a break condition on the given file descriptor.

tcsendbreak [Unix]

Send a break condition on the given file descriptor.

tcsetattr [UnixLabels]

Set the status of the terminal referred to by the given file descriptor.

tcsetattr [Unix]

Set the status of the terminal referred to by the given file descriptor.

temp_dir_name [Filename]

The name of the initial temporary directory: Under Unix, the value of the TMPDIR environment variable, or "/tmp" if the variable is not set.

temp_file [Filename]

temp_file prefix suffix returns the name of a fresh temporary file in the temporary directory.

time [UnixLabels]

Return the current time since 00:00:00 GMT, Jan.

time [Unix]

Return the current time since 00:00:00 GMT, Jan.

time [Sys]

Return the processor time, in seconds, used by the program since the beginning of execution.

timed_read [ThreadUnix]
timed_write [ThreadUnix]

Behave as ThreadUnix.read and ThreadUnix.write, except that Unix_error(ETIMEDOUT,_,_) is raised if no data is available for reading or ready for writing after d seconds.

timed_write_substring [ThreadUnix]
times [UnixLabels]

Return the execution times of the process.

times [Unix]

Return the execution times of the process.

tl [ListLabels]

Return the given list without its first element.

tl [List]

Return the given list without its first element.

to_buffer [Marshal]

Marshal.to_buffer buff ofs len v flags marshals the value v, storing its byte representation in the sequence buff, starting at index ofs, and writing at most len bytes.

to_bytes [Marshal]

Marshal.to_bytes v flags returns a byte sequence containing the representation of v.

to_bytes [Buffer]

Return a copy of the current contents of the buffer.

to_channel [Marshal]

Marshal.to_channel chan v flags writes the representation of v on channel chan.

to_char [Uchar]

to_char u is u as an OCaml latin1 character.

to_float [Nativeint]

Convert the given native integer to a floating-point number.

to_float [Int64]

Convert the given 64-bit integer to a floating-point number.

to_float [Int32]

Convert the given 32-bit integer to a floating-point number.

to_float [Int]

to_float x is x as a floating point number.

to_float [Bool]

to_float b is 0. if b is false and 1. if b is true.

to_hex [Digest]

Return the printable hexadecimal representation of the given digest.

to_int [Uchar]

to_int u is u as an integer.

to_int [Nativeint]

Convert the given native integer (type nativeint) to an integer (type int).

to_int [Int64]

Convert the given 64-bit integer (type int64) to an integer (type int).

to_int [Int32]

Convert the given 32-bit integer (type int32) to an integer (type int).

to_int [Float]

Truncate the given floating-point number to an integer.

to_int [Bool]

to_int b is 0 if b is false and 1 if b is true.

to_int32 [Nativeint]

Convert the given native integer to a 32-bit integer (type int32).

to_int32 [Int64]

Convert the given 64-bit integer (type int64) to a 32-bit integer (type int32).

to_list [Result]

to_list r is [v] if r is Ok v and [] otherwise.

to_list [Option]

to_list o is [] if o is None and [v] if o is Some v.

to_list [Float.ArrayLabels]
to_list [Float.Array]

to_list a returns the list of all the elements of a.

to_list [ArrayLabels]

to_list a returns the list of all the elements of a.

to_list [Array]

Array.to_list a returns the list of all the elements of a.

to_nativeint [Int64]

Convert the given 64-bit integer (type int64) to a native integer.

to_option [Result]

to_option r is r as an option, mapping Ok v to Some v and Error _ to None.

to_result [Option]

to_result ~none o is Ok v if o is Some v and Error none otherwise.

to_seq [String]

Iterate on the string, in increasing index order.

to_seq [StringLabels]

Iterate on the string, in increasing index order.

to_seq [Stack]

Iterate on the stack, top to bottom.

to_seq [Set.S]

Iterate on the whole set, in ascending order

to_seq [Result]

to_seq r is r as a sequence.

to_seq [Queue]

Iterate on the queue, in front-to-back order.

to_seq [Option]

to_seq o is o as a sequence.

to_seq [MoreLabels.Set.S]
to_seq [MoreLabels.Map.S]
to_seq [MoreLabels.Hashtbl.SeededS]
to_seq [MoreLabels.Hashtbl.S]
to_seq [MoreLabels.Hashtbl]
to_seq [Map.S]

Iterate on the whole map, in ascending order of keys

to_seq [ListLabels]

Iterate on the list

to_seq [List]

Iterate on the list

to_seq [Hashtbl.SeededS]
to_seq [Hashtbl.S]
to_seq [Hashtbl]

Iterate on the whole table.

to_seq [Float.ArrayLabels]
to_seq [Float.Array]

Iterate on the floatarray, in increasing order.

to_seq [BytesLabels]

Iterate on the string, in increasing index order.

to_seq [Bytes]

Iterate on the string, in increasing index order.

to_seq [Buffer]

Iterate on the buffer, in increasing order.

to_seq [ArrayLabels]

Iterate on the array, in increasing order

to_seq [Array]

Iterate on the array, in increasing order.

to_seq_from [Set.S]

to_seq_from x s iterates on a subset of the elements of s in ascending order, from x or above.

to_seq_from [MoreLabels.Set.S]
to_seq_from [MoreLabels.Map.S]
to_seq_from [Map.S]

to_seq_from k m iterates on a subset of the bindings of m, in ascending order of keys, from key k or above.

to_seq_keys [MoreLabels.Hashtbl.SeededS]
to_seq_keys [MoreLabels.Hashtbl.S]
to_seq_keys [MoreLabels.Hashtbl]
to_seq_keys [Hashtbl.SeededS]
to_seq_keys [Hashtbl.S]
to_seq_keys [Hashtbl]

Same as Seq.map fst (to_seq m)

to_seq_values [MoreLabels.Hashtbl.SeededS]
to_seq_values [MoreLabels.Hashtbl.S]
to_seq_values [MoreLabels.Hashtbl]
to_seq_values [Hashtbl.SeededS]
to_seq_values [Hashtbl.S]
to_seq_values [Hashtbl]

Same as Seq.map snd (to_seq m)

to_seqi [String]

Iterate on the string, in increasing order, yielding indices along chars

to_seqi [StringLabels]

Iterate on the string, in increasing order, yielding indices along chars

to_seqi [Float.ArrayLabels]
to_seqi [Float.Array]

Iterate on the floatarray, in increasing order, yielding indices along elements.

to_seqi [BytesLabels]

Iterate on the string, in increasing order, yielding indices along chars

to_seqi [Bytes]

Iterate on the string, in increasing order, yielding indices along chars

to_seqi [Buffer]

Iterate on the buffer, in increasing order, yielding indices along chars.

to_seqi [ArrayLabels]

Iterate on the array, in increasing order, yielding indices along elements

to_seqi [Array]

Iterate on the array, in increasing order, yielding indices along elements.

to_string [Unit]

to_string b is "()".

to_string [Printexc]

Printexc.to_string e returns a string representation of the exception e.

to_string [Nativeint]

Return the string representation of its argument, in decimal.

to_string [Marshal]

Same as to_bytes but return the result as a string instead of a byte sequence.

to_string [Int64]

Return the string representation of its argument, in decimal.

to_string [Int32]

Return the string representation of its argument, in signed decimal.

to_string [Int]

to_string x is the written representation of x in decimal.

to_string [Float]

Return the string representation of a floating-point number.

to_string [BytesLabels]

Return a new string that contains the same bytes as the given byte sequence.

to_string [Bytes]

Return a new string that contains the same bytes as the given byte sequence.

to_string [Bool]

to_string b is "true" if b is true and "false" if b is false.

to_string_default [Printexc]

Printexc.to_string_default e returns a string representation of the exception e, ignoring all registered exception printers.

top [Stack]

top s returns the topmost element in stack s, or raises Stack.Empty if the stack is empty.

top [Queue]

top is a synonym for peek.

top_opt [Stack]

top_opt s returns the topmost element in stack s, or None if the stack is empty.

total_size [Marshal]
trans [CamlinternalFormat]
transfer [Queue]

transfer q1 q2 adds all of q1's elements at the end of the queue q2, then clears q1.

trim [String]

Return a copy of the argument, without leading and trailing whitespace.

trim [StringLabels]

Return a copy of the argument, without leading and trailing whitespace.

trim [BytesLabels]

Return a copy of the argument, without leading and trailing whitespace.

trim [Bytes]

Return a copy of the argument, without leading and trailing whitespace.

trunc [Float]

trunc x rounds x to the nearest integer whose absolute value is less than or equal to x.

truncate [UnixLabels.LargeFile]
truncate [UnixLabels]

Truncates the named file to the given size.

truncate [Unix.LargeFile]
truncate [Unix]

Truncates the named file to the given size.

truncate [Stdlib]

Same as int_of_float.

truncate [Obj]
truncate [Buffer]

truncate b len truncates the length of b to len Note: the internal byte sequence is not shortened.

try_lock [Mutex]

Same as Mutex.lock, but does not suspend the calling thread if the mutex is already locked: just return false immediately in that case.

type_format [CamlinternalFormat]
U
umask [UnixLabels]

Set the process's file mode creation mask, and return the previous mask.

umask [Unix]

Set the process's file mode creation mask, and return the previous mask.

unaligned_tag [Obj]
uncapitalize [String]

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

uncapitalize [StringLabels]

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

uncapitalize [BytesLabels]

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

uncapitalize [Bytes]

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

uncapitalize_ascii [String]

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

uncapitalize_ascii [StringLabels]

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

uncapitalize_ascii [BytesLabels]

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

uncapitalize_ascii [Bytes]

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

unescaped [Scanf]

unescaped s return a copy of s with escape sequences (according to the lexical conventions of OCaml) replaced by their corresponding special characters.

unfold [Seq]

Build a sequence from a step function and an initial value.

union [Set.S]

Set union.

union [MoreLabels.Set.S]
union [MoreLabels.Map.S]
union [Map.S]

union f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2.

unix [Sys]

True if Sys.os_type = "Unix".

unlink [UnixLabels]

Removes the named file

unlink [Unix]

Removes the named file.

unlock [Mutex]

Unlock the given mutex.

unmarshal [Obj]
unsafe_environment [Unix]

Return the process environment, as an array of strings with the format ``variable=value''.

unsafe_get [Float.ArrayLabels]
unsafe_get [Float.Array]
unsafe_get [Bigarray.Array3]

Like Bigarray.Array3.get, but bounds checking is not always performed.

unsafe_get [Bigarray.Array2]

Like Bigarray.Array2.get, but bounds checking is not always performed.

unsafe_get [Bigarray.Array1]

Like Bigarray.Array1.get, but bounds checking is not always performed.

unsafe_getenv [UnixLabels]

Return the value associated to a variable in the process environment.

unsafe_getenv [Unix]

Return the value associated to a variable in the process environment.

unsafe_of_string [Bytes]

Unsafely convert a shared string to a byte sequence that should not be mutated.

unsafe_set [Float.ArrayLabels]
unsafe_set [Float.Array]
unsafe_set [Bigarray.Array3]

Like Bigarray.Array3.set, but bounds checking is not always performed.

unsafe_set [Bigarray.Array2]

Like Bigarray.Array2.set, but bounds checking is not always performed.

unsafe_set [Bigarray.Array1]

Like Bigarray.Array1.set, but bounds checking is not always performed.

unsafe_to_string [Bytes]

Unsafely convert a byte sequence into a string.

unset_data [Obj.Ephemeron]
unset_data [Ephemeron.Kn]
unset_data [Ephemeron.K2]
unset_data [Ephemeron.K1]

Ephemeron.K1.unset_data eph el sets the key of eph to be an empty key.

unset_key [Obj.Ephemeron]
unset_key [Ephemeron.Kn]
unset_key [Ephemeron.K1]

Ephemeron.K1.unset_key eph el sets the key of eph to be an empty key.

unset_key1 [Ephemeron.K2]
unset_key2 [Ephemeron.K2]
unsigned_compare [Nativeint]

Same as Nativeint.compare, except that arguments are interpreted as unsigned native integers.

unsigned_compare [Int64]

Same as Int64.compare, except that arguments are interpreted as unsigned 64-bit integers.

unsigned_compare [Int32]

Same as Int32.compare, except that arguments are interpreted as unsigned 32-bit integers.

unsigned_div [Nativeint]

Same as Nativeint.div, except that arguments and result are interpreted as unsigned native integers.

unsigned_div [Int64]

Same as Int64.div, except that arguments and result are interpreted as unsigned 64-bit integers.

unsigned_div [Int32]

Same as Int32.div, except that arguments and result are interpreted as unsigned 32-bit integers.

unsigned_rem [Nativeint]

Same as Nativeint.rem, except that arguments and result are interpreted as unsigned native integers.

unsigned_rem [Int64]

Same as Int64.rem, except that arguments and result are interpreted as unsigned 64-bit integers.

unsigned_rem [Int32]

Same as Int32.rem, except that arguments and result are interpreted as unsigned 32-bit integers.

unsigned_to_int [Nativeint]

Same as Nativeint.to_int, but interprets the argument as an unsigned integer.

unsigned_to_int [Int64]

Same as Int64.to_int, but interprets the argument as an unsigned integer.

unsigned_to_int [Int32]

Same as Int32.to_int, but interprets the argument as an unsigned integer.

update [MoreLabels.Map.S]
update [Map.S]

update x f m returns a map containing the same bindings as m, except for the binding of x.

update_geometry [Format]
update_mod [CamlinternalMod]
uppercase [String]

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

uppercase [StringLabels]

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

uppercase [Char]

Convert the given character to its equivalent uppercase character, using the ISO Latin-1 (8859-1) character set.

uppercase [BytesLabels]

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

uppercase [Bytes]

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

uppercase_ascii [String]

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

uppercase_ascii [StringLabels]

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

uppercase_ascii [Char]

Convert the given character to its equivalent uppercase character, using the US-ASCII character set.

uppercase_ascii [BytesLabels]

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

uppercase_ascii [Bytes]

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

usage [Arg]

Arg.usage speclist usage_msg prints to standard error an error message that includes the list of valid options.

usage_string [Arg]

Returns the message that would have been printed by Arg.usage, if provided with the same parameters.

use_printers [Printexc]

Printexc.use_printers e returns None if there are no registered printers and Some s with else as the resulting string otherwise.

utimes [UnixLabels]

Set the last access time (second arg) and last modification time (third arg) for a file.

utimes [Unix]

Set the last access time (second arg) and last modification time (third arg) for a file.

V
value [Result]

value r ~default is v if r is Ok v and default otherwise.

value [Option]

value o ~default is v if o is Some v and default otherwise.

W
wait [UnixLabels]

Wait until one of the children processes die, and return its pid and termination status.

wait [Unix]

Wait until one of the children processes die, and return its pid and termination status.

wait [ThreadUnix]
wait [Condition]

wait c m atomically unlocks the mutex m and suspends the calling process on the condition variable c.

wait_pid [Thread]

wait_pid p suspends the execution of the calling thread until the process specified by the process identifier p terminates.

wait_read [Thread]
wait_signal [Thread]

wait_signal sigs suspends the execution of the calling thread until the process receives one of the signals specified in the list sigs.

wait_timed_read [Thread]
wait_timed_write [Thread]

Suspend the execution of the calling thread until at least one character or EOF is available for reading (wait_read) or one character can be written without blocking (wait_write) on the given Unix file descriptor.

wait_write [Thread]

This function does nothing in this implementation.

waitpid [UnixLabels]

Same as UnixLabels.wait, but waits for the child process whose pid is given.

waitpid [Unix]

Same as Unix.wait, but waits for the child process whose pid is given.

waitpid [ThreadUnix]
widen [CamlinternalOO]
win32 [Sys]

True if Sys.os_type = "Win32".

with_positions [Lexing]

Tell whether the lexer buffer keeps track of position fields lex_curr_p / lex_start_p, as determined by the corresponding optional argument for functions that create lexer buffers (whose default value is true).

with_tag [Obj]
word_size [Sys]

Size of one word on the machine currently executing the OCaml program, in bits: 32 or 64.

wrap [Event]

wrap ev fn returns the event that performs the same communications as ev, then applies the post-processing function fn on the return value.

wrap_abort [Event]

wrap_abort ev fn returns the event that performs the same communications as ev, but if it is not selected the function fn is called after the synchronization.

write [UnixLabels]

write fd buff ofs len writes len bytes to descriptor fd, taking them from byte sequence buff, starting at position ofs in buff.

write [Unix]

write fd buff ofs len writes len bytes to descriptor fd, taking them from byte sequence buff, starting at position ofs in buff.

write [ThreadUnix]
write_arg [Arg]

Arg.write_arg file args writes the arguments args newline-terminated into the file file.

write_arg0 [Arg]

Identical to Arg.write_arg but uses the null character for terminator instead of newline.

write_substring [UnixLabels]

Same as write, but take the data from a string instead of a byte sequence.

write_substring [Unix]

Same as write, but take the data from a string instead of a byte sequence.

write_substring [ThreadUnix]
Y
yield [Thread]

Re-schedule the calling thread without suspending it.

Z
zero [Nativeint]

The native integer 0.

zero [Int64]

The 64-bit integer 0.

zero [Int32]

The 32-bit integer 0.

zero [Int]

zero is the integer 0.

zero [Float]

The floating point 0.

zero [Complex]

The complex number 0.

ocaml-doc-4.11/ocaml.html/libref/Option.html0000644000175000017500000003464013717225552017712 0ustar mehdimehdi Option

Module Option

module Option: sig .. end

Option values.

Option values explicitly indicate the presence or absence of a value.

  • Since 4.08

Options

type 'a t = 'a option = 
| None
| Some of 'a

The type for option values. Either None or a value Some v.

val none : 'a option

none is None.

val some : 'a -> 'a option

some v is Some v.

val value : 'a option -> default:'a -> 'a

value o ~default is v if o is Some v and default otherwise.

val get : 'a option -> 'a

get o is v if o is Some v and

  • Raises Invalid_argument otherwise.
val bind : 'a option -> ('a -> 'b option) -> 'b option

bind o f is f v if o is Some v and None if o is None.

val join : 'a option option -> 'a option

join oo is Some v if oo is Some (Some v) and None otherwise.

val map : ('a -> 'b) -> 'a option -> 'b option

map f o is None if o is None and Some (f v) is o is Some v.

val fold : none:'a -> some:('b -> 'a) -> 'b option -> 'a

fold ~none ~some o is none if o is None and some v if o is Some v.

val iter : ('a -> unit) -> 'a option -> unit

iter f o is f v if o is Some v and () otherwise.

Predicates and comparisons

val is_none : 'a option -> bool

is_none o is true iff o is None.

val is_some : 'a option -> bool

is_some o is true iff o is Some o.

val equal : ('a -> 'a -> bool) -> 'a option -> 'a option -> bool

equal eq o0 o1 is true iff o0 and o1 are both None or if they are Some v0 and Some v1 and eq v0 v1 is true.

val compare : ('a -> 'a -> int) -> 'a option -> 'a option -> int

compare cmp o0 o1 is a total order on options using cmp to compare values wrapped by Some _. None is smaller than Some _ values.

Converting

val to_result : none:'e -> 'a option -> ('a, 'e) result

to_result ~none o is Ok v if o is Some v and Error none otherwise.

val to_list : 'a option -> 'a list

to_list o is [] if o is None and [v] if o is Some v.

val to_seq : 'a option -> 'a Seq.t

to_seq o is o as a sequence. None is the empty sequence and Some v is the singleton sequence containing v.

ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.HashedType.html0000644000175000017500000001242113717225553023117 0ustar mehdimehdi Hashtbl.HashedType sig
  type t
  val equal : Hashtbl.HashedType.t -> Hashtbl.HashedType.t -> bool
  val hash : Hashtbl.HashedType.t -> int
end
ocaml-doc-4.11/ocaml.html/libref/Set.Make.html0000644000175000017500000007370413717225553020056 0ustar mehdimehdi Set.Make

Functor Set.Make

module Make: 
functor (Ord : OrderedType-> S with type elt = Ord.t

Functor building an implementation of the set structure given a totally ordered type.

Parameters:
Ord : OrderedType

type elt 

The type of the set elements.

type t 

The type of sets.

val empty : t

The empty set.

val is_empty : t -> bool

Test whether a set is empty or not.

val mem : elt -> t -> bool

mem x s tests whether x belongs to the set s.

val add : elt -> t -> t

add x s returns a set containing all elements of s, plus x. If x was already in s, s is returned unchanged (the result of the function is then physically equal to s).

  • Before 4.03 Physical equality was not ensured.
val singleton : elt -> t

singleton x returns the one-element set containing only x.

val remove : elt -> t -> t

remove x s returns a set containing all elements of s, except x. If x was not in s, s is returned unchanged (the result of the function is then physically equal to s).

  • Before 4.03 Physical equality was not ensured.
val union : t -> t -> t

Set union.

val inter : t -> t -> t

Set intersection.

val disjoint : t -> t -> bool

Test if two sets are disjoint.

  • Since 4.08.0
val diff : t -> t -> t

Set difference: diff s1 s2 contains the elements of s1 that are not in s2.

val compare : t -> t -> int

Total ordering between sets. Can be used as the ordering function for doing sets of sets.

val equal : t -> t -> bool

equal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain equal elements.

val subset : t -> t -> bool

subset s1 s2 tests whether the set s1 is a subset of the set s2.

val iter : (elt -> unit) -> t -> unit

iter f s applies f in turn to all elements of s. The elements of s are presented to f in increasing order with respect to the ordering over the type of the elements.

val map : (elt -> elt) -> t -> t

map f s is the set whose elements are f a0,f a1... f
        aN
, where a0,a1...aN are the elements of s.

The elements are passed to f in increasing order with respect to the ordering over the type of the elements.

If no element of s is changed by f, s is returned unchanged. (If each output of f is physically equal to its input, the returned set is physically equal to s.)

  • Since 4.04.0
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a

fold f s a computes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are the elements of s, in increasing order.

val for_all : (elt -> bool) -> t -> bool

for_all p s checks if all elements of the set satisfy the predicate p.

val exists : (elt -> bool) -> t -> bool

exists p s checks if at least one element of the set satisfies the predicate p.

val filter : (elt -> bool) -> t -> t

filter p s returns the set of all elements in s that satisfy predicate p. If p satisfies every element in s, s is returned unchanged (the result of the function is then physically equal to s).

  • Before 4.03 Physical equality was not ensured.
val filter_map : (elt -> elt option) -> t -> t

filter_map f s returns the set of all v such that f x = Some v for some element x of s.

For example,

filter_map (fun n -> if n mod 2 = 0 then Some (n / 2) else None) s

is the set of halves of the even elements of s.

If no element of s is changed or dropped by f (if f x = Some x for each element x), then s is returned unchanged: the result of the function is then physically equal to s.

  • Since 4.11.0
val partition : (elt -> bool) -> t -> t * t

partition p s returns a pair of sets (s1, s2), where s1 is the set of all the elements of s that satisfy the predicate p, and s2 is the set of all the elements of s that do not satisfy p.

val cardinal : t -> int

Return the number of elements of a set.

val elements : t -> elt list

Return the list of all elements of the given set. The returned list is sorted in increasing order with respect to the ordering Ord.compare, where Ord is the argument given to Set.Make.

val min_elt : t -> elt

Return the smallest element of the given set (with respect to the Ord.compare ordering), or raise Not_found if the set is empty.

val min_elt_opt : t -> elt option

Return the smallest element of the given set (with respect to the Ord.compare ordering), or None if the set is empty.

  • Since 4.05
val max_elt : t -> elt

Same as Set.S.min_elt, but returns the largest element of the given set.

val max_elt_opt : t -> elt option

Same as Set.S.min_elt_opt, but returns the largest element of the given set.

  • Since 4.05
val choose : t -> elt

Return one element of the given set, or raise Not_found if the set is empty. Which element is chosen is unspecified, but equal elements will be chosen for equal sets.

val choose_opt : t -> elt option

Return one element of the given set, or None if the set is empty. Which element is chosen is unspecified, but equal elements will be chosen for equal sets.

  • Since 4.05
val split : elt -> t -> t * bool * t

split x s returns a triple (l, present, r), where l is the set of elements of s that are strictly less than x; r is the set of elements of s that are strictly greater than x; present is false if s contains no element equal to x, or true if s contains an element equal to x.

val find : elt -> t -> elt

find x s returns the element of s equal to x (according to Ord.compare), or raise Not_found if no such element exists.

  • Since 4.01.0
val find_opt : elt -> t -> elt option

find_opt x s returns the element of s equal to x (according to Ord.compare), or None if no such element exists.

  • Since 4.05
val find_first : (elt -> bool) -> t -> elt

find_first f s, where f is a monotonically increasing function, returns the lowest element e of s such that f e, or raises Not_found if no such element exists.

For example, find_first (fun e -> Ord.compare e x >= 0) s will return the first element e of s where Ord.compare e x >= 0 (intuitively: e >= x), or raise Not_found if x is greater than any element of s.

  • Since 4.05
val find_first_opt : (elt -> bool) -> t -> elt option

find_first_opt f s, where f is a monotonically increasing function, returns an option containing the lowest element e of s such that f e, or None if no such element exists.

  • Since 4.05
val find_last : (elt -> bool) -> t -> elt

find_last f s, where f is a monotonically decreasing function, returns the highest element e of s such that f e, or raises Not_found if no such element exists.

  • Since 4.05
val find_last_opt : (elt -> bool) -> t -> elt option

find_last_opt f s, where f is a monotonically decreasing function, returns an option containing the highest element e of s such that f e, or None if no such element exists.

  • Since 4.05
val of_list : elt list -> t

of_list l creates a set from a list of elements. This is usually more efficient than folding add over the list, except perhaps for lists with many duplicated elements.

  • Since 4.02.0

Iterators

val to_seq_from : elt -> t -> elt Seq.t

to_seq_from x s iterates on a subset of the elements of s in ascending order, from x or above.

  • Since 4.07
val to_seq : t -> elt Seq.t

Iterate on the whole set, in ascending order

  • Since 4.07
val add_seq : elt Seq.t -> t -> t

Add the given elements to the set, in order.

  • Since 4.07
val of_seq : elt Seq.t -> t

Build a set from the given bindings

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stream.html0000644000175000017500000002734413717225553017701 0ustar mehdimehdi Stream

Module Stream

module Stream: sig .. end

Streams and parsers.


type 'a t 

The type of streams holding values of type 'a.

exception Failure

Raised by parsers when none of the first components of the stream patterns is accepted.

exception Error of string

Raised by parsers when the first component of a stream pattern is accepted, but one of the following components is rejected.

Stream builders

val from : (int -> 'a option) -> 'a t

Stream.from f returns a stream built from the function f. To create a new stream element, the function f is called with the current stream count. The user function f must return either Some <value> for a value or None to specify the end of the stream.

Do note that the indices passed to f may not start at 0 in the general case. For example, [< '0; '1; Stream.from f >] would call f the first time with count 2.

val of_list : 'a list -> 'a t

Return the stream holding the elements of the list in the same order.

val of_string : string -> char t

Return the stream of the characters of the string parameter.

val of_bytes : bytes -> char t

Return the stream of the characters of the bytes parameter.

  • Since 4.02.0
val of_channel : in_channel -> char t

Return the stream of the characters read from the input channel.

Stream iterator

val iter : ('a -> unit) -> 'a t -> unit

Stream.iter f s scans the whole stream s, applying function f in turn to each stream element encountered.

Predefined parsers

val next : 'a t -> 'a

Return the first element of the stream and remove it from the stream.

  • Raises Stream.Failure if the stream is empty.
val empty : 'a t -> unit

Return () if the stream is empty, else raise Stream.Failure.

Useful functions

val peek : 'a t -> 'a option

Return Some of "the first element" of the stream, or None if the stream is empty.

val junk : 'a t -> unit

Remove the first element of the stream, possibly unfreezing it before.

val count : 'a t -> int

Return the current count of the stream elements, i.e. the number of the stream elements discarded.

val npeek : int -> 'a t -> 'a list

npeek n returns the list of the n first elements of the stream, or all its remaining elements if less than n elements are available.

ocaml-doc-4.11/ocaml.html/libref/Ephemeron.Kn.html0000644000175000017500000003043213717225552020726 0ustar mehdimehdi Ephemeron.Kn

Module Ephemeron.Kn

module Kn: sig .. end

type ('k, 'd) t 

an ephemeron with an arbitrary number of keys of the same type

val create : int -> ('k, 'd) t
val get_key : ('k, 'd) t -> int -> 'k option
val get_key_copy : ('k, 'd) t -> int -> 'k option
val set_key : ('k, 'd) t -> int -> 'k -> unit
val unset_key : ('k, 'd) t -> int -> unit
val check_key : ('k, 'd) t -> int -> bool
val blit_key : ('k, 'a) t ->
int -> ('k, 'b) t -> int -> int -> unit
val get_data : ('k, 'd) t -> 'd option
val get_data_copy : ('k, 'd) t -> 'd option
val set_data : ('k, 'd) t -> 'd -> unit
val unset_data : ('k, 'd) t -> unit
val check_data : ('k, 'd) t -> bool
val blit_data : ('k, 'd) t -> ('k, 'd) t -> unit
module Make: 
functor (H : Hashtbl.HashedType-> Ephemeron.S with type key = H.t array

Functor building an implementation of a weak hash table

module MakeSeeded: 
functor (H : Hashtbl.SeededHashedType-> Ephemeron.SeededS with type key = H.t array

Functor building an implementation of a weak hash table.

ocaml-doc-4.11/ocaml.html/libref/type_Set.OrderedType.html0000644000175000017500000001204113717225553022453 0ustar mehdimehdi Set.OrderedType sig type t val compare : Set.OrderedType.t -> Set.OrderedType.t -> int end ocaml-doc-4.11/ocaml.html/libref/Stdlib.Sys.html0000644000175000017500000007646713717225553020456 0ustar mehdimehdi Stdlib.Sys

Module Stdlib.Sys

module Sys: Sys

val argv : string array

The command line arguments given to the process. The first element is the command name used to invoke the program. The following elements are the command-line arguments given to the program.

val executable_name : string

The name of the file containing the executable currently running. This name may be absolute or relative to the current directory, depending on the platform and whether the program was compiled to bytecode or a native executable.

val file_exists : string -> bool

Test if a file with the given name exists.

val is_directory : string -> bool

Returns true if the given name refers to a directory, false if it refers to another kind of file.

  • Since 3.10.0
  • Raises Sys_error if no file exists with the given name.
val remove : string -> unit

Remove the given file name from the file system.

val rename : string -> string -> unit

Rename a file. rename oldpath newpath renames the file called oldpath, giving it newpath as its new name, moving it between directories if needed. If newpath already exists, its contents will be replaced with those of oldpath. Depending on the operating system, the metadata (permissions, owner, etc) of newpath can either be preserved or be replaced by those of oldpath.

  • Since 4.06 concerning the "replace existing file" behavior
val getenv : string -> string

Return the value associated to a variable in the process environment.

  • Raises Not_found if the variable is unbound.
val getenv_opt : string -> string option

Return the value associated to a variable in the process environment or None if the variable is unbound.

  • Since 4.05
val command : string -> int

Execute the given shell command and return its exit code.

The argument of Sys.command is generally the name of a command followed by zero, one or several arguments, separated by whitespace. The given argument is interpreted by a shell: either the Windows shell cmd.exe for the Win32 ports of OCaml, or the POSIX shell sh for other ports. It can contain shell builtin commands such as echo, and also special characters such as file redirections > and <, which will be honored by the shell.

Conversely, whitespace or special shell characters occurring in command names or in their arguments must be quoted or escaped so that the shell does not interpret them. The quoting rules vary between the POSIX shell and the Windows shell. The Filename.quote_command performs the appropriate quoting given a command name, a list of arguments, and optional file redirections.

val time : unit -> float

Return the processor time, in seconds, used by the program since the beginning of execution.

val chdir : string -> unit

Change the current working directory of the process.

val getcwd : unit -> string

Return the current working directory of the process.

val readdir : string -> string array

Return the names of all files present in the given directory. Names denoting the current directory and the parent directory ("." and ".." in Unix) are not returned. Each string in the result is a file name rather than a complete path. There is no guarantee that the name strings in the resulting array will appear in any specific order; they are not, in particular, guaranteed to appear in alphabetical order.

val interactive : bool ref

This reference is initially set to false in standalone programs and to true if the code is being executed under the interactive toplevel system ocaml.

val os_type : string

Operating system currently executing the OCaml program. One of

  • "Unix" (for all Unix versions, including Linux and Mac OS X),
  • "Win32" (for MS-Windows, OCaml compiled with MSVC++ or Mingw),
  • "Cygwin" (for MS-Windows, OCaml compiled with Cygwin).
type backend_type = 
| Native
| Bytecode
| Other of string

Currently, the official distribution only supports Native and Bytecode, but it can be other backends with alternative compilers, for example, javascript.

  • Since 4.04.0
val backend_type : backend_type

Backend type currently executing the OCaml program.

  • Since 4.04.0
val unix : bool

True if Sys.os_type = "Unix".

  • Since 4.01.0
val win32 : bool

True if Sys.os_type = "Win32".

  • Since 4.01.0
val cygwin : bool

True if Sys.os_type = "Cygwin".

  • Since 4.01.0
val word_size : int

Size of one word on the machine currently executing the OCaml program, in bits: 32 or 64.

val int_size : int

Size of int, in bits. It is 31 (resp. 63) when using OCaml on a 32-bit (resp. 64-bit) platform. It may differ for other implementations, e.g. it can be 32 bits when compiling to JavaScript.

  • Since 4.03.0
val big_endian : bool

Whether the machine currently executing the Caml program is big-endian.

  • Since 4.00.0
val max_string_length : int

Maximum length of strings and byte sequences.

val max_array_length : int

Maximum length of a normal array (i.e. any array whose elements are not of type float). The maximum length of a float array is max_floatarray_length if OCaml was configured with --enable-flat-float-array and max_array_length if configured with --disable-flat-float-array.

val max_floatarray_length : int

Maximum length of a floatarray. This is also the maximum length of a float array when OCaml is configured with --enable-flat-float-array.

val runtime_variant : unit -> string

Return the name of the runtime variant the program is running on. This is normally the argument given to -runtime-variant at compile time, but for byte-code it can be changed after compilation.

  • Since 4.03.0
val runtime_parameters : unit -> string

Return the value of the runtime parameters, in the same format as the contents of the OCAMLRUNPARAM environment variable.

  • Since 4.03.0

Signal handling

type signal_behavior = 
| Signal_default
| Signal_ignore
| Signal_handle of (int -> unit)

What to do when receiving a signal:

  • Signal_default: take the default behavior (usually: abort the program)
  • Signal_ignore: ignore the signal
  • Signal_handle f: call function f, giving it the signal number as argument.
val signal : int -> signal_behavior -> signal_behavior

Set the behavior of the system on receipt of a given signal. The first argument is the signal number. Return the behavior previously associated with the signal. If the signal number is invalid (or not available on your system), an Invalid_argument exception is raised.

val set_signal : int -> signal_behavior -> unit

Same as Sys.signal but return value is ignored.

Signal numbers for the standard POSIX signals.

val sigabrt : int

Abnormal termination

val sigalrm : int

Timeout

val sigfpe : int

Arithmetic exception

val sighup : int

Hangup on controlling terminal

val sigill : int

Invalid hardware instruction

val sigint : int

Interactive interrupt (ctrl-C)

val sigkill : int

Termination (cannot be ignored)

val sigpipe : int

Broken pipe

val sigquit : int

Interactive termination

val sigsegv : int

Invalid memory reference

val sigterm : int

Termination

val sigusr1 : int

Application-defined signal 1

val sigusr2 : int

Application-defined signal 2

val sigchld : int

Child process terminated

val sigcont : int

Continue

val sigstop : int

Stop

val sigtstp : int

Interactive stop

val sigttin : int

Terminal read from background process

val sigttou : int

Terminal write from background process

val sigvtalrm : int

Timeout in virtual time

val sigprof : int

Profiling interrupt

val sigbus : int

Bus error

  • Since 4.03
val sigpoll : int

Pollable event

  • Since 4.03
val sigsys : int

Bad argument to routine

  • Since 4.03
val sigtrap : int

Trace/breakpoint trap

  • Since 4.03
val sigurg : int

Urgent condition on socket

  • Since 4.03
val sigxcpu : int

Timeout in cpu time

  • Since 4.03
val sigxfsz : int

File size limit exceeded

  • Since 4.03
exception Break

Exception raised on interactive interrupt if Sys.catch_break is on.

val catch_break : bool -> unit

catch_break governs whether interactive interrupt (ctrl-C) terminates the program or raises the Break exception. Call catch_break true to enable raising Break, and catch_break false to let the system terminate the program on user interrupt.

val ocaml_version : string

ocaml_version is the version of OCaml. It is a string of the form "major.minor[.patchlevel][(+|~)additional-info]", where major, minor, and patchlevel are integers, and additional-info is an arbitrary string. The [.patchlevel] part is absent for versions anterior to 3.08.0. The [(+|~)additional-info] part may be absent.

val enable_runtime_warnings : bool -> unit

Control whether the OCaml runtime system can emit warnings on stderr. Currently, the only supported warning is triggered when a channel created by open_* functions is finalized without being closed. Runtime warnings are disabled by default.

  • Since 4.03.0
val runtime_warnings_enabled : unit -> bool

Return whether runtime warnings are currently enabled.

  • Since 4.03.0

Optimization

val opaque_identity : 'a -> 'a

For the purposes of optimization, opaque_identity behaves like an unknown (and thus possibly side-effecting) function.

At runtime, opaque_identity disappears altogether.

A typical use of this function is to prevent pure computations from being optimized away in benchmarking loops. For example:

      for _round = 1 to 100_000 do
        ignore (Sys.opaque_identity (my_pure_computation ()))
      done
    
  • Since 4.03.0
module Immediate64: sig .. end
ocaml-doc-4.11/ocaml.html/libref/Thread.html0000644000175000017500000003575513717225553017662 0ustar mehdimehdi Thread

Module Thread

module Thread: sig .. end

Lightweight threads for Posix 1003.1c and Win32.


type t 

The type of thread handles.

Thread creation and termination

val create : ('a -> 'b) -> 'a -> t

Thread.create funct arg creates a new thread of control, in which the function application funct arg is executed concurrently with the other threads of the program. The application of Thread.create returns the handle of the newly created thread. The new thread terminates when the application funct arg returns, either normally or by raising an uncaught exception. In the latter case, the exception is printed on standard error, but not propagated back to the parent thread. Similarly, the result of the application funct arg is discarded and not directly accessible to the parent thread.

val self : unit -> t

Return the thread currently executing.

val id : t -> int

Return the identifier of the given thread. A thread identifier is an integer that identifies uniquely the thread. It can be used to build data structures indexed by threads.

val exit : unit -> unit

Terminate prematurely the currently executing thread.

val kill : t -> unit

Terminate prematurely the thread whose handle is given.

Suspending threads

val delay : float -> unit

delay d suspends the execution of the calling thread for d seconds. The other program threads continue to run during this time.

val join : t -> unit

join th suspends the execution of the calling thread until the thread th has terminated.

val wait_read : Unix.file_descr -> unit
val wait_write : Unix.file_descr -> unit

This function does nothing in this implementation.

val wait_timed_read : Unix.file_descr -> float -> bool
val wait_timed_write : Unix.file_descr -> float -> bool

Suspend the execution of the calling thread until at least one character or EOF is available for reading (wait_read) or one character can be written without blocking (wait_write) on the given Unix file descriptor. Wait for at most the amount of time given as second argument (in seconds). Return true if the file descriptor is ready for input/output and false if the timeout expired.

These functions return immediately true in the Win32 implementation.

val select : Unix.file_descr list ->
Unix.file_descr list ->
Unix.file_descr list ->
float -> Unix.file_descr list * Unix.file_descr list * Unix.file_descr list

Suspend the execution of the calling thread until input/output becomes possible on the given Unix file descriptors. The arguments and results have the same meaning as for Unix.select. This function is not implemented yet under Win32.

val wait_pid : int -> int * Unix.process_status

wait_pid p suspends the execution of the calling thread until the process specified by the process identifier p terminates. Returns the pid of the child caught and its termination status, as per Unix.wait. This function is not implemented under MacOS.

val yield : unit -> unit

Re-schedule the calling thread without suspending it. This function can be used to give scheduling hints, telling the scheduler that now is a good time to switch to other threads.

Management of signals

Signal handling follows the POSIX thread model: signals generated by a thread are delivered to that thread; signals generated externally are delivered to one of the threads that does not block it. Each thread possesses a set of blocked signals, which can be modified using Thread.sigmask. This set is inherited at thread creation time. Per-thread signal masks are supported only by the system thread library under Unix, but not under Win32, nor by the VM thread library.

val sigmask : Unix.sigprocmask_command -> int list -> int list

sigmask cmd sigs changes the set of blocked signals for the calling thread. If cmd is SIG_SETMASK, blocked signals are set to those in the list sigs. If cmd is SIG_BLOCK, the signals in sigs are added to the set of blocked signals. If cmd is SIG_UNBLOCK, the signals in sigs are removed from the set of blocked signals. sigmask returns the set of previously blocked signals for the thread.

val wait_signal : int list -> int

wait_signal sigs suspends the execution of the calling thread until the process receives one of the signals specified in the list sigs. It then returns the number of the signal received. Signal handlers attached to the signals in sigs will not be invoked. The signals sigs are expected to be blocked before calling wait_signal.

ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Map.Make.html0000644000175000017500000004517013717225553023121 0ustar mehdimehdi MoreLabels.Map.Make functor (Ord : OrderedType->
  sig
    type key = Ord.t
    and 'a t = 'Map.Make(Ord).t
    val empty : 'a t
    val is_empty : 'a t -> bool
    val mem : key -> 'a t -> bool
    val add : key:key -> data:'-> 'a t -> 'a t
    val update : key:key -> f:('a option -> 'a option) -> 'a t -> 'a t
    val singleton : key -> '-> 'a t
    val remove : key -> 'a t -> 'a t
    val merge :
      f:(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
    val union : f:(key -> '-> '-> 'a option) -> 'a t -> 'a t -> 'a t
    val compare : cmp:('-> '-> int) -> 'a t -> 'a t -> int
    val equal : cmp:('-> '-> bool) -> 'a t -> 'a t -> bool
    val iter : f:(key:key -> data:'-> unit) -> 'a t -> unit
    val fold : f:(key:key -> data:'-> '-> 'b) -> 'a t -> init:'-> 'b
    val for_all : f:(key -> '-> bool) -> 'a t -> bool
    val exists : f:(key -> '-> bool) -> 'a t -> bool
    val filter : f:(key -> '-> bool) -> 'a t -> 'a t
    val filter_map : f:(key -> '-> 'b option) -> 'a t -> 'b t
    val partition : f:(key -> '-> bool) -> 'a t -> 'a t * 'a t
    val cardinal : 'a t -> int
    val bindings : 'a t -> (key * 'a) list
    val min_binding : 'a t -> key * 'a
    val min_binding_opt : 'a t -> (key * 'a) option
    val max_binding : 'a t -> key * 'a
    val max_binding_opt : 'a t -> (key * 'a) option
    val choose : 'a t -> key * 'a
    val choose_opt : 'a t -> (key * 'a) option
    val split : key -> 'a t -> 'a t * 'a option * 'a t
    val find : key -> 'a t -> 'a
    val find_opt : key -> 'a t -> 'a option
    val find_first : f:(key -> bool) -> 'a t -> key * 'a
    val find_first_opt : f:(key -> bool) -> 'a t -> (key * 'a) option
    val find_last : f:(key -> bool) -> 'a t -> key * 'a
    val find_last_opt : f:(key -> bool) -> 'a t -> (key * 'a) option
    val map : f:('-> 'b) -> 'a t -> 'b t
    val mapi : f:(key -> '-> 'b) -> 'a t -> 'b t
    val to_seq : 'a t -> (key * 'a) Seq.t
    val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
    val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
    val of_seq : (key * 'a) Seq.t -> 'a t
  end
ocaml-doc-4.11/ocaml.html/libref/type_Buffer.html0000644000175000017500000003460213717225552020712 0ustar mehdimehdi Buffer sig
  type t
  val create : int -> Buffer.t
  val contents : Buffer.t -> string
  val to_bytes : Buffer.t -> bytes
  val sub : Buffer.t -> int -> int -> string
  val blit : Buffer.t -> int -> bytes -> int -> int -> unit
  val nth : Buffer.t -> int -> char
  val length : Buffer.t -> int
  val clear : Buffer.t -> unit
  val reset : Buffer.t -> unit
  val add_char : Buffer.t -> char -> unit
  val add_utf_8_uchar : Buffer.t -> Stdlib.Uchar.t -> unit
  val add_utf_16le_uchar : Buffer.t -> Stdlib.Uchar.t -> unit
  val add_utf_16be_uchar : Buffer.t -> Stdlib.Uchar.t -> unit
  val add_string : Buffer.t -> string -> unit
  val add_bytes : Buffer.t -> bytes -> unit
  val add_substring : Buffer.t -> string -> int -> int -> unit
  val add_subbytes : Buffer.t -> bytes -> int -> int -> unit
  val add_substitute : Buffer.t -> (string -> string) -> string -> unit
  val add_buffer : Buffer.t -> Buffer.t -> unit
  val add_channel : Buffer.t -> Stdlib.in_channel -> int -> unit
  val output_buffer : Stdlib.out_channel -> Buffer.t -> unit
  val truncate : Buffer.t -> int -> unit
  val to_seq : Buffer.t -> char Stdlib.Seq.t
  val to_seqi : Buffer.t -> (int * char) Stdlib.Seq.t
  val add_seq : Buffer.t -> char Stdlib.Seq.t -> unit
  val of_seq : char Stdlib.Seq.t -> Buffer.t
  val add_uint8 : Buffer.t -> int -> unit
  val add_int8 : Buffer.t -> int -> unit
  val add_uint16_ne : Buffer.t -> int -> unit
  val add_uint16_be : Buffer.t -> int -> unit
  val add_uint16_le : Buffer.t -> int -> unit
  val add_int16_ne : Buffer.t -> int -> unit
  val add_int16_be : Buffer.t -> int -> unit
  val add_int16_le : Buffer.t -> int -> unit
  val add_int32_ne : Buffer.t -> int32 -> unit
  val add_int32_be : Buffer.t -> int32 -> unit
  val add_int32_le : Buffer.t -> int32 -> unit
  val add_int64_ne : Buffer.t -> int64 -> unit
  val add_int64_be : Buffer.t -> int64 -> unit
  val add_int64_le : Buffer.t -> int64 -> unit
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Int32.html0000644000175000017500000005024213717225553020556 0ustar mehdimehdi Stdlib.Int32

Module Stdlib.Int32

module Int32: Int32

val zero : int32

The 32-bit integer 0.

val one : int32

The 32-bit integer 1.

val minus_one : int32

The 32-bit integer -1.

val neg : int32 -> int32

Unary negation.

val add : int32 -> int32 -> int32

Addition.

val sub : int32 -> int32 -> int32

Subtraction.

val mul : int32 -> int32 -> int32

Multiplication.

val div : int32 -> int32 -> int32

Integer division. This division rounds the real quotient of its arguments towards zero, as specified for (/).

  • Raises Division_by_zero if the second argument is zero.
val unsigned_div : int32 -> int32 -> int32

Same as Int32.div, except that arguments and result are interpreted as unsigned 32-bit integers.

  • Since 4.08.0
val rem : int32 -> int32 -> int32

Integer remainder. If y is not zero, the result of Int32.rem x y satisfies the following property: x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y). If y = 0, Int32.rem x y raises Division_by_zero.

val unsigned_rem : int32 -> int32 -> int32

Same as Int32.rem, except that arguments and result are interpreted as unsigned 32-bit integers.

  • Since 4.08.0
val succ : int32 -> int32

Successor. Int32.succ x is Int32.add x Int32.one.

val pred : int32 -> int32

Predecessor. Int32.pred x is Int32.sub x Int32.one.

val abs : int32 -> int32

Return the absolute value of its argument.

val max_int : int32

The greatest representable 32-bit integer, 231 - 1.

val min_int : int32

The smallest representable 32-bit integer, -231.

val logand : int32 -> int32 -> int32

Bitwise logical and.

val logor : int32 -> int32 -> int32

Bitwise logical or.

val logxor : int32 -> int32 -> int32

Bitwise logical exclusive or.

val lognot : int32 -> int32

Bitwise logical negation.

val shift_left : int32 -> int -> int32

Int32.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or y >= 32.

val shift_right : int32 -> int -> int32

Int32.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or y >= 32.

val shift_right_logical : int32 -> int -> int32

Int32.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0 or y >= 32.

val of_int : int -> int32

Convert the given integer (type int) to a 32-bit integer (type int32). On 64-bit platforms, the argument is taken modulo 232.

val to_int : int32 -> int

Convert the given 32-bit integer (type int32) to an integer (type int). On 32-bit platforms, the 32-bit integer is taken modulo 231, i.e. the high-order bit is lost during the conversion. On 64-bit platforms, the conversion is exact.

val unsigned_to_int : int32 -> int option

Same as Int32.to_int, but interprets the argument as an unsigned integer. Returns None if the unsigned value of the argument cannot fit into an int.

  • Since 4.08.0
val of_float : float -> int32

Convert the given floating-point number to a 32-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Int32.min_int, Int32.max_int].

val to_float : int32 -> float

Convert the given 32-bit integer to a floating-point number.

val of_string : string -> int32

Convert the given string to a 32-bit integer. The string is read in decimal (by default, or if the string begins with 0u) or in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively.

The 0u prefix reads the input as an unsigned integer in the range [0, 2*Int32.max_int+1]. If the input exceeds Int32.max_int it is converted to the signed integer Int32.min_int + input - Int32.max_int - 1.

The _ (underscore) character can appear anywhere in the string and is ignored.

  • Raises Failure if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int32.
val of_string_opt : string -> int32 option

Same as of_string, but return None instead of raising.

  • Since 4.05
val to_string : int32 -> string

Return the string representation of its argument, in signed decimal.

val bits_of_float : float -> int32

Return the internal representation of the given float according to the IEEE 754 floating-point 'single format' bit layout. Bit 31 of the result represents the sign of the float; bits 30 to 23 represent the (biased) exponent; bits 22 to 0 represent the mantissa.

val float_of_bits : int32 -> float

Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'single format' bit layout, is the given int32.

type t = int32 

An alias for the type of 32-bit integers.

val compare : t -> t -> int

The comparison function for 32-bit integers, with the same specification as compare. Along with the type t, this function compare allows the module Int32 to be passed as argument to the functors Set.Make and Map.Make.

val unsigned_compare : t -> t -> int

Same as Int32.compare, except that arguments are interpreted as unsigned 32-bit integers.

  • Since 4.08.0
val equal : t -> t -> bool

The equal function for int32s.

  • Since 4.03.0
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Array.html0000644000175000017500000001126613717225552022000 0ustar mehdimehdi Stdlib.Array (module Stdlib__array) ocaml-doc-4.11/ocaml.html/libref/Obj.html0000644000175000017500000003220713717225552017151 0ustar mehdimehdi Obj

Module Obj

module Obj: sig .. end

Operations on internal representations of values.

Not for the casual user.


type t 
val repr : 'a -> t
val obj : t -> 'a
val magic : 'a -> 'b
val is_block : t -> bool
val is_int : t -> bool
val tag : t -> int
val size : t -> int
val reachable_words : t -> int

Computes the total size (in words, including the headers) of all heap blocks accessible from the argument. Statically allocated blocks are excluded.

@Since 4.04

val field : t -> int -> t
val set_field : t -> int -> t -> unit

When using flambda:

set_field MUST NOT be called on immutable blocks. (Blocks allocated in C stubs, or with new_block below, are always considered mutable.)

The same goes for set_double_field and set_tag. However, for set_tag, in the case of immutable blocks where the middle-end optimizers never see code that discriminates on their tag (for example records), the operation should be safe. Such uses are nonetheless discouraged.

For experts only: set_field et al can be made safe by first wrapping the block in Sys.opaque_identity, so any information about its contents will not be propagated.

val set_tag : t -> int -> unit
val double_field : t -> int -> float
val set_double_field : t -> int -> float -> unit
val new_block : int -> int -> t
val dup : t -> t
val truncate : t -> int -> unit
val add_offset : t -> Int32.t -> t
val with_tag : int -> t -> t
val first_non_constant_constructor_tag : int
val last_non_constant_constructor_tag : int
val lazy_tag : int
val closure_tag : int
val object_tag : int
val infix_tag : int
val forward_tag : int
val no_scan_tag : int
val abstract_tag : int
val string_tag : int
val double_tag : int
val double_array_tag : int
val custom_tag : int
val final_tag : int
val int_tag : int
val out_of_heap_tag : int
val unaligned_tag : int
module Extension_constructor: sig .. end
val extension_constructor : 'a -> extension_constructor
val extension_name : extension_constructor -> string
val extension_id : extension_constructor -> int

The following two functions are deprecated. Use module Marshal instead.

val marshal : t -> bytes
val unmarshal : bytes -> int -> t * int
module Ephemeron: sig .. end
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.Kn.MakeSeeded.html0000644000175000017500000001613013717225552022713 0ustar mehdimehdi Ephemeron.Kn.MakeSeeded

Functor Ephemeron.Kn.MakeSeeded

module MakeSeeded: 
functor (H : Hashtbl.SeededHashedType-> Ephemeron.SeededS with type key = H.t array

Functor building an implementation of a weak hash table. The seed is similar to the one of Hashtbl.MakeSeeded.

Parameters:
H : Hashtbl.SeededHashedType

include Hashtbl.SeededS
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/type_StdLabels.Array.html0000644000175000017500000001126713717225553022436 0ustar mehdimehdi StdLabels.Array (module ArrayLabels) ocaml-doc-4.11/ocaml.html/libref/UnixLabels.html0000644000175000017500000073615313717225553020521 0ustar mehdimehdi UnixLabels

Module UnixLabels

module UnixLabels: sig .. end

Interface to the Unix system. To use as replacement to default Unix module, add module Unix = UnixLabels in your implementation.


Error report

type error = Unix.error = 
| E2BIG (*

Argument list too long

*)
| EACCES (*

Permission denied

*)
| EAGAIN (*

Resource temporarily unavailable; try again

*)
| EBADF (*

Bad file descriptor

*)
| EBUSY (*

Resource unavailable

*)
| ECHILD (*

No child process

*)
| EDEADLK (*

Resource deadlock would occur

*)
| EDOM (*

Domain error for math functions, etc.

*)
| EEXIST (*

File exists

*)
| EFAULT (*

Bad address

*)
| EFBIG (*

File too large

*)
| EINTR (*

Function interrupted by signal

*)
| EINVAL (*

Invalid argument

*)
| EIO (*

Hardware I/O error

*)
| EISDIR (*

Is a directory

*)
| EMFILE (*

Too many open files by the process

*)
| EMLINK (*

Too many links

*)
| ENAMETOOLONG (*

Filename too long

*)
| ENFILE (*

Too many open files in the system

*)
| ENODEV (*

No such device

*)
| ENOENT (*

No such file or directory

*)
| ENOEXEC (*

Not an executable file

*)
| ENOLCK (*

No locks available

*)
| ENOMEM (*

Not enough memory

*)
| ENOSPC (*

No space left on device

*)
| ENOSYS (*

Function not supported

*)
| ENOTDIR (*

Not a directory

*)
| ENOTEMPTY (*

Directory not empty

*)
| ENOTTY (*

Inappropriate I/O control operation

*)
| ENXIO (*

No such device or address

*)
| EPERM (*

Operation not permitted

*)
| EPIPE (*

Broken pipe

*)
| ERANGE (*

Result too large

*)
| EROFS (*

Read-only file system

*)
| ESPIPE (*

Invalid seek e.g. on a pipe

*)
| ESRCH (*

No such process

*)
| EXDEV (*

Invalid link

*)
| EWOULDBLOCK (*

Operation would block

*)
| EINPROGRESS (*

Operation now in progress

*)
| EALREADY (*

Operation already in progress

*)
| ENOTSOCK (*

Socket operation on non-socket

*)
| EDESTADDRREQ (*

Destination address required

*)
| EMSGSIZE (*

Message too long

*)
| EPROTOTYPE (*

Protocol wrong type for socket

*)
| ENOPROTOOPT (*

Protocol not available

*)
| EPROTONOSUPPORT (*

Protocol not supported

*)
| ESOCKTNOSUPPORT (*

Socket type not supported

*)
| EOPNOTSUPP (*

Operation not supported on socket

*)
| EPFNOSUPPORT (*

Protocol family not supported

*)
| EAFNOSUPPORT (*

Address family not supported by protocol family

*)
| EADDRINUSE (*

Address already in use

*)
| EADDRNOTAVAIL (*

Can't assign requested address

*)
| ENETDOWN (*

Network is down

*)
| ENETUNREACH (*

Network is unreachable

*)
| ENETRESET (*

Network dropped connection on reset

*)
| ECONNABORTED (*

Software caused connection abort

*)
| ECONNRESET (*

Connection reset by peer

*)
| ENOBUFS (*

No buffer space available

*)
| EISCONN (*

Socket is already connected

*)
| ENOTCONN (*

Socket is not connected

*)
| ESHUTDOWN (*

Can't send after socket shutdown

*)
| ETOOMANYREFS (*

Too many references: can't splice

*)
| ETIMEDOUT (*

Connection timed out

*)
| ECONNREFUSED (*

Connection refused

*)
| EHOSTDOWN (*

Host is down

*)
| EHOSTUNREACH (*

No route to host

*)
| ELOOP (*

Too many levels of symbolic links

*)
| EOVERFLOW (*

File size or position not representable

*)
| EUNKNOWNERR of int (*

Unknown error

*)

The type of error codes. Errors defined in the POSIX standard and additional errors from UNIX98 and BSD. All other errors are mapped to EUNKNOWNERR.

exception Unix_error of error * string * string

Raised by the system calls below when an error is encountered. The first component is the error code; the second component is the function name; the third component is the string parameter to the function, if it has one, or the empty string otherwise.

val error_message : error -> string

Return a string describing the given error code.

val handle_unix_error : ('a -> 'b) -> 'a -> 'b

handle_unix_error f x applies f to x and returns the result. If the exception Unix_error is raised, it prints a message describing the error and exits with code 2.

Access to the process environment

val environment : unit -> string array

Return the process environment, as an array of strings with the format ``variable=value''.

val getenv : string -> string

Return the value associated to a variable in the process environment. Raise Not_found if the variable is unbound. (This function is identical to Sys.getenv.)

val unsafe_getenv : string -> string

Return the value associated to a variable in the process environment.

Unlike UnixLabels.getenv, this function returns the value even if the process has special privileges. It is considered unsafe because the programmer of a setuid or setgid program must be careful to avoid using maliciously crafted environment variables in the search path for executables, the locations for temporary files or logs, and the like.

  • Since 4.06.0
  • Raises Not_found if the variable is unbound.
val putenv : string -> string -> unit

Unix.putenv name value sets the value associated to a variable in the process environment. name is the name of the environment variable, and value its new associated value.

Process handling

type process_status = Unix.process_status = 
| WEXITED of int (*

The process terminated normally by exit; the argument is the return code.

*)
| WSIGNALED of int (*

The process was killed by a signal; the argument is the signal number.

*)
| WSTOPPED of int (*

The process was stopped by a signal; the argument is the signal number.

*)

The termination status of a process. See module Sys for the definitions of the standard signal numbers. Note that they are not the numbers used by the OS.

type wait_flag = Unix.wait_flag = 
| WNOHANG (*

do not block if no child has died yet, but immediately return with a pid equal to 0.

*)
| WUNTRACED (*

report also the children that receive stop signals.

*)

Flags for UnixLabels.waitpid.

val execv : prog:string -> args:string array -> 'a

execv prog args execute the program in file prog, with the arguments args, and the current process environment. These execv* functions never return: on success, the current program is replaced by the new one; on failure, a UnixLabels.Unix_error exception is raised.

val execve : prog:string -> args:string array -> env:string array -> 'a

Same as UnixLabels.execv, except that the third argument provides the environment to the program executed.

val execvp : prog:string -> args:string array -> 'a

Same as UnixLabels.execv, except that the program is searched in the path.

val execvpe : prog:string -> args:string array -> env:string array -> 'a

Same as UnixLabels.execve, except that the program is searched in the path.

val fork : unit -> int

Fork a new process. The returned integer is 0 for the child process, the pid of the child process for the parent process.

val wait : unit -> int * process_status

Wait until one of the children processes die, and return its pid and termination status.

val waitpid : mode:wait_flag list -> int -> int * process_status

Same as UnixLabels.wait, but waits for the child process whose pid is given. A pid of -1 means wait for any child. A pid of 0 means wait for any child in the same process group as the current process. Negative pid arguments represent process groups. The list of options indicates whether waitpid should return immediately without waiting, or also report stopped children.

val system : string -> process_status

Execute the given command, wait until it terminates, and return its termination status. The string is interpreted by the shell /bin/sh and therefore can contain redirections, quotes, variables, etc. The result WEXITED 127 indicates that the shell couldn't be executed.

val getpid : unit -> int

Return the pid of the process.

val getppid : unit -> int

Return the pid of the parent process.

val nice : int -> int

Change the process priority. The integer argument is added to the ``nice'' value. (Higher values of the ``nice'' value mean lower priorities.) Return the new nice value.

Basic file input/output

type file_descr = Unix.file_descr 

The abstract type of file descriptors.

val stdin : file_descr

File descriptor for standard input.

val stdout : file_descr

File descriptor for standard output.

val stderr : file_descr

File descriptor for standard error.

type open_flag = Unix.open_flag = 
| O_RDONLY (*

Open for reading

*)
| O_WRONLY (*

Open for writing

*)
| O_RDWR (*

Open for reading and writing

*)
| O_NONBLOCK (*

Open in non-blocking mode

*)
| O_APPEND (*

Open for append

*)
| O_CREAT (*

Create if nonexistent

*)
| O_TRUNC (*

Truncate to 0 length if existing

*)
| O_EXCL (*

Fail if existing

*)
| O_NOCTTY (*

Don't make this dev a controlling tty

*)
| O_DSYNC (*

Writes complete as `Synchronised I/O data integrity completion'

*)
| O_SYNC (*

Writes complete as `Synchronised I/O file integrity completion'

*)
| O_RSYNC (*

Reads complete as writes (depending on O_SYNC/O_DSYNC)

*)
| O_SHARE_DELETE (*

Windows only: allow the file to be deleted while still open

*)
| O_CLOEXEC (*

Set the close-on-exec flag on the descriptor returned by UnixLabels.openfile

*)
| O_KEEPEXEC (*

Clear the close-on-exec flag. This is currently the default.

*)

The flags to UnixLabels.openfile.

type file_perm = int 

The type of file access rights, e.g. 0o640 is read and write for user, read for group, none for others

val openfile : string ->
mode:open_flag list ->
perm:file_perm -> file_descr

Open the named file with the given flags. Third argument is the permissions to give to the file if it is created. Return a file descriptor on the named file.

val close : file_descr -> unit

Close a file descriptor.

val read : file_descr -> buf:bytes -> pos:int -> len:int -> int

read fd buff ofs len reads len bytes from descriptor fd, storing them in byte sequence buff, starting at position ofs in buff. Return the number of bytes actually read.

val write : file_descr -> buf:bytes -> pos:int -> len:int -> int

write fd buff ofs len writes len bytes to descriptor fd, taking them from byte sequence buff, starting at position ofs in buff. Return the number of bytes actually written. write repeats the writing operation until all bytes have been written or an error occurs.

val single_write : file_descr -> buf:bytes -> pos:int -> len:int -> int

Same as write, but attempts to write only once. Thus, if an error occurs, single_write guarantees that no data has been written.

val write_substring : file_descr -> buf:string -> pos:int -> len:int -> int

Same as write, but take the data from a string instead of a byte sequence.

  • Since 4.02.0
val single_write_substring : file_descr -> buf:string -> pos:int -> len:int -> int

Same as single_write, but take the data from a string instead of a byte sequence.

  • Since 4.02.0

Interfacing with the standard input/output library

val in_channel_of_descr : file_descr -> in_channel

Create an input channel reading from the given descriptor. The channel is initially in binary mode; use set_binary_mode_in ic false if text mode is desired.

val out_channel_of_descr : file_descr -> out_channel

Create an output channel writing on the given descriptor. The channel is initially in binary mode; use set_binary_mode_out oc false if text mode is desired.

val descr_of_in_channel : in_channel -> file_descr

Return the descriptor corresponding to an input channel.

val descr_of_out_channel : out_channel -> file_descr

Return the descriptor corresponding to an output channel.

Seeking and truncating

type seek_command = Unix.seek_command = 
| SEEK_SET (*

indicates positions relative to the beginning of the file

*)
| SEEK_CUR (*

indicates positions relative to the current position

*)
| SEEK_END (*

indicates positions relative to the end of the file

*)

Positioning modes for UnixLabels.lseek.

val lseek : file_descr -> int -> mode:seek_command -> int

Set the current position for a file descriptor, and return the resulting offset (from the beginning of the file).

val truncate : string -> len:int -> unit

Truncates the named file to the given size.

val ftruncate : file_descr -> len:int -> unit

Truncates the file corresponding to the given descriptor to the given size.

File status

type file_kind = Unix.file_kind = 
| S_REG (*

Regular file

*)
| S_DIR (*

Directory

*)
| S_CHR (*

Character device

*)
| S_BLK (*

Block device

*)
| S_LNK (*

Symbolic link

*)
| S_FIFO (*

Named pipe

*)
| S_SOCK (*

Socket

*)
type stats = Unix.stats = {
   st_dev : int; (*

Device number

*)
   st_ino : int; (*

Inode number

*)
   st_kind : file_kind; (*

Kind of the file

*)
   st_perm : file_perm; (*

Access rights

*)
   st_nlink : int; (*

Number of links

*)
   st_uid : int; (*

User id of the owner

*)
   st_gid : int; (*

Group ID of the file's group

*)
   st_rdev : int; (*

Device ID (if special file)

*)
   st_size : int; (*

Size in bytes

*)
   st_atime : float; (*

Last access time

*)
   st_mtime : float; (*

Last modification time

*)
   st_ctime : float; (*

Last status change time

*)
}

The information returned by the UnixLabels.stat calls.

val stat : string -> stats

Return the information for the named file.

val lstat : string -> stats

Same as UnixLabels.stat, but in case the file is a symbolic link, return the information for the link itself.

val fstat : file_descr -> stats

Return the information for the file associated with the given descriptor.

val isatty : file_descr -> bool

Return true if the given file descriptor refers to a terminal or console window, false otherwise.

File operations on large files

module LargeFile: sig .. end

File operations on large files.

Mapping files into memory

val map_file : file_descr ->
?pos:int64 ->
kind:('a, 'b) Bigarray.kind ->
layout:'c Bigarray.layout ->
shared:bool -> dims:int array -> ('a, 'b, 'c) Bigarray.Genarray.t

Memory mapping of a file as a Bigarray. map_file fd kind layout shared dims returns a Bigarray of kind kind, layout layout, and dimensions as specified in dims. The data contained in this Bigarray are the contents of the file referred to by the file descriptor fd (as opened previously with Unix.openfile, for example). The optional pos parameter is the byte offset in the file of the data being mapped; it defaults to 0 (map from the beginning of the file).

If shared is true, all modifications performed on the array are reflected in the file. This requires that fd be opened with write permissions. If shared is false, modifications performed on the array are done in memory only, using copy-on-write of the modified pages; the underlying file is not affected.

Genarray.map_file is much more efficient than reading the whole file in a Bigarray, modifying that Bigarray, and writing it afterwards.

To adjust automatically the dimensions of the Bigarray to the actual size of the file, the major dimension (that is, the first dimension for an array with C layout, and the last dimension for an array with Fortran layout) can be given as -1. Genarray.map_file then determines the major dimension from the size of the file. The file must contain an integral number of sub-arrays as determined by the non-major dimensions, otherwise Failure is raised.

If all dimensions of the Bigarray are given, the file size is matched against the size of the Bigarray. If the file is larger than the Bigarray, only the initial portion of the file is mapped to the Bigarray. If the file is smaller than the big array, the file is automatically grown to the size of the Bigarray. This requires write permissions on fd.

Array accesses are bounds-checked, but the bounds are determined by the initial call to map_file. Therefore, you should make sure no other process modifies the mapped file while you're accessing it, or a SIGBUS signal may be raised. This happens, for instance, if the file is shrunk.

Invalid_argument or Failure may be raised in cases where argument validation fails.

  • Since 4.06.0

Operations on file names

val unlink : string -> unit

Removes the named file

val rename : src:string -> dst:string -> unit

rename old new changes the name of a file from old to new.

val link : ?follow:bool -> src:string -> dst:string -> unit

link ?follow source dest creates a hard link named dest to the file named source.

  • Raises
    • ENOSYS On Unix if ~follow:_ is requested, but linkat is unavailable.
    • ENOSYS On Windows if ~follow:false is requested.
follow : indicates whether a source symlink is followed or a hardlink to source itself will be created. On Unix systems this is done using the linkat(2) function. If ?follow is not provided, then the link(2) function is used whose behaviour is OS-dependent, but more widely available.

File permissions and ownership

type access_permission = Unix.access_permission = 
| R_OK (*

Read permission

*)
| W_OK (*

Write permission

*)
| X_OK (*

Execution permission

*)
| F_OK (*

File exists

*)

Flags for the UnixLabels.access call.

val chmod : string -> perm:file_perm -> unit

Change the permissions of the named file.

val fchmod : file_descr -> perm:file_perm -> unit

Change the permissions of an opened file.

val chown : string -> uid:int -> gid:int -> unit

Change the owner uid and owner gid of the named file.

val fchown : file_descr -> uid:int -> gid:int -> unit

Change the owner uid and owner gid of an opened file.

val umask : int -> int

Set the process's file mode creation mask, and return the previous mask.

val access : string -> perm:access_permission list -> unit

Check that the process has the given permissions over the named file. Raise Unix_error otherwise.

Operations on file descriptors

val dup : ?cloexec:bool -> file_descr -> file_descr

Return a new file descriptor referencing the same file as the given descriptor.

val dup2 : ?cloexec:bool ->
src:file_descr -> dst:file_descr -> unit

dup2 fd1 fd2 duplicates fd1 to fd2, closing fd2 if already opened.

val set_nonblock : file_descr -> unit

Set the ``non-blocking'' flag on the given descriptor. When the non-blocking flag is set, reading on a descriptor on which there is temporarily no data available raises the EAGAIN or EWOULDBLOCK error instead of blocking; writing on a descriptor on which there is temporarily no room for writing also raises EAGAIN or EWOULDBLOCK.

val clear_nonblock : file_descr -> unit

Clear the ``non-blocking'' flag on the given descriptor. See UnixLabels.set_nonblock.

val set_close_on_exec : file_descr -> unit

Set the ``close-on-exec'' flag on the given descriptor. A descriptor with the close-on-exec flag is automatically closed when the current process starts another program with one of the exec functions.

val clear_close_on_exec : file_descr -> unit

Clear the ``close-on-exec'' flag on the given descriptor. See UnixLabels.set_close_on_exec.

Directories

val mkdir : string -> perm:file_perm -> unit

Create a directory with the given permissions.

val rmdir : string -> unit

Remove an empty directory.

val chdir : string -> unit

Change the process working directory.

val getcwd : unit -> string

Return the name of the current working directory.

val chroot : string -> unit

Change the process root directory.

type dir_handle = Unix.dir_handle 

The type of descriptors over opened directories.

val opendir : string -> dir_handle

Open a descriptor on a directory

val readdir : dir_handle -> string

Return the next entry in a directory.

  • Raises End_of_file when the end of the directory has been reached.
val rewinddir : dir_handle -> unit

Reposition the descriptor to the beginning of the directory

val closedir : dir_handle -> unit

Close a directory descriptor.

Pipes and redirections

val pipe : ?cloexec:bool -> unit -> file_descr * file_descr

Create a pipe. The first component of the result is opened for reading, that's the exit to the pipe. The second component is opened for writing, that's the entrance to the pipe.

val mkfifo : string -> perm:file_perm -> unit

Create a named pipe with the given permissions.

High-level process and redirection management

val create_process : prog:string ->
args:string array ->
stdin:file_descr ->
stdout:file_descr -> stderr:file_descr -> int

create_process prog args new_stdin new_stdout new_stderr forks a new process that executes the program in file prog, with arguments args. The pid of the new process is returned immediately; the new process executes concurrently with the current process. The standard input and outputs of the new process are connected to the descriptors new_stdin, new_stdout and new_stderr. Passing e.g. stdout for new_stdout prevents the redirection and causes the new process to have the same standard output as the current process. The executable file prog is searched in the path. The new process has the same environment as the current process.

val create_process_env : prog:string ->
args:string array ->
env:string array ->
stdin:file_descr ->
stdout:file_descr -> stderr:file_descr -> int

create_process_env prog args env new_stdin new_stdout new_stderr works as UnixLabels.create_process, except that the extra argument env specifies the environment passed to the program.

val open_process_in : string -> in_channel

High-level pipe and process management. This function runs the given command in parallel with the program. The standard output of the command is redirected to a pipe, which can be read via the returned input channel. The command is interpreted by the shell /bin/sh (cf. system).

val open_process_out : string -> out_channel

Same as UnixLabels.open_process_in, but redirect the standard input of the command to a pipe. Data written to the returned output channel is sent to the standard input of the command. Warning: writes on output channels are buffered, hence be careful to call flush at the right times to ensure correct synchronization.

val open_process : string -> in_channel * out_channel

Same as UnixLabels.open_process_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels. The input channel is connected to the output of the command, and the output channel to the input of the command.

val open_process_full : string ->
env:string array ->
in_channel * out_channel * in_channel

Similar to UnixLabels.open_process, but the second argument specifies the environment passed to the command. The result is a triple of channels connected respectively to the standard output, standard input, and standard error of the command.

val open_process_args_in : string -> string array -> in_channel

High-level pipe and process management. The first argument specifies the command to run, and the second argument specifies the argument array passed to the command. This function runs the command in parallel with the program. The standard output of the command is redirected to a pipe, which can be read via the returned input channel.

  • Since 4.08.0
val open_process_args_out : string -> string array -> out_channel

Same as Unix.open_process_args_in, but redirect the standard input of the command to a pipe. Data written to the returned output channel is sent to the standard input of the command. Warning: writes on output channels are buffered, hence be careful to call flush at the right times to ensure correct synchronization.

  • Since 4.08.0
val open_process_args : string -> string array -> in_channel * out_channel

Same as Unix.open_process_args_out, but redirects both the standard input and standard output of the command to pipes connected to the two returned channels. The input channel is connected to the output of the command, and the output channel to the input of the command.

  • Since 4.08.0
val open_process_args_full : string ->
string array ->
string array -> in_channel * out_channel * in_channel

Similar to Unix.open_process_args, but the third argument specifies the environment passed to the command. The result is a triple of channels connected respectively to the standard output, standard input, and standard error of the command.

  • Since 4.08.0
val close_process_in : in_channel -> process_status

Close channels opened by UnixLabels.open_process_in, wait for the associated command to terminate, and return its termination status.

val close_process_out : out_channel -> process_status

Close channels opened by UnixLabels.open_process_out, wait for the associated command to terminate, and return its termination status.

val close_process : in_channel * out_channel -> process_status

Close channels opened by UnixLabels.open_process, wait for the associated command to terminate, and return its termination status.

val close_process_full : in_channel * out_channel * in_channel ->
process_status

Close channels opened by UnixLabels.open_process_full, wait for the associated command to terminate, and return its termination status.

val symlink : ?to_dir:bool -> src:string -> dst:string -> unit

symlink source dest creates the file dest as a symbolic link to the file source. See Unix.symlink for details of ~to_dir

val has_symlink : unit -> bool

Returns true if the user is able to create symbolic links. On Windows, this indicates that the user not only has the SeCreateSymbolicLinkPrivilege but is also running elevated, if necessary. On other platforms, this is simply indicates that the symlink system call is available.

  • Since 4.03.0
val readlink : string -> string

Read the contents of a link.

Polling

val select : read:file_descr list ->
write:file_descr list ->
except:file_descr list ->
timeout:float ->
file_descr list * file_descr list *
file_descr list

Wait until some input/output operations become possible on some channels. The three list arguments are, respectively, a set of descriptors to check for reading (first argument), for writing (second argument), or for exceptional conditions (third argument). The fourth argument is the maximal timeout, in seconds; a negative fourth argument means no timeout (unbounded wait). The result is composed of three sets of descriptors: those ready for reading (first component), ready for writing (second component), and over which an exceptional condition is pending (third component).

Locking

type lock_command = Unix.lock_command = 
| F_ULOCK (*

Unlock a region

*)
| F_LOCK (*

Lock a region for writing, and block if already locked

*)
| F_TLOCK (*

Lock a region for writing, or fail if already locked

*)
| F_TEST (*

Test a region for other process locks

*)
| F_RLOCK (*

Lock a region for reading, and block if already locked

*)
| F_TRLOCK (*

Lock a region for reading, or fail if already locked

*)

Commands for UnixLabels.lockf.

val lockf : file_descr -> mode:lock_command -> len:int -> unit

lockf fd cmd size puts a lock on a region of the file opened as fd. The region starts at the current read/write position for fd (as set by UnixLabels.lseek), and extends size bytes forward if size is positive, size bytes backwards if size is negative, or to the end of the file if size is zero. A write lock prevents any other process from acquiring a read or write lock on the region. A read lock prevents any other process from acquiring a write lock on the region, but lets other processes acquire read locks on it.

The F_LOCK and F_TLOCK commands attempts to put a write lock on the specified region. The F_RLOCK and F_TRLOCK commands attempts to put a read lock on the specified region. If one or several locks put by another process prevent the current process from acquiring the lock, F_LOCK and F_RLOCK block until these locks are removed, while F_TLOCK and F_TRLOCK fail immediately with an exception. The F_ULOCK removes whatever locks the current process has on the specified region. Finally, the F_TEST command tests whether a write lock can be acquired on the specified region, without actually putting a lock. It returns immediately if successful, or fails otherwise.

Signals

Note: installation of signal handlers is performed via the functions Sys.signal and Sys.set_signal.

val kill : pid:int -> signal:int -> unit

kill pid sig sends signal number sig to the process with id pid.

type sigprocmask_command = Unix.sigprocmask_command = 
| SIG_SETMASK
| SIG_BLOCK
| SIG_UNBLOCK
val sigprocmask : mode:sigprocmask_command -> int list -> int list

sigprocmask cmd sigs changes the set of blocked signals. If cmd is SIG_SETMASK, blocked signals are set to those in the list sigs. If cmd is SIG_BLOCK, the signals in sigs are added to the set of blocked signals. If cmd is SIG_UNBLOCK, the signals in sigs are removed from the set of blocked signals. sigprocmask returns the set of previously blocked signals.

val sigpending : unit -> int list

Return the set of blocked signals that are currently pending.

val sigsuspend : int list -> unit

sigsuspend sigs atomically sets the blocked signals to sigs and waits for a non-ignored, non-blocked signal to be delivered. On return, the blocked signals are reset to their initial value.

val pause : unit -> unit

Wait until a non-ignored, non-blocked signal is delivered.

Time functions

type process_times = Unix.process_times = {
   tms_utime : float; (*

User time for the process

*)
   tms_stime : float; (*

System time for the process

*)
   tms_cutime : float; (*

User time for the children processes

*)
   tms_cstime : float; (*

System time for the children processes

*)
}

The execution times (CPU times) of a process.

type tm = Unix.tm = {
   tm_sec : int; (*

Seconds 0..60

*)
   tm_min : int; (*

Minutes 0..59

*)
   tm_hour : int; (*

Hours 0..23

*)
   tm_mday : int; (*

Day of month 1..31

*)
   tm_mon : int; (*

Month of year 0..11

*)
   tm_year : int; (*

Year - 1900

*)
   tm_wday : int; (*

Day of week (Sunday is 0)

*)
   tm_yday : int; (*

Day of year 0..365

*)
   tm_isdst : bool; (*

Daylight time savings in effect

*)
}

The type representing wallclock time and calendar date.

val time : unit -> float

Return the current time since 00:00:00 GMT, Jan. 1, 1970, in seconds.

val gettimeofday : unit -> float

Same as UnixLabels.time, but with resolution better than 1 second.

val gmtime : float -> tm

Convert a time in seconds, as returned by UnixLabels.time, into a date and a time. Assumes UTC (Coordinated Universal Time), also known as GMT.

val localtime : float -> tm

Convert a time in seconds, as returned by UnixLabels.time, into a date and a time. Assumes the local time zone.

val mktime : tm -> float * tm

Convert a date and time, specified by the tm argument, into a time in seconds, as returned by UnixLabels.time. The tm_isdst, tm_wday and tm_yday fields of tm are ignored. Also return a normalized copy of the given tm record, with the tm_wday, tm_yday, and tm_isdst fields recomputed from the other fields, and the other fields normalized (so that, e.g., 40 October is changed into 9 November). The tm argument is interpreted in the local time zone.

val alarm : int -> int

Schedule a SIGALRM signal after the given number of seconds.

val sleep : int -> unit

Stop execution for the given number of seconds.

val times : unit -> process_times

Return the execution times of the process.

val utimes : string -> access:float -> modif:float -> unit

Set the last access time (second arg) and last modification time (third arg) for a file. Times are expressed in seconds from 00:00:00 GMT, Jan. 1, 1970. A time of 0.0 is interpreted as the current time.

type interval_timer = Unix.interval_timer = 
| ITIMER_REAL (*

decrements in real time, and sends the signal SIGALRM when expired.

*)
| ITIMER_VIRTUAL (*

decrements in process virtual time, and sends SIGVTALRM when expired.

*)
| ITIMER_PROF (*

(for profiling) decrements both when the process is running and when the system is running on behalf of the process; it sends SIGPROF when expired.

*)

The three kinds of interval timers.

type interval_timer_status = Unix.interval_timer_status = {
   it_interval : float; (*

Period

*)
   it_value : float; (*

Current value of the timer

*)
}

The type describing the status of an interval timer

val getitimer : interval_timer -> interval_timer_status

Return the current status of the given interval timer.

val setitimer : interval_timer ->
interval_timer_status -> interval_timer_status

setitimer t s sets the interval timer t and returns its previous status. The s argument is interpreted as follows: s.it_value, if nonzero, is the time to the next timer expiration; s.it_interval, if nonzero, specifies a value to be used in reloading it_value when the timer expires. Setting s.it_value to zero disable the timer. Setting s.it_interval to zero causes the timer to be disabled after its next expiration.

User id, group id

val getuid : unit -> int

Return the user id of the user executing the process.

val geteuid : unit -> int

Return the effective user id under which the process runs.

val setuid : int -> unit

Set the real user id and effective user id for the process.

val getgid : unit -> int

Return the group id of the user executing the process.

val getegid : unit -> int

Return the effective group id under which the process runs.

val setgid : int -> unit

Set the real group id and effective group id for the process.

val getgroups : unit -> int array

Return the list of groups to which the user executing the process belongs.

val setgroups : int array -> unit

setgroups groups sets the supplementary group IDs for the calling process. Appropriate privileges are required.

val initgroups : string -> int -> unit

initgroups user group initializes the group access list by reading the group database /etc/group and using all groups of which user is a member. The additional group group is also added to the list.

type passwd_entry = Unix.passwd_entry = {
   pw_name : string;
   pw_passwd : string;
   pw_uid : int;
   pw_gid : int;
   pw_gecos : string;
   pw_dir : string;
   pw_shell : string;
}

Structure of entries in the passwd database.

type group_entry = Unix.group_entry = {
   gr_name : string;
   gr_passwd : string;
   gr_gid : int;
   gr_mem : string array;
}

Structure of entries in the groups database.

val getlogin : unit -> string

Return the login name of the user executing the process.

val getpwnam : string -> passwd_entry

Find an entry in passwd with the given name, or raise Not_found if the matching entry is not found.

val getgrnam : string -> group_entry

Find an entry in group with the given name, or raise Not_found if the matching entry is not found.

val getpwuid : int -> passwd_entry

Find an entry in passwd with the given user id, or raise Not_found if the matching entry is not found.

val getgrgid : int -> group_entry

Find an entry in group with the given group id, or raise Not_found if the matching entry is not found.

Internet addresses

type inet_addr = Unix.inet_addr 

The abstract type of Internet addresses.

val inet_addr_of_string : string -> inet_addr

Conversion from the printable representation of an Internet address to its internal representation. The argument string consists of 4 numbers separated by periods (XXX.YYY.ZZZ.TTT) for IPv4 addresses, and up to 8 numbers separated by colons for IPv6 addresses. Raise Failure when given a string that does not match these formats.

val string_of_inet_addr : inet_addr -> string

Return the printable representation of the given Internet address. See Unix.inet_addr_of_string for a description of the printable representation.

val inet_addr_any : inet_addr

A special IPv4 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

val inet_addr_loopback : inet_addr

A special IPv4 address representing the host machine (127.0.0.1).

val inet6_addr_any : inet_addr

A special IPv6 address, for use only with bind, representing all the Internet addresses that the host machine possesses.

val inet6_addr_loopback : inet_addr

A special IPv6 address representing the host machine (::1).

Sockets

type socket_domain = Unix.socket_domain = 
| PF_UNIX (*

Unix domain

*)
| PF_INET (*

Internet domain (IPv4)

*)
| PF_INET6 (*

Internet domain (IPv6)

*)

The type of socket domains. Not all platforms support IPv6 sockets (type PF_INET6).

type socket_type = Unix.socket_type = 
| SOCK_STREAM (*

Stream socket

*)
| SOCK_DGRAM (*

Datagram socket

*)
| SOCK_RAW (*

Raw socket

*)
| SOCK_SEQPACKET (*

Sequenced packets socket

*)

The type of socket kinds, specifying the semantics of communications.

type sockaddr = Unix.sockaddr = 
| ADDR_UNIX of string
| ADDR_INET of inet_addr * int

The type of socket addresses. ADDR_UNIX name is a socket address in the Unix domain; name is a file name in the file system. ADDR_INET(addr,port) is a socket address in the Internet domain; addr is the Internet address of the machine, and port is the port number.

val socket : ?cloexec:bool ->
domain:socket_domain ->
kind:socket_type -> protocol:int -> file_descr

Create a new socket in the given domain, and with the given kind. The third argument is the protocol type; 0 selects the default protocol for that kind of sockets.

val domain_of_sockaddr : sockaddr -> socket_domain

Return the socket domain adequate for the given socket address.

val socketpair : ?cloexec:bool ->
domain:socket_domain ->
kind:socket_type ->
protocol:int -> file_descr * file_descr

Create a pair of unnamed sockets, connected together.

val accept : ?cloexec:bool ->
file_descr -> file_descr * sockaddr

Accept connections on the given socket. The returned descriptor is a socket connected to the client; the returned address is the address of the connecting client.

val bind : file_descr -> addr:sockaddr -> unit

Bind a socket to an address.

val connect : file_descr -> addr:sockaddr -> unit

Connect a socket to an address.

val listen : file_descr -> max:int -> unit

Set up a socket for receiving connection requests. The integer argument is the maximal number of pending requests.

type shutdown_command = Unix.shutdown_command = 
| SHUTDOWN_RECEIVE (*

Close for receiving

*)
| SHUTDOWN_SEND (*

Close for sending

*)
| SHUTDOWN_ALL (*

Close both

*)

The type of commands for shutdown.

val shutdown : file_descr -> mode:shutdown_command -> unit

Shutdown a socket connection. SHUTDOWN_SEND as second argument causes reads on the other end of the connection to return an end-of-file condition. SHUTDOWN_RECEIVE causes writes on the other end of the connection to return a closed pipe condition (SIGPIPE signal).

val getsockname : file_descr -> sockaddr

Return the address of the given socket.

val getpeername : file_descr -> sockaddr

Return the address of the host connected to the given socket.

type msg_flag = Unix.msg_flag = 
| MSG_OOB
| MSG_DONTROUTE
| MSG_PEEK
val recv : file_descr ->
buf:bytes -> pos:int -> len:int -> mode:msg_flag list -> int

Receive data from a connected socket.

val recvfrom : file_descr ->
buf:bytes ->
pos:int ->
len:int -> mode:msg_flag list -> int * sockaddr

Receive data from an unconnected socket.

val send : file_descr ->
buf:bytes -> pos:int -> len:int -> mode:msg_flag list -> int

Send data over a connected socket.

val send_substring : file_descr ->
buf:string -> pos:int -> len:int -> mode:msg_flag list -> int

Same as send, but take the data from a string instead of a byte sequence.

  • Since 4.02.0
val sendto : file_descr ->
buf:bytes ->
pos:int ->
len:int -> mode:msg_flag list -> addr:sockaddr -> int

Send data over an unconnected socket.

val sendto_substring : file_descr ->
buf:string ->
pos:int ->
len:int -> mode:msg_flag list -> sockaddr -> int

Same as sendto, but take the data from a string instead of a byte sequence.

  • Since 4.02.0

Socket options

type socket_bool_option = 
| SO_DEBUG (*

Record debugging information

*)
| SO_BROADCAST (*

Permit sending of broadcast messages

*)
| SO_REUSEADDR (*

Allow reuse of local addresses for bind

*)
| SO_KEEPALIVE (*

Keep connection active

*)
| SO_DONTROUTE (*

Bypass the standard routing algorithms

*)
| SO_OOBINLINE (*

Leave out-of-band data in line

*)
| SO_ACCEPTCONN (*

Report whether socket listening is enabled

*)
| TCP_NODELAY (*

Control the Nagle algorithm for TCP sockets

*)
| IPV6_ONLY (*

Forbid binding an IPv6 socket to an IPv4 address

*)

The socket options that can be consulted with UnixLabels.getsockopt and modified with UnixLabels.setsockopt. These options have a boolean (true/false) value.

type socket_int_option = 
| SO_SNDBUF (*

Size of send buffer

*)
| SO_RCVBUF (*

Size of received buffer

*)
| SO_ERROR (*

Deprecated. Use Unix.getsockopt_error instead.

*)
| SO_TYPE (*

Report the socket type

*)
| SO_RCVLOWAT (*

Minimum number of bytes to process for input operations

*)
| SO_SNDLOWAT (*

Minimum number of bytes to process for output operations

*)

The socket options that can be consulted with UnixLabels.getsockopt_int and modified with UnixLabels.setsockopt_int. These options have an integer value.

type socket_optint_option = 
| SO_LINGER (*

Whether to linger on closed connections that have data present, and for how long (in seconds)

*)

The socket options that can be consulted with Unix.getsockopt_optint and modified with Unix.setsockopt_optint. These options have a value of type int option, with None meaning ``disabled''.

type socket_float_option = 
| SO_RCVTIMEO (*

Timeout for input operations

*)
| SO_SNDTIMEO (*

Timeout for output operations

*)

The socket options that can be consulted with UnixLabels.getsockopt_float and modified with UnixLabels.setsockopt_float. These options have a floating-point value representing a time in seconds. The value 0 means infinite timeout.

val getsockopt : file_descr -> socket_bool_option -> bool

Return the current status of a boolean-valued option in the given socket.

val setsockopt : file_descr -> socket_bool_option -> bool -> unit

Set or clear a boolean-valued option in the given socket.

val getsockopt_int : file_descr -> socket_int_option -> int

Same as Unix.getsockopt for an integer-valued socket option.

val setsockopt_int : file_descr -> socket_int_option -> int -> unit

Same as Unix.setsockopt for an integer-valued socket option.

val getsockopt_optint : file_descr -> socket_optint_option -> int option

Same as Unix.getsockopt for a socket option whose value is an int option.

val setsockopt_optint : file_descr ->
socket_optint_option -> int option -> unit

Same as Unix.setsockopt for a socket option whose value is an int option.

val getsockopt_float : file_descr -> socket_float_option -> float

Same as Unix.getsockopt for a socket option whose value is a floating-point number.

val setsockopt_float : file_descr -> socket_float_option -> float -> unit

Same as Unix.setsockopt for a socket option whose value is a floating-point number.

val getsockopt_error : file_descr -> error option

Return the error condition associated with the given socket, and clear it.

High-level network connection functions

val open_connection : sockaddr -> in_channel * out_channel

Connect to a server at the given address. Return a pair of buffered channels connected to the server. Remember to call flush on the output channel at the right times to ensure correct synchronization.

val shutdown_connection : in_channel -> unit

``Shut down'' a connection established with UnixLabels.open_connection; that is, transmit an end-of-file condition to the server reading on the other side of the connection.

val establish_server : (in_channel -> out_channel -> unit) ->
addr:sockaddr -> unit

Establish a server on the given address. The function given as first argument is called for each connection with two buffered channels connected to the client. A new process is created for each connection. The function UnixLabels.establish_server never returns normally.

Host and protocol databases

type host_entry = Unix.host_entry = {
   h_name : string;
   h_aliases : string array;
   h_addrtype : socket_domain;
   h_addr_list : inet_addr array;
}

Structure of entries in the hosts database.

type protocol_entry = Unix.protocol_entry = {
   p_name : string;
   p_aliases : string array;
   p_proto : int;
}

Structure of entries in the protocols database.

type service_entry = Unix.service_entry = {
   s_name : string;
   s_aliases : string array;
   s_port : int;
   s_proto : string;
}

Structure of entries in the services database.

val gethostname : unit -> string

Return the name of the local host.

val gethostbyname : string -> host_entry

Find an entry in hosts with the given name, or raise Not_found.

val gethostbyaddr : inet_addr -> host_entry

Find an entry in hosts with the given address, or raise Not_found.

val getprotobyname : string -> protocol_entry

Find an entry in protocols with the given name, or raise Not_found.

val getprotobynumber : int -> protocol_entry

Find an entry in protocols with the given protocol number, or raise Not_found.

val getservbyname : string -> protocol:string -> service_entry

Find an entry in services with the given name, or raise Not_found.

val getservbyport : int -> protocol:string -> service_entry

Find an entry in services with the given service number, or raise Not_found.

type addr_info = {
   ai_family : socket_domain; (*

Socket domain

*)
   ai_socktype : socket_type; (*

Socket type

*)
   ai_protocol : int; (*

Socket protocol number

*)
   ai_addr : sockaddr; (*

Address

*)
   ai_canonname : string; (*

Canonical host name

*)
}

Address information returned by Unix.getaddrinfo.

type getaddrinfo_option = 
| AI_FAMILY of socket_domain (*

Impose the given socket domain

*)
| AI_SOCKTYPE of socket_type (*

Impose the given socket type

*)
| AI_PROTOCOL of int (*

Impose the given protocol

*)
| AI_NUMERICHOST (*

Do not call name resolver, expect numeric IP address

*)
| AI_CANONNAME (*

Fill the ai_canonname field of the result

*)
| AI_PASSIVE (*

Set address to ``any'' address for use with Unix.bind

*)

Options to Unix.getaddrinfo.

val getaddrinfo : string ->
string -> getaddrinfo_option list -> addr_info list

getaddrinfo host service opts returns a list of Unix.addr_info records describing socket parameters and addresses suitable for communicating with the given host and service. The empty list is returned if the host or service names are unknown, or the constraints expressed in opts cannot be satisfied.

host is either a host name or the string representation of an IP address. host can be given as the empty string; in this case, the ``any'' address or the ``loopback'' address are used, depending whether opts contains AI_PASSIVE. service is either a service name or the string representation of a port number. service can be given as the empty string; in this case, the port field of the returned addresses is set to 0. opts is a possibly empty list of options that allows the caller to force a particular socket domain (e.g. IPv6 only or IPv4 only) or a particular socket type (e.g. TCP only or UDP only).

type name_info = {
   ni_hostname : string; (*

Name or IP address of host

*)
   ni_service : string; (*

Name of service or port number

*)
}

Host and service information returned by Unix.getnameinfo.

type getnameinfo_option = 
| NI_NOFQDN (*

Do not qualify local host names

*)
| NI_NUMERICHOST (*

Always return host as IP address

*)
| NI_NAMEREQD (*

Fail if host name cannot be determined

*)
| NI_NUMERICSERV (*

Always return service as port number

*)
| NI_DGRAM (*

Consider the service as UDP-based instead of the default TCP

*)

Options to Unix.getnameinfo.

val getnameinfo : sockaddr ->
getnameinfo_option list -> name_info

getnameinfo addr opts returns the host name and service name corresponding to the socket address addr. opts is a possibly empty list of options that governs how these names are obtained. Raise Not_found if an error occurs.

Terminal interface

The following functions implement the POSIX standard terminal interface. They provide control over asynchronous communication ports and pseudo-terminals. Refer to the termios man page for a complete description.

type terminal_io = Unix.terminal_io = {
   mutable c_ignbrk : bool; (*

Ignore the break condition.

*)
   mutable c_brkint : bool; (*

Signal interrupt on break condition.

*)
   mutable c_ignpar : bool; (*

Ignore characters with parity errors.

*)
   mutable c_parmrk : bool; (*

Mark parity errors.

*)
   mutable c_inpck : bool; (*

Enable parity check on input.

*)
   mutable c_istrip : bool; (*

Strip 8th bit on input characters.

*)
   mutable c_inlcr : bool; (*

Map NL to CR on input.

*)
   mutable c_igncr : bool; (*

Ignore CR on input.

*)
   mutable c_icrnl : bool; (*

Map CR to NL on input.

*)
   mutable c_ixon : bool; (*

Recognize XON/XOFF characters on input.

*)
   mutable c_ixoff : bool; (*

Emit XON/XOFF chars to control input flow.

*)
   mutable c_opost : bool; (*

Enable output processing.

*)
   mutable c_obaud : int; (*

Output baud rate (0 means close connection).

*)
   mutable c_ibaud : int; (*

Input baud rate.

*)
   mutable c_csize : int; (*

Number of bits per character (5-8).

*)
   mutable c_cstopb : int; (*

Number of stop bits (1-2).

*)
   mutable c_cread : bool; (*

Reception is enabled.

*)
   mutable c_parenb : bool; (*

Enable parity generation and detection.

*)
   mutable c_parodd : bool; (*

Specify odd parity instead of even.

*)
   mutable c_hupcl : bool; (*

Hang up on last close.

*)
   mutable c_clocal : bool; (*

Ignore modem status lines.

*)
   mutable c_isig : bool; (*

Generate signal on INTR, QUIT, SUSP.

*)
   mutable c_icanon : bool; (*

Enable canonical processing (line buffering and editing)

*)
   mutable c_noflsh : bool; (*

Disable flush after INTR, QUIT, SUSP.

*)
   mutable c_echo : bool; (*

Echo input characters.

*)
   mutable c_echoe : bool; (*

Echo ERASE (to erase previous character).

*)
   mutable c_echok : bool; (*

Echo KILL (to erase the current line).

*)
   mutable c_echonl : bool; (*

Echo NL even if c_echo is not set.

*)
   mutable c_vintr : char; (*

Interrupt character (usually ctrl-C).

*)
   mutable c_vquit : char; (*

Quit character (usually ctrl-\).

*)
   mutable c_verase : char; (*

Erase character (usually DEL or ctrl-H).

*)
   mutable c_vkill : char; (*

Kill line character (usually ctrl-U).

*)
   mutable c_veof : char; (*

End-of-file character (usually ctrl-D).

*)
   mutable c_veol : char; (*

Alternate end-of-line char. (usually none).

*)
   mutable c_vmin : int; (*

Minimum number of characters to read before the read request is satisfied.

*)
   mutable c_vtime : int; (*

Maximum read wait (in 0.1s units).

*)
   mutable c_vstart : char; (*

Start character (usually ctrl-Q).

*)
   mutable c_vstop : char; (*

Stop character (usually ctrl-S).

*)
}
val tcgetattr : file_descr -> terminal_io

Return the status of the terminal referred to by the given file descriptor.

type setattr_when = Unix.setattr_when = 
| TCSANOW
| TCSADRAIN
| TCSAFLUSH
val tcsetattr : file_descr ->
mode:setattr_when -> terminal_io -> unit

Set the status of the terminal referred to by the given file descriptor. The second argument indicates when the status change takes place: immediately (TCSANOW), when all pending output has been transmitted (TCSADRAIN), or after flushing all input that has been received but not read (TCSAFLUSH). TCSADRAIN is recommended when changing the output parameters; TCSAFLUSH, when changing the input parameters.

val tcsendbreak : file_descr -> duration:int -> unit

Send a break condition on the given file descriptor. The second argument is the duration of the break, in 0.1s units; 0 means standard duration (0.25s).

val tcdrain : file_descr -> unit

Waits until all output written on the given file descriptor has been transmitted.

type flush_queue = Unix.flush_queue = 
| TCIFLUSH
| TCOFLUSH
| TCIOFLUSH
val tcflush : file_descr -> mode:flush_queue -> unit

Discard data written on the given file descriptor but not yet transmitted, or data received but not yet read, depending on the second argument: TCIFLUSH flushes data received but not read, TCOFLUSH flushes data written but not transmitted, and TCIOFLUSH flushes both.

type flow_action = Unix.flow_action = 
| TCOOFF
| TCOON
| TCIOFF
| TCION
val tcflow : file_descr -> mode:flow_action -> unit

Suspend or restart reception or transmission of data on the given file descriptor, depending on the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmits a STOP character to suspend input, and TCION transmits a START character to restart input.

val setsid : unit -> int

Put the calling process in a new session and detach it from its controlling terminal.

ocaml-doc-4.11/ocaml.html/libref/Array.html0000644000175000017500000007550613717225552017526 0ustar mehdimehdi Array

Module Array

module Array: sig .. end

type 'a t = 'a array 

An alias for the type of arrays.

Array operations.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

Array.get a n returns the element number n of array a. The first element has number 0. The last element has number Array.length a - 1. You can also write a.(n) instead of Array.get a n.

  • Raises Invalid_argument if n is outside the range 0 to (Array.length a - 1).
val set : 'a array -> int -> 'a -> unit

Array.set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of Array.set a n x.

  • Raises Invalid_argument if n is outside the range 0 to Array.length a - 1.
val make : int -> 'a -> 'a array

Array.make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create : int -> 'a -> 'a array
Deprecated.Array.create is an alias for Array.make.
val create_float : int -> float array

Array.create_float n returns a fresh float array of length n, with uninitialized data.

  • Since 4.03
val make_float : int -> float array
Deprecated.Array.make_float is an alias for Array.create_float.
val init : int -> (int -> 'a) -> 'a array

Array.init n f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, Array.init n f tabulates the results of f applied to the integers 0 to n-1.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.
val make_matrix : int -> int -> 'a -> 'a array array

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

  • Raises Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create_matrix : int -> int -> 'a -> 'a array array
Deprecated.Array.create_matrix is an alias for Array.make_matrix.
val append : 'a array -> 'a array -> 'a array

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

  • Raises Invalid_argument if Array.length v1 + Array.length v2 > Sys.max_array_length.
val concat : 'a array list -> 'a array

Same as Array.append, but concatenates a list of arrays.

val sub : 'a array -> int -> int -> 'a array

Array.sub a start len returns a fresh array of length len, containing the elements number start to start + len - 1 of array a.

  • Raises Invalid_argument if start and len do not designate a valid subarray of a; that is, if start < 0, or len < 0, or start + len > Array.length a.
val copy : 'a array -> 'a array

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> int -> int -> 'a -> unit

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs to ofs + len - 1.

  • Raises Invalid_argument if ofs and len do not designate a valid subarray of a.
val blit : 'a array -> int -> 'a array -> int -> int -> unit

Array.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element number o1, to array v2, starting at element number o2. It works correctly even if v1 and v2 are the same array, and the source and destination chunks overlap.

  • Raises Invalid_argument if o1 and len do not designate a valid subarray of v1, or if o2 and len do not designate a valid subarray of v2.
val to_list : 'a array -> 'a list

Array.to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

Array.of_list l returns a fresh array containing the elements of l.

  • Raises Invalid_argument if the length of l is greater than Sys.max_array_length.

Iterators

val iter : ('a -> unit) -> 'a array -> unit

Array.iter f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(Array.length a - 1); ().

val iteri : (int -> 'a -> unit) -> 'a array -> unit

Same as Array.iter, but the function is applied with the index of the element as first argument, and the element itself as second argument.

val map : ('a -> 'b) -> 'a array -> 'b array

Array.map f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

val mapi : (int -> 'a -> 'b) -> 'a array -> 'b array

Same as Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val fold_right : ('b -> 'a -> 'a) -> 'b array -> 'a -> 'a

Array.fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the array a.

Iterators on two arrays

val iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unit

Array.iter2 f a b applies function f to all the elements of a and b.

  • Since 4.03.0
  • Raises Invalid_argument if the arrays are not the same size.
val map2 : ('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array

Array.map2 f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(Array.length a - 1) b.(Array.length b - 1)|].

  • Since 4.03.0
  • Raises Invalid_argument if the arrays are not the same size.

Array scanning

val for_all : ('a -> bool) -> 'a array -> bool

Array.for_all p [|a1; ...; an|] checks if all elements of the array satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an).

  • Since 4.03.0
val exists : ('a -> bool) -> 'a array -> bool

Array.exists p [|a1; ...; an|] checks if at least one element of the array satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

  • Since 4.03.0
val for_all2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as Array.for_all, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as Array.exists, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val mem : 'a -> 'a array -> bool

mem a l is true if and only if a is structurally equal to an element of l (i.e. there is an x in l such that compare a x = 0).

  • Since 4.03.0
val memq : 'a -> 'a array -> bool

Same as Array.mem, but uses physical equality instead of structural equality to compare elements.

  • Since 4.03.0

Sorting

val sort : ('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, compare is a suitable comparison function. After calling Array.sort, the array is sorted in place in increasing order. Array.sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When Array.sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : ('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses a temporary array of length n/2, where n is the length of the array. It is usually faster than the current implementation of Array.sort.

val fast_sort : ('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort or Array.stable_sort, whichever is faster on typical input.

Iterators

val to_seq : 'a array -> 'a Seq.t

Iterate on the array, in increasing order. Modifications of the array during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : 'a array -> (int * 'a) Seq.t

Iterate on the array, in increasing order, yielding indices along elements. Modifications of the array during iteration will be reflected in the iterator.

  • Since 4.07
val of_seq : 'a Seq.t -> 'a array

Create an array from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_MoreLabels.Hashtbl.HashedType.html0000644000175000017500000001130213717225553025140 0ustar mehdimehdi MoreLabels.Hashtbl.HashedType Hashtbl.HashedType ocaml-doc-4.11/ocaml.html/libref/type_StdLabels.String.html0000644000175000017500000001127113717225553022621 0ustar mehdimehdi StdLabels.String (module StringLabels) ocaml-doc-4.11/ocaml.html/libref/Spacetime.Series.html0000644000175000017500000001660213717225553021604 0ustar mehdimehdi Spacetime.Series

Module Spacetime.Series

module Series: sig .. end

type t 

Type representing a file that will hold a series of heap snapshots together with additional information required to interpret those snapshots.

val create : path:string -> t

create ~path creates a series file at path.

val save_event : ?time:float -> t -> event_name:string -> unit

save_event writes an event, which is an arbitrary string, into the given series file. This may be used for identifying particular points during program execution when analysing the profile. The optional time parameter is as for Spacetime.Snapshot.take.

val save_and_close : ?time:float -> t -> unit

save_and_close series writes information into series required for interpreting the snapshots that series contains and then closes the series file. This function must be called to produce a valid series file. The optional time parameter is as for Spacetime.Snapshot.take.

ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Bool.html0000644000175000017500000001126413717225552021613 0ustar mehdimehdi Stdlib.Bool (module Stdlib__bool) ocaml-doc-4.11/ocaml.html/libref/Ephemeron.Kn.Make.html0000644000175000017500000001655113717225552021610 0ustar mehdimehdi Ephemeron.Kn.Make

Functor Ephemeron.Kn.Make

module Make: 
functor (H : Hashtbl.HashedType-> Ephemeron.S with type key = H.t array

Functor building an implementation of a weak hash table

Parameters:
H : Hashtbl.HashedType

Propose the same interface as usual hash table. However since the bindings are weak, even if mem h k is true, a subsequent find h k may raise Not_found because the garbage collector can run between the two.

Moreover, the table shouldn't be modified during a call to iter. Use filter_map_inplace in this case.

include Hashtbl.S
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/type_Marshal.html0000644000175000017500000001717313717225552021074 0ustar mehdimehdi Marshal sig
  type extern_flags = No_sharing | Closures | Compat_32
  val to_channel :
    Stdlib.out_channel -> '-> Marshal.extern_flags list -> unit
  external to_bytes : '-> Marshal.extern_flags list -> bytes
    = "caml_output_value_to_bytes"
  external to_string : '-> Marshal.extern_flags list -> string
    = "caml_output_value_to_string"
  val to_buffer :
    bytes -> int -> int -> '-> Marshal.extern_flags list -> int
  val from_channel : Stdlib.in_channel -> 'a
  val from_bytes : bytes -> int -> 'a
  val from_string : string -> int -> 'a
  val header_size : int
  val data_size : bytes -> int -> int
  val total_size : bytes -> int -> int
end
ocaml-doc-4.11/ocaml.html/libref/type_Callback.html0000644000175000017500000001210213717225552021164 0ustar mehdimehdi Callback sig
  val register : string -> '-> unit
  val register_exception : string -> exn -> unit
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Filename.html0000644000175000017500000001127413717225552022441 0ustar mehdimehdi Stdlib.Filename (module Stdlib__filename) ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Format.html0000644000175000017500000001127013717225552022145 0ustar mehdimehdi Stdlib.Format (module Stdlib__format) ocaml-doc-4.11/ocaml.html/libref/Gc.Memprof.html0000644000175000017500000003270013717225552020372 0ustar mehdimehdi Gc.Memprof

Module Gc.Memprof

module Memprof: sig .. end

Memprof is a sampling engine for allocated memory words. Every allocated word has a probability of being sampled equal to a configurable sampling rate. Once a block is sampled, it becomes tracked. A tracked block triggers a user-defined callback as soon as it is allocated, promoted or deallocated.

Since blocks are composed of several words, a block can potentially be sampled several times. If a block is sampled several times, then each of the callback is called once for each event of this block: the multiplicity is given in the n_samples field of the allocation structure.

This engine makes it possible to implement a low-overhead memory profiler as an OCaml library.

Note: this API is EXPERIMENTAL. It may change without prior notice.


type allocation = private {
   n_samples : int; (*

The number of samples in this block (>= 1).

*)
   size : int; (*

The size of the block, in words, excluding the header.

*)
   unmarshalled : bool; (*

Whether the block comes from unmarshalling.

*)
   callstack : Printexc.raw_backtrace; (*

The callstack for the allocation.

*)
}

The type of metadata associated with allocations. This is the type of records passed to the callback triggered by the sampling of an allocation.

type ('minor, 'major) tracker = {
   alloc_minor : allocation -> 'minor option;
   alloc_major : allocation -> 'major option;
   promote : 'minor -> 'major option;
   dealloc_minor : 'minor -> unit;
   dealloc_major : 'major -> unit;
}

A ('minor, 'major) tracker describes how memprof should track sampled blocks over their lifetime, keeping a user-defined piece of metadata for each of them: 'minor is the type of metadata to keep for minor blocks, and 'major the type of metadata for major blocks.

If an allocation-tracking or promotion-tracking function returns None, memprof stops tracking the corresponding value.

val null_tracker : ('minor, 'major) tracker

Default callbacks simply return None or ()

val start : sampling_rate:float ->
?callstack_size:int -> ('minor, 'major) tracker -> unit

Start the sampling with the given parameters. Fails if sampling is already active.

The parameter sampling_rate is the sampling rate in samples per word (including headers). Usually, with cheap callbacks, a rate of 1e-4 has no visible effect on performance, and 1e-3 causes the program to run a few percent slower

The parameter callstack_size is the length of the callstack recorded at every sample. Its default is max_int.

The parameter tracker determines how to track sampled blocks over their lifetime in the minor and major heap.

Sampling is temporarily disabled when calling a callback for the current thread. So they do not need to be reentrant if the program is single-threaded. However, if threads are used, it is possible that a context switch occurs during a callback, in this case the callback functions must be reentrant.

Note that the callback can be postponed slightly after the actual event. The callstack passed to the callback is always accurate, but the program state may have evolved.

Calling Thread.exit in a callback is currently unsafe and can result in undefined behavior.

val stop : unit -> unit

Stop the sampling. Fails if sampling is not active.

This function does not allocate memory, but tries to run the postponed callbacks for already allocated memory blocks (of course, these callbacks may allocate).

All the already tracked blocks are discarded.

Calling stop when a callback is running can lead to callbacks not being called even though some events happened.

ocaml-doc-4.11/ocaml.html/libref/type_Bigarray.html0000644000175000017500000023064513717225552021246 0ustar mehdimehdi Bigarray sig
  type float32_elt = Float32_elt
  type float64_elt = Float64_elt
  type int8_signed_elt = Int8_signed_elt
  type int8_unsigned_elt = Int8_unsigned_elt
  type int16_signed_elt = Int16_signed_elt
  type int16_unsigned_elt = Int16_unsigned_elt
  type int32_elt = Int32_elt
  type int64_elt = Int64_elt
  type int_elt = Int_elt
  type nativeint_elt = Nativeint_elt
  type complex32_elt = Complex32_elt
  type complex64_elt = Complex64_elt
  type ('a, 'b) kind =
      Float32 : (float, Bigarray.float32_elt) Bigarray.kind
    | Float64 : (float, Bigarray.float64_elt) Bigarray.kind
    | Int8_signed : (int, Bigarray.int8_signed_elt) Bigarray.kind
    | Int8_unsigned : (int, Bigarray.int8_unsigned_elt) Bigarray.kind
    | Int16_signed : (int, Bigarray.int16_signed_elt) Bigarray.kind
    | Int16_unsigned : (int, Bigarray.int16_unsigned_elt) Bigarray.kind
    | Int32 : (int32, Bigarray.int32_elt) Bigarray.kind
    | Int64 : (int64, Bigarray.int64_elt) Bigarray.kind
    | Int : (int, Bigarray.int_elt) Bigarray.kind
    | Nativeint : (nativeint, Bigarray.nativeint_elt) Bigarray.kind
    | Complex32 : (Stdlib.Complex.t, Bigarray.complex32_elt) Bigarray.kind
    | Complex64 : (Stdlib.Complex.t, Bigarray.complex64_elt) Bigarray.kind
    | Char : (char, Bigarray.int8_unsigned_elt) Bigarray.kind
  val float32 : (float, Bigarray.float32_elt) Bigarray.kind
  val float64 : (float, Bigarray.float64_elt) Bigarray.kind
  val complex32 : (Stdlib.Complex.t, Bigarray.complex32_elt) Bigarray.kind
  val complex64 : (Stdlib.Complex.t, Bigarray.complex64_elt) Bigarray.kind
  val int8_signed : (int, Bigarray.int8_signed_elt) Bigarray.kind
  val int8_unsigned : (int, Bigarray.int8_unsigned_elt) Bigarray.kind
  val int16_signed : (int, Bigarray.int16_signed_elt) Bigarray.kind
  val int16_unsigned : (int, Bigarray.int16_unsigned_elt) Bigarray.kind
  val int : (int, Bigarray.int_elt) Bigarray.kind
  val int32 : (int32, Bigarray.int32_elt) Bigarray.kind
  val int64 : (int64, Bigarray.int64_elt) Bigarray.kind
  val nativeint : (nativeint, Bigarray.nativeint_elt) Bigarray.kind
  val char : (char, Bigarray.int8_unsigned_elt) Bigarray.kind
  val kind_size_in_bytes : ('a, 'b) Bigarray.kind -> int
  type c_layout = C_layout_typ
  type fortran_layout = Fortran_layout_typ
  type 'a layout =
      C_layout : Bigarray.c_layout Bigarray.layout
    | Fortran_layout : Bigarray.fortran_layout Bigarray.layout
  val c_layout : Bigarray.c_layout Bigarray.layout
  val fortran_layout : Bigarray.fortran_layout Bigarray.layout
  module Genarray :
    sig
      type ('a, 'b, 'c) t
      external create :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout -> int array -> ('a, 'b, 'c) Bigarray.Genarray.t
        = "caml_ba_create"
      external num_dims : ('a, 'b, 'c) Bigarray.Genarray.t -> int
        = "caml_ba_num_dims"
      val dims : ('a, 'b, 'c) Bigarray.Genarray.t -> int array
      external nth_dim : ('a, 'b, 'c) Bigarray.Genarray.t -> int -> int
        = "caml_ba_dim"
      external kind :
        ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b) Bigarray.kind
        = "caml_ba_kind"
      external layout :
        ('a, 'b, 'c) Bigarray.Genarray.t -> 'Bigarray.layout
        = "caml_ba_layout"
      external change_layout :
        ('a, 'b, 'c) Bigarray.Genarray.t ->
        'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Genarray.t
        = "caml_ba_change_layout"
      val size_in_bytes : ('a, 'b, 'c) Bigarray.Genarray.t -> int
      external get : ('a, 'b, 'c) Bigarray.Genarray.t -> int array -> 'a
        = "caml_ba_get_generic"
      external set :
        ('a, 'b, 'c) Bigarray.Genarray.t -> int array -> '-> unit
        = "caml_ba_set_generic"
      external sub_left :
        ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t ->
        int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t
        = "caml_ba_sub"
      external sub_right :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t ->
        int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t
        = "caml_ba_sub"
      external slice_left :
        ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t ->
        int array -> ('a, 'b, Bigarray.c_layout) Bigarray.Genarray.t
        = "caml_ba_slice"
      external slice_right :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t ->
        int array -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Genarray.t
        = "caml_ba_slice"
      external blit :
        ('a, 'b, 'c) Bigarray.Genarray.t ->
        ('a, 'b, 'c) Bigarray.Genarray.t -> unit = "caml_ba_blit"
      external fill : ('a, 'b, 'c) Bigarray.Genarray.t -> '-> unit
        = "caml_ba_fill"
    end
  module Array0 :
    sig
      type ('a, 'b, 'c) t
      val create :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout -> ('a, 'b, 'c) Bigarray.Array0.t
      external kind :
        ('a, 'b, 'c) Bigarray.Array0.t -> ('a, 'b) Bigarray.kind
        = "caml_ba_kind"
      external layout : ('a, 'b, 'c) Bigarray.Array0.t -> 'Bigarray.layout
        = "caml_ba_layout"
      val change_layout :
        ('a, 'b, 'c) Bigarray.Array0.t ->
        'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array0.t
      val size_in_bytes : ('a, 'b, 'c) Bigarray.Array0.t -> int
      val get : ('a, 'b, 'c) Bigarray.Array0.t -> 'a
      val set : ('a, 'b, 'c) Bigarray.Array0.t -> '-> unit
      external blit :
        ('a, 'b, 'c) Bigarray.Array0.t ->
        ('a, 'b, 'c) Bigarray.Array0.t -> unit = "caml_ba_blit"
      external fill : ('a, 'b, 'c) Bigarray.Array0.t -> '-> unit
        = "caml_ba_fill"
      val of_value :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout -> '-> ('a, 'b, 'c) Bigarray.Array0.t
    end
  module Array1 :
    sig
      type ('a, 'b, 'c) t
      val create :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout -> int -> ('a, 'b, 'c) Bigarray.Array1.t
      external dim : ('a, 'b, 'c) Bigarray.Array1.t -> int = "%caml_ba_dim_1"
      external kind :
        ('a, 'b, 'c) Bigarray.Array1.t -> ('a, 'b) Bigarray.kind
        = "caml_ba_kind"
      external layout : ('a, 'b, 'c) Bigarray.Array1.t -> 'Bigarray.layout
        = "caml_ba_layout"
      val change_layout :
        ('a, 'b, 'c) Bigarray.Array1.t ->
        'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array1.t
      val size_in_bytes : ('a, 'b, 'c) Bigarray.Array1.t -> int
      external get : ('a, 'b, 'c) Bigarray.Array1.t -> int -> 'a
        = "%caml_ba_ref_1"
      external set : ('a, 'b, 'c) Bigarray.Array1.t -> int -> '-> unit
        = "%caml_ba_set_1"
      external sub :
        ('a, 'b, 'c) Bigarray.Array1.t ->
        int -> int -> ('a, 'b, 'c) Bigarray.Array1.t = "caml_ba_sub"
      val slice :
        ('a, 'b, 'c) Bigarray.Array1.t ->
        int -> ('a, 'b, 'c) Bigarray.Array0.t
      external blit :
        ('a, 'b, 'c) Bigarray.Array1.t ->
        ('a, 'b, 'c) Bigarray.Array1.t -> unit = "caml_ba_blit"
      external fill : ('a, 'b, 'c) Bigarray.Array1.t -> '-> unit
        = "caml_ba_fill"
      val of_array :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout -> 'a array -> ('a, 'b, 'c) Bigarray.Array1.t
      external unsafe_get : ('a, 'b, 'c) Bigarray.Array1.t -> int -> 'a
        = "%caml_ba_unsafe_ref_1"
      external unsafe_set :
        ('a, 'b, 'c) Bigarray.Array1.t -> int -> '-> unit
        = "%caml_ba_unsafe_set_1"
    end
  module Array2 :
    sig
      type ('a, 'b, 'c) t
      val create :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout -> int -> int -> ('a, 'b, 'c) Bigarray.Array2.t
      external dim1 : ('a, 'b, 'c) Bigarray.Array2.t -> int
        = "%caml_ba_dim_1"
      external dim2 : ('a, 'b, 'c) Bigarray.Array2.t -> int
        = "%caml_ba_dim_2"
      external kind :
        ('a, 'b, 'c) Bigarray.Array2.t -> ('a, 'b) Bigarray.kind
        = "caml_ba_kind"
      external layout : ('a, 'b, 'c) Bigarray.Array2.t -> 'Bigarray.layout
        = "caml_ba_layout"
      val change_layout :
        ('a, 'b, 'c) Bigarray.Array2.t ->
        'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array2.t
      val size_in_bytes : ('a, 'b, 'c) Bigarray.Array2.t -> int
      external get : ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> 'a
        = "%caml_ba_ref_2"
      external set :
        ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> '-> unit
        = "%caml_ba_set_2"
      external sub_left :
        ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t ->
        int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t
        = "caml_ba_sub"
      external sub_right :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t ->
        int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t
        = "caml_ba_sub"
      val slice_left :
        ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t ->
        int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t
      val slice_right :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t ->
        int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t
      external blit :
        ('a, 'b, 'c) Bigarray.Array2.t ->
        ('a, 'b, 'c) Bigarray.Array2.t -> unit = "caml_ba_blit"
      external fill : ('a, 'b, 'c) Bigarray.Array2.t -> '-> unit
        = "caml_ba_fill"
      val of_array :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout ->
        'a array array -> ('a, 'b, 'c) Bigarray.Array2.t
      external unsafe_get :
        ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> 'a
        = "%caml_ba_unsafe_ref_2"
      external unsafe_set :
        ('a, 'b, 'c) Bigarray.Array2.t -> int -> int -> '-> unit
        = "%caml_ba_unsafe_set_2"
    end
  module Array3 :
    sig
      type ('a, 'b, 'c) t
      val create :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout ->
        int -> int -> int -> ('a, 'b, 'c) Bigarray.Array3.t
      external dim1 : ('a, 'b, 'c) Bigarray.Array3.t -> int
        = "%caml_ba_dim_1"
      external dim2 : ('a, 'b, 'c) Bigarray.Array3.t -> int
        = "%caml_ba_dim_2"
      external dim3 : ('a, 'b, 'c) Bigarray.Array3.t -> int
        = "%caml_ba_dim_3"
      external kind :
        ('a, 'b, 'c) Bigarray.Array3.t -> ('a, 'b) Bigarray.kind
        = "caml_ba_kind"
      external layout : ('a, 'b, 'c) Bigarray.Array3.t -> 'Bigarray.layout
        = "caml_ba_layout"
      val change_layout :
        ('a, 'b, 'c) Bigarray.Array3.t ->
        'Bigarray.layout -> ('a, 'b, 'd) Bigarray.Array3.t
      val size_in_bytes : ('a, 'b, 'c) Bigarray.Array3.t -> int
      external get :
        ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> 'a
        = "%caml_ba_ref_3"
      external set :
        ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> '-> unit
        = "%caml_ba_set_3"
      external sub_left :
        ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t ->
        int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t
        = "caml_ba_sub"
      external sub_right :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t ->
        int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t
        = "caml_ba_sub"
      val slice_left_1 :
        ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t ->
        int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t
      val slice_right_1 :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t ->
        int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t
      val slice_left_2 :
        ('a, 'b, Bigarray.c_layout) Bigarray.Array3.t ->
        int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t
      val slice_right_2 :
        ('a, 'b, Bigarray.fortran_layout) Bigarray.Array3.t ->
        int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t
      external blit :
        ('a, 'b, 'c) Bigarray.Array3.t ->
        ('a, 'b, 'c) Bigarray.Array3.t -> unit = "caml_ba_blit"
      external fill : ('a, 'b, 'c) Bigarray.Array3.t -> '-> unit
        = "caml_ba_fill"
      val of_array :
        ('a, 'b) Bigarray.kind ->
        'Bigarray.layout ->
        'a array array array -> ('a, 'b, 'c) Bigarray.Array3.t
      external unsafe_get :
        ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> 'a
        = "%caml_ba_unsafe_ref_3"
      external unsafe_set :
        ('a, 'b, 'c) Bigarray.Array3.t -> int -> int -> int -> '-> unit
        = "%caml_ba_unsafe_set_3"
    end
  external genarray_of_array0 :
    ('a, 'b, 'c) Bigarray.Array0.t -> ('a, 'b, 'c) Bigarray.Genarray.t
    = "%identity"
  external genarray_of_array1 :
    ('a, 'b, 'c) Bigarray.Array1.t -> ('a, 'b, 'c) Bigarray.Genarray.t
    = "%identity"
  external genarray_of_array2 :
    ('a, 'b, 'c) Bigarray.Array2.t -> ('a, 'b, 'c) Bigarray.Genarray.t
    = "%identity"
  external genarray_of_array3 :
    ('a, 'b, 'c) Bigarray.Array3.t -> ('a, 'b, 'c) Bigarray.Genarray.t
    = "%identity"
  val array0_of_genarray :
    ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b, 'c) Bigarray.Array0.t
  val array1_of_genarray :
    ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b, 'c) Bigarray.Array1.t
  val array2_of_genarray :
    ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b, 'c) Bigarray.Array2.t
  val array3_of_genarray :
    ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b, 'c) Bigarray.Array3.t
  val reshape :
    ('a, 'b, 'c) Bigarray.Genarray.t ->
    int array -> ('a, 'b, 'c) Bigarray.Genarray.t
  val reshape_0 :
    ('a, 'b, 'c) Bigarray.Genarray.t -> ('a, 'b, 'c) Bigarray.Array0.t
  val reshape_1 :
    ('a, 'b, 'c) Bigarray.Genarray.t -> int -> ('a, 'b, 'c) Bigarray.Array1.t
  val reshape_2 :
    ('a, 'b, 'c) Bigarray.Genarray.t ->
    int -> int -> ('a, 'b, 'c) Bigarray.Array2.t
  val reshape_3 :
    ('a, 'b, 'c) Bigarray.Genarray.t ->
    int -> int -> int -> ('a, 'b, 'c) Bigarray.Array3.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.BytesLabels.html0000644000175000017500000001130213717225552023122 0ustar mehdimehdi Stdlib.BytesLabels (module Stdlib__bytesLabels) ocaml-doc-4.11/ocaml.html/libref/Ephemeron.K2.Make.html0000644000175000017500000001762713717225552021521 0ustar mehdimehdi Ephemeron.K2.Make

Functor Ephemeron.K2.Make

module Make: 
functor (H1 : Hashtbl.HashedType-> 
functor (H2 : Hashtbl.HashedType-> Ephemeron.S with type key = H1.t * H2.t

Functor building an implementation of a weak hash table

Parameters:
H1 : Hashtbl.HashedType
H2 : Hashtbl.HashedType

Propose the same interface as usual hash table. However since the bindings are weak, even if mem h k is true, a subsequent find h k may raise Not_found because the garbage collector can run between the two.

Moreover, the table shouldn't be modified during a call to iter. Use filter_map_inplace in this case.

include Hashtbl.S
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/type_Arg.html0000644000175000017500000003441013717225552020207 0ustar mehdimehdi Arg sig
  type spec =
      Unit of (unit -> unit)
    | Bool of (bool -> unit)
    | Set of bool Stdlib.ref
    | Clear of bool Stdlib.ref
    | String of (string -> unit)
    | Set_string of string Stdlib.ref
    | Int of (int -> unit)
    | Set_int of int Stdlib.ref
    | Float of (float -> unit)
    | Set_float of float Stdlib.ref
    | Tuple of Arg.spec list
    | Symbol of string list * (string -> unit)
    | Rest of (string -> unit)
    | Expand of (string -> string array)
  type key = string
  type doc = string
  type usage_msg = string
  type anon_fun = string -> unit
  val parse :
    (Arg.key * Arg.spec * Arg.doc) list ->
    Arg.anon_fun -> Arg.usage_msg -> unit
  val parse_dynamic :
    (Arg.key * Arg.spec * Arg.doc) list Stdlib.ref ->
    Arg.anon_fun -> Arg.usage_msg -> unit
  val parse_argv :
    ?current:int Stdlib.ref ->
    string array ->
    (Arg.key * Arg.spec * Arg.doc) list ->
    Arg.anon_fun -> Arg.usage_msg -> unit
  val parse_argv_dynamic :
    ?current:int Stdlib.ref ->
    string array ->
    (Arg.key * Arg.spec * Arg.doc) list Stdlib.ref ->
    Arg.anon_fun -> string -> unit
  val parse_and_expand_argv_dynamic :
    int Stdlib.ref ->
    string array Stdlib.ref ->
    (Arg.key * Arg.spec * Arg.doc) list Stdlib.ref ->
    Arg.anon_fun -> string -> unit
  val parse_expand :
    (Arg.key * Arg.spec * Arg.doc) list ->
    Arg.anon_fun -> Arg.usage_msg -> unit
  exception Help of string
  exception Bad of string
  val usage : (Arg.key * Arg.spec * Arg.doc) list -> Arg.usage_msg -> unit
  val usage_string :
    (Arg.key * Arg.spec * Arg.doc) list -> Arg.usage_msg -> string
  val align :
    ?limit:int ->
    (Arg.key * Arg.spec * Arg.doc) list ->
    (Arg.key * Arg.spec * Arg.doc) list
  val current : int Stdlib.ref
  val read_arg : string -> string array
  val read_arg0 : string -> string array
  val write_arg : string -> string array -> unit
  val write_arg0 : string -> string array -> unit
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Queue.html0000644000175000017500000001126613717225553022007 0ustar mehdimehdi Stdlib.Queue (module Stdlib__queue) ocaml-doc-4.11/ocaml.html/libref/Map.OrderedType.html0000644000175000017500000001515513717225553021405 0ustar mehdimehdi Map.OrderedType

Module type Map.OrderedType

module type OrderedType = sig .. end

Input signature of the functor Map.Make.


type t 

The type of the map keys.

val compare : t -> t -> int

A total ordering function over the keys. This is a two-argument function f such that f e1 e2 is zero if the keys e1 and e2 are equal, f e1 e2 is strictly negative if e1 is smaller than e2, and f e1 e2 is strictly positive if e1 is greater than e2. Example: a suitable ordering function is the generic structural comparison function compare.

ocaml-doc-4.11/ocaml.html/libref/type_Spacetime.Snapshot.html0000644000175000017500000001165513717225553023215 0ustar mehdimehdi Spacetime.Snapshot sig val take : ?time:float -> Spacetime.Series.t -> unit end ocaml-doc-4.11/ocaml.html/libref/type_Weak.Make.html0000644000175000017500000001742313717225553021247 0ustar mehdimehdi Weak.Make functor (H : Hashtbl.HashedType->
  sig
    type data = H.t
    type t
    val create : int -> t
    val clear : t -> unit
    val merge : t -> data -> data
    val add : t -> data -> unit
    val remove : t -> data -> unit
    val find : t -> data -> data
    val find_opt : t -> data -> data option
    val find_all : t -> data -> data list
    val mem : t -> data -> bool
    val iter : (data -> unit) -> t -> unit
    val fold : (data -> '-> 'a) -> t -> '-> 'a
    val count : t -> int
    val stats : t -> int * int * int * int * int * int
  end
ocaml-doc-4.11/ocaml.html/libref/type_Float.ArrayLabels.html0000644000175000017500000004335713717225552022755 0ustar mehdimehdi Float.ArrayLabels sig
  type t = floatarray
  val length : Float.ArrayLabels.t -> int
  val get : Float.ArrayLabels.t -> int -> float
  val set : Float.ArrayLabels.t -> int -> float -> unit
  val make : int -> float -> Float.ArrayLabels.t
  val create : int -> Float.ArrayLabels.t
  val init : int -> f:(int -> float) -> Float.ArrayLabels.t
  val append :
    Float.ArrayLabels.t -> Float.ArrayLabels.t -> Float.ArrayLabels.t
  val concat : Float.ArrayLabels.t list -> Float.ArrayLabels.t
  val sub : Float.ArrayLabels.t -> pos:int -> len:int -> Float.ArrayLabels.t
  val copy : Float.ArrayLabels.t -> Float.ArrayLabels.t
  val fill : Float.ArrayLabels.t -> pos:int -> len:int -> float -> unit
  val blit :
    src:Float.ArrayLabels.t ->
    src_pos:int -> dst:Float.ArrayLabels.t -> dst_pos:int -> len:int -> unit
  val to_list : Float.ArrayLabels.t -> float list
  val of_list : float list -> Float.ArrayLabels.t
  val iter : f:(float -> unit) -> Float.ArrayLabels.t -> unit
  val iteri : f:(int -> float -> unit) -> Float.ArrayLabels.t -> unit
  val map : f:(float -> float) -> Float.ArrayLabels.t -> Float.ArrayLabels.t
  val mapi :
    f:(int -> float -> float) -> Float.ArrayLabels.t -> Float.ArrayLabels.t
  val fold_left :
    f:('-> float -> 'a) -> init:'-> Float.ArrayLabels.t -> 'a
  val fold_right :
    f:(float -> '-> 'a) -> Float.ArrayLabels.t -> init:'-> 'a
  val iter2 :
    f:(float -> float -> unit) ->
    Float.ArrayLabels.t -> Float.ArrayLabels.t -> unit
  val map2 :
    f:(float -> float -> float) ->
    Float.ArrayLabels.t -> Float.ArrayLabels.t -> Float.ArrayLabels.t
  val for_all : f:(float -> bool) -> Float.ArrayLabels.t -> bool
  val exists : f:(float -> bool) -> Float.ArrayLabels.t -> bool
  val mem : float -> set:Float.ArrayLabels.t -> bool
  val mem_ieee : float -> set:Float.ArrayLabels.t -> bool
  val sort : cmp:(float -> float -> int) -> Float.ArrayLabels.t -> unit
  val stable_sort :
    cmp:(float -> float -> int) -> Float.ArrayLabels.t -> unit
  val fast_sort : cmp:(float -> float -> int) -> Float.ArrayLabels.t -> unit
  val to_seq : Float.ArrayLabels.t -> float Stdlib.Seq.t
  val to_seqi : Float.ArrayLabels.t -> (int * float) Stdlib.Seq.t
  val of_seq : float Stdlib.Seq.t -> Float.ArrayLabels.t
  val map_to_array : f:(float -> 'a) -> Float.ArrayLabels.t -> 'a array
  val map_from_array : f:('-> float) -> 'a array -> Float.ArrayLabels.t
  external unsafe_get : Float.ArrayLabels.t -> int -> float
    = "%floatarray_unsafe_get"
  external unsafe_set : Float.ArrayLabels.t -> int -> float -> unit
    = "%floatarray_unsafe_set"
end
ocaml-doc-4.11/ocaml.html/libref/Callback.html0000644000175000017500000001553513717225552020140 0ustar mehdimehdi Callback

Module Callback

module Callback: sig .. end

Registering OCaml values with the C runtime.

This module allows OCaml values to be registered with the C runtime under a symbolic name, so that C code can later call back registered OCaml functions, or raise registered OCaml exceptions.


val register : string -> 'a -> unit

Callback.register n v registers the value v under the name n. C code can later retrieve a handle to v by calling caml_named_value(n).

val register_exception : string -> exn -> unit

Callback.register_exception n exn registers the exception contained in the exception value exn under the name n. C code can later retrieve a handle to the exception by calling caml_named_value(n). The exception value thus obtained is suitable for passing as first argument to raise_constant or raise_with_arg.

ocaml-doc-4.11/ocaml.html/libref/type_Obj.Ephemeron.html0000644000175000017500000002217313717225553022135 0ustar mehdimehdi Obj.Ephemeron sig
  type obj_t = Obj.t
  type t
  val create : int -> Obj.Ephemeron.t
  val length : Obj.Ephemeron.t -> int
  val get_key : Obj.Ephemeron.t -> int -> Obj.Ephemeron.obj_t option
  val get_key_copy : Obj.Ephemeron.t -> int -> Obj.Ephemeron.obj_t option
  val set_key : Obj.Ephemeron.t -> int -> Obj.Ephemeron.obj_t -> unit
  val unset_key : Obj.Ephemeron.t -> int -> unit
  val check_key : Obj.Ephemeron.t -> int -> bool
  val blit_key :
    Obj.Ephemeron.t -> int -> Obj.Ephemeron.t -> int -> int -> unit
  val get_data : Obj.Ephemeron.t -> Obj.Ephemeron.obj_t option
  val get_data_copy : Obj.Ephemeron.t -> Obj.Ephemeron.obj_t option
  val set_data : Obj.Ephemeron.t -> Obj.Ephemeron.obj_t -> unit
  val unset_data : Obj.Ephemeron.t -> unit
  val check_data : Obj.Ephemeron.t -> bool
  val blit_data : Obj.Ephemeron.t -> Obj.Ephemeron.t -> unit
  val max_ephe_length : int
end
ocaml-doc-4.11/ocaml.html/libref/type_Printf.html0000644000175000017500000002623613717225552020747 0ustar mehdimehdi Printf sig
  val fprintf :
    Stdlib.out_channel -> ('a, Stdlib.out_channel, unit) Stdlib.format -> 'a
  val printf : ('a, Stdlib.out_channel, unit) Stdlib.format -> 'a
  val eprintf : ('a, Stdlib.out_channel, unit) Stdlib.format -> 'a
  val sprintf : ('a, unit, string) Stdlib.format -> 'a
  val bprintf :
    Stdlib.Buffer.t -> ('a, Stdlib.Buffer.t, unit) Stdlib.format -> 'a
  val ifprintf : '-> ('a, 'b, 'c, unit) Stdlib.format4 -> 'a
  val ibprintf :
    Stdlib.Buffer.t -> ('a, Stdlib.Buffer.t, unit) Stdlib.format -> 'a
  val kfprintf :
    (Stdlib.out_channel -> 'd) ->
    Stdlib.out_channel ->
    ('a, Stdlib.out_channel, unit, 'd) Stdlib.format4 -> 'a
  val ikfprintf : ('-> 'd) -> '-> ('a, 'b, 'c, 'd) Stdlib.format4 -> 'a
  val ksprintf :
    (string -> 'd) -> ('a, unit, string, 'd) Stdlib.format4 -> 'a
  val kbprintf :
    (Stdlib.Buffer.t -> 'd) ->
    Stdlib.Buffer.t -> ('a, Stdlib.Buffer.t, unit, 'd) Stdlib.format4 -> 'a
  val ikbprintf :
    (Stdlib.Buffer.t -> 'd) ->
    Stdlib.Buffer.t -> ('a, Stdlib.Buffer.t, unit, 'd) Stdlib.format4 -> 'a
  val kprintf : (string -> 'b) -> ('a, unit, string, 'b) Stdlib.format4 -> 'a
end
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.K2.MakeSeeded.html0000644000175000017500000001723613717225552022627 0ustar mehdimehdi Ephemeron.K2.MakeSeeded

Functor Ephemeron.K2.MakeSeeded

module MakeSeeded: 
functor (H1 : Hashtbl.SeededHashedType-> 
functor (H2 : Hashtbl.SeededHashedType-> Ephemeron.SeededS with type key = H1.t * H2.t

Functor building an implementation of a weak hash table. The seed is similar to the one of Hashtbl.MakeSeeded.

Parameters:
H1 : Hashtbl.SeededHashedType
H2 : Hashtbl.SeededHashedType

include Hashtbl.SeededS
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Map.OrderedType.html0000644000175000017500000001462413717225553023431 0ustar mehdimehdi MoreLabels.Map.OrderedType

Module type MoreLabels.Map.OrderedType

module type OrderedType = Map.OrderedType

type t 

The type of the map keys.

val compare : t -> t -> int

A total ordering function over the keys. This is a two-argument function f such that f e1 e2 is zero if the keys e1 and e2 are equal, f e1 e2 is strictly negative if e1 is smaller than e2, and f e1 e2 is strictly positive if e1 is greater than e2. Example: a suitable ordering function is the generic structural comparison function compare.

ocaml-doc-4.11/ocaml.html/libref/Seq.html0000644000175000017500000003201113717225552017160 0ustar mehdimehdi Seq

Module Seq

module Seq: sig .. end

Functional Iterators


The type 'a t is a delayed list, i.e. a list where some evaluation is needed to access the next element. This makes it possible to build infinite sequences, to build sequences as we traverse them, and to transform them in a lazy fashion rather than upfront.

type 'a t = unit -> 'a node 

The type of delayed lists containing elements of type 'a. Note that the concrete list node 'a node is delayed under a closure, not a lazy block, which means it might be recomputed every time we access it.

type 'a node = 
| Nil
| Cons of 'a * 'a t

A fully-evaluated list node, either empty or containing an element and a delayed tail.

val empty : 'a t

The empty sequence, containing no elements.

val return : 'a -> 'a t

The singleton sequence containing only the given element.

val cons : 'a -> 'a t -> 'a t

cons x xs is the sequence containing the element x followed by the sequence xs

  • Since 4.11
val append : 'a t -> 'a t -> 'a t

append xs ys is the sequence xs followed by the sequence ys

  • Since 4.11
val map : ('a -> 'b) -> 'a t -> 'b t

map f seq returns a new sequence whose elements are the elements of seq, transformed by f. This transformation is lazy, it only applies when the result is traversed.

If seq = [1;2;3], then map f seq = [f 1; f 2; f 3].

val filter : ('a -> bool) -> 'a t -> 'a t

Remove from the sequence the elements that do not satisfy the given predicate. This transformation is lazy, it only applies when the result is traversed.

val filter_map : ('a -> 'b option) -> 'a t -> 'b t

Apply the function to every element; if f x = None then x is dropped; if f x = Some y then y is returned. This transformation is lazy, it only applies when the result is traversed.

val flat_map : ('a -> 'b t) -> 'a t -> 'b t

Map each element to a subsequence, then return each element of this sub-sequence in turn. This transformation is lazy, it only applies when the result is traversed.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a

Traverse the sequence from left to right, combining each element with the accumulator using the given function. The traversal happens immediately and will not terminate on infinite sequences.

Also see List.fold_left

val iter : ('a -> unit) -> 'a t -> unit

Iterate on the sequence, calling the (imperative) function on every element. The traversal happens immediately and will not terminate on infinite sequences.

val unfold : ('b -> ('a * 'b) option) -> 'b -> 'a t

Build a sequence from a step function and an initial value. unfold f u returns empty if f u returns None, or fun () -> Cons (x, unfold f y) if f u returns Some (x, y).

For example, unfold (function [] -> None | h::t -> Some (h,t)) l is equivalent to List.to_seq l.

  • Since 4.11
ocaml-doc-4.11/ocaml.html/libref/type_Hashtbl.S.html0000644000175000017500000003334213717225553021270 0ustar mehdimehdi Hashtbl.S sig
  type key
  type 'a t
  val create : int -> 'Hashtbl.S.t
  val clear : 'Hashtbl.S.t -> unit
  val reset : 'Hashtbl.S.t -> unit
  val copy : 'Hashtbl.S.t -> 'Hashtbl.S.t
  val add : 'Hashtbl.S.t -> Hashtbl.S.key -> '-> unit
  val remove : 'Hashtbl.S.t -> Hashtbl.S.key -> unit
  val find : 'Hashtbl.S.t -> Hashtbl.S.key -> 'a
  val find_opt : 'Hashtbl.S.t -> Hashtbl.S.key -> 'a option
  val find_all : 'Hashtbl.S.t -> Hashtbl.S.key -> 'a list
  val replace : 'Hashtbl.S.t -> Hashtbl.S.key -> '-> unit
  val mem : 'Hashtbl.S.t -> Hashtbl.S.key -> bool
  val iter : (Hashtbl.S.key -> '-> unit) -> 'Hashtbl.S.t -> unit
  val filter_map_inplace :
    (Hashtbl.S.key -> '-> 'a option) -> 'Hashtbl.S.t -> unit
  val fold : (Hashtbl.S.key -> '-> '-> 'b) -> 'Hashtbl.S.t -> '-> 'b
  val length : 'Hashtbl.S.t -> int
  val stats : 'Hashtbl.S.t -> Hashtbl.statistics
  val to_seq : 'Hashtbl.S.t -> (Hashtbl.S.key * 'a) Stdlib.Seq.t
  val to_seq_keys : 'Hashtbl.S.t -> Hashtbl.S.key Stdlib.Seq.t
  val to_seq_values : 'Hashtbl.S.t -> 'Stdlib.Seq.t
  val add_seq : 'Hashtbl.S.t -> (Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
  val replace_seq :
    'Hashtbl.S.t -> (Hashtbl.S.key * 'a) Stdlib.Seq.t -> unit
  val of_seq : (Hashtbl.S.key * 'a) Stdlib.Seq.t -> 'Hashtbl.S.t
end
ocaml-doc-4.11/ocaml.html/libref/type_Bool.html0000644000175000017500000001445213717225552020375 0ustar mehdimehdi Bool sig
  type t = bool = false | true
  val not : bool -> bool
  external ( && ) : bool -> bool -> bool = "%sequand"
  external ( || ) : bool -> bool -> bool = "%sequor"
  val equal : bool -> bool -> bool
  val compare : bool -> bool -> int
  val to_int : bool -> int
  val to_float : bool -> float
  val to_string : bool -> string
end
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.K2.html0000644000175000017500000003760213717225552020640 0ustar mehdimehdi Ephemeron.K2

Module Ephemeron.K2

module K2: sig .. end

type ('k1, 'k2, 'd) t 

an ephemeron with two keys

val create : unit -> ('k1, 'k2, 'd) t
val get_key1 : ('k1, 'k2, 'd) t -> 'k1 option
val get_key1_copy : ('k1, 'k2, 'd) t -> 'k1 option
val set_key1 : ('k1, 'k2, 'd) t -> 'k1 -> unit
val unset_key1 : ('k1, 'k2, 'd) t -> unit
val check_key1 : ('k1, 'k2, 'd) t -> bool
val get_key2 : ('k1, 'k2, 'd) t -> 'k2 option
val get_key2_copy : ('k1, 'k2, 'd) t -> 'k2 option
val set_key2 : ('k1, 'k2, 'd) t -> 'k2 -> unit
val unset_key2 : ('k1, 'k2, 'd) t -> unit
val check_key2 : ('k1, 'k2, 'd) t -> bool
val blit_key1 : ('k1, 'a, 'b) t -> ('k1, 'c, 'd) t -> unit
val blit_key2 : ('a, 'k2, 'b) t -> ('c, 'k2, 'd) t -> unit
val blit_key12 : ('k1, 'k2, 'a) t -> ('k1, 'k2, 'b) t -> unit
val get_data : ('k1, 'k2, 'd) t -> 'd option
val get_data_copy : ('k1, 'k2, 'd) t -> 'd option
val set_data : ('k1, 'k2, 'd) t -> 'd -> unit
val unset_data : ('k1, 'k2, 'd) t -> unit
val check_data : ('k1, 'k2, 'd) t -> bool
val blit_data : ('k1, 'k2, 'd) t -> ('k1, 'k2, 'd) t -> unit
module Make: 
functor (H1 : Hashtbl.HashedType-> 
functor (H2 : Hashtbl.HashedType-> Ephemeron.S with type key = H1.t * H2.t

Functor building an implementation of a weak hash table

module MakeSeeded: 
functor (H1 : Hashtbl.SeededHashedType-> 
functor (H2 : Hashtbl.SeededHashedType-> Ephemeron.SeededS with type key = H1.t * H2.t

Functor building an implementation of a weak hash table.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Printexc.html0000644000175000017500000006662113717225553021463 0ustar mehdimehdi Stdlib.Printexc

Module Stdlib.Printexc

module Printexc: Printexc

type t = exn = ..

The type of exception values.

val to_string : exn -> string

Printexc.to_string e returns a string representation of the exception e.

val to_string_default : exn -> string

Printexc.to_string_default e returns a string representation of the exception e, ignoring all registered exception printers.

  • Since 4.09
val print : ('a -> 'b) -> 'a -> 'b

Printexc.print fn x applies fn to x and returns the result. If the evaluation of fn x raises any exception, the name of the exception is printed on standard error output, and the exception is raised again. The typical use is to catch and report exceptions that escape a function application.

val catch : ('a -> 'b) -> 'a -> 'b

Printexc.catch fn x is similar to Printexc.print, but aborts the program with exit code 2 after printing the uncaught exception. This function is deprecated: the runtime system is now able to print uncaught exceptions as precisely as Printexc.catch does. Moreover, calling Printexc.catch makes it harder to track the location of the exception using the debugger or the stack backtrace facility. So, do not use Printexc.catch in new code.

val print_backtrace : out_channel -> unit

Printexc.print_backtrace oc prints an exception backtrace on the output channel oc. The backtrace lists the program locations where the most-recently raised exception was raised and where it was propagated through function calls.

If the call is not inside an exception handler, the returned backtrace is unspecified. If the call is after some exception-catching code (before in the handler, or in a when-guard during the matching of the exception handler), the backtrace may correspond to a later exception than the handled one.

  • Since 3.11.0
val get_backtrace : unit -> string

Printexc.get_backtrace () returns a string containing the same exception backtrace that Printexc.print_backtrace would print. Same restriction usage than Printexc.print_backtrace.

  • Since 3.11.0
val record_backtrace : bool -> unit

Printexc.record_backtrace b turns recording of exception backtraces on (if b = true) or off (if b = false). Initially, backtraces are not recorded, unless the b flag is given to the program through the OCAMLRUNPARAM variable.

  • Since 3.11.0
val backtrace_status : unit -> bool

Printexc.backtrace_status() returns true if exception backtraces are currently recorded, false if not.

  • Since 3.11.0
val register_printer : (exn -> string option) -> unit

Printexc.register_printer fn registers fn as an exception printer. The printer should return None or raise an exception if it does not know how to convert the passed exception, and Some
    s
with s the resulting string if it can convert the passed exception. Exceptions raised by the printer are ignored.

When converting an exception into a string, the printers will be invoked in the reverse order of their registrations, until a printer returns a Some s value (if no such printer exists, the runtime will use a generic printer).

When using this mechanism, one should be aware that an exception backtrace is attached to the thread that saw it raised, rather than to the exception itself. Practically, it means that the code related to fn should not use the backtrace if it has itself raised an exception before.

  • Since 3.11.2
val use_printers : exn -> string option

Printexc.use_printers e returns None if there are no registered printers and Some s with else as the resulting string otherwise.

  • Since 4.09

Raw backtraces

type raw_backtrace 

The abstract type raw_backtrace stores a backtrace in a low-level format, instead of directly exposing them as string as the get_backtrace() function does.

This allows delaying the formatting of backtraces to when they are actually printed, which may be useful if you record more backtraces than you print.

Raw backtraces cannot be marshalled. If you need marshalling, you should use the array returned by the backtrace_slots function of the next section.

  • Since 4.01.0
val get_raw_backtrace : unit -> raw_backtrace

Printexc.get_raw_backtrace () returns the same exception backtrace that Printexc.print_backtrace would print, but in a raw format. Same restriction usage than Printexc.print_backtrace.

  • Since 4.01.0
val print_raw_backtrace : out_channel -> raw_backtrace -> unit

Print a raw backtrace in the same format Printexc.print_backtrace uses.

  • Since 4.01.0
val raw_backtrace_to_string : raw_backtrace -> string

Return a string from a raw backtrace, in the same format Printexc.get_backtrace uses.

  • Since 4.01.0
val raise_with_backtrace : exn -> raw_backtrace -> 'a

Reraise the exception using the given raw_backtrace for the origin of the exception

  • Since 4.05.0

Current call stack

val get_callstack : int -> raw_backtrace

Printexc.get_callstack n returns a description of the top of the call stack on the current program point (for the current thread), with at most n entries. (Note: this function is not related to exceptions at all, despite being part of the Printexc module.)

  • Since 4.01.0

Uncaught exceptions

val default_uncaught_exception_handler : exn -> raw_backtrace -> unit

Printexc.default_uncaught_exception_handler prints the exception and backtrace on standard error output.

  • Since 4.11
val set_uncaught_exception_handler : (exn -> raw_backtrace -> unit) -> unit

Printexc.set_uncaught_exception_handler fn registers fn as the handler for uncaught exceptions. The default handler is Printexc.default_uncaught_exception_handler.

Note that when fn is called all the functions registered with at_exit have already been called. Because of this you must make sure any output channel fn writes on is flushed.

Also note that exceptions raised by user code in the interactive toplevel are not passed to this function as they are caught by the toplevel itself.

If fn raises an exception, both the exceptions passed to fn and raised by fn will be printed with their respective backtrace.

  • Since 4.02.0

Manipulation of backtrace information

These functions are used to traverse the slots of a raw backtrace and extract information from them in a programmer-friendly format.

type backtrace_slot 

The abstract type backtrace_slot represents a single slot of a backtrace.

  • Since 4.02
val backtrace_slots : raw_backtrace -> backtrace_slot array option

Returns the slots of a raw backtrace, or None if none of them contain useful information.

In the return array, the slot at index 0 corresponds to the most recent function call, raise, or primitive get_backtrace call in the trace.

Some possible reasons for returning None are as follow:

  • none of the slots in the trace come from modules compiled with debug information (-g)
  • the program is a bytecode program that has not been linked with debug information enabled (ocamlc -g)
  • Since 4.02.0
type location = {
   filename : string;
   line_number : int;
   start_char : int;
   end_char : int;
}

The type of location information found in backtraces. start_char and end_char are positions relative to the beginning of the line.

  • Since 4.02
module Slot: sig .. end

Raw backtrace slots

type raw_backtrace_slot 

This type allows direct access to raw backtrace slots, without any conversion in an OCaml-usable data-structure. Being process-specific, they must absolutely not be marshalled, and are unsafe to use for this reason (marshalling them may not fail, but un-marshalling and using the result will result in undefined behavior).

Elements of this type can still be compared and hashed: when two elements are equal, then they represent the same source location (the converse is not necessarily true in presence of inlining, for example).

  • Since 4.02.0
val raw_backtrace_length : raw_backtrace -> int

raw_backtrace_length bckt returns the number of slots in the backtrace bckt.

  • Since 4.02
val get_raw_backtrace_slot : raw_backtrace -> int -> raw_backtrace_slot

get_raw_backtrace_slot bckt pos returns the slot in position pos in the backtrace bckt.

  • Since 4.02
val convert_raw_backtrace_slot : raw_backtrace_slot -> backtrace_slot

Extracts the user-friendly backtrace_slot from a low-level raw_backtrace_slot.

  • Since 4.02
val get_raw_backtrace_next_slot : raw_backtrace_slot -> raw_backtrace_slot option

get_raw_backtrace_next_slot slot returns the next slot inlined, if any.

Sample code to iterate over all frames (inlined and non-inlined):

      (* Iterate over inlined frames *)
      let rec iter_raw_backtrace_slot f slot =
        f slot;
        match get_raw_backtrace_next_slot slot with
        | None -> ()
        | Some slot' -> iter_raw_backtrace_slot f slot'

      (* Iterate over stack frames *)
      let iter_raw_backtrace f bt =
        for i = 0 to raw_backtrace_length bt - 1 do
          iter_raw_backtrace_slot f (get_raw_backtrace_slot bt i)
        done
    
  • Since 4.04.0

Exception slots

val exn_slot_id : exn -> int

Printexc.exn_slot_id returns an integer which uniquely identifies the constructor used to create the exception value exn (in the current runtime).

  • Since 4.02.0
val exn_slot_name : exn -> string

Printexc.exn_slot_name exn returns the internal name of the constructor used to create the exception value exn.

  • Since 4.02.0
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Callback.html0000644000175000017500000001127413717225552022415 0ustar mehdimehdi Stdlib.Callback (module Stdlib__callback) ocaml-doc-4.11/ocaml.html/libref/Stdlib.Lazy.html0000644000175000017500000003176513717225553020607 0ustar mehdimehdi Stdlib.Lazy

Module Stdlib.Lazy

module Lazy: Lazy

type 'a t = 'a CamlinternalLazy.t 

A value of type 'Lazy.t is a deferred computation, called a suspension, that has a result of type 'a. The special expression syntax lazy (expr) makes a suspension of the computation of expr, without computing expr itself yet. "Forcing" the suspension will then compute expr and return its result. Matching a suspension with the special pattern syntax lazy(pattern) also computes the underlying expression and tries to bind it to pattern:

    let lazy_option_map f x =
    match x with
    | lazy (Some x) -> Some (Lazy.force f x)
    | _ -> None
  

Note: If lazy patterns appear in multiple cases in a pattern-matching, lazy expressions may be forced even outside of the case ultimately selected by the pattern matching. In the example above, the suspension x is always computed.

Note: lazy_t is the built-in type constructor used by the compiler for the lazy keyword. You should not use it directly. Always use Lazy.t instead.

Note: Lazy.force is not thread-safe. If you use this module in a multi-threaded program, you will need to add some locks.

Note: if the program is compiled with the -rectypes option, ill-founded recursive definitions of the form let rec x = lazy x or let rec x = lazy(lazy(...(lazy x))) are accepted by the type-checker and lead, when forced, to ill-formed values that trigger infinite loops in the garbage collector and other parts of the run-time system. Without the -rectypes option, such ill-founded recursive definitions are rejected by the type-checker.

exception Undefined
val force : 'a t -> 'a

force x forces the suspension x and returns its result. If x has already been forced, Lazy.force x returns the same value again without recomputing it. If it raised an exception, the same exception is raised again.

  • Raises Undefined if the forcing of x tries to force x itself recursively.
val force_val : 'a t -> 'a

force_val x forces the suspension x and returns its result. If x has already been forced, force_val x returns the same value again without recomputing it.

If the computation of x raises an exception, it is unspecified whether force_val x raises the same exception or Lazy.Undefined.

  • Raises Undefined if the forcing of x tries to force x itself recursively.
val from_fun : (unit -> 'a) -> 'a t

from_fun f is the same as lazy (f ()) but slightly more efficient.

from_fun should only be used if the function f is already defined. In particular it is always less efficient to write from_fun (fun () -> expr) than lazy expr.

  • Since 4.00.0
val from_val : 'a -> 'a t

from_val v returns an already-forced suspension of v. This is for special purposes only and should not be confused with lazy (v).

  • Since 4.00.0
val is_val : 'a t -> bool

is_val x returns true if x has already been forced and did not raise an exception.

  • Since 4.00.0
val lazy_from_fun : (unit -> 'a) -> 'a t
Deprecated.synonym for from_fun.
val lazy_from_val : 'a -> 'a t
Deprecated.synonym for from_val.
val lazy_is_val : 'a t -> bool
Deprecated.synonym for is_val.
ocaml-doc-4.11/ocaml.html/libref/MoreLabels.Map.Make.html0000644000175000017500000003745113717225553022063 0ustar mehdimehdi MoreLabels.Map.Make

Functor MoreLabels.Map.Make

module Make: 
functor (Ord : OrderedType-> S with type key = Ord.t and type 'a t = 'a Map.Make(Ord).t
Parameters:
Ord : OrderedType

type key 
type +'a t 
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key:key ->
data:'a -> 'a t -> 'a t
val update : key:key ->
f:('a option -> 'a option) -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge : f:(key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t
val union : f:(key -> 'a -> 'a -> 'a option) ->
'a t -> 'a t -> 'a t
val compare : cmp:('a -> 'a -> int) ->
'a t -> 'a t -> int
val equal : cmp:('a -> 'a -> bool) ->
'a t -> 'a t -> bool
val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit
val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b
val for_all : f:(key -> 'a -> bool) -> 'a t -> bool
val exists : f:(key -> 'a -> bool) -> 'a t -> bool
val filter : f:(key -> 'a -> bool) ->
'a t -> 'a t
val filter_map : f:(key -> 'a -> 'b option) ->
'a t -> 'b t
val partition : f:(key -> 'a -> bool) ->
'a t -> 'a t * 'a t
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> key * 'a
val min_binding_opt : 'a t -> (key * 'a) option
val max_binding : 'a t -> key * 'a
val max_binding_opt : 'a t -> (key * 'a) option
val choose : 'a t -> key * 'a
val choose_opt : 'a t -> (key * 'a) option
val split : key ->
'a t ->
'a t * 'a option * 'a t
val find : key -> 'a t -> 'a
val find_opt : key -> 'a t -> 'a option
val find_first : f:(key -> bool) ->
'a t -> key * 'a
val find_first_opt : f:(key -> bool) ->
'a t -> (key * 'a) option
val find_last : f:(key -> bool) ->
'a t -> key * 'a
val find_last_opt : f:(key -> bool) ->
'a t -> (key * 'a) option
val map : f:('a -> 'b) -> 'a t -> 'b t
val mapi : f:(key -> 'a -> 'b) ->
'a t -> 'b t
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_from : key ->
'a t -> (key * 'a) Seq.t
val add_seq : (key * 'a) Seq.t ->
'a t -> 'a t
val of_seq : (key * 'a) Seq.t -> 'a t
ocaml-doc-4.11/ocaml.html/libref/Ephemeron.SeededS.html0000644000175000017500000001500713717225552021673 0ustar mehdimehdi Ephemeron.SeededS

Module type Ephemeron.SeededS

module type SeededS = sig .. end

The output signature of the functor Ephemeron.K1.MakeSeeded and Ephemeron.K2.MakeSeeded.


include Hashtbl.SeededS
val clean : 'a t -> unit

remove all dead bindings. Done automatically during automatic resizing.

val stats_alive : 'a t -> Hashtbl.statistics

same as Hashtbl.SeededS.stats but only count the alive bindings

ocaml-doc-4.11/ocaml.html/libref/type_StdLabels.Bytes.html0000644000175000017500000001126713717225553022446 0ustar mehdimehdi StdLabels.Bytes (module BytesLabels) ocaml-doc-4.11/ocaml.html/libref/Stdlib.ArrayLabels.html0000644000175000017500000007144513717225552022067 0ustar mehdimehdi Stdlib.ArrayLabels

Module Stdlib.ArrayLabels

module ArrayLabels: ArrayLabels

type 'a t = 'a array 

An alias for the type of arrays.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

get a n returns the element number n of array a. The first element has number 0. The last element has number length a - 1. You can also write a.(n) instead of get a n.

  • Raises Invalid_argument if n is outside the range 0 to (length a - 1).
val set : 'a array -> int -> 'a -> unit

set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of set a n x.

  • Raises Invalid_argument if n is outside the range 0 to length a - 1.
val make : int -> 'a -> 'a array

make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create : int -> 'a -> 'a array
Deprecated.create is an alias for ArrayLabels.make.
val init : int -> f:(int -> 'a) -> 'a array

init n ~f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, init n ~f tabulates the results of f applied to the integers 0 to n-1.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

make_matrix ~dimx ~dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

  • Raises Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
Deprecated.create_matrix is an alias for ArrayLabels.make_matrix.
val append : 'a array -> 'a array -> 'a array

append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

val concat : 'a array list -> 'a array

Same as ArrayLabels.append, but concatenates a list of arrays.

val sub : 'a array -> pos:int -> len:int -> 'a array

sub a ~pos ~len returns a fresh array of length len, containing the elements number pos to pos + len - 1 of array a.

  • Raises Invalid_argument if pos and len do not designate a valid subarray of a; that is, if pos < 0, or len < 0, or pos + len > length a.
val copy : 'a array -> 'a array

copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> pos:int -> len:int -> 'a -> unit

fill a ~pos ~len x modifies the array a in place, storing x in elements number pos to pos + len - 1.

  • Raises Invalid_argument if pos and len do not designate a valid subarray of a.
val blit : src:'a array -> src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unit

blit ~src ~src_pos ~dst ~dst_pos ~len copies len elements from array src, starting at element number src_pos, to array dst, starting at element number dst_pos. It works correctly even if src and dst are the same array, and the source and destination chunks overlap.

  • Raises Invalid_argument if src_pos and len do not designate a valid subarray of src, or if dst_pos and len do not designate a valid subarray of dst.
val to_list : 'a array -> 'a list

to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

of_list l returns a fresh array containing the elements of l.

val iter : f:('a -> unit) -> 'a array -> unit

iter ~f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(length a - 1); ().

val map : f:('a -> 'b) -> 'a array -> 'b array

map ~f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(length a - 1) |].

val iteri : f:(int -> 'a -> unit) -> 'a array -> unit

Same as ArrayLabels.iter, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array

Same as ArrayLabels.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a

fold_left ~f ~init a computes f (... (f (f init a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'a

fold_right ~f a ~init computes f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...)), where n is the length of the array a.

Iterators on two arrays

val iter2 : f:('a -> 'b -> unit) -> 'a array -> 'b array -> unit

iter2 ~f a b applies function f to all the elements of a and b.

  • Since 4.05.0
  • Raises Invalid_argument if the arrays are not the same size.
val map2 : f:('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array

map2 ~f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|].

  • Since 4.05.0
  • Raises Invalid_argument if the arrays are not the same size.

Array scanning

val exists : f:('a -> bool) -> 'a array -> bool

exists ~f [|a1; ...; an|] checks if at least one element of the array satisfies the predicate f. That is, it returns (f a1) || (f a2) || ... || (f an).

  • Since 4.03.0
val for_all : f:('a -> bool) -> 'a array -> bool

for_all ~f [|a1; ...; an|] checks if all elements of the array satisfy the predicate f. That is, it returns (f a1) && (f a2) && ... && (f an).

  • Since 4.03.0
val for_all2 : f:('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as ArrayLabels.for_all, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val exists2 : f:('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as ArrayLabels.exists, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val mem : 'a -> set:'a array -> bool

mem x ~set is true if and only if x is equal to an element of set.

  • Since 4.03.0
val memq : 'a -> set:'a array -> bool

Same as ArrayLabels.mem, but uses physical equality instead of structural equality to compare list elements.

  • Since 4.03.0
val create_float : int -> float array

create_float n returns a fresh float array of length n, with uninitialized data.

  • Since 4.03
val make_float : int -> float array

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, compare is a suitable comparison function, provided there are no floating-point NaN values in the data. After calling sort, the array is sorted in place in increasing order. sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is the length of the array. It is usually faster than the current implementation of ArrayLabels.sort.

val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort or ArrayLabels.stable_sort, whichever is faster on typical input.

Iterators

val to_seq : 'a array -> 'a Seq.t

Iterate on the array, in increasing order

  • Since 4.07
val to_seqi : 'a array -> (int * 'a) Seq.t

Iterate on the array, in increasing order, yielding indices along elements

  • Since 4.07
val of_seq : 'a Seq.t -> 'a array

Create an array from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Result.html0000644000175000017500000003345013717225552020757 0ustar mehdimehdi Result sig
  type ('a, 'e) t = ('a, 'e) Stdlib.result = Ok of '| Error of 'e
  val ok : '-> ('a, 'e) Stdlib.result
  val error : '-> ('a, 'e) Stdlib.result
  val value : ('a, 'e) Stdlib.result -> default:'-> 'a
  val get_ok : ('a, 'e) Stdlib.result -> 'a
  val get_error : ('a, 'e) Stdlib.result -> 'e
  val bind :
    ('a, 'e) Stdlib.result ->
    ('-> ('b, 'e) Stdlib.result) -> ('b, 'e) Stdlib.result
  val join :
    (('a, 'e) Stdlib.result, 'e) Stdlib.result -> ('a, 'e) Stdlib.result
  val map : ('-> 'b) -> ('a, 'e) Stdlib.result -> ('b, 'e) Stdlib.result
  val map_error :
    ('-> 'f) -> ('a, 'e) Stdlib.result -> ('a, 'f) Stdlib.result
  val fold :
    ok:('-> 'c) -> error:('-> 'c) -> ('a, 'e) Stdlib.result -> 'c
  val iter : ('-> unit) -> ('a, 'e) Stdlib.result -> unit
  val iter_error : ('-> unit) -> ('a, 'e) Stdlib.result -> unit
  val is_ok : ('a, 'e) Stdlib.result -> bool
  val is_error : ('a, 'e) Stdlib.result -> bool
  val equal :
    ok:('-> '-> bool) ->
    error:('-> '-> bool) ->
    ('a, 'e) Stdlib.result -> ('a, 'e) Stdlib.result -> bool
  val compare :
    ok:('-> '-> int) ->
    error:('-> '-> int) ->
    ('a, 'e) Stdlib.result -> ('a, 'e) Stdlib.result -> int
  val to_option : ('a, 'e) Stdlib.result -> 'a option
  val to_list : ('a, 'e) Stdlib.result -> 'a list
  val to_seq : ('a, 'e) Stdlib.result -> 'Stdlib.Seq.t
end
ocaml-doc-4.11/ocaml.html/libref/Obj.Extension_constructor.html0000644000175000017500000001360713717225553023575 0ustar mehdimehdi Obj.Extension_constructor

Module Obj.Extension_constructor

module Extension_constructor: sig .. end

type t = extension_constructor 
val of_val : 'a -> t
val name : t -> string
val id : t -> int
ocaml-doc-4.11/ocaml.html/libref/type_Complex.html0000644000175000017500000002075413717225552021113 0ustar mehdimehdi Complex sig
  type t = { re : float; im : float; }
  val zero : Complex.t
  val one : Complex.t
  val i : Complex.t
  val neg : Complex.t -> Complex.t
  val conj : Complex.t -> Complex.t
  val add : Complex.t -> Complex.t -> Complex.t
  val sub : Complex.t -> Complex.t -> Complex.t
  val mul : Complex.t -> Complex.t -> Complex.t
  val inv : Complex.t -> Complex.t
  val div : Complex.t -> Complex.t -> Complex.t
  val sqrt : Complex.t -> Complex.t
  val norm2 : Complex.t -> float
  val norm : Complex.t -> float
  val arg : Complex.t -> float
  val polar : float -> float -> Complex.t
  val exp : Complex.t -> Complex.t
  val log : Complex.t -> Complex.t
  val pow : Complex.t -> Complex.t -> Complex.t
end
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Arg.html0000644000175000017500000007332013717225552020371 0ustar mehdimehdi Stdlib.Arg

Module Stdlib.Arg

module Arg: Arg

type spec = 
| Unit of (unit -> unit) (*

Call the function with unit argument

*)
| Bool of (bool -> unit) (*

Call the function with a bool argument

*)
| Set of bool ref (*

Set the reference to true

*)
| Clear of bool ref (*

Set the reference to false

*)
| String of (string -> unit) (*

Call the function with a string argument

*)
| Set_string of string ref (*

Set the reference to the string argument

*)
| Int of (int -> unit) (*

Call the function with an int argument

*)
| Set_int of int ref (*

Set the reference to the int argument

*)
| Float of (float -> unit) (*

Call the function with a float argument

*)
| Set_float of float ref (*

Set the reference to the float argument

*)
| Tuple of spec list (*

Take several arguments according to the spec list

*)
| Symbol of string list * (string -> unit) (*

Take one of the symbols as argument and call the function with the symbol

*)
| Rest of (string -> unit) (*

Stop interpreting keywords and call the function with each remaining argument

*)
| Expand of (string -> string array) (*

If the remaining arguments to process are of the form ["-foo""arg"] @ rest where "foo" is registered as Expand f, then the arguments "arg" @ rest are processed. Only allowed in parse_and_expand_argv_dynamic.

*)

The concrete type describing the behavior associated with a keyword.

type key = string 
type doc = string 
type usage_msg = string 
type anon_fun = string -> unit 
val parse : (key * spec * doc) list -> anon_fun -> usage_msg -> unit

Arg.parse speclist anon_fun usage_msg parses the command line. speclist is a list of triples (key, spec, doc). key is the option keyword, it must start with a '-' character. spec gives the option type and the function to call when this option is found on the command line. doc is a one-line description of this option. anon_fun is called on anonymous arguments. The functions in spec and anon_fun are called in the same order as their arguments appear on the command line.

If an error occurs, Arg.parse exits the program, after printing to standard error an error message as follows:

  • The reason for the error: unknown option, invalid or missing argument, etc.
  • usage_msg
  • The list of options, each followed by the corresponding doc string. Beware: options that have an empty doc string will not be included in the list.

For the user to be able to specify anonymous arguments starting with a -, include for example ("-"String anon_fun, doc) in speclist.

By default, parse recognizes two unit options, -help and --help, which will print to standard output usage_msg and the list of options, and exit the program. You can override this behaviour by specifying your own -help and --help options in speclist.

val parse_dynamic : (key * spec * doc) list ref ->
anon_fun -> usage_msg -> unit

Same as Arg.parse, except that the speclist argument is a reference and may be updated during the parsing. A typical use for this feature is to parse command lines of the form:

  • command subcommand options where the list of options depends on the value of the subcommand argument.
  • Since 4.01.0
val parse_argv : ?current:int ref ->
string array ->
(key * spec * doc) list -> anon_fun -> usage_msg -> unit

Arg.parse_argv ~current args speclist anon_fun usage_msg parses the array args as if it were the command line. It uses and updates the value of ~current (if given), or Arg.current. You must set it before calling parse_argv. The initial value of current is the index of the program name (argument 0) in the array. If an error occurs, Arg.parse_argv raises Arg.Bad with the error message as argument. If option -help or --help is given, Arg.parse_argv raises Arg.Help with the help message as argument.

val parse_argv_dynamic : ?current:int ref ->
string array ->
(key * spec * doc) list ref ->
anon_fun -> string -> unit

Same as Arg.parse_argv, except that the speclist argument is a reference and may be updated during the parsing. See Arg.parse_dynamic.

  • Since 4.01.0
val parse_and_expand_argv_dynamic : int ref ->
string array ref ->
(key * spec * doc) list ref ->
anon_fun -> string -> unit

Same as Arg.parse_argv_dynamic, except that the argv argument is a reference and may be updated during the parsing of Expand arguments. See Arg.parse_argv_dynamic.

  • Since 4.05.0
val parse_expand : (key * spec * doc) list -> anon_fun -> usage_msg -> unit

Same as Arg.parse, except that the Expand arguments are allowed and the Arg.current reference is not updated.

  • Since 4.05.0
exception Help of string

Raised by Arg.parse_argv when the user asks for help.

exception Bad of string

Functions in spec or anon_fun can raise Arg.Bad with an error message to reject invalid arguments. Arg.Bad is also raised by Arg.parse_argv in case of an error.

val usage : (key * spec * doc) list -> usage_msg -> unit

Arg.usage speclist usage_msg prints to standard error an error message that includes the list of valid options. This is the same message that Arg.parse prints in case of error. speclist and usage_msg are the same as for Arg.parse.

val usage_string : (key * spec * doc) list -> usage_msg -> string

Returns the message that would have been printed by Arg.usage, if provided with the same parameters.

val align : ?limit:int ->
(key * spec * doc) list -> (key * spec * doc) list

Align the documentation strings by inserting spaces at the first alignment separator (tab or, if tab is not found, space), according to the length of the keyword. Use a alignment separator as the first character in a doc string if you want to align the whole string. The doc strings corresponding to Symbol arguments are aligned on the next line.

limit : options with keyword and message longer than limit will not be used to compute the alignment.
val current : int ref

Position (in Sys.argv) of the argument being processed. You can change this value, e.g. to force Arg.parse to skip some arguments. Arg.parse uses the initial value of Arg.current as the index of argument 0 (the program name) and starts parsing arguments at the next element.

val read_arg : string -> string array

Arg.read_arg file reads newline-terminated command line arguments from file file.

  • Since 4.05.0
val read_arg0 : string -> string array

Identical to Arg.read_arg but assumes null character terminated command line arguments.

  • Since 4.05.0
val write_arg : string -> string array -> unit

Arg.write_arg file args writes the arguments args newline-terminated into the file file. If the any of the arguments in args contains a newline, use Arg.write_arg0 instead.

  • Since 4.05.0
val write_arg0 : string -> string array -> unit

Identical to Arg.write_arg but uses the null character for terminator instead of newline.

  • Since 4.05.0
ocaml-doc-4.11/ocaml.html/libref/Stdlib.MoreLabels.html0000644000175000017500000001407513717225553021710 0ustar mehdimehdi Stdlib.MoreLabels

Module Stdlib.MoreLabels

module MoreLabels: MoreLabels

module Hashtbl: sig .. end
module Map: sig .. end
module Set: sig .. end
ocaml-doc-4.11/ocaml.html/libref/type_ListLabels.html0000644000175000017500000006555013717225552021545 0ustar mehdimehdi ListLabels sig
  type 'a t = 'a list = [] | (::) of 'a * 'a list
  val length : 'a list -> int
  val hd : 'a list -> 'a
  val compare_lengths : 'a list -> 'b list -> int
  val compare_length_with : 'a list -> len:int -> int
  val cons : '-> 'a list -> 'a list
  val tl : 'a list -> 'a list
  val nth : 'a list -> int -> 'a
  val nth_opt : 'a list -> int -> 'a option
  val rev : 'a list -> 'a list
  val init : len:int -> f:(int -> 'a) -> 'a list
  val append : 'a list -> 'a list -> 'a list
  val rev_append : 'a list -> 'a list -> 'a list
  val concat : 'a list list -> 'a list
  val flatten : 'a list list -> 'a list
  val iter : f:('-> unit) -> 'a list -> unit
  val iteri : f:(int -> '-> unit) -> 'a list -> unit
  val map : f:('-> 'b) -> 'a list -> 'b list
  val mapi : f:(int -> '-> 'b) -> 'a list -> 'b list
  val rev_map : f:('-> 'b) -> 'a list -> 'b list
  val filter_map : f:('-> 'b option) -> 'a list -> 'b list
  val concat_map : f:('-> 'b list) -> 'a list -> 'b list
  val fold_left_map :
    f:('-> '-> 'a * 'c) -> init:'-> 'b list -> 'a * 'c list
  val fold_left : f:('-> '-> 'a) -> init:'-> 'b list -> 'a
  val fold_right : f:('-> '-> 'b) -> 'a list -> init:'-> 'b
  val iter2 : f:('-> '-> unit) -> 'a list -> 'b list -> unit
  val map2 : f:('-> '-> 'c) -> 'a list -> 'b list -> 'c list
  val rev_map2 : f:('-> '-> 'c) -> 'a list -> 'b list -> 'c list
  val fold_left2 :
    f:('-> '-> '-> 'a) -> init:'-> 'b list -> 'c list -> 'a
  val fold_right2 :
    f:('-> '-> '-> 'c) -> 'a list -> 'b list -> init:'-> 'c
  val for_all : f:('-> bool) -> 'a list -> bool
  val exists : f:('-> bool) -> 'a list -> bool
  val for_all2 : f:('-> '-> bool) -> 'a list -> 'b list -> bool
  val exists2 : f:('-> '-> bool) -> 'a list -> 'b list -> bool
  val mem : '-> set:'a list -> bool
  val memq : '-> set:'a list -> bool
  val find : f:('-> bool) -> 'a list -> 'a
  val find_opt : f:('-> bool) -> 'a list -> 'a option
  val find_map : f:('-> 'b option) -> 'a list -> 'b option
  val filter : f:('-> bool) -> 'a list -> 'a list
  val find_all : f:('-> bool) -> 'a list -> 'a list
  val filteri : f:(int -> '-> bool) -> 'a list -> 'a list
  val partition : f:('-> bool) -> 'a list -> 'a list * 'a list
  val assoc : '-> ('a * 'b) list -> 'b
  val assoc_opt : '-> ('a * 'b) list -> 'b option
  val assq : '-> ('a * 'b) list -> 'b
  val assq_opt : '-> ('a * 'b) list -> 'b option
  val mem_assoc : '-> map:('a * 'b) list -> bool
  val mem_assq : '-> map:('a * 'b) list -> bool
  val remove_assoc : '-> ('a * 'b) list -> ('a * 'b) list
  val remove_assq : '-> ('a * 'b) list -> ('a * 'b) list
  val split : ('a * 'b) list -> 'a list * 'b list
  val combine : 'a list -> 'b list -> ('a * 'b) list
  val sort : cmp:('-> '-> int) -> 'a list -> 'a list
  val stable_sort : cmp:('-> '-> int) -> 'a list -> 'a list
  val fast_sort : cmp:('-> '-> int) -> 'a list -> 'a list
  val sort_uniq : cmp:('-> '-> int) -> 'a list -> 'a list
  val merge : cmp:('-> '-> int) -> 'a list -> 'a list -> 'a list
  val to_seq : 'a list -> 'Stdlib.Seq.t
  val of_seq : 'Stdlib.Seq.t -> 'a list
end
ocaml-doc-4.11/ocaml.html/libref/BytesLabels.html0000644000175000017500000013516713717225552020661 0ustar mehdimehdi BytesLabels

Module BytesLabels

module BytesLabels: sig .. end

Byte sequence operations.

  • Since 4.02.0 This module is intended to be used through {!StdLabels} which replaces {!Array}, {!Bytes}, {!List} and {!String} with their labeled counterparts. For example: {[ open StdLabels let first = Bytes.sub ~pos:0 ~len:1 ]}

val length : bytes -> int

Return the length (number of bytes) of the argument.

val get : bytes -> int -> char

get s n returns the byte at index n in argument s.

  • Raises Invalid_argument if n is not a valid index in s.
val set : bytes -> int -> char -> unit

set s n c modifies s in place, replacing the byte at index n with c.

  • Raises Invalid_argument if n is not a valid index in s.
val create : int -> bytes

create n returns a new byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val make : int -> char -> bytes

make n c returns a new byte sequence of length n, filled with the byte c.

val init : int -> f:(int -> char) -> bytes

init n f returns a fresh byte sequence of length n, with character i initialized to the result of f i.

val empty : bytes

A byte sequence of size 0.

val copy : bytes -> bytes

Return a new byte sequence that contains the same bytes as the argument.

val of_string : string -> bytes

Return a new byte sequence that contains the same bytes as the given string.

val to_string : bytes -> string

Return a new string that contains the same bytes as the given byte sequence.

val sub : bytes -> pos:int -> len:int -> bytes

sub s start len returns a new byte sequence of length len, containing the subsequence of s that starts at position start and has length len.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val sub_string : bytes -> pos:int -> len:int -> string

Same as sub but return a string instead of a byte sequence.

val extend : bytes -> left:int -> right:int -> bytes

extend s left right returns a new byte sequence that contains the bytes of s, with left uninitialized bytes prepended and right uninitialized bytes appended to it. If left or right is negative, then bytes are removed (instead of appended) from the corresponding side of s.

  • Since 4.05.0
  • Raises Invalid_argument if the result length is negative or longer than Sys.max_string_length bytes.
val fill : bytes -> pos:int -> len:int -> char -> unit

fill s start len c modifies s in place, replacing len characters with c, starting at start.

  • Raises Invalid_argument if start and len do not designate a valid range of s.
val blit : src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

blit src srcoff dst dstoff len copies len bytes from sequence src, starting at index srcoff, to sequence dst, starting at index dstoff. It works correctly even if src and dst are the same byte sequence, and the source and destination intervals overlap.

  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val blit_string : src:string -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

blit src srcoff dst dstoff len copies len bytes from string src, starting at index srcoff, to byte sequence dst, starting at index dstoff.

  • Since 4.05.0
  • Raises Invalid_argument if srcoff and len do not designate a valid range of src, or if dstoff and len do not designate a valid range of dst.
val concat : sep:bytes -> bytes list -> bytes

concat sep sl concatenates the list of byte sequences sl, inserting the separator byte sequence sep between each, and returns the result as a new byte sequence.

val cat : bytes -> bytes -> bytes

cat s1 s2 concatenates s1 and s2 and returns the result as new byte sequence.

val iter : f:(char -> unit) -> bytes -> unit

iter f s applies function f in turn to all the bytes of s. It is equivalent to f (get s 0); f (get s 1); ...; f (get s
    (length s - 1)); ()
.

val iteri : f:(int -> char -> unit) -> bytes -> unit

Same as Bytes.iter, but the function is applied to the index of the byte as first argument and the byte itself as second argument.

val map : f:(char -> char) -> bytes -> bytes

map f s applies function f in turn to all the bytes of s and stores the resulting bytes in a new sequence that is returned as the result.

val mapi : f:(int -> char -> char) -> bytes -> bytes

mapi f s calls f with each character of s and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.

val trim : bytes -> bytes

Return a copy of the argument, without leading and trailing whitespace. The bytes regarded as whitespace are the ASCII characters ' ', '\012', '\n', '\r', and '\t'.

val escaped : bytes -> bytes

Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml.

val index : bytes -> char -> int

index s c returns the index of the first occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val index_opt : bytes -> char -> int option

index_opt s c returns the index of the first occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val rindex : bytes -> char -> int

rindex s c returns the index of the last occurrence of byte c in s.

  • Raises Not_found if c does not occur in s.
val rindex_opt : bytes -> char -> int option

rindex_opt s c returns the index of the last occurrence of byte c in s or None if c does not occur in s.

  • Since 4.05
val index_from : bytes -> int -> char -> int

index_from s i c returns the index of the first occurrence of byte c in s after position i. Bytes.index s c is equivalent to Bytes.index_from s 0 c.

  • Raises
    • Invalid_argument if i is not a valid position in s.
    • Not_found if c does not occur in s after position i.
val index_from_opt : bytes -> int -> char -> int option

index_from _opts i c returns the index of the first occurrence of byte c in s after position i or None if c does not occur in s after position i. Bytes.index_opt s c is equivalent to Bytes.index_from_opt s 0 c.

  • Since 4.05
  • Raises Invalid_argument if i is not a valid position in s.
val rindex_from : bytes -> int -> char -> int

rindex_from s i c returns the index of the last occurrence of byte c in s before position i+1. rindex s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Raises
    • Invalid_argument if i+1 is not a valid position in s.
    • Not_found if c does not occur in s before position i+1.
val rindex_from_opt : bytes -> int -> char -> int option

rindex_from_opt s i c returns the index of the last occurrence of byte c in s before position i+1 or None if c does not occur in s before position i+1. rindex_opt s c is equivalent to rindex_from s (Bytes.length s - 1) c.

  • Since 4.05
  • Raises Invalid_argument if i+1 is not a valid position in s.
val contains : bytes -> char -> bool

contains s c tests if byte c appears in s.

val contains_from : bytes -> int -> char -> bool

contains_from s start c tests if byte c appears in s after position start. contains s c is equivalent to contains_from
    s 0 c
.

  • Raises Invalid_argument if start is not a valid position in s.
val rcontains_from : bytes -> int -> char -> bool

rcontains_from s stop c tests if byte c appears in s before position stop+1.

  • Raises Invalid_argument if stop < 0 or stop+1 is not a valid position in s.
val uppercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

val uncapitalize : bytes -> bytes
Deprecated.Functions operating on Latin-1 character set are deprecated.

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set..

val uppercase_ascii : bytes -> bytes

Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val lowercase_ascii : bytes -> bytes

Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • Since 4.05.0
val capitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.

  • Since 4.05.0
val uncapitalize_ascii : bytes -> bytes

Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.

  • Since 4.05.0
type t = bytes 

An alias for the type of byte sequences.

val compare : t -> t -> int

The comparison function for byte sequences, with the same specification as compare. Along with the type t, this function compare allows the module Bytes to be passed as argument to the functors Set.Make and Map.Make.

val equal : t -> t -> bool

The equality function for byte sequences.

  • Since 4.05.0

Iterators

val to_seq : t -> char Seq.t

Iterate on the string, in increasing index order. Modifications of the string during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : t -> (int * char) Seq.t

Iterate on the string, in increasing order, yielding indices along chars

  • Since 4.07
val of_seq : char Seq.t -> t

Create a string from the generator

  • Since 4.07

Binary encoding/decoding of integers

The functions in this section binary encode and decode integers to and from byte sequences.

All following functions raise Invalid_argument if the space needed at index i to decode or encode the integer is not available.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. These extra bits are handled as follows:

  • Functions that decode signed (resp. unsigned) 8-bit or 16-bit integers represented by int values sign-extend (resp. zero-extend) their result.
  • Functions that encode 8-bit or 16-bit integers represented by int values truncate their input to their least significant bytes.
val get_uint8 : bytes -> int -> int

get_uint8 b i is b's unsigned 8-bit integer starting at byte index i.

  • Since 4.08
val get_int8 : bytes -> int -> int

get_int8 b i is b's signed 8-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_ne : bytes -> int -> int

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_be : bytes -> int -> int

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_uint16_le : bytes -> int -> int

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_ne : bytes -> int -> int

get_int16_ne b i is b's native-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_be : bytes -> int -> int

get_int16_be b i is b's big-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int16_le : bytes -> int -> int

get_int16_le b i is b's little-endian signed 16-bit integer starting at byte index i.

  • Since 4.08
val get_int32_ne : bytes -> int -> int32

get_int32_ne b i is b's native-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_be : bytes -> int -> int32

get_int32_be b i is b's big-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int32_le : bytes -> int -> int32

get_int32_le b i is b's little-endian 32-bit integer starting at byte index i.

  • Since 4.08
val get_int64_ne : bytes -> int -> int64

get_int64_ne b i is b's native-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_be : bytes -> int -> int64

get_int64_be b i is b's big-endian 64-bit integer starting at byte index i.

  • Since 4.08
val get_int64_le : bytes -> int -> int64

get_int64_le b i is b's little-endian 64-bit integer starting at byte index i.

  • Since 4.08
val set_uint8 : bytes -> int -> int -> unit

set_uint8 b i v sets b's unsigned 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_int8 : bytes -> int -> int -> unit

set_int8 b i v sets b's signed 8-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_ne : bytes -> int -> int -> unit

set_uint16_ne b i v sets b's native-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_be : bytes -> int -> int -> unit

set_uint16_be b i v sets b's big-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_uint16_le : bytes -> int -> int -> unit

set_uint16_le b i v sets b's little-endian unsigned 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_ne : bytes -> int -> int -> unit

set_int16_ne b i v sets b's native-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_be : bytes -> int -> int -> unit

set_int16_be b i v sets b's big-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int16_le : bytes -> int -> int -> unit

set_int16_le b i v sets b's little-endian signed 16-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_ne : bytes -> int -> int32 -> unit

set_int32_ne b i v sets b's native-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_be : bytes -> int -> int32 -> unit

set_int32_be b i v sets b's big-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int32_le : bytes -> int -> int32 -> unit

set_int32_le b i v sets b's little-endian 32-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_ne : bytes -> int -> int64 -> unit

set_int64_ne b i v sets b's native-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_be : bytes -> int -> int64 -> unit

set_int64_be b i v sets b's big-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
val set_int64_le : bytes -> int -> int64 -> unit

set_int64_le b i v sets b's little-endian 64-bit integer starting at byte index i to v.

  • Since 4.08
ocaml-doc-4.11/ocaml.html/libref/index_module_types.html0000644000175000017500000002403113717225553022334 0ustar mehdimehdi Index of module types

Index of module types

H
HashedType [MoreLabels.Hashtbl]
HashedType [Hashtbl]

The input signature of the functor Hashtbl.Make.

I
Immediate [Sys.Immediate64]
N
Non_immediate [Sys.Immediate64]
O
OrderedType [Set]

Input signature of the functor Set.Make.

OrderedType [MoreLabels.Set]
OrderedType [MoreLabels.Map]
OrderedType [Map]

Input signature of the functor Map.Make.

S
S [Weak]

The output signature of the functor Weak.Make.

S [Set]

Output signature of the functor Set.Make.

S [MoreLabels.Set]
S [MoreLabels.Map]
S [MoreLabels.Hashtbl]
S [Map]

Output signature of the functor Map.Make.

S [Hashtbl]

The output signature of the functor Hashtbl.Make.

S [Ephemeron]

The output signature of the functor Ephemeron.K1.Make and Ephemeron.K2.Make.

SeededHashedType [MoreLabels.Hashtbl]
SeededHashedType [Hashtbl]

The input signature of the functor Hashtbl.MakeSeeded.

SeededS [MoreLabels.Hashtbl]
SeededS [Hashtbl]

The output signature of the functor Hashtbl.MakeSeeded.

SeededS [Ephemeron]

The output signature of the functor Ephemeron.K1.MakeSeeded and Ephemeron.K2.MakeSeeded.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.html0000644000175000017500000037353213717225552017671 0ustar mehdimehdi Stdlib

Module Stdlib

module Stdlib: sig .. end

The OCaml Standard library.

This module is automatically opened at the beginning of each compilation. All components of this module can therefore be referred by their short name, without prefixing them by Stdlib.

It particular, it provides the basic operations over the built-in types (numbers, booleans, byte sequences, strings, exceptions, references, lists, arrays, input-output channels, ...) and the standard library modules.


Exceptions

val raise : exn -> 'a

Raise the given exception value

val raise_notrace : exn -> 'a

A faster version raise which does not record the backtrace.

  • Since 4.02.0
val invalid_arg : string -> 'a

Raise exception Invalid_argument with the given string.

val failwith : string -> 'a

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your programs.

exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are the location of the match keyword in the source code (file name, line number, column number).

exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the assert keyword in the source code (file name, line number, column number).

exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense. The string gives some information to the programmer. As a general rule, this exception should not be caught, it denotes a programming error and the code should be modified not to trigger it.

exception Failure of string

Exception raised by library functions to signal that they are undefined on the given arguments. The string is meant to give some information to the programmer; you must not pattern match on the string literal because it may change in future versions (use Failure _ instead).

exception Not_found

Exception raised by search functions when the desired object could not be found.

exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the computation. (Not reliable for allocations on the minor heap.)

exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal size. This often indicates infinite or excessively deep recursion in the user's program.

Before 4.10, it was not fully implemented by the native-code compiler.

exception Sys_error of string

Exception raised by the input/output functions to report an operating system error. The string is meant to give some information to the programmer; you must not pattern match on the string literal because it may change in future versions (use Sys_error _ instead).

exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.

exception Division_by_zero

Exception raised by integer division and remainder operations when their second argument is zero.

exception Sys_blocked_io

A special case of Sys_error raised when no I/O is possible on a non-blocking I/O channel.

exception Undefined_recursive_module of (string * int * int)

Exception raised when an ill-founded recursive module definition is evaluated. The arguments are the location of the definition in the source code (file name, line number, column number).

Comparisons

val (=) : 'a -> 'a -> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raises Invalid_argument. Equality between cyclic data structures may not terminate. Left-associative operator, see Ocaml_operators for more information.

val (<>) : 'a -> 'a -> bool

Negation of (=). Left-associative operator, see Ocaml_operators for more information.

val (<) : 'a -> 'a -> bool

See (>=). Left-associative operator, see Ocaml_operators for more information.

val (>) : 'a -> 'a -> bool

See (>=). Left-associative operator, see Ocaml_operators for more information.

val (<=) : 'a -> 'a -> bool

See (>=). Left-associative operator, see Ocaml_operators for more information.

val (>=) : 'a -> 'a -> bool

Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with ( = ). As in the case of ( = ), mutable structures are compared by contents. Comparison between functional values raises Invalid_argument. Comparison between cyclic structures may not terminate. Left-associative operator, see Ocaml_operators for more information.

val compare : 'a -> 'a -> int

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y. The ordering implemented by compare is compatible with the comparison predicates =, < and > defined above, with one difference on the treatment of the float value nan. Namely, the comparison predicates treat nan as different from any other float value, including itself; while compare treats nan as equal to itself and less than any other float value. This treatment of nan ensures that compare defines a total ordering relation.

compare applied to functional values may raise Invalid_argument. compare applied to cyclic structures may not terminate.

The compare function can be used as the comparison function required by the Set.Make and Map.Make functors, as well as the List.sort and Array.sort functions.

val min : 'a -> 'a -> 'a

Return the smaller of the two arguments. The result is unspecified if one of the arguments contains the float value nan.

val max : 'a -> 'a -> 'a

Return the greater of the two arguments. The result is unspecified if one of the arguments contains the float value nan.

val (==) : 'a -> 'a -> bool

e1 == e2 tests for physical equality of e1 and e2. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables, e1 == e2 is true if and only if physical modification of e1 also affects e2. On non-mutable types, the behavior of ( == ) is implementation-dependent; however, it is guaranteed that e1 == e2 implies compare e1 e2 = 0. Left-associative operator, see Ocaml_operators for more information.

val (!=) : 'a -> 'a -> bool

Negation of (==). Left-associative operator, see Ocaml_operators for more information.

Boolean operations

val not : bool -> bool

The boolean negation.

val (&&) : bool -> bool -> bool

The boolean 'and'. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated first, and if it returns false, e2 is not evaluated at all. Right-associative operator, see Ocaml_operators for more information.

val (&) : bool -> bool -> bool
Deprecated.(&&) should be used instead. Right-associative operator, see Ocaml_operators for more information.
val (||) : bool -> bool -> bool

The boolean 'or'. Evaluation is sequential, left-to-right: in e1 || e2, e1 is evaluated first, and if it returns true, e2 is not evaluated at all. Right-associative operator, see Ocaml_operators for more information.

val (or) : bool -> bool -> bool
Deprecated.(||) should be used instead. Right-associative operator, see Ocaml_operators for more information.

Debugging

val __LOC__ : string

__LOC__ returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d".

  • Since 4.02.0
val __FILE__ : string

__FILE__ returns the name of the file currently being parsed by the compiler.

  • Since 4.02.0
val __LINE__ : int

__LINE__ returns the line number at which this expression appears in the file currently being parsed by the compiler.

  • Since 4.02.0
val __MODULE__ : string

__MODULE__ returns the module name of the file being parsed by the compiler.

  • Since 4.02.0
val __POS__ : string * int * int * int

__POS__ returns a tuple (file,lnum,cnum,enum), corresponding to the location at which this expression appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.

  • Since 4.02.0
val __LOC_OF__ : 'a -> string * 'a

__LOC_OF__ expr returns a pair (loc, expr) where loc is the location of expr in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d".

  • Since 4.02.0
val __LINE_OF__ : 'a -> int * 'a

__LINE_OF__ expr returns a pair (line, expr), where line is the line number at which the expression expr appears in the file currently being parsed by the compiler.

  • Since 4.02.0
val __POS_OF__ : 'a -> (string * int * int * int) * 'a

__POS_OF__ expr returns a pair (loc,expr), where loc is a tuple (file,lnum,cnum,enum) corresponding to the location at which the expression expr appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.

  • Since 4.02.0

Composition operators

val (|>) : 'a -> ('a -> 'b) -> 'b

Reverse-application operator: x |> f |> g is exactly equivalent to g (f (x)). Left-associative operator, see Ocaml_operators for more information.

  • Since 4.01
val (@@) : ('a -> 'b) -> 'a -> 'b

Application operator: g @@ f @@ x is exactly equivalent to g (f (x)). Right-associative operator, see Ocaml_operators for more information.

  • Since 4.01

Integer arithmetic

Integers are Sys.int_size bits wide. All operations are taken modulo 2Sys.int_size. They do not fail on overflow.

val (~-) : int -> int

Unary negation. You can also write - e instead of ~- e. Unary operator, see Ocaml_operators for more information.

val (~+) : int -> int

Unary addition. You can also write + e instead of ~+ e. Unary operator, see Ocaml_operators for more information.

  • Since 3.12.0
val succ : int -> int

succ x is x + 1.

val pred : int -> int

pred x is x - 1.

val (+) : int -> int -> int

Integer addition. Left-associative operator, see Ocaml_operators for more information.

val (-) : int -> int -> int

Integer subtraction. Left-associative operator, , see Ocaml_operators for more information.

val ( * ) : int -> int -> int

Integer multiplication. Left-associative operator, see Ocaml_operators for more information.

val (/) : int -> int -> int

Integer division. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover, (- x) / y = x / (- y) = - (x / y). Left-associative operator, see Ocaml_operators for more information.

  • Raises Division_by_zero if the second argument is 0.
val (mod) : int -> int -> int

Integer remainder. If y is not zero, the result of mod y satisfies the following properties: x = (x / y) * y + x mod y and abs(x mod y) <= abs(y) - 1. If y = 0, mod y raises Division_by_zero. Note that mod y is negative only if x < 0. Left-associative operator, see Ocaml_operators for more information.

  • Raises Division_by_zero if y is zero.
val abs : int -> int

Return the absolute value of the argument. Note that this may be negative if the argument is min_int.

val max_int : int

The greatest representable integer.

val min_int : int

The smallest representable integer.

Bitwise operations

val (land) : int -> int -> int

Bitwise logical and. Left-associative operator, see Ocaml_operators for more information.

val (lor) : int -> int -> int

Bitwise logical or. Left-associative operator, see Ocaml_operators for more information.

val (lxor) : int -> int -> int

Bitwise logical exclusive or. Left-associative operator, see Ocaml_operators for more information.

val lnot : int -> int

Bitwise logical negation.

val (lsl) : int -> int -> int

lsl m shifts n to the left by m bits. The result is unspecified if m < 0 or m > Sys.int_size. Right-associative operator, see Ocaml_operators for more information.

val (lsr) : int -> int -> int

lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless of the sign of n. The result is unspecified if m < 0 or m > Sys.int_size. Right-associative operator, see Ocaml_operators for more information.

val (asr) : int -> int -> int

asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is replicated. The result is unspecified if m < 0 or m > Sys.int_size. Right-associative operator, see Ocaml_operators for more information.

Floating-point arithmetic

OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /. 0.0, neg_infinity for -1.0 /. 0.0, and nan ('not a number') for 0.0 /. 0.0. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity is 0.0, and any arithmetic operation with nan as argument returns nan as result.

val (~-.) : float -> float

Unary negation. You can also write -. e instead of ~-. e. Unary operator, see Ocaml_operators for more information.

val (~+.) : float -> float

Unary addition. You can also write +. e instead of ~+. e. Unary operator, see Ocaml_operators for more information.

  • Since 3.12.0
val (+.) : float -> float -> float

Floating-point addition. Left-associative operator, see Ocaml_operators for more information.

val (-.) : float -> float -> float

Floating-point subtraction. Left-associative operator, see Ocaml_operators for more information.

val ( *. ) : float -> float -> float

Floating-point multiplication. Left-associative operator, see Ocaml_operators for more information.

val (/.) : float -> float -> float

Floating-point division. Left-associative operator, see Ocaml_operators for more information.

val ( ** ) : float -> float -> float

Exponentiation. Right-associative operator, see Ocaml_operators for more information.

val sqrt : float -> float

Square root.

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

val expm1 : float -> float

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

  • Since 3.12.0
val log1p : float -> float

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

  • Since 3.12.0
val cos : float -> float

Cosine. Argument is in radians.

val sin : float -> float

Sine. Argument is in radians.

val tan : float -> float

Tangent. Argument is in radians.

val acos : float -> float

Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between 0.0 and pi.

val asin : float -> float

Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between -pi/2 and pi/2.

val atan : float -> float

Arc tangent. Result is in radians and is between -pi/2 and pi/2.

val atan2 : float -> float -> float

atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine the quadrant of the result. Result is in radians and is between -pi and pi.

val hypot : float -> float -> float

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin. If one of x or y is infinite, returns infinity even if the other is nan.

  • Since 4.00.0
val cosh : float -> float

Hyperbolic cosine. Argument is in radians.

val sinh : float -> float

Hyperbolic sine. Argument is in radians.

val tanh : float -> float

Hyperbolic tangent. Argument is in radians.

val ceil : float -> float

Round above to an integer value. ceil f returns the least integer value greater than or equal to f. The result is returned as a float.

val floor : float -> float

Round below to an integer value. floor f returns the greatest integer value less than or equal to f. The result is returned as a float.

val abs_float : float -> float

abs_float f returns the absolute value of f.

val copysign : float -> float -> float

copysign x y returns a float whose absolute value is that of x and whose sign is that of y. If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.

  • Since 4.00.0
val mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.

val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

val float : int -> float

Same as float_of_int.

val float_of_int : int -> float

Convert an integer to floating-point.

val truncate : float -> int

Same as int_of_float.

val int_of_float : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val infinity : float

Positive infinity.

val neg_infinity : float

Negative infinity.

val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for 'not a number'. Any floating-point operation with nan as argument returns nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <> returns true if one or both of their arguments is nan.

val max_float : float

The largest positive finite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : float

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

type fpclass = 
| FP_normal (*

Normal number, none of the below

*)
| FP_subnormal (*

Number very close to 0.0, has reduced precision

*)
| FP_zero (*

Number is 0.0 or -0.0

*)
| FP_infinite (*

Number is positive or negative infinity

*)
| FP_nan (*

Not a number: result of an undefined operation

*)

The five classes of floating-point numbers, as determined by the classify_float function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

String operations

More string operations are provided in module String.

val (^) : string -> string -> string

String concatenation. Right-associative operator, see Ocaml_operators for more information.

Character operations

More character operations are provided in module Char.

val int_of_char : char -> int

Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code.

  • Raises Invalid_argument if the argument is outside the range 0--255.

Unit operations

val ignore : 'a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the result of the side-effecting function f. It is equivalent to f x; (), except that the latter may generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions

val string_of_bool : bool -> string

Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.

val bool_of_string_opt : string -> bool option

Convert the given string to a boolean.

Return None if the string is not "true" or "false".

  • Since 4.05
val bool_of_string : string -> bool

Same as bool_of_string_opt, but raise Invalid_argument "bool_of_string" instead of returning None.

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string_opt : string -> int option

Convert the given string to an integer. The string is read in decimal (by default, or if the string begins with 0u), in hexadecimal (if it begins with 0x or 0X), in octal (if it begins with 0o or 0O), or in binary (if it begins with 0b or 0B).

The 0u prefix reads the input as an unsigned integer in the range [0, 2*max_int+1]. If the input exceeds max_int it is converted to the signed integer min_int + input - max_int - 1.

The _ (underscore) character can appear anywhere in the string and is ignored.

Return None if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int.

  • Since 4.05
val int_of_string : string -> int

Same as int_of_string_opt, but raise Failure "int_of_string" instead of returning None.

val string_of_float : float -> string

Return the string representation of a floating-point number.

val float_of_string_opt : string -> float option

Convert the given string to a float. The string is read in decimal (by default) or in hexadecimal (marked by 0x or 0X).

The format of decimal floating-point numbers is  [-] dd.ddd (e|E) [+|-] dd , where d stands for a decimal digit.

The format of hexadecimal floating-point numbers is  [-] 0(x|X) hh.hhh (p|P) [+|-] dd , where h stands for an hexadecimal digit and d for a decimal digit.

In both cases, at least one of the integer and fractional parts must be given; the exponent part is optional.

The _ (underscore) character can appear anywhere in the string and is ignored.

Depending on the execution platforms, other representations of floating-point numbers can be accepted, but should not be relied upon.

Return None if the given string is not a valid representation of a float.

  • Since 4.05
val float_of_string : string -> float

Same as float_of_string_opt, but raise Failure "float_of_string" instead of returning None.

Pair operations

val fst : 'a * 'b -> 'a

Return the first component of a pair.

val snd : 'a * 'b -> 'b

Return the second component of a pair.

List operations

More list operations are provided in module List.

val (@) : 'a list -> 'a list -> 'a list

List concatenation. Not tail-recursive (length of the first argument). Right-associative operator, see Ocaml_operators for more information.

Input/output

Note: all input/output functions can raise Sys_error when the system calls they invoke fail.

type in_channel 

The type of input channel.

type out_channel 

The type of output channel.

val stdin : in_channel

The standard input for the process.

val stdout : out_channel

The standard output for the process.

val stderr : out_channel

The standard error output for the process.

Output functions on standard output

val print_char : char -> unit

Print a character on standard output.

val print_string : string -> unit

Print a string on standard output.

val print_bytes : bytes -> unit

Print a byte sequence on standard output.

  • Since 4.02.0
val print_int : int -> unit

Print an integer, in decimal, on standard output.

val print_float : float -> unit

Print a floating-point number, in decimal, on standard output.

val print_endline : string -> unit

Print a string, followed by a newline character, on standard output and flush standard output.

val print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.

Output functions on standard error

val prerr_char : char -> unit

Print a character on standard error.

val prerr_string : string -> unit

Print a string on standard error.

val prerr_bytes : bytes -> unit

Print a byte sequence on standard error.

  • Since 4.02.0
val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

val prerr_float : float -> unit

Print a floating-point number, in decimal, on standard error.

val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and flush standard error.

Input functions on standard input

val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.

val read_int_opt : unit -> int option

Flush standard output, then read one line from standard input and convert it to an integer.

Return None if the line read is not a valid representation of an integer.

  • Since 4.05
val read_int : unit -> int

Same as read_int_opt, but raise Failure "int_of_string" instead of returning None.

val read_float_opt : unit -> float option

Flush standard output, then read one line from standard input and convert it to a floating-point number.

Return None if the line read is not a valid representation of a floating-point number.

  • Since 4.05.0
val read_float : unit -> float

Same as read_float_opt, but raise Failure "float_of_string" instead of returning None.

General output functions

type open_flag = 
| Open_rdonly (*

open for reading.

*)
| Open_wronly (*

open for writing.

*)
| Open_append (*

open for appending: always write at end of file.

*)
| Open_creat (*

create the file if it does not exist.

*)
| Open_trunc (*

empty the file if it already exists.

*)
| Open_excl (*

fail if Open_creat and the file already exists.

*)
| Open_binary (*

open in binary mode (no conversion).

*)
| Open_text (*

open in text mode (may perform conversions).

*)
| Open_nonblock (*

open in non-blocking mode.

*)

Opening modes for open_out_gen and open_in_gen.

val open_out : string -> out_channel

Open the named file for writing, and return a new output channel on that file, positioned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.

val open_out_bin : string -> out_channel

Same as open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like open_out.

val open_out_gen : open_flag list -> int -> string -> out_channel

open_out_gen mode perm filename opens the named file for writing, as described above. The extra argument mode specifies the opening mode. The extra argument perm specifies the file permissions, in case the file must be created. open_out and open_out_bin are special cases of this function.

val flush : out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.

val flush_all : unit -> unit

Flush all open output channels; ignore errors.

val output_char : out_channel -> char -> unit

Write the character on the given output channel.

val output_string : out_channel -> string -> unit

Write the string on the given output channel.

val output_bytes : out_channel -> bytes -> unit

Write the byte sequence on the given output channel.

  • Since 4.02.0
val output : out_channel -> bytes -> int -> int -> unit

output oc buf pos len writes len characters from byte sequence buf, starting at offset pos, to the given output channel oc.

  • Raises Invalid_argument if pos and len do not designate a valid range of buf.
val output_substring : out_channel -> string -> int -> int -> unit

Same as output but take a string as argument instead of a byte sequence.

  • Since 4.02.0
val output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.

val output_binary_int : out_channel -> int -> unit

Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the input_binary_int function. The format is compatible across all machines for a given version of OCaml.

val output_value : out_channel -> 'a -> unit

Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function input_value. See the description of module Marshal for more information. output_value is equivalent to Marshal.to_channel with an empty list of flags.

val seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.

val pos_out : out_channel -> int

Return the current writing position for the given channel. Does not work on channels opened with the Open_append flag (returns unspecified results).

val out_channel_length : out_channel -> int

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.

val close_out : out_channel -> unit

Close the given channel, flushing all buffered write operations. Output functions raise a Sys_error exception when they are applied to a closed output channel, except close_out and flush, which do nothing when applied to an already closed channel. Note that close_out may raise Sys_error if the operating system signals an error when flushing or closing.

val close_out_noerr : out_channel -> unit

Same as close_out, but ignore all errors.

val set_binary_mode_out : out_channel -> bool -> unit

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take place during output. set_binary_mode_out oc false sets the channel oc to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

General input functions

val open_in : string -> in_channel

Open the named file for reading, and return a new input channel on that file, positioned at the beginning of the file.

val open_in_bin : string -> in_channel

Same as open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like open_in.

val open_in_gen : open_flag list -> int -> string -> in_channel

open_in_gen mode perm filename opens the named file for reading, as described above. The extra arguments mode and perm specify the opening mode and file permissions. open_in and open_in_bin are special cases of this function.

val input_char : in_channel -> char

Read one character from the given input channel.

  • Raises End_of_file if there are no more characters to read.
val input_line : in_channel -> string

Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end.

  • Raises End_of_file if the end of the file is reached at the beginning of line.
val input : in_channel -> bytes -> int -> int -> int

input ic buf pos len reads up to len characters from the given channel ic, storing them in byte sequence buf, starting at character number pos. It returns the actual number of characters read, between 0 and len (inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len exclusive means that not all requested len characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input must be called again to read the remaining characters, if desired. (See also really_input for reading exactly len characters.) Exception Invalid_argument "input" is raised if pos and len do not designate a valid range of buf.

val really_input : in_channel -> bytes -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in byte sequence buf, starting at character number pos.

  • Raises
    • End_of_file if the end of file is reached before len characters have been read.
    • Invalid_argument if pos and len do not designate a valid range of buf.
val really_input_string : in_channel -> int -> string

really_input_string ic len reads len characters from channel ic and returns them in a new string.

  • Since 4.02.0
  • Raises End_of_file if the end of file is reached before len characters have been read.
val input_byte : in_channel -> int

Same as input_char, but return the 8-bit integer representing the character.

  • Raises End_of_file if an end of file was reached.
val input_binary_int : in_channel -> int

Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See output_binary_int.

  • Raises End_of_file if an end of file was reached while reading the integer.
val input_value : in_channel -> 'a

Read the representation of a structured value, as produced by output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.

val seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works only for regular files. On files of other kinds, the behavior is unspecified.

val pos_in : in_channel -> int

Return the current reading position for the given channel.

val in_channel_length : in_channel -> int

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.

val close_in : in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied to a closed input channel, except close_in, which does nothing when applied to an already closed channel.

val close_in_noerr : in_channel -> unit

Same as close_in, but ignore all errors.

val set_binary_mode_in : in_channel -> bool -> unit

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take place during input. set_binary_mode_out ic false sets the channel ic to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

Operations on large files

module LargeFile: sig .. end

Operations on large files.

References

type 'a ref = {
   mutable contents : 'a;
}

The type of references (mutable indirection cells) containing a value of type 'a.

val ref : 'a -> 'a ref

Return a fresh reference containing the given value.

val (!) : 'a ref -> 'a

!r returns the current contents of reference r. Equivalent to fun r -> r.contents. Unary operator, see Ocaml_operators for more information.

val (:=) : 'a ref -> 'a -> unit

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v. Right-associative operator, see Ocaml_operators for more information.

val incr : int ref -> unit

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r.

Result type

type ('a, 'b) result = 
| Ok of 'a
| Error of 'b
  • Since 4.03.0

Operations on format strings

Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf and to print data with formatted output functions from modules Printf and Format.

Format strings are made of three kinds of entities:

  • conversions specifications, introduced by the special character '%' followed by one or more characters specifying what kind of argument to read or print,
  • formatting indications, introduced by the special character '@' followed by one or more characters specifying how to read or print the argument,
  • plain characters that are regular characters with usual lexical conventions. Plain characters specify string literals to be read in the input or printed in the output.

There is an additional lexical rule to escape the special characters '%' and '@' in format strings: if a special character follows a '%' character, it is treated as a plain character. In other words, "%%" is considered as a plain '%' and "%@" as a plain '@'.

For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf, Printf and Format.

Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6. The two simplified types, format and format4 below are included for backward compatibility with earlier releases of OCaml.

The meaning of format string type parameters is as follows:

  • 'a is the type of the parameters of the format for formatted output functions (printf-style functions); 'a is the type of the values read by the format for formatted input functions (scanf-style functions).
  • 'b is the type of input source for formatted input functions and the type of output target for formatted output functions. For printf-style functions from module Printf, 'b is typically out_channel; for printf-style functions from module Format, 'b is typically Format.formatter; for scanf-style functions from module Scanf, 'b is typically Scanf.Scanning.in_channel.

Type argument 'b is also the type of the first argument given to user's defined printing functions for %a and %t conversions, and user's defined reading functions for %r conversion.

  • 'c is the type of the result of the %a and %t printing functions, and also the type of the argument transmitted to the first argument of kprintf-style functions or to the kscanf-style functions.
  • 'd is the type of parameters for the scanf-style functions.
  • 'e is the type of the receiver function for the scanf-style functions.
  • 'f is the final result type of a formatted input/output function invocation: for the printf-style functions, it is typically unit; for the scanf-style functions, it is typically the result type of the receiver function.
type ('a, 'b, 'c, 'd, 'e, 'f) format6 = ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6 
type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) format6 
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4 
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string

Converts a format string into a string.

val format_of_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('a, 'b, 'c, 'd, 'e, 'f) format6

format_of_string s returns a format string read from the string literal s. Note: format_of_string can not convert a string argument that is not a literal. If you need this functionality, use the more general Scanf.format_from_string function.

val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('f, 'b, 'c, 'e, 'g, 'h) format6 ->
('a, 'b, 'c, 'd, 'g, 'h) format6

f1 ^^ f2 catenates format strings f1 and f2. The result is a format string that behaves as the concatenation of format strings f1 and f2: in case of formatted output, it accepts arguments from f1, then arguments from f2; in case of formatted input, it returns results from f1, then results from f2. Right-associative operator, see Ocaml_operators for more information.

Program termination

val exit : int -> 'a

Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all. An implicit exit 0 is performed each time a program terminates normally. An implicit exit 2 is performed if the program terminates early because of an uncaught exception.

val at_exit : (unit -> unit) -> unit

Register the given function to be called at program termination time. The functions registered with at_exit will be called when the program does any of the following:

  • executes exit
  • terminates, either normally or because of an uncaught exception
  • executes the C function caml_shutdown. The functions are called in 'last in, first out' order: the function most recently added with at_exit is called first.

Standard library modules

module Arg: Arg
module Array: Array
module ArrayLabels: ArrayLabels
module Bigarray: Bigarray
module Bool: Bool
module Buffer: Buffer
module Bytes: Bytes
module BytesLabels: BytesLabels
module Callback: Callback
module Char: Char
module Complex: Complex
module Digest: Digest
module Ephemeron: Ephemeron
module Filename: Filename
module Float: Float
module Format: Format
module Fun: Fun
module Gc: Gc
module Genlex: Genlex
module Hashtbl: Hashtbl
module Int: Int
module Int32: Int32
module Int64: Int64
module Lazy: Lazy
module Lexing: Lexing
module List: List
module ListLabels: ListLabels
module Map: Map
module Marshal: Marshal
module MoreLabels: MoreLabels
module Nativeint: Nativeint
module Obj: Obj
module Oo: Oo
module Option: Option
module Parsing: Parsing
module Pervasives: Pervasives
module Printexc: Printexc
module Printf: Printf
module Queue: Queue
module Random: Random
module Result: Result
module Scanf: Scanf
module Seq: Seq
module Set: Set
module Spacetime: Spacetime
module Stack: Stack
module StdLabels: StdLabels
module Stream: Stream
module String: String
module StringLabels: StringLabels
module Sys: Sys
module Uchar: Uchar
module Unit: Unit
module Weak: Weak
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Set.html0000644000175000017500000001544513717225553020420 0ustar mehdimehdi Stdlib.Set

Module Stdlib.Set

module Set: Set

module type OrderedType = sig .. end

Input signature of the functor Set.Make.

module type S = sig .. end

Output signature of the functor Set.Make.

module Make: 
functor (Ord : OrderedType-> S with type elt = Ord.t

Functor building an implementation of the set structure given a totally ordered type.

ocaml-doc-4.11/ocaml.html/libref/type_Set.html0000644000175000017500000007675313717225552020251 0ustar mehdimehdi Set sig
  module type OrderedType =
    sig
      type t
      val compare : Set.OrderedType.t -> Set.OrderedType.t -> int
    end
  module type S =
    sig
      type elt
      type t
      val empty : Set.S.t
      val is_empty : Set.S.t -> bool
      val mem : Set.S.elt -> Set.S.t -> bool
      val add : Set.S.elt -> Set.S.t -> Set.S.t
      val singleton : Set.S.elt -> Set.S.t
      val remove : Set.S.elt -> Set.S.t -> Set.S.t
      val union : Set.S.t -> Set.S.t -> Set.S.t
      val inter : Set.S.t -> Set.S.t -> Set.S.t
      val disjoint : Set.S.t -> Set.S.t -> bool
      val diff : Set.S.t -> Set.S.t -> Set.S.t
      val compare : Set.S.t -> Set.S.t -> int
      val equal : Set.S.t -> Set.S.t -> bool
      val subset : Set.S.t -> Set.S.t -> bool
      val iter : (Set.S.elt -> unit) -> Set.S.t -> unit
      val map : (Set.S.elt -> Set.S.elt) -> Set.S.t -> Set.S.t
      val fold : (Set.S.elt -> '-> 'a) -> Set.S.t -> '-> 'a
      val for_all : (Set.S.elt -> bool) -> Set.S.t -> bool
      val exists : (Set.S.elt -> bool) -> Set.S.t -> bool
      val filter : (Set.S.elt -> bool) -> Set.S.t -> Set.S.t
      val filter_map : (Set.S.elt -> Set.S.elt option) -> Set.S.t -> Set.S.t
      val partition : (Set.S.elt -> bool) -> Set.S.t -> Set.S.t * Set.S.t
      val cardinal : Set.S.t -> int
      val elements : Set.S.t -> Set.S.elt list
      val min_elt : Set.S.t -> Set.S.elt
      val min_elt_opt : Set.S.t -> Set.S.elt option
      val max_elt : Set.S.t -> Set.S.elt
      val max_elt_opt : Set.S.t -> Set.S.elt option
      val choose : Set.S.t -> Set.S.elt
      val choose_opt : Set.S.t -> Set.S.elt option
      val split : Set.S.elt -> Set.S.t -> Set.S.t * bool * Set.S.t
      val find : Set.S.elt -> Set.S.t -> Set.S.elt
      val find_opt : Set.S.elt -> Set.S.t -> Set.S.elt option
      val find_first : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt
      val find_first_opt : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt option
      val find_last : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt
      val find_last_opt : (Set.S.elt -> bool) -> Set.S.t -> Set.S.elt option
      val of_list : Set.S.elt list -> Set.S.t
      val to_seq_from : Set.S.elt -> Set.S.t -> Set.S.elt Stdlib.Seq.t
      val to_seq : Set.S.t -> Set.S.elt Stdlib.Seq.t
      val add_seq : Set.S.elt Stdlib.Seq.t -> Set.S.t -> Set.S.t
      val of_seq : Set.S.elt Stdlib.Seq.t -> Set.S.t
    end
  module Make :
    functor (Ord : OrderedType->
      sig
        type elt = Ord.t
        type t
        val empty : t
        val is_empty : t -> bool
        val mem : elt -> t -> bool
        val add : elt -> t -> t
        val singleton : elt -> t
        val remove : elt -> t -> t
        val union : t -> t -> t
        val inter : t -> t -> t
        val disjoint : t -> t -> bool
        val diff : t -> t -> t
        val compare : t -> t -> int
        val equal : t -> t -> bool
        val subset : t -> t -> bool
        val iter : (elt -> unit) -> t -> unit
        val map : (elt -> elt) -> t -> t
        val fold : (elt -> '-> 'a) -> t -> '-> 'a
        val for_all : (elt -> bool) -> t -> bool
        val exists : (elt -> bool) -> t -> bool
        val filter : (elt -> bool) -> t -> t
        val filter_map : (elt -> elt option) -> t -> t
        val partition : (elt -> bool) -> t -> t * t
        val cardinal : t -> int
        val elements : t -> elt list
        val min_elt : t -> elt
        val min_elt_opt : t -> elt option
        val max_elt : t -> elt
        val max_elt_opt : t -> elt option
        val choose : t -> elt
        val choose_opt : t -> elt option
        val split : elt -> t -> t * bool * t
        val find : elt -> t -> elt
        val find_opt : elt -> t -> elt option
        val find_first : (elt -> bool) -> t -> elt
        val find_first_opt : (elt -> bool) -> t -> elt option
        val find_last : (elt -> bool) -> t -> elt
        val find_last_opt : (elt -> bool) -> t -> elt option
        val of_list : elt list -> t
        val to_seq_from : elt -> t -> elt Seq.t
        val to_seq : t -> elt Seq.t
        val add_seq : elt Seq.t -> t -> t
        val of_seq : elt Seq.t -> t
      end
end
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.StringLabels.html0000644000175000017500000001130413717225553023305 0ustar mehdimehdi Stdlib.StringLabels (module Stdlib__stringLabels) ocaml-doc-4.11/ocaml.html/libref/type_Set.Make.html0000644000175000017500000003233213717225553021107 0ustar mehdimehdi Set.Make functor (Ord : OrderedType->
  sig
    type elt = Ord.t
    type t
    val empty : t
    val is_empty : t -> bool
    val mem : elt -> t -> bool
    val add : elt -> t -> t
    val singleton : elt -> t
    val remove : elt -> t -> t
    val union : t -> t -> t
    val inter : t -> t -> t
    val disjoint : t -> t -> bool
    val diff : t -> t -> t
    val compare : t -> t -> int
    val equal : t -> t -> bool
    val subset : t -> t -> bool
    val iter : (elt -> unit) -> t -> unit
    val map : (elt -> elt) -> t -> t
    val fold : (elt -> '-> 'a) -> t -> '-> 'a
    val for_all : (elt -> bool) -> t -> bool
    val exists : (elt -> bool) -> t -> bool
    val filter : (elt -> bool) -> t -> t
    val filter_map : (elt -> elt option) -> t -> t
    val partition : (elt -> bool) -> t -> t * t
    val cardinal : t -> int
    val elements : t -> elt list
    val min_elt : t -> elt
    val min_elt_opt : t -> elt option
    val max_elt : t -> elt
    val max_elt_opt : t -> elt option
    val choose : t -> elt
    val choose_opt : t -> elt option
    val split : elt -> t -> t * bool * t
    val find : elt -> t -> elt
    val find_opt : elt -> t -> elt option
    val find_first : (elt -> bool) -> t -> elt
    val find_first_opt : (elt -> bool) -> t -> elt option
    val find_last : (elt -> bool) -> t -> elt
    val find_last_opt : (elt -> bool) -> t -> elt option
    val of_list : elt list -> t
    val to_seq_from : elt -> t -> elt Seq.t
    val to_seq : t -> elt Seq.t
    val add_seq : elt Seq.t -> t -> t
    val of_seq : elt Seq.t -> t
  end
ocaml-doc-4.11/ocaml.html/libref/Stack.html0000644000175000017500000003013013717225552017475 0ustar mehdimehdi Stack

Module Stack

module Stack: sig .. end

Last-in first-out stacks.

This module implements stacks (LIFOs), with in-place modification.


type 'a t 

The type of stacks containing elements of type 'a.

exception Empty

Raised when Stack.pop or Stack.top is applied to an empty stack.

val create : unit -> 'a t

Return a new stack, initially empty.

val push : 'a -> 'a t -> unit

push x s adds the element x at the top of stack s.

val pop : 'a t -> 'a

pop s removes and returns the topmost element in stack s, or raises Stack.Empty if the stack is empty.

val pop_opt : 'a t -> 'a option

pop_opt s removes and returns the topmost element in stack s, or returns None if the stack is empty.

  • Since 4.08
val top : 'a t -> 'a

top s returns the topmost element in stack s, or raises Stack.Empty if the stack is empty.

val top_opt : 'a t -> 'a option

top_opt s returns the topmost element in stack s, or None if the stack is empty.

  • Since 4.08
val clear : 'a t -> unit

Discard all elements from a stack.

val copy : 'a t -> 'a t

Return a copy of the given stack.

val is_empty : 'a t -> bool

Return true if the given stack is empty, false otherwise.

val length : 'a t -> int

Return the number of elements in a stack. Time complexity O(1)

val iter : ('a -> unit) -> 'a t -> unit

iter f s applies f in turn to all elements of s, from the element at the top of the stack to the element at the bottom of the stack. The stack itself is unchanged.

val fold : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b

fold f accu s is (f (... (f (f accu x1) x2) ...) xn) where x1 is the top of the stack, x2 the second element, and xn the bottom element. The stack is unchanged.

  • Since 4.03

Iterators

val to_seq : 'a t -> 'a Seq.t

Iterate on the stack, top to bottom. It is safe to modify the stack during iteration.

  • Since 4.07
val add_seq : 'a t -> 'a Seq.t -> unit

Add the elements from the iterator on the top of the stack.

  • Since 4.07
val of_seq : 'a Seq.t -> 'a t

Create a stack from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Stdlib.Sys.html0000644000175000017500000001126213717225553021475 0ustar mehdimehdi Stdlib.Sys (module Stdlib__sys) ocaml-doc-4.11/ocaml.html/libref/type_Event.html0000644000175000017500000002024213717225552020555 0ustar mehdimehdi Event sig
  type 'a channel
  val new_channel : unit -> 'Event.channel
  type +'a event
  val send : 'Event.channel -> '-> unit Event.event
  val receive : 'Event.channel -> 'Event.event
  val always : '-> 'Event.event
  val choose : 'Event.event list -> 'Event.event
  val wrap : 'Event.event -> ('-> 'b) -> 'Event.event
  val wrap_abort : 'Event.event -> (unit -> unit) -> 'Event.event
  val guard : (unit -> 'Event.event) -> 'Event.event
  val sync : 'Event.event -> 'a
  val select : 'Event.event list -> 'a
  val poll : 'Event.event -> 'a option
end
ocaml-doc-4.11/ocaml.html/libref/Weak.S.html0000644000175000017500000003070113717225553017525 0ustar mehdimehdi Weak.S

Module type Weak.S

module type S = sig .. end

The output signature of the functor Weak.Make.


type data 

The type of the elements stored in the table.

type t 

The type of tables that contain elements of type data. Note that weak hash sets cannot be marshaled using output_value or the functions of the Marshal module.

val create : int -> t

create n creates a new empty weak hash set, of initial size n. The table will grow as needed.

val clear : t -> unit

Remove all elements from the table.

val merge : t -> data -> data

merge t x returns an instance of x found in t if any, or else adds x to t and return x.

val add : t -> data -> unit

add t x adds x to t. If there is already an instance of x in t, it is unspecified which one will be returned by subsequent calls to find and merge.

val remove : t -> data -> unit

remove t x removes from t one instance of x. Does nothing if there is no instance of x in t.

val find : t -> data -> data

find t x returns an instance of x found in t.

  • Raises Not_found if there is no such element.
val find_opt : t -> data -> data option

find_opt t x returns an instance of x found in t or None if there is no such element.

  • Since 4.05
val find_all : t -> data -> data list

find_all t x returns a list of all the instances of x found in t.

val mem : t -> data -> bool

mem t x returns true if there is at least one instance of x in t, false otherwise.

val iter : (data -> unit) -> t -> unit

iter f t calls f on each element of t, in some unspecified order. It is not specified what happens if f tries to change t itself.

val fold : (data -> 'a -> 'a) -> t -> 'a -> 'a

fold f t init computes (f d1 (... (f dN init))) where d1 ... dN are the elements of t in some unspecified order. It is not specified what happens if f tries to change t itself.

val count : t -> int

Count the number of elements in the table. count t gives the same result as fold (fun _ n -> n+1) t 0 but does not delay the deallocation of the dead elements.

val stats : t -> int * int * int * int * int * int

Return statistics on the table. The numbers are, in order: table length, number of entries, sum of bucket lengths, smallest bucket length, median bucket length, biggest bucket length.

ocaml-doc-4.11/ocaml.html/libref/Stdlib.Array.html0000644000175000017500000007545713717225552020753 0ustar mehdimehdi Stdlib.Array

Module Stdlib.Array

module Array: Array

type 'a t = 'a array 

An alias for the type of arrays.

Array operations.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

Array.get a n returns the element number n of array a. The first element has number 0. The last element has number Array.length a - 1. You can also write a.(n) instead of Array.get a n.

  • Raises Invalid_argument if n is outside the range 0 to (Array.length a - 1).
val set : 'a array -> int -> 'a -> unit

Array.set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of Array.set a n x.

  • Raises Invalid_argument if n is outside the range 0 to Array.length a - 1.
val make : int -> 'a -> 'a array

Array.make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create : int -> 'a -> 'a array
Deprecated.Array.create is an alias for Array.make.
val create_float : int -> float array

Array.create_float n returns a fresh float array of length n, with uninitialized data.

  • Since 4.03
val make_float : int -> float array
Deprecated.Array.make_float is an alias for Array.create_float.
val init : int -> (int -> 'a) -> 'a array

Array.init n f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, Array.init n f tabulates the results of f applied to the integers 0 to n-1.

  • Raises Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.
val make_matrix : int -> int -> 'a -> 'a array array

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

  • Raises Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.
val create_matrix : int -> int -> 'a -> 'a array array
Deprecated.Array.create_matrix is an alias for Array.make_matrix.
val append : 'a array -> 'a array -> 'a array

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

  • Raises Invalid_argument if Array.length v1 + Array.length v2 > Sys.max_array_length.
val concat : 'a array list -> 'a array

Same as Array.append, but concatenates a list of arrays.

val sub : 'a array -> int -> int -> 'a array

Array.sub a start len returns a fresh array of length len, containing the elements number start to start + len - 1 of array a.

  • Raises Invalid_argument if start and len do not designate a valid subarray of a; that is, if start < 0, or len < 0, or start + len > Array.length a.
val copy : 'a array -> 'a array

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> int -> int -> 'a -> unit

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs to ofs + len - 1.

  • Raises Invalid_argument if ofs and len do not designate a valid subarray of a.
val blit : 'a array -> int -> 'a array -> int -> int -> unit

Array.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element number o1, to array v2, starting at element number o2. It works correctly even if v1 and v2 are the same array, and the source and destination chunks overlap.

  • Raises Invalid_argument if o1 and len do not designate a valid subarray of v1, or if o2 and len do not designate a valid subarray of v2.
val to_list : 'a array -> 'a list

Array.to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

Array.of_list l returns a fresh array containing the elements of l.

  • Raises Invalid_argument if the length of l is greater than Sys.max_array_length.

Iterators

val iter : ('a -> unit) -> 'a array -> unit

Array.iter f a applies function f in turn to all the elements of a. It is equivalent to f a.(0); f a.(1); ...; f a.(Array.length a - 1); ().

val iteri : (int -> 'a -> unit) -> 'a array -> unit

Same as Array.iter, but the function is applied with the index of the element as first argument, and the element itself as second argument.

val map : ('a -> 'b) -> 'a array -> 'b array

Array.map f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

val mapi : (int -> 'a -> 'b) -> 'a array -> 'b array

Same as Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val fold_right : ('b -> 'a -> 'a) -> 'b array -> 'a -> 'a

Array.fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the array a.

Iterators on two arrays

val iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unit

Array.iter2 f a b applies function f to all the elements of a and b.

  • Since 4.03.0
  • Raises Invalid_argument if the arrays are not the same size.
val map2 : ('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array

Array.map2 f a b applies function f to all the elements of a and b, and builds an array with the results returned by f: [| f a.(0) b.(0); ...; f a.(Array.length a - 1) b.(Array.length b - 1)|].

  • Since 4.03.0
  • Raises Invalid_argument if the arrays are not the same size.

Array scanning

val for_all : ('a -> bool) -> 'a array -> bool

Array.for_all p [|a1; ...; an|] checks if all elements of the array satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an).

  • Since 4.03.0
val exists : ('a -> bool) -> 'a array -> bool

Array.exists p [|a1; ...; an|] checks if at least one element of the array satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

  • Since 4.03.0
val for_all2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as Array.for_all, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool

Same as Array.exists, but for a two-argument predicate.

  • Since 4.11.0
  • Raises Invalid_argument if the two arrays have different lengths.
val mem : 'a -> 'a array -> bool

mem a l is true if and only if a is structurally equal to an element of l (i.e. there is an x in l such that compare a x = 0).

  • Since 4.03.0
val memq : 'a -> 'a array -> bool

Same as Array.mem, but uses physical equality instead of structural equality to compare elements.

  • Since 4.03.0

Sorting

val sort : ('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, compare is a suitable comparison function. After calling Array.sort, the array is sorted in place in increasing order. Array.sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When Array.sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : ('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses a temporary array of length n/2, where n is the length of the array. It is usually faster than the current implementation of Array.sort.

val fast_sort : ('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort or Array.stable_sort, whichever is faster on typical input.

Iterators

val to_seq : 'a array -> 'a Seq.t

Iterate on the array, in increasing order. Modifications of the array during iteration will be reflected in the iterator.

  • Since 4.07
val to_seqi : 'a array -> (int * 'a) Seq.t

Iterate on the array, in increasing order, yielding indices along elements. Modifications of the array during iteration will be reflected in the iterator.

  • Since 4.07
val of_seq : 'a Seq.t -> 'a array

Create an array from the generator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/Stdlib.Genlex.html0000644000175000017500000002267213717225552021106 0ustar mehdimehdi Stdlib.Genlex

Module Stdlib.Genlex

module Genlex: Genlex

type token = 
| Kwd of string
| Ident of string
| Int of int
| Float of float
| String of string
| Char of char

The type of tokens. The lexical classes are: Int and Float for integer and floating-point numbers; String for string literals, enclosed in double quotes; Char for character literals, enclosed in single quotes; Ident for identifiers (either sequences of letters, digits, underscores and quotes, or sequences of 'operator characters' such as +, *, etc); and Kwd for keywords (either identifiers or single 'special characters' such as (, }, etc).

val make_lexer : string list -> char Stream.t -> token Stream.t

Construct the lexer function. The first argument is the list of keywords. An identifier s is returned as Kwd s if s belongs to this list, and as Ident s otherwise. A special character s is returned as Kwd s if s belongs to this list, and cause a lexical error (exception Stream.Error with the offending lexeme as its parameter) otherwise. Blanks and newlines are skipped. Comments delimited by (* and *) are skipped as well, and can be nested. A Stream.Failure exception is raised if end of stream is unexpectedly reached.

ocaml-doc-4.11/ocaml.html/libref/type_Seq.html0000644000175000017500000002313513717225552020230 0ustar mehdimehdi Seq sig
  type 'a t = unit -> 'Seq.node
  and 'a node = Nil | Cons of 'a * 'Seq.t
  val empty : 'Seq.t
  val return : '-> 'Seq.t
  val cons : '-> 'Seq.t -> 'Seq.t
  val append : 'Seq.t -> 'Seq.t -> 'Seq.t
  val map : ('-> 'b) -> 'Seq.t -> 'Seq.t
  val filter : ('-> bool) -> 'Seq.t -> 'Seq.t
  val filter_map : ('-> 'b option) -> 'Seq.t -> 'Seq.t
  val flat_map : ('-> 'Seq.t) -> 'Seq.t -> 'Seq.t
  val fold_left : ('-> '-> 'a) -> '-> 'Seq.t -> 'a
  val iter : ('-> unit) -> 'Seq.t -> unit
  val unfold : ('-> ('a * 'b) option) -> '-> 'Seq.t
end
ocaml-doc-4.11/ocaml.html/libref/StdLabels.List.html0000644000175000017500000011503413717225553021227 0ustar mehdimehdi StdLabels.List

Module StdLabels.List

module List: ListLabels

type 'a t = 'a list = 
| []
| :: of 'a * 'a list

An alias for the type of lists.

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space, while a non-tail-recursive function uses stack space proportional to the length of its list argument, which can be a problem with very long lists. When the function takes several list arguments, an approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000 elements.

This module is intended to be used through StdLabels which replaces Array, Bytes, List and String with their labeled counterparts.

For example:

      open StdLabels

      let seq len = List.init ~f:(function i -> i) ~len
   
val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the first element of the given list.

  • Raises Failure if the list is empty.
val compare_lengths : 'a list -> 'b list -> int

Compare the lengths of two lists. compare_lengths l1 l2 is equivalent to compare (length l1) (length l2), except that the computation stops after itering on the shortest list.

  • Since 4.05.0
val compare_length_with : 'a list -> len:int -> int

Compare the length of a list to an integer. compare_length_with l n is equivalent to compare (length l) n, except that the computation stops after at most n iterations on the list.

  • Since 4.05.0
val cons : 'a -> 'a list -> 'a list

cons x xs is x :: xs

  • Since 4.05.0
val tl : 'a list -> 'a list

Return the given list without its first element.

  • Raises Failure if the list is empty.
val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The first element (head of the list) is at position 0.

  • Raises
    • Failure if the list is too short.
    • Invalid_argument if n is negative.
val nth_opt : 'a list -> int -> 'a option

Return the n-th element of the given list. The first element (head of the list) is at position 0. Return None if the list is too short.

  • Since 4.05
  • Raises Invalid_argument if n is negative.
val rev : 'a list -> 'a list

List reversal.

val init : len:int -> f:(int -> 'a) -> 'a list

List.init len f is f 0; f 1; ...; f (len-1), evaluated left to right.

  • Since 4.06.0
  • Raises Invalid_argument if len < 0.
val append : 'a list -> 'a list -> 'a list

Catenate two lists. Same function as the infix operator @. Not tail-recursive (length of the first argument). The @ operator is not tail-recursive either.

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it with l2. This is equivalent to (List.rev l1) @ l2, but rev_append is tail-recursive and more efficient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

val flatten : 'a list list -> 'a list

Same as concat. Not tail-recursive (length of the argument + length of the longest sub-list).

Iterators

val iter : f:('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to begin f a1; f a2; ...; f an; () end.

val iteri : f:(int -> 'a -> unit) -> 'a list -> unit

Same as List.iter, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val map : f:('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f. Not tail-recursive.

val mapi : f:(int -> 'a -> 'b) -> 'a list -> 'b list

Same as List.map, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.00.0
val rev_map : f:('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive and more efficient.

val filter_map : f:('a -> 'b option) -> 'a list -> 'b list

filter_map f l applies f to every element of l, filters out the None elements and returns the list of the arguments of the Some elements.

  • Since 4.08.0
val concat_map : f:('a -> 'b list) -> 'a list -> 'b list

List.concat_map f l gives the same result as List.concat (List.map f l). Tail-recursive.

  • Since 4.10.0
val fold_left_map : f:('a -> 'b -> 'a * 'c) -> init:'a -> 'b list -> 'a * 'c list

fold_left_map is a combination of fold_left and map hat threads an accumulator through calls to f

  • Since 4.11.0
val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : f:('a -> 'b -> 'b) -> 'a list -> init:'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

Iterators on two lists

val iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.
val rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev (List.map2 f l1 l2), but is tail-recursive and more efficient.

val fold_left2 : f:('a -> 'b -> 'c -> 'a) -> init:'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2 c2) ...) bn cn.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val fold_right2 : f:('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> init:'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f an bn c) ...)).

  • Raises Invalid_argument if the two lists are determined to have different lengths. Not tail-recursive.

List scanning

val for_all : f:('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is, it returns (p a1) && (p a2) && ... && (p an).

val exists : f:('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p. That is, it returns (p a1) || (p a2) || ... || (p an).

val for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists, but for a two-argument predicate.

  • Raises Invalid_argument if the two lists are determined to have different lengths.
val mem : 'a -> set:'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> set:'a list -> bool

Same as List.mem, but uses physical equality instead of structural equality to compare list elements.

List searching

val find : f:('a -> bool) -> 'a list -> 'a

find p l returns the first element of the list l that satisfies the predicate p.

  • Raises Not_found if there is no value that satisfies p in the list l.
val find_opt : f:('a -> bool) -> 'a list -> 'a option

find p l returns the first element of the list l that satisfies the predicate p. Returns None if there is no value that satisfies p in the list l.

  • Since 4.05
val find_map : f:('a -> 'b option) -> 'a list -> 'b option

find_map f l applies f to the elements of l in order, and returns the first result of the form Some v, or None if none exist.

  • Since 4.10.0
val filter : f:('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of the elements in the input list is preserved.

val find_all : f:('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter.

val filteri : f:(int -> 'a -> bool) -> 'a list -> 'a list

Same as List.filter, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.

  • Since 4.11.0
val partition : f:('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p. The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.

  • Raises Not_found if there is no value associated with a in the list l.
val assoc_opt : 'a -> ('a * 'b) list -> 'b option

assoc_opt a l returns the value associated with key a in the list of pairs l. That is, assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Returns None if there is no value associated with a in the list l.

  • Since 4.05
val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc, but uses physical equality instead of structural equality to compare keys.

val assq_opt : 'a -> ('a * 'b) list -> 'b option

Same as List.assoc_opt, but uses physical equality instead of structural equality to compare keys.

  • Since 4.05.0
val mem_assoc : 'a -> map:('a * 'b) list -> bool

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist for the given key.

val mem_assq : 'a -> map:('a * 'b) list -> bool

Same as List.mem_assoc, but uses physical equality instead of structural equality to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is [(a1,b1); ...; (an,bn)].

  • Raises Invalid_argument if the two lists have different lengths. Not tail-recursive.

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, compare is a suitable comparison function. The resulting list is sorted in increasing order. List.sort is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

val fast_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort or List.stable_sort, whichever is faster on typical input.

val sort_uniq : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort, but also remove duplicates.

  • Since 4.03.0
val merge : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function cmp, merge cmp l1 l2 will return a sorted list containing all the elements of l1 and l2. If several elements compare equal, the elements of l1 will be before the elements of l2. Not tail-recursive (sum of the lengths of the arguments).

Iterators

val to_seq : 'a list -> 'a Seq.t

Iterate on the list

  • Since 4.07
val of_seq : 'a Seq.t -> 'a list

Create a list from the iterator

  • Since 4.07
ocaml-doc-4.11/ocaml.html/libref/type_Random.html0000644000175000017500000002434013717225552020717 0ustar mehdimehdi Random sig
  val init : int -> unit
  val full_init : int array -> unit
  val self_init : unit -> unit
  val bits : unit -> int
  val int : int -> int
  val int32 : Stdlib.Int32.t -> Stdlib.Int32.t
  val nativeint : Stdlib.Nativeint.t -> Stdlib.Nativeint.t
  val int64 : Stdlib.Int64.t -> Stdlib.Int64.t
  val float : float -> float
  val bool : unit -> bool
  module State :
    sig
      type t
      val make : int array -> Random.State.t
      val make_self_init : unit -> Random.State.t
      val copy : Random.State.t -> Random.State.t
      val bits : Random.State.t -> int
      val int : Random.State.t -> int -> int
      val int32 : Random.State.t -> Stdlib.Int32.t -> Stdlib.Int32.t
      val nativeint :
        Random.State.t -> Stdlib.Nativeint.t -> Stdlib.Nativeint.t
      val int64 : Random.State.t -> Stdlib.Int64.t -> Stdlib.Int64.t
      val float : Random.State.t -> float -> float
      val bool : Random.State.t -> bool
    end
  val get_state : unit -> Random.State.t
  val set_state : Random.State.t -> unit
end
ocaml-doc-4.11/ocaml.html/manual.haux0000644000175000017500000031352013717225664016456 0ustar mehdimehdi\new@anchor@label{sec3}{conventions}{{}{X}} \@deflabeltype{conventions}{none} \new@anchor@label{sec4}{license}{{}{X}} \@deflabeltype{license}{none} \new@anchor@label{sec5}{availability}{{}{X}} \@deflabeltype{availability}{none} \@@addtocsec{htoc}{sec6}{-2}{\@print{Part I}\quad{}An introduction to OCaml{}} \newlabel{p:tutorials}{{I}{X}} \@deflabeltype{p:tutorials}{part} \@@addtocsec{htoc}{sec7}{-1}{\@print{Chapter 1}\quad{}The core language{}} \newlabel{c:core-xamples}{{1}{X}} \@deflabeltype{c:core-xamples}{chapter} \@@addtocsec{htoc}{s:basics}{0}{\@print{1.1}\quad{}\label{s:basics}Basics{}} \new@anchor@label{sec8}{s:basics}{{1.1}{X}} \@deflabeltype{s:basics}{section} \@@addtocsec{htoc}{s:datatypes}{0}{\@print{1.2}\quad{}\label{s:datatypes}Data types{}} \new@anchor@label{sec9}{s:datatypes}{{1.2}{X}} \@deflabeltype{s:datatypes}{section} \@@addtocsec{htoc}{s:functions-as-values}{0}{\@print{1.3}\quad{}\label{s:functions-as-values}Functions as values{}} \new@anchor@label{sec10}{s:functions-as-values}{{1.3}{X}} \@deflabeltype{s:functions-as-values}{section} \@@addtocsec{htoc}{s:tut-recvariants}{0}{\@print{1.4}\quad{}\label{s:tut-recvariants}Records and variants{}} \new@anchor@label{sec11}{s:tut-recvariants}{{1.4}{X}} \@deflabeltype{s:tut-recvariants}{section} \@@addtocsec{htoc}{ss:record-and-variant-disambiguation}{1}{\@print{1.4.1}\quad{}\label{ss:record-and-variant-disambiguation}Record and variant disambiguation{}} \new@anchor@label{sec12}{ss:record-and-variant-disambiguation}{{1.4.1}{X}} \@deflabeltype{ss:record-and-variant-disambiguation}{subsection} \@@addtocsec{htoc}{s:imperative-features}{0}{\@print{1.5}\quad{}\label{s:imperative-features}Imperative features{}} \new@anchor@label{sec13}{s:imperative-features}{{1.5}{X}} \@deflabeltype{s:imperative-features}{section} \@@addtocsec{htoc}{s:exceptions}{0}{\@print{1.6}\quad{}\label{s:exceptions}Exceptions{}} \new@anchor@label{sec14}{s:exceptions}{{1.6}{X}} \@deflabeltype{s:exceptions}{section} \@@addtocsec{htoc}{s:lazy-expr}{0}{\@print{1.7}\quad{}\label{s:lazy-expr}Lazy expressions{}} \new@anchor@label{sec15}{s:lazy-expr}{{1.7}{X}} \@deflabeltype{s:lazy-expr}{section} \@@addtocsec{htoc}{s:symb-expr}{0}{\@print{1.8}\quad{}\label{s:symb-expr}Symbolic processing of expressions{}} \new@anchor@label{sec16}{s:symb-expr}{{1.8}{X}} \@deflabeltype{s:symb-expr}{section} \@@addtocsec{htoc}{s:pretty-printing}{0}{\@print{1.9}\quad{}\label{s:pretty-printing}Pretty-printing{}} \new@anchor@label{sec17}{s:pretty-printing}{{1.9}{X}} \@deflabeltype{s:pretty-printing}{section} \@@addtocsec{htoc}{s:printf}{0}{\@print{1.10}\quad{}\label{s:printf}Printf formats{}} \new@anchor@label{sec18}{s:printf}{{1.10}{X}} \@deflabeltype{s:printf}{section} \@@addtocsec{htoc}{s:standalone-programs}{0}{\@print{1.11}\quad{}\label{s:standalone-programs}Standalone OCaml programs{}} \new@anchor@label{sec19}{s:standalone-programs}{{1.11}{X}} \@deflabeltype{s:standalone-programs}{section} \@@addtocsec{htoc}{sec20}{-1}{\@print{Chapter 2}\quad{}The module system{}} \newlabel{c:moduleexamples}{{2}{X}} \@deflabeltype{c:moduleexamples}{chapter} \@@addtocsec{htoc}{s:module:structures}{0}{\@print{2.1}\quad{}\label{s:module:structures}Structures{}} \new@anchor@label{sec21}{s:module:structures}{{2.1}{X}} \@deflabeltype{s:module:structures}{section} \@@addtocsec{htoc}{s:signature}{0}{\@print{2.2}\quad{}\label{s:signature}Signatures{}} \new@anchor@label{sec22}{s:signature}{{2.2}{X}} \@deflabeltype{s:signature}{section} \@@addtocsec{htoc}{s:functors}{0}{\@print{2.3}\quad{}\label{s:functors}Functors{}} \new@anchor@label{sec23}{s:functors}{{2.3}{X}} \@deflabeltype{s:functors}{section} \@@addtocsec{htoc}{s:functors-and-abstraction}{0}{\@print{2.4}\quad{}\label{s:functors-and-abstraction}Functors and type abstraction{}} \new@anchor@label{sec24}{s:functors-and-abstraction}{{2.4}{X}} \@deflabeltype{s:functors-and-abstraction}{section} \@@addtocsec{htoc}{s:separate-compilation}{0}{\@print{2.5}\quad{}\label{s:separate-compilation}Modules and separate compilation{}} \new@anchor@label{sec25}{s:separate-compilation}{{2.5}{X}} \@deflabeltype{s:separate-compilation}{section} \@@addtocsec{htoc}{sec26}{-1}{\@print{Chapter 3}\quad{}Objects in OCaml{}} \newlabel{c:objectexamples}{{3}{X}} \@deflabeltype{c:objectexamples}{chapter} \@@addtocsec{htoc}{s:classes-and-objects}{0}{\@print{3.1}\quad{}\label{s:classes-and-objects}Classes and objects{}} \new@anchor@label{sec27}{s:classes-and-objects}{{3.1}{X}} \@deflabeltype{s:classes-and-objects}{section} \@@addtocsec{htoc}{s:immediate-objects}{0}{\@print{3.2}\quad{}\label{s:immediate-objects}Immediate objects{}} \new@anchor@label{sec28}{s:immediate-objects}{{3.2}{X}} \@deflabeltype{s:immediate-objects}{section} \@@addtocsec{htoc}{s:reference-to-self}{0}{\@print{3.3}\quad{}\label{s:reference-to-self}Reference to self{}} \new@anchor@label{sec29}{s:reference-to-self}{{3.3}{X}} \@deflabeltype{s:reference-to-self}{section} \@@addtocsec{htoc}{s:initializers}{0}{\@print{3.4}\quad{}\label{s:initializers}Initializers{}} \new@anchor@label{sec30}{s:initializers}{{3.4}{X}} \@deflabeltype{s:initializers}{section} \@@addtocsec{htoc}{s:virtual-methods}{0}{\@print{3.5}\quad{}\label{s:virtual-methods}Virtual methods{}} \new@anchor@label{sec31}{s:virtual-methods}{{3.5}{X}} \@deflabeltype{s:virtual-methods}{section} \@@addtocsec{htoc}{s:private-methods}{0}{\@print{3.6}\quad{}\label{s:private-methods}Private methods{}} \new@anchor@label{sec32}{s:private-methods}{{3.6}{X}} \@deflabeltype{s:private-methods}{section} \@@addtocsec{htoc}{s:class-interfaces}{0}{\@print{3.7}\quad{}\label{s:class-interfaces}Class interfaces{}} \new@anchor@label{sec33}{s:class-interfaces}{{3.7}{X}} \@deflabeltype{s:class-interfaces}{section} \@@addtocsec{htoc}{s:inheritance}{0}{\@print{3.8}\quad{}\label{s:inheritance}Inheritance{}} \new@anchor@label{sec34}{s:inheritance}{{3.8}{X}} \@deflabeltype{s:inheritance}{section} \@@addtocsec{htoc}{s:multiple-inheritance}{0}{\@print{3.9}\quad{}\label{s:multiple-inheritance}Multiple inheritance{}} \new@anchor@label{sec35}{s:multiple-inheritance}{{3.9}{X}} \@deflabeltype{s:multiple-inheritance}{section} \@@addtocsec{htoc}{s:parameterized-classes}{0}{\@print{3.10}\quad{}\label{s:parameterized-classes}Parameterized classes{}} \new@anchor@label{sec36}{s:parameterized-classes}{{3.10}{X}} \@deflabeltype{s:parameterized-classes}{section} \@@addtocsec{htoc}{s:polymorphic-methods}{0}{\@print{3.11}\quad{}\label{s:polymorphic-methods}Polymorphic methods{}} \new@anchor@label{sec37}{s:polymorphic-methods}{{3.11}{X}} \@deflabeltype{s:polymorphic-methods}{section} \@@addtocsec{htoc}{s:using-coercions}{0}{\@print{3.12}\quad{}\label{s:using-coercions}Using coercions{}} \new@anchor@label{sec38}{s:using-coercions}{{3.12}{X}} \@deflabeltype{s:using-coercions}{section} \@@addtocsec{htoc}{s:functional-objects}{0}{\@print{3.13}\quad{}\label{s:functional-objects}Functional objects{}} \new@anchor@label{sec39}{s:functional-objects}{{3.13}{X}} \@deflabeltype{s:functional-objects}{section} \@@addtocsec{htoc}{s:cloning-objects}{0}{\@print{3.14}\quad{}\label{s:cloning-objects}Cloning objects{}} \new@anchor@label{sec40}{s:cloning-objects}{{3.14}{X}} \@deflabeltype{s:cloning-objects}{section} \@@addtocsec{htoc}{s:recursive-classes}{0}{\@print{3.15}\quad{}\label{s:recursive-classes}Recursive classes{}} \new@anchor@label{sec41}{s:recursive-classes}{{3.15}{X}} \@deflabeltype{s:recursive-classes}{section} \@@addtocsec{htoc}{s:binary-methods}{0}{\@print{3.16}\quad{}\label{s:binary-methods}Binary methods{}} \new@anchor@label{sec42}{s:binary-methods}{{3.16}{X}} \@deflabeltype{s:binary-methods}{section} \@@addtocsec{htoc}{s:friends}{0}{\@print{3.17}\quad{}\label{s:friends}Friends{}} \new@anchor@label{sec43}{s:friends}{{3.17}{X}} \@deflabeltype{s:friends}{section} \@@addtocsec{htoc}{sec44}{-1}{\@print{Chapter 4}\quad{}Labels and variants{}} \newlabel{c:labl-examples}{{4}{X}} \@deflabeltype{c:labl-examples}{chapter} \@@addtocsec{htoc}{s:labels}{0}{\@print{4.1}\quad{}\label{s:labels}Labels{}} \new@anchor@label{sec45}{s:labels}{{4.1}{X}} \@deflabeltype{s:labels}{section} \@@addtocsec{htoc}{ss:optional-arguments}{1}{\@print{4.1.1}\quad{}\label{ss:optional-arguments}Optional arguments{}} \new@anchor@label{sec46}{ss:optional-arguments}{{4.1.1}{X}} \@deflabeltype{ss:optional-arguments}{subsection} \@@addtocsec{htoc}{ss:label-inference}{1}{\@print{4.1.2}\quad{}\label{ss:label-inference}Labels and type inference{}} \new@anchor@label{sec47}{ss:label-inference}{{4.1.2}{X}} \@deflabeltype{ss:label-inference}{subsection} \@@addtocsec{htoc}{ss:label-suggestions}{1}{\@print{4.1.3}\quad{}\label{ss:label-suggestions}Suggestions for labeling{}} \new@anchor@label{sec48}{ss:label-suggestions}{{4.1.3}{X}} \@deflabeltype{ss:label-suggestions}{subsection} \@@addtocsec{htoc}{s:polymorphic-variants}{0}{\@print{4.2}\quad{}\label{s:polymorphic-variants}Polymorphic variants{}} \new@anchor@label{sec49}{s:polymorphic-variants}{{4.2}{X}} \@deflabeltype{s:polymorphic-variants}{section} \new@anchor@label{sec50}{ss:polyvariant:basic-use}{{4.2}{X}} \@deflabeltype{ss:polyvariant:basic-use}{section} \new@anchor@label{sec51}{ss:polyvariant-advanced}{{4.2}{X}} \@deflabeltype{ss:polyvariant-advanced}{section} \@@addtocsec{htoc}{ss:polyvariant-weaknesses}{1}{\@print{4.2.1}\quad{}\label{ss:polyvariant-weaknesses}Weaknesses of polymorphic variants{}} \new@anchor@label{sec52}{ss:polyvariant-weaknesses}{{4.2.1}{X}} \@deflabeltype{ss:polyvariant-weaknesses}{subsection} \@@addtocsec{htoc}{sec53}{-1}{\@print{Chapter 5}\quad{}Polymorphism and its limitations{}} \newlabel{c:polymorphism}{{5}{X}} \@deflabeltype{c:polymorphism}{chapter} \@@addtocsec{htoc}{s:weak-polymorphism}{0}{\@print{5.1}\quad{}\label{s:weak-polymorphism}Weak polymorphism and mutation{}} \new@anchor@label{sec54}{s:weak-polymorphism}{{5.1}{X}} \@deflabeltype{s:weak-polymorphism}{section} \@@addtocsec{htoc}{ss:weak-types}{1}{\@print{5.1.1}\quad{}\label{ss:weak-types}Weakly polymorphic types{}} \new@anchor@label{sec55}{ss:weak-types}{{5.1.1}{X}} \@deflabeltype{ss:weak-types}{subsection} \@@addtocsec{htoc}{ss:valuerestriction}{1}{\@print{5.1.2}\quad{}\label{ss:valuerestriction}The value restriction{}} \new@anchor@label{sec56}{ss:valuerestriction}{{5.1.2}{X}} \@deflabeltype{ss:valuerestriction}{subsection} \@@addtocsec{htoc}{ss:relaxed-value-restriction}{1}{\@print{5.1.3}\quad{}\label{ss:relaxed-value-restriction}The relaxed value restriction{}} \new@anchor@label{sec57}{ss:relaxed-value-restriction}{{5.1.3}{X}} \@deflabeltype{ss:relaxed-value-restriction}{subsection} \@@addtocsec{htoc}{ss:variance-and-value-restriction}{1}{\@print{5.1.4}\quad{}\label{ss:variance-and-value-restriction}Variance and value restriction{}} \new@anchor@label{sec58}{ss:variance-and-value-restriction}{{5.1.4}{X}} \@deflabeltype{ss:variance-and-value-restriction}{subsection} \@@addtocsec{htoc}{ss:variance:abstract-data-types}{1}{\@print{5.1.5}\quad{}\label{ss:variance:abstract-data-types}Abstract data types{}} \new@anchor@label{sec59}{ss:variance:abstract-data-types}{{5.1.5}{X}} \@deflabeltype{ss:variance:abstract-data-types}{subsection} \@@addtocsec{htoc}{s:polymorphic-recursion}{0}{\@print{5.2}\quad{}\label{s:polymorphic-recursion}Polymorphic recursion{}} \new@anchor@label{sec60}{s:polymorphic-recursion}{{5.2}{X}} \@deflabeltype{s:polymorphic-recursion}{section} \@@addtocsec{htoc}{ss:explicit-polymorphism}{1}{\@print{5.2.1}\quad{}\label{ss:explicit-polymorphism}Explicitly polymorphic annotations{}} \new@anchor@label{sec61}{ss:explicit-polymorphism}{{5.2.1}{X}} \@deflabeltype{ss:explicit-polymorphism}{subsection} \@@addtocsec{htoc}{ss:recursive-poly-examples}{1}{\@print{5.2.2}\quad{}\label{ss:recursive-poly-examples}More examples{}} \new@anchor@label{sec62}{ss:recursive-poly-examples}{{5.2.2}{X}} \@deflabeltype{ss:recursive-poly-examples}{subsection} \@@addtocsec{htoc}{s:higher-rank-poly}{0}{\@print{5.3}\quad{}\label{s:higher-rank-poly}Higher-rank polymorphic functions{}} \new@anchor@label{sec63}{s:higher-rank-poly}{{5.3}{X}} \@deflabeltype{s:higher-rank-poly}{section} \@@addtocsec{htoc}{sec64}{-1}{\@print{Chapter 6}\quad{}Advanced examples with classes and modules{}} \newlabel{c:advexamples}{{6}{X}} \@deflabeltype{c:advexamples}{chapter} \@@addtocsec{htoc}{s:extended-bank-accounts}{0}{\@print{6.1}\quad{}\label{s:extended-bank-accounts}Extended example: bank accounts{}} \new@anchor@label{sec65}{s:extended-bank-accounts}{{6.1}{X}} \@deflabeltype{s:extended-bank-accounts}{section} \@@addtocsec{htoc}{s:modules-as-classes}{0}{\@print{6.2}\quad{}\label{s:modules-as-classes}Simple modules as classes{}} \new@anchor@label{sec66}{s:modules-as-classes}{{6.2}{X}} \@deflabeltype{s:modules-as-classes}{section} \@@addtocsec{htoc}{ss:string-as-class}{1}{\@print{6.2.1}\quad{}\label{ss:string-as-class}Strings{}} \new@anchor@label{sec67}{ss:string-as-class}{{6.2.1}{X}} \@deflabeltype{ss:string-as-class}{subsection} \new@anchor@label{sec68}{sss:stack-as-class}{{6.2.1}{X}} \@deflabeltype{sss:stack-as-class}{subsection} \@@addtocsec{htoc}{ss:hashtbl-as-class}{1}{\@print{6.2.2}\quad{}\label{ss:hashtbl-as-class}Hashtbl{}} \new@anchor@label{sec69}{ss:hashtbl-as-class}{{6.2.2}{X}} \@deflabeltype{ss:hashtbl-as-class}{subsection} \@@addtocsec{htoc}{ss:set-as-class}{1}{\@print{6.2.3}\quad{}\label{ss:set-as-class}Sets{}} \new@anchor@label{sec70}{ss:set-as-class}{{6.2.3}{X}} \@deflabeltype{ss:set-as-class}{subsection} \@@addtocsec{htoc}{s:subject-observer}{0}{\@print{6.3}\quad{}\label{s:subject-observer}The subject/observer pattern{}} \new@anchor@label{sec71}{s:subject-observer}{{6.3}{X}} \@deflabeltype{s:subject-observer}{section} \@@addtocsec{htoc}{sec72}{-2}{\@print{Part II}\quad{}The OCaml language{}} \newlabel{p:refman}{{II}{X}} \@deflabeltype{p:refman}{part} \@@addtocsec{htoc}{sec73}{-1}{\@print{Chapter 7}\quad{}The OCaml language{}} \newlabel{c:refman}{{7}{X}} \@deflabeltype{c:refman}{chapter} \new@anchor@label{sec74}{ss:foreword}{{7}{X}} \@deflabeltype{ss:foreword}{chapter} \new@anchor@label{sec75}{ss:notations}{{7}{X}} \@deflabeltype{ss:notations}{chapter} \@@addtocsec{htoc}{s:lexical-conventions}{0}{\@print{7.1}\quad{}\label{s:lexical-conventions}Lexical conventions{}} \new@anchor@label{sec76}{s:lexical-conventions}{{7.1}{X}} \@deflabeltype{s:lexical-conventions}{section} \new@anchor@label{sec77}{sss:lex:blanks}{{7.1}{X}} \@deflabeltype{sss:lex:blanks}{section} \new@anchor@label{sec78}{sss:lex:comments}{{7.1}{X}} \@deflabeltype{sss:lex:comments}{section} \new@anchor@label{sec79}{sss:lex:identifiers}{{7.1}{X}} \@deflabeltype{sss:lex:identifiers}{section} \stx@exists{ident}\stx@exists{capitalized-ident}\stx@exists{lowercase-ident}\stx@exists{letter}\new@anchor@label{sec80}{sss:integer-literals}{{7.1}{X}} \@deflabeltype{sss:integer-literals}{section} \stx@exists{integer-literal}\stx@exists{int32-literal}\stx@exists{int64-literal}\stx@exists{nativeint-literal}\new@anchor@label{sec81}{sss:floating-point-literals}{{7.1}{X}} \@deflabeltype{sss:floating-point-literals}{section} \stx@exists{float-literal}\new@anchor@label{sec82}{sss:character-literals}{{7.1}{X}} \@deflabeltype{sss:character-literals}{section} \newlabel{s:characterliteral}{{7.1}{X}} \@deflabeltype{s:characterliteral}{section} \stx@exists{char-literal}\stx@exists{escape-sequence}\new@anchor@label{sec83}{sss:stringliterals}{{7.1}{X}} \@deflabeltype{sss:stringliterals}{section} \stx@exists{string-literal}\stx@exists{quoted-string-id}\stx@exists{string-character}\new@anchor@label{sec84}{sss:labelname}{{7.1}{X}} \@deflabeltype{sss:labelname}{section} \stx@exists{label-name}\stx@exists{label}\stx@exists{optlabel}\new@anchor@label{sec85}{sss:lex-ops-symbols}{{7.1}{X}} \@deflabeltype{sss:lex-ops-symbols}{section} \stx@exists{infix-symbol}\stx@exists{prefix-symbol}\stx@exists{operator-char}\stx@exists{core-operator-char}\new@anchor@label{sec86}{sss:keywords}{{7.1}{X}} \@deflabeltype{sss:keywords}{section} \new@anchor@label{sec87}{sss:lex-ambiguities}{{7.1}{X}} \@deflabeltype{sss:lex-ambiguities}{section} \new@anchor@label{sec88}{sss:lex-linedir}{{7.1}{X}} \@deflabeltype{sss:lex-linedir}{section} \stx@exists{linenum-directive}\@@addtocsec{htoc}{s:values}{0}{\@print{7.2}\quad{}\label{s:values}Values{}} \new@anchor@label{sec89}{s:values}{{7.2}{X}} \@deflabeltype{s:values}{section} \@@addtocsec{htoc}{ss:values:base}{1}{\@print{7.2.1}\quad{}\label{ss:values:base}Base values{}} \new@anchor@label{sec90}{ss:values:base}{{7.2.1}{X}} \@deflabeltype{ss:values:base}{subsection} \new@anchor@label{sec91}{sss:values:integer}{{7.2.1}{X}} \@deflabeltype{sss:values:integer}{subsection} \new@anchor@label{sec92}{sss:values:float}{{7.2.1}{X}} \@deflabeltype{sss:values:float}{subsection} \new@anchor@label{sec93}{sss:values:char}{{7.2.1}{X}} \@deflabeltype{sss:values:char}{subsection} \new@anchor@label{sec94}{sss:values:string}{{7.2.1}{X}} \@deflabeltype{sss:values:string}{subsection} \@@addtocsec{htoc}{ss:values:tuple}{1}{\@print{7.2.2}\quad{}\label{ss:values:tuple}Tuples{}} \new@anchor@label{sec95}{ss:values:tuple}{{7.2.2}{X}} \@deflabeltype{ss:values:tuple}{subsection} \@@addtocsec{htoc}{ss:values:records}{1}{\@print{7.2.3}\quad{}\label{ss:values:records}Records{}} \new@anchor@label{sec96}{ss:values:records}{{7.2.3}{X}} \@deflabeltype{ss:values:records}{subsection} \@@addtocsec{htoc}{ss:values:array}{1}{\@print{7.2.4}\quad{}\label{ss:values:array}Arrays{}} \new@anchor@label{sec97}{ss:values:array}{{7.2.4}{X}} \@deflabeltype{ss:values:array}{subsection} \@@addtocsec{htoc}{ss:values:variant}{1}{\@print{7.2.5}\quad{}\label{ss:values:variant}Variant values{}} \new@anchor@label{sec98}{ss:values:variant}{{7.2.5}{X}} \@deflabeltype{ss:values:variant}{subsection} \@@addtocsec{htoc}{ss:values:polyvars}{1}{\@print{7.2.6}\quad{}\label{ss:values:polyvars}Polymorphic variants{}} \new@anchor@label{sec99}{ss:values:polyvars}{{7.2.6}{X}} \@deflabeltype{ss:values:polyvars}{subsection} \@@addtocsec{htoc}{ss:values:fun}{1}{\@print{7.2.7}\quad{}\label{ss:values:fun}Functions{}} \new@anchor@label{sec100}{ss:values:fun}{{7.2.7}{X}} \@deflabeltype{ss:values:fun}{subsection} \@@addtocsec{htoc}{ss:values:obj}{1}{\@print{7.2.8}\quad{}\label{ss:values:obj}Objects{}} \new@anchor@label{sec101}{ss:values:obj}{{7.2.8}{X}} \@deflabeltype{ss:values:obj}{subsection} \@@addtocsec{htoc}{s:names}{0}{\@print{7.3}\quad{}\label{s:names}Names{}} \new@anchor@label{sec102}{s:names}{{7.3}{X}} \@deflabeltype{s:names}{section} \new@anchor@label{sec103}{sss:naming-objects}{{7.3}{X}} \@deflabeltype{sss:naming-objects}{section} \stx@exists{value-name}\stx@exists{operator-name}\stx@exists{infix-op}\stx@exists{constr-name}\stx@exists{tag-name}\stx@exists{typeconstr-name}\stx@exists{field-name}\stx@exists{module-name}\stx@exists{modtype-name}\stx@exists{class-name}\stx@exists{inst-var-name}\stx@exists{method-name}\new@anchor@label{sec104}{sss:refer-named}{{7.3}{X}} \@deflabeltype{sss:refer-named}{section} \stx@exists{value-path}\stx@exists{constr}\stx@exists{typeconstr}\stx@exists{field}\stx@exists{modtype-path}\stx@exists{class-path}\stx@exists{classtype-path}\stx@exists{module-path}\stx@exists{extended-module-path}\stx@exists{extended-module-name}\@@addtocsec{htoc}{s:typexpr}{0}{\@print{7.4}\quad{}\label{s:typexpr}Type expressions{}} \new@anchor@label{sec105}{s:typexpr}{{7.4}{X}} \@deflabeltype{s:typexpr}{section} \stx@exists{typexpr}\stx@exists{poly-typexpr}\stx@exists{method-type}\new@anchor@label{sec106}{sss:typexpr-variables}{{7.4}{X}} \@deflabeltype{sss:typexpr-variables}{section} \new@anchor@label{sec107}{sss:typexr:parenthesized}{{7.4}{X}} \@deflabeltype{sss:typexr:parenthesized}{section} \new@anchor@label{sec108}{sss:typexr-fun}{{7.4}{X}} \@deflabeltype{sss:typexr-fun}{section} \new@anchor@label{sec109}{sss:typexpr-tuple}{{7.4}{X}} \@deflabeltype{sss:typexpr-tuple}{section} \new@anchor@label{sec110}{sss:typexpr-constructed}{{7.4}{X}} \@deflabeltype{sss:typexpr-constructed}{section} \new@anchor@label{sec111}{sss:typexpr-aliased-recursive}{{7.4}{X}} \@deflabeltype{sss:typexpr-aliased-recursive}{section} \new@anchor@label{sec112}{sss:typexpr-polyvar}{{7.4}{X}} \@deflabeltype{sss:typexpr-polyvar}{section} \stx@exists{polymorphic-variant-type}\stx@exists{tag-spec-first}\stx@exists{tag-spec}\stx@exists{tag-spec-full}\new@anchor@label{sec113}{sss:typexpr-obj}{{7.4}{X}} \@deflabeltype{sss:typexpr-obj}{section} \new@anchor@label{sec114}{sss:typexpr-sharp-types}{{7.4}{X}} \@deflabeltype{sss:typexpr-sharp-types}{section} \new@anchor@label{sec115}{sss:typexpr-variant-record}{{7.4}{X}} \@deflabeltype{sss:typexpr-variant-record}{section} \@@addtocsec{htoc}{s:const}{0}{\@print{7.5}\quad{}\label{s:const}Constants{}} \new@anchor@label{sec116}{s:const}{{7.5}{X}} \@deflabeltype{s:const}{section} \stx@exists{constant}\@@addtocsec{htoc}{s:patterns}{0}{\@print{7.6}\quad{}\label{s:patterns}Patterns{}} \new@anchor@label{sec117}{s:patterns}{{7.6}{X}} \@deflabeltype{s:patterns}{section} \stx@exists{pattern}\new@anchor@label{sec118}{sss:pat-variable}{{7.6}{X}} \@deflabeltype{sss:pat-variable}{section} \new@anchor@label{sec119}{sss:pat-const}{{7.6}{X}} \@deflabeltype{sss:pat-const}{section} \new@anchor@label{sec120}{sss:pat-alias}{{7.6}{X}} \@deflabeltype{sss:pat-alias}{section} \new@anchor@label{sec121}{sss:pat-parenthesized}{{7.6}{X}} \@deflabeltype{sss:pat-parenthesized}{section} \new@anchor@label{sec122}{sss:pat-or}{{7.6}{X}} \@deflabeltype{sss:pat-or}{section} \new@anchor@label{sec123}{sss:pat-variant}{{7.6}{X}} \@deflabeltype{sss:pat-variant}{section} \new@anchor@label{sec124}{sss:pat-polyvar}{{7.6}{X}} \@deflabeltype{sss:pat-polyvar}{section} \new@anchor@label{sec125}{sss:pat-polyvar-abbrev}{{7.6}{X}} \@deflabeltype{sss:pat-polyvar-abbrev}{section} \new@anchor@label{sec126}{sss:pat-tuple}{{7.6}{X}} \@deflabeltype{sss:pat-tuple}{section} \new@anchor@label{sec127}{sss:pat-record}{{7.6}{X}} \@deflabeltype{sss:pat-record}{section} \new@anchor@label{sec128}{sss:pat-array}{{7.6}{X}} \@deflabeltype{sss:pat-array}{section} \new@anchor@label{sec129}{sss:pat-range}{{7.6}{X}} \@deflabeltype{sss:pat-range}{section} \new@anchor@label{sec130}{sss:pat-lazy}{{7.6}{X}} \@deflabeltype{sss:pat-lazy}{section} \new@anchor@label{sec131}{sss:exception-match}{{7.6}{X}} \@deflabeltype{sss:exception-match}{section} \new@anchor@label{sec132}{sss:pat-open}{{7.6}{X}} \@deflabeltype{sss:pat-open}{section} \@@addtocsec{htoc}{s:value-expr}{0}{\@print{7.7}\quad{}\label{s:value-expr}Expressions{}} \new@anchor@label{sec133}{s:value-expr}{{7.7}{X}} \@deflabeltype{s:value-expr}{section} \stx@exists{expr}\stx@exists{argument}\stx@exists{pattern-matching}\stx@exists{let-binding}\stx@exists{parameter}\stx@exists{local-open}\stx@exists{object-expr}\@@addtocsec{htoc}{ss:precedence-and-associativity}{1}{\@print{7.7.1}\quad{}\label{ss:precedence-and-associativity}Precedence and associativity{}} \new@anchor@label{sec134}{ss:precedence-and-associativity}{{7.7.1}{X}} \@deflabeltype{ss:precedence-and-associativity}{subsection} \@@addtocsec{htoc}{ss:expr-basic}{1}{\@print{7.7.2}\quad{}\label{ss:expr-basic}Basic expressions{}} \new@anchor@label{sec135}{ss:expr-basic}{{7.7.2}{X}} \@deflabeltype{ss:expr-basic}{subsection} \new@anchor@label{sec136}{sss:expr-constants}{{7.7.2}{X}} \@deflabeltype{sss:expr-constants}{subsection} \new@anchor@label{sec137}{sss:expr-var}{{7.7.2}{X}} \@deflabeltype{sss:expr-var}{subsection} \new@anchor@label{sec138}{sss:expr-parenthesized}{{7.7.2}{X}} \@deflabeltype{sss:expr-parenthesized}{subsection} \new@anchor@label{sec139}{sss:expr-functions-application}{{7.7.2}{X}} \@deflabeltype{sss:expr-functions-application}{subsection} \new@anchor@label{sec140}{sss:expr-function-definition}{{7.7.2}{X}} \@deflabeltype{sss:expr-function-definition}{subsection} \new@anchor@label{sec141}{sss:guards-in-pattern-matchings}{{7.7.2}{X}} \@deflabeltype{sss:guards-in-pattern-matchings}{subsection} \new@anchor@label{sec142}{sss:expr-localdef}{{7.7.2}{X}} \@deflabeltype{sss:expr-localdef}{subsection} \new@anchor@label{sec143}{sss:expr-explicit-polytype}{{7.7.2}{X}} \@deflabeltype{sss:expr-explicit-polytype}{subsection} \@@addtocsec{htoc}{ss:expr-control}{1}{\@print{7.7.3}\quad{}\label{ss:expr-control}Control structures{}} \new@anchor@label{sec144}{ss:expr-control}{{7.7.3}{X}} \@deflabeltype{ss:expr-control}{subsection} \new@anchor@label{sec145}{sss:expr-sequence}{{7.7.3}{X}} \@deflabeltype{sss:expr-sequence}{subsection} \new@anchor@label{sec146}{sss:expr-conditional}{{7.7.3}{X}} \@deflabeltype{sss:expr-conditional}{subsection} \new@anchor@label{sec147}{sss:expr-case}{{7.7.3}{X}} \@deflabeltype{sss:expr-case}{subsection} \new@anchor@label{sec148}{sss:expr-boolean-operators}{{7.7.3}{X}} \@deflabeltype{sss:expr-boolean-operators}{subsection} \new@anchor@label{sec149}{sss:expr-loops}{{7.7.3}{X}} \@deflabeltype{sss:expr-loops}{subsection} \new@anchor@label{sec150}{sss:expr-exception-handling}{{7.7.3}{X}} \@deflabeltype{sss:expr-exception-handling}{subsection} \@@addtocsec{htoc}{ss:expr-ops-on-data}{1}{\@print{7.7.4}\quad{}\label{ss:expr-ops-on-data}Operations on data structures{}} \new@anchor@label{sec151}{ss:expr-ops-on-data}{{7.7.4}{X}} \@deflabeltype{ss:expr-ops-on-data}{subsection} \new@anchor@label{sec152}{sss:expr-products}{{7.7.4}{X}} \@deflabeltype{sss:expr-products}{subsection} \new@anchor@label{sec153}{sss:expr-variants}{{7.7.4}{X}} \@deflabeltype{sss:expr-variants}{subsection} \new@anchor@label{sec154}{sss:expr-polyvars}{{7.7.4}{X}} \@deflabeltype{sss:expr-polyvars}{subsection} \new@anchor@label{sec155}{sss:expr-records}{{7.7.4}{X}} \@deflabeltype{sss:expr-records}{subsection} \new@anchor@label{sec156}{sss:expr-arrays}{{7.7.4}{X}} \@deflabeltype{sss:expr-arrays}{subsection} \new@anchor@label{sec157}{sss:expr-strings}{{7.7.4}{X}} \@deflabeltype{sss:expr-strings}{subsection} \@@addtocsec{htoc}{ss:expr-operators}{1}{\@print{7.7.5}\quad{}\label{ss:expr-operators}Operators{}} \new@anchor@label{sec158}{ss:expr-operators}{{7.7.5}{X}} \@deflabeltype{ss:expr-operators}{subsection} \@@addtocsec{htoc}{ss:expr-obj}{1}{\@print{7.7.6}\quad{}\label{ss:expr-obj}Objects{}} \new@anchor@label{sec159}{ss:expr-obj}{{7.7.6}{X}} \@deflabeltype{ss:expr-obj}{subsection} \newlabel{s:objects}{{7.7.6}{X}} \@deflabeltype{s:objects}{subsection} \new@anchor@label{sec160}{sss:expr-obj-creation}{{7.7.6}{X}} \@deflabeltype{sss:expr-obj-creation}{subsection} \new@anchor@label{sec161}{sss:expr-obj-immediate}{{7.7.6}{X}} \@deflabeltype{sss:expr-obj-immediate}{subsection} \new@anchor@label{sec162}{sss:expr-method}{{7.7.6}{X}} \@deflabeltype{sss:expr-method}{subsection} \new@anchor@label{sec163}{sss:expr-obj-variables}{{7.7.6}{X}} \@deflabeltype{sss:expr-obj-variables}{subsection} \new@anchor@label{sec164}{sss:expr-obj-duplication}{{7.7.6}{X}} \@deflabeltype{sss:expr-obj-duplication}{subsection} \@@addtocsec{htoc}{ss:expr-coercions}{1}{\@print{7.7.7}\quad{}\label{ss:expr-coercions}Coercions{}} \new@anchor@label{sec165}{ss:expr-coercions}{{7.7.7}{X}} \@deflabeltype{ss:expr-coercions}{subsection} \new@anchor@label{sec166}{sss:expr-obj-types}{{7.7.7}{X}} \@deflabeltype{sss:expr-obj-types}{subsection} \new@anchor@label{sec167}{sss:expr-polyvar-types}{{7.7.7}{X}} \@deflabeltype{sss:expr-polyvar-types}{subsection} \new@anchor@label{sec168}{sss:expr-variance}{{7.7.7}{X}} \@deflabeltype{sss:expr-variance}{subsection} \@@addtocsec{htoc}{ss:expr-other}{1}{\@print{7.7.8}\quad{}\label{ss:expr-other}Other{}} \new@anchor@label{sec169}{ss:expr-other}{{7.7.8}{X}} \@deflabeltype{ss:expr-other}{subsection} \new@anchor@label{sec170}{sss:expr-assertion}{{7.7.8}{X}} \@deflabeltype{sss:expr-assertion}{subsection} \new@anchor@label{sec171}{sss:expr-lazy}{{7.7.8}{X}} \@deflabeltype{sss:expr-lazy}{subsection} \new@anchor@label{sec172}{sss:expr-local-modules}{{7.7.8}{X}} \@deflabeltype{sss:expr-local-modules}{subsection} \new@anchor@label{sec173}{sss:local-opens}{{7.7.8}{X}} \@deflabeltype{sss:local-opens}{subsection} \@@addtocsec{htoc}{s:tydef}{0}{\@print{7.8}\quad{}\label{s:tydef}Type and exception definitions{}} \new@anchor@label{sec174}{s:tydef}{{7.8}{X}} \@deflabeltype{s:tydef}{section} \@@addtocsec{htoc}{ss:typedefs}{1}{\@print{7.8.1}\quad{}\label{ss:typedefs}Type definitions{}} \new@anchor@label{sec175}{ss:typedefs}{{7.8.1}{X}} \@deflabeltype{ss:typedefs}{subsection} \stx@exists{type-definition}\stx@exists{typedef}\stx@exists{type-information}\stx@exists{type-equation}\stx@exists{type-representation}\stx@exists{type-params}\stx@exists{type-param}\stx@exists{variance}\stx@exists{record-decl}\stx@exists{constr-decl}\stx@exists{constr-args}\stx@exists{field-decl}\stx@exists{type-constraint}\@@addtocsec{htoc}{ss:exndef}{1}{\@print{7.8.2}\quad{}\label{ss:exndef}Exception definitions{}} \new@anchor@label{sec176}{ss:exndef}{{7.8.2}{X}} \@deflabeltype{ss:exndef}{subsection} \stx@exists{exception-definition}\@@addtocsec{htoc}{s:classes}{0}{\@print{7.9}\quad{}\label{s:classes}Classes{}} \new@anchor@label{sec177}{s:classes}{{7.9}{X}} \@deflabeltype{s:classes}{section} \@@addtocsec{htoc}{ss:classes:class-types}{1}{\@print{7.9.1}\quad{}\label{ss:classes:class-types}Class types{}} \new@anchor@label{sec178}{ss:classes:class-types}{{7.9.1}{X}} \@deflabeltype{ss:classes:class-types}{subsection} \stx@exists{class-type}\stx@exists{class-body-type}\stx@exists{class-field-spec}\new@anchor@label{sec179}{sss:clty:simple}{{7.9.1}{X}} \@deflabeltype{sss:clty:simple}{subsection} \new@anchor@label{sec180}{sss:clty-fun}{{7.9.1}{X}} \@deflabeltype{sss:clty-fun}{subsection} \new@anchor@label{sec181}{sss:clty:body}{{7.9.1}{X}} \@deflabeltype{sss:clty:body}{subsection} \new@anchor@label{sec182}{sss:clty-open}{{7.9.1}{X}} \@deflabeltype{sss:clty-open}{subsection} \new@anchor@label{sec183}{sss:clty-inheritance}{{7.9.1}{X}} \@deflabeltype{sss:clty-inheritance}{subsection} \new@anchor@label{sec184}{sss:clty-variable}{{7.9.1}{X}} \@deflabeltype{sss:clty-variable}{subsection} \new@anchor@label{sec185}{sss:clty-meth}{{7.9.1}{X}} \@deflabeltype{sss:clty-meth}{subsection} \new@anchor@label{sec186}{sss:class-virtual-meth-spec}{{7.9.1}{X}} \@deflabeltype{sss:class-virtual-meth-spec}{subsection} \new@anchor@label{sec187}{sss:class-constraints}{{7.9.1}{X}} \@deflabeltype{sss:class-constraints}{subsection} \@@addtocsec{htoc}{ss:class-expr}{1}{\@print{7.9.2}\quad{}\label{ss:class-expr}Class expressions{}} \new@anchor@label{sec188}{ss:class-expr}{{7.9.2}{X}} \@deflabeltype{ss:class-expr}{subsection} \stx@exists{class-expr}\stx@exists{class-field}\new@anchor@label{sec189}{sss:class-simple}{{7.9.2}{X}} \@deflabeltype{sss:class-simple}{subsection} \new@anchor@label{sec190}{sss:class-app}{{7.9.2}{X}} \@deflabeltype{sss:class-app}{subsection} \new@anchor@label{sec191}{sss:class-fun}{{7.9.2}{X}} \@deflabeltype{sss:class-fun}{subsection} \new@anchor@label{sec192}{sss:class-localdefs}{{7.9.2}{X}} \@deflabeltype{sss:class-localdefs}{subsection} \new@anchor@label{sec193}{sss:class-opens}{{7.9.2}{X}} \@deflabeltype{sss:class-opens}{subsection} \new@anchor@label{sec194}{sss:class-body}{{7.9.2}{X}} \@deflabeltype{sss:class-body}{subsection} \stx@exists{class-body}\new@anchor@label{sec195}{sss:class-inheritance}{{7.9.2}{X}} \@deflabeltype{sss:class-inheritance}{subsection} \new@anchor@label{sec196}{sss:class-variables}{{7.9.2}{X}} \@deflabeltype{sss:class-variables}{subsection} \new@anchor@label{sec197}{sss:class-virtual-variable}{{7.9.2}{X}} \@deflabeltype{sss:class-virtual-variable}{subsection} \new@anchor@label{sec198}{sss:class-method}{{7.9.2}{X}} \@deflabeltype{sss:class-method}{subsection} \new@anchor@label{sec199}{sss:class-virtual-meth}{{7.9.2}{X}} \@deflabeltype{sss:class-virtual-meth}{subsection} \new@anchor@label{sec200}{sss:class-explicit-overriding}{{7.9.2}{X}} \@deflabeltype{sss:class-explicit-overriding}{subsection} \new@anchor@label{sec201}{sss:class-type-constraints}{{7.9.2}{X}} \@deflabeltype{sss:class-type-constraints}{subsection} \new@anchor@label{sec202}{sss:class-initializers}{{7.9.2}{X}} \@deflabeltype{sss:class-initializers}{subsection} \@@addtocsec{htoc}{ss:class-def}{1}{\@print{7.9.3}\quad{}\label{ss:class-def}Class definitions{}} \new@anchor@label{sec203}{ss:class-def}{{7.9.3}{X}} \@deflabeltype{ss:class-def}{subsection} \newlabel{s:classdef}{{7.9.3}{X}} \@deflabeltype{s:classdef}{subsection} \stx@exists{class-definition}\stx@exists{class-binding}\stx@exists{type-parameters}\new@anchor@label{sec204}{sss:class-virtual}{{7.9.3}{X}} \@deflabeltype{sss:class-virtual}{subsection} \new@anchor@label{sec205}{sss:class-type-params}{{7.9.3}{X}} \@deflabeltype{sss:class-type-params}{subsection} \@@addtocsec{htoc}{ss:class-spec}{1}{\@print{7.9.4}\quad{}\label{ss:class-spec}Class specifications{}} \new@anchor@label{sec206}{ss:class-spec}{{7.9.4}{X}} \@deflabeltype{ss:class-spec}{subsection} \stx@exists{class-specification}\stx@exists{class-spec}\@@addtocsec{htoc}{ss:classtype}{1}{\@print{7.9.5}\quad{}\label{ss:classtype}Class type definitions{}} \new@anchor@label{sec207}{ss:classtype}{{7.9.5}{X}} \@deflabeltype{ss:classtype}{subsection} \stx@exists{classtype-definition}\stx@exists{classtype-def}\@@addtocsec{htoc}{s:modtypes}{0}{\@print{7.10}\quad{}\label{s:modtypes}Module types (module specifications){}} \new@anchor@label{sec208}{s:modtypes}{{7.10}{X}} \@deflabeltype{s:modtypes}{section} \stx@exists{module-type}\stx@exists{mod-constraint}\stx@exists{specification}\@@addtocsec{htoc}{ss:mty-simple}{1}{\@print{7.10.1}\quad{}\label{ss:mty-simple}Simple module types{}} \new@anchor@label{sec209}{ss:mty-simple}{{7.10.1}{X}} \@deflabeltype{ss:mty-simple}{subsection} \@@addtocsec{htoc}{ss:mty-signatures}{1}{\@print{7.10.2}\quad{}\label{ss:mty-signatures}Signatures{}} \new@anchor@label{sec210}{ss:mty-signatures}{{7.10.2}{X}} \@deflabeltype{ss:mty-signatures}{subsection} \new@anchor@label{sec211}{sss:mty-values}{{7.10.2}{X}} \@deflabeltype{sss:mty-values}{subsection} \new@anchor@label{sec212}{sss:mty-type}{{7.10.2}{X}} \@deflabeltype{sss:mty-type}{subsection} \new@anchor@label{sec213}{sss:mty-exn}{{7.10.2}{X}} \@deflabeltype{sss:mty-exn}{subsection} \new@anchor@label{sec214}{sss:mty-class}{{7.10.2}{X}} \@deflabeltype{sss:mty-class}{subsection} \new@anchor@label{sec215}{sss:mty-classtype}{{7.10.2}{X}} \@deflabeltype{sss:mty-classtype}{subsection} \new@anchor@label{sec216}{sss:mty-module}{{7.10.2}{X}} \@deflabeltype{sss:mty-module}{subsection} \new@anchor@label{sec217}{sss:mty-mty}{{7.10.2}{X}} \@deflabeltype{sss:mty-mty}{subsection} \new@anchor@label{sec218}{sss:mty-open}{{7.10.2}{X}} \@deflabeltype{sss:mty-open}{subsection} \new@anchor@label{sec219}{sss:mty-include}{{7.10.2}{X}} \@deflabeltype{sss:mty-include}{subsection} \@@addtocsec{htoc}{ss:mty-functors}{1}{\@print{7.10.3}\quad{}\label{ss:mty-functors}Functor types{}} \new@anchor@label{sec220}{ss:mty-functors}{{7.10.3}{X}} \@deflabeltype{ss:mty-functors}{subsection} \@@addtocsec{htoc}{ss:mty-with}{1}{\@print{7.10.4}\quad{}\label{ss:mty-with}The {\machine{with}} operator{}} \new@anchor@label{sec221}{ss:mty-with}{{7.10.4}{X}} \@deflabeltype{ss:mty-with}{subsection} \@@addtocsec{htoc}{s:module-expr}{0}{\@print{7.11}\quad{}\label{s:module-expr}Module expressions (module implementations){}} \new@anchor@label{sec222}{s:module-expr}{{7.11}{X}} \@deflabeltype{s:module-expr}{section} \stx@exists{module-expr}\stx@exists{module-items}\stx@exists{definition}\@@addtocsec{htoc}{ss:mexpr-simple}{1}{\@print{7.11.1}\quad{}\label{ss:mexpr-simple}Simple module expressions{}} \new@anchor@label{sec223}{ss:mexpr-simple}{{7.11.1}{X}} \@deflabeltype{ss:mexpr-simple}{subsection} \@@addtocsec{htoc}{ss:mexpr-structures}{1}{\@print{7.11.2}\quad{}\label{ss:mexpr-structures}Structures{}} \new@anchor@label{sec224}{ss:mexpr-structures}{{7.11.2}{X}} \@deflabeltype{ss:mexpr-structures}{subsection} \new@anchor@label{sec225}{sss:mexpr-value-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-value-defs}{subsection} \new@anchor@label{sec226}{sss:mexpr-type-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-type-defs}{subsection} \new@anchor@label{sec227}{sss:mexpr-exn-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-exn-defs}{subsection} \new@anchor@label{sec228}{sss:mexpr-class-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-class-defs}{subsection} \new@anchor@label{sec229}{sss:mexpr-classtype-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-classtype-defs}{subsection} \new@anchor@label{sec230}{sss:mexpr-module-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-module-defs}{subsection} \new@anchor@label{sec231}{sss:mexpr-modtype-defs}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-modtype-defs}{subsection} \new@anchor@label{sec232}{sss:mexpr-open}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-open}{subsection} \new@anchor@label{sec233}{sss:mexpr-include}{{7.11.2}{X}} \@deflabeltype{sss:mexpr-include}{subsection} \@@addtocsec{htoc}{ss:mexpr-functors}{1}{\@print{7.11.3}\quad{}\label{ss:mexpr-functors}Functors{}} \new@anchor@label{sec234}{ss:mexpr-functors}{{7.11.3}{X}} \@deflabeltype{ss:mexpr-functors}{subsection} \new@anchor@label{sec235}{sss:mexpr-functor-defs}{{7.11.3}{X}} \@deflabeltype{sss:mexpr-functor-defs}{subsection} \new@anchor@label{sec236}{sss:mexpr-functor-app}{{7.11.3}{X}} \@deflabeltype{sss:mexpr-functor-app}{subsection} \@@addtocsec{htoc}{s:compilation-units}{0}{\@print{7.12}\quad{}\label{s:compilation-units}Compilation units{}} \new@anchor@label{sec237}{s:compilation-units}{{7.12}{X}} \@deflabeltype{s:compilation-units}{section} \stx@exists{unit-interface}\stx@exists{unit-implementation}\@@addtocsec{htoc}{sec238}{-1}{\@print{Chapter 8}\quad{}Language extensions{}} \newlabel{c:extensions}{{8}{X}} \@deflabeltype{c:extensions}{chapter} \@@addtocsec{htoc}{s:letrecvalues}{0}{\@print{8.1}\quad{}\label{s:letrecvalues}Recursive definitions of values{}} \new@anchor@label{sec239}{s:letrecvalues}{{8.1}{X}} \@deflabeltype{s:letrecvalues}{section} \@@addtocsec{htoc}{s:recursive-modules}{0}{\@print{8.2}\quad{}\label{s:recursive-modules}Recursive modules{}} \new@anchor@label{sec240}{s:recursive-modules}{{8.2}{X}} \@deflabeltype{s:recursive-modules}{section} \@@addtocsec{htoc}{s:private-types}{0}{\@print{8.3}\quad{}\label{s:private-types}Private types{}} \new@anchor@label{sec241}{s:private-types}{{8.3}{X}} \@deflabeltype{s:private-types}{section} \@@addtocsec{htoc}{ss:private-types-variant}{1}{\@print{8.3.1}\quad{}\label{ss:private-types-variant}Private variant and record types{}} \new@anchor@label{sec242}{ss:private-types-variant}{{8.3.1}{X}} \@deflabeltype{ss:private-types-variant}{subsection} \@@addtocsec{htoc}{ss:private-types-abbrev}{1}{\@print{8.3.2}\quad{}\label{ss:private-types-abbrev}Private type abbreviations{}} \new@anchor@label{sec243}{ss:private-types-abbrev}{{8.3.2}{X}} \@deflabeltype{ss:private-types-abbrev}{subsection} \@@addtocsec{htoc}{ss:private-rows}{1}{\@print{8.3.3}\quad{}\label{ss:private-rows}Private row types{}} \new@anchor@label{sec244}{ss:private-rows}{{8.3.3}{X}} \@deflabeltype{ss:private-rows}{subsection} \@@addtocsec{htoc}{s:locally-abstract}{0}{\@print{8.4}\quad{}\label{s:locally-abstract}Locally abstract types{}} \new@anchor@label{sec245}{s:locally-abstract}{{8.4}{X}} \@deflabeltype{s:locally-abstract}{section} \new@anchor@label{sec246}{p:polymorpic-locally-abstract}{{8.4}{X}} \@deflabeltype{p:polymorpic-locally-abstract}{section} \@@addtocsec{htoc}{s:first-class-modules}{0}{\@print{8.5}\quad{}\label{s:first-class-modules}First-class modules{}} \new@anchor@label{sec247}{s:first-class-modules}{{8.5}{X}} \@deflabeltype{s:first-class-modules}{section} \stx@exists{package-type}\stx@exists{package-constraint}\new@anchor@label{sec248}{p:fst-mod-example}{{8.5}{X}} \@deflabeltype{p:fst-mod-example}{section} \new@anchor@label{sec249}{p:fst-mod-advexamples}{{8.5}{X}} \@deflabeltype{p:fst-mod-advexamples}{section} \@@addtocsec{htoc}{s:module-type-of}{0}{\@print{8.6}\quad{}\label{s:module-type-of}Recovering the type of a module{}} \new@anchor@label{sec250}{s:module-type-of}{{8.6}{X}} \@deflabeltype{s:module-type-of}{section} \@@addtocsec{htoc}{s:signature-substitution}{0}{\@print{8.7}\quad{}\label{s:signature-substitution}Substituting inside a signature{}} \new@anchor@label{sec251}{s:signature-substitution}{{8.7}{X}} \@deflabeltype{s:signature-substitution}{section} \@@addtocsec{htoc}{ss:destructive-substitution}{1}{\@print{8.7.1}\quad{}\label{ss:destructive-substitution}Destructive substitutions{}} \new@anchor@label{sec252}{ss:destructive-substitution}{{8.7.1}{X}} \@deflabeltype{ss:destructive-substitution}{subsection} \@@addtocsec{htoc}{ss:local-substitution}{1}{\@print{8.7.2}\quad{}\label{ss:local-substitution}Local substitution declarations{}} \new@anchor@label{sec253}{ss:local-substitution}{{8.7.2}{X}} \@deflabeltype{ss:local-substitution}{subsection} \stx@exists{type-subst}\@@addtocsec{htoc}{s:module-alias}{0}{\@print{8.8}\quad{}\label{s:module-alias}Type-level module aliases{}} \new@anchor@label{sec254}{s:module-alias}{{8.8}{X}} \@deflabeltype{s:module-alias}{section} \@@addtocsec{htoc}{s:explicit-overriding-open}{0}{\@print{8.9}\quad{}\label{s:explicit-overriding-open}Overriding in open statements{}} \new@anchor@label{sec255}{s:explicit-overriding-open}{{8.9}{X}} \@deflabeltype{s:explicit-overriding-open}{section} \@@addtocsec{htoc}{s:gadts}{0}{\@print{8.10}\quad{}\label{s:gadts}Generalized algebraic datatypes{}} \new@anchor@label{sec256}{s:gadts}{{8.10}{X}} \@deflabeltype{s:gadts}{section} \new@anchor@label{sec257}{p:gadts-recfun}{{8.10}{X}} \@deflabeltype{p:gadts-recfun}{section} \new@anchor@label{sec258}{p:gadts-type-inference}{{8.10}{X}} \@deflabeltype{p:gadts-type-inference}{section} \new@anchor@label{sec259}{p:gadt-refutation-cases}{{8.10}{X}} \@deflabeltype{p:gadt-refutation-cases}{section} \stx@exists{matching-case}\new@anchor@label{sec260}{p:gadts-advexamples}{{8.10}{X}} \@deflabeltype{p:gadts-advexamples}{section} \new@anchor@label{sec261}{p:existential-names}{{8.10}{X}} \@deflabeltype{p:existential-names}{section} \new@anchor@label{sec262}{p:gadt-equation-nonlocal-abstract}{{8.10}{X}} \@deflabeltype{p:gadt-equation-nonlocal-abstract}{section} \@@addtocsec{htoc}{s:bigarray-access}{0}{\@print{8.11}\quad{}\label{s:bigarray-access}Syntax for Bigarray access{}} \new@anchor@label{sec263}{s:bigarray-access}{{8.11}{X}} \@deflabeltype{s:bigarray-access}{section} \@@addtocsec{htoc}{s:attributes}{0}{\@print{8.12}\quad{}\label{s:attributes}Attributes{}} \new@anchor@label{sec264}{s:attributes}{{8.12}{X}} \@deflabeltype{s:attributes}{section} \stx@exists{attr-id}\stx@exists{attr-payload}\stx@exists{attribute}\stx@exists{item-attribute}\stx@exists{floating-attribute}\@@addtocsec{htoc}{ss:builtin-attributes}{1}{\@print{8.12.1}\quad{}\label{ss:builtin-attributes}Built-in attributes{}} \new@anchor@label{sec265}{ss:builtin-attributes}{{8.12.1}{X}} \@deflabeltype{ss:builtin-attributes}{subsection} \@@addtocsec{htoc}{s:extension-nodes}{0}{\@print{8.13}\quad{}\label{s:extension-nodes}Extension nodes{}} \new@anchor@label{sec266}{s:extension-nodes}{{8.13}{X}} \@deflabeltype{s:extension-nodes}{section} \stx@exists{extension}\stx@exists{item-extension}\@@addtocsec{htoc}{ss:builtin-extension-nodes}{1}{\@print{8.13.1}\quad{}\label{ss:builtin-extension-nodes}Built-in extension nodes{}} \new@anchor@label{sec267}{ss:builtin-extension-nodes}{{8.13.1}{X}} \@deflabeltype{ss:builtin-extension-nodes}{subsection} \@@addtocsec{htoc}{s:extensible-variants}{0}{\@print{8.14}\quad{}\label{s:extensible-variants}Extensible variant types{}} \new@anchor@label{sec268}{s:extensible-variants}{{8.14}{X}} \@deflabeltype{s:extensible-variants}{section} \stx@exists{type-extension-spec}\stx@exists{type-extension-def}\stx@exists{constr-def}\@@addtocsec{htoc}{ss:private-extensible}{1}{\@print{8.14.1}\quad{}\label{ss:private-extensible}Private extensible variant types{}} \new@anchor@label{sec269}{ss:private-extensible}{{8.14.1}{X}} \@deflabeltype{ss:private-extensible}{subsection} \@@addtocsec{htoc}{s:generative-functors}{0}{\@print{8.15}\quad{}\label{s:generative-functors}Generative functors{}} \new@anchor@label{sec270}{s:generative-functors}{{8.15}{X}} \@deflabeltype{s:generative-functors}{section} \@@addtocsec{htoc}{s:extension-syntax}{0}{\@print{8.16}\quad{}\label{s:extension-syntax}Extension-only syntax{}} \new@anchor@label{sec271}{s:extension-syntax}{{8.16}{X}} \@deflabeltype{s:extension-syntax}{section} \@@addtocsec{htoc}{ss:extension-operators}{1}{\@print{8.16.1}\quad{}\label{ss:extension-operators}Extension operators{}} \new@anchor@label{sec272}{ss:extension-operators}{{8.16.1}{X}} \@deflabeltype{ss:extension-operators}{subsection} \newlabel{s:ext-ops}{{8.16.1}{X}} \@deflabeltype{s:ext-ops}{subsection} \@@addtocsec{htoc}{ss:extension-literals}{1}{\@print{8.16.2}\quad{}\label{ss:extension-literals}Extension literals{}} \new@anchor@label{sec273}{ss:extension-literals}{{8.16.2}{X}} \@deflabeltype{ss:extension-literals}{subsection} \stx@exists{int-literal}\@@addtocsec{htoc}{s:inline-records}{0}{\@print{8.17}\quad{}\label{s:inline-records}Inline records{}} \new@anchor@label{sec274}{s:inline-records}{{8.17}{X}} \@deflabeltype{s:inline-records}{section} \@@addtocsec{htoc}{s:doc-comments}{0}{\@print{8.18}\quad{}\label{s:doc-comments}Documentation comments{}} \new@anchor@label{sec275}{s:doc-comments}{{8.18}{X}} \@deflabeltype{s:doc-comments}{section} \@@addtocsec{htoc}{ss:floating-comments}{1}{\@print{8.18.1}\quad{}\label{ss:floating-comments}Floating comments{}} \new@anchor@label{sec276}{ss:floating-comments}{{8.18.1}{X}} \@deflabeltype{ss:floating-comments}{subsection} \@@addtocsec{htoc}{ss:item-comments}{1}{\@print{8.18.2}\quad{}\label{ss:item-comments}Item comments{}} \new@anchor@label{sec277}{ss:item-comments}{{8.18.2}{X}} \@deflabeltype{ss:item-comments}{subsection} \@@addtocsec{htoc}{ss:label-comments}{1}{\@print{8.18.3}\quad{}\label{ss:label-comments}Label comments{}} \new@anchor@label{sec278}{ss:label-comments}{{8.18.3}{X}} \@deflabeltype{ss:label-comments}{subsection} \@@addtocsec{htoc}{s:index-operators}{0}{\@print{8.19}\quad{}\label{s:index-operators}Extended indexing operators {}} \new@anchor@label{sec279}{s:index-operators}{{8.19}{X}} \@deflabeltype{s:index-operators}{section} \stx@exists{dot-ext}\stx@exists{dot-operator-char}\@@addtocsec{htoc}{ss:multiindexing}{1}{\@print{8.19.1}\quad{}\label{ss:multiindexing}Multi-index notation{}} \new@anchor@label{sec280}{ss:multiindexing}{{8.19.1}{X}} \@deflabeltype{ss:multiindexing}{subsection} \@@addtocsec{htoc}{s:empty-variants}{0}{\@print{8.20}\quad{}\label{s:empty-variants}Empty variant types{}} \new@anchor@label{sec281}{s:empty-variants}{{8.20}{X}} \@deflabeltype{s:empty-variants}{section} \@@addtocsec{htoc}{s:alerts}{0}{\@print{8.21}\quad{}\label{s:alerts}Alerts{}} \new@anchor@label{sec282}{s:alerts}{{8.21}{X}} \@deflabeltype{s:alerts}{section} \@@addtocsec{htoc}{s:generalized-open}{0}{\@print{8.22}\quad{}\label{s:generalized-open}Generalized open statements{}} \new@anchor@label{sec283}{s:generalized-open}{{8.22}{X}} \@deflabeltype{s:generalized-open}{section} \@@addtocsec{htoc}{s:binding-operators}{0}{\@print{8.23}\quad{}\label{s:binding-operators}Binding operators{}} \new@anchor@label{sec284}{s:binding-operators}{{8.23}{X}} \@deflabeltype{s:binding-operators}{section} \stx@exists{let-operator}\stx@exists{and-operator}\@@addtocsec{htoc}{ss:letops-rationale}{1}{\@print{8.23.1}\quad{}\label{ss:letops-rationale}Rationale{}} \new@anchor@label{sec285}{ss:letops-rationale}{{8.23.1}{X}} \@deflabeltype{ss:letops-rationale}{subsection} \@@addtocsec{htoc}{sec286}{-2}{\@print{Part III}\quad{}The OCaml tools{}} \newlabel{p:commands}{{III}{X}} \@deflabeltype{p:commands}{part} \@@addtocsec{htoc}{sec287}{-1}{\@print{Chapter 9}\quad{}Batch compilation (ocamlc){}} \newlabel{c:camlc}{{9}{X}} \@deflabeltype{c:camlc}{chapter} \@@addtocsec{htoc}{s:comp-overview}{0}{\@print{9.1}\quad{}\label{s:comp-overview}Overview of the compiler{}} \new@anchor@label{sec288}{s:comp-overview}{{9.1}{X}} \@deflabeltype{s:comp-overview}{section} \@@addtocsec{htoc}{s:comp-options}{0}{\@print{9.2}\quad{}\label{s:comp-options}Options{}} \new@anchor@label{sec289}{s:comp-options}{{9.2}{X}} \@deflabeltype{s:comp-options}{section} \@@addtocsec{htoc}{s:modules-file-system}{0}{\@print{9.3}\quad{}\label{s:modules-file-system}Modules and the file system{}} \new@anchor@label{sec291}{s:modules-file-system}{{9.3}{X}} \@deflabeltype{s:modules-file-system}{section} \@@addtocsec{htoc}{s:comp-errors}{0}{\@print{9.4}\quad{}\label{s:comp-errors}Common errors{}} \new@anchor@label{sec292}{s:comp-errors}{{9.4}{X}} \@deflabeltype{s:comp-errors}{section} \@@addtocsec{htoc}{s:comp-warnings}{0}{\@print{9.5}\quad{}\label{s:comp-warnings}Warning reference{}} \new@anchor@label{sec293}{s:comp-warnings}{{9.5}{X}} \@deflabeltype{s:comp-warnings}{section} \@@addtocsec{htoc}{ss:warn9}{1}{\@print{9.5.1}\quad{}\label{ss:warn9}Warning 9: missing fields in a record pattern{}} \new@anchor@label{sec294}{ss:warn9}{{9.5.1}{X}} \@deflabeltype{ss:warn9}{subsection} \@@addtocsec{htoc}{ss:warn52}{1}{\@print{9.5.2}\quad{}\label{ss:warn52}Warning 52: fragile constant pattern{}} \new@anchor@label{sec295}{ss:warn52}{{9.5.2}{X}} \@deflabeltype{ss:warn52}{subsection} \@@addtocsec{htoc}{ss:warn57}{1}{\@print{9.5.3}\quad{}\label{ss:warn57}Warning 57: Ambiguous or-pattern variables under guard{}} \new@anchor@label{sec296}{ss:warn57}{{9.5.3}{X}} \@deflabeltype{ss:warn57}{subsection} \@@addtocsec{htoc}{sec297}{-1}{\@print{Chapter 10}\quad{}The toplevel system or REPL (ocaml){}} \newlabel{c:camllight}{{10}{X}} \@deflabeltype{c:camllight}{chapter} \stx@exists{toplevel-input}\stx@exists{directive-argument}\@@addtocsec{htoc}{s:toplevel-options}{0}{\@print{10.1}\quad{}\label{s:toplevel-options}Options{}} \new@anchor@label{sec298}{s:toplevel-options}{{10.1}{X}} \@deflabeltype{s:toplevel-options}{section} \@@addtocsec{htoc}{s:toplevel-directives}{0}{\@print{10.2}\quad{}\label{s:toplevel-directives}Toplevel directives{}} \new@anchor@label{sec299}{s:toplevel-directives}{{10.2}{X}} \@deflabeltype{s:toplevel-directives}{section} \@@addtocsec{htoc}{s:toplevel-modules}{0}{\@print{10.3}\quad{}\label{s:toplevel-modules}The toplevel and the module system{}} \new@anchor@label{sec300}{s:toplevel-modules}{{10.3}{X}} \@deflabeltype{s:toplevel-modules}{section} \@@addtocsec{htoc}{s:toplevel-common-errors}{0}{\@print{10.4}\quad{}\label{s:toplevel-common-errors}Common errors{}} \new@anchor@label{sec301}{s:toplevel-common-errors}{{10.4}{X}} \@deflabeltype{s:toplevel-common-errors}{section} \@@addtocsec{htoc}{s:custom-toplevel}{0}{\@print{10.5}\quad{}\label{s:custom-toplevel}Building custom toplevel systems: \texttt{ocamlmktop}{}} \new@anchor@label{sec302}{s:custom-toplevel}{{10.5}{X}} \@deflabeltype{s:custom-toplevel}{section} \@@addtocsec{htoc}{ss:ocamlmktop-options}{1}{\@print{10.5.1}\quad{}\label{ss:ocamlmktop-options}Options{}} \new@anchor@label{sec303}{ss:ocamlmktop-options}{{10.5.1}{X}} \@deflabeltype{ss:ocamlmktop-options}{subsection} \@@addtocsec{htoc}{s:ocamlnat}{0}{\@print{10.6}\quad{}\label{s:ocamlnat}The native toplevel: \texttt{ocamlnat}\ (experimental){}} \new@anchor@label{sec304}{s:ocamlnat}{{10.6}{X}} \@deflabeltype{s:ocamlnat}{section} \@@addtocsec{htoc}{sec305}{-1}{\@print{Chapter 11}\quad{}The runtime system (ocamlrun){}} \newlabel{c:runtime}{{11}{X}} \@deflabeltype{c:runtime}{chapter} \@@addtocsec{htoc}{s:ocamlrun-overview}{0}{\@print{11.1}\quad{}\label{s:ocamlrun-overview}Overview{}} \new@anchor@label{sec306}{s:ocamlrun-overview}{{11.1}{X}} \@deflabeltype{s:ocamlrun-overview}{section} \@@addtocsec{htoc}{s:ocamlrun-options}{0}{\@print{11.2}\quad{}\label{s:ocamlrun-options}Options{}} \new@anchor@label{sec307}{s:ocamlrun-options}{{11.2}{X}} \@deflabeltype{s:ocamlrun-options}{section} \@@addtocsec{htoc}{s:ocamlrun-dllpath}{0}{\@print{11.3}\quad{}\label{s:ocamlrun-dllpath}Dynamic loading of shared libraries{}} \new@anchor@label{sec308}{s:ocamlrun-dllpath}{{11.3}{X}} \@deflabeltype{s:ocamlrun-dllpath}{section} \@@addtocsec{htoc}{s:ocamlrun-common-errors}{0}{\@print{11.4}\quad{}\label{s:ocamlrun-common-errors}Common errors{}} \new@anchor@label{sec309}{s:ocamlrun-common-errors}{{11.4}{X}} \@deflabeltype{s:ocamlrun-common-errors}{section} \@@addtocsec{htoc}{sec310}{-1}{\@print{Chapter 12}\quad{}Native-code compilation (ocamlopt){}} \newlabel{c:nativecomp}{{12}{X}} \@deflabeltype{c:nativecomp}{chapter} \@@addtocsec{htoc}{s:native-overview}{0}{\@print{12.1}\quad{}\label{s:native-overview}Overview of the compiler{}} \new@anchor@label{sec311}{s:native-overview}{{12.1}{X}} \@deflabeltype{s:native-overview}{section} \@@addtocsec{htoc}{s:native-options}{0}{\@print{12.2}\quad{}\label{s:native-options}Options{}} \new@anchor@label{sec312}{s:native-options}{{12.2}{X}} \@deflabeltype{s:native-options}{section} \@@addtocsec{htoc}{s:native-common-errors}{0}{\@print{12.3}\quad{}\label{s:native-common-errors}Common errors{}} \new@anchor@label{sec317}{s:native-common-errors}{{12.3}{X}} \@deflabeltype{s:native-common-errors}{section} \@@addtocsec{htoc}{s:native:running-executable}{0}{\@print{12.4}\quad{}\label{s:native:running-executable}Running executables produced by ocamlopt{}} \new@anchor@label{sec318}{s:native:running-executable}{{12.4}{X}} \@deflabeltype{s:native:running-executable}{section} \@@addtocsec{htoc}{s:compat-native-bytecode}{0}{\@print{12.5}\quad{}\label{s:compat-native-bytecode}Compatibility with the bytecode compiler{}} \new@anchor@label{sec319}{s:compat-native-bytecode}{{12.5}{X}} \@deflabeltype{s:compat-native-bytecode}{section} \@@addtocsec{htoc}{sec320}{-1}{\@print{Chapter 13}\quad{}Lexer and parser generators (ocamllex, ocamlyacc){}} \newlabel{c:ocamlyacc}{{13}{X}} \@deflabeltype{c:ocamlyacc}{chapter} \@@addtocsec{htoc}{s:ocamllex-overview}{0}{\@print{13.1}\quad{}\label{s:ocamllex-overview}Overview of \texttt{ocamllex}{}} \new@anchor@label{sec321}{s:ocamllex-overview}{{13.1}{X}} \@deflabeltype{s:ocamllex-overview}{section} \@@addtocsec{htoc}{ss:ocamllex-options}{1}{\@print{13.1.1}\quad{}\label{ss:ocamllex-options}Options{}} \new@anchor@label{sec322}{ss:ocamllex-options}{{13.1.1}{X}} \@deflabeltype{ss:ocamllex-options}{subsection} \@@addtocsec{htoc}{s:ocamllex-syntax}{0}{\@print{13.2}\quad{}\label{s:ocamllex-syntax}Syntax of lexer definitions{}} \new@anchor@label{sec323}{s:ocamllex-syntax}{{13.2}{X}} \@deflabeltype{s:ocamllex-syntax}{section} \@@addtocsec{htoc}{ss:ocamllex-header-trailer}{1}{\@print{13.2.1}\quad{}\label{ss:ocamllex-header-trailer}Header and trailer{}} \new@anchor@label{sec324}{ss:ocamllex-header-trailer}{{13.2.1}{X}} \@deflabeltype{ss:ocamllex-header-trailer}{subsection} \@@addtocsec{htoc}{ss:ocamllex-named-regexp}{1}{\@print{13.2.2}\quad{}\label{ss:ocamllex-named-regexp}Naming regular expressions{}} \new@anchor@label{sec325}{ss:ocamllex-named-regexp}{{13.2.2}{X}} \@deflabeltype{ss:ocamllex-named-regexp}{subsection} \@@addtocsec{htoc}{ss:ocamllex-entry-points}{1}{\@print{13.2.3}\quad{}\label{ss:ocamllex-entry-points}Entry points{}} \new@anchor@label{sec326}{ss:ocamllex-entry-points}{{13.2.3}{X}} \@deflabeltype{ss:ocamllex-entry-points}{subsection} \@@addtocsec{htoc}{ss:ocamllex-regexp}{1}{\@print{13.2.4}\quad{}\label{ss:ocamllex-regexp}Regular expressions{}} \new@anchor@label{sec327}{ss:ocamllex-regexp}{{13.2.4}{X}} \@deflabeltype{ss:ocamllex-regexp}{subsection} \stx@exists{regexp}\@@addtocsec{htoc}{ss:ocamllex-actions}{1}{\@print{13.2.5}\quad{}\label{ss:ocamllex-actions}Actions{}} \new@anchor@label{sec328}{ss:ocamllex-actions}{{13.2.5}{X}} \@deflabeltype{ss:ocamllex-actions}{subsection} \@@addtocsec{htoc}{ss:ocamllex-variables}{1}{\@print{13.2.6}\quad{}\label{ss:ocamllex-variables}Variables in regular expressions{}} \new@anchor@label{sec329}{ss:ocamllex-variables}{{13.2.6}{X}} \@deflabeltype{ss:ocamllex-variables}{subsection} \@@addtocsec{htoc}{ss:refill-handlers}{1}{\@print{13.2.7}\quad{}\label{ss:refill-handlers}Refill handlers{}} \new@anchor@label{sec330}{ss:refill-handlers}{{13.2.7}{X}} \@deflabeltype{ss:refill-handlers}{subsection} \@@addtocsec{htoc}{ss:ocamllex-reserved-ident}{1}{\@print{13.2.8}\quad{}\label{ss:ocamllex-reserved-ident}Reserved identifiers{}} \new@anchor@label{sec331}{ss:ocamllex-reserved-ident}{{13.2.8}{X}} \@deflabeltype{ss:ocamllex-reserved-ident}{subsection} \@@addtocsec{htoc}{s:ocamlyacc-overview}{0}{\@print{13.3}\quad{}\label{s:ocamlyacc-overview}Overview of \texttt{ocamlyacc}{}} \new@anchor@label{sec332}{s:ocamlyacc-overview}{{13.3}{X}} \@deflabeltype{s:ocamlyacc-overview}{section} \@@addtocsec{htoc}{s:ocamlyacc-syntax}{0}{\@print{13.4}\quad{}\label{s:ocamlyacc-syntax}Syntax of grammar definitions{}} \new@anchor@label{sec333}{s:ocamlyacc-syntax}{{13.4}{X}} \@deflabeltype{s:ocamlyacc-syntax}{section} \@@addtocsec{htoc}{ss:ocamlyacc-header-trailer}{1}{\@print{13.4.1}\quad{}\label{ss:ocamlyacc-header-trailer}Header and trailer{}} \new@anchor@label{sec334}{ss:ocamlyacc-header-trailer}{{13.4.1}{X}} \@deflabeltype{ss:ocamlyacc-header-trailer}{subsection} \@@addtocsec{htoc}{ss:ocamlyacc-declarations}{1}{\@print{13.4.2}\quad{}\label{ss:ocamlyacc-declarations}Declarations{}} \new@anchor@label{sec335}{ss:ocamlyacc-declarations}{{13.4.2}{X}} \@deflabeltype{ss:ocamlyacc-declarations}{subsection} \@@addtocsec{htoc}{ss:ocamlyacc-rules}{1}{\@print{13.4.3}\quad{}\label{ss:ocamlyacc-rules}Rules{}} \new@anchor@label{sec336}{ss:ocamlyacc-rules}{{13.4.3}{X}} \@deflabeltype{ss:ocamlyacc-rules}{subsection} \@@addtocsec{htoc}{ss:ocamlyacc-error-handling}{1}{\@print{13.4.4}\quad{}\label{ss:ocamlyacc-error-handling}Error handling{}} \new@anchor@label{sec337}{ss:ocamlyacc-error-handling}{{13.4.4}{X}} \@deflabeltype{ss:ocamlyacc-error-handling}{subsection} \@@addtocsec{htoc}{s:ocamlyacc-options}{0}{\@print{13.5}\quad{}\label{s:ocamlyacc-options}Options{}} \new@anchor@label{sec338}{s:ocamlyacc-options}{{13.5}{X}} \@deflabeltype{s:ocamlyacc-options}{section} \@@addtocsec{htoc}{s:lexyacc-example}{0}{\@print{13.6}\quad{}\label{s:lexyacc-example}A complete example{}} \new@anchor@label{sec339}{s:lexyacc-example}{{13.6}{X}} \@deflabeltype{s:lexyacc-example}{section} \@@addtocsec{htoc}{s:lexyacc-common-errors}{0}{\@print{13.7}\quad{}\label{s:lexyacc-common-errors}Common errors{}} \new@anchor@label{sec340}{s:lexyacc-common-errors}{{13.7}{X}} \@deflabeltype{s:lexyacc-common-errors}{section} \@@addtocsec{htoc}{sec341}{-1}{\@print{Chapter 14}\quad{}Dependency generator (ocamldep){}} \newlabel{c:camldep}{{14}{X}} \@deflabeltype{c:camldep}{chapter} \@@addtocsec{htoc}{s:ocamldep-options}{0}{\@print{14.1}\quad{}\label{s:ocamldep-options}Options{}} \new@anchor@label{sec342}{s:ocamldep-options}{{14.1}{X}} \@deflabeltype{s:ocamldep-options}{section} \@@addtocsec{htoc}{s:ocamldep-makefile}{0}{\@print{14.2}\quad{}\label{s:ocamldep-makefile}A typical Makefile{}} \new@anchor@label{sec343}{s:ocamldep-makefile}{{14.2}{X}} \@deflabeltype{s:ocamldep-makefile}{section} \@@addtocsec{htoc}{sec344}{-1}{\@print{Chapter 15}\quad{}The browser/editor (ocamlbrowser){}} \newlabel{c:browser}{{15}{X}} \@deflabeltype{c:browser}{chapter} \@@addtocsec{htoc}{sec345}{-1}{\@print{Chapter 16}\quad{}The documentation generator (ocamldoc){}} \newlabel{c:ocamldoc}{{16}{X}} \@deflabeltype{c:ocamldoc}{chapter} \@@addtocsec{htoc}{s:ocamldoc-usage}{0}{\@print{16.1}\quad{}\label{s:ocamldoc-usage}Usage{}} \new@anchor@label{sec346}{s:ocamldoc-usage}{{16.1}{X}} \@deflabeltype{s:ocamldoc-usage}{section} \@@addtocsec{htoc}{ss:ocamldoc-invocation}{1}{\@print{16.1.1}\quad{}\label{ss:ocamldoc-invocation}Invocation{}} \new@anchor@label{sec347}{ss:ocamldoc-invocation}{{16.1.1}{X}} \@deflabeltype{ss:ocamldoc-invocation}{subsection} \new@anchor@label{sec348}{sss:ocamldoc-output}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-output}{subsection} \new@anchor@label{sec349}{sss:ocamldoc-options}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-options}{subsection} \new@anchor@label{sec350}{sss:ocamldoc-type-checking}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-type-checking}{subsection} \new@anchor@label{sec351}{sss:ocamldoc-html}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-html}{subsection} \new@anchor@label{sec352}{sss:ocamldoc-latex}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-latex}{subsection} \new@anchor@label{sec353}{sss:ocamldoc-info}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-info}{subsection} \new@anchor@label{sec354}{sss:ocamldoc-dot}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-dot}{subsection} \new@anchor@label{sec355}{sss:ocamldoc-man}{{16.1.1}{X}} \@deflabeltype{sss:ocamldoc-man}{subsection} \@@addtocsec{htoc}{ss:ocamldoc-merge}{1}{\@print{16.1.2}\quad{}\label{ss:ocamldoc-merge}Merging of module information{}} \new@anchor@label{sec356}{ss:ocamldoc-merge}{{16.1.2}{X}} \@deflabeltype{ss:ocamldoc-merge}{subsection} \@@addtocsec{htoc}{ss:ocamldoc-rules}{1}{\@print{16.1.3}\quad{}\label{ss:ocamldoc-rules}Coding rules{}} \new@anchor@label{sec357}{ss:ocamldoc-rules}{{16.1.3}{X}} \@deflabeltype{ss:ocamldoc-rules}{subsection} \@@addtocsec{htoc}{s:ocamldoc-comments}{0}{\@print{16.2}\quad{}\label{s:ocamldoc-comments}Syntax of documentation comments{}} \new@anchor@label{sec358}{s:ocamldoc-comments}{{16.2}{X}} \@deflabeltype{s:ocamldoc-comments}{section} \@@addtocsec{htoc}{ss:ocamldoc-placement}{1}{\@print{16.2.1}\quad{}\label{ss:ocamldoc-placement}Placement of documentation comments{}} \new@anchor@label{sec359}{ss:ocamldoc-placement}{{16.2.1}{X}} \@deflabeltype{ss:ocamldoc-placement}{subsection} \new@anchor@label{sec360}{sss:ocamldoc-mli}{{16.2.1}{X}} \@deflabeltype{sss:ocamldoc-mli}{subsection} \new@anchor@label{sec361}{sss:ocamldoc-comments-ml}{{16.2.1}{X}} \@deflabeltype{sss:ocamldoc-comments-ml}{subsection} \@@addtocsec{htoc}{ss:ocamldoc-stop}{1}{\@print{16.2.2}\quad{}\label{ss:ocamldoc-stop}The Stop special comment{}} \new@anchor@label{sec362}{ss:ocamldoc-stop}{{16.2.2}{X}} \@deflabeltype{ss:ocamldoc-stop}{subsection} \@@addtocsec{htoc}{ss:ocamldoc-syntax}{1}{\@print{16.2.3}\quad{}\label{ss:ocamldoc-syntax}Syntax of documentation comments{}} \new@anchor@label{sec363}{ss:ocamldoc-syntax}{{16.2.3}{X}} \@deflabeltype{ss:ocamldoc-syntax}{subsection} \@@addtocsec{htoc}{ss:ocamldoc-formatting}{1}{\@print{16.2.4}\quad{}\label{ss:ocamldoc-formatting}Text formatting{}} \new@anchor@label{sec364}{ss:ocamldoc-formatting}{{16.2.4}{X}} \@deflabeltype{ss:ocamldoc-formatting}{subsection} \stx@exists{text}\stx@exists{text-element}\new@anchor@label{sec365}{sss:ocamldoc-list}{{16.2.4.1}{X}} \@deflabeltype{sss:ocamldoc-list}{subsubsection} \stx@exists{list}\new@anchor@label{sec366}{sss:ocamldoc-crossref}{{16.2.4.2}{X}} \@deflabeltype{sss:ocamldoc-crossref}{subsubsection} \new@anchor@label{sec367}{sss:ocamldoc-preamble}{{16.2.4.3}{X}} \@deflabeltype{sss:ocamldoc-preamble}{subsubsection} \new@anchor@label{sec368}{sss:ocamldoc-target-specific-syntax}{{16.2.4.4}{X}} \@deflabeltype{sss:ocamldoc-target-specific-syntax}{subsubsection} \new@anchor@label{sec369}{sss:ocamldoc-html-tags}{{16.2.4.5}{X}} \@deflabeltype{sss:ocamldoc-html-tags}{subsubsection} \@@addtocsec{htoc}{ss:ocamldoc-tags}{1}{\@print{16.2.5}\quad{}\label{ss:ocamldoc-tags}Documentation tags (@-tags){}} \new@anchor@label{sec370}{ss:ocamldoc-tags}{{16.2.5}{X}} \@deflabeltype{ss:ocamldoc-tags}{subsection} \new@anchor@label{sec371}{sss:ocamldoc-builtin-tags}{{16.2.5}{X}} \@deflabeltype{sss:ocamldoc-builtin-tags}{subsection} \new@anchor@label{sec372}{sss:ocamldoc-custom-tags}{{16.2.5}{X}} \@deflabeltype{sss:ocamldoc-custom-tags}{subsection} \@@addtocsec{htoc}{s:ocamldoc-custom-generators}{0}{\@print{16.3}\quad{}\label{s:ocamldoc-custom-generators}Custom generators{}} \new@anchor@label{sec373}{s:ocamldoc-custom-generators}{{16.3}{X}} \@deflabeltype{s:ocamldoc-custom-generators}{section} \@@addtocsec{htoc}{ss:ocamldoc-generators}{1}{\@print{16.3.1}\quad{}\label{ss:ocamldoc-generators}The generator modules{}} \new@anchor@label{sec374}{ss:ocamldoc-generators}{{16.3.1}{X}} \@deflabeltype{ss:ocamldoc-generators}{subsection} \@@addtocsec{htoc}{ss:ocamldoc-handling-custom-tags}{1}{\@print{16.3.2}\quad{}\label{ss:ocamldoc-handling-custom-tags}Handling custom tags{}} \new@anchor@label{sec375}{ss:ocamldoc-handling-custom-tags}{{16.3.2}{X}} \@deflabeltype{ss:ocamldoc-handling-custom-tags}{subsection} \new@anchor@label{sec376}{sss:ocamldoc-html-generator}{{16.3.2}{X}} \@deflabeltype{sss:ocamldoc-html-generator}{subsection} \new@anchor@label{sec377}{sss:ocamldoc-other-generators}{{16.3.2}{X}} \@deflabeltype{sss:ocamldoc-other-generators}{subsection} \@@addtocsec{htoc}{s:ocamldoc-adding-flags}{0}{\@print{16.4}\quad{}\label{s:ocamldoc-adding-flags}Adding command line options{}} \new@anchor@label{sec378}{s:ocamldoc-adding-flags}{{16.4}{X}} \@deflabeltype{s:ocamldoc-adding-flags}{section} \@@addtocsec{htoc}{ss:ocamldoc-compilation-and-usage}{1}{\@print{16.4.1}\quad{}\label{ss:ocamldoc-compilation-and-usage}Compilation and usage{}} \new@anchor@label{sec379}{ss:ocamldoc-compilation-and-usage}{{16.4.1}{X}} \@deflabeltype{ss:ocamldoc-compilation-and-usage}{subsection} \new@anchor@label{sec380}{sss:ocamldoc-generator-class}{{16.4.1}{X}} \@deflabeltype{sss:ocamldoc-generator-class}{subsection} \new@anchor@label{sec381}{sss:ocamldoc-modular-generator}{{16.4.1}{X}} \@deflabeltype{sss:ocamldoc-modular-generator}{subsection} \@@addtocsec{htoc}{sec382}{-1}{\@print{Chapter 17}\quad{}The debugger (ocamldebug){}} \newlabel{c:debugger}{{17}{X}} \@deflabeltype{c:debugger}{chapter} \@@addtocsec{htoc}{s:debugger-compilation}{0}{\@print{17.1}\quad{}\label{s:debugger-compilation}Compiling for debugging{}} \new@anchor@label{sec383}{s:debugger-compilation}{{17.1}{X}} \@deflabeltype{s:debugger-compilation}{section} \@@addtocsec{htoc}{s:debugger-invocation}{0}{\@print{17.2}\quad{}\label{s:debugger-invocation}Invocation{}} \new@anchor@label{sec384}{s:debugger-invocation}{{17.2}{X}} \@deflabeltype{s:debugger-invocation}{section} \@@addtocsec{htoc}{ss:debugger-start}{1}{\@print{17.2.1}\quad{}\label{ss:debugger-start}Starting the debugger{}} \new@anchor@label{sec385}{ss:debugger-start}{{17.2.1}{X}} \@deflabeltype{ss:debugger-start}{subsection} \@@addtocsec{htoc}{ss:debugger-init-file}{1}{\@print{17.2.2}\quad{}\label{ss:debugger-init-file}Initialization file{}} \new@anchor@label{sec386}{ss:debugger-init-file}{{17.2.2}{X}} \@deflabeltype{ss:debugger-init-file}{subsection} \@@addtocsec{htoc}{ss:debugger-exut}{1}{\@print{17.2.3}\quad{}\label{ss:debugger-exut}Exiting the debugger{}} \new@anchor@label{sec387}{ss:debugger-exut}{{17.2.3}{X}} \@deflabeltype{ss:debugger-exut}{subsection} \@@addtocsec{htoc}{s:debugger-commands}{0}{\@print{17.3}\quad{}\label{s:debugger-commands}Commands{}} \new@anchor@label{sec388}{s:debugger-commands}{{17.3}{X}} \@deflabeltype{s:debugger-commands}{section} \@@addtocsec{htoc}{ss:debugger-help}{1}{\@print{17.3.1}\quad{}\label{ss:debugger-help}Getting help{}} \new@anchor@label{sec389}{ss:debugger-help}{{17.3.1}{X}} \@deflabeltype{ss:debugger-help}{subsection} \@@addtocsec{htoc}{ss:debugger-state}{1}{\@print{17.3.2}\quad{}\label{ss:debugger-state}Accessing the debugger state{}} \new@anchor@label{sec390}{ss:debugger-state}{{17.3.2}{X}} \@deflabeltype{ss:debugger-state}{subsection} \@@addtocsec{htoc}{s:debugger-execution}{0}{\@print{17.4}\quad{}\label{s:debugger-execution}Executing a program{}} \new@anchor@label{sec391}{s:debugger-execution}{{17.4}{X}} \@deflabeltype{s:debugger-execution}{section} \@@addtocsec{htoc}{ss:debugger-events}{1}{\@print{17.4.1}\quad{}\label{ss:debugger-events}Events{}} \new@anchor@label{sec392}{ss:debugger-events}{{17.4.1}{X}} \@deflabeltype{ss:debugger-events}{subsection} \@@addtocsec{htoc}{ss:debugger-starting-program}{1}{\@print{17.4.2}\quad{}\label{ss:debugger-starting-program}Starting the debugged program{}} \new@anchor@label{sec393}{ss:debugger-starting-program}{{17.4.2}{X}} \@deflabeltype{ss:debugger-starting-program}{subsection} \@@addtocsec{htoc}{ss:debugger-running}{1}{\@print{17.4.3}\quad{}\label{ss:debugger-running}Running the program{}} \new@anchor@label{sec394}{ss:debugger-running}{{17.4.3}{X}} \@deflabeltype{ss:debugger-running}{subsection} \@@addtocsec{htoc}{ss:debugger-time-travel}{1}{\@print{17.4.4}\quad{}\label{ss:debugger-time-travel}Time travel{}} \new@anchor@label{sec395}{ss:debugger-time-travel}{{17.4.4}{X}} \@deflabeltype{ss:debugger-time-travel}{subsection} \@@addtocsec{htoc}{ss:debugger-kill}{1}{\@print{17.4.5}\quad{}\label{ss:debugger-kill}Killing the program{}} \new@anchor@label{sec396}{ss:debugger-kill}{{17.4.5}{X}} \@deflabeltype{ss:debugger-kill}{subsection} \@@addtocsec{htoc}{s:breakpoints}{0}{\@print{17.5}\quad{}\label{s:breakpoints}Breakpoints{}} \new@anchor@label{sec397}{s:breakpoints}{{17.5}{X}} \@deflabeltype{s:breakpoints}{section} \@@addtocsec{htoc}{s:debugger-callstack}{0}{\@print{17.6}\quad{}\label{s:debugger-callstack}The call stack{}} \new@anchor@label{sec398}{s:debugger-callstack}{{17.6}{X}} \@deflabeltype{s:debugger-callstack}{section} \@@addtocsec{htoc}{s:debugger-examining-values}{0}{\@print{17.7}\quad{}\label{s:debugger-examining-values}Examining variable values{}} \new@anchor@label{sec399}{s:debugger-examining-values}{{17.7}{X}} \@deflabeltype{s:debugger-examining-values}{section} \stx@exists{simple-expr}\@@addtocsec{htoc}{s:debugger-control}{0}{\@print{17.8}\quad{}\label{s:debugger-control}Controlling the debugger{}} \new@anchor@label{sec400}{s:debugger-control}{{17.8}{X}} \@deflabeltype{s:debugger-control}{section} \@@addtocsec{htoc}{ss:debugger-name-and-arguments}{1}{\@print{17.8.1}\quad{}\label{ss:debugger-name-and-arguments}Setting the program name and arguments{}} \new@anchor@label{sec401}{ss:debugger-name-and-arguments}{{17.8.1}{X}} \@deflabeltype{ss:debugger-name-and-arguments}{subsection} \@@addtocsec{htoc}{ss:debugger-loading}{1}{\@print{17.8.2}\quad{}\label{ss:debugger-loading}How programs are loaded{}} \new@anchor@label{sec402}{ss:debugger-loading}{{17.8.2}{X}} \@deflabeltype{ss:debugger-loading}{subsection} \@@addtocsec{htoc}{ss:debugger-search-path}{1}{\@print{17.8.3}\quad{}\label{ss:debugger-search-path}Search path for files{}} \new@anchor@label{sec403}{ss:debugger-search-path}{{17.8.3}{X}} \@deflabeltype{ss:debugger-search-path}{subsection} \@@addtocsec{htoc}{ss:debugger-working-dir}{1}{\@print{17.8.4}\quad{}\label{ss:debugger-working-dir}Working directory{}} \new@anchor@label{sec404}{ss:debugger-working-dir}{{17.8.4}{X}} \@deflabeltype{ss:debugger-working-dir}{subsection} \@@addtocsec{htoc}{ss:debugger-reverse-execution}{1}{\@print{17.8.5}\quad{}\label{ss:debugger-reverse-execution}Turning reverse execution on and off{}} \new@anchor@label{sec405}{ss:debugger-reverse-execution}{{17.8.5}{X}} \@deflabeltype{ss:debugger-reverse-execution}{subsection} \@@addtocsec{htoc}{ss:debugger-fork}{1}{\@print{17.8.6}\quad{}\label{ss:debugger-fork}Behavior of the debugger with respect to {\machine{fork}}{}} \new@anchor@label{sec406}{ss:debugger-fork}{{17.8.6}{X}} \@deflabeltype{ss:debugger-fork}{subsection} \@@addtocsec{htoc}{ss:debugger-stop-at-new-load}{1}{\@print{17.8.7}\quad{}\label{ss:debugger-stop-at-new-load}Stopping execution when new code is loaded{}} \new@anchor@label{sec407}{ss:debugger-stop-at-new-load}{{17.8.7}{X}} \@deflabeltype{ss:debugger-stop-at-new-load}{subsection} \@@addtocsec{htoc}{ss:debugger-communication}{1}{\@print{17.8.8}\quad{}\label{ss:debugger-communication}Communication between the debugger and the program{}} \new@anchor@label{sec408}{ss:debugger-communication}{{17.8.8}{X}} \@deflabeltype{ss:debugger-communication}{subsection} \@@addtocsec{htoc}{ss:debugger-fine-tuning}{1}{\@print{17.8.9}\quad{}\label{ss:debugger-fine-tuning}Fine-tuning the debugger{}} \new@anchor@label{sec409}{ss:debugger-fine-tuning}{{17.8.9}{X}} \@deflabeltype{ss:debugger-fine-tuning}{subsection} \@@addtocsec{htoc}{ss:debugger-printers}{1}{\@print{17.8.10}\quad{}\label{ss:debugger-printers}User-defined printers{}} \new@anchor@label{sec410}{ss:debugger-printers}{{17.8.10}{X}} \@deflabeltype{ss:debugger-printers}{subsection} \@@addtocsec{htoc}{s:debugger-misc-cmds}{0}{\@print{17.9}\quad{}\label{s:debugger-misc-cmds}Miscellaneous commands{}} \new@anchor@label{sec411}{s:debugger-misc-cmds}{{17.9}{X}} \@deflabeltype{s:debugger-misc-cmds}{section} \@@addtocsec{htoc}{s:inf-debugger}{0}{\@print{17.10}\quad{}\label{s:inf-debugger}Running the debugger under Emacs{}} \new@anchor@label{sec412}{s:inf-debugger}{{17.10}{X}} \@deflabeltype{s:inf-debugger}{section} \@@addtocsec{htoc}{sec413}{-1}{\@print{Chapter 18}\quad{}Profiling (ocamlprof){}} \newlabel{c:profiler}{{18}{X}} \@deflabeltype{c:profiler}{chapter} \@@addtocsec{htoc}{s:ocamlprof-compiling}{0}{\@print{18.1}\quad{}\label{s:ocamlprof-compiling}Compiling for profiling{}} \new@anchor@label{sec414}{s:ocamlprof-compiling}{{18.1}{X}} \@deflabeltype{s:ocamlprof-compiling}{section} \new@anchor@label{sec415}{p:ocamlprof-warning}{{18.1}{X}} \@deflabeltype{p:ocamlprof-warning}{section} \new@anchor@label{sec416}{p:ocamlprof-reserved}{{18.1}{X}} \@deflabeltype{p:ocamlprof-reserved}{section} \@@addtocsec{htoc}{s:ocamlprof-profiling}{0}{\@print{18.2}\quad{}\label{s:ocamlprof-profiling}Profiling an execution{}} \new@anchor@label{sec418}{s:ocamlprof-profiling}{{18.2}{X}} \@deflabeltype{s:ocamlprof-profiling}{section} \@@addtocsec{htoc}{s:ocamlprof-printing}{0}{\@print{18.3}\quad{}\label{s:ocamlprof-printing}Printing profiling information{}} \new@anchor@label{sec419}{s:ocamlprof-printing}{{18.3}{X}} \@deflabeltype{s:ocamlprof-printing}{section} \@@addtocsec{htoc}{s:ocamlprof-time-profiling}{0}{\@print{18.4}\quad{}\label{s:ocamlprof-time-profiling}Time profiling{}} \new@anchor@label{sec420}{s:ocamlprof-time-profiling}{{18.4}{X}} \@deflabeltype{s:ocamlprof-time-profiling}{section} \@@addtocsec{htoc}{sec421}{-1}{\@print{Chapter 19}\quad{}The ocamlbuild compilation manager{}} \newlabel{c:ocamlbuild}{{19}{X}} \@deflabeltype{c:ocamlbuild}{chapter} \@@addtocsec{htoc}{c:intf-c}{-1}{\@print{Chapter 20}\quad{}Interfacing\label{c:intf-c} C with OCaml{}} \new@anchor@label{sec422}{c:intf-c}{{20}{X}} \@deflabeltype{c:intf-c}{chapter} \@@addtocsec{htoc}{s:c-overview}{0}{\@print{20.1}\quad{}\label{s:c-overview}Overview and compilation information{}} \new@anchor@label{sec423}{s:c-overview}{{20.1}{X}} \@deflabeltype{s:c-overview}{section} \@@addtocsec{htoc}{ss:c-prim-decl}{1}{\@print{20.1.1}\quad{}\label{ss:c-prim-decl}Declaring primitives{}} \new@anchor@label{sec424}{ss:c-prim-decl}{{20.1.1}{X}} \@deflabeltype{ss:c-prim-decl}{subsection} \stx@exists{external-declaration}\@@addtocsec{htoc}{ss:c-prim-impl}{1}{\@print{20.1.2}\quad{}\label{ss:c-prim-impl}Implementing primitives{}} \new@anchor@label{sec425}{ss:c-prim-impl}{{20.1.2}{X}} \@deflabeltype{ss:c-prim-impl}{subsection} \@@addtocsec{htoc}{ss:staticlink-c-code}{1}{\@print{20.1.3}\quad{}\label{ss:staticlink-c-code}Statically linking C code with OCaml code{}} \new@anchor@label{sec426}{ss:staticlink-c-code}{{20.1.3}{X}} \@deflabeltype{ss:staticlink-c-code}{subsection} \@@addtocsec{htoc}{ss:dynlink-c-code}{1}{\@print{20.1.4}\quad{}\label{ss:dynlink-c-code}Dynamically linking C code with OCaml code{}} \new@anchor@label{sec427}{ss:dynlink-c-code}{{20.1.4}{X}} \@deflabeltype{ss:dynlink-c-code}{subsection} \@@addtocsec{htoc}{ss:c-static-vs-dynamic}{1}{\@print{20.1.5}\quad{}\label{ss:c-static-vs-dynamic}Choosing between static linking and dynamic linking{}} \new@anchor@label{sec428}{ss:c-static-vs-dynamic}{{20.1.5}{X}} \@deflabeltype{ss:c-static-vs-dynamic}{subsection} \@@addtocsec{htoc}{ss:custom-runtime}{1}{\@print{20.1.6}\quad{}\label{ss:custom-runtime}Building standalone custom runtime systems{}} \new@anchor@label{sec429}{ss:custom-runtime}{{20.1.6}{X}} \@deflabeltype{ss:custom-runtime}{subsection} \@@addtocsec{htoc}{s:c-value}{0}{\@print{20.2}\quad{}\label{s:c-value}The \texttt{value} type{}} \new@anchor@label{sec430}{s:c-value}{{20.2}{X}} \@deflabeltype{s:c-value}{section} \@@addtocsec{htoc}{ss:c-int}{1}{\@print{20.2.1}\quad{}\label{ss:c-int}Integer values{}} \new@anchor@label{sec431}{ss:c-int}{{20.2.1}{X}} \@deflabeltype{ss:c-int}{subsection} \@@addtocsec{htoc}{ss:c-blocks}{1}{\@print{20.2.2}\quad{}\label{ss:c-blocks}Blocks{}} \new@anchor@label{sec432}{ss:c-blocks}{{20.2.2}{X}} \@deflabeltype{ss:c-blocks}{subsection} \@@addtocsec{htoc}{ss:c-outside-head}{1}{\@print{20.2.3}\quad{}\label{ss:c-outside-head}Pointers outside the heap{}} \new@anchor@label{sec433}{ss:c-outside-head}{{20.2.3}{X}} \@deflabeltype{ss:c-outside-head}{subsection} \@@addtocsec{htoc}{s:c-ocaml-datatype-repr}{0}{\@print{20.3}\quad{}\label{s:c-ocaml-datatype-repr}Representation of OCaml data types{}} \new@anchor@label{sec434}{s:c-ocaml-datatype-repr}{{20.3}{X}} \@deflabeltype{s:c-ocaml-datatype-repr}{section} \@@addtocsec{htoc}{ss:c-atomic}{1}{\@print{20.3.1}\quad{}\label{ss:c-atomic}Atomic types{}} \new@anchor@label{sec435}{ss:c-atomic}{{20.3.1}{X}} \@deflabeltype{ss:c-atomic}{subsection} \@@addtocsec{htoc}{ss:c-tuples-and-records}{1}{\@print{20.3.2}\quad{}\label{ss:c-tuples-and-records}Tuples and records{}} \new@anchor@label{sec436}{ss:c-tuples-and-records}{{20.3.2}{X}} \@deflabeltype{ss:c-tuples-and-records}{subsection} \@@addtocsec{htoc}{ss:c-arrays}{1}{\@print{20.3.3}\quad{}\label{ss:c-arrays}Arrays{}} \new@anchor@label{sec437}{ss:c-arrays}{{20.3.3}{X}} \@deflabeltype{ss:c-arrays}{subsection} \@@addtocsec{htoc}{ss:c-concrete-datatypes}{1}{\@print{20.3.4}\quad{}\label{ss:c-concrete-datatypes}Concrete data types{}} \new@anchor@label{sec438}{ss:c-concrete-datatypes}{{20.3.4}{X}} \@deflabeltype{ss:c-concrete-datatypes}{subsection} \@@addtocsec{htoc}{ss:c-objects}{1}{\@print{20.3.5}\quad{}\label{ss:c-objects}Objects{}} \new@anchor@label{sec439}{ss:c-objects}{{20.3.5}{X}} \@deflabeltype{ss:c-objects}{subsection} \@@addtocsec{htoc}{ss:c-polyvar}{1}{\@print{20.3.6}\quad{}\label{ss:c-polyvar}Polymorphic variants{}} \new@anchor@label{sec440}{ss:c-polyvar}{{20.3.6}{X}} \@deflabeltype{ss:c-polyvar}{subsection} \@@addtocsec{htoc}{s:c-ops-on-values}{0}{\@print{20.4}\quad{}\label{s:c-ops-on-values}Operations on values{}} \new@anchor@label{sec441}{s:c-ops-on-values}{{20.4}{X}} \@deflabeltype{s:c-ops-on-values}{section} \@@addtocsec{htoc}{ss:c-kind-tests}{1}{\@print{20.4.1}\quad{}\label{ss:c-kind-tests}Kind tests{}} \new@anchor@label{sec442}{ss:c-kind-tests}{{20.4.1}{X}} \@deflabeltype{ss:c-kind-tests}{subsection} \@@addtocsec{htoc}{ss:c-int-ops}{1}{\@print{20.4.2}\quad{}\label{ss:c-int-ops}Operations on integers{}} \new@anchor@label{sec443}{ss:c-int-ops}{{20.4.2}{X}} \@deflabeltype{ss:c-int-ops}{subsection} \@@addtocsec{htoc}{ss:c-block-access}{1}{\@print{20.4.3}\quad{}\label{ss:c-block-access}Accessing blocks{}} \new@anchor@label{sec444}{ss:c-block-access}{{20.4.3}{X}} \@deflabeltype{ss:c-block-access}{subsection} \@@addtocsec{htoc}{ss:c-block-allocation}{1}{\@print{20.4.4}\quad{}\label{ss:c-block-allocation}Allocating blocks{}} \new@anchor@label{sec445}{ss:c-block-allocation}{{20.4.4}{X}} \@deflabeltype{ss:c-block-allocation}{subsection} \new@anchor@label{sec446}{sss:c-simple-allocation}{{20.4.4}{X}} \@deflabeltype{sss:c-simple-allocation}{subsection} \new@anchor@label{sec447}{sss:c-low-level-alloc}{{20.4.4}{X}} \@deflabeltype{sss:c-low-level-alloc}{subsection} \@@addtocsec{htoc}{ss:c-exceptions}{1}{\@print{20.4.5}\quad{}\label{ss:c-exceptions}Raising exceptions{}} \new@anchor@label{sec448}{ss:c-exceptions}{{20.4.5}{X}} \@deflabeltype{ss:c-exceptions}{subsection} \@@addtocsec{htoc}{s:c-gc-harmony}{0}{\@print{20.5}\quad{}\label{s:c-gc-harmony}Living in harmony with the garbage collector{}} \new@anchor@label{sec449}{s:c-gc-harmony}{{20.5}{X}} \@deflabeltype{s:c-gc-harmony}{section} \@@addtocsec{htoc}{ss:c-simple-gc-harmony}{1}{\@print{20.5.1}\quad{}\label{ss:c-simple-gc-harmony}Simple interface{}} \new@anchor@label{sec450}{ss:c-simple-gc-harmony}{{20.5.1}{X}} \@deflabeltype{ss:c-simple-gc-harmony}{subsection} \@@addtocsec{htoc}{ss:c-low-level-gc-harmony}{1}{\@print{20.5.2}\quad{}\label{ss:c-low-level-gc-harmony}Low-level interface{}} \new@anchor@label{sec456}{ss:c-low-level-gc-harmony}{{20.5.2}{X}} \@deflabeltype{ss:c-low-level-gc-harmony}{subsection} \@@addtocsec{htoc}{ss:c-process-pending-actions}{1}{\@print{20.5.3}\quad{}\label{ss:c-process-pending-actions}Pending actions and asynchronous exceptions{}} \new@anchor@label{sec457}{ss:c-process-pending-actions}{{20.5.3}{X}} \@deflabeltype{ss:c-process-pending-actions}{subsection} \@@addtocsec{htoc}{s:c-intf-example}{0}{\@print{20.6}\quad{}\label{s:c-intf-example}A complete example{}} \new@anchor@label{sec458}{s:c-intf-example}{{20.6}{X}} \@deflabeltype{s:c-intf-example}{section} \@@addtocsec{htoc}{s:c-callback}{0}{\@print{20.7}\quad{}\label{s:c-callback}Advanced topic: callbacks from C to OCaml{}} \new@anchor@label{sec459}{s:c-callback}{{20.7}{X}} \@deflabeltype{s:c-callback}{section} \@@addtocsec{htoc}{ss:c-callbacks}{1}{\@print{20.7.1}\quad{}\label{ss:c-callbacks}Applying OCaml closures from C{}} \new@anchor@label{sec460}{ss:c-callbacks}{{20.7.1}{X}} \@deflabeltype{ss:c-callbacks}{subsection} \@@addtocsec{htoc}{ss:c-closures}{1}{\@print{20.7.2}\quad{}\label{ss:c-closures}Obtaining or registering OCaml closures for use in C functions{}} \new@anchor@label{sec462}{ss:c-closures}{{20.7.2}{X}} \@deflabeltype{ss:c-closures}{subsection} \@@addtocsec{htoc}{ss:c-register-exn}{1}{\@print{20.7.3}\quad{}\label{ss:c-register-exn}Registering OCaml exceptions for use in C functions{}} \new@anchor@label{sec463}{ss:c-register-exn}{{20.7.3}{X}} \@deflabeltype{ss:c-register-exn}{subsection} \@@addtocsec{htoc}{ss:main-c}{1}{\@print{20.7.4}\quad{}\label{ss:main-c}Main program in C{}} \new@anchor@label{sec464}{ss:main-c}{{20.7.4}{X}} \@deflabeltype{ss:main-c}{subsection} \@@addtocsec{htoc}{ss:c-embedded-code}{1}{\@print{20.7.5}\quad{}\label{ss:c-embedded-code}Embedding the OCaml code in the C code{}} \new@anchor@label{sec465}{ss:c-embedded-code}{{20.7.5}{X}} \@deflabeltype{ss:c-embedded-code}{subsection} \@@addtocsec{htoc}{s:c-advexample}{0}{\@print{20.8}\quad{}\label{s:c-advexample}Advanced example with callbacks{}} \new@anchor@label{sec469}{s:c-advexample}{{20.8}{X}} \@deflabeltype{s:c-advexample}{section} \@@addtocsec{htoc}{s:c-custom}{0}{\@print{20.9}\quad{}\label{s:c-custom}Advanced topic: custom blocks{}} \new@anchor@label{sec470}{s:c-custom}{{20.9}{X}} \@deflabeltype{s:c-custom}{section} \@@addtocsec{htoc}{ss:c-custom-ops}{1}{\@print{20.9.1}\quad{}\label{ss:c-custom-ops}The {\machine{struct\ custom{\char95}operations}}{}} \new@anchor@label{sec471}{ss:c-custom-ops}{{20.9.1}{X}} \@deflabeltype{ss:c-custom-ops}{subsection} \@@addtocsec{htoc}{ss:c-custom-alloc}{1}{\@print{20.9.2}\quad{}\label{ss:c-custom-alloc}Allocating custom blocks{}} \new@anchor@label{sec472}{ss:c-custom-alloc}{{20.9.2}{X}} \@deflabeltype{ss:c-custom-alloc}{subsection} \@@addtocsec{htoc}{ss:c-custom-access}{1}{\@print{20.9.3}\quad{}\label{ss:c-custom-access}Accessing custom blocks{}} \new@anchor@label{sec473}{ss:c-custom-access}{{20.9.3}{X}} \@deflabeltype{ss:c-custom-access}{subsection} \@@addtocsec{htoc}{ss:c-custom-serialization}{1}{\@print{20.9.4}\quad{}\label{ss:c-custom-serialization}Writing custom serialization and deserialization functions{}} \new@anchor@label{sec474}{ss:c-custom-serialization}{{20.9.4}{X}} \@deflabeltype{ss:c-custom-serialization}{subsection} \@@addtocsec{htoc}{ss:c-custom-idents}{1}{\@print{20.9.5}\quad{}\label{ss:c-custom-idents}Choosing identifiers{}} \new@anchor@label{sec475}{ss:c-custom-idents}{{20.9.5}{X}} \@deflabeltype{ss:c-custom-idents}{subsection} \@@addtocsec{htoc}{ss:c-finalized}{1}{\@print{20.9.6}\quad{}\label{ss:c-finalized}Finalized blocks{}} \new@anchor@label{sec476}{ss:c-finalized}{{20.9.6}{X}} \@deflabeltype{ss:c-finalized}{subsection} \@@addtocsec{htoc}{s:C-Bigarrays}{0}{\@print{20.10}\quad{}\label{s:C-Bigarrays}Advanced topic: Bigarrays and the OCaml-C interface{}} \new@anchor@label{sec477}{s:C-Bigarrays}{{20.10}{X}} \@deflabeltype{s:C-Bigarrays}{section} \@@addtocsec{htoc}{ss:C-Bigarrays-include}{1}{\@print{20.10.1}\quad{}\label{ss:C-Bigarrays-include}Include file{}} \new@anchor@label{sec478}{ss:C-Bigarrays-include}{{20.10.1}{X}} \@deflabeltype{ss:C-Bigarrays-include}{subsection} \@@addtocsec{htoc}{ss:C-Bigarrays-access}{1}{\@print{20.10.2}\quad{}\label{ss:C-Bigarrays-access}Accessing an OCaml bigarray from C or Fortran{}} \new@anchor@label{sec479}{ss:C-Bigarrays-access}{{20.10.2}{X}} \@deflabeltype{ss:C-Bigarrays-access}{subsection} \@@addtocsec{htoc}{ss:C-Bigarrays-wrap}{1}{\@print{20.10.3}\quad{}\label{ss:C-Bigarrays-wrap}Wrapping a C or Fortran array as an OCaml Bigarray{}} \new@anchor@label{sec480}{ss:C-Bigarrays-wrap}{{20.10.3}{X}} \@deflabeltype{ss:C-Bigarrays-wrap}{subsection} \@@addtocsec{htoc}{s:C-cheaper-call}{0}{\@print{20.11}\quad{}\label{s:C-cheaper-call}Advanced topic: cheaper C call{}} \new@anchor@label{sec481}{s:C-cheaper-call}{{20.11}{X}} \@deflabeltype{s:C-cheaper-call}{section} \@@addtocsec{htoc}{ss:c-unboxed}{1}{\@print{20.11.1}\quad{}\label{ss:c-unboxed}Passing unboxed values{}} \new@anchor@label{sec482}{ss:c-unboxed}{{20.11.1}{X}} \@deflabeltype{ss:c-unboxed}{subsection} \@@addtocsec{htoc}{ss:c-direct-call}{1}{\@print{20.11.2}\quad{}\label{ss:c-direct-call}Direct C call{}} \new@anchor@label{sec483}{ss:c-direct-call}{{20.11.2}{X}} \@deflabeltype{ss:c-direct-call}{subsection} \@@addtocsec{htoc}{ss:c-direct-call-example}{1}{\@print{20.11.3}\quad{}\label{ss:c-direct-call-example}Example: calling C library functions without indirection{}} \new@anchor@label{sec484}{ss:c-direct-call-example}{{20.11.3}{X}} \@deflabeltype{ss:c-direct-call-example}{subsection} \@@addtocsec{htoc}{s:C-multithreading}{0}{\@print{20.12}\quad{}\label{s:C-multithreading}Advanced topic: multithreading{}} \new@anchor@label{sec485}{s:C-multithreading}{{20.12}{X}} \@deflabeltype{s:C-multithreading}{section} \@@addtocsec{htoc}{ss:c-thread-register}{1}{\@print{20.12.1}\quad{}\label{ss:c-thread-register}Registering threads created from C{}} \new@anchor@label{sec486}{ss:c-thread-register}{{20.12.1}{X}} \@deflabeltype{ss:c-thread-register}{subsection} \@@addtocsec{htoc}{ss:parallel-execution-long-running-c-code}{1}{\@print{20.12.2}\quad{}\label{ss:parallel-execution-long-running-c-code}Parallel execution of long-running C code{}} \new@anchor@label{sec487}{ss:parallel-execution-long-running-c-code}{{20.12.2}{X}} \@deflabeltype{ss:parallel-execution-long-running-c-code}{subsection} \@@addtocsec{htoc}{s:interfacing-windows-unicode-apis}{0}{\@print{20.13}\quad{}\label{s:interfacing-windows-unicode-apis}Advanced topic: interfacing with Windows Unicode APIs{}} \new@anchor@label{sec488}{s:interfacing-windows-unicode-apis}{{20.13}{X}} \@deflabeltype{s:interfacing-windows-unicode-apis}{section} \@@addtocsec{htoc}{s:ocamlmklib}{0}{\@print{20.14}\quad{}\label{s:ocamlmklib}Building mixed C/OCaml libraries: \texttt{ocamlmklib}{}} \new@anchor@label{sec490}{s:ocamlmklib}{{20.14}{X}} \@deflabeltype{s:ocamlmklib}{section} \@@addtocsec{htoc}{s:c-internal-guidelines}{0}{\@print{20.15}\quad{}\label{s:c-internal-guidelines}Cautionary words: the internal runtime API{}} \new@anchor@label{sec492}{s:c-internal-guidelines}{{20.15}{X}} \@deflabeltype{s:c-internal-guidelines}{section} \@@addtocsec{htoc}{ss:c-internals}{1}{\@print{20.15.1}\quad{}\label{ss:c-internals}Internal variables and CAML_INTERNALS{}} \new@anchor@label{sec494}{ss:c-internals}{{20.15.1}{X}} \@deflabeltype{ss:c-internals}{subsection} \@@addtocsec{htoc}{ss:c-internal-macros}{1}{\@print{20.15.2}\quad{}\label{ss:c-internal-macros}OCaml version macros{}} \new@anchor@label{sec495}{ss:c-internal-macros}{{20.15.2}{X}} \@deflabeltype{ss:c-internal-macros}{subsection} \@@addtocsec{htoc}{sec496}{-1}{\@print{Chapter 21}\quad{}Optimisation with Flambda{}} \@@addtocsec{htoc}{s:flambda-overview}{0}{\@print{21.1}\quad{}\label{s:flambda-overview}Overview{}} \new@anchor@label{sec497}{s:flambda-overview}{{21.1}{X}} \@deflabeltype{s:flambda-overview}{section} \@@addtocsec{htoc}{s:flambda-cli}{0}{\@print{21.2}\quad{}\label{s:flambda-cli}Command-line flags{}} \new@anchor@label{sec498}{s:flambda-cli}{{21.2}{X}} \@deflabeltype{s:flambda-cli}{section} \@@addtocsec{htoc}{ss:flambda-rounds}{1}{\@print{21.2.1}\quad{}\label{ss:flambda-rounds}Specification of optimisation parameters by round{}} \new@anchor@label{sec500}{ss:flambda-rounds}{{21.2.1}{X}} \@deflabeltype{ss:flambda-rounds}{subsection} \@@addtocsec{htoc}{s:flambda-inlining}{0}{\@print{21.3}\quad{}\label{s:flambda-inlining}Inlining{}} \new@anchor@label{sec501}{s:flambda-inlining}{{21.3}{X}} \@deflabeltype{s:flambda-inlining}{section} \new@anchor@label{sec502}{sss:flambda-inlining-aside}{{21.3}{X}} \@deflabeltype{sss:flambda-inlining-aside}{section} \@@addtocsec{htoc}{ss:flambda-classic}{1}{\@print{21.3.1}\quad{}\label{ss:flambda-classic}Classic inlining heuristic{}} \new@anchor@label{sec503}{ss:flambda-classic}{{21.3.1}{X}} \@deflabeltype{ss:flambda-classic}{subsection} \@@addtocsec{htoc}{ss:flambda-inlining-overview}{1}{\@print{21.3.2}\quad{}\label{ss:flambda-inlining-overview}Overview of ``Flambda'' inlining heuristics{}} \new@anchor@label{sec504}{ss:flambda-inlining-overview}{{21.3.2}{X}} \@deflabeltype{ss:flambda-inlining-overview}{subsection} \@@addtocsec{htoc}{ss:flambda-by-constructs}{1}{\@print{21.3.3}\quad{}\label{ss:flambda-by-constructs}Handling of specific language constructs{}} \new@anchor@label{sec505}{ss:flambda-by-constructs}{{21.3.3}{X}} \@deflabeltype{ss:flambda-by-constructs}{subsection} \new@anchor@label{sec506}{sss:flambda-functors}{{21.3.3}{X}} \@deflabeltype{sss:flambda-functors}{subsection} \new@anchor@label{sec507}{sss:flambda-first-class-modules}{{21.3.3}{X}} \@deflabeltype{sss:flambda-first-class-modules}{subsection} \new@anchor@label{sec508}{sss:flambda-objects}{{21.3.3}{X}} \@deflabeltype{sss:flambda-objects}{subsection} \@@addtocsec{htoc}{ss:flambda-inlining-reports}{1}{\@print{21.3.4}\quad{}\label{ss:flambda-inlining-reports}Inlining reports{}} \new@anchor@label{sec509}{ss:flambda-inlining-reports}{{21.3.4}{X}} \@deflabeltype{ss:flambda-inlining-reports}{subsection} \@@addtocsec{htoc}{ss:flambda-assessment-inlining}{1}{\@print{21.3.5}\quad{}\label{ss:flambda-assessment-inlining}Assessment of inlining benefit{}} \new@anchor@label{sec510}{ss:flambda-assessment-inlining}{{21.3.5}{X}} \@deflabeltype{ss:flambda-assessment-inlining}{subsection} \@@addtocsec{htoc}{ss:flambda-speculation}{1}{\@print{21.3.6}\quad{}\label{ss:flambda-speculation}Control of speculation{}} \new@anchor@label{sec511}{ss:flambda-speculation}{{21.3.6}{X}} \@deflabeltype{ss:flambda-speculation}{subsection} \@@addtocsec{htoc}{s:flambda-specialisation}{0}{\@print{21.4}\quad{}\label{s:flambda-specialisation}Specialisation{}} \new@anchor@label{sec512}{s:flambda-specialisation}{{21.4}{X}} \@deflabeltype{s:flambda-specialisation}{section} \@@addtocsec{htoc}{ss:flambda-assessment-specialisation}{1}{\@print{21.4.1}\quad{}\label{ss:flambda-assessment-specialisation}Assessment of specialisation benefit{}} \new@anchor@label{sec515}{ss:flambda-assessment-specialisation}{{21.4.1}{X}} \@deflabeltype{ss:flambda-assessment-specialisation}{subsection} \@@addtocsec{htoc}{s:flambda-defaults}{0}{\@print{21.5}\quad{}\label{s:flambda-defaults}Default settings of parameters{}} \new@anchor@label{sec516}{s:flambda-defaults}{{21.5}{X}} \@deflabeltype{s:flambda-defaults}{section} \@@addtocsec{htoc}{ss:flambda-o2}{1}{\@print{21.5.1}\quad{}\label{ss:flambda-o2}Settings at -O2 optimisation level{}} \new@anchor@label{sec517}{ss:flambda-o2}{{21.5.1}{X}} \@deflabeltype{ss:flambda-o2}{subsection} \@@addtocsec{htoc}{ss:flambda-o3}{1}{\@print{21.5.2}\quad{}\label{ss:flambda-o3}Settings at -O3 optimisation level{}} \new@anchor@label{sec518}{ss:flambda-o3}{{21.5.2}{X}} \@deflabeltype{ss:flambda-o3}{subsection} \@@addtocsec{htoc}{s:flambda-manual-control}{0}{\@print{21.6}\quad{}\label{s:flambda-manual-control}Manual control of inlining and specialisation{}} \new@anchor@label{sec519}{s:flambda-manual-control}{{21.6}{X}} \@deflabeltype{s:flambda-manual-control}{section} \@@addtocsec{htoc}{s:flambda-simplification}{0}{\@print{21.7}\quad{}\label{s:flambda-simplification}Simplification{}} \new@anchor@label{sec521}{s:flambda-simplification}{{21.7}{X}} \@deflabeltype{s:flambda-simplification}{section} \@@addtocsec{htoc}{s:flambda-other-transfs}{0}{\@print{21.8}\quad{}\label{s:flambda-other-transfs}Other code motion transformations{}} \new@anchor@label{sec522}{s:flambda-other-transfs}{{21.8}{X}} \@deflabeltype{s:flambda-other-transfs}{section} \@@addtocsec{htoc}{ss:flambda-lift-const}{1}{\@print{21.8.1}\quad{}\label{ss:flambda-lift-const}Lifting of constants{}} \new@anchor@label{sec523}{ss:flambda-lift-const}{{21.8.1}{X}} \@deflabeltype{ss:flambda-lift-const}{subsection} \@@addtocsec{htoc}{ss:flambda-lift-toplevel-let}{1}{\@print{21.8.2}\quad{}\label{ss:flambda-lift-toplevel-let}Lifting of toplevel let bindings{}} \new@anchor@label{sec525}{ss:flambda-lift-toplevel-let}{{21.8.2}{X}} \@deflabeltype{ss:flambda-lift-toplevel-let}{subsection} \@@addtocsec{htoc}{s:flambda-unboxing}{0}{\@print{21.9}\quad{}\label{s:flambda-unboxing}Unboxing transformations{}} \new@anchor@label{sec526}{s:flambda-unboxing}{{21.9}{X}} \@deflabeltype{s:flambda-unboxing}{section} \@@addtocsec{htoc}{ss:flambda-unbox-fvs}{1}{\@print{21.9.1}\quad{}\label{ss:flambda-unbox-fvs}Unboxing of closure variables{}} \new@anchor@label{sec527}{ss:flambda-unbox-fvs}{{21.9.1}{X}} \@deflabeltype{ss:flambda-unbox-fvs}{subsection} \@@addtocsec{htoc}{ss:flambda-unbox-spec-args}{1}{\@print{21.9.2}\quad{}\label{ss:flambda-unbox-spec-args}Unboxing of specialised arguments{}} \new@anchor@label{sec529}{ss:flambda-unbox-spec-args}{{21.9.2}{X}} \@deflabeltype{ss:flambda-unbox-spec-args}{subsection} \@@addtocsec{htoc}{ss:flambda-unbox-closures}{1}{\@print{21.9.3}\quad{}\label{ss:flambda-unbox-closures}Unboxing of closures{}} \new@anchor@label{sec531}{ss:flambda-unbox-closures}{{21.9.3}{X}} \@deflabeltype{ss:flambda-unbox-closures}{subsection} \@@addtocsec{htoc}{s:flambda-remove-unused}{0}{\@print{21.10}\quad{}\label{s:flambda-remove-unused}Removal of unused code and values{}} \new@anchor@label{sec534}{s:flambda-remove-unused}{{21.10}{X}} \@deflabeltype{s:flambda-remove-unused}{section} \@@addtocsec{htoc}{ss:flambda-redundant-let}{1}{\@print{21.10.1}\quad{}\label{ss:flambda-redundant-let}Removal of redundant let expressions{}} \new@anchor@label{sec535}{ss:flambda-redundant-let}{{21.10.1}{X}} \@deflabeltype{ss:flambda-redundant-let}{subsection} \@@addtocsec{htoc}{ss:flambda-redundant}{1}{\@print{21.10.2}\quad{}\label{ss:flambda-redundant}Removal of redundant program constructs{}} \new@anchor@label{sec536}{ss:flambda-redundant}{{21.10.2}{X}} \@deflabeltype{ss:flambda-redundant}{subsection} \@@addtocsec{htoc}{ss:flambda-remove-unused-args}{1}{\@print{21.10.3}\quad{}\label{ss:flambda-remove-unused-args}Removal of unused arguments{}} \new@anchor@label{sec537}{ss:flambda-remove-unused-args}{{21.10.3}{X}} \@deflabeltype{ss:flambda-remove-unused-args}{subsection} \@@addtocsec{htoc}{ss:flambda-removal-closure-vars}{1}{\@print{21.10.4}\quad{}\label{ss:flambda-removal-closure-vars}Removal of unused closure variables{}} \new@anchor@label{sec538}{ss:flambda-removal-closure-vars}{{21.10.4}{X}} \@deflabeltype{ss:flambda-removal-closure-vars}{subsection} \@@addtocsec{htoc}{s:flambda-other}{0}{\@print{21.11}\quad{}\label{s:flambda-other}Other code transformations{}} \new@anchor@label{sec539}{s:flambda-other}{{21.11}{X}} \@deflabeltype{s:flambda-other}{section} \@@addtocsec{htoc}{ss:flambda-non-escaping-refs}{1}{\@print{21.11.1}\quad{}\label{ss:flambda-non-escaping-refs}Transformation of non-escaping references into mutable variables{}} \new@anchor@label{sec540}{ss:flambda-non-escaping-refs}{{21.11.1}{X}} \@deflabeltype{ss:flambda-non-escaping-refs}{subsection} \@@addtocsec{htoc}{ss:flambda-subst-closure-vars}{1}{\@print{21.11.2}\quad{}\label{ss:flambda-subst-closure-vars}Substitution of closure variables for specialised arguments{}} \new@anchor@label{sec541}{ss:flambda-subst-closure-vars}{{21.11.2}{X}} \@deflabeltype{ss:flambda-subst-closure-vars}{subsection} \@@addtocsec{htoc}{s:flambda-effects}{0}{\@print{21.12}\quad{}\label{s:flambda-effects}Treatment of effects{}} \new@anchor@label{sec542}{s:flambda-effects}{{21.12}{X}} \@deflabeltype{s:flambda-effects}{section} \@@addtocsec{htoc}{s:flambda-static-modules}{0}{\@print{21.13}\quad{}\label{s:flambda-static-modules}Compilation of statically-allocated modules{}} \new@anchor@label{sec543}{s:flambda-static-modules}{{21.13}{X}} \@deflabeltype{s:flambda-static-modules}{section} \@@addtocsec{htoc}{s:flambda-inhibition}{0}{\@print{21.14}\quad{}\label{s:flambda-inhibition}Inhibition of optimisation{}} \new@anchor@label{sec544}{s:flambda-inhibition}{{21.14}{X}} \@deflabeltype{s:flambda-inhibition}{section} \@@addtocsec{htoc}{s:flambda-unsafe}{0}{\@print{21.15}\quad{}\label{s:flambda-unsafe}Use of unsafe operations{}} \new@anchor@label{sec545}{s:flambda-unsafe}{{21.15}{X}} \@deflabeltype{s:flambda-unsafe}{section} \@@addtocsec{htoc}{s:flambda-glossary}{0}{\@print{21.16}\quad{}\label{s:flambda-glossary}Glossary{}} \new@anchor@label{sec546}{s:flambda-glossary}{{21.16}{X}} \@deflabeltype{s:flambda-glossary}{section} \@@addtocsec{htoc}{sec547}{-1}{\@print{Chapter 22}\quad{}Memory profiling with Spacetime{}} \@@addtocsec{htoc}{s:spacetime-overview}{0}{\@print{22.1}\quad{}\label{s:spacetime-overview}Overview{}} \new@anchor@label{sec548}{s:spacetime-overview}{{22.1}{X}} \@deflabeltype{s:spacetime-overview}{section} \@@addtocsec{htoc}{s:spacetime-howto}{0}{\@print{22.2}\quad{}\label{s:spacetime-howto}How to use it{}} \new@anchor@label{sec549}{s:spacetime-howto}{{22.2}{X}} \@deflabeltype{s:spacetime-howto}{section} \@@addtocsec{htoc}{ss:spacetime-building}{1}{\@print{22.2.1}\quad{}\label{ss:spacetime-building}Building{}} \new@anchor@label{sec550}{ss:spacetime-building}{{22.2.1}{X}} \@deflabeltype{ss:spacetime-building}{subsection} \@@addtocsec{htoc}{ss:spacetime-running}{1}{\@print{22.2.2}\quad{}\label{ss:spacetime-running}Running{}} \new@anchor@label{sec551}{ss:spacetime-running}{{22.2.2}{X}} \@deflabeltype{ss:spacetime-running}{subsection} \@@addtocsec{htoc}{ss:spacetime-analysis}{1}{\@print{22.2.3}\quad{}\label{ss:spacetime-analysis}Analysis{}} \new@anchor@label{sec552}{ss:spacetime-analysis}{{22.2.3}{X}} \@deflabeltype{ss:spacetime-analysis}{subsection} \@@addtocsec{htoc}{s:spacetime-runtimeoverhead}{0}{\@print{22.3}\quad{}\label{s:spacetime-runtimeoverhead}Runtime overhead{}} \new@anchor@label{sec553}{s:spacetime-runtimeoverhead}{{22.3}{X}} \@deflabeltype{s:spacetime-runtimeoverhead}{section} \@@addtocsec{htoc}{s:spacetime-dev}{0}{\@print{22.4}\quad{}\label{s:spacetime-dev}For developers{}} \new@anchor@label{sec554}{s:spacetime-dev}{{22.4}{X}} \@deflabeltype{s:spacetime-dev}{section} \@@addtocsec{htoc}{sec555}{-1}{\@print{Chapter 23}\quad{}Fuzzing with afl-fuzz{}} \@@addtocsec{htoc}{s:afl-overview}{0}{\@print{23.1}\quad{}\label{s:afl-overview}Overview{}} \new@anchor@label{sec556}{s:afl-overview}{{23.1}{X}} \@deflabeltype{s:afl-overview}{section} \@@addtocsec{htoc}{s:afl-generate}{0}{\@print{23.2}\quad{}\label{s:afl-generate}Generating instrumentation{}} \new@anchor@label{sec557}{s:afl-generate}{{23.2}{X}} \@deflabeltype{s:afl-generate}{section} \@@addtocsec{htoc}{ss:afl-advanced}{1}{\@print{23.2.1}\quad{}\label{ss:afl-advanced}Advanced options{}} \new@anchor@label{sec558}{ss:afl-advanced}{{23.2.1}{X}} \@deflabeltype{ss:afl-advanced}{subsection} \@@addtocsec{htoc}{s:afl-example}{0}{\@print{23.3}\quad{}\label{s:afl-example}Example{}} \new@anchor@label{sec559}{s:afl-example}{{23.3}{X}} \@deflabeltype{s:afl-example}{section} \@@addtocsec{htoc}{sec560}{-1}{\@print{Chapter 24}\quad{}Runtime tracing with the instrumented runtime{}} \@@addtocsec{htoc}{s:instr-runtime-overview}{0}{\@print{24.1}\quad{}\label{s:instr-runtime-overview}Overview{}} \new@anchor@label{sec561}{s:instr-runtime-overview}{{24.1}{X}} \@deflabeltype{s:instr-runtime-overview}{section} \@@addtocsec{htoc}{s:instr-runtime-enabling}{0}{\@print{24.2}\quad{}\label{s:instr-runtime-enabling}Enabling runtime instrumentation{}} \new@anchor@label{sec562}{s:instr-runtime-enabling}{{24.2}{X}} \@deflabeltype{s:instr-runtime-enabling}{section} \new@anchor@label{sec563}{sss:instr-runtime-build-more}{{24.2}{X}} \@deflabeltype{sss:instr-runtime-build-more}{section} \@@addtocsec{htoc}{s:instr-runtime-read}{0}{\@print{24.3}\quad{}\label{s:instr-runtime-read}Reading traces{}} \new@anchor@label{sec564}{s:instr-runtime-read}{{24.3}{X}} \@deflabeltype{s:instr-runtime-read}{section} \@@addtocsec{htoc}{ss:instr-runtime-tools}{1}{\@print{24.3.1}\quad{}\label{ss:instr-runtime-tools}eventlog-tools{}} \new@anchor@label{sec565}{ss:instr-runtime-tools}{{24.3.1}{X}} \@deflabeltype{ss:instr-runtime-tools}{subsection} \@@addtocsec{htoc}{ss:instr-runtime-babeltrace}{1}{\@print{24.3.2}\quad{}\label{ss:instr-runtime-babeltrace}babeltrace{}} \new@anchor@label{sec566}{ss:instr-runtime-babeltrace}{{24.3.2}{X}} \@deflabeltype{ss:instr-runtime-babeltrace}{subsection} \@@addtocsec{htoc}{s:instr-runtime-more}{0}{\@print{24.4}\quad{}\label{s:instr-runtime-more}Controlling instrumentation and limitations{}} \new@anchor@label{sec567}{s:instr-runtime-more}{{24.4}{X}} \@deflabeltype{s:instr-runtime-more}{section} \@@addtocsec{htoc}{ss:instr-runtime-prefix}{1}{\@print{24.4.1}\quad{}\label{ss:instr-runtime-prefix}Trace filename{}} \new@anchor@label{sec568}{ss:instr-runtime-prefix}{{24.4.1}{X}} \@deflabeltype{ss:instr-runtime-prefix}{subsection} \@@addtocsec{htoc}{ss:instr-runtime-pause}{1}{\@print{24.4.2}\quad{}\label{ss:instr-runtime-pause}Pausing and resuming tracing{}} \new@anchor@label{sec569}{ss:instr-runtime-pause}{{24.4.2}{X}} \@deflabeltype{ss:instr-runtime-pause}{subsection} \@@addtocsec{htoc}{ss:instr-runtime-limitations}{1}{\@print{24.4.3}\quad{}\label{ss:instr-runtime-limitations}Limitations{}} \new@anchor@label{sec570}{ss:instr-runtime-limitations}{{24.4.3}{X}} \@deflabeltype{ss:instr-runtime-limitations}{subsection} \@@addtocsec{htoc}{sec571}{-2}{\@print{Part IV}\quad{}The OCaml library{}} \newlabel{p:library}{{IV}{X}} \@deflabeltype{p:library}{part} \@@addtocsec{htoc}{sec572}{-1}{\@print{Chapter 25}\quad{}The core library{}} \newlabel{c:corelib}{{25}{X}} \@deflabeltype{c:corelib}{chapter} \new@anchor@label{sec573}{s:core-conventions}{{25}{X}} \@deflabeltype{s:core-conventions}{chapter} \@@addtocsec{htoc}{s:core-builtins}{0}{\@print{25.1}\quad{}\label{s:core-builtins}Built-in types and predefined exceptions{}} \new@anchor@label{sec574}{s:core-builtins}{{25.1}{X}} \@deflabeltype{s:core-builtins}{section} \new@anchor@label{sec575}{ss:builtin-types}{{25.1}{X}} \@deflabeltype{ss:builtin-types}{section} \new@anchor@label{sec576}{ss:predef-exn}{{25.1}{X}} \@deflabeltype{ss:predef-exn}{section} \@@addtocsec{htoc}{s:stdlib-module}{0}{\@print{25.2}\quad{}\label{s:stdlib-module}Module {\tt Stdlib}: the initially opened module{}} \new@anchor@label{sec577}{s:stdlib-module}{{25.2}{X}} \@deflabeltype{s:stdlib-module}{section} \@@addtocsec{htoc}{sec578}{-1}{\@print{Chapter 26}\quad{}The standard library{}} \newlabel{c:stdlib}{{26}{X}} \@deflabeltype{c:stdlib}{chapter} \newlabel{stdlib:top}{{26}{X}} \@deflabeltype{stdlib:top}{chapter} \new@anchor@label{sec579}{s:stdlib-conv}{{26}{X}} \@deflabeltype{s:stdlib-conv}{chapter} \@@addtocsec{htoc}{sec580}{-1}{\@print{Chapter 27}\quad{}The compiler front-end{}} \newlabel{c:parsinglib}{{27}{X}} \@deflabeltype{c:parsinglib}{chapter} \newlabel{Compiler-underscorelibs}{{27}{X}} \@deflabeltype{Compiler-underscorelibs}{chapter} \@@addtocsec{htoc}{sec581}{-1}{\@print{Chapter 28}\quad{}The unix library: Unix system calls{}} \newlabel{c:unix}{{28}{X}} \@deflabeltype{c:unix}{chapter} \@@addtocsec{htoc}{sec582}{-1}{\@print{Chapter 29}\quad{}The num library: arbitrary-precision rational arithmetic{}} \@@addtocsec{htoc}{sec583}{-1}{\@print{Chapter 30}\quad{}The str library: regular expressions and string processing{}} \@@addtocsec{htoc}{sec584}{-1}{\@print{Chapter 31}\quad{}The threads library{}} \newlabel{c:threads}{{31}{X}} \@deflabeltype{c:threads}{chapter} \@@addtocsec{htoc}{sec585}{-1}{\@print{Chapter 32}\quad{}The graphics library{}} \@@addtocsec{htoc}{sec586}{-1}{\@print{Chapter 33}\quad{}The dynlink library: dynamic loading and linking of object files{}} \@@addtocsec{htoc}{sec587}{-1}{\@print{Chapter 34}\quad{}The bigarray library{}} \@@addtocsec{htoc}{sec588}{-2}{\@print{Part V}\quad{}Appendix{}} \newlabel{p:appendix}{{V}{X}} \@deflabeltype{p:appendix}{part} ocaml-doc-4.11/ocaml.html/privatetypes.html0000644000175000017500000003450013717225665017736 0ustar mehdimehdi 8.3  Private types Previous Up Next

8.3  Private types

Private type declarations in module signatures, of the form type t = private ..., enable libraries to reveal some, but not all aspects of the implementation of a type to clients of the library. In this respect, they strike a middle ground between abstract type declarations, where no information is revealed on the type implementation, and data type definitions and type abbreviations, where all aspects of the type implementation are publicized. Private type declarations come in three flavors: for variant and record types (section 8.3.1), for type abbreviations (section 8.3.2), and for row types (section 8.3.3).

8.3.1  Private variant and record types

(Introduced in Objective Caml 3.07)

type-representation::= ...  
  = private [ | ] constr-decl  { | constr-decl }  
  = private record-decl

Values of a variant or record type declared private can be de-structured normally in pattern-matching or via the expr .  field notation for record accesses. However, values of these types cannot be constructed directly by constructor application or record construction. Moreover, assignment on a mutable field of a private record type is not allowed.

The typical use of private types is in the export signature of a module, to ensure that construction of values of the private type always go through the functions provided by the module, while still allowing pattern-matching outside the defining module. For example:

module M : sig type t = private A | B of int val a : t val b : int -> t end = struct type t = A | B of int let a = A let b n = assert (n > 0); B n end

Here, the private declaration ensures that in any value of type M.t, the argument to the B constructor is always a positive integer.

With respect to the variance of their parameters, private types are handled like abstract types. That is, if a private type has parameters, their variance is the one explicitly given by prefixing the parameter by a ‘+’ or a ‘-’, it is invariant otherwise.

8.3.2  Private type abbreviations

(Introduced in Objective Caml 3.11)

type-equation::= ...  
  = private typexpr

Unlike a regular type abbreviation, a private type abbreviation declares a type that is distinct from its implementation type typexpr. However, coercions from the type to typexpr are permitted. Moreover, the compiler “knows” the implementation type and can take advantage of this knowledge to perform type-directed optimizations.

The following example uses a private type abbreviation to define a module of nonnegative integers:

module N : sig type t = private int val of_int: int -> t val to_int: t -> int end = struct type t = int let of_int n = assert (n >= 0); n let to_int n = n end

The type N.t is incompatible with int, ensuring that nonnegative integers and regular integers are not confused. However, if x has type N.t, the coercion (x :> int) is legal and returns the underlying integer, just like N.to_int x. Deep coercions are also supported: if l has type N.t list, the coercion (l :> int list) returns the list of underlying integers, like List.map N.to_int l but without copying the list l.

Note that the coercion ( expr :>  typexpr ) is actually an abbreviated form, and will only work in presence of private abbreviations if neither the type of expr nor typexpr contain any type variables. If they do, you must use the full form ( expr :  typexpr1 :>  typexpr2 ) where typexpr1 is the expected type of expr. Concretely, this would be (x : N.t :> int) and (l : N.t list :> int list) for the above examples.

8.3.3  Private row types

(Introduced in Objective Caml 3.09)

type-equation::= ...  
  = private typexpr

Private row types are type abbreviations where part of the structure of the type is left abstract. Concretely typexpr in the above should denote either an object type or a polymorphic variant type, with some possibility of refinement left. If the private declaration is used in an interface, the corresponding implementation may either provide a ground instance, or a refined private type.

module M : sig type c = private < x : int; .. > val o : c end = struct class c = object method x = 3 method y = 2 end let o = new c end

This declaration does more than hiding the y method, it also makes the type c incompatible with any other closed object type, meaning that only o will be of type c. In that respect it behaves similarly to private record types. But private row types are more flexible with respect to incremental refinement. This feature can be used in combination with functors.

module F(X : sig type c = private < x : int; .. > end) = struct let get_x (o : X.c) = o#x end module G(X : sig type c = private < x : int; y : int; .. > end) = struct include F(X) let get_y (o : X.c) = o#y end

A polymorphic variant type [t], for example

type t = [ `A of int | `B of bool ]

can be refined in two ways. A definition [u] may add new field to [t], and the declaration

type u = private [> t]

will keep those new fields abstract. Construction of values of type [u] is possible using the known variants of [t], but any pattern-matching will require a default case to handle the potential extra fields. Dually, a declaration [u] may restrict the fields of [t] through abstraction: the declaration

type v = private [< t > `A]

corresponds to private variant types. One cannot create a value of the private type [v], except using the constructors that are explicitly listed as present, (`A n) in this example; yet, when patter-matching on a [v], one should assume that any of the constructors of [t] could be present.

Similarly to abstract types, the variance of type parameters is not inferred, and must be given explicitly.


Previous Up Next ocaml-doc-4.11/ocaml.html/classes.html0000644000175000017500000015131313717225665016636 0ustar mehdimehdi 7.9  Classes Previous Up Next

7.9  Classes

Classes are defined using a small language, similar to the module language.

7.9.1  Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and type properties of classes.

class-type::= [[?]label-name:]  typexpr ->  class-type  
    class-body-type  
 
class-body-type::= object [( typexpr )]  {class-field-specend  
   [[ typexpr  {, typexpr]]  classtype-path  
   let open module-path in  class-body-type  
 
class-field-spec::= inherit class-body-type  
   val [mutable] [virtualinst-var-name :  typexpr  
   val virtual mutable inst-var-name :  typexpr  
   method [private] [virtualmethod-name :  poly-typexpr  
   method virtual private method-name :  poly-typexpr  
   constraint typexpr =  typexpr

See also the following language extensions: attributes and extension nodes.

Simple class expressions

The expression classtype-path is equivalent to the class type bound to the name classtype-path. Similarly, the expression [ typexpr1 , …  typexprn ]  classtype-path is equivalent to the parametric class type bound to the name classtype-path, in which type parameters have been instantiated to respectively typexpr1, …typexprn.

Class function type

The class type expression typexpr ->  class-type is the type of class functions (functions from values to classes) that take as argument a value of type typexpr and return as result a class of type class-type.

Class body type

The class type expression object [( typexpr )]  {class-field-spec} end is the type of a class body. It specifies its instance variables and methods. In this type, typexpr is matched against the self type, therefore providing a name for the self type.

A class body will match a class body type if it provides definitions for all the components specified in the class body type, and these definitions meet the type requirements given in the class body type. Furthermore, all methods either virtual or public present in the class body must also be present in the class body type (on the other hand, some instance variables and concrete private methods may be omitted). A virtual method will match a concrete method, which makes it possible to forget its implementation. An immutable instance variable will match a mutable instance variable.

Local opens

Local opens are supported in class types since OCaml 4.06.

Inheritance

The inheritance construct inherit class-body-type provides for inclusion of methods and instance variables from other class types. The instance variable and method types from class-body-type are added into the current class type.

Instance variable specification

A specification of an instance variable is written val [mutable] [virtual] inst-var-name :  typexpr, where inst-var-name is the name of the instance variable and typexpr its expected type. The flag mutable indicates whether this instance variable can be physically modified. The flag virtual indicates that this instance variable is not initialized. It can be initialized later through inheritance.

An instance variable specification will hide any previous specification of an instance variable of the same name.

Method specification

The specification of a method is written method [private] method-name :  poly-typexpr, where method-name is the name of the method and poly-typexpr its expected type, possibly polymorphic. The flag private indicates that the method cannot be accessed from outside the object.

The polymorphism may be left implicit in public method specifications: any type variable which is not bound to a class parameter and does not appear elsewhere inside the class specification will be assumed to be universal, and made polymorphic in the resulting method type. Writing an explicit polymorphic type will disable this behaviour.

If several specifications are present for the same method, they must have compatible types. Any non-private specification of a method forces it to be public.

Virtual method specification

A virtual method specification is written method [private] virtual method-name :  poly-typexpr, where method-name is the name of the method and poly-typexpr its expected type.

Constraints on type parameters

The construct constraint typexpr1 =  typexpr2 forces the two type expressions to be equal. This is typically used to specify type parameters: in this way, they can be bound to specific type expressions.

7.9.2  Class expressions

Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus providing implementations for the specifications expressed in class types.

class-expr::= class-path  
   [ typexpr  {, typexpr]  class-path  
   ( class-expr )  
   ( class-expr :  class-type )  
   class-expr  {argument}+  
   fun {parameter}+ ->  class-expr  
   let [reclet-binding  {and let-bindingin  class-expr  
   object class-body end  
   let open module-path in  class-expr  
 
class-field::= inherit class-expr  [as lowercase-ident]  
   inherit! class-expr  [as lowercase-ident]  
   val [mutableinst-var-name  [: typexpr=  expr  
   val! [mutableinst-var-name  [: typexpr=  expr  
   val [mutablevirtual inst-var-name :  typexpr  
   val virtual mutable inst-var-name :  typexpr  
   method [privatemethod-name  {parameter}  [: typexpr=  expr  
   method! [privatemethod-name  {parameter}  [: typexpr=  expr  
   method [privatemethod-name :  poly-typexpr =  expr  
   method! [privatemethod-name :  poly-typexpr =  expr  
   method [privatevirtual method-name :  poly-typexpr  
   method virtual private method-name :  poly-typexpr  
   constraint typexpr =  typexpr  
   initializer expr

See also the following language extensions: locally abstract types, attributes and extension nodes.

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the expression [ typexpr1 , …  typexprn ]  class-path evaluates to the parametric class bound to the name class-path, in which type parameters have been instantiated respectively to typexpr1, …typexprn.

The expression ( class-expr ) evaluates to the same module as class-expr.

The expression ( class-expr :  class-type ) checks that class-type matches the type of class-expr (that is, that the implementation class-expr meets the type specification class-type). The whole expression evaluates to the same class as class-expr, except that all components not specified in class-type are hidden and can no longer be accessed.

Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. It denotes the class whose constructor is the first expression applied to the given arguments. The arguments are evaluated as for expression application, but the constructor itself will only be evaluated when objects are created. In particular, side-effects caused by the application of the constructor will only occur at object creation time.

Class function

The expression fun [[?]label-name:pattern ->  class-expr evaluates to a function from values to classes. When this function is applied to a value v, this value is matched against the pattern pattern and the result is the result of the evaluation of class-expr in the extended environment.

Conversion from functions with default values to functions with patterns only works identically for class functions as for normal functions.

The expression

fun parameter1 …  parametern ->  class-expr

is a short form for

fun parameter1 ->fun  parametern ->  expr

Local definitions

The let and let rec constructs bind value names locally, as for the core language expressions.

If a local definition occurs at the very beginning of a class definition, it will be evaluated when the class is created (just as if the definition was outside of the class). Otherwise, it will be evaluated when the object constructor is called.

Local opens

Local opens are supported in class expressions since OCaml 4.06.

Class body

class-body::=  [( pattern  [: typexpr)]  { class-field }

The expression object class-body end denotes a class body. This is the prototype for an object : it lists the instance variables and methods of an object of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated each time an object is created.

In a class body, the pattern ( pattern  [: typexpr] ) is matched against self, therefore providing a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Since OCaml 4.01, it is an error if the same method or instance variable name is defined several times in the same class body.

Inheritance

The inheritance construct inherit class-expr allows reusing methods and instance variables from other classes. The class expression class-expr must evaluate to a class body. The instance variables, methods and initializers from this class body are added into the current class. The addition of a method will override any previously defined method of the same name.

An ancestor can be bound by appending as lowercase-ident to the inheritance construct. lowercase-ident is not a true variable and can only be used to select a method, i.e. in an expression lowercase-ident #  method-name. This gives access to the method method-name as it was defined in the parent class even if it is redefined in the current class. The scope of this ancestor binding is limited to the current class. The ancestor method may be called from a subclass but only indirectly.

Instance variable definition

The definition val [mutable] inst-var-name =  expr adds an instance variable inst-var-name whose initial value is the value of expression expr. The flag mutable allows physical modification of this variable by methods.

An instance variable can only be used in the methods and initializers that follow its definition.

Since version 3.10, redefinitions of a visible instance variable with the same name do not create a new variable, but are merged, using the last value for initialization. They must have identical types and mutability. However, if an instance variable is hidden by omitting it from an interface, it will be kept distinct from other instance variables with the same name.

Virtual instance variable definition

A variable specification is written val [mutable] virtual inst-var-name :  typexpr. It specifies whether the variable is modifiable, and gives its type.

Virtual instance variables were added in version 3.10.

Method definition

A method definition is written method method-name =  expr. The definition of a method overrides any previous definition of this method. The method will be public (that is, not private) if any of the definition states so.

A private method, method private method-name =  expr, is a method that can only be invoked on self (from other methods of the same object, defined in this class or one of its subclasses). This invocation is performed using the expression value-name #  method-name, where value-name is directly bound to self at the beginning of the class definition. Private methods do not appear in object types. A method may have both public and private definitions, but as soon as there is a public one, all subsequent definitions will be made public.

Methods may have an explicitly polymorphic type, allowing them to be used polymorphically in programs (even for the same object). The explicit declaration may be done in one of three ways: (1) by giving an explicit polymorphic type in the method definition, immediately after the method name, i.e. method [private] method-name :  {' ident}+ .  typexpr =  expr; (2) by a forward declaration of the explicit polymorphic type through a virtual method definition; (3) by importing such a declaration through inheritance and/or constraining the type of self.

Some special expressions are available in method bodies for manipulating instance variables and duplicating self:

expr::= …  
  inst-var-name <-  expr  
  {< [ inst-var-name =  expr  { ; inst-var-name =  expr }  [;] ] >}

The expression inst-var-name <-  expr modifies in-place the current object by replacing the value associated to inst-var-name by the value of expr. Of course, this instance variable must have been declared mutable.

The expression {< inst-var-name1 =  expr1 ;;  inst-var-namen =  exprn >} evaluates to a copy of the current object in which the values of instance variables inst-var-name1, …,  inst-var-namen have been replaced by the values of the corresponding expressions expr1, …,  exprn.

Virtual method definition

A method specification is written method [private] virtual method-name :  poly-typexpr. It specifies whether the method is public or private, and gives its type. If the method is intended to be polymorphic, the type must be explicitly polymorphic.

Explicit overriding

Since Ocaml 3.12, the keywords inherit!, val! and method! have the same semantics as inherit, val and method, but they additionally require the definition they introduce to be overriding. Namely, method! requires method-name to be already defined in this class, val! requires inst-var-name to be already defined in this class, and inherit! requires class-expr to override some definitions. If no such overriding occurs, an error is signaled.

As a side-effect, these 3 keywords avoid the warnings 7 (method override) and 13 (instance variable override). Note that warning 7 is disabled by default.

Constraints on type parameters

The construct constraint typexpr1 =  typexpr2 forces the two type expressions to be equals. This is typically used to specify type parameters: in that way they can be bound to specific type expressions.

Initializers

A class initializer initializer expr specifies an expression that will be evaluated whenever an object is created from the class, once all its instance variables have been initialized.

7.9.3  Class definitions

class-definition::= class class-binding  { and class-binding }  
 
class-binding::= [virtual] [[ type-parameters ]]  class-name  {parameter}  [: class-type]  =  class-expr  
 
type-parameters::= ' ident  { , ' ident }

A class definition class class-binding  { and class-binding } is recursive. Each class-binding defines a class-name that can be used in the whole expression except for inheritance. It can also be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also binds the class type class-name to the type of the class, and defines two type abbreviations : class-name and # class-name. The first one is the type of objects of this class, while the second is more general as it unifies with the type of any object belonging to a subclass (see section 7.4).

Virtual class

A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type, but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations defined by the class binding. They must be bound to actual types in the class definition using type constraints. So that the abbreviations are well-formed, type variables of the inferred type of the class must either be type parameters or be bound in the constraint clause.

7.9.4  Class specifications

class-specification::= class class-spec  { and class-spec }  
 
class-spec::= [virtual] [[ type-parameters ]]  class-name :  class-type

This is the counterpart in signatures of class definitions. A class specification matches a class definition if they have the same type parameters and their types match.

7.9.5  Class type definitions

classtype-definition::= class type classtype-def  { and classtype-def }  
 
classtype-def::= [virtual] [[ type-parameters ]]  class-name =  class-body-type

A class type definition class class-name =  class-body-type defines an abbreviation class-name for the class body type class-body-type. As for class definitions, two type abbreviations class-name and # class-name are also defined. The definition can be parameterized by some type parameters. If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and they expand to matching types.


Previous Up Next ocaml-doc-4.11/ocaml.html/advexamples.html0000644000175000017500000015670713717225665017526 0ustar mehdimehdi Chapter 6  Advanced examples with classes and modules Previous Up Next

Chapter 6  Advanced examples with classes and modules

(Chapter written by Didier Rémy)



In this chapter, we show some larger examples using objects, classes and modules. We review many of the object features simultaneously on the example of a bank account. We show how modules taken from the standard library can be expressed as classes. Lastly, we describe a programming pattern known as virtual types through the example of window managers.

6.1  Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and specializing the following initial naive definition of a simple bank account. (We reuse the module Euro defined at the end of chapter 3.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>
let zero = euro 0.;;
val zero : Euro.c = <obj>
let neg x = x#times (-1.);;
val neg : < times : float -> 'a; .. > -> 'a = <fun>
class account = object val mutable balance = zero method balance = balance method deposit x = balance <- balance # plus x method withdraw x = if x#leq balance then (balance <- balance # plus (neg x); x) else zero end;;
class account : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method withdraw : Euro.c -> Euro.c end
let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests = object (self) inherit account method private interest = self # deposit (self # balance # times 0.03) end;;
class account_with_interests : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method private interest : unit method withdraw : Euro.c -> Euro.c end

We make the method interest private, since clearly it should not be called freely from the outside. Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the account.

We should soon fix a bug in the current definition: the deposit method can be used for withdrawing money by depositing negative amounts. We can fix this directly:

class safe_account = object inherit account method deposit x = if zero#leq x then balance <- balance#plus x end;;
class safe_account : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method withdraw : Euro.c -> Euro.c end

However, the bug might be fixed more safely by the following definition:

class safe_account = object inherit account as unsafe method deposit x = if zero#leq x then unsafe # deposit x else raise (Invalid_argument "deposit") end;;
class safe_account : object val mutable balance : Euro.c method balance : Euro.c method deposit : Euro.c -> unit method withdraw : Euro.c -> Euro.c end

In particular, this does not require the knowledge of the implementation of the method deposit.

To keep track of operations, we extend the class with a mutable field history and a private method trace to add an operation in the log. Then each method to be traced is redefined.

type 'a operation = Deposit of 'a | Retrieval of 'a;;
type 'a operation = Deposit of 'a | Retrieval of 'a
class account_with_history = object (self) inherit safe_account as super val mutable history = [] method private trace x = history <- x :: history method deposit x = self#trace (Deposit x); super#deposit x method withdraw x = self#trace (Retrieval x); super#withdraw x method history = List.rev history end;;
class account_with_history : object val mutable balance : Euro.c val mutable history : Euro.c operation list method balance : Euro.c method deposit : Euro.c -> unit method history : Euro.c operation list method private trace : Euro.c operation -> unit method withdraw : Euro.c -> Euro.c end

One may wish to open an account and simultaneously deposit some initial amount. Although the initial implementation did not address this requirement, it can be achieved by using an initializer.

class account_with_deposit x = object inherit account_with_history initializer balance <- x end;;
class account_with_deposit : Euro.c -> object val mutable balance : Euro.c val mutable history : Euro.c operation list method balance : Euro.c method deposit : Euro.c -> unit method history : Euro.c operation list method private trace : Euro.c operation -> unit method withdraw : Euro.c -> Euro.c end

A better alternative is:

class account_with_deposit x = object (self) inherit account_with_history initializer self#deposit x end;;
class account_with_deposit : Euro.c -> object val mutable balance : Euro.c val mutable history : Euro.c operation list method balance : Euro.c method deposit : Euro.c -> unit method history : Euro.c operation list method private trace : Euro.c operation -> unit method withdraw : Euro.c -> Euro.c end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks and from the trace. Let’s test it:

let ccp = new account_with_deposit (euro 100.) in let _balance = ccp#withdraw (euro 50.) in ccp#history;;
- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

let close c = c#withdraw c#balance;;
val close : < balance : 'a; withdraw : 'a -> 'b; .. > -> 'b = <fun>

Of course, this applies to all sorts of accounts.

Finally, we gather several versions of the account into a module Account abstracted over some currency.

let today () = (01,01,2000) (* an approximation *) module Account (M:MONEY) = struct type m = M.c let m = new M.c let zero = m 0. class bank = object (self) val mutable balance = zero method balance = balance val mutable history = [] method private trace x = history <- x::history method deposit x = self#trace (Deposit x); if zero#leq x then balance <- balance # plus x else raise (Invalid_argument "deposit") method withdraw x = if x#leq balance then (balance <- balance # plus (neg x); self#trace (Retrieval x); x) else zero method history = List.rev history end class type client_view = object method deposit : m -> unit method history : m operation list method withdraw : m -> m method balance : m end class virtual check_client x = let y = if (m 100.)#leq x then x else raise (Failure "Insufficient initial deposit") in object (self) initializer self#deposit y method virtual deposit: m -> unit end module Client (B : sig class bank : client_view end) = struct class account x : client_view = object inherit B.bank inherit check_client x end let discount x = let c = new account x in if today() < (1998,10,30) then c # deposit (m 100.); c end end;;

This shows the use of modules to group several class definitions that can in fact be thought of as a single unit. This unit would be provided by a bank for both internal and external uses. This is implemented as a functor that abstracts over the currency so that the same code can be used to provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined). This is the one that will be used for further extensions, refinements, etc. Conversely, the client will only be given the client view.

module Euro_account = Account(Euro);;
module Client = Euro_account.Client (Euro_account);;
new Client.account (new Euro.c 100.);;

Hence, the clients do not have direct access to the balance, nor the history of their own accounts. Their only way to change their balance is to deposit or withdraw money. It is important to give the clients a class and not just the ability to create accounts (such as the promotional discount account), so that they can personalize their account. For instance, a client may refine the deposit and withdraw methods so as to do his own financial bookkeeping, automatically. On the other hand, the function discount is given as such, with no possibility for further personalization.

It is important to provide the client’s view as a functor Client so that client accounts can still be built after a possible specialization of the bank. The functor Client may remain unchanged and be passed the new definition to initialize a client’s view of the extended account.

module Investment_account (M : MONEY) = struct type m = M.c module A = Account(M) class bank = object inherit A.bank as super method deposit x = if (new M.c 1000.)#leq x then print_string "Would you like to invest?"; super#deposit x end module Client = A.Client end;;

The functor Client may also be redefined when some new features of the account can be given to the client.

module Internet_account (M : MONEY) = struct type m = M.c module A = Account(M) class bank = object inherit A.bank method mail s = print_string s end class type client_view = object method deposit : m -> unit method history : m operation list method withdraw : m -> m method balance : m method mail : string -> unit end module Client (B : sig class bank : client_view end) = struct class account x : client_view = object inherit B.bank inherit A.check_client x end end end;;

6.2  Simple modules as classes

One may wonder whether it is possible to treat primitive types such as integers and strings as objects. Although this is usually uninteresting for integers or strings, there may be some situations where this is desirable. The class money above is such an example. We show here how to do it for strings.

6.2.1  Strings

A naive definition of strings as objects could be:

class ostring s = object method get n = String.get s n method print = print_string s method escaped = new ostring (String.escaped s) end;;
class ostring : string -> object method escaped : ostring method get : int -> char method print : unit end

However, the method escaped returns an object of the class ostring, and not an object of the current class. Hence, if the class is further extended, the method escaped will only return an object of the parent class.

class sub_string s = object inherit ostring s method sub start len = new sub_string (String.sub s start len) end;;
class sub_string : string -> object method escaped : ostring method get : int -> char method print : unit method sub : int -> int -> sub_string end

As seen in section 3.16, the solution is to use functional update instead. We need to create an instance variable containing the representation s of the string.

class better_string s = object val repr = s method get n = String.get repr n method print = print_string repr method escaped = {< repr = String.escaped repr >} method sub start len = {< repr = String.sub s start len >} end;;
class better_string : string -> object ('a) val repr : string method escaped : 'a method get : int -> char method print : unit method sub : int -> int -> 'a end

As shown in the inferred type, the methods escaped and sub now return objects of the same type as the one of the class.

Another difficulty is the implementation of the method concat. In order to concatenate a string with another string of the same class, one must be able to access the instance variable externally. Thus, a method repr returning s must be defined. Here is the correct definition of strings:

class ostring s = object (self : 'mytype) val repr = s method repr = repr method get n = String.get repr n method print = print_string repr method escaped = {< repr = String.escaped repr >} method sub start len = {< repr = String.sub s start len >} method concat (t : 'mytype) = {< repr = repr ^ t#repr >} end;;
class ostring : string -> object ('a) val repr : string method concat : 'a -> 'a method escaped : 'a method get : int -> char method print : unit method repr : string method sub : int -> int -> 'a end

Another constructor of the class string can be defined to return a new string of a given length:

class cstring n = ostring (String.make n ' ');;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the representation of strings as we hid the currency in the class money of section 3.17.

Stacks

There is sometimes an alternative between using modules or classes for parametric data types. Indeed, there are situations when the two approaches are quite similar. For instance, a stack can be straightforwardly implemented as a class:

exception Empty;;
exception Empty
class ['a] stack = object val mutable l = ([] : 'a list) method push x = l <- x::l method pop = match l with [] -> raise Empty | a::l' -> l <- l'; a method clear = l <- [] method length = List.length l end;;
class ['a] stack : object val mutable l : 'a list method clear : unit method length : int method pop : 'a method push : 'a -> unit end

However, writing a method for iterating over a stack is more problematic. A method fold would have type ('b -> 'a -> 'b) -> 'b -> 'b. Here 'a is the parameter of the stack. The parameter 'b is not related to the class 'a stack but to the argument that will be passed to the method fold. A naive approach is to make 'b an extra parameter of class stack:

class ['a, 'b] stack2 = object inherit ['a] stack method fold f (x : 'b) = List.fold_left f x l end;;
class ['a, 'b] stack2 : object val mutable l : 'a list method clear : unit method fold : ('b -> 'a -> 'b) -> 'b -> 'b method length : int method pop : 'a method push : 'a -> unit end

However, the method fold of a given object can only be applied to functions that all have the same type:

let s = new stack2;;
val s : ('_weak1, '_weak2) stack2 = <obj>
s#fold ( + ) 0;;
- : int = 0
s;;
- : (int, int) stack2 = <obj>

A better solution is to use polymorphic methods, which were introduced in OCaml version 3.05. Polymorphic methods makes it possible to treat the type variable 'b in the type of fold as universally quantified, giving fold the polymorphic type Forall 'b. ('b -> 'a -> 'b) -> 'b -> 'b. An explicit type declaration on the method fold is required, since the type checker cannot infer the polymorphic type by itself.

class ['a] stack3 = object inherit ['a] stack method fold : 'b. ('b -> 'a -> 'b) -> 'b -> 'b = fun f x -> List.fold_left f x l end;;
class ['a] stack3 : object val mutable l : 'a list method clear : unit method fold : ('b -> 'a -> 'b) -> 'b -> 'b method length : int method pop : 'a method push : 'a -> unit end

6.2.2  Hashtbl

A simplified version of object-oriented hash tables should have the following class type.

class type ['a, 'b] hash_table = object method find : 'a -> 'b method add : 'a -> 'b -> unit end;;
class type ['a, 'b] hash_table = object method add : 'a -> 'b -> unit method find : 'a -> 'b end

A simple implementation, which is quite reasonable for small hash tables is to use an association list:

class ['a, 'b] small_hashtbl : ['a, 'b] hash_table = object val mutable table = [] method find key = List.assoc key table method add key valeur = table <- (key, valeur) :: table end;;
class ['a, 'b] small_hashtbl : ['a, 'b] hash_table

A better implementation, and one that scales up better, is to use a true hash table… whose elements are small hash tables!

class ['a, 'b] hashtbl size : ['a, 'b] hash_table = object (self) val table = Array.init size (fun i -> new small_hashtbl) method private hash key = (Hashtbl.hash key) mod (Array.length table) method find key = table.(self#hash key) # find key method add key = table.(self#hash key) # add key end;;
class ['a, 'b] hashtbl : int -> ['a, 'b] hash_table

6.2.3  Sets

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access the internal representation of another object of the same class.

This is another instance of friend functions as seen in section 3.17. Indeed, this is the same mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return the representation of a set. Since sets are parametric in the type of elements, the method tag has a parametric type 'a tag, concrete within the module definition but abstract in its signature. From outside, it will then be guaranteed that two objects with a method tag of the same type will share the same representation.

module type SET = sig type 'a tag class ['a] c : object ('b) method is_empty : bool method mem : 'a -> bool method add : 'a -> 'b method union : 'b -> 'b method iter : ('a -> unit) -> unit method tag : 'a tag end end;;
module Set : SET = struct let rec merge l1 l2 = match l1 with [] -> l2 | h1 :: t1 -> match l2 with [] -> l1 | h2 :: t2 -> if h1 < h2 then h1 :: merge t1 l2 else if h1 > h2 then h2 :: merge l1 t2 else merge t1 l2 type 'a tag = 'a list class ['a] c = object (_ : 'b) val repr = ([] : 'a list) method is_empty = (repr = []) method mem x = List.exists (( = ) x) repr method add x = {< repr = merge [x] repr >} method union (s : 'b) = {< repr = merge repr s#tag >} method iter (f : 'a -> unit) = List.iter f repr method tag = repr end end;;

6.3  The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the definition a pair of two classes that recursively interact with one another.

The class observer has a distinguished method notify that requires two arguments, a subject and an event to execute an action.

class virtual ['subject, 'event] observer = object method virtual notify : 'subject -> 'event -> unit end;;
class virtual ['subject, 'event] observer : object method virtual notify : 'subject -> 'event -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished method notify_observers to broadcast the message notify to all observers with a particular event e.

class ['observer, 'event] subject = object (self) val mutable observers = ([]:'observer list) method add_observer obs = observers <- (obs :: observers) method notify_observers (e : 'event) = List.iter (fun x -> x#notify self e) observers end;;
class ['a, 'event] subject : object ('b) constraint 'a = < notify : 'b -> 'event -> unit; .. > val mutable observers : 'a list method add_observer : 'a -> unit method notify_observers : 'event -> unit end

The difficulty usually lies in defining instances of the pattern above by inheritance. This can be done in a natural and obvious manner in OCaml, as shown on the following example manipulating windows.

type event = Raise | Resize | Move;;
type event = Raise | Resize | Move
let string_of_event = function Raise -> "Raise" | Resize -> "Resize" | Move -> "Move";;
val string_of_event : event -> string = <fun>
let count = ref 0;;
val count : int ref = {contents = 0}
class ['observer] window_subject = let id = count := succ !count; !count in object (self) inherit ['observer, event] subject val mutable position = 0 method identity = id method move x = position <- position + x; self#notify_observers Move method draw = Printf.printf "{Position = %d}\n" position; end;;
class ['a] window_subject : object ('b) constraint 'a = < notify : 'b -> event -> unit; .. > val mutable observers : 'a list val mutable position : int method add_observer : 'a -> unit method draw : unit method identity : int method move : int -> unit method notify_observers : event -> unit end
class ['subject] window_observer = object inherit ['subject, event] observer method notify s e = s#draw end;;
class ['a] window_observer : object constraint 'a = < draw : unit; .. > method notify : 'a -> event -> unit end

As can be expected, the type of window is recursive.

let window = new window_subject;;
val window : < notify : 'a -> event -> unit; _.. > window_subject as 'a = <obj>

However, the two classes of window_subject and window_observer are not mutually recursive.

let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>
window#add_observer window_observer;;
- : unit = ()
window#move 1;;
{Position = 1} - : unit = ()

Classes window_observer and window_subject can still be extended by inheritance. For instance, one may enrich the subject with new behaviors and refine the behavior of the observer.

class ['observer] richer_window_subject = object (self) inherit ['observer] window_subject val mutable size = 1 method resize x = size <- size + x; self#notify_observers Resize val mutable top = false method raise = top <- true; self#notify_observers Raise method draw = Printf.printf "{Position = %d; Size = %d}\n" position size; end;;
class ['a] richer_window_subject : object ('b) constraint 'a = < notify : 'b -> event -> unit; .. > val mutable observers : 'a list val mutable position : int val mutable size : int val mutable top : bool method add_observer : 'a -> unit method draw : unit method identity : int method move : int -> unit method notify_observers : event -> unit method raise : unit method resize : int -> unit end
class ['subject] richer_window_observer = object inherit ['subject] window_observer as super method notify s e = if e <> Raise then s#raise; super#notify s e end;;
class ['a] richer_window_observer : object constraint 'a = < draw : unit; raise : unit; .. > method notify : 'a -> event -> unit end

We can also create a different kind of observer:

class ['subject] trace_observer = object inherit ['subject, event] observer method notify s e = Printf.printf "<Window %d <== %s>\n" s#identity (string_of_event e) end;;
class ['a] trace_observer : object constraint 'a = < identity : int; .. > method notify : 'a -> event -> unit end

and attach several observers to the same object:

let window = new richer_window_subject;;
val window : < notify : 'a -> event -> unit; _.. > richer_window_subject as 'a = <obj>
window#add_observer (new richer_window_observer);;
- : unit = ()
window#add_observer (new trace_observer);;
- : unit = ()
window#move 1; window#resize 2;;
<Window 1 <== Move> <Window 1 <== Raise> {Position = 1; Size = 1} {Position = 1; Size = 1} <Window 1 <== Resize> <Window 1 <== Raise> {Position = 1; Size = 3} {Position = 1; Size = 3} - : unit = ()

Previous Up Next ocaml-doc-4.11/ocaml.html/libstr.html0000644000175000017500000000402413717225665016474 0ustar mehdimehdi Chapter 30  The str library: regular expressions and string processing Previous Up Next

Chapter 30  The str library: regular expressions and string processing

The str library provides high-level string processing functions, some based on regular expressions. It is intended to support the kind of file processing that is usually performed with scripting languages such as awk, perl or sed.

Programs that use the str library must be linked as follows:

        ocamlc other options str.cma other files
        ocamlopt other options str.cmxa other files

For interactive use of the str library, do:

        ocamlmktop -o mytop str.cma
        ./mytop

or (if dynamic linking of C libraries is supported on your platform), start ocaml and type #load "str.cma";;.


Previous Up Next ocaml-doc-4.11/ocaml.html/emptyvariants.html0000644000175000017500000000354013717225665020105 0ustar mehdimehdi 8.20  Empty variant types Previous Up Next

8.20  Empty variant types

(Introduced in 4.07.0)

type-representation::= ...  
  = |

This extension allows user to define empty variants. Empty variant type can be eliminated by refutation case of pattern matching.

type t = | let f (x: t) = match x with _ -> .

Previous Up Next ocaml-doc-4.11/ocaml.html/moduleexamples.html0000644000175000017500000011354713717225665020234 0ustar mehdimehdi Chapter 2  The module system Previous Up Next

Chapter 2  The module system

This chapter introduces the module system of OCaml.

2.1  Structures

A primary motivation for modules is to package together related definitions (such as the definitions of a data type and associated operations over that type) and enforce a consistent naming scheme for these definitions. This avoids running out of names or accidentally confusing names. Such a package is called a structure and is introduced by the structend construct, which contains an arbitrary sequence of definitions. The structure is usually given a name with the module binding. Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue = struct type priority = int type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue let empty = Empty let rec insert queue prio elt = match queue with Empty -> Node(prio, elt, Empty, Empty) | Node(p, e, left, right) -> if prio <= p then Node(prio, elt, insert right p e, left) else Node(p, e, insert right prio elt, left) exception Queue_is_empty let rec remove_top = function Empty -> raise Queue_is_empty | Node(prio, elt, left, Empty) -> left | Node(prio, elt, Empty, right) -> right | Node(prio, elt, (Node(lprio, lelt, _, _) as left), (Node(rprio, relt, _, _) as right)) -> if lprio <= rprio then Node(lprio, lelt, remove_top left, right) else Node(rprio, relt, left, remove_top right) let extract = function Empty -> raise Queue_is_empty | Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue) end;;
module PrioQueue : sig type priority = int type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue val empty : 'a queue val insert : 'a queue -> priority -> 'a -> 'a queue exception Queue_is_empty val remove_top : 'a queue -> 'a queue val extract : 'a queue -> priority * 'a * 'a queue end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers qualified by a structure name. For instance, PrioQueue.insert is the function insert defined inside the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string PrioQueue.queue = PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module in the scope of the current structure.

open PrioQueue;;
insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to identify in which module a identifier has been defined. In particular, opened modules can shadow identifiers present in the current scope, potentially leading to confusing errors:

let empty = [] open PrioQueue;;
val empty : 'a list = []
let x = 1 :: empty ;;
Error: This expression has type 'a PrioQueue.queue but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of the module available only in the concerned expression. This can also make the code easier to read – the open statement is closer to where it is used– and to refactor – the code fragment is more self-contained. Two constructions are available for this purpose:

let open PrioQueue in insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

and

PrioQueue.(insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or bracket, the parentheses of the local open can be omitted. For instance,

PrioQueue.[empty] = PrioQueue.([empty]);;
- : bool = true
PrioQueue.[|empty|] = PrioQueue.([|empty|]);;
- : bool = true
PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty });;
- : bool = true

becomes

PrioQueue.[insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

This second form also works for patterns:

let at_most_one_element x = match x with | PrioQueue.( Empty| Node (_,_, Empty,Empty) ) -> true | _ -> false ;;
val at_most_one_element : 'a PrioQueue.queue -> bool = <fun>

It is also possible to copy the components of a module inside another module by using an include statement. This can be particularly useful to extend existing modules. As an illustration, we could add functions that returns an optional value rather than an exception when the priority queue is empty.

module PrioQueueOpt = struct include PrioQueue let remove_top_opt x = try Some(remove_top x) with Queue_is_empty -> None let extract_opt x = try Some(extract x) with Queue_is_empty -> None end;;
module PrioQueueOpt : sig type priority = int type 'a queue = 'a PrioQueue.queue = Empty | Node of priority * 'a * 'a queue * 'a queue val empty : 'a queue val insert : 'a queue -> priority -> 'a -> 'a queue exception Queue_is_empty val remove_top : 'a queue -> 'a queue val extract : 'a queue -> priority * 'a * 'a queue val remove_top_opt : 'a queue -> 'a queue option val extract_opt : 'a queue -> (priority * 'a * 'a queue) option end

2.2  Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure are accessible from the outside, and with which type. It can be used to hide some components of a structure (e.g. local function definitions) or export some components with a restricted type. For instance, the signature below specifies the three priority queue operations empty, insert and extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract (by not providing its actual representation as a concrete type).

module type PRIOQUEUE = sig type priority = int (* still concrete *) type 'a queue (* now abstract *) val empty : 'a queue val insert : 'a queue -> int -> 'a -> 'a queue val extract : 'a queue -> int * 'a * 'a queue exception Queue_is_empty end;;
module type PRIOQUEUE = sig type priority = int type 'a queue val empty : 'a queue val insert : 'a queue -> int -> 'a -> 'a queue val extract : 'a queue -> int * 'a * 'a queue exception Queue_is_empty end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue structure where the remove_top function is not accessible and the actual representation of priority queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE
AbstractPrioQueue.remove_top ;;
Error: Unbound value AbstractPrioQueue.remove_top
AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in

module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:

module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:

module type PRIOQUEUE_WITH_OPT = sig include PRIOQUEUE val extract_opt : 'a queue -> (int * 'a * 'a queue) option end;;
module type PRIOQUEUE_WITH_OPT = sig type priority = int type 'a queue val empty : 'a queue val insert : 'a queue -> int -> 'a -> 'a queue val extract : 'a queue -> int * 'a * 'a queue exception Queue_is_empty val extract_opt : 'a queue -> (int * 'a * 'a queue) option end

2.3  Functors

Functors are “functions” from modules to modules. Functors let you create parameterized modules and then provide other modules as parameter(s) to get a specific implementation. For instance, a Set module implementing sets as sorted lists could be parameterized to work with any module that provides an element type and a comparison function compare (such as OrderedString):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater
module type ORDERED_TYPE = sig type t val compare: t -> t -> comparison end;;
module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end
module Set = functor (Elt: ORDERED_TYPE) -> struct type element = Elt.t type set = element list let empty = [] let rec add x s = match s with [] -> [x] | hd::tl -> match Elt.compare x hd with Equal -> s (* x is already in s *) | Less -> x :: s (* x is smaller than all elements of s *) | Greater -> hd :: add x tl let rec member x s = match s with [] -> false | hd::tl -> match Elt.compare x hd with Equal -> true (* x belongs to s *) | Less -> false (* x is smaller than all elements of s *) | Greater -> member x tl end;;
module Set : functor (Elt : ORDERED_TYPE) -> sig type element = Elt.t type set = element list val empty : 'a list val add : Elt.t -> Elt.t list -> Elt.t list val member : Elt.t -> Elt.t list -> bool end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations for this type:

module OrderedString = struct type t = string let compare x y = if x = y then Equal else if x < y then Less else Greater end;;
module OrderedString : sig type t = string val compare : 'a -> 'a -> comparison end
module StringSet = Set(OrderedString);;
module StringSet : sig type element = OrderedString.t type set = element list val empty : 'a list val add : OrderedString.t -> OrderedString.t list -> OrderedString.t list val member : OrderedString.t -> OrderedString.t list -> bool end
StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4  Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the type set, so that users of the structure will not rely on sets being lists, and we can switch later to another, more efficient representation of sets without breaking their code. This can be achieved by restricting Set by a suitable functor signature:

module type SETFUNCTOR = functor (Elt: ORDERED_TYPE) -> sig type element = Elt.t (* concrete *) type set (* abstract *) val empty : set val add : element -> set -> set val member : element -> set -> bool end;;
module type SETFUNCTOR = functor (Elt : ORDERED_TYPE) -> sig type element = Elt.t type set val empty : set val add : element -> set -> set val member : element -> set -> bool end
module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR
module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet : sig type element = OrderedString.t type set = AbstractSet(OrderedString).set val empty : set val add : element -> set -> set val member : element -> set -> bool end
AbstractStringSet.add "gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the signature of the structure returned by the functor, then use that signature in the constraint:

module type SET = sig type element type set val empty : set val add : element -> set -> set val member : element -> set -> bool end;;
module type SET = sig type element type set val empty : set val add : element -> set -> set val member : element -> set -> bool end
module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (Elt : ORDERED_TYPE) -> SET
module WrongStringSet = WrongSet(OrderedString);;
module WrongStringSet : sig type element = WrongSet(OrderedString).element type set = WrongSet(OrderedString).set val empty : set val add : element -> set -> set val member : element -> set -> bool end
WrongStringSet.add "gee" WrongStringSet.empty ;;
Error: This expression has type string but an expression was expected of type WrongStringSet.element = WrongSet(OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality between element in the result of the functor and t in its argument is forgotten. Consequently, WrongStringSet.element is not the same type as string, and the operations of WrongStringSet cannot be applied to strings. As demonstrated above, it is important that the type element in the signature SET be declared equal to Elt.t; unfortunately, this is impossible above since SET is defined in a context where Elt does not exist. To overcome this difficulty, OCaml provides a with type construct over signatures that allows enriching a signature with extra type equalities:

module AbstractSet2 = (Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet2 : functor (Elt : ORDERED_TYPE) -> sig type element = Elt.t type set val empty : set val add : element -> set -> set val member : element -> set -> bool end

As in the case of simple structures, an alternate syntax is provided for defining functors and restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
  struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high degree of type safety, as we now illustrate. Consider an ordering over character strings that is different from the standard ordering implemented in the OrderedString structure. For instance, we compare strings without distinguishing upper and lower case.

module NoCaseString = struct type t = string let compare s1 s2 = OrderedString.compare (String.lowercase_ascii s1) (String.lowercase_ascii s2) end;;
module NoCaseString : sig type t = string val compare : string -> string -> comparison end
module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet : sig type element = NoCaseString.t type set = AbstractSet(NoCaseString).set val empty : set val add : element -> set -> set val member : element -> set -> bool end
NoCaseStringSet.add "FOO" AbstractStringSet.empty ;;
Error: This expression has type AbstractStringSet.set = AbstractSet(OrderedString).set but an expression was expected of type NoCaseStringSet.set = AbstractSet(NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible, and values of these two types do not match. This is the correct behavior: even though both set types contain elements of the same type (strings), they are built upon different orderings of that type, and different invariants need to be maintained by the operations (being strictly increasing for the standard ordering and for the case-insensitive ordering). Applying operations from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or build lists that violate the invariants of NoCaseStringSet.

2.5  Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However, modules are most useful for large, batch-compiled programs. For these programs, it is a practical necessity to split the source into several files, called compilation units, that can be compiled separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship between the units can be explained easily in terms of the module system. A compilation unit A comprises two files:

  • the implementation file A.ml, which contains a sequence of definitions, analogous to the inside of a structend construct;
  • the interface file A.mli, which contains a sequence of specifications, analogous to the inside of a sigend construct.

These two files together define a structure named A as if the following definition was entered at top-level:

module A: sig (* contents of file A.mli *) end
        = struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c command (the -c option means “compile only, do not try to link”); this produces compiled interface files (with extension .cmi) and compiled object code files (with extension .cmo). When all units have been compiled, their .cmo files are linked together using the ocamlc command. For instance, the following commands compile and link a program composed of two compilation units Aux and Main:

$ ocamlc -c Aux.mli                     # produces aux.cmi
$ ocamlc -c Aux.ml                      # produces aux.cmo
$ ocamlc -c Main.mli                    # produces main.cmi
$ ocamlc -c Main.ml                     # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end
          = struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end
           = struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions are exported in Aux.mli.

The order in which the .cmo files are given to ocamlc during the linking phase determines the order in which the module definitions occur. Hence, in the example above, Aux appears first and Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither functors nor module types. However, all module-class objects can appear as components of a structure, so the solution is to put the functor or module type inside a structure, which can then be mapped to a file.


Previous Up Next ocaml-doc-4.11/ocaml.info/0000755000175000017500000000000014003251342014252 5ustar mehdimehdiocaml-doc-4.11/ocaml.info/ocaml.info.body-10.gz0000644000175000017500000003720613717225702020037 0ustar mehdimehdi+=_ocaml.info.body-10}{sƕ;_vif,zRv4m'Hʒɺ\*Cb&8vU{?=n`@fS 4qy/ƭ"sIYVNʦH,uZns-;sje.y*'/&[yUG?}ѳssٶhY^ٕ+6AGudW|>wg7l}ßۿ?h߮t[dMҞwΥU;ˮZ76/P7L>u,K-}[꤭Yan<~GQ;HZG0nJsn_L?Fq$E;Hr +zzll*ޡ>[oڝ'"n5[gĸ2~R5ʒ'ܻ;w&A63`˘׽#5Ƈ/q8DEqۆO''VyI!^|3Ѩr!yɔԅ:[muˤpH!⠶s:ZLuWǮřrߺ.pfYݾayܗ4O~6Ţ}:_;ҪevfKk' @Y3Gi,@A&[?wKe^(dҞWM6q &Sβ\''r 8)Ptͧ⮄]RWZ\ն)va|ZeR G&d@+TQZs^6m{Qk[6*sL?eO.Hm0̊ `i.ZK:<)-*_vwEUvAj(<"p°TolČǻm"x-ڴmķiLB PW-Q`STҞAdVIK#euMdbQPfM+NQQ[ggǩsoT!Oì Jwu:_lیdXGrf[QɚciXFI]{0;?k&$hFs(r$o?[A=; C(ljWU c"*|} $^C,jACUU(ej[ U{gKrT_wgeĘgΝB(U{!ȭDK⳶BEȻ z%% p#¤Ւ6 -q4 "^I| =E0 jE틊O8l0A6A%|]䠃lZV鳬Y$~WqB[V55d*YflJM)=g6І#UA&~+uos )x׎_ѡ!V?r@T:; zM= *B6݌G}loӢҬӣ;1_Zو=C0htR'0Xֲ y^g]1P>LGLu3w;OvRr:nFҼ~y_kkU‚iu>!6\]̻'nƃOt'8YQN$xLR04,Sr=ͱ~*ҹIǶQ7TV ?&VB%EjyYޡ__‘zVA+ҧJUÑ J=w'd9lyyID۠E'cÜU l"@'ߍ4a-0B!@̆X*]יww<%~=`K_0ώIQs㭷Â.>rL:آڲ!&OTʋݱjV|Ҝ3r̶hEdxgJD+@> j&ʋ?#+tۨu#R n\^j'LݿڏiAwj[DSQGeK^i*7#Dc* nDÜ~t:" uJ a2}YWJ0MX%aZiB3iEłY% $7^cY5z+k(5ܽv2&kH>IJ5O^uogv@LI?7%#0wܽw簷|.&6{ $Mk&ͮ~=u,TM:Yظ1SB®8+4RLAWGDhP/mrʋJ t۩ˮB4#5*`k1 M)a_tFɞȯ1ywE]mнv7`^?<31pQ# Gfol> !u~%m`+4]{͢m|~nF0 w,@ϛR) ץcB!$$\s8OC[qL4i,#eUu'&BM@OK61qzdeArNUE.|T4؂雇G[b ~9Cg6hp˪f x#o~ 5I?2 }; Ju%~یX*n CvWhtM\E␪Sq7F֠H¿U+<]qYgpl+M:8RѨ1]&"%ͺ\{.OU([h%qb- #gw!EM_QW. >4h'9s{5 @[&P~4I'Q8Ģ0N![;(rGQ7/?jfX*ylC 2u MjLFlKbj! =RKzh/b^IH^-l& u?飼0G+Nw -V ;>TN݁y&O-xcFi=}WSIU;] W[D/. ?rG-d{,~?9“_G]{1[_ бߢ7ԐNċ:1{1RD&~RᑷpRa]3}[9۶EHgm,MUC@4T<[yr5a?r9Cje1G}׵ I3yli]b1L(:Bk6D1P f!@\ibamx }b[ÐF0oUE C[ ?O?yK3K~ ߷il}oj GAUU48ԥ~f|DTx$Q0|[Nw%;d*BҋiI *gϟ7Oz["վ9h∾x]яMR#\R WEFK%ݥ>6r>/li~OK,Cc}~V˭}-pf_; Ru9UZ!Xu=dۼH;]'eBcD_b(Aǧ~IJ:o/nyi7>rh@9VɪA[U[D%l%n05H/ߚMmMJə/4ku9hLC2ǍnTSmk渊Ů\U IE_vQK/|qkRb;ܶ?j+h+Syۆ [5w4EV_٥jU`t*fyzܲ1 i ;k9죷p'q nD#ͷLRob޲Svo'SoOʡC֝lFOZG$6۴kEaI} &u̚F{=jH7?7qhI44;J}vO|癥8$<%Fi7S9>BW[8ָŝ$q OusȈ#?cѪ\皩YU6ҤM]% | $>G}Wlqy^,9 7=ao&MH> n!ۃ.,/ZNzu.s̰'RYF43ϲՊNh3A8ѕRԈuZ\m93{"v 8!<["*9K08!g`y[@4h[HPe9:oL: X\KdXA ^6+k睖x9c iyL$:5"t~ir #mJ,|;qI xo$tth% ԓ!!ЁOo# G}"Uo!,&K81wjrV'kϬj4Lw J4u$:8Kt3R1YWPMI$C$J6s@ѹC)vJeb*+ iGGՏI="Rr%qRpqjIv| Udgbī7UVi0=BԖ@R9nΧ Pht3~VpUI,qҌUf].'U1+֥Xg&qa<*3| UTq D犟 ʽ9KEX4T!c ypnۡsi##Y.yJZsz8Sا[թNCk%5IOLꓬ$! $/mLe=RQmoYRuP[U]Lrls5 K~,hz>wFj.WӚ΁Ms {3v6aa' ~ur ~* iB"=LEIr RkBrCÈs7~Ab / #f4v'/`oEi^a'r6͐zykTr@H Z/z"s%rAK '+VV«QMdA(/k%7gY&*9j(Wk#l@%}DU]["/gZb?>1YBP31ƛ-XmM]O^LGŒOr X[b )fҸ0VQj":F(/YS52d /J=tǶ$`ۼѾ[n[DoF6P[Y-V{!Ѿj߈\o{' Up~ TT@di>,lC NI ޶[Vv, NOS Ͻ7"l UDѕV>+`[/qu v8i-bK5 (϶4n%9sn3ӤD͆a݉Nxd4 xD1y\J7)Mpb)vڶusfHb1 KJ#mBZ_~3E^W%]p) hD˞T(m G 40%ݸiSڛ =pUBx)C|yz/~j$ǰ2ѱMa: X~Pa2kڝRNɮ/p5*n\Q:Qw8jRKoK7^R#it^g҇p UϛMm?qMo6w=eJLrg|ak0+L;W_}ի/wAwAަʡ*v hrQ0rB08:$嫒'Hk5]9@`W:ĭ /W~ [ʸz_qْ)nB B6+m;Ch]! AtLl U ._YZeJ:@LjTiHPξj_zu0zE6Ps0Q[rE*#K³S(E7P_~1^a eI1cɻ`8 VIwa"{vEG7 q9v?X_"ON}'#%\o jm0z >#@-kQ ҃Fm[F8lz۝<LU56,}Taԋ(CDcopp/ ]܌j QgkLnG;F"u*~Ģ9JMg29-DBBxqbrHV1 .3Dj95 V5qGkVVյEF8msJDgiUN:)!-8xް?o=𘩢Q%'Hks=1]yu/)+AEp'iu%cDuuܝ!faڽjh0/$el{IeaQQ_Ë j=0@!5I)pŏ!^sp0?Ҋ" 896NߩLwsD9Åbw#RlZύ=Ѣ=lgND jź[4罂nv2fr{BZlJޛSZpW= 1#Jp3$-D w\[{9aBEC @e=;oa>(r牱IoAfA88Q7-ʽ! GYNz:uc*{@^9NG'DDƙȪN"StZDm(TS{#K: % Ꝛu_#.ͮ+%%5t 6+vqf)Ļh^5iQ2E65ܯ!Lѯz >hʭLEΆ(4MƵ s1ÆKHl,bif̫+?ٙN1 7,uEq*^=}4IY(Ⱥ);ajڔ (B?-0xf8" ˯hl k '9CWI3@TAo"T䎁 cUZwwɁd憡hY],Z}eAh`_0iQDfBovWE ʿ@jJ6\'hJkMq(Ygsuȧ!؄)Nĩ7?hE{by< wH6@wG|2:wf^"Jy"VW[yQ>opޔoz$;?f- %B}eEdE"_;EHh33Fԉ'M~VK:1įHAb) O\PY'bzP!#*S?,1E;wfGPo35ϐ H-_mW'}~K/kU.7769{t8wOq1Y`v4hԅ46RMJҋvG3Xg(Y) :2VbVg΋E1(DQ4;NNd(YRIs Jc 9ӎFwÛo63!$. =,2d8T[Lk rSg61; ox`mݵ2evyVrNEs]7bHRG_slvY#HHa|!0X+Ł 8\H*3!=)ݬ9Xv(SO^LWô6jM.cŒׄ %;N:$Hx>`t5&pf=jucZ J"'?F@ӄ81_YО?Z&G=1w&KM U%*+c Rf՚tnx!Rq+q6Lk5wTiܪLc|b}ov rT' kg, \cGN?RmI?~p9.<\.KZ gsD,~~VN҈ћ2īKb{{:wfE¾uD$buƝ_Qȴl->@nlhʠK@uyg$+/oKr,Z$@K#,kiGZ n@d$FRH&,{1#a>hz^]ۭ 751E8ĥ'~f$^De/ڕ%(3NJ3什Uw1Lۢ-%];t%JFf$l+Bp䙩0@Wk{"I:/q:t^ };Tsc)C5lJOJ;1hcDG/!C{~?KKyo}a0MplaL%Ofd]Ec8[g-,\QRTզD6Dʷ AHMZ%$pTz6K೪%2VؠgN:$T ]4W?ܲ 6KlzVD^+/< ;rpi7Y7X k>äE}^&aoi&p~!% P~'d$ daW e.keN;7FT[ +n ^ `Yɐ'8 \ ڥ}HpD)1N`#VTG{yX!I_xgB98bGA!) "0:dSx2-qo#!ZL9BQE&E7޾ɑIK,mUKPVREen1QDӲ5D7c$6%!LS-?Ͻ*]xC: rMXp )4|\Dy4DJ9q2u:a[(XSӹ3ZR5M%G |N?bӐHT)uMXS֚ 8̈́;2 ~jpdG!ri^1 U3yEI.VIւiVHܱ$U ;kQB|ZIZƃ&wҴ8Xad]Բ9Ē%yKQ=ˆ>qLj?TN'*6D<~.sITv@hSuUohFC3cv8{w+4,T#ˇO&n4ʇGu|gHfƂ+m@hLkL%,vAoԭ˲4:*H%V(=˸k? X 8"oYJp(7By! 7T䤅(=^ d#=Vkԙ+0fS4g6k!{ @E}oj14]XߘI5;z}jSteIJ\0n59Kq9g,*U38˴.l*%QʷxOV:&r&EtSTI-,Q5 (f!Ƴ3t`򐔜v&tǁ+dP1IV̂2>+ٗ) ^"\3JIi." =3I63zf0.$WE.h F!E :5Ћm"j 9#N!LFb(LiΎh5OQh2W>W-UΔ2s9egpI|#y\;~ࣤ+I*LYTuV=i/㏥| 7.8v]a07<SPwÇ)XAI{Tf/RVƒ:I*Ґ8kL܄N˵M",7L1t{jK3gK ORKOSRdcHCy H M\DXkd06̿*袧&5<0m3ԢRIS^n gKԠȚV'y#*:;Y]|-CqFLkϜ3O.%u ǤrM;hUZ`\e_\[(¿I$r6QG$i;絳[_d k-r!@茫k0\S%Ճ./DpE4Y:5xTL}l *S[`AVGf}I ^?Hq;RCF+zp<+fև>3nֵqg;}w|NzVb$_vg v\ov!J!Xboo^߯&΂n'j-FžvkF4ǽEm/s/gq߇vz/ڲzTV! KҋZDǙΒ%1IUi,lw`le^mYQU*!o ~VGq;b'!5mmӻChP!gֈjE(J4 <$П{rr$Y-5p &#Zq65U-5UkT+f=Efj=cKCI:٫~ ^.KE#Ga^撺b=2yD2r?`%!KVA$Uãrw2HT!cIl m=#9,ъǮWׇ ։M TgQt὘ӗފgxЦp?N1qቆhd|9~5 0m:eܾlXH(vJnELJ7u!iu8! Z-ee1b Ĵf`aY*z(@.㔠:}dX% WEBSmM|#럮="zqUC@nz]=H jrx&|:z_Ձf|3ܞ c w0\0ֲe+t< u[kU4 nq%n*SlkW ! Ylwa{e2]Lh?j`19k 9:ur;Ի6Oqȹ"Z'Y|&/PtLvc$(ӹRXkJ(a;@DPU8c+oJG{RF=jAħ+R#8  Fh_܍F nde*ه@ MXo* Q|k^OijXQndˤ!8G9b]r5<l0n1 q`KjeiwT1/R _$)O_^Gl)+3 kEn^` Q%qTuqOA 0 sE}jp~j:$iVcӨ`jO'jՑl]}{hGS]w{@=Oz/ |/4𫡗6拡w1b`3ZV|@+><"ߡ C! ciCſ%X䚚Kw;ݝݟ==>>wgwޛ}8wgv$"UC8֯˧Zɣe3af0>dxBTpBJįR^_C ؠYsf9Tmh$ӴcXD02dy4O\NRl:ٰ)1K{fQ%2jS/S/tKc$̈́tc/:e3I=YJ5DPZ&;*{ a|ƍ%-~رZRe_&i*wG؅͒ۤ9˓كƐTUbf1PE5ڨ/N"u.Ⱦ 1dbǓ(_Ae7yAjCtΡO@˯x̊q2hrsZelU3ث/0. \otbK-%.ib; Jӄt4eN}6]T;Cmެ&ڕkN.Z\~Oc,:HWXmQ[կ#|(K1H56p??V)_rXDN-&ܛU>TRɭgLH$GJ1HF۽n}: jjhL#]E"4X")΀(sy1@PYVCQr-O`]ZYohx8a,2~e+hbvǕ|B%j˧QI#Wij,=ȏ5+⤫Kϟ~ǧOx1Qf a(M0 n쪐ZޝaQ*l/b,:Bg[&vo;o4FA11D35WlI<& )PCxc]`Xtd3kk@;;q{ jUIha Q>N&o d!Fq{73r6-_ڒK°={*0B`R"|T.ˬ(KcQ[a5J^f܅5HYPlmQ#aTSXYs%'(!|ús{ygx #i%k4Pd[rz>e3/Dn^ˡ:=4ȤfDiSA{3: sUص#d(WFv#"~Q՝@Mߎ=Ӓm IWN%ihqD#_}Lx$)~M+ ehIh)R*Ɇ//bx&fr|E-#V*>ށMͩYd=h]a _Fj}aQ{q(_%Q}.G'jeB9ݻxYL4f0$D*v#QӚ7%3?wѱXoXiKFɌI(ɪK\\@`/vqq*Ŏ8?+m3"(ocaml-doc-4.11/ocaml.info/ocaml.info.body-29.gz0000644000175000017500000003147413717225702020052 0ustar mehdimehdi+=_ocaml.info.body-29}ۖǑ挭͋Ơio-#J<e9<\L(4,Ta }=}~d*g6Ȉ7V,O&"M TIQIԺ*MjqJ^LGmg\&|r)WtdeΟ>~07Ms.?˺NEιҜjSכlQJRh˔e0r@* eZ7t:}p/^(͗كgj;0TuAK?|J >)ߨƋ/_P ZqIM?'9S'؎ '>Y0P-Dֈ2  TKI& JH%C/YkIҗ<e.j|V#*[s40oi2ql.bUp*Han86fҿ(IT@z^oI\uMө?7Ր9,s$̐WJ3%SK/u=ԪlT4Y L#8ڔB0 ?zK)מ6=2;ިyT`!ˊ3sX|N?1Rq.{ޥo `27Ö=p WOgSeYnw LjO(F#Yb~(*CF2("\Zj?u_ fbyĚAÚ9s"kؘiZozA#e=sP%ϼyƠT~T'㖽cPeY0 h1)bW7)U]K@2$KD-)#d+I j#:]묀WIP%Lϵ6x'7#+.5-@N=IYԝ[cz/*qǤB9o3K>ӫ4W}A}6 'I'<_t<-%,Ѹp_&"Y)́mr*S0h뱸p#U[4pNMU/7PZmX]a]U^VvHOS0%@ߣZ/ Df8P@}' (|%W0ehC\MK?Cz3L`H;4@s idE ]'V}0@bbi| j{򮞑@X(u &~f N0EG e"$9Z5.n߰ZU848 ٌwف#@y~C. bgIk^ .o@ *^FԒ9"&?Y0K滨ZZ8NY M|ߖ̫{2$t Ot Dűbp t/j0ᡫ#Gyxpa\$Yy0\5Su9 !)VpvHMlhUȮ:,p&&^ yשǻL X9ErƌM59jJ1&B)9+e=XT%LeH Cv@U&nlÜ\l8~T}$GDL~15Om Jh@},7PUmlIV l.M^N%qޱQje.ކO@c_?* ,xr9 {~/qD)~%lÄ .>6q1XhF_Xȧ_ހGn;buڻOY7?ҜjCeB @G\r`פwVFYr+0# 7 otʴLx:lodEm/4GkiƁ iIt`mW}a{Ld݂rlKx4S#pŧv|#Lk:0!9+=LkU' }4ִ͐c|0A`zbdC}7zHe2Tl(m0_MmH4dTN &aZ]Xɛ60Ō;4\取Tu5@RH@lRH[VT3۬xOàn$#k}QecMrNZB1+lk %Y.ϕv5:zW 2G=DץB BAԝAAc*8:BXLh!pbHEiJCfT$ϣtYtPU<  NU6$܏zM;LM:"2z]wadNy16;YBu k\Ď-$Fڝ锟@Q_稂NCSv6冼HJ%er;k;DbpUpWZ9?Nox<+@w1F67 s VhϷqYDCM*K\<Aŧ`&zaC ThHkP2tt(]T-8"ٲFqvzưwkCHhtrB7z|6ѹ@G+XeI!育Evy٪ӠbO1Ȯ]K.+p " 50Qc; w+ߍL}5ey!,_C +vǃD)l A1)׿!LF/ݓ C}uFqE }')I>`ݯ<ܯ|DgZ%q B Nv>ORxFqE5xy\jbŦaMvAq #,ܙ\OoA {KGD neՠ$ Z?Z/xt+s\8_4R'cwK ;Ϻm`3Q=ϩ:s>R9`*Ah4<~Q9` Sqq7j6D7GKK_M<^RƋT̔͞#+TKv5ѸߴZj?MHEhEsK0ժBQǥ ^bfq>A<yb&YF8"- y^S8U5`%UbIV nS Y 8`eۤIa&O|UXJX_ߌ恗k\ʲ|]e vہ 'NӑpVdU$~ I% CYWDJaf`33y n,FWewX\1MqzE|TlA_E+s*r٢nQ%_KQgD)9Ոg  6OKYկa7 䴃9[dŽQ'm"QDxrݍwnPZ"5r1QŨY1W鳠?>Wic~~z6L.fEw o7M;YT)iraH@P_|$#uFjGeM}-ޯ y)i;Zȁ$n- ǟ~UG>^# ['&n U$JlJZ!nx>wڀa(KjA[ O @bZ09{IOT#= hjJ$M,N=d|]G(cxD^=&ʲ[ɾkCD?hlb 9A`=`vHs8'/c Kw'AȜ:-PoG 'ĪbXu='v"ό2,>G_a#-g?bi$Y1By'ɅF_fx I^(-[K;٨~uV՘"@0 !pj0f>?kXn|Ui Iwq t[LLjO=/v@mF iX ڱ^m9PCx O,`ݿD QӍ(IN?Nǁ{5Uiҝ~:x NiJ9'Pk<}Xv&)%p rSy8PL=бషtyNA\k҂|czֵ9tahpZ{~[kpsdǯUJK_B1S5f YO烝ϭ],^9فITQ^vIFP^ĖZt,Q¯"Ft>jSdR"řv,/³*vB*2iK S!u"NM:Qf9L4)ƫ$Go&Dl"ȊY٣P*Xş <MxN wI UUƤd:cvYP傖(,뗣~csӾc4F= ASd(` Ѻ}n$y{.ҼR"+LpqL=6#zƓsOVz@Q[RRgb@'y"OGSҊ3WF>x jHy ]/%fωeL8MGo1lIuk+J94x1O9qÛ!9:cM L7`6gʼn쬙:}0]x> 5a~%mU7KASZi뵾.pUwt?yY\EFIc1`i6ԕ2'r`1ndd^dazJhfMi J:Qx>oN`"FfER 4m ѥ1?wT5/pV-@@-5owl(FYYF-nvEb8Ø!3;mQ_0iš d hKFmtaj&Wv`Tl̛ 1kM>qRJ\2ͬ%S79gZvA9veVaHqAJk%PY(Gٙ*L IOP(Ԟ\sNqHo׼2Oi_rSR54(՟Ȥ2]' k򞟩{80?4n MVB^) g%a(JOiPrq^0ͅT}Iw`-Eħ\){7 .E@SZt $}n"z}@3\_ "k5QJN)S(sF],kߝnE!HL֞u+B ^($%9ЏW1вQ{-(U/hJr+MNx-)kc1U `Y@@ tqߦt[Û= -P\w6q'D=Toq+*ܿ2ǩDDX qRp:!hK0Z%iAX#B5ЗuEeg&b4΀"Jn6xM`DԄI{ow,]nyZq{i\Of^Gh3v>(8&jzYFNSp?6} @*MyMx_”&tKn /9dMܐ竰T}p>j=\SJ4],ZHx.7֝u.=C;&r86t7;%L|DGN V,#O[Q_jC: }=q.U޺P. s1čGi(kш4}ߌSSP1rr`XZc&S;0@(bpKkݵos:9F%՞M_ہC/:{<B8aLfx=:8 uwY̾A:d3Yֱ̰T.0]鞿qʇajh9̰CgSg휀2^G?9t}s/aW3dώX];IȮU sخ!4FeFn`pIR.mn1~%Íh}J ߂5s]HeIZMp؆nLiLǦ'k_o]_xi0vGV|BÓ20IoGiuF©霆*HtxgoO ziozz*LV&C.49ى'ܿg"pXG;1اIenG0uI+JIIS)ȧR[f\y>K;*2(o\{G߾'EӾ-gqEW e ic s(rfEyPP]6,Vݔu)eWѐEʯiRYJ_zL$15ۍ.%4;R \BNi=TǑT]>Tc3h_JVK&$))ns-/j ߊxι!O<`Ÿ2)O0Q+XT:n8[|rfj[Dlo!k9_ˮ|2Z-*_8uDzZMkSq5|T8 I5%)ث >2wqm-%}l־9l=S<;͟lII5SsjFA>j|*k\Gc!*r'?>x2}c/EB?ˌGNM#[D>OMD1A9e*Nsn&}gglp8Z(S9-)ޔ ne(ܶSyJTjrsH֛k|I땏':dOQ>bSn:|qyY\DG]c {ّ}5^CpTŻ@PQ?8թvX, X쀤9(ҋVҧ7"c[#ZWq?z 7\l^}:&˂Y_\aܣ˵FlE$,|ު71ajq\x6e-n^Мe\^1n͉l: /wC &kre' |z]~B\"Ox ڭJKG-:D'߀c'6 ~/N}<Ż$bhrIH۟ @=zsqI}iFwAMaXsSiGtw.?&kA"<;s%&9;{(79y T.WhD8NkOlGjz1af 0U' {뎞fjwa`?q=X/Leΐ&]h.1);P_NN_p6Ѣ3ڷd ƫl vQWӄ@h.m u tnck~@|#o`^+$G挏ax9e[X֦b{5!%KT\w0*Qɹ`ghZb"r1PJ6YAep)pڏxr^=s 6}+!}5T8Y{쐴}L NQLF"]=5 vh^>}y9b 3x_-R e-)b@yoT8ta@a/*n_^os7{東1kVtخJuW/ZI'Yo87xwaJjw#<7yn{: JMP$ b?" Gq3sZg ]3RAP\z'HA:V!Oe&ck1\!7L( re7n1X~;ZSII.e^Rv@"Ա(1j0YzjWIa,b唛SN9JhpݸM[PPƄ Z?RWKJ'[rԷ *.gؑбGȂt1Wrɟ]ܢ}'־ۉʦuxy!3Sټ6sٌ]Yf:v6Ę L6ǡCiI$0Fnėوr[1e>@Eײlդ8[!h?pwah3T]I&8LEvq¡jdk'^/.&ˇ®CW5ۺ/xbh=F[Ty CC(E_Gc(^*5*uؼ4Xtk RA"cMx:yMz%s"A}Qauu2cc97u}c3Aj,-mxZgRj\k̩oz(whw̐`ݪX[#. 1&AIfOld:} J&7 уH͉82Ʊԭ϶rFڒŗƃ&Ļ<ԅ&EN)׶޸pXO0޻57"$Gz3楎~\ |5@>HWu»Bv (r0rV P}ÂUi#W-?o5"bsPt:f1;]A |'}UYӮ6XY pHtiD(цQ|z]z|mRaov(v3 +.ٗ \kg>2muSskסmP !:5 Rf2dم֘7CvZ~aoM;ewl?@95[ШP靵_Ϭ:"떐HHd5tC"#KC7 h+ή5.ۜ<yDrppH*<|ɼ@ $cOL6GU닖n+2`Gehs-~kju9sH(?Uԟy7;6b'gA:<;o3vcc~ ; >6Dl>r"J?=" /?"$"sA2,H`˂F(XD"Ag]we }bAnGX\;?ԇuY5|p#Vr\֦Xj/:m5OUaч&}~kmzܛ3~{Վ5m&6[;B{(mZ WAb-:+f#".ZZ3t:=3gyԨ4k: 0?$̈ "v>'y58c$ 1EZ1tJoĖ%J\|)  v` fdv8C@YA}X[;G 21\y˜ g&mod:qMmUa4 #)հ_;خO84.r<Eewo=m!x0܏#!қ#8Ool ircu%.tgJ+=N1cfW$1#`~Fq>v CDqx}(xpEhu MFV>]&z02 %f}r8rym5E ,VA:-ruW9JAl-gB' B ="~OFx9Tɹmw{n|5Tƚ@|k3c1<֚LD%p@;,Vl cqgvT,ak٬5&fvqr\͗U!f6G)9`b2e(.K;9 -6ZmGچZW_C&ArSY8Nx)1TS$FInYn62B%EoPMRFcRhM܆1~@J.ݲh&ӱ7(v^6S ocaml-doc-4.11/ocaml.info/ocaml.info.body-26.gz0000644000175000017500000002626613717225702020052 0ustar mehdimehdi+=_ocaml.info.body-26}k#~/8ټ~XB4 ڈ Q$fUT=Iqc^U(6Za I H$DuZUiN*5:WuUzVeQH~{7f2TdM|UwՋ:-ruoƿNOǿ2՟S:ֺJ ןLX6ݷVM՛*iB]dJЧ(|VWG7ˆN7Lot^W*ntnJBV@j49遝 T@y%7O=0KԫtR.ֈ!|?HJ2{tUV&]4'ԫaB@Go; zBo$-+TU͢vkVOLjQlHrWK&bne'R#L'l]jnW uKEl>(:44yqNhdOzꯟdT1LβfcQfF iR^>R~l4&oD7~kL8 AaxM`!aaKƀփEfzH]j ?&0HZĘ^Uz'}?xRC`:7-wM,2!L}sHq%")ܨ[~ ] W;~E,M@* jd!Ї7*E,` 3df*Tt?/d7%|Z[}dI]<転N||q=41ۇۦFvoW@2;)Tsl5oOaHX$55ΧXW;0lW=rfC,cj2/,LWz\k<'8c #/6zq:t¨԰ m=2\_¨;a~P@CD1t"(v}DGh;$N]ᗐ9]a 醎2zEl]x,IWjsMRv?㺨pDs y-i4?_["GN`Fŵ$ ZBmuڭcRIqMd4zl3x`8'P!x~(";&LmYSM-Lq2njD܆?%i^,shXy\zE[6! th !N;o96fc16̛owl23_I_:)u?~r^v?ӧN7Nө& [NNTY1HLLP6EPr]?=* '! 1T͓Ž«jTL>Pt&OndVq𘗐u2` f2lӪuрaRX V>,Tb1g)4PÀlxxk&xG&tKsĽlr[$ ҦěkS$p7>i#k棇Ls%Vxt7壱#T %$, l?Xd1[ZY4wk9ŜAvSz4SY=rK0D3Adru.+IA ^cCeEĠNTQWI p`\þ[LМ;scsT5I0rd䜎utrEuI xY(E< ]& Cw%,9Qo%IٲL4b\a~߱t#lgprazr731?3j|搲pBa؇%<7pjpkK,Jh`jڍZ++s(1UܙkdБgke(ca/b*;Of=E؏t%ب L1 g`H"fUʢlj8fէLqlthu؋`vyn:IZab5O\9LGw(rqqMZte)ǖ\A6yNMⅥ+Z"˴|cвz9NEZ'!G@=Ks#$.PJaL{[֤P l5 q@jG${LbM.&q (!h=x1jc|Y5gYz٩!&8fOWJ0:Z%UMu!BxaBЩ;Vd/Ҭ@lImKZGXOHS.$r$eFi۹ν@ FHpͶ|ewP`yX#֝2_h!j:? 95g16g6éry^ /ivp(1HO֖8㖧~KA#V5Tfa]ՙ}M|LS$+U69; G=b\qs,7a-nlc:²՗ζa :HP٫q|L@ϻn}RQ]7۹vgݹyS_:-(&h]n<]pƬ8NFٿ,zigʱ@B!pbs=L. ъ#03"y"ñ՗;v\ksJ(tymp n9̨};e O Y[-Ӆo1.nEw+v{Y{A;U/&PPEMVyO1kN׼aow. |__QQG^`!q 7EYCST8"X3=̶ Nf'\p<'=p3 #O h}'[緎ֵn{^:Ttϓ=mZwVO=s<$c͛3^9K"8~&;4ыf;=|q`m#Dg$S5P&hLoAWqȶ 8χm'ɫyv-},*[-B|c* "g@zI= K2px#N*gD)= )6-}u S5ҳV֯~G|Ӳ`ݻQBZ}eQC=EVڀEhKK G硕!b-47ޫ74o8̼3C85@rr8gvNjݗiCX>SG.S|Yzj5@ZZtR;X~Q sC޾@߫|)>Bim \/MH+;1~xmQThpasg a\JQrGg=b#bϥ+w); Ŗ\m(/RCtfu-V!K{++[|K)l3UE.vS4j:Avde  JaezJty[;A)3VNztL]9SXZS?\c?J- ]58uhP{. 㼀yl6fQgHa=A[jWޚW\WpPs-TT6?U:x!ѼOaJ8;Զ^|d(?7 )g8BTąTL}4wO?6Uȅy~/q2(?,gQmpޑ\P[^Ne}JH\ԫd/A\i :J3gv=bz箴ZAY܏#ST9x{X3Hu,;:u"}+}č3 og$;`Q9#}Kad-6.}t;S.,2AUuְ(vԨCЧȚ{~me_݉~*?i-q %kqRĵ.uH_},h-ȶIv3532Xխ!cyZM+u"`޸FOOh_> ~e]cR.QGouA @..݋@q5T<69`{LjYW{B@!O+xp>4ϓLrb3h{R,{|P.~A>}bO2[?o !6}%?.=is*HlT,Q) h[̛*'sGQ03@&t JHh6H-B H]0.RTDEo=cqGc]QmKJpuGbB%G;/1?T@&\UN,$̻^MUv6n$#.MBϖZ3Κz5. MrOX5+ I'0u_P˔OL],'sRz`؊fa"g]Qȍaћ^VWG<͒:3bkѭ`g0}y!jG"*)@kOXh v6uTlDj9Sf{zKje.o[04g;:VDO MGꄗ]Hqw-"%j] #<[͵yAbaEs|Ny"D[jy_3cˆ} sgQ9'k1(wn. s97sV_6ҝT,F#?l__dk|3<:y+< Q&?ye${N] +? ]DmLH]U YS.ziQ{KDNxY6#|Hc@>k>Wk#7RZ;|rV h"=w_t{coMZoaލFR~ x:fҗ]Z;,zc*2$_>Uowkx=g1"l}0/JˉjeDU|j8bCh w^z=i{mf=9:v|;w=wvomp(Oh N>_no1.G[5QBbBM %be^FPz"@/t.qk:r3( Gcm^=h.[#a`Mh"lNm Į} yyPzL~3$"bXJU؊AzT' p)qKwʊ~)WU"f۩"tS^SǨԛp$Ͽ,Дd/UiMlo޽u$C?($xk9b(T `2̣& 6Wt5xрu {4bC6}){EW_r0,zm>ow~LًoGش}9MMtdFj^%%h&ډD?aආ3ŤPآټdάrn31^f^"OڄZôH`LP tyߎ}M' hƽ&iYțӡ\NFj!;vuM Ѫ!0 /4Kj G5HbB)'RO[LDm3ӎGha!T-U23 *.Uq~o{_[in+畹${ٰ>\>j;Eۺ2G"pيJŶZt`-햭l"sΒ:ƙI ^>WfDIH57LJo[Kz1?$$"MZC38ʻROE4[aӂ?g3 B)tϾxPQ{DU8fx= (z_˕Ȟl` kyY]O ߤ;c~3/ooǠ2ɉ%y⯺+ `*-Ȇ]g8#6E xb‹n>#Y~T/)Ś4\WF`Z/=VƤiӁ F0GƿiGJOD+#+AļP2#j̶Eq7ע6{%Nݻ|,F/Ǟt~vmgfϛ90i?C%\p[~/ 03z#Pt1˱лpL8SAKT_@TiFo67"hIPL) &(@jG9g:ͪFbna@Ǘt0ʃ,d'eSvb|9/B'VvB!K =8saSO+SQR&U2s @KB8=062;\j<]XX4[6qO_qCX{y&̄F@,YZ$+Mg>SMwU0xv-Fhyzf0O\C U-u"wWGߤ*e{ siH_~N1ZZ-Sۼ&.B|`‹p_S|QT.Rry; $l ]j<.SA.(Ax>=tz푻 3(Yl<[{dXKB6I%naӤax;a:A8F%>ixg'ܡ!HP6,5~g0gX. Nq;rZí 1@qսX?+/A%P/.t Vy\4.󤻫*9.m: Rtk.⪪`u& ]o>8 }+ ~Q~g'@4;C:VpQ\EMZW ><$f}>Sa NJ'5js<< I`8v-ͼde; LLp DF "됿n`07z'~TJH`Ns|;R434G)'B%ִgfUwXGND✆Xk*nX`08Z_Y:{s=VF7%|O)$a gy aOBص1 T񜅺!܀ N H Os99lvdgep={D@y|dW>[|Nhg{)aV3SxjV֜KC^M7@ 3 ~QV]A0{z_Q\dV(yEO_rln0[=V,#Lڅ^s!n;o4X}v 뷡K۩$aM|X.':h c*Qh]:']'kˁKTͣy?9,NJ+Eu% Gɣ?yc8"ۆ978܃xO'[V xv84dBVP;ؿ̘pIe6LHJZ yIS;%f]y66Kr4x2{&wл%tuGH1YܣM8B#v6;85ȟ}I*EN6=m=M%ljhɎd4NZPL7 ,,#f̼%.ԚE㍲Lk{Qu9H}٧uDW>MX˰4vZmfMAf"MYa1[qjLYS&)8k$yċs GwI5LbmDӕIdw$LyD"yDD"7(ёHW-;< N7&-Dvb>HKD'N f0H$/xL-sӐrmJCvI./m.*%T=s7\"|\"L3D\bD5,~\kr?-s"% ^.QV%-P%/HK.:Ķ%ؠZr`.P.zK. };rQģu3\\*D xq.~.X~׹[r%Va!:V~0!؜¬@'/2!ؘtꗋv<-ΪrX,|wbXl5EޑXןb `'ض+ܼQ">ʍ8&I1? 卜6f`rPkD&0YazU՘dIRݓO?:}zLmL{M= {LW_@@6@?2VV N7%5%Zey=PZ u,J\ՏB/,#Bpi^S,3eƘD8 qC]=KмMCdbⵤh* 3KD-"?'!CJ_b K49*@.Yl _D &c,#fHӔaܐ1"H܅9ޥq(@vԈ%XRḴxo(!"qL BS`]"IS"2߆O![>BOx4}?t4Z-38 -!O? K4 ୍ ɖs!ZIhM1-@-!&`a >RXbTx`LiSf)slp^K!upd[I ȍ)t+ۭ@5 !J.5߀ҟȘ.P;ְCssu0s6Sl|DkJXANn ]Pg,uJtOO._kg}e&8DH$XS%'k̲+K.2ЊE ?0v(Joѥp>5?鐇F#a`h+w,7jZc!Np3JIHWBștufJw]}+w֪F~kj#|G= 2a8nDGu3[9. o6E{ Aja Bǘ9PΠ"*@2DY+UPڑ e KUPjѮܸPمњ|THdG({[y#ĨS2s/*^1"ۥ+.]*_Huf\խ52¹\YAq5Ow[E+2Y9_bhS4ud%Ӡm  3fiX9 s 5Mykq -^=Fdb-Wz&#oS_ :A eéi8)pƵϖu:,ZQ0)tZ[;u?| ?{\b)v|5,QRf]G橺]kvYm8YFd Wz2EgUf%1E)f0s&.0eu%'9{[6b]&`a UUc#qȈx/ ܤ7b #Gg&`[nTb[8fL<(\9/8޹ V(7W`q<Ǚ| btmr+CmJ{ ZU9 u~xWQzၣR+ <|,ܷVcV y`{7(`"O3^ooh,D&w$zs`( ѓ8 SnQ6nsրdZ;(Yzv{D ,F߯-Q5 l:20ңc)|Q K2#0jx;Ga'c˧˴ ECD,a0 o`A;K9CtEW[/EO9rJ#p~ZmSP-Ϡq\..V d rxB2%<8u6L01"zqw}T>$f = g7 x׸z;'J9Q) `N|aTiPp^%(|/x4ホ_;O&{.5K~1KA 6 /,6%dMV;vCLho4L>HVJnE45SMPoYvf]y_Ym- 򿁼}6,E3Y*unnC~4P/T9Cb^o ·c1ΞD&B6fFD2a+J Zˈ-irx"Ԁ nky.DZvl.,11Jn?9^y1:@e 8ôFbt2Xz&uU ZN_&"NðS`ؐӁo`DE p34Bz`D,zL־)vDWf)#蜆G냪Q|2NU7|wWĉA۔*) QjZ&'80;oݺc))wZIj1YUa|auI% b$QAK2t-`|@q=U!Z٬+bmOv7 u64l0QiQު܅vrK3 79U DŪ6kC(~q7,wSR:Jtz\)YISQkIVFYC*_ꛄ4E*-,=aqxu% xb (0bg LSY]ȑg$&Mwf 0fb[c!E+b$l`O_78[tP9NeDՉS٫F ԔT8@ L^Bc2j.'խ|< y'9]$x^njB ]PC[Cmi1]6ƈJuH;=`AӮe+U^}/\^"͘~j}5tIC;SCyAXs5?Z.`IBO~) 肥~BH|:*_XփI}%QdJtQFju܀+O*15u(fjЃguhƞNco[o:ކfU9nakrtKC<_'A\cp#&IIkhMC n40DmjFO|ͦg2)MolbDSY}Nzq00+o]>ddugc.#'CQ)R*|Nßt #3XYa].&b<';ts*jRf{?t5//8lWa=?WR $ vK9t<4 Y&ZN# )(E{_B̕uv>ixt&sKv(PW.0[1}2f㋙*G*+o+wU1Au C:[} [݈|nwG=tw=f.HT{Nyn/-1+aF;huR,V^H=ӊ9e<=E1VFʫ(4 Yhe;0z2B2x5l4h|ZIX# 8h9r%/ˆ@R88Ď|qE^l\. NjCQd[ɪFM}/K &x0"wzR~8 e޼1jJU,𔰙Y0HZlECcĹQϪd5Y ۭY4|C/\eH^d[C=C%N9MxTszFzyco1v"]*ՏGaA=B[urvHʒo-h`FYDIjik"%&rJ%)V_g8<(4t\`IUQ4_'.AWV1LĪ*j`f֮&H~[ mo[sz"9aHkBey7׌)ՈtȕɄWJ^XuK? 2 ] #V3 ;/d|pTև rXysGgI[1) oޕ_0̞,n;3H} шkSSI?N~[R/^k9NR>}k~B=~Ȝn^R"lUS="RZN6f8Ⱦ+Mb9:9"g&wkDԴNr:kعJ)=pYLBw0F^cr#Z–kCCx%yʖɡv(%EU8 ?h4$3IJQFb#Oc"틒V^IKr\RVRc[i9W-7%0QfP0>& ,TVV/yqvUJuJfϪ?wCK V9,92+R[Z׿V{4#Zw WlTbD M#]e"'"lSL)*aңeC ˚@9mG۴=|$ra_8:>*y2>&[x @]?ot4 tP}-{:l!ymmw(Cv ~b|y-* qHқ;Sdyn7Z BUTz+qҠVKc»f7wC !tEt)t˸KiQ6 Yhv6Υj腗aɈ¼C/5I9ZKܱ.=y&xD^ڥ!Z7<-EOX{mKHzмiB;ݏSe4vR? [/M۶쩳Q 2XʼrƬnٛ-߶\q_C[Y_6a'c 񽈧rєa1=43/${= e]DQ̏I!nĔ\qor׋DI wXʯLGUOLHx]+{eE4Ucc$ VٕE^nA258:JzթIk4ݡF$umC=qkw^$ћwwq+U!Y5gJ>HêyX 3z?_in,xŸ.>Q* -2Ճxz47=Nyr"FZ/eGbيmzVo7zn\|R 'Jhȉ oӦ&ˋ&O&BzpzCCr(D^+>Gv.7LdV+)p'g'Sݢ}Ao)bu8bReɠ ) /dc_|1oIm cػirX]@~ip lh/.lߦɶ @wjumt96uR}y} ?eSDzj=ܚ[n{e&[֥CjMlmE[nku;o 6VZp[6 #~1mvyX*}@,:;̸\=8~=v'YH#CA{{GOܘԷW==g/iχ~j?mz}}訝7P߶9ݴC7mIO f/.T=>>>վ}_r|}`zk|k_NؾãԫDzmzm߾umCWocaml-doc-4.11/ocaml.info/ocaml.info.body-4.gz0000644000175000017500000003570013717225702017757 0ustar mehdimehdi+=_ocaml.info.body-4}vGsOLZ,MRdCܲZ:ҴԷ QB\ Iؔa{?`cdb˭PK/cC@U.IfI<.XLUEi\驚B=_SZ~8KʏT>0f@}Oz\I䙺ww{>k=l?.{)EJ@TjWVK]FG]oBg9ty5ճ$KRŅVbz:p%&s=y Ȋǀ*`,.8hx(1KR癊) AGc.t_it5q'}ٛ,?Ot5T_@p,I\jfѸ"Nv2} 6 CFiϱ3G-ȧu#&yD}D%|QWP=zG>V29_݀i0Rj5*ؗ:FAOT/tV1RѪ'U]xI)/R]q?Rǯ{,ԛڵVŀv9^†,뚤w2.$?R+y}(4cj*6 cb4U3"vz5qa)T¡R+Jx*X;n=a8j/^ \teB. Ix889#ũOrFfhe^z"' ccn*{ڰtn^al?2Z)N(vq7fWtJ8'X= -zya0AE UO/|45I H3흂 M)ҧ t ˋȸbZE]9EhIik=OԬh J}{RLEY,` Y@';<Ut^K!dy}:GH4ϩ8%i2.dRr#X=df RS,1 CR;jx,P#'- 9Ƶ~%YhMC$#vNnJlf$HXO;2wDk6R}˯Y<x}4pOzm?_2p!lȂRX "u׆XʃY_~0JtsϛFqzJY::#e4 `U t Ez}@H Rg4$_,는"Yrz Eϙ܉e8t#z43L;'Α]n\g9ydQOO{h}ʫغ]擞T{ܨL$ x(u\c'E70r,sWxSOA)VZ6%Us(_TGch#`x, O~B\nfluVP C:z뒥g\C+ފ|U5Lfkwrá"5gCTNpYOAֳ^]%癥B.SROy*d vpXWfZ1kk33 ȋ쐁hP!m8#7*ODx.éq5_'P(DeJUsMBwii]}N #~׆'@! 7Icdvf" .u{1jU; vX{j6}_ l#l|}Y=K`F<;~HpGhl0ٲ]%XP2դy;6l4;ox_$LaPMzA"W5wGs YhR[JYuGSQ:鱦9lGi86P+܄cS(JPVv,BсsD2'A"^D88_OnYqSk d5kuI+$pǸhRD+d5;ŔaXg`"K.2*%(醦,(ɦw$ 8cv1̈yY,tXv %C]~meVn&d!er@|by^S?KHSbaAw%5: 5рCFqŌmO0ɴs_Y֋ӊsLC]j$Tu'*N@8nn hOlP\5Q?Iȩ '2VT]VyomDc2|ݣ0w:JkdN=Wk 3 zzoX+OJğ 'Kt);Ze=A9R2`+5B#<9ۘ_P]:twt(WpfC-T٭2r@QIYvzODͻ.,pح1$4M5f)tapyr5 cKUV/סik = u|A:'Ggbu+|%L5◛P좯q赃E3:ྸtmc 3<#>ub[^//;|*&DS\McٗЕW+!KbC\23}νh>&y߽eH`^4(S%e @d"+ oFwDcczE"]̶SfH==0 ""꛺G 0X>U\IEڽR='qqZM:A!GA3S,x;'u~;, HvPK,yuUq_eDXT̖uhf;Ղ/4e)7ӱ:g" >23x'tCÿ|¯_IvoA_'qMx̦ߜM =lybq5;ޥZP=Jfv3\NZπA"k njFuGCr_1 1>/KsŽwĻ#3?ֹߪr k+Iw Irs#`@v*kb`5jFʪg*ADjɝ4bB ;f+Sg;Z[ѫg׋tکi,܆@<$d#TNz 'MXCV+bDS=Iy.MV*ȃDR̦)Y\9lF3ɜbk3lrn0 =#@N@'nV(~(Vo׆4@}{F%`_m:"I!\])_IuHԱg/@@HI C,.P9nIi/E"<2GujܠPI5/8:54aH(rdjw JނPK]P?'qNjp &;Dw$cH>_RxJh+^ϙp%0ۄl&@3]קWP9cuNXRi#oqBт0CrNq].UY֧tô]- Nޏ,c2rJa?lJ/G^c l5Sd^\g~o`4`\Pzt>!7&o>L@uEa8%z8!0~IQj d.O9;nrPM{h)@̄t!aV4֠U Kż֟CBoC6]\6mh%0~Up4ppK ʳ:&<'hҩ:ؖڠe^xr j8ߎ~xoLҿ;FŽrVhF' C5ErrT#s6*A"#)Ϭz9p+Ѱc~\car "Ő:rI6O@ԧ5' p 5KgOu,Hې~OdεQ3}so^ >;v86+5@9C4N=ӡ4S*V @6g+{l'G.TeS2G2F`Q֡A:j YI0QAA9 FU*B ;\OhZp3׃aYi~JᬙdnLɐXhѩ\G2|RAWEO:hWvʢU izQZkt QxF#;S+wD*]o-7h![F\F+nlPʌizBu⹴> kRLwTy&8Zth1#% l#VabU1&u@CEmפ3Ul޻m%b w#sn42R|ix?Tέ iU& Tajy6" f?olM::'eh i3H V:q-8"F$3@f{>Dpb#&[OnH))&@c nr]Fݰ7ra8:ESG"gwž (|6+ E{8*O )h6iQ4=E7GńP&:Gch?Y ;Tm`US=M}/zߌy7"&Z֔ zm<;B#l,޾fŬ&=5M/v+al-;l9g NuXDd^%w cnxl> 6J1:-0# `'pցZ2m-oe\$lNxt \Ŭ`S3˓8IεTlvKGAջVZ;fDR!&}=ar5Ōy}C!{s5|Q<ڴk_ uoik`f*Iij>h%L};[ gzZVDUy~Αf]:-zi ؏.14t#h"Yab zԞUI|ʳ! Β)o9 B6d?lJ6-QS+jwL !y!w"K>YXvG)$L/AJ8d5 'ˢFniC"P&eMmg}7\`dIj6 [Gˀ|nt5Gy 6 (5r@əiIQugq'F17ˇk -2]VO_k:FY2`P'Ȅ @1HˤLFDbg󘎡Mqv"2s?gLre"e aaH"`t<̕dF*_H 2xDJ%0\<))k!nB 3C9iB,ԄaߠC`O7Tϙd9ƝؠUp2b2 :wr/)7dZڞaЮP`"dy$w36(S+3j"Nsô8_)7Numt;nP 7tйA3"/z߀lNw%k#bqxA9ڰȽPHJ X8*`_&Hɰv^S4a;uN3ϲ \BO;Ӻ Oy ȡ2~ \ JF)aYD&rPV\K%z1e9ǢLwwn[2)ЄDY!3yӬ ܙ "5uH\y5N/1fvMvgMڶ;mw$iIfJ<q1˲nNni+ϰSXgYx?|kX$^tg4mޖSLĶ{ _hln'̊[% b6D5:,4Nޙc!3/*D؍CĥQ8%~#x휊{&j⶗ UeTOa6|(HB"5t@Ŕ+)V;QD0f0^`խt7,ш)&\+ m3I@O3fK.7ɳ*\dCĺ]xݤ^mԁkl]v1Tt76EsnlQDڪ銘&3Dzţ}L=oR`"]iMs H ZghǑDF<B 'sF6Y)[}|Dgύ'1nhI(=D r c4\dUs^^t&W0ycF lCl6L[_IK Iv̙8֝qE)֞ o %U)|MUrn<>ZolK5gBN⿜Ĕi)u@ jrk7Id4*,5nq$=,x5DF~}"4)MOмY;C=0뮝Y_QJ@)F4Tvg)&L^8MP0^ ˁ1 Da֘U`8ٶtP9֚ ʑiZGVs7 JBc8ZR.8U. cĄD NЮ\;쌫Գu[0g5T/I5DᙕdF5|%N=z逬xUݣ,xLܿ.ycF 'xM`Nb‡T:o~[}#N|p[\O/Bt 7+eyW> p*<'t60'q]aMzae"QWS6QoBDnԁܗdlDTۍu)TzK 4"QbKK$,V[x-ϡCj՚ZBoQ/w̓SI\w(u:ZH"8#w&6qt[ZJ5D}a9}Awz𠏙WWH|j~ƭfuQ^G|u6@+7 6dHF/g 9_WL^Gޚ 2:~6/ݮ韴|V,V\O\GHX#GwیqTSP_e"ZYt`o(HF/HxƎy.à`:)JI. \.LJ;x1ĘoLEpm*#aZ.tVqJS1>ھpM0píb;ItQ5#H4K e/ NEl:;6߳zIyO!FMI&9Wvˊ$z-b;+Jﶴm :N4g]+{|@kmBydfѶY\SrFkjo] fL_c\;[>d)0Ԥ? OŀjtJNZ[7L y7ݦ|8Rcׅ.,qx̓ed&^^5#ɭ_CzwwĥϧƵ٫*_XmR6l84:>n nXO]sс+9x&|YW5ȵmWͅw]7]"y^L%nL 'tA:hr(_IajU .L8ےbW0dONh٥~ZE{A8JIi2YWXU5^* $Y@NRFd䔳y*0,5!bwTk| $0S(g#L'O?CM{xX6x ܁7/K7E8&%$~Xk놑ʇ2I9< r;%یxK.ew q l9G1v )h19dX [~i;:@I\̡ (LfZ _C0MYNA5^GWa{CKېY $"Goi{i8GΘ1BT\"\A$pbxcv;?k WΚt 2`q6[F>oj`!o3LoeJd€oC;ɧ&AT>u8Fڔ\#zEtԉ οWqCU6$~=* Ru1K?;Q`4S&&hþ [(eG\G";1MN԰OT22crx-ay&ANZ.t7/K uc<|Sj/^xiHq% ӗϣ?im=|F_t =Wsu6cG,MeIxIpL*Fr ra c8jV0x$KcDCY [׍NJ\QK6٧FO|C%l&4Po bU$RH!bMmO{k<.ƭ/[Ue,b +kN hL;dݒWpWZ{UoV} sWa] _*ťq?O.U ,Tޥ !u]?^E| %>jNTRHaHpM*L?ZlȟFΉi`G})kn!AT:%X;DbO;$=p)'l2$ARɅ:ﳲ&qx(YcTit+LM/pɈ7Qx(_Ā}q1f7۶crav o$z#KMF(o{aܥ35D2$ Y~3S-7`xkwT;ߐl{Am$&4T>2cd %owV(4:X#únn+Zi+&0)@V_4PND4yw\l3u8;n[KQx~)\6zrX4̵9Cwe^SZ|X.&_y=6zWkEOw㊭Ȇ<={rTGJ%_S9'l~ߡK𧻓kv/wZa+)e(I^ρnkR|C+sԐ$l%`!hxE'~j,$ 5+s7ڇ3Bm,JG^=Kzg+o.[-|xgUG#Iv&|Quk \M{e^y?vKp]c?!G%{<`.Cf )~ujKD 7Ԉ.5G-z$ wRm1H!c-6Mt_6.Ф?z98EKh3bX̩7R& MTۿ'Obq<:)&4[܉|MM(W A{V'ʊ/ "@ 6eKwTtawz˽؃+1ǩYg*jC)NŴ4 R@]w鋊ZGhg D#o$m[56H%QF2(0qt]YrF@1s 1 8 tH͋ X1'K#OXZQtIRv$ `4ާ+ 8G"I 't$r0]e&GLIp2I&bZ͐'W !C3v+oTh`NȤ,kؼ!Lߏs $~vtɿy^˷6CUwUՐHH$drဝ޽[پ$E4 '2-?X2EVŶV;̛s@.􍆆~HX$ƈpܻj0:S}:I eHm5# G'X:> P|Yy}~'i frQu@R(G:y4hgH: k\y}vHWL],^s͒2A$jO(.0aӉNɭQ@Nl5l`!"ei/1F\)ĻBȯjxS݈q,A2Zp YWdf.L+\@dc#x`K(oh̻;U%4L2r=[:;(Ҟ;`;+(}sH㏿E5_'x#q%SJpL".q/Qt\͋>F1qPhĿ! ~|7c?~G?~Ə+r?w;9&{}Jc楷K10GP~`N$x^=y`r-+< 蟩{Ҳ),Fvb7 ґ% /_ ՎGtr (ke1ECni$:s2h W滳qDλXQH<外?V!iEeoztHʠc0_HdJ2$ZsN~?w]9.-S΅+ę;﹛99ks1a =0:3ONgshl2ٻtfSVZ}b5SbNJhIX$ffA\ ɑR&˿'>}SO~%m ~WLЂ?'mb0-~Ro#*y=RR_ғc Tx8>b}޷(uI.k?I Ԥq˞0Y~g ;Z!`BL7&Mx?_1DJG_v`i70&%@:R/WK "G5 Dw.J6{X1$-t=rx%LS``w5hQ b=SӤP+)E9E pYXӁ`'I#;(z2Ss&78|ey] ]sM,EnĨӺZja(0"sM88<Д9 5vU$E\@"c Xc}qQ*Q]TGdE+K:a;s=:tgɾ }\?roˤ'GѧJb}׳xR$ivPWzhu+U*vYnhRȩ #:D́}yu.[@6|Uo9Kh8>y)kE{p.# /T:7JdK1|9mc`.'1r!3})SW&* i'H",Ɣ \+AwR4#6(]Sa6)Z2Z}֏ s ؛fs2.tЏd2!Pv!3Vz :YlcbХ&J)(Sh+)uMp֠ >mg*X('c|-fu(Q4HjY(9I]A#]| ϗp"  n8$Yq^>v]!h d=]L!8"/uϿ= )rEMfɶH4_1ӡ<%>sN2GMj }:aȮ0 *rtY}(83iK[@%ޝD%1QKhXj^>eab**ImyRcLmB6q5FgAO'gg%Ѷpl)&fMK_v)oC(ިalO>(DBnl{{[Nc=O.o985D|DT_vYkf5fQoH5CMK̳$1!fFFȯ`]‘$%HQ2~<.0`Ph5gqUJ7e$:ßD`bC05C66+TxsR'㤆$(%,lEN}F"n&/vjWRD7ÐY}9jw{yyZ祴R\Q?]sk;0oX{! pv'=^,hHusYkmvמe]ڭp;jV)pd :+ B ltNXYXQF3IK+ $"W2A}Z]L 4 @0BSMoݠ[A"#nuh`kȸYfkGx ڮc쳤NdlsxU.WbwY׈;%'Dsd⚽MCn0|M^1kYör;7 _M+pCd=`m[Х@0jvh ,/j;C4ոr1ÿn Dՙz587ò2i2X6,g,_ K~u_mcppVFņv؅gONfip><.`:'} hTnT;8Q pkq]Ģh0]Oh-f/wʵuA4nK:薍;t?ڝ؅C&nV $Qu3%*)&.: xOW/*wHȓJ%oC~h&V/\@k,P( ]64PP`/b m; Bv&;^>i:;v&HA3+$~8ziߑ~Hܭa2,:J6QV&s4}Xo$1&mu`Ĭ .qU:;_jf6iݗIUppDEQ$8;5=K1<"_W$(Zm lӺuH@72ɗS1jGyf"B2gpX15 ^i"Y2.M\ i`aYfmSJ+ߧS|1  Xrs=rRIqo!}\SXvW>=MNfocg;PdXK6A ?OW~MVJoRkIA<%j^tc\7OC;fV6+I\]lKfU&n~idcpe%_KTi1'R6L1a&NY#_`"QF0lQPEs7oP!W/2Wd D`6hJ_q` \'C`(HldqA.P.ϳ5h Cwt^MW 2B&QBlgGg6xv]/`49o: <qtH^j2TZiJnoH(eELu͖ r%2b! x]е0s/P[ Wkbgfi>#|ɁO?9th$@:uH`=sU&)y/"ˤbsl<R#h3<}xv88sH}ʬWX.%%e hw%.GWe#wDؗ}aG3"삼U#x'Đ\ީuZЃiڥh93pr.E6/CpLhl~(%L8f[p  oz>;_^[Kǻދf"OXl 0`]}-IPgewE`u Ԣ@lo_[KnYnHCHW&.om}/(>++as:FztZX͂zHE63`[/as ,bɇհycv 1^_zBZr2#)n*zQY Q&਎p`-J}X7D>ft͑ڶ(v*;˭x~[n֎n~)  ,n5,Io02* 0a &MbWGgA..$vY:Zo:1qF N%Z}[X3 r_ۆSyЁxkd'6y<o!],y7<#&Jͮ؋sȣ0tqA4oNKrxTh!C`G}F.n=o~J%QIu[J[yoK8L&Nzk~.YڡBQ I9Jf|NZ3MM]v]WH{3KPaqLfzGfh%7Jߍ܆лpz6ruOt̫Ym9ߗlߓ޲ mߣ5FtX7Vw׿${NmWNT ƘGsdImBU:_;{&}.6g8)KN[I!ȚaGAy?/vkܣکd!>!6P75fjt# @eOÆ2zp8iݱ+Mw ʤ[ؖh9] Μ@F3/)5CAtrP*Pn6)aKi/ݎ3 ]$CafJʐt5KRLRmyǴLa~✚sM  B*,0_\9 InWpmpI艍-Uݫ11|nq+e \*&wUBj#b0$cN gD,rhR,̜wD*Գ{t~q%8We4oU鿥8iLi1^*=p$SkaSS֤z :uP$TCk7A8Q+€*LֱumAf1ZN@q7:;&ꕰP(~=tmtU_%|%,J搦i\Ez>RRIh0ȨfQe֯30+c]GΨrJ-L9Q&"7Hg.IF5(r13l mc(.NVs-Ej !åHGw0Os o|!ͩ^/JCd<\^ɫ&'1O5E|n}RROd<6;1UL95ѭ nqm7f{$[1+[)MrRyɐ-C̻:fBS8{SF E2_#>ogZ8B`M0$705\ .dՐnw1Y*}RuZ"53 UKl\X4Klr(|POgUy<,;bQ+o#Z|" 4_TA~,cr1h@)_jLidcO\96;iۧXfmzszNiauq .:/t G\a6z6Lk\{z$({eNt]fW0,%P#JPyߔke2),UUc/8Lh+| rj9`aU H,64) 9ۃBnp8RMt!ًγ ;pvE7X7@4P]Mx)nxjU$2ҩW&AFcgi9DŽٖ3^6q'*HK^5TNG5wOLNO?~J*SwzT\@V|mH06aF~ ޻Hpq>Ex#Z'h%77&w4Dž:pdy]Vݶ?_j&0& /qK+z', d ~p i o \XclfDĦUe9eDy6s[kKubanر a VXp֌vd\ ",ȂMM5E~NNO\THͮE*H8]gI!7Yp/w`Sm.IIEP\:Aah`U *lB3+1`!<+q*d&E2žjqmM@sr=m_ ?9 _ǵiw`}$[˴{t=-V"Y@9  ʍlwZ!ZRF<swF\31Uu1Q/*$W[@ir}+oۈ$Z=2qyɥFV%-XF^*ge_IjS񤤝L>HGPȖ~ͦ]ˌ}X( ' 5DHkc{S ğ$`J1hS)1k?U9MUqz󚅵2k;m^b&?ؤ_= oS\E_a)7\JVIM`?;:Pup+?yatrtn 7R)+9],IigB/j&}+\.zr֋K3Y88&Vdu BdUԍeYMAirit2.͈/RѮsIK)sdnSڠai1ߝJm2>qהs甫Xi+P`5ϋ=%B2G$EvWF L"( dG4,|V[EbN5 D|C'iϿ 0,N/!grf/TؿG~#E\Ǻ ~PD(šsAT@%"Bk5^ž &PIk2fD D[n_ؤð*#(?~}k8q@Ƣ)]|7.# JxcvӉ>lJkKД**^gD;j,NjfnV:nwAn[frvOgU^|ҹ3j\H Mu_ٻ8G;0[^x{-9Z~ЏEMF4h`O92%dݯuWGFtK-=i Vb>LK̏_xˀVi@Ut(7-@ߛMN̕m}"X$Ynk6NVĘ0o\(uC :4 y}i?z0V!Fs.>h E=evXH j2wjs57Mko.o~w e(qxnލjFXcb?\:N_Yc:Z3sw:ֳ6 ?wwp{hGXϛyZ/ K&Cɖ闘 <go0;뇮mWGءcDN7թ7$SFm4`~C u9q(Y~q[ a/t $~#).v-L_,h3/,$)e|,o=Zc /bEv8hLcW5lj]+~CJ~Z!d/nտu]Oj]n(m@꧓j xx~5=RZ]pER71b^׭fwtבZj0X QJ>J'waI?Gd˞R+f)LG#qM˸!ǨNASjQ@s %֗PD>Dm (9?-l;AΤqA$K36~oS7rC%N;|P0p_ AR~ۛ3fur,r*T*m<6/{mqwÐ:@^}a46;c\9!dwDEmObXϛ'͡kG< *\hsrm/0BYQZj1KFFRf2#r0W" ؉boC7u7{%Fas=ofdHaX8qx xI =&=4 3L]xg5eYV\,։3IS6&㭕X}xRT9`yK#u?$]w/Ğxs% /DG "`/=hp?J|(Lht7Y^\fFDcoMQw{L=UYHe% ִ3mQ!2A].Iiځid1}JÒO6Nè()`[#ihm8?[n] xKAv—NDrC*&,ΙܭoU_0$v:E3$jh5sՀ+fG8 GjH^4?R{^t\^Ɫ3(o!R,8IcWu>zYeA#|CDY+`8lkyt0P86ˢɣVb0s8ɲ?\2 N̖r֑׳W8*L|m u&3%ωřڰЪ rE/;$r2?tT&fסRvn{Ke[eX .65n LXEU^i+S=u?^7M3T朢 NU6 CvԪ衃vdŧj#II DQ>YQ9^̗D")8ZS4t%5k_[R0Y*\cۨ}YEdӬfZtxΫwxpVQE$,4]%Z+!i"ii'͊B3&C 1BLj%Y9 PhS#s'Cf+=MM:?AKxl#MZ7 2$B,"HgI@M,:-`Zqh1"Cp4cB'7=dT+bRmUWW.%7 ES€:jHxGzntKio'{:-[*,!en42al- L4XQM_LRYү+ ,oAo!R@̼r&}h*>SSR i0w \]_ ջ!Q Ja:p:v3}RJa[u_3J=rcmk2Xv39+kTWL]MX*Hl=3W"`w {I#X\&=W>'TT1K{:- h鋘#]Q\ os/1Mҙ;4/0POx66s7,y6Tb?[J ILԜWɲHǟM1 |q|( U"V?Sm `c Lf8 Ӌ1৉ˊ˼0)@qllH 8m~Q-wA b>8uu&U) dL6 ^0AX/:CQ94!^n2cy\|O·y, Ns n!:Uѭiusk+R3^x!>Fa#y0_]̐+sp+2/19`~n55~o τ8{r ^o[sKí}'@YOI:)Nmr5)6X__OF&)4odnϐkaiZqSh AB#KPԚϣ¨MdM$Izָ'&Gؔ#fEN9u^Lf)(s0K;n=pW̚HN`Z,u9Cip R`d#p]]4#cL6eM9cCcT%)+GFzE6hR'[DvV 1$ŧ?;z͘Սo\o˜EN{,/2ٖ\UOA)({O2qӐamvL}]0;Z—`՘lQsaj^f$J`~Ř`4"awQ>. l<lã/a"%j &Ļ nX1fa5n5M;>^>|1B,\U2S!+$5Pٽ@ _k4ZU6.)Cݮx֞Kކх9B%ISp,Y8jIUoͳ ^s-8~c|a2͛5vp>'~ż:$bYLDz:^Y\0]6#\%q&MnCt\0T'{8?H|r]y/m7d7Ys{ n1z<7].!;6@JpuUxGucwKV~ αM>} f0vF rWMهW̾Jtyko.[;Soq =pzvʽPtX# _2?ocaml-doc-4.11/ocaml.info/ocaml.info.body-31.gz0000644000175000017500000000170313717225702020033 0ustar mehdimehdi+=_ocaml.info.body-31Y]o0}.bkeiަI&MUm^Crx 6r(K|55qGɊx=^_~$B> N (txl;?7ZWO@uVPat˼dspdMmd~ *0J?ߨ/춌{ZIgɾhad[&WF5 "=2rcJ=4J|t@̇75D5DS%bZ"qsƸ2/nKvhiJ+|4(f5M#M]g/+O7k6WNRĪRU;D#.2Ɏl%ΰBSɻ~[JX[nP=XI׎f]I g` 1%4QK2{⸻"%=@  {M[*Q9aŐ ' tN`G֩AF)~N:uB|q6dS0ur3r39bCZnLv+n!s/%YZfM?u HstB\*˜511{}$%"'d - BiVՌ 萃H!GFaOx=8Ie78gcp3 Y(Hw |09X?Bn#w JyzXKTMVd&i[ŝ2*RӻxL:Ն}U%GjWȖዞ…_Ӆԝuk[该޺9%'7720̚#\!fӱUf6^IϼݬR#p;GX4?Du{ޜFxk{ح;t滕Q~o1+Os#{Kt8Z2mqe)쟗iwyr0/>/yǾ}{|6Qlҥ UI/c6Eocaml-doc-4.11/ocaml.info/ocaml.info.body-21.gz0000644000175000017500000002070613717225702020036 0ustar mehdimehdi+=_ocaml.info.body-21]r#"S)ęr쪱κq2n9^UwivӍniة˓ /dSٱJF"q98887|zRZ,U**"2ee:J"_W?E|#M|1 h.$Z3-:_'/eR<ɯoɯWgO'fs.>[ERHh~:{&CO<2qԳo7 lDFf8=GMG[l("ƩXF粨O7W+%¡4+Wld%yᛤ ͣ([И"*bj_IM\E%]b+=|ݲ̰knJÏ*B.U/2"ZlT/hyO`u,@^`FFˈ6ƍ;נ"f"fkp#WHEW+3 72؍Mkxfmo,[0a()Y k!at5J<Q(dY%hǕlTgM \©375.f ~ zP,2T?70UDd cX%1xz^Bm4O{u^`7E=A7vNk(yj#S$ 'G XR_:"'W*]`WV-:NG 9Zc֛qV{]G@.cDcd[xL3*7t {"5{#?e_'{KCj | Vs&7b^|,NP 5<25,7>AmM_:zcE*r-h~BYȋ$U@$q!oY--8e*`Won%UQ@??0FZK#"o^:tMyHbK6aXokK5~+ k8\O`ƈ;P8::SQxjq*zO]$H txT"W[.# d*f[lpJǷ'4bYjY&k G?CnCe6㰝 2(nsZ|Qx2t%R/-w \pgpQ^H-9<'; {z*[VC)]'WQJѧ0ds4^ L6Ӎ%ˈltO`M%؂4cߠgPތ55xgμ7˂`dञ#el< :2>3Եi^N pk# Q\kߏ&JLoكh@?wmG0 k#'ȉRb8RU./.*oY;%U@ӳoWe|PB0gJY^\~*2yr:X=kt:;^i*_׫l99] ??;nj !MSkHK) Gm`55ڄ˂|]hwjSGNwݬ ; P- xUmxZ,Oj#\lSp_!Hr`q#fDRʹ<#j[NF?eKQ@~D/p<+h̬Epr=f; UҰ ɵ2"z;U,MRef%Yȍ *1ZgAQcɵAC<ާW欹קX*RXrMcǂO0v0HE#Vm"4~@ia\X1rQ*P*>ͯgp%\ G/wϞmdRJU`!ӭ ,.Ġv5 mO_i|ʪ^5pTzмNjl`3vJeVOۿ-VדEA1Y{)4?PB{j@W@ެlאuTufUsQ\;)g5vm[cQ_zLV3*kuix͕OQNeB-.r-iܽ&:3ꖉeBm,qɫΥ49FJ L RQM1;X UڹʶHNPMzPoSr~2gD E=V܊Dgo]u̺G{ {GYgbܗ^ Nv L8Aw^ΰ6:vigK ̿b- C3{gg _Y,"mjuԉF#`YflYhg x*rCV]h ί$3cZPv UySkڦ(mVF/?s;F[Vm1Nn.{hld݅~5ɠx bKqSS{-,^"== YY TG98H6¤Ҽ3x%4*oܥ.zͶuv<Ԁ۷=?DkQ"U/ZnNl;xыu_p6\bV6B0MI`ޏU,zJY9wryȹ! A鑽baȷ7QxlcLp!}T&ާ_)c/'l6>Ga5|4X֠uN ` d\;3pW֩IL \.ZڼZ&4'jYG/j%.4)?[ gē*iU+!6Nv5+ZtB%;@J(p٥ 'x=0ZaaG_@&JYu˨X0mQ¼xٗ_cx"dNf>Ku㿔A)"yyUzB95q5&1 ׍s0ecgE6Kjt-˰Y>z2Nc~˫k74 &/1 t[6$Vس%K̵+< Pw}l򳳬9KNRT)MtoZ|{&܅lu_ca6b L.p9m\ dve&NN %dhKNM ^Kqn|ڼpp$ \ѱs!馨.waCX؂bk A 2Mo8 qu⭅'HZScl.p+IP]QGׂq熮j']R!/Uj0fZcMCCxnPwHOf j@A#[.h-yoUG" EYT\ uU ތJg>6ہ Tcc +]A7܅ (0BL~d;rT֜J%0e #^L1|/V}0ZT(]&Wtwɘ4{n,ԡ43Hu,3L)%l2|pH Ps㑠.-G5$`D9dh-+zu3C6Hȸ9' *ˉy=#-d$/\XM`۳&R:lkZ8׭" bF^  U/@(9+.gPPSiK:4QMmi}-F-⋁h˩kv-$lA  0GA= N2f)qv1@Trk[+mbSzB"S]QYn +(j"~U# $+Sg '^nZ0 +,}"h8YFf.c'C2͞yG~1VF M-@’'Z/ A>Gr[ >. XH>!ZMD @a-x60Z.xb uo%zNS*%ICWE暞aSR`l`lVgdT n laViec<}jN7+X-;ٳa:tl[hESxBү?0~fLJ,"m]^7 lfSc +4?v,ٻP˥JJW{qnUEx&a͓N_P ¿2| UTqDJ v ɹ4}c ~5q:|i?u=]\ to;:6 (2Je%\j9@H qu[֗7&zMhT0+e UU@ W&9BP<ȗ,GfLY`{h\ cW|(>ҚȮ3tG|尰pxE'o,H!ȕ;<πiY\me;mԤsЏ><&~,X|<ֆs~&%UkjDh.4=XEd gi;_4'Uz0pMFh%B`u,`m=5͐?"7 Ty\M9}O>=SÔvmxH/J'v07cr3->P8˚aإᷢ4ޓҸA S;}L$3m9 N sls]߹;I_ Ib7aiQ;|2ӁlxlewPg ơԥR}}Aӧ]:Оmnau}Oob-6o+ (4!RAz|Kp:NoIwA X~Ka*+[ 9/ًv4dVjη"#(oKx rے[2n6;E${Qߖ"@䦷%wHŃ:?އ*ez!n~2n̳ (.kI[[\e`~2 RFQz_( uO_)]D X?F0cI.^$nxo3Q=qWMϏS~: |$?~~1V]o1t~,}[_8H8k"9wڱH.rs˃ۘ཈4OQ/ $< ~0=(Px{Boo Xn7.f }>fpn7}>f#n?n/n3nn7{ne2r@9PF(#e2r@9PF(#e2r@9PF(##7ocaml-doc-4.11/ocaml.info/ocaml.info.haux.gz0000644000175000017500000007422113717225702017627 0ustar mehdimehdi+=_ocaml.info.hauxŽrȑ%>_1A[=IRuK3)M6dfd"d/16Yw|KIg&<9S~/ 4I>M& %;}^ůqIN %Cc}2 &8xKs_Դ/`縨Mi3U?*9t~RC1SD򲜮Y.^:=|^ƻ^&/g}"XWXcc]1>9_)"{orKajN&Q$y^fv0؜?6˓ƿߙh>4R_3gByY]Q&M/;/ K06O}sd1Mi%4s_G>%?^Scn!"%1F}y=,"ڟuհc Ewyٛao,C4]w\C~)a⧚_[͟~$J{ !:JxǺcҦjdJ]U&=uTUfI oͤ r&e}ӻcOG K=m،>zRkz+SC_.{ &ٔIiLGB e\:iݒlY7 7sjs_n/K^). xU3:5)`Rif:m_l[xYRIG[ƍ;և~OtxiQ폣~K8AREza(҇t?AM&^\BLVZ53997^]g}P. nʲ#?8(o`fnjU?}%wu͚ݚd%6Ƨ=+]7VpVtx 's\=׍C`&ORW^ҒݚlYm|ʔX:{86Xm'355<"“'_-oѼ4H8?Gh$ﮚи$'wቊ`ܧMd)@_FXb _rlSpJ9Am~nz4i2_uhpq;W JOJZ Ҏ>x:[`clP%oY|1Rqt ˋꮝ:Shż}D7uN bfX$3Ǥ'Zo\DzdFcJlh.w "iۜP+Rm %|. 6~@ %5`%~oD DKqY@:`%!H?Z1> 3\">]!%|@!)/R w՝E%<`[kB_coR'zm} i}:i1})=GW",X$(90v:qWv0G3WUvG^fXY{znpP1kfw h5\ {խ˞W`<-uqO5ݶ#:GVvMydw7&Kҗ8mDhYj90~̚z^y:? m Wur >& ,UIVN<*N I9G_tS *>UKlo?:6Y8j>͞CyϽww(=Е]8%"(!b#ٝldT8B!Aw=|RYUjgP?"ݰuEh= OefKub&'{[-XgSg.08/y'85jL9nc\9؆Χ^]rWSq6x%%u-t (jsRGW =hYoJ``}L[baV #!5>=hsBϝX@h`avMɳ3oѥq6ǵd {pHԗp/5mdH],8O&6: 5EO\`b#V`?e]⚂L :.]qHG0m+օ#R+8o07|O_d:f]3VGÜxttRY7xHfEɫf}{7i-aT3^bۖ 5Vipe$ s&3][r:7S^%{ǏѮ a  +|O?[+Wp\i5k|& ]t6xZu6Pc 'v}hL% $ YZnWl .~ڠ0EIErnk.Q>]gձR`hyrS r{VǮ~f/ޛSkuՃeS2眸ndOGލ5mwm:,}&wBR"j|4kt`1v>?k.q55zU.Zȫǧ& wڽ.6ɲD2d]MoI$ytOw*#ؾlɂRC.L=TCәaeyWqO泅&n:wۗګ/L5bv Ru]&k= b8&idw+FP~5uBl0o[{7~tVvm^{EjE(&np^Hzޏbhj3Ĉ۵=0  cmZ :H6Ժ߀8k[;.?ӷ-{Ýu3GCG .ҟΊ%]J 2oܹl]½w"oR~!j&ڋ;;l22.bܵ1?\%?4b)(b&M\9|VDK8Q}Ln/hbY K1&/9AK.}o:/E+&[A"I|7\]KNI3Vcw([N\s~RdIiZ݊)=A󤫪I?.Bx(b mIwlzSL+0qM~aW91$:wW7sFn0l^7rtpOC[yC<= v7Yo.J `9|`sM|4]/N܀K9ң$˓lފQO$qd-MV*VGQ+%kqS$OL'۱فͽXI'v'R]w3^c-C/ۍIZo5'z2Del'{=uOB۵s7LG;O Pa\[oƴ @z+~!#z'& 8|34]<-Y#u{oz}ax;8-Ǽsl>rMa+o_ۍ%i6-*^rK+/Kzϯuq%z=W \ll^Ա4=חTi\7+{8{5UC(k懜fʩ5 y1#,["zQ-`.Q 0"H᥉DDcƖ;RrQVu^r n~# /3IR钒j)OP @yU9AA$))J_)^ɣd”q[A,G hǘ\:?`# Ũm|L,? AI1 :5oa'WBN( +wu=_˓BFqI;`v 㘑ORpE77tZP;q \N*9IhrYG }Yjh;ьƂŋ.~ ꆅK ^jCvCOvdbwc>fu2QTd)@ >8Bs֓h\O<>N3И&Ś<<ߍ{$Z~9Boyqu:}AIY5˨⣨G#g^̷ܵG s))kkk.gzݷ]_3ueY9D 8_q/GEK,VܽVwPFrR, v@7eGATnէe*T)pۧ{#bdk]%Gp:޽,-L("qShcyr2YнTu|ܬe'.x nmb١4jo qbQ#fڦx~۟M}ulozZS|ѻW`&8զSU)$}˺?iFl{[My>:Q> -><-<q?ܖsMpB!H&ytGK,S3ӕܮΔ<{)MSZr#d]k%L^RVٻ-Gg"$ByaDYb vkϊ5dHGbH'$-,7jy5\26CҜ۫&ˎ)N_'p0^x4GˁĶ[OךΎ3Y61}ˀ"˶wb [],0W_zա~axx-lWLmRAT0SGVST]kT3ɩ$΂Xwvtm `$쓁|+bD{ :MPT .lၝL:rmځcpHP?f\hDd/dAiz%B_ML: 4.Q㜌 &Gy;:;O~k—[) E2GrY//iHjlzH^F?p>Z :D+Ќ`>_vDēUe)O͒}R725Z:z.gk4C.wq;Œ3R|t۬ɫnj'V0Ym><}1 iz4-~.b5$vu"ݡNkr #ϱʱ4E^: 0 Ϫv²50++jlf_=|&GFUߍ[]Y:e)gW0 RʸqZAH،擔Gl{?|bBD_}vhA _iڙĀUJns]Yu4л"|7}<iځxR3 5T]4uE_||:u/rYbض5ۿ&Ò5s %&Bi.#ш]>z}4O>pN<!&fׄTD JU܌')l;$7{Oʕ JnK*=p_sW.aDeۗcreJeN;|" Q }='dĐl:*> ?,)*.N`mRvE_ :Y#u&Xk'#.2л&dzy8}۲ZcJ-qc }#&9vDc S</I LO1d3_^-&>o6`Z5L_KIѪ.2s\,;/#JRp]m:ҰJX9 %$(^QMiv[b.'(_"ڰͧQ̨"nQG !M.I=]y8ԥi/AC .{&qt= ܞH_ҔÙځ/HL{?ȯFojFn{azvq{R#N jˣ)6[|>j$,ɚ+9ZBMd"hE8IC%ꡛ8)!P9V[îQi#9~WU7Z@ &+pnGS@Ҥs'UA2<׫-f~W!Fڳ6Qx2ὲd u}P,n/P5bп$Iտ9 ͔߭*P_HFmc871oD{jӖ8n{,g`D]Zߝknt(@X2 [!=#%MHdQbHDc-T gv4q]⬋/EӮ03*H p6/!FXݦ/ШfϿqomG5Ͽn<Ŀ} 㶦OߵkFUۍҋ;i`v$$=QV+ Syյ{Fa4M;0I'MAE?k'7c941F(CׄcW}t(ڬ| 3eLQ5]t"S ezR,lH!hDZD`*!b(^ݟG&㽦'{E_ ٨nZ" 4`K* BXbIڍMctyx Т媠.v(٭ݪcC1#;XHP(ciD5#'∞ hHplyƪͳPo,Ԝg4H:F"cT{)ZR\IUrΠϚlJ19\bCÀcz#F4dt嗜C-Z" i5; {AF9A-!hS{;f2$LN 2'3<΅O ua%>)*$CeϿM_ =`t@+oBZ9.5ɶPd`R~ΰIxKu@"9 $ wJv\ ybM /$AM-Ԍ9ŃKwXH IMI!6Uv|ciƕ,3) %YeTZq,Q~ZadLYbT[smjF ﵩ4 r"lJJЮDjĕÔM wYTqFQ*{pEhHJ*i8!+TqB98KR ys2F}BF/΄@Uw'>.ON@>! 7"PlVQpQZp}.MQڥY׺xB< eL J`j]7,̨|)J|W $f913E&<2lvtK1:qsbKWJ9$ Wq~i+5'<Ć 1ܙڇ v  a]~1\ 5(c̔VU3~1@fB) :0Ck.n3*q2t += ң@ X4w47o?pގl.g䒥 IKr6HSx6S戓gai P\}Iy:D$B?]P4ɟ#'aUjTWg&$M34o3?-|~0H }|⣕ޡ7?żaNda< `1rCq$eрdD`:ygI-,MUbHr#g) KiJ!3kޣ f(͌ g@wBx] 4>hgIwi2Tb(TC!5"iQI IGAf,CXc~㈎pga9TXH gh!woߤUܿePPh01Rzc5=xbD>XM`cO Ņy9d_/ͧCN܁4/`P41GLP4ɵM JJ=܇TGE -o:8 K VDUQ(؞,5¹޼ndc0 =֦QW->>✿'^ɚQxgENl2skYϙp$YA+gV&?J ;Qy5YgS,gR!Kq_ѣHCSj5@3"ߙ:3'H/E*I'M(ޫ7Q yT)HŒ-?Lzٗh L 2!UYeFOpl4e!e)@&R SUH6á%B3+Pc)5͘ z'k 9W?R)z6AthŏcH9hbI=EeʑͨR)4A}=D^NkFT~|ڠr-,L}]aD3 L6R9 6٨жՅ.XRU6SH jQ2$1eI j_qzDcfQgƊI8ͳ.B#"BRlBͲBOjiH *QvI&6$CS)B{jnÖyQ{˩(7MjRo/8P&*,X%-/(֩aHMir,,&? ,P#.[Yz7o'J')֫Rgk2QkqHQdgΦ$ dm dִ*V=&j+<՚0G2Mf[ ACR뿨6rx WQrrzv?@#T{>xNXĊN|!dɆ!CfС†#)V -e8x.<@,Lj|Ң\C=({zPPxpz6u|ha{{epA=߃{;ys HKl\ZME Ժ]U?->HJYh*!:"lpS Nzp)jG uLj#%qƽ"^}܋6{-ǽ&^"p܋t^{Q#Vϊpй V>@>YAR%D)M^B%D(K6z QxļGy j/^#%<*GK耏JGX~<ǣxݏM܏G:t?7a61x:"+.)C=QtBU\k7si {\sq oo~yvg0AxJiC3K*%jT+DeȄjnz9ZQ~k$Rk{R63 cq+ƏMEՅa .vw}KJtT\3Gb@zR*%n[1Z2E~]~tze;7քe"T~vT'?9w_a`0-sr,ZfB(*žXٜ0_ ѐW9f2蜙f1zUVqzH#x83jk`_.z-G;,8z_EyHis@bLe/r;yXXon?'KjҩQS^hgO0[H AhP) W"t)v S)ݍy!ߞ۲ݻR->u]wP)fpflW!TQҌRQ0JUGj(Um TyGj(URQ ͣT>JUG*|6RU(UmQ>9/ˌf Exk̯֜>RZ> cn~[n*$,^)K2!o3ZyiZS0tb7W.N@l߼eq؍cmTD0 0<26ʷ *@wRKC!eH*5y} m MDOe&ePe@yp*@#aa \~1O6-C/3ȚM cnm*y4,{\ޗ00cY_WI`š6DJ TwOzFobGem@:&a(tmdɭIDiw BhF _ʄk PFЄ^,2eٔVF_nR>VpnU6(JO!zD!72$hAkBFhѴ MѴҏխFjhZj46խFjhZh4ՍFjhZh4ՍFjhZh4ՍFjhZh4ՍFjhZh4 y8MWūd09'մt3Y`Jy;ШTO׽=০.ok?\όZ­uŔ/Ov4J дk^nvNf-] E:S}5Dѐ~CIyʖ2[f mos ÔC@C=X#3g1<<;Dx:30xE5x:WZ+V^-9&OkYc[FdR-Lף)typbp Ociplھ)lE^<#X^55@ǰ`o㩘qºu w <ܱdd $FydIs%H5i&gyXҵ {POʣų4N=N ]תhCjUVEA*TkJQzaiܤAz4AuF:^ghy&3 :-^guF*3(^':ouf*3Lufיd9fs49,|&d[h9lM2Gmh e0Zf-eaFlh٦2 --e2Zf2F,`O&׸zkOQ]i90dVqԸ EvUH?7VEvAUDdAkແ]YCdY87SicOIj2'0ei2{=dliwWzؼ.UsRm$Ҥq=o QX[r)fQ6MNw,//yE|:tK霎ςs9ͣR+UtJUh?)'0ǘ][.%qb瓵S rd<YZjR{XXٴъ׼5 P͙\Z'ӘO#(Y$C@?ϧ8 UdW!8RIg8DTu>qPOg!NB_KuzzG"9PLP0( R=# #HS{;@4C.)AZӴ %ٛ ep#v4IcI:LQ%i脤ksi[Ht Ee`Un-6iFWA5O.BW"$sc_`;`Sl$ +5"q:;4/0?2 !+~XI=kEz:vęaHO?#7uyl/Igy9$faiq\z.X.=h7i:] Qw(UB}1OM%'c 5#&bxߋi-Xuy3VaUfH1X'fH16 0:zKqm_ٓB<&S {psU2SζO#DyUُπxBy25}q_hA`GPraqb'ok?^ k<6Fm1;,cdRfqm-r92r2ڰYFzT PGm;Id!ٰiF|Ea gŅK7<g<% ͩ[X]ac.2O 䛂6h~S`$t{"M*#)rfTJ9(7|ե5,[|V90ϛR$6yhbsUj2q.p-ɥh+uqƕ&Bμ(Oxɳ=~kQJ-t2W&j՚8;=Po&Jz8#ynNiOV7-EpHh]Y6VmpUtTR [m*,UkˣI$lb߃q^&<Th #UxFm -~ȕOZ&[UP2v/y:'OB[T1|*\ⷤ A oN,#* LAl` rɺh<~6;8?Ùm Q6%hTC4h(rM]-$0V&?nefKt]c\[D۲I}F NY][A녁a"l& !,,w[l9NjgBɬĠm6pK VjT:UoY%oL^+rUJcǀ:6I+@U*fVӷnfԭ&Mr.4dEk6[ŒзʭVofV%u|UcʲdtpIR2y bvǀTjadIpUÎjp4>ù qU` #)5h m3˨Xxٜ=J &缩ncv|sRz71|i=^̤ۜBojwVt:d=lcoHi߹$)E;7bL=a3>dRzؿKK\.6m@ڶS6q)oƒ-m|Kʶw8|fl-pOpCVR}5Jf2T) S9݀W^j|l'BT5hiٛfUz49g.3(KhĵnU@#k䍬Nέ}n&oaGZέ5ojvxTrF 3XW LDlvZVF@+⾦sb#EG"ENnNPa ޛrlVl.8QfK{A}Aҫ10,T P/ Ԙ=ηSX5KZMU~4!ib&Ww9hj(.u{önx}ݪJq[.@u㖀 w]RY|O~Wx/$뼬Xy%:!}hV8I!R !35cy"O(’hʄlE`OLqR#f@q.O,qa$KS[rS#tp4߾^/?׬<*sy.I<-/")!0ߒMQ`y,KWtg(!*M{hFbNWy2T]񡖫S[_tSy{m5κEc8^d@t﯇yydCi?_ΊvKR -՚aLl%籗+FiWbI'Iq`pDѽL0H_DZI^%a^MVUyZ.\B~M6ƃ!QC]6m۔ I̓=4U1%Ƽ s,'f⋟f}4+,ir3It8 9z? ^ Oy| q%똼AܛڂHzrF_MoDJfQ/Cx: Qܕ{w)kiވӻm-Z\#.+Oeيt\ N@FN9goZ/_*;qQ*Κ<td췒.L_\V %{6M:9ThoK0iiadd/ y^)\qӫlB쑒{=$"zp?.%k`amr#%";+ov%aaC 9fZaH~.e~//;P9_WR"#0k] ;̿'4(6{4~?Ά*E =Q B qgXaWgN v1NZP ǖ͇уWĮ$:_`{ =vm͔d"S '^3m]j/"|^?3gNS~wEC5㚒U0|9|i.L (\=*}%ᾢ`f-ZZ8n,8 0|}Hx,F\cN2_P&gAJ60?'8 pIږG7{.6kvGDJyXp<{5%}JX.45R>{Gg(bkg0|}q*<='u4_g`<{pѦ|?=p|fUrIM2>_)FK 2eG{]=`r"g꿿Do LVGck m?L(<鋩5r2CP x)i[S pOB|BXN^Cj%ED|pϏFJXT8AQ-18mdѨӿ%m3UaTa'gc\^6BvTˑQ/o'/ABm*'F{ci[SM^pGRH_{NcYܽ RP`@G4 ŝ68$ %Y$i6o=@ޡz_U2G0Mb􋱶mzS|v/yK7u9NFƛt͢6{r S6x)F,IMk񰴌H˭%NTh.TToW$4d.2<Һقoտ >)ZBd:Oa =vi3Ζu߇Ùgl%*jOdD%ČIQfx>u*)-!9q996O|HmNQ I&(#.GgXF`0bj!zy47& YaS#IhK\aH M<'BJuL/E#O+ud }{ WAM!ZMG>RWT`Ģ"c޻'X %pDmԪ[IvF\p32~ Q|zed'Ej]-72ȄEXd'H=pYP 8=eV#+D0+jcZW5@WnDmg'IMUH6u0R[U_+5+!g4F΅/fF:$q #"i]O$g{4/Ud4S89/ܣB?)!@g#'LLL4(1"s#SJ;"ܠ0s"779@H0,(ɠ),g+8Y"PH*b%2G0rqQI48m"͐DAjV|t,PzT PVS͌6rbgIi yS:~jtF@m*R(QEem((- hϿYAYʈ(?%@n|8YUAUUpO͵0anbf/Y^gՍJ5Mu,Jt |+ ~5'쌟 Y䫂+lW\23`e_eςc L3#uJ1ܳ'syhdUS܌aeY걛$V1cm>tzj]6qF?-媙gjn[py2o%Z6΃I$ϑ/`Dgj# [8'Y̞l;mǥ~}M-P1:vRrFNBI}B9(8:LqP7_q~$Sdԓ ʑYXyY#csq@ܦ! J݀#yv[sۡA[ǩhl\ñՌ%<%2G2==f=32hQ<: Z" 9j>Bg\ 3dk\rFJfҭ޹+h@zN7BTkAڹwIVN> ]:(0c"M=VjnpN18# 1lM CKitlMiԞ #HY9F(ZCw$([1p^:ii=9z417<|! 9vOq2xr$%/M얷{BմM3Zj{f]O}$gc\\"x)qM%M|t*@IF1M^9q/|w> a, 6És''2C߰[>ܷBl=k3=H;M:'8=>W {Ei>*X79;qe䜱SjMϷ[%{<}2}%?oئWLk50'7|g2Ɋ2 5^HozRɡ ma,#x*w}7TǕaq,}= vlMb^n ;mW=I\96Ckp$>\ZԫV- AZ`r픱.,:]XH(iv!N+Ee;U\Adn6gfpv!N *}HjwXjMT.0)c]Ͽy~..mvQ6qn[$ 삣ޅ9*mizZ>BZ3ȿvu|mWXۑ mQm~ i ܑ3Ll &mه9Kq_i Ym~_ɮ9wdu}NgX 4n HmvlPڛY+6=mI $ cޔh!ZFILsSWC;k|QH)_5džjH[8g}/,^wn$_"i[k(7C`psP. =SxY%P '|@/JΝ]bGQi%\g5˖<91\y%9Z򳧌WMs>p f5*"UDskd6:X 3\̙Yf8)Ig?wY 9\F WM9 7HFu'W}#sՐhd+"5l ~ݔ/'W5: z漶%)2=lG˴h 1Hxft8"y<ό <@C 3=_z m_Ủ:C5'%)aPstK6瀹R{ӂ̪n@BfVbpbʒP+g=|G*f,Y1e YE7 y"GO"wDcR=o:trm!Y4Gj}e?@G_yຣ-Y3gK`܁8TT *+q nJ IK)b2u=VLIN"5,NɰmS>Ńn ת=Wߒ̐a$9"XiG!`~oFn3WN51ayy4{ Af~~q[DqD@[՞¹̜Ar͓G5k4#|~^S4uL^Ar]*9gΎLf5ġD_38=%,ԉV= JJ|ӖNn-N;{^+LZՓ8CKnKy!|C;0_Ǟ_yEUڬW|W|t>6C85qEq-k1mbqPxj4Uu1 -|xubnf%vf &2If_,!| e-w$kU6pf{aORB:ƋלiDoQN>ί.uT_7{b>RsƑ8Kʀy8; @ljls,͞OyeCZ>[, *<|VY嚸 j#UcO5#j@G`,+U{g<;٫) M:)ԮbkAΔ-K\V0}~λu<Ӓmf蔺 s(MGJ]FqPbK"elX4]t'iXRm`NQiy0W]6u9n$T4OO|?I'CO>G5L[ǜaN<u8krv PׇgmهË]!{ֳ٠4yy Wsz'9 =7ױ+SKszNW8idkp Z*M+dL?5 yk}K }̆װCM?)K8 f5;WwMi뚲c,۵pip]a6 B_wh(Hmzq!i(LYKNʲR).Y| , nWX1$ V9J:2DD,hES^^bE|֎mg7]:HixN23VC۫Kyx:bV$@CY1lHk81e4N&slVl{m/%BHRH%}/ ^4 (|_90A_2lj$t'L0v^GѺ0 HPszaɽ uZ\[9FN̟[$N`ِ@1/IcYi ѹ fj?VU-wɫd8N+9 jm:jlmX}=CqV {f(S/J컘z+5=vʯG8z<P>{F)}dmbK4A _f'H6q@#Np.k 4㹃B[8veF;pU DKpZ6t'*q#` bgwt+V|e7_t(}.e% `\ˠpxh-ֹ<1|E<么|.E̟C+Fk4҆V1=$~9)RȎ'}ƃn3=rm:1vĹ;K4xb<:w8& J7q$?ʺ{窇sWZP H{ ')18P$5%O8%^9Uya:4)ht?٤I%[sH+ uee}w(i yLm5 f`5;cMXLjHW 2Ⱥ#E%kBٛsv3PFٶY6cО!0xi lB$|OR90izbڥNP lVR_b<,#`~Oņ9R9RU %0N #~^~N\gmZٖFZ, 7Vяh Y"Z?śQX/xb|Z {_2ܫUSU|ާR9c}஺ؙrK\'Sm })zߏ#j[ZqjOdap'?I:Tf$m`>[g9V8:}z)#eX66 |gy :&a9NtgyYV,v1a#KLB4 %JxY9zG찄c>b}?]Yӈe~^в2=/d3AvoN` ><=ۯG0>vR!B4q>}beEOcEP~ 1Xs䎔<[DG TbLTVp r~V<PjPp 6ʄ`JMI)'Deԭ PSS9˄2,[fCy|X0`4ϰ@~`ͪ̚`Y@21 % _# % B4$BkMy(efkXE9 OImauyrOfx@=41:Rw s c`΄ 1Ά1"+ge@}'fKe؜8.*  õn8]iIBzC-&kcY^ĉx]oy4#x@4 }ܔlGP#k@|DlpTooHrU_n7zfHcxntoMuD:hfɛكoI6>NP (VM2zQ䥳||2tMDN."Lb9GByxߘQ @6&P$ !71ekk\6E(_$ Qu0[V9퇽9~M0a"Fo^!x_ֈ=I h00Z ,fXr%jAdlƼ =zMd82@5h_yU8'y"X5qLy<"OzPOcxjapO~xZZ=djhBh:cM@=A5;kM]X)c\3L3v(Sy WyTtׇg )*j>r@gbgJnk[\˕U{ţW׮hd*"zu^$9'IBϗiBڌO52Vwg">htH9sP֦Lu'~$1-VQJ b 5 Oc\j}V,hcQ4Gpo ~5r쉝&ErT a$K!HgI5N'DjX<~SkY"X`' rȐ֒?IߝM ,G<}N,QLۻ?*I^)ɶm)zH3pd: d<6 {2eH3 AYd[wǸӐg}Fۧk4RU|+Hh ]Aq[4)9hȨŬ`^2q*UFN㏍=ӿ?hԢC$*DhFRCjVWO~Gɏw>콬B(nOCRyˁUR9_T}zsN*e֠`zT0[mvMzz،w@,Bi6P7!Z/$K!fæ:śdu5nY;"珥siQ_-%~Ԅ-L8+LhYzg>4 wL̏$8H3')(χݾF%-/(.5v:qZJZPzY(IY_}4mTR\j!@ b q`(J)Aok؄٧3oX@Ɩ, b䨜u<#*qz$x%I &Be Q@zHjMHEe] PE)\Iw5N4͢:ד*rCerRtyrl&,OӉdIV\kT؆}Uy_OAFQt/hN Orqólr,>1aqVnZ r}GKʀB3j A b$ ))l 6FZXcrJEUWT{HxaTgtlsDvD, K0RC=:&ϕ~q;1*`3gv͋Լ4*%#Wƙ,hMuSGP}-XE뗛ЩrY2I `9q]l4DGșvK\/V:w`Na:MT RWh2X!!qj:BB-iZiy% o.V~@v5~OMvN-@3bD[M {Vyn378GQLfO<Z-)]ޓWi,3Tl͉gNј)Q>-lĽjsw\'"' {go/,5SZp6+,$Kn5e&.^>4aQb-2L+Ǽ:I@bS`YUz-Ꚙ;wMb?Mxt@Sp&7lKQJf 9?Ҝ=?:N^ pxBHM v*ú, |گ [J/401L@U -$!۱6a\,/[llG$sDpPajC3d@uv~|Qr?뺅PGz64a {M?Q!;Z^Jll5ldGwE/,l-krHCJ?GT?oR(XUZ^260k;Pm4QI{iLxy;7=jiUx{CT֠ZgŰ17t(Fv SyKvVl UgQԚz!*oUQ\ꞥ7,3V$igqaɢ12}߱jVZ5AJCF&]VMk8%,dP-Aԕ0$j뾪e{cAld>_X2ģ(%QH^<'Cr^` 1Bdķ~^qX^e=c''rN)C2I:xHF3ül$|Z483oB&U$6M-Ʉ ܆MI&T9FiR DqWE|0Ǐ2p/7 )6M墮+ӹ|v\gcr%f En=s&gl`=>E hbdI !l˅kT+{Kzo_?L\n|pWNl=+4f`=5$^2\r8^n$ai%љ Qu_GY RR YҥDť@[Gp)A"ŧkj /giJb(ON EXs,v" *ڣZ ~oV?;" 8ݷNj ߼imhh)h2 a4Md=ռ%5@hY>zo;3h9Oiŋ~)XIw^ i߱?nN%؈4lka-)*\,6>ГXxCj%^tH84mO(QƋ~};~ Ew} i~xizIROTp0!CaDH772$or=NY fq9ʌHnBlfо_68-]C俯eKx8xYfRelouB%nVHi_"Ia7vύզ_x& IJfq$9+G}+BQ,s/z'-@"D5:**ѡz5{4|"P)Іz_vkH>0@bI^1  ( e!QHH, BKߡp`rBDB!2ra-ǵT_WLGkNed66dOV*Wr)ZPERyCyfqp1m4&ַ 1gbIAǂ+6ak)C{^w6`:o~ZWٺk$I$94M-Y\fe^mtVVY9o,6yU7i~YeQ^y9%MU6զiHic$YeNr;Ng<_de;J1lSyy:/2磴iC{s/*z&x;]WMNh8VygsB`$2.֭{a”k{]kK d6J')V#9\WWX/ZME]:,oӛ DnMm̄'x7KoJR`tóuIAz߫y5 .[3̆6ۉ/82+ 0eFUMIb()ګ$/7+p dPMM:u]]0wS3(fiīqD46} hhlC<`I>/:ɤoE6+쑗W$ 5dcdYaٌAl: s#LVnrYYUYV~9nUPgtyZlY)#ʀAaUެ,rvUW% A.M/fڌwqˢZ.>-9)Fb jQ2j}+kzj|<45m*2D| nz>q^>@\ tz Uy )ؔ"fr`o? Gӕm 鯳d,uv'3[ӺiE}K˝\ofΛ:@b]V O 9-\[F Jl 2^w ]hgM->U)M62k@ˊ;S!j;Iz,>yG, 0Aq(S %TEi}K:zE٢KXtwĦ\1SױBj~K@4%~7 /ʠ? xZNDVcÕ_8{<˪Z7W jmxRb( 4',t$%f섙mvC߯]@m9#xI&<⁕BYQR,tt菑׀^)"&#wH`jloBvJ%8'7hY6NsHNqd@:6'xW:~*QJveխ_M;XX%\*{tcICLD;o:=CSj G7ε&aA9DO2oVW s^l'0&uA 1}~7?|tn%f%b*Y2f@ӉQ4etyqSJُELZUQ=A {Kzd@LA@)K $E b7tq4V]]?[L2Y5]K0{,'DinV 184m upf8>/uN ncӆE0/`}:X.3VD^@cS@G Uח/:rɺ?~/Yz_BM]Ž''3ɽo8upw;+?xʮ? Yٕ#^YYY"1!Y)S >kZw6 ̀.2Y8w3zQL/Y'ܲ p@%fUl`7W: 4)͛(yQ"'/%L.A/̱dh`} w G[a 3|'Sb9a8.DҗYt298yASKidq3`n#gI{C~G\9}ȿNG#ǣ^йC-~/T)΅-xFu:ڪNm2=/ٴl#59ث |t)q{ky,qJdlo@\ JBP e{ 1_ׄb.ơ{ BFRwzLO}S\"Bj_ 28fR~Boy $o33kLbvD, YsGW# ~6MKcL=?+h5\X>od@9*ψ45yl[8f{^(4Yd?3/O<`'|񆠝?6Z: CY^',np2(58h}⏀ڵBb^ wf(6ϖY-G/L}X3X@\dYG~~K5&G52}Il,E iґj.ti-|r5?u>$Y˔ I>o=r&iGśu~y7{_Lvؽ;̺)&IeѲc/5/uDH6AxC!'!CG|6 z)%{Bהl/J<«,N(dIU.Ug(SĻE-(`ԞQ!3+Rwx!+5+Ll9n'Q#Od_ƿ7D:z D/'A| BWUO8/! s*7>O7B+;I㷕[ۇB:iKe083 $``:UuQ?U1E/.{PFB&y_<*yӾo~L?s$fK -XXHٲP'VC UZD#oz(~[|/L]2\g#>d`QQvQmœ|L"MWr$\'{E#Wa~!JrYu9 MɨZj!1mQ#;PB(oP :iʩ6\|d,Hp‰fˮD GC0AȮ⸎f-9ޟ!#4fI2UqOҗ4WNwR"PG) u2_-ПR/ SC<xg9˲*pR$dzz:X" yIAl:E>>|)m]M3 nXq/$*y0X0ay^|x΀:ğM&"&V2( ,FZNY2{ g2 OEk0rmAlhul.r+R'6eqIS{SevG%pM,`XhH+vUBVt ߊ{O}JĶ} @n.{WDeŗc#x~ϣSrte l%߸,Ni'&m5ȕ0Ԁhd͓iU~׈/+]%Jdr32!Ze*N&fFJ>A{G{TKxKd"p)7@kR/հ]^ոg՚8Z7 6Lݻ3;&$nυe턎 BoWl0}:Qh_3Z[2P{1!h{=bU~ iO|ˈ_~9_ w~Ğ}ly@ (@ MUfU2{zW[ẈMg(Z]CHBGa;]!!kp]?DTE|Zn7Nr{b'tU/$~~Ngجj_ z QnMzi6wJ2 NEbkg`ϕ=Ԭލ*_@h]E qKB~/-,"k1=A԰eA 4og+Ȋ,H8g\MD\|w\ހx:BCSzkwqR}ppry : VEiKQbtt>/ߋMSVQ.^d/G+{{1tHYrj@.eä&ދ2\c3ã]Tv9Xinti` i/Fwg~ui}>MkY`Kx9ollK8q'AٗӚBТ˱ 6v6MAX6sZ:Ul+bxx6V+HЮ@ě&ϋM"aO͑P93!P,VrN 4+r&cWF'r+r+rgjOl2"N=ºh8K&qЬ-] X pru(mN` /t ՘,8iq{8";.>R%a3 R0ZQR<+dڷ̋~sL RകEݣݯݔݹ׿%y]Wdz~*(qU6"`q?&EӘHLA =] 8#2;̲R\QC\:6f*GDPr WCgS+ -Q'+(E1!Ӑ"c=>^͵YyKsV{ POT{T'ehZ]۬;\Q4Nw@ D4`%qznI:2ZvhMbE[ۑKzo:HHsM~ s޻h:Ď, Mh`7CQTԑt@2؇]|"sfJ:^aw>6ɤ}1`8|jh"bJ#6fvzA_i]+Ӫ ^GA9~i0\pw-zcVQ}"g_#˥qUXYMfҺGǣr9qGjVNBUf%%&Arq5{U0&[yJX.[ xN^tRSbjdu hE$664'KǕGq8ŏXEђ!Qe](`|ddh/-X;zRoxWE~m%zv}A5F/y8U 5%6u,*>يմN{ZRL6pk]+!JM/;9R*ZtH%[,m`UH$1z}=E=>->y< {Ghi "OM[SS|j 2ϲ c``iPV)rVP {@QSTD={a`i.&Nᙅ똷6Hj'$LMȮD6cbX-vx۳febO$[rh7:C-Xww׎ JphT+pL 6N䆧Ͽ>SUrYEy-<'qS-U,bm";̸6H{ޏi R n]MT hLpk~dtS'oS[ ºe06^T Kǘ8uI*ΑI¡TEi y0ެ t(N՝>A(=Ə<{+gDesKsqZć3)Agkз{4]k^Mb<0]+e$.ٛv~7HZM|6I9L!CJ D !8|hJ[p&=bC5ķ- 2ֵ)z?Kgvj QVrtˌNɧwjnMVZ@7ǫ o\LCړk[z%~R5ZLY'8uYݔs\+n\-C'4Ww/ Qt=_}K}K=K}ZnmЫq79tnLI&5_d )SCmsF78;`Q= 큿:FssWȁ }8Z[ye֡W4ҨF=zD{l@DzITQL+R;D.`W6JznNY|%C>=iiCY7+Κv5 c 34RǼ 0lt]{$~Wddk4+ecUcN?sSwEk1n`]y/6귤}=m<3ٴ&&2&&NEʖ)X|M~[ Z  9.r˭[kDy@@Vٍj.!됦N֏U1O`NװZG21UjfUj52 U'8W^b"[SnEWrwF%ݍ4)vğ'HxS0p"/zsi ="w&5Jc-#idYٍ##mUD㜰h{gYgj8b/zX451KſzL' r&¨orΟjH)CecVjڹ[#g^pGBz\rT*glQĻZ$ &@QeĕN54qVq&EE`hn//BЄR(Y`ą5x~?ju2b߫f$HI簒cAg- 5΀Y Ґ^%;w)OLOŕYi\'1^( >?ن} õX] $9z:V#v8%0-SHaF @^3LVHQk5G__>xv2csǜ+L[[/USSn Z"M$oZQUV'h]hBZ2hql+NExq"gk뛇Fwd3z<-h^I?C:[̂J*7?D'U& :1N4ȥ%)iԸ;O:7TOs>aIihrFiH?{gF?J@mEynĒU D/Yb"s,|kGXLgVDmLVY3|ȴzqs BHw8H:R- Q6AlcQMo =%?fg##B4Ak_7HSͣ]M5zҺWrSBEjәx ;,Zөy|ȟG-m_{RRk%'$Ã)o69lu6.2З7T;QZP3jUNIYs׉U5#%tM Xܜ@},鷣$cvM,bSjbF#3[W%Hym%X?xW׫2eOS9|{.n'k25WWvާxOWz-v읓eF2SOMA?i: BO~ dѹ.Y7%} Y&3 ݡ b7 &+|ɍpi[ֆCY>٣y!z9>F][![Pi_No i|4K. 3Ӻ}6 ];̷1u+"Jk,8Hí`N&r=޾Žc28%ʧq?r0#xrpNOD=k6&iŘg:^Љ=Vu#[RF#d$|PhqR6A2zhL|EF9fɆ;8L{ק#dI'[!'Bvm@)7Gsi7) 'auQZEO=MOS1 6 *EAp>')|a2<]y4lEuT;ҿ4o[ muqT0'Zf =ݨμs^ЮdWyg׵VS+x}M8ˏ?9OqЧxC Ɍ1ַ Ц62#=DNL7X]^`Y7*[r<&J8rCj0&0U#!{LNf'G"\0 sz/qyUP߹w$nout"[=>E:"Շ^tK>֕bt̄UꝖ'ʯ?!3N rwû/^Kf8z 䶍^޳rЄ1{<9N#@_ xWxyu ;GMGwR`)vڏZ)J5Ujf[p]=kYf|wvRaݧ;a- ][~](-=].D>ġ|9G?ajG 7TVˎhYʹT)2 tؗj'\.[!Sro$yn`ZsW ߇u3ƞcn/6;q: &waJ}*&+&Y 9i"%("IE$yƟ9, ˅K Ĕ.pܐ9GqwiysmykPLxjZ;c0f\ -c/ĀV87#Fh5O8.W6Ho<_@mRew7R`/e}ฬW<ት2JY_[n qmKpd8u2ܩP=w_$@P9zNlP $ۇA4/fyXZbmrW^AuЯtM_R &=<G#ۋ$kokc]|aLU:/s0>]z< tKPcK܃Nv]|w|ߝHz˄h7U/Qե^I$Qi f!3BTuX ь{^ U9&}ߎL$fFDm0w$u">pwwԍYV"hHΞw)$uEp,[,EI6Y"%q;f{RiT;a|%gJlw<}ǏFoq+|;-`1bI?eo;/Kh_ϼ4 }y{$>L,wN_ _FfE{,CmeZ|4뀸X]ŬXMYr0jr7^mVLO G{$צ,LEmf>pv$\-KTM/TzK/<$k+"z<=H3i"^l#[vpި=)ΈC+6,Wh^L&f]e w{UVrt0% ({I u %@0OщJt\asQ_6>ޥ>٥ܥI9WߑO*S#f⊼q}$ɐ/OU^Usn ,e(.k+\ۃV *\5_D8 ϰ@@j=a%(WTrXwH CpyVD6e-X$6׀wֶe僕l#XFW:e΍~,]SlIKxꅾ:pz&90}Y`xIkW#j{ۂ F;fQo 7aV51f\ZO9 Qu#/p+|+|y~>] -`B\ ;ed1 ƅ\wX)./zcd&GSDz^ XYo 3yТVHu#8`dЏ#`˫ǻxd)!8tͤp-vE)_\.WXRY/v P='q 'gǶRo@]znD6qAtIh(3t$* #i&Kun 5aWj!='>pе]u}zlBi:P"G[/ZRpGׂ᫋_`R7WFل\5‹OЦbL:KD>$G:ÕоXlB,2X!2tN*#!ez˧> ## f j9-3I@`ǒonkSX+lJS6ڂhj l|;hh'i8gFcAB !sέnYAc 7$pEc#(,si,#x޵fu$? V.'톇S:2XkvDwX|TQĕ-$9:N\ ɉӭ9!d4bVиzdcS< 풘&甎|=%Pg:A"E,ھ#z+5?/)6gŪe ߼&+ s_&WU&ٯ~47ɮ|51f2d~1Uݗma.oٮ |}K񄾘LEV$MYՓ0o7In 1'?l6E5x˲2Iq0InϰheYԍe107Ybs'IP6mU0<0hkr n*Ý0<<<8h_E Rqc2 n޲Ja}X<i|Lyl]$v $^e~ŏ~{HrW4[bn:`(3ݙ b;b+ʳb0C Zp9mii!!#۲6YqS^Ї \<®jL6k6&a#t뛛aN*eR[Zvx*j`9 aU 5Yf /r_`/Ob,TvK L$-s[¼ kZ)W-ay sdRe 8C *jK\ ,fn.ohLZZ Y'v;P]nLB |6Wjkeuţl4WyyK?tDqCTeQ pe`26`v&9/*\~<?yҼl"U¡1leJBuV5ց Ff<\Osnn6 /xr@"p'x3xge/]R.rST:gSy<$|6$|:*WL`O>Q{ PѭU<Tڇ:|~f3敄O؝8gDI"آrw5Ɠ %p0R(j Կж\ۤB@7iGlC-Qϩ8^v3`U!(PRh% 1!q43?('c`ξ9j׿-@,o;?fJ\]>(7C[wm+k:)6thmp] VplS KبTo8Tv?P/=_J {!J"GgbT$s+"^a,r ) h <^51O8wVp)a]Wƒn;lZ #Zzn#(䌅~+J7n~$Ur@!Çjyq\0q2Pa@ ; ;l*HcImw秜OQPGA=,Max78n՗G_ TQO?XoY`5vF"gs:0/-lTߖòFQ6sVЦPK C=1 )ZO ѨL] D,O$ Iq$-ܤ xAh+J--ACŵlIfi*@;څc9ܠ&:N݀6ϯo'] d[t 9Ί`"dViwfR js@ Ò~1/̨Q$:oPomv|G?̹7-x K5g{t( Jt"!c,~w//v+6GZFnQH;m(BK!cE^,]Y 3!Ǣd ©Cdҁc.m3r6E3Pq X`NB$}&Z=|0L69ek+$nO$JVw6^ f#4yz@l5[\hC8dM[i^@yBv08 U<fx-Ci]7Uĸ-8Zsn؉CI/^gfRR %.T.F;6OB<m%b=F ̎)y$#FQ?ԇ8J>  "AC&A%ێgM29KY jYLujwHbB k A$/Fr ;ۂRSJO.sBZ?C@շ Lq0PᔦbLLN̹ɖ-\$ny#AwC&HfT$.v-/I K7~ŘùtBH!&A6ԍ=P]9:)@`w7 tDY? QwBB<2 Bh@vl bd+? 9!kX\Da^A@VNe1/PՙfbPn1&x3>=f0k(:0FbZ>[0 ruϬz(8 LlQrwiitUM=-Ih(O fGG6Ś | yN5{3NO85nv3JFWLmCt$,!`ˆua"Qްx*io3\_*mdRY- FswgLyt%ѵ@$ {/CdF8W{1N{BYa,{{X!%YVۢNVj8 k`vb$?P$=<ð+ , Gi,n-)AnC.()MKx 0iK PHpYº9\Μvy y͑S.v?w᧚ie!}4w5}ӍykH *Wv5ΞbwRβMkQgaU*OVGÈT'a)eq?e1ɑ" xj~CplpKA(M'Ņ-슕g=$EU*9C_! ;Djy W'ԄMŜ2Vrs QeUvʡaV^U^=K88mTڢȨ#MKG$i8N%d?-JǨy|>:&=MZF`+" T+,hul{ċ9O`w' kۄdlfEweaYCO7-ښx!|˹YLZ4R ɡ RE7|XqIZslS~RɞZ^1C~]ƒY!a?+Hz+sˢb^ N - )Uò[`d& 'e.Z251Vx ?FC$5LuSr8Dԧr%Z5Sf9xj'( )yڑԒ(;8`U$,{/HnނֱM9+}Uz;M5P B^|ՋϾoōF@zӦY}-%p\N-J'[> 60mHSxn={o 1ɴsᬷOws3a_D@c,-lyZe=/M@WgVN%O/}7vtzUry=-fbޟUᠤ)\dAZ7jEX~6P&lL2ebm=g\7[ygX:)#*?+z\tjR~ =!ՓF=V8r$v6l,m_p'?1EQnd&9Ŝ  uE&kF=f!C eB>0[(0xJ|O¿¿!'sF,&[#: 86@g TŖ )Z WK'"dh"H78߯I'p_Tv 8hQ(.Q>T,0ZnoSFm5<_N w`D0FAdBLqQwSx-o22; LBٜi:r $ GN"s?59~`+ql*f.9\ /Ɩ3=Aۧ@KOs*&F]%]@ 33/SoL/Ia%A:暽^^R282G)|I | 9.G<ɚl٭(Tm'Fx!`@28_Z~we c)2kJs0J5ԁXyX4ړ{nB kMfCYJ> H3/s'pwAXp)M VoPh61hcA`ae&4J( i~FW̯ ćfM'OJ ]D!j4ɑ?־g(,#Kq;ᠵ"?s~|*vVZJk۹Y1aJZ(Ê%9S,uc[BQSHO |QWEʹZO7mUbQ?ڜ3aNtᅪp2J̟襁&G=(dE$?aVȖpmKeZu:?.yΥ>/za>NN14g/8l~1Y]&XH]g=].w"ʝ3cd}K y4S /mIe.f]AiG%Y` I]y&g rAPF!wQ!:"/Z#S8E敥k# 'Yxl:FE64:eI2PElՖ^ ^^r}ާv5 ]JI N\O P͸J! K@Y񅽽H獁anBєړL o{ApP2pmms$ )6_uV]RG7H``%A 'Q;|JUpBtb^9mǖ0z(iEf i,sIYl{V|~ْ41~i8UH+\wB+12{C]<]G_Y'4qEnj l? Ϥ/E99ckF[]7[C8NyP uTՈ x_7n_A$?s'WJt:|UVC0 H$ !\R%cAT0<++öv_x2 90B*7X5`[z G.M'Crr^ EE> R 88-y":8.3ߟ; TvAB`6:*}jT~9 ;LҠO} GƜ_ 4@3.J"IX$$TA3 x>H|F) jspr\ 5ʏ4H(q:qQܞDM B *\3n+{Ć&8|JJy4:DtG5qh_S[k4x)I9fK]S[;|R["?:Ko}(6M2%Rr$>d̎ |Z!|~>n%k54Z&zsM{ݦ2468+rE ae(.aݙLOO<J+]2ސ?CS5mL] ;YjȩW>U9; râd򦋤8R֔ սϟ͡T = !UGq2gx2WRwE>%WZed޼ oABZ`x(p_GCwk uРXBQl:ΝrX6GdQ&ǁN;;JVo;;IT%aƂt}?r8Qoti Ҩ\Z> 9AnG@ǣj<ã)ˣ pv=^#uȜC9K ʐIȨS!"`;7Q>22xlQ'L1#9 zq%OGDW;i,(} >y,B_v`LEvDo?>Il19B}AUߜ`Q3+G@Hh|)8+׵ W l\`;7q+$z}XapV-^ )j.# r\“dS]LܖXJܲ|1pf}Ś`pjWxzՒ3uͩdv՜6iE1 F\q#:\bgQRkhdZ7](JT(%!ÔjTKpYJ_8ǹ}ţOpeB'W݅`'80eꞸL.y:7w $ƚ@IYtBJ. ꟝ %kVT߂spM'7AA^paJnb%JR[V.Dž/6y2oDȼQ}Ck\[ܟ`!lc0{s o;"<V^g &a^|vCu.av羮뤒հzuҗOC 7_ 3D"R;A Km,Jk{H2 OtC $Ɠ߆Z/OW3 0+Ǘ #kh; qnنh Q@Ff4 Hq,;Qwl EfD.{Q/nwm#V!O{Cn!M0ȨFM;G6KzͯQ,L}2.dRBwBm|=*``8Я{)2tW{,ݢ.sұw倰ؕZj'y[! Q5UNU=G.%@b)Y;\]a^T:pA!_,>3s?!dpRwo(bvSv_uRDY@p`Y\E \8g'jIAi|S7$,!B1|Gc0aA]a֪{* k-% < -d~cp݅ |n;?-s2= \%DGmkj.z(.~ Yj&+UKHXRaˑi"RlX'UJ_eLd}nu6ԌcƳ@ 1f{Y=7@/6n!D{ݵY},\l[Uj-3('m+~Cp6{{$5&И0e4Pa_`^ݞ-z3Bj  茯zS mjPm嚫]]Q }O5#/4t#Nآ2j`)@pڏ_ ocaml-doc-4.11/ocaml.info/ocaml.info.body-8.gz0000644000175000017500000003411413717225702017761 0ustar mehdimehdi+=_ocaml.info.body-8}oKHħ]ٖCYZrHqErS: HHe,U1W󓜾ŎWyK3===}ym2imYVئJz6.re>f[M$1| Ol9KW$/>.ɓlea?>x]5Gǣ_OtdXkɑlSEf"/r|^MVoi,?hri f|Gɭ[CxꤶZIo>.>Lݧ;dd.VLbgvKhͬ@|NMIOu2+ŦMuiz]VMmS;˪&f˴ZX+bKAƚ[d' "]eG=?mZduEC]0..el2{4g$#^FM{Z喑pf)5@A @s^1.ϳ*1 ib<3C;-9>Q!lD`v6J%J` !&x@8)-kvwhQox#me\!h6Ka{2(膨mݤM>C$˼95;V^Wl-Lݔ&-D=zGUKoEf)|"0u>)|ڌ87b]EZt="(LV.岼>ke+cˬ(fY3f'ܻ9}.AV4Ϯg{psk0zw *>S{)mݔ]DCz+)D{R38; ^ Gí@nyc'x) ňCߛlW]z䮃s dyD8u,0/gB#C0ʮB@ 0я>~P3Jۊl%`iWș~ yv3S3t˭0 W@;m%9JC"uz@o>.ZzjRz)|ZF %zvrΐ3P '@=[g+_X*++3~3FٌD#zb{Xπ/Яs.߭ t }<{BU-#w*D %HȪt;,Ӫgp(\=Q_r06ݚTY7~Q"0*[q09`V$e9*JbOPEeZ/Y LAl$c_8O`]u~Zc.p`9+~p$k4:X)l)~Y޴Ŕn(q ؆1h@7C8Wv@PO2&:`}_9ebO鍣kXFǝ#y)i1:aq Z$ |A$OXw"4eKDԉ"=(} NPN/o%gEK7h_DbY, >){H˪M@"&+j %$c`BF ,d7rlR8p33;e7D5yZf4 &aV9())AdX5  -9H2$vdMvw0ԷdT^/Kq[*ko^4][V-,@ƈK}EǗrᒽ&=c(o=݉dq;3*-6Vу-71N2EeSptG=)"8GbL4GmU m(? vnrBnj/KxoZp1']cxG6*F[Wٕڀ0U"E ju5b(mJy=,(/Wa2I|t:l3i_v>fZGy-d5q+xP=ziW|~V!Cu"=XGV)t Gip,2^!fC8PwP t C2z3>fgHI}&>4Bb^d+}Yͅ~tN:q5d⇤g-ǽ83Q}S}6QVl&~coAt%=w[P#߂yS(څ{O7cМ9};wN/ :KeH"y}2uBH( gc C禐)"v6ҋ1(x橋HD\1 7A FC~S^wF2 E0 qP4&aW~'XjI3"Ƞ [ 6+Ʒ0Z>Oȼ̜e,y EMY5^04,F{tS e_^Ȋ`2m Ԩ :Swo7 ů{R0->Gh>.J|vNԲ։kAPMb( K{kx^+A}"߀EĕR#+MӣE 8(>vo"]YĴ` YF9Ƙ44 W+0*PbD|$ #$$>5|Z{‘y. Bw7x+||-#(-Aa )wnOHVڃD{ A=i[e42 -PXExO%T4ڐ\JY\mQJeY ETYuESd9J"д؃IC.+Al ;Zԟ, 0'?){ 6A$<%AY`2fTF{Mv ou|Sm70x-ARw!ЄU杕 -jj,ETbYD'T~E*r*y>sF!~;b։/TC|/fˎV:( BW-ȑiFLZLYc**bA]Fsknp=&#`lM ̌3|2c63 QPe9o[JoH^Pl*Ն)A4j|j,Q~Y5-@E/:[~_a*2u&e-gE &QETx0p {ޑCÖ58QfcYJ+3Uԇ2vĀwbkď->>n>McZ;Vz9Fu B ?IrvM{>__Gq[?f` 4*Tw/Y  j:FNq|zy(k&j:2t!cF+aI%)yl>% D~"_](ޜejCESgP^1[2=(5VVB!йj,@ *Y8y]~S_v<ЧN4z_97 l3/\rNgc2} `Q. 8 d%d?58zSIs Dj8ه eU~6|C36Cj")lFǮū۷'a͙uh}dBqK]ӝ$qQ.U~vwh,պƋenIV003R9:yU7c65 OT53WX\e*gc pSj ;~jbփUs>qXQ߱-twT?@Zg@J_Y~Q - 1DT^h@|lN|.DСKW Pp}F̒A>3{ h+4Lu*FQح͹:GHJW!VJR]>LZװ[UigU\ꅢ*&QG]e֦)W֒l̻In,7i{^N 7. Iö;Z7q*q9@=}F=$#G$#IFNN%<Ϛ4Tݹ2%/!_=iYI'S]u f#:+u:{I cKJ 9;\0C9P0jnhI74=b:C4>h꠬ tJ0DN-t4 Qa#)C8ېnJ}Y7Țm5Hxx9x[a$ ̛jRlFfGL+(XuB|b)9Pu1O *n2/]$IYJUAL `[e|WJ^*\S?;EiS&VLԹ&QfG6EIPawKk{(mŀ"GD"RKoKKj0k2Ȗ W#3`|meY?~;\&]3Ix)I %Wd )9KS*Q'}ɗaCNoϲ`/ײ^rY |IoT9]}kZRǰ߳Mlv>e[ ̃얝y9yx+K0fdk|EirFAX)MQcZfq]m0Z!{c~Nj5S20=bSޣ;ns|'p :Kn$: $J.Ia2L2L-9/rҴ cJJPdyM!}ճ*]?O:!O'DS$'fA>uBҮ~]Zr]05p =uҮ 5s?{~t}/$VWN؇2RLOJÁH*T,)nJFiԜI_ ^Pomzo<V Uz 7_Rc^Sܻyvc|bei,N~8t`VL;&J}?5ZTթ?>t;~%?8 BeQ- M)+8%2AYF3 "tӋagc"5O*ө0*iuXF0J<16`ԉ']4$.k?U?Ňw׳+hǒs܇~{ⓂT= C>D)8% y*`tǪ_w:deQ5%t&eҐN(=Z[SnM3vKBrjkNv'>@d}QO [*=ls_P' fFMpɯ/:D%*]jʊ"gҋ4OQt `|.~I/=aA ؼQ 4k}עC"eu#ewO#eq\iw Tb~ fo/S8ly:P(U}T=yĵVOAMy[,G'{/ %c!8U9JΩb jJѤV-o 3n`eYqbMVʦ6@Yh8M]k\aFàW̱:E;BuuԲl4^uJr{:jӔ՛p~5يNV %45 qH1baYy^vGqɓoBTW"Y[*(V:7C!iv+=&Rݨ⚗q7ǀZ;]z_n/j,%]Lϭޙ)jIÆpiD*Vak8cPw;CzLɕ/{ (= ;tHEqc8Hw"۱ 7Q=kM=0ЊKwbPȽp :RL\p,.D=ɛi9P!Uҩ I@y<M< mhDEw4EvlJ1],X|!m,%n[;AtGnpe)w6<$_݌e8<ԛ1r ŔE сϻ^ww%ּ[1.!3Fⴊ -dqO=\Zf8)R8+yx4\GװF6aޥQ }O ڲ$ZwQ#Ii]V6i!y?.zDZ'tZ?7cyۉ߱ju'kZ$'Һq `Gb+rqZ ^ ԋ:hW{rHy9<0.%DـBm]muu,Љ{NBhw#H2fH0ׇfgvo =YA7|/jAj/pQ\\GLP6fU-ɋ6AqBQSYq _j\o:gE'yL(4x T8e>Iw;`|KT.|4P.7ʃkB${r,u4Ρ8Ru¥Rcs!DYċmĽ~ԯIۙӥkI˵-C#c^+/d^) N2ѯhLI WFV{YoL.=pF ?u&& |;Kn *H ,i2[1-ݳ*Ylk OZXok)!X}1V 6(c26'/dhƷ CEH6eqiѧq?QWDjKo%lZg)9`/*:dNd4(A)%!"CfѼh0-ώK5+s9Xrg$si50釺vY ]cbc!V~3-2ۥn3El&~+HN_©K ^#`(ײbÃěg(PV;) z߼vABSoѵ\bJ錺#de*1ܱFz%_\A \΢mL8iEj'Kou2 Cȶx5!ͤ:m+(Nt&x@У6^M~--AD׆]TTM*=ʶ;ʻ˻[\[cA .|o'XKiuF%ϯg{S棭w]ϴs{zYfɓ$}$}SuٛU~YjN{+LF҈kv6gCuMV78\zMc %,h>NBz _IN@ ܔm8 n{ יR)) p%m0nrupK|14' w/gtK:vG©߹R}]٤%]_{*p[Sc~.\sB`[:F9/C-ZRϳe];Ǖ2$*az[z2@c8w :C|i2y7V*LzNC],`Wws?z^ޑh镄&HaMnv+ M4Fo6v.TҠ;#\`G xJ* AҢzJҪla8amgi^oZ|e /a _'l?^SߔKeKO7.7֡7FM)w~ ./:ap^BoC"M̷aJK ^+Y$hCjh9?n`:2ܔ{Ly Ov=1w 1q4K|=)2zR=V*^+]Ow4A+[\O Gn+VqC%)%Q=sexOY=tHLc?V(v`M0b!Tx(E1O[ @\l{s0ugT o^H+O{E:GNq4%\TKgd Nh_/.?C\|{_jLIkr##MGJ6]xUljA ^Ն0e"-Q)f!RQDr|p"h"SSd'`F @F L {er]ׯuZaHwk=W%,ILp`%[ܥp?ڌ(Z_pk8h~4v#3"]2E$^V&LaLOV8X݀6]M *kꔪкtDʋCQ -ad !\oek+څC'_ cs7|mn2mrcQhmm*n-Ucz?Jk/v0&ږ&쒵[Hbň!n7s|+. m&Yk3/isۆVp X6b}pɃ68 C,|?l,jl_}-[1]I'Ǟ I>]^usO"!U`#7Rk@qn k}tgq5F툪<ghD~m`]{&p/ޤݏldsMv^Uڡ=Yq ]''*w&P1:*S埈K3,e= 7[mX_q(7W%}ũ\Hu:[ߌ0_SI|ڝWr > 9aa?T ŽgFV[MPk%=bXD9)|!4L)N /vr4"3L@H0|7}c 5|,%SQ-{w|=OBX2=d)K ,JEX )Nsʂ#2:5tG҄Q;,^v!qf&=^;S<&ì Piѥ9[l\ؚ;?`=rkk C4Tw=ϣ>]9qibҾ6oˌXV'Fh] C)$oTN:nfpLAnk>c k=篂xS.g7IAm` 4#R(Gr# z'r+*X跡0($Iz§{rQӯsH5ܩ)fӴ=&E1UX;o}⛋5BeQ6CO;n))&\;a^2 Qh8̌ovC4/gMØ2ҽ2yJV5jy1Ϯ( %mB׾O"P30> K~*bs5#=:$(8:谤GӣѴurY."-(=N#gMϓZߺc ~|H2:' c?ч=݊[Z_ǫβBV/Afy-Qg$߯dpB\ylޱɑάvia]@q}(!>]P;3Jl*<⺬y} coh`-CVFɑcXE0t ~$KR1= Fv D/|Pl|/+G+E->˓LT8 OuZR-?T.>tEҭ5uqُ ݾKDvwPVgp0&{(!P 'x?;q3a8]x3KjU_Z)(1;wNv!V͠TgùnBZ0gzS.)pQM1בuLZ DHWf-TѵX ,FbKKq{vFb V6p^AVKNlr[I,₆ů|Ǿ f@ՖHdBgJTV-6lMDuT>+0IXl}r atB;FŴ{qlG ޾& :=rmC4%$x%WqGRVUg#ن|T sD'OE 4èjv͵t+}M[F oH(.k`__u*zKp[rrnuk`'>~~Fh]η-tR$/=,nS@C%?h`;^Gr/6hntMEyKۭR9)Z0[b/6)pب}UZz/#FO [suXo-j^b3ޫ>`St  A+8z7J! И|),D#++++zfo2Nk3˲4UZԛfY[uofvk~4 hfyLbYNWM^ɧO?]~gTu~;3Z&SbLuT䱳l^E/lrk<MBL"WIp'(" r :YGj.Fn̍"OؽROrW`xf -$/@ޯCon0,- 0͂ ޭ+HiaXb$?.jm< k"n-#&@نfMNJ!~VHugf=.!vщ@LY:6s7%p]ULE6A| Ydp~%w>#h_8 L8,0dٖg^ kdZ_>*A9ӛWpxڋ:II B*a&v DYKuJSAទ胃L[Ix'nu_ׯ?G:&G{;^@HO9 I)Ds4<̓8y!Y N{+ 6#>&LA'8+pe9cQ^|;vڳb4G~ZkrVog鲩yrrY 9j](QƢ6m ١*""DpD` <p1|xфs3+"hLZh *Llts֭Y'p? ⛖`X"="z+BBݠrhp%퀈Š$Jͩ?7a͸/6Y]ñ@DUY 't>)B(1oEMR} 8|,,_vg"KڔsCp_L ")$wv M͇H A!|nfzr"{EO8`g$u%:}|24ǰ 2Hͣɳܢ$b|]ɞokFmAYa'Y):a]?$٩y}ugڬ |g1YSk$cPe(.`3{o Lm|P4E0G23oinmXt0NG`3V?$~ {sF|O3קS.~\41[%x6QaE:4Զ7р`P^_i7xvv:Ji4G1ġlq,ň^.mX~#͹?n"2 `%b=㑫d6z5t)ojvѡq:0//.9s&={=Ѩ&zBQTŬޝM.50X17)34 r]@hsRix_0Z-3kLn-Q"(ɻ7Z:Bt7鹙9I!|n,!` U `FH1-j(o;lsi.z<_ DkQKqiLw*<~c5=ۋ,t8rt41'c/GIP`<3Oq3uݵA˷Иb5|_aǯXb6BX9C1aV DD}Ж9Ø~Ŗ `+4̌7߂@5q,ﷇ޽9Ǚ]iv!ObHϿa\x|UhPX6/Nd8sAcڱYѰ3Eu rM!vģ9q҉X#!PQ`8 򑤖pN \ "1uQ؁V8R_5iQt"Y" 3Y05m4HߋS;G[ŞA H(ͫ)&DLn:%fJ6jeYhW)bApt1tz`y͚]^Lyt'>k%H6;~>OLƖv!PJEg_p徢`];1xY #YhKI0;NBHFiCbQoԥ?K&TpC}'߰ll 0\HwQBSɖK n۾=.1#');Ģ^Fg'pey Y)Y8ۜ$&m$'83\1 T!o3[ ;Q%8|eZrd;{wrL^;vZbH_0#kzI#@θmE6LSᬯ1@"f.ŜUNu[M G,j}O>bZcuAn0 |'I4L"5bjV֨.,5ls S9f=:(R9}l7Der 34f8Beu 3;pCր s<((ڗ8Xr?妀9 '|DT3$ˍWGF+z;G&mG B-~z{ Qȹmza%˓"Ć|M^{o".xfbȡygMhk mhIhDx6?9 O>O/?  yk/`$jlepժQH.><;g9MOXDTR:h9ɕ,D{ୡݘ L8L <}ha4ԚC-)FQ͏'\bcK_t2_UJ4T#+@vވR.#aC#F rqdnOatL zPle68|@kf5B.SV@0JPD  'H6&Ŝ\B-s:RFu[2/V m9AL1QĮ' 2?6@;'n$k"^6-&;^eF\^v/_|JDK ߡՒ2&-r_on\`'V6FO .f5ӹ(H@:_킶Fck5N}8谜Sw*pDA Aވ!K_Ȱw)?5v:N0茋pW2,"ipףGډ56,I&|;ʥ*5wPM >}.!4.m:=moSwFmKe,֢W׻CT)v-[?Nzvl:&{rU3w 'EguҺqQiMk=xm68 ;E%%٭ֳBkKlիOڡvʡsM vUCO^1,2M1Fr\TeGhݔQcU~e:Gm@;On}#yakew]`l9mL\= n47W-r.?fN!%cS4F%\a%uhiz~ʨ'=qڢd5m uyiX6&#Kq-\dҸIޡ%N0\]'v 5O>Q) e]…<e\0= r?d̈́ UI<@'M>4Vх$[#s=pYX"}s@NkJ Bc֤8 o? h5pAB_ SD6X@ƉYhQ|! IDsJv#ꁹDb1L9ں%~ g iȰL7!,94xCֆ/gz>I:mG 4שW6ew 3x~}( G*lJ2ܣh+1A"V-(ky%P)ʉC2j)#Rˌ$x'c(5y܀flrpZ@t+&{o%,^T3nOqT+P4Lń>DJ>=J\7nwMc 0/3XqJ~NEX?}aClGf?FaЂ%gK0] mЫ y?D.c]3r]V%@PC:m7:R>FaJ[#׮FTS,szMXcG #k-*+/+2K⋆J4gN5oJRH70dr.aWZNw㪑Uϊ. F#NPZg;M@Z\_c9Qi1 ⌒CP%ǢVFK6Ѽ.7׌ؒeDZTs=#ŭ sQ@\e-P d2既=9\n.f2<&q2 n#✾B9)Q`v1^9QStNVkF"~?!OlU\\Ɗ&^xlOg[+L2.w'|q ~yBK nSpE/sh('A/YS(Fą}UUkN-)\$>hP`4%>)&Uw}r K* ?'zm#f(vj.7Hb[&8TG7Ep2H& Gv 5u_Jr7!6dkH謪)VxqSp.vze*[TS1f:RM%v%WBMz:uÏc!b8J#6$gQsƢ+, Ф+ =zQ c|GoLP8p;U}z^zǿ:RCKmAϡI~xVgӾ<˫{Bw=k; wǮT쉄bFgWC(> Aj(xYl2eher3>?d!}T лQ1a+N Ya$uV§E!sjF8Q$1$K\E c:)ؿOOs L K5p=J*|,3ޡjo~RB[a:!"eB\S?ۙ+ ܊* @lR/K /΍ͤ])cWi¦PFݵvE8&O~i9uJ}?{mЇӉ}QוAQVa?΅RE;7[suJohË=ھLm_!h 3ա1U#RՖ_]RCtH9zr}-o ?eO9hM},;@Rf?8lA^S׹AFr$FT~WHY ObbXviԹKYkEKE=ٯ 3{q`Zv=pw-v/oFzюo[jn b4~08]T^kuBs;zRTT'idbBo{jp:.Qb"TjqZ9\MvHG+QX\sLc 8IG˲R%X nQiX\>m\FiB<ˋz>cqd]`]"~π210T0N`h;\vUAxpb{Wf/5x^GvR!Ksbn[.FgK?'r'U!sײ}ن/BJ~}b`9)d > zד2YpOMwryeK;,Kv?ů)6m3aKZ ^>BVGjzWws_z:7ܝņfo ?,]j; 4"Ɂ)k|72PTw7=::KFRmFΑ"DcH\h$t 1aA@7[y c1V>/ !2E }pfp$9H\Qj1ƣ#B8] jX 0#/ɏG"{ťg_-jG^s=_jËռa[S9/*Q]t#k4 PڂÓ"[6F&W Ud'HMa[N t  }Fp31o2flk((qCl:`yPO hiٰf5owYd5xݲ}*WYٶd2Fli'RSkb_}; L x8Q8 p9e%5 jv\R Zrr ff7M]Y7СDN@hΞXc %/ p7U ԺG1H.gs a,u/"<Oə72ZǰgHi(M'9`ǵת_TZŐx`OM+2$k Al b~`HJW$ho@Xjf.=5:hBΤG5~BhrtNHwM3w}gܛ,ັPED7p:|)Dyn tdϐr3t`J+L f]i=]k!C7YZC̠>8dz6A.tc/ L;iپd^ ip#XEK;.Y!=pxM,1 1 `9}~ {Ą #Ze:EN^}gVOƸceAd_WowvܛvϙM>H*FS bN-dzzM2FqWL %63Q%86bR9AƝeMF/5hՆګ/lkn $"iCck0D)"Ej/F$:~kԢAz +)#\r%y,dAIQX,YSV~MMKHTj }Rpz%2ʫ!P趛efa蓯86ߗW{0d!V!JzԄ,x__K%#|N t՛n;YA*<]qg9zvsj DWz:`sy0\ 6TN+<إ_i.I%6~MPf* _7i)\xһe7"$IetC,[tN)Kta Ts @&~駤.s|uS y+\N%3W_$҅2TYFZ.ghM$%mRHhc/oa?Z?".Lekڙ4uK/z:I$"5ԎH}e͙&ZlnrESWU,pq/.p&S~~m.Xs5O=H R+Ȑ E]Vx[HF(×$:wv7, Mao뉹5;luy=(5P<}N+opi_?w}ݙX!s?38ၡRTf\|SН&x=.<͓MQcpDu 2r,Ei`2l*vRe+.2|&f'58_^+\A \8чt䀾=KxEJə{^p%P= Z+M؝n8^nP8'S8X 0܈8KdAng. ID@QjD π8JR}D{WeyVVXOϼ[av9;c*1ϼdvHkob=CB\28yы?PPJޚt;k}E{O\U!f 7^ [/nڀCDNsF-hJJ I[j\˳eD p]>xn-¶A>YS` #NQ^]P[j{bp_!0F/ip${:Z^B.NǂyFx0]Oװ?ED1 %Ԩs~kxdݧ.C l)h0.\Keh%U !U}\ʥdՙvX83N76b^kt/bL8/639sxV pK$kT'̉cy'xu/2EZUMQ2ewZb<ڊS;x4Dss75-?1k*&hWˤ:8 MB]4d-n9qՃMR5g0>s1/!bm|کYJi]@[Ǡ?! I(yi=^1ܣn̜ oAA c:#f"[{L.*m@e(5(o 8*X;^i]q+f=:UHWe)%ӤWT&p\nZ:1ObUY;r۩8 /=G11xt(U ELX8*5 P9?(X*^7¸bPacEֈ) l50Q!n{`)Dvy9kGpRqI r}|_e4OIt$I*\U2EO{4D_'|1sx4ʧr1Ly>^3e"?UrSY|2ݟw?N?E^z}?_&QY,.f"q}`E=lS YRNtQPlZyVF"Jg0U>L밇cY VࢸHx]˸Jb'k~Vؤ.[哟iMqR:%@ֳi2G4`,J3"E/K2_WWivUyfQmtu)}`0/qp t.b`iHWIPûXxQ^UX m2Y(![-`\Ojp *ɒzח@0WT 3FܔU1e%J+%Ӥ,qa0uH)}d~,J|X$s EH=gi@p8h !] lO<I\nx("yDޟ$!^ L$ hS=ne#pzA,Eo!>^&Z)K߽Q\D$Ja l+x>=~~:忐n"wOApJg) `h'. %Wb?^_ϑOn*nM;'VMwT&\z-5:i d$%H%+ѳXM-xHG䔦Q,Jzh`C 4ldӋ?>9 8[YD23suF#&òy6H ?=VOu m^kqo*x^ZRfIm! f5N3]Y,Kj~@tʨ`i \ Ȣ?%#`fV _y} SM!6 Eá*aڋ &@chp<>vN'Ik EqGTI 5 r"oo`̀57)f `?!Y0h^EfߤXǟ X yX$2^᪗e>M˯PLZJQ^HIT,@-VzՇplK)]`bzs|^h~saO^fmZ[m^l {;(}{>"([HcicO>lL 4]U.i4Y5Ӭ\!,x2] d!c8Ϗ-odyZa? >h;6XkeJI,ݫ?,z.) JKwbӬm'm%XE%ڌ68:#X4y Qh>Xy`ŗF7'_C8hb{_6ژMgϴkO$^Rk+7i&eɧ~#k[ZDu□':<6ET?L,!Kߞ*fZ/WܦlYdh<^"5E JK"4[E4yɌL[KhUZmnkض #3&C([&6EחRfi$6cA[W7`ElU?dFbCGz[#rp"p՞5yzTI!4+{2M'D9+Dy)__A rpߡ!|= ]^cg58V$8̈́JjȏKX d oH*B/>pW5p%Ж@@9,Hzz -ieЪ Ѕz0b&8^"!1,6|L+C+F4tSt7Iytp0"Ӂ@9EoL2h4z+6}=8pnh<<>gg|nGh"IB;у~C JwP:\g Y.B-zoFoX *>\dTDa'ǝ+zz@VAL<CEfFmpQ~$uB`6t9LOj J)|4W׷@FxG2\u9xd ܤys?tmX.RQYA~Zc6N UecM7vL:ˢ|%KRJQڊd4D -*U"d%hu#Eյ;nV11hˋ +vI ZF?>8U Oѿ#,נR" s0b6]Vڦ9`b1 ?r{ͯgЛtHiMlH=@"KڈVtZ=_GOR:||Aeys P28% 08Q>q03@K HSg׍MKz^C(-LyH?Eʶ r@ hCBhʰDK \OCcwsP3"my΂Vwdh2-Q[ 2!fE&c)׫D}THg"@$"g3`ؓhxZN d-O^W h[R*]oj*a9§^ ɶ!SCQE@z}5;dtf!c[*DE/FH)43bKW!owć=5c<(bƞKjE@M yM'_L "Sx.SM̆G.pͧ'*B)iM#e+*+xt*X&8 ֯_a0~D{]$ MLB٢bӛU\Z1 c.njܯ/ ii`,&:B%7X S/+Li 0M9T5œūu$ZARvdJf¤q&/IW>G:]EeLܝN3z`SNv? cmΡSYj)kZʬYHqd5[P+\\#I.ӌpbcK6Guwm/(wXK{-89r@{0ba9meQWlsN'U^̕!rO<6#%G07N1D3V1tjm_mͫrSGj&Bx28NG@ѱ:%f(v6h#6rQ=_SK*J%Y8,Z(ztClؗKXFZS@.\Pz{lmmc& T~gŲ=AW^C\Elްs28:FFYN1HW?;0wyF&U`Ǥ!AxH, b)ȼ5ZE&9L֦=JeTªYe J7LЖ4qZqM׍)"$D0u;m[]JWL2Ģy<):ua_VF3ꎻeD}[ˢy/L9aP(Ne' 0m)J3a!]hKX%4ܼjH huev81hb])r[Y+ ,c$7f*Y@ZKX]R׏3Eו ݈=slxr vb1Om:Oٯ61,rؿ97Hf@^!)K1c?L[ k;ȆےOW[帼]$a m.9@j]D8j/`* f1#$$6 q/h88ŢWAƆA@3(ZF'y+WdI؞6Դ 4Hj~ %rD1u1vv,b)9K/9V &h?>ڂ6 \B$}Cv^;lxMPB@v6|].1m 'e^|r.hA`jܥpki|'=oc'آŦd{&OLUsE7Efw؆{gz<f }~[t -vO.R[zB_鞰͛_4PZwg K'Kkˁ_ٌ'Hgo~1Dx< JF:0\JKU.Ә>!A\MUڶbg%}r5gs/O[VvیWC6͈۴Xe=swQ'0J$;l'8옷ed7e1x蚎݁WiM Y8 0x 5D?M/9A 0{ =3n3Ldm(By^im kߠ2 %q/  ` %!ʙJ}QW rF7@SbmJgD]R읃g|ғERtħWmz Kɀ}Et]6x:j: XҤ\!"I"%PTJ0rVҧ|n`8~T#GD /)m3qEp:nHlb`i80|%12Z  fqx[0Ḋ.Ƹxbl¾jL\_>ȵ:1D_#\$&rwfcڪ4!Xx~R DVQ"Bb,ADri06LGx},c@+:ZCLOӆsW"XްxrRM8Q,1)i"Vmh`|?iˆ2ɑ]\\DńRF#DQ k<&)VK/'ŜsW.lXt0=$6IwO_dkxKrsⲝpHYg>Ҕ%GL.i{IPGj[vNJd퓒MFr}x;'%;CRrsNۖtd:)\&OJ^oo;j$Ԓn%"57C[Q]mKd` =Vh(vO)F@tsawM]Ze ӶXN ZD1a宼U,9MMEX3ϣ;9}ݒ^7dKګY;'^V4d[LOmVfe<σHEs45BhL|V,tЖ*Kq7I 3sې1KIwȘUX5iq$y ;%jgϾͼٻfSXn%דZ6WerFׄFl28M)"ZJϵ[&t[l\Oe߿CnhJ\6ecnSM~jds5|$V~xy8LV{Z0 ^٬)HZe=lG-Y owIeAIwLe5RKū$Go?}Ut%)9o|ι9-sIޖk*|w+|:qX9mQ5ú/d80[Γy\2q`> IՔJ!,VhSB3NMmC;f٩;#%?XR{-B}^ Zuy0q_%-.YC& <:\Rٰw*^ůԍLds\V9Q=uXv:S42HyOo)Rv2o>,V[O~?:X*cP%mM8m[Du%7#Rd7"G$({ܔ{brtL/xx;0ʢJ<n7%nh?^ųe}ʝ{M9;'.|cQH&_]gqRX%Ŗf}>EQ{IK{,*=DrM9!dvQC<:Iq , DhNM" <#y`ld\^ @(.׉n_E,sCU`hdq9N M oC0֋3nsw2dp|tlǃLjdm1L&[Jz"cR*b٭ug^)p] VMވKk :zs)jb'P)\760qKAǂ1{S.6->7dNWU VO&o Vt ,+4 A@'/ ?^HL#|T ~CohOe9HƳYn '_O>_OU qc)c1KAJ=23L$ɀ%]rLHaULiunѥPN,{-KD&(#Ii^BUƔp] rֱTe";Mkt*kI֓CRtE$)Q9̂bOLbY!挫eC9QC!E\F~ A8VL np`4$aj5LyXN;H[>H"*Me>VbK( Q s~'tq`R)qD^%m CVjN$F\گq`q+BK})\9EHZ2"h<^>PBW} ֬ɯB_ j'Y_}H>$FAl\9' rZNgpZGvOv.=8oi .̘"fchy1l;OKx?ݍZݗݎwje :Ѻ2.`1XJL;t((PcALb4lיU}q C 9] y62%+ްXwLʄ.WDtf>v:7K)P0+EnP| {gM<)ɢ,0Lb0x`zZ|%yy0UZ3zJa7sj-x5]ú 6m'ۍm{X}5Tv>wt[6Q.3V<Z#((1'N]7?Mڤjm4aMj uјߊCd60Ř!*߲=ԂoiД-a5p*ԂG[o˘^ͫbKϣ$$̧)]֫^&w-I B v򂮸c/[K>f2K8,s}:֪,lp89Uw٧^Zlq}VXA PgK[ ʱ;‰qMGq7MQ/f3V5EmϔzoO_0+Re]g1uTp'J%s_R2Nx|\T9lH! :9˒*<q%i1&7!ʝz:.f*v.,k9) |6^\$"C+~\9hC|iƓ1^qB%C:cw\$Soڒ+J1۱TפAH8 >Ї"1;znQ?ȑhO Dߊjje%lY<"&2V 7K #fw74;hqg2{0 OOt^{cRc-Rg-` ~%^Z-`wb )uej[Bx_4aـv~lov]U%uFЁB&$rg,LN 97pj8S[x<2GМDih)ɨ %)9ZΟECkN#a'LQL; Knٯgդ,sL:ԃ1^,*dwtV9 Q\̂c-lv)iv>j\rU^+*Gn |NwS{*vX\\uDE8Ǿrs;$fr8_zzOwAJrNkr/0mK&/~%r0h.f1f9p +ܩR5{։54݄V"jHd4^rZFg ,esN/:d@ jǏ&9ҋub@6@[6NiHR 8}C G,g?STdwhwNz .D.!ZoZKÌYe9CjMt2*ܙ [L5ZnE]g*IJ?uxVfAs7}gHd+0 YQ`r#eņ kY5 XsHw $m^GBuR1儊6Q%T<1уh*qn柾8AZD#~| ,t`$]Hَvq97xDoenvLq9$t=QT9«Xw{5T*h]+ 臂SkƒtN=,KQL [I3$e*EH*"wdGҡI&>F4enLѝtg_PИi@^vR pdls\A*:ڶ3BVt,t=zu%ڵ94й% 1h{`-&ӏJ*]` i)WuG~'cmYJ~ e|URݪ.+{tJ[Ղ W =Q줼@WX(~M"К s/D4x.x$/AM `4D mmףx֋K\ 7x(z~s9n Ѣ#YWi%CC|cÏoRU(}'j9ͩZ#=t\<^z^x9Qa*n`,{%XԈf\BXwHJBa.1xy}c0zڤ<7*hFC]_ }m-vBF}'a&Zw ѽ+hء2)@`yh}8b9 KѶvlW gQ&&xU)3YWy0I+AX\䯱%z0{WOUZ7am+^jшsϺajbQgHކCK6pI if'R4^'}1g@uN rtkΰ,\~@;kI)[E]3cZY+>I% fGchj-X~߂m]g 6V\cnaK u(NWM(V HR:6ZG!RЦ>P_ ^6sޅkm>PO=_XYtnP1ڠl|W>/hҶe}a~V s iOupK| PGOIwY4ĕUa|C/+֨ƽR? \ygœWeQRiRocQz^xOŢDŢ羿,z~8/j. Gb^cT3',JWĻ@&tRe^]ȁ}rЊCv3Uf0-4 1 (TeB &vZbgIնP4+VIeQPP0tQ{&2̗^B FqՆJoP82ar.zq?"phU+vB!O:!WtV"{(=e9f,YNU-YVMږQX S5$Q jl9hwC6z@[ܝWt{wuQ~~|;ݻ_WڞD&M/t˚Z6ʸSi_Ì$r7eoG,}ZSPm*Ϲf3yڗxSv.NFg[Spѥ#Վai,e ":qߌv}3J4.V*J\횾$>L `\h@sSq-ٕ怭Q UB7d2E\X4tZmt7v3 D̳73q]QC~ሱZICc`JZQϠ_S%߶v 56\+>س/.]wg=+„*N`v_ qCxɞ3"NO4zڤTݯ(~ѷ;ee횔/c/T8ZJ>,kaDXjV<: PJ5!mM.6$e4hPy4RY[< -ЄEѰ}vlk4ٮY.R9Wa\^ª yz;Rgicٞ||$?r›Af2'B;^n <妪I ,MPJ%i; ח* x$8R=b߿rۃsc68`)8gHN !%mtXHR/,_zRR:@ZXG6B <mF`[W>Tۻ=$̆]]A(m%%$yv g|*ԍm!;䛜!ySN{w ?R(p tߋ@w&j"ɽ 9pmm|h^mq[x݊vz @w 7Y 6R[bǷ0>D3|!|h5<en?Dlmcl~ .<~Ř3|"uߡK [bǝbЀ(b*kpVQКm/x?o<>W^b>'O 9*|JXuC8X(&Ɩ*E`Y}w,ju)mQ-0m퉉2m˰ܚFoe[ޓzKyy%gذau ݷi+s>v:~/wnuv6-Fz'ԹB~#@'$3<6-B&}X'uNƦJq+ͻ+E0<t4Ob'8jϡm>@L!||CE#4C0776l}DaŅZF/3J.Ʃa,|C#htx:`D[1 6h̹ygؐSV:t4r!*Gwayp8E CTvF3zE[䧂>~|3=B3J넋ʾ'bW[WʉE{UGK~\/ +{\;8^k488~rb_P&#4*2_c׳@7 M굛#qDCZtڽ3> @_'ҏlq+2"q鮴%B.S30WR&0X Ƌ%?Wve-7uչ:̲qg]B=Eh5TfͪYgJ \T`oefmIff<~;lsQ3ey;ocaml-doc-4.11/ocaml.info/ocaml.info.body-11.gz0000644000175000017500000004266313717225702020043 0ustar mehdimehdi+=_ocaml.info.body-11}FKlì6IKhY݊l%Olow-H,@\"k"f^dw. ,dtM˃^m6Zii&U;y(ˬPY.P;Rݽ#w.~ȣW16'4]/@D[ղNWYc&괈1Jacw3ڼh*ׄatdǺϖf8b=U;U)|X=6z5.$[•|tk/jPĔyK[w9dXo\b7vSgc!/rMhf:`yxƻ 'ؼMQ cgQwD *i4 ov$*/h+lXM5e1Ə C\g:-aWgMN0ouMcNo4D.;='jD:?EдiL+KҋV{ĸU5nm^1z@tzJldbGC|5fΊGi7n={}8-6cKwIhݧ ?|RZߦh޿މ>gtJ2ꥉn Ӑ/Ȓx:TρY .+t>x<>ZxH?|gxIhAHfEgUN0~2AO jGe Sz=GX͡鄣* 1mUڝi zfJB6̼)O3]ew3%/`}}kiw99=&x0ढRACl ʗn/{cisŧIH7C}ƲuUlWUcim \RU>gaas $в!"f8clz.;e# #aVQMƊi4[mz&|a:''NDؐV%d;Cf]sv&'^bg6fxiŌ*oi4i~WEcZɺHsMv7@d4;!Ħ&Gp/DT͠7xss"_Pts<F۽զu/EGx wVG̥!A𒀹d^{΋|:fy:wA`XvPHgݑa!Pϟ˵(ѓ'$2#-h/hv*V9d!#T.qO(i4jH9r`-/>JחEV.iX~yx9޵MǻEׇ@G`.fnYTӴb^TF= S")F:爵X#FhYp9L1Pդw)XEzUƶhuDk億Co_E |[#VZbx*'w@{ ̎ }O-;Zу VT1Ag^Ly􆦓N6b؀ $3xb,*-)qcx@6Ud579AZ7Ʒ|00EI\jzt՚pCKٴ$HOt~=/T{ަ1XlEbHX-Yb5ocovцkڜYR~ u@7ƘKSCX G/$"jTLYhqe 'Dz"(DH?zOK /dJ \5Ox\4-wg3yx*^mO xZSثV4vXwqǂ&Kk VNlf3OWh(ݓm#OkwKzU^c_pV|6#*R(][#m<~@+lĩgeJR\j!%5z)Z5a|Gmϣesp5\$dF+tdbK]Hwm e[(L5'b/2JF+#8!tj3!$+Q_:3'9s=ڏs`--a 2mR* ;b3j6hw6V|빘L&-: ْtu[ⵟO9#7uF ?[.=v [bK8l1aOy|a`"jڧ@CW$w nȵ|Z=,cu}CtF.h/K0\r^MHغoư1zAc;c_zypǢw6{mlY c\2qZ`y-2bʺذ- Ǵ֖#Ą +GBCCU4R 7#D5&OA( d ZZ}n؎Y6pd qYc'or)"hO@H@mLAz;}|܊faP yReLʹ# c,G߸i]˄I <EgY^ႰI6ZY_V=/[ss%QH:"peXfZ4&v0ĂH D2;Nipx(EyvtߕVՒ(3>pW"BA4ƲxiD*eU^*ƃMW2-7XJ(t[P Ph<9ODх⋸FMQwl{ƄDwWi>KԢ^XIpw>D w߸4}4ҿ1gzm|<[7[DAQ_'g rOm{5X.d_ۨ&5B.Aoy4>7آ|ﯳϸ<-Q7G>n/.T.9toͥrWxzgj>N珨h3^{ '5|ib#>eE5`xaL ie)rӰ K3_&"DH;;`!L<= *&I#c !"8! ,ʡy\~&[]vV>+,9|Rg.b%Jh]Z3֞YOH* Փ;P@c<%,T="j oxY!HV Ckpk]!s_:~o04F (#cxd $ˠ3X-.Н"~rU ;i8LCB;Y%-gF9$Lwr\߶ZHMϪ%a2'1S_(ߵF`BX9v1~`} r}yoWkz o-s@Me~3{ XiٚmC0T#ib~{4"IA&aX1iLzXdPx|YZ`f@G,ID h6]0t@ $VYHZz j!u i?΂r7cj`(lj4j3+7"@kRڲt!~B%kP?IU{%dYdE:Q7RäL*̺ؕdqHDm0~ US`. D7y&dBDcf賨$)A$aFk,AWHPi`a[w;_rt$#emZ-sIXDԸ"kNq<=ϡMxס1؋ }pD98 Ib!|fŮrMKMmӣ?HO$њSxgc'#O - c>fͅ)taX/N FF4"QP!5bӉnj*{Ce} D˖8K1^Sjp_<-% 4Bob:Y x4 4":\H(;a'a"#aߒM a>AO%=očșDTݖu9>:sy&CAܬȢ,K$_@.eNSlDaY%Yaي ad8"CuFDGف7CEYhaJ\pF*" D=E⤣LKíi7،}6^|>|© h)l鮭~|+7ُ>п>VN18Y=[0"SKϪ*]V 83؛n0"N1#_{#sq, j;Np8Js֬XBvEy?<{&cd^n0iTwtqH^}ލ?N|8OuTp!utޙgwC1YU&GW𬁠!ZL1(EFF!R_8^\e9ATMrIUC@ؑw2\F{sf_HglMfץ,/D2haVXzZ,ai]o8&ë(@ <p$ci)%L9ChiOI QUc u'@@9uFIwdr<>ES MA/ غ+Ļ4|7[i?|>@X}Ǒi_bLЭЊ y.X, qNQsI"I9}"Oc *@uB\ ;[ϺYF_x'Ur4+g""=qStUB|T-F9xMiؙԄ6 |Kh`hCҡJQaϩcP (m˱ĵXe=M!5\.FXq~CfV~9GSVE[Py޴V\%!}OTw,QAu6?ҵiGʕHfxDVlcϑ􍻂(60啠ӎ9ДI}8 25-vuK0la!@6NTߗQ,9U2퇂 T.NcLVHpa38ti hn|!sT qr^R$cQ"2VՍgzSpg"B ITi.FZ7}Sfti@ [};//0u1zNX;v~ރ eB%I0:H=zh~OUs4F~.2bsbB+t};~!{tvG1꽄ą-Sǀizo^q9=JCf0Q=~@*ن?W7Y/{$` AT1i!ko&!6eiqǚ G鴑iTW,1A(z xn5c^6Q5#0Qd5qǤH2 HAa4fz,^;w|CfʓNh4V(^8>{ԘBXq= q|Mb؝&v'%px@ÈqeDOpP#hͳO+48ׇ2JU¬%K՚!:Gz]Q47*-pQTQD,}n5ϕM.}gn ڦ79u4Lˏ䳳.2tN[N8`ZPHu}$8FvP:Jc\W}%b8MPz1Q8R\*SYA-9;C{("hhҟ CW򿦝{ILХ/EEίbItO䵾CvUHyYhy9u%p M} V}ܑ<ܢ#~s.D hk ǓpM> 7 Oc`7U `\PcN9\lפ;Fg_ڌHL./3dk\!ժ?J'LQK v^Bg&cã^MB1#uEDq!p<_vC-Ga#oR%65wD TRy {7j@SZ_Oxx9u_r 7lF` kP{Xv|3f[3ގ ?E$k%Swajl^O" \!CǓ> ab'֦N+qŀzA)kxs4g(nF}A?^bWlz7PJ']X%œ |!hשW $̖X5 JPWk*r+ IU2K*ՀK^-kP")YQz0fV8^x[vYcv A .LC3_ԷP+TZ} εݲpf5E;֛)(譁[P}ROo/,;:!IaU 5J;Rf*q$Ht4Bٽd\%ko>k/ao4"tH,;x:ƺ&@Kg.ʊj-C(|2tZNkC`ȍ{C ʢ|LTkR+뻗v23%`@]^o8t~>9e"krm^k2rDs0 CI''4i[SU y;*>.J7|,SW:+bB]蚗+δF2m%ġ%1Sq'*yyY@jTLBTFSxed~dHԞPK=U lQ \3s<ȏ 󿄀~0:u*AkGJRK*CqeBZ(42r%rq(@gk5iAfE6 8HLz$Ѣuiu' $d(fkF+s) !-x׎9ך:^nVGJxiDX5c͝j*`z6x*`18p(%EN7K_cYU\L"h"vt_'E͏zg#K5o֊67FsG,Jl ]C`Zc}ڦEmjL} t# P)#f<x}_ =)_í$?&Y ,́XZ9֙Wk,|^f7`q #`*K" ~c\`ZX"486`?̳ڹYV, /\e+x>vQe5oھHJx]c5QsZNk~ &1OJ-Ճg1l 4UhUiq(=>m$ra/`Stfk?Q!,0q?eW^7jWrq3J.*bk21<8fӬkF֭D "h= @ v4[b'ەk%0OCJpg$kY~m(Jh; ʮ= -2S|D%jHtf>sY!l>k_ʟ^UҨjTJgpUjԹح?t5MPӊ#,#$xٮꗏiVw"RT(#.kxu)\D^ԻB9!ZY35'=F :ylJ%/!N!g#7mr(;2!~Y@# ,krY3K O_9  fͳ Z_fޢ hk<\!:r`&@uI yX[X]x).F<1 v@.'CY 6 *S SDeI8%y Qa(GY!W1g\ϻX[VAf"=~-HpZgiTP TeC E݆y/8z2vo@-Q=98%E/(+0H).̳hȎUNqiLڡ8X^)E+>>u/OL 18=T0of=#K\#$o_hxc<#6}P0j ITd"lq 6}oohʡ=êS&x]O*CO35'htm= |.Z[;t/gV Ʀeٔ;0;PY%"ҝg̃|_?+fjmUt'!e&!" \Xc h7D-N5:R|~YOֶejޑY5bSۄ- }x_%d|9Wb_i yRM;a؜ӽsʛs"*JG5)]VU0zT14;*BtL[aZH=\Kv8Q)nSo}}p*̰-YȃvAJc qE02(#@[AKۥtowʃ]/^>|C}þ&fɱ>)0ڱm?hZV<OhœǴ/vv;c˾Ol+ާw30xyG7tt6z0z8z<:y8:y<:=NFgg٣vm-] ԨY2%"|Ogx֚Ut9m(NL1ZU3fYոog}f>^ Ĩ0޵H[e递ɛft.0|Y9,{XԄ.hfXS7 5?bYH"^ SjoGx,nuz[BXP\mU;QXJQ)'y:oEzi)qwRPZ9[՞8QTј/|G9xDsRD 1du8 pI\.;F0wK=[(O'm^ڮu3#+~mupfZq B,OmB#m-L^z/{ꧯ_\*vG]9E=Sp(S*Ք@\C z0NW$ǃseӂGkG֓b`:L fzw Ƿ_8'^0Wj{|џyo8l?[08mY}* !֞~XfGsk0S2ЁaGH8t䕜tKԐ$#ZгrIuʊvᑂ_ NS8;C>c9Ȝ$k#B;D9i?c}?{`U-\IA?btb/`1iS!adDa.lWӪДO}s$N dV(Rkh;Z+҂]iwv O|9LҚǯ^)vڔb{D20m}+#]L?KAMu]cuQj (uEt(Eq[{wc9THs'JE@d6w#O0P)R8n]@SdXD8S[s8uvy^`|(#%:-"J6'9,3w'q?J QXؔ#7D S񈙲5v N!\{SuO+^GV츲TgQEXg8~i^iQaZe1Sk4@E fM42V zێ@^9= 3L)43 h&6  |+)mf%Z@F|W+حN#+{qih\}ӝT%wŧ^Tb򙀟lW\[EaileeGB`+b}( H=(_so$]-%hVgi庬:Q5 CǑm)8A/H@BrGU~DBšjtcD}Ơ+6' 15n^Ӝ)3~X8BD^t0'So%lOOF3y5 pzi_Dj+)9<]GA@5Ǘb:NSE(a 2H&m|PIѽx=`l]J.g,JSLHWKK])X%#mypGLӒd֪l:[]m:ev<X@lfuZPbsxW5;ɻֲ.ɞ2H)eRnہʂf#M:#iETcqWa/P#xk?FuWS^pdTҰYmܲ#Uf5}`N;t {î7p ..2< WEM4Cv,EJHy}*\4Vh.ʳ}HM'YL}CĕT)Ͱ#G4rHC"҆^&#jWEҭlCyfV:!lP?z+ 󲋂hnuaUڠLsR{&hܥdJ{E& rD`!;!t4te+c_ ܯenm6h$hzD-ޑ UÓœԆr #H 偣{oSgI|Ǹ$w B%Fj[!siѝfi`pMy@[iZvt↘5$h7-pePH{#.ro]_H^؛]#>we PS-qG&{M!D2p My??* ƍaDL M`iNC.s|c"7~bW%E$v2%ݘR-q[bFhm8˻iEH$ zF{б[==NU?E3F@\ xM[՜DxțUc>xkPbft//"" 7!!^9OGCa<Ɂ>G;  j`_з[w+wGB4G8FIR+NߋV&墈$xPs/fآoJ I,6Í3l,@bKƴ/Feu CAeQMX"?38`kyrot"[NjM 3}Vyje QT%{6A{W-̟dhؗ%%Ikl.j:geDxx]iw"xgVt5I64 ZψM$伴FhZ)iVH| HrpE^2 |Ө9DdTrҁ;mr)r浘';pMu GKDV{=ͻfV>w;vEx.[zVEHgVr3١gBQ\R_vS>Wf(_P@x&TN5E V 9iN12*4tucjXM2 tr9Q,i]}4,B=uYcp)鎋S+[n݂#ڻY&i!= rT$!@Yڽ=t:xvPVOfV|ڳXzWޙ04ã?p%[#:aaⴔR-pJ/DZa(5 Tߊ jBJB"HXT5%2t֓gL}7aa/'e4[Wе/W=qN64y,yE/ZyGr#8dEJaTj^a~/)x(y;Y!5k2 iyQb}}/L?lOiෑtMETʬ|7 ?oocOi4<65uKK*q% )}YC0~DS#[~pMp5Pl88G\5:$ 3ܦRw׳CHPG6j>@pz@?a(4MwdiH@H~ r}W9I"屭7s q TW>9>r"XbE`p8hȾ2_R6BdR$:It얰H>֚N}ά4Z- iboU/m;^046mEW0ֆHmɬT\ pІJV{xL Q9DH<<2\kebaQyώē'Z|%ķ$Vbv` J>F6ĺ|; ʼn+7{i7_+$ }־(®:nONKp'YY\p yh}dO;Ɏ;b"d"_Gֹd\q~ā])"C!LP:'r ,Pp>]4]fɌQO4NU[am5[K[< 79I|;tw$}Rԥ:],"4앴>*Kq'!M+XQ FBRe59~E *̊)s •w1h?s•ncʺaX#$5xI[EjORq7<|sMDH\jV;GWzu%A 7r [J *v@XKxa|_'dOdOd']sl+  Ss^VfK&ׁU7ݖ+f AfKo!wr_F>"5@,k"23N]@g{j"wVCB_{ڜRx)zv!< "oň\ȣedP4C{dz py3hUTg?>{7YHŰ7;x=Y DqI/1/ cyRxamH@[٫tI`٭,a_֗bVZ *z@s̹#G<ʊԸw%tv $tXV8i 7J]é>8}/*%qqMPC+vMoX嫯/_g?ˇ~h3(*C .b؉Sq0+N+C&lS83s1#W{--{ ./gWbvodœadYIzрJƓGJFG2gO$%v P;rUp0h| *DҐW-~UTb   -86lrZ~Mg5{|QXŲ07&ޛ{ ZcqMZO6 Ե6BK:L,GZdMSH +Ҹ|3Ra{';g~r֕P]H(c $)F-'4*Vwf`B1`jYrSJFաz#ozߚfM<}e?[ -g҆o5qS\6n`yg̗edŠ%=6WW%6ay Fg#G'&F] ̓Zh{4tNk$=39#/}Dϯܲ޳y Y9KSr=`DV>?;~1J`[diiLK_PIr )sW+@!'vdE'k7t䘓@NQ)OyPzc<%w|<9B2u';ΊKwK>9BAʒS6LP;]36GX5]G0Ѿ{d=:BbZ0 CLc]t Nh-d?S.(yxNlQSO((zs]N ` W&eBU/(@{>}99޳а#ZwZth'agi7/B&E pg@Ӑ s#*+D00e%N%Չ̊be&z| P9|j//E揀#G2bP@y yWQgo0/ٙ&VLYLMj)t:"N\dh{=8WN*{=bv> "z38^?~8<:];sm^7XLM4]!_QRgDg׵OfeYU0֨zEbt|') Kf[pqpۉ G&:G'Ε~鱰mn^sͷC>{f֓NPj_Oazk}gft-Q5TqyCEIT+CRg5EFL 89=J!x,ݒIOu\1uWMU.3/Edb)zS 8/{-lOnj3ߔ%>i*/]&b?)=|Hk7 ;,tog<2{`@2/|z՛%{{]wmd:KQlFw#V=E#}Ҙx T{5w[L݀ рsfM˓mw NG!-ˁwx)AG:GwߌwxgG>>wk`lqN˼(zEȂS&-³ЎlU_diMs\L 2" |Ѫޯ(͈p1+MvCN2 g@P\4#4G3h2uy&~ƴ^'qYa֠/A?:!03>2ݺIlREax["4>2:hlqt ~&4G3}C@y?i"82M{B'ث,uf!U|-xTڏ0-j3,2c91MM,&sOdq=똙w=19I&~GЇ5~X3 '96 A8!Ųc4i+T4yxDFgTbr:9w{z|z|2R#XVg}BRSa@* s9Y&pn[dҤuB!zbS3lkeVSuY!W)LtCw*_t6 I[T.PJ1:ŞH÷jcWnwH%Աy#?Ȫ::ӣ!. " FKYt6+b̲t85=dZfnҜ0/R'- Z\HFH_&yRX*iEEd1 9!}!}7Y\7!!ÁU: d{3f[sV'C$F'$gǺHC3z865! =2Dx|Wd.-/!!Ł/4,8{a5Yoق-8OdzMnQe‹l Zmii-X|#SG\#پvD$Dԅ󐆒GdƤ^%8|b8dV~ v1lA;ꟑ=h'Fu WB<P,w dǞucZr]W2G7!t .k$uD([CE-"ѤfNG:Y0YBu ־TG Lh|5|*a#@c&ygEM/8sM%Nk1|"D>% b B燵duOu&QX( q6Y@)NYw:Idl PҤΩȶqv&&4ئm/# S&vxny x=5鄊xFx:2Ŧe)$f-[+ʑ܃F4p?6bw^Ȃ=ЕNg/{d, '9Fȡ{ XMX$?N!bوe"I'GKγ$.q\Vq.* _z4чMρU-0ً̈1BvUa`̘%s5ވ`v< <ܽPYla7b/4tc̬}N0dZtJPU9,lV c:0bIZ?=NK _htjS ]{g^E}綃/܉"bCI4u.U*ZfE\6ӧWtx1 N1 9ĭX[kEh`n: ᣈw]d{lM;<܈F"$y!٢ȇe*S|N>P 1.dA_^3cw0?Vdhy+T3).DfW lt  q4eY}G.l?nЩg#ŭS(3Ά}tEKy-Y=(ͧVGq^f8uCt$^䚨`ݻgxsIOf!CLx(N%ȑU7b!8N"f%n}!t(ZJ w2_ĉ)ql4;荈AtEf4#S|f1(yh}k>$zbJL<-FoYԌ7.GBZՊ`vB64`МLΎ$ [iP`Ss>wx Gc AC$ڨs0YJj:!7 8mqǸXeW! G`#G8@7Cє0xKX-g.~O[!P<?7&Np}PCd XXda7B94 tMKƞMNkP)x7^GL"bOAL#Ј?M{l:?hy5ؠ!sE-8Vo_0}P|0#奝I6afZ5`͓R|(KWH[X}ZkuऽSBG.,à>dv %1& Hv}j]t=$AD# oƔoI؛ѽ1'+rS e=@㏬d%5ibK&~ ư{8|)-͠Le6u=FKV%n8R.-bÚDLΰ]>ĉ;( x/}vv>gRo v_2Gɏ}/ObrxxjTqkadwgɧ+4j]bSQҧ\d$݌U& bqt`nB:BptG'R]}{w9w_/HYPX%CcY'WpKFPeP: s8Q:EĖ\\痛QS/يc\BFZk@ak]p,߇[Eԑ@y85JO8!1lWoS1{:[AB2-+0m{xGg2r[ x,]ѻIDtL|y,M545%ˋk')'1TI%S)+)D% nu\JĎvSR.j=ldzDފ| VdF&15[)skhku٫<֚V0=-!{pLQj )5pCe-_Ud„YJEqã'lSl8*d/j1.A!|ZGi%D˴圾 Fk 3ԍ {%Hy6Rypg0 3$`,V> uPn%M{;&8 EʨAc M33r˽/ꌜGWZF?\&ZϮg߭)Q^^!(U]빴a~#jhk!?ṙ תM֭I u Jf$Ydp\l8Z%8p>60Fp;'\ ./}D8؁;4].ޢj)M S7OXm/|kkH:;$^GX蓣f~UU+\$A@5j;DvRror7n%*6N.$#W@`X%Ȃbisr6H :Ԋ.RE2qŠ#%]j%^e΀RZm ?_Bl H*B\JkN?]cNU~TCM#RUJp1GZ uԆYԾRL–a5[Zqf+Yb}n,D\QgAsFT,a [Q3*. r`D@[aSgl/8QK 3F>8EfͥKxOtGBA"#8]Y5 UxBw[A" 5Ow44囖.I5/9eꃑTÔFJxaWI IՂ8pѓ,Y{V?iO8|(4E ʌq ݚEg4R{GU=藋l藋[I8Ƥrt`NY (w"rY07 ٘!rG^j q $'u|P^n Q?Y:r3#'C:D2QŕA&h%SD3)iL_ޫo;,9_2e}ih!aMq?[^۞mσ7BZ-5[.܉5U,cA̧}aCKA^OPQ5P2jGTUbSJx5+m#},8&)GYK5+BŸe6ǩ h/AP""B-TߵGP\˷I=;meo]X3zS>?o._ g:RTbHI).؂MJX39>K=UYl]RS4Ĺ%Cxq)pQ?{dfJG CyQ9x{\&$|y9T\5J u os>n3nH\A,dV [R12 x%puAW]DU!LHk Bxӗ9c8ix ,&qdkDH]6?'.%E*NBbb=iY *U%JjyGRi%svzr&Mn. tWvdi$K6D=aDo~b`ZR3 Ui1Dfj0'O0UNճyllg EMK9?0vJǤHIK"-OlH9{YyOՋ6x+%d{VftaI<6A_o`6pݴEje:@۱şxH/  6 8̆o '#>br/&uγ%RvL dbDH`2Z?CrW2 8t+~F/>4 6cMiݾVr;Se(rKږ+bA*wy7ovEv Җpηt(xnC"3]8'T+:ʚ)XBhMw[ċ(Ov4Z  “r&Vn1*3߉v }g(M_+QvcCH)a,ޏZwlY"ۉ$$f#]CsX-Fª" |?~>z|4~[[IaNo~Z kbDPy<1@H7>#L&NrxфNYȟ9g~W"ŗG\vuBKCig;(g'2'b`]//IXh(7+KqJSTjq >u{ү4 a)q;)]0Goy$ .M_>ןğ4o#މJ8FQ+9 Q[Űl;ߢ݀[?c &S\T!<̀ge5$SSN]cdDY# dZS3&&#VTnɒWd3l>4aR7n ,0<:zGP;Vr  r_vCY{A*N7cWxJ8 )FU8/r.G4Ė;ENu$0#_jpĆyD1M:_M2b/^I aaJ C}%Em,+_ڑ[ˆMT}'o_}£̪I=_;@5w UI9:'6&\ g}!: Yo&/'pqS . A:_}R@@RQ ]꧕m0y$?4]6իϣxTF9 9Ӆ&?9iPlVY`bzAz+:LEfGq*64a]DKX 1+@Lڰ7u} uw%_ޞGыW˓`U)'X$HIH5f$ҙEF)_n=:tŨ ٌ ʣE`VOo8̤ ;ɀ }oc4 J yBMgpa'z򉛆{vڞIk-),ؙaMcnˏ|YoO׹\߷fvxu>ri[Q7nM88/NԶ{жW{1/T| - R<ÖYtԼjö@$HBS\I͑T&Y.90% 1w I@3P5U;:j]<@ꏍHK|ϼ g?+ }rN$M?qNف} a0,87 Ceĉy]5&sG+__ڔ!뽍 ރw dNfVMcl͋ ˚Gj~&Dɹ:&»"Ax3 AZ\%h'-+H"DG>Ȯ0oP7c_ƪrLXPVyV@֢jm%hBDvלA)`tpj7@y"ԃ@v]U*)kp^e8b-l!I܉xVF,jM=m˂3fJ.+^c@< P _zZ -=O;y#6W~bnqK5E?:f7XQ[,֨2^s%Rgh[N@-̸mIe5w+e+}ȴľh:ai @ڈLpRΘQu4 ϋudnNRuHžq4L}&9r*i9ܨei6a(s֝ N-4W'b㎎B$q:ЉuyIO "GnQ]vuyc|Xb!v\FR{ƄEf5%8[§x8} F9*%. P5F+N> \!4~ٽϝNamýL nyVGދkoU[]KENc9_':k}D̀ĂpŌ+f/QP6iS?q}DB=^q7c{K2)5ϻyGx5s;9*drD|ݸ=Ep-1wI/EL`Ta֖oQ>Y#}S kkPb\OܶѝO hK'?24HEy\r6w[{ias|&DV5|Qظ'PQK/ƍ G~QPƈvܑ-vw;G.zӒ+m-XsΫ"OR{ [or 6.PKuet1NoН}v9E" 6$rvZ}y徶iL6Dvb$RJ`gSr/! *$6 3rA4D)lGzfF Q8k+H[Q tȖ$`J7q.׶͈IB5h1R?HI4׸5t 6哂w΄ceuOi<% t[IsWwG;)2i \%{<:n6E+A.q,,4;^8mدol'Kh[yuXG ^.ri֠m.Ƶ5p8 m866C6> 7伣_S u D) tjehDDٮM#qVӅ i-o ݁ OdJz4U;ϡ08HQcKR{G+,S)wsSQj&6rMGCk+[˗ο̊"7*QFLy R4鈸'9i S#P GMޠqbwR[CS sHc,uH[N,}λ_C©_~*7:bcH5@[K>$>dK+|FWξ HEJ`Ӽr. DqPkpKњ^p8ikb8UV&({+2Gw_邋k IKwCFdO]aI.ҏ5TcccW^Z{jBpa(LJ\qț}c元O8siqb05Gi.mmyQ̈dM|s逄2S3 X .|k:q$R[Ck|iʊVqY"ƍ~ʞ]jbkކîx@S,XtN(sj]Jf7h$wq0VuZH5=pM"K:{;T*P/~T*ǜ2:B<;`z}Zld=)sJ b^EZGF Ň1 5Gd J96*$]8ǭp㾞5% QKXTčc>X"{LT5==>qpV<]o :>&yyx5[xMBs\[MMLT&XC9`H0|"g* {>rs'!^n :T-Ky-2eƑ+BޣHL7h}>1O4YBk:4B5/3aK4l lHKyqN5CҤ#㞙j8&.\}hEYʍ/^2-Rf?R^M^E%-Z܁+hBGϥa GwX!'`2F.nNh@oE'av;ה&A/_l9?%czvI_x3瓿?wm?_0}W0tcK]M8B :B$t ]socaml-doc-4.11/ocaml.info/ocaml.info.body-18.gz0000644000175000017500000003522313717225702020044 0ustar mehdimehdi+=_ocaml.info.body-18}[׵sOFAHͨ/Jq`b;9x"Y$*VU?y 9{]R2sC&Yeu_z΋m-tmMʭj-/yߒ׮Zbj澬Vɋâɖm^|/_cY\\/ιgE4eyqPM/O?|sKwR^vM^jWϋtXV~eis=o-ۥ+\|Vl\8@w4oK[*Ds8׎I̝$M`#eϖ:0 $nSkxˠ 87]V3|Ft=n ,ue_VRdJ|X^c6;܇y)_lϷ]s{뮜|\ fY7K!Q`SJ~;)?QthH~уAn:㍇ p&quhG3GsY[iRYliU;DnJ.-ݺI!/){iNctXf"/Mټo27?oIept%ˮdv3s$uK/aZb} 9۔93 Wd xZiKmVY5TНشփ9^󇒆9*CZC~R4( PK[PSYh` vk[֠?a*|_q rltDLsy@QNi^8W1b7Z nd{CG(g4{ ]'|XnQBr3YbFjT IUO‚@q2n19]eH r: %)YBjZ>G3\@PZ'֠#KYz=SL!'$xSlM5eBsYssC*8X5'# &yp.;ഐ=(Щ|-ȳƩ'L{[@(*, X*2LhnyьtC1ie,ϝy色1 < gdEal,Nbv= U 9(󰦯osB\MlT{St荪> [;xa+|gDl-_yhcKf.s9f_OUһ3~YNtlxWzExP[oHXEf.)ڑ*4ľfS i YAW@ۈ26Jq䯞<,anJf]!*%~O#=mT5$i"l!ܫ6}n4Dx&7G&7{`DDyōjm0-Wi_?o>zHDXhB^8*k'ܪm<2K D5 MV]v] !eۀ 2"Hrtxt~&Vb 20y &Ay:ܐLwMDoOrP⼢̂2LU nVn|:mc o2/lrXNЇ#5>%]-;vlmV,f1٩#N"\1+0M:5VMI!(3$ଁK9s9'uv;e˪ѐ!"HcGDoCp pbU{OW`N+ x( D>PI8XzkeD7v'9Ei_ G#hwMbEAw+)%6¦7#tߊdY11#$-ƥF-a:w_B15Եd0T0X"u EBpC"X UʻmJV\a-Qs|63>j5nՠu8 ˑigեXg=o΅!Yj43ZK8g+;jQp#Z<%q9( Pl3]GHL;Ƞ J ok 3 GaHJtvD1Ƃxu/g肤3K~Qd3q$DxÙa>B(ۨdAG'U‚Y,; A^w0J 8 >Q/䃟_` {,*]tB\)͛i ! Ce?P$`7Ȟ\:yKБh&AQ`I3Ak<g:zEASzS7lcl3\EV{-~OhVIp 8u=S`V\࠼PL#t2sk0ݙfŚwJtK056KM$P*A[t6JJ'4 fIl!PQVMi x9n[ʼn1GA+6;[='ZrFzY}?_їkґsaNs|K&'!J(r ؘ?mL_M'Fr U@[K,ͅ,4pA-s\L+tDDԕ|9+"4$NU$+%Ouo8kǼiyk6rl.lnkߕTmu<+{&?ougsu0HӌSjgOuA S/ulCZIF!pOC{ntwa CŔ'aNgi^9cv e٣;Bk*PbGqCFsedq~/[ЯJ9QOy%9 {i|ؙ ⅙HEDr&ݓ '%J7`>Oj;.9ToPM:Ps-LmHľ5Y~0Sv5?iv``R) t.[/搗M> 6ϻ6sm u'A>M?e:+ "N|>Y|5Pqs;I^=9=~bTv;Gg-\**ɋemf(&zR"L䈊dZFxQwF3$].;'(EU g˃b8cͼK$U>nf}gg71i>S[I$wZjt~Lr}u1P1E2Ӆ1=˥uO' ycXjM&3Bp̆ =77ى SqUфg|x?p\ѣ{_8-?u#|\os:3Ny<`zf|cƗpf|aƔPvlX89lۼ^Ԕ?~M |x>.}~n?#C?1?&E)-1'`r#mĻ!ܗF!q?(BOev]gk)3a-Gq ;7w1iqrlNe|ٚb$ .1 ε 'Qj}UaxGBRCva|ΆuL\9?*s JvzVÔwJaUUS/pO/^E%$Mx L>lɶfL(]6> ˑx3$p& ˗?9fTX f3N ҁ5bM;j(ף|sq$^NmS+ɘ:gFp-X\|鲜(9OɹzxvV@PRy  mǨR?DJ&s&t> {F^e,8LoO ޅ6ݗzp9̍/N%}?&%:Piq1wıQՂJll޵RUOzR7t  Kf0ؙqj7>qi槿Pu7?]yӐ@kKXoѷpKU}SYDI:\ya:~>mcLPU9PD,9|fuڃ~&Ru `^PlU'kaM.܇8Ī;`}~4`}fĘ勨;*m!oTqCYs=jOeG{foo=A[TxFl_DN~2EIYA-MGF,t'xGYEtMrMKD 5g 25M/g!lr"Jy;ИA`n+91} >@Fߎʏn+9OvDؼg0T, ܖ`O"'=9=XG~(?8w,}AyT1p8MV=F5`qDx¢ qե`KlZ-Vp`u qdIa"6Em dMl)2 !WGre?X{D&S(lt#tݧqi1: ^rwgض\Dú\x F9NHkqd" "wFłzy]h:4ݦD8zo#y.%hf+jp5֕WDiYZ3Qi<ɴ͏DRO%C-׳irS88{$Vԙ+CoiW)> k pEJ[)SR̪pEy+-0mA4[Sݳ&"oę C_H}BUAY>7QS/;n" G0/.Z`RX8:F (g=U6"&| 7k9 Um"=+YzEsEs 1T#f[Ъ3V\G=s#-aδ7Q@0]y\'|C}\W2)92=ĕ8,~0s@Ή.b-`X=4/:ˌ wT7T\H7Zl_3V!| f+ogJ3D~~( r[q/*L;T%>SMe"`X&)fѺ{L)1|y( ֓&2d;2Cƻs6xh8u :i$K#AbV:&+R[i>mobL,OfUO.tm0XŝWBxs$%(51.%C.D$KcȞN,6($p0e^v 44kfA廯 x70O ӎu%Oc)J7a{Go~:bbecrt~8P&S;dt:8[xȇ9mp)GGc Yh3e*ȋUfMjHbJhIܳkF Z\Bl— `JJJ奎6'[eHW.! ou#UE9ȏ>&} <3F0x_cO\䯸M7;ww80FYYIhrL9>/^a;pǤt:U2 rB2g!gRz4c[53^`,1Ä{$Lx?4;&ŌY^lXp@K-$cf?+5x0C4ZEMd ]FCLQJK$:km8J>k7eT}b3 9 &G3#H }Vš|Qym]ȃQoa (-m+i6ua\bL4x5#e?}0:y5|S1(&xSQKKI1ICQ;*6IXMն^Iˆ8f?gШ{h?YPm'Y<|h( vSJ.~!c!"2F? t6v@A{a_dwH+cQpCvVػX@~arCt%$$9DJT|G yW2@ϯ.hK%<Twu'" 0,%rDPOY¿ۻk98⏎QKfI{# CŌvu9uߜ?qO巒Bm)Yӭ@0Z!k|EJGd{TaQuO8l{qW!vdz;pjzStVD:"r2wpWz@fDARG5A!m&y[Yϡ87CL|H耗)Ɓ}M=Czaצ̇o|#h&dKQ>}-˴/tXϦl!A* QjRM:3C&Jn%:UtbV''P^ɽ4.ygq0Ԗs 7ִܔD)HΎ*!KףKzd[3@䂼J"M:O˘e8t ,\vSQI\^#"^*Q7շg;L2SK}~jaru/FiJz 2(eh %at C5:K \ulLTi윧*O8:@ZL}[POw(W`iq;I,#u60$3d/^e:}짶bZhA{w%5np{bGAG7^__n,zw5ID0az}]4>d=@Sd5^{ 4٥ 7 ( (gSkI>qW0ԧa:5)EVnڭTruXٌDy6HS敨&n-Jr&*;a0F')ѲTJzi>-95 I^I^%yD\Lv*-}]Gdv\Be $8={1ԱIò|2~\vb![dڎ^Ҝ[f?^AL9#J OΛRp^FLxDsbrrxŻ]};Xҝu &x\CiJXI{ojXiu=d.$ٹ|&P]w}t=ZӈHɷKu@ra-Mc #%M*g8įBMfz Y瀗E -P_~I=#}c w+}-b@KG}~DM?o9ƸB~N X2{vIէjxKlJFϨzJ}>RIqR߿[ j-Y|c+9tS-fU]9Dχy4 斾R2rY IDa #6.N+=*ML,x "X?UD4mU-KQp ,mC5e2p I6TJŸ%*I}_ͺ"7Zi[x؅^,(#G 3(pz'ng>CeIk]âc(MYK}T."KĮ+7MrEݜV`h;=ҿ\C``3e2^;JPO gJL$7 kG@R"`5яƌah篑A07HXN$' K `U-P`fy-yƿ>%l4BhM%r>4L{KݵM-syGޖKa_%ɪN, 0'gxJJ (2 Qٹp fqΤ kD ^_Qzwq,%D].G ] t<18tz37SLj գB)X볦MhNJ-Wcly&!!lcԟыLA$\"!4 t7gk eN&ìOuJ*dscm'*C Րy1p'Je潅Q+e_ӊڙ(cmТ8 *Gzrs̿ŘN.@x뒡)MlXs#W3gg>uN@xRIGS^.[{{Ql Y Yv8gnM3Z^ME<#JWCx/G rkF(V$寧gbG0; 8-bp!t3PO 32IZl*xt# A+MP]>9L r:Oc:  kc3u Ho@I c@Ssc'Oy!<$dd:2"&_#kZ y W1P.LZж4j}>E|96+v%B5-y( \R"$Pr;C#'"Z|/ K!P78b +HT*a`sdwV;M7!`~ o?,kOc X@h/1RL5 Oc*_k JR08@T'MmH97)5֤} 5M'\50.{q>lj. ݞgɒШn.ȳ|GǙVQL4Mu͚0cw)_uЅ~ءhN/sb,YLK1 Ʋ5Ua)-T׆x b<(j#{t3s$^X6>P+bB}jgWn[0>+pZ5F|/A@4<)cp@9^ιqHH3H׈9MuܣLrMR灂!G&yuq C7[D*SlA;|qpKV}.A"PFyސ*O6^.W$OBy *=2ϱI `QUQm2ZT 6{XQB_7EGucϢ>N QhPEiYD͝_ߖo4"Gs2p"NtQ,0FdY 6BI@DQrYPW$vXRwVxLM1Ev8#'UIg#, %?L9Тۙr3 L XyÌH1wӃdWUfxtmK=x0Ǫ20Zi IcJ^ FߴZ7a5!\A(kRt'RqY7M6DQM ՓX C$Y޽@R'JH S(1!-h.BޡGl5.܏Fхc3ExbiA,^sm;mpN=!}qtؠnGHRK%)!Wza|J _B@Hk\gkC4 ! ,A<6'8gSҞp×Yu89fF0B,/LsLI>'{1c09%6Y0fYj|㶈ibrYE>NZc? ay9B\lV(!fh$! !>;Vuo"ڞl<:ӝ-<6m3n 0aކ}n2n)bp vrT۹.<;Ӫ_wf5`kFy'r %DZpb| =a@6 WH42E:b^z+ׅ*,g$#PgT'6yhE5C?$zW ocaml-doc-4.11/ocaml.info/ocaml.info.body-30.gz0000644000175000017500000005372613717225702020046 0ustar mehdimehdi+=_ocaml.info.body-30iƑ(yO<<{2{!)$ge* jaţyg%/#"3X (TIS-ZR= 1WaȞ.mQ#*QӸ{ aE`54NL,O`$D>yDŽ4 XG-_"!k%%!}VH8_t 4?[?,ʘ? 5r#_Lϝ.ӦgL |yC)MxEM4ATz,Z2遲&H p {<= H&D1 Z]Z2TkwqRsARbQ(^W*B1f@# I(w?AjlGRVď㞿7[ ăCڡ?; 쀋;Vr3o#z5ꏣCbIr ,c#`@] N>sc &J$9fn?y6[As/JmH7uD>׾Aq=oW*^& '=D8ʣT+l|žFQOx8MϼMН̞$LT_w4}x}wLmA=mE1zߜo`\3D+b,`y J ,ODs#T?r nB;ۍfUkh ~hˣyw1P?!ߜI&|R=N%*6~!y7=J_֨Ge>;?j/vt?2:* _D%(F(HQJXީmuȰHp%uߨWI !,UޝYD`RJevE2TV<O%'EPGtO$xGPz̊f-Vyn92T#[/$a`i[+6i%o'd&hgxlq&ڥ-c\" *֒jкY 75-EVBGP/ |IvRIs :g##pźre@U 2>) m|pc`…֛S4u Yr.gpnѩJj UָHOk\^T(xA%\xX[(1(Պ!c=i i)dXDs Gc( ЌHA{X\<=='sv9c@_MxL/j D쐪SP2m_EDHkGd{tg 3BueO B\B & uU,fԓ@}QPdp=+u<(KrpzKr6IAC^#AP(Mm\+Dd&|.Zi'RVusoӿ0>Yc//OO?DI:BM%HWKX (tۯ\rVB TqX[ :J` ]y"BfPox=h+8?m""6HPվ΍tkuH KGoHrDnDO)+ݢ7mڼGc†WE=-RHSy6N{Lq)<, k=bEaH4.R D.ꩾMs'xPߦ0>:f bYݿy;׿B+$9+%UuZL|!ob* .4W#,j t@Kzk .CpOh] { c7bQzu(ʹⓍͼo۷OdX}?}{D/`o]KOk=!@4a D-_rIyF (BIp1' _NrR;Kr ݥ4GA(| Cp#Ez#ѩgЁ2. )<֐r(~ S'{v[n$:B%Ef{K >lv_KxlA}:Y=b-,*iqa:;/S d|||IV y_a[04Rz'́ѢأiH!Z_h.Z6V/:{W v`\VIkB]c=j hʊ=Lb3% -zkh[q_VJOvm[p8]8QYbw3gL;I^d]tkJpWmߊw܂ Sc!֏^XM[``@z6ivW$Q dx4gà R Ĕ#(hiIg8֭5/я0uPAZVBbK-uqGˮ0w#t#4tPјȧZ*Ba[ʃFA\xo>1F{诛G$` *P)6+t2oμ'OVy!@mMQ,D/wpڀɃKizOn{x>wbK:ƬYA `ူ'q ͑ԛc'0Ζbp3Hrb1kݻ'l֮zHN[TR2̸~ղ-$^B~mVRwRv Ĥ[/'^n1ç/CdeI >oN璎2XE/JHo:1ae'w{>ɲ0>4Xmc)]b̳d^.}ү0;%QawZ{|GasP[,޹FsqF*q!Fn͋~)`@vd-'@kct5SLk?!'μeIPB{M#} ~o=/\$$n7čpe8.LS(cwIڝK cߥj'L@{S6 Z=̓,l N,xaRHQ1, Q|BzϠa  @36S-u8HO /զhVd,@MkWK-jo#97!PF@\>r(\0[ɧwAҦZkvCyTk :j&.*Ԍa]@v :3^:T'óv:,H)V'?p5{qV0Qq_E@z2ǟ/nb}9M/Oފ"QZ_ݖtY![F'Cϳك)$$ɡ]{b̙em%+Fa/Iwn/J)[5qt\UYݳNk+$SYt,)>IgTW>UR ʠY`\lVz dVOf0*ŰLVȲ a>g&A `y{j|S.e eQM1dOөJb8^d ˹D7ʌd8x3;ޔ=z;<ug9B&ixM(FPh{Q %% pЭ:4^xQA; TDieU]' ǕJ6c'qNeOf+DBt oKIQ+Y X B, Ӕ~(h(_ =jlU AP`~q)Z+N` ->-dW6HjD4 EHo^ޤ~ZY!<^ K_*l=@= AlviƉCRݝL@\ lBז+ؗd ƾGJTEIzDڣ\E9=,XW܍5ZߟZsQʎF e$PX?9uJv܎VlZzQ>NԣĠzj>Y *i}6xT eKӘ^h(ח?@~CQ]i*h/.;IqV5TSꤟVWPlBg֩_&-aIUƣТS]|k)^Ӡ A kőǰo,)-J*YVy4ښ(9{!$S^CȐk.9_>}%{W[>MM݄~X01: u!Lr`ftcbjawV|ĂKD)1W_6':]*92L J}ʋcKnݤof{}07gcrTRu;2YRcQQ CJ$syP6^⛪ ww5}>)/e*fert&!:sZGfɣ(ȶ}RQ%b ~fi7¬Dl2guH'pL|`P,gm7P a`,uJX0= aКC/*"Zl=Q^T}Q9R PK_NBӪ&ۤU)s@X1kzެI  AR1MBnq`X38$F ]`+$?oOgM@W d@a!45OzOT*B;Ќ*v7km'4(Z IotAZ=[leJ]sW ߭x9OT+ VOS}hI'$ +tHU}fgPz;ҲZhnk,JR8<@=)Z ÚFcei{4:y2ZF.w_!"=`Fc/}ʼnhE~զ8ɭR\%ZVECy49Bj}gRCnEF)-nϏB[psl?}}rTFw0~}pqQ*no.vKs?ߡ@Rn1]jCLWpWF)ceRJHZ:W:MYr-y4Fh}{DZgx).:K2 ^cW&O=ԛ~Tx55b,B|<&B]; G g?WL;lQK L2I^0&sQ3FC̵OQo[L@ɡ43 @N.eF}Fu֕JK~y Y @P7T&48slBӾQݪ%ݹPmLN)'paP ܐ8tng撖ْe^kί|(|p,gW $g7DDUW~PYW{{m ”%,<(S..V+A?3,t & VyLX2צޝuiBښfq*j!`imb-jI] ifImE}5 1.}CCo.i y5;}u\\z]We}uK8]mlJU@f$|&.{_) ĉNYi҉b&@.}\XW)XX*W]2F^пNIvЯ=L=nP⚄d[.nɮPEVȌ'<4+5罴+zԞ!a*Si3R-҉i_4-VҩM3ǚTYUS7}Af!M_EuJxdugմ"Yݜ(303Ӟ "]cVum}89V#D =Mr8IhF=h:7 jZ[_Qn#O"IMvDG׏%%@DzJuL#.th L Ȕ^$ kA(-ũwPHyS}h~]Skuzkip=hQF #n"UM ӪHt>d;b-Q)⊠yh&zq&_h/_9QYsX,E_:)Uߤɩq@jͣ8^@%tQ ]^]`fzعV}(G Qy@Jb)N4hi5WA8c}[)~n#T*hȵ[N/wڞL'߉x#SG ^_3%Vk戱0@J7] (~4pT%?ע3F%*'-R2lIiY\ 99W"kBfٰnsH!>o.`=(P +F%y|1vJQ 4(V`H'E!7_ƯZ{oc|iHyl1];Fefچ{ ky>\CϺNNgd}`enf5p G ^~ŷ/W}{(@j75;I\[@pθƩWkFV$G֙{ko^'0uی##2U3L6GaMpAK顲CI9wCkƋMҮvf7ZNއ[p>V&A;~Tۧ=hVӬz8<]}k eO'مM-.(;1BnuG<Ǐ>H3?ܐ>Б]I p2h%8,?&'yOaN,}qIcqIcq6ܤlcXo09e_Ο~DV6BjFe)t8ʯ/XeYQ` nF7$0#ֺY՘!瘟v@Ej~Պ̺!C[?%;MsJ" ZeeRw ^씆5ǫ.uR}]2 e_t6egl ľŲM40I1G<(fȪ}zZ+ tf2{Gp"( Y^Qv,*G4zY\tI/z1&V>K h7l:4IS:&͗k:pO.47ՀuV"nF@=ޑFoB J ’N"I 2oҝT'jޟNsBx?5X 1}4eqR_^ذ7  _Ǫ] M0af]3iR p*~QY> \MqM,ӾG>1e2 LvkŽ-KH6!^i\a;BeS7'9@VYk"A"`K4g牭}Gl+ʤIՑ2ި"&XGx.-|giͪoXٕ#XhΧ,r#&-e,6@+ֺzvL+iFB+ՊQETQ 571, xWbcP$1\u-"^][#|I|xVlc'R &#BzXV2D;P:NXN#\IO 9ZCKЎ|`ݍiG6LxQ3B+%|2NYws9:u$xc*l^qOL=<&BμG~asQ:R&=RZ`$˘Ig>V%d~&KD`̣ۨYo Sn:əKnc@/ ѭ*03^:'F5͍,(]"F{8TqyR[j+SW~VM8E WjG8h_{۪)B,wV'9y\MN.Qju|X c4.]T +RO T |-teBa$-"X7?tUc AsgiW034>ZR81]Us*@ eE{ZU,-7-״@dwe_)Yd12*ox&!-$8Ҹ`1}T[ 󘥛@bꑩėކ! 8)AF5qZ`V(Mz@EONg|8+EC_,M$s.L`k]0ju k1_"Z3xW}x!b:Xʹ訴ƀOdjkÊVD jF13m>R` yhNê>Ͼ=ʲ{Z:ﻓ 5F{+uV~7-Mju@IEɀzniG0$3RJ)rtC,lbml/LG}U~i.[VH9@yYuC(h"@flj͜z18wMOrDcR{[o4NSo{?ؤ[gEbH +eyYj֨hdSS 9̐z?V&χr?kx1o%^&-;P%d{kFȵ23MMܺ Z3}İ.SHJ`rC?k'(: j(&؜p`Pgp~5qoo@W  /80B!3g矧_3z5p`8S կY@TA3byqR"fApݱ0ʅ|˗_}N|oF36ׯ>9ׯް᜽'굿 )U݋J_ZG]v38H̍⼃>". :{V7~|)5x`< WB@f\t] Ϗ(D^9TCAj釚gf/Q͗ jg@`Md`Lcۜwg?ڻbu_\ U)|D8*ŀxB Xi __Vag%{ڝ%;'/_X;kl4"ww`7A!(<{/x p8Ax~9 ! 0|U;N2g)Oeˊ&I첹6hKamZ ƴFeU >8"O JGn˳fj˪FjӪ*W+6c&&r W3=YgZpRvp+bɉfWrZX޺M]X=RmDe,IU1&'͸owD! ;`\wVk(?w喯o]Q,03zZ"S?]k QMu6&Q2QVeP(d=fSxtOr zJJe0}$HT<;yvmIݜ@7*\{C*_O1b| ΁ ~:>UEwcPe>zu}WC2G:148ỹPEَŸ"IWW- "pXG  ŋ [%&{@Pgvn~-~t/;E$+5>kVl#gAwc}5~Fz#4Y=Rc|XΥ >2Ec 8}oICa=.-~;2 aۛ &3$o̧W(xm7h, ;p5Cwy^+;-,x-!/#QWkE"{LƐƔ 9V+|R$ģq-~ku#2M&ovQkh]-h Xηija"ʘ- P TÎF_Ƅ% &,<+ ^{lՌ=?f#V.: Ql4#}nؽ*\'6i~=.cˍ9n0cqw0K.K>$oU2{e XI8PH9fJ~d8G"ΰ=t..M )wԟC,%ӳ|ह1^RVQJ&a]%zT5vMZa_%a?nю"a?ߧ^w//APo{Ը0b&V:^LN IlEC#`j@I8D7]&q4"xC*SbG.fqҡ3Cǩ|bYG=?w>b .5 r}ꛘA+s~;=rޯo#(~EQ!,P)MŽW+P 1Tλt^+­5Uid[37'l`ݬj{Z/bgSQc.QCG)\`hEfhHiSd B P"cSkW7¯K;Dn(,12*~L#Œ'Cdx$K6t1-qfnS4="UGjUȲ|odK.qXpk7r, Sa|G&K@8]YP)GWiڲZ܉J q7NS/B X % YJk&|ߙ4 Ρ:!30hN%âj͞wg{ m?1e[dkM?崘+!V:m VxDqW+}^xH7@UP?U8ԾK+[@0ծ~5}i2:7K-}*p~_\Aiˊ )V/UP~vMj#xo5,y`XXAZ|SKoĶMe!FeYl/%Tc6ߧa jm.D'PӠ~\"v|y7~43ȘU6]S.q#5i 3rx dFqN8p/:f8@}#Կ8<ǫƐP\LRt-Jtmu :řS *R" rvb!jM7>~ U[auL3OI bUm7;ѝW7 ׏<Lj4sj4XZE#NO_6Qu^ǽ7: 7˺1l%,kguh٩ \)6 ,| >L!]ꓮFWwor> ;Z0Ic3u ~CɸN\xL~c"W8TJ1Jv#:N3UijSbqI/95 7QVD<; ,NlB}>qf}XkL0%T>`4J0t}8/_36q hPgMcPo|n#l;H,G$jq7YB0ye)%w!c&v)4S%m=!Tv*kƥfc@pWau:eXP$7l@WECu('xQ-2*EVo*21Yr0(@]!ꪭ9ZҴ^D9Slbs<I 6}6&֍eDM ]9-TkT=9|ontRyGL>H  jr;*%N L{SM>^WR>TbBY59#+"S|߳UR0A Xw kUrlPK?9mSqH),zXPp|.]qW ayi0U &1,urrb3(T(ۃo311"x'>%>#tr)&칼c$] V?ݧ,ʥ*8UVJǠ A#\{EfX`Z#[+6ՑԋˆSV8B;܉q#l)ZCB #@!WP:Sf&e7rnЉ80 EHJQ8&?j;}G6?lܴȎ:-ҐilYT'QR)r's;T?Vɵ#qU# :( F(߯UOQ ֣;pZmz\Ň@/*@8|&4`SϞp]r$دR|)UW|XdW=aݠ68᫈Sq\vlvU1#n* k4Yŀ@B2٩Nىp&E@> S^G³4nMģ+e. (XPY:8EHp(z:{IKQq,ɗեW1s6wuc\;Չ8]U_ ΞN$H}"QNKR==.w;X{„As+P')~K]$:_`jTy2L!"#֞d+:`-!/6'b 7ʪZ2$ȴ%1բ0:Z/j'!ktp:WiY Dq:~`V0Mp~G`A+~>Y8đҚ㧶ϴ4l ѢS DGw 񊛰i_.Vs}z)dEEaZipz+%?NS;hd"gNωFH1 w{Bx_YaONL%Kom!XgBxz j2!D{,Z4!(PI=͂ aπ>wwЊ~Pz)B@۟3VkU[ Jv]5]aJBtrUJD'i$!3fCeW6͗*|qwȰNR\dmJMk2l$VcT(>Wt]50iFTR^%6>V8)ֻwo`[CQ|\OQUBjn,>.H`5M*9BJ+ >M!IM7`T"NvȺI!iL# "XᶉX'A?TKoz Ӱ&t+Yg``UbFt)**ŕ-#8Yp v5Lk|*mƠ뤷_F[ip1JU s0^ D*[p8Zd` )'9a}~*e\`I4ʅe0Um 0Vl)+c;C7mQ_EZ e60OKqoD^haaBW8x@ߊ6dWƔ$s2[.uTEDI_bss=uA@7=51:ir备15fO=*9Y@}s:T]@|yy>kQĩ@順O܌&=c)4APE›D^]M3̙|`6Yʜr4R]2t wy> w2F=aRװ^MnS3j_~Jخp0ۂd` .0+se&#`Ӏ6oQA./KueveE< Y9.&(̽^ca(B5pj: `J,5lT6$4QA)'7^RΪ,l2t$q4 KMQw:0h%q݇V=Ypn8mpvǤA#(:ħ,sh#&,NfQ#_9 ?̉GIH"WEwz;%d~%BplǂY9ٻ5TgFe=wTc+fCM1nÞFU-ص0kxv9Lӄ/ZME1UQ)3`flMތTL|1m2ن7Hx|.1 _eݣ^4 *] Z$TdUDȄ߃"aEQţ*2]۠0[b ȿ`copRDQt`#oBH1Y) !-!/ㅐb!C6K\U J1j5r/@^K6#@<1*%A-t'@3|䉎c- H\7HB߈q2%A3%|+Wxe V z1E=YK=+Y0A{ yp1E,[HVr0̛zࣘ૜nK hI$`)Ȫ$RV)KfLuڄWbaOU^sOUZZݨpDvkP;MxOX܋1h? ˠߙI6| ٕݥ] 8I5⠾(f M66 cqZnTJ2L2tKtZHj+J2B7#tkYHf;atdr]!bt8Ym[aamW[@ܪdEw }x2F᝔&Y&6{Ld;'eFA c.H4ndm49 ˠ i֜P;"L"21>dZpXHso``8?$`4症 ӁFt,~Gl"r& 56|ktnsEENE`=6"t A!kڈ Aئvlu8^Wca8_j| 3Y,bJ91GoM;Dk=x|Њ $X@ƪDrQ;)d:uVGt^S\ή&m1VJ!3 \ǰc{=Rs}Pu]l }H2]*tɮ & ڼ3߸T^euzɃZ79$dRw!GW̫$dĭ 2:4`0!Ed4}& LV= I|ujx"P$Fz {w`ɞDܡEoIX<*4h:x; 3=ELHʦ0QHzt*A*YFgWZC:zp0_DbR5+:UaU֢|0K~e>Aii6(5E]ǀ~d6ADTy6 T2ԇԠ/יtf~?,<6ISeà)@]i7YkaB([ vapt|`$gTz};wNηսl*Z-Mӿ=ߵ%R#+`U_q +WΫxc<cjgk''1[@v, ZR+sPe[ *7͖`JZ^@UjHd Zi[*E2h]赺3U[uV*"A6f DeXPRvH5n6εRV*ρ_Z[^ɷ*WfeVݗbQE(—RrmVk`A^LV̝j?y2DvI%JZYZw3D\5u""%jBc=],5PՍړ%'B2یWUhi6iNU+Uٖkm7'R*`jJkl p:w-*!yaѨ* ,+Uт^/M:k'5Zt NSqأٌeF1륋#;jLR\b_K  Nsy `4W85ˌ*w »/ls X fӁqN Nή\dى XSl5+*rZ,ps P@9`r?Rt-v.kMAh2`̠k'H\)[q|SZNqr~tOb܁"p0*k-cZ+՜"/*!(,WRem,,jNжGQ9O|SE JP: rcP/SO2d_<]2!s<si| ~ۿ*. bo]}X-Xaâ`:{shhIY~4h~f8I-Uc/uG S&{5#UC|E.Ur7}V 2Bk!?:kQOFQyF2.S-J蒲=bXbAjڢ8c[}@[ԙEkRY#06<1a` FPVXxc«5@ȷ44N:]"Ƌm{(}1T-'Na`OO4w3GZ~3!!:֨l߄8 Ж :ĺjg.s &^Ke:G{OD:!ƺFT#Hϒ,24#x H- u֨ eiTFOlt6R\ȟFҞA5\碧^*R\0 [+&5jt ^ٮwz իF-+"AGVr[b!.h27.pM *F5 )2^wL8V<:M' !7Porz\cm@yy3&m~~!9u np!`qCp] v{VTꀦL`*_Z"mpg} 7@ cl!?,L%9z 8aoyۛw7ׯ}@4^!1lP=w  ; ?2)"wN'z_云s %n9-9#{u!l_Ե&MwiJP{bIӎÕ:?٣)ß F?2~).OڵOh+X|%^6UqwjP`PM&v ߖ rcB`<'X J0}IR0] SN'%j?N(nK\'uOk=EB7y)'-gxq\B\JsٻrSRR_¡s4 KJrRGTۨm4t0u_ܢsوTD+ K^Enip"0#1v@@# 0Eae):0?Śk1Tx x|1Ww].ˢ>&$TCV qWWOea;\Ly3w*oɰx3%3%D*J2DO)B@;S룷}YqaǍ䴧{1cFF<dc۸xxhʭ3*] s@ԩr4TS|u~LpεyYjt*%=Š&>-6DKڀ79CPcm/X SscAAJlߖޖ,L2w FM0ѹ^M=܉^eO<"˘Z:= x8d䃔Z3ȵLz4mOZSJxn >;c.FOtA-!k/3 P_| ~~=?%xs ?V;7?f8i`C=>#MZ &䯟{a펇$@[&GK2 D{t|b1h x tmI\9JPIpzCsbU@p.pT th(sgeVC0ҹ&| 8՗E'C":a0TܐꡭBa P@y Ϋ;=uRFs7A3z<4Ke5l!Yѥ3~KQ֋4 攉 FxꇫW7/^3zuՋ#)Xq~ h/aMz.=D7<(&d!^Vn`2 NIL?[%MtߟkOwZ&NҤB/#}PiU`rsc*doD#9{w'snv:R UUpX6vm| yF:mz8kBC캔t{$CÃj? 9_ OP(@ʔbqLa*.P$i!HOw0:M%C'CSpN·ʼn9D>*KoÒܑڛm:zRB˟tbԒn6N+KG6E4awҁXk 9mXQj{ h䘿8 7͵w[~8q{lucLifJp<ڇ_ņn Kr`*׾hp[Vࡴ)|5x0s=HG}'Ш4_#歨rcVtI:.xNﱒ϶y4'eբpsmآ^mLO-`0M4;*$"~ng2}uw`Wt܋e2P%..v5fw`7Ҕ Փey\z:Z-|jZKLۭ4yEd /W+bwZԅ q~?3&5c~89x$Z6G]DX.ˉjwM@&*7y Bl.$lbXp4]E#9u@-z^#aCgX3 -F`U^tvcW*-ԣ(˵"2\*Z%KRȨ(_ j_O&EuTvĈ@gAz%" }l=}N6cv/ ZV.3\ma:-/1ve><$Vr ?528k:=au|y{/;t ֖?wtujdz6}/λW A+}:1Cz,qɑ"_Z PYBiB{QΥ,`RPCJ1V@ppg%wt-,#6 C2uSL@^bSt/De)9GŶllcûj04 ڮ5A_ U@AbXHMμhpm4$ abq tyU- :1AR"ZvuwI_Y7CpG1"|k>s{`:Qz윀G@X)^$W+ MMRSsud4I+e曂J Q :[R­wQ]6wxFodLX[ħE3b0f˴O|nfYpo3YiѺ!L ]-u.X_\T t_$X2A/)}h Iah<-SL\`/7ǰs96* q+Uq+ DAqu3#J+eqUނm7c ~@4b {X/W!G> Sb*֝5'Whd٩S3ɂS譹jpDؤTY +`ޡb`AQ_1n!>R0ȝ_g<8eA}ty w/@{Ε"X;EGݏDGo9qg9ލ74:ۑG.R SzѴ) &CS58KګZQDCڈqy% 5<!iE~RID)4hּg+8g\?>CkDf:6A5 ;Lɪ{~1'"Š_m_gʰ qC(w S"[O4UGs!Ec캈dpgw҄ al0.[}uu6 ?I~F+x3KruޡmDlj'p8/Dr~XFjY{aMF7x%ݎ(4)fvOƃ{dwdn_E*b8G/;<bjnw^^`S{'ss)@x -ӿnN zO̚|ڨ[ԣ Ĭ1Aze&mhn^W|aPn0۹4aW12  F.N?j=_F?bW^f̜(!9qOѣ|ro}hv=9yݮ*%u9Z||ݽwuiw\>?uY*:ufnB+4P>bl/%R W stb)d=~2HC=J[f!Ux/#POUI/B,zAa^޴+bp28B'. ]"8{C*aD0?L6YM*{MpKv(i.S`%F*wuNxdy~[ȅh!;zc()a삠;n7lݜSFm:Ng.7TJ'OD@SR\^.`U2jS]pr#&ԉc!;l4J|ۦ:'PV.|ȡjXA3QNlִF3z45#ߛpHʖHtsBf~۳bSe9ĀRZwi<5I1e5+٩v`bnac(ޛCTY^R";˜sǝmNU6 X;1- u8ՈeJaʰR"Hl~;|ebvl}f)y3OJY,&T5N)+e?Uq*Uv*|ЩQָne b#AuddzՊpyl3qmj;Kdy8ϗltS>қ%%0|TM|lFu;8:HVFJƩ[ 8*>E4eg1|_Rfkt32W} E66ʳq8>,J&$ni<`M֘t KUĖ)UT?2=)/IL<7 [~l]DeȚZ0E:[\ú$BIvZ{ z>8VրSblghe0hHm;WuxUƇNA*C~_yLB Zs* bw%JWJAudX7]{(F7.c}{G MD֝_$v{%u<ooހT#!*fe}~{~ [[^V%= :s"d%Do4$Ɏߜ?-glHl>dģicג 'W%AIѠPmE x谓kn:0 rU bi$|5 ]/1kAd}Ԕ M'ڳ)VG?o}>̖ (`'Z8bW٢\Ž"iC)<#}B0 V t.os\a [{ڶHtn &ѯOO~þfv׳+ \u3v]0ӍsX%PMR(9yk(y/.)6C8G$}7J3d4D3zdO{%ut \m$tyQ֘RF0kIw"L(%։[2}ۈQy94TR|/e(5L 4t2N>ՅȸR"tPRC6U02z;IPqaԀԄpJBAMgK6CZa/)c[Pq՚,"ًx+U `YQM>ԺA6 ҔF5no;N;v&tE)&dbQkUN3 `٣OZe1^Gnae@au3AĥkxLva]YffZ1ҁ-7P(ǠLf|w" ^Hiz3zμJ'7|cdYaD qVۭL fD}5-gE"S:A(RhSmQ' Vƚ_+sb(G"a(7D9hf@B`} G|ï1[-hvp8::u{= 6:JAcÈu.B:o; Z?߰Ro# i` 8AISN*08F>VoK#Z#-a(d,ka^VZm0XF`5tŊF0 /7Yeu/4|:Z28j0gu|=3裏_?{|zjK3Bf}3ĔȾfieY[N'FCm*c+VbK` ɑ8S=w%}ur{~kwWO~=4)P>뛊j2'21k^ya5ԻNl#zyмw ~k$_{?{ 8.F20_#4իvF{ca1XT kq-jnSIZ76n}!+ f̌SG̙UWFwLoFt0_~pXsC67>Dۃc GhQT"+oā듪}J$~n5î=:sDv4b:/M܏;MMGzۦ~L)\0%N6%u.CFO@OlB/qrȃ TuQ:ȡ\L|=Cà}FzygA^s-S~;I]~Oz (3Y_] /9rp%6ɼd/(Ʊϥ;+ @yyrm X%$2x)~wBV[GN? 퓯ku-٬?V5~0X fI|/j3ѲطI.ݻLX|{Os״$iI ڟeq)WgU7Ui⢬BGf5 >œxoG|?Z~p^(=ȍP*j$p\j ~ߌ /ު߱y:SA8pQ>Qfv7 9v&h0=&zgfF,>Ӫ@XRd^Ntakl ~|VQ ?a\8~IEb&]+Oߩʿo.7wG<ݱ}Arn21OiC@fQO{6/NiiD31ըD!-5lNնCTŖț+#;xfg?,amZ<'\qX^Zv?rP{}rrM%v4;_$P,L|.FFz.bӋ}G/v}=UWF>9s23^C^K/A_XeX`)6z1ffedHyo+{](L C=y$=$UPyFE<ȴE# (tDu?:GShXnhfвf9IcA JCJWȤU03;OKpцpz|4V /8Nݗ9@qJ+a))JG<%R8Q^5QlNIx =B) f"X.~u#M\x)nXj*QLC4xnp^V^|zѧ]z^xgMU6khCn:V75Ì2թ#k2Fp2yߦhWpx_/"retס&w[3mfbR%UkVGz{U{xɉ2\ġ Sz pGJ-l|geOFC_1O5K-Τ1tPw.+pucC9yQ:Nr₿~46VBص61{u7Aft8Y Dn$ѹqq{G;\vJ-=cmѽxjVѲ0ĩf5pWڢoK)%*fU6;v˺QIx+ @،ƬM|c XsXr$Ĺs ̹*LƼ>\\;nx3A- U`\H1ƦF*qc9L'5/D5J y^s{^,˗U) X$X~YXLXZ)kYB ;P~"F9޲էLv/Oahh561݃DH|AJmzC;ZŸO}崗E5ghh]m_񎏇-&g;xxN҉_+Lt- xؓ31+VSL|̋IqQFEc#N\_Rh) |L^lɟP۴0}ktnK:元"#ƶG>m2ug0G(1J>>0y8 y0.0s 34NC֒Z;=mxn9:ORv@8Px cЀ|b\!=)4dŃ"UEw& h`GpS쎯_Ȏ۴nrr;ZjVτ9sEΥ=tomzwiP`9gG^JwU8qm 99&ЯNiQX0YDu.P=c GkH}! }HXq$JJcs[-j@` ƙj09"uw|ZlUr[ʅ"(7.QN &x5[Q.9 =1.(nv^Eja x*1AU*VXRṰM581TK~0Qx ꂕݗ{J = *½4_l]6`kWD/k8BY $.6B.3L sfk,9a=J\\30>nc4|Lw i?lR[£a>[vIC~5#F@-[w5l{7Zrad(01"ƅd~ $7;q:!$rH"))tM'`=^\i*`w@?srDK&%{6џ>lJ12MkIUp>xL22`RӀyVE>$ݜϴlNHt| ĈtP?qi2$n{()Uj bOy׆֍l4ԿEI`i4|" 3cD=CߤnI1plQ! ~+-^ƗI[uL7{#pV/Yd1GY6D\w8SB|:ϓa˓QÇУ#o9X$5sN!4R/%Ӌd9R£ "6'2iz1Xj6+9n8Ѥf;8м>ѤaEU&K"Lp쯳ٚ _\"} 9Np(zUoZ)،퍸UeRM9t;#aYLO܋iM*M?T]̃*:DRtEۥ_C%$>EOS 1j`.'}&ɔG驓Ua\{;/5kM6 >\9^/3?jIK?iiJ53Pm}~n k]srG5 $)LoJvޮuרJ]$=? gӎE涄Q.PsPrXTiyY* w2e쨾ήBx..E a1Cc 4lI]Qfqpb'ʴc8Zyr!)z1l6 IA >w?9Nܞijߜܛڜzk{ɷ5Mm[zcnKE{}BY4@DU pⶃF.|)yZbV1FeZ/n#XUnȪrcj"j7PH]Pbn>kt) 6 tǺU^qQBD?sTԨHtjt^w:̅GpPz e 35~$=7I5Glח P=S@_]U_)/LnI+~ߡHynj Ev.V録e8u҃b dAή1gB"s+.W&']l:VR|l5'' pٔZX%1t Nl/)דO}ΪLg LcRCΎpQRvn29D)ܣq^KD%3:K0>\5qvJ@h(giq -cj˙iceZiWŤMZK*mU]o wj?\"%iSRA{8eh~zhyԘe/O{|e,c!ևq|F"-^ּXYqɚOd%Du2trI%lUEz$B]uYwH3zWg9nTBUfJ%)b:d!_nĞ ;_p*>#0kd"\9kD[C2bqlRKXe%m"F,-2k)$)>× [ap:2(R٘,1<8a G;NS{޾_1e+"[D^ mVۃ n:6$C&b%BQwiQz9/D׳,3Gkаd e)*D0z(. _"86S[siШByh.M8t(c fb>)%*W9ԏJ B_%`37X Gph2!ϋ-P^p+@Z>ܠnRR vP1JPV R^f4pΦ|Ou4wv[>@vvhߦcRMQ`@c i|\5QRs<`٥Yb#Vǹ ,jPJ .xk)<͗1a45CyڄܶL3a^p>>K61&Wi-5Y~V6F >Ϋ6BpβY@m=tEU/)( "˙4'p"ZVްɳ%u^yPDCBhڗyat:/S 5B@ drjU9MG#0#[pECNJ҈,{Dw_l9M$Yns'"LN&=UxTe A)FA*;ˤ[S[kijw̏sgyqڝ\B{%ߨ!],o Jǵ.\5FUPA;EC9-Ws9b$`+dOޫ6kЪr| զVCRnߨ˨Xfz,qP?&sod8˪*"wSzRIUF_ET9.Aɹ*_]5`pJߴts2vic\KTE: f9/zT̺Fe|M.sEndwV·y7DWb=b_tk]Zp85rAV)C@uosFc9Q" vPRble6 KIvn66138L ^.J7$?De !%3?]f~dQ2˖K`JJFe`f-11N(E6c/fۃD;l-s{虁q;T䉏öj50Տe~㓰{qOr|BBXpv)oV/O'ɫ(/fJ[=~ EHȲ,h)}#CJPȝg[2{+PxGRNt;8s6R&xx'_0`"D ʢ`R/&Z|}@SN"FevMR8k50`s/KA* jQ61 (h:bu9g:1\x R˂OۨF21ƪ܇h5R w*wqEbNT!A,w.ǜ?qÖ4QAc4,ԪLwlJr.(աA ,Hc4ٱP)|O ?c#.^p&b<@S XSWI@p.DVa0MXȰ'Сꜙ!NX=RqZɿl 9:>g*jOK7cAF&'\0aĢ(Т.Bѭ۷o :V2q޺-gwdp.+q!R-7s8FeuBs3>܁Ydʨ"LՒ%zk=ɱdXE]92^L[vNg?,9ՍU ) .v`2k.Dz.K2(7̧j^I9%i.&uY:aGSv˾<\xo k\LQ{x6庚e[\Ox6P J $>"F(e?־lVЕʰu5}`Si[Ϧݪ#HdL )MXV~4>λly )p},5al>@e=P~cSZ0݃fۍVzjOFvmo(ō Dz"J |]c/+et9{=jة,><,|:Ztt{|ɫ/cB-Cp dνYp'l%-s%tՄWgi~}3 lN˵k5ؼ!{Bhnm։%3RIځY¶j7G2ugvaVhCLsaEs&;sߕ,rm$"fVX:{/)dm 'ß0ǞpasbyrS8J\.Jky&V O1N遌Gc}/ Cgc֎/šϏ TTDW?=z砧9^cߚAL.P~/5e.؁qaf]sk>n  ") 'yl:|`@iyG>I!f&Qe(&G)8&-7+R TIlBc`߭ʧ2}C`՛~5>L#?XyޠMF*X Z_IMRժɏ! pFCIqEݦ\yqթ,nHG92mb+eYeG .{ɩuºJ@LVuC&cF ԥCL8 MPLe~V>o#:wkJ7~x.uz0,ȏ_iX> r[x-BOB[avv^0 g~Aఅ0v+PWyž){Sx.ˬ* yJn/(`syEQe_hQz?s~̊`W9V<=-;.OrDCg!G~zb?/LkovE+ۏ+p:e_q= □~g@s_ YF[HE$Ay{ՙAQ/r$,,~)k>?6?̂ˀEU+, 7^ޏ3Eocaml-doc-4.11/ocaml.info/ocaml.info.body-5.gz0000644000175000017500000002334513717225702017762 0ustar mehdimehdi+=_ocaml.info.body-5=rGϮPIICUif7@Q,rÏ:sͣ(IEudeeeefefE>S嗳p^L)8nK)ƥœ~-!׍NU>ɢe1S]Ls j 3%$)ǹ`?-6 lCp =324R|s$%?La"$IE&n$qrܖ4%. [?hf2ws1w;s skx(`1 < š'Dt+Y,m"3ؔ\Lx!7glm [6% Hp#5S Ʊ10{31û3GZFE~y ¡}-AXiHLd`^ 8•b)B}#vqEk"#Bq<^ԟyD/0y!oM8쓸Q.U8 x..YxX]v[w0GFk0:E$fXĔQ06QSRTq4 X@*+մ2a-| )/{VEx\k&#<"<$ԖLbcv~9*cj>Bz )}d1v{,Oa,Ƃ8t ~*h:UZ a]=p #ىFʙB RU1KA$dXEitJ+Yt .3R>R76G2%"?+R9*8̵q7J uiCmPm{| | P_r X](!˜ŏ!. "FzL,arVh2SLENVr PM`2ڒ(^> #hKZ X9jCQA aE JXRn=6rևy7J%Ю((m3UQlFD%x\mofX:7L+ZK0]1T-Q0EpDXep5&%j,k~$&<*8wv-FQ=F"Q0ۨd=첏; ]VA\d k d]pQƖg^fB:FWXH 3Ҕ[NlR QR`m~:PB>H>A81v;<=Ӄk ~_]?}w,'c"_#~1oaxdq`'"ֽ/ oSHp_Q>7J0Y4H!?UI2zg/sDBZZ'DWɢk*oߩ%r$SDvl- Mq`U%(Ӕf 2?6Op`e'+u|{&.jaSw:TSi7 Lk}ii_X emثV/#׆unW7$_8{ZdBUX??:t5o@D{ȅCP$ )N#*Z$w.NU%c:# sd; ltJO@ A1R-[ODQ|ud d]ѯ |`B膠 @OEgk2n(P_A_7b28}xOyt ]/N8MB{!=W?n,R7`ܼ vh5?@ X9f,8QRv?mYPkX2ԹA=qcu$@ *\ɋ9@t\!v{MWvWt%]F!W6뉎S#y  ms8^ϷM>]*~6BtK 1jPz)O'hk@tp$_lڟ#AUYaA;zTnO *"uqa~Pa}mkOoI ,Ky.qU!?*}x 0f, XRO a͢q b`9]vʍg-&w~`F? TSY!GJ.]]k6NȽ6&ͪEef%&hLa mogDVlN^7"/?M@y&T}Uޯ2a~1եD 6J(΄ ? PP_g: @&A81ԳS!iK׬J+Tϙꭜ: ,tʼ)u53o_'g>2j+:jT pj zlp𡚍e4OB):>EdRAqӅC놺>S Dv:+Uh-r>`,C5BVa}#bRˡB"c^``C"!ZN9„_'NpDmܶ֍mLBVgTIxP{^D'`kq$L U82Ap1h\:)=Vc&ʁbvϭW9<5=F0͟E=˴Lx*ᮝ JpʼnsI!Hq OBcH;L-a_a4`ͳ6VksjH,"O:eP͞l*v'6@GԢ"i2m{0liF)(.=!44b61E\l-R&"FpTnl֩kAIAY 6LO(^VҊ-bl4c(\Mx vf0 m*$xî`^d5hx3d8kyK z^CeffK^WdGrB6g;#pdc8'|t4F# &,K˳xHɍZcyjie?LKvuAŕ\v+dp6"QLN>!N1Zt`xwE42Q1]{jгo9D }Lǚ77d L'yU1oĞY<" s#d`qQ+CEO,m&ӮApR$12'b~IZpNGyW  O&R+xGVLJCtKXEM;duN 9uj5+C +ئŷZ]K8eB/絚uj[rtDRa4xe1nSYXH|zIǐvچ9A6CA^gZnidn`ܩK<ySQ8UA?B|q3\X=;T9D5[B;u>w\Zfa,Tx,i5;jvg=CmEEND+PCq86.I/N?(s9ئ߄$dW4A$4:&9]j<i1 zdh5';D;&uBN*K7!Igפ׈yzqLQհ! ( eX)Q# NRq07$I4^+IOn2 "3u12! V:s3ZRN Ūbƨ@NhFy]*L ;W ߓlJ;1en\Ë0CCCS)E QJbJth&T65ɅKiMsDA l >DŽ"iymMZ -fUMiePy/\31nҝU}x5;8+}٨8IL€Ufcsoiɻ+Fg̣k92>}+S tN?״M[y0n4g^Iް:38yd6fUZ~fŬ֒o=<<&+F L@T;L7ZRe`СM<bN]D{c2 Vfrafvy9f6 O\ =Ɔ/дWw8,´ۡI[[ظ'u8ބOL{fE4)0 0LY9S 54RD.\GZ VOdŝF3Em/i h5E\\0N wsL#^$Pp:y7 0Yim v]e𝤍!_c~ Q SNi-< ٘ @xm4-U̅Wk ԩr9sxlo~7}7sJDl KtsyoZ9ٮ[Z56^jRĄK;u/|q$+״i|Wcc!ӕkj^M ]ž~N YaS*NAacҜue AGl)nET4-1Bg 1b-\6#eP(+qތZ>V( J W4^&?h2vN _X.˸ s߉Y:3@Auf#@,ĹF}| ք`S@xasC&L2_'3t`+s܉chfԈ#mG>.>p >=0+_A6E箁ßkM¯F ɕ7q=ކ~5z >ȕ9@9 *s?-h:<7Br<~~g _mxVZ;b8p^eD]q]NNvn I]M8;i>;cZL=i]rSDxD8W.X:.D}&͏\3 f!to,AcA=b2Ne"- .U/?c5-Z\@8cz̹t.I$Y ]vw|b襅QV23!&A̘^ [)=yl\NEqPf'a3iL5@E€Y#i ;3q*/8  ɒ8G"@ Zm*}RF'>z" 4bA}]@=٪|p:Z0KTg9Zx2/)ci.qaJ)Rךj%Ai_D4 ֣RW_m1z?nZ%u!6aw~&z&CWOBUÛ.W$NJsbɶ;ЮEsB)uXfC6UgtBi7EǺHkM}moԔ03^XHߘM*$b`d,>C k*^w俣d7#"ZL$O)xEC(닩Fmd؉rV]MR3wJoZ()6ڋ/L? 8We"z?cL 8 o~MYXK Ŭڰ}'##3A]ճv^jp l >0xڮ}NwooFTR/ i>T`Q㣄̇ǣ(1Ms>t9H>+NܲۇWqxX1\G~`s)^Mٕ'^Y(`7CZ giV٬fI3Q;PU-0 Nx`dljnav8ke)FFr`xb5)ZJk>;l,x+9QAA" %o'ȵ'}NNFeGNmZ7Q&xE J tdЧqU㇄xTJ+q%W,tWỊ~B׷`muHQdR܏F".ZI#H<rUѲn XSN&vjt̬[ݥY߄QbH4Bx^4%2 =/M^8 /kEw0Ff,) >P nTrz|YTakrTl I< W/6BFKӨO1 [EW .י ~(_9[~Iw=L|Nl Ii& h"#D5pkb%G%C8 X5QR A,$+g# mDh Sw$҉މzM8n!q40Q+WkWEw:? ꒂ-9P]vNa^@[ ]I:.3Ҿt8=8Ѱhh~db89x!> }nǪt"S/SghFCZCluuV%CzQ5&n.sgmØSMDjJV d@_Ty,"9; 7:O>c8>,&ym5cu`w:(eZV_(oZ2\etb!Ȗ!{&92;- +̵>iw(hӴX+iM>lJPz),ὃ31ǀk&Djk>jtL(w2y#5P#u h7M[Κk"|*d+MÌ :>%[t||pFY?={%,Z!TTs|*NxXA+g}J՛/-U /ttow?z a?{ݫz&7JO2~g`XYϧ~sƁWPf@zPPCuah(džZ4f$(W\H \C^a 굠jAzTbSa"w- n76lvà o fifh 2~pXP fA[Hwx,(@y@D34 ĹZO<ԩ4XA+gn0C  |FiW!ϓV c\SRU7$C/1^r#%m "[܎R6J y? L ɴM$(ށ򃩚ĝ=`qxqHg}>l/;pcl5:Xtw(a)\o%olv@#A<4(Zq(^ukΠ5gjCdۿ!X`Axp|8ׅ!ZD/}61ywɈxJG 5p-MM mEְAJsxI\bր~Mhm_:]?Ы_Av%gw3uς;bpVތ4GHe8@<>Snzn%5`;Jp5z >xrAL~ x~[~%)j@d@ORr㑽dY1ag:Qfe^ͺ*!js:]$:S3װ0l @FyVՍzZJ֫ո963q'MjVeMgjSαw|8Iϲ%}34]fQ#^øwUȩn N?â&}M$so2g ,UUH~HN©$K8|%IFFZ #> (ZEJtZ.Q="J^&Uҡ>E TY2ɁU:O*T "AΖ_*׫_ w0r#4d&9K MNԜMHw$E([u3bEAK"ASDL  wL"6'0+9#SUK'-}tp').@IuFM4-΀5pPԫt yJlmk%8e\WSڞoR06ZA8zy8V4*o,i}VBs&3U `,[CAdtPbȦt t'#rN[hfs dZW-dͷI Z$'4兣qiY+/Ay%>bv,.g )ES?`ؖ؛BM[{G3R"V lÂ!@UXW% ,ԸN0&吶 ʃ!umsDLv,7ɍmy'"!QD<5,{9YGF:_E J& ]o4oqVCE4ܘ$7cz0:'fȗap*z;Y7%2Aϧx"0Rdа ,'ٺԀ(uCr"HNuk&:mp`NeupPvy./6m,.AYq0ˁGŝ_nP\J`FB]uվT@`H5Q KQ4UOVD)֨3")0+֩T4Ff)I)TՒ7)}Z9Sd:H5TٔkG+˒zSLUY 06l(<0JV\GmךwZ@-s  TJ KNcBv<XSai&fMǎcz\Z(is:{D́53As;+S%t24}Ό C8i jHU&9K |ҙ$cG)\k,I5c-sOʤ.2S4'Eo~ Xf$(`P@n&s"p(׊NO.W¼LLx 'G%GC9"Ӕ `+uo]r8meBhD]b C"F'r]7hݚ$lfa_, Zd88lM);~*Ej^)9)4w &Hye,|)@}r1gM&YbioZA=~%B4-@}20;};g62ږh(gyX|-XE'O>PI*JVmcKo5.Y(FXvȟ[; hDo- nswQbw1yt TeCri pӄ" 4GpA)za:-.{T3^8+bu-jR>dn ʴac)`NnJhxWeg/a?.}#S4t vȒ4#osPZ F AFAj`67]G,`idX MyI.~H.#]\3;_Ol(Ц6]ipГcW֏q@`#yw4$(ۋekQzT"8DҒQjrrc̋82}CW/y0lp 6>B! K*ǁ K< xY T)˲h5^rMˊn 30 ?% Ӯeft:w-<9= ">l*RuR+/ɳUEERdvֻ'&IsҍK| oPܜbs~C=ؘw;POt~zgGw岩P~ ̓[CrcU#ɤx{-k@fHBN1…d)ZB%u#*Gz]͢dF A {,gauƑy۞+m٦ޠcIneFD5#})HV0ן9?>[Z 'chb(@ZBqyā= Z4 h:_oAWC>!26UEQE kj֙ʶ!ZݻdcT H^82+uV)rt62lu{i3UWc5C.0Ȯ)Jp HX/&H#9%!9-8ժoO{'NxB1u4"fCZfD:a]6],[ .~C N zq-.Ai΂ "_a;rDe7CXBEnPO=l@DY +Ȳ. #WP.?:kİ C{ȱĠNB * rIq9},4ۜ  F?^UGD=H^x.w$%|Jsot.޵ѳ&Ռ"AOߘ5P.J,Bй `Άe kXQ+E{ җ\Fb*] ]A$Gd]x2G/jUhq"tX:l3p"D;H9"(EW΋tSwdH4g)ۜ5u6=@Ey_F._{{{{39<;=pg*+Gi10r?H:-~K!MGCSjtK251d=a&`ĸŹ1_K<*[A휍SHqJTsdgmIFAA{̓y!f[zibԆD9"x2 hXAS!6/&ҦYVD%#n?8JĀށ8/-Zaza `DPK[7d1:c <c#E(,XPMcM]%'_~OŜg xQ@M@Yd?>{ ;wg"uE$ie?yҊ0$A3V2R4b)Bl $qKwzf! gl;0}!H d`yYRD߷`[w?0n%FI1Y>فrtIqAt +k`Dޠ9XMH,Hk' pAo3h cJbb gfE tA5G~N? `̙[^l{/0"Q<uK/VԵ}`Q&o 47OMiz'< ;oҔX,p*:\#"qsBH. +*ū;gzE)²n4#ٛKSulA<smcNq+|sf *d6kuͨU*ň^fxB9qd(")۱Š./w?`hmnx#*tx|DzL?[K8)m7DIt繭nU{INtNIT Nj)|p4l,jr֡ fRw@lސ}bdbtuZM*<;KWwdVY{6V?\^tH @` T! #"@GbcmH4H,;4ssIRF48C7R%f᭛,Ϛn]QKv>/8 mgS!,Ni\ mY1Jr&?jR|V[k+_D$-Zy @NdIMjrpY8 \V<ѤQvW2 ^cvꓻpyX;올ޮɦI)Gy#G +(vh4u5 T-_`}ӞEtOZqs~ջ:<䀎)V3h*˕'<%4[>gL}" Ar!#аJe4퉰b)6єd/fMVIy1NV6_R.:Tǘ;bb?$T4fK-ё꟢; ꬶNbK|<5 @kKsA` ,]Hlq-w zjwSɊU8y%>+zr$/@(Ia5Drr4NJvڌ/j p$U^z.2ABUFD[Ew[kBJ>rT10 (oI G*ׄaMQmc,=jn؞0-jufDJA%A{H0ƇJ(lk6ܯj[:prS녙{qiRQh`5( iDVc]YT"f ?Gp_&TgțpI!CY5Rͱ) [sP\P,b\Ĝrհ_r|fZJJϋu Q-~ˤ5/nqD_*Oju'G\}0:'9< <-ޝ-[X8&#SQNA2p j9P2X7EYl&Ƃ_oIJbQF.Gìe3TlMSŌh zȤ yƞ*h EؖR#̈EOUeWHM*dEN,ƯPtILsx0l$9NqqӘؙEWj%܏T m3/Xx*1k~*HdR1 Rm]`ZIh3BZڡ Isƙ&X:mOy}S (fKWWɛ$fR9d-q:y:WpߦJ4|Ȑ8|}&n5.Q-clG&1`/+7obV^, XP#V U  )0_hpGr6ٵB/tg^)H\1~4_/AY Rk6/6W%V(c@N@`KQO9ENAx g_E=|XOk?}G/;>X"P)\Y}/?(| )3C=  v~B]"V7 `` #$s Ps0^^yt922> ʅϾ?}|y 8ܯ>927o]bK~'ɗT+y#OPfD? 0Q%P,1=APR": wTls@c,E ܤ1t5x`$C]&ڔg)kw-3썀Zkz!De|'"qٔWC-75Ni>'e͞bq8nrݡBr9@K[)ȃ',$/'U>HiЏI޼X 3^[b:-(fQ}8I-fUݺqAS[Q}+Aܺ^gk/ڽS:~r:|P3j}DʜϜV"SC&9yeEJ>+K踤^{\5kI;hhn'a.b⤣)[(9PW`}ċo^=y<[Fv>Bm>doywT@*R%lTuSF82g=;< (imT hkՂm.bdϣ`aJcSH{YFt=L;z%qEdsv0F#JB} I]Z`mSKk,ؿi~@3O`-}wwU1zn]!W/vM&^ܬw^/|/|z] mP b%K= pٞՙ\6T7p^pb4:4V69{1Asf? %P/R1Cԃcs A ZtKlB+]+cwo!ϝ|M4W,CxVU9@J26 m(Xΐ¶x nZPpj|ڊqZuN`l ^[Gx}9./L=E5*Oi,*~-j*J,>SVzdXEhُH/05]5~d1fv;[쿼򈽮y> Flrm6(]p+BbKN-&#lKaWx_S,^pKj N zӣODOFu|jnVM p[ ]bP!jLb3)"YoXNȼZb Ć\Ӣ8Sـ/㚽K;SI*4i,.HY((Ǚ Zjbb0Fw4aP.4=4ɷI!J|j@*x#kAeFouzr"63:9vq,tOBMG5Aofy6=9jx H1h3/03OVa . Z"15.U+Z5Ϳ'C<ހnY/&Z%E Teh,` *B /Y,B ]M f?Њnyv!\e2+ ~%!$ @dm Ό/cCo}/r'zXYk> zZڧ3HtBʾ+ajr23_D>uyJnRʸ`B g~GuB) ӷS;XE; 0C`O4ͷWp{{e`$RТP |Ǔ$dȗy`A-7r+O[=+=#V>"m:j(ݏ& S9z -CDAhhDy;~25袹l:1-~l,`8R4IG˟$6)6]Z Ve3! krȺ&kQ_%`ĻX@8t_ V~bo W+xV|D M։Ix?bQ!1ٳ\TPܿդd1i*SKZ2|ǜkc^3].9̗cPY.Xe-7q^mVA-R=y]38o_jm $ 7-6\^/拏!!FIx /Eö8QGj;?^n ɣrͺ⺔Ԝ3؏Eq! FnyfǰMEZ3H:Ț ;uKUF7I.1F:/k gZ4}7Fd='TG*TOw<ޗM-kE x ww{BݟGl5 9`4$Ճ*9s7A 2[(sjtF+ڱuqI=儃%c:/U&"gc;,uD<֞iL[iis gPKyz@ı)X$J[ z :|7{98U@z:&u,N].hTX(h^2l%UpAK3 ~8u2rb$ gϬ\_,xc_>`EuAkGDR0OT6aN*{x+ej0֢shmͱ 9uHA'IvZj瞋EbdĻLUqY' ; wx-w]M1esUc,D22 \ te'gu,l`c/OFo!'T w}m|E3}snu& BʤgΑcxPrJ\WXTyB ZpWiFbN$<>9P؂ܪrC(.!72/[IHx0Δö'Xsb?b3<P'9y[k(oyW!V7I9k#a[~Ls }Rɔ* ;H!; Dl! P;߃ ߃KHg/1*M% {;zu8N$6_juxcqOK-{ S}|1v_0DG.U>TapjUoyC,zww=)K,y۩`}P.:o 8:tlNV'Ceo87k cAA\K@"lZB)Pexhly?gJzAK F؞󢐍P{^3旽HbmzZ݁V" bjxmW=,b(_]gzcNT|I}'W@Tv丶dv\Boᧈ\Yn>#_=BE-Cݱyѻ[>!.W.$=]'qKQ;Ӹ-|. :W )YE(ISRz}7EJ[W">Pj߷~fR{!(r̻û#nN#[udl]*6X%/ю$4׶f0SzY&'(z~ J"٥ -5;u})7jV -ݱV($ D)qI[E,bܱ\2 BljFN(cB]/7ʼr*BOrMp3F PĘ#Klp4^5>p!@Ѹ5zg`u=xض'RdsʿpgGH\Nݷ0PjM?ͽ-P liڃK\s@ ˦[[L&x@P2y"w|iQY/e9vx1qM$UU8 +9]{m66js51&QE<օ4K~c~Pʼ5'@Oo34ԋx`iW/Oޤ/E1VtV/[U/.67sy*_YFF C|I ]4Q:*7W:Yk~gdu`< $6Q2Z\2;[zb#-֌? MW6ӄfP}5;+,#^$ .=vd"a<ǯy tz|U/}~qD^G~@v140 6r!zNB5*18Dzc ^<^˅dM㳞4i]7ڐdS|4r+,<%cbS ՅD9jA{u߆4 {Qd&[Ly[k>@Ŷ PE^z|Ϯ|W|K/OP^@O8/5p%Dk7UX;wv~<ߣ{u2џY\AoOܛXXl09$aKzN2sR*~Z[Ol5vxNjx=j!D*X7$~K >3 mR}/4o^L#q*Z8ĊWi^fubpFgY̅&s[Uk/Ar̬We9{ xҲk W\Ϫ)dfQ)C/6@4$1i3E&r5]GBu_=FLDB#E}T.JRxm.idJ PؙV6 .RGΦh]US;JTrW~77B-)+* A9tA{1)5e%󜩗I|^#ٕ5y@ nnhp:axLDЦ4_>sH Uk Y+TZ-"}D̔2m!+}z7}?I-X%^/&)2RhJJHa3۶< XAkJЛҺ f$ i8_sSU!R'RH4đރ}p@^ğ jt)/WPVO H|x5pȠTa KXԤs0P9--йMzH*J"  V,ob#9A r9h79#$ƱA;P6 s*to \Z&k>Iꐬ ʳc210(AGG$Ve!}V`!-(C%C59JeG XsyIK^9qNArnɣ5#FUW;@61(TwA|w)5O1==5&)cu#7BŬ-8׼"t9H0 Lb f&TTHnܡzj'*QȦP@H %{(oϣݖs1QXeZOˇw; :r/}Ո]!tS*ϹEIٓ \WVխ}g[L5 **֞d'i^#ntXvc<$UV,n6ʈ2 EFHi?a i+@b} buSd0^_4nػbUԧ[Q+m%+$=4N eO@+DWӇ8;%+39|t)md2O;?;;)5iTBcȏ>~j0Fk W޹ϥ5ZἼ;g(8r#䊊:$qY׹$s1 ?pt LIxL08拜dj u2jQUBn,/+Wr(8qL=ߐ ,RGTCG0\!B#'TR*h7BhHԴG⿰azk/7;\LKqQ(YZvzHtEc?~Wbi@Ki7wC"Rk_̠a8yO6NݎwԎ P;;Zq5 -Aw煝":nE6^pI g݀U|*J$ [0փZSC\z̨35UAQёF aRװjTl)POma$Q %4eP Dޘ`:1tgPIhB[cr\ ?ԌR.u2[l?g$\aY:z^Af%4 :q&@^4 u/2JyJ]K(҆mI)I%/eQ'Y/wG`7{C <1HzClnpoX^v;)zx,o8idoy!ٓSC]O0$;F#f cZqAڢ( K/B!|h(o|Ʌ EA_6L9.}L ȍɄKi?z5X %T:N5ۑ$[:  Ğj{ftN|]# `pRʩL}EܕNRkq0ke :19yZO:{?r8+[&6PPfɢbcХ?tTh^'FGjH{.Ӭwd9R:[%@ZrMMubXegBO B9,N<֝s-ZNOp9n9˲ X $ +" 7yXre!u:2!u)88'*֢=qUH+^ [c r)wJC)xqbHQr1YExM*Lpb9sL}RM0ͫQNx pQN}&8 |_#=3&w qቜ_-ؠJDOv0|kOǫS^J-k@7{ =-c}Y@O4jq1ךWe'9MiJ(u$Z.R!yMTp&. Y>XMmAñ*?ȴ2{V)(>=OUԆ8,dSr9]AEc.]wA bW V 0P4лU?z mr8f^;a5=KŽ7?ÃZAJLh\r6Ye-C6$ A s~DŽEڻo |ebT&\*3iݸksfB"R\ s;=v,huk +ZL]UG6<ͥSܙDf<3 m5(c8jwJ<>h jGԑHW}*㐺ow}5-"XV4$t m5U i\i }uH=Иm;P~]ۙ/08Ok~ UsP8XRtZ@HrF =1J,JnNDwwGRQ]^I7S-cm mubf >܌1@dğ!ٻuа6T ʡR{7P_q?Ev@e-lgjF"m-g !tOm&}W˧KS U6jG3-=ʳ#|^ֱ#HH=:?ɃpXҥJkrڨS/f{9r|r݀oeM gADȞ$ߑ-6ׄ9T-^KP0`1S3w0Sjs~xdcҜ3Jl/cq8taA`EhꢦZ}%),PvabV05:]] "^i˵8 )98ocDZT91w0$~ vnߵ9p1vz/T7fI#"qTB ےcykP)N"U95ee;i#)7O$ .t~+}Rރ.l&ΆWˈmqsWܧiTCrE% */%(ӶppM.{ԍs菪V]ʹ؛s/uؖs(-̲%%Uje6Hj/#"etH0w-8·Ҙ7>uHw)jhsw%\a-L3?Dtf p4im~T7&`ski _5esESwݾP_^XHmK^v nаy%w%k8Vϥ^"5qR~Qs}O]ʸWn.GCcA,$p;uY_i߳ 9 j`mTճgPԳzRCed\-${.NБpx}؈Iٸ=bΣHt^q@/͌wfK[D%(7Xݕ1X `hѱxʤ.wReX8m4p.ZZ!2Ϻ3"Jɓ'Cyl/pH-^՜^ߣGzsg %;fv]n),;tI|ی kҎ=lVсKrb!Ɩ.<^y"NzQIHj槫 4w=qVo TV Gd]CO1Ï<ڎ :ϕP0rS &;|cyҶړ]`E.9j{KSIIY^gj𩖘Ҁ&A.trtZ ]> ީfO4-wmˍI_sdBKMrn8bkGIP4 rR"==}ڈl̬@Qv>mGؒ=++3+}_7ޯj@[8XmqE nG1Kt_I`d_|w'SkJJ2;nRV0n7EQw-oMITo&KԿ,ch 67Z/)GzX`*7rK&d<(qH B'Uu0==(:.Qg'L:|?O$)x I ¦ B3qڋх a Yv#h)Ѻ[$Y֩w*3tзwF*nŠShY[b1?҇1S6CӉ%FCi/8i˿L'p\h#=6KK=7CI ~LC~ ?]_tA_[qeTC3ݝ\)ϗ}ܙ)QL,_N>)E}_] X ?5J^I-dM~SׅM%< nK^P3HN=XmAmINV[Hm8X*# =~_٢ zbir?`^~EX_W=k%.l:2$B( ,sˀZÌy[CBp)<ؾo_ٿ__eD8"r=wZMNl%?d,1΍f2*X{*!3ݶ_˔?q \95%٭7-ue1N ~Z@hBus:KP\h8}}QPvN^ %"x_J [&Zf Qwrm2qЅ$`;[R(4EG٪ OAn-ܑx\Ȍ& \ّ וsw^y`O^@%b n5pH׬EetGoH,(w PxȠH5'{%ݵ(f̚Ȭ@7W7{BvBv.4t˩YMG.;כ`4f9^sezcmNji4t+`;[;xWɜyUUVyQmsD-} 0ofv7iQ Fu77fs?jnDX8q-Ui6'Xgm(up 7I:E4fFa7po*+v}LB䧳E&ͻ&ZIg $ik4#giAIď@+XoΝCf'1+q_q<}ô<8}`67I{ QTuzsY;<"_UuWXKVmfҧ_ÖjF 2_w7t񠝒F@@ffj[3D+vRXGvMď/=?4k؊sp b͈sss:H `l  .#$'(ݖp(qsTh _)̚j]:}+:q/觊XN`ȞGB oy{H3 a(,88LI%YcI{̙FqH6jw{BFfK ~I ݕ免!"oʼ/'~yһnycܘ] 'Yö'Ug#I2zE/ ܬ9/gg14sWm]!RυiCҐґk?[c&l߾Ȯҏ1vLO Hd衜#nn BY%T0f ʽ=96Ԓ6񏎹;t`RH'Nbq̯~r'<|MQO[qvfO+-~2AKf?lNEfďVQHztTSҩQЩTFvws>S?_A =Y &,M͒FDYV0?\4jDspobԈ ! =q,=Am}X39lܾJ߃b^@$ }*~J3t\$g-GyI)7m0ڱ;홝WV PipunweDpfG-:'o ~h"ss e?Cy <ө?:gtqjGDman.^̝9%.Zͮ%^ÑRh#qʪQTapN"gu]f3cfpd8}Sk&s īҤǝY0EnuzoX%ŰJÏ/#e̓OT#&W7fZ9R)rut\:.O(X)|ZC# ̠+i(- ]}%f? u'm G5lN~h Eۏ_Wl־V;m(9i+>C>txmkU^f+V=2t7g^ /jkw걠;d SY&"Q࠙?1ȩY0F0HpX2Jz,&rȼ@ʤa[9`b#7ZlC3J(|~a?a"n\8Auτ;8Η?W0$q&~wz71>2vGQ0ӏ9pR[*a#GtH╃rQw5M>N|r9g݆ƫUuF]b3~'bQD=ZK3}3䠠o#G83ɪ@78oO O˺PiZ$ȀE*%.N% , eA_i 83? _9FG3?̳TueƖ`Ms*jt zq.hR: lv*tŷ eH-r_x!uJ'OOSJ@m4EFYMo1. A& 2w85Mq#B͓a2tRuTx'߮9Yi|j=;H{GbaC|IopEg%XdU褚 qu[qCe26nbxeO)q25MŸvJXO}{[UNh;vdkGcxLUAgm-#lqvQB8F_R*76a^s% kJvA4| m'R c]3s!vG)O\pO1A{qҧ>j|Xp;.>ӓHYkCyzm~̯Fu S# S ,s@Z[ i `|vY3p]+)ybq]j JGX-f GA4xl@Q Y*ƾ9IJL(W̨{bߊQ6Ծ/XpIdP;9 DPi_=5JjymWM\Ht`a:_05p ]ݣw6 ,1M^ʀWH{?l^7HcVO4~ ` ͑^^Ak$ӶA_?_G'}9Пڔ֚(ļT~oYwƽgO¤aU+^vHKe>t>4{ m5A(-ǧ؍j${;`ENBݝLyv)d;,߱A?=C.Pvc~ @ ф}>g6/j0m}0lCk#+JHB!'lOw"7GTetXy}~Z:In3iS8oRGpF-8O_sڽpd,7-aح,%; "Q7=/8Wiu7ŻR\77&Nƺ\4d}Z盚қU:ɧo=w1{_Dt9ّuI[Ly,e`bbGf:S!CRbsmUi֨l|=3ˬY"w8db7􃁃5-)D ̕YBJHG(…#u} |g/x!nXDHksrwv19jLvcr/սb,; ᦋU]Z(rj'$0 )c08|OA'ӇC֏QK?F-x1z#ߏx~_Cz cL :) wAl>-"@emu9k~dg*N[/";ч_U-ZAz̴snmU.IV1]J% \K-*P*Wl AtthjEQUS™ b|g>)VŸw+]͆r5KZ1@ߨ~hVֽTV?bN4MVM4[N"fZr@{D֜(:{G*aYʭ~_.BsJx cR^bt tYXscm2\`{?_-Zy #%ߊcH~CzU,b]Or?M21LwְdڠDX~H<0J[.@+6ۀH\ҙ-M"f)[z=vdKh_K 3Qc%="фo9ˍź܅g-Oz=%l)Zͳ` .$ ž4:-믲~f7d f&Κt9~^+m$~v۪*YIl\Yk-RY\Smt[{w]E&I,GC|+Evf*UX]05g韫otwOr9LՌ>AuWMEG4RE=oʭO]K){RN7qMd*x'9{g:htNeGhQUMk9Dȼgvk %o*Z=]1>uТǧ# }}M>>QY-i7bNG1lM|{AX MV 8o8\lBWEH4NxMqӱͱ;GQtĞ5Rla[vꕁJ[ l6$ Bf/둿QҀ=a'}1%|ʸ0gܱ4(b:إV26@z8l w70O->R~r\ĭ {PgF1_N|9r_Ɔ=`hbbCw}FaܕA^-ёְ,?]zķY^F}(qzooh+uj²- /|"sy2/'&sZ 1p&ћ#yo Ś0OCTEdm]m Eږ`^ K#8#_]̭03/ Aȁ +QfAsD8v6KY>]ILou}ٍY$3?F~>;Ҽ6s+(._:`rVy{HBHRc/aH69gA0dF# jW_Bzv2+Co:4E$'h#& LC Q/9Kے$_H$`OlDDW$𩠃0z\Nn֣K>`Y`W2/qm,l:hUɵI wtpDN V_5gN@=Tt:F6WO., L(-H$>@UC%Mm ]c^F3\tnWr/ָ\_MZ݋UOBlI>J=uyHS` 1&p)<*6Ѷi+ЈCoȦ |u$a|2]o|G՞mQ:Gȑ;G%O8-帬E4rH ;4U^!?4&IǾwʿ+ѧ ~GcJK`PL1V)қ4wuuvydRsܝ/r%)k2.3Kpڕi6g0>U8PQ1BHȫhG Sőߒ%ß[j )M[u68L9EC1-EҼR:b}V4Цe&d钤ȅdޮ֫ˎxl+P\JJy >|N%%d/]DhW aj-k#XOtpF]6IX]A" V>"y]2QluH~h4az)- ɗҕ?b4q|}n }?2k~&Ah( J)wrYof"0)RX&,ɬ,nOdDNYw=YiGNgfLbT!R6yirBQ&kI]$?Da0̳DsfO^SJBğTg+Qُ+x @N2 )c+kfJ57n",͖taL b*08YQ aPQp/]Jbfh*\l8{2/QaJ7LH6>Tǘ)uL;Ge D"~$6tǻ68U VZf?$ s}`LuкE[QkD납%RC,}Wvy_NAPUJ%%huYLY)hkF4`-KT1($O) KP*Y$a و&"ϙ(6#^QB3rp# T zAyJM'C|L t]ƨI7= F"1{883yf$a?~gxI,]rNh.nE:Kٞ{1cqڋ韎Y/g81P%=@'aze綕D۔]Rx(:c0̐xY=cs%Q%E@!T,+sYu2. .el=z!<ӵ,g+ ] ¶G!YK6Hm+ M;~l\X),}Held-q]O. iԥ``"~Fx\ax$ŏ^eU=>}g&=xxi)#GP:R[3T.P`n (% ;\:G%-)@5a]#N9||>.HY%aw B|c +׊ҵEMJa8Izku-|;7#30^$*V Q~K l1ԦX+0n\LeU$0<В~Mn zhU,p 1"/ٲ⟆ѵ)g{BU1O8!KP8IZnV=%r{j(و75.V]*1&8tOJ,3o&_{]MgPʩv4#mc1iwG6]i8sءҗ4ە|0l߿|}1y⇋7'X}= zGJm/67(O~#ח/ߜ3̂Hfao/B4`~bvځ =>t|0dď6Ω={,f8@Ǡyyon0RV/ Oa !>|vтO>J;Bg })!GM$Y6/mpTY% ݈g+q˨?4ևO7`yҤQ ýTw~Q#'f[wO77 =:M%"X&Xq@7# N2 |~[mwrFGҶ8*xgOk=Jt$N){ntE%doSU]e}*f]7h1~YtdubrJ7 =$i@ ZeXmI@ҵAF'F:4c-D~RaAϹ3 ]N{Wvt׳:Ȥݸ~=`9,f⹞-g*Nc17ajƚ {V\*45!3tYp3/3vna. ҄ (AC{6GxyhWRho2j@6i0RhB+ '檤C`:w+lZ(E}5/0ƕiOma p0…?мW:sRQwpP6qaB1h}#N8ɱMik\6U,SYjA1Ykf>ʇ@ ɇ$Ay!(?%߅7b׳Fё"û wIV屰Ok*}ɋG_>Gj`W$, KhGKk\?"[s33vKv8j&{`doòd׿Ԕ1"CO ׃rwn0ˬg,v/Vz)!t`V˜ֻSuԗF=KwQG=i] ݽQ ߂^ⵥAr PZX]w鎘vs~5f)|^d?=ffԬs4Ҝ$E8-UN㾙#Jh5=UZh0k WyQL=6`jI+-(ƌj:tV[et{vcdO#]wZCV}q\r ˹mXW:;X2j@(܈_'km#Ad("eAԸ=4!'1e¨ovBQsO'vq98lپcndMt}G}J[Sr,]N:J5!bWAk$>=xn.4-{!:`.$e|Gv޽W{+0ג}jPmp2w$F;Q_jS6ú[ugCRsP40F<VTᓈ\~ؔvk Cq9)82jAXۯ7Đ9viFYՇ䟗M>BPZ=i\Ɛ06Zε~:^(m~o/鶹S"SxwHmޑ ݸU"Oij! \Ēi@_]Xx#@Wg 1#AS]xRdIB 9Eю.E?^}Ӓ9@7mSdH4>+9Up}=te{GOLAVxn 9x3u-q;\Ԑ5 vjxm+qs?|-EgsKx ;Čζ+40M?`r s&uPf"g+/-zſ$I7Dajuꊂ$8&EMY]rĕG8Ԉ8z}!n!DY֍3 Fo;-N4 2ӭ)ͷE "xK#(=kJصrӰ̸͡.fV>B{6upum,9BnCd^mc8 DHEb>Hr$9WUBQ 03Hk:u\ W{pwDPgջ tט/l702*EZf VnK. :L|JF92OGG;̭~wS՟V /w=">D7+YQ'APtwc(ՐoK7?vuI'vCyj6jmBKpJ=ZT;QRVW^e- ׋ hQ7FHS9Iu17]9rn>Ю'ըi ³u,7=dPO"!Bc~D~VT TqEb? RGc qDS:cBqf%f?~yޑV(e%ʶ\:?8,lf6ymYͼ-Kyٍǹ77Me?!!: /qJޢQC)|f|")$1N0$?>?x[2+2nUw~&O**P:}༣ qTO&7JK^y*ltEli;424p&;)iJU3>0l.^1^--LiW|,4ii|i`crd.$~K.Ż6mEiSǻ NȀRVܡ晬xcjY }9shB^.rP'^ȊPx@0w|et0_oџqC*K)@`^^oq$݌'do$ŲݷMtsoϹS~$]0K^G9E}S:c bb,^rZT! "t،kjR"`2c ߧf?vQĦ C-\i3yJlaT^i\" hPC-,{m+1ܑb#brލY3[dzD܊ҙ})[o+@Kgǝ6wֹ}e_7sfEMf$1i 0IT+4}me'8[prbB@~ Y("6EE8 ŰZ  1_.t~e"Bf /hR2 6H8l>5단,) i} N;̘41Dga#4ГZ(Ǎ-j!)ؘ8*#^9䗦`2';&O~ļ_hTk0S-PVuS4Ck$#(4R'Pʆ!pʍfLs+ lQUZ9Mr~[^cN+uW-H_hZwrmseU fi&M̞{+ ^$mZ^PzTBZB?NJ/@2T*a#{ xv)+Hi&X@.٨{BЏ}$ȒGٷLސْ6dsx!zIܛۺ!孻BjU(f+#)3@4=t*?mOf8Pjٗ37olzǙNepCooX;HB 5 Rg4k hvQ/ ٸ>_+"%Zt+>^405w_^>j!Nʯ/ g6/v{0xJ'n^WoB2ڑYd#9Y [|͊';`]uנHtwt˰ߕs' >r-߉4!ٴڢzVΣ|7?tJ׆@*?gv'H{ًQFod&F m xsӫO]\>zo.^H*U]Cv>e ]ɣv3ʉg11s]w"Q'$'5W^q_l;lWܨ8mXqQ_VbIHQ9:Nf#Kru> j~%YQEQtQl43LAǗO冖HP'p8/ʙ.LEC5*1[D-*CDA,%/f2ω"[al3,ifž R'--U}p GJ}tD@/C,sGA70IL?KGfNt/c>J5Npnh1dbK۝N.u`t:@tG J$CYOBH~#@[0fduń:2?=ocC)Ajs .m،UwbEc3tmr𜿍_l3""Dܸ -m*G^(C6ݎ]]b;B݇;P)>~%U0uJӣu1{W_1xu[%rd8@#ݽ"Ԭn-7q5< _;1c>uMC zMX= Ϸ Rwi{Z0"X;y#9Dr[ cl*-{r-KYvj$oRDg@8šnMr/y^5V,zK#q;H)h!FǖGXoF|[ q[}Ҝ2ڄ&]b1~_0\N=)nVD$C;&#gˉ68ȑVwIx%6ӄ% /%5W6JJ]>tGy?տzώH#/ vh~7/%o~4%ׯYDl6$$l\ D _TU'H1h(T*T{Km~J~bJ *7H)(})W`B?@Eͣ'훐OnxHD+2؋hQˇ>07=`k,|||6F[NLt@ܹwۼhv^gUE'z-b:yVwȕ"[ 9˱߱$4R YS+ :NuX z cXgB ²u\rFXR2,pvLi(o;x* &7k.YE¦< 05AHid]CƖbս+]*D?zhpbo 5z#(("6a]H8 UqI=.XI2-X -d¢W%)w0>3DuqEyזȖt]'81b>,,#YuJ%죞6u~-μfU迶rE/dOO?w?2 ¦x=xGz>8&8R LW@؋E8Z;1CV8b l` d,wḷOʛݒ ȲZAՈ1"DjqM&zk0; lQfEΧ`,\Q Xx&p;1;x _X.iV6lrݽw f i Di*b/K|HbuwLKXSLMSm^H毹X3sDOEǮؔmduv#GA.>}+M~m!{^-ć鰜_wY1[@=RE  &vQl3c#–Z/tK2$ 4&a&4Źtc[b_^p勫I[ʐZ ;ARUo/[Scp6iF+NIrҨ_Pq;S)8y Z- h8@^H7œy$B"e$7 K-eM|9(9ַ$oݺ <}RTX/}B%ə{Atǭ* uwA}KȁA, Ho G)16et ~ᶖ ݨ5} Dߜ#:g0Y(Qԥکl骬M[Ae̶Έθ b&ߏ]( W :赣)*7$ z,P q]>ؗY[]5_>iu_#rZ4 s@Rd[=+ŅF(&#!CfX l؃CZ:r4ʰht̼~cX Q4!UZ:ʡư(5]9ѺR9%F)0i Aw3.6@hUz>d+!FdGD?-Z6 2oWC}$m[AkO#IQ-"Xo)JY yꌈeQ}Yo :E::&YdGJA&& 0)98P`х"5#z h_EX2IezG;Gڈn>ڗC.{jT]4,j*gDs΢f^D* מsψ ;DKBJa,'uc;&݆ VG$òp*>Rs^MhP\YwvI2@m{lV V<<zvgmV`9QVyha8GV#\gߓ^ybkcP2s%="z /Gk`;*px٭ӛ$O&cp.:d1 @J丏agsj7.ǂ~EލAe}\߹w1a=$.]i*}*ZͽN9)(KI{:~_lr'8V~Ifɸڮ__Bt6ݟi=H1 DCA&jcw%4\"rf ?޺~K*m"%R뺰X*81m6kkSG9>Fzbswtw;ca :4؀ݖVI @z[bQe!WV?Q,4eh[;>8H!+33wi|yp!. β Fdb'J' =|l( &1KK'(k_hJ ݎ%ƃqUk戩%wh\sj2 h2ayߚh%f`iEqe.k^΁E hcWq"c-kx[l0 cX ͗Y$#N][ lضOK$VRr9߷0닏Թ_H$HPضnh !A@Eo+YR!·;Փ5`bY@hMPM:Aeb~L*-O^w74Y%zٽ~׉@MBBR7?Fdh2>Vz@fϸБ"kBcR1O.F(hJ 5G\i F[3. Xyzgj~N e:鿜O]FnoA/rpR('P+A̩G(c<ZL_jVO,~r}Y338^c"T+s8F(l ;߼ޯfDW¶h[PΉH&VjFփXY:Lχ԰$ԪJ[V.{CzII/[d2;rBQ/eKN8%BRL+ÌL cZ5s 7-)T3Z3>ئ(W rVBJPL$&Ԋ۱K/$^ 4Pyy!oɇ2e`#wښzKnFBQ b۽,߁f!69Xq9z6;nGdT_|XٴCbd;(:嚛bf\`ъdan &Ӷ/-d]J~SǩurʰgJ/}(6x{U䯳"u{U!Qq Q0'Vz%R98k z馍Ώ-4)Q2x ZK╼kZTQh+MF? 7ۉw(?}4D\D xi'PGNJEhG1Y qVQ\%LUpyCRTKxJ n=-9mW>Nԛ 9I>.?{9N`,owR_yKx©c{#g˘ i"ͅN~E$^f֙cYKǼ PLѯI? 9J+@HT[˂#JEo]LBdcIZ' &Ev%kh:!M,*pzh,åy:wB)z>x`g=M_,FO 2l l3(` q}!"8+cO͵=}w=e<[.ocaml-doc-4.11/ocaml.info/ocaml.info.hocaml.info.hind.gz0000644000175000017500000004216413717225702022001 0ustar mehdimehdi+=_ocaml.info.hocaml.info.hind]ْFv}W/cs+4D'BaMa]2n,Ԇ|G|էpwOۦS}^e(iB̠/*=PHah|a3+?/|O-cPfD lǢx6`?&caR?^0Ō|!0,={Lp> 'iN; /HYO 說+y / _%*L H3 6{7MkXa^`_]XXiaZ}5Skz/^UJﳪ) 3iL F_~ ח-h~Gm?vcSs;ݺ9W8#*&~/qLvl u?x%`~Jd8Hc֥hGpthG/ꇦr<~n>5Ԍsu>6҇YN^"Qm->յݚQv ko[9?|-r-eV!.9ei?nU3kWng(9 }n[=? &9i}:57H-gԡ^ 274:}s}[C5}}m0r9ܫ(Jl6mts1q}JEYbА )1|A='=f5X3Fų+ݾ&l9 |b }Rwtp\0w~ɧg+ 4 ~VzeB0F'`F/`8 h]JCx"#0w)$ ow)4!!0w)Qoi\M-^=sY |t'7YT MǼ1ݓȸKEsWT6ҥ)J_2 RQ&6%1Cƌp?$inE(JF_0t>Wc7\*x,ܝekDcKCSeYHD #):UoFYgҚ:0΂om`khʒv{Γi[FsCHJ-p+Yxݲ&S}ipw8{W? WĢ2~.[CBX|Yl5k\0hA ,&I.fS+"6tATUGS9ύoq p`DW6ifp^rA)$#Yy$ St[gɑ3M G)EhSTe.3in&gFpX< 6ȁj[᧭s-l@l@ 62mf XtAжإ$C{AX_ /8__#J^ %Lx^pEQ:Nrl7kD{)YwDM+Q/ŏ̈́T1V=!Gpys$I?ԧ7XC,a\r60G-վq&z H|&&/VSiUDj祍n\RSBWƷ񥒅GX\í[Fu$eyZv[*4}Z"\`e!8MjmoPM 1<~'j#')HLn'SȎͰ> d^uam`m`؍'>TEi?d @t Ë2;@HAT i B5A?ή[:/+̑lW(⧜O%y@9ȨiQ8z;'4(ed.#{܆+JJC+HJ 潊bѥ,z!de)H9Z˿˽&t*?AJun*`4c 1:P|'!2l:S_ 06 III*cS0[e{ N1vHFLpH6Yq$/φEN1"NUW?X˰iNG[;]m3|䙖&(A($Sb=CHw%"}\ԗ˩/\h_t,(V=5y1I4#g褜qZu|`6mx@р3Դ% ⵃu/M<-0ZNDe, i$RC.ߓVkntO;f6;NhtYJSie' ̵CߡiZ(FFigd$m ,Q$86Y z#"RZ %`Lc_BvJzi'gG%:@BN*gpJٍyo/τ_I.r}`]^jBKne!W1yVsKNsu\:\s) JI0Y5w TzXLc( K*= ".LbaݪҶEЯ(@CZ=;4ߠt&-QS0Z+di87X @ -P.j*Ba0.\kApbw[}ȧ jVP3hV-*σYA\Ll*%)\%j1\S|b +93$t Ec !>JHLbx,T8V]?OջP1EbB@&9'a>QnV,@T@ 0i B_C gd[ӓJ.=)ғ n[ͤ'(*QܾZ0˫r:2_p*/$ճ)lSH2L:slK;*;U^Rf R%Yujύ0վoVa~]RI;mQ›EDq}P&\7'XV#>x|DG|OFruq!Ewѭ0q6:o][2bq{ƁɊ8KR]]%WSr5ϙrP.2P\{7WXDD8yf2m&RuOi^Sݟ;!X šCyv Jsx¥q8!=mlmBt3s{ myiϼH~qҝi2wG,? M{,LΦ0`XM >"<$#m_Z.m5Hr'Ph RNE O[ɩT?R+eof csج 2]BLO38~ct=_}~>W7d OfW$0<:1VPusm:D½=5E ^Wb%a{n:ʱJ2~[zc 'u>]szf RTR:Y$ ʨ{Hi'ppF:bd&r"nBh$jka*aP"妯^( ͐0b9ZPí3&JG 7ԅŕQb%&v*K{ x4T7q  iJ0m`ϒ,eL hv$63k0Ԝ}Ʊ-˱q>_ŗ*.TSE\Gs.pTGq uaf)yÂ}%YB`aaCIY0aT̔9ʨ)iLA %F*  2X /1k* cH`C`^H Jq\NPW-(ZNF }ʜ%A"! 0U Ģb5cc0/쯪k.K*`‹8*". iB_ 䩸Nj:P@lZSb\.L5O`%Zav':ìڜ3hQ1M, Ԗjn9 dV+yG4ɸX>A Jc/ڌKN$T!z߱(J $o8"a /4Krw ;*sudpp4ѤQl[rBY0&bM yj6`cKPKLkP dI01a >zzRROz^F)tZ{j"2Z"9qwWY0>`e+>A/UMbJU\dz*e:`9')^-zp(A '0(m5nn,%Ne7Nu KWܻjV(++ĵdAU(|eŘn1"9f'~&? ODIH AXg OM_#8fu2=\It[@:|(5I}ÛbKSFTvb- Ic$#`7~HPiJ2SY2\0g킍^(쉘foRĔ-Ng2t0% T'U\t6n/[n5T?_n Sqhr`7$I=] WH9 ÛdX,LO ;RkC8 S U<*+B"5Q_ڕ,IcǻBG}d==RiL0f3h2"jdwqC"g2]Ut <POxSxYr2ʹ ݩ2;Ri ӖvP@Ro#P KYjr*bm٘;~6- Ty y:jn -^W憵3MUPD2aJ.[C*5A6Vur ~Ӗ@@ apf@;CNwyV8+\Ȗ9%oP0&0w@Gj-ԓ镾Vi @W:@!;RO=x8`e!E!.TZVB@?i A 7q2(LIl޻[ 9w<1m]?'0/L\u:JǶρ>N\#iu:Hv1o61 +=}=F}NiulAc9Mҝu1wS8xڼlm(5OJ[Wdj,n83مΥWs.-:(S۞dVҖztwԯ,^ӆ6ɯ80j>qv_I:1E0iWvv|><6.z) a<-F>7ՍЯu}2uFuTצLih^ g^&_v1>`@ƴq9Ĕ̤=N!A\+Öyq5ycq15C: Μ/i!ԑ"3C- Z;c{~$<_JB)D,/4)Ƥ9Z "ǹ\\Y()k2DWK_#I5ԉ3r}rfp+̭!Gtgb3}p 5\[:aw@eL{J<17񾉙"7q.R_9bD k\@.af}NU9S5VrdtXR(gyUD$=3u|32e y)P,r8lhR`,pe6.9Dй_hPc#i,1P?sZ Ƅ2n}zO85;Arז~ q`rC]+}՗I쁩o BD_exӠpO9q9gA6r`A/s jdp^][DƩ%÷ȅTFvpז"70OL͠x+S-[oMw6a{yd- ^[s?d?&r@m%e*oU$[RH>SoI9}K^ {R%__.=.0ڟԥ3'pfiX˘x_`"T:m c@ X7`cV$(k@8[Y_t?ˊqc%8Ϊy8(?Uk^qd$g PA=r U+$T/wY&%Ar0@vHZ.'UJxn:i)fݎ޷l3{TJw{ Iu!߆S;VŪҹbĝ!}!xm_x'h !m8E]{b;Axa^giT i8*@ ib5ހю.u $u.,p+L܆pf/y.-p oj`k'=2J!}߿fd~ ᩕ#:T*:QF+OQx]0n6[]O٘t=3ԙ @D>3遲sf2^myđDIUJ.&QpՑ6f.[IjSrtboDrHMGʅ"䬈Qi˭ɏ:qw)*Xr]OEΒT/)B@ G%-pTܩlNe0{{XT@~m/,rbO1nZC\[6 X@hՐc.pt7F}t7 32J3F8ZO Ւ-=%+?^Zɯ\.ߪa1 qc;"X/zœbpN@No`:"$зVh_o>mEV?AGL0AZV;`Zk+/7@g~hݫ4luRN96kA&/L g JTLA)A>q2zp;U0]FVPЕDf:i.Wu2}rZЍ䫱OIg;5c~rŰ{m/IGddS"Z3Adly"Hk6ô Q{*'nGl.e^BTUCs9?v8}妷Т:!@b:B20= vk4W\ُ cT""b"$].,^YpV筭/W)[: @] .Px{d+Q#+ځt1ٮYيl.iIwUu^FnTڀ0z;̦@96Q>˯Up<:BB$"2A +<ñ=\ϐI|[OМኬV%yߞu Wg`!e{ ^[H#xuڎ}u)AnU̷0H\H!6 j2'10ֿR >>Y8#D̀3C45my8ԋ=-@KŻOKa tk 7`?6|1%S7w#h?FEe1܏#?Gx5B jAPO qQD#pF)#=ݯֲQ k@*La1vvFPHsfCի:1iah<+e+ C( 0p޼UTs3@r@vL$˩S]Tiz\edrWbag-e BmS٫|F}{_ !Dp3j/x 8mC @$0O6|PBD+G3f|f( gܡhʵuMP+~3I !1vp^!tD B+-^~ >k\(pVj~5?w`/.k=vj@5XiO\w $O -v5.{w|!>l%|ؿBiGڱq8Կ(m#+N0k`44Mw'˵+yXXf .wn5^9~Xnw`XD+ um,Jw0TiFQhw(&tqq#4I OJShAK§PGzu|L?]g `eI,7ȭYFI}2N Kk&90!@Żx`쬔4G&3հoh7{t}?輎 :!*n%|74+MZQ=_Y,eVmk#c3F@G@{%nq;IU}J+kp5_@˱񎲄TN`wOb1|B\p #$O~7*JhSJFjFY(W@((ʦ*qSr#g#,d{ݵldF@æ 8-겨CVk+ö/SLgwR$|vNQ`a"t3ᶗ3SW:n@U]?WIU;m8_@C,Diq S ~!\̺@¸K%"`aY%HFq9z-U%i[Ѧbς\0a`sFzF.,~A h CQo# Z@mJK_?ހ<gY1z;l]؝zm\9 5yzh|pm\\GS\p푬AU9[8Vo2e$b8L_S9|En^v8yL=k:QFi z{v06T5i/teuCTK)#0 sN;Kr^y{Ӥ7O  0+>@sT]a|ӪnALx4OT@l$\ҜI7n>ӱ|Y]E>RIls7jˤ#=k3>4&soB꘷hjRo~wv萓J99c&cAɧKs{ S݁y3tp[smsZ*vŀ6"dz,'<浬A3ޥ}~iڳ'FtHoHsDRu@?X\UghT=1Z Ɗ1sJT# yR4-0 Ӟ)CtK{:tyf(Rx= k) < y[(E*0DLW\Тoks뎇q[oʻy-cOzl5~"ev,2ipxO-\0T}jYujnș*u⧚bd+2xLv[U5? .:@?"+Xi ѨJ %t8J< Sp^rXծ?>R[)S_ t_$_pڌ2+#U? ™v W`<2`[meZޟdUKsC5oeli?6o6HX$yYqD #gޒ01)8YǯhΖg[,o[%y@n7p`rȯ}(J~qР Jo7=dUr(w >빝tg(cr'Q#JZ.Op :9%NɩS32Iɖ~,>]}.X,Y4>ځ9v̹Rh,"t5S".*nQ71c2 (xLWAkbsuY1c[E9tK@b ^p80"iDL&X09%b3QQl{@e?Öu)aiF[3Aw(pC@)%mĘ2p Q?qul"8JNয2>G˄7G:Y:AE"bbqVƳP^}2LYwans]OÚ53 gn4l) #v,p)䠴9p['+h9]jj%s[&9-Pv @3SXNwCۉ[|'P1}'ZuM]FfZi'Ms'L*6PAh 8M#>XrƌR5%[|MC%oRVveFBY@NB #6rr)$h|0  {M1,soH%dkBDs93?"ӣ uzm8=ڬ!N6]\dlDԯL$\Ģx>3?PD Sf 9*8J`؍ 'l8dXc4hazDfL k=!rJbŮgF6* m@ٛT nS5sn革򋅯ߕQ<3Fa#)fe1wUǯ /'bbwSp&XrY˴.Ӓ2~NJ"[9p9~ƙ&-m|r1? 0w]jÐy`Fq.1NpY?nh%cs"L/W jVl/H;T.WfmޚE#An57 ÍDF¡䕊9wREfbDqaV**vQ9_fA90#dd֒ch%M-%C56Pa2d+&][]<ň+Jt_ n(?dф]r{R{@C3"rgB=uxz}]i[R wiD;ZDDp{|a#COrE}ˈMys\#"cXU.Kt%V_gQ$vfhzUo|63g1C0jCfX JuAJo/+|f(!ݥfeva8MÛ\^1@k?f ǒ%kb4_:&],3e.nB}x:󌴶fNIoǩ(T9 ~y ioQ汍D{|X㻞І-Ge fR۾_pI`n"F0Z!+wƄL2Y9 uQy0vuIϖk,4`㝍 ÚʰVvo͙j"jf(DCZ+ ̼8V{舜 5#xj^4 4 h#HIWȱ}6ׅX>7  V&֍+&uօ-@(se =C5u'B'h|B4~Yg ~nS|ϯ<)`):#3Iup- jğ&upZ9_|haL"˵F֔5MKJFd0H~3_[ F( 4r#|w;re2ocaml-doc-4.11/ocaml.info/ocaml.info.gz0000644000175000017500000000737613717225702016672 0ustar mehdimehdi+=_ocaml.infou[n7'r2XIă10,1H,_Sz\w r&qΩ*t7O?pǧwoÿon?ux7חy.q \+?o>/7?|9;_>ÿqūw}|݋wC+W:Z +cVՁz14!Ү*Žr+! Z=~Rj׸V赗qL:kC>E a&,y hT"آ` C9.Ck 5p5Y#wpskբW M<40 lŲ5q\kq,TDJojo^ o>o~:^]|[]{w:\aW寷t)j,,ȇl.֬z|or?ؚ^j|!i|ۨ #9hԱ` Ú_Jl#~g=p$ې>689,gc,h= p [u2(>JYο>j#d%(إ9D :oVRC֋r9 4yqIX[dh+I 1zy,[Х'6D_!mGȖjjIRg 7C$F9`4x3"]!U w!QeD*1_nLh"#a3#F$TO ࢚}8HLd1(tDB:W9Uπ.t>#u=vqmXHկYD*"h6E.k$=ʁzZrTq}5Q8 `=gB|4 Z牒lEu!jD:(dd E[j,} ;Bl^59Wg*PN Gz bsU( ڬRfQU Yyqؑ.bÉԯG5^*t! DyG.X%i:BntZ~}F8'9W dSfB3>yT&1iIK&bA͖\?XZ,~WE&VD*jQ&0B״A2u~S#FoHW @v (2y2R=]jHP#X-\B%.6, {w^;D$~c!UHA!ŜM 53/p.Z,qZT|x6Q1x9M B&bK<gS1uկFt =w OCTeYO T.zQ.xr3"/7b)Y|"!iB^3njYfC3Ԡ(/c 89&21Cމ G_2`woAu z nnEi}5`H쵝&8+ϰ X񤚑(#hAFkQbħ>ʶw/8ް@]\gP-8u$/DsǠ?G H ۀV%9'^u,Idc7e/m-'}'Q#͇t.4\yP&} 򖎷Kw59d',u*=ٳvq.ŹLfBk@J^> !INFOYP2W\yj?xs\,OAeNT9(տy]pVM p ]X@" PCՆ-sG2[M4u*u30JYa[ꊎ 16Q <:_}~'\AAI`@lCT!-2=vARb,B5Lk2$Bk鱰5UvG{d wt$H |3&~KzuN,3{Q:PXS^K9챷<1QxP0kDL=!nN!plʚJ A7y?yܼ~S+õwk>}bY}-ZCBdQ68W?Hy7# J#'x!-6Zɠ)Z$+O"ā`P֭*B;d|jּeԚ-8U -4+ if/N5!ȋҳ*Y%$kUˋrj!5F8hEGF/L>{V||UX_ X3$Q+}$W:&"roPv}g^Ui"\Pyw Yp 7+0Z}ڜLjC@mQL=V2Le{?f hah?K'5ǫs(Ҭ JނI^:_eNA>b50 1q?o-$[mx'Յ-6ʖl=' ~Yλ,_WNåhx7{L+͒(&{HAqws?(?;0xG`y';`rҍ;ptD6㯰|Fs/"^Alsҩ_N#뵨e]:Q>…/FQɽWf9X.2[~' \q?2^9꘽'A(^l/bzl>6:2ۄ|LSJ>RV\EkE +w_``qVhwFXOL q)1Љռ}ްxyMء7@!5%R2!R0@fnp,*Bp~9o?COef]t,m**+u[y9MvQ㦌Y=OElru9VlL5XQdo7xM%o C'O\m$^-mFYH~ᄃ4:LA nbNGiч8>^e >_isɺ/1iEo&3ʊU$X/eYƤA˹ň)uo< $HN^'qђA!]YEi( ֈlR1=K< ^QB%^uy*2KØۚ* ֦)WqeeZ~c?O"C6-)#n `mM1S5L2};Fvc++A{5,7'G-¤F';[pڒ0~5Bm1S:k"aD0.O7 DmgfEˁL=Њl~a%2 !|^V (Ah uIU  ]Io-}"Ŕ1XSY*~Ɔʯ n3WԒ(ƧxUo7jȱ5BIL$KGp1ҕ:'zjQ$M'(+lN(腈ɓz y:3yW&6gkҼ.i]f/HPS?ڹҰ=Ċ2 ")ޫ DmIg ͈.;ڋvi̶YF gסvUv6ZҞ`RM)Nʐp 例z`z"s;wbH[g{N.d3$/J'BџkO;d^+ČD H lIiVbMø>$bu$f0thZsNIvp#GM7n鵰!n*yUԱN)XPwGN:+Bg&aVCLN_HQ@.3Š=!9jpD ҟ}kcw $(/o\ ;[9x@UFx;]mMb8%yk2JT$~.5G^u5`j2cM\?? e,[hN ?L)/3ze@Hf\ڐ2&yyǰK$=L/4QoWP:wE.w( 东r۰[ʹo;`b #A _ӭ =1(qw'jM"Hw⽟Pc#Ź/HFjQ'ˆ˹?ļ\B-@#w:QEٴL nI 4m!}v2ҷ31N:fIN6X&m g$T/[8~ƶIRA̋n?aY ʎ ;H'Fn 9&ǥ|I.rn&D>~|w*CDU 4D`ݛ ,R!J9>G~,co9b~q}QO]~lVnFoE1eU!E~x)L$RGY%‘!va4b dR`|n^[S;f2|,gN5 HmHe@hbݛg4\%*Gleԃ>~Q!b昅~pb/37Z֐&;n&A}t IkQ^>қbq5_0Z3Zz/\DQtF yxҌ9%/Ҧ/7au1'1$Vs} ?: YnwGxlPr{ハ?yp{Zc{ph!{ ᶯp$D Ne3uAU4{LsZi[6> #q.R/6Tp:3~k3_XYwTsl7%NJKO4+1!~yͦ"=pnڡ<7d뽛~k܈~.ĕQ<0{ ,al9iY][bNNJ3{]ό؝HAbEUK!r";g8ƿK4 =%<@rd$#ΩIB]9Q1hMʝ ."5vȖD}7W8U|ʅ.0v!rύ+"Λ9Sڹ+9`c$-vѴUČ xt@t!·VyFO$2 .iNB=ͯى4 ̫ύ :IyUnW罼`޳I Hnj [zEՄ!! 'jSj.ؘhdS"?]'t❳hk- : (Etm162 `a(lFJXd_f޵SZRT㋜'"ئfۓlv&bg@#{/0 _凭wM>e6,3.^]+:2_EUzzsUo$aL_ɣ鿎FksC;g>+C!ϠfK!CM@qm1@"Lv8!`oo+qm–YEKX?|[z/%IY$vNnahy~"k\GիNP37y;yB+T+:c~T7h19tC,E&S hu|XTV ㈸e8$~gC 8F5 xDB{eޤĮhha"-MCHχEN{*l) =;;;Ǥufjv t|&Xc)B[+(+~^iؗ,gel!}ށJe[b]$+9ĥf 3Ko@uE/=rA=xȅ70}'bmL<|p MqlP_y×o-$=_妉_QW $:-R! pܤxV2nڰD'Mw(/˗ْM'tp@·Ü4֥Z|am9c| 13VsPKPBVZZVzFKF 펆S:vR,7%@_e>!*$f&QbL!Ê._jxnHl`K5՝S!:J!v^EJCD(/%01":0*_SqsYCG>O̬A I` YZM0`JVXꉼԞ9b m}+N~-.0{>x|M;Pܼxh,ͳLъq i|>u>1[ο<,D׹W:.2)3(`K8oHiJ7"z:/G7'oAN(,JǜɤdXjEmXBզBZ_Ӣ7d;!pٳK4y;;3湲{gto*l&'if7>csNAj M-]JgL. L}Z-Dޡ38 ˡ_sGз]حaJBfx? Ne[!^-H; Sw09i%V@׷6<:bCك`DqfڵwCh"{"+CS7OCV֨\Fc>4k5|1عy<}ivӹ/Ha|]ry ) X]1!Z:ɁADGoY nG v%D=L8гCX.JIf~.% GHp @|kbF;Q?.̛Y\Eݠ~qyDo9OD7&!}T낡lKpsBh8pހ)lƑYh6䐅ՑkEm '1M8y;>2W-oAiCkj0g&-_EwI*o6Qog DQw>!]XDtp|>JܽLbܻqbرGN<^'˩B)[$ m{$ƫ5@$hRKϣP4B=Rl(5 < + Ev JY޸XQʁ4ʰ~'/$?#Pd8KQN:+ -:sYᣳ}e.bv6>-OiW1/m$Tw$ XͫtW^%R$ꊖk!7f2h-{Qp쏏# U{ N[`jS-T~c)Yk'RIq2PĦR[2vU@Sog*'}nߪ Uc 7pl\!BEZNn.Ԧh{H⃧HC19S:- \FO}]l]۰Qd+8̕U{N"YĒN9).ˊ}>؉>M HX{k]4X€y-=>#nݕ2 d3bI0iX2hdƊ#1':Y%?F{j9R~h-S Iaܤ[M`~Jhx,irǑqt$8Bú|eP(%Ķ fH7PD&QVĞlV-j^𯞌ݒp2vK- -.f-֔t;\-|̹"Yrs-tW%Hp)St:I@5jG4DLp$~G6TM3燂,{L"$}ҹ6Pڲo#!}WI7憕5º5d :.ܾ>׼'afp->Ľ}DߪU$NM&eĉI+W=d[Rժs]twN#mf5UR_)H%r<0Gɯd|6M)A>#q-{|: QRꀈ*ӖEFxi kRYn%J%ra h#A mmeu18 b b- Pdw7N2@}/'Wo9~ֳ8"")2=~v)&W$lK#.@hQy̓1בt~2H- ߍBt.ޥ~Y"NC<#puD.6A*Q2P(kZb'D,~I:3Nt?A0>~溞1Jfn|<2~BH@] DwmiV--U^y;;Um_JZVmy޸-a' ,ةonE%¨hĤw;f0?RZ۾}t*{ yo7h~3WGP}.WbrLw38:.? 2+$|JvtEBYw̧ܧb+P Gl1ZvĬBC" K"R_ IŬ^tşj缀fV'TkgH2 {qK( Eh}2(q0$z&]\; &zL/j9X&ݮ7\]Jr v5k&yMBƗ,&(.-JyR$JFs>M.X gU b{$ FZV|e^zT!گӯ* MvV$*b2b=] vPza+7!*t=d4NԮ' /|әgZЁNnppef5so;tlه6hs=6~`ْIslrZ| @gNi))s7HpKYVǎ"i*CmmaRUmJk>rgojZ>pM) +ZM\D 4@z_W±$ރqY3`G#?^ Y AC ##,+հVrӷUxWBB͑F!D`.+&¿Js|XxZd@9!Ye!Ör',nWH? -o,zb=fï_=!̮H "4SYUF$F}D'cѪ" gliȥ2Sݤ o$NZIxv;Uw&Ѥ+Ckq$y:0\^p+&(`L!l.ak q@EmppzV0TA{xT>C~]j Tfa 'kM#ogk,OXl/њxF\Ϥ|=ĽD&eJd]"KCSɬoF/3^z:d:.!T7 L}>&SakA;)ןE H `ske3M5l#ǻ.I7&k¢0JU/IinބĖP*ˋv}a&_A|=P~u'3r0Y-D(ig3A"[aJlAHi&2SLĽ$ZHh]h(N痥ei8Ї.YL=*ߺ0Q QyT5>i{ńE%ѭ^ʍ,\ok E09_;澥QH.N`QCHSu~=2YNz.CiN0q<LZSE3 7$^犗 -DFt8.ǻID2)غCGd2|ZBr+r)OF,e{8ETAdBIcЂ9D5Jwrt-KKf{!+V-_$YgӿRgm>5P]ybZ܃* DOH52l@ z# /.z쩬z롅mK%{G*%s_?J B0[ORHdH =myo~}My^4KD 3 k@#}?~F&e-]m}3>Unot֗ 9tm9ܨe8neBRi }u֡pVڡ᳏ ZBFӲp3B܊ dֺ*ΊU5= /i%nO|QNW!p~QH,{d\x~χԉ^;gѶV*v0rsɀlqoL֢rnzhn\zQLjP ;FzqUImſTRkTd3y`x Cb9%ꫯԀ6ki`< is<9ݫqW iSBH_ۦ2+w8Nus3\+{6GA$'G~VmмO"8鹢-%텰0H SÚ5A0; pmJ9SP]'ȻEs5!/V>v7AvҦ<[WHdG^㿕+rac Dan^ɚ|Z/\6 N{}z'ʳ;SBҥayկ%uta1փbs/yMX֧*_aH{[\QdZK+NJn3NĔi,60 Fj>H$H+фtV^\)MQ:z=ł(o4֠SJpM0 F?3yyyq߃N@9Dxx~F}2OcFoT]ϷgwGLEyG5"L*y*V“ il岝3"rt[NP ⺸w(J LHdw_5 .,53iպWCrrTnrٯ\>O7YU[VϕS ުpKunr<_7kut9husn"Z*Km.Qlߤ'dX_qzHnX.rN)ujg &]oH+8[.k])%Ѡ),1 ,$.rBy+Z$V6*h 0klRs4{It*2Vhn)&!07fJ$6)GH7`y=?e)ץJ]u%TqIaͬ*/kxK=W\wxYC+_셍a ht^ۅof]-?WBULy Rh$Mb(;M=Ӣ̰',;$tmr=c*㴧##)i; . YRMGzBJ􅳭,[ XV9 /+]n1Vo 1oM5j$١qC;>NƤSV"h2Ʃp ӺȪm f]1:voA[$j C3lo ;Y.gׯbA?֗}px& gVɩ֎Zim(;3[NfįͶxc5S)݄ۙ~`|U_?t,t \ԡTyفr0/x坹0T#-qi' cїjsU,>G[WH]w)A) #8_ChT.|1O+$KӮ2M.z\]*܌+/p0!3mvIpJ^xHZA 9r{?\p ~ *饖SWQmpC.;+[uC~'@6hП<$Z^kTAԜuBKhUm Ek-E{꘳Ϻmt Q] jƱe}eapG;ZRdr e|d;y`Uʰ!M-B5Fuhh6c JBLClȷFD%Z[+PHA!Yg8ӱӱ70cf$C;OGuPh8/0jSw?ܖ3WEb̓IU)v4]($ sj˾ # Zn]9(ȢvU\I4-XػZKm!kk%!c5K ;S:3A+_Ĩ=]bS^"z<39|n_K4%``CJP `+6аfxO)7F w$۝^>Ubއ$wm\]G ]qH2ʈb_3JYUnƶ  Ţci=Regҩg3q.;C-!*Y0].B#؛:a!c{w"MTЃr?)h%˵̠vBlTjtLw-FpqJC$H B4řNl*-$z$v/rI+dˍ;k0J^\k_4 @$`8/osX.3\52. vْ[.>3[;0ҾHҟ!]HHL.xq[S쪔'S<'2MϮN2ƈ[,>U@xҿS8nKxHÖ2FNRVµNt >܅F'+n1'6]jD-4F.IIaj6ZifTXJpuX|@!QdygLކQ:<ݦ\"(#3fd$Se@뤲&([hx!dZ/E1h uOvbm}uoVw}+E8.#!OPB'W[rAH`Mqc~B*NQlE|aLllNuC3hSub9tpaPFq^?֎˺9)#qS8$=Prϒ/Hl}b g 2WkY.hC碌)\HʇI5ţǟ}勧~ŦHu^󣱳u:u>ᩆz8/dl3i]r3r6Ef{C0s{ɵ?AהE|cIץd4+|J~?+ >Am4&SfӸ`*'C`63RLEbGz¦0ݘ"Q_:)^0@qZ7@8IOFr!Jѓ"Ý]elI<B p!UFuP)jSeG)DkHEfϾVxYhܫ[PaL^x ) Jd+_o7^JB5;GV 4qub mM!7Mn1vTְ.,4$vb瞄mK:}AVn'm`o{{)G;]ɷcfn&3 R@/uIo#2p*(kQ[67SZ!pW[z\U"3JDcܲrDft, ݥ}HQSkɨaQ$ \.V缻)k)Zr osWri]'&ZܣI(PS*WQVRQQ +۔ ]mpG ;)[3=====\LX #)QdAA!C1ҙ1x-|{"؏I?!װՏk~2mE=OX0Br1Dg7~'w5}GdGHׂ ~U8@05TVU ' QDc$9MH捬]`&7G9O@iꞬI]%Z|%4_+,DWå9\]%{7?N4ո=ۦFJ.%Ms)}k80wVvc7ԴQߐȪ91g3a &qš_V)pO !YC9Ycm:fW[9[rx,[$J"r捳gb[myzOryBCOq~Rg O=`g35'[%( dnCڌ>ɄkSu叚h*?Xb}ʶ;OROlDz{j?:Pmk0Ki_+<ݢo{h&m#zhFmX/D[$כ͞[|#Q q (K&<Ϩ~ۭ).VYs"g"v,8j'%ڕz%}ҹL48X7dmb9PV?<+j1krnHirN+}>irWɹUx-.jq}n&7;5nلQMϛkϲZކ>ڷK^g=|r2^ӄxP(ŚO,wܺwXӄDqé ="H~0yRz?~$2TWM‰5 YPZr$NXK י!sszi^975tlӹrsOr2Ñ4) [ 9: ,͂L&1LH>Ja ]IrL =C&cy4Bc2U kaX4D2Y4%dߗ_ƲfCq 6r,>VvwwEOHBj"T#9fxH#]_ l ^^/~NF>\udjeϿ Q=bz|GsT$Dބ$~zh#rK$E?xz璸`^5ڻ'^Ȥxër[e-GV|*cPk L9*-ѯLBERMd@ Q%@a*HAO'1+4ёSvgW!EjXht??:19U)2u *c BgQD!=(9~=MSXS#YQ s|@fY&\->=-]i7U%ʡpVMy9Ya#q]Z~_WRQ+ JhZ4Gܧl.zcCTUd73<Q}Bk ;SlL<3@'Tm(u1 U Bi!H"Bt 1 |u`7{b'6'9ְfdj M(_ ԭي bPׁ%ep6+q2p;Q&:AX<wGAnzr:♪[^lB5s>Rs^眳"C 7j*|H 2ce 5pt*3\;Nɖ:m::ҫ(BKȜϗd$J%\=} @Xh&Q\zވpnd<>N&g׵rj|4EUMʘ801 3Yl%i˩Lоbzɔ%Z7H8G8lj{C(&eF@̙&y& D+] K-*ӊ22DH ^,[MgsوYPMkA6-Q+V ?%Sv74=4CޢgBjS3fs29h^f 2C"ciչz8$rXIAbbDXJ;&34:-ӄQfd W] %F,(+γъ@Ndy +6 1{VꞬPΈTǴͰc9HATy&MVwjEԆ#H@ݚvʣ`7A^ g`-`Ij>ad!h&!:hqq=8{t\JiUpBZ -*oCSXSLghSNm{}/@¬"UsW=It dӤPtXV=vvP}*ԷWœ&&ZsT"'URLUeg"svlA伒o7kz&(Jg `4\H2}g3FGDB\*VApHȓ)[P郾OTh4eGO!$V($ɻxQv&ۈ0!% ]A6U0MV,dfWCsܻ@OA}s6 QE76  hl$Fqv `oa\m1):]璣EGr6WLT5CsKtϹB,iÄtU`2+>E?Z/@cKh:Ѧ-ۈhR! wy6qS^b pIUF{Hm2F^iPm@YJTr6=ej0I|@m+4Fly4mI!%^=0.#:8 #f|ې/(q Q~(/$fW٩0ӎ #xt$M+gj4g\V13046b2cS(\5]VAK]9$esR>Ke+\FS+ًBoW¨ O..Wt6(nQ hْrZ0bqFW}džwԩ/bWE4Ct{,pHH VPĽ.whޑ t[X'g8W1duZµ# 9Sq*5iZ壱%d! ak !QEX|+waTPqEE{j5- |?G#`,]({CJt}[z~6ʇ]s8{C~zXE@=]O<Ȓb?aMG|,4h`0n#l`=켋W؟ V(] A_u B~|ZOOB;t[}JKܭKnxpvm[-M5'n Sv?/?/:h#*2fLE+֊87NkW=q^_OCm_ymՖsյ? ;U m& [_UbF N G4Y'E/gfS@A@Ks @HKtF-#/h&xҬr'De56&P(zWd3l_5|Пap g N iIxÑXA2RJ_ǏB~9q])^k{]G3iq|ϊ4;}t.^$Mĉ=ב=N S'uA(. 0jݣN9"\/;#EhBG,HhL$_hxJӈB?ƩI!42dM26yoG.`>M49= ꁛU[B=hHz`|hn*T}wtѽJ"\^˹SynxҔ>e:ڷUWk p#)'bW55^K9 b})B8-+tկ_ة{ueme[-VuV z+1b!ˋ:ZەcN {/.T~-@?Z6]._PM rX``ꐟ;vYal"T_čA5nB5yFCw:׻A}<bh LfPީlvVfM#\[~+o` }LCnXX9` 00[M,Bqv c~`ٛ\4qaBhf`S ]jӜZ&%)Wq:fƨI$: a)bv#HT<⼙ u eߜ}-CFRC5Mm.C4QlcXqwNK"}9|MĜǩݦq~x1uY-8fב@hטkW*E76g(]E>ȢQV_+63v7U^w2LLh Z]v{m.]w m ݹ^ɟ^G]-hOJ{34ィsPZkGʡrMKoQV٨܇thClp)JTE{Orm\;/lg- !C#?zyl}ғ.(:߇b#O]~T u[1Sqөx p*gbk?>uOK={r ccρqM˥eW5/= )-hqDVy4‼aTeev_ P&۲Bq:VEqSzJ,ôO쎳*/JֽAYx~$li7%x'Bukp7+2y&XX ;9`)Q}<`U=Y'gc;S#oPf}rwg+跩, wC<9c ;=_cRp/3moGѠtqwǻ |4HUKҥUܐnkm|}UhA*7A0J&הux}e7|J ھ&YVa EY4~# _v c6&qL[?-ɖ6wə׃d~Y_|kWncB *(v s!V!`^Czjxi1:^pmr(1y7}7kcx1b Z]m %ydH[6 dle2īc8ǒdh 26_s,Z}kRF`CmitM_ݾF.[:*0w lICOEe&tɅ0}Y"]CZ' -':nByLn* ԝW nIF}Kz@]Dή5Mod&_Οwz>%=<0`ժZQ ۜp3ګ0!g[$:yYW}8>zpuds+i_}yv1:|~>%|>2|ILYQkc ZͳЦ|覭\57L-r ԌͦS[wjVucʶ7Z(mVYv̡T3m6_ؾWf:8%Ϫfw dF7>qb3bcYYXXUlyV^|dbQ9^XTT|bե_=#ꉖ>p.ihu{ӛcX'ŬdO~ ,juW%X2Tw<7jVe|n ؋9%XW=}/hmeJs[S~iYW˼n ڙ0ΔPg_yvi\6z:.6=75ja}S#RWW>OeX弋Ԇ~(E/4 .0KY* $(W J KVs;Ҿ1; e)l24*RNMM1c[AQns6p2^ mр~:9 VU٪d2{/"؀yNK1n= 16 HSx=f?hdj$QhGvU8 n5LJyN 4A;=csId`qDcu2hYIH^މ,{SPs>Y;A:6ؾL:bDO\ `P. .摑&qŲ*am;0irJMD!o-kܑu&0,߭j?9rڼύ0jb%yz>fiN*t"Ze8 &ݹ;"[cwբhA"ayGWDr,`5X1a{(ۑρ DC6QXssdc5岪[昉2jExٯ ~v *a(ˇ_9\֞&il3!@MABe)ɝF }c}ߣ<^:Q{$Ph吪kNhgV*g:fKJ |*\QZ1'D.iHv3IHY7|FĜj*PY!`SpbHOcZY]obb}ԏ׈ 2gbVMB\h ݑc2Xl!c8D4w;Α&]"xD<3rtM!iYN ,(3i6ժmpM !yfCO|֒ /&Ir-zuUɰ y=֝^Q%L˖or'ݘ'] sδi@գU xds:ᤚ9N .Jퟁ HA_ӤECS w |^#U_@eG\D)G9yݝ#5xJݰT{3 < O&^BPH&/ Τ.ՠ{2ILtuӅ[>2*68,k6GBe90V omG]VdxwŀoQo4I7|箝51;نxM_F (`pv~ݐ;ip;g=xw=ȟ.z;>}.#\Ÿ::569!`􁴛J΋Vplt4.u>y]Z >Wn}馷9qk$v0  >r=4 v[|g__:@#Z#t}w[9Ru@\G뀱hɿKCkI.nIhRi]ͳqZbiz Q>,w$@C'8آɮ.&K32,!*88;N@qN 3:^C=N rIH@&:gϬVHrsFDdpִ5Ȃ!a$w`Uu]|2:/( {-&+̜glFN2r7MZj=s5j ll(싢"͡R*d BhS[2̇cg0W.c܎u ݠ%AX">c:c0*T%ʧ]~rpW sN16殪A$q!BWVaZkH3Q:ŧ%b үAEt훑q2ai &l/ .,NE'T(ursVh@ AQ@83;uޕV3 'WBI' ;U w:q˯ *2|CP`x6eՅAUPx3Mu<+fԢ5j{qi|6 vBwˍ|.J:lWQ ]׽pv_Ś&s/7젠d#HȜE#CTsp&A0iS4x! å:L+ 0 % rqGF#J[`xcwo ɛSgC@oO(s%scRV) VYנ*i8=(+ker.^gDJJlLSU2H2A_Wx~kL^ o F~1 a p(9i%YWuh )-">aףdz^jQ1E8QZͥ=9?E $(tJǘʬ%R+D ! ړ lG]VOs@,y?XGL t(^@4+ = \oUm|͝.0;tL Yx6+vˢ"+j̀?]w}^p.r y7#7gv(_޻}g|o{W" S0(ϖsN"]9~֔UVb=mǪn(R42 Jxb`Q׌PSZ2TgJ(;[0D t#1QqG*S&jݹQ1NX5ɼ. xFǛP4NNoJ 4^ DrbFQQyW\@o\ eЃTiB/*<]UO1$*0?fa&_`4yB y^R`_脕4=RGjB0:FWDs~-6]zA29z"F@ ) цNCRV|ʅ Jbahݴ`/D<|чbEQ6O bRLa|a!P̀7mIJ; bQBqJz<@o0?磏Y*nK* Ґ2Z]N=o`gvE?ߟIYӤ,秲7WoOo;dA#Yk&MxĽ~˃:SIScx|bPu9;SWѓJ9Idkk8`٭[?YQMW\wU~M6cՁ^wtkd,)|-pgirK&-e?١Izr$xڽWgصv/wSCIYt{%*8䱯>}c7guwî>qdqQKMS¡OԻnL/L)r%>PvMu84J7;nstH[=u@E' @)%32k\cx8؈cum=f֍}Ul?pQN1m˱-M/PsP^-Ç}gV(wj|mOERCߧbA -v , Bۢ]v4a'.'~^dT[,=#L66Q]?]Rb zҹz]~'P#x eţbMO|Y AKGyې.l$-wjؼ~ܭv /L1"h>^aJ_=fi)scc C#a1ԚJ  %Xl():]R~kńzK$uO]t_#Ε}''\oV-`xt[5t29\ 7.I:ՒYSfTĜNBSh+5GtA0UX |W8-'X3aV,m)b#A6ݺ1>-Q*ԁBFFW" tG?N:yN:v:DHzGAA݉x.>onP%PnRi9Ӟ7\{Wi|nNE/VP)e$[/gFVxf-\ӑ݄BNzg {ɽ '0189ZUEcd:::$%^xc*utPvƉ\kPc쉘̢$Ru8r.;˃?=hj 6#yK^]t]c^T-pwt&p u! רxV pA޻Qυ=l冥řuZ$kh +9a`;v VPaXeݘĨpN&зc&k$)} GZ=O 1oLvL]\ߴg7T5A "g酨J(c/YN N9Ec-L1goވ WȺAx. %_8vȫF..sq#ߡg+F!.vUtU(GK`Gx[(&50mL~CPEbeK^3% Z"e5akk^obatj$Yttkꧩ=l\CmW`0a "k7yQDI]\an\0O<ʳsl{qBך0G m];V^NMaΎcoe5}9zrn't9raF'Aeͤ4W(u1_?5En:,9E>kޑ#c\yڻpr:k.!Gm4 =k%S52|pJ{4x4 fx4 رa\Rv;8xFQIŰ.S,O9&gmF7U@N}+ 8D >/_HB\ rxP9#=i.3ޱ@JH x5.+ū LJVڀ~xHazsfi!13"W_@$ Ud%:bAD$勱a+Yɢq9/ri5Yjj髅崳^t/(ɋ_UYO3,[U$RR\-ui|qڐoZH@Ԃ+YR*,oIm!_}dӚsQ$gYًT`sڣ@&1ֽ× zqI9dMEz}ҫJXaT,txW8jŸ3x85,SӘ cZ e={i9͗$ʾ>pF^FN%Ox8Sh \Йoo Waۏdԅ\ D{e3:^rxj8l+TGyKw;oky{t=9mz:p ]8d= +xPtפdo3d*K|t>WÒUztc*L) 9:"J2IIUwP]np{1տrWSݏ?dpԨv2= < Hfuu|_/ʺ04PG}:雄?]]IQ% U$o~l1n9ҞOW2oѴkJ/3j]%=aiۧ~}7Nzt Y̻Jy0ݱFO0O{P\&j8tRԞ|u&|ܒeσ@KLq}j;xOVx7E+(\G.x:U3 ʼnP9Ǝxeˀ2,5ӸI/\szyOzE7 ӠzC~E㲜RҜ.Mݐ˭Ts';qB#xo9gs~ VT #(ň?`;[< ?Lg,7s)΍CwĚ9kqA$ڶ z =~_227EJo(G~ :7, 炚Edr}xlwτyA: 4kEr 1 :cs.\sl/9\(FrW`T"<,8@W RR`J3-)oMje=.7.l0 Bs.{wVl1[>1._IorϠo*w3t5*i]4e1g ic`g&w >  )M7azcbzцYzpQ'W0k#i7Wfl/ȔHoX_ѥЧ}F>¨~3(uT7N3 <9A攉 $ϧ޴,6"#o% 1YICjGq`Mt9֬(̰axhl,BeMėG.?I/^럥3]iz=ZmC{Y.K]6+&)-q[Y75JFX!F$(=0~P~Pqk@TrpU)FVY].M讘7U?:bb!9A8:k (~蹇|CpUɓ9D_(݆Ccc0/9:b*V .TVu=t}⺣B߷ƌbٮ7L)|IWnZ $W71aȈYocaml-doc-4.11/ocaml.info/ocaml.info.body-12.gz0000644000175000017500000004146613717225702020044 0ustar mehdimehdi+=_ocaml.info.body-12}rǵ'&Lĸ[* 7ȺR¤HQ"2ڵh/zO7%s\!H2ATUɓ'~N*Z*Jk,LdU[fͪe,K{{N xl]E:߼ˮ+spzsbήMgĘ =2+YYnM]Mv`5/_3iyJs.k`[;a ؂ʚ˪uH{w l )%bؕmlj|hBL\xZL ˽l5bQ^qf`0YҪ.7,/`]yoռ'ݴ,V_wC8`G,=NMA4W//^>xy?]9}uV%!Vx} e$DEưe0w_"N=m`$aX 12OuBZW$c۹umnˢZK99`1Å.,4 ):ػˊM."/r/F~Bf;M׭mZ4/@qjuj_zr-`tHpW͜|~ *>90|2@l,psӂa8UYQCx'Os+<_W\0 |i+?/e~|ҷ c'͊ŬT-?ۚ{vIq?oڹ@Hȭ2`V2^Vzx7׸G1p٦&ESP1"剽юW.8e " 8UmviIfLxNLU9^^MBʽg֝PZ۬z:-a9UXvnnjyhxTDenH*:8FmEQ5 ea1ӎۺoT9Ae~PY_-H'K -RϾ^}9@vakBXŪAhh#RC%P XM/S#.AP![ hUWܬDQgJ!H8WMEnbW#gMMS/[$P(|Љ.Zr,Rɀ󱚸 U| _WeT\XXͽgw͇KGMOWKҾɊJ05pox IfT@bVkD+!ov5,H8 b2Yp--I7h@Gf]Y)pAc3Ş@D;4љ,{KU;3 ]9Iax9 nZEc6i0zLL' xzۯzsոn-gD{ڮILA(@xUk`$*$0pJKY!ˮ?e>IÖUv`Hk Fmj+:4Nx (CG=𹽫hulyBVze: NqNQ#Vb/y!'p!}0A "I\Yd.1><MGl)J(% >ùIS 8jW@ .|pys"h\(L?ү?{&%?)'yтUf>;mh"?؜Vtbc"2ވ2ٝ3]l3Gs@Ԍ.8n.# z0 3pvV78,HEXTfKK"Z[3w0)J!'*p,P݁7Gj%xm7Yәs8*COBj >Sz^*#M*A&V7KChBSHL*Jp5c^!x Er4?<=9}*Gcl?mM+gEc0ńKd" %@l\aH9 z3bCM5 #v #L[P 0wPpmxm9LM}gBxmK@aZ]ֱ`}ւ,'I}4 (y!2Ǡv npTɑDsoQ31!vG1;xd0x*2Sx&,oFN.Qn;,5/1Sc6ر'C>}XX0gB_! q7\bp|2$dsz>[Bo$ް"adJ28t|Kܐbt 7+VqGYdQP'SZ;sbK-^bĈE5X cL $b=ʼnMs+YHhtfT"9 ݟ(EON56sx\aȂXr"&dkT'!>5C7;Ԯ KR_"~,0eK̻V+.#3TF:|].gd:|EQ%lNczp''z_d@l>sPWνnɭzzl>Xyh~m!TFs7nzV"Ι7,y&ŕS 2U Bg%2dK! 9`_Z<@p'[S!p]ch'q}|֭ъ Z*5!"8˼ 9Zv$|<df8ܺzŸ]=zN ?OA;YYO )RoVdO Ft9m#)B m829.u6AZS&NK\ DrGƫDB2;LBY@F„^ Vw5J&,Af`L;Z<9rt%}>qfJ]+|QigERA6V] jMy }0g8=8H͛}IDj.[b")U{pusĔR] FB,!B]8$\yޯ7 ILc9#eQ":3$IxO?ۤY2PQ̈E*j~WY(҉1N6(sx^\!Ϻ3q%(J5#'.> E FeV\d"@q#cӸK TِeDUHuWZ7>S O=kU=䋡 RS-ԏ+AfgU-_2)?fҤ`6kݔ# HIME<1Ì|h{I q|)rپ+8yE`CgN^=9+D'm~AIB ZL^E1LRB GgQ7ǭ5~R02jFE2k%FOv:>!30k' +/8 SHBE!.~eAemAU sR/ñLYßӯޝ'K {mOeRv &+L]n]Ns#0咩 t/\)-{``UWBx_ݓ:ڰ1-m^^<bX^lf sUy+)(?oɅY9+% @o5F'?̠[AH%i-sꚚ>|7TpiSFY.JH&)ŋ / `y fI:vB&nj5;H ~Nxۋw~}'ncJ$`SUͳ$a,9WFW:ìxʋ1,.0˪]isa [Rx~kss*.Y;BjHhoyVW8{(8G+ .,=}&CΘ |fGф+X>sItˢ YvJj:Xdo<-/rɂY^XYע%TPd~#scql:f `˰&IZMf.-ǏһTy!IFvK{dfNQ)@/tK݊}J@rB4N N( ыǿZJ1 U,qijCZ 4%󖝴,bGj3LB^u}'B/_X 2΂l%蚬\8@TG\<S+bN, .ԊOM f=.]nqd_&t٠}v]_[Tːd|A\'?Per|W%k+6nF5h$8t\PL^4cmU#[@a]U1GJÊ,;=g IF%KvIbК %PxS[ wC vIUỈj b^ss\%giȎa1?0{Ӓ> HhN/@1f|S{#E +;JU+MpcV\kXqpqrxB fb 7P٦n[THMyǹY3YYê9 ~5 zbۢΙEkv^*tHq)` w&7"L\ xs* rSt>@0APdEC{ ^ZL J97+"]F 9d @h[ !J:V?<#(Sm1,_IyAˮg:b{q\`+Q`K_k9UqY{5ʪ"7(YH @o;hgfV["@U@dրһ$GdFy^DKU]*  : BITH65q) +\sWP)MJ0u]^@qPߨ}q҈ho;wMT[7O :JaLZ(A"Gy-ˢ\qrh<ol\ E'{snAŽ~9lj~͛eXD3#$~ٕ@;;XaVfIKDp*M O&EAF:d9Un঩ .1jE{6GyIl"oC0ȣznrۓ_gt" ;o]IQ&L\z댫L@LF5H/$WuE֢ %9.:|wt4gI$6؞$ONN8.L$DD5kD+cfuA _}e!L:ȇ3Hm2hچẛbUH}Z-,V}bY!ԒT׽*KȽ`n$>.x&~ %T+[ֻ8*1[]l4(Xh=6Yb+Əvg9?sg wOŻAuj*JSϢ!lZ>ю/Y޵"8щ/tTԖ՗s5MhS4μs`·(Z:*%:H~>$foM_` {ᣝ+}47uj) }Mݶs{(6R(yf:18<ҁG{D ~w#98"JhI$ lvgqmIfci Ҿ(~P5$';z|߻ჸ<4ӇcfcUnVk,dU=5|zF2%.X)dZp,ͬ^bo|O,fI$ n9*#;J|MN89xd%0=Qk"gS˅8g7~> 8ߤ!C] xc;Vb.h9g4|txzN⨪/u^$f+JH1S߹N+|m<1nSkpY9/ ꊵ'UɱMK ɛIEOk,*_#4ZbC%('I=1Zj|2Jd7t̨j nWJkSH+|CBi(7Ź ^j I'SU20U),,Q@OdϢ'\f/xaܾQyPN)<)pN)6MM8#Y挣d`qRۂdµ[- ę{8m{&݉ X$MΘZa)/ ;;arjcC;]WMUgU.uJA|v-7H0WVXzt2q%@yL] $Փ!ǫG~D"Fڏ䙆m0q@H--|=_8X/sx6w(IeQ穖.dUX*o \2:V^rX3ġC>e8\8UڠQ_]%h0VlezQQ9n$C n8ت9kv]RwP3M&IQaOجHY.|]p+H^:vnW /d~<W+񥠪gRYwsj׶*$NhUÓI vbBӃpG^nQRk.. ^;cs;$DjK$v9?{(0NpDC[#^TsA)6Ulܣ_zmL$%r'(]d^a8l,E }he}om4 8zJHfG#-QƔ>_D]%;8 J`j. g.wә+Ϲmdf|M%C;~91کԫki{. YJ+)UbM)hCF]X;mX[8U|ݕ3ɨqPS@FC~z4 $}9ӺI 1m`=[#\xeV('b,_R0A@R.Z$#6`[Q-mxcˤM-3A!^A2"D`9J* f2ahiXFdmۋMu}w]fa9 a$h{e^TRԑ.6(8u@eh I(P`.*a ΢>ub8٬hg͏@YQI-42twWy0-_QAPp9q|^2 V%Uӹ\_8tR/8A1P}#9ɂ\6&as#V\M$Cǒas9'ѼU(ZT".`Hv|fk !n"qy׷bXIYעNU—:vy(Cq];7=+N>=3. -*8lANaM"gThgQx.>WVh:N% ]K¹Քd\t4bBC1.Pq4^-_?0SNRq+?66'Z^ ̘fD}?OaPyuu]R>w7/%[jrR%zx=4ծ<:wJ(y8Sx]\J}a[{3+Ң0ßq8i@璷ye^.@*V`wIG f乻<=X, } 1󁹙K$WC_{lI hG Ϡ%}HnC 7@fF)pE TgP * @NeZ*f"ϡ_\KCW2N穇Cnׇ8QI kTTR/۟'bc7VTp#VQАA$` n[3#fxf˔ޮ<@+WI%23E!eG@oj-k QDEAR#p4asїޗ=Н/. T+Gpc\o##g`bJׁ`_證/7Ǐ3 n^Ř[~.ز/=XzLN)hO)D  YW$TyG?^%}$!wz>t|!/T@eR%,K Vkن Y(jCdtLґnU\qM%^Zdי<>H cQra47fJ\- p?JOIGH1--]K3qLU"$;բֳ%#_Cߜ>>:SVYDr:lFG8N2^<3 ] t/R#]nQ$VmGj=:q'qr49:L89~?I>H=H^`[ܭ!i`j&G1;̩"\=INqV"q :p_0N;xIz48r͖ ۈʂ7tq}n|cJC޹5BB#g=3I0wᐗIu# Qn)7y@c~뜘m;w:,7Y,:+ Al瀷t77 -mR ILu\9ڃ$9=HR?+lS`1{(>dJ8D%vg]I&3vH434ܾpdp0ʆy* g)z/z]aph5V wOCWYxJ1'fOfP3z vzɳitm03""a;MY^i2doO{w{\6g1u: x!;\8?;['ӳW>`>-yfLSiwU>0QI&+L@e9p QhR ԔXԪ[ҍڇh~ |RfH3FIٯH~Nb=/鯃kKp95͜\b|fGo١J? Uzl^ B&;G4d H1'Czt`[FFm2NofڀޜMGXTٰCnRd`oF)6IW/5FFXPrC=-_)dE@fR+vEEk!w AȕJ m(|ٖ4tv$-|+Rxݬ&P|QH* g%Y9筆#y8}9FN_=JѽW?E0/LB8g+YD; k~0acU|"jdC}| w^WOIuD}Kf xĪYU%~~0vr[_vOr-_ɼ Cدa1޻ԙTOոC&l09a#12ĹЮxaïQNޱo|X*-~;COk\ҥӴurר> Paɭo6JQMnLWtCRq$S|ZlUpוƅZoO؍2D>ԋ! =:ggy%̹$?J)5Ruhh=ќyC*wSI7–IXW2o_q%\t#>jid8]* :_:u ÒK.:e&&Zvu5٨ _PF|85e'@6duAkK XقoL Ӫp EVTN,T⋲N<Ά >^I-'WEG4@KqƞT{`5U|Ox5Ζ/nBXg Ujtl(j?dڥH#VG!l{u8u 2[/̵n:2L>!4Jj0sT$X؏k'y10k|_3ua>&ҕ6q <\;^W I:tx!_%Snڝ6Q{ R_́mB7sVz̹XQ75hWAQݧ:NՆ;=/XԳA!mIm۔;]0mu[uR+"z%]8Bv3Ih$ht1nf:Apa1ԊG:V jq<iCE]*V~0,Mv,JWme5NtQ /7l:Qb:^ eӳ9)~:// M_[|n-jyhW" X%m[d!P=vD6$%iP5WltvޙS%3!;a #+oh [ N !z>v,\5P8J 'qe!/×qB =Q] t4KI_1&]̇j)Oݧ ~‹17e&"kbzkK:;Fvt;W`n]8=1Z'L헓-MWegXw*e fX Uۖv;<}h6 ?Lm@܇Q^k*kY$1} &[[#Y:ȼU2z]~뺰7sX:޹]GcCqFGcQ;Cu3<8 oX}y юmyfgF}ǹrdUL#ޖzS`byMT.tD)@8W6կ&UǠyRMΝIu7~9sMv w"l;.Ki#2xFubjeD9ΌPˢu0'(e`LqVԐQ#3JDNy)-* {$v{"$o¸H -}.j2S3}g0h⚡ohJǨ[Ϻ&vQ#\G& JhۺnԤx/y&OVVcK/Ms EρF~@]C!VÌ\C4/L{v3hu~:!7Qθ.HV3>h>t6,yv V[>p>Iͽ\RNTMjiYLA12*eº [4dƸES-R|P'NlpJ0}SZ}_,/ȋh|v;M 8 7o5Z6nS4o~tA:*0X !`do>9TaWB/h<+M^İŋs)_|*0 J '(Mq‚}RW=! : $ ${F)7^zC85u n-rl)o ՂIQ)pxAK[I%ֳ  ԁ.kjjrOO(EUiNG9+,;93(c:[P]dֲ@+*Gvx ؟וM*B  o:Vg03Hkt=jBoN̪ QE7 K'Wt2 qqmPĀ UE6R{rPV2G( "AP-)v3>leQs5sD5c#2QvQI!~eXTtƖ=\I4CDԭ N`J=ك>ֺ^.MadI85Ӷ%ePY$훀cM T[&܈hL@ė@h7@@ˤJ/utʪeQLed?GGendBXD.Cf;Vj>&ZZ^7Va}.vM2)qcbQϕ)S %m# [dԆ+THtI'=|_bWjsЮNe(;( [}8HOsd35g9` tT\* /Xa/{ 6rÑKsW"\+:ګsl9c].k݈ jOryEO j(@H0L vO_;Xw|rヾ QHs%;c:j旟rypOsU749 ߣk/眼,{} FAsYlߘQ,1Fk%`5KL}L:Qz6C̸Tl:8ovx@f;aY<"E31GnlGYDZT1 aJ>;ʓM ?0>w7TxNQ5id_ECFQ%=ܮP"N 9ތ*onAá߉MƅO +8p<=NmPl0?m5lL/P5+׆% WNr..Yat6P_g}VTz'">RK- QI™3Wh|ʠ@x-la+Cԇ ocaml-doc-4.11/ocaml.info/ocaml.info.body-6.gz0000644000175000017500000003074713717225702017767 0ustar mehdimehdi+=_ocaml.info.body-6}ےDZ'ޕх: PZi"KX\F0{Ln1CHCyw~dV0$Eَir[ef= F_SʦZԫZg;L?nSZZok0KS.ʥΚZY_N`P6_Uu>Mcq4]|tRY[uYEQ5@EU6mY63+H핾/L0M;_T/ 8d[·{e{•|U~c.eԄi.e<a{jo*oZu (vek0ض:?jx@mcx\a˶5} ϵz8؆ XG2 a#`XRc EcHŸ>OKSVM?o_٦e#7}MT^,2,* ,B>@/C ^Uuj+<<Z:fI牏쵍V.)å#qhۄ+:=6Rp6`UUþ/ n.]5cŹvoo#`jxCVuն<"0Oub>i31= Tϖ @kL5q4|0*MzX[=&Jl̀Q$lfl̉mtzQ4 4<8J',R*bꆼ| lJI\!MD08b5l^]Y'n#jvY]?i|ß? U(NEeo9w7+A:pbÎ];[IZ|+Z^4aJ̀mh*+j .x+ƈO xheNC-DrS}( ӑ& ?6sBř\1w2D=|D923pe0Rвz=1Fp!i,G%A'2Ɔ,{bv;vm|p:eDc6 ޶[:fuGPۜ \m^!#684c0(I.ƔK.dSȶn6U\zajP"khzP:D`RA&}'~>cA=sUU\YYVgf:K/a%,[ك1&OCR& y]K@d_UfU09Lfn1i't!%1_xR̛`0jm+X)D!uΎ4X9zv -'և¥循n0o:M^c?!'ft 言8g%ğ,+~olbE#N $`yY„CİJ=Lu < Sl7ҌMKX7ݢ&9@^{˚Q!<\>q.@/1pt)T٭AO0;t]?vp uOA\$ )S;تԱ='#1N^ N oɌq*AvWNSiC)O{ Gm\]g29}0![Lʻx`urv]M#B`%~5QQq_lyޗHriT4MFK. :2K;L4D8yht=Nf%qJ lܭc |fucLAa,zBQh;_!/E#s<90GV:TG$0-oD.DQ"iz|6gA{'%J|( E1gE}1`؀ۖˬM3PtpZs ~8W|q6Sa>İvgE8g&Ki8Vu'0`y_bxj&XBB f+x+lznʈ:"#r/9ڝÓ ݿtt,Y!y$05pbw`6STkfss)Vl!ዤ^Qg%˧iʰYB&\qGq] o(%>Z9ȃ>ړ3sO|>BO<:s'@`'}I{= jQmpƘJ?XT^^Q#189:@룁1a}Kefoꋆ}Kcʿᤚo{Q#n ҾrqߙU|fn/—t@|1QuC؊ UqZnѠ3Sh>| ԽxفAbe̓cRYAK>? CT{М ONXbțD6ˬf vpHRC0|Jg Tc]n?=*B2 R0X}d3@b DO^g~ k*Odr5a yL9HY__v͆MT$0a9"F[;IُN-/6+8+-5xc x÷q6qHLnPծsTOo"?}/psAdc-X@KY/qz:Z E%53k1Uꥉˈ8=g_{%3=B bXn\o Xt:%IŬokNK+}͑l K88 2?Ʈv]`$w3T2,úB܂E. BR{$k:=nF&l^նA}{r?˕2WlO-}qOep Asέ{L)$:z+[Z^FҊ< 6tG-M`d)M?a",.m7~CeΙE(׾S2,_ol #Za<=lw* qgi=S9 6: 7Q=6Y]^鰑U 4S*'vaÑxrI&'m.̖ͅlxfG{Ćxִk Jښ|سr kmoe 8V8ŐTx@H8no;cl^bg^~4;h8D;滶>l_4{Yjq`Nť0S5~ :|Žsc o s1Z+RyCR=]Ҕg9hCaRG.ŋzbCumƦrb,RYuuY؟~Zޘ xK׻fu Ipk\q3k/CL󣁘1c&&dܭ>4o=ghRt5Dr)Zl?S3ӉD?'$loo'=j=Nj=fwPp}מnd[ 7UƳAT4txߎޓanLt@s1)֞'J0s~D%W(M؋7$nE9ŢJd|aQXZ"NEl]:1zqt k#("ٻLrQ+bE9hsg-,L36!E6պ*mߵKYG\D}>Gr:0P{KD@+tӯ 0J%>gjH{N9NԚ0=ާobJLH'0Mäly7zt#ػ'o( §jO|D HY|EN GDzy*|{@I Yv\bn٫}@JpcGdS,Zl="p3tXKuT `c.賣xvN=[TBBgj== bYov 5 bD:x +0}Z}||z>V TZ 8=DH9z/#RgiZtWQh8˼9 7::@@<]`qq/yWkgC}{)4^I 'n< ߪJ{&)+m`L=;%Zm/Z,wN}w,7F2jBD՗Y⹣}֡$<%kÕ8BQ9!ܹ| ns2w\)-i4 *wp=civs/?MOs"+GW6Nᡉp9Dci x-,=28 3[<Lxn#5yVo a8 )sd JLl/\M7LMa~Y,JvvCUm$um 079N")t ͿlA3<̡NpA8/Efp]2-{y aLm<+B iIÌnc1 8/ ܷٲQi6): S!#∯B+Nxdӻ1wHT&i-pj{@T\m\^>2 86;@Ǡ$E:cH6j}:m" yvO'fHbL,orc>.ʉ5K s228M54t7h2Ǔ#c$Z)YjuoB6>kUUТCÎ7&{aXc4-O>}+`8i"/y}xY*}~2 s%:$Jrb: S`Ll&S !!7{{zΩz}M;F('RO8ԃD0wrqDr] a3 NlQ}ʊˊ"2(?c!]Ňv19~9.vKJhA%D!u^j8#*;$'0ŶDG&D0\g9#w&a2~uT/cUu-Z[ފ!C)A=#QDnX(Ɔ;NvtNt7%97nS-z牕&JFHL5ָnf_ I>V&=Ͱem0Fٶ jS0.u!;4:vrvg8"xB TPb?ޜ'6&~9O7PYi&5|R; ~.?^h=Uu ~vޗ+5iҙN^O(| t%N* _%h9_.*v'#G:~xQX WZ3)$Kx_rbXába{bAZ5lZ22mU ]]^n1'tPxE#Xi'n܊/n~2X@(@PķgsurWryjXNyN'{ $/ȐA$YU<=/9ˋ8ɴԒA|"'xkI*j,͹pGuc)9Ęsq+ubGV{` ^)/Lrϟ?> v9ǝ3ng+UI»  NcVIC@OXXg Ohy@K~KĨP]~cmR@] s {"-1e6u., yyƔ"rKpD{֐;!"*P"MՑXtpZrU$ǼD(MAi0b{yunlᐿ_O>`ErQ1i$K^m1mX&= b^6 BӲrD\o`Zϋn8f8`zo'έ$ kPf2Zh`+qSl83r1{XErTJmP% 6[oy+x^(^ab2 %h,}.j +8۠#7~} M-g_m#&cw)An걜t-5w NA> zٚ0ߧ7ڊ^B)4cIqxkF | NYO0c5kq0~~W\ Sf?):1z88c,>Q#'eWJJc)ʕrf,3 _ǀ441#wiQax2k?*lSWu~,1OSt#ҽKKpӻ~r Hj܇!kqhDIIO6s<<;MjIc`Ɛ>BA:3lfT-|an'=ǜ{B98z~'0C67ha;s'W%q6 } +yμ3`kjlD?,nz73h~AO_? y`3#2>M3yp_jwMP٥_aYG]8Joe=R{KvFC~ V <]%TA&)`39twiӭI3 gQ_xYz6|K'OӖzPU:ކU,2˰"ګ<*)s6;V&F؋JS=CVuMp7]p!$kn;,q2oTHCdgˀ*Es8̕-[9UPpNX2F <FqRW'pK~"1]3oĞAqF( @Ps':ņ;2'UI*Í2oJuaWetO8Jt-w {lAܔ)tMiyf i2seWI_O: 3IU( δlx+q)}&*7@^lVaXRj%I :*hydT D@rA5O[g9KjeI2!PivKxJ~+gSZNK*ɢ>6"6i1&xƺOkmP"??kKB&(!o_29ws*岇E/!Ax@},7H& iTL 5ܵ=evZXq#MKi-KAsY ^za5jz5/_Raħ1Q|J2; ֡* RfxRH|o.uB@εMHbŗFn4?>fjZde'b?Ssw_1!or9=pxȁU5@[B$61Cs*G%lr l<+ظ!C-2a ^{!Ek%AXYŃV:4o:z]˥)FVa(IGgn|3*p :s(1ps |}J%}}T!ENF%+ k&"˥Ԑ(F{=dmT(7%Q@AJrudc;/jN] ?Pt{7ym rX`YH d{U/ptmTٶݿ+ɛĜD(Fj:KC\I<>Sg"j2\ WW dDl躛IN*'+/l%̓dQJL'wZ[đ@*C> VAu1t!<G>zc:qr!g8D${A> |N lXu!s1/3TR 7^Q}}Лuh\SPT*n֏ aNhmx~ w{^҃#E|/~9MЗ%U r?k\IM`NwTGj-I^s,;(+1U]:*d]G8Ъjbekʸ*\fjY;-Ki$'*:tt1TrWׄ%_ 6\NL}cCH%Zlǫy':3, 2U &=2z+B{m~.TzO=tDurݙ~ fhp蒴Aז/8&Gl%׮ cAP}A=윙PY Nocaml-doc-4.11/ocaml.info/ocaml.info.body-28.gz0000644000175000017500000003330313717225702020042 0ustar mehdimehdi+=_ocaml.info.body-28}ْGi`B@Ѕ! FUK!SQ^` PH1 Qdm4__~ŕ"L$ ;"ެBDuT֩*(-KʳzQ~6kkh?U"$8]eC*['zQYNJ|ó|u-uNR/e]T}]/JshY^>:OZr~JTR'E9TXCEݬuUmQRE=tJ^eTXP%MaJ'zr AMV*.6+x3.*N (q ϕNʰg)XsB8%%[e>w^b T06JUez?:8y-m+,H(mцhI rDajq*!i^=g\&OΟZ@eЕoY%zU tP{q59Po梅߀26U #QYx~a5I@}1l Cp&N;Tk4$%EiD6g?N "m]rl"J>PQ nKgȝ@v vxR$ ͐_0[ߗd-F5Ku"3(.ct2JUά`آ IRQ ьOm @H`kwfh۵oGMWNizX* Ӎa" l*̧Er濜/Ir/oP@@Bm1~ ; ?FB,j.*qjQ̻'+a =!pgk1¶ƼE Vc X\&, T xXYVHyD<`>A =ݬA6 p01:lћ9lufk?ɮ&^b/Mt9GP%b2i@ؐMA6b\&Yvi_skb@M?^iMx'u\ #x;xw6ܟ p?`,A\$MݙMHаL'6]5)|ik 8 42}\~%Ⴡd2<  S9mFC֨܎]6`,1ZVF^x??U, "q _5缱{ 8*MY}_0!g5 !ETʛlW~!lgTXIRz9vEnoqC ~ <C(AJo |,d\מP `qXXyMc:V֦*nNv"stѸ.P.t[>`wh6`D)rmʪaP|=qu L3 x-4)є{  #k@i:ҫB.B j! 6q\x eU`ф&Uvcw&2(J`,YA([s.f#l"F}\/g7ҒŰ`vXvPŸ$rvL6#kՈF>cԜ#GFvunYfYh]jصSvKX˸)Cw@:*ɜl"YYא)c;0()&87|R4#־sуk3 -.o0DZ] k֠M԰-u2/YuH _n D &V\zwڢ()L# `ߑu%M=}ڹp&v"O\䤁uz۠(V8!팠qkJWS@Šh٪f[~FY0fsHҴc?CHB._W*:_x ՐSF U{$bOGEqK hD@%="1+Щƪ1hFJ4:3 @6oPCdýasUz@SߣVJxP.$N5|Jpףc: xq|}?+jůeKgQPbof21Zf;\S+J9釟tfgY&)F/-|fQ@J8A:ΘGNᎁ2Hvrq0u\kea SdI[շ);nG񄬥@r\ 5Umw':aN&] 2.:z6^qOv͹lufҔᆭI1n 5F(_Ʃ3C[o9AIBƭq@d¶XprpHUǥq@2H,SQr4nmΗ& lBvY"TĉV/NgHG`Qw[] ˣK9[e&43@KB?c*kǿf=2wGW2j r,48C5Mt8JuAgo48taoi^3tYN-8D̠B7(HToWκy5.S&Dds~yY E-ܮzGJ,,*OKݤUOG6p)l,(-- @*B-ơml+jbm-iW.^ki(z뾢vn(Տ ͅ+v f+odN =SQֱ]irMSg|Vq^hjI?rәW]d`eȞc顡c)'9I&:\-Z)C<8:_  &EIkZ(5y-Mn5ҧX;poZc]ftxz >VHw EֿN8+»TV9ZWՌ|!;;aUƠ2"C\6+@"l2\, 0J҅d0:_GۂA>oU mP,+.?ã@(Þ CO;pFSmK`~'T1XXZۄ):]2ƆJaI(՜'&HeoY"5r>RΩòvCag$~b秡ۆAspWC[s<mc6p^sBV`ceꗒlTRmq>gkKG$R>ӏʛҰ4hu| m*l;+lxhsɳUL%KUm[GqV$snW~{61z^S{Q9 Ճv˱4,%CMi]?cXrUj KjY6UQNeFeVU%)H4 C{Ol{j-:_}tk3sMyI},aى"@zMq*P~b Ym[˹V)u& SX?cTC*3<Ա\Ĕ!{(P=d[sp'0 1NQJPj9׽%8}#P¡r&#rKeWpZ-c뒕HzYJVuDŽg/_.yv՛/=o!p2W0 Ao`y.pLq+ҳ+b4iV0W 5RVAHf6G-@YhŨ-e (\N?L0@>6Q=srH 4fӂ}myDs͝ Y{T7'"-2{FcR܎`@P\Y#%29 O oDDO{ԣpk,>/Kp@ؠh9Pۂ 80MӋS |RR {\D@*)p /o,`c~sW¼"-X&@ ,c$o6;VaqZ l&4hWϾ7?>}qFęD.b+\+#l#d ߽ Y3m9 JofΩ y!-X Z`Ek>$av&*DKJV+XZt 9A#^{GI]D A)׫l \kUv/p8Anb%0.ue/r-aOV EY]"^07GgW\>IsE,:(Xa\EYa6';"¬  miWlx4$L* O\*"5#-a^ JP({!'"[מFpnȠjG:l\ɲTJ\m(_;@`DJX'N }78J Jt9 61ytLt']=fxYX e-|%zז_d,_q 2VOB2u,Z dNFdNY[@/CID q(UcNꥃ]W l&:M PRy*e16йʰ2 p14RjJ04ɊjƲA$ZDDrD( 5Y3<|u KK,F Mq:uŅp;>L9۶J`Q%8Y|Pt(oya,vw9YQ4v a-"swp8iz@Ƌ- @h¯(Dp4e[4i:=?S (jCuJkC%:*@X&6N{,]pSPo:s˃OC,׹ٛDP9n:胖 YɨN4orDŽ{+՗c/}|7Ϻ~ O $/`w.6͔4ߥ+v]Yh.pCI ?op=A<-Xy (b ?%sa-s9+fD=S]@guZy$FC@!5!AqѰQ `[@\s^kNDQaͰ|iX> h4/?h6#SH,Mg.x /r޳$1x28,psu]B4cHACKAv/,ba܄=:᥇-qwݏ:ݰ7~ 'QRÁc^@U`7]+S/AC#`@'6gѯYpV'>3Źj{Ʌ/CV!G:!VX҃?sz P0 Cؘ +q\?{OŏkH5_G,lDu>n(gϻ.+fw֫A0.)YFbѱel-2 o)$s{`5L5݋S˻AYQg+L5֊:oZg\KpP9^)޽9<}އ]FLs#@-*Ɠ"Hj̉.J 'x4C=A#'$ch#"q̂do')s"Hִ>6iw^UKStۣD+^B>dAC*}{j^Gvhn ֿ ƘhHR.!;)kMN 4\Tij/ix P PE 9sڑ"n͸͸}i~swmL[c>3*fS-}Ũl0W$Ber*'+CKB~\Yu{QOZVXHp H ^}mdǺIJ}&*tM0vvB _s@1B~8h#]&:JB?!1}sZIG9 ߋ?({8tW>!hR,_?~Q(.<Xboـ>6Cgtl_!YXrXx.2a1 ])tćۺ0 "~a5{U]Q׺e~U^blnSe}+bMQ]+IIҡ2su0A[zVQʑǚ5?Pm΁MZSwx@nN7 왥 {\rc@KH1c1 I<&3 B-$L&h8q] Dg>{<[<R\a@7[;'d*@xpn;AZDՠP!G߂?Qձ36/j6@ JU-R~z)??$]<%!2pХ9؎HV:l\XHKSCsᴍiJcQn! /MF“td=摗qq`&y-" ̥,ilB]@Y="G`dg LZIeEM!8Z\,~]ET(Č22.n1jKTPO푯jWNWIy EgBںY O:`cb!Tb-&g9kj`})4h F$\-Dї #ƅ=,L(6XQW0!I}@l ی[T mD^ag D֎'ˣ9yt2j T|OЁ<,wm0{|S^|X)iQH^‘NO]C%Lm8dhd| wijSvW4pChk,F] } US:wZf/y^=;̴ ;c>Ke1QbKS8ήobE`h x.ARc ԔY=?!rԔ1+f덋W*qq\shqehλ(2wOn;澠XЊv|Y52ب?jҍ<t3TZHla%u Sy-nX`6 䬮(MږhL}uM>{yO=_$A$# ('JWt n2/"5.і/9%!Es~=*8İ0ų4Kq~|ˁm}vyfp>Oz.XD`- ~@P<"f͙?N#9^8#O\VY%xq YS]yzqɈE.AT}C1PO_b UJ*j;hF?||Kvء|׆:c-8>L][຦=Űڢ4eN-QDJu6$I('zAV,H>+$Wq֠AߒjR*Z]6 6nϺ%@, "KG3GHN8LT-Apt[8e; uɧ_5'!CRGu~OM~\ad"!*J~k9FxJ%P%~y;iǴשBvMcjd1X[ckވ?qHlr'sל@OpGnov>6<?)v-cm8-nytʛʶ'щFl+\p0$6m\9V%&4+zPFoϔ\8||w$qKti<Ԃl}. >l4֏Z֮>ߊ>謗'#w#73o]w:/kXn;hvٜD*$~YtG~>~#/=5nSIbܮ aa?Z?N7?P3h!W0B@Dt}I3aw!<%rNʫ4눋.76ֶ=yf:Ymq22WZҹ"@֢~0}{Q B*Kět&"l6v´N. teZSwuwCc ?ct 껣-͈3 zQͻ"0˲&q`0wӟBI*/%W"59s`Gr&T()ti%i9Da*fxee?d;NGnǚ,#I.]v{)_9qyAnH^_i|y8 s^k\Jޡ@RQS?B)7q.70*/{9mTnSwMBnjL'|Wu5e5sZD)q])]nBJg=~=х*0yMQz[G Zߧ( ks(zt) ي߷\PP,oև,Ws)Dptpšp>\Y1Zsi8_,/pᷙGeQN/EZa$VW87A}/4R=/f8$K8 !;vu foWWf'wz;go/Y*ŻBw[`ֲ7WwS͞k!{XPnol;TS><^@d6ۿV}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ}WZ߶GGGww\/<]y]yuGyjnW?:k+3zOU٩EզkSJ߈\3MNٓA o9K+ཛྷa)= <:~ռ4Ƶ%6f"yO pd(Gl7k{<6@h#@ ADjj|+m'ߘ6}kىUy̋ *^/Iy%U5݄R5,cpECtKtF潅^Zvtqp4%I JiLJZ웵ozwqQ:EI"5gx z P5^,AQIulv,?`P eۘ߃=`<9 :ĂΌ)in=ŷOx/0fUÏxS7F8HϷ:7s,?.<{Y,J/,A]v>ˬ 9o0o$^<$hs;I*9+L\g'íV>IM\M1IQrA# ~X?/E5R'#+VSέ@'y aut& dDow+d0ۇ<0^8˻Sv:t+.xOXg{!#.cȕM/3LPLF1m١Y27saI41B6:(6<{jv{ිD,Ǡw m؇j o^_>t,ԇ7 R')$"8Wx:(Xg\EOHQ4&їkZdA]?5#Yqsȸ(2/\)_xuG`7bsw/d62sVP$xY閐F8zOٻjBtDqtp+TڗU,c pT?LxӼ6n_ѷ~;7-_Zqa cU#|,q6`y㕉^U `oz y" %}R-^+!Jv`ϽPfZED`Y:Xv(*ͶW_IE[WE%`3tr ԘxTvPA\Tp'oOsM"+%{rPZ'KA-pQ($'X8ߪ.X^=_y/_F Re0"8//G"u^~y狏?F- p.Wq3D:  pSWؙ_T~}Mۣ Ca6ڳ3*O|,$:ڲ5C@tئ4O,;(&rswR\ۙOum)u@ik0/ iLud i⸋;‹5:2Nʜy X`Qb jVpQNávS܀HǠIK`$<~ؔǐSZg&~;V B3pGЅJ C``D OxMƌV12I_w|5V Ly3H_Fy|5CW [49'djߴFI(4&xP9LWU_0v0Ԉ&=Y9kL )XFO;u0WG~@Ism(Q7u|F$mwe퇛20|?MJ|Δ}:d( 8_݆GudŤą~+ Ïز]J5wrHxo۞J mu&L)?"/ C~g>{Lpc*G,Q:_QYYMC[g4;n$hD2c/Fsx6<53bH/Uw**d`Vl8h VyQj2ՔsT`Eri Wv-^Q_G>hiooA@@/W8v,lߪ"E'2U }ȝ>;eev|Uy.tYw0{TyS*w;Kq,)q]ӥ?W Į#XtVGh-\y)booZiW6_mیg9]pLjO ዌy!' |E0 H|yC/Z E+qZp8yCe. oy(ꠟ7`q+=̳;|sz] Fl(axKU6\2ȍI8oXe u LɷZs.26j[<+I֢Yբ_Iirpx_ ˪C^S]e H`攕#U |ݧhV)ekTsuwrbߊC !2 0V6CPW b[)Poщ2cYÐV/-: HP)#ws—HZ^|FB6.#>r?DیUvTuYֻ0VpvX]L,ORV;pP<sԢ[Tp"3%F=Qa1bͯ pzqjNxD?e[E`N3s#,nI1B݆ b\w~NvE. tCPT]'d ?ǜ2KhG \H6-OgH$ }fb0R 4 ڂ/UVJP؀SҵX5Hw+ ^[js)NgY.+Tct|S3$CwB}+([1QT|S# Ԍi3;,)l$@5M [doJ9G(l|̼ @qe[vߦ elϑ^PWj4g!Es\9Q%evE^`UH&.S`ߠc IJbhs;CL7ĨSXo"5'Y-ƵwYy7h4c驚 ٙZf~;Q>ejo3Dz!ذP ^V!\f?~:6W.c b#6$<(-\~`G0@|~X`v.0pZDcdZ4,*s鱥Fc`){^H~} 5jׇm|׵r[9 _n/*45}_7W;I@j_%u :֧S|8/Wls:1\#߾Nocaml-doc-4.11/ocaml.info/ocaml.info.hocaml.info.kwd.hind.gz0000644000175000017500000000251213717225702022556 0ustar mehdimehdi+=_ocaml.info.hocaml.info.kwd.hindZn8}W C ,HLi {#QNG-- & y̙{]n_b|~lR|M%t_m_q9Xci}#ŷFrh b-ΖR![LK)tFN]/w7Ax*@VncY39̌4#&Yqǧِ`F[1]c8>Uu\Zo 0XϕXd7\ݾg` cw0kfx+}wLCt, @}-$brR:Ԓ\Bw׏cr>4m8R. !'uy.{.}XUSlhtX^FqV(P*KRF@Z4^ěU-Ex Bj2Xs6-.гB++56,>'cd}hړƣd%%2XrN}diDs3y=%ڄEk AWuQMW1@oLrR_{Xqh_~\,+ܫRtMj,SJIY&Y`|Yn?x&ZAI]џ"}@EE\&@CI'TjBDRTBH=QcUit%ˎ'n0Q 8)F=WUn~R}`p`(`rm~t",\"n""[RD`(.aQZVV+PId?@<*U,U|7n٬ٔ:P۩nYOR,)Sx0q 2` ԀoYTwR?Jku}7Ě } XYc#on0|=k@Z'd:o9k5nJ`s[AD!8OD塵wsx*?I [rbӗf*ñ {rovUz,ׅ[]E&:o[6}-]޹(^̲\=7YY-{]/7K_۲m5uǓO~̹,;===qνXa޶%g?#7f /hȦOFsS7v욢5wy~rF-z˿ticwS+W~x.o m/ֻ֗K׮|;sZGYVi|$`zJ_v<GZ*>IgO;$m5,.G; 9<ڻ-qǧGC8 Įe)Ph9q80b.qW5X[`5 \+PYmw3Y+[\RT+2]K}y@gxKϼx^#B.9 ˕ x[5J]2-`H)lb`AלъBa@IyI LYyᆇm)&|8z_!i{0siA,ۦ]CLj(%Tܣ<JvsE3%Z_Z|? ̘J2c QE#UUEp0iT ~ ؇U0([A qzzg>&fѐF6D8D7]U{ YEI}r$?{'-ħepQyS^^wE䐋),yI/nŖd@7uG`1G ϐ(ʛVyF8ހFXb)A *{8L8{ C/JK"BeF8W)ד,~i X=(%jlge28-wU)K$ [}pnWMaY #* U6Σ)J􌰒uu qv?>>;6Ov͜9,Y$*[Dv.6#*G%|ݕ)Vu8gqbH\_],^1i3> 0Jf|X'oA75ojP(E~AJ[>ֿpQ EE.1| 9r)\~@(/ .JeHs7yUnwN;5l4ˎwE;NO>cCFWI` ̕qwʷUXpLVדOzNAz;E+myS{AUőֱq6H Qd\mZ_DM0MAN/Wx5%ϬFer!^_E$C]ᆬAuѫoyſ'8, Wע7ׇ#[uֺ[h-RTȾ%FEwy[Y7>=EWQ~:{]DV8Hɚ庉GXذ"+~~E8OШ6֌Oe@m>Ownם;f&o47FlXCD2/h !=큏FBGJػLa0u-DT2>?VbJA넣 :BYGu cP9lyno=㽤 I1OGG$T#'H7B՟>FrQ'}$S$ x?R$/U&%<#jE WgTI퀕HfZb_5q'$::A_# . 1:dؙEʺ_ze%\P`^yBE<Qz ::%ϫHA *n>:YG 9hROf@P3)j:3I؎B,tt쾢?:lD7CÜyVDŽ[ao'&+&`ȏH Kߑnjm f{Uz,[R/k 5w滩1A#k@&z,#-Z1ĴgJ`Dw>+dCZ(rU([gD.p 䍂 0̉v>7@"wɓ{0fKD.>Bp#*@h Zݶf)QM"&f7Dw=vtQTZCYJIFc8H#~< O>_8ʸa&G/Bi!}0vu?ho ޳p*/x~H[r\?2Dh4QkL~bw}#xѯz12 5&&O`Ȫf6*RR)wϴN6c\}7g>S+qD/}DP|z6U]P -֬Y>IQF&-U9sRO]uU8z.avEטyN_<ã\-r 3n4? GQcԝIxɘ{x#?qѠPC̯b랦gPiKYc+(tivŲ9MɢB{;or:8A:`隿 U l<\aλ3[S{?e}>Cz>?9e[\׋\@GvKClƆ/yw%M!_qӍ̫"}is.f#Q-Kf_3 >5B^O^l =˄k(/a//5sn Ru+1GC>}o#=7{ }S^?{|GS{#cw1;u|RlemJ2nךHmQM:sK S|4];%+7椦b[L7V.XkLWMQt9hpqðcCO^Zt$:ilU`\)w Zηmg1> o*m:L7td*r%vm7b<\ .ӓYvy%5 B}ŕeDb\aB9u6-u,_l(ҔIү ŖSk9i"u apҡȁwYS祐Rg:xR/ }jLv2[5LqPdcw`a# ǵ~ uܽa( z=e? {^h! eSP˰c5͛P'L*Qgmۺ6R mbj99.0 ǹ2 ,!>"AmS֍ꄒ+[6.5P;׼PO4u6ŪI69S\7W laD+ₛ8AĢ_@G7*8g~>?7؞OlG|yVSst>SrF~ Fj{M`_Fz%ryOܓv@:=Qn|K` l%xiG]/ Hya⣌S,[\0kzd\ }DH͸"'ū$b5'ƂV Ƥ?P\?!DwG^db%A$FZ{,Cۃ b ';]' dUbz!5%w3Te$i)VDR,Y&P/*7hk;~(H=&uPWGh4Y3 mLxtgjDLUx=\T1KiKP<-`M#Tt vdaE < )h0Vo'*W6._j3r{_ՏBo>?=_G+(*G;ukeACf Nx}JodBYgW Wc7 7J]F2*?;@9q,N{T\cIjHEb'sPlE(>`y"mr9FO2rs(Jڐ#8ef$EQ~;f_ fJ=Td>'.y RL._ ɑHu=G 09u $;>DM#43ߋ}vYqu{='nF̳czـ؎R:z%UO8\V7#%ep[ H,JPm`Rc >*>MM!>hh>?r#1h4}BÀEA5zv@A uْ֙>A5O[3µmٽtB'C O00.8 3S'HgFśZ62UP%i҅}"56T0'}!􄮀m;!5 1z<4bZf{;p(J87x6J߱)H6 L1% tٰ> End##ׁعeÄڗe\.-}P64#K!xWhnΫa6Ի:՛7ߴKېVܡI ,)F.:S1e.Q#G$Q) X|,Ce4@3; Dc6>wvN?K2!U/7f[{.!5dcR#BCg(`xUf3pVZqBc)<6e[xH m'/y;E %˂34Rfj) IFMt*i%*}|MQJUV?rYcthˆƾ]&{ԕ*t duUwT¦hg˞|Mꔩz!J Y܆r ;tE{MJ[W [;R [xN$_ԚtdsŠ^\GC.'[>˔-\Š:0[NEmjAq[4b~O7n5`Y8K${yk6zͳޝ2FӤ5 n3q( JrYLmu_UЎIw &ѭyc#m<,qey+ba;IoT9srp~y3Gїݛ?D ~ `)ơZ^r_u.p^ F (N:ע2B9r<ɥ(&,gm '=j-_"!E' zRPl2l2(lEj Vբ5&_Ő4#XtarI,wн^( A^b$69%=5 [%$ó1YIBx_& |0bvMw*ƌ/xeHBc[=TQ,oV_yorcFez(`y0y:\"q*zq9 >UA80냌4, 'ͪ&ng T(nSM.I#i@Uef]SI|]*ZYs rtv_G~ \q~/Vko뺊k؛vhrEe!䲥+^ qE?M⭲@ªF8 m@&*`cf{"eʵ_pfSeqII I].*0ݮwF,'Kg;^A^pZq|q] h^uqp.ª+Aiz*؀yh@}G@Oi{wd^x]6uPZLT$A_WNcmf8C"4 1ew(Etz%m e!kr?`!Ǻ.) XyUP{=gjfcrYTae%]8zIS67 G.~^LqF M|'ӕsY GeW M 8NG|-a-*cݴ:a@b_ps^aD-l>=CF!Y\M1; q;*GI)4!0 0> 51y @=ܟ&hGN v80(,lYe6`ӓAQ5|0?4'ևr~p(YI@bPvuK[q=*u]@TG+e(,$<5ejL3߈]Aٜ(I֋ͲgcqЋpra6%n,p=Yc>TC G `ޓ Pt}Yjvt/Dh=VH6{&")<6*`W'Җ0nVڤHBZ%@d $PaKފ Lto2[}M_ ('i_ unޖiހp97/?5=FS2\`/ؼt$H 0v_Z{_K*(XӢ2[)=eAlNC%qJUo<й ݌> m2];{;2V=]~x@lt)x3x 1޳}=("kwA=D~tyɝ?\4BdZs.ܢrLKa_ 5Q[uI(?萤rN8̠-_H}(d\ [}?+#ϻ|ϰ6 ˪: Y赮굻kʄWxo3)(G@x7tQX: r̗vsE- /o=՟-ne^wM1B}b8hxvr:;Kro])>t>/we}K(G`Qz,ދ|/3#raTӞt׆Z:NVENQ9q"ŁCkZ$Y _WrwVz&-^ǝ"I&z\!I\CJՆ+x*G,i"}svNi ApNz * Ek0Wc} [ M]gh&r\C(\>e\UTI S4Sjtn8q;A#w7)\<>0;91a*X&o*cLd5{)7kxoL9A: sΚe"[KGމ͡ub^FECz+MH<5 ) "hyku:RN"[KYVGpLR 8]ԪI`U-dlg`/b T Ø"!wD3Z*M;4Tc@ zN/@3_"+(DÏ=4&I5&b#mFJ"E̓mQ 7ƹ{  \Nd-|+m~PGURHOKf4hWMAG-H;A*‹p: %=Ѹ7%T (UkC5EtPv=F=j@VLP aafEeϒK,w$w_ IcDэxe(3b^]g|vz'k=z=ג ,jp,f^GO{̂+.7I$ft2{'q`j=zkƜuNMnhY$ 0gTz ÚYHXE0[a>@I>N.߭@H Prh,zS7t"ͷAONRlL]^خه%RIH+{F-abY"'Y]zbLB[l&Y@H\A +?ʪPSN:" ]L5m:ܟ%_P m*HV4ghڴ7{w>w._ ty5~jH,Pt6˼@bC[Å&9j;{T&^x A#Ƨ22TX)!LpQhxs{)N5?#rn"6&T0jВ[ZR9'l18xAq<ʮ;Nr?4o-wenĻKJpYg  iMfh 1o. !#J=BO;hkߜyL}q]fcEoiԘ tD2l$&iL@OF8VeEVAz!Ppv\*eE^/3.wt.;뇬u!:9deQmS@F(3s}j/ ԴM]X!%Fߟ*^(tg@-ɓn|>҄Jq!r,!t\]L;/%PҸ.L" mCCBȹi$Rӟ`fܩ6*+0~/* 3Μ,15 Oi#}zX ; IҀH#Br[Ы"a؟OG8HC=*#5*KbHH9tV?c=Z(-9\Ͼ\Q &8f}A Jݜ^ [B/dKvQU` ~&_y5T%yX~E^g}ht =qvf o&VfW S% ȘCZvq}1P'%*؂G`lŀJ1eۮ i%n5==g'3Ohh)@"mD9@r(zw/`wePrB@6Y!;ocaml-doc-4.11/ocaml.info/ocaml.info.body-2.gz0000644000175000017500000003464513717225702017764 0ustar mehdimehdi+=_ocaml.info.body-2}rƕ"7U&ٺ-YCVkBep"YOc#f>`'=bnaj@NK_[[|S~,]Ӽ\Vy'_ͫR= 0ʧcU_ |OoGYb#gG~Vnն(d'NW ᴛQJC1.έi7AnDLuWuOd i O5z")ΪM LF" [שi)Js KdXD{zxqP^OOg_'#'qC -t7|o._Ao@Lђp4HFV;* DY’U>)PÎW2/Y3LNo~>Cy3.N5fJ[V @|{/z1#|~OqYlQ"hWz5/ %HF0( >#ȢC !-O Qనi AwN}z*+h#l6°@h1bZ;S1a|T6C]x}a[U) ISQc<QIZ/OՖY/cF O B@zN"fFNCŭv_:N54YL0uxt4 dA|V~qGcϓߣKÀG>R#r#MVZ]GHz!q_}/DžZEhC#sRCӊKykɫZoY6$QP5pPY܀Әמ huUDl bJfմ F E8&З^D۷PM@^ 9k8 Ѕ_!t]|Ԟ5 |$s)YZxCW~ǯ^~yO!Iqd;h/ |?=̺cxow^}Vu#FD='v?=p#y=LoˡG:Xw}:thf.WZLc_{fP m#Վ¡dCGJIU -п:eΪ#@E6uI$ћhԜzzf&?Hi:0LvuM^=uu˖]!NhVV E]9+ xl6roV0 Hd)QBaJq_ZB>]O=~nb`/: ȱfL @`-ͩj||XM9]M|}˳3Iyv#?h_1ߎw|R: fӗ/5{He596%#}^ړ=n+Xx -,:Qd+6~$ rvu/oDEkXl2Mp7 $Cr7(wPa!5*5&xKMd{$ݣ6Ji+~\*8)UjQ}iN!KĠ KhռEBR9o1H;J|VRBrDy/Lcyx 2`KSS-n#q{B=-3H0ɣ'mCGJ2hLG蕞Ʌi z`o.P6^Moܰ\VS!< _:<EUf|3dpB#bv)zA[M\0; } d b7@F@[F\zI- 2nlI#a B:&P@*vE[*LZkD1w+ZŃIgzeI"ll nTgf1G=zc(qBpXuHP'YZEuUmȻϧ|i1Jj\,L@g& *=tUwS+>JSL +Ɔ_ &%KBa\D0JÌd2´W8c̏ j#MY YӀ.>8Bb"H&30V#| sD)oҏJ5뿏/aɈw!B262e16BFo!$lK#mWQ{ :NثEy@KzȮh"QInW7wp23's쀝gF@~cuX34eZ:sw_ac!}AF)5Q[4: ]@,`;2|da ;Dg)HZ/ًN+ ݱ Ir"y3AZkЩG?{5/)98 Ktj-9^<م ɫ\Q縳"A\_4*eX(+ eUYAD"Ħ*!_uZcaݴz!rIKsGN| cI" `c8D$5!ֲf!.䉑HoC@r X9Z$>ӣXXlLLqi}3|HAG"V%{&ӝ;F恍NZ+ _aR/HCm0')sfzd@n ت??/P*TM7KQX1»ѬT=tK-rxO 1mP~@&LK S)^!ه]@(@^ߤWHқ:wu oQ, 'i6+gYmHtv4NCGbA+em^HuPAxL'(}z0Չ! ȼhqfCϻjsA_tpChIs#F 8 w ]Oe'M 1٬a]!TO`1φ01S03%3iV`61o2=B-fkOh6@ل̤F5 7-D KsyyS: ^{}L鄲1 E4N#j4l6Ub@؉ ` ?(Mo:}g=Wgx%4 Z6tj7ȰyIۉ^lmvs/;շewpd 7@ )ק1\vkU2ًLQMSٹlENL2nq {dYӖ7DeɹpL?&Rpnȋ'fU%:J{ឰ\Qٍ@_ 7\(LXӟѽU!?ᎃ yӟhFX8/ )Hp@,s6 VR)XOqk|xRfI tMӲÔ:9s@1>r4]0 cUW9&Pzqoq¸7zYjA2GSD#N0۰qc!,5i^3 `9⭋QA22~m5@潚єt8xN%^1Usf 0ɋW6Sb (8a[.ٞUPF}C'aO ruoj2ǻŞlM% e)+^9B9)c^bz̳6)L6E_F0FEjVK0cmvuU5,PZ4 oTG1֖a4d%0ۡ3wV0QR:S /æF7x}?Q~<0rVm T^ź֥oZL5}#19zs:̹l4fnE" #^Uʹ%ѕrVpC J/1!2xg1 J<'o}o,nr=~^|p`a*? $L)Cm6S{nDF3NճfkN y@Mlf!y'U~UVRVԐENgtҸ(KܔlZ7dцlib%bXIU{j0Z5='$rh⒴J21E7f#=3,G0Z0%pr͚aHre Jנ9Z&9@kXEE9b:@AAq_by/%ODLy|+m|Oi#%b'D{+-/QkVf5:0NKyv6]P$弑H"d# Wie^]i;dHYV\[ J]q1,#D_? ͖"-eW'M3 [( :څĈXn:w ,C6@~nGJ5AMwt +\L~Mצ a03yp|voӳQC}FAg($7aĝN8=_~T_WBn-.-)u+,)brW#nN;=E\Hڰ5t%{xK䤱g9{2E,@xc,N/X-+p 9ɯ)]tيA5[6ѝɪ\ K{Geo3S 02Ez&S|fBӪD6lmSRK5"JGgJȴƛMɡ4t[e.~eܐ-`+A!IXSEX[7}3}RY7U#:yb/0$l1@KWq^El:6vf^=c,Ü2޻0>-_a2ON Oè Ebfؗ!n8P!M‹/Q${2B첆>s(kӒkzFey*-›0O|o ;k6=^k ɑɹr95cH &`ް 2٨d7H"x-qi;:2$ s!p*_Yb ǎĞ1U'14p`&.HXTI|80^1^qX02 RgQe[)M<$ aeG{CJ7U\N^%A'T85U_w2-@ڙ(ߵal>L>!uz!CW>qt.ڃG/1 x0\1;pαt|~Tr}"mKrS $^$QcYpb=/_|djofeu/);8Ik}yrt_XyE10b/<l}A~HTЫDr>z163£RT2n$?3wdS.pS Q*%0%~}&[lB:,exѲr6 J4{zª]݄gyJV?wg<dq5L" ?cP"QMm!5զ)PoKSE@bz tLpٍvJ,v*nk/{ >Ҹ{puם>3׸![oW?;'ZIŧi3$IVXYq6tfoӦ[WJ1D5$c|!H1-1b$JG(H>B4a닋XVnWHc7 )Y-;8-4d܉Ԍ;N! /1#[d{ܑvO4DmYC'm! [P`aChMǃGD"$7!1Pg{En։}kBU"BG!%:=6^iZBXh&sJ5ήaȵEFĺ:\5H%[N閜M:,h^k6J4DV_T,D2x# oV'uNq+*e,8ǚᡄ|"EDxS.wd$wvsALwiOAh*("-_ }aVBo}ˊ@Wf^qi, u4/@ʮu:5"qSoMvljb5˹Az'~2 {k);|` .0$~qF^w0V ϫ`|$x1ޢ$?ܪBKb+?@\pur( ~]6)RCy'=5jSF89!UѓUUV41/f]mx.@3{zߒykQD\AF<g$*BʾT y)1Xâu2(4AO#Ёtv ޣբ-lBj4`86uH\UuE+`žf3jF ޤڬtx=nIhI-}(j\iyӗpɥdHt$3$|-WB]wt^g2UB27&"#ra=dL}΀wgnp$ajuR=۔i;s^Yqzf_/}/2 bO }eddEµ''('اQy *` &g`}rpPԳǬ9$R^mSS5NKCd0b̥?n8pwoʻ̅?f \"tz)KhBW E`z+7x:fy4e| e^K݅TPTm۞(s.T6(ƋB7rc>Ev )tYAU|벥ւ&ˆq=Qok6¼![15Ѯ0JBXxk=  w+WMQP"{ܔSmX OR1*㴲K&KuL&oR[pUb&P+nәrWHh]ufo&8Uvɮs." HB/=k7̷ߏDM/AxwoƷ"]?)ɺ'tnRNՙ:WG>{hLLW1ч& 4"8*#mDe|݈3u O}M1X/~C9mo1 L8z-Y]\o%S"m`π1B{FA <.9G wA, z29ū/EjPE:ZiZoK@[TgH&n!%')t-H7)* WR {%fRpZk MPI bS%$-j.u <$7eh 塽b:I.d'EʮCHnȝD7=Q:I_w#rWo|Md(kXn%s_{;a(tAhH "SFpon|2 jcBW5DFv4b0aVJ$IcR%$/wIu=U\-8U۪D5_pR+:s蚢ғuoJʏ53[:1LGTO=/z7a)Ƿi/@{LH^DL;TAl{syha=rgSM =+1:=ŮYVup8>ACzƸΔ깤*8ʦi|G3u韺kplS?\z}᥆R‘\vY`c[ m2dD ђ ]3zٲmV  yg'5yX۝uqܦ+'Ch҇c NJIFxA\%΄߲7u3kF?; =գȥ|JQM'@͋>Y|t1el<(_[9lL5`*mb*R1k1[DJaT4Kb,d lr9i_~$vEZ,s.թ9OTIϧVePT1l HE(JEu]8F@h ů"ɐgJ7y ѥ/[ffe;ϸqtv,|BYNhVt8gZ/vyFywx&TBa(8A!<Ʌ!Y d͜vZ: Nc7 \ww}MV٬uG'y3wW'c+: (xEn+tbIr;qiͽΞ,B[Ҍ29$!7>/ͮ{yZm]ÆUYCYt[T\;g}Gmә;rYMkWd|\0lMN^LnmƗa?u}{ I|ߏc_~'oi 0b+xB''F㝸r#b8ާ:|]heh#E`JjN YE/`t8W(hJv;S< \J/gc^kdShza Y[Bc`nj+7@b+4ߤK *h[igoJnluխI3VlWc/H-JykQX߄O8vj%9I"RMHj?2&NM #x%k|ꗢR(昐P4>+dĮY힭@,wWnb7_*fsK%n^HvJ!:8PP8COL3$ݒ#݅fwYF8'x>Z-\2@9 -V;wm=!c9[dFBy#@*( -,Xm%fo7{Jc #Ify†xRW1_g_(^ Q]eb@0 U=YIt$ [|ýٰu$;kԻ+AjkiCK5ڥ\b|\9 'w%΢g#ר!"pӮɂPOw| B$a:{P#\ш̔9 LKt*p=$yl;F #ƙN#v;KP;@?،fp䞛J{F:{S5O7wjz%Fs Cꏺuw|&Qv@ՈAPvtH5mx)] !7H<)2T20s|Q& {CN6f/l´RXv<YsfM 15 l!Ōm&٩3wvt3g JF{9mg`l٧1hY=Q/4EēofʌJ2 I`|Jy4X֦5f}i)$θ$Ũ.q6$W#XLT*M| 9C'&RlqT*k(,Y mqf~bYE~g3!ukVx[W쫌=щm?]͒Q6dV> 5EQM@ƇP]Ů,0;Ŏ ߉aedlj>yMTc% (X{l֗L;fA\JX_\vIG4NfX*;%z 3t$F>I/߃]f xȂ9x.¶RYI6QOBjYY J,6$`ەn:O1[4Q&H9+B+0u3YJX%[1x$j͞c?7YxRv 'ݕcJ"/EhJm_"M1!-5UfVtOwW'uA$J<Ov"{m7߃]jw+t )K DzDmrM1rR[~"1ahhgWLy=lA`ѝ:ir0O֤:o +VZz⥔p1~`}5EG]3$N\_j% @XD|$4΁IK:Џ;ocaml-doc-4.11/ocaml.info/ocaml.info.body-27.gz0000644000175000017500000003526613717225702020053 0ustar mehdimehdi+=_ocaml.info.body-27}rǕK|ܰBRlCGUe;^Ku1` I$T^#'s eg?eLӧOyx*^%u}G' B2?e;"&' R@qzEBX ,s4KA$Rւ?׋d8/"M*X}UQ(f6c&|'K*Ɋ)$%mX"i+YΦX5~ i/ۂ1CXg~P@:˓ :Gߖln&NޓMU^UG͚,s +%KqX^^ ڐ]e?Ro} c[ 5(ob_@jo#i 8bU!c*kpPB![_\y8my{uoY ?JKine6DH8Y=9vRbʑ@V1|WY@A#cixG1cu|n1.f< K6 $8@4t WU `) w3n2 Zo4G`惌kbRmN̖J|rĄvihƅ ZiL`\d1j'mi )I8e-d m[oJdh% bI,8RB, GOxW';}w{-JB/NJIlH9rH+fްhǡ`n2*1/=rӇ$)(̟}n Jc&\|j2OE{a~o~07I!އ46I!!0 &Ţ'rٿ,-]'%M}oa֟@LX3B~^3 @(qLXo?kOW%8vp6I`^#Sk] ,K9h8zאr "Q8-$z+1$cw(yMyR" gΚUWװYEXA͠Wq ±'Dx'G lI?~j% 8kWmVȚÒۤVi$JA_[ އ1 Tr-ݻ&k@ZN` f-Z%Z;oJ Q Z `FQ9ﮌ9)i?ЯLEaʈ>=]IB>.rZd̔8-,W2 OWɭst4dh@)ҳ($#%@tjvതpQdnSjwkɪ{8@H9Y'[-܍܇OBY ҞZGG# [#z]sK {poosI@yMfi?kك`zmAKQw۰x~b)%!rUjϊFG3x"),i۴~m&@˼$I%]K]d&@v1$rpy{"0p~27px8i(#2LsAQ(`VpHK/^ɠ|2է “IDq8d@QE"q={,ɎGpEU ^;. v, ޥ{ŞG a ߀iscnu/Yqv&. rZ*anB`vł;9@J"03“ת,}ox ķOr62n{ZrTL˲k"+LZ*fde=-zF <`dx!eE3Yk5<5өt-c^ um2ySgNR#Q@}H% AgFbE͝VBߢ5~r} 9\I\^F޶Qga/a \EhK@[7^/ѿE'LOi:B]zNJ89\p:*6@x'l(}Sw6Djj* x;5,fyU=xx rkOg߫2W+ИX GF6=R&OӠŦ!d"_vrSgtw^7fbbA2i^6 SlǬfΉg&M2Zh5Mê)&@ F#2o[咦Rɒ$ TM΃ItpczfO!m1q±a}x+D"'x)PRU/2k(v X7"L*ƺH6ߖkҪmvĸoΡeuV %\f+P!Fo* I9Y.AtCtcAhjV}j/zߛ>;gIW؍Q<[0C1'x@#LLL2| ee[ VJX<GdQ:g{lo G5zWD QnW쐛 %CsS]p ;Ң/cPY'̻;AF}8W}.;|H avat~n]xN(O=Cϻ1Pa0@TyN;%tO|9+jlȏ ??ꮠi/Cj iTa,D;6K>8Zs%4|gBApk:8eF<T_MBcd$&:sX“O>Zxd-,1g0j Fh>$;]@zFO8G'l,{K=1:NdRLkrhlv 1QKxo1:~fN9^}GSu*+ܙEXia$ccCrT.Sd\g$,o30X,IH0 nռgU$w̪vD9lUcήnOa$g {֚QK9$OGI%0Ўb]|䃣 3;aA}Y7N>!)k;|Q+PUdacQސV*T##CЖwK;T \gU:Wn6AS. ĩퟯFRMә6yUOǼGi٢}[6 yէx gV~{&ҝdwnqԅ`9x6v fmO_8~9͚2௱xf <.hbT+܅|񁫗.dh oE;GSER닼x2y񩍼Vg*`WQ0A,嫗urVL69U"-'\0w`"Z͔}ڽB?lPVDi+c$#5[7mNyd9憢t4ʭPBԫiI$,%#*7p.bi~iҙ3w>;vj ҆dR kׂ@UjZIbR1TN>4>tg0C #HC-{'Ƞp6, '`{q՝RM@!jP?".`2BtYn(UC9!ftsς*7è/;@ dcҹi*&dng;3~ʴ嬬'>{ӦoOq1!ef7` a7odiƓ!u`@M]s29 z0V'w R%٤)P1qvk gjKS>8lcֵDlWɞ'\6TTȥe:zWw+K-1ូo3P܀_gu3g.R49cXV5b ^'_*0Ͼ?_HpA0|m^p&x@;Ư.+ anhb cM.Sx ~aݠj "B yF;4uڞD2e FP;KU3 g} } Ч gVoW6-'.π wBvI@l_;{.5`?+c'ϚT3rgNLd[L婓-P c(4_:r >x7`YW !m})NZGX])_j0q0ƴ'@xYZq,^G6RuVDDgKk*yVc9d)$^eW+C1g;S=_֌ Z%qMyHTidʆoа?nLA@.+P.bzOl3UYQa&)st? ٗ9W-VG9 EFqtHySN[ J3zM*/|t6~2g 1y[3C}SP9p58kxɿ+)?1iY"7Ǭ]5e9cכ|j[v8x,|#\&SQ\HM,nesɻY>! O<tu+9.,u[ʊֺ Pͱ!h/S\nķMj0Ƨn@@  nMܰ I)Ǒ)ƎB4.[uP/e.jؤwEag̠HWc3Ohmjnsd.{dh f'>hA9XlM@ TbdU.zsm,(Eq* ]pru =0wYwٰezOڎ2U} -s_UbD# Ʃ)u\ܪ-~-6^gY][%MR2gRz&<\ G }|֧~6~h|+tJe)*.mJRF_:$j'ko]rcH0"/0Rm. $ \_6$ . ~7]H_dt%oeh` ƕ;.*o`~uߠa0-?`7ƣO?QggFKc5Fe3??M+ P̳"%4oO{>A|6 UV]GCTGi*u٧]x!Gq脫/C@|:#'2ߛP^40Ӏ.=Yt} 7ș2LŇ0M$C^jzAK:NT&ح{OҲ@4ee@5%^!\͖af7CDŽI|Cy:. y %F3NTk9VB#T~N?FChw1_ P~}FB6?5>uA8( vmE9bSPWK8* u?;oQ[.a%-'nem RܿISoԆ꬐@R̡~R%!ͩfL˪sI,s)g3(N:M-WO==-9e, ;q,c١[e 4J Q +ivPH"yl Bq0@%mvb &ɏʼnVrLk/6Orz.">]R|nRQ8 ! IP3@SqIAf3aS,w0~(1VaÀ(o y$'S~ 9%z.ZCgC+w*cj IzQT(F/VmqMmȔ[9p֓t%mpR:_> 3&tuԒbA䮩̴=B~ \? )d('mep?f7pe|u뮭8:B C|;P{&m5<Ur/2@ܗf혋JW̠h>> yڮ0Ȍ,ժ" [{LK2I4S<4ۙR$^-⑎JDNa3'ıd6@kejFh[(Ĺm3i妗`Nt{$%Hli7yQM _?}4>Mͦ&spм[ 7Z3Tl.De.Mp-w?鍛 y- tjsx,jx-c?b,Ҕ{4etҞ+y3eV* dǿѰ;}hout8sR:l 'H8\x(]gðL`Fo\]Ge<,6-UFlGR7v]i9JwSB PݺLm]).f WRblGqphߙnvŘ] .ື{<_guƝxk}0+0!̎mjLyYn2R] +$s=r\%y0Ec8uf9qg^==tZWzսUqЊHK)&nD#iH ݬyױ0î8( 5f?iЩ 4CF#f*HX}kv =ҌRLؓ)MH VωdIj3;HvӣSeYcTv":X33RB8X(::f>ΎynX"uvOsOE>Sq[N(wV_ZUMN*F*L1(4Ծ'J;D[:hđix4 "׊^u ꠹v7=(4P9>,#:w[R*O <~s/$V|VEى0'8̆u%!E4ڈ mC_JG2ؘb"G -Pt{/_ڏ.NM7Cj+9?;%3n|:H(aQT?AmQ1x-rfפ1enMP&;+$:O*KT_lI!&+aNߔƆv_'|< :7/=8 +>>=Cw%ρ)V_8>;N_QhWv swڅ+n:Rm 4y˱ wPj8~/:]OwG&;{JM&Fc!`u*UY#ռHS 57Z:${-jMhlOiwwkid-V `LMil|v>N&wj~ߟO^G**`Tz_viE[VώؙcҨ Wj.?_*S%4٨rW| IqY&}?Y5?RwL=TwFUhwnfn>A aL*Q<>-w(XC$Y }T*Le 5ls&"vN60{]x$qnB7I1`%+Hc&+}^ǞBe{t8юzd/dV'NOIN=i~Ljإ#y㑾ψ\_3W To#q4~k}TKw XX+=n;zh-)dOJíEO#]zݽ^2vo47Hih[qR"MIsjiX=O=8яGǏ/ajNلTݠidc9=wcP8T)`f=2&̴ y0:({ؖ-ŷśv`^HGkJaEٶPhS\ /`E@zHCu~=Mv{x]1~g~1ڢ T"$GCoBWoz]3o3s:Aܕ~xI]X#ݖ}ٞ3#qw9R[r)*ehk(>tD>C[4Dv&q0L=[tb.LRQso*L>l 5KX $ p9ȃ;sR4Ӟ.aoDj%!%է㥯XK)^yCOI:ggg/>O(]}敗@!P†yd>[mN,Dv.RjڜЎwtq襐,r -\U\ /LJ#h( jrL+q|ry⩀pt:{,0:̚f3ȩ.Cήjc.)ӉxXAM0;AKK/X"Z G&78mkͶ&6H2` ?-+bjQc]*z/fuC6pm= @)]}t6=MǏ&dJ*RUh@_mN7>CNc jmnb*Y? GȨ-<=5,pQhY _P7%<զb)^-cOXfzZk" ̸!+2,"}o@8. g?6G˥L 6ܵM"@xϽT^p%+8jȨͲijl=^\n.9}D4g'nuigOm|ڹ%.R ;R`DCg~S;}wܱXo'IR4ENاl[#[6;zL2 oM2}4t-{\CW;TP#R(7e٣ D'n2gGK*KL,FtjUݸ@ pulfTjojqDMR6ta9ࡪ-c9ܛӾQHt՟U_JpOocaml-doc-4.11/ocaml-4.11-refman.pdf0000644000175000017500001073053314003251343015657 0ustar mehdimehdi%PDF-1.5 % 2 0 obj << /Type /ObjStm /N 100 /First 803 /Length 1186 /Filter /FlateDecode >> stream xڍVn6}߯!HXrm 4HP3W] sF۵Z gΙIPBdF!K!-ŕP2|Yذ )Jb Iv4&x`)MS,)՚xg*R v2R)-HӕeZ Y2IJ:!g:%Vdr rRAFPfҕef'9C94H8ˍ5PJ`3&!n-@IK%J;|@9Y#;w#%LDLbay.T6)S&#B0 A ^^өZ /Y[~aA#da;NƂD"cg)K F3P% D9d+xvS ^eC#W$,d9*Y $ñhfRI0aE䒂A0)99H&GV![X ZD,N*³k,W6x\ۻL,/>f('Onp4:5N'/ft}&oi65Cg7מ ?L7cd= OCn.ÚS (8,niۆs \ Um:wWN+O|}8yvwZ@]Eq/?,6DMMR&F~.ch_7p]Y],ͱ~[=Xo/g q+ߔ tí)l]ᣐ|ʇPܝ_Pv(4]^ ~CŤk8:m0VNA58|և">wy4! u#xیs>> (kK(}L4 N}5'TP>%&cd%GU(_z oz?&⸹~+wh75/h| ~j7;R-S4>Yx|3 BkEJmH[ϛ,dߏqޮ{} .Ǐe_񯻅ǐB endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 856 /Length 1266 /Filter /FlateDecode >> stream xڕVnFWQ>8J-9GTҘ#@-LMC\c9xo|xcι?pd¼)w>"߿~7:xҮtn\5 NG6z1˔bӉ\j0'BW!b;)akRa*h=Rv,y?S*l}( g*뫮:AuqqAW^}K ^(Lԕ Js"`!| dfRWXY> stream xڕVMo6ﯘcHNPh Iop%z-D_NVZcv (ΛFUYNR.82I"X5 %WOHkNR{ |;g )+bXSH+9ii7J){ʒa<| c-VI֚6d{rM5'B9q9_+PgD,,@)3fɻ +P~| ++ditp@@5rW:˘f J΀@B B4@6([LFdl*ѐJXp eƄUQbA.Vy`#bƒ 7H FC4 ޱ0 9YZ 6aH9h\ SLPOJ/6\R-s.i((ZUCA((YhגPPj fw} pPPFFN22K2PPZ;@v tHULl^tg˷  !^כ_n" vHabC__tEhj~}Z\,np[ɳr9Ƙ<= PV펺koK*ak8 É%TߋTtM_ՁWR~J"&ӞnV8$}M\Iz3Oe6X짰HЕnVҧ=Vu5{5̥nS<ﱚO/et mI}F!L(je?~;fwE!L$N{sbe)QUa9㤣9nMY?s s ܁]o"ztךǰɃ~hcc qꚳ-'2oHݯT:QeϨnzIvùvzz:-돾﫱uǵQQEv:I{L5Huؒǡ>^:]W9jh5in:Oj O",%=1:8U].uglt Nxكyg yW> stream xڕV]s:}ϯGxhjeff |\f``(r2R~=r*ힳJ$%r &!?J< BXb RQ*@Ӱd I ϔdTQ=j¾L(+ Eޞ@ f;ۏ! [װ8 s״0b3GӹjߞC.%{l_q& @`j0ߴn0"}?a~켫8.vaxDNt?/ 10ib>>3󯝧^66D8x۳d.$E2~jT9 8" :\ ˡj,\r|՛TDʣzJ ir{sNE5>/_/령QK鼽r>3|;{ny[b+Tg 慄DcO)\6Z"[GQ?~s KD!Un{n{/'iuħe>v@(/"R6 endstream endobj 806 0 obj << /Type /ObjStm /N 100 /First 873 /Length 1640 /Filter /FlateDecode >> stream xڝWr8+6qU xRc'Uv챓K.ɜPʼn=9H^^wȢ""CJQ&"2)EBaThD01ڌ$/d31)-'LHoCZjʀ3cO,Oi̫bS% ZP[KJ#1*d:@2+2k2) 8qF"P BDī z ax!!Հ(d<+pŚ@0/ɀ Ȁle@]0Y,Dar6ffpHY2D@4[,pb/0dZHqGddI d.$:GbɉI`8L*ƁGI~ 1M& h #0I4`'|)&Iu2d. 蓬ҀUAg0"x_E`Jp\A%%aNJ[NIրA$DAOik-`P YC8Tq<1`P10T =0bTAH 6S"=`ESFɫW^^гm2yɳ ?JGK[vCtn{NlX[>[mI>q(8[ѝ-;7bj@޲J34ٴaERv-ocۙ+? ز ݲhZZ*>oE{K-SU-/AD[^?XS!BZ;Cm{(B('5-@.NbZKG~pG8o׷+~C7gЭm4iÆiqZ+7,0A<3fnlm߂Ut+~0#N}Ѯj׶ #pڱ/uWp3n Fr_52hZ60CE)7?0K\5Dt$Px2Lwvaҫ܇b%e+n$;J)wp㐙Ίi Cb$~ F 'a9ҽk2 spbvLQP\,fE,|,BTBlC>GĈ05΋͡M ھWvq4>/zs.l7`0;usk9D=_ܶUwyc* _ jmO(8R!߹jQ}=cO9pU^?,\LwIF&>k,unlH 3+%EYbY…5a&\zq<`vEZUGu󴨛vZ`WC W㺹pw ]]8|4fٵkp/_}@aR WTOp3}tFoG;(l^tI7k> -h[,"/kڻw sÌi{ >w;@ήz< i#@.PYC+'+&ͦ+w#0>CSU~(p= v@9,0?ʁڿ[7;^'mj\r,T:O%ݼ `{-+ K{q4u7 endstream endobj 1118 0 obj << /Length 457 /Filter /FlateDecode >> stream xuSˎ0+Ñc_;fi!$j=A*__#+9:E͸y}A904>!HHxD_x6M)zJ>:WDEʄ3ѾN Xj\ \Z!IZeniZaͥA.=֗c z^u[ubD1N?qqK\ xoԲ! clMrLd~nIZO(C> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ0Ҍ 2j@]CS1J endstream endobj 1166 0 obj << /Length 1176 /Filter /FlateDecode >> stream xZ]s8}ϯQ<g qMu$|9WyK/]Dzv[{ K7[x (OBʨ7{_eUFK=CAO7ޙa 9&CbƸJ? KU#Md}TRˬ 1_Bqhנ̬׋aVjwG@.F,|F·|0qLn' "^:K)`13h.Ij[B%w?&H۵PD=_'zgN䭯7 Bݒ I>7CD=sG߉>'ORK⼃] f`2%JM&1'΁O-W%#i_Hl0c_'G"k*FoǸ9w?cgô~=a}azE&81=q޾ʷE+'%/~ ?B&D4Jz їZ*=n^ %`.)p(:)y͐q߾]  endstream endobj 1211 0 obj << /Length 1420 /Filter /FlateDecode >> stream xZr6+b]v&xEL!6Z_)ɤbreR{νe'O^2B0PkӈC@Be?@hoO"H0T/x`Ӽ,Lq/0&)謩oy!Iv"ѳބ{T&'@}>ꬭjsh,Wu'/_<2=G3kSnJ,'ȳoihp,TFS)/< y *0ԕŠ)I.TV$dJ;eu@ڐbp3TeTϧ!apOb[܆gIMj$m$d#Yx` $AV߭dNnb|VOY?v 5J]~ p DW񥛛iTcbDXĠcQV:q+wx6cV]&Pldub߬ʵ3,ϙ(gp$h=?+]-*U̧k[d$hzHOSO-]PdzXIߪukGVʝ&'3۪};l!cJ܇HbonۛjOR!.PYVV\\2te#}2npqϨAsB 6ǹn׾ΫM즚FWS$cE%t۰H$-8;Zn7We.碐Pt'_mS+&UH2pG˖;(!iz&ӷ&S/ڲ'AdN8^B/>r]vJBݓ}AXdx2`GDw׎ukj `b,mٽ878bШDXA5aXci$o.A"F1磹fIzG ح p@L 3vPJd0rPўf/+5wo:끃) 4Ƌk_7"shRZop6ΛWջP<`8> stream xڵYr8}W1S_\LƻJRwfw?Pms#S*J= V _&t72)AK@ HL30i)W* i'VEq!fWY<@Z-34J+ͥ-\|n8 >Fhx)>an^(i?9bhmkڢ^5AAqb< BG 7c#B<`045q&A #tm>K@ɐ IA$ ) $$6tB9$Kca])HRD c0"] 1%m4D?+H07 ȣ[^ICBuJJYLV3e 1G ,SMug2؂iE#4K-'p4́}| eC H0&3c""7>fBt$#p3+elh5nEԓͶ\y}NY׺iݱu^7E[˫E|w&u0<7l礓E}~U5&ł֫_ԑ(=YYrQT-%Ň, 4U-t^" N췃}  C̚-k6߲ؼqFY]»Cu zyCjXQlժOA._?~ӛܲe935mqr<=f}]E5~휺9}>+1['T%or~y=+[b^F::r˲-r<{d{\כe^b 䦉[6:sj3{R My}s,gڛMZD3yI$oED$"ryGY)q>lbKzi7S/7~8Z@lž ج*.nu͗yC6 [.~'t%(a 8qw:_ߔwղ} m9GRdnA26j_,]!D4$3߮~<at3-]1+_:u,;;Al]2wa]8})cm]c'gl/iԛ792;~̯SStX/-h8 /'}qD5n@t]./cG!)82Z)ݡp8-n פ)qܽn;GeXS6=/-'4"kD~b~[OOjA|c'$$$$$$$N:!넬N:!넬N&!lI&!lI&!lMȶC~`l3k{DlآLMwDq4*}f`cTEd ,]C=\Ó RW4 CF\33fxZ0T5p2p`\|3hi8QC qCps bՙGuh3=>louԇ6Z0ÌC,wB6 Z "s*\!VQE'SaO<8:վx&HvHps` ]X`F,:ɡp>pDW/p1W#}JȲ|^&puEW"k? C~*Ə'>O)z C)"*":NH*!4٬KUݧa(hN 'y"MU+O.՟\l>Re˥ʖK-*[.U|B 'd}B 'd}B 9$䐐CB 9$䐐CB 9$C'A$A&A%A'$&YC7}9- CYYܧD endstream endobj 1254 0 obj << /Length 1478 /Filter /FlateDecode >> stream xZMsFWpD&TM9a76af$!pllbɺdn{=Ȼwqr:>pNQ(㔅q/FI8z|:k w!=?ˋ/`, q0ܖ/d)UZ(iq-'*3ӴNI(\} (b [# z bBhbFN W2שRifaw]!C`N,kOu7]HXPZ*MHOaad.# v&4!OUn2o-Oό>OM}o5eՕmQO{M8AUV\kzF(y?K-b8ֱKYMmEfv"gD!Q\5-gҦy R͚ _wB>foz&~^lrJ./x<&KCՒ2l67ʡߝ  ,A}w.|g<ԥqtSM_d{T^׬լי:~9n cn9]1//#W5AwTnC5{u sa/j,~: V#KK#m6#1}'ZeVmqy'eNVsrVϽu fxo6,?JBx2ɋ|s+֏٢t]-3v`z#_ endstream endobj 1298 0 obj << /Length 1432 /Filter /FlateDecode >> stream xZr6+f*ădi&G]%],sP Ň"ђ3ER:ZXtavv E@µf7-qQfwNyVo'OxdM r|&pL!/rĖ\_P;~PeKs1%Gz͌y~4 Z}=EisG-0ڬq'Sal`n>T0?e_>H y0Ii330Cɔ!T_3O>:ﳵ6؇IP2ԷD[Q}p9W?IXi쮃3?6.u uԃO10\ƱC^ĵu Q t U\lVE6{WTT^eߍiiߎRY-e2 5|LZ%sOnvU6D1\C3>Wɝld5 RgS22lዼ+ٟ& I=p Ab*ys57[z 4ؤVuV1Z*RYI+t}=pPs*OzR.GNc]{<7.UPr(rA} A׈ղHcsv4Ad6/656V _MS7¤01~ "uZ, ?F9%cЀBX&mڏzmyg~OGPv`,7 em5'kR]/.N7 u |Th4'SN. ?!W.+jn9T&7E5L(27B,w/ZG+vGiD2&Og<ב2I 00Jc&iL=[N=wx8xEp(JWˎl#q:Ā2J*)etdK?_%e,~O7w̍x;OFAעxS Jg /u[sng^㍆n[^KiNB:iP4B{ֶ64WCPwjk\zj m,ݫԖڮ*A]Cb#.N%Hrf[R72h܅!,n̓ޔ.LOw(nv lI g8lʰ#> stream xڵ[n]+l7| gHF$-`$^5p5H,>QQhy}p!sM!kY R %u6J2>u|F 46_j# rnF KMBv} k>ς$lylUHg)`J )wZ9HSc o>iNKP/-@jm|ۂցF^eI a|C)$UBq|R塴:RVzL,.Mq>ࢴkpbc0Ul>DBM V lyİLE:P顥-Y͡IuZW54+ p(TkVj-+\(D S](z|{@@57i:R=a1철TGSkLTGY9BF1!G1l׬..s)\7Qc߆¿}8J/=r=аE[H1 G݇9\1 x[ ?~ehXC,ŊpF,Qbޏر#ֳuYbV!+`!Ƅlޱ\_+#tIȔ`fњ_ ;bR4łBIǑ?:!۽txd0% oIX s_6 ƠSAa.t?7cAcW2*7!> Gw*1-I` yX_!X!# #˾YOXL,QD Q$_pNHͬU0&^tъTі8t?P P#~>s t"ɶմO(:Gɘ\hZ8Gr% ^ UN8~ [J̜#t Scߏ@Ӑ)I9.bi? 3.,m)f͔Q-xY.{FDu2p f]؟c a׆ճH/4գ 6-K; e 0jglc Sat(ѹRi^Hc*$ ?z RcPTB@(9ь@wN+*<}5`/Oo߯NGꞅ>~{w=>gon =K;XFIybyedCBڙc(lK ;ZooT}>cO>-\:-iNuZr\:-iMmZnr۴ܦ6-iM}ZrNU|ڭ@1p*0_ЅyO>Aa1 ?E#DqXEE)jQ8Ž ))8O 3Q>EE|>DQ@2SDq(p4em]>?qyp*}9 Vza&+ 'SaMظ}eڵ_Oon+V,j(ϓwC,Q*!n/9CN8džITK z,σN` dE񺋃N(#,jRPXNE { Rw endstream endobj 1346 0 obj << /Length 1651 /Filter /FlateDecode >> stream x[KSH+|6͌lm-Bj=1LE$C_, |, _w` vdL x?x9|˿l h`0"# F{4Џ9Gvoq#cb!eq )/`VVq+Mؕ9 (afK3| d#j: @c ,LǠ#wÏK9\" ,GZGC>7WF )Xv" E(P{oϲ4ߎcQs lәXbYp amLŃ^:Է.n.I ܃oˇUV(#\ #+c*:`ɴPɰٌ-*]9] .oЪx)lg5ĊZ^kvD9k v, `ٌ,Ϛ v/WGw ExUtl*߻>pTpD>+)yBDӪ ŏC] HL2 o:<%~;ql5zswxfiZ͞u*y%.}c U3%Q1["MXS|++ͦ*;L>[K"6?kΒtw*}=)n2BKd2&7B:2"g^`N#cMԱՆQS67ړYr.KTx7C!omhw[qVf74vA8n6Eo~Z`);U'+6q{DhLI=,*ٲŠ]׷?*J>cPkyQ@3e,ץ?=S_"gʤ.jҨ 9~lhA=$ԣ?EH@$a7[`KR= +Vj'thueg$YlԖ`_5^XJ_L;=-W XT`/x0BLvMy)54J\`;\,stp56\QdChJwߋ[n/>2Ίb-17٫k \DpQ.EY8cEI0EԦsvC;zZLD gǷ:ug5ל/CHr6%f1힊c' t!jϢ4ϥެ0KNkHNĦ-P-@g.#݊\[_,jIC{X-wY539V^u]ގ aUM4(uj[SsٴVmJTi\cUCJ~^ 6װk~u2&G3JfC] dlaPddvUۗ+ "QK JQ\;{&E)_Y{E= nQ#x!7@ ]:/q/N(_EJ|T8 UO Y> stream x[[w~_G꜈!$ڧͺO_>@,K HnV-EZŤE6ffhDw/^޼-"hrs;$0lro"N/hOP0dF0fžB7wj:#1 >\Kٻf"p2}d%!e%fpuuwLHݣnH4ᾍ "!b{F/,gY$48 6 62@ jZj]geQ2!INg,tCM);=4 =kΚt&W"߿.\8=zqd;/v,5 #u-Sl0o<9={n4CE$"7m=oltأ@xz8 ԟSRWY3۴\:/5/YqY¸t] .pU=;w3au< ߕr9!w sM>i0Σ`㮄Y`P0^fKu>T@|f=$ 6lZu6[d*BY 1ClY*s{lqDebDTq"7,2lYN~~i\J|2oP$—0H$ǃ) ݀{TнRTZfUt'4T'P bwH}э@C9'uQ;w[>٨wRff3X`QkvƏ;]}H\s9I㸏 7 Cr дSiSy]PBfD$`8CΖG%H^N., 8~zA*ڑ1xgDx f}@V :=s6zjmu7#1Ֆ$Pg~Q0rVV媐+5?J>:ugJ[`: T 0qOh5ЎLhf(&QoKTG\@ib`^qlpU]Zg]^Y,L2ԟbdbtW75EjTزMކ2ν&P#{S}R# *-|M13.VrY/:eE6a6o\1}Qr*"]Z /wDIĨH]uB;qaQg "ĿEQNĞX=tLVd| .4" `<>J\̱E_]Vtɇʮ)M<^gP/6kPS|:ȆdCWw4vBֲ[P&*GCB|RGVyQ3p.k3-g. zfq5t9 %43--bϟqqI ~ħlQẝ{.zݘE}MrO!ju3>,6d?``> stream xڵ[]]}_EWHbZ0I?К0@־t9s:*RIU=YK#5fjC0%:8isˌkɼ(ڈ9ppƣ{<Ƴ3I,I*d$Z7IbN"ST1 l% lj'I6IbZ4qՒΦn0j8FXSh$(3Yתa\ZkyqUUKVO1Gm[#r$<$?j%KIMJIjƷTR-slCZE㾞z7S`%u熪{^`@/@CCAwh0 :Cg# A3f3P[=M| #'?$~%5al,&*%sCx;Xј)^IҌ,}JeVN@g dtbj\ Z_=ĞTr$-!(&5f&>F9XUqX%vtb+"{#8v~0Sͳg7m|zwwxs>on^_.jL:Zn<ў\P#Y|.>]?ǃr1} ;H,6aK㉴]3xU̳0ϓQJ\&cÎ硒y;v率Cj.P EU]w<z))t'(wA28A9C <}5ʌ;Xx˃vf~BW#bKjJ8iX G|y< 4a#rfXtv<`?1fsQʅg+ ךbfˌOȀW~qO"H7qy^0*u(c `` qB#h?ˇ_ނl|"]1|ۛ{|(kkwo>!4D}R _yӼq\oU}#L&? d t l >֠XaP,亐B .亐B .dYȲe!B, Y,dYȲu!Bօ Y.d]Ⱥu!BlWׇy)h }oVpB6(b/b[ۈNpԈC4pj6t:"@sݪ㽺V1δ)LC;"ǻۭ6o*pPfۧdnL`o3AOov=p+ D#8g>h` 0yi^wD?0f]#"p -Ép#9 !Ao采 1+=O2n;"ǻ# Gl meGxwn`+B{ӫ%r;9j4|LUw;;SpG533[H4-*0#ҨҜPW40qV9AXAm$ kMe 9I{;> stream x[]s6}R3C$A-mLwLNN`kԂ+ߋJ" kŔD 8͂ٻn^ > (bqH\oVOqϫ / E}jG)-pnat/[5Wz6JߚPb >rUmLpڶ~|<>G^>0c;<$O<.ԍȻ%LV:߃8_|gƞ3 v!&1> 4 j0t4uM!'mjqⱢ`$"_/O~bg~댕~Hp{0)@^nKmSf2!g4Bd!(tP8P;F@)J004nHԧ[ؘ$*D!==r2=mW*<d(rM>bldkgVjq`,/^c](uV\K'(seÓBTExșK>g9{-S&X{js¿ԏ*gPڻFjl^۔"0jIx /c$@~M16eE|QPZ41<&юl,qX{SUh}_1< Et0f+6ۼe4n!zrS!H[8JC:EnvGX?LH0uݪ&;Z.:W ue #:"/|TEVVwvf]^LXy}}cVRߵPe'+`XP8K+CW4v}p2U#Z/jݙyr&< V^0Uun"}ghm*S`ﱌܰ,rprrJi"pʭ>f%ȵLE )śRlAW&5 I&Oi-v=^j? U,L<^.q@0QWmK4B)'"/%D\@P}bcFNcig~:!uMRGqӿiO6e3P<E1B*ޙu[RjY#%4Q"mMND6X ^[l۩3 vҽ\?!!O 4նeZk@,ύ< /5YDkg:Cm6cV2;UۭeіZYIp-AXkn x٪mhÃ9 qFQu*y8Q?M`Yzm̚/sSw:Ϝs}CF$%6vw2te NTb~؇$9~|䗤@z'@~'vg"9NCP4UY[Vecn Yݮʊ#eN%n ?\W|>-UrKHMA~>B=,"q>٦܇C]}8eZG(y|{}ss} endstream endobj 1445 0 obj << /Length 244 /Filter /FlateDecode >> stream xu=O0!o *R1JZ"PSJ4Gndmz.Bq%#8Dc!4| O^V8ny*YqmJ[MbR+1'F|tX6bp.W@$Z5l2chMw34y1SFIдui\DGZ ev5>6Vx>ߘLs) endstream endobj 1456 0 obj << /Length 1581 /Filter /FlateDecode >> stream xWMFTeUKc7 #ivnʻN\泇qBplu1{Ν@zqjā%*I*ڨIC[LY:{/TF8($L0twY5 bJd$n,$nڭŽt*U(S^2 7lg6wMvd*e.[&WU},kt:=L|:ʼn1`JXg2Ӳp|Ǡv޽p>XǖGrZ;d0,uŸ#XgA${27z[p8h⻛.ۨҭ Dj ~KZVgHwEVFU9 F g!¶'8s)Op]1,3mn&7Wރ |'(F6C&Gو"d!>Mnɒ^#^0^93#_At6 ӷUki:oNVniZUklaQiv،ڞs {%SQ&cqb&«#C/ ^ @)'V/+peF *dH޺ZWBXc?Ȍ>kQt24H8vKz_(4. endstream endobj 1464 0 obj << /Length 337 /Filter /FlateDecode >> stream x]PN0+|qýHp0g~2RBJi YM]$l=qE*D8_I!!7vH{ 8s'qΗ˯O> stream xU@{bˣ`J5b:cA /xjfF$26de() -*CokBN3J0+2 %!N|mǤ]z.ɿue3 endstream endobj 1475 0 obj << /Length 19 /Filter /FlateDecode >> stream x3PHW0Pp2Ac( endstream endobj 1483 0 obj << /Length 1961 /Filter /FlateDecode >> stream xڵXK6ϯ0yH|1 da7:![ dɡnOTny^YU>9]W4<}'xnUUrbu]|F*$$+"Ct+3I~{CҼZe)*J+DUEiۃPZ$Gʤ5q횗ɨb":C,m^Xszz%c=ut-݅|ԇ:)T/Zݓ2-Q% 6V;;yOh{S,~/KBY6OmMT $_=2/*7;ok0! l꫙dBPC"Sac9-,( cfI [G͜lF~zュ\bx'|txöJۚ`Ibm(&2V9<GIu(}@q> -c Bj{o<0ja;2V5+лG0hbl|ʽBJT_]OaHWBmp.਋H+g3Б\Ő`x4 yP)@~GXj߼di9Ç%,TzpnҟuɊJ|D>e08܄hgE$gE$f9p+6= L]q ^<c j̿B(Yci5 Ͷf aUl f;WнũOx=`@ %vn@^,UyfcÇLYN!l<6jd1.l#[]mBMD[r Vy,yo,OJBU9ϣ$'nH{zv [zW48+dH3&z q$rg@xc>K;Ϝ `,LP.M a5>`J[Wns <{:^,ׄonns# &T6 CΫeQV)e*!sDz w);\wo]StK_zł~<38KCiG>0GA4g> stream xڽZ]o\}ׯcR|,NZSEY$Fɐ"=˲ `k{y̙!3R\TFTy*Rf wjx$7QLlAѯ>d Df(n%r\YTN$mɒrhQ`-c$ ,6oYR%pзk~̒2QdRyKTw1UM?JV 5+A1Um}4S$QM~LZ ] hX4PCɥBᎅ9E-@HghYr李KfšdX|1P& PgU12GQI 1kc4&nQ0ޯMҗA % eo%*hu)7)wx|ãƄ&ySa ˇ7T摠Z* GQm}y}~a(7 ;@B>ߒyؔ9K\EO<9پ.lO/O?wݿO//.]JpW9^ήëZ"C/}ᠳA$ = OezEؾ]7,R<| Cktؑ->ER#I}X5&vاHr$q,% 8% HJ>zkp-S$y=@bs]4BhfBEbmnM G $Zy D!XJx׈(1E됔SrJQSJ$qD1e#ysk7gs He8KPhĖy㖣:es/#x߾}=:=8"9I?ccV7yo :;پh+g1]˳՞(+%ކ]WsX)MF>N_oy4h4x4d4t4l4h󐜇<$!9yHCr󐜇diH!diH!diH!dyHK kF^" ᠀]<a1P$,AeJ"Lk6 TEeތF4)œ$` tEDKp@%Y%L^NÃ'y|H PIJs$Y=ՄOH؄NCj,L$VZԛ୚c}t 4|rY)WNw44;Vl3ey&=fiX^?Ywa䩉bm43t*Xr,Ms]_ynCb0 {EgzNJ,`Pπ@T@W: omV@`^pԁA9zɚ rY)q}eD߄5a~(Hf@^?~Cd^} [ؽb^U?l=`]Þe+'Zz|*xsh -_/ mû8_l4c6N(֦QbM OpH>lVP4{ ! 0 mpȪJuXO9#aZs0m~tװNp~_?0G?af0Pl\[U8B^@4Q endstream endobj 1507 0 obj << /Length 1521 /Filter /FlateDecode >> stream xY[sF~Є-{%Z^:mF5ь"I&0޳ے"ɶ:S6g|g%c睃gi"gr8D gt^O_^N=9F M|1qB(pP,'^cg {/X:!} {QN4Ņ VAжb)0D?L=AKD{vgdZ^F\b3ͣE@E $$گy(G#lgusmY\"m>뱪HQHYkl-Mglk=!rCgP+7FOIeWbm0=\& G \TYM27|'l<=T%6tzV\oGשʁ Sn+tDr[y\& jPcS'e(i0߾EhGTʼWo^ Ej3 e! 3T[*LPɵnw*ҴFUṼkfPa|1䳦sL|lU[_A{sfbf +l3oUy.OpFxw<4;.6ySVcϑn^!fWI9q1ޯJ.ǜ1`1ld!i&c3Jd^BF~eC=hba"!A pr?.i%*,lϳSpq|WĠ`FL/{l>}wCX4NbWڴ?[ 2j̩jMW{iSa=yg d~e:''G#^vxNb6#E endstream endobj 1561 0 obj << /Length 2694 /Filter /FlateDecode >> stream xZo8_a>\Qt[.ppykt,,47}9t^Q|qv.~}WB"s,hc^/?o;R)HqL,ZjXՍ+Aiۃ7(Ҍu*IqЫX,8RR"9wc]ʮa k*]sXuƶP Vam;K۾ƞ(0Mc.,*Vmׂ<8l3ʶҭlcJ mMUY,e"r:f7uCa!8>poP| ZjƂ\!ɠB' Ga*$H Kv\9>)͍"sa׶3Pereb * .h=Y $uE<~2u;a1]QW$VmQsiP}c^GH\IoXe]-[7:li/$HHi8WdJQs{ sUUffRmioI-4Ǽ uo>0 ? ,oktYJE"JҹV@%dvj>@ #TRD,_^kGP,\k{riLrK'"1r(~GC,"JZ%{KNhwL$?x_fq::T8WO5Q̧s%S!\鳸Li?1OeWɘVubjNjE.$J.y+bڦdhKE;4u̟ڞS&\@vCS@q"_~oxpQ%yzΜ'E oNlɣ39RQbqP8S,!hH}f%U qgB<̀D_ NYr1Q"!qX46Քbۿ~6;ntg|Rho]MbSWS &)&Xe*vVj-wIo)VH!%DoŔ:j*s;~VύEcKm]3]ªȹz7ҮcKsA Js)cVS"0łzS7;3{x0:AV lA8ȘWbfFZG"GO 8pq ax-(*l9g,ln,N靘v8C[pEsl~tBO-ZnZ(l6ñX7ԢFqKBr4KukMcW>nZđ":`wx@[/e=F˙eC&΅NȚb#_n|FK 4hk͚|a$dtJLy<ѬQ8Y%On^n?RJaceƛo=Ƴg?+6^d4(=tLѐ*@0E0}@|H{[$AZSՀǦQA?d8}PgӋ`"9W5-gx4u$T2M7[TݩntE󾂆O\*!c& 6 H)ksZ\ >2GؑΈv ?Z1fo8vU!d/6SPxCGmw.`Mn#Q$4k¡2`Ԑ)9gNc75K!#@6^60冯lVm0>Fm L.2R]L28}F xŒ5= kD ,YYj+*Iglq7'h<< I=o@'N)s@`1 /vCw64W\ejf``Υ endstream endobj 1504 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1250 /Filter /FlateDecode >> stream xڥWn\EWt=[;(dXYXa"َS=6`Ϙ[ {:j1J+28~KZ5/,^X=Qx,a^Z+corAń(\v%=ۿ?~t?ï_w\5p>#pr@aO 8 .>Fs5r|ט*ID}&4+j>D 'paȪ W :t4:A@=@:fOYVJ*Ib$6.J_TrJeb%TF>%uUg-!*RiNJRc8''Ss؄FV:gjVbOZAl&mj%`db̓ > stream xYKoϯh 񥇝CA\|1t7V:43SdQ%AФRXUJ7M?_2-nM$rs|Jhvqsw<%,qQb˩HW3}7USH^+ۡTɝϟS[g־02e`΋>ʅ><=HVɼlG9{` <)%{m<٩vDr{eyS)zU=jIH [puiFJZ޿;nGSU]yF^q?9q흗)f7sZ^{u_Q07HT(Bnc$Xj+0"Ä@5HP&lzrQ&/ ڤ`'zᙘ|a6 RK[T#/5*“$ˑlfue}i2'gϲ-bl0N!BsHkd`";9)'^nyۇŁ1w!^w՗(XPR`\x D**.rV>@( [{ۇ93Ե[uT3;kHVGU%ZP˘( 6rqQ"dZGA12f _b "\`Z _(l)=O  /殟`d ႙"L[=+3C0J"?!_7QO2Ѓlt_ ͟d!DħduV1"d#S&8ed&vOk{r1o`G,gסzy~kK˽HBW>M4O&~"}&\nީzzBˉeأk (!Ē]{wC{mƦ𗹖5z@x>!泱8a~.t 8♐I.癒0ȇ\1?!!HF|wo&ZH " ߂+ B9'A [8߃pœ?zrEyMd [l*.Lp\ uyǜ|a=>8s epxU6sS9HjL)K#G|/`),m;I0qŶUhrVD-4E&O˻ |}/K/WTvK`TǪVtS:5&@L0pE:ןAZWVGeJ0gG^u{Sum|5n<|BW'Gue؋B֟3W _]i HBٲY"_}Tz\~$Z*/)t uo΋RL[_h p̊ty~h,?X?(>W]+qsf\I r,cXqPmG{?R5F-~`cRR_&Aλͦ!`>O19vA-̜:ZWc~\-Zڻ~[-i~svzQ7~⶜vp@sٴa߄(YgsK-aSM];LjE`tz($)\>~hv* =ǁ1Q?_Kr&}Z>l227KtA\&AG};dkyTJO@h<y"g/l(OO #G 4<\]/yȢ endstream endobj 1635 0 obj << /Length 1529 /Filter /FlateDecode >> stream xXKF ЋFKM^ zhBmɐA{9Ñ,Rb'EErȏCo7/7O^rѐaJʋ F]ιO,_l4.,ʎUz'/Y)dL0D46D7S4<*3AK2u1 (eEԬUn1_U*fM=G H,_պ 2GE 03(3PyNn&#KXMp( 8~#E7gI , Byg~,",-U[UPu<^@9Yh)c942q3g8m ,8~Քl,p:ܭ8;ayT53D )V4UgHSE G.gp>ZF^J҈EA fT-)z=  @7k8nB١aC$"[݌ڙaKw_֞CFU 2F ,RQ-=j(Y'Zh2}·ʼ(L0'a `EF'L[ _ q&CWbD)*It/DLc\sGm|Ź]S&`jTX]@̅7f?s譽N _.LKU\mTaj.j&nbыR^vv2q6"{g3&k):{Ɏ0 ,>Q ;}ej(tpn ~1B?> +rBMe-"SB5.M;r[KU;hCr7ŌHq_:ZZ%XnCqӴ 4GaqeX6d1?9Z⼺Ac`!@xUZgW(w9 "4@ ѝovke>"cЇpvIqwpKXy]C2h#`SAKLo>\4},njD! <AcN0:L DK?y| 10dq:_;!Fjg7K%mY3<åJF` E N iFbϖ$:_6wiZ#1 OZsQJ- ƫ~e055Q/ XTMY5X ecf*+\ GAʉ{ػ- i+NE'뇯-9)3] ~uQyhPr,_IVtۧܵas c&L5\1ْb | !j{Te`f'{?Q5Rr0Pb;m' TxxlQN?Pl endstream endobj 1682 0 obj << /Length 2252 /Filter /FlateDecode >> stream xڭێ}@nnjHmAЇhlz,T I =IY}qsy-~~ׇwދ|#G9_<J,T(%Vzۻ^H:Z)ǢBhJ< XSֽ~mMZK!h~O߶֏"ҁTO0%Ks1= g-R$k3nGWX$~_vHr֠sr:"[n^@(J}pS`7MuS;_zK]͎L28Yǃ/ȧ )K`Pnc-!i=Uʢ*b&qg'" -+Nس˾ܬ@[{:(Z{S&x8%kCD˭Tq$$jnˢ6LHH--ެ*Z@>_O۠E=yd LinCT̀y$x/=츎U}G݀HdA@i-DnGDr$P?}6h<;P@p+͖U6S|y p#Xm>=QEEv6ű싪C[GTvI)^ŗ+'0ܱ dY>u=G/P=6) T bْm:$O,^x :z.$`{[M.@>0Oh9mxۆ{D86P\ Kg(q,Prdl>,G=Hdk]ɩO'ꗺ® 9Wg«?@)iƔPT>m۴:Uw-YjRv)RҖO"U,X˲*@,J_Լ.gyl]u˄O 7cNsB&`M$JbӰM i'ZX~`؂PDẰz!m$BL) Jf}2 J"L$\GPjXT8Յ Zz*ebtwzZmuH8k&f:הNIFaI*ʏe@\u?tP^6!7eYVHӦHG-/T̂>Pص-)N%l^lY@U5,}Hvxs=i'ː]\I跦+Y%3b1$froHqs,5GYϮyL\>|X3j"j w@!&]u3!YsP y,Θ2p+i#!EkRj̥ :8 SeGFʤ)i6:#mKLdO]LݚTCd&-j 0q?YYQܾχnA6 /8aqbLQOϱwe{oc\;e<3 I#_*">׆9i{j1˔OayF2G.a}n"L{ѣMG`} ^'%Kӥfs*7+;S =n)aM)yP9F6|ԩ?_F'Qr'rI(ܫޕf3!kd\Ymr+_Z0 y5,.L_4r#z[ t,CD#l%/q|$;WPk/fN[|UO3oL3F>l#@ XJPxe5\j|Wor̐ڬzj KkLS w ԟߑ x8zEr=E''U.K0-Jzq5 4ǡe;g F 7x±Gej?&'<~e#􄠹鬣𽋞e2m3vċض~!* L+09ܧ^e.f6ISϝyYgu;DL7g%Y]%Bq+eOO(􌝤YH o`Qg:i{w{;vC/⸿)]QZ$4Cc]ٟem+vd tMjûFvH endstream endobj 1597 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1254 /Filter /FlateDecode >> stream xڭXn7 S $ȡ |+95r0EQ ҷPkYK=ئq4$E[2E ,f!oTBjXe C2X0 ^l(#Y/J7 K!уL 2z3<6 "~)~91> {kKL!@<(5ýVrx@l!p?x}  .{_*ޫ@FxB^0.58Q  j)8t-B#l= %c c+;cl($Kc.msisTQe ,[;@5 E;^#tJaXظ/!jCWup:T*[ua38:8|i()cE\VH"m(Hd12POCBB KVAMp :!V[b}[VޗO?R Qq珛7o\\_\B},ceO+ՈC\Փȹ!.fn?{(Wee~}}(;|pn{Oc}IxbX!󛐡1!:q Y&B=kUȵcjF:ZY*͌Gq+ :z PD&*{vt+T P(U%6灂E=bfVL@B r(aׄj\Gp~Jп# n灆^sr}%p B@:2@ib1-Z(_UN&U( endstream endobj 1724 0 obj << /Length 2131 /Filter /FlateDecode >> stream xYo߿=T>Z.W,hՇOM?p(YtIm_L g|8̢ٟpU,f, `,,(o/8X8_dY\o-̒^ި߯SBFĒH&BJ)b _Q> GXV,JDYܵm?_.4ѻ Bf ʍo,i,4DmMmoU>8HDn}iCUiuOm޽spH"aԜQ-X&ܞѭ(ɄWp/iT+]_pRfxomX nG(&`'E3J}KwAfQP5^ 3m74EȮ͜g<0(MkƵҫ\MXZ;]vi-{I3}7gg+fKJeN86\k6vh5 &HAUGzgTqY6dR獑k3|~-DI$esz_4ԮWM9\.L-^\{^<_L#d>iı,B/? gO9W()xGɋx" yۋh*K~) L@ɵ})5-mڪj+@%^M[Pj,K3@Bǻcx֭$4hd Ȳ*vH"`0q)Qa3.UK HGUDToN7^`sp^I\j!NBlr\nl w>f$un2BpǞ09 =)ZO1rQGԄ+5?Vc=n}HMMAeN.N`'M0ʞǒCb˶N HlsZTq9i< TG࣠| Uz16OKyī1b1rZaSmZ>jzlgTtz|P'c'/>ty= NhWPڳQ(H["d CyP/j1TsNBA~~lL?%,oNp9nZ ۖ$zjuWҦ>.R})wCM曣+#8vVlu>>~.Hu"dSЛyL*HsgUm,;D)q+$kow(pRڲhz%VvmhSƖ߲mJ8σn a tY6; Γ?pNYuFA'#,[%&͊O$N;贘p>^Gq7h"\.0hsMw 16`@gg>!M[Mfj\W}I& g:a, ~$^]9qoLFX3r\VO4[0btʈ=EKCNử%k O}RB<_lNhMB1cw8sf`k110`+WH )3v &!PbY\&F }uu.B{ endstream endobj 1762 0 obj << /Length 2451 /Filter /FlateDecode >> stream xZYo~fCI2IնbHOUTSj&/EU*ypgWgo?4<*ePWL/W?qcy0W:տ3~_# a2pѐf/묻~|5o.VEvM%GC2\(C;PO}4inY"S"O9:֎wZBGAHFd*$5+pF8 |Jƙ,n?#0R,#i&N#44r9#& 1 _eYo|lOl_Ȫnm;#nnq7zѐy,IBsrp =Hƣψu9!~{aë*A dߝ"𗈖aa2`! @ku3H`8zyɟCe.n#LmhUV9e(:7[];f^Eu/?~֥r8~֍e2{~8#2+wOB@3% e{bL,jG)F eOϣ$dy(4Hft jDžՄv_FGZj3 "d@Rlx")X{/kU8;$F!(Aҟq\"qO<0/K9ŭ&Vk*7j|Xe֔牚Tfx#%&pjc \ tEg Ѩq wl oVf>fml]L{{n1Ƶ^1miїk!Vdrڷ{FY]54Mm /_ϵ٢èhd0R5h`yhm`/3GTaL*14CEQј `naK Τ΃MqjH|6 Ui4 ^U>s88&'T,=IՐT5=|RsSQM`(c wl%("6nay'=6gfA-&JcRCց&)TƿCS@1qMO?^p[kn q"IiGvjcHWAQ0_{{lyL }| űvyՄdF 6eUyiq!x^a#8Էj1&SV"Ԛr { TJD:>= <0&~0z"aQa`LMc*A]8踭d(! ?Sb $A^՛;(*DM6cQJq ʭ+[5(NA;Shᷰ2#X.mnǴW ="Ɩ -yG9j( nJ'l45*ajo!M<J1hAu4K}j3W`0࿽>:Tkna5|bS:4wƌpOl_;DL ӽff@r4 LHˊx>&)Y,Ou6Rc7 ? V/@芜Zy$У.sꤿKJ̹ǔpvy{ ~a"TX>$0gٟ k /QgE7d1(_v(Oq<[hed(p &$K/c4?ī8&_J%^e~@OQPǽf(܈]﹡Z4lw,&A#>_^ցY&i>di"<;2'_5YÒٿ @ȔA$,g` ~ Tv:?ڔ"UbNI8hFԋ'Y endstream endobj 1798 0 obj << /Length 2484 /Filter /FlateDecode >> stream xڵYoܸB}ѶY=.ArEѫCYimFۦ{Ai%Yk惹Ԑ 7sH׋W?QR2V HHwR}w۬^1uF]ƄMUSsltvCGjL:j7#5!pzm(FIyJJ>Wx{Zu(@lOFlпCQWa&&_֞Q=K؉ ҰPYaLJ? ,vCg %[˥+a$ Kٓۼ*-ǻĊ%܁?6ؿ Ԯl:dU/۷b_0Uk d#~[tQWc 2}iI)V|WM8q_Y(McR{&ok{$%eY s*I&>p`g#=Kv|Y}^:YBf±QҌ8z [ 4!E>Hvpp߯ 0nY+IUa|m]Bn3>$bECZ7nS1uL'7_u޶Ys-e9э>2e+m1FCd|oZP;hpήGq7^7#P~qNtIX{JDGr7Tc؇6)W^۪^Qp[Ȋlg-:>.,[xcd<-d0XyΝJcU> ORES:7@I J"w?BǃzƋ1vcK\ `Epv *J)(U /A9I ?@N RmPCu iAB"{tw*OAPT4v c! G|8D& Ưv)/ {PfbX 1|:` )䢇^Jطp0*6}TB^rOawr=iϰOpOXp?٦"./+҆6رEx4'ǜ !y~[rBG|O[f:`vB ˄8O;[.:Kn #8km|W3fa0"p}$J(BBƋFU“<0%~i^8{)f 晹ɦ9.b\o 5wA0_.0?s6yP 2at^VLuR6X߳J{IEE%^\#lEi·~Wl ue>Q(%$|}l=|_+FqN=~ sO|J.( endstream endobj 1721 0 obj << /Type /ObjStm /N 100 /First 973 /Length 1353 /Filter /FlateDecode >> stream xڭXn7W\ج, x `X>8tPAbZ#XrWDg^׫ȡ6F*)uXX|͍&65VߴĽƒ'i}H?2DI3*NAd%SMdjdԓA2@%M، ҤeLus' 7׎9NH%R\K5WQԩNm]:\K1wkf& wu/ G;B`p7 _jЎ]wɍ1p?8*%fry vӶhʴ &L*8xӶ :mcȫanpհ[ޝ$E Rf5JyPHd% L2n1kExF l`sXn擁CgaہtPRv !Қstp،Q AI##@z;plcJ螸pim(nּmÒwkRe"i۽Ng6ψZզ9:,)Fiyo{n`}l@gF"ցjyDfEdϮu`쉱 !c%3ZnHu`ɷd"VVӰl]b,pu8"D"kys$.lw7(-ސ}7]IQwOhݓDH{Cwh U>&㴼ܾI5{-8cYB͵){^n.??etZAF;7MG# N -dfk2C@ͽHE}D#חq5"@:g\85jh<8%Qis=J#3EF%ĔGr#I#8P%1FJF sT3qȆf׍y)d?t'TX}2OMMsNN|tjNt:[r$~\jg qw@~,WtK?Vɫr8PCRnQ'C@EY7 m"k7c !`;*q͂{1la?73C"@ ";˷NO,G:riS\ ,'\Y^or<=\ù'DYEXP8M ϓ{Kw^e}iZ33f@z-CLݟ endstream endobj 1840 0 obj << /Length 1805 /Filter /FlateDecode >> stream xڽX[oF~ϯp\.nK*K=i1XF0`HM 0>ssfl=㳟ξ:{AF3Y#1Z9 xȸgW?~9v^3Wq舤_]-SqVqes{˓8H/.zhoȗ]C(IK==>rOLh>/5\[/n\woaOS z KiCkgIĴ ɯ?tzAl_B'ifdU|Es;q |#ޒ2p#W)J䥕]eBP87v B(N],q簥fkiRʏ,u1u\m j\p 3֪RSTߠR0 QanldkZ0) V1$o`meX1N^y_) ͝]Z־4zT|X˓ U(6*tp=9?[dO k` SVq%~I'MnvE 4R:e2ؖUxId\ҸA A4qa80ij½^)۴fE\#Bq1WG[ a / fbEP8k]/~`)( 2/*f` jHuB [~~E2ݝ i}dAH|mZ5{M/!{LofcZ x߁!Yj5`gC /u\zǍч}+noK0OZ2\#mC,TA}BVK2^Lrw UBHGv-:n^ׯٱYMLC>GB a 98,HF> pGͽ3xp0:'}~ǭs"IwX[-WlEKXIꪭ: sU~=W3-d*,w/'3שׁn]& <J07ߚMSDꗴm_>ʎIeW57Ȁ!6qEo8!ORO>iiP qZc'W-͵p1Sƹ|$NGz^G/S*OSV@tW.mn k%iojD4. S`|% +ԁO=,éyxukI endstream endobj 1887 0 obj << /Length 1982 /Filter /FlateDecode >> stream xڵYK6ϯPmKmYA|؉ڛMv/s]. XH<n4LI" C| *\ۛo !ŒnWIJ”Rnջǝ>]ogMΐ oZ[AQo߾9T jHN7Sb(W)CƕZmDQMҠ[ox:@&/uE\w{Du͑z =O1!v بIBMu7aW$?y_65u-V> =5NO1kmq Y&b(S-aVdҠۃݥȂ78Y8ucZlMGGlo<`6he؉f25. )xte :t7uu+ T}X?}=L:i;W}(d]Z ~yhT<Cs]S<2Gc\V%|Ч"[ZN(h'*@Wd: 8>eB  QIҟf )JY zEk{* 6 {}W-KRN/Zau%Œhl '+Ph}׋*yVի3 UƲ8q&28l (;wQ gY*b"%g6!>Jϵ87X$cpYKI/YW9\ueY7Xewn0o27fks 3 sGl=/Xin!Z$bެ~켾ҕ\(eΓ-->Tadž5(K!ůtLĒ"wS(*igᴈ+4y}B*Ҏn3xɅ#;ЂM>r&d _?Zr6ScysS﹐OO5)ǧVz[ x!yž p1R\з)Gsg0=b Y8r `'@9yۥ  z8朾#ýMP`D෮ 걳5Tȑ-5A7&͛SK%|G|~,8vHؚڴ#R7t"Z B6ixiX\tu fOC1%-; )ڡ8!q"',i˱Q׃klړu`+p|$x(1?&\8TEP'T+Sq_P"+3YNKgN0 3E4b.'8uj\jHXJEu* |ю9FPʧ^pzp^ꏻvm.˗I38U6BjI MQݐ;|]q]_͸',%"f1_Ny%OJ®dq uXlWчnIVGLTXfi|ڝ>KR@2|m4ǞZ*@-H\wnOnLC~@}'ʚht0,QӉa&V=X>]kglGrZ vG$3 "߿}KǞR#~RأǚR#7=@^m3Eҕnd &䄄&{ endstream endobj 1837 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1245 /Filter /FlateDecode >> stream xڭWMo]E W/7X*;tT]T !U jS{'4Ƀg3>o_ZChllWxZcoфW CYj%iSS-A}^Ҧzɚz%oF[Xt"h.I [ mil+"m1>7,P"LB8 d@d$U^Efr y@ᏮԜM9~Sk&elOyPخiUʍic٘wT!(B;<ȲTJ0p8TQZn0K6˴ױ/-Gd[H#Vrj2w]!yr5!JwH6_mHmʴܶ!"6Xdۆ ccʎ/LO;8[\S_@G hɰ@.y!H;as%vs4 $ʅL) ǖʊq]H+ACBay{tvǟ\j:@v\zųgux8;d2?,,c`:Y,f.QԳ;y\g厢kLjNa>U/'ҪQ0Ͳ{TeU`uTYq=*)uHF]*]ң%ЗTRDkj.*"FMڇl noe;\01!?LO1wOyNS S.'z-</>ܼx^ËW}٫;⇷/ۏm<qxyxûǻɸ}w׷|nd< ~idK܋8>‡ 4z$.%yKg0;Jn[y J!gykU֗U WAY 1{.g3JӽO/z ˑ3Op.8|2̣D%Y8 PFO ʬwpn\ #y*_*B̨x,Q)_b7 endstream endobj 1934 0 obj << /Length 1436 /Filter /FlateDecode >> stream x_o6)a/)Y l@:`,0[N8!i\ÏIH:I1ŢLxwH9ه4tF!3;>u| ̅39.壛g3cc"ߏ݈z-b%R1:I6&i'.QrM:Î6-xC 3f~6 Q eDvkRj2Dw;^8kGBR.յЕ]!>ذsƔ;N;ݔf{U/:fD1#a#[?S7˸GxPZEͬN\t@v({z;>~-iBDIm|vBL tb~s𰚇KPV1 1?`1E؆q7P@T_-\YxU2R*Sxyt;šǰmHH7Z^րBƲNGwU-awt?&YFvyNVcu}1VtU4qεͬ \Uq+temtF;+KUo #l%. U $WmeWdW.y<l<7< 51k6yMefmE g! ΚtzG&6U5:tiG/o0R' jNvNc]c68ʴ]{Nٳ͢ۍ;}ҕ GʨA>=:~-=Hjm:-4a$P"> P&%"z<oV*\WZ1RS汗GIaU|wF:DvD@"MkA(OII> stream xZQ~_>TnΊHtH\4Bkg!dX:ȏ g$^k_-E37&'o7c'" ($$JHbUtq ,IvUPǼږ ?2T: HqMJL(ZOfq&:ִT^uޕS~z*0I~n)%P&GPDz[J3UJOe{+Sljy\orwuzY[ I*}j%KZR4T;g-DkUt>yRbm3[{LgZ`I'zT TalZ]xاBБJdQmbVYLD*9!zdq?6ݲ z =ll*vޝ'`dafR, E$?h8sK#iG: ~sIVBK%ݓ&H6 x~I`kE27ł^+p3cEtwh$],Μ՞$9qh;cCSKς)wH c1͛9mG7*hjO][,w/<|8e[,lb*|>GQf$w, WNy*Ja pY0ɤ9ok}YUǪa6EYccixj8[ 8ko{^ UQ؃!/ȶЗ(_ }:Y~n֬C jpa,ݬ9:#'I\,.U 2_H%hLfƥF2= r 'Eٰ n70wK>jBF)aJ}q :F.[aG#îoyeKqO6Е \acp9S8sL9XkWo*#TtۦkI%EP@BƎ`uNX T=y^ <ءMۖ}wOca"I N8 ř }gg_QL>;?dQYGD{Dx)7AcYy:ϱ.|yU`ٞNsflaknw{'wk.a {{32ف\տ zpp{o[E endstream endobj 1931 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1252 /Filter /FlateDecode >> stream xڝWn\7 W 4)"`d,Y(؅P<:l6׼syD򈔺7)toZFV&Y:q^{cZTf\X}cYxR~g[~(pݩLgbLL|CԠ -ނ gP-ۊ"9\0HY #B#xWJ,`xC=BxXHYp p)`=x!l°4@D r$Tp"=x!^!ocY!Up aUpC|CD{R(փa+6"[!a4WlbWl_05o֌x͡A `> 1 2x?U:`UsQp@,FrpDV _ge\rFy.=;VK0(pޗ .jB0: j+@fBinBvbR\]mo _+H͛7[2PN2ZPe*CH="RUJC. UmQ - H8vR&vR2nfBfD(%l3Y(.ez&>drBe!Jj&a\]uϟ\ǼMd? $$#ch@+}~{61. پܔea?>lĚwѺG|پ=}{xj뷟v釻oE6 tE|JYGN5Y8z54F)8YČxQ13@==#ZT':z=sl:G@UNS! E (lTe4W% 3W P-2@,kjJeǀ [tƑIHmbG@m0: %zIuDqD4 n$ɬ6 1@:f ǖ8_u,UԄx=!2ܴ3@(3p4NAC:I^^^3}\/^0rJhh'w!P*57BN 3nMSqSwCH;(ttC əŷQ0P.G@v` D0:^n endstream endobj 2025 0 obj << /Length 2411 /Filter /FlateDecode >> stream xɎhuqb#Ho0 I85lrB%{^qkh$YbU}xzo{'_~ErsuI&3:lG*پI;62N6;w۝e=[MOR(+*~տmhEEnUmwrk(~*eHpRr6.I}Mo{ƈIĦӃeT/V!R;1GҘ#EM5"Ի.9@Xi&RZ]߆vω2Df ""*&&aywۜ!u Xݸu[ﷷ& ݦ "\THiⷨLi"xXg܁F+8h]wz77.ң pr#%q/1MFH3hMϒXh=QSt~ kA&Y2o{ų;ITTCFUPS%2M= HVBM /CvUy=?6^ڇS?iI_=9G)V)kgmR8 ˟_=Pf$G/[[ "@v|6SiM>{6;}DؚM.D%xvjܛ D TܲѢžF_K]>V S ,Hі$jN-  E,޻7le_XKqhP`V {ACXu`IƮ>Р^i]jnftdSv<ɡ;7 ">x;dȫ qb:<U qW>s d!Gx(C@0 ιB@'eAɟp!hH_U瓊D ĀkM^zSR~z*(*`SSU|_|`L?1Ej܋֤  OjZ"~X{tǦ1XJ8~O@Qˬ~imZߴ)'c5WNbRk&ZF97ZAGLl4IKv< ~V0KčmMbvavv\xe^Onu_/RRRC i g$?9} Ѵ\Z~qn YgtMVClE'cW!$e̍YFяrX՗G u|&0OxM !Dā9\U`x>P LgM=Բ.c! Pr:ڕǻ>h=;w;IV)zP</qԤ!XLˬ5%_ӛϹRʭ& AElKz^5ϛL^dbS;Te)0L`gq.G1#YmgS 83^>57Ff5G?ʿ3;_B]pBԝՕl Ңߣ,{eDOP6OѴs)7U0SM߮v/p,%.X!Ր`Fx@x8KOq"u vlu¢+ z\&#\wq6م!Κ⡟CXMv!l"&&(nƜCr>[J8ۓ{| I1zȟ@P>XEPM#s+-7]192rr4yn&Id'B-ٱi$6Uq2O HXR<.RJGtfKPN aLwfv땱|6/2.?c=RS5wV{4Q&}^wI-²N/:7/p0!f^Jw:StVrA?qO%~ܲ?/pd0K8`:Pߑw!MX4Lj쎖zrYIa Ti6ty8&p$CZ,fVKA/Wlr[n0IxY.5N<ЭV ]-~i m w ~qsAԋ~+HWEGk+DsWB{qTD|ϢRӚwL⃱rO!.NXGS/iܣa1}45C3irl64UE6RIa3mUײmnq1@ӌw:Ժ5LV?pyJ endstream endobj 2057 0 obj << /Length 1596 /Filter /FlateDecode >> stream xYKoFWEJ>dдPA! Fd)}ܥ)Zl-r}|;;3 #z?~soLcc&S)ubfyxgmL&~+ +6"TΰqqCw>eIIKbV7HC|IYy6 *ߩ)!S7yVV}I*kO;Xqe4B)lEZ˪H+9m~]c?7Y{WyNZ6ZwF1 {k f%(Q:&^?z$j[gYEpҐ"A!],zc;Atp@Ȭ) &M&L3== $z')M`^uW_]>ſpp1$6+j#CBrMDR D#(K$] ֮OO#(h)C# }=I\ȁK֫%'i;(8$IR@zHcɑ'+>> B(PӔ(Ĉs&@gPpYNJS.k4$%5ऄښs1Tfmo7tV ɍ9 \ xn̐j/e3J1-.K f)U;8Fzp|%:KW.2=oǝcH"vn2a,iDXQaX"@{eIu"R0' 7CÄ/^"Vy+BY1c(E [ui"QʛIib-5@GaaMUsR勬e42Tb_klt7H3)7L2^M[l tC 53'͗L\Q̵m3\ilKbNv^L{kI6YAx ުLZ[mJA4jG8 b'9]˺'z8ZtGSz ꌓn=6ء-o}f4Z8~xu endstream endobj 2110 0 obj << /Length 1720 /Filter /FlateDecode >> stream xYY6~ϯ09mJ-h"ʴ-+m%y?Cel a| Gr2[͒9}+f4!ERrY$rvX>G[1_tV"eYbLRm*!0 VfrK&/qĶ۪^s/;Ս"]nnTE>uU̲A1D&>FE&ֽId˶MmSw=NS<[w%TO NLxQ{Bs{@>MA[^D9d]7 u,axPc%)W/?1aPgQ j.t{q$$18C ط::Ry8~`\NM g\Pqz4C|WٌmUP~ ]nNj?ҡHLH}w7vM=G2cGc=xg?lZ9PK@ cS?W}^0$WU*.D^\UrӨ@!5~ fӗdp_& k|mXy%Z7I@;?L-<7>Ϣ_?53yu^mD zY(dၥC,>yxdd#~/'dY0YHpWS*(Ը~oGY endstream endobj 2020 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1370 /Filter /FlateDecode >> stream xڭX]o[7 }+(A~ ۀ (>l еP|ݿߡl p(syH(Rz*2SIJTم `%Mkb떸 %^= ~DDUR(4Թʘ KD5შ (PXuJnI \K"ٙmgpp~PsW]@xȊs8LΆP&8cIAnj eМM U4(Tь^ fEtC3mnY6A. 6͍Fs 4>nLuJVa%' $4A2F2@25Or^CTu^3Hy'fw؀ԝCs ,nxAN:8t76}랓ӷupL }ǑkZrD#|5r k&<4/’Y8lyp,8;#f8ݪF8)o%3v#(P16>e?\Q2]#ΰ7{?>:S{~ݱ ` }pt#>P=UD:|aVk/y0lR@4Ңj~Q9dt3hFĻFRbb,;4q|hH=HI=|- ,( n@xi!r# Uˬb#Y[Gu:z61Gei%E?1mh,%֕(ԕi8L L\;~`chw ngo}zn Q3 endstream endobj 2154 0 obj << /Length 2590 /Filter /FlateDecode >> stream xێ۸}"Xy3")RnI}͠}HTcaeɕ\G8l(^ύF?//f&}]gVͬ ?0SmjZ{RF委;eE˓z\}ZC>T1N^p8T!N^ļs3d *CupUV4-`k ;Һʂ?{Wd ~ϯ߹H ?]14"U;u=A4BX6xoHiÓ=]owT /ˢv+??' fG 10x{l=)VȨ#0R8^5Jc?->]ңzs-3zoJ D}6PQgd/EzgEhD#*0~-~҂ihqm1=bs hG>;V<|Tc h!MIcR)p&P9)`x60os-f .o]V<4$?iC/mdʈp6Ҍz D`>iِU"o>9͂irV!}[0nv; 9#Pܔ󅊼.wA!o$9Lqȡ]h߅4C%q"Ïr禕&} 'uU5zWZfCP@eY,:@)ܬu9@EAҢ+J)YYm)F E5B2r_F/yIUR/ZKC5Iɳ*Zr (L64dc1}=q91+tᮺ:^Vrݎ`Vd$d l63 @TFz7Y[={f5>dBcwx8N 3pZ0Ct%t0t^&kvM˙+d$5 N@\blO&eל1cVt+n*s&yUx`GV)FSQv٠q1+}rl0;883=>Y}Ϊ8kI;EK!إLj|} 4Δ9y4_W2o :86^/YBgyK=3LZ! Q+|:O_Q\$p~vaZ%>z8`F ؾI/FA ~#Ҩſtu TP} cQC"|=fNz/F\~ "&fC tmΤRzR%Q+=8 ޤ ׺e&Mv}B?`?2rۤԒ ~QHOv10wUveÍeYU#$ qYɋRChS~.R|ICUVo)s LӪ*]IkJ.o!}}/qܣ.+80Ad!߆پ-7> < M`kte[f+bq&SQwj7B1iA;-x5_D%"zr~r|_w!a],6MmȏXTCoK_SvF.&x6 r[z8p9* ,pEy!Bn!q|E v=Kj7S6kLRAʲG^dM2IF%jCEl[HMAOPjޟB"JciY%X"0݊dk{BUNb ^立?p\쬎= {':}*5Q B<닉ʮ+ht۴E&AkvXum%.lZm*%@Vnп W66zq_{LV´G P%ΏǮN׻#:uL.v&/wuNl#];ʛIev(] | WQNba I'KU0U4N T*aPi D V0 >UM= !6y^w^Wtep DICW+l o?™pP57W.ii75,GO*_w8էK1%K1KI,|\)H#_O Yr)!4v|pg2ͱ[*Fs1=g3g$A!W ϢS+P'Vt<лɪ@úM<~ޢ]8Y} MɸN]sElM>t)a x 3& >@ 8 ^H&!۔),]R%xbl!<=HL<ޓa{N޿ֵU6Z A\eEP"+fWu}1u,1KGKoRxOS Vhiҏbu pJ Yb1U> stream xYIo6W):*QI'.r(Nap$AEeJvOsd.o{|tnt>raǃ@ʜōj5Й<_׌u z&("^$-$>3fiEUP2#FkBa 9mT#ٿoI~„ TBLLIC_idoT<5(&בQkVcO+ŶCص~c V{vsI.춗&f;s.vK)фMUYO !7"¦x *"mXVqliÀrfEpʄAG21zcĐɹ~W:ۊVRBމy CĀ7"] Hs* &$/n`?ƏGgq7=-JueA\LٚEŷSF]ӣLa:F4&ςS?7l{-zTA[3fj.EDG.inL.rz8w 4R I#ȌT^)4rtRIbWΦy]8Sr-j)PÞ&HoY!GV2I"춼3gЬm0D1yN|z}FPeHIXqZE[}3IJ$K x*ՊcV ־`ՖAEa'\N1E& !2rFP%Rmt#" "JegbޛYOȣFH.k,c gb1EY^*]٨!`G?mbT^}XjnQB[]X; ,\s3z"ئ('wA[m[Bq1~8H$ e n̂u}x[vEZTZ-T(C)]3mWiAѲ^y-'}}>4[o> stream xXnEW6u_HyȀRxX^gLd;R{-; >}}UDJb"NWRhՉ 8e_# kRIRm%ieN.K2v[ KkRN=5q<њ²9p)i4,pՌA0EN#.0%UJXUgN`ّܹCg@ m9G͘ ϶Qk`ݟn%wA)2R|`%yXjsDsT@L 5RdaU7@V9* ;sxX Pd OPgpwFwvX6KBb5;Bh5a+o\HbwBpGd8Mtvj^ఙuCRgQ&3u6,Ҋ4:Gu6pYˣy2S*1:Vc`H8|范 Z~E-I<.q0(u3Fߨ\ÆE}1mNN6˓taIO?' ͫW83:(w:Rn!ղw:P[n8xցV }@Y, ׌vXUkn=XFLւh8`Q:e?!ցi.ئ@-8ЎRS@m1ro`Gqoqn-Pj6@sR٬8iE `.l(5fK(5a@ H=Pjh$PjCk8j~wNNr.o Ss2{k si1}wʵ=yE&z|{iZζoo{xō_1no|7˳n&~ؾxyh6Q1 ]^iYϔY G#_n/woGIW.o4/+ Pɘٹ^9W{8<- OY6 DX(ܿ._n3r%193CQ1s<*f̹S9KHfua*FyDjmGZ̙C Ǯq[ edk(^G jw{pX(8l.&Eqح KyCD rAQi@0G-Wu`vět&!kGÁ["]e샜:Z߉DWy9"L)4=6`u@_||" /@ ajO<8Z0w?%K:P!"e1lʑé}t endstream endobj 2246 0 obj << /Length 1945 /Filter /FlateDecode >> stream xَ4}io0/ Ģ;m&q{\\iтxcunwuX^|{e1~=[`D#,I S.?^[Aփ_,)f|q*'Zfv&KS=29IW>gKOx.4ﴪv+C痷,hzjCvjЃ o 8GnU uvEmM^5415GU9llG ]Ҕ)8+<}j[PqI߳\ )v UL*,9\[0x Q>ĩf'(2I zu Wu;c]eQjkĹVzg!MT!ğ/-H` 2 ,RTx"v [.xv##)x*+Ra f5[O;%r۵FSǫyEȂans}Yvrp9 `* N򝟴z?!En ZF6=qcڬ@n]΍$}dLۼ0.:~d7c)M iB{yɰyE#Zސ +l8X~ I9;8r~#Y2bJk(xJ7u@ Zf|u=ߪQʈx#h Nq (Q˸-%S C4e8]mĕ.y8>ԒB{D}Z#uc9fÐC7`bcy7SwQX#^].~򛼭 vgjkbM) j0בHsMɏZPRG-c._Rc+`HԤ0Q}+ ڨoMfk*)(k5iҐKg2Ty5&b.5_K[Í@ހ?ޅ;GtIφkpw.Iz W6/W1%rX\%"vcqXnˌMLOBDoзo~Yzl b}+K$Ƃ9M1ES1r MJhLU3a'ڄ> stream xuRn0+x"(K6h( =PmD˗qOܝ]c08 7_m (p0+ٟ N'V_1 IlO )P%KZB=6U|Gm[dbrJQIvSi ةqćw(4OYN`5zVGG=ysLUʈ>!g/ۈ.ٿqN}ֆHU#Ah.9iORy.&z;3Q`!U1gch7ky.Lj_O(4"^:% endstream endobj 2275 0 obj << /Length 1387 /Filter /FlateDecode >> stream xڽXK4hi4mb;ڹhM<Ioďen;TU_>;^ݭ/b~{d1KSV׷LX0fz[r[ݭ72SX~#HXgOīMR'tzIyʣz9AzO&D1+›Pɢ&LGȢ Ly4t`z[Xpȹsk[A@VrǾA2:tf_vosV**6$m;ŴØPb:VYaw `A\7L^7ےѭ&D!rTJZrp>l / axx3cӱMZa/$QLܫRi|kz֚؜tMs^BK(! 8ةz$f N,':`礄}f\a"z5/Rlt܆+f-*8_F`g\Z{)8v zFѦ#5 ]C%-ʽ; H菄 }k99T)}oMSL:?XNbY.~()?% aKǣ}{}BHIOhxXZo;C eeD--e|:a/BIY,dQB/WtF_Fq k@zx8*rʩ\.]LCN70ksȫib !y7ϔ]^_:K>Dx.,ȑ~DЎ}NBfUD&?, h.SckU\\9.` gNhnvȇQ-ˡyu~J|0Ʃo8uIaGj jV~D}f6Aܙ@zSI-j8KcWIe[Rp 4&Ll*<|MmK]/@{RǀΧyh TV{iޘF6 ^ aF %jrp;6cA͞A?ab)8rNf)gykx9ў_xLcwTo*B]U?W ۲g_s@f3]U* Y؆?2#]p:[ LJE %KJ8ߊ- endstream endobj 2301 0 obj << /Length 2274 /Filter /FlateDecode >> stream xZoܸ_!\- ?%ʇ+I>.ߒ w^ᴒ#iҊ2['"Q Kۄ&ū7H%-XrKrT*UrMޥB>\H='ZPQ_QjNiH-{•&F[*uU{Z+ԃof7L8w0!d]Dd"Y3A|NJ!Pk3D؜T2tfp|-r~wl6C6׌IP-%]}eͷGs4d7}rM;3ɶhĥRLVeӇJ$ڹ ;جfrc')2ٽtA 7nWPI++8aP> ͖!p&gIxfW~{Ua3$GP 6lIf>c.LkN{tS2oyYNB\ȪM7<#eNh.aF zZ̢k@c 8$f&оܝrP::#ʒ->7Ӟ6ׁf*#_e)8ߤ}ācHisx*Dz0CamA>} gKoCw @3VC6mL4P6 ԸL׭Xjchm;8¦JHdVQV(KQByj k5鋟"mʃ!PdJYi#POPuÌLMTvJ1|3k9q"'zg,slF{T>ޑIQY+"e1$O*(6bOO`U _G2 kE93"*W;2̞z<)$י|:6YEvO[ׇ':y!&ue@H;xp1xś A5>,k(mM>efs. "c@yM~О.FrhE^ԧnrFl~!Sn0=4E%Zۿ="\ׂ~_mp}ku<{k&!'4P@CB4^ g !~ӎXb\`ZaPPdfhGTh`CVC‹Q  ,m|/xV+ߊy09D ާk,!s[(k$4MmzQW{ vfcz?o[Kb#RKbC}u7#il| 寓lۗv<;,ra-m{tVP 8T`IQDXͱ.;^F-wSmCܶ(}""]gz?pj1u .]߼adx8Ԧܺmòy!8]eg_ew9};>WYl吻@B3`]Ӻꇈ5xQT}߭HļV.P erJ7zD6u`I=^u5Zk$[G z̕gYz I6kКE! ζ]o۽mWvzyn;g/c2(9b/|J42}kG6a|Zm_\5Uh , OV:zNl}h= *v= ^@?f=[&qAZ82̯ͤpy?s㲜9gO}[B4Ga=#mw<.7{b=3gHXM!Z`Y#chF~+(p?SLыyje\wd4=- oLO ~ڃO G4L_W+[Vx#b_I5+{0fԛcF{3+sx@"Im qG;V ?f;df6_Z\6_[X7ua7 hZݛz7&^i Mn!W{ԻdzC^ٚSx5WgؾOTO9R `3׹pj_2| endstream endobj 2243 0 obj << /Type /ObjStm /N 100 /First 965 /Length 1469 /Filter /FlateDecode >> stream xڭX[oT7~_Gxx(-R+!R(! jȢd#ofəɎ<x.'gB$A~Kh~kFh:r#zR@dll Ո~9H| %H7 &;B%{NvMv*83fdЊz2ak n0;j%d́%.T ư{c,'ͤ la5P%4ݸ0R0 N dbZhݴuǨ ]L R7@bs@+,r=`Yx:tX;=p"{1$CقrQ #@ @ᓖ 6 Ơ  uK`nCKuX 1! Ò۰CFg wp/2:dqֈ6Il2R܉k8\ml@F "Nx+p K8pQ@:P 2. (huPS_-+/_8PX>??^X]^ [Zܬ rͪڪ|Zi}7 bz~:=\Q?=u,xqv@h_L/Wզg,ߜ<^} G *| A'؍ڨAXwq{hrvנjkў{fMXQ"Yu rj˨a`\=@bCRslqң5.@ҳ LՃYcJTޮOw޼ݿ'K  PN^ibnG pKe1^^g,ǫ7!.OMϦ'G4)l˽GBSY'~_W/WzpzyC;3U[5D 5(S]1: c/FrR"g[)ސ0ퟮV3{np4=[~OWgojtTr7R8*m\%j+`ëX8  5]S ү q`tEbsXvKp s R;s9 x}VIuv>PKp5OD#0)s6[sY>\<}Zo?8wf/;k=-RJPjD(U H_ly> stream xX[o6~ϯI@HIV`{6oY`(6] %O!)[td nbQԹ\>:t;ˈ9$ 0#d$I4cLΕ2_Kx~E. MyWm7+z%͆c ܈!Yh,dڏ a=QԏV6E^iNt"񮞛Cs7`~n>MTƽ/,;|q)ʲ>F☗8zE7 `5UliĂ'O2x̫>8k?\ 8upqƻ0)'OФKp zD: V#wQ`*#O6/jD3w'bABb4hTmqLܒ 0.E2LeF@uU+ $nw W5n0m&(ZՃ5hYdfe7fێ Ob(Fob!722ueޔkŢ+#Oq/x]s(a`(w`vk4gj` 岨+5K"WޚmqՕsfFV\U#dTf[j ]ۭ0: R'hTCV0ՉV;5TSH}#mDnfU*r{{pLh{S6[xAIJ'IVLea, h;=fC&pa:Trh4;08-w!' 9`bœ}0C =U16&<`}4 ,;ɽЍMFuS3D'bu 6H/x?6&mlki`kQCJ҃JP b3T(+X` endstream endobj 2397 0 obj << /Length 2050 /Filter /FlateDecode >> stream x]o6=B=TY,Im=`hM}b+romJýgnjf?^⛷%-Xv}j *dr/߼U2+HՂay6U\W/ͤ­C;4L, KbL Ą%mݴu졾 m^\*QFYā  elj$qZT6b*豜&SV,|R2b8ڐ8znPY*n}m\ H=Yׄ)v)%kc[}W]S{:xpoō׉hլyna nlcIf0S`ex= ; (GN¸FSyckAxe^LLm+ڶF|T0E/c}\3l3&{Q"5FX{8 ^ݲs?@)EGRɼl+ߨ]ޕ]bC䋮].r9T?GM^?+(Oa27 8$`+x*<DNf6/@~ߵ̷YvzR} =I/oBóS=wV:)IIh RZ\ԬJO@Ь K]1 Wפ6vf#_Ϙh+2NPI=jgB0 fZP02X.,.Wkϸ۪dV4kZ]AHÑ/K͚rTOpI=?${͵w7xyVYHLvM$ZDN'z(d/ED`lꑉ^"W;EWOGA>8JzgR%z !Ɯ-/ <7ԩ@GX**0'+v;";t%%מdo;sX]sl))D*b=]I0̶!?Ul2R'tv̲QcJC;6nsۗњTl |S$axsP(e'~٨`NY>/ӑ/3.vG2KG!E$$"ݯ$w[+ĉ~*A. 凄=sɋKG=em)$aR%5I@<[+܇w9hyhcq&[xUKxxwSqy.jW.@UYOf~}z ]—SWdX%U;5|Ǖ+wέ zvt.ƸG-tBW^4dnS3LDK0Y]k+BŠPЀ+hXRuls%NX٫Ĩ頖?TCmדI5}tõePKk1:,ޠHcC\;l+h]f,uė|F%Ƴls?Cv( =3 Te:~GgKǸ}- 34aa@R(5xNIqj8F6(9P#K"IkrpAֺɛ_ͳ!129*8X!~oݷqe4>wprL]{ڠ|)\% b`ץ댣wt:^}UUX%dX fҝnXk7߸o>$=M| endstream endobj 2343 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1199 /Filter /FlateDecode >> stream xڭWMo\7 /Њȡ |+95r0EQ m\ۏ|y )iO%iLP~$Zi$`(`igӨa#I=$3^ɬ3y's- d$3Z kK4 J@rRV@0HMzIVgp|6rW|WHvv07^+|8|Ψ>0*ጥǘdVm1;6,+BL4zkX&)|4,A2eap v9,@L׿ƭ^K[`hmh~х>cT*oΧc:}\j 7a1:K"Th ,g,EX&.uaQ KOL 'vZkf| AAaKZԈ |M2=,EALmCM*,*o(S*ol [1tl.>-uy@/?ܽy<<@<{Q,T7\URej6&]y&ldCm!v:4> stream xXmo6_at*+([nK.afJr QЩf۽<;I0y~&<`i|D h2[L~֍l+xKMr[lf"꫺ѫ_O8πJ+0 R:ԏD={_7U6oN|UkU-r" 9 "` f ,^岼ià PeɐPw& ')Kc\d(Y &d!yq K?nzЊ0NY$1ueA0r/ٲ.i{.̚yYϽ ~]tYw |˨<mA6fS-恠[áQ@C!XcpUs#PQ@h yټZ; $U 8׳Y h-@2ZUίQ;ELa+lTE DX:3Ԗgy}FA``n/>J2!{ 5qw{A^AM2]bPĄ o Oڳ`>(80=aYծ51o42SA[[0~^+{ưgV`-92 *ҦYÅuVe+ [7vecʮ 0< Lc[N֎&JXhרw"~l4PS\@%p"qmyzW: Pb (e{rI) Ӯ{|]&<`(yZVKqzjLg s˼nfG 'x8k>;2͑aVݠYm4)eK!:eבFffۊAclD*KK g i:oz_QA?Ll+j+xCV&*K? d:*wU=}{UK]}mӟyn@RUS|=8\]~G8=k}fF{>rOn>5Êa4왛6ń}϶lNӔI܊CxC% m9 P ŮYc4;>Uz endstream endobj 2476 0 obj << /Length 1311 /Filter /FlateDecode >> stream xYKoFWrQ]*mAdA.kDY(Q;%i.H%)5;ovG{7oW4F!7]xz+snV\]s&Ǟ0"4]*? sfY@zVd[Cxcɻ?6/ļ95/OM/h[RDiIR6m ,4^ƶJ##՗q|E)\؝:Yi>Q%E;(Tq(4`øΏ_%𦎠*l׀B"_Ei oY],BJ> stream xڝXn\7 W 4(R"`d,Yɠ(؅PxK$1չ<RZY^:o2[MBh'B!X6CEw&ԅJ,\TBc RCbgz3@sD2IvHC܂wHpPPj}I  N3>]Up/f%4,Pp\1d  FR~r.|m#1 L#oX |`rHX`B%!|1#YqjQ_xg~<־cyB\ȟB=WCZV'tIHxA!'d/@bP/B #EVu"+yJVvr]wp_%C'"P% '*$#b1U%c"!c;)#8

swC*7/Cw}g|y,o?}8/]t\^ux{;|pc1igr)b%Nu]!5&Mn JrҞ{=km\3hm@ J. प8lՔBӪ UZ"8KUK8ǹ'm F"zK:ugلqNsd4E{h􌷛Es sآG"T*g chШ 9U+%SL8rm22@qTd"m&&Kt 8 `?*ϙh Ҏ28rm"VTd?^Nyv0Q36&g-6UDqëƵ'":3@Hҹ V=.R;%BbPwA  ͹r:2 q#; 3qZF#?ոq{XX[6{= UMհmjW,gL663\)l{d#,dV endstream endobj 2530 0 obj << /Length 1375 /Filter /FlateDecode >> stream xX[o6~ϯڇĈ7]Zl@:v0 L,L nËdQQ\yqM υwO?..(p0֋ fK*JQMJO$ğYX$rWZϗW$fb%ǻS`)0TstmV40@cQCZ! Pmj13*=>/ZVBf(,!Vi."#7f+ ]rPtOU^;1D@Fm\XϹN|ܙt`YnWR@ `$R!pOHLCE(JM9k渵:)c@8F8ihȯK52I3B S rBU>/ 3۔t%=gjͷe4d/}.J +{23)\a+ 7EzJTV]F\Y#YĶ]RZ0Z1`XVW"H_-taF@Jܞ7R B _.e|-dx!vC r7N)-/]d"w慭nŷQ~ɔ7b*q;9d] d-'s 7P!=A[Ѧ~y?x݄:IN\!,r*SL 釿f`fێ)E w~T \ݚr@JRI& >׆zDöYE%8 -El= ^(h0"dHd(H|V@K&iKEHs=XAyŹMvv݅y 4!5m s\{Uf urJ;M~tdȨ4֡Lx&MC9hn0!w\.QѓN-?-ִl\w6ޥt-\?\]n^a4/bә;v`(Wrsxt8SD;r^"BMB C8] 璸 endstream endobj 2578 0 obj << /Length 2045 /Filter /FlateDecode >> stream xY_o6ϧYԽ+keš-$l+ɛ̐R$G:m{Fh7Cΐ6O[]|Ysn'3ƵIVT\?lΓ̙vBqXu]!ܲZ,"k>.z^&R~oq+I | e{8V.2"6ѱmy[\Mx=27) ?t7:"}ӛL:*`C.PGIȏߠM33 E;VY/̉Hi0T GAvfeFFir&ގ$.#etaL4IXz |j*j ğc J0ډ0Χ ]*8s[ѿ45V&߸C_4v5l8tbKS 19q 00|Y~gz?MGxo&0-WzS?^'m,\Y|9?ry6"zp3OD"rɸ}] wΓ q69`]*8q6(PD$sG8ʮ.W-Du",CO/qv4 ƥ4asڏB0WN "BC'Y?I iKqbdZG 8Xb L0ѳ`'9$K=t]T9~1bߖX]U$CݮoQ6*:2&! j0yb%qWMFw(ˑ|/})%>J6ئOq쟔7*>_V3hN$ eJT{Z endstream endobj 2527 0 obj << /Type /ObjStm /N 100 /First 973 /Length 1248 /Filter /FlateDecode >> stream xڝXG WxeJZqH"!! `EB,W@²8=گsVK-7-ne6~[Q|`xF/:(qWsZ7ش F+ObEK8(FfVxbNബ6k\AފJǎNώExV֠sH'/XY+18\l upؙ@A6<#11m[;6> stream xڵ]o=+(p@6/ KJ,@ri}烒)GvEBQCp9C qacpz7/J)b2&ۂf b/W^n%C#p3]-qӕo9BHD" 5|`ޗM׷i?}k$'IheyYߴ7?o~/?r%CW=P'5_ Օ/ A'EUڲE?+.-ȁQӻuS0]~@-m3cRݦhMTs()Tu~"(R"CMD[M~ 5{ Qdigg#r\Y>m}ZxO+:}20^c{n%$oe^ yI^+]]賈) BD"QWJ8ӷe3.9˕ұ/j|l.>$5go 8H&QxRKq0pC/Oz}]0(kvo.~tS' }zÊq_Ë !ۺso﷩%KP{[u=,y@Pk\\5ǂ_CovrO?eUQ}W_ɖhs[|cy%O&B~zDx3'J곌61%*ZPLmv03iBXmD;sؠk _$D6E n?sibpI57CAGOD'#YBHmpH\_d~Ò-bˎA!0}+yan;f R0抜easJm&-_@jrB~j[@ w6 `IPt|,e5IGh*R>.أ0Gg_XA7wR&&&(3j^ Gee9vH h梁hocEH#d</w}v=s[|mJU|6gS^sD;.&漞T30-Rjuxdw>GhVA(@]T?NA^nE uwzdg/sљV t[(WkmE;߷6 .mmbpp͙T|H(ƴw|" 3ntuc/7P臨\ C/4cU64Q8(`yxvi/3`8 [2Ț-2a۔߬@y?Ԗm2h V<#,k'7pmF0AVrJ/ٿ+mKCD_07i0gb 1fΚy(;#*>Sh/m!llt "EaQ;lenl"pئQyqnGeͬ^gP& endstream endobj 2671 0 obj << /Length 2445 /Filter /FlateDecode >> stream xYKϯ0EKK0Ydv Ɂ-n&HLw~}XE=t{ bU_bs؈j#ETJn"Dmwi_ ?a""hڴu`6Lee0>jFT^tϫfV j5дn3۸ 'hU|8片 qyFӵl$Rf{wGcZ.>< cUe0)d$mYyejz~o(3scLDݏh„ݮ;7;:+Pw؃^#u{=q^ 8,]kl,$ 3(Uu?QE7- "+7Axė .^ft"ZFqGE\li$*6mP6eOxi2؝{]EFATOA'XVéY4(:6)>vg"h2p {SQ"anպ=|1qô,3èhiꐇ/vw>N(}ESHCA )@QAAp-jǐww^< >n$pAOr,<0# Ǒ#K)>jWUAk=@9L bB;AV[{lO"IAKȤ̃ΰbeo¹5[+4 g3*ι-2{f>ͿmXY+n`H`Y`=FQ^:-W WZD"bA^l=sv9N3 7Y X͉V5rq%筤$vf`|30N2-2amh8PӺkWh䪹H46vL5L+[4.B\f)Jt4F K@NW2_@?XM/tJ:S"ۣ&ṡOv)e9Dsld97P_ q1@#κYkid RНy? uyPfˣ\ED2`C.k's)蓻|S`B,ִW("TAVKBP4Ž1=Q P0+dC+v4D#B.F*Ȃ=}R^.*K f,,U|׽Vɾz"oJ >$UQf޻jjEAzZ& E E:ώ4_ pN1?fO``5Mg%D\RY:Q FòY \*ԛ6H4/".W^` ijovgIŎq3bYH+Dc~4Q};ʉ<daSAIcwEr~.쫀\u[»UMct:emnN-^M4/2~LT4T}sgQ&+ŤYlZ_H= IlDrמS&~|KΆO+avP^< 792,_0>`sjPVJUTS>yb׏.W䫇bҾ\[DLw endstream endobj 2675 0 obj << /Length 735 /Filter /FlateDecode >> stream xڅUMs0 WpdgcDZ4t=o0MWF6Md!dh=INIM<%%2ٷɷQ Ns2ʲJGeJ۹_"Γӧݏ{V_&$ޤWptCC%I&%I))eQJbet=fGt;]`Eu LFX@ձȿ}\zB5jDx~{<«tb"ۨSlrqyS{ x}g~ᨦo5 ԙX`D^Qq6 ^~ 0m9 Z@+-:pł (r endstream endobj 2679 0 obj << /Length 65 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ01ь 2@]Cc: endstream endobj 2683 0 obj << /Length 1730 /Filter /FlateDecode >> stream xڍXK6Wȡ2K4m=4@hݢZ\ZYrǿ %/PjW_J,I^]ެX%`:1bg6?]oё\uyA'3x"^mTRk?vwtSVm[ "q\J.4ăRF۵0Ѥ,ʻH#sFEiJ{O /Qil /pR[g쉻U^|&i77iՋ\uڟ 讌VA3x~PwȰ0|qLWD]/uKEutvoIE{Kd{;.7:V.APX´ $GhܫloZ C^iRM?ISV0tȯ  $Z AzLX ;bD0 0:$XeB,ø˾1FDU+'%>ZSMA+4aܨQ8$fFd]%D?Ռt+5@a!n[ua/EXnσH4[nv}AfO%^CzCJ>7!hpk~9]dFް'CMҹF'=O Dx'DO)5pF'Gwܨ8a>6雑4=`e*L0{ o'lQ3 9gɣy2c.p7$ygǞ#;zjW@a O 0INJ3Η9:뱯FXuCʜ{Vᚭ$⋐蛈6hi~[y kK𻑥Umd"O^ E heD̪\=_ D&ʿxQFf4v{L$>4I> stream xWK6PF "%=H=W7jei!q'E{I i=Vvllof8P8 p[$l)Nx)DDl~no_I\Paw fcy}E(vk[j/t4 }V3LjWd,HBBѩ ]bal5;m;2_XU:xB:O8m]§S"T-%ײ)8m18SJܸ{82 c$rEޟSJU„n-1cc4GCpT =AT3<22͝3qy֌2ό#Ȝꍫ^gweYH湻C7M!j PuERwjq:?K6̐UMmؖc {m\(G/}YKr?$E$^26t_`q>c $=AQ*"8sbctR/ >rey|ըO_U)E/(ćc^)u"K]!P)뾵=p'^wжPf% (C1mA^>I8gktns +FjZclY"FK m\P??TǷ5cVj|1`osQ9CcQfo|xv1Y3[*N,+MrGܗ!D"h27TD}%AO;]\@BSƗ3i! ]8÷o6WE2 endstream endobj 2625 0 obj << /Type /ObjStm /N 100 /First 968 /Length 1243 /Filter /FlateDecode >> stream xXOo7 S (=1 (IQ^$Nl9'>")*ܙ ,E[2y/ ?a 0H3=j[e+]zBҭ0J,J=V`hK2l$e ͪej9Ta*-[!QZ If B1& )$ 3H38`p彁C=8`W+$ptּ ptpE;8[X1Ɗ>&B;? Ćc9#" 5lش܋+ tP:3ްc@ފ #B+!iEx YPliIi1$L4«H/ ARQ &8t>ːL$h4`s)[nB 6Gz+H7;%)$$#!"(G*D0qE)$ph^|ђapTTݣ0*!#8Hp훋u r~[[7jQ>ի#@: ||[..`qUȷWT*@q~E} Jo\yw[˲}v[{_;f#wooXFln~Zi~V g߃oy=o% <A\PQ @(nU$c=Q[Ք<+r3l^e4h'6&Qu&J0PUWi iUJ(0M:B 4314‰F2f2@c= $TȄ:<9D> 8%S*: 4 +U2 1$%<;mΙ:i*FEtًPwWkؕyZk)q->[vj x87#"BO_; KA8ߵkFֵΜmCG;}:6= zH(ĻgZ#⧁yd x'84K1}qARZD4I`m g ` WDrkrI"sю5~s:,w=p!0F&CHSSC C{_0f膒hh!MF(]S@2zef䧁:>s-gm՞xWS x=| endstream endobj 2758 0 obj << /Length 1246 /Filter /FlateDecode >> stream xXKo6W,ЋhCrm%5!YZHZrHݢH}(j^83߬vA_X_%r(hB)B.V]M$N7˘w;R)j+ ]R4+:>]i[|Zezk*o^^FFa^WoQ=4_iJi]-$j,/dhI$lG a屰ݸl:3Ԁ[W0UXv5%WreF-%|ƍ(l7sČ =j}vw☼֩ԤSSO6b2Z6ۜm_i*%8  b^&`f>yUMS}lς:~(l~'cvU?,<Mؾ}U"Ce6ɹ,B8^ˀ}өJzJGF|iۚbǯ4nJ3ud<,jVy]@bnF`gPXLz^uONNh- (3v쪹brYol@J,Z";2ֶ[60V[kG*J;D 滾rXUo߭]0;0Z-F]'x_o۲x{4')x h1$sBO;jl~QpkؚjaxHT2fOAoeo:="o:GA;s+9T-q3> | endstream endobj 2808 0 obj << /Length 1716 /Filter /FlateDecode >> stream xڵXK6$+I@Ӧ ELeɐhn}g8#Y>6CCry ~>Y":e(VipQB<׳wLf-a"<-hθmS/R.o|M[;<[izӮ9{{Ý=1;'#y$֜i)>p! Pt@b1Ӿ<q0 CH$Ѻ1D 5I>LpvARC׶hjB85' m ipEeVT}K miE{;Vi 6H*9us@eހI-71]F&Q8_񢓸yS,8tb<4fltn1݉?EPT;r|XGCIL?q۽Ʉѧ{KWקnK2ma~Uko*cYA3R(ǁZc$~, AMbT1INrA&d)hFxp\wc%훳[ Hk:6CͷFwj/Uh i *Hv}B`ƷxC-z6[Qt@bwK74@3Sr\GY Ugtܲ㓀PLBĊ٦Q[m+#/@+˥cI[,]P[O6h#y!ѧԹ4BH=O0=Ph}> bV6*.9|f 27i+b@ OBSPfxCOɒs;O~o=s2m 5~"rx=S%|I?*|z7mCuvwx?)q:y_x;d1eO?/ _ ?<<_R(YWo~W&*֮nyQORRoJz-yWIOد \D)Gk)^{?'|ƺmvCo["p-# GIh?] W1 endstream endobj 2755 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1332 /Filter /FlateDecode >> stream xڭXMo7W^rH#@>@ qm D(R }vǒӢivvPR=[P]R\(Hp;U n[PC-66:QoJeԬ)T}ɡɼSBR mKkR-ޡY{0!Z:(0j C aIk29jHDD)kkzh2ߡePKNi~oЧZJLʗm۶As|fA9 T{%rtp.3rHF&GhHI$l4@g,< Qd3plrW-kS}Ǹ-$#ꌮeraA#cc(1~⒘etXI͠mT |䠌yRꑷE )vJKH)kJ}f )$ SP, 4IMVdD iH0Jdn]~܂PZGcPnNN6ˋp>=«˯DŽL|pyqԘbSshD'bu`-1#ցjE :5&2VǦ 9kIVՓhbQ=)Sq U=V8RRD;":0X6": SNZE7Bf%ƫ:tyy{ay4,?|s,]_,W˷۫a0}ͳppc>]%\ oy,,2_Ǡ9bbz1V#Ɲ(wXĞG[C`hCayQC ^i(y"̎\FցT1pEN*#'4s{6`QPA1ցH=B=+.,p (cpV@r u`⡎%( CI3PGHFa!6!(Al`F!xH< GGLo&vk,.~<V{ʱ:ИR QG!:pE#D\py^c!ks-Ϗu p8N_ lU#%xtU+j3oU6 endstream endobj 2847 0 obj << /Length 1743 /Filter /FlateDecode >> stream xڵX[o6~ϯ0ЇXŒKX^ yK@X.$'qCRqm//ƏMg73:ty g&lvE|јP!g٥qnZU (/sޟj6f&++/"9Oz6Q+:֑7"JP,zeKaƈ7WrqN"}K~vQAP|)2VSYDX;k]gvBt ڵ*'CIDTua]WKƍ1 uDT'iNhܙSr'?`$I̩Q _xL۷,!ICS &Ff]jOQ8꩕I$:&I{,F6IrMC8?j41} ?xgE B~j[N(fzvvny(XY"Q\j @S\ad=8wcZlyUf^OjJoQVKJ.EN!4 v@Y*֎\_=^6$H<4[YV\:ӝ[UaCöǠ@h.95 ݖ(l6IFMdVNK ~6餳jJ6YM۬*.u[j@igynZRƢ.:cႍNf HԤCct#APr"5:3ZZ t;3mTA=!L^J#cu?+6K0Xjn{;*ӮЮiߨ:m&/hkd[Chڊ ekBzCL[=fGZ+;'(#8zd04Z9>^G`C_a\"?;$vGޞn D| /ylkU 6}J1`&9 >[SL@'S Tg agQ\h2͙n,6v`5hFDXD)OG 9> \}֮MRjhem77|6"T;mܾ0XK;u۾۳ ͥzA ̾RdˊMnC2 :&|ߓƩ1Z.-O+rϖ{2-Ϛv EUF_~y5_1Y] Pl8Yc& 9}'vqq endstream endobj 2892 0 obj << /Length 1810 /Filter /FlateDecode >> stream xڽXo6_uZ凨Àh1 "P,*K$7)Yr: P'x}PbcٯgDq, /fIB_3$ !;J-󅈄7]W|4 0eXm|ό>qO(0)(X(o}ļz,i]2I dὛa=Rjh"*1*DFW?" "::96@s- TػMHvtO7b:=]E^PfAF`B,/$$1+G[ݰwr?_h`T>PR_o`-5v!!]]0S?Q-mqKF9u.F&# R]+ejTV:)"Gv6H1*2"rA[Q3i C1 U_ o› hm0< b(ŗe؇'hzTE;~'esa'[/1,@q4!V ԀMDFOȓ)4NpgBFpv#| l`:5neJXt4en[&V)X2*#vqtH@+g2:S6UPVd+Ʃ[-A7YTVɸޭ]G"gaНtZJRqmv#qb5pjrgUwnU?yNkI;Y9AYYQT,Xc-@nc'YQhGgM"COS{Թɖ`R7nKVSNhYMQF==dp.eQ$5d_l>Yo.Ls/YTڬ̸b][F蟻.1joV@AO61aa$]!=ePMI܌q QwL֩XCզ-(Uw1zc}v^7 GkdqP8V(l"0w"'3R_߻<-b|`('__jf3}@HG.0j È?t{YeW=kNwHTb올nrp z`t!tofG d,ux˜ S>275\af5<~`DE)\RUfABFӱ;vt>^wϗTz endstream endobj 2842 0 obj << /Type /ObjStm /N 100 /First 976 /Length 1372 /Filter /FlateDecode >> stream xڭWn\7 WhntEDh 񢭑E L}5n`\cޙ#tN''i9*;\rcy$ɻ,ߚƷO( B0(חo<-_l:}a?-~xvN+sjsa{uh!_/޿N~(K{Bg^nOfy{|bfy,oD>z.^U3olﮰb5=@O%e#sE>crw'S9wCc:cdW@+ٛ:#Ԛ{hG~AQl@O֢ȵ(CrNk 3F.ޜ")(@fz.usQ$z,>)@$!`A #p .tV<˕"@B]đqHxQ0ą=Gt:yw@}@IytPd:X(!}m2>a9[hV)ZxaNzɸX r]`uz_-TxQV1"p=a#P2s:E30rW\DL di"lH.VF,U)wmO 0`UA{*("˷P8paȘa,RԌ= b4ʄѤF> stream xWn6}W).%@aeh*+Nү %[ p8sΙ y^x.8 ˘Ey%›'Zn:ιYe,SЎqL:V &" q[EG/(c;-+j<ؗpgMKYSLwG.KUC"eMY.ͺV30 p^UV-[E[j7,S%VC8Tķ7'DICACIl;V7ܭQmE]CWB KEvE 423F$;lͦrǖ(U96@Ԉȋ@'kc!ѐtS/NB u`pf9a@61/r խ1/͔ 9XEdFH|c [>KJ/ipn%-jX:rYV{+9UiKw<kݚ߭Bo!KaI%0=^dW_:;TECe?_k „$?W}dzs1,ߴTR$ B2`l̲(T(rmEkNjlH8`AH9s[MD y}&!sa p: )@IN&ܧ9v؟>x2==ݜ I zlQ8Wϯԭk(cUqv_N0cYnT$~o5#7;|~~՛NU8+NJEŜ'?M(䔅Y*X?*m9N/5c* ,uy-%e>}AG mh>C`"+΋3r\#Vs;&F޸>p'S*4,x ~>?غFQ;Ԡv i&X\i&P?A_r8 endstream endobj 2981 0 obj << /Length 1195 /Filter /FlateDecode >> stream xV͎6 ) 4X=C{(Z4bmbgmۗN -ТPď"E$0n>{i 8Ky**eH<j940ѭwQ҇`8uP7ә:\nq*V:cQE:a.3(׶tee/݃}UĔ@D^S}n:]XKJ;|&b}ku;ГmժP[f'[WR"h|3N͛3QHYNE;u&d-\v6w#<6zn']CUl$> ؽ[#iՓ/^K6qc26&> stream xXK6 0C<ڑ M^h Q㑧~LHyYgMC/#Y")#g秋n.^'~!wD8qnjfWm(xYw/?e54{7?n~y6,r$q*Hl!х`E{ *:F?R9aV'­bƋ= lisԝlA9 } 3>]kάJmh{q$}5Q&p/@ "?tQNTlolÓ9BȣaXǍtJMDR{w힩iJQ\1"#s{')ԭ@EھWw$'C4j\6 w)i^;JniH2N{j5pC_oAґ߹LE.ok%) .^Rv4_"`ڇBAhqR@GБXLʞK)\ AA=N{23Mw nr; r]ʡX(J6L-S،Ր<9Ye?r+'V9]yh%r>8 /"VK„hzhnm'^=`,H 'zܣ<ؓЩ ֜oO^?j"Q슆u1de6;]1 -˗fG;_ajP!)̯ȉo{=]k͆3 %qBlJ|5; ,M]?-`EMbua9j5)?gv<˔>fzd9ZVavYBxf;IJۡ!ܗ)Ntfco< +{ T0{0ׄ4|b-1 ( 'Kk]iSd\0*˺ k p ^aCg@ x &UZ9&~['y`,lMwj4lGI 7ZIۘ@m  ̦N|}F=qO_#,'ɸzZ'Ѱ[iͼKUP [{Z;{7Wu*L` 4\mQ/liZ!ytI}Kx4xP/_JvGv&[Q6)ӟ5zI(˫G fBy /)isf??/)zdEFo߂- endstream endobj 2932 0 obj << /Type /ObjStm /N 100 /First 977 /Length 1386 /Filter /FlateDecode >> stream xڭX]\7 }_cY_6,|BHvه4Jh)H}f;JEXGdY}VZ铥@c3Xe"cECEIBEU!`N o b> P'R܂IF!XYF=4,BBj%HC\Ю0<  iCsP`!aPid=8 fa0pFcXp88f b͐1gpi1`i+ " \׌Δ0C,x m* FgL3^Z0J}yr˓_`XXapxr~F0l S|h60wR{I!Y(E~ć A`J{p8Ԃb d X;A{p ?xВjhTlp^upD Qi0WNpt.BԆ4d]H iCz+‘/ڐ"7 1 Fp\ql}z_}9b a(xގ,Fqp;>΃@/u9/gO݇r_1"f|wuxzwuO7o_=:|(Q /@k>v~Sž#l_z|c}t|\akDiXYR4rPO7WVp˭Ou?+aqڿ~hux$Pk@,iX5@JҬxج6N,%#.ud^2@S8|&U5Qh쳚d4WK!ͰNyTTСqd=e0Vps%.8}(j gƙt35iJY3Bؐf= ٣ʞ5֑ =3@JeAM,x N>wȧ=ǝ~we.OFK䟀p>[8#4FqP=.րgQ38?♵4CK#ZQTOc`} XW@߫or$M(ď=p"'pQ5CTk !4AbԄwC#~  cKgV̈́.5Sg\gP7q'qر_/4iF#N188@4C)?xqcu;4Qk2@yh ueh9o$JPHDQ26vto_  ;n.֑j.ag]aĭWˆ҃FxCF5gQlL?XOz#PT7y6> endstream endobj 3071 0 obj << /Length 1388 /Filter /FlateDecode >> stream xWK6CebėICHP49lӻjlcp([(zEyaqݛ݋"x8|"HJUGq o r'"A8dRrS,B}QVF کB"^[]/2di ]569,M4(  -A "Gޚ^<ξ*)LN4SȪ_ S)LX?gT:\}Ӛp|$,: Y>DZY1dDzbfx80݃2qfuLuCr!.۷ۑТ"]C4'xr[2K!.$ȏ 1#\1E2G61 ΒJ Q̟Ժ yؙf],M;F >DK1jr!B ~vc'?^#%,TfO߅w >Ly|]_l%T)YFP08-p&7 qx>;Gl𲪻g#j=Ac|~=23=AȍUhȳfc :NOO(Gԝ`ynB p-ȵwſq ٿՔ?+b'iimIs8ar l˖% GYuA˭ì~T}Ut}cP P7A)_pa@?|&` C,6ymkk9h7@û4%f1̶bzs| hI /^-d>jz8*H/_-SeqM W endstream endobj 3113 0 obj << /Length 1555 /Filter /FlateDecode >> stream xڵM6“EA63=4 k:7'=N'XBzzߟwh/gXЈHvEe$b^mvːsp 4 >,CjgEJ6BBh2읈Ȅ%8CTH|mJ!rLyBC;MqP1e(^il "Ha;s rĉ{UTy!]Yjmʺij qJ9PҰϑ'|5C7|ks 77mv_ S-HGTF&dD,ڻѼ3)B#4 ""emQhˢc? H!d9gz?+-ȫȁ$"Ef~ǽQxREm%¼V8 }r[l2ݳ> stream xڭXn\7 +Z"%0rh imtQv;G͐"%J[凌޺~zYQD;YdU9(jkH]40t:xł6O2*ClQ[Af ̮eN2{dv+kٽD#3gEf_E hE`XF[IEP ҝZW B'Xye8]A2LИ`sarЃ  <]AGHRYRz F ĬbXkQUR:(6 ;% P@|j j uF@Ãx@tLj4PĬwi,&X-H, F 1![1` ' N26gHX%̘ ҡcÁe6ǪFBWLRzŲb a $'ZrbmC((<֍u+RXNo8,oQ~*]xqѪcsR^euaVfhuLԪu^jhBb F[60Np}KƷ Dז:rKL)>Ğ=lHTU.2˵g}U,o5FbŤ ׈D,1 *r>3ne9\a{`q~ ߜHտp:_ W7~<ޗU99~/_?xqx|8>|p{w?w7ۆ/Z }M܀aGӘ>o@h:ka 0pΪϮm#È2TEY]2+Z@c$m* Zp:5t2<#>17}`#.^G pV\A@([e$D0 2cG4B\p]]d> stream xXKo6WZbħ$;!@@|k C٥mXIN;Ph"^\3|f4zۋWXєiA(cQ$2]ER-"ucȧbid@E"t Cҫw2*JV8_[㌛JPLf4'96ž B9}cHXE9W'';A㟕^xU;t"~,;TЁj܌jX`ti]f^:K[>1'uW?΃K;t8Dj".W#QsY;d`] _c |l4oI.Sޠ*B}M&ZfDrqJVn5L*8~h$ZC0&$<.,f b.S|_l>r p@A,Ђ g\E"XΣD9bP |ˌ?fq=mDԓ:%˺F4?z&qsCS]rT}6Ǒ8.م=Dd3Q'ײ4`F87u ]gzril0=̇٤҉=W]x1k0a I1F8\x\RyvOML  m7 rOa`ft@fe]:WͪjpRh ~1vc&QW!*,#%a7!4sERgݑ2ָvh9ں" :}!s(H,ܭ[C_r9rس2j'ZG1]jk6N+Tpv,THnw3qdڦ~ ` x7`֭VC< ϲ\)6-&q|DtB Sp穿.mpB^S|2(ȕCWYwF̺ [#;⦏"p:A#?eN&ie5K,a)^[b! LYfwFIJ>|*rlOZcFh 6MĢQ*s~c&k"M_[HC}41{?OaЄظ/|7{ʳF&l`X|p^RP@9]Ztۢ[~=qӬLC:4Yc^о~XNW.*<=nۻMWs#M=*܌35#ġ |#m|ѕxϷ"$ endstream endobj 3209 0 obj << /Length 2407 /Filter /FlateDecode >> stream xZK6ϯSU&':;Mũ&Y-IyicqMZ3ɯn<8Iq.{!Df_fdn}rFInng rvʷmcyēy~**Ra+R̲$KYb+$Q2}'PvK&Xo_nSvmtHb%)pǂh۔sFy[]FK]孭1RQQlz.7 |X*sSgUoK1Q辄Ό 'f9hWsu!(3wH5ҸǢh@0},7 R˶̫ϢxSJ(-2\+JiE=Qޢ[U|۱5t(NPdUM, #l; |Whn5n ݣ97(жq[(14x:EpʃۺOz]լ4w hOFL$tߴ!#,J7hEVn,wymeoP!eQ_kYNPb&D46 :NZXM$ͺ,GǸog' vo%ܾ)`aֹg(2X^o۵]1hr}Xd[r{ϸWk%xs+Q@Mab&HJgo>BJ}3M3v-Z>^js9G[Ȃ$B1# #=UhLc $M2^6jf{ І$MISҗ X)O tO@$Aa]iTxh(6$)m!4c}/6QvXTRfq< 0Mkںk9M 1FPXfvqF)WM#uYDݜ!붤u7 PhڱsSlvR*r8 KS͝CoM3t4MKSm^fTdjƆNfU,G:.Fݶ磐b Ѻ\A:-GnC+0X` La0gk4vA7\#<%h?jӺ/y::3SN S2CPF!P)tޠxB 8 c2x3p*[9[B`p,ֿ[ H~e\r;p*\擻 ow,E{K۟6ytk6i4=TQ ;d3)"RB uB`4# %JGQlAg'iØa|Lo u1t&GvB;J^CZL!BK='/ # \ (K.O@ȄIpG _^SG}q,)^XHRSSt9s 0 xjQ=K=1| @'S|ȼOBw'!φ8q2 pM}KO;t1XIF3GɈZ%m5>.GrMpyoBOwfυ%g@L{ 3{  h?9B֦X4a2b՗#x)ΪC<ê9O4i{> qߝ ĽM?Mx?0 Iko=!G }x3{g \8s9iFX8`xg6I*mFlf؇N_觤rg$9wλ,zOi I-J'^=rkJUx shycZ涑pwq[WM溑~\12KpE}'V,M;]K0z;N^UFhLݰfN0M77( ]> stream xڭXMG ϯ_PSvei!A{$"(b#X$^/ vg"N~ϲ{QZg1ᯗ]ES" X+)jEפnwak#5֢РeL hH2& +c%p̲-09(f+"L4;IFiEyNH#zmA0c -0E;cE\P%p%Sp-!5H [Q΍pR, )`@!XV 4 *tVN!ڷ ڍlE`Zl0Cm aձ11D8"Gcn:r HdWDSnX;I AXgHlDiS֊vp(iG ֈP, @4XQ*"kZ,-t3h)8ɡ/5-o8ߨ@Q h pF6d[-c!iM dh^aM[v:hEG?/~8 պP>}@o5g4W:6T>P{Bʣb2-<>*򺏛vs,4wTK28 u8j okl'fؐL y)Pd7nU9^lo\l3 Oxd}Ȱ_0,FqT/WxU MxE8xc߼t[^㳧|ſ_g|zwP7wgvӟSypgx7N1lDLKy`=Ҏ=3^y'GD-el쫚glT8338%m$<2s&h6$:-cn@QG k`v2D@TGW`s"+8vLa(NH5dUT.L `.5,Q<:P۪g4vvkF#&7'>LMpvk̙W28bL#уT> stream xXKo6W,C@ň(Rvj-=#WrVV2$g(ͮ!cm;I*beQ 췮(H_$A dLRO.J3F4nϡ⠙I80@X-_v k43|+rݦ.~`)5h)Lw4njTϛ}X+` ϴXT.gha|j<. j\u}SAVFUQU:p8vk+{mQ¶vʺ:8)FPOv] G~@ I H>_u_,TrRENa H4K\ !XHS,]Eд^mK1g"m N[02 {,`|RsPӨPi\2V\YіXmf8Nߝ2>`S30Z`ZR #'£V ;%erwgbn}\`H yfN"c!69H.tf[4Md7 _"RBgۊ̟9*fG.*h gnJ"އ9㙧̓섖a=7s q.ٝa|P&5P8Qܟ*y  v}&̤g WQp+">xEՅxapq}mG.ߊ' rB&֋PMHշpDr ;iYqjd+Ş3o$LH,*IUeEߑyxoVi. &K3(IB+lȏmVado1Kz| %_C,H4$kT>Zp@R:Zrc]/ʑN;[h/'Q)}Gԑ@Q:y=TeH#E='.$}W8PO =1\Ir endstream endobj 3297 0 obj << /Length 1559 /Filter /FlateDecode >> stream xX[o6~ϯ0Ї̊HJIW`+aÀC[dِ\y(KTDs9Q<ų~\~Ō$3:[^8%q"fcnw]B4p5_4ȻwڌIT__g٘n"1Ɋ: '?1Q"K DWmqY 5,(  XڟПض)/}Xe]v!.ńQ6@"قܒXPJR@+c^{0@q  &(z{oѵv H<0A0V"O?m<9YUE9Q2 =‘q@?8iyr1~J܎{zl7~.gD30A}kFf=WLZ7 YU=.|ỊU)IyUy*[Cmzm)wRۃHkwDrPF$*Be7:̐Gz*r[1;H!- Vָg=k3gPu6"Tld,5@*!Bfͮ{dLڄgKdKXy"[Bϐ בlGْ tenX#nqVڶCvk l _VTuzA~A77kC?ɰgdy_%d- @q&#dC/kێ·NpMa <c@+a/o=Ϟx yz(QߴG_q'e endstream endobj 3250 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1248 /Filter /FlateDecode >> stream xڝWn[7+!#6@fH@`3ز;FJGs=xiEXFQ*Du h+9*$.Bz8uAE7^TG?f~7ƴ =fexpY/Byfl̹0Ipt<&p+$ _AKmH+((-P 6J:al[S98pp, Kcyl<\H˷h7ZBEZIF2 ysBx²8OYHX0+8ւ!Kf D`ՐCzH*KzXE8J +Q46*G%G7Jţ$\IRDr5H¶"32),4E ipAQJ7dQ8BBsl[.@S/_~x$Wjݛ7VNM YSa[cj=a!Q2 tVV'eUP@:2ѡV3 :06lG ϯYٟHsX"')[pq&ߐGBws](wo]f燿:?puwjin|:Okhcf c>Qg .}W^cho՘@є*UM9hޞhF͑J=y Yd-Ìy8'R5^K8ު F5ܾ62A&JT$4cb8NMĈ:4TTLd_yT qCS@P'L9WʖYD1> stream xXKo6Wȡ2P3|.MѢ(z0C6UȒ+f}ɢMqvÙ/&7ݸӱ8F ϬtFZUθn.l/>:C<t5c;O5"^X! IIi/|O2 *Y!A(,&a z;_9VpߺgmQ9O h12.^꛽3#ůCʜbA㢩;ex8_N/ȗfT)(JDx+,[W2`]slwf a7##,R8OM)?lVw.ڳ}ͺK5(}Z:N'8F'g|~ ňf{nu5O!͆<_CbJ 84ۭRO]e^5=WchC | 3LXtvn7L>ċt*|rQp.;?Ze60Xz^bDŽ(%UX q 8ަ53CT}N&ӌ40gg0~a fН%XPB3w!B۔MYԞ$N]h恗(XԪ}UfIOE2T4ukKM$HYQ0ekd-y5 QTN͖$ =oQvGae7 RUX2{%!91\1vcId[@?OwqGYBW|1ރ3C@ ֩mr~Jpl_NeS-*T/̫@S4tS΍U٩r>㏧7\nJ"t;^{Jp[GCO'q Zh1g\oԳsskR.nSVgK3^9V!DVλ0 q endstream endobj 3388 0 obj << /Length 2105 /Filter /FlateDecode >> stream x]۸}py8-zf(R"KsE{HZ.Ї^Yr,9;,Ek8/gF2 dş.^II, Uq\-ULkjq96 ^Tw-5q|]]\[ ƉؕDt!!/&q(3=R$=*oD%5Mib6_oSYwUv<7Щ fQ$f=E0ĺV͂z=cmnT?e"'UQ&M㷗xrq(aM|>n1z蹪y2"J>:dlzʋz12ĽAwH]g"QwnQju |Zk{,x-5U˟097R=fUyw^5N;B4ٺVe˽ nX7R~pkw6w,8B yFFIoUM!R =57uq?qAWQ7^PH3 =s(j€E<5c8~8XlL%"{{1p#݀oUkc|=/ ]śh2(SBjY W72X"iBgipO%-.e) r~a\wk޷ݶFt‚ ?"{ߌ5185\)"$[WwD4->}NePQJN:I6W!MkSXc+}K&hbHa [|K%׸ _;з/Y~  hK6Cp^F8cO[* &|̩ fLC,S<bHJFI4Ky1 &CGG=ė]a7鐖3(ORr)Sa W:HYA`YYXKh$bd^' *-_˃DI}~[8;]"J_'jYWROԠjP;%j[_9Ҋ1b[eeT:lTj(Nxn~=&+,9KįdzE?[pPV&~cr!Zeӄg89 cvvTei֛j W0q@L3W p}(5q(83hQj*:|]bQB6K ]D:U-q6Nz>]&&Rra#tnQ!ǚTX?^8orC?VH#nrjG L #`&U&|vԤ{Js6oI(C9=>jBޮZX6$T5UXAT7,_Zߺ#o. ή endstream endobj 3437 0 obj << /Length 2335 /Filter /FlateDecode >> stream xYݏ6߿‡<ƬH}Pj.y8ph辥A ZYr$y7o>HY]oE^(gonuۛRL"S9]ϴi?~nW^o},_(鮞/PyBi.eiGn=W2v*򰭛ݦș,wOzz [N*$ +`%¹2uݠ DJsOEXQeM1^D@m{ UuǤu2e$BӴيXK,춇W+V}|Er c+J+|μ PMUV" Cܬ@oȷĿqQC=EXdbS?7 #)|DXi`r7nuNH,W͈} [_lA yӚfP:%vzB(spԣ=;?_A!t OYY"r~Q$Cl alk=X-Wu<9@{oyoi2@n; [;R)j$ɽs"N` h &HJ\z Ӗao$5 F@@'uե+<_;!1b8HGzwnb *P2 2gc,,|V07Pi2{ ,G㖳n~ۉ'ij*IdO+޽4Ɔ?<@z$RY愗?!8cC|-+SJ^1o7- ԯp1mnqvGAژK\bےڂ֎SHD<-E"S Nh[^kՈHة0V# _@B;S FV +'( O: '`5 x2!.Ж"㘠lX%QN Âѳe<@'(pBn~"*$z,t vH?V64ygac:1--mM=֩OԮ gGVCOɚ/H!L\@"0zJg :j&k?pa@wo<(K[m6gG*Z4עp 4=9)ӡ~kSV0/Wqr_<2Ck~2\ %p3-tp5zNͳ? "9lnWy Q>m7֋D{S*G|PrQ+6ODSm \3Wo̗}?M.ݧ/m&O7*cER<^R"0^LW+!KD_b{'?DtJu8t_;Or*zfs]+j}sH W? i(dqD`o endstream endobj 3341 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1262 /Filter /FlateDecode >> stream xڭXG WԔ].JZqH"!! (}mmru.۵UZFԻ"SEPp<)Daf1iVAhŖR2z?@2A0%:5(+>P4*rشLhG:"ѽz&ְ: Xjԣ}`zFKe5Z QO*>P[ Od}*>p NamhQf4@3-].JK]r:4&|;xM2^92ԶPz2ΔA٤mv 4~|;ggԯ߯?_]@3HHX{~}T̥ >fLTȘB+=i eH8qf2CjXp;F мw|ZFcǹ^z<=- 'ajbIP]m@ ¼Y[91'p2kH";& Tfd.U2EL^U31G>,~ct<hQ.g@YPcTrH 5=eQf &]wNj/ ޘ=tLcנ{Z)`Twj {=`E endstream endobj 3477 0 obj << /Length 1822 /Filter /FlateDecode >> stream xY[o6~ϯCĊ˺uV`v(d[5ȒgIwIID;Ζ{H$Q\n^£Izk/f^$$w>m]>|܏dq1Y2+_zSTx ger޳mFa@TQvCMn굺uyݦXmnjfըB_,+9sԛjz]Y,VS-n!D`H]*g2t2gf@C6%ՖiTF `KK/85nwIo7RB|ɍ= $.>IegC-JW# }XYń\i-QTM:ybMtӶ'{,Uw~q^w#ytLL_;E܌>c71I]m^C#F/۳zLȴlaJPO/!?<!¿ r3͆\^$IP #뒣C=7Z;Z|/84ϓ e jGg6 #2tefyE% z>9"cazXi^7+r|X&ɱ n L]o>I}ncш4 foq(VFmJȴvlQT|.!'.X->n[|\E+ ><\frz*}X+#Vԃq9Q!$8XFfMMG3j^q˕lM;^qr]m)8Oe[@/ѴZ<nz:t8'`pO^hPf34ffO}'=Foncϴr6d uٶ;voŧ)ea1n}=i4MGc# ؋ hK ϟD9-FK/o碮K;f|m(Jt;5q,D7dǨ9%]ӣˉRJpRq2:w A $i#/LN~;ʼn.xk]ZD$ %{1(/H 5)3薢X\:+ۍo?+-2-&? L2 tao=%`r￀ܸ&ɐ&L>ֻG~C ֻ~Q ZDD0g"cYBN[NonrAbxց ADGe{8PtV4cLC[C|w-\ AʌFUyFY3NKԶɶݲG7j;7zi̹%|E̕tV{#rnl(, oe endstream endobj 3521 0 obj << /Length 2726 /Filter /FlateDecode >> stream xڽ]}~u,9f6#N%Jn.Wʄ^VlU S@FP2_RhDyy+G<[*<`޶OKi<Gj7s3x7Lu3{AΛHCr YFUMУ-mƌS.yU}q%NAJYګj&20q|,-˪%}Ws wZxʪb$C hҝ*c< %0HQKXtGvl:^Y`Gt׼/opk*.AȹTd. lu{=G.C18BF¶sDp$]AXBoٞ?a ];j7s˿4K(l-?P#ҽIb>r2L=^Pȑǡl2|{mX"cW@zVOC臁~ɵ"WڧjQ"v#0iKhxRTfwc;b)sߝ|:PѥQ gdtmf®zx;z+G ?R% ?N(7b$ |f L.dquMƼN1f'zīfrFऊplXŝܗ(!St4u,Lx I/J&B+!ND '}f:?߾UU$27sy*+2,'|#T 1zaaI,fe_Q װ'G5 6Rؕo4? (mQ+P+W O\pnb+_pK`9}hDEKr^|' u?\ci'Z~/b9frLEx ċH ?#R s*3LI{BMx*|]ÌH}0+Yف~6J._Me\JLtPfWK'Z̥Q¼ k_/Wp, :A ?P}"е8< 0{S͜`HXCP4W&!"F*7onƘ,@&&A&?i z$c=xKZOGp'*z~tDWDy+BE%#@/%=sz"SErT"5Nqie3!><noe(n:qϱ t@&%k  'x? . &п4XWlm(zI T@+ ^X9 IhD!؅R3Ƽ8'xDg;KD[L\)Kj9yG4 {s@k[|OOKϬsMc1 )gæ.)1!Rw-=Ee a kk1+Ӻ5H{mu_x ̜y0Ͽ^u(G~9MTF?xz9d?n֝ii`WC>ev[|&kZCqymy0mc7j7Iv{QUEzOۜus+9eln JS9 6Mkw`6Uuڦ Fġ(7[Vڡ)T\;5#E>.ayR("K?]Nnf_eF톸PwZC /ASnAEEڵTN9Y@W$3|f_Y .t!2o{e("m "ݯPڣETm;)qG=EUqv(y df/!Jop%rRBK>tI~V2r_88l~ʬ˳0 tL;N؏vQIE#aˮ<@s^$_ N4#X" *HS/pP 3aorw牓-C㰫jJ 0xMX?BJW8PZc%ڟLH.KOn_tIԦ*  L2yo`a#L׺ko;,G\jq4uؤ|1G)&@㫒uv]W H&i{4eKJ]s滞o/et1w;pw|cv] endstream endobj 3474 0 obj << /Type /ObjStm /N 100 /First 970 /Length 1349 /Filter /FlateDecode >> stream xڭX[kG }_1H3 @.-<5yHoH}iV[Ii>A90.cn€à®a 0TeWB@ bEzH`YY[Q f3` f8Jq f2[09YBma Q!jb k r}i!B dYٖV!NTW{7 >]pc'A_%=g(c؀FH> 5j}²@GX5{hl}V.P ltrPͣG_UCBYVNPUgZNWlPgE$Ph;9LTm$|<*"@@2'W EN[%tIbgqH#شL=r $}$pF< rF~^gKMD}fA7lqP"GX>cZ脟D7i5ߓW/w7l?;/WO7_^xn} v7s,l_oݻo?M&Л+?-lsFs ˏܬ_>_]-z Z[DԯS VAԸp,+5^|X#-wLJ_XEM8jLg'4P&NkN(yŐ&|!;V'p41:dbfO1#tՑ(aȢg10Y0J)ѽzۏN#@L5&їdqZ{r8*&al=D?:؂Qc9u d 52gcf6Z%qC¤k\Nq8fP 5SdKA\˿b>?ܟ`>ԯ$)n'[}{cC%PQ=2qY?v=ڬ0eѸ/  7 c62@̚2&%QeѸ,%edq蘷0֑I8qdA{ endstream endobj 3557 0 obj << /Length 2812 /Filter /FlateDecode >> stream x]oܸ=b4@k(+Ǻە I3r%\:>p83TW߿իozsV%_]ݬXټ`ҫmu7ZJIv>\_ERoƁf[}x_w7߉rWi˰Xqѫ#:[˜Y]bLu0l;7Zӹ[HVH)ܸaʆ%@GUoSSMҙ7]:sLY8/Z vV2,] fV6tMӎW S rqJ8 !TkfRx!#r# k0՚KޑM  .K_u{pw+]R:Fi#Añ}=v[ߧGZA6)3BEo&@UJ# Y e=E)7'鄉Ha"AlI\jV $KBHcgm-R6@3P@UHi^g_@MV5fKqۻf_pv7m~P6BȐKZǚ&OTmHvCG=ΧiBCq7㫟Mt@/cQ,cES:%'7’%K4y ÷ q>_# r ?:-0@G3&]|U!Owmv.*dnddzj,χ\M’VL0s8o0DzЃ'a.KE%5gEiU"D;+վ^+Ĥ ,j<(]:1-{0Zap[haj^8YjGy amv te3ԮaP3 vӭÁ*/"}EA -zp]%SBw'+Xه=U"~"KcKǠ)@A?~;K B84J|ܷ>HS~ }xa_wpHy$R xaG0DI4(13 \Ae} |jtw1np*)~'Ig}OYse>G*!ϤT恇TqSKGH!&DcԾ{vƭ`&/qQM^2jsLޤk}"3k#xvKJa16:ݽmr,q Ee"H!`Q<0˾ל{. V}@4pb1AM:'f̗a%E2V_˓ |dEGE#(-]$Çv0L&qFC$!>ZpjԫirJc)T5rʠ'wtkoӀYJNN5wKߥ(Q⩫UV.ΌY<܀njEǺ{t'h| xG$сY#T ̨vDeKʄYhvÍBMG˚@ۆ*4>t{͕`J-(ִXRNt:QS%?̏IOZZOph80<.afcLWbɸQb64$pU}Ǻ9@|&IP)H.\k s Qu?/%SY931;Лt%Xm%R8Qb4-pEa"?xvq@?ĸ"4}δN6!3WB^xp`\[XFCNRKH  p9z"?ErĆ(}Q Ϻڈeu/XH&o;Hk9 [w/MP:F/!%FlU(YWCFgCNHrVgV Ł u|UKh!=d_]zPI/$$(~3zK^z{4p:ͿWmFcHɬO|}Ⓕ秇{q { PCهȳUޗ}BW endstream endobj 3590 0 obj << /Length 2377 /Filter /FlateDecode >> stream xڵYKo8Wx16@> ,&L2hZ<<ߪ")K;ًDbUHxZştw2]RvEhqYZ/v JqG%c\8 2|A^Wuo|$鞍kRM^ԕ-<ݮ,ͩQ R$L )lT$2LuR.z rՓ3_]i^Uob:g匠y*,VLxE3*~*D(ݳmp˺cAT/I2#/Ti_LͭL]Ϊ~ލ,vmт -Wa(gu,O]k2y g22]`?M[FD(m@UA gomocPCAuc@@ Ϫl{=$\|rg 4Pb <5%)$jI֧>ُ|, BQ$$f y-(1 FP)E T[d4ucGOYUx6ռE)yYTh!g虮.'(V-ҢEeg)ȻȁI>7\ͅ*2-W]Ӿ~zmyc@m\{D%BQ4 b26s@`<ylχ#&޺>?|a =OռCѹFN>a8%H/9Iwu{xii*>]zdWƜ}Ύ[yD1"dp30ADLLYV3|E*S?ͥvH DZ.ar J~xv7?ʄք\/|v}:UoH&iKpeKYfpFjVت{5chcgwy\5wE7)~c^RuU?O\"Vo^EChild=VNne#/@ t@\2NJ:8cl:ܘC)O fdtLef:+ir׼|9蜂@;Rn˟hK@Hn> stream xڵYKs6WLTIwׇloٔKf0~V{Z/@Z F[ni"Z~K8BY݂RlqZ|^h!4hrWː?EwKYg\}j/I63k&\ EƑq:xH#Y'[ Di6PSky((ʍ">aAO>%Vv_7+QֽyLTeQv9)B>8Q z2%$Q$qll) 4DbDG c$Ay ӉC"h5 NƄ!s i8Ka1D G̃4E 6u6R p:˲# ͢TC6:~}W+rܜ.kĢ੼lM܏3.u]e? 0XJNT;ɩDw;3f/3N"C-[q8Iִ{mxS.硂0w#F(w214"D]%G`5ϐt~8-ƭ;%21N'lC} !e'$PĈ2I2 4geAgkȃ*MוU?Ӷ+eoEԦC=_tk֢ln^E=~״yadDUy*lU΋mg TI8H%>d-ҽBk҉M^~~с3Eg,lơWz@~؅nx/}UeʱxZRՏzQ6:t޼љOaQްo3؜obp ISGc88/s (:F5TD2B:+vDϾ 1ͶZ.[9JSM|;dCq no}FQ«s_ܣ9kc)]l!|֩Ȩ=(LS8qkthLLɫy&uy2fUH4)1}d.$W'Fi6!% 9`KMiL`^Aj0) J4< &+YqЅ3JqcqWM M 0#މ;ZC7umf7@z̞$J h3?Vݶ-,aA{ g Xm;fqy80ң$ &'*o)d!$(e_.8ֹLoQΔLby IH^!xTsvrC:[x4mg37՞Of&\C<4r\/)AIx zS(Wi`0ч.Eё~JF0Jlvr%9 ܷy[[ʡ䛂/"r񟗳\ yƄ`ϯ1WC ~`;"ͣWA+@imۚ}#&e3p.'E}/gdzvdhtTUl6wͭwCFhlї 3 WCpGQ|vEqҍ$Pn{3u<ͽ*rժ SH@teTB=t endstream endobj 3553 0 obj << /Type /ObjStm /N 100 /First 978 /Length 1352 /Filter /FlateDecode >> stream xڭXˊ\7WhltU*0`@ƞE n18sԞ03Yu{R )𷅞ۃd0R(HȀC!w 2Zz@(O#F5.Sm 9Aa()@8WU QCwmMJ+v)gR%AA4;-h}GJKhaUJ,xM9:8 GGWrRzލÊ,+5Tr<,dS+1:B;\^kBL%pMQE("QA M %p6%pt1J;*ܔ;ȵ 8vJ)AOl4Z٨J &H'Ýi[μ"3Li[*-P6Lۘ#aӶii]m#CU-k6!PpMl ;,+ѯU8C*\&CbP6p YjDYdH#JI3]J!$KhVE$p0<,\Q)˯XDwWGg6.%P,&li #⺮0('u8; yfwAj爵4%5]PO<??Ncу/ϯo^neX?;uogŇn7Sro\Y^l??^wvxO% gU_V3?/~2&Nfy_j*O27D+b5t˰XnXP_nG3 ޗ`G&p.`@̂Ȃ^:z({;)0댤hsS;hbm`ayX:_)c  v4 ,=LuI\b[cFK3AR`"{Иѓ43̅ r23'9!fHwgFof^ڕ@hڻ&pYXıE^X5XQuxhPEցb.24Q@aEcrdDa90ցZEXSyx9vb{~ DֲD 8z'sDHØ\pxn|VEW=Ŋ>o8yPÍ2HphxP}׬oX[$9U7I:$Aij6tnwqTϑ<9w:pkau\p1dE Қp/. AU& endstream endobj 3678 0 obj << /Length 1475 /Filter /FlateDecode >> stream xڽWێ6}߯h̐E@-P,ЇX+J[I {gHJm$!gi9/^ҀQҔ & \P%/~:nūR)IU: ֜XvŕuZHWs)/KFMId<}L%8 24֌IBUJ9㲫OAI"`$|X=BĊd5jv E-ԝ5E{kS[;mWUV^^? rAm!c7˻L=g]-jzYϟ /~4: p`_ ( F1UO_Mc $.kWP*ix[t{;jn%nn1Ǫwo `K4BVٯ.\v|P7-?`aA%GoI)Po#;J3P"whb Qv [9OdO ׆Z0n A ںa٦t3Uvj\wng AVobMqUP8ԻREO Dpr*'bLo"í< /Vk7]p2k[;lHD'^։b>^PcM9դp%d'蠝iS]gM2AR0lwGs1061XYqذ#ӝf ڂ8M&(&xwHG7+w a>ן(=9dLN9_{eWug.If%Ǎ8P˲FȷE|:H2~אm&/}jJs~eZHo|D$:qF'1x{V"*{M-lңe2oMQm2w\L|nu5b3é~hY JpX<됙όe42}\|. /u8W_䎋G}Q ubZ7S$Ս;> oN.tL-' 5$IEcklI\n?׍+ WᏕ7{StHPlhN$ /p- B'"P17k`CSAW\ivYϩ|*" zC< A>u DɚHhsR("+ DdL'"]St6d|[3-p.׮2")W~2#%Pb ʽ<ç NoPK{~!s_^KsBBKJEMQaJxDbk28]'Z];U8E,hgGC"a^u惂?  endstream endobj 3723 0 obj << /Length 2384 /Filter /FlateDecode >> stream xY͒SjR#@*gN%-v84MY+n4;ėCF3^<.?tĬdq](Pqb.7Fwar%[ʣOϣzij)O}ċ)_*Øf"EH$2Hr+3`\Ǻm4jAXuŊ^ ʺoiD4ڮ4TF/;=##5Z&QKYRkbI9TK" ΕI,z"G`g̷\SʑRi/_6EPQ+ŅvvKd:>z CW ǣNtz8vTf5M ;hW$y@GL_h[Ӛ/7&p맖 s~()UCMN#Rn{ȒG脣vzQmB)؟ܽsAq= Hnb86u.>T W%Tf: Kư.xD_-G~VeRB0chYpV.*de#U6NSd<|)HVp_ c#4&8Ra"$^2)OnmGƅM88 Y:U PD"_\S ʚ3 7w\SM5.H_-Y++Ofl*(݈ i۵!q/"nʠNjDm2!R}b;>-*e.V%,zx{-[ Ң`ۛY(C]i<\a,&BXsZ`uxf&f\δն5ѐe7ӎʰM31v35=axeq!y l&̍'mӒ_タˣnt[8~RZGxXNޅl'5M(Uj,lg:) e\Dx|YڠX4C5#=ȉpO,D>wi= ,KԮ3D#K殾3J_&sf;de7Tc]v7N4kWסrId/Lc* L+ilCӼBy {8zhzGek7Ò>ֳ3Q2ꏮ岧'LmYfᅳڂ=ݧw_OQϱ1¨[!;Qg+1IrM2TT2(&dFV׺'L>I: >-{ \.Ǧ5,_l6Ԡ459Ix#]V0[amwJ#c&Ֆ2Kd]֛PHj)}<Υӧ͖`V#:}ˁ\N3m*]x0){aC)ǁd?5V5ZR8h'heqi|Bczb [`-54LLJl_6ZɸV=F8Yec8d#Kk> stream xڭWˊ\G W2T& $`l/ ^3hJȦGu\Jҕ9ZiE)r1R%^hFᶄY/A ?sCmMCnw Olː`R%OZ(aA>ô:6MBs;RJkqDOf8GP |>;xjM3YxB_C3>T2@>ycd4Q]<D3 ݜ3^'e4➴62@n\[hjDvm5>fE'g [HzW\-ðkkcm<E5oT K_12y؆DcGBjGB!7½g Ʀ;;A I|KwA1r #wFf - :v{q`Nc~;iu Pp3̂ؾC &j 3Z;eINQZ|K$M>b Ph=D9j&V5Sf4F.<Թѿ]r endstream endobj 3759 0 obj << /Length 1556 /Filter /FlateDecode >> stream xXK6Cebħ&MCa(hΪJ$oh˗Mpf8>c?^}w{,`p $q bBMp&خxc8p W" 4=7ʐZ1dXiBjXFCLF[ g &EPmdʚߒ~GxKGUD1Ja`:IҐ,J d 1&"1PUL]iNl$3ⴋ2J{S w ')- Ʉe ԫߗ 'i>P-P>-P7VyXzIC+7bcW旯=/:#[ }1ŪF=57iZ)Bn@4Fq[EÍM*F-{J޴FU&+ e=8*CZqr'qBi -FHAN}މ"=嗡' &3ym}W Y:|?W-,^? `&2TVϛ֎ۿOS2b:ߦ2Ɋ'RpoSzmi6?[_w{:ƍtm0,eutR#C0 b׻9 quqjwm^] r/i(#fCC73ɾ[_}_dV;leCRe8*R, |z4oBcXD& ]Jfmņz.' %*ǫL@W}o4)~TJw0|ur-<c;?Q=][-9<ڸ_:L;?jeK؃_9l1&D܁Ӗ'd ՗EՋȍ.Cn%{5EC80"Y7%Yv(y,YFu`m!4zi[f9iK٩|:w,"98 QZ'f->8$t<%cOz o@omI||ڑbymc}5TǰOQ4> ]/ЇRFP 9ũ2MWcRQrXkAT׃:>IuqW[^vS\ Ⱥ&v̉M3gGHOݗޞ Ur| ;g_?x;"*S؛˙[71Kuh9svSH^۹ާr4#3rrڙ4v#r "oZuƻXzTWx ګE`9-F#iAi܌Q[?3Ӕ}ySec\UE=57iqb=z'ʚƒu!xΕpjuv&<}!/Dv^ 'pI^T-t.zg<(n%Zs endstream endobj 3810 0 obj << /Length 1080 /Filter /FlateDecode >> stream xWK6C샸|SZ'94Z6@ZdX:HѤ'7 g}`OK"A So"#)jqmƄ Xdi1q2S.ZeObz=..e?:%M\ ZfaBǽˊi0lQH,ze*緪ԢAI $b[YW+Rgw8ֈN?Yᷲn"6k]z ' ϛ V'{' _Fcұ;e!xS|ߐøٻ"U_$Jp/4y |HdFsf%&EVך"[[eVmiϐAAء$Ԟ[#2aL #]o=\Q6@p.LSjjU% CgDžʼ6Zc!IRO'ޑM)@[=4Ʉi ʹW 0Hm]`d2vː*6ڇg$k7lLk͛p@*Ǔ=[BݔUURwk:_0#et. <ĊTݻKnu nE_[-a=qX'FA2mK=~8Q.@`~X_<nE㽨CBQ&v\r(>`М"*/Cbaio9 nfOó~mm8TƷ>\#dd^vcAﮊ_t|x)fËޅT#fN:7, th#=.DΩ^O`fi^`q°BKe~ty~- endstream endobj 3756 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1244 /Filter /FlateDecode >> stream xڝXMo\7 /Њ(ȡ |+95r0EQ ߙn`g.ыhHHͮ݊oQ*EMc:iH4iX>v00 -e GɌs)JѐS2O+"DH=I9ÞkHLHJBCA #Ý>><iI7>c(ܢ&c…|Xw.EHPֶ >ֶ#4`Ek[4)*-CE3X;X^T[`sTFQcnj[n;ܮ0 d0O8 16(@ ̫3zkmRh<)Yp$T2 4|0Jnt/5,8Nc f'buaT>|t4F` l3ʌcQ[x; ˜>e܊)X zcwX}[5`ޅąΞR2-5t# 6/ dwqۿ-WMBW͗ϟ?޼y'Bس5@0Z^<4vr[rvODؙh'}Cn/'4_߽,[vͲo}:h{?Z^@@;FTO$Tg -#pʂ>gauL{V84*#cUlju80wZ+3]fHޛUTgzcC29j12] CǕke1&iؐj ͵"> stream xYKPV0"ulWJSCrq$Έ %*$5n4 5%' hfz\ū}7?lc_=X8eҫ_!v;Q'eHp62fFg)-tt8w}U~ئ&LէߟcѾONէHiq7L;.Ew]fـ$T.;:~ǜ>d渫icŶ 0ťfYSC^9Q''Nu}%#",KU`&)g)7 iahw0q~ܯ72In_ MԭEx-}ΛxyUfͣb{ni-LT|i Vy{NF0eҙB2eRt>ƙ6|eb̀C[TO&ņOpe(V՜`uΓɊ+&U"68#O`àcޠ h׆*hG;0XD@)rTQ^мb-}u]Drjk*tҎI3ۃƉ6?gBGD֛LnܻLBj}o)oƸK)Le=1P$[kWNU4P74}.=M4IާR &_6ḪXz<,E\)tEH%+M:#z_6~m3N6`B{_-%>D +%//4;4T)cLCmPTQxlG\b<"énwMcnB{0>f<^f",2ښBsSv^!9H/SQٵ(7I_hOeY͏f߿"% .5=h4" n&yHfǻ3+pɎL%q;:S{-p8X&e? F # (ݨOB4OX5,Nc,]o;Ohl<ՂX)]%B[PzđvůTǂrܞ){\"`aء>A!wI. vцVHSLQUvdIm["z%M~jI6 .]]>Xfb|OߡRx.mV/ƀ];`AP7P"lcuyy9p @k ء ` P= \,Ly{PK0AA;C AMy5& Ë3N5}6xL+i=0V ?aagǭ-[?*P0hH2`?T& J=7G 0MHA^V!OSKu3=8t`d@v$ň}>e[j \/^Vy^ǰ* #leLE8 ]e::d_*:[y2~hW?LatT̄ *副OjщtHEI VSɡV뒢i9T c7PCZZH`%¿ݮR$oIu8> stream xYK600Ɋ#Di2<,-%GgoIєL?:{MWTH>{.4!yvB%I\]ˡی/CyJЯi -oN9K<'\9{b K$IO^9SduΊJRV x0ft1rjwa"'h*S| \i? uX3[K1)n&L7=Ey=.ѓ+;R Na!'/\|@WVxPZ屔yn,ﳒ@%-$51g9qt"CO6Bxt]JSʋ' 󿵝;js dUStf.nZocc}xoLtѡ8Ƿ4V伹i!l2_o 3XM&{;{ ݐVLeVXL"/H8R3΀`$It,Xbb{X@ bnΛSxvo>Rk  ދeW7_k)]LAVg<%#p-|X<)v4T02EŌә 8>wnj?ɋ^n\ۺgqQk׶3<>6 endstream endobj 3942 0 obj << /Length 1605 /Filter /FlateDecode >> stream xXK6Cfė(6M&^|)"Z,9ECZכC^LJ g>9$wDF8A28Zm#A"d(arLzZ7 JSF t1 ´~{n^+з7dZUn|](:-3CgV ; lmh;y.naNk )2^1z(3ϽȼpJW{0Gi 290}ntr3\')AV'o>NQLr}D}Խ'14?*`!0HkM :Ttlϛ)Sx? @r-GMr5ƾ052K !d$t^ X?UvFǕknCtXLF4W`}?FzQ0U<͘rWt@r ON{4X2/ ZmڮSYj#3@?3d0'*iIBbtS꾀_`9phBDH4֊ky9 @֥>_z泞ct 5z?_x%r[]iyњ޻{ÐXOMz|O# 7 I8bbsWK_Gk  J6'eO4W g5T {xbb!F}q0>Ϳ  endstream endobj 3860 0 obj << /Type /ObjStm /N 100 /First 973 /Length 1387 /Filter /FlateDecode >> stream xXˊ[G+zlvuW? LH^$C#y9gF*,NשwUUC eTAr04FȉO~6PCMB U Bu >e %N"lXJ*F=QHKR`BXYނw ;,L;$S9"mJGyd%(!%jTHb4:ClEt R uфR%AߘZ V/stzY\$P,K܂C֜(A7Kro*$fCCWѲ8 =QptmyB 8EJY`[*lKltK4W1)2}07OX^yF#(ӷmȑMo4M7CIJ1`[cĭ1oFf,NLEgެ0BDYwJ i f ڢ(C6 -3jAu\i3©5̰Nai2H4ӦR3Ug1 !ggY@zEX~崹ѣbi`*QГ`9V":uv\#cx yvy[!f]U"pw+ڻ`dIV} ǘ+<ܾ{ay<,֟ÿv5~xz<GԶZ^7Wa>eÛ'O"GDo.8 X偨r@GL w[E-yk;4Qt4PGEEC9O[<"Q\^{w 1[s8S4G3%XaanK1wQ> stream xڭVn6}WCMEKRH;@@/ERĵAGCJ ^}␜9s9Ky / Iyz2LHȅͽB{mƘ&2on7Mt)J4r! !JJ 's`RXHH')qMJKH(ӧ h4J4TuFjZ~۫?Q-\1""R+2cOA_z-5)qUBAN=4*YA DfV,=*~Eht*EYD$S?!ʂFx$႟Q/2T ⳪V˵hNEirB"/|*-_s*aKZ1/sɾ+%H5|/kg3S,s=VӱO椝>X?C{!Ww,U93K'dC7OCG4>y=^\$JbxѴ}1)"Jm NkOW9S'rce\ġy ;^bB _$eCDǔBEӎdRf*]{K'`Hmy>w)Qƥv ZKU9 VpQQM''4G8-L jCH 1]QuQ> E)FiЛ2ז1k^RH{ɬ5z,FÌY A Nc(Tc'Կ+?o00,E",Q52}J94%> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ07ӌ 2@]Cc endstream endobj 4008 0 obj << /Length 1417 /Filter /FlateDecode >> stream xWM6Ce fOINC6hP,Pm%Ddɕ]C%K^ywlO=QrÙ{(Q&㏷7U":Y"F,3|6gsPILFEJ*PW4̋tLPF3o4&ӀF$Θ䄧)+iۼğɎqQf'>6Cwa0Id$qۭ~?l݌%aݙBL~gm Ȍ=~7ڔzW/fs!DXXMM@{7Q]Ufw3|amH0*sL B%(uWzN+Óݪ:VbdPq(*t88C!a^f6"4࿁HHД)p+~D_]dشT]gOu}%<||*7Sx.yg;\rC8%2V—wkM0]]F漬ZmMxd(Eg :BWb}a0Egɋ5Md4ͥ'Ӵof= 'ǍdQw)֯ڕMXbPZZ:n Γg F%#</v8|UC9aJwWr:.~I8Pv}|jkSn|4+IL!tjl"/ O4~h :ݩO[˥@''+^ջIDwԻ|1+tQX˦[F$r% TBt 8+L~]̟1CXv Gj'MR+>_8crԒ۔C3z][;= ,MaQ윆qӂ0+HI0`Cskε6 zFǬ7&QMw]쎀-,3킾ï{nєS2dIBbO>S%"I̒sLXTKڔDͼJ84/s[Cp^r@OzoǠuz,OO!,s_`|ʪt_eq~VtcЫE2~SaY2EBI_߷IŢApwot q@M RK?(CD M{,|5_ͱFJ2S^(AE@Zbna&ꏢb!;IvoйJ*!/$;*'9j]*j[c,o=# !%/v@]y?cLT\Ո$~1ővbqctcx_|vS#Whr d01 xͿds endstream endobj 4037 0 obj << /Length 2265 /Filter /FlateDecode >> stream xYݏ۸߿B@ξy(mzpA֦jeɕlҿAҮvm\/?Ù GRF#|ot))2f99 if[tW2JDfhepqƴ˕Nl+EGfsw)C[nÿ{+Kc}(oWPx]8>peWUqІs7'T6Z)#bkY2e]876[3qH # 7L-b!n؀&t,%l4 B E-iq,`%3)sS%,S2hڪE^m#o>v8nѵ}g]ޭ"w~FjGn狆*[]4'2RQ~~v2r"s,a4YjMg3\DNతm뫵gY sY3\32H1u-B47FZT|X}tGLB,Wqj7wEew;\Cdz+]}Y󮨫=CN5{[P2B^5?G9%^@ÿZ#kJ/nJ Uy-ĴZ _z6!ˋ t ɭ\!q&b0? !$K1Z@!ЀGuſ׳.HDm .kic@!iO,QjJ?:L}]T]0㦡!0X+iՌ(%'SCT AXİ!IzuokDzȉV; V:i+m2a9;; lVE"(7a} /d5aG8[sVu\:W5ShpqbבdB>h[ ?}w5!#Cv/YUՆ  9e@QC792Cc,r@VS]Y H :,+BG1#k$逾.42Hp~5W݇ӷs&>S'*?ک -iT(~D2 Qqqk^aC"d{섟~Ќw !Lgf:}8ru(0˪~}Mxr1@t ./Ů!G[~MХm&H nH2:]>qI7]R1ɾ!=ax5qjT&狃^0iWt;naAAdjE>'O!pŶ^OE> ;:'퇳b NX%ŢRr l 2 _Y>{ yBwu$i|{(|ɶ S$ŧeV=!DGA nQSǮ<_k4i^`ߌom GR,/ru?TB&uZhmS,t%@TF LryY3F˹i3}#ʊ̪HWj*w3b6H8`2b$ fi[Jݬ rB~oJ_ٕˏaQBk`wrIr#d)GF$h*7T- *Tp0sm Ȅc@UѷcvBt]@i*U"oo0pq $L^nL&SuSi!~вo7j0 A-*cg5pg2_G%nQb[6#Z$Pabs|Ga!M(tFd*JAː +2Uxv oV٢374،ÕSGzzqw5U7ad >~~|d # 5W&;ϣͦ$&?[^n<ы5bh~Kyk6.H}cݡt tZ\2VU]RR[vEmx h`F}ƃ,fRCzozb~bMGon endstream endobj 3980 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1415 /Filter /FlateDecode >> stream xڭXn\7 Whn4"E`n @d"i4)ҿ=eL9:h# o/R".p..ĥ  X`Pz;6W%pJU׬fkƪ)z\IUY-9dJsIZJb46S%i H* %Q;6%8M8h$iN88lFoӽp6G_L:Qb&rI!F HġeHop9 7^B{q8w1zb%p:+j961s08ƴ q9̨e8q$psx0;qܝfZqU"`՜&<}}V<$}jUqMW@khEx uu:%[TO@9u< l\ `(NǑPq6=>#뮠xmlNln@ŨoNN6G @i$<ջw/6}Q"Ny@ eX-{ցsFL5p&*ՙZ6$:[fր4,S=h]"{J4sЗwu`-Y$D=DJU6:pe:9IS3;t8ř BC?pmn>TB H}t6sgtOɲ/many7puzwq}+o޼}>| t wFlĸ!-eHP1$S qɼ@DfD

"1a f_ %T"@<{D#( ?b""hQS9[ "'44^"ooe1 endstream endobj 4088 0 obj << /Length 1970 /Filter /FlateDecode >> stream xڵXK6;çL"6Cl[n %Gs߾U,ʒlu;ӹH|A"nW_W&e<:HdqmUsύuyRf(If4˖&l†?,Lڦv_X6 &' IDWHk΄1A8KLF?mji)B?ղ+j?XٶWDa6mN HW{JnMDuBýE$hA֗0UXɶ =-QƫVA$b">upaG[Lc^t$jUTԮ6ɷ5p*ɉ֖ObtP:%3&%F4f/B0 #,˼c$%6{"0Hͤk׳:AƲX=RXՊd|V(%$ʼn 7uQuԍa2D,KnULѧ΅ KsEG^x}&Qzjg-fe^H6\i0i.\ Tҧw(MBiIX̕C'q^s6Dg!̄Ýk7Mk]v.v |[bAݹoUFn"^bͧyLiBI`,3`~KP=N gkqoܔKN9~~dhd42mh~`฀. %\F=ʼny,Õr.ÝJ`0,FF z<؂teSb Axg@ؖSO93!R!G*[T 7D`!0H>cMEKW.oQH>$O7{xh'Oh?^FflK$>)ϼ=%TG?-g:>Ik &+gSsy~>x-|=٣/)΄3(m*O-n endstream endobj 4133 0 obj << /Length 2112 /Filter /FlateDecode >> stream xY~ܜy|^/ ȵ)E($*K"E[Go[ #>A3å6z$)n7摦PuCl?]Q'% Op6R7yX*kST#~G#Us4:YQPqT$ђDr_]QWYXr}d˛}7}de[#eU@nUղx֍2yX`)5%P=31b{S(m^B>923̜ox<%T/R_HiI'j^AS_I`igKL.(^[<ٷ1c|[+?z9ۨ$2t6p, nhz*~6n,[K.,][ŖN̶-",mqrUٶC"\qk8!qbp!mG۴~k˱sQq $Z]ٞ҅mkۃP&XgRjPm5ikIwvmi¶,^@B޳IRkF?.s8sRE1KC1BϸiR~ ll}-)zU>AXeUe!cjM@x5\NA|%I

˺f1#oj9- f /Ί%U:0g|:1x1^9V_ ^z|^x~]p0^ィ:LC(FՌ>L$eڃ|wsEQ:|ӗ&/X6wX׶m]p,vp6M|G_ P(< Ab<7ά.-2 Sw@P_&/nXG4&xeH#.*=)n' VOo@fwegCl{h@[oBCԋCE2y "tVCH>_U0/o<&oOOI$(\,M% 2Q@s9Uq W^0;@M[I\n1n#pRŦLMP3.VJlc͟Ļaӕ@t )h4e*|DD`~_"kbaC8PTa+g7XջMtn3-}@/:J}xueSk|%VT֭fTr!+,| ¢۸b{nnޱaeqonuk,/O-;yr sPБW$cP૧E!Ƞ endstream endobj 4085 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1241 /Filter /FlateDecode >> stream xڭWj\GWtAxEp0dp>ZeƹԽsN.m]RZ/ an,[C"!p>vČ78aA81{1 G}nygh-.Y`h^f,z( 6iM4oJxp i2,gBpTbB8Pj!t$BGG< ÉC cxp8&cZp@H"Xq ߈0:$/ 4x ))fL·8Ʋ|CpXo ]18t0a7$;/}r8&f!K^$B!E> HC&++R+ܗed WEƒC ^a1)PpYJ`q 6*>1$8P \XfT'E[ Q#8VV>/ !QaALV$#vrv7e/Ք:2wÇw/Y *WdwVÃ@7`8'Pv8-VO6dP(U8DV pTVOQCc۪11k̊g}(ŀ[|(Trp <১Os ZLhYb'>_LLۿy\W{|_XϏGqq wq~È]~<7e ߁ýE,'G=q,@m)̡UΎճS6L m*)hg=ĀzUIdZ"8թ@uf򢃪 PΖF lDfhur(x34! +%j# 4#@:%lσʙE[( t ľX"68#\{Cf^1s>˔:{\aV=Jv5j]P9n@\ 3m <'X%}g#KfMЫ t\9T| OF#F1E)3Mx" eD(j["[VeqDQNJ > stream xYKCd`_z&;@$`AaԶ֎-9<ݾoO=HItM$H pۛ Dq.M (&]߇lKT2Mb)uQk$aVE[pۏ2.Ma52nbMQ/I")`(59Xfi2Z%Xi;8A0\[5aEu8IaX&|$ ~=W(\W'!nj69H>olPtC> stream xXK6WV-+%YRڢz9thEЖJӴ9bpf836Mٷ^&2*aMafz{P?~wa6$ $I pM+;ZߪDXZh{}'=jUʠZIt5<ǵfuwd]zDUviRzig0K NŁ<]"@3Ɇfgid2Q 'OAcā(x`2iXZ5?h\ ,*?0%/0v{#II @GZsGv@icn W`8,9 NqicǣP8JͳBLҠy<"(ʔ BTA>@CiTHp" $qpk3,6{goi- Jb+vdyDV[tB!al\w9i:,T,}q4/lFDJ.{h{ KArߨΖXo_Y25D Zբl?*<8s` YrR!:: Qe3I2•!dq9;`[ynfl({pZMvEX"/ɖkH{ <0#K(_v!QOm{JjSX4@0Dϕd o/@s8;Ɂ"V^GR6po磣߿Swŕ]0u*<-LL#R$"=1fZ dΏ0FbE_a^3j+kE, 41R `ZmiBNT-t;AyD[5Ԟ0N4&ror rt4o]0D_ȕnxp2j4I ~6XQ`BnD킆W5br:rԥcg~ĉCF$JLZMQH IǎfT<1%c33XavCr>ʮ 7e.JrL{ju5k=uPƨR\Wp &'8Ψ0bE[G{B7jl]xnG._Cu,{>hyM~lj/\jp*-Za+A N/,btgh pGf.' sq/I_qE?Jca>[FcmõlOp(|uOvh:ؔ ֍z[24~M4 nZ)|4(?; SZNyc ѱ pҧCڷ/7-tH dN<鹇EPeͿŬX7z@>9 ZC X~`aG,L 1O{A*pM}vw}-Ij$[)> stream xZY~_! iͣbbMA15%q݇܇g'ȏOEJM&@QUc3b?ܼyE,̢fE$bq[,}/1p\%I-W4 d@^Kyz }p˷4"!I7ͧ=9\D(D8&ƋuuC(`EHX.jA㘤Q r>! 'VYf$%"NAXJXLqKG|&[ 1JhQFx2U=YFx=Ap^# q-<s#fpR?c9ff׽jjL^6YRbAך聖aL؊q7Ow»7@6:bj +~cy.#IMzc0FYtJY9izNmj@}>v$Npw,]ں쾡UH1xhx=d34z\R [ԝf9KsSJXJ^uEƇV9Q3q4 @ 8 ֊2Ky~/$֌\7= ih鎭:l֍ݡLc=9ڣdeN\+GYKgs3̞c@pU9=j> stream x[_Oa@"kF)J䒻4}h@.T]5^ɰ[>|g8J-gibQ9$g~3n/~|od} _q}|.nw{RY&+070ͿM'dq7-}v ,^Ax\Aeb)YZT˕Wߧ)|H2P} 7M #=.aD}yoL`YZ ezp1 @P!KZl]d3Ŋ d>]CP>50F$^z;=d.fQ gA\W\մa 厞yQwqT &dadưkusB1:H()_6FKz8lkF+] WX=n\#E,JRNt#xhc?I]bUXP_h5ApG'b<`q ,[;Hx3'!b+9-=ˎlAgu^M@/R#d `-Eo3k}o aS4X(?^5f!lHq5cE[RH%T3/UTl5_/E C5 atCas,yqg)XUT*$gUtNǙ |{$戀D`6yMlt"a)UYl'L,mv]kIPї\Vl*,6\^ /Y;@n )G iAV`ŀؼaUG(Mg Ufh6jذ ː`Gkch1YXbk@ V( g[}l%!~uY0Cp|HTަD%YC'8ePY՟We0~A\\Z.y0:ۉ=@ْ(sxOt}VAx8\kJ#f O: X I=Dk,JK A^|v d\&?+1-3IL`)@wƅkE=n^it n;fp0ӤW<."w/_OunBmg􆦿ǨJ@Uff!i\h$(l2j-ʪM)7:lXŕveֺ!kb $8t6m\u{;x5!z0`<g`N"JQ{}v@{NUR>0&b;q+3UBGjnEyNG@|Vݠ|0OcVU Ч6ه/鴯iPb 7%'kbb԰SC;c--col 9kg3W#0SK^:k]maw#es$gJK^HgSzTJvK/@}iPZ=ݗ\1?tox|3(R~඲T ?\ϧsiFeޗ08J0k؊81[*MeerMg:I+Y@2X ߫rJ)83t1 &qXʔ>=~C*utu;9^\v\Yi8_ىLg~+[O\]xWn^^qFy! Z?#g_<0cStgxƔ}YiWU >IL00!w"qN'L :aSxX$-յA'ou^:<+mQoo͉rI(tԃg](h+?#9|u=R-$xԁBlCBIĥ[ I?seOL6>EB }b^3!H: ўeusΰݶe{@3wf ^U.&n~.B@51,L7IYOk3d6]^*a)E%iׇ{CwOӘv\&37*D۟s;$x8ڂe( 9j+~h{ˉo$.`3V`s$/^&ӍWH9CJ:֘+;gF2@b7MjsS( S\eG8\ٵ 8.~506/p7$(w*d*.=dX.ZrtrSdĦ&+拏MvL~+FwWZ3q]6FW:q^ ~u$xӐT3qď==:!*kvYgL\π<;b+.NىgΖi1y?Bi K "9G3;^x9^5aWT0'imtfm^oܚZ}WC$,SS"_խ&M$#n}3vBhtN2\ߘv 1{ГIBAW" 'I都͑@!L8ytXSqg7`S'[$ dS9ڬnX%PҺaQvY/bӭM~ZJ?G$x5.fݿ1͵u<[ۉ ϢNtټ?e7NH0נDi3:3t ٕw8eld|1nj' q ھjI̭r{eFߛҺ endstream endobj 4273 0 obj << /Length 2346 /Filter /FlateDecode >> stream x[[o6~_a`VX"uI&AbQ,PE-ʒW3 0?&eڢbeO(ʛX>6kq]r=|9˔*Hʋ+A;]#^fSmyetIJ_cP_3;LѦM20@8Tcr6B@@${4! 9"<qjwR9/&J>~12hE\Ƃ!F"v{~ꠋ (\TGh+BtZ'EJ  G. SG)}Q@.+=@﫤€t,tIQǁ1(.bI% ~Z 4O8>E\?B A6/W\r$\shl6.طZ= A7C˰E2 -D X,$Hڧ$7؏OxJovT"p_(4{^ u}y1SGx /.iZbCLЁE0:r mpCnH jXqLt>{"z}_@kY8Ϻ'?w<θrF;cO_*X6N,ф4@k4d}v4Jw߻7Q*&+%t;;\DwA}CiD7?[|$y]:E#30,x“BBvۤiҪ7I`YhLL(8ƍ6Ϛ0*FXԋWv{ AI8R"/o|=$6ӳw&iϜ2/Gw P|գ h hVX\d XyGZtѲbPBgN̻!WND>b~2ĝt:]-دޡ޷Otľ=s\}{ sDU@4D5/!Vײr@ 1%4e%jY-e5$sleGȊ:[I%u;4+&QPRV SiP*HZAMRȏaA) (nVIoymK~PlW%M 4a(Cv 8@1=$Haumih৕lN.Ll*?H1ayse2 &͆0f6C\f`Lݗ~/urm^{Pl%3ʫ-ϳq: \ͦJ\sq-+BxPZ[_΄!YR< ß x>wX<<8n<3&B)0ICt_EiQ`kEhV&ގ=1tjòz-<ǧ|$6 Sz˸ڝnyGD\l|S'~_ !_•Q tgEsrB ٝV)e'Dyv^?"8d;;=[$p kwiY(֫3^垺8M㱧' )ܤ{(7jySLZr2vu*uϳwjnMI{ :s:"td߃%RVdS7"3['8,8p3#:}'+X1]bLF5SgOrf> stream xڭXj\GW2W0@"‘`bf$9G 3#)SHu{N骮׽%7 )sPrSԠSJaR'B1bF U Be-7 ZQBAF>?:y1h<,XfK 5[6p$T u[ 9'* P5HFaR?tI R$P E%pZ. 5J(A$p2= \ԗT1S%+9p J^x\GrkHTi'hOA]S*A:/!)5HF2٘piæ ‡R $Bb(uƎdJmZx8aQж-QRGAQQ -RfܶDjThQ&nRkؖ2#R%3ZuHK`5rTUr0ctƣѰm Fm5&ӴGkFU'`ԎA^\&ɫ*\Ԃ~5LXggDi`*'vF&-縎\>(|r=5>ջ'\;-|nmMWayz9ٻ\WKrzr} /_EBC6v p݈%랓2UtH"34(F1X츗!`#9z9cJqGcjsLm=:ΈbQp:Z&xD/,'2Jyx:y4eP `:'³hH'QQcDx5VO#e;b"#ejǪ~T+A'د'^'xjU{iONVC ov< ,#@1s[u|lb7ijyE<%,eԘ0FD,/<ѷannp\c&X_);:!H8E 2R ].`CPpr-@Q[R{= BxNh05|uN1C}u=xsP~FJQs+O.[:-ml/ c^鱋xc چiC׷Ⱥi Xrl93i NZRlwc*ZQrrDM=@p2b-P~$3p` P-Zu${00RblhcSGucnhh͏w)Y=? tqt.G_WNwo3 endstream endobj 4321 0 obj << /Length 2234 /Filter /FlateDecode >> stream xZmBH>T:Q^EQtZɒ+ʻ ?3,y]{oڢbQ3Ñ}?^z6{ f$GҹY:4Fw%2#ꯑ[)4BxDRꖈ 6;l.~j#]E]M9$3'^Ĺt%_ow)T{گ'q{>OjD<Wx; RQ2F^G?OFzIt76<{R{7nwvvR?INeqlXeE!MS%k)a# `B{:ZRzA8Щ`A tDjb!8+:uJ$%"/!ҢGdTMz{O6Eu}|7!#/<)'i =#̓N3af-f­Ƚ/5QvUe6T8&yY|HS/i C; O?φ3aE<V"0VOg: 78w'ht! Kac8 /< MO@"ux)^&^6 CА|Yt;ƝE )۵(D +4 Av{+4[$?lM﮳6zOUڴZĬݞD ]K8xŚx;w64Wet*]JF8}5k>Mi%g$ bkogG/;Aއ:/UÅu`j[j h@ 9@Omwgj - õE=hg2{FѥZt/UHai~cxpTN[3<{Cpe ˢ D2uSpͱ/ilhc=U ʦ6%#8~H8I@>ymdfi{Zz]Գ!;fTJ±ħZ̊';/TRm[=YJ"]YMEƧVrZo^pv< =Q|t%='4rޛZ|VM` .E@ڜ]ג-Z]$ uT9} SX$|TކcT;]g .|Pir=U)TW_ χ]ς> p9E':9rM+3/ ?iGqZw{d7dgº[9}!j ӵ RUUciP]YdAu$ʺ.W_cEd9Σ'Rv] }G\,Z7W*Y[ʍ{e߮JJa)t N,G`*Fcǚ l:dy}Gs,؄K˧Oi% endstream endobj 4361 0 obj << /Length 483 /Filter /FlateDecode >> stream xTMo0 W(P_˰ ̀aGߺu9AۿI;n<E>> @_mV €ΐhE"BhZԟ*圓^W*$?wI|ю[2ZZ];Vx?zcsY‡ɄBzjumMʇZ[rcJ(UJ  /^au- r@ r6v c-T`xb18Ўq(PVcQCA0"{D31G~KhԢKhR3Q E e)z9,;pG1Dj%FjG~2s)_<Tx$8Gcc<@:V~᫁$*Tc<0۟/R xirSy859i|=|qF~h!|<)ڹmf}3KU endstream endobj 4369 0 obj << /Length 65 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQְЌ 2@]CdF endstream endobj 4373 0 obj << /Length 2050 /Filter /FlateDecode >> stream xَ}BLKo6HLjmHl`EHV;j^dy:{q6߽bׇWV`1BoTl 6a%星2Ց:ԦOMrE~JөǪ?ɼӢzZթjlYljTb!@j )b+hڭ{Sv Q~=u]Yø7{,iҡ8z=\bZn V)3ODm@cd"i=yP_ I ]57&u&@xPvSvh'|??U X;25mrL?vI#uK5)X6eV˼U+2$.0jL^ Cy*Хk=loΫ錕FW\}dR\$vUHѨRh_S\*{sou:N)xvF\zBt=MG&Ý]ͻ]a& |W:Pl!Ul!`_yU2'/ `U\:@#^ʾvup.z;acCX%S*&TЂ qQf 藺/ff<ɴ>uaz|bQdUt@OWˎus)wSĦG3,Nm?Е( R~m E!0V̞B`]`t8`cLF)'T`BU:vz.D1 I>wJHM8}0ֵs 77ƳDp '.p@"$.G~pNk>]y?y?~dIfq!!rW^yU LL_yd@V Ӊ_ȵgak.f(l&P?w]Pl$˴V%XF7Z $p1Pr=g@ n/{c53"1rT>`yR5c̬t'&zlV"Q܌HǼ.J/tG Ӛf7J-z5p(42à^e}Icn8n[q :J0=ݓK+P\gMR3e*H\Ay,_1mՙl_T%3&sy:Y(fRǨTPs'Zã!"F*߹nnUƵZA0M @"\Wͫ G*{4ؾ!I ؜|Hy͑ n"A+(&4T'=aǶ~?~u,dP2M/ga>:/Pn׷G= !R|-uk^0M39@/ͻo4ӕę,UI7 6HHXMs8_9Gs:+ӄb|ԣDl駠(;cڱ SL^+LN\ΦL&h:-{ŮkU-p\5`xݎI?XX36M'}R']f|+!=vXOɪj@Kl| qX%4X(l<xpsMeMYfkrdByo݃؛P>Om,Vvut4B엍Ol=8}}p/F *#fbŲ;!٧" ޹ '̗s&[6@6Uh^A] O+ Ό|9W !r_rRi7`ӫ54⳺2⮗3tm0׃KU|)y`PT~l }! w[wgPO7?9+xqcgܴp9wPVxd|.? b o/;rt#^wArܿ @Ãer \( Br)of+=6 endstream endobj 4318 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1241 /Filter /FlateDecode >> stream xڭXn\7 W 4#6@f6"HE.H8="{")tҊt"G=BF+dJo.K@ @ ;ax cTBMb3“2( ,gnL_ u @\/ p 2ks @P<!*,b,xA_AC|!h(EF hKy,a).e޴PC&zs Y<rҩ/E"Ӳ2" '{d#}!h- <0CCBP Qxwd@f}C#|4/e!@c| ]ZVŲEV>Q+e顦K^PZ{eE`Zaj cުBC|x{qb r8k QQPG^GKHlqd'Zs Ѫ"2괌RUTBU'^=jG[kJg⌚Ʀ=O4NKE f7%VyFVl<}d׌ti^uJ8+:o^ѽD3}Obڱgv:IDb~PыDCJ"[zd,y"jL(W/1\rLS 'xzM9f(;&HwO#}s=A~ݯ_<,WϷgo'L=F '0˴0˶"x3Qmaq0}Mf JnOwʹHsXe=o£urCϴyC밄E/g,2uፋYߺ'. ΍ endstream endobj 4393 0 obj << /Length 2553 /Filter /FlateDecode >> stream xZݏ "=l|,Yn+[@[7@n OLuI?"؉2MEQ"#`8 fwd2ݯgFLҳg/ .XotBΡ%ΐ4^W6UWʬio?nx-.mH!,aVHd@Ħ<ɷ"#zrUٯ/26<!~k.-}A+RFA'3UNQҏ-n,Bؗ-Dk*:C5mUg+C//|%E,au(Vɸ̚~Q^0 c =M7hZߺdͅ>L"C%hoh񅯠*OJ$-|Z~wk ~6m*H~3䔝 |gA|#jJٖ~O?-&Ż<8+V8{71tO"0$BiR1t"hl:i_)1vdHýv{>(^b/N;YZRRVoyttߺ+M~!hjǡ^e^v@~G?V]^h$5\XNW Ӳ9[7Ssa{i}u=TzN-e;J8Y,` f%%_XL^i#cqfhN1]֠Y:˨Aӷ8^|] ]8ACbKb GZ*YnV^V8o\=th3%>0QH@pnKљVֻm:Qǒ5-Aڪ1Ӻ6<5bxtn.L#eu=𺾿^`&r@9ۻ f+ƳE P짻R0XB1}- 1ЁcY0  #JKO`zlhX~# o/x*Cjw%:+W|daV1҉Q|2noॴzY&L fmS6+C BBzRCy?_8OULG"+LSc z]I,][K7-]Y\e,#@쳳>!%`7 WV[̓EЋTZ%'CD@ Dt4ͦ {T^jPà[NW&|`eFu\Fӿ rAa3/ ^#~a@(=:JRpv&?:R!%h XJG@Rrtr}2#M=X.2qX9!Zi>hQ΂B,38ܯ " W9`%2fٗ25:# Q^DZr%T"1Fj\0C0 on)r̀ЉJXi)Vk`Ere+xEE3JyR>:)}F0%d7Y39cgQ~ sKf ;bo/i̅d$bI-k\ rP4):6rRP2i 5_ VK w逃?Uf%"QSI.\0=~]%OgZKg%qQ~\V,2Ws@w 73 %_3YkH9=H-WeA<*'+2-hCܯ>׺Y;lMFĮtK#c86wE(6-NpРީd#RfNΪ8GnG4@? :Z:68HkyC}c_Lۮ9mƻsCxY[_ېg.At}A fyb8| ꂰ Z-*!~A䐣>C"[vno6O# N3(l/(Ei `" &TD-rE| E}̈zwyNn|߄1CfI`rNk$^L`Ј9o8S MG*{ilÁdٚKX`W{&b 3  4KZ)ܪbzfך@B,89{tpO*pWRH0lʪ{ fVL> stream xZIoϯh HZ% 20C&p$2S*ji[w-EXWEG]㻟1V;ETa]auG>qjey+m}j'MT4=J';M?QXhBw$_8 3U W{%UОq/9|۬z TEmc,Ұ^y l3"okQ]7Ȭ{j,uonګ=Vvt9ؒڎDJGjۯӕ̂q_kC ߯ tg;K"p4ݭ{#E0!{xkkw%RcơJ8  T gwnj4s'](tHtw0SSdAeUi p,hђ[י~y嶲mco&iuumoŀۣiHk 佄V9P(`77b~Z)$qn JI7XYt+PN^;g .<#WCgK'P*dt{ǍDEtX@ x"Ps $9JlLDD,idlǺљsK3ua։HƣDmui5! NjuG-+@~q,µ l 9T3|9}}?u΢V`6K P`{֖iA6xLӃ9X9P^|<˓Ȁ$"xǁ3F06הdLRoVu"[+hƨBHl&hJVeGs:dHYSK&4ҔmHsƯhZyLPZl~I3_c+5#Y8 4Ysbs k/B?h{U {va{ġū7 h3DtWE*Sa.r$Ed1 f!cl0m *b:ϯ7Rx %Px w^cER0-Ez"!( ,WϩR*9^]ny;^^(NWÅ(<-%8J^z_nO\ȉ-zOH@s66 ?Nsr:aMߎ 8_}>܄HoCFDZŗ׳$O-$8 [Xr 6f/3WJrFkmIRK9tW gٛs|v6D"M#M d+"BQa&" \,ԫ)np$+&4P7ka:+kX=g33CU9d$Yߚ,ߟ z}`O,@M툲@#ZjGrNߦ:]5EsīOI~xS:Tݴ%F Eⷄqws"޼ aQd0`ɶ(v. Hl{.H~ @yd--)G`$Wc$-zRe08A/v{{2]3d'"t?+jtZOG6aǶ_tӿD6w au7:'{Y$4 (ꋾѶY.o2i?/L _hi@gK|*6DkCo42$  S>XE+{?^ptbV^ 7}M9n =bs\=.bbk8'0z̞CvudtA/ Tpq=.dͺU`C=ƞڃڂp$@-Aia Tz Q{EG#oO^O?hH@oR"-. =N0) NadYw8;]:D-c#RvS.Ǧ1{?1Mc~ڣž|ĺŷPJ NMah?}N D,; aMހYnwtQ:O"_ػZ#|(mLf6t4HA>vu7`(d&O)9j탶ϑT[-N&^X/NSysN>HGON;=1#-YX>W~x$]dX]NƁ|ol,e#)ya1 endstream endobj 4447 0 obj << /Length 1878 /Filter /FlateDecode >> stream xڵY[o6~ϯ0Ї@͊w)]l:l[PUuX"$~/Hy,1Թ|hv=f|yIf8BIz&LF1]^>tYdxh<1_ͯq!D=V'oZ/7ׯ=zٸ%(D(KQSĈ[ZX2o~; ?sDhP*]ΕD# u[hcD ~, `<[z.6n_>w1bF܅%`Z  b54nbb>o6i>e͛bI]uVٕٹ(oϗR0h;k"H2ώ#IbLҘ)2ABv'9-"eՄ3Os.Kўfoݦ-8t&vl1C rfa=ZPJwy1Oڋ2 <-n3^gWM^\eA7&фyX${ FB:S` mR$SC"Ze/% yy .UVֿuïs^j MxZ۸ 8]2ATx e}@!F} Qbh#2C`ҙ #™]^&W@o4(I/F f"iRCT^($ %G HPPR5Ѥ5LGW+t(_@ rXr`ј [_bO+ul(N픇qqBiW e>*B6a3O`Ag>c=()xe8 - +ٯn S8iɁ18>"/YcPl<q)ܖ (ݍi[N9Z7P` sB@OjH 2g`柟7}pD/C>hCJ߹G$p1XRg~i]<_ +29]lWRBVQ#>P{xU^a1N!paƓWkM+́kӄn"ČB]YA<,fJo hn2J_t&h]>O S0@ \N$CT&ie|^e'j% ;Jbb}AC3-%kì 8:L:<:O +a{o$IUQѾv/5:n8j@M:loE&[܆T4&D"mTBٺ3%BlFZMQK`-z#푹Q `z6T{LǛmp N-Wʛ[r`юYgoMԠm_6)amԕ%6tv;0gk7iyU #Ǖpg-Kz=Cbx&ɎkHgV=7Tʋsgfĩ\+{+`I^,0xq}y{o7SRDG UqF*#gP~3£ ,T=KM>qqEvGO8?~_.#-K endstream endobj 4390 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1242 /Filter /FlateDecode >> stream xXn7 S Dȡ |+9 rEQ ҷPi`\ڋw#R$oUh,jJmOiĜ@$Cxc1 OIM|TCs 57`)`6'bm9'Cp VȀ|&F4V hHI> DRRKAC%5:Sa aj T;P!8 ̓刴 gxHC0y̴ǫ1e4iZZHcCep4aThJ5Hq8fvJ #5S 9;/ _A#~1ֶMRЎ![hG eԴp hyT0hVlggFHg) Iph0!SYDM40,52$4RcijL ̩ScfMȃM]+5vH85OV8peүG/:W8aw$WQ rcQPxgxk1EW!^mi\򨿨}Q/{$:]׹)8UƝ*d,"׏87=$jzUl=$b|X\ Gx8;`$UqFL8;W1 ]x+e"*aptNoYrR@X]p20Y+uBy_8S_QzG.9ޗH(.OmP endstream endobj 4496 0 obj << /Length 2526 /Filter /FlateDecode >> stream x]s~fPj&/tK/INlG Iv],H4dkDX.`]ċo^;}r2|-3۞?GM%-& }D^ׁ}xG{l* - ĺ~r8}/E}@qz3L@1]Y`xd 6PKR1kK?;Nv]c:v\!2θI!KV7\ZpqP7LnN<6aBS #f|"hxerNlڮٯ 6ae2~0v )ZGyS4I ׃+(p˛|k $TPy6,nHP:m|\}spM6oN_'%i^K ty8 $6Ɗ upp+_ Dc}JbI>'`/LNX+k}5[ =3J/)N&@ So*͟ LM&\ lk]?(\h=z!$ҊT[@[\'>]E^,L&ı>C`o&*PR8mڇR^hml!/*;e0B=`aFqxfqe̸<??Aq\՘\hsƞþ?vf}=H=H$5 +uG]MO0Yg:\iA9 Ș0CR^Fip5y5,),S."^s9e`D23tr PؾpIc&S@\hmW/X(ftRN{_ê4ŋ-6H%4}LY!}% tB\ێ0 pp,ܶNt|߅AX!rszh[^FP*0"'#a%"vLGwq.A 4kcnt HEc-qR5$R *kKk-E1&G;7뢚`-ĩmMq͎{F3XCjoɃj9*7&(4uYP%hb1}QmX^7?%|$Tnֵ.i?eG~cAn[nwȎLJƟ JH;$j(`Z6-PG8Rф l\+Z `=GgM &}[C7y(ʧIL,}PumUm,_.u7;b NGӠ궯_=RvI{TZ%A&Ku|.;wx\\`殈Б: A~;[/n9WaCqMْ=,}owNЄ/U䙯s4L0Wћk5[M4`A43{],W ';/ji?/ <7_MT=QlUce?4}Or/֋>K]3U޾yK| 7,:~3>XyjN72aɨ?>Yyd1t+8=[zIz<.iVRלR/2>IΤ/;F|αFg5p?F04VX W͑?zo5 endstream endobj 4528 0 obj << /Length 2016 /Filter /FlateDecode >> stream xڵXM8WȘ)Q9l,940FȒ#40?~X-l TGƳY<ϳ_<{V3nW\9g\SޮӑKS ]LNTAZcvIo]]~؄˿fYUx]yK[Vnjk{類r!yKŞN(M7KΆTA-"֥ۯ߂YgkOKvϱ[` &}\i_8%ޭ7U.ޒJh(%%xr;Z"c\v,45?UCA8H?wspT9gxOHOY:*ٖIQfWcB1V[ Tj{0HLBlaU7D^2\|/;yʒ4tXP+#I>:vo 7[c0O #Ut-{Qv05kLWe.Y ke#PRM1Zk˩YW\wR\SPy /GᰭK~x\_/^=N,mJ*Fɧ'R2o l c(\,?OQHid,S~1jw)r% I4?gsz+"\Y΃<؏mLY;Kxs[1`*zz;h6i.R !~zb1j/;]γ"bB'"t)6ci["X)~> stream xZ|$R&@[ܵ)Cn!ڵ[r$\ g~3$=/7f'bv03rfe\G7ɪR)5bi}!>jXSf/|7iEp/d8 "ْpO_]2N˶Rqf~L4Cm%%w|nZgfXF2젓U,qwa#&U7jJ#UaV?Ydk[~Ch5.Khl}8yE]֘Kf-E"/xԉW?l3J}+\M%9o~Ķ5]UXgeXB{єڬN!sJa1KT o"OrUJwi+|Nĺ(3}?ɭ;+|ߍs=4TJ5G?nWk߾| Tпu#WqW[X=/=yQ7inݢ9-W{5aJm"VyNyd &/҉~v4 &gE}GvKm^7oZFpMAT7C=^ 5ohoeF,t'v`!:1"@0LXq5i*^ϡBWYnicbDeBLC+,c&"y _%cZKi&$Υn(1]-+ U[TR|J$hUc0> ؠtmDs^)혼&B<ĖB;;,b3zB`Cˈ5uj'$=R&y'H`AmjK4Cd=-8EF ͳ+[*C%DUPcYOB- eV3b gK 2mq$Wܣc}UH<@1B6{R򣝁zGSZ9݅`[x8@]v*5A@i1 :b!:lȫи:vο=n>D"5LgOc.Bd{zut|&fRI&~kk^n~gk S3ٓkŰQ?oAX[uu~Yz18:^s.Z란}z"Iw\7p!1)s!ȁf;֧-`.ȀvkGv@NGWnc &{G= q2C 'r[R 2H',Y惚{WuiZXrˠ=vVpGDj8¸:%JuJ|l4iǰ΅yXUFXdK(>TwnGyHWM[PQl;l8 E/윛G:X 6{sqI\7&lu?5}F mXn}HuTP==ޑ a GR9=pߴT[ӦA4YƻY!@`8b93\/tF h&\jRj5Vk+-4h,jV&D _+qoL/hYP! y4rfzUiAVN(()qT;HoWGO>2KJO&qǸ~#j*=f^oIt 3GxӖGCve삎[. L 錭P`5Y3^=dwJ49c3ވN ckNקCtϩZ'}'-wdf;APgύ ?p7B"1 1%uXx(VA,2*lt]SCQz;~(Nf AבA (ă^[JdD6SM9eoiǣ$rߚN'a[T(IU Bm⋀Yӓ -NK){)G%!m)/ȭ*A^-Gh hoQ:V*0ccY$[Aރ5?J Eޙ7m S?UIZ.,$aCL^{Dc;Ԫߧh1| H"I Bń򴙈-[ dǞ')2#0bi"se,bCb4\y8hh=෋fd W'ӟS\D,^ #p)xSu0@$PJL;o?i=ѵMl1`Agw*\HSDphׁ`%7105}}$m7z P.{}-B%mFb3 #'@uuZ}?ƙjaTL>wq |tPUFf9vc)IbϹRJ #|g_ endstream endobj 4492 0 obj << /Type /ObjStm /N 100 /First 982 /Length 1457 /Filter /FlateDecode >> stream xXn[7+l g(yhhkx:֑YFM=ghe ]{}9%{һ'RS;xM& xq'nx o6~^|2@ʺE=̯Mi~=_~r'/\| _#!oœ %tiui3vr2<_m8^ /VwjAxkAh*Z#;m?gicm.x+fn>~?6bv<{rggl8j>,ܯ-7 |@ƂQH5xʦ|wֲȇR} .9 Tv} h[O'FaK0_81jSef8IacU:6@tG@>;r9x=@,Ƀ#80Wc)%la*{;#H0{;ڣ"]sICR}ݿfbكrk=8/'| \&Մjt6}AhXv8@Cd$g tC!PhiOJ 9C3Fޮ@*mďtUб8URP})%E_cgpOAԑXz(/X(І<&ӮjJ8*Q`"19 >ĥ/F™ 9=@pݩxEl{@<8t#QL1o(Icl3{.>Ph8)'\N]SaxT % ^Ok:zs;G}L(v YN+wo 62 endstream endobj 4595 0 obj << /Length 2515 /Filter /FlateDecode >> stream x]o==])RI-Z vVRN713$%K2;h,Spf83/Y/W?|`0&1]ܮ-!rq->qq+$T2M^!a2hƂMq*`侵PRM!h S=D\I*o<qǬQ]AWZ2t׼i?FAun&`[\Sۉ-0o 簰J--< Kuc8"~10`oH(&oۢZSCѴ[4R@0`e]d1~[7"IU]*^TY&^g&ũMn~EM(q ҁԅ ^?ۥOUglUoS$_J73,i=ōZcna%-( G"HhϷu 5VOJ龩aG[強#.0`m*a^@"/ #t -Ì ?i]eoB Ppzʶ#7<^QǥG:iikZf1-Ş\n1&1¼zWfven~Tni3unoUF {$6ʩwW,Ƈ/0s0ތ̙4 uYk8LûYiW}'ҹ"Y !x\ srb% y5 P^{NF=2XdCh Ry}أEX4nxs3?#!bP0F+t,ё,kWTݔߟ1?TА#iL2Aۜ:U*&,- @{ /ID<sbo}dxHsLC$6ggʼ!!FA_#]2d܏2rq nqKI`dك[c ~-i1HitRY󐃨&.oCBI@ fbS '/nvknjH~zP )m$zj Mhr+tdA![% IשExG|8o\ܢ0Q.~- H$L &xFB F!#j935ۏ@Lsi`P)00-` /`ZDw}Ptœ\)glKR_v/3đU#G^dJπJ 9eiM_zujPYva!j)L@˕VDsSawƌSHd*[< x2 eTe@L`mƅWq7f\bOMc=؛yr̳+2h)͓ߩߣ`cQqj b,e (`lsimƪeNA&!Ӽ6y(di<$P\P賻JaD['cxbm0KJ4Q݄huf9⽚/7[B%,}k4Ԃ? tpzv.i7qȕDϵf:$\H (jId#|?Sw7n适֕8{N 3A9PPguQXSm.d{} ߄`2v)/]"cm4;T7J-^` C[m sEp&pLn76bwp]uNwS(س=?.2PmUcp;rmn8Bx;a qYtݍ!ֈ kD|Xjm;φH؋#&5dp9?g/: }?JW:ph`"Ac? IvqxPٞ+ŽsM=w\//M?}@'2\n|Bس84jN}3,rb l~G~6`] r?G d#=rQ@R T}xj.26Kᨍ7Xe.InUń|l|y#_XN> stream x]o6=&c"~YnCv[jCBeٓ4wQ(ӟm=$x_ A0盋k&$ ! (ejYG1OQC{i,WZU=eu3y6$":[p|5M丈|5 Z)wy- 񓐆 x@XG"=HPOV8x I|3[dyZOØyՁB8 oi=ᏻ!YUii%N+"fi8,̢|\$s{1 TPP/-.5> 5N֜MFbbj Y(5ϪLjŬGīp2h<*"0:w#,%0cL& jU` hCqOhJ9qQIlQ7t{*G4j R[@.|Qa kƣWۈ@,P+`D= *;j>X%>j8|!X& B-̗.t._%EKcn5Z c} ͇sOTp020?H~maiV piLz!/TĀ:nHp?jfpo2uVꜽF?]raR*8cg#TD=7Uzm\Pl\hezõGE~ݷsy-7l_]hN ۜ_+[qEbwIz/hB!H<hc3c-'™vC3Jpws=pDw""|'^ w;..@'5IO" !_k;aeIquan!acS]@1gV8đ6cďy? 2rzfo@A'[IW;75*|ݲMJm\!Wt|elv|߼*?oVen#}*VvG[j8#-A3cl27^+$2j!R,$r8,n;,o\2->A0tʈ]l9k~@N)zUڒ*JDJJX/-eLЩ*`Tg]>%.T ',ԲTB<TQV1I+Yg-gT{_]P]KM~dV,Tf4pF-mG0(8gO­].jè8!`A` bdY)uV2GYJjq]f˲mYQi1IbT&V C/^Ռҫ€ GiʡԨ^L:3 Lca$M$@jcuNwǤ`'5FAa> stream x]o=B>TF\~[-+t[[Jr~3CJl&lWE GÙ|Mģ^w2g9Et Ott>y6x_3gFWFŝm;k㍭#e۹# Dp~uB<LSd&JMŒb{#0}ęʳH,W _tj},523&#z 0K42#GL(gy*Sp.f\,1x?g&nĵimXA հln4$^S%-zxvU>]}cAv-໚e  TuIYDaqƳ+e _׏12!:L $[[>` mQKpoQձ7JfˮuԦi=m3e*G"ֿ٪" ożl [T(v|k-ln&71e*Tj uY'-pZxw5^CS+9:Ld_jqqBUrwn,J2HK pNeO הJѦ~CObɥHqtmړBdXB1_2T-"|z] d;mBϻ =$5϶'(w:6Ҩq*\b}E0 ¥$C^Ս@@;\PWlS0.M i?YT.|CAsN r EtR*Y0~Wò92y[ԋ> stream xڭXj\GWt=.`//3,9c$SZս:ݧUWK+}%8B,B(+qfzQ_fSm P\.Ab{p/60ͣYqf AaP!AŦ3$!i!ɖ4` - $4f! :8JA EI K28w cЅa p>} lP. T2 - - j0[x a%>`(Y"\CJh Zh*818 Ã88:8lTco5:8GD<J_ZA\IPBL"܃b *+7Et6˴L4Gw41$pĥa1Qho b+7o5-ãBhn?uJ+ԍ|K-QjZLU{p_uVqKh0 6rT۲PmQb7?~|y꿁2k@Jxy{s_..$8z2? @a'TGm=ӨO;oe m~yw_˲}r_~_;f#,4l>~[d^p\5Nd߃H o"9C:^h\S0s&pLI*Ƹ@lf{@.#T33@Nyil2\3@bc8&ƿʩ endstream endobj 4711 0 obj << /Length 1385 /Filter /FlateDecode >> stream xڵWKF@!d:4 pD"Y+`3e`>S00z7|]U_}&v^轿ҋB&e$뭗F #&d]G:ݮ8\};I$,R$9xB?b+$:+4{m*uzp}RuFPkZ z{aA!|!b9\d][kZpL_ʢ|X ?<0',׃H0 2Uf_v4۬'ӯaGkopuVW P&\+M*zc:sG;;Ae_,@w`pL$$Eo8JpQ jeQ+(WFպ䛚zS+:Vl1Jf+"Ŕ!^ucCIخpNҁ#j ZUU('M8}6:$TGZ+$3RIƀTM[+2~l]ըnQA3rKXKd@-[ӫR<Nׇ, gmdSqc]YCq  uv'2B+O2&"1lB$:/%Am ZYѤaAMr/L[LuG #/X`sZR-eV5.lvV 㤆pzvzM91(UU~"#%lʺ4MXԪ<>_8H~ @Kh tYe QV1b5.oFC:6g* KZ@c;CNzu rݒr)fgW,"4׀o'Hۼy39`Yz9%RĮ;@Jdr9T#4l9ip51)B`q.GWOxv>O#w'џ}}[O/Y~!KN ;s?wʔ|YCm }[F0C*ae1Im6Aw +S!Ux"e"N1CsD웂D {˾>RQcӕfLf #M/4?kE.J/7_vq2yuuv蜧=2 - endstream endobj 4736 0 obj << /Length 1135 /Filter /FlateDecode >> stream xWK6Qؤ9HlXm%W)^$9y|C_~^޽dIgY$p?%~ĜeR_*o?H1$aJ"ﺅE uD1umC !;oeo5KoTsC]l~[ᦱ3_zSgxK+G4!<G|aSIi=bQLO8`!%q;&3KJ:;.m=;"z8PFѐD!bV潬W 0HCWfpn,="r[a+0ԏ]f (0BHb~et/d+71V9k1S"0$ѫ~k' 4~H4=5 %j#R.XJr+i8ZHgiL0Ʈ!qU˒Kޞa%wW'SNI1-dzqc(htE ;&W)r}˜ :ӡLչzVR 5g NyX# /"땀;]PZygmڵE4Z`342ms/?842fA:}ZgYX4e2~<G?/5pYn<\T Vmwy'R> stream xXn6}W,j(R-6(Pط$0U6qЏC. EڗH gp3nf/#> Y8[\:K*Qy1Iz?iwsν^OzSGeo[Vyי.pv}x W|X5ͦ@IŀSPJ,Fޏ Wro-U9bteOQ~ 6,AU^%LHR#Yy%>qd]*i:%cZsv3䉻U'h4D so' `+7r4iK`B/4AAD($Edd %ߠ1/$ `-qpۚCF&pW(U+bVh0pRT\+ !EA\*4'L?1/}2IBх9Hr[hhvQJxHo|)2;lT ^XD8TmeWa endstream endobj 4707 0 obj << /Type /ObjStm /N 100 /First 976 /Length 1356 /Filter /FlateDecode >> stream xڭXnG W14~?$@Iy1jI=85&٬f+ס!\<DQTт&уf1rK) Ss`4J(hP=&)B#SkIJ0m*dJU+l ><5X}Z=BW+^ר(ƕ(8J@-p-p*,p4#5r \B^aɑ贬?CfȻoBj6SjbdpJW 2 j,Jw`=8Z%oGO%J(蝼He6 8F%oRV5Q: R![U*G5XQf6ެM YȋZ.dȃlpjȆY5n Wfl L",p[Gglpe#F&zF'˘}9 d JnLlVlVge3[ x.ʕ2% _m6ˋpY^~ Ԉ}{vɓzq2"v:N%RLY?FfiFVD:HTOvXsk( #E=&Tf8GևppC@&'HryB+BG>AOy ~zv3y@;wgog</?.?-Ϗd>p=ZCK'jEAoZpOg~_ݛ]@i;<ʝ\2 Ȣ8e<oQ&V6+NuGhk: qx D-h-/G4x<pܰ@[`Ip$I/Ƅ/<&?&t *x/c=Aoݪ!f,Ш@ TTG6ie endstream endobj 4837 0 obj << /Length 1356 /Filter /FlateDecode >> stream xX[OF~WXaHV+UT 9΄uȞe}; Ԫ\gs6O_| ib4 AL'3\͂Q/ت|,HQH&`B1yjT"J ]`(]V'r-i)VEDPqpYU0Jrnj{N?s(ZY7>^&E]ĕMzf$?9-!Mu]9[Mϙ\5]&mb9$M!&< ÃHQX(0E,aFxB)M1 Y y7V/"%}xh䐗Yۚ,u%oT7$|5ﺝԂ1ǭ(p !B4Wl8'GsU)YY|}DNXz.S4NuIz c& ߤF>s5bv4 Grjv$jln Po;<+KTY(d]rxВ8tkl c6ekY/aq,PޛUK)&94QbrT|aruWkO8aޗjڙ7pI4Jlc_|F2ޕs)wG=8WZ"-H3O!׃v"Dbe_^͠$!aQ sO2ΞK h6 dVM^ԿY_?S`sM!:Я*mp?࠺3Wem"PhzLEi's-S`6-zݴq&cUUYkSS%,u#zv[dF4&t\tqYP߷`QF-ʵ5+ڵr.X桶ֽ`vZ)4#(N0۠mJRYF1NM#\ozÆ$Yv%7g}EPvtwWr=ҸO}ʀ LQw2PK]gՋL>Pdc ~ﰳ`( l)!J)aYk${./?vGL+!+o=DlVj9֥D{ KڹNbTM!Ѻ`Wi~ endstream endobj 4885 0 obj << /Length 1039 /Filter /FlateDecode >> stream xڽW]s8}ϯ`{ !lڦӝ}[Q@Ȗ 6~#Χ^ b"ؙΗ%] VN]$.!M gZgj{bނIѪҟi_W$7w~O$ Q(l)+Х~sD}sWۻA!^rm Sk~Ue0"OX"Zÿ >Mh$&ONC6֪!cYBy'f:E (L,TzB땁_%DQn|}A oj%<!e޹l}XE vgL$J*{Y)|0(24f`H<FA:cmAwKBQ4>^wꪷY Y'*6VIyk\|W,-;xX\"8tw?j 1ys$`8\? =$2EEiI`yGƍCxraz >2]1喳Gc[5=%g;?/ꞥc6>=kI)y%ۘch\۔:+)rXVخGt$ɸܡΞ@6sB/aY'R}9VX ^I36G|DᥨVK,vB2˘Wh[0i9 tsx0$65ll`xhY]A49+^,xwl6iq-DY!je8:9%H6/g\*G3Lh.8z}e}Z.6+V;4X/3^," 4a#+B*Q9}eOR65/Yqs5}kn ]'Y%))M9/.cԺq fnc)> stream xڭXMG ﯨ_PSRCb0IB{ οS:xwfiݯYRӊRK^kp[+=*#.K"ݯ 6ްޘKńBbCZ!Pa!c h&-Nw2[hQf8gx4 pùA ?-G!-O!{B#,2lȖKx@> MxZ\*Ч29=(#SWa=^Lf(eZ Q4Pd= ? 95p/ gKIX`a0pt d !1ƒ@laAǖd}2TȖ>l Ҋ$\Z8W4 28ȖaVG4 [8t$̕-H*KU}} $<-8 ͑&9ڡE!怐; ؂ 0FEG,_~NT~zճg6get>GhVTELv:" U؈3V g>fH>NH[u֑1Qz%Ϙ\dm _P2 D鉼`$,4 ě2YlHVq$MDoyrmj} N`CFʉ0pRU2yYT8G j2?GTtp'Y/p@&vX+,?\Y q=\ao,r}Õզ|/rxu|_ǫÏx{1/>}xwusyp 9 ~\|!g!Hg11/\ ;dM P 2g H #lhSjpV~ zI:'@`-8,Ugb'k_'mf4UҌFUvʙ <%JSW 2. mP5B @DIx~>Ij*:,Z'YD0ND7JcCЌd85X!iU3P> hM؈?.oMon _;4t N M۳U?[O@CFhX}ne&3 w?._ |O9 >~T endstream endobj 4935 0 obj << /Length 2093 /Filter /FlateDecode >> stream xXݏܶ_,ZD}( 7倢h@'k>ns;j%n}CKÙ|`w v?|']pbvdǫgs`GHUN䯑G4̀Ԓ"%#| _b8 ; ݻ!·YޏÅJ݇w^`yaUcmKw];~@n+j(gJDqc6v*i{_z@_eۢhtՎw{P7:-MsW[7b ,IZ>ڱha&<]^zjinp#=>iZF;MjndԏrgPrq[9[P =S_|*Xia_ɿzi]ϴH^ u'-~Fbx~"@9 qA:V; B8vӌtd P^}SUXz;Rٹ(U3!`n\`G"ʦM 7GB#ĺ\MG \LtŅˬ%I5e8]`t(\sr3]5fGŽ(ep_u=~i 77JĮzLu2[NpvX g,>16<79e0t18chsɴLӯ8C=T\+ZPLOE]BRXpeL"Ȧ`K#C"5*g'BʧGt+W?$%>S4GGma&C٨6 .M}%@ESr؞@ M4hBaBd&Ҹs0]m5{zAp' !4*{A6Mg axmT&&Ly*,t X( DV 5a8PhjD1lAIjMD=Tc̳?hk\+k5#| Y"vDM :}(LC@a+R"çi l!j]jj-*sӴxnP0c~Ee*cn ïO صh @TAvc9lSl<Ekq;2DMWRBa:n Wt4 FK0D{~~v@+0l9KIgZGǣk22 ΐT-"{ۏ?.oC/dn?:s5euwl$T"ϧr9PBq VI؇6NW'xmZIT1T_Y޵fa_e9M5jI>z]֍Ko.S+t0 QXq0_eo޶2חܲ^џl%L/`(!2_u3r?_([[_D3m[ëŢ!>+wo5vڇ2݅)3Ueh_l[[mVI~~?&: endstream endobj 4969 0 obj << /Length 1102 /Filter /FlateDecode >> stream xڭVKo6WE*F$E=ES@b!K,3|R";N1G0[ς7˛.f4 iqY$$lYٶ{qx9Ki.5,̭|6ZvfWY׹)F}{_CEBAI#SA\7U!LÐ 1~?"& s_r5?3 a>Dbտ2p1a!s~5b让IVV]Ô4mW18sh%%7 [e5& YF}99~ 16 |UŬ"+[YM'ݝ 7/R ]VƄ&G&ЄYDBN\߁Y! ʚ(yY_*q{AR?<_ q8ш{Sc|>}S/G3:rmDܧ6 .O2K]לh{gBBc_>ת)w} m0vn!%Um i,7MWO(qsiuOKi̡rNl] dޢ [O,^_9, =CuUE%z}WkZ+򂮆K{Vi.@ptjcyit?{#ؚ+G UmzƯei#J:oT#Spzdˌ=Tcev5Oyy]П{+hʚk))FWal blÄ$OOHKF 3i,d1CL<Ʃ> stream xڭn\E~~[wdewHQ!E6)=uN)fO]Z}ziE}΢TtV?b u C 7 C k e"/`x6&bFHN!n!AV eHL+Y`C!#48ƄۀR&`A#41`aơ6TQ =a@}+iEiķ\5ˋrTlÏ?̔޿{>^# iy 62=}cphm{M^gi'Aձӎ֫(@c `4h Pe@Z&%RsǠk#hf{Tfi51HƑy 6'@Y%AjtcsUJdgqV3`CK$f'},tO_\ӧw aӫwߟu9zyUNo o~/n~9_!L_^>ܿ;?|:Dgߝ曻8ǯhk 0}%LI 136$ sj rUY1$@OqOcȂcPU HI%U\bD1vU0&M`hsLH!`0&B,i%2  ZA( L䏚UD'Uݖmx7Re,ڴl\ewO/kOݖkd$@\l}   eF9jf"> 0>hܻmܻmSp&nrp&wnrn&nrp&ܽmܻm@31dgCS  #3? endstream endobj 5011 0 obj << /Length 1422 /Filter /FlateDecode >> stream xXK6Ce`ň/=6Mh!) Y*lɐE{myE}n]޼z$s,Aʂ4H,dO!/nb+AN%$AcEvjش"L//wh{TF\s{5xbucߣ,7EwMɾsbV͡-I& "~3(МLvQKC."a`" =T-tC}PFRUįǒH%#cݢ~AO0H-Me4~tt 95"h6Z3m4_moeTsrHzC~^^v.iy4q~cdQ8}I]BX`2047=p7L stgD~U~Άc W:z"G >k!}=h( ̪a7{2GdĴL]RuɣQ9/P\M[& J2pnk1uYc?yrߺVS;Uwc\ƁR;2ٛC b/VA!?+g\&R'  j˘! : zUW('`&h(:S3DbcbqюOSh苝$EMX%=zmlspVŏP@!<5·21Oqtcbo?p~[0^'Y(CS\>eMvzljt__f 6Tc0Y)7c=l hBO^RsA;7"n 42l T<ĒNiFija5@>i'XC%s5rщ;x> > stream xXO6ϧ@bەζUOH=L< Fm{ L2'9ks>]}ssKssD̉xAdέFԝlK]N( " ]Q2]ElBw5 ܴm/2mXv\dHR}zj=)+Ϩ:˞~{$ {b8-0EmZIwM#t_yyC4W Vu > bP^W=FsӨ0O[OV2 Ac{)` a,i .TWp"]}fg &E^{RMV߭<}[_1J`y셔 ¡l_RYY>֣1~4Z*u?#I͈bZvs+x1{OWneyh҇AvӴs6mfׂp[h<{gfw|_oM}  ՓڏtA\lzqGn-(qÔR4\uaı$xHŷp;Ř.f F+J|PwGѝ˴bg$aeok endstream endobj 5007 0 obj << /Type /ObjStm /N 100 /First 977 /Length 1387 /Filter /FlateDecode >> stream xڭXj\GW2t@@I c{DxC013Aj{2F9SJݽbL\% )5 -, +g/}Ꮏo,6qHX"-c.j 37c8yq? 5 LFqF8NJd{ h#@GBV BڂC!0pbp!#8C1WnVpGid ICރMJ& 6Vlyņ1è81,O`e֕+JTߘ^03q!!X Kez` Pp-"K#$Lx/$" a-=E)·4ZpIp p$G:n1WlFd/cņ\Mp _J%e\e\GE-5CJng,+/=gXŖ5`y98T WEFQFf\&'Y˯uB޽}rY/vn?/s^l$MCov7ׯw7wWUzt^ zuo3>vUV.foǷ?6G7弽~aC5".uLQ UV(8%>{l;8\77þJm[Z["\=qjSNǨ1U IhsTzEgOU7K;W4P'F(Hzy =5SibVq3 :*e<g<+xD扄 ! W WʔFx F,?$1# l(J~NUizsErDa=Q!Gxd1z#}$C"Kf'FM( vZO9z}K;(`eϖ`]N *ce@zn mf-ݔmet t& Km\öqX> stream xn6=_aEt+ a(d[(+I;.Xn} ioyӗ<1JbzLш@ήW_^yR!MfD\KMKoIeWfYfF?w7 ?HHJ^Yr}!Dre.*<Oz?K˹/B=TY7C*$9XdMZ%=j9&Y[{*5mU.p- ȂIZ2A4.`Px]IDJ] DL"5Mby y ?n5-(-fPI*Hţ=p j!h dHȒ/l4F.Ƭ3 xKe>s;&ݩ^[FIynFyX]o-G !l`П(3rpseЫiVܾ Ȑ'yFr9*bEXĦcY5$ijTDw,XaRI\.RiC]ImRHɡMp!˜i0,ᛝY0W~pK=CgM(= q^/ 6P%-YiYgώlNu$b9bêS$dbry9Il*1C2*bнV.}|w&p2s9g~u:,^`Bw^""K,^bD~$?WQMG FDĿ aΠL }wܗ5qܕZjbT" ҝBSx6.7y0?KSI?]W1j4maQ?]Ro+MV=eƪ7rALPCtGh1e"7N-҇aV8#>Kaphn0D3c»4ec1`$ &'X- GWPcc6+iT>h݁}N+< 駓hT>9,tvulH{7ăƴ1pPM銔a?ޕv- 0l ye3ml[b'2K?'wٚ(RPI- :<]/Y l'2XkH @*M,eosy6A OtS}"Cj6-ɇdAVy7ф#}shEy*ƷGm6jVbA54*tNP8sK8hr&s' L˲œ6Hhl;c fslH~ajO9Nk~P-uЈRhr aGĔ K0:mО{WwY=LĐDbi_o]MN6gD3RʊB2:BH ~!2W5uɤKAYIEuf%T`yg 6h`.qwΌl" ?iw4 &_vsr8󣸵VQ8v{%wضBk&?/ԚP endstream endobj 5150 0 obj << /Length 1592 /Filter /FlateDecode >> stream xYKs6WC &ILitzoI&CpĄ"U.$z94ӓ!p],ogg췋o/_`}1B2 ,f/d݊zzay/$yxIL'u!1orļHNLϮ^+~Ķ!,Sv*;K ߘ~*`Ŝp)GaEj" VD"Ǵ{#a 'ﵦMTo#c&p'F'tcW!)զM 1a '(3@ >U/hME޴ڙ(B1}+.LKHn{gSz{}Ud΢w~OXF#NZ4p@Nm&[5젏U fyX(?kW^GǫzwV1;4!E1ti4}޺C4 $jqw)AVԐ;2aA⳨*Hu?Tw t?vc/mUrmKi),jfYm^B.лɥ=/*1/?)JL~yZ+#.hE0GЧ,"uG>ŔRTQAh($VJD'Քn-wRd?hWُw LQjE/*d .F߼{ 0)E; #] %AL:v<5ؙ(#:HOnеGu:o{*dlҭmT =K,7~X m", AS =(^{Q̀c8FB*S,m+Z ~U)]&5i ^7m)g!Q$(1ꍙ椧`8Bg>TL&h{e ?Ym3Mn,Q@_M{=&6W8|jd˺NPלCЏ7Aơ ?恷fbjZk-^M֛/L_o/i endstream endobj 5194 0 obj << /Length 1497 /Filter /FlateDecode >> stream xXK6Ce VE)Is()zj|sls*XHt×,ɒeoC/Kf!Ȼ/WHa$((Pȼ[d?p$4%fj5eƴ^vldZnUݙDχr+t_۱t&܌^gCBjz[E4X`~k?X,#NKG_Da[Wi! o cB.vAbYS,;DujԶԫZ, 56Cw rOBU8vNFhլ"ZpuM`0H0CagpYl-@,(u2?5. I6/7,'3[ x̘Ѵl'247 !F< OǓ]d=B >1ǰ!Zz^Vcj@y}t6dcWv!Acζwf͵rA+BeDM~ґ HD颤]O](eхD1 >|8?N[ 3x"8XV s[[H0}ˠphՕ*M= ̤Xl|%&t+tf_g*uݗ)I(PXԯpQh8:& me{8La0y{mm_֐΀.Ltہ s@(W-ҝ#<ܢЛ*M bGjSu9kic(JP1B)vm uukG>=q%AJ1ǃ1Xh(<_[:b.2a$E^mψ(|0ŴW9J#ͳFEC|#s==Εz5G5۽mnnzWv Ehz˙`tb< |}ۚ3;DG]sB%SN~.zϥ~;9'X+{-EM, PIs6b@ݝgO`f1.z(tW7 endstream endobj 5146 0 obj << /Type /ObjStm /N 100 /First 973 /Length 1345 /Filter /FlateDecode >> stream xڭXj\GW2Gw( $`l--y"f&T+6hogt©$E Reuڛ #Q.X"uL-\]).pI@YL\+5WKf*L5uuDk&N]3I5\]3dꚡ5H0UAꮛKB)Q0C ,;/ȩؽҜ J'cp8CUڜCѪs8:s#s4LϪKZ+A׬ ifD]3G&%~IDOgxb3 2!:߁Cl6phwF 9/GL ]ܶ>8\'OSɊup8[ gѸG'Fӓ8siz`98K=HӶmHBverVr?pf sn3K䒁m،tORf"ǀԽHT(9]$SOGa4"#M 4\E<Ȇ$oʫr봼znnכO.A[-7ۻ}w?^}x ^G+(ƯX'ŋ&}x_=40R q{FM3*g@Y"hm8P,wTq L5$ʭbQXZ8\"A[q`/8PG&hG4 .d)l#4($$8)GʚdsȲ3G gtBGnGfk5Pcv%{qd{nކ^(BYh}1z;ŀK''i95WS,F z旧O8"ȯU:r6c9MmzW g^}(лzxpBN] DX{$, QnĪv`5zcH6X#ocej=<"l%ތfCc|KਹsT` `DQ/"F Rm(bt%Vj ~K _Q"@EPZ܃{`q JB wRQY"!frHY g~>wT7̰wp?Տ11//7-Njy|jjy?%,aCcK/.R9 _p/ߧ6!jWM\ȅvn̊;=U-`v[5b5m";= endstream endobj 5238 0 obj << /Length 2081 /Filter /FlateDecode >> stream xYێ6}߯p@"RRn@4}K֦jeɕM˿wȡdbppLgw3:go1J2zYBSBc9^Eo6|!/$4ZϥjWU̷R6.e޶Zm=_$ZM?{˳1X2c̴:V3+n/ AI"3쥈/2h7Qݳ,jGvdw0*UpXrsև/+Oͬi[U}cn³Xtp2cvS|*\zigpAg^e6nh3C3%& $eUBZj啙n5~5mˏ= `Ų*f>8^bpu%NWt6R mGccW&8qUtE]9!vy]E3k|1"m _7zo/ &7O=-KmC,^Hf(;bz4"A n{ U&}ˍ7,pYE/[mjKUh`&`b)4HH"s"!@l[ܐ6|oKxa8qjuYK6}=\=$öPPO hayx&d26%D({($|XfӐ-%[IB{اWPE9fdbz '-+E'aLXHSqnA!*w!8,;7S` o^!xLq@Dt?II,Ց?$ލ Ad]fs:.Ʒc)vXGj)NX&C jlQ&DxP z¹Ybe0X,o^t2Dwӳ6Z3Iy"&ın:_-3FNpm; M'$ڌpCO / yyT}o3M: 1L^J>#ȦpBMOK^)|jB%mu+ g@ 5p}gLv(t.Ǐ%la~ N)Wj5Zp;@kne^ XܕR-޻r6*[YM-mHF}jhk` m,m+;PƦLt[alHzXa1Пu"/F{pTj h#g { gjZց }SoiSA@HZaLD9%L~xrKa~ i*G_9.mZq-ZpߘSSjk~v #q~rHf=)|8Fx@|z "^hwzsĔu _OOt {,6~ U?ִXynUZ. !Ȭ,ǭ zܭA endstream endobj 5282 0 obj << /Length 1196 /Filter /FlateDecode >> stream xXo6~_!4fc4, ȃ"PlyH%; #MJ&eJve{dc`W~]`!$(."#)!<< Z0 I#~>lTq0} VrH:Fw:+xVU%/np7K~U[E#QWj&+ZO,wQ̵N( 67{\2 詬:/ < Z)Ǭ~(F>+73χB?̼},خן :],wq~@U!]EOۇ>t:3A!~祫-6Ʉ,~B3Z :$P -h!:){i G nfpPz42~feQիTUI`'&#h2Sَ۝-DXg!cӺk,5GX1;U?_?ԉ2 j'KmdV¥t>oo!)",ᎃgf?lh#yYo9۷t#^[ ۄa=xO$Wse?7IUY% !d4K BuƉNt5d~lԈ{T?Xz^\rLmbK:LFJZ2-U6[|@ȸrl@Q22CbX+_9{[z2OQ%!WnRw3ݮBS~cu- fK7\2xB{y*h_!6D0"`YtT+NA 8kO3 ,NtkU2-+V=(kQrb-W,|RݛX5P5kǶ z8´C3|pt`@?b@ߣ[A'N6;-t__g; endstream endobj 5235 0 obj << /Type /ObjStm /N 100 /First 970 /Length 1236 /Filter /FlateDecode >> stream xڭWn7 )Z_AC[# ] }&]˦۝##2F3є{5 j<, n46ᙆ5uÛ 6fӹ$%#9%)ssKR0JRl-ᙽMJR6-=y̫-IL FC'H#" KAC T@;D/D7I7oTi)L2$t˓ I͠TMN0peɁZRC V$yC,3"f!V$BɆܰXa49PwĒiqp 9ppؖ -ou[X$'Gt(9s+KX$l2h[ ֎ :Aڅwy4O+J\&98&<'/W R,ۂgߑC${O,pĎHFܑ/p9eڑC4:2rAuȰblCٖehb  +`aye;/ W}W߽{}ׁ{WT]!}J>I,(t8GT4У6= 4bdi{Qa$BF,7}awH٧Uj=E~( FNvB: 0[!>Pj &Pj.^'4g׸kpVM9_7.fjɧtZOpsxqs]l/]?odz`;^fo.~A$ћ/5/}hAl&vhKz6'!{Rw)ŠUι SOC:&6+Z w**T0 С2h(rzרPB*Qy\ЂG}T4[I#4W= Q(ȩYh`(T4MҹlL`Jq_8[1_,ZוHؑn^~'_=ǷI}޽pX>*@zy< ĩ f=z|yĬ@xTpp9xWaR!f *Ըx*m,GZܣ" "+xԅ[TX81Ҩ}yšF1.8RAjUH#ƥ/) endstream endobj 5336 0 obj << /Length 1402 /Filter /FlateDecode >> stream xn6=_!,&cKD9imX )٢kmHʥ#EJ"eZv%^Ls'zoO:y} H`^ zWa6c? ,d~v?O%? տY//7i]wim9 $ǫ^_)D8rr E CD 930:jy7ս?ACb;w_qebȯ|_0}"U  yUH;AFaluƀ hEb4p업`CߦË*_kYs$ 5PP@a8t >Vjz5ĤVSjt\&( D#Hx\jBHSi}*+}{26Jib" Swe7yY="H_OIM_;~y0:PLߩoL[ݍA~"1H䈰 C3rwCbXlt{x H08}[ Q6Ruif"tu\9ZE_͂Ve)INъ[\-*jX "\󢱷y^hDE4U,aC5eg~6>ȆnRݺ'm\-X5?c8`֗VkQ.fLlxQ({bTP{| m5LD|vs0ۖW|kOF!F4w:NA@"dQ]#T<)g}7zgs0I 6+~Z -h>&^0f ; LagŨ4"sijp0i-CB~Ԧ{R0yv̑GXdcJ >9kTbt5?Kߡ6MOmciܛ$@<ͽlHq5NmG\uSzZT-Y~ 1:[^B(/bϫ7Sp%_ՀWh%Bo)6Ŏшs49/ц=f\r>|f LP<))s)D~7o#M1R^Јbxu- k> endstream endobj 5387 0 obj << /Length 635 /Filter /FlateDecode >> stream xU]k0}ϯaU}cI0X{JpmuHmTnW6kؓsι:WA@jv|JLPDD(q1WgȦr$l'mS)i4!:a=.JN3.Qm>C` nW?EB솳bQ < .'fYE u4/ͺ4B T*.oGc Ø?EKFsuˢoL8$ Qex#=$RKJ3DI:ݚ }~=cnZʮ~0OWO]jC[ ~̫"ۈzm kyt>BABFQϟM43Bؑaf{t<5;뇹߫ _!$3ma࿝~ssE:pՕ1B<=dG{55$pnړC/Pfϝ@-dˆs$, [XO/i!~dtKS^ )޽ZXv_X( endstream endobj 5333 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1226 /Filter /FlateDecode >> stream xXj\GWtUWuw"1Ep0Rdp>\)Nd"hԝ9Nu{UZޢSZYO)FmNڠEפ0JEa>aJk 2FC<\B.2\etɥ9 o0p 2Gpp388&9!+$r@:9|BU0We;ېɆMB,v6VFq6Gpؖ% G aձhT71̘F&8і hL@``oB%0JyIGi!S##:|)6["zZ8 hIPcuX8ӉnH(QHBH0dxRń_)sP5)s`^ au@ *m9/evԅëWΨ{ 5FFc$Qê8W n 1H}ꨳV#ec-9jF(}PD:2@e}V :"Q{m3@#k^W&__ݕrn[_shb 3=.o6=_^X+S=ifU{$38AbYDS>УzQNxu=WOhK3VfmՅ%fhh! 1q["6hd62mT3TMxYa8gk^-S * 92g6E& 暩@pN-lW@[2idժg¢Xqk@T"fmm)zK8\ ["Ǥʋ.0z5Ռ];p{v,k3Ūv'@4Dogk #9j4Aag4b ,:.v F+ c_ VX=nl3AF;:E( m/C-%!A2)6%C-C ף/HM endstream endobj 5423 0 obj << /Length 156 /Filter /FlateDecode >> stream xU0 D~vh'N `!bD[€I Bb= 4l+Uz0Zyo /p:=Mkջ\&Łq[)@KRu(anssO4 wj%Z>6̿d"(C\t |0 endstream endobj 5427 0 obj << /Length 19 /Filter /FlateDecode >> stream x3PHW0Pp2Ac( endstream endobj 5431 0 obj << /Length 1882 /Filter /FlateDecode >> stream xڝXKs6WHJAxN;3-Ɂ&!5E* .%JEoߊWUU߷~xU4Mv*aRV}q_o5]Nha3+D\dRӁ۽ͿMbNǥJ 7.St:QZIVt$W2yO/$Ӌu8nI]` 2-&k+WJ xu޵FFECmi0yˉINޤFFMթ9$(T*Xh_dWAަb4zQ% VORH&"AjP}#8iߟ.0-iGZYR&&v:i}Mҳ*Fy؂rAÑZ3let3zdܴ,-^sRfXoĵ"KqwK0r$W;]FI*#X9pCMARvIL&2s+I2//I fˠTDfgPZ>/&7]LTJ*{r V ,nQYR6}'-xq^sav8 V=NjٲgDݻ-zxbyNE",KQF@R6 d ,&VHG&&=r|B5D t[ȉ:ˢ]C;=G$4us:Ŋ)&t/(/*6(8؄˛C7FK dȄ6ںBr2> stream x]s۸ݿBog"AMq -6Tw)R%(m2=?.v@<ų<Kg4&iL5E2\F?~QJ$a<&*I)9]̅ s!pd6$L9d:j =)ಐϟ|R8>@ ӶvpRRp bXXv(Kbh"L:DrBDܓbz³G15q=?SG'"0B O]#Qk%H7!Fϙ䠼)(jyTD T&w=SҐFOo:I}|}R/Y?uO7X;=C=i/0(NZV)9x`Ftu]V;y{^Z*2` rLqÿY;>Onv xk]~7ўjtPnpqŝm8MI❤ݜ :nj1VœNІ2XC{qO fJ^6衁S|NXO+1IB(S2= M;>!QFҭ "-|m 8'tro'>53: b&&xJzuwGYgG$}~N v⻰;WݽK=DbE1bS <Ҙ,Z}fP|:upI1/Vgodz% T>YՌJn(񬘽9gh7ևp`FI 0C'm`74h&N[Qh1Y!ZG 3N܇k%IEu8;0fuYR{~k>g'ɝg0!SLL{*q|D\h̐fm턉G`Ba--iBSܣOi<\F_eV ;,!0.֣*/VpAmPw)ѲOk[ֶnk~1uѼw.&kni "4l[`_"`X7R_ӻ']}'Mlki:N˃#R{"Lqj#1wFR|éeUIV)ay̱XkKtV`bTj,_\חʃDiN6KBoQ&BRHo38s6״c#ͩM"򵈞C^6gۗ8uT$Vmw7~f*¶Obo ӈG +3|z }Wn;S8ጏ >s]mZ,yeYyc<W MW*L_B x(+6 蟗f9YhJr}0J74js6|`K4O탑k9#%c'quG`%H'K nKFu's26t endstream endobj 5447 0 obj << /Length 2815 /Filter /FlateDecode >> stream x[KoFW r v女=8FH`k5CI̎ ɉ~9MR3bb;E${U_=Vho.|#G1^]ݬ$YHv&xu /5 dyX7ryX ,n4T"\OMhױY]OǗˣ|>dyT7}fa?VynUVOBHU1]OYܭ8! b($8e2p!cQM7}M:| a9oM Cs88bqZkb/e!oR;-zn6ͪR b>86EI־t豻*?8ev7 'ḯ:xv#D$ҚOWSw\hQ91} 0ts1"-ξdg@.҂>TL \_u/k[7tCViQ!g՝P,s0YDD+Î$u\gN6S_@*k~llR֍p-RU\Ϯ[zϿ9!-ߦ*ۧ[%}KF]4¸ևZxH0uMTb{@PgwDXz hHM):`Gv ɣ!s}K  R׊9adn¬9K\xJGlh(pM;̀ M k_uxwS߶=>T5[aMP;&q$>Ҏ:vBƢ1H bΜ}Tz{K#\EM6gT|}g;͗ K~)qAKQqVԭTLoQ5 s}Vo鸃7EM5$GՉX@/S1m9i-x%5V.@',`+Bn41km23n2`^gl;ލ4YD0iNϞ*$ TY u$LD1IW#MΗ^ZHo(ч]G& zCWoc1I71:jT[~=տŔ_; CcJy|Ԫ|`NU IT'q|SIK|HF`V=!:gzĹr^KϒO)>op(Tgy֣tu?:-YQ'YtAa6ҷÛ z}M 58H颺{ӫnWlE7[]`lYպ!.٣n9f 1W+1 N0j8䁢c;ˉ%bP65[1oNC~U x6*%>c~$*@NS2Mn\ĵ]E:F+p|hzE$D7~~A1V(fح^_GK &D+gNK|>hea`ḁם/э1Exxk!aAD@פs0A'djs0bZ{1Gub.)le{NS"(;d> stream xڽZYܸ~h$ 6؝yX )M7GkaAw0MR"Y+rs^waQR2WMnR a ?W%+]FF)kY}[]z[i5F*W})"C/.BB($\$NƷ<-b]~fۢ-@TT&oq3ƍб5>e*y9m}X4zy Wh|@m b%Xz7D:2PO)_5K.MxV\.j)4#pQrB=Z/!Q}:p)WU: DpQEbih~cyrn_w(6Ag ޛwQQ<|G(×GbuNlXNΚ?Y,9.oL3婜E3IT n5}Pk%gLm>TeE4Dw.nBF>-*jK::YBfɚɡ5><w) zmEir@(FjyhDw!@4nI80~@ƮscAaU :O?mnPil"~~((2!~гMۜNj?i XW6m}kIyiጯa]6v#0np{ā)m[Cj8`zH l?`ˇ$l,o .+"oi1o, ~Ńe%~qU 8ңJ=-%앝%Dm)xudL`WArP_dGD`jSPYpN'ۢ8AJv9|RHid0Gӎ;mQdؖw !%6qFBD hnj \0@WHCT =rґ'4b6|8PPJMW=KG2wMES|Q_qSV:z>!(@ vְЙ74ܚn݉_}[yxox` `;@-18I4 !EOEϹA͹(1݅1Q g;ܳ)_8|(`ɳW"bi_]],P~z-+V'g<45Mj1ysxPh`Cf}`_?4mur38 gn xB6`2h @%p:WdbJ2g 14V[ [JC^G mQlK8Xuwo4}3Ϫ,SE KcejA2hhȑ<#e_RK ;y<9U{`(¯CFYCg[#ֱ3TKυ͏UڙVQo/lre[;-N xӁǮ׷V3ybϣ+L Y~0xuc}+fl b,L;ޏR!c!-~GTA=1eE8}xw?dVEBM 'Op6Wz G(Ze4řUU;olqux`ߜα$CrhYv^s4y!&"[o.̠LnWo<ಊ]Nx=s.'Cԃ=n t%׉٭1CPv Wq5N(v{in EO\D3˴( 2 ODg{? wJ a B6לh!S@mb0oɔS9_{`(&"bLc1}"F-Yb"8}rjCYaԔP3ti_-Ns#| 芷I]okCq]gd:VOP% p){/ /-ڦ/`-m2BEmg$:=n uwT1Ӆ8Ŏ.so-^C8}wc,\Tqդ+ݳqz\Bd!TjuYn\=z'UǫWxw endstream endobj 5463 0 obj << /Length 1954 /Filter /FlateDecode >> stream xYms _\/t;u~iI2vNoεĄ$eىsK̩X,^`oxq(@A!'IN AL.KUU{GQeϲܻX)br]#{u,Rۯ!hHF)42(u`C:RIo(YRЪ o@]xe3'jpq$+x;2fâI ',DΛd 9.i.ltzz2 ,aҊt|1-{3T*[Zf#K]=IckDsa'='"  ةt)D .\HD$V^HD]DPd`/# >Ȃ~NB]}HAFBfnB<'lXd(l c/߮E(8vr!_b@ c?z[ey4⊧". 2xpOn`Fpp;l1=p_`5%:3}:zE08`x{`^1w:L9uv(6]^Yw)+f-t]k?YtǾ7uӫtMa&rb׎?9\1 ]nYoNJdBXs5' țď G"P\ RyZV" ߪlU3S1 /ؐ2L\ F$סH윉 3c43WTuDZH!^ph1[EӮK}I:jpSE$?ʱ6Hdt;ed'/O\x{0qېؔmgqs?"ձc$Wpu1, h̅~C~i|px'ժ-\1axF&T7}fB\>8ZYguÉ]hDR> e#9<l]׸?2Xv1H ?$rFRtB [ެQg!]$L wޤ9|iZVz,h41޷ez 7׌: ^0@r|E9b&6fjӛ/Rw`@-J`ZhkbS3ak$dbVo!{ޮꫲ~T &[KͪS(7ԍ벟xkկʲ}yU+jvMfB_}fޘ&h.{)gjig6(ۍe^gUoM0:ۭɮWFBwSz [ D/xM-#<CXS.gP<O I6Fȣ~֐&l3!Hz7.dlƄ`4aLLtjvS{:67wʌ3|8g?9#dMM-Оi;0&0HR\֛ vC!)M š(0qˍLrdLG[<$K/ngm¥\}{i> stream xڵZKsW(UYXH3d+\f23UPń"$57n4 ɲwr1!n4~}Z;.|֫jF 0gL$B%{>'bLcߢKn1(bʈ` B"Vm2K)Xl&#r;*45H#(B{ 0HcٸՄDxsv+]=Dڻ|چ`Tհ#X?h1ui۝JGVБ`fAsbI)1\L+|2,HH49BH`.#fK   M53sU׺o/=MQ16sryv|FeO&QUi:"Ҫp"`UhBG6(}>(.ZGT͡q3l\̡X\Vj3/,h^0LwRpbIv@^tJ:tN}-Jq+0>Kp:X%R i+; 6aWDV}Gx!W#Hk|Th"s& u'ظƸX.Xm`4E"/0G,C"p]Dh;4em3*oSP_)&rrښ Cx)A Pj?xoۙX mqӠ{4m>æ-j~Z`89W؈EXs5`xzr/>  3s@GWPҙ9p_L8p`X1s2<^F Pq{.K&d^+4:*N&-cxKW!VwRLk;:v 3Y|e\HWSTLjK#pP#<8?Z\^zmP׺ iWrDcW6mx;h mL[QSFp+MDmS=B4mjtܷubh| N-x|e:VdZ_hIn~A⑈$.maj=Z=)x^H毡Mxu ~hA:ve@(C0) g٫,U7A8y|Aei>7%a#r_Ru;78#x1+ShʿNM̒TuK:}3:԰\N_-W@asn$uBeODU`scR9F#qxuzm*\wCi4n]əhp!%[ sŎyy<׏*'{>`\lrq~W0ys>uiǦ@?am[>wͼiLOzZڡڽ^VlNػ[VlƝW4?bhɽkN#&AV0eHC?wv[64@`2>D #bE7\UxiIep/}.r9|!!{վv/?>٥(ʾp6Eۛ!]لxyo9bbv;X{pu?3 endstream endobj 5494 0 obj << /Length 1036 /Filter /FlateDecode >> stream xڭWK6Wp4UVo`n%Ri'46)\ ק[ax\ !}j54F4e$96OQʣfJmq}EBGL!5Gy%T^<%"NjGlT{ {*<[ i!Nf7~qLWm E7ʦQ{Ϧhbtq:ҎooLPB/ GL%9+ ƕ8I甁8Q,$3:S J/NGh}ëOAQں2>fSG ]Hq>g] 4 v} >a?Ku. #[p l쵓v Mv{h _9s |A~>y3ݚ@præz~[EߝPJ8b:*{k^~A`)hJu!}[lP84œyPX$QJ[JePhwuMɃi^r[?.RiN *\'=Wci+4},/J_sB监tl3>]>t =\TƔr|kadU)y4miݤxl {a?7;!My~ӅKH20I$W742uWq΁]hWkV'Ɩ&;K7qflF ̀e08a_.nXU=fzع_"|k j0i~` X;Ϳb_ۢ-{nD0G׳_/qD~wzPu Jc%z Cxؚe^b`8OiJ8H$9Iwż ,_Rh_TuB7=>Pa!tܻ:d4Վ2Urdb0ߦbZI<d81 xH+uL%FvW?/hd?a f^b endstream endobj 5499 0 obj << /Length 1824 /Filter /FlateDecode >> stream xڭZ[6~_A_2 $$4i3I&m$y`m%N~|.$z X:Os`/gO^PV$8X"xp ޅϮ]UR Ufxn "ݮ:[|ɋX2NPBitk3`$ )c-Hpezn $l Eisz0-YM7%d-cc8VPQ.bjY"ac?NDH) 1'+X3s<F;*wH99T,@%cz#"DM`LԴ!Bk<]ǔFFSyi@viLyp Aa 8СC,ATY OkcaT憴?xЁƔ/ii"OVS8~z!?y :NJ}r5.p'{qs\ G}+D4jn9 N.8j\Ĉ`,us<%oc2+,]ޤE_r遴AA$J lZ %ʗqLJP5tw. K/:f8) qPIu&lJj_!CT o+9:FQ> '\,ɲH! wAƽ%nuAbôZE"]>蜆 M\&pVÊ+"B"w+Ң.mִDzp&lկ@vd:/v *]7/ςwcʭՑHD=5|HX_Y[3iK属P]9PW#rkNY4p.a5?fΈ/a UY:sZU]1j}R?v*@ UbN1}~si w7WYպ'V6JXkI7^=z٤D?Ѓ&,FrnC]>_{F" n1\z. C?t@1D(FNG{Y[9WKT"a c2BRsa[ZFZPXqH$ڦ чƁ#0BH}?B2&s(ao~Vbj {'֑?M.6eʗڳS\']OQaGuu69 u!͹f6@ vl %u #cAR{"0ó1^Si=s!y ƈǯptצu!44=43XaUV#Uyu`чǁ9D1Bde V"(bUSDٷjL`EΑP\5Sۇd޻ FggT71g?tet_'n@n0<6}c%tn>% k~'4r_Um ]mܐk~txxpVTo]kJj;kJMi? ؁-{7fz^g3Hi; c)u]m+j˼țnvM?fH᛼r-}2[uш^o[މ endstream endobj 5505 0 obj << /Length 1395 /Filter /FlateDecode >> stream xXKo6W(koRzh@SNT(+% Z,PbQp曏ÑqqS⏳߮/iU*\j_(Z(梸KB՟g8,9d UBP-HʫmffeJ}}gv~8\Ófe0(T-ePϷa^/ኁ3NͶ"ۀ*$Nw!ح:C\.+PUQkn[$QEƪC"Y 9%fy,>#Y {HCk9hnͦߙ-  b(d[C*$4I)3n]1hBYG1Dr `W 1! 2SzC(ĵ@EEA?Sz#4bdx$iu Urrs$>zp~)U,0KbCEIF}rb&gl@#9&3:y ! D޹?\Z #aS½#mN/X6 9G#PN-F+a- 40M28ed/hDi'Tittݶ_mv5_-4F~j?t`| ӱ4sx EyҡApwzpn7rZQ2McɏWg6I&AFco1/-rPD4{ja'O69#Y޿,Rvfjoz6ch-);]6p(Z8=Jx؆r譥 I䡜zBhq9Ӿ'w6ͷuPX< -˫`ܮ wz[\U&ޒ ԩ$Zldy(|cTo\YN)$2#{V)14"*WlP uNy.ޏH@iX)]0RG&' ͉VORSOi!N)8Ɯ`ۇKCW4goٗ 6ڝ!VXfdiLIy'T?"t~z<60N6H) %V̘zLnq󋥊@u7 ~!Zaj9 0{s8tmW %.8.)Ŵ6n%"mCa#쭝 @0Kڗ6wI1ƸHC}0&n-A8~*X @Nl|c. iUKزK̷դq28 s7ƿo;ǶL ٛ9u0/[`wa4I61&QM@7?^tõY@[wLh#DsGRc endstream endobj 5514 0 obj << /Length 2313 /Filter /FlateDecode >> stream xMs_*> 64dK&o/o:D[PJv^}w"(HҋE4zh?VQьE摦)REMv !,c ?~o+|*b/T$"'cxH"& Gx%Ze&r3~)2բ}]W6ugb4!Z(P-,~S~;zk$@JO)1BFڽLWٯTѳR磕`?'hŸ́ ? a#տ))$kBh*rVqoI)^WAߗ\um <ay rǠ*T#>BMOgii: xKX5F1 T4շFE3KhjH+hU1ٻP5\çN#hJt@'Q ]]~rWN X1iwr,U2bVw]V)5^{S?/ UP,ɉpXs[hs{b"q\6ćCogB8l{N gOS/t/ΪU]=b鋳p}%)me<7pi k|GbzYNiF2) NegL ]{ot--3y&%Ihzp*/>%zpkMiRto.)IN]qι?gD3a䦊[nZW]c0xlA̯e4d\ὛYЈE-.BKȶ򺏱Ԇ1EuyΛ} pmq2R;F0A pZ/'yʳƾuz`ۢei|lbU@L΂fRpUҚ5q^}:b Xǫ銵 IbϫMM`RsyK^KHfsS>m/9-=>wَetጪhFk!Ddij@d&L藻BHD%>FN7 qŲ Y=%܅ՏS+<)Bކ(aW9DBZ_IX\M8\7ocݴݮ*W9 ݂jS\t+M.e}ve pIzD_W<)3꺔졶xdQU']X]W=)n@a$Dapyo-hm9 aŢFx^{лyi2-&vF^侃5a U@}٧c% wkFE`@xX#{6!$~K, J-, }mN1Yz_twm"= H ټO+40>< KYzGP L/Lkaq&fg:ϻnS<5 /© 6ڳj[5 &\ .XbiU4٢Mw#pz ݊͘'.u`™lƁ?a{#'[TE|1 \6tP Ck?T,Jpio(Wo}[Q}=pvC+\ZwAW6Șovx7fh0`wel [SLopܙI6h} fgh sIk7cj;6}nHorXk$0 GvK!|ku2kP岚b;z34fUki1xڇl{Xuѭtq7p>ǖpFFwg,B~ endstream endobj 5520 0 obj << /Length 2615 /Filter /FlateDecode >> stream xڵZ[s~_J dN}ttvhI8(YEA8\@zX??Y1J 5lu{|iJTknWg+(ʸu ׿oTΚ"+ |`܏dey{wʍwm^6[óvgeyX-`_6pH,0n~2@֙ JzjWmQ=,!*dUtE */~Y26H%a9LArf`~Stn]m겢jݓ&ݳcUJ?yAe7n̪V(7l]ɻ,_>Qre*`rKkɊ1bϖGBՖw|{#*+-j nׅ TDDN2VoC-.$әFLzYzj:+kX<Gz,qRIkU^26{՘1bSe=ıZ!O#Z ¨$9PHboY3TB'R8a ҏ|3JĄD^/T5ITm$q~@  ]S'p=(A;u6c "356! L8#os0V_o2#}FRQ7BPF(@n Œ @kax pLLi 9PhuuIKD-ђ@+qLdP$!q:Q* $MJ%ޕWIEh.0<7fUVl~F֥jPm2B:^j[f˵w@@[L-xJRi>$UbsJ?4bq|#U&p)= / 0Pקr5a$aob`wݤFw5i?ݣ{V\5tysfdB.́TAnC\IX=IKQJHt$:gK$ҖBmc+LZ #7 eɵ'01F3 zͣz^0IXP,IxjbB7*p(!93Uּ,6&VKKy_-)J?;;-9,S'Zc4bR'MBӱagӎI[ Q(d=%m'Ua"5 tSfʹ #s6qb&joS |ez|L6 s\F= L%$cˬwu9Gһ_l1ufl-S(X| LA7O"V|lBy{zCyLJ(X%[4sə"D$9QZ-ERoCgX.20H95{ߛȾTf;&zyraYOѣm}!x#<]V[vQmIa@R XѡB fOߎ?*VfN4q4g`4h'\߆>7tqP:(R($/I5lW;rs 4Ҟ5v]fU YRLeZgW6~NPu8Qֽ9iش`IXݼ`+Ec Tj0J5_PXO 1d#f.^Yy{vqЪnSd?CI2x鿡~(J.>M2hSj .ϰ8rÕ~ym=|ȫMY#- 0t4q^ץ;voXWX4FrW3qAI1vݱd@A )%ڗl<*iY \gX!w9g6Ϗ_df`Ē f):d kjO+߾i)n|_r3jѿ;?vQ꘩KkG"֦Kkj77йKc}5cau/x|B=۞2Y{EG$#ZKAV} 'aae{P]8z;=n'Vq DW8DEI H#VgupߖD*"Hɩ?R[<{ΞQNr+߰&CwllHس=o:yKء> I =zyW$roV endstream endobj 5420 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1644 /Filter /FlateDecode >> stream xYK7 W)EWk˳h;mW\@YGE)S<4͈ 8@HH"u&kOȵ7hU> H9AJy\$'@HHXv戤s8;0J6̔=0 (=,j isӎ%B7Җ,W7/W/g˦.~~_P0 7 ílʞYe~\^;$򻫛wWXqœz59`m ڡ9_mY;`j샴C)C8nj_{&=NaĹӌ8yMin;4L>k=rΞ{wFx`e1e)Qԫ4cgp&ƑBqhs~*qUW@{ӫ Bc.#i#;ڡrFg\ۅpfz`|4Piֽ/^a$q\/d~3,8]Н@a9U+KKWvDoo4a+Ǹ-kI4m2QzUwo;?1Kګ%v+,z2vc}=~(<9iB|rvW]b^C<};Ɍtڻ2?2GJ|gHM#B<%M>\|D`IOH}-A.gؑ8xBj*7lvpN}.#s}hf =Pq9CϣR :Df/;CMt5:2[Č:'?ng endstream endobj 5529 0 obj << /Length 2889 /Filter /FlateDecode >> stream xZKWPe?n l ;\6@ac #Ѧ I?>U]$j]@."ُz|Uխh_E݋ީx%0r{XrFYxu[9C٭7J כ4͂CI ?)5.ؗwDu,D%2Q/"^!Y q,qƎߨ(Lf}DOǶ{DP wRRÌ7 e6& fXP/ޥDWQ%uG_|`㈡oz+RYs O{C#^bzYXWg Q'G蹹 ͳRly9c!ܭZo4.^~CW5oL:nشXc}n^w|>Uǣ5ԶU1;wD> sXU4QO$٤YpM/z5VeZ? =NOX}]l,.| #@ oۚB=z7C%w[n,`vAktMfO 6Sf/>6c\q&e}5"y- yCȑ>d츹H\Cyi9߱TtS.ul'$6hFEՐ ½(\oeUQQ#L-$ͳE kY"`rM;pWP07'_+aRovGr3tOeZW_5q!,豭۾Agq* Q&ϜVCawRA Ӟx1{ZYISiK Nem><6f-R#Rt.ܺ!B×xDKͼ$",Uѡ%˄=qDo7T OUy -;@ncwD1*]buahdii|(;~PH dD}6}MGhҳoMf!k?ӂ֡#5Sd1MP I%`*bH2ϟsxS7\Ta~sUfiAe (%j=Y!Yf b#a&F-nl%10Zre>sv gk\ceGNߪ=ndP?H?1#'=TXQ=6Ҵf̢g! 9!LfWv1$ Sa~l UtPpp&-E?q0S1g9{KXZ A . rV1 u?qO\<9|ʽl8 ²CST|ej~B*M{\G0Z낹Po!øf 0Y!(D.]P¦֤klIS9?K@`d&^{m,K61N5[樭cKk\bú3A.<LJ0KˑK`niVumH\ t3@0s)8[<@m =r̹\n4fHԯqC,kb r۞vǞ3Sӷ51y?|b[B<ԡC0lOY|ox?g.~h05Q%В70%/{l!CvgvgtXF͙f=B/zmE.)+U2FTLA%xζ ɤ@*҉o Z#4q[8HLR=0ն$[+xeVz|VP&l+錡寻[0s^_-n&v~sZr\8k%lԴHNGu9Z~J҄3rdn9XKҳM[;Ix 3UH9{@SANJp[_14Paxwa=Pr7i։'#kY@0.X48Jk;@Vq*^eW rn1~I>I'^ ,ṸLLN2jcXKdՓ=T?PemȎ,\ݨ 8\m$- S%WӠ^#Gjހ0"]aS2?Z2dsfDM}{4$gK멥+qm|(udV/0 pB-x0]. n.IdnCf,drj0Nƀ*|h\^z!c挧9K|{⿙w endstream endobj 5538 0 obj << /Length 1940 /Filter /FlateDecode >> stream xڵMo6_a`@͊R-lӶZE$i=Q0%"'ζtX>)Ӝ73f:H*|=H(O翟w\(%§O9&=&WXJd.,I?g ?/lzQHK#)r +zXUEXE)9*xɪ,*\k\5\KYeSBdQMqg_S.PM UlA"LKXp"We2)jw?ɬzoS57&t{rhxվ*Z˴8I_Vfg%5-/Eo֎h-Vvo@Zu6"H{El.N]PyR>ܞM=`IĠ#rQd7%(R'8a=Uw2ȴ \.<$[ޟH U{4r"%ĆcLe _XS&㏏RFOLbP%cD`e \ep:Jһ3;Ӝ\f6 ЮØh]Wj,B5U^Bc";hV8[I@b)Kp\1 *zF"]Mzk5,q".pB$&$=?ʘ| yM? )F:J!cjTeWjmAmTt~.Nz:!| z)C@t6z_iQЏs~,#TN y<ݢQm=ٞO1z5z9q!.y.|v9Ѧ<-]ڦI9Γa"uEI!,4\b IZ+n 0?Ff[qcIW+4 iߋj2Xr5tEWL 1487S;JJy(;lL\}0ixJQw7<ŲUڛÝ9#WŒRDŽ`=Y tڧu~3C_(wDe29c 2{l֯9 /Kc]{h/-LǢZ"65*{ B}Asl#\qv8/.o< >+EP4[Qt"L[n`Uga {l탋Emd?^>'zԒXOjI*%kA| }EO'x7XᬂBS[gM대B7y\q]@7G:Ƿ0t`sC)l tݚTnغnϑi+\Moq,G]Mm6j,>#moЊNsv96C%n}GLĿgQ`bsOc4pgbidZBYM!YH+b4s ]e{e`H.nq7fump{qޡdž% h.8I,y^c2: α n=Bd4>ftgCеIz:_T"8!9\Y8.I.<ؐ*|\} UtWЍWbҁ}O,x}PLdKQVĀ́szhc&l o, endstream endobj 5550 0 obj << /Length 1981 /Filter /FlateDecode >> stream xڽZK6WF "AmȥieHV\KΣI{i%/eY$p83V^N~_Ǜ*挱DjzNߟ,Wxn^=yA6Q. Y< Mˆ5N ! GTO #)"Jp6'#ӸҲՔ ]tՕQ)j./hRV3Nlsi;C^3'E+C;53yG7Q7XW.EUϨVtd;xva ,L&ks%t*69\&-GH(5/}H/ 2Yt̑i>ra+ ҃:Bxbi8HF p tIv]Χ@\zŸݳL Fݳr@H↗3瞽%7Zo1IZ!pO?SC)H xGfq{ygL7> xy͸3/G/^xvxДo :zj{#eR>h $ӬKCT=w3BVt18l^>Ƽ'ۂC0,KG./{X~TBW_pW ?[N?MO|[;KVOu^y qEphDh؀~{+PM[ AsR'ɦJ]@--ãv $Ta4N9L,M;N LSt}F}nUo$чs|i„|>i:nPB&BXP;MvqVmWխ" >jg&$$/aK{lu Or\9&yޖ\wP?gqYZ-N.DUMowգv4_ZNbmQTX|[6)kTk7wdqcf,e/NJʷHv W/l:fV//L *HA<*T%C3h !77t]J`OɿlFt!B 0*E*`TF( 0V""Li08p:J0X`E&~"CB8 ?XEf#K5Edj4^3tT}4[` 3& ~nՓ@,l(EZBDj4%i8`l= QNbhx`龼ap5ltk \بz5Qߝ֭HC鶴[8oL=p큛sBumq*{P;6cPۃ#p~& M8j5{@;6ρM=/ȏęaV\b%wk4WZ5<ZX!Z{:C04#R&' Z_@R1g4TS EI\Ce𸌫 hMeS6]z|ama#&L7UY6RkRR=F9iU+TM'3Hf`UD5@ 8Aשt~lWͻz`7ef|W%StO]#xH*SK=!H}\?qyQ_Na a#Z|}jN(^7e΍ oIVmkopuq/xWUaVfFX4{ޥ"I7E!mSWKQ+PR`C\U5nU {HS1,Oxlۆþj*q /:CVDkxj{ԈE=N靖 xP)=6;nRD,Sij% 6vvWҺzBju0CocO^ endstream endobj 5557 0 obj << /Length 2531 /Filter /FlateDecode >> stream xڵr>_\eazOT65Jm\fZmVdQKRLj?>hhP~"@ Vl/XYWw+#V&,Szu}R\vesV|3 \.jFl+|_t{Ι 6r}u9l0,4-=wWDjMc ))֟ٶ]^"A rr ɴ*`O /=8ѻ@zkZT]ݏ| 6k>=? (4w_>e_D׷mP>v`[B_2l(,f R`F%?-",zҖRMbcW҈C_9AWzщ͜Bk'n Q&HF.4&2 E/aKX_NxcoQr'Ԉ` qZ({ch@bL|\)Y̎̇k1#' 9Ҏ9(\6»f`}*ԑ\1eG#*E6Or^.@\?P02y);TȐz笊#}Y#M7Ft#U/b ~_"Ӕ S)꺻&|\$4$Ĩ<D-+sѯt. Rqͣ=hFy{[uhqB(Rzo-Sǩ1P@N3)K5kMȋN'\[C!1ςEsͨ,&& B TcJ12kqƚ;7(AiKPҦ EV|p005Yr0 tKW"Q1<Ô 4-h#L\ Gliy렺4md.VKKH2 eúg tȺ3h;{hS*Hʋ" %)7gPfಮ}2@t2AT> 1Sm1g)'S*h20q> <#xV, d-QmUT) ͔V#%!)ўqZ%ٯ-VjL zf7k"X P=0ա:0r^/bڋs≠(eҙ ga!7K9RɗSBE›H֕c>"')0&d>DE3*DnQj&-kؐ[W|!M2B?#t"h5 u3vfsʞ9BYCA@-ؓPt1ٹȗ#n HC(=6P| (C;K&Uv2r~|},@L8uNQ E*Vw]Os&δo+M[mU+אi%\‡omCùz#Q|* @'^aY9>ߒ8,3@v ÎJcq3NcK å,O0TN4ä6'2nՒ叮Q1&~uRt[7'.t `8[8 [N\42 DkaϋB{wjw 4U)SPJx^ń-+(rCP//s6*8IE",TxO"BDXv4 ^86<Ĩ‹@ }},/wȸ4Q^*^:N<@RL lWGJlZa"mɑQPg@a^P}_|gSO<=cJzw#`j['XKQ%ig:ĸnt>Ü. PYO]av nn奈2ц\/6%`ZM"ǻIa63T{l`ufAxV<l] wuPoLɢ%ëX^@oǃ+Ԯz:Ȫ{ϞtSÙ;v /_j>Ȱ AGzͮOql+:*ٸ`C VPL1 ^h(-ڛQ:y)ߚrA7RŝH+[t) J[8U,蠟hHt9Uv<-Vf$`"fVaU7P u\ k~!*5A ɬ)yi8k aJ #maWW/!=͌0v9ijBCSFQ O'ݷǦ=<[*^]a*?^ɦbg/6. yM#HX?&y31>iP WEn-Yk(NCFef5BefXU :TRᷓ_?1( endstream endobj 5567 0 obj << /Length 3074 /Filter /FlateDecode >> stream xr`U&ްʤ<*< DB"2=J<K x cf2%~rF&)]4ĐDzya=~5Y,6M^|oV̷Yy/?#K I kRUԌRJ|/yBLݯt>bj9P|틬į{EVҽyj b%%KL-ymiě3.:n HE6}v "$19:Xhױe*QHy*7~AU8a70oK(D֤HѧF9;苇Տ$-jWV> &i~EOK"-[})`id.Q.g`tփ aYk[;$`11k:[/FXSBgce|Y Ŭ,nER:9Wֱu1xSҐCJѣV"-SBunl.f7Yvv[0=VwntDug8 4 h5E}lM @YhL[CwgD9>alӳ1O4ᡋ iUԴU0AI8`t4v­0Ƃ9`~πP$拣7ϊ0aqרu fM5f3 1צu[n`O 0"Z/hB4f15h"t?LLe ],<9u! B>7E# t+'aFAkxK)|Ю2)|zQ2(lڧ~ߴKoOQl57R wPU :]9Z8H ̋p21}Ż+xNi%Rl=#١xmd֧ T!L׏[qˇ(0_Ĉ BB: PmßLYǵ 2Iqrli’ ?f6]>ݬbhJAև%O$i-^H"~fES$)W0:%DBn5v …_˳]û? =D_' !j{to oV@A礍wIJiaB@gŸBJfcۅ`\:›ߵ(}a?b1fE("U/[/^]CsYb?7lU72gdn,'8p$ ,cYk ; ~EX%v?5|/jHK$nJŧ43?}C&6i!PU|Sݓ/.8Cf 'yG.2S*.Cd9 FtS FFL~e~@DžupK/gLp$ɘٗ[_( 1?cm^޵A. )q]:1;t͆+(:Ώ4A,];)6dɷ}`ڱúƧLt֧hO:WxWR .tppwyn@BE ?_Ϗ|=r6 DO1F1iWYǏ^[}𺜹p;ըU>{lOv'Z")f'R#g|z8З KÝ14l cvC_2 !NJp񒣧sQ}>TpniUg0lpQ`Xē4h(&L.մz Q)G=(߰jD]8ɪ+o|zܻDmt^a),bi:PQ{m}uƞ (9Nq GKl S&vAK`$X?/驘L !GVӕ*o>zF΋Hp#Zg5QqQ&죌xˢDcjɕW {GSYv qĞu*U! IXw ͛wYYZ &ꅙ sPY&Y6oJyzI9WnG.݀$ "QU # ^J Ո@RtjbTA %d> stream xڭX[~_GX1EAN"Af>lVʒ+ٳI;3]>4yp8׏CFh_DrpܥjFL{8w/PG"s7l2N*(ۮe4hCC|tL=:v^'q?A@تb(@9=P2؟6*FRI_@4-ZĆ-+z~dKH#xWǥ%J JȬ)gdv7vΡ>Z,>LL@Kh[>_# (3 `&=*eƗx=["C%iJ6P@Ry3S634 -FU>̨\K(9Sap}UqCpgJb%z[@EUٽPtJȠAѽ:OQ6 ban`CFy*^9!}G}oS& T6I)8V U.TN7J˞i*^*qvKs؍q*)a!˘8׎P7J![eW{/nFT^I؅@fe` a̔JűPTcq̈;mn5^yC#K͠Pu4f$6$@Rl79,hF5%:!|r4񣌞OR)BbP˵BPA6u˖7P_]N9: 7FtSiy'mPesA_D+{4Hk iEğ"*j”#uh/hnEg?^sD:䴥q\&{sl' lpl?>.8!Z2~g6*Q[4~ZլD3򀚡Ý8J"+|O*Ҧq籧"P|KM `@~Cv:aِLaёa1A' rpd{F6lX侁p%PFfO9w5=B@Xlt>*ۻiL%  <2njA]ǨM 3U:0( /[F:6rMjbȪWwRR@N(IPh+ rPv_#_ǕT;#?%RI>~薏Nv& ܉B #Mɍ+"eьbl ʍ0qBӭ68(UxC&ipFR+Lޱ^_K-xc\Z|3rѡ]?Up`O%OԶp ĬzjeO>AƈLdD0] +/ uTz*YmsL26gz?Wa=h$UQ4ɢf,` qy}9IDj4x'>9W70<ӍN% 44[N@#Lߛ՗)gUAy%'7P(]p8E Ęf ~\GX5ҟ-g,mϵhПO4M^C0k秛(+ [.4yyo^}$>K8).f.~LhGFqxRWrDUDQQ:zfLK52 endstream endobj 5585 0 obj << /Length 1424 /Filter /FlateDecode >> stream xZKsFWphvoCvSK.ܼ c9kg7}[`@GFȏM儊j{ow 67)SX#Eo0]F&2~Jh0?g#fI:Kƶ5'jL H2 27< 9~Tt=>f)ao)1!TD+^Oz+lr۾lGZ]e bN wDٝI6KU E0eHGo] 9,ITGY(_~kp'8];]Qs@д ɯ5_2r@u.)Ή[(t9"17uʌJNmlρZf} G:,W6x0u"PR\Hĭ[.0PѭiH;Mܵ,y/6Xq{zӕĦu63~ڞ D1/.'Ѣ6<+5_͓l80L̮87i:U-:tMNi5^#m4qr%4A`D~% *$<.н֞Xկ'4DAUeQzTfH839=X١3ҴѲň24՘( ijKvbIӺRV~O J KC<ő:rGv8s:R rœ"0BOQ4cyȞb.9۵U͘?}\.Ud_yɜ揾<_f.W'[QY9 12R] =Y2Dd' o b-fcúGcU-~Ϝx?AwzmWw5 3NsCȒz+,|9V0m,!QB{lFwg; endstream endobj 5596 0 obj << /Length 1574 /Filter /FlateDecode >> stream xY[oH~ϯ@Zs&Ti[iVyK@M$Nva6!m}̹~؛{x*=ĒxgW^Dsͼsprq G^}`I2D(NeҜIR> g!gԧo-Q1HxKnׅ &U@(?Jj -]"c,`ʂdltecbNG;; ?A[ $Q뤪Tˤj/|S%o?.i;:s E4R\ɖjb.+0c,TL\$T{kKȇ<(ޖ\G|Pġюӕ =(Dz zE~ŠQؒ5w1 XLİ*LYO>11pH#W:kU$VA> SD+"If3mr#Ù}:JW)=dp44%"{dуŇBDJףZ@Q%.pc?G2pt@Jbl'z> }) 4{"ԃ`s@k;1Gyfbh1B6#v[؏a;F qtθOeH݅{p&YO{3AgY`0\aڙ4JϮ3@N0Ý4*D]x5QoRhyZ($яX\<% C*q|q#lr|{|ys,DN'E{uZYMlöX8Zhʹ =͒l$E..P$ndz d1aKB`o=yaGqZC*yY7!杔jso'tJ"Ѡeq/IZ]XaFoj<<;y|k~=8IoF_pO^%;5,GI\+W {jM#_׷$_'se(}[JWyyj?bx/xaacHץְhtвti8xSE*Z0@%hϲJ*x|Ȁ#;Byg$hNU OIQ$nf$ө*"YוwuP Fxn}|b:f)\NևXT+$YHzvB rO†DPU| c3F(#4M&&p}為믠53 h(DRC$Ef"P ZXBeZ8G띪 s+<15u +Cf&RYS] VҹߒZc'ͭM U}H Uuj9褳\?5?ֆUv]t;Veosc0hSu'LbBw_]hLПns@PVK{I  *IQL`ƷAj֊&Mri1f endstream endobj 5602 0 obj << /Length 2193 /Filter /FlateDecode >> stream xڭZُᅡ(O⚺ zew]i_IZyHv#ad|u s \;~Y~L${  "{ ß*-VkXjT=?~Jv0OcMW~}3}\$&aJϺN߿~C`D H$կF,Of.\(a] # G(dN[BhEI:˪8n찷 e*LGZf\hɸ$(-eyp%U1V0~J"h8!Hx%3I./E3y]4 C>b$iS1l\;j|1*7(܃(Ҋ ODDB \}q %^W.s _n{@"),2byXWjv.c6#N?F EUmmX쏄ap8/d>UNfHaLV )OǽH$W$6~W[6u8ܟ*ڹWtmpJ2->3ziI$eS헀'KD[&%{rJ;B'ξ l2sEL|E=3r}ۇ/! >I3TLg/sg,()Gۥ_muG2ywbX8C5o^ QRwy}3<~gb<[\;.$X.B2F¥,B90<i=n\;Ƃw,2Sb徽k|Wɼ;AX-+[zfWl2(GPLmU)~])iqn$<9@x6^&D D)^[69oތ6j>+dqX`J':M~n|̺\a#_w1<.퀥0,KqHn+z_v$> ?̻PeJD<{l|6m-o2`+$Pfy<^_ywcaVgaEr5`Tg7~:O# YX#3ؗr' ""&cjb!;Xzo*"1)j͔/EZhk ;M+Fª+|"{*o=OߍccּHW$"LcR;8طsVvtl-` )U5ԪTWEm8܀Óz0-sӓw'# JOAxiW>zJj߻3٣S3FXk#kIO[-33cVz-r`cp}'W w:b /nկ) %w19^,z*Sw:1OGɭӡhuR]؃&\zi( 1x'-jN7Kǻ.f NySt2ZIեߏM\#ysV֫s9X`{S?XNxe\7-[pGpPY\sDˠ {JXL 饰!:gcꬨ:-:g<ٹyn -t*? endstream endobj 5612 0 obj << /Length 3010 /Filter /FlateDecode >> stream xZIQ\$M Ld2A*elˑ^y I2ݮ Ч\*_}}QDy-VOUYʼrWO?BV>]n|4+!Z竭̳RN7p}/e^+=0J_=vevsJ"!->v+z;3 5Sj{ ]bī/h/+Cfgc+)Mŵgg *Ix]”7g%QBK=ws TZ 8Ta; -+Aֆ̌^0?R[xֳ|z9GSq ٻl$uq(܁~H1["J?ɋ =*plwSe~4ǃe ذ*Acϭ4t>h ]'}{hG$5(!g;Y6Kb>cXXMPA>v6Y}`;^%=t1P\5ǰh)cF~-s#!z&x{rV/6zpAZ룙{ss R!΀>aȫn*;6~DcL,԰cNvaеpXB}( 8i_R9%$lQE<Q#VGމ#˹HlRDgUbyl'ycjW?R;u`%nRf+Sx6r3~jvW*'ʀ~9#U6 "PF٦э2o+r! xD>⭄ף=p0T DOͨJ&XC1Q<<4 إ=WXχ7g&ס;Ks&= mH 83Θme鶄[v75Y|{q% c'kos[\n+V^:R',^ܰ3&u3?de |8n` d-mp@6؆\XEv3Yܹ܁H,4XV?2Ɣ:u006,/Ԟqަ![^ H r*kejM`oHщ[s{$˞:3̼D3-d,8baTH X$㡛:3+fti]:ev *%&zmxFT9aoJ*NxQ;+; k W1kZ^*6 Iu$8aw3]wq1/>G۸YQ`,ޤ,Jˢe K0+"oA8o+oPaJ 1 +e 7.uk=,Z"~0uaĎD/Y^El@sN:G|AP%%ܥΪ\L+UE!7/'7T3UݓD Էʴ 4.">; 8׆ k}IcgIOqb8u&]w5c>mv ) ô},5VD) BDp439ȁMOs pTo~, U{p`42 c$R< Wk,y>tC*~40tA'ʠP5h?wT)W6a__ϲ`˯T&J~xÈNճ}j*(.IEvCd ul' 0㸩tfTeQt9gg6v;[2e(db-  }g8_;^d-2lAKp U*z,X ^xJ&4aNN{ɉ.+!QbiEx]@)х,b5-WtrZ?ߐY<̔XUGj+pvew|KQjߨl mbhB5( P.42*-R?+gxC{r[Hǩ_E!̏@q%݈O ID$ endstream endobj 5618 0 obj << /Length 2989 /Filter /FlateDecode >> stream xZKϯ [\ vEdsHfFVrGf_)S~Œ(,lV?yw滟(_ LJr1߮ޯOǪPJm6b[nq('AHPs11Uכ̉0ʐ\mh$W-+tpEc[w$_??mR٦Ǯ[hEׅD9^hߞI? 1nh^ou S#92G153c9zsU- ZVvZa֧1jcx&V}e*`mPOűTv?ǝ}s܍]F2ES2W}uA؆6b0) ďTtž]J"%3'0(nH |^D+ tD`m V9BD2$f.D<*{cd),JbwDmﺷ03ԟ8 [|ECco~49j1F$@QDyrNq,IC]5YJ<#Јg$ )"spc x8 J#T5U E|Fq?[.m5ꪶ"jd7WUk-gnԹZaۻW_hphwJS{7!JzD,ܷ>/H,ڭGC ^4`W J Էi W`?P1,%MG Godl@겑~IɤLLv=c0jc*>`'+dI3'#NFj>5ahW[L *Ld0$D6,vCw:6 CO&4ɝLNVzGŲSŊj ddm`ll _Xَ|-|e_|owz_7E1a6Bԝ &C/Zˇ<ʱG65Ft0} Iͨ3Sϙ|d" ?L8L6:?\3.P ]7 IB$=cW egꔄ@nUX9`a%*YLf}q,wIZ!6ŀؚ}@.4qM V_ ]+p1Mܽn^1syWuIi4=rW8U%v5Q0 p.KɛpwѾt * 2<33 &!h;qNf( j MPZ5čE)veNȪ^ǓBĻWPm5j^,xt,er^> 95դWk*aO ׇԼ[4)Ҍfʲl&Nf(;L99)7_h҄+_|]8)_QT6 gR^{ָ vh= "z_m>> ^D.E.;{ek " eռdE/|=RN L&'+DH~?(4&ŨdVL%)$m48W\u7^sU*䐘*-`)azr |LФ̳nA'Ƴj  檋{MSEshs $ 8f*.?8[ŽDhIarnz ƴCYV}2}?549?֗9\#PW噼"g|L8mm1|;kS('閏Len>ĢӼm;tV}B~2N塨5N^'Aӊkeo:sߴYVuR'ݜ.tptsǟ?KnU_7fࢍ"R2d&qRM&76z Cxk]{#!008*IB'?f_=s11s 0"tLu(Yݹ|l&x+ m'J~Mio>֐~tTznnGz ,7UM&~Lg-kgwgN)9FI~棢jdM};zG֏ìt< D? Lx!l>c}]Y9CYmxruE_M ~2^F Mˮv.qkۂN5$8K_%̗|k[*Ig4nNS")qJEEuL`Qh&4<$Wb~;QH[LmrٱK}e ̧2}еOd<%z&'ڴh( P' y$ZFY@ lP4} yͲXH ;$U, oDXcj5AgW<1-&M3~4*J_jdH2 endstream endobj 5624 0 obj << /Length 2612 /Filter /FlateDecode >> stream xZ[o6~ϯĬx.-bӱCIvrzI䘗73 WǛ?|+V4%EZnJ9I\oW$TM~<[QJ )OWk% [s4ٔx*l)uWMݙYJd!{R"# BdžqrBeD iTzRPQx[aw7Γ 7|YRuyN`6 ] !6m4fY9TcDl .Tnk'X)Tj$֌dԝ!M']l0FfDt ]L#GdP*h/1r[;c©e{uhu'/Q3VulJІ霡(@kÝs z}.6P`0X3"%]Bѓ>ٛwo3c(@›YtرJIebWnuur,-Ha_t(ud'Dz_=5 %gqƠ$[8U A秝 f-cݰh Y`Bw*71 LbMoM6+TM}%tVLP@;&@Tf{,v״G3-໧;#Klч.'(KʂW,3dqyRvg`}sR5+rE(ـ:*6L Dvq }evط+CwݓOE9I&ws3ت3xSe-Ap =PŸj,qX~mm[H{F1Upg(ēPo̎-IR-j׸3]: s \z *$7:;r; EFffF|+DP&iĝ("U, h/xb?~?pN  KJuV#Ep3`A-KA $&F~Z\@$m!*UB3O!QpYo>9/IKmj{;g>_<Bv،. {A`#/M"s*rQ>Gsظb gZOO~O>%6RԘ߶&=Wx͆EdivމK%OJ,nVm JDj2h2XM/3?stFz9eQT"Zka0@]k#%x1ю㔇(6^8Fz/ c[n-"2NF9j^4"J'wTae@Y|-) R,DͅσHDqy:Umd`Pʙ|i. (1[y)G՘.)f IT!?ׂ!A"_ b ZXx WR֖MOVscUAǾ dt5ui,`yEQ,sL=ͩHQ#^/aJ_T'!eTE9ߙґL&‘ۉc>nt3gzq2&Ƒ?o槔u WLor⓰ojm.w~g۰o9By_4p*X' $9_>`XĒ\ٍe]UH1˕0P9YyRUx`L* ̉HSvCsc'Eߏ_wHԏWԼ=ڃ[7SG<9dZih7=>+9:4yNrXn|d0TM͖'~)ά?$wD>m⌽At2<>xYUV{11 zEv0f!<v-X kp5va;m_VCٹn=\@4-Kװ)´MaHGН,d$tXI"]UkByǛ/V8'4+#r"eeHP&ajS4c>Kn\Pu*r <:K2K-\_f`U4e*LUǑ6Rjszx$R˟B"˱;Ϧk\VMV>Ş߯]Rp[]>($5[B<8w0_*$XB"KK.޷- 8™"\SV^TXGtg@ml ogfYΫ؀m=ÈoP BG0-J9G ØO`/&na3&6pg+Mf! 6 ΀uxzKӋiEPM-60mxG,̚sק9Yg!^ϼw,bEw+;]X-n yFj3>)޹žᶋv 4c$Deh2{|KV|!0YT- UӇoo endstream endobj 5630 0 obj << /Length 2509 /Filter /FlateDecode >> stream xڽZKϯi\I& dd9o@-Fܶ#3-()ͥŪXt21Jr𙡖Pf/eka. ycex]K˾x~{xO*#ZhdQhPc6B3 JqϭfwsnmӬ>j~Bn5<&+5W_j׮0j=L/>JsSz]8j3 e 9J狪\$0*dP,!I":)"\`~`,+RL% e*"k΃W]VxѾ}nk|+@d`SH<{ڷ8vm Az(iwvѡAΊx4ixr1R޾⫪)'w jn7H=>oNmKUǹ/8GaWSOnND3<]3Yr+Z'nHjn@ds~ }HE7)VCb[LZbSV1pA$[ojhFYnWq=WHfsΈ}犫<_8xgEۿϪMr&4ӏ !-W;3罝9V"a1#h/ Fe{pN_y.WWDCUB9L"n|fHn(- ..qY@"%X,CJa/y`KcU^ 4)*E~}+JD.d!bbYWKf ʇaj\\׻Ǥ "%*p&Y8V/v|䯊Hӻy"[+A,aLyD7ɱպ)UvzkhLm^WՔWR-w !#='oA6{OD.%'OHDUsN 7.C')wݨqI4Pꍸ6qQZ?*]8KG Ocy~GA9$Z7PEG#xLm|EnG-Ү[,6t{명 8}ԗPk/O0|mz(X|/gt` #hN:Y3,m2Z -2rhejEP>s.8 =mզı[UXzp|2d TxǤsfwRgeB,Q #H;mh6Ѧ O~\ F0ޜF@ġġHҽ#pz#CmyN M졍S^ 6i10a.a ;t.H-.Zs@lr &=Ze??e(xҁPNC>UJ[9P}YVբ!_wSf–L sn}L/.{zA@40olmq:9[pW _J!!HEȡ;%QVEPs$eVb= uJ7o⿾֠uQ$|O֗|n^C#2زEx2[s6`&{ZAyqKlhkW~ #ap3ߋU:t}i=ρG\W6N>='9? }YuCRW/N9rN4d$⢃!3+xhM$8RDkBH#aik GF[:Hsc*}98&'ycLϜ H\_#`qq.wdłbI&z]罾oh*R~ ˫>!p}e0~'wM endstream endobj 5639 0 obj << /Length 2856 /Filter /FlateDecode >> stream xZKϯiF>E2= 6iAk%Cg[|H"irw-QY,V}UQx|O4dst#Ba-?+\dcI g&qaۧ^z#v(*nɂn^STۡ;W:UN)"P- GE S "Az@4Pm[{5'Ruv}n=Gȉ+&E!7,:vj8D s5yթP}#ۗm@޵>p_*qWӽ:SKp@q1) y(L.;N5R؄7DF`ܰ:c?5kPZκ%tS}1c z+fth>\ "ɫgK3hƦʩJ$]]k( }VnL+ʽ=`%\oݞs 攼pCa|@* @MiXZm\Pv6z7UwyEӵc)B{'Ck2@Jt3?|۸kRS7Q/]=X[(Dhp:zvxGDѸ[G O*_tzpc< Y6 Y.r4v.(I~f lBNb#:[)ӀclK[;5svDO@ ^pvII_]tiΈuNv㜋Z fo1>р Kߺi;^0X ,a"@a杋'VvG^˜ 12ss(i֯\è1YsMfd#B.gr$Y)Z V ^-l+`2k"*Ƶ4lˎ m㙹6}yv׃HNAJcgƋKCٮܽ3$`3cZQWcvIi߁(1.Z®JBJ'\B~qN^XO&ydV"*dz17ӃȡlBSLΧ{1YKPGwZ"/&Lh#Yיd),n` tNLx ot *ɳ&!wb y؂|C-)nd N۾~ePuu}u O&d >$`cFvS*" #fkZ(H5GLUdȴ\2$8./FZyH).K%a!SAl]+7b|!9I~Gyq.vpPǰ!<p !&Z$7F]Tel9&0C K[W \|x\0^0)=X=  i 0ӱŒ"%3PRE G :k2m& :L~\Ȭ8Yrlڌ)h}zν{6~G*4166u8v{Ig%&s&i13fX BR;NTbRF,.26zMi5~z] {t(W>I"Gt>*t.A4ʺ"PT #IG81gSc>::Ёvᄮ@/ryV ['L2%>j -pʫ]/▪D"nrt&; &G0j jn.&ui%QLY/z~_U,MuX1`;I:E.35`)3 a ' ?\+ pi~A .iexY7,YuMkMj*E t,4U1_lU=jg֊ڙi88?{vyT2C%>p؛@p..G#C%zW|A034۸zpmajf8teӟ;Xi&zL uCמ Snom[1y?#bDžύK$#Tl~VCeKct(])ΝI)?:y+QGBTjyaEȅwp{ypZ.NafF/cұQi0إFŧB|EfΧ0|!(E B:7qEX1,ik;Ƿ5}KjJ}>?M(1sj٠N; 䪫!؃ j{!.T;Zʲ9ji;sSv/ၘ]|n2?{MC[E6tjbNJι,g$ ^&^mx< ˴n1s?H'bbϤxG.c[d9%%C͇9.? ]𿰌__hT8J|nM˝,b,E>e./|jn&fU31dIqLq)QGӻqAĂ&X&`+b3 $> stream xڽZK7 W^d( Xh ɡ"<"h.cz$8('J9rNU)@.@Ql1.jBv DWCpDME0AS.FasE6>bdRdfB0Z|wPԜGYH I}b6SmRrm<#.lsdG9`yPRle'$X˵Ũrն v)P! a.Qn#]fOܳy1,LYF SY.ee-W0@H+0![kvL!z99ǥFǵlQ *V#?,T +@̡0FCدNm6 6 Sm>*5=|TRp r'-t+!Yz^WbqͨM)7=d-8́J+%6\+Qr|KP9P:% NfCs` Ŧ"͞RBI$6/ !ar $A!i Mʐ8VWqoڬO7˛]>{Z\oomw޾mÛ'O" XE+h(bS|]{pAPJGL+<|c)̭ϓQ 8'#ubtx' 8 cNwV4&:<.U=w <;wWO7n &qjvfr k;6Kp0\_޾iϿ~{~zj׿^`Òb(]4jl7'㖠n!?\߾K_Eio|#Wr}g SHyIE9 c e\ s_61Y;y=/hwH'.S*$crjɵFJUObL0/ˍ1!<\Kr_VA|=BWJӊYG:13c L!O+|Ak:G2=F܃ HBD:7C)oRMEԡȧX#~۶c@#ȴh%rɥB"K%54`#Bk mjԓ;!Šdmɳ&E(dX|5MJ#t#:o+zگrVL'j'0qhѮ&ϘBEEe@}@|gm >#89jW]uTCT8Wjid'ѐВbIJ nO< %xUW=&Wo;0ș=ziEߑcvtLL^ endstream endobj 5649 0 obj << /Length 3962 /Filter /FlateDecode >> stream x\KWQSex?كS%[ W̰n$ cFSF?n4Doo_󻯾AFݼ1PKT77g?TOm !f΍wuh olU}}߾R117+ɸK! JrSCYӶ:|zD"Bv^lֻvIvpʺ~?QEKs0C H}3DH)l~zs;g̾ŋ]ޔpɁKI,`rD ?*=Vwa5Mvlj}ͬMWfof]isfQoN6wZuj ٍmc Y Om|vb +O.ܕhdN$/(Ϸ#q)/3Q%@AMJ^c0^n-0yr\n,Tfx\-f:0}kvv=?5z E1u}n1;Rf3|;uwު\%[Lܵ 1w&%EC4|#[^ H?\ZNýVM Jŕ_:Uˠjh`)+l +-!FgfpDq&X`"S5@dmY`G= wE/"l.'uuhͱ!1^6|g:]<[ &c $lO\լRrmGɵSvZ(b~wfr. I[--+??Gy@ ~Ǥ>tF:NGu/@? [6>d.5'܈ z"yD^?Ф&B--J@4%Rgc*GsGg5 Ide3,BLAL-6@^\Ճ-ѣX1r;-> ݼ$ !>t0?LRK$E5ǭ`fQ7-"Ї|Jb8n"TQ$)mu?_WiriZ_r(me /ټ[x14co_C[9#3S)5<#/7h8Gx2cbĐg lO^QsA@QsK8R'B֋vyTd"WʉVRDW˒fhQ|jm3pڞoOv)ȉcEB1z.V8]?P^SD% {I| Ҏ_kLh,,\@ov㮴ȊHճV)37+j,YzAUoXzρOzz I7< ;p92r OsCߐTtP(8gDv%b0/HN H{fv ?ˎ XP4t/3=k+&&͵aT!(bcyeXćkw3]_E0 fhyp{[b)s-;.1qQS5iҭKiE4(9eLā!wԦDJ2}+O"*]@}8*\~WYHf!L:XLbԓl_}(B;F05|o&'ϥ@i)w M`avMb>|RpXjvꘀG H2쬏DpD^s em)@Z^nf}< Wd|޷8Ɨp`-Z`CM ~fx=яaz _E~@vbqXh98In[àPa}fqP} F[=~Kh1-2k6#0͇_FoR?!`G}nQ~ycM; EMnv&g<$~PȭM0taa@'"ʉ~Kjy"WiL9(>F(8C:X-X#*r0;t{nmbgnL=^ʻ[R=OCKla@"4V9Q%E?e͌CRU܁^=΅>W9nGCq%ꮤӹ]%8Qc _ixDZy?g3)c ?y|6== Ej>C=2b<˲@p] bldi"n(M 6{;rִѶnu$ m/|k;2 ,Q%rl"BSAx/Nz_,yL16ؗ= "ߧC^|ӎǘ8^xcܴMjq2n*dTGs1r.0@ڧf߭`kbӊ\ʈA#ץ4l2*iKb7Ӗٖ˧QN\QL>Kc9ÀHkEybE!29qu]\rvcTG''&I ZtɠŢ2$ $S1.\cq>Ħ*|śun6UV:1_a6RW3`H-C60G #^RiGUP?2ww5'J\EO;V$׼$)fyS5{O ݶ#B.IP~L$:ra=NS[sK(Wd.5ٗ`2!\n}o TRk*ӗC{Wh5!w, a) >\I]3m]gc>CڝݕEac洰i^΅6rIfՓDp!3Mb.Ο#V]|4rLo&*P9KDƧ9ubEloUb>\ok|A &;uc<@c™vpj:l?zDݙ"ف?c˧F\KRy@jB|t¿شQ'Ӧ|KsY*)\X uQoϻ@lVW yzbca gG \S8 o> stream xZKϯ\ĢŗHm98 `rX/MfGXԑԳ;ߞ*z6ՏIrbWDOhwH%tuRl"M"!WՇ x]䦬hLB%KtC}5M^8Dpl$uTJDEQ HL{jɄ0#*f-oY jyeaUwou չ%j'Q*X[Zp_i}ua‹fef[IPKµ~榇D) wm KUH9'$AVdlMrvivx#%QD_TL 6ZAZguKNDL֡9*+m3Dƽ~*";?vYK$D {:c\`8*8Nn6>s˅:zVա6x,!ݱ$=a5|(~,i"0g"!W3DCX|D nMq1Z¥`mT_\dSqLQ0ůKDAΚ2B;h@֒=`F7X2j-ķZϊ!ylbV$N!p U&D'ԇKqGVjKӏKuD|.1w.΄uUDS#(F# F'KNίGј$B>_8rIhDd%{A҇ۮ2*vWeb6REߴMۧ/kfڸJq<ڑ_ k8NiI\[]lwATOk) d~>:>#E2%b6.<::q6޵ICVnL˕Ts4cOC'aG<1Ci=LJO ~cN۪>Y8EǪp*{ l Ĥ5lMEҩqc1Qێ >CU[BV": Q1=l%&_n#\x#/ɻOnn݀GU-d+w\o߽Z:4^6A=||t~v\)&i.:g a{(nmgʢq-AvLmOkۑݯITMnBHr6dnl`[@F$bv}혤.aˤ&ΰ V8݁CHe+p!W3\ !tDS4yD8g2O5۞hNLkr{ rAEsŧ н0OŔYas1TFʚl+[Vm<u|*swYZB}+:_qf5n_ة="V5lx|nKf6vu%~l11l.sq:5[Sa̬/V_Hp'eљX'wVh&7%,u `n c =Gŀc=.15P vbA_M(8x"4ǘG ġg'&Z82ܤ_1=3,!gti) w(rH`.w s }]g>2y nŎt7.'":hS3#i]XhzvIǒ!5 [] 9e)^p;\ 6w8t^Mаt0SRo mUB> stream xڽ]W(7 9&UlbnȦxF{(RyȡMA- klRM޼y`Tda.uSCP%c,WhTJ}7nky-ͱToF H2 } s va<}o7qF2M<%槟qϾ0b>g2 66GifH5:Vs mi$z~:ouy戟ԇZKvUƏB0E$7q _,y! q$NJ5 0PmerC ϏK1HKi ]6>\u3 I!zĻݡ-W'Sg QAbu?ŒML~߷5L 7h8ZπڔzA}c&$@ L&PT[_FHN Kz$wP֫҈Nʇ%"ޢD۞9`u#\rʺs =.o~˿v ߨݷVfn渫lHӺ6c&\EY\DRy_'|=/=,T>n]רּyAP5`tJ VWbՓ E|iA{GgSJVK-a!0x!ɘqŀ' ,. $ EGW޷Oqwr>nH 1n!t>M6|z f9ӥ׏&3]MU'j8E\ Lx0M5XC}meҩ'SiN5*TǢ)zpO`8 z"SR(觩яE=ekLaۄx&BAv4 MzނiAƒo{HҖxX Eɡ@!0J)qae캷D3 AsZ*eȃ tƂJG>( L>(=P; :arrhbAKF-Gfr\}[""dB5b4 ֱfάܯ*G𱜧ĹBUiAc(~77u7^,G0GXb˗*D fpɽT651|rr>e"uB u=s4 ]DSTb wM+odHCkLȴy6ς q_ Ѿck*ݏX2@s V<umok;~9Γx[> stream x]~xIQ\4H+Phv,{3Rezw)о{JVd?ݾx$+ju[_4x7/2[qrOV0rZp(wU17պGh`ەP \ DTf#Rln`8hECx0]{z/̏&c9jkfL2̥_q=ǀ+R7.v_3cE۶oPjG{JY5]]E]67"5P6\2: TzW~HdXb+HL3QJ hR)Q%ȯ}R^`B W0} $K$b w C-~}zoWi3K+L۸ok 6`ķfݷOr+?woc1TP]Oxu0i f+0uҮs(@е}07rw "ܔO\\ 9SMR*rO5=z=%d찻(ؿzuYÑ]'$`|m5-)+ #O7E];SM K7$I쬡d]o,;Dq(Y ;Ff@q+ݺV2d]Uե%9@Ķ~HNx[c~ۅ$[35q쩪kj5#^Kw;F4ޗ;rqgz4P9k+8uۗN" 0`N\Z6;rI<o_ɭnIPux2*+ GM@@1h%2pbq_mit6Դ[%=*Ͼ=;Z2StiqSˀdNIɮlr,LCZ$՝JjF^A6 { )B,8XRҞw-l3DcPr,@6k&@+c ̙@N2MuGm#[7Ӽ+%" eL!PP (dZW[ ؕftu28y`# ʭ1If=bQ$8ō9KDGt5-: q皪qrS{SIkyVe2):꫻u'mUS75)\~,sӔ OOPtEND.;@s[ky& = TE.1yJPJd&5!1Đ/nM/ i"D<|l@!KҗA fb(UNOC>UCeDPw&}u3+ELzwՓY~u/)Kzw2w8J"δysa7f)R_Cѝ41wn6zm!F'SFrB8$\!%,>a1ij@mӾ0-*7/L'b*_-U =SE ar^oQu1˭OgCHrߖE 3f+?&ki|6SDu%%gq{N- !1eठ?ωI+p^D_q3)E%漿X"[emly<BDBp1 ,T! 6X: ,1%_Q 6'xǐݩ+:':gX]Vso%>urNYGZ'"G˦qH" C H@Q36'/kFLr8u520%qs(|kTJ\"\' X[kh~ҟ+0pq niD_փ b%ޙVH:I}l5qÃ0F|+XCm@&$i6^ӛHDLnnd sIoN~NX/bqL(@iez$ϗ5cYUci# kJif@P(+i KB%55Bh>xG'q,/smx1| ȮET6$ pl=iY4OoM^y` #S ,O{+*%O>unΞpc}]9'f^4-|D|+UJ>  zLe, = i2{*/''R,7s,5Kg&1Ld"Ug_)/ICמ+'Z\#]H&ck f1Ej͓O_nCz\>?U:d;Y0Ї8 i?Di$vx@rADjnep#[HfU5DmOWe:7!i=G* Y6<3p9]rǂj! endstream endobj 5683 0 obj << /Length 3221 /Filter /FlateDecode >> stream x˒۸-Ƃ -W%8\x]3DHTǧ)3fIhAÄN^zQfOM ra1Yf63ytT}Xvl[a=OmHd$ ip2udLf &3Nk/Q5rhW6YFUw.+.EV__7uJKRiOKB꾮niG$KEyDw"E%t2IX0;~ DWDNp%qPDqH{GQOyW݇(T (<% RLf)FSDbeעlڬ4ORFd*S4!C~_@}U;:esj~ΐ"t&5J=_ JvH0/{ji,L hHwcl1̳s{)Nbǹ$[=#s8 إlPE\n/\ nQcCSzCZe×ea~G HX#mC4>8(,аγݶˬuwXQ6#ϊ[lk#úZm,~\̍3 MoKU$Y|f`bu87(5c{% dK$DǬC;C-*w9\EJK jUv_\aiCm_-f^w.:CpS!Un|AI cDK(`dNv/Va| 01P"S2Bj49QtD?P}9|QR$ |ۑMPg1HX bB%&SYBh7SqH@:š/b<]8)'o3LUi&U;O LR;ؔɏ`)l~)~AHvhnUtk@ ,DmFTzB':=zN(R05]f{]u{0/UA .|X`Cymnjc Ob?ǟ n.h:~2H_ ґ8}%SΞFޜ ^ P y nkL &wEMW.:?pMg ԝZ[d "xIkG}gweS,pS Ep6 ,BRi-rliT$'{kW#:ʪןRFYvCxuu̞Dh4VPD& t/pDdv[rL{ ~v HM8OS^+:@ܣU:j D!^'cvN7I~ O{#'[Lo6iAD*2B֛B:MjyU$C~ OxbWY] WWQ&9,<*t\ym6.V=#M3itU<4R#ˆ8f|R^G}Vo6Jɘۜl`k̪a6/ ~.<Ŕͮ+?~B?y MVgUOmy~Fm` {zx5<)jw:7*ښ[+U[]6%b/266qeuhm!9FkߙB"-q^S[,L%/֏~]6u,˾%j ~ǔ[|pciG.M }2r&n>*ҏy[X߾z߂\lPKB"-5m|JKwӵ=0>L}Xo˹=w_Q7T8ڽG!gB1Nz s+Zbjb]Q]^*V]v |%LF * &x҉# ́ށQBtFBi=֍grGxw1xʄ9]Yco{jDRt\Mzce\+!PRF_.M@揫]F$*oܟR4Yx,F?voËgڐ endstream endobj 5692 0 obj << /Length 2668 /Filter /FlateDecode >> stream xڕYY7~c Ial8zEyDinukbOSe$ź"oN׫_^.7bpܤ&JoP~:?Mh!m84|_I@r5K!(bj9^̧F;SC#onu* 4aOfWk'ZD-S)ƴwZ?jj},HvB0!x 9=Pp'D'QhuZLRe~ (a4`7/sj}Qè eɝ XySTnC2h]Zv&C&Krvͮ^b|7j Opʼ5,1y7EqriE&{- |un(]jI ?jug]jEx,Q :_.L.٣PA`nTEɡ .[0~)*;OPZ̤qpL;:<>OC_oǨm%R]nmqJ xĜ;YZkX9$x">/x6n*ڧM07[ZhN|Ӈ-b`rhvQ)D^0_fD50UL/G\g9LZvoLjy= Af '[( 7x="$,=c_T "]ε;+:eg!B4M(c\YNb)¾?i@j&@N5a(½<ZvUgRͼ ~ȿD* U(˖%k(nXb`U,s]A<:7#sV] 闞rJc_3etjϭ m&']U/NLåJ)}/^{COAkhZk;cY`?eL_;냝Y#a>[W{6 U!]/7p@5FxL~ۏkLVsV'<nuhznX"gTԽztνy!hcS9nz9b 1IL>b/HY'bB>ș{BpN&|l8/xYUI8U+5<?\g N ZtχW endstream endobj 5716 0 obj << /Length 2355 /Filter /FlateDecode >> stream xڭZIϯ-T2D;!.\JUU9tؒBR3xEH |t7Z1J 5lu|iJT!%;4y&X4݃x)2=|o>p3$*#HɤUdHVq>he[#m2dU?{E:ĖbN2pRs߫*k,- bc̛uCs a[ 24<>dKA"LDF$j_UH_K;+gmgOvT[d$cXHCx;E*7Y?5bӔ'OkDY :jRITb&*ڀÛiYB&' q{ۼs*'/*7q OKTz/+$7blYkk ) Q]@>ݫ]>>Mkwriߴ RC.8YS3^'̋YtE/3w/԰ˋ=eZ4S}H;HCg2J')dHWaD0SW`v/5B*_i 9Է,:!@Al3A%[u3:sPoWwFfnS'\t |BItn='$'b^#m75>jZJ" m18!4$#R(05@S,gb8؋&?436 +9a,O al.Y&,iIX4 ĉ6῏*Wm^W;0rD-Rh5YZϱ[ljQ^@1W"k[XɵW@D`a#C8{|OEfͅ/_KAnPVnf2'k 7J} .G;ݾbu[tI^nleua"g0%0X2wwB5UC:IJDcozo"8XO^(P+k+]fݱ<'okK3\a &<ϬtL֨ϼ sİ}ȩuhPg}yH3PD_ܓ6?Ƈ̫*}G 6]q*uA޶%c"@}=k2x/=R\'vAwxSb ?n'BDFX0L .=8{3'b/C𫩊csIwMXw~V:" h򖿟)ve<h:沄ct$?dk6#>|V1UH^3~f|zyvGaڿ)3fױTD/Tv$ `؞<uLI.ʎ'ܾS?~EˈcVOcUqCaUEB;g020tb1NNg,f&!+oiG̝_ qrx"0 endstream endobj 5723 0 obj << /Length 3698 /Filter /FlateDecode >> stream xڽr-#g& weK.[5CI,pdrfǿ_R\N.h6<7_|jn{fK6+)2Hrˎ2Rx!*SXl]6t(PмQ UnKp }{ZLbMfrϥ?1.C 5$dJyPREtUBc>YZtDڵ_yJQH m6XRV4yV69G%̪,!^cnnl|` {* "Dh2M -Tcϻa%^B5|FT)~YUِjhR$hG=R&t"I#-=I+V^ŵac6߷; 2_. /غ$^|D@|G49KIaz*3UzGت r,MeE ~;L\| iIK)>8NžG'Q k8s)|2!Pj){6!R*p'Y} >O:ZiBY'yTMx`䰒=U.{$sVcլm˼1W#tߝ9~Ye !uXy_".KMdu͛Yĕ:0- ^NAX S$p N" ;qx%١WԸioRF:`Č ě!&wg;T8GI#I~VdO fS瑡؈̧:vpq}FHeBf-ܬ@EwN7[y ?Q&Hzm1& \^Y)x$ :.R|%6\.\!~XH cSWlwş3+=gF:]EoED+ '8}+ [Y^UO\.t+q"Nسͳ;T6=Ph\1<B Y! \ƫ؛9 @<ݳDK5Efdʰߒ[vvc."|{n)"tdW/ Za Mb6 a-8 ^7wmT?MaЅyNw{,$_W~_fB"W絴ׯ 7vRmh:LS)6jm:RY Bؑ;jLYH/G>`/,`6_Fy=/W.cJ=L5uhYD{::jB6/D(˥)>W IE*$WCOE>W GԽ%!*O};-cv_sTOTf\t=ҾT5a_D^lb,Uه 5|Dw[vDqϜ>,5 KjӶɔ:ʦ'}ј/*{&7[DŁ%@jkI']/`Kaʊ RM a#bLT^:J*L"mQb LFUAOmerGP}yqzGb%vT,xMnvn\fy,raH3腯d/ 246.svلH 8M:a5 iA@3eMCii@Su%c]ɒ%|eW*R:6u>mRW})EV 9ĵΎkY!wm9;FiS/8./4!]T>#u!NLnM钂j{>3iyV `Ջ尿lv/.z>g}HemSwMbtO}窺]Z(4 Ucg"ɗR Mqۑfr)}%ȺL\6U򡹰ķu&'Lht!ev)!VJ_\A%d͊Aג'(5n$evEVD.>m_ߪ,(v։U X|idM"6A/PPә8 hM]J|[; pNZWj CR+V\M %/+a/[533^/!j͏G:8ևߵ!c׉և4 #vQ!}yDOX4^twTC\ͅnA&f+[5GRZȓ+y(0^΅Q;tz{V(b pܥ9raŋN\p8K{#t+v|9AMhbl?&zTL/٬6_gl o 3@˯.0@Q@ssƷtQJ1 Щ+W|ʥO|ӡvw'-:sp|SّkdNWv :g6,4_\wQeVḃXjE셟-' sMpw@yXl҅)[8@m鶷)Ux؀cßObOk?0"pG[e m]Hi֨oC~L,*̟&/| nNHya wC. endstream endobj 5728 0 obj << /Length 2839 /Filter /FlateDecode >> stream xڵZK- &|mjS]ʙ:H⌘Hv>IPΌ=~CCqo^+2)aU"1~`Cm\mX*[{:Ymx{UΙTLg)SToc1F'"OK"]{:ۡyz8jSWnIhփ>mQ`4 QP9H%{hvO566:Lu~KMK]ujH-Rez_hTspǗ4k~.hGN`|tO|S|uǏs(/Tb" S̕ȋ‡X.6g*t쿪'rҧ §-<6\]k}cXX(~C?-=k00fO/om߃>;jO;ݺUF&Js!r7`C^ &PP@NOw)\~D>؁F3Pm|5(l/9\g6;7T sۑyBDQu3+El_:٥E|a-/;0Bup{2vD3T`|{h)*]\;]>$Y/Y>i5;tu; |=`f\uq`ft7)3vp#ywLeՑnzvץh>vUsI2b ?('kJTE?\Ř3퉧>֮/ICRr2Iy8C곥2xW[2hu3’9 1~' v5)= R״ĖPvUjݺl`s(2 #~Reὒ&M 0g`gYHs&L-WMa6+DHwHXRHV{g軺yS T$XB=cZأ < >\)JA"bҹ FSBdrGPonq)\A!! 2(t:T#aO܆9+ S"RWhA;Uܓ>w( 5eGw prfWw0O~(J]y knE]&P#7_l'j8UGǍ<*fU8S=e~LT\PU@o5 2Y9Z2cdW>.%8%̎!`m! OQ2΃};fdۘѿZ)s(O1~U),bc*b1X$z"Y"U{;wE=X[1CJN|{"D˗(0z`3L [%fY\ígx"7-f|폛2_kc(:H=rr4dZZlJ¨!iQkcd"Sc 30VBjyܢxKaRLпC PnĴL^m&:_']jtXF%5fgnW 0rQ MnQga 's;hRP˸!2CN2 kz,-Lt`4]-~J}q"v"a,p37y)6YhJoE~]"ܬx6C ꋀq D~/ΙL!cx|1o=9F'L/;a mBX})^\JpOnrìb a,~#?6:O&~]kCTYGK/X"ObOg _‡)Om^$\$ٸt;XXdCvI]8d^K|R{m*e&'B,ܵ4SH%,g*6Ħsӆ|CSvRY Y .Rd̡b2*hZ >YӅJY¯j9FuuM8tv> stream xr6Бj"tUT$Ӿ9}%br> ),Eo,Obݿ~..4^o,dP~x0'/ X@kt5˜rm΂#SSL!!༃6VWCR> i>@M׷ڬj9"'ӘMI)_cܺY8uU6~׵_iG|gYX EYT N&^2I9IaB,u+6VSL QR4b&)EJQ̉*eݛuG9[S7'/V@TbbLKRO`X" a³eי.!p3dN)RJY65fҽ)N˺ljWe9?,vb[ppzWD#SY8{9\ لgW5KmX쁼6^38ƾ=~jQ+К:Ww] bUm^zuۖβY;)bÉ?ՠrG-aDhĘtUEFm}O\c=WB?8$c$u ( s\@p3uMd.P9E=2ߓ ҚF*s*8GBPx1~E%օ8+x /߯I@5Xqn1bu@mu>ƏfYBRLT^[3[eed!' -j"& ژw9&6!&+WmL7x+(s_zQ+רr_st"%}+Y81 Bpc'(48*wHӇz 97DǤw跴"^+^z!Z$wQU =$ν˪IFoQ ZWzqӚ.9s>̕u[ou]{7M>pXEk'\vOw1hOC?axt'ٻ~u [lsodQթWn <9RnI~U5!"u*.\" };aEg7_]<:[z8'cv̚e: ~S,uẼQײy z Po; TjCoSwx("#(~*a>.s,hirL sreDn Sr\-"zjNy-ܜ]a'Ď7JqtܗW3*ؚ7a  M>^3~ ~/p|{CZMږy&t#OƎV[Ε^" hh_0zK}_d_b91Hq$w/KN1R*Q[!8L&țcH^͓+RgK `Ts{@o'L1ڃ"*/%3uHπ~pҼa}52D-R7|Ws!wh"t;r 7xsmKO/}:ƈv<@voqXcPw.rW?ML.˱Þ DdN A}-0OĴd䕓=:dՈw5,b  EmcrL@YNk@ĸ5EWT-~> ,]s'yqP& endstream endobj 5743 0 obj << /Length 2334 /Filter /FlateDecode >> stream xڵ˒۸Б7g+N9T.S`3b‡BRL> fN"F跢!:Qۃ<Ƈ4K]Dz?AOi55MPocD'p&TV#ֻHq8mpQڜ>OfAQa)΂~/ R57GX4ܛJAգ|G¢ qU!ADÑ-|$7 W DL܆qWA發bɓkgt<nsA%O&y_#u3)v"]HGTt0tM9?-磵+.F,q=(M7"!=B 'L`58g`A&XM^I^?}XI|j-.zk_0@Qt L `MT͵k7who|ha=B.TX0 ' >1SL =dgK06FgbE=B:śŗLHCV}yLq oo 8a̪|ך LπFtnFV\&wF.xm7Nruf$V'Ya`N}=|ԎrFݞ.O7?Pه*"*GDl+@\;%0n\[J֓$B)M=ǻL[Կrću^EidX-ϸH?TAsY7g'W"XJ\{qBۃin,3䤡K 9#k_ 90\D^.uǭ&K{p+q3/;& qxgnd"_4NwNR)l-cZ 0qEQÔSḰm٭vƓlR0 khmGȂYB!LqdlTu-~pQ{tq٤nxmsi` n?`gԚg^A` wW:B8\N6PqbEI'{pCK}̭!5_ZHJg\ͥxqgA퉡Lj'@_z'ٿX95*1ղ.|n쾾_82Hs5HS#q3ӢOPKL J-6Swv*2A욓kYH/V..d|A`n!_ӒihP۵'nZibZDzfKۿ0[LU/}~[3ɬv.N6 `_ 5}-aR %x%aJC_ܫ}[{Kb)I[gߟW^Q@ yGzcZ]S5y^~ea(E)(£jۄN6#:}T8 endstream endobj 5754 0 obj << /Length 2226 /Filter /FlateDecode >> stream xruPvgE2MflsefJSI^{@"@A"%Mn66^=ꧫof+Q3yX)RX#~u׿ % A <^ #%2 ön&/5#I׮SD v%o+`SD7OfϒMe"`mf3`a%ۭŗƭV e B + IX&1"Ww10.4&6A=lMZuV"*zRm Bt].:*JFctwdp`Hgɮ-֎M,тש*۳O=2lVӷɧu*h/y%wvWvfFz?;7fnD3D sD)!T$?TyW wq8I$ԑ iU$o alڴ*^΂׵I^.9 s;Gq"`A3=d~IXak}l }Y?8IRώs2f V*6%e [,Z9@m OǪ;0 6V< >}:UՅH1cu뜌A+_rD|QA IBE'znao<%DnD'fngzyRMzjAҷ1--ɐU!aWУ3t,[c|sFTw]S=c’R;?$# 2ıp]lng$4{ 1x %pÜ_Ä<.L&F.#+$>u*z@e7`:vHb%WLIE6m:E7oT^zOs凞h7(c:'!r ) QS$NJ:ct 4B,J̀;4N84SUknJȱPh Nbm|޶/Q ! RIAf=@컴.0[r]- :bҵ9|k!s@~ #LvVGm Jӄl\'hi'N+>ׂ6Eld|x\f2OyψvSЀ#X';2iv8)ĜH9&녑ig6`PZa@XΣ9iRuHWs(Ȝ ^G0*Ud)|WMu4]\= YC;)RbEPcLѷ38 0* Lq +0q秭י\P1J endstream endobj 5646 0 obj << /Type /ObjStm /N 100 /First 984 /Length 1882 /Filter /FlateDecode >> stream xڽZKϯ1΁zE?$@I: b|YOόQ?G"REkr \M d.p\] X(.` Z&B7B+}(%V45WRkgK0EJ*4X@9kh̚MZ4pneH\*1KL3Aj`- c+͵URԭ\6vTr#_(I| lpR)r*\T; Վ6(f.D.!H HO :̣b :tT*:* :j'B!M(MYjP.}D Q ޹!QJ8hAa3GB|Y]> _naأn(SZ):B1xg! yE<7_bͩկk~?xi>~~aá w_+A2W>`w' ߆u?9v|U=dy*A~421DmSGBYd Ѿ9^ncæ_gzOl;n;DǪީKhHJ9z]G}*lϏ wi $ľƲ T+['2g+s~G3>͇i䳴˕iދc D 6[OpL.]gt{=pKֈ zRId߷3Es>`c\C2*$V4+5vŨ2gGBxEK2\!WK*zRɐ?5aXCG׋@%/%3kyc}pXФI7]eWʷ흯ľ 9,xH%Gg7YN:Q?U2-ބϒ+^I-;7F@I8ꖔ#ncFZ (cF7|I5*1ejLF?[r"2PVe8vHYGpR>Rmȕ!4`#2U(SD$Fm5sz9ǧOMJ}GE[ %tޖ%$:: |d8usQq&eK5zK ɐL!ֳ$s~z4DhR5dE"k^~+ M H;Bh~l mkÖ%J)\d]1_KkϖhZb{/S1E/Jt՜;"]ț{3_՛O l:#Kak+,osM#%nبX:Y:sS4o0ͧ4-θ'šz9UI_oV r sɿ(Y QOFߖ D)/A |j@md1]΀uq{uK`\,zerti k X,e"ӵs9PD-6d7xWt̷;= iGQ[3al RsX[]6krߊ (k_jφd$,Yjp#@7]&Gd endstream endobj 5762 0 obj << /Length 2424 /Filter /FlateDecode >> stream xˎ>_ ) d X @{`l&dH~}X$%/9ŒE/&𓐛,eUZe,5ϣ;!DvT<A|͓FNj>'^e QLJz:26;)S"4ܛav,1_Htsѣ4vˠOma遈9`:,\@1ι}sܛ)M7 ɾ;;^&]k-tDJJ&|nQ+1e|jtʁP7z|QB*z=TN[`rO8n`ha2,8'ф !;Wj )חn@9L;e?v=0La$hhc-bVbZx9yDRIn}F?Yb-ըcɓgdD,HHK`IWq03eֵ+M `MLG?=:(/sb_ 0>Yc /~^ɀ&V΀;MC]|Jp˩nn@ħÐ,pW<>g:GI3c}2:O<9" 쮼P,D[8!z_; ?+,SkIx}-*VH1k1۬\).-G«ܺYYRUޗ YxtKꧯ;ћw@C`yc+ųD%$<ϋJF6]_S̳0MkRF\r)A/`iVS~ZzOOI{O>ŐMz!}B HEI+&S*JVD}znW4-1D3Hk/ wXJd[[=%/uߵ>)1oRUԇm]Ie7gJ} ̳&Y@6_h 7w;9KK@5\!cU|*`@."أ] \Cr(sv2 *à[@P6S< q͟P+uJή|Yp1/c:xńoQxGX7H7IX %8h1FY^Bruzwդ띯O>񜉼,ʪXgqRgXZM;W4 5[\ sWk@iPYg-LͶ4=V'pUI׎s)aJY;)KOI.!W{h1/BI '>dEi\Q -j׺ĉdV7'EƏ =n'\1܃9 cݶu{$.}9/%%MGx^o(,r'5̺kBvXDxMCZ閛- qK$JZ[[ <~̯tHTeej 1ކ}謂B31H~禇u"mC/g7I/BYCg{9q='$ΓjpL!!xUj$Ivu)>$?nz24hkLMEiTn7C-r>ukMKe!F)GGBM}՝ p;DvR_\.j;lkUe8Z I\be(˨2@&B= |~nZ٢lеy:Ypt" tg)o2~k?G/sߍ]kO8:\~B0gu-u!f"= #Jd@l&]NԓP$C%6v#},'D[cV8 Ff{>|4l \f)27 hqiYt `c6IY9 N톶~cF RսXip,*Y^<6B c#XŹw3(sрE$ F [Ql*6C7YAH8hL>x<S|_1-TM1N3v׮!|Ut1<89t>4zLoN0_ZP,Z,^" AY=VwEM?pL @|"ȋDg1N6/vOCfV.PC /q!Vx|?|ְ endstream endobj 5771 0 obj << /Length 2848 /Filter /FlateDecode >> stream xڵZKh hL!Jrp8q2AӭVӚH]o~}Eh H,jS?퇯Pybw{zU+vݏYʛoA+_g]Qsިܻ9C75CWZ家<썭.z:eaUlRhX֐WyqT6[˿h }%)\(Fpr_ʡ]kAHԚN #v.2zev^Հgd: - c:WA:  =K'TGgYd[=nh;ې`(ǮĿPQ9;2/ ňD !flRwt2YC.nӊ(yn8 SZ0Cl_e[Ay虱if:+ٹ{&N:R9h `" ,ŗM@lx#/i>ǕP/xe 5C{2Y5s5x m.z쑫Vj犍V[亞I,!V61]'|c)rUy?o9c.r/{/JW(ΘK4 1CCV2-P6gln!lFhY/ =D!uQ} h%+&{܄[ĭ>ON#{ m| 1dO #YU Tz CtrZ;ֈs&KX4.s$"qqZַ̡(6=Rdg]GL<e ͐l ^xq (aKMglQ6JisMd̒y181o9C> R#f mC"2Bj1feBtA06Pw$]l~uhz7B_t'tF0l)!W8'3696";5ygl^nk[O$!@:QL'Pf n2vkNRHN"ht+mwqr[λDqʜ$xj@`g>Tu9mH25:gͰ @A@~Hi#N 狢OE[MD!ɹ "#a^#6]lR_+>2*Qey[ndY8'L^Xz%^*//W/>he)n_bĴuUp OK)ˆЊSE&&b\ e3zwK?)`a )B=`iH&ىTQ@ԭsLM-Xk#k6lp]HVR§YEk&LApxّo[DƱd\nfDx{& `etpiplB;a2a]vz܁Xʁ*.'d5)^ЮeiӝI+o ՠVI ͌@*sCw |9sR_GrV^NPy/0|PaELWKtKt]W~\y &'(U[jw-w?t _->4W }C(-zp؈/f{=wI Fg8 RF%@xX%Mfx7e =e ؑDy6q,2SFʽ5ZĠ ~ .Y`$.2[+N5.R'stWMst /PˍlR%V)>k)n TMc^*vh:)f+ţCFփrOШ@UB'DHn4 \ɐ|=&yht}ߞѦyF[X%*[$:OgE\$%S\noxLvEUo~XgIԐ^9Z*寋+[ER"+/phGl|6}Ո31PFRB endstream endobj 5779 0 obj << /Length 2552 /Filter /FlateDecode >> stream xڽZKFW uڃu؉:04=葵7 T=a/CS$U/IwtW{G.wYi;v:͓Tas|as#cT‡-sP?͏72KWp3^]b&ZDvʩ;8"Qī&sfyԷT:홎>ӳ.p=JZ{n\XO޼qA^c/L9ɈCG05 bOj'R]I\ @tzh𦷆n9Mx'?,H\dsgn![f2QsT."Mk!?Lh0S-7DRD~RFeӖ]n:zqe|pOQ3gYtnKcӳ*Wg݁TRppF[nQmoIo IUFo,m2DC:[oHd>S gz&AsQ@i8Iek~ 񚱤(4V1U֕6ŊsCΜwȥYtP Ôv}|̟Cl$EH{ЦHoD$8'o3!Yi]hh6{ǏM$C+H2Pe CV a(! }#T ׌C{);,KڲLN< uYuRueMC{tv1ɏ(ȕpٞ(ʙhC2,-o]+ٺes)uKޖ=y"RvSrr*pݝJD {SIRo(٪;##nq*ġE` ֹ7*-/}.bS2oL(@`D+.fK NI)fV'zTBV:R+F.)5à!Da~:NAʉU8R }= W䠐+̵K?QĄ웥bۦ#|5ݬ.܀I| 5D2 9‰J-X1( V(z+`();?L,vR+K)h {׍m2ܜygE9tpAIr*v Y~.x(H[ٌpC*ɋtNVOC y*tp~Ly+7hYHM}I5%.L $<$^. .! ?< !p),6. %:߷f|̈́LOx erCP:.f%!B8-G"LͨP#3pCmݎrvzd]ft́ᛮeJq!fO= .ET=YCeF~' IB\͘󧽙`f#d/ags&lIe—t[AMX0[gx74c8Yxpö gq"ؤFZ*J@v***pBymf<*~W"dDԏmP~np47d5nG5RR`c\=z@b-brHr~e"2/JϪ`|g+zol0Rْl<|RuxY;1,p,[x?B!`O tꏴPj[4|}<΀[C!1ʡC(3ktͤd-ܥoD2א~FԚמ^ŭ6k9$eߟNj_63#/0vOPũHH6#}p`5Whcyn&l!:""nq=T bsi?i){99_S( %wa節6Wn;$:(õ8 R3cG|^ƫO.qՑd|[o[4}=3_<bnw,i endstream endobj 5788 0 obj << /Length 2313 /Filter /FlateDecode >> stream xY͎8S:@GcYrs] f/ ;Wx SݵO(ٖT2ӷĊD4I}tI7?ݻ~,Os{1eқSµzwݏ2prҧL93q.tSu۝4:9Ij=-S z "#^{ܿn;tMp{>|TD$ө D,3UH8!4r X*PaMHvtq',o{slJ#Xl]eiՠ\ڗiJ<۝0ve8'Zlpb6y}6)wE[<}vk!Fѣ+zjfSD3fxo3>޴ 6jGɶ;bkz堼}3W@ @8:Y1K*))g%(h @?(2f]y骦>SIkxˮqK}CdU˶zәN~.N]!L<6ŨA3)'>"z{R\5gڟNV{SlBFY?~4iG*]惫gyęk V\)XC+A^ϲ,*4v6HC` 3LauKIhRBKM΅5R7;ͅ)79934!!-_‡#N a@8wr_Snn4+R>_<;ub4m48tq*ﵺ B#p<>85IM IHv <p!ZZgH%wz*)CCA!?$壂N{%BNsgxRtM^F%5+9w̦2o.?Z,ɿl 4 SZ_N;(QLbCIVL0pn-䇲uUXnZ瀾}b<rC٨]wھ_]Nggbgx-@=osew{߾%T ?zViIjb o-Q&·fLI}cwqU_Y=eL6 i8s}4أ3W{t6_!/J<{0w g}PZN!<:jor+6%6A%0/+TQ" t}^ik3mpkkm𭃨Ls*傈3 ? KoŽpSv+[RXcnl/>NDv]{AWoeU\WNn[$SiK3p<ta{ eq[pZ0#2q\n [V؄7)N`eEo#HxĪ>[4w͓'߯`q@j,d#>k> stream xˎ6_ %`$"@ҷI[vk!ˎ$O~HJizΞ$QfXE៏. *$rY_~T[e"L)||/ߗ_Ų)ݩU?fD44{1@bA`ωa)BUF)']nN ʡrXѮV[= 0u9ԇH;_d \'r keٟ1hU~U+Y,˦jU}]eiBs$Įjl{VTK_)D oݸqW;;xPa (3]{z`DKZA vz_}w)&o2#H?jQFI E \z"r$6%$Bʉ̴gMځO1>%'~m [0*MęM6jA`5ԮCmH'GV&mW)&6ETC) tĴJ#驜;')c0̓ \B^gp&'\믨_FHbekHCW>9'TPHNso+y >1LYUlKB|Fzaӌ_P$ du }J %+}4!lH tu*xY}݂2/V6iyG`F\#swxwͣT> PM"YǶ(j.Mڵ0i{'a-f:[B{w]KhK^s|E>٦Z7b2Th8K%[ }sy]Z}ZWǙㆩ|RMienRdq}v=nE._Ǥ/1~w*o.ǥ_YPPë?QGC)aS>'#M6gf/GkpV)\!7&nw"4XpO2a5:us$-8hpQ<*;R88ZenC_usL~6Ϗ1_E3H|LJ{=.;踑G~U'WQPr_ :A7יsC?V&K7&޵ptg}t` eS}ɦpDv@w6KuA1s'D,Bx~t!8,p\fdtؖ|OԿ8r޿02xΡ: GڍۙM~SIJO/XYo_i䎝k#ꍍI;{VO;Icmh*Pf{Wmjݺ\\GQ~8 H}g?t:N@$"-VU sD[Щkn2h;_}Pqq[N iUpP8Nz>_o°i1/HP{[{}U9~%GX,< ʖ? :g}} /U84@ʕbYVQB2*[hI&=>a endstream endobj 5811 0 obj << /Length 2699 /Filter /FlateDecode >> stream xڵZKQZ.IkGFHfO>gD4 ūUݟ}]RTqVU8bcWOkƛ_.)_}ӕRQamVQf MaZm:d]cmvPM$laͷ0HizϧsO{o~X=̶ |drv2PmԺaIM>T6IGi;H[mlJm\<!E֍pSE;^JueqflJ/ǪBF'jtdMq_*V^Bu͚NlyϲهRнIHŚj/le*B^`pt*X(vH%[u&l6 cnj*r_М1Qu~Lݎjw*;vĀU"Pm}}a` 0U{c9޵Q0,u_1RfH_dX`ÁC˔GϗSu\@K V3gHf7` q*ު"ϱJ|i7[./L:^U('sg^*Ig`5awQj1VdPºX֓$؃ AߦF'Sgs afLE½^#ZF11߀7^8|14 6A?Wf3?Ļ!,S rId] cS&Se37] λYU[庢tԮ]eҾBhj6CGRC^pF_(ҨӞ tncx IӅR˗P1bCΜ!#lQfctacdLǜ\k q&ZF_zC+W3ZI7+)zEHhj4}g)$u%hbJW?i#+Zab/idkD?x blC9\LK > stream xڵYK6ϯQF vdA&{`t[r$9SŇ$rANbX^6Ol?>|32+aQldBnvɧg}LM9"T"yx6n'}rTHJrÙ')R}ȼ4<#JLoY2A?CO>\4N@Cwsg ΠR2+ۤ$2׃I/MLUqQn~j"#B`TW2Oo3MnBLVk]{x57[{o]= qb.+JBExk%2Nb1Y@*!WD26׎Dȑnvkzϱ9|d:`)-Tu?Vho:i*[;_lgs7 䤏fKX3МПMV"Gn<۰ze+kنn:D(~~N$"d^iٰx݉;1NP_ĜtNx<塇]#^ )k28\o=k, X2\r>/ _0ݙlRI„*j n1J毢 | ,3/|WKT>@;- XYvtp |^ߪU{tZ7lGS܅WJ@l1籵gSEx':{$N\Xj1-*W,KRn㣳U{i=nB!(GMYoM/,jܔ0ԜY,9q5DR~rArIG/1go  Q՟'΢po1xј$}c=t/ $ŵrPW>M.pw ;Bz+@0&ljoc={qDkFAAڔBE^I8sryet<6&+0ɺWAh?CjnioKxVG[| f. RIMDI~d3Xr@eI3:͕qk*rQeIW oH63*y 1h!cUcNM,.)ث\2&}73HWP QerȜv݀/ԻG.oY㚁@>뇼8uߋ8v <$ݨsasV[Tޒ".U/k+`p8$ĢuֵA}ci0L>4QCc,0;x l'E|nC\m"3C% {<nai>~kD-YlU\N4:+ k>t #Ey0FaͭV,mzI[m{% -q}'纳E*MK$J;Af3!~\"RxаPe lKpGBȠ uw+T6HdZ Yޅ :^=X9"߶$87Ӈzu0bz1 XXڜdk|Pnx}Ap#0nbu'yIZFj{g6|XR&/>i\l3?8ɓb!B``_? NGhOˠP?uirITVFF\}ڱAtM<ƸV\dL;8^*H^榲%*[:o?G6d#M=cV"`,`|Ԍeυ׹gZ Lzז׶@w>oFŞ0 n7]gg(Mݹ}"HV}+$wb!zH6szӬkogGw5&bֺ)'"JoБM*x;w2Ґş+r0T_,ОBnXUƵg\&ODV~'I endstream endobj 5830 0 obj << /Length 2558 /Filter /FlateDecode >> stream xڽZKsFWHVyJZoyKtsHPD$~g∲xO6ϯ䋇_/w~|/,XN.fq]V;^م,7F|X+Μic^f9aV, zéMΏ$g&״ݾEZ.ϏMٶU}U:0m,*l^Dt6N<̖֫\w+}y$gV1 ⫠p'3l"I,sw.s/;zvH[ԧu-XL2*Z Ō22 q0Ffj-OuWnݽgJ6BI&t&ᘜe_Vk-CG-}_U3ExV(P~]- ^AX9HMf$`Oy㢣'iڳ):œ= LAN9 8ݿx5)Ep>kq|nïܕM_d gdLr1)7kKUe\a?,0ɴN86]݄ g y`9Z *v~;xdFIKN"q$OI׃Ђ7]KK O1)c$m.⊟3%־Tp,w|kɬF RLL)͂ )eoe)p$Sj& yz-k\eW-\k#:%*S@k#FޡMޠ/ )}ɏ?WEK]v͢x6˔,0fFj1L*Ns %9e Okχ\ >OWFWLL3w8Edu;Y9ۜk XGZy ʠM;y$P3330(5S!ÇgV|: @3+a%VQT}'&+떏bZA"j^'r0Jx4'+KnP,^ +ڜEFh/>&[ *褘~Y^w>y;E'.zٖ M\ſjm}(Mӛ~bcuT47(MLlZ߶Tlc6^Wf!TWG_V]N/ }-`~-Aotfbf.!z5E / ʚI>ڥ0L{>"! en/LzŔ@#tQKHO2y HEsݲF0_b7l[2ܱ&#%@jïO!/h40g[[t̩]}88jaABېV7UF `;BЄ#!Bpb& qn0Tݗǘ\&dƴ>Y&jXC#ܦvW_$deFޤcY^7!1N2}J 8ثχ!^iwgw ]tߕK_)ǫq5kWD=|;'!MtQE庯.#>3af':Ra]17mnV~>(S ]]eE8porq8<4\ljG85 ɡ=?͍TׅyMnx9~ӧmZx$ TJ)T~gT# ?'zbMXqGK,`#Fɬ#5d|lBMnS6Uq~sYe)zߒLxNn+=n1D+Vb;Gbft ؾb@Q o}Y4ZXa䃔 _ 0},o1UI2te!3\響eK :ϧJQA C/Lh c-c_NWYRsrN/FԈOD}!Hzs܍v ULSпOȒw) endstream endobj 5845 0 obj << /Length 2258 /Filter /FlateDecode >> stream xZK6Ff`6}䠖nʒW'3>U$%2Pg2ɥ棪^,*^Vꇇ==|=+,eJ)\=mW߽^sVd)^w¦XWy;;|ϲ)Q!)Ix< Mp;1@dE"a8=G<&Jfv"n"J\t=V(k+ÎdS,|V?Tz ya I"Ify#C:R,>C[7ҿgʬ*qm]_ˏ)y.i^/%0v1G +sH_whc-=/;;82uw0ESEaCnzw?ؓJRT AdB'BVn])vL*>D\0iJ\fE+"Ht=dkg O7X!A"<ü!19S M㊟C%$N0C ݾGa=6COUVuPfz MS qF/A s)eLvNh2=^ͽTiXGEW3A/8;Կ0.p& =w>+} )zG!*N-|&% /%j Pui"Z)*IIBaň^@%6-*u% ܛ vLy Lwc!@Ƴ;0sL}+BԷsH=/o@& ,l,tdE :e\'Dem2n f~>dOFxyggR'?Ϋ}$#1QH@V/">x3 6dU:5׸O> ߍu/ o̕*ts.17gH>Sbz~MHF“ *_W߿1_`(,Y;4|)dǜx|۹72y;ޛZ @ǰtA 'y]X.6߯[^J\ӏUBb`˕ðkGMZ/̄#c,`UZ-+jRTB*cەfM^^{w`ti+XCQDn[W[C9ڦ(,Hy?VᖰǂZm|t VzFr ej;]k;,ںЙpC/< 5YLLVi˼k ޘHX>- ٌ׍HG3CޘgUSgͱW!\ ED/3Ib"d<62!4C%pޅ+)K'K}Xd)9w c0%"BOeDo`^e-xh4@tN5-H6`ی5/ X, } SZ#vn_ !1_f\P0)4/0M[Ns!sD{irfpNpnp]Eŧ>Vs1_PHUvKgN] LH`ym*לxwU]&VrإbU*gtK dY0,k/ ݛwq` .r}嶓8nm-CgٯvԻ{Q09( ]aIr),lHa͋W5<+QM!Mɴ$$C(<{%EGQqhJwZsCl vh`kblx"oVMG1KM;lցwI,v]V`Y U8:`' ~#?8r\BG7h=plԕ;&pf{a-]方u7w5li DvvBn `WׅFrjVAl/{\/t M2f?̫rX븠Aw6F]Üdӫ_i_ endstream endobj 5856 0 obj << /Length 2232 /Filter /FlateDecode >> stream xڵYK6ϯQ ߒ,2,X $Xez,I[ER=h>+n>lo~~x;^n%%-&Rmr?Pd4)%*ݤwBd] ;_ylN͸E?5[:|!srcc_ fp?~8z.t6=@v/FcrvAtmu)߽2˜U?&`HQNs8 өC?my-buSڽk_`\YfoGS;tW/@.%}h^nM۵)whZd)ɲ_G7<e6 |x9OftRII=jؒ+2Rj[o{FЬWY^ '̚qpٛF0x,v]wqA<ɯ{7p,C;izH^\kT {Jp4g3Go/AgT:'*)'96f`~tfN7hFAG--%Z*B!%唨g**)D_0uc(Fpp Je8UH@}2eZ aE?RN!{lV:_Up{H J06۽#9)㔤ᎸUd7K[1c~bc1ײ91=PWI>+)W8Lѹhgj s⦫2߅,-K[B'`!;) 8V dn vOoܢ82U.a`8! taA9^9'"D*ƒ]zrjx e7M'aTlum+٥7:KƟwq$jf3@>TH;Z C#p.Ū$)t|{ۆLo*5)M[WͺXy;9?7 .Wm \UlںruSw+4agX|<(F\~02&sTPqgQ} fA8|,CPW XFVyB oUk g?41v \E7TtY7̼^m,@oAR,J0nl0ypRqȜ<J'DTbW9vi}tE7dSMUQsm.ޭ# ce7#tز(!S9Iͱ?Fv5#d-H$KwtIfgt–xDbndtp)IRcƋS5 _]p%$ qB],aG#}Y:_V@Ir],:0g 1XY5 #8k[0`" SKa)FH3Y0;)UŎyB#f5fW{/bGam fG> stream xZK۸W(U, rLjSss%ΈTHiAHh4]7\0J 5lq|iNh&?c_bjuߕ8/ao徨Ocq$#J(8dJUogc>p:(kAi 4&N;45ϗv.~G|$rJzX4fԭk/6u&ZEW|t).!yXsy V͇,^(Q}Wk4j`<&2p4}cyT}yp.u}{|kApN^-H@@"mܹ\Jk-I>>b"ąMLj)K>s>^$D)&9R0z*09'Bq ~]sqS>.Sg) LDTu:Þ4) v|Sغ.KH>?$BmH=/1%OB73u#4$D8dKɎE$$獽c_KmX!0>݉ZM?n[ |]a!Vy|4pjhkj,!p עә2.onO\hubc;=Ɋ](ɗhG}LAWEfGME3 tܙPo=\ V_0.¹%m G>{ds vh>hЬ 8ik̡<vTb+p̓)HOGX56}ZYhe4pq+q(d>vX?]  z)v[""eOc?xWWRW9KCۊ\ D};o)C Hb$* ҩBϐ، HB-HY vP!ChTԜG)[P+:mvH7r_}Qy!0 fFq8XN]?e`tE+`̆__RYhB>{ |"y|IfO' endstream endobj 5759 0 obj << /Type /ObjStm /N 100 /First 979 /Length 1886 /Filter /FlateDecode >> stream xZM71كZ$EwACH }TwM{JaUQE>>ѪRЪ2g ARu! bB 5dR1"\mOX%XQ5gZQf}(S-5h)7hHD01$ Ie2$uCkRTéf0s+F]m7 k4qOtV a#j zBg\Żj`b3hAz)*c/xU(K)<#/ݳFb $$%(C)BL}39Hķ#U_ȍIX 9ܛ3 >Hw!xJbZqRUDh*P 0ǘC-K`1 IBnj(-9TU`PVT HWCu@A"/L\\WҚχ1@pKSK5XG&kZ<{~n҂6l8x__m>+>އg9D!mb'X IO0S>>aO0f͋} oz/w߇;_>y~ w/o߽ٽ;PPnE!w-B0?\ F:WPrΔKkM+J*Vdӈ4(%"8QmRx:c,FB HhˑP $F%O+*?ΐjl\WO+'7TB𗇴gڜȯJjJm"xZ̢W 2$G! ?0Q>,ʇw*x{9[F*N! &LCW{%R`ggVj$7Ef`JWTaeZ43ϯvt#~\[,ff 3_ɱ8L)gqF)Hz+o~y.r:C 1JWzSE̤q"wZI>K8p: <3prS]1RC!~LgI`aǁaż"U vxydBYc9Q6qaaQebM뉔XfGgW&㼘{I8KBfc'Xsy(:ujs25_>c<6Y3 &u-_ fn|& l,KxATWG7V,08%`HY*[` 3 sTЛރHufjAvpʽgǪ- oACЭz2Ӑ5;[?gr~=R'n,+O+RXv퇖sNּ3iVUOjz>N;|Gbz(5yEhQbZ7GFW;~T@*H7Ii YosJoY3:~ȯpEWp*0/TgH p:N+jhsf8_iEiث$^E-j!: rJ^$9@('@ TSSS endstream endobj 5885 0 obj << /Length 1767 /Filter /FlateDecode >> stream xڵXKs6WHϔ@&CI2㜒JJRIﻋ)zb0O;Y&"%V&:&Sa?n?2șʍD~d3KbLLߺ9Tcӵ:=80w m"dθU$ E:h3!4hμ|]2X͋iSA\bm֛WL\nL>K(ƋYW1)B9fHQ}LL 0edRKOX#"eJ&ۤe:v[Κ>QW`0 9 58kD$M&6DPNTv>ԧFkfavLL6Ȅb:EkᴥUJkN; V!:"j.%@ -VĭLDZm`U&QіҦw"Ra<^V?CjgpuF8.J\+*)Kr.D.XDDBGӗjdym[k\?0x+A.vvAy# ŔVRi B ?@t^FgCѥ]0BB\Pga'(#4aϛ1e(OD͕bB0]YEXHUu:Z흧 |ZWy:%|ׄۙ7#/Xi'N +]iEqAȅipv! ak{(G=!:g>uNDp?q͇K:a)'"qşoT h]דc{T> p0ntCi]_G+T|Niߝ\yl]i!M LaрL 3tRe~%BzYgθe]BB-]߳(*ce+ɪ p=^>2U̸Mlv[ս :"u~% v @k8S8$uXf6}ɣχ_6EBB0V x(O'!ђ ;{ - ^9T*PGG+hf 14r-)ZjT^\۰%L`}"&m̿ku)Ll9N%R/ RJu֨sbS/.Nuj)j6*qv [y59XE`YG/wC)5igBN!t)tND/b8#$/@t@ʮݸMeU^h1R@#$%'@vZ# xd7qw~29qv6S֣bӮбA D%mC3Rx+h@((bE`Zp= !h+P2#'tɂkƵg]V>y7Ģ :+ `1s}W&_@3L&[cM޺Z6 g&` ֭ʍvIXL]R[&贫 :a)LԐ,8h8Lݭ7PsFHe0/|2>z1 ѽpA/\-^ D4Zr&eLY0=;SS\:V\a@"Rjdq e+Dt3?`/\H@ endstream endobj 5890 0 obj << /Length 1799 /Filter /FlateDecode >> stream xYo6~_G9"E@tVtP[FfbmdHr%GqbIuw;QpDWt_$K@ S.:,VaW!N5QK zo-Ͱ_;[E]4UdXeT8hŦhKu/DŒ]4\6oRжVqH6/YWVr?ʚnX?ۘlb+ֺ]ԢB3Ȁ̶| qxEUQA4e q66'~nMM7pbe _T%eBlof{emDp¦7DۇULBD*@4kϏMHiOhV΢VT sJoQϔ[*dɂ5Q#_>|v5L!`}Z&2͓ 4NҢKU.`Ɉ/j]Tפ!a5I(4sjjǨ X-H`51p8D͔zm.['. nU7]K =rttҴ-paM3(!ޠXH7|7%u,e7SPvy4a D)<*tzh&he>L,,ӑ$$(Ȓ/ /Ѩ7$cS ,|I IȄ@}3bhqhB{6dumeD>S=t2yYzbT @QH(wy zhYn8V| MnG3جGdR=U P/&>&rˀ?UlMY--r;&i_ i\_ ;$` ݦndzϺtW\ EI\:CY>./z/e*afnm}_kҨ=^7Riݰkj/Z;k6nb%zRV(|L :G8N›9tg@XD% +G ]֊6Ŋj$xNOV LࣟT=N< wHQ)b.׋7w`WqE n*2iJ&|zlGIFfBEX qS`1>K$8aqa勼ҚKJr`|7vUe1yK)TktOm`<::iEx:="uWUM^5ң+G]p s.R"y'78)px^+}c]1^|D;Q1GȹJ2,Cqwhߤc&88vI7\, s1'5S'2UgM02tjn{.t%>߀ɜ/^&ԁ endstream endobj 5895 0 obj << /Length 2271 /Filter /FlateDecode >> stream x[[۸~ϯ \/@-؝$@[֗&! )Sqf},Q9s!' ŷ/ `C&wE' k.'oDۿ'# 1&s} G:MÁ[,M>;~W7wZW~FLw97tyQ=?r$͐?=U33Q([$)R8 I$$ht_$\  }?E6\֕~eVf^wx\̭02Hc:-"}(r`lt+,d0C&T Vcu+u{.Z,fekX5)XfũFYY~V}S5t^b?y*գBZ5g 3g7 6:#ð`Jx|u4f1oXԈbDIóoIEMºz/RbBpY5zR!l6Ա_"G.abtIXuLb#T`bFNq2]DYdEڙܿz6|̩~ɓL&k]B!`_]^%W%D*N-Ibc&c}Ti+,:jFmCF8j}BLkNVrAsrV#y:H# -/^/j_2pmCK 0J }~: zW_W}y?ĥ?:;xỸ'C&9t ._\cm)q xR {AH}.NEMqoLՓMs1;)L *H|8wٶZi"c”4{0Wm#WxۗfuVUJī]ulֻ r6g,p׫=cy?1 faNgJ%T>[ H eQnx9'S}UܤnCn=K^HO` ӚLhGQ0G5uB3!Y>l,@-TsK,$ *#NvI!~حEvGUTׁFsWE%u̠YH`K`zڧt]_inbrwA?юbB [@|8[Ƒ $:wI;WqK2&W4  Ty81c2"a7F^=l@TK57'š(;\8M炐,$Ҷ3 Y@DtDDAGi/N}R qujH鸪vx1de2SȰwb]0`x (T񒴁#>h 3BiQ$Nx$d\AҙFP1>_<#SbumCOlE3jeY]$|\^Ї|/#G2?gۍHwSXn-eG!8hq77SJ[o*>*1(>ǞZiQV\]ѹBJ}wH0i BU0[Pv:ʣX-H{wm5{TĈ4Z%%:弔T9дb :ׅ]-IB+BW|I&%xcun+``*èՁ BnvS9EH}AĊL~w?[um܂|Ȍ|Ȍ;IԹ28wU^廼O rIg7Ⱦ| C{Z jrBVxr(DE5'n5#c&0!֝b8jinI@UʈNhB!Rӳ3MG#6 jV|2agTԸحҁD<0w%4K_Km``@1."$rQ/Adg 8U5A@L{>,q雪+?-{??eۇ 5k Rn E v;};r}D}I{ 3`#&1E ]ը!cg[+sLjE4FIM+43~yJ-?%we/,}?# endstream endobj 5906 0 obj << /Length 2875 /Filter /FlateDecode >> stream x]۸}qO23")9 EOCZVڳlKoC_h"{3#Y8ş/^L" 39^͌0aϮ_7Bkb0& ~>j:[eS_XD'$]#xE1>:& ;JǛ"Vqvxl)EGE9zac;Plܙf+e}P?Wۉ#"aT2EeKhneZ;~ bnXH$} 㰓/,(.^δƄ8#"R+Ѐri?t˪,&"iI[O/FǨG{-NWGYM$Qa*YMp~~HW~#txNNa@5tRN MHtPf猶Ƈb$W{R(׃]>n/shySv뫦|sOߵwpPGEAP`1C7˾(8s]kAK^ΝO< u[r^= #-"r}^-xLᗼ~㦼/YW>u`7mG:q {*o>~:楥E׭ˎ1(,p[SU"U"2}`@Bٵ2:- ,-p0p)㻺q!!n5()n_!tJV}7yk[Ao6iTxIòҐ0ŧ/7nw8A¡u^ں:ۢ0;`NIne`@ P] JAKvTf5q"E|b oּ/JMW@B h dRcʕ#d}1'H'[?WLKjanNd3#2rj ACJ$U5 `d ¨;$cW޺KFAio䃈4UΏQGF2R}C6l3˖>nޗՒ$Fcfû\8K#h*惣 >R; fWC6vhc 1hyv 9 >ޥʘ`;ēU i4ΣU DTJA^A\ \@-@!YCDa&1p oĬtSqŬv!Φ:GX xWuŕvxzI`q!x;4@d #85 rq /f#E~wWȊל,[[|Oq v mt"ICifjT.؋^ 7ga=Tf=`B|#!(i9 X*^ A[T0`2e | uyZ 9ej?7+òbXh)ҿp)Vk8);q4D@EI4iRHYELĈFBP,ݩ)qs,:mOS8Q(a\slhE.N#UT&\fcU^ Y9G6xjN7С nkͦqAtkmS׋] p&!yt pwp {yv`^V>\}@H]@d  pGf JJ#:ʌ:2Y$#'y$;z))ɺicGcN.4ФP/n:!\-SHYҞu]v8A{Gv$K<:J@sdWgYP̞1M9)-,4'8+ "Ɯ#^qQxPȇ@a7AL剎wT1.¾„}6 ޝpmR> S!!"u c{[AXt  G81KΌC3De  ݻ;H!7GJ8* P%*}$ d qЩGG jHS76n (oW]TfB,U2ldžFPx*Cmܦ 0Z+Iva^؏V:ag*|0`,!H1!J5%ty35`>x: `LG""-1r@iG7ȗ ܒl놎4#0 ;Ӝ[KvVRe*3b("^QZ֗H3 K04V;ڋ[$*{G5'Ø/t+u_k',i:I!A-2,-i\HK#$G !36 i,iD|B@Uȍ|j1?QVH75WJQh}Xd&8$>U>pT7He ^Nj/C^?2"ov [bԇ*Fs[f?uQ[gfqgmwBo6nyַ;y?%u18S"!!Cf$BjOI 7 O endstream endobj 5942 0 obj << /Length 2227 /Filter /FlateDecode >> stream xڽY_O!)QAh.*\RJmΈlyoyM3?값on|^+%E.s_Y221c\t[~+8I5&š37Ji}ߖOTGEؚ֛_:z> 4p6xy&%vky᩽UE[eSw8Ov.S70at3G[J\ڦ"1rG`-} !TT`Kb;Y۶hK7WBfjbarF{Bi5 XFSO4uÃbc-rFx1!BѮ*q;Lt41l g,zy]= 6Gn0JkJ/"|Cۜ=FG?m&F,)dWz9WOEZGjи1k t(17SʵxC6? JUTo_E`dݏ2N/RK/v pР?.C-xxBA!/#J#Q\Gmrg>ff%2 6 fx e ֻi۩ƜP=۹sj\0$jÛc#WOX'!Up+bϊyJȟV@X,G@.a!DS5 %, <Wė*? 2AU O=='p~_ısoӞ+_@$^vDO SU>nV*ylRy|'C3U4qx 3\9|kC{w6mO7?䑈(V~AFu6swuIΓ\e;Uy|Tr>3C30=ϩ DqV]xq@;Yd}YW1s\g0\i!̟>ϝ|tH=}KID/yxCf,beMYK6*G6ᩨU883 -s*o6z8q5q˧( /[ ~oƿk}̅\j_Ŝ][(ڷl*|*[參x" ƦDo]I{HL kWUnȹE?-7B頟rPCjRn?~'Ay8یb)Pe6m[:2H\H$;+YBpQGe+iw^G',{,*:[T4CLX|?E`M6PKW%#A2e ĭ8G]-P{ l569f?މ厢N#b0=MK/s0:e0UQ99SpMoKB=\ `tP3ABC6K<|2X eB.\cWo89> stream xڥɖ۸Бz/`'xތ3)cP7mTH|}Ps@,Uګ7ۻ?_'og9I&:\E`N)elK,hnŭU8ڦ~KT,< <;6;4KaL[EC4t\} tciTlw""2U1I|pmGnnM+V{w@;[VP5_ىP,9еGj葌<MG1ZNZ0cwԅdRI4 \ |{7,o\9-AVؖ*{3!Bi qq5gi7@*I;V`JF֜3_.6$㩪QeG_bHqXVx`8Z4P42rQjРJָP{QRHOm[ lk}wh#x+]4T=qp\uC[DGҒy,!s d{ .xdz`-S\x }IyFiyc6h$VXͭ+R;-.f%rh򌏍e}ኆ%iXEt2!|2[́H22?f98q̫xAx;] [2*Yzc_?t}{fxLx*tn3}9?_+WD ԼUlS.0koqCaѧ[g,SSĆP\zzZ 8z.Dp3hXDD&Czܑ$Q5ED ܫ(JÂQk# N\=\LZDeYrHVT",9D@"fhL%rIG7%LpeE|VJgGdώʼnU)(2윉U9smCOVD*&U3Kj2( HͪLP&LêGԧ:=vi"eBỔqgRY1=aL$)4ZdR QPsQO f꘻cA XvMswP5]k`/5raeM6δWqT٣Ҍ|q# w1jXUEB8VWV9E²م5m+`Hæ1JϑCvx-vFGTuUYN%<ѬlQ`VtaF gX;P Sy SѳS(y@N /$;SpCm8uRT_,?cԚO|;09e8a؊(FphȈa>F*$*-^RP?/26{ OLa'6 "%uY7cL%2Ϙ#X.|NArg 1% oAD K& ep[ƶUD}&\ʐcNopv's&"n@:JピQni=ǰUj &ؓ#iG> stream xڵYn7W%G?$@Idy1Jfwa6I=;EVO٤r[N#&b٥4KiTZќJÜȭ_FNܢ+h`冹3| A8!qC֪oE-ara,rvUlxg*F(  @o! 7/3HBo _@،a"fbE6 d ,K5fCDNk_z2hDP@Tz/epX} B ,~}OһZ`K/ՐG|G \_iǒ>)^v0 -lltEY-)/#߸/RٳxkC@,NxX<;6L4 L5zAys1j[/ё[#c"#rFֵr&=![4i{J@1B7LO_\ݩ[~uoW_Wyg˗ruq}Ś?i|Z\6dz/dKDg L>Xc@@c#˓./֗V%[q4:vO}`>I"zo^4-_];7}^]zy7@P"Qg,^]M4QS%6mMe6T*z>FUJN[ rKy-`FS ֧TZHh ^K:TF~\_|s]uYu_}@-@}&MhMeBa}A=fǡfQDUٵyv5^ zk#d`]p:Ly` DGP⍳i`dZFDXԠ$|j#HcPD1E6R$"(2kpp+yX#<2!uCFK'%'D*4nnEyOC5ISU_]Zx fl.R77oSNGhp|\xY2Mz³ZD5 zb޾Elo1 [q#vλz{,hJ.>%8PcV(iX}`P<&Pl* |tB9a` ^=~MziG?v`˹ #=nQZPF%y dV`Jq p |wIĄ{-`,#8TI7d endstream endobj 5980 0 obj << /Length 2505 /Filter /FlateDecode >> stream xYKoϯh qsEI,&wjڭԑ( ǧUk~LrȥG*~b݇w} Egrs}IMzd\|;/lC_$*#}]l0v67eS@s Oi5>g}+{7>F锱@J!ε睈f|&"86{<ĝ34MVP@.׍PVvU"܉9BGQEs8nn+>4{\LH`P,\lA0ZlJNZӅ {JF^[[}ΤM]Vf" Y (cYU-#_TeD+j_ѧ+i#f0fNuw8G8ޟ;>OZB+2t[u2@N!x}KК_;SH-+mVu`|?XJu3QLwOk l^@=+O߂m8PJm꽃?̂+,߈sz#bK RRK@.dSeAے"']WRC?cWE@f=.`wSy"tS>Tz>om*leyLg v\lQP+! G5ũɐwCΙvC~n%M;nLW; od=޼y%SS&*}ə>RNST VIG^^ؤ%K i[Q6_J,!'hLޣ8"c_jd _YE"ͦw# v08a5{_}i5\Mc;'͹24^Zl곝fIdpX'lz 4.Q>ϝՍ8`U4٭iKBrhF-gG6:&pQo-pFa B2/R^ru~Qj# jFFoAY 3JB\uc2d*v+([dH\d^dڡ4"!AN|8#Q8e v9[aC?( HR9u=Fb.W)$׀0b*1/=ϝe$FzB%yD*^׮rVBƋ?Ar_!BNpM_q˻st۴Ӯ8MwFJԞۍ%''(E=[ @GoñyV_2acZ)j o::hrGֺ(I`;>sGߙdU}I"|SIN~u ͣ8c{ЊTD W 9fJPJE)C3KlV>ݴ BZVAwg'행^$ppRTZ/4L{6f9H."8;qp~CfD81te g[[M@unkPIn؛+0$"K֡We=n't6 B`Nrm*}5Xy7d,d(mz~J֨ą2!u*FS'm߯2 c@xt|%f&Cd:W4i205:XEKrݔڶhH55@W4t8a,6|I8j Rfˌu/Qblahȫ*5'9 M@~ļmGI8⩗É,6rk̖حH^E e"Κ,B0 57 6]^׬zPi(q3;9}Z}CAq4.w}iF{/^YsSK0rk;=@ T@XsYER8 Ze endstream endobj 6005 0 obj << /Length 2345 /Filter /FlateDecode >> stream xZ_s۸PJB @L:^n.m[&CKE$؝~. EP%9X,?~P4Ex%3q9Otg$UTHgqlZҷ0(pK B7K2sݑm\G*ķ!8ؕO(8 g:y?@E0 ӠzSmPSz̓R. ~owH씵^Z$.XBXs$6sxPB*OSIc,`oi-voeؕfݦy[:4#I?W«[W1aۗfk 19žF4 3d ?\['#q$Ė@jq|Ԙ !B4gy4,%c%/'Dp$][m}ܡ7?ҋ~ fv=>T xr9͘aQ*Bz@^jr ')FU7繥C r{ҹGIa qqIz$m ͦt`{5DFQ;; ,,滩 ƄكBJz?@L!Xϡ )ڲ\}dK( b %D"k@ko?OK5e_bqY o-kua}^9{%X= w9X|t7qEthkAu GDoOp 1D* ;zj\CqhZ֪OPۦZ~n˻)6nU\oI&I'Gj/ ~ҷU33w۩pQ]1rNM) ;9-6YY֍}}2 kXFu ׳d՝i {uQe)棃fßz+sgiQi[Qh[2ʑ%p*)s`1 +U J|;awQ, }I܆M"V@gޔ"S,顀˷^QdD*IX‰־V!iBG<9E 8{}M~*Ҷ]ylZ{;oX /jBDy 0]) sL1l!%FVK$ yͭ'qgZUe A˟| gÌM[JHTuNŋ(Sm: uMGm:y9trMi,<0Rr >7?x ӣ6|;{Y]9&6x # d3DOϝ=2~=)["σ^ g?Kf(x\ƺun3c>zTt *&x>\#,p?,:Fu=K3.ΟPY@EM!K r[UQÃ@9{2]P[lJ@BFٍF-?B?z;0 endstream endobj 6031 0 obj << /Length 2693 /Filter /FlateDecode >> stream xZKoﯘ#dnR 6"f%) -9!9U~}OQ39Mw;ǻݽLv'bwwsrx̸6|s$xX{ewB3|W9D˶Yv^9Q~\ ;IHnFQJYCKꨬ_?NJ =4-Nim=&N)p1}(?ι/ڢ+hv#"="6xAсUYsHȃ-" f`8E`o#!NF65BK1\c*17~]#Sq I\T,?\5l%*sX;Zq!G@R#lZfiU=Cs~8|Ƶ~QX Af_foqc7 0CZb&YS6]W~0lGvr RG0 Wzc:)Otс>4DU!3 ==#8+_DM :=.)"BE y"ss Z~=BׅK-G]?S{ā_ x\͐ޅMK:ۓi)i=a0(/R֨x=j/u:ւ[RXQ^4iZM>1_ldMZUZ?)Q>P[g;w t/+8mF3Tz4(/u8$hH/e0%R>۔B)anBK6h\B}%%+.֠C]"#(űJ [,Ŕ0UHpbV׮Uu0[-gf[˸'`RKR*ryخ2#.B41)5-  ۛK '"2"o .Ve@2|[ZbBz3E·9tz:8DZA=W9(fP5[Wn& [&"ߜ]o '?@+2 F ~. D} N 1ΨnŨ±X g@W=~x'Dg]fM xi>^ >J[ά]ǺßjXGbDv27"͟a=Or$ &8:j<$m!D&!mv7ilb;ȋvj>'1},2,,_Ta*hy-Eecq)\5;!2kfX#s=l$9pkbK}njdX aaO|O,SY41i7!?4\V'Kz ű>ᰎ@`5hVOCV =I \#Z]E=UO(!qVLoc!D Z/@E5 t:ү]jt{aTM7> F>$M# 3bhQ( =0I8K[O:8}L$~zN%&wW UHx<wC85H[T9Mmq7K̐V/Aw6|*+ac4|v /BU9T4k]ppk 4#[L#`ZM RC} N")"ean(tKHE>KnRz1du>>{bӹ*_"P;l2_Q71lr,W5T=bᴳǐfjøSܚnd!)NP}-!ǫPB顁C],H [ BkГ@+g.KdB9t< |A d:<bVLae8-K$ \99y]ta~z;*/,qF:xdSh% Fy߶/n Zz4AٚacU|ӡwoϺ=y30F2\ҁ #GyUX4[_:XLi3 ڴdҍndmfwd\ endstream endobj 6035 0 obj << /Length 1861 /Filter /FlateDecode >> stream xXY6~_!("F$uP6@M"-f<$d[,G},Qz})39a-{sk{8DYabKC(.rr7hOJi/ =[܈ʦNk F1F MX: ^oh8򢛷i@_']1͐ =쵒?M >H3Μ=2 ǶSYF^ma"V2o+p )Z,뼬Z0LQTgP ۊqpsŋ)^AׅG(j_8ԣ+(%iٴfW(KC}#/A 6W.VBѮ3KNsP6 ( 뻕DW# @)%!C, (N1pdxD mH _oz\0&(Nv2]9N!\RW]&@n*Q :9̔! >v[ԎlĴp (\IS,©_JE-\(Q RPyO~ye-G\lb>R\;J2C0F@n璈^+yp}QB%kM|m+. Jr')<ϩnae'zХ;ѴPĕݶw+Ã_VP Vv -ׄQY1bK(!m}RlQxܽ:Ž+.$I' "=ך<ۺbd2ȞLSo]N&3W\FHZ .o  [PbI9TBé}kek7[3UVc 6lJO#DhBFϦv4j"w$r&&;:m2pz3[NHRS TX@*48^'/.x^CYyUr۟ULd 3Ѵz ^)EQ88J*GĆ]1s-JY:N򌶂r<2x0ݩ1|@8| ii {~Њ~0]@#cc6p-mam!*6^a1 Qwn;4?;zx0$qƽ ȤJ4 T~Gz^tQJ8}kc˂Z2R0 +|\+9鷓2}{+!PUlA7GpΪaHuT!W8hO%m3Z hhzu`|) LS|u4A,5Nϥé8en3OlaD\=!u&A-RSս6ݮ rhP 6v4\`hGY5=m#a^`tU\wGgxg̈́kC~6-5r]Sv5|w5qR:qnG"U24PPME7\] h|֖˕50W7@j/CY"5 6!"pJNu; ҥ]mLlF?!B &5z45ceLx/ڔ!`q)q b5,Xhz(z *[M9qp̀^ŒpK'(wܭ+2k g]q`)zs>RC+*-Gj3'/Ne endstream endobj 6077 0 obj << /Length 1987 /Filter /FlateDecode >> stream xڽXY6~跨7-^:&N 3/AXpZjWRxV8&ź&7޼,sۤb"&U쏼y^d,f'cG޼Sm ljBGс%?iW28Ѵvqp ^"\^b"t Op!3@U!Np[a|hS=K6TttD*z[<15|d<S)ȮJGSyՌT7' Pw2LK=&[31N"a\/qXֽb_3-gB䠥8s$g2 &wTr͒|x]*i9Lmv*E /vl%Ƕe}`d+E|?"KC#KCށ<c}"XRb¨4$bJzJe b iew=^eLrWW݊/r(IC-W`=#!/}(4t3p@]HgIQ؆l̠Le dbS:yBBŮ= L0-GT(::EGbgn +kӟZԴ4BvI99NmrƎWwm1Vߝcbk`u]7Zw9&_eFlSw7 TO[o'X]lm0Xj3f"qt썥!sOC{ ePxB3v7R[ MU=VxZC[߃)k[@wJ42h`!g !7At.)/imezWmCs9pD#"XhԤg4ﶙr`ݙ?Z5k.t*M7JtG$k@Ǖ:Ka̳sy5bz :l WQ[ѩ W)yYqIKc*b "Δ<}u*mGiE6aS_P4Sh so]0y\9cehkBeSt'߳8Pu(ƙK*yBy{/8~-k=Q&Y9d+,\2̓G{g ө#cH_'qrTU<{eQ6,ɢP9`xBH/^_"vr$?]≡].%`KϮ{o G@bTʿ;Ap`x9cek`܃nu{?v^7k%f˰2T}'Nc8WoȏYWZ*rB*3e#vhb%sS@[I?{, Or=y qʠ`-c KB:K l&X*,^E u\$ytN?IkDo6ZUYT9c$.>z I@~җ e? ȚO4<.Dly\}K)_o`+ h"zyd}KH'زG)a_u ) ݾ98\iLx<"=^2|_d+c f#(!A:o E'~PՒ!VS0>N/SG&̮LB=rA!H![ʏK`p ۻ@\^?CAWв$dpnCͫ=C endstream endobj 5977 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1489 /Filter /FlateDecode >> stream xڭXˊ\7Whl*C ?$H2xM01af :-۳TUjSI:$!ԫZ%27#1NI(\txKƮdm.祝k#5u BMikfW=bNXMhpi=")]8T$]*%JJ]A@j:$+J8"H54\bHr! $>%x 6T-n†N+lYSRH" &IZHCi҇HNIꔐ, N(lHmḌDŭ5pk6鳙SFS2Jp+ (c2& 6nwveܟ9#98rd.Y_~v>~jdwns=͕?^|p"6>(RnhRR61Ͻy^|[gAA40堿ͱp#{8O%T l #8s0]jG s Q}^" =xO8lS`zdp=8<_eO6У;x_?J aqC@VP/YJLdgPQd<p< NSӌP):u|^?\tOK?L=%g:1E'!.(l5ɞP4(_6Rѓ.Ñ.G\zV:Fn IFϱ@d.Ig11%@"6G,Ker~Df5hͽ6Z0%X R'tAyl 4^◁Jy8X1fbi=p^* Ip# " AYH ]KG- 5F2յL#L-7Z:"wx:uGAGwsή|};vkgHTch endstream endobj 6102 0 obj << /Length 1635 /Filter /FlateDecode >> stream xXYoF~#=y8p6mES ~Ki-E <).eN/|eX/○/^fbA0JqJ׷.b :[^m˛e  8 ~պ_jj}S\H+ lG U 2b/CB7mWt}WTk8>Aggyfiu%ͅ B"TۮW]iH`UG T0U Z$zš<3PZyܖf!B3Y9%a@1!&pWYد E@u~_vX9J2#򽜥ip6>sxri:+dyջ1Ҙ3x ԇ1D>4TEix{qB}.FK]Sx@ %s8\Er\S:U75&M޶ B,UV1($8t|r_P0$Ћ d6?@Ko΢32 Eir&06M>̀fW&s7VLmF3}'Ab=h 6QUʥjKE3ߪJVm}kFSErFueu̬x2(2;*4"O_D# V dgV z{8ukZUm _=C**dqʔ% *8pL@#’)?`u%,:bɤ)hX 䠳++&L&Ќ+00rৎ)yЪ]=spBk:>7 J6vXI[6βt3)Znfm=Eѭ^VTRk-C6R&Zy# L. IxWTBYiW%M1~AWf; 1;yYG'OS w殗fyOnG~oCDx/`$C9h'|^yUoU0ܲt'=x#+x8 jU`hJ层.X`do6:j|n‹8BGiAJηo+WΖlkշCEy+E :n YT &Aw)N;0ӈ9lx"84iD#$CS_Ί&,BʎNA'IT-LB Վ Sz*BG0sl#bn :]jjll>} Z"}2 ZfwxDΈ6r*YtVQMjjn^wc}v y̧Fv+6o;û,L3lff}>5RY8QȒt5/_W:=lw `|V"ŏ> stream xXK60U#Hv$,,&Z-G-iY9ŢbXU4W^Qba:S[}ߡh>l XOv{ܺn0=!0pB3RC fyNϘe7ѓ:hlլk_b{hP~va 8Y{\O]l=*(*VuJB\}ֆB78"|۳2uqtSFc]10؄ KvG+ܿhiphwj7jB :/=R"䏅4Yg{]HhP&ŸP%][bY=f}(":%- ۾@}Kq?,>茟[)¡^ H8m\@(HM"H}dđW1G#* ݢ6a*! BsD-F(\2yBYlc3D%6+oX$TsYuǍԗJUPK?!WX8Twj{l0py~ 뙫f{2)PppsP<)O7'l%~f{s R=z%Km&J<=*DfKI+cPyKǀWqfwvbp~aZ`z('E,9ON*ȁqKnrO3 .kxl޽ tؔ鲷W~ ="tXԓ񤑿widW'__nKl%ᘑ%U~ׅ _~0sׂz|V4t{=:,tW/@f4o}P n8,ê3ʼ#?q79h.ʊ~ 9nC(-:n|uu֣<R9~yQP%s9s%s!*xtq!!5S9T~>Sҭ;.a{^]Р!pTƱ?tcqa8|f_{wCtCQ&\[Ӯ |nUjh-^`$$w~12M`VaSo ;>Ue<~oZ 췋?>7qOQbH͟8M7C6v\<3T И¡ihE7P-_$QJȗ$ endstream endobj 6162 0 obj << /Length 2748 /Filter /FlateDecode >> stream xڽێ}y6 PԬ03d4vhECM8_sS)ʋ)NOh6|w?lGLmtQFi7?qV)V"k=Pex󯻿|Cb,s}/O٦U6[:3rTiUYzŦϑJd&^++ԡ.΂DBHX/$HZILY1۞(ܠX-H~HyFqAXtSlӢ#R5S ʢ{^5!>BBun3 ފ+!:NN?yTfDXN3@;7RBۊ8L >[ U4i(3ek2r-,z,ɂ=?>y5煌}9J@G DOIdzP"gmkٻZ1Ҵʶ)G4ښ,Ʀg+%+~MmZG hR<,[X#CN}94 f*tɥ=+>BN%mD8XKPv38b1(fWu%vN_Q2Brn=-j-x|eIE?ȑʀ#DK"rʄ><&TMF/]wX5͟|xf4+H3CwF~ztcdS;KMK)Xoq#F+*2"Jg{UIva+"^O#*nK6rJع5:)PƉW m#?i4z)(5Yd/j3)[N8ucufqh6xrG yX| b}fRӸ*m&eXJpyYny@}7p]SLɏܽ)(h!d)o-[S.0*̜+pH<6$nЬLeL#bY7.sˆLeC%KP49d(xN%\DW՗f$jO<h#K~Wd~)VRPІ]6&jܮ\QV7ͷ('JjwqnqPqvBz|0,E]I`**_{a/^4˾(AQRWO0*fsQ&RG|JI´pHxh_&vvۖǫ2^01|U:y@453g_az{' I]B>phPׄEa_9=v\( =kK4 ͂ylDsױTobea MB0vUAȟ9J]Olď%+*N5hap 4Sz_ާf8M(*$wD9լ GP0E΁y6fep~{_{ endstream endobj 6177 0 obj << /Length 1814 /Filter /FlateDecode >> stream xXK4W 7 ْl9B ǁRl͎cOٞl_OZ%((8prvw_=y~y8xn2ߕ\3.d \ByRRY*T*IOM̘6<ֽb4L?#϶[[-_(JTrdWv?LHSYI=X3YX,1B3Ӧ}ɸu\b:Z398 M5Do~F f]H;LmG u3(?f#v}2(-yk~st#)s>Q#Q=` A gkf$![33l>p9+=K[O'\>Dt'$My%(ޠ1J3n&)X-s; dbR˧X2BkTQcO# Yz(Irkf:R,bvLi!f.Hmځ֧[7] Ҷ;ȱn.SfĄ3\XYI-ӯ7 Z}Ť3; l(b,}NMZ2skxn[>⮌IQhi5!P"ӞE8$oh8feLd+Μl:NkG4|/#2V f6EJE(* HMͻL/4+Mq柶]Գ !f*KnHuYk SUQ5pj9uk1A2ȿO'!b0߁ UU%˴?{t(vGx /6ʷ1N5<$劕բ󰉍lhxZ&&Ktϭom -ΩaU>o}? endstream endobj 6099 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1304 /Filter /FlateDecode >> stream xڭXj\GWtAx"8C+28S-Kh-սLzWGi7EG+Tf\bHF!ha &nXzn;^YEu (6[1IzPMaT͠V\Ћ;ePQ[ujr[b|0! aCҦ;HC&PZ:b)M2CRKo"p,ʼn$p D0 KNdIBF C( < YXZ+ /TcKfh lk46Bj8p<[ ӂD}I0Z8̂b3x ]&8 lq{‡`/ S.]!E"E_:6اh)H^ފBsaup jNm .q*S}h#8 lﮮv-ʡ_oQ|݋?c:m{v'nU@jՈ&&i cdRX&RQn85c^i&(Ƶ6ҊjfQ'%nUzhTGƖ&e܈ 76Jх7nU_#(z5BkCz<+3﯀4GBHWqfx6ܟ1Ѝ gi>|p[ޖe|TX~9nqӧw zƸƈ #lY T@t>uNH'yNy5P@iU' E #^R<v4́:+%܍Hڄ<4V*3:a sÄL̡ 4{]z P{U@$p(jQ)e4DzO٫g9h'(=}Nf\<}9%9%#1@7N1,84,)״hH~]ifzi::)ױ b <44LxK9D r)lL~sWbIne~ei晖~aI%Vs|zfI%_.@I xC׻SYmM~{82,&|c;M2R/w/xr溟g37,ė8*#& endstream endobj 6183 0 obj << /Length 2485 /Filter /FlateDecode >> stream xn_oXZ݇Y`rAdafTKJtA>>d:J==%/V5ūHe{s؛n~};/8؉o"wٱe>|0~sN6[<#fDuAT>vjj;7 )zN ֍",G1}rV@kLеl@ewwowHo 鎐HcVxgghkV[t#Ƈ5eh l~q,? ~ZcZv ֍ք|<5`c^hM'\'Y4OV9m/ov BC4RFKЎF\l>q@ZG0wH?J6)308]#~NhnoFo{})^% tbWS@ZmM%,h^]8 B.q~8`-)%Q')dITY^ت( @XdӮnnMKںdLaWȖ@l;FFm][8('Du{ REXF !ڹqcdu% cYp|?rfE0"O󎠍gG;qGŻn-lXr8; Mi]]22f>o& otp|x8F{gKT  I71abUDN<d?!(>4q%UzM`.kAt׬:o|)p4$e"ʯ5r]kxexפ߰S{^I~yj{Q}|;=dxA " &W|_Zr}\Lmr/0_Q͈-Ï-%?OpjFp3r)0X5h$i\ڮN E9*K5j?ַH3canNGK0~AY#׎5p1thUȧ^=Y3q詅ڤ"ԛ)Ap|B+>r4.-1>{u_d~)4C;wJM+}Ryy0kEޙ޽f$DWG6Mݬ0~^@9S;U0w_qux. rbsmٝ Db寮%1!z endstream endobj 6209 0 obj << /Length 3316 /Filter /FlateDecode >> stream xڥَ}BAV4൉ lq$ DIJcgǧy!}TW]Ռ6Mݟ}7* (W&՛4ƛ@eߏ{ɒoMNpzfbk0s^m-<3y6p`-7*6M83ʃa :{*gfgQFi;qP{6>ETG{<[z^f< 8@@OX8B#10q|^043<+=;z=.9N#ֆI}*nB1::2:~ Ȕ$.h3zfMudG%*2sP3}ٓ#B<"4#^NxH!EZD/jGj_].,dd0kAT4QO](tEB 92zvUϽ9K^Oͭ諦~ bbUueۖ{д$r7]tEp6'0;D!|Z?9MmidW<B;CUU tpf]M=EرǭH9xZ%lg @|}UeA NXf8*%EܫA( BzlÃ>"19+ZcQ{wIVvB@ Ux5"`> @˗rezgz@ ĺcPS[;wb`O m>:+r#`60w4Ig5,gUrpR(@h'ih>hי[gz2h -'Ι?f@&{7\Jc%f̃ʳ0N7`U># @:vssH|BNb -S=y-1Т' Ɔ&7G%Qxs_[4/^P;+c)ld݃/ɋ} ~t"etqH=)[Cn,L =>(w]sVnduW:mԦEn3- Yx]tY;.[Ģ;l -ojx 1ȍ/M-\e{Hl$_‡bhΙ%z5K֓{YDпlI/BޫT4~)>=8 Ln-.8U27-Iom6'L>F+{#t*8^`Qb[d8fޝ;йSt$RE(v[eK_ v8,َmڐQ5U,A62ñݶ0(rKiJ9e.>= 1C󥴯| >3 8k`HS ifί'LiǂEɛX%DsߚDtFpkj:KqW秺eޠc1@%XYKnD|ڎSXG_OTЁƥie\2ZA"Y)ž7+56JB =u] @hQv14|C_O#4hBD;\ L<LjCt%;ZöV*;*{!/lldXZRx6o.*/UYGujBO2QA`ܖJf .M[#{-Z4e]M.F$llGI1RLEË%&nƈ,5Kɦ tk1b.T\8o+Kٟ ?pKmYbE-%q"Z(,` Ͱ{[r?W\ c[\nnEw=WHv?5 Yb:+: &fjDݹ\Ȱ%&pe$3DN'7-o0Syw,>}, ?b3I>bD~4-/y)J 9 ڷ jcr{Z0Ո!c^ނ;@lޢL0/*d㽳T57VȿDo6]_i"Vɒ[_]P)&@7{%-C ŝIȶg^]w IӯO5FƅP$T"9z}r2'vΝ *X %qƿ#^Nr\]7}q* \" b"LXŷ);#\)!IVIR7X#SqSosJfQtsJcb9Bgs5~@%uͦ?VE%+E%a WSBI+ ݑTO!0*&]ם: &u@P& ַ՛ñ EG˨*U@tLA(Z7/k endstream endobj 6232 0 obj << /Length 2663 /Filter /FlateDecode >> stream xڥYܶݿbߪ <Rp:qQEE4;jfY{~c;h'yIn}݋Wr}&qnʤoobvyTŷjZ>m?ٶn۫wYty^ZxE"$zUI\_v3\~NtIlgMV`gyqZe7C~0ݍjFv{3An\Ǻt˿`I3X|fUdEu6|ƜO|_INLR2evik%Bt5mG/bG*t*8d۬ھ&>#ǖ~~#5 صr7{Q9mh8w"wx~抸Xv6v Čb^ϟ.$7=*e;O`oDa 7䞰O8qv4 HWWyxhi $[Ee[%@m5_Y{'PPǕ`Ytʱ2Ve~X'Z^Źşړ8jOU2eB!qRĄK*uѢ ,<(,aa !o*ӌ>y>F:0.ȓux;.x i.!r!_B}N'~sqrs8_V \`;NѢTM((qek;2UN{X S{n!% RAێGֿd+v)${WpxCauykؒ@axȜ`` A&Im$+؝ QOtNj`_pWBY9n\Mߜ(/Ԝ+LB۾3'>5zw/@C7rɗVYRcga𳒟!};^';^v!}e&*br$GLY5Qގޒs#ù>zn~ y !Zpd8']~Y4u *r53j%?B˻p9\'rr \_8]l-qhCb( %WN[$`\ze\x2_uW.^rR{X~g}eH)`n atUd ҈Jp:q%CIR6-U|!Պ^%HY q ٛ҆R$%7R6JO\}?ېPpZ6 И`UI-N ұb0\}nn e3?|"3 ,9\{N*wZUZ= f<:IqVO!_L@B>cWTbEILJHߔwߛsg8Y NH^}裂1$P΅Ù[ Tu3ױse!$XtR*OM})sKRYՄ0(Xeu ]@?ZT/TV@D9u!y4(-!Jm\6@٢Q0Vq1reҥ<dv$31_:+/_c0WP)R%#x:(72^`jp~NIG˾qҕpB]Fx/A)HJ j܎sFRc6nR$a<]J,M061-9\`% Rl'U\LJԍueT5Y5CTGftTvTUW:%Bfbyq6F?,bձ4-h$~nuBCst=]ߴZv53>iI9y_)M0gӴŌ]HvD!I=a~ dy\ޚ9AP,=܍OFŁ+U\◫6LrMCU*0!JՏJk/$#a mLd C%n(TYqQL\{e,⴮BLPwLC/Q&Բ\Q()$X̾}Dq 7.iOOJz)2zq<6Dg PGx Ngoԡ\\Â]`i.{"cMlC!)T +`M8`WJyI.Mx|cǶD~raDȴɎ`4 ~&ɫiqyAOӍiKb8w UZ[~[ֹ?(> stream xڭY[o6~ϯEC2-ZaHtc;ɢB'NӗX0qpg/'hpp $4 .t,y8GH(Ogz(MZ藾mU_鮝#LPJyVGKmԯ R7+KSGd9p! p}PR UpAP#q < |t|$zH=("wq`SDSjEToh#WGH6y{]78bi?p(3q\㛖8tvSufwZN$ .2֯ $iR0`o=wL,uZtSKeS-dV~2yv*i^1 k&JټVؠiqp-fsV , YT@ ly+K,KQG@ gD?4p@\! o :c5(ؼYi_`T49π`Β$|7nBthj+r蹭D;@6 ct(έ[ oak )8\[^W.L+o~c^E9&BZ* pfqƠZ|֛v0S;nݔJY5:S!D:79rShMDc4z Pٵl \qދGñsHtU@`4E.8Ҫ< iMSȳxNQdn6B?N<$8fN~ثık|B2 |!^en`Λ5Cxs[ 0z:˜|B]LR.WLl[rEșə GFBЬc|_TeFFfx(S ;A~E8ԝ Uw3X{%1qr#xFۂ׍ Jb$Zwp&32ZЅL^T9'*4WlC' 4V 5KGE~*ٖ>GC;ЧQ{O{)JTg[gS'|eO}s28uc>daț?n I.nd> BR '(+hP>}"V\Up~ظJU%L1?s endstream endobj 6180 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1427 /Filter /FlateDecode >> stream xڥXnG+ӵ@I0,>861@%9&EB ^kȃSI%%|wNԧpPu&BK2 =LH](ɘV(Ye".C|@)K]UdFnG`ÆmQb1Jی ]N}ئם:9Y-/9b__Ð%z7'O&tJ''i9AGN;nP Bk[Oo7WH7\^^lߝyZ^8MŗoXkٝ>Wwy~^s:/8o`vN 02C) BB: Dg^lqh-8fg@GGFo HgCjϑ spd@ap.IFb!m9R@ґ{ t#I2F_]2*R+&_,ߪ#ou,Y~sίwgO_>l\-϶SyyR[`&(`P.FCtCw< xR'%@v~}w+Jɕj(YTQ64C+G qսhvNRQ{qa GAW%Q+- 3 q|r *Wk O:عҳY7&p;e Ă7|h!#@E]};G"!l3/!,zb!#{d0<%=iܧv7G˵Obxv1 !v޻5,5iLs}`jGR>>|TsEn:sz] ^.E@\>BV8|Xh 1s%PQwq cT?j$l/Q w5Pin }U endstream endobj 6293 0 obj << /Length 2488 /Filter /FlateDecode >> stream xko{~?PsD*@ lC]mpPl9`^=6 ᐒI~e}@PEΛ3iDG?urHFfl4$Id6%7mQߎ"c)UzŒ/mQ5jn#\qH*RJjI>&(#YSjsAb0$3nJF@Rhm8*=ZF#`%Khhf~kW"OjW|8ZεVY 8[̗zz\F Pikubf׵18u,=x_o$2\fRYY ;MZ>w[/9Ei"JEHDb@ybR@;pif"āOx_x?~#zBޘ>3uPe؁,t`+ ruMg]]VO4e=vZ!o;%OwAx14heSBG3H5rQfǮF ! Q"U zybO]W'y#r}2S,(OŊ:$I|x3$VWb֧3Mbp u[:XbS^8*0JnD:d^Twcy.OhPU}c+:+'Q3NU$!b/9TjD·DŽwX%FsemdX¯^jhMRgX!3@͗Wf` BSZj?AچRHjyW5W׋G`{0wA-> stream xZsF_#ZM\6WK]}H8V]_ PT_ 4_=e b qx7K/"3x+^i0,Vƛ+ &fs-Qn:}*$Fm= .4dofs[')斆*.ҥS8fG\֜@2[V)ݤOdS7'I_o' o2^~ayhb:ͷHh np-<ͪ-e7hE~򴢧Ϊ| YFӉuM %L ɳdECRKشBe5$UlQa+N gqR,)Z!T?IQp0|0+Û,KBY9,YQ77j6OVXX,1!N2`5 UEф0JiH!Xn)Iм_7IP!+J ~ ?mT&OLweE7eHHXZ8L,,/a@2yd̜??P.  \{N1'Χ:3#+Ҝ>=8>3|9<ŰN蚄L pПв~Rʋwp%tԷ̮R0$ u/jhCſR0#`J$gE!R1~̡bȐ)>ԤE  e)[NRKLp$Wo]OIZ&myNi=Rƍ/Vt'1jٛ>} F  hWT,m]<.G4LVmSF؜ 6I;4CW|4`w0=+Mh7sI <{ ߽ԎmE_sPIeu#( 3)-mj mVcJ +܂⑰sg?n~.9Ѓ4qؖ#J@h½?KL ICaka1e׺3Ц.[F!]-Qh1]Q47f`ǚ|qPʣD<6dF8(Yhבzf?-X'МM7pm`o` z LwˮC9AaSŊ 8P^*ᰤNŦ<ȔS}FFq/ć(/by yA?^M 6 C=_)Y/cdƋK7Ibk~;LIMwa"_%]^ڲԉ[Yi)n^]uxzPO\od&_d\bV;r/Uϭ1R]l^}_[Z՟05" Zռvϫ;\<$4.I&gvd"mpa88~kͅ bQY?B?B1K;[nw=]ZؑCYZmʯ/h?Ŝ%gdی,2mF,kK\HS)կMsjJmuMQ2BOz(PÐ:t $"I8e(X.* xUf 6{frd3ǜ#^ Q,q ",lT q a|ϪRCiX8Rq BvӤ#M;')&q4Nഏb$6 n͢q߲GQ_.g6k-Cb0WQ2\ejͪZ,kKA9%_EHJ*kY=-n-ee=Cjb4SU?'f8[Nt5N/MLmejæf׭3$yHŁȹe^#:[XF-dF0bV0U㻯 bVٓ!vebFtY'NCBئBnq;|H֦KXDjǬY hў:\ǡ<]w, :]ڧi%mQMd}hE9fWș3Ӿ3+:0 aCbӻcc ;U>bo"Ge' endstream endobj 6338 0 obj << /Length 1480 /Filter /FlateDecode >> stream xXIo6W(#W2Ph)P=PŦmdHrQTN/qm[W^OLF)Nqt%Bnpέ1c,RhK_pڮVM^?tJ QҜzN9*0DYjoem[gʣO#'|yT)GPQ^]oFi]Z{9H4eːN?BlAf6+1P` M3 8b(DJ!)T"A n$EɉsfTUD"II8%,z "59Uk=] է&H#pJwsЎ #AU(>!7KSI_u;%p_3W̃dlf-cP(|--k3b1g3ug=UˠS BpF|nSFsV$!0G.#Mk>x]J|iucOͰm#cմū=TV2){(Ί~| $u ArݝAm`!pehb|6i͠HD9ג/0.e6`1`K%pC$w#T=q" `ULf .kj J9xem /Ս!w >VӋ ́=}qcFoV:&E4H Ș޾b]EՕ}}awS)6}r\ż+BF{c[+ێDatES٥AXFmWa+ 6ڣNHe1MҠ!#zW)) W^Z!@z1?":X-ΰ2.;nD AҩC]T@!R2 y KEn=hmzaiT Ep9"ƐGdQ#G?R 'Y4AsnCI$j֙mkllp3+6pʥ1qbYF{sITd.芞h(m;5-p[IQ:JՆtbi9u~i% 8L.6wi5E1yVc͞`r榍 ov  9 D]/$8Ԉ3#aΪ9` SL D25h֝Ohk$.ĄAub(Tawz~qJ3E,̰`\J?ZzRx])w@amCnFx>w.?!ʢFx[U,ܱ` ol$|iݾ+"t("T5rKrwSÃ2Ov(^D7N> [{jܶtC7~i endstream endobj 6342 0 obj << /Length 206 /Filter /FlateDecode >> stream xUP0 =B"c G5z@bDg8N6L<5W@G-wD [(3( cyr!) d,6׭ҭv2oPINOwNw(^Lr$ jM?QŎ0fr7nB:yl{Ì[}0#R endstream endobj 6346 0 obj << /Length 1282 /Filter /FlateDecode >> stream xZKoHW(hW;+-3vV 0ɿ26e0ZN!QS_uӀ>6~YQc90<0*U0ߣeb`04&&_Ygt=:gJňm1StgB](9% ,K^(Vo,)mQ|e4z,IDQ?Ng笔+ g1xT2r3x/4rY v@-fCna?8yƜ0)dNF6 8 8f m`<K8_8Ӑ$ R%/Ttʨ Ft³)p PdFGC[Gi`r5#Ɩ=b,$*kboIõFHɼ{QǏ(HuP !*&%ÇHBn\Mf4&b+TQ:/rҲ)\ڟx0L!abPVuè-gSKnwd  'B uBy^fi ݩ{Յ+?s(vԺŒ 6r$G@;м FGq9䫇! cɎ&fa}/E`0E&%Z_M\} [z)ai2A//"N8e}oH!EpTt&FSGBsvrUljbNo-}s =pv z=o*v% P2р];Nl,griv?ʇB4Pn𼅪j}'=?4=(E?p1ܙ;kss(O+۹WdIذkoކ_q^/ W`P/D8ڎ26' <>dk)c$}ll-,^wB;[Han_֎+nÿj endstream endobj 6351 0 obj << /Length 1803 /Filter /FlateDecode >> stream xn6_ᣌF IQE Ht]Y2$y}g8#Yrdm"9Or\'Lj]zDH6S\m~ e"7F2!~ ʶ6-Y߷fngugUS[ǖMpCRYY7+W^V)PnJ@&%*^WYpl'֠6;L"0^YwC'˿e`tJO*!3>{+SNoT)%@ؕ|&q)nNcxuuuM@ftC@777KbxB~B2TjbI~R ThŶYX<Ժ˦^R14"5ꥊux_iY!8]4su:5+_$5J٪G5tK$rcg- IDӃ!pPP^޸׷YQ.V`|ecq lZdD*lP&zP?9 đPr<)v;’gqwDJ@svؠX!tg)zb4p-8S(5$sR`zMDVi+'ct]y_P>4cH:vcC!O$RbQSka<5c99+lͶiu=pMd'w}.@ BDO^:^}(k=!31!9ù\%(2[NꏙlLP^0c(l~jwmk)9W;ߒvP#A W–hB%_̪ʗnumzUW#\\8j"J +h0n 5}G `nI3W;xP̓B &ҙP*4-I 1vDO79PYX;U0ة)*JlB!.zG܃Ka>-.wFyo DGܷ.]v,SlJ9\5W(X3_5)Nq'_Jg1aLg+c5)sŞw9q;cXL1;Nqm$nnڙIb @SZRDk?HR2-' F @܃M\݀#GW)ar05P gUmMi4HGVCi0-8 kC8,-H !&;gg Kg٣ukn+e 9DV\FԩWjA{[=Xs컲`P:M`[\1-cT<h.am"PAŊ͇3 endstream endobj 6358 0 obj << /Length 2636 /Filter /FlateDecode >> stream xZYܸ~跨K:$Fp񼭃#hSutYİeģXd]_㋿=u~N4<~:<_W}Mt(r2iSI ik0_3U%Q /G_8G^QE~tp#KUΫ߅Y~[yylz~wt)tS{OGh5}0A/RI!y sYot]~ye/r JWmIX4K9pZWXrƎ 54M̓]O #mֲG {i98 j͘C`JYHf*'v(6uɣ| nƬd{_\1TP؂1m`A#:u`Q0^Ϩ (''mFn@!4T &"Ab`8̡;TmQOlW#o+Mz¤(ؕwm+׀cjB@JqTs6iuiy _rW{s%)~$>p^`] 0x+t ^˲b{CB#Y*Ͳ kkjӞfGR^(ƬIh4raHD>hAɷ<8 NSmDQ^>]p5\` XsL+P8T ˄p lMB8Ap JH<TWEEb5eԂs3=q*muTI,~~ZlI೹yUy7x>+[0K+gb/=O~H۶1Wlb*[n%SH9R/íߖ{[Ӻ*ȜB(+¯t/ȧ,`BDx2M52yXrGQQffCMm'+'e %Wm۔F$Z- hV8t[䭸eyzp:XBV^1 *FK"Q ObqJ8M#lC``Dj!bqլX)QyF0@ Ycȟ03aR瓞p0" tSaً}}xdTգeXS14۔ P jbqqgJ* B_T%piw^ƺ-h0{V6զ"<3/U ErR3=At;>|Q&97֩'8Q g)}>s6'\WT!X’̥& Tzr[y/S [+cTb=Ѧ.iq,WV|5JS +L.bBF<4)[ FxZ|q*b o@E*{`Ⱥp/PπAYcXX 5z%뛂PKk^4;}IݕH@vL&8O4`CUEK%!MiNzG|8*|;z}*zSŶ8FBRŠ-%wt㪶>D@Ê%Åo1^ފ1, |u5`Y( .OV[,cpbTYgDF- EV<=7kA-cX%PjuW]@)uRwBy:*J[(Aja-o|a=SӦ ^4o#"jN/VXC蟴#"|'isEP\x\ܱs {[ ] #֘/2^pڿ. &[COӘ@B#Ķ3}Ls-#\t1H~ C"}*LHsќd&֕gJ>9yp+qD[% lj [LP~H7"tc˓@Fy4s971{9HfJx6]Kxbc^}Y4t ? +uWGe]2@߱P 㭤!Q .o'=2jsp815ɚ=X `.\ϑg8kһ8i~(M|G!M^gӽD LR,bxLxyv7ajƵ#͠(v.LwߜKe}x>~ r⒎ M39(R9'sM^dhdN'%'̤(@^o? ޛ\kx;Ȉ+>oEs endstream endobj 6363 0 obj << /Length 2874 /Filter /FlateDecode >> stream xZo_!K6ڐAr9^ҢcHQBRv\|,)d }!33]ɛμ/g? ?;rz𴙝'o3Mio>(ݟ+-'Bcyg{o>h4j!rs-˯iT 1~G^1͈Xa%\b)#=<ŧoK^|*I̯f'gO"k6qwYY:+nt<*]-c&FK%䡤bUMʝ#5wLsK6̮jjZ]0]\ v(rMk<[^&SE؆rhL8/7M3LBwnvb6ߌ+ -u뼤Y+qc3Y.uKm_2Z6ǎϞ2!eEv,ߺIM˅}(whmhVq?r_enfGNPw|,ƚNw9FFIB (mئ5ڴ2hܾPYZ փ!\c{L(] l_q2VD;#WY|+r8>=t ]k X׌6; A^ava!yʎ)OUshYMվ=Ba?!0-,R I:H mdB{f0y~l)aH{F[]f ×^0.-:Eyͩ8XW\@)ڛx7܋sKٶ\9m\'}B ȶĆ%cIŭ)~mSA#}(uta+ZW O-AV`";&}fS̍H[!s@uzjq?֓jj}:ux>^`w\FUIް{epe4UEg@o)VK74@h7O`P Ph@*$M0l[DA/0,#!:=>Nsn C9(Teti NcR[.k?1AB Mu-V;F+RHjc RNm? Goʉ!+@ P7 ԮlSAW炌vqЙRGÕ ?*&#v4#`-T̑2^u]a6\X~pmrsnQacq(CIhfJ{]"/4R}CE5|dPŠC9 L}իx,'L 83Ҏu >7iU:n܁뉨S'A JŖ,j˜ݪqXpc$2B!{B\uZQ8Z՞l 1 h7ta3Z$`i!kOn~̯4d\~~gNt M,*ŽQhPMq噽iGtA\C2L˸_@5]tq>޴i5CSS&tD΄!ߑn+Xlݚwe45azV[ۚS6tIҩ8.z$mlDc/)ȅ" BY͟"m pڋc*F%Aʴ j`@5.l#%]O̴ [To]A_'v DSO+#җEIe^f~_|%W4.=Żw9q&c#^Pqm2P|óQWMf C6t]cBǟzޡ^@hOROz޾MAA_-u߈&RVz1NذBabC[gMV +)ٟhvLE ϫ6>7gRžIқ%0g# Dt=S<]泿BIkU?2ȔJ B?4!7 们5)bNȄRDϗg[dSX( )}To`wt_yc|JZ52CL(CՍ%xYk'brp}`"'ԓ1mtm ϊ=3x}*Qx逃g8VH?}UH! vkzo#Bѳ9;$SjW%(y< 2BjEa'U>m qpw9=ݍ/ܔ+~}/ xMl]їA KW͉!y{Glv{`Ccr߂ 3^dZI iqF^{B[u0Q5y'p~Z OVA;K`V$CXu4#/t֞f(U'prYaIS$߰/2' endstream endobj 6391 0 obj << /Length 1393 /Filter /FlateDecode >> stream xXo6_!e~T]eh= 1,0[vr&i2Hٔ6N OyE-#R,# xU1 3j˲*:`>HфH"&>q3>W$"bҩAݟ򦞮iUVɫUS_8e`(Nr6eRǯy:'(#}HVXLWy; & bnᶞPB : xGrdJc()ɉ:2[/h4#J$'R©FZx#㨣d`DB$o醙uCLB%~rɻr"(59Qo@&/nVHvufAiko}*:qHw - Ѭ.iS0_v&DZm #Yx-|Dq} fLcj AE: 80A$~ VZFF\B|-E~||lIۦxW ^DhDrSFZsATa֥kH+ϑo9:}9)"éUc~LWpȽu1 23rkEƽeXFQ.;tjILtgtwpNNmm,> }N"38JiadRtWhߗ;ġ`6|i#SWH8g/DKD TޒPCy*ō%ۅ@D ;(e`ٛzL=}-ct8<#THƞ ,,8itL10K9ÛwEz8(mTe]S#K׿^_^o_VMZ2oWyS~cK8] 3w6nY|WJn)C-(%Цm{;C|}w:nk4%@gݛpKiYt#a֥iYhxpu]<|>?;y|=Dxeuj;n8ݐ`_?  ll*æDC[;mo4~]<<:^rͭ;e* endstream endobj 6290 0 obj << /Type /ObjStm /N 100 /First 973 /Length 1539 /Filter /FlateDecode >> stream xڽX]o[7 }+@?mm}RcVCݿߡqm'^KRIrՐjA]]h! A%dZ\M \Р 8%hk.( 8P8@u!xá %sACӴ`p1o( EP!Yǁ\%$Bjdk&ؐ`CsZ\%#aôk }6JupjvPEղCv1LAU}L! !0+f d 0P cya]$/D ңm8#!:S -ܮ4H@ u 7As hʰĒa[@=I3eQ㠯z1RANZz4 {4G^G sytpk4F 5ͤn4QaC;P}p ӣֳ䨕"+}mPgv>/ˋ"a~AV>~|x@hH5"Gq`2z3" pm{:4:7_S}2wݧAW $퓸O01\^^0|q77Z.du/W˫~[~xl9%/¨Ow0_{Elq3‰ҳK)Wkɇ̢8Dc`븿 @6 j)Ӓu*ƆMyܧ5y=hc` ـŚG5s%E*rbn ieăFEG *fl9t߀5EG@))d%f(F=1PP18PK,#A9S4H̝=hxzr}mb6mkM7Ocml{V81NAozZfv=^?z{1=[_~X^v+;v%Qk _ `O{D^u@0‡bqDcMHQ:O8Dа BlJ=ť93U7O['Mjt"YlN3*_]|Ү;IX=`v6%$lM=ɻXG(%wIq_}}h&Ai m> ȧD%a29=BG &l}E1&N.#-O@ ~F>Gt9I̐Lѐd,2v>N6;]m/wj #ΘNt(]& m.@:d ^u,s˞|m\Z}2;@1抌s8GCuXc#ZbցQ4#Z`YP+'cӑŠJ".=|,%ȗ*y:е=Nm ]pZ:|-1 endstream endobj 6447 0 obj << /Length 1198 /Filter /FlateDecode >> stream xWKo6W貀 D IzmYh}. EblmeɠwȡdɑDQ gDm@7?ony0Jr`x3lp8-OW]Yz5.\;>]ԭKn$.HQ{VVd6_Q~(\b)`-Bh{oGg >or3mнAϟ;dLߣ{ ailՓ.%mkկ1\CҘ ]@YHA| |?[,llb[e ςNu 7a`bMW'qP!Y7E=[ߋ_|!֨ endstream endobj 6463 0 obj << /Length 1599 /Filter /FlateDecode >> stream xɎ6>_2Z)Hmh$EEźh[G2N}%NC.4[llwp3/e,`c"\\gN[,]ιxK7筬*C*ו^^M".@1SUޞ0^*-"(44+9M-";r% Gsh-Y%(O `jѺZh*2woΨy/-LiM͸2.L9.n`+Ԕ lwͦnJ\q'JN0rd^U(l=SnIS7֛L-K+Ya(=Ky<]c Э+:=<$0o+ABI>6i4 BBs ɫW⾰7G63 oyud @7T)f%X-AT|xnq&l4: uD~7*2{%y:ke(|W<{ Ds;8 pqE,VUPS (ZYFWX< i=_uPGHo;H׶*}qO5؃ :Y4t&o]v3)4lC)L}2Sfpk0e(lb|!_mU'U$ϳwP%p]ˊxhf AK *z鶃 3L2L̜8]M۾ |T1P(r6ܖ`KVj@d]hN8yA5r-b&!Qhs*v?e1LֽCZ4Cc*^˽qJ4ZyIB]̴BCN;;VNLI6Bm{537OtXf1| 1wpT|i[YMs@<(y ~ɓp?>.r%lVy架(@-&{J뮴zvb/ N7mUBJ;kr$Cmqh9's2<7s^ "Pih5gOO4 ^j z;!Sdn[ͩ8M94s}Chtx>lpcOѣA AWd`U$thv^1 mYLx{aq ԼXL5'(;(v~22$spA!Jp%q?8BDHxsK4Ӌ9ٹjL!V}x_{Zc>[lڑpIߠ"pG[6c)W#"+-_Mf Y`|:Q=h@cXxd`ޛ%6]t8&닿Cc endstream endobj 6467 0 obj << /Length 1418 /Filter /FlateDecode >> stream xXn6)4pD!EH|H _FYHJ3eeqVOmՕWè&uy@Iσ8ʹ+{?Ip|v aB//+/ 96$ZI"s,uv.ZqxW+#&bmz3vN7hgTG;lv (X*a9\*,[/[ca!R>v'jmS!uC&f/cy'E" !(#Aq|/-&E\1# O/QLrVe3<(\P A}3S1fĩiYmZ @‡#{aM|q6W@':H)$rF eGCL4dVa[8qGŝ`n&V LCȠo^L[bLj^}(" @\9GF)72 A,z̕$%T#g} y=I.@>0KXXvM:Z8Eu3Ewz JFOL_QAK i7HܛԦNjy-H ArͧT~_c5WUvfRU@{O:yqĖR-{g%Vl=f>w0)&!VpA!v`n&(lN5;kY ptᎏyp"Nc F:) =vlg1&> stream xڭYo6_!/2̊_,v=h{bӉJ&Eq4/?|J(~#MH4FDDz}^%|JPHJR~3u8o\,Zd2]0=_/"wWַ⦶@f4vBqі0 vnb 7Vwl8TnѺܾ߻ ?fcFKNH5e&CfPk_}vVһI2p9ҩto' 5V yI&w!ҩ2݊^p!KY-ܷ򇡉HBtݧ_dvrJ*Ǫ) CflWFiDu򧋹 EBdu0Scέk rxjPv)Fۣh_4;hf8Ǻ,v~;mʪ_A8j~C.R>*oסi#5#gfhl Y `cU"】i3G닊͝:I_"@ %4a s}1t|g9 )F(L) ]7A]И,TʔYܸ$1!)rKL"b n6)S&Ȋx f H ޔ)=oQ3lslRB3XP׸qq8?~<y+-~uߴt?!o{nZO0# RQ4i3⸜\Kj @mz1,%R)OqiN?0l1`cA=Dqߖ_^s Ć<?lշr3KX:+,/JWn SLY7v M,L4GqX`% zWuc0TD]=R*\SbJ*[1oY61]G e[q(6mڸf45\yVҕ'I百<U,4MU; =4G,goAަ:v )񈡝G?7/nLÇ`nًH4KaTL厂ߟH "gy߿Cpq \:IP iS@d=teybIPTx ̷e&+r5WPKd?.r3+>$F/aхA4ܹImr¨: $=)(T%XƸ)նioFz,MP8!r$;!- /W=2*fOR$=!\='\7Uƴxa?%_)zi!-Eg7DA99I32C*;NnnƔ&U;!L1MНAݚ4WSM&ǦhC >&2h̀۵5eNa{M @edAg)5vGSMX>d<ä7n<|р0|Jo NP I S4d] mb=0]Bé=>:BD; f<𠶞c_v `wb_] 0ؼl5dY˰c>`JGxy"98 \1QI7̏ 4;ElZpV} endstream endobj 6443 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1421 /Filter /FlateDecode >> stream xڽXMo7 W]HI@P6`6mA]j {HR{(kc5n$)&LJRgYua$. 78 w$ u?^%,.".0k ;k&NM\3Ij5S]3vtsdiL-ꚩ]3D]5P1͔K : ,% i pɴB2apiN:Mp apaO%5r^GSԋ 8ǧVptPŒVp1*SM\G\~Ufs6:= iV%M*t*.Y ATGi\>b` SS`<݂8T$uz~dDL[kao#ܠ ׌HnZSH?nd -~4{8zAJa?d֔RuZ$i Q/H~?kzVC;WK֜ ϠCBkj3lVhVC %ƃ+߇YaˆBn6]\ݦrk|jys77>5߿Zoo7Io~뗏ҥj>~؍pBn`Njy۹h{j}=˷wK ?,OqpLjmcYpyZ^l" vn2n Q|4B܎$}ƌQr [#@ܤb2R2PP"28xQ;zl=bC@V3bb+?Oս{LExAq >~Y+ԏ}dJ=p‘ne_Эv[ o^:e>{[BxT"{ ozl= *5l>fE, } 7`̊($5<"TxgYFC 47ddQC"@q eHwnwpv?7Ǡæ;馩rxs|?Ֆ~N+~9 zA% endstream endobj 6534 0 obj << /Length 1582 /Filter /FlateDecode >> stream xXK6QB#)IE.>HrʴD\=6 g$K^n(bcrV2@s0bZ^n#<܆+ϑ-bBM^XҸ>w!/86lC// "|ؕB  7=xIJ[M Pzj}xnw`@kn#f7׀K*-ܳV] B`=ie{(yW ,D2q4Ӻ@ɸh_xy?JxUydWcr~k\*cPa:TĶܘ ('H[D'wD:uc\cF`?zH,<8LuK"4?lvbYQ-;Mq L Pmj[p@|7avX=b45}!nz&H&K GS,ᯀkh!|Mw5% ߡ>蔶뽢;?C)L9`@uם&"vxN ;Åʵ kVΟ endstream endobj 6550 0 obj << /Length 1627 /Filter /FlateDecode >> stream x[[o6~ϯ0X^u1h2`ybӶ2E2dIdiJS~)\C2xѻWg'/21"8$ȧ#s1:>8Ѫe98E*ZH=+o ,]?- 7rAF"~] 1*x^!N?boZy^<'dx 4DMp%!N6^n?xzsq+JWJT j |)S<]< { "@ڐra&IO7|'.ZERO:(:ңPмB0+!եY\ @kZըX*R,6a(f5/ &LJ&hЅ^F &[Yӵ}NNQHGa@ {&pDV`46߆}У2m6||sõ1ȧuyi s6}^pX*?4dnS@!A@9`h Gh8Th6=B qlo:Ӧʹ/Wmw&% ,MQFBpaѲdb hD@t@ac ҲKLG B0O>8}Ӿ>MT\N|~n VwлQX[7akMGXʝi)N?$ endstream endobj 6557 0 obj << /Length 2017 /Filter /FlateDecode >> stream xk @()pEf%A!KZ,9z쮑 g(>yW QCr879ރ'w{my~2R}R~ǝ%^,Ju$3Bߙ: C?ƽiVa= [~=ZÏWmX m !i:Ӣ/O2R)inq{y}:S] [;HĊ8RL;쪂F)S=Ѕ[Y,IAK$j{Ÿ*ӏޮL!a8X szV~QYfQQ䷨H0GbVU95M;HUK^ UWizX%H}>(Îg'@%Z +dϩwLv[2XPGL8'hQ_߁KuK$a2Em"XxtĂг@~Aٰ<|*O*D=(v=mu_sM ::,1Ȳmn̹JY79ϋ*N '/8љH_IK_ގd ޲ovC2 KN::_ܾ4_zэ朇2J*t9~/̝+"/:}7X5y]D}s]=QxPU@JT=YԽ'1w"-L^p#5u&^&$LTjj~0LDS:I|RuA:}iYnPkζ{ ,--NbA Ll+읅ܶ}m BD=,m X`[CYaлJ:sy.9}@&>O!?`Cu壛'v-Ǭʄ[je@ξ_]SxeS2K]YLRL{Y%kL4l[.iiz:^p̓iL':D %"/|/Hf$Gpp?i0q 6ίu̶'8 Ǎi+@/ sC0Y %HUz.pCLm r endstream endobj 6584 0 obj << /Length 1373 /Filter /FlateDecode >> stream xYKo6W{+DMEK}Ks`lVâ Iɒuj6M@Q$3fQ'I8k.'4$I|5Ql˜BNmFoM8AL3]zuVnktGϮB.Bo&DJg R&&+נ]`QEZN9 ̠p2c!qYgGwy)SwgV {A@Wc S>3 aY8oV_?۠կYAch@'|Ƣv^hLav<`eSFbXW0p;յ;3#<-4|L-pӜ'RD[D|uz K:3]LBU njAdT=NI8Mi*+ e:{TqngB@v mteeZ|X(ݘO:m8Bʹlw]5gS3xOΨokz˶6#ī7F`"I㓤.Hr-'qգl1Ǐ8@p '/#z n#;oȲZ> stream xڵXn\7 Whn4)`n @dum}5qy&f{ŗ(KJ6,G2JKI؅L'j݅ąI,oFj )jM]]sSu՟'eT&o,Yw:(NA% DQen?릖j-:I 6*O%q蓮Ks; }mpww"~`hZZM k8|ks`pGͣOO1f 0MUxj.I14WDK xq[DD-2(D*X&)CValPfΦl,lڐٴCjbLE"WeHPh*$ȟuHwȞS;NCe4i b}fxtM2GI6t1 /X}k om΋Y:CT_zYY\~xѣ? ]ƀ#-qe۠(ĦdD!lh;)[$|O8}l (mNF"C #u(W$G8Q-TM"@8E =V$D)[dbYk觟HKhh jL 1Z4 >z/f_^BmJh 4~: Đ1b6,] n' n|] 67 g^> 2,/?v3|{bd}fu5O|p /72θV )e`ʸx:eZ~~N7Xv}}ŷ1DA{=F 4W=hoVWYQsIFV{%[i}y&;.n ;oO\DW:4:"U'$9ci ԭ(j6̿5+j"@ܼE9,"H2I czGPlxA ;0Wύ.ybF)D[8ɽFN|m Z72Cc endstream endobj 6621 0 obj << /Length 1387 /Filter /FlateDecode >> stream xYo6_!I.*D[X  F_Sl&*[$ ;~X%5ˢǻ}I8:pnZD$F9r,Ny4FG1tt祲\ZK {ho[g+®6nF O`索HlCv/׮5N2ľFٍlQ}pT@W,S'e EF ^z+Hw67hfRCRyy?1$湗:|8 ؋n^`n"6:2VXfjy)`WOQ!Hφd%n+P,Wj8^5Gz!Stb^=#5 ÿdXq9}p8I ]&!`UWQӺ)@s!qxt+Džuí6YAYW74`no,}]@>z`f_NLg}!IH> stream xYK6pK"mФͣ)zك"qmdHrvA{G$6׏ݤ@\V|fƓO]:xQ#2]O,dNoxݨj3<3.x̨mTQgeQOf<K@iyvL3g 2oY^7Fl`(f~sVf2T 7 1sISXK(Hϩ*+fk(h7]hoD( [j"0tl3>ʐA/tXP9ՔJi}.U}<3a8wQQ6LYqIYq)G]ra@;"}TB?J;]VAADdyn(wuŔ sAU5*5My-'6r3Ǩ};ٴ2W9JAu&iDًyr.Z}Z=uQ7s=Ydq/t ATwNJCnu` X,#1. e#C &fKVE}gT\d0xMnƒrRR3P1o=p~7ISVc[ҒՏB/ĩeJ]p"HÞ=yu%,$=Քx8T:3w. 7. n IZ*&W$*4]_|)RtA;Bu:c"K9ZC^5 jBf Ti/ R5VWW yW1+etKHMJJ t8 .86ٷd!FhZ6rs #( pIhK7( k] ŕKoːkCۅKOEdHDۓD1 > stream xX[o6~ϯ:׉x}hѦ؀3Vl-Yrc#ߡHɢLvVi\ vv>]&asnnAwn&ΰG0n~k$@>b$xIR~syC)hE]NxC2j.O2N7 zqO@!zF\z}gə6ˆ,c_t00vUo\5[gB,Ą*D%rBÉiO-'m01'DO| 7 F4*+5$Y&oPlp1''-Wx$9CjBΉ$ȓILw=4JMIT^QujV@,$UeqK-k`@=Ngŀ`NJ S( YӂY'; 9@sf"4ğ}*ETlV}HOZHfGo;K7^[KBva(}L+Homx Y_aM^ZO 2Dؚǀ;9@;砓<fcC,`љFVʔߙL~{'ќ? G9q~Ѽ4:z/7eTK7M !lmlnPSo&+|x&HQR=QYa6>3·0~H*/AV 4JQWZiku5›Sh0Z endstream endobj 6618 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1238 /Filter /FlateDecode >> stream xڭXˎU7W |o[B,4HH@*}}!0v`6PRէm㶢fSʿWhĒ&HcxFk37yM_邂h&)A,RD)Ax J-Z-"2E-CRG[kn4Vȉ$Wb\ _D;m^Ȃ/! #> ׯzoc/l3t׻$96w#*iqh˻Q8/ D~(+wh"Yg|g fa'vB1`/5F( T>j X$< *DC `jV0|Q!uBfǒOТBd8--q*)iEkyT4Bq@+6Ҭ 7^H~9= MDmlzgf/3] 3)qzHE/RaDhY6@ї? / r$ns>EcbbԈK~ M9Od&J+t8Ow&wBѢ#($ݻCJͻiPE Il}|zR(m8Q.)4u9r@Bt$ DIoԿ> endstream endobj 6730 0 obj << /Length 2337 /Filter /FlateDecode >> stream xڭXݏ bxbK? !iSC7OIPƚ<{E"y+'KE#ds$ӛ~Pz&JtrS$H2y7?G210Jiu:-. @T2nߎh; y±H 1e=ɵ%ͿUfpA3$ %YU#_j ׂ  Oq|ynyl_i~c>l4CC%֬y"4v@mv4cPɸ ;Y 왶jy/ӌ<֩=0s>3M 5.SsZ)L`i]ʹwaVIDAd!)pj,p: }} yRPZr5ܙ/.&2igok_0*/an-egL}#=$r7KOmsԑ3|qz2]`®0`>aDaӁ|dʯR#H ;u|IO+{39ahQɴ¾IosaS'v2nVm9J.a5/&"SyjVM)dq{AP OSG{Yol(;(!Z}NbD/R ٥نmh\Fg炑@< {_RH/ӗ+3؟"v*M̕FԅYvD*W$2l$RhȌכxiwE#RcHݦN[ئΜ,zhNg2MUe8!!fN惿e +԰zG!D@$A4bJɿ<4 }Z6}Y RoN|_kxea#>DgDKM箙}^$kF_[ 9A{ݗz' 5޲3ĉ/~Mkp/t5~.=8V$W.6ȜCYR\v.3_N8'!a^cw>7׸yY KL_eϿ\0_ː!0ߔz^-xg%h\9Ss(z|z !tni2K/.S2:: eJ3kA0n_CpsSfž:_&TU8 Spʟt %$@PG?MH<p.km%TOLMǹ5D-j'b7D'|p |jm]v'n "?Qd BEhbrq+s)!^0u!{sݥ޷(lénJ~9" S]vօfOQ_2Y8hז3[?〝C?!-rvq@fz mKJSr5Exo֜]T" [$nq ;LnLZQ2VI"trRdY_r>ϡ*i0FՐ@hyyf|6.3ԫ*U)KA\ 5U0}R"MRTM_\UJaFh±wA[H\u endstream endobj 6737 0 obj << /Length 1207 /Filter /FlateDecode >> stream xڽWKs6Wpr&@$37mә-A [tI*뻋$Rb"X| u.Dq΃*HE :}z#{q9$I(Yr:{#x<:|q%C+}^.QY3/d2,¢2mOgzuR3z9gR)/px#Hzu)-$4\qP>,sfJp۶~:%Y)#/SD *aAWE_T44m۴'xX'K\| uꦎ l`vI 8<)ޖ_fJ; { ]10ЎĚMb_.&JL}Et0eX:C0`8)q+bI@;.3$pQt捻m5eQY&IfpcI=)N;=P,Z5㤪11dž1kLktƐPlot),Yd}`EJg*4iФ5?]Om]>nO׬2~bྫྷͽe)$L<'=fuضn׷IJ{=QH]_^^Rү"+Ÿs$y*P6=sƜPseNGD 5HqYݏ4Yݸ31¡XYȑYPsv BSO栂#΀1uShM J9Z`lB!4lx:Mz]5/45Y9'Y7ީ~Z]rxe,w&jN;L9ә( $I!mOTf],q 4ۖiIM< B;Z* h:;b&&um .a;-~__be56Y{RëY&Ct8J5Vv S 3 }d3% ϓ)?I{Y f0ڭbؾf/6H өeYI ?]gl6 w~_ ҷE %MHQhf5SlL: o %{OesˌϗڟKH-ܿ75j͘36mQuI R%Pi yћ `~ @n'4 ={Ko(__ endstream endobj 6741 0 obj << /Length 1772 /Filter /FlateDecode >> stream xXm6~~ m0^J"UM*WUUܮ-;?pwi~x:o/N< e8#UAŒ}:vYDPE"!w4om'vlqzZ_S%u #'gi1bY+SVbb8318;;7Bj 3q $'12 w8aykZAJgOQFnEp+e$oͤTXeWSPgr!A0Ve炟`ӕ\Eln.<Ҕ#^[H(n;27~/eN.K"H("`J CL>3Dh̩̾`xWء[>F $Cu."&DqZR_kUiXmqHX.H(DWڈH'tgElUjFݲ5ujW(߫^k GY< bSy` Th7敎H|^$a6G BVv tcԄr*誶aOꝪ[5ḏDh*q26)^+_B5M 8ۗ^ G~4mty176jS_a Y_ط_]DBϽYK+Wb?p 882bhc5ss3ieq0Ej8X ЭO ф>JXTɔ^4qP5NGJ#֪Y[\Oj(9/Ǚ[Tfx8*"L=ώ .N VNjUz_Vjo,8E')B_L=zj{@6yv_{Y֛ms{Ry /# {+/ ^Pua~iBU>{̼QCY-˺'ܮ*eZYP5άϝgTzcW*Cah1Ī+AГܳy =q> stream xڭX_o8 ϧ0jM-a8ܭ=ڽXo?;vҴ X#Eht"FIF3]^G)Rj*\F_cN KWJF4nAI2Ynb(O卓uoyjԯϫ0Hκ9em=ٲPV 4%F`2$l"3jcϽNiIy֦=:xƮ7 ]9Si"cH&y9'hq;FKQ"2D *B DRv*W'gCj|@sIChe> 2!3'&@MM2E` E(,,^!-pR#H4~z$QS9P&rd:*4/ @辧 ~ӝZdDںY6P !(k(; ֥`u w^0Ti#ka2Fi1bBry;=?~N۳ x)Tg~L즁 ļ {Ve:k,AH;QxM n$=Kr\mR"tOj3 'S嗠]F1,(rG i TVa`8 8-RPʉdbpP"y /bcy=E?+x0iSy#Ln) 3\ Ǫ\8+/x([UA<E^,TvlnV2:a&LJ7nhyo67;gaדeĵ7E&@@8oaT {m/{=f`>PQA%ZkMߛtHA zԆ2~=4>mR]6 JW$˲I[F΁LևDm#)^|V3ar%r53fR"&:\u8Uy[nmk%؊>v՞8fsbS$%O9qPa\.NI!6yB>v8//$:%.QEa'1_ѫzDϮDN߽4a&]=R!=-Gơ<{~Še8A7}3: J#[c*wAML) j95k"S5Lyr1&w.CEpyt4ݧvu@u(U8$n QρUka>.9-`{X߄GϢ jpQ նle"_N9o  _SC2VQc'>˅6q?Wp,*C۰lY|B%mfdsn:X6]\{\X)pޣ>"|w_" endstream endobj 6727 0 obj << /Type /ObjStm /N 100 /First 968 /Length 1401 /Filter /FlateDecode >> stream xڭXn7+xL.l x `>$|23H4ŧ!{^׫zUd][TRmJ쿚UAMj>{H *Ij?€)kN@t8i2qdɚ[& Lanz-HM2Ԛ[fJ26Fq 4fli(&*U'Ȫ$pdHřE0jN-af{Q&?kvϺq-t 0r%g\:fЃیrL4{+8 68*8j# }eݪa45 BbRwP:pU3)n#n#Xtr XScֽ*jpW:GTQW, (MՐUT IVT 5:UCɩs E6U ]\kuVG1eQ; ;8WDe۱⎏gu.X/o'k6l/?~|}W#{Jց2Y`rE5G($+jl(cd/U"X{,u`\rτe RK$3lj$)dnSULCћ3GrY_9)Ax _j5{:Jnݾ}.ngv>zQkv/u-~5۷@Xag[a7kP>X{W:_UȏqԎ+˚GÉEz!\5[ "2SS hs1p`k*3 dE@i'5KHsyDʌF~[DMȲ&)Y5Bb@ H *ka'̪ޣd1H6f6w7m_o;X;ߝݟ 8Z^^?l$xκr;i('uGqw~6 P">6 7E28@:QEzSVܖ)v;@ Zn6\>  F'Q[O* endstream endobj 6815 0 obj << /Length 1297 /Filter /FlateDecode >> stream xX[4~_7Le(axix2o&v8tϑegD ࡵב>}: Gz9z`d!l))"-_MU1k4IiqKo35Yb;uW H2 5x; `}O H fiD$!e^,V".7$qVuYQB]P ]1:rsg Osd-CC-$8#]eubcNiR"e:+LnT1 A`!77{X"cXˇQBAvpDaм2'.Bt AnrD!)z$Ih!:lwt `vĢGBs60J3ں=-ݮ(;7wS;^#so]/Q,yx1=Y&C=P5!!ʷWsciY6o:LWq)婭-:q}XV/jp~%)A Hif͠p6oomT EHl/= ڦuh-i-p?6.UGJ =W<&OFJ[K2W/i= 0,/A 藐-c >lޒ/6Od_vޟ=x&TUY oS"fi2yT6@ęOW-[ P>~HC.uo Uy6654־7zRyDAtg` 0$E$EJe+.EP leȐps(8$VѣCDݶMuKLHtY}~n~Ǽ[+{eEmN N-'9BPYwmE#ܓ1iOJAL'$&HpCSNd~"d2') q;eYHzB˒2sžH]-֗yH8g׏|a[\g8H*$Sfd '53t4N /4hֶ3,+h #ѭqQ.U{9߼{Vn^ endstream endobj 6848 0 obj << /Length 1218 /Filter /FlateDecode >> stream xXKo6WV|S2ڢ[ZBX-ym9q%5,TlQ졇29o3!n#|F$"E#%x+l D(D #%RS?rIӪ.-MdRitIRT9l *5 ߅X2=jCŊ#.xSpU˖ЊPc~[$(!a۵yBb .& ٶ |:a{ʍY];];j4:])[ߜ/N8}Փy' ݳ/ꠠ8U`䎣?_;]l&̹>3uuYlJG( \KKar `$N.G?!L"IسG.&Ĵ%EJ u:!P'g^/Q"?$ÎdH7^7AC76{ֹ}^W_{"\mKpo9P"o%\)nal+]&dPk3ZC=R;n .0wī%k.vԗBF 󥰐aT;`itg/714'; EYkY3~U$킏sj Ya3m%*?·@柶PA1Iՠy( ߭Aʧ0?.x[6ᔼ;e1+ l֧iC~S޹w> stream x[o0)xIklWڤnZ'M[޶iM@zHHa{ù|~00:4_ $( ) &I#> stream xڥWn\7 W 4K#6@fHE .H73D;}4)Ѵ2(~{!PFa j=*^;78nyԋ(Gh>=Y\0%Pǰ[#bh8 z(1 IF mq0$BB ɂB Jp8ԃ*Qp8̂.$n hK}By»BhIp0ԇdFP77- C2HYfXeICalup w ^\=u)n.f oX1tpu3Pg_B`XilPH6"  wHlQlYDmpȲ ,le] pزm DeԐnKp 6Q ccd.fd:J@+!@҄JEr ,T$E5sFjdhENZ #_/V$w۷Ϟ]ƵV vyp5d[h(tv2',@L٪ls}\]452c㓢r0^=g'z|ϧrS/_ӧ/߫:?N>ed}8<}CiY~:wMR_=} ӣ~g:3| Z)X1޵#@3dp>Z}L j@oIBGTBZm-T lRS@6W"]}T`:@*GABHq=GNJPH'CN5}![{ PfgNDH(z2s}ZcxiCuz|&sU}E}1qok/ )jkoHS>mGإxhZHzYϖ Ι"IU:$3KFG3K]~ $ԙikTI7klW@Wt z.qjEi[$& 3;eH1'NJL(#&̉(djz9$Aл}$r1dH$+Vt̒ < ń9S@GO9BC0ZKIP%S +ym|_\6u-YlOon7cofW-✰^sxqN/ ͜ >bgyF endstream endobj 6912 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ024Ҍ 2jA]CrG endstream endobj 6916 0 obj << /Length 156 /Filter /FlateDecode >> stream xUν0 OqD,0dC (0UHTw}(ꗛX4e0 x<C> stream x3PHW0Pp2Ac( endstream endobj 6924 0 obj << /Length 2250 /Filter /FlateDecode >> stream xڭYvWhI!x]Lƻt4 [Hv>U("ev«ܺ0ox_Sv#9Vɍ67_ٗ}0~Sd7 7;]\hK9V[%=MCs(ǦkIASdUyWEj$8tV)q4}B;UWpNY!7;mrK?‰@utj$l"+ۚ3wM =S ck~W=,RYJβ$-jR)C}$\jE9:.L EjאEBKf$1JS34@C &BG*?6;YRwGtdk/ lVnu)߁y1}SZ0́%`͓$]]YE$z@}Y7Fj}Ivu$I&SVQIe?nľ/$hh[+ѓ }dyVa69ʼnMy8FE@W\Ձ>lp;7օMµK@ְ:` t--2$XRkei#aXf3`ѨpNOMX2KsM`zZa܊7A)y `n qbE{|FD1M~wr}F]/ o/*N.D|!66"'5n̺9 VO%PjIM䜚akՌb&sw\\{e#40]# ia>p5}Q$` F\0.!~SR-h 7Xl/f#1Sgv76G'p)pIha<})> /H=HdejaJIbBI;@DgCjYP\dc, \HWFEqy(*+Kx0(MwTފt?wq">~-YzӅ䘄BZ)bЯ7xi! endstream endobj 6930 0 obj << /Length 2843 /Filter /FlateDecode >> stream xڵZK6Wp|Ir:qErQkzѐԱgVHҰg eZ*b_N;?n߼(,1q^߷|:RjwP$`Qa~?.ml?7e}Du}يO`e[дFU ϸlJ=fRwC1ԕ9=M*'CNSUvXC{OlC& H;%L4>D;5>LEQ~, 7W?)DKcr~ ݌5`EWoY3V}rk~mK8))Zi_!*f"M~}YM ;I?D-',x +@ñˡ>Ou!gldPb>s|_,]xlz/NUZhuH/ _ʞ|H *HRF']FG2{Hti!eXu,bc{ !G!.zy $π@ q:yu1KR KUbadnQz?9ޮvľkjҍnPLrOEV|\%04zݺ{hOh.#՚F;zQjPomuhhJfL$ze6v< JI b=#f7Z$tI)3ȾkdT0 qw,6x`ƳyJby2glV\BKHD2'3BMf0\0ڴz4hMBN=RB=_쒿v r0ى꺨7+? i e9&y mc%0.ZUW4͘\Ce;8+Dt=+٘Ǹ,3kl\Ǧ[|-Hvh-Z 5_<Gz@cq_Qu/p$We ,cBOlY~U1PnC@Cשnҕhz#Qfe@TJD+Zݿ ݺ&\-j@ 4Kk cwQcתL]%w& a40խ;>Sf VmaK3v?QAqKďp, ځ`9LYǩV6:HrV4j4/bk*H bttBz! 4 '4;r)0Vv@;Z3qƟ\93^P\-exA&a.(y'aoIX,"u f} GVpk ܶQ;H HMF\nM <xBwJ7Wt/2=AK (-zs+޸b?-`0c<@ZNhx0E1CpgķxSiGMz᯻xS)48l i %~\3q :f@hAˑU >wtt:Ul#飭[0W, TfuC!FH)}Ii;P|3[Fjaqs Gd<~Vk\_%ljzV!Zt$vȑ_PU6![|}fN/8@(&ZVxiFdck2}EL/עгʨ_Noe7kHfAimtZ.ˉFI l1R@4ʙP vvT$> stream xڵYK۸W2aHNdr*lœ!΁"9#"O?Ѧ6h5F'.LJw>dGD&=<2ˢ\D:=T<] ,>cy'dZ%QwGY% ?'i{$JAJrt>|:PE"K 22Sn受XtV6j~ sA}t:_X*BVYg.OE[9-{G40E;BszJ$^D&}k'ĸMӋ/uyf: 0ӱ H(jm^$SOe/Vy쵰l>=+gNW˱Q6tgľ`(ʠr&eϏ+'%ޝ |pfR z-"={Bb-8յZa-k|Is1 uD> kHX:GXT'TǭT#)y+$p9K5DBMsr\}ۙpoF L`,YTjٓ+%`_r]F$I|21ZRor Ҁ'#PT}rs0<*禪+$g#X)4^k҂S8]>Ī8¶KFX8g /b'-|{(vE@z|\b˚q-jwegfm `2f$,hlܼNI)?x$g&`t]39ɯ<]ŢLoR V¤f@ ʗq5D% >#\$TWb$2H)1T _' *)'W#m|kLJa.9in6V]"7J3z7la#Ed+;S}e\AfXl*R_2.kbn&z5MFy)YbLեH{ҏo?G_w;iyӤVP: 0Vp;7b]ӵd l/pZsl(I5>PVԼz|ez#KQoBNvGB*0")Xi)/Bta|ܞ@I<er wʎ*P~iKtxoEϔ[ M?hq@5A1˲m2OwrǙU”c2RWXXqLSݰt-'^:>C3G[ߜYJ' /GH: R+cpi޼0݋֠* TYF&x>` p75-ib48bs!ShzY49u}[iAkֻ(҅@c3GWM2Z/&%svߒebfɝg+3BM 5GNhZ5@vMc'ĂF+T$:7H1^4Bǐ!qs-lmRS_m[-^iWz]I-ZT ښJƆ6l@ܞCXw.&R64llo^S_X0`ծNߪ[_"P—W:Ol2Ozs}<`s%xpƶG ';>^-6+b)M\JO_N|sk @Å`)~yBJتrd]7N3cS2 GS3)'*k !Xp,2}hTYDP/CfMM:r)tŰOwĻs{ [ endstream endobj 6939 0 obj << /Length 2119 /Filter /FlateDecode >> stream xڕXKo8W-2`Ӯ H 0,-D-5HʉoW^h*z| 7^n0؆hbE&qQq^kKEp6RqRa$J\EBbW*)}@"9'y?<)_gtlP9uifȫ ~QB!-m &5ORfSl`ST[~4Zaj,k$(ӾkgHQ|2g~Yf$ߊ]ۼk-d3 2ECW%Ar/'GS Kxz,ΧhS 5ܔ`, vƟں T4N@)}hȫVP̠Hn̚4GIm(eK'؇:pv kf Ӡ g]RN,4b,'ze?>c1VtޯTBDSĭ ,p jMtEflXd.2C`˙O?#sX$tЬK2s[u : 0̅Gs՝ΥcqLsd#?*.r:ARl9*e((V-}P}K#y#^Ls$A ]Z F S4O"' Gَjߎy`ź2n8ܱtI,CaT۟s^oܿl( ,^cVJg3#ߘ8cxg {P?d4\d赁(yb|[ =qy_Bvc>Iy)ǖɓ 0RJ9Vq JҦeJz,A7c|,8N ۝:Tȷ˝>>}fɭY6t9skY -*FgֺvTdt1R8Hhn`s WDV V!,(JAcV  Gaʺ4¼ŚR8B.Kք\=U61> stream xڕZKs8W(Մ 2ĻIv=,qBZ>ntPs@<_?hwE/>ݿsDQ.v;-w:H%\{8yxL_d?cZV/%Qs`Fa.UYT"4Nw9z1u@Z4(.P'9w]>&'*RQl1e+?a۴uY>!U_؉L'## 6TQUI~3HcpBkMlL {XCMiial,t %?Jոي,f8kUkI)cZ9/:i(Ybgsc Uc ,LU13ĩ//e))ah6=m Ԛ 7ОPeўLh}UQ0#X2Ap[G8n&Px/gΚXtֹ)eؾ1R.Cc)cbYUYugG@F A85 zʚZM{;M` IxuѴ4L|VR6@HFM ~ټ$'\10C I*S C N[-PZ]y:wio5P#K>IԇMjjє?XU9xt o*z/LR* Vs;T56-:<~uͦt%M3˻gl˻naTo[ ¬ ig_ ̎Ceζ8$e x nؤ?t˿ "Rq,1m "qI6裬jp>9)P*DO%:7.2XJiOLQq!#1)ǞC:)\&f?[nv((*!Gϖ@We πf66}>@,k41xrlOt+G `'Spx a /ʊ['Dm"F){/Ej„9:5 [N`8ő`i\IPiͯK v_~&J 6fLA @|_2;bt uڀc$l|?JG3M(MT'0{Y{R0u,!:υuNc@a'ku &bz/"ӧq1aݽ>t#%¯}N'rm# /l,pӹt ]\60ނ^, A~龜9Jʚ-G2E*PPq;VcW\:A` Zq dЈwϤЏJe7]1NzzPQ<:_[!$D1@O[SX#΄gT~X.5X(UC]tGFݘ?X"P w"-1Ʀ~IoM4Nq.3%}ɳ%o JfۖVMKE|N̎BXT% fI+"@ F1x\dc(bt1 1х:0eH3O :q8s:A*7錘*Uys+ʗ'б -B oćܪ%H'ֻP7t+_8/bMRq˄}YPOd` :8}WWm z/3}~B##WmqՕ_l$kU"hܝBSۖrma"os;09j]ERD5]OpIBHp=&(cTLSg*%WAnq u~L;J5g?{BL?g!B c,c7xCLk("Å顆 I;No e$YWHf T0UV|Z}T Lgah* N,U!u^q j8%ԬdHTYۭfo~<~6goYsJ3NBWKs<NHKSD?+KsaZ:@ڍs\ J # \E,{ UAQGW=??oFI\ 5WP"݂ tx1y3Hç{6Fsnf?n=|82U@{VM%m`_4mbRԫÚts*㑏kc0V)Ŏ>=,JFy/\7:LJ gO{i:>egTTw@'0c0`bipd\0]&*fy`pqa$?lebaH4,bICY@c.3ç{}XI70nU]HJWlXˣ!,hҗL >HJɱ>GIPB[SK&q觡.o=(tjVZ=oupjQx&;7Οv`ˮ"M endstream endobj 6952 0 obj << /Length 2326 /Filter /FlateDecode >> stream xr0ؗ+)W|prhM`Ѐ4m5'6_~Fw~xz%,v~잎,e~q{v;a_|KxF%O_( pōnE37x "ğ˵nލδ{YEEt{qalaGTo G};s@Gtk< LZaxiYKEyyAL@[8 ,w.ij3=tTNE(Pz- '*b//D=B=ۦVxiSC1XQU.S[p h+DJ/p"#HA t@XXj,Ҙ_fЪbʮ"G56 r,? /LjƋuЍěya:]  1:'>2کOmJ>Zа_| \ 6 f[,b~pgJVDU.k)wYS|~n=z L, ^+:7.py۹q+}n!lC#V-m,L Y@%ab'wK/4Ὃ. ]qlniL$浡7s&ƞid~䎑n߼/=º>VB5ӭ~j3Cp;{YLf14l9(ԑcLl%s!PqT٬FhyD,FLb/n!6oSF2: ;s ݐm𖳗h7&2ckEgxl;FLCC@$^݉$|(qCHS p"h;L4GExp*QGL붰gEA_Αp> stream xڕrPnTK|u)UY|sH]9&9O7`v'Gߍ>|ɵ"*:(#\?T׿w8f' fey˛8;FuҼߣ$nv0ԇ??|%.0)Ţc;*}Q%ڵ]M30Ygz'd(^pv٩Hm#\7YZ@wDߎ*3#D.uv#i.v4j>\nGnyQ`@0cE@WN ` c_cHq#Dj X)Uͩ21@+M9vM,?VKz୻zEmtφN@\u X]U_3ft˴n>H7A[©um#)~ PvV&Ti8\]kj8# [Sl& |;eꈫ"*ČBDqe75Ŋ ~Wy}}dsTru:BInÇ4!{!BkRJ${e&풥#5&A#͹?ٚ&4MVXgr^i$ mM SiBoنm'q|$p!,qCرԒ/K[R ]%a,'mhw컧% #kV:, H/;4)@+b9aꁾOմ/ֵ2Y&A( -H'Ҝ ` 4/b< gg;ѥI~F#4+lK=s~[Rtpc(Ra@OPIAbr;]0͋3-ry&zD)'@X@g3-<)-9ŗ`W8sraSK.|-91DnPrv 1s|,h񠽢@,K6 OoͫGa^ԗeN#A!$SDkiּ#}L'gl0un,p1F7Иؘlbm}K&74 bqhE Hn^/PΩRUBeGyۺ}sz-qayQ8}+qHp# Qnkͫ3#˾I_XȘ; 28К d 4*Çpؖr^y{޽ycKml[dtB(\iCq3 >}n ?AtǠ(FFLw<͊P$Ay3,;5Gh'I9I GPr2mvXssf O$Ńs<},"Ws_d7yx1pyM 1Qep'MU=h{w2 $x- KI!#̄O鋌[eFЬ;EpZ5)8>)ΗCS_rsra, |`Td/LUFYR#X򱌐ljJq\^4k b ِLoUV[3#YO5z*G1OSLΧ_z85f`:kPBDPI4" ϋ& }6Ǔ=ಿJT#d ~eqaNy9wK7oa`Sa>W]B4m1NPkTNi:B 8P^W.tSӴ̚%8Vgߣ(xĻ $ƥ8{'߄޺"⤧Ыҍg :pz /y$M;:݁ȆɫpqK5Jahe:J=ɲ E~>m`Wnh@M#,Qv5y>bP'):=qq}x|eOqI-i/8{_grq)ʅGf8eTrщǥhb]a+}%{vwC! #/d- ;ʸ mjBBŠo@fʒhkN1=׾'`~_!l @U4#|hͫH[q_ӹ(Q?a9coB%k̞bFPH[XW먾; *JEsP\̾1V(v! wUvyP1`rê8@Ant9Ud*ɝ=XpOI.s4d"}pin endstream endobj 6966 0 obj << /Length 2955 /Filter /FlateDecode >> stream xڕZK۸WHUY4 =o%l*5U{ؤR I\SϿ~ .b~SN$EQ?2e)?RJ &nCݵC^Ö{T:Yl(Co, Oaʁ;Pme SvB%ݠgt ihnT$ޯ`3{W\yPwquz]#Z+oZ&Me 2Bw] mZHqLJ?$q=,D[e%SЏ;S{ԮkhN}7 tڽp`x.2⮭xz襧YZF18=#J M#lL:FI0%1˕WdAa`9t@Ȏ@Q[ޭ[\IFĠZw_vcp ٩ظӋ!eS?/W/s x8`= Hq ۇ \ib?/M_S, GOpڴze&'a_qh^ʏd}yLQ$/br `OyvXX D)Ї-ʕj;5GI&PNdOJ͡T(C<.H.2Cp>1IU47f`$"N7ʥ[B5v*,o/@Z TTLy©V :}۴Lz_ruڏ:P6m{&x"6U JGH4"g|2ϝ(,N ~hYNP,0Š: tQFt++\+*S4tḢCP UapJAeu'W# Lj_u;l}ELS} *>VW᳙]"9n˗Hvzjr({⃎'n+μ:P$T3|ȸFZzIVDt~N] $-8-acwĿf4="TI˩oC*aW89@0"߫HTS&u(K= * ᨩf+Ș博;B d.Q0,nl46}F{ De g~^ 84t5fxJH ady rc endstream endobj 6971 0 obj << /Length 2234 /Filter /FlateDecode >> stream xڥYKϯ-T|'ǎw+8eO+ڂHHbL z,;4яx[ūw?>y+Gu\vU&28W}^0MӠaYV6 H΂f<^nxoqV470|6/riG$U;ݛYu<4ʼBcc(xH#ڣ(#Q%~:4f4aZc43` %tv'ԋ|sAuM4AR?1Lӆ@UseZ}b\k)(ݢ{N5,1+Ǟw8Y_-q XUZg0I\V ;2JZP^Z8ށQ 7Aؐ)Dw NG7KgU"?^ "eqɡ]█(glNV-_R]7p2EZjqbIw<G3u8 -"ŞeτvT"eOX#?ͧ"Cw얬nzcWRyPn-ڢ leܧhHQZGxـ~PȝeiŔ8͔>mb@OО9l-i4VKQC䄰lKP*dی,i8хӶ(a_!PDU>t7@u"ro=_'S-Ja9rUċEe=oHE.<ʛDN6'1wcʙ:(87)}eޱ$7цwF0+%Of5Gn8LHtW{uSsI4Z?NvnO?"\˅syLf|VmD2e`%7WIdh'Rцv%qna@ 7;vZAjby/cԻS(2Cl4\)Z s8wwlLGbcE"gj,nkЙ֟ Rwv[6&$a҈g4pzO0 O9}ȾUW9/P cHiBYCB!$_Pܲ^dqQfe.ME%Y4kԉӺhu a+adqq.] ^z F'>g^[E?sS:#urwKNtHc' b<3LXgSDq^U`W PV:/2y^opoW!PTV`T`0N2t*\@0f`04'ֿ3z f0*`Zz .KtL Iޚ/N 0AA`F^ C@I9gL֕ ws\Ybbv6>K9F}=9w8IspXmdui5s(TE 4z'ٰ`_2!,Cy(3Pb_ J4gViQGh~CDʊ(Rw9bXЈKggV? endstream endobj 6975 0 obj << /Length 1673 /Filter /FlateDecode >> stream xYKs6WVj! S4S-A2'TbX83x.vowbo~y()g/vaq?j7oyb%93嫏z.T&n_mU/E˕i[l#ڶfܪ+7I+l9}.l~߸#2ߺڲ}Mu@7+N% RPT@"(`:/5 j:%tR԰z֥^36i李,4dקn^-Wy%p9m_O-tjiG?oc`-2 pTSwzgZO]b)Ɍ0aX)iO' w5رmMM{¯shC̓nMTLS̙̕|, *4`…|V5#h=ܲ]&QLf"X%Y23K*X:4ˡ&`EQ̸x,pCU[ifL]][v\FREr(*;J)۲p!H)|HsfǙݝ3aLz:c" ɻr]`Dc@0E8Lpj&cZ t[&9z<3Z%S|~eWOKn0ؙUƥ`΋+tzuQӧ䏭79PidtcxG"MV% }Duj &S%xەze5 !8< tp[طߞZMXfrʡSH<:K,E sw`)¡xAGf'X א'~]̆X-,{ lbKS]sj׾n\hV$Xȧf)}ou@C*I k5Ԃ;fLIbѶ]n 35vo($*6 f||?L2,ѷOg;x1nّ'C\Q7A `%fzZ[SzR|3]&/7Pl=ը)v B3c =.T8PO/]Rɇ٤`Bϥa&Ϟ9]9Fk rmdZz%`<*+ NW^oBeuu—RL>\ࠧ~ OE6PC _E)xuw;U8n7tmʾf(~^E(33s]}NCnq",x ,G鵀8.i*qKulY)= 6ANtΆq6P6El,6}f:g6sfS Tψ7 ɳPg!w#!Æ'd +rf̕|{VzP=2ṣ9p!Zf902f"Mx))>gyQ5֊b//T1>=_,Cÿ 7 endstream endobj 6979 0 obj << /Length 1707 /Filter /FlateDecode >> stream xڥXY6~_UqIm*W%ڇl*V-G8ӒZ0ɋ%u'_}v{ū6&Xmw4\~$^mλ=L(v4s6_sPKZ/~k$rZ9 nxx 7óHxI*0ԝ=<#qċhFœ^U'P/\}І%kd\7dF9 kH3ߧu:T .k)Ys&֢ ܣ6ǎ Ih|i`16~r#Af>*B]taQ3CEaD̹8z:pT5G%3?5j@;J H*VƮ2S\w@a[}#"XǑ(%+e 1eY+ Ɨ~n85 =O+ p5GkCilzBvTAXUT~)@13McY=bDa_jRgMN 9-twН-ڭ 5댒GqpbNmSh'hX*688Lqb2 c5> &S-914yUUs,/`V0/$f5q-QG&2b-!,~%ZHb^ 6601 S]A C+|%P/d||eSY1b#nx}K?A5/E}~ : endstream endobj 6985 0 obj << /Length 1218 /Filter /FlateDecode >> stream xXKs6WHP|ҭn{ܙ3uzH{HXƄ4 h+;sI`}}4:Dit]VrnW1J7˴(]}lwMJG>ZfU%y-7g\`%y_"61oI1MVH E,{OoV7L.qoIT*;6l=b+pضZ:lZ$.YU|9y}vM Z-a{Rۻ5ݯP6J iC:^Iz[5-!h1\GÈJσX~u+׃3T%f}:tdy"E<>p"job]Ь9l@@T0ZsM?/uځ5nfF((/'O} Ķw=!4'<6fFDgxnKvS_Ψ8rg1="; #uZr}""/˞{qK9܂D1AJTؠ$VZuGHhK| %XLJ#k߆u[瓵'udXD>FIQ0k5gWόcݵy`u^MW~-C,X6.q1m>☁^q?ʀ#1* ` oE'd`&P0X+T{oUԝM'\~NZ0cdЮg 02;o@71$I<1Ljh)y'|LaGPzi3Ɓ >æ".ev5n heYuzjvދ$LcvdOQXS>q80+B*Y]8Y{4:-f#;7#DA|7>7.'A4hn XN6Pj41k[1:uZ&cqb yrzfuxkQV3S%*=&.9Uk*EW(~-Ӂ' qݝ|$(aRn'Y0/&&Λ-:W @׫1Kc FΦ>}#udLwMCw?I endstream endobj 6991 0 obj << /Length 1617 /Filter /FlateDecode >> stream xڭX[6~_>OA7}j&^vKŲG6%v/F|OJE&$M f!ByrXGv`YƌHyRrIhyTCU+[ ]0Tdohq. d,(^ͺI:O9 "fi"E265i;v0U2z]m=>#QLd"cөƽ˘D]/鮲;l)qvQ5m4if{6p#n/Fυ,r?xk] !e}O˝@65Ҷf&aɣKYe9:k?~ArL>N8B8d/:׬UvdzXF5C3J+rmGLa\ <\A':!Dߓ 7~N1OW0A6ϱo J+ fDYzW2~ mH7akŔC,+؉Lѿ! s74$l@gz?֯4pIb`[@?|bg S1-bFS11cY:IΊ~CGpYuZ9uttTuz43f'p6eOrPk@sZgzjdW)*e4w`X7F\6 h:; /V;v(jDs[ F,+G}@o7,ѓVSЌ'*,!Rt&eH95F4$pm|7wt-m;t]UWtW:Pk2٦(Sةn@R; ص-Ԟ`2bC^(\U XD$ =.$Ԟ2)N:%H=]jmT30VC=D|w7B u$uhHiQ2q'$ڲPSrd[Pڠu[P ;9]XyY!p[.p0b"a4p_@1(UpȹJ n_aXC eR&la S$qc^R~j.ҥBeayC*,5Z}Ħ' фcU*06G2,æ,/`ZQn_'ܲٹ1;#y)|E$)IR:G_~xH/dqy.@7slM2P-niO6JSNH!ӴOKBU4|ߨ7A ?,q endstream endobj 6996 0 obj << /Length 2367 /Filter /FlateDecode >> stream xڭYY ~_QncɒJ0vLv4٠U]CjWd(IU{E߽ûQxbpܥrFY){(v nw/y%Q￝lgq2 e"b],nqdqU{rnmyT)LW3M#//Hk^&)C-A9 e_/k~hj,셄f~5M͊;mc;3؂]ܙ:+S.tUأ_zv~D%A粲}d+{#(p3~h'gSMʪA6P px~tԴ|u~~fE_c-u~X~ ߏL8(hUV=<S/q81OQM 4uN7ﷶa|P?kojg ]9RcjfA| ;qTnWgZ}KRJukutznd'P~m( )'[;Va&28ƎB8RϻK$Ye z+Ȱڎ=sͳGñH ;&cf.nc JzFS{RV(]KG7Y9`I ᛴg}翠8) ke16ƳHSD#ƘIDǶZѱkkGgC_83yl+HapƷyH8%%o8YܳG i`:ؗ3 tQ͎o~ QN¯B^I ʋ %T{䶩`y)܇%J-0ۯ@5U{w q}aHia+;[Y[Ngb i8VPG?~w?}DJ/QG$ײk_o4$4Ou( Pdb};@%CM<={NUE*+S`D (3+ǩ|lX c+^n:)b@o=OSFV?COy0|jq3}%8lʮo#M=%_'Bx 4Z#4%W@r䙠 ?$ z "nFL!5Ɠw/O^7U9kkދbaκf=) NL5Ng*:@m.0#ya ]1SH}@]y-yQ鍎bft+ځdVѕDlLUDE,D\ 2\"9"TqWjp m ejҦ'~)?@4TЍ=ܢpsM/!l _ Jjp PŖ0J9Pգ?)zDUv),1}YE'Ud϶{^՗kLާqlFkXOethejfSL㍔s;;tya85 uWf0Z, ܵYEPl%dt-Ammb 4^?.&Ơ4J<>y c>YږH{bs)g" endstream endobj 7001 0 obj << /Length 3297 /Filter /FlateDecode >> stream xڭZK͚*Mڧ'NoSCWF)R!O~}:>l@.OQ۝,s>=8嗡,zxtχC'=_:~6n!?xUz7?&|.cUT$^bn:<8r6nEkMSF}χId #_7?DzKEM SM~.|YO)]LJq-50bᕕ8 ?jߢvKD6uk/%|nGZnMֶ0tjpzړҰ-G~T:& V5+t5ĥFYd2DB#.4x:[VHH \m8K#H97}w$4G Eq=G!IL݂Z$Y IYi3_[d`io8F潃!Zu=+LF@(n؁eyzQp2ȮDQHIpD L+F텫(NQkw 0_Evߴ S՗ŷFV|-D_ :2Nݥ_*ģѦWA<8 eaWҰxMƒv(hZB\<5طz qZ=l_A7/jG Væn+UW{}wV&D)|(x+F*0_}B) O`ii38zǟ6M'*Nt{ݲxC1#'timid[ KU!hK1sae׵ҹYI$Tޛ-xqrW(Lo|Bp>\&(\vt"řYFY&l(qώ|Q8{7(~#"傳IT t$;I7 X@<2+7 ]]MRX u>|?W"6p" \5uДWt`[ P$H#9}YY>AR{44.oK(b-rn3>^j8'W@)1;Rj 4d# *0{؆~Y&-ٍ J y-h5]@VŃv:˨oi8 f6 X=̌rk,#%HRo|0dkYHJcGpZ}\aZi )Hݝ7NUVVd2K~"wF"=,a$6k+D06 fP) ۭ?cVξvr<+e_0ט/mh%}F4f_O&81k>Tz>˗ 1T6Rx!"B!MI`+WqY6Cő"ro4}c V7\R"|1;eQy#V# Gqb#4v_$`Q)*C[\7eOǏ񇫫LU3!}+O.b?vzh,K<,n~F=j6z̼(V,R^SJQ<챔yt rCJ"7F* ]w d?P6d@a/xqueQrPU gW,~U%D?5S׆6lŷ$(I9}dUZVzҵaavT.$)(vj%X% 0Š<]ysimM gZoR C|!h^aEEEmxkx}q>nx \X?wbV6[7M2g3Ē"!Gl&ڂ)3<$eQ3ZI-@ު^BsNeNB7xꄣՑ{کgYǺ yצ ]ٕ* m->TۯCX+?^ZqVYߌbk=U|6>a@}mP\`F%l@R"?ꥶt4@jݬ׬gEro^*9ݫkESrfH,kP_eͱxG?G0EhLJPO#,672i <.v?8m^Ǡh5zu" ݖ $3|ઐ/-cCN.w p)BҏԄf@Kytp Wb3V/zIJM{ #%(Ҏˋ?0nOQ2{'xtFZH?Y/a#խ7tʱIOzK,{Y eD5 tƉ} M HJhU^I;j\/[nJ՘X'M⓸Ǚtf<`vao9E!di6??]D04 b.IB8F?ogvsvZp,N-:~x endstream endobj 7005 0 obj << /Length 3080 /Filter /FlateDecode >> stream xڽZ[o~?b*^7THڜE_귞"we[V2$m|w3ھx)"srw?~uSR2W;'6wOWɟڙHҜ}j&IߞJj쯯VڤIӻ;RkhˮOy9`igϏW{){w9H+I΁Ƙ|2 1"vW"3R4j/rfPحo[c=T͡==Cu[j)|6i;,cR!5`DjBU=ר,M:YLU]vT4Jj 1<,,ءAz =W QA:MNf=n @<=F֦`0٘vZmMl2 8o ߴB5xLuri OHBB)=Jdt~B%e+"&c\R c:.Ġ#iZH\}( 7/1D-]U^Q8CTʟp_6eWկqk*E߬@#GLY-ҏ[ݖuS]Ŗ`כrrUV<{eU7_sKl2]Ċ~57Vnٞ~@Q*_:,7.Yh@b7Xn}eHw! 8%h VBgKa8co&;z8RZ|T͙0Snn& tGbޓ_!aXv'4.si<=0 b50ϥ3)w#q_<ʖ(WڼO_X: hw0 eqI- $ i/6Hص]qrnAI u`*v?GzjLp+v: 9:PP jlZz9$mq\&i17+&+8HaA0qc^! Vu$TdM|W~桝f@n>떥apZゕO22* ? E Uy`gI2:S5| P{:r-<8Wp-˂&ϸZI>_ݥ)NqF$tvhCD%tsm2(_V+\:~8@i\W^84dGE=!~r,1 uju,=Xφz] ?`r!'DqAFq;T[',hL-\LQD}C>&,KC qxBXM HM٭rƌ# :8 [AEx@omynSSM $e(KJ=vnTap$t"Tq~-1l̈ˢ@f-B |Ck{s¹L!{JB»COWj&>_aXH8_FGDD)>g_#UGWmjC:6F/̄ sNѺ؟ഛyor}+|jKjs>k->:群MK6;ĬYU(%$٬/782:W#KN VfiJ79 vGfV?|YaDOm%;Yjf\`*Cb 艭E|O ddߞil<—Czg¾֨Yip^e 羺o 󉍗iqW'[ө8 x+#%FOt"xRϒyD39C8B%v⍐.__!>_2?$qNA'eۅcFv͸N!?0$OCCɝu{㸹Go`o]rpYw׼1O~e H?=AʾD~5kakAN+\FyR5oёf+CW~R!؅/g ̩ZtJ^:vefCҙ)o4󁢚.L0=ۆ! q=V(Dspj;MYh1T-]'=C%kZͪ1zg*2@c܌K#/R5SW  0 ;B¤fuַs ?Gn5^:DnoñnE64j+\5w-ڶ艛H]'~Od" Nд 7[7 VwH168_Ezq\pG=Zyt#{bmM4apO~Fv)::90xlxyA?{K0n[sU[\@ oěKy*w],xKžxS%AMn'X2_\g endstream endobj 7010 0 obj << /Length 2187 /Filter /FlateDecode >> stream xڵYݿBXkHqE`>$1+Jy($3$rk}4oWUw~Eru*sdu[qpz dY}oZMmcY١l-Nv-l_w*oDT@ =4A=ucSXdI`]98Fg9:pڨXʓ_aITr~8۲gqN/x&3B T"_܃\u \GC&:5;[Mv|{[1B.2D6ɥn׉vKH Z$KP \׵;ő=I#n-#|xp Cݹl|$YU6ye)59!em׹Pv  oQpC. ~hk Ze㓇۷ÀѱkCpArh`˨<ҶԔ[ݒt;۝y1#-H<vx@[PXzt)?JGvc)E_B./d#ŢقFuBO*Ԩ" Y%͓aGލ~P*9 \9 G;FM.7%IRfR$:`;頍+.}5Ⱥҹ/DzE-e=qfNbD8#NOOJC"̖Ą _Hhl5>y9+2+spp<e)-o1٣ᖿ+ʴ0*y&yp ٻ@:P`1kszR0O{j._ I_MLr=|kOlclxʀ,*SgƞM q8Q*!H@\ =-zG[ھ_J@PpDtSR#X:Dv'Ò4IE {~9i: ["nը$'b!3 cW*'7MrhpdbBvu+_Zvl r Y'7`p7Y1*@Xy/̶lR3SLtDC"D<;P֜NX7S:fyk94bnr/ ^O)}cz[5T$M.EF>G@K=t\bUHmA %?\M?8땋=D_v5L]Ay|࿏-ޝ W' _bq^ϲeB \<ݾ_Qg'D700kI>CDkę/qSly8F׷٨@h/Mp@m%1q?b}mhݻ}0 4D68Ö@΅nlY=aՈ+G y8ݷaJEIs~a,C6iN %#wxK*o / /s϶G卭xuY\CЋU|}rNB]k%j [ZJ.ÌXӌwHaFyޅy[y̺-dD(ez+yhweÇ-㱲%M!BG+p_~|U|9`"Vqԟ<"vjJqc!oH"6d. ,(}cKsnyp%Ś)hGXO1vxx@.o~?ޗ'ԇ`㩊3[ Ry5]=7$]q(j ԥτI-xO[@|*\  =,zS-}wc&>|  0N)̿JyR~fI}:U~ jbl(DySB`纀d:NL,4dwck@+}T=}~D-^ # endstream endobj 7015 0 obj << /Length 2051 /Filter /FlateDecode >> stream xڵXYo6~ϯ0vfuZR=ٶ/[DDe$;pGCù磼~-^_}w{M-|Od^/nw$X$^*(^ Vt'_܄,<-֡'8㙈Z~/߬h)JW:LevZǞb]s $H IeT%+|z42}-_xFgPi)X?iMy{9d v +4kc;N2>\ 'NwsrG,j}3$ȄmHc]#T дPB(GqiQ-M@B_:hSh @6G4hFO3}3nߣ4ä94Im-n;>̖I#"74$ gԣn6ˎNXHxYK\4,M0HuYSwefП _Kr{9Ǵ9Y⻄GT(PBvT[_H(WLydTվ=S;QLU iCRL3*J 9a !=޷d 1ȑwl֩FY\-e59?B7RBbچb.kQ[_G lʾto[,X>!FQEQ}dػn"4o:2e}kEͯ]IsnKCy!ف!8蠤49 ,^ƙb?*)ȥQӭaH'ڃmVGp1*\'#*bGX!PjcZ@$B1 `$ékqDuOy:l/q7:Ñj p2ŵUsB:(%pWWw%p17H|uюT:Eݨ|x8}B'Vt%R-E _^_-OJ I_Z]oxQmM%=0dlmKiKm.wKy > stream xڭX[o6~ϯ0Rtti@EOhwF-T;R9=X_L7*6on>'& 2,~Ǜ<,06WF~$^l4]U8I&}O9EO J߭ř?q?² Ga6='Yx,Q~pGI$B?bTwI۾7|&fs2bp3:C#_݊ti-ig@u0<2ȉైUK grFtDY٣݉r P,MVԲb@k vA Fe5'ؖwQ؊vi䉶啧QG䟕]cO IՏ΍k/|&l7A^= 9VW(v)+lBB͟JoJKtgW4o?x}C%<'{I~ i(̂4Lv>ń9i@{p;>u)pm -34cpw< zA ;$̎a5T8:}3OvP+vT$b+W;2zSM=$S1k\=o3m - Æg|7pPWMU)<~//i E} rt8 6hG4w >⪆ѨN4'qYTg{9SQf2\1,YY.WZB+t׶Ɛy!tEfSzc_kznUgK~[?}U%D?GP5싷$Z}q%H#+zvq8˔I vq '|@(yv&L'4N;+-Btq.0+\\Ԓx}ꝲ 'BkQb9nʢX8C3IJoHg9eM@c6B?}]2ZuS@XhTyI~),{^;н٬{1zqyPvCR +KXYPEMDQbQLi/>` &T>6'Pэ!Rj%MT⎒Y)ܓj> stream xڵXK6 W쨶Ch^ȡ)vFǞ%Exh("?RJ7MyM2-FN J=lH?o}%߼&XGt)Ӫ$)&,*y-ebNh(zSi|wފ,sǡ:kmk?lsaee(`[jP O*%Iu{IgϦBw{dˤI\M0h].޽K *{f׺iu3BJ *OL5XE]"S2.A'ÚZFqgIX2 G;(X)D{!YIJ&1)ԣl֥# !ezϕYa &ZH˥Eh5.`eT,FM'wR( {kLbo.zaq:Li7DwX!~@1OJ E+t>pni H~ B1/?/Fg)^DqUɥmB}4=飭2Frp{eP^/6=+k$ eO{'nH(`4%yBa_D>U&gK%Ա德ͳ䇦/M ћy#N@zY>,'9"ƅ/\`"_ kf%Wgf?󥲯𔈯9g*ˣT.U)~xz= }{Ϩ9#~f p"-׽з 3]kiP$0U< yFS{6)BлnhWGp[A8@6pOQ&}»AgjBBE\|b6A2mCɽ8qq &*z:r)B휏/Cn$<-U3k@=OJ&Ƅrn: WKY|QX咕*% ,GL7 H"%YQʔ™fXV@+ A+bkZYraeU L}bEA9'oF!N!7]c*C^H{>Db)@|jՐBˣ1S5pEκɰU]1%nnBOgR_OC fKVL"Ncen=t GAc=+qL!.LJϺ[,\+̋W |>W:"eU:4I L3&_q ~&}33>!B~~IJr" z .vdG}"}uP㕤XN?ϊPy!s%Z!:SQG~*Hٴa6=Xa/PcõPAuEMؙ(PBӓJKl`mO(UUjiE6 <+#zd>:gONWCoqvÄP-j“ {zR \6tQ (2uf/̡(rbJVbqb:&J??؃ p~a<!krxQ]alFc1WSƋp7J\pFAabM;XHdgWJ%ʾ@.5C)7u}c.#áV&TTO%C"爕XDkаw@G<ɖ뜠t8Eab]SsF‹1 d4VJo1w(p5 S (ܝWj$ S{io= %kaS8 endstream endobj 7033 0 obj << /Length 2077 /Filter /FlateDecode >> stream xڵXK۶WFFcVHQLE[E]]XR= Inr}g8$-Jz{pf8ϏJwOt}xY)sv<LzP%ߝd!*d4N<-QO3؆Vq-{F*aȓc60$MOIM$SΨ<9EDmaqX{xwZT*;%sgˉ/V'vh;dT[ڸ~ПxxIϘntIItes ^6m6r)e HݧxQy4  l<ߔixw1ErH$Trz(A`. U]` /%%19n,Mʮh$6Ws;!w$jhb'; 2xm/L&ưWht"E>`+/tcgiA[dX@1 K:g$ *{-#99DZ0^iޠ1SH@]FP :8B L4ugGQϚBF)RJ`ׯLzaVѶo't9VWưǾ둜dpU *0@tKPOgZ'7P>ч®W0x[4?YE0W_ty@C败bRET4]=}OJf OiXN#;˘QE_n 9tÌ.RA̘U߶$fA52lfdaihfS _lU J]Yj6*4*P^y(kaZFUۺM;,28 1Lp(b@KA˸'(O\r :o=p)XMΟḯWd1AͱPf[ axĚXck-3+X> }4~Su_z*b:gKڸv.]9XE/_felՉTz Mn9[֓kɫM7Bd˘na|Ƣ"Pe,nv%5 kyL;F"Q K55vy*lǣxK:T'qH"U+uOíszF[5t6?{vi4 6"H0IeqpOL:5 y[I d~O$̅9C?b~t !)aड़n2bαL{zJD̗sI09 #W`"h XO i;Ώ,5o!*Zg)իbAƽPꪢ0:F܎n:l2qcхȂ&wcpu gdW|]"S!)"դ1`w؆PB1ubC߬?%QSHdg` z?Rz>(ூ:bPB _ ]MفUClkӷ%Eċ{mЙV}1KYcGNYĽ!"T$o_J=xn4=3 oG J|oh>4y;Tw῔|ds S{LX)El'ZV,)2 ()A Be[y '`팕d%QBc)0F2Q4;؊[ [xo!&gMN=xGR4}Y*ɂA[Ia=?L _̰ض5v{[(_Gvdj5iaq{񒹄t x{`D؍th{&m{xMi29Xd4~oѰ v<*-2 ş&2 endstream endobj 6909 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1781 /Filter /FlateDecode >> stream xYK5ϯ8x\U.,EH@)JrV9dNH'۽3=)a.ejHd!S($(P>IA@l$[PE(-tSIj)FBmN,rh mG¨"_q bX˒@&:"s+}Utι)pNWUl50A%,}́s_/C!\̨9R\a;Ȗ*CM#Fiׂ ]HM }nŨz V]UEBNg؂Kƨj y}usC.5+;9h6ﰲ5[֡5iڭ5(qs vX ?@gYè;7QR%@ Z!$$'F,#;iOJhQ۩5UJ]=TV9{8Ie`AUWp ᱲ+|T*U\),o gp7j;8 y斳υ}Cz`.\ ~ֿU4X|_M!ux KeOy}μ{؉uMUQb˧p֏{6ÿ=^Yޛw?jͻwyp/ݵsl ac8wK%MA_&g!e^D-5 ao1y/{yq5.#p("D,^B$zn;'"$sRγLؙ4Eb]w~nm V?k~zꋧ?$1CN7Q$kAMӰ~l/^*}jإc60iYs@C!7A̲ @7섇"rl=!,6!hFY!W+T,i`9apkY!Odɜ[!|?dI1bsPr)Ĥ]a%"K9!$p4H W(j@IbLNO<j%Mh~3`k{e :7 `]6a"6-8vQXh#(-a"豹᠋&e }pV_NF'3Q)j1!9nlG`F>2L$C,δ!0 |@.aD$NfBg㒕&л-H~죆O5kn> `ygFdžrab%07ADR A qwC&k2l_/Zy7> VbtVpCOw 5p#`3=cƮM_;66Ec&}g}̩ofTRY^BF=E9)MO4OHCYdu4:8Ӿ~6_3#jixp:[A&d)迌/ZV:D~y:~pȰ3EbM dai $MW~[Haԁ[K  "QV<<~& !0yºvxT|t%ѠOV_E-nKj26 ӌ2[3x>Ð@?TX#Baeo endstream endobj 7040 0 obj << /Length 2967 /Filter /FlateDecode >> stream xڕY[۸~ϯ"bH[&hHhbYR&_s,kI$x9wCEUz//|0rݭRJ,bݮ>$WE$tԬ& Ssuuд=nUuɽP%]9zl }p(-USb:.yk#RC_v2kߋM/ C{m naN ,ڮʄ6]Jɤ&( ]Yl{aE'UszXɰ~>±ZTt%jvOVCCѬi36lP&yٮZyx㞰nyZlZ;¥z 'Fo\)+)jr a@o_9T)m[u8<ɒ0Wp{xOR] >1̦(oŃ6=r n YZ V2aP.% gA곱E4 UͲi0-Uwf6f:qLvt pO *f)x <גG,=a-pNs(lw\{QIUӐR~+7y(U˘G>n.@U=BupPj3 D+r)vFO lt{(&CAcRP%F{UMHl0Dt`q@鹰ܱ.pG!Y~non>_o j\OCm^Y_,IÑͦUsϯ}ʹfEp᎘K'KYi"28Ʀ=o;&WP=Kj\A^|U #~_9FKuLDlEǕl k~V+?G,sY9=~q|#b ̍ 6ږK4kUp#תkNAU2bC:U"h,NÍMY|n 2>:9BST#8n^!b(Uw?Nit0ISHTK.  3h*zc:l4fb Kw) L}hFiI;YW} Va;C:9(<Dwtzqf8_<3^Sĸ[7;g,a"Nӵw̌' ~:O׃k`j/ҁғ'9yJC͢-뚉FB~`ӘwCk}5֋[› ʕiN[ MfSF/؎Y@A^f{ !tIdaz !ًEIEAnRmd^r5%Q#gS}fbה|7Alŝ= A@rS:I D߯^إ^0.]Ț5sZO$tm=HhE;ӳG ԲkH4=M)w3ޙLձ/3Ob9wA 7f-&#L64Lssd4,=BgɄX)Xi&=zq!˗pfǼ w>xȂe܁}P-/ŝȹ)Pߡi~LrYq_:z B4 ;Ħe4y ~Q-/O@v{E&pK^}OO$4bW;-%R|_Vߨ#>1츑$Қ:E> stream xڕXn}WC(&ټ>fw`b vEjYHMԍ-C#ꮪSm67w*QXEUy8ldSDea%σ;T붻(ᑡ;76){q9q}i?~_,궻 j}joۻ^"0W9ܑWDrۻ.ߍw* ];?g3 3O1>8L(X&=F`V7oڥ^9^׃Aϣ`Γm`DFݝNNc[#ɴ(bp6 vGe"Ld<ս=|U(_ENS%$Kd"p2lK0sel ĽYYqX, ^g.Vx(x|͖ ݰTbuOl3QUSݥEζAx!0R|O:fA_I.}o(]zIg'yBgf(qs_*:2YQgk`0=G,6ylMfXN7;nUӬ~[0b!r=Z5TzP>X"vGY^$᝶ہåDxgUrh 3*Gdz^Lt~S;rUT_n0&L y8wCep3!KQ"5P8e 椒sERm۽lI;14,0̞8X➬#`]%BSEŇ0yB] QyeTq~{piPbMS ҝkYP>P=1(Aޞ/o~~ݵR+آ3R$l/)GgiC5VR'|;)d%㯋<`Z2BI{g#|E/ ZUVay^ kCeBe^(j\kNvg;J 븀(fxbPTL(~)I}7~٪T܎_Eb7qK'aI̾JJNADX'ɛQfxZ endstream endobj 7050 0 obj << /Length 2255 /Filter /FlateDecode >> stream xڝYY~_Pp}$O5F6-%"nrf߻( wWQWW_Uqa~~^QXGuzܯdUFUeY}ZH{UshIkߜϟQjۤ nA:a;Da\%My&~]o :l0\'4 VU{ 4"fbg;\oޔ봼QYE&K֌Zޤe7*qǓ:]:./l)ǡ4hYe5,IpU^Nv>DLTܽ䀟V%qKuáE^Ge)Ghhk1{)Pf ysKtORrշA/s%;H/KkO`aL l5&BR?kMZa~)8>._|hH8F1$@lNԍJߛySN]-? z:EyX1#)Όeτd0G_i׷=W`z)C`tSvIPΝe 1HdSL&B̬S;p?-L\625Y}=ēy9eXVTruԫtHq0ggr$K2k $e'T0N Лv6<~14;{KJY xleKx\J6T3 \/#x5`n4{4yEp/܂BTeZfu㧄=pC) թ]r ;L5#{HO> stream xX͒4SS`lI ؝8lQÉ$Jƅcy{Rb{2\bjuQbo~y^EYdq]tyθT}yM-c|Z:25QǮ7{[OF~(vy.5̒w?yC%JX&2鐊nW{ δ*hWɴ+ۙRR-q"C[5KPM$*3ߔ~}l:)fk[C7oqy[gG/ݘqG÷U[^ԡ;FL)S:Uyvt´K41%Z5:uЉz2r| ~= muC}W0(ҡ*ܻ*P)폇h@jhP Uϙ`YM .P"T`[ѾlQqx-{0@"afQ:I@ Ǻȅ4ZYaFy(qoKgl*eN5Ve,*pCbEݖk @&e6v 3Q7ΘJe88.ьf"gI1pIRڇ,v&|qIZ0^Lvtml_'m%,i{jCTht><3(\uWP(<.3qj9(Z 3.{ } Sm-,.qsF:yx@ft90ltMt`u䋜|ƶ{4[+ Lx ye=`{77 ̆:{l~.Yl8_\DvU_B@u&s(0ф}?^·r;KڠVL:Ѐ{};"n5_b:3{JKe~m>2,ѷOg:w4ہ'+wAl޶ezP{ #RFS/D[}NֵuZo0*_ρ ٜ0}KP%|M:;5\*M4y\dj ͔xM{nY~sJԤ6 I}]9&:F_ᘔ5nB _dp1r|}iD k'Q֙(:Qmk|a͆ʶ?sfvB=!69WO BxXYoΓ鱀p\>iqu`įƓx{8`@p!)Á2.!(/Cg~g8`r&g8<h xaquq}YhڻJ}n?#pZBIVs2+rxx5>2 sOsxBJ9eY O ;w7 endstream endobj 7059 0 obj << /Length 1653 /Filter /FlateDecode >> stream xڽXY6~_@Pu1MRAJL:!9%liS/k-Hyؐwwoww?'^F2o`#4N@wM$ 6ިZ`Ѝ^Dq{Ku0tN;3Ri$kɫmuԩdxFe^hS`W需Yfw{s\?񈟘eujǼ h`{I%q8qCm܀zIMCTԊ"GnAtbѪa0K\=Dk,PPQja.¹jY@j ,,gR m$1¬(Y5.;!B8BaUYVj | B˲H`["Uߺp— mǚέn^ATYeV᩠ kcbusAO҂Eb*@ U[ {*))xKϑu7[7d,2`U_'QG&pg IG؛_Vd#H]] <Tm.jb9[:ǭTL*ᬎBmra0U_G}INR寶VyUC #v\W m ftZ 8#flCIth/j;vufCqy!VZ? 1``]'Uw(VWǭ誤PSnWK3@( P'.֎s}J5ذNl'gᡣ/ D̿@F@VZ9_Au߹PoEq2\nWEH}&*iWp`g ibhi:VH2P^nֺأIDjA/)U7 MoMpTbN@ l+/zYl6ǭBM+F*QX,^E[bޝi+_%qFxj+E/e{ ҖLgz91wb wgevH-5FGbrvb Ol_<{Xsp"@fV:l}aNU[zbC/2?YWBY(+[hT?!-(&pSy@$3qZ"z%ok3>zhi/]?̐׈Rn9P{UVzoN}jy [LsLAEJohdW!*jp K,̶{}C#G5Pꛜ^RjӋlu)P߲c9+84|REsֈJdU3yzc@t%wg8kpc~4MӛKԈ=9ǚCKsF9#fB繙hxadxjb9hp"f(Ul#ɦ^'D @ ίa XuB_` ݿ; endstream endobj 7065 0 obj << /Length 1283 /Filter /FlateDecode >> stream xXr8+xTj%S%T POhP&˜Du7hѧ_67*:]g!Z2]Ӳ6M-'M,)"yd\ś=u#Z8}˘r7=wYuen{Zr䫸&-o9b-nR IbQDIΗW^:/_oj@4S8;GZTwsDnB-E;ZK5wp$[΋uo[Ю&{S$!LP3XؽѸDH=dqz[ 5 ;B}lUO{̐;ܘ8YNHc&hCEБW`WCQ scf\]lPCis{QUpig ޾'-z1R|cvz ~:^uX0ֿh122~U5DͤWb=yF.pc443'۬|*ᖢ.z fvZ;*66iEd5=j*:&Orf4kkQ]rD6?P_fWng`noHP 1e^\{@Ыl0Qү 2jdZP-dsQj@bDږ#`D𗡙Ό`82GD/$ęI#mD%pEIqȻV܃a~e+OQR~oG8Aij\=tUb^c< 2߷ޚa(g-6o?\A{.#a]n٠إ/qc+ZԮWۧ0`DѿR:- W'0tR %3C/7o8InReVp:RaML#h|2^ϫy~&5R1ɽ3TdǼCWhU1V/δ;ĚR{Gu]S[ATKRuT ߂x7@a{\W#b/Zl[B"V0$\†ݵɆ:%%-p oɩqCvK0~k:#)z'CY gЯ ,SMF /np3"ha,S,'g> MpE:h]*j φ3^d!V]i /cAAB3@:{]+ endstream endobj 7069 0 obj << /Length 1576 /Filter /FlateDecode >> stream xڭXIs6WPFn钶(. Ԁd\>ڡgt x ͌^}z3JtX$I'DjOxo89d$Ŝ$2-&s$眙n}1gyts-*9QsM߷7v$` •^Vʨlؘ9Ǖ{mLSox 'rS7z8񸸸[FmtWv[)4o4`mF:uYo6wFOU9}r:GJן}$)?8kD%ǕP[-{L5A_c!Dv;6w%˧I^5˧xi;=ʛEbE*,+v!-DQ(fëT}$W4Q/ J|EC^o. *fOO g>BKi@A.ȦzwQr. *& d}xrC Nl)\š='[#5h+Zy 5T1a)p#&ߗ5KXQbkFXGiGO;+@˲ h G 蹊E2.LŬ9K"E$ȨE\$9/dnP,},6:(ӷ9\ NI*Weۍ6cƧSE kV쐠]v4*vhsYZlogc lz>g4aN5!*ԔKJ]6}Y`{˪v1+I =ennk W! EW)ծ: sɮ(~VF(S;\Ay\#No[0肆)*@GfD-&= ӷ`wB]Iq1 {9E%*(–r, UC71ܳov1FnTGJjёʔgJ71kyzีY!ά͎ SUcۛ ;w6٭[{{^ꦎ}?Dw;2l[@S|$gW]J{TCܯ8?јm2t{HS"Q {lٔN' XGL h7WxU.б]9G=[\!/mF|X[WXV^b!lCD=;[O $"`@O"0ėMWhBkaGu{'5Z}¡CMoB_V+ uoXFm6K@g2R*R؉6;}`ո/[Ph@vhDK]*8aX=t6tG~xOtP6_8mzrtt.ϗKSs* :ʒ}p.-wig|26|_/;oP endstream endobj 7073 0 obj << /Length 2130 /Filter /FlateDecode >> stream xڭXY8~ϯ0&/2+3,tgH.0Y4ms"K}b:K5l[9(wD~̃Hn||˛/o * ի!C&Bh]_ DZ_{9=>2SJYDQ6($%wO\: IW?flڹw qDc'mc*HcBcFg> FImTj#rtH#`@BvOR}O4~[u8"L{7Y{bPծ I[ XZ&) $ G*CS3ıpkg|B)& !D@`QUbLV0^_@B9w6,ym?`Y\~^ݤ PN2iU]Z@]R1]@vF'@yU]mn:50Axx$c(px B\:5Lh'` sE5vpWNvAGx|?9M]GV?P*OuI&&_!uKkkUg;D"ߋ3ݱU3E 7@k%Ҷ}z>B*i0AfdY2zdնCOkm?~)qð;Kߡ*FP)w|4GJ1%L8W髳غٔnv9(1-0/fz3{j zC A6v˳~G[&wh G6A4*%̩1Edkߌ@6GX;3^߽|ͯן.]]$:vhV3X/lxP]ފ,5QPbш ONCwuY+  0H9LBȜ 5NEvŌڪֹt`Gu a8i74nvD%zYTJ@tn1 bz7IjhS~P}R̡`C\.n] b?Xh;tg Mߦp)^rl^.91O{<7n)bKQ>UD'? чNtry'[tE` N<ΓڎT h,JP9OLNש1P<'u5[m kQS %ժM6o4.5tX"i ڍW!,Ig@[埃<tB$C<@Z3RlahL7ȡ:BlO (4UIVbɥ0A -7oAۤW rp!>\\x`Lֶ8R&߱`^Vy4fba*K|p_f/ eʔ[ `?'tm ;O`11/ A*y{fx_&HR{@dAl}ٚMYcz^N;hS38#1SY| !8tݳ1"OGDEc.oеwwd,?%?{ʺ8Ab7+nWp|xļx$Fi ǐS8M x7# j// ߸/Lbh݁Xyl꡵kV-5rC endstream endobj 7077 0 obj << /Length 1982 /Filter /FlateDecode >> stream xYK6ϯ0 9K-Ll{]4D=o%[v)Ȫx7?݇"q7wTl8cқrH(_~ɇ*ˋTnv2fi=:[ miFF>>2n),5`ItJIy^IhiE90L+oo`Vd3[6CgzNB< 3GB S0 剅;%{ AR"17 sKùtC=Rxnʞ޵a𨣩C4KH-Y Yq@>He|3GE#'3M܆b7c:G.G#DS.LYɄ'\hvyO9 n>q>U|y7$tb<ό?j˯L{#5 2Md9 ~|R<=6`~z$T'sϩ8 &Bs:+6 :/hj?Wmɞt+ []!H],GWݠ_ *WyqNM=]M~lLWU㴎XgpI=?[ڣ JK:]v]iiD/b`zb};qAT1ND,+dS \D.#3%1롹0[ p= ^ = /NY'4d0vֿڅ1ᔂ-k4txj*wl:jc?MM]l#LnL#k3% @j0u%W~ aߎ:l1kוL[oF8 \YzQW0/B[3^(٨cѺ9_r %^TtyMƃ%\BGDBV |rH#py3k5s]@ed]΀~7g}7[38(z0|yG`l#RK =U9Npug3@7#<ء)}ʏᤫ+t3ss ɩ$}Swc)E/鄭/D2^k v@P.Ryҳm U3 k)Ϧh˚\38`.}拥*?zF+rdUBsյ #= mW9NP $cao_j_VEYUM(>\-vK=Wz?u-Kt0`xOwn? endstream endobj 7085 0 obj << /Length 2276 /Filter /FlateDecode >> stream xڭYKϯ0v/2PEQX @l!- F =}Xs\,Xiwts<=ve\3.CO$`e:z8[keEيz׮zo<~O< tt4 Zx/2Jd2Q)$KT;$eiN~,7Uږ5m63h9js4zLBO!q2|a< dT=%LGZTZ7"? 5ljjPE %}*e|d 42wZƋoHFO@6N$(IK+[EE禳2Wkb#vR> [^W49Ԩ&5J)O.;|档7kfS6Ww:>sYy?l#9S\}ii϶˞쬀16LI&a)@9Yby8)S~/tS.~twnM7B#xG($uʔBiw=7kC|gI2EbC]S%j}GJ-*6^s I9r#zP#Lh\|q9mB}BU uEK?jķkk;[H)I8^7tBg$>gjb3e\ьtQJm55'\ECd1%")׶y|Ān 1m@ 1^U>}$KZR.NaǗg5mA_>UIjwh2&~G'|}45gMЧC7CW4W PYOzC`{Fw(:M=}pVg=~k̓O]@0z"]EH;JO{E>ôl:sX< BlelG@L -ϙI^J=˰J&L,V'L2)x'K2X3{EY#?G,1-vDǙew 75S-Vg,Avh.L:͊oٱ#8v/%J#%-D㥒ƪQG,^P໮( q a|O5_s|K(0*}Q`n OFS V $J71Ϣɵw,'~PqH>+h x8Q} Bʴ`> stream xڵYKܶWLYs40+>9.q7˕p9|j} 1+Ur"6Fxw?ݫoުb'cQąݝveq.b_#eow'߼5Z^eBezwбȒy=jzo%a߫C/; 6ϒ_0Y&q'`CS"I*Um88ink)LTL"j]g|Hʌ4JrBI@anm*˗m|N8x\xLLA5<~H # 4뺣r7Gmæ1',L7.iOK*}h{7?3DD&_ʼb{!e9Ua"OlBAyxzZW\9dI*]3>]̈$_T viT6'D+`x-aڞʊz4%}7JsMr4&?yG خzv %i")Gg8 fÏ05 rbZcqCqi%+p e ;^}'|TuO~&PAN7GB259xxu^!.,td).>`uIs?֘py: *~fL g۲l5O! gy: o$l:s 3YeSijb@RlatIkU0J&N趄1\|߷Rn1Vʱ%)%6xj!m9iuwn0 ױ|{|t" p1w62 C)(d|Tԓ[ #=3`ɋvE20v%=9 5ny C8l9@sjR0t8Xcld%\,5{O z͓&B~GF/gY-Tْuf?6W owxGkˎu{B;3Kb&ndVZ[SUB<:; X^꤅B`Cf:S!-$z DRmS?S"MJn._m"(Uy$<@Tᥣ kU1A.$r[IH̑e wg )E/ oe [4-OZ~ɖEZnQ nl.эr`=q Mb%%MIImp1Q77=g}aDC=ۼ6&dx+(~`4櫸 HPlE⢀ԙ?zP? eKBНw |*E0#~{OWGayFٌ=.dJ3ElG1 ݯS&lOU( ^_yRgnT>~@iϿs⛄4_a銹Un9o,@G\ܑ(&1\UTKL+K l,tlx64 \zq喊Fd+7rP+ gxc~Ν_+DkjD`'9 eP\(`?{_8s endstream endobj 7100 0 obj << /Length 2002 /Filter /FlateDecode >> stream xYKFϯ  ڈ]H%sDW뷪HH!ˈ],vWO.LJwOo>hȢL.6D-(.?vYZakUDim\L_&F2TiP Vrӿ|PXcu 2zI!bAhDb3۸ 4EI}95V*H ;CƉH.b륕zNPHXÃְ/a Q._ܶrKy:_Sy߽͙q{p.ʚy7hvߒק[H Y3ڪl29g T:5E / hЗ^zhO7AFFh+i]R*;պFB uJ&b?@^@ͅB,dE^ )0݌D +g-uXL`zSg~ʛbK4U|böDPw"B ;/oȼҙԐBGHe)1#!S.Q> |Pz㭎Z"V :MSsgl H7ny-wĒ$ƦGa'C&ͺlՙ?8ubqv4A jG9Od+Z-xJFu smOUJyT 9>b0y}Az/iBޏsI+D$\5 `*q-x}X>&Ŝ}4̓e5᫛Wgj~k`3kZ^ k} jd>q-Q@cJ.8/8@xOkcYy@H)h75@x.P9T+1Wk 8vA<ljDB"ĉp0&'d"W6cKΙH91?&g zmpBTem \z)Mv| e:StuT_M|O`/#86- i,=gM7UvToFhlHLlapA V/h!Sy'&yeV~.oQ.-ofap|#qٿqZU(Mzf`0E?N3%b ƥ(Q'Xep}ôvTLV:S!>u/^iǓ~YM endstream endobj 7105 0 obj << /Length 1138 /Filter /FlateDecode >> stream xڕVK6ϯUkx斤2%W݃v9f>jaqRnnG>t|z~urV:Q+Ƴ<:џȪ'T_dY!PGY$䐦"gdǃ{"8Гth%Ϸ6Z*iw`D2[$?p^&E6ۃ+ fLY]ţn&c$ʸc+&빶#t` `㚠D\ˢ1|%7閄^+ ! 9yh1=F*Yṇ>}N VC)w ùHT3Pﺙ'3ѭ-ƃSRK@=%.8鞴 k^8 ,9Q6fhV#bp'z54A\N5@O':Hp=NuSHrfxvmU/xlsے]_LK) `2 ĿC:@-k0&ފl#eʊ5+y\44W,4J3+Rp̴ۘxDhD!Ɲj^rAFGБH8(w4cz9: N5徃 <* eАG]Y 3=De: 9kw=p]W^t6]ѵf9<(%q45糨Y|}N[p?eTxŚؙ@ YŲJc+΅> stream xڭXKoFWHf|46Hhi-IwfgI:Q\>ͷ.ч_7o~Ui$9KSi}(咙4Sn_ۭXտifY \£D,VSR"O`k憷 ~wYDF3cyw's)P gjܴu]6U,_4Gy|y< \z[KB*q9m|5I {Ky_/{?ςə*҅vnVD(ftБM)Jo]#`PIH|DO_㢸/q]U=þQ`;x$zAg\YzKK$"!;L2R/ m endstream endobj 7118 0 obj << /Length 2203 /Filter /FlateDecode >> stream xڽYY6~_G+I]Y䡳dg1 :E&2FC}קEʒGI<ŪW[|woyXQP=:[ghq[ǎ,6-qUeq;S9qܶVfxeANgdq}D24r@D&Y͹Fz v)z#&~[ftk{ߎ2M+MƃQ4Eu:,wI^R?I|`6HHXxW6Ory?훛w}sv"y>wik# xb!P1hx+X D|PBiqPzMqB%t2"`51fIqi(AjG8?6.1QAH <(tႴNSD`wW_r7HjzY흏w'k+ ! 2Do 6HaJ&vyhYq uasf"A? Oov] xq);Hh:FgbU 蟡ßWCs(E_xpKę S=ool?jBQ;mQKqڵx]Yulv34Bδ1%GIqyZ1<}Y$pؐfXȢIzg_Ma28&&?sOfhJXk |p&<Ź[xY>ڡ3#F}Sዮq>V]˦;Vcʁo^}s}}d.x^dPIKо.iT:Ua d?UXۼEt2>ΖkveM% 9imT< kr.6U,Yj z>1PlF.h!aC?cS0۴= lC>fِ˪"+ |ZɘG:^mW1EO7<෢*P~!FY䩶!'BfFFQgJγhƁCKنܑ)(ЛU+ +4 )rީoDC]Ud~ D}iJ-,?ӞJu3Gu laGNM} 'C^N 4) "{2PiE7##hh'РE+M<Q>qK}pA \PJ* Xwc=SDy%~;pT?}1PJBSsc+_^4K)c|hcPntp3q<'dn:箒L EW,ԕ;.%` Z6'd\ ߽~PSnh4ԃ̩WjFνCȨAAYHLrD%@X*56I)?K:ܱpS%)&X%> ,*GҮ|Ah`܃k%:X7&6j ’';(޴ՅI ݳ*b$=ʋ7Qv\l(?hd2X/3rgI\T:t$Q5ƯʍK얆V"l+}$1_K.Y}4٫Oꚋ?? d endstream endobj 7124 0 obj << /Length 1810 /Filter /FlateDecode >> stream xڭXKo6WV"E=\M-v [DȒARM}R9q9Q77;~BqEj'P"fN@W{'PJ=DI4 a*՟~,!aݓ⬫ȩ :F FYlGa,ʔE2.@K^FjA'غg)v[5[ؔ8iJܚ壭i&io (O]lE#$ע Pmس4 Uʬ6uhHlAbXte`0>%Nv>N{z5wQtZإ`νȪ1i"lƩQh5/VPse,.+}jZs$ Yf_MU7HpC9SkHumk#KC01Rjr_ g|}4("awQq81αÙλqIT5nt`m~m%?SNhmnT/*_&T2'! wǩ5$-0 6oV);0;m2Bcyj҇H<848"yq_T<ď$%;r )G'\)4˽5єy@ rd_i04^'wҐ/J~`[Twa]M9TXL+ϡ`\ Isi 5YW&ŔA54Xy}m>2yٮ!E=x ^۸I!l&.k)6 X8Bq 8{Aː&0~2̖3m2Ik-*ڥETlZYZVe_53Q|g3''Mi6qc"ul&8sǿ0&WM!EO-kHX_{j_x^6@[2|~IN_0XFhu}t+' A'PÓ|*lsBͻЦʄ؃8s!܆u!τew-r22h-%MY,=&&@J=#9p,VR{>35E;ۣRۚD % 6ݣ 3UӚ 8ڌ9*~1CDߣǀ?˟4zx9] S|]X~=8\: fsJ7n|7Įk1Vfr zmk&e#y+EvvGǹw:˴'/D>tdV>zWTmNMcn]y=eZK.+E2k5t {)ׄ+ӇN9mS -DwH7B endstream endobj 7130 0 obj << /Length 2870 /Filter /FlateDecode >> stream xڵYY~ׯ[UK3҃,YJ\R6;5$fIH8vࠠ+3=WOO}!6壟nBy&՛4 77O_7< d/`>_N6 4yW\n#XOq3l>#uݤ}eMs>ݶͭ/]6Rμh{ݹAP֖G:wzt ߽k0<7uuC+g^Ҝ6 R? V~0{ʶGo:| lyhA~x(MܻqRhOMշܲUjSF@:mU6FͪRgQ`Զ-d@2qdY2aI-%S3, C8ƎDsyhG+Yއr8ÄXv7@Mymڝ;,|%BN L~hڼm6Hx7WY`l [ yL3˃L IGkN<җw8H;m{U 勺j2;ڪ`N,n3i0Q?E+@y ʆGd o?4%@E ^>AęןX I+{-@Hh2j2j{= )"#!#`\(t DgԴBymv}[U[4~?ugT/޲%qT+_h ɱ#gV8Shj 8i` )lM0?4W@_s@ C3jb%y%1nR^r/ bsh'8Il~_פ?1XF~ ׁӧ߾1`5FcK;wuKH۾/%%A^` P5E<PV;#h-F!үCWp&B`T g@vn:-8^+ayb !w]tT/7> _pN9%i[1@UUQS\L/_ݟ"}\[YWH6*( 0 URS{QƐEehGq1&mV$?KRI*3{repp`GY5 ;d~Sr#\UeِC }X!ʂg¨H$TfXQyepC噢()Ϙ .)HM)yT-+ Fy-i;nF>)L'SiG;j8=U2n2< TƒOx!~h,/lJar Y8 !Gk`'> gb52๓hW drQ 1Dc?*s<ybBW*5)L#s]w;p~ܤKF578{dkG"=W { P mzVPy~U5sR?.NFY>7߽P6DY6*׺,u~*0}A\chɪ̭=F -sA6eSTqG1 endstream endobj 7136 0 obj << /Length 2728 /Filter /FlateDecode >> stream xڵYY6~ϯ.+"EjE*Zwg/~JDabٯRJ,^mocqM8"|Xil{K Ӡ'=v9qCa-`W* ߛQMa' )uENL\Uqq: t귵{ۚ]ߴtN3bvC+SroSS=$ST20qY}6qǙ_fzi+Clyνm+%cCZ0SFU[RN#zӛow^Ƿ/7XD jYM WyDwA'ۃ۠0LH>SC=[) ǮAdlr= -tEsf4T# ~zĥ 6(IA<¥h ѯ%<&A[ kHDZ  )\B/c_9$wq;J2%$64@#h,vjҴEY.4!Z[`jJ3ug[K8 /iH y!Z vyq[)fb}Ny0^c 1,C&_&d1<+0!A4^tM{HAgdgn9dv46'I[Md_m]2uzdO0#AWrȀRr.wNyM~K4"pYpkLJ$ɂ$k2s,dP!u .İiۦ]H@e j`"ڵ7e+s]֐`@|HOͅlZaӹt qP9B/Q F[dB 9B%ajW$""ScBQ szA;S3Kf 0dz؏b<u)2ʇ@]ZFr9E%*OH8"=cв/lEY 6 ~J!jT%5TΦdG7" k9M٭స 1TqT½%m5njgmo# f6n#n\\1 N6c!D AsaU&._$z qf+\ppx]{:%NnWlʳtJގA⸫7~j_ <20*@!>U(z}s0ޢE -Y4ܽe6W1PĂd uro1M"kq]%2_$}ShO<s3580O?Egfk[ރ8q[;QA!gWR긧LJHF]d!#xA:TDeOB{xcRH[u\wTLꚓ.8CMJ'Q.%D@ IhZ(R˶dYt2-z'qu[Zzg <ԔY#+)x(fC?2ޚO+j00K^ş1CaoW7U) 7c&ގ0,te+o5se&gOҡOq_2Дv_V Tbv@CB`%*_4g<K,G\c`)Y> stream xZ݋G_яw/Hb|wp&?8HL*!*Xլ46fTU]U=pO%žHĭ&i8^P*xR(RXRm%$": t_9y@-Q j@X!Z#@{$k]$@51c@-jO@w-rp:3Jl5ւInthhx$eG5@=y8G$!@9pQ b!U+vH@$؃Ф td;6V~YK k%) *-Du:dQ >ob9BT KР-U T(U1HhAk!wpX, 4n[s*!vȓQJKA(Be LT `U@a_ : pq]A|v&>LXh0ơ #O5:[6H@뀆 ne@z¡:0z ;l&xagV׿I믯ߎyf{Mח Ff9`D:גt}=KWimZ?O۫r{]Έer5(#T2yz1.*_~y0RPό5A|_ Znɋa2Tab'|G(^_\lVe ÝwO!w D/Hכn۩6^qZlno"C7ۏ77=gÇwlKCO#oqGz~Fz.c$9 gS\zMkԞdzJ,’ ^p $\B#U4Y૑dw?U|Ux=(S׸orϥ7j;4jdZyQZ Ȭ"7QT.^" .zApQYR\=D5adJjvke:TU\O3jC5TcV6Mtۏ]p~~>TgtW;Ljw3m=-ysdnCmx40ˡ[2gAA`LJs`_,bv۷3mak_(49> stream xڕW͎6S(kE)JjQ" R4Mn\ȔKI8O%ˁHO Go4Giݫ7Y4ҊE]TdQI*h\rO^\> _?`;ƘUc1/ 8b#ujp򪚎,ps$\d^@*;pWfmhݓЀWȍ}J'c#)bjZQ  ]Sȇb5sZ1/y{"pQA*mP>*e2ZUX3i ;|&nvt;LHXƸ%yp GdnN "bk޶&?`,IYn7_:+3 ԨC"2%][gH{*{Μ'IV}]P,d(yHdU@"P@{! )ɧx>׏LJK,x6Gd ?~4)r|qes)l#զ'[[ӝIw'jY "b&&o]o`OK"E>u"ВAP]FHWh'(EKDw8B~+$d Ub|^*gO@UD._̔XLARdLd S=f<3_ohz_QCfDKQiGy3RHMճ QTHȄ!q q7!hAA1+6b|ǐ '7IB{;AfMy;#zЀ97ZT|^h¹PEEfk+ !8$+mL8SSS\&r?c:|&_~k֋(((On~*_O endstream endobj 7151 0 obj << /Length 2348 /Filter /FlateDecode >> stream xڭYK6ϯQZ)in`d`ѷؒVWrfXWT{E?ELJOIBc=wܙH$b[dc*с>a&DCyƿX}+y"(Jw͹k[#ۦ#4Bf;Y-tjji LIDh(!AA' U_an;UOÙǮol{,e.T& #$euXR?3,Tɝk84 u$(ȟ Cw X؍q|:/ՎU{7Dm .UkwL%8T`)\ۺkK:sć|/}B& W yk2{]`54"Kg}kX0Tp~p@C,ѵnO8]I1_Z7hatjJb8e }ǕOWn|2WΎ(`wFw#Wa;q v5 7@ kb#UX`ӛ_;/ȴLFɕO4 Er+? Zg~6\itzB]h)n_b b˪Ivre6?܄ k 2FHyn)}K&wp:B%w[䕹m[?`lŰ,A;%u@WM]XRܒRC["qK*A|Z(#`"~egt3,7x%Y 6aނ,5 4`uH`֌@H-QпYu7B='2%8i&|4cT c1Jy.i ut:0dgpxIt=gKt},pj 7mxP`~#'A]s ha,9ƓG<.q+TBcʴoRDWjI٤ZUT$ 2!Њ鲚t$TA-=ME#E~K[UlY ~i]b# M|naK-Xhܨ~h=5ZNrLJe^i+nC5K*JCM\ӉN (QΗBG ;w;p}d0-2R$ߵx#~Czw|rͳik\eJ5!6*L*se:N$x.SJ_'hdoIl_ztRT>̨T%U&w*oP"8⦓9+v}Mr1ppSprC;oP941]t*[wN[U|<|3 7@Vn<׫7;Mͻ! )Ux)F-X4z6rDMΰ+U >.^\@4JnG#o0d`+blpW-Ɛ8v*xUЕ}9%mF|R9*Q 6!;zgl<)JBŒ(ĚP<ޅR /~- H@%;{qUOEKWJ:+6xg!mO_Ym*C^\biĸP(N)-2=+'4Cr_x|Cr|\ZzvKA$cDŽX*ze)/IfM' vAhjAaqΑ;EN ސA|mz ;[(ۚLR1p P#\"BFT<(N{4N&O\nmD_XV]?6%Ceך8.<>#D\]Xށ%wduVG'"`/0RbAۺӮ>ӑd"%V9 Kx*y6>&;/Lޢ?~]bw)gCχObyU endstream endobj 7155 0 obj << /Length 3057 /Filter /FlateDecode >> stream xڽZKs ϯQiė(嶻l*U{Xr wn%3Gr{R\$H @77͟xGY܈4)B=XycʼgS魈M,TYvcX+P*ˢ/xSc-)(gjP'  %TPJ**q˱bRi"`W]3/fMA9A3O{"bݝelj m-G}:kQ.ĞEDou c͑(draD'R˫VCˮ*^G2Y c\_jj)UnfmS0 wt -_k 9{E䙧xOۀ#r)4Q!A2pF4>M'ܮd@}:)t0pW^ᕄ! '8/ӑҝ?,)lnt@`?!S&{~n$.^_쩇}/{@y≉cu Yv@N?GhˆGg+F$'dkRT,ٸW@X\YHϹ7 WNJ-8¡eR38 N,_#=T05]d.)4foFe^W)|nQ}b0 ) }5'l(V5CBl Q:\op" $0 $~u~h 2r/%u T#2ӣ9;=~W~ @_"\ "_ ұ~>v ߛfOj8K- U)+ Xʇ "[À-C' <%*]_wjU'p%QB>45@X˶miZ<ѫʂI肓0HR~N9a~t<=bT} QlL[A,Q@;W!T+{a3!E̋+a485Ò;v1qpxBRc+R~EೆerHPpbhP!i)k> stream xڵYK۸WfjGrLSwrʦRXH3;>!6\F_w 7p7yxsAMyG&7iT8B/s1TO8_[{"e{:W5J^TRYBTkopFB/'ssG6q@06yt9eYW;ttF*՚LkV(0/u̩RP>ϩh,qIp1+H+GA!$, eP;7;ƠUǥtZFٛ Ly\2"b ^u&CtCɠp{0kƔb XeD@*xZ#{є jzӣ@%Sbm8m:yF\,dvQo C{]t˂xpoQJjfIadkwZn W=hmSA^ֿobc^r_"*hͺ΀ "ǰGmDރ粂 *U^!čnm bn:Qu/>ξ̷'[ QxHm7\+"ȕ76D#4Tvrʯ"3T%En ,̸NV^aK1S ײ;"T?ѧrxv܇^7p;d?ԀFc i ~.^[AO߂cT~|tw铓Op_9T!8ڡ'q ߢ V]i?qP׎z]:ܣfzaJi6htȢJ׶k2ke=m!;EZ$j<ۤUƜт>^f3CCo5^nu4([m~ɠSec[{cX )Tx|[ p( }OG4SG"6}s -8J M9 #Af6Mp'8$ h3a*z1rf]&HL#ÛC? endstream endobj 7165 0 obj << /Length 2514 /Filter /FlateDecode >> stream xڕYK8W^l*M*ۗ٭)DȒ,9r)|a~~މjQW~+Į(?^ļ;Y.ǻ0"hzLhNWﲫ p%A3 ei 4$ofDfB!`|T(3w]Gem}P}\bz߅Ip[d`U݅2Ƀ{~Wu]A:Zuͧ `0O$ZY$3 Uoaj4šC߁i^MNA`}`i MeGK=ݾG=ۺ_8ZDY*fG4Nukzv3MmTQ7%baBycԝj{j<:Hаdn7n?EȆJNx*Ǒ#ޑ 4,}}߱F(`һ8 BPnx=ãCc>9]-4DkZU*CLhɐWS- ë*{s<"ہAefa>>8',n>qvΐGlP88lPЖ+>v |%h'c;eKv:k<~]QT&8X_T’EQOzTHR/JRRϓr-~| j:F;+0rQ'Fiy14+)O!EPuHKEXʐ1*6`k4G<0 x) :-&s$ Jn7-2Q\df'&z!u+nk&óҚInp3 ̴1t2>.l6.2޻t? :, K )# i/31VV5&2X#k~ZA"zj=\Z {ѶsF1CQZ7I&08SS\iʜUsy?SMV1B**e b((++B֟eQ!mTxrp@~VNs߁'Ռԁ)M$yTt9>m< D[<w; gT[e\vCZ1!i!5b4^;P4}[uS?M/K,ϮRTTYc S*~Mu4O`p0~a8s33MTb_zph9 vc7P5ߪ͋L%xk~T<ͤr~=Ƴ6H::vsC;ݽެі9л}o;@fUмF$J)$!RzDd=X&o[S6$)!YU.8zv'u`wM~03&vty=#Yaߕ D[bߪ]Xx|(+ȇppYL*P=bX:󢒪 l@guPpr>?ixyikJ ܥH$Fl`(4CH&IӺ@%liї=M"օAe/{4*?2Bi^l|7g}|b LA#ԣ@o*Lr%=-,wĬ@' aMk#^9ktυE}zo8dRWCl*S|7b&L!5"j:UC}ܸ Wb~ 7,~ җ[[e^FhjtU|sBٖ ;b/`r?u4s3VjvgMPA*p2piO _ug(* 6F:t;QgKI`q~os=Gr4oG!;DF8NF\b;ͽʣX:u$D4> stream xYIsϯБ]pc<$NR>9@nle4.d55oޢ|>|J]UTw"+22uw9xѷ}A}Q?X%e`nCw |Z\Ȃ_""8kFXwOI䜩8.FUwç\n4 ULZHjIX;Ʈ&F>NC ?ዏG|WÃH)P7LuM=m]%L"cl}.|T7pR/doWz el i{Զ8 < !k&|2WaWlڭ']+6PHble/bXwg'YF5_Q Bi7 wZø{m -q2vLŢJzf?lռ c?0zI {]\i t LUjbQRSS\ybY9JlJ)7JTW,2o7$phF7fԡ=w(jo@fQHaPh;k`{bM'=3*vKEnH?LownmQm9*@+(,JxT1o?p+'^1r}cjU 'um@_]> stream xڕYKsW̑Seʧd6JJ"1m1ûʯO?DyӀFxO?$⨌KqEt_~ ,>w[OXǧPQv6m6W7H()2J[=Rʠ#TЛ5A9Lt L؞WK^۳P4ΡR*d L56s'qQA/$Dl;qMw]`BWMiS2b@DHWvUh49=Y2 @ZTxH,Fzfm?d|n'/qj| Pfn62eGә[Ag F<&3fڑ6|nGb;IpTke l?NWӝ\tscځrD/(z\Tz+<xc?U*قKkVۛ% NGj*8+x)Ў23Cm sZOkBy\aNmtC8v|\:?I7VNa ?D05-'l!l%0nf0[iJ 2GA* W~'i+ LiPX{X4́AY|)h:#g3@uGKR{wpfHČ?YY\Plw}6/bF2n#Iaάp8s+DGtR?wo lj[KE)} 8^ Pk??Ԃw\\Mut _:Оs ou9ߕ[`7w#9d13t!3&R@ߍv`+\,p)xqW4E$fMCccCAd\(8uϦea_6sq9MĞLkWZ-~vm1 (ޕLnV=WߚQK!(5RX3}Cp#pd3n,ǿ+^)(MdZlyXd -TLe/,IqL~lUDPRne '#/^z«+,vBu'>?}Yo1mMw2k˔)ty{URnu_iZ{hUi9GkdC1YZM/HYYP,(SŒI!ʋb_5m%u $÷%jCyynh~f <ךa2zS?VNsq[}{tV`_*kjSN}E@a%]y45SUϬyAWx>OpK:^s79O *W3NOi~ET - #S/g;'henHj5|hP!| endstream endobj 7180 0 obj << /Length 2975 /Filter /FlateDecode >> stream xڥɲ`n`a6,IUrlKK #$Oק{ 5\0hy-~|;e" ("$JHS<ñ+T d\%I?2 զ]`Qim|L(Iu{8@,7d6Y*2X"uR*Vd+0N*RZS5i< re rd1AkP'qW͆EJRe՞%tr'-OBfv{U2P*H$8JZlN]W6H +ݩX]LQ+8B'4R" noJ*8OPG=ѡow_y+"I0d.}:W_MH HA-=$O6N'H`]l X/}O8Mh CbӂKC$4L+8̒AX"kJ _Pށ[4DR[A$B0Y gj itz^G f{^{{6b23/"Tbj=SsP&9=M @M%W`# MwS䘽{0Yy0=CB (6܆&YytAF1Gls"ʾ(.ǬD%A?5؝CKW 'ۂJYZ`}:ҋH]Y66#<[ 0o#d'w5e[,e( 0H8ha5ק.zTFOMQRCm@4͎ wmj?m IoY&]8 Q&7{~;ϰ+bJqWB\1k?1szpǞcL :T6P >]xi%)0'FYSƥ hTnwevtq$eFѻ+ v O51'] ԿRRˆLJR2RV0sb~u1Nh%I9RRu _I_:VPswVa;}1aS/N[ڗDW>z",t ! 9 4h7`ʔiNS=ۮ?|B밟-XJ=>2#eM o6!fa,C-3saaƁ_ 6%<y1d2g!=0[v"jZ^(Tx8Wv vQ)Ȅ=В}؀ݶ}әH:"z,gk_'01Ojh=BJ OAٴ{R]o,\F=e5bq`ӗ ]0U{Dc$.".šR/,ڶaڥ"cpl[D?pfm?W;K'G 0 {@ݓZ~=B%݁E]_hؒ㷪 D&gao@kU62 +9+ h,!cSTِB)PW1c 0쨒eR lb!}c͊aY:\06967(9ɥ*g:gCݔHu_Ka ;?zĚ R L-qk#H[)R!/hd=yGOZxL*[DPE Az:Tsk\`W Nz?{T%HOp=X$xق#xfeoU 5T9EB5/0ma2`2h󽕔](n4wA^T{fxN{aByGx"o|AEojM}rp=!v&w+y6gj}WTr{psZoP)}3eePZ"Fc֛u۲&eMAS0!qG/> stream xڭYIWH&}INg<2 wLȒi. t}Vf5@jy7?×WEyopiß×8_7,)=×j04b"*Im`kIJg5u u#52Sm <0LQMCmf.;o^'X>@N> p 8r=7RGrΑ{R^ōnZD޸axy]34n(˝~"c?(#K\x@V[7pj.G] 92Guܯ;|ҨVW5{C'ϝc]"Ҟ! i AvQȜg7mXx(r0yϝY+]`ҍ'CGa.UCe<Ƚ0? yU2['p^#PV`T`8$jgA#rǜ Y=/pdyܢzM"] :@{:êѫ nXbtêIAފؔCcU3@xbò"1Wwݞ݂ԏ"QA|j.{U Ae^Xu1#EPwe}Vb1{ejl#$]x\qPp`,siGFg\laa R\j&TaP<ņw"$7tMˇFayHLQwL>~#6J4t̪0s2R?dzom?E#K2tNe G:0AwȉXܛ`&~63D! $ )T7 ;;kQvd(qi#VJHV:K q4_hUJ5,/FTsz< 2ki|l0(KRؔ+GW[kRhJirPOzYdu|ب^Mȝ }Q MPO hd_]ݩmS:!Bޏ#Iq5yV<%f !l."'[G<DF1#J,)r\w8{ ٣"bN6GR~\dc5+E{HE%8zIBЅ&Pgiy5/EOr@!"ϚgoDA ah7 ^9Hn0g[?jXuFV\^:_.XzxT0u>O ! "%"'B7i]N l%v"Xn,..L; eTb`Qy$M`ټ v49ÃJМb:CpPt<5ܜ}oZ ]SwzYݦ~"<~ ܔ+*bvj&%V(x4#\މ?-%@ySƛV*b/H=9"^܋YWܺ*? 5cǡ\bF fR%Hk(ՔaxϐT11dsNSTCC" A/U7 {н+Uyr+*Ef:,%9ϒ%& f,b()hľ<ˆ'{Tlp*9 3g3j0v ]Eٿ]T;(r%}ɘEr:8=3?8=T^>qG8RVܘvaNÓhi|D8S-_{Jkʇ;E=TqGTѧ al8"# ]=LjǖzkGs nrtm[WqL2 axts= cYƆ hݺB@΅[[FGj]ɲ~/TI%,<]:WG.zͬL_T|U{Az[X !ލg{5hlwQjIJH>]X$(Ul-|5ÝA%чvmY߇bd s(U:3\2 endstream endobj 7189 0 obj << /Length 2415 /Filter /FlateDecode >> stream xڥ۲_1oT iNmJy]. hf8\aƌ}њAű Z:$SYFu 89Lfj^o,NɺMbmG^ ?T!I`IH3 sψ@HH^4ޏ{D1A`JW<^U}m``HBzƴUmAaL?5[,2mDK qc;M%ZIGT*YzEI%B쫶'F =8],em׮O"`Guizr4(dg\_ %xU󳨨 IPaȨ,KONAZ05Co\i ALK.)Icxt5DCV5*ڑWeSG2eu_L6M};`Nj|Y[A;~!u.+/\N=깴r ^vIN=q`Wuts BD5,>g\FUuy|v`2Z;hr梸Tw=zH jbB|v[/;PLek,Ӈ n (2B.k* )_r2J|C.GVh+H{kis#zUDY\=Yn#fh9Jn,7撴Zd eYV/k& ^[^2~;d"4/c/EU] awwBE%~\n7PXpöuJ)sng50?{_>* endstream endobj 7194 0 obj << /Length 1488 /Filter /FlateDecode >> stream xXKs6Wi"$rJ;I:3Lm0 ɜP RQﻋ]ҢLٲXvoX \lǫ}E",zŋ,Eu}jW!Yę3d(N?W,RO.8[j*u!yQ7ToW eO[5z;ĭu[4wTv?U UJՍqpkZOΆ:w%K @ʠ`fI(6wfcj$u6*ZyUᑮP;MãRnhE3iNZYB~#20c2rs2XXw:h´ASw=QTCo6iQYיE>f?ZHfYJsh0N;[gPr)\2iVj=)T jBRݶh shYۦ^ =!!lĉHBE|7E"8m9RnjI*qޛ遹@|Y;2Ǿ8tsQHDk<~K8co!4)sȳ|joE/m=q[*pCO.&A5!N`HO"Ǐ 'KBɸ(0*J⸃y$O[N}o]Բ톝,Zcu*) |NSc.sNONP<8:E:t&=P*t0hE!,/7 Cj} ES >#'E]HW|DLj;0YJl4Sa,ljp$8o4g2{fKXR"Xd0H ߇V8I-pbZۺ!Ԧ@ (N6zk_>xhދOر2xclM5w%> stream xڝXM6ﯘ[ة;+$҂v2#$n}00 LN׭O]$EaPe. Lm{H{'xQLCߴ8xiSr Doz>.4 20m8RuZ4N8 HFv> <-Wqi5hCCcrGm*P`?QQll!ԣ ŀq`byM /"-ǛmVVE#TU=~)`^VT29 z Ch6tJL $SbU'jhQ J^F 蝏]#r;&^HymeI3͕y;0^19U6yW~G_{3`N)fp=sQeA2zy8B?bj$~ I:R~D4;5ˌǫd60|C. 3nBٿ3Qty~ckM#o紥3#16,]50r$kjp`rD$e0?r+OSˆ޵E X dt۲jՎ}- 6LV7U{qo#NúaR844bp{ [6j m$Jęr7=+T< vU-.+4B c9b.~Y5#ŬnJ|QO#8sYp-Bi\{qO0̐i+8^K #i*蟝BaFoV'ZX߬. XhyGgzc î,Ì( )֕6bYenJ7^D8<+U붱>h1 nJi2fwȪ'ׯ`¼(6o&>Jm7` &2x6t4DZHk ~sd։8 (se, t<@,R, c7ʥu(H1(2e6$JYt ˹΃6K{e-K09}h4Ag mq>Qm㉂ 38?/k4h$IM>$KS̈! 5vY )glgB u×/+ْdfF $'g\ U:3lIγ%#) WYRyY4m]QQqpZ[Vt3i:*Jubc.WQ[~w g h2QKq8 1`ڄtgAkzjAk=4 $zM{ ѭon;,*vQcpâ?FS(tAhtZYlߝݮÖ~OvZ㧦:9΍_'gMlkΜsFu:2stv&uFvG + [sBMJyu_TNOF{uD:Y1.s֩ endstream endobj 7204 0 obj << /Length 1148 /Filter /FlateDecode >> stream xWK6WH@HdٷR-P!ɁhD1ͮEz҃87$I8u3{4UlvAe'ylS-їo@g% bbeנ^r,WY-þ#u#TTܮډ8-hM䶑uRnnymgeHpK H8 %|쳫Q\azn}b^@#Ev.&%"x{ĒniCtX0jVFg()gy>(J4s+G ߆'SrdK ͥp `Ap ~J P; ne(@ sԹ'mB)蟨$(|BQm9mn{ pĆ ǵ刱VpЖ2) . i ľ7^P<>m7 Hҳv @W *hp"P9H yjWizm V}'m'Z"< Xb% c)ME!Q$s'L-\"!P՚@*_zԤ<\͋y6jo0NѼȡ?s .&5CT=DSca1"k *eK@< \yum>٥h R*2QVI=G !ikÕoI,cB]p:ށ'}١B'XZ,3N->IhMV7E91UT)mrAR0U f&_ՠ zRԓߩq>NJ ٰG/Or}E2RdsѩI`a8i5jP8=_*g!*>En( Ds1o5o;2Lmn&~C#N%,{K{7}p%Q%N!QP.Z z}3h pɡi_bdib;bZ¹۲+?Eq['iw=\\K-wmSД+mi}em3Wf(nwqͶpH}eӎ ?S?TG`*{ofö endstream endobj 7208 0 obj << /Length 1817 /Filter /FlateDecode >> stream xڭXYD~ϯ\YM4x8Rd8ì5k"K.Y3#FxjwRڮϾ~+")vU,Qzu]^a:RF\uey ǵ#ou DiȦ-}w$6f__\Ҝ2ż`fԳtEX d*WLX g;險WPWJ,y8S0xyƸ(Ou]Y߶;e^?2Qo@T~_@b%׻'7/2+WZDOaLFkB*Zy "DBgDpU,d 兑 $2쯧5̅`\@-v]%ҨQI :pUY\Ǣ`LXXXN4YH*"0tCaRլCm@Rsg,bY|*V-%Et¤&v>2i!7hؙ4u+){fph#tuS#?1j-!)t9ig\DE,VR7qcj*]C &xfv?>x'wlѳT"߁/bu>m yoq]a}צlykS;2AyXxԓ}"OX|lǽm\ KT1&Lϒ:2*:󏅼HIݡ=`dH$wհh%g o;3cjL97gȃtAuuә~j:HW`84(?4z & oRaeqkۙKvfH)?Ͷ:.P,lFܗa_rmA%׿*}X{+̆ts&T"I4?_. ~ne t0NEGai*W 8 Ԛ#6X<:䭏Cx;7P3/UקS\XdZ\ؗ(`$ݖ;f;o2Y|C |&Y:o%B?1L^> stream xڭYmoܸ_w";䃛&8Arm5Zi;jŵ|6~Jh8< -7 _.AXD(nE&Hdq]ioo%bV"ʒĿZr״Zzx$=vRry[vENmBD $HӢS6j-'nlm[ӻeHzh, FwUS÷1ڴX{+ֱ-ݴ=V)ޤҰjP]YМnKtHqn6J,ֻ.")OZAZ/*o jwCl˛n6[ڻ73&Un1kf)B7nLU9'\2W`K/5 З"r>ZAP Bn3Y)E"}Գ4TzG*ʣT*R^btsj,sr5UsJ5YYx/_wϚ9a0hqhZї Mr q;T==Fx¤-롧~Tc~qS`1 kBX(Ux:{NQ\4N(UZKK/n2z1g#ЖhpcXڙZ6vP,r0m_nʸm)pKAۥ<?ApKKn ;L9ߖ-UHnd`X8$L p,_sH@opIHrJ5{#DtU˝}s(-uE$ #!Nً^ȸ0M@4IҗD{5*I2xDu;*^&耭8]1q )x 2!xB#fy0>O'h<6ZD'fo@%/oKh=2;͖Ko"bOݬ_f?yfb$^Leۖȡ!sl{$^Xd$2 PXBե8e tbe&ð`# 9e Ʈf҈}_:"^0D>N8Qѻ 2/Pw};4qAGMSu֣߱ /9Bl|q, (_Ncoar> SO2{M.9 Ȗ`p8kT{8[MP=#StK\b?4n洅3)}]\K,46n@S s=uE1Z La4[!zia$84*q5J)vm'yʭ٘fJ8{SvxSXY(ew81ߚ [XzmK]/2]n F\Zï_kZt +8f? ᦮Xxd(dQZ4[KĸjloguereMg}37x#6{@ڞ2C@hDf2|at醗o*GGv6dDۇ&Иdmo u)E$MT7F8 6iZQ]c,m@RlROWBƍWA*tށH6R)JPΨyt7'hDR5r g-DEJfA3@W/jOe>jmǐߚCuw'[c/V5ǫ#EX6w lr~Z!*}c>͓?I.2lWW_ku?qIN1RNh{fUyllz6cG!> stream xڽYYs8~Rت}zL')4ڂDBb+~8O@yǕWox{naJUeūbssP^MMfί7AͮYo`Ph^k)a9%SU{ ?~y}ӓw0 qՕ'ʏ0J\7qλ@p vn"!m۴ҩj8Tz;pu:;W,Tet=4^Ý{S%/=4͞EHA^nРvK wu`(ZxwzGF`z+բ"qpw%wu (@@LAّ(~ΩM(ֻS%) 9t-n:'"/0ԛ)ȏG]V;# ?/q67Ό=@hWz@+ .6ljY1ޞ iP=vD6y 4[m4s#χAƑ 0-X<0b*8S4[7UC/)+ ]?gjOf]EϽ<go*!tg=B-x l;8תBG*ϛQGn$s}ܼ~wBuiPmZ;O<ө%I6  QE%KnL+' 5>^Amh;)4 `1mSWids=w[gA0|OErXi*.t2Rj Ԁt5o! 3ȆEH窌9`ߜhj&V%W"dٴ\yLߕ-K|2eoٚ!bxWnTeI^ ^EKU:{? GNH+h`kAJ2#k#`~kJX<<#k-8`!d.O}I)H!jGiO5GeYbDN蠧ZˆBD 5})B-$rQbHF2,E4t84\G`K3-uk#Ρ9`]8k$H9%J띋!A>0j N*.6AE?@C?#;\zO$RS;Z< ꘪdD v`8@\աI3% (x5stҰQV> _q4zy+HH>Ŭț'` \.L$LvmI~UՑza?چq3ˁ?w(sp=A7KB~C,r:5넵 I1e"iɜz-/хn+]C |Vckt7'>F s:Є p jΨRvoO= )C uzfҢè0/aIb7/Ʈ4e,ڦ:N$*lN#H%AF1Q9o)ȟNM۬sx+2<~sLAVӓ4o5Am\=^xVTByn@[K:V%8_*#9fߨif4~^ C$)@B`F/HL,(AD8-<[J GWXj2њ ;TlRMnW(ʭ^+1K'ZNjEሉ9y3 ϛ x]mt0!ۉ^Ty/\@p$zΡƑϸ 5l/ac*UYءHx=V#ΨUu,Gky<|B1;r/p?67 endstream endobj 7227 0 obj << /Length 1012 /Filter /FlateDecode >> stream xڕVKo6W(kF|])P)LDdɥ3ʶ=y~3FEoOBg`}> C3 endstream endobj 7232 0 obj << /Length 2239 /Filter /FlateDecode >> stream xڭXݏO U~K(Rp"rEkdɕᐲ ͐la߱ݟ*F7wLl 6|Nf:rϻfyq T\ъܷoۊGZ۱ W X ӬF4{Z4i/[زNNbYZ"Uun_Iylw<ݖ'(gI冲;%n ڈc=@ ߓ*K $KU^$^.h&`eRuSi:|CJÄ{;e`!s_ܹGG4T=[Ol(~DWAH*2b0s`>Y|vrb:9P75_s9pU) oxϘUȥ^>4sBmapfb)^N>Aoi?>DzXv xp!yb;;G Z!(V\h0m8_ 4/P 0p&jeGK#c">@{ y\kaZ7}o094oV˞-|pJa6a>9Qiq,s #X96)SS*mz|䴲oʾ`+\ϯuqTs'+?u bJhvuO ؊8ã],)ТK `ґpP`$B<أaL. 'LzV1T| v.#/n] y~Z8CWKx(9V:M%|3 EJ,e㗽û)aTJٵ 3?i6cKpz~0ݦ%z")F,_/OF7'G1 FȡEEG6O9K[MKW(WOҿYT!AGzů㕋g2U\ż>;7)Z!u J \*Q,rP7 endstream endobj 7237 0 obj << /Length 1687 /Filter /FlateDecode >> stream xXKs6WV)"љ\66Ɂ&!ST&łL."-}|f\ryHVgvU̗ju"\vɋA%J W^H%$x ~{芺jqX&|I.wzAeYoD+>r,*+T}E6:oF#." @0Y/K}S*xdHE)ۗDD Cm<g5PynQAt:|A Z#,슎$Pd7>v:=7,RLT5bapBd] ̷?b  AOmiҌۓhg1b>C grQPK'`C1'zU 43|!.,+01EgC;]TweMN䶔Dr] xx,KƧ_}!_4:O2xRLMcY GK/Ee3;-mmm>mkn.qHq.Y3PږB ghx /!pn 8 J*qd- n:nuӎr?[%TۮWZaJY<{B ~tjwucB=6r3^Sj]!)Uw<iyJ0>Bv[C ù-  Q8԰5ǥ`)6H$ d(f0nfj{+R8Yg7 Ӝtm p/M]rp endstream endobj 7243 0 obj << /Length 2652 /Filter /FlateDecode >> stream xڝY[~_ŕ1 "}nf'eR[:X`pϜ>}<9OV#6Mۛ|cm(,2<6ZmtTQm?ev$I'vulʹ{#mk{3v,;U97}z*~?r.Wa 6t\o"9 #qXfB%QUowq'k$0{S7@] Tfek=,se .,VNLYY1I,/ʰ`&ei{&*q[uעR8P0x33}h۪緺7co*;3y)&yɰxB978r$RFep<f/ݹG3Lv-Ȉ䩓#0~Vݥ 9#~)XmE Sw/Wc~'xJ9_`[>{'>|)eDO0:tMӱ jf{$Qml1otL `Cט\XF56FaEƙv25Fڀ" 0éUI4,F!(IݩoRJ'N$߷$W ,4h!~bP+l )TFD<\߼v$ pISyV@@˫0~Eʗ G?AWԒ vAD|.GQ\O, ؿ?^"jH5dD~@t-P'j3 pPWM]-%rdԤɨB^4tɨ8 ߛ YO<3 -&/,+pՑ"CI,O({BN}xb`/ UW } -UC ToxX/M]"mc6^aYK}n8JbPC-Ipx^@ w#X"Kv8֏8{`jiQP<wgli*y<:5]g3VH?ٽ@ \ju'.$!Q`J 8 Xg=(Nϖ60c\%-6u4C/d4rwckgSipvJ:m7P:W2x'{*!ML\#߼R5ҎnBXV?k+a{;TFn~We$e5bK^-^c/=dء+oh}ջ! 4*v4g0~3wx ub2!6|y*ڍvX8\sq.OA~WBFQ(v&9_?3s?MW$rH7[P/&WPURy MagC)gA(j48ٍ,gutܹHBjߋ—Y{2Sr,'X{9"kH+3ūjV.ج]$|EFrئli7"Y^ugOGW iVk|ҿv2^bF_{?xX_0 endstream endobj 7251 0 obj << /Length 2225 /Filter /FlateDecode >> stream xZob;5$73튮滫7or()iVW7+WJڮ>d\ˋ_)o"Dґ ߾uHS(-ō*PD*9Q c_/]We"Ӭ[GsWY˻֌0Z3AB|{|smvY/a`٧z9qg5˪Wnjpko1"G5:5D!mߛ^tֵۺō ,޴'ȺY[,:Xp 2w}H/2oz0cj\ )$") !9PY:{t/(19v;tFLӵV86vwg8Ӵ'4_Ȫޞw#>nk 7hj`o,0rIbAYIJvQ0X^NPUۍaV[[H|Z$8iwon}!<=V&:竀'si p"b l럩z'lj:Xpo?}SO<0\hq`&l@5b_JS"]PGat xV}6B-a 8#dk0ҕps~H#İw!Pڟ<{Z7R1р CRr:x{wAuQ1p:y@߄*K) l7=`' MBd'?BlwŴlgL~쫱Vur>WB_{"TT1zsszK q3J/q+f2 ߞ zGy ThtiJ "~N'A/k*kͩ!P+P+)W"%rݧԨA~kI?q$;rәOu*Dԡ+bق:/G '|) mI^*:y،ς5&dW?{=~9ԑ#s&`OOJ1Pmlc`ٵ5LJ8<`OI{HPG8܁(hpcZ__x2R=nYg9H7Ů۝,6ai9YKh%OζrQ J5Dj-z i)jGȻLSJ-"1$C>NCzԉ`-"~\6pGEvwG\"~w~kMո*EI> stream xڵZ[ۺ~ϯ0R&RhS-Plzڒ+.(-=p曫lWy+"+vJedBn_36-|M9l~T4m?ymLW7ɬl^to8a%zX%$%9ρmSWI޾:^oyF,[vY ovLaަvd0W[8lwm*{wgϦ#w]x3zIewy̛1*4)$QR"Pڟ@-%)x1#"܊W8bR PF(F LcK1)qn~ه}48!SGL|HeX f%i S(h;tQ)̮O.eWae9..0ogv=U/,('B=CI,j ҋA[ykQך9x#!04ya0 >d=Kkۦ>2KxgZ0}_9njզ3-jzpg}m 0^ɗwfq )/'bP>֬qI46 *τo_kXw`fW 롗1"|qb59Z [ŚT8r8lIWIUDA,u.cie.! k=ckXB% pWE&.N!CS亘n1~Kta)0$c.LY $ҹzuw#hP C<]v-?"p<껲Jp0W8T'B n>](Ԁ20&}xf) %2L/3!ek{(gT_Pc;^?z24U 憾PGL&P ށ TSt+"~Dؼxpպ95L-xgJ{:a s].Px 3,8Y8]7]!ӎ޴,_(nٙMѸݷo4펳Q8TrؗlA- h죭=μfj 0w?YQ@ ]OXL0I(L'l$zthSgY%/qKܥO:o∍%6qVЅ?5ش3Ŵ[`he a֌LUp&$rVA>\s5&}~ΜfWĩQ=&>;Bd p{R?+hޑ;:]]j4 #B4K`gOצ=˵ކwմkӊ l endstream endobj 7143 0 obj << /Type /ObjStm /N 100 /First 973 /Length 1717 /Filter /FlateDecode >> stream xZMo7 бh%$-AC[#YAo }xw<;|IJ")JPt$I.&FvZ8*'kHqPr y괔$ƈ+b'u1՜] QU\MZD/ӫ,l>.fƺ1G ~K\d}+Tjf5|j:bX##iTh#JtSf) [L IbB&*pdQc 6K\"ӹ&J6b>U[!`qiNX@8S؊ Ђ/"V7h%'%d-*֪N̅h)Zpb&|R0Kb-U"fY\Blr-ӏFZ>L$3$Ԉ%1! F@,UhkpGc4N8 *b~©1Z bu*a_fd->b#2 cJ d\%M'64A "USYٖs6,JS(^eWB0L΢,J\,9!߸!\~~Y<]_޸YRR.o?\}fu돆6)쇹/D7x,9=H UIהN@s~֗>FOxW9>΄|ȗD)oh#(&4xpOk *+ +v 1#c!$dmj~NaGQ';鑢xAL=(x}><ՠ,y [UT,6J!|ú7* 깡<_*2_Cec)Ι2u`K4:1v+̞nh0T04G82R{njeV>;М";9Ylz(ˣ8hcŚ׆J :G sBtw<"͎qّB_p=(n$fq <~ R Q3gJf\=|m7yq혮sT³GDt, a%ds_eT{L1LLd;<Ҝ%Йt^d@ qF;T! }Xw";ds٣3X è'@$qz1HwS-sÂTgt[%lI%GF81OzRʔp=\huS4 ^: 1HEh፾ONaI]XߍG-ᾋ endstream endobj 7262 0 obj << /Length 1697 /Filter /FlateDecode >> stream xXo6_]СY5{j阈,wǣdV4'}r8^\=}gp&I'i'{⏳^y*J&8N( xF, xN}x>2WU⎵L{Rd7Ocn SgBn\}"Rb ĵxZщ*֊VԴ˺&y F2B!N9 Mn[ uD6J1xf< $]jY}^,l WmhtMAYcң4E)uS&<ΒfiQs5e R]S_n誮.7y Z9훒X&cyFL%U;o $3cX%2 =iC5(g՘4m+P' -p/z]c`=F/l#ߘc}%ܲ__ݜzX(LbB&x~>nNnnzHF꿎y7TBǞr;訶( -p:B"ь%0ܹ.)p" 1|u#>x}y⛂ĭ|4y@h8s$~ϩviɿcv\D?^ }qc]ru5+Pf0:u<>1_^zts endstream endobj 7267 0 obj << /Length 1763 /Filter /FlateDecode >> stream xڝXo6 ~_q(WԎeI=uZ`a:فkuGϾ۞,QD~>QWp⇛wRDda&V7U0 BW7zkzۮ})'d$~O6`nڶoڎC6k?J>!As?o~zeSA,c0ۙ% j];NAߗafu["^V~ 6j_ۧ A5n_jr8΅[%d!L( "!I ]BYZ -ˏT_ q|VLc 18Lqui'DzҢsAECtno-zɄ8q.i--ޒC`s$%+ BRfê 'r.H׾+ڡnzj{%M]h–.c,GI:Zx55]7{>+msߚ]GyfNFb;! k +@&(l9]EA̜U԰}#(,VQQ9@~`|dJ'I\Ʊ U isO4PKrHJ$z+_)0]&Ť}Q,`%5su C!ϱ)_O8-xωxHFMKwFCܘm?m뿥sNRPH9?Hc)']( XEI&^Scv6:gRfh F&՞JKhngL 5Cokp?pMUuS/jBU$cP0Eb(]!#}CP;Wj:F8 ¼ P㙾o˻}'&Bp_7?/d Ηpub!Y 1B2A4ao$7ز{ e7U ss)K>1V2'n\͵rBD;=~FǗ nzHR 6u=V+Lo@g,BrP[LB5?\<uaڂUywȠ3%D4ca{,c9) :Րd !^kf<@!cCsHAxp%N7Tl˸-Gy DS7Oj'I@A֜~> stream xˎ6>_ 20VD)Hvw6CAm˶Yr$y&bjgf`DT,V9mͿ^}˷2߈$Γ\l+76Das$mls%']V.XbB8vŹ&CWT5@l%Xh=Nfytf:8wtdD E_mzFǿwfUO*L}ñJ -~IRUĉ^pZFGS"*.V[hci@8"#v$Έmn7;x5&i4p^ZԎHr7=N$ht#}>UMS5'}\!z$Bb୿uD} ΢!Q)^&$s`U>T:ʤ02] g$$9~w޽!mw_>bHnp,iT:nRE'`5DL{f2̞%?}]tqa]SI~j+whK~toz%;ZUSF=1I?@W` 578 uycթCv&VRDØ2իb NѸA;M Dn, a@tSp AKNNl .ۺBB3򗂊N=ԋ׿$:RߛqgG@!{@NRԸ# '/2Ujn9 Tɞ1[C1&Ȭgyz+Xt&}Wlf_llw]x  :lIQ~ ?ґoBD30iC0TwHI4"Fc_Š8#+#RdD7¬`a(hFgp(,rtn9+Yx[TJl!4l-;[ڞL ! =.%%{ٳ:r&|_0[mMlx&-39>ױ qyQ!^)¡,JF}Iʔ]@*J@y.m3Oب).eOߜ~VmءǔgiqOA($Vz|<6 I0 /|݆ F{ oeW] PVîjے >8^:23Q\7ب ktrp $gɷN_Uqf Pv%:@v)h<;Ӈj3i}6 '<5&ƪPTa4(=`]2dAbt_k"m\[hRPxO0%8ʕ8Baf4-O܍] lvBٍSg(VǭZQ, cq PAک|}]gL,0=l]=S8IPh *9 ;YuI2)B*r3 BOXR&[,u(㷋J$h1+zqD2J$z͠e3,:yV݂] YΖuQKrLБiA7{sg))@%JjhT·nX @=m\uvr_ ?h &E1璁s\`ġ$HF)f[xieW*Xt >.>wÀzXbx*|*ט|[B"ϗ[[HR\cx X~9frb>ũx6a~bF g7:Dy(i=K=DJD m0ٙNU\ZnV͊ fx2G:FE_kna)ǀmG?-;74-9HeD)9?:5XRZGãX_nwiƺ:. cّLk]jN[Bz߿B}ZA5í#AQh:`?Of 5/w ZeiE}b.M>ΥwE5"Nfu΋"1SyYIPz)E~DԻY0-HDd%o==z]TcCsRtS,Sũr`NR"x]pjud/\/ 3I#\W,4s`pE߷Zͻ=V8K̀h-0uDѢ)e'Ǚ57T瑱(j\.[(Ж 9H $fbqg 0s gr_ 00C@u]FZ[:dpH> ! endstream endobj 7278 0 obj << /Length 2520 /Filter /FlateDecode >> stream x]ݿbv0EGRAۛ\{꣛^K*.w޼Sf'8Or?$mvqA) fя'+ :z,F~91I?,*s֟~=aQ%`?̗|i#T6%mXwAKT*Dْqn>Ne<.Dڙ{!b\b%Lʱo]llޣ(Y8irϸC=n^ 3j.xjӌ,DƷ,KW0;)&f3ȯWcFrFXy'lVZQ8xqg|.,$ HKe81[62jUwW@n9o@#tjF^k{p\_F2:K$q_v %tλe*>qLNEʷ@ح #ju!TgƱEMHY HHl1>3{퇪vtQ2ɑ^_fxh[Lժg*__dbFL2T$·r:00i-JLn̄WF;xIPƓ#i&K=Y2 8(b1.VxBE5 X2uE F? g ]̹{}X}lږWWe y]a)x$.s u EA*`fY~1| k 5ʎ >ZqlOx#Sϑ Q0IglGc:HiC* &g:(z-ԩ?C unQ\ IPKK5"O5<'Ce`XJ)  OOrJlJ&s<50z:D;.H((_IF,z+^WVzAheKXwN I :< 28Z2c$ q!MFtb )zѲc(h>EL5ntVQEv5oޙщprH[Ptky5A'qnZWhwRU6!Y%GzON_' c}.)E`浂/2AoZB<e;l__L yĽ\Yg#=ծUK= Yj R} ЅihgJ[n6k{_Ky,'ELi8>-UR-Kk6*[`|RRTL*;FbUɕ~|/oΛh$2؂G@Ii(8!/OpqPE3[g*Z- ٯxt*q#W; 44/4 Eu 4/O|jo;A1 | ㅆ -k$7.*/Xĭ6> stream xڽ]6}'U%oCpmSS\ؒOlphMqwO I6opڤI\%UyoJ)'<4_"Kʷ?d&MJJf%q)+O8.MaRFc-I@!XV9["ѸM#S[QFBEf|ƒ4,|љ4q[w>3>њ@[cC4N;C>4Ìj@# ||+xQ7ROZE d@COg>^d*y*+b/8WeԹ{ mYcK:e3oSNt xkxd|=zNbIHliL^_"hhOhv~1,@dp~Ɔ4.z e"W 亞膞dfH {ڜ!gSdሂc)?hK)e5{4b3o .GaԕBpDV0nOCo@w~'cZ"r;(~*P Ɯϵ9#uV%c%^rLHf)xC/aIc|BtlҗD38>DZFaQR 6 tt>qAt9txiIg\綧O5`v{-ʢ:چ[~(xX'}v؎&Ĩ$z{?3J'E 7ƔxJ@P2H/uX^k]%P`{aA* acAl@OF'YO_o>gsJw%$Wq`~5Cd"|Y{_4O*S5Nwցmʪ8L]g2hǏi)&>ÜG2n,irTqo)nH܀M(~C+L.Iq@+$1+iԤS5˶ `x>-2ߗ* ڙ4dSq@x'oOmHf=ǭw^5H[ jU^*@H8u".zxq嵀_QUȊJ[Q 8_w̥IjoT 'GOϿڦUaԍ}ҿ lU ͈_#vƜ0r6;.NM%7#7aPY3.RmwosgRbÞ; <2A@=M_Vƚ1+<"(" 6Uz 8+_̦uM?>BQ4V3WUҺ*R$.'B9]ui}4q]J5/D9O(qqiR[6L*o냡JV'4ڶt+;}^e\ư}N4aߛۆEd=p>E]wz3w, UB_/hNWsJDU;pk\hp1Ymt8Ǚ|~U]V3Ĭwk^'2` ~zk.FW U78aD  ;?C8.x\4A&4S_AEY-XFK'䕰)VLЮŁ {=*,yx yO>R>\@ԟ2.]u >yVyX/ Zw endstream endobj 7289 0 obj << /Length 1142 /Filter /FlateDecode >> stream xڽVr6}WPNHTf&i͸J_O!!cTςE"[}v-mYڟGG3keάh<>迯H^bbۮ91|?/#,sR2Z*+Jha+N$My&۽0H=93¶Юi9AudH O"Fo8a_a X ˱[wN/}%{N}1Er,k$҈ޕ|F:x˙ee ctWr'-,\BH gFnPVRyӁFj1B+ O`zZ=d!ʍ؍|)[?;}=ܲ7J(T;x1.At_555D"+z>aV@*cQ̖cada V|6:G"K،%ގmfEș~Ӕ͛G}W7gFt8{MHs]c^Gb I|~Ahjұ;~3=0۟P$hwk[ yht.b7q. a7e?^dؾifg;wu3t-exf7#cbF?ØǵlCDj!٤+L ŧ*JzֺQ3}zX;4>,]>R?soΒ7]?q@JWa}\2U<6ioG&y@> wv $.i;(9t~JZ endstream endobj 7294 0 obj << /Length 1408 /Filter /FlateDecode >> stream x]o6=&+R%wmMmŰ-Ѷ}UwGdٕ>$ͻzM^^xz#7jI "qD,]xtdgl&([WVS}'k8zCBf]mj]#⓪Yf:=ujezs~v^}zCDXL\|NB EdD +r <}dp熈s1'Le8k!+lUWmeHFP\wDݦE-ꬂj\i?1$՝*?WZ Yoo( ؽRr :VylzëV ciU*;j< +RCӋ↜EKS#ɗ3Az+gQWbIQa!XPNy`&Lb!y 6`"4M!/UQTXS!Ī!.0]@YQYhnM.Ҙz͜Ti5N]d%2 3IRbxV<\r|iF 指5)ȴ"YT [:EhE4,ކQatR;j6p\΄tXL=qB{$B&-kçc! a2Ĩ}?`>TdhD171.&&H2)fMrh aV9b3@u+: o,Tc|1:Klu3;:1p]WY[ˆfdYUyn kCgc)}Ơ"X%Jmzw`/!V?v&Rt<<Đ7z16RmOXsϻ~w?7{a4J1,QG#yx0V:Z~#6}|=}XǏb?8Xe>>M7bm}.;W̞T^'/)*cё}š} {O"A@w[j6B9vH;qWgNM({t@GE8[[OxYJwM 9+mKaؓ4h3D̞:l$<^ [w햆z-hc*,$ͳ~j`TxeΒZggy5A\kKoU[]zՏ/'~LӳccOņ endstream endobj 7298 0 obj << /Length 768 /Filter /FlateDecode >> stream xV[k0~ϯ0}3jU+W6uW(ӈV#10#}):>ލG g$σ Ny0XF04$ 巭NT3åVyWy-aDp*ʢoA BLI/G4+ȤҢ)LNt8F$fQ3:F&߬U=#[!(< S{Nw!gMƻ102ԱsW,+X{ %Jɓpд- @tgIx>= y") =q {:C]=u&=n38K)gޒ4EYua7D܅|BO 4Yޯ/6HOYKԙWsjDo:O> w:a#d9v4VFfʘ~jʴa6kۊ/q>M 7SY]7}]&&Kl0c dԪP*SD>ɐ&Pۛ<9"Ct{_J!+;xh+]L ZYׯ=Y5rr4nbNV,`/4.o4z!д%GYJ(Wd ;sPMh1[y]_U1FHQ) AYj LKQx+᪆:C[+?q8 endstream endobj 7302 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ00ь 2jA]Csw endstream endobj 7306 0 obj << /Length 1483 /Filter /FlateDecode >> stream xڭWK6DCd7RhݾesZL~}\{DƔ"A|x/7?i,MAi0f u7. s,3G ˹L<4MeNLcz=^їX-,ԧ2lpҝYnXѐR`3.ɲ=tS!EnZjcFZ{z~| vKC/o &E1_@ц} g*Nf!mSˋtn n}Fggٛ25;0-D*Iq,Hy04zmy85vC ,HM@/$g^mlCOM_ؓikkCo,mhHX'p_fR& 5KMx?"d)R|~Ѣ*SWs73&dr5]A6v(^7Hm_sR+1/kp;Es 鼆䋰15 pr;GJӇl"ʹv'8da (`*JOY tO-Faca#*Xo~>9xrE*Thj;a1>߹ʍTܒV?уUfKpDZ}d_Ar"޺S$,gwftDgy60#P.XR80U5"pă.;('`5Fem5 4g2]?#a;\qF ]#I%w<˖L#y> stream xYK [4U,+8ɺxST*Kb;%-wg\Z)>w߿)2.SQc}o yI)q% 8wf|J'l2/҃MkjǦ:5q߫b+I l6 {cX+왊<oT%W*q$tY;R?؎,鯱Tqpx)Ld*STf?"p֕.:6aH~k˺OH\RãGbϓ[Y=kW v,H44Sל ~bhŐB- ڴC^KeT˫*hkk:4is Ͽ&:x xAyۉ%Yev%K$.tu5Z7=`뱈pq>!,j4?8܄AڴGmXz F :^h];!vm~(b5x[O5 LdFcV7* LfǻA~cG M|]V}<O5`t3އF]CEQR,8:ss*Lj ?`8 ?=XJ`t%=dH6\C4rbkI 'BizMMJ'=DUT2ʕZl͠'rɾ}Vs&.3e9kC,Qe'?b 9۹gA/.Fj$PccN򁙧_4`Db8p\C2CǾjL!u1ΧG/^ tUD%ea8 [3{ϒ(-_C@5wGS*/csv3z-3-=,}9qL 7z~+XqUXt޿ 1´2;_oA^ĎѾEgί+{$7Nu{$nXTg㼽H+q%\}[KhDD1پ.hJg?r ^>SEw`]ux̙X1T0|a9f/Z+`w(KOn#\|P6 endstream endobj 7314 0 obj << /Length 1531 /Filter /FlateDecode >> stream xڕWKs8WL 2B0VqU&=Ƞ0@ &}ZjH?`_l/.3Vq\_&Mgyljw&2UOWҲj+C_$D,DbF"p W>9a[, ؠX]Oy' eBOfQĽ]C-a$Ih/cZ;O=w@RVzZT>^G GKP0 =! @-DWDv(*EB(+2"㴨NI4^sj a8'E1 ">"Í$oE+A~gVS8WR8,KQ#Kn%|zl"-%X&;Œw>1IhrJ19Mt|̀=x cpPA#u S_]sТE9V}sqV{3@icֻע}\͜]K#GE?}(uzxP=8!Q& B,,a/k#P'dXp鵫B mQqWAPd`sWem~|L%)$\tp,RCҥpU0o81o9- cb .m=S) {W)% HDg:2ĔtW&ݽhhB|cpU B̳0SAgI4wp,կNf(Ʊ2uޚ\²#]fh>It}'\@_2̞5,f t eX $'*;}p ~zz֋yn;kƶ> stream xڽVn@}W v6B VS)q(QRG#UJ XK}w\ JZU}g9;)kESzp]Cb eH3-e+}öϋ&]N]khh9@ E4MFBECHn0 "ͱk"&J/Oh@)Xۘ"eJgW !/d%sNc??iVjZzv6>vyU1sռJZzqeߓ -oYI/P_r}$em㿨l@\9l6U F]|Cqu:KH]dK"Dmg?y.'N^>\N*M<*i{WY0 Ɂuu"r_&׼/o %D> / x̷vX<ܰi]emڍ%]ƍD%5&a/tʢq'Ih=P1n*7ȲXhF`l8Fyv>Ŝ6y-|-t*LE e2W hRsea p@ۺH[.SKwPN&u{Mu ,zow endstream endobj 7323 0 obj << /Length 554 /Filter /FlateDecode >> stream xڍTMo0 WԊ>m(ZtMfm<[ؖQ)h'[rh| ]f2[ R` $HY)Z#!$DL$BP4hD#2<'dP> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ04Ќ 2jA]Cs endstream endobj 7332 0 obj << /Length 404 /Filter /FlateDecode >> stream x]Rˎ0WHZLd73ÊN,'U]ն9N>>4Drf49'HӓqhcqTPa'h*'Y%4*#C}]|,}?u tǂ&׻̘ ,T#tP߅nxjKpGfG&H0ᶽK{ i<6AF7F?.)_XX09P6 ZzhRZ8 _m 9bg% 7W aYdܦ]@N^Ȏ>e+UָCJ,!^< źKwU1[irs_v7doD(D%IɤHxC{jw< endstream endobj 7337 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ04Ҍ 2jA]CsW endstream endobj 7343 0 obj << /Length 1678 /Filter /FlateDecode >> stream xڽXݏ6G6u1Fi*Qj#J@wŠKx,l6jܚ؞\Q&7A4up LQ,tjC| _h>1:OtD G`rIE'GKU2,mwZڻ틱B!n--N@F"rVB?_R&,wqzJe_nZy 4]ßbYx?YD\Ù-/,?1x3Dh&{,nU ʰnw覾DSX,Qnc 2 OHLT|uwG_z'ʖ~H*Aى/^l9L!d~6n^"mm}tF+TMM%Sݜ$j.&tV3> tN!@=.~y}|tL21sP9uQ! DA?EKsOjrOr9c\r k}i-xx6ޒ9MdA,%nR$'LEPTh?]ǔmD❊\RŽ0s9}#1͑Qu&q,bf&V-!OT #fY.x=hqVdrFg&*K0uKᙰWg_zF 5RK|EI2 S/Czi" (B`oIrCƫ{{@cR3} daP0c!&{98OKQEC$BzL4#r1"cA*6:"ReKx)z2쐿iX4]O<5;q>|}C ݐeͻ!fٵO%DTq}-ѽ.QT eS -1,IBMrC1wxH?ھ[(?Jc5& y" 0t9"E?ϼqmڍ&4?W,  :&u8dblxPsĔFLH _9Oظ eg5RLh_Cs?`#]B4XnϡإkCcUذu#ȣzi> stream xڵY[~_[hi`c0m69yI&R<0- wgS26'+i4u:^}{ǻ"xȲ0SSaB{/2~ ń 3Z{J㺇2oa×f]OUYsi$eJa.oZx/kzϻ^fܝwPޗHQ?CIb>4.xbw9eS]|<a9zȗNwN+ D"Xc/r[I|%׮-WY x.'& ߉uz(ZftHJNGGA;i+^dɁN+{:ʈ7en,=Z$(LRzwi7C*GMΌF~vTi ZksW6!1S,S,޹% ˴\;@rZ0oF2f_+IkdE%@Y\D<8rx>R_ЇROjYG4ؚ|xlA.Gľ:Oc  dR0p;:@lˣ.nK;6 qj#rmq.YxWy֙m넹?N40n_ţp6[qƅ0dp z5k,K]qK˷UKڻS=]尘 ne!I1&4XG* .hn24!V)ՅD<PNH31\a<~+Zv"[+.1-F>7GRSe7G|wrs29\^!1gnqo >^ ~!3",ՁUȐ%l W *ngOȻ`M &Y{m?0dvrQ ,d?ħ1;.2sdⴈ6q/mB83cfqMZhnGW$Bo,,&2JGZL">pJ'j)u~*yUbTcIأ&:P2gk5 ylkZSHgiuۣG\5@e}j0IodXSZw9y6ɦH{f˥bdXt2a=C4<ȨqRl$HHpy<)YVHp[bB WbIb,;"֠q2`o%Dm;+)K 2Qg/*RMp-ʐq$9+ST9Db6?EɁ༹SwH %׮<l U.|I8վjj_ʖ;D֡qq07f;`bw2$u֋hH取#Ȅ9 t0COp0:z'` b(47]ac/vRwRe Rd}UNc)ߚ} HYiUx@oS{kR5qv6v{hHxcz7*Օf5(hS!,<~uItLqKJ.Lgq,ɘѼ^g%Z1EsK7_c-+IsfB:|9cA؃u*6W6B tBK{t]]u\A$j-ѽmt06nkض!l1c/kh U_FTlن4mB@|֗sX1\eAXq,My+ɟ)؞Emu)6ņKM@<-[6ڠ\,m4o5p CyT1"`NH,ڢU+KYl8kIo,Ga#8"5ɥ ;a!pIwY]*ƀ\|^~u?OU^l`y_[P\?EU>(؏[~q4XV)t{7wFT& `p0e߱OT!SXWu{N/E8B.TUi7n3Æקlz0hv8DfW!c* `U]˺U Vαl 5ՠEQ*B? ؑXa90ǒ`)7wZ endstream endobj 7361 0 obj << /Length 1468 /Filter /FlateDecode >> stream xXr6+x\!LlLOULźS 隣I rJT.6Dk6OW?nn)p8j$H%VKN4 ZDi W;iEDa>V^bC {kc[T;Oo7$8F M@Mɸu[onr=r#gTM6ʛ )") "LgQ!ԟM1}3v!7֬ύay(Q?vvoozm+~ќ8,"a K{ wǕrfsQR"cÅKטҋ_7>ug(sʆz'c'Iޖr2}) Q Yk΢>rv4|9A|ר1/"'X>1"1uT0=(}X,ug&9Bazu*pmf5<F|}FT`I|#.I* ӹw)/6ϰAfBJDžszS"ȥݭSGR*P3lN/^:M!t_/z8Ȭ7:b-H^.+ Z#|C:aSۂJ?)b3+Me1,cDt" ` o84~ԝ@yW3@%AYjQm F((ѯfb.#@唗bB2 eNJ{ 2bֲd.>-:-E^FJ'غ Iؽ{W*6ԇ2|MTp6z/Z7)k:s{6`m@0>Nj }ڷT=ǔnf9h[ M\4@ JWؔ?)HoO2pR&8o{E[:ڒY?ǡUvVXؙF~FYbRRߧ)TXxXLI+jr]Ŗ2c][LɠPN2|t|vc c1I,;cg e&0xJPr1"&RaЦt I-Z7^I'x1Mql؛/8!jE;%f/԰fTtY7Cށr T5LԌL&7ix6KuE\kQ=~xĨy:r3BI%dobʶmUa|dq(9D%KG%nN>A> stream xڝX[4}_& VmYB[(S 3Vf}m=j6KҧvwAx{\q>pE9 vU7Y=ɗ L"BO&!WYq(1ݰA~m$ds۲^>&Rlb;lxs꡹(!&`Q#+Ұq8pt2T6ފ3TMo {k@8xcDrs LLQ-ac>g /+Nf7m(1ln Ί34< $9Z2% C]y FeAg?@ EyVy$W3bv}r&m:҃v|VdQA#UlN,Ji;9-HN;7+P0~o5Q=4 Nd9*uUN!I6BO&.pl:NT]sSY$&B4FNӭJA ?B6o1LfQOn'dsAvjv5H2ǮN- D7ymA3LϬ*i+`Yy$ag& |XM^N>4A._ x'.Vɵ\ 9(]g(7/W7WgvW?6.?gKvԳh1cֵk5q|OLOx(NuT3)|ʟ`w&št<ȕSb mxsama)\}fe{# xD[;.$鴭PifLvԙj6̤zTNHղ;m|Tg+A*֑гxM3LF QlA-kTytR*M^(ΜܳLؽmļ㉴ʥn)8WpشVDƧ=+֚]mS*,z k~h-o~}뇉݇Xk\ byI֕.H7r'^ Pcy> ]DUx~ #"G(\Kڨ=g>d.C#$JJƈ OgJry XC h4e]d+kwS1LVu1TQ/gL1֕L5 |Ɯ@` &]]0OdAyQ$᧿1\˜6+Ő̵/)f?hXa9\a`l]i:27u~R_p+9Īj)hz^`O{Ѩ{vh}P!sZ_-nw\ endstream endobj 7373 0 obj << /Length 1991 /Filter /FlateDecode >> stream xڽYKϯQZ"Ef';Ya:{PKD IGTHYnI$MUhՊG,2zجX(eTrkqƪ_q]`[U=[";7 ~Ids>,`Ӱ!2Ed:a12:]?+*1SҞhCe0@?iX :(/U[4Ptn%:hknc^u7FJ{bs yX6;eY̧й>R<kcG-tp&t:-eSda,OREt mdē'?Hvh|̇"/qˈ:Fi̯_vU5[@$9SLݖKص`C3A9IAJs.oϰ1bDԻ0' ]JDzMngxPW>n# &ZWB?>u <~l6hV?\*;[0FAR;τ95 #u}~.p@)teA(VhSlD,Zi@ZBe[Ӯq.p֬Adz_^Ib.ZH{M4Zy nmu8"Abw);? A-/ac6R1r,A|N7|ʛcjSp ZBy !j)_~3CR&@1&q &ya"lZ68mZ%Jc7'zEDB-<,0itib"mtW_1jS%&8I̘MjtO!ȭǒb$X1a{(:]H4ț C偝888KNu>y3Nϋ%8|",ꥨ O.k8ce.#6ev~M55,v :> ~}lVN=U[=}O;juen5i}J0Bg̀S[ 6G;{d}DLd;ľ`^1Yt(&.4D#85#}Ih3+bVn]7:klP\[9:PKҌpGT uӸmNweM[OI4´TTs⬞6^8ㅆGcuFN㥹> mksHpjZβ x*Z0M0b{:ylkr薦>Ӄ:Xh25䉱~BsIV4H̶̟+Y& r/dVw8>^@ 3i!2[95P0jPG B҆Eͯmt[Z_Rv Pf,҇OO\ZRkR-Dцm[[4<Λɽ15;*=U1C 3j_N7cřOH\%JXE-oSQL~I1/b\< yo-IH_]/t^(sYIenW _P 5$<+<7rfxRm+?n35Amy|,s/_"n7p9TM}S#$;I>D2/9ǖn-#єgng:46cx9A2HG E|'glϊ?i endstream endobj 7379 0 obj << /Length 1390 /Filter /FlateDecode >> stream xXK6-fė$4 K@ =h%zB = %Eԓ|&|{{A  Xl0aқ}k+L.G~цsf(nv2d6$u;nhh+ۤ]Q=|աCJۢ% 0 B"#RoH-,գqsy-euo_e(DOEw:*Z0p:X)#?)܉D1% 4ӡ'yg,Y+b \2<,=hHV;ӽ2&:x>> Ig8e!LtV]siV.Ky؀on5` )֒g٠b@%WG涹X>7mɾ?;sO'6MKBXTz+=!UƇ("* v|[7s:ӤE2zb%0ō)R2QeT+ # ؤj(dJH_/^WZ8-h78a|TW.gڣ08 4UvA48~iuaoU7j[IŃt45BsT,#UEinYSZm8ZosĂ铗K.VUV~p7!9!uʼ%Ef^.-ff ʸ< ZMK!sP 9ӱGp-c*9CxȔB{H&<.9[x`ef;a0Ɵ-l-K,4"CI,ڎFц_G 4 o9*>L?ifm5`ӈ ^ZK15Ĝl~&&  RPAї@GޥjRw/nktޮYI—:(r pW8RUVݥeyk`/pz׸*G=wK.z<oYݹn 8Z~r2^1AVNipYT~ٕQ-khsJk3ɂp%Y~gw_w%{ec>WKe)L~hhҪ-:m9Ե=yվТkh@` Gvϑ'#h& &EX@i@P.Z,Ĝ|-UNMw_f0zH{>_w|x jSuWJ7tW7Jye;+|۬)4_y0. pj;u3!@<4jTZ$VX;;3Ę endstream endobj 7264 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1712 /Filter /FlateDecode >> stream xڽYKo7W\$p #mlhk8Ƶ Y.~CʼnWZK&8w8o7pd茧pA6\ :#&2KcLru 1O87f hc$St)6y]bX TfA5`_~-TV`LA_20šRE &B&8Q L.B QVs\ &( F@)yH%0YW # F"0; @|J1 P9#&b# CiN  Pɰ b s o:e@W V]suEHPLTL02t3 ;z] c**N :BʘX2ʘj$)] &yTa9g2Ѥ"\z RG&3Fհ`*HDkP"CT)bT g2U/"%r5~eDsUL&(A 芬1W˲*So4IZdXG`ڽIs4o.z1^ܪ?4|z:'s ̱A _^^֌CFﮮN'"ߴ3AG%Id)A>r6oœ9~Z/Ç;I;l0Eo=bo+!֮8r%+o{#: ?w''>G|v&))?$ۡrQjt;Z:`;}`v&o| -uP:v%< fzn',ϊJ0i-/?N2wO͛Չ?TsX:@@la82]lĶ Ӡگ1nrvmgz8E)_V#=֨_ïӯr>6CWnʉ#}BKCE6ٽ"fVEz2*>5UlCJCC 5f! ~P?~m s!Ly4Z!1F(]ted翍iNͽL#L=j](ɖ2Bp .:0c'ؕb1KnmcnLcqiiw-Ա{pR}%xW2k8!z鬈h ~kKU ~›7هs6W9Ff> nwWmeoӛZU/J̀6؜5rǡMSoĎֵkCfblHuG-lnfwSd0N<`;n"z+"$Vz!W/ ɘZȱ dGDȈ0 ,:!?Պ|#6)@ ZOH`߽{N}yjsm0&ZA<x_rn[rLH n7s*á`~2t9. endstream endobj 7386 0 obj << /Length 2156 /Filter /FlateDecode >> stream xڥYK6WfJdA*UIM֩|ة&ZfHI@7 "=c2"F&oO{ՏBmXUy6wǍY.o~MM +mu=md9v c=6]kdroZcGT~UT,+Dj:5xUYW9ijƲJ)nSϟ<Ӫ¯=Zm_ҫi\[. K䛔癪$ ?vS:ԅM~|<}Ds4-]ǥ_pinsYƛs3V2o*#/2n#.T%y)e9L*6=7m([g\MA h#+}xܦ,͖%`^IZ5Ǎ?\;U$]?8!*كS==3 ca+h>.E;ur|Gn}:ɞA]'㐭MyXlr<6OX_=7\ӒRQgԓdˌW85G p ¿P!aOpHg'LTX_NM3׋P-LnRޑ' JVo~i1[. D|93 2 .޻lK"晛diO&dy9ۿ=ryʩOd9I˞[:8^ogXQq&,0UC21(XB™}V&S!鷶1h/bƾޏ6g C;w<+u0Sv>5k:~IG\!r@lCLjCi=R6BBl\ /EruRp_b.Ν.3[iP'AE3 '^`FB-ɂG!/PϺ7Gx,!BRݑ}US\O E7RlV)(W*o %NGIeLU. `jM3X <`8f[ڶ4b50ypYc%ML9{82Aҙ(x j8FMcS7zL>MIe%q5:*q3tCIBQ,g%}X9a,n>rւoӱ=! QO+'oinVͬ@y l3@4xvgLquH‿=dmu- R niSiu3 w}~WK׋Er9 u{hZl܆ucе!VI+a_A0P!4G(l EMu30B75lz^%T8 *iTx!d8XF?cSXXR oA]7<քybOyR ,WC|!_"dߙ1KBu ȡ}=xjNBdp[= SgL모e%Ӧ6wq%iEд0Em$wF|N#ˇV[$}pށGؕ5b.'{?0m} CڛM7 }NEA٭\YjX7|YS]AIan$^se R.iT.jJ*R5CDI\z$,d]lCn\ԯmA+Kݯ 9no'2I~*RXɍ]z.֗䙧e> stream xڽYݓ6߿o[A$rWyK5 9 .;;U_6u/Zu &wD ˓oLld7H&xЖwj7r˄e:w4X ݵ4ߟi9Sf͙D۳>I5!l4afLXb=XJ=۷Xsֱ gy͚?ݚmOհ2|4**1$b#bOB5bsH .!))ޘv7d)C~ᲬnsCレۇ;X;eN^  _/b242&vI8*va=^ØY -q}ћa??ǺtYwtOU]; b0K,ei>? ;M=-GH*jGYt E]#r4_j[6Д@~iYEMv%_4e jLf]d MXYm,x{d@%8j2s0ǀ87MgK`\EG|pIPt[0_P?y_˙H>mYWb&+iYdLR3}IK8Ƿ\ds8TQ UǢ!\قP"$׍„"7:ƘŒ$('YnJ %W]ֿ6š(G*͂ɫ* .+@&GۣqO63:?I]4gTBEPTtBx)#C$'–]{[X5 %AE?.qp' ^.Z/Bf6bO!ukgr!e #\< \`.gz9~iDzi\C} ͱOӀto2Ipx4J3r[>)N?Q?[9+O_hg]4<@;=(aVws՞<}]XEچ5Jj 8#+ãĔ2 =8H!S6z'8JXڹ_p6D6T6CI,^\XꨡDŽ8t#-S+A;n%h^2DH >ǃCR=Z7av-?i,,*LƽjXQ`lpmPtB`gRMͿ"rSn/4N `6xѧXxtc_\G5hL|55 ¶홤7}ʕ:cRX 8u!&C?Y4q5̖WFO hm]JOخ/U> stream x[nF}WT%S(ji %E@Kk0E $h]^$,Q5%7E̜3KlXz{ `aXkKRKba.`_L%1c&tɭ*ţ1ur,ܾQJ,?by2ߒ_/.rYt3\#_o Syur1"5B[/a|f\)Vzl'u٪bjAO>39NA~tt CfF|JEaPu6?uOAvW vd;k{%Z^<@&, U|򀬌-qßeN fQrU v,EH.+=ȍp/6x<]f (N讝5t&  A­)pqQӂDÈqj癒 ]Ɛ$orϠȡ3.:4 F0Bf̿*0>yy isBq@j9(dc Tg?Az@ EH\_"da:-o0':zE}6 F2Ƅ# F/KMl7SZ g_Ƃ MDYy1qEWv%N.e&֐> [܎{@ E.7)wK I A:@T-kçP-JSԟi, 拰Wo7&ĪV~U) )3@41ȷEJ$m't3(ZDB1* c]d|׶JFtj@{ߔ=gs{lUcRNZbID<an5mJt!ko2bk_-eDgMc)x^DжrCEA Q L_%aMb;4@P[Pwӣ?WC,C~FRyGa):(: Z`*4 EVatfrWKFv uBҭ|J'BAAEeҘBƹ!>R,!Le\ *,J@u=խw=cܯro9O-TviN-k2.$[([ɲcOc"n~=W?daGCiBF\DYpp^> stream x[o0y ؓ6iF=MUPSo?;FqR./Rv~֣η~箇 P ?,er]`(sCiS}>9]m+I=CukM S|`nsF`NJ;_k er!0N-wLLt8]G LI0hO=,6(U P@`¨d79_ga<ݟg@zMR*hr!ТpFb:ZUGE`]H*.Bra([X}TRxJ%G<#ɞv4hܺUT1oWꅮ%S q!4L8xC=I0: Ma]rI~U.􆙊37yƃȏLEalBܪNFsZЙG3y*hm}uvd:@αL# 65vH>N#h4pr{3t)(Ʌ=ܮyr b>(Pčl-y?_%9F@V!ރʹ8J|*ۑnG2GUY$-pѾSuY{*J203nZ$(_mݕ/+́Kܲt yiK!P\\۟e1۩V: ;xJ @kZ]֮qj-[*n\XK۔5*HRH*uUI> stream xڭWMo7 /Њ)CV Hshk`@`r[x5VFb?CRHF!W͡659h8wF rQO,%HkC!bxC07h5v K)XM(P@G 4)G@QU8j@Z; @B@Zq|!Ho q aj`΃V2yvfq @&Pl*$W q]D.®p.); dyœ#H=u5'M24GGCM=VfCk4&%~Rq]d,Sr]DF45UT"*P*8ZuŽT)4f!YTzbTkQ ˭ ~c`={ >jB:U~>A2QcqcȎh{ Ђ"=[.‰(zqp t+<puu8 7h~?K|̈́5q*#*c#a=㻇O?M8{{N_¿zv:GP}8?=ytz|K_kK#nςԉ/=o3ҷ8$*cbFM"Ws2`8eo񷼍?FǗd?g$ĿȢ;Dd3|\kJ.9uɚ"!k\b^#si,q4"q_˝RU} %fo>R$Z^ѧ:_NK{X7=K{>'-7YKnvg!pC7i7m qvbiY^ KrFכdCɴ,iMI2-FLcsIV%ETc4vנ}"Ylj܌DL3⅚C>-Xt묌ᾐj\ 5PjaVt57++FBq}~' &-d7He!ӸF&^Y Rȣ;ZY#.oD+ G ->ֲBLy 1LJg N\<.^ mWl& %- go #q20+H #q20+H #q20+H #q20+H #q20+HWq endstream endobj 7511 0 obj << /Length 1701 /Filter /FlateDecode >> stream xZo6_]͊_4`b0 /[޺Pm:&K%71?~/YR$]]bI$xwwt8.~xQ&xt5 2aBGW"]r=PJD8ZH2+Rcx:+ ǂkYuZvt!W|CcbАQOeq6 *6T+:U0QDcC)̒)ILR z=Cm}("1u(KlV{Z.݊O΂9,Ǭ< |#}漽ϢhOvcD]Jb8L;"PzsWv<?GVtb'D0zB6З_$Ƈ`1xPLRkw\]0kz TCrgCH4!~9ЎxfM4 t FL6gA%W)VnֻZѕG qDX/4kXI͖W܈` Cli]]ez Z7jaV2=*[k`z`LVg: * X] ĻAFG& aEa/gl}H;{@Ǥr W>&z'L6akz8S-rFekE3=094L8bkp V?^NW bk>U !P=,lqV ~4zkV~‘+ujN{F¼w!mVY1!gE跜.:KpJONgwhmxNw(T|@s !$?tBwa:"]qkazP텗x^Œ5R&On OO*pDbvQγ(Mk̎($1m{u](`0!;=)D("OV DDl_vT6NP]Ljss U3Yu'Z }{zsPOٱS;շjO_o67fD'34,Dm]pw웬m.%wK wGK8t ?7C Y(_LaD8A.H0У@ث: A$9YRG]6  endstream endobj 7552 0 obj << /Length 1170 /Filter /FlateDecode >> stream xKoF*yLVjJ]{w'T`"3E{W.`a8NMmμ3shY|z P k|lH\[_l+X\/(oޏ9gf0,/VT6Xޘ^a/oaQ_zAh&{o}uƂ&Iu0F/.!D-nU+@hzt\5tVZZ Y" GQq1R߹ji` v-X2w^NKf X}s<$O6-#EPƔ>y<9]r !qjIUǕ,"NRsޔqdZ+y ƚŦD,;(SNaEŖ?>E2خ74sYsф0@Md4%_GV yPUkiS0f(^g,(@Y6~ *e=ծ']~Q1o!3v6wOChנQ9G|zyѺFr+9RO"Ҧ'=f\3fxr&s^yH0]qFֆ$GEX%>Ewy n2|7J-QIyɟUi  3ܮVI`TIޤJ"*Ƀ~V8[ʒF ' )uo:r] {^>?𡺫7 8.CK]#Ogsj;DL)X\fRُZoCx3^أ&  {B_rrd ^]8e20/%@h1P˘*%i1E6G>nQ'iC\ W>(@x)9޹uU* w/ڞPjzc5J0S-K5r3X&@ӝţ~0T 癶31b&xk蟏LTpøl ,Мgzjtlvn|3p[tg̊-B 4TW븩,0tM>5}ԣ+?W.C endstream endobj 7508 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1218 /Filter /FlateDecode >> stream xڥXn7 ߯/=#6@fH/]}C$+t$ܴk*ik["7zn`X8 MZ:|&Ljd͹Hej00. vS/ 7j Nϣ*Js4q"j')GkH&#Қ[pNN-~X7 Q,pn28Z}y:c瀿hM1܏&x#MV%&bpmk8,Ά2Oo_,l?Mp6K eΡQͳ)8u :!pcSG?3XB ;$ST!2hiKpZLObyφiӓ )H"LIZԤUp> stream x]}Ep/ Z[@E{ؼ( lgvߗ%83\+IIQ~w> YV _%AʂH6o/ԫv !0fk?IRosPԳm>O|T}ޗMcWj1ȿ20LJ<ɐ"65".0* Y&%Gp"` ,Zaȥ9ޗ9Qo詢+)#JWYD􉤌5!CUBtL( $ebC|dFy~eLnˮ-I4L4]zI"'|U32jkK9Z\7v!Us)tt9UVNo4S.#Lgn'NwGDZ7D/z,3%˲^=EgLԏ bSg!X#%w6'i&]OrOτu~9pEhyBosj]ٜmsS9utZ+覫7 uZ=ǘ*,|م) &EU[z[kyY99ݲa'7&lƷX/ٜlIV`kr08y T-OϝCx\nTu#h] q iՖ=-$g|T蕦 7bhObܺoXW p"_mAN]㘣p kq.<FK@8OYʑZwVh0G5B歀V)״GB) |-A#}o!簉5#VրWLug`*j0 ||ٕC.DG0BF[r A>*I,!ɈsOOyUZ+r)4(B eM GIbIp?[X0\vz[E5pT*ߚeyodd(|S^)@ t2#γjՌ$O1!q؋.j2.xȧb. BcW@Jd(Q]&ߪ=jc+VuE[j}o@ea`JEރ-%~Xw-(VK޲֞+ՍU[[[ô*C=x+bPtgWMؕmg樛 WMA6vŸpѥ@0!k[V&}"g$)i_3]]QRƒ0׃u2|m<#q?bOU>ӝ́i{i[ ,v./*j|)ބ:?o̼];hEn!DZ Yt<>CVZhd$r 0> stream xmSMo i[۪^[Y_o ^y(E_O5bhjO樦 RG?UvXJAIt{-/JLc!6sw !bspߊFM8L^5\T<ƛ)pq2]C ;y  3ǜq!!ԄRJ&yno{rhQ_>tXoyH%wTѻ;X-jǺEDeuo)/E Qw|d6w@eڳ$1 1FR<2 O&DV9 ƿei67tm(-S$1Ya?=S ܴz2z5G3g3d0\>s-Er@n M}] endstream endobj 7640 0 obj << /Length 2089 /Filter /FlateDecode >> stream xZ[۸~?yXDFW\)(b/(җ HBǦFN%9`{ɒBۍ}MQÙo./x͟V7_}Ă`&vB a.U}Йf2"2U*KVleJdߙj .xrg*]>~]df篾zI&Mʮ9@!"QWyy,1N{/^/j#~6Й*_a7KMiz$b4F26 4B!$CZ~UH )K"t_' !F,CJS"qXA&V l^D**&IMHGV7eRRUc[7mҜ /F2ՀZނ*!֬ܽ7=2oÒ[s˶uYv確J :Ô+2:XT]0R`)aXi}lAX [܋Ҽ<EMLIm9Ƕ"f~=%+[Ms ?i K|gJ'l0jp`#v{/+4c=>LNXnѪ oⴒlj}5}y91[ͦIUEmeskxv">l􄧼~xÆdGuK?,.{)Xl,Cn0:xqFD AķQ3gqI%r5x^kњ(9#Z*brb VRt`+b>'(fpſ !O< @M4. :8?ăXCy14`.``f']ۚÉ/-gsBwɏ" XHr\8Rg_Q2sYQ\ jOBI(7V<4W)4|pl7lr~xqZζk> *L),WCrc_Qe zG.eU} wfӘlwƽW_F\cpsdvvgqU~ht*Nc|:Wu |r5'N#6UPRYmtM_rwv cGȹ&Z00&TlBEK xPY 9Bqj:9y闬y;Ш^< 1"OM["y~$.tZD*;H&ƍ77t?&iKxgھW0[Y:b槎Eu0~1ar[91k }&z8""G C2 T$/ v  ܼ'6 %_0MA%u _;r.+6BJ$u7hseq]_2GBP OU_n>7.oyywOTe?7 'ڣ>ߜ* endstream endobj 7647 0 obj << /Length 1580 /Filter /FlateDecode >> stream xڽWIoFWЧPi4k)6oq#rdHK{Ōc^Y޼{ypdrz2Hyxe!T<|'WQ|σ,sz~cf8tVUOw_W!X9.[l0ZYTj)㹣3GN6MiJZwn>M^V׵ErLb\REK3RBcGG"jG^ I"01̷*@YTc"~UACUБD*](g)O\0挞4_xuNǝ6)}lU,`V򋮟(9))s]G mmS16cÊQ$x:T 1S+X ,P/]?WMC,N2$ba@*(^@R@ΧYEBGp T_-!dAs7͉HS*IdЖcmxXZO#7t┥: hr'zwNO`0%Sg8Gt^ 4:h=8ac<0HCڿ!d endstream endobj 7651 0 obj << /Length 1625 /Filter /FlateDecode >> stream xXYo6~ϯp@/`Qtmh[D;ludwxr$O7ù`]ϾYD( XmYDA|q}M:,}JC(VŒ'JQ-N֕cVTI.x`Ӳ(^ެ~|$Sc`j4HY`p1J8'}'f%(Y}M{-D ' 3b>+bPNkG^.ڬwVU7#5Kν؉H˝ָ w+x`,]!, Hbi [2`T3J'm>7?KIo2e=S9Sę55Ts<)^Txu):Y kEn( +KVx-!7í]}*\20?S+!rs\׊hv}M֐Y]F9 Ɲ͔۴I3;+do*qaXv,ÄMOPrn8 ͏A$أ L@3H.Z!yX3 Cn8 Sjڤyo0pkf0'L"D=#ջ9 P_-06ZV[;';CmLnyoƒ3 S@{Op͓3$%,ɊPBx+9Hs\p'#&?$k(F$9&>8N8!WvqDc-tVD> Jyx:?" Q8JytFߞe  304*'i褩o2a^lEPh)D&UL7ɾ4z6˛P?fPVRe/$$-wP #C. Faу2{~XՏyiPN\ .-4]1N 57f8|2vu9g-B7o..VSXz}Y@ڈ/I;B<2?i7E.QP`4UewZٿ)_STY$j=.AU_H^*F{|/ˉpnmg G?5LҘ*S$0ccR*tS> stream xڭZo6~_aŚKwE+EJ¶RIlᐲPvŦ(q4~ptv;Kg?\E>)ӜϮnfVlTr)<|E|C3Y\p-6>%i2g{fTxj◈ 2C2ҙ,ᔇsrffLAxWU$^J2.P`5Mv4I3BؼBe̤bժ+k7MrSn/EtrnI>n#.H'<)& 3fR̂%]q\D&fs.VyH)M >JIӖ_.b:O5T ;PܠbƷ, k=g0F YƽMAJZCr@Gpmkދ -qۊ|. w!:Mk4h'{ }Sj8˖B]p0#j!zb]{CB)tԠ,[Ru.J-PK+2t-Eۖ^&RaO NGJۗ@Nj# S'SSTmyL.Mayz4RWՖ(3RtgȄfǖ@uQbh9>N?FiavB@/C4,URrDC5)| (}5Štw/$zoȍk1 ^n 89ջ4|] |-7Ģt޿Q?; HzXq ɄQ@])BoK\6KY-}Z=o=%@a~My-s)6O W>ǣuxV{q[A҄&#g6EQ}L~U5u'+3>@nh3=A4DOuO ep1&p?u!s{_a: h9$[pQu4"K>Cadvیݮ}B䴉C\CTBh3͐A(90pՊ+M/bdtu2ͲL= Dwwey{ƌ_e qL1&{&cΚ|0QS! n"/M;&f8gP=|^IS w={sczUrQ৖<U*3p6B+‡]V WDqY M$\ѝ'лE<'O#T\~ /˫8K F9U}qu5)LÝ:?.T©2Ұc4gI5"ﲜi!bq.*u,áHM]OY֕j|%j[Qɋ/;=T\ӣWvܰ\ח cʞSqC_m.-ndplt8'#ZƞTr\kO% G`4b"υN۵]#s ܓ濗0dQlw~^*Qe±8rC lEXIM.\ '{r[6EPOKD`4Y;*K*] VݯzA(hlRbft_:BK [w]7uw^RbPJw0ecu8_v)\z9>y>x9Z%}:@ܯ{:񏫏PSb+;j? }>`7. `#٣$G-Gڷ^,}鴏H-O] '%Dmg [#b= : B橌`)&xDqt 7wf(_@rՎ߽y+]y׎эn׎GӜ o fykTj6LRěfj5~(gކ/zwMy}܏_U %)$xM] =N+H[Fw1BKGSt V>>JBvKeIHUCMw?xt$<5Tzt2xAܹ˵p4rbI*;$M[ٵP^P#!mRCGSB"uBk+88^o'A>S.i? z^Po¦w]( T[Z,Ŷiϥ.ر]U:h ܼgY+- ߿@cU?}3 Y5hjvNGs;  '?¹Q6n9z?xR=) -!Lƛr KQUP,"6w endstream endobj 7668 0 obj << /Length 1795 /Filter /FlateDecode >> stream xڭXmo6_o%Q/-:`]۴Chh[,HEI6_lD{x9;y:y.XYmwb/a^(U|qˋVՋe.blj+db'xPlwSe[_=P؅ V<C;BYD`6#z։g,#s <V%06bd<ٱP͜%=&ҐtcEo.FTm_Xosq#dʬ.((nɷƺRe0"r߫ɛ"oZ ƶd{oNiUid R Uf]5Mn 44 ZK |bʈp6p &A8sohkXq6Zޯ>}$c^AdH,SϬڜCy xș׭!f6aةNp ҏbJX{O,='fi̔$q|6,Ј~J3b$ -~ۉ30b(<5H" QǏ Q$*G!9&IyA,Ԁ/9[\:X;=ZijЅܩ℉X, @r MS3q]-/ 8%.#?Z}ߍ^'(,boxD?*5cxWAg[<4'(^F͹}D83]RPx|f! }Pa赤R]Ѡh"w؀pQ(i642Wwl:vIpؔ<0@/3}w.zDE]<Bes 4<1 DWhِĄBw0-M=o۪w eCN:ktS;iXw9tI!Mw0\sاQC&p)|C^ПN8> stream xڭXYoF~ *ֻ$>@mMP C0JbMIq~}gvE__fvsɝÝ_G^gr"ωxx E|u}Yq-#B39dBw<{S3/vpl M9/r\54%[UvUsjZQUK5ۙ ]:'FX"ȑpcW+Fμ[LV4}_W@~@{Z,rTE}B;ޙuf,ho5H֊VֺЕjޣ&F{͐Ȅ~049h4<vU+piG r eUjls͟ YE-ɓE1_:~D;K"N'&,Ԙa"BƹBF> c떅3XB[+LjLd%+Vku ћV);kb >RE4 IוmL6~7.yZ6'^weN/כQXB"%Rzn6M'<:g$rI*PN4r_7ƍZSq΁g2ITcAw\3Ӈe~VeZ;4 !<&qg-FW4M1:%P*B$瑸mwv FE93aeaږFJ3UIjk߱Su%t gFWYS} QC"xpB:'n9?tC]1 ޭ ch tN #Z틥ixā :?9yV7SYURT:]"1EcpM;٤ 2bA_CWey<%6P6ނ@ *[lvam>a! ݤPð=L+^Ѕl,mi`ܠ)mw:|KuSBH\rٽP.R(j=IgkUM[}2Kg*=~Ğ/>WCc)166[߽"bzߴ8n7 HH1[eG%^3\r ?Wx!c_6icϧfM11_l+sCQWr]66(!wt q,S Ѫf[m LP+CϤjh0ٴ\]-8}Eݘ*{pPsM쇮{쑆^chBnqv?voH V${| ad% !I@e>od*1$geyN zvt ^`3Jo6a\NeX9m?.wXRpWP]~OS [' %<x WU#Cu8(ʡZ-WNj->,VOxPvP+M1 ipMַeH?a|}NuU=Z@H gШo]H)sR]j!j;`> stream xYMs6WH!BAЙ4M:dڋnI& EhH*n}wA2%ApvBNE7\,hBBLrb*Wj7T2G4#XMO#VFU׾k?UwmU7g!QG 8G8C('"u`z QcDi4>#``7<8a4㵵׉*˪9`7vCu[i {\+u0[7fa}o1A%9!L4S'mzfvΘ_ې~Wg}ovܷ xP@tH>:rg6Ps>$ (?$/.}_n<@զgA1ʍ Ao|JWQ}o;S{@YMI$D]3Z#Y%ȶ Q.Ha1rf(%Uw8IVRk%$`~F6$P-o |jCRٳYx|2; 4V.[;m9n)S5Pc/a |yX.=,ѾXM]_%c_}.v5:ٟQ(b؁IoeѷI{]>ԫidvD5Mjo=I m=fљh;^GO ۇϋ$Ll̂+M0|1@ݡ|C8I) |2 Y>I8q\7{mS,"dLi'!He[X6`UɈ8םZ[{Ӥ`;qۧ TnO&`sv]:vz/ԴKNRu`P䝞L'd 3 !.As̊ꇁ4H.S sj ; С+!ЦgDGBt{a<B e J^h˪r* Ksgzm[gx1Eر ~V,>;I MfxzJ#|1&&9|K{)|- z endstream endobj 7692 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ064ь 2jA]Cr endstream endobj 7696 0 obj << /Length 1558 /Filter /FlateDecode >> stream xڝXKs6 WQɲ$EcǴNIZUv$ H=lvzR _q?'NrRwܥ\2fz)9kxd:Y7:Xg^,Nܝ qp=\"s$H,vAVL<lF8$Q,Bmjh^Lo"\hCey%\ O5)tRR+ݜt'# YxL>%>I~R35k~xvn};"aZK;LQٴ}Gxwhygiiu"bM|c^{FcWf8=l=; Wf,up]Glwt|l:"^`i'2NDSGu<]o pIvWD1M[]$ ʕ7A$3"c4RG7ҴMwe"};!}4p EJ"[ U&\GSgx2 q(}F\GK[ )nj*x]@ƞho؈bHTY4ϧHئ>{%W"wˇ0x"T@[6$JR5g\.3OT`6E-RI@ 㩿5O>gxl>LG`Jk`69#'_,X1-/pppu@ BLeSL%Pr* 4grg9g|dםܑ=+*a-SDzd'ল~b8?G ϸSyv K'yn OJOV*e#+D۶G>NMZ)̾Zىd6r{پ_Y] rM z!?svoG>a{_r?icNJV3D8fޚ'0nE)-U~,gBL0M8YΦ?]O,)/=;30Vk1f"`W[(.3[9\;X?{[cW׆3vS#ۭ׺џA6lم!wı} C<7sCӦȧ!RP~3fytd9L*ytH 3^2( OwKihT endstream endobj 7599 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1750 /Filter /FlateDecode >> stream xYn[7}W1y%gRi@@[(Q lHQ{RkEn`i!9Z .k)N}WW5HlBt1 ( H !c*&$ǩ dLgV̫&C0iN!:]*LoMoRH])a$ٴaMCaIm-RmbDijcjm#N Sl%&5[8ndR fa'd^q)î ؠno 6X-A1Hvv̈WX{nw{Uj>ެ{ALP\ј]#jGFC&\hZzXW6+K8|G/ i30VA;-vwD Uu'd'b[ h Y$؄sCu7)wftG&nk_5=W.2Mϕy.\й0}}:O]iHۭ8¹8tc!Oΰ4 tax:t}'lr4%(+ޜL >~4=?ghz 'eN]P Qzz g!a36KA| >n y9*H%}-^> stream xڕXK6 LĐGom^^IC'AkimNd%l ڒ*'.H 46|˷J^aM S՛Q"__8y6-|'FoL̙Sg_͙& S)E4v8D4$xT7}6T'a"zD9ЦyZ6˙,ozJ^<ҝ 1M U"޲eYӹ#>qoPLDUk{R'٩6J_!YR?fpX ,A=ɔ(ͩ5p'sv"UINbMzf?MWcWc#oP ?#1m>gp7^> stream xڝYKsϯБ0$dng6$RIISn4wsnio|ӇSIbVEy:nߨ8gOjtݥi%mwJYvD&=&2;GUyi~#x`3/̅LXf & O}HS]3% : x2˥l%l4}1V:TDnM@mG[e ק6ԓIy`l+@/ŸܿK38y%)©hl h`s&216pLpJ-dV]&-Yz+Xoܫ^ksI 2-T9IҟHOQDF w]FݢMhp8X]@P9q~뗺4uzR︔MůG@Lq3%/#o{ fDw 08Ip#f>cA~O Og&g3Y'h82 pSCw#ԈdjFn,Y[[/3@zJ*Nݑv˖t'_v #щ묘=T}l&ww*d$KcN=EtEɜϦ Ps{,Z;ᇱ0%7eLn]@ 'x3å{?XOlfMCJ_"ԆMj *x $dp?x\eECr+y1\3Y8\)D'̆viRfO߬fqQH\ݑAhW (\(ZWfg[^ sY&nCtx _{0rh2")#/w%]sG_ΑἉ09p-A vnOC!LaVmewq\O}vCIK n4C- S"rgw %$K~G#Ѽ(J&$f w3 x+b"@βs A0[riY%?PćX`ۍiҜ4o V x:|9[J+ H6MI=LQ]$^VY~p| 3wn6-dib_?}9G˗cѯC0k"T$htq{R2}8rw9:ҧLG(/*[} xP8!t~J[3HTܤ_)bRy1w0$R[L|]M8dX}˝r(A{>|VsF9ɷ3PK7li %AȜXiԬ3kex9uq=f_85=5;7! ( b uxH 7<˘PS5lm:խ͡`*Jg:;-QA)!o:/}^7&QU,3< Nt5%xI׾;s'|A߰^< 74zhh=xB)\4cU$ Wn]?KNj!.qEn~j,-*)}; zG<罷_Rmm֬04z ΕD/5geչM|\qZT$ V^Kgu[u#уQO{_v-68rU:leA3P˜B"C~Oc&X.`?ݮam!$u\>qlvmJc6nj/A(Iػˬؑ aetV:1i,Ob ߀_Xhū(iw\Rz}qBYM2}5{ NdR_UT‡.4sFD£ōHH"d8titI,Sƾt[O} ]YءbT xP>{~:z cK]n.}/WR sV͞Jc?3g_ɯSzbjdL#K.y=O;ՏEt 쵯n*U"aLEsŌlٲ̃Lrd7C{׋||?@ endstream endobj 7720 0 obj << /Length 1881 /Filter /FlateDecode >> stream xڭXK6Q"EWH$HQ@=%=UW\=v?3,9M"p8H_zMDArߋÔ~Ÿ>  V7$p견2qjvm_e]QWL<"Hxx*\)g>] `& Cpyk3VpCˢKhUf/EF >HqY2I<%dyM'1ˆ>uTI taȨ>\4%&>otظ2pvuC[ 1-'R(Thk ?e>i_]%xC͚_M_^fsnpr#K| vJ- ),ݲPvQ.J7eIhA}z NI 3NAZU fCT{HBxi zA+< pn: 8 `MYkԻF}/L9~ACoiqA1YOWRwv"pUy=&Q˦2&79]Fpm=Nwmo%_(i 8B(T*u4e%$TŻuSЛ9Neņ/5@8 bvxh!a-`[`3גF/7^$,oIOO&&⛢بC Jw]]%]M2vGTZg7CWvy3fw n7_x| ͔ς*_4C N CoO:g\vŠ"A&wJl{Nы. Xwpm:•} 2OSAJႄQd`٢o䔼Ij4K* 5/v{,*fͤ(NٓS <}Z>Bkr'r&~dͿIr"U (,_tHm #H -8l|?D̶%VzA,1ɒ髊;X =|l ad3D@gd*H8 L"cnKģuv076u['Ŕd )Y X,ʱ:c!yu-F쾰M3pQpzirnOBa v?×^}4 endstream endobj 7725 0 obj << /Length 1767 /Filter /FlateDecode >> stream xXK6Q֌ңH%1IZյ%Cl}g8^+'ޢ-r~pFboo~Y߼z#, SXXaBS!;7ZrI>l]\`7KX5|uX.W" 6->{P/wވtҜE2ޒu:sh9K+X "/`[ZWiΌp!ө: vX.X6GI`M8ƿw*;DǥڒH.~đ&kddM[UL~2 φi#"l˂O*N% *70N>[ךM9lIz?spРh~̽Z-skgG)[02J>S@[AǬ@Ƴ"f"_Th|܅]Y=O**s|$I0I|uO D ! qb(AYcY`V+!X(y0UmOOp z#B1 U,4R.~/D6TJzw_ Yݸ=1A63MDӆWhGU ׍9 G',ұ''R#'~~hfLs%9 H?У0 T[PNfEWuo >B Cڷ'tKmI*y3`8DŽ)QnnmmWkHLQȌS2p4ˏN]]*=9f% z:B_$ܣ:7JjxzthEC`0c@j|pEQlmM)OxjOciOAe/'ZӋHBW CLt@q3y >)|ej,ҪHkq`ɎG@-4s{P~*NR$9'E<{"v }(*tbiA㨧H-{:;:]Hf.Ov>dC*_uJ긙kҕ!ޒk!5+ӴUQ8vK 0e9 f4ZԮbt0M45k b 1+z?ev/mʃ?m;~:hWfc+qa-Re4s"Oo )ۆ3JQ5SԷTu)d*Xcd_ms̉Dj=^p(倂Mjip$ 4l?pR=[^C{Am %4H'+wMv1uAK0RÈ8r)Ed|WXÆSi;znRoOD=d] CWR//LRk $b..ZuH">sxCuDžWKR%t4W4}(O)a8[p&MgC(+l¬E|ϴj;Nͥ?QE ҈p& i6nx_V[5DK8-ҷN"j D n< /jPhiƨ(aqH_5xt|0$+طB ~Horx*I&Tݗpz}7{ 2 endstream endobj 7732 0 obj << /Length 2143 /Filter /FlateDecode >> stream xYKϯh 50_z$İv|1rXQzxX$[pv99@N(z*7o>|冧LKy8lrӂJoOׇޥnˇ2pJO7;\L1q.tSs>7qNƓ;~@LL=~ZQLriƳ~<dG;Q$؁o󛩧vI<&r=}`\=4t@c[ M4 'JGl6xK ؕr.Ҍnil*ٰgoĄQL̪f$a,AA^=zzBg0}07n5?`0iBHk?鼥s*oȓ b̥jI]+\Ѳ^5B{>Lm;@o Uj$<x Kݣr`.9+Rq dipQ,Uw(s{O?ouT9!R,!EEt_R"e SvjC 0Y}4¾,rn}ˬ54mt'ʀDCyl М 5W^i9kȅci *7;zrӘڽ- ͿYN 9g:6v@ g~\L+C^-}XMY#Kl $ '39L[B#*8W61) JVlv8K!C)ꭘ*\-p?MmeAƨ,rJwb;W+d5Xpٕ7\HV>.ceb8QN{qሗЮӅct!Kn˄^gd5x^D* (['CR Q GG97)cHĕw - VwRv6GRA/s& .gX*_2#"zVzn= ߂XNU'VSúmWD;}]aIVf(.xȤ*o(XT¨z92o (ef[EH@KɂIHnx A?#`ܯkfT2Z;"=/1??pEzOzO߫SWku3nx0D3BPW. ͋=@k r|Ұ3ʸ\w*RߤHߖxvQp/j+> stream xڽXKܶW̑SIqTrIU>X:pH,#>&t; G$!9ݟ}PERCq">}X&=OBeeyixb,d2d8xUex$Hp|v~ET,NE ٽT'.ȚL9< rr!FgbA ;<$Bor%3oK]kS'X x9M"r췑$xH?mpbߕ8[>mjjCzkS8%Se[s+S#gjS?wglqh G~mǟ8䐁ͳMcԶ~}F OGBZos̈́56( QΠ8Oep+@dvݝW>zH.gVx2J>xH5!HC|pŞ$L}s!䋄QōH6 ,(.bYg!x qL{x"_v9T@L*iP'|م=cybSEst!?d)MU 3?}-=pv(dxϺ$"8kW"|W7_]9B:RHL @2.ZQ%͟5Ed4)}JyD!R7p%XF&Z8,1$6UOJ"Xk-AN5 +gю}‚?Ƿw _3 l=YYFu1>wD endstream endobj 7741 0 obj << /Length 1988 /Filter /FlateDecode >> stream xڵYYo6~_ AH3%QIE,0n+PKZ_U,ڞ &/n,!9]vw{շ"eqww]*vilX9Bϻ8\?Tgt~ijHշRyX0݁ Ĝ..=Mcw xX(l *05GۺC~r^QGt~2 `Cet޴0AygOw b F- 1Xؖ&b4%D䊩D*,5x$^f_lѣ9]\)XpޔB -Ԇ%uJ{3%Y_bo}ӿK2a17/Tj5٠?5m'@oB 7L*f,ւIմ.='DE-5 ]8t:Eh9&Q]%l |ϣa/C'ڪ stпsvLi?v}e -Ytr( yǶC(4骦. aNkI RC鋠kwtG<n٢xo ,n XVgbfiycW%K=hܥ-A L ReL^|h] \G_kC]%؞;_2í1mEs 4mfOo] &2j˘LnV%@dʸC&>pY71f`|ޱA+E)7wy;W}pkK 6"^p _V#׶*n@\[R`?bl]b"2f@y^W\Bd9}]|G Z/I:G7GA\1`Ҷec␝%`q]"=m](͌>.0 ^ZްJaOt>,i 85U~Ê 'WcGx=T4GX.~lݹ/g m`\2Ȱ&f졔4+wO.+=%AT)q6.sPGbnt _ԃ(ȨdSE(>2 φ |q߲B Gڗm _io4+Q^C _Jr~;pg٢rIW--чx|S4>Zdm&qi@txat ҆aqOY ?@R{ K1݇g6դqOat]䨊 $2B6o=;8&G'640*?C@pSw_uBOmo4()דaFVͭ7L$CGRgݍ#E6MKkp0 ŸSxJu'q'8oniUuM<=`{5j꺡0`b{ԤB)`ܱ!'s:rQwڈJz.mya.U_;8Vʀ5cFbh4Am,`L[_|Z '"5La8v[ -FboEVתpqn.aJ* A=g"=it@C\k TEAfA' E_2f>,Z 8V,3\׽6e ,Bs'zcƇ s|%񆇓E1mb@flq^`{+B$Kޖ 2 I s# -Id|NK]N6RX~4w bzj`v :㷮ŋ\[fuх3 endstream endobj 7747 0 obj << /Length 2059 /Filter /FlateDecode >> stream xڵX[~_G]HJB })9@P$}%XXYrEi;J\mrR/6/\*>ß?÷?dĢr9! Kux?G]}eYx"zZ^y:dKxJ2k$A3W Hx?exTЙ,͐C=d&E~8eUD']mqٚWƞW9 v4FR/4=пH@"*8;K?[@pJ(AS %+30nFh)/Gb6ڙt5n*0u&[˄Vcww51idQ JZ0ˇbW3v2wM͓p#7 XJݧTq5_sU[OLn T uI3 500"'tuI/g#X?tiZ,D 9#UecH<r(_:OȆeN(|yA6GyWWP/9{7m +]z`Dv<~[sx9EgS!ńA{v$URԻ4-E|p)P'$zTAӌA#Xҋ@Ri*d*(@n筯wcF UߡзQc>x2X NLJl53Ş1QSR˞i.<ˎXҋ}!1}h ZJ<\g&Z.fjGܸv_YfpJo.SI 6.ggI$YUOaB*=W3>HgnRM|D뚱%kQ$ ԭ9\g6Kp+ l*iˁ<,깼"Xi>4(NC>ZWy2^ޔ+Q,м;MD܆Zdy(.B=DĶ{W  Oj0yBRsԅΘ8(g7 (, dԓq 28sD'jqT:"R0:I/hɦy! ոMlZpm0{ȠХ~H(\YzW?Yj/v r.U?'ϠhS~2h W?KwiGox~o9Foed| {pE6\_xgkl5g2" "/A$Ջ63@rL _FQ{ZY.pWP$BqGxfOt;޸SkW!65< ?Tx%pp/Q8~gT$St3hޗ^S/ ?P endstream endobj 7755 0 obj << /Length 2290 /Filter /FlateDecode >> stream xڕY[ۺ~ϯ Č$R59i{z d)\^ DCPnve47Cně__ycZmXTqln"q)bmn#n*O|T>d,"}o>f+I&ra%?Z$O."S;)e4 TM_v!nz1_ DTٽܝCni'TP "$.-*T$[PH khzDvbg 4X& $a*RL"T+4)D).I,V*:=IZd`n%Xu -of?c)CB̦*äFIG|Dnv8zܦEdHVD#Mpg3*> K`$۝UtslFocj^8#9 ~7|"wnGK+tfy6RĀt5OWԞc7IvCq[Jg"a]r7&Yl'G~Yf,S]lKr'C`;&o:w^pE&spftQ39v!iUE 쉣g(&n:1yILq鉫NgѥɊƬt4ރC.\ٜ/AI`G'.\e۵_Yw AN(rET 4d-gm8`GΆ4]`=eIzWfM9[2 YaOl"+0ǩAH [@tֵ$TP m E< Lұ"S(<TG/9w樱$|m/`f *@dt  M,HL$1٪h}JJHZoD8*QA8"i o8daͲ m[.{cHvlښvX>iea퓨u(0Nlb^Z26өamo<^|$6Zyu,(>" O|b"-wԕ?e+$":&tHx[`ۑ5a[|ͯҫuLy?WoCOs-y:h-l=~ XUdj4LY.x NNPhW1E}GpH7|-,BeR6 m{\,?Mt6` Fy5Pn)Vצ~AMH٬qIO f#d <0_&SRT250s뚷DF.u@op{a dAWf аRX]& ^fNt\sce%rHQi~7}UR[ܦ,qMZn:H`վGXTj~cN+#q{wy1!\.HPZ%Ҵ ʪ9Cm1#W"NÅحo5AʼnE=mDZɗ\,0ag4+)`ȫgW:l\=$#pa j@?iyg[-[ @3"kĔ8t{>+qlm&||4u?sWBQ\?[h?4ݮ9[\uohΐ# @0D(Z3twj@ݓ, Gù:y w^iLn^h-=s^_B-ƺ>n/f ea]؜ۺ l0JcLҼx_)E\V !K/Q|QrKeml.g)o_ > >߫PMK_m6UG](lm[Ĺ<<O|:I 4!]юA-JG듈lz¼ PyJ9 K"}D ;s)'lu=}ry?72yBv y,k9ԅ|@?uy["z"fE٥GDM /1\,5$%ѧ1ғjpb jv6WڟUp._Y#e?WJA endstream endobj 7763 0 obj << /Length 2427 /Filter /FlateDecode >> stream xYK6ϯ0rXv .L:I`K,9zL)ɭҦ"YW v?ûG. "(q]~'j(0,˽A~R|i1n8J}zcc2c ~# gQ>=tt]>82շ0n+^{ƕn a'Hd8wSSnڮhIl'FVY{y\|pFdVvT6p|gڑ%+GU}OBo&]~G"c".K}A֧ O<ѮqKwd~OW"jڅ@ *(,bĄG)]oe˺G=fԑqH:G=j>,⠢ďUʬ/[6IaD ._W/l ŔXw0Ea 8糑 E <`ԟHSleĠ 1~«Ǻݣ])=Hc>$WDžכAvby!\4= p˝%*.N Bwd`SEVKPLE=%/.}Sȸx{>{2fV8\ޏ;,`r'&$3Lغ:xN.7S 7ڹIRU.qu4͉!g3Lq)"^l 2%;2o1^uq8*-RfSy6YIzW}7`Hd}׋eYN/D)aA'vumA*`8@G71(O>Q;Ey&K 9 SN6CW=;j@TFBA_u{D/xnkQmSU,NK,h)$) A\6C3- N%l`6o؞ Ba%ݦoۺ o 1CyPΐQ1q#[w*$\ˇg=ڋ28p6gxbJ>bp pyjt)Ӷ)"cds7ȋ֘ĺ [w7ƨ,SD1."LM rs[j\#QIg5E@F[uA tUw_Ů6f'_KAʮgB9(|q^QJۄ XC+.8xgq4打95PYwisۭ;g:ܖs endstream endobj 7769 0 obj << /Length 2111 /Filter /FlateDecode >> stream xڽYK6WЃ\Č(z֦iѢAdomQm+K%e3R&y7Cn9n͏/{ꇤq7wMl`z[&_M$O74f,й"VoaCFcYt1~r;8V?i| Σ~e !tΖr5ʘ%ɧJ" ^/ch9˄x⨐%nQ-wĨ5PM-ЦE Nզe9 Jh⎴vXP f >Z_0*3Z45{Js)Ezx!Dž Ǎ%\fb%*S'$>H)'E4Tk2%qʲ3JK&P q 'X^`n)-0X(YUÚ@7HksoqF5`plp}\+ 6[tj_mqF3,Xv%qhA׷,kѕ.Hջ7~jAs Ci/LO=Q}ϩ*NC@ ,kun]Nnf &_|40k@=8# ^_;kˤUwow;iskXsJ.G-;eكhAoׯIK;(3%#QWC; 'Jeqx|.4XVdaƸN5֝|kt/\Vt%_q4u~Ss0^rŋVEM9vM蚩"TU]Ko/οgO%p]bj 2%KͺЙep_VX'w׻ծwp)Sʌ{è/t^[Qɿk26ŷHܣF2=Ăq "~)ݽH3ſf` r 817\Q ߌǙmS׶xx R_d-DM}ə2+M@z$Yp5(X SC&; tgWU:fsC yB+ 3Udf"m.IWU|%os~ԘZl|.%Ľo3݋ endstream endobj 7773 0 obj << /Length 859 /Filter /FlateDecode >> stream x͗Ao0A.`C5i.;pT1IgcԦ. Klquuw Y9$H@*?-m$!tC<]m)Xy~n6 OjϏ7; m 2mA]A cu0".ǽD}S{b?|PL$" "C0kz]r" A XE6'~ Nkj KygYk]V| b*f֥1S(0?,U1&N2FНS'QoYH3 ZyD̑IS8 fHge7;d41lftéd+!|>Nm 8e ,VƦRelp~t[G/ p\rY OƋT7IH;$7!QOh?إ\E '"'4TՇ^+o-XQʲژi 57IV7kQ͜eB .V^FT4a:buz~ā2jKΉj dV6UY37=yݞPq/.()HEj\jՈ7+FIovC;y.j Ww\ endstream endobj 7777 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ06Ќ 2jA]CsR endstream endobj 7783 0 obj << /Length 2031 /Filter /FlateDecode >> stream xڭXK6 WVy&fŗ96vCLI'ܵZYHr6 ˥>$Idyě?db$n7$6I78 tj#mzf)fgrIC3>tXjh֧-ʨ,k[r*Xq>.g6Uy[E:/v-J=pp뾹яYV5W2TZ$o( c\u ,A DkbJ6K[.RP M~rr w?yyL<\X7VRx!qf,c>zFc&+f5aND$xU]ʋtJޜ@P֢,WX};2#$@R5]V2qJNP}+l |MPۓ!h#,#CL}#PQXBv>bp#ƪS"Mw+Ui?GR2(5WѵfFH׃ <`?'tĢRFO4F,ӛ٭L,|RaaoO5m0l49g1=_jNy'X\95rKXc|C]bnsB1p]3őeUy*%XU@*f&PZru_1C}8;Z^fG#-:F#_՟;c| AvObK\o=ߘ|¡ nQp }gw!fͱ(d:ʄ/׷ߤh|b}G[y x})wHKst7=eZTr*k|œћY.>\j_ ˱ޅgTBS$1"ːjȑJ^O'$o?뵁:u<- V\{k'oºz# &kr/|4FvM4/p/& v 0Ltml +X|W+ӳŮ+fK )/& VMC5N&R w|jÛA> stream xڵYn}G7]-`<.KC8_*IImHQ:uNwOt|^;2-.O *{8~ML~}^n/S뒆O8LcDD.a( ^2+v%m'nșqÝ(+Y$L%yۋܚ0 ӌ&e$Ą,EȸdZ9#+er 6TVa xYO:[?FR ^`=lw3WI] n;,W!"Y" z8ќFldc+B.V+DG,a7`FqݚQMZ5/dW`inƵnFu57;  [dL.0@U6Ff5Տ2 u)ak#Әj45E*62 \& )2rkxy5֢dn~! 76xc<ͭ!]sCg1LfY}9Sn 0K->xDp =%#XĎs |Qᴢ\Z)`p= A1z2nzk/;eZxNg jQL!?_Q3jzX4=<k7ǣ=[6А#/t]cK<*^G|ŝ\vl5/X-/TlL(q

P HJ\GM9Wx|)aP <$e[죖~֗.gȮAk0YD+9Qۯ/'N;eSey@WĀM˝aŕlME`bAWF2)vW#P*r^kfݚةd^ v:~'eepv=-R:FCX6 MRhy ]M`˨i|^`J-@jZۚExEyѫ(\isI4J֭Ox0r=Wn)yۄ}^X])[>u}g:t\_+MGȟA%oq:w$'ws73BmS,em X,jb58_BP5aeZ<m}n\ Ql>e\.NC, ߵiYBVlW2e9ޔPbXKd&d[wcfoS+G B~];p~D\PJi%7l[ћEP50(??|#pG endstream endobj 7795 0 obj << /Length 1219 /Filter /FlateDecode >> stream xWɎ6W(Zlqrt @29pdߧ"eMcsWU|N6M MHt;l2ɒ$Bnv?ѧ:ƜdgYw_.=D&6fyT>.`nȊ!)Iy FX%[wQ뱿dG-W\J0&H$~9[uY"TU5lg7nӈj<켌٨@>](#B,8>^T:.^qJRT@H- b6RF.0BDV(DU(߈wg*@(U`aG+gPŘ`\@$;NB h Ixq#.jUsHNnU'+qbð)wBJ3 M NrJT/~(/'sQup-xs2v?6$D%bBAV[3[A:&~&jRLUhTA pr4"~0w+a:_o/˫YS;5Ӧ#*2ldu =<@SO>mt|lK(BxzHT=\ Zo^]w(\B0 ajտ^; ^3)[9aU dShW5Fv&WdD"D& `c< j[^]p_t9a{B^(+2f^MLT9NXu>TӣJNH0(_eajKO+4Y`,w3fp|6ʨp=@{2dO# lت͠e_{ nu> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ066Ҍ 2jA]Cr endstream endobj 7699 0 obj << /Type /ObjStm /N 100 /First 965 /Length 1602 /Filter /FlateDecode >> stream xYK7 W^4)R-ACE >-<=;;94P|||R삓g'].G\eE F$Gs`Ǒ.lLaB]ɫpr%Cpj#J[b(%5*RX`#,TMxUJܨ$B,p"k5.m/ZL2exAPЁmIB@E J 6Y ^TDVD53Teۙ㠦*0V f`'n:F&uKc-k,ŤH'!bRD] eP0 TPEx:A5ܕ\bE'&O<m9F !BZJ`fCh ڒ''VDZj8~di*A0VJˏyi@hk&phlx"4.`F(5`r5i&+Q|LfufҪ@Wr?FAfՄJ2hAUAV+w*?~zL,9% LO2FOaD 1oٙΑhe E lAhfsv}.\չޭ޹.Xн$OսYnoַ~Ytb],(Zb.o7HضKK#{{_i 0î5T=L= ɷanncY(ZCB.4nk/Xas2Ld[9H*,=8잝1di963{0Z%4#YiFbHL:1x`hHSH pyiaX=5[ q @1或Ou٫X$U c)Fv7^SEpgJ)$F&Q"OW^~[3U|tFLԌ qǖ)=LF伷9ȘFǦeW.>;m X)K۞SޘJLx3iFȜBiM+GNM`d\F3}vudr hO9{`R endstream endobj 7804 0 obj << /Length 356 /Filter /FlateDecode >> stream x]RMS0Wf$䓀G;> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ066ь 2jA]Cr endstream endobj 7813 0 obj << /Length 1477 /Filter /FlateDecode >> stream xWKo6 W ֮ =t[hv5u=Kvn '4ER||*]tw\4vJ42[mէh/{ݮc/x'ʈ=b'p)zI~ ]8;8z&XOL& '^+ytΒL2 JԿER)}%Hu͞6"8x"U҄OK"Y*%Ky• k)xIIB&P !V7x WT_R8t[Vp\L*%yS/ QpC ̃5`ςO Ev}Lٮ.\Yqiʠm)HI!/Zr)ÓEpG2ta+)nD.h0 /g1=2q,'W ,x#Te7%gӋ@I)\=%~aPK/Mj«.Pp$LYCuE˺^-{vfvQ~%p7#{nގNs30{; u}\+n3MMa\F{mp 3xh M so%odyf}oSgt9tpkzUPJ%9S-g@p,ϾKۡJI}%u f *f.sK\Ƥ+\ޕ0Ld[E`=)?E`[9Bޝ $7%G婵g)2*?%a?c7ć~FiA0DBϐ/߅7c~n^-G:;`BWTy\XM aKHici9Q.y}'iq{0׍3z_*soWjS~XsJCјzؓ{7`8;rp᱄:e endstream endobj 7819 0 obj << /Length 2656 /Filter /FlateDecode >> stream xڍYKϯ0vJ{H`rZmؒ#߷^(YXRHU+zgkÊmsǗi[]e%s|vzDo-u]kFBRwlOůaّndkgJ޷Nծ3I)s̳?hWf Akٽo.'']w0qDed2 oڽi8O~ᴤ0 8wt@YCb^uhZyf}KkHAʕd-LYlZmv;^e8 x${Q0X7}/~gݑA`g0# __\F$8r\ -T}jrCҤ^fYW= :Yds^D`Kb6>1Sif9KSt1lBNg|͊سUe{x֋E>ǠGvݶ{bh"8_dѺi]ua!|/=r4*Dh5Gm=r.$" /X&Puieá 8vD 8#S4边V`ǵQQ1<T{7Qy =V 6V1J'KZFX~Ǐs!P_aF=?>nlʢ&,*[PebAn s jiقyEP-Z0(r-k:a[8 XMm|!XH:2Se경^NE<_Lbl80¼WuNV]k+ ZT/ bL8X1: .ϟ# D?2UfyCŅv^0YfIJl.mΙ%!mpE쌟}QY8Z'jZ yxim:JAPY0#Ew1 k_| k~C<OʵU2t` ziɼ|aO19O^hO#߮]?Tif!nl\ 5笴yQ9\aI!E.:.A/T t1~9%srHB'Ih0jX[Vk-2eŘNḴwtC?H jpNaxӲI!;l6c1mimnbV=A?< ` 20RdĪ>*5}/#^9fOcYcVxPC֮'I' 6d+8PagU j}H̏Ktvĩd5ɤ" pyrS!*t%y BH B+JA][Rw=N7|S ʼ<6,K{I77 njE8.@sZ\0GB_y)H0`|CXC%Sr#A7j:4eϼf5,K99Lǣ\PҀA dFT%Ne ]\pd$ ?R & NoMNb\Z4CywM{KobA/?#I 1H?ߖ~xSkCS/SENDٗ9>X^{>G_,&Ҥn#+lA: AmD\XKG;\1K]$*dA'mnW uxvxttmNw fVZPNƠ1/AZ(aDR@.MhQmCbrM:F8FA 7vCSBq=5(Wd0y&T kFm׿LUvw$K[W7^*i 7C`/ Գt ^2^u6ؿX:ЩqgsJ}qGu~;n!<fҰ]) Fr*bPU!NcX7vqHb=XQݻ+/QeUEw// Ҕt)>a&~?G,153$) yHŻj {U4沘֣˂> stream xڝ]o6= *R%X Yc!Qr`(K}MMY8(0\nT0 8lf_ծ8J(<s?M3S3mQV=bcoEDOU՟b_oo~{-82ZFFHuZol|ܷ( $gMAW{,꣢e5EQ} pX8n;V @AәHEl(HbV`U:J'WI\ËB绪!Cʉ N)&>7Bu _k{Us{TZ5;] |ZG\$.NRNNv-O&ASI"'φRP6~i` X2HHSUGn [\?`EcSUt#ű e#"UC۪!A:Ꙉ@/`-.tbt`q۶[<Խsfy,2_7M! r;õ DTSt \L4Ŗ>e6b/SI` Z([Fy[ b}K(]0e: yy>)₋ˢė"ޝ3YWLk ခiY8 H\qI "sGL8>ɛ Nm 6>çV{Em.~Ͱ:eUӖgM :u@:4R#cdbW48Lxn吞$׾2{Ac֖~ U;=>[ 2[;%xa`}+3m;H7@5^Nfg ݖ`0$d`׉QÑ?>Uw{Zi)ey|+:==5ȖIu iUe U'$gZm.<9h5q\"`SupᲧ+B{I¨N3zt[&6IscNSk4t9%1HȓRϔ $Wt.4u~9uAPgLaq8GRr6.FL P:P]\3 vJ5ۤ0L"/#8z@ &UMZX[L6'B)q@+8/Qѐ"IpTĸtEj,_ _ [(E Gʧ<ĂDi~a0 ~c \3ȼ ` 35G F^40=ۛ9yR2׵KgYq}Q#bJ#XpI=st>uL2rС.FhZWb (yV듬-qՕb2u&M-w !CR^0m>8Ĩo:—g XiR+2CVU,O4@èjf*s9{<"piZݫͤâ,UUfx7!q8xn\h>L~!< ѳ"fgtPឳdk%U% +wF+#Wr3)&M˥Ua'#N̿o-r:ƿ\T endstream endobj 7834 0 obj << /Length 2692 /Filter /FlateDecode >> stream xڽZYs8~Pe`SƕLej؉))憇G<_ݍIi]D o_/^\ ҅Erq^"pqZ|J.O2K8LͤDyR)=uP|h/ Vi`GHˆ<rF^VEemUSܛ^~)j\+O+]M{;4hBL,I[g9]"w1V8#2M+8$LѳCp2OET4Lb!Q|wt@b⯼xؾjZ =SDaiR -Wt3C"^X(r0nwY(nQpmhwTlV .omc?pc*w #z/|~h\) !Lߝuto ?w J"N3ԑf(ws /c=Ȥd=wn-zS]eVaTFnwMuZG~U4'!_D/#B2:H \y$ ɐA|)A@LMDD >S\G&HNJG1 `}U&dpPYI|IC*>0,OpA3)sL [;n=c)G3 DL/7o~?~}sv.MC7˥UZ{CCpWAڥcDb"/~*% BoҖypBë9Ąǯn|. L(r4@Qc;@}AGN;N]:C=H`x/zX{n[2f%+ Lj( Hv&56Cd!jy[xZk 9{˧ٔ ڙ!X}AKc]WMu Lf1G"'YPdM|wɆ]SVh x[hn|DkMޱ*I悒fMQ'r+2Nznغ,9gJN[, pĽ|-A=sČ 85T !i5YMK,K<:%`=FF˩cBMXF{S.O1~c =\ ,wL:5n7?NLk%vmz*U.Z,FSחFga*[&VYPp|n3vA+$jofn+4˒*4 "\C.,$  Fə8Fqcx{=C{xA|d EɊx_фD4 s?cؕ=K+"uF2>5H=Ɓ 6(Sa2kٜq H jy>bӦ 7ep.b.sG!0nǘX>5sùrܸQq NXqs2=Tw U*2ޘ^Dt=8 0ur^f3-".by]6;23XQ):F1֛Vgw(nAcHMI,+JfEόш). me)v&kN„7!@u+?h'$|ԏiߏ4m勧5i`Iv0/b َ1(VH`0&B wU Ilt1f]lN_͜Ma2%MaNl:Z,MTLfʭ GUD]Ԝj fj4&ej vmՇtck;j`o[/]3 endstream endobj 7841 0 obj << /Length 2152 /Filter /FlateDecode >> stream xYKsϯБ0@dLjsCC&ܥHO7|43ʉ f7Çq7-6:XaɜznwRHl:~"eG&=~7j$&,)!e>X0a'cUNnRGsY\; ug:Ry߽v=  {'ԖDz/'lL\X[#QK_lm[[= teipL%Z`o2A-Gq7Jpu w4;x[\79|hrmw$HwKuEUsYUӹŜaӗW/8xh7ܟcTvhx88/$< mw sA8Ws]'{`nOY;dԐ18q&{xWEC&ѻV μln^B zu5ho2C9)8%AH Dř`ςǫe<pv1y|B>D2-xS_6Z,QG0v$9lGG[A: ڠ0A2=" Ј"S,e[Lp19CM੯,cŸe(zDexcmt*O 44rߚ/-$ɨU,5WuxZj㩲GKa a,EnMtSYz&YPxϲ>44;t<83WU nbVA3aJ<%R58S'8Ub>w=Rx2+؜ H ϙJU<,'MØ<E 1  o}5 SLSu>[lN !9w&@,v 敖 T 9ᄯGKB$ӥSI`6gz1qtS6whAx;mk&ZDK&a2>^Xz1V-q,aYfN@9nMOƏb;vmDAt"tAB8LN.09zFIǮ:bdI&fcE+9Qa=3s,_q1=U ̖0L߾#۸FqY|'#i#&{gAQIDE^B: yGT^_ & kNp=q9bNGGs's7M M᠓L\(|?҅)30M ;Tʁ,aƤGƤ2&/r +1P׌< 8.?zٳt(}@IiA7LGcGr㠫8Ku\ZPW-%%t.eE;gWefY%& 9==f<_ wJWz}R&$yFV4s JWXEɅvC gM_:P#Yv WM^5dfD !:.v=1b bRYUe SbbUt )ts1]_/NkA:4kb'#PTRw!,=Rm1\#3/(*IOw%ޓ// WgCI{T 5Ss]!<e`||ϝmy6t @B.u][s8LjnWp ي-q=͗ ƌ뀩fyVS:ȊU]'li0#LVBb p.yQG2@b˰! _)͢dSje9zMj)*Z}`o~!me/͹XLE5gzϗ5>O f!![=  %5I]ц@V&*X_0V³o*we<>x#;pkӒArNf?cTǦ=ęxo z( plZ.LGݒe~Ɖh:@*"vkY>|/1l@ endstream endobj 7847 0 obj << /Length 2965 /Filter /FlateDecode >> stream xڝYKsW-`wyᑜd:v9*W%T`@XQK(;/xw?T\vڥq&bcwH?x'NJ[p}X6*RF?tű)}Fm}nG_ÿDcQH(SmnM0CU2Yߺ/7Ъi+-4,*:,کbqD[S+< 'Xp3w}yuwDAt7&&P3+J6/MMO~oxr z݄ 49- ><\2WpZ8۸yߐ vḅ6*ݍJ3:_Ʃ>®LOD9@P~  Z\Em_ MnmC14~y%Eӡ?SIYލMiYaxmqj H>Ntr$ÄW4|@fl0\-DwO LLG)'Ӏvh}@he -O ,ukRv#*fVÚ`~Y;3M~x9ur^CƄ7>}(@v/q]t?vWv(_\嶺C}#4^zy)SDrOtVGh?O\VqG#xat3lA#uzŸf}.5o=ܶZʭMq&[ 9QB1O+iԞ禭rpQ *E00yDwZvw@, YB.׭>qP!(d"6p>h"c !#x'wSlwɲ+ [i3Չ^&s8hЉ]qvΡ n `ǁ5F8u|l1jb|u*סR"[p*d6/Ͷ$mےI348͉)8D[$ %ߔfp$>Y F9Dc#'o \$n9oNDp85xs9!):)ڱ_qoP)MPff~Stm+-EǜȴH_Bi -gKkGkE[/[ 2  1R܌Ϙ" ;,8%N|frzZ٦KKZ7)FZUq QUfH2U+p%+aw"3*ϒ84k߾{``? [`Pc|$:H5?7(8P#JqץsNhpEÛyP?6. )#80!~EAZ yj8#+]_*zFv5Һ l.lk&Tg/[C {\I9m߁Đx,`nP"gr|hD$L\ӰWl|42u!V9ն8iPDpZ>\E{HI IQ<|{G rKm qOM0$zKq9F&зm5UdR!K+:xϪ{mhq%+=-?{=ѓf?fupjWE;cyt#Lz\M LO}@;0>0^/]gRAm2DHr fy5fpI޻KS?3_UUfw~Pz+E͉\^|]߅Xv(He@Q9-*zgG^΅g]>Ȑq)}Uƍ 2zX]a+\OOf,#W(9]՞zu/; / =Ur|,CYĜHgb\>u|4ƕG:tf1בTvbח7,|z2p'IvXrshgaD E WR`ؖ+싃s̓-$v(?lBvK"̒ma4@Zfe_xAḍzR_3fvT endstream endobj 7853 0 obj << /Length 2994 /Filter /FlateDecode >> stream xڕn>_G5`iD=iכ &79@njɑߧ^ԣ@"EX搜w]ۇ>|;GU\îLve8wwdF4M$aYKOtSYpHn<[snI$UT@wB =BQWָ0ɪ:0 E`\c]+xMÃdԘ'S%P֛aPQvox\}h<=/L/2*?!>́ా cwbO跅*L_TÚ?/]瓫ӄ-j{\K{ςI q6^og{oG9 G (ՋFw)035=NcǸɌtBdCy:u|^k9\VO ^n=):~G,=_j%pVP)$|15N];{ڕ#^z kQag 䘶;`MBqpbVo#A/g*gk_&y` l!'6z}5V?An.Fnx0MC 4! wYUTW8JoDw$lM݉=M+E 2w=y{ xo&b7yV F3金'ٳl˝ki~B2@{NףN0azUd%@7dedJXhX6J{LYQ@[XN)|q' cPk03cxyQQ,|E3KBz1yM={MR^ӄɜld++@|173B',QUOA>zLRQjQpRe8ػ{JCVKQfBں/V͚E5h)<;EO(B. IwS#R\jMi5tAWo8wSѧ>v N4q#g$_pVDT\ʹP/8ҺɬT}]/~8L&%J%͖-Φ O.La'Aȝ!" g3BDZ''S#{$Ti4d-]t)S2Nh< r‹CyyXȭ}CKȏBK1p$B Y7!8y#r J(59fmĴmcX[}_!9g$UA7Մg='8ƒ+Un 2-7Q^HԕDsdZ鵽\EW/ -iÖ u˟-)1?N}WzDe"S/$OMRA%VN2MU)X>Tn_ nB*,x= FMIAiՊ{s9J< z{FDaq)F׿p 0S&UY̥U r L'ߦsYn\W鹿K:BşWuHąZvTRE9_͝T[]S,@ `.S}*з$V}^ J: 0|pO{cG3yE"+fcHtr̡@1RaP ,*gxXC?A9O7c$ 3)Ƶ㊸lBu%,}} +ifhB_ $XXrG%E<H?Wt ghCCxBǤpPLu,V7ONS}f;6(/JY}2@glza4@0~I0o}8 [#+cSJü|w9 3ʆ >*-}Ur4L@**v30# LK8`Ltu"4.lOƅHSWq[\ z*[?cj#W)ГV| 6)'.u:q-E[rTU҉2*X&Q.^z)qҘK˞](B M5^Li -(ߠ{( ]6X b ՙ TEEx{,}Y endstream endobj 7859 0 obj << /Length 2634 /Filter /FlateDecode >> stream xڭZK6ϯБJ0^|%'oe 8#)r O~vA(5x4FW+͛ۛWde<ۻU"W Ovz(-%+LūPqDte^C&A3rCqY$x|-f4zXcˢ3^H( ǺC!9ב`F]VD&,}/]SeL%٧q췴̱[p],5q귞7$)iվr̵lJ$gf|,&[v0\}e:_~sT2-C'׵>iyWtBB-sI-YH-/3bi)Ѣ('@7†_-͔"3!m4$tuR?>eBO9}eݖsr+JhŰ8#$:;4_;veeˈI51G<Ӓ!_λTYBa[-}@?}-+(flίL3BЏ"A L&I1Lx{NҡXH"0Xy#[.8nXe>S%06h<(zp VĤFɠ-wsTU(Jv0adW:4A@OLA'L`D([x֑m\SA_{dv5BV!A bQ֟. V7Ù'Jtć;ӔφxpoГnbeU*`0:$wͰjH}&CwbYע3f| b m0<ƹ 84z'-^{a8?PgnAu3'91 671[npG0upGRQbF9 :\`cTYC?s8v^<+,c#nRNIe-ѐR8,C=ac > {Z'ɯ>5`4~-o nhWJ9r#XMo9`cAQT=ޣ 'v.LGc*?,[U0jmoCΉTSlaG,O":V : %jf ~NdU<(.0h m6 7r>C}@|ɯzfʝG = 4~Y?]|\VkjΉ;R|l]OɓL thoW[S7#ݯ4D(G_?KD)KP}\PW2DF3_ޭ-!VvbD f?w^.(}$0 %9'TV.*URS%ӜO>d)ιOu.hU:q!bА54Ɂ1Lr\!pu u/sIZCBvrޣZ̘YMʲ+| IK_Cs뙒(߿VM ##Z| <`rYFOcʻ X6M.7U1Bb;CMv!RL 0HIU8CH5%1<-Ƅf}rH/ G{]Xڦd{x eS4N/;}ɳ_@o,!F=%~z(> stream xXK6ЩVR=$mm-)LjdIl3Ғ$E{*r08H9v^佺eʽ8 ˨'^aĸw{k94M$ WA*)|oEU;\e5 zOOЬ~y}2)0Y 挔(uY̋3AZ&aQ1 !Fnȋ2$~yu5 K6 ?w5(bA4RUIvvefH'Ȼ?1x!nGkӹ=KI,ff:uO'w I{܁m#}@\[p0yX)92vdWwH#RDDXwQ,&St.:=x:4Ix@Lu ~ꡦp8{{sGg0{F3>0@Wuíxj*@oln9j.3@% _ eRrc, _0}؇OD İj/t&Xꏅ-M(Y(/n.m endstream endobj 7872 0 obj << /Length 2175 /Filter /FlateDecode >> stream x˒6>_SJY%x!B1cbn&[:\/6r z1vRTi#fQuO4>E:buܾS'@:N BA035̀t[5I .\)Ih ~Dp@PAb_KGDi*exܦ&:ul'uh*%0pfn7xex T0n&N$jF^X̓ 3)do& G9] C w!~.n0D03@[>|Ľ,C2G޳}dF0ν7@㐁'p41H"Lfg=#ZFH &+pfh[_e!}BҳOk96D Y6Q4IRO2gpoM`#K*6fzt1>cNlN',Օ*Wז:EZb@g8a a@_2Y+y@>b!kXͮ[l!',%e+YL7POX2G,4$=Yl!-8T,AaZm)=yp*!w6Ovwlj d F 9k9*ڋ Pyz І0 ;=}HBlfܽ` 1Zۖ5bɧ_M^k:XKK>#b;WSH̴fZPkԀ>@j8RV@m˳5A@r9 dU$BS]"I`{jDUW)BcgABTz~45]糭hrZRG{&Ĺw4yI2LUH(]qaHoVeŞN 6} >El,'j[W[:XC5w7/WHHD_ގyQq8HVqd ]8`u8J1/i쥊> stream xڭZ_s8ϧ);*(7M۝ݗmstu-W7}RlI$H?&,'䗫7W/ߋt’H 6]L$NnOJo;\OORy/,qTF7Dt_v+j}o/bD,D2XBHu8@lX\)G򩧟$ViA@)c<~n}-XІ%)P)}Ki܈̩rHpv\F14ޘmcZp+v$n[hwv*'Vy D;3C@/3 `}3!v2tgkU 4ԿWb2̇2!bs!lgMM.X5VQgJ~;aٞ ˺ Y6n3zs }SvE,yF)r2BENDZk<l{ƿwvTj'I@[-x̊EU0K<8.c?]B&1['ìXd"mBnvHFq l? =PMR6Ѩp&YYLݒ~wځSxj,({bd=%B#UK?e}1lΚd&B:U9 q`6ic*O "S't$ޮ,?g;P# $W3DycαԛYc:DD\wZu Njf7#)ɺ&q4p@}f3#ʹ!K!DK?6f:{7hكq}e6ڏLHT{Yխӥi k3'lu;S=\"O tehpc.t$6 c*rEFmrg\['>ѯߥgͬ-8@a5v`mFY"5vrk]K!{E`iUȒw0k'L^wx`\;f[;ZZt#fyd:BBTj)b`VӺt`Ew *n]aJL@BR)d1Dk9a (ljroI!R{J&?BHÐʞY +ZPHR@ij4DFˊ>yQ 1p&YW_bP]Qˬ+9Bgپ{ qEIuSCxW|?⾄KǺTwݙv_}ۖˍ=ҠDƾ.vMD5/B@MYGv X,sx=l ֨b??Yh Gd?RҺUlkobH5av薝$o胐8K)$-̾RB# 6IxsG.;V:ȲӲ] *4ލt<q$CYoWesiQAW'ۮ\ګ345Ue̡5*z#;.AQzx][:ss9DBڄ.TUYoGߕvUκ~G>XB p#k E7U5T+gzQ4zPNJaG׎=.6x 435p(XWX4sW榝5? +<5KGQ( <qÝ}|‚j;x.C/ H ?+y~ $}Nyz:L01uS=#w?𱓈l&Ķ>ǜ^.A H5fnm3q5hm벋R5֦[7'hwegIaΤugmfSmY=Pθ۪.{ƶnbޮ5 m"aM0m#l# 7*_z7egz&Ƭ5*e5뉂\ endstream endobj 7886 0 obj << /Length 2353 /Filter /FlateDecode >> stream xr}BP3dCvNlfqaYS_sp@ Ż&pp9.no|kQ,xʊ˛ ,UzqY+*[oRdʌ.h}"Oz[++iYb}ѼmȒjvĶՒ'zI]0~\lR|Jw`v.;Z8\? 5`-eKi+{]3"xY<]Lz#-7R,3~t!+  G`˕YC*t 'v4hpgPwImTюv Θ^0>$ n6M޿]8ώwqWαsr$|Hj~v-y<&I wM3n:i\6N%fP'pTh8/h4;~ @糐;|[IڮxƏ+ СvVsgghnXcQ0!R&Yє'Mmڇ;4hi48glw1"]KU oM^Ia:&C-eR¹3[DЖmy ֟۲h$H*t';>Np ,%7uMθƍ8FEt@G'0]=jLs3zL4 pdӡpkETDʖPd ɶwOc(u8Er ITQ5aXr6Pc&U\ t"DS߿wa`2I ĸn>Dh42R1g3fLH+) Ң,NE1)+"swQ Nөиqbs ,.AjܠĘ"Ɠ0i9whJPLMEAn[,eYf=1T\00b_}IiG$@6!{.A!E# D㰷 k("#rͲ"j&΋׈ZY|f\Z|1~]:8.pZg9!? 6e4U8Jo!.:ഐ栟`s,gRW{U.{bs8LjCh̊@sRf:.-Lʸs&4, c,͇]ж&@XtS5@C}vu} }+Cj!-:`1̕#/oQ CQlF?.1LLAB5b)!I,Ɩu賸R09ők5MNUagƙ{7P/U>^Q 1qH#y6XbwΓRGA[/ K# rOSq(XQq'ay:mx:b<[ް:q_^ue1 65I J("5vSfZ%Mgbt ",P2i>]ʸweGjЖCA8K"w xzp%+F[],EoEʣص-*Gh#-ߕK'uoh[<A LG)!?ǃ{k*_xrƽM(E&Ըt@qoGpRܐ!Գv'G&8xWD/4/vOm}wV}vg5m]w6/wk@Kϯ~Pf"4'd ȱƣ"Lu\iޠ]aP5 bfLdN,7 A dSy^v$YէHEϧ* ǀ0rɜH${Q2J*s~T'a.?7HPB% MX dpB0ӳ)boO;r't(|1NY He~FeJjͫJï@]ozIR+> +/}aFc h^h6J+1_hEh:)Z8SD~9:)vx'; wJrNC=),tUaJ=oD'Rj0 endstream endobj 7893 0 obj << /Length 2396 /Filter /FlateDecode >> stream xZIϯБrE0LC*LM%d3~ظ V<A-/6x?# $Ni!B Ō/׋EwW4"1ZTOŒƟlWlSI[{]__$I1T fʤ!vdMb1J8'z_Iطr1ߖGY׵%Gq_GX LXQkDeTEmy}V ;T>2-_B4b* Ҡ M-v7rYk7ͺG y+4+AH>̉q:_'6/CB*IOJc1CbX~[)$[{J:4FLr?-"lȱlH"뒋(76+-"_!K*(2^Hʁx`/pjIz?Ŕ-Z{z>TM򔞣MZmZ1JTI+~ػy^=|ܳq% dd$kמA- M}w &uH9"A[BlDQ%g&?+ KZD }Y7UPX) z*+B 4DySƐXS11ñ7?L"K,<4Za—C^M{_Gv~ώM^dAѭ009ؚ' bkP?%2m´؉Tb'qbaX ²܉(VU`U4cW`pB0_{k^POmZ ۅ2:dKmЋG$qdBdPP&Ăֱ )j=4qշa .R7&I@jas4a.Gw8WȖ8wNbCSԻIy9> :"kO"a=Nuk0v}l!Cf0p&s0~[ 准_xI@H!ߋqj茕VEaɬ*M?J\Ħ.C H%"xyIk^r >֘wRo b#C%v0jg])bꩬ|UOu9bXmW1-~Z-LG( anhTG9鱤MQA)Kw&SM 6YJ<{{E>Y:+ >5zKs0z!6F,Ğ. e"x7 YZ F@ڃMuH SS磪S7pҧ˥^u3qgڕfKH/iOa $8V߱"Qp%bwNc`onS5}7vXE(9̦2]a F!,gzGM\,M:{'jH s^PKZSg[ƒ/? Zl@DMzy@\f㠩tBa*>[4ƖrGN "{nAܫA.iUF9}\O $uPsԧ3 jXn6`O!TI˃nE)'hWg(ŕ[aJz ⌹!k~lWCbo(Tm))P>:̱f4,Guk iZ8gzܷ8f;߲IZ XF҇%z6~Up V&-P6m"ɉGk ۽Q w 43\tI`N%ӖrKcZXUi ԙc/` LE0;Y\JMm<=8Pr2C'nwGFQ6PH#17,6!@vD"5`7`7̛,^s xN8 cEn"}YlDbW@:8CG'!WU}̗ &}hs_.薖liE2m5%]4< $!|+54Eg顦p,<Ώ bT.hK<`E92 endstream endobj 7899 0 obj << /Length 2865 /Filter /FlateDecode >> stream xZߓ~߿bqj"𸷕\K)3ap_lfru/6HB_w"yIny~Ò8Orvs{F'YysWlۿK#Tϱ4Nf&y gEx(Cwű;Teo-_IO,g:NUjq27af|9 bnPW7 ?\|Hye5%Q{>d67E28IB2f1ˍ'o63[RZnWe%LׇvZx gx>V -ݐ&4 (+Malg7-jUYRYhC/}h"b3iwʼn$N}[/#&*$jonm8} ͮ|} w ֙ln&@[p78W`=غqN%k﷧9-͸072Q.Q $f_z3]aIraX1]Xi~rk zRf,yn#zso}f6֧zWTX7? Ƕ8肠8S@x<}t[װ/mZM\䗑+PWc0"NX( h2wm7M$NxᡡKdWJǡ=̻!8\>J[/%IApZd[ٵ۾,FӞvm4bFa.KX\H\W s&Z@0^`EF:Ǚd'y=9Q끄ph;HbK~LoEQ< Ȇ{2̅/m2=M30_npְ&K#gUEKO4YØHdz~m+"UcZn 5޼6;@u֬ni ̪-SU%SCb !5/㢝5s uk3k^JNJSUvjIYs%I%~j]܍+xos#8LL\7ͨL4 !US <`6Ƙ[-㭥Q4@Fiyqkzi!B|?tEe Fi={t^í=61r]X򕥅Y`a]410{Bͼ'ChErE\3&{%!P(xRMF5E! P11CP: leoQ!dUlnH`{{ j^:TT0V&!ʹIMXLvNjp-Tf {6;;Z'5`3"C|C4=+9eM <Mc g=@C^‘Sn]wY-&15[ǧfS?C':/>F nVÀXN4RHO}_]{zy (gMQppwZ}_2xkMG2NSatg˜vD]Eܹm-)rC|ʶH՟HжN'EkoےbΝNcXHX͟|(i6c<)d&8ڷ+7M-HVS<&: \ǢXg#ͪl^hx>&j!Zb~- 'uߠ4(ӯnv^BO. 8k b&oȫRo ݜG2ܶKTg|Q; i4o^[ѱRڛH2E'Ӊ O0{JcK3eJRm {nM{t״ivX\ն*@mEfr 8\8`f)ѼZc3d*=d7v*4ĦOy&1Pg -x52 %Ǽ s;U㲠!羝Fʧ.gi "lRw,S\ ?S|Vg`~x ȯ*u$4'$+ ܩ+̽M2禺~>\^,ΖqŦ"fw|? ϬH>* .q?߾/Z endstream endobj 7905 0 obj << /Length 2830 /Filter /FlateDecode >> stream xڽZ[s۸~ϯ#Չ rۧft̎v;eN)%%;ίsxK&88|Pڭzç$]Xq!WW+V&Ev[?nI$RXoɣχ#h-^}A~X*T,@Z#z;MO?$I6I,LZ׿+>Id" ת@itiqLH je?|1S#`"m!,:{ޱv+a?J$yHu=knُ K#8(AӠ^,chTIqw 'FIu)§B+9xmUvaEʹ;8Hgk𰵷9Kg;[Xc ЊzЉ :TrpXUj(#g"< wnmPoc%G?c#t91^d^_mnp(̧@y7^b=Gq̭WƧny<b{*ݜ }q x_aw !0q7K|$Qlx',Vs%]gK&/J߼ 3pL)ǰXE .ߴn*1pzF\@q>ҎQE}HtcH 7{qw!1#/"Q`Q3!рٸGC^G%q-=s!Ћ E<`0, HBf+Mʅ 'lp.p ^Þ2~AQƌ<Ա<|K2OGZɻgh۝cPi$5oao宬}0(o-"|Z}}pr8@VG'Ȑ)p);}3U$y rNJv~]uD8`iI2ՕB1hDdJ\U/:nqYغ Fldk99C^n<3sqt"aoa=>+:o,:)w! V/ 0_uf<[7rzk}m;U`'Lja2mJA*.Qh(/V0W{]otf:'9Zժ@ O!|S&|phF[= {J1]ݔ;_5CS\D;٣阵a#'| ~ nk© {oPYuP ڡn_ sMql}~qۂ6P3sy?q0}QO6u @rІaD"kGJdF.v)H&&<2E eZYư…9e`Qb&_FZo< S$^LR`"M Zw)e5! ͕$-vܰ-*efPaeG<[ $BT<ɚ-H{ZB!Z HkE)ĚC%hC+$T ,8f\sY&OӜ8\4's+$rlPf>ULi8lp4 ^pi<'yNyNyN.>I|Nrs Uv>G9UW lgqgn&i].Τ^΍F3͍?V4Xײv1idTO_qu SRmz|ChjF `I`jo˺AHS0%t&_ީ0L22X=.| /Ng6 QSlb-\#gx#lDwFOMnT] )3S0i9)v'`zZEU'0ک N~nwڻ!eYgv~VKk'Pձn~Kl11"M|UUJvU@W5Wg&z{<t@NJuTTFB?HĘ}>/{6#cMcsܡeGtQe;&I4S@=(^-lmS}O`"$d2viMA[jt(uEdXfv=~i)6E Rڮ+vW o4#z_]db[Z̶88V,>bhwG5 2'< G!y s?$EmϑXn0ۡǟ?ջ?ѣ endstream endobj 7911 0 obj << /Length 2500 /Filter /FlateDecode >> stream xڽY[oܺ~ϯط@HS@P$+{HugC]M>hЗHù~3Í7wx7zH7K5%Rn2fNiW}Vv)UŭeUydE_/u}wIYiќea2L%_r"YmhI3$h/;a_tQW[} 1&L k~L%⬿]"iB(+yPNBa=9RaU~I}Xw[r&[\sܢ] 3C"b\\?u.99ש+V\ʰ$5/TKлKiRmXh蝫R/AHpDIaQP[ xlJ_k/!b%"y3lyP"L; XҜi|(Jmu|*L!")_#Dj bLbq"13a"8aSѹ,]T1=}8D5bb_p݊8a.|ObFȿO#Mַ4DȦ-.ن3B&Ϲ1]੐2 5n;Ąq{dj+GzI$ /0Lr57ٝw]݄Ay;dYp䦬%v(74"` rO2&DOe箮eeHSM+"&Fmq )!Cu.܏ںrLeۨ>G:p0uQrOK ꆞi羗>kVc!%Z*HVֳ{CxĀM$紫]H2FEV}*؃sr_~>eMV  q(aetZ#7wH(9OtztCBgCIu2kXB0J[HQ J(\SW,L~:y2L@r;&/@VGK&O/kvƥh4AvFafmn%szBӹrؗBDY5,uNɧ 5  CC+`ʃa!X&KfU΢؃Li`eOh!R? &1灜%8%˾+ySf'+BB?a)76 p7Y1dh XbfXWNo"Ma\3:WxvB:y萬o&=@/i|.T\{_т,f(1*3r#(ũ̯Yk4Wza$ˆT J݁1S)kOE.ʿߡX9B$M_I&so1ʃOi|Eܸ|_rEj\uA|4vPb vek8uδj*+ԳpfJX76 JE`k~+)f>d`P j:X#ZvW+^yHpd #cA4a<8V*#JLJlPܠuIo@64A9SV/0}Mw2ˈAJF(,"$j^wgǣcM;0Pşհaaბ+j;[+x j1t|2NXyXBz ʖT~Xs4BKvKa\b[…2!oӽZSIǓKEbbPV}<@\iS(=2򽋨֢ۆ,>a,V8'10z`piF@-%p#@E .ImΒ axjNL,[PtHȗ
.h5D$ #7ɵ/wMfYo?x>T+,q8x RJ/ ؀Y]>ȀcغA%=vuu*J_]1}'׬-]dL旸M)~v Hh<\Ux Xcg7SRT,U|ڤ=sNoq fU +12&=L}.ɻc_@V> 'w26} {!DCq[ 67odNd$ՌrrppL MOW~Zt7, endstream endobj 7806 0 obj << /Type /ObjStm /N 100 /First 977 /Length 1843 /Filter /FlateDecode >> stream xڽZKo7ϯ1Y*8 k`˃D _Q#x-MkjHzwj!QsBRȜ}C.D "R|<ġd_M`̶ЪL0B% U} Q5PR?;KQ;bv>_V'ìTVj,1\J߯/)˟1g3f gTf>+׶ wX 9ur fn~#E:fb#J3 n.TsIqJ!7T$ ]S~;cas ~s!e-0g J`#5w G>[j- T5pfh0I~+[øt+1؍aظp烩Yh> }A~.FS(}]r#`%wxZ E (u4@80b~|c ,m%lN3 0WV%د}_Yg.+i[- OY.oVw[Nry}ˏW^% t+i|&7X _ {CbWv.op.;G$71CJ̀Fl|o?aǫ߆Wggzx3׻?n5 \z!^~Vէ×q-=Da9`m>]<352t0C5DPw_rC 0 ᧛%@=w@믍^1|->}񉦉_Oo3Kul#AN6sEɓA_^JaB(cؔ(jubèU#vzBf*jٷ*;^ o1H\(f̢?/f;Q .rWީagq6Rö5lon۔ߓ3 XEJ2xGdPN\Q{"2l2䛪:ȖtȖˀ6\ن[pXBe+vbߕӒV6d7Ȧ8?h 1vwÐo19(M`uw1Fɕ32eZ endstream endobj 7919 0 obj << /Length 1992 /Filter /FlateDecode >> stream xY[4~_m/x  .ZmF&Girߙ8)ZxiۙyW_}싻gJpT++W'zu_^6oT$9[oMoL"?d:jMoD_drݷ%)X fzƽX n73Sꇺ? R,NdO871W;z;tծ-ފ =3z7Źh")R Gs)kys9Fx=R{S[d7z>G@mRd#ӱ׺9_Kx#ij0Ӡ[2ULM%b) C&z՞Qr[LN|W4{Zz5Cahr*D^JŤ]H GA(}&gV/6DQX&FO{#6R3c짵QW*[sV [kß[Y vhl[UE-vA?)~0 `;s%ʎ=x/JM]p\pj0ϿwYMe;ǽ@Š>ǷeFÄ@%pyJQ9$A!&Ug)%?50п;qP91AyP(\[AcQU>sw~>90a 3Σe+zfQ_AޖoX0 K&LcΉI:4tRmYVXL<[[]T1~ψ$˥8(*U\Iu#ý?,<.p*HxZ͏ʀNA&LKLsG_j+z͆Y9ũ--1Y:$CkO(̐~ f|C`񘜫ÄRz2i7 -R Q01 σ _2)"Ε: bȯq:p_w}@Rg&T6(Xm }rH)Zbky')ì#Yqͅ.+G8$G Kh,X0zF> 8dlz - #|#<v 'xZWH x'%8R_x|WW@6_džL 0҅j8''4TF0 B\ء'b1frFo{$V@?,Xtedk {ssa{_"uz^CS%<`c=1`/CEΛ@dђ 4 !2—_)"v|&a ]֛ZjqF^F :RKdfĕ'ĎLSeU>B66c%= IRh%2bs!ѕ.- igp ib]9ÆJxSA׹yu\lY͎9ɶ2?)ȀNlx̝J^t7-9}dSAľ  m3t`EY60U IZOӦFC=G|7s?*.,X,{7ZTc endstream endobj 7928 0 obj << /Length 3227 /Filter /FlateDecode >> stream xڝZmo~b?ZH~^C $.") zWU Ik; =Rp8/ mhݟn}*7qQon6QF:7?Iۻ~wImn(Rc7Ix?|tV4rZY\jʇ7[U/}Ӡ{i\Y52z bzŒvuaX0"{an7DX;,JBI0IMҹʡ*hR6iM 7' 1ڟL#2fL:["W/it;I/HW8霟~8Q<6 nƺv4u )r?ūTM5ie\-=^8T˝< xGW"F(c|^wNBL+ 1o;kGc/Bz mFUNd^S Y{Zg:LPiF>l*=,q1K* Ltۄfde6^Fn=]bomE {k(:*M?¡{h\S}BgtU5- ` ǵa~B`u%"8<{WғI ",]vזdڝI:'qC̮ #ܵ j ؠZnq^\Zͮ, L3_;5f90T{h@C$O"nҟ+B)!.`pi z iO?P]l4Lf׫|a E"ul^eN\Mcw0cisI|UF 鿎23A '`D*Ü2.wsћ22LM-\_9?Խ+ '^G$l$oJ tAajK#D+.qNJ$`ddA~OV]*~Cy }믰פ}5TapO lMy6aVpv_Ǿ{Ï@izp$ \)hCp,Nt<'gvH= @B$N!f .LOb/=ma&mYR:{*[-Sƿ鑾w9\nU.!5(dfݢth,spj ZYy.P\r1+]"G71)r;^>tIޱɧ.>#S.B>Vq5wqU\R'5aF7tX:jNG~CE4CVf O]5`E":IC=LOztTSy P̂ZaeutX<_Wc)r_a")0r(ò47'n 9+]W{s+@1sIhLEԉZ1'{|p)eLT|HN+^CҼ xo3(_'+蝠S %de|Ry"^^qKہ*繁lR/`vSf૊bb xS 隽xw[?E8&`vReI}(p*sR[^DhC:izL/j.uUW*AZ9dнՖZ{Z$A2%*k0e<בR:n8Q*H̷hE:&ĎrH4+*\1A~gle9!U,\a8yfY|;A`1;Hy{@Nc]o'PVx #ThbO:~jEدLC>)IC" N|f'! aϋ\A1{> stream xXK6WTJˇG=nmvK,6m%Cn%^9b1 gy36ŷ/駱q,,% ~9{n]/ ~'r.W"/׸zDt fb;@C*T/{}&~TdK*[r],`Gpa g'V0R\M]yr(R J(Z!px.?Hc6|Re쏨n9O} =\qo7YCG\槤@0x,iaB\=.$YQTfSOI'd?+C+A r̭;#fXYխ7GOL#9L*LGreY'MatՕ6ʯ'2HZ'8Oy xG7S =C@!g^jiu^c3Ygc-s=)墭˚Ʋd'q56m-ڮրcE},/S]q{t?Wt2E#-j|&A6eI:+Ֆ6Y]{w有Ǖֺ5HybYQ)ju*V58~ NF;eUȣ0-ڊcthZz4:_)2qCdC3!z󽱂|tx2Xͺiisq̼.RTe(JM N1z*u0YdgCBL'rxZcGOve:)#cEUOϋ Fk'%x+4(B'FCQd6Xu.G8v !xOʥ@[j< ]]Ce2h:\ 0tStCޘ$/h-ȔYȶ͠PcG)GvOꚾ^4PX^pm0 XZAɡ!NT0 d}d&'aKesHMUyQ@@ze)lQ=´2yo @I!%vjojV=vXMS@\khJ"o@_.[ڴxy_rе6k|D]Vg[(xd.5ȰC%"یu^]/N^u\iAdH-:@rB`Xm{?7߾'*FW A'b`Q,Ml#sJx-c?Mc]WHemaW43fF/'[ }êu~jtg%cq`,Xk ~J^sO`#1`X^Cow푆p8zC>$ ry1GO\a qW#m",zEs/;y?Nƚ_iA endstream endobj 7944 0 obj << /Length 1523 /Filter /FlateDecode >> stream xXKo6W,-=AӦh5C%BI =E{g8#ʩ$zǙ!?~o;eo~.6MlR?(\NG۷?{B`ZjU7KD>鎌MOB׷7+U!]o sT!N_Bﶨ3,xzC/ dW}Gmlyw~U4XK:pV8%bhn4QMإ.;e9VkQ_2ƃDXp U\ZP*$c g1qil6Pdn "~ݶ @p,5W 5sJSJMwR}ہ ԅ˞d I`%e ޮxm#x;<&A[Vy!VBEBV Wd%jG R:L7~YfO#R`?I'>qd}]A`@aCݒ(Sv|W22Xt"^\8tݿcKs~/,d([Ydg@#_YAe#MpR3AyG')|M㈆ӻIϨ9BS؊T+)LJ]!|ߤ<04 B!kݯC$C8FOYzDQ>CUDL^]/쩁 0GiSAlyd=^-L NcXrꇶN[͝qkgx&!Wxx K=Pz/#Q/|I:̛'~(M]p+r#V̢I& mjfiI:%Opl`WeknI\[[ \nzRh>IKЫ8HR=3sOdbAsUSZpq'GvAX$3b^j0C13ss+bFg< f>NP}0G" g)~PXO["ZLr h W'|h[€#,P\hPZ}"3/b_}))%%O4j*D̉aYVA&:x35[74C=8ȑI|E$"j.KlzWY03 ϫ`Uz4q`! *r"b/ ȶ_!. k(twuBI}:LG4 n 'M> stream xڝXY6~ϯ0$#J )R(nbA,E9(Yjnvcș椢"Z|컫g'BFbjE"Rj=xӇθe$IGby|qV]e[x[^}2QY #ISzyJa<]1qllSŪ^)Qpo )M^LQ5nĒYǓ59&q*2%˫Ժj۹W񨮹3eߙ=O&,)^dPR-BTy,IWNכʸg0Qƶ4-ֺDޟ ;v޴imݸD8lh7_T)C :/R yQHlWڡ 2lN"8Lâ Hkoܕf)C l`!s˃Rɝ)&5akBIݜf{bc9HZ[v ]_cMQVaXB1L N(2M,W7,HA_rmـ)rdjp 2 nТEt;3]jO 45;OCDg>%cj0Yz3`8AƂ;49ghXQ UOZiߵG<|o}ci< !_{>sB&.^2& 0YvT-[=B3#X!Esxw9Qybc[`x\H* RhEWݾ5 `aЀ 4xEB I]~$l |,uO?V GF#{!2Li <_Qv3^3ߜP29遹/Еlњlp*@Ϝ)wrfa4c.2&'ͶZ9(9wmݒBT>Uv绩qhU[u RpD NW$ΰ8&R{H$}2 v+^#r& EB) 1^nF#h)̈́\A5/;x,䴾JiJo|6&ԭ1ռޢ(ߎ4 1fA$* Qqm[a[[o l""hu[Oɳyjs{gj}SeH7raż:{)9 70 >/`COKte8<*O%xz=(u8wnʪijO}9SȢ:W?p4MW"'.R(=)6*SN \zz1ב"OU9?i +8}ow#sGujx> stream xڥVQo0~WD4U1%6tڴևmāhfCMK@@{@ww}wwV;|x{w> i};< ^~la0Y?;k)F`h;G^[gPVȾ41~1L0="KbcgOr~<>,XgV!LBdkA30&=GTbtfLxD2gD'$rxX\%o>\_@4/(}U\ies o{)vH3Jdy\gXҬHQVg{t}=H2,%ȔUȃ04b#9S۰X,IV *9]{K^O{z})㨢޵U2"*eg y) wmX%%`&bUhi@`:~EBlY ZevOK h卵#؜bC&d\ 7ϡ`U]3i61_n l -ql2|,0#y`tWkQgPhSPǺ;Bv)O3"ׯ ! GťQM M;s=2{dOyCWC7B󕰰극&_U j endstream endobj 7959 0 obj << /Length 548 /Filter /FlateDecode >> stream xV0+8j!ꩍjV=BqT Yk0Fj<7f<fo|#N"׈F7s%Dz 4兦1ئޅR:UY_x[?$_ aW0T߆A(O=@-y$'!^"tiP<,+ɭy]ׁ w?~\RvHtP 09-0<ںp~wp^ ^*c.VъRXrjմjh%#Qayhq+sƶG=#+ qIR5hzXGָ-W!DBĤ+GaOW:\^Ry\x2)uOHN s~# 嘈Y5mTT.gkXI7ߍCWtZhnD.Ap0nt\iܴlj^֛0DEɟիu(]s_A'IqmIХ=<M|^g{gOdc endstream endobj 7963 0 obj << /Length 1631 /Filter /FlateDecode >> stream xڍXIs6Whr2LH&Cid=4&!c..}{x@by[/W?n>т{,"yR-vP+^(yΙTj TDw~q!Wk7Oy';>۱m5LIKxm^~,m물w "*nU3o2kK ӫy]yKtv}ABU\ӵӤrIW7maE(X|\SR,)~)kfu$'o,4^'K3T]Z*AJ").4~|q|֠JV5N?Ў%Ɋca5Cݩv|.R&F2Mc̽eK1/L% >\-ۃ"dzG˖M:+)4Ey.ܶԩMZ7N3krVu)]Ԃx!<ϨU(լdڐ,m̳Cf6|}8$C״E!mfHx i1/UO=ɳ;;/%& 0BӬLl # y˪q>J gm#s'a (w0M_VE);'Cfv-U\G?lZjBn|B_g}{`}1Je DPc!<*w^8Fll۟jCZϔC]+rc%=(+۱*To4yrif[ԞrJ%lktHLlEvlv~KxX0kt!k3AٺrӾ+ ) |+4l5j:lX> stream xY[ۺ~ϯ\^DQJчvqRhO@bA˲-Ķ Iޤ(;!%+$b:~sb?ÛJ/g/a0raxx?=U\)reL|<-e֖iirOZß>">$Ղe*J l/VʙjR]Rioi8K{8mE~z`l-Wik2=YEŜT=uUi~_Qc{9}ݜOK%p8,su3u_x{:خgz5KְZQdYN4=2u N'`uNXՠ9 &V6sthEV+]T`P+)OT}@ӌ ߵ=5{*o9P@b TxzrTK\c+f&PSLf\5`d<{mi39"2" "VeFyĪF߁X%'.Hv,`S5=-UjW|t7հf8nRpo[a+"鲡Oh 8TJ5wpA,%&7txRq" d O>)`3 rrh˘)nU>5=VE)ɓ%z)g5pԞ[}+[@[J{e1IW6-qH)ɀ[C&Ӻ,͓sۜ9mXs o=P [B80mt\(|gl`zL Պh_'4N2ϓYdIqQ-+XIqK)ò]Ê~Np/?&j9F:<ft lriFNz >oBٹC׷y`405M.Pq;!2lߝO ͍ȿ_巳RLzqOu# X6 C_nji;vY;<Uc1C3ݣr'j\j4W"c2SLl+7 Ӕa٭U揑U/AFf XuQY!_iw/Kr >ӭpg~:I+@KSsZI&-i$1](Kسm!E_8,20a&#dS>0I_hީ 5U %sYx ="i>#U:\*๙{;rW~уVeЦ"= ~G[BBYW \|{lroBRkfnIQ3|k] hn &SoN`*@6q*ܲi>)'K`h.AoC <~,_/* 9XM)rPAbo/t*]:9SͰrCs5:FEQZg8lsߴxKp`Zi2Η tft+ L̠ ŧa8 &x}%XmO | Lʁ;|=e|΁Zc9LUh!=>r#"3&q Z1Mۺi0 P"J1nw;Wζk Py_0S}N[>d7|9 7KsKJv}hhsiEi#N=/DⓋ:,`&Vx3 H<2ƯRPC/.vxpARohtp7ZrijC#][I>yg&ңK-~t".sE=7qhzH2%n ;4=-^.}>-JҗٚuބBX USF%ݵov}AkRh79r~Fwsjb,<[w2lLU )>*N\I.S # Z)93LB.5 F :Uծ,&B~d訷 [3dCU.S 4> stream xڽX_o6ϧ02(tƲv֗l/2ECCx,JE`_/~ٌ~dlvS>Kxv"{E`>txs\a'qF-3|E̻s"G`gP8CbS\U X~M"O}li?_0^;Vo6^I{[u̓Η)Q* "ݔ&قJ~}czº#Oª>NO8Ra m"<9Q@DքV.` , &g>^>Nٸ{0CJ;VT-^tP{ՀiOw"T$cG:E&šv8+U >m7!jLl!&4 C'*N >\hA 2Ey4tCt%Vs5g~X:Jux=F_wdu _f uYޣZWeOu^ۑV HR;:c,Pr} űP%>Wh" p[edT04]1\Μ4$dT{6a0QXP8][H 5: |.6f.(4Ѝ SU/Z+FÔiRgҜgЋlƍ5ըQW - wݠ8Ri$&!pW@Ef{>UvAd|eOPPc1}վp6UQRݵ{кrL^`zaǽOQ^9zf|Mk f=–6`%hP{k!- G8%Cܦq*F"i,׿@ipXiZAo]*@ *8ڑ#X(zß{t@hAdjۿY#z3cOk  ITڨ'"ScXM30}/3av)TN..”mcCu= GXq0Id9BY ř n/;{B0Z#L{GڏYp3lS!늵⻅u J2SA12 oJM(/ bњҮ`VeD=,nA6n+ =fS|gZw,񉻕N@jx@A@Ra1$6>ͱvnДew -ǛY1b%#6ZRlA*`!BGqd!)1pԬI@EJ$*Psh iuUH7$NrrNImu$=p"}>AEeTkD܊'Vup![LRWQ)QiWkܿu!71W-"rXdM8X6t '%( CFK[ wMb5EHj¨GdT "<:GGS8laBT<I63]F%M_/3U{ ZD Vs=Rj“,G"pJ/*\S}`ufyBd1xcsu:q`ӅNr&iWl96(x&Ns)}vV)폇!Wxڔew& endstream endobj 7986 0 obj << /Length 3385 /Filter /FlateDecode >> stream xZKs6WHUiA-SN9XCP#rK_h)4q/C_ݘb__7o{+ $\qd:M;qش1͘NFr6+vmm" z[}ٻb _ˏ 6UkQBzEpU< AbՂzm^c97&Ǣ(ph;,}0WB L;CG twcc0/2y L/'L4:ƭAhQ&WI_QcgL@dQ|wո}ZELfzpDkӽbf`]~rR+jvniŠEGGQr `j֭3n]*u\Xxaնkw B w@!Dʨy3=[*jo9HԇsEYuqd\2NI))C+u[`_%g:ɪ‡mgD't[ɬq($J Ԟm.!lT2(?`x3V:'X2Fi_8gLkm,cya*k9 |)a`jMDJ*}Y Z KLSN-nGs~;Zj״~(1H:nUU)%~\DD*FhE@HOI&qoJmy; T8ь֦KcL7Vy;ȣኄ[˽HI$=[L{ Rg8inL|l-đ{*]3M]ծlBŊ__vHc}ͺ1[W4hdMwym k)xU|vēI0(^ \eR<1\fe?Xmv,h8)JWc=v>,=w?!0'M⻶tZNb=͕RF>AʏCWly0MбPJY @ ;a5o =Jel(5I`wnn.%-rIPEŕCڰ,݌{t;U8z">DiXHOѮ*1-b9@&u>ÎSrpr!㙀s\&\3 MĤ&[ uY#+a4W)jCkm '#,$aq:j2T[*^MJٽ v4!9DkhW` %^q#M\g dydݺj:1/xYt&_zqJ-)7Jwi8 Yr~HM t&CUe ` I=5z )||#5+2SLd^Sa~= ;Դ3fXl7]an_IEe_BK'A\Pw[_Rl.d[gWrF6ta"rO"vm129ۯ.ٝ}Y9_n7v8<6?Mo'2㽈;>A wM,M@q p:#@B ,<ւ)T9kM3 ߏG{S *q4gsN܄kIa* 8YMfb{ܡiWjH Ʒ?rMeG_eHfgH!|?^4MHL8@vIjxK&_@ʃ)`ХUתlH:OC8IDak[?%bsf0xq3r2@ahWq<"n!i09c•ב3 O.:ctAID4g`pLRKMU3pL=)dP-Sy̸I=DOC9ZUjbAPԕ+ 'zƂĽSB]0p#YKKPΣ@!ݛVl`Ћ\Gߛ1QJ7f`?մ!9X[k_<Ż󧬔`> stream xڵZYܶ~ׯGNJId*S~S*!'<,)>}ǘ+KvAƇnx8W/W:>Daytx|:ꐆYX~.mZ{* ~fQe?eݞqx<]=^Cqm~T^Qt5tq֋PrY:_AO* 7߯ 7nPw(Py1< }{OewՍ<&g;}z?r?k@̹M&(q_dSQRa/8(*`ۍ6nb#'1m lc~h:|HEAnl,./AtjO]ohp Iu8}+/&14Qcm-mEZnj*'W,{IacC(dqCDieM v8+Q{Lau@&;p03+;VF:}CÞ}ˤJ]M9eh6=iI`)b]nCsHy1bڊl¿b؞MBϷ 9^Xn)@%IB$Oc_vvl0?\Je(ОdeG,` ]9;ƍRNW ?) \8x{=BHyxԫE<^ [˷NLgg\Cq\fUca?1p"aoa C}j**wxGO'Gͬ,e<7 U=^X#߶{Q$hXY`Ȼ{8yX\*۠E>:KW5I$I5 %sd`p,[OėM9 6?n郎0rЖ,2R7K1`ot%5-cKZ[E1oQԷt&pDm.~8f\dL* kƽ륶8O}w.2QC]Y;4xvpAWo`X>Πr1;4ЪlES#n;l Iqڑ)lJW-Rh(.uf1lal*T{soݟ8hހϻ +E0 TxwKٝɲ+%~/zMW0!Zt}c}~/gp}M.;a(k=qqp0 Qnowwy.+\EX%Ω]]m|Q)RgbG":6{sF߅nd9(W|a䧙Ka,8,ocqև >WpaߚG&3Ѣk wEbofz7@i`~G?UJϋ:/vc8iN0X*k ~Q]l|ՋÏ$R֛Pq FIzP{2q}_\o_=Iěc7%VmS!l> d>_.*dh=9Qde{NLjh$Ŋđ8WF \)F!tBu`ZH[Are`@Dbsf ĢZ] B/@wUIdۺ 6;+Cn!Ngb{kX%.INLϪY}h&M]Loҭ]6q׎"h3Ss$4愧{ s|Za}H3Q( پN« u3.?w_%<Չ`lNr^yĥ4 ~ꗚ|B ^w7Σ|G  Z*Rk_+PND!8W .<OTע-PC#HtlChךZ#4(dpt>/4t \N#N% v'ߔp"CFuuٶn'2,&`9ug`I>Ni1 LA.tv|nz>"˄թnr[ ƞRzX0N{8Pw_E{lI9^қ2PHC)7ܴQR9]j,.wƻzl%wJVޱJ(ڏnt;5FMV@QVu{>`Pk ZmC`FQU (cCa\LJ7!z] }pG:C ^3\i ٢',),l^JdӐ̮lAf؂Rf8Hҧ,~6u€|vI`S &:JMW QRC5LXEh"x'Ip:SQ6j$&c^Ԝ -I2;@Pm_ ]RL)I-^q>at>$&%\u}]4bH.;Ƣ󹼿5}:Y0q~ z "64&Yt ^rOuG߲e=m\F+!MlKNYUҙ,r.jȅ|# %rah)0Yw0iwUF<1ְ1Zc06pcS]cwG wu7v4 2c=XyX*+Z F~8Mur0mSA\[iJ' |?P: endstream endobj 7999 0 obj << /Length 1273 /Filter /FlateDecode >> stream xڥW[D~_a-Br $T*>tQ4't}+gΜ3v% W?,/ ]́mǓ$ B|Kq2HDR NjPkeEl@pSZM 7ɬqY0dg.ցdΟ2TuCM^< */J4HPM&^Z@P9ˮ囮mWp|e6H6H\!9qB [\fpjqeˏ s_=t3tFVL$oRMZmvoVrΛh&ri8TZͨ]/ra r[*.Stj3y9⑬3۔Gns]}ǪoULs}Vf#q )nGKzcB:+d{?2t)-! ~ѪB4~L(ufoHmhs*?g6]N,}캲{<4+\hƵ)AεHAL;Zev2?^fLS>sԎ>YլuT䪓Ԙ~dkKOH'+Wڡ!|C=^߇V?c+19`k؎˓?" 1MkU~^Q<3}3} L> stream xXr6)44C& A&mgZ$[q! P⸝{X"eiOKp؟o]ru-%%-n!<[ܬEWT4JEY&Ewͽʣ+dzwWr[/y{yS%@z?N\ҩ}  I(γ- /ڪqģϕЇd6iS?ϭ %9CRo&$?_i6£HAp '=1 $B?GĽֵr+uC|OP۝gji0 ƎǤ痾&PY3+T~vkݒyjyi⹒+mQaip+1^~8^m|;~gNO;_x|i:×xm3Ghao=hY?Fj7CRy[_~rݾo>-t>i9e,wh2z2\qg^̘gb߳7/.NwI=>[k7 w1-ћeFV{]434\zش#' ol{^te9 ^ 0;5O;m;Z_Ohdm w+oBclAF/,S|Lq]^ቕ5$442^F& lȽ Rk\6<=z^km%}-$OdI~Ns\ll1gQ9sك&\espy-V:t2ALXןy Le hrNW`J#?Um4 A(Vvk;ma\[P ?Wւۑh9"Q8xK3 8^Vz0,D!t,01"CZ,"sqt~)Dp0F5mpz 3'I2(Øܶ;ɴ| \k'R 8(Djwr0ymCb) zmShmZuNie=.kZ_Ct=# =B>7V+#EM.mchP YS$* ƅ`-"#I.Cf![OE!v"bs-8j;0i))g LkegC އb*u籲$ILoY.' >:*[K0UOt؟o endstream endobj 8011 0 obj << /Length 2695 /Filter /FlateDecode >> stream xڽZo߿oU1)B \E6o@[8[J3R_m/9|84_V|w{6NWbu2p˸JVwOqJx~jLJZKLһc'/UvR`j&z_l-,^L凫ult[^W6EF`m1QEYM^?ϒ&"/J[|R:z:y]ʇⷬ-*RVz9NFsWO0Fyf4l&$uD#OT'# ˡ# 4pit[1q7쳴JL'0)cm@hJeC$ ^d,L!cWnH9HlYKMv8~/áBm5| mc8` f,0{8rpgY"RYpDZZ(#>&ʩS`jCV-ZD;ٻIK&tipO|}KKe~]7~Ӭuǜ>fd`AI9C0D_b DXR)Ħ`TD:X&Li}~?fݡ]@H4ߪ( @"KeX,tr @MQ*2@~ ^HR{FPQ-(ԟz1Nk ).{ދ#f6dxrNbz4°Gم_2lcȟ\4dԞjӇTF8A[u e.&;PgfZѸHSJ9ƥn:]TR+ׂӚ0ziͤ/oXUWMxy, ŲtȠ*ęKzOI#SR=K0 #?^:fЮ=ӣxgfmFS~͞z +bn<'~%J.;\3 |1<(!0G"}Q}kt`I3nih&l@dyRv&jSѬ )Ov.h!DHMR 4ak4hݧc,rU$jV$$;>v!5)pN5f)JXvZ(_(3nl v y<}]y}lRRchb:+¶'qKmVK"kpTe%y3rھ5hSJd"f½g [P'۩3X0#RAIz¹k$y)n` 1q#d&Shq08#D*A [J8OA`'|~;B8C!PhxgqF +Y'E>"b^"HbE,CN~̗h㏁#Qew1Bur ٯU`r3!p5'|?[H@` )lH=ElNXp@:BДP?6/̆&{D}ez4[IG#b$NC(4 }k;d"SLJ2`D-7JpMP>8 z5B83eN# ݥ/$$eJ8Yߊ BI!K99+t+W&>;zvMEYpԉOZ=P)CLOZ[b;x4 zfcq/m`P3|"NaVaZ{@uGU/- ^LO♵=cl*31T;-"2rTj:"wC#}OA-CQ?M.D 45෌#ΗIWj:fr(u͙5KN$K)B^Ԇ,g~FIab~]xZ.脥V\AX !> stream xڥZY~_q\+TIq*v2UySS Iק"F ū*^Er[ejŹY=lW/ۻu$:N즪ث{Z.ޞw~뷟T1D)$h$pԇؑZkE&uٶ;X;(n;g0:̅=" 9&&p 6?Įt3l 7Pt&<55?xp\R h´#cSTG*ۼuu\bcC+#ph #p0k6 >oap\^kKq K;C&}Ht6WɊ*us;?;ق% 1AGЏѶY,і{4ܭ,y〰S줺 G$B^9*f.[֟0vΝg}ؗ&>F)\2qW:r^ ;!b P{8Rne.ޘ6tQ\B=I(!V .Ij*,`l MgTݜ-^1;Q7tzW\*w3ky(ׅBӉx(ǜ!5%/ :W⠋@MH (ۯ\ o,zw9BhgBBlqu&QU_ض`־T` Ey߱7湯NU7 8A4[j mfY:®#qҵ!) >'Sȋ9?^ oZB!HfǀzQiuSLG&'K锔1$it(X_2zZt EI]5}+T(9{ '1+  Q"$UOμ; #SdDPMpjV1?7}r|էG_ 3gn^` Au[UOMT@`ЈL71Orir QY"46m d 0$ վ{ZQgo'/iǒGS?6d5%}Й$H'xpM=%'"OQgӴi|y(,-$l#悄 -1OM_tĄ7zP"c #c5f@w#9d3I:#aUe3EPeg%4~7Z/8v$]I {x k| X.!&#]<쿃X?Y d–y]4KHZA-xl0Z L#q4AB,ɧ&Qk>hƴw0Z #|Xi3T kXHa`j__hZa@=ش@~ '{gOFR 1s;l8~vE.:Ut,uor=DS,Q2K_q9cfFC_Ls Q#atsT6*MBi sH=Oac+1"2Ev! Ua uk Nd ޣ |&R3δm[Jas`$ޱQ,By|(>3ӱR+^&F16=7ޟMf皹?p!BR7/Vq&YBߺ16G'֑gAkh6x;鍚>8L,>8ѯ%6̟^e)N+u[J `Ss);kSD?5$vQ3=7>4.PUo?.<uD<= W> stream xڽZKs-M TٛC┊hhϐ ɑV0+;Ux5~Mrn}1-oTInn7EzS$6NLvsGs_%2muYnMmV+U^H}]##ӚOUP ;sw41YW~CW5t)ǔ%u_z"Y TFxFגv7qJǙS:z٤ETî;`zkƩ<.u]ןecu~T뚢+kWt7jQF/9dnah-d)[~m򙶡C}!3H(=d:j@:&uƺz|yv`xlUT +\ilq/cw]ǬS'#GM q\;JqRac`g<롻zԸBsR ̈9LîoǮP@EL7?˨fgұQ1=4tVsB+}(8B % ICs0bbh(* q_% 2XiU8h<.xᤂ=8&XMX .}Irܼ2HЈێ52J" ,gNg[@x맦 L7{@ÛE#=ejEtjDm>Z i31x剉~ #gBz#p}6¡&Wt*\$JWG@xHW]DY3bh9 UȽDw񯐒.,ECIv2'ZHk¶"SuFk*Jy궻<<KۡFiw6SNrؘ?]&NJOƋav $[GR gbwǸpwC^CAVݣԤ(pS>8Mq|8ٯh%|{An2 \4N@GBw*0gC>a$=ܪ)*c*vTQ9mժW"Fn낤Ki$kC :bf]&}8R(ƻs +tB `~ײ6r ';vӞY./U\ǂ aW`vH7r&2_-JrIgT,\/Z@- {RX|BsO^s- Ȅt9hMI-4)Tr`.*rӥN>Z=R*NÙr)̃Tm&^ V?uݬj.K[ Z2WM| V !tO &N_yYX=lنJ{n<ׄ:1J֊mɔ8eqx܊Ckel%+'F@2ր 0DzM m2@Qq2lƤ:Wc-8=1>Rg^_˳#©r>V\N˯,u :}}ݹ Bt-T(AtڿY;o9dC:1o eH9fW,5leJ͡"~' \SDd 7}K9-б 1 xA bMeOE .޼#&Ɨ"XKy5Bٓҧs5 x`*;D!^ϓ2P0Etlse8ߖT%T%o>k>3[oC޽JfIj2:Q֘/0#78\آE:ѳʑ%p+#ݭl > stream xڭ[[o~P4@;)(nEA.V#{겎{xX38VO#9VMpAd01LL;a]GH3$6 e~ G1ˆ%:z-iGPQ <]X.$$4b }Xi7.;PFQ,4S9zH,CE+C@RB1D%E;HYZQŅw'pqbs%Ҙ,CHK9J6 =]lYlO٧1D]n#t`1L7Ed}I^nʐjn{8ֳ O7 PDqwL=]$o_11@d=EB|E"Iu2LYM쓭29> }%%3qprMejbNjK珏dEKSE^ H`~U@@2Lj Ӕs B"LI@@ dD.iZZLsтSU(@y@F"d}-(o^F PbD2"FyPO| pNᾺ<$#wtwۈGd5J,><$_@ ZD2B|-u3n{!˜pIQ*d!! %h|O'3K"s$!$3߅rgMa2>qU2p߅4z='cO$rN1t30c2ļm:>IbK !d~tѓG4\&_g Coi΄2>M*Pi S Қ3hf-7h1}_ I˜݀Y AP@ eD.7kAZpY, A-L(#ZtY ZLFR7luM-X("/cPb%H>BVkؚZ-c6Mio3\g,}pjꇯɇn)'scGukRLGkmﴬ=BhD"i{RqB89c͹o'{uhl+sYܜۼ(/wWTn%&]'̀+rmR _}2kF0',cpw\QZ*N: [%j05U}ܻJkg>\GW-2?m9v/+c1dTA;BJ;5?$~|yXOen^p;GhJQ0}6>F:Z#w5W0hm uW]U.~d`Ľi:q1ȫq3h2 u|< oûy}Zj6nbd992]|ME] zHq͡@O"ڷ-v|SZ֗9Z,jC̥ $:4'"֠!E#:gL`<0}b$?7keGTT|CfHFY39 O1+*̤ ;9H|zӾ5D m4P|iݟV3ze-^Pd~Ovna4~R@®D4f.2F{iU>ڹl,mZ[HrL]Z0@91erΎi:nPuVw:@{+qtXl 7nآ0nk#y C] ?{X`̓^KŚwOef@4$R%Vh6z**},H(H}?„ujU/p&=UM{i*ٻ'a*zl[E"fnRwR>7nh<^ ǂ-ݴ endstream endobj 8031 0 obj << /Length 2297 /Filter /FlateDecode >> stream xڽYmo_ m{K"v)ܹumыQ pWzFp($v|9% >3櫻_}wOV'bu[E*1*X]gOF|3n, Zf|fӾoϫJY5.j6b>o7-'yH vިPxMKOMڏuzzk?ʜ:Oj]xh&$ Zm^"(rjՍ&LKb鎞EרI_̥~o֛@D^zUEUW/m}fGjd_Ht -eg$ WB$|I\|Ї~].A xE-AP)'Թl8 E.]TMRN1:o3'OrH[{5m,jZυaOqg4D'&h.ck>7d3[/ױ4qġ$g MfD:eA1Ga`vM[A5ĢPD\{Z!XU!<' ۂZ^2+=]](#`J˲Iow= KbK3]@"2v|vnS}"f@*'m^ nwFek:4Y}s(ҷX[:Z653Fl. QiT y] 5ǖa)|/PB#l ]!%rZ Hnv@-ɏJ2.m=LMXl#<WWuZ3kq2 7Q8Kc؏;`oE@wWT/TJPa:b|>VX1i -JfE,Eg뽦()!?aj!i"%eJ4RJI grDٵX_ ^x^&r_vЎh|oMiO m`<:UBَS{3➮&bT8LFmnKt}շXn_hPk-OB0vwjcjF @R|a%@U 'XhJُg|% -hD#_eE\>JqB/W?$_sL`;Ep*xBz]1A C*B$`1@Lz]I%Wmt@kmH 6€5~<( 76+~nOwc%?C }sX⫯>h8sqS|ʭxg}|_fq٘ifpDjq&_)DȔsaW껎_w>_~OOdDO0 yѱe^Ük_-۵" _bd:"' iPS`ld:iVc:>4>LeMg'ķ&Z endstream endobj 7916 0 obj << /Type /ObjStm /N 100 /First 978 /Length 1658 /Filter /FlateDecode >> stream xZK7 W^dQ|HZ hrhCF4XߏrkNhf(--BiTe B6A8$pu*A4')TvLv (:"us;I Hm## _-1wQlf@swJ5 FXu s*!SWL̕C!GRy-!k1jAc7f &*殸aWL&SǢ (xǵ!TmT,Q, r.+;ȂԗQF"ҝР"RF; h!jnA פ|m i=0j] J=j-&PpW V9j$m@ҠE, & », ŕ3EX}.gX"Bgۀ90Œz@j!@Y>B4*,.rȤ{p;QW-|}u|'~œAIe FWa:n`U)}l'ϮQ4!Ƃ<-HAUMcְ LY+<&Q}ּ٘f,"dG`7f8n њ?`Pv2k2F>EWaFiNI6M'j5U9BN_́.F#S.fl&/xiFӗfysB愢'IKRp\ɇ;AԶ2=-d;1!Q̺d܏VO{UCTS~=&Dܽ=0@> stream xڵZmo8_O XSHEŶ=Pl%Vr6w{fHʖlƉ]'J9|p^h͈~zzR$ MG j4]>/nӻ6'b)DcNyy_ E,&_?IB0 GQk}3=G:b#&=1ԣW:ZǟG$}C#8s1tkHÌ=B` J&^l S *6u4YJp-4sC2#q9x GjNG SJxƾhEm%wwΧٙ7@*ohYtWgɫ*T͞m:[`ILىVZrASGEB/i|@`\?4q|׏}Sf GkcMV`TjYB =\͐ߞ8aj] Z/dz C>ej SDTCg3``X< *Dd׎{$ }rܒ $*!@T&jE'bV'Df%Gf|?8كQ)QbViB9Rk[waۇ X中jǫ!<8|H(TN÷D-'|7O0~0}*Y]Uʴ3fA%es++m6(*国{+}mkͻKf=vmhUȡr#-6u?Vt.ȄBmV4i0:h'Xe![kity|=6F.\`^<B>-V~y,fM{W\+#l'cDB|PJ]3+xkeC]Dָfi2kO8~<e/^`Z5ewjHb uvY9J>SzW:kWy=-f2o(dmuwB-& ppQx fN x :$r\ww(tZ\Ɔh/q!0ty˳ogw_l_; 2JJT fd|7㪋Lw aLvWw!nemAb[YxR )ѩWߊ~o7t{,U bkPHPAkPŪ[7u@D:nfrAnܻaʦ>eȼ$)C" O>rX9vl)}3=O endstream endobj 8045 0 obj << /Length 1783 /Filter /FlateDecode >> stream xڥko6{/w Hfː%Cm¥e&&D (YfHyv'?{3Ldgd~3I$)a4&^ϸryBr2 8Kh{j:D䕺a/d]ˇk>Н‘7kSˊ,$Ɉ,%2w)MUx  L,YEq+*6͵G:-@׽+;BVfZ곔 Y:GeNO~X9Y\}8עO'_2AJ F8֋h$,??da'ͳpw6::b@gWN.f SQ3 !4/o d, X`fͺ XkKOgtOq*W,H"mΜ{9X+署N/aA@ u BW jXNӞ"ZOE}Fp#D"(,0mpsJ'nvx| *Cz͜x_T?flKmԫ11cY|nBY Ь-*i; s%J6 kU):W7zG]`蛎YoYk@ aAAx3xx:X9!K=5˵up{1s2ŠJתi- Y+m8ۇϲ(m*1eP%X,qy&%T(,B4 I5@)! j;LZ aȑƝ% ZmFB/q@k9u{sOnrQԆ3=1@AWM88M5a1Vmqk B_x.LjYN6c' !N Yc!KSM4W*wɠx+i$njqec/Qsx3 q*sC̊ibuY:[m3HRv+^-%]s@Wm)BF.Pnle2;*6c:NSt6z:QUug}' pv=w^Aە HjFU[ȡ~ խ3lCm4+=z&!31]EW*cOdd|"JQͼ;mKWЀͩC}1jPMf մ#ʱfV7p#csqlESh~Րas P:u/7ےϐNfHtD>%ūrs |:;[]{NpdEoHXnAڑr@07HS:/fǢ8> 6s%{ӅSP>of'=Ƒ0avF!"2v0mMW/=ٿjv;j*k:-r;D M26#pJxNAYdDF0? a, zY8GQn-~PTRA%m9n-J;}l%a=},ĘCm0& PG'" IL|$NQh mPm&Ebt,DD,-woHݸ!>6{ݵ=_&Y!֑qwŨ6jY?/[$ l?Qp endstream endobj 8051 0 obj << /Length 1541 /Filter /FlateDecode >> stream xڭXQ6~ϯ@D6ZM{UwZ :;ny؍Ǟ7Ϧ֡ϳVot%! 8s Y%ΝEuz/8G|TR̽MgV wBYh?~} Jd>`tpŵԌZ(g)Q2DV+6W'EYGu#6ö٧`rv N9Uv)mU}[=Rw5ź&6&oe_;R̍쓱zXXrjcNn:-OB8mh^{CǍ%ecbzP^aYB0ma8e(oFhK{ݭyHPR}\> *LtJ4n1嵙rŴgSE'NQ)uE)tնtfVq8,'wZa_lpcIƜ 2:bSö ^Y^+q{rJml"'t?f4ÀwJuuLFx8Fr0σJ9zR" ;5 3֓ƀ,zOpsg7gJhNȖegB;Ԥ>$_`O(R<Kmx1x{;O[pgk&\6? ҆QVܻ5vP{ `áz3`q{ ܸ"+&Eۘ_ a 5w"ݳ5OC]^c$'2~AZ.g@̀! cwͥKrCꡨAmvCO[@,o`mABF\ =H/ ]V-Dm_\vȡuimw~ᝃs :2ITWj뀼V>TUߦInBs2!"Y}zJƏ\Cӻ#Ǟ `B9> stream xڝX[۶~?BRU$3m&j'C;Nl"!sHB)woH<X`o VUoD* "(aE, IWg?ay&ޮ/4j~= |X֛0RYSAM$a I&=Do4y9EXݫ0i@'cyDUDj}4qkچ:5ԟרmEOqRiȄa3c;mՠ{^M+nf5OO$^̄*k.]P:zzd[q'.Q杺&Ū(({L͔R'⢘` OAսY *z}zЙt8Gj gpUsEME$dpRhgTWd+gU]Nnນqc[Օncg}; <bGBFƅ 2кBkq\˂"O ny*U640#Co(*oy! {< pJRC37 ?k 綪I@l뉗ika*\YXa8O#) (K/0A{)z pS:N2(]=_y:I9, [");s lDc=5 _sy㏝0EX|?s魺ͅoa~)8v,O <-_` ~CuvR%pD"LCA/alo6ш]kZCCO }:Oɠ ܱ(E L ܲeQr8E^#J#aI$5-N`8ST=:PX]}gr)BBU{n4J3팚zoVL L1)E:ieJ'%O/QRtdW{X;ʤr4gy> 0w %5ʊ#&x!I090CcrLH;;Bޏ(8)/iI=0sYWqv/pazB~ű5fy("_U?:7U215tj>Ks NKnj؉zBV1n%~l'\gAĊh0$kqǥ U5V_c89$F~h0:[iukdK!Hw̤](DQ3W;Y>xH ?]%w X]tc ?D24@/uY@u7"}WKL>*?z5ca=IoK )/\Ω|1+Ox/a(0FXp*hCj "@zָM=ۡ< B+^Wf6μ_E¾]sqD OP\'^V<| r?ˋAx&e6`qZ d,non]LTBV TSp嵉qui*o@8NM6~9i!S> stream xڭYYo~Gu0-l N`j[KI1Sul"bUbUOyDo|s$ETaMa'X;cLp˲7/ + =6&(A=y&`Х)I R: u9bV`tAI֨tx, [CMiwoӵO;u?^)he %}O>̊2?a랿@8k*͂lwIRX-i2Z9rF Ve˃!n\7'/ko1MÑtG'i_aaz q`+4їmn}U~ۙ?N@Kw5tXצ{7:#WEX˹v-FD9٧yIowZjuh爹oN64̠s_WiSfx?F*̤XAxzj 'rȳ/Ri1F \Je {d-ͺ^\ਂTtLp䣒g5Kpju"7 /0){}p\ʯڧ qX#; &u&ΦpRuㅁp]r8I+0髣& ^T2i)tj(H,S$͎b {TIuܿz @3g<, +NSQXLg^'oNuV/% cϥG~%pD5d w*͟p-OWũBãY@ &~o;J8 F0.E*AEML哄>'rC~3(exYn7֛7/Xtˀa!GB:_uEŨ6P(X.8WοRRsi>4|?'^ }C|AAg *fxIï wN>X I~Mh:HyWN=L~'TҭPJșV #$qcylQe,5hI8'GPjH՜w,⍙wP3z\&Bw7|R endstream endobj 8067 0 obj << /Length 1920 /Filter /FlateDecode >> stream xWYoF~ϯ#D4oQiS 1 E>4"WyuMY6jX^/ůNN]}+ot|(s\<] v>BVDxR ZiUF{jYr+?t gp!p^ӵO^3woӹ@s= >ԭ59i9۬>ѨޝmQMn*cnyThVFkon_~dW)rƚz#'[ɝbhDQB;1j|V }|?_Sz]eu~.ITJJy;a9MNxvN vͭPK{j/_C3Bk,0['&L pc?aK[-Թ4P%PX8,B|Gv ֎&#ȋk]o"7 ax P RI2k66arxt\L`b0-X ;Z5l -Kh,%͎R'< -{i3W\TT5X Ǫzq&g#)ȉqb{lI] VL#@5 _GЊ7$ ¨ÒsԣM?XsԀwG٘kY#@6kgYNk5㌁V\7x$ѫu؀~rK}/rc,iע0{LEa$Z {Put{Ŗ(Y!j,[V+Q9n@F㳫00 9Z8>)t7`W6ۢn@Vv̵Lq>6L 1hX(:g?>$kDH5'i>sWA%JPh@( zPo;9=tGdT]}j4`)$ (II*yQkj|Xexk+< %lJh91)M{P !5; ?:Xێ =Iq|~B݁u3C8\2 0jdNd$ U@_T/f8qJi?k pØfBUv6F ]I>3}* n.#G+,ROO?^C sS gWjh(?LS}woڷ$ʸj ۵RO^UT[m;*C`p[.K& _ڎ-2Y\ g%諭 c\H,IK!6Ѿ;vl5śc>VHxa<6ʫxXbb7r/2Qu61d{l|hV,M0to'Uٿi'JlpV NG&ޤqnL4|Ueb]N˺BN,HEvu LV= } &Ew_ήB endstream endobj 8071 0 obj << /Length 2881 /Filter /FlateDecode >> stream xڥZIWH F4Ud ӈ0 ! D H7S%j{-h6yWd0r?nlQF&6Nť/NkQYm@?{W? xғO\mso|zITx38U$l_LBNGMr^>Vl9,˔sv؋CݙHg s7U\ duq.9 J >%&iPx|.O\]~Ex=Fo< 섭-1"TNN:AE8x0aneFYtp-vvIkqhmt*z~:6Uՠ0>i?EIULU84`s8ݑrŽ۪@N_H$өMiyYUTZopP~kT&[Tt ׶M .cK!UX쟙ܾiyx5Ehe٠ %͸,KDy@Lqf/U,|"i# N_g<էR[wW|yi;w;+E DNίTЊo Ui@־f:h ʑ˅n8o(ȿ\41ᲧO&=ꩨ~,;u·bȱRdCxzw˦h Na'1cnKqOϢ)L!{PSWq]vÓeQI @Xa\BY:t.C #ecGaE%+Em=X_Y:YJV n޽3q5K43ȈSh9Qn`*!BFyC21\U-Sw e~M~ǘ W^9Yx)GD n*@PǀQ2zLsB]eQ+A^jNO{J.]Y>DKn _C_$O `7]8 <4Tw,B~=N&e H>/RoloBAJoٴA)[= a|ɺ/'IE8̴PkaHvn{*1>Nչz7d8Og Ѯ0 uŇ[-uhR}kFiŕCRr?!>nvB5!`{/xKNX2[ZZ%LʯKTlL/J ?Ď1oF2fIC&S;hEa.K`OkB"?I( SC&"8IW@I9E8> <Յ)2q!MFa2 MB3mه!+Ӈ0zsD:>K1ؾtGgзT*P^f8&&6J가i [|?z70>J"pI^l|0V P@i#x%Y)nqV[ zTlLVt#,!<27[ѩλL %FFq&Po`EN<U;N}8FCWTOw rP@Qa+S@mT-mU}бT_v,'~f~*NXp޳n 9`aY:Ƿr:2g<Ovک TCԉ|ݜ1zB6kU* ,~zïK&<X\1\\ u0Xe2/I!m~:l/M:I˦14899USQjU3 |E[=eWO|ހ,7Ur;RD|N{y+FlܶbtC5#dgn}cG.EDߋ/;Uֆzc[7>磨" VU˷}͜;ʟ_d endstream endobj 8076 0 obj << /Length 1075 /Filter /FlateDecode >> stream xڭVn8}W2udofE"AKMT ,ߗCR6mK˙33##g 珋7AYN8 {("srd<x C%xGLN=ǡ4P8t`űcWQ+VfJ\1)SRv81TK8"ijpԮMg$a!º a/6z۔[Sd 3CGF{`NܓKK$ CVww9DGcJT?I[U0`)^ tC$!`R+7(J.u/o>؛$a͏dʩ|{}fN ZCM+Pd E? Oӯ&W k-,7\[H!*+qxmˊE+|+}&Hl BUMp1HnO$3W=S>i^l>{Gc-:GũhRS&o +LbOpG8ٶfW0^w5]R[^ߥT9+'V12xذuƟb|7{Y"^ 3Z\@2VR %m^HZ-8}ß+3U/fw6Bw"hhzf*Eٺȫ.%0B "rp!}w_">KyU^lmQ)Oz)iM׊>hd R4=Ov=|O?ϖw_׳_>] 9|m!id.%b-HPm>F3a<=h"%M_='xݽ=YVVc N*Qf<~c9DKY} :}/QF#5U#KIq+gxֺ'o#B]ah|-E%!NԲqiJgi,:Qvg>kJfe3C#ꑋ!3v{{xaS*vM˲*<[+;!s}jUn<F)]&{'lq˒W endstream endobj 8081 0 obj << /Length 2101 /Filter /FlateDecode >> stream xYK۸WHU apsN)RUI!΁CRw(RERtAP#y_r"FC?h]EZQW+Iz(V wa(uq "6f-L,-VÎZgz(&Rq `uT"'ȔdL#}GLV0\C΅ ~>VuAh?˂I۩.몲RjK3 nkNԡJК]ILHm8Uyg E$q!D0vv&o~P # \  YXm#|LТp`{D€ԫpx),P/+ﰯh.?U }{8bI]5OdW%FF"(lO$".SM}kw(p T45kw?JGdXUf=6 ෪)Z\jr${ iJ"qNzD$hUف~s?ov41bf'xRmKLۡ FO1dOK&Xɿ q(}Is55(p_VsL>D}{P2Q(5ʋ8>ZȾD*ZR"ˤw,.t='?O,;q7b$q:%U'z)h*a;Z Xyreyd(R{(֞n xK"/YRG,NN[4#AyM K[Xwym &D߈W{>neUk !B0׶ L섣 N@^As_4qŧfZAbg{ONm`Xi"3 ȇ%xD;@y(}A 4xDiۍVwl/bn|K^UhJy ^CU[tZf=` 1WLtm}#!eFk~p 3+M60SKy } z f"*c i&5tr z_z z:e9Eoy~9K0@ 3!)Ov| ,UOB ǰ/e\u6lnK%ɃH$];tAvNX-||u+BeD.@AyꁚS=gvL@ Ur " B̽ mZr=%-٪2RU@p[.=&1 Rq=5CE/wײ'逄X˖?mS,~ZR@46s8E |5]8@{o.[v V=gOm:7zzHn/|+G4[st/%-2W(3ס1&t 2~16ki :5sİ3Gv q/D}2)=-mo@rXL=9M \ nr_}wXWu١ݕ >c h{>@6nH|wfڅҒO7eB'g/0b_чM;K1]xk1f>Gj(1Ȏ^N&{rtpUumo :0OD=r,VW2m=(pcr?ڌ}=u廞h*8B h(Ɏ^309.5˻1җl0uSA];{ʑ%=gi]t:U~*[9/r}q ńGƨ(pQ,%q]Len|8"eꊖ_yN!M?m9^i$o.bїs=EcD^`Vf‰TĢߐRs0Y#y|s){u߿>/ z endstream endobj 8085 0 obj << /Length 1835 /Filter /FlateDecode >> stream xXK6QbZHQ-5EmS@S\*K(eC%KZ:4rI AEe-hH0BD $d|q]imY_tL.VqHϐ|Ur_ևlZ_ oΉl~DSVQJg g| #/ '***]8njC&Æ>S,:ʶF,K3bA{pmiZ@CQ$YQa'`Ă&r u:̔ZwՂ4L8aPɽܯnVUY@ʘ M#eVQ ㉁. %!(hIL0E3T- $K/~dae]׍ AIJ_ptV\1Ƃw;WU"}Ry1ھɮlCc퓃QLÍ{8aSc-#5 :;F~1 Lg3$)c3xFsxNx㞁,i5 GБstEÑC;Thyƭ'G #f0806pfLH?r剜8QAdAdUyDQGAdM7df"YY,[+4)͠xjr/?2ԀU}F A z_M*\^]]nq 􀭟f A?>-90t _Yujڧ-PB~旫.yןX,<5`,YT޵N23N &~&6܊np5ʑeE<oMǞwO*a7UXV<©KHq8ͭNc ~ RysRx(~UFAHw(0jv2WZ|܂n!esȁө2ʆ > Z $2sG,}SfT]jFitByW< hbd*e lci)*qːLםn%TrtHXȎs=0w92 pg)lֽw/ "!ٱ {*ЂxS v8v6Y=xY0V E|^$!Q8Xݍ&1,Ql-, 1GΜeꮗP{,&J8lE- G:/;(h%S)٤-(z޾ J%C1R1C') +CR#Pd^:U..* 7g(O![f Ķ,. sGlP}m:w5~ԢxM`p0=< >pkWg$6jr wLS9j/M.-x,ql@zi!F }A}:XQmx<7 3] i Wy3[;iy~u'd^6VL6Hܸ`>^׺U! Wvb sU ս)Y[$=fZJc%8mޚNc_?Hki4#8fvv/$NeOI4g?a9D Z/y"t[N_d); ,~x|Xf߂Z)[L̪.cp};myܘߏ5fy=p/[x 9C,$^_|]Ur^ ýo15-žAF;NM/[U8y}g2U! Ed_}*<} endstream endobj 8090 0 obj << /Length 2500 /Filter /FlateDecode >> stream xڭXYo~_@^,ԵYp쌱c!Kt71:::bR[^x}YQWU 6Mǻ߾ MYۇM"6I6?!?.IRيC^fwEp竼/QQ22 qջT~Oݏ*{i8hxtnw0*\.jίud@'M`}ϯمi A? Ymw]$"o7[}Nj.*^]|+܆FwTyDКRRkijA⇰ol pv:$8'=ݯj*,/ շkGʏYGBy{!RO` 8ÙHxSNCzv|a DGӎ=z8%wiLPmϡfg<6v"AzX[,|;vB74 @ͫT?ht0n=0-gx4 NC~o*3ؒޏy3'$]o L%BGqN xN1iU^i<=,5dY֓S66+M+SjugGVqljAՁQ}Ց$)&-8*J\F;3iՂ̵οbBiBفљ WՁMp)Y5~v7]&WWP%9Q`5NWDiEe Qp  9~ c"y<P] ct@C9DZXצqTajGMю]wpO& Tg[Ijcd'KSs3t+{B £ȥ9VRr~ bvO$ .HW n#[c#k'8tON`ʋN(cob,drSaH6a־76/k n0zc fC%"%"s]{Gz#+ZvLƸ]E©Cpx&B\ h=K%m,`J8ȅ2"9,ˮK4RVjDPF $djľ=+\^JV: e+5o%ÄvGX$`81A}A c-#JCVAF?cU2šNʊ JE5+k͊"t_+aCnAgx)-##nlnpeޯL^ e_#YX0 gJg% zKDW@[BƜ](EH\Z ;K4ԁN\T^,ڢ_Ф!'-:]XSqw!V(gN*q۱D6i8CmLAaP]7Hp&Q b9XßV/ƳP !?_rj6uT=hY[iˊpNNݳER%lI+y,XU#m-] ED> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ00Ҍ 2jAL,(虛ZB+g%甦jj$'藥ge؁L0435H(wvs BhClSJzS+y5 I endstream endobj 8103 0 obj << /Length 2184 /Filter /FlateDecode >> stream xڅXO ϧ^\˒uڷm]4k[d|"8X%#dw%O ?dK8lwU(d.PS{<5Rbd\xe}Ox1*(Ȫ2,J7bHp43]!zX #}9@v=gl$8䂁430ˡ4Kgϳ, 9wΐæ E0Trނ#<[ =;R=Նv&s-4EBZg(@ǰ=0@>:%aײvoۙ:ceQl_B3EK nμ0Ԙ9b,ۨٓ,Pt }$*H:"Ku`hנ~D[gIP y,ɖڄi5D٭)x0"7X_̸i_hz;~ߩj/HC!#x^UJ7ѠS#v?_v&D]g{x̭5,ES.T!:5-UP-5 ^l_|9ga0vٖvVX!: `nEiU%p+#7|v 2 ?* \Ds(Rť(D>_nKXnO~=VE' hW Y\`fTkvqb5[=IK_PY,|,P\* ږPS/>{0'| p?!Z􃍆_lx}G)7zL(#e.u)=б9p1 e췬xw fVU'1hC=A +0N> @ĺSr[)8ݼiVJQXA5x97 %4z\ Ų7qGC~ N_N_`}bc0,b@aynF%}<瘽k\0.ޣ݌%!??:q$,ߏO# endstream endobj 8116 0 obj << /Length 2240 /Filter /FlateDecode >> stream xڝXɒ6Wf*EpOD"|EJsd-D5˥XD./3l7uۏYINtss)MTq"~9qIf'k&0tзϻv'h}?QVg,1RRDmVE cru8t`gcyo<&76$GY='3vL);ǃ޳8\3)=@]*\(BDMemGe#w=*:=j`]c ZFAƟtCǰMhD|K~&"A(ۥ@բ oL`EiBM[KS Gd0d9s>vڛyNO+R"~n&Ö KwS Gn FRlwid@̄Ĺ sBkހcuΛVś??mE@)uc^j/ă#ynIVě7^/Dy6|Pa3l8J/ިenT?ayBStl843 neLV2փ&(1~ ,ad8K{~lUP+t$Q#ᜧ ysV~A W+>Yg=YF8g~RݱlA+>Edi9-a2AG;S sWL$β ٵaI U78Sc y U;8oyWT "N3MrCP(. "I9EGrNؼUp ǣ_h[zê-`{^DVKft;` E\?ְRf4PskLe(vWIL'ф(+'5VFYgNjeV#c+r E|w9N^c@ OVPxUFaJq K?_0#coHoWZ3/Y,39y˵ |{ [}nO# vZYrQ0.l۫15| +Zbޒl:Ϟ \7zګv@DDd۪tдP>vx5 t__~V+t we@M!eO\2.5fE9cfrp6KItvagPgEtR5s,-fhz ʷV3^={_%# xΞM<qȿI>-\C'7`v "nBXl➰ޅ_'|߹ {Zq.N=zC6^6/goU`f~E=?-3 pD]WA1Bwpv\oPvo2ƷzXPګ:')n'5(/qs|t#CXk//._3#T𡗰 gq9C% q}=uPUZ;S8k=)cp'=*O8h)_p5?O* , SiF 6pn)[Hm kzj ͻmw endstream endobj 8132 0 obj << /Length 1883 /Filter /FlateDecode >> stream xXKs6W(̈́ IylӺ3oI0IBHЉdXrǷ~~5VqVQnv"YQFiٮ>50 c$7AQ?T=~JGCCw\n囿n~}{TӍ,svVfu9^="hU V"mVfX4]G,ġ abo53r˰/-.֠D1A\UaW0`a:K߁V'glݨMR4AAӄ#G$Kvpqztϩ=oeDe5[Al~6YdkFց3;b4]c "4W!?Z}|DV3Āp)ARI7 8GB[E=<$c|вLnE0%o }p+zi+p(Վ~wc_J;>uPV[[̇a(G8^`+/}}85a0Ǝ$fbF,u,rlkG Х cаKbO8w,ÊA`;Үt,uF,i1(*9`@ @U(O1A$274aC3 P0. o:QAbH$f{p e#kY^:n85pZ= xksM 18gQ2nO8yTavBA=aصHgƵđg^İGGN%`4f B:Ki\#Ӥ*#yUGxhEkpq%9vdۓk ji˄-+R--M(8rbwd8);/Aht- 9Y7b{2i"9hC"Z굀Ue 4[tnoG΍#c{}8e$-gnXGՖztzܝ5Ns$e2į>3 9$lhݑl$PmB uB/{(Ot%0Wi 92p=Pqf{8t@8XN!o jRZ%Y}^i$ @PXpBAp}O>hTKbm6hb̓(hmt`B*H侱tЂcWtyaHB8W,1@FwU=q$EŹځzO<au~VQ4vqCy=K[͖waRU>jU~: vr'VSkyl,m@sCյpeUw$t&- N+R:oNl߂* ˗&I!ݖm 1oAslw;\d|+Mq}gh7l,IjtRpYdOh+ƌQɃYt{UK^ubv4N&scMHS7c;-pBPr;g2lǦo4 endstream endobj 8140 0 obj << /Length 2184 /Filter /FlateDecode >> stream xڵMbLjGFH._ʦyU9x}Ђf,RVz}1)2E\'<>Xs񗧿> (4ApRӂ)!')4xR2e)V4CݵQw1-v7w;(wc[!7[$i3{oe'p 9[8Z@S돩dw"Ip =ᤩI6?%{rGb=z,)C* ;RDjZ(FMEi)L ?uw>bh\ѯuB~'Ɖy<-NJ t eZN.Pvn؍|j%}ԢB@ DF,#w48!iFj*)iD( EƑvqd¿w:կrQ =jȓ<`{R̈́TՏ'{$V!~&p>%i,$(O7mSbˏ[ea|k5GPE3%o~Ѱ7Akسj2 {%Ցc{HEh}=ɚMFF^;^ {EW Eula},%` Rq/wjFe:)N^̇ 兘hg*0yUs?^q1)\+.Q&*B9 Qtiy2#WSNr$n\lM V"(pVL)M%EQ:jK7mN֯FP#Y8PwE%k%kt/a2&Z}_Wl`_ق_ӖuWv*>qE/*8#5r6ji "-Φé)RBǛ1v1@*-VbP>Mo/^Z^x~>@ }H4XcPdؖt9l>SoPvCyo,"[?MV'g0~8g^QIQq4~*QETy{A8CemEmHg)`\= Vz]o˻duFT8”pqw^Xz͚VKY KgA7Su[6c QE0M#[5D h5na4>b`2tvU?# Ww8)IInGv!,40-#DEG#/KZj^N>pc"íO 'shSԳǩR :41.g{T5)yY@{v:H G" eڹfU6D'I}Sѵ3=C |I1- C2d25\kdt8{#\eANXҁdZvGM qހ^*I& - |wNa8CucR ngTPP:Ia,a p%s3p69mn"7?h%#z V_' +eS2ԓ+ ?Dde燘;Ғl`;[q?l9E' /`\k+gzW~zV; endstream endobj 8147 0 obj << /Length 2330 /Filter /FlateDecode >> stream xڵXK۸WI\Eʩ6x9VefS,*ק_ ) nU.4@?twޥwTiW2TcbbTgC\Uutft}C:zvY4^1C^Eb==a.dZGU%JIekX+XIYXhꆾi\w]myA3rx6MCލzL$ԠȋHoVUA:|+2B>8/2/o|4F;_LwGFƈ{V*QjC"g]t eYbg 7S'[fۙ!3xiП /c124–"9w'~8w@O,첱FfA][աo** 2O'w6ʏ Gl (p6W5ntA`'`gyuOD% =$Ӭ}\5vH0 p #q~HR,X|pw`41bUPéZ8q4)Wq1J\P Q؟-p` ' ?d"eQj-4%(BCA큿ޠJE$ Aޤ]~ p( r1K]+Ӯf]=5f9>=E$fVr\rt(`-p`^8w> O([z)dh(*/{C SwY%[?t֍{.pV;p*NP!R,f`D4]LFDOPI$JY/Eh4t|gyoZeVa"jTJwDTRvWq'7wCs#@4"unl.O\Uy+Z`Uof P$oRE R vGLJz+XjVrϳ \_< iwsyd:x1h dσE3F=m NȬ ,Hovwua>qhsajf Ԁ `q%'#;:)6@&@? ,a#P.$>$Iwpđ% @'E-ځ* ,x %ZMC(V?(]II o9 zsu Uf{Ȓ!аPt 9MǻF2He'Q=T:bjYʧ*œl|з6~QjUKH$ \\;Āj - MWyo6v`׻f$f}INي7@Y`Cb ";S26:Y pկ@Ϋ%,@m,[|VG+ ;<׋6%\, X^0C'np {{FLM.O4qu{\-ؠ@6`!D?~9#6-7G$HZpPJ?WWDMwщd'o]bDtf bQzpU.*\Ԝ}O=rw7Eaokv׍t,?}$U{GLǝ*&ֻ+em]GnJx5!z1*cۭH!:}΢E~gb8 |[$Ȇ > stream xڽZɎ7+xL.k` `>$E`Fƴ[=>S.W5j J-T MKuIJX]!3,)dk PBI}54P*bQj]=լ@o oda2 RjĭU @/ aD^it 6Ng50U_ 6 !}a-[n-9<zeKb} %QTMpr|* Rj;5s*A\1B'Ӑ,0qÀOaҏVH͏3 $׆ jeXRPeAI8a588$DA c Zo9oR F*Sj53Lg`UM" 95P_I1$U2sB. eg.51_GS6ӹ.؈K)!t t r[dвtUM8Ҳ/H?E5vh,4ɓe8&aǟ/V緋OUd(/Ó'ayqCW<='wK'L|uzu˳|rWxb.<4XZ\~X]mBOOsAJX%F{$8lY!f퓸vʴp]pU\J"V1'STS; :8>tm:tnf7rdb7Y+,o__?]X>__~\]_/Ω?=i<Q<"K{NDH{Q{?߬Z_DNЊ381D!?s𨣊 E@*rjq1t܉?e13&9Ţj=Á9 {!TiAǗ#2PY2͇iX7ˁ#m|PyRѿyl/O%lFw댻pM!V&`#H2P$Y0PN BM#0xɘa-ꚍGN:KuFNf  !i"DD4ѲWTb҈ 6tp B٪F3$Az'Ll!<6SPگ>gf(^e69KU;ypvwJko7#ߍ~_tn)hL~ߗvi{tP69& DIc"m㯂n ۸۸۸mDpb{qw?Xcnۏij+~2EWX5ΆPdH-:p(la%NGmsVڂ9ǂ`` {n󯑈Ԃ!zЬyT9viya [dW.F3cx6hҲse៏='4??}B1[hD =P^nT~羝4B`m >mdp+̹Imz\o> :kM3ÂlR>~Xeר6<EAF(jNasv-{CG|*q: ]r$ endstream endobj 8154 0 obj << /Length 2239 /Filter /FlateDecode >> stream xڥXK ϯ-EQIT2ɤ*erefF:zcGC$?mΛh}s\ld$&7Y(ћ?[>C,I>6{L~mCew{iDCxFJhK%t\Ϧ""`quYk<>՟Dk`; g1{Et,;s`[h}oXAvWdR|Ii kH,7q&T)4-ڇsljmx-_6a/ ged먗#|s΀3댿m8i*h|輝 Ao}Aqq$Ox M>y|D>.a~]:B,#|jʐ ~"qb,48e8i)ŏ;h}2M(İ@aM 0ءu]n͒x$tgpu:giC#l֖ JN.듫²~U껅V'Kiڎ:ΑE ˜S߼ PSٰ+s|m)<t>QI0 Ց6ۤdq2-fa&^!d4cGi΂8cz>zljK5qS"jhJ`03Ml宮6x|9xl3b=c@iì /d_܄H4ʚ/'Z.O.FSu9f ΨLK9/45'M}TAu\Zr'/9c9>Z e$,u'KT>V2az1ıb98* p=D+wv} 2+<)LOp碮 Y ZY/nPT!pq $ 'PfΌ3J)|ḐSE{z{ro#/ú7g>DEP՜ϼ3GkWq1p{r}_qd}pl <@Us68>ѴpXtvUY 4-(b_9ýbޯԎ%mwh\WE&<*F13` CޭIɸc~poǴ E? 3>錵;>=QyD)<;X8&[s\1=AZ|Y7A5*Ͼ鳶o Y 2!}/ѵimh{n$$c'7OM w QBjɜ PoWo8E*;NG.l8/+kZZ QbӦLcƽEY(=7fY>Kg\҆I ^:|  /EsȜNS:@ Gjߧ> Ev4(A(Z 0+ ~r+Ue ٲ}iy9[JR OY`JNt}0E[ZtJG,6l|6fB>;xT7{^}x 7-RͫHRdx㲓;3 o?NAwxo>qgr` Mk 0V$T=dH< +@?8vL:|#"լ9?aiN_ܖVr萧^f0B֛jk\ߗ\ wnR9ZUG_V?a%l'$NCgP #'\#$> stream xڝYIsϯQ29\E2T*sz I)Rc;>"5],KׯhsD_>4QXEUy>ndSDeewY]mwA$wAQۧ`.Ʃ.eWÙ?[u% ov{cR/8ܧ{I w}5 EcA'aTm4 _$_,")]w@fucKYĭVs:jQ =bϻyZ<~9hOEշ^~l^Dpq̊՝YmT 4GHYdq{ ><ŒEDa1)"HaޚT.UVFtΘw. "r'`ξ$/Xs&gMt$I{qIi b PY=ZgCh(zɗlp")ar'ۏ5k/|t\酗8~8;M!ԫz.=o[2*-:i%8wnW[#axvP-G)Sa|b7uxv޳9/c5q,TmK ) [KPV)xcI8``8߾kDsd5d\ I}p?/f"ǫ0/n.8yD/"/kg4qlQ*L\)zLHx0\ZWt=Ϋ[׳y/;ͪ9G>:,L;J+4PJajF48,=PSհ*UWwZ`n%_Cwյw.arG#M:Lw[r,">š ~:%CgQڭ虱$IDtBfSz,5}بKZF~~Hnl4^9*eNlk,o%/Vx%=Z _!1A,]L8= 18eM,.f<}}0{[5+o82"\OVB"6THu<.\E dL+aT| +6r}jO$'ޘ 05*HqyϘd,¼L=4^,2M(aKr 3z{ZN3hYw8,+\qccI7Ÿz$L@173kF6 -U%į8Q.\dCT]8U(P! #?'[v#vܝZzL-Ʒ5r,3 `ΧlV7X_> А:0Ȳ4 \!rG`v<:iY|vCI='ʬ8R7[% ɴ3SY}^udRoL{KB`j2,ojD.v-5)$-~hm~zx!^4A#jI#}-A!A6jC-%Z~@]m)Jp&MTi$>> stream xڭY˖6Wh)jzg,:3S93$Bh[z8U@zO1)>@/.h\|ûG92Ia<7᧧<-=rp(HF/TE;QBWWcsRVwyNjT[q-%nvk͞Qn{YZYU 6 >2u}t'l0!X(yU[Wm^x] YZq`G݃L'=%\AΞ9\W=u2 ;aU3cAS(Ԝra{Wmp>Xkep?a" _20ǖNb_"BJCjF,?\+z˕CdJBh%"Nb UpjoPzm/0UBk|?jz,n}5\5 ܄ + Ւ`m4B֖Z,ɘ?97QfdPa&@6 $(u_PՅ)Нq?|ۦxMI( ~g@4 9ubLrjnXJR߸` BX~|>v ]sWMt2蠓(d<KvS~jИY%M`4NҺ jDա0ǟ,"1ej42db`C܆^5o͙Y aГC%Q==-Np(}`pb<|I8%t¾ Kg3qdlZ8a$K NPQ@. du%/-9%H $1 `w#=[/3gEEJOHFa zF_NR/L*glFD @4N;d z~xv` r?[һ VzU`%0+#|`-oJc5$won- e2$bFI@odԭ~=V,Y fB1q@tEZC@ vÑN‰˼M3kts=뿃3Rd^ =]"1 "tQO+HzdFz~N, |;ϒukQmo0bŜb6B rb{+LS0i̱PX;nJ3MZtZjG*`LRهorAI ʾP`LdNj_%OߵaXyP9ېWWg > stream xڽYKsϯQfON9dq*LXC Aڞ(R=ު$jo6OxO:ݨ8*Rmtف{z燾> A.78qDZQM.Vƶjx"ԈH&|VId,W̾'L[wDdt9fJn|O]S9H"=@x&AEyP dĊYʼSL%{c@H5rCO1oD!Σ+ur:S"2Ur`5߸9*t@ mZdKYWNffNR+isgV{>xqwr--sN{ZKx\/r`1, ac|. ]@I/BMgہ?{s/I];؂/.߸͊Cc8NfyYwR~4^sM6t)_x]n^1pr$&@D PNaM@5"D=C ./Ô(\*hEp!\t'ieE\< PpC8v3u3GYC؏w2=én;,Lql4=Wȇ/0Anze? [P~7qI(A } Xƹ jV S L~bHAٞQO4şb| rR\ 9g>02K烚de*~#דBEq/+o7 xQDYr|s6E/K UJ8keoMx6~ 0 Pk!bS0@ OPsZENDlji8Z-QAFBRCOD_[27qa#(F*)H䁆7D8H ɉ$؄Bk|6Ê44a .q$Xl?qSJ&aB 2zϔL2_^0PX,eGq9@ [1[g4(iGob}s6qGO`=Cʷ"CLƷ,dQ Ъ8BB)D(!/F"aS6a]@T^,QOVΤ?^Q`8P8Gc{[27?&,ri>+xa_(;E @&BI5̒Zp-okJ4#=ē_8ʮ(!Q0Q b"ž pYDP:JӐ) JxCw,St,-XxpBM?Gu/1D˂M *ܩ}/<`+AҰۢL<"V+:>Lz:IR3'4 KCMl]Xx3("\)g OfpuZybrc~ endstream endobj 8180 0 obj << /Length 1394 /Filter /FlateDecode >> stream xWK6-r1"%A{()➲A5Y4$jrHIjw-z0p8o>&|;VlhD~M$JfWo>qw\EȆMG$ ѵ0lC@nYoY4}/pVqiJzq;FO&4N>:ZUa+Y0pe+R i=)qj%Udlk<7uu(5XEGLHDdvi ef+A-gA3U#)8wN_PaרG0VXY Uf*cz$SC|>@2#] 7G PS[V6iHƾѯELLDhIN-zrJy1mϝ*$&y41ïbPD(0t^ ȌM#k0 ?r꿾5)l9k͚.ԅY.eWcMuY[fDC;sk5%^tpW TRgSyvu͡p_now'ͱ)w\O}Fܯw(}6G1_Ð/E銛(N{6|< endstream endobj 8185 0 obj << /Length 882 /Filter /FlateDecode >> stream xWMo0WpTiI۴L&[WULJɀI}ZYav1;#lA^ Ҋ|+l-R~U}7e#Xj*XV`m֋yN '7Ǖ)u~w`B8Z?(FJj< }uw"k+y&خ'?j=R-ABppG'K􄩄ېqQ -2 ut"Km/+z;Ru'IYlXJVy/ܘ]yjRM 3Ҽ1SjeىWeZ?aDb7c,!d>Pgb t *6;&{G)xCɟzZk=z}<0/L^Pl*ōKDžKՈ53FRL2DBB|\Qvjz| ]s?B#WGS5jl$CB|9AW 8SD9}0Ƅ#Dʵ,KW9Yz1IKw Qh GQ(:"d:F*'QSՄ|r{eL+חϊ^ON/dD/M d 9?ժ)2n4b2/˩8b}Tٺ> stream xڭMs6,Z'ݵtsIf`0cC 涿G8` ׋Gp'D'$z8DF+ї KO,ATюa$EbS8"!Tl~liNyednwLMudgEz,-V<ƒn2 3!$H$܆|xη;s%U|K61݇.3uK\7EcFywo]m.N1m-P}j[XE;ͽ-]~:kPЏ$aHpǵ(S4%fB6cvZ؇s S;]@dնk>ے M+W0Ray;Z$.h$逥-"}J Mk_eKZ*KGmu޶(SWeSOv`ؗ"v!=$oiSyۼnf5t-hV+|\5:7:qM!J @i'G` ėM.ꂝPʩa)/-'ª6HCu`_8B8@ `?# Y(ጸ c3M ch\ID_웈dmXe;Y[dB!~!_ zJ$+1ANUej~DL뉐3czAH"QͿS!f1ZF1Ǥ[𖉘1G/8c =+}QY{2!B veV"HdC/uqEo z}l^pP=,P";Lޱ8.~b2) R3gc,u($F\^Qlc5?N[&Oo 3zI8kS%T o}>[&b__/<^,8ALcz粆; e*&U^pP>AJ@v'sX}eǪ9ysP¾ \xT?C>4%tDc7o*u3uno`]0j7CvǚbZ\LQ__kT8wls+gί~QWr -ͫ·նs7*Ցjm?^zs7n%`Y4pz1f <^WhJ(Vùô-i͘{ۋSJcЈqD%d=HRLy̛]LAgp}# G uɟ'|p#j#!,|?2Ѓc1]b,AaYo?{3vQH^V.?`)c"tV [ 2:TE\2|k1VnbBl2~}˸q%@u$AX&Յ"TQ W3X :td,,f& W*ᄮݺ2~} ˨S;$JTb$.gW~2>MkN^Gt?ѾuEcvZVbq}2~x} t]p1:$Y H*`u얩X0bVɘ#i}EBT:P U2 GDk? endstream endobj 8196 0 obj << /Length 2641 /Filter /FlateDecode >> stream xڵZK -1O=r$IV6vjd+3,\, | hzZ?p2+Y3zخJxʸ6ol{VJERuOW.weSc{}|L5n_~YfcF|Tf\J#V%&Q a~-4\Y?u Cbsf*3P*㫵d8ggkq7%Xe2 &u*QBGI"[p톨nZ&jc -δ mnvo7RY yW7/Y Ω6ũ^bFg=r0lZiйl7db^;QGTUb?B鐷ނvlb@w x+ih˄X 4Lewݯʘޫ՗M"4R6 t'lhogd)d) >ZMP\݆?/<OLwL$R < XC.몬2q^@WK 6erGeYlIC&GC0 Yh6nC-:4o>$|2zzR@*h_>z >_~A!moRXԆ,J Zзhz~40 S Q/ AqQ鞓msCv1:i|>6+Îh4a֒ԨsoC/ONsw뀮4]Gt  ^#jiɠ 3M@ W-,M/WW"O%OTÛ7Њ< N ǎז`~CIExuSa!|>S! $(ɧ)7X6Th=98: 4jn݇~}ܝЂktʕ^܏)dzg}ӆ;B,/ñ 8pW)82iaa<{#RRŽ'!)TsъGg+7$ '&3piP[CV/]^s MFXMc&@VdOi Na0FA~驍Fჰw9N[ _5aF| qdדHc;II8!x)+ {PAU `HכūGG=0Cz>-x`864;$ OSP a-:|CP>>vtC 7D_`k=%K\7 KQ)?}/g* }Ħt購Ce{3/\d/MBy(<vHx>rp\08 Ϝ P@tFU@Y> stream xڥ˒_GuDRMʛnʩJ|RŞfGG<zخ\DASy/>|ɪ]URӮvERƉTzC$|>ˊ8+ P! u}VDfF"#w22G g8ھcܞM=D;ؑ3`r`Ȕ@8醐~z4~6s@@C*b%Y,c,H# l><ё<&Bxqj4J=rߴbepoeVG{3tK7zxZCӎuc3 JEYoqu'SubeunU`uSv i dYҜo]RE$[$K-`w[*V-yR3lpH4y'Qq<#YVG?j\h=z#@g0Y"@m h_x$zq4 |l5#"gy [G`8u _V/'2w9$ׅÌq ^cQU1Q?{dI D3^W/37Ӿk4yT-,4_00yn aǶX#m\nʥDD5_=NH3o0Št!Dy[1'aСA!y⠓/1~K4cNeꆾi2]Q*vơK\: .`"D0K}UL< V]͓i̹Wc;•|rz|Fh̪Ea'o! .H/m A` 'x ls\ϹJ%Yl=WIJTE=m:M4-gðf㞕ӴP)dpHƪ(!X;M/>Qjq[&V8?舅8i0WE9gu 1q@[o}%ra̯Ae e68hxT!\{˾4};Yg^j*ˢXT +::mG# &,C_;QZQs= { "={x?]6 A&| rv2.Ps,VAyȆ؉ix3~ߘ`-k$LFoMcʀ`JQqqL}+>M\`,Y\ߠz I'gޱ|;#r%'G0[ףҬ_"?&YWz[ڨ.w18SQr `ßAi}{T5t{@X.X."Ӣ{״ /%GS?ub9zdžgWZGз3f%Ǖ(Z$ʂu<կ*;*3ovVl*0 ,|JJ9|~+;{C')%Ǒv/>,e}o "տ0 ͣ Ѐ4H4i0]]/0h>lrc߷_i3&AĬv7F ̜f7IAf4# !IՁܖn=ۗJ_1ź~,>n#w!fl%VEFdi\@LJލş,\oJ?L0 ̨0Y SǀǾ攙q?~֣qaD@mU@-eC/K UMQƙWّ3z\OjN[vvU حW"FK!6o̝Ort}s I2K _x*QI}:PsCR !GV! X[K݄Pf`xr\|e+eS zdT:#>"BHc @GM cD&hZ,MZzAc;J׆KѠzך>ZP}hOl6*TCP};g\4&:'roLQP~2ilr?n ! endstream endobj 8207 0 obj << /Length 2457 /Filter /FlateDecode >> stream xڭYKFWH&"`CCQR|l3ȏO"i"_Uewt {T48 E ,G P0hTvS| ]g!6&üH=83hR E3tDvSI'q"{w3h Ks';70kB>tWݭ4pW􌉑fA9<$RM/SҢ#cWK^`&gv#$ EH= (Su>|@%2 ҍPL,z1y;1øHecW;CjO'IJ-D\$㸘˜W;bS,ʟ;uZؘ{AEx+xaǬh jJ )Ccdߛ=̾nS$Xs$ j^Fsjl3J^]J\ ;jΉ#i5z'PeT&ʵ@zrT~Xxvb#vH:c_ղK:=CV0& ~U`IJ/-{$:< 2@P2 5LQczj֭?ZH4oE^6{^) :>*Zm[Yz Wa3Ԥ/$(ָ,UiO<ޑ.t-?^9X :9byB8V'*#=L} yFb<$Y YKNy Y=f0[xbnL'o|edBF"^rwUPHOFߵ!dfA*YZ9Є|WK؂`jiA,h+I{a/JfǗLOXa*䗬8ʣ@*~Hh̅9> stream xڅYI0ikD  :*smJiYrHQKs(|=Vyd_?ÏFe>۫ySMUifw!%?ҽg]t*۝R&kC=nwyiߡyĵLiCӝ`~stڽsUNhKLfOYWtsWBh.OM.VwƝnNzIx ?fǜ֝F]Zmv*O=@ӊۿ4q+❁[+aȠWJNT" =4u F\ei1}oOQf8ap2DuUSp7NUn"T#΁;]`r}:s wtqK's˵iehLpgȥQGd쬾090sVqL>/ [e2 Η@"LSxt-1ǗֳK) ^10DKRBn1kIνAlŀV/"sǛ|kp\M{zުMN,K\R/<ȵ3+GϼwhםHE phvس†ILw2[4 `*7\e~h\h<3G0Ne5>u}n43  ! FtP8<0JYD_\Db-^ǵ[ Ė1 ,i`t l@ؐVӅ$skoIH-x9"ARF qctC Z> *x/+MDQ_2]p ѝC@7a$0>2O@.]j!#0@&.:?w%GڦsZ.3F|%"q`̸VQx4QIlW1g#t6܎?H_86U]p;|k-X?_cr1gc1=K)+6.| ;]gYVG٣0iR4rYiELPzI|a`]!~ #ͧ*Ϋ`֕@śW#V`-,+J8LNl՞@עHKKM^.9b?I*)ýOh=V1}X/QG&1f9&I6k{ OV!*쥞#bBe$F@3ioՌ<0ÅCݜO߶!;"^EAy> j"1p^l ֵXW^;T4KFnݡݝsڇ]ER@!' - dfOfFczR{0[]]r5jʦсiSYfTD8J3zI8pzwre^fyR ^ /I{6Ư|0 @t4ߘ]Tj'_'*FTg #I ˖e&-;_3ӿhC֩U0? k&_?SJ_=$dr['M7+}xpk+>yoiM =BՑ5Ulh!O!BʘTM bc=~ƁU%@ endstream endobj 8218 0 obj << /Length 1805 /Filter /FlateDecode >> stream xڝ]6콿"0Aז؀mhevbŃce}#Eʱ_^,")~R_x(Y_Eݮ2ʂdu[y?WzE'BɲȾ-.c~G7ܯEݭ7/߈bQ~ '* zh7q>%8MYRFM"oK11;c~$MI|Iyuwg\֒ (;7[߇Q~jb;waYPoS5_ܱY&,ZmD"$v(š-,:Ya+R|⯵[i]qnڋ)lm%wXICk;J1j Z٫_ ]tqlVw{_\xyд=m_[XMERO{l: 큺5ݚi -#c]*+S(PD0yX''Z5ULZl[)ȢPS"Iz ,r?w!BٮWna%ZMmTEP{e{K HfnżnE[#'סu8`ba.8]ݴz3w1Q (_JևN_'(H=@$H91p*^*UfT zg/{Z-r m0QBIH+Aodc$Mv'#tH3s@(Qp]_C#;x)A9 5뀀]ܱ`ŽQER#8cRwb5Ы]_DhbSDoBsh09c7bw'cT6\X`EYz:\LFW&D+5r(;[ iGd4ׂ .sk%8/eo2Da~@AFCL)z"`;+Zure !k|8#qms?y@q 024FGRu̱ NQ~A?f9$[[>_ 609o6ɥR Ap㿐YxՖ9 sRb 4أԄEHL1fEɅ--dWȤ<9ij( ,;m89: 7i5|D{n뭍 j^ rU\;\9)(F,eJB1ϿX<y_)OX9ʒzAs @K֨!x6uzQd>,b\PI"Wp~`]bkAJ ڎ"wFut.mp> stream xڭk۸{~ql\H$ʡZ)R@~JVm eIn.}!93 7ׇ7>|AI& T|ڪ0}yǛ,>lz>eqNk\'Ĺ@f V.iP[{>RH;m3(B|- )K{:\gO?|i|G)1\߿< E%`-qdzS[ET";{/jӎze =GR5?s/2|~!ˍhXUG} f/DG|هemȶe+u)LK'G,ŻK&2RoyX)t*:"к!J>⏮ljR/8qN[Kj}BA"gRi>% @ H ܖK>{54B[>\C+>fYFR(]{4A0v =~g.Bjډy0K.LGך ۡFΤK ʿx@ӾS 4GZD. }[4(칔|oDW"rt)MLj8 qޙ\&82mŴ Ւv hc[ah%_6,+:SYy<[,d"9.t8`Ԩ1~3צ XCSޘC[H(O4o CEY?3yXts-d> - 8 1D/N|sGe: <Q<=(!rF[8kTභ=#j-P9)Wf1cBl9kW-!m #(-m55m*o7Oμf+N>s]y\VD)mZ{:p5 [r{Z_uveɆFcib4l'`e1[;:keBw, 3SCS[˧rͣǼV#jω[D(wt ,SE!O2áyh7bVNՐޢm[Pv| J{LxyF<+6Z:#WL<&]"Sc3voq> LGb$8Op&1X6.~~Sz"{l4gkUA,C.~ȉU+@YV| =cǂ߈DHV "J5sHQA%J 0ӭHoQkΠ;`GJƕ>Cݻ|{J}> 2>Ru}7c}#Ȍc&$ LJZaԅ+qdiuc3x^r tAfI*n L\ : /xgK|kCn~'dng=3C>x)ޔC]|P/nNdZ4Z H-ڟ%G }mH!j\8[v hQ'T2_ r`Aa= ARJ {~){r ?n D}4tA*MX ns&zBjF0Y˩ǶИ޸1՚unةpmr9+|6|rJY֣b㖧:kBC G \$0[.yF>5T$) )ת tCn!`W Ǖo/".ծĮϩk. Br 78CBT0FεzIs%#3Mn}f`RADWk&x!βZa5ŠU=XZE$|ύrj Z>^fQgqbg&ŚfRԍU[` 7HOL= puINuݦC4SqiwIA%DL06g8e/$ڨUJqvxfT_D¿&!սԠȥk,U<]o2,Zؤ n@SPN&!eJ'CHZ5ѫ5x\?z&cA`x^a/3: S@Y|zw@dctWH@ {8v0¸B{=|LE1fO*Wظb.:kRN/=4L15TFA,;ZZ6*;A7g endstream endobj 8228 0 obj << /Length 2618 /Filter /FlateDecode >> stream xڝYYo~_!,BF6oz&A&"AyԒ:K6㷮!ӱWu_UqODJ~j=pj_}|җ4ME^&r륳gvծםK0۟?} Fq4JA'h/q>q7QgI[o0NK2)F$Ց{4JfHyKPpE l .\V cD5J&>Em5ҍ#r>m~HEnz׹\pKUA;SiaT%fHF$d2H'-= a!.-*S~\='WT?Bi4̝&P%&&{XB'+1D:-ShKfGQ.AHF6eʀcqvxwжYKcO= gf =՜(JT<]gKxC`wfwx¥~ 5^;XV`7F!9$Ynmd_rBJ/."4N饇+q+s.gx_+g 38Žx*)B_aQgN)ody!"ZCdiƗ }|6R~pY5<:"2:C7o_mK;cNO3B^ ,K*;\np+ΐeRW⢹"AԮj:Z*R=.'/d~LyNֈkCrL7Kg2`!9ljy/Q,njM_|Igy>{뚉ݻ!3Ds+=i>j^q#߹a^@2έ <~Q&axGF}wW·wtцwGck˗?M$o2q֗p5Qĝy(ٷLFƓ#qRت;jx~a> stream xڝYKБh%SʦC\͛H)BHοO@Qc2Mt0jsڨ>yTڨ&_7u!Ue9vRI'?|.Lr# Uyfj˲Je.n[d/}~+*q; 4u%dҳ(=/ABx}D74toWoBnB*z<ʥʒ`/~UE>FJ:^O~}:1[` Nu a)1kLQUUD;tv8wÉҲ2W Us գ{`4P蘩3 _mv-FJɫŹ`.+D̢:&gLrH-v?o^_=S0T<۾)!x17 D-4yY( i!D.ж J8oO\xUɭP^uhL.wDnŹL0.?v ͢Yѹ!STKv NfhI&2X3jHTU<Dz }őۮr,,0`:_J8̚s4D7:l!q 1Yxn:y F$#ưf㫪1̤XX\Q@'1W" `܅4VOz&?'*kkyH!q 9 ܲӦ>[ ::ĎHA_^s4yΣ0f%Q._1'o1fCKe' lz16pecOȓw W)TI3J+t.FHܗ3e;ԛ+m$u.5hH6=_NczFg酠eغ ǿw 70_#g FFLig傜eѧ#+Oce"A~yklo|O7,:tWU!9&eЧyRnQE 2BK1X$`Ϗew^ ڏz9n-e]'[ſX@ z>Q;# Z;F~w vPp!= N=s|0\rr|*槒:Ǩ]$ ;Z},L7W @ 4EAav2;WB?zq4WDP'Bu _ tW]am >7I.gZjKqPCVLZ.gd˧Xϧ .u1vE3XYxݜꂯu QSkC^1.A1d d&v! sheլJ+3~L;}Թ)9;)plxHdmu(51ᴱ,g e=48KRjXОm|;A6C}^h9)J@$I o y7vyauCV|Uxe> stream xڝXɖ6+)$HpWrd](PMb9o$b~}v]߽]yi]d~ݱbn(<CfޯVػW.T^eT<(֡D AA"ȕ؏D?9B?q^gp>a@T{ l1[m "))"^ۮYEm:}z,2'SۮdcrWiת#;\Xwãa2PF:~Vah<,c燲%Yi\Eg^kԣl)_yim],WOdYn㭮  vT}x(yq;CEy෱<[<d9Lr q{#Hȏi:XOycR#fo?zL\Oy9\ȉŵ:_097nthp>6FtDb8&c24|MH;i=OKL;^Վ/-z#Y̓EFvXE]]~$V.4*$wAdKɠ}AéwhhlJ}Fk}G ` > 4gY'|fXz yy~:c,:4ztUoGun$k#8]j>2PD&uW-[^gXxQ1k SN,tN }Z≡!!=~r8R5\Z0^-Lx&3(w3"ٴ`z"LD6V7.p:R0` pߵWf@f@NQJɪT7n 2KqU &JQ@Mrmko̶PQ/]p 7:S1Y`ЍE`΀=ݖ* 2IEmHQ9Jewv]KJɕz\ƺ`a4~syA~GRɆc _Dcƅ /nO7^,Et%$aP:s-Z6ÉH.gb+׆2(6$=r?+us:^t ۃJ=J-?Jjb} 9҃y ќQ8sdv)|upəZrC>/NBQؑ%kO7 EfGmϤ*^}ЄN 'S`cctTXk7̯7uu8'Pnu|@i ''q¶[><\>&dfNƻyL?^s}xArw_!RzT*+R0R+U̱aN|Z֕/J"aOh Zi> Z,zR[͗jz.K>ޗur("|5-[pGU:b6+Q:rzf* )T̄:g|en3> endstream endobj 8247 0 obj << /Length 2440 /Filter /FlateDecode >> stream xڽXK۸Wȩq Eoq7e04"=>:qR\$4?0=/o~ySYZg=wUckRd&%?ׇ*R]r:KJ+ɻru\uU&ƴ~z1=%yr[p[a (srM ڦP'?c[VZCCJ2q|{`˵%l(z齷{<G,ąJS' m2-qvw(ut4fЄR%&@v6zL }tcMk,\-*)JK Js;%ޞMUh?&wUBq|8_ [yzec֝BύG\2FNfS*Ik,h,HiZ;lERu; pJJ5h3:Ɛܙ#:czh7r8ŋpֶ  ␄~NAxx;EהFb\ qn]* \@YYF߷|C6ôYp.^"W- qS`ugD]H`1,[ҽ֚MB*4}dL&Qn@1PP ݳ|¿̟ggrV@ZU; /'t?6P݀K90PL^bo}'+$0+:5 ^sfd#"S6YswRx[8,ЂU˖Y" ]'BT= Ϯ=+lgM[zˡ#ɏh.-Yؕ|/{JO/!p78y7eT彎cH4f\腛CgQ eѯ̅o:ulAQvh 7b 6y,.!@B[ :ڋ iV%Ѫ5E&%߸Arq [n4UR#Z܏ϔLM߅"(qMFk0 ߋOӟ g4vJwYG xjq^,'GA4ӫDt0( Ƹo3XAy{Mb/tJ`#۹gUm\ң:nR*0`:@x5tƈCl NtL(0ݓ:pF(ä}Ҳ.H~;; #ߊoNxJ_ըz0O[S}d>fV5 %VР|!;jyF,owp8&g􂧰fX1iL厞;28 LxmYNq+e+y|Q*u۲^0:H8qAP<ŝ_&C , TJgL*?<}`O,:D{3M1P)go2 'g:N) QV (9sy\ ]}^?3KpR} %_wtࢼi3W \ C uK5o2ơNqK9LmNp\YML h%²F 7f 6ˆR.3gfĞJCyySnI>to3W Se B'gƮ%҈B\4uLu2C'DHLX/+Ó-0􂋓Ū2ѷYsT#ߢQ-70L_pbv:$e"YPQ [:5Ձ?uGXC ^ЗfTYe5'|]|[Aܼ#$6C.!Hܳ<<n*jBQWF ~r o ?V\7`Y> U5&nSjekbNlqe&@N=P"n²ˆMt^Dpvˢ9xsmMԤQLh y6&bxzĬѱ!qybbVH|Zf6AaMwH =~UO_|WUjf* \Hձ\m<|l@~[> stream xڝXI6W-*ZC'wR|$vD-~Җ"n *:\w?G="WEi[" IϺmgǹ;qz3+b&Q&Y2%LOas|JB' EnxдzݭifiZ4<"e΋-\%o[;Z1S4ǖ'"d;P=ֹt-y:h9W3#-wz(L/jXI ']x!jJ82{XAH{c4°@pE5D2?$Py,$jb8bpZ^|%M𶇻V N5W;Y1%Ժj:; {N--[^@(!]-)ts"ݢ7ŤbK02K=Z>5E > d(@"" !dq$u9y&oYe9drR)KF/g@ A穯nߨ!d͍.a#R7{PLN 4=ZF'orT4GfP{EzF|=; |츇ym=g:i'`5%mH(=`Dý A09A&"HSQч0w $5^#As ۩Qv 41qB"J1G[9'f_7h.L JڌS>r42vL8Q9A(38B(!3\@_WfӸj h!AdY|fv*K8&>MOdMev]C[ą&?x9-';뚊~!@poSOᪧ!EJ{n8;(*w2oxNv̰{҃#8ڇ-H(aNbcX@xwݷẬ2\LGJZYrfc#grevmMq!/Ig|i2ft_k:A$Ma}rX|l&/>rI*Xe=IszR+i*Μp,mM.nj(Bxn\1 b=Tdqv1LCîV,\J<U⮮ a}ó. (הpA͇EN%*.sYuC:K|$P YI,4W/=WUe\\a%\ cq\$rZޗ#|/BQу .uU}Ͳ*Yե:8R+Jk xsN￲+@sIOK]sZ,Kz,],Ŕ/Uǻ˖\ӫǕ|"t7:<{  sWkAȫdVщ`+0X Fw#NPp^ }SC|b{~t>l ?ݣV.2GzΌZ`=R`,U70mkytu_|i1D^l |Agm], -|s{?ODžUeSX:ˍCo7?LWu_wӻ'IX$t]=f|R_H+ endstream endobj 8256 0 obj << /Length 1366 /Filter /FlateDecode >> stream xڭWK6Э)'z+A-Zm%h̃@iw^,p~q{o~=~#*/*ow qi⦅yغ~#{ eY? ku8J5fD!0Q~8ϝ5SXh꿛XMoIzeXzn]unnG Fڏ.mٟn8h~£"0ǺBJHB-A=Ÿgt21tkCQɯC_WaH3wx?dO_o5K˼UXEGV\@2lN%?RUA\(sZ- ֡fs : (nUȒ?6KbjhT˷b'ſҐϯ3GЉmcYת͢ %?)==ԗ3ɾ32'.NsX6 RXTQUt꒠/IoJDeUڑki,PUNiM\Vp<4-Кٝ,\)T]ϷPA2s52ݢp`p5[zw]'0g6%W_qBT, ͌ތ egl(n@њO,ܽAjt ^BoB-<IMZ%hK9fgk*;VB1E+rz2LЎ-p> stream xڵYM7 W^4ERl[$aA }gQi'z|%Jq_u1bV3K`ht 8e{gIf +4D-bb9,ùj NBc Xb#E C#8N+`5+;ajn ,eH+&SWaҤEX V6iF&,R2C2F mx`j(&5*3"UlJղ(l-f5HGhkAX ok톗Xzs{cǨWf{wa}Om6%$ b'O:+7eisۇAHxf1 7\"1!`*/_X9//&Tn .׷ tÛ[li8VdKV%=CM| @CCm@* = U}'zKD$H=sO7-foOl!Wϟ6g%~~_%Iǀ^YB9)pO!+ܽOۍCJ>! RH 6o]zx8"4x,iFn8pQ͉=iC]e^Rt;H)vY 6e_E-)׽"|<TbˑO۹oI;uϘ\m)ȖUr w5҂G/[ [{IM j*=j*d'@[rj)l\/gH#VkO#pĞnvB_J+:.Ki;,c]8q8\=sYߙlpT¥PvKrs#|9_= cM,f< LT=OoKX0y[x {!ƾ&3&S<0I蛑0c|j <5Hj1㸮yn4>rnR:$rR:HVE)0%|{Ϲh=U*xHkVi"Bo ~B>WE:Uq zN T/ǎ@\;"L ǔWX q*:8r}`ZH\-Ӥr/CnMHz6 *Mk2YUOY#Kx`{>K5=[{?d endstream endobj 8262 0 obj << /Length 2026 /Filter /FlateDecode >> stream xڍXI_ѷ,R;r 1r-qzQKQ߻65bU6*ڝv/|l0t{|zE:L|X~ eiHEP$2,T?sEqҸĄ77V_}cI]TQ9ũf.]Кi^l+ƶ\ך d[33_jKL9oWLH7i3TfA:,)'x܄wH"-RZhv=!8_vX8I@22ws4ƶ+|0Ƕ͘8۽u3d^\8.  ArEKZ9dW79C@"B__tw<8qd(S(n1T)i{ǃOvq0x6V)-MY?zb?Y4tbXTRxBwM#Wp zś F7ӈ$k/{?4.I kuIMja$V{i8 @@(t`:CT*Hb#[PFxF.h~sXaq$}>X0^=N,sO{}:嘂MekWes*wZ(LK{"yCZZ :`Z u0nMߩÇE{Ēc譺i>8k<}byƹTt_G?Lj6KgfkCڸma 6\a=@:' \xlJN1sXوBݼL&glULr6S:xj[S\֜7*3j Z֯ufw >>{,Ei*ZLGA˳ZNZO.=W$ٓw7ȉ[&ae ֞12Hب|HgCN3uS@޲}@rY#I&Pa^Bv淝g&!aŗB6c@&;UB#if*c觡V'Q;;P>]AGqO 5-J.֎3 9-5ՉXA鉚fq> stream xڝَ8=_G7vA]lO2ۋɁ,Fm!%to]cgd,źnpۋ߿u\n0(27y"U7*,nsDYP&fA]W]\FHxg۟mYӹiQ;|bkLǜioS3@F[@wwVvA76C`'a΍vmv( R%<5f$%P0Qqr7#2x֕L8>q{<':VBov=DTwB3Ckcb<Tڙ`g f =4Fpo_ %LNQw"<AZ2$d$Q"lSulBw@&zTxjGTQ(g,/N1#U5'd^p'Yvnwd{vp[,ncf-^xS!Ǐ~w=~F+RrRP;]Y۸ںtv ~~ EQPi Af 퇛$ڎ]O]  gSA/ǍC~8ZXw}̀yi~:ja@4Ftզ?%U$:Idmu *NK qx3ǶB_z8psv0;a$M5iNDT0Bo[pF2!4("t;r uh1d9Mpb. /֒ue/yՅa8(@kI{ݾ|_޾{WPauolߝč *t;7T`ٚ)0 q%x؊Taf\<>z-;P]xE aOWp@ *;'#1n,Jb {@nʃGȈ#&_745D,U{gO"Qh+n\MhEӧskK o;Jlae>"^P#Ư=|FPB-J$e4yy4FF[J6%1N63cz!RO  ᎧovT{xƟ'DR0(܎=flNWZAauAF~eW[ j%$(xSB65IO0Ma|&% )K C9gy8aIٛl:wL:Y\Q(``YM]" l:Rrٵtۗ?_>\tڙas!), \{yIQutHN=K 2iǡ?AS;bq{]5%p6ffeeӾ 2\Ɂ꯷s-1Zj{rn!X1/xt6fʼn\)pHC=S.pYjrD[W2?bQY-[[d$葥t8 kZr࠾ш>=)OfU#tm-EiTAK,r93#CqcJ E@ jq׼/'XE~"$= t\u×4$]5(;͔dLIҔ'׸uR"KrQ;a(t4ai<^Ǿ4*ĒN׽Xp*]\Rn)ISχ0Hy'I$.urQGIr"#-m07E}F =sfM ܡi_܏2A>5'8)Z  B _YjvcO {7}и"%c;uBȑmnaT7"lċЪ yľhGwgg(x@8V "TO1SBFېFS6 ,>s9Lo6>u@}/ `c h0 vw)DͩcDRg8W}`ryQHVS>Ico΁y"VNo&( ÝKi|Je?S E!.׊v:B-' GL~E )x;2$_\ظD>V^saY{|W5}r4(5d]d>]oʾ~(]dϫ3(oxd(]!es9Kh#X3d<[|trTᅭB4($6Hu*M5߶ĈCđĹL'(=so]eL +c endstream endobj 8276 0 obj << /Length 862 /Filter /FlateDecode >> stream xڕUK6Б:XcZt %A@KMD>3k/\7O~3*cVf~={Uˢ-[Y-lRUٮϾOz )%7uݰw_K;Q؋ 'R}tg=wϢ*^lT"LeeQW--,*ԟ;z}[qi)^PVTq~91 :X7s㼬(pə9;5wl a)LϩA( 'a›G^M25 'Md}l@j;ӿgCLwĚ9a5AmC?0;=]`i}Qv$@qĉo B@/EŞV1ܫ+֛ jă V%o;L@T t<,l 5ű 73at|-EITs7UQj寃Z`&W | @|0jywp("/˂7r98O{ӹ=Fdo^f>R,Nk(RH5y 6U}$FH!yZ*9E;xG$ʪ! r "Q_F}]1H$J5t=C81'=niS^8@]龢jLz|Ue {t o E1}4T~er< ۡ#' .!ZGb?Pz'E?22%6yƯ]s| M'{@ =!C+rXWNp OMͨ.:rc  endstream endobj 8280 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ014Ќ 2jA]CrK endstream endobj 8284 0 obj << /Length 1754 /Filter /FlateDecode >> stream xڕXK6 W̥XkmY#M[ LOMhm͌[?__RqlOփ(>>R6MMvon?F,o3']{T'%ݯ"X&!_d, q|f/qKsD$',1wrdR##n0BOw>'6a 5}"ɉ]f$gV kY!aWirqZ,trVp1l} 6VNǶ#Ō5l剧-pԵ8{, 'N5E[W>* 2#&EFt;eti0 Nk(H>gm/yh|^I\a4GMܠS[ma#1 (T?(eHmohDZ˔ kz4FlP,Dw*Zy^GE&m=ɛX\d,'ªy r$]M=PN-;rk[omsW84T:I)ۆhO{cPΉWD~ h.xBEp5H0.K_亝-n>ZGvT8J}q'J/*GVN7 'ZbNgf4:(,wzw(;mg!J3qT6vN'NM7Ժ+pۺFs qrKe~i%eJ2(1SYYbkU xi!iSly%QwCA rFR/mb-Aq">9w1Õ^Yu+舔BjE郢['mVzGtgk4n . XGc8sz{{[̰g9&PXtZy0e?E,ˮrWA!M5yvVr+ BT]z9H³3 Mkhp$?U8*^*IX<˔'e^2luS l)ʦ}d'k5D 1 WNK5BBוU[Bm85K6)T;`|πR5-#ҴI0?a(v8T__,S_;< ^Ld +ON!U- K*0fK#\(4|+  ?(Xih=xMH-h"Z1P%3Ef+iC'#'$%E\,MjAȍl_%*C}Eы:fV[J¸0g 6wYŨhr{ :rQ &3tGhD!%u>h4 ֬K ~hl0-$vqtTt?cׂP "bp{LRZKԛ2"JӚMQ0_wC V$yUD,/"b= rRbUdJS<Mn0̮+$G)q2#TQTQ@L'<Ĩ7o8/OH>.[Qq?0$6M g}/o?U0>{/iM9 Kez sXQ߶.|J%'U*w{*שi⼹lhM& =xk5f=VS LhVEU6A XQ:,NEƇBuLܡчݛ= endstream endobj 8289 0 obj << /Length 768 /Filter /FlateDecode >> stream xVk00́ZbgcֱvYnm)ĢI2]IzVFIOdv-^re$w'a4_~`rn{AQ.jQ?%ia)wHJʇq ;bc܊CI QEB-R ^3ξ)Ք{MuoCK6ݚM*EYi- 4|.Gqz.՗ IN7DdHINlR!Fe U\KssC5W_.:GՅq`Ds˚0)JtQRBOhL5 lA5#7c#_UEA;aI Ah%nx(+"N?4%\nDjU"K#;* Nl# ى4rn\{lխMVWT_%'ջ>> stream xڝWo6_Gg ؊f؆vã_;iKl{y$~w]\EFX$lLi$Xf >0jZ, Es=YgD:.XczJحǺr4mq{yN,nͱuE͑Ԫ!G F", ",W"OfpVz(M}Z,P{;6< H Ъ7HB59˽@_%ILND4=n#Se4kw5\$vf[(eQ @4ա2[=P v^?G__F7* S*e bӓx {:y.y8i]ȒUM2&#a~ B rW$Q~ՠSWhP&`9_9I!VZ?<p[&^~Jt@juc;JX4uwgcaE QV̐c*0ŐHa :5TGE1T~VBaK- 9l7,xEpg~{UGնk׭\㡍GA>CTM;/"\.`!5\Zȁca<ʜaEOD8ZƵu~(,ѻ0!Є @;]`uD<_j{׾"y.*KS94oVEzB "ţePҥHU5hȝp#NYr2 Xհsq]i b۷(4Am3` T0aţ HVj)ÅG"=J"甃.bf F?3U`1LgԳ_wdD0&&l2Lb? <,PȤT[gSGLKKB܈'x'-Y(m^*W9DYAf"YJL! _%:eW% ZXbF]W_4ΌuU+Ђfw]Y<E 3%fEG#msuXWE}o΢p?11Bls 3n\m"G)'W`\6ޒ0L @`qnp˧0=(>Aw;Xq;ɥ/2|K!iab !L$a-H%t)ZjX7g{ fB$)kimF+'pAxZKؽ.XgD1nsU[?^^gti+tI*?|3LZPCwOJ endstream endobj 8309 0 obj << /Length 1845 /Filter /FlateDecode >> stream xڍXYo8~ϯ0eefHIԱ@Chvp%9;ádӡyH4ùd3ᓷ7a><zgr2_Mv協"e" 'T洧X˛8pr3PW,JaCk0cI \wm ) Q.;Mw^R0 n_'hwz*JN?Z;!PSvrb2gE{B$^L&"jOrr_k+ڹnm.GJW$p2Zn.-a %̒UR)Mݴ)C13,W,?z^o*:|FAEi7zEDY߈IX~ͦ@U6_w}r,赕轨48%I@D,3ց ˣVMmYL4zcӾgqY@TdvB6]nHog5q0"Lrf~qRmǪbUigݧ,,#c:Cӣ$Fe/J҉eXwD *{֪/&X)lai mAAHXL&z[]/)`km!rj׫]o'ӸƔV%-_z0WpSu7H2^=IiY1 x*}Pb~X< h4օy1'V2ʠ)ϯ][w7!̋)R$P4ԨYn }3ףԢ'+RhzP>O1THO};b+^ua/_~%qB ?ʎvdf,;fS¶iDb6 PPF׺U#c -3xRW]ێ06j*Zv?"JL\ЉMPDd{o(bW+"UmK( 8&s뜿MQ:4$/Y^j;OjR=6t6\c2x|iΰ*KVobI8gvx0NqJ[Q5vZOSLAăqi1hjL~;:N#~:䁅VJ;nz8*~qaIO:0ȏ'Db!?IUv `SSLLIb@ CH2^6fn/ln8`Q 9IA)<|/IsvV$҅QtM=hbc:2Ї;^r1ַZKo;w;줉q&";>G=󤯒$͌in Opף*)$|AgAN{|;>>k%NK'bҢH|z{1bZX,F )1Q OA[S3YT{NYkC|G K8vG.!@Z|ʎ ٰIZsD[}cg9rwlͬ7Ϧ}$]t="(6U&z~ x6 endstream endobj 8322 0 obj << /Length 1962 /Filter /FlateDecode >> stream xXK60XkI#@muhPlOiQfWWw%[ݤs8曡b`.~gar]"eYȄ\ܔY-Wq4͂_QeԚfm l`["[?ovZ7FrCQx:OuIN%%`pdyKհ~09Y<_<MVfe[ІmՓr["\(}صU[nk.e+aALfp(Ov/g^vM;W[SA|q1s"= ?Y V>7B{ˍ!J,dp$D '9Pd|kuE0y/_{ E&jF*h>q\WkJe,!FD%+=? [l~&ɐE}o8ةP,8WQ$ Nc6b) Lz aReRvqd#Ү-+u00epv`gTjCdg̀V %b X=l!"4,Vq0cr.iT8=}w1'PrS=p&4^m +p{I]WmnJSjAIh6ͰAӪ^^t Y==_^ʾ7ѝggcHwqpK o}5K@) D 頎m'ƎVRιLY莩i=ON$f0g1>Ѯ9(Wf 4l0ϯPRZ#bJh'TD0."@'@$*3-8V:_Na= ,`>gXMEpu|ΩE#2da6wAOcG,?]asqlh;KYq GWo#n;#,-M8I;+ ;cB·Ě֎|1#L$?6wݓ&)<[)p(|2t1'jg QavpٕjX?n_waeNEx "֕_S[9APb8띱Ogqa_J<r|#L̷_R?]I\짻Q4˛5Gwm﷗׷7  endstream endobj 8330 0 obj << /Length 1953 /Filter /FlateDecode >> stream xڭXYoF~҇H."i9mPHWFޙ] (E^,r3;7ڙ&䷳竳ŵ'aj;wHo'漣/gV9Fdq-~鱀0 IP&y'۴O>s€vj;{›T.6QDqЂB9w')Ե7$ۛ "krt}J[xQ$(M:)rZԦ.z UumjWbuM8# C3wўo֟4—S5بbec\ލ9}y{Hr%'Ot>jgscMh^޼(GcB7HA?7ԲXmXa:l=΃QM韮ceU1`!=we3ru} KTuSjifP(udQ1BWɭ*wtN(U푶ׇNdT^nmE5)-Ӓ̀: Psȧal)ܤY2Q+3=d'9euTo$emj6d\)>g;mVEphI߂^](l1NP?MoCz(/b ےmP^/x=.}0BYj6s5'^#MΟ 3S} '9dVjuiQӳ?̠KN, /Jf"#59:i>j@] kN%ҏW7F$M[ܢ[8@!pZ=eb2:n$b5oEiW򴢯]  C`ܚ N:h["?)(4wkBܩ z혌;ܠ(eQ`M+A5O|= ),fE)ɡ33C"<qۨCKW:D.QZd0J/%%<\m* 6T0v:͋gZ_}zo]]3"Do5wIY}[BH[$t]Wvw n)JzuM-nuLW A1,KI{[¾ag x_%sy躄x\/uvX Ymro1xWW//9}e і7-kC}Ru>a ALN~JŖVh<Fq3; Nm0$!bu|/=;Z%=ky@kՃ5`VѽپJG5*S Ҭӡ>BO @ ul)6Fg8G˻p2wе_cVmcq8Cҽ a)>.Y6A׷ mcȐY5tP03Z ZŶHpi '`AK^ e(R'LK"f6,(*`jM.(G]0fGJBC GU{+*XiEƆ}аY$aw(fg `BaB)jrUF-ȲjVg[ endstream endobj 8337 0 obj << /Length 1701 /Filter /FlateDecode >> stream xڭXY6~_KJ%Hȅ6X0m Hr63RW ]`!r~3|[ųGA%<vnjp:tY |ɖ(7K?ҏ./5vJjG/yǑ]ϫkps3m˕hzm`` &P[/+H-VgQ˺j{רBv{A5$ZF]n̗h_Ph4U s{Um|\(Vw#wL@JYίDBiPk !fB-Ή8q'JSݶJlXRà~A}x`596Jaop?P(\v9pz?.^nzvuO|qa,]bʠϽVw4@F>5%Y$ì>!ȟ<Վ+: Q0hZB2u慊n/,=::c䞧ʐ"6h̻CCdt: :y&fN-pc26V8u7ӡӼ+nq1[<¤ n1dN.񑂈;Td-1%+]^(Tސ#=$LUWԻ+Sx'tKiғ+ fRdybe[ۣښMJfid kQ1c_Lr.ҧV.Z@ jaҵ;Sb$4.UZ3U=<5o%nO%#ȴZbЗ6NrRҦ;Xk`/a0kD"(Fs;#zD,KyM>\oWsgz?0(Us9>tbNBʲA]kx-0cvPAr'I2)ΫB眓0Nq9;*&W ߞhVn*,E~Ȏ͠y|~O:=bqt𒱺̻>Tػ%t޺9U[bf6 ASOGbI4Kΐ1g N=#@z~M>vO|toY~gp9wY endstream endobj 8349 0 obj << /Length 1063 /Filter /FlateDecode >> stream xڵVK4ϯeE"mg8# $E^οUNv{.HlU_}H$ߝ>=fM&q4ip~,:N"8waџ~QAMQd'Uѐzy,SfENϓE_YMNOϽN"OC=YgQMQVNu(BY qm,f6,q`Ly6߃q)M˾YFaS^,AbcZx'ffcrB@IęN)˙;_BzhGDlU{i7Eؑ+GԣiXAEw7KgXmwajW:wj M` ^Ma= ?Ƅ'Ǩo̝uH=U hWc"Feuv5{jVałT*,DE(vEjB`;qyN(ōyxeJN~ {HȌʫv=i@^A4X Nh U j @QHm4u\hҔ$&(VZyg,F'dDCF:VTzIGYnΜ endstream endobj 8354 0 obj << /Length 155 /Filter /FlateDecode >> stream xU?@ Oj{nՈEq7Θ8> stream xYn7}W1y!dap Fm<Ȋ, kImF:SdLD0>E %'p!}&3g%Dde#( e(V>(!\J7W@ro{^ȠRE( mũTP}SA_ȐY5K`3H(hȩ=r] IYPt+WTePx* Q r2:0L2Qa'@$`[re&/&PReU #{&bk<[p  G0iI3 »g 2|ρ> ʠ0|IU&pb g`'1&6!KYGTV`WE)H ) '/<Q+[,b )g\BNH#6⢊Z.!H̀DT4@>˪ $ Ñ\"{rQ~ .@7::5<5m;5gǫ?Fͫvq:;wvyۼ>èy7͹bC!K6U-)wlLsfiޘgwx󪽵mxn^G5yc8"3/>v^9 /'Zc #(3O~tNΦ4oNL~enIX8t|95!mz;ӖB}&-4x5~~1UO`x;R5~G"lZzdsq +q= 4<FCSb:X~Gbܔ*([$tXN$Grk#ЧNfI֡Gʶ]0xRd?5BVY_[Eh1!14<,j!Z{L^ }Xf^ps힎OJƦ8K 4r6ddmAnk3=QvRVϴs w{{Ʋ  ڊ sMaaeMQ˻mF 3!˚,RqW)n`3G.͓Z a଄](e( hlkΚ߽gw5 kgd{3qʐ)C˧AŭH^~Hx[d?AFvtvq(RƳ! ,΅:Kc.6]eEq\pV{w-8=R/1mP⼋NcJznvp%>M ¶NwK-eр=^Yp$^Vp ]d@!ʺ\LJXV/iz)5 Cpz킠vBEB $z$i'7I;6?au{b޶w7ogRVi 2X@\ӏx,.0CvzyԦn<;pZl(A5_LdZ,(CsKPh2J{(Cv{Z;k?AL6!:+arD K0eTK")+(RSe@-t_հ ʆT=ÊC9,ՁD6]ONAfO;" ZCe&+0,TY268/*ۼeho<nofc endstream endobj 8359 0 obj << /Length 19 /Filter /FlateDecode >> stream x3PHW0Pp2Ac( endstream endobj 8365 0 obj << /Length 1409 /Filter /FlateDecode >> stream xڵWɒ6WNlW$TźyrḦ E 4>h@9T|F7{{(Ou!Zx^c6|DԚGgRMN~"Î%wT+uL !^:4Ըwtv]ˋ.%1$/+/Peh; Qe:r S9 })x($5_HɆOYۓgʾihb~db逩s7J.Bdf^ˬ88m&7'jt6XBL7s->.0G}?S x$7oGVۅZi|ۇ%)4azj#c+>98Ku1mCk.V%Կ!| AqZ̰n5ʠu23`=tn;b|& 53@9/Nb`JnjgK"Z"/,!V aYR&(bϴ!]q(ch("FO)IpG a@ED >E 8j>aY=8D[!2 ϖ?%C!E3JE:cE7ЀTVr\ߡi5>N89wPXpF`|%L@y=X&wH 뛭9UykxZ;:[7GGn6}\҃;xD|p&@OSA:%~L? endstream endobj 8383 0 obj << /Length 1438 /Filter /FlateDecode >> stream xڽX[oF~ϯe ,sR_*uU-Vۨ,q?g.C 9w<뷛_7B{1++VEG}klq|B| qh9sC?VKaf}e>> ,nh}!6>f<'j+5{%KNgXId ٥ZSF]Aq|"*+Β΀ :b<4i}Or TzYKdܳwU Pߌ%yՀ <};^">O!8AdxxxC J E!Eԕz_`;yW/+'q H><(Ldvv#MZ!PlJb2e{Dl,>5;GjgOr=jD3L !yO<2?'(P(0Ɵ|O`z}^`F͗#!b:E2EgDCǟ) E}MNߊ AŖJ)MOiJ$P=RB\s^yCA39N(/;YYUR->2 ɚk?tdd NBJH|Ff17ڢzs۰kԢ Qd$$T$)uNE r` c&B|;LjF΋=!uBjH^e6c$X}}}'0G$keVLQB}%[0K^;Bs 28vcz[&섆2Zu#$]=(6GsrA|cY"~L8u^{^@;fQm: endstream endobj 8387 0 obj << /Length 1546 /Filter /FlateDecode >> stream xX[o6~ϯ!V-la X`,"IuxHݪEtK$3wQi^x٫,_$x%HzI)DWlZ,<^bT̏ro$gpO'&#ݖ$`:XaM,$y W8"U)V7VG hp2㋠<; Jg}}pjG8{ $#}/>@]\$]~@y@VJt3 GHr$)bx N<+H6wO $n{%ԵJ#* T|D9(' 6-zK$ޞ/I~3%>R!0~w}+ {bwzπNXVhR1kѠ`ijxys75e= endstream endobj 8394 0 obj << /Length 1713 /Filter /FlateDecode >> stream xXK6r+"Er(IE{J-kbec;!eIMIbQԐ~z\xg+YvJ* R?j[>x]Hj~e$rut]7jW*t=T< WiחM^{Zox\˒fr* sR06j!Q䳔;FVt烪萪@VJEꊞ-6sn0xYUnD~8<gUMoձ.z P1k3=tA}^+q}ޘW854pKD>0t̢/BOݮȓe/;U p^ iB?ƭʍt`V ^\>=SO`u v&7;Kor̐gP(0^1"ώ0"y\6]pt7Ff6S6^΂?{eWztNr/A`͓D޻䱤e'B6nlיaQ rorHʘ>Ⱦ`\=M@OU(ѓ, -׺(p==4@o9x2b>LeI[F V5h@;xS1s=`;<~`n,uY^Rݡ1p7QX~tM"hx3S`X89ciS0ޢ>#0i_JQ ~hjV2* v9 k:c1+[Qk{]vp\bϓ_N|;61A31;ճ0ɿzU w (!3ф=^ܧR['F۸ ]n7FpPHoeZM'~F#gqB fgOxP0ǣ . MB 8Jc ~i;EuD0fi]=sP,f$|&wiΖ_h(aʆꧥâ1 MO+(M ږ6ܨiqrZ,\NS$kd4D"a#2x/F+ϒIMAߊ}>! EMuul7euS쳣Ltc`t s.YF^j"&@8t~`ѼPxļ.w\?b8/ '%RLeȞ|9,4%hbbYrƒP~%4!}8sF8ίf}A?/zo佺wdX.̹;;R,AbFS514|纯Ćm2+ӄnYnTV~ N;%5e82u#ͩcf?d"qͳhi,ƿ!͡v_JKRIvp 4-UPPN¤z N]Yt4'.5#748f뾡/v̨ߘTD'hN\ ,ZI=}ΩmB}#vhaBkx Op2c1la|c.#us~M\ɕ31ta_I8D,?%4y`Wۋ}y endstream endobj 8401 0 obj << /Length 1494 /Filter /FlateDecode >> stream xXr6++ձh>dut4 IA@v/@ˇL+7N+I^s=`4OɯWoW7wi>pz7Y$E ,r4TMgiINg2XRH|ζo7wɪf<-%$w"8]Y|g=&t'yN< Qr?QLt ,dNf<ӥӴan28rǮFOp?1{0M ~R s+rL4tfq$$YoP8TYpTrHUQeAeY!4TPmjNqi9>Țtv:sȑzh2t GQ%9C!i@f"JKf;OYPqd4CdQf„+gG;xx? AiEI]$ݳ3z,=F2; K| i(81D(рPbuȞaԐ'䖔5P֦cH8Gb $) ZKJܲg#ԒDc':ʼnطwLʤtWOQM#@*fE3f8h&/{i6;iڄД~8x.fE_0(A 9YkyF6TWfnZڒ}+pQ1CpT 1/:m=176 9H-o3s +Mg(9/GC|jw+hY#d>Tm4t=67@ؽ5JgVY  ZfB 48 qiC+s&G@Q7׆>vw/k-IT,^_!;' CYC4vu6>YwH< o7ةzB5eEMRtyvJӺa}et R]/:Ɓ3hˠv#\Ds#Zx,iyS|t1Va'D.%Y)[B0g8~$wFtwgڤirg=>{@w?X N_N~aAc=mP%_?Sլ3mn,$Hm*fw?. J\ܰ Y0DNA4^ j_%bH'r*@4|E~[BKpm5v51Ax4v]jcb?@7,k~vkwꇺ~?~|Ҋq>s /*FU4jlۼnj3:|N%.ڑaDѳ^9p}ܶ31ӲV W Rk-nɠzJ<;/O*|3v endstream endobj 8420 0 obj << /Length 2022 /Filter /FlateDecode >> stream xY[o6~df%ektC;lh;`[WLdɥ;ZRi-X+yt.w/.??x$Fe\&"Nj<.PL|x-ߞ K=OERNjUfOnϤڦS='P:)Jb I̿ߛ49y "B)qf0#ku !!L^m=r]bdgY̭YOscǓtw}\imZHP^V~h7!C^4h|Bzr6$ `/(h`P<,WIԳݝ-ѥN#L"7@F ?JpN%vLJZy֮2_5- U Z(ѽhcLNbu}5Cj,owQ}c;wX`ꝣ*MkU@lg[2n Ax6W)QGnLmaIi dsah/ ~aǛ>2]0VA H"t>t&QSZT5Y;6wt+;Ѱ#L6&|ӯX׵ZJ^ &YJ oڽYمTP*^$ 2z՛g\o'g:TwL]a2 H[2}/gY~UNQ_j7XS3-P^OP^QR$"|-v8@ ?%q%%XISo4ͯ 7P\"LKdгYb|jhOh0gZxÜyyZLU yhgp |7lp[R4ƣtu+[+GZESGo'߰tUh3!F* \vx@r$z]Ev=Rr M,{n&{9씶reV84?hVly‹g0xgZ^#Ɇ.j˙ vv?ꐤ ]8E3°yZҘ3Ϩ4aGkUDO;FcUWsJQrLW'X(bhѼKd{4m˹t+KJ$65jjd5&3%*wm|8]ʷ6~$QLZC"[1=&Vf"Gm. rRld~BJr[Xzv<- >X" 2UZ]`ڠ0* /ꤼhgFf>~7p=v7lP;oY(C1n>0A5͞Kيlx0csz=.%%]6;Otz|gϑQ 'M1O-t땏ڠ(r4mK]cW!E˜D>)=9)2?\ ɝnšCYH !8 ]8̵Yr&$TU+uswn&1H28iHp_D=q㋿@b;^_-Yb& гAfDZ3.Vndsr~W.3gݡ^ՇJxb+pIn^n]ovUK>M-]@ȇ"$fxM> UdDGB&}Mw `ÕYyl8skU[ԁfy9y=_*,n&bH{ ݩ}EX/?;7),' endstream endobj 8439 0 obj << /Length 1443 /Filter /FlateDecode >> stream xXnF}W/Kp& 9AV TIʩ|g/)je٩E^Ds28;,p0_"NQx0_+T3(!h W1g,,F67^#&%4$#B?uULAC4ADc$xf_;Wݶn弶kYn7#iIlkU͈baҨv[v͢׶UE`@Ň2׋}߃\x!Sę'MYT[nk?3CYnM-KǩŘ$R[W,NI0P "Ge98ZcO^ۗ"_s$蟐VI`y c1|Ȝ31C38I=j' ~=8M0F}cxYץhA$8Jq ,b:;GE]63t;v"˺۬t=o"Yӷ[Y_)HB6+"GZ,3q$+ZǰehWI Bnsʑ]mR5U="#]˦6O/Aܵ3gÑ4p<|*:sLr WK޿TDHc,01 4,wVxf"+ӘfV<"Yw+>>q8l .ISDX}X(,[=zvZ4Au3+6vkiZ' N+Y7B9NU 'H?WZZP pP_P\me##eJ ':#:HV(o@1@ԃ֣=>9uک~W.{mRk0WOW`B#ږjhDȡ6Nr]Yo1Vr}گ)NrOAs.BfGljzݨ\\jXs,ó꽙Ч=HnTV#W >mcS801LPI~A)t}g+o`½FTRMpJLBz@<WucM~cxwe_9\,-OO$// 2^0l[;ہhw#;)d\ꮻ4sTQS\{mQT#,S{vwKPnj}hur1lXvn X` r]%FϣE̞; }>*%S/j8O{~ѱ8:ƪޖn0u_VSrؼJ6DYJ`GlAnoA""Dd9RqT=fSvՃca>s0a$u 5UPWW endstream endobj 8444 0 obj << /Length 1213 /Filter /FlateDecode >> stream xXKoFWR'̡&Q"X95PEj}c"Qٙٙ=vzcAy;/^9yO1 - z1,"kw}^M ,&qeIY0oo?.oWTFKk~{88"^Bʬevx$J@#U VYszBfY#?M|WWIemtѯMn6g'P,j-3 -PU Ln-U0g|D ^V^~Iw}^dܜ oZD$:uVUJ/=N//&BRZfncȷ+aL$m 8*$4{J2G&t`29Q%.>||K(qb (Obl~zK]]? )'ţ~ 2}`'1|slbyi{JVD PuQCZ l.zxq֥MNL7|D|֪qǧԿ>Hcp"QgfƜSiy΃zCgM!=^EBĆ(\s"$~Rc\6r:X.:S*XWGmrYaHc:!dSAD\q.r'y-ϭ.w֦h5 AHZN*'uwLv/]25ʼna4+<)5l&Ǔl-՚abA#?r8 DoSG9ЎrYu1bP;ʉrs l]+,':Lp?z#@GP_=ǐM 8@!Q3݊Y9dqQew:*;gt%>q=j\&=9.`//MrӋ) E4QLf/7I endstream endobj 8455 0 obj << /Length 1557 /Filter /FlateDecode >> stream xY[o6~ϯ$b(^D)Eb)6 zC[-dɕ\}"usl}e<|PΛ';F1gtqfܙ.IRpBDtyQ6ORާo$d<@! Ae#X:Ɗ  0DC#c-e6ۋ9nr-mʣˤޕy&ؕ`w+Ssr7=sρMڞ(̽^'#|*qdD8tlyfVL4K&YL#C^2Pqf .j$r|+0k\hezl:{^[0&U~O( Eԡ|l&DV{Z?bʲ;p2WYedK- ' -Rmf (ͳETzЫ`CۇrLZ!x*lΡ,͍F%OҪ/"ɠ4K]8Td0C,c(*u:fȄds`SxY&#He ţ 3< LV>ə@ (" !8B 9€?F(&e j@e]@EYd GJf }ypNX RnG?ds$HX/{6Ta$6]>ֺKkQrH}\yMyV['ĞY%7ڭ/&ϕ a@}dhwW]( & βUexRqqÂGs!јs~O/4Bj DUIb'T`Wor͊& !R@={sRDG@OژeQHo7 C"y46;ҁcna![Y0 E.]3[< ,{x~>bAf; =祇1KWkwH^k&J1<&B6zd8UD4܃NVXc,zIzR# :a_uBi^Ϫx.`h:]~.`9WYo/H짍1ͦZt\h-vr"@|s(/6 ;lo෵n"ek"ĨJqo tjg鼨M]1jFAY-e2Cu"h5:0oԊߴ"jbt/`\:i,ϓ1`E\(aU^. C@Uu$2DAg0\ZKx) Ȑg0s!83'hQ(Z3X "w :__g蒋E:F5vt^^<#^[ޅ-={kF:.{ѼOê84H$h7I bx|>Pn0khٞR;?HXGc򘚘\Ǝx3'PA?Jtʹ> stream xXKs8WpĻA 5l>ReRؖ=Talu-4A8z ԁ[c:D9$U-|vP*зmdla^9YcWjSj)տ'vC4OmSyV|7-=P?[JDƘ|v~ {;wv;1h.8w(Kya;.ȬFlm.ia䷭AUm!$X?r c/A4b팙qډp ±G"ήT8i_yQh$u5.p9)25x?cʤ;}Y&窱sel*L 8tJ*P!^&~1hVPJYݓf^wVh;RX'q}Qֽz(nTGaiuUO1"(v!b䯲]n ^$/Х%BL]^@u(a=zT3D?[AĆQQr$5_g16WbN Tw$m禰klb26 !r+}y!mLGQ|juڴZSSMfƑG׍d6֥pEYFZ0s :#rCUŨnQoA"y}Kk+CG4{@[[HOlMWy8 D1G|Ț H߁`5Q€5 oT_f5+P(UQAu*}(;&!D9~iH~!G.\}B^V'~=!%- Ucxz >*> stream xY[o6~ϯ[bxbCd0`@= mQ(6%CӦ;H:v HHwsr'89=gbB0JqJ&\L.ћlz3"*4REWڍ̪ھ/묾~= (a [rF̬8=j8= #)R:+"*ʪuo/#/v`(`+hJ6IJy;*7¢Z3#YeU;zwQT \40 GGQz H- niWRT!@KeG-:[>aѬZ7m0ҵPá$877AụqvJ0HGo|{akTvt>Ô*=xn+O j wmNS{8BN+5a>dvo1/L1n{o&,Uv{ i⿦ qAe͊qM}=K]c ]k{;9]myp a5ɸ0EY6c12F^Qhq|{0qT Oc Ё?kˡj : &pҮ\s?p9!֕=x<.w4UqNO p{ l1l\,1b+*} M̿GC{Ľb~} endstream endobj 8361 0 obj << /Type /ObjStm /N 100 /First 991 /Length 2268 /Filter /FlateDecode >> stream xZˎ[WpdA^$ 0H؋I /O#12m`9Eղ[Ztxu.SI]jIZ"xC-^՚$5P}ZR:'=Y+*)UʓKtj%Q1^D\ZHI5fmH{lrtmU &R0AkQzb ($V2:%zł(tK&܇ 9\K}\a%w&Q/Cj $F] ϚvɁP)E2ɒ Hޤ+CXD*+\%J\cNx&ɬD_ƪlZ}k2H-b12C+_![T(vFITGbhjaHq8[C .94IΖ>d" H=Sw6=yVϷo ]?&1t7B07D ̄>ؐk#Fdb3; tcODu OX6skDKw1}Y=AG((#.օj#x 2MNMOa˒pL&¹sԞ)4\b gG6۪b57T  5GOPP0aMdyPl@*  e`p\YKEi"&U5;TamQRtinnU T]A*B. Xgn2XyL B9:;=E6[M *\9 8-Fa΀$EF}0Pszd5ov:+j @g "2(.ZƮQ|:Ir$#Z }~J K%(;(*WPR+ŴypS{r;4 2n.3{~klIHZ>W?''|ҏI-r?ftP(~ K㲷8f/<PЦm8F)d sd#ڒ1.@8uOb!![b6v&KqŹpSK0lj5u&H;}p +v˭sbRP 񙚨XD5p0Zl4brXIie <\&[Lk4&3.]M i`PC7S6^d`j|뒎(D%+H5f&9R7fٔӃ}Ar@$>XmQQ%YukvAE)9(B>͍oin/'-TN%nQ'dr1\L&dr1nz8>=C29o㣖6l#R?kjub7 aMdmd5+rn"g3 T26_#H";%C^}Jd3ҍqmC! 4D_ʨҏ(%; ϗEg82|чqhaBeǍ˰γXg=Y)H][WpX6ʽǦs qKr)re?q=h[Q*Ҹ*oU@-9-oU@ ӎۈ u ۖ{βy^͖H'g3Lg$|R'W׷9:`m5Í;?dMZ7Jǝ.qE8nnnҟ%YT~X뼪T#`G59vMNµwq g9Nlzry!N8t^y!N8m~}Z (w%CjIL%W t@{ endstream endobj 8489 0 obj << /Length 828 /Filter /FlateDecode >> stream xWMo@WplӬsTIjԷ4d%`;.$N8Ŭyof<}OGt&xB̋a0ֻ9;ݧG#D# HLeFY8B*}M2"5U!Κ0k% ~[i,FW^%AP)p'qskZ[0څ=U&N`}:Fme6o,/# 9! rRJxpR|A(bO|>f&v~س5nB: +@Z#S&B".ſ gi yl6y{f/V2ua Jew+ r? 9 iՏEܵʲΏ t@Tuv\fQLFᴸR]qR<$@AV02.ͪ9[!#qq mh#1 $2sBY"]LGrѾ endstream endobj 8493 0 obj << /Length 1575 /Filter /FlateDecode >> stream xXKs6WH"_>t&4mzLuK2ڂ$ФMRv )В*Dowmfx˫,2r=K,)<-WO/#JK1JIj>: JD?9 b(OR4o_F=ewjntdXh0"1,raDjDs/׻yHVh  ֝9bHv2LNWC3\'TXa5z8/2PDlJȠWa`FS]+4Z0{(0%'0]g5sϦץ7žm2Lx$Nv]oF'2+hmuwJ#I3řust!M? =x Ken 3%w1 JQm˭QݩZw1 S@`c!RSl}6gBb%ڡ&Z;_ri2ri,qW<#~`S$_+PZDKw'A]K 8#ܣh1aS4eU_f֤K7#==x+ncnp'O1>c+N,L̸h`lXT*:Ԗd^G1ZU^y36q놮 1>Ψ@jm;`CYMqs{Y2,Qm.;3b;є,=XHu)C)C_a&@:,!c- :2Xq3,=(Zk[%dhk3X&s}r'`ڛˬyYN~n/Z}UXA6zϦS3AsāЊ̗m"D}i l^GLyuX2X|6r{~%8~(LRY(cBGSmlA73m[Nx710IFbh2۟v0ppI.q_v|=g8%y^{&ҡ㫬 KiK-D^'<{Ju G۝]E]!gBa!afT7 SGUDJ& endstream endobj 8499 0 obj << /Length 1535 /Filter /FlateDecode >> stream xڽX[o6~ϯ[byEiHt:`ðCVlL9*եMGK6KŲ$;FF]xep``J*S.>-|F ,7b׫rSd.'ՑGca0#Q2@IndYoVÇF wwBy% W17Wͥg$HFy!|&ve\$U+#DlCfjƴK| KW^Skcӑ^ynrn,)SǛu?ᙌAX`ڪXͦjkʆ˵<j@سN;7V%JVS f"jDu[u6ЁUc*NQ.!|8:<4~Fq}omڵp1lC動^u*64\ۆX ׬bolSEC?ۃ ~0LSڠؖe+EPS^-)N4~/OrRB51tVV_9!)$My< Syc^qɪe&<M-=!,XG { RJ^͝L7&^PM`@-V |e^S[ 'v HeS-] nt4z7CWq72'!ĮOfJ8۞M\M(uEkkOۚkv1 +!Rdvty`i 6gJe_ endstream endobj 8507 0 obj << /Length 1257 /Filter /FlateDecode >> stream xڵWێ6}߯У D )H6[lZ Ȕ!ɛ:wx,ie/-S93gΌͯ󛷷{ě8b ̸7_zMkD5 (~,ğoB>UYu}6L{2NPD#8l(׫nC1z QSXwf͊Bԍ=w7 /Y@|9#~#gpCU/*{?B!y#?+reo70K(D-UQf0q MЈ! 9o?g,!ŮEs'{| bp(K)PdY|6j 8!Ԥʑ#OF$L-!ƉR)G%vpdO{r.: *]!cRi\@2D \ו:7li"Wvϧ̦: N"kLb nYX-_$8>~*hDzf(J"ܝ"٘@^D\*pEe07b?7Ymυ'(/,XFX˅#!cRv*ki Y묵jfȸ|+Gf/e@}z-xH^.H+5 MxC-uG8!ZB!Kvo[ҋG>&WV`nWP/=jXiA ӡ!*ܶ,k#/> stream xX[o6~ϯ02yY]Z`-Em 芀h-yοߡHJC;iv{hH"y.wg>{uuj5K,ŒϮd3l<,Q9قbܼGUB1AbhlJaAi*5So3Af_$OP][1-B@LwIbT_W뛪8wOb"Rx8z"A]Yi׼c :-:4$mZl]tҦ3MŅO؇j85U)ʲ ٚw U-lP(W <LJir6ɚ4oc&m@>7=e{̃af| h{t!M@hb>oU)C%Jr6XO;oNNCǮ SDĦ oԳ'ĆXP _MK<# $= v wbka%b@Q4Ӧq2}<g:` ᦳjdP(I)! ʖor MX3k0Tw٣bth,3?HT3NPH/ T[ ?\Aб[Nfm z-n&+ٖ '*:osr oGކIC˽ sDr/&1W6h9jtlx4 8eQ?NWxz\Kzh#puOK:8'k*E}?BR #TVNl:Ľ?@3fn &:`NOA!]4tP3YOە R_doUr:iF ÓF,%YOa4z#p$=-;"> LḳBS%ƃ鳼8|'cS0C3ףmMhNqg PWǡPOICWzW0(/d(sXri:ux;|>q:4GH>> stream xXێ6}߯0R"uI%E^dlW-dPr;f:-ҧ؄DgΜ9*ZmWﯯL*Pz*rV75;\$IL:̲MBc&)lM$S"LP&0PF 51ݵh;ެqmc󞙿نus[az|ܫ;Kd"4gg#B#b||vblvm5޶޼xaj~;Yc0]Ci s#NMrVG~ݷ.g[a^4*⠂BƤ+H :>HX/^a@ѝ{a]c3j" Qbs_{vbo:ش=q`#`tciL9PyډQj E /F@ݴr9c!?65"O(8Qdϛ^UX~2YRnzy';_>dcf{-(]Ϛ3owJlEN){yOc8A?R?!kTëe>4Lg8OP`UA j3r[zAi}+Ŵ: giblg:l1Rw1Ù$q94SGAe·|@FRq&{ͧ3no{ƞ>=U{ 4gKGbvx>EcSAiarfbHAmS&"F2)P+pX#G`Op6{ -e ?r@S 'k.=/HÎJX YbiMIC>5Қ̯5 2Ogaeɡ,]]wP. ,3d^V'& =t?TxXO/e-;b#ۉjl*&Vqhhv.֣Sވ/|!ATЄ䲦†6oQ{|~_;z"pYٕTkܨ-I+Ҕe(M% ʳ}L:S4]?4@#Z15R,xxB9򥪱,(Ś'Eb٭_8`BL(x܁z,y fUpź0> stream xڽWM0+rL$ⵓ8{RjmV584qvſ؎a8Ǟy3;v>N&7wA2gtIppDFa}~];@c1Jh?M'nN nF4Z[Ϗͫ0rK{ (kj"et(B$~>l(E$%yŊPld&Y/H'Ue^Vh,5? E$֡v i@aÇbsΪ{I8l4 qχϫ^)ErKzG2caB/qVOy3nM=޾="oV1U 5l¸nn<1D2hK/@zփUF\3q PwY#5&t _zrJkK9)!br٦)hcKqv5|k M]k Ljѵ>tBz s5h`eͥ "0e3;Cᑝr`,IP} Gn_藔nQ6c`1f>.$72GLw`EΫ]?'׈U1[+Ro0֖WWs>&p3^]d^㋪JSsWVU-}%3law`g: U-sTZդ!Q~rV^]yMGI[{B͢l߂[kײQESUTQ=yY?W|٣QR?&[o endstream endobj 8539 0 obj << /Length 989 /Filter /FlateDecode >> stream xWˎH+PV 5Ehf13JK6E$P@L;@ݺ 9NݵLM^fڑ.V^PS 9f552=ƽ'5@(nvp3Jʦ/g@du".,X[5K%ro/l95[FrP;Aٚ_<f m>Cjc-z_# 9dr1WrQAC7ޯŋʼn~;ֆ9ʲm!sur>|A!InMUwF0E:+KPsLϨQ)L}N endstream endobj 8550 0 obj << /Length 1204 /Filter /FlateDecode >> stream xڵWKo6W{C@h [v)C(;PE^$}Όhh+i\G9rZ*dX%/ ypJrY⢫v?/yʔ# ;ɸ[X6qWu.q}&xs]9<6sT/! endstream endobj 8559 0 obj << /Length 1542 /Filter /FlateDecode >> stream xXK6V EQ=hR 5C,hҖ6_>zN6,z5EQofGGy&͢-&$q0͢]}Xzbudhyڝ)[iGtUdqiǫ7d;ݓf ڤ-nIibV`bŔPn(N1ʳ/vsRh1B-UXT$_QIj|0zӭSb+GƢs/uL_'f'vPWDcpsV/Wu]֨SnԴ U-lk#bERL8IQF_KVPӞRp Ug,x?wK*Pi̇NZZl5^s/|d/T<7clŭ#rDg91#Z8B!l/S($=&hF CnVd6wGy=yq=n~E蔋ٹ uZx—`{`yԇuT3yHSV׳M5YWa&Tƪ[uҠ|u˶v2KG|̐/,uzN-ƕ?xN3!+LPrpж+bzk_& c3muN-z|xy.*W"fh9)L(&{cۣV?=oed呈& x!(}M 2:Tb\1otT/wC}Ѻ_L\uFaӖ ?@ނtݮ{u*W nO{e@:+#u>6,-YɤK6\kpF/z7SedjIdh{I'9 ycBڰF쨷 NB4tBWl|s0V|RH]@8Q=le,5GP ۳ =&_)}ZW|BT]X;lZwu⬚}ؗ(Cy:tZ܍E7-xjvz#ΰu `~a&] 0ؼzmi{2G̒L?,Oc ܴɭm旘}{3z9{=z78y+ endstream endobj 8567 0 obj << /Length 2003 /Filter /FlateDecode >> stream xYM6ϯmmHdI9b @6Ӳ%t~"E陞i իWUt:?xwyҤIlu{UIZvq]IqsWI^ՖIU6v/%fKYxL/ yq{*g:M˴!zԍ}uǏ[ַ0(sfk? ߉qA8Ѿg]Eř`2HRhl8&[9dاp03Č>&c'wHJ Y$U]H8$ ;N 3;SӻxJۘ<No,48cH|h.oM,hS344q l7NgB)ƍ"aے1;1`K4[_CJE*jܝT4O/8.ɛk,yK^ (]SHB& gmRdoa E73@7qh@^#N((H2/C@Nr2L"P}7ba/ta6:L[}J|3}GYADd21`O$W8PIYL~(yYaa퐀.̴3nř~t:Z?}|Pȕ vS!XN #EwuvN'l+=Un2UAgX\Q&P4u81s([cbզ3tm|Ydq2E'.<^a٘oV/Kr/ \arW[PI޻`+Ew\a^oMζ:7Pj,ȪDwTں& MƳ!%MRؤ ZE}Q9O l_H`dF8 #YӜ(u !6%Rw٬"Oj;`Ә!D:6y?bȖBVy=:}/gPz;pYC ڧ-0qn/FFs b􁞙/zQ/ AL'5uW:X":w%xWH뚦+dwA l 0l$hvN}2ކcI{Q {]68DtnUFC soOey0!> stream xYM60zX!-P - H M{ʒ+IwH%RizVș73o0l7Kgo/xY&t.̊LRg٧7v Oˢ(7ҾY7ybJ]]|d˲d9˗nIWంU}8q{׽jΞJt$4%{|sAWjV;kY"!-<ᴴg?,;l.r7)emZߥ؀e/ QoVǶƗf>zoDo؃_?M4ς࿆38dںSum 7ۉ$<&`uPќb$a%s2)ip'4(eV[>k `8]'8b;[G$K 0Eih#1E%BYJ %oF2[$P5Z9Cclwk$Z8n^En 鏎`A s63ΗXExrh; F蓿j$Q)Z,UМ4:SoL R`3aJ`UiM^@lHG#h*V1=-E דA}k2SD_=IBV= ICà 6=TV D6Dc N:yU*mE#0٭^EUvlVC(hZ?6d*ib{W/[P)w ڦqҌV8]9NQ-* yr6hۡ"aexȱ냶Fi drBb'Kxc4{X6k6DiU% =|.jU튤)VYs{w1λP0ϓ]guW"F;O4[Z^_˃I3C/.ʕ] JmjU/_e0~yQkSwa;x uAզQa$7b%x! E/)(#k0ʢIy{f"qn_%tuNtV§6=^s h'!= +s!`(-s/sr%ъ4a &]2q~sIއc@j4O6"`,G Gtj~bZdSڭ4) "V>{ܳ7DýY8AS[=qh}uo,YJAA<~x8ח endstream endobj 8586 0 obj << /Length 1690 /Filter /FlateDecode >> stream xXێ6}߯[e`~I>H( dWmaeʠM_UNE_,Yș3gfz/~y{}\yQ+bKmO~nBɛizA"Gm,|Fp=Zz0䋷]}Ĕ5>I?ۥ  eI)-p[kG(mx(C3M3qq".LJ=ĥ #a&H߳RV@X/ Ʃ pJk02NrHNqKg-J3b8RE"hBSX~rҚuYFKQ5ai9#nDRBMfw#. [( 1՛?$X6hL i .|q/QV̗#2/ 55eA; `3*Qe?t3yOv h. # Lί~R6< 7B|ز}UN _z)X@F@cQbTVTTNuLTO5Ϳpñsͬ(Qj)fߝ_!l_ōкyӐƮNU{v£.3:CHAӧ=f) ]<:EQzC.iwYSD:4pvP*P:] Uz{l@^12'=ɡ,EH*b*UR6h5<=qFL5TL &|)zf*٦zn< *bYT+ZK$] )GT"NHGW3?pupͿ3\@Rx{a?zFUmt9RPX;aKFR~ 3~a"! iP&N4:JJȩh˟4D.=qզ^}n g 8SU {йM ~2g-hL9\|si8Fg|)S]ztsVÎ]D=_@ޝ{eM8SjY*džV*!QE45VLЊŝX2=T?zN={t)-{Z@5t;Q 顥0&j6Eu˗-~7"U°ėY 3,\_2Y |U{KfW-{_5 VQa:BhB:sI9/!'(!x .UbyM5GkPIJ 2. 5uNI< _L-(6"]KJ`rOWF~еTw{ЉVi*9VStB;9n _`*~sy(uWWԭrmG_J4@[{ #09|2Vu4c0Iy0 , f?r]K̎U&$p*n[uUF@*fo`蒓R ::ŴW}J^>Tg",lu~%I;Cd?_v⸘@pǝÅ={ElON}sutK endstream endobj 8592 0 obj << /Length 1683 /Filter /FlateDecode >> stream xXێ6}߯P* u6}H-Ppч$Xh-&"S.%m-CZAӗ%Ùs y/~xxyf^UTrWDe[6;mXiI.(/N'V~a˫$YiK*drE^"tz@yiYteu a|dI法H]YfȚV-dHJ[sN[m`NQe\sP>ᘡ+hw";~b.br@\|CQ^O/'/HHxAn0$^a^Q03ߏCJEYLB1h7w4'"<̣I/uxҌy=c@w8F@͠t;qRW˭%LksOE >h>PE?FhZƛNnȅZ䆆k[Ĥu֢۹RTEGCrSAaԞT) rpW둯d6fu` eXP.oKq?ő??X̏c=Xb` 2 :iVm!!8Jjݻ2 ?#kgaωV@"@C% IUUD g3 痃p) I9d0 >ɗOu&jOȬ>'pFo Ǒ3GY@C5$̻GZu(*wϖNHTbޮ]{L7eNH8?bOˇk;_:l :aD5 |ܩ&M(vx1LRh"PqB +ԮC 1*YƸnܢ sJu~ JUҮ8GS?f&*gT k*GkwhSsDfj'xu18:S\{oA> endstream endobj 8484 0 obj << /Type /ObjStm /N 100 /First 994 /Length 2144 /Filter /FlateDecode >> stream xZ[o\~ׯc.J0$1h#C[#Fe fckM á]J+C#/J=^S .k)^LjWJ~Bd1BW,u3Vf WFQgR*QNƬXyDCKx?7 Wj&~ 3 '%b[QAwO-f>ao_\be鳲yyMyouys_^|C_?{6oݛ.bGd铡oޣw4ۆ=0qNEz) |w=7* +^+u&N؂v\Za?Z#uN1u#l_5sʮ}N:>/ فK;,"Gq. FNab.yHN*z?T/Hؙ 2݊$($՟GGƝ :ji91R!b5H* ,rD8 s׌ H;@@FK}Fb%_Ep 2+P =!BKD97nFo1U2]NQZ(J EIVuY&D6B.*цBA}3NJ͊v!8h&\x^"HY)XGƆr;5=J#idpaQXQe Q?(m6q"vrQR0C=ijUF0gD-ĊA):8F2qpbBF)pwBq1 8?OFaZuomn%qSdrCq丯Ժk^拆*eV+2P]?ݯ/RPO%!Y{)9vCQ<gk}֥Q][uYj|XA=(jDr7`{#p K=WN[1]wؠ6l5@%c-t~{#bNżmU13=ZNU9ˑpQFGלͬh#`F(<\k|^dg`nRTRi/|0\'bb N@]3GhF"e2' 6$ N%K 6}HB#-e>Pм۰ǮJ]#F{O Nt̬xff}P;av_e(Y%G@-@7>#Dvx̌Ȩea5nrF$9"sQ@6^ʣs$ åj#TEю|J8^6 9X,[).Sܝ̜^a<+++++u֑60sE pu Y^kqxD+YE"bO> stream xYߏ6~_  )C%Kvߒ>h%z-D|toCʢMnIQ^,43/n|g~mR,g/zȒEsƥZ\׋K)կ~ݒ"XUY ZcW fk$_Vi. lܚFzʦ34g(]6li\`f0]eJJ|LPjYG{[U[{z+~%RS/}*L*bҬҜeIX%).i槲֦rУN<=t>zTB4OL,ϿvHN?RRIpbg3ZT"SK*w;xKӇi$;ΐ@e$K$w=(_vy]n@Fa{2`K4GzR\_̃{3 p'uŠxP7)ۡ'_Ǡf🐌G」_rH@;za[:nǘ;TU.JM+K9jT蝛r(Ӊu0TWb agk~k*3S/Hm>TvfpWl`!XI:쑠vvr97OZ56# Uٞu/EF9#1V1Pi.B+_~K>QFRzpR:$g:<뽃9z1 Ʊ3D3/_I`'5PLDd m0zT3C1K~'jDH["1K@*:%@&j-w e`D4=a؃ ۲v݆`Ǧp7f|$&ôr$$aJhC""ߔ9+%>a$`HcUd ;qb,/AT$5&׈Ԡ'X́E"K0㻘z+޼۶G>L̫wV%ul)L"Q;@A A3njI!s]f9E@rTdP"!(q l%%EJ0桤8'(ag%y K?< JL^uB-;fX$q 9C*B48QGdKbjʶ`an;jB@oMStmw6R}]꯲*ŵETژHp-9D+!^FQ P<'^5Zl" Rd=[QØ, + "p΋ULFw~JJk?NPCmAWи)+tǏ,sᐒ:*~Ni \KE66o^'Gm>b)>sE@@Z5ZX!?&, ߋ՘g=J U│g*edN`؄ɞԞwR5 y j"H8j$Zw!Nk9Q*,9zM-7TQǎ: ¥=;`z ]--ut$KKfGc(8G endstream endobj 8618 0 obj << /Length 2166 /Filter /FlateDecode >> stream xZKo6WR \%RY.=6v7ʲ#ԖI^ Ç$ҦxmCb=p7$jM~-$Jn9d"""'wӷc׳9tJ8ͅӻ<ɪZ_XϯoIdХɘP"E 09шN4B'? _r~)JX+n ]!2JxפhfsEVExΈ>=w%]LM13unzu1W .- uOq'{+IХ.xH =F@*L&Q<"KPg!L1Oﳇ,uoБ%ł^r/Ib׽$ֽv<^dD:/>ݿDɀŽ#rNeH}nAR\xg5C7ވDE/\[e) % 37􇧻8h5z5ΌXN*qim#@{nh*egdRAAtIfR|щfg@EcK`w 81M B9$ۜ7Fr9 AoSYnsd{{g,=fQ$|<14Җ^- Y"\ !Qt^q<.Pmihw79.0V{%첰+o^vɰMEk̉PBA Θmgŷe_!QI[Q-8=k:S {Ɇ%˺KL^,G Fjyzip1' aX@pNv)E,."%% o;QFuȉo"p^C0DߧM5iLS2sOvla/_'e̤g5+vMqsW܎9k]F~0 BOɫM xu_-]c66?"RHK\lv%Ү[l Eڗ7Z5T5vɭ2whu;5pYӡB;VN1b/ů͖@!I<DY煞do{oۺl*+ -юamA˄8WZ*zQWRMxk-q;DvZ3[ Del02^@vl?')*C =)+E3IBU^Qm*^yQw8ٻԧ,^Qu=>|fK{xγ"Rz6>ݫe~^=O?|"Hp3>qsLy nե&./t&'M?>^>PAݛfs!K'2CINl᥵eas 0ŭycYXųv7VveHEd?[*\8<80 !RvQ|i;hoj*1N0s %ӌ{6na:SG-8T|T]`ΟՃ>H8On,pvN۪*6ȡ+ff}_=OaV6aTk0?CeP{ endstream endobj 8626 0 obj << /Length 1179 /Filter /FlateDecode >> stream xڥVKo8WdI9HM]ߚ"`$"VP$mVbm{҃o~3C<}]|,Ia$(fEċP z3/l\ =$ Gފ cwBoe]iG]VBfO^,W! }&[vo߫O'8@"s3+ "9 >btb6*AiXul,c[ZXyB+h[Jd3GӝKQϦmטԀd>Zu 94(![ƾ~Nj` E5mu Y+L ~QVKHfW}16M Q2e$vB]=~mwe)QgOΫJ͐:B?!vM.2U>brY-Dz*δ徐)w45x9Bcg(a֪(OusRhS4L"Ӏ*{;"%=֊&rQDq) Wo BW.Ҳ2}K^`D $ Zu2>_4'?Xg*ŰU}; mAlQѥ=*O+ܑv 0FV;\1v6Y\W cOQhGJV!!wYR3ݚ# d8ZEQkWh3DafP ڪ`tmSӵ01HZN |'ݺF_}](0c^ Tv w5OҎ=8Z{:UP׸7sXJ:.zrJyY<7yfk5uP? xmSzWu"mn ޴nߚ5L0o\GFAuZeBݛ BY7HT;EagٵvAp#sEt>-9; Ŭw8qdPiUf.ą|Q\G{-Zw=*kmiƒڹ Hh4έ61w0RZ|] d: uGKT6ZUDm3/nm ߡo WψP;,/P,/> stream xڍ?s0Ob HǶb۳u `O ;kCckQ\C(D2Äqo~HŮġ'fvJe]VUT:N>i䅗&.Nٓ]e(];zT^n{~̶n]g!a7¥aPu~sB.„CeJ"&TU Uu+% k6Qmd $>:me" d>[%Pz^9i[+3}֖"C _Dv ЪT| '>&7fp'_O5. " endstream endobj 8636 0 obj << /Length 314 /Filter /FlateDecode >> stream xڕMO0;+/ã31&O&˄o/RH<Zٞqvm]bEN# =mg:XM{wD>wB5f~ӓevm٦Ő׾#ƧO:^"wij&eEsIR𑠮jF23xA# .1ph"]PQW$1z:yj}BnQy D9J&o9DD/;(Z4!m@8:TT OZ~zJ^dNfOɻ endstream endobj 8640 0 obj << /Length 190 /Filter /FlateDecode >> stream xڅ0w2G[G88"!8kH8lX",tK@VylڧRJ"ֆ<:3ET'?mvT(X$dlˎE+3SəF;lݫU0D{͐-:َ;JkgퟭgOOqv.N endstream endobj 8644 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ015Ҍ 2jA]Cs endstream endobj 8674 0 obj << /Length 1195 /Filter /FlateDecode >> stream xڍVK6 WVyfmi➒h^Dw_ Z2DyɟLx%/)xR<+*9tɗY]fmw{Q)/w"UuP$Oj&Ipf5uvUF xK1BrVN#\2܏%Q. XpVA:ZN3L4_(0@ D6szs&5b\E^[N(]> stream xڵYMs6WVi& 8Nqv$Ai B.-ۇyvqwv~OsrIGԹ˝ϳF~=0vRJ5wL&tJeQMp~-C4Y8.I<[)zS/XG(Xꏛgg7 Y OcHcYA2ɢ[BWuIwUtQJ{X=~pSk9|O[:ӱ$j;ML#|aʜ `VZjp+k2 -uu}LہFn*5sxHUM?iޕ".,$#u٩{s <*#H}4N/̜ kJ! 톉qRb֍LV`4bʬ SsDJ2y)A&tXIGR_ -*.FN~caa+m,5R_YK Ms7F'R b?չp::;n`Zmy7ZiRRxzŚJ 16yr9` +khxDSlk<1gm5,+P~ }M5[sAr0&aꥋxBFoL^"\"O+_|A-tP!9ŏ嫮QܫʁogCʲ{f4E+凑NeWw܆<#(>[q3eC~@l\^K 5Pkr^|DlHY13du!A3م\otq{èh|p#lo&Om\Ȉ[;=^z@>lr)*lڰZk&lݬ)Kn0H^qaRbR@7B }@y3> stream xڭY[o~ϯ0$JRmhMТ=OMQЊ!m f8,9ڭQ45a͂-n>qH"aidx|^ݽPtK? COO{|)hTgUTx1lE(U7̠( "}YD}X `O."e=e@;tcdIyCTū ]$nll75(Iga,jAzb=teNӰe U.0O+J̘@F^k˺5+z˿):5)Vsb&kd+c1/dw -߁ЀY3{8c|nO;ށ ]zzC6Se-cB.|G M~CQ$cRZ $qxsz8>V[ae&m]fpmvuѠ~wjD3;ީZ#;p.aWK_W:kk]FA\N$NvbTSm eeA\jjq[uKYCz@jST@߃u-5F j,sBt&'ΨhXzguƏάCmS#5/ 0$ 5ӉƷ pJGWԮ#Q,qcD HK ;j?a VZrӭ&L۪ҾW xO آTIDtWjhovYӷGhz+ݘp>@(ⷦ)EЮ%)J;T8$q^]UΉ'f|KHo:GȀa,(180?)-8+mt○AP[d$Wi}J8q$ݶ*վ^=D Ϥ7GIhQ1'X>ּS Q f&d4?#r+XIˏFU5?2aa:٭VeC uVL%̚z Ӫ"@OAͲͬ=HGsC2 >M \…GNkA Ox Ȇ%2X  iUV%4"l}hjS P6eAj?*`$Sg!u'6`obH866@\]Ϻ/D2 2>iWiu_;s>SWUC4=9O(Q}y|"m< q}6E > stream xZKoWa'`!# )e`g8dsVr&bWkR4Ho w D-ԜZ`!S5-">Ќ.@p5bvNASHR VTӜ) TZ53rT(*0 u;Ōe<-6VWPsŷJ`:gIA8jA$`/| m82L`\{ScVY ۥ4a.r(؟r\2J *]SŜ T*͗U%X꺂ԍø:KQ0IAo A kXel5`V[iN!:08d eo.uԜMZ*XZ,P%@_D1-uŸ٭2+->\1sZ}6r 5I>Zh Zl֥VvAO%cjMDZU=̱D{N w vuOL[E/Wjbr\ =Ջ/.v?K+ *q_\|gA5G@+$y2]x"^ȷӧ~M Mb$tS"H0x{] xv~ ^?Wx_WWu>|}waxn~ >c z{r0pGB#h{#ၠAp'>ع]^}]}wsmGK?;l%DŽ$B\`ܷ]7ot:b߻WBFRc(q3(׃J|¹FB; RaB Ab *&ϩ a=Bm!B eMrY"R9U/Kt3t>P4/<@EHZ2ՇWb AAa֌xZ9jRLXRJ{V3r/ꏨ(N4[T?6X'?gݣ@)R X| "BAL r|,,$k;V~@@ER:4$/ EWJ*@Ӊ dU42  L~ԗ(2 ~ZOdL=&./JObIO 9? ߬qA ڀwPS4 {= d:Et>(Hgw?Ʌ,ZzD<-=KZøW1`yĀEbkv6،>ri7zR}5oM)zz2N!ՊQn%d|hs6q6Po䣣Qkkhʦ_~ꩢtw1(̫s;B1.U [t}|·ރˆuZ^vm;Iimm>Ey0_l=K\R{%.)]BK\Gﴎi6z=2S+=rxO BaȫvS +> stream xX[o0}@y"p͝l4jeҚ0 *ȐvHM=dk^|;|7Rm4}^^\Y ̈́`5|2tOPn?57f`i .Ħsömb>pxeB2a~Mʭԓb!gs+`v՝| s,?ׄbDb|.\7Vxd3("}pLg2A$s1"쯯{\vXRO'fc;ibQ!ȉȕtI1s4i%M0֊Ѧ`ԦӢlUPm]rxZC?&x'fb>nSnL4ùH2'G]JЈm1Љit.G(Ԗ<ŽJPҤ(kyT/E#ݸ CB KP^wu**l[?Zյ>].3dXxGMZH(3Y$·OwԼ}INm4lZzXű8:K;ZP ?= o5Hֶ!JQu~A gR9%u|hPq, ݍbyضhfFL`7cϞ*߻ ˳ 9TuY,BݰtU7jrji[zBXh3" MR7$Yʁ|+9Jvapd{Q=/2*> RJ%#WxhI|a/U.3s'`7{"N޳/vfNl( 7Q/H6::5 \?M.u5num_˷qcˋHk endstream endobj 8726 0 obj << /Length 2176 /Filter /FlateDecode >> stream xڽYI۸P%T&n}Hj'1KjfKIJD@m!= vrj5Hov/~yp-8GMfQE(gau?Bf%)mVUa'065ko?I.O?;҄{pޚz&yhIQU4f@(Vv뻏3MߊaNo9F-[Áw^N S,'3N^E lyܜfP F} z7v^dVQ=HR&sgq;\+xS5ÒV쟴mj\fcwf-*ٸ!B<_)ѱOvEJh4}2goO mE(ݮ(JBXۮ÷P s|f))dU諸o9)mGs AefPc}ΘЂ" +.Kx$C4ICmFaRc#_X8F8 :) lז+a , c㶟enN%NI<2= C(N Yy?5/P`_" 4yq}BZ/i8zh;90oFmE5t7GJa{tXFHѭDlyAo ȏ5YO'CgJ}O:+тS"uX}Y7E(p0ddSqq3T0А3Dqģf82nҡFvObjPQIVڤQH$D: M>xv/C!dRS/;1PVc 49jOX̵!au0!2F^gKevtgS$~miw >Dwcv@W[E;-*֜jz\-|Te.YPFflO^Q*w?@c%jz0}l*eey&S j}ؚ:G Grŏ8'ß0c\,/n[n-Ɛ?!3&!8ܠMrpND ~/jd!}EFTmC97i|AfcI;ZLQC}TJDwϵ;01%k:Zٮo;twW Ǹ WiւU[)%bjE9 < endstream endobj 8740 0 obj << /Length 1250 /Filter /FlateDecode >> stream xXr6+:%' fL3e] "$H HO ?dd#QxqsI|xxsAP%U$@ʒE|Q__@˛K$%p[Jɺ{[~li~V}=qGޅI^3'b##Yl<%Dkb@9?jPzq~%8e.>} zc)w)ᗌy4Lrñ6iaAw0 tV>KWIj,Cm sϝ\?-෹^UNn]%1]4ի`Rfe<NaMʻZle,"$#8M8#=JSs65Ppf @ 3 uoƁݣ.䏝2@"[KB8rD*p [3^B $>  d@@nYE |%cAM1'qJc 6tqL~CƻoZ^mSd,+C9K;^ogc*d`iCz5~NRLaD2zeGR7LJrVG_rsWjTGb1bϘTg/S[B|B2k(f ed0{0MEy,]ιD4'xo:]AF4cISgNKsLeF'4& PLN]R\[nUnJG[Ҹ3M\y*ប090vlx¢YèrXx`b Sޕ̲\6ȽsPPEHNUr$ & Ij( Y8 8M_ց8=764+Dc͌t:XjAZθA֚s KyLz4aLГ_@{,9t|Pxskß82{\@q*?ҩEv۽jv5cMo<_ 'CᙑIaH0&㢀,u}ϯ7U+0#N&_jNG4u Tjz/zN߇Z endstream endobj 8751 0 obj << /Length 1532 /Filter /FlateDecode >> stream xڽXێ6}߯[e bx-MtPlBk^!dPnCYronO%9gfD]v7B-%+b"狜J7/wf !eEr}/eʒ4oMiN׿|W㽥b$jeW]QfH%Ddb JrƞEޛA]Hǽnpї}⢮7u[ӦgP5.+R!MwKkA8 _ևҔ}krEi '2AD?IMl{llk!l^BdҷaHN7?l79XXAb>.kSW#^L:%3 H;X%nFGr^C>sX !j'gy|cQ ;;ߕuÀh-iI2d1f+Bu߶SD֔f;O-9w7c(h3'&`\En*N[?Ow n]H*aՊ*!>./`Cn:` cM@UnɩX,$GzH bu ϲFe38@Rأ2l IMkcuV ŏ= z>;]j(\Ⱦ >; }*-]HFs! 9`v(^cG"dK܈nTs70ޚrRu lTC7=fr'WItb*Q*- n}OHIT.̉daӟ+)OQ-MMBQk_]?XANM{bCڃܘv(B`=e"2ˆ :dH!  B\7k*ZrqI@h4<($fR>IRyIYz[aWDWa{Dye="Eʮ8(Yk]F\aqcS1Ƥǘ/2pԍ""$ă{<>?ﳣpwcM.{SfNJtg[YQ%ˋ NT3 ,#PqiFH2$OBL)%^`-0a&CձFAbc :ֈg7u`}bIBLHeHr[Wj tToSMrrCE\pueBWo8!3>A0Ubv 8FYÊKc_gTqz?$(OS/N?DQ> stream xZ[6~ϯ[B3%1ٗNQlf@`mNb^|t.΁p]}k.Paכ &AHzΣqpPd|}&1 0# R%UU`+RH'Au U9VE !^rA=(8v}/1>.}X%*%}9D BA;ʍRR˽K*emFÉ#XR}HhUÌNGda U.0x#DT^k!^f€ZU$ƒn3RD3ro.mxW imߖ ʣՊjW z,N7|J〄dXlfJp"=>H. i2̿|t $9^=mjC`a52E& Hgnx4mcul=mcC>9@?FhԔ=aS4Md s̛9eIg0ڨ"&6z|$@u!i"0?9<9Mz&WVTc06g]?1"\%>s$`FIչ8 t6 !\[5JvC?jZ&ڵLl˄8` Z&͍`oZ{X%HhN iXg~E;;\%r+?J a%sjtAm_C rTbb@nΡ#'LmjMj*6S[ͽS >ɹpllN&EFӰ̌Tt>]K]O"9j>)?_IZXJԵбf0-劢lx3B`oH޵oz!{PY^R'l Ϙ- S5ݶ];^'0G߾Z s}'M0h@(Hj[6&cPz`>= 9?]?! endstream endobj 8764 0 obj << /Length 1749 /Filter /FlateDecode >> stream xZMs6WVij$~%Ҍ(Ԑ.$8u/&EA `۷a&~yK Bܮ&Lb|r|oꤜ)Srz'U9.rd}ۿnޒȶ8Bԍib5 ܼe>o) vq6s§2neU?I_Ҽ77uqaO#"uǸx&{#cqY{vE pR[#ٔ3PQ v9׹XbLYWhM,ͣUQf =:24g$v d<&xR*+)q>{>! IpĎ0o6Il `l?BDQ ȋP:v\N(LmҐZIhӽfQSy?!uPuZp+g 2)8osYBRHgl"$CH M!NĿ[szˇ:_t9|V1r8K @+)Iׇp׻w^ ]eu0 {Z  h3]qJNr-mM:r؜} fNe*cluK;#BBEN)$mE9'R zp<5E2 H`Ŵ{|j"#pVi$ܞnS`6O˻Ӄ+bUky2QSok,<Ȧ4lx\9(b_G[wP3G}d}dDƒԨzdn@6xi6>,U._:e5yՠ}vw%5!jϳ5Ԟ=)plj8=Bl>cʁ2*b}\}F'tu MKs' hD2VDwaޢmPVs;g28JP(%x<@8:O t@(Vw{HTs.S ~,"qF4 αA*c /NnD)7r^M ЁH_MO׹$ nCVWVZ IO /D <ԯ_.^ ѓhw"g@=RB'祃I!϶7#Ei'("{Eͳ^E;.sޡb#N8ךyΎoT8qCePq5Nm{y{/'F endstream endobj 8771 0 obj << /Length 1407 /Filter /FlateDecode >> stream xY[o6~ϯlbx =yKBD#gܤCEJ,ʗN/,}8쏫K$+fGt|sS/Yb!a$El/")JO:ʵ c)CB13KQ݅|B"$`o H7s]Y IԳˆ(zIQ$_u\W_0p  ߵԺbn tI1j8d|Zfܷq#"H=m#zD庨\'ba_ݥMH1c*Gr1L[z}| sY*ٗ`7Yi[5Ϫ!'A[ 'Hk=q^ |CY®n˻ 65Wx#&Z?x 'n $p++m$ ;['ڦ;C"qK}jQU-NW '`+{mwzKFdmn吺e-gc֙!b]EW IX0Ū4cPvv]O}g7:j3-Wb.Ft43yǪԸ֠o>y/`c* fX7]t`/ks r)^)'t5g-r!88(%~ѝhPX0Z '5'l1[k^k>C"]T^ɘE>mo)7O;y4n|^#%g )"%@ UgJ/JS((`/Z|`'{Zj+Lsby˽bu,:&6Q{&'gHO$ |8lxxڒKʪlޮ9]?ԯʥ#"T=K'Q5C Vx4F6}enr(xq|wYڨJV|HquH)S GPh 2n? X7Wr4 ӘfطN97vīʭouC )MhJ f,|^xu Us-] 7k d+Vl}lfmRz$~m6(^u/7UStm;o ۉ0R 2v8*5+?&twuK"eQNtMCv =߮-mekdwtVdHRiZ/jV.x7# X9NnLN Wo: v endstream endobj 8781 0 obj << /Length 1642 /Filter /FlateDecode >> stream xYKs6WR3&'3i7'$H┢J,^!ö;N ,j'vq QK2XNr:q02}-wj)c,y^$ketl)I]'u5ke{5p7悠e013[a MAT7O}azݶrHr"ifex<r9`O77q/ ~;Knd@m\>leX cUgy.1T->1GJ=+1)\L˯k}?eQAe Wfկ;BF%wfemNTcܧ,H3Č}dp#֬/dY6|0q[(hle8iܫBBT + )C78'}Q+)PND}no7B~#hNԶNɍ^~7ݒVk? . 6 㫠 'eOU'fAGas ئ\=8-Q7Sف.!epm(XQztQ uΧw۶m]Nҧy1TSO}Sd8x\Ws M9h$|X.79?ΣŽmc/J3m3m5qm7Z:8㰈W/c^Fv#zv7Mn몾RL|(n>}~z'.6U@ רjGapCN9339Uo@znUPsO9(yX.ʹpTjC1 R:&ߴ#$nIJoz9`y~/-!d8*uȤX- WNJ;pu'zǬuE]-jYrn stKAq9\wO#c䡷V:z߼mCl'G#s)|v}g΃͎Ʒ? lMs젶+X~7N{b-h+bP endstream endobj 8795 0 obj << /Length 1565 /Filter /FlateDecode >> stream xXo6_CSP`֭CRMjmɥf_H*J'{(;;h_._,"e8#2Jha.Et51 %MMX4c%"3Bk91&V)YNi:iFnTUiZFJ5h:\L^7fJemFEiUY7 6&u%63GaX29/15%Y$Awȧ#CF>x5h  i!~yb#[!C!YF3ՐBndlZUAq!9ǢIg:ڑˣV(=]VJiSVj!\nzBL\ SDЬQꁾw`?O7bQe'Pe,{2QR|W ÉDi'A rjJ&K7 i0zQ.P'BVP9<\7 ngr GC s]qQ )} ʹf?Czx;~ 㤋rkAgKmA0]pԇo;?ÚL&;1"Ng_dRU]di.꫃vy[TT endstream endobj 8801 0 obj << /Length 2203 /Filter /FlateDecode >> stream xZM8me͐")J`L_3ݦʒG;=o$Jlw2H-KbիWdi?|w= Q3,D8EzKV[U/W(Nr%Do}Ҵ\H>)Zo|>'( 6Cn\I!ʒX_QW$ѿ*0 RO0EiY{W|PEc_KS޽|\q7Kp;GSllBS\ #beIc.:GݏyӨUZ퓶odMv{0~޿Y:+76l/x6Ԯo[Q5A߰@:~VB~ũ~'n݆LijԲ q S޴Ab}{ԓPJ ey9TQS Mؕ3>|[ʢvr!t`.c_eݚ,VYp{LiTԋ uD,N q`؏"Vj_+TkRϪ>[ [{1E|rc\XW8vj{G_Y%M$Қj;oCb2슴@c`:.J"æKb-$h7K}YqlP {p gYX U>iPL^c]^.H(HT{QPX~+ؔaC`#UCESاW6)>3bԕL0~y; p `Ho^P -PzM姟s Aq&qb7^tq'5:Hi!J陬!QFF9Q~@1FŔM;܃t~ZA iF[ ď:#+e}R FP5γfY:LvUU4[Ua1vGMd/GW^6Chѓ~և|k v?_n/A7?/ sRVTJÒP9"R!o`' /d ^ N|h]m2PF|>w$ѕ_Yu胜.6c/Un`܆ݽ} ?'Z|x>,Cdw\'y(e "e=\Bq;l$ŸwF \> stream xZKs6WVijxv:NN:=%% ,6'c d9$3v÷&ⷫX<čILgW7BgWٻW W^dOf'n{-,7.u㥺4/sw߻ C^C{$ׇi5l|7da-r,t&R:s]Cڕ.y蚺DͥnDlʤޕyp8rj{z'p$"ER,X8߫\P7he:wr`C9E=^Y{3 ̻璸qb6y&J"_dU7=%0{t&[ӰHNEI3:)'@@ pfB61 LS7$vvݖ=T %AsHFXķjthR;XDǨVFveǘvOQOecHaӑ [xL$bLƨ+j=$V :w8ð*x5i1;6P`\d2'Y/^Rd'J4_kSJ"@(aUe3_ɽ&[8I0F z*4fۈ~I]JO!|fd935. r\-]7W [O,Sbr)ĚB~tZpJ8\ŲۼG%ADX}ʾH`H<6WFkw:OCaV\N endstream endobj 8814 0 obj << /Length 1616 /Filter /FlateDecode >> stream xYo6_@S2`6C=yKBD"g.Cѿ}GHb/և#ywzgtq3Q2X$Ibv]F?ߤwuVhRE7yr *VM/+ (f1L݈ԣΰ]W\H|1- AEY(mm|BFDv$.~Q9-V ĦU{nv$F)"P!`]UnR}Ѻʶ7 ?*7\mJTyfHmʣ(`j+rmqb0NW($eBق $0:o\aOht0usݕy !h t\s$KzB(g+LېvUk I} N;楑m5- }49d!+G)QDxa R 7Q T6Rs+=cc.j5"fX;ஊ!.8X,5szjGٸb`;)Jœ6;N7|C\N!qb`H ȍy'1‰W=\Wԣ 2hG ~uhxр`fc\X14ŢOy}ƫ^"ݮ5\$I||De)>h^O=t>=Rq9>8Yjm3HmWH<rsygxP™)obq6'MPdȤ`S,>"<aj༧kDW>OE#z" HGre>p6eUu {&DnWgaPM $n'uo7/Ayh!傌{4fnB`3PtUYh{+'+|;6OC%Hq5YP#q*9Bw5r4N(9R)(0 SۡP$ rI<~!IuTO?>ct#ÄEg?e)YgQB,7^Q3}?Y }0(Q@L=r-9sjSKxRXMF7uNMP Jh#? M45,hUvtة#,5XjImu Wli hFI=ϬͰBvV;K$B1FR [읲SS2:*bO؝D2{ wp{1Ǯmrc!7^*5vFf@,RLL ްu'c$SJ8Nv2d'#dXkm<=Ҥpn|?nNFv4N嗋 endstream endobj 8715 0 obj << /Type /ObjStm /N 100 /First 993 /Length 2289 /Filter /FlateDecode >> stream xZ]o\}ׯc.!`Hb-F쇶G(R!@{Wj0d./g9s[T"@SmKB *Ib@I;Ǡ&c'kZ(3'};bcTձR%o5F5+'2DǯөC.yT%U3TUc=Zy q;Si&XfJ<'Dl\_}z{O7/þE|{hrqy{1pH \}tq㻿_wWakCxo>^8W !oFOLllA#}F.iUBZs0*Ylfit] pY rhD亢Hr ngER财,blЀ\jϪ$MT=Aa/GxJޟXR݀'WxrFf4iЖtZ9H$atFR(I$^[_~Vjv`k *V;!N#/BbC2メlMܑ62%DB@-{d3aAY  ]hT֌cMV)<[x0*5)k\Pa T C !+9SaEgw{z(\otd >2LG#mQ k/˨j2t͂D"s 0:0PV] 4Na5!䤑 s$>(t٪.AgrКPa82?(8פ.SLh[`~:i97 U K.g)a`'p8L!j;LuP8TuIduԊtG5 9[ZGnܷW#rdH$pCEq0Ca?plKGE+0G<5;ፖī1iڐ j^mUQ^*j,qs&z&(/ݸHhtؔ X>Qb,Oӯki/PEs׺Od[~lN9ig'rvGךlK^{TŶ,) ' ju}yI"Wdr &3-sV~DY@3Zՙ38&"%] kCw|>2 Jw>A&%=+.M!n6.gnS֤VjVHJ tLī<;=ضEsu9U&E$i)]!Uv}A1}QtGէ;>QM ]k/iYtiS|E#jIe)DǪ`(U&ʒ;pt& &Fo8.k/ ly]mA>6}R%z8UdC0bV® C fY6Kd~㍟SRڱ2] /Kw]-^ tb`lRwRKRL}kzVQhD> <1$fJ(p:G.ߜ9.+Kl9ERBwК@R׸Q5lPO 7 _H]RMtT endstream endobj 8827 0 obj << /Length 1284 /Filter /FlateDecode >> stream xX[o6~ϯSgëDe@ [ {jcӱPEN%`}")K6s}(H|w!"yf(&(Q%\DYt6O>n)K"BP&5q3RV32ZcQ=UeWfS.+Hʐ̎q,ۼnj~b,DI209~ #PJSC 㷶\. t_KH{/$ֻ ӷQL@YKvI7ٝ"W{SݹkL$MTm>¼Q>7-ƶVuc-KmB_ҌrsۣYf~U0㺶MG, ;TzOUCgS0[98~49BmֈY_fUuh,(we@] LlMw{1>e; 䳌vv> Č $c2Ǡy9'9Y N ~%LKaz̷9_V(L[|.3k33!?a DM]|ïmL`4\d9>H;0߇w-9< '#dO!̐L#7ސ142J,QHFbV!20Eou>AG/P>ޫk8qqTԥ.j'UHzX*cyyv6 b۹ +6a%g)_,cU]A%aA C)&AqߩceѴܿJ S>piBdFtɷն1'`ϤgfE 1] NUQPH䞠lsDA 2ޝ=%i߼{ G~\|& L"EϕU/hnM ڂ6o[ʺj6 endstream endobj 8836 0 obj << /Length 1864 /Filter /FlateDecode >> stream xYK6vb(z-iѤ zHkӶYrd;|JTh{w)ړ)Z gf³ ϞzyiBr,%gxve7 9I"Hl~jX5+5SW kn._kTae,%AgԘ{pB}}!^11`(HFF "1"NܻU۾U}|MFZXq/T4FQB] 44Wz'sVsݽbϟmX/9Yl'iccBмu>A5 `3cd"$%('#fL5w,Bi<4nz0C|5.rU_֕L/tlo"F*=[@1meu]yz)}TICDAz}𱂅baA"h< Z7Lm`L-_{HB֒`*~(eP*a>f 74MH:5.#O0nFYhHo0'",g9u]jv@TMo Z&/K5F0uibZIa*Q dkB8kAY|Q? Ѹ4z3yHPHlBHMx.Tiot1*v̠A(Ks@ANDm?[OW( L$^nBi qp>"]!BaD_!P]Y6`xݙU]EHͽ9%(tswSwP(65\[[ڦOFR]4椈d&׹KwQse\6e;ŦX9~&}ď9͆Oq:.Gt-3 o`v)uҷ#vC o$~}P"Lrצ%6Ӂdt>i \ewZ6 'nPDZՇ99$ 1a8!~a;>>L}ޛ_}p Me0˨R"nQpTy[_7:uܪKnEĚNXPTq2 CRpYc9a]ݴw [ ("=&y~}_O_DR5"Mi;!s)1IսۈrRZ  R)©j+0#(`4e[oo!lû86Iuk ^J4.k3o,?d endstream endobj 8847 0 obj << /Length 2118 /Filter /FlateDecode >> stream xڽXݏ߿o+O"k Yi 4ۧ\h-,$._Pdpפy)r8 6/h׏wbGx&rdXmtmx]K^>ڄ*YRކL޼kM6B'ֻuD2睈L枢$^ߙwbnT(>oueU㹅X"U)tRq;&<,9T}myPucz3to)B# kb϶V1`3#ўlrW -@(5~'4ơ ikԁ"boyXZfTYB>#@>rODսOu+̀RLa撲=vQ,(F<Inoe<Cz19щFځ~j{Ѱ/.{*87Yח 6̡6Jݱd5SV/Jb閯m$\~-5(6 %l jC-0>^Idɵ#J"Fx+&H6XqU9480w$8u-㽭 ێ{ܛpyv\Zv"|f^nne#^=)W9S v‚qJؗd AO{دgE%{= ~TMxbXNu#`E _nS:3ppzPc:*K[WxD8FtR%vYڪu)e̵&p-RT7hq SQӞs!-#s͌~yv8Pp`|õRsv"_9cwGėh9ϩ{wҁ'^0'N^rh^iW>Լf] m xiZ.9w*Xxrj 02:t&he2נ팻Cڼwi(=  CΕ+=/p=xac.W4w4DNKnؚw{Lz?s| д;oZr[ b:wĮ ZF,C6LoP5EzWfD%Mb;1Yڪ](Iy|' 0|2-+sk\.qQ xiR)>ew"sF'9T$EV3ܜ b}o9b ^kFUTh?a*9;GsnR5~I&d6Zr=Ye=kuUx Ti`ytaϸOϝrGzʹi*d> stream xXK6Q"O= @Q-,U+K$vp([^ǎӓ3rH-<}8p'8Kx"܋qmzLWmV/C6 ('I6-Ggi=#I?i26íLsk#XB0m֑@ gIh|g5X;[i i3\۠Z!;nxßyU6=%u]Fe0i< V=ոls,ȉe5 dE$I <@tW3aaTF;\ XgC~1dt1F 4-3G,Isi! `1҂"ťɤ4ȖY9R‡ QY3I\|i]Kt$|LۮJjӼ$d22$#mHRRA VEQ\P旽lM"494I/%=f|˰(^i@/摒~!qe *'H.DɃf;pAy@a(yWBh{sZz@%IHG2gv~8wޖ- GRJol~$wQwwTVUC?و:6*"DI"|$ `pj:Qo1̂SoR [Vs jRpǧt7(Ҋc|%LlAQDI Ǽ썪*Fs7ZV܍4:d_vnKJ<,דCrC%ʬ H"$!;m hwT9 UiDs azHhlX 6G矌Yپ*v^ˠ > P %ݍ ۔ز|`PK8l58kpIvH_XXp %WqJK6oI[zC:ڵqJٌiKJ>ZƃՠvU:|3Çx{w/ܔ,;E2(uؽNZ*Lk^{c1I8rܼ,L\gEUw޴Y:?Mnkwen<=ZOӂ/)ogԞKIhW^]b}Y+4~ ~م_R}Ni0`^Ͽޚ>m_^W'ک~vݢd[jLs9=ֶvWohV endstream endobj 8868 0 obj << /Length 1366 /Filter /FlateDecode >> stream xڕXMo6WVI>` 4iآh/)L*!͢?aQ25|y*^9]/8Zd/tQel- `.~)ϰ'Il8*2,Dy?KEh,<@, +cBygͰ@T`8̙j^O5N9ӝhNg9/qK3ȡH'eBia,ʇQRQb9ZBw,3'A5_{e#i౗7?UtO\~f@n-peO~\I>)k>~恟Apn!r >3]:a9?U'`չU͕GE'[7wtjbXq ?#jGЕ~blݼO&YT&ƛe feZGƯ."j@|"L1&)Y&xǩ jKSgJ _#Vn+ , P}L:"2 oZrB ~HmMooU}QyhB#a7⁁yE3f ~Ы~B_B)E[/AXfˀF/}q@@$6~BG+ ӲO<{bACC' vyX:#D (ec% Ւdb˯zxB*vJݻd:v,C!/B'~nR[Q &e47TmDt;đ%NiwĦ,]h "НmkӞd"zZVvw%T )7[-6tdnme~IAwo Z}u;n}~e@g]jj?ٙAߵ5O |0HbU1f"2\ &}$n'p&.>yD~xo5{ת*K`{4L endstream endobj 8885 0 obj << /Length 781 /Filter /FlateDecode >> stream xo0+8\z[.ܺr7A#I~66Fv*$sq#oEf1ԃHzg#G1k݊}-  <[i,U- Zkce)SvuoB!`ׄcE6;a)aQdAHBk+Qc4O24iL0^ !fRԆݤQV[QHp6ȃ^C?gjH'X"!@}Q@#Ǵ֪3Q]f:Tc- GASژZSnr>g? C~V7՚E&jeN}k.MX=DJsp[4yO1:=JWu#r/d LėEeb_1PH\<J}ZX6B?{_rn"YOgh%0u靰]X/.C%Iϳ <6uZɪkCPƂk|t,@ A`P阀 $מLtTb{|po.ǬaKZo3/Q;Iw\tCzپ{cP%9y<,nъZM0j͘ ~-^gV;e2k4Y\{'6D4¸(徔4GtyZgTwZv.Uuu-Za1M'-ҁ,\U~i6,묮mb;}1 endstream endobj 8893 0 obj << /Length 1801 /Filter /FlateDecode >> stream xڽX[sF~[Dl`wa!v&qNҙFoNƳB+u{ +4Mb#X΅dqH^Z_<"MPb[0`I-uD]_vW!"& bY~M\K\D2&D[|Yt~b_b-Ha Yɩۑ`}η`P]goQ^v#RҙNiiX;HeS2jtbeFې} 8[> e(-#e|9WhSJMs\$Zbou;ut"NqhAH͡VloDt*MRQ%ä VY 搱mhn+*yZ~IF_  2s{Fg]Z|⧋`bQa[g3QTW,"ެ@9qԩP pA0 7KP3NLy gQ@g%[@,1ug8S no6Q ]%Z(VAW.@|yZI'Uojq Q,N!вy1ȅK(H찗%1xHhi:T#шJؽV *KO%/9$S>!X}[x,Ԡ4u1 2!9DYpi߀ !? MoELgAS{Z;C#v28L儩9pitkԊ~'hzg[98}^ռNó;NYzN2-UL+?ɓ| ;EcT jѩ!") p$~XvsԴ)=d;##d qNMSFþ[RKBYd^sf3K³V୞7&eNB8o=u.ߓ|sl{Gfӭ#蒇=A"9Y,<YXL}brQ.*^(0P biIB7"zl.r(nF0 |p<5NOڨ^ &Vb$=GT0cLoge?(y ټV9+חƎWzO494I\zqk5T1ڮ,VNcQӜ ׍dl&fδ)Y1Ęو;֑> stream xYKϯ-6OI3@ H.,lm $w_)ӯEҶd_U}Ee,O?}|3Tf%=r2˳e׳__WbI)؁zv}&leEn6[xAPٜp>h}ֻMda`pFvq|uV#QߟRJs¯))8GKyCy}'S, }4_|~|],Cg? )\ uP (*Qܝn0?WA^[m5 +\mtVgx#*g9*_9,LP udHܭ2V?J5vefƥ2Hwx^طZ[!I0g۪{ܩޙbƐ+ĵ2kfGV;.Ww`mЦq$2EF:{^ua~>OkFLKFwɖP8demLܛR .SV?=Nzqhli[ᮂΑ 9?dQ#R֊ ?MTPri6\O6,l׹U'h ҷ,  Qdž&vm<Ƴ~"|Gm#@OaW| % JH,i!NԄd3)Y_d.˷I;&ڌ7,[#ܬ/>)5%?-(O-!>ժt Ë{6IqahYdf^ܵ-J_Qdc<d$lUҪn <XtB2X~ē^7`aFc <3 Ŵ܅ "IU}+7`7!,5oaqr5yIˊrnT)*"[ռҽ+YDvg[vۂj 0lR,N/|a;ktKɻoeթ.YIJT8z_d9Re2}]2N`Ce"2ƅ)s%g^k99\B\ein3bb0Gk {mL0#sanb9Q"&'3M0.%?M(OzFG5ﲆv{o(B?E8rc_)䔜FJ]ԸƐO~&)&-i)-W^$/`TCLi J^7XM`+HP2h endstream endobj 8904 0 obj << /Length 2041 /Filter /FlateDecode >> stream xYKs6WVi*"ă$N{HZҌa StIʮw" &94ǐ(Xob߿x}/p8Nj˛EFYQ̒exdYzwؾ $C$(Kr}_E IU* IV|& D}=_)^ Hf*8CW(lP3Cex0֧-"0*xD& ]#o?9ȎdMծ"JۉQRxN݌ۙ@ QWomr[uɖ1K5]k"mKLYjRàJf.7uӈn5tuP8PƳA3Z_!J8Ji^jVl`ˀ BE9JP,<+V6'־f(lFk^P(x3yXʋ[ύg +94ω!(:AILԟ ي6$)XPZh8g"O47M(#+x܋zWXGP7m#N4t)~;(_  (ǓX5DH8OwDOH(#U*o?S>N`HrtO;Znh"m2Act|+7a_bG+Ng\;[A?c돲JпB" ~;Ӽ!GUΰUYMjp &Q-عnA'nD܊3)i> 49Kݯ I@@y/X3=aPx?k^(ozL1gʛlFV EW Rj" ˠpYf'jrT$e[\fM}KSXljb/@.5I ~,_ܕx03Ֆ9SHʭ Kϟ6H{¯][]GCwFL ' wk7^)Vh%GE4co{3}o+3^YfY\bj5% [a9VK FǺW=rɭK?KWπW;3_)d+Y]]?vfc4y$ |\RvC ,+1QK]aɻ!V&B4? ˝qyɫy|o<6HZ4`O`KgQxn&&ّGIsmU9r|*p5I:.'Us\GgĚ0a+*ȍrRy9G'3.IBIBdˡ8Sֲj!f|ތɎîn럚iSXiJq cF)gH}$n{znH2nyli-@OgffHA1JQ3y* uf1Jp/Q=PW8:6q|L e1=~8A`WXW|OSskCB^ Oog;hG%hځmXCc&<#L5{htG63䈧˓=HeLܫIȐN1G׊HǹzRTVXO+pпFG0X+Yi62~ Di5޽0&jz*͚؃:=,&>RwMm:-Z[NP2Χ@J鑬]b@˫3>O^|`ƺLqo`Z`ٙWkjmӻ]#lPΞVӡФ}a Z%Ǎ b\D`E}(}"OKnipcib?>鍦& *=Kc.gnf;:_}q|־wk@ +c} F 2iNiWT*231OQy;*|wo) endstream endobj 8908 0 obj << /Length 2090 /Filter /FlateDecode >> stream xZ[6~ϯ(ccCSEj&Jڷ$v0٬0R5M60\||&t]Gϯ=yQЄ-n*\(*jxm޵Y 80"@xyJӦ*`MZoJ_iz{ǓaGڈJQkG|pJL_&ߖ,5G̊6+WalFu7RʬyM:O?b$h][Y/R@ 4PjcΞ)!Ğ{_XNvVuјNjq"~%Aq| :^ }"!1 E/%=~W5u @|Uo2me\,eHJrQ7֝M5yU^RA)t³A5ٺ*7h6 e)&P}N,T}PfJBBq2߮B7KiVwZg`Sj\bH߬j% 7M֊/`:QN h41*LX} Gb`Mț"aۂ1RFRMLE?ySş'A\b#Y+҇j-P&0I4)!CNEok$?CFIR(PڮMX[`ú9ֈ`a'{54NuWCLgbD)K7jˣyxD"+#Z춹:kuٌ6"57r֞HJ7k|^7L:rdk:'ċZ,r&gi>pB(y~gCyK&s]Հaluo8ɱiܗyLיOhh! Ȃ֛_z4569ABq %0]=\^VwӺ3-wk30%6T3kI'zAæC$:iN( Ji [v٠~KA{^΀lgm7g,=m#.=B JTg2Ϣ Be nQDp Kk*zO>W"t}} 5r 8&W%j2 Pv4x{M5¡8sRӏ;ww5n,j|l0s7TmZc9sdퟚyWCDFȒ>^Κ6^nGr H*TSU?`η3BSj[A:: *&BDu}Ҷ_:ʻ LCw/b2im^N gKY>v,klw8z˗Kv(2% J`a/Ht M#ME z!tja_o5'OfJwƕp.yp8c(C'lJ-z<ǚ6 )1Ta"p Rv5&g _MQn~e4w84zpl 5wNBs'O0k<&_q't:ڒsup&&eTNVG`x3%j dJ@NB͝>(4:QeJhRlBL-3p&>LjY|}MJM%^l̾ oo[h:iڔ98H0"_g?)9![Fę4~W߯Z endstream endobj 8912 0 obj << /Length 1921 /Filter /FlateDecode >> stream xZ[oH~TfH JҧM\k;]*qIex&6||ㆳ,9yqq5If8DILc2>Xϙ/~? OLj: hO^}it.J<՗f ҺN$Wե|'u~M^񲮮]{ɛpoD̳R?7Z!e_rGJs#2Vap.qf\RRjSDM~yXdmp]5-<`zU-YL۬AR,FF@R&+#w)UIJ]pGyy_-Bs"?UXKun벑'6D?[SQ,j٦yeɼݡao/f4BqXgMq ѝw91S#D("HKHcH$:5H{ҟvMJM q]7lQƒA}+d_^b ¹.@_Q#16CԥZx:ϊ lk>mYcFPg$rmjĖLu'l9A,s|mWvَxKpbxy;Ĭl(F 5d(Tu{ s]#[VZeW6nhhԴ6h36UNCR-*t'Z?A ۻS^ĸJlMzmӦtc_ߤ۽dd{yq *)*;7'ۈ}/ BXm[c( ht:?ߖi?f u* =Ke_Ջ ! Wa!q°l c[K rݘ:1&8|ap zD_bC栏0G^y+]O(E+bʟLpLO}B/ey5I.SFR.0nMeK;;JIzur:f7Fv @&!qXI)~o^bqpK/㈉V2=/zR$ġ/QxfvF#$zوSl$b{؈3Fh菡#QP:#=|9GxoӃ1#ƷX#?>>]bzkGe&f)B7H"$AF=f6o0P)a)_ExVzK73'>~kO~}ewd@p<  e+{ݖ'z,k/ z,ظBPiYAԞe\B}7J߬n-)li ;4`M6Q0g [Z㛭BxБXM@I uãܼ J,VJvm3L])3u*Xk9,~@F%h'kzrZ6CA֎?:=_g4|@VaPU1 \Ftòg+0㉊Ot_GvW`[;g  l|ŏّ=rn}_7<&&]f)mQt<bj;j2t.֧sx4l$ ۸41>S%iY;R ʑvXw~t6sB sW,v>1f?JcGޱ{bA"[puꎃgsc1'VnGCU;08@`O=QD0@T<% / V bF? @ BXP<1W'IZo=T&c:`&&xk#XM],Q/eU}yyuqOS endstream endobj 8922 0 obj << /Length 1434 /Filter /FlateDecode >> stream xY]o8}m4ЇvH+3&h T@iH7; 0{ڃާz[x,$[$ޕ᷵(gs`6g,aT5gs'L̝,]|}[2s@CX:֚7'bo!`46k׳ӷ_ܘGEY̓t+*-r5/K> "2/ @AsS:m[*T})womȪ(L1*6J;w4-.N^N tsk~i~|EFU('iGܜ4@ufܘy$==xݷRtONIS!k1"4ЇwWP;!\%"zfI.0b, z ;!hH]?!L.OAUݻv:݂ʠ"~FCgwe=ms/U3# &(,4j]qaL c긲R?h+yb_ %! b~-ep HpO=.<[43:%ʂNDӬ:&Ͳ?J%/VL>;4Q;m\4yc=ᭁrrxշUM8){]3-Jw.[0?3=^}e> stream xYnF++yEhtVu`L%"i {AFnDz88̙1V],޼G0JqJS/ /vјy(S3f["`B=,:ȋڢDi>+4bAgZ Q27zc>uki^Vƾ\2ar+[] 8F,^@#Rcr[pӗv-ι9'8](MӾ_5۬66MX5-"d#:6Ŧ(EcXu뺵ΠXPh`Cd_\6160cxz!|h|mvֺA'0` W瓉2DUj}Y]a(,DjUZL P ; |/wfתV='l7&tH0ԎG3J fe{v SlVn ̊Bvڠ׵k ~Om2>,ӯ4̞Hݒwc>LbQԩGiy6l4DFNЦVTQO3@m#;ŤSw_} áف̧+q%4 JqD  A48p7 #Rni7ѮŠI /C)S> `&*e:C <0=ONvts=iTq~,U pIEt=:Χ]9}JeW{zA)K.GtyhSDcz7TqE_.7;?4>@ox`M+iOblKPLۤ*u_uW'̸t*e㘼 qv)0Z4wZ)8Bqx3Pn(ײ ІVlG Y繆b2{os %|vҚ]GaN\O$peij݃> ns fuS 0oO?9`#Adn^|׻3Əf}%՗]/d/S endstream endobj 8941 0 obj << /Length 1646 /Filter /FlateDecode >> stream xZ[o6~ϯ[m bIԥESt/ּuA[CL2INM(SdAVd\xsvgN^< A7bH<}`W AsE;uÊE2s'UO翽I t1y|w>W@~>U}VFk% S nymIvֹq e+u'>@S]I BGBYB-v+_-*v Et7֣QGL8CJEP]D$8>#3aPy! FQ+ a 0pK,7 卹xeJ]^М$Oz)k2YG_̷(nx%T]ᴷe0,-Vۏ,U3u^jNmiVZX.`Veso$!ӮzON9mUUEm5-  LNt: ŗ$ܯ1 |BQ7cFF-!wQ‡Mc6P*9($5YKEX72ZUMh<@"1J ugFV35l ^5q*GUI u0u: MS) -ǝS֔Z XdHx!d> stream xZ[o\~ׯc.Fr#@mb?8Ba4 _J:>5`-9|z{'O)ޔx@Y''*Ed(.(Q]i"KI5 %ĉD(ąFŨdG[MLCkbV^@hUAwMJc~;wj D4TR Il$iQ>@ںǰxToGfIz5 m=i1̓:*UIV<&) UCiLb)x4ձ<4UF/m J5# ,MR健iJ1FTjXZK,X5FCF%fKjl-kjբEyu bW> !|Cg.>\}zևwݛ~O/*fԜ_c7zwW|_|nAm^~xmzu4[̖sh$;OsqC__^]h~:H<-=W{xc"a146{ā5K K!z aZHd@fiH Ro\)7eFܫx?>s^s R:_X-_Sd:Y)(1#-7Z_S,+X2NK`\c!!A+#ih{˥L2;YF="->D a ;1Uc"xKa DΚFZPmM (Osp~F$kG`B "Y{Нh‚o#LIR2F$64L dz+QBű#׾bnS=\jUZPTfa9,ئ: x6[le,Yhga\˚nAiGWRddeH}@ptm^'5d"Es^ۑ&@݊dHk-WbԪ@Ɇh)HZzdf>"h2ͱ`¹Q;aIJDO[@\'ņWӑ)Exi)?3הK‰gj?Eg wuXxL5PRd e~$E xvB2@=b#tD<~AeD:Hc)!ԴAWGP ȏ[[$ڳӐ VvW Cmd-p WFYu;.Nem26g̳M&lyPZzǐz ],Um+1 qY Б(ĶhqjrTT#6h,rI:2|>Hb⒣ Q2-2OB2i Oo?=XS kƾN`[mLJZYA?WDbd|\ߦ@OzX_56t]>/'Ny^k(,L.F꧎ endstream endobj 8951 0 obj << /Length 1454 /Filter /FlateDecode >> stream xXK6Э2bć^=h&@Q @6AA\[XY $9;$Gϥwt $h% 77ް̣!Œz{/a^$xwH̯^D K$Qf7?,X+0N4f|+Z?%[MS(~zԫ=(s糘"CoZ,"~i۵Vy!/vio˪78.`NUW (g$c}C".:CW'ˍ}ZwZMUvPl]mkO XPm=ZZV)Բvv\UhFpʘYeڀ H ,A"P6^@tC(0KVDA:OIM姬Ϟ=%V(jCc5/Aio/$ʼuf<,JBm6SNY봍I&]$^F"]MWeottrQ 0xPՂ>΅UiC|F'W΢ihχ47.\_*i e6hBFuH& mif>m1N\\۵@5-0"`8dn~.=1A8Bcj!ǔMAGx^Ya|Dq4t- Qq5[?Zj-5+Y"Ci 8"!^_MԙP_5N#$բqlZ+AX'&og42uou@8W$J{, ) Z\d@ 4>˩$S,jr{Ҿ e+96Jڙv$|联uqvq{Wq]qʤ㺨G&N)wiw>m OU()`gm̓w}ٺ ~.ZK$泒W+HC+wظ"&Wt ^AcV =;fWY}΍E`8mjfj2@pˍq{b"ߺα)5N3SӍr]oİJAc~ggq:&oE]o!7tqV;&mnΨbv\j{ 4{"N}8v} پBى"4$F~wJLJ&{5A߬mJE#U~]%š endstream endobj 8963 0 obj << /Length 1704 /Filter /FlateDecode >> stream xZKs6WVib"ă$t:dN{!x 0IHVHG Z,vA$tj~ G4Ld~;I$ )I4),H:yRլp3'kLngr V4_滺R<0ϭJ懔L,"/QHVX3QdREʩ`hD$='NG 4ML}BY2QĄbGm&<0dqyi_DTeyQԫ64|? tPe} }I'qŰ&bҮk̫Xb}@U+&E@j֧J+EWBc6x٭Vmu؝5M.xQ3m)pjFEGB왕:m! `䚎Kb2bD!rm2wv$ZGXc(iҙH)R55}Pƍ1 Kɖ9J8=˸¼sl\V%Aus$vNms3L0V+l=d.ޖ9u:f"ٺţu͋(Sޮ<ݢWzA˙=~PIz:?0+.+^*e Tm>mgި!!=ʩcuq+p @C[X[bdrS#$:1=/T~ʤX-) O07:||T RK he (* uΟ Ů"arQaQ֖x%S;Fx?34bƈݖ>l>`_\ٺR10]z;J!7[~:.96;VATݝ 2J jj_ԥ|O=&)?_>Pl 8>ȶ YqQƧT$$tD(+Éfq]6a!  :^10:Ց&Αf"}G:~ۄ橖, s ౙΌ M0?~dDgѢU-EVv[V`kSxI]a6P|TAhRd{2+%U9ܜL+oc (h"v2Rbm=QpK)HqF0Bc촮R,W_8ݚ17IJg?WEM$Fd&4r9NM8V {OQ1M"}-7Q9xX endstream endobj 8973 0 obj << /Length 1264 /Filter /FlateDecode >> stream xYMo6WV~PY=mbdHr/dK6ed/M zKzvAyӅa/14sOc:2} qpD@f ġ_eb2j)!@C)0j/z/fD5"jF7EPPxc̽˴,-=dJd^Y_GD}>輓'U8{@A] ` Fke:BS~Yq쿘>9E΃XE0Fi oR=LX y#YY)q|~qxn18S+<X%/uZ+^U0"'7D{5ׅyrMڌsWU6AwAiN1(J|1JP~$_a/;uyU֟9SUe1)>g'܁9]3+jnd<۶wژɼh:2uM4;2qBHVg6Hg>WrfEY'I<2 KoG9m+uR=CiQ}fIj 4ٰ&[8 ~;!!MMlq,cAn:.3㶓6LvUf.;mdp{vDˇX *UJUFm; e捂2ϊ|n8I 1` ƶ+=1{`!VPeA'i~ѱYsf5DwFKOt(g>̡ f~Zc(WRMi"wx-AБ_b~:y>ct! .&I+ 湓AT ^Q-6"w.OTm#E-LJXŜA&ܭTDɫt| 4ѿJ?EG5nÙq!HKa >V]3DaTguKψMm8I"+|n˕2$e̋x^;Z'-)s7Q40ޛؿ#rՅ8~-ī D;LRMlRq eČSUOO#}tt#B 7" /@M#RY̹)-S)i- UҲ{5R?ν6m$zͭ!n*L:f+mmE}I8 endstream endobj 8979 0 obj << /Length 1460 /Filter /FlateDecode >> stream xYKo6WV( zhoic %CR_$K2m+A`)93r ef  LP088,j%,!!d#0 9'#U-i&(S;(woqҕMj#LϺeJ ư6Cg]5[RiyX+MDY)A]e5Ӹ!&Za6E-~׺uA Vٲgk PHDx Fvr:A=w!T"#~q3C蓂8@1/e"RjSnd0B֡]OvifN{j5![huzZ'R͟xRWVJ+Yc^*x+{3L -\r[/jkkߙM3 1O8aQ*k#7Jiƛ;x:k1UWc!fAj>jhl.J)jk(>=GxfgfY;ڡgP`Wc|W;Fyf`sICqخtfP7 Lp׶ReXPlӀ(uˬ2eF`@-j&WU%ǽeR{yԺͷU7E֦*XвhBAiG!\5z ǀ#G3u7N6Ks&Ӷ<`NZ8z&R~,s/ݶbHC z=բh;E#$iG7 MpKo\N|Ie>3#ENbgӄ]x|zPOF([Nz'O HMC2t^fwHS3&G'G%{ qW=ILG#l+J) ;R;z5QD<³ l3Ӟpzj +kݼ6҉ g\ŏlǡ%#)tzu+/30u~Qw,37|;qh{v! E|7(9״8UzSni<]y˘ !L> stream x[o6)VX"㚷0q)R!Ia}ɢCΥEo/,S9!ֳp$agg̒E|nxpIh_ٿ>#Y@CD[|ۊfD$g~EmZT(ĥЭZ,M?0u%E4] hBtvm}q:i=B ]gJ@ g,NK:ۢd/݉#bw=KVn~s?1gdlq3 7ֱ\>h8Ɲ X7 C)UVYܼ0adD3=u&>g'sr'a34;7s}\ Ӄp'b$:KLtRrZ>~y2s1zcSBƩجh*`׵l[QdX{s=ϛixI-M]6:G= y[XsJSsYf6a!YlivfCn$˩wPD>ۃ6Tl#\ >83geB@0FS$s+Tײ3T/j%ڔb(HZEuJEU{KX _ hO`ވܨ/P$M1Z6»Gg j eV7^H{%DA9,z~i~dc^\RPfRW6ٓXy *HҔ&<iZ+":YO1d(5!Y1ye0=$ 8轤28}nܥ}qs:J@b>굮ns,E/x #1B@wOTP{/jYdjt:C@8uc摺j|x+G'!*ꦭݱdB@ldUxҴ9T Kt]K="8v+ෳVm-W,{yRV7cJ{5| }`ʍK{ Eɢ7刳ލp=o>-K,Jn&v4[?pDtu4Z?kD,%PCh|C4j hS]C>$7!? #'O;N#Op}F= y4^/ڼ0'Q#`*Jh.ͦO:017q>UN*ܿ\*qK%7`G+v!b:`m :e7BL`O'<3?Oul9zTOǰY7U'3B4esuw"@ީ:y< H F'Nٺ endstream endobj 9001 0 obj << /Length 1299 /Filter /FlateDecode >> stream xXKo6WV!Q@l=mcY2$9ח/ɒM;JbdwoBrzvq# SME țfgꎭ^Mb0 (M7#uÊIUmŪɗ(&1Z4IZuZm.I_D(5X> "u.|E3CfW%΃x "v?a"?"%>C% ڮ`.!Rnύbɪ=,gO妑ZB3՘7mQ=$"F>od2H8^#/ [T AP}{ DМkSycwQA&VEY(h*b97˅iZh/Qx k:|Lbi5{Ĥr(L& %%׬b+n=ʢz{ZO|?`-+4C\1[`9o]x))iѽ /ց]dP;ق#W)dnd%2b^^VeeMxD^ƒ;Rgj\b0 J%Uz ^C"^gZ33WG-cm"ɍX(P(򐩧 J*$IS9ICɐGߥi;:Vir 0a0aK+N*2wcI"7h!d)F;x£t'}FzG;!Z+M!F$LSSeʫr2-;DLe,N[o)L |^Y0"a)DLJs)mu !Ta,%JciB鑧HB^ xBI_vbb{ %a>!$}o}xk6,xlI_Jy+Lc%^(: ]g<;ǘAXc $T'2`QD1.7"φt_%tP4_EUY۴|6_讛f >[qY" 1P,q+TT+cHH"ÜTMc-e+~/4(nͶ~YΕw\wuEV׺L [+ a| g2YDž=E b˴e-ؤ/fLt:Ɠ-j̛MrR s^kBv+ߕRqM,m%Rx_ʥoJҕJmMR-F жCzOӳD ( endstream endobj 9005 0 obj << /Length 1274 /Filter /FlateDecode >> stream xZMo8WnӢC]ڢP,H?~"%Km+Mb_BI&G{o8T7F(&^HK&R>O>v%{Hc/`"2䣀_4J U5GW_f*SE:57Y\#,10* Ve%v i]rfG7@zK~i>a9v.5z@! Lí\"ƿ?kQeWâ?w5^O1hU}\ ށ1i<@>ј}T&vDz8I:4Y^a yiu)t\;kY@1FMB(A!/AQ6%O M ה@~O?D&T~y[ _kӣEOZ_֖T F9DHB"y㳋 -7y$TQ+gz=r:"X260N1hd,vYqv}2֋C=]׷9m+pLKzkSSVldȰ(zɢ%9nz D+dmOYAzlټ]Ep6o>Nl2 $nLYpcp "Oػpi 1qkHG^n}G{r'-|{McIaZ,R+>U[BXUmPJMN endstream endobj 9015 0 obj << /Length 1550 /Filter /FlateDecode >> stream xYKoFWPeh&H@+q-I"U,$f0Q>{yyNQ8r@)e]?W,$C$E|RJzดmiy+_b,q2F4^u:mhF(]ZݨzFD[L3']ӻpHJS:$ 5s=QN_,Qa r+M۪n3K.;kW#;P tz7K8~g,(??@d*F#-1-,nUmkU\ (v~Y-eJm΢q3#yzoenk;na'oܦ}4fnxieU˵71-(o(NNwbM,޴:D\pִʲs#T|Uun{l&jUDB{0`SA,n?VmP\S\Էr]dJ}j>CS[aB O]6Րh @bURŞ4ScП8EH 0|gاתּ١%?m6N)/쟴)' 蜙PKp8VڟfEz\li=>ꔏS^;b0B}4O#Zm} ش_vM볾ާrG{6ɐl`X;G+NiUXG$JGncHtN[V lSI&'>;TR-;6W?tG*#\ ca7qtΐ:RTp8_G%2ˎ~KMxPhcc)IJJ +ɾJOlAη@U)]qY2%+\jpMq]; ю/Z{?luh4~nZA 98 # lձ eJh^uè"D օ %Io{k@܅! g 3k٣=UKٻ,~t` ʤ?e"vu4wӘۣ ~`ch. <@鿶bm09qO&4w6Եp3}^ R`S앟71'/G&!8P变>e6Q4m\o:thj.eoGF'bD-ThRy@c[-/gs endstream endobj 9021 0 obj << /Length 1776 /Filter /FlateDecode >> stream xڽX[o6~ϯ0d1K:Cl:EAKtUOӦȏߡH*C;rŒh+^,WlA0pF"  NŦX[^}q푗t/$[VQ-/1?Ƕm/gW4s$(HbMbP؜7ONc Qg\)KUr.+,mW ]+dSɕhݙ?}ǥuiHO5E$v9G"35"`+'! g: 囝:`+Ila*:0ť]chZozM(D>Xk$tz8\ǔzSk;O0E頗WՈS:dJ#o_oV4 ۃ.y'.&DLG^WM%AM s d)}kެ>RҬmuc@cB ;>*,AlZ=@dVihZV|cownE!ZN UʸIFQ {=OaXW3+Jܼah⬘N z|s1n0> (w{[)#l{צ ,ҚxB!8 ["}{\|H5$c5Py=uvJnJQO>[f,3"NRi X؆a9LAl\:ùΨ&}Ue_}V$;%'8ܘ᳜NۤmiHB]+ SWt7=lՓbV%|nJqۘ|yNɸoCE̎݉Q1Sͬ58 j$}xsJoqΦ~ N}_^٤2.UXxkWal_l7dI;D*| endstream endobj 9030 0 obj << /Length 1459 /Filter /FlateDecode >> stream xYs6ўYd=N[=e3f+D}Bfڝe ァuris%sQFb]x _l}|X9% C3Rɘo"+E$bzQl{( nvݸF-eN!. H+2)̸G#n $mee\ R+̖zU#ȸ!B oRj⻧KH&ֿ[׻rYe,E#?a.QO2u"q`ڨsdm('!bׁG.&(((U4[5F5?v V\XD S&daMO͡ n(Z &*PGOV> qg҇-Tqi$ܥWetaBaD}:]W:r 푿p@f>bWsmJD~*EnD2a OE/LwRZjo!ͪ|cJ+_*cP0]/pP96θA.A4OE._N5ՄqR "=tV{8%i9|b C"N1RD݁3!ktEe7LcoNq'2U+ 񴥧(`N I>M#$RizXf~gAoH&*X[fM+Y[d"Nijן-Ateު7V #4 f :ukܷϋ22nged89kfO6%#ODeQ$h47V\p Qc]TsKsY3`jc]>V<( 7f+A~jO}OMJOA(QO,,)C,O\8T81QߍU4}l }3PB6o!8xEDտa`F #Ao"OMEQ5Ui< ldDZzC8Q7k}d}U{#̈́_>a-x h~]X}\eY3EحP6!F0nݾ:k)&d#$vumG?4׀Ad/{wVL} @s( endstream endobj 9036 0 obj << /Length 1548 /Filter /FlateDecode >> stream xYK6С| 4@RZ ɦBdɕPdIKَ7'h87{k{[e^HGs6l_}ͣ<|Q(b#1)bl6ݓ6y(27ZMeF{wOIsV4u,F~iYJd%}7`Z+ (#*onoUU ʥPU?nծ5 #2}l:q;u\W |0KUf<p} NXzh5F 8fL֮7u(PHN >gpQ#w^K# QDH# 2|*brm WA,nTݢ:OLj n\E Ӆ$ pđCQ vbӞ_F6{cu,dw;% iV@fJ_6Ħ9`.NhQP'TksR>Mn7vp#w `6ᰉ۫%V74)ۤMN SDyl_tAe:Z)0*UԟסzN]Zvk1II 8Sm(^Ԣl\ևh(7imꍙT&]=09pEx1==,N/UXtzm:Jg:LH$Z"ifid/-_ٵ٤カm.S`y(OyH%9L9ѿqO,1?Y:b8٤kQ3SÐr3IYVv- ;dЙCz:dM]K,trpKêG~Yl endstream endobj 9041 0 obj << /Length 1526 /Filter /FlateDecode >> stream xXK6Q.bI=E&Hmٽ%AKMKm$:_zM$"g3|3#-H1p."[Du[-d9ZL­*M5n 7x&Ʋ)KQNrPmEӊ][ -Wa`TʝX›f]R/\v j>xTRO EV U#FJg=/vOs@s"8kYp7mɩ/l8^"aGd;^Cm޸_چ~Hu{ {iNQh׌ݏ!aWD2p+AZ?&By\[ >bB2MU Yv RnJ!H涾粇D@‚תYVDL}Ang¾[4lw/Táxh~ "q@Sʒ*h^}{lq͊ 0u{-V\'>63O==AWھw9yj=ca6!a֛vk\>bx癟b|'I-9]', F*-b?O9( 8lYC:jf#@" mRDO|5%)},غ;kqT|*| 9h~Y!b3

g R0}ֵ؉PƦ2<Sՙh2q$Sb[vaH"n6k2:Q!d!QEfSݟRXzi>QZlg(*9صSU-L-9Il/w3ap\F=m^ruD|+t[xkBilQYF7_nY mE~vYnWw@vs21a'Wv|ҍndˀ 56MRZS]@ {!2x0?Ü|fՄY`r닿=- endstream endobj 9047 0 obj << /Length 954 /Filter /FlateDecode >> stream xXn0+tT=h Zڢl!ȁ$w"r⦱hr:狏WHF.H(("Yo)/xcW"Qd3(ye,ge ,'`3kӴѴ1aИƴ&>kx8Y4b@b> [wM1ѽpAR/ɟչo}jKuH~Y>M"0$xP p0 4n a_Ƶ]=Av7.]>{tF0y@3k2wYXR#?;i Gص]1ǛF>OJL*dj벹dP)dS/>k* _vv[GRu/tejM˄Ho5L& s8E7tcʶ{Pws<Bg`اDyWn\PHo:ty]xѵ7mW2A;QES PPFU[ 4Y!COfS &  XoSMyH!N$ZOoKs9Y>DJ-V8(] 3~"P%'XwB)54BDz|)'O>=ȩ'gmf88ɀ`O9Mv֗bMPeABdt8& v,ʂ?.j&YTgEe#=Ӛ1- A3&j᭙[Ek3,6gv(c|y8T~R`_߈$ n 3G!}!3"Wig*EuQ_.WcT7rwKL UL6U|>;}I=O'H}dHW9[PT>-.lb endstream endobj 8943 0 obj << /Type /ObjStm /N 100 /First 999 /Length 2150 /Filter /FlateDecode >> stream xZQo7~csI`H$)^\m;tX;CQE~Qm!297J(T!AAkPe ]JɅ$"'xV@[H${Kiz z4u)f3:ۆVeo&!d,X5a䚥5 an&v9%CfSȥ>2ƀABҵԐ[sMZ G3$bVok(ҝf1*zXu_ z>V|+4zRL_0o ׂ3X)=jP R7RP8hrP䚛`h!Z_fuN#+,>F &8ZLA }h`VZ;p;aD`8I>A/j-8V_JWGQ0>ϾvǛen `IL!$trbh3aa;.CuLuahgy c Z]OY]Yfs:@S)LL|MaɓUcU:9==^E/W'ë]zś(Hg?oPq2\[7l-6 ON3<pzWa2 ~yȤO—_-)bjf󆢧PĺNYV05d3FN@HnP>'uFK*F8e! ViHG4DDŽ-AG@ ) 0AAr4cZR q:R4PI5 ,bQɒgMG^R8(|ywş#[+Z] XBi kI(^\,߽Z`.axy^/~_y5^.^./-.%?oZP5_o/.؝~;p{:4dlذ>)r?Q"Q嘐D<[Kc-tDKUI-'tr<BA=P(^aϒ`-C-D9âΑk`2x1G`ή`B]}IH.)M#GF|dD*iІ,' VL1)h "<>ƾMch 02+ePa)!![J%B;"-=Bh#ڱJ#5 FC1o:ʵ[PDJ;(g2'^e?T,WP  Eh5!sR#v{,X*<6=sY C?'E0rCA ;j ҕl[C$tz,[Z@RUHO5ÎTiG.(N^Qv1)Eþ;˙#@;p6GɚT7km:um6B]Ľz<Ą疧_4/>M? M?+M߲b:My&ZBaŷ 2P˿T.fHbOXJR=Acg|?6b0#!!49 ƒn-=N UlkGR=%1 KP ;YӋIVYkd7#5RmS܋mR8_ Cþ)CtvB!?! +W2Lnag;j9CLRSA,$NYbO3nIʦ.K|vf2}.>>}˿jp/V?Oϫ_? ?̀m{dznrMllb;ߚU͂Y6Ql6bUz29H B Vď_}/f=𻒴t7=-(!=Z( {4QV?N5N(DBTnno}r|m0v#Px endstream endobj 9053 0 obj << /Length 1976 /Filter /FlateDecode >> stream xYYoF~##@4A@[ 1Ї$0((\ɿ򐼲"I'R9cֳdٳ7RxŠY&fYDj1zuU^۪RHlgY_UDlcvE,ڲ:|۳7VT \gʧc%2a.HJZ]Jqт&B<yT5/񡢅iGZu  RhXm9vZ$WeX+gې.(,BR4Ds0ɞ%z.f1XHb`e<$QTW,Cũ/jCx4) c|j_p!>i׀C @) qN+Vd? r0 U)`7FASZs"AE J@a} @/`P 4?,[ȟ,@FI=(d= dgC~߂ OD|˯Bp1%DR8n騫U`BTRXȸq0+ B ǐp5wD-A֝-^l[]+_-4W~JRjָP m/ih`$DG%RdV Ѫa3X]`^sڪGDP_bƋ١ʕi*m m!}Z ;)~DS$ E.jx\,9}2 >y؞@@܈sђr:Yaxr"U #lLY^{qMC );-Ɣ^C5.,ؽZ7F25+}"I]ڠ;`,x p3Ƚ}% =uz3@ͪT,SN94Qj.8oK P+ؖ:hINDŽ1VsOPD) TzՙˈrθNH9|8K]2nq7$ƫAoGt[ 9z' <$fRx,WnNũë\MXTD>r,{p6)lj2 +zRo] |vxno`P/;"cN9LfN9Sz`P[~rs؎/avwS{ ~j_H"Kl6+o(U6&/G'/';_8>Ȩfk]ѼOGw|y;oZhD8`-ju(*7wcF`Y>Ua'!4KqU XT ˀ\\hAn<0 ^13p{Tza[$pnO!t? q+n̂ ]+7p?lK %u7T[9uBp5w J+Ȳt`r`g%ΆM57XQ/IV'0w? !gP>?th endstream endobj 9061 0 obj << /Length 1460 /Filter /FlateDecode >> stream xYK6Q _z0( 4@SķMZ-Ԗ\Iw(R$S~rҋ!o^7f7>Rě-z7K;pm ?y؛2@r=4KU\N54/+Y체o7%!‚N(b9|2_1r8n~Pd B֬HA;c߮\{J?|Vii"n'An&Ock  ~+\L`(0XLTJj:^g3+҉ U̢& 4rRS:v0׵ʖn$1GG7@p9g+ƴ8׶R?ʚTf֡(!Pm>N%Ss\X_j]s6龬 h]κκ)Ggp;onΰb2Fu1BU3oHFxuÎ:S$ޖ^Ax ~m'UQ|v2 >XX.lbȚ$>ƭEՏaW <] 8pBr^)Du3f6`ln M$'΀nmIyѪYXpS4Ւ.1J[ HT'XScg(x@mճs;mS' |T£0ujAƜU :UtPڊ[x.LF,i3vѵmol" +®uav )v2mQm?@AE)מ5ejy J>2>@c9U[ZJZF !΁Q('uF P.T_mA_%`h2]f P!Q#!F Di atȹ2ic3x?Pu2)$ю4LJɤ]`{O}U[6Q}aer !Lh*RM 򣔈]+lɾp<Ǩ.[]mL͒p,>joܶw r)Q;Dʃ2MN4xdZ^mPKY+y2wV-&ןLIk'y?`;xE/31|3yQ&,i2Mu3H0qqLd\8 WII[uc{sMWaV|Yh{|;)/ :%䌲nhrg endstream endobj 9068 0 obj << /Length 1719 /Filter /FlateDecode >> stream xZMo8Wh5OQj=t]tmnmQ06 H.%ͿߡHɢLrR]1$7COn'x՛뫗o2j"Da.&kcS\tz֮U1R7F^Yl.JXS7CLVW[-Om9HW\P1]_z>nj]ZfWu`W9Q&s Rg ?5slt' bIwlN2u4= q*Ul a9L0n7j_زmml4C5?2ňmѰj^R:6LNgdp~fG઎ -2Q bP5a8:&QI8f2\*Rp ̗_"jD&7jikam3U,cP(O4%-K䢬mOo U{+q?bjUj׾(Oyop(6ʜ/LT ŀn6y}1'<7.c]YtrreUwa)6?`vare;ON 'ːEcHNh =GzK3al*%06$B'hݲdtmI1tDh֬ `zgj?z.S;'$AgMɽmJ@i׭д/*t8 m{g6p85GؓrgF&Q% 1:ŽS.TZ>j,.g 쭮 lw-)еN%oSF1y|zC֍bo=$Mvoa=/?ppOCj"1vQ}lK;Hi߀)br<qͮBreQw}\ۋc{iw+1T. Ce^c.u7pJ2n|ܩB5䣛$> H'*0v U4}4KM\BQ}99H\Pfք0lTbd-T|y(nn>2ؿ0EHWd:] W L9O!e}ʋ5?s endstream endobj 9074 0 obj << /Length 1490 /Filter /FlateDecode >> stream xYMs8Wp Sed}a:=dߒ j1Lǿ_ fƎS%Cnu~O%=A c]{R]|3h??z b%̯KygﵨcGo}e@΍wޖ" ,0beF[ag }m]ȯ@&TkAZe"nToR_ԿiU ):)SZەdg >ԭ_Y8Uj'I,kQ6..Y4H  q̤:,⸝y0vC0nGD(D֏#Sx+e!@{`ʽ`.쐀RGi򶨯WŶ1GqC\kY0 [-5+].O<ᣳ5Xm'~]l<ϩ >D(VH".C2eF2@XMGKUg:"nfͧɀgU:uP 'f: ժ,f/#y${D5'B{0$jaahNE%[ zx˂1?U #Rpp=rܻQ#t(@uV>b'0ӣCVt9ɱ', K{%7 ;ё:7fPL ;%&'m=Ӷ-9dv<>}A~7XHٛJ0†mgaFQA m^4iӚl-z)$'}^`{`=MkڞXow {4rʹciO9To:5 endstream endobj 9078 0 obj << /Length 1347 /Filter /FlateDecode >> stream xY[o6~ϯU /H-CZ-C Kr"V}.@TEHbĔ6m+L벶x5hiִjslԍ{T.tu^XPhR*kB,fFQ!VN}jX{M;#)*! " ȹxQFm| $ElP8͋DlP8_wd9LjP:3ט-ey܍bJ>U[XŬ뤨 Y4&." h޺O.xNxYBMoosgGƶz'Hy贲jl%"e)iNK$0$!9SP?WUse浅i1j:̙>!Xԥ2NHC!Лa)#d$Lt幩v=UsgJ)T#ʆ Z@|,#*,"dJ{g3ܻR ӡRF3=~4 ce0VhIvPO ]"!ؘ.3]g ;H3GoMZ_b v8 薁}lPFER"A5JI+CUg]UKxt`Hp-6u; \ S|Kvy)_pvLϹ⾆3:$0f`=cc&l_z r~@z#xʽA4 /BASRL=~mɧ2'vl)tT>v_}:܆thωaѓ wwPģ3Ɲ |Wn4󹸵"_T^^q1ON,OI=Cc)3s]-e0\,)['+-XaF0d$nw"&,ks`ʼnUKa6 7fr&.^g3_=E;ۭ^:sDހ5Nzg_j.uLJA'LSYgcq]?>yw+N|RrΠDwezHK)1b,FtdW& 02MvE o Jv=1tw;ed^=}L4$:=/>W{`ϫwK endstream endobj 9087 0 obj << /Length 1409 /Filter /FlateDecode >> stream xXm6~ `KVJ&JըR)N^`s(,Pl.8`ɵM*]eg1{aų‹0*pyW{/ 'Ի7>8xw6[8CqF`:z)]!yVZ R8]m~ğR4}ǃCƹ_L4{3Y,XvFVzCz!k=Rtu Uu-L/+Hg\2{2QTܘ3~:ԝ&顏-*b\|^V끶>JlY8,S#hEJ-2H%ТLp 1aR^3^6|vGQs [|m (E8M.$n7m;vc 7>zI[ qI1҉L7 Way8z>$  K2Dil~ 6噍Y޺6 `RCϬ$F][I e[٨AxEtK`WJ)(9u!JWĠtiWls#rM)96E5o9ר[13lX>$ƫCRD͐g{)O& Hͻ&TVRcH7/SNe:D$ nBϴnd P4-Mbs(F& Ө `ٝtS[6ŵ( ֪RZ)qaُ#}3tgC&ϛ1y?iGw&|-Kz考,Nt@qQʙ:C,n۝Z'ǫ? endstream endobj 9097 0 obj << /Length 2037 /Filter /FlateDecode >> stream xڭY]s}'idMfdLЇƙN'7s"! Ei] @u'v9 GM~HMho2ٔQFYyh6l?ȇ]6)]P9nۆ ӊݯdﮝqXlΣXu5&Ȓ,LtQX{ϝdG޾%iT[>&3z2?jKtꋱWe=* 41>tۛ$lk:XFHLGEVXi]C,&llXow~B:xTG'Fa{ *|7I\>h$I~Xaa!kqiE!,~kV^NVo'Y'.SFͣ7I~@'wv=l!~Rrxm`-&{ 5ڦ.hyvu;5^w2/Q 0 $ASN@"&ApTP+ R򆢌<on:˂ sx;i͉I'9Lש@wF@A1î-Abg~_ ~'I:\0)֫&.20DTTW8tCœc|avy7I:$>Bf#oqs)4wka~3u=Whқ#ZE/vFqg~-ra :(ӧz |;6 tϫC}tV>$z6f8;>uM7h[쌜dEsVIV6fIZqx'JX;(In QʖE-NlS0\o<џی/Ű~7bM_@K-h3eA]hVmhve1rV+ZFsmHu) ;J:`y<ڿIakNV`% ;4BqP݁UI5 qO)՚kl+,ێo0X bqfOY#/]sGEHũ^ki{gv-"W>|1e%*S(mMQ_PgTZk_`HI.tJ!!#w^|dƠaeQO|5-1B7:KP?d^%{k9=\4қ;2\}s@kOؙN&EypU363j'gRjvD ]E,*QQeNJт٥pO]Sҟwb<_=Y endstream endobj 9103 0 obj << /Length 2248 /Filter /FlateDecode >> stream xڽYK8W96G3 0da{X$-6YtD;~"Ers$W_=hǫ^6ٮmmz8dUD%xzد>("ZJ jFȶ8I%9&˵>gNvvsG_F~eSI)"OpDзI(AAӵ9ĩf)gi<82mx;ܿ]6N튉vz'*yMg,fMmiD]?N۞,L薴ʼnWzIm g:Ut Ь(^f;Գɯ:C)2GH= !-%[to.lu/LJW+'4qplO8k?)ݐ:lT#:ݲA^:+x{D";(ZB j'ּ hUMN{Tvlpv!%q< ]Z""z~!>Ei n`=7U~XHK8"$1{m$:d7=T%KGSiA 7U6]:qULZWxbhGҜcOW tn4w\-% ގJxܒ'ā7oYg/H} 3O '6 ^-ˌ>}uINLxu"x2 /X5h&\x|c/2]"(P9F̬f`33 [ʳt1q U_wZRt{\`W4lX5EܕGMԢ7BRK;q?bN'[4舢`329IJ RNZA_((lꦺ8rl39fNqx/%YGZp1hMVy"Juh?"| VE6] endstream endobj 9109 0 obj << /Length 1705 /Filter /FlateDecode >> stream xXKs6WVS |Й&Sgd<KРCBI_Cݤ'>.DW]>{yyv~*E^elќP!W]j_խcyR,. -):N*4+?/X1][Ȅ<Ғr;zo/D>1$\6X2Wjxm賓Ɵg/;'V}"fyUD}yȔCj+"3bz ~ԾN-l'wлZ5Sʍ9["eӆG9L]3t-l^,13'I F#BRIh.V1DRqG{ma<#鰿Ԁz hly*DS4 ;*P$!lIyᾬ1dRÊ S?8D^^ԭ y\6º)&"'H5zq֋TW|l0.Pj9n'd+``F4ALQWֽZRm"(b:o4(nwQ,ZIf׸sۏVRzQU_a`" C,vI?cB)C\98D%KXyMgiTMiYӨX骶y@\\0 J'>"0FO5{%U7moezmGEƞ Jec&nE.n<-Z`-ukw}Gf3[Z>bp G44g۫f;6qB2yŒlo&'JݺmNzQʅ$ۻbW~]$9 xo>.3D1K`2䓓 xS[f!@#()ltS\ Uضwg ;6- FdֹґdTv\U*fSj=u/o~,S7KHÈ|,:h|#jR}zSvf(QJx gPbp*N37ҳD{03;-4c$񍊀!Ec1!Ő/*!Pg+Q$V$q=ţȏI'M2>m _pL8b*<GNQLͬ=Ųpl@@=O9+W,h"f"9]r H]D[=+c˳# endstream endobj 9115 0 obj << /Length 601 /Filter /FlateDecode >> stream x혻n0w?ʃ!C@z+Y!Kr+r[!d9|dJD b(ZD ".je՗is30Q~9_SPtnk~AC;@aP Tbtٓh샜bFmt)b@jcY꺲&֕nʼpuq~ :mic^?Η׺{Uذ2F[׋sQH[𰽁Q/"SXӿI9&on'M=ij 0fz#Bxu9'~]%JRxC -i0ZaA``H& 0,-0E2`i)\ٹU) Z=K~fRyT%z!aHA Dc0x\I+׼h|)`> 'n&(L™ Ӝr ơQ, 8ng$V̈lp\pT""lrT$7| ֦_SIYmê1?S1L%ImW}vv~Z-T endstream endobj 9119 0 obj << /Length 799 /Filter /FlateDecode >> stream xݘˎ09OFӈFGƣPâHA&h<?')" I* -*+œl> -"g\0"Q>jD>|= JRD ,l(+DGmІݼ3[&/=jy#em;z)Rm{{A3 =XDRuK'!tv"ki];(z [FpQ } G߹wgUh]QQ#XyTD5g5BDn>,k՟" NH/aEvyq)#J뷱ƣT#! endstream endobj 9125 0 obj << /Length 1358 /Filter /FlateDecode >> stream xWKo6WhO5/RMb{I|KC[,G>H2' ^,937e_>O>$ %8!248FGdoGmt< #%V:GFaiV4NseWcvרھOY`)wPdj{ikjh:I*Akb})AVj a5MƪXdixxfY1qبl#aV#gi?nLooZ]YPrx|NhJºf_?f}J0ܕs !$DK$YVձO#(&U}W`L#(#Qiq?o"ma,Fi,j# qE!{Gҽ(d@!5 !BZE(䏢poQ8{7(e^1¯S _=HR PޤoZؓ'⃫ qA{H ae@1@/C$\l fwL f(ޒg /LX(RCcmcW𤡪ʢ{$qA)}G(ZcK/ EܵƓUїp Nµh `ۏ-B ҔV(g6,Wv뇳f.y}ooV\uRf+s:sU@h5Ab'L KV7.!} *[ɚ}Od¢ryo#tw(faUݦ5pnuvǥzEF/+`ƫqh%!Ms[(<gTofj̮%ۛ\Ċ\'fB =l_j/ >WOU6Z"lbYkY`Y4rJLrVE^WR5/ m{S[PS+z.ʺ> stream xYK6"."( E7H%e[-w(ROSkoi,~3pMW_]2b~HH"_fmJyC)~ؕ<$.Vve. ]L!*ۓ.]=bs'Y! "]aW'>y hHD{顬4<:TD8CDF;_Ph5^_W#<5,~@>B&bHT 0Z,짛f{,r W<7*kXd멼"̓W+ERnJ?p?`,lf)D"u6 pK6ziͣB-?Fv y re-D6k ҆y’> G?di=c{}y˨<زZP P [ȯ #×gsQjxyUyfU:,ĻY6lFq^ `bJ14g 'ܮƀ>T9CT AՇIhd-}?u Z0;Ixn]6EՊq^wԅx/O}SD-KĖ}n-DouK&a&y G .2=Tm)U2%O8AAy*ڇ#nbP\mZ,wDJt}<΅BggD] Ǘn4\HחSۖ7~84ת qҮhoүi= )D_N1F|T%&U|Sxt /W\ԿJ?Khđ,QP*}D bYšDâpJ~e^Eb[)""H%`j-Ї̥|BrFgo|$%\{sM0vGQ, P5PN]eFW]7I|e]7s/iC.XEg+G*ֶz/)> stream xY]o6}ϯ[ebI=6ykiG"~HєL#V%fhsl=?.\z3As4YX2c0r>0WƟޒ?a axcwecШ 7W+3^6RTz߱yQ@(Q[w+/M!%s%d('YUh%=Q#>mE}PKVƠvՖ˶f7ޚ٢ZϡbLhJ2wjlkۡ$Ƚ3uNCGN: DŽ5*踜vbߘ&8ˆNem\YʧZԺO郚%:|T)2ZP׍ T!dy?mcY.J2(KՀ*Ị F6NO\Ef)y{}?4vS7EPF_!MWޟVET]b O"ƿ]2=Bg <h2!#? Y!+k1EjfCxw1 M:Ow i_}`L_ڷa,;Ojvy<Ȍ$$s.B csۣ [9mۑ֬:gSbt9lO;[*7a۫4'rQ6 Ԡ,Eۈr5ܦJk'[|sꙓtf?ȭg.S܊r+GuŶ.Q$Փwiz]ddDr~_VSPKH^n^ t }&u)\`9Zj]oaN]r0~qp`)ۭ@ 0( ڕhe2 3qIcQc5Y,;jV~YlP%7w endstream endobj 9141 0 obj << /Length 1269 /Filter /FlateDecode >> stream xXMs6WHMCs!ҙF)L*$ҠL }~aqv~A A3%?xSbB<B[eW*! q+?/p N޺V`dΠ;xȇ"} @IQK{sP>K>uB#Ef- |32xʮVGf{2#RK_Jy_$5Vw8^.Z6*^{֦[M. &j/KTΘM:?:7:͎ k-MAs&Ti]}}'g1 ҝ8R}b]]I7ap>2D >:Pڨz4޼Ne$ %ɶ(TgƗ>a y&DsFpHYf_…Nyta eF۔H֨WW|-:6zm^ :\eyefE&};I{kH_8kqϡ :1=' B>SQv2MI"ڭ収X[*J~Nux)$Z{RYop.eN/D O,0WŁ쐧s.I&vpƟEHk5{5KOoWV̶ol#aq6B PtDN7Dzv\jgb Uߍ%M"9Tx;ҁVҀq:tī2y6jW7ȒKO`"˨ڹx/~XݤbChma>8BsBD .ۯ.13ڡQ?2]Tctߥ2GA.OXC(t u.YPl'txj^C7bT\2 ''쏵g o%nEC/ ^4jjk{4 %|h/T8r0+{tOn9eNVA~2ٟLdtQ?y'A-^o\)WD?UWG˵-P[H8;5:U=x;jR>眲2A[> stream xX[o6~ϯУU "Y {( h"ˉW${(R$Ӳ.yd;߹8pٛHcM:4X!EXΰ>/c1Ƃa$s/hWI!K#6o2.wҼ63i(Xfdk+3R?"!X>ˋڼYl 1dYQeuVV(˽ vg@v6JChC B {bD9ĢnU 5r$"D4xծbLzC?yV4KkCc=!#)3ל[Q`<T,_/eiYlk;> <5>$7qy@Թf@%D"g$%n-ŀ2ނP̝W뛴"czmW8L$_́dJU?TΟb dŊ##B\ 2$8%u |"O"$x4i5QDzl2,8Th)6& [8ƈif]NePV"(+in(b.|Aa MX7& y] >A@Ll_> $A,~@N%jubJ+$LAj_0jgZ$W%Zygyuל؜\hL;jkAMPjy<[4.)W_x0QtPDIUe= 0c!uZXZ"ٟie"^\NȎ͟ai&U5]M$xJ6OQ:AOL?~mׁ_٤|tRNbݧoW H:@d 5z6xtr'v =L21 vI\İd?r.,5?}mbl'/qB,vcw3;']ͭ=m4V}s`c+b& tʙ8fZ>7ǫWv63f.& Fvzlm/986:; jk3kI3Uˤd[9L`I8K;fx˓#T́O)Cwk`"};u 2rSܾ0ii)%{\-o@GrGIjHP(ٹ3^SN][G$>&hu^^a?;r=r,je\%Yv~8^[ endstream endobj 9153 0 obj << /Length 1043 /Filter /FlateDecode >> stream xWMo6W-,>4 ݞ JMT6"w$ZI qQ$=I3=>qpී7W(br*HI aƃM\oovQJCUYvDQ8,E[ڑJm[V7zG܌( ,O㸋:.3a&4(F)gٷ]LtnE`+;j|ʺ 1vN%%tw+rm!!4a^ؠn`*oOݸV `(.)::[=>EʍhEgYP)M|Qb'[Ч)؃8X8v2KJp@N|PHm__CK,#)")P'ߥȕ'.2=q=ʏMw!vʈJ}>`Zm܌si.{{氓-c?wgJ m˼j^/%}۞f#=Bh,'5;ʉTT6Ϯ{huJ7vQebC`||XZ7g:]B/D2r2,u^]:,@Aѽ~2)S&(T&vwV5J3=J*1Y9JI#Nؔ10sQO׀ZrUj,ui5KumzhA1?vi2cԴ )Yk]?Q`HS v_B\J1vbxӲ ٲ{M-듬f4շ{M2۰{|>pycsN&P:M)(RlOc0pڷo6=g4 8]#(yRp5fM#ӓЭjvU3yy-fb,gN1/N˶zt ГbJVXR 9a/"`98t endstream endobj 9159 0 obj << /Length 1614 /Filter /FlateDecode >> stream xXo6~_> X0a[[B)_#%GqfM_bxxw M6 Mޜ:;e()iɒ$IN BJT1x K/d1֧I&(U꟪f)z0q V۪ѥH,_NM9H275LVGvőޘ V A ˺]W8uG` $41R*ŝV@!P\]u0b>_*t7[ [108)QejrkWۄA2?et /up%&SfiA786:Tx,>Blف53w.E@dٯ KrأkέCE#J.Ӿ!IJ?Z`lִv.&\Av>j1kF/*]/pRby GOe?l!LR=nGXJUT<_L+ ,}G \,2-5Pl`9M:Aŷ¬`1`Om~ PorUQQt S ܱRL L庄[9f]i J> [c8}B_>'7k&C61RNOLArXw=Bod1B#rXzy?:l6V6dHIR &Gf\$\IOlY;1@1d?qjopЛ &(pL8dwŠn5opn3FG{i^Qgmro֟ȫMgVi 6 H.L!_{#vXn7K_9 \#/0` <ЩnpEc(CE6qwa4ak*xy dxPS)`DKXBIܕ1_op⵶$d9 |6㡴?!'7^8QLW8Gj >I\, v<𨾕{~IK{ > stream x͎0y n{USVU+h\Up!"YlH!Hɖxf>18|[ ( IŒU%|zRXJ._lZF1 WzW suiI[7 N5'PK4Sm񸑏#kQ)smMix,_yClu[?: mP &qPKK^K wh㤩̱kT6"Y$=H|lԚmDec]L]L^}3c9sNFTVM\֔ZR.fM }JS%'$G^qn .6^). "QV]gwOXS8fgF&/0[~vD Muھ@bOKH1!} )~$D=HF%)Q(Q31wwSgz5'-[*=@3D(I\Ɠ*):!5`@7p݀d#13 L"onNpzCEEhٚVQQgFcbEpT._02{)Jvö]?wN\(A.)KmWKG$\y(`P? HNT31$ud| endstream endobj 9168 0 obj << /Length 759 /Filter /FlateDecode >> stream xOo0{>vNuMS!!&5ھ, Ø `!y;"AB跼|nFD%!q5DICQA=eկ[t,4M8M>ʪtP n~:!Q/;Ϯ\VǓ%Yʗeh~*1*'">wPRiPq@ˤICϠI H21eI:$YsK8ʑƭ'sdB~!\iNq%FY\$,&ȫȆ0m:ۤfuI:dWW޸]|c-i==t?HԮx-eOv|9SJ~Qd#LҤMWBʗWQl!^B۝xB..qy>p+_9o;} [ < Rx_Q3er0OG 6=\FDR_qne޷7FYGi|l$.6f{Ũx>ϥ>__"^I9~y@ endstream endobj 9049 0 obj << /Type /ObjStm /N 100 /First 985 /Length 1877 /Filter /FlateDecode >> stream xZ[o\7~_>hċ(  . MyȦ".x2S{|b$"?R$E=ԋ$ +'b $zR֘k%U=Kn2z"Xg9~뉄baa MY5ۀ2PGĥNJFAUƾAp)>~&qNq'9%\0 VJ<(r#=bBJţ8)S]J ~ݓ:ݨ`դ?0AJ̓sP :b*T׉J 3+(1 +zhH@- F"!d0+b-57(JP e*&; P8 d-I<I vǶ쩑Z&[CPPhjbؤ9gHAe-4"}KH~c =# "o yܷQs(;GA:Jɽң hW WV~t8:w^pQmNӢZ~ l%w$m~S*%gt9|ZzVz^"!!Igțz }.-!vy6n,!(}\?7buhᏬG$N*C'bv?> stream xXKoFW $9hp[\KДAR;HipbRy|ͬl=ó?.~[\\^31#e8#,K-V/F=e;cMf"T=QW˪lJ>k}B§K'猦l &ǧN}<@pRΊMA$T$@:FӜQͪҙ spͼWޗrN"UsUIZ"砭#B7 ! ېeeN<Y i513jE?WMQ~ id)xa2-N|T I?Aa^GG~?{,C"M= 7cJ_?{^]}]~оt c$JD~gt|ZgnBs^.˖j> stream xXKo6W,E=R@EbBF1ΐCfMm/+"3|&'?^<9@pVBAOTpބJwpr ř "Y u5vI)C$ƾnoT_jU#&ḩ#~H@p{]J]~[`ح"\_ֺnK?Pj\\wM["!JȌITEƆSkՙ6l%I>kZ2P:\0Fv9I_5׀o*o2fL) y'〛KhBoMjRאњƈCͩFQ4>컱iݮ?P'I>\8KDUtU_ꡲO(a6s;Mǹ='J F!,G3^(Qf*-'[ ^b+ECU«=zSFkv"XgCI jT;G؃ !.1\ VYIm"Zz?ȣ#Z#<2L@ O xsx$ڍ7ΒyDp3PY5=9 Ց>#0-LT#eJ]DJC~VqS;/궬bFf,L¸dT1'_!oN1mfhs/I"cxJDo.~0Yp͸pI޺ԟ23 |=HY0&N885s[2gJ66gDZ|;1q$qf]och $qƺ^LY:-QQ٨eə54%G٤(wDR(+C׽X:"nuO!1ڞ)7^>j$p>n+P`PyVJ=8i;5Fz#i0ENՙ+`rúz3=XC˿Zb,>QüY>gś~[_vkA*wf^~yK4ӛ؞_K/ endstream endobj 9185 0 obj << /Length 846 /Filter /FlateDecode >> stream xW]o0}ϯh_*m֭&m/͞!9$~6JI׬s^{;&gKLȏ3[: 9O3ŚoDN=0 :1+Eɳݘجb.}>DQ68Pk2k7hW#`>`42u)bvKD|i^-6MnCU) ݹ,G>>H}#Ⓣ-HknȄfieixE,,mF[6r+ikړ5  (>1fv!EԽKdnͥc 1J )=f>0o' ӷAUabVg >Ktxd5KVXC/}R_"~߅\)\2LuWb ݝV${ Iɳ :E1^5U*!YaA .FxB@B:rxN8>^E5? ʫj^J8 JOKb7^;Q|],̊,>' قvvgm -8"Ti+IX,v'Iau-InTnr5)$I}*L){>MqCaQ-t[=V4(QwAno"o3ڡXCm5@DNԴJp{>^LnE>s00ͮ4Vɽ(Y.7h_/Ӝ^_z&o*BNNnճmȃH7}\Ma~\^Xh֝06|jEc\F{ endstream endobj 9193 0 obj << /Length 1608 /Filter /FlateDecode >> stream xڵXIo8WVXZH:h; ʒ$~W*i\޾|/8&8⏫W2!-$WфapQ&WSZrvO߄2DYd9F\GotD(j'Y穘"6~Vݾo=3{z_zqHi-6r>!}#ZHͷeAk0#9* ̓nF?VZ%E$vmzMbvkOǝ۝=E{AR|dLRZ1}6W > Z"6N#b .FN!(H)͡]uܹÉ5l0&xY[1u[V"ْ LSzL._Ϧhghj"*slwdvjoWK1|%ǃjC8Iָ h8YQY|6 ꇻBx*>0yxW0D8=KU9gQr+y۟xI.NÈݺкV Q9AZc԰93B3gZ1ZKW$cCHQD(%w%Tw(]"R3t; 0Ezm%Z 2^ABդ@-@:WK=l_dwW}Ζd!}i*4e@4%ҫg0} Ϋ׊ B*+ts6XR Fqq2}Oq\Пb*RLG2a[i NPYҐ{mz}g6Қ^u!Rp/Ww^ʳkh +žiB %]vFE͠ *yܮ]~Jze=!mUNZp}R;*7&+4;/ad1 ᮘЄMxYe=M4("\0L4tB3ȵ]Yt7ڈ~zcu=n;KK\ 6r9ldQlZze:`0 M/})>HZF2=;H8m1tOEܫzrhDf0]>X!hIvr".)ǻ^s}Fow1?k;I*[iU!j%Gۚ&1vy}-z|pakm+#~|lޯlZW.g<@]i䬂(mcޗsd?i>zpl@ m }4aPcORtpS8]X9;DU)r㣸݀iԈwq<`%baiᎍK*+f3#\@ Z2 [S$(`!~#_*C#PDK)(ıy*tcݮr@C Wmyq K ~_w]q}tp|-aϱoM~~0`&ٿkv7p8I?G_ߍL4<ػ^% endstream endobj 9198 0 obj << /Length 1476 /Filter /FlateDecode >> stream xXI6ϯHW- !8vʩř*ԔӔia3yjf*'Io"&J/~xfNQ8GD<-Pʲ貎~_i.$G"[࿀8#77с-.9<@4/tpCHE?CXFE~6: IQ`tAꔆ(p#^4QiD/*HA AyT]܇BKA!zo_YTpH; ex3ZZJ%X3T-~A(%Ju"?_8!wad|8n:r8_Y| ǞFE? CԺc&iN"|$tSƒ8GyG;&-L'^5_ݑ5w3R?t0`mJ+9n84I܌N7,M`fuϝwqi Zչ< i0/9y][ۅq\udjQe<2M)X{RHF3& ev#?Sk\^ Uh endstream endobj 9207 0 obj << /Length 2427 /Filter /FlateDecode >> stream xڭYY6~hj -렮,6q v0ӄuؓ_UZ8ݼx ;n͛g_={:6qVQo"QF"\7,_Y[gFaU4۝q05SW﨧 Jȋज़kOjUM`=-(%Yi ,أJsopYf /2Dx3 7H!HR>]?RLz7 z몖4H U$¼78>XWҘni|FSǮ>aWMZn',(;‹`PfjFj&[AhyJ/8tK RԲlel: n>|R^:2pAozljmؙw2'z_NqbV9-CjgeSw>FAɑXK]}Ɇzqҁx3 Rye48VYĀ Խ}h5 t=rYWGuOr`jax`X ӳr ~JELz+@8y(ػ-CŮcd-%VTlٲ"?QDi"5"Yz⁼ n;u4GB^ kv‚5foILh{OB0g@EJ%r$iZN|([Фh!r!2Lai}#xgej4Ŝ(Pi0fڑ5ܣ`ӐVyt*c.Ju5jij[QSƬi="Is6! hyRb0!1:/ri2F5,aim 9^jJ&dh0dbSg 5gd#JOKLXQ]RaQ%^hI 5kW87cgvwF]D1f"xln j:8ޒly7*DqN Y"Ku5O&Jlؗ*Dyr .9bmeR*Suo8q(:G\E|0l5Xf%b.d3&};Y6tqժw %aaaFxu^R+.aju*e 0.bR$.6I6U=^0leEӯ1( lX3ѡ ;23 q! ,QWH4ceʃ#`9=,X0G3]5b5"PCj#oy$x[eYX8 ]]s a*pRL+`ԣ,)bΦ4wS+5Z^B-W<% &]VqXROK#EfQ'~MzSQ&0R@3pu'e畏,:_ .Y)DWPz3ztpn0.TL!M}pXuTłE8h LS~R:mZ.h޽^>5{E3'HgI'nߨr},+a 8 =E[ 9d .~aLc6ik6N'设P Qieȍ#|+d|0+eԹtL9`􄰬sW肂ԾlJ3 9⽧{>9!@,mia?  $}jʯ}]Η"հip5tW^gijV͗Fag4@󺕧kݝt"/۹KZ, L{;9WP wNȊS5& >wˢPd䢰,T{o$Ji+9 u^ ֚\Wr&WK?P&8kWTGixգ*-Rg^^ endstream endobj 9217 0 obj << /Length 1394 /Filter /FlateDecode >> stream xXKo6WVQ^CthX,zlER*Vaѓey87ص,׺i}quvQ&Zoȳ"7F. uj}a}Br(;& -VSZMW:>]7 0 TRĺC"/>DbE::5_Cr<eۆ? ڴi+^7JvCc qDP?؁Ue>b3SՑOV\Ol\MTIļC.`$ybVf.!<5z'm}jV+lKǕیTVL~>՝Tz8h9үQ@"͊jh}4=Ƿ~"{#K4R\ Ĥ!e1BYÇ^JѴW;>:_CɯhFȋ h^\,ʴ tO,_~Ʀ@vR b!M!"8_h.d79l~Wwt"1@[(>"k19HFb< !2w ? mShmIkJD|X?Τ4Ǔ`7/ LH#HχT%ߙ`y,1A1.,A6#{g΂ďv]F;锅ަl fR:,d#-dž9.fzȄ1>Sʭw?::syb{fi#*?.PBkvCj_9#B8˵`VdLg*r9*zeTmzĈbAe$Toyo;T$G:Wq_H>cG `*&==d' =Z{Π 5w{M\㠫z+pk˭cAfD<>(ci>GkFŠ6G(Lz~1-f ]=3VZ8 P/ ̸^ݖYi.5{ܱɋ{{Fݸ3e4BVΓ5Ui OMy\VS05Ƌ*~QQEٙJ\iV𵵅߲rakK,G)e`\w [4 ǞCaZG2G@0gv j";G|Oe[enY= dt߁!\5]ztxOg=` UAd9ϰlkAp1p|e|VvgY0e)C> stream xYKoFWV 6졇ICDYhR%)}Q$(GnbC4o曝ϋWoIAAƽsBf^'޲D4@7I>s}QͧmY+-]Q@4^ߍ#A]vILuVYӳ~zs`DZ7'RfIҪ,o LOwk^a ~ZR٤|)M-.A;:v#EMR')ݮMA!5fsƸ>+ig%!A"IqfB"3EYK/,=0:a7c_:I*"&rV/3-ؤ?t z J|;'LA/7rbc,I1N1>0}$0'R;*jT0nn}+.[z)u!& cyk'| `dh$oVk,ш0 X: &&+WϜ98n-/vuMƉSXc=nM^vقYזJB>Cb:3)ƖIaӕtј.I_$$Hvɳ3 8F! 䖌&1=9ey!bIqxAo|aAF3uYyNCMxbC*ģ观ץNUR"b9оBbЙ"32Sy)~Pke)JN8au.+fLth+t"ltfPeYַ*5s49+u=W*YNokO7Bhd/߽6gXw>[%d<v ~ƹVeƆ循zJ,?/i僴.Vro8;9C.y:ra$BJ]߁cԈ]&Sr~j}S) Obr _uN 2%k58o;>&s@eԃSb Pgt8&<$-G#R?Or7'aprgDe%BTCTǍcN e&xnٻx9 1]MpZtiȤzXr6ӆ?]lltMR}NҶ a,-VyV5H[&[*T.i '6R!rDmJ/CO-\r_7~m5Y[kp0y,+3aLz<>8z̎u+/>> ̭rEA^k0ӭ@S[qj0=> stream xVMo@Wp+f?aZCzi|Khm6}v Ii>̛7oZs Za>&-r)&uc Ū!c= d" NM3mƷgo וkIi5& ʛXcjXaf zWzR^ɬH3m2xUW+4SJ*Ϝy RfiUʅ>+zxo<.6 ZcO|1Į.8~+&r1v!(Myzυ~}(ϥXPe 1UV*򺱾2#Ľ~DtP=E){ڹtYb(*R"ʹi4H:JM0PUwb]F;Aʥ -de%H)ڼC.pҾeREN+Ku1+&k&y4$\%.ꌘHUW˼pZ oRbüX]nT>eOn n]k #Z! eݤ7+Nt8EMKu~X8ˤ(dKAITb_vW .ӵX S|;AS8D^ \wJQF#<|M5'K-]UWT?Nq GqʔT*f#fjӋYHxZXpUk/JW~U_tgKR:ᆣ-|؍qבC9[0M \ `nA|r^~}Nv4'Z9Ŝ(' endstream endobj 9262 0 obj << /Length 782 /Filter /FlateDecode >> stream xMs0܊;EѮiiƷ4Č1xbL}84IW+탤]j8|wNz@K]07@CPI͍o\U{]Nz\m`(}xQY^ԵϺM9$Oz\*@Ar`e1|AkddW=T*] y a搥ciD 3H-wM3Y6[Q0 R8SZ &\St, wuïfzyUeUXhWGhFpe;.$\MqPnk4,ֿtZfՖT0AD{aa s,ޙ#sخΜQ^ |2H¦rXݦw6a+mcDۭ_V >ͯF-2\<?n'ŝ߷{6n+ހUo}Rl8X2M$OaAu=LH%s~BU ZGK/[.V;|!p\qjH֥3T:f!UJ Ine4>nWK> stream xs8WV)~$\/:1? I2$egлibvvA aōa/@ʼE}^< 8 XJ;S+Q䧢JL%vo.pM!  3c5. ʻx bk]\?]+y%e*S;hi_@GmqZDuпR%9HFj[gi]\{f)ײ* w3SKk{;{=\"{7D7 2dsⷯhLYfŭ ~:b^/oua?u)VvrsaHr9QՎ,U6G:EeT\YrI_'&`NM_]^$՜i/v= dG~8ַ,R_.&dvP~漭Wg-ziE2n0o-VDo4 lk2dK>VI4\o7{Wgվ%;SpNAh*541}J %B1}WF(vCǐeڧOCϤ*3.ieG|\#rV1)H(x+}b5E6EYiSѪ1&f#q|]4߯8@FNpMMdJɛ cLrcɓ)_U Gr/ȩB7xdH䐰8XFrd鷔׫GԤ,j0ɳ 7si*4uRzn2GF(뮼k m(Dn> {Hy5:2%BWlzGBx &_6Nس! Q(#wՏk/fg, endstream endobj 9284 0 obj << /Length 971 /Filter /FlateDecode >> stream xWK6WTj.zHAM[- V0Cfet$'Rp8o\/e5MQSdAL'sdy)4Z~~]`j͓=Yb"kjTe/k."{J X?Yf4,v?C8f 'g=e?1+Jz{\1B{/^M~#āY6݌Pls>q@V;\/`F`/I">@G8`p, Q^G=#|L22V 1&jq4Mmm|NLjE컨_S$xyAHQK ̯^Zk6I7RN J N0Po=q"ˏ+MtxΈPO8|(±+loyF1ٶ8*ʧ$ 5WCYe}瘫ur_A&a/|sk|J`>3(o̤$bAE Z8aV(;).;BCrI}YZsQ1ŦV@<37zݾ71?|O^q G(M[&}jKH@UόG֍Eѕw@"t W RʼnF1d4;UڏmR֚IL(朧BK=Hfa8 '0{+]NUT] <ŭٔYVv<Ydފb!o[YUG;ת}39NޫRs"8'0;lHZVW S ̳і W PPi6n' p?=[4 1 cȧ 'zS4/߽I/_- endstream endobj 9170 0 obj << /Type /ObjStm /N 100 /First 996 /Length 2246 /Filter /FlateDecode >> stream xZn+zgѷ݀`( EB Y&!P}N&MrrGܰf58UvrO%uM sML=5>PBZI!TOV[5UZj'=V`%*X :$؆^q$pKRWŽyUViS1K1Ql!h P:fAkH ;J*C[t.otK\^Iܚxu8 9s- 2Jc&4'-T^TP<)X;v#g,fx!fHU{HXV8&#}ْI/ ƽH ^OXx*%T=9Q+ ,xjcɗ%oZއ >ik j #T{a졚Zbpl<;5Db{b{ÃR܈XscZCTqX9:4aPY#i Iﱍ#Jlb56HJBE$1*bP9"Q["eHE #,vUz"^r܆%+?%+8>f>pyU:Mv~JoN(|gW"'>\||waqog?ůlcOv?FJBb#Oh~5X_<5< )g˕<ȍ0rwߜ_`C{aEƔݫ?]뿾?ۋ˟.vϻ;qûi+PKܲB G}3,*t"Y/WaU4rg-q;((4rzH^!ٔo# ?yVw?I8^اC<9tt ud]3PЊ?.57d63 vp+ޟkk2X"=uޟ"`ıPd$ v%Tޖ #3Vso~TU8*$TҐ( b a%f3FPV~ErʉYC?chnQ+|1 tjq~*3%4|Q=){C#Th4{"t"TBzԨd:@)(Ƿ S6z'gr)Z!ڱGqEF}Z ]"> 2a_&˄}/SfAU){ 5Tn@8d6ϕWn`Ri++BmIy-LJ8l>}{;.PYPpK4de *Q(CdA/#G,ͶP ^n%%MxP 53XNX,6 B`Y؜esc,1tߢ7Z|L(qfOEhdP/-SlA8NW4wɂ~*zEu"&ptz p IOU>@5hrk<6 8t(|" YliFyh7:: E[hB5TF8>MpMݿW }fY}fgi|ΪYE4d* ؟]Oc&CоEay0A stM`#?KA~8Nm [.d7O\[MBM`hb*Mnw*=d`ZTvj|xѪOY,HmG%fFZsc&hkiy4}MiEU1D'YIw endstream endobj 9289 0 obj << /Length 1302 /Filter /FlateDecode >> stream xWMs6Wp s@>@U!n*Ξ-yx(30f"vC.Sq͛[4&y`$ dX$~ ԩ&✇,%H,D4,T[/Uyת}[O %)Oakt$]46IrD&k ^u[KgPua?CMcv굋PAldb"/'S7Um%Au{km'{Ҕ٩/LarHG' ]/]l/'3(XnFi6;_,tkJ2%Ć`RN\頏mjAx41>'E:Ϥ\ȑ  ж#,]@9T75ϲ?)ךڍ/k߰Z7oHw munk_yU0 vPYpBNdPqE$%[kjISB,F)vrقr%Y6՜_@@#gL9GY05#&îvj7wDDٷiosVE8:9yEh r ŽJE'S=O*.$^hN}~d< 0w!N.4[ُsU tjAMxΈDEFmͯ5hF2 |D'ux*@ۻpdkpdD@GgI$SF׺/i͹W.5{}=gXBlnS5iz5btկzh?5M>Z/;1.SN0GYѬ_̍@e,]J% ]szֳ~M$v{|$s<[2jvq o>e"Ӟ˪({14S1Y3ߛmqUݪTo;w6ׂOu,d ,TYÔ@yz <.#Bf,9+`0Qg/h?+G')l> stream xYKo6Wh1W")JJZt=t@蘨,I.;|zPɲE3"X|{.A.6EqFMcd׫>2\,$@q6;ZBhx.Y}˖?dMAptӤGH1"5̘a)"2~LYIb bQJyr~[( CAa/5PG( %+WG˼LFTz|t$1k䛋(E}CS&s@hi;_VWCT0u ~H#<3G) #Q/nqk0<b4Q /3)Hul}x~8"6K0B֥p0/A*Zs׾ 'Kv= ?4 9F'!k_#YzC'ҁǡ K6yA5B$&QYHpmHf= E(G\gĬP# e?"bVV@@1YՖXFnfO.e[÷XHKul CZLZK YhpGe!Z7^g$2@zyEGtoD'9s ?TZ-8gc䊠i K-P3r€ tr 0݊WUYUze8]ΨEzSjϑrtB:,q'qKKhRm {1avKb{OUmyp|=vץCW!|(*9Cz=hjhwyZ^޵Il'v{80D)7j۬ͅhH5te;fWJw\lOY.pȐ7HC5xI˄r>-)[e%MR}_ܚ;G뚴}LI |+$qκH#MLpE&/ mY_#еa~,F tBN0*i1.]^%>o2JnDg> stream xڽYmo6_a= ERo!öM h;Ch[,yzI(NӠݧE{9϶3< gF)NfYY8g?CǛŒR:'Z,8iZ,y5)&ko"6 K$ΰ>KK3I1T}ueHy=_OڢvMQmј$F$e!Jb;Ml-$s=SVjHd{vuߩEת*l8WV͹X⹚]Tʫc7Q$NWW- E)+x3x1i0f(RpEFf#'Bxm珋jW~H׷9#߳1-F !p,kĉٜh[lff﬌ G&Ց}( $p؂͛hJ`b~]+|5~ϫw4Oؓl&FPg7[Y2Yf $DZ wYN9d 5/ _wu8v s(*}< &JL̉ (M j+ŢLwn-)KQS$(Zgrb"zBgI" '`HFvZe~o_hp0)bMģe_c?V7VD$Sk[:]gˎ;u4 EBR#GqD#r/PRylz[xWBic |kI4i؆oxáOy#6(zo:rDV"%]BY*kmu|^ZKnr@tA2b) G,L_yNHj$>BAkH `%0m?@b2]7YQYۛQ$''V)n$BN!ky[B+#FȄuQh(ta8JoX9s%*zi  ̂M:7E_A O!A $)H8FAL)؇ ?"D@ObqTzoF (ƼXo(rk#s ?.mmUVCjQk ouSKu5S0"pՔ90ʋv5YؐCSt [\nFGgyj7nզ(ǤZC"\>AO{6'gnOz~#}  ]rBᨳA¡ ӓawI8;jR&"N3с%4'UL;=*6-@vsTN*FM@zmQ,` X m_t]i$ݚ7u2*L$zw1#`C;F *MVj\u"MPOv18'U^F4rNagߚ1盬/M⩰i,A";5 neL_K6r b lۙ9K=m(hV܈xkiHݧMu:7D%࣒0\W&mԭ8z'{x#)وBO=Fߙr(V̖)n'm!,KI{Zk8ss̭@a$mx68򄦈02>YA|mNÃ8ϽxIƴdAFiU:dq^[2WN]1ǎPpykbQEӉEE4̆N'MS7']| K-3%ˁ`t>ju$l!PGX~s~)ٔ0evV̘EˢUU|Nw.*^zOg&= endstream endobj 9317 0 obj << /Length 1974 /Filter /FlateDecode >> stream xY[o6~0$1+$aC +RŐbQ] 'u(NdCҹC^ c[ً跼d5|67+ [ѵ*DV"o@ NPDFBJۭ7$hضuNgq4NwL EVHX3Ajy;]H!&PDS 7QMׅV36[Q`9(Y%Pf梩2/@=-!B?%Rp5iմZ-^Hq< jt!` 5T‭[mm#nݨk˻/F\\sfv~\55ZF2_w;%Ju)*9PSɗ_wH6 ت1Zmfm.H]o+VO8('USx]c8D};1dCoLc {z|ڷF6cAs^ܳNe^ιILݚ#Xk9 ߰&o\.|s%(ISZ4F9zt>T|C[R 8Y+Mk]}*A[YS4 22dr8 ߲\} IoaJBԫj I8kڪi!\ZZj;jITJS? ,\=b=3ZAbY bc:倇8C $ 89phEE!TBc5 ɲ[!*@KJㅍr؃raL[w^g[7xfGUUC ;|u|3Ro+&m|u۫[)3md՘Ь,5N)K%ҝmb)Ȑ Iap(*/jKhܣUE=ut(x} t ~/O$HLd}űţ7޾W œsP?NIzI,sHKdcA cE4>j #i*@枃&t0,֨Yx@w54{]4=߅T]y'ʥ}ϛT^*mNwf#=LJd 7P ݺ9 '*ǒeL[i0n$s):ILsQئPe o endstream endobj 9325 0 obj << /Length 1863 /Filter /FlateDecode >> stream xYKoFWP@' h-PH-Q=wEJV%y|3/ ϗO_0 e8#B҅)\,.׋Mf3"e,e]vjh7kR&o/{~Al.JXh;k1-b6(o4jX!eIvkUbߓW$J%t, I*XZ4gHk a‚P廢}[t}k%\.bnJFjwϜnw~fw.\;L\"AqΣ_7!&/6A2)V}ZRs-?*_T "" $/|aS7;&ILưΕlmCKdbܝiޥOKIPƆz z'y2R$E2plk&)!\M"򿈔-il<?hQ]6)!#YD)f8fP'bFIɠ%5s[8g1@R|NR_'Z Soe$_&$s@&9b&AHzVz<)ȃe"Y[L-Uz yc+"&D_@8d$<$S#$ڃw'ғOĥJst~|H);NMYrϛ`:} 5>M2lcvF0cݻjw;Xo^ooU5lfy9 g#|~!?`ߪj((C]U̷!R<+7kY4zo`c=Q*zUTC֏F*F]:L8\0d3ntC!*]֨+ۛ,%-\e9A9-Mos EY7=2R~"JV\ERj* &\W; ;jqr;dAj%0hb1V:+wMS'#h\#C.:B8E4jL.ݐ訁V1vK oWtjlDpDc}.NwSH9|=8֯<;øqn견i/~}}ۇʘ x| u>ִ?kr&!̔L)[DaH ZXv>jvDwboQt}45tX]OcGe?HVȁ]zY)͎4%.4AӰCSt}Sџ~FC{5J q% TIѡ6ia;?wCwA0 #rȞϮaSK gpvz8b,(n ?:[p΃S0thZJO䟚3oat',M2N,ym؁RKϷz΀?x kjqF!/B wjظN*?øZь+CQڏ̚>gٹzҹh;2Ii&Ua Kz>0?iB׹}z.601mL1p`:P O/ = 80@c1ou?p}} |1~5xWmD֐ ? Ψ-?:\{cx;^_>z endstream endobj 9331 0 obj << /Length 1549 /Filter /FlateDecode >> stream xXIo6W̭È N- z!\-_M39K]7hO(m|ֳxO/ޒ|c9]8C1C)"vx˲lAc.| ^GQ֢Svzv8A'V[֋dQ9<@ /pt5b9QJ#l ' %xٶ/[m$SZ ^eVyڧRlœ}9ӽ?{xփq<8G1 Ȯo6*MORI~cz0,_Bl nG8A"*l;*?ƔMguc5pM~6#yȶ5iRj3!p!0PЁj.m֥@J+;ވfEghaڮ]1mSUwje톅E_v/WWWvn JTSvvڄtZ\;[/&]IR,|:hfG"VN5N6nI;=mW>3f;-kn#:;z޾ {a!axqHV]rk| 7nEncOj NQU^e(٩]咝!]Ȃ2vsRa%2nB0RNI> U< ;c#;I",G4V8@@Ot!)';|]ɕq7I$JSK =bH˔;즀t ׼aYҡI Gg`WW'g_wJ .AiM|<'w4~WΖ(6F%ײ cHpj<< d!Ս~i wkz3 Q!`0IɮpH :$rbiei˲)did$%tfAoZDW+zHaJ{ZP?Am0X2 }y/pao._T,z;ḋ$ zN0)X[ g3>%3cb'bbqi{!sF;T WBa$.1\uàNoƏy 4,0.2EŅmq!ng ZMG@b73x3xЍ9b U!^5fNԝ?3S *=G J? ko-֚ãEOID7i%c=sJVyqyjtthΈZ86vv4piNoKK`b8>ocG #=OVbŸǝeҾc[I> stream xXKo6W(5衋Mў6EXET If>-ٴ$ɒLf l=ó_~8{wN]fYdA3HEFi֗u6eg.{.`]2t[v z4]jCEEqUm/tZr$bs6S`vi3gd)şKd x2쁔 J}ܘK߇\ɗo(;A4!_jSftA&[Z'6`oc]kKu!OX.(W!A)(殒K ҃%_mw\ sjMp"ValJ$L8%Zo^VxI W҈xM '4J=IwC㾝IMcbg,nS ZkC߽ҍD.݅{ 2-cn4aQjk\g˖6Oɭuo9{{wn#ZK ^lGʟl6V0vzQؕrmsc9G B(@=Ya CEh™FzBǘ>?aÄTS"3KOSnTFv sUnAm:ro{7eĞX 䀷9pƒdܒ{==bB?qwbUJw ӳQt~#џO Sμ.` ΋)U2,T(&K𲾄5c߁YKͻaM>S=sêJ\Z&;0 }*s$Y2镵18'Cwv`5zOD^<)~p" gwA- Wghw"lqSFc`oU ˡe{ T~$өUI:~5@sUW.J֝YN*7];KM9NFnWG(MD_s++/3TlNvgX' endstream endobj 9345 0 obj << /Length 1040 /Filter /FlateDecode >> stream xڵWKo8W(+J%=,.Ch}K hL4P\9=$o}Z_[%h/qyqb2 ̾?^Š$9J4 mEigQR6 fI>>X Qu $lUދ պMa%EoNjWIyiȾm{ꊪlءmp2ȥV 2 5s_4zC#Cr'{w4ʦu@`vjʹ{J8<Ȯ*v*):'}Jp,wŸ(oYI1L L[U]hCR'̺ M [eVC_AFa%ԀYƘ{cCd tsy2|+[qCl`8!-YA5ȤF Cd5GS1L&xe9qDJ֏cb^>iVnCݕp6OoïҮ[y`TL?:BS5v%(9HnjQ+x/PM2(qc(8[1艧Ë8t{5ޣo5u/[G-_,luRfl@'H.YyCunHFːrWO endstream endobj 9349 0 obj << /Length 1391 /Filter /FlateDecode >> stream xXKF'9vylJT!W>=/aW4믻߼]ܾg" e8#.48E`>/(f4AQ,e.bvmvK4悠%ZLn79%,FRd泷yg~yX5-<kDT*ϫ(T~GsW5yo-N$Xjd>xҹa| :<a}0N۔e1#]іqZڼmPSGTEmw>k)!PzϞA@J+|U5&<o Y ~&# l"I+5bBaD?#sHA'@l﨏뼇e\R+ȀP:r(Uȑ9<!M>(Q ;?P#Nz Hi !˪^ss|zte]@9v!ѡW?8e^wNI9s[׫kc,MɵB_eoڕ2+ak̾X8œ͸d_Yߕu/Jq3?(dVƷru^ Z!wv}X (ZSO-{ 24 Y+=Y*?; X`&#s~[Ͻ endstream endobj 9353 0 obj << /Length 1910 /Filter /FlateDecode >> stream xYKF N<-vbGrί/!iyM(z-yDrȏ^lxWdA0JpB"s,Z  G^㱻/Q$CZAŲI˝|eE6g{˕kZE#D#Htگ/e}"_Ƙҽ 5hpΗ㝺-&?R}en< exA 1i},Opoȼ7 huu,7Lu^Q b!oW4N2||*67>]HLJ˴8ʡ y8.-ͽʒGw/z7#\X2<%?cX}Zc ir2ËP|!:>_!4BfgKXNM^&`*3Oa$`917.\*?*u8)A%*՝y擬6Wd)i1it:[[Ú* zq=mJ^nF-"+:bs8bD96{RKU_)`@"Dn_ Ag %lbtL9pԼ|/FzrY e*lu)7bNY˼J2Q4lEUfyM~Gi쭣$d.2:V28$϶iזbGlqM/Gn<nmⷼߢD`2L1E+rLĢQq(~^LEP[%ENb!>,<'I3Esp9X׽:3`GBk -dURURjUFrV8A! /(eoFYvչxt>gN3倳xkUK#|Ρ6V1E$ܫ*N]P Z3\v#K>v13&m0^#GVbwK8 4 RpVx>-W7Uz+7W^LyA/t mN*{i!1HƣN b 꼊!8<|?i}RgUU'T AxSחx+%pqZÌ&nsw 靃8ixP=W\L~(Tl8VZˉdvOVqQ  wdj Ӌoَ3$2 qzYEjyx6'ӼvRZ:5Cs{ji_B[R T)ϝN,-9qyC7:xLtGQli.:G..TD h_˳ [9*%n)W((H_O dU(}R/&bTcdlHJnl(q(dKݻIdxv/fkVzb$7CoڂDݖ ya endstream endobj 9358 0 obj << /Length 1427 /Filter /FlateDecode >> stream xXo6~_#{|IVMuz|YoB )俿16,P&SbcG~(7 a.u>N7Z%hH;VFk]6Xq7W4悠ptkZ0iw]`6onO HޮAE]{w]6R76]b J%$E)ww)B "ciUQcDi&+@`cuT!IUgIRH,J@ prmIل`j V<+\6U{e1ɮrQM+y52~ )y0x#R2v ?mڼ-CfEJ%h(֘Y['RV|m+v!  (g;5kt(E=jYvk> S* g8KiAyiYF>h_"Q%C\n'[Uc& -jS { ,8#Ez~htңf2(]5+3HWG4)ϫi%@C{%lܙ]8% D9=oS\iBS}q||Eg\w6]+@j[hs!̎T~,O.W}8H;hk{WAeͤ^e>d:]:Ѕ}m ;fH+[щ8I5G$,WSmcL)Xɏx<@4dSEs ;S$#M˩PF%ljN~!;TE* ;U+1kXY!cC<guvDW!Li) jaV/A6ZWl'Ʈ(rFƼ PIGv /(s'gP?,a?![C>CxHC'ysãg`1G OF&/l8מdz.hқܸ'T)n+Ɩb[Xz`|y+}HہH&uVJε0/Ad‚ ԩX}/?y+TU.ce^y(^%Df诫`h|Nt(t @NtX}c ,9X'<];??{yg0UƆIuR2 ^C$-ڏ\Iw endstream endobj 9363 0 obj << /Length 1262 /Filter /FlateDecode >> stream xXK6QV )R-MzH|KcӶ[2$*]wdI6},)|֣̓Ow?,^ 3Qьyˍ^BSBE-{?/w~2_0!a½SD8A>>aDa?p2H3r5+1ӤFh~S3|\ڙHavA PV UE,!"Rz'5(PdD `(+\vFwNh54 8b:@HOпt&ក'P.`@IwyR]2yBR:"  ID"jY;YpCy!1=M ,&Ed@%RX,p}SV Jbp%%VƈHb`h  /L0,VһSMmR? 8m1l]=݊V odPT]!)cs BN2K'2xT4^[ARkwȽv7jJ3J?p]lil,|KW0AeeOC}[|Aˏ2Έv= 9'gK]p~0AmUPᬗO`-unq+BC۾T~yS3/ endstream endobj 9367 0 obj << /Length 1480 /Filter /FlateDecode >> stream xYߏ6~߿"Dx/0mR[uOǻ]O+$" 1 Cm{ Ęof?هߗ7wϰ"?³zY 3>[f_?r_|A)H0r둲|,Vz$M Y̿.{ Q[64kќFj֍o_h`h@g ꣐GZ {Glĵ|Ḫ^աJPԗu[}Oy.+YrNGLd%FU5ᳬLV LuoN_lmhqf {s s̞$G0"Inp0F7 =]C=8EO2)c.@$V(d(agKԾ]Roq]/GD_4Н)LE/%oшp!=zAXOZgyj]K-W"-`f`#3*aS,<}Ƒ'}v/F1YR7># ;z[ӡR7/qitR)uY !>Q=Ó r t]p fi1] PsfXtjm/r+Z4rvncXeS@5-: kX=Srb$kjRTPZ;7L c c_}M{q-(oT.ἽW7PҝhIhntkijP*.e jʒ6HxjG.4(¸VVzʺ<*ZN503w 63Ӆy*v‹I0J)Ft0_X}"g8b冉dž*/Twg g}_/$zQ'z1衉*Ŝ0%7f&هr;$IX^dI1'nf)Mj™.oN6ݶ5'Ƣ]eB&J1[GvR?UwWPüYsspۜ*4g> mm>#[OGV5r¯@GePޅ2+/cG%ҖE?W MFp3htoZ]AEKesJrfMA-5U>٪)?qgFM`5{R¶Gֵ0WCymTݙ*~]aD-LXra&~4v *By:5 .C'QPUx: uVU_OTw Χn {>I }*6 ($p>&:}=MsGnz%S6>-X@SNǟyG1y =3)&ub^ l"Kc ;O|B endstream endobj 9374 0 obj << /Length 1273 /Filter /FlateDecode >> stream xXn6}W21 @Sl~ ٖ&);)苲^Œ)rfHs8Cy5M>E]1?Uۢ\SDG. b`vtookՒt/Y=dՂ~sW 0 BF}8簗Og Tf0ev9NIbMchMc?[} KUw} a=;9LQ@#u @  j7t*6H2"'19E<0x-C?7M:@KPjG訰GF$_>n|REiiLwZw\)qͺj|*>[j=ux##Bm3lnwԁTl05PhYfٺGV`kxsdk: S"IQd||k)"nIE|"jܢhmd/6XI&>&9=p#]wGa̽NѾN$ șBbFcTaS^ʎ,G cp>d%$3[vcЬ V{m4t?5-G?Nwmel;I4x) ?Qե șe=)}d1bN:oG|o|/D#90Ѷ)Dp3mC 5snʞfYHQ$3A)iM"g=ɭ: Ea~6i &NjST!O|lw׾0ErH"IԪ=-/oou+@u6akn}4h'C~>Cl>Gn퍰;UÈO#b};"qԯ&% Pr{uV/ngHU,,WgD ~]^ > stream xYIWH7gN]x0z _F54ANz꫅x[/O~~Kdq]dta,7˟o]/՚1)Z,_^JEZFR7hWo{כ _/֤@h>aXt* BIw#1~rD0lwB*'{^pl<ѷ罃q㝒R>L%z+w@Q l>i_N( VKo Z$ /:6989tA;scꮗ»v)R,GK̛lbjiMv0!:J}Ue7rKT.YB0V&9'C+5-J] Vm̒C$hzk&Q'J=Cj\.E;l J-Nb( s ^4F)6GW06m:իz{v1@@19T$m7bxܵGM`)N=4i_liOۀ!)todu?Px1fS~V9TzcHR/'^E)?Srvc'A|&ݝzqS?d9󓄌uvK s,8`]& :/,&.D)Ov0FGGEϊi;VXrcǠ3Qq7.'>c˦6=cu+ŝp,1܀ڧOs|T oU9,l=,C Yqhr%~J‘ !/4l"YCwcLOHUhM[?".)ϦKhӲ(јX% RU6")[CbK4C9gW@:RrԾxlag;! ]q$?l^ +H]OkzSו׶v|ѽ]?eBU~Q"̀е1%Xe uKr5HZ_> stream xڵWY6~["bHJԑڢ4h_i0*K, wxHwMhofV74qF Nʝ:ʜ[tyۛ ާx>FKԛienݺN}ϘἬS/?*.ssvΰh ʏ/=ݴqai*&_ aѰy1i5KK>e htQoUfIc].d}t{u%}"TCp!pO0 ҮnXa.4Yv_;utY*S t~a49D:8X.nrΡeOͬV]Kz%JZ4EI#n "v|ȓuO8+W0wg7“7p)pʧ]_CF g:"R!:lxk!EIr|%Lyc=DPMAȵ kdPTߗnWCl|[%#JJf*$kؙOԹM#18liE.Sb̴ b"Xt(0H}ٵCyRl?82wָ8S/iEVd9 Jɫ-D@gJecN 6N܀$C{/+ Z)Kgd - b6^c $}-Bq#E}eב)6vim=h&%~ONإrCKO* ?V"RM: endstream endobj 9403 0 obj << /Length 743 /Filter /FlateDecode >> stream xXM0+r+TqpUR֮"n@ʿV{gxo-h}}^ > --=jJ-lB`a3W/Z%/l4l[:q:CpB!Ůќt}XŻ^:`g8p@S]6R0<7[\on_\:ʭkH6\F,Աʟ[GtqU,EC[v;KSaF\ 65{x"SVkLCY?T{y7 A<<}c,uc6r `ٻ`@V"SeE6N ? {u?T9D>7v S{}#G\I0(qN-/Ӹ!&YC'uĽVl2*0wbeg\F!A$y]fh!b۱zX"xTB@Dx81`\d»J>j?M[GLX=GoH>̒]gڌ*|G3Y&:YE9E,OPN$.vq $ XPu5 hE endstream endobj 9420 0 obj << /Length 2571 /Filter /FlateDecode >> stream xY[o~ϯ,B=3(mKƈID(R%}eiAwFb[ůvFe )Ldrq]$ja,xQ.[ox!C?cb?2^b_˕*>U M_<&;~fpx0$t>.W޿uK8qul []Q|>`Jҏ`Rpj}.Wqz TL( ciZhG"Oԑq{/{yr {:_J( XxOqE&9>"t͟a,0'5.Oh#;ԉ$1 *$xN~6\%dF':\J r7i7q~͵[+7JNIp= 6nfjU}DLh\r"YbBm:vh{ [ #qn{\Ttyuvj4C~,@궳!t~}Fc؝-'>ۑZS} [T jjЛM>=t ZHm;H"~qN$J c $82D`?cz *SYnO'V}bHFYkN>r,X#'' 8Uux/,˦v6eY?W.' ~e[so 7X00`yq<;x(ÚÊһڷw#U `7r KjH:Rq^,&Z6.#wBJ}cnV8lmZWn]?R䉿𗘸#튿/9W ՑvcV8f^0,(}tIrrpD-|g;8;E"4"A*袂cM94-#%"v+vn̑q'<<]Fx[z,s¾N$m>cπ`HrxCVv7l?y$ʼny. qⶳ?LJu foO|U}?Gz endstream endobj 9286 0 obj << /Type /ObjStm /N 100 /First 986 /Length 2101 /Filter /FlateDecode >> stream xZ[o\~ׯc.9W0$1h#C#Fd +*RVvN72 ^f\y:Jj܃DAP*AĽ%Iē2C$/ {o' 85Թ)ceTîATrL(֠cSP*ŠN:WKT,V/tl扸Z$h6hnJ!xcHkT:OnwRG0) n8@Bu]nP,(lu|9|: g  6`%V1UڼM?]HW<L_}+b%02W<;|ί‰^]|tvu㷿ܐK81hqv}֞#T)j54+RI, z.Q9 :*8h В04 ȬzT{Dᑽ悈DRRVPpA`Wp' ׌.Yq^50bGކke كrmE"-(ri'v"DQM8B(-OFsuDkҷ fL5N.ٝmh~mQKr l<] . Eêi.363jk5N3H%8eG=tR+Fb8T8@F.pD12em߳ hf]0L(Y&5!E,Y4ZN E,qި:;9&+^q&GliGK̦ТNˍH֍ LtBK Lt^pw?=Ɂhclhʻi].ҋ:͖ꪡţƉnag=UQk_`0/sg`^Nic;SYHۚGcf/c. |3}՛Ҟ[d$RT{O5_HGqcyjޑq0d /W>zl찷 ɶ2$Ls_qS+fv1F7,g͑H:?I{[Fi|kUE<9⟠hGF >E}lb ԩ,69kc˼ǖy-[nA̕\nf7RObYHԞ BkZ0zHWEҽ8[N *o endstream endobj 9435 0 obj << /Length 2484 /Filter /FlateDecode >> stream xڽYY~ׯh(bpPĆ؆%{58_lΒ$>'}o_՛:ޅyۥjDXGZkO%ws4<2E?^U4m_On]QNh"G1z7 ,EC3_zwЁ9UbiȞU]x#1 V{8U=}Uu55e8^=d:d'"ӛSQpwO5^.pđ\AQy~@YQ?q썟Z-i*_('Fayv)2*?9(tqzMRta,өh{[/pV晲G;ݢSec~KK;|.:]}Q,6H<i*%[>26@կ,$lOkWҖcݵh鐁>^Tt2X?B{"t=1Ǿ ≹gފg)G* [v4/fzC=,)MM}xxˊO4aȣ"Yt|TXO͚5`fݖ]ߛrl#+LxG= ,-=~')^Ȣ0d8~>tGS^)!I_T@=\q\Nqd)>߂^;R̹Ns! V偻a4'^Df<82u>ÎTl:x-ё*TL FFH͂,`Aݘkme'p'N#ae5 iSáM ः=c-#'UCSx| TA,8V_Bbd wHf]6~L)Ec1k2ö$JD @t_ &B$lͦS4t;bs v=cc!㵬MELv /?/b,7i '4tT$~K0$DA'w-⼅(F Q(s ~C]7 ".lϒ\܇ GpE92=Xڴ%$ے9}ESilYMqy]"@愝  +2%X6bXlds+0 E}؃9ȢQt+qum aى ĭז|uۤGto|[,35,w#b+N?R֯1x)I*]d}HGˣ0Y@*BK4-3_*Ƃ/Iem&^`Te~v塽K)AJBg!mBՐ`*jccv=+z>IvKFؘُQP?L'QmW+RN4~OСgbIrLw2fP7Hl;iJb>8k1(QN@v92L`6*W*É4n{S|Qc;Vg"]Dfc\6pW0zqѻEmK[jF{ PN4b++S}fe_l|RvVV"5uY5G OL )G)Yq|g}MunVB3ZWtGj(,m[LSPK&kv-E(4:' K7kswhNɂW^SkҬyUr?(@!]J` #d819~I+|ث+ yp,WO*wr"RTtÂ*l=e񆈢 3]Pӛ)77xaml.ݥ˙(ɥ(oNyOOaPϟ͂^ױ=/ˁK[J}̳ͫ"Z endstream endobj 9441 0 obj << /Length 1223 /Filter /FlateDecode >> stream xXK6-2J"%J9hhѣbi$ ͯ/)>0e;=$f;xݻÇ(dAz#)Pmvޟ~_d|Co LhG֐}^({c'm!A(L+YZGOjZC\=:*_oYێ5ߴVbii?L>&F^hW(CS!'5;YYhN 2o{]A仂: F=kH #q 0K@$ n+af>c(WGq?VD-ziY z5Q :گ-VMI <{4iM{;՚! f33-S)TmvlL6`,T9wGG}{) t." wCkؒ5BffV>V4bVlf>S&Dz|hՔ#?ߏ!N$N꒳yH8f~͠2(z! F}N-%wbahL"{B-5yAY*(U^Ʒ]32s8lmK9%Bg,n @8A6 y RZ)Gⷹ\ #ψRdYe$@e2b\ۑޛH42j8(A|PEq[ ? ez I=5#+ a:mِgnM,*;[͔Ut,X YC9FQq;c'mO'eKJU #btC½)XK0囉$"pM֨iO' 5P -ʻY6'GxWՖvTH_@P?Mʕ7Ś} }]s#=Fiҭ&3#D{[nm|y2_hMrb~e7_&Qv$?  K׮X OgEh? lסT ΖxUҋ-Dxi[:l3O;EYWPD@'8IUnŭ䣸Z?>,嚫L9gHqIMLM( j\ ̵GűLL~lx\)K@*+eXl٭}vޙ endstream endobj 9445 0 obj << /Length 1217 /Filter /FlateDecode >> stream xXM6D*^lpPoխSV+'qTqvM`a>G9nq!H9Sl%k(I*ʲ<ܔv:ŚU={ةdmׇGRyu֢{4 ]l?|y%$e.m$Z0V>-'kW8|fv4V;_BF%\FKf=[ib$%ChPKUA EQA)/9Zu '2dUB, ghw6^L\Cx2Nɞ0X{x)ީ5I>$=n91 "Y25aȁ7j,9ot=%%P_%_Dt-?-zO1]IL{SS~{gob}ϵF(MS]LZ Ck^ftk~ ه7WZ*k+4>|yօ#8Y>/eܓI> t)ػ19E>nj/;f(c]k2SDs x{D,"ݝR-g6y~}C@Ztr]|oĮd'nхeN!hřd;u+v3ݍ_X;x_Ӏsfa,vyol_;b3=%xSSMG#Zix/L^.{p xjO ֝8rjmՕȡnѫײwC6/G6*j?y2ֶRhe;>ޜ3<ռOYdSRr3됙n:3aQ<;9Yi=G9?vdeafF儽sWviNh4w~9s~? ϓQ5W&6w> endstream endobj 9450 0 obj << /Length 1839 /Filter /FlateDecode >> stream xڵXKs6 Wԕ;"RNgNn43=lv2Jr @YIۋ- a-~os7ކ-nE7x k_ 1}=7 63oyzڴjESwlVEDBZVT|hn5rk dO=.yG4JNQͶU4T6,tZP|+p\sq> :`8{R gB߻Lj(aF=^3$@p}JNzA%}Tb4I (md\*{::D^X syaQDJIW*PwSx4\SO\rh o,Y$<侂cy9o]clȘB+怵2ؕz2Ⱦ@C>-św. ܘ'=@nيPM-=4ɭ }"Bq*KEF>J.mG~}8lNj5 ?ʜc:=ߛXUU }k5pkYݻ,]+kFu3a~KP| Ӑ0ep{=8LPrFg̭mZtMлY;_3Buv3$O"FL|ƥPf-meg’o=߇ +3e޳vos3iw_L(LW;16f9ZYlޱSAJ1,MքD}]}Cޗ #<'*1,VB#8L޸7P!¡<.e9R`<%n,ج`BV>IŁ`Πoty9sYBKTom#lo.&P ,}֍a ogr}ew*<>2ML4389a۬ c }aN{8Ǣ-KZ(ZZtK6լmn,2P C"5|Mws*/zD| b3z4?xYeJp\}ȤׁF~cWja;x?> stream xڵWKo6W Ȁ-YnM$dʒAQqC{,9r-vh>7k=Yw <יsZmķ7u0Vug,ۏ,IR{e8ȬBw8nGW^l1 qR30 xX?r"7Y&˛ZbW g]&5 ~ۊˑ؉Dyu%q,q45j42~@1x6׵J8UZ[!X5[^0)^_g j$y֓p~q@&8$}1Qv@e60lj5La9XA( JɃ:iqޜq=ѮO4);4Lgu+8p dž :xr;JYTK/5r\˪i¥pgeޖ`w]A<b5ܒ UFji]8Ǫ1BrP3JCT,' ,Y ê.ꚏ<|W/,o%;9{!WzC(nN sfTvtK)bD% Jah6K>2S  cEk_t_$ReTLMsٔmyKC^x*-Xd(gy]֦pɑmCuYlW|[!Ħy( uP)*bGo:[v뚊{V$k 4Sscc$ !En%[ ̻CݻA`E?!֜ݴǂ2g/1 MmKRl@6lޒԉU/_'was(6yN{7$x HpۖYߢF4 P۾d/ħ-d9`wYqLЕ^b嫩xC [Fv=m)ڄg\ =Tu[R{Jn9;.{{"3ZGm)njC s b;O #1,&.04pjhԯꐙ NC 480z$,֌^t(bMKJ."U|P{#&{դu0(McG‡Pt:v LҶ7)%[|+ 3ڟ?.:> endstream endobj 9463 0 obj << /Length 1786 /Filter /FlateDecode >> stream xڽXێ6}߯@"4沣f#F<쎔Ɉw:`)ShFc\uԱ}gOo~|S:R?%Ɖ'ϧ̹,+1u}_Oq Y?}nTھ[)ϛ: CWVkr䡓w"ǩ[ۏK q}hD bW߉Y'՜]VU<÷ ?0g8geאO4w$՛SțMٵ;z(0I{Uzq4MGt4!̋|ڢ 4*MgՕ0/ʽ=LTNznkuáʌ$N!< ARPwSqC8b}=j`@-xtTȪbbE3)#z-?d9`}>DUJemmjBE;ywl=nA/Eq>6uV㳫 #ƽȣʢ,&ez[`XƢ"hl;N1卨2'ڝJȻg{iDѝeV-@Z >p]Y˺ř&YЋ@9f#U~w+?|؋Ĕ(3\DӗBh6uYW>ScC60apƺcjP- M"]L<뤨5C,)=n wt=Mq%-PƖHU˙X)Atr8vkPJl!:{{.wubYv*5G;]?zʽjw=R)VDĀ/o\yS⥌#N 1'fVL)q 4"&_\vG<}a?YLP.H!IАK?%F"/fͦ^Y_}d*rDD7T,wh K{LFO\woD6.Q$h]G28Y:Wgb[HEgb C5yUC{7[Nښ޼׭6HGL&_EetaB "Ի.iن7s~[=S4%/b85&k-Xzk%ϞEK[lt$^56h[q[rC9H0~'06m)"t>ҹpt/E1O&Z'm;M{AzpctSTGȌQ y6!LO^T-E">CLe8F:( >*F2K]P٠fnz[DlG !73aXC@VC!, 8>'4iye I(E=:RV)ge;8JzU0Q I<ǍI|0%l}:=|3]SMu8jA[Fת  VxtÀ̔|B0E-ע?6^X4k?CM,haFtX0TxsTxgFtf6P1h%MT $L$-YS'ـ4CЈJAH@+Ƈ6Dߛ MV}6^tA=Mu;{a%;ȝ0XjdQ] 8oӓϗ˂n4"AHYtq_\'釋 Yl:ɣ%ާ7!3. endstream endobj 9470 0 obj << /Length 1623 /Filter /FlateDecode >> stream xڭXKs6Whrf, >64gC;X$4H ۦk_~u4[Ϣٻ^^%lF 2^ͲxEyQ6.g7 )IqY3|A%T˫M $jƈuYm^^|}A#RFa@$R}-H2ZJb$K<ƭEb6@m%q[3?_汆0O gЋ˛W$,b6ovGzЖy-NȺIq%'+ "$3C%YH^QHǢcB zH`9 YpzH3S6h=W7v(zHS ,mk-ljJI8x+a[K4Np'T^ aуJƐL!IngO> u͡wyR _1GĢ~Z,ffnyqy{zA_X7{ J^Ndhh:av ÌX5ƿz"67+'Փze#zyt4owb#PTg7C׾> 3HwVAidaV&6c{ +rPYMd];"l&ƚZ[YYB>('Gw Ye1Ti Lss8%$ޫ:qW4Q6xٌSnvJ.yuK 0 :fI@f p 4AZ;!P5`̔Fm c.}'=[~v } SMT궼#3b *^ pTX(;)8eDz\p6/$d nY"|q`3α5]_c;XF̙F"[%,̳l _r3.04pd#~;jwؠ'8p>zk}t[vmL@8X4c5Sae@"5ŗ iwPxV(GEG6xьZwg$IGLކ~*,,x{w9 /2@}}-xU󄌓zID?Q}[+,X\/]eÆc1V$IfhG`,]kSf_龫-4L[ݾݕh rڶkUFk%tOF+y{Q:z A?A{Wp_&"WS ߱r#_ro? Hӑl?mloZ[kx{kRHܳZiWځr["bD4@C}kZavRovҷg* endstream endobj 9478 0 obj << /Length 1446 /Filter /FlateDecode >> stream xXKo6WVg@S@"Pl:&jKE;Ç$ʴwz$7ߌL?]ps**FIA l, 2': $Z|#o|KNIzrX&QwmwD]\˦ne׉F?.}t'KYuw̓Jvh$R|fyK^rQF`0}hZQ<=Q(@ RŒs/Q nDZ뷠P߫-%$M.I+;YWNs%2Mt(%)O3h3,@ ߷ Vӡn2EOaJ4R*[ ^sS"ES&]58!,f[@8ŷc骍 ;G̾7 -1%#rY/jU7XpyTɑǟtd"M#QE޿]+zc (f9"=F>)e+Za 1i ve3r*+uHM\\׊Н>ɩZo q2Ϡ(&@Q<uى4~Ʈk(4aWVW_G}!%F_dCe=#ս~*hA)sځo+|~|D̼ﶥ4l};rx'v.M׍h1%s 'P8mm,W$yOy,v S_euӈo*a+McOy 5uF`MMBT -rpҳޛ/$TZ% Be:l6iBvgi^ UvXX;=(Kq۽wt&}âX}ִ;Mы 阉85@1t'#^e' D8;0=J.n#`>vvAn66U;`GTSz~2Uylg?c@OL٪$]7vsV CEiX4>> stream xڵXKs6Wjb:fL{!եd<Yh(R!?}vK8~߷`4EW^$lF0r2[mgiM ֦KpUdy}C􅛿H0ey뾨 pv_<ޮGޚ7mPq]fZ:,2dI6Ygmu76CqQ֭2,8 {)zfkɕO#Ŝfpg=(/9ͫJZц ^n_1 YDOjQMS]"筽`k^Z| sI4wAa*hPnBE.zdޚ9l4Yq8h}Ɨ@_I^ )w ͸-1'k3Z %F m , >E }4 86F== 4VAj4qU"| ےQ*`k hI6Mu;1)Ha [eS*J?*3(Iyj'(=Ȗ@m\?E.}AhyBBB4f]j4f#57wSkձQ ?TC[lwKIY&Q2ؾ̭l,MlC<7¦֩p2c13u:wnS_5o3u>%nޥ KP^@ [q0JBؤVpDovLƑal]ihVA?}jc'۲PȢ;㻎\k>Q̺rKL-]<|aIH# ˠ_6;yfRvf'm/ Ou2@b> stream xڝXQ6 ~_:Ed;vn؀uh5JNcg6OIvkȑ%>vp P•T0am$<}gl"MVS^JИ? ۺ.~ѭı2r)¥kew'qR҈4*xjFn[ō+ISNƺ=Q9 qd{,'8e2?e,cb2ID᯶-nK'xY0? 8WϛsLapj0, H+?nqGbޅQܴdbO;_t$8YNVcv/t);4Z0awײnś"]Eε.,'8DR^T&/ߓ3hih_ԻvIKG"Wd+ғ+C6Ai*ښ[~eک{(dVu Vpz(N6>v5_Dw{!==6_Ƞˀ79z SrpP602ŅFTFs3)*IX(Yr })"T,͡5!aNB\8n aASgQ.7Oޚs3Ԗ(ȮF_,3t$YRN{tI˨RibyϢ#>-$'ƀ QX IBbIQ)򅦁BC5, oaW~{(J9GG DdhD`S7uC5׿qiZm͕knR[djr5ИѣDBÃ/c-9d6QhA'Хq YoZظ ~[v c'6)] wy{wΑTp&R3Mb_9i[:-L?v"mrr-׸ߩ ]J!WdzftɨrUٕyT}@w"ӏA;iA>fHs8m)u<3C! K2\Ϊt18aML-ǖD ǚꃮ<6JaLv[L(pʽRK!&3)K,~lwĭv;mrCn2'+/uVu|bpGeϚ|($z>鰮<].K ҺWrI\O\(nm=BI?]vfe2rr)lt$̴)U9Ozdʞw?Z_}\@ &cw Zc~@aR X|>Jp\πO]hIR$Zk4 u;0q-|POR.cSOgMD endstream endobj 9503 0 obj << /Length 2181 /Filter /FlateDecode >> stream xYK6ϯPeʈ&IokJ=$51E* I dD<ݍ~\z:+V$&UʤX5$_o,mޔe N׻x֮ 6JtQrU1AݶIgIdI\5%%}y:7gYoNipZo*bvqܚGǁk!r{}Rkx-qd.t&ϋ8`T4 ؀%Eͦj崴ӧ0>VXGw**|L]ۿsvYgBTcM"t(c)Vb6iqA(0ݳ^,aG[56qA蛒E{&p6lQ#F6XNXh؇vn n Y\[ 2Ԟ2zSoosa6֟IE=x&+onF{L8ˢkYHHژ7M+Ŀ }{L%*74pRn.ޯQvBb02p wȺgOs,~1Lg;v0`-Atz8vl[4>d2n"n !X^.rluR /vo~^9 mhR !SK82*-qw^ZWׅÉ(Pn0ʰljю KpCs Z1STE SIr 3KkUXօVzC!!u葛E.p\onGs]&ǩW0U)s:^Ujo?iT;kwL%hj8UCHk㵸&Eu[@ikmPRiex#i,zωzH5+&ym3N@ID*9./{EKOAv6Xs/|v>c4djzK R?.eQreBX%OU Y_C ]~ xѰ5ӌ.)F*py ?]*t~7\ .'@՘ T6.jgF$ .{Casnuw?E endstream endobj 9508 0 obj << /Length 1130 /Filter /FlateDecode >> stream xXَ6}$#nZ"$-) L{ؒ Q {j3e[Aa "rνzG/~x}x AyqPo>F<#Ii` oqPDVZt pMuh7f( Iy b`BLlڋlYz(P-k8=O J}OE^Ӌ~׵ҁ T,0Ġ#U)r^5G:2(cg"Usθ^/<̳o`Jezo[5@1ROr+W0E.s)v>g'wU]ܯs710Q7]Ypx(\DdmEx((SA/0uUzM|V3j[v%-^"H-,wJ};ZJ1"B:~8| "@-jp8Ld);+s^Tί:X,6ٸߢI?vL$WaIZY-kݙ>zcBT1L.gi@IvqqyΚ/ i:1$jY9)'d GJ7n7zD89/M!x3 Քa >\fU(^s[GU K OU %4hEhnW! t|mec.D54,g>{Se[ЭZ ]/UBǾ-`LTib1Ɱd(I0UZL07PDI(QWT#Z/Ѵ=<:EAS/=CrOɽ[?RQ|)Y֏IocUVcjWGҷ;Tfk9xVa?S6LHڳC֝7>))on J+L]Ombone^GӘχd DH D)Of23~秵}%V@#s3;rQ`^ናekiLt'Π˻xΆK睦@o|k<- #=;1H,/T?>@ endstream endobj 9513 0 obj << /Length 1568 /Filter /FlateDecode >> stream xXM6P6fDGin%BR.E{gHJ&mjv{I҈μ2 (x՛4"ETfdqE9n} BIqJV,ÛВ~(՚RnR>>:.l݌S&),TsᨫȠ(i@))8qŌ$idг>m%f;X0ᠰ b18krn4*ۨqF WIHz1(ne{8ϱȃo&4!;>GlI'0<|Zwj *Z-UU8X4sP ?E<fMfivw4w`[F 5+vXBabMnLBacC Bs=e9V<@YJri2ş#<,kM]IZa ]wQDg&n_>_4u}8>I,N!o9a,=W%V-a󬠴'[^5R }.;9n_}'$Pn۲eWY dSICy&9s);t!'T3 rh1G;lr*JbOCΜĢ Qs19'?ZZT/iqz|.)]qqWFT=VެhQ]V`@ﳑs~|sPAI2~&`dPoMZM3_mag`*ߙIݾ~P߲Ihn|Z$(Դ Za\V.d{aʉy)>E 4F,+Uij@ KlytEtSfo,=OsY5jS.28A!{RJr)"ٴwd4vj:3ZQkmPNo@5^4k,8e&vF> stream xڽYKoFWDB % Ch{JVT'J8'Rrw73]G^zdQg8F 8E1&<]~*6LIIh1Jx?ދRhE'oآu{lWEWUk+.DQ~)+î|R7wy׉H)xA=>O+)Q;P~њ%ij.7mהNVvUkc4m:,?vFt}_%I>3)Z㋿:4K,Rhdh% ̸-mП]Ԇ(!]j伶˛7@ݖ&RX>'UFQJ%I‘BpB.M^m۠dΩq FwJkgf6'[HQ_L>,#(Eke𮃚Rb 8җ8)qɱ A#l~iklsfзzp /Sц;qF|+e&lqRJJme ƒֵHFqԣ]cNa3K+my<ԖrLJ#IǼcIA\JQm32CF_ސ17`ʪ`9rk<=Zi ˌc@Q;J<©Bt|;ԋ!Ck@W6~ћ,i*s);gAՙq'OIORk(2z1~#s̔gk-ۻzFl=sy' LqYKS#!FT8"X1cv($ 0&Gq`/0ĸ'c8Q#-o>@+iA`ٗ4 .1+:Z><w/K͞,(2X~7%sc Pkh#ԣc XVxďBˁC1tArSYpcUxi(*fHr:O:3w4y aN!> stream xZ[o[~ׯǤ{vfvfg!m0lhcAD- ,I74吢N 7=]HFL13LFk}EBIf8 !UR|L+>ඳ2A~yN*ʭGND%#ɼ2ñ}լ% '$lFVJ-f aȨ3ܘNNcp-=)-\ TpgWګm8x99a"d CB; 2ok$ЉgK +8:1ӌLOӓr?4]^o.7vrq;]^N?~z ?ݽѬ7R5 5CGq-KiA\/~ 6_x!qf Qm |<>CIVS!=Vj_(V(!P5h$A! A=IU:cGoC{#AݣǧDP#Gي"c蔜CUBI5W Uol|m Bl\|f2vCo6mT)XR|*)-lbਧDjvdBg `%CMm9lPfTqk(Q1J_"߃C !p 퀺@5ody]PjAyA-uB-qZVs~m-2®D眆]E-}{0d D .T|u v1qC?u㝏x4w: m+IRΌ3'o?᭝x ύ|(NXA> stream xڵXYo6~ϯ*@ERh^)m>.Ŧaeձ(37h_po>0YW귫^R"I\$YV"]$Wwջ8zM),^ GwRC\I-^mZe3Nfpy  S\4/r+'5Uzy%(jGLGO"ٕC6Vs:1ϩ?|=i<Ѯ߃l5=63'ѡ>޷G٨zoX`G:e ~h%rS|L5jȲia붔 !>R,4;'h*XF4,le,j`&#fvkזƛ҂^1ttḽtvU%w-52K lkR``Ҏq4OƜΚ@@i6*EBBeP*s׽ ƜECG:L: n9iF=(6FnZDNyfQ֚&^͓4t^GV>K͸Ʃx~/8wǝ0s}8 [8nb{/2 ƱN|M"UڇV[zx{{4<Q5.!heϹ 2"9qQ B,JX;<\)ṟi4?q)>W#iԔR* rE7^ܵ" X~Ih{ZRw^`éb^@0+=19N(Y2 E?AT>ge*F K9.]龹Qe55(?[NE%N}Q֥ܬ،]7Y0aOzvޜ( ł}LD xdr> >"%1/`p}:&jd 6 N/Q=mh/?a&#k=0{>5?ۗgƿ@z@Wq7:n$ywPY *'Ie" L9I"#Ku@ƃV!z iܜ>|pRX> 8[Dlp]T6e;W#2QEuu^$.֬o ?qيFR׫9Je5?PՃۚrf .jW,9Y+2Xv'4. W4vu;eɊ:$2x ;|<Z PUO5FbjBDp K:5ԥ8H4RA~ͱlN`%տOf endstream endobj 9550 0 obj << /Length 1331 /Filter /FlateDecode >> stream xXnF+k2O>(u.S@ET&r#;$ue+,EskhOw<%9YE)R*UFJD,!H$U`tSYoD12d6ލQNn3]W~`ReȰxXƛxFÿ,[mCacSְ0`@f|ERDɀÝMEnl ",#yiĢbn>1OKl_㉄.U1“~ű3T? fٿYܵe还}jziB6e"VXlq<73ZHSʷqU_寳 @yJx*;aAYU,4(Ѧkz #=`4Z;%?lq7 +M\4GNJb0FcL.d}kv=2wDOѴ!jMQmfjQS2R:SGl"[ Y0hQʹ\،Y1z`!KCplo'y֊qId&4X>"'Oja"8^ߴFmD 2n7'P: p9y&!ZN9|eNҗ> stream xڵXKo6WHz- hvk J ?3Rִc'73 DQ;TOX:tfY&-\O.6G=|wK<[L~D]u{;o˲l鎪EKMĴ+B!ђE4Mrtۭ>I9H^"R'68gRŠKr`fLJ$P(W b%2K>װ:L[ Ŕۗ>Xlb'8L'+NQ~gy\3 Dy^\gy4r?4 %X)sbgBi-S"zlv=s/آOꯐS8[`i'ЀPpq1U[aqܺzɺ>xG{r98;c,8 61G!>57.r/g4J4JuO nsaL) STz={ I_>ꉫO? ή! ƨ}7 ,J^GrfaG1@oLmBLTB 61]H3& gc'Lr"n'A[̫͸cωJQκ4Uޗ|ҝ`MTm,(@9 PS \0X8 JPsB WPz |@aLd+jku_1 Ls3W{9WI5Rve\ VZx ځYYB3'xĒy u:kѯ>-rB_x_<nj"V~9< Ґy̒)NS5b_A>븹A-=|pCyVD`P!=O2,J $j%uk^nLN {kF&>'r/'H`dBNǑ˩_9+R~ݾ_c?vo@GJ,zsݍ[(vгy/"Gorx?w-goq+KP12{zdׯK<$ endstream endobj 9561 0 obj << /Length 1074 /Filter /FlateDecode >> stream xW[6~_[iaR/Sۼͮ" *4iB2f`t>}b<8'$Xe1\]]~Yvݖ<A0"˟b *6UoU^o,S'ޚ2)G6 J$BքI͟#FD 魬ͩ!cl_d'UM3fYu+@Ƌ2~ ڰ=VyU>3D1!a0 $0h[4זt@iZu]m> stream xڭZKo8We` `:Frm[2d9aV0e;=}"zWӌ~ջ;flv%|PMTSukf.xLnIun웬hKeSĄHfA Z Vj9sA(8mZgt&vMQ<Q *+.{xd}ʢ9%8Lɢ)a|4j2V󢛙0y]W@GԂ6&!lH(Kx>RKt[/,oK65@@ܬ߽)R^BE m/VaX`>K 6@NbPLеM+TEf.&,BbvB<,f-G{m].YOڭ9͢eqvTlҒ:FB`wl HԴG/9y^Gޯ=H1ڭ8u ix&`Pd>/uVg (h"2ngA" ;''&Ɂ޷yVYEf#XYZ.~=_poZ 89ç+ ĸl2˷ۓ FE _I>|9b^.vn,Mw형`30Pb8f8Ot'q2mNX\M4bݾVs'!M 4~Z3$B[1\:{ >lQd zH5TARMm(uZ,ziҒϣp!`UpEI(;Y(S6Xȇ@/L@TfwhaI ཫXv/TjFȠDk p|~!x"zEQPQ㜚*цhf20e.#Ӭܱl(&nВS=Aţޤ6E2oNMD:j *qڲeތ{丳[TP04ܓYĶI >]h: \" `PŸ? '@,v2j{Ǣ/X /gV) Z'>T* MSg*eTY6&۹Z#ym[WB :d}挎q;sX?AZ6=6+\1.,zߵ2jµ Pfr'n_%s:?l^P]5MU٘k_\nk57Le&N ~IbҲho߳rڊ+ GM]@4JRzV9T*nu ~hmyw1gX;k ىnsHij\@^'![#DN}wPxC~g w!,#X۴c3'k2dz|>Mu#?>犔SKʻ{HUJŌQPQ!aH_a endstream endobj 9574 0 obj << /Length 2756 /Filter /FlateDecode >> stream xZm۸_V֊(tC - Ŧwʒ#IpH-fQ&ŗgfnYD7q`QE[\o*^( #!כŻ@&b/"{|;CbţPɌ}h7"} 1>~ \ !uYz\ݭi`W2VAW.YpGrFuKno []QOfp?~ gG{ː!V1 e*g>tpQsz\݅yүTvlK#--8ۓba%nEJq+X#?j*VSJ=Y^>_K,ea33Y"KU( Idwdzd&+Kq=y-'-=L1I&A2Z%< =r2ҎZ߄BGΫo6sR7n[&h8J;, ԖlMH2"%D䉿9.7މ^!@KvַA ԋ ULWeY־?w!Q :a"|V&|$z8+=SgG05y@[ko' "KeYHkˢMP>3 ܌Ȧ_qӁ(ϓ3 <b 8D 7OcNeغzOi-uusDqh*߮]^& RQҹ.MUKϪe̪} "#NMC4+DRK FY˜"Ylp3qSO(;j=qۉcb8he$",\0u+_c-[uߥiI]R:xS$e(୕%pr3S'}h7E5_^M+(nVpqZF ( -d賖)m:mr%\DcUzf},}Gg yB5 #%TU9c8b}-D껴w3wHm؋ַ%L܋U K0qуC?r\?@`C7DmRy4 4 8y 4#RNi}E `YK\)>C,0%QlnegKɚ-Bv6hC*`f*"yT}>HWy#)cj&*qzDa=DYؚRN+HeeUJv(:PT/.]r Y|ήowܵ0%)a"]1>-CWs}eQ̾76c}Is]Xnӣ1h7γ D=1 zEغMt:nV4gw%zO9R endstream endobj 9583 0 obj << /Length 1805 /Filter /FlateDecode >> stream xXo6_a&5+R>6,TlSڒm!HtQe;i=Cx6poWgo/#5!ŒϮֳD̒0eT|vw("Ij[Lct5_ uN3rYa꯷"-gqh: 6Eq4[D!KTF~݁J\A{Q0x$```$^CԗY֊׷ڰ]]Vf7]_-Y 80KSVāُ.(jW>P{_pzt lAC%A< т4X^fGd5.Ah&N4|;U3#/.>6w 0] T(t_nPָkw| UH[dU6r|KDҮohdn|J㺤8å>->Fک1:Bd)ATҿ[@Id*[IxkwLHCE|אjḼ׉[hk5dmesihO3i).~U'-p[ %3Y;1=@dRtW92&jW m)F_GE?lN}kkk@*ʐ0di?W )du1 ;x\h\15Z7r(gW5"ܳV;%,9UK1hwvHv+; A4H(#92"qP1ZkƬF7kx_$g8]Xsd0*϶a DZLb  wqg3D`` } ˊ֖~o\Lr&"Yٸ{cV#IA*ևݰAu^ov.RۢrDa>yH%/uH֝޺$t")Fq60RcHqR ը% >@F (;C zPUJM^T-|($Qx (x>UU\mRH;ZX? %]-oopW4ŴxۇiLo*$3AO^8a&?}~z# ckGc~( RTyHp\z"8͡}#6HvGv:F})o叫> stream xXn6}Wr1M-6ES0d8+Q;HډY.[3C9# ߯ͯnHayċ{ϣhϫNc>SpuQ*'ƈq"쌏!~Ȥ1~Q7w<FJB 8bwxC^pe:ׇmYkW$_8i7rtQ8Bq~,$D~zh˱"'-gIj?ԏ=44J[D/+i.T}{jƨW#vgʘBJ/ FPpW[Q%a<ت*ׅ,2tzHEKXxHˢ\[%0Ak0apVMzߌړ09)MdIf/\KcD#I5k:4Go5'FGfFlZȶ.5j԰ܺFi4Ai43>Ս}՛AhJD8ұ.8g(7LRyU:&=椤F:47?D:htH~cqP*$ZjRH h0^k[DtBh<5#;)O2=O 7c8ݝq R?o\S8mag+Y̰_\vE]WutTНZk#oUcm (3R=6I7jlŬ;XB#N( A Wklm'H@TUk o+N:ER&[3L#7OsąZg}p'R( ;54tk׎TɁbR-mm= } yʕ&1INmcPCBIn4J--D#(pV.:-j}YbcRT)_ Rh"ocHPƯ%X]Qz0۲VS^N}: ]6Ǯ;BB<,uCڏE7h Ps <˗rv6TII|zHWC' endstream endobj 9601 0 obj << /Length 797 /Filter /FlateDecode >> stream xWKo@W*' Cc-,J0*߻,X!Ӌװ߼fl`]bA@Do~ZiQJ bC1z~bZX٪zG7=ޗMl1-U+hnRjjk|[-F6EP=)H3c#(nPWPgw!uքo|(әqcǨ-gN-m{*MyP,ك_,Inh:X``g u:,J"O?6-Nx4J8n+N[E 0s`a 9;Y Z$j m}GE%NHQRxQӸzzS-%\KsE5q=U,=%)'P圴G{.-sL7 ?u!EVD>Yi,-%Zwb܌ Z煝,/ ܺ!;k#W`^nE@ b=}CNOv[_͸Du>ou%D>fɩHT6@}}*+Ԭ4qGmfAN%t_rxg~,ǵiam`'Ď/Gt>o" e ēM#^qP4ހEz|h>\Gw"5g:V}WUARS+.8< 2?:_>+ej?v;Gb][ډ`^UGs!UU> stream xYK6WV"%*Mh 4{K"^amc_2MC/+Y"}3MgY:ջWo.H9)*.W̊r1a9Uj(9Q"KQJ3Ƅ%"reL1 zؚQ}R F 7|44zhd k,Vm7zkQ3b}hZ58du)J~w-Pm~9iAvGoF2853n 8!kj È-PAQ[cG9rX7]ggE$!ug5=\%õP7&vNx24<׫FgӤZ9D}lϯcFrw^Q[:(m U~-C,=T-~8 <P c_D1 LyQ/,u,@hϴCkekp5Xn8*XYƮ ,fTP'FXtexQ~Kb|JY~TsTVk@:iD94;G}QN`D~7i>F조;q%^z얢3/*隡{8Lv:FOf^5 (zgkD+6,rNdqR(Hnźētp.%|/Rn,q,7SwhrRѣ?d׉eSLygdpH:v)󳩘MŹŚl.&(Cr#Ւ^/s"hfP*84WPeJZ}5̦iivD=Zn6oǶB'G&7-POCdCYW[;>Oڃ̢w GS /r1l5O>ZN3<jΧ<<<~Y~PhDDGTBB(YL;.-E_ lRS+7Sb5Zk$̋Uo֠KJ;&ҘƋt,U*?h~6f[ַ'_Wnu|[q3p6Kq=/^Ȭ~kv0q.^S_N Gx}D1@a+y+FŶc-?&@lhaD8]pN o֭!5:5(*BУwnqWAIk*?o[|ř(np"՟[U,.2V.T?BH,z7M#<ÓQ{hQ NH|$I/cAU?}FJPz?ړd>#^"wfQiK%dde=F/(U_TMBwlRpG+貵nrXhlagft1)ёIbJJSQhD HHq_BICܷ!k/uu>?̄;UԑЧP5(Jȏ%;4:٩eeZz:ΓhE<ƍfI-s70֑*gU> stream xWKo8WH*>p^XoMQ2cDC\dOK&κ^rfp >^_^&"Y`y(ȓ"NH,ǖ$kc PQ`ev #ִ]^Zޅ_I gʵ:*qѨP iG8taW`\BOBT{ά7)DM YmިP>Z"R ݰ5r%\)Vp;A(@dɪjoATy<^`d\'4WӠ)؇mHBD Awg?XIjDhם5~cpᗿ121-*).}Hr7??'WOS΅+dN5UcM׮jJ`kŦlyDIHӲS$VP+.agInuW{݁zRVlt DZ[('sK&ǁM2&I`z8a/rW֦ !0ETޛr[5s`{«1 rP5YwݸcٽXG2ogIvZX. aE=s"/2,r?l m8sffono݈iYmz;Zv+SY2k/[S|{TMygs"k*+͑U3]wеOVmEJW޴ X2<3 n*|LyrVovePIxOwQiY/Qfs]lq ;;&'`,Y)8-ٽ+yu֕~0'vF8܇i h{f}/Ь OIC36njY۲\^ }k endstream endobj 9623 0 obj << /Length 1662 /Filter /FlateDecode >> stream xڽXr6}WhDM-H]Ktx` mX@-ǎ$g]0mFɫ7d1Jx,r=,IџQ>K-=Ioy~Y&4g~ŖM+Vr>kSORecn*X9yZ9ZbՅ:7"5t]e =Ծ94;D!OvSjwP6?C,)o8%qri`> 2Ɍ0,}x݊f \H; OՉƱÂYO)`10XZYx# Pb_;Qz҈UUkh[0cv/CKfP2, R65_ff!6!Np5HN3ěP6)~Ojr!y'~Ih%>d<$SlTMJtNQv; wLd-k6eqq 1PWڛp=Qn6\[ڐ¥^E[UPe?5r<,ruO cT,tSXZk57(BkkG MVD>T &ۻ-oI \$zƕmp`7RP>Dݱ*]$i?-RL~>;ܹEfXq:Zm(sJyf:#}Tۇ9L3JWmgx$<)m0> ОT kykƩJS0n]j_d5##y;25T*.[V9}f  $ȟ(LchW߻[צ}Bn.Fu:$=c߸k~1}0 l5NC}x:mu|k*]xC׈ӈyq\4ґ@Z۝ e_z뤏 gU^Xb>*< +@KztA/XMVY0Z.E!@z\3B9)4s7ߑRjZ:*{> stream xڵYYܸ~h%`Zz{ GbwkGGC<3)UfFv^ԢxWU9nWݽz>6 lm<YmͿw'~b&IĻfEpwfdFAŇʌ4}wN(%;8Zo呚4Rw6)%daq߼O wUbO1c>8Aeoϓ;LP4(/V(;)eUY)87(3UJį%p?3JQhƹ4?5⩖4MŁO|޲ԥl>Lv8 3`Y'1[;i~ Vمyv`grT(|< ,rI3xOMu~~0١m_8e)b&Iaas^?68A,1KZ%Q+ZY b.9Oڨ(H\^r($,߃2c2dٛI{Ko2#\ͅP I-*x,pBrm 8lHXNEeD[6]%Pm/hy7Q}SG{-*kYMFuSO06>ڿF&6a.42NHPKYAR2gi 2%Vrשvͮ,TDZ'5h&A Q,!w jPVS<ךksHN<^EB\xDC0 {w}~+yG3x\š[aR֟AѺf]d:5S{"XX2KFW,8_nL~ 7v)GBQGJHCGI6"ylYAr2?X55 a<<4=7\hNB]'#Dlh@_qŽapb3]E¾9D[_(1Vi$bi8^F.S w }Q,ƿmc6IÈi輶)K4 M'K'V*ڻ*xx;RqͳǺd0%~SYg+:b٥-ֹ0i0EȒ{e;x{nM:M|znYV'Ӌ\aϭ?HMąݘf/uszHwuPd+:lSQ܃kflV!Msx^PFċwETczƼ2޹{E1fՕwʋ2ڧ7qeQe,٪1S'G8.ӕ9 dpܶRap?WS t˥ΥΌGMCͭc LZ<`E$ qmoG즺mfSEٺ Q p]ߥ6SjXz*z5}'E]KzUb ;QNm]sFNTL|ĀquXxeyU:.4K7nGIf(O -v&KqQiYxЈL 0;чpnfC]0G(0ՋYGmTIѿTopFQȼw ?ܽq endstream endobj 9631 0 obj << /Length 1722 /Filter /FlateDecode >> stream xڽXmo6_P%Zr HCa`df#E") 7^/LOsGF$9{<{-&q.E?EYp ]Kz7t3Z.4$ܱzx+"׍~jF9 IBMFqUr4 bJZ-ejDN2醴AƏ.tSda ɥ%Y]rىm#y|%T9J9@lA0q%òM薈K5\ u,4`Gޅ_ba*HfvhŝYN`\= R P,`{ʠPg}q5zVH֟*M.@uY{S)oBݙIUd=,)RLL0ܔTAZl}u1٪ۢL;BaxU?SBB֧FnwW(lfh2I!=W u`q>׿dOZ. 4~_2X1Iy7L|42r URZh*F <疧>E8֠AZBbezrfUJ E/xkbnޡYћS̒>z06\^>n)BnKUġ*K;r?m;O}eXNnHJ^QQCKNj<^X.x1Ba7[q)trWLo-LR+ ;H!J?>p9F1"Ƀ?tU"/sH[khuϙrmA, |Ig&Ц Bѥ* -au#}C)lуWX/ OP4(s䐆s h6Vћ97>Fhl(5';y|E aS.Cy? 6y@{`Y0Fߜ9DWB% خ'^IE3::liqm Z ^NayȹXp6>@4P( R[bls70_ j&)0_?P7u^pV ^W>RcmJxżo\Մhko1`-?f< #h82ltMJ-IG[~49lE= | Au<(.2 *Gszx!p$^H/Q^57m]Lo 4;RsifA7}__25?6#]QnYqI1Ea_mA};mʫn~\UϓAdfISʥElJ*͇plBKrҽ|ON ꤑT} i4ͪ b/rg 46R>w5u/`k/!w݈&1LS3<)_ūٿG}@ endstream endobj 9635 0 obj << /Length 1587 /Filter /FlateDecode >> stream xڽXK6Q"EʒHM =E[S,h%rHmzd|͋l;goo_޼|$JfͬHgE\F1g0˲ ]D(`cdI|Of)围re<V"nbuD"Yy;OJW~VDI<7]=_/a^~4ħ{J(Pp844EwyJ;x5i{G0Ia""y V~ "tPOj]MI C:8=ۡj.go9;;6Pṋҷ`3f9둃CB ke=UGN._}>jyTzRʧfOZF>i Z)܁)PZϓ(" RXl61IX 1k/<՜bAgz*z?D{h'!ȣ$Og_}{5ury 菜3E5 <|3HÔg{QcEf΢"-BjHFɠH~<3<͖H><ZKMtG-R?"XF_7mm Y}&k9[(@![~4= @̔[ȧ)mYċ,DҨʣzwl`~`^OqۿT {FH\,vkJ=&:+-S,zPG mS%Mwf||$(BjGM[ec#q+fm 4%gmRVFB{RG P= S*b*\Akg)oMxC]BESTDHp=6mw,+q@+6i) ,XKZ,ȠgOK ]lLlC+] 4xmWUI,+O2̒X(<9P"`T̡>:j~j\KI(悊3Zt$FިNJQ0@$?m=Ӵ窞p~n>q:WU0r$>b"Wڄ-yD57ffKcݲ+0ٌm{B(ƇF<Ǝ چԴ TtH@^ཞq@hɠeBoرyZ ۿOݩXgT`V}e}~ŸZo̟.~Z(5d%IIڒc}/S 繖u[h䰉Y ́Cg'.(j;4Lt`Ԟ2+Gk&Ùv!w}(?W] (/|;uڻr\V'!wG1wR0shY{_r!;ᆄF2nX\˓u R `uO(TGkԨɣP/{gqT&v4 "KUiٷ& G endstream endobj 9527 0 obj << /Type /ObjStm /N 100 /First 993 /Length 2148 /Filter /FlateDecode >> stream xZ]o\ }_1mfCF$-`~hkuH  $VW@qwCso̩^ \!&nߴ!T=KI^Z0 R.F(~ĒD\HKU31Q $I,*+CZbUhTC*I BcFI@0cʐ,D[R- ~u=0DPWvuxWwsUt%T/C*I*XJ.^;C4H\yn #v 9<8Vn%>Yc$180s[K&0!dʲZ8Xy%9طkrc\Mݒ!yɡ7V84$IPh;XF6~ԄKH5P!Yj9$OeRkpbR P00J1 )eHNCpƹ`~ 4fx$s ?4 qLݧ9D>8JھzyoIYջoaHA5/?^?%?Ұ[;]a6R 6#>#)@Cbi"[*gH=79,e밧i&Y#jdF9B2W_QRɈZ(33N)"gQY 8;ɣL2Ifp'dnv sςRb^Z`{ ZGd-myD O0ŨL1S*M4Ket$ت0*H=f% V쀢sTOFR9G5r(ޣJeS3SN(Gin@ߚ> ;hܴ=I&E&ɪ&Q\@?2RA8 u=MX"r3I5"AS>&BD()+D @&h;X[x:QyY%G/cQq3jev5f%v 7g̭Ͳz`*GAh|Eff'r+!=||}ywCY=y7:TUYf4gX {qUR9&h}rC>5 J>0Xf:I܎|Th$͕ս+?POz]"x\ k+$^n'?4֗i2oP(&@i)e2}[Y7w5UJސ 5U%ϕB++NpV(քP<{P* m}qEO4 5aoР $i)5E !3 %ֵ}EFx7>6_"=@#ޱ^ /K[6 <{_ T5t٧ >]`O}J}JZt׸Bib2J]Ehn',BzRB&Ѹ`ZvS*PL ЉB%.)5<<'K mjCD}&zHsId9O p\+=C5 y$ԟCV11eqg_wq >5+v&؂ZFapld|,`hqwlӾE?׶{倵~ަ9츜c\3xo7o5^x`'N WAjktZ5yr_~l)kwߊcߊ{h= ["cy endstream endobj 9639 0 obj << /Length 1944 /Filter /FlateDecode >> stream xڽYmo6_al fjI: +ڬúi}Xh[,zIyGT$ ~Hxsw7̼._d3c, f2/gyD/yW|RSޛ-C%qⷼZ, oD+립ZBSǫYֽa1۸ aAΖEa+^~h2 y"Cۊzt?5l8GО礠pﷂ͇ЛOXhݗ) { >+y!Pvr3/f frzoDoX:Yvtvٟ,\VE{Y HwZ$HIJR8~X,}a#ҀO(.nDvb$ߖԲ Yֻ;XFQ4JqRWeG+#l'[\oG!b% ZȽe':Wl kkcY\v3ljH+7ʵ3ޣLZlx_. bxomȧ,b˔ $ܕuȐ1g $;y+!KaSW/w2}/rM{ϋ%y8sk|7*U cLTJuоCvƐ/̃13#xWk^U<.G |JANA~ ;k?x\'%˝RBJ >=^ll | \ʣ%\i(j&A}_DgPUXlUKZͪ܆";ԱDꙎzn6,챷Ə4Vu#"d?3, hSks}j5@pݙ,QT$3t],2@Ep.)d||AY)&MGE LPw%צ=VOaȰFB {VJS UwXԓr-av$/ewffJ>m8-7f|˯+N efbI @GP߶Ͱ7j D.&m@lߞ.y1{ ,Zo[ey+;:3"ƌvFR kkLU;q j٠{d=Ē5S3p/[l8leWJug3QXB^kcO0n6havN,OϜXe}ގca c[_Їr:j/!L,WLj3[o#뛶84x=Z+؆_IE1%4mCK=q>sX?U' {}(o`~։T^5MF1r,+o~t0TNyLyƢ8zP@C C\GO\@G.B26`&:&wɏm)h&K qu4%8 ZNn=?43Ff?^ φ ˉ3zeТG!w5u֝HgX@֏)~p\ qSOl誾W;w[y8#=3r&Px}EI*N/-ܚNID>/G*/N;C# Ig΁jjcR6P>m@!T|zcJ9ŝLs WbZꆒ>6, leu:1"3D5̷,k{Vg#gU?c0z*yN'p)\ٳ"|-Uj-Wq/ Y h6b`p{SgPS> stream xڵYߏ~߿oN(KNɡwH@Kxm'KDwH)R׾kV7x_ċ?=yf$6Y<9Yq4[O7QUmFujplEX29+nf쐬: A Y)anF` O+< S\̌59JyL> PݏJ5nl^i9[Z3ϼgv稼H? u$~UGIAl`~y 0R,(?P5~л6]ls&ۈf6I%= Wh>=׃>' *6RO'ݾgG|]pЕbxƿ9BLN(f) R~iLgֶȦ,}G@5," z 4^Dz>ArNk0F\n;"BMŎDƗ@F(<4z.P1 J!7ޞX $Ν~,Eg_ȉ8ƒ!Ah3yU9BhY:UkDOZRL|~%^bJlFD-gj*J늟ti+o"AFFob9+snAjy8֢H,&۩ MV+ʌSHYm hkpHqbPp1H%]CO|cB RUftFn[ge9B-z5\ϋ8Efyӱ npKD`]$h 0}4&$ Pۥ9G?v`;¤ yU͜\-e)0׋..jzDeUЛ֢nM!qNM7!ų('uA~d#qB[5CzLTl)* W](d-v-ʶk*}y1 JƚV;&/;p٘Gu˄tPRKc]!H_Ew} U\- յ},hҋNejvJfEk@ 'ginD*RoЍ+EUVWF/wxVOf sM,^4 FFC*,$l64!o ȴ(GFg &eZ^_9.UVXoҫvf'AJƞ"(T}_y{=7hy_mdmUxMk<-,= δz P %Xܝvɚ` EGh xfx8k^r5Z_tBCƛ*g s&?s(T-1uKQ//9j)Tݙ&@ܱp{/"nDߟ 3 endstream endobj 9658 0 obj << /Length 1678 /Filter /FlateDecode >> stream xXK62V$z5H$(hMeVVrHYҭMуa"7C,zzgaAΖYJfigW/No}dϓ'i4[D9(g=e|HSYgaRա(<&k\ަxV&.5gs?J"oQj OQq釼Oڍ^`pf )>yZCQkLeayȏinwb!x#U#hlgm?_P{/q8UnK{GhI4M0FDe^o+;/xj3q}jۃv5z8䙟IpLd\Fk^u{aID.HŭGV!- j[,CSB*&LvybJ'v/e$cgHC5E_C b]*P%Zi125Qt9LE'8Sy>( -1F۲Rk:[?Qċޝ|g7}noLv}'$%c ]nA4Y x yg1Ή$RglHU^4̈́ V! @ŝԈ ?*ZӢ٦̔ěy KIpPֱm䂿ʇvYTlUi%^|Q0:7o?qJTGYCݼ>vsT)(>tiew8 *^Ls 7$vL5o[aKN,xъ1ɤI!0*`(;5sEF B?k q+7nR6!P! w&IA+E.v}4ٽ5dzcXUzmtuͪQB%&"fRڂ ڋSt Xzm}%c2li# dxb۶r Iz0fЫDctg$I,0v H1P.L홾ICU $&S&x3TA#p Ѫ9:!n갖Bo;lͅicCS3﫶/;I-t7żMoD[Ɠm@痻.=+,~M]SE_-F˛VL#k3 )K^d NMZB=[WkX4ߙ!KW6w?Ҝ PFk c}nx:8++޽([.pRNOJLr8%EQQe++|߸Z.V\$`w/>B7eD,G'%ge:jAʚK$5akYkSmOҟ= KXRm!,LՁ/eaԸ)ÀP=S#tr Z%a.q, endstream endobj 9662 0 obj << /Length 1915 /Filter /FlateDecode >> stream xYK66RNimC.qOM%zͬ,-!9Ivۢ%e7|ÍwhwW7ipf(EaDŦ^|ǁU2UPrgI?v˚Z?iVPmdmM8V[gE!W]EhͫR'"HѦo;0+Kk}XVoKHJ/F?|П/u9Yqfdns=1dKנ?"7k c=Z1"gY '׾HO/ X VU,Y_ ]Id[G,p!Ʀ?#{ Coe4x٩I$N| SF;6_2v^Jg"(%1( `^l\9tww˴S{X/VHN YxqiyelVQS2AZtt=-LMd5N1ms8p_Z$Laq`X,ٔ)@%\SK.7# 0]cٿc$4bYсwm_,xy YkJF"ƶ?o h{_Ҩ83AyߵD\um3*^R$ʲ LI:!XQֵa>Eh:jǦ5}AwG㘀ȤLl# bI{c3``T[jPq>,U9dvLͶrvPZ BA)Qj[AzttZ:k2$quknO9( 4Eh&#ҽ㺍"Ld˛U DY{ڛ5]LœeMIssQڙ9놮jmknd 6MGI'PHjFuN׹=b)sI>jʸL tͣb{azȒ! nܫ∨>1[ɜISY-kLy0gԖ؞1% )lp&Hnb ol@k WG-NT19U\JB^ @i%,{=$t;gFr# 9sB5t;ՙ]$#>t>R eڳ`x|7 aհ@Ȍ?YE;ۣ lkd`gQO)wN>G=й3j0BqzNB d4O'$4Hc?R4MOg)}g0ufBe$ & vt79tA`Rj^ Q .[1z>Ҿ3'o͡kڛ`)ʑAbb.q{;@mK7*`!4!yK0j{c9^2$5N ڑ0c)  M9:S<9EH h|;5> stream xXYoF~1i.q46?HcE%"96ğ@Z9`2ntR5FS%8TCo̷[O SKQŔTQ\jj;: X 6r.o]>}niKm hGAAg|:VTd2dv9NH(ZslUC5"97:.q]N7V0|cBAabi:lUhc` j/2S% q:ns# %񠂪sSgk+q1*ud1WtLJy<(sH'7A%JFY7Қ׃Ǻ Y|ҞW9}[m$+X!6v N ´@+!LR<(Jk߿{ib9/^ⷷ^x}}/._u4սVRU2\-X*q3 VK,Wʻa)=c<5 y)BEJ"\n Ile%<3] ATx"ϊ9b^3T)h0uW#խJt]8BGm'h6ݨOA|]\(XWq"UH/B_u hNE#:g*([|P'S>&{>kY;4U`z1+!X*!CyB׽hD) n^ć^ $F/TxKÃ^LJJj`IϻqI|vE3LMםȫ[,$*M$`Lnʣ,_>^>]~b|؟>G{6E&N0MSYNc0WC^4z`tU=V )s뾠xXeIKP++S6KB >RY3$V<UgiK%P(9ڎ@4ƝS aiym?tDĦ P>?L#3>#UE؁fЄV?m,)]Y&AgJ&do:xqtD ~2yX1(j&^:8$,fLˀuP[PՇ'8hF[g+> stream xZ[sܶ~7Z :388q:yi57pIHB%$w,N"A\CMח/|&@6W*Ti\vwonۉ}۬Lv7ܑS3d5cg86|iA2/huQԪ)JiF7oѭG.l 0Ry揶odҼیlGຮVS/Eod$gIVvٕ@A^GgS|2><ddh&P|H5baQ7S\|)L4a'%p6,_sbMʮR&eV|=LN-|]d"]iPNPpG"t;# : ƋΗr;A%#~G؎u")R,gEVlO{3e@+cJ]\NjG*W9%Pv X;HJA  + I|o~5Šk5NGNG/6|0 QQ?gT A}WE^A8Eɒr2ڃ.K $90F6`7E gYWUO O튣ɬ^ XvfW־Xi\|dRġPp%NìaG%_ՓS`igj{1}G߇T{m3KL&28уVYV7 ^JD-SEy'ݐͨpG]h;i H{ǧ!s4`0-щA )h 5iu!YlG-tޣZq|p$dē{~'u=vTKR4J%H/A>h{+r<-&ECv` ͦ!)0~Q~{o#iQ^2TrJq#eEKj[Hw2KcPE+ MFNL'--ӠLBb@{4{Ԏ+}ț 3ISe4Ism\7e24;ln6_[ tP>G.BQoZLؓyQ$TA] "[@B[$5FK#wl`#oЁ庅RE^VI]ᖙ²բ j +hrH\v!nbp*=ƊuX~5{6o#iW~ #}HOt<ò'DVԺYw-ĂO#8: чVcO#\S CӅrq&mN&\*`bU'J1 YXexFXfW/S,c1}vq>('OnL s߅$gA4tצ~w K)Yl&kȤ}XG+ojohH:Nr`cr>ohB eNA ]ϖ=J=!ޞIg+4}áIMhxz2k,U)̤gͰV|=*zwÖa%|X?ʮC(fZv;G+1#o.?)x Y=St`6\Y!-^F,TY8/[6;e^NVPv^r4}o »t{ C-1r/!oX|^FU@WXf_E푋Mb+d|͗Rh޵~^gvq5; FZ\N6G34'uh#) dĤV=HUR5ӻIUYm7DAU"Jo11!m{; :! ŀXBݽd4Ūĸ&,ml@}2aJBU/cpȵb֛Z#85VM4( l4,ba0vyOPt ҹ6-8nN~i)rNo9S?^pʩ.5!x ΙT_ˬ֬4?*`k+{H0 _;;b^3VE@ [7m3`|eID+O}u\:_441P؛q%\i|UqL1o)3lS"G*!<&[(xq,oߋ!ɹH7Ӷ/] endstream endobj 9685 0 obj << /Length 1856 /Filter /FlateDecode >> stream xYIoFWV &r $EM8 J,")c7yhIFHOᛷ|[xr=?yQc2&N$b2O'W'ؾ2Q&3Yl6c,66+4 ZA2Ouf~3$N`_ŵ+U"")l7^n*7Y> ҭ T hqWGLY4R2jjAdpp"-xp֏.ݔ~oYqaj T}21f=bU̬@fjY(w߹h1VHXy=XjX&D;m`cmku6\a+npEDBXKBxkpP)Y(d1"bP *s,alGD O_~_]nsWef*BZrfRrH٪X{u*beEb(s65Y=[fRu+RI`HP093;3W@[R$"Xn2?,x#.Zd֍ɅO @rCb~4}7ʹadgRC$ ZQSS5+UT b}G W+@4^dQDIEn$5@Eŝ\r҈U^|FET W=Z uhzuVlEW2 ju'jh}QaئSfv1v̀ݢǵcn0cȻXfϼ@`v~>?H(@$| AO21=' C^f;\bXkaۗWq=9#I 4xrN!a4B!;\ FrK~ym>F!ⴕp;K|35wGi$N_o&/z뒕'z7/ԬgFX!8gmG[eG.^7++۝"mZi֎:%ɪmwfȫȀFa@t;5C`Pųg{Ͷv0^wX ufzi|Zap X)2,*ug03ֹqMA_`(wwj3|,sKKM^75)З T>e?"g@qxOzts2YQX-? %8F@MzVNV!9$zdDc ޔͧU/8j# s0Mkg1,0} Dvuܝ6b<}W*ݍLFr4N.G大]G{?`(Š&vg t?~A; aVC=\ eֵ (KϞpKP}x?AAUhza ԊFi$>ʝ6b><@^eK=nG}2r~Wus|gnB5zQ_k׏蜓yą"7+|{z ^8Gl],7c$b5Xw]SN;CaQȤ@G$Ly&ء)|odGZ/O:2 endstream endobj 9690 0 obj << /Length 2016 /Filter /FlateDecode >> stream xZKsHW趸J" 06oj[JaYThy8yj# I%믛E˳gYO-. .h&b{v=kWQya쟯(M W>W+W=S[6&ȏISgf'W8~GURʫW߲msZxեB?<:nzm`>-^޹*뢬f-+H#bp*%X?QN1OC6`KZJZMٵl ^~ E>ʝ#ʵPorcV|e<yuo9.J'xh/]A J; i| }UdBGo2f-UY@"U4b+-]R:r UcK.&~OX Jas!\K#Q+$JH`EÂ&,rzgSo >8|4;|Wnn}L׶oF>q:>U |ޅnv3" 7>S8,bJx+Tp &mD#CeSgU37$J7Y!5CeOȀC$U}%XE=:a0ѥB۬~R*=Q& B ]GS0o M5RP]5Nlt}kn'v4tZ *%vd݁g=%U|;gWs" tXk,x8Y~Bӣz[l#g5|X㳸zRh!piLE~VRu(uyL(&࿁OXhp5r4ѩic_g+ M+%ܰ%vև/D` k[fmB$˗MƩ*^;[0{䜕<Xj 2xz3ZԇFeMȬk8NҪ˶M4z܎Y;?”'L,Jd3A*\Mhד"pǸX++Rz¹c8Lݷ#D1f&72år ؝ *PuY?mݧB89eQa]paS O i;( -q3C pEd~O89HRī>9ٰ̑0)<@!0ˡ]ǧǸb2_X;eR 0aڥzZѵUKEgD|&7-xlU'hPe5ɞIE3i5EC=F 2(wm5OoA՝f%3;9 2]툩OHpg8$[Uc~Qs02?p6V V@* r]9߉_MAz2Tȋ(@лF `C>}@{G)h<,d*^I&W>+#71XN6W`bLdY0q#zSΞ7&S 4C43кktaO<X7]Ɇyh~.^c8D)J膀i2]YS[E?BΌasǏӣEssDk.m6Re^H<6 endstream endobj 9699 0 obj << /Length 1672 /Filter /FlateDecode >> stream xڽX[o6~ϯl,f)Q  eX!Ͱ(hȒ!Qia;IJI!S|$x}iT!F.zdQ8 YG7׿`q>~?P`A0ʒBxN۝XdV$Jf,Nq(͆2;&?ijjn// K^y5J: ? .BEdzBo#}Vu e3a<{Q"$(Mb.RC6̚T7u2_1Nc[%YjcsNPvߎ gfB&9"va} y<"DRb=[Ѳ%&k1֤6nt׋@)I%8foi!j]BZ0GS\v6iT 23w5N0ǥ5ف ei =agZ?kUl;0+ 2]i*k3_|8O{+ W8FA~zv_E)S(@4GS|G:|eeFGn[ThC̠*b<}Z)Jf;SV lecE+ÖuM5px3@S.xb'@oN`!%Y<ǦHey~:ϯ/|G&[ԕ% 8^9sx"*Ɔ0J{)e -N2*-p'E0,t?M/a,0ʎvI2&k3_խ=I%Y{}_Ѭ)qt#7k!ǜKH[]>RxHO}Vԕdx+K} р%7Xd.r̤QGrC=XNƺ>RbAwgZՑi)Lei%n=VʬIcq ihVtnauUAG8_% endstream endobj 9706 0 obj << /Length 1420 /Filter /FlateDecode >> stream xXKs6WVc gҙS'-d P@񨿾XHJN^$}`n2$W7͓9,Vp#FRxdWN^4@,@h5˩ꇥ0hn)b9hCT5pO,9wd?\>[q'C\=^aÀvJ✸z| e6|'PJC^1*SڂR JԚr!ޯ[bBP6''!w/޾y>: [Qr/j0 – !P~*`g/ _`+JMmD];Qm$ p794R Q)p:|͘ :|whBnյt۴gw E^R'K2%9(`݈V!hL#.,dl]{xcwm+˝\$q+O;M" ӡR2̄^_a:,0yW^#Z`N] Ezj ^1"҆+#?6ͳ^B\"@2qK:C `]}#1/W1jv9zh > stream xX[6~_RF FJEjyKf.S0οcfWFپsp|痛7oH`~މ {7L7.HaHL(SSl$tY ƪΚN?UÄ$aȟbYrgx$F~S[ u ~kد\*ՆD ݗWdK⸲21GyWfLı2Ѽ6eEae]e<<Ħco$tdmE\݅65Tk?p?W"38Jf3Jv%JX^bhlfS3(ض{MGw&-JGg\\#} 0kmr Js,S栍.$-ӹ._d$ W4,6!)Q)aY6~Aq2*ݳj64N5ݧMY=l<=з`@&d˼I8F(OJ̻TVhQ{ j}I½q̘~RHuPٖ%yBu:iZiޞvF] 5;3jQ1Di+_۝%{d7Zri WhA\{(rXv+;pc ?2Lpm>V8:V.;q`+KⓡEڡ.@cf!^.r7G `I,ja4STyKF+Ggs9ŵ,VV,2u뫃U2D0/D 0릥MD(3X5(s6&i$$&|!(/;REqJT)[|x?Z>)&杻r OB=:aGjD?ۮș!MΪ_0w|jG泪du3ETg *dTEmW(M5L/܂ݖ$ h4q#(/9BO܂\^rZnӽTS> stream xXM0WpkR ?顇VVnnm *,+dK>Chzr̼73ch@rvwO PHw$̱&bIDsM}$ M_]M45U4ǫ _7)X0 CM7 Pʍ&fAdWU0^YS9xd~j1?6٣2Hiؔ ! L,8~,Zє ֟p hA%)^GU@[1 T+-`?;I(H'BQm "v&~(OlߺwT"wջëwi*^$MvRI.W/I"\q6g \~B{(Crn(^" Bmr((6I$9a|Pgs"1e:u` 4P-D6"Zխ+Dg['?a]͝7fAx}E@iq+@qDAo.{8!n F^k:utmr/7y2켮e^j6-ԙ|ɂ@ ޏr{n8SŲa)UQH] պ6#(TPף9$qG1{xn.]9 ʧ2CH}sX?a':g3\LҟDӗʼn(>qe9Y(: endstream endobj 9727 0 obj << /Length 1468 /Filter /FlateDecode >> stream xXˎ6WhW$jH&in:%AYrH:^dJg<ʲDs^ w^z(9 A9, e>Lx W^a]/((Krh;wH%(XEq8A^b;hovvl6CI'24jwEnk{YsD)GHI ⏷WI D4 CDcS޷X&B/y If|j9ep7ԏ$&A3E?ߛUDk5^_2aYSDݛC SvjaZE<j3a'&nL@1vLx N3AriDv,Mo,黛ЪÛq8U?›# 4ed<(FpH,?h{ 1d9A4,CQ4 RFhg|!#j}m*Hp(&,,b+1KfJ)bh}.<2Q#A&"E\gakV$TM_{b{' H`7=N46ze3Box;X (]XԕvG.u!c&̛U33pRYhyw.SqTM?Aܤ<8Uj3 VJ1&ߚF!JQK8 ;DTmP'ޛNW c):l'ܝ$B,B9p$& E}(~P!}U˔PZo!n玍AՁT:okؔO^O@c3%(6dSTĥ:HA_ZU;,,{۶-deh%צyDu^9i '8U7DJ)?E|89c>$裖^>6q|Q/ƌN녏i'YgKvVMr('~1. SJyԧP7f<'?=̪ endstream endobj 9733 0 obj << /Length 864 /Filter /FlateDecode >> stream xX[o0~ϯm$\L6&e᭭"@JM1H ړ9h=Zк|W--9Z~h -vg]0C!ZF0BG,^FkUutr*`s@ױlF=e%3͜GF9kz] ژ #b:GI8 WaNciC fD`tI_$^mF @u #qZֲcc afb3/x(P7IV*R,DJg4_itT3=2? 3eu >5_O+&Jv0bd&QRKޘp<;۵a^-[OW2J.hɑ81Jh(VJg\D>E6O4 g57=gBL!b#'E'@?w;*](X$rFGىK3=jX_nBNc9kEtoSr X< 2  @ygk @!"{#bHTk  °{;Mx .P5P|ݿ`*=9_z#ČĎ|ɅEpnBu16F6R?:zLWs-K&4ksuma XPm7vWD2~u3PTւU(m5FՌ>krRenb&Za4QoQJ\YPl>Y*Fkh6w\_S endstream endobj 9743 0 obj << /Length 2185 /Filter /FlateDecode >> stream xYKWj cxɕT9UQT|'C% IC~{z^ vUb"rLO_ʓc'W߼M 'U^g9-}>-z?^g W$ْ<ƼfStI͖wI|\:1>ypb,6NrnYln-`7oh/Od]>w޼:eV ^/IV`MJNꇇf !FY^cwz&kp'F{|\vy9w.'rv{,<,ӿ{`ϬlN|SXhv?b=W{8Nb8;a! %]a8ۇ \f QCǷ񍘅QhAq+9x̶- `[6wPv)ǹlBjgvR!J1sfIH8=qQޜya9`R5%7!:yݯ5XK!&WwD^aљ>zuA)}Ŏ.7ݯ?Eyy8(+mHU՗A2yß(}Id7"+6ۿ놖A*șAZ:jfdk z:KKHV^?/|Dk,~o/Me8=q{^\mv!z䓾wkEgͪAH.M]uV&8>DsR;2wKTI Xs7(LZ'pc%;Wڇwt)Ic%A'JEbӁ'.)c#(T'S~a?# 3Mv-."(h_|ʈĮ}vz1;)_Y媊rLݪ9G,^Ynlli!__ZVq%_]nYx*ȁ7(0rf֟9S0Mbr l~sXNVpW ߕ#Kl&AyA~R'}y;ht*=(ɢi;'bXΒ;ydJYDQWIq&-_quXtPj'60݋kbginɸED'V <,yo` )6\X8IK&tK.ME觢*^ CbÈ-T\ؕR%9`URӫ O;KiGN3⢼ Wս|7 &25ҽ;姄_o66Bƥ[-z<2;'v.1^h0e,5NVxOT 9ɣ%\17`s;8 u# 5=s=fC JlHpTM]E9_ܭ"N~ZѫB:l2_] ^mnNFU],}+e֪SlՊD;^FݽP2iG#a՘AsQ$~ r=b̐@}*%xn c\KE 2l'ѵJdF]hݫ_FG=_+,@lx^!PtM'^pۍ@0=x{E& 0)7XDH`珟TE34G! Vc7p(F_Hg*iƗ4u WvZA endstream endobj 9750 0 obj << /Length 1096 /Filter /FlateDecode >> stream xڵW]oF}Њ|2CVjmwCT `'އa ɋ=wν܏a(1 a.e}L6mV!ç B)|̓M $~ԩyRwuR/˿>xAu-TFDjFRf@ $TWoSd @AJŽ?XMPu 66{KI#N V Ȃ Ja"?m\Gqdc7(/&E IzOVDJ?F+>~1m4ѕYljORXUM3͘٦(iBUm$`4FDi6zccH  pjTR^ٚ4 ̓(kl1eZؐ"!/hMk4^z[ %6V"f GQsn{FjYUk< ~a,*+TUT1'[ OW0D">MM^kWL"EHO#}E xaWp$A3T4tDWKJ 1(f b2|D e}!Hd+B)9̮Vu +;C@IO{OT % kVWfuz΀ݎ4@w }mi-1Ha6bIպiF,7?]fk ŧކ595̗(3ymn/~p(v~Sb. D 2{x[!ǀGq5a y/|#aݴDQ<$MO>_|/Yl\/0r}̺I8POj|@tnB4ۻTl@1hd5'7-<%ک8"3͵)hk=Eo|i"҂TK{j7_`\bD(9R;Odη0>cD]o j.[@8kX%t&u~t0Lݧ"aWgfr:-w)Wmxk^pۃL%C+d4ฬm:}C po @/V endstream endobj 9641 0 obj << /Type /ObjStm /N 100 /First 993 /Length 2203 /Filter /FlateDecode >> stream xZI[1Ɂb-dcYI>La#Vn-,'ĥXWEzJ_,T/T'Tm|(hM@>t~'6{"-c͒bPZ)]8i\cFnj& h%1sjbᘋ-YYRDS5q-0MzbآybXJRcQ-p`X.X\$i91-dH$x 3&( Ւrkآ \I;%C6kAY>Vvuz*á'4ׄE{xMr-WJwK j.VlԸ$5XǸ`+S5;M@"c'p30k80$1%tBژk=1/8xd^ܞ 5ui1{‚5xɈmט!=f>%]JM1CD8A-Vʣr0\8PVނRdx#AD R* m ) A` FƹTyf?^?s}vs|7o'uӻ h77X1WcҝOeZC'?ftӋiu #J4vD 8 R%j1<<Wt}wV׿<~U qvlM1qKLԙh3a3g·DՇ<yw7f՟Wz pYPJÆkfhHY3.^77 *{|ܲC‹"M2Dn' '4ř5kP3!6yF&cr0 %DBpL rR4w,ʹ!@IRk - (;Sp2_X r#XD4frfCHdXpb7{|>%d2٣#[$ih>-nV.?v%tھA}Aj)^b-l| n? Qcޟ'-; -˱TQQQ%YEyρ:2{RE6PAU2SNQ+m$JRE_UFlVFv -~v}uh 0(XO6 }[Rd>"-y# EWZQOGy9I\ԣtϥgC-'єw0pB6wW:iԁzeKܮl Y3!; Ҋ ]r~/iH'4pBrU\GLSdw?HXh];Eۗv*ϝ["=5UD\nYhvZYFE7‚X0Mg(C9kp$")\ t]UྑpZT08! Z1n+Q^D[4i?ϧ?>t]^N^_klzy(m?ӶGhx"$cD2gbc.A"HNCRQq^Em8|$n.3iW13ld^Ls&E}R=ЊHLLE|ٮQ +#3VPY[ H܋m55c Fr܊.5ѡ3{-#ʈ#-^#?h NUh,wk@-@<e6 \ FMUj`Mk(3n0Mʎ_FIt/}%[7ngq2b.o^<:){no4.w endstream endobj 9759 0 obj << /Length 1290 /Filter /FlateDecode >> stream xX[oD~#={]y@ xBR"'&NI⿳7;w$-- 䍳;3;37:W_ϯ>|i Ha} &d)οȇO4q ",5b1l٘ŵyek Wp p pLq@Qlf ,O뽹J ۍP WŮI늝YǷBX'ҫ0(|3PF#r0i #'am8?OC J>jb5ơ0hBelSݗt<=NfEzƀ>NJucbQU:N^_] {xB˼U=o|+ҠBW,}3|:sYh@) ,(/ R0 ]Xѿ%ؿy<UUklwc4$E9:D ĔUw0CDzޛT2XPƊ IT>Nf߷BܷoC-6Kߕy:'tq9V@s #{)Q2Xdcͮ80W{W6jfp\@B]O~Ŏ{_<=6H{ۢkQT+IOzO|5*qqZLj̭RQ3;ٽa*{4<1q նzyي6_fP?|]ZvEXH e%/dm; Y68x#jZ3rw?W>Θfi^/Wч/^ P .?ĶgQW&ueÓ2/jrpt1h:hNNMOEYÑe} KI=qCK/$q\ t|x}{ Rpsu{HjqKrflIU}ݣJ/a..˪*ίbX=Qvw8H2PEFbڲ& E>= &i6!oYTLNܽ͸|$6g?{ogG2 8@wYlV]i2|ψoWYr endstream endobj 9765 0 obj << /Length 1335 /Filter /FlateDecode >> stream xW[6~_#/ai+mnժyj8 *1)v&3j_Ň4Ei˫(pr 4G)rGEB)Iy+5R/od_rqH18FhJ] @"Q9I/ ^@^PهjLw(JPs7jpcSnZvR;?z1~@D(4ڧJLܴl0i6̪)X/![ϸL)HHץ^`w\eՠ9( 񔝱XogX}y^T,ki,LB%tՁK %(a!F]ex\ӭ%MPOM2u5|8!MXAR+Z IBleUugrΐ5R´ހV<.~,lM"4 2ñ%{ߔ(oZ̥/T+A[u2DYk ᐄ" 5(,F-6xC1!_~ֆCA FƔ$v] a8=!֖oiw,>.;PԖ; RjGG;lhNN6OSqr]D@]8 - 4U!\ueeRginJ$1JQ\39/yf]B 'w9pk?Ŀ6գ}'aޗ9*T#XI5%~AB2ʔk_ G\()O -V5Ld`" [b۶ HpSB;\!}R@*g&8|:P002 r'#EkK]K ѝK2 lЋ], y&u`聴G6{w/%}ĩ}!5Tw̘m&JIhshsUbKܴtClP:jsWR >%'U]ۋӕ I*uePlN?~-9DJN N BA=Y_H~i<\ ϿOVΌtj[[mN2׽@dXN;:Qu{rtrص#O 'X<:ko[jz3otw\Uxfsow)/|lۭ)W$i endstream endobj 9773 0 obj << /Length 1133 /Filter /FlateDecode >> stream xXMo6W(O =,[@"-dp$Wd}&%[6F6X̼yCGG}]|yD0qN"ha0Ѵncg؋?#!(ae"wB7ݬmy Y\*Iz!QΤz(VDPw~pju S!S]앓E0 8W@1>{E֐.Ѱ6Jm֍j]cXdfǽ>A2f$(bb4vڒ@Vq>j.C"CEqdE0R4k_JlRW#3!%X:e_Uob'kH/dS2GZ`>ifê|W+׺ZnHx(.ܴve8%|H\o//ҽZvSCN ӻv$zcdoG.Q&mwͩD)΃t'ǵ9rh>"<Sm_?O8td ʘ pǩ1X&'=|:R *XB'd!쟠A=mvۨwk[bk[cs83cVmT{֫d0HbV:_$uxWޞڴ?2-Uʴ;յd32';*f+/u> stream xXMs8Wpd2 BfkJ|s\.<0c΀K0Y{; F#{ ~;pqP8"JPxp)jM) IVk!0#u5Lfd/oTVWDRwm1i [KYgf ֌0DciOgd"I j'7^`aٚ%k"SfV?+eC %u!S߻q(K<)7c-):WV2^Ǔe_ms/KXׅt4n6ϣVpXa"ʊ&>k0:ӆyD> LFߪ "&EYx WΆ'I(Jt0ysd`8iD6f|fizi`H,qS)Fnx70"@zqL=I1ۃ6KҦGYօp+X_jXYJgXJye)yKJ`kϳOH=I8EMl6M)bq,~ t잙Mg:&>5$M1= ULwWLĒW'2%i 4o J{"ٕAKѾFNLt;XIdP (ܮv,B$u1+ugrI*5LmlmYsb׵A"ZI>1> %keIɺOT|swDtAm4b6rϚmC^ L(ÚPǺd?ǽ.k)MR`Pv#K3oI 偘%Mä/}<s$Z~=&@a"aU晕 SCiC@Ec. yMl9#hR-s塻A).D(JJJQѺko!+w]][mDd{O4LIlu}ڳ6͂+)!;BR.4YNA_C'cުĒ>I:98qkKkT@i0/99N Tԓrݾ˺r4駭q6+ܛጰWzX~r0,Ma8Ϫ,*En'>w*;"L/'&Cn.9ie8! ـ|8rzV_J0oqq gkƴrF ܭMd h;ȍ)]rYteسUT_'S#yls:8}- ->u"ݽv3e>v9]^hå)2ͰNj`vUǦy1*rg.]D 9PpxbBvJ&\mV3ϓ̤VkߴF>CAVHTݨNܡE׋^, endstream endobj 9790 0 obj << /Length 1739 /Filter /FlateDecode >> stream xڽXYs6~[FB@ q?wj1~_[aMV ` .{c36;~U-;{mYC`>CH">2^CYLN2J&&eH #Kljőzno^ۻiA+چy ٣hÄ F# ߷ pP;l8&,uWmje#Q7qs3c:e˲ q'{JN^Uu25SI˒c]J* DÆ" blL6I:iUS/!5"$vΪf MasR( 2y-D GVu O^EO#eP"%uRRCmlufS*@E+^\tL{r[hO\xJGB*Pdԧ8H>4Eyh|U'Dd* Qm(ʉ^Am GǺmʳDlK&\:i&8oZ@h^\xr$$}j$Wu'V%#p HC( bXԜ M8%7UlU5+㧫foy8ERlkz-mf(I줯gwe EeCR.G?u4ea:Jyȵ]R⑘\PTK:v!JQfPKj's } ?d0q(p<h7Y*nu=LwJFQ>)%vcH*4_\k[BQZ<;Y9M VHXMzxs3:Tnڝ_`sVYE9zzc0PA帱Tl/Y;l\xQDhAgJtrjzjaHؓC N3B_ut k.+ECIvx;6ln:T+,+`Ξm{Xs lJ?Vqʬ -e<˅Vn[=t=Tw|blv{ʀG4?pc:ׇz9 0T(v[Yˋ%?Wj_ZxEQӰ%'i0Em3bYG:cTthdb{!"9,˟L0QJVۨ!Err$șlK^ss<;)+lFt_a "}?I;(v{PnD })<>7e h](slrc-އ~un~2DO Ql0&P?{$=?$*-fU̞@ՙ5(~y/wbq endstream endobj 9796 0 obj << /Length 1239 /Filter /FlateDecode >> stream xWYoF~#=yhH"T~Jc%E)R!v_ك0bcoNhoLD$D2#E4_E7rgT3Kc1M,ɲxMC\T;ѢhJOQ& 0P* tT^_NBPI7V)9]qd D1jMY bZi4@ƮgqW*\wjuoVلwƾW=" yQƋoR+ZhrWU9$cN&Gj8cHb9tJdA043A"[d#*?؞A8O)ʲR:Z1_fUF/-P 1q߇ 䠏- 2wlPA!/drHtk]*r2Td؉*U#>U&$rdHk,IZZQS0V`s]@åG9:-*(/EWl`};6[+ew}EAud_}7#+WG~OD )zX`zKX%ٖ.tB躽@[խzK"S >~}Wt.W\N_Y~W+}"cfn4]wCx蕾}qoS@5<>bK8|2|8a,Ar׮ROtBN& өe]6'uU|("Zav_yp^iZ7 yf[T>nU_:jG O|-M9*-$kTy405X |3'ШAbޜُw~Ey:.gdwT~ps~rS.Y endstream endobj 9801 0 obj << /Length 1130 /Filter /FlateDecode >> stream xXn6+×^A;A;tUxE;dRlɦ$ t%s_<ww>#8%tԋq0i=aM~Lvף11Qfӷl-&cϔ3OpxaKD, y/}XGZЃѧl&bƌq?WZxV vGV[k$FԛZ4"p$x[**$$~23` A)K00`.+QOpI Op\Mr!\W%9^w9+B{/>g$i<|v/Le^$Byc0dE&e鲃`b ')b..򏨫>Dw'ܯ 6"hѶ5'6*kj˪(*߲\t6apf:Q7z˃39]Z|;ZN葉9Q-r.ө;SNOP{i"pL8" 1?:J8$M;3Rɪ_f:K|'BǚtlT>{׼& k], nJU3 B8֙4gAi<>uW,ZSwz!hda|"!e/A6b.jݣzMnU;mnSn3jz#jE_EAwKml-y\nu.Yxyl7i\NXjwζ3aA3LZdPM_/)cMu:MmEK=(a16 pfCi/K" a-` s,9q:Yu̩uV u('Y!ÎY Jp#(f樨V]|'٘WӨZɅeMߐ,`MUhˉ|є{rc!V /]c?Sso/SH?I.Y!pQn׃Ω-s(ժ5PC^^P@SCGO;|D'e%SY9}sw@wKt싅$}K C _ΨPFOHשF-M^hqS5Q>&G endstream endobj 9808 0 obj << /Length 1678 /Filter /FlateDecode >> stream xX[o6~ϯУ T,l}XtyK@eG-;)JM}$~9G8D8◫F9It$$"ZEۻbߖj0bE"e_ݕf"!P+nU>/>^gsAPR-rw]`w<oO Hܼu_l">UFU,\KU)7t{kD%E I`ގN~22eyoklxߧY9b;Fƭ B ŭYC$CbyNwV9xWsX]?jve[-zgy˩x6% 2-ka|9ݢ-p Js03ybjLRJ#4Q&GOt&)hTuH' Gt݅ ahq\}0kENG2A2S|}#@w=]{6/ p5dЄ7òsmMߋ|]d䙫 `@9 &-1剫TZ@sjc`ҙM(!}R [<΅N" 0 .5Zԃ:ASEÊ4?'I~[F 3ya!0$h*@❡qk5:<(ت ]7N#NY6(n·}tTvVA;(wIV*mGA@nxKtP552"Fxԣ߿?|%z(6z%tWF֯mWu^#ךQD@7d!9zVP|&2g߂'Z^{7N4])5ݢ04wV+Hi{hDpL4,~=N#^qW֣Y݄o=^`CQJF%ͪ[d“#,L6udb wM' yhYuc{4}MkU,5yB>u%^k=fWK-찫b5L }PuӯszU4 Tw6j8~dEܬ/{aͱ=Tr:zƮ]Ge2 rWs )#+24I(D7R|{21^/P̦.i&ՁV[Y[Z:3D2:Q54lvA= FA~2ONX)ciL cciLI1=7ɦ_sD ɘ_ 8H byS})>u`V*7?q?y~ 8qNbO+ endstream endobj 9817 0 obj << /Length 1894 /Filter /FlateDecode >> stream xڽXَ6}[fP\$h)R -- ,BlɐrD A_,k!ys]p pŇśkF΢`$8E` RDaW(?MSsnIkw?Ki J2)k[/a90ew$pp4 ;a}rShFT ŗZu fلpo%Ox})iw4q}N9T5ȸϑw|ƸjH QHF>CmbDy𻑮s)إאR Bl<勈 'UkzŵM攁UK!A<}o|d〔|VZB4V4"u@a8H`[(On%K4C;c'd܄>1`Jc+%igQ4}w-ݱ)|fa%7AlKW ǪsPʕ% Pz6[ބSp2!5B)A'k/XhBRgXFIrW~(mSiK%J[7N*-1D3?WiԇՖ^xPyiE>CxfdC=1!_];60 yZ@\PRVywMLˠD43sW7ȅe]nt}{MgK4DߥCJE6 gѓ_Fx-aYl-=#-$V! zb'rՕ~p n\3Pm$tZGMXp#>ѽ7Á?;h*Gf3Qf6vy|/VAzNxbBs-V6ROO"&wg$A{]te:4O]aY\ pkR?&^*o4Y襷ۺ- jcyb҃a8TUeC !vCҭ<_ʡ=G_г&iJw(LFЗ׽_!3A4 _ S/ylZ^|(U{cJ1 v>zF6(82܇LIi.#(A2'j:1V(oG?gA{s5X<2N#vZ };aU$T0{aoG|Ȫl҆I=yUimmK=qݜQJFuV [痢C2?iPșAk=b)lI"{$oD';y<r5g/3]/h}q?-!w.\ɐ'FcC@ E3>ަ cgtkWz endstream endobj 9822 0 obj << /Length 1990 /Filter /FlateDecode >> stream xYYo6~XZbtPHӺHqQMaлܵ[E|Hl҇@ofh_E.xyf8BUTūݪHVETg=90:4M$G(7##:-MS d8uRٲqa"WYYIJ>|xyo뚙()U(KK8)vSauv Rݭ"`9 B# M)}m/Zi8 |c<a3•T J0$&`hj8FeYiE?>5)SlۯI *=sK11 ^o-9ȗ;xzඐ{ȩuRQ?`-U8#?*3ڦӹ4Lue; `8FAs" oiIyT6t8%(m>4TwQJQRVR!JI֬z 6 %M- F*Vp^0o!nI;Z$xM7$}" \ăa( | !#W+#>:Ejb*H--r=Lԡw&J˥)&wSݰPC v76= Ө0'NP!>Tվ8SDdVDJϣϞЊh燽?q0*od&2KQ)a[JX2A XPcݛ+# !Gbm :ZV;eO"(c~2\ \>ߊ<, 9KCPKpZ#B'1:oݵ)iLShq4>'ۼh*¦0w mW6U=:Q(_L}y!b堤"ةtMH6&Bp?a{p<>\a $@O2|i,@DɺF]Ok,r8z|uțƗrʱ`mOPl* ؗt2?֧ʆh>`@*u\h e|BjwSf+I H lf{>g|i/_ )~|rpXr!>A7g ObRL]_,Ptq`ɝwڅOej:.1>([f&BF$ ~P.WTW8I> stream xڽXY6~_aI֌(RS@Z4E( Zl!2ePR6F/]G>,73j W?|ww-W8DpWw*Viƫbg:.BH%hI,;pXopP0Y7uLmʦ1F Ij-: :uZm (" YmHxk~a{HSn7Jlf`SԴUW5«јosY@nIl*;g U3Rw߆MWLPL㵵菏rqk] w08CzU#ɟň"SOyTdU7<l GQFŀ:q(EMmP8mRJmҠ\rjCJ{ɂ ')v'yF>?gt9 P9)ʰe"[{X!aXɛ?pEZom˙Q L*qs;Ju/(}y:0ϨXܗ51dٲqx<13 U];KR?2cX>!6=rH3#",]9:R5X5gYmch/8Q`h2S_Gizs{>gRčwIo|7r y t˙{6ߚ^TyJly}vlޝ;NOq_1S#%"ڋ K4ٲ\!y/ʨY}@^*o{ T~MS?G#?`R 'gQ1_bV9Zڲ"*"zˆX4 ^rojl'(5͢9fe?LQPe =\p:nS̢#*atf*uq'!W]{㭷v6F@8tLU@k7GorI8f*\%N}lta̶Iڂzd-& QDICSGu>t q1o _mp`Cv;W 4]{ٯ G JFd`w;2/6EFM(v?RY/SUM#םK#{0';<@:58i2s Ypՠ U($pfAtK 7VWG"-ULCl&ضe'Xf:Uo^bk{Ep+^8)kq >^bF{JtǁEvNh?*FVbTxH*Y^) Өnހeq&3\>n83/KiZИl-<{1UwVǑf@Q>IPc|i!ttFp ہzbK9&!7΄6C0ȎyU *Q3!m J1燵aS&r6= F" +5x _ִʶ^If\@G2\_.q{We=-֐T ٢$I6w|'W'G :0&,LڛKZ}n{BU6*FelFPҁsֳd6WcY=}OfZ'5?fQ"M-I/]n! endstream endobj 9838 0 obj << /Length 2090 /Filter /FlateDecode >> stream xYK6W(+EҒrh>RH/=lVmM ]7ū*^/ߤ*2.n<.vult1>J(ͳUQK=龙0˲`:yn|!Z:TCUObAT[}56]+06U."u/߰D 0X׊/wNOtw(0CXpM{ayc1njMr]2JY , 2wn/;9pt{=(} 4m [dBB#h[]C5+=Ebу隩f+nbw8w1\eK2X[<@]1Ժ[0vKFsъkɸ<jn$xDXhp0qɈӣI+k>7+ `3d>şౖ3" A pIO-Ng'5) j+[!Ld{R(z0EĸG}n.11Bձfe?#} 𽛫C uMe Ov7DL%֛ΫuN̯zݕ~$͚n+ oQ$A|ƎD>ȕZJ*b~OC/>7[A N-;YkŘp9Am4c&2^OSܣs1␃^r' {1-+4}dK3\倸/lK34$D jF ow]uu6D|^ Yڔ.8QʠV\zQuU`Ud{oT-oOgO;Zrot:4#6EdS9&y !! WHbLj%3gO~)<+dز}&I,A $_2?ػ+M^ \IĹcb/h2까KXŀiyUuvVf'7WFZMK,ue \MglE?  Н$]B T ԟHpe/FG3_-8?Ԡڊ]5o$l)4tMގ4fJ0$O9&9H[AY/l ]Վ~ [E^C%o,e]=b.J<m=j't0Z17#ߵkl}n =G'̭ >V#䳢[ %"o% ,"&<3au&Qz6/|u!UB^gNqYue5bnzSe6Ss #`0t6 rܘӟаeEy}hP]&`|jTDغߗ :UhؙBic4 Oާ~~g endstream endobj 9843 0 obj << /Length 1656 /Filter /FlateDecode >> stream xXK6Q"9+-)\ȒAIPds7 =!5PjV\psu.8beTƫ*OVyTM+q/20M :"+tlaTT$iͯrei[[Y⪫Ys{Cpf*L#WٱZ=%n,Eު%ړPH8`o 5 'b9m](~ZH;,ܕ߉/')YaYfNP8 U>KE1bQ><4 ' nǃ YEBү=k{cxs7/ҞnSz%e{&mW4ں*ɻZUoXicj._SP -S9e?[zÚstMů& fY g kmYv YSX+٫ST<sDXvʘkXPuL2:dnG;BmNbUdzbEr e\x> stream xXnF}WTQʋHhSŁ+D"e;@?KiMSJ&O\qWgΙ%}~qyM`E )\Sc><ۿ\^]a,onZy-wMQbXWb - д]"AEؘIً&v؈C#kf?};yue(%ɞyto(60F$FȻr1|]pQ̻f%`FvCER+,F4@sC^r٬,>4'Өy0PE 27J0)lG]!Q=sYϟi7C9o,CFLS(V5偑zUi:cpDG+ -5QW29iO{D'q#)H&GUaL>C}(k&l g;(3הSS yCbב/x¦28•c5 Pz6?mJz}QxuǏW3G};Nesr梨P=JOQB"")q䫅0y{e)P9;#s2~9)UgP۳) f|&d<^nhzNB̙ C8,8]URfk.#LgÉDu𱘑P5Vn8K)y$I9ڵ sMg,9ǴW:L#K \H`oN@v#=pi ?M8Ky砱tF֨V2f e^f Gu|&R$-T7nve5d:֫Ϯ.Zh?{`?  6-ۙ 7e bs\B0s %n<6# ">1A/[Mo_0҃O endstream endobj 9855 0 obj << /Length 1716 /Filter /FlateDecode >> stream xYo6~_X$ЭXCZeAش-@2IN~HJLʼnnXVxwa`/orQfR6^ܵ^ƄN2NlKsiEb#ꍹS7,Wxo2; d h~F1D1 eܼ^4ʏn! 18n2 )Nq7d!oe57]~BnMbB)b'$nڱX L(z oyc>5pۼʼnkD1"Q&عE]BQf]UPԙ3ڟY>ug[m}ZE3No\%|Q RNr-BR!\ϑM1Jl҈M( $8e^棨wunm ċH*fY+N:҅!1 @bU!rx376x,v{]0!Ɩ9_}4k4̆gW1J6NYc݈"3lmB6X^ 1l DL_?!-yG^ (QC 6Wmy)Lz{|v~#\u>.m_2AAܶC/]wP|~J<݉?Љ]GF61a ,\QNPJD<_|}:ģRӺ0-TʵR$֙IB5Ʋ>& 4f"-0A֢>0>N&/U"/Zuc9C]a ǢSJ5`[\@W=<+x27y-7ue#կX +,~8FFJ4냪LL2VJC46D(İV}(}Vu&:{N G%`7~za?R?þj{Ksf_ W6-qTf'3߀8#J;6#pSڳ2l3^khMQn,xT;LdFq4Fփ\n-H<{lEl#yo=*w7ܶmx|0;5`ߒ21G~.]6rg (H9ՐhlaF.cYD: Hv6O 7=:N;%>:A(! YBjUWX0rF& =))r b{(n\6M)mv;3a}Hx }G2ao[ބw$cށgyRLόtﱉw#wy9st(_9:$ k8"SZZ7 hTJGqj&?ʃj/ k췼B'N!A/?oPLmnư=F~igs2Xw$f<#&zAm;{]ݚǺl^m+1F۱{T9f<{$HjRkRyRjq(D)!4yR@6T]mp"0P/uvP,(=ŌV.{/D= 8i&S#P#< i)w?>u8)kp7/| , g`ca+g endstream endobj 9867 0 obj << /Length 1578 /Filter /FlateDecode >> stream xYM6ЭvQ1@(zH ٖdi!ɛw(R2%SxnыM[pH{&ۛ_oo^q@0qLu i Bv"?~Wor dII>mk z#kĊ('FXtX?<$ 2X..꣫Qyمc= O4(ISʇdC,}Srݜd=;HPitxD#D~x5gͽk+MVWVC+gSd*4Y۴S5k=>b+Ab^1$ ܡ <$3$+6ܚnX]`RtNvLeSiW˲캂!bgi6IUUu{Ȝ#86b,p;X0F*a$X @Tg9c.AA _8L-|g pvSnl<#H=Ti-8B;(Yc&_\߁~ַ!qRcjU ! ϶e1"0_z:a4#lIM0CM=M)K;+^E {:X]1k&)4\~4Q7骿7L7ȃ>* -Ufu=H9gY^8F.8 XuTBӄJz $/>>r {N#ëB"cD(],9aL* vIHE)J9C: *p  )|.<]_@  pzZZUϤTPWɀxAz`"{uj8."߅LN+=J%} i|l^nUilrk˓ (>d0^6f2.u^Hy*sbX+g]/ҺMzYD3iȡTvw i!lkQ|fue4A| `jhCwd op5(178 cH}rj#ƞ)i_P$g$d޻E ı7Xc: ()!'3c&%nea5~`m8u#؉HWtpߌ}פ:J1k|7sFf_Gi* v5FtY`nwϋN _qux)|AI9suA4v'<+vU[nDlƘ'vdd5py>ꉫS&{Ⱦ+곽k&_NdћF(nW)6+/K=}5>&N<-6}$ݯ/j)7b巕^[ Vӕ G˵F- $䌸goGÚ"CB',rLH endstream endobj 9762 0 obj << /Type /ObjStm /N 100 /First 987 /Length 2019 /Filter /FlateDecode >> stream xZMocCoWUWu5 -0 B[&!PH\]WɅWկz7TRo%RK5U040,0$(Gwms4P_DD-alp:$b1Xqp!tQ9 RRlcrW}LPjfTK]66YFA2x)4\ \Rd DYk{E "` YLôzb~_?b1j~uv=<00y 荆phF;$<$NN ooA֯?q_]zq=?Əc:Td톨,e}^Hi7Wi2zcf$X x)3P/p OHk毂 N_rJ(8rAt.r-x@YBox|?HS! ^~7>8P}qL}q&&nghG|*3$9B(O@fջX#"YZq@b"ðd+(%PQ)Kh7DY͍Ix(ǐbX<Ǒ˂e݄Dg!KZQ7RD3;Pgznx{V6^ƫ7#čYAޭWZt؇{Fde0~,y/#<£O7КdE4 Cs;IJ0½EA *-qYF3T A?194tF%j 9%g&]237"U)LurQnNmNdÉL冿D1q3HTIC%BP?)' &JeW`KYEh+H $QB< HHT]聀'[D>(dQ<q.s{vJFԲ,5^ {#\zPT(IQ"W}ZxegCrBzl qvv(>HI ď?O<K(Bֺ $ ^v݊yφx6G1t5R \ࠓ8v["Vzq;[=ٺ,u'm 9%>@h2@T\wߓ$֕ A鮔d{nu_:醬RL^v3=nSA7㻦c*Zm[Ydr Вņ=iP$LJ0H}9>T!v" dPjkN2ti7Q> stream xn6y 60*R-EhQt1.LBe#i×IiNN/Id?C~nz M#G )M磛KU9!cIĹOܩjYL"4rn٬vkuS@Lbt[u yS ޼/ļ I0n%74M3וZ7ܕPeX͞삞zTӋgU}ZA]mUoBb0"k򠯘NfCEﳇ cU5Z㺳\٫RUۼ6ez6 kШlF\Ci|蛷I˭KہvZ=/+` x0j-V zk`UF-<*U-+~v} ˬպ˧>@*b5?PFGfAG:jQ% h.S<$g(މ _m:hЏR0E很I7 `fŭ}>Lېy 4޺nfaZKLvwיQva,Y]A݆Ѷ3+hBs/]G-8Ö1%ˬR*4b,+Uԡ>$̇u[Z h]Vv'sUV(zm ,e⎞dYITٰk[*e'!"g/Fwσb!{v^H@sy lu-n!eSDMYrvJL(f-8S߶= qGi/ЩL:u]F佈0u$vڰ1NEU*"+CS˺AA(]2?cȊVr?S`fz6 O׫M]B jF.ӫ} endstream endobj 9883 0 obj << /Length 1658 /Filter /FlateDecode >> stream xY]F}zjVj*UUFƹ\cI}g? ^ &md ,;sY p/g/h` bX"Ewal_yE!(8X2buXXuV#C{L<{;I7bT|1WϟX`c@ĮH`GoHO, 0M)$FDҋ(͊ј]b A,I!of}{1|?o,'(R ,<7!KU z1y MWy/b_fYQrQ`EQC>]fyu}!z)qҧn=Yd1[ GXx)&K~agf1*jM)[Q!*#lgUHKcF4cⰱdXn}sA&6YukKS7goՇ龨@.EQ]e1k?yNjѪ]O?ukkȣhju\.'dr yM_yF2g>/ H_zIZ4;&T5ZUU@M\YrUK =\ZR'>, =v{CxI`IuV=)#Ư&}eѨWޜl{tW*ifhx,+;QdחT|gTj.ާQop r0廳!4S aLS\c HSDJo$D"YYG5ц;4K&`mMM"(}ڶ UN{ZK:Bb}?׵.:O /ÿD;K̺%O7VEf L ;֟]c9+==CJ&4QH6҂q Kc͛APwOOs& I)%jN y}; حwvK!Ɗ,Vxi,pZWݒjJ<ꊖSζcR=g+aGXOE%:֟apMGQN2a5+:M5Bs\6I~^M4qx?}U [~] Jg endstream endobj 9895 0 obj << /Length 1514 /Filter /FlateDecode >> stream xYMs6WVc $i2trpus<H-N)R&)']DP,N&{1e\,nޟ29xGGHF&Hd> ~]UVR$dQ8\UsӒgJU_ד?.ٷ8F1atI, 2(J4VT]rՌCNx#d7z6모Ӎ <TS\]CL55 1Aj:FnDI3=bNՍi*os &3>G IHR5f> =DXtLg<Boͯ5,)?U^[F0>c CͲy,o`B~am1p)#,ܸ\ZP{a1ȇH ZUiT aZY!o!c\n&*!:40L//$ JL׿bb,A${s 6 G<AEu}o~!cK϶3'K-}&Χd?lo$6Y9WR 1htxT6EFm"B,'+`lTig Gbih>hmN-V -8_lqߥkgMldEݤJUuSggt34,R,rRUh^ 'fpx.iHz`o rfeqk8yශ_DL ~ xYŠ_C1dZI:{4~,#57Ѐ:[r rSQ6gjg/ D ֦*,?nU^vTZ1> LC]0)-JI~/O:s7=韲e>qӑx=p,&b>v0:FQr, 3WMo`Kr FQVuz{a}ԣuy_vHeԇ1 Ԃ]v6**Z Q 3u_xpFf&0sx‡yCn>}[ò>p}n bg}O*}|f4JɀTT'}'}Z0Gp1p 0NƉܮlܛ核"ୠ+=5KNX˜mMzO>Z8jQ#0j+UP,$ ݜQF m~ =|\|[Eq>-kq,m^)ˈP{noh;*t2hz7-]r`1jcο`zs'χ&'lNV6G^8nXI=9@==nLZp (?W0K1J|SQɹ1TrߥHo,ߨnLfo@=ws֟ra,n77- 6T_~wh=ݗ?vp3 endstream endobj 9904 0 obj << /Length 1581 /Filter /FlateDecode >> stream xYI6ϯЭ20bMKҢh{h#ӶYrH*iUdMq3A植||V6JW?^=AeSP%n7Q<-@Jht^LWnJG78 %ȬO [nfˣR)Z`=kV E4z{./S:4 \ӱX:W0G.q*@/"fu4S'J}BSK)4(Ǘh)ޟE ѮclaLH6/6N*h,;JUYӄ-%˟ ɿW ĉA.«W1c.;ּ$14d>𿘡sq1N مS8;w4077>ҟh ݫfx{,LKzƟFm #7 jF-IAA埘}nعXUA^ Ml-J,PXXgy֜X^9/; G`~+[kjgŝ .@S͑-j>k{X%hsXe~ a.uNȝ{H|,jm;K;[Tg~֦GUW5 'ZŃVX|II6ynuaQKfĊaψs>l@"#* E }0;'fe'AڱW3xt\6΂{,C,"Cx̀!F`3'%Ѯ<$r}yOͦ~ϤM5u^-Y-Bxu`bΥߣQfä:?Ɣ9$*\bI(. 12B ,10_#8.\UyEhYN%fJ8/wvuw݁pLZ?0C뫲l0C,L%{ݷ>o0MF;̡_8U\zxt"lH& sK\/CӦw".> X%3! n>f~4l`Ǯ&z"]O?NvL-1 )4p PSBpBAHJPʖmffDg>[ }:X')YMJYb6 6Ȳ)Fi(:{{/(5CnTo4 Px+vb46~-,@APo\7C` pfPc#43 øsq4g.uo^ y$3u)Ol0FFI׍> stream xڵXK6Эr)"E@ $A7@^zHkӶYrf3J\+E␚73tm{wE,=y3rK,.WGV;,8} M3rvZ_fEjTs| Oy $N@a0" xLH8A+Ё qULޗelʀ1fY>h?Օ.[:,rp:,-kNOlj/.2Ly6P@=^XƠx2=bYU^<RXݏvS=h;?4bKEM@ MUM;"[HbY@R h<14ê*:転FeZaA,"MSu@QjhQb5iE7WeyCԫJTuc NJ5oo7D5 B9@` Jw'5$S@JX`:!F^EWj!'FqxMoBy Cy݆V/P?Zykwg ~5E3K_7r,FZ/~KICy(Mj>L\wY Bf9=V{kf0ʭR4|IX=쒪9쌉3%ckBM+5skK R ng> stream xXێ6}߯[ebHmQ-EoI(^+@+m%y}7ݖ `bq9sx_կW?m^J()Ymv+$V3ܬE$߯2xx|"Q"*IZۺj1Ox|jQAfj^Jv} 7KxH,"b"kfۢסUPWV CUPą!+:wuSp9qB⛐udUmgfu蓓felh瑉i fɻCScJiEa(w5`71e2/;V:U<7YAPQ*+C6qp'4['2{X!85ARH,fҳӣ\(lRx >e3@Gy<3cVRv4jZE}2֍Eb@=\[V|̚ 91e3s)d-eNMFB `Rخ19|#0k$c }Ye"Ypi EJӧnG6E;]4Y0bZ~)&uQɜ{7mh@&:6b>\(aTuL2)1kM;gbvaLn/&nxTWʬjA}شYțSH/b4iɷuK${ b^iN14aRh5MnMX%G=il&:]^B T%9SxOsXtL xnafRjN;JjѶ.]Bş*AB> ۂdL}~ pqԉB(% >88Fy[.n"}!܃ZzylSlgS,5oWf]UeNuzI}DZ)\;цiCP?ԉLDst-NɚD*@)TS{l5a>¹oi@/G0`(ll@& endstream endobj 9930 0 obj << /Length 1722 /Filter /FlateDecode >> stream xZ͏6_Ixa*Ъ[mv" Iv>cC 1!d4ZiO!m=~;&;ͳ_l *fiuu?6:v#6\$lu@gBXdpDVqc!l?=pLO* D@菇B*?f)KJM2,Β|NÙݝxDa )eUݰ˯NmwUrJ;c?ɕ#)[$t$u $SLhH e8>0bP =| N񰛀&x7j&)Tlin~zX䳺e~7] taHe|/ f%V7o/fD=?~voɛB^{}+ͷ&xԿ7Un:m:YQud~^U*ڗ $F,>*wM($_Co1Nq=OgJ67hhk4SdIGX!<#Brn*Q@p@@+Bq<ܘɭ74(rsqƁMl] 0A/YJ"8 O }||ZW=Ty,0“9W5_ RuU`0G PuŠW=s]2@;MɹVV!Uk,Dc{,tX-OCMwbX'!\^Iگ\xvzSK ch)̆[k5)trt_;]+lqjBa %JU W U}'N<vZZp5 7el:ԕ)k~Ů"!;~P<^Y6+՞!3Y B8%`߂{ZἜBM/e tJċm`H"j1Tx_C q ĥ\@Z?9"[ΒMTߛdDZO0qc2cz|>򴾿u=kBaWM#`)5V@E` "T 46bzkI\EaG\q{֏@Ť{h$yQ@AŵΰޕIlBbvZ3u>,UY;Mv4(E8˪S@CC<"6̕& s3=x)k_gt>_vu>+a4]:i Yf9rV8nA4ؤP p|~$]54!;Af3{7 8eBnwpL{nQ2-^ǀZ!˪O]ʍ=W@+&HhG5`$*EHS9-.62+ endstream endobj 9939 0 obj << /Length 1443 /Filter /FlateDecode >> stream xYݏ6߿k"^VCnuUՇkV+BHJ`Jw $a7{Kpb3癉=  3[:8“cܙ-qӍg^1 8'jCz*.*/ʩK~VS'\&eU*Lvy"Fa:u9=ӏ'{Z]!E|cۆ#AD"lˆD>|JlV[as%艏m!=%1\ "b hpVL{bQIAR?B!(pr%DaptplRmfZBs6YML^Ca[@RHcTHވ SX8lZDֱȔH |zF X6I/۹^ՋG2Qq6%kq%!I$C&|> ,[{H8_Xt(ČOϧ1@F3څ nN-䲋Ks QwGbEfB/ @p~(NN5i4^V-=)_ZuYkDu]R~̄R&ۧ{ Cskw}S\7YMֻuMoLQcl?柋xDaE8E:ZKviub[09^IT+r0+l»w;jl/d(h~> stream xZKoFWV07$9Т)Z=8%A@KE"r%+)R47y`u a.*x7mڬ_[M\R^Z廰*gim 3yзYIՋG2j傸sAA>Ba$) BHXFFM0k *flk.^E,b׶|iܭHZXUnp_U70(Ie>bB9@om1w뼱6]*ǔ$AD҃-92WQITu{GEUޝ ?aZNӑ [g0ZA2]*h$ > 4nT<56tN̚l,]idQ_ڼkGJ v#޺I[M ,F<>x$*!z9gd1`c>uj䨹=ؗ\zqΪѤ;jzX?pR$cЙ .3ȠCh_nisA[%)QlSknRiyl7멄Lu۝#>@(?Uq]!ͅecQn8 }֭=(x V_Zg""9as+G0`ȥS=wq 4ӻ>VLl !u"A U9pPn"E9Y7?@Ptch .*,dorI!Io GXx%4l.iT݂?R178mޟR"A8yQTLݔMw"h/iFٯ̲c{$'9кJUVCwx={mQSpl g]['J[5ⶳ+BG8<9KD@fH]t-x#| |z\xx$r^؉'51faw#- pXI>NAђjO#t0Ȳiɢ.0ÌaO>7lof) W&5Ym&+?fzZ9ߙhLJqOϲXJ9U^;9'hɄR|ˣ!juKgqh+Vs3>OWId :S;<74qeW})[e_=,\S՘Ӡh);.8K`^Ay榦jkaSO.-צmbݏ&[Vˮ*^>&R"5]Z>";)~֟&:K ٰGq:bH i^E#Jz(TAͩo6~>.pltd`i::Y~{Q j7$OŘ' ثi7\No:1g\ٯ#ŞCdzgD' 3W=T?Ä7t. endstream endobj 9958 0 obj << /Length 1557 /Filter /FlateDecode >> stream xZKo6WV|Thnîo`!;F-9CzP8nNf(rH7p<<߮~_yK (I'+& $vS޼e Ax<12 Vi\ym)MZV-W`6eHcA bVyc ٟ*$|EDld~2>#~En>]6Ev,j3戊P#dGB*X}<)UG "W.x Ԃ@@-/Ugc (z&N(cj2-13Ig©:8q7 '9>9# "ul`c|px9Yz߂4"]P!\EH\oY>t&􏒁xAd0[ V iJn&"9K1@Xqy8v`K\3s>|mJu,jld?+]MM #xԽBMWNݽ&tFK&n Ӭrβ*+f;ƃ*7Q  |0`9Q6p"RRQ_O)2T05g:;]noݎu&ê,_&r endstream endobj 9969 0 obj << /Length 1840 /Filter /FlateDecode >> stream xY[o6~ϯ!bE%tZt-ڦmr׏W byxx.߹0mfO^d3Pg5]g%Y2Lf׫-L<TyZUrevD0YQ# _*>_Cژ@Pڐ.`g]dg/pNO4@Ij#m)A$Yvose#eH;;e%* ji5\-1F_&[Y|,AߛctүZ(`l:M@]׳䕥t=DV;vAcO1&tko0sT&}7Za4U8"0[ oFB}X10Яn.cX#ϑKvVkԒ>|m/0Tsl*d35EY+eē|**6k5Q+N+sT%O70NT?n 6U[M p0&)oR!%P 5! @Ž M'znbRȔ%+MUeZ!nu#|;y0*E|1mt%adσ\*ѐ11pa`=Q-XFK}aA GTp9BCy:<\}4me\li=.Q^dهq-+0ޝcvm64PCyRh,Ÿa r",Dynʅ-5%Үc"9jB1ID"XVs3_~y>!#QcǢqEJ<^'1٦\!p#/%WTVT#-brPVC*/"-BTN_Czs*۰fYi8s{XvI[]eqV8rbVP"/G`R(c f֧FrȶNY0.|  ʵz3tv`fƭ֘[)CTRYMgTA8qQO2-dM܃dx+O(WZ_L8yKf\**Y/-C?\He:R5`ca`PΣZ(_`Gϕ!>zGǣpD}?v`u0.> stream xڭX[o6~ϯ2yYt  PlX+ӎ]\N?~]C' [ȏ|<ΡppoW74 FH "̣` >1IW6^`7 Oqf%Qfߋrh6;>_kW7Q2[#qoḏ#д!,{)ՇSeًqˢS3GG %(f1<(bEB՚1a"aѭ$T6}RҎ)` [\{]}Qґ97%(%w#88 1Scz!`b4F4+ H=Ot>!;qBѤt b:BM I*񹔝}nV^[ʭߜCvGš q;Cȑ՛bV`Mw¢:&l8"W0VڙXz_iH(J tՍPsGx](t%i5h g(rq,Ұ<1AP5J8c*};:r/g,Lk{l$Ý=kuYZ`q; uc+˓뜰V#0p5q;銭\K`\u0hh)9dR?v:gQ 8.[*ٓ}V4F3vuKtRƿ5atQw5zW⮏85fn"JP EoNFpl>ɌMYƒAb~p#8MܪgBZ-_z:Zlj_Yk<= ˛`J7t|W'bENd:or%T~번ږg4ݿz}2XjXxHAgNn̉Ϥ9Zn'0Px30[)FĝԬls[0AHcN3]lɾ\ʲl.N&;{д7֛(6gSs]C(4j&!aJ|:=pIrtϸ~-6 "l,ʗa_Ą!::P`4[?ijR 4^-dyD)I9NtU_g58MsRlKHUr[#M|X݈qYTׇ)JuMN|50~AܔGS8YWcCw,F1k@dC䃆IM|AcVrÉ4~,]:`S8HN Ǟe!4";K%-fE/nDp=ˎ/,حrWjgP_DuB]ghbnlQh3胂Wn֢l.%ݹ6Ww5Y9Mfp"473IM& zSFLxx%ʠ6l @tFP_*_5!##k' Do{L-7b2UaǪHPQZDY!-3gx$/Wf_"d;Vܠ򘥆hp(%6((&ɱ:?6_g10sևeiJ 9w4Lj|M\1/"|27'" endstream endobj 9878 0 obj << /Type /ObjStm /N 100 /First 997 /Length 2123 /Filter /FlateDecode >> stream xZn\ }WFHQv7H[Iyf".}5#'c;}=A̹(wTV BWFI[BK]K1s"vG,$RY{!$3Kԫ9BDkxI8%=yKu136ĭ`f/8NKB>>JI$ X`0PE_0iQlxZ.C: e7uBqK Z D-D 8`T['/^?gi:;Yxq~uv~1VOV>^||q_~ӂ fhN0%~f;]id-XMタ6&9Yϫ/}[iՏ4>WvPUSj HyUcŋzVx{V/>.37}EH8 EK8=!r@:蠼K`\al=]HHJԌ\ĵ6a"pșZr/ /өuQ:>,8Co |gKA'8''8FZw` lgOߜAoW7}-z:=7ˢO%+TS j\tA7w9bP]"!C1;?!4" p#KJYq? ѓD FM}%|L4yQ6QU{QnD-3QZ5?Hb0 endstream endobj 9982 0 obj << /Length 1767 /Filter /FlateDecode >> stream xYrDWx]=4, @dԔؒ$CRKiٲIQa%}s,(%Qg׫$3(b|vnk[,)s"b)eFZ$BR4f{x슡—wgr&8zg,-NJjSYx~/mjSGe0םLrk#w /c;jˎZA$q(Wu3BƔ8Aj4_ˍ+b_}_7d&Tb9'EUUucARhrZb8Zיѱ<wp{i|fF& TRtk9Һ!բ^⿜$,^LoSx#3N}vD @lah7t(L>o`GǼU),Q[( FfaV=kU7DqN^2/>2/XI3ﱺ%bd,m ,Zmet[yr**ZF&"cCEA0L*nbyY`RrI`j}PgE%f>{{S@F7mB[NmUk#%BC;| C7߇g6$CiB(#IsvE9hSn/k7ot&Aބ*KϊƏo~ endstream endobj 9987 0 obj << /Length 1870 /Filter /FlateDecode >> stream xZK66bHz- 4E{%zh@Xr%y7;|)ʢ@/pfoų3<ջ42r3K,),-_?K4A4 gAQej]~"w퍐2#џq5,Y{!J\%,B)IA_GjGJXuhjNp´dRz-kW0xPOx[ڳg{z"Fv: R&c!aJ'6:wT98ply0N C6|n-h2f`{3zUmԵr#LM 4e ]z/I CLȌA2M^-C_kӌ<_ #9.2w߬}Q^Yv孑j ^)-hz.%-d+Pv+ j庆Y~-3㫘X?l|e,Z{ֲk/\}jwq27&*^ {[j\<ܩ7Yp|XwuP2"hFQ責+Y{y*ۑn %EݮUNɽH"'A[w|kWFq$")J%]f•Qߥv|wyYaF,GjH{P>"FO%Ob@nϺF (lǽɛn'&r1ru,aLb:IhxLMc=ccF?\Up;}[=Hԅk?)my1w ޵($4Ca8< "ccV ! \[Ax U4/Zn8."e]&sC",uA^AzeƋ"6۞=w ϱJoʫ?Khߒxk9[t (8x,oyjzU,}PgJη "oq43 ~ܘmZ#Svuwb3?fcgʨϲc8/ߊ#fьR1z-eOHS HX2&徝" sb LD|.^%!yr6v*R 7y V? QJMh?=Z4shƒ$ZZ@qGh":ѷfLZmV ˽?Je$UdEAVڶhtz0I~_L=lVdF*27,ަ-XFS"XϠvaSdςX,JյW7HoXC9ıs7<:)˵n!I-٩xH' h -j'/gѤ‡ֵhƒ+j8qMX׸ *q 5CG(6UE: ~\Guuy/$Z endstream endobj 9992 0 obj << /Length 1615 /Filter /FlateDecode >> stream xYKs6W)#!xCԝ4% eAɒg 3NŤ)p~}%O׫WonX0!%8!$`rIVԳclJC4[DQ<ib UZ<[i4xضy@PBZ)Y 1b!,FQh+l`Z7{ړh<uyh4[-(seVя˵~v^ئqGfisUUvB/B[W[z"w#0(D}wgE(&3V`Lm-GJkn_7%eiبTlFJJs?X߱s܁Й%nDf!V:B`Z SIȔASfZZmVs> (@9AaFUO >M,߻ AqxxP[ՌȘaFzMBB!kcf>5TƉhv{?kIL0gL.!n5!>nlD18?j<>O7RD@9a8(ee(6YQھv`D](bɱ Ik_#n]eߠ?d1܀C żwQvg}`~4nsHwV8\bԫ ù\bx ߗ\rGܪp]kM2EKBQ07/|Le0>gE'YM٘gAUN2!5P,PGϔBw8t >{ڦI`c1ۼ ."Y5pU˳71@Sӫ>@L(Pk\#FF,]ɐM$ SN2~=pn0[H0غ}^4JaŜr{=:wg,ZA'6Vm?a:d&TMIMQ!ޡӇ0Zf{T=aDI\lё-':+B{/{c)*3~'4}( /ti&*6.^" -S3#9xdT+j3QړKJ_r5~g;EoPPYxW' endstream endobj 9998 0 obj << /Length 1375 /Filter /FlateDecode >> stream xY[F~_[qL%PT)ԇM"6˿f;^ֻJ'0 69c,u9Gę.:™Νkקtu֟ FGjWd1VDpwz/5^իoi6Oei͗]whq.i&Fӄ Za%yQ5L>x!i6+c-<)շ-Z}Z")OiU A^asiX76Cs `ELMYEVw7gKm*iVvQB 6q͢&p-qʻAnWގA ,DoT}]Z}4Z'$vS,7!]#v~EJ&æLG\HWB+H !By^QZ~C *MlW.2fG_lj hXɪ]]oGuMGk:l4ЏG|( ”6 &{ pDF^_E"G52hB~Ӡ)Co&uM$@.FviiF5j f2+X@$ls2]"FqV2JvTPBd*(0(nmu̮"Cfat، z+yAg'%buZ5ELngVPϊ"|c@8bD͈~šqotƥMY]-|tۮj!qZew߯[&FYӑz"5W64Y%Z@nS)́A1m;5h߅Vyp>F28?¬`R3d}g0_ćZJ!3Z:lGҙ4uҒa;iU 2!>ex~'.v@>m:T'e״hFVP{ w#^WRHzFQ N"AxRo+99q #~;I(G! {hjE(HލiEf|Ha\B:H56AwNjM5t@ԳVRUo}loh۵u17-aϵƯlm8>bbMU_鳉`?4YOIY6ř(a׃Ѓuw7I8녕@>D5ETg:;drsY$qU!5(Bb?q3nD@M`[SkMLg#Nk~e&X Tu?(p^= T7ѳBzlE)];?@!8?V#Z}9rT endstream endobj 10003 0 obj << /Length 1805 /Filter /FlateDecode >> stream xZ]6}_&ƋJCNJmμVLǿ56`!d>v^a70{=׎7y?/~xPxvq2@eܗQX?'Z,9mLK<_|$M.>^жMFԕjԅgV {-}qeX28]o],ճ3nÞ'=;#Cz1;Ӥlc8Dzp~ci(yTБ(u|u(]^Fݹ_061۸V}<צ]U|̈8u!|̚r\ET Û 82 aѼIS&vL&0"bSDt,PGÎ˳0oM޳ Kt(י;;|w,(]eH[wYE?9^ #xUG4ą{1t"~ 4r:hp o yq`O;.)¥& t}rG78cN<6M]Tg#ɲnQԎdlݩvM©]\9[u&sV6ڥMEمg]};;B,֛I4m{+=Qhde@VqqF{1Tx8R8s5Ag~. Fހ'F'>I ?O, 25dp=i}U \e 2Na!0g?t5: ZNtWyXTDWKx>wK7Cƨߖg%qi{;VY[! |~mlۭb/gSܝl ;1!/@KUV߃3^S /w.<5\2M@ki@2tK dVMNM`&MTi]0 ]ƨtu uAO|[N‹ 3O,$ᘝX7 %Y-""U<_{\o5#(1ju{gkpfsS8 h:x~̨oOzQf*`;uq9>a| D(XѺ9 Ix<2> \8p=4Xq"#(5JcbDE[~DYo4I`HqHꚊrOԍ*X2aL*V.3ӑn =KJisƻ:4@>527c7t`5ApO]б-*#z*~j{Bk5͘&a3(t8CӋDL>1?#+îCJ I׿]!E.a{3YYV5ůoe/kY`BL淇97nz@#us6[=YMFqՀ?3\_q endstream endobj 10009 0 obj << /Length 1946 /Filter /FlateDecode >> stream xXm6_og1C%pEsh @@?$Eneɑl;ʒ-6)z勆3\7^L"ZiHe&bvI귛I^, 'HRXk)RӚzߺi;\ bha3M]Z.}?P[ZhӉeFk`}XH4J8ޗ}'g|3'Be-]MݼV&2_(!5_˦,=O<웊w|N_˚f\uQw-|K͎WIgW1QVXoz9Su*2ɍ{ l*l!*(!.4h NI期"ՖnGt?t[t>fN2l֞e<^̉x|[Wd# t]0Br :pjMm\WUBUY'k n1gwģ +kkHiqqLnhe) u&ĵhtM e!j0͠uuw)Y3w"W5Lr`qe7àyu"r<}ח=2<5IRg4P/Ma]Jx0`lt)$@ʇ(O=> stream xYKm`DMArv`ТZR)7yn9!ӬW_Uqoo.Wqnm?dUFUe~1xwA&M ),$iD^=4j~YKSYEZFtMڬ6YjFaoiӿUfzE ^I<V82h}X'UrYoCwU4|bs-/ڞ)#:YެڛVqW>K^0 YK-Qr/o=gn<N03k ;7yaNKFaZmq&HsOI{}?:0I^~O0F(_( FTii1 _.ZRh_T{4@F Z:*m OKBa(; D(gݵM=C{pxyԢa$i`%ԠlzG!ւN~r D6Qs3ȐN¢j~*.c4 @JW)20/peRMk:i|fnt 8Ld5ZD `Qj Dzn< '4ERl)EW%"N-Y"{*!E, f?,82N!`x<]F#j8EҶcGqjf|L< zE:'Q@ѕΟom x6!1%(zd!mi`v~dܣt T_2੷%•?#q@Z<4i<Ѓs=r{^to+RkQ> ȶaR҈ygF@`  $([-p^) h^X -`rKLT7Y?6< c'\P_.**n8cY6{![z|@N}?1pēmP똝3bբizܰRL%p҆u^ ,^1.g`CEߘT[n<$f)7I+#X0xzѻK9!eedɗK+&t肊lPC,4=FcM +GAz&s^v<%U|xX`%$5dcA %va5PJig{]դW{a (쌶8%)Y?̃g<םvs@ F| -=Z=".=cL3|W.hy[W^|ci858Lp]8GQ_Nh`f"^gg(8/WqetcRfM3Grr)=Zy܎#d:1h^We2m@ iktDY^nE!h4V\s^}eM?X1 IQWPK4ŕw{7ATeP3Qq#e$ Iº40NL+g|]7xRnNQu(_c`Pt`sj2-M<#`;$3390[ǦbSH&.^hv쯛TɻR?7 endstream endobj 10024 0 obj << /Length 2060 /Filter /FlateDecode >> stream xڽYɎF+_ Fto\9$% ZRSbL.^Sj36(ŮU+O7<'FmZdU2E,[WWo~}_VHIAWk"E^WkXZSʒz4wWkR&bߧț=Qv]ߋNڽY@˻ivࣹG++J݉ky0i1cQ*\nV0viF_w\&`Y\e^'=/aZS50ea(lix2eiWܝxKIlMҜٿ,#R!upi7iDoV?^*LByjK048x"ۃSa{Wk'H/k:vvIʲB !'&)ͼ^Az o1KAPނq7e<<]ǪO/7zY>X?po7xIhEu4əCd4pfV#Sx%1[󱃫[3^DaeO ;sƝ D482{8Z-aHVRgr?Wo{!!\1J<1KdQ/gug:ev83gf4.amҷDwK, vx>2mg8>h| F欺GRe>Czh@?:skBLKs-Q,ƒ<0tx~[LTTܙ%u%QXGk@KKF dipQN~{ d~!.Ggԟ=ĥd40k nri3(4"-b&f80Vf+$吡YZ(:F+X[tQ';Kƌ \eӚ)f[T (#d=P>0H j(5P _5!5+z;y31Ԃ@(\ta?ɋXKtd1={Ըiu"\Q%~١mDǖWоy >ΪC'{ h =Kf#9~)njk`|r:z K2Kgn"^ON뉠ͅx7jvA Lvlb%1?=_-v)EҤm<\vΉW nox@C ľ院BۿZ9s}MiGg|9DŸ'M0́SVϘ( f߆hih=B۬sY'3͕ F Cha)nt_XhEc>8Gj}1Q%N@:+qn/*!%ɽIjjʀvBCH8NJ/m"*Ɉ?xP猐?\*9ࢄ/e(6 'VuaIvx0·v5H/P*P#:>^xv> stream xY[o6~ϯl VEۀ͆aŀoiQckœٯ9")K 8mҬ[$S~;?YOOg/g.>!1,&Ny>E2m<) \h(R74UWtYfn˳ e3N0aVtHumɜQa0'x?^Ψ4?+TMZ 沪72SFS$YUogsPJK[?`U2ӿ7% xH`X1'Ǚv aT.3 HWls}t{vҬ&5#STVUUf3aQ?8#]_ky ȕD6&L*"ܡ ްNZNO!-%}ޏ ڦ>S/b}кX@O7ΡƜG(z{s8`V,c$qeի[RGN.7弩4'>ruSVb@kBkP8CTnT&-{ oDԾ^̲YL]h8JldvVo2p@4ӨUf  A5>~QB:l"b`|& !zJ ?"7@ԫi\~?.d*,]ܯnMJ־嬋 CqGQ2R2Ei{ @ӎᑧ >X Xǥ 2Md- [On3+ʦԟ;Ulu mr]! teZ4,$'UݸaqM=~wCF[8~fн 0X/DZ4#)S@uhT\jl<.FM%Źͽ3Ks9ŨwIPSpUƶS\e6.Ȯ.;ҎZT0Kuw56AHվ_XxmG}DB}f?JμOs}5- yBZ ؞"l $}aT85,k|^ gS1 m6|]fH_!ċS_Rek3{0Ew1?} PlR+J{sr}Vh8s۬7M4\5r#?zE x&ʼߺFr\@ǗM GÎx,M̜|ʿ08Rj{rƑ<3oOߨsg6sݵp"f BfbtQ=D 13wI %h;ҜNCSO>{Qnzٕ nT5Nb[DȴrWǽd4+!2= RJM ESfm)hP ȍ>[Qҡ3"<jzDY[,tc29DF~s5 q1{cwάɧ]y&59]!/d7'IOSDkLqҠuv+2,v{!)c'Do<^8`|d5A #ԆW`84eW$¨wHONaOW8D##4P7$3bqsz8]C@i|" !1a4n+yLqr{ƃ>9v'8~7?㳴nNq{  qTZȿ_[~ Qcl9=m&W':!>Cܚ_-m endstream endobj 10040 0 obj << /Length 920 /Filter /FlateDecode >> stream xY[o0~ϯm`l*uM{m޶)"iHH[ )$صYR%O@bwzLFW8! 7Yx { r}MbEɏ\3FC9J/ӋDV/Hr] - A`X|PK(`7+"%tY]HFrii#~S.kV̺rV,F_KGqZ:87 ^ ֗۽1 A %|EhMzi4 rfOb+ԯa6CPY L2aaV²LCN@741'RۛYu g̟y'g8 SZD)}SGIG1ʪ *(vս|$To5G\&Z2+:NV FPO7Ͳ,&_ֵddur&ezxqp\7~7e6YfQg^3`+ՇʝxM~(0B0-<|kQG9CsN'a0 ݎ .El ChXQ8ucqq5+52T &-w&󬱂؊څ`OiM^ ]D<>l`w=_jHW{em*^]O3k"=H^.--=go#!PhC}kIEiv-Akb<[l!av uhI7GJUf7SBUʞH,gap޹W*>VvZewjM̤ǹtv1CYUFizbg%iK7k2nrXA/|w);5s.= 24h6ף0? U:c endstream endobj 10044 0 obj << /Length 889 /Filter /FlateDecode >> stream xX]o0}m$\"m6yۦ NF Z)~6MHN{>Zw>]^]8BGti1l1H5 +E:amƼt%,F~&qʴb4ho?&u,ہQ_ȣM1-Hfƛ/~?)ZBe#Pb>]N~@ D[ x'3e $C^SJì XÞ$u6l0%xfF+Uɫ>HĨNL ._᪌G 4LcF8[hŇ,rzADj:ᱬUb<;|z{Piw9DE٩<)'jPp7gH;!}&0*`mk1Fm"ZlMF QҲ{)voY X?si_Iӫc]J endstream endobj 10049 0 obj << /Length 840 /Filter /FlateDecode >> stream xWKo@+|kʛ}zHRӨjCr%A!@i1밶1$Uh ~8 pei48q@0qL$4X!E0J'çF_T9ҕ(T!H+4.r)0a$PPq#h|AH$"!̬d1KӰa L<Z8uDH| {Q"oӘa 'mCʸq6$ ~d%/rQ C!sfz~ors ;)v*XaHc&˓iOo3tڏ2_3 - 1*{[) QQI[XI'NB,x0!nL8" - &%iڑegc0lϕ^Β[AYYL\BэE4A`[3xӰeY VBӲt  ?zQ3LSyigS2OYe3P~&{:f ^6y2 Z:=<V5"Fm q1\Q _n`,/c/{o˨0ҝZyˡ=vT-]@3d8(d<6  hk}AI$itT0!dKl"˦wwmfS0%]jm:N-qk5Z3k=py@l>4 vp͋~\oh#7 endstream endobj 10053 0 obj << /Length 944 /Filter /FlateDecode >> stream xZKo@Wp zhTٷ* $J}׻΂';;%X>2?`j@`9lepdp`[Pc?_$Ӊ1#fMLWdML8S"uُe -8ZfnWNb 3lX:j׳NL8&__Su e 6ݾ}RKGX*Yzsva:J2Pru/Gåmz\;mzhBlQssW,z(0vX۷2HDSS"p;܂6jpA!JV D8 !L, eA@YB AxhWayVA"*;T2ʦkTk[%~Zl&H:d.cLp4z (ѶZ'.֭ DؼCi eI.7IuIu(:b;_F(G1To=T6RGky/!6\#R gN]>Y9\kJ6 ' r '=88z3s~*<=x)^\YeԤs7 ;Yi4jRl !GV+=KY$`Y HH`um FbpL-\_M:IIW^KhGѠzRy؝92Gt"E+ŌtpMa^Dr~;P{"::GxW\.ͮ`\^U\|gq/چʥr쳫扒msQCl].ƄRƟ8S%t䧞dBq!6ޗձ%aF#zz`I$hvb^'m6 endstream endobj 10057 0 obj << /Length 719 /Filter /FlateDecode >> stream xW[o0~ϯI8b=LZ&MP޶)"d$ ݔ?M1j'\sw.A`<&S|  b6v)|!e2e-1$"(+>Ur/wPN\`Q|yEZ ^%jJ83RW=SïYF8p-LezB@ilM_#rgY~^0d)uT&I.MS H]zNFt!!ISH]=<[ڴx˚Yr."z8l~,2~^aL=9'Rg?yAp0] Ply6ʇ*KJUw?t,dA> stream xWM0+U:CqE;3]k;JDb߼v/{G:?||'% r 9>u6M+\2p0O-'e䮇iRDuG>E r@Vxd3[Ksχ8 ~%G1l'_/D7?C1294lh&R2Ly=,܍퓂 >.?6zg[ 2) Mrlw)qxH\͐pؠ\ *W0QGeX%BTE]˃J {eU>_+@.,[_ig+6ԽSCy1ي`MYw2Q=9[$؎F9u,TOG`}vXZqҙٯwdJY1n# ^u~ͽ2T)>*Wf EY=sFVOsi>BD?dB]Tw~'+_ endstream endobj 10065 0 obj << /Length 1313 /Filter /FlateDecode >> stream xW[6~_##m ZZ̠0f0aCswsMm@/~Y_\^Y(hƂ&PqhJ .V^JX (]^"˰U|D?᳷J"y:뛛Nlf 0V1"NfFk}Kj4=m{byȧ ,,u<'6!)O c"/}Sk`p=hiQm[|[])k/t_;fM9eP ޝk놧gYuK>4W< \$1RcPjVgSOٹ:L 9ͿӕL) jMiEX7ϕ +c?zmGt#' CUK9_Eq]Uj'DT[0ݘaѠxzz<84PYF2>FL#1%-%P^٠];U\ `cm'IpK VMGʦikDh >޸NBq2 Ik|4@VDpp0&ۢr/N{ W%4YK ZR{|sgn,D{e9\$n2_E?TnA-^U~QUvZB DhP5fr@ĜLMtj {o,P$S  2$H/`1ILO6/-ϐ)+E /poo촶_X+~(~y[ؤ^ #S+: ;LvT44V魵BtS\$룝5fμ}vƕi@xp6޾i52kx!CXEڂ-CH3 L 7nܢY )v29i' ,v j6vb>|k:UR m $Ib#anI>|c{vzPPW 6.Xn<}+GgvhuQu#+7O49LL=Bj0Q4>BCf;$%0l+ 8jp9~> stream xX[o6~ϯУ D un:Ð--٢]꒥;)ْ4qf{,}|:g?.^3R` b8A`7/mY D(pAّɊYDxM H2 %fvLA)GL b"~$s@V OD4F4UT ]umf"ۅsiE{ƾF?>qا^"`U]4USۭЫIj,0.:.8fs? /ۢB/ UWNOx?{yqj)@$[URm> A"6B&j(4}EƐնRMLNIY:NG hwCܭAZKu !ȐdBO Ə Rwz eUSY"]HZM_]qkb#a ~|F+kXYwUwJr]j0ED1UwQ_XjN^c؉y٢~TG`2ӣ%Or_9R9I=yn&  xxQuM8q,/ʜ7AqpkT8ecS]`Qvk$zVG)(]CXǐKqKUeMA NhwK˩h{ ÔJzHpx3aJ$%o"v4%\uTVŤm\τ0aDO? _c2b8̵KR}l=3'~#H^@KrX:E3+TCM֬nB~фx_父=c&PSnΗOAo:> stream xYKHϯhKKh76+!ohm#L~V?;;INИU&77o$ %8!bD4p0b$ϋn24B4bA0Db7-j2fRjRiY 7RF:}عξie1B %2v$j^ Xb.rL!svdI "E4y$kD4wO Q8vt7,.nńF駾lZӈ' IQ=]')J zsS\Ew~7&`_-4_,÷_ ׬rVP"A/kUQ^g/mz^Ul̋2C_Ǣ\m""Z6[;dȅyMlAóK? T#|X6=D%I޼Q֟ѸUG?z"eWC+49PctweeseyMtj}Œ+1k6D@`iG 9,p5'%l  ˾)26s+C;Jh_#b9ͼ9oW@O\Gg=G]|ZT$% 2l;D!N:7ݘA5MfZ!ӞB;b1d#`3A0$^%􁏪Ζvm̼ջQ4OTFHQUq)vAqOglA1MaR{Wi̅=SaҀ9&9Kpq1!(A2?@%81O^D8 ܄"7Ĥ@Y7%'j2 r.u%rh``kG4Lz9IrR mD`F5{WBcWv-d (?0 s˴ө8'bS#@H xfRmNLX}x|`cKYyc،/x$l"qK pEKTW:X7`HAHT', fߓlI>ѓ1ALw84Q/NaJe`i[jK[0{ڗYi\EnzVV22ʓήGgIʜ"?NS_v9p@Ro>Bq7S~vþsATLi?ϭet}`Vhɑ$k3, J%꣪e%[d-n\ik1Kwin>EY2^yCI7N$Ã<+u# jS1˗[#t?o endstream endobj 10089 0 obj << /Length 1759 /Filter /FlateDecode >> stream xXYo8~ϯ𣼍X: Ŧmoi0%CwC4t}7ċ/ޜ:{yĂ`,V"'sXm_rf2eIJd IƬM#ꟗ4悠Epu6//x2!(9u'e(:/k_h%VRwYQeåSih!`A]-iudr.Ce?c&@چebInvāq/iuwE>m֜MѮpLkUUl`rH:3X5j-= :%_kArk1#z&k5g '.kA&O*I}Y cIjȃFV[viu(]]Q]|O#1wҦ^E[o#ūs,F"at/.FÛBy Vt57E歙D J3&y&NK?Z)R' "NcH^_a'Ô0%08J&x!cTyZCt 㓏t:Z8jmPZY#XQ>%R!&(bvg[R2zba4[lS֭>TǑK{ 2ҴC bT_ENl?Z/s2⒨?hxT.v+q]@7\ѱI]}LCӠHjoͲmۢjBzq88<|%,!Pb 舍y-$5Q[AZ#Z9WTw7sf_OBSȐpK"'%4Uvciաq{Z@]+ )_Ά3[?R)Nl'͖vV=E?X4n@25ƤW[blSߎ r5V0oSru#PBҟIj:vL 04% !G=NM`qߦV*4څϱs_4eZ. "E-j~EyC($.dQwk;mC?դ-EȲظڂZk33s<2[T3:Ô$alQI85+ɵ.]gniFQ~=ɃuySfӆ7AD@scPh#rrtIuW{璒OrQ1 t黎iq@ԡ zו7xF¡爵Ƹח TW$IyLW䧢Zg|ױ0?akm 0nyykpxw#7տH54ag+@m}f}a~~Q\U !0LLCw{== |lWT][.Z;DSCCkì9t E֣ (C9zSǸ@zX1Ele^~i}$ ;?n.ܔՇ#9(⧸feY9$)E|6 Mi>sdj[ץMtX(f,qFqT,e6{}>e _Ho4 +O ȁq-ҧiA2#OkƛAξ% endstream endobj 10093 0 obj << /Length 1391 /Filter /FlateDecode >> stream xڭW[oF~୬0JTX- {x9|;I菳߯޼'ET$'Or48՟g|F#i ia/]GZSJ׷߼g # J%ol섽2fkSӁ藏uL2D,d GWj_7n8fEX.No,S'Y  1M/wX8C)NqAh0KcC;ZR&8*KTm%(Ȑ.t>,o,Za`9~SV딤:׷ckMZ穄3Rǿc1Md۶/:t, Qf `{Zs Pa88~xzc~.ڐ h$8â+5&< 8'J;G %6FEt;$M~٧|j̇S8D ȝ5 PdIh0H;H1tδݥۆB7#@za 4nLnR1cuL:_ꘜщ~? 74j;G> oͅ[lɍ4K6*ٛU ld9)0O&<=`fb%J3B5Nj7fV6;{J}&erupNyMv:&N-K=ǩkw]y4`TrT۝hD'+ƌeٷ.-a_1 ){?7}\>BPX^nPCUƻhTn=Dzb= "ѮqA =>_ !AvSB\e}G_]N6v͒U±鷥4= @Mvt5~BZX3ӉH?'Es(^uC -6 sW 7@uFxI4s-aܦk1 Vr^u Ӿys>cNߍiV{&LUF0a.Ca°[0jOYIuĨeU*!챽@Lgih`AY@èHS[!*KD>M=8Hos$BQF]XGd8څݑ(m͞6" e j=o͸لd١L/GW$w@V xL k}.i!՛ VB e`+itn/ T z21 -T>?Y _G)(+Z x2<8OA9ʟ=+^ȒoL<>EZl᠂n0fS>~wu~OừĮ endstream endobj 10098 0 obj << /Length 1275 /Filter /FlateDecode >> stream xZ=s6+E*ędrreQ63#)߸h"h&a\b߾?_&,@0Dz(,Xo??G2Η+Bs\ !)(]bgl(\m+Ӝ X{zyMb '@ Xh==8I9VrR0Yvz!%DiVᬀ㲫E#eH5^ !cZ<&Qrfc'E:#zS $O^txd~~U~oTO qSE=1`z~u}o!·SH3<::5+EVz=|=󘪴SmW^HSk$fh`(OjÀFYW܇fGIJ+](}4w98#GoO&n^BT$  &7l(* %t-IfΧeO,IK"#0A`I:> stream xZKoϯ1CXEX`p Iv2z4Xijzz?nrH5?S$PX@ܟH +Z jihP`'9hr}UZ9TBf خ`ȥ IJOs %g E DJ a!¹/, !u9"%9X(?*2Tbm,.RxKX;Pڥ  @պ` m%jXj`˩ \oM C\eEudT`jI1nBß`Q ¹Dds H.:%:D#caI  uu*>0%u RBh`P!pv N&Pց S٪|O_aIXNW+F a>MR떖JVd9Nde$%,ۺϪtkN 43\7XSCxnmFC!pֽɃu_4 D#PL'<{ uZuy9 {^_o>^}~8RH/~p*jzkB S!\^?FBh\~w^tx2_bf_y(Bop\75= 7 ]x}&\@^7a%uFl9A캯 o4ی nO`]d%،aJX{yylWJW-=.#}j7?\gu'ޭܿ8! YT~)ŊbVMXUi;?\]?DbFBgYzXj, +P ̱%oMe]"G7>taG3J㲣A[C3<ޚr-/#g3diFBƣ]EH5&4ij ޻eV-Qa{\NEd\C#uG5#xa[)9ƨ`0k,(HT}2$j,\Y"3zp0p[+?UyPq\D' jPI'NдL{˴42AlLϼtK;$&V Ѿ+^ճN:*FV* egeE B0 G;ֵ_:j5YYA)+5E?#gġ@[bg 3 c%R{)D-YKu Tt $pgݝ.2;̐H({)Z Il'l~rHƄH)zK-qN҂.3J}Xaލʂ3{L{ˊ1z?Vxf.m vV*Nv~v\/cԖnNo罻ycz ύ' kr\œ1T)ɳCE焕'.k"^MՖUftOYYdQ~KKF%iWI: uBo zbBۮ`F}xrxK^b`+bZIJL>gMa$?qXID^Je0pE茕:foh">>H͚^q/~fl52=4NyƦ5 ZԘs#a&m/9+htP\&ViY$)&t0'0IkjXHR8#AUǭriVE*h --',Vd jNrZ&S-zT8 zVpUViRwVuc>Jb7<*>wXq:sX]> stream xYnF+x ڽt1 Zn[D$Ӥ<%ߞ)5xbQdwW2"x%"Q3]?F "EtĒOgo9d2"eBPGSQ"20?J7Edv_l ܦ|1 *⦺Ӫ^-}U.ؙ&t@ M~FS$CƒvEUMN,p舄#. G (C0~BO I4% M2!}&EBf.e֮Og%d %x kdIvPj b!dDIZWzEi/;ҟZ)PN!STϢ 'ŧ'am s0 .T8L}!me?ɯ# VQy zj'ޏR P2NZ}y+osJ}Dc}ڱ0=<")ד)c`fpJ*%0 Y\x w|n&4~{Gy qfHq|aRYR@i.M A`)n¢+&$y'KA bpLZP!\I kfPv)q8ӿT "Z@3 ޔ﹮lx:¤ 2֫rK- ׹^/ݙgtK8'U$ '|KUZM,W# LZ Gi"Ug{,cv!D5O}/D܍j|ykSvἭSsljW8rdI)U2n6v;zrsaCf˭>`jոo)3˖y3$Xxܤkǃ,GsKs&Yb$Hj9^9"D@_NQ: &$o| TpnvWK~چqF_W/mu /Mi k9$?Nn{R&H]RʃT3uܨe=DOssFPև|7 L #dӽ0_8G0;S+\M^lkI1rSY_Bqc^qڑs;/1(6&Ⳮo+=ބeIj|+i_sUb?SQC*m_ܧqy0!"ہnT0T#3?)(pP>[ /N>vtI.@#", endstream endobj 10115 0 obj << /Length 1658 /Filter /FlateDecode >> stream xXo6 ~_%@-<`n؀oP%؞$~D9nba/#$E~H)ZVn޼*HUv*U$JnfK)]'9l\]um1+ms/8o~uYLri:Oc-u7mt)~ ;q&YIHZΈ8;DD?y?*WPN^8>z٨*fl:8h{kcD䊄,nM)fk{345QwΙ5S./ex4fZfVp_0}mY8]?h_^ vr endstream endobj 10121 0 obj << /Length 1932 /Filter /FlateDecode >> stream xڽY[o6~ϯ ت$JT`-:]fC[DDd)&;!)(/\.pgbAzEAjiM՗?B|*ɧ,3ؐ0x/xӳ2(i_W4N?QIj?VBȲ'^S!$˾ŝah/_|7>OZp-O~ ^ۀ3K/kl7(ݭ6qlEi) ܉ (Zl4<[l"{=.,[8/_VX߲0f+z+*ZM$I>a|Kӊ ncsAV Ss=ǮgZe Ҵr=>YoǮD hg6w~'w>t0 <>x rBo.@瑼Ph)LUabrM4H{:[u6ϑ vkocU 5Ȳ;Gm9~4 `h7FV8~&Nʖ{R/Ӓנ{\d ?:K+?t̋( mv!PW M6hÐ1ә:Y~pbZ_4:f"T{Ța2T7E\5FI,!ä>D|=o/@hxD!rD'V/H;fL+귛G%~Mɞd@f$pGemyro+zv>=HIGyY0٘0$cDWQ໬6(o3\HO4psDMRZ5sŤ T7CqfSPlx]'6t`)6Uw}I'Ë9 VT0kSo]*J`;ʵa>3杌*ܺC^ ^$鴊T׉2sg-08E-~iܲ 8C2T5ڭjM4Y͖huVMV3$ȓb#6E%)=Sc8N#2?DB:c~{Ë>|Q_W e{!܈Av=X?tT?=[}IXF.[w\; [y,S (8cխp ~I6;\ K+3:B|1A۟1qr,&eRY 0Ƌ- [JtFpNN!6AyteWuX]l7֤Q]t4;(T٬ A'1trz<sp@_['1qꠕ^q1WԡEgZp7>窉񞞩$hqLZj8цiY;U3TO[:馹0$cK y=Ϣ~l"XRo,cQĘY4雙x䓄&`RDds8jŽMPIp5@/67;} endstream endobj 10126 0 obj << /Length 1546 /Filter /FlateDecode >> stream xڽXK6Э2bDzChEaLBei!iɦ7k^|34Eiˇw<)GmTL+ߩa}+7 R{ַsC͢ncEB.0uc{&bo?vLKSge̤4{nAv%8C9H79NUKOvrdGW\ooܭ,)8~VBy]*x(RJ`lu*'Y/&4q3hn;&' wh5BMPU >LaOcY (Uݚ==g.hoXFb!h;}touȠ?}߇JTaƈ|9J+%$Gyj/-!Kyo~KoWQ'Ʈi<$%"%d!.PUFG-Ax0vYHU;F.#)`x mMn>Z]:D$I _&++>%~R W#p֋7BYm>r%F9i;ai#N:1e @^z(Jk{]<'3e¥[dXS<ˈͳ``A%V-,^GvZq!^E?H_ZuW`>!ʇJK%x_XF%( g;AzԀwfx%l =(Q^slڑ7([o/AxNR&.a4\g)!7zn}cyDnT2 dL#W P4U]i)~ot)cxΙaʓ)5֓=ԠG]P} >[SC%`Դ*>8Gz_l.uQao+*)f>{Eֆxm(c] OC|s>At,_\tY"22ukѦ89kϟ GhA ŷBځ)(77H첪looT.n-{Mۅ۝ yo.jTk7#s@pSN S^u]0 dP3R(O*j5Mgk$U-wPk㏂ 7PGs,| G | @6\5ǞwolI˽G[h4`[gu?āE8%g6f%u᳻ 'L.odm0[91"<R(zY,ZǑWGJn6g-8/g߅t˧#@8\@Dr`}rs7sּ91DW(Is\]t3[ιCR |SM̕Z> pVj endstream endobj 10133 0 obj << /Length 1757 /Filter /FlateDecode >> stream xڭXKo6WQ(ChhP) zk J J3VZ3$J"3߼>2^ݮoo.^KEWru[ɪKjiz~򕔢ʲǫEU4Z^* kUdF7 Ao]Zη1YHW $np"pu;`=Y?WI!B2*i?-H2ت%UTX*[3$4>hkCݵs34c? 8yMxìuX8SvVaRl ӻW4']gi/i}Qyʾ뇐,yyԂVB婟VrSC772uO{vX&k1$I*XlٮK=ls\ 6sz`nno`mysJAL2[#1MZ4wnޠ*YqbU0*D)! 1]$ЌBFw7'_[c3\$o\v},~m=@UxF0W̓lOdAni g>bhfыhRnp6R.Q7q42 t$Y97v*Kpsܵa2<ۺ D"?5,OR/jsMKbe@# %OAʼnHC9婠zw'o\Π4a} H|o~\ljYl!1P&L(%|>ﭾgqE׸HV䤒F@!4b9f"y;E7BG)%]/<8R²u7O9W7_~7+ohy]q=DWxkA֚&$jNqxoHPT沮Cc ?)KQo iQPэ7s7\7Hu2jb&gv#+ !rjr@1' *agɾb(٬zDLn3ch 9ىIY _f=#3bsZÄ!$BT3O^9`}Dm9s$2&aR[_<#78\0'Jb&0ـ+QdAin@d*>JCgŲˆ$"*H|: ;"6 &ݱ̾*;rF-Q"g@/sHiY;_y4<;Ʈwp^ b3b6L&w#`zW>?MƺrQЫ<2{ <DY4ùa0Ɏ,P$>H~ goZ}awC82+8?k_999& 9+ 1g,(NS|o.'vT^'hѷ=˵);=Օ(bQ*1NT$8u5A ģNr+r#n{ֱ;%3W8HblVH]s0!*/}7h\~jxUj|tZκfbu{v?3蓤(Sy7ko)Z t$GTcj;ul خk%ϛ`zu//eҳ endstream endobj 10140 0 obj << /Length 1296 /Filter /FlateDecode >> stream xڽWK6Q"F|A{h(ߚb!K-D ͢P$eIlrDo]y(sAJ4Px_Q (!I*J,\t!WBUv7PHm1Jh[ͬy/f4hR՟ 'ar4c[d޻iugji?M+W8lcڃqhWԈMlǺPl[u(tݺ ?0]mAPcע[bZʞmfBΓ Rh@Ң1:F->5#_;w Y41> q?k#=?ĝWC\Hz_4.;U4gܴmy67+dTk9DĒ%N#-} lG׼Rb+cʜpc0D'<*3>sIo9p.Cl[Oʗɬ|ul! vY\dVSz)wqIXԍ)V:ct&̟ZֹBz <@AC^uqRo#gu/SsaA(bƱS LYOW[%oZp1lʪǝGDݘ"REq1){&˟l? 1g8BI;2qƅbh/jvvGXh}!6{$㹪]ty3E7}OoI endstream endobj 10144 0 obj << /Length 1524 /Filter /FlateDecode >> stream xڵXˎ6Whi#F|ȒRI.Z2="K.)$˧%d&H}{a!ɒoݼ@g*퓂$EV.kawdnVN&)PWFǏb$_yp^aZpz/^Ǯs}3ʺFtu۫{XouJUͧ_:RLQ*^H)vnwokef@t L`Bj~;@_cפ\=|śo[qk<Z: G O'M  2< WL޸\)Hls)`by>GΈK;ͦRapc)@%YgRF31~khAX?\4]BQF\ ӣNzQeȟo6~(I  wm .9A6S')nRԎ= r U4S>tpGyM$Aݛ #UW *E7?騴pN&σy%Ҵމ'9L&fVZqAlUߎd.c[k%Kul\ ߋ$^Qk!ӊ!?"?+1ޜ7qy=vª)!d0vh[z±sڳK\4k-!4sp1n{wj9|spw:ibe`S U=+ 3fj)Tt"QjO/!i Mi "=|;Q1g(.0~( ZMYW]-nh= xjE(= R{;Zj9{cgEqmaT DX~岫<rze  4zP<AKMzm٢bLTwvϹb_ %zX{՜oȋ+I6E1TfhC׀|D}ey%62, B{ـt6&Aމ i+k 1ƹ@yF^>"ȲbH endstream endobj 10149 0 obj << /Length 1417 /Filter /FlateDecode >> stream xڥXKo6WVy1gbSַ0Օ)W;|ez㶗&3Ù z{/~a}s@ w^yY0N@OG)ZY3|`Kۭo?ֿ=DTw`L+iIxsS$DYR]ϴ^I{&6-}kke ox`V@PQPRF%Yz!G1z"p4:@vw6vjلHEy1ˏ gs@˘]:9%(lX<~J:}lE0(9Hr:82;`h,B#9Ԍan!?f4 ^}sbh5'pJЩ$p F0MKvb>4iШM$4Aa>"1daZsQ()앫o-!v~~*.UeTk]ss|Yd*"lo+ˡ*Ag)[!u$t!)wKe}'K9[A97ͷvmz+ʖ `P& ϫ$3'_@2ĎDO8^/`ٷ9^i{s#ENT8GY/ ,,da%8d{ aƅ$|ɰk95]knNbacG,AqY * IV1"q:' YA3Mҕdt9uPzCS UZB+ Uj*@M/N]K9SmA,9Ie eP)sV7!2%wz/g PeJ{N=80\_vH@hN΢J_=<0DI=:^+,,l;wbx)\ҩ-] T&'D˲i tAidfq(1x9JtŅ;3Ț2-ZHS'C/K8܌poz2ûg,rRIGlN|9%`v'ZqF/OwD濝ԳQFN Xnʟ0ELRTSU͗twʢաD7[NyuXO6 c7G5 cVn4C[2ck7PrJ3WJtW3nO7o endstream endobj 10155 0 obj << /Length 1816 /Filter /FlateDecode >> stream xZ[o6~ϯ00 p0DQAmaVcѶ$qǻ)XmMc::8tUE)R8(WnjzeiڒBT\0wZq xZ̖DݚUU%]{Yz3W`4 0Rx=EWx~ʂ-n:BE}=5Ğ_R] (4O^qCm2mlescG)Iңo`37xH35?H^~G@Ȟ ͆U-Sp LA.=,KZX'W ց Uܽ@*֝|Xj¡iTo/YL9̊-][?DX V3] sOCO|qkɢ2Jme 5Ee'r(u_63B+ef+WK )ўqї" G̘.msQ/>,<{qM?xjK T@О pI[ew@N;ٲ:Ecݧz.+ tH}|"FuW~Q-[S]7俛V.‹'Z06=Ods Oos&Mp}\F d病]1pKu_`iٖr\69iel(w{ϷHaΣt~o 52qcMtItҔ 8X&ē,iFG)M@Œ4Jv6*W<r:xP-zUNS$E?4<\8r% w{EfȘtN;JU(VJmdwJ=N.|1yOCtϼ78axқ8'HFԆhf7Wk^{s(hwykpY^t'Aj(FWb3kUL9EkljQuwNېvSóNM2-z֘!˹άvRLп=f^Ͽ?;#8.b,:S^ tMb9]xr$wU,.E bɧ= I]tNr׻+b{L}u%.xrp%O s\ K/s!Z>[ "o)~֔*fTA3 ^}kmgy R6G^)vv)RK^nVRP m |ǜk5c[=ABt/topOm'ʄ}6~: 짃~z)Gm)g>@}-ءtl{w?uմ endstream endobj 10161 0 obj << /Length 2303 /Filter /FlateDecode >> stream xZI6ׯ``NJlQ> 93u ,KؒGKwy\ERKfrKZPl3 gnysGQxv, 3xv_~X|el!d%hiߖM۱jEB5.ݵiQBZ.\ 4/Di4G̝ ʩ'ƈv̭2^%AIUҟ\%w^e`De]ŪQEt 3!Jʫ.mH"@ƚM/+\.Zm̮fa8势 - AL1 ȥQؖp OAPNP3|:QMprMPGqJ\ZCÕr2" 5(?*EA=N.vnZogy"UTjk02}^$ ^itX[z 6p,ё]I]O:OًI=.$"^M +mAL6:h@O+ueG",Gk| v1xEjp-b *(zJc)B]rzcPЎB̓бRE230uV^@xf"&y;Y'(kWn#'PةY#%]a-kYS PZd5Y٭7a:P|{0q@, ^}8X`H29U8M1Gc|>.qmēuqRwa?ts6|hsІ rXQ jL7eMY5k72E=ߥC(\-g'>wЩ0)0yt%$~a#n  bx 6a{QdfVmf6=1"&I~QjlBu2>z9TtXǿ6fv#V"rӸo| TNJsv!R#i^YrD;BW [],~Ϳ)?rn+ʩn 4bePآ=2 cbM+xJqA'b"H 3"(B\bqEڱM{M|{fY gzpv ~bzJp#҂\~-o}X$8GZRV1!kO)TٚJ3*Kb}_<-ԑ*|neUє¶FZ>(jbYG'Ӫt;ļTOe5OWҚKMJH2];kה&:d؍ŝMz[U ׏NoFYj;m&:Xp]^^Tظx?p<<;|b<.w yU`Ttf=QoStiw'J;c8AZ T'*ʶ1M<wctXxюbN{)jv%3]6Sٴ"ԕgBBmcMnYMݔa(N-Tҋj`m: \r:*aPEW v@"6ew~5߼]|{u˖+iFYjon4s4سO|/ύՃ"ƒr,'NIX'nEivЄLA!Cs%IY^%˚wR֊TEGJ^sZ2!n}d[=J V_OuŞpܲ~_o >\!#y}P¡B9IɳL`z75!6IC a_zF躭2viQ?!(d}`S_cꏼ}rU9weI7JZ8#.G^O&6h"O8q!Y@}/|0VZpgK< &Hpx|-qHvEC%uYyuf endstream endobj 10170 0 obj << /Length 1278 /Filter /FlateDecode >> stream xXK6WVXqIr SnOIP6֖ =wUkY 'Q53"b·Ż9Gy:X ̸q>Ϗ/|xGfx]y̓ܚ7 cȥG)ub^?whbh#qra?ߙXVULьcF+¢<2pCc9Y޼0K sDnB3@{w+dw)[p[Hb"h'tcu3@+mX{~p;2OKݗ1 C>GP2௑xALtLT_yA\ endstream endobj 10178 0 obj << /Length 1668 /Filter /FlateDecode >> stream xXM6WVC-PM! E%D%i%/u6iыM4g8̣pt/_N = R@SԠBĐb,E7%4c/N[=٬G%)g}#V]^;oaƶ:g /~0ӿ>^|ˆ:iwr6 84JR%XK&VCMuUʨ q!788 <'\v^n 7b%` @"[;8f[#DsWN{ڮj auL8tUR`D(TC4ZX!g,2P1_NDe\gX غ KPf[{m余MZxTM;oQ[ :SЂUZGjpFvSWr E0dQK͎rlkGE<ܭDǃs)8,g8,}OZ?Bԅ ̖ETݹ`; e90@=*j!q2SE 6S]X}j=/(Ror(DaC=?Fx>B^@.5_MhԪ.-U6VR/4GD-qّg{WMTϽEp-m?\;а/.L0L"fMIO> 9A8 ֓7pNY~҇IȾnb9)";EϞucwxbTv_Ƭݬqz07/_" endstream endobj 10183 0 obj << /Length 1433 /Filter /FlateDecode >> stream xY]6}_[LPL:M:t:ok]&l Xx?y1`KWW{/~yy=8L=A<J2-ޥq"S7'AHhO6ﴽQ{  ڔ "CՋR'ZPWEmE}e>UucT6c ++w0pɑ ++ca 'yr9nGeiCe~"Bq{0œYH&?,$YÅB1L;+VGT G ҵ  &rkn \LbWxoybl\ ~rd!wp/G!.ݶn\ >]$Pm"6R$>t8"RA΀`N[S3QәDj8tI88˕#HÖ9 0rMhOtgB a.!lUJD[f3vHf◫Fqg'b=y>zYTgS%F^/ ~5G.Yzm/B>#yLs#u_G^u#D4$G3#ly>@1L]b(~D./ʑP[e9`_tJ5 X .l:GU)+ǣLn>"q:6K}+`R}-E'" Vy:3J[M~@)I)e~R>D>E쾒lϱ_3+3@p^d˷ j?Bǟ4|tq8+ sY Ufƕ Qw\%5=8YGnrW}}(1y % M]$+,g Mu GhmJ5,E+lz]OGtP++1.dČ&(g8Oatou޶U "<̌3et}ur`! rRa"0b00R+7$npiLygW;r`9#x,}qy )0QXE$lcZ⓴A endstream endobj 10188 0 obj << /Length 1440 /Filter /FlateDecode >> stream xWMo6WV-єH}PNoIpW]"Zɡ$;}mN4e%pə7oFy{}vy{v^HINлzi4#m_]+*`QBVAf^*B­j~\UOm8$ K5: xaH80J8w ֺqx6@ b*o/8]>l$~@dSBgH;˘y:< a4ѩ+~|հ-6h`-6#ׅ9zf㽪q檺u |Gd-c,wB3UtZU[){gUW%#N)hިj#/`WppB%̂$&4@4Nh(´0JL mQk]|!u%ؗ9ÿN>8ָhNV& )PoH#_oAZD$o9B RAcCcܡ9 }(̋Gf'' 0xA cB 0ՕH,Ü$ZT\lOP~Xzo{߮y@ew0k4=X6]4(5}fەӘp+S] QAo1 POh볡H{?1M:%s5f῔E0Z'reac[yP~Blғܭn_7'<7 GL1^\WJz0\@԰'cZ 煼?D6H#F:d*N|J.Op? `f߫jmL5}jX;][?n_>ScrU@)3>/Qbj$J.e> stream xXM6ϯH6CꮶU5jEJ 3_`L&R>M{;y( (Cz1( z{8,ČxBF3#>J (BɝGQ2hkv\=hif,N}1k6&TY#j[vxZas@V~ọXc0itC~ÿzR'tHd4ήPIjJvJA{o7<&.ėy4 0i4r)8ϼd??Å$)`di'8 8pB NK81b'̅r 'qƠ67.4D%We0F p|P3s|7bc$aq? 2Ů)wfzT11s]#BAQ(1Kq`!ZNS>$Lcv o@~Y<N8:۹%,Hv#CkaNۮZ~Жj? nȯ/ Yzxnkhh Cr34%7,VeUٔg p0\ɦ.q8э߮8$Hkvy!MGcSo(nG|hMQu"0+ Id1ˊ xZ%9 R},E 4f֐MFqu9]~.I:f C^PA n`5)ı+ ‹|횆<V N^t=PG_xK]*[Z!*%>/E GkeYk@N J@ maF(8tD+A^ҡ*nTf,>(A@>B + _},)֝eP8tkBC1ђ1oedM}V 'D 8j ,(ͮɁ{7Dj n8A퇆q(tDŽo#3kݼ$;)':OSr}ͤWs8Ra I냳8#RIx_[^,6VJ{j%?7%^g&U SHOض>&qGtĽRѩb{妎&_h~}E&Koq  c >"\p]tt5]2ȸ6KB(=Nt endstream endobj 10201 0 obj << /Length 1340 /Filter /FlateDecode >> stream xXMo6WV-1=p콵E ҶJN VqJ"9yf8 pL'$X_ s*bTUTor|p[e]is4 $lݘBYgy3 "1bH.n:TY+}:;+fd}ן6z_ٵmZuS}p;|_E44* ߉9%" WTzEܚwJ~q=8:wλ">#ȃGplq/at፮;gSYe陵*o<4 QA%1hvGeZ`i=8u˴*.>[;x?[ʑ$| O H᥮FxEol fP#(  Uq0%GNsV@ ꝶc_N,NC\>e7.v)*.| )bt"S(& G8>DK (QMp*@>]xr^|3)Y! ηbq%_ґje>_?_$ b.Zns'<}jY=K@a3[XFM9hdUF|y89dmfsu;-lq; #AvzPkoyrՎ i9O L-(%ɰX#yU-o;Okz"1)9A?IDZySW1,pRٜ8=E[vQ/j&zW;fv_A{bӸ_=*nK^aޜ6 endstream endobj 10206 0 obj << /Length 1271 /Filter /FlateDecode >> stream xYr6+4S!x//LҙnڅvMCITF]Rƛ|{O $ԋ a.9A| `կ˫w J,M׌Q6{,<||$X8*o ,36pPh1'9wWl@ QڍULH@vІ!^C,0]˞}X/=*6  RS@ah^=E;c4ٛѵy|md[ˏ~YA ܭj;q|8rU VxK2m\`}Ť)a&7WYQ`찚@fTziOhﲭg=%ݝ1,2 FECXF;W hYxY,zy  TՎ2b)[V}.,#"ԢBυ&np$> stream xXK66VzhM[4{K@+k!H!QZkoZK&p|C2{ۛo^q9$JIJgb3E9_dhKbT2fjU֬ȶ|hoXF1ak-: W (R)._KN"%SP]-8hz4[ߊ̖G2c],%Td迯HʗCh#)mH UMR PŚ=l;1$\HHpիhY#wْ>N%$Ȯ5!DZ߲ i6A)o5aaƹߚ]ߟ ?? !%;q lּw|jh(s4Mqy}ѯ?uUOխB(%$$Oh[EH bt˥LGDJ&``K1a%W\< Mȭ}`TFfݦhmaF LOc-\+DcީI:~SQT.J1 Si74mlk+#wYY=GC EB4t$X NE:aTw ̿ڟҀLD\Ć11Aڔ@)({ yS wIқ]U>E,JnBovYH5ЙʑRhx]r`6ִ_5t(f`ԲG1dײX-~6*#^VL@`q.'u4h76+K.Rmt8IaơMe6YآPnZ4XXu>4X;yHkl}CYe<tB]1:Mal,Hb20'A[<m2S!d f;`Q>9)l ޏi!0l@g!* yGY.,};t+&36qwT/XOC105UDO-C`S9/ ű9*oOsTzT$j@lƵuvDorZF}j֮?p6_#0 Ҋ]Ҝiп@rwM9<ho[yN .S/ݭ.7Ӱ!)Zㆵ yeUAڒ_>n ; f!S3Fc֦4,fճ7z~oowz endstream endobj 10101 0 obj << /Type /ObjStm /N 100 /First 1077 /Length 1929 /Filter /FlateDecode >> stream xZKo7W* xw] }H"u cM @Wأ4-uK>ت&)RM,dNQ`Ν 5uJ֩ > fթ<U.gqF';YB&Kf|ǚC3,&0dUpgŸ@TK a@uaɞA@N2*6Vb5-$tͪ%p>N*H[`#CE8E 8s[ဇ`]M5wuXB/u@ q^ՆnIKRJ(J9EIC͋J SA?!gEy x'd5/a}EAQwcSu 㼣QQU#&Dh4'93Is]kss,V 57pĞUeAK"F]:dCt7i6r~(#jS[ QhBړ[ըM),/ O[u:z"|  RX}֞UXllSX)![zI++@>gm6FÉ'1+ܬΝ^DaPQ KS9_@3[u Qr%.%WE`j7Zq>oEι}\5Ind~__cBiQn큆 ErH=G%yNXZ['UJ1AIR-K(*' %نNs#GJ֭xe[[w8@Ҋ)Jb׌B4bLg@.ӊI}( fSY"zi?3*w f# endstream endobj 10230 0 obj << /Length 2372 /Filter /FlateDecode >> stream xڭYKϯheQԫwcdm޹y #%Tz g֎sl>U_U}ʼnv]ow߾;(v]$W,-.%߾N1Ώvyz2OMmlv(L /aEYaßOYEx3뮥Sby0b8͞З=iuI߯R}EOcV S鲾[qgmˆ40ě\7d+3]A܋lpc"v!4actpK)eP.ʨrа>$YNxٱsT[Fi6y(i%df^~_Ƞ3ttjK@r]$-L6cmmI$ >[Q{IƩ[UCYd*{ڒL 0)m[aijٌ| 3u{_J3I3+(ډA-a8 `I0[Vc$0 {=ur}k8`s}~.r -B\2@a `!Y4ݝډYBUCވ]YF.#}}C;H,DYw1wU'BLBh*61:NE(rGbEheFAppKbTx%Xbһƹ\Wcd`@rh±GpHd_PcYBDП)fT@M] Q̸P\DxYP3**+jf)qph7'd0E0Sdq "^&~l8M*8yyL.&iJ[JwQ ΋إc,30;iXN>-ca_+@= QյzIuS'|mݗd_  3S#.Н485+I! k)Twں2g݀Ȳȃt aVQĴpP ,\;³h0Ü-8G3 pfyGg9h:SUnK}hsLEαlbK9ayj܀\5:)g\Ku!K`ٿ-nh:;ۭK0BVXxo^4z:67Ơϗ5uQzI8 g&$ۼY|b՞Gu;߅( c6Qy4TS"_a RU5ת863B Ž֦w`B΄bng`2Xz`*@f3Ji"z+R#?A똰X]11kع$.1qp%DWD鬅DtM? 0Y7Ҫ[3&JeJ2\O;qVV=o\frԛ-lgioѹ R-{?T5<:]> stream xX]o6}ϯl b k=[SM;DeʐdٯߥHɢM{i({=~N516y^̮i;i)-et#md8tA`~LvѼzˋSXƒa^VTP[/qmnwUáw|`aSSZ̖JX0y(Tvf R u{6Ӕ Q!Ih),v3D /Aldש-߾ӤT]K >qSߗ `Գ,9skQw ͹M <HN\t>+7}l;t{DXFIfNf&DiHdErO>L*mSD9 yKk!Pご>ˮj|~.vr\WG(joAݮ=qQonw@ `WF=:׺_Ɂfjt)b1*(D5S'`:D5tgT >4$0dZSBh>>;n#rݎ4lցA؅ws&a4 mα4оuX6!`k'h 23ƺq3>9/z\|FO%l nCgyڜ1v W2ЛQ>T.-u !bÃk)?RRe 6s/E=kz2UiVݜvgte r,ܽd-e7q?m*r$׃Z޵(X}\=H4VcnZt+1a8=ҙ{o&v-e],zGl_^\_G=$</ t\%;c{tI,az`0p7ޯ)7+w?DGߏLl;tױ @ӆ!sxMjr:L *jumw)ߦժ. 9~跚>ӕ-R򷫋nE endstream endobj 10264 0 obj << /Length 1613 /Filter /FlateDecode >> stream xYݏ8߿#Rpclt'Iݓ]m"IfW>{<xz[/]yQ0Gc G?MoB]cbLiT]YW[)$*;-]~7kY={Kʼn HeE7B(7;5U0~.6') 2ڞQb("戇w`G?NQb~,!:O ˆ$*euVH8_+yu8"՗Bhȋ7KKa,NAVI{>*je|`JHU@7n:(&ujѱ//$8e(S۹"00jm*4Z&g%)hPI\պL[ =PeB2r~QJKLaSˆ%,IKD :2JW$ KdY$ ]).!R_+<6M÷}޸s"meˉ*2xnca4["FMa0|gUlOޡE$7P#^73s˩iH_NjӍ%!A)NgV|F;?9Vv1J8\qFh 28z U(2dߖyN4FK^n/ȯL .rE2RiW_k/ q\EYd 4;YT\?^ΏNL X=*K_ 12b A:]FB7ݺ\wB'Hk"7кZVҦ0g実 x8l . hOB5@6or q$ Yc֗Qn&IE,SCUKEK{ (RK8GL]CmFZ6pUx z0J/ȬĬtSgwdNDft1p?*)̶NggG-G䀞\9:scը'y> s=eEQ7\)KGeUJ7yj\xQ|`TmLM+!>35O[;o9;flqPD2DdR䜟gPS͔/?%wVk MRl{Z_^ԘUDRU%5\ Zm/gAhTP8n'enh E~F:4! d0=sO,wSfWϿ()¡`%V݂}5:.FfDp7/u0ׂZYLK}8zV)3*ŏW)qR DQ+!yaC@H|V ]Fؘ٤a(+p& rI endstream endobj 10274 0 obj << /Length 2680 /Filter /FlateDecode >> stream xڵYm۸_a,DF׊(zI{H;p9Z^jK$o3$jݤ~2Ep^yfW}&Q+ETnū,HvKþ< [o$ 4\o,nfllnK3+_o&.{K%4Ihu \"bi^||#c&i$Q;덊Ua WP'i(cez*bhz\ew>fг2N <%RBq| $ܯp3" E>^6t{eط=T2uw&N cHB%YĈ~aE+|8׏/Uر+ұH j*M zb&ga0WNy[(}vr&U%*(EnKk7}4//;T#^S7ۺ*mUu *EtzMݜ_Tf;R,wvD{iN]/-mW9PeVa̯7v\Jx +Oy<צ7T7Rf'AYXЩ 5ݲ]8o.j=Vͣfs U,\c쌨`Jp==;P__-r+0QózB%`W`$/FUD~^voh82 q5W,7i2z{boVzO 7=Lp|6%L\ޙ92[$i+xho}8F}u))W(ԾJں얤poQl>!-I"'L\uCT@`; UMP'Q.!50)\Td\ӮNL˷<MDc2 hK#T%406ѓc RϒK$,K&(\/s:lzU(t,d+Zֽj51=&N[IWBR1яI 3;L]yynG{C|D2b&gF h>OƚnJ#yoφo7ʞ٥CvقnQwL(^r;& ! xdC)'!"0 '>ԨT|'L) G"Sh b|SC\; `SV{99i'U)% **D;gpxlوv0 z)sB6͓戴+&iΞO"v6偕 ,li\2+uD/!GRitzTgD̞,=Z;ox_Lph5B˒H K#f镡E|gPzi02G`e)O'a44dbqL?+Ӽ{]dqN}‘~}W_G]Y΂+HYfI(䀒D-xt|BA ܉ ճ(}_AOB)&2Xw68`NNŵ)-'$Ѧ{҆t,4(q?B=ܪe&ڻ8L(['/4Ub% cmެ gjb0t/, U! B<'7SI~.V%XO덶̊%S#g }[)\4ZSDMEQQ7WSgEزgo1skҷ»n@{neWk^چv#vGv.T0- AVD̑ՔJ|SI89 ;jp`75B.?SyMQ >R4kxdix{Qob欽`P1GLI/U:YS , (n^L<,n#Ms 5h+~CN৶u@GV@|7;5) q>QB}P6BHżL\塚*T{*uuqdUuuyIl so㙫>ݨ$>H۰ xƠ`ϔ˃4|/0#i @j.IΗ' 1UQH '?o5ḺEʊdß֔%2\ͽYBN4 Z\/@ޏ[1Y,%8/}Ke pĀvGga**&mT` 2Hy8E_;5w✱_c{[Bd%2~?n dKzcoN&ex-!a> stream xYo8 _`fY׀=܆}ܽaׇpPm%1؅(vY kȟHdf/]x6HgzO/e` ߾L>Ô92LX |jqlʋj_ĢwxSt[Z åjz/[|V=$Yl$-UKNu)P\˗9"ѿlNv8hƖ!+-=,ゅ2$Cߍ.a@B Rӈ8_J.G7m_=>}!3JKKeYNuk96܆22")d 7Vz<,'sJLlȽTN7PvƕesJ9xo5JX!*:fE2G߸oۢ !@-D4XJ ci!34 qvli_k#+r;*3yJIH Hs{(9B 9^<)kNq =bSikSA3 _ p7!~f,7s% a BIxs*N* P*D0 ϾBxaMWmR1"N <# c rolQ܊8а7U!y o?[y:{w&(Y/b1wf3u. ~ ;LV`Rͷ$Cx\~HrUw K*4AڡW9dР FqcbDNWCGC,dU a:wMC=n2aցWyOV6@GT2>T{L<<#@$#@1\^w[";רW۶*5dBAUV+w&xxJ5'7ȤI.2/:Wm2oT9ȱ;$h-r-p&UK WTkVn -> *YE=e(LU9 dge:4{|B(F߃Cz]_*=>ZhA; aBΙvw{CB_J 4)@Wiex /GEkɴFw/Vʊ5IzwMǥbM47 GE.hr L &w^Tտڷ^7H%; ٷcb ͬviԷI[iZ_Pe'Ma$5)(RiQ q\%ɸ#fr> e8Iж+8u73Qf}Yҷ~ b˂i(rjZvCǪx(82U$Y"Q}Uek}9hgZ)to "?hSfJΧgPүG¹4_DM.8tE>?/sbT|f0;َY2> ]ƛsexw[s@IQ p[CUϖER2il){EE IGb? aH<0eD@K9܍Lr?9xit;N"v[71=F$PȁT^D#|x7TM_@3[ [yD T,?L2' /I$L[{2'(uCuuc}X־]\@1vXR9 _1<|uN;5;,uw kwG0!ZdBBp> endstream endobj 10288 0 obj << /Length 3212 /Filter /FlateDecode >> stream x[Yo~P; d#,`{ jGbvTx"=U]FK^DNꪯ*RYrzPg,$ggW3tʼnTgWo4!Dru]jiܰhW4;j9M||Wy>[*"i*׋I3\A$9"E"6"i;ΒWe6Da<*\=H)w"6t}YT߃bsGS]BkG%*NU :h[.ezjz^5SpY'55MS[X ,8MنX1v!1K.Y8UR΢N,fe,; Iӓ,E`yT+N|҄yJ͢=:74YW0]"Q5hj0& C8>3g+{PcnCѐ$1M{ѧ1Fc&?9>??>Z8:?ì][{Wf1g*ԏL>`a`YaC{|v;n'x DӵS݆\Q~:I*o$qbE9vMY-JIƐ$|Jࡩ42;.A-DP2t玚qȞ)( tQbZ7v'njMZ(&]>O[FY3 M} )/v˂8@:41K=o<j{#Jl_0>[$P Z&6:` hn&,Ϧ,h2<&"dgcxl @qt}S$sALNB 5710HI Nh`,pT`UG;;mn&"pms{o5vMٹ-5a̓-% Y\frcvi:|.ƍ@H#E&p^ Ze:޹X[X74H7ȞLݺtxm}=p,`ToPݚ^J2`m{W?LR`WP # y52'_њX^ @ n-GY;`޾ O>0/%Zy[Qky i./34ܖIqkc@FL~n *7H,cI6l-WET+,N_Y̑eA  Ccq'ϸvX cqCO. +Fv!^ M<-ylRKMi6;S tOVYt H']- ^+ i$ $v^ƀݪ>%nFR2GǠTr9.[7J6JϭMA~GIƂrcU-I[\ VEqA8 ǎn.~ gc|~͔26)H1LND9Kʜ-Ifwhn떘٧mY84- `v3GvcJa/~Vrk4‡Tp56 :͢׈HpaNStt~s XA uPce;`63Nq(]AIğhvI:P!qpf}dm'jZG9xFI 'W<`V4swH9`h`],oMQeCJ T&1 X"1H}Nrg 'Iа٧[N{  aDʶojK /݃h$NpEgkl \dZ:wˡVrqt]ۚ8Aru+CttDtJJcLj|~:,lk:.0)>}jJk(!A?*cB];p$2\>afX* Rȱ3O?`3JƉ@@܁ԋ*)*S-ee,Y3$V#a-} ə.yN'"#X%Y6/09-Û)i>T"t/"viD:Wne=S9j6j PuؘQςbndΦ =`!vҩ+{ja}xa8D$W:v&ɢ˧}A};|WmEN֕iuƶvͷ|"% ~>4v \7O CTF'(u5K W~_框A){O9`7 ~J?~VRa#z_ac endstream endobj 10299 0 obj << /Length 3063 /Filter /FlateDecode >> stream xZYܸ~hDe^H0 l 70zFj3SuuK")X۝O^~~"{wEj&ؽv04텰 o' o?()~kG}S~aw{cwJõæ^]rH"zp֌I]EOuwq;R$WO-M%qIZIdf9%v{耥Du *y B ?P>ASrCF|F P;H:NIyPWx_pV޴E]KMsN)Ny,a;=sHK t޺lه"Hh_F\#' + %q<;X$C؎>OKNFB۾$uxi®!mmn'G~}?!"з E-=t4ڕ NCqfH6a7J_*T+?YU`Ɋ]dqBk -O`sRVv}Qe2\c|sH߳np[bB$_ 52]~w9~~Ü`3Z,p"g[ zr((.-<֕{Wq $W>ZȦ]g+F)8p+_}p~l0L!L( c-"ҖxE]mq:ܾ;d:KS7`sJ(^߮$)4ˊH ?t4ysŎ8x&~Q~r-3hEL≕2yF/yyp"˹M'q7Ij]&?UNJQfq¢sz*9N-c=C܁׃j`TޏG1M B"3<-GDMD5{w6=ւ#񲔵'k`XkOǁC)+XaLQbĦ!a8d*w9&ܟA6ĩ Bzu> 1̐! cg?:ۼ1h@WWʄΐ}#Yl| uoߪaJkћNebчZ/fIBMq,xɄtXS8Q6Lﭲ51/`HCrP%FgC 0<=Agt>Ñ:Ӣyۼv-!|GA>[VgyYn^yBeXE6ȦƐQ{r6I޾Cz '9CJ*f쇑D,dg F}|˴/+yG,ހ j. S1VAנ4<8{* PN? 1M|X=96–ˍ ($\g%[w/ʻb/ JH Ga};(x8ުl<Խuh9D!0>I9i5 u-{c)6Hv<0mFTdt x1ƶp (*]*6]]rPMeOH`tYeY@>s= mPAk67uܮ6Nu!6LL3?cl9$^B6Arhc%l-EOq߂h)* .H|ݵŅ;Kg./ ]~cuo(Pq>wP UR.1j%%36& wOΪ~t=㯅@L$*ڻ k'Ѳ1}0~cߝgv1t۲PvB> stream xXKoFWRȡIzH}cE,"T,%l%EcvY8{{7Rx0峫,8LX*~[2/8 ֖F֔rS4)?\H,XGUDfTk YSsfڢ*8/A&3e_N E|%];" VfSEܻp5a<(iߜEyki OZ^Zes p$ J5-^%CӴū1-Zpilܼ9x*)!+7+Slv % n{/E8EA SC!a\Eɼ"Zq0C}G[ ] Q|s:%Y,n!a Cɪo Ji }E-?Zch;c4rc'X?8!ݲe~SnVf4̉Lg5H6ݚ9 Z~:VȬLm3dim|yf2I=Gaf$@*nHU6+C2!1{v?5^~2"1nkvJk$42kꢟO>>{/(Aͥb)+Y`, KT b7謱%!eer(˟@ "&c'ѧt Og"D%Zx -5iax0SL4<1*DĔ?!a10 )m`m]]6ؗfFVFm*Tz4 "5*ӥ|4j:P*0=4 .}p%88,"j.&̨̮ܙ+&79h^@E"^uHlu<)7럧4h.'Č'|.'= 9YTZDA񬁈׹z2j;Q(B%ܒT8I_Я..I%j9/;VuۂL~6u p]c&yd/Vg_r,K$\'wşryOh~ڌP^wh`M =d rΞ]vXC,mSPޜR$N!;qڭd Mǁ_cq+woQd^A]&122zv}~9Hpw+"n-6= `#pB+El).=/R<> stream xY[O6~WD4+$HVR9B!녨!'BNbh+*u&\,n"z)"Q3]F N"XErl?9>e2"eBPM%(!?SoKxiάۮ־h6wfU]8>+ yX *ZoL\hI+n9Ee}UZY.oO ld+@ M'.$Gp)ބM7+cE3Pi*&3˾ι۸L GLo`‎8'H)lX#}<&4CU(eqn#ڀYw?4Um S+@q,4-^@3 2EB{ud,a7/Mcӂ'rMy?ބ9{ဌ$?CBj%y2*Ub/Yh2ם̥F/=]ʱ"/j9a%  c3j^Y$$(?%mAc{mX,E4-s:/]BB$2j\Vӊ"OfvcUkx6׎sYynү!=1K) }>,h2llފMmkd@{K$sIjnvw'۾F5RwgsZ<7}}5(8(k9_\4Wh\lOa͟'mRzcC}Mn1%Zt֚q5K_Ԛi0EMLL»ZAղժ0ׄhݽ`P,qZGJ$Bݮ[p0նכLQ}O([ïеHDmu Nt W꯲ڴ5Bg d/g׍s~W5ݶ e׎%q :jno'q[{EԼn&/:մh!7͂F[U=.RC)L;;4;3)a|l #*Dz?I&=!)_{@irnm?$W‚@:z c#c;8,ĉ#_nB`Vcc'T%gP`¯kG8>~9J,Dhv[оW"4Sggc=ngUHF/&pRJfW v~o U72;$,>RN {4$t(GSt=MY]v $E>D?< 7CYUP"f( /Mn endstream endobj 10326 0 obj << /Length 1925 /Filter /FlateDecode >> stream xYo6~_C͊)J6`bև%om12 %Wx#)q,^b[< 'דp立"1!IÔN&2LHj1]eN5YEt&e\>ihȚ>)y5_c J(8Z"ր)R E!"ŷ~QFYO-ɌE3·Y9 &eg+_eUGU 骦qH8η ^"{U# MZ/%- "J uޑb %Of4&{GN ?T ^CRڝzjx/]ij<4uec8l.edڢʭ 'aDBc"HHjW~֤D>AW-4[ϟe]நQQMYN̯%*ӯ{ b<%F>pXGpB'v X|3ڲ3l-$<&`"n4 Z*ĎIYA9miUk}j +룲(Pw0U?@҇$ϱmP[6d(`I4Fh2ω".)Ʃqiq"N-&0 Gb/c2b>Y\P(inSsf/&g^"8^}Vme~h.ܲ.W]܆\z O 8 ʖ[bPt2=EֲR gݱ1-?>?((}Ӯ5[8..#{F>U~OVYf /tUmoajS0FO?a|<~ʍ/f{ᝪpY\1?̓soo$y(>cRH?іS#^uRDoHoέ @qB7~cA„?ft~UW2%K endstream endobj 10224 0 obj << /Type /ObjStm /N 100 /First 1095 /Length 2362 /Filter /FlateDecode >> stream xZ]o}ׯc^$`Hb-퇴\G(R!@{fj+_鮥:0b5?ÙsfRSI%hT[V-IPJƈVM"-I6qè6ʙjhS-՛9cJVf'V$XB<-iZ}-cvRDX;D&v"HIz ÎjCcp2%1H~$UIb2 IHco*Ij B5ԀEM}5_ڴv(\B^IƤ2+IiBi}k!դqRժQ,l=iHGLJ¡FɨM3(L6hJ;43-L*0؉Yypۯ1o1Cmf Q|͍ʛ#5l I0f{ZɁƴδf{tiK}2n.ŭqڼFKS&>b5r#GF4% qqa}q,L0WcL2PxE)ͭ܏YtM%.>Tc/Z8( %4_yJ?{l=O/..ov?&~v?\^|~iʻ_vXOgqG0DM3Eӳgi:|2힧?\cˋ\-1}<]J-Yx|n]BY2 ,sdP?R: Sj, }X'4hEPP<1LFtJ;3y hJz%Ԣ׶'e[¿OoG[l{2ͳs[}nۖEs-[&Jp-E EP*-{,gY7u 3{R:lXZzgIKf](ɪ8ɊT*gx^ {lY>%A$3ȹ}d<hˆ#րEHfW4+7Ify x E{tn}IaS!?ޒ| Hǘ[6 M挀Q 9Iؖw1m@mYr"Xg?Yî&GSUfNՙ!ufHRg#f֙ufaYʪ1z~9׋s oi{IJpCcH/BLC0@f44j[,IJu, @$A-hHp4a!R'`Q(4z1 `#jSCyܖ$ X\G^QL̀sifK }V#xI} >[_!{ڻo)܎r{)L6өt椶њĊ,|ҀqO RTсPzMӔMY*`rq՜d*8!#:g v!1:uKH/nP$/-wg#ʂ^=붠cƨ ],a%q W NLGq2x wgBAs%sKͭUԨ<n8N'`^󁌿AԄ]5FΧK;H`,_6T]HV6u~du+ς0@SE[ݟ?K۳ vVBl|WsyB奮Dw8{=RnOq++ ]#b/= ~i՗^0hۯ d%/ԉO}ih!> stream xYnF}WTm7^l@R4AR#E"U^lwBrIl*E9sfngH<>Ϯ7B?B>o߱OBDB:[P<6^=Tz (VRK)ꭐ7̫ğWBN2ȗ3}6EsyGKpƼ`ccN QΖK 6/]+!pR0vM`CqwIOxͥs_[m?\p\mjP@'Em%?f2&~&mx沵C@ N#=;^2GRJQ7en<>~{s@~[T3E&v">[CK1>ƵoqDitb8Uw^$6E崔(9Eܰy>{@c̻jR`I^F,K:#WǼtS" T[ŇꈨLaX#Bt#ַ +I_+rEol|rՎY(Fv|5Fœ٘GNQx6iVrSEz簕."{rx:M0b XW$9 bW}xS۬cAº-ya*_9,ߦ0uSc/X6%x|Mhs`]6{&Lv>c#mstOϋCyA3~ z8 a0 !&ހouݦWƷp+nnb{Ɇ7\{ p Cz= ..=RW[ѣ;RQ!cԏmpjCl!$NKx' =zkmك؃4uJd?L1>OFx> !}WcXr8O( HV-oMLvͲP3>$=m6Amۋa2.#P/  }KR"3Ȑ#|[&64% ωd"Xv k龣 >wq']Z2*K<[AWL4],4t> Z5L_iSI.!|ZKҢKKHۤfD=1 |mf=-rйc#eyZ ۣzJ15Z,6q+Uzpafո?óR`ex$b]sR:5i "NZ8II+ᶛibIe28#94MxY%Yd+yθ Ni ;{;0.;(x3_`o+-ށ772*i;r&xr#ND3;skQ,&Y_Spr=ј;/ VԃJeɈWу#`>ZVwrV۾RѼgI<5p-FJRu=9h>]wMN dAQx'@1a>Mf0> stream xڽWKo6W(W|H@[l-Pl݃b3Jt/w-N,3o8 hW-,)!$iREUt)wJvR΋xvWe3Kp*]V]f!T70i<Z*u/LXXuRs=q٬bջɇvɲo~k汜SJe%ᱺ%nֲb~eoU/3RΌj7ڶ벫Ԧ/)eQ5 ecq_}u(ORcpLz)эs$4PtP 8E`D8J*p|P /y炓F8tӝcw}Tzl~z=qUﶲ֑!(57߃ݡ׈&x]=4N>3˶ޕ]kAΜdQNH|3+ d\QL*(vB3wYul#˲E3VS&W5nq~r1]oɧ4K!>Y>.]>r] ݪNݿSyctr/͹9fs5 ќ7H6Q*yMo}i6h QVLbPTxHN7wr:10Al_xih(0(WRXidukr؀HL Wi@AJ3a那S(h;7C/yy + ,G ~ׅZAvPHoX(l>Gjح<Â-rHcQ ]O0/RA'EjS`c{`1$ Ey>l1^kzA‡Q O&F>I\hp6oAWuݗy>p"#2 1P.A 森2F괭־!;:l@ph܊b ?;38姶o R^O@(/9pkSP_rlTK ?Go#j)> stream xXM6"C =oMQ(V KH'#%^nCO1|o84#|v}#Qs\D2cJ%?l:JD%[DPRyto\cfNF (J\T0ƬգA%H`@TBlOm[?fDm;evs?=`AB޴8zZ߰-?F;`sWp$`.1=BL*t)Nh7so`,C N0YODVQ7)sMESTMܻ}4jܸ_nC Y3v:dٓ03s 6$bTt =xSE铱jB%E[B|,+;D6OΣ0$U M&>b>quI4 na >P0{U@xE=&c) "=K|1(+7@^SՐG=1X[Oϗ6Jl0l]U5&LRQRb'we3:u"V> &ߤ35$-v 4fWxE%TA\ w)P&3i #i+KW0OdR$Q`{1}9gbhfݏ Z)w1y&eeg!%Vq$3wAz endstream endobj 10348 0 obj << /Length 1716 /Filter /FlateDecode >> stream xڽYKo6W쭻K=`ޒ"ڬPYRWZ>$2X(2E͐[F1jwXEta0VcR5iei6(13u-Y^)9lqsKc[6 Y0"r67\؟o9ƈleEA| hO{ʛnjǴ9#uӝ,J #NNM|HY{$J%D:ͩC_;N=,6T$+m$R W[1ȷ- sSg=J?Ѓm̽~_)$iFT!%͌Dkhw,RYA<5~1Fܔ$89Y/Ȥ#֥ARUyz3]x }*~^ϔ W;t(Q-Dz3jDq)tߝ֧#LEVT$~*h[<ҤΊ&O6~dQOƪ6>Pn S<^%n#g_4XT9)0?:}j]7?e1^%Z>6]zPPQNeI!e-g[`.+O?KLm:BdpeaB8I; 6EAdi )!:@a0bwKJZLe/p&3A.+J4a=J(eu+:>Xo.8cO0{>re$ ˣb[ƃ<1)߫CTb9NxzmRY9rz۪s䟌D7;7չ15\wI>#QP8ȋMΝʘk @k#rtQ0&*jBFgO* b퐨}(dV-@bW~SҨ M~.%3pFwѵ{%v~(!ܟ ȡ.o;="N`yIXhɕ|GFĎET VQyxJ8v;`~J UGrM]樵l rGo5A֐.nq^}sR05э7(]XTc3-.c%}Tvv+.:Ly:hmkySMeäbzPq}GvPx$|Qgc\(NFInȺ3uxu/g}ouᒗ$ r]֎?s}nJeӥ-WWy9kLmճI]H)'y&$e#U2!#d^i|NQ1-I^|cd t-m釲z_ S&"hl aZ0!qȋC`a}JXҌpYA/Y?s kH2gS_'#w<{6?T-n-@Ɋۍ,ӄsXk4^CBz$T?L?B7`^~4Ͳ;!6O6[9INH QL0Uoi&h̫ mw/N endstream endobj 10356 0 obj << /Length 1354 /Filter /FlateDecode >> stream xXKoF W(<-)@{(-Z[`m"Pq,Ԗ\Il}9/Y8Mz2ֈ?CF^ot+A_+#)z._{Yf("SeC Kp"1uZs}I Ia) cbO8抈b 2u[8{jG䞷U6ڢª90!2v0]yQA~6j[3R';_:+]k)!;8ɇ(;LvraN<ʸܓ3]@M0Z/ sZ+ڝg7/(u ?]b}"1E KYWcW.|+֓fc8NJppq,hb׋ +4OófG.m[WIkڈI?6e%>n=†.Fi3;^\ l`|wPȬPU< ;uTt eMUmQwySwԁҷxUa/UWM'zV" jiAzA `=$˲1DBzDy}v 8GbG>_j=Рaj2G(1;`M17GnSD@_'< ^vp}X\=]c, 2q({gv(?TͲڕ(2 /fS,`VobRy$%RqSm'"3=y*Be +D@&A`ȠiU> stream xXMs6W;O[tEdx6!~I}/H4+l{>VD|k<-te?$~R վ \q8h&ԫ>ܹ %&Tތg|QD5J(]`Qz=;D  7 IZn$!G'S%N;EJ! dY$Tldy\ .΋>ljjj^y7y}wC7}feƛ0i^і!T4Uӡ3ࣳʊ>VI #܄J@~$p6f)t5NhoM [$ґž8)N Uw)/T_anAax)nY!mL0i"]F>#3"a<Ɖ%MF L` չ$'8O >YOKB,l*s!.o5k'03/C֯V*( 5?ǹ"" 'Qd;Yk]Nͭ>؜ZGKhI}$`e`IձHb(^ky/sL)- auԒZ}R%#{~WwֲNjD] 0e=p0+U$$D|с ,# @me=$ -<\y-sL+}7L7>WU~q8]hk#SUP$Aqwr1F=!cCz“=aMOGGjX6_ΑiOckC{~L\#/q Un9?ttQſ( endstream endobj 10365 0 obj << /Length 1309 /Filter /FlateDecode >> stream xW[o6~ϯ@R%U+uJUH}HVY.'4ݬc||3B O>lOޟԣ!IÔz۝3/ m ʏbxH%%,^Cw7U@2WfS$4*U 8~fww]/nk3wUګz&BsnȪ upuȣnjj/@;ʉn%<"a4ʊb : IBq6>j2|U50>kN8X5x ?4UjfAk5V2"I`˲HɿmQJR)6vb "^Yn 8#nCV9SoZkT: ljR}&=&P ;YO֨HR LTۨu];3IN39]>h"[)%<I5W*=Y4%zZ;+!+ %݂) @ U_xIy 6 ŪBzn^D(R u SvFŝ^# ׂ<"x∿ҥz>1cVf>%W#ܧo#kX0UOWb_P't"N 4l #x/igGdwyaZcb`79\RiS!KՓ_?f! A^k` 02X0g1`Qd%QPm1IB߿0ѡsEK^$WXY¼#~ S(r 0XzI?kh<% eo7h֗v}׷C>*1HzJAز"G."Wς,ćNeW7L_=07oo:Cן-")> stream xڽYYܸ~hI e8^;`/؃hZnjWnj%=uQ-5>`_IXd]_Uq~O* ^^oB,ڒW*{<)(D'p4Nr&ґ6:8gMkv{G8TePT6:ƅ)NSwh? zR* vz ep㛮L :Y+pM9ȼ G"T1ͱH#w+Tcʮ(Łwt:lkZdL]G$hJG{w8J2`(W:^L](a0 5 V .ژƔwK4<)ZFk%dw;تt섦5'l)A)82Љ( ~d+ri(~hp'dtbkz{4ZoXְ)bC(J80wm#Z#?pD4nTAYOU(zz}}%IyEu?Xt4^-Kib u>W%vKGs8󎶪lg>0wl8Ewc^?儆jP88b{&40;8lw>:hrD5xL>D+ed>n ݚ-R>͟yE u-^_[y$PP,w:'- ETU%* T0xia@M(xEA΢D ͑\VFO9l%~ !]/DY ,.Ѕ@S D T 컵 ~`! 4]Z y$V ⼸IJDp5Z-g .*PLȡk? ՅO4\HБX IǼɆPi[)hzs 5ޞYpi.茢8ahœC_C`TZ`~VtM*\$1ണ`lq52kvK(5wܙFf<ܙ.^LvCݰ֢($tX9UC3VU9#-7Mc׏C:gkg++&8yLK:MY aN)%sV.]`#)D2&2>4?ġi{4#}jkM@I 4ktwbiKۦf)㫊J}jSC#F #IfM@<fvrJ$U8VE[N5FE~ذ{ߙbfPJMI"`aZN¼_y"ۯFwk4KdiK{K'MU6u"6xl9F!foP. @QZ55WD&-9H*vo4E-ۆ6-VofwE׷ϙk{؜72[rTcN[DhMeU˱ j>5&*\8x E{-?țmE_7aKPz .c-/K׀x'I;\zԮqmk"~Zz-aaٽ T"Q GOB0r 2p>ZR1F~^K^& {rBm9IsݴT/(upBL^>hȱ󏆋O| endstream endobj 10381 0 obj << /Length 1807 /Filter /FlateDecode >> stream xX[o6~d fEaCCK[LZdIٯ!y(K Kb/lr.C?W߲tF})-׳b?!>gW>Ny'q|#3[ؗG^J1_,.64$;$`W\3 08! 7co,'a_b+eᆋ_ь&˅zI.E[LBg7 {vz%5k("Q|;c.{ UK揦?/UU-3YUS*Sw;#/+wvb< EU&mh(Ԍ`^h##\`k~rcqnv,.ȽbbL+])zRs @xEb@-p܃Ďѱd{MF~wU6h2ӏQ}aVT5:z{y&͡=)uυDzغQ/HepW`X685P#k f(KW3ubeIXO~鰝qxRk=<$ UOF@7PQ뱐uc#*Ja5c_h:uW^ 0*7Ν29•+R!YG< 7*''˳wU _^)yҤƪUjK)~Ž4B](CwvUR=s5(1BXuue4,ыH|[ڞy͑fȽs߰Isa9V+ۑlL=U8p޽omRY]ۑu3>wmBGU.,:Ѐx|UY#޸o:ؐ3`iMmmOKCzZ Ґ> stream xY]s8}ϯm홠/}ؙn}؝id S .6X²84/s( ?g0i`Q ,J@Dhȃlvbg(dIg< aDfK&{M{y5ocqǎ|H v[oںu*j^?_zYߖ|=d)H0gf9ڬx3LRt+Z^cڮL$Bx%H_,LD,EG+&"X$ ؇ygil]X^74jh*cѲFJ NBƪQoSs99JF ִ 2#O @3`l (8(4 1('(]V8RR 8R䴩s o5+;~jGyY,~y endstream endobj 10395 0 obj << /Length 1603 /Filter /FlateDecode >> stream xڽXK6Э2fćD* 4H6@mӱ = Iw%y=y~I=J7oW7/HI.$@ K6g\,~I'/ha(ˈ>DK 8KKI,cwO#!r`o?ʵ*;{vQ/4I Yoe-L&ewKыOnl,k6(I c@3D~,>.gO4۰LB,(x|a[CPIƮ3)x( K#bnj Sn-&Z/U=8RZjy]ZcWNn ,7k-i9ͱ 3#~ TކS1hQӢ3e%DrQ#p3Pz^l1 "GaKۣUX Y4AZ:!`p&C)OZ.8#tH1I5u~AGd $:dlglgUHQ6exgFYdA g4R̬b;K࿄҆8Rf: tB)3Pcߔ[E}~f,k24ÅL8B8S ),R&.:Co*#$LZ IT&zٺCz\GOrNg>뻪UXN(tk߲:6)Ft,/CDdĚ1eN^I_'\O<| )?4Qً ޢr#%Yq:Lx~,if4|nvifDcq s)b'?D@K9x Єu֌Z3d'+O0=]1)fHjc^ endstream endobj 10401 0 obj << /Length 1171 /Filter /FlateDecode >> stream xXKo6W{ |걇Z4z(=elS2e豭w(R$3iнX 508V7nF)NIʃ1N"Xmŏپ2d-ha'գ#ueH۬ڑB:,?~ywKӱo.XKw85V7E3!!(v'v!Jf;;X泏%MYm`'Ȅ?R}߃Nd“VB#CdT sV,CA8c}hdmzo{@P"1_DHXCDZa xè ^|cQBHO0E q$NXB i- JO=UJ^;km&sVz A' d ">5|B(C"a3TUW#^cdޮy^ / H?$ss:Ll~oLuD.LқAH=pu *Wgro ˄/4,'jpN_'sj /x G! b NS=1:K(QPB# Ν T+r`zPMЄ~bcSy[X%* K7-AAgɋYݗ;oB!O~yVޜ!EگkLB0XBg_3j A9M0  Mt/˺V`m[WR;t>ZwfvnD J/Ӡ4.J\g&z|qfjW& z!83hwס]]K뤲FMVA[mn\79=3Hp2W-T}bW CvVu1d/ݒ[2'Nog8v}1N^LSS`VE̔ur{ "AB) Y{qf=MvYU\fVEN%[V|N A endstream endobj 10415 0 obj << /Length 2645 /Filter /FlateDecode >> stream xZ[~D!!ͽ66)(V:.E,%nѠrw|ī*^~ݳxbq9[V)_qRAww?V?MtbTwuN. ]tYla\bmV)p+Z4ҕGMcݡ9{Uٵ[(eŒ(NN|4+IM,TD`ZPgIFd[RE)f| e,‚7;5>57w}`BE O1T&8>S!DzHبh#' H%WM1x=FgHsPrtd1^Q.ķhFyK;8vYUclkZʭ,$AήsghPڃ0M)NH'b~GQTWD*yNR֛o!DQ(<8%*u!.p4,~tM_ks' }'$%{ue]ǖ҈E]ۅrfa.8: uE#` |[jc0tr19E0Gy2.$ľD^3͏yuDSsg]9]^Q [Μ\ژ14&&k}Yt])ĞE ڮb^}ClɆIC2kޡ9:q<052gt$4A(ή^G(hT  0-4ѷ-u ^#x 1?LK2_1TS=%x.0Mr9|O?ϸZ_-heluy$6.Etnq%!&R@ y|)X)^zC29X? <_3ؖHv#>*6>aPpc 6藐3"jW*k͐[5&aφ|h@A;:Ȣ1Kbq{Β`k iJHuvT'`pJ-TW̯-I. qK9 cx#+Kfi$y\fC24G+eQ|$>l,`!r Ap#(:z F\ o9}j6$J \lzѭHc -lfnyE Hd~ ![‡tlLDZnb/6  yK (+:ɰi,Ս7@,`{rF29r9Ѫf3|R{"0.g(M% we Ie.  lf5 [3N֕Vw\NL8`r wؐAcnje&RV1\D<΢L {㡜V͍ F$;`6vaSQ `6dc,N&P>`}oΝQ\;G}KO(+zup\q 06gV-vn$bv^ݏE":aMDvctmyIwg&<:?I.he=a DR$Ս"o~IF~Cϲ&q.@hA>"~]Գ\틝~Fyo~oL;۵OF.;Wy؏i$6 wZd÷eұz啌4N-=7@݇ T&3-9RO_.Ԕ?uBb6+z(t>H!H9ƽFo`cE;~ *Ԅ3.fv Cѫ'=ԃHmx]5!cN)_|H*v ]MB;9M8^bXJڗ 0<&xT71Pl{E.qsJ/126NðY@,h*cT NyY_s1-pMMtOzȔWƒaX~FÄ@wnCz0y嗿S3 N\pwYaa+P&(zGr3P욢4c "S(ۡ{V?@@7X||Ong0Wq<‰( <%糲VE36%;*ovU开%{DיHz9T2qy.1/:uOTѧ{+Ϸ endstream endobj 10424 0 obj << /Length 1742 /Filter /FlateDecode >> stream xYKs6WVi&I|֙d<IJJ@I_S=xb~A6xw(yڬAu֠nn$G(Bq]73+Bn4·SOʒ?}lR**Z\uYm7 ?LPQqlѸ3YJE%*3;aB@JYZX7 #/V)E(KY7WF~n ӉrbEyyjB`N/f"f'|3]JJ v";`.\=Pل.N}x7ڼV~z.GFzEq`ď5ee)] x+#((KJ/y=傉;3|zOv:4 شVigPQdɓa蝴NF* +|xhEޛ<('o;`ARUݼw H%5,~B)E41duc$jܽ6~&ZKAMҡ7mQ3QSLcֻ-Э &ioWjr{+Ò1?ʇN!-16W36Ou_!LZr&BB5pXwG>ƀh ޿ vsAbpټgNCpͅC{+2"*pmbBZdӠ|QMNJRnC(LH,QDjk{@.d. FGZ@QZwikǐv,=kr)= IIJi3L 98G8g3L-tk]Ly2ĊϣhC FuӜ 9E=0fWK|_f|Q2T|KWs>(? n|3NA*&%ɱi|UA`)%0N2PW;[`xm P+SicVWTz LZ(!0p }K:qg?\KFm'e;un+K`;+O.R}S]ejФ: Ec_#0nNf8H~+ĪH$pK|?= O`.>2R|Cb,Tgq˃HH57Ȁ&%8Bpo6&Y+ h{M./\Cu g. |C3Sg~=>`Ue pZzR1AU־8<cτ"G8kِ9=}0| yE!H&_)w47=JA5:gAT9rtvI7g[= 9֌T v (\LѤS?-|ƄonPRǡZV 3WfyB$+<>n !tІ~mV(ɢ0@UefKt {UBaeEa+dDO~D;6qG۳glVvlϭPJ/<+8%[;tY^:%Vs)r+&s_*$KX'37ߋDDV+E3YW$P!:R`KbT´QUح=N~Nr@uo}nife/6}T_oyp endstream endobj 10430 0 obj << /Length 1518 /Filter /FlateDecode >> stream xY[o6~ϯd f%؀XEʔ#L\JnC)u/1MQ<|'\lůgpByX/0C!]dxaEh^~>{E3}"Ŋ(s}u'+EwlW-W1RYbW VDE$$X)G$}.WbFf@SFah'bڮHnބ}+A)_7o.WQeԟnYg^4J'k|zp6AsH(n(|_%1 3 f( ?Z0uW zўS,p$j0fuLnw\#ݥRkFU}[uݱR `{w!n ,FNpNb' O8`>=X-Ku Jp'1Jp}DhaMca^}U٬:y" xV[F~e fjeZQj_rJrcUjW?i3#vh:NFwsa&xJey d|9sն4+w-K}t=9 7RэZ}}ph>"$`FQ8 |^-8ʽ(Tf*s &JC}CO63քu̲J L3J1G>2:O: qbABTm(hF|?> stream xYKs6WAIwE;M]EwM'Cl0 w W+;?_a" iI+J"b4FHJ.S;RVIHNڎFфGxO₃O SK2-{ yO8F8"J ]uK Y?]%% >ԃ;mU8`SB1\UaF6".Ȍ&Mԑe)+tE ,|> stream xZ]o\ }cIv7H[M !EЅ]8=<gl_ܸHSI{@J*.H縊O#MĐJ5w<=LP:7|p6;pup ۣŵZtb0o<-a jJ1=fK!J !;hP0*浉T3 uX2@Kǰ]pT[ ÆZR5uS`QFA.:8 .qڜu nxJ c+Si4u!,"CM)nǜiCpm,;c'PI^8ۼϿۋ͛xwW?_+ O?oWdqhiώl53^2uܷŋy6|{6/>Ώ\o疼L ~Hw0\W_~)rdbY )J%_]^\|Bj No7RINj7ܧc+PFvX|oαi嫴y{uY6?6OA>]~p醩__Sxx d)n3MwT ܁J8{2!-aRhz}{R(yݻn} vrȡ$ְid<`#mj'-i=mpVrGC3aKPrg 熔RMa**Yj-= eu'SigoyK4\OX8tyZ,=| Uhym6BFc#݈We#%xR6̔gd#BsXn_!C2hEK՛&c*%n艦LDl;5ujJm|JP6Z3L6@U 9,)nKjP=*J\X\!_7YDzvo,_ b^aψZHBZk}u֤b4uV448hm4C&z xC' ]v#ݍvmE_ ڈ=;Jh<|N-XAB3%.-XQ0ZgrEGg?6>GPR* Oh"v5ُ[ʊ\m#oZW{o{Um]'mŃ2ohe)U'M+e@ڢ u8-. (K0-#?:1ՁSVjKdTj*Ǒ?|R*d@Ralvw1Nz It;mGFu7uɂElc *(DGje oTYp%_YkN 67G6EnT$F@gh&58@akZ}UAsEA^ܗn0m!?)TPYOa?G g^㓵ˡhD;&Z80 Evb՞0ֈs?TRP c{Q=[iZWd+V2߹_,X endstream endobj 10439 0 obj << /Length 911 /Filter /FlateDecode >> stream xW[o0~߯c*&"$<144"uIs;iҺ-0(Kc{ޝhbo:B8B o:>ÈLߟ`dy6Qw=  0BUf5*"W2˫yYA_ه*-6"@ SpXSi`!$1,#K4&qEZpz%f*ʸr]AQDfUuWcu^1kU!qya!oQapaz52EhL;fW^ݦr*j an2]6yh+M~OZ2*c~^(}ib7'?R3L,F,na "DVTJUZrSZ#q-e@2"TJ 4j 8#߬^`C )Ž6ucYFhS#ԍs0vZ~Pbp*TA6UUʼZ2U(ӆKb5% Hu6 p;Xi2xHzEGoVYh7)89(8pN6") %  1YF^cxI)6He`b_de%f@Ur䒃;uTr9;(vdd(FRg`Ro6Naock{r{Sg j ڤȧIrz\ .W$f/% E׿ԯoj;1 #~ uܘR#hv4jHp_$G ||Hvw3O|gGơCxo'?2ee endstream endobj 10452 0 obj << /Length 1310 /Filter /FlateDecode >> stream xXnF}WTaʋH:h[RL;˽׊)r9;s̙Y!чWgLD$ZG)R!EDbdX2b2Mx(͓^bIMm̓ZwEc\L'ЫΰgK~0JEnR;[P+syg.ab`xMMY$ ,3f7^a+Z4~-pfQ{= mH ql1]NB[Y58}̶U66}S0{]-osk'/,eu/a7:f8HBHم,8"QA7|8W5>}95Tj%LĐc I= !|*@)M݊sA0b$[a=n_vdd9ԛW|7<}̭1 ?v4EˍϿvltA) )*dyPj R cmMg&2E /idCh6!/Yx7xAZ3O{w&YmuzLbtjؐ`:6USW >A8Q"+zJݵ]XtDT13rgoBqAb j5pWGe:WX`lmWfn3ɨ>c\c*0azx,pB% nYWJ99YjexUH\x\/J}%`yErGҶ{[EAd {``h/  ^V!i'SRgPCt6 73E'"㦆_gi/I 8t60P ZMEb^{߻fHLo_{ͧ.\('csKLٮ6Ubx tڧQ9cBgou)g wG@ V> stream xXK6QbOZH/^$X2m J$;|HlMP }\,&9Ù!^^z~Cӈ`DHHb02z'* %oXO9HM j6'j6g$^lFJBR*7m]WBo7},(e(MT7z6E FYqڢ*6nN@JHxunf6OD߃TpԆAw匪R/H[ Xbnj8E*B9A U/'+-<馾j7y ;]~ߘ#9 zr݄#D"E'ۺBQ6Q7zڳ9g)DDs>^<\ 4 EnWES:I-8+! H14B:0M ƼqX]npޚh6#ywYZgD"cg+:fq@[\t 0 ^VnV[w;]d>۹?Wmٙy軬ɋZCqpCu \kh<7YȺ< d` ׺ץ3xka3`(]ʻ";⃙ۙK7NH촥 ̏,p,4 *h^Re !Ez֦͑QG6lݳV Q{eCޕ-9Ca·f<Ţjݝyeۦ8V^ |LLJO;MlR`dU]QpJH'@9(JOد - c Z,zeSas*l/+QχHb,f6TlG^HdT>%DUJ,#/lȾ,>q׻z&h3?Z o,ve5a>a'`2_yHack y1R(tNn[PpŏpԜȹ!_$#ڊVf\{{- !}пuP sy~|B6 Y&ȼ^Bdo58{O'а(ә\KcqpAJɰ4%Xs# O=kQ Cю $MD)l֖Akm8qH'蚣) {!j^(k 6"QUYBRF8!vn|nY-khӫN5PSnKeh~O+icRScUzohP?޹Fn (2OG;v_/i)xxDE7"ߝ"E $ <EϺFw2jr4@$9d|j9JL/+s \.n>Ufax Ƀ)f#ʆԓqt|_DѻЊu* cmU<<VޡPo38ITi$|D'Jm؉Ay{x5zO4r\ ֶ+w׿'zp{Ӧu endstream endobj 10468 0 obj << /Length 1685 /Filter /FlateDecode >> stream xYK6Qb.Ezlv=m,ktŇ)/ekMX2EÙoyϞfx}f1F.r3,9”͖CörBLIMH 1)PJc;ZCv굇icd(ΉF/Z͜d,m(R ͓жĨ1ܖA"hdɣVԲnসpl|fZnKٸ>3:EL`(*!z\{XvO=o+:lcAC=! C7hx (!#)PkS]}Ժʍ2WsM#?AŰM.,:ËoNJ(ք y=1Z&(-Ucnba| -bQ=8L'=[ON"^jiXoC\=K'DW݅A$鵐wBI}g1-JOM8 ܍3lèjL?{ lv!O5@791(&.?R眖zܠ:/PNmX7kG9ܐQcY%6 J BYя{`GxROIf(faq+ eved&%D5u;/3$'q Dvߞ4Mrp!9E,KMg1ઔþ?C7OM0!=|7Ҵ458z-z8=#{%u#Gc@b>tPÄ(ճTYph1Tv y1v${dPas3I<\b&@^Pڂast@dfr1X䭭wg2q W 4_PJwolI 6,g溻B{@b>6:P)d@=@B={hh:M~5BW`}tu|B$u4gE~u@gCj<3waw0wtգ`gni[- Ӫ1=̀uZޥ=| '.iQ-s4 {\ m y"Hl2.d~(L2&ߗI|F rs=֕`专}Z PoQ7>+AJHs /M4*O ԗ8ϵ4߽x8K#XąQep/Kr}bּ  !w~^Gr% %:) }%_V{?-o獕 endstream endobj 10472 0 obj << /Length 1335 /Filter /FlateDecode >> stream xXKs6WVjD#i:!u;lȤBPv  Ґ(rܴ4.wo0 `Owp 2` $0`49#gDeglrB\?hXTNÿb4=/,="6fa(oraEԹXˏwr"Ji87Z]^EkI!V6|aHsn+ק}`8DL m gwdk'.ql;h` kD(D'ikNgNIcs>1}4I'J]fͲq檐YVʪuFnR V0Y]M8k.4wЪW?ԽfHZ^e8ERO~WaDYt:]uB}b`JS%A0 ,. }~~Ra+˫%׳H `T+m5V/GiF 0 lRK_ ^VUe>paſj yMI؈UfA蠡Pv.;\P'lq;NNco8K/ld5z.r  mT`Sv!LBұMQrN~j" a['^"KZ>XgLIM(V8oPQ(M]k#G_=Ì~kߥ׶V%RⲀ<'<2ۋus.$>$U)S,MLJ# X!8X6auXz\z41@ qMnN@k}@(UAo6 U^'+?U%?*!%S;eI@T*HuY ]!{LF7f9Y0x%n! :Lߠ12x;e]Oª c ,>F?ֿE$KUF(9D;|%EW:d`i[O9nHǿlÌ0_)[Um6لI2Ҏ$wP3RՠWK013O_c*7v͉R(st\E&5fueŧC*tdu3 (6@ nгZ;oׁg6 Icb B;,gi 喝\Dg`Q|]Vv6?d/+ֈI<4}ze?K5N)g:v3~6{2}BR endstream endobj 10476 0 obj << /Length 1492 /Filter /FlateDecode >> stream xXKo6Wh+O\=bb "ɉJ_IɢMYNE/2Ùn?^|bbA0RXj"a.ldu2Ɩ4BArύi22KH6mԟV?]^Q5A`k:[u5W\a elPP2Y#xm~ܙ[+HxؚwAcDcIhdlx@G4VDucD-[U"ZUk#r4UAH2MwuԬW9C&i=m]*07kB~EQֿ!(%W n5oAuU[TmjJN1G1"W 'N@ă1vd]Z#o+"zww0.B l {XENO ;X.)90q@`Jܹ=P }Sߋ&vrC#, k  Hyвo[ zQ, eK' i"B*ǹof]kxU!LaѰ_f2V~NDf;P]=*윬BOfHIu +6]nm\K?>{BFޤsYW. d:w]`b+ZT4:Nx48ER2,g*;0#6ܫ)#G&tu ?C2I }E>:2O!ʺgh%t+qdd` 03|fqx]:j G Rl?9T(dɈ&su\!)xU&EV"u[UǎXv'y5m޴ֿ8rv$ Qu&OfުSU`:qyن3CH1<6S1ŋG`\sd=ܢ֨([d&El̼䠵y*qܝ>y"ܙ(3,]ݨ|0FFuf|- E8yN4_*ѸΩDSmg 0e g siNn+㖡vĠM.k)ǁr_߭?I/Sǻ6Ӥg)kzy%2uLmݟKi[ɖ2k_Cэ\fcdX賘8 sk:)Mgm5+# ERe'p4M%yj΁kUΛnRԱⴷQc7Ë%{ҋKw$,  @t0,&a]ՙ4 i-Z˧qr5foOz2C>8= F}F_[A endstream endobj 10484 0 obj << /Length 1176 /Filter /FlateDecode >> stream xX[o6~$ byE"Ê-+0YDAǛdI`Mu{c<|x(0xaxuA  A 4 }`aG^]R6@&WQ$9oKɫZ헐]Yq6_2$?m%(,G?4-kCL2@2V7_Fhoe" !aF1faqi\5ZWm5摚v;ˢ&QH;wlwE<ڂww5s;-'ѭ91" .ޭɻc̚JyoGn !O*k=!2\g0p͓k@ƒ,FjL$p+T9zyE^2$|i9#JU5KzBRRȑRv8lڞӘy}_~2O_ 5Xl>Jc.*8Qˍ{`ԁ]5_˂}@x`bV MoY#{1x%_%\S>i^ _U%6ۦ$Q|Yj&YP^<8fךfnDO9egYuݶ}yzT9+TlJ,j=Awnq$&/5{Us:,Q!)ѧ ]N'A޽Yp$KD14KuXR@'4iNOK{Hq87(,S9!=TW`@$eט@ ԅkXe5Q!^>l\̏ }и6cs8(Ҙ^G &GMPD[Ji[?I -=搋Hɰ[޾y:4f4狌1}yo E[oruM;=?g=I[U V{![j |I;ӉYWFo ܪ5B5,Ůgڇ`P;Q'`4( (4;-T F;rW7ͨrmա1HN 8i{u )j !Ήm%xqx*=4y%1J*%*goFoU0qthmF(!ĞADºcLB>bq( endstream endobj 10488 0 obj << /Length 1322 /Filter /FlateDecode >> stream xWKo6W(5WIKZ=4-Zķna2m+K)%𥗕1o&⸈>yQx9,d)[l4B-W(Y*MhsnE7ZpjVJS\]o~9ɇ)hM5α9{o/DVSDbX,w$8] ix뱮 ވ7::GeD)΢Z&YVHjsF@5Fqjq 3Qp{=wMUiU59ҨI}6nq`3 рP (Jh{\{~̿ 栾ն8ql$MQwKh /HF9D"{w:8`NWxZ ݖ,S Y3樒b k]\)iPrȝ'(K}O*yP>):@kw L3SO CU=_ .2‹mSoxvY~{Ӹ>Oj(*$u(#i0)X(A$x  !8qM`tiK/J1cֵ{aI7؜m>erP IF.4b8%`ZF*_ljan\[-ťz11/J}ca5Wٜu9ry6Bk~ItM OZ@/cJSe%M0q/6N2#0f\+\_F6]|\3 hViT_(ˆ.m[4Jf:'8D?abjڴ_Cfѣs,ksp'7pKIN~?K ~3GSؐYoh+5Cgxfp-,Eh%]ey}?l8ss:Uf`;]m׋D9TC$W~ /#o{-1 e4)/=!8FȫR wvF~Ji ONBwlśԆW.g^QiHB[L2&t5Ը;O^P endstream endobj 10495 0 obj << /Length 1905 /Filter /FlateDecode >> stream xYK60z(ȡiRHh4X0mDw>-gKOCr|ÍEˋofhovQE(&^| ^~"K..:Qm̢l8ʮW _%x SXydFjQ'ŷuh3K\FSQG[d[&Iԛa>Sd $*]Rf`:voiK1%s0Ң:;:KW泰KS0dJYk\:w{T@eUKm?P޳`œm?WLJ!CdJJ0~M3!١aFVDl͠@~fEW(Ht<_H:PA/ }]0ACe;,ҵl5C,vS5DtL$aC>sɑ5q|AI66B@"aܞx$)P/-V-!+&;->K~)<-~8xOM<9p-w AI1hYpv^ׁ6U.R)eYD%_\z9]kQ$y71\műϏfnc>jEMuAH0W0<<*rB$P")%#iY@?/&mU-lr)yTmVH=*ƪfޛf{溻I]G4Vn.OԨp頖QgH3$;-y>*ϻ <^>)d")X[q$H<V48q[0ײ+ ɵJaԬI3'I 3[9S׻ kho8]N&IJC.>2F'Ks온x=Ǥa(e J&J[Gz|Ù)6 ҥ ״mVS?ElJ6sGp`Wu0j)SM(;fXۼJ޻^Dm35VEzOmjG'MoMoY4">`:CvW*/^cO4UL\3z)̬<!B6mP{ B!-A8 3g w Y{ 9ӴFX4fh32iaQŽ22FVYyJn RK*QI!ۥ7e¨x籂Lpȶc?Qx`}E}zlv(osb*@kߎp7`ROظ]- +^a%2j,O0zUY|[ |uONNѦ `x)ޯu{1|B!x{U{Nt8Eg\9|v/'tq:q"NŐR~]@Gn.”kDRZV"_1l(=;Vwvo:d;jׯwurB4eGӿSF1 {sy/ȸ endstream endobj 10499 0 obj << /Length 1411 /Filter /FlateDecode >> stream xWnF}W}s./J>H M hbM$64),;{Hf:BIzΜ3E;,pV /֛E/(GMrkpc{2$qaz͛Nfd4oV0q\x5ޛ&$銨Yw4OD(KVf=a'PWo*ioo'El'ǜ.PESh 0i0Ӡ2iFIzFY ^Xf^0΂w2L͠ J":C.8+ t ^?3!aw"dum>Fnt/x7"t+l%8h4QNi84Zšr~Ϧ-i)pI0")u }˂8B9$uV1F1O;=X\@y:eBs -ZaCEbZ)e۾vqaLj$Zl풢\;{K8;im3Q|WB/0҄oݱjf 8KItjsa`t's/;J1S%_:iv9MШfҧ NTy߱[3zt3 TՀeBV|Rnv(az*j<Y9>0K$'6<ߔBqVn^hʳ$HgdT )%rQ'/I1ҩFl]^[(*(U"WŠ;vyZBQ8ۂ^MdVLm6_\2pIɸ:uPr\Xz^u-ZKԶz(HvJ%.'Fgc>VhXhncQ$%32m']eF Upbj,?twLҀu DcxJ') @y㯼fv+IϳM'3w,ءI > stream xXێ6}߯$C$h)tbMapmK@\]fK6M$gΜm/_\~#IDy@h9xw7Js4J(F9MYA㺓R-+Q"vLJUͲ}&[yu}P04Y؎:dĞp$W͔>!L<8#F}~qI64I8-ş<|Y\i?0K n;2wɳxյf-|UzĮt}]mkƇT;}mCXLSoDD2& Z< "N#RA@s5 \uSq_J1ǵlV DvB]bvc_^cyn⸭~ƳX|XjN<>;$jz=VUy6ec*q*Tf6g$L Fڌr1s-oAJW_c|NA݉ee)Tţ;@)c%΂ Hi}W'gu-^I$4 뾱)TiBf9zKN2?3NEKjW[k5}shqؔ,i2zhL] 9ʴp.pS8CllXL̲}SZaxp֐*0e5f|Puq@Eٜ!YUnjiCeNⶔ< afU¤)A)I8@4Ob:smdԦ"9FӘ`u7e?peS4fe)|~~.x0< 5'fܕ%J:Ǩȋgɺӭ彨nwys#ۮ֣ERtr&l]!Hܿ60J}_h:#w}iB ۾U ^US1x̓su[rbMy{C*{/:(:#6Ե[v'iCLKy/l^Qvh =X;x)T6$1ь4Cᱚ}S?&Ńؾ_~ T^o^wҽ+=L -^I~X\ ly endstream endobj 10508 0 obj << /Length 1115 /Filter /FlateDecode >> stream xڭVQ6~_#HgZԻn_ZFjI@dL;v;]y3goll|{{!eh$XlgS,}.Z(N4Lf(9E.F*IjmR u,~!}SF,AlΌvh, Ky#vcD 8 sQˢ`4Abj My)sq(jel\ &)bذkm;kl ٔ[3deN=.{ #oŔPQCFitXFq sCU15nVBaVn^[%ve8OF<$it N,|ږ |LVdߢ޴Ju5h Ǥwx½Ov }Fw 1ڝy:8Am۝4B'FueNy .mʣ@SwBh鎺Bbs{LKW`*}",}j5(Ųt:Uz"&28 5ٮ[!Y}'l.E#ZJ ~_HIWɜkH=L Y 9{Ѷ0W&@@fLG@ xnyPr#{Pğ]lnS(g*JanSl:22~awucS,%|, ᖻ+*'&JEu[$HAI]lz_,o7] %'.fwx1UU6ŧw3Đ?pQwv݄j?VZ{7ȿ2ً(j1E/~Pt.p'- endstream endobj 10514 0 obj << /Length 500 /Filter /FlateDecode >> stream xŖn0^ NTRٵ]0XBշ=j!5"D]A|)FIJ 3 Q4 |r>t H$pSD DSQLrȼb<{ YXwQ j܄۰pa^j}OsV# 1Rbլe,uOžRϊbwXH7 BA-Xf<ͅ%>M>>mHuJf;m|ȻqPxu1SA8k80qXUM6ꝭ\mw5pK oDw5VySn#WꌳXꄞ7_T J];ZNCHh(>܁<)t{'b&.RW?ħg endstream endobj 10519 0 obj << /Length 1082 /Filter /FlateDecode >> stream xWMs6Wpr! ̡{L{iQOQRLP$'iIs1i\{a҃޻jquc/ y譶^fFxw͎c,4Վ' 2 bkN~-DZ8 N}$Oժ4\Fxy`4WGR-~}[ k$)4b/Lu2_$t%J}ڨwBcp .t)x, -H~W0'1Y(1!w_S3C@dDۃ` r NZf)՚2G[՟MXP[~yi܋[L0ukGbXM5`ZNjAe5pZ㮙}*(jBz)yjoOzG#>c!4?@.H(DD}j['¦n~{I@\BT5puۚzh[lN?٩TB*w`kAMpa=oKNjx\* B bp:SS6O~hԜFqjHT endstream endobj 10523 0 obj << /Length 1266 /Filter /FlateDecode >> stream xڵVK6Эr3gh"=dķ0dk +:3+y6{&7ÃC_o~ܼ@pVB IôWn~tz E ֒,)ܥ[WQiVk)騆C0s۲mܴFuK{TR;1Nл=PcuuInΫ<߸ B$&F)'eC{n˅f K6] 9(%,KpL%t*MqFnDFE,?a(`&'i2ɺQ빍u/0+Bοe$fF9E 4Kc.|bN_֕ g +!ɦDzl-,IQR*a_}H %0=Ǝ8Wܖ4F@3o ؼHJc<~#F~k٢w%hc=[dl[vbM U Xx2Z-1Tg&Sl7*};ޚjlHm:4,CWQLIl7Rwwc#Zr xqہiR':NıRQn,\,bZ[2аdvHqQ"4OE~XO̶ :|a܍ ƈw6Ԟ/ ήZX" N'Jlђ-3Ble8jUv.q .jNbs-Ћj1 0Bͼ$nٿt b: |862*>j79c1uٰ^6ZD/g' endstream endobj 10532 0 obj << /Length 1024 /Filter /FlateDecode >> stream xڽW[o6~ϯIXE.@k4lC:Om`0b -C؏ߡH:nI/s9ivnq1˙FH $8E` >nԡ+(fT(N4\lJvj$\feVMz,6I&uoZf6Yӡx C\ f%"3Z~H1H^"ۼW1fDo# nW*՝idي63m\L nsӆj (AAP=dP"v_ ?1%4qhʃ``?FNآӎO@cYIY 15D^mySu4NP-N:&& a2ڃiqIwM1TaF k*/ս~JH̕بSD3tRW4'","oGCIG1aSTryafX?x{lÒh>"(N/𶶴fV>@L#y *ַݦjNmT^tVL}-P[ p-{ן-<f3JDrMQ\nֳn[vui/t=?@*6 |TXO ve@( ӈިl}t#1&` LCs]B|'yԍǃ/U?D.`Na"> stream xXK6W OQ A L{xTg$e/e[YH{"-Y37|!vvެج^i"gs$u$lϮy'5Sd0"26*=_PVS,Kcny wXTn>x"pաj_]scxp$lZ]Fzեy)Miny %n[W KsTR¶ [AսNKD}|6zp?w*GfL$x-'SO>Y+ q2xټSDL|čm[f ߻6.%`ccs0 ioiͮ&PL[QIaopб M#' op=mZw4ymj$Ȓ/- ^Ȇtu =rs9~'H#眷y»>6XW!. 'XMҵ Q1`b Z+W9)$Stknfe[Tmeؔ#%/4YV@ǁv9.'d&i_Y i~Y}NIV endstream endobj 10545 0 obj << /Length 1583 /Filter /FlateDecode >> stream xڭX]o6}ϯ2Y`+-6PCZZeɣdw%S2z Iux﹗:Q;"2)qt}$ʓ%)7Mf%4&Z,󼈯wŒt=oKoܘZI._~>v0hKk-ۡ? Α*|wc]I"I叺 TB&ؗΊˬ7f$@` _>gsH{JJEo dӼA߱}Sg)0(+˩&Qz5>7HJF<ױ?:5Sf' G3F̸zl'=pT+ ds,EY¦#: cIΎ 2rœ掩S;k.|> stream xZK6WTEAjv${!;U9ةF$)rBRϿƋ%P9e׍A-{ϻ^bQZ/ NelqYI8"_O^D8-Vv{Y-WRi ^3>(K3滿!S,Dew{-~<]Zb|+wAS[ۺ[(IW&_E K"aIxr\_ځR:(3l¯L ʉcP cҘ.Ve'&T>U/"bov/z:ӱ.\4w@_T*6W'T[?A'Ul@YJAK .f2/!~x9Qbr+& K! ־*eBo~{K̨=dDa.~y>Xx7gi4eYuj*61 _([g Kz 0OKh8脧gIbkb5`CU#`U[YBX(;֊0dJgBI+]~q O\ơtd9b79@VÆ MBMS %LpYz+{."xF>/͓8`{wr$`R Cd/4#m؇Pqڨ?<;~DVG5 !"#etsX G?=9n.`(ǐAsZ:E(X?-a]vZ@Dٔ FGYoBВjg9Z1+nnE 'IO,/-}Xz[L1lp Tח~)"JGkL5SZ Xs| LTy}Ԕ(Dڀ͊ilEtzJW{nݿu6#cSbyvSe}l`5PO V*.lH8SwqlPNL\J ٟ9+ Az?lO<gЦTqbL۲.'m=v}T. ;/Fx6n8=4UowP/*- .ZBSXo(Ȩ'j$'qV,5z_+|djChVUIlTWjه7rOG@^ٶV1_t k9zlUWe?æOƹFr)05*GWdxEƠ.CUCABe< #?nY|,:5EAק3^PNj}&¨5JY.x,1XF4eCLV1wb}kd3XflY{'_$m_-jbnCZyoeC*T$w{>xww[74\7~ezW{ 5rt79渶&A}67xdƛU:pgAn6-Y׫͹\Ggk'e =WƱTt'(Z4ME4v7J}5rh,~;j+ĊlTҝt@CÄb XZn:lL7=ӷrMS# Ϻ5> stream xZo7~_A^{Cΐ<+pI ҠΡͬZZKkNfWC$7 .ߨT*.GG_ɥ%DZ0_r%fjIG$l nd@gl E!1/bX 6QX+b1$\3 HQUңج%QK&@إPl\3lJt)qSY'J$oK%Af pR-\цA9kt*8D@oxi"f(a0eC15C S40M'* Z#8/{XlccP12;T*06F`g(V(FHc(Ki:P8IXcrb mZؑpFV'ba0mfo H)*ȕ 6eWb 6E4LIlKQU=Y]i PtGTV\]" L &vÛ8ᕵAka5U.be_-y+z^ T0FP+~0 džZ#Ӽl6v(uo>Qz~y}e!:^ͯU@0f; x!Ybqq~ ΝUz {始kwǮ;G7%IJzV(m*Oikw5}w7߯F}eX,G.{yy88Qب.=Y,͗&2}}{AacpaGbKFQk`{i|.,6+ ; $@$#lWOM *#ICɼ "= M$r|f`SUY7DD[x[Oj2dreC U7T[Sܦ$S@ ԰k%Bz~X< ,~:EbPN|nGB 1x$I!g4KLfq$ [F,ۯPH(yB$h!KzßPx$y #J$--\L' (HRbWX< kI|ӦG* P@k͹S@:g8e; T QU|֝T:?[ <(y'[Y@~<&Z3)gt> 蒨!D% (#Cʂa*j{)CuS G%i[M .CKc^w}vjPDG*b+fMM\ÆO5jtj5]hLiL>5u8 `X7i<%*xr-c-.̥7g =vx0V[nX:B42Bh WTT)Fm QP`;AX_BK;fSB`Cg>A&>wbݥUK닿rCY9;7.S:9:%kΚS):Mcȿͅw}#{Yv<߶8P {k1u9C9ʤ-qc $ "%^D>iGfPxq-.һd_m4НK 5^S#Z,?AL^6Tݞۍ#t/MB {/u.?/b{-?w[=:]̖g]|@ۍ5"&NgD|=?3(g͖'TY T}u"Nj7/z|q;1\Hzxг}FQsf%Cq(J-XS.Q|PBNvC&Ȭ7iÆژ:ӆJ'lq'> r>r7+$(PDOHF#j endstream endobj 10564 0 obj << /Length 1491 /Filter /FlateDecode >> stream xXKs6WḦ́G:Lsp|s3X-N(R%A;Ň Jt'jo](4⧫o35n#N"(,F;qP]%Y$G"I)QoE+Uyӊqoz2,jfZ"uD (Q'U"9߽B'fJ1b*08ޯH_$Y%)햸ܛjA 7'+Uv f6A?گJcQڍ~5ZI܉ Bpp(btJN?iP]Q>Sp(󇺍}'+{`BANmsn!ݠ;iRw+8HŀM3xXڸT̢"+rTJ岶k*1f0Rv74l CtvM턲:$NOn꘩dU~bR豈'wRډng%:iMD]7"0(;P:'{95ue}ePЫ*B.{k4Qs_.1̩:`i#F+CH0gkD?ArM~{9"k0ʳGNa@M+rceKjOΩ:/ n]L i-\|e`_IjNe]R;g` oIX6 J=OQ[δrݵ8^հ:;"Zʭܞa'hg:S.%[vQxm/gl) o=]9 FD9epAiC/s:IYi#|P\GMtM_+f6ZR8Hպ h};n Dxv։Ѫ&`9=k !| lC*Lzr-r hBuAPSHOg)Et̞): >6ARouϨz Ѕ,B^9 qF_wnڔîhyN8֚!P3 sEWx347_CcMQ2I U (Б.H2gHW1 . `V̽^e6~trÜ>sxF)ce`fA KMz~~^U;za Q{kba@[f:T0`vڼb<tZ>'f  l1>IiG9Ef|AOFR 6. \2?Z;dxo圭 oг{2q1 cgi<8@@2ʼӴؿcH&~_BH;E) -FMe`N}Ԇ^ 5fs䯐_'B$y =mYD׫/ܪ` endstream endobj 10569 0 obj << /Length 1647 /Filter /FlateDecode >> stream xڽXYo6~[mĈ-M=CeK.v%曡`W^_zCǨ \oY%u|m>]x#ް|dd4h0gxq0!#<+.M5+uD`cme:(H^ȱoqPZLe? 8bwMD) ^B-YX>HS nm}Nx}+MdKCKd㥱i˛:)A Ld_c9Z/xVoz0f['ɇd _ɛƋ ۶}2]kB(x!y7Q8V^`tխ2t ԉS&*D6cIΚ vi$p ,(J,;h-yɀҹka-k"۝T9f7.q]S]dl!/|zWI(@¦pKu?1t![*DlW>Ֆ3Z7XQ o|,_s°XmyA,E9tI5΄Y=HOr l/eʚ lMY35\$C3=)-Q[Q0FOe[DZ̒;%-α;c';"A?d$9 Nw0Vٍ4խɞ B'=;<7e^ ֬jgsn6ɐc\ȓwapW)b8Q7pE{1{t9ib'mgho3C[_b/eA?voF[*΄z6H%\~80t:J.k7txkJV.O"CW th5HUB **+iz*|˛|N/[2} lNhnl}kX7U6pɽPnNُB7fbշH1UUd0I95uHX_J:uGșM*H&z-޼(4M}p% mq-]ji e)1_ > stream xڭVYo@~ϯ l;{oi(R_"omL֒\Rog뮳C7;F#Fo'S02YÉa2dFΓwoLpML^eA273)|;rw[*Zh @jkټEFXKj[sdz3:ddFgcyCTAZϣO>00EBs:͸M曼ZM|M3iLl`ZURD YKT؀TqRJJI]!CC* 9(*¸qE 8 #1.ObU~ 8,; J.c5 W8E` ^z$ptRw/saߗӪX-X4$zeA$ämy笎7Aa52|x=9Rժ @k\s(eжvI^ ZHH6uMREj[HʍؗNoϢͺ-/;iզWj$o%y=Z Cу:.,'XjݯQhӲųDWjQӨ˭뫤4eBcߦ.Nr)=3K/ \"}=B@.DXܹ1ʆc}d\t_"d; endstream endobj 10577 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ070ӌ 2jA]CsX endstream endobj 10585 0 obj << /Length 1888 /Filter /FlateDecode >> stream xڭXK6WEFcF|HS4i  ) ZBdKn}g8,m6c8ūUz$?\=yF+4jbƂ%^]iۭ7R'OW?t9W+:qD]4]גGKb#YM"d |BGPھz#z __CÔw3CF7=M&f).ޖlwgV$j%KR* kȗ$ Tٌhhh5]omg\LlS4|vO:fSN/as)s9%ط4TS#F?5 < 2%*pw&o:DAz|3Z~ şQԭDurnvD $c,sM|?I[/(@(+0p'X)ܢrV~zΜ7"LK>7͖E-"ˣ@sDCcބ_'m;y41F-̜?=`}*`]9S,zom'syNn+ ծzCq(;4+g%`Ӣ2.,UiKN48|+՘@mUWx\%;CXE\w; %0@ ``y:AHWK j,@ՙnɈ7}\wr@ KAU¸#ÙLpoNuI%?SU|ezά_b3_g<¦U*HhZ"L\3ɪ`K LZ~X)O ]|M31E嚃zbH}4Sy2w%]A[Cԝ;I2̿iS:Gv qi6i2 87U:b8;rgλX-yXY<:bɸ uO6o_"JcC :c%`h: \-"r\@ p?}P+אl2Z=)|l wBNEbV4{~O_\F&`l|56uxJ8k1 8 b~ yΜ5U?y0m ޱp!y񹓬s~m&X$4kCEd14?Lrlni6q3R$ @EaۡmW uwn3t54=|.1E*"R_ga+ L[z~K#I!4Hv("{,L۟jhs\C?,"+{85~>XЊGf|=\ ףXv}VYiS=ML;vԟB.!\> }&NZ)t'x-7Il1-tLcv='x֮JWJT y.<É$,YTv =a+s1Π/6َ }'+Μy+(X;:ȕSRÏ3`!&@0 vn΄Q?ixXW YمB<l{N3Hٜ%쇤QЁª\,ʗ}[<#AN6-:Bx%qcgejI/hc=;Փ7 endstream endobj 10592 0 obj << /Length 1012 /Filter /FlateDecode >> stream xڭW۪6}W5|̈́)efh@NDܓοW&;N'+{}Ѷcj'Ծ~٭2XPbEg?֯W4y xS3f kÅN4, T<-VCͲ㺚au6_1ۡKQ6DZĢE?MJHC+)27S`}HSwх\tMiD/y{o喇?Lo 9t)@gm;{l9*2МQAE@nk Jجg<}`nւ&ED'LhCT}'{d}'QΘ ںQkDo%hm%M팣5 s(0BDA뜚Uȁ paę3zŲ*Q}h\Up{k;P%A^bxFB)~L X3k~>+J mh(Lyi\%YKx(IK#"{4@}s&0m c]ac,c}Pv ൄ'۶4SW TbĮY,b+?u We9t/~Y1v6ymx7.k6Y6`e~B*Y?׶b'-~қ;6z7@@;X;/ =ćJcf=7&`;r\qq_x9tJg1k}^ܡfhtBrOZ$yj.*> a/q,Cz}a?:jG ij:C]c?fx7k?p`t1}(&X-lu OYHݭ``6B*zLJr!lFJ;PF~6O97.;XMԩ[Xgr|T^~P8W sεKN\ܳ VbL=\o3`TEI{?k,s}7O} endstream endobj 10596 0 obj << /Length 1107 /Filter /FlateDecode >> stream xڭXM8@9iH#͎WZamw9P62fs66IH2}rbzz6<_OalV~JZ= RwiffrR~f^?չ($LDy$|Do9JYu649+)/EP'b5TRHv¹ni!g/a؍M!0#~∧Gfz$ɪ@_DکHbl˺(P (ƘQvʡMmxۏ(+Մ7d5r-E@a~ȭ)$$'JP2f63iG#' 7g3Θ -pLP1+ōecȦՈlQ xSr~f8 eYM&$#d PbFw`,$yLg\8\. ȁx Lp/Mi.Mq?ny4M]!ˆ1jӞG%orRӍzγh98FB%boДa/' aa,P^:G)TXVCQl:A-.*X6/&Ej B}=yVqvXfIMM ijIZaCD8`ˉ$=j Vr=FLf۵}2{wD[5Hoctj{Y₩} |ӎjTёUb7R*oE;O KP$/+tRZzTRâ:5.Cʽ8UAGg!L,qPVq f~mkf/5jm-aȴP *]75o6.o¿f VJ-xyBR75GPHMCr엚HvJM1>ieCŽoL (7(0K0 E9%2U$bAqoMoɅ7͜=ϕ.\RT  .;vlVUq}ho5▍!F~- endstream endobj 10602 0 obj << /Length 1871 /Filter /FlateDecode >> stream xYMo8WDbU$Kan.!-юP}d?EtmK$Kp8| hYh6YQFi6TAG?/"l<-(̳Tmj/$ }G4@D=E#[5ͽ|Dr̃w߸OwŲ0[Na7X6⃾QtF'0p+w|)EYĔ cZqYa\,[fߠ l oP8NaLUI"{LFJX7j+p=b7>kY .ktw۶?+b[bTA; ;$IW+>y .Foz 7YEA f,@S߾ڏo(#"mo9`}Ղ!LgcW3xU%tLЄ$ >"h@8 pEu0>Հޚ" US(bcefߏ)tAs+nԖ{gK dY j`hj<Ň)g5kkAUdQ1o`8P wL (l+M9Dlj|))biňJ0܏]9L5[ ߤ#~9vT>t대dw ;?EgMPsC@#Q :^AjM Nj֯2KN:2B`WIЩ$?e PEj SJ>AMQZsim}MξȓZp# ;h mYsД5 T-GD^F17C(;hO8 h}L>(Bluݷ|:Ϊ˩t)x'OEs6VSk~Co#DpCV%1 ]Ksʟ;j3*;}D4Mm(!i#mEouH/ ̗1,UzԘ;Gx &-%7G^_1*C$1Q[%0J+k}# Ky>[a;SYJ[2K{w̥SmZ,hd?TLUwnT;J+7ܶ[S8ԍCux&X䞦t{|M'dgz nd(c@~_0Ę}A ?еRz<\pH⴬(LXleA1ZίK?asT)lUT3F"nׇ?E˰ endstream endobj 10610 0 obj << /Length 1275 /Filter /FlateDecode >> stream xWێ6}߯У\Č(@ $m}HWm( ;Ԑ @dgΙG.W߮^IX@#V4Xo< Qʂ&ykZ,$ ,y^RڪiUYEh,>߽|SFId7Sj"c_zeP{Qۜۮ)M%FopvՏA_ci12 qBX{bml XFkkƝ2,).T#e}١+-׮4:mfHA %#,)0GxilUm҆J)%yD_ |g$J=|8௷#7@R:#_VN/8m&[o׀&_J;rGIAR-hA#4t[;)zFI:p&_SU "s@\<_FX^cbpv $υ{¡`iL"bz3B粞 ts Ӽ ,gO$~dF T  Z&HJj3 ֎p5[`(;UO;Y6y=e> =7βd4G-RD1 4w snG}D؊ġ(L2X>y'1nfH 8*£{t~Co;t*'Wp1-^$ Oy?/7 kkqoXk!]pnٔ՞{*'T/9JؾƠ0(Y]O< G5L|7u M]27X{c@S"vծ)tH#Fh{<SPA* _-twꊫh9_YFcgzt_,3Bm*q;3nvܺb&=3MIycXe@2~=G^Hܤc(u!C("!OQƊV^l 'J垫VrIm{8> ~ؚON<ڇ'fݥH! I|8zb)%EJս8Y96'(QY6) f? \= endstream endobj 10617 0 obj << /Length 760 /Filter /FlateDecode >> stream xڕV]o0}ϯmD?0N{YT*%1Ym}6&d$Osνc<]Gz)"o؋a`HһcO#P&0i!^@ qJbí/"Q(IR*/2x;4zVhYc`gx/0O}(E&cܯ+ٰ{ڱqpn!JW,;EwG.Tq}TrÕ˓*pp!t4S|:}ɒ/Oq~^3_Mp"W5ꕃt blɡL[y7RxLֽ A }/L8NvŬ;Ծ;`S~8HGVw-dfI!f/Fc@L=8 _VY_ jƻۦS$ H߄PTiyܫ3X'WyìE 6SBZX;zm1+{O"wkTɵT۝!Hl4Qlގ9;r3Mvl5'a&k '.f#{fj$˗nĦݖmT qdbQ5 >\jv.fJoNs?˰w R;[٘)[3 kcM٫'YvCXHHm?+}@ endstream endobj 10621 0 obj << /Length 1269 /Filter /FlateDecode >> stream xڥWMo6W{\D%]lnYluOma(l +KE ;,T긗ȑș7o d3I&oo)͒A&"PdӘRY4Ͳ~gZ6dz5g= 3QJSpn Lṻgpyܭi]Bqfz!3FiEJ{H#KxtV\bH&zP9Dt+Z]ұ:HuZ֯}6_d^o s#1@bO eph}>4Pײ:f4{F022]`cCjӹ+4:@}SQDz+qNjv} ^_tB+JΌ])>J)pSU<=>!nzaz= ;nBԭ\uK;0JD]QXA[!ͺbsa0vRoEĭʥmh$ #^4KקY:|k<`2e˰4aV۹N BJ);A|LGW1lFYK̠gQ|8Iӟ+ tڃ1  ?Sw(d[$;/̥P(!Bfr<\Ey BoƒhTscYP7FÉ %Zޗi$/>u.<}~wW;7~%+'zꏽ r_ 8p=Uv`l& oǷ cn61WI PCgD2b$=Fy94~M('o(ն.X89ftX0{> 2hDh݁"|߭TY_,kb8*M.ʼ-`a]3{ Qg_u8 endstream endobj 10626 0 obj << /Length 966 /Filter /FlateDecode >> stream xڵV[oF~ϯ 1 LDmTjRnea{08Ϊ30Nܾ\Ǝ1Fȉ\c5'$ό \kӘLg޵$bj}ǰ=,BfY\綬,[VgW03+Ԯ3?gGX8lFH/|Ǯzpׄy%Wg:AK#B&{ʊ "*{)wpbҔJq6~J +KBoHJr<|k*E)J}i &uZef$ J73aNjT7ө Aޭ2,_KRT|+9ݮdoj \=K0ݮS!ۚSFu[;dɴ/,Eߺu pt:lW;h75{ҵ8뙺X37",k mp].hvG `Z40ӸXjY)"IP-O Ɛ3U~Uwڬw&g\5 }oml")?'pHr%CTߖKl\RH<{MV, ВmM)ZVq tFE&O;vphOs/U3[t{e5]}k:_ۃ|?MWm ]'oƐ4xgL:(C(Y'Bk?T1{8d+;Ʋ_Tx@u\m}o-֭QE,h8 ιP({#h?+͉ܞ,6vg[+wZ/c qWy`v0 ݈ endstream endobj 10635 0 obj << /Length 1044 /Filter /FlateDecode >> stream xWQ6~_#/vtݵ۪Ԫ[H0 Z) ˥ITddgo>pOb?*s \8O*-s,0^Vuf*AjOOA<%K7< Ej]JzCO}Wu^Iws޻.(#'hy'UM~bڅ̍"A$/ׅھY 2C1L~ޢ;XkմCkެ ?ѷ%\5^&_mQJ8uBmNYh:\";"#CHS]1O:-ki*?2EYhኪ,ZnۺU 9ݝJ 4•Cܩ\ݬLvCxcOkX/kAm_-z}HM& {/UlV j  foE&%ԆQ _3mӗ`u_58 e|(@0箾6i_̷m`ZkU,f)w/6KbmdZoj稜[mQi#nMdΥMJ ,:` RWhZt(͂QHp/F{)aO^`p@}=c|%5C7KTErܡ!:;~*呒j)؈ '%ӕA 2?! )Iۇ;_d*{U$ᏀOҳz*% zzncI2RhCU!MO4\=#ʔ[A0ǵ"ܜJ[B|;Q@N,\Ӟ_NnJ6iبVW. yokzN{S":s'8.C0^ n@8291AxaɠT<Vݪ:µF̽;Iw2KRۊůu0i3/1$Ѱ!_e&+# endstream endobj 10641 0 obj << /Length 1021 /Filter /FlateDecode >> stream xXMo6W7~TڢiCau$AwR'NKH1p̃ir䧋Wi|VHbT D|\)Gt׾a-zM_B~1p-(a|w N9a316i#nMZ\Z8fumEyeP5!Nkkրqk0ZWEOjbvaDҮD*l`C̥{U[$@^ 2@Wb/6$ʣ1~\EՌF.Т *f2a6oe3"DiRE.ľ-ڛq  `bw㠼ovomy[V[cXPicO؅MAbqCJ_q_qP {pf#]հL;Y>:a'ĸ!0&iȟ,WRؕo<o{5X vDq&"b&jS9,4SS*5Pjڢmiwg!G.9FhAXK" X1ʐK2?._HX@g"UfoH?U 4/ gDdbTXa ŤVLj W4\zT =wTa4M4k0g)95^RCN}YrFIl_Jz|t5NaIal03d\i >^tğCxaʿA L]gK-9J-ᤖDϕZOTt jP!̶oE I+fګ^_*I!udJ]]* endstream endobj 10651 0 obj << /Length 1336 /Filter /FlateDecode >> stream xڽXݏ6߿Kpc [նڭԗVۼݝR8 :[| 8ُ~<8f>~31s痫W)sHσ9q[' $H bb|pgdžG)uğyI=ǝuu8[Q0u٧ůù)=bďi ʥ$ݩ@3u(|Sǣ9GvPDHKGiE^6 ll&pueikn?S귾V5V/(rWTʤ3M0^*8z m=JNS ςe=fc!s7(:ko 4~P{toX7nזyc]Ȗ0Бg`w'3F3tY[C``pbc/xB10L y!oDL iP*oD&N1挅#hDU,ĭD#ͥ s&yBӑg\~?+-m!Ӥ/2Tj))JX**I ?>:}"e8m(C2RJ21^:mhf5p4u"N$앜!^ #zj}u9*㋼~A=FweF{O4RI`HoW1u&QսL7ƪ9tNzMBZ/~s;@T:+'W|mG_`$|]c7ZQ|9 ſ'Q~e%p]ZjWM InBMCA4u=zK5݋OG)Qc''Z֙گ[ð>t)!%ǼWrb:.ՑG&.S4.}樑Tv9dO 6ޏ9 JQRrh06{|0||l|+GarlN T%ԀiQk$6 3ǡSsuY @0> stream xXێ6}߯0RQn[Zdi ! ڦjdI od[}L33EWq*/w<^Q".A_.")ED(OK30ӀJȥg1"iqRb}_Kifilח7sJ.J#5*Ǿ(s'}efLO3AWUT~HpTr3S$|CkpM2>|"B0JX I1.ֵ\~`ɪmܕyOvL03Z8Of90I@%jg)fo>62.h&0A be3tFIgr_[۾ff9@6Z6j鳔Ldj ]ʌm<;1whaeX{,jf4E1%W!麶CB6júZ+?]h'8UɇYe&4פ[+HBr' nѶ-? h綐&8}UMCRNCzrTGohղ~$1]ҏmBv2΃3N002[{ W+.O1̘a23'+ X"<=0ַ%)!X qw8- '!0wB80)J:{<ؔQ()7m .SP)D{*ӓcI)ΧToiЪ>yXm_jsfLOoP7Te3 -sz8 (G=W{.m>/}[JO(WN-vkʽJq#"'/-CB:{xG%SbO&լѠpếY`Vambr+Ӄ"[yGfH HfS01U*8Ez8`p@0/y0$Ԇ|Q?Kt{$(P %C8[&-PD[Stڔ RP,6(C[>tH7qg= ۮkCmeFŴ7zo dz2RUt>%W_uH2v3zO-N7//| endstream endobj 10559 0 obj << /Type /ObjStm /N 100 /First 1083 /Length 1859 /Filter /FlateDecode >> stream xZ]oE }ϯGavxfP@h\AEi*{ۛMv UzW>MNB278PUjLN e )MT S9ZYΌtq $q#ld 6YPl(Y+j *4 %;ZaVW飮MqQe-bHK4u'cH Tmaj&RM}׎kbq('K`m \5u :s%!P؂{+N5RǷ NL#oB; ײ49@ܜldY. 0*:GBId(5%J dHgBd Eitܗ[} &@5#W v+BAo{XaǷxv ?A ť-i|[@Kz~z8=h; ͑}TŞ CWR%TDI+表E,FW=hfء5/%Zgu^m_TGΆ ٻ7 _/]H.gWp 1RZL ãGaxax>yoEix 7$qADFoH&%ޣZ|Tȇ2BtZzǓ²u߇FBh/\kql ʅ#K KO@ZFT9';2=aO|Ux9WΆ/!{wq˂fwwK_~ͫ/lO_]bqJ9Ao!{,_Xz3B5ZX*ĄV$EDiwmp, 4] p,/'zS9 9U-qBAD><01Kh6:㋶$'\hb}pF 5a|ON_i 7@a/fA I'`Yy:wLJ}Z9BGh:Gl E[Ƨ(z@-hTZ^y}äݑQ@+v#ޯԘ*PѺPC]n)"mf #EcI^qdIޜp-9 ݜd#0NҺ N'̷f"553)BfތeĈ}2h=/qAJh9M ּ  $"냍dc{Fی"`b%6d# Bk ~vQt\m4ǎriLʇ;9w-QvKKBQMdv}ZÐ=eَnN2N5Ӹ@渾m4!jirH| b%$].Ʉ EbJ?怸C)9/tM'FgZx}%Wi]{5F*T&ۜ(}t2ݜ\,~I6ugFje^<^2LԊ.e 'u-iئG҇,JFmN $KqVn pfEC薣 pG9G*GE.S!Y QMRҹMJ>)j~yMPzF5P13rݍ)1|nlX(bc H-0rrWW1,ʍ&%Y.j_KQݩɆXzkM#d)'3Qz#)R꘣AiKiC܌SFR)=NIPpm?z͡ endstream endobj 10676 0 obj << /Length 1972 /Filter /FlateDecode >> stream xZ[o6~ϯ0YQn0 nCCE8tA4]x~EL9Nv)ux.9t̛>zuq3Kb=Yȣz~~IՋ%!dGhx~aɪ\u] ?KV\/>^OL4($!l pWyR46/%P$⫻4_,?w \qy[G]Z7CmYզN) Ϛ,q[5l6>ݷj4x;ۢJ[Q$LP@e4Bl\#rXNX^r|XJe4gxߖZq7eq]3:I,.b2GB.R^{-j-$]GtժX%Π#,}4k.vC2^ej'ڰZ6>(0|̓;*!*Y}Ow0(OgB *yąe*hY!:I }\v0k81t{(ƱZckZGh 1: bQ-PIȧZ9>Uk#KL0*P+|-v$MO0?U8P(cŊK}@bS{4f;5# zH 8['LnvǗc+EG@`G U72 ۮp+<0eՕ6D[7B[fDlaUu_* DkVCo(EHNukadʝ/b5Ѵim41{gQ@N)!?)G\A.DE(LCSY^ed4EhLuZgwZ=bZN>"!?#hJbfA^ٟl#qgD w+5zړ}O*"S0'O{** IT:~"`zZeWvʤ^gGْ>0,5d w,9?ãڑD?}.)$McS,o6''S\Js.@V- zBzS3a/$~*{#O;؁F'MAA*h1HlFmFS( /tޒiG("Լ~ld0Dj ,ci.b\5DYCȃܽ4orbA9Sي1ApA~$|z 8S,2q6'1@"wwjoP|9Usc2L'NTɡ3 O+t-lc> p |0*^ Eeϣ+: bD}~x~XI:b::sxaoQ_yr$y09d'L%؆YDuTJ-ҕl>K Q?j| ,£W8XD֗< M ;3f5qO(IdZ '7t>O|u`c<#bTpwؚ&9}/i,Vq4Ďe ]}i&$W>) h_ w~, endstream endobj 10682 0 obj << /Length 1068 /Filter /FlateDecode >> stream xڝWn6}W襀X1"%b]][ Z$H"F"Yi'؇X9s83g 8^^ʂ ;' RDYm{7!*0.CD%4N0 |vEQWr1rv\w#+YYw.+6lxۺKL |xԙs ٗHYb΀?ިQDl<؎0^~!Oud HL'ot[LXp;RR !)c,:qR5d0L|PQ -4ROypL@㆙"LveXgc8m'$t grsXPovcG',쥼Q3oŏQu9w/%&̘[<ΤPJWq*p`-$\Ůby]8Q}Gk6YT4-e8@R>єَ_RKt:]4^WKvMt@mݜNax,ϣn]؛"7& z3Ȫå&ߙRqu?nw endstream endobj 10688 0 obj << /Length 704 /Filter /FlateDecode >> stream xڽWM0Wp %(j*UvVкgۨ `>h{B{޼<'QL?lW17@cųϜ*~|Vmat۶U34fE%$?SjLe:J#qMtƽ}σ= &fgrfEMsMw-W}b,o79+(7 .w'$ņ+ù6\' e[8JHҜQI7IRfV"R HPĀ-R3RM!$GQc <g RAOQ/&0mԻ X/HhD;,5;ܴT^/ҼI8 =Vr`Y^ "@`t+@K"}Цߒ̲Gſ5p:jF ByXZ U@BW,}U+!:ZyJ-e_.\*!=4%,ݚ|C|N- j, ׳" ="hB\t0ΨoL{?(DSRZWre.sWWͥaWK#@=;yx~;Hmᖤ }t:)kϢoq|rݝZ\RQ[E$lԨb Yt'(Kp endstream endobj 10692 0 obj << /Length 715 /Filter /FlateDecode >> stream xڵWˎ0+X&@&DhN.k+%jLfǿ<&MW{}{m,coXƇɻi6l\[k0keZKdl}Y,f߶'Vir\5۶DȘ[օ-sç= Xhg|nߛh)7(/ gP> E \~a4ӂ=rylWb7⟊5 Q.1-E˵^=h^pJń&=PccżRjU+1̯_m!kݮIЅh|85w,=~bp*̍Mx]>,훟"=RI $,?5tTGFFʞFM协\CǮffA-q#ԯ{/s= xwЛ%"b TyBp0璝M?qhR}l˓%)3Aˇq5?P8˸:0ŹzQP3k3.XDFod&:F*wj@k埦bVL 7BV$}u!Y @Hxk@"Ǣ(|".ȑҮ{;ӬRuj,zz&cz ObRQ1 BtƄ}%+=G~m@&}f^\Co]=o'[0s endstream endobj 10696 0 obj << /Length 686 /Filter /FlateDecode >> stream xڵVM0Wp$+A dC[u+U=[[!L[I5pdw'0̛g'1r4u3wFlel|5oƖy4VTMR7׌dd~:okzxIN"kTLY3}vgays3i`~Rp@E"+aVO8ȸ Gd\ ԧce ـzvwTA:z|.29 & "HV \8FJA"8gghE!IQo(L);)D4c(9'CB [AhYp//u@> stream xڵV]o0}ϯcS j(^VyؤuҴ=m1E%Sg0 vC'\sc _vwho=X`6؅?w_Nyx[hF׌.-Y>% pCXέ: ^% QECM 1fB {$))CJ̱S&87rJRQd&^QVYmlgٚ=Ur WY j;,RsQV$%j~RP$C `kх uy2o) 4䏇GJPХl@9> E|5GT]q*C^=dlhѰ `1zԼ3r/aG{GÓ~ hoN^iS>CY%4gᨲXB~7vfi?{Zw3ѯiЮ7s[? endstream endobj 10704 0 obj << /Length 759 /Filter /FlateDecode >> stream xڵWK0Wp+Y iC[u+U=[[!/1Ēcq]5#d)ž͌'ya:Y65Bv`lww IwߛJw}Kuc wL>r`5uy9ΩU (B~߽V0'' 5C,rCL0y80qzuxF*!)zc1x[*d 9i^=c>|n"Jk *%>9@!M$Wc4CB0ͦ z=3„H QfaWo۾-7a<]Uw:kcwμdƟϠv8e8 endstream endobj 10710 0 obj << /Length 761 /Filter /FlateDecode >> stream xڭWK0WpܬbHaڪ[jrk+aukc y0|+qX߻;cw-mcl}4*^=8ؾH""!dSP\yws'SFVgc{ʟz p: \ X!z*h2CZk~Yg%;O9RL ޖL*m7o9E%p*Y"ݥݜ6T4 rީɭ%(3byZx /MmA -jޭ0MaHODMRn{B]*?u&yocxUf^:](DϘD#_)^2ᩖ8KR_ov"ɣq%_6M\lsYZI]*t7vϹ04sޤ62vM/@~8.+ob endstream endobj 10715 0 obj << /Length 704 /Filter /FlateDecode >> stream xڵVˮ0+XJ!eVMB\pK`6m{m1ܶ+Ęs:HL5Ԝঀ[ߏ[uBG!ӫm^~..v ey}R8U)`;f}.-ED) %%Ԟgj.0*cu~Fs@ҮQ ⫚Ȅ"$4< $"ڴ֙bo] Gr "c QL|4c,*4-Q UL!TO|vNJ%GטWp,ϾiJrcPt@ %dwA&}HՇ4D鴛sOo"y?|#{wm- endstream endobj 10719 0 obj << /Length 665 /Filter /FlateDecode >> stream xڽW߯0~_774{kb|ao.tZER-tCS:Na.tvpk|`aՃ,7N\,]> stream xڽVˮ0+XB%/UmT]U!Nbnkc1۫v93sTΊ|ڼ7ۃ43x♾a@ SWbMwG=C=W 䖤+uW=l_%:,R{y{1 ,chܳ1|71 E~T4:Z$0BQ /bY [;|^'uh X<%el]MXƵaA~4 \ nT1⮻siv2(z8drT/gYL_ʤ:,=TBY?%;K"$=͞~F/KrW*^a>رlv%v`ؖ}B-p4jŒC8PZ@E5ޣ(i/o - J]ѡԊ6ˇE> stream xVQo0~W1׎cIҴIhBCW!7qАwι@hV(/{}ᄏg< >7h1Jt̼K"/#Bc޽p<̾ Lѱ>c$ 9%#OHEYBA, '"Af酵w8kRe8ksN~-U+&,.f‡ JO (!I;V!gG('\iq 66}L ;Ҽ(Z]hvf2Խ0qVF+98fϪ>x?$Q6 EQ»LmwVa H|F NZG!7ӗZTjm$fPm-&J3@ 3IQESimרvk o_)SJm kmז#m6™QiY83"<&? endstream endobj 10737 0 obj << /Length 1516 /Filter /FlateDecode >> stream xڝn6_!/1")HЇ&HAw6vwC*Zp8,E/.E$2VBEWQ 2Fw0>IebQ%~+9+,JU<WwDPcozݟ%ʲ݄Nhot ^XՁLg*TBB) vDN /Q,W <돉(c36UUP*к4z4[:QnF۵" OTkءαQ%}w4+pE27u f&I&}ckɤ:хO.jT[ޚ]K$ Qv;P26, Y2EJơXDk$$,-l-#̯,|4@'uߛV0ZIDZ;*N;Oj]=%UVę8p^^rp{"O)^'[T;W]fq^/ =HOp4~\,%l?653A27P7*aWeM2)L2Χf$e,;)DBU;v%R.rЀrڠڠ;3I{ƋP69<--B1NlmآqO;"m1ۂ~ʗ q:yc'8۰xy_ar!BPq§,ơ J:fS5޻s-oH@6ໝ˰cS.+V.BRbZ3\tjڢLv h9:1! "\-Lw 5_^y5x"c^@jaYJz6{ɵSmU%X]owIư3ewAc!1䈣eҁ_`S,QjMiFe0pۣEqM5T &ʯ9Mh"Kmn[*ag߬x9TJ5$˯\ʶ[is8&<ҁㆳ\+gvB#}g)ѯ.F6z endstream endobj 10743 0 obj << /Length 597 /Filter /FlateDecode >> stream xڵM0>T#DKHaVm^pXk _NEZ`;`nL'\/ ;5<ݰZ5}71'Ox3f,G>+=.USU,["Ki*U+FϟFws5]c?U1%Wp{6OSXI]x9. ^0 e+#W|SEّR}h%9ò)>iXgf=5XgnK٣G̚7| n2]5h؈P)58FS{> stream xڵ[o0)x TlM6i~֘)>?74i+i*LCӖtM5_5$WTͲ$~ȳ@1MS6<(Es݆%=t (ep¢44qUtZm4MWRLT-j4յ}Zò'd('*r˖7Xj7PlÖeorxڦoIgv CXr 1hT@Oʹ TNp_d<.nRz =)@ pz9)W*)JۼdE oJa`T҆#d|q"7+xE]>v'`;2̋-x&v *łYgXӾ <27wak$ NY~GkUŻ e(`KR~P~﫽WIUr'21=-¶U'W@XUEIEs6McD`CC/&=u֩QT#xO9-YwY y󚼼W?/9֨n [8܌Bp?3)H&L endstream endobj 10751 0 obj << /Length 596 /Filter /FlateDecode >> stream xڵMs@໿b§F(IN(eBYG3Ǘe(C Yxޏ}W; nH0'@[@ AT5B }GGby!H xEtmN6oN`G!+3/,WU = e9\'oq.ձ:ॉc?}C%cAS %ņuƤlpۣ_zXCoOk(yxtV v}q꒤AB}+ q);rt=gپ?(2!ˆQr*.6\xi= * 0AHA5/H9J*|Mrg- -Geyw(9oV)UD);?jfݗ`)gNL]gOY"7%cCzGˆtꚳmIZO>7qѐ$$?%cDqq/庎>Ȭx YIhK7w}No߳?Ϊ>?hn^̬!؝KlQ|G6T|@ںuJ;Uʷ@V`^shh޼ endstream endobj 10755 0 obj << /Length 707 /Filter /FlateDecode >> stream xڵKs0 apw tx4iA`ɕ ;yL $(ntN涫McjNJR,>etEaxzip<=[1e[&ugsra:Z `,'}jڶ&.[Ke\We˫ qڴ)I)v*v?Cw-WGE,ayBj:%\tͯsJ4,j> "FX`m:K (. rUwpzqG@]n7i%q2 ʲan\`*W{8-CkNU(j^K%+i݆?(=~eεDx~]g^V<òiyCXb^]( ?̥A.?~ ҡ endstream endobj 10764 0 obj << /Length 1721 /Filter /FlateDecode >> stream xXmo6_oDʒ:l@C7 +#SPY2()/~GHKmW >I{y#f~;z:z&LgOR? f|OϢj=t9%,JHIfEaVRrR^FZka x_F~jHh|N_>eXMj;޼6-\|.ڢx鼙 V,J"i*Wb>*KR%How;T:=9;#ʆoXO'č1gHri,w)( [%FSVVާͣieQm>Mv -kJ8F~]\6;}ӊq8eXYҠ|,/S)[tB5ǡOGIt7ꥵxۚԕ0({`b˼Fhô?]_=jeodm3֎Kتrf9nn\s 9#Е-Q~M7|z_ EIL Gֺܕv7*;:z_50R).Q7:3`>Jp maBtJ\Yc )#tɞ[X\:Bo,bC0?l OZw͔YtIXO)K!PJ@Nh Y'n)5$Eӕ&{u)$iHhJ鵮  ̤ʎz9} }ӐdnTvP:QcǶb(lOUۆBG M hoZQ A@( L@#^N^) ,qdX[=] 8 }SȺښv*]$cv@6P$w.%&U{=SYtb'Np56aZn96؏~̣%*U)0eN$`?O0H&JenzĠ x aWo9&Q-x&zr!u]5+x(FMO6xjx..+.GfHBYv?wS]%=/ec7`(5'7JڳȨč*;TF$GlXMcƾ4t<b5[gŭwL!c*!LFu7|Jy5l!4M'hyQZ6yQe唽4&IFSF%'e?abGRgǘU"'NVa|E"W/(q)쉷ϑ=2緇ϠG/We^w09M`">(qN\2h)GCt0שּׁ!-R g=𵺶VY1yEfw903ʇF4Zۣ][}ĕPYtjMU+'\xQe&OQUN#nb=_ /䠋2n+jGn3o35!m$nmW~ XoۦXOVkҫwƥȻ:U5x} EV+ΦA&> stream xXnF}WT/ Z M4EH`-E(RY.m woIz؉/"E3gΜa$xy$q Y &| mN21B!Yey80{f K~!?EmfH,'(Uwg(ӫg ·ˣn}8#uIYD wdե=lZڊѫcf(@7j/*eL21$saEC'3BBMS<\p*-M}(4ӋUT'wq',\Y5SO䢮\ @1qG0R-+B& 5AV޽С<Yt`6oQ nՓ mXC G:-A`!k9Ю1Q = ԫV|ei5xfÖC-Lܾ2v^n ?F#>߼5?uC(RC]rPuFzj{㶎mɼ҈*YE{o1|J>9S b䵺Z%'AXWAFKYJs)H%.MwMb|*{wnV)3]t2maq=$1IT(V%]UO_Wgzt>}tY5ކ.dɻL>rltnRWӮ$2t@ub"r;٧t&'ϔ*}-\gJK-GlI{tƔ_RK4E&<`E[$z>͍w{Jm#ƄF]t*l8I䳊 Ejz!*1MZ{e4/M%}-)5Z)o_l\|Żzߧ,4٢bTywZ5,bӊ6~2< ޑVmP +ݾx mQQ`JW4FM$ݎ{v%] Aqs`nQ'd2V5#褌yí&bLNb>wEyي5 De&ok8.[5c U7~`"`e>W*)^ 冋IK&+l1p( ӘL'˻UcBʨ!7yUQa;Nx5a̎͡P;LTiV_ׯqA8 C2!j?`>|#ċT endstream endobj 10783 0 obj << /Length 1630 /Filter /FlateDecode >> stream xڵXɒ6W*5p_|HUd9$)G)vMA$FB"<&=)K/k[Wǫ۫ _{>`zEj[:iop R7H&4u:MzC'9m׬7AswQw5-/Va{OO0u9Vӣ2ubjpRpI7ˍqM'V7c'5OֹƩZO|겑 ȩ-ek9W)ѷS]Ms꧱1fݢD{J9V͑ 2?3" dk['\{-ҡ 4xMn$MR7q;'„~{}m6'q[@ V/6h71o$*:BԘgk=#;L;zvssAرI%$@)4H/E-&eFKbA 0r"{b)|e@AmEeYpm}`bw=IB b aCjH;r\NkWC,y8ƷawI6#%5rjx`lp?PMϳaZ5H<%|y6]ӷSIV yT ͑5q=pBPI 7v# g-ӑbs[Izܦoa3>P-KIyEᔼMw$M2*afHK6THSЍz }N6(60*дhy.DМ3\ć];rXF:.jE)|Rh_P>0~[|υ&.I7uvz_n+ԙ endstream endobj 10667 0 obj << /Type /ObjStm /N 100 /First 1083 /Length 1876 /Filter /FlateDecode >> stream xZ[o\~ׯc.g8F\@  ~pEj4YoHidirqH*$*5 a-x '>ޖdd :[ ~$2&9qOHSLk+Th>ꡒYe<4p !E)PiH^@N%6IK\+ 'YYCJaA9V; ͧ`=|lD$JLcM:J,6HM4]k2b3rI "S u|uD̬ [^YӞjTPi! 1rRU*@2mj2d)m(V%I~q&,fX el Gh2bl!ZʈG~uqq 7:Mм(QSv<ۼ=|}yj(Tls?ˆw_2yo ƭ øF^_.__&O0Efp*RVHkY= /:PRd$'-6V>F!$ǒbPKͥ'ֲ&R({ޟ'*ΌURˁ'i2o]# 1^kFUѭa!U iϬ\owz ; )RsCxrܐV RVb|{>IߗctyAKB z> e,G?c]b/vAVA{G:{"Bɟ$*KNrRa`xH>mTqnKQսVs]0IQ/O/'YZXN{,ჴ J5Z2c^+3^mm(QK@cfTu{?:h.p|3zk/@Wj)z$NU4c4\%ǝ(c}h섚pl 䢇<u+S}zn_TtZ{,xZo<%c?+`\ - MB.mwh@U64RuٍN8P1 X'` &,QqY>"JFҚk*zJ\"6zORdV!`(U:tcawoü\ U8GFRl9Y" V* CwhkZ؀AjI& jF` endstream endobj 10792 0 obj << /Length 937 /Filter /FlateDecode >> stream x͗ߏ8+vCL~؄TB{wTj[Q%]gvvS حHlg3*'>2\N<#pH29ڦ%ÕeozC`A04-#{bٮ[y/YwUZ^X6|Gr5^jwUZ9?C䂁?lͻ?zOx۾ʧe#5oxzU<^7lw?'܄KF+)qMj,2y=RȁqUv~@١,E/ uD#!|ϦR SeqiDrr*f9t*hy<_Y<#Ο?A='b٫i)X]dn6)ɪcT;l`acfxUMf4/ f,2/<*^{p:SA+\ѢhcŇ'm9õfەQ@Vy[QXR@HnS\e6κ?9>ugyEWb'R!*jhW|ra 6Jq@;]}"j i BA|KMshӫ#1[onrM$>rQUPRVrJ0݁GLмG,vImtV5V]Nif:)UAklZՈ:഍WD hNPW 0tCSU]@޹BRQ bǧW{>]\ŇHȾGH5f%KJK:\ށax-܃eG6]*R (y endstream endobj 10798 0 obj << /Length 1336 /Filter /FlateDecode >> stream xXM6Q IQh)R( MʒKRI/?FζE'4E{ofhm#}F Ѳr@r9ó0| + A,MyQ.7)M?tdNӓYrGs4)N7r6O$;a_Xg$nlNbamp-crW)?I͌n%jv;_Ji-][4[i2,3/iO=jᗟ@\a#Ik}yg̺id3,0A(YhNSbZ?ΚrrG苐9y2Er<~<:V2^ QvRGAHII*f&zVH7@lGYi0lSB^Omw}l찔&$A)RqC`b~^{<ҸkPZVֿϿ=./kut ޓPkbZبmb+7 XY=:lF 3'J\\n={!RjV'MgAŌmJ8NøO6%Z NX $/6MB!Ԇ4'+$wBw?: 7 {US7adT/A7ǒ;>_zloNNQb3pvc5Vbp[[>]Q 5D†\?RsՕ%ήj!Ĩ*nX|P3Q RV6Wx-lO{f?̎.Cv*ʕ׾h){'#_0$Z򚺞.` 3~*mkI蝍sމ7Jnoc"1mQNk!-i]Le|2ЪB3 ɋBˋ4(4 9ق,0Ě? 2< 32#`)YZiFM gŔ![ %nN hVV'mh@eJ/jh1ؙ$qL\ ̠om??/c!e 7}6YEwLr%zCL"Y #$?ԪӽI4l5 Rv}r`Bpˑ" MP 61JN.ێK'z](Wż|yPW(S:F.}Qp}ÿ m9 Z9V s5+u?6W5pYp.H)_2+ˤ1%O} endstream endobj 10804 0 obj << /Length 1538 /Filter /FlateDecode >> stream xXێ6}߯УD.%hmHEZ^ )C1Џʔ bQə9s9cFޝy?\=_]=}f^e/ [[z[%0MS?)Hy᯶x~G5A,)8 vfSUޭ~z"YiEݴjUꂮ /2<4"y4~A~"̿o֌VB.ڼ5|OAKp0IIVF⇲ ,Qm9kf]3Q34-sFÔ$S/$K SJ,sY̰ Gz , :uw;3mЁ(4xz-;5&|hx#Ѫeo*@c w]&J7e͹@b&ZV~cpYlP>JZܯ4x.Mj E毂gۘy[aud6?L%XO(t\#mҦvGW~=۰^̕GUр=1:L;9HFN(Z8RG{Ob[N-Oft~sލ$OrlRMٴ͔ `9.~x%8I'41Ÿ3#G7m)(8\]gW澬,qtpjc R߲tF#-:#ʪbBX#JV:)ybވB){5wB㖏7-hǼ"vi7-SHX:hWy{εqBhF~]$HGUli4i1`ib;a w05i ץ,1ЗT[[}'̀ *̑t:"!V]H.W!-r:rGd-A01RHA͐x:!q O'$~*BC¹ g٤uF;vi98cWL)OPu קFPEl y#6*erd5J {?\*RwJ=t;˷Eg!nou4w%on~^Y}! L߀)fίґ=n5dR2trK%s#߼F`%#/)hW~ny?ų;P߲.cۯI!/uXqo겘*)z,w{b^SW[uI=6wd֤_K endstream endobj 10810 0 obj << /Length 732 /Filter /FlateDecode >> stream xڵ[o0y H8ơ&U+ ePFn~vȥl=v?sqtsӻ7#ߙ.8D3;]o=P.9Q8> stream xWMo6WV k)%@iEC9!K.I4D[/)Rki-[eEQ̛7$I%L@d0XWCKR:uiE18D)bpno"vMB/Ai޸ME^*%ʦ `WlW]$3q h7J(6#tYo7Ic ;SJbh=D"'!VW_Ԉڶ:W!ZʜՏ?<Ͱ]_^|¤*PwNif <Kclh[+͏-C˵hتZݧ\i./ |_'hp\ p!S>XhJ46ۼx< hN?GA `\ [}}v:> stream x͕]o0+|Grv9 ]m':U> ?'mӵM?y 0}.I0! 1Qe`[SO>PrvIx!>|9 m2#̩ZQ%v(Bνwv:GUo5AP vk!L6(R] Q'\5[:PH*%A`ɷH/~vwxsga!%VS43=e\-@ĺ2ZZcVO *J;}ku5 aĐ.{j?i4s@]5rIsp(v=hhqᶎ*?IweJj4R%{^:sSpSM[;әº|zpF8ei Mڊ LS7ip480 )j6XԀ7eG%Keus5̞QE^/,VW]Κő.SrLdraKs_B!%ٻ+pjey*1ȹQ%}tGGk%*+K}R_nޞtV_2WaKÚ;nMZt>ds endstream endobj 10836 0 obj << /Length 2307 /Filter /FlateDecode >> stream xڽYI6ׯmlB- `r jNA۔EU*R2NN){ds$w>޽{ȋMdnMmTlO= 'lyxUU}|"jdwQtI mK ]z|tj_9*ҸKM]B̺KPNP7QUW~k`~qg"+#\=7g}=O=)BLrbXЖ|fm'>8ee0Џz'QKX!)46`©ԴE]Ql1^]VmٶQqfJ-=;@$Hȯ!W+8_מ.٤&P?~W+l (f`JG[FBM,jvSKaEx}>Sp9%g $t Ũ(AUY0&q/48/Q2k07iʯ1Ki-6SP܃݇!-}K?h5p*,IVfD胵Pz"9H``L:6ԙ& >3G{3a\pUO{^SFf[(Xiy]C%--m밶S! AH7qV FxE6AQ|_S_e+ L2( q#to m)Bo3TD|Q٥{:.iuTxtOx|rwM2oH9!n =P"C1)ãJ+$sޮF&ܬStv\ #Q H,F:#|b$\Ru[̱*s̳di.<`\co,`Dѩ0)' h0Eו=M佣ڞw̱.NT7qPȋTFlia$LRpҘ0N^ ό41-RZZ2K/eЋhEB,*G#GA"ʝž`YNTɖ{iHƙim4|;mN5Q eTd4 k昊<vn=.,}2>VH;Eh\Bv*Nƹ gǦFcPLQʥ4-eQh yZ)[Y07e%ms|z7ڲn?кr-kUCJ3VDbŸͭ/T`8Z BzZV3W:؁[.r}U3blˣX]IܽGxrjf{ Ju~WWn|G' endstream endobj 10842 0 obj << /Length 1538 /Filter /FlateDecode >> stream xڭXn6}W2s͒,InM06%WE,)J2I{( ৽wg{o4FS-qHlb2,&,G$S7mQKјs\./Bϗ1ɷ٢#z{VmZdzg@rl4Ѱ2*u*MqZn{s$`L9[ҤM:LHV3h,V˼Qm;\յB@}½nvv<»@oqY)ޮМ`t F98#j+T], wO>Pi2n PP 'n\(SE5Sϫ{VQKJesZth7fZza4@ͮcܭ8nTjڮuV %TBA0r`[@'9R&&Nb-2C]\55wkK nu32fv JڈT21!NjA>}8>Ĝ Us'qX-#&6P me5eqylzT"H"hPVƷ'hHti-Z+M^ԓ?1{Zxdn\vSfq4KGC[In6T迷d]&t)'mä@GSLdJJOήuD=!5!^q- Fm9BbZO),W-j5Q4ʕ> stream xXko6_oHɒ:`C_)3Ц耶ȒAI%K2M l>Yqʴ[ѱTк/o|xDhNZ;S$4>9awX"DQy Qz߳ v}4z?d9Jq,sU ZN8'R,04GКl|p([E9?hB/ E>x>IQe:rEDI e^chzkZk-S#:^5+Ŗ͸yTݽH))׬ N o*@d_.'anfn lN@ML=c M>FX5e;7uvUlcwZۛ䪚3*߮2$ҨC쯪M 0,w "ب0 7j(U~5Q0HÔ=$2%X' wZ W#z4~gT8<CuM(߂3Ux Nf$-gUaHWOUCsߥ:a@Ֆes NQr+WwtL1$e\@U6S+Š>u?>&pe.Hٮ 9x5m!$~ ~u'iBڜZ+Ɋ]gq"33cOgOkz4rycU2)L ,Vy4nLI94e>P$xT$EIf rU24Ѳ}ó:Qmr'Lr֯EJN^mppǜn^{׋Z j5lRxB ¨BTȡS1)VU)z@Ī`'E\H]yK9vJcSȽ=rӒWɄ "uKRtU[ nyďz#Y}.6Qu0qϺW]~Cpx#":+fjͷ1ƽLbT>a8PE 9?Hg endstream endobj 10856 0 obj << /Length 2263 /Filter /FlateDecode >> stream xڽY[o~_GH]<-ifR@EH-D Q$/=!)Jt[y9|2ZVݧdp~'<*ˆj[b?DzwhᎏV[y_XަI g]۵MW>໏~WqQ{'z591$'m))p+zK #4%H$5|<q爤]|/~DCׇ-4s)$I@t%?)|U!ɨ6CW|WRH'ƖFijaхDe ~׵w{[p[5R>"YY #с[͎W~H2Vf2  ~!Co-/CwKX*]tm /-V\xK!$?[ldh6GQSbQ7C@\3\$4XFC2$h96g8`Ȍd}'ZnYW Q*^k)^o|es @䰣9poeh@,A4mUpIfH)]HDn˄M0.,]|s+i Cw1O`d o,зK>!fy'ܦ'LnP̃Y/󿝤٩Bs) I* L%Tgc 4ub5Z=Ң48(AqM٤LL x%A ^wHMKs}ƛ!G mE-MҰb>a[8Я".#hڨ2[Y-P9J{K1 .$eH>@Ló ќ! .0B-dMm 5ں:t!3aU 0>)~fO%"*gc3 gAFpXӖ60U%iQ=o;?S68^%?D)~Bɭ(h|b!655df e%cjyj Esn!0𙙊?K݆DR…d x [b&%ŚÇ$ `z_y)M=Wy}ikUcdʛ+vb@:w5뛚e L|| ڋғN~-}n僗gđeΊsP=Yֺۉ$f<,i;?h{XeG0q&T %yrI 1DRvR̻G(*:9=~iF6'HHb&j)KX iVG*nV.6Q@D©z/ր ǽ C$z>U7>p>ؠRs4T^ވ8,y0rab$)6w<&gX_-C8t' 'FbWnyɼmS"e__Ju߽sxdm1ynR]FE>:'BKRsIatr'H%G*.r*V`Bz@H0s VՂ;)ZlEhUGZsлVrO6:P0&5t:-P0 ̺2IsT$͢X{X{0b'-^J)cK-a1Z@#˲]~A endstream endobj 10863 0 obj << /Length 1133 /Filter /FlateDecode >> stream xW6+t\ZI-y- -R=$hXKH:ɡWjEay8]fgW7IUAy\DqFu|N39_B´y_Mw`!-5^} l .F~6)m9u1]3UIR*0{];2ZVL]tѱ5mKLߔF cI$fbw/ָde==8%Aբelb$G! $ŀ%WLMqB Hm[ov官c,e{س1PLߣ2ݗ(;WywYmY=ڄQRd/VhU[bŗh;m{Yz ?ZޘH|:~?dw$I4@y&9KrF:9vPIC3$QqoHo@{d F+I6i`MN#ȈÏ1ɤ *1(:]Y]+܋8olDR{ްGc]c Zu((J<@0*l.h.0 B|f>q$t*&NzʛoVVJÿ{Av!6ˆۈnҦ\6]Vf?iDd.޿#I*O.ǭ7v'{fV64EgB. wӆN(iCo|+8ؾllef G2@mq#qn@CqlR֫ǘwdRktlJu?U [*/`≌Cthjh$"0b i.#o׳2} endstream endobj 10881 0 obj << /Length 1979 /Filter /FlateDecode >> stream xYr6+;MtN>V֝, S TAҎxʎtHC{ιp(7o*@QXE nAETQ7Ȣ7O<@(,`DaUjt_7"A+\"[y _Ъ&]`Q_8PNꞶL8`w@ؠv 11XlUs{r Ɣ@xfYFIg])۩Uhy?6vC=e_,,Q >eaab˝~mo(sۡw *n$q&y^Hۖ%-IVX|Yl\7p(.NN'R=z+$mP28DDYuv}^l )0O2{'4MW7`_gnԗv,븓sJc 'gDoK"[X#qZVytsfY;|Lt?yvz "WCzJeLL1@%Hz쑬d/cr'p(C`@ |4v4¼*\X6l0FͅΊ0.Y&w;Y.YK 9%҂oBIWgȁYǶuf B <jy2%'Q?NH9b `͏OL^y!"lmMĈ/Cvޯ2DNKû59br|96lEJèlDR}DRS31ڭS8ꓪ>s! DW{$l#SoǬt{ x$!ڶ]"rX@'ttY9U"6̬͓" s8(3qӨHj!x,ID7I1N/÷ns‘%K?2_wSc='l`BVP:1Ab܉wsnߓ* XtuGU,ueт`*<>lB`|iqaQiEY=t`i޾tEbUgKНNd05p9=|q# rp2U4v۪%TpY[gSl\zO^\RИ D(~ٞst`Pk{ӕۼ( y;F\/a!#nssą鈍v,}hۻg;5uh8( @= YXsuN,e/^/GOJN5&?-u܂rd's[nPZQ_\(7f$P;NEi.L֭UaWϠ7_evHfZ?ȨC>҃\M+<&ܡ| 6{b<jVX E%˘W^c+Ãt,nc %b^9D^Ө[,!%k!Y|T`.*`dw48[xOsǜ5֞syဪ#]b<;^F,xsXn}~WE~y/ 8+0 endstream endobj 10896 0 obj << /Length 1476 /Filter /FlateDecode >> stream xXKs6WHuL >DҌ( 3IHvC/z~X_ݼ#CT;/,Q'z}y ,bUĽy@Hh (SYߝx)nWjVa$LPmYes4.Y}9к.էSsXn9k['(9"-Ȏ=]#j[)GRh 2.?")[>)B{\&>)"|-;N-7MϔcYiD_n؟!V7˵7/}CsDvԉmb˱iGZoh2am_)aX+PugJ-kvrj#dkwu[@?[{ endstream endobj 10908 0 obj << /Length 1381 /Filter /FlateDecode >> stream xݘ[o6)(1+tɀ ذKktEHtB Ie}"HdNn{^?A=q~ )'їG `Fc ,ьU=Ut-+xb(ZSdMF3 }/MSG3Ji]~gݢYFE3pFO?nݷZ؉&m1~kyZԧ#ͼ`:q>[wU{]$Cx hbl|&Ar "wV4续cgZ̚4e̬A֥8@a4^o},RwзM:ɿH_фE%(R"L8Adr7aF21 zm %4yfV/jT|:+Mۤ MW./epywS01JUΜp7>[p̹) KYtj*J#L&7yJYyzNьZFKe{L_mbW]@<{*7ڍ T^{IuPUvX[c+ !(TZ&P Bya%)jѦbX8!^9xkP5d8Frk%[7/Z*+G-l:q (9'ؠbۢfQ Z/TKYKåxfLTNV99SjKڮmZkw%8nnVv3l)|I 0?|ڄ$h'`F묇zOVL֝6S` 6fc FPFSqyg$JE Wo$̓gkFQJ# 6rс/+<5!+̿`(; =p~7cs1Zζpk|q]QSRGrijYjL!5*2#wW3DQD:ӻk53rŲO5koVFcNjhLCwƁl֑ ZM錡SBfoIiju+׃8mAl;^->ޓŕMJ*!(1aЗDjC$8-8U#*+N0bEdE)Q2!b_FxneqI@+LTMB4bkVܺ+TMWW].9uo [ a35шt\Cd1m.chTwܟGKd( endstream endobj 10786 0 obj << /Type /ObjStm /N 100 /First 1094 /Length 2240 /Filter /FlateDecode >> stream xZK1΁*VY`$@Ny1v=+rFNl5,z6N$*)u S15IA8MtvMHy0ZWu5O'`kz i"{9f>X禇4:7}7߽Kݓ'.JOqΡT(A7oܿzz.=Oo?Ig?K/ns{7n޿1?1` ^_c{2MB ޛ|77pf,T^4BWؗ4PtE l_ =M??Oo?j*JV 9R 8?R v0AW`‚]?`Ʒ"ZՖrȴd 34mF  ڥUP9uE>D$D*k4 \2#E:HROp!:aUe|0_:̽S9u3Ox~H-PI; EPPcSpJjUL8rGYaɅ m)@B 52vQT3o(CP+B^gл2mf v^|9y&'8>)Nj|^) KS.QeF05٩?JA 2-/Ԫ`!#WzQ ؆`%`{D$r$NzMX 稧a7IIDgbv$ƦNd8z-SpgIF y$өT$>q1"ÌT["ݛhFDo.QWtPIeN,>T'3ޓ5زA՘SJ_ DVMXEpp(QbZAZF\PGA`U^Y}u$!,A27}p JWQ\S^ȡQ@uȆtDdl(/mCiQ?Poz|kX }uk,ܲ6[|YzAGv:iKh R,Xl/mK-$m@eErdH* a4:J(ʆm>u"YʹLlE3 E @y$КȨtBL,7 O#8(}NxKAPa1n }ٺ: ^QB~ਝ9GcF)Wx3jGU>&Dau4!BN㺎 ng b5k Ǹx0pkR}rpsZk!P?١~3rIbp*~@r&%%%%/wEz_@%Iu? ^|,[-Dp2D.Eh$5ngh$Ȗ&٢a~`:6eSII8l∪S'"o!.U `` %ʆ#OBT4T%MQ3 J,r*> stream xڥX]o6}[!VAYN زuEY02mIC؏%/)Qd݋%9JfY2կW޼ˋYy:lV&8!j=.vY3_yex(Utc8Ҋ"<j~v Dw4Kk5zwyhi̗]yUܝ-HF|y9>gAy[{v_Y \)3| v#q$/oF٘hViE*xӰm[ _؁YxqkVPL@"ジvL|=p"vkrvCgI$,Hjc\]Mm*Jm8]Ƙ? 4E"BdV_+qx !\UڙCߠdrC1ԫbQKhFQõf{]$j|}ⵚakӖGQ ` 1+Ee^i(λg^ڈ$)m|=!Үj>gњۺheZ`09'ל3k=NU( OiY/Nx]yD[-0 fqGLo,sgFbXs,Hb@g,uR,l2 ,$R:E^@ɌqpC X,<ж侱5rm=5 ~1&{. VxL6ʫY[ 6ېՊ db0t +gEz[aH\ΦT; ~Ok|U^hUv lτm@ =X|? OR]B>j|rDjWKV-bsWJ*'uWU"Sc;m3 Bor(~J;t(Qu 9C׮Jf1-}ѵat}R,?BxgӸ2#TdH \fAWR8kty0\J"NMfm+gޏ`"MaفxiT-~뭔 A:NyVY fe>26BMGҘWH7-cpvuQo.fYKN]\BLVY(v_X%}O"q ~m. y#sAN!p*@)$%Sl@!aࣜJPӕzBVA#ELI_;{;WiG$I-8Y$Yhff ̍}?zDJ‚%.'@BmY\4>/},Yy k. 8OQ\d e(o,X5dUS}uZґN>灗 "-!"R ܵʝ !~#[}h$+iʷ8uOI+ӣ?"APjCTƼc'n #3!N9gf5+ q6[̾S(n}NJMc?؇y`ޞtmUב&Jvg穥j{kf , ܬ]ȶOxBoP<,p6zZA9 puG)(Տ^bmi9bgOmμ nMed3=L>:8c4Zxs ]Vizu;=#it7P| C}+-لEɬp| a݇> stream xY[o6~0$1+Qԭи耶Ȓ'uSxHS̮Ӽk <`cy H"hUҢ XʸXnJk=|pb_ݔT*a;87n3zJ}# @`j'gǗ;/9QjQDhYE 5d`9Ksj_$Ѥu2$@J$`RQdY뚗Rf%qF%cQ 9MQTk)ɝmw؋ 8yghBM_.#"XXjBԲ6 CLZ&.+䲴2x$#]8>x?hݓK{a߷_Nw$NuD}xBG<7yB%I.#'Ej^M 7;%8 csOA0pו yٕNܖWMPB$SURݝPj n>! 4I4h2 I k$wZekӒ)-#-jZVKߪ%{ԦK%]&C Y/Z6+bB a ")ϚnNWU.\ Jivg]BW}%Ge S\z @Pd'/+FH('u]u9=,7T8N*˧ߌ dbD7^\k(yڿ8;YZXUUޓQ:m}9oKs#ݦ'm[5Q4A{yNR+y);maS>0m `QLw%+`ITe C 01L]$X~zGBCʧPUZo9>ᆿHs_T`/Wrwkж}R;$$,9hq&RyDI8t7W2Ů2Eض+ovzʣAؔVAG?;͊[[uKUm끀^vQw\3{#W;N~'Tk%ѐ$I,`o-BOAZaÕ_<#V^>> endstream endobj 10931 0 obj << /Length 1329 /Filter /FlateDecode >> stream xXnF}W52E 4FMᇶ0hq%-̋%m={IQ-'Q˽93sr|E;R? AA>~;=_g43/ Cb0|MHWͼ("MXp&BݐlRc%; t{ה`MMv /ôEp*TI]5횊Ħ![Zwx}CÁ4 `ަkRvݐ,זl u5X1YNy6sה%]<ȻBAE:5 /jZ{ӆ,xlM #,@x~W2 8:{u U۵^VtZ5 4_G A0DVy-V3-ZfFBtR`(Um3Zj<DŽ7]ͥe3]F'Ʉ!UN@t}+5}i2Qv 2j[ m #6r+#r넒uL9}*Q>.KwiAi뒊kǃcQH6W zZ&O^XnmM+SVuqFUY`ʃ0ӎļUTrᦠXAU+n壺|wP^HhcL[mgmgq10¯+6Yȑx0w=á ֋E ]}vX+͉$P$$Aƛ=1>d!Z F؊IA}\*pB nMa@ ^mnVƒ.MoĈXW|Qzds]ENњvH˭f_nݺ.{ߙ^E2?- -hZG8m%U~S1- jd;=$ӮY \%I>:-M9j,Cq Lf~q endstream endobj 10943 0 obj << /Length 1065 /Filter /FlateDecode >> stream xX[o6}$ ˛.[(ЗFyX/(dHb@Iμa}ږlsi@R'}k<s8G^%0F^Vz$|Mx$~{ǂ0‘7Aa!A_:VWt}w1((rDЮ~ ޖ]B|@ RC'9|ikV=N.SEh~ 5ĹQkI_${|{n8䊣!/ kFtb!9[5rIX-HCE4hOʈR^sn'Y!}4+gZN0qh[$Nʮ!]p^ j]ڿs_5jWH:&'H+-OqpB8wA(fv'XLI뺨 NB=-oK)򚵥T{rurw#I-Mn04-Ѵ˚xAX$ؙU[(_?3q.0y G$vJVWp8MuI1)蛶ht {IB?ZHCPxTLNai`9Rl>W` үV$ 'in GV?4#@ࣼ7hQ.ḋ.͙хMMc'{?Q`ңBiaV1虴7vU`~US Th|ѽ.٥)Q\U+%FpAU蔪j&_RgX^w }K=,7ձMN,hFD'UcS7b|'|DZ̘괩oQQ+vC/%U/C&R3Ǽi{hPhLh(s4JUuJb0!Z[sy}we?1]N[3;oro=ˡ-܁Aw+mT&, tW@ܵ#-kT&Q-C/?l7֪w endstream endobj 10947 0 obj << /Length 1716 /Filter /FlateDecode >> stream xڽXmo8_GVʺ6RIRMWE,lH@&{fg',O=#`x˕^i- tZg0 Ay'rLW/g*'_Wp1/ ovsg%1G+H8=0 Q1@clw] 0+h`ӑg"Ž79R?PF\ z=#8B 4bkb"0ȕx[IBvW1[,XaMYU:hG޲^ ()XΎI)F c)˳L,N9Pjc-ض_eA.ԡ-԰NMͻ{ }/U1{RE }Nhp5roL#ԟ{zyG/Z}fB16S+ЕDh/]gĭg"ĔmO:$Y`1%Rz/O2@ łfw3P@sVb'O3!Qqwnvݱ|3yߔ@?G?p<ٓWG%]&iy/(&emO|/XmKGx9Ϯ ޭ͆նJ~[ q "SW>_,?GJm  +Zpq8xE o+tV`% uswaˁZ:.kUYF$%Y3 k!QmcpInUa$AoBq2ݢ,q| b6Gm7'u!¯gr׼Kfm'7)vC$VKꡓ㣈%،^[rt' `ӱȕJO5&;o_C endstream endobj 10951 0 obj << /Length 1118 /Filter /FlateDecode >> stream xXKoFWHц#z(%@"$0hiE/@"'ER+J$'I>曙ov(((xw[0Y` $Q "B&&4]|YoI:Kff?IMPP%ũg%8 _ЏHaw*7Z3ޚgye~jP氠qv*߱Ft4"AML?ߘ^vjݭETv`kQ$\wML*a) C0R%.^Ȁ`|զVk=BHX.)WI`Xv ^"؀˜ s B@(0Ě #(O-0 5-l)IIj3N䝑G&mǩ[PWce}}vv2<#U$⸒.#hn7p]OBl%DBnn벬{eJ/=V1Jj|iǾ2;٩YSSٔ@Q=yUG1!=y ^Wx{1HI:BwVH)U*kӐf͇ 5MHx7ub9kOE"%ڜ $p hl"&Sjq- dBGL׾ϬȊP{Z6+Y;_XkV)h41De"׹6عw\mm#c,(E&޿Z0yeM3( @'g Oxk{-vq{dNK`^.e\{дaw/a|3@>R~@:Iw/g2 1[ eD{sn4*Uឯ3XRӤz5@ 5l1j$ԠP/W=mEH SŐ8Qa~}:,\dǓu3YFՁKfRJK[twrME \/c9,ϓ,'|hZ"(%S͖ep'xEȥ6hy*] /y__%o0b,sYZU1KxlON ~ /#D8qu}__% endstream endobj 10956 0 obj << /Length 1045 /Filter /FlateDecode >> stream xV[6~_#Hű1jWmT}'x%6I01$Ziw}c|nzoܬnq!r#o॑ 86͎ Q0M3榫,@so0c{qЖT8A`ʷv nl*Q {!@ -ʒ7]+0ߞD*|8 4AREi͋2 5@9pVO˛ TT`U-gDRZBAxGVђZS[1N^Y\Y]4Юԍ4~96J 4x$Al#$cT/:%̱7DkslLZfUWRrYj Tozܒ+7nuj̹bBw8)|N4Y>` a92Kj"B¨ĨZfF5[{رksAh_]ƙ]g,喯c EpmjRM!p"1iѴ0Q- I% j,'&HU],DjBИ_R˖q(h-u7oP(0~{ɞ.ї0B VϻzE\f%,=6b /;ZUH.uhIJme7`So)gCae:BVk M0[ܴDyyjy>e_xgӲRI^CK%V^DK%[Ԓ99. 8I\Gӹ]RY5iZ?g#x-6PL}2"]}g5mlf}Ny8y1ߡ.\A92k"qh3~NHGY0ėt[|'anpNB$l TÙs\~jCNyͥn.0&fЧ~|M9FtjI ch nJ )PLCiM XOzK󽟆t o%ϊs_Ǿns y endstream endobj 10961 0 obj << /Length 1191 /Filter /FlateDecode >> stream xX[o6~ϯУ Ĭx u=dEbImb$' ËdIe,!MS|sD&'NLHQ:$Q"ƃ*8}q-o&,鮏1]~mGcNx+~Em_ܪRsYC[?:"4qX/0+7 e1"Imж'шcb=Rb43;Zn;T:%Í^mUݳf!s;(!4fNrY-]m[G{2WEʗ|aD\^^+t}}fO fX6*m4wl1%`(T[qĮ~Eslpml(~IW'Y=҇HѶ=n!n98)p9>ʪ)ٻrS%[,᡿`(5 + CclS4\ϭ>ŠKЧ 0R?VURW VeR>$:TT_zhV|v R#Oփ زղ ǚrC#dۊkqmir%f?.YKˈ_*\\ک8UBF غn"irGBCVv;`znjG\:55tVVrE6_zO*_dW;b!:X.٭{!^]zꭡxfЛ{f|?O/t0,ݮ{07w1Gvc8|OͼN\Hr endstream endobj 10970 0 obj << /Length 1440 /Filter /FlateDecode >> stream xڽXksF_G3m#f긒2錓 XYP@v4}Ev|={g4[{wͥiȶ&i8Z`=mh:*R뺺Z>_1 驁lYjwbccxQƗo.Iwq!w}:W3݉ka *7Ps҈œbXW7"] & 4M,;"?9~sJTq|E j<>h 'wa"+.hl{O.1VH/Yզ8۲䑊 f2P5wp[nyb(3Y,6v-ק|@.|IuL#ZE߅:CyBEصܲq<ڐ u(QDJ0Д}0WQl@Nj6'w F> Vzb[Bc0MHhegř* $(oNΧ[vzd,aƄU⸤=wBa?{#b  ^ uNK`=WddcDszmvz~tZJnz#5'P8&I tCtR:*d$ntJ*fh@8lѵJ'oO3 ĤԪ)+(j(cRxsoQ=LIem}X"TwquI)tBS(/=n勒-AjzӵG^:$\EFŠ-Tҿ>iU> > stream xX]o6}ϯУ<̬(QaͲq;C[D+Bmi'/ɦL'Nf`{d<^s sON''o>=x t&3'$w>qN~?7`{ayf^2V=~?-!zVs<1PJoi B?> ]anF g$%(t=?vDI/S@PNԢ1[/ɣ\2R+%U^{jטaDH Ϛ=y'0&%Fc,@ZeMU>ٔSRMEx$Iv@^/'? >U5BV :vY*]R[OמfMXO ࠙':SEZOk(ɬ慀SPfËqH; .onjgQ̷,]QLJwz?<ΰ.٢Qu+%jOճ' '/@+$ ЎD[Rm/9 ~lrK&R?71@: =UFd,K][+Jz6A1j QѲ= 홈p}dbhNt_ɼ6宷^+LE{/7+N~q'Gy'Ĺm2!uĂ<-l">ϧѩ ښq6\n&g] $8Tǒq'$/LaZMkhQ!Bkˋem@QQڛߏ,'$7#2=z+r.(x-{:$UC!Q?Oމv\׭lNNKIQ endstream endobj 10983 0 obj << /Length 899 /Filter /FlateDecode >> stream xW]8}_#d])ijjR%L_VU䀓ACpi#&MRf;vV}ƹ9 +D0`:ʉ 0q}yK՞ra,˦}6XjN@Z$}\nm\Nd~äI2=/ИOշ7ڧS<^MhBZ!i5Ƀiu!o7}\1]]wC}TI endstream endobj 10997 0 obj << /Length 1182 /Filter /FlateDecode >> stream xX[oH}ϯBa>SeږCZUIea3QmlWfppvN[$07npu"7BF0ln踄qjp>;H2 P]&O?U"31o؟LF]-Jj0/ AGј.vՎ,LR}t?ȇ/R:K;tV| ?{M=pZMyɔ!Ts642__кqTکʁHua@~CeK|;a;=' X^(ip+D &wA :y{};ܖZ^籋+٧RUC0S6=乾X6pb7xFBS_Wiɿ$zۏIg)O؏/A endstream endobj 11010 0 obj << /Length 1220 /Filter /FlateDecode >> stream xXM6ϯC&{lm`pI0ɯOvv/d}tu6u~uycFɂ.\;I$4%4βplaAJUUIֵUJ̚iev=c ..@KтׇFޙuDu*0?Xdp1>K̙&e(0J^U>܆sFa1ػz/xWŬ(ʷ 3d'jR>zB!NAp[(lL3i Ƚi!NBLlK. +=ȧ;~Nyӗ`9&5l t*Buv׫s$2P<6u\^t3=8 f98\R 4fJ QQ;&3f^+5(B?T+ow{޶MQߟTz~[^ endstream endobj 11016 0 obj << /Length 1230 /Filter /FlateDecode >> stream xWK6Q*DKN-=lkk2ePn×-Yv9$io(G(ͫwda GmT@er6.7ȫ\>#RȢ$CiAWN"nAʸ׋$nףl$Y¦ohNFt;^;;wy9tUJG~K8>Bp^")yyaƤL(t}~;^B 8Jpv, ;18^s&tN;q`ȕVB޻]'7:Qvktyw;,!FơV;K۾iVv‹s|`w%3GF0=*&GǝpBhޭt鐣=ߛ;{RHv&0iˀo%faΧPFS2AY:wx16Q:|`"281k'(攎(-.nw{_РҮZMRǤ%]LiV:ކh\|8Z^u/7N;AJ{CcUN'6VML{N{5M>.NE٘ e𣅴)2+{pnnd3lB#M#&#vr΃ Is'7\ㄖ8O./iK<" 瘝 D&ڹe3CxeII`bYӣ/!z1!<˞T ?}![^QJ,3f0VZN^qAbYHPecAほށK9Pwd{Vvp7WjWFX߮2qhM,~}+3`:jW;=R|7q" gQa( ?ho)JpM1 ù9C{vsmqe"tU_ l)Poʡ1*R>[Yjx> stream xZ[\~_$jM%Y]$Y!21l}z3ɱWktR]#*T^6(JuPtPxPjoXji\abu@%v&'Qt`9 N"3 uCNX4 DY3-9QLquճOeR&N#@vT(NfXe*ݏ @@o=E % e?R5( B+ث"-'vhJ"UڦpϞD 0VO|:rЙ>)Wߞ?$!iD>ƅAKO|[=6"-v-و\ws\%b'@ v?,W 4RO#~}{V>lPXK5rx=imM> stream xW]o0}ϯp11tڤj[mPUUD'LNWƦIixJ{Ϲ\۳gw;{[A?o/Vl]؇x!hA~Ϩ,B9оQd0bqBwΌ=/rA(saGt%26{=.wn#u> stream xڽXr6}W𑚱/j&q}Ii$'Vg<0٘PJRv2mMPlk2}`gwx7^=mq,x8@`KC/ 2[,~d/1F$q45qGӫxzP//[kχm,$Aizc8f43jhE J瑩JNͫB7D>8Lgޟ~_,{R),eՊsZ]k5kg>4M z])^o׬Z4=W/r 뛧Kӽ;(CI~r:W9-RZ.g$2/bvE>?U0 wb;Frƪ`;cߐ.kp|*7t˥1F1dY[xثyb 3-Crs!P:1bC|ؤh]њݨY_կYo˫JzI=/x3Ŵgp2$|279w6._DDUm-Q4AIl$ǑYpNfyU/5%k_0 ;ȯ݈죵(EoYK+~lyK 6ZEٖ 2zK3. ;t;D.)*)5fqd/&x%S:ˇe2wO5|!_+i^: Qu%./NF@N:1fڄc+zwjl=kʊ) ,JާP~$UmbWSvA\ˍ*!ɯ6dP9MFȽv#t3`LCT ӁaC~'CرkׅvώFMR, zKM7- ա1/VMmܰ@umAjMM(/8`F]DSqI1vv,{6&M6.dNzw UQrZFMQzԿ!/Ij(HT~%-ΤQ1L>tgܠ]z,gv' A24sUǿj7Z5 &람$He/+1 Wdnzov!7j6?p2y_҂Lë/R49_Ž{o*n]V]>pQ¾M5 vcr v]@Nwg2 endstream endobj 11037 0 obj << /Length 1252 /Filter /FlateDecode >> stream xڵWn6}WQ~Vw[6,R4q"%!")%k!-G\^93 Y9ѧ8uЙ/BMBHܚ-$/I3;6kTV?>FÓ48l?_;8>(w0Ӹh_ITDlr$G.VlxQ W7wk…|t~el~}95cBXd ~^D 0#Ή%*$](BS!g{2e![Ah9+r/Ř X8:RcЍs8 c?„yaxQ꧁u6gDyOJ7'oILÕzmOiJ܏xX'PvY T& dr'o« K!%U+ xEĺX ԦB BZ!h#hhsȷqK^Obc6mdƫآ,]7&ףbWl}F,лL.d?}gU` Op^"mĢ%  8M3z\>]14mSń(+9aO4BWFpx[^TY3)tIp-IIINjRw)(]=MltMM{oq:._cYDCtz35MB`ĚCͥRԦ Mshn5u|P3޾ C b s^5 RIށ Tk&VG?}A{5;~؝y?Wap> stream xڽM0!|@S&i7T*c JlfLvV-!=mмظVau2]xV[oEn츳J2EKnW^0vط&D^%"IDZۛFfYgwFXZg:),~o2;YoRE _0x^yANdOiŤdlcVnr@N" 9<25-ۈj4c"eE)j#soX#4բzT#I.X'Ԛb\`I9Sox9%8E[Ji:6iHm*R*͇֏z> stream xX[o6~ϯУ T(b\ִY6 -Q]\J`#ERlyMj?%( 8+'p~?mv2i0lAbRO,kAȋ 'Ch2Wr]-nN 7#/cf?qA }(yG޿ ]18K$0n:^4!c(YjJ?9ŒԌRz!%m'][x9V]/r)M$ɪ2ooϢAl;.Z&`GԪмѥ >kкy> ب5;HG͵2~D DHh)XEIO(Jt cZXO( bDkI'Cr젘?|8:OQ4 tI=<9K`}φs~qTa4Bmx!V<:2wDqR8ɏN\\baG4PmREPвJֿCc-i cy#Oj9BN.udY^io5R#cA IQȀk>/VZ{Z/x1 љ}G|:K>z͹m'>{0Q;==bk.YҜSjv&ssZ= qE}&fft3I&gfiCfjp)gv3YӖ  8.h6}eZSf.|ٛfޗaOkC*]?̈)4h֞/]ΆϧW7C6w\^ݾkxN:/ .!>*r2!ǤIRF:f! rT4X׳}i_ub(HJd[CTQj8A>UC:lTնNkݓ%r8q~UumB{660=:^0\ a c> stream xڽWn6}WQ dKi4 -튶hHuяibm'I$E9s8 }9{zβF$2lIH`SIVl~>"5H"3?c^֒촪m\z_(k,k3mLV>""f a 4&%Zs>D@lˮҔM?SF㊥#.*r˃iZZ !IZiq0=E=6WvJʉH0a3!Poګ^mrE9NFaR % g|WEbIx1*vFnS01Id$gj)J_xJ!@XORYyBQtnҘ^ =oS$Z^߮VgZŗ @^ukR"7߿8% C.b4f=,7 H,2gQ*7h2#SL (hP V/? f&Ac)\X%u'=hTY_/f@BfϖdF$!k4"s*}}uƋùٔ!wv0Yrxq?D ĉL0dڼ.ct$NIIh>mۘD%$iÿ4?gn.ūq;ꑶ>ҕNvyNW"' 30ډM_}:5O3_(neZarC|J#Pc<},,,B*HƾU2[H0')4A8:A\,7y bT,}K4KasrJE~j[Ĺ؈Z^}n_А}GY[;D)\([_bXM4hZ˛gy:Bhe(-՝G[ppnms/;I{<8:鸷>^iǠ_4_f["V e ƃl4)&B Ǩq]sڡ>͇AY:}U.?ƟTct(7|_mV., hܟI9U endstream endobj 11055 0 obj << /Length 2360 /Filter /FlateDecode >> stream xڵZݏ6߿!fO[; i-@,E>Iv7)-mHU$Q$73pϛoo{G Hn0F!S!9iPJ&!-rAyv_'1ZfyjڴЃI7Ϸ6q1To(Mhsh64DzrW) g\R%"]m0ED1+; nj&E{Oy[☧EZaH ?6|U{=]9VT)OA9I}UR% w&(Ϝ7[3$OsoRӤTmT%S:$ uLdUjFN7^W$^" b[|vFTƫǮkbX".|ώIx =b16 t*stQe1(r%Eck>:H!_"19gmU >uE%3ȻuH/! c9,= D$ATa__F?G6-%὇kh NM 1@ ϶N6;6m+BDP|Cpԭg!}v͈ELVLũ6$B?&Y;,(m:R;8viPI0x?fOeߡxcd!/\y=ڷIoX1$fmejaMB׾WjN!nILx:,U4kj*Dl4u Z}&/P,B1<28<ly+ӀCiRf!WOKU*k+d$CedX%dԯt?\~=Nš -,f(Qm )n_B2hH =yxd^]20F$yV$Y3zhul^tHirkv*deofJ=SMTؤ؉Lz,l|K 6ul:S!T@`buu:Y=:iuڸL!R-|iTd]T cs=qćX{7>9q h><dcF58!b)xaDx>P},bnX)[_'FP/|ڻ}u*G ηØ/t(cu&rnn 1̷C\pv K`pD!总6.y sܦ~Iۻ]U$Hw&{l~zwÏc\v7Y}US6㰭Iwo:oxX 1$(. sT ݶ[ouA_߉+($9lM{2&1x#u 76mrg]_\3YDߚޛ¥:bKZu8+Ӏ:xkˆ!9#(.!߀-k:/n"1ZG+g| endstream endobj 11060 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ077ь 2jA]Ct endstream endobj 11066 0 obj << /Length 792 /Filter /FlateDecode >> stream xڍUn0+t[RnmiȌ-T+RN:@Npvb6c+WOdQcY)2զ֛}p>/d/qeUr²Bմ*X\rɡA{럮B3Fo޻q@dUU+ַa׻63hꅅT39KU/YL(ĒbsrQ09*e‰D!V|y@f^p;7bJ2p3d4/6 JRfT#2SL q81)0A34~c{Ԝ#)NWH .lF'Ȋ2CY{9;wq sc @xX|c1"O^EAtc~^@pO_ \vpsKpè4rs%gs^H0oO8ympn.œE8C6& ^TzastihUG1ެj*'SJ KT xz 6/_Nkh)8+ʔ%b ۫,$h[6¹PmXH#yB ?<5sjCЌon0z/0h a`-NZ l!bÊ'm\EOg%0g}$!@kFsM]ytf@dGmfj0-=u&erMEe"DYꓴr1 endstream endobj 11071 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ077ӌ 2jA]CtF endstream endobj 11075 0 obj << /Length 1271 /Filter /FlateDecode >> stream xڭWKo6Wۋ\D\GAhoȒG%[ͶA/L߼ _oByG I1mw^̼(dDFͽjznK+ILJ"% t׻keЪt drGiuuաj@WX]']EM[3K=4LGHgHFJ$s)MA MQY3%S!(nMݍFfs7TYߑGmOTsYWv=;~̜GHK/H7Wurk+ McmN0xXTNٝ/!{֮ٵ BA9Mņ ,O]G|X{7 ?7k2 +'L%f%yH(~E>aBiI'fsL#,faYTtNt##`<Eo l4P'RYETJk'$en`@v! 4 WSm=`W.J7& iv̇F$ K#_d)JGl l44]وIn> stream xڽYB8U2nP)MSα'P‡}.w]j%98lRof~3.gy5Y/p/nYiR-nۤ(7%5e:Z JbESTdk ikV0Ek#js9u.ΐ|3SޤYzXH& NNFvX29tb#UGUymc浝~x? 6  _5J)^p.}'of7?><кxSv;3Ӏ+ƲTN0b^ńPA ;ڜbPخ,r|ߨvD94 K^5vjx>+)*oO\&W4(s0#E3f}qp9iZE#]q{de gLQ#LIfΊi;H2r'yQn72DYHr\"!DO| 8GvgK0DAte4cT=0;H%>hYS;/+ jB(zJ%2o8uxpcgΦn{|v`C|ن7VA<'N8gGr #?F,̌QX]Rk&<' (b6G66ٺ!n}`Pjcu먬1)xO">[.{~c]%lPmT%Hr%NzOM 2X+mZX(7]VJh X6 )KO$f&Ke0Y{#䎝xǏ*rfM~v9S?tu5Ⱦ3|Qvv$#)luǕC)! r2T5Jc( LaVTjhێw"?eY릨S-zWT" ^qfT*G.[޷uݪmq2ڋX!*#Y!N#ջmC㷯V?F_y#hPxw_nfwOv*+!P8o=_UwGgmY/=+-V7]VM_=]Uy]>a<ү&5~&#/g`mEH7RBU[9A,K c̦'ᑓ^M,%tgN'grTCXM KLU\(TIսcM1l}Kl>ŸPt{FǙB^9߂HAc MCq+@wp^VT\%LYj4 HÔfhZ]lZ+S՝'ȡqyͭQ*]E'5/?Z,aAN b~~!'-+hPyW endstream endobj 11100 0 obj << /Length 1399 /Filter /FlateDecode >> stream xXMo6W(Wzh-CܲX",*Tb dǛ7oJ(G#|qt {hYYLYGs'n~3Uܙd]Q Z%xG̻ c0ifۯ\%pkӭzoF.vPZL9PNfEW> stream xYnF+>qO7n>$@H9غY!GD(rE||7I5g";\kyU/v pջk/F1&[ta/n^嗛?\]3nB[Foo)GGFYWw;[T#g-/Ȣ+xJpD#BbEBã _W]Mw Gq?PRȊR?6}\qν\ "^{&iʔVccvENnݴy۵ 84$%Dqo .領拷JĘQڲʵGӇC<˝k 0+ݘ7QeM/)z5otCBd" gWﺇ\k*ej6g ZBSq%<>#nmO]]6HU?[(.7n 6?Fj:5N>tKv SyĂ>dZ<PXU4FIZj$AiO@h.bKzyY#fI69IC9e7>~L }|ܸ[,hqt%T.Zy:A(v[c#hx8~3VC[xm|شi׽1f$&x.X2$Z EHU`KxXk.uNNܴ $kY.ݞCg&N| i6mh .Fm B!54Vb(u3ZX0r!zZɧuX 5Z<6CKlA'2.Jf4Mb0h_-),0.# kwەZEex9 I@1k#,, Xd| x0|#tJIr=zn !$n>ǒj+:m> fXERh3Α7&*ӉMTQXG^Z9T ) =þ z ѣ?&y6NAF׻Lm*g+\?%?Wf1<gIJ q8"i9JQ &jV&m(7") ?$|2}W{fNCŝkNfp`˟S'2p j~dJNhغ¥֔UAMЕ~dGb([wkxza{.o޸#dCbZ3>0KWL"VA$< |Ģɤ0㬤&-Sh1ehr G;kpJ.?3VP/eGȔzW"&]CGq}O8赜XI iRi9[bGyM t5QgC5D+eG̞78CwG<s$n+9ߜ"(m}#cGa\ Ʉ endstream endobj 11121 0 obj << /Length 1769 /Filter /FlateDecode >> stream xYKo60$5W| ESvsKmӶJf;|IB?nP9fft| 32-v3,O 2>]_vd;_PJ"ϋv'H+ղ X+ʮMgf]5[;xhɓ nxwC61hYoRw 3DS:[9/ݰ" ST2ן{]#\`?)L/K DC9g]n ><pniND8蛽B\ pJr "j Q6*v#Vii7ډ&4gxѬ En8hdW2:0+ gS)|F/| O~)֮`?`Xb?ڿ>ό H NČp%.4JcJulXl*pV}˔b:}=},\Rvt\Zk̂@ 1 1b5hu6%d[g(˲>|dmڟt'4_L؃.`6t\(-&}"YOGfK8]l¾s hQ]}oS+C̻sAsJXW. B49 ϴ}96+s 㽸ڠ8UEd*ª:m(m ĔPDxB1Q.mt٫G7FKA _6R>*t`A۾h^i -,dT'ube:gS_)ń\{f5p|^HDڄo(kA9ϯcFe F^wω)Cz@27dԖ1EbmNEO4R`;WO0JZ^׹Kv]Ÿw.;䓦eٴi9Rg;rۯ2U:'6&< Ox]_Zth HV^ge'E;yիZ)O<$2aȴxRsz:ӌ@E^^_8=j$ΥWzoGM|YFISo@Q;v5nhpu+z//TG+[L]_Y_ Шkq{xe]=VJ$UQXku 16%pcMzј< Y]q}3/hUNV2 $-d䜡 CQ{;sqe*2׳뙠r۲E''}(>:f h}MM;VM3ad٬o?ثڶٷ/*іw.M/&Q/`_oI endstream endobj 11130 0 obj << /Length 1461 /Filter /FlateDecode >> stream xYIo6W9@jJ3hL ٦mlHti^nE^vNV(.=*0ZD0ŧkF(##)Ƴ& ܎nI7`N!.+[g^&C(4j-+Po\ک= FGg PTißʊX䏍6?ގb|GHk'UwO:\ua{Xm̷Eѣ]tf^'o;ϥ '^<][=B}CLۤujCS22[,,fF mz(~/p7Ѓ_zLʮU& 8I=R8hLĸ)i `҂]ژfOW<>vUc6y K=_JtQI ۽GȴnQ꿍~ d/>ѕ)Wb'+if)NHnBHld S +ٺV^6rAɧ"ҡ"ݽu98L|!=/}:A td(P:e ۲"}' ة}*BW!\٫In"T*WáR q ~@wmV*,58j<.3(WfRv2WF#Ez96#\2x]=k<"v:sU8uKw rՁ?6AXv j*1hKOm.{7usQǖnypJ;0#,6lW/o˩]5}3w:cg:[X}P9*G/)> Pp/Ȭ endstream endobj 11136 0 obj << /Length 1791 /Filter /FlateDecode >> stream xڥXK6 W(O#VWnmMNvLW9#Ń%I"! ]o^?ݤ? ьde 9stי} UU=e|β Y-bBjg5OwѶaX0 AoPAxsF/sLy/o d,K,35Iv $ vQC& yB It(#(aa05;qdI?*Mb> acٽƽo"_Zo%<7 08R.x:~ 3Pαu"Z@sSAM"26{Cz߅О{g㳘yB U]ϊN>h΁,DA\4c~ #wXM>*=5Kn=&ò KoxeiFWnQweB(nSq DZw奐! >|ؔ(t^S1σ*NJ VgN}<2EZKCI-ou 1=e MP(Y*gqvcNf;/#=GD :W_J FOBb%:mZIY|?Vaqx"HEbe"\_a=q\h~6 endstream endobj 11019 0 obj << /Type /ObjStm /N 100 /First 1088 /Length 2156 /Filter /FlateDecode >> stream xZK΁Mփ`a@@ $t-D18>_Uϴ9e )䜈BoN@ڝʁ{5s"j+N1(Kl Lə0$N#~<Ka+V 9u{JM0W&5PX _o[ Ύ\)(K=?Qa%Pe6f G8(j#r=mӸˢ /L Z0Vє4 0\\Ir-> sS[1wV ת%H_˨&h\qWC6^ -_QU{:Mٲq4JI}]Tf#D1dYkAKm2a'%s(y5$Sh\B,{]BNj(5^(w(dsAK')4#Ui!3ݧ᭺`ˡ?R 6q\@^2.gFF#xJWURhбX'0zq,H<;73>reCZT7{fMFi{!lx axf6olSx''A'3 ' :ڽ}qq^ủⷛ ??l..o8U^׻«$5X|';,j X7w9]tq˧߇oo^e0Hosl0\8v PKl<{^4|qvv8{$OëK ?,X'a2r8;E0fi0Fc9PmjxUZlRkU!!Qyzda7)R)2$B5cDz4.ĒeC$%'H%e csq6=8jH7RE ˚pP’r$p%#Bc}3qfUw/DxPw}j ɢ <褭jt S! '&A2K,etZ̟She+n,϶bBؔOORe <)hIsm6Sla΋y̬!+Ў֟y\)}U״U9/\y*hgd9;Zֻ8a$PX.<06CvB19M}s0WjD"3J=f3LKˈ+qNsQ|zmgM&J'jjҦH5>V}.~#_#dDiOb 7ѭ"C3ā|nL UDrcL(hKDPn%~G ?<@̍F OdDP%E_Qo3%-{1Lh2n*ewv*s(KR~HM@}|&ꐮEGJ,5EPT+sdBz*.y!EQ+QPk@ eMQE,cYT$M .5?p!g]Mψ*!DmDP9I$Ea{o)VVΔ__3^Tk*yMIjAaX,քıw&<9RTt(( #?2C(ָ<'J&j2黎LLFZ % V@>QgBRM3eu2٧5g.(6aPPz"i_l ݩ}i I(&IHMh/pB\x~7;b>.\xٻ\f%~W endstream endobj 11142 0 obj << /Length 1375 /Filter /FlateDecode >> stream xX[6~_[iqmws|4G8+fKhj4^ո7+vE5xff9}EmJQZ,n톦P|.L988*}9YF~)'#WǽnKF5y{P!|5i}r0@0@y]VY1r>U,^V#rZB4뾾0T?G)#=s2B=v øJCu=9X[QgB=:#\~McS楩~p;UStaɶ(9̩Bmpzc,pAaRX+U+h7[k#{B թfj&,C, N&&[yWʣdc/"$ Rtr4p3AG\Ba9u=Yh?+P8t?ew؟-lf^ Bfujڜŗ+jӲLF=8xQly+Օ_pV*JiYuC:u]{R,KldiQ/ሧ˳nvRsU4Ր"O0nd|PXPC !ӆnmS腯&9{S-3*aۑbSAث/?!kyd|Vv]&#(TOy#@&KZO2Vd>œq~Tu5w =<]B "37CwAT5s? ]݊ǒdvL0:; Ģ͔Ť/XHƷp@jx#YÝVۼ++KNgIlwj1աW7wk.Ȍ AyT뉷pѩu16-3EfJA|+Ty> C;UJ );|D XnZ`N{F83x TMhOW\> endstream endobj 11150 0 obj << /Length 2081 /Filter /FlateDecode >> stream xڽYm6ZEE4A}bh,CrHQ2\˚)r3gbo]߼xE2*b]"0Jź^|+Ji@I\yL=j!}՟U\&) 3jּH娛 y*)+3~E0OKǪY8 >U|oO-nyk&6~=|9=558I2=]HY`]*.cnv8pl؁Kd,l1$a?^q6]5L_=t]_CsǘzRL~MBh{ Y㗿aт,zil|x}]0L̆w$yy˯$ճyGM64g9Ѡ7UXm lY(핿 6;Ei荤꫍ K| L؏4 *TPpvEh&&I{FJKwjg+DL.m* ;CC?aߝFG($1q$BUpRYMQǥd=IiO4eY&rnH:ZuO3B菔=REhrvmINFGp9N#NHpI J_:'/qfӈ)\'x=@j+”Ih(VZLc(=egu)_raL0{mXxX,j`ًuџT_xK<A=]m#B0Ϋ {hUc!݆ q/@6Nbo5]M5 pyL7\lă< rB^ $+wD !:N 19)wvrztƛvmj@M|%7eV&k*iHxÚӰB8ngymE3IhڼR$YEٕ:sLIW`+7'#6^L|ōv:f,efVXODMR x`S{ൢ5cێqm';?M´][Oh8;0 9h&S2MM7mV;5JT8?|B7 GaZb(ݩUQ±MQ14o5Vxͯz>tMH1jЎthV]e̔%kS4<c6# Y?E1_TN_]ʆD `qoQ 4~'2(G}Twf!bQ(my8!%#&칻.1*LvO3qN)3t~*񧏶[IP2Lɬz@IKE D'Dv[衽rdb.-H^sg&ޠ-}ť5`Iq:buVQZrƳyJq;uzҝ'x,E5Yrޚ(5F?<% ks:d(;f8<›ZN3Oדˉ-Cm-l%>^\;6Ϝ\~;A)Z "ba:Gtcfڂ\06G?rF. -KuK67^/0ubQHV}J@:T]PPXDE65ÒRC?3le#!w}xz;+!hq%XKu*0Y-$;b% ,LꈄYRuu3~ ˱ծ7ryә_xCƗ> stream xڵXn6}W RDR.PMEl!Q_rdqK6ggnN ~=k Xo- .yRI*]!̋lx$Dr-M$ Jm>'.܏nԺQi58;x}Ⱦ%: gBʸW/r =4Ϊ#1iS"AzZ9H(Ή 'E/˭'M /'Th>̾<ު,W8z~!UAx(Iq !3#oI^&ƕb ֏cY0:q=> stream xڭWێ6}߯[4RDmm.(}kB+k!dHpHYrc;ɋE#ΙۙaxX?oy yjF4̂Pċjf]l>,XiywkI;jˢExM}a݇|zYS,EYVa9][ժڥۯ^qVS^uh3exE_hkXwfRXFw0#$ oNRWA[<` v3. t`x cn0?qXȉ"9Qa¬ߺvU:"G wOݡ9o( :?-vNK2b!(5 VfeArP<#ab= )CRv+˝\;oHYFGÁokmRA$E;+VrLg&P(O6.ӜI ˡtF*TLnFpa."u+d$JCvL:թZXQ5<`δ:,yM*4ʬM!l#Llt_7 A堊^[Dlx}.QIm=cxօ=fNiuYM ^=M*S/~3!8@ PQ塨U;$`8dp0etZ9 #\=jw}_W3?_&y̩iH#M#djWgbg+'=V>H2h78x]~8vP.vJKXd,i ̌>']Nh:_␋|{+^ endstream endobj 11168 0 obj << /Length 1668 /Filter /FlateDecode >> stream xYK6-2V$>,) $zhfoIP2 ECw>Mc7v!g}pkFp*,Mʴ̢u(O$%4zXE(f_~K͔HO9Nz#kfshvo?ܟ0Sx_$Gjږ_BVsJ.Z.&ܷ#o3g(KxB[:[m^}]J]xp@`*b߃~W 9*YnWu?̗° YP Lv7 ^ %nP%5X D?d6'uYECqBIiJOaq%1 l6(I;)M'fk,(9 MɄ'xPH3?Yr")|L_W|# olP߮;}qFQ~"9PPVa GSm7Orwggz.:GjvaC-Z@f Zci(F`Zq=#+Ggԯ#KA=6Vf7[Fc"h! kGIaM3~,n h.YH1l 51a1z[ ʜ^^нRU!g B=ߑeyTApnaUlEBg[cۭ{$ eAUC(JrwKzE557 b,n]'sU&}+ɚ^rڱ%p0ƈveIOp\zPzB͖p_<Ck dfE:9FIPr7EZUSlؕ##1CacTtig?m6L0VM-v&{Y<)VPw>slX}ؙgYz̎7Lj}cJs[`| uj#!}z9dDUeb57qQGE׬L0$" &MEjh.C.$~_U\u@Ĩ{maͧaEU+G(Wi'끯C~~Z%#D`ݱ䫺o{JC+]ORd:8'ZbADMJeHlYJCs-֦w|>\F]m^z4Ҭ5c?Qur/(>j[ݗc&V&';vR Y)pZJL'XJvl,.W]4Vz嫚 y~7c zlN(w]dJ(!;K=_P.uOu4n␺HUxhСAw&aIquw endstream endobj 11176 0 obj << /Length 1247 /Filter /FlateDecode >> stream xXKs6WHeD>rIg2ʹ)h 0HwLp,r'B], _\..Qq*H9Kh'4M,FXڴ\=L~|G ()h5fy.bgX8A4Ifz(claLX8,r<1E9͌kue"1yN"N$Z6WrQiw3vN]/yUulsbBFz+pJ65,@huc%W8n[qZ5# ;F3֌h;iPүO")7Uc8;lF(IQ$P:z|FOmʺ+1MV#k~ `:foF Oo' = c f.5^/l{صsxQiωz~SC?q̛pzv/i#! endstream endobj 11184 0 obj << /Length 514 /Filter /FlateDecode >> stream xVM0W1^ZiJ=U*=U"fZKlj׎IRT`{cB=tnc%K(3%91b<|ey~ R*hfj5뫽xAeWo-WȚ]W0ijY!aHXz[J8Co\FPKHfўR̥wֶ;2ΡzpvC=.4X}O98쏎)k endstream endobj 11192 0 obj << /Length 609 /Filter /FlateDecode >> stream xڥTMo0 W"Ösl ;,mVbeieCLJ#iFO 6}﷋GhpE{r0NUmAG+Hg 4iBYɌXbĶЛt^v_g$f4c Y\!)#IYv20RhsJ##J/gj#0_߻/0}|`.3,]TѣFcݰ 1`֗uYX *y J!nجmnsj}^7Xrq^C`eđkmgjjǃ4`wAv(cUBgQ*D5EH|ْ)ef*E\&UF3Ɋ+4먁ꭖ T2#{oނ̳4L<`zK GP/|:gr~L5)ng-N@w7 pzcܹjܴz?N`8m}0pL{(jZo ;-_aŰA(i_]w endstream endobj 11197 0 obj << /Length 66 /Filter /FlateDecode >> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ04Ҍ 2jA]Ct endstream endobj 11201 0 obj << /Length 1730 /Filter /FlateDecode >> stream xڕɲFU=ƀSC8Te9[J! IT ytOϰH(vN MO+I6?JWt#Bo#6i"N=z{.}mcit$b&3$X,n4u|uEf$OťOmqFZhe*C|DsO}(=HKKB|'yRK&|al%pNLIn CFv^Ȣ-LoelcI)X}!: P7w^_[ i"@'&$&/:YS[ia>li״ 1L|Ѻ)3IĤ bm2*Y_VȢCIkמ򄁆N (MWbSX,-Ucɔ%\4{5dYB5XaJMtgTWt!9ƺדG gyt/;t^v3Tȯil˞ !.|9v텾[(OyxA}B_Efʇ@&@!ΣG&shXRZIqKz~ 2zF]"" H,o"Ҷ,B޷kU-bqr"@JpأK#[c8%g8.DiMQ9<*:/DQۖ@ @xWUx }^ ]Qu} ^t[ $ Q۾캶s՟=׮6`MCC0YITah]ىCp28tFѹ:78'fQDVˣa758|>c P:pN3_BߝBBୖUH@J v(}~T7sM;Tk5;,!d%^;< Bk<ɘȳ\L,B|%. s"xze }G!W)2c{R4RJaS)#\ud MBwվc_uBW:#r\8 B+_P&0,N̜ @Iq,oZrTJ}lK -}NXai{~lε U]k ^pP;A}?ԗ HC(ZFWT<XoYB,%괙k؈~t67X)zzBecBxbM (*Tq;LerK⮅0VɹϭB/{.< TMaI: v4;lLݞ4 :-c H6ʘC{rؚ!aC9$N.WzYzn0`FBKYPv\Qz.ˮ8I5<}5MKwQs&*k)΍U*X" bQk$h&qiлz"٭걪}89C֚V&;_oꤸNNa]?2- [3i^qBZlQ&C88^u> stream xXَ6}$cE e}(M o`@KV J}.K-4(ȓe]=B6wk/ ub/ $)?[/wYgL KfЛZ,$TEL!>{9I4…zX,#?UMKV>xE[b^tj]J; 6JSVmY,}mh+r3$p\XFIkI'nw'ݥ(l}=2d„U?f^v`ns`jgƘWGD״=8ͪ"ٞ7-s~03ֈb s1\^;{.)"hӰ6 =kO+TaBd 魲sA%ߝymѭwf]' &p3Ibg-g/;!jx=w0@ *qIoa^{U Z>f "msSް#4:kR) j;5RgM1-_%E&);^13tL8$ (z̯cd}4s*І*:kƫ M4$˜(0D,.I VI:)QQT oVrYo~4\:<~aӢWg?-/XU+ZU*ժIKFdz+hX6xff&I(0-^I՛РփQQS0g2€[ƀ(sj>~Q)S5ߛ_wvhInhf3!G"h;-hRea 2FT$σ$Lj-R[I_5=Z #w@,kŰ|k'vYӪoX'g `<)eo=#m XQLـMF 3"Jy:CA 2<o\3>7y*-| fVg%H+0T\JsbU=hsǴ! Ǥ|Tg$q/K>DKRcC5'L,w611N0;rW6/;QiՙNT'-}Tii}|'@jYaS ʃ q-w9#fo?$;U@ؚk V,h( i^y$F"|R]uu1 $.-3k1vM`KH]FBTs(g8sHt|J׻ ]muSJ8-܅L.>۷iѝ FwRn';! 7[쀻zt/NNSӃ\Y⮎"V82WpEN~^㜂L*ѽQ ! zmڋ&m2py A$w}^><)SRQ"WAt,DOhDqS*^q"v]}VO[6 ĥ!-ẎW_+lnp{w4?89 [uPk0K?m>( endstream endobj 11214 0 obj << /Length 1513 /Filter /FlateDecode >> stream xXKo6W=-{ 6],z(S[LldҠd]w!%QI%)DŽ$|zOIpMIOpi6Y'?{w;rhIxIL<{ŕOȫWl%'qy2YB %=" °u ^xN%M)DIk\D(* Y!Lpvz1g#*oL$RckFԜ +[ z` q([sT},q3R%1q 3^JJjhOUl]mTދ6Aי9΂8M:Hc+cr\< NACBIW):I7TR^ݦY {{f4J [V*Y'k^Ke@I}iM?/#WDqAGdW\* ׵+I-! )R6BjEKPXuh5V$S6HCoڸ+md%WT#ezSmi#m 3[IϨxP{xa ^5h;pVc0ăS QWi{nipq#~s~4ى,[ivsaN2QF@kO^qU)qwD.SjM j9lydd,, (MDIlXEG"HTVLonM/ƀ 4xpG)u`?&FѠ:At'o4ʜl_1A?mRckvVN$73O[CC-TY Y|>!ݮvA,8@VLS&Tk^9׃J9貤!8Φ~)=\r^rWzEGj;]"Fڰ:=B\kNܮ1l3)rJZVDj=H  CCoXc}R+iw3-Y\wuM7X57N.ub@,\Gp3~4q#n0Dnf \MQPʚ&oZf]Kg'c-It<]?`e3R`.eK)TFmUH}1胛mNjg@A4ǵJ٢c'bֶ+ۊzclV<6=XЯ `PЌT[ᷮfdWIAթXBOE#R`)|iPvs >eA3˧ )C1nHPι'/r? ]AYޯ =p=VdYf8e]l AQXt6/ endstream endobj 11219 0 obj << /Length 570 /Filter /FlateDecode >> stream xڝTn0A E@$E  Z)[R"K:$Iw{g#}|mnpL!q"B]yv_7(޵N!yKQwa>pSk1p4A-I#0Nժ53anz}9㊀ /{T+"gSPsv~n$qS;wXϋP\DI5),r{S\V5RZ8Qt!N֭2 F0'-x-QFj/kC%1_ZT7f&]Kt&vO6RμjN {ޡVYoa~ qt] endstream endobj 11224 0 obj << /Length 1176 /Filter /FlateDecode >> stream xڕWK6Ci bDREJ-DWό-'r7t({2I"uFI$NL̓CmBe4SI̍5?0N1}=T]׹L'UԹL4OtD+rɨk-)y,cPXϚP)M̚v#-{ӧMBQ4$F6 E~9lh]]m]u'V1Ax1OcBq剘w&ʶqU9 ݕذ]{jrB:oPZ$Gun秪xN V|Ɋ@SiӔd&caF/W\Q+af5OtĕyE +&@eOMhpgmQ [7x>4*ss3|&Bꂠ.F ٳ'.ƃ[Qq- > O?lB].y̽旘-s9QH+{:u$⏐fa;%eCuRhl+njqɝ Tn2#QRyQC @ DLWR'R{aIeU=IQ KD"Qtml]$7'# 򷎤Chię7J4^TziQo-~.`K7xI?.TF1&ѹLD$]ϩ6r׫˦]m#3^[v_5M|0;a盦Gɜ5T=ä|^xqZ |UZմ [ cF f0:3B^/k!PFG~ ܉(L &ObB(Yp)ukE0Ce5qalnTc O\>WI}svwAHxE?Wu1A^O3>"VhYZ[ )fx VWͧHGqu=X6{ZK/nk:&q_6^Hc5XAinX6)+0\70kT7k!> stream x3PHW0Ppr w3T04г44TIS07R07301UIQ0Ќ 2jA]Ct endstream endobj 11233 0 obj << /Length 145 /Filter /FlateDecode >> stream xUͽ @>O]m`+F, >#L\`7ץz"fN$e[xK4{*,> stream x3PHW0Pp2Ac( endstream endobj 11359 0 obj << /Length 1233 /Filter /FlateDecode >> stream xYnF}W0/\ޗ[ĆJ]8Q@&tl`HKmȧ%Ϝ3^ڧS CRH4d}\x穎1LI_n?t{j_O~H" i0!Ab`P$H wa?/9YͶӁመi2@ӱ0űoS":!>`L.ԶPqDwh!6(9*5\p$FsA\me\ \`s.*o!7#^hym)>BgK: 2 ɣ?RpK]^*rXKߨ1槲wI2sEKK;EoiEP|o/O%uCu]R/}vhIY2TRve|RQ/M|LY`K E5h7;޶G*9cyɁwUmbKrвF7WU4Lh67m[ǣb /v@4VȌ.0$r{eY?en@Oe??Q]6[4rG!V[%KvUQ_@ w endstream endobj 11138 0 obj << /Type /ObjStm /N 100 /First 1075 /Length 2169 /Filter /FlateDecode >> stream xڽZ]o[7}c .iA Bblj~yʾ2"< # ."'CG>Ԩm̹%vJ\QXuZƩa6# >:`zQH fD,&ui_CS@>M6 * J.k.[2md[((iben0èEnu i p#oqmӏ&P950̅#X9 ɹh\r`VWNKA LZ@qT]qk0A6h.10|\>kv0] 2T"Tj%X&(PAAFePR;'BJG 7ÂLNRsCdtDK1M(Fid(y.w).Ǯ;6RޙSA,ҌFpkXWA`Y3Tk츤GG%T@-mLpШԱ`ݼ$#e[(-ҭQD.<u~M- 8;??yrËlxMφ׷ndaؿ oVk3$W AK~vK始owߝ_%jo/访|a 9jzӑ_u'BZS^Fh[Nmo9Bq@ oחoWP^|w?6G:~$]h[\a귫 o*8XwsxDPvhhRe WNӮc{8Ǟ;\Osi#3"d|ep]7udcM2"-D0:)d)(x$/&"]qfYr$!Zf^ D'|պX}s"'6t'Rp%S\IҢb/(IӾ;aw|uvuBeldžDEC$_Z/٣pD}/s9Hc"&˨ t*hR8zp[WRу`7k/R;fCЙzk+}E٣yP/֞V)h}M$ 翗6lAKgf.eVVdnM _p4 DD]KǜksSTt<ǖ;\÷Üh,N>Ӡ-:ՙٝyM)יOmp,nxm67wWO_~߇7.}uV^0O'pLn1SGv5:za[rK9 NZBj 5G9?^-VQnv=ʋ )$ <C'{Y%aJ^z7JJ̧ߢPnN{ɩ]cR"?tĜݐ@ zcp3lj2={E2a="Y`Tr єiՉFqtń YC9}(ǷD\(Rz "rB*ϴ,[xXv=;GBϷ [/S[~| !Y&ύ#="(UB>EFQ!!!!!!!!!! #F6lvHvH0adȆaדdדdדT F1b0aPPPPPPPPPPèQ F5j0aTèQ18QdQ(50aDÈ #F4h0aD `````````ð8gs8gs8gs8gs8gs8gs8gs8e#cȾ9JnO+_2>~-0Y }2á&sA AA޽[>!Rŧ&ʡ A 14Չh?aN endstream endobj 11361 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2229 /Filter /FlateDecode >> stream xڽM$+t/jŗaammɻŇ=cYoDfUYV% =LP("l"V-B9ꅻh#/&YzY+cQ۽ ~C&")n-Qh`=s[;^¼йn3t)XQc5G~j}jJ~-/-XhEƒ .2 nC  (I^4(-^$hr^Srabm.ŸI}ؖp+ދm ņ9%im[bi[bRUbȥkK)R6{=۬to9OM9h#q')qeC4p:}z{??}.~_ ѧ|x{R~ nN^MJu۔ 6\mWwW?U}| Scc{-&\A:[5 3#ϳ)q{~F/7w,a\' L\)dVg !FV"[6$axfꣶ)tzdmn R5f u1}o:30vF/0*[La^Q\3sPF~4k[wSHC"WYP`dr%?6Afk^Y DfzQ[m~쇌z!B/0&(:lr-dGCUW%ӭʻCec&k7#Az*}?#_䛻) j)D?ͥm) }#B"ß1PV95NE2/s rH_^ڣd̋CT:bC _m BL/A6M2@  SWhuI|1LAo3\M1 &;&q-Sh( JLb =-(4"ZG4n(Q:Sy Q&[umԮME|Zz $ D*PDQۢK(3KOB/]<}#TUiu 0YDjh8 i|Xv4 Abo5Lan&c>1u#j"L$JEؐxqVVѩ=(hg(VB%hcPq?(FbaFQրE_c$=:Z4C`N^YhOE#A/ WȣM1HWT!F'A(,I9::nP[`uf8'y}l+8h;#P̫(ĠuA-4HΉ@51Ale63j4U)^tC3WRްBЖk<}׎ء'- 锞XMevy=I#A!HdAbsՙo(❍'(V&u;zbaWOQ;c7 # '(B4~yD@=XYtЧ8%<9hLH\oQ0'(VvNO:(8rxbsr<=w'(VN54@vx"AʬSJӟЕbdFE8?Aa/7[x1 k>pzB-{|g)<{˅D) MF FWA-6 LΕہS:5wcx OYsiW9K8{ݷB  lAdWS@7` ')A||@ZUWSNz =YZf\zͭq-xHv+Q~5(tn*g E6jK!H4=rf["(%F@{Bڋxo1FA(dXYsPI7f })qⷌQŌ7 Ey% Ũ [(X) gN1xLyNaԟB !B!D:<)OҜ endstream endobj 11503 0 obj << /Length 1514 /Filter /FlateDecode >> stream x[KoFWpH1nk)RS*j1C3ᱛ1 fqU_C/ww?((P4$H1 ~Pwh|g.G=Eq.+Z,ta_g!l ?r|~`~vieSq J(6Xچ#?fs1 |(`uV[H!WEO6Dծ7`GW`Mzxj][cbEcOyv!;g\-?I\wE6N5N5[x)ty^J'2$.WȏaVW4qjStK`̶􇳸Kw&N:ɚ*_.ePUj8he!KYTMue꓌ iᓣ2E}r&0|0!@o1G F@*o `D>XR%c ܕV\6@ʝ DZz}y3udEu?A%U(7-xGCHencB )&kjI.S}0Ŭ Z“Zin@6Yn~an@70_ XᏡ6Yo5뎦 (%rʗs\4UmMpiGgyW# >;$+F6MS @P5_.֛KEBusേ|6! 6ce0%1{  ,? &>Fxw/o֖ڶv]knV4gEV6&4i+,ll,1yM!,SF"rQF7yΒ\[%O} `q\h㶳08(m!Nfqx-(Mo=M"x۰Y1D͍|4}SG4ѐZoB0^az ҖUn~Ed(IFqS0A)* )7kav[Vrf_ 9S]HApS|TK wQ?7wq{=9o8sҼ[b*pHr{o ! \žtH!#>b`#Z 0bSv" " n7ސQGAO.k w7 ڝ0݉w#~7 -+gxO֛ "o+~_hozf*|R-ή|!~m,sh+8Q@4aT1ss{օúݕ]D]릚!z0$R$ @X*^BЉ3{#Y,>^db -X"L6w5d.d7KEVîE:{.`8MNi^R.MS3WT\x/ endstream endobj 11362 0 obj << /Type /ObjStm /N 100 /First 1122 /Length 2769 /Filter /FlateDecode >> stream xڽ[]\}_JU0 k0~HbxdY1l}NI5n5:[" 1@}CʹJV1FC*Ʃ3/+K1Plx"E_j2j`Jc8原90>ܜΥijS$ZZA) %f9A9A Sn+η:&4\)hiYMAۀr­$Y5d.ȚCrS;uLh16Vh - EH䬆$i`joji/[)TYs>PK_AZ -v%Fsڐ@K )6P([Av v  ,01b [Fsql:[$Ki:dO4>r/U1[vZ` *5 =cVv'56\4(aLf[<9 >5wLiVb:JIh1eݽxqwz_ۇǧӏ;}o#P|w/RC[3+-eoËc8c8 7wnv)o {BLm m+| R*)PVE:pXʺAӡI@J7: ii!Vj6#䍪J<ƍX+n5CAQ?Lf,xS8 ځ5Џr+97ReHiKTBd. xۑ(d= H>I4 ]exkW?OH(<|wr!~LJk|U%7irĢXpzsSx{ƻܝӧVM:?p?x~~oK4#(-AHZcfߎOqeyGGm#Qc(Q8Fq1cTǨQ:Fu1c4h9Fs1c4h;||>#9Fr1c$H#9Fr v v v v v v v v v v q q q q q q q q q q u u u u u Uq[u u u1c۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹L;&Bnʹ fKcL7|v0 7+ UDp,ȷ"Q#0:#4ZC`탺E%g΂/Xlo.S枬gBĈQeZD,2ʆuȥ:#iCR'TfnUv-V_,rEkȢQ,Eё,lE4 ؇fUG,z[&"-jGK{ iMOKI$%H"A$H;ԃV΂#EX-\U 47>j?LyV -Ud&'WLIK:l>1uuV2JIɮLg; y%xJEگN" HO/P}&!-x1' 1ϒFi=yS V:L:Mzv%f=J@oD2ourQpm<hG b]fEs<юbeEcϪ8#9uꁁ,~jkSos;B(~ucg4 X cPJKEc$yrE. zr\/:G;*~,f+ُXKE1H(AzJ6҄w"5.VX5Ev\ɪo-\6#+9\nWy*~5Z\%Epҫ^Av7`KjDߝP҃)˭X~P9ZSK7Dw'b=OB iBM#$CꎖsP] ەhf> stream x[[o6~ϯУ ,*ǵk~ l˱E2$MG)rj+#*- I&@7˫)0 58XnIT5td7~J߯]=ѧK1CAAjWR6ߺBL~kBԛ:luO(A٬Ueʘ:vI$AB_crmo5n d۳=^%/vt 51T1yd8v VcJv3Elow:c.C"G`i%et{JW4Fcr/.c~TMI86p\UB)8)NTY݇ϑđ$z8e)S]`ZhU&W=MYsѩ$im hx`I8I.NB)U@We %dʑS;_T(Q\v00R򟲐 6"?@;4q_Ѩ0*jU>J$"Dg.86ͩ ]($6'!.}\VI=r>ZgS-nUd:*PG+aqESVcY-?EO0蠉 O :ƋOlRRlCZtb #pU%҉6$eNz\r2Z[DC٣: wD.jÚ$Xba/uOY &lH!iVs1kATȩYsퟺt?zL~"95'fӞ_w4O_}"-]lj2?aud`;'2.<I@6-` Š[k;3QH0C`A@Vt1t V*!A%Jh(Dp p<(Kz}IC pCʻyڶ筡%l;Q1-kQLxHAoC ~Ѿ=LS+!@  ,{>8@ $2 L?ny? endstream endobj 11505 0 obj << /Type /ObjStm /N 100 /First 1126 /Length 2765 /Filter /FlateDecode >> stream xڽ[M$ ϯ1%RD`a$@,l,؃c׀(UۇTAG3]HIs)RB1CHD4餵 d<+B"&!'0&;HJHq[{ Y+d0΢ E@Wmy9-现, wXSDE$hX (2cF{$+u* iE: Ībnbh+39_YX8v d+E\nX 7T ,xP-WE}$9tD&$EOI`Ѣ; SEbJmiN)hiimD`֘ 6ǬHēKlXBsoXdr Y_0՘mf+BP"xЀ5NbAI3 ruM8 +Serֈ,c1LA)q H(!} :-`^AzpIaly9VBEܴ@E% r^!ktB5G=jt, a__;Qs /VPAG$;i3+t%XNk- Kvᕵ1#N "T[0j^=E:r gK(~(7bp}(w$YXLwe}dbS{Aݑl lD@GʅĈ$lԴ2^aZ`Z>>"#"+ "Xl=r$P-ITb=J)V)2E>iEl䐃 PPˣ&sdcosrd;8Uxk{㟡(ӻ/?^F!> stream xڽ[M# 1H ,I$@Nٽ-r ,C}Ur_R@-*"HJ&QH4[6-*淝K߿b%V/Cl|{Cpl6$ѭ՚&apM)ZM-L2ff]Ftuc9yK"xBdEt{G"w"sm)(J[hEy" DV\o )jBFCtJoKsa>?Z;A ,6 |lh1^}{̊umz0PM*f&81R\Z\g7ٴ:^<߲Ч(A23s\|J<\Asb%Ndde`Ҝ:2t&Tk&gFsfFF:f|8ܜF4f6RNYl4LFJb\*&}}l'ާEX 7KIbs-&1W昩ܷu63wcN4טb]T>}zߟ?_|v?6__v_O?~7o? !VrӦӧr~ǯϵ|C1F/ Ɗcr`V N A 5`u:P & ^) P8d. Qx:Ў (|! њXR&I: O-&8C!B:C,gN%ܫ&%VG"bUO4hJ:VC#u Ʌ(kIxD'= [jkw  dQxS;]A!k)@ Ѹn(@fY H<8RW)Z(9ڹ-B֪t;T " ̇?ə+)DO}Ԗ1($ Hg%J_Ld yNdH*rM+klZv?M6&SMFb?Xo&QGfl7DIK;X'Rl (`/4@fN n}٬ чH؝^& V֞hCz /Ej1(h@D ufp*`cq}% HPbWi0"g%AګC[/6 Px)5*IMR_8KOZb3tt{ fV5M+bh{\UiG5+K<'1J2=)TM$ɂ"բm;a@T8W@ ,=Ilc% pFrbs=J ZWPJu<0s+l%P; :y 5'sׁb@KXEC+:$(rEO 0_!k̓tay,-Iɚ,:p,d:}Yr@ܧӾipy}! ^Yq'i >vVIӅ[c t!ȨY%x=kh88]E 5EIcyQC3%:-49PB"#E PI쭪ku3/QnJXoMN,^%]-v}C-fkg,7"=#K8ū@dE Zi2o?*$LCh wjҐo tZV\bNųGv*<1{R{jtނثrJʉhQ9>p>mbT.v ׳b7Q2b<$"Λg yhmj6kHB)z" :L _t7]or7:~!"W XjC2Z`~HQ,e,~8mP 7P3̻ p Fw5>+,-|#vEysb|; yVм ZA/ZPU> stream x[K6 q;U~\G>4Zh͛D/0J4xq\HH%}to Sw%γ./eB$u2:,xa/|Y| $4OI[Ew;LĿ5uQveS{cCX*1ڑzg/>̈́_5s,/kVkM3-Fp7ц#o) p:0yODPBMh>vb.~U-LA)^c*Dc֗ ylifW!&&\w˝S|\0CL3 gXn]VFSN^&ڗ@_Aㄢ` =m.mS #Y8fa\ybut咄.ٷsltn3ɰl>/7FJ [& !$H# `C!Ń%H4%* # rb?gpJ'` E%%T w}t|.bj:QtS&NgvwN;,tS_5ikM|u$cA[trPU8Hj# ~N-%PKӱ+^񕦐`ϝ#զVc4I14k{)KaDr1 W AH:Cx:O0:Gqt&WPP0K02p: f i1-r)Ex5/r1 }:d8毓N3[Ew73uWaɯ73a_\e-{\A6lI6G3Hԏ^΍(d4y#ZMK3P#q=cuPMM!# 2sՎQV:#0q19Yd]hM=SF؅=Mu[=,s9f6mc;|q?Ǹ0qd$qTX>!"`mxuxdj+ ˍ\f[vХ)7m?KXAː'w9KXiٺW}J@*g)O3ka.1! \ 8*LkMzqN0zU26ҿm,ӲNs祵Y)<-`xR f]Ăi;eXK\ƿ^D\c} >)V [mS7D1 ڠ¨NYVz΋*li"L`_ 䔛|il0 g}# =28xCarM rʹz[l4%cr7dHMI4TBCsƮrϻMto4sha93(*sLߑM͊^(0d_/㣕3mڴm§sR*5Nt۪ڥ%ņ۶bI>*nWk:zϷu/MjJجMusN~$.l*g1W {'=HBI` 0A})1M3>MjuWVټ3": 9os-K I7b7 endstream endobj 11678 0 obj << /Type /ObjStm /N 100 /First 1126 /Length 2805 /Filter /FlateDecode >> stream xڽ[]d}_E-UT%X `@w,C013f ο)w_f`t_+ԗ4fGLޒ٪PԻVK:lIWΚ*rMж#˰٬*m6c9>J۳lOc58Z7wt4G"Qm즄$qis-Yh2_\Gb$TV1R03 'uqqMXd۸#%a^縣bm8ڠĹLx>e{!I渘9m&mcגvں:Aʘ'͚yfO96-YkE=YEٴdo4@-i٬:9Z4Z9- F+N${NpXqΝ>xN`'s򟬓:hRܟ3%GP9{i3lL΄OOHq02> gN ݊;tqÓ =?.~rhf?K5m܆mиn}]ҭ;.&:zԆU{?ߧӗNo??>?/0Dϧ~_/wo Qv0F!d7 T?/ӫW61Ig?/ÿCc\ &=VE/m!W',td.GXԕsQ%(= T}[gcz`˥=!i8#W7jbsGi8K >l!A¢AbXH YXn41ZaY`׮LMQ 0-a68x< wjac*hSQZ~2KMD'~ Crq ɲ^!W$Nb΋[Ia^ ʛ$4%6g ns@PFrz`1VrPHqĀqP>@BpFBSD6B*,R(C<^d d/ wwND_fv͏Z58&[T[9gU79@|{t?ex>ziڳ 3wkIoA5|:)}ۿ/3Ǟ[ۇmo?W93XӤÃ7}D-WwN[~ns[o [-VFˢ#0F`1c#0ÓsFjђhhi,ZQF 50j`QF -0Z`hF =0z`F=0z`B5s k\C:й5ts k\C:й5ts k\C:й-tns [B:й-tns [B:й-tns [B:й-tns [B:й-tns [B:йm5r~:\٫pD” =}B{f:¢. A=)&l HU➭R-{C5Ĉ_ v0=Un;#C25!R7^Ȣ!%OX6QaEl}E j=? 6EF^*m},01@HȢe?س\a!֮GA;!,E6A|a1=‚ZBB+ebaܕI/&1絹XS*c *D^pH=5ݕIʵVK KBxY BJ1Z2pOvfZbrE +!N6~6]1F=b]X͒v}ATa.ౙ,z{0'g{ZQGZү+8B@zIx]I d +ޣ!;+&ԺeBgf0JhsY, 1VPDygukYHY$#Hhz#+2z@n6VKnP,l!U3 8BV΂ i~p^9VO>BBjMV*D`_XtG?/$ [ tt]X\e$d;\eW" Gv dhGBřXdaSn~t7X׎=KnȒծygH[s7Ֆk¢3ԾFs:^E^XZBjHRGXpY{&bBL`bgZ[6}^k{֦d` )m²ۼ,b:Ab?IbTlxf$~sz& ,r>q|z3{A_^Pk-U3+\q/kCo^,7moX5ţ\6 YJjkƅbюJx= rFX,N!v}f,hmvEGtr|f@{ ݏOыղuh\H Sۏ7Yڋ'^S2Xe d+l܎oYf!k<7=#,t(梈`x`q67Y4zsaH67sA۟z]p^ {YX{ endstream endobj 12077 0 obj << /Length 1875 /Filter /FlateDecode >> stream x\]o6}ϯ ,*I=u6ÆnXNɲ'Y'rgT#:d9$/Kf32x 3Jtvi6Dreob~b? ۟߰x)!i H F?>5'^*ɗfvW@ 4Z2/?^;4"ShW\-?-/ϰ7䯋ݚ N܄9Eo@7p3"bfyvϓAO\ 6Ag@ؑEۤX_`Boq瘞,zڮ#4At- 0h0tbxЬC!0Pt_I란+Y%.a#gJE 'S^ƋEngXa ϹS_TI:We18.Q 쪬UB]Y,K2[V[(z0;c Z J[Ny.T_ل}wD꽬> stream xڽ[ˎWpl Y`$@I -y14,ߧ}f w@Д4tyGoHmrDEmڸ́HʸD*h>:_/26M/c*[K2C\='nC/{)h@tNR&D$4!O\GItBNޓ2&[XNS%)hF&2$iL6`rT|fR f=T%0Kʁ3^ÔTmZn<̚x^6ǵFڜLBO)b6I^4u)󶚺@+-u6Lȸ!LKdF9YPIF%_:/duB&k]txYN<ɇfp@5쳗=$1Da;l2"}쨌9fcI]{Bv{\n45>9NL09m8kB,+,]}|6&5Fc!>b|]ի˻|._~<?ç?}=?^t2qw]ѺeMl@FQL^˷w:yiO_|qh}(V7v¥M9wڶ[-$AE< )W,D7P9 YԾY+䭏|6.agaKV?ųz ]',\,8cy骅1?s+z oWuX/8gr@\>aQF&+8TaOXXXԕ~a:ȕY{}‚",a5+5pj{gk s KOǢEl28ǚElu>7׿=ן~z_1ܛvq^&> _~;tyMszY]?~e|Obx_~~?~oiE|o,y_{~G WK3`X j:,`T`T`T`T`T`T`T`T`T`T`4`4`4`4`4`4`4`4`4`4`t`t`t`t`t`t`t`t`t`t`0  Àa0`0lǰaXa ,Ua5X0 0 0 0 0 0 0 0 0 0 0 A `0 ``00 C!`@nC!`@tnйAtnйAtnйAtnйAtnйAtnйAtnйAtnйAtnйAtnйAtnйAtnйAۮsʻ*X j:,```````````0 A `0 ``00 C!`0 CP`(0 CP`T`T`T`T`T`T`T`T`T`T`4`4`4`\u~WIӓuWHnDOm==t?c \IhcvS5znO.=^6?{¢XuCH!\XʁQ" endstream endobj 12079 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2233 /Filter /FlateDecode >> stream xڽM$ +tL.jH Xp S"^F]5TAbZ[)~ISkoJlDKE˒h:%BѪiF S"oĸ= bK/t˨xGs$*%H0$U Ȣ!) = l&ο<j#XbS tya% kSb[ޢsbu-#J|$Lѱ02HFIkt5ɐ6(bSZ}!hŸCS6,5[G:VbQJ*͚9p&͛YKR45%+}'9r`t[ ƱrTN)lWR:#X0Ԟ#AiA#@5aQ]LL?n$YmKx44 $diX[4\DRjcLZj ƃz; cZ)}{]&ɷNTߔe5Zܢoe-B= F׏hK0Ie#0GP_ii,h\wwB>|x{|/ϟ|}{||=?=kJٰ#&N%xCz|K/SV &PT[ͮ{ J@4096` (ΰBM0 W H6q!1S 4r)| )Z)s%0^;$2@:Z6bH.pS7(t"VmQQ]SyD5U)g#$-=Ԃߠ3t {ToPʹ%{xZ6.4[']&B0g!Z[X&Ti={(S ͊D lS ɈxP3(B|MXk0e€/sQl⚂`.Y]2zZ C3xU 1XhĻ;| ʹXp1,{bs a3G!JAE䚡eF3T%Ęj'`= *ҮWfd5SiD(݀OȄClτxx6_Lj%ثCc, CBT A+q 1w%ȆǻGh%ʜZ ?|{͈Ix<>0M5E:asC߄AsAFםA?(CFS NU&!?AAO8)CkG1!!W;U'10~iܡt8 *ӹf;ŚޠSӝbM/)-7(b0z6*d+tԼxv Al; FC'#Z7 l W1ˁhyu&M@W_|B[ך}{ً(ViT\]Q ͵^@)`S+W\)N C2?I bW*IN&m RW|i̭c {GawĮ),%u^8XUy> stream xڽK$)t/*) '0,ヿTfŕy)tPu*>5U9jΑ%}zRs4RkV YZ֯d͇sϯIJZ:bcCVn3XM6q"eLczd< U|/뉩̅m$fXڜĭlB'N݊%IYhsޒКȶDIt-1a$w5vaPҲKC&]-$ĥfM ѪÚڔ$85C^ jjSԦ$1dSdS _5ٔ$UIݙ|mR' -ujO]#I%I5IFf NH<_44$Ys1 8 Ʈx 2v",ESڶ\zey\ʶzP5@s"{ۣt͐Γ &Ra/Rȁ!ĂOPz#ZvC l -2)wR#sɄ<⠀lSM.)"3,H$@}Ff7u3bD)$6~o@CEl>!ޣ1 {@ڡ؝ehϨ I5ݡH)); /J<]R\E ߀hvO/J-t^nnQuؑ ]I w;U#c S9!rw (R1 Y@pu 'qkq (Jݻ -P/g;RRKQ R _ݳnoWQZl]۠zG ?ŸN᱃ PE쨾N!~rM#((PfjDl% >xVS->ihtV\7^ܳvMY|4D#5Eo;ĮL)f o&xMab5/!pYhy~Aꇦŏ닢)bk = B'\w玸zcGb#%ʝbܹޠ !{57[zo@^--BIdB/B:~@v"2yD@o6!`@A(;@R w/)B;C|zHoq#үGV|vvo^SźA{P+7(8 A^SKf?\#? y^`GC@$~Jx w^-;n;ib6 Wu]o^C6y>"3!ThYW;7g5pMZv d"'9wD-kzwPtzcG18oۻEwoP56 endstream endobj 12244 0 obj << /Length 1597 /Filter /FlateDecode >> stream xZMo6Wߤ=m VdG,l}%YZ2erDCO!8rfO<((P&$H`|]($~kM<2u(XRJ}M|ضc۟ags: pP?KJQy~ٯ4L".n.Pbg(l9Kz_q:Jw|).+$Q9̆[YO}uRge%) KË:ynG~+~a\Y?ť@t1Ovͺ;*ugI\3f3I:{ g>ri# "Ԇ|Zmel<1/Xa5u XH l"'B7.@7zqA#g ,ˆad N@90R-$bףF㢧 8O7-/)L@[@ Sa =#^|x%Y8sNƖTIz.C"S3qm_jo 'gw8(Fj2vX(Em(E1 --jeB2`W",X2" m'Ho8Iz28E2?[wZn\0'ɶ¤zj& NلMYB2g" 'nߘpgƛ]Q1RaS#A=1G$YB_"-ׄ6F1+`p7]MK\CFb[16pHgΩ:N^tQld++~|6Ǣ)@3ꗛf{)  :Q,~P7nM9zk,yE{F}Q( x$B,_Lu8yPR }a2-88xkt_o|rp_$ވl~`2l:]Hػzr^Iuu#pИFӜJ p)-Ɣ]JfK>_:yw%~>^gPtc-f=R3[Мd߼=q4c@ÑZnnBC0]l&Ug !w~d}SX%֮Hn@̀ҵ}fcY7lt&Nm~^ϳ_* vZmX~~|T}*J )* ,i%ih`rZx19bzJ ]U %9i>Uӡ&7灤,_ԿŜzR&STsvkퟛ/ 8aз-O~]= endstream endobj 12081 0 obj << /Type /ObjStm /N 100 /First 1125 /Length 2783 /Filter /FlateDecode >> stream xڽ[ˮ߯2pX*>mAI$/Z8E`5)vwd;qř9]&N*!¿(hV xZ\FRJ mP˯Sl5o^/㋲vP 8 _0AR`6eY/ȁ5#&@2 .mW "mRhnoӠFg%ѬA5XFh0C:)hi:P%^ ^B S1BYIv DkfdJ)ԅ$% u!I0mRUB`ZZj[/vq0m鷇<%{/Qh2Jġt(VuFZmz:r[ @&] 8^9^Frֆsm|z zMei5H2Ւd|C+ٌ@~+.g,Ol!]l02 \j2pMu&c?ku@.Y~-F 7Yl>OO>j~*\~xKxO.ߣǏ_>J7~|˗y{- ˘w<?~+%GyXK k vkeo]UooUo5oՓ[;Fw1c խEboeo[[[[AAAAAAAAAA#;Fv1cdȎ#;8888888888::::::::::Fq1c(Q8Fq1cTǨ 1cTǨ9\:'9uNsr\:'9uNsr\:g9uήsv]:g9uήsv]:g9uήsv]:g9uήsv]:g9uήsvsB3ă C!_н9O\F BCR-ߋ!)RFF E[L\vF JF 27MGH%)r]˝Mdun9I^zRںRlѺ77gJY`~2}@0bEu@CioI3 HQt> rj+iXQփ*)J~u 2Y;,Eifh{Qmm =f, LJ{hH&ew>W=_ endstream endobj 12367 0 obj << /Length 1383 /Filter /FlateDecode >> stream x՚o8WJW/xkwtVyHpRm4&`c \yJZ_3ckk9O˛'- gƢEv럿=}w!]U}?ۯeyy*B0jRp,`O1v3|=Q㬉1:&(͢! uAmHСbԏQ[b}9=0kP[p _E#d2 ѩsH`*ͪh̽QaT[ q zG2;BGݖ=˅t M]:8*n?BmC%9 M'pgm F_!i+n#W櫓'OM=S9164sƙ;6uʑX6@e}b&ɣ,L K;㪭?8@lDZQۥëGS:!L?9FO¡CH ~ϱf .Cpoc(w2u&P[NyVO޽ȼ)剮\ " &@/*XrAp\ LI)sxla$$O+8}#d|\u}Chta䧏4>g&/W|P(O¡kM]>OtcqAh̵I/Lda:a۟m|Pۡ b8Be=4t{YCYvB2 ꭤ,~ܑ⧛ntZҺV}+T4))q4L;])*EM> W~]MLF޵tը1 KcEL#CV2%.}[-TJ3˜CU+V&Il µ5 Kν>z)Εtb_B:d3م=⫭ݻkm>I3HCωd|]K r(M =4 }Yy䲨z΀>x3~#T)i]O !G0wfO!/61%z_Jb._S6Uqަ?5 endstream endobj 12246 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2689 /Filter /FlateDecode >> stream xڽ[M1pXU,~ۂ X:$tPE`5V+yY=@8b}bI[HQIK# 9qPc$C[WC_[%iCLle@*k5Ni|$e 50JNUf- wե!I˄Ax DArfiJ^i 5(-_! f=u00bN;yw 0øn!u %hZ'Ԡf4W6 f1Ģ0B %Li k( rJ#cƘVz:K*h %T㺔C j]PCm 3Z zhJ)$shNJc\IJkgh Icl()tg )tpCCaJ4.l(+&n̉R^ $ wJըFj4xI_-osa y,=gZ]2XU|WbzL/뫸u O)qH[K+}1Rα6zuwz_ۇӻzܝ{|CBIO>ܝ~>keVbӾ ^ӻppz˧Jo'a1oIl¿9'\Y:2nV4S&b%RhY8DHC9:2,LBW#-z>B;+ ,2_me^)DJǡϷDP{6C1Vc28 ׅRH UN籐ңURRfXNfщ,:Gx ˨WEFj(/l-\+ 'z(B% >MHzoEԤ{~1sEK>X!hC*e-Phl H]w&DLSS ޳/p1=<P1A 2?rX/Ey%McE,8f19 ([hc3E:W(( iRVfStVAbAcAJN )LXHC_=t$j,yf)EkJ,@ y_p0ɋTVul_ AʠPs)nP4D1ͅM[j=L &z%,&,mz9 t@ʗF9ÉFa* [FGmc)>X3;³ COt %rFXWPzYm]ҢUWzbUz+BslTH/Y.u/Xdǒz <4jΦ~vՍW9A赳ΔO XH9H0hx~aהer>}Ul$^1 -mBr6m g{bUug=xj ICn Z fmE"lA$$a+_@B4oX-vX<$H}O`XC,l۳ܜ4-6 ՈoD5C-r# 7at*zx^VVžM3 +dM/`Sl7 aB{,fo=0cn50#n:<#(YDOC#eq71cuf̄JY5N$fnej#ezD֒F1׺qm$/!1':sQ:giLsD\>ڢxa&,N̬EJb HL펅qلU̖0@T3 $rgXЅ @ cm{G4PBzrbf/gTtg_un-6glAh3ceH˃ mׄieׄ9g,McdOޓ{i) ]l {μw2nBv~HGVf*DV[tb<[f ta:^KsҮRIpsT7mvc% {>V㟡._66uq ۧ-޾~N}{o=xeĭv/_>/wa ;\OOe9y^㴜F#7ԿŸGG#PP(Q8Fq1c(Q:Fu1cTǨQ:Fu1c4h9Fs1ct;Fw1c CR}$>>RU599999999999;;;;;;;;;;888888888GxԊG#;Fvq.q.q.q.q.q.q.kt4[yGt;|xwj!jh/X@ (]bb)溝Yخs k i`048>KB \r W'"ZVƂv|V'IlIO}q@ XG`8mH8:9k;5ԧ*_EA[k/@n,N}j,Z]‚ PZgOcf#WUMOcf#gK endstream endobj 12369 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2162 /Filter /FlateDecode >> stream xڽ[ˊ%WhiotB m ^yf7x1c ^}B[Z&4UT(:V+$wJ2F5U1$$e#Mֶl3ZҶ)_aϳI H1+cZDMh 7TKich @OUb5/1bW]2ĥݸ$4뚘e,X@-67٦z 8蔄zMb.ITIl[[ВOZ7q)8s75!'mgcC+Md$>-YCO&'S1D1f>b@>bl &I]04m&c 憱ԀVY0 bbp{.DyllxtP785*uEc5f3C|ls.L>}z{_>_|6~˿񻯿?E){㯟- *qd@}>}J_H}Zo Y`B oGP/D1 .jjn.&%Wp!.Jψ7sq\\x .'5\L;(^E+yɅSt;KЖG10lz7R.*Ȗ"# eG:E%쌊(v&R{#(O3*V2QrOsԣ+-+ׇ@8)YV]1tNzB_थfb}z)!)^y=G@cIA0~ n:Nbran*;8.,'Bo :)g*N-/5St} 80z3z{`L;8u]x.6˵X .S(j*igE[YPwLG2$,$R=2M,~VW/*n,:r$.,Mr ^5Åf^~I6ÞPeФ fTQ+۞vn=` CFp/t F-!BC(ZBE F2$֢r.9.Pgiѻ]Y݅jbdZr2z.T=Q#p= 2\ p&Ti<[VIхJ`n8ǜX,` T(PXH`bp@FKQ\I/q)bO~S>>J>np{ eKv)]2\\J2ʙB.ƾ>:̦:R#OX(A&| СK 3B-ҥbR3Z\RkŎbR+]j)Ȧ.5ٕ.l:uĕ.,5u.u!k.5;K]wԩKMGԥ^bץWZ{䜺 b.p.%\ SKQ0J:JSYRZ܈f S,.ؕ,(٥D.f!(否Rj^wCSХ0ĞȦ05٥2A=Ǯ q/5?ⶵ n {kt׵<(lYZP\&`(p+ k5KoxW>aiC1K.+M6(P F2j!ߡ@ .C(V) w(\Fa+tB=:KM@Au# "twPs endstream endobj 12511 0 obj << /Length 1553 /Filter /FlateDecode >> stream xZKo6WoJGEnBPlV 6beɤEq8(E(t͇$0S辈$$Jbxt&(nаGEwŒ?^?Td: E8j{?D_(#K z+1g[03&M`|T[f]At.\"+7F?hHHsvw7Ho+3CYX pkM3U˘ȹK6&SYWCmSL$qH2q7tlI *P@ǀEi=X9#)ga#ʇc[ֺ:M8 ǡ) ԡe.,Vb !,Qꦵ:kb*1U߮X!{ mXI=ᠶeU8_i^S_LpD\MmS'dvpm6U\{._^b ǯJ;O3hɘ']"۪nӆyR ,$7i *o$hxb΢<yvg! l- )6 [Q[=> stream xڽ[Kϯȣ 6IBv0E;"*U i蚬ʌweR-$OH@ROX%IT@Iԫ_} )a!rBm&6HH\ĄLtg34[$ & -gz"$'F"bW6ĨCR"&ZDc9qYHbTL{biG %q_ H<;0骈 JwUNbm$OhIZ[I:`Z|sWh"J2㝉W9Vjgr:Zs.Ԑő-Moa Zkom8>/H}^Rg^K_n7۰oCH}tL4l) 혉ϋ5*>/4Z_i \aGEek!M K5DS"S1OO(e `[KF:2m$Ȃze hm `_Ila͠kYHYbC^1|{mAIGa{Eqd{j QueAW\U^ fo3srONoN?~{D/~xSzthVZ87ݮYҋ61^?Y:Nn[V9P_rxޛ:t? /|Fz|x^"6mimQozOoj:~*>_+:o)<~/?|ey?~M[]F~Q%H%FloRb\qс=Fb[CmvZֻ0\4Xź8fsw췒o+P6/&VBZ\jk!X֍h&|Z'\HZmf][ٸc\NY]ߠ֎X{,ŶOAށؐe3 endstream endobj 12707 0 obj << /Length 1638 /Filter /FlateDecode >> stream x[KoFW(5DZA4-B-JaDH}Hһe=Y 4~ZhًK#b4HH"#ƣ2z?{/<4l\yw:{ۋKbǂ Ԯnu:L b^*ERؖ,V[E85͇wϢ.09;Ʈϩ (ˍvw=/ +8Cq\Sû$Lb~_rcSc7p)j}]UvSXaθGZt~^,m.mH3Ks ꫮ ܬN뢟KxW|ޭ]wN h\ypa.1-b.z4ۚqNԸJv2g{A㴳nIUJ, /n>&*$"CyWsJKCooIk*ևSJٹRUmyn8jSOSW(laڕ;'YWI7;4/.##!2 o~S(mq*GDXD$14*fL%8UJP`s`LdMs]\PC1B8J`d|h"h9. Lttna> Mbv`0N-6)'Saw /'T,lz(Pɮ Lj`7B1Vx*N>+8{QwldbDElV2jF}q c Z| 90\9rZ)FsWMw &'. Ήbpr5м=u=̷n]9Zh ɑ-%[y> stream xڽ[]$}BɋFRI% ?$b!ɲ} &fY9U=}{ ˬfnQNJΥ2!KV E4TCڷ;f)~G!gk7ul!kD׽foaBs %WmPvȡQBiNvPFvQtId;F[3A9S^7ocDcYԒ)ĕUn-" Y`G!ęl!%fm_-E@D(d H @6#Fu.d1Qd1g63g,| [H|b#[Y8e;f"=cn7ж4^vyԺE];#,dv,}6! ǽXfTǽ؝Em-d̨H:hB%,^B; KH'JD`m;9hX)TX!ֽ#h "-y ^SXfT5 -]YU^d>˝$U5XHQA"/,v`q΢A!;qJ$5;9u`>z{( WAv}4F""l~Ģ,*ӈ ([ඨjDк٢AhUa/vDS9\dd8QUzPsL2gY)S^QܷHf2Ӟm"mg߸JrV."Y$ sZ'UEkm13 o9,#xN ,@g[$J֩~Bbx!V.u& 3='_@{{VGh6tyZ]Vj4ϻ.b9[7bAxYd^&d"h< \nʭ[yUݓՀXƸ_p㟡KwU^Õ\d0B.7 .oz.>1x߀K/[6_~c~?~om>mm|WJ7/Zjl)[;*VaK"F!F!F!F!F!C!b1B !CQQQQQQQQQQшшшшшшшшшшPb(1J %CPbtbtbtbtbtbtbtbtbtbtb b b b b b b b b b bLbLbLbLbLbLbLbLbLbCSb+U*[-e5"F&F&F&F&uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uԹRJ+uW[ k lG$q̭)o\ *âM@ݏI D&a; Rn.sMQJm y- ;MQv mC^X(9ځ8) "׀ѶеslXbMGXXn*ޖo`+v}>NI̕$:B }'13JIv/:7X!X9y]m+^A!79]8'H s(DIe?qan:X,7Yn=(+{hY,"9[XB|-'jYsehMZQXK.YpQ `8;ɾ6߼ ) pA{8gY┅bgpqbi=\.Y,pqbdS+saxhqƉN.r@D^svۻsǯ ׽,{Em/"S,ڽ,OX`fz҂d~b iUA+?bo[Xhҕ;>a!3| \kdLeRj[dv˫a5b0¢-$nɝz 8?mɈR΢3}b vhx ,.i Q endstream endobj 12710 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2280 /Filter /FlateDecode >> stream xڽ[M-ϯ2>UI d{gpGq9w6 LkӪSebs+Bs {Qm4GXz+rD%?Bm5~!>>}lbpk2T!>Q6 -l2r0۟yh۟ᭆW(8F޶l[ *}\ Rd9HxnpF[ /J^8DWEmn5!s(6grh[/5oh޶uia&ֶ-ӴI͡1%-nBl ^^|IQziu.<c*]Kmһ̗g-=\s7ǘ벗 /ϽgQbö X'| ȾM) T#2a98#m(F1CӃZAym Wl VQQ6Ui#-3*bK* x"h!]ƕEk56NGQ$NPX~ |!;@1.!Gӊur}=bTpr{UV}诃0 +;+XI @ ML* )8|TOզgNa p$@ώbaHHҨJHP_Kxe蚧(l)WZ@aUbY@H }" Q@H@`(YMByYQprUB^[(K T( L v@>~Z읖}V&8 0@Wf0,t -[\Q$LIU( Y!*T)tfϦȮYLTQE՝T7Ufi 8P)H r=ޝz*,R0u-_tZLmΉ2YSIg=5:5:0XuAfmPttɡf|VwM5adBOfI ʤ~M&DA${8 VR&$LetڜcxatIv``fd+t YJR-?JvG9 ;ʅ!5d }J RPi%[P(fDbWyo@ (‚4?X7 *qʣ@:0 P\i6Q(sPlm9PX WBR%k?0AR\1l^HvcĊJȁ"y\ArQ+bzt1WDR rE^;P,F\`r&cAd+G\!P NOAȾ O|vBޯXR߁`!/>+4LCf9pI@)uf^h vGM 3ӑ5x3+-w@M15bhIя 8R+"Ae() Gĸ} O5W$Qrq<2ٵ]{otͰ +~^:CKt絸{II+֦2Mm-}pk1[O1,& 0v`HмdE#9c7hFlntɻ'>f@IޡH (bWxޘݽB=-\ "OYYDm ^n{Ș@>?% endstream endobj 12925 0 obj << /Length 1707 /Filter /FlateDecode >> stream x[Ms6W ^;dS_Z E*$5q})% '``},&d旇wY<$IL'fMLD<&o %? 醼{/'򋭦imsKv^ןyɄN||ߊ8>0<4Ba*p2DL|ցwW(oݘ4\4rәؙGtf|>::vr!3ӅZ0<~l6a,kRCJ"YWJWɦȚڅmzBLwUOYM+l:lLz_x;ӳ.3ߧKA< V2$PP @ Do' `bCKiTjj"·##bO(S( #hInP'6$,z{;.y^KӾm$ e:$\ViQ|sOv;-OnӤ]p`u@=1+J$k*媿˶'Yoq3׏Jt t?tNOkgv@ m%(Q`(QFD|#ܧk j @ -C!m խ#$1APE"Rswa`G6p1:B*2 MRzL+NlUY-yVYl 5Jf;yUү],!rJAxSv2f9̂XdpשC2,)˧t{;A 0q(q'NlvUqq%|*`l=2P՟<8 LShYQd"HEc,e:46?O|S9-"!}F B7*Y: AT R\eWr k*Є&_o)\``" p#tP&DLK"5+NG31cPn؅f~ 5kbvbe7! :Yna״5v! .m"znޥ,E%,_v@ xz}گѼwh%i]pq 'b:ofm/Aպ* 4jx'v`G~;_T#WNsc.fTYf+Է+7@coxx\{9~KwW ,\xQ\SہsjlM'_jV7o5 o,II&+f#2rUxeCe,ټ"Q,le}>trvfKF/gp9 #a9\ӏ8i6YY\!"c"اuTa43`y5"?~ cdB Bȵ|]Pbkx0 9ne.tg\$.4~,_Vu0{= "PE[xE롧DNix i;1|0;a__ endstream endobj 12711 0 obj << /Type /ObjStm /N 100 /First 1129 /Length 2810 /Filter /FlateDecode >> stream xڽ͏W\8(U`P ['ZC+s,`Xܙn_Y\zo!{Ufku4Hʳe歑4*j-_{gq\' 'նU!%1mӼiЭ| tky-~Oj=>oEmުqnI>>bMJ}H='ҷq*Ob }䖶4~~ ?|xp}8}ǏrQzo/?wX6;EM-pիp&) $u6bC0uEծm¥%bgtE K2ڮrZ{"DA!jRs΀Rܷo`X8f k㲵xA@pk++wfr0( *,d3hS\ٻDᲐ{t cQal,D`RXXSy"E+opCY^{Zmmi֑厤EwDJ\+fT,^ "a2s>C'PXEYXU H!R{!~;E +6D;XSs#D-&,]_%L(F/ӎ)© Aeq©tٯ}| JoXaV#A_{0VB`J0bm9SR[0].Uɕ/NcvS!#}{>h }Q{!{E_~$NC MwHߨl{[5Y% (XC`ŸK6g%ABRzCOZ]hK|GDQϟ4lwD BĖWC2e5$ڐKEE*>&paG%瘐]U\j;"z`^Qr%߳ӧTqzN;9St$ǔ.e- +6֙c+#vg3,M6b}=#ڵtهQ}$-c#&4VRtyz¢vL؄OOgE?>Gȓ E=z E]YcKtńSQWA8WA+QWAݳ ׇK}tYTBj endstream endobj 12927 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2273 /Filter /FlateDecode >> stream xڽ 턇u'a y7"ibL@СFM;EV_dq(Go٢g6-)&>[Z<VzzxB d3?h́e]ey$sԎ1Z9n¤{aٌº? R)F+ܷ)~lp0o# -"Ê6G EzD6l4 {duMdHéXѾEǜ"9ŘwLtvVLcv#*4 >g#,Z/ι hFqG1pFop+gm@Jٴ%;{ o[3 v4 e䜍SJ+`  d3m|/s^Yϝ9mx~#6'߾嶯yװ/6xRÇӧ_}ӿ>7_~ǧ?6D?iϟ|DȨM!C*F5M+7sߗ_~RW~_w߽ {d ,^@Pu5CoLb^0_H9JyR@S<ZH2)B DJ:̣ 4 + b!Ĝ456F5(&mN,pX8*6g& qf)BmeЊDטAkV!V~9u!EǶ+$(VNHuWAj T^UR@r!ZDz sDZU(V.Aupu@ABT'QKv[@a!+Ƹa H;DOrS $ V BJcO CStYHZSP&A^#~{X BP$\Xo JbF?W:BŸC^m V SJUvhk.> Y/9)MyJW2PyB3+kt9 +@,-bԡK+4Q(ϳ4_mcN_> stream x[Mo6WO:vdE- ۴]Yr+J*ˤm=Lp͐FCwӋ;=؛.=A< n^N'_v9_?{J?rsGTc?AIb\57wL~k|ègiҁD` {E Sxx}vY]ꠉl/-lׄ" 9xȤ9`܂|h5rd\_y>_V 6RGA0q:OC!ccIz3ʎm#%mT#zɓJy | {h fFT]݁ Xcv` /!tDBucbuL|vNVo<鍿RKm̧A_(112jE{VaY7=NLU/Yil{Vာ^!GT6 6Ԣgَ|-A倅T y%Z$cS2lwnF!UvVod,ЍotW >/e#(7WUcnggGB>MbPلKhh=C~Jfa|S:CMݥ{|$CCE`Ҭ] ΞK~έVWUgjRPdoHsBKLt6 #9U PH-l~ )A}bl"o 7n(n*M>uGzٛB (ԊV}1>y^:ľFU1HG`#(p\J1jhb '6*NA?:ޗA>pF*TS4%?Ted+NZU\ ՖtT#$vבwvԦU~2غP?NR&jCniC5r#(x;o5ex NEBeCfmv6*fWZDzFY楡Ckl,B4h 5O"61!l]3v^$ςH^{_A`~+'hxa΂@ۏ?pM2'!U~6ަ7`؊JK/2:{5=*߹w-SWntAmꅁia 01juk.k6j~;܎Јc2 +f: A"(Тql|g'IFP1:~mD.QOo,CV.ࣨbN]72I jf;d,7Y{"ߛpoԴi;-!pIPZL7IîB³wӋo2 endstream endobj 12928 0 obj << /Type /ObjStm /N 100 /First 1126 /Length 2744 /Filter /FlateDecode >> stream xڽM+xL.=I@0`[P [$ZCf}H8ػnUl.qr"n_ELj[#Ny$1dJjR2F5Q~Sd~!~  ]go7|M 1j✇V\׏Ě׏EZ~ư-1]ur;'u% 1o$c^hvKb4:oK{uZ=礤e ))mc#*JҲ]IͭaIڶ,iWÚJ.h0у;:D]p11TeC9jΔ[Jt*2'vNq3timj\:xU3 LˍH`ŕ)Vppi ^y}ʼnVS|Aasmg󪹴]ͣW0SnQކ o{1|s D!1fs \\#XyDx`y5uzx濿>ӷ?>}y8__ƿ<{㧷(;oi/X_>-[u5ATߕnPh1lzDx-}b}"(0}K< b3'=s;RxȬ"{̅L{e!\0uMGɞu-wd9>3dyEۑTz4(,Q6s1#_Q?+*v"=E endstream endobj 13098 0 obj << /Type /ObjStm /N 100 /First 1114 /Length 2216 /Filter /FlateDecode >> stream xڽˊ%Zڛ<gv4ƙPh}H_J"Bj\j!B=FˊV-/}ŽV+m.̏*e yg!>b (\f+L0CZX:6u*:ުxnE E0hFVDmZ/bZhRfM.Lٔ2Zm&Q@M/jɀfukيFE;[6DŨsFub=l크X&֬XNF6[qy}kq oƑ1c}1^ˣy1H]mD A RKlB%MD_B4Z_Vx}MXP/Ͷm&}J/mIWJo3 ҷT- cLz(d(l,}@V0tULj6zLƘ/dT~0AD[?d5$%dk?9k?hs\ژ=ַtH=Atmr:ykc]x|7>"f<뷷۷?˿?>SԿi#$ CXd!mڱ 'VH2$/ P_2- Yc`8:xRd0AQaр !d AmzҹiAl0 f Ѱ,G,? -N"fj@.5wXVoP{WQP@#he9/ũ\MvUk_J8G8{%|\BtxB0U/ \fB]9,~rXD'Lf`'4 ր'A/f.AwzbI"Ph2sMe^ΰTuGQf v{0'*5K;Bݢ8J@tdœ%+)tPayGsPA21D>)2dEL rXd.pu0:DJ8ŠCrͤg B0,tPhEj.sIY8tYdbfDFtPdLd判$7È'B=[JNѱd]RL )MLL,O=9 &s[/m80 \ڡ#k6S+2"ߡZi; +pB)]CZb Xj0;mVINZ!^RH/;.bb="ew ;6s7}G7(b@bо i(=!߁h@ ;3!`ճ./yu3 hP΂^\C @O͚ ,݁7ga= L(K{bj˨-lƗ3Z/6)]VOlj"o@tOqX{ u(y1>&GO=?ԙinPP~~(63C:M+i.Ga4(l^Bzw5wwg],kHBbfXnĻO˒[bn(f$OM-=Y3fpisr1e]۰K"_<xyV駧06*PT~~'1hT= zϬ\qv S;Ӌ1^SD"݄^EejTX f"ng#TpsKIOB9g ܽ=cVLWA40q*Un{2|ګ(ZyiI3?;~­7 i7EvQa_4Dc"~4="ƫbsQiN\DbԽ_%[\!ڲHyb"yq 34()A!Gvga'e~; ybnVգƚ-gs13'4r-o#rߢX endstream endobj 13207 0 obj << /Length 1451 /Filter /FlateDecode >> stream xŚo8+8J[Ɵ+팴]z,8)*N ~~_~~pJ$0x  ! 4x?_w`X&ˆK%%S7A*`Pw/~ ~cD U{?H8$1- "P9VN1Eq*` 26iiWyhv]H4 F,,-Q`$$, 2cvE?/'x$U1 qX0+h&+³B v!v1HSb{Q[7H;Q*C74*RO7Ίzx9m #y ^'!YM0F (5$ mlvt}40C EYۧ =r*E!.y1.bOFuTbL`І Ҧti>pKll¢(\:B Hy<*-94ELf뤍vP= b2loZ\l~}L?NLWe-LMC·}Ӯ9˭n2`m%3jcE jEA*alafynw!՗E&.ǽ.VG*xnd)%! mX)~έ'()0HS3tN$r* WKH#ӏ^BTBI`GeNei 1ݔe!S H<ة &B3lO,zk@BĐ/s`]jbTz "(y`s7{b&NR 1KOg\r5ަ,ˌ)J7$ERCԢ9;χh endstream endobj 13099 0 obj << /Type /ObjStm /N 100 /First 1121 /Length 2702 /Filter /FlateDecode >> stream xڽ[M ﯨcr)%@}H"ȋ5dp}ݜ!s@-t{ok)'߂W$W$֤ZW=}5(ds ;ޠli-Ϥ/lWvAOL<|9skGN\ J6oܺ6:ۻkA a3:/*/)IKN"nH›`KȨBH9_$˞r$ zh]!|YI ihn$Z'@'rzHx?smLeۘS2|YR&T 555j*Ųɿ lz4y:E\$0.~,K"7%C+zm5Lm- 6XAFCoJM&%@& h(1!. :Yn\x?]z\#qT\ PkT^\sKe6Άyy2@aqO >ndƭxͧ^wovOMړŽ55cRkշkMf{x~L/?~|p}Ǐy|O2bP~/ߑHY@k[td֗*2z.ߦ˟{J?67X kY:L@ @buh%/fW"t/+-X. 1xAD, p_2#y" Cg$ØɁ3v,dy"^w)(="W/J)>JysP94Y^0T Kth(r. DQ&DI@n D7Bx* x*B iu-_|C˖T.9 it u5zaAԮ&rwVr(;[8L1bІSwuzgߤOVh(}WyXhDzuOO}tyM|-8=\?~Żfoӯ>A*211B,QM,t,P*fbE}bu wEh>,'z e~jhzT> + 8C3xU Ũofۙw?*3I(MVI4  ~/Il6v6xl DMUZ;-l*z-{Iq )b;U GgFbV\F Bk&X?I:.XJ PUHŊ*d_r)^&Fwi{NA+ n66B*<RЈeL#6@;=:6~FkH 4^RV{afhS<ZX5糰macםEXZ- iVڟ* j҆ϵlBFʶ"@DYFWVZ[(hېf[b;^؂VAZo|-pq,ּ^تy/ zkS)2ZCVKgv!f#+_7 iiaVa-rY):sJM# `kyv4׆L=Tv4t=5l]& f-,LEH]P9ӑ’m/s#u|f Fsoا!q(q.y*yyN=b\oi~pK֙CEdeuuҮ%WQ6,yj endstream endobj 13319 0 obj << /Length 1469 /Filter /FlateDecode >> stream xŚQ6W+uYml{T!BL-B@ۜ)Qf>f㙱=gxǫ๡g:wG]agq\on!׫?Ot> 5g-L+뼤}YɳYoJ#y}Vg$O2( ޖ<&j&=K\-#(WF EN[ őZ5S? 瑟MdMܺfR7PQE׿teb߰d&L1iQ\y2_]/ Q"'@P5*bRR`.1j.Z 4źdIZC93256;XwEh1O(|`!Ҙ*|_{Z mЈ[73Ox@MC&ϣ}و@29@Н tJC6@<(6Ӧw$N<3KuSθuj&!6X%bιY(ieR+dZ# fgIy+]yֶ%m71^Đ4Z'z$%PH`ppV| $2jXìu6my6R"تr8>*bGo߫XUU@FkAQJ z#D%O֕Kt ,wя:^Q_wfpSopji`;ArVly5MI1K endstream endobj 13209 0 obj << /Type /ObjStm /N 100 /First 1121 /Length 2524 /Filter /FlateDecode >> stream xڽZM2IWJ`f8 $`^$1^8& 붳yꂦ[)~TWH]>.oKp"Gѕ(JG!>H!ݵan, "a\+e+ڰB}]ԩRΥK:.e fĥ2'*wtܷ:JH#VHrw(0cpP\v9J{˩JFbr9 !,!.+4..W}(JC$ ;T'\;Զg@DDŽiwH4N);0.LВ:̓C*N'TNI5 LBR[S Jnh0(au5}MYyL`$ݫ2 ]$9:I2Pkc ԍ:1nub\X9dϒIs:gq'15͸*2q6#)w9qR|h/8p.O1{ⅻq?=}t}9}~6+3D ^a90U.csg 74Irdt 36#(WY,TOp&cXOǖ4{-m XŖ0WHpIB}]$ɷḤeuR8LX4P}BYA\hF)H 1Nc1QmE bK:3v2Jgg(> qFL+,D @ϥ)h|EYX$s- H̘.rR @K&,Px,זB;* KM0GE糖X@fMPe.ϰ|l-RsZU+Y6&1'rSl):HO%*fm3C=PxL#u# R_ѷFΞѶqZ0X]P6@O *zB$b@vh6O^m!zN4h~ 0P+L{w]:tޚ{׬W_^>U;h ?L=뗯_`qww\vX~x?>p};`򾎟=NqFFFd+FjbF0a$H #F2d0aaaaaaaaaaaaaaaaaaaaadȆ #F6l0adȆ!!!!!!!!!!Q F1b0a(Q F5j0aTèQ F50ڑE%FFb#Qa99{qH0dQHSQ&49TEABh,HKʄȂN௶]aphA!2Z 1mk3}7odl"KDNQ2Y]EJغ|4Jzr9vjMdWHVՒEDFdFh[sCP;OǐyTBjg2} , #B#ZD`JlW(1MDTHө#甚^cQS5ob\/'+j2bQ'5yQoRbQx"38vn=`M/V緇_xS[$ſA+Z%Ō]-چC KyK@yMk10{!E֞?BKkdmڹ~,*7Ȕhjvx{LԽ1SXJcus!&;ߤ'D#ByoXfBB∅?hNe|Ce\'1q#q$3Il + {Y"o ;t!^3M]|%C]yck?u1.uYZ{EZ5]ŅdouULU|Y xObFHg*ϰS8@IUБn`*fJcV{H+pjwAS_bБ8ۡ"u%[ aA5ޢ3l-uŕWWuҕl! Dz^N0 4`DqnY̥ڜ-ő6OQӐ1Bg{PJbٕ(MXov9 oIpˬrLb]?Tz&wS ?K\/t7ʭNYBCRc?RiqTnv, =|6\ rmm_ endstream endobj 13475 0 obj << /Length 1598 /Filter /FlateDecode >> stream xZKs6W 7i2c[dsB,Iο/$щEPd>.EC7ݼ$Ci,[''Qܭ?Ɍ7h<%ŗӅQC+뇽)RFT`a%N: $K=ǧ7ɟw#W;QLҜ2Z<{=8E 9QUDڪ*!s% yTem-,U9h:)KFKU}n`,7c,\ʾ6ROM6t-2~̶0DrM^ XY .<MYsBF~?A$;̌R@O>rm3SNr١7[wA3—@?uiܫ/B g  Z8FxVe}%4z(7c˙~~{%xGCW~ endstream endobj 13321 0 obj << /Type /ObjStm /N 100 /First 1125 /Length 2787 /Filter /FlateDecode >> stream xڽ[M1pX*~ۂ X:$tE`5V+~ ܝn$_}M e5@*c[ x(h.cġqGˡqGs# ַq9|gC{oK12Au㽶\9pJ:90>kC ,iVI+XfSlS 9UC SC9K2^!!U{6L5rjAHh {l0QLT1/I^AWrC@0f̨f̡:Pgc 5h[B-cu顮-Vиcr lC[-4φcJ]ngia{Z;9uC|2KƢ^e܆zc^hώɀdGƘ*aotJ5H ,(^S[Q.1@!AAq%0HB˽x6j7m,)wo~z`N?}w?>wp+f*K u߄/M8c8 |?? IBM"I)vȟT>iKMCh&[a!&Nt=FEȢd

`An>1t#13?bn]exgߡRvիLJ1ݫlFWܭ׿(̺O?pzU89ӿw(ɫM`Oy?÷28nYO4rXO^Jio#|GQQF9|1cdȎ#;Fv q q q q q q q q q q u u u u u u u u u u1c(Q8Fq1cTǨQ:Fu1cTh9Fs1c4h;Fw1ct;F0$%GG#QQQcccccccju.sq\\:׹u.sq\\:׹u.sq\\:׹u.sq\\:׹u.sq\\:׹u.sq\\:׹e9S&_@(M#)( dA Q B=!H*bI;E4I δ"Fq& H(M G2JNf2DiePFBHĸ S y#A)bҽLxZv\BbRUTK``A@ U:Bn}8V_$"r6SEҼNEb5Xje;ł|wpzd2\hOU, Vb)UO'r:x;Znj<a-fEvk)HI4>әJAB{$DDG$\hݏXO*5_hZ}Ě LVFPڏ+dkrS:L$r[ 5^KZnx~cG8.I1p8KXcæ2\(kgs%,fEZg0U-8AN> stream x[o6~_XT/=Xv6Æbd˒'KߏU)Q'M̻w;[ǫw>y7/g ͘<}/}zG_?_~{;Ea9ԧJAH+Qo#q}KtjD3oV_>^;b6ה~wnVSRש? UtvvR+=  7q t"*uCT&:`,H; 'E u<&pvf$\GZΡHtwA wQmu/ O HO;p ō 1ྷNy@ $)0.(FClha@磴sJo40ha Va@ 0+ oxn} gdžZiκljj8jǡǽ߯vo}M<{5p۶/*YvTBOj}'#Foe!ptP= ĈN:F;E܋25(#c[",tv0NIv(Ң|knskL!; WA+8x ".d'>"JV|(98 s!E'͊ ,HJQօn/>eZxPspvvvSklz xP^|u ok4ʧp[$\ߢͺL}^$ rJkZRP<5sM\T; !Al~u7.'Xm,APdY*Qڏ\ȣPSlXZ?IaGޙ6C-ӬYܥENocA Y\?$D#C^䋬7E`쮨ҺzRN6@ǹJWyY$ ȸTͮ\1g鎾$<,:*K݅IZ]*lS2'=R}<,O;t}_?A49̭I\> stream xڽ[M1>Iۂ :81tPE` 8>UřsV6k^} jDbrhѢ"*ђƈA-]U `ތ^10sx2~s.6@) N4z4{Ah6}q[88F^rB#pB3U q@pBZc$ɵ{Qxdav(=c&;:Ǘc6=8_ j&b>8ʘFҌ{G5 >>6~~,/?|xp>zyN_[u͏`\7 ^_/rӛrzYcV-rQM,cLya}#}! CӼ1MՕ1Сo38 GvREQS-Pޚt`])YRlzۢ^CqD^!D7j'sVy4 Ze3BjhL 6t' a^VgS4fÝ<+,YQISN/ yYX[gF*=b!4 3zeaM,VJ+ -Bb KSMvA+Q-[H,[5*j ,zN*XފMR cZV bȴV6r2,v6pJ3AJBB;P>u9|xq/~㆖O@!!uLE+ TOI0rdwfbQ@$bfo*t&i<UYXH$gz~,rzU9ysy}m,N_ۈ>0^~qÏz\(`i-|gL'Þ_pNVָzV>NlI4[-[c$H#1Fb1c$Ƹ`Hقla([-ɖfeg+1 1 1 1 1 1 1 1 1 1 101010101010101010101(1(1(1(1(1(1(1(1(1(181818181818181818181$1$1$1$1$1$1$1$1$1$141414141414141414141Zbj%U+-1Zbh#u.sIK\R:Թ%u.sIK\R:Թ%u.sIK\R:Թ5usMk\S:Թ5usMk\S:Թ5usMk\:tpG~sכ'lɂ! _?̅UTݚVJSOo_֥ B~2X`غ㛩׼ endstream endobj 13629 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2212 /Filter /FlateDecode >> stream xڽˎ Z&x%& *3A4 @`YΩMl/tQUgHERIO1cI Ũ*#Kf1iŚn˥MXF~P , 5Q` 7GKLRc|7ZJ*͇~SN O5bIJ+1IH -qВ~;$-*$ݺFmv݁ Dݖ,I-I=I#K՘|bsOTh 5&=س⾌M+e%#.ɸdZ\UJ a[}z{?N۷O|⛷?dù;53)yTüӧO?~MK[N} (jbŲШYfxPqPRs7TxT჊E]͗BċK!)@ak3d7sVz3Ŀ wqx6$.i^Wz~T$?~6eofoS`ջJwT>%D+x^ygjѫ*~B׆ލ@B8%;RB]9  U׿ s 2/t%rdw]U !GΣuaɂE +G-H< =LLWx}wy,zfdP 3#&Gi7lSZ AzBHo7X!/L, D=|v;CZxRoFa픂nYg UbBLIB! TŻ.wIH_,ɰ a wɚ׸G 8Q/1f(+-)F8E(v)S[$^(۠ꫵbRLYR" RSVI1eqJAYY#I1eqJq,,ΚŤ8X*  1o?m.wd'+)8 l,W +YeX=(Yi(nYvw 僉.ވ 5w+Yy'k]J]a6C Lv䴇V[O1{g=0׽͞E1ť2t,N3=Yl0=< endstream endobj 13764 0 obj << /Length 1340 /Filter /FlateDecode >> stream xZMs8Wp0}uvjܦ( Ml;d`ah =junsv|7?t^}{ܧΏ/bs׍[친ooJs%,E2YQP}{9ȩ88?n1_8W9ܾOwK;loj'{ ~ .Vߴ32 }.p6-Kg VbS#j5,>Ⱥ?q` 32dcFacFQw7rЎm)v@KyK?SX66QԑsPa:hQ6ߐf!JE,cJiV]]g)Yn"'Z&c-fux袈t磆"]MR=zzldrV7ՋYVb𪎫bjzTV.zM pџXw$'GI~1?6kU.BmSj5R¢pJ`黒PV!"3s!Z]Y1Xdge5QH-|TJNځLo4:G7wh!n:4d.b'֞(Ku k |r׮/͋ZɉKK8Z$#{H:U>2B+exv,R8=zKQ ְɳDXhr-f'0t#h#ejAơJ̩͜]~,SW[YR䋀 ?U΁ ' ƉAɢ\c *5!=>>Gs}8)?lS<+]vWQkk+*6%aHM+tyUw(E~84Mcb$.OLJ1àM.167vnVw*N۷҃3ˑl$Dչ֯'O's?:RjT\+0ʹP}ܧ꧔C'`5 endstream endobj 13630 0 obj << /Type /ObjStm /N 100 /First 1123 /Length 2598 /Filter /FlateDecode >> stream xڽ[]\}_E-T5N ?8!,Yf甮n5ݺ:SEZ)dOcTU#o%H)cTCjh)Q }>CNRw6Yۄm ^N :{C 7X&I;fj@mAMxdMJ$j(eNP650aE0PZmhpxa%0m+dRǰ:ni{e{I:eۇ>> <'h@!ۧZKF%hXA1 Zoچ$6@\VdxS )48p mCOK$'I'IMkOO ,(S2@j;- x©/qś,يO2A73ؔmpsmp+>ɍXTRLw:4!C \1fXZϪ}h(,c}hfUCulkm6CbnTڶӶUim.w/^ܝp}ܝ{w ^(?/]tEc'5fH)mx"ބӟ>_>>nz$sb֭cIu$tb1?ȉM/HJ)Bm IDs@BV=fN/6vvi?BʱÐK(LED&Z**Q-f3tnd.h\+kV bF|A+84Rn;Rؕ."xJюId(DFpvQ0n-.CWDОHPlZn,a!m4!p"3s^ėx7,Y@b2q"/m:G s ^!3 u(r~j^K G/H!|H myҖ&؞&UHloLSBIHV$@BXQZL/)O5Qv#*k\ Q:Q1^@ iz˭H?C" ZƋ($/+,D=˭ ]7QEFg_5AFffff8kq2* jIXSEbac\$ҟEbe!$hZV9$XȺ"Nf ě)EF*OXKZP?az ]ȢQ; D?dT/HrtYX !ȭ"`EIbR/+z;Dq&Е7g$$֪Ŭ 26xjޥ-??~~vO{5 ՍvK^ǝIf~vbk}D>:>U>#````````ǨQ:Fu1cTǨQCCCCCCCCCC9Fs1c4h9Fs1ct;Fw}Д|}D>*>bGG#;Fv1cdȎ#;999[ccccccp;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;Wsu;i#+<&Bm Ur27g+re| rY0 R ߌbPиNvJcH+"#I,byu5t:ǜnGbA+0 mR꘭#b@̈́ݚDul$"$$ou$QZn(ub ܚv$_:&m+YP9C R/8+(wd`mJ`-fHL h蘄~uD4sk4j0$Kf1:ˬ`E`eUOX9,V6jdQs;UvylӼv$— .5۩T7KvyOu ͉bk氟< Po[DjL۩v~,`J:XuhX ~Y-dWO`V Es2r6u-_VtdS۟>A&!Wv-p| kS`pw`;8 _Ia #?뛎6`0 9MCΔpXiŒ%!]w- V/ 6}g$1؍g܉-.jW."vkFS~ endstream endobj 13961 0 obj << /Length 1748 /Filter /FlateDecode >> stream x[ێ6}߯:zl$M@-B-yWX2$:}&LYoX4V"I7]ک>T^u4"zǻW[R{m7C7hL1k\BbB#> ~->x¸ ,`(P!V⟈Nk"p* ),!Ybe )%t fɼ1y" KXFڶɋAﵵWu06g5]b[LckF-:+>I4&{N}sCDT}7g,m R> Lr-O*ֲ)g`!jL4V}{m%Otn"%X`K2pIPI:0^NJ*_iƧN4NO/CiQ.< o8"P͓iU. :g<6&XU7MQ9SB8pA+B:*u~Z7J6XxX&I}Ez=[QH v#9㨖k=3kw7!ѢJkSewݥ/x8ewvPpj9(w T(\|&_h,of014(^sIIHTB1.$l]@H[PIٺz"b1IPB2XBX'`X rtIύ{31mp++Y>v] _&*|,צ5 12+gp_ z>'9IcfYoSEOmyY} Cc}ԘƉ޹'flZ}ЇDko~uUuLOp}[ &h 7 M^/eZvt ϫT2ɪ.o gH_ޫ;"4֟G#1sHy]_'r0RxDĀR͒>[%„}r ~0_. NȄP?3{i ~kcB_N"ʋ endstream endobj 13766 0 obj << /Type /ObjStm /N 100 /First 1114 /Length 2792 /Filter /FlateDecode >> stream xڽ[n%+L6|Y I$,[#c<)#yu/iN;׮R9PȂ#K_4cmpuAI·m\!t= G:x:' T0焑J(ePCi qC=M2*64Z%9Sj󼹄5ԱMhh%Mm\!6 MJ _!JMa ڤ^j4&҂VMA6a4&` QiɚCHbC{s}}#RѪ` =t06z X+\Ԝƶ`2uZ _w0ƴZnGk4Oz\t[ɦA7͂n+))趒VRJm%HJ <`z2+hM`aOljbt}ubx: l]"N*nװ9Ml =.b2-˜l1mSlyB؏'0A۝k( 0߉8:M^^.Ow/>p]I/<|}KZ1IôëWMC|wm؟ggf{K}Dд(FcJ7 IDXNBrDB֑2^k,pOL#!I$ ZE56a[5GE|5ERkH걕#yD#+wG8 V<$qT8r ~E[Xh[6"˰Xa-YXKD#+;hΖ4ʕ{d,\ۀ?'*lPijxR6Ax/d$QtU$Qa9QH !,(1VFѮx*_ 2XRDz5FpNJ ^3,NK8`z}8mhiN[` f,SP{΢Q.Іҷȁq6W؞BoL͢mnKuHU$KˬCPCF$/Dbʣ{HGUxAzY>ufbZ[ MyȪԣ@VHTČhꑥו!DbjOH [8JD%<9㔅 ^rcgQ*s+Ot))W>PqubqI`c7 kEb}@0X[ M_ r+գDQS^}܏4 g!ϰ; >z]3o[QQ(}} 9] 2kH:z$XIMdD)kSMo$̾9׶ݵ?@HԵmwG $ⶻ o{qJb,mn9w(ܥ8Qҭe}AX B^>Auq)v[]~cuﮖZ6vm+Yyjz@n$pҌѽizF+k r5Yn%Na/NIԶF7e#/jc9AU=b;,oety̞Qe! ,Vʇoj,j3b7XUhNsg!LybiQ*i"OXM,vF;Gy^돝VXz7_ݠ\RS=nB-Eg`]EAPGz3Y҃[7L"OVdj=He5111J %CPb(1J #Èa0b1F #h>*G#s48RQQQQQQQQQQQQQQQQQQQQшшшшшшшшшш!b1B !C!btbPGĠΕ:W\sΕ:W\sΕ:W\sΕ:W\sΕ:W\sΕ:W\sΕ:W\sΕ:W\s΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:7ܨs΍:M$89XaF}3-ND,GIwjO:K>r<_X<@_ $-$Gk~=v)?l[f7RbOX 7n`(=aJ_i:e.l(YںʻXUX[揪>aѡz a',ԕzipVc3۪b1~Rf;$A `!u_9,s\O4^g!8}!fJL t$T$Ft+go!ӷrnb,N[L?e1H= endstream endobj 13963 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2302 /Filter /FlateDecode >> stream xڽˊ$Z]f`lm3 _c ^Eddm UBUtGRD gǧ̫Q=F+2bB󊋻+)eZWЈ|&PQ. ż7;K|R Ǽ4/䐸-/#7±Ym´6NT$:qI"EmY1/ҽhE[EIFQd^RQn`. R4gZta+b7 ta6ZloFILwHǼ߹hеo/ŧnp9$ \Bd*Ka#1!J~>Q@ ` F2*ݶK%iRzfaZئiVFo2qfݴi ݦi ୌk}{CUkDqev{:#cKvo6]hڅ R v>FSއ;sS,eYَYBǷl=~Cz>}zߟ?_|v?6ӿ/?5Dn'OxexWx2vwH\Շ])Gf'}}[zPm5R =g{a!~YJ>2"hM!\!ى84N= P+=DetS B5Eb͞+)M`t=)j2A!A)-.:Qi%%@Ha DڸmxQ3IlYPVfun`Ⱥ5(t@c+%#Pa5P?LK[B pиpY G@8LĮ%+:es~be?2+eP)>HV'c/@[M]fswG{J,8[n; *}AK8bdrbFDa0&繂SEUA#Q ~biyu (|i嬼뗼 ;s;|6%;ö}~A:ϴl zJlhitX'=bٯ}ÔU )bG?k# !ßX[#Σ";rK.lsE!zv>@ ^``)}1ԽHhJLNV\?`=1F}99z.0P8g1S-&/:"j:E(/҈%\2Prl`T8"w@4("TBU۫郐inך Sx!hiAa vp!7F jsG5D񢍱TH"kxW_i, Uidqu\R-#JJh1\kc܇ .J> stream x[nF+LpEWJ F!TIʰʌ#C Gy2;xH xw՛,(I 1tqYh$Më$oފy$<>R)ݳg~$ SZ|朿REO< ntll탗=8^| 6>t!ĉg! - |d@_y$~MB?vO؛ ؊u0F=YtE•CIy!v^3Oi?b_qs|?-򦍎1B!Y( BpTJ9ѵΎ*M43=iCW6T $H*PP̂oQi\XHa /1$a((1%t t2aBC(1((W,R|$O K"wsb'B814$wаƀ\H1ȝ_,&I%E妮u^8eamOG10{ձM:gΘUGlp8k}-!Z|^)MQɹyiÌ43OKW?]>H$P2$m_BJ;"k[cUO.T:aQG(+_<>ޗy_It (d嫫1i>Ys:KxdeAV#|yMǭm=R" x,ڙ-Y_,=Z7Y6gPWd6+s\ğϟz<;IfYӶuf֔ C)i'>Wv3D_z} YmWx>maYM|0{t]`vNp9KYR}K)@O1?/>9;1~~=2+D6eGn]Vl[?ě%4loZr}nwh--'571[h^4ǡnFI3v]s69m#x΍MB އ΃7yof ں_*M;;֔ }J:`3(ᛳn- endstream endobj 13964 0 obj << /Type /ObjStm /N 100 /First 1116 /Length 2738 /Filter /FlateDecode >> stream xڽ[M1pXdY%@uH"ȋ58>Ud!s rG~zUMR G\/)pѢ EF+Zh^hY%5PNM2/sˣi7(iCO94Tf_yvq{!K)lƿ񩆬[{>@)4'PxN%CGSBHR E[v4j6FM LFm\m92Σ6XӠ9pA'K}s )9Zn6>{>?3Ǝ,:ǵs9*Bs:G2Gb o}eVsqu(|Fkj?9Vn\fOXh_ ֧ǝ{>vgI\^x8﯏ǏO_N?~ח_wO~z6w?r-?N?<~rXicʽzkmڭ߷ŋp1)^?ߏQrcEoѭgg!$`!Xl(wD9f`,hŠE#rEi Y(V Xr$}BEj1+E(༐EkL.C/d!9ڢ}fRtw>fn;.Yvq̢n$:.Jp ru Eu#fsD_klN¼Bs!e;s N@)j>0z $ZfR}M4IBFkF".qMCI70b .Q(Z{EAN@Nq̢ Y91 ANsCL7)v{NqBnS,␅ rrc-v]EY S ,-JE],v8dvE],v8f7n,Tn` !Nbc.J]$^bWڅD\{gv!YrI 5rʷiZhKmW,D]¤5,E̢[5aI7.,̿ {bKVkSW.\-Z(͂~Uss1Ӑv] V4$RJdzjw8Ⱦ6/|Kz7|@zͼ{FbcbJig,`_B-BMCBri$ "s0#󀂔v2rN}G'×b։.U[w&2$_QbE׬c,rW^,hA\XeŹ /^GYqqBFgQ mѿu 43L* kL[R`aZr҃ DOD緐+7BW ߍt^ )= ,[I=/rHTY,X_b@rfɖ`QWn"3,faW""Ub/nX|4w}m9dز.~Z W,R-ɸ&<+֟>Xf_="!eykL"C\VzEHd/HT^(\T3B1~LJn endstream endobj 14170 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2228 /Filter /FlateDecode >> stream xڽO бh?"%` m@OMnAi(AP=%zf3E>")/I%D)cĉH#Mu&۾Զo=uccO.FZJ :!'"cOCM* -1zb6-İ'1ۘ(q;$)s $&ݫo`͚ t6:6:~EQ3r"Ǽy[jN1o+󚆻0/o^-bi^yLgi?aYOy>e<\ӧsz|_ᅩ_ןB}zh%GҲsfW }>}J_H}Έߦoy gT8QaLDNa#(0{R0j|Be!fu 3t!HOʙ 7(BՏqpp]RxwPtkZx%C {5B ,B)ZsEb{b_`ʄ hk mwR rM36)a`!g uZ(`gpw |XpVKV+ YRa|WJe Hao@U db~k0r )&7 d±D]DbuVCDVA BaH yuiVt{R`R`-&z—JEEBOA2x?( nRbVNK}R 0C &G[DJ&V_Ck >NQߠX (Q0vC2Lw@t<|b'{U;}bC]~KL#!!D}bcv8A; g-ɘGbq/9; K2Y xn^S]ɴܡX3OY6Ŭ#+ZV6e{!{TKxhh_S,uN?+2s/I3Y{Qq !ޡXх= jdnji$~tgvGvGG~u@@<5D-vG`LoP,>O nPtZʋ=05bk^-o'!YҢ: b%tg@[^3,3+}3j&>? J#Q5|g(e+/8"ğ,Ms#>ڨ*?C;*;,1ァ 3#ݓ8:> stream xڵWێ0|+R1ıUaUJ(ҶZUQ Yj&Ȅ__>xf|?-/'O~f T[x"YpZ'R:Uw T_>,Gԧݶ]WkBUF+%2Dsz(4$ݯ2l2O;ˠe J: ,c#Z]oml=_@N) 09aIJ]{ k-&3k-wX\LG-H*;{K:4N.{&Vgwj᷸Z ;Mw/Xsߠ5xQK{\ * 53 7hod˧/mWBu]U*3~3;xL_΁'Cx@ʌ''e3ZپP &'b@"v^ުA,H:۠5*1: Iy!xO3GJw M \}[G[JQ CLbQ7U?tZ4| 9^_nw߇UTm0Y&FqϯvQ+W# XO֣ww endstream endobj 14171 0 obj << /Type /ObjStm /N 100 /First 1113 /Length 2475 /Filter /FlateDecode >> stream xڽ[[\~_E-J*0 k0k?$1~pCX,+Þnw^Rud)p(N)wlZ;l VJ\R2g_U '};N @Zr'i$i'5P&d D:ֶ@fHs 9V;"P9l},2PXc5MJ-1 isn ߍr\:^TS'!DɁ7& 0-j`X x̂Pέ$CwD+[r KZox-5(m ZPT@/xj/SPj;`Jc5Tv궠Zylf*MS_+9<^S(4rM84)EB$)MRC$)-&I`$5f mT Id$l۬ˁ O+xXVa+U-ΰbԆ1^0h` \pGu0JrZvk-o7DpO_O_07PXcyPf]/No}8}뿾?w?xǞ_N߿_;XM$(TKcӨ2GIu߆/M8c8 ÿ6c;QHʑ /AaiR &UbJ*E}b+$!^jԠ FN d=1;TbzC*ԀC,ŒځM+BQ5VQs[BKdDGHH96rT.GX BjȬQ5 D%0|0hoNG@; &΃( AV`H΂+qqBF$ۃ8! Q@U dU4+΃"WP '}+[cG+< BvFΡXҏSk~X!~va]nQ{bQ+q^IQ}5tDAK; 7y_I[Evf/v3b%Vf7#EhT|)R| gnGtKK]OX&z8W5^^eINroR/W*v!J9<|W_v|h7Wퟰ7N_ ~ =vO o맏4?}En_aJmr c1Í42>IIIN4<ɣMmhG<&6yaM6yaM6ya;JiRyR42)LJ'U'&5x_c9i,`G55k?vbaHS3\} Ӫ)\{Fb5͏h}pPF&p>+Nb#[D~TB}765/2DRBўERiC =KOc>ikuu^a士Cyb2~5H#dB|0W\!@lz(|d![.OPD;rMfTL>&鿴*Y\SF]|;NA%ڭk(>iR!lBQh']# B:n":iTpUd~? : biڬQPa~%1],ƨmLF[ 4vDM+Al%/}#yKGt姃S-b!&th_ endstream endobj 14399 0 obj << /Length 1314 /Filter /FlateDecode >> stream x[Ks8WxojQ|ݪq,g=vʘ̯_ A=Ajݒpgu>1{x$]vf GG ;:QĽg-ET8!ʹΔxH~J%${'}H`eLԱtCb:?ëb"ݠ];v헿>9_ XMM0@%T+JPJHv֡WSLg^UW1bzH(~l` *[uBW!1E9\0R^*EqYӵO\daR9Z@,O}%*3~T"Hae"8 mǤ F] Ƴ78r^b_CUxBŒ yvPlG'G4spBFIaA-ETe w3l~7-tVTpT WI3x?<vji $sSՋ Џus-*up^}Rcݍt~ظ}<$v\#UoQrV-w˞{_7QҠ(geruLjWh6JI>$͝6ɛ+XIڠ誯uA`%KjeF ;WgE"$g$NE :{kTeHG-ҜsWbR M#π!U:8S=o$K뙞0%O<H9F|h]oNڼ~y[^;+VC QJvb;…/igݯPlm !$~؟}zwT*|,]I^qeli\~*@d%QWQu7XOt g5&Գn2%Nqm[oK >3!O^9X(%X>`nOvͳA~~>35fߒ^4[79;!sN$~óݿe/1> stream xڽK+L6ll J$`iDBc^Vՙ]`7 h8=Uu"!/%v!]*mF:,^!,|m Vf}.Eo^ʭ¢~^ 4:CL!!lyHDwY:iC]/^p.r3U@=!'BF@ ~bjTu&Dk>#}fMb!b:YaB/M ) ~7WЇN?_kN_~]y}9sA>}9sA>}9sA>}9sA>}9sA>}9sA>}9sA>}9sA>}9sA>}9sA>s.c '5paq!bfo B@ !3S kDSr"9d ҘCs^_ R}>3IDj:]AegC.C:1UMmQۋvE'x"͜IǤ!vFCS ":mvbtަ־P3m˒B'{:S>DQQlhhu.5ҍbHw)P0nHK!2;v,Kq/+˥ W@u[zOm6Wh>"Ftkkbk}~(٥(3Dze?U'(0saiZHʚet~_whJ^pPc@ .lOfD\QdjbfBM@ ?DQHʷks"OpH&8(Rk9_,(ł2j>r>ԁl;/En弐[uv D(4>7!)4>E sS 9(,̵GI r!a,!YhQoَnEzbj\M5匢iQ`;&QXWjǖP Ygti( ZQz8hY3AW x7kO!i~Ud/SpXjgZʰ&zDoeXӼ}Sk0lI>CMkF+f2tlq96u8ڳ蠳qX_ )T ~FP4ע-fk(0פ^)̦ާ7 6 DK׽BB{eV!!֭]]z%j¥B7v))6R\å\Oqnt>Cȡy;OQ-:MJzN76 [)g?o CLwIi>է~՟:cP\0+|{D#v[m oB̝- oBUAl? endstream endobj 14401 0 obj << /Type /ObjStm /N 100 /First 1115 /Length 2095 /Filter /FlateDecode >> stream xڽA )tl/z"ER@[&EmA=O@5o=olg"=$4@܏J`~T4 2~6BM܏8l#$ks?T{\Y>|Nt9:N8R`#A@9 ͭ:g |0ꀤ`2>.s2,fٜ9,!גQ-IK.c\L~C܂8!iw)H#d҆ ̆qIZVa@^T<IN8Z#3ljk}\`I$l5QzB,XqY pP8uÚBq&?PdLr(vC)*TnM4*'P*YBaR y@z@Z-2 !pIQ;f7l0v@bV4n#$ݚHX:n/1W|Z`~n.y1~Kn*Τ*>j؊SqkaKi\ ۸vYȈ`Ѹ,>U/>!ctm2 Qz{SҦ'tJ i}󽊴!6bf1G_zo۔tbk< ?m 2R]4YZwłx0aY~ŒaԕCPuh0l =/_`ظ8֌dHkso)a. %OWNTK%*Rr̓e1@ ׈^}Pt^+fp ]"jWU'oWj.]U]Zk·Lm礀gMai/'Զ?~YS|(8WcwɪcVaj2m5E[5[5\9VOA 4AafI;(&%{eN3(vw endstream endobj 14439 0 obj << /Length1 2780 /Length2 31806 /Length3 0 /Length 33366 /Filter /FlateDecode >> stream xڴeT5 !kp  9{s]w`UwWw5~W4@6t \iE #DHJ*l4p4و8f9#Gp= ڃn-@a98866@Jp0wfZߙ~G  ,A.c @6(@6C dPTDr*JtJN EXIYE "(, UTڀ7*ˈ* *kȋ2 w0M?+) jb@ahEOBgH7>e3s ~Z, mnq=h ;0sZpEcfW4hc`cvt4ptre.v!!t!xfV.b6N68;8:01eUR7  _޿ Hs8,p U; O#ލbVscߪ;ҫؘ9%ElBc3:@;Ȍ7_ d 01rz/@Fcs#Gp7 _%mL@οJ3O&PchH/ r7?{Ĝd  ͭ?.jߥR?]Ff]6V@eR >tYZF w wzyi%a iDm@6&V6"XYV6$z:#8` 0#^H6Vo߈ @/  /bgЋAz? @/1% 0?.e 0f/A`>?̧ 0fWj]kq5 p3ڃh4qcg0+8 NX[!ddWc"_ `p8Y1vNVHdeb'-oOĔRYE,i-1-aζLhڥ-9.ӌMVx퐎Q݂ TSAXCRp]Q5r+g«(lT\}nާCWH !;a ,NұZ3Uuoz8M AAsaHaw\EZ|ssV}uTr6@ s=ɽBVR[("@U`>I{1VX!xD_:XFߕ[l#1/qU^K,$jMAʓ^s"2sPR Bb(&l3~A`ƙI,뭏O͢sʾ08wֆ>#".㙃>-6s|۝`hJs+ Yw6p $?s!7;-uo{s2>#;sT2ߔ998%h+c ~ps7g=}4i2_@/(+]wLC5kjg7;pܮJ00#߬}c[HMQ qSYBYrE~9Kԕ#OIx 0Mt~d[?t|2u 4"wxd+vx+tq1->):P[$XOɛ#nO4>zgK"{)B+ _U[S]٦Lhb`] ڔU>R-:z\+A,.w~7[D!RwJ`izZ=ט2BPY âڵilJV{Ã`ႦL=NLt3[+OG)=DO ggR gbhؓ} 8DBfnύplTB u!WE{vѱdP u`=(_O" Q3hz V"d.peMmC_75}j0Ӆ(K^J2-[x#EkS¸XƼ%^̓w9`0tJ)LUZIT GGé/%dRx)$2Wnjs))T*z?tdUE t P`0X94$ PO*K9a3m>/ o)F 8gppŁzbYt5Fb`Qj]T^@[>K1t?E&ݤC(_1,A2/eBzEpg]9 e/fL!eEIMwF) s4%<8A [0+ ҋ&KrDF\(먎'a &//TKNGG⑒"hV^/}?F˞4נZv{lEyN < 7RB7wVw^V1?`ⅴVH/_<f`jtEc $7Z_gZԳI%ʭC* GlgN 8RÁmg)uV-۵,Yip NR]#$*SD>OesqRzܓ[B'IAaS -hf_yvihFZ`fӬkf*vh# e>;,Qn%ouT+`V+i&bavPKf0t\,Ai?nsDnҵcPɿM<&l͎&v7F:C"2M7cr7I 9ݝѫg%W.Wd!?ܷ샻\0|k$ΒG7r,%][^ʮP/l<1|$:s}nbꦗT2_8"wET8'\-VKGnJW?}g43n !YvӾ*i{}PbM,3H5j%))Kឤ.cNX8zK\JW#nn\v6<czx"p'5Okj[j|e01 j 6NNB*RгU̬C g%B DžA(,j1 7Ka%""}[~+a­ gNfHf]QKu^yS͎>KL}#O붹B<6{"GGCkq3XQVPHmh0PzK! eU}]RJc@qELF ByL{(IEx_#f5b*\N{n. "Aݨl_\5S1XbDa}8ڍ3wj[̨U^sTGt]\V9F@`OT18Inִb&\엲 ~ʧkPܰW3.'gQk~^#StEM2qae%yl+B/ ,2D~9ªQdS 2+c&4|W^VD讦#zWxO%j^>)y C,Q rwVNF4(RlZ+n00tp؄ֹ2LJՈDYVmF.X%oWs?!Ta1 af.'Cn&ĤZ:Ȇ{Wƙa47z7' /ިs.:+X01qw2yw4 [FЖ#$^h)w})>=b+o0W\A3mdv͢ѵza!W`o^ehdĐ/,|GG~WPɬ$E?m'3Q2.XnrJ.l= ;\WQOIqG[)| l ˚8ڛF=T˗}5}õEt^tU?J9oI wS5hUs6oD3#sLϼY{L寎QgO ?\M#uSQޖCpQX@4n-oI3pL{Ĩ&m>B NIp8V6sOz;7}׻ىwɉ Fe"7pS9w2::~Ałx<\Eӳ? C6B`of[51ZV3{iiiaw<K8K/ Wbr 7Cĺw}|b{^nE-:8nOl9uM{:RwzMYU^=Bxz$+<"لaBiXcG4?|as\ גUJ3;rn W<uwEf1E >~]>=yo67 ?)bEG0"'H}'LkGjFp-s5EkH ;ꍄ E;P9f%Aw5qxNWMoڐ (t"ӡPWin+mg4XkG3K̈́SЕ aiOrzF*pqʵ*g>Q€/ыC7(ÍCd.ErYmٚn)Zjj.)Ej5ZXqxF95BU:yRkڠCUGwbKsbʇ'|SGmj"DR £w eKm0Y:xR=tݠ4r1h 9Fe 吔Ys~/D~Krd Y1Pm-}gq5"]xohÞ3b=P 1d G&΅o#E 4ʿ> m+aD/"J7 & ceCµJΤ2fo%SIm5wFA,e b\./ɗ%?c輎 >;59~n_mmy>(QZ(X<6U.;od|_Xn@`d9|)~ cB'u}'1H|䀋Lih2a@ o}z !X)y/4\ E8 _vt!ywpIpGK$bVoMaT{i*u%?7y~o+܌˖-A+U ȾL\nH[$y>d|7td [ Z.Lz=SR_X^B+Kp*W:n o9/ 6V>"~8Kch}sbKw~:#"K"fp)_G]_/a3+wc'o=\]%ܼs2SE00rx]-K p(0ǓH~cmNAqjH m6(İ/ͼa%SFKQDOU,[|zI©s]W)q\S0P ]O{2 &ݚf{tdu2cXdz1?{#1?n~=BG5 ܤu)3!E*oż 3)%, ? ,NzDboRJӡif畇u"dS]iS\Puk}9C3W=`$/zt~v%Ӫ m $w^)u2YkiBK"Z(>oJJ9])d/XsC@mz~ʖ$>{n#әJYl. : \ i]Ts^?YT2ރicA%M-|JvW9Vw2X>g&#y-\K(*mh `6F߀)P{myn(cN;^N˕Kڨ(W 8*PB-H(FwdxHY`2bԪ/j La@جFDh˥/_pyNhPhzD'/SDi%YkL"TcE:gr=F>ϻjwM +J{|ݺ> ؟$@Іʓ3z<:PSiGσזPȝ)\VW]De]y3-%oKO6U2*w1Rp``};&Zߪ9<5ӇwRa|@'OP{n%}F:T zk]\+`}>2e[+7 }Ő=o؟Uæ 6>ڗC,A} q8: &UxKăq+Y(o.ލ5#+S|^nOH4 &\xOҾ?ս$ -оq`ؑMS%bO‘fbbc62V Bs'Y |Nجԍ;3׀j COT`ͤ{SwpB n[Xɢ/M|ryرkeG4b Z̭oIZvTS;wy8FB̌tSn]=)9ߊ*>1 ^ե<OZE0aQe x)oK.Qh*sCҪ;ۨl_!PMlS52Oh,)|f+~*J돴qeS.ر3 < }IS16c@UKunBeθc/u'.n@Vmp;sDdgnǏw H*r4t3-̈y^H劽+~Vj/^Ch#1 f8{֞G;8XptNU[#jN3/̓ji9 \xh(I U>bl2鑡^0Tyvk=fj(pF⦾.~ohN 0q0s^~Eݺ$Z&.Cjk:tt-]=ɦ4{<ɡz4U"I '읷.$~hF WVn!' aF_jFl97Nx7iɔGT6w<$ӷ_ |(7tixF7"hfx÷R#?T lTX3O'EAIo9aB%cWWSNt0jrڕi}&c0^lG98h_l[TيO…/jN V\wmr%'!'ۡiǥ]"ã)G&mtYyxw@Z6֛5:}A8I$C(qRӁ brnA]҈#j$ԭ8Qz#ԭ մexta'9\eFOF,qMxwF?D:]ʋKh(/%["|^:ghwܠ@tC.Š(Vxxk^R.}w^xߗM]0Z#gjK\:ѷގv,ô=@"Cִls)x+Jb@YTz4J+~ +6J1xi8Ww5@ߙܭ?9M=;8bng~K{|Xj@IHɛԋᔇI{sϛuJ_Tke삣ZN"?׬$6j+Kg ^+'W>ɒj"r˫ %%`&"A#-o0]ujn9iOP8 lNt Aw?V1pѭ=c]vkfnV +vrG$<5o9ODe1̺)znS!0  [sdz(u(./<t9y ȅ)\7-suɐRv zio(P=EhL\1f#..념Uɴ|CHd!AhV"6waZDR(`Xk PQ7e9=f=gMs;i3!L߯>_PZg K.I__17n1 ֯|(\(|dn*;c[%eȶӧZ7pu3g$4JLmf%#J˾)9GZ9iI"L< W [҄x˖m`4/;W[k099`(8^ANq@e!zLQ\EK&K[3hEhb"j{L_Zm\wmg'ߘCCy˾Ff?c9^*I{қ8`(8\-K r{9eQD'P Vc!bn)q$*74~6G2ttf7vt`UGJ5/W, .Eqt$;Y%* A~oj 4Cͥs07 .jypNvذ/]P+}ݥMN?,zEb vjg$taV=GVv^s'<2Ne?q-ưHkMWp' ]#٪E³ȥPT~apxڤL掎6>~H~^τ(*} UtL-΄X(#bbsWɂ`\ttFr2. mESXX .1cbzvYI̺}{zn>/2NE7XP C,͆Л2}Vma䠾qlz-S ΂TeY-_$Ҋc=APS7Մ+8*"֎CNtl2˒թ= wZHA-,v iIC?]?^E~7aiBTbK*1UXWR!FE3TMWW8q8gU Fvm*a ȃVFToy)HvHt^kٝ5vZ$A+a<#aj^?^=gŸ:Qx"eބ8D]W{|(b;R"d`/ ʠu_gnX|Gj rvC@pMZ#,ӄM),`gL߅S]Q^QT:E+f%$Nrg]=>Ky*dY^b~~ўLyGRʮvH[Z|}(a3جZ_ _ĖP$&Pyi/?0Z+[CaT`ggfm+*H'm6FΣy76uIJ | ZsDYOMHwfx*~jMFbHeCA*SPuQzfP='-BNOSr "?x ,\xWjΎe2wȺ:nQQv^seq"[>j8͇Mw<.doM|Ot<D&L/>.603o>M.Sa0R[\[s!Bֿj8G3 5PVUՂGxnJuY_v^c s4ɾcu횧^49a^l{㺇`LmZ 1먴qqc>َ$VNpyuNS&ձD];;SUdywh?>f;d8EVW]!;gnKGG12tppa>N=EϭN`85ZPg~)AsD`7'{T:nE]rY!WHr*nG k*qUr>N/JdLqO 8o}#Koaf;$}c;;~|٩o$!M@vS&-"9vo%/#f-1N -B!&}މOc?*r )gs_f rMIx [XJbF5D6ل1HHN>G3*;Kb%P/ᮅ>'W7(`R|X:#Z"NNhM1m$EŏsӋ/#y]y>9K!![^ IT]?z(V'Sx2dXeb< 5ВuZ2"b%D9B-Lykw7ςC +k$ g~"vX=Nv.blK5xiZ䌡q(MaY:09J}~ݠs(aBó[2YQ!͝uW)ӠdruDf&iZ`)R{;0:}NM4~W@,ID7J\7K&$$I[5^1$1ܷ^auZ>=UfK4ΰcD<RX)J`EL8FNhgme+ Y>` ߾ICC^1R.YI2ѓ4PQ%!r͞WTSJ Pڏ?UX2vh1K֜[qZ 5'| 4Yb2L';tI׭HA—XǍޝT* /:HYvj@y0cs?7bKz~qG1[ lzj.I0c㜶+Q-֊ѱmNǶm۶m۶mNGs֨Q#U^ I;s2e(Rgi;ehK4 `2%|+a"&=dwXrd*{[vVx֏<`ÊQo;#76 TX-]%.Ų>@ݣ'Xj{[ZWa-u4gX m%-# 54,?r#g~De8L1۾2l+\|S%>?a[-dϬ: Ś}=cO˝O:(íi~t Ŗ55F9;Ht'hT[3գcvPD'cLHW8?m+}Tmc-cS~>Jps /I'XKT]㤀S]b4y]|)VKty)p W"I.} Uc /,rŘnhё䯗Ĭ6ZXVR_f)jByW bG"W 5$kǰ'i73x?Xj>:ɺX t(ߪ~QH'ӽ둤|d ZWF!E%ɽ>ujgr|~$XA ggE2c-ӿ!_#z`}b}Z$SI}' Vopbw[,$$:#֚?JܗX@<6}VcIK[V"LSw9-EH5^n,:!XW̅Jюm9!RKf1) *$Y5aܢy찒H8jǧOMBwȕ*4Vդajo-v ̴p 7r[t%9e:{.,:! @[QL a3CY{ \L#VͅC4t _/qfEG.e0l!'/H:%4鿧H@ܹ_fbVpʛ|@IJMk~'RcpyYX^f`.BTVz]iL7,Ve [oV }$aj/N*݅:mܙ@VNAJi`_3t XֳmKBR&B #@&/g3]b \_Vհ;ԏ{Gϩ.KZ|$ Bt{]qۤ(HdwPpn轊 )TH3QW6f-( BŻrxD{vxr]"0yڅ/ ߥKS5}D``0? [#C=𲹉cV/u-p6͊=Q 9rjlNF!n,Q~0{q(>a#/7f)(#k1 d/z$8e-PnX3J+,,Ye}=- 3+k>d;`j@Ĉa/=y祹a"*1KP'ݙ͘$R&tP!BwǘGÏ{ɡn'h`E?ԉZ1_\3AwiùM]̊"cOC\EMI|>eIW 7=%.[iDnщw' 6x%Og:CsķjD!dgIST{%{S L1A:6 O]MV?EK16jvB6K5_BN'3HIN4W{b ;M)m>GYUSaX稩biuZ0_Yzqg1(o@go;R?5ҫ߉.@ˇE6u'xY2@ ek }ΫU6+nCM0V%SJ4Bq[| N)&:F"|"r,-oe /0Aƃի7a:}ZF*/p-off;cvK*=ΜR"+Lg% 1Ky J}u Xq64]ytk{oT|Lu~܀9y4`ZB:X?q? S9b.RN{`\6«D"xWcDLQJ}#s)l;MKa,ߩJSFDujĒϯ0Ǥڟ|pI {?R !٭SKf ͡za긛R_$(Iք/MK@]?bB1x9gy[ W #q^Gb\Jި9#xvV^󣾰yorݟg#FgpTLMe"3?hSž3\_Tk-;l&oV!A&ۖ۬l xE<{7, >*‘t3`N._ 1FB_r-ٛH&cwuϭҺ"<˓kk1tz-ރG1W #pg,أN \+Iؗ"0l:JWh8ֹ0JUi㫡ףjCژ[9?i%yōA#MrY@`Ӓ<3u0&e#_;% ݠSނ7\lncR5#𾔙!xZromPJaH/-{4*0'ŸIo3%Sb.L'5sME[x8YZxI,T.՗aW z.$BYhT"?>Ȼ#!2+Bc+-܄* N< P .į0!dzˈk"oC%f+rU5zT=8 D'/^ki)LCxߪ/lnOBgܮ]31KKxR/Wnt9ϋMqAl @NDF@µ 3i{eMeINT踫*_(ݫa\zS˾vcؘa ^2tcȍ20eu4jνNP#B+qvU--'SussZ 3fjE} ('L3SU&g?|F+վcp{cF36DtJ9'B '\Hcf";m t_d3YMMYLؽ;vZG- nlt<_2*nTw Hq9>S)|PUh;oR*S%X<}m!1|s{ oH|kQYF(Ђ/UzR7܍Ŕm_bګ4YۛZ9 F<mZ,@VʁpkSIQ>DB~SlW uDZ`}vaV/00rCfOF#|z؇jO؀I c;h:8xSۀOn ^, K$5C2WDŽQg0?ALDaD~oHGCxI6Zۉț+̩* a}3H|9wGлʍC&JX'[Ŀo_$PM3|2:Or^ey}ܗr+ 2B$SvxTw?VBhqڷΓ"RFStNCCoei:J0ia W+[!-AV%'r^lД)MtxO(Ba^*J`6^0Y>DJIsؼ{7b>՝Ia/?}zgsBIc7y=7N=aF/B^Wfj#7(C]SHt0m^IV?:̌i7Q Fܳ7Lt4+s&ݺc U~SƄc\(Ϭ~9!Dך+)=LE~Vh_\fR!yx1j&4>ԻP'/+p!uc5KMxT'v~׷󝄡ä0l{4q4-;ey wCQi}G }@3B u[Zԭ0=-$\X<L1gy!t p>95JebVN1 uAXx;y*`p%:A kyY[@k+ qV_(^60o\jP\'nĆe3ޜPPת*miN4r->5KD@ ~zo ق+t2ʹu_o2 mr"tQ͕A=id$JR\3DY]B# t`Ug%75;):_1t@C`55RZNT)gL-vY 6-E2}Zsm,#}uH:zqDsc{XMkH.If>!pF):_mUX>yv4@m#2WJmub±p?[<8T3Z #7J+SWA~PK)Ɂ?QT\zoxN]vÙ} 5Db|XcmR3ϝԡLCSZ[vLmbs6ӠL-mM$DtCw1[z6J(˃fkOGIVh^:G\[aF 4f DS ]TiQ&WEYc95TvI3nTR诗Ez'Vv#k]8Z4^d!9 0`h ['0G5 F&B J Sye\3\KMlymÉ1Ey  #_P2\Q[I#Q-ӷW#=)P8H62Fv7x ,_w8A*}~.i<MC)VԠ)X|V쮻>ǐJ؎WYiAë!{ xe *PM-6 S;hh: L7%QSEA}Zeߪ&kpg.o69}İ#=1Nu~q^{Ө6kצxɈ)~@nLl]wS;,[-\(m' oKJ\۬o*шERpSigȓUO"2ǎWq]`ND2qc2 2`(zSW9I Dvn\Aqd7Zw#-e0P{bad0vDw9R׎98d/?kصzl5] 琋GW." &S"7ƈ4"x;ɯ =q~];,[4ErO3E #M4I ^hnwWW[͹;#M0Ț/d[Hftq;7;fŞ#Ot:Vo.0\z>_N6P̅ϟ/<,CuxX^F_簳T'NyL.w9MH=JޝS9jY+%8}ZzNtȖ첩/*blXۜI{aTGSCSIwE|;RKLIae,8Ym}s߸ݢ4 hTh|z(nBrj鸏YM&\oQXZzFݮ+,K*Wlcd=ṁE&.iT `aC%-8%dQ23}3C߳"n̨[c,TbEctB-f$wT :IV۾I*b0!N@\Pi~ ?zFv[fM#6ټӤ7맱\FTz?Py.+ys=jfQrf{]f;0f#0Jo=H86vzLqi#@ғaX;S 9)FtO!Λ G\,,yH^;䢷]Y@Fь6Iln}@.Db\sqT?~әohÙ -#K&0>5oʎ~ۢ;"[JMp$\j[nLg8:<{Q"VT|dSt罁ateĄз>z+zl 9yMNOg%FR9)e.Ū0XӺG_ ӈ ZצE '_ C{k΄Fvќ4yX"*Fףq=rǻ勗xlPe-ȃu@V0.[ܮ'ȤR᥍ ctmW}@pܕ*>4UQ[DWK؁kt}@?& \S$E\{@kpaH3);i + }YJᾔk֯kW#X]6Y=Xu=Ȥc5iPEH+EY] 5!CCv7_:xp4U5%)RrbE-МЃX rҼ)}_6@M7 Ki*\~6*JFHRZdN"!cfK9,1p:+kl^i$),uv1fyIեL6}o#=GZ+2 WZ^NWX !*˒dKƋM(<:~ (IX֒>}vm${}lZyՅqˢgݣ6G;ca+Bm4J5TJ^`؂څ"6H5Tegi8v=Ӽ!ջ"*G*uy UAo,]7lulnN Kk6[~W+Qbv"/Y̜ms/NakdtmmP 3E\)I--}?'z˟uۛ[-Zw? ` vW7BZtO M"ݿMۑi*)Dv#,^j;$@?je]X*q+iUELx0_᭺\1Zh,dCٶÈ0PgVYH|! ?]F(]G4<zAߜVDߔh`A]R|q#=tav%h2KȾ.E.iR kڛc)7X,~''1)怴{NȠ܃]^N#ϩb{>ds Ifh'.o%G+(4u 1he^0@NzP@pS;ǽtnHs؍POq̺aSf9(g ߄w̝[mZ20DFQ-5773?ܙ"R QGdzaLd;X(lva)uF .dN%ۗdXjf!(-y] Szٛ{MIDsph,:6 {WBoF`!Nw5ߗRjR%+a+7S\6B󏺫BJuIw'Wt3WvaSy]⣎7$ myB93O&i2 Ǚ/hBjrᅯtD`a h.jCLv!|(,6y> :.Gԥܥъ6g-oo3„T?MiIh}\"+|`xϱ7ՎF+[ dDqgZ#K{T).-5Vx֔>4뚺Wt$.?m/k7&)AZ|7agx_ zU*Ì­2x.v$¶^u;fC5VyS1Hsl'2жiLXFT0[Cea~Dg-U|~EK_c05/ROwÀnVG7DQ:xK".!o,p-sj?3̌TY!w/bdcԱs3Q33 e_BԒ+jcz?ȹr̭ 7.1 23:C~֫!Bz^'ګINCk/Rm),eL>QGT`{5dH qӃ)E77X+F\sgq1[B%k6oaKL:F8N#YRR̪--;P|E$т{Ug0 dŌÇ2QLtBqAJnN+$4f~X|P;cQ>A# >R1HG Mb+ `mK>@{6$oM~jpѹ'"m: . D~0b ٻ kZދ?|Pk9z@zՓ}{pey=RUVb7$bg)Mmd X>70zRF6e2F˭1؀CϻjޓiFzĈzH؛c'ZSY;MxxV, ׃љx4`8/:ZJv{ m 6\u &PI{"Qqq:R NR>PhגIDj@A8%(%XPw=|FovCol-OsH8-}a.tQOEN8q}q Q):(_Q;Dq)Kٶ'?'30oG;n GVе6cܤ`7UQvBۉ4ؘr0k /$Tfmn̘&]Y?߲˵3uD۸_XtԻ@?. 6-%E'˶6e]"J䃐Jmrgju/͓mxyLlxhT68ҖWdzz!; R. JC%uT=6}"sdt?I씮ZdD?' ,_:(8΍u 8 5SW=+L-׺5*oxCv߀B$K~jN2DGgI"k#FB@Gb4@ xz"Na|[XK+קQ) 1}<)vjӀH m0@ ޮGxOH#v~\wEQSvj:`Igq_H.\(c2ȓ@@o53QgV TzNeFQI*g-l8ʲ 9;YS cPR֫ Éh9qsG^QV[ yzcHkR)o609>;wMHBGS+cM3\-g2jӝM w98~ml(c5 MAP>Ijt#A1ּ؋.D. #q:u`H{d-l}C-72e=nξ~5bGS;F0F@j7 A"%[TUD9]Jbv!zH=xW.9~ÚR0e#QNh-tE[j:N#Ka%oƓºJ[cA Y]\Tn5WӉ3ڵW 4QC媎X !&T!buc(# a?s '[;b*l޽rhzd$q| H-!8|(?sFD&6GJ2GZ7XF񱇝Ջ><:H Ż<%Mi󤡋.J.y]:&C]+>oEq&[zY2D_o-|]6MZēVmoh:?L3lqG$=E.hęwX( MA8>QYHv6" )Hƽ۽bk|y&a+gxLTȑ`ԣi @ endstream endobj 14441 0 obj << /Length1 2844 /Length2 30988 /Length3 0 /Length 32576 /Filter /FlateDecode >> stream xڴeT\5L. ָK58ơqwww wIpssoι 4l֪ME$b 6I휙̬|yIlc `cfe@s9[čA|ng 3ʋDف!JS@lah`'g&c#'dgni=--`gb鷷(3@dm 032+0n%l0Y٘f5@]UBE J bov\Tԥ"j#@J]U_5$sFDb]ABMDM[Y{ drdl͍ٞəhloW~jN75U;SH9-@ IRJD pos/ #|啕Fv ;#;/dJw oKExonj\qKH,3v`7;Yڙ= HFl!"?2s3rM,X~S5)bH |3#'d 8;|7BrL-M!C(HE3xC2O&PSdĢv ?{$]lllA.ZZxL4AS8[:IZL-M,rg#Ћؙۀ K{@rX>L@nAfKwY % 3.IؙM-l\#GG#$V qrQ65$f;3`0;"n$'Eo`,bEHqX$ EbHA?.A aW JE<v?§AT aW ]kBt џ@(!0Ǝ9ۀa_[ :M8!L6y?? 'd1Y!2 fC?f6 ~]bIO[x[aYBrR@H ܟȜW;Vdbk2G@Hr aoBI@bA) xmGqR?z,O= sZ{8ۀ\NH'K?ddcd?;[81h"9Y? $3 !?A"y{ρOTaUgG5H4#6t Ԁ9?}oQQ0cb9!>5 r~@  UZchD8*^rwZ ˙Sy; €f,B4oJ]U0ͯk»F h"Y K_kjMh%w>İM`^~i]V4lqr_xA4'.ڨGd~0?oT޾C"t{Zf⾕%, p+j)5&Rrڵ\WBur+dpP?")TV\-kίT`k,mJ>5"x@|E g[*{ naL|v/q m+i\y eϕ^ov;9HF)nύL+9IܨGF;96Ԏ"/pZCNx53cTŇE7*_Si}vB'Rhf{_I7wrj+bC^{WjzF&vMb]-+ / ԾVP P%s*lj\d8vJ$1&NJ;R{uq"`aVq-:{;TH7C9AjmYoSQJ"2 8bdaʾ'@fN["Ols'r$:ߩyQ'lsx^)COVn|3LE'c^`y礯լW3*!Ä96hԙw}-JC<>r5o l,olu~:5uR!7G6f6p;WmUEa5oR1f2,{_p~ ׾L 6\T2l.*{MQUD (NtԗjnQ;Yοkw7}'gA5͍,4 3K3?ƽA}ؠ' %y})Qm )$JAը[ JEKҶ|/y4{ZwLayR(]"i TldYXv^tAp賗!Ծc\@ g}3hX+ TR"Gn]Y[|6:rX1<{mU5]~Cx{=ɐ=+Ђ-%)G LҕWJ]uV2jeonVWF_(XmSpwyQ?Q6>Ira0Iŷ%;9ocjdm\jۺr9z۔$+NJ11fcөT`'_H0)[YP^~ވ?$]..~)mAkHgn6-0?>oink_[a&-c.̫ҟ&#\'wQ~,d J(IѦg;5;ԙPV!9xLO]e'8?4l;!rci&Ե\٨SaY.ƭ B6+0W{%VLMiMRg :O+CG&ÚɂtdqȔX$ō!LW[FS;צڄkpDaLQ~dS-~F;vU6ԔsU_^W]BibzLӉ_+AcH@JrA_]zVV;FhoA)4oIѢcEP.TJ&LbT;sW+;e?9;kG6-l"V$M[$0 Y9 !zw<"2+H𗹙psšuC̰={th":*ͩX4ȚjvE5S$y!%8%V( UqRA`B6v&|uvKEf F{GiRg"tLC-ͳӻ$e`KTώe^v(0)Lޣ_^{N d$j_6'M^] 5@@>Z $ԷCI_{V-nϟbn!8"YrJpT)ӇsdZC:y%uQ6snl3^>tn .OČ١l. \r p\JBMYj8oZBw%Ct?3eb80^Wk :?q,EN&ևRѧ*.aej=] rr+}sQj9l[VB;O# itewH4FhYꅰޤn&"RRsУ,#Z<Ӝ7"n:1n!Ⓥ)Y@^, (b3V{5c 6,8}r6ίKzޚd;-,el1ZDs{qw= _1cWst`v8Q^gF\6kpz5MY,˝v6:JuLQIg;f#:=My-#2ͨg{AU:v&*5Ea+/;%/l{zOnJ*p,9ǒ ;|r868Pp[4nSxHG_oKUښ/6aԕXL%C~^7ZY$]bAavmb_yO@,k=gc]t.4Vp:6'i>D&AUz>((G}iȶ_-\`~UDCKsswb24Ic%\I=g)ӗ@(Փ3##:5}HiuڂOd,?,Zڈ~es%}|ϕcc1˾ U| S/2Xz< m/H^vª[AfH۰#q?EFFiJ;`?ҺsSf Dތee#翴%[~㦠^L>{¢IK*I`+o<2CBOQr2>W- HVØ:Nbr}j0 ڷpʬ?2%}Y$}q>d-#;vaKdp);648Huǫe[UԳ Qw2EEg#8 S1j&@~n]W?`N쩬tL2#^%cb#Z.v~08=Yl6o1\nɍ8?Y'gWIN8iG>Bߍa&2_^@#xv1C*֛&[ȑxWBUe@WMZNWbDGE0URoxbY"ϯ{ !W bh$@누Uk]hODʆ/ ;↼4 Y*>I-)!3r+ #|" 7ya~ S쐺}i0'Cޭ ~J3Me 8oԖ'8\uG-eDOFBy9oӄyCЖ߶%۔s k2qZC KEE~SΠKեiLb~g~`IМev+ã9 *Bq~tw͛n6wEķyY$p"U6_'y;>_I%CffܸPK:>4Oܿ[++e|d9t2fE`e\(:8jI,zui_UMdHm%}X7.LpYrii !<܀FLb;z"gQ鋮} 4e U5B*#2uyv-GXVx-l3^.JʫPV,5ɛ#46N-bۛ9ϣcѝPSZl͈nZ,_)dg֧s62uV+7. 㲨1fI}nQ } (Q\i1n7p"RI F9FE#s=3t%Sx{(% ^*=n9P2?ѓ/9j~Zo*>ۡ$[3CΟHGYj,_ަ˯Gz!nR_߮܍ q_P=kP\cNǔh'@gX6_ TJlUe_ab,\X2NŹ*GCq,, 'PR(7֚~WcT_rf'ԞQ' pZV17x)nHۑшN)Y+)IK|K1ey?xˎe7>&{ހ%\>Ycj@QhhyA).zd<*J}Gk']wn.50 /Tf$cqρ%~ŅFA8o h, )}?>,k]kQ;VTT5:Hʅ{0=h82jb>E#UӎH u3m,.[y.8cLxw7uttÓ ocOv/b]125u&ezECÓKJ%O H? 0zP1q&%zw5vYYkpf΍d| d[6Zu-kmPgy.Kk=$6'biչfX0bFνG]v&(wg5 櫿=qUfWsEjT8MKl  c]Q!lA3 D0}/CMzYu~cNeҡ~]}O{։BEM]cobՒ&fgԔ@7N} F,z44ecB{=Tq""2Ż aCٗqzPDžwX.)͛>vbÒ!Μ'kOk'pU a\ rC:XJo*^xX+?mˌ[h [[0[}}”C)8ב&_nfٞՅW SC%Rt"N⛡QTebi&:xk[-µ bR|]n?[th9\`caNDUTk$},KGBpwqio*&7DDzM$hXa. -̈́ya5KkjgT.ds\o`3]ڷNw?|B !G/ Ţ F:a@ڢ=JD7zL83V-!9Zx"CoKȴ;+QB6.m'ZLj.b'ILY Dc`xb]&?lwDhoK >=)o*;B)SGzyz~6RWM)khS,ѩ-fLZ * dc1K9Ȝe27;:]||p¯ӣOmH)F"? ʟwe5OA97kQoGo99kDySZ "_1yb8xb 5T=+.XV/̾I+u m_OX3` ͔u,)v2]1 .ݳ-K:Љ~;]ɮYgo@aO MRWٿb8eid_9?6>(8+H>(MA ڞ%O^6yQ0Y;9{LWAD)ysSJ,*1e+vM#Pi[zZ,nDqGp P۹`_ B'n^m퍳&IdV5Ϡx`RLpKBi퇶; ~8%!\1/hPOF4/~'1^Flyq 9_F}H)>#yqLPO{h5Nb˺K=F1Ml!:e 7Y2u7 J"V潬ݗA.,]?^=s=?'2>yPZT/X3U*\y!] o$ʏV{Yq4,z6*Fi us rJ2BMoRgvX %]{ ͙^knY0k>mC7󫬯_ewZ`D>$_Rceqb3$2kyH.i&f-C%=p*)Efg]G*sȵlrg&BRZGN\!tC% TR G4 ;0B(!Nhl;JuҠ)ğQwWyv8AVs|D5#:}ʑ90ݼB$%=73&!Qn52{tNs;愈 Q}Caf5[{]ΝG^kbILj}xid Kf&kG]fQ}΁|Tnl|-s9^{o_2ze{΢nÞp[*.oҾE90&T4*=ci-IʎU_V;撂(IWpUژG6QL1b]v]rRu֊[$H`r̬eOվ}1s5$N$): GL9Ў7[ KU轕9yN\SU*O0_|9j6X՛~'eʺԄ-5- J :, &6q{WIi\Fu_a3ȗ3,r(vd FsCbOkl_Xl=Y_T|*9A #/W.(]O8[f/<;KuM}= ֩&`Pz"(zxDa#R"l~)3xPԎPg8.<SSo#'"IwYO^)oubĿ`s; }炡 yU4RM@LkF{)?؎5oбҶ@k@`V6].IWeG_xd{C p튕;LĔgRfIݯWָKi'N\yxvj{m,|J_gB[%%8\K%X3'-+DpFR 75e؋tQے\+1sa]89=}J=9e\IޤzDm7$Env `Pp!e(8Jl7GYOݚnRL -Fk4b2J)cY#;H}FtRIr줍en#|T{ CpSDY[sWNW6E4MtYm %(r㺗I-p㮐j;B.`$ kc%6eWICz[AqRQ?T˥5dsAZdfs.15V)p( }] ڕ|U ?/Z!y lkzEo:DUsjA+·g W·GuzN6k;}aE+aj3gpqX.=đKcN\{W!ܞ!F̡5ʇ2V3۳IޟN ?pK\Jnc!$?Nƚξ#ȧ'_ " W8ݗpABLxse6^,'q6[ը6LMJF (n N(5SXZOJB2R یmzrq+*7 pz-T$ ]Ԯi(% YWKo ?QSUK2k*LQǤbb*lc\ Vi5UY[eL.3$1OszI{ZDrТ !0I{YKߔj\{rgC<#>z=cc='6("1nz |VU@R5@o>?2˕_]$^X)L;Czcxd Em-i' 6鯐lh~ 0pt-b"n_T%y OMu_zK?nzfpŭ"ȝӏ1[q-RڟxR-f޳#lfЎr3NPqS3/{jKN >8Kա<4 ĺ=k  ˋy Z1:qT{}Ud\uꆶ1=]B mJG<~ JxT}Oyۯ*hr(,K 9?D;Eǫ0 vʠt DU -åF1dfLWm}yMr`k">f!@b'`̥iIGx1)W ؕl<` n i-ܑ'9cf>Msb~xѼ1 ̲+z6Ofa}|~yc vZ+"= X ?.冷T.ΞRD)yn ub$s?EUBNjh2*I%qu4{lf9vo)/"7^i(߇[#IsyjdZl}F'-@\{PqsS8CK"V~U%VDMC{Op9^mAfjRM챯+ww#%oi^wS}o J” _JZ%TEb.Ur_&-10ȲdUF<{(>Ƀ9_18WtQ*YV/M|*v.үZEn] ,o?kuarT z 3vz Ţ =Ԭ #]&Аhp$+H vf6>KvP;r?g▩O~3qDVN4Ň|E֭[.MNh"WL}ӂT=,ks`MkQ~vw],1ćKrl@"U=1N)ϵlIkQT^SjU\Z OqF{ +jNJs( Zw,Fَ'u0|+u֜7\֐Z;qSo{{p` "S6OUY rvb`XL8< ߯e4u(^42xG޻S>:FQ>i`'OfG>FD7G~PrGƤ }XF4anNSDiM庿ڇ2&adXd!Tΐ}/ziFGo¡t>j+/g7!+M {ď R39*$xaeg]{cϻ٦?L+a6s zUE&&Q0&5Dj~|!x'I~p: /L{I io)x7rm8A3$&5LԵ #NSQAd4hPDWhl580ÝGD~W&9ZQ֕EB,fE:/ySVDnĬƪW}D|+Bk_I/pdǪ8$*\|YwP|a/߽p`8ܥ\笔n\t%NU-0/]-^w+Hy Y'XDPt %:hnhPFGf[Uأci0y!S!P 0ӆ૯jGt(R2tRlj YcLa=2ӷ~0!yT7AAHk^ea5w:oV/X+Z*.o~<  :"}c=1rBMg-Qq#rm)g( >aEWGK3o_Ki=q+daR^!cCXar>iH `hZx1<.#^:x3;g> PL՜Wj KHaՏz2xReK%& T};PawFs[FQw7/KH,^);&v)?tSڨ'l.|ۯm$x: ne-*+ [̲>s ls[I0;#q3T-RPf]>ifp]*7qeN`٬ϒ1I,vSnq{sW!Ky'vsFF]ٖ=[޼[O*FFk0COߏR1veK윾k_o{ +sYE*gz W=2&]/E4-pvnD)?,,횃0vpiW [b;[ ,%fxfFݭ I c}L,} ߡ׌y팸%TŤIܼ<~+*`uEsʷۛb*d SYz*qϩ~^9H/52ZQ=WFSU>'(%Vgqg*`nWV\>5hҁyBBI]kgVNE9H1aھTb5d٢IF9O+MI࢝2ԥUVJp([jHUl,ߖtX+p̖a2\>g*.{l(/ka%4y}C#7ڕ[kd] "83ZMGv)[qV+b@ΜV7c4Q9GQo_{ЩTvNVkH[>};)[?BhmyTdP$Vz(YPM)Ypd{@xd#c1_2!ܠƍm;1oN_8p<5õ`Ŀ!aKG5-@Gpڪ~ֹ G* _w*q" 'QNR$7d/it5yR #b~CingćIga0mD\'>R9;rc!d$L"B^8*6"(icgotRESyHYnV2-qs>Ƅ_v_{5Xw ųdR׭Z[{T3 g#\OOu% 0,al¶Gj#o'St>k?D>#]`VoaѴSU=HV.s0eτ y)ǝU=_ËX z9'T oNY^t$DMH8I(v?!fhR tsVda2 ϬHIr{ѵ3-lȉf D%}ӹܐ:<[H%F'ϊ*HGEoCg {qy ڤ[E'BP{ ʲs,B;0N\/} ž]Bp$Sr0@NVY(r: ==2@wUi;5,66lArƈB`whY^sbJ!U4MsFdͷ ?A4ۍ*p^,C?tU)i UPQJVUovUWxݰQkԱvek?}fDF"Ub0h3 eSݭ:%7IVU$ %mmT{U cj/ki ( Uu:)LP܊I]+F:D<_p13N7Mسy3휑 ZZ0Ю{.#,#$]c|P"ܻ롳[nx7LqW~KЛlg 'c'9r5ߚJƵvsdn)mt4I3wRyi6:Ƅ*C%{e$?Bx@٬DJ4;-~45Y~JXP͡`X_z ?5KYӷ82Ӈ8ja qg%HW4s,6/{v0GK`jg5LH)y `S]p5uaD1x~>n*)_?]W:V] 2kOT`CF ușt=b%v+}tp_B^{Im[7occI(T]pX@@0FJ| 4L%FɆ [Lꏟr)r 9Cv{|$FqZ5!};_wc+CFɂG!qƛ6!V_t TS\㣍-Nb']5{Pטo>]@3Rs 0XggMh#m7&~H+EJ orGJb )Qa~T7[F#yv3#6j,'VW4/!z-Wo3kiG/%3W08Obk}Jh[ZZ흴J *nf^ŋRFi4~^pah!ى@Zi5q:?]d.WrGH:DkjSuq~b5l<Ǵ9ǰ8$ୃӡ207ϛV{z=6V(;د-m\R8nQ^{joO\/۱ucTNl7Tُx^]|3.rw.peɍ-@n{PLK+2>?{L=譴;;}G\p\iƧ= ql0*VX`f%>@II00[<H.K ;@y>{Qg8҃_*/G1={d.]2) }ݼvvUgѾw~)2"ik5u(J0@]{Ͳ#JJ7.?L}]z c']{QR&bH'56QiI7X8%S%MC,mYдYM7c׽0y_cI\kL? N0U>[?dR>>FYHsC0\cA)yG&a5 ?> E~j+ Uөm(kԟd=cS( a8*Y䃁A܉t//~B@WXeүt6$y%v"ўyEʍBӫSDMܙ,6ʊN5 X.\ncPn @T:Jd3lgѩ(2p D8PeOޘl NMcaC:F^R陥tg_b-+jH|W\i؍7?P+4m%f9iR*_sso+␦~L3 ՛Z/!z 'NK1mƉBMlkYD  6~hF{4HC'Wٔ.dHuEw<$cm]rc,FԞ*\\GD/AG/?tV9'|_im0",ع_-7в>ZoYU2d]P"0&ҷTT9%=]kiz7h\Lo^f݃V?hl#v"{P= *pzVE=9֍oi\z(4(A݈SVhw]BiZƸ@L-~+,Š[ wiE~- u2"޵7YbTt("/iq 0˽j}*._MN3yD~犳IV _4o)#kE›M  @IJëGR[6|,C￟#Jb"Y;04>kfK ׊,v+ t1(Lj^ LӐk_|NotIe nOAH:͆`(0Qm5b^z;5q'ʣIsr-V̬9D6{rZ<tӋ$n1M 9SFǮh%aPcDH]uYi2t9 <)_@DבbdC jf񗊀}-OegEC6+_{ 'e`r?j%Cҵ,/)rA.mO\r~;Q0ttDӌwf77T >@GFHt)DP3i@P}ɑ*\ߝ׏pjҔa|,dpvd FK:Ç1S_M- nRjn|mn22{rD^+Uk*M'f]C]ՋN^巪T'w"<: VyxJS|>LG Z1WjA|PlDBSvaXژVo {PI_[mq)/x}]e0VC;nLrSSg|Xpg5wMLorW@PA%-\;_}DVHT}am=e۰}2? Tcg5(Z!i$|FT BCAE_;?1ʼh=5@[zu;uSZʁucUwbO-t+<Փ#A?Jtc& u&?4SK!եMђ\[)ݬ֐S !SZt7#P 9[) ;4qj]kQVEe Ǻ H׌)c~&3<YL_R'l)Hu>^]vm/LDi0.g fQhsqB!e1C%a/+>d\9)aÈ~>EׇYNLu5h뫀t)|N0ӢH0C|JwʝPy`КI ƁI;k5(mFKQ ɹ[~ ـ vP&uРŠ:*9ɧ懪Z͇kaW.=i~4OgdUQ?i<]MK5xr8B;ͱxJa^7ZJ]fD -gp@5`@,4'"#SecxgՏl|ko?;H'Hkt~,X{]-9?b9j1 RY)nWN >V o5h:?D{ G]([+4$pIOOAn3,//4i fېόŇ#yLF*K#u!*\(MN누 s`h^ri2yXfyw*Z#%ڄsNE]I'0Bkǔp}]2iYkvƹ]>ͬ 1)FUa(QGZګoxr:P,gǮp'5:k2FEWyJKh(=gƠlh"Ɩu]W8!c0<.$A?1;N[)/bO6|5Hn~ 07yjB4qu=QOq}nWKQ(/cqbXP F娤*f>I>$[UO\UڊK?jnq$8m~&tKk|dM+70Wn-}G">zCG <2r[ a6#Jۺ-QBiP2W>*a:#!߳rmd:|s" R |^ JJ;9uBŋIT:|W@.V3,L NKV4asaPkAzW^Y 5zLcdll M]#T!^. Fȱpv:E5A9Dg*lg@v Fo꼔YZk9͋u%w]4R? *牭"waP'*0pE+OWoh4fY0ŗ eVNs*(-qInt-:=Y Sm,)qC+i M-oRաALԾ nOh~X-j\ؖև{Wm+&=.z d]UQ>Qz$B~|mի<Gmrq|=X+dr;>Tܺ}E:^^p5O0O ۄxad ۽RcHXuF'c ?灛>a)ۋO5:s-\l795,jgCְt?5 @}pOW26+|x=DDx̑qtXQ04tqԃk2N+F%[VF$-B07gu3]hxWpIdevy2{qE5u1E֙a ‘@M/d#*wEgkzN6ȆUR җh RTjT=Gvzm>fHf/^Ri0y%trW1hS Ղ gfLr1(gPqm8o|óIѮyM6_&wN!}t)] B/L3FM%%/y.}WOKΜK$/@{Hd[yd -҉{1r ~xmUmϽ,fg~d K*\ o1;HUWޜy+:0aXE2`gjW ֮HeD\N1 'WDLg+lSDA, qw,`}l);Qb/ ^&NZVR,ղʵ|+`C6ҷbhU>nAHQ /3x061%9LBv!2zmLX1x612;~摺=[Cq}`&LӵrC֕[khdyg?EElۖSs\Sv$P4con+8c:>)麑T[GtmWg-vxs3}2p ? \x^jĄ.pC lu.aao~)ouùb+!EǑZ6A_SKJ]WMq>G/RAMLksw7iFA+jůtsTճ0ۈ7NwE.̄ȰeMk-[C, -<wzԅ?~jn5RF0Ey9]m=Vy |Ȉ_zI&n:5%Sr`j4GhcmQCח%{G: 9ZpX-tF$10]smk8D_ȫGcZw<˯CQݑC&~얂 0$:Bd˹g$gSP°?"Gi&/foÊ ] Wc֞“-0(9Ѷu8| %a波M;1~.8a$ A +`}>؎uXfouCHU٬׀LRvn:]cp=*y,IV1hfG`??B<療\} nu8#H=,\ dT@+u pDÍc5n =KHp;ú7e|.OH/Ð?mWxыނNm+>/՞/,5wR4 KXd@=k yq0L0$}7 2R\ =v,Cf5PUdXn$s56z"73 Nz%7 wC)eezʹmju ajfкU*8ԩ8O[:F858ø Qmf(h[ :WfC_8BlPA=@DN "ZxKnuNh>bj-MA)Lr,#"PrvrḊes]1# e1aroNMb#s"[N1_, c3zҙ)i'ρHDdQVLE`+exi!h\FgL|ȶ}٫]le[MÖ~5Ȅ'IiBVmmp:]Xӆ,4}Lip.A^b,.88J3tܒUz.|S\4*Jڇh`/jװa^)>ksT ަ` |}Лt=d>g@sSd0%qnGPo]7؂y8~~*ۉ3ƾy~@=-Z$~s mkbHӎɰYpnЙ} [ʾ~|E*,OBEVԲzL(@7. @PkBC>LH.oU HjY` Y^4@֫UP5"\ ~ VHiBPo`Dq֗D2 /F1ϔ. V邴` +2sxQ)S쫧ʽV](cdcEs4JYe&jyKNoz|{;)Nàn+ddEVo~WNr EڧC&rn}v̩!Inz v>*?G}<6IZמ@[imC?v᭍mx@_Mŏ4)+t2zj3aYi;nzƤUZz%?P5S0o][SWGJ + |V>JYp-1z>u|Oy&.qWTNR<g]Ao5JoGYY.?b*I†#ƨ||2^g#lbV(M!DaU4J8$yt{v'.(kl8Ms˵l.4dWGdJ(B|9?$&@DhBsߋ㷺<)ꈁjGzڭ]m5[hJ_"tпX [%F7y*_bCM#yED,lm ƨ- j}BYd)c#Pg/!],!dX^tu#*b<◃AonȔ+Xl!0\%g>8!!9 YIBQGGg3)2*V )⿻jc .xl? j8k{}E8y17(e9|h^*Rna:+(>(ˣ:ǜ]/U[eZ/aFr1֐Q]gL#ScW2!&`.0gx~"9ڽQoA$ `K /*JD)_y@ifRMl`E /ťI-?*ǀ"ߎ&Q>j3ءet_/A1 QPFvy%^`e SaD=Xõ!u6~ӫQ%V9)%€|#Wp{#ԗpVq%C-Q 7=kk|t"_~hUa He»+h62an@؆l9CovRiHn2k|8GB]<R{5 ldtA8bqpʣQH C*cR5I8Lݣ/. z7~X~6K;uJ7Ȫ!V!氁[Kk{|1f#}8<8`7xӘH1h /o!Csj==1ZyK@8{i':~#԰ p*ĒLfWJ?'RPzX4uV΃rH[5M]WaAnN@7n%uITŗ@ͳ jL9q- .AƐݨ>?6 ;9Ihi)N쾼xAgmvǘ< =Frە}ͅ4m"B C~yR/_ i &K&rA :7€_C E wzt~5gs NSWDrƤE9,5}q&~j8_[JnCv슁 |]4 4ބɻ29V,L=r< 3E<5䁬^L$j* ~{=T0Z=Ԡ 7aٻ}$ rr8F\8n98“9>veiBqYSQBa?UQPc}e|8OgQŒx( Sj^ UE V+Ѕa~sn{3XHuO>լCU4dWůDvGfr_3U&6o]&rjm]VWlEq4i9X?) G |Ӓ{_I6Tp//dkN.F;Tqe.lE_əхRrROwEs-Dyp4n)Yq<~, PU~"T pr=9cM\v1D~Ʈ#H9". 16 @r~KdJ%]:A8(g:ƐMQ4&;7c工QCeݛ pBCG~54"|ՉA?J*`Q"Zz}ݪ̥GCLNn얙;BnJ A@[+Vϥ~ϴ2T$Wr=lv.x$I `L> stream xڴeT\Ϛ=;@ݝơqwn o3{|}W]Z)HTD@&@  #3/@N^dgl 5223#PP9]@_].K˟<'+33@ht4x.j@?% 7H'E deaJE2Ʀ6 wg+@QrcP&@Kc[s$UՕTiVuup91U5uIz5qP S h=@Ao?DԴYp:9[m( ?N -]\x-\]ANSrlN@[?ĸڛW ge wMi?I."\ִW86))쌭]]]\FfT:9!.濡L?Wq6;[98"`ne YcQWUc#<{yv]<\[O/`#Rq{31b''ӿnFs+{3󿜛:0[9W,.f0d55!07uZ\݀'Wv `feG ?եA o->?[4z̀L ?RgG/ W[[c; AvV@\+g +8]E-l=dG/CS{3D%]+Ĉ̬ۛ-c''cO?`xQA.R.sUS [+oAX dԴ2syc'+]?j`coրEEA ,<6f. 3;rMu&?@Se)_uZkXxl%4Y5LZl]RPqව,b_J}Ef{r̝/c?y?O"yAY=42yeY D1XTRʎhE6L'[tUTnnpg̸50 ^TC6ȓ6K[A~A/r70;6-m*<뜟 պaշC撝*ȕ:d1 :H)XfZ5|sH/+9H"mɃGDʺN3Y _߼;'v<'~6CȽP60Q` \1fZfk񏕚>%kD-IX؏^lUp~D LDŽyM@4=;>}ͨy'\7DMNDTpiYzmPl:ơ8ۺVe~i|4Ipn¡כ <Q9/ 3Ѽ{Bb(fXOc\l}V0飖]hƳߊ{WGW)k 8u]UH] 0l}xxGvkLiHsZQ't6(u'Kk㇩縟rvpVN.bPggR Sʤ6M›*Uʓ[SªT.t$^㣃R#4&15;"m%ˏ7L>0$'v.=ڡgDԛSMH9z!mSM jQ&Ij=Esri+x-ǠZMY> ) 7v /I!`aF4f$y] {3N %eBj08> *7.#SK~ߝ)8 `Bk@+8DU`Z:y1ԯ($pf"4WטУOhB\VZaw2`_N/~`϶ZV~VdDEˑpTɛ< "BI evE$o5Tդ][+UQÀ0c銤8†DH-{|И?Qdy+`#n`%RF>} / ~8 ]B"ENutqIJ[ZzGˆL`ˉxK66?g wtq|mgg\7c>#67rc"*&>i6ˡš6HLm'1l5M‹kҏ ΃W{DZ74GI$ۈ`xMov'<=Va7lGQKk$q3};ug~)àaY`xߜW r56DN^ ^S߈+9Vx+hҘ1C]%d"?LqG6#`}H<û8kӢq^DR[DlA&8Mۭ3&NH}8nz 4 AcrO!f-oN,&+/I/(RlEˡFko>(ɦߎ!K+Ŷ+_PZmW]ONX& ճ_s>Xh6rT~}1vu6+;}~BN_97~q_fc IyxSk7HXp>@u[g簌pJ]wU.[?] HŔ޵'꺖gl0Lj$\]S.z⵸L 7UZnjAlm%` {ڷL,2pXӤUM!,1D,́t%5s%wz:$,! Nctv7j^!X .LK(Ưl!Nsg%E[dR`4w"7|I$?ʮ`T(Oc{s *c"0FV@Ogq7|8 3@lo.-͗g=n!3z;j+YG9W6Xhcu恠LuzXȱf[$m)"pW2bRSɑ*2ztj~}PاIMLh2e}&޺Hy< 4VD(`@m@)ytI!s/fArӁS;.cqJ2y=R"s: /P/ڗ&Pp'B9";#og,52ܾzߠ5:x,e~~! 1hDw|tHbΥp'Y$l~#vv<(K5(kx%[ܝI{M[OLрbXui%U"}tjLwd m%|4Ex)A`~2ܙfk]uRsW p-#L&] dgIz)I<2͘lJurho@;%/ IJz9#;*EȉE3_Su%ҿly6Gyq,Q"ԾZOuR1/ xBjTvHBY^sik CE+~ZǬ鼤SЙی8h5Josɡ- ncX޲P]*]`L2E4mLX'f;ʄe68A\BZ> i4;bwfIYouFD,5FT,kzQ~O̎fO" U!{4KzDap$C jJ5-xE8&Pk&`UNr\ؑw< sqqK57&dH Y)oBZhR9߯\DbU*/]T~bUYQU;4Ժ'(XӉ\r ^yu6K=`g} rXxOKLٰmEüDnGve*<ٔ )*'۶?37-۴Ja3i﷖}_0mTo4ur"3]v4xqep@F.Sc;:1 feAL.A̩;f6B| 5y*ըTMXY%k1'Z]g e{W Jzs<.|7&izP5 [Ѹzv |XVX7[G: QS->~v*Y;kyEc^LQM-ܯP/'{%PtٸNDYbxJOJpDP `1_R,5˞䠽.l *PaKmY*6ޚqqǔkf0|S˻Ph/5j|wT.0foȲqL5"><(PDbGX/ kV Fϭ>leB9% Vb61E ρڴFN*]ވvWyV\GޘQɃ(=@A2h^`䉊pQ$A7EV}s©4Ǖa6810ÊKHGZhq2tf(5GՃ=H[TTMetǞE YsHq[PYNL!!kzsVgʖ/\VL!Qbt?+jY87rݲV rIqjdɾpOQ⛙Ϩ(ie-0U^|ޖ O+F)!d"li3c5V9(^\]u%FQQrd350eOP m] Pdw(Pc+U?lPn>qgDW'# yN"ڥ_IW%?"Xa~{ˉ٪7~gVtdRدPQp7_bv8iVg=uTx:9@G"bЁۢ>lb0i'(@OwxxM@}|Šȝή^V;?'ct 5FXr׎z e#S8N5f}Lt}O>W`֗a%\ǣ^Tocx TT-syMYVˬة kCEyR@5eJlul403BWZ0;WMy ߡСWE•5 g;fM4vbn3ѡޤlեsX C,DwN"/sRNżWfBXNE2ht4/L5;I(%pfy(J!(e`diκDC>pZjɁ]qH;amOV Pmb[+?˿eCh̩}ӓ$x$ov}@߶ܹ®\wjmd*[a"ݡaF#Jb,{̹"`-s;ltiqt$uܚ:*"yKZ(\Er#\H>UVoX+&\- wGO {OxW5ߢ]):w;Z}G+[ӾC5(7ggw1m?븁'{׉ .ટ?K>k={|^jR>; uQVtfL+xg5\OWիk̈́t2㩛P['(6-E֘D$t?:8,~BK tu^Ǭ9ob⵲1ND79 ANv==L'3(,^Wi~h#K/[7`kE; د斐ӇF3?Ԫt}>7"_${€g lk7(ggBYl˧ǘkђ<E]Q8| uJ`z\CnK< 3{R׈ujHۧFmLiWuqxe1K*w7 ־a|]6Н3Wq;k8I zYι62 MJ>m>MVhijNҞd)n:w(3bltxQӅH,lZD+߅pb^&tyM4d]vX\Wv1]Yk+{ M |l)RpSLF$ TcĀ+^A.l8Z͟eo)-ޔCL(_\Ԇn臱bYNYK W $}6rxf(d b8s~%̇b$w-I$R҈Gٙh0-/? jO5LT[:RfM\+ jNg1mybi]V<> f=p =T xxX/<gC[$ 9O;rn}UO2S|7xZD ISiPpՏ~?w4\ ׄ(pY~gڲ:qK^7ᐺac<ӹ7YgySC\KSN2WvL~\4do?X;j6:,TR};QG+"/R69%6!(_mKLa[F< :,'YY0S~N6r&=լcMQ7}Fɝ>\ͪ#{\I \/ -a&v FM v⪩V@ea5D$w''2zJ9c_oQio{QpnJoCdʾH2JV6G}2|Hģ8cSY*^3BUUg8|&^rX~7og_kĖa3q#֭5ëo-o8:y@RwuCw&c_{l Z1>_WG)2b2NTr땣vtd1]\sz%Opuw8CW%aQ;įP=w9*kI(r '׾N LbA%gB_hyiWH hN̯@Y+^ljᓟb$t dm^3r0\I9Oځ5q61 *,"0 〰"|?͸ERM;1nqFM_J6[x1MNY\W`̊17Rݍ,WJ[Do/|:CSKUC)IkG/ZU: f]<{ݏ3}>)@LH[)K?<>rpPR/;$/ lR76G&^y;8,RW8aQ+!s 5z{G[4v}vy`o0@ގ­<P5QFU(H_/تgMBnjpy,fp1)Kp#ݰ~ǽDI;C:Boo|Y==nbuQO ovoht9z$]IOeAWy=d)oeU`Di_iG+0R2@Z%k#zybsfGFՖD&m7Y h |:@j{iziS:aFdJsm#Kgd/dhDD VzIDUί"$nq| V`-sy.]Ȑǽil<jяZ") lajd1|!({=yr ii7idmSy\[z%\g|dO!k2+F61Ԍ*&Ǵ4Შޝ&:wX_&( xtr?k_lk 82U* ߤ9LbJRԙƎg ^{g<1d4ZjE9h$RԊ"H~$ 7_=m x&+PĆMZ䐪6m㫈'OMSM1mZu?Gfb~:AMcfbaʤlD3g(dsJ=Q;#j J,Ki9C~4?NΗ_ܮ_mQOݬ q{#~+:C3d|ue2 (!o$tMLe͵4o Aae^'f2% =p I0ae8obst;B EX;t+9ϑC`1F>9&C^͂UUXm^Md_4;!#3A1iCLRѮ}&18dcߴl#5KЀL.qoy0`yJSŷ{+m]ީEǼK.3ceKv46C:}&㚃'*2`r }MnR#|$A*"p4Lɢ;%2_ruvt%A`шtB"n^TpY9~oY`;z".-^nh Ƀ-~nצn XRUIQ{%hh|φԨ9:ifž2alxg!ɵ D@ urk^)mr&N|DxpOh#b1*l-Q@ܹ*Ƀ ~A DNmMod1-ͷuc _T $ֽTK_bsCֳgFJ.WT#-e FnYum # QB+(_VĄ;4SƬ|j+ v&{KuUUˉb<˓o{◛_!R֔yk d?Wu#r1DlSf uO輻{AfV@Ǖ R"U=qE`6f(v4Y^woŪGT|iR*>}eEq2&R*CFIq-Tr!SvfiZn0T I1.WЬ\9R|p@rIM~k^epN9g+ꂼQӖbWQvODK]`#hȃ5RZƶMM~Ir+}WʬTL)wiї;!Qw5uXݛYl.͘yGZiYBdJGn,ٖWyp\; e+9Ϯ&dZ u_# -/J_B"=\ rke2؍x֖͹w/nb N9S@L܃8#]͜mKU)~#ycS[r=PX6jOlr6n6awxYT|Uj>qeT7T m1(]$}9e\IrAhrrGw2:K?"i>[ꯩ D)8(ȃ2]:~d h]HaVv`1ҿi=iVpz61vgd^.͎hL9^ 8zi8`fE\ܪ/7(ZZ$AmWou}Aڈ8φ'7¹J?3 B1aߒl%^&o!}Ӊr_"ܗ'1L]t{PMGa'3KB#)s7,[HA$_2m"VؖS9pbmhʣwҧ}yXq[P yrփQZ/@ >ZΈřFF$\PѸG_PbqC,h3#X ecШ[βȊ19ȉuDъqKDl)S!Wû51bNw!%"m^$BG<7timΔF6F`o2hiVs8A,g{)ueV//zqW 5Tpiy ēЯ$ sn9}58%͸cKAB5t Ī6ݼ4 @vf'|IgG6ؠSe}o. =]F{;$](p(7!%A5Wbq=)TgK䒜LDA&QCNWdc)Go«fsqG$rB%Vƭ֡zu D)۠LZPJ`Wis`0{tI"{z& ː@[rMCS`bݪ螥sVO];Q{4B]Efqn|̙dP@X[M2lՀQCND !r_cB;"+0 !%QBȯtJKNQ$4_~ q)ĞYLza _ryhUs"/N% 'K)dD_Y4(8AZmzzp=?3t̄/Vg=D~w;36_-mj9h_S}I]Rx@# »{խN5T}o욼;FOɢ֗ zʩ/,QpE3tW_>ޙ-Gb_WLS.tnڞgr*[,AI#Kw9 h(td8DJf相dmĵ|)&sW5N'}-SSs!^ tSf:>pU' ) vO9DĨ TrKXź`[yJs"%Cg#h܊./05AwQz$T5JVAο z|ǹ'X7ږ5 >Y᪔c25B(jh|T/F8E>(aH]H Y(0LwDz2BKCc'N17< PwDM{UQ>b[Itw7څɐTl0V!"P1m|W 5{eI-#h掶 3գ]a4Kb{Kl1 ;C:g<)Sё.]IG7XÍy# d.jqgF Z>@p0){0o{jZ3^MxXg9#ڹn*1R4Ziz oY;mk.%t4=^x(iޕQ_rKAlghw݀f:jV/ND߀r85=u&}8I7xg6/f|`p}Ee:icG#FCg#`aS pǜYC#Ū2ѱCgO{ңn\;#T˻ Mq>ebE߀}z9aq*xMM LzvC)a-ԁ0pFZ9+*x݊[}}PtR1q;7F1z4 uވgiTa\ XS%s'u28'b0"(<(L<<ّI'azQ&aIY`$kMZ5k8=uUrZ#\4̊YAڰH)A[$IR %^폧 iZ>X݀I (4mxf oov"Wys4Y0 CAO|NV#zxq;դʼn'X8ulڙ{_:X3J̓tAlp[At<{`MĪŢ̎vmӿ)R6Ypp(̈(:))}Us u㙲&|% @SQ`=d*[} p߃_-Լzikadz~5!R`XJpZ1+V k[\ףKgrT]~h=nJy %4Ԋp'>&\W֢Uxm|"{')BO;1[M73H~j8f=Z]}ۈvo_SD7Ik]|Si;zs["_ND%)B5=fe{P5!jB[%-a&[x@S"%Su Hs nFx޳t1ڈ (H~Hi<#HK=ڐh&^.?N)uT͈_MYor$!ыx\ !r[rE>^a8;}.7Q`gRQӼp]AJUy9ZRƚ7ҝqy nE~-ZtOzAO:YEJ*I'oO+  9 4o,ױE\ S7?.9R^ueZ'q (CHtvo$1'@v]D oQw]뛻X%μ~tKR Yls$ d>W{ Q=yM{'Cϯ+n6XmrHl޳ƻvQ IͦBw?rfݰG(95*wQKo㼒#)`5&va<'1'CMӇ<88@/5 f+ F!Y@q>cv rG/$NK>B8KLwmmӟOl9<9*{)qIܭۡ!n\bA(pW?2i"y~y9c)TP+ȴ"z)-ɀ=נ݈9]5{lbysn~ <" / p{}ˈ]k߉𢂪-eiHA($'gNTm t/C끸r*8ڻo; h{=,V `VI5|o(`bI@شzMkg6xưVP|= "v-B:$58Kܣɝ u5bg+⾭oh 10B0-GEn3malbQIѢ2=E`j8IsJ~m,hW'd Ƈܷ4Vy=!݉8ĝ~("_RX(H2BA"&s {DDfuD|'\P'hxRp *_y3>>I qؙR2{m--S7X{L Tbg*ba{\}i;=}NC.#N9hƁe X{ !nX?.2lƺjAZ`\F:;]kn EguȆ@mw/K$4>BؗS'.kĢݚأ[iBS'i5 =d`]ƮBƫ?m3Ð\2W?hzݾ]QDa7_~H EՂ]r' RX}\g !ho2b!XbWIڵm.Ƃ /DΫD.bȢ˳beq1Fi6yT1{dX](?vEWVB4w9uN:ģ`6)  ԅ]œ)HVV3׈ z$B5YO6&? ɸ`52?70 @hycc5(s!F2/բ Ϛt)7!4T5~&.|J,jO|Wt0j{2iX{jkZ͸kK"H+8|m2}ޓe!pkw~'MZ50PdM_/ay'R(%E endstream endobj 14445 0 obj << /Length1 2051 /Length2 5416 /Length3 0 /Length 6672 /Filter /FlateDecode >> stream xڵVwApO0 v| n>1+O AE[q@Wq9VK - Ġ1 āHA}A4Sx C3  $C~IQ<  Bn B'gUK4zz!_~61n~c4 Fn+WRC#A@DBZT\JVxڐZVxee#0pOH̿; fkik,?Y vCIYB( %wRE`h,5bjǪ_, [4-IK$˜@Hbn( ~"HBB@CĐ#ّM.AР )1΅oD8 '!8i?bPߊ1 Wiߖ_;)(?޻Z9⿉OE{679 ~9G:?PDJ!0G\ZGs9|5])Fߣ]=nݿUWF]SO"{̠7 ^*[6UpzUl~y8єRٻf: ftZK;Z*,h$S`Q?7߮D]VsR3`սyt7NzCY=2AGHZL-#}- jObڞ#-?%$p\Z[$3%JVGzJ版Vδn߁1hIl#by`<|,uC,%PoR͇`[Il5?jB(Gwȸl2`2gc^i+Ǟzyu}dG>D 9[-Ɉ.6ڶ!sa쑇YH ʇ=Y Hz ʕ_R)n#'U_1W`P!7I2Q_/#&ث ;>Yd/T^Wb}p$нxŶ)?Z`\RB/g #;^ҳd6l|GR93=80͠H13*. DQVtt_v=So0 0Z<[J!zrطx%hķo!aO0+B׭ ߎPMIcXx5jǷVF~8]u2ˈGHb^z:CB^"dhBgʛzn5ܖ aig>pXDJhHg.~尛ER\jOH2>^%R|{e" :7BW6 T L _%ODWES^+ 2^J:# K҃׏6 -h_N QzDbJʁpd9ѳm3Ʈ}.}#0r[@V'f.q5 EZZq.%.^aȧ@bB"GZ_vљ;8 L_^Q~{f*og41B)*>ڸZFt9r艉aE=,d@Ϻ۵B^lϹ|kFtf}ryHǷ)\J b^XS:ID_eS:p>M%ӴM|YNSA-7~R׉O6: X{C' %`TFzBaE_k"f7!^be|Bު8Kj#hk^*u\uB-tYY8\ U6eb4 Cʺy^S- ޡeNonf5+K}1=JM'#rY%^Ѓ0r y;|%0\vADv }ҍ B ύ>*X}!RW>гQ<5v.s}W7bm,ג/0EPtVBBJę BU<ʺ^ $d%d'=i%snhQf چcV5 k;qEԨ+)a S}|E_R݆4pku=ޅAqu`e{~[ . hEP_`?{ _yusq O NQ~Kj7gߩ+P We}yDN iJ=Yr ^iptj9m_0ڽCr!ҕNU>B-0GCsū~Xk@ 2$7>=5N ߫m}Kp:/GW |bX6퐉TnndxXz{nep? PB/!kdh3 S[l'KH4*ľӊ"R05k5pݓ2d/iaް;ܳƧ0{'m6V#=$6X,di6hom=?Z*ljc֛_#N^gjwl|Xަʬh l5Q(˫6kZaW+V\h-.IaQ57O!r3Mu9U߱~ÇV+ U12KKPai-;p7TS[,oك4aFSF—IcB7y`Uߜ鲌^tϟH5:r-R9A|emϊV*N쐔\y\T7FƔl,nп1]r~Oe9gFə?&ƒ)A@֊F'Ѯ+- Ei[3t4B;Q8Hu. cYY.wqoьj:;4Oewٜ>LrwJ6e ѐ*kԁPAM:G ?(fsPQΘ&6՘Ls`fXzVVǛoxW[SKrM`VvVm 9 /1؉mFoHȄ"qB<ͫK+-2Gv vMWꭊIs񌡔r_.sGF#zӹ+2iL̛~:sVhH%򵥪 sKW}D%rN-PGk)B-KBdX3,w}deytT0;_F*3R>Mִ =)q‡G`x{)4a=h ')Oz)̍Zg)\5|,&힀Yt8&'PȘp쓸M&3 rR%ز<7;x%ٰU@,91ӏ&of[7/aQNe{oxшR5(T4ne:ٮfcNMWmp-ΗQet 45x1=Be&H孁h:@BqC5qq6}2{Pp*LB\of{7&DN=!|qE/1EzdCǝ7ʵDם),>E&I9 Tq%MvwlbLn4ݳOoYɬ7nO\RF=Q϶^t] iMul$]  vȭa[-U^Ggɵ<)e}L2DH :)w*tdsc)!z6s_\we ۋo-r,+6ú#nӇCK]ܻ ϓ?~PHXm{Xr,ȝ6DW*jk{[7꺜YI7vNf}~٣ږØZ+MkĻRH֢6v-[o*P T=oRRrnz1Φit}֓\]KC{ƭR-C^?6"Mg~Jg ßd:Ͻ!cB䌚ohSڼk spM z󜪠n-x%(48Vfn;? %8q?^/m3x&GF?BXCoK#u[Ht ̠O^u ު3aءӚnsΡ  8&#\/3`^%]eZ GV7r,RSg. f&a78Wƾ0:jY~v>0v0滊ݷ {6g׸}q~Bq|* ,/O;g9_jne@ރY!.O<ٙzj7Ĥ= C b3._z1S$Rj{lW&WZg-)ƋD,Eְ{siz+7|Oͪ4$keb9V][ZFO%V0m1>ybAFW Vl[bX!Jo;|_r^27',.Lg Pfӄ {o?gFߚ|f ?b^߹TaaS l'õj m1 ED|ꉳz9DiFnƹkMg}oK&Y |Yu^wBvMG:ktN|h+]iK{SZ ΐ![QI9jfWߗ(eDdG+#~DrXu|3_rQȨ\̣5݋r>mj!M'}3taE}wHnЄgu<=^|Ebk친!  JsQSRG"dmj> stream xڵT{`q dyX7g`+Ȕ3!ϵ &t33̏N%`$S'hx*G+ ;b 1*<>f ,bTA bD& "I3O?p"0yMd8BmbXBEg!,$XH+lLH #tZ^R2K/0 svq˩?r+8O*]q*F#l ">9DۇDdB(@B7r3Un IN|aP2́!IL >w|"[c.y|lfG1H4Y#F!@1\]1X:5>%,6gxoc1O'+9#\$2ڤ'H>i<\/6@@B!XFU )#5^.$E,F04kXRW$Qqɳ!B>LBP O| 8 ?b*l%?t*FõXb4 YTK)V}'J(H7A[N֔/'oFq> HEnt+cs8B/V9ԞZgUWN-p?` 9m*0+G}V;DNEk:6f⛢7RL J+TCҰ  @P˰3hWk1^[pd@'VKӔ[xZi%kYgo,X_o>3:2Fөh]{n;w)Koe&ڲ&սZQvү<պsTJzwUƮtne.+wDXB88+ik,Duk-crZ )_i䱊">a9? G] Qr$踳jineq@Sf^u8ݸ`xŭ7Ys$_ tnV'3Tgքe"nJok\,0IOR`;~1۟v?z4¤Fd5y+ *hґ]GpשWnآO))V^-T:zN#F^wYs8YQ筙9{]PbMW.]zY*9JP&Co&V 39<􀣎V|7-O]pHsW_yl_`2.ީ;(bwfϠWW`4^13T=ܸϐSxV24 Fmcd΋PΈ^"z5}iJR%됌\꾰!OzZlOpWB]@2H]ex~g2G:C]f H3B'?_>bg܏-'n3}8k"hD,2"ղ2ݷ=WvFƹui/ -%g$5YXΞyzj٤W7L<8֒˽20\gjƱP춢®;2$4NAYN2V߼OQ?Lh9jeZ19bJΧٲcMu?$mXޞ6g7zCD\qHҾi14[4gk(p 㕱Uu5 vVȞ%×kkT\32EasΩ/y$\x|QWGO/+*YCРkv6uw+Q+(5:3 6q#őupNiQ?\5V)kO;3vNK~J S壂5z1敪ZEt#醳o6WeO:yzDBIw޹Ynxڅo ۲M&o09iyKF\-WjiĂa79/Vu/v߼XO YSݻ_"SAc׳mo3C&>Jn9̧/5+)*l[-WeL*7#L-fugkɻ}ڇ%_=3{'h=J3%Dɥ+‰kno~.]4Wazwegrn־%#Sgg< {+׋:lVkƲB]jظfŊGM,:)W[+uE& dPթzU=QHtwo?Gh@u{6Y"f-ͪM}܎>͆^Hr#﨩+6 :d~ĵDv;-1Sw&ƈ0~Iy{3k YKAwaQ9Vs$@֥l_\dYU -w RNɅ~crc4-שxd[1 {|Me endstream endobj 14449 0 obj << /Length1 1798 /Length2 3667 /Length3 0 /Length 4793 /Filter /FlateDecode >> stream xڵVy8mNe %YddN};1fnf,3cfY+ "KYJ$Be.K5B%Iݣy{?c{~yy]30~s+ M %)RpI%EPP8) KEҒ0 DQp6*R,`)HEFAnA HA! 5 d A@%Zb 灥P{HHP;QOCڋ@(<0SB<bQ@vgifmn%[Xz‶)Rm=k+$ !)S@r&\G A] $2:lB2_hP;;R(D%" G $8{#=I7KI?P70ơA<~} *"O0 t Ȼƀ x %RP?2 O G"Qg"g?O9y1ޏ 7/Mqd gGpyTd>MS]+1= bRv499y@ zSuh|| dF*}8' !GǸSGDXq~%_H$Xunn)"$4H (o2sckwQJHбanw'?BAX&bx 3"L H?'Y~ަ(Pg2HM $1Ybq4'??;i=A@BJ.)#/3bM=iސk Gؠ8bZ^xLdwC ͠BHs sm\<=iH( ( CZN4w x*~P@b$P}S@~1/"הZc"H~.#bBvoNv./!ߙDmq$.Q^|sm3Kӄ iY@BZ9*?/#?6@0D3 =UFܣ)—9 piL y#2Ja;y7)0Ө00C:6p {" ٷe$k6/K&t-ڀ*vu<=u4&~ќtħ l`g~`8q@Dt,>vѵl/ٰDL*JkXHKYJr$/ŚK2y*xN1PCI'7;;]~׆XD.B+w|W{y 2>ٴ(9-EcOfڿfǖg{?eU5#RR;DYOmMk-n@LRkd:)c;Ht|pe'V{n=S[-O*qEӧFyC- ]]- f}'SmN:bGʹ7ey4)=7#{S;Nfi`󛲍W/o?\4 A?N5Ė2s³O+B8~`[oX-v{jpk7PsU<38`:`a^s]G'#|Pt7ndU$AeVCn ߟ:#?,;W.gVH{*k>y@[+ky߯uܬ/ L'xϼx)䈼ȇuI^p96VSCY1}Ԕ~M;ߊ[t@hfgj$œ JHׂ})#n~< o^J^c{bc4t/P̙%l- i,gOOOZ]JՖWO:@Jn/ 8WywMƆv|7K(@ZQ!.ٴw7T<F.m(54}SǔfͲlYMGA(KO(GӳR}=g^_OY-9Yq6G gxh–å(OBwf  IUY4K+7+__qjCI%1 ?OY_~7iS|W@KB"}Z2ͶZEO*StE 0%oL%l4GNI'L;Q6~@|Bm@zoQWE '=+:M0xE7ħɞ)߮$K _95a;8w08w{k.ʝU)f[G^6s4L AJo4sp3).6Y̋.t'g<আ8ib<<:֘+8 vRNKXiȽ_tD"p1U_~<Ȥ=鴆.)K7p,[ߙo+>;}Z ~6OAƵ2~6}Wd L7rmom T&J`ɜ14ˆv~;r Xu3a5ʳw`4r*7ڮ u,y~7`2,23"d^qQI Dn YTN[M֑} A =L_ fF-8FZV'ò?*.9=5Wq"O4;VAW߱mEW#2|ç},M{.x ej/ 9|qkK]'DrsزX};,L!V"Nj߱c-w: PWdgr\>:~@cmEC03DsÅ/e9Y^N[Y̸yGELfk-r3h鯬?o`Κr9PH /m_sr,lyJ6MN`{NvI߭Fڧ2O\na~Ϲ_M+\(a'|g1U[0ΐ*tD[ג,ZM.咅vV^^sE$$߶OOV y5gu]osja?Q?J'*턦)xlm|<#"1Syc3WZ2̫AF;Ӫ}i+zO0dyJ gFP9,Dݸ:q>`넫QukbU'5SoHkWfe8mRXbwB2+}Z!9p,]𸕌WWN 7#D(_4ĈzXϫR&(K8<{P̓yqLg ޵8 =CO^I>,TyZB7]SU~{9v& 7O!Ilc &ۈq؃T|xIW^ELz U~m >j<]!`P{r~8z434>0Iy)q :Z "~*GM'acBdoFTCR`Y$Ώx|!I!*s>sgQ(Ӄ~g%8;_Զh'r2zV܉O24/Y4N}Tx2;,SYkVhsTrs=Ɖ%UuEgQSm9h'yޮ|kܒ`>}0uɠ+>$E޵WΗ-Ka߯;QExްQ ŊwM@+!3]xG+m]!$Piwx3(IXMW"60 AIk'p~…}\ /*l]\dQ[#jZJ,MVz ^⩓Y*H#r+CC=jnj _z}LҨ9 <l߹}?W`xGl:Gq5b`uo^K TM'_zqjA>ofJǣi^h/SQOU|3iY-JfV()+^LK٬r8S~" endstream endobj 14451 0 obj << /Length1 3357 /Length2 38330 /Length3 0 /Length 40138 /Filter /FlateDecode >> stream xڴuX=Lw#!4nAJ NSZC o{ν}~kXs͹7j "@I+ #3/@^A̠ t3q223#QP9M\@&@^@ `fAHA@g9 t5QrM. &.e 98z9[[Z;ooQF5deT`(:xIk` 28Xԁ 5 U5 #8kHE%@Mz@X%=@Q;𷻂 =X@giG%XEj+WWG^&&FK7WFgKFG[Y<m@;_qj;S[A.N/ڃK vwL.@X+,7A& 3 /hN@ @w.9E;ӷ53xQobwD [3)(HJ3ȃĠ/Dy̜v3I%@b`.H'n ml[`a 2]{s7G& PF?` 酳@'̊w¿7`ab n@_?XfV _e@i. U;@ $&EWpKP3iKNHj&v^6-oԊ&vf"i 4Wv52&Y{ __vY-` .(W^2m$@f K+'  pc=j#ptsX88#>PNoo `}A\& `A<&3I^+Id^;IȽ ֢Z_X?E ֢Z_X k|A`-Z/ExZt_3wO)7 tv}9Ʈ//a *;XVߴ &f ?h?QYma ;"9a A`fvIg{b7hfp_>&s;?  |;o{<r͜L^ ,;?nG-_/rX,^BrvwpS>Ex Z/:fha"miNj"N@:xOl ^N r7a$p9^Dc:ި28 icg`KO_L9^z\XG;?6f^6]t?LpCc?,9 E:|.@{OobRX_ W+g> W?1^&G .,1zd*~6b~ {/` Բ6.񇉂 c?fX<3Wwޢ> If`,_f?mzHoJ 4CZu0 IV'yWP[6f!}_߾ޤ[dv8/ wXα{}C4F E]xH6d"brRK)U>GzG14|v[r+ ڢg8!ke[ 14^MW]gp;aXOp=iDZx7gIϥ:y0?I0DWnART3}0v]A~&Zs!a*bQ);! ]h\k %波eu9ƪ\wHSu4OBc!AJya)9F!]D ܪg6`E^u,5+dDa=hevQ.rEԁsuz+UFa>SrMGg-w|΍7?vˑ+ƏYjAbJ3* 8j{u^焟@IRH0Џ }ac GA$ZB;A2_3@ f)s5$L659Ϟ)-QHSb3 wOT 9%)L>__X  d~Fbsyv3>Bοccf~>\݈:X%)8Ց7DW4(e/㇩% BՄhnNJ{Ā}!d;z=& r[;g ({Sq4ѣV ׹MwГBgcTr8諳.,GX#jQKEЪ؈{Nqe$GrUMk5G] x#k42[fI{X全 q:A'!uw- 5<( +/vTgRi>1TB'Τ'i4 TҵAx M;:&_BބCjtvD/]IW߯;wR6nfjwK)8Fh}n#0SV-Gy'QSW[q,N}'Ķ9v1Vk!c -T=3BVƷu_H!?Pds6,Arbڷ㯺b1zZ|Ta1|(pO8ݯVq:l_z"r=h /C׎tUOirݥq/k\hnKL]fY [ad~a]T`*Sf8U0@#n=ʋZid7ѻE*4s^L DPБ~yeFp[{EƬm0O;7Y޸b vdmQGٷ=sNtqxjcgH iދ@IF\f'v^`}hC[V_fRVz$>blTȴtf6zpf~jp0O*tm|uTFЪVq'(SПB[(#sxKլo͸y. Flm{ɭ^xN?tz-i7ă|hچ ގ99zAWqj=E3$5+ybMӉā)E Pf" AV &fLnZ\(Q}5tw֔t2S7wMK''vΠ w|ahD/uiQ(|QR3!789 oN@O̜]ٓZТ*5hiaPk"o6W6ބِO5>H^q~0} _lXu)"M="'bCsac2E0k=L}+&7ʗY/*OJ9GȢy:yM@Ě*eO`I[tpkSZn(Гsk I{vSU`5C0[@VB逝;sG!# ÉQR,mjBI,O{0H.YsP(RXߦRj)ouer{×ժ}򆲈&xS"f7.:pքڪ}7ɯ|UnP/po[DcCbHd44~? 1$l XÀVBr+{g ,_~4G8{%h8 jBqÍ0D|~6WbS,'q1CIE;lv#N(=LH`<5!%ּV?;$ MGi*-}nJYCi- P2O )>=Ij:ֆ5-GS2}[.H|F'#|\+T>v ֪+[בg@r2TVtზ*H JWٱF&ڥAC2B- ߩS}jhj ܯVxL}s6\: >Oxڠ;uM`Pbk>7/mZao^pZM*3}+փBftC&KY DzCp/_hv#%f"X哤e,WIiB#~#Ry${ujl?§jl1M{^g&Kgy}.e~@(sd6 i9cJx֛lLf 5%SW=YRJڶ>_9-&%oM%,G. }h&2o|rm|8K1s`Q͊z1r$-VtƭG8QXU@h^?Ig-+98P=hYZYim8}ZRLAC$d|n1Z9e%Z)G8q>~-勊 -EZyjUf>;MSXj}5!AH"}4ޠ;޻َX-I4Sx']iɿ? n$XPn2_ 0ɚqc_[&JwU7 SLBZ7ۄ,޾kqXѰ_VRH~* kqo?Y]$n U읮%wcqN TthNZDXUHc {&^vr9}8{W?C؏\ZY'VsQ+䠺bU9srX-HXHD،a: s4ϴ$W4„xx)}`&>#^] *ob(O ^"4G-AOkl.5_>]Y U/;pvA칢y/E=8 B*$b qȥ3띢ի2Ft!L};JY[5CfOEPW~śS8y9V+M1^ %$E.攨ҧMSȝ0߅1yJP=f*GcNA+̦蠛mz2(@LjT+1n`Z|v=벦YZ'YjL}?cղW]m*PP7ck9eyҳ<,$- BFW3 BUUԾvEN͍<"T# Xh1iH8kWb3pPw۞FdHP*E]s~1WlWwAq[!D ;ÒƳKr%_7䰗^A z$eKE} >F/SS^k;Lj`f;*1x*N 3p/dzn&Wj\2N$2v&]_5h)/8ɇ:Nq iXQ X5!TFW ~oHÆ',u$t5=0GTEC3Tt}!]GYejQxxlKpHlh@ZΨ3?34SjۢqJWC_G,sKLfz՜v)\XfsCJj~KʯQtMamĻ}蟋W&[Q"G UV? /bï"'wjmIJQ`#="\4sZ/jئbuHjZ^ȊԠ?U'AT}?uxg-xحUOٟzЃC _+^9 bJ6$Ua \!Joقxjb*U\\K q5q|0%nKיu> = 7nVh3wLk0Gީ9+ qEl"xƇ._i0B^ %bL苪Gtr%~ô22~UcM ˮHD=k<@39KP_k7‘[63YJ+{}:C2x{e,_1)A~;,Kѕw `7w&0\NDN6l&XѝzAv(@ Nɮb K0Iߦ5LJѷ\:me*8FdG(2MmQcc Tn$s:t,: C) ze;lg25Q˷GqdcsGUa&b^/}6epZ(՚_l x|h7\ kp|"Ϳui0[b阤]Pb-̴^U'4֓X=R = ay=[BnJ6E!5 KB%'Yզǻ[ PPuqąlΏgCjɶDuj&mOkņsE/B~O]ɢ08 ծ`{TJtf/仆)"rYri wj~tJvE7(YUQӟsg"qR5.+>JVGh"otҡoڟsאR#Fp ˷P?gZSX9XL佽3V珛2T_$n9<([ 'z/=v~ :@-dWByBڮ:r;O YnkˈF)IuEzrDo !?F}/p°p;Bp5t9v,& _Tc]"G |kTum) 5hY1 Rmb"/Zn׷chNWӲR/;OƇ܁Ko-~uqW#aqbT.M,ip5=@?H#5\i$6Fpi<㼳^e9Zszz^֓Y)f!2THGl 4Zz5 ϲG%KWnT dkGͨ,(ƹs(!'UΒ5"i*PaؖβoHQv}D76yN~9dr{Wj7 Wa:~pK#jӤ5ߩF/:iLYIKPWMәƦ]t`ahcox(ϔ0N/hܩfڿ>tH# V-*0J*y^%j|>ŃnUsuoY%M;ѧ2x{jćNHq+_Vn(?9yFe fD3>6}ta5Kz#z^^+'&yOWi}CewF脏SJaɽpK9>։u+|o^) gk>1znSSAIxӢ)p1`JԲvf?3K;73M>6hH7*n ():A%k3Ɏ :J;zTk)m&PN'JLhhJ=[`=M躠CǰF'#Np.} HHF彩P^O%s;zZH ޛ>8'*Tw=xVC4?8ݰ.ܤsUX%F!POV*t-~AH]>z?9$ R#H?Μ.|Q ۉE>ѝ~9ON]- H*;$"߳yFPh>],W<`ˤdU*[Ahj {H-8=W9׹ ]BIw{md|M fBA3 zPJ~ŧ6q~[xទe iC,tcs&{uFŭf/:]jcyrc%kGS$'}"O\I]Ab(i;)`簖]lqǦY\^OJs#qjzF,>Sبy)EFc z>|29pg ʪnzIU%˻H:_ ͵tjdu9ddQy'k\P䅈lWl$ThNBDdv? s5'̀ EJ9FQ_hxPQ~7[{XWl#aHÔr%Sֺv=\D-<{. xv>;\RS8(篇2+H4pɵ8yX*fkt0$6st/g<79k0-,ix3 gժKPxeA*LS\O'ߪa%*Ne}K }+Y̭ޣókWWCQIsI }$(9-qID g]nWU4'sw\2ܒ-ҙpmZ`É|5l) 0beqvQo"rIR@M95fql7b%z@ސ_a9}hknr QU&}݉k6K״`ǀv3 Z&1L4z+_Ne[??i~_rU"=2A24GFeyN0d7S=il<R5Ap0b &T7Vs0o,E@;)ݼ&eߋ# c%9:eȇ먾0Hm>\y\ Dflr^,AGyXҕEr^&-MLU`0)SVSflITncLΪvD%g)}dayo| ^ QzvΛq7[YEKMz׵oB~Z?e ǹDDOQz"$R Zup.Gc0~A2BVvhDf/`=&?~Z1.+-G|O6{NcrzVJ18=%6SC_lʷ'yݽ7{^+y#ݕM$O 4yvmyb#UT9U%=6_R \b[b>]4lo64 sMg׫`IѮ |Z##tp^Ɇ >˽$5^s|]cc&DLw ?Xݴ~{U ! NCܴ *}_ظs-EGK j*xK,Mo}aCMk/ᏰA1&M,%Jxԙ`E^)_ajpދwБz0>}5] VWihni#Cp)}_ ]Z?iaFȗCyjIuQ<=%k6.=*GAyJKnH|<datˤNW32羇/)`=("2jY2>yS4%dT8hRt LLyQCЄ%=GYe[0iw7|%5DBb87"7/<1L!͝:˛+[948ڼARjx/@ar˸Z̎[EhИ8x,#oObGGZ$W$u5-}`Z$)==Q0i2Cz`Eˑ?o/Sd ʼNrfݡsY!)eV}ya#SUf TGo(Y0mNpēkzI׵Qo`9=q PFŪP5bEg Z/sQ+YyuRovE1߳ -Lx(RnaC\<ş!Y3ުm~Fqhwƒ*Qf=7Ui˟Q&^FEϓppm mw? ^ #"N6)Rk\\8$f\ fH<7Q-B+gf̝V#WKslRƖ>tQc HRpj{DZ W 5@]U\-iAkir6NN%_Pis܉@&l@l"2ǐHy9ook>_jϰ`h1fz)+UsM^T&uBvcZUw5e)>XBrf6k 1%=;{uT7z@::aT|/tɴX~(0G)܏ 䶖 ߦ0eRIU->P}[HvO&nzZ z#z2ÓSCdtٞtz˓s؈3.7g01fZMDDlyq  5QFK5)lZ랤YoPÌ.S#V\> ėoԐc"MP,<5ש])]o& Zك\-k.GC !0XIF~U׽:ap[@J*gn^ IBEe`$Bt.{mkt€rv,S\YsGw%qj}! *$q=ʢҐ]qQ}a .,UspS܈|24WDRwl8Hp6&B6.[ MwE: oUgnd­ޠ;p&PGS1L㍎b{/;朜.>'iNd\+?WLuo!gÚ2@3F'iPGo&c$"x~xŽ_q&tJa_$Sg8 Su3\,RmH u+CTTh&.kTAku*L(LJEWpן,e+ڬ~U[qήؘm|n`DNZ[B~HVfz :][yb"28&=i%T*)?X&5#M)K*J=@x,ѥY: qbL0p>z W٣]_I%RIU8&[igjAUBęŒ@r:6Wds+~kR yx?혣:ANȋSC)xU- #=I Hͪug[U4fo鼹텍.K0*"&+gS?G,._F)|+cN2iȪ5T^3S! jO~T51E-b ?5HiJqh  #D 67_؍/RO en'.e2K-߾΄iuN5+(66v|KWi^ Rm!U{KrlWm`YD]·qf:j|pԅ#sޯ(N*>fAv_{H;}g^6029P@tDkd+6~DYe&PM[GٙHtڟvht%bAoK^QS>|Q$5ԄغY󟒪p<GcF2jIKXMӎ "LF i <2p~2[Ƕ#$xm|P&OR_sp %l10r\~55xݱqa>3 L}NaR"6OD zlF5^8nkN!6 Y= #/RNZ 22BOo|)hLU8ϛFf)q$N)d.[V|+'_%Vl:腬jf w=MDgI%X*o5gՅ$VʬuM`FaŖW5S<=孨5 c$0E&R+>[~**ӌT`eEweFtb`.ԥ4ݹ{G.͙3 ~Kvfl+MpW({NiDP;$oBzѰ.p :KlzfVu}Φ'??#`S^#zr)h,9첢M|dŭ\EcNW%x \aC! 7 +/1;Qݐ4U7:|Vj:@hNnӁx9'M5#2>4N-C+YZnCn#/Ŵ6qA IMX<%=:z3ަ=mW:sBhxipՅ5ڥ:&s99_Ds*#GH^Lw^Ӕۑrw}2ՄwssI1o8r=84rgD:'^0m 2SQ-\ʑF)*faM`Ǫ%{4nZ]o]?e&\ܕJA:--NoĝB-t=JdpPÕ 1aٞh+15 \sw< unř72aP(_ex|@ԣnH}4"֥xwF$yT#Hg"Rd)ݓ=9E3$בLA`hrd`^%z/fDSvl 1d+j쓠ΟDXIT>*W+^ɇO˯WâP#U)cM֏t5h?6aIEAӶm۶m۶m۶m۶mWTVTd)&gAm&0o%is ˸Ziښ Fq(K e(xqNpڡB,&5kpӏzc^ݝbs6ʼ+2Ǔ-jȺ6xbFؗKX /7;?怳5w5~,^YgOܛ`=)JYLX]XQ3e ~W򠂭M%1[7wZ/FzքOB/EVː'G7" Jr b7Tx{ Z Cy'Aȗ}%!jt*E~n"<ЀIB/vc_V\0gxޡ5VVm;|ViGMC;=ewҁt*~f]W즴ZE{YgƩlp]ț^܇^b0o#b?9duI6cD>RU9HL^ײbn6$4{_!$^Xcgېp GROG%ZF" ߈,Eb&?1[T0~bd|ī,AqG)~23鍊Ƙӯ`8y6Gi,Ayf)v\|eƜ3BlX81@+ۻQ-M*#Kty:k,чq]o ju/RDԧ4%]1^-"hWw|K:T7씲:C䔮@Ϗ{hLGg vbK=}KjΑLcqk\9dmI%]4By݀(Q&"G򇆟;̧=)٨)k3IJ>Gh!Ho36?:m+ 1=eSG>7b`x]f;.#׈ 84뙽3`<Eɾ:aA2SAau*dޫ$ųuBj!a-`n)]*6訥qX2/h¹J%qcUQA+*}W W//8?6\i֕|klF60w4;DnDN\f)KUf3/yo<wV&[)}[[AMMܬ\!m иÉ'`uy 0w9_ӽo̲!3\>&6}0ƨSMrzO\lwkPhley~=*5,&I; ՝P&55].׀ckyy@L$&C 6ʈ'xgFj$'2fC `B3&jW.po`k[~$L}OO~Ȼb Dn/xW ZwNJ.؝7Hb l~g@>hN+Ch辔ҟHxd^_x|&ݦ@ T?KnE@ALMNiP|-W>A`jͽ|)J g`Q KVeK>zRYI%j wI*iI]ёwG'_$=0=φcfUM"@(&`\hSٺK=uq]w ܱ{39dckJogTЖzh%! k|c%$~Y3pXgE/>RyVF|%Ne1{V RQrlZ\gmJ4>I:R"+!O:{ :\ج/l-UTMhq>$or덦vw[Weg,2]Uqgh5Dhw|vSRHeQHj@Ĕĥ2ZfУ ?GQ>99PԮkpXh UtpQ44)QX^KY !v\*j-8տbeV?q2Q{\xr\tRW WwISų#jE!&9ߑ-K T7ďA'/ ́pe@C\OhnKP?W(^7LaSr%MC}Z'm:}|xBe)diW"9.jR o+(ÌWC~',?z#YbHK XX kMr<$kε}!a-SwwhRmӒ<*){"eRLRUً%\kbh}Oړjj2x׋OԒ2^͓KM*-M{ge&[5|<5nib[Kao>aaQARz/s@޺m9 t\Ս\%"@!.6 KkDCM3 RbNVሬmI22GfP+{CzŐ;L:J5Fuꗻw^WԇU34B ?G ?O7yu|VdW9)ny?pRׄ)O0)t0& _ps6ـ' |L "]VPBoRymS}P F11.WyJkܚmv{cL$~$DGweAMӼG&L`S:?=VmQpXY<( C6~ya￰l1QȨoKU=jph%lQ$.o@?8E՗j0 (G`@|ThJ"[DLx P?Xs-:6:b!. lX; 7I복#胰|9tf ]Oi~{1~'7ց$ڌmzlq32ff}h"'y<-q͂Q4ﱺxt*7<1i<#lq9{3nfRگBELzc ^^G 58f4vx x?%%dqB_Tq{,xŠ$ܣ$ނXO~jŒ%6gX4~MP(7&Ge$gif\2k v'̑(d[,֠ɽXoXBKx4|}m5(`PV06{SO'~ V_dSb).n- մ+b%Y8(<% B cYeXJ.}|9Z$q$uzN8n{(ݗ i!WUl|i8PJhgy`i9pZ>eR.+ܻ8觭l EΝ4f\{1j>9O|*@NUcT:TG=rF]ezLd?a,aT "4bxt%kVBdzo(PѠ\b dؚ3.r7 юQ{f>Ӕ o[vb8 gS^Rz6=D]]7* /l {AٞRj &+B}T3J[ qأY@zFh;Rŝ틴ZމDE7bM~Z֖MLgtݽOwW!>E]X}x0\}{b#{2k~e^E{Lscgf4m]:e/Te㩻{o"hsAI5G<9^pe{["C9k& H )Mr&\zV•91y"ҧ`Qmk@̠lu`YoA+oE""P8LJ=>_ :REIt7^ԇm(r` (Pa( h(޳ r aly&ū΃f<9sjZ$&gt=byYo~?6~C':kY{K?W's) X-{t׭gi%I@))D$H7DTÎ@8n-Z\ƋÚF:EY7NBex-ݦg4^':?:^qϐjEYoYU>r/dlK~R5H0"[yy- 1a%9  H M?#1FHkR %VB\D1 DH~#GGl:铇"' #~~yea'scnIL z'~׭{٩710Y&aWS%]Qt@j Z" Df=&PN0$Aze`Ѳ~y/'R`I㿘dH3%6#"8_낻Л'}$#RSo(NZWl%S|VZ1V?f;xBG!4Ng=NH`p *P͔$*p~ҕ_b \S=HFoE2¸1(~?|*4\e^Url1*;[\KJ߉c)q@ w"N؏)P,oz4#ǵK?+1OuHռ@F0: o= DN.rz S"dq6AGHp4㚮!)p8Gry7)k^6ee6:yXxO8r Y>P,hN5x#Aux|_f963ۍ2J+6$eM6oŪ aj1P3Ѱ#i駊2)qeVA{B0BH7=Z;9/.cT/tpոD)GpyH#VF EȢ_>(b) 9gyWtѡU)yڪ̥72I}4S1G{s$< Ձl͆ʭȘ,^|z 1~Mo쌒G=bo$ !'nVhO뺵~ ew/p?+47z&.V_W>SYmI܇cA8-X,$M&1aPL? +n~TBq5,ݵ(ZJx]('NƕlSWf\$39ɶ&/Fb1  LFW+7mhkjbsBϜ<4F#HblT"62MK]Y4>TiDIOe` M%쑁[RprhbgF(LtfWl z` z)CYݴpB@~:t Sj2W.cbڳDʖ`l4Ʒn4q(A7D|CtIʦ !y,jXIc۽=jW[g@21G?^kyp6 .vsbdW/2 Cή}JzxUtp#Ȕ/^@0SdΔWə Sd|Ea8"̕[`C^? ,VQaV _b)[29kI煒٫YX7r:0yxO]E*#Ro] XNX^x:kcg/ u)C3sIC41@ uq#Ha^>PmзoƉK>Ek}?Db{R[H.JDC~4fVur(1ڹ7bw1/r3;Hx;԰R,q9a K=K@bJ-(^b7 'gmT`AGp%1+Y?q l@Ppstodeb9/({$ϵ숇W ]WH1@8_:&ɸi;S80Eu% ^k↥+b}m $V#t E[VV{ N@ GY+KCVO -m0r'>WT搮Ru!Oc?˴ma:rT BA9sYqDg=˕".^ZeB.I2[=!"ƕ=(Wyo *y8I]-p# ]8ִ U:o)/w0~MMH?9X( (V_}Ak~or&4J~*AU*ѳsgQJ8}OO.MŘA9&M(ڒi4}$5!aLn/͉j_Ia̗(?8;6SmdǤ$v8>;Z_N&: E%u'GU GhNʹhT*ƕCe\&,xQ,Z 9"X{`0ѥ%RbtCE\Y,}vCZrB~s_oǓ1Ft8!:ߵ Nk;3S* |yT)OԱY:N k"Rq`rێd;m|Q @3 =>dd} ߑ/`9Yԝ 4[ ?}>` {ys|zPzy0D{[b9-]~>Vr_]OQu]j2t{fW˖\}e7B>LhBg˼a*`)*a$+-HU%HiRf)&y{[̎h[X,4G{nayM<Em]WtSc`:OYDkG'xV!*+~H4P8þWKU"$[t*%F*]<2=aI\S˲}fxwc-/Ԫ66A*wO>!BFkfJs~bxܕPo8'_p sD$C}uEzЅ`5= Bkj閥ULQ7 ncR iT+̡O LKK5Xl΁&T@DbaŅߓLRlQoLju!MԅRST6ԇ =E|pa"&`Zlp7C\֗ N4(Ȣk#VOֵ܂!+ Q}9w̳g@fy[9<,療LߓxIJD7rft YO!c ,H컄rwc>YxL Ha/%77Nރ&> i&>B"&pTo@o ,\c9>9ٕ͒޵I+]C#MD'&0姞|y/4g5$3̍@۾΃:\mndI-T&{dy{Q*Xvs(M੆nkUQ|ŵr~}iC w +. cUztvrv<:'ç}".߉NT}&2~ARiZ k'(-L^zKk#*{e% 7쩏a2ҟOܥX#a%Ht,{2YYJTB%;K0'*wxv~L8+?\rHL,#^'F7IMR #REóm<'Kįc4+O:YSq f jCv,,d`dp g0Sy[(.b@h8L9M&tK 3ƴiP׶B#;]E\ˌs03" TV uoH;#|¡J| 8M:m4D6PK9ooYOy;>n T( QBf2 |blͩ D95g hm +s '+Oq'w>Xu2` ) 뵠fC_ f),(zFW Nto\-:Ait# zpЍܓ e^0|H)941$іYgh 2VdsGR/adSZ{IT~J:=682C$+s%=T162Eyl1@NDb 6ȯqW{R|>"]\L=)[j5~A6aB{B= sSaŸ_#W ޞG0smF.zbly{sfp'UuQV[peiVr6-~BQ*z<*(ȃ="^Mj&lW 9\|#= ˬ/EsKn.KyoF(~(X0Țҗ}+䪙(rLLC1DV-$>9-8҈9w[9HsB+k5bNQH`5o{ghLsO&A>%&ećv4W)&` (u/+YSSf:m̙qIS0=6F'h q_WAT3u}özm  [F u)Is]qƐ u,5e3v+W6KC{KWyt֠윸! Oô@ $m + <.h= e]l!PK5lUa mRǀYԢObukxKIR{Z@o NW=FW({| 4>>9Cj(yd$ij?À,<\*V)Rޅ5d Y9#MM$h$sE\mamG "FʪfN,uQtޣD@< ڐ#36R4 'fX6KPXj?Mn3ha7LnV~E浨YA7JhvxnR(2Nu(t"W ܼ1 $ւJ#S髧ωʎ7S҈դBiHv d"H4N!Gt,٨#R>x Yeydu NI$)#g?slIceI< FܟRGXS/ BG|q]( 9Pk?BB\X*kWv9Sd{D̸#?I*$6&)'jays_"*%] Y[6;GU7p# mW^ F.wOb $41z-O#"i/)w#ۀ`e> `bv:omI2Q%^b6fbT [g޻ Vٕy6>NzlN@<%o:Pq<%y*S&׷A+Xz掤`ͽ@٠]T>(Gvѯ!_ɺ.u@ak>Pd0Q#7Bn!˾Bظ[{=])TzTf!$G:Q29KtT㤽mSҸ= |v)Qզ!> Kp iVn $ \neMZ4 wqKrl*d 8ưsUF:U ]biW*~i~/XzetMlkS<ݤ>館WVJ,|  qu ys*&X WӋʄC6\{sQ3 4luۼ>~=`VF;jjC}T%HSh @͋:Y _8r3e_5iK.NB/w.z`W+C @yCͷgP ATSy϶'/V^ sA GOt{ pc{!T J8qSʶ:hX6WG)Xzgj QLYٶ]jq;P ĥ빓Ʀb GLxg~%'{nΈ#otY>~̈D ; eh".Q7  2m5TNOu[؈}) {(?Y3ZBKOKUnhN>H:m50ߧ<v(tE%,PEZi6D_*7k)^'$SXGHL02^ NK:ry05z g/)r+E/3oeczLpBzӌŐ,'b$%x EEp<^Z 3ūȿ1_J;#u*?3 5j`ɱH(,S==n2~rSȿ>GfM=S8&cćeWxZP?*պRIbLyOC( My|WM⮕hܰ\B RK1<f&D -(푰>&}@aA@^(uy/ 15El¥ ©CCkxd ! g,D+{u`}yr)4 zK1>&5s?#83(oh@.I4IX A4} \ԕ!\/M#k#7Gc"谦bs3KrT'U۸D2$9 ~,v" ET֖$S/TF 8EWK pG9z3nhl{1dbX5OoNK8" Yj)sE5*6(_Sgu’Ɔh؀V#<cNN>pd2t0\`f`0MoGmb4 |RܲDh2e2ydM:97>~4sI^O[5if/}74)zՈ6miu 2b{?Pzrmg㕶ؙ^2^m\GXu|mvXj-N $9ܧQ⌭rXi3`E 5/UA:?PF,r_1~̰yK0L4pU~r`"0ЦXsSD&W e=n݀>s$~a(Oݢ: H|x3dIQs  |'Sos‚i(~]rl8C]g?$/PJp엧389b,qQz5p;yُ,VY5OglOZe v0{TtἍ;yԚ&sc)Tg%VE[YA)p.U.{lq%DIM 1>ASfoP@G햼'Vzw x ޓtyf@z umkN}Iz]J%˙tk۹!. l[˟Y.q 07#hU"Ֆ&ju:~x5>k@y7Hf3]h)H9X<'m|x_20[e&f31dDVsQA4SK*AxԞqϹ:)[/Quc6 *[[R%z/H< ́Is5<8ڏ<_WxA(!eI/1 qa&A$L7 g/mPĶ>xc``i_m#`>U!4gfquVҚ/%*tPHDQ0T*Ayh~i()Pf 'ό`HS->ܭ->}>>5m(~>/q6(Tq#i_z*ngNw>!il7%FY C*Z"p7ɈVyH9U`+m6%?yr\p84 T? ȝ^>}ƁXsѾM(Q RGeIx$6}L5 DH%|QMTiCN6>guFɠG+Њ*1k_[XsI2GV  #Qsȩ0R:]~*7p`VtH8,te}'SNK H,0dd{]y6L oHWS|^JNX_&  |"@劸Wb pu>jfF1ݥA7[c+ CB(mt54V^e9’V6X4߅nE^󮸪@Bz-"919JoO- ѵL{NuB A鷎qo,n)Y֎ES6xWc<6@Hlr2u9Bi USWJSq{LP^,J_X'COo>*,k3Sk91A!, pkg oTǰgBA< ѯǺ?%׼ ^ YGscU@1LՖ~I%{g:7d\y}P^_ yLdnڞCijNMcs,m~d 358(DŽL2r1Ub0ʪ5c؊[?i6ۢropM,B@8{ߴJAou {@|P= bnna{+ $Rz`OVL0oj9Kԧ*ڹ/ɖL3"[~7"5}Y}i@q|/N_QDIQ4T '=jD8yNFiH$Õ / 8 72'*8Kgn@6(xfe2^oUQ 2m0M+\q*A);P~|pHM'rMh%ދd?:K: !L a^s|e1%48v1 uѿ&N`ꑚucM/F#b^*&`*<;e)=&%fB|繏h*P6"0( j™ 5s^E?ȑKՅ)i6<|j^4"y`aZ)g:|՗%އKl"M)wrr{пeR hVPd@ ؎0"?%7өHڋo )E\G2AJt,>e%آ!jOɓJh`$pp_NLFO_b9Var|S \;y$;b}z@ˋ7%eꈋF,-ZXq 0pQ*wfu%GE[(uAh͡SõG/ȑ (pBJs1 P$n,%[oyIs蒜舽 ~t6:#Yb)rqޠ~{9qokKA;Bʗ`-ƍ)i5jW%7߃N#"_|NH4z'ke yol oZ]`'l>!;x*!*$|hb5iFvۗ(VLVKR\*Pӎ3H|g2ʘRG'Y(:`ؙŖ![?<85WSf*V,A{Ƕ􅫀L}[h&+i6k1 "NR+ו.(+-ɀ0E[>h[cOb:-/Ckfv^˱ncfarE?+&ǵ\X E`!C ϲdOJG&+Q(5]h>i/%<-ccq1(ƍCp:Sup^Zqo潬ɾ}@DWe_Ah\مXgݔioR?saXO8KUd){F3}Y1X"O1KBeBjFеnĮBi TU!S0e VkUl*^3tn pDRxiV0.ϹrN4ڝFh)S{,6#l$?.҆f= x)PmU%.B˧%Rz`6cTdVpH‹/%钣RwC=jG2G1g*17 bk*\(hddZ Ӈb AtNRoΎתN.fPlHVAr2?Ցx N͇3|V:{})_iIs4݂R"o }-<^Җ շǟg7A; M ήHט_|U.Ҋk&u /(5>ڼE7C ve3b ?h'3dr 54=Mܲ֠sAoLDy!eP27  dDBaS#dq7BǾOg}J%nTKlM1oғct\RC Q?N}A=N;Q-NF st@k#CM3wb%O~RI!]*d0( 6XB`jM}y~oy&D sTھ9W QM'=_Y{#Lp Z#/>ttVnY8IR̎>:!p0oE_*S>\m"4~c0C̩([ǡ-ⵝЇJpmM;MYDi 7mG+_LH"=VjAc5_1W9#Vz,Y,M^4G_azbCA1fFBh֥'C5T<`X=WŤ+ƹ$Df ݄cJUcv` &>QW<%P-C({ M52>MRD^A 1-~{꫔F^hђ"j &ϔ۴k'"<>wyONClz iDCdoksANj$MPHѮޛo`wK؁D)Z4Zw>ؓܳZ ] VKM|>t34aZl;Sg h) ϳwgsZCoj`oL~{;d-ŇLW;?F3}1J: 2C/`( m= \ Y']F\ ^O[G<nlA*D\gH^:a[#`,U j2JNuR͠'Lb &3->/8^<ONy+htt10Tl 8J UCl;հ,hkGLET.x!q$⊣ik7t*̓)4kJ֗RLmwX|b< HR"X%J X/uӼ]%1bBU.g2mfߍw2 h׮ <6=wp]v r)ulVLqFrriG`gّ.) ʳ7ذDO c&$E0cڲR-!G޳O9/\^_9[K*0`aC[ƭxL۪$do^$flxi[MhTI!q Ή[[T-dPh!׶۶YJ Efp]wP,@-?[4!"W(HuqhwGŖ*2=`1!4O :dnN˶1a8@w[y7㸙3ܑD&I~Fxg%nXe*wb*rhwǨMpv<l3:IЈ2+(@OmtYy%Z#KƯ`TzjDwK褳'Q:as[XӌdK8?Q#ȣ3wŔ!/b.r4rIT&ђ@3Gx79%W ? R7 ч@s-L%j̼̚J RLUknfUygEگ,JmSt>i7X4^lzRǸD=P9$:Izz +,0_h҈Vf6h^z Zhcr ]O3[Ѐ*L{W9T|}uKKڬrـz88Dql~`ySU-eO~ Zx%wAKjYm )FW~(]<- '樛JݕFݙI fOkJhebp`mƭ9 <,Glwe*O'IK|-f5OOѷpŪG_#> BFCD '9װH}~p#Vn'cΘUaJW4yB=y۴'<;jDͮU EV~Gzae~7y qf)ę|VBa ~s1T,Yb5f.O]lPF1vifIaeszţfkLAwK?gn8z0ֹ bv1e af7*EAW`CKf^Vywղp?S jMP؄I{X endstream endobj 14453 0 obj << /Length1 2189 /Length2 24184 /Length3 0 /Length 25542 /Filter /FlateDecode >> stream xڴeT][5!ww׍Cpww ! ȩꜪ>1k2P։ #dgchL4s6YȄA@C' ;[C' 7 oȅ@AN;@dndP @[3 [ {;O :?d  \,&)zYz@ig 0ZL*@ 2@\I^UA+DTD@5Zʟ*@wf9w>eEUU4Dp-nS{O5@idJoDo2#dx }N+ c#Oݿ6|Oz; ԴW86憎((l -lNNΎl@A?=dͿ ٽLwe:Z8:9"`ja ϞYeUVy-tlܜSOPD`b0TD杵#ŸX MTm-"nBft09ß叙}^vSCkG)p9'&-y=zIwS;|Z 5sExgѫ9Jً=\oLmns eduΣzb`Sϒ)"O8v..hm"F"uE?/Q or8.[5Kq>~a2Ao4 K<80ࣇYt V0+6%b J+j*h67}Xw$dD|#:f † ,=]La8c',uׅ1+%/"# ~'č7ZĒΜMO4I '^^|ՋNcd6w!+3E\ fz$}vTA#(=[I\s#O^0\ )|ZxNХ'Cy@1jם3yK@&JPW<N֓\;8uQ"bCn 7> ȵ,(Qe̶ojoAAi0˷o:Nal3XzhG]RlC!@Vn:&܃ *no> .ὡhh N1뙔DvZEqjQ/G#tƚ"%Aw.GFBwiǙy{Djb`uؽLS$cimBa m 9"A L츋{"ObfZ[k?F8TSq!16V?IԘh-URe, A֖e2å0YmTIi^)64%4F.pH\cBvn'|ݻˍ_ 퓆6CJQ{s]4oMrκ2vItp t W4g;E|=Tsm!K|671RiFO" eʜPZ١ۮעO6:a$n)Ju;+t52| Q r33j}NRAK5(Ə6_DOJ=tSW`phkBq9)*O5GHIm^7Z2Gz):q;4lϜo?/>SgK_[d}%$ HBbo~1|iHM̊ߒ9uIK~vG\bt6T?(F>46, HbQ3񰻟A:kˏR\obWU }! ,TI%:[便=/ӆz̨#3VLZbyCRDC+D15#w /}(ި[& _#+՜BK?%Y?ΑLiSQRk4\YShVz(ʟo*VJ'~ݫzcl%Mno\ٟց 58qrL;m7џB¯1oTq[s^Pe~8ۊ|O҉8|^j2?&JȚΩc"ȭ("e)޶uI(`:8<Öh!>nSWO؂3 դ&6P:6uA詧z_'n4?&O+pSiڲ5(g|MX5H0e|Xz@k)!y/x#paw9ۦkS^[SǐOplL{:8Es!ZTq q0G{x{&Rl %)ESd,< )}q)^KP[S=}cct|q8z 9p[/ڂ`zI(=KS_Q6VS n {`NBZ쉊&c:}~xDHV}HK ⷎ)c*5<΢#Uѧ]q꣌o4PqۺhpٸM'M徦7dٽ]yn _䨾cm]%]Q|gP. Ǔך)sAqr%/h߲Aݛ.)J^=lNYAَORfKD̵ى݀QВv/[37ц?įKRj;xmXHZrḡqRaod 4:6E0IWD !>4%s":]nM |n%6L֖KH9^2+.7S%憟EfpQW$}wIf 8J;P |wO#Gg.*"x{ ~|^j+c''^h\fw"|kp0og œ6)KiGL܊ x@U9{ '3ԮӭFX„ˁ>泍ړRŭ{$b..%vzԛykfbCq N OCY=OYk;㼐 V+`ʸ ́~uPdԥ E8j%_l#z[Gjuuvb;悘XLiZeQ|ZM߾9rsz6v^Ukg Z!aF7 d7>`Q ?땐/,v u/T'L' *,B~+t$~=KmYh~<_*&6ƀ88T4k;lO2.}S   /[bFLJ( Yrf/hx:KܴxCg{7QYG UY=^yi|-a`LB$E/JR%;*#VrTzy&*GKD7~%X@ȌY4 Y,-ɣ ?1x4 jOF|UVgc]>WkxB- XQռ"CO~de6F2\ #N}F[:51ѥ\yL0u:?c9Vj]:ɀ"(,K9C KYzqi\|S0pLÿR>>`"\NmVD4x(h(S⹺ˇ16 FhΆBr<;y_ǂZZmM5֏(ap:ɂ{l[TpTP 3W6W-UNPos*@.b9t3]ΩP} @# @H~Z#j.\(+֟w+͜rmpG+.>! R(m'"~dlyh[@e5X)@nOR(PG۸u<` b_:IÆtw@Ѽ2|9j?ѳrTtfSGbN~Xz*(=Y(Ew^k NɍGYQjf_Pnr/E/J`Ke/QGD/f7Ι*c*OrCC/J=֭̚HwΗ6ށA:XO3NLJQ(+߹_*zڧDaZ8`!+&5u@Gec6LL%=NcMufkvKI\?V-OwN/nUE{r[K} 1%`wL7ALp'ud4Q'k:C$>1%M;MD[)<5"W;8IkխN<ɜ$$!,Z86t:u_5nSݥ BanKkt6"o5tR8;dfݱ+o U2Q`^> upy _L:<~J^FQrqF5N`NUw\5 1;})>ղ59Zf`ބ "_BhaUBRYX&CKd4[lWvZgu ( U(Fl5h圦Vc/\(.D"G5^OǪ>WR.,`=f*_];O!7d܍1\N}Y {/CEi+G : nx\ 5{yU}_5FCf)w)/tDqkx`fHA=E L2zAKC%ɇC.үyŒM~V2;8.^~u\0z Y=H9#*c{U(4~_;)vg<.kHr0;XRF 7iǘB9f<Ҁy$ - @*yِ^ ˭qꧨ雄.p@:z񲊖紧:"+](S}af)w`#|\)̌[e"4KJD~Gr BA2} (%&Voj:Tڵ+ ?8)5 ة"/~9rabH(dIblqCu\_#m)wnxk^k=Ltv~C66 З?Ozh5|+O~e6Fy¿/^h2)}4Mmbtwmt4LNݖYhQN-MHbr|ۗ%wɅb8sjW"$s)2⌻*H*L  Jmeel;mfn@]`'RZWw_/&m#Ì#./9$`NΛRSAI˸?9˾vvD+* =P[ŋWñR'woEa7yK)BbG. ``k#$oa3*vv7ȁ(xt{gnlEx'B%›|3¾qWLp-${jKM9e5CrMilQqeNdAzl{4{}˰gF h|$Z?wʽ%a:yRJ/V VM*}K%-puɡ_SoDI%'p -Ƃ  NL\K_peX: 8{J}mٷ6pPV}@ڹJw_r,%!Zd;hd^X'l ZOsS<_u<T P[ot1lk@MX|x'W\~ȏ_(;k 56K--r\fXzǺNoƇS÷YfO|? $TK)I7-!EcY$L(O`#3jwxk0D{ -n&򘺭>_Y{G3Yx=hOO9LPnD<Ϳ#"٘3(zbbFVFqdxIN_3Tj^-ի~1Wq9plH|7 1YI]Oӣm20B)g \9K/@Ql[fUk]nIgPy-$aWE:"F]wUII5-ȑ)X=62tL >I@m{xv6r6}U]X(92MSYCDڡ4SDhE`XgٖJLa[8 _1F4;rUOFvK. K‘Ldc,FD>mYmNTe6FZX#6uNV?]aɒ$=YG&TE41SJh_M!;#x ZFRG fK080QRAz'#82@wM8S@yjb;~!-1u?E /UcJGj-C5B_V/6\H󤍜#5S\@ {M2V{"<k6ZߘׁBm=chtWz\}`޴Ae?`])= ʆYz  Bzdv`30 Tؘ)ǟMv/h;\[E,!o~lhf"XDr k)o^Q[fB?%ZoS TT=K'6W4{Kͤ D=ht$N0S)_K=\!qh !/:sxsՇqMJLc҈O ~kc_T3EBWELa4~PLMW\e`pEBLh/Rj$aNÉ 'N%}-( ^jVw ruͶ.$FWUS#ۧ[c"˼%gwZ6+0{se#iTE9.ubhIqzE@_o6 %3 R74Z#<"hjAF,x׻J35}ۉO]PFoCϷvbq,oa7jO(k">d}ؑˮ ‘~KˍF*&,ZIQ'$.eTp^ЙRj~M&\XE>4g&qI\ѽfURDo%IS;%uhxݲ5}<HvTǶa`C)OG<5~u~A`6 f{K]9,LR߯||wh˦;P $/6"8|d6$[lhhŘ^2/@RlJ n0n)/WEdK?OgݭsҹOb7pɔ["}#Wo]dz(k>:ժ$LM)Nٚ_ԑQ25c2LtoʗwDW-؁* [SۣJ(D/%!V/k'}j[n74UMz̙uB`fOmPܫ.cE{®QC<5 nc*r(!sdfؑ?) \H7|_l*/{-8ܡ(&K0eMr\=ȯųrB 3o+$}8fACաbދl7$=(eHK0tnb uiϘe uAnO_ߩB}'k%Kb+:hPgp]di<4P1AJ[,$<U_cuoqPiw&k4/}aW^2BO~͹~wh]1!RɊ"U< MQDI1aF#3"Mɑyb;Ezan;{6}v9sE> c=/ M"&ݿd?3*izӞnƍM!'{b-niCŒ nաξK@˭yKwK  R);ʧl>'C=uHޤõ!Ӎ"vvޣJ"X2w:-B~@r| n:7RPe@GUFwS)KF5ܜ7*Rdwh2%2Pp-[kfm?ˣ&ړw^)l`2Ρ}{Rjsғ.fGvZCL=05koGU hA:k8\>oԅ^B_{ݻl~M"R`6[[Wu4VvZ-'yanmM1vj,QWnnsL#4ɒQ|Bmf˜cc˂gyoxB^NF+>grTi %W#}Np څd&6j*@/~j)V|b' %5@U~ ®0 Bo+1Z0Ջ-Ш?A8'93 y Dk:KOAOWN6NKh! 6k2Ã؄ }1U[1=7&ϸV%z,EDm :(.]ڹooVU(WL"d#c (`BS~:gkVKj_M>s$A,Q!ݧAkU~dndgH}((T+׆뮪eo聑 *J2@ T)w9^CMފL;m$R{K;Y:FMe_JUsR2n )cӝɕzEknfb5s?h± prc63Fzu{z|ZY2M0{l1FbȷrdޛEKa׌F`fq(ڍ1B%0nbUX&+HfVhxJdQ7rݮBwLb$:GXI'jv_YK2d\9df lͤQhe,&cdPТ#[wkpuٮ S  Ɩ ߩWgb:JvFc;˛]i!mɮB#E AQ~Gq.rO4q7R(ĺpStLJSH/M]zo#x|{R88 EwFxD9l5G{Syئ~eOSiˇ8_7 &l*&j]-FξG?_bRVE ξ9ҩt }P:+%Z[<(k4%8ze jKDk?B+|B*X(~fc y3 YXjp2k|8&t Jê(!e~|`NjtbX@ց1?F 7UA@`KC|!$u_zTKZG%m9~_j6ĜgʀP(.:puu_u|vkD"FЭ>R|,L,L8p]T5 V]B$!+NUqHs(>[#r-K[qxƔnǒXszC pX%T8u Y sXCgǷZOm",oGjHH ;ِ[XHkk/x1 }[ ̨7_[B\=YK#Z$vW#蛢vdEpIʙscQR8~{\c`-DhV|+Z?(&)JsM˳;@#&O'Y >R! VE@ŌVhc d8=ryC9^!ǃT ex qy6 ňq XL.3ףV9_tjȴ"S߾3;2xPS%-֣d}GwjNf{X۲{MwWte|m ejOq&Fhav `2;pQC>q/?. ?LKt MXGDZ,p28A={^(m p2;KWG pO-wͼ*=^m8Z9.6tK$XWy[9+rKdaF4v8O Xs q:c͠:qި;jXw*$l681b0[WrUB:ݏOj˰$*7׸2~O(6ꛌ(2i*P+Fy\Wz<[У(ݜ853uߚezi$[mɠg‘<*©0/}TƼ1aF(f&/%C;9ceuoP>daA0bW?J693V\¨9 UøB !$ G`iqb5Q7g 6QpA[g"lW W82QuWar:U5̐x6,h_ħpΦ49=5(|ZRYU3z#l =]sJ4xZ^ {=~vF#wJśAV}fzT<~bM(Ap$mc I ]dߺmsw..0Hp)48ze:0דjªt)tlx,EGy%Қa a hA:諠l39DmkwMb\;ycފ(3u:,j`uQG(Idg`\pR S5 Ϭ%B1WZf;*xX)"gͱikn4p:mE79I|S㊫=;1kLͫP_r]kN+ l)ʥ焦lrL}vI'ܑ͐TwoxD5S=rO.\hoPA <"ݦaD6*A?8 ,gtŖhRwGIqw0(ChFA x|HN(OSf>)^z=WS]m|aa!=5W}̗u @oQ{VhփqFe{N k6+bZ)Lo9{5g{FQJ+ k шOQD!i[s.>[/k1Ũ?1GP@L5=o TbՑfvi@q|/oqÈu dY"@9s dFqj)k ?E̳.S\uA]9ZMD<&>u趹icĎ} Ճ?fqVOyk +6iE >AK")C ^3Hq!>*Kheu˂YK`~~X5]V`MPL;UY8xp'"&x&)N&I"#ԷyL]P2ITZAeF[m ̮D$H;}{; ~+R_%! >S{DiqUKXAD^r|2\EBE;WM} /9R7Zb66uFwYɺmylC )ԛUW? vQWWǡk]v^cfnnH:dFNF;{5;g9H1 G}>l<-IvQz0H,0T%8$L.F. PmȽU+8 [|/,dk'ݩdF/9.ŢǬz+_OJ!p)aV~b,*ucˈk?ďZJNǗ!q#NnP|Llq%3@wb]8!z/;;Nv5-'RHps\[p-d>e{OŮX^gL:Y+)4>'ϕvY+àM ޟ>䡼Zi4tJ2o 8Qz%[F= E< Ar7 vIOƟKQr\͋2*VHVͰ;xikEn_c ~t_ W ?YdS^Zrэe'{9E,wtm%d:ZxS0*~x\^(?@X^t wAEvոfOBK8="vV 2'>4)ΖMP؄tiBKj꫎܌"X`rs83f,<] ->ΈW,A4[!̛Ͱ+2q4a*̷Ԏ'W:cLVegk< 2{.ܷ$UI5V fbiAنNP^E Xrq}EDC^۪9MEs>c<ȳ}+#>lВS֭gekj5!<x R?1VwAh=¼jL;nHrc1qLͦ%ֆ"#xL}SQr*AGw4s-"0{kސxځN{wZ8Wԟhc\z#g3V?/!ZxV8'Bi0{go)S] tk/$'<~T6@l_%-CVˊb/M JԬh`o_nۊ524s=(#$͘H>a"c-p%PngG/$ٍRis~2zKFɄ_vx`BA~RFB|2TYZ cԅɇl;־1c(dj3"9{YYߺH =.vSoQήۢh.9Q-hp 8 1W#_vТXf5BfLjUdSqQù+]Gެ9JWG|u]5S%iZMP8sԚePTQ%0܆Co$Nc&Sso53{|U ԰+2Ql̮v2.# \:ѧ᲎mwf #05,+w…9X,+i}#:Vg4&  u|mDTdk8TuEx# t_z{L J&? tfޥ2h1.͌H-vmݵYWoE)@b,H9x >lLy (ztV?d ݢ'1Z17N[zX4lXo_P//8K6/qJb~~$nI2"Oy5AuRE߰i,wPM1"QnfEX*.J'$rn8c4.UN\xű0z0ۑQAΕgp}^t߾/nJr!XۅL<^cP۾W. MҎU,/̂zTUkDR+@b{nrmQX >UXDz뵇~<> B9mƫяpxJFZh˥KPAS-uVYT\ߟT'(FC?p\ғ{>Y;rQu.{[e1#jy" @WHpgoQ,,V0+uu SR8rZ_!+NYEGMKq 5 2]uuYQ7Nw[7mpunG'Nl"  B-{9 Uј؟1ld}1o(;z0+O]CĨ1?$SNoLt ^fOjcʕݺ!Iqi?OkLq6?C3V "M5ptT-%2ecn\uzUAQ'5S|`LeXTP{5mE8(;bIdgηJxy~8Hڲzx}gGϗԻKs9}SamKoOgZV-4mj+_`Da*-._VO<G†amfA/hVeŪ=p !ڳY٠.b^-hoҚIq[xM-lc̙rnQi<}3.JL#"vJ[7o-͠2 D?t7z|G $i1Љ^XY{fVpľK)c-R٦ź)HA?4p ,^Z2;N*()."|.f =)w >1rB%\]yVC.40\s֨$a)=xMWgUtRG{g9i[YyGᒓ4go[0%*`Vh hJaܒX5g %r;M۳t72##ne.jɅ2S|r7WuTNI Ov7-T W!!5x>ԫ~ansWU|#ch1\P%LvàDwɞ[z;mKdu䛄V{3BRG;^ꝞVr}ܺW:uT^;fޏ#iG5\dF5q@m+TS2.ⰰtx"͌ysa}|_ApJf UίL{'9uqae4[ 8yB=^:7PxJh&| ](~i)'ihvOmw=_Oε~>#O Hcz6XbS 7kl9]u}c2ihsnZ49V^k0by)"wo>!DkET3֕7foLaFJ%@|+Exn? SPD[:Vad{_}ׁ9ЙoA&O y~ bW+<`>WȖ p&4@MrK"ox.|h"8Z׵.lҼ^?io-&Zȫ-Pt)1Ad&B#S4xSmwTvWZ5)J9%*F8 בKX6YX{1?aW/@;Xk zN%my^kU| znb_dȱXc$$''AIh u cfh_ٟ2p_\1IAU5<6  覢U.?jݍp_R+ANsb"ZHii2+c !CS @+xiu sI5/04 *s_#+: F+q874@#N K Dh_cO c{& z_HG}F?sV&fZh"=3AЭV1{}5OvQeILxM9Ens4|7}x#br |x9 ^[UBޠMHiqFW30IW* )ΧԪw f S肁Z?P[;j{} 6  m}7n.eN?kwNIv|#'G.EZ`HX|SțiB9F s,lݾP(]]]z+ y>U+ YG]pur/˓n60W0">pښó(L+-Q gC]ON葻ps3~(@ qjqMuc^cP]! }rwsTDuRL֬} ŷ#E/1#k ?H &&$@{dP>1h}Z+zD1)7$Q 5j+0 Q5H hDF!G|pwI|?+CsO%–fUA/qfnP7}c3>o[Pr 3vXnf92x큨I;<b.l?{A fs72Q٣\HR+갛%(!Y"a/ L6 as>!<͖=pCF7 T6e:M_!'5J(_Ԁ ȽQ%pN@9/iM)c gJQ#= QսӠH xjR%ظ*C"'!aHuP:{05NҮDr.dg({'>0B4 0z>ZK96Ep8fAâQ ޳DCܔq=DZ'Z3 9 SPD[:VaW4fݸ~bqj{W3 +?UyE Q&D;ks _^HKTBl1. ? EhaWPϋ6\(p˖dl](:7ڌ? BtwE7ݖ:TZJS\TiRiNc*{mʧPvʶp TC _0PH5+Zi1ctSE@?rX!ޅL #xl[\A%) nu1}d~CbL+b^hX11 +{\DEE^Ro-U=k?TzU:kq2Ӏ!,ΪѦ9kQ},浏"h.Tz%7W<`_~+X7E:#kQeŀ(n~Y.Ts֓@sߵaB׊J#ӇL|V3Y!8}!,3ؘamhd{ I[NQ#P&P]*'PV;k: +#AO/'S${V:K:}G kxz>izHj|S]v<&=Pn Q]Gx1yx|@@˧u̘7`sz 񿕺}ñgisɮVgoԏ8nB>S;$ )l rkɶHY& ֋Ig@%LC> 6OsYM~xM$]Wí~2ĈMj} >(2N;zub!<8'I&' FiSrXܻkcT[tnĬt5ޘLDnҪY.]%yr`YW կB0cȅj ,`FI6( O @N&MN! #Z\'4C-G&*@vn\Y]hecaG#UKbdR|8*licVEI8Vge᭔G)m@p(4?ؗnr\Nɾq6 =3$AM,R_KqNƷTNb&* <{緲v&:W7?D17TPj T;{k,`V6j\Ģri|h9iEOg)eقoeG@if%C endstream endobj 14455 0 obj << /Length1 1855 /Length2 21920 /Length3 0 /Length 23110 /Filter /FlateDecode >> stream xڴystvl5n8mv۶8iFc;il;y|5kss߳HQN(ngLD S1eSX:YDv@n9@#à :~MF9= @ihLgdaښY>BD=-̝`O0=@`hk۹}(-v#) )$U?9U5 ZN PSQ oF W'\NLUHUKQLWş_>BMl*4wvf`pss7sqrs4  quZjG;́'+Y cOFV~} rZp_C [g񇣳/hB7@ @O YЅ>Vcc;fhoe:Y89;0Ag,l K~ϖN;y'$* dd0q?H*fk"bgc OD->lmekfL-lMLŞA(%?*̀Ft76gS/Q3Q4`jh0~\༜ ]gG׿ScX;Pc\.ekj[!_J1&v)%(Lw7RZJy;GCY8[M-nz)g ٚY?/ڟc11탖V@''aF `PߴO 0tt4c3&@`sػ8Ll(;A/?%NV?%OJLL?ŏ2ڹ8#DNl)~Hv`:Zؙ+#߿gb08/_6U0s%8;Y5,L>6"ghAwtٿ&ߢܽX?`ba@~!9y@;nyΘ'21W` _S:b9}[4w(=?$orm&Y0zKR䍉/.h:Z`ܒY'1աtNV1LFk|+@mH1yU NYj[S5 NT#zla2A~(4}O:7 9|2uݵc7r UPrصɬW[,wsxmBSjR67bLEI mdRvį<-5:{m=R/w+p*U"d; AK?OQx0ճ}pBYU ףRpTܵHnv۪p` 3RkcHTm6jY+rh`JU7&{X<t4 ڸ} {Eu+0f_Yl$ g5-f jtq{T9k "Ⱥy)&͢tT~=KC^+z+p/aOK"6G2s!,GOƹkqdFe~fO̥iIaZeaH3:Ib{ƕ sqnm,$g2io UUP͙琐k{V32}@ɭs0oi<1)\HcA_-b0ű'L+A`e}=EBX.>?H5m͌6U;iX̖cB 1`IuLZV+cVڢ(&&+3-nvu,)~t M7A=Jn2:x@OBw1fA϶]7!ەE." n*kF^ӖꨧQw!2^UGD.|uҾW}us`ɉC(6μ & fKlW 9%.58au3FmkSGсY1V;t9ccynnq[jE TJ_4pW^JTȗ> D- "DՀ[Y q'VqHi{,JR~0]+ghP\nq+0e(o`޷][ÆtAŬyeűG)Ѫ-a&xp|'g+I$?ZRp 7'1PM RSTt૎3ӗ;n:U*1XN^E9lk,5t-1I% A@Кf#}KM )87 4e~/1vL9-Jئ"yxPro'w%hsqS~o}Qtq%o}W|`OʪOFO2.7ӞY1UYQˍ2hC2 mwkhwP&0@k]S9LRNPAgz=+bQrhy ǙfKedaP1Ĵ;|Ƴ;d8EzzG,0#I3.h ɯMfpD-˜-x0yQ8;Bu#8sg0þ@ka^E q1G8R/D7t]2`.uOS\w0S{ W&J"u|WI[#6vqn gOP1hmd bgN>j*Xv=)yjĊO RձLq"]>yDCU(msAhIIukh}N-r`Hlq~q?%ql}*Pkq [̥SQ@yV?{Rhzdʮy0,k{/^˧5g|HEΐC)Dۏb#V"1:s(/t[e^8\zcQv&qφյTKQvq]7YwAorPƩ]限cRdt[O铷M.(ҶgV )ZM@@Чm|q\6M_[-pjTj]MͱaR䦩b{fF5@p-+ 8FԸD ʊظWVO&_ww5ᑐf#D=i.Ÿ@<732+tOJlp*Mi:g3TLa܊@#YBq9t,*ZeXu)vWL?OBTH<J+-8xYW<>H< G$-bycT uBݮ?+'U^QѾbkP9+;$LglfTk8,j^Wץ;\jMHZ XޕyN#:[{4]pylSQ ;51F u*E}T/{Y5'^ݻNRuΑ.L ]6MEsǨ`x630H0453Q㉿72qʈ`Le4XBN7[Gx6@{JH}ˆ -['wd i'5Dˬ{݂ jriρdE>N9$6~eS?PƱR=4& KTC݁o 5g3[4o[|#awy LE ;<$2l mK.t"H;BG tW]U.xKuYUqw:5q%?XܹU]|^'{Dؽ9v93mo}h-- rwl&X@ͯ>0+K2 R/@Ys%(.SJjI w}FJS/BmCܽqcklKıNfx'Ȃ O8-3#r#6_-E"ͳƎŦOSG8[ޒl()ɟC#z[Li/F)7g; Y{Ȃ`5úK\G\VOXX-͐(z.Wm/^9D5weZTkrroec/el#|VJag=EoX~L$HWi yq-̶9{&Z?aJ{QK9Chs)%8*da$ d\}MZoK-_C)vsm%bNAw'h:.t]wlߎ.1މ-5&VԘo;+nKUխtP _Q|P*/<9:́BY3$-$Wvgo=S&[ȒL] P=fF}:$|f_]g0' !yBjbg`$6i{H[σ#3* BN0 פZw ;@3%=16 ŤsuTRT`c=~n_'4OZYP$]3G-XO3^Y!}NNDL&0=Fzپ%Un|"RvȖ+FVufLvNǩm%`Yk?~ ZIM5\ծ1;·J,j5|?H>xzi\ w>r̼u"-:N\s`֖xv0d(w=kPh{JRoUڢc$4 [ਚxBxFֈ9ų5F_Y&gެWalJ _C 8xv?Cz4a-7`l) Yyi2[$ >SeNilP 2n h4\YH'luK0b#28oަx.h7+(``:{xEq}:՜i#k y%(,'5"T %N!]+=,QoO#)φG0+RܕdL:hkriZ7]y[%3‰;'<"9&E3?-E&b_pS[ouyJRzBv07[g|˃TVQj`N`A+n.l5xA'`/LAQ)hG2,$S|y+ >R$o>:1tUϳrAHwx}QC7V9|ߜsX5%<ϨI'817pɻb2dQW%5չWR酾YrO]U#"_L.B ޫ]jy:3"nMk+hy4 /$ܫS{ѭxQߏd.,Dy2^\ؙ,zv p$@~ A0.m*`wl2 B0=4s|ف:Д:uB"ۑ&P a-mґf5B)1PYZGaΞ 5I0⤠hoyy;>dVe^ t-E;֕uVcCU=֓ q84bǞz4)-K!i6 TXr0yEMmd׼_oLVOr>Vܣ.mKr4pBeV8ᗄ)w@wɸ3<:*]K:9 u{Rد*d;2->~[ç"ƟRaj/9rڴ}}a/2&jl$9>d Xl Jj(5rfthP>w,CMOU.񰃅rJ4. J]黄Xy(g- l.!Aܾ; Yޛj姾 s_d㓊sn9 1m-\#Lhbk8Ow|)=;QGBX-kBO0uNT`E,$ Ҁ}`N,[N_ %2X7j/O(TˍO~ȥ#\эle/ێA><aVɐa{z$Ry r|rNI/fTs'!-1R*0z.XrW{YB_#4#HOsb~=b6][?R& ^$]0d_ bKLG"}pn*s6Bm~Wnɶ&+AbgvyNض<6z>k~CWσ(8;Vf+k5%٠7)C/HDYJ!"5W)hyըW]Z*jž? ->cs;ͩ'""` \fSB 6!BxSx#Ty"v'nG&i%q 鬑z/Wq 5Bȗnt:'LOqC6oBMc-ߩHʩ"h[|„$|a-TY#^e.:MvIڢo&Nڇg^\TKNYn 3޺*Ffh <9Yvm0'byrHI:ѰC٥t*b}}RN 8wkJsiIO4tw'$/wNk!/K9Ǡz`WȚ ]D$ PD쳠~-N!.כʅa*'|Oe7ʩ\a]@QE nYSRF̪iժh%Fu]٪~ 7#;Tr\MJJ@Ũ ey{#p[U8惗zqNi]?puzmӣ:sbˉylIA=.E)0nŠ";_ 7הIaB@^5YSk8p|-ۚX+9d}B. Sқ.Ϊvyc1\JN_.icΙ1XfF5o.j:S8ŵpdx==_ib+tEM{ aX֞!`$Ֆ=6],Qiӻ(u/(,6L~͂ES@#cT@>(> B!8j 1 P=;WI[N.z{{w7+[$rP秦]7fRȴZy;[>,́iR0TTd^ʜ«SŇ+)n|%*kL)ăZ񉥪)0,V௒;:Twȕ<nc(*vi򷡱Ylp#;>I _YwOU9@}&!{,WKsF`_bW#g_BDpo[XacF\׭4l`+&lR)Q[ :in `-~l!d֪dyu'|iJ`VVݪ|4Gxor {As k#Ab 6o?!,*YSg_T$D3w%|\Aք[?FzآU $y,+Ӟ)%B0!ce"dVLGV4-RzivOOQlFlm OI3~['z RG貱(֎iq3jb+/98d:VodQľe(ql4];E ml:DvOe='>EZwn-,Υz 0 v#Gp}ս`n Ue2QX>_Ԑ-JR[DW7U>\_x8уZ5Ѐ@KA:ՂTo5docTwx,7e,eau[Sl j,?HޝKRhBrLۉ t*pzr޸t̅6Ң8٭SAƊ!+dw_‖ʰeN:!萅W^yfJu%ٴ<4?aDoF:F cfR8iUh.,9X/AQ(w*6s;!^CyOLzs0|N X5$^7mn! 4ҧA'!9.yse'{Bz٧`TQXAA̳9 {!)Ή&',ƗwvUo h r[\Gl :bS[#sBǐOaoicDFt(Q.aWw Ǟ׃vأnDARu'y5odCeLw!ȉr̰I(lyV e~ W6>SB J(N!l@U҄!C4Cr6vvzȳq4h [`#^lgߪ۞+ Ht9m󈡫aQ*,;Rq|#٣<ȬO{vB'hJK,0o. F0x8b;K*=TX8lzBpB X ߠrh)VW$ 7G~2F9{􉰅Ȝ{[37^_B׍'ۻB>B-K k:'TSTΘ=.b Dm`픍"IV*wkECn1ЙTTfޢdD)Pi e*D0r{cƍK>I| }+ ;o@'r4љ)CT۾?k w*(]t^? 5yX"t4;(N^AA^@^!\1cnx::'ʗ~K m$Y@Zc+e~$}<x>OQ1vro$yz\ZV눊xS$jJYC_UN%yZFN@i=jE(%mj EKs0 -eFț亴WRXaDsh\U!/;vwk`1Dž<}\/]ۘ2_%4=))WT~g6]m`m' K@!"Lkm. d \}džƱ[d~MaȈXoTb6)-92- Q׿=5Nbgw3PVf#·MjfbTlr@OAT[CTRϳ'4Ny]UR(P}zhN6D tGU0ꂒM!El*m3!/V[K4twv ߇ tK縏[kQ`r)+$s&'^=2޷Er>GH2Έ`jv (93KC9?>#w㧐ID T 8v-jZoa^ҊTDt)NIeg87yr(՜!6lϋg!Ɖ}V+ s} /vE=}.&WMS2CUWo&9iZ!,'sqi|Y3۳C| էwOCOm-<}Yףm9`uovsC A&U3Ekƀ1ADǟPmj( Q##>l~sueǠR ru:2$:HtP:$sk#wJ?~_!M}\cA2e[eVxW #VHpBzRz55͛ptơ7CxXfJ{*~Ԥ?%1$4W>`}݉'ԯF&} yxD0O{sWgy~B,Ε-IS,5Fcewvml%(TY؂Т*v5큶/H`Ԡ̧M^u"}JlN5YQBYz =1^Q4uS^rUK̋s`=n jUޤAL}6=EX`i}Pc)P[1u 3z6v҆q!٠LGz lu:T =H\/"^7}miV*_V> uZTIV12)X+n$vCvfnWXՊ߼xuZk) O k:t_ x`嶜IՐ;ug0{UX2Z /2~«.$(yx2 6Cw\'"'i)Z1;,6soѦE%t>.1OcL SjR_jWf򟏓BK7vc[אAM,F\˼ 91荎2IeGh'LPhSL4U/ɱvBs8ϗYkC?y27Sֈ9_V{_z9wo31^|qwgpH^k/'X~GEyD†|_{P" F~n2j;-g~$+!wJ(ֺsl>gN>UkMJ0C(/g }<Ő 0Z~\[\$SL֡D"ǭ\t9|F FEQPD]X^Z S#]r@W.K%BS҄B.Em/µ:R'#є.~F;Eͷ M:17=H xp㩉%--/"td_݇<%!V"B=#@̼p7"Jv=XMZnr94(._3QɗUK q{re.R"fVg|X<CMs9VeÅJJH{}`$ER2` HQfe-=̈́QU(7v ?pimTut8za4ڨ9T_tFz(ŋO#_^ds&%S:WQvӣ֫+Է4 U TގСa5T}8Hm*svKF~2П!OY#Flbr .$iY'>]y0?o7$Cpgڍez@bZ@lLHVn]51󴶔x 2;A} _qhw_/:\"t$O󹃱+P?"ز3nDQj/)1=5;_ *ޜHj4e>%R٩bLƦV6B4ݶ|>8$ WƯN(Gszx߶Kg{iэE*KeT$ NR{%9D3YލmŗǤ79ɮm\C0An–n5wٓMycY|W~;Q*ߛ1|5 D H$,9/ u݊hN-~ *MQ7=&Oect`'wa~&hJuqi) :M| Sp_u-W' 4A`'8ZG]s񱖧Ĝܹ8F:HǮ:!DWKO=% d'dMc6ܸzy_OW ȡ E]4c8oUq4ADT$a'9@6CўO.`s&Srˣ8X%ҵkH\%v(T^@ɫxBwlB'Gn0D7m@^KNTV/59FuБ\v YUj $WТsn %d_}i7IQ9B$QO[+˗* ^1Wi)0\5A ߀7v1$Чm &u[0BOwoÇ柬vhw #b%[Ei.&C>b;d?Z7p2itNRήoNKq+6c=B(D ss"-gOK (w0'8['Ь4AO|w(HJ|R8:>E[˝hZạ{ϗGwn sӕA2 KB7:ԜLbB<*S hq՝Ǽ̱ gXgBެ #6XwiDƒd.Eb=D&n^w^i)b2[Ո j^7M QbwJOew9 IZ(Fho)R(;6`$lL4w!⪽r4LpaNsJbm:4<w9:]sqB{ nD!(Vv{ "59]hl*0m}#R #i :"'u"&^]p0yïKzI$kX|=kL}С%Ms,ftheEےbX[1Zc*_;di؃v_/ i*2yc9EXq?V^^f6(_y&&_w/Q}sTd|gD?d`Ƣ*^cfdHjÃx^6t f.+Ў+jSG{(-~o$}WO1Ok?J u =f 78jHu۠yߝSBϋJsI.y<,;AD؊fִk`G)$$<H1$ٞ-<&Ch^jṟ)N˶&=E$R6+v}}5҃OsXZCsHգ '\ɷD+l_B"@LKe DÕYIs%~YPKp'#l,^Za@i4>mPD-2tI$PR=s*>lK&:S62OGĘOaa*1A6 CL!\e {LbS N ;AiH| CL1vdhn-y'<$|0t:N ;$yNlpd|4LsFkkO^?܍#%TvZ.rdH*% )Hd 藸SS/OYY<6k} ߅D/ 4K XycP' PCGEZ 3F}S&qp*qC"wb"r|>/䢤5$A>.'N?̣㵋?cPhlVrYuwP F|GJˍ1[ܯu~xrvKѺq~{@5zSAD+b;)eG9wGfbM N M]TI0N9 foj;̸15:> ,l*uPHYʡiuٴO3l{hV1j %!_R#O ՉV6a\p|5+Xg[Qj_!|ˠEf('MKGF1b)^\[ .eu"'d3j*?Wb㛸Uhr[7{He#FI*6U10.䀵JZlUڅbV5ab΀G#̡5;,.# =*doR)V0>r]XY,AWFY?{ΦaRM|_U_{0G+Q|nILƴ1MR~zYf'#YS_ѥP#}9/*/;VhԸhV8CPtk <Dt ++Vh5.5㮡NgNˤPWT v4=`iOZc> stream xڵeTݖ5Cp`;www)*ܝ,w ,t}Qd/{g: (21 n&53JhjI<esVV>D*4t~wZ̼@WS /G  ŕ Yـt)`G/g+k׿58V- 35{LA9fEfhf@kS{KhKՔ5U 9:4#@BTICbHkk[14MWUdcba~G/h節`h]]YX<<<\\V̎Ӱqx@{?ĸ,tC(ؘA.IR9ީ|Oz?`Dip ?Xp0A @WSW7?7Ђ_q7g='t1 }L=LAn.ms0_K{_.MQTIVJR]I]x &E;; fWOPr8"YQ O'WҵvK_-Y4A6Nn@Y~7! `@OskQ_3_; ~>`G b:|x6B˂,ߑ?$@ϠҽOdZ"(]AϜ[/)7{{%S Sq6^#"*Lg"e Pq5˺k_de|?L]w߫ owEہ..\w ;X$4d -l@Vv.n"ع>lz# 3ptsX&' 5"*eY:6w Q4uug}ۻ GR{0qqxlܜ<66v.k+I3 =+K`s϶aE3T|'UB:r0+Y3@A_ 2A8R-TEvL Q%E5+ uK9IG|=Soi l-g ]cLEWM pz1sgq^t#D̻GVM%4`q yտruncQ*&hdb8$ƼC^ĴтkJ=l tOc%M$p[gy]pD;!Te+&i$e9,`xb&}ô28nJUg0jv)e/?[.nʳJXGH~âx iq;SrT5t`nmNNDˎA;MSԬuGY Rm*Xb%C,zuTiobSo0zx\n ZE5{wV[0[TsGʵȐ+d2 ZCW38}ƄLZO[bp10v$,4mAi̕[Tl]$?'t,z|jG)d],l{:,y83#[|:frrٚƘv)ֿrl%SR.j2PTff{ZT 㟢gӤJ1!sPÏ4|n||Ë!5KVRJP"m߃1i6 _N*$&gOp|k떡}v<&և0p 4tð*p)!R |qY巽iXj<'ڨ ,M"/`  ss2F![{k1e5g;ǩ^?HyOvlH]p8;UGYDljwþngcW)BsXWF~̇}չ0}Pۋ&);Rp}(g$I,N±ck4~z5\_;>vB*5g&ߺ{$_=劄&ż&N}޼f;̅jw8݌#fVkHٚi$cpZUD~zCdGz16KrȺ22/*BN0 檝gn:SIp;q1hNs>_ё{{\][@1ȷ>|&o')t9o!>|iuOX|Y3'`ZޕrGwpV-,b0};bK2حX<[)aR rO`2w?/.ĕ#qe`dVrM>Vcv'"B|4>c7}rgֆZCЩG$5׃H^ǧFRt? <],f\bظEL?*f³4; 3llCwh>bn̷‘؆J=wyvP‘T{ @Q4F!j9Fs?VG5…I?ltQ )ǵǗDzQ'Иq-\|H69QNq/M kd A9҃oΗJq 8`tq51;pkDu6q#:2փ6TYǧ6k2O/"8sno MGi5d7}mM̍R5M3yPGjpIMMpuPAu4ePMow5# [ GߧT]s1_X}E +w `_Sa t)my陯E0AАN1A0}7HnN[ÔEJԵXL9\@FZ^ %@q Q‰hPJw0S p"0Ȣqڞ<>,񈲙N.Y5L0~83.f*a/2>+h4uNTFfގP8y-ڡIt)VyL/l*w1^I$>".Edؼ#/fƇ ƩJucHOn-j@Ct{ME݋q2 oPWcнy(:8mys6Lifr{P"Ugi lK iD~ -}!yPun +v$Dr MRJf@UepPiv""}2TΪ}iĽ';~o1r9^zoפaz9'f)`.!`BF9P/az#NC` h`@l8-B^l^ ݶTա6MLz>L=eVZm!ܿMRIԶވ:{76vֶ(njJ EX-<&7<QP-='Qau2N2WYZ%ƕI̛ 1W]WW'4&N HW"X9<V8># d['~myLj#AYFCU.TJm]fٲ>-sM"opyWT4#Ş0u0 .MnѯćzBd ]z qupG^t>GW|Q&FL?ˏf 4" u5wPZOoˋo 5"f?_fU(kQF;Y$+mM]́h0Q /ܢ3UˑeϮ_. =)y0p(6o=*%V͟~O`-$ ńR[t#j&nXQڹѿވolmR>2JA=XJÁα{:{xnN)GfG weW칲_Y.1*ѱ1W/<^M,} Ws̋J[T]:9&S4](7Xc#qJ EY7;n<ΐ@c罏͸V`yHSzWoo\\菚F wxnUi/=u#2 #oO[jֹ L3_D-/| <% 7\R.ĴO6#i™ѥ;i"Nc[ACuk^SaWl%Ҋ%=^2hҁ_Z'6 ^S0 g,??P -j NF8V|\8u![W"̼eCǂ |p6r0qJ\hu'%"㸆6~쀛 &K[W9S+q`e+6N*;Ȉtgّ-N|46RBwQ/zK 7NlnQ{8!t]_?֨ZoeHǾ)6AM-7m= ᑊ[칰LaaLT'J,jF{,[SС(1$և5%z~6U|+Ua'9ACEǪQRc_Qa^O 6YS%ziR[2%4naRTBE Enj[!yǎB]+=͉H~P+$! 1&͈ڣ^})"՝41'W Nf?i%QYTx;E}*k5FUJa_~/7,W;)?f`n#iD4Yz.[l KNr;SWH :Rfa8o+2W._XQ06S??bT90=F@<{wjpc6qB'SgPfnq}6q`X +;K7r1`*~W&r:6jx'KF*!(161(|#ZBQp#W3CQu!MZk>59,<ʴw+.GX =&yDdo2>(@"pҮM.FM༚Q0Aq8n;_g.5jQ&MvY\ofe ^l.۳(Zگ\6 ?}*3?ʍITx :Vt\^q8 Tlډŷ (k_Lx:W(CC&/ζ{g,}K\׹ ӗ!;*O IF"06|FgwE3lj]MM,yBBKBF[2ˋt|*-va] ¯BS6G>T`shyn :nִd֔[c) !\ y/J9th*IB8~jE@ӿL@ry r0<LV@੉ufX}%Ce8&f=Xg?R٣m]B @n0:on f&0[9.4P'Ϝ~m9Z(pg1IV]+D۵.fEЗw#r6ܚ^Ŀ*nb(=; Q ڵ%>1^)er;4KDP s-7#4aA)IWi EpwMfv?/KzFÊZ[nl}Ud/</PXt魃4PꭡzeA^2'a!19 Yk9_2Mvp&P\18!gL'~,5gfb&pM)`xR;XBmXOG/N4yAW^~7XOHTwa}xf!zנхdkq+Zf?Fi[e`m$,Yof+Gwsk$IՌNhz}2}nFEIPJS>&q?T3>%(׻ qj~.K'a)%?Tf=o:B-?jj@l\'I[P?>YP),Z,0f uIŇ쉗D9@\9+^'V/R2e 6!jyu/D*2sb:Ѩ$5n?0p[*sΠ,97=|fHNB:\{iq+ kbS|sCJX$v 5ƒ6~ ΫQe'YTVɛw:'biǓ$w/- #Àˋ|ID* 72_.eOP,skӔsw\3{rL~ (V"t[{Ch5q>=II)Ƅѐ?UyE>h2(0% [gA#&M _]|nzn{fR;" R x,6gvƾ$'=5{qW\B)z7R ܴ̬1vR`ebi+W3?1)Y'Z]F̢j ErFȘ>f\"֛WF⃈|C^@#P#8t\31e9" (ty7vKĀ~}'c5ٹs,W$gȏ):2G5pl` @ϙAFvLnZteWb-}`k,/&5k_' |D{&*,zHGSےdtzهd ET,u|B[o@`hqi;!#O]6'TE³>Kn}M 9;F1qxy/%P!ADdZ!-vq2$!u)ᄰDGh']j NױޤPCDOa;>|W!8qŞ\eb"쥺Mx8Ţí2<ǚK4ȼ8'X6Z"Kh18!i|j/F ؠhmm2?! eU~(5 u{3K8c{fL3=we7o>2s=阈)Lfg :ɿޮڟJ׳|]^tAOsy#Eߝ"%TS~UٗoxN{dE(_ sFw+ 'f6wA//&Oj=`jLs)~ͭGF3*]E7-*6nn%C9mT!7jn0pw?r\C#낯)p@1J⽿eW5BMhz -}Byﻙ?Ntz-<@-W;ɾUE a{w@5q^ &_gk8~/-0)}5HLaF:%DnL|'"d'5H8x jj0wjY-GY)LxWgkGdTǟ!njnPkS[fA Sqq"g~?:z\aE:֘Kb!Ax/=٘u. s-zZ.|yc k¤vi bjRs͎{2tA|60XбKgQ*ve8ՈWáwXm7Xgan$ha>ސWK״b0!F,YPu~O6D <6{m'Yٔ7^BiO9[]ٰmhh /姴V#vv i)a$"*czeDj"_x6EɎn0F&RfYߌ6 *JVwqf@BEz/FDeys2paJ~Q.]=z[n(Gd[GR=cUM}ݛKp7'v;+%HE@z+R\! U%x.L׏Rky-pazy,~^jqL^[Wf5=h޶($;vEKEɛSU~ uGFLvgm7P'dYn;Hb$ʰ?knZw o@Z% =R TMw,~&طz%@tf:ob]VUep+ ::g UC+oW-bI]1ڽg=vf.պIv~L[NTn53,eX5 OF!o`aYiSBdG1M?Xka~;x XŰ+F*e`^8@OȽ-IatГ)d(fCߧ? 8FM,pGѴ%u @dv*V9>zxȝۛ8_2Fi­yk28NjOt)SzihJ}KeթZm.UJw-j˹=Xt.'cNBׇ2F.K3eoXtȟ`,A#qdG'PJ4~Sɑ"><IJyJ<άS [ĺVgYP!қ!2vN~3MEU}j nmRK!R0 V,fǜq:_ȦŨ,,;I~l|'"-Mo!X/mI~ɿ])-%ln!ؕ|Hѩeйaj,7 h>i="k Fͤ н4a@1c./$ @UQʂ]M$ /!ѶK|e'ɋ7'*^8±wc"%F(D3J)vI#R{Ӕ'e2sNse ӳJw+^"M=.P϶f'DVEo ~֝SGW=^aU wrڀ_?p3s{i00,7"n]"t=pގoQF'TRr_jSUG29qTXn*lDBl뿌Gf%=pAl_K 3#L14UH8[޵nzDL̻seZ.*)C/.yodo~lWc݆or IeGqqǺd#7-6D_m{Ct YʑO;gmWmɥɿNLYkbv^/Y>FX̲3ˤrkFZ~}`J7P.㵦Ћ r_#9jCtwq?g!1کdWgyYJ q6FNaCeE9,ycq?WQeBDxp`-o8M  vl'\f1z8E4A7p;kVhZNݽq~C+c-x.[}'B0=6HHy0nP;pypTzL.Tu'p}k>OȮ&tb eʤd͛HhS FۻxC͊||h q~NFN#UGI;ߘ}uU8$H{ (!,脿,JY6d'W:P΅H:F8竰A> l;l FD~skܛ[b}N&ILdwRT|1<`֋(S2,*15T|-$*'6)C _{/4V"|ш4+,q jFke#:JFA+Sn_}f(׉,; lA"s-wXi67EW?eg)qv2uvا̹?45#KU[z Zf5Vy": endstream endobj 14459 0 obj << /Length1 1862 /Length2 22325 /Length3 0 /Length 23497 /Filter /FlateDecode >> stream xڴyeTݶ5R ;ŵݝZ݋K)Z\?G9FFdeY{'#$ ƶ@1[Gzf&n '𙁉\hhnk#bp8C=@û`:T-lAw3H"lk`nj' =LRF. Ks1@A glm@3+ @PUUR+ɫ*(S3'VvuaeUq:(FWUVyoJSy'\VTEP嫂(3k0 ?e;38ZU@eh`rdu0e9b` xwZj{;̀')s# 'Ho{+߃q{o㟜V@@13+ 60q;:8:aO1a'?5dirWR}2m+/1'^ ;#`bngmd$DUeޅgC/kGWǿp2XL"1~g >>9:1/][غxoO獝Um흀"~L=jd_j3agk01Mo g ? g9 }X.icb ~gO?$@נROh(g.?s_Ĝ T36rPJ%g`m`_6s+XK:k_ )A]g @a{ e] _n6F6l7xw!|fcx0kR 6!;'G/dg0 ZM߅/;`/h%+LF;8eWz?U  7^ dg`{Oh 8'7 Vs5;L?N޿ʎ@uso"k`.|wO:Q3?l]=Y73g3+U}fX]\9@+~qֈ'"1[4o_C*bTH)K_o:EwMy Z˷kcEmoYodQl5UtRCܯE?[ZG\mQ'ЮHK[WCbntBw]@o'Xjw|{4\ /5C85V֨cc@D% {r3+ }=&-YfPnpq8#Nh3\R6IRe2b)P ъo?h#Ύ|msdN#h5UL b m%^A2,d%ܠ)^jCZHF,K|vNI=|Y,JOR;k N@ąPcC a@>g ^{b*BF믻* 6^r1oS^IU_blϭtTZ͆|= ;]@Wf+jr &Q F7t#B|騄7>xRf0vL$8 5V)ۄdt]kVmhv]u4 M[VnʾȢHI/g3|S10qmQרߐlKdr t]qX  3Eب9zWM~ g(n/"i6F!݌d3{\IIK-tݍ@}gې'VE@;⣹ocZ |$31gA v1ESxH|RQfP9XK'wnS BuxhDu6Ǐٷ16<ho" ~YsՐ'p&kKo_x3uX`Yz@B$1̸#&[X“ %XsP8M R'm@t4k;WSQE3б%\!G_iQPR-M[JVj.DDS6. *~kעH&Tƛ(;]7:9E"-6;AfALP0#Ʀd .h9?Հ \,햷frgz9۽6$@bk]1yJܺ!P9cF/&&^="74U8'2–h,ښqHiեeT>Y*z#Y @b ƛݹH#xlu@a1."+.*!u-ʨ3VXE.WT~E?;=k6. y]1%5MJ:vGJO;R1'@" =btab#k 7P|' KoãMP Q?}KwkPzu2cUD|CJ0Q)\_ ]u6 &0D Զzu%XFYBI\44ݐك+ᛠd#ZM4>tUo N7,XH$FtUs~^mK8L|U,3W^G82KGj4|%@%$9.uZ \(,Jl DVba9j {)s㚉YEm+0$^)ɧs0 hM ܤuP agOO| <}?$+!_qOn(lai{{Y8m#p6̣2dzX2զR&]n]e m@0#]y a S-3 L]Zޚyͽ\vig}sMQK9= g$rͷ1|FBi\Y2j2J\LaM"M V2>|(_)m==~|%iPBnܯFkO^eh`kЄ[)?Y*^Ua "}E؏hLзQ'x;BTJ]$"kZ<9x"K˾0*UFclHat+H!2cficWZ_Gějv¡P[J#ٴp?Aj8NΔ?gMC|VO_<@kr3vLZ4clk!H^-a)= qM*a;HüGLmoyEDW|/UBAR,{IcG(׽Y;{yay&R&iњh1ZCpҜ|ɹz +H$n*O3iئW61*f~ge-CHqpd,e'-W[ @.-^%u\-dWk$!;1أufjtQѧ}bق_U aג.J6d͞gU|1z1\ C}ҹd"ZJm.-7Nw>xYJ ^ rRZ).y +E3' r ;,KӪZ@#HݥW5Uba<,vg Q)IԄjG<ϙ3PK%}7CD]g:G}"-KJ :cєU#)DaVM 5tKXьzp:q:>NxL%_u/~_6 QhQk60_c ^FQZ:.{5_N)aRIogg6Ê4PeY~Q.*;&qQ6ංʷ6۱b?:+xJ~4Kmg׷Tts- 3GW&=ZӚ;](7 ԊVBh _n10 *|x[/yTLܺN#/̽Gy̶1#f&[F-Yi7:%ÖTR1bCS!|[ `FY1K!FYj'jҝ<^ϋ=݉JG0REy# [Yɡv@CrћqJ٩!ˡFE#*-VWl?zn9EFZ#?ّvu](?Yay3^O'AVpX M$@5{mYj{V.X5lQI^hN#~p]kfe|j9!xdI7(Rȣ/ҟe M@GGn6˘V5R؛AWcaefo$\n@s ZV&\Az,}ʊz1R,]5>0 _.rP7qV3Lg)_ݱAQ\>vL??^Cs%7Eݐgv ԧ᥁pdVnv-L>Gq4gXrjfA4+ʦͯl28X3#Ĕ>aY*wt+iݷҿ dRQwADc@Pvro_<ײɦ'RS=O7TPץĀhzתܨ$CH@L8tD8t[.DB %gD4PK-8-Agƣ>b~Jni_S-3NjZ'P{/3 FYfվu@p |]S8/,ﻛ2nU 9LKL&MaMh8X-ܚZ/2D}.xgF]"`/6C6IiPM6vy_UɧuL/͟"Ud].χ7*!ҷtqjuj>3l(TEV7ѫTI2Q 'Y `{r\lr5>x7m_g=# ?pdE:y^} ճm4DKDr7tgKno^: )W3$=kN -,QwL[y_%j?Ìx.C#ykj/ƲDɘW31y I-2rPOo5K {ݷXN גp N$4>mtJQqM%bTeusuߟR[WIk bOKm[J";D`P;#b_d2:>䛰S^y4lfW|1`S"D6Hl=L~Z"0ay?5O?%'C2;v<NLS#Oz5i''fpdi JNc4<ÉjK^8_6;}9F8q;'Hk\f4W~Ax]>̶c0;O%l v;r>6%,Vx c뾬-v`V浟@{zAV9>uX<ꖌpԩ lζ*u]e$[chЯn QX) 8A5U⼜fs:]iraԩԩP;]{sY"84e[$v̯ݖȂg fx2.b"xnѳdW Ygt䧖9lp(LOv.bYӖEBү?*sOZT"m!G _6$AYðgL r`||43lR9ɮfm?Wg}t;:ed)GW5YFIP7YuϋQ%ck3p [?am"Xb-F!X[=U+a!(L{s1&q/A$]SB/ u6ظhN(ĩ0 V˕1ڕjMI*G4[ojBcY8F`,Xp)&LA/sI]IX$<\U Bg+ G/x5 񄸶yկ%N RݶB/u.ԗ"%[&65f!Z=HF[ĺ_& I *X̬2ƵP.j8OOFzqliB=RrmE ]]#$h &Й`7^Mm5f܅>T zpxqdek5&~,`aidql;Pc $Y{f<4eԎ;[qJn2AҚAMA#gf ZjCrѹ9`SHc4ssĵkWxRUoo߇ۊ}أ})L+RL}Ջ{௮}e5CeDUw}66t'F*Y9c.AT")xF-WSCҰ) o&D֢^Lnڪ1x^x& }iM!~0}>:_\rlqÅv2,@ Dl"OPD沝БkqT93?ks j2)"YZc;k p#y@9aSΧFkx"h1vO\Ywj N1ekCy h"$~A y61 =tfG:hbi:5xݣ )(rw 9#kӟSC]AP 5Xң+%I;WlYiіׂ!uƭ.Uwn*E![˚1y??LpL&Kc3_O W i`IsF0V5H ?INy @z8?Ԡ{ВvMU b-~E_:VoFl' mYCz:\]9Z}>qldZ!`ܗ65 *]o/+G#%VM'sjOY=ؼ|1篖YϧWN~<Ć*[N;&0h,,#tkژ6QQ#JS1ޫz,Cj\^:|ALߊ1(I^XzJGk"׈_u6t=;,۷ 2 WbqcSJ䪭b0(5΁@J|dE!'ru!w:.|4.H.j,ioʛt#X<ɼl7\0G)PؽSiչ ܔ45dar ެ};}i P7&jY'DΫhb i M8*< ^*]${+U<N{L0v\&z郎s86Pj]N8k:!mwVnPEQf!凃 ЅMSTBI$T:Q/r& z{d(;Q5'־B1" L~%R|a*#;0I4(!G5̗;uj!RSV Q֭Z : [;)j%^w˥!BYIC[T!^mE|ԯd\ΙkCDnT}BDkH>N⇨~ IP,TI0u$YJh{u&m5 xuXV@%|.Eu7 wqt\QkGqo+81ZJ} Tmb&zoI {BBi4eÛ4O5*yFc_D gtf#Tr ϐ}<hz܈^!bePD}廑5t#~F@Fgߡ5\ ]?6]E.\5^JOPZ_f{B3M8<˼ ;&1\T!/۰6wvLeAm[ڋ) <̅7Vk5'<Ik~!Tm'#'Ě,Lh62Vr7s!#0S X\m%Ōt I.[G;" j="ɣA1R\ c>POqQ8>rѸhX+/ ʕ@1 ׭#V|)OHF =7zQ.t扡M]>'e8dr!J_y/ ?p)E'@efHV)C@UO:Z manF>e,m)AY\gs*ٯȞ]&]iH||}͙VVn VkCXRlFܿZBP_Y:כgׁ|鮘 _cwO.`-3.v_f[G0q7U5K #H?ٶ\he qvOYn{X\ù.w.u~3Bׄ"=mAW3=uO*1`J&Np5nl[$]iqTj/?Ihg0iԃ"'d/wtǛ>g5s%\A?p!d}b e4suoix9T# C uѳ(rΟp raf$ڿ|)O;C^a*'`GF` A?i{{LfGQ(_4No T2_&E0a%lxZ[s$b?e ":ǐxjAɑȠa4`wOb ^~@(@լ;;_@4s|ܬ^+QDS/vyqFdGq~&#mف"UeqRiAO$]mJpf"n!e$k:g!%׺П'{UteElK UX AulĪv$rGĒ2UGi 5ĈAq -#;=)'sh& 8erʥɦ) a s0M5Wc{3Hm3cC g>я bCFj&w'5㏎8rh,7,39O l[ t&VNO;߉~-6ilີ'&ó'zf/ Q_*!e`"Rke>=u:8m _b%,Lяp? 03XU7kS16|8Lim/6g$eFW75Uxw%(n̤y|ίR$T!e 08/w'^a $"49#FzY4ݢ+h8w(A}Y9!8)’$ӉU1-s%7G8'u)ɮH`к˓ K7]g2w { ~Y~SZRf[BwW:LbzY|jr,%<ޛoρo8+Tnc9<\E3Ջ#teʨU_̄(>=21G߭һ;Y]8h?nkCtlPKfYX|@0d9P٣A0'JspZG,_Z FQC hJM4' cO4 S 82˓>D=edOSen) (yR tg_=WAI 'F h—h<Rt*aw%V=PIordRn^Ú8D8}"}u(op^]Ŀ'^`yN\BpD&zB隋2V1otڇEP0̋)?]7 ce-= #S*.@3^ᒂcL7rLi ?B3; sKeBT۳M%vORgV~&3li>,pO JF3xXA]0S.'uIK;jP>).5Xչδ:V>3#įIS r"׋JBJ\z>3mf z$"cc:r$& k9W$*!=D2EN^zo}a 21Ju^MoK&a$Ta94yFzJ;D-}Jy%ʗfpiNx[ U+ /׬)9p'~6 Ș tme<^^ÛQSmhGn3 Ŏ7s2J~+3Ov&2acQꉼ㈾Cix?u넒uUr-$b %'ފ¨'ƖH;of>fXئ]&q0=] 'WjʁTEZL^8#:j Gܿ-*8me Xzܻ8\Iy*SA m#)0h'5AkOWs-;GTZp L!roWAd2we; !0'MTE+ZL5,}ƒq®?*#"fyQoMwp',ga9%ƿ~2jj)@PSKcK`'Hw0-0&l}v"˗%-lCՊ6D xѠܻSlO[)&Zéoe@ĺXr=rNd?J]>(CqwYBx 5i(?4b+ƭzc.9p9'5gXxϷMqv)q|鉶ે DiMGg\M(%UuX' |?ܘQGL]B\ U]=g3"?tooGeQ^-PQN hqyP>WZm+(c'(K0p:*|C.`iE!J"_}/^k6I>Q5$YVR7:.yD4{)'e!5WeH"Zn*.)=NKjW^\՟H!;{U8K ~;ĐfI]mc%!* "8UATx&|(YK :iϫG^'21M^_n ijAMnI:pЬd hYkpj}{0qcm+cST#jJj7@&5Ж2C 3Z07x-xk3Ic9e2R]9ӥf]\f<޷W2+(H)%t HLA|YI|lfg+`BYIXM7Y[-ڳHa&2B,_0 h->[ܡ8R}F&42̀f`_K?=_'E#OM?'K Uq(*7w*ᕧa&rFfXO{vgnW*K杀F?ߙ#nW( Af!_ dZYɟ4&RӖl<3/.G`?}p3CZ Y$>Fr뫹%|%mdܐ2b!V/KV;d#D? Hl}%ަ;kL6J粇<ŏ:^j ݇:rNM3%D_:f4GO 㢆 ~TIY#^f~Afrj}^A}wB$Ӗ*,|j-kH鉹aQD{"88KՎ+OHg3e % SnV\"Z؅I%.CfCVT[ƾp)cw'(}|/ɹWQFyUXtGWY.ib Z:l^TVoA},M5-@'-Y\Df?ˢAZs/aO)vV潔h+LbPGM۰ׯ'V?xǖʋɐ6 CpbEx{#ߨj 븅z9I"B)޶Z N{%da[qᏺw50G~SQ/[$s9mRDP(t$ʨFΟ~Ԩ?xE_2v~N,\CMe,% 0L̅~gG|J\cQnظڊ_lU}U-5q/#5;)g_낇(gK2~>K# hɰ㽝YtCv/hqPJim4~cw/뉡|}L5ߟ; ƅK}}%_\RL%y_ 3I*,݆)/UjkRz0˺}^+՝yϲN^m\=Zt[R|+[מϣO,z; =}.R>|2_ z4}g 57c?I+[KiJۯ8-S;۠5]#qT̹qDf.RDzn\tO;Zu+]p czVX@C(㐏a [Q9ngBQ__t177ղut phQY_>Ja VL=h;mKn/<KAmtm5QV3=H4iŷvQ,|e2*J&M\.e )F╉tSϘw?b0xȘ9 3vix _lO bL.,lLWD?.շځGźϷeReb #B3L *iMOg%WzNWqIL>qY/-)v3Q _¸?C}W⺈p\pp\&H z:yotPsFx:K2scC?ryoWSQ{"zVcgfPqY^=k z$VV!L+9M+\rAu;s, D6Ꭼm ],J 4K',]q2*v2=O, @"'ed;2f᫻)Uw%~ot!c+!Ҳ ME#ӷ̉ab%,C?>IsCrh42C*J`8nߟtUQ=O>e_[&ދ~њ3*3ŝQb JFɔ!8~Wtl)4%|]-g-Ig 9L Of!{b7:<m0"C&_FFuG?@i; EEZѪ ubV 5;tzUR .8f䏷"}nGnK&%*)({[VqJ?d$DI 1Fc{+hmwQ kU{u3lﶫP4Թ;:YSbAw硐J\ Ut҈GT0 M>.  ZT)>VKM( SwR0/Aft“FH Tᑱ~3ɩzZkHf!Mr}[d/1%qv芷t!%i L*Yו8#;/Gg$%r##F% +=OiLH}=o/x/ZNw 7h #*tS?}mP;p&a<_G  ;lEYM&ua㿫N؟(D&] 8vd-"?ܩYW|\*qOBg"v0rp<)^3w1q_رAF٦E,[ڊvƬG3}XoWŨjm[A͉a%Nq-}Q0of궜#.߲dd 3~^ @yX|I=\Zm%д:Pw"Lbv6AMUV)5^e&%,)}^VVyȝ#o7b '؉MSϠ`8*k_HM9Ǹ/w+0Yūw?j]||U(:sn]:aI5KξCvh)L'@VK*6Q>5GēQWэo볝:XJ4܋4/+7~G0"EYbYɮRfwHۛ7-J9]7o`9F@SxH(>} }]77[tvɪ(s6[3rUxk/&UE(x2c5'% ?+.kOrw*qQx±95} ՙ hƷKrPIkڣl*Q9,VqQ=4ˉ)nݼseY| p\yW`n4 f8)KSFLqmѭŴE vtˍmjos| `B3#_$|T ZTX35-Q-cJL|\ef~J@W4 & V`G(\K2؍z¿0 YV6ۦlN25;;NSnv~w%s-gB.&VߜZ Q$UF4SɑfCI۽:щMu"~5gVzwm N@+wGΦ4"!{G3묞_Y ݍ5@]#VW:bQJN#Ve_r;`oy풐9&+E43zE &Ķ'5vGF6-ۧ#T`%>A.U棉39yu^lv8Q'ԵTiJ^ڶW}4Tn/t>zMO>rC&N@{)__ȶ{uP*Yxo[ dvr&i*7TSx )B?OyqGŷf$h} >h,E~29lCQjy'% 9Ek|v1^V>=@AJ||*hx W&`;5 ԅ[0G.w'b&*W 3(z }0 OvW>p;\[Jy{pӠKj@Vz͒XjnFPi_~ []3V峬6fr B$meHM$ޥO)aqP04P;?2$].Q;̦2>騗Lk3WVn)妚8ivAgj#7 J;eF^8ͮ[8>ڤ1e]L]QWLzCw@Ɓŭ"'T}̃9$E8TPg~DǍFocd8b!ɴe]юFI:S{+3BvqkxfM5__2A |yRp;ݿ:J&C-оzrn*&lW%rC(f`N VujJq uq Wc3א]>YŞ@luWT--dv0-QU,FM㣅,s/JU}_e">m~0X,|A+7+Dh GV{hJ.{nq xɶQGT?4"~NLHɿ癜 #BB4J@"}9$IHRb;~X& R~p[ ' M$iݓHoPU^ @--egZoTnaR%l:[X٣G}Z!YcVk-B4axw%;UPڍ5@X5"@2 endstream endobj 14461 0 obj << /Length1 2173 /Length2 25445 /Length3 0 /Length 26751 /Filter /FlateDecode >> stream xڴuT۶>SRܝnŽťwwiqw)ns>FFo1BQQA$akSp3(LVFffvx QF p:]-) û`9U@,j_@щ٘ۀh]DmM͜`c`鏷#@hdihiBs d2ؚTA5qe {`g;;["&IW$TTlUqWVTga h'q|gڻ_ fNNv@wxF`x1N01:윝&v'I/;I%o`2/b3z?[03YL@Vߐj6?{xq#w;3?,eLߐ=?B3|gjww[;8-ez,@Ry;{w8;9/}Cwo}w9+⟹aQVqr߬a"tr0wf~,ǿGG?EDl< ܬv?Fw5OԿ @FsFAɍ!%>y܌qPibٛ |ft|[<>6AXV[*&>r>#Y_JIir5A P9nxbCL")Z0҄`F0 ^6 ,|N~v؆@FKNXj* ׁvMI @wlwϕ 1G}"]0Q&IgXp,TCX!>VFFҗw됨x9Kw$ޚ5算 ~rr EOVi>l$L-G9 `Y)T4?'3~ܵRB=X/"{„.a;lzTxB>Py4G{̳@׮~!neg6[bUpn/ >R z b^JGf\ ݰO4*QgnzkR78G"Dk.H{(zhj$g]@.@C}KZೕ߫S#}Ph-J;앃{gZmz=M5SFLj_.T;,$ׁ*#1sT[ٺRVK2șhV @Vv+=#_&OdM޹>B?rX裉)Y1=mt]p}arrTt˜_'bCf̤XzdUb*y (vJEV$:qqa 7ޜC[Le0A5C~A\ޞs+ʽ+?TTpN\Xu}IH~S @ۑ2YFɪN"_>s^a#@'v![e*ןՑqVE(T#uVtUG}yYHCfD6%>UUiiǠa|4rMu;_z`'iozY[mQDok] nך|صd lݨ0pP];.)BNjyNNO(5U&{~XwtIʗg=n~׃[DSɝE^]'rQѾuk-^[/#Vq^%#EF^V'(+4h&yD50HzyLk~Wn,t#سrlu%hI\i+D|ldqu%uMe"M\8"+6VH=m5tJ^_j•ip$4]DJH%SG>KխX0SWz$/@뗂 eױ[6h z.t>$Kh-L :_iNtB'XP)HR>"DEoy_vvM BW6*+ ~sʗk=AOyZA5K At]ʟ&/ŧALj7.=#r_2L}-[r$'MU41;K5@2;["#n id˛V*0{F g~k!Šjea234 5|$ Fu~:6CTUg+-EKC%r Ja@D:=op:Ew MXwָ)-dea5Ic/CINg9)'8ܯOQAo([ 'U`;r9/;Bc|Gq%`7Nth E/lH!5qoڐ`9ц?$\BP$tpG:B>9ȔILGm&wbQ*@+E5!W]m gu+['.{\Xm9~Fv\ ٽ]hdv:n'7(D BiZe(J+X]1&3p( OmP&ݸd"Ve.EmNΝREZ.iFRAK*`< Xߧ֔~o9Ǜ`4>p9DtFQ *DqGf~sON/Ϊ)HuG Tòy=?c|砘5fnmIGa}NB\gRkmlf O# XnidV.iq9T֭c,p F`)H8Zt9FssZ;er/銬BSc܁񃶡~>f NQ_ԟ:a6˚ńujz %WřZrJ؄#xi+P$,9:ItȮ(\>tl!IG <76JQkqnX50q%=Y.j+9/L@wˮ.Zlc"a6*YT{&|naԏó#=ۤ4_AK썇v?]q`iYcw}erL𧗇Ow(t,+C뾤3vvH ^~Yw, XY}ƐqogNF{MCI,J%mOQ'q0ln*FZG ?2}Cxc KF睐%K77 7v-d5:S*ނ%cH0!,š8bߊ{#:Ŵ25֢EtWzWvxƌ(HZ &aψsF@ބnenFC(ÑU\+%vlCzs̛~)(7yg \L鉇[&kFX9rI"f,%FASV4X԰\ o:(C[)|ȱfRsxsUw,lWv *\FN&:ė9Qsd2J7lkcA67"4V"e#48k~zE'˃V/'7gd wXߨ™~Uir!@u'psDq7bgٹsnG1K1m5x(0r+ Tϵ_<lW*yЗ}y縨6cpf΄')c6:$!:MoL#W`*~vԙqE-<$c(|_Nr~|@${B=`VLv2ޮg~W-vȣi4dD4޷^lCm}(vJ=`v.>iUz,G{pxpaq(ccw"MVrb,8fyB76Ǐ] ˬp|[]o&KMx1zyաb=M67?!3=#ٸ;h|[.lJp>OWH^R$797C%6L7X~|['S'&bh0#͏mS8!e8Lݣ^Z2Dop܃$QZ2 D땠j9].<}Gfhw}TeϢ-tT%D>+Ul֫!>`."?c,i͛|ZXvrxDplux]m/FӺA:bmsWPB2 a_k}[me[IַYFxMJh$+<۪ȜW=5.<؛kL_[IUXޟfшK6/ nUm?ǽ-QԕGDYYS\)ocDB0] ?; nCY T^nG~nZ Mq(8O_+2F_%8kZwa/ 4ZbWdWSՐTK]4"5Ш4,~gWt;z*G[|oSK_UIOOP,37vMT\Y-z{͍H:v+~NΣZgXCk=$G M#~rZEq4S:W}}+Y}l7(_L*`sHCr`£ ]\#׸kg5 ~v=14OY~ {bl%Ҩv;%/Xr 5E|\QS?OcXm9Sl? Kk n6T5 <`_?<[pj*uKEԐ~UA4v=YZ||2hwN5#[9U.i3;rISč7j &iJo H B5u`ipIֽAshbWBpN ^Y1"cXV6VͫfF;O,ՒXG 8"p tcw<~Qf.Fehȥ.c))G2er& J 3Ǝ> "|qm!§Fzuu@k>:Zg!l/8*>{:4q=&ט%R?Yqd<+Göiihl` |?+_6JW\ۜ'م{%^ 2c=>>(U>Ne֜tRɸDUC5k=nNFkL;Ʈ$I4=zS܆]+$Sr-j)VMP2qUV`QYGhVZ… p*, 'kg8f}wv4#rlȗNSr52й䲣aPmY$0Ƚy$ymsS]_jl6hI!El_:0ks1ƱYV<1@$fƷDtMͧo=ޅ\9wZYC9ʨikkjm_:#d\2*P beg,{bޭs+7G( έG=]%mcqBi7X?L9G*,HJs^.$X7f{2yWOE3^F$mIa8Silw {'^皌'D* iT%dEx*e r9Q99LNcVT^qL39Mq|.Nx1b&;fS!}>5ğ/8y:BfKnOw^%K?3фFnkv4U~rr]@#.&oJ@tK@rH_XuryGIhJڵ%NFW(ӕf"&5-!ǔVGLm⛊uU ;S7$Xt鱸Slr/; aBU+utكMe`/R'wqNW;H[Sl!&ҵ:E5޹@)|XC2*A$G힓AzYœ3Dj;>\e l1h$`V6;. Ds:<(h~Ct:02̸t@ķ5AWX@a1iG̰aaVʉ^rʹ+nc[hnǯjv  3ĠTL<6Yn-}>qcwꇞȞ~oItfn߷N]0VSz!gƟJm=ܫ晴$=DZtIW9>kVX!#b #l_3jo USu2]EH -' 빶q=( 8R'0Q~yof p~X'{piyZ#ݻ? .ޓk/=P@9')"3A>#cy@P{t2qP;4;+h-{5:oOesM-mp)2Y/QCӃOzcnboWkeKM\I:h,:f$AldaWvt❓T$ 6^3?7Qڛpνh˝{l5pb5 4?;E>hB0)ǝ=aնW7GLMX-TяH {s^_=6w+SuCB2LA#CEV. Y`.vRE8m&7l]XN\<`;6#dS!S{7,̢E#vLIjjQ( 0Հk)Co#TMb Y }L딉Kl,DY}NB6Q6Vx5>^ZFU7zjT҂qr9ƔHsPѓX@ǃ]@{:= ~& uFQ胹״8JY%υh [̵)t5gDD-4(|@@D#(8Qk#Ko`gӗ6gMoTxctI΢sأVgc"}T4j e^C0uiNvx{\ń2ѩ.E~H\K>ҔSC(//Y):^) H &t&)аuwxkge\v 3gؖrL85B0/2gR? O)wKHS<OKXs D +nX*L!p֌[hWcqH ;p:8`c*V6Bp@B)WJS+640nY}`;D :ytw%13Tя1qI[f"Kj~xm)TAQ925)\zs.`PӾFd ?h/B8 slU܄vRq'WȞO0YȂ8I8U%3bB3v~̠^~(ο`w%:+XbT2|IfCu\ UAȚ )#=RIeGl -eL4Y< A.Z^؈ E3E[>dNvB9{iZ ie庭Հro&8U 6,L1q~/k!\5/pDHB{Oܥֿ ,_GG/r~VT뷅E3𔸛e3hXZV*c׼BM>@M6%% mRx kL/9[W,ca]X`jCo*ƀI/L.}r^YRܒK];妮&a>TMErxrYN)Mw 5i؏m)Np]FJtgR%Hx+f얥 uǝh#3ȦnMXy@#y2b]LROX&g#;B9^h?! @ْ=WH풏Mj81Ry7vv@jB.mVG1A,ށRB&3TO/ #F #ïsW~A7T? Is:6dUkqUj?HjUp"/8MxPH1P䦃FHj+{n/} ^!WL>ПnO ;oMkX %?W. kfb6H"Qh>v{+Uz͹sv K |ɞi$l7?-x ӡԵ0kG&?Ec?z/A2y~4mStiH?[%$&"t˙A)sBkbE;YW8Z!1&=VS-Uu*<; i]b=2A-a<_X0*qi߲EY+!ϜLus ׸ǷxYX;VsS mC=}9A9,zMFV"lʽ/A׵4T(=cW(nCǥ(1]<\W -`8{SK9f#àxbL pw` 9ոԵ1-<,E>@6.WD#$v=H[6'%<)B4Oְt5Q:¿v#PO]&ѐ/0mԯ, @= 1h'bR+ W<}0y;>MS/yTCEȥ3=e=_osi7%ž%[rLrϣ|s+ۥNmwk^[7Bd6KVqϒ<%\zҨ#a|G.C) TaQSiכ]v|#4X)k T@c$eg,KS˞bcmPUxQhx$g=#r+udñ[T,e^HQjyP =Im"T ǽwF+TsQ~1Jn6W .f}c#_)Z9v銣rTL-+Ag^Z84x2P  H&-ʖ1Lt1|e 2ȝ/#␅! mOz0(q!?-:F*<6gY67 /}"XZCg?X϶=Áq"`}c;xKV0WN(s+5o v|w =9M^\BEhcճo .~>[ r7[7vKq> ڄG[Q=> % zoV)E-P}lU|m11HO /&Eo)2#غR9;K[&Hɑ:m٭# USsC8 Xb%](%9C\ 4m%NTLq [{X=ֵP56/5.`aQ.3F9;Dm2m"-_ewUy4m;ݩ:NEVu[`"KJU醗`q6Gɱ:u$XAג,y9GL|pG;-:!f&sxHs.7[;+a~ӴLDaT O9DQᵽ뭁vIѯDn== &_˧nG|gYKrq{m_ИJ1y,hs1 yn*7\rO01Ԉb (˄"gNG ]"snVJT#g ,iw`JegWjhoGK]:pPY PрG?u9ܝxSj \ xOG Hе8^^FS10V0|zWpǷ7{Kq3ri ,NE\ F ͸l`l,IK] *[ǘ'z}bP¬u8!iD8y'}ԎiXaհv#זдMC}d_qm*Ii# "y/lIJZ5883J j+kz|n)PiSv þr~4ޢN~F> >E}S9H EP] 5.' -)\[l$k#)> |4Z_A$Vug9U&k1XSm䀺qCi`%]\g?(ݹB(^_#wlTs\.GDKKwn7uš>Р/pJ|c!FQ6[Xʚv}(7F9*iu?ڵMhxL6,RI0S:>J(>XKDԜ|r&1}$4[.RdElv/2͕.B׆cKkU#$yEX!BIhT6.U`PxաѸ ' 7{ʃ % ;u[k"xA$gAOU`0kQq 1oqc~)^u~Η}^ d#^-F!I"QUm W5V#D|.hu$pbuݖX<>0A4<0qnDeLf|fT(j@'j}.TiКΗn>8@OoYZTYF{/Z'fo飅gկ*/&Ikqx!&.jbݞLXܵㄺ.8/1jHz]Б';BX.uҲgxH۵rA rzK $4Ru;#JlА==z <ΝGC`L晵x2u^0YM9*_{LႩK-˵@YC34H:\ rMj PmK3B{Р=X &-S4V62M850Y!cѸs&G/N#ov8<Z"I+_uE n%Fv=(>KVA$D6 P=b넋5y2Pk/!3L7} hj'8 ii nͲ •Uًv+5 6۲+: E#c 79P:I{g8,Rް_ XD3!e;cjr=[̾]VڤB>량E#2x*MOLPh 2̂IEKƨA:Y/70#& x5q"c^_+=„AWHk;7e_@+:souT |o;ԮMB,v#B+^ێ\-d*^,YDS -.nnK4LHFll$i# h-ؽjVPA# QSz ̢L3%Nv{Y)F+xg~dK OHaw޷Y M!)H!V|8\ġE"Rʒp"bd{Cᰄ[tSn)2?D.wJgO$L;\ݪe_K.$ %W%(ǿVPGp1v&߾ӽjS6mcw Dc ۶mnl78m1{rb۶}5׬tK>S<?sKy$eᥡ" ~D4`V c*\bݵl:w6w LCOcG0jC-KlzN;جmSYQo[JCsO ]a=F XY+-as#upfG'{)U| þrGߡPgՍ[77Lr Jye6Z|˘{QOVoxwhmf'@u{V]hs4`}EX%m\GI6B)uфK'G']cU3 d0/ƛ3 C]Έ gmx#c9!c*:)NEVb\1;L_BHt",\(n|x`& }Gw˯͢DgA'Jkp}"L8" :nz'DM6y.oZw rh#G4HU18,(T @Edf3%daL/ [).438 ~My7ehFM")Iy NU4kYI_w_"[70,)ґR]`߼~mMg\lUdI?y99J89 ,>< j69_d HXV w% ާ=zn_VN0ITh5Rֱm#(65fJuKGx&():ѳ:mНi{JX&n`j7J;# 89b$)&_EX{D/4WYÄbj-$v$_uT-Ih/(m(?c?X xym\ѷ>iMP|H%)BwFԓfĕMV;iʽ7"(?H7k$j7?n *ǂb/Wbח7[V/ C8 s m0ex*M}2yJ+j_lWJmS2,sP3NYl&NnU$22'ĄC~t.NUxݺ> Ѳc2A>nL$(aC0)[LZ'xɻXU>= 16q]Civ:lIdh%-]ǩ"I9E|*#Y)Ӹ!MC#peLȁFPl'u!<cHU)qCVU PT 'O)LPCHaރ슫GbO~S c_eJWk h!,nC'@VE,& UF oA!A:Y|n1栗v2Scd$7=)6}-^角[j5[K14hݫo9N¡Ie51c.E!6dFR( ˶DxAUcj'# = Mj͛QzΫI  lۖ#wٳ%Jnξ!M q6-2=?pu!-!쮽DL](o%: w1y0y$9l*Z8(9gMS)>쩟 Ŝh_};N)yzI[$to,O7Se o8ˠ\ }qA:$(LHkzu!Ln!!=g<,n3'hL A~Y׮d*Zh⻖Q䎽B5LTAOIiCz:p2&lQ_Rۀ7xfpԻK6{LM5>yIpk_Sa)]P"UIQ"/r i&fB` 'Tr_veVn6$e~Aʹ<~׽@#\639b6y`e.L]3i%ZrHLI%t+V=d4vg-pzPmz+z/#P&Cm,޿3aOc EE$1A`3$·)Fu&b9a5( KX 6IQ+ y5 !yѶy"{Y9j@Ӏ`qTj׸C^ K!Ѷ;d OFQ=0ձ?Y03;We,'d_n=%A/ Υ d/8>>TtkfH<}2A2K.dj=W}6>2-ءɚ0fbR)S~&d?`EN}VY`vZ4Ü 5^eGQ!Pfͳ-d7weiz ~n+LAfNٗ] #b9?Lo¦E ROFfa` Ui_ܼ8i%kHsarF#0wt^~eյ1{OwO6<g@c)?n[ S )YC^> .,g7 q)љ; #P/䝺q.Ad7d͞Q܉ X$d'&39o ykR/NhSsX nØI.$Umwibc y&NjLR=9GeC] vBH ~~c{¸ʄLA1~' U>CR`n5ҵ&6uMI<ТttA/QM6g*vpf)Q(BpRҝC߿ OcKx+:_ǣaA՟a_vwR؋QcA2D V98_ݲg?]#225fҘ}3T:yd pVlguOZA`2}!Q(mI :' qWddҺ0BÒjgbJc߀qN QSdh&l: 5ܿgC/$dzKϤׯuAcۀ3)LJ}.w$ιm'lKbf| 7mQx-5\ݵ:[J߂*`IG=@{H9;C#qYS,n_^gN2<Q6bdq-;$>c |٥6e"؎G#؉Wg`!V_qv@WL6ZQy azrL Z׭j |(dA1ow,*_#醽/VɋJ#>W]4SF mNz?=Sl6e0Ow FWƬ$7k+Fz:SYѣwMɭ*ۙ<`un7"NtƗtP5e6843{0ZO-ԇ=@rsY\=JNdP !$ܖ؁;uKʹv- f X/7(kLwX.7&=t }ຜ3UUKkJذ]91 HkdhwӐA׿c?DI8,2 ~TrL? r$tGA۶VU+Nj@q2N.&VB .HhpWבL uxR7 D>v:]eT עSri>p"BgX;Y,] }s-U/19h@;ZRYHs&Jp))eFRG ydB]b T>Eҕ za}*O?hxe**Y\ȸ],ǽaZ.?8an2ca0LQ1eRϪ3i&|\4eHb*Dz;k|쉈}nMQ=#~\$YX4e=#C:C+;XiR߽Wwkb5}ᾛC.}Ϩlvב_G5XLQ?; ]v8mSYP}|)ʌo{6N@jvE4\CD{y.]SgQra\&AĬRXyY_q ^z+&7pv:V)DSOA%ӈĞR` ;OW w8+P+(r.Fogcudw\4%|7X I Y=aaJ1BxX4(,$b<3 ϤZ g]`g6|̹.وp_VI* qcJ!zZc˽ӗ`6< E{ܷ1J)%!0grɰ *҄XF/+'#^L{vDtYzWwuLӌ0q:}U<$T!#'oeqU1 H3)lM\B4r%_5)l!-dl0 UBBdQ]nhOH5HwfP`C_([P P\R6O[P`3` ˾S)B]=hnI+*VܣUIl>ac>ƾm"pb'pǓ6aYRK9#[V4G7C-g\;c@ QW#ֽxU包hW/qG)5Zգ# 4|jiq_:?VdBCDDXs٪"!fc,q́\sr\_qŲNU RCƳ=_ $ztji=q1lA ғ<v?%$^}v©t$w!\ X2?,U]b5$Oi7i5 ̖qjMڕopa!JDQO70 rmtSʦۿv]`S26g{3L{~g ^w_/]#|u&f]?~DfMκ$( gTqTA jTbr,p;wsa } \ƃChAM_y|SQj@1_Sߎm~`jMyP1=xމ?F;J@c]`#'JTLN rnD-OPPfoʵ= }(NJ[|Xi")C{+ M hܰbyK;&_7G故XRwL9}8BnŅ:Ύ5TzPI -% Wo=~M$*OJ 24՜!O| e݆V p/\O/vפzU9i:oC1`F@A> W UnEuC4GP>gj~"*SG)Pdo NGm,2OGefIE~>N=2큈@9BK-HZAD=,0{\{E9ynS'O|mAk1tZ0$˫YwW8Y8ZQc7!x| e틒 ~#\1_]&8mVQ_kb_~I7u^@AtOKtj-OZE$brV^܅2HH?pY@$ X7h?re ] tP0d.Nͫ7]{7 F9+g"!Tg#oߢaO.Di./NKtt.3K51#SPQvd)RMBRh--V?iE~ IfI29OE('[ܢEΣr?az3Wrej MDGp pH2:]B8<{%Y/<,pD{2om2lX9Z(.uʳyt8}&NVaR~UH>|Pv9᥺O>9&PZZONJGTCpVY@U_n1ɍs4v2gʺ8t6QDt"s;Lx؃ffCFLZa==5l؎'5PȎ&3iM2h`6ǂK3,U׵J;&&3#>{btl^:`oCƻ%q%129yǔAU+67oN\-jrnzN6ƈJX,> stream xڴeXL5 '\ w mpdpwH$kpɽn..NUWUCI(l2JL,9y=+ 4LI)4[Ō@^h :XXx)@{i0j@V?@ f41vV@ZH(;;#LE2Ʀ6 7g+@I r4 { 2*IEu%UZ&HbUiUUSd + IuUՀ 57dpyq5a5m%qV{\NViGD4H%d f9Y09Or@> bo)'2;I崃# RZpX9%%9=holo Y68A~f89?4.L;flWm{ۦ {g+g2VdA3OXL` (wĬ u<{vs+{3ߕ7sq`VrtJj %o巙R/ce| {9`'ߎFȬ\3+S0d! Ͽ%vsPi! do0#3+Kl={,Kr3;L lj/.a{ [ =ۿ<꿏-d~!w+ ijctvpB?!=-,&#*@?MAfV6c''cd@qrX!mtgbL 0$w='Y_ ,qX+Yb0KAf?=dA0(A<f n`V |OHkAv 2 ZL L k〈7$3Bo oBVJ ; hlct_̌-JQfnChmZ! BI%_ "_RU A-efk2r2u3DAAv I` yLsgA& W'X!q Bd8!wgtRg +チ-5+/)_W!AHz >c~<#,.V;lVf/`-7L. `!?O(<_Eܽ9 grYC)>k?c ݁ȋs ɍepW$R+iв:1+åUBU١vڮP"ma\F(TיT ..I96Ez$__aÈeЩH:Q:P3 h ޱbquw 0(ߜ=$K]mkGHΣ x; s?xq1XYX%ͬs"5Kb@lj"%ij}f{vXyVJM}_(1ư*]"MĂe#{FMILo0߻,}v@Rq/Kf^X.>=#љp͐3U.*\re$>=C;О%&~' }%{'5AKp8Nlr.I 6+qAELRCT8i[őG+Pׅ+Y4Y(M&'։Cݘ8#J N1 f V{\ !>H\2kÓS{e4ԛyW"(\7LGhtij%l0_@bV@)Tyͧ1-rn⟵jT {uA~ ň T\"#1yNMa E1mCDdw-0*[|Wt ^rA\9b0{X;@UWa{K4+< e3KlZ񜠜"h\#D 6֮QnHK0{i5ԓ$cֺ/Es ʵ2WaL#|f'tOTSK.$4 =tK@&.=.c£*\1du}K(+wõ'%>4|̏넢F׺,W 5U/ߡ|(eƦAS~WJjd=@7*5'ВFAQBQ{dxq4ZS!">Xm&E:M .گ);m7Z)?ϹZ1^ԏxꗪo8z1^seDx|Vn{?Ab;;!Ÿz/7l=5l  Ou`#ԞةK,+éӣJJF79=luV[UH^O%f =ȯ"*#ղ$ԫB9tOy5+\1eѮ:N`XJb]}uh"1BX .ӹh{w(OJ'H3.#;,r?ͼ7z B"+U]+.`,.iNw>KݔtE(h5=EXug0ݦ3RlS[<Op2DLF_UIux"ߟݢwT*8"L~$Dlٙ`W .%(O;Dq@dBKд=*T`(bnΧ+,n@&XͺeɼRoEZrPEݟF#giFVl S=^S2YsNcVGѺX9qYn5b^9ϥdQ"zgHZ`KI(/(nDA%P!+nO@Nc23L(uj`u ͯ#"M_rՓb1ࠥ*#D5V5R!6=>&ASJ :o`WcJdI;e4 ݓ8xZAeC;F: ]WXo ?TFq`aV?qvYy{(i.B,TwD`=}tC-1}wp$UI~+|h2.,R#o1a2kKk>=B4`a }UhsL󍸲.v)2I$ %g]M%cw̵ȕ)飐h˽p=Z\kiU֞3ˣ ƴf$xM%Z@ǭ) M/Peb˩8QU*00?|`#?KHuv"]9^:8VӷDj’CP_[&PjM3t|tׂ:_sVD-<͌NƀB:/cz3NkT?"+b%ח?E1`2Wi4E%^!? :ruYPԡ*kb6^!*)%!rjbk~ 793*cPD=oUd tCi"qP{A\d RS^u8i: 5è* sGt-3 '@ur7}h'Kl8U\GhP!:Cs8Mṭ1U4IasyդS&:.ƞK&@Ǻl_kg3M]+J  #Y~EUjkc'XQciA/0o;2Qu=7}Q;`>Ε{&]!EZ_O}8ۢb}VQFŘErNT9ʹ-*͈:AePdbF֯o)t=l}#dCOϻ7E*P#Q ٮ{a3S^']egfq/ѭ3Iq%iqddɟp:RF#y}M/@ܒ~NwfU}xɰX٣cYs-+g *vƾ} x4-K#J-[n{݈ţ U$W5wK8Q6čwӥwZ*B1gW]j7N¨V8k8xF\|8DQ7t8ParRN$WeɎul˫ elA*bKU|~ޭm~p*%q|l߷Mc;Jg y|nND-#ӽdnuqfc xZ*E^h;sΖ|~G ͮ#s1l pvB.p6`Lgy-J' bICT`ri2>OT؋{}d^k%SW\Ѯ&(`~%26'kOlHy7_Wxk нP4߸$2Z  :iEZwq~ް7mz!,xxJDA& oB)V5;pWz:VYR C7>$anAK(!Ѣc:mw{NF"IfanZB"kn+R"}NC +IƢU8 <N 3kӕV>VKrSinJ`Nu}/lB]3TSHcBxѾJdoC7iX!%ѾuwgA( b _2Ew\ه=zS ƾ "<" 9zQmɍBrP[k?aK9^ͽ|(z3"hISClcECv!,!?8pd>ι= {س;RW[|g]j-U'Mwq}\[WYM7L-:Úc/e<}z]x8=ݔ39L_>b$$3iDb:7? ݟ1v?5Eb߃}؍r#Aņ[J2I<s*1&wz&, _j'Bgybv(ꬕ @=6{/Oޒ;֪)>ç'n,Hz<e(At<܅UtV3imܱLv7))4q05`2q{ݮ9Sҏ#żuLpR\!mep"k,NݙG6P甊;{LV [ʋ ݴʘc5-? x_fL@1)&_@(kdD0'nq]n&_t\Mh2"̜b|lhk@zN U%‘=4k rk=Y *;V~IfGuе+q}vG䊆_[I=ȹ;9[Y5;C~LLxջ&I 8_ti 5nT PKj#L-m^k1ɴWZZcMhGt+=a :|o%AzY?q oyVi(a3Xݔ;#܋+:K^GGh)Z%#Pn̬F) #Q +Uڐ:.k?.qg{}'Q69qư(@s#רCJqay'D:c?R w^žLoޅk|_@/ G_7d w`SCg$]Z`5pƮdjzS؄*2 ~`ˎ0IUK1p=q!XZ }$ Psb Hz¤uY]N/:38:I:ҁMhlV4(9ہ4)uLNX-#yGpv6L"FMTǬO+1G64aF٥#ͮjٷeH}GMяtDm%UVaYP$iIB>u3Y{'3G=IYC&ΰo,tͲZKZsҧ5g,]RFf4- :X|ZSY1y^\ eTsLyۿ ^/V!cA% )}֥^ Z Ws5x7ܡdϜ~O,k|:͙vBލѭ@<ѡe4Kxzi" <\YwVm9kw>Ӓ# Ɏ}LLIpV)biR.hK˾З mjNT\x XKMUpP'8&=xU77l&9X3L;*"5U5Rdo>?\c7ks V嚷 Z"Ӊpi|Fk䴚 2n^<25A} dvNz]3,vA_ U 9_@ū u.GpܖMe^lXYRG x͗ʨ+&)ދ 62xAPHBUF+Oov]x5Hj7uUc!7!=岮Aj+9Xi(ltǺa|g0Ln?Mʳ_SueM~) 'F% uC(qqLŸgeWGwع]نqsEȎzKSZR#+C4KH?!Ȱ*T$kP7ZtSO09|!ݩ j./m2-9 $wW#Ǜ#ۚ.G7lBFQ4@Fpd NcxTuC%*seUc[iv fΪ2 6MZM9ABLo*>ۑR'Zn~on+]g[8x &K ~L4X{26 ;aT %٤mrq&ft^]dJT"ɋfjB<}|Wu DdqH߇iIal-Ѻ1n*&b"1k}r>e H遥,uY&uJMkbE9,I?"1ab__C.f]D򅧍Il{=L67ܟOoa3*tJjk 1Y63 V&'>FU}~+P=;xk{ %Y'P5^bO۫|!ow@۫ɮCVպ:8[A{Y ܵSKϐI"ΔX@$ަ"4k-$g)J تA]e^bH)EWj}Z߷5z,zIƒ8x(~'sQ[zvnm'JZƚ%" d#!8}A ź !dn $Y"ofV0斗` I [ *f6i"vJ򸨟sTEMB8o|=8j`i0ut.$RbS } ϡ3&FA0aY9>\.XĄLɒm T=J.R)'kNx~+4֍gPMu?IK5וr ;^|?H|Q-vE %)>jUtSڻF?%cfu{pH $=%3H#̴nb! d4O.agTS`_ezln, !Nsvՙ?SU^C[6|BQ`a@};)Re^A{zfӼK 57~zûx$-2܊˶V }a4jhOQ#d5a"|{ \hjDĶ6F\<_HxG}K<3?t;X/\=pkBp{hw=+XCE>\aPuY5S5OeB/UyY\lćsϗ *s?%Q2¬Y[ &7Xll]:hB +FzōwJ’s  ?̩>ƁDo-%j;=Jj>!]VSD<[cEbROҗ ߶ F<}xu:J_l\uI9 8%'듭ҘRCwdU|ӷ^P ]pf;QCFg_%_d3=34g~ Ҟ9DXb{) L9> %I=uTܥ&/qx_CFgC t@fak2l^9a &%Am/37o'n*iFk`B Zy֚zQM--87B_ÇڔD:]йL0 X7/>Jd\Xnvv8ّX +gPƨ~Ό8Q'y*\ȜgƁn?eP5ȯbh_n+f0YzmFJųkB,j8"'$5n%S%J71*WbIrRGئF?]%^s%\-+) A+Rںw4Z2J;KwGyPZTWkhmdI)k (̄ ">|z\Ӓ;rw%nQI =RveR|c0%(=ў cv|"+k|nYMѿA͚NҫtWI;Jf@~X"2Jqu`^"Xw()z,2qT(2-8.bh=oԲϯkKu!tOrV`ZFy܎oVker<-pN<^2eWK$SUv*W%dML WxLy7:g_g._ %z⁝MGRIkX,#v'uԚOrJtҶ>xG>U^Sg|UlmAr8j ezg1&bɢ>g@R(ZrX-=ΰb__hۤ0GwODKm_` GifZs;fW *|O~ES-f-'<$/6d,4 vE5ba-#fc[pֽ8f-xԇ_A®8vyME0G#˚S 346I|84p":!5IXѿb:;PI"/O54GRZM">-(pHcї<4s#NV6ktdkw-{H,SWX8km&;zćע.C#Dr)dPAHfGjr1# ێLX|gQ^3Cjrj6`c+)XhhOݒ]7M<}z o`?`],Y|ݧ^0`wMo`7"N G58Dqm k噽D](ݏYᔶݰ#j_TS5,#:?5m|6348n\nfE`zMNfWK۳gP=&s >Sk7^Uꔮ9X\MbrTeMaQL2# ]~X- J"rVdA,'|edso /BYS\+^+QOwˆTtR uM{632qR t:‚wS,—e.0{ڱiL72Bx/Œݻye\i 7v)C>Kk&]TxP:ˆ6CѼ1ŁB>z=p4ӞEV ~o#SGD}ߗZLXyNywc3H9Π_N.=< ,ab(R'v8W2JC`݄uĤF TW/$M zw^h sfaDQKfѮyôwjI%^j iDQurNLD?;`~ǏNměg͛+2OC^oX>7NYW[\x!6>Щ`c.2O Za~ Զ_ =zQ#تWW/;1?Wr/OPz4d }6T*_~=pA:d?R۔1yRbRm VUAA1(.uf ս!٥e~g5,;n֤e…uPǟo&Q΢-)ǔ(QYE%܅j師i:K.[{Z.u~VXε-^ y\CkuI 7Tdү6<(j:_T$X̿/ Wn&Mml6㫏 qE1/ S}|YHzK.ڥ-ŀ'P>SБ QNgMJŴjWK0K '``o5A)]׷f&[-x~M͚yt@*DKtJQk>'}aÁOE: &"R7')a!e't͝.ԜlDQuJK,7Y@w\Ħ|adq,B$~s]q6zIR]4?ۥa(FYӣ"W%oꗫV:^~y 7xesp5 m]Mk=kt8*)l͛h#Ӷ>R 0 k6oMb[a~ܭ}ԎHy܃ͅC!͊em>.fOg5&Sk o k oAktݍ qlMT2\_iv6/pGIE7)6X,)|Q@}  /)45zV^Qj++V@bfĜKgDפ>2L=~rV@bfĜKfWz5t&Acltk4~tk`BMlH)@E/?Mc7)r)ܵ6_+ʬI0$L4jD L&ևys@Bq`Jdozy Ef JQ}fT\;Lk9=9nT+(~; #x`~wA 8"!|igϐ&|q[YzfHI[J(| 0@m>άrh7!%d[OW=%`x wxcEfz[qe*G#$׾>ug}>ɂIuk$T3 ״ƤyRE~b]VyTpl,BH&E*{u$&}/YK-]|)9e3:ReQ8AG0LN;;)?h7xmhaJ8WƦ}QçyVq'QevU+ETgwQRxrF$ܭ U;(3UIiuC3 i $'Z73'n0|퍨8KZP gF~x{nI1JXq⟡DArӎq~H"̏2㋁^u/jv[->(ΣK~0iNWd,_HG;vQ%)8P!B'enu Tv4;{/?[DvDk qFd΃ ֞ecALʿӱC# Miإef>X{;*h^b6֭%WJ+r`-*v<@_bX')=otO 7dV)baNiM7Z#Q X ^}k鸶aAx ?j-ስǽ'7m~'8y:+6 `|ju¿]h60-Ka84%k]@z wanA'ODE֫g$*88$PrD_x7-E9E qTsϥќµ@LiQ_!q:5KZQj4~Vs_qtc )bT `ע p{=54h;:Gͺ@ x k;}^XgҪ bŬPrKQicM%purc͂Oui׉备© ~̍fE5 0!R ~)$tZN&Z{X ~;UND ;Ҋ􇭣uUc*^ۅё/+.hfm AطNE:UA$haẙE*coܣJ9Ytى[[Ι v+F2wWC%W493|7f,앪֘[s}yñA@^UƁB1ctZL㩿X$)/lu ˩'&?b|rjcZ1--_]dL ^$.E32FP1Cw-{d !n*d+`Gk#e̛e`gh=0 ؃ލye_t0mm[9̿& ' "$1tvcjB(,zaS:ɥ6ާ[L$; rCEfF4n{_\v*B&j͇]lj>EjspnFd 6ޝ L0:/8e`®Lbrv6XJ_b_9rTl\nڵ{=2TBtekl<$d@2lw;8x7 Jy(P(W~?%Xn+UWWd.kc(^dŴ.'Uso? ItX-@16̿*f#'uՙ12pOsS66UQ54X\jz2QVl1h7rBP5[@@Zfe7/oYqe6=ZH#Tcu&v$mN%76p=W0J84mtorب/|4d9T%C _!Lʁ_MV`czpJ;MSE`s@[0LCK:;ƒf3qά  `@<n?;ƃb9S<E.[i[-ޠ,s6 ݊SfC[6I10g]T/w 2P vu w($D'.='Zg[Vh(t- o|6` { e [)-p#~'s*|+.J[N2vbEN݉nAqJ[XfE^f&̃@ց*ܵ@=eB|sǐi.x(N;ͤq̂=ly a=Վ͚gAF-M^M0GaDz!M0`,{qgà!P@Hڙ;ITbbM&3liC߆OOWGCo Nq.沄?W a}1 8\'#QGi-q-r |--J*ҭeCb\QʺKJxJNhRi4RQcmG]Y& ~d$#jblT'$[w'tPcW%=8(yY-M,cti–C{gBM\2Cb!ݫ?քH_LWtb@ CƘThAޭ!OXAژWc:3pʡ" z(CkS*U!a6G/ hH8$r~Xd훮t.|j5޸W؁j9׳?F4S D;I!<~_vc-"Zp4Ygf cn cAkqJs^ҨhJ!p<ݏJNVw&`D~)<!ߟt]0/fT Z} gxׄt"b JZ_y{؈BW :%T\mS8!A#UˋἯN<дj-$܀mj>)EKhҊ'+?HGʟ%Z* I+hŨN5KiAZ/wA%W5UqT^ % *ZGHM9o 3R2FpoɓjrBfcPb\-H$)h)l afJ؃̈́FHyDml0VfIWpJZ_JEzu9_ y#MAC鋠x 4bxaӏ*Ԗ=32Ocx̳&pJ _h*ΤRnO4 Ф(8bȷ.ٔ GE%MWò[_eι1= ̘Jd&e@K@|X(m魗ibHbxFLv?^y^4 ?#y ~[hMv?i !p16sLO:`t|Ilz'{ [°k9R O'id}oq$FFY"t}韺Gd6_yYl_;[X^畱ˋ",I k)Iã"fC-+$b fN@^!}ɨ(v7(cƎ-ӱy`ynB.:kHD21z;`?6s\V}R..\ 9\h.3\[.zi; gp' tXڣEwKtN_D-AIŭC늏P7`vF(<X7y 򥶳n~gɆkIPR@+S:tW[eUJkHZ "ZjxlNħDameb%=C֤qF_G`V؉'뒯ܘWݛ'畷̔xX{ȄHm YXAip~[?]?Of[m ht-mNcjl>ב=Q ?#;9 0+ȫM-‘b'FIxNf?i fN`pk{MQ(6W7 Ma $>[PYW-_ǘ]YTU(GIsē *~u~EAk7rSE %nWugu왁{*^M EC:fosѢWB$@5 ywW"voYSL30tI! endstream endobj 14465 0 obj << /Length1 2637 /Length2 35223 /Length3 0 /Length 36721 /Filter /FlateDecode >> stream xڴuX>LwJK!ݭ 04 14HIw7ҡtww7JJ7>ݯ}?u^Z뾁敪$p v@{ [=Edb tpsH:+A,*h; @dr*&%`g [Xك.`'+ K\,,#`ڀݜm@{3[V%V2 *Ѓ& K9l45*Z .`ERCSK %) i3d44C`(kB@ +IkkJs^ rrjVS lO% j a;Y:S3 d~:lAbob W߭(ZAdRA:A- JwLAHc tWQUU`PC 0G@@w7ͿKCWfh t]=?m wr8+"`ne ]Y#SWdQ=ʎ=+xR~v^7:f`;;hh铲;y?fҚ[ٛ H^|"?2 9@lS39PJs3@r'ߊDh|3+St`Jqg2@w`2GcSCAϞ\2.@;M[l=^d/;L bj/%{B``BfN5d}X8[XS{3JlJ LYXlfeohxq@ X  0;2/M_&$ ~$`_`8lrMfP h?A?4͠A3hA6?>?Af_$A-M "l %ܿ%vv9ء9l?,3y@drB3[q ]D7cW@_Z埂Xz8XʬPzlPlr@hq"@]O1PgqsB [¸9Gy4G儢ocS'ZH^7| ui l־W_m}|HŇYҔJ^3+J5| )~sv+%c;OHe~< ǝ\'$}#ɆZ0NS=-آMP4 &-mͽhc};a-Ecx c* |A*ch;C58Q>Yc5\Xfmz&o<>ٿoPT %='Rj?1)yPx|Ҟ9lF;$۬''6>C϶e3ww$}̤Wʃ2ǽ4I2mow* t*F ?Scl U yeA9Ul`4T ӱ)4W-gegUH aQ/j̾qTxEkc5NtC%p$ڼ-ξ7dG]kPB$u%+|^1q&*{zݛ7׈YƻAEs: %]7)N>6Vb#^Km{++UݷY܇D 늸r<o`'7hp j>1ʼ$ Nd,h'ddo 3YCs RV.r`XYYqͷi.iTt<9cS?M=NT\U]v%D> 5G5 aebۗ*s c>|d [ psS3+p@y/QV~EdQ upɏJR8lA?e"ˆmHmCI1z0Pc&R2/U2o1yFI ~{,I¼fϝS]'bV726nJ x#[>!:NCpBҋ|MjBhsxd 3oT}o?To q^`4j8?&\"u jv64 \z,ņ(X i?-!^ :-&bjiّR-[vG?|1*줢lp*1:[;:}|_h(:W؋kשKN=E?vM`fVCS;id+'W`m\nmWMbѩRyiʃQ|>9L}]R<:g |%cAK7-[n$J/!#*oYG~wxQ%#IE(OZό9^~G)ۣ3׺˱q;+fA @H[>\ ]{!Ϛ {@#֧AcJIf]'6r@Fmu&n5~Mw@io+/9n 9k3qh'8%Pƈ#b%T1xaX E.6T 5-sG)Yb&GUsE[%8n> rooT:O˴؞d-}VFXl:i@csrF_$E+oc=LtBDSy1LjJ-ꈖY'o6.L[ՍgwC;8G.bf L3R;g.ټ L{;yuRET3E_D&$KWG7AOц9_`-cw}R5!V)2L~1]5%pjjLm;b9%!p+0C*ʫսβl5,Q&f;/%=q=_67OM.x0$7tZ[P^u蓇$PXld$#kB_F Ɔ|c#BV}s/U gU9ʋ6_4Pӊ6n~Ⱦҗ&C[[cjN7$8phgj_VS*PJflf(M|qoTeeKfƤ>J?!R~Cbjgy'NߖL|-䣺ٽQ=]J); Pr6~\$dy=z}^b}usEs_z0r$f3}J Ԧg_M=8a% +"|+|45]GiK*dL6ëI\-X^l0j/ex(VDx[o7E^q&a1ϴʂ8ctYu;7qJ 3^pJ Tk1SG6SϮ%,)WΤtwPRSx+NϾs^5Ƭ ST]%cu$QFhwZVv4] ExSN Mb! ݼbeZEĮ @'eKkZၛz̺j7k;6dӪE\mf7 y3=0) < ̫.B~` }Ƴ~FfcR(b7I/jChߘLMr dzѤiG*tgdbePc"F7ۖ$;&ys~EfEr= &;OsM UsŇꖟW] Ѭ#gdJ@Pm^^LxNcp䤓EM J^?肔L7KI1Up˿ 71v J^,Su^Xc)~t/ತzDJoT8JZ}9`V r p^8La??n >tܝOaU㿘ew2HdVq+d=z(5)!Eg2@^2<&ɐ/?Yڶêڰ',J`\$MɼWIH8q+N u'Eڔ71 NEAjш6<,C m*[F/7 Xs&w-iK,\Nk6[F)BkO^ZVϾ|"d0 \ѿRQ|b z_lτN{߇#(LoUPU/f*gy-1< =X+}"~GY/p !j?gD̰RP,/em.#CNex69lPxQ:#vbJ…hfB| 71SP0~-wo{ClZ&X>Ǜ-b-7F<7%uO_Cy9ܚ ;=T&/oVZ,Vx|p2z =Ir,gc7r^tRwbŰkxY_a9rnm [a|-SP9M{$az!`n,)CATGFS% k𜏼 (a[w4]Pq)m:Q«cS,ş8i".ׯ78'$.1؊h0Dv ZjO:nu]O(A:vq@nݑk/1.#䛸NL[V0}XR" `I9M RA 8,1^ )%yf 9]%|n 5?v]#Vl$q1FnŚ=[D[AÑԼV dmC/ʮY0tN[8r^VX)VPb"/<7F_J.vgʕ $'u㲖y@^[YMh8b{C--^M҅TʉsX1+@7[*_wx^-D1׫h龩4g&7=iq[On 275FmF*wשO\LO]=X avC<#|I%Bs_nRP'u!+2̨֡^|,?\ zUYyF*4Eʐ#w{'^MOX0mey&`-VwÉ$~̰ r]X$S$yw8 !hoOר3UdjDR.W>zIP[Ie."㺤WEur?3mLNp @%+5j᎓^sIV f{xCHwSq>lwsNOsG:~L5e|R꾛@4(E8(XWwp(DAɱa:[!G8V';HƜDi&uRaN~tq?i>yEeA MV޳U4Ǫi\E?f)Tzd *qM}~7]~$F$s`뀃ʼnVsN`#=V&ݕi#r{$ yndE/Mb]Ne*rJ=!̿bC;rhƻ `KEdOLi=suO rqRGk}_㏊M8\]󐗮͠#~ܗ2ъk %Sl@+Đe뱶mMU3 GQc6aFúB, qTnp&u17~)A/(8^)j#.&흞~ ?$ƿSCOsS@éMy]C(ԯjaqcl5^CPbwn8-JbmÝr®Uw2^$-&l]#m oDF)j$](CԎqp-e|Q(4)~qƐGբゎ I<0 ]so;4w9,:<. TH"12ykiivBzkVPF!&ڤhK)IGvVz"dhر4czi VwrœeQ3#ӿn 6\ŋ I#<(hN׷ͲI" /\a8CoH%!Bޡ!_hkm !67ݴtȌr0>C7"!tesK7.6恦hE;m1f*bUKX^S!%w#\U.~| {^(h:FT8hsuTS"<􀝠Y] "4fo^梮_6ĕ ^[ ,7r|LL.Lgy_1eȩ"ꛠIx Ջpt/%l=f7D@LyoWZyC9>4q9 !"an紣z2 a$/J$~!xgɰpGXh9@ A1ͿED7v!L3P?4A7$V7ѲjB`إ?(EEba~VvIXw '1Vܗ`#7e#{GfN/MK]^`K):ybXQ%aѝܣᔾ}Xi Fm>)frrTz(*ZH:/Dl56,1v_ \CWL9P'pK!az Ioln!:z ^G;MF(O$n(?:`8k06ClPUɵBBC~K h,^T |7 FސX#DU,7r띃Q{uT ?VǺSzxk-^CcS#xf, 9zaG[- M I~XLz~]T@(w["AcsvySx1lh%?Um`_jb1M4%KVӓDeʏ`iϬ*:2<ɬ Eft͵ܖewۃmK(|Kj$63:wlWFjD7WWkj |vOp1J_G@7vԭXo'7nڷ[ZbHvQh^ڄ:,E+ؕ5d"Jc_F!ZV1)GuCIym/=k8UʯRm1\r6~HůM">> fGq+Zh?DFM.lݻӈ >i}S)D=lpTm %|feh DSzd<I^,u,HƗ/P ?J}{$Ӿ/mQ硞Am;F$,ߒֳS(hW.0ZKy*=;[2z"-<GQ/)V眾d\_˷>Qdzs2~ M1y݉I&-xMҨb":ɒKƆ5OcuWϻӠj1#XX&FHCRY$miĄz?)'́cNdH7W4Q"05R&x~Sa $aJHpTgb','߼Y럿r̃-}jvLk\33w`,rzW| a'(p<>mGl:U9mhWi_4Dg yo ܳ(&#_P&w}V8emhO9΍X!5b[>{KA\Zʌ}k}E̖q0A, ͑5Qr[O LB(/J69զ"L#IZKV1OVM2/閔YpX!=7@M*D]P*~KpKu80%.o9-+P@o0߼6^ڳ>"|)&O & jtQ1_pC3UªTY.IKcY$޺\ĹVx+9SG䈈ٺu Li/ynQb\#N^T抲STō"&\ُ>:ƝoD@vfH㕐kjsGτ 01|af䃃EtsUmSYj*˝貺}A<Ў1NatRMÜ K>7a(!Zg32L bv\=;{{Ji/:˄(r#f6dQjn)ng/_^tFa:UrDG -\4R /.=FYwLz,"l )~PtYP+ո_z\|?zbDv-bkׄ}HIn17_;lփy脲]땾}6Ǵ.x }-<Fߏǵ ioLj[Ff~~ٖ]V;%^`WeqoʊKIt^ճ^.O.u lĉظGtOi1Ƅ#%R#sup̌/f<ғ>z_"ՆVv ^Vg嶅.ť<|8V*q] cѸ݇;'2jo*^+,iiW fq < Q^0ݫk< -djЫ6}[Ltr.}pXb = p؎& }51"6+vє¾1:`"zorypgO$]<ָwg揋(|gN.` d˓KOٯ+_{]NF($~O;"zjb<.8>Q^N]'%Q)R<+P"K0zd=Ə 1,甂n!&T}/~9X[PL+b XYЇo;I"'BY[~WVi|\}ݔv'&1~UuҠr =t #7'FOѪ[FO!Vx!12hίa(xcmp( whO D~ bF7S\nb& Yz4%q7̏\m[sL@|~SXxk->J'.iPx486py喼RIv[>zHp(jv355!XXBj4 Ө V Q:Pb3ooY^!U2 h2%YbHK[\zN&:H~sù3̣RBY\zNxIƛx!aPLC0đ%Dh{UdxO#h<8U9 tTz`$;ᴮHz /{5u|<HuӴL.f՛_|C®jbHHJ`@F΍ɴ矘4$0;i*AûmY$f$@T:!wdC c'('nfo3 uLn'lۅx;[gަ!S%Q Q uK3{-kkN B[-'}/ORBȽg81T"#EwA;x56хKuD zGpr$דr>FSu5 M9?3G1̬{(3Lm6*ͻݡ侬!jo-hlwPZ{;P83PE)SbtNl]ӭ;q޼e/'N72? ߐ:A l=DY$rw κ4Is-RCTb2?&jh"lVqt>Y=*L/= Q=To\SLM˻ +,zL\BC朆^e0kDoV=l5O0/s|b!FzM5w "w;@&Q9?T= }Bmd2,a`/Mܝx&(nI!>p!a]'N=>LSY;Вk{!$xۯjٵ˔\K=tZqX>m e??5K1n$8xxY0 ]$ZO 0]z֭TU1X$v4Qj[^r7Ʌ~¦,)VH%jhn2~RKŰTxEY7ǘpwnZI+F-)SY< {EG5Z;mxO^W⎣I2KE1Y:6@" H 3dF@֞h虭;E\[.U8.ft|6Gm$nڼh~KX{\N_Y# y+":*MWKmY?3Rێp+u.p)l URL ÿUzd+/f-mv%ILh\{;UG)ݒ$Hs@GhE;_CK0{$̰6zK `DV*YvÛsFC#9Jmfc(PZ췥#$l'vOUthxTϕֆ`#|[!>~o]yrRn3XW(& G~=K ԥPi5x 74upR_5XUTZQ0W}7m!LQE : C;^yM479|o:/ڽ@P4a>z%ۿRDC~} 2%\_"4BN`'өE9)YRC9+D[#N4CİfITx>MKH,͋^j@-Z~3 8?ev6ẻoPDBÉ!͞?u5=UmaL&>O{rhcp2'f+d$4ou&-j x]ΑMDPdM.G4cjkD)3=pNLxz07G6 f{0յ+GmTR*q`Z<]drYOVս::Qi BfQB vDDQח-СWTls֊3=>[,)ՋA}PCKDYAVzB( /D4C*c$=? #hT[Nڮ K958]?LtmüqZ,M+7PXT9)d I<L%yǽhQ7ۑ|KԑsaIKVc9[J7-k (Dt[:;\Ucg߻M\4L"xޒv"<Fwx|8?DdvԶSl;j[[5nY1ORdzREWͶT~7 )Q蹒_ztƏ<}-mwg$OMBxU DR!$]U2|Zɮ#4RQ f[E҆rz0TEZUE8@#4nTyZ40];6,c'۸ 8g@DG55i-Z/?O9U~5vyge:a肿KѸ14DG$)4j񬐌Xux|@On,u엤 26^.Sx]?WQ1ި܆k|>)vF_[]yKl2g0̙&j @ژjIF=2at.JpUiG{IKtmmn BQ4j)d^xOWRA!R$,Z䀶k'y[k~0 x56~ܰ;43[e;Jv6mOC6!{ںr"q,Ȩk$TQq I]I Ry`8T>S3q[ZE g\P9 j~"!W{rRZr\adbT*`g {D~eEW(9K_ɇ[X! .\zA0>y:'|PdH9 /^- HZ(%}+,D\E |̕nIm<]36KK_'lEt p؎9wlJpOChEluG+[ɋnhr+5.0D 4!'0Pb_zbr!AR31pc:QJ{e9o<%M'/CA/=3lV S[VWhp{lHO)o O$.RVe'+,vf}\eI@匧gx ~ FX.) WBULIsQ,FE>wOa><⬿Öӫ)}E}fPMSja: s%\Zb䊒i1͖ ``12vD6 j06Y6 ʨǺ^r ժfu^WiPƏ{PKuJ=;!ʢ 0 g!W{iC ☃Zѷ/H3>rFӫcKsvOF纘Te#UpsnV|lOY_M. u…R6KOxX5F9i΅H `;~4!Sm\AMaa/!KlΎaW'YN089GįH?-&dgR9<_L*/2& Zm CxG(Uy*Y Q۰Yrbrݡ]`G *UԃəE& Y՞-:9vG Ig砷Ծ3ǼyK;‡.VBwfnCr.62҂MȾ#tɔv"EWF8RiD7$weIĹf'MC7xdQZ;͞՟ͅM>{j'g.hu'Ʀ!Qԅ܈/$ ˗-IRa t}A4ɐ9{4'ZѠP3Wk> nIjk>hJ 3%CvOwUԿ nYu?r;;ú>97߁"IqL 176,?ޗ'xM~HJ!g:5ɔCs^~ϸR34.@aNݪ4d/M"lԮczW3bneR" | zjݳޗ3QOMȤ8cFO5"~l{5v8k>r`8+>iR^&KU@4іgP!rwZ@ہSAW^`]O%j7¡^t^Y蓀XGW5&a|9!~Z7tt>ߔdr6( ˗^w ?9ټE@m\u-yGj42JH^2ȵRo8>Pt=^S=@^ub: 6谯Dbh{هSTqVmdY"'=A;.l^-R Ls'r/-RnAal[D(sH-堚Z׊e&2vFo(9W7/ǣt%Ż]^»~yъC2Cqs,\RJ@RjZ>ljs .x_hiA_x q!wΤAm *2(5_Øƽ2 ͖ `jRWX+&Y~ͺnzWU_/j1@AӅ}QbȬէZ#*6 1އj, <F, @(R2fOjK4E5RWaQ/ cw{T+({f, kG{wTMYfqՇ d11:l_i֠sMq3Vt%D7;U:Ecez21;К16lJ2f<*&F(cGf+f^XlůJ rdƭXXN?75S7eX# MLB HM1k!y./tĪ ք Q(5B3djń-Ay0k8U%V8vpґU.4ή`O"rLBI!b5h-">R' K>I_yHܶ=K?#)':Ȏڠ2' PySvW܊R -)^g]>qͷ.B^"Le Lu xb qU:X/ ;vT?h~+_A2z2k?_rfet7)<թ) By?jI. c/]68u7"1h4s! һ}K`WŬ;^&#C$4wdE׿W G]Wax}5e+R˸|g~ռzƝmUI9[`lOkvgASnG(lAQ. I /Haإuup|53c8\ї'\ %>Z;hwH/@!klm;;Hqنj{QcDUϪvHV+7֕2&q?mW֋M&2$Q57n!hҜe:V+LBF1OZH 6bꂠ}Chːc<c.^9P}dO/aްvJèѻG TgU iA)7HxEL5Mc&l*ajU%,oGh% ^yAx2^O4sV`GHN.`Zgo7'K:w,ضdIi61.w֗M_YMʅHӋ$+8є̮&Uv-F@smn<#%[|/Ęp"Z<&gz'z[m`Y^&aHN8WvHb.-l٤Y86)I &nc}C |Qj|zC 4Wi  v{MЋ˘;=ȸw3f쳲Xj/РiDd7Sˍ]%]irI4dUDk[+j,mtYMm9{^>߁%-x͜s [9|oE3h'lva8peCej6k;rTbq^R͎߼Άtb0n2%WvYGulRT?I$%yT: ]ˁ}./NRkfDW)XCiqU LAFKp&"U G`udbgZ? /Hq'!9xLv]B | +fs\NYRC6GmY$L蟞x^}bU썛XBJ7Pυz L;R"BY&L*K9fuhJz Y=r{8׌*G9JM)!WO&pf-`ȇ;N3f1 Gۓ{qӶ[A ttї0}kIZ3H[W N)0"O0LJmQ/?X6 8} (fDD.OLI>Pd뇏`Mh7#O{6Z^ )g-{20 #4=:7#ÜdLi崰},Z hfxuoA$14pDzke'``ѕ`vLv72 au{ QlԊ3e7A`69Z:*`x[&-h_n-CH,/"@d2/[\RlzZ#gk*ȧuf)?1n/-Fwa|ńIt~c%W ̰GD!NEfEF=6|my*fN&_QPfAW0 )>?%6/4Ũ<# +hI5z()~cpG%.E}xNpA eJGte%Pխ7K̐]nuN9r߆\Z7$ʠuLPW2Ki6n,X6r*>#=Гv5XnƇ;] sESMZֆ0:֋{A.&{N-bGdb)N s]{5c/meK8x*̞p .ٽRn-x`{hT*+F Vac!R4~K"?nS&Rx#(v(Lwvӣ8{E.f/eX|e|.WBǢe![t}lFC"ϵ.ZW!5=o׀ CdOON(,W F9c.OÄ٪s҂Qe@~Pǣ̨'<-}*$2j (n, +8!PBB(M*G7|v:\괎.#g8+ZKS]xcX?e\9#Ysw LyV2k˻g¼?ȧ@s#$.lUvbh Bt L ֌R.pd:S#M'V-KoOf#-J֜c&g9ɇў/FX$J0pޢA_ޛKZ7TLQ@O;ئtcB~@S/xTM.5(ZہgO0MD$Ur95;,ќ/jxe6|GJq#TV ~X*֡ad5i~i.*dY,*kt_*iN=;>N$!@  ʦ ]}yKg!:LRToyJq!ĠiOve]3esmEٺ"!S:{ّv})jM/|21g'!X_ 1>1ep i5M@0ra SU@O9?i?iI W.D$kq&7]]wU i1jtXRЀtHM(zzH "Tg¡bIRyo@qΤ)۸mcE`CΤLOYҴ+ ҙ(0o-;t״9hS_7: ٤M7w l{}l$9.;@"}_ 3![oɊb =K"I ($S݅T: oԒ6+,g ix .X\Zڌ͟,A%;~A DMfl:(D[un6|}ska]az 5 V;^[-Fx4?OJݳ1WK3EaL_\ נZiF~DCJª B.)-|bpG5qWFϒU1 h-:LP?0^3LctoZSyKt4',ZA#Xm-K¿erh6!q4t$/[, e&iFXn+2&bcaU}U囬'<zB]4KLM} m?.oiyO5 Tr7,2MLEIت8,"Y>k/NO~z:oM+] T*{&SgÍ0Bk6*k"Jy70w&#wmX̲qlj2X쳤l|!v>,QDag[R(P$ɉ(QCK7$Ab-0Ephv&v:"OtpS~|.UbQvJrC9}v7U"Ie' GG#.QĒvXͩ 5!Zmg@Ftx_]2؞Wd9蘎-|.KwD01Ey;'v1Ӆ,uYC ZqGr w@gy&-G.JKC=U'о;;MuNJ$zJ"M]+ a(Dk+gF !cz<ږ}Ko$XHdR^PI+0PtWg&哼F6-W'l'tަLk\g$}>gJd U>\Q;Fϑ fLA$tU$]Soow*4K?qh5u7/yBכXk>x\iW]? wN\QY*ʂ+llKՓc<l~L=5kcfNȗM[|9sn{^$x|!&뷸X|.iEQM|15IJ D\kZ.è:@ˆ]21כ{Y]]z&*т/,f )'lyL?XcLzػ M)^.yj/H.T|`7lmS~.N œ}`#)K ԥ36f. dp~ho",Gׇ ؄ fiX0k Y%I0d҉xogh$| Dau07vS Iq+)28ClwS΃00֍iݐ{c)ByO %]u#aQeP6{b-Uް[/]Im6FbD"|Y-Ȑ8E$&$wk 2+C\WeaMp ƙh`bE?is=vd6Rc'lg@A["Q %SW 9:СIhDV-ɷtPqvMh uI6; @6y)+<7}+{vpWM#1-(`vWtk!E#H`<[L&Gdp Xv(X✺ =|DT{^pa^ G_y%tX h9(DP@sכLhr)BB^hn4D0%TΒk`GnJ-V|%MZYz ͒F+!YK׬$;XABg]cDǒA]Q1} C@Es&72P͏J)Rj?#k&UmZzH8o;cc8(q. 1'vY:[_-͠F@Uo}\gQ>q5X,C3JBH)9|v`Ӣע\}xwF/nUviۏ[ל1I;`G|4FMg|uNNa2"ƉI,mkс#7zq%~pt^x!t;}uɨ|.(&J9_hJG?a:#1jqM/{(q-DeQq2> !gt[E:~rI @&}݉;vZUjR!:m=(_Usj+gghDH5HtG=JTũY+{+Mg@U#UIl_Q2ҘIZ-rv!{ (I緪pV@:ԂK~=q8횑i>Y;Kί;^qZ$^2YsTŻAHqXϦ+uC$WyDk&Ѝ+k.B*N/+?6Rte:z: & VXtB]O7&"e$>+5Xۘ V%dםnj"ăsauWLG˳ikN-Z0~ |NۏNxmKcmmπ6YuֱvrȧD4cQQs1@e` ~cyxf$/1mA5vKdw̩vćx"V"B g^cA54"hfTY$ƒmJL}jbڄ{HD%^f]X{\j"&:^K!FMK(1,mYIs<ȞeW/; Cfa]x,ūyƼԥ FElӠ^f%Ϧ3u^fj767R,0)y-vm[_6'(4NJsڛQA%٥볪fvHXopPms%=SJ5g3go9E6:j c|qGEE4;\wē:N^hPKDwrazymHKIQ::^p߈{N/>*Q:V+|br)=H-CobtPt]LaaU,mXT_o: sVVX[V4 (@gZ SS3 ǵ^{iL*2_#h|*J&'2 ke8ƇPI5&z]:1V4RBU83V]XPf6SaVXVN7Ƨ,3$2^4IA{ԅeLj Ȅ連{/*m@g捪|7Cc-9 tl)*γ+ ɿtv^ LS\]u{8 H$ 0A‰`7KHH_IHmߢ]ެv]<2W7e%< 8!ھÑl74<+͊6ݯViZsC ܀ ,SP*D&ii' w I)l^1vXX8B"m'hj5KqY*EXfx` A`@![I wO ZA͇$R:p)-!crT$(nxwXGbSvV)>=Q7/Z6J[I˅ۢ# )wA6s7LVS8)#}P1LʏQ85d}CffY1v]53bX8xRt44Io h7ǜi -zUٯ :Odz h=p`Z1v" \-w\7q}Ah~ p. HSa|$h?~2aVWQ'rꓔ۞V.Aj(\%= #?$x05(l;A[鮇m%XuO'U*Y):-ט:I4GiO.Xhq鮒0-t땍]l,-,yBO2<=v-+QzP ؍e/KFƛ//㱴[*o iqri_ ]e!g,p^GAR@3&C0, ;|3yA8T8ͯ& ¨ZqgyoݛeG~]ѷ0H8M)wHh1꟥2Ԑ6.X#LmkYy @OOѢhQ `vMH0qbhGǃ PW(hbiMoމԠG9)|q(?Qe\\|5gK׬ ߍo%|j&-U"U&z)T)u=/7sk[Կw-3/v +\mqUxg%cP̤SV$T~@8T(9{v~%/[u|0{-VF5IEѣ˩|E— UfUp19-3'pY\Jk6Y}8/Gsh%!g6(|52X3kc~w$pRp x|qN4:1 ed/fV]W 5Tlq"\,8ߔV03eaxN{Ko lҊ.쓍֘cs jv-cDCye2k} nK;: 4Ϩ(4x9F3,zVt6uB *y_xvƄC6*ƣngޕ-T#9o*]闐ZCsh8K-P+OW,[IG*C "l;^ q5؜@y[苁t/tKo:*X*2tlfZ (:w׳/aL"2B)fh@x{w~o%"gr0pa~SJ[9EDUVs+5b B &%]ۻMAi(s4D|k;exDym̥!L>Ih{$yU $ !, n{_%COĕ@fiAYN($Tȝ\~@%lQ탏1=&9n]ո] tr^)5/WS#2:TdKtit`O?Įֲ'CP:@5{GB@ږ4+`I5|[bQJeq3h{aF*L40#eE`&)7',bN i'(H T5x.{fϟ4K@5 o86,f4հ_J-ЪD?sࠩ3I&^BiAy1Xʸ¤hmr;@L﷊ fWeA@ߨkѕg?%=VBYԷaJ5h\y ]"dC ;, ΑԷBnxmJW:`!@"`0ٹ2.d??ƟH JgNJfTS+Mڱ)MlJԑ'.g Z]3!gᙑHi>`|"D4Y ӇEa{ b-1bȷDxMA_tݔ'3X|Nԥ{}k .44ޅ .+fwNm2?3߱x/َ`VŁ>/"2:ZgQVJLJH+ 𙙨}|C^'q cM$:~,`XHڱM0rV#v&X[n"e{yCu\n Qez# Ѻf1>CCz5oLS7sk@iϯMPQaeoė5_BwS!G2-"鳛rm_+;~6َ sH9R7{dӚRvt/h @ t,[Y@MfpDYp~a`\eVԮUW;8{̈&VWҕ2|Lu91$2eBl⠤f8Έoh_6Qش?1͗jY rB%0BN`0G"Y.s5T8#M_X#=?|EGN>Tg%ǟAp bH]5Z ?yGq8 >աQdeիk*ѭ&ȇvp3($i)F k:'~P)Yt/qZN┡x 죰aGg#AlBHoimT<ŽfSER'Zeǿn8 ynȗjAߞ-\ Æa#Eq8XbO[^ҕoIa] ~Rt!ש ZQ[[>7JT K x#l;){HWg` i㚹)^J1L2xՔCqղ^f$]l{m{c)ã)bp >m*RvoTA鸻e:!NKnYzo>;?ViMWP187<%&PUV>|Uηո{Ӧ{4Q|R˦ʼn| G ./ 4Z"c'qI}DzrB\Fjٯi}:x3"/q/kErEN*O|?>f%m8 y*5Y56[rc=~ws<THږƨIP*jcQI5xGa/I;fT^D^{*U?U/ e~Z9aߗ.Ao>⋧G뿛?4ڑk $ "ꦃ%zRy *c s{to}vۿ *'j t㷰j݌Wk+ `-0~"ؔ6puT\$pۄ0^ {Lcȯ+jw[KX>:bU%vD5  iv5|mD]vE5YQ9xkD"cŚjb!+Qᔉj;1 h#x~e!y#D67: -{qY6R٤YUȡ?~Y3S+ˀsxXQ0?m0X=4B˩Z =d] :Tz=@\bWrGێiFFWE` Vsx7y>([ȍg͟gC 7pxdfWgQ 6Lb'IUzJczp䶦ޮ; ewK=OZ{;@J؀R~Gv6y@YYZE͍QώeBwʐY3kBkP0D|V 4&IX&8q 3c a^|,8hX/7ggqKe ?t9{bƯK6VT2d8`9 5'U<!3އu#rH tKCAhv7XF;:EM[Suް~zXta%К:aE-`=iNT=dmAѹ rѪN[v03s{Roj&w\G86 οF1(t< Z\2<ƳUT—E.*B/< %c8# 5\K6 Y$6/ "e2d"ɚ"Z$|fVU_]%viN;eբtZkh@KW>.ByM;Ҫ*c@Z=g\rOU8m|x"gwdweKML xypji |-n1nG#K <>e<ʵ˃HPVgocc],0u?"fg-5*/YˡwC#SP~l&w{*C6,GvwjP83@5&F\ۏ-+Vg [#*)/CM|w=|춼%sB@y[ ֪ɼrIד5>R'ȄyYID:O&`7cb7ܷ YA#'ߛ  T?A, QNٞv.O:r4=FՄR6QZMFaX * 1 /vIVO9;kFV1*9OV%nW p;W =_VVˎ5cQM .S'5#GT;6AgٞH~/TZR0@lآr01,gLȔN4LE!'YlL饌JDJ'eWl握:L\73Lyv--Þ!1;fcIؓ/sQvvLy-~:4~cA.&;5VV5mȑDmF-Ibf 1]H8lSV \Qˆkߠ0I8c S#%= sh0$u˿6%l+'>NShqɣE.z \~sn nAAGv#ix{\iqB3F0GrPtH.N~_bdqV[2.{Ne-[[vt\I;{(Ii^62R+& KU5L(4k駩eiQk/S dBՇlvm!$W06fFD|?"T8#*s.q+E3jU7i)kQChEdU wU>E<7vCR2c|Ѽ4. CXTzM,Vv x!t wW ?,+ > stream xڵUy8T{tK:3c!a̘9c6k)K*HzK%QBTH)Z u[>9|ﻍ;ќ0@+ƈHǂ# Rn` EAYق 1-hP ` r\Đ X0y&A)*}AGq!TU,N$ 6tD%6Cp40#9'$!@DgHz47w]vq8k,֚ 4kOwjN8/ i[\h($pKlȀ\=P 0N  8< G!,p61<  8@ %+ddĕp'0<&kN@A'7AttV`!a: bt~LA |8~:oÊZ1:C~G`B1t"@,P=*bNV4w{0lVZ`7(#S̴@lje.*"y<ؕPQʮxKn [- /^Eb$GBwтc)WrY+"K_ZvIqez*==D9W//6%c_2>Wd5JWK.<߾+,U+x\xzͱxpB=KGVi4JDlIwuklЉ>.~<a-hBD`*O]Y]\jiTm4}\.{[¨(/2_q}M%kMr\ O[!zM'Gjt|̡=*,ڳ!.黹H¯>l($`N&Tx(GLԧ+.$69_u߄ iXlfYs{ֲДךhC)v% n=;_7ШBCQːVS{B ?vjvTҧz"XfbQDc,٥&fv22 "ĺ܊Z|z{6 J0+j9iM)dt;K'Ql͌ͅ^ari2(7;7.0K<.qbͽse""FnqDD zs=rMI&O";b{"M)0 ŊLg~DṾئr/ͳO&&־x).OI KH` U{Eת .w<6_7qN0V!kuN'=~zѩf2/|/e:˰?ucG ԏ^,u N\66L3uLq~i$OR)>>Q* =QUF}X.CZ}gYo?T^%ݗH%~kXW.-¿Wi;=#f5rsI0;grqyz? Y"d¸ӓ#Dnߘ++šJ}$^u׫KR[M*bωdŻ9 ڝW&'K8{KxabN~xL °S-)BAAYL།OYWY_-iWzӇRxݥwYL|53օe`cb5Ck7fd ʔw {#C5G-bRBcEco-+yq/N9N3%6OBsՏɶ,a3tdJd8{g  :C4#i\>].Dmx5L=]Tv[ O̔V$8VT&#q's~0Xj,c&וֹHmE&"65O99f^i ll~z @V9aFu'_,?:>UN+>yJE4쐚 :Wp+!w[ XMّQ6-k&|oiy')3`5ir1U¥]O&Z uTΑEʜ.z'USl}u}F ,5@u[3GPH=œ:΋\";#N$ڽilxN(A Ɠ3ॷJUVMM{i{5VohH#X`V䍾x =~ɆjOb ߈hym)$%'iqîSp\Vʒ.J!͕WU5i/m9lY3zgzy ДǗ[lu[KP*#%,?++6_~vQ"/'|^ီܲS;zhsg [m:MӤ&/r}VH5'mWy!okmWRj?3 [tE̒41dNZFwҵ3߱Ouk06;C/I Mm25{)/-e0[Ƅ$ey[?L'vs^Nx?u,{x#fO-JfMf1/tTչDn}] O'I8&ۜne Yd^x\;*s9k5"h nyFq=C^|?'*(SɮqѪ.~Q=XAawDWn "M^'l_&²eQ8+o> stream xڵTyTv_R AV"$QTACjԙFoIZ3>yN#IizSP I]4dB.Q "akj a6 m΍J# D hk&v @QlGWImr*fybaMm+IiB=͞NmQdxX&F \ !xLcf뉂#|7թP:BMsXqCR&!H#%'TjT=_A 0!\`2϶6+5 X3$5YO0WC$X" eɟ;8• =z8&ˌ|t};͓3ZIhM@~$ q8fGV3ZYN$ô=|8'Ag ]$w ̈́Bx<ݻ< vڴHj Yb46 bzt,v;+<0* b2 %‰xQf!{yd &%k\6-+e},vϻ~+"`Eק<[ҰuξOpzHFi-))]k+;hiYͦ }?>ۯR,]&qiCņ)7oMY [\0=fy=H$c_J Z7Ɩ~׉m R4|ǎy}8;p'ϕyLuG.(vh<<ֿ7Hݟ3/|WϿev_e~Źfgͩ7s |vVX(Ա7뾙e1#n_{ǫmVMȟqa Lt$_Yϰ5Mƞg_Ux'jbtKNPiԧ(N Ϟ_35eXEkBdkgrEM[ON[ȥbZ6~KSC~#[y>y͹Ny/&Ϣ;چϺuGW3+/ 6;hJLzxX^/} pߐ|1tZ\x|իqVk>r.Y/|׌M endstream endobj 14471 0 obj << /Length1 2882 /Length2 32044 /Length3 0 /Length 33617 /Filter /FlateDecode >> stream xڴuXj>Lt--C ݍtK#HtK4HHo9]\0'\EYd| rtcfga(*)Anl {  5 (e񱰳p#Qd@0m0(L5:ӿ Ս,:Z8& 'o+k7'3oO%Xv OW;@E &mt Ghuj5eMuzcuw''")! j1d45~:]4q͕55tUY`x]\m~Wn4RZ vss`edrwucX8+b5p(ژ]ނ#tlN >p+_**SG79X`Z'A @w S+37:7]9?K{]_;̊sdVoR^>.; <Ҏ p֮H'eśmtЖ6nĪhe0@gܚwf77 4wXH@;FH s7𘃷 _-ALW?@N 7hvٿbugWGf`c/h'KX۸Zظ[rnw/JV,ܱ}`y8%#n¿wwV)9I) e_ZҎ G+7 <_v8[+# lprwX\~/%7U7`Flַ;UAV?S*A ~߈OS p? E)wa\?n Sonj7  /{S؀7h6`Opbn5`W'gp9O('7ؗ#xCnOv`c99Z2.a{8.]ـ, N87ru7 _sf0h<;rKs:kjIk 럌ŹY7O? >)8_OWs?; ^7@p:%`^U3ؓ?A _XdԶp)xy鳁?v0 + /_f.n.3'xzY|-3[(!L3{w|n 3ILٕWp0$-43q?%Qۀ3qwE; '{w-o>,6h#+_;. 'ȡB)~ÊdXT+Ǭˆ{f/΃,lNBSɍIBNX ȆzzoۍC.1f_'w776\1łucY&1>W0RQw Ժq!VUqeȄb6/pkv\Zw7HПd8ɻWOH5QBmcz6oI"q1Qa$\|TNpIPAnjFQ zF3kW< 8LL8#TvĤ)͂.B<XF/tn;*= ^s_#KxeA Gƒ|;o[vJI;vh\Ay0ϡ%GXZ<ѻ*=,G *2Maѥ:6BI) GNʤEw~`kZCu>hkQIZS'NQDO],ыas\䉣(N':2F-sPш!uEF~|:~ϡxh涊n4:jW]aHo) BlDd1&z04Ҋ9}DIE=q*ydM=MD-¯e:7sb,Ԙa5fD9Y݅?o fV|LfR2>"Jnw| JD)Iݺh2*<.&ta6nSjݟH"s?iV23& ?Z09Z8\̾yUc\?fK|A&7긌BTMH-Q~:zȎx\HΫ:Wŷ%y*h4w\:eZlj8 y-־3r֡$IYq 8ٛ1GWL*s8=3zucW07@E*9vOWw1z>\^fXF4㔁gJ]{MlD7~]mDk5,Rzͱy)y^Ȝ tI]E WcwYImh9yf6Qm6{'6[5mpQ<㔪Ydx ."EO[bVn@ Ȫ >A[Z|װ9 }_GSͩpc>ACI~BY%m݄ޘ)_Z̏qI t?ĵ9&nyEk4YY 4BJgwК}'5_ ! ;k'8(v6)tܔ^bo-DJwK:-lO[vp ; 􏒢\Xx#qϦp4gG\\3qQf{?o)E7X.x Tڮ.B#b"`8t:c,R~Th6>H1z`ıvSƣtYvpՙ۶%Yꑆ$O11jBtI4SȲXIǯɍtfHTQYed.>`W ѻ)&Y-㥟G*b YoIb|=%._IJ>!)\왪Q;6e]nZ6E7Y@ᚄ$x[Dm_YWa1|ddo "?#.K|j$FS{ŢF)" < 2jWr}GagߦE߷yN#qW7R9j%2w 2m㊢OۂU[8߼ N eaD}s-HNILH{JłsV5Տzhgg#ɳ< e4&~VS?&6xRR^\\L0a|q^r€%b(^9W"H[H=ȔX ,V">G;L39#M(#HekWdQWzOJ͠ɠ b˽"em=YAu\EV$:j?@ff.9oUj/Dl(\5<;T{Ĕ9 HN֎6L+@r u*tU_:}KAWI'EJ ki;c֔>"Aed+205ft ޚ.+څ}}z_<_WܙS8@!"w5,G{.7´n1qgabd{C1h!lP‰ Jæ=ÊPT.,%{ !lc-]/e/ G%u%ةm : oaZ[{ِ썯0̤D;3+hLM]f(FWƿ4թs_v.3~ڕ㓸Nኪ)wp!xu(uER壁̭@DQI_+& 0gƃc4:e8,PFމl`Y3 uC 5lg;-kSdR[>dD2Jyx xej0H}{Ds |[\<6zkO=qM6g)2Z34._)w^g2dS[x5F|DBJ/tBX% )fnXV$Zqnջn{,儂. Y_;]Q;xBW1`h)ѭH ) s/(3VȢ,x^]LcCbΛ'"kUiwu3ޢF~!$Uـ!u]139*'qd# cb{#K3BVGo!Lyi䩋I&%VvDհm3ZAMPN/՛qF&%)_3pYI7gUيp_R}DQ+bqC ]Ž3Dwe+JZUYyy)@t犚?p?uͼi_6=ARKY}%:YE>S^&%e5,ُEmM_#a1Wfս[Rʗ(ƣpF7hFuJ0n4Q$Ղy`PhdMt !x fr[s%C5D-y;8Y|w93,}ԛ|Р,XaEB3ൿ)!~;B3EɱD4e:l͜JoB5HEi+ոe#.LApM#Y|bqO*JkS ;1 :lv<"~ 4{1Io`a٧Tjc;ʒXF~BШ8AIꍿ6LZt9;;6B+\2w%o]9 (5Ԇ[Wc%Mhp0u&WkMw:dz8) lBF1Pؤ'yH%y<'4%ȎMkn)MFՔxz{(mq$*#(Ͻ#Lu#- N\l#C#r+a\pߪ;9{{ĻL$x OX~DjdYrӌ@Cl2/}C+$4afۆŪrob+bhz¦٬#U T$9W:,+tGfۻ 2k+xk]Kx.lU=,m-r?/鎅%fjYwPwrJv.)HP˶1'MphtwC-wW쟷dnn\\Ϋ0ټNnJugY2ܮT0c0IL~X4F*y?w_i$Y0RVCә _u^>m?8`斫=S~D; |щ osWښT?uN#_  יeT_[|9 k2|\ˡdpX'*xF~{ V/ Uyqn?LQКtfY Ϣi Q)|0ҽ(;:{V"CmvABɊ+c1#t˪:ȍ7sfƪG'm1DАoB?yܸv(Ah,fvK.`!#ȴjqvQf"'C#ԕ Hm{θKHѥl55ퟱ8\[lׂe:I@ oef uL`2ش˲vY7!bar< ,EІ5GC}„ݹs]\@`A7ܫ4P.c5~nwfJArI ?"bPh&Xfva, 餒>*\0ib֒^xs$qjÉP̕ O 4S*,݀*}p,FTAFEt")~ks-.=J{ m&i$~lِ;:."KֲDT޹Z?3}n}"eJhXGzHjAIg xD'16呾~{T5 T)UXŴ@i!XK%WbZIrZ2)vA"lBSu eUur''d>zz9Ki+%1bך\*wxߞOWģ_/ڱrʟ3Kכ_OT>z]'ֵF3 c^<EPi"(g'G܎d SlL䫿ƍ=ʽ/=? 7d {<Þ4``3+|g˒.bZ(͓>/J<=p[ "bg6 [2eDK3zҐQ *RCJW'T1YVeXMC9F>JLC`S9K/l?6ake;Cmu'sqr/wp뉃†0:&)Wap+'1.hV:k'W lޣ>cdTie+6탢ÈdDa>1k*| nBH Hݝtv'đEӈi[8H_Y5*%9NG%:0׫)\LNG^^uDgҿs O&"6!^>Gyy}|):?w)S x!˩̡drJ`f&=50i<M|Wܱ}Y>1H{,Ki6:DliYH/.#ʗMV$no3Ą(&}t[04!WCN}᷈Jnۇ (Vs\݀uͩbKH6d9!HǂA%3aqaEty0f3f}s0z_CDe}rIpA k[ضEYy151$ТHelK(_”++__'7o~ҭՎU̶^>:x}¡+U UW˳6gt0nlVvA\êK .Kt%g=.yH}'#oޙfh$0b[R 7FE%YWV&uІIʐ9ߥXҟ|YBV296CoJz5&d/&o෉ag{go5Gi0 o4J&8p4,~$C; q`wҦdMmďԠST%P\v}IUmmkbzGo!ҫ ~LH4p) uk4$dӰǏs;I8dv7o$=y R]]9Y/Hu߰q^ԛ,5 *4<ܬ۞]^3R ;,[d,xMVs@kns`(Ofd|O!PBBN/RqBD`y+ZOQ&^ ?\"`,2#W I/Mc,-CSGGeO^TG>lLv*!\3޺#ΊVJ2.\U9|moR |H@n9ƚ_J0k 1Yfʍ=м~I@pe DߴAD)PW)2'V68H?hV}HZ_W$K>ٿtU@@|uT_n"s?*( Fؔ$H̍YDGn*tVP}"RQ,C/Z.n٬& Î3dgvTU?GM G6E [7P놊 bR=g5 vx)a ^ɻX4$gTrZ&7=E5z zRj^\@l쑏 _:effhPLWM쳦Kw$|20gM$h 9s3}Ȩ6'1 f(&P=F?ej L>+ΈnLd' D!iJ zEE_tH&fs#ݻ׎$(\K6|l4^jn<-!,koZɗ3T叩iJN&4Vv\Z)@o֦&mmдB'U x~IF}Y=d6LFoB9TY NfWQd۞7hr^4ߒR}25f85JIICNq܎KL/5v-*,7mwE0»Ŧ *)Dɴ V'wgW}6Hݞ=CYl7?Y&ÚX&$R8l#uAW/ P2۱SYݕ!drw=`(lq˂Yo(˂$3b+5fBakeC2UA1`Ly-T*ėH2d (^Auaf~$6ʓcC0?b㱺| & ?$(~Ԑzy~M+>c<;Cwi7a4=Ar )=mUzVHO}*͓9?"YEP}ǚ8`-}X8 UWjrۂޮu_j 1"$7O~K'p15D[b=7qiQ· 9(.6x'gIP']m׳uK>͒,5=Wb6aJ[/bꤒP"?l0ӄlayR(oӥjMg;% Ofjlkעj/ ėi/| JD4)Gwo}uP]?UbJVmMZK|~i.Џ) [IrBDܬ󲕕ȩSA*AC"~ړڙpsQC.fBY 8A>^7 TұWlD>*myzi7`,P` q$1xJ- q {;c&U"Ƭ9G|oNޏ~L_b4W yܫ]\oMopA@$5!iTM4@y:!e2+w|Z8 tUhmR QDly4O4$ UxԺJMY&S)w2#e +V7cXlB]St(ը\t+ěA͌MxYޛ @B;|=BSBpW!hK9r꠫浿X%瘈%$Ziێn=hFtˍclQp &GĴ"ZTUÙ+/ZFJH}]jV`Z_j^\9_;G@ A_HVH=.`܄"<Of!>]M'97boVk;$j! 58 uثXzSnpAA3EFAo+p8(J=GOǍ:!Қn[6ǝGtZ `qOazm?43|fv6V\b}#]I摭LԌyaJ%q!"CID!ϛױWRP0$f5؁3r҄ˆtw!f&]g֍IuTe],q # }!H1Wo ZȱcZ97F=φRz9n"S荇bC9+g{ص1(n^Rb_r $v̡B *.~т2$ a_~O~{ 4 Kryocn2qXIW#j&3OIb= mywI_qh|rƝwQ,v>-&5׬k[T8{AIP3ao#h9R2IQZWh@@mP4#?=]ֲPEsQgp Y*=P 2PYdQ/ y˄ڮPJVR )\){'n멙*41ZC zUmwmdF(C 0.Rj1;,,|mѵGwhcfuE6cTnS}_YZ7J 0o=0 L|GrXyi3mYZ(5h[澓@0 " M~ڤ>UŴiO6!KE)iZvz nmfPƭr\r7o`]>K\v*{as` wVxNsE80B41xo;i |&q ,#Y^p̥nD&z%42u8Mص.|MeiV/&t38mW:y/N90Zf)Decrg4Gbe^ҡg8`X~(iN}($yGS9:I qY.T1 JD֣:m ` MSY n/oT@@ }RRά"ݻZ75u -AxGw 6v͐d1RĎJ{&hGu|FeOUs;I'=`/0O~!|C/Wݠ">G ε|S%;xoygI<8;KJNv"~oMCe(aJӄ1\?K:'϶7|7t5I(^ f )W/cODD$b|& 2BOUW^N,baJnXdy˽GvMY@b`Wx+`Q%J%bF_eOXn+ ~ų޵:/2Z2$"웓m} R^_.nF:6kB Y+ھƷkidR&bW pf-1Z~a (D;ΆZQ!$ҿ}=ϙ})}TK,it ucF?*RAGxI;IzD\Gb:>D*5*aR}!P ])6W'EՎ " rKwT,A,_TPқw>isP:_82=äxZ,h4F׳4C8{L95m^fydrR`_^o&thJRC!@Ћ`KZ!ѝCWLK{m3.su-ņ>!Cm ے/2JFکE6R<mܵT%j cj׷͵l CD^=-tXeGJ%@>^>,.ܡf ;N/aFː][ͭ8X>KP kԚ(a;c1 ] c;8ܙ*3͞ԓrqn5\TW6jZZcܨoe $@W+nˆN5(?=v#|iXZ1 Q3J-1S{yV%K (~Yhu'?c櫂[ܸ:/&^p u1~.H6lt*Y G#I( kV+(3SɿeCL Pnc=X|e\K?gô0x]Ь oŠLvz!K{=~ub#NT%bzIчˆE 1v,٣R%y9u͹D;8Q貐o ‘fdEYLEhY&n; _j h[)c@LaJ9Xb.?WL{5ZUYA 7Q7F]^o ^xj10'1 ={\zČ<ѓُ93j_^i|Ԓ|ve[-"E2''J:PUqʉ1+wvj>ƅp-l"OCIhi/4Q.~C^O\Ō0Pk7!Ư$'$/?vxM$ ȿ <ϥ9y96P\%wĨ6F\:)R{w˧3{ΚOO8K bWYj0@k$ݣ.y)V#Byg|@ozO:wέWGTy'&pץyEԍuHl2>; ?8T`?XV#YЋ%muTd_guǵL?4 iYy7BAۋ/N+~7]7W\y[U|ibI~\8g|}t11~W:ȇzfR*А_Cp/ljkE&F7q{OsYjG֣[E)~(|l [&{WdhK~ (?)Հv܋ =-Qdɲq˶m۶m۶m۶m۶m,z5'Į0K24W7Z nPH=9&xqHxݵWgE?!̬Jhh4TZL2tܥeDVLAitf7@"|WO+3#mLXGhH|!e-h ⑉䝣fr)1Mv"m>{x,jj*\іͶ•-qpOykQ>`+fgs)pa7zV3+?(Le=_micgbTfz9D%'jth-b]%#q=^4d̀whܘOqV-u{updY幤MXK7[0}şSrl_^dp1Q~Sɜh.1G}L퟊2[dRp,V.,{N7ο dk0䱆(|Vc x jɽ#1m=(01?[y9_e-xO W vRt헶#HT,3'BfF/ܑqsvbn+ d@C0P-3G-N'3`%ΞQM}b~wzz{H|c?&F7kėh$qJ#D`v{>Nv`}aH"դ?fY<2ߖ˛N-(\w2-$wJƕ5ֈN  LɇwGQ9P{V\/^teH BvT|ȝf}Mu%4Im*XzqGg32J7$Vo50{(3!)7VР 5;,l'lZ9lCۡf;i[ ǣ(##T㭫HL_L$W=>m>fCfsw9gjጒ~, V΅VL1] [GH\`zw9ޗf}%ܽUF儚1+,[UxYa !Bk3bXm*l&6aHGCS<|xe~ Z؉*F d,PF37R2MӤ10u5-TY(sMT[.e@ )iyjD ^SO`uAZ 2>[:ʬaptJ=mWF>5Ӕi.kd`섡/,v{= !R# r:\!poJJ$Z'2/(M]P4UٙыV1._P9 k͐0pTt$hɼ^ۺ򝆶Ko3dg$tW9NLͅ/d4-?:{ R\%ha(U&6J,"cևԢ |>qOɲ篘V rϼ@h7ԒP;fT|` SԳ_[ 콢kZ\ BDGn+j$m$D^vES=1,Qc_IkY1D8ypȓuwHV͝(-!O N3c zfP`lbdQ?i=(D} ={@< #&KXG`F!'CtZX{ENӢd V{c}A5MKD.=@hqLӫ?"A=髸 0 lkGsFAIEq6 w-Ϩ҈=[ Pyr/'\#2qYAH$8bMJjPiKO^kpԞն/+boA tbX |?yrx(Ok7֕8ޒe*' v8{|VkLИ0mV:]OWJd9CEi 2EF(6v31ơJIXroBpwp5mNwv>7 枌^៞t0"bDfFŷD}%*H:b:)I1Ky*"K ǻ%+ vnnvs\r&_ELȸ1 *r$#YoFϩ0G,TiČՅߑ˂QB]qԈhxvlhqx T%NƉ\I>Y៟\|9h[Hi!Ts W˽㐖LJɃ1j"+KH^ GۈxGA&"2- Uľ'a6C@.'BgWb2a?q u%Si7QAi;<vD!G"h$I\U4[PU`Fsx|SUY@+<;P=nD2;:ӧfJPT7P+nlӤF-:ڻD>: vw'2nd=4 ]=ѕm0p52k蹶}oG)xAi/DVt'臵{rtx-gtjsOX]k ۸I.Υ_L)xg?~<Ϸ$e3,2bQPRU#@mS=A~X4uɡ]>B/-T!v c>o]/nURyEz~CpB[7`fntB&CRMCs"h|Hٔޘ j\h-RֳVe6c/Pq!eGPd{{^Q;:!gF&.phKOZ@EnO༐ xJp;݇swU/dr{UN^GVoM3sh<#,Se0.Hz#< .Tee:[(oԷ-U#0lephǒb>iU3v,q׎-:o SDg a܅aYx)mpZգkp bX!  0rT㓾c; uU氖To0 A䭗,+`hvrW-UXdȵ?I-LڬeZaX)XYwX2-tsb֍Ot.|)XO:dYl(Wcb"V ^ Q|P8,kJՀB~(ުUwAO;k;(ŗcT:]]P.[W. Fj%A@2Ywk翥'6鯢~ G8B*]1UXuZ\E3'7*xZXEsTIw2TczITaa t 9!_z A6wJG jkQ8qڌyDzi|v& @yB˺fxeʤ[i]9FjL!z|7^l/`3=$4ױ/q$kq S]&4 0dMK[:ԆӦ-R K*q"hV##*S*dFeו@I;,1g R_9h'ܾilw-If0{̉:™j=n5[@?{.%smIU~?-aݐ@6Qg:*α.)UZ)M5+Zϟxx<T@$$X_\ d;[\,LcC%/SQ2<+H$ҏ˘I5un 5ıJW5yL;ҩ)GR}]sئܻh DHqZ e3L* ^_^#ѓ;}6oKv{RF&lq 3{b+۠uB|~wDsqš|Rbw[L.!KSF)^ܭūⲏ`?B:r6Aσ#JlD*c6`PLi9deBq~lVG6i>Fq)-rr%?^JTV҇@'(] #qYՖQ Wt8״`b<NͦĉmA14\l-5,0-x.чv Y#w dسps5v,Q >*RAN($:Q& bѥ eC\}Ci^vrayv7ހ)j jDU=UdwKïoW퍹˹4;;;@ 8i#}638B8?{Pl#x |`5H(13k0\J^rR4r s9I @sy/C|wosYN0s[w0%//f³Xq($qyu?nq"4xz x^ jjF Q/Ⲱ PiN'y+K^={J4pt܃ Y -kR<GNAg5EwfӰ  hVQLE+"0|WI@M vsnq#)Ant=m}yYxO:WiDxho?>]̛.֠^.-VVHԷxհ"1[HWD0(3{ێB됻+8}lAsf? Y|o`"4RO(B"TW_q2l}SB(HWbPA8x <#aGvWk0aO[Ѵ8St:i,Geϝ GF:[-G0U|9eP"n"â v+01umhGQ{D%>z)ByW2"#p-ki?*UE(+Wn5ء%DS' {DKuh2 Fl z"T9x@I~_L`ņ-=hvM)r?D%HГoJn鿝5v8^YHz86.+\f[`S5ؑb߿ظkW譤$,~ί"cY57"HX9+*93"NP}(X.ϩT(|S)BuAjTb9Qæ:u3˥3/:3C/ >EՏ (Wuƻ:u$Yg^F:Ƒ*C&$[&Dytq9k计 )3ۮ\'zBy&Z T-6=WlF!\i{Y)*v` $`O $T T,韟/b vWh:04 w 3'؃MrghA埓%_[c#ڐ 9'^fTptykOl0؆wx%ltkٞy->QnxybDx *!U\DDb"cc1n#R RGfm ol`g$Sa,ԌG (p;d}cM3u&ʚr؈o:NI\0F7^"-1Vh[Oy"K|h{uMkPQs~)~ AiZZ(׎DjaUPp$Q vh x#MEJ`͔FW9?pсQD]dAY5tMņF1=? -P;ℸά!g`Vza.[߫V"E~թF$baHP|J/٦,| )j"TZg!OLaۅyF˅v/Г!3'qMGn f;dn*]#VMθ@ok+AY7Y,;JӍΕkܛ: 3<ꅸ[46Hsj ?E,q^Ai-'pN4K'p牆Ѫ[/np]!<>o[~p%x1{Zt~ןU<{=NuY2 t&snãK35)-|qȟ!0U g/\~\;(+6&U6{ isSgV5>(ɖ$ۻPw8o9xј{B^><ıhRMn0婤%`s̃s>jѶS;I[ksm4q]ˆ3+ϵ:㝴[Xvn:.BvPJ(Uݸ`&y󣺇;U *?^..# C ֙1ϹaU}٭5-K'qB 9C<=G=Еʙ$V{!Γt80Z)ULoZ 8o*_N9YI KZSW۸hNWFG-|jh9Gc{qZv9WMiBZB2h8=쇩RMt``]EYEKMRQZ߂1g 1k>FV00> EtC6֎Xi%|X/:kN%!A6q_H?1IU1vxHጐLyaE-x&bI.R[:ۋ$ ,NJ1eD| e\nJquo%(cҔQrK/Ⱥ M/ jk?ȯU)SJ &!#v׵eT LTy3×_L跆EҚցֱ-7Q MrX@4=25,Uga z|>+V]hof9mCa2'>s䷯.C㐬&&`-a;]qPaM1 M>?s$ tO' fڃ2.{:'.ᾡ[>1|_4pp &0^φ{7Q[`:Ά O6ҋ3$9hLr+u9r` i01Cl q35|ڭC~;wHWHp [B-l|u̬h2G׹H1:y$Dnlbg41͓F]¼^*vٙ@[ r ݷ*kKh:NfWW {E_ΒDXa~rKCc}]=T'l48M/12p~ 9 n[w^u[ҕy֞% XrkYwѡ,5:v=\-6CubMc='{'xH, }@ggM!|7/AĤ}y6wCD)Zq7 ŧܧSp|cuF pd@A6n:ta] c^sg6U qoǜ;Ʉo^d| ݚL4 a'1{ ilX1@, 0P -r dv@lK|GO:77+Uӱyo2J*v(0:b ]|i+,L6xH]n%pVu٧N%? U8f%Wu,EfVBp+f/ԶGՅz3''2]'v6/N4#v:N1r.W$s^b=[ Y]`fi r^GSZS꿮 }C׍ , Ϡ ;ͭj"nbQ[] QJџ=zDyJ=hB.X]<RŠV>Z T-Zduu.ԔU Z]"b)r$`nhYdŞD7'QWʺ"uuz0 >'x͵y'oVf%+-^}A#(m\yE6/$(lqfTn[yi~)0>4郂M%S8@an sn &M1+7&}׌}}^c[EcҶ{^$#\Ef. ̊Pkk S8LltcC%b)w4s+Ώj3T.feA?yrn6LNȩ z,Q6U-)@Jaϋ?AM2D²H/"04P%sc@Yv!U)vD#w\-~xGq}mVoKyT^ %'3lOR@$˷lkcwlZgMf| )F(ܛZKdg>^34_0Jrg0 Bo.d YÞ]wX[xF&FA&D huC6= n5-T/M$Jzf$`qss~57CM !.,p?V]{$u TV Z kDsƬ'5 K+䊹0o"5#V|oNMAƃ#kze;[׹ ?%C%ݯyaTnZ#- 'ݠ d&%pCwP2 _D=%lK"lJtPoʻ-@@%gbޙ26.HO$\~mxsCJaZ0 ?%O91{sm܉kᛇ}L#'ĕ8N H6tivI$ϷII9 *۾D?+^`zX`!Br}Z js?ދ\jܸP*֢ҥOKK E#K#GmΘי~Cz߬ Jt/ka:1!dߚ&2@$AqV! "ʎN,BnJA)˒h)v^|S}'/&a;͑Ba-Km WY-$( ^<" viRT,u5ӻFBD|ժ4ur%U;jT.̀'ҰX+jxEC2 Mhٜ;MubMIxb'lsV|}BG L7!D<9> шOJe={C k vA܀3ypiX3Qri *ױ׵NGZSM/˭&3П|V| X uG.' ߍGFI,>ZB":3s]=mkJq|ŒpY ,cf* {иҔv3E9R ޝTQ{Bw=e9M 84 ! yj3xBh cݡ -WzOVl3\ƈK8V'OQ!DW~V:c}.F#o3GA^tc)16'Gh}dٲi`wVs$Sve:Y\WI9cQ5~SBp<9v>fhH_* $Fm g3xYR#: \ͼJ+[m?3+~kwSU&$mcV)=m3Ġ1" !psKn5'ѽC|bbrpOk > x? +tp\(n‰Μ+d$HmM8tQRT ~wҡ6=Se_n?D#$.KʞT"7pwB>.o/p}BgJ }<% KVZ3L/yX0;7L[P.~u9R,5<}YD!K \eWPHI< 5eT5kr:m.wRȕ|{5B'ҋʕ*g)q-5<)hFoH`ԤF#_8atPa>B6R:!AאqyZ8*mMڶ: &K(`3Fbo#|^3,4,0dU!׾iO7<г0ŕ $QҶ^6-== hj?pQ{qԂB=8$q,?ֵsR:9A[@*U'㟮_ e'Qk%q]D/G=pb$wPT( tg^A`k֜hVhV(Z~kuXӍh)MOIl^~ĉO?ȅPn$bȰ$K.GK?RĝYp: 6,s>*ASz^Z;hiQ\FYy&0[ #4+2r/XMq":}{y}2FX遅.Աk_sAkoz;%w 0h }qx#).IV9nÿ#J$|lYO<˛4"LôP} 7 *H|PGs&v sEEvh:o3o$vi8kar[M1^0p;Miuvh1n, X;, Oiheppk$@KT5ѳqHUXOPG'0D-9m~TMxOkwaj_wLވ:cx:{y^(Ĭ&^t0A3CZ$6c2(ïeliB^'0&Ί>JՆCޱ1CHW2oaUb_ 9aCO60՞epx|eb2y 9)_ - T7\,4<{Y6M{1Qϻ@ŝkVG\`ϙi?5F΋7v|십[*,T su{=|LV8>,^ ?6!rl8C׈R,ع-xeΗ:P-(GR%"`$jZE6O k(@L/~iNӨݦZ$Sw퐩|e?~2>n!8#^#1.`9-(:ѿ"@oQbs=5M䉗f)L1ԮW|b0e- ucK`2Zo`as))_0~`0nRg'@QB[`r`c=n<0 CTN2_~bՆXD^~eJ^)LYx~M a0[DFl{K;\6 *xifqԯu_K6,ƫ MS&tS (B[cŘD!ŮD|jA7dS Æ\~o,0ey"s 2 N^%—!IJG`mC.lͼ.1,a!陀yDjD7ҧm(qFS^It"ˬ. $m&.i,**p* @&&Fi/L\]VR#^<&p:E|s3KH:1#>`Lk,sǢMx*qvZͨ̃7>BlN0ԕ&ћ<^Aur>!7khB/?v5")L}!JWHQ"ei֚0GeA`Z<-5*t4ɶ)6iK߰fa$}]+:nYH_rϼ6Fsµ[%hH ))ޮtU@)@j/+YJJhjg#ʑ{htNr_OFUI҆Zf*ȡ1ZF rD{|nE6# cb,hrǂ "v]k˼Rg5g5ar'N2ߵhSo#H(Q Joi_[d3 {~hTOz ,VЈ(dV5[tK2azKmiة9 85E!@HcdI\.2̄r+"ì@ N5c(%i Kvd .VX1l_qяXgklx[𪑞N}Mn)A/\!ۯ@j6[規Y( -.L %9gO*qCԠacc|Җ1Յ ?[C\*A5ŕŀ4j&w!"olCF' r_ ubr8'rD{8[OgO=O{642}l֡ޥ.dd99Kg' -^-> stream xڴUT6844 ]ww!sk 4OV[ES(1L Ff^$ 3W2vrXّ((@k ̃D:obs'@bdPA. &ojE r`c`鏷(#@lk 0q02*0AoBk5` 2,@m@JUICY-#?\5"&=@JCM_u)lIPTf]AB]D]GY,7 OF 77W 0j+G^&&wwwFKWgFؒ/~Vw *9 p+̀?N)J&wBi/s3X8+,7vp:8:ͩEsP 4. z;w698[;8+"`amOϬ)(HJ3ȿ:..Y'". fpS\ doOĭ{2?ZX;[邹#Y]af'_GGV_oG#km|{Av6q\@_*7Bb[ A+/g4ow` 0Z 1)\ކ;_$]MwaF 3 v+[YUe\L./Ɵ[f6o+.0pmRlnֿT6 `Q _f skK+' 6Db~ V7= $Gb0I8LAoIo`yC&#n-[L5bmv `2d0߂Z,Yr1u| - ߷jdo%NPT1!?myP;ޒB+6ٶ錺 D]zY7PvydG ;JeI>KF #l`!ӛ} h9c᦬v*PU/^ FjvO/2ܔ/M%P''Hr9~b6ݲaEpti({> lnR ᥎%\?xGgcUrѰh4". >Ċ;oƋ"T3V db}҃)wT~Pu؞>{ } I{PdrNw f:T~VC1k'4gFEIu#3%/λ=1O Jhj> -|-$T3۹܅e9eЧ= VXsD[um/hϩby5m$;Amgu;}hC U>d<pBxdΚq P7SE`ij AEe>S+U~٥c _U8h30Kl+k8~\E'*ғL071@@&.'HD6lQCԇ 5ΊfkR#H#W(x Hd,_NVRGUGm@͛͵AӧJ飞*HUBvL ew0I,6; 'άϯ<2\oպ-OiA@;T- >G>Hsfa/,nȶiiH9aW3`r8ZcҸOAK9C,[_˟oT8%]ͯE |\&"D1I '߉wPKl\ ~}nRD (fXYWFw2.:+ck^YU$ߒt.3%A -:|6m̻qt r5v2l*H6<7^ڂ`r!͟Zۗ GzUvݙ$+G̫3lq쿵Z#}^C' `ެn6-*压I )(W$T4כ{Q%R2uOۻ'[TI:n\@; |/c$,Y?{Oyy/q$il2=qB,W:P Mn-)rgZ닖}"hRXAt| Ulvi$3eQХЯ5"$?Rk+6͒EsܝmFus+~fBݙ/y3L)h5IWpoOC>`" -X5+vb8a'ţd|-ãa躚2:r%Yn^ S( )ziKuu'le(T\,g2L[+AV\1ELv31t4@Bzhb9%5-ZB' 274>MJxQD [+b׫βg%ܩe.)FӚ:nTi hnՐ0}ݱ)a7:+.i9$G  3\k!Wu 8*J[@k> aH׳" 4b]؆|n[X\ZJ[_TW?9Dc&Y F|G&(@y[ ˷ ߒlrE'>yR_MM^s|k;y|f~hN*5Eu 1y L=ԂwIz!"3 l1،#CZl|2Ot4V1PEr3$?y\/Ji|0 ;D Pcg9E^v?2z)&a0Q|sc*"ރ<9wy/=(;/Zn?&Z ˎVb AQ$6zXwr_Gw5J($h|x\lel9Hv۹ I8/cqg2Xe4v ]KOT\mnEpRJo %Cy#=ʨ nQW*Pa¹\8d=J&<+\\S2O_}uj `dxXcfxOŚn0mVr4f.4f<njqQ 4S!nzG,ohJ0;|}QLWX"ב28!L ] |;]e*}iϦؤT~J(A&/5OQRU>7#yd θwJ=)A׹P%2RJyj7Ky_9<gRAf~gMH+-e?uq>~:-veq{EoNh"RX8\.UaKQ.6GDb0;kKy 9I뇬9k$UGeR"?7Okz_%LA5-HB)I TȠ}OwK )Qb_R)8h !z+=7rWf)Hl] ٰ-OXw4\jH'%a`0L٢R+GA{ZA2eOhOIOQS>Og8.VɧcLQҺ.5 r!3ldOǑ/{%)6N`ʧ}/).N`ힾtwm]7y4WXj^y::]4&zEj+2>Q*8$r-89wzv 'mb~a rz| ^ۍфI쑚?IJȣW}v)%2TGxӰt`9hPѩU}i{inѭ^83{yKLrZTПbwPWz'%A(i0&*3r~A{ -Pp$_;K9_ xFa3kCudt1%dz(q6 <<%z7cD76yeYm?id&pK ʚ^js|QEʮ0|h+U=f&ܪRз t4n: L1c*@f; `qZ^(7U7l$gp=#^8QS3Nxne3NJXBBs&]zy'߹$!kuR5pKҽ[[ -kou8 " lw3 'l d+"KC܋Pl 5u6);~bpSTnKʚdWN3Xv_#1s^GᬫSXX%dU ev$i!g3,=is;D=4io:Z W*h~A<2vk"af 1ԓ*>:<#ڔ[oʶ4e\G(v(UB6dv@jmpx0ĥgqH " \ p揑#XaRWbW1 1uZwN-rtƀ4["W<,ecRF"L5R#ctbZc{%Tk(ӭHB'_E#wQzKik/~liA&W-8 '0Wݿ3=MᜠC@6> X0lb%kN͖ƧpIY(!ĉ>=OL˔1 =ƍ3KTXۢC¬ oتFbJm/2Mk@ w>v슪X&ّP-<ϝ }O7Lp[6]ˢ1!U LMR4~2WOI7gt6%|#$sUG'AkL̼(_}1|K ~ŵK֐Tk|lcK8$۠o+%5~zc_@v{ lk8:w^?$fxBB_CnNְ7l~/YL7:ܚyz4e)$KH#UgA륃獑Mޮ9#_hUџN}z65 }܃S1P3 hdz)[b\L>'/2{`շPp=~`xzqX&1F5XFI MrM^/'HJ']̔ @ Xp;͗(ٕzmc15Opqdל~110x iig)_ȑ}X J) eFZbD+n"')x,S0m`C~9l2o&n[]V1^4 G}DltO6QK-+p.\R lE7IhKhM}dOwTn2O~n̂}zet]x5 nn/?Tj2hn~E/03(%5f`d"S (ְ^כ30-Nzs!qMD0H„co&\Ѩ6[&Dk'Y7y<^:98dޤ3'~oO}&wT;u*Ɣd'D?>`7!qJԺw0*'eR?S1y\8=t?$zP{V#]( YranH%~,bXO4'mcWoSCc XxZob=hr@VxKeFilΪ\ܢ=ˈ;/W9á?]% 5S>ќ$05~H7%#0ސӞtp!qk}ҭ 4 [JfD  ,7gEb_16ef}S{;l@HsNcq'sVntbL:Q.YplXG͇"+yL?X?• ].x ϳ*q@-ĈpH\nkl3E^oxv$\@uqP 2I9y|CJ܊fǤ(%">M#kGGfG)9TJd:8,ą Aya6~D \?A2|XVeEqzF="=cLʾg\+y:7ͯD-Z?SIxH74w[$uÁ hy䢌{<JYy<{#ۺ+X ' 3|'b ~AFhF V`9b]Y#!FO9k9%Z>nqa .|:78#ݗy!;-cl#u$Zrsʉ+m%6[vnՓ֦#Y"kjDjy~W_Eh%`t|8]a IepEJD#m}#9GyV`Ԉo ~fUa {AF6'"N?/q⮛Q_qPXz@̔˿*TH fbv}F NרG(k@1Nk WPTn4&C:ObX&𽿪j5yhRҦFThg M/vY 8*No$A1?0XriOco~nCvV5nr5Ai6-Hn,Ya{~2ԩ5#G@~jȳe[YSROm㪩垥"ỉ: >W8 F;a4臊^Yj#7&QpՒqfA?AL$&hMn{i}?TIw9%X,(b7FRmBZ%;p4؈;;kl!S-4 9~N$ZX4u,jStUGFӧC~لq#B)4q3o{JAJy "i' _DO~hkg -^gZG 3UfhsgfGarQdqi[ضuJ]@LcMqC^:Q,LVة{2xJx/+\' ЄվM*-(v@K15E2@iee<]L׷Biti+9јf@HU3kMƜk6$K)" s'¡hZC脲c-g{9_nҳ9gf}wIwlW_!9kO nօ!2nG5P&V jR9gǧ6D5rSGJ0}71™FP|4{ϩ\`PѪ>Ata:.ɾȮK&o]#ŽտN>FϯEaqZC,E *g (S@W>4 ,7ʢ B AjImzXAɱS; ~-D5TK_%"TZHf^vFi` o ӽi9l< k0 TԳ5XnH;:\ϫb{mE+JTw[ KMA1YUNxO%Gxs_ZGწ0ypۡ: ~CΎs0~/o[n \gs4$)#E:N _%bE/5Ǡr){N]MoQr҇@Y=V{Exz(h`f']9()ðw%"7 &ct0w(%*Nn8ȯ#Fň֯NM&>Z!3i#u#|0Zd꣏ "\Qݏ{Uf6c*ç1E6Q^坸WQ;©ANomF; Q )臠ԠD;pul(]{^nXP_Щ Bb(. Pet  6!Xdu;[MV EJ5v#=&γ-WX>uKG ),,g/UUzF#}7i-ub Q7`Nb\2 }˞:,&4Suwٙqqʰ뗦f] ulj;8_ Gu.>ñ3'ޝhB×4={}Wۻ:6F圾'3/%Ԗd(`Tձ9LVLL͎/Hˋ0d̏8uԸJΔ/5T}Gl֛tvKmNv;^TV~E2rc4ӚjS$򂤊 \/a/B$h[V=ݎ2.>%MjATL z(W|i[*wv`N̗i9 B^w&B4yԀ}uP_EWc Q1 pPw q)l5&[|Ug'Z_ROAH*p\Z6rGfYWp"q50nhy)B!,^if ؓbw;ߋ |;e慦£Lxp@m6HZG`ݒB>'Z\/ooLʵ\Q5Q6tW_a˧_詭I.ూ:k~C_ =o]d^WxXK}"g'.oHdrI;l[l ls9܇Ka8QK;|iD9cPֻ= !"ӣq!n% -+ĜzN)wo[7>=i}Nl$-OȄ&WfjNBK9Ƥп[ k{5%E#LM$ m3vBQOQcj(kNڎMUC[*^ӥuGQ?A>$ztBZ:>Y<`G*\JM*,WZ\л!krnk;߿FV#fn?aN(AiɆs{ZX)0c`!cǷU!a.ÓSIb-[7"U]O H2V M[w?5nj"^k| KUµJg'X7PAQ ۭ8]D 8N Ք,е^oKUi~E/<+64dn$;/ V.Lf)GOAKa G+B¦諒C-T~6e^x$vqV6 f3t-iF?A`+fA^{XVZLxP$H ^ uZ1JH֎X t240'9Ԧ~% & 1 R̖F59,hÙ Lh^i$-I)gNGL3.J۬f ʼxDUjzM_eQcejzKM[[NMjuZ"W=LoC2[r|e DŚ(C25jnkɾKF@U׹e%a7z,(#1l@HPݫ&dģ:]u,_YY02YN(l*˙Ge5kCvG:Ü=CEHK%謧#xꐎ۲ 39} S=;O2+stn`qOŇ'fG*.ͮ2:V`K"}kTNZ zuXx;kUӻY6nłu*V)kT]W)"'r2mdϾV !Ӫ?ƿ,9w[."|GʹN9"]Q[cBZA>Dk{s]*~d\^̷hKVjQaʶaW1^%8NjY;wg(|8+Qg!ڒ 7-VDv)HpOxJ*WFhT|%~ dz_&ہtg'&DАJr-s-Y"n pw_v9fm*FxcAc'RfM:kK& fukS ~qpq Ax ),4O+Ei܎~:sh[0{71|U:)S@+؃u hԦu h97W-}P_erӷa4ukm8/*w?RܿoBs/|"MM|틆dd.-őN8앢Ѩ瀣z$êm WSu;Zd}σ˽)+mXR"iV/MKu5[8\A Y˯2X1A+Oݘ:7U uWq[$=D ̜#yXnCQ~!e1j5B`qg%KFwrѓsXZds4 4D6"qYliVղ.볞'I֚@0)X fzS0UU 'lyHmP tU75т: ?^ kb8\ϙ\j(I]ПO^$@J.wp=@`RLNXI M L#+>K' uÀ=4:̆Xa}A9_wȜ1Zէ%8:{"&17Nx޹@4Qx\i#}e,vc:9a:%MxXKe gQC ~_PyNY]r&%Y\3nZ*HcW 2aE9ZHq6^$AZzr)8TvO2_yVn|#8M=RcߋGƁ7W+VHVgDӉ BIJaB߭Y+9N=ڱBH.x ݍ bB Ow\^5~lSÁ-$*A{*ze{4Zp>8v햫X:wۅ)972Oϛ/v?+Z?Z^ҝ>9 {j*}&)?aD΢L@(vWʿ彑{4+5袢0`Wǻӄ8hB>gz9Ш2d~buxq13!Oi>HƉwp 6cdU(J] ͛WK$|\+J\ۊ_Z3vAavPTRր/ȂSTl,Q}afh+|1S( ^34HfhG}^qqt0پ&ODSqZVO/8LOio¥Ң_` A38l>Pgqkg&'6 ]_LTm+4҉w,&G+K`ZSE7gQS/͙K_S?WIpJ"Ev?{"g-~Of}՚,9#O~GlDԲή=1 CGQ?DU&;:2波 yI|~#v,Q`v1f_k.ODhU'B%m΂tϫF5EXR!|B 2wQb0Ʋ #FQlZ5>?u҇Eeu'u,Pu2!tz2xE8]ME6,lxyQ]>~0×[42kYc뜺3a\۶m۶m۶Nmۜژڶm6TW9R9Zdܷ4?ZhUNᛶ@81*BB -SX ڵ=ł00MjH;J9T~|Ee6妉!$qbKg9Kb WQKou\DG,r|dX1Vg}@N^'L` Ǜ V̠Lz:Όӄp*C1q5DZ| Ŭq?flf `Nm~#[ݤMG;s*b;T 6?F Ҡ[Њ-P(Q4Ѹ-+}^|%<sU5S=@RBmTyaJXo?ҮB1n]3=՞Gd~}gsp4Z*Ih/ /}-@q]Lt\v)rbcݒ@ 9 Hl"eZ;ݔ2zpKO ˌe)d:j\)PuuMFl{0qÊEQ^BW U~Y$SmhheF]v5g7dU#c'`/zfz2& ve N)դX#=s=ھZ4f,% aV/Q VZx=JZ]ro+_5Xs\yU@=U#cQ&UXm0O3DfZ4'VܙdQfp??:sjXu\P<;&O V̯&[N&"om آ3>bl kt~;B _h~H.ygEpМOV@` \ 4TvXl)I9?s|c4.On5z_PGJ-|CFV}[`o:5Q`H@o%WmInҐ!PZYzpŖ&L fQnR=qZy5!Xu#+e07V9 Ww6) ܢx71'u2?b:IWoI"޽9Qn^o?.oN^$ !t3|tN:M M AZrXH$Ë Ca5|^K@8鳿F-l54*7E ZӨ#]MzԄsIl\"d|n Cm sU#D%1ĥz\p3^+HvθGJ82HSs?q=%se)8HZ[\\ ͫyL+?P"X5hK{b# ?Wmk 0x$l+uX7MUY-İ){{irC`(5֮rSfT @vyR>(,K@02z[U&Vc@CK٨Y*[J#R=,~yL?n |(IJqntW'ù }^;Vж (4#n -υmUPyDQoȧ!LJ{;NP !6@J]d/NmZĖd:SIR~5=?.dџJgtM]e嵖BoྩA*7_I 2{ D,`s,o4Ug%j&{6rM]D[(㴫n9M%t YRR;C? p0DtpBH&_OX9lrh.`E is_y뜞0a9.ZfZbL C9ɩr4q$KkK5V6uV^[7ӚHFb<1GfB2$HQɸY`MFuRيƍAViWqNZ!t+?jw8yTȪ~Qw>{/2efpC!vx]7;=aц<G$;wS蜪DA}𨡭;cb2U;ϊi>{1:rYQɓk/{UDvbs-ԉ8R*7Hon(׶nC ӆ(L"C|FL<%H5<&=zFSVcQ&s%j/;K#yT_9؟f=RĐ۾G!=$JLEw{!>EB8fN iWF y'LZ ="_$W1jFSnlReD}t)Dɢ7? >WZٜmePgRq8jq*W*lx6z#~1SÜEߠ )á _9c#DLd|[bd g,x ]YrLk-&+N|5V+!Q;Gjdv&:ko>&qrl+T@5FWm*+6Rq`&s_QB'#@>ʗ$}p?<empۣ+Ђq$i9D&nJ }ÇpWqWoJBre%-d+ lWv=wJW;pKY".( ~ļT;b0DClZ[P4N[Vvy1">-rQpgz\>\Ò>VYG: 19>LJ W8P[9h3dZq@xi* װ6, |F.TW(x}k{g\5އJצHmv$|c\Dea ePّਟjPYqHڭv+&3oGmT0;N疸k)~**ozR=^\~r?Q۱LwsB[8'"zjғ3GǙ{\r󠞒yƌJhx t+.4ʍFKQD0ċ+@݄vʁj,wgz,JOxX/s_%}W<!d 4&u;uTf+2>ț׻ X2wNpn$N װs#Y=5I^ y}8Pdt!$H@M:0d "p1?h+߃zm31*9ݏY<Њz.L1}n]2a18n~J[U&vK^ߚ7Y'9 U{xM:+IZleʤKڸ#XH6EQEҭex0&)DYl;_]MyaM?FϨl*P`"6O2ؙA02Zx<5 (}Ī^\G%vxO"Gyܰ0 q=tUS3D4&YX' qz,_b#癌w1/ٙN=܄XP`A纺}hAi]s mArj$/u=M[8Aocrp7;KxFoU* z,^D`s y-i/>ǫ`oꢟ6m{Ϣ"B3WAŽ& eSI|15kޥgz Ӎ"vqSI%ȴ9eK!PcU 7SORbr87OsZq!U!]uj )t^Ê1xo~4U窦+ٍܷF;=}'3Ȑm/ z B3_X ÉU&~YrfF3*Q0C*Q|1-U:v_cvj(0q{^]% 4b]S%P۳ڵs󐯼P<*@Ge.vȳ0PWʺPœ,_mŅsQWJm%qy4(r zpMJ'W),Gs.!P :STh m`;߇ݕwk~kƛg-i¥*TjȴI_-cwóm H;L d~D\+t= ѱCz_.0j~, lvi߈4bEͫ\ ۟U@T"z퐎<3un_b !q˧LuJX9ڞ tzyW"MS EQ"dL#G$Q|XJkt 32D #T"jWLK]f@M`7FoHG^z4I Bfu)U?H8-P5aS ˫MO0r$Fo6w;(8ݛ)Q0fN VD:rr'ͥ4wM|{[Ϥr[d)&Jb6*Nq[sĶ|c y+/nQed H;h a|o)2Q;x=30#FΎѝ*+ _PJKuFR8p9NƆ9k5C^xczxI߫w![<S:0O߄n砧sex ~^&~r|S~!AK 0c]Kw+9o h4T6-J^$=vp51ı1DG[g@zs3" EE>!n a2eͨ}-5!\۵¨I\"V'Si5"{ $9Q4X0 @{{Uxc3L쭕' H_B]b'@= V&cj GdưH&Հ[ j>R1<+ lpϜ4G rOizoHdžj4D)ꍓ\W[)5q6}?{ ezԳug!FTp!8Ml5 V2 Ͱk J4s` ^hAQv:;&ۅi~^),s1hQl&Gi)(X hZ-UPmG}Di0yθ!dXXI9 ML"d}p|^Ehe]+u/EI Xۀ:i#$.a=ay+c3%Nr${S@1s1 ԋUOf;l]}_Oۧ,s:N=_ jz-~O>"!3Ơ*%V(ywsXNl_fj?oO„qoOA[`+/v=>+Ahg;-xE}ѠP)p)࢏>ro Pm1 a~ 0ꃼ%`02 H=ex 9=y,:H|75fC7Dqw|F;E qf' g*?O‚[襇a6~) 5^4b9w%ɛh ?M a'"SY uu^ L#~ g E}詩S_C#l:$ ]3fسR[PY,e' [L^Np=Zk/lΆZ hm/҇fetEgV/۝p~gc5-|q u 3fPݦ}90NV+(hvi:¡{iŠyVSܟ"H2ر}U\V*b@ʓf! ߋp&Kcv-?@`vdO64NvdڪD$Ϳ1~ujV!Õ0F>aGJYki!CвZ8ЂWw&|Q\2(dgdWDd *SYH,NJ19x!h5lkxd\<V̹zX^"MA5æ)Б?MQLa/q:805S/lغ!Mȵjާnԉfv.gTW;4Mi`K<5Ba;*>1H9^/?;\`iVaU+8N? {/1OH@Bba~Cb(n|E`B<ӘgSKp2(j!lDYB i.@nE-՜3HV_y}^OC]4G?!,((nZi#']r yT?18С"\"vǀ3U: l_~NիD<08a$RTD (3a,ɒM^[?(^SGYAUq5̠\?p#.찧N5Xyƨi]SK&Հ5\ʙSF6jqG>kHyS0.~+ EA Yy+ S.jwvKEr]!"Qҕ&I{Ub2X<@@"~maW.ՇŮJ_&K3tY( O,} 1578$,_²aU8dx@W&RS1_sb¤ۏ!]ݕ6?O?F TLTut< jB,}9c4jD1,gyGjv1u4zϷ0C< W2 \`gJĉ|0e@+"~hE5ns "9wŲ?[]ͺ+T%c5 2q9h|wX@!^ w @WV%Z@c 8j?Iwȫ*F+s.qˡy}FBn)X A+ptn;`NveqdJbY =i<,%\8{g$;a^3Mȡ &+MP!q|2 Lۖ#O4^ᔂemeC˺I%9[ɇp7͢W2fWֻ!rP9$\ϑ hi.wum<Ʃ<ڔ^dyeHa^"֭lpV:KZ/o6{M\5zw5SoĬ}WMn)jLEz -&2|{Y.K;i4R{C|$&+A\CPk<3¨OKMSDݘdP+_x_8_`/][9za USfdvBKX m>sq.hN)m ōv=2JQ<]U"Q(Ӵ TNeeTYjNloG=pj`Xq;k9)܂['TNuvTjHD2u " w']+lqT] ilCkG_mqiOs#MW$H/)PBI~2i_jT% ]' TdӺ̾Z,DK:"{d]yAxc/X9LzVJ/֎72mĮxvc=d7'q{2? iVBC*H+ yv1<ݍPoY8x[F`>/TKB'n8_CN2FC5_tq#CyOs2F3e=c8k&AH e @mƓiJD_ZԂم![6OztCFӆ #0GQ`rԏP' _g~ W9.o y"o*ۿP}ʦ7`,[cC,L+E6]?^WeK {4=Eeqèh!ǽrp Í#x֜{|S,&$9׋ݠ<޶e&Scif ;1֓cAr">co+DKWNC.`Zte|J'uM,XP{/[|<CwDȄXvIUuZ[n6fty"dzAM ⮃do@q=5EBn$PʊuhƖ"Xj[\9*7r'ʷ,M!U_+|s|kqp0EV$Q=Wa~sHRΨ-S$2s ڊ+MMCܢX_t\mI |![yT ̯ݔᅼ G,s[ZNhs FU5BKx\2kH?xAyq.K-,?3/eojzM1j0:=S?IcGl{j~ ?CCq(JMޒ:RuYor]7n1~fEM18Z֫Btd+3.(lJCt@fx}sAT@ų5$5Yv.#"ʍgaӺLNk'3#!A` Pś wk0{]6YU?RRms6`0k081i+2Grx_6qZE6\er|bclUbx waz5 akFK7T*JtM\v>Rb6.Ҿw%mt7zZ|z1 pGғǀ0QaZ(5oVkfi?W RHPΤ,geS7EěۅG>"m:)g=']fw{QFܲcD򃩇Ed(SJ@T-vj&/dZgc~> stream xڴeX>L7HIǢ;;% $$IFJ]}}Rq{1Td*Lb S4r2-L̬HTT@Wk+jP6s=XY2@3x`Phx9&+ x`iH-\`bw83@bk 0q03+2@`50ZY@ @S]JM N Nr u MFTߒ^];\QJCLCWElwÍ B j ՑÃŕlh? +k %9XNW+ ~ @ $ {,%8lwX9v*ceW``vt5quseMpsv]CK/uqxgv>~&{b&n.hm\]\]XXw}fŔ䤥5|b VXM*`.vA-5X'Wk[[X;[V͑E ('o f tNruo3o3X?G#gm@q1q\݀~>.!̭\9X|LkPSjr-X@g=%_?{k;y67WZ%YH[{U]ͬRo ,3ˤ{m z\&6nYwK-E^LIWY_nRf skK;7 \\6pK=j ptsX~&7Eo `A< `|A|+EXd^;EqX^'xw/ sQxA`./E(x\T^ sQ{A`./Eh 0\t^?ELA8{G|,L\̬ͬsglbr8W2}ASؙXXSg3W3?Y6]B@vagc-/|Q,9Oά`/ڀl\QsܿcL^29GYYd{XXQ2O*`˗"u/.- khtl7d&;}cGl`R\\Epi7{߷r^Hsbcoe\5WOpS_\Y^Ν,c[^6]zM_$b-_͏ cG+wsq\$.֞/F \,X-W+gVG8dks19y4p {1ञ@pU? X_83yfﯖG_֗^auWg-PE|?x곂l`;gT/?A>L`8p jw /@3y@MZsxTT%,Q5|"bT!d9P850 oPCiSr䕹趉?!hfpNr}B2鬶6_G]3E*AeJG,[ 7tτߦ>C>a5"H?c\3*ӅǐVsz^5L2lj!XR'vBXbI\[ҥ06}X[4˰O%zrj: D[c2{Ɗ@[)Q. C:/y]96Uܜ!yubxDx| &yPnv  i9?Qz +Ut'8Q#Rwmj.!~ˆ.:\+WUke*Ȥlኩ{%akҏXóDmWj|} ;"Q.TŦ$ -ܻuqϊ{^-dҼ֐[TL2N*Ķ:)'.\|Jƣ s"`\-m*|xL-Ú/}H(؊{D[GB[cY ]KY-5/)քC`t(q|ص}Dq< hˁ̸00U;u!=35~k/X߅:iÞPMyL=*x.ˁh[n"v?陔 p=T$_¿ H=i_"DГR݊Bx؂1/;h L}n,2߂[vt9f&;f0}XGDW+BjnfBrL5oG2>m)&bl(OcⳠ"zE\nudx o9sr҃7&+%( pGҟd#x@梊ɂDu| 3ɱ*18uS9XTbn]+WVB[vS} Pb]!cB1`:{ۈ\e tNURuUդ=? 1+l^$prY'Ű}W~6qH"1F[yaT$FC+?Gǫ-xF+.ϧ1ץSI>>=s4oZPIRG;Sbym v>F|%v%~"yg 8l`[$H@t<ݜX_mZݐ RE]E^ չRG F~t%}< jίI3;lj-ijJwӖw89`ƊhX_Z`hz-/g ֺm@fj{\7ꁁV_{WB=ן։#k} Fi b ]_ÿEu"}ʦd_4ICWl&F#@k8[FIFD2dB6\B*{u4dq 16CɴM 2wgWhǙVL i=.J\ >?НudCd[RroPޯ02@S1Lv>ZGl״kh\ttM#EU Rt UX|U%Uh;^E{kWLUPMP e 9Oԡr_DRl1Ձx:Z~NA=+o9Tktb4d {D]zw Fgf7oZꪝF\_ [_r}d~Md `8wUcme3˜7'R`Fulsakñ[1ˡ^VD* Waفkkv\&s}' 0ۘorj%wcqfsUa[BXqq¿a~ ~, LͷCn5./V4<]s(40,2"NݦP .i3IkћoSV5[gn 9cn=\@S`D}~ dENc\ADd:6^ *ȊqX$,![{ED`;zokZIz2x׼o Y0us!qv,)HQ Ա8hwqK C?goLeW*nio߳ cN}\qYA) ZI0͉D|s\EG+U{ /;fPkT+Z(og `GZۀG,΂]S_}?Q7INx Кsx{38ܺ +? !q V,EZ9#&7%<FnB.8>+e7F{wy$!(coߢ#aa|cإVAMk1nD;xcFo‰y, DbI? 6wșPG52hAlJ:񕟇/2Ms:J,'U 8k?*uc7zHٖ:;C/ wܗVa㰯=L%z^H@ FCerĽVP:_{}vۀ6-Χ@T.B:@:x׽RHILD{4t|iFB/mZOiZ CU*f9w#_g>`rkMխ{ՎZf:TifhLcϻҐY[z>%(|2q<9.j=FZ,#diiTG1ź3o!e}r-zWҮ|W ד>U5da{t0:O0ąDkڙxr(:b1 xq)$'~Pn+du#t`A ލcá^~ zCim#|W$V餀{LL0(URy_8d#ݵl Y$s!SGjP'[i#ˢQyOQ}fХOfdlj i%ϒʖFہnRdYx$UN-sL,ʉo5MeK?N*Z`5J&*taD ]4*j`'Jw\6ѧ/u"e/׻qtBő?W-]|*` *LᮔiiRD/" `%g#4;q5WwN,(Fa̦˂)я T @q\ /,ӔWU^Dn&:SL?.e>b@ peޚY6OݮxF9K] (2!ha$4Q1Iy%1ۤD\NbZ0_d*o0eX "Ě o^`p)Ҋ8%<9:8 VLhc%`'kq]!s=s VYNo˘Y|{#yۥh3ޗ}1r[x,kDR Vf܏|C?m>-bK wKEc mrgkqZJv}o4f?qIkeM#HMPcj oAxS;x1:I `4Kϒ X^S/CLP1hj& )m)N4,[ؚ*;}a V\@ qDjeGa!mx :VSshCSfII.߶HQԦ9g༉j $pGG["Sig-COJ)/ ɽګ9 *Aao)+T(X$N5j( \?Nb +9w yeJ@#:( . K f**վ+C #cxb7xBhfeGq-7(N1 LiqLT!;SvR\uUlDŽlɱ*cǻHRVRqpnwaNv7f4r+lKcf#?FY+$9ϰk.Zcug;OՄʐ]Q_ z-&?;E^庇6>$w=aNZf+vQ@6h` 6h<HI7a⸳sK 7˔};'UrR\_7yb~ͻ0_N@]{y @~q m">Y8Q(,/i$/ n,gGxUPO q[px4Tr=(U<$+QT$f]f=V'>Q>>>Ocz[\^*]lR_5$"(xy$\4pW 9mu>L[NˣI"25s"]+z.=Sd,HsL5kmU8:dSy^*1T$T3"t2K 0U_T-7^FubBU [(G"zFu F[~9r?~A^|p[*Fhi8{Yfn poMJamrkjL2eCr5OVWB@a{fbTp~@w&b`Hw⾽-:fr'?D| 0 +dJH_IK.*b:3bas(\DR:0=7=EZbC#ʈ~g^ 꽿>&acәvv1_/Y|9FFd9pCk0wsp`bIrt.gVfpYҼ0&Sx_om |4k=f*bУg^n؉J ;L|e<š޿d\-BhA blAʟ=-%uG8\6\hMi7-<+WIbu`#Bx{嬭0wY^bP~`iuJAp`#c&J.}]ۺ8`7i8 Mzj 3g9CZA>  _Y<6s5/=~1:~ngaGMAp 1GН995]Evb_xo_McQ]JjB =wtbu{#2ׁ8oT :d7 )O:ò6}6աJYOíI/ߡW.TEږN]dx<9r[Pq~=}n2[߻YS,cX*LRY]cs5_pT'[fUkq<4wCa(fWtAa=iSٝ>+]ja|mXSejWo: ?x)YgQD~zb:Yrԏo3QV<iH櫙JJ_82WyA ,NDiVUrX 1o,O'C7j57Pg'$^ßnFCVmyBIM=+D:żj 3|o}Nkᳮg+[FFXKqm>Z>pGz8d9¯aa\X#%3!}NEK=^o>\FzSK@^2FOr&"-M6UMEMH_fbSzc|d;?Uko`s@ [:a})_3ДSLVS}uQ*q-(t2-}cHʠ8͵g)=Ź 8\xR[$g2j܇X-{z>esY&OJ*(?Vُ&>TO뀄$:Yŋ;<7ŖJI$ud* X/DV'2bzAc(,mn_([A}KHΌy j{ EV 0m%Eh{e`sرvlŒF7\I*4[\"ZznP~Z Ppzےi`퓉c|~jؾV%ƄmkS;xܞk՜7[ٌCMtص^8ytw _TKpJ佾hCF߯{Z: H.qt1 c 9UXM2ggeԭ9m58Z~AX[Ymkޡ6{{hpB90::{8ECz.dvڲAjCh( OpSv6tsQ|d˧$g 5 }Vt5 `TuȬ;ձD!X?&P #z3apۤ=W1lMbo2hS:̹Zb`.Ń$BFO3\Ia+BkVH%_odLJIL<^ouguҡi9 Hd(u߾~\i?F32w9gOظÒU 8+ۤˡKϡFD ZduT6SD|s9>{dG2 ְju"lׄVb3u~]AeldLqX[x}$Fuu72AgR37w4M|3Y;%b2FG[B?q7g.h.'E ioz. fvm88LA74ĶTopL[n`JPݐ֎ɏٔt^%Xz][ ]%%);7}$Y}%[Tk50JWҒgt,~B!: i,!Y t{_@Ao^nŚxQ|,\񏃫c+`(҈2;ΟS tNRU4ɝв;jբxl6rf}..N{/+ə-c9,zNHn @)h^]63 ]WW# # 9Zx‹m)Eq bJf?!̑Aqšv jf;8$hͺnHٱX4ĉ⍒IGk*uhF鱫4yJ}k*dP#5tO~pgχ~ߐjGXtfCVEF؛ڡˉD}Y#hqjN9"rZ*:׍ /-4' vi9H8p}0S1v+&1.ّ&Cމb5%TjPa!1 Cf@e5n]*Nwؓ,up(p+%e8[N#@taw% +Wh>L˃=AZ; -Ӣ鼇,q\df04X{2ljMHF.7DIʠkYc Wm`la9磅#lNՊa۳X ̂<"<~!h!bLNo2)%YqD}[ ?L+k+$$X&ׅ@pq%ub>gz'𖆥h`?J~䚮ޟ,?u%i/V2{ qPk@+fF04RϨh,} 6nҳf԰Q LDLH܌W-5LY4Tt8TnX=[F(Cl\L{( a9#ǖ7-% :{9#a^+So]?"{5/$?&LԐMGLm$xT]ɍqrl+hs?q_rzOPF={Ř!9V"GYDˆa߹X(_ӽ V6L=NaA6o~q#B#c*ݚ UnЁ_&qh] כm}цQ#@5yp_jjrU Y3IeX߰$І6 7a5iGS-_iOSs+$8 6J-/?Zq3"i?"eMͮP& O;1KS (_,xd18m$O͓ۻRb%B~>v".<%ɠIB >%C#BY̮iߒ@i#gݔELBu ֝*dh-l*wLtt"dŧv*Ҽ@|oѧAnON[zx +wc+ m_;6ҶYr:T$}Y*Ҵ:qCO.I{G [=U$1^i Lږ8IEm~9 8-*EGqzS\\lph"[c+/z8J,^PRAdx&v.c/^;vfdI)u -?.9/MmOB$b&j q,Ւ M;H-OBQJ;=Q_Б<WU -45dj '=Cvq>LȤ{ט=/Ů4ȏz=KL׏)=TjDrr :ncr/*1LRۆ2و 2I se۶m۶m۶m~۶m۶m| gS<ɩ8Ֆ seJ$GܮWNyhy ~o]hD=V>`IE4Q4T}`/M@㤸܈9>Dfxx`DXPq_3y๜WmUkԫbyZ!mh #IY=3.{[QGqÆ`K9R63*-r$1lklEj>.÷* Sp Hj 3`o>"Ҽrf@vA=JV6qO 0F ڑ;CƲy_hv/_Ex-J• *`f|˓LӰ\|>@\yebH{nyUH=06%$>= |k8nh}H dt Žnp1h*P/&^=Wv%ahRIDWes9 f]{ 5i2=9CO*cdZo[ҶJLy85FyUd &쿑cF7q x/20Jު @| c4u` PI6ωp`47o݆¸ fQ0ň)ZK@,~?croK4\b!w\Y^mg=RHy "W?IDǓ{S bKV 2u&!fl yg:F|P|Y"TAՏ&0b-l3FYr227u#IIw:ϒ7T7_mҷvα3JȚakgZ끰Ť~ʛ.6XP7W,h_V]О4[,p@ٸԆ6Aj X(v}k(MCBWޠsͣey͋ "dVmH O|H e`Z|Z][ t5tI1t?liKs ,hCS^US8AzIR:@ Łs2Erivq1n ?nZ^_ΡV\D>cҮR,| yP2IVk\0gn3d@`7\p[F)pM\<` L"V@ЫECm'XZ"Bd9˰@w] G~<+*:=  wl-qWN]B&ݓ2ș IL+ʘh3*ql  pTc߈KX[1= cJR)NnGh8%WB@ 6J`.:6s\*AӢift{# w|T${f$xIfHilh h29!7F4@T'Le#L醟lI_G~&] h"l$Es:d!yGM'O~3͖'{(5?pSYvׅD,T hۨxGV ewg!v9I.,yS`&t5 / N\rٳiI@hs9= *K 3d3~8JI҈Rƕ718Y+r^焳ϟ)3E#?1g&֙|A4;&i)Kc1ͳ;n9|lF|RzA $U)}gMtv] }9iKYSdH̾YHCJq8r?d$Xj4 Դ,--JQ`⛢e]nylzgl%ORz̶vF(9h#qKyD/'ߵ~E`J8' 'bNv=B-xڑ=se  \xɆ *#n\;L7_$Eӕ:>L_¹\szn?Ma4Szd]׆epQCN!.Jqx,p{ zL,Mf,LثV3krĺS!yyeK^ HSRAD^LnAohC*# evm^1W3?xc]px#R4E&@;s\@;ݾ8AF2䳇#v%D#2 oP  hrU>XZhOimk41H<)^*qW`+g | ,c8ݪ} $ѽBT=W0S0_duA׌(ic-*ɉa?(,Vm,;(W t{,F[/wAGT2uΊ˛G9V>j:{6UL}Nsc +&`(ƴ&jlIb{֫Cyk^EMH>8:y6i¿|YO>ϔD`鷥0⠙fhRvq_[d5"Y1T|^KOC@ e%ϞG^w2v7u! ` wIgDpO#WU vTz.La/(ܫ|zEkVR- 9Кl p D#³B؜h{7U9L;~,4:{+2<9t͛ U?+9qnq)9MȷM=Ώ@ !$ݏWS}TJ;foIŒa,hdi "9(=1H5'ыG6"`X!%I $"-fhi[-a3gR]Ӣ nÍ#lk0<ɺTZ;>2uycqL$W:9 LeHY2F Զ`$xuVن"˓ ^ Yz#};Y6QG{/KȢO܀$X4 ;B'K0zOz jw=j=4 3qy0 ~UZ%K\3l.ϸA1cF|ӺK 4=gԙO4P&0Z$H~6<  /_#;DaADXIVV aT^BKlǥ5Nœfl&բE 5}Ӝ>ar Smq뇵7I"oLABc^뛌>mU0('Y?²* rN)ѝ$@$F^=aDq@MjXa╕KJB/t[( ~U39x@BtEMU?xfFyo?% qY1 _ҾOUfkQ%3ЮÞRfG'(( צ39 kȮm(.-z\M!6+0¾ֽ2q.]V$# Agdj{y :$Ap_Oiɒ_qAS;:԰8A¾'it+,I¨fMz)G̔we١[Om 1"j35x=Mvǎ&h;WPإv`<^̼ 5uO*8rxhHzg.nhS+E:p8(!d}!)' 8#r4CW@ЬgmkvtliGr?z|VflCrع /QuzBǢ~?A^V5Dn+ &>̾t^:i'{? |ny[/d7wA8m {5H-} T81o ]tzr֖6QlA*C\r w[7Q~/t# H-[_bo=7hw/_=cb,&,nio *"pKl0 s!j"9X7+dҀd6uEGUmcڼiÖ&K1U [SdAmys)SټI!솨ؒ[HU[rKzx&&\$ɎfE\"Vs'~I:gݜ ȋMۺDԗesl&!xm]=x5 [!V;' -+{W~JO92#NtEd0J Fi' : p3KpN8i|44UPky_ӳW7it,xJ5'. yyS3y>1 Vļcϣ>M|X!wZa)Wö: { ݺم0 ɠg+B6>{+_U p\Px&uWw^]f5k/D4Ya]>b#777/<*.F( |ώ?`@*n%gM386F;fk4`@o. %{Ϛ7k=!M\)&IKQkTYww.Rx'ٕZokڴ&vN]i\^0PƦ A;NI#\A+=jĕR_^Gxx$Mo&G. # 9 :c`|fmxT;n7Q6݂;HcμbJ|JCj916690 Q2%mއ 7 ]+?G+ӏBL5ctu-:7-Oq-[xrNp ق jɶ!0Md I荩7zMPc %l3y~|b]mgY-ҽ|!ߥX UaLJ0D`48U)XzKaV5I+NچKZ)r mi6 A:=anZ/v_ Ї?+KZ3}Fh29}Kf=n3LMy~LyAY,tLÃS9Nq?%2eߞz>Տ(u|.a|f-k2㟘=ʳL'e98 o1r o+S"FfW6#:? z 4RHɒث8wx0ޙ~ݯ{;߆p@sFm"~wA'ĞMAzFweF&\8ѱ)>g&/!VDoq@hZ{0 rJӧ Kdx }](pl.C1۠֏rA߷!ú^z*]:"Xv􊀩HH~z⹗Jag'Dyr2AMF;[Mün rFX@~4v|V,w0=FF}.wu.儥+TÕG ꤽICx=.Hr)r5V .5fYR5kDw"# .E𥉉'B&ƪOwЖѽ%4\mE{ϼfx>R %">ę}99|ѱ6>3e>h oA#G cȫQ-&-CMdq>嵼qL:fVz;Izw!KF x[o \uۯ-y@j:"?Go96.eBWXFBɨ L_`XsG|1ǡbH?Nu :D>83Aw=ǢOt\}"Rr-gy/q]v#=b8m%Djl j翆mdUg'dҝt@2[(w+&QO "\`;9X@g~%2(],*w?k=V)v؏ P4E]KwB[Oō@~rV/vfqV4;14m]{ "vkw_ԨZU>ҬV)7rD@MJCh<۰ԕ{:.^壛M;ve}^O!:߆_e֕Y_jQ >G9vӺ^ osEo FC$݅i5d@\ݫpt Xw$^~L/*'6F5½^Gsv5>/G[<&PyGPQq  s9Ӯc(& h)gEneNj 4.t?c!ʉC &dMs&PPb>лqA , &^}C z5 ԑ`y Ĥfb3]0{#|>"x3`:گ6ݝlYT|#AgCMr(X@(GԛyѨ]Z}3Ʈݑkoi&ԝ.8P@R˾QZ"|giF)k>I9ckה>YubVjT7h50=BVh12gwu#dL,y15*ɩ'2 G`?*4$ JHoi_m6[uuFwBcQ=۔D* @8W|^^*y;JNm `;Nq]a2۬_kOr1%(G/n}+}YZ 1ۜO6,DاnGwEϚ gkj>Z:}uDJp(4O$tQow1;n QʮTLNB׉4 R7-AaHQѕ8݊ _-7>JDNJLuk|HFHmS56AxP&uiM#]oB+&N{}Y]!G=߱><(^#X5WP=?0Oϊh&6?o2C~;22[Sf`_Tseؓ+6Vu4tS}d_rOi)\n )̧l0ZZ#*lIT]BT3iTn?KD0') dMwxPգn?6+o rjġ.ڰWx!ԾQ zIhѦJhm_/Υtwxґ!A8(/73f>WG|ػFzj%\@4 hY.Z Hb_,] ܳCkJ*no ©_u<ӊ('=P6rU ҧg(ܫ pѵoڴ|xЁ] YEU?20#F7ATXQ1Cڃ]LgʵLM_/q$^ͩSwa@nҾ!,'&){/Iu{D"dyӲ+UJPR%"е]s#FбG]3yxiID_ aaw+6k#<˥ NՉӗmAXs0 $T}P: ;XJDIo!E" EƱռU"؇ |)=1lBI?ٯ5KlSh;+'{r}(&+lLm}k|'nx(9k!? -eoltu׼G6 @TL9v08^Κ5;V8%b|ki362[>-CdctbHB5Z86ElKEKPA.('qLp)z1\UcZ2kw-0<-bkZ(DaՄYޥ*O#~T;CamR诚D)-«>'= |60p|/$GwrQtoP$Fݺ3mqAU _`8/ijab}qxo/)' z_ 6q=N{g)] U'>?D7;?1&`R/?Zh}c2c7#s>ҪQW3ܥ/\c#!M #Z]XyB^lkM2Դ0WQn.6cg/XkX!+xb4GXyrP><$b8D7\O ~2t`΅`KW;΁CH>RaSCwλ3l ^: u34334Hjr]5;\ VPNBcMf7:P?b:Ojn{l&P4#Ti^%V׸Õ8W+Q[^eD%y݉eΤ6.L$'%S ;S1hO2ZZD;OZw͌ !2dǙѼp7 UO'`qP3%Sq&;BuD^*|m_ {2G!0 B6E_oYrdPNy)2 >U t+HdXsh[pk@vtrLZ Њe  7&[#Z&˗~x5]HkB+rYV^j)ڊf$9qI V^K{}acX ET$Xꦎm_m":LMRZ!a'9[%̊/@Zz_,Gk-[ʅ~%U|i-i^~]0C<- )|Q* 8 ZS"LxY`c 'Bf}Xg^owkˤSr#x\`d5 2P#]ֺJ B 9Ɖc~u8cLH˶M

2j$miz n됓x Ba`@߳m;>1#At-\泷gdJg.Q:bMS;_5 BkJūf?Wlh/> }0\WH啄R'Op rDco}}: ؙG k[W^-fFb@_?"h3MW%^蕷fOv06ʸ"9ԡ6\xpή_ߵZ^ KJkBt@PUK~m&zlG_vBp2ta7K@Ў==m9oόk$ȧ@U{/ovcwp:Ld;Hm6F;M'\3|$3`x(5\:1̐Ղ8ys^A8&/iÖ?"T}!ʓ [ z9ON8D07j wg(BXǤm7;7-)Ø?!ZǍBwb8#Y)5^k: PN{Q\DwE]rЧeQ6*>: FYx1BuBGqR.'.| -9BD̺Ѯ3rj)* w PrW]Hx6Po}R\ֆt3d6'*b$^ɼ{Ook1U-%}ME{<5\n㏇ꁀM ׌=s l"!%k\0?3tJl;(-/xDpO)N`eoXɴ|,ŷgZh-徻,S*|>%nuV㗵^ʙemcʝk[b> Ls@)Aͦ)L'/ :ƞaaC!BDN$`F4F3|~0;L-XFVD1"kWζu |%x `9T|CqI3SqG? 3Ã_(/۔p_\Z!/A!DMݷqNyR@yjXUlMj%cW Ƴb:!B9E/s?؋;HXq^/&AT4Cۅ03 {( >a/{ z"kwP 8bt%F l AK9wz{aY+J?͏W~L?''/߹[jCe/'(s#A}Z!(IvӝxEblg̘{Biڻx-| jSR"| sQbjD!ŸW 4ᙄ<Il'ee¨(:pkxj 2T`XMv3d:̷p>ɏTc1qكuZdmŚ [< |栮|$Xv{.)Ai|{4 Og #IBnUdHVyXԀsr}||qt{+h# J6wzĐ]Nhxxh9c҆ ֟oi齊VW(A]b"D31 <5b M7 R{#Nl #4 D^⛃:סmh,$ !fݍ0UeaH$d3yBcE ]Zm]=; ҰS9%Pnp%0:KRY[^@2 E/ϒV^Y2/k~9$D^cqA~W7S^̧Y$i("b\\md%`_7jŲ/{mAg%`=v'E(@6l}\/PHBUcь=2kYj*S*\<\Jh%Nʼ CGT몖2+ B傘=wB-Zy$>6dXP:B&|Ef KO`;%=F\dU3.h *pj  G}U 0 !1ܩ>dM} -%_'1dk r 1[%g@> JΦ[q Zڊ=ئ$Ya'1bs҈=9Z=g{tn_5ϥ=g~ھ/$h:儖zUFAf2@tEEyvr|֗5«,#|@9.~VoEfpH5>sMhpy9=a/lj/"MZ 7fÍi5/o0 ^M;ᣮkz̽A-4@L& [ F|SA&q,IRV;Сa>Ag6|2^E8 wEK$*KTL#QV^{)~R'trӗj>Fnnz7tKwJ+R2V NH{ >#K"kOJ:t)-se7 LV r"q2!7dfc5Kh>H)C)>&T B]`}l}u:j\=jN8]K굻 hv -"({ 3DHY?g#Q&j{!ykt[FЬq6{yP3V8!ݹ$(M){nR!fK yqh.~xH2 kzc5_,>Si/J^$&Ӏb`1\mmsMdJ4KPܓ/nBkѦEbu93l*BIcFHp+iB { 1s,٭X᫤悵Qr1㈀闌FQk *C&I\=yvZй `"sQ?^EKa3ގ~ nKnPUR)zl* Imhb{N=a6wfAZl@(ɐf,#]İ4rS 9t渼j8)M pNzLZBXFbi08g*WEz 7gJC>=]ðofỏ?ޢg^%]NƎH0ߩfȈ~*q~~"$V&.m66[O??t4@”ڿ)Er13 (6Ѿ; ;N_dbIJRleNbw%h~_)PF4qH7YDCxAauVMy0RsTV+yTUgny9UرӎY^j{BJvg1a ZfX. <6Guaus?MZgmOսW69Z6sŚeA-`WT_+IKя1g K̆['ޅyy,e^Ir|X!~*ey%Ll멋 zVzoö_i]'O@c "`Q7}:{Z ,lzYFwE$ЎPT&ܒOmϺMٓP-^jpB>VXB4pWHmneh rHƓk](HM2wq B Wq{V{,?IFIUx#0x6M&'\a`:][`rgJC/O71r]dou[ O\I 6uJjaypa}DHJ( %9ui KG?Ts) -L+78CQ*#z*;Fg@b22_hĕV)uЅ߿׳V@I`*}̉yBr@ೕ v@=Dz\ia71(6y[^@d~XOI]U`]~W&qb 鍼O97n|Yt|h(R@ܒou$e-ZÞ|S&Â*L)cm؉OLͯWHw\ɏwee% _, m0̷Iه{ة:*IV4q*2F89.eO*WQ41Hh[e䁇o|u_bd0^#oF>?,lĪ5_O^B3z^ii 1]>R'/IFRR FU9hi{T ޗJgE>5Ot&0'F'n&fJ&Qp:iA,r^=oڜݘ-Z,S5 ;Vzl::wCIWtO0[o, endstream endobj 14477 0 obj << /Length1 2413 /Length2 24943 /Length3 0 /Length 26344 /Filter /FlateDecode >> stream xڴeTL5L hݽqwwwC{pw y;;~W>ϩSUk52P֙ #+kgkL4s6t032 ; -lE \vgs3d GAJ@ladP윜 @j- "lghaf;':ߑ~{  ܜ,&)zYzHh Mv@UYTI $LE boo?\UTi"r*-@\UY ߌ 2.+" d;q#1r5u'͍ٞəь~*N7;G+h 1.&v:d,NNbvRڀZ rɝM 1ep#?2 2C [g1 ` P  ; ف*ӱ1t3uq7Yӿ"~?2YA9I1Qe:ځcKx"2Qd033AC*jk"lgcb}">99z0srS [ߝ7qgPppJ5HGft09tLo1o1 >^vSCk')d 8;}V'cbX;Y.ikjU3lT*.5MAA>\b.r6@nXX{Yss1/;D.K,l}A[3k hMM֠=O.KHc+[4EU@P/ĴdEic&jklgbak`fe::z1怙i?`s]}vp [/` A03 & `>$ P>?O@8@ P>?OSX *v?]߈ ?߈ &A_Dߐ7sqK"h14 (ZA ZA/? /eo'5ha쁎vb1&S?uNAA\:*OAf _T fPV b?"y?w3hgT0};D]t@2~dܽXXXt@kj0h8}_w?g3_@cveSPd|R KSqE򶉁EEv2\%d_[&Mv }e}qDGsU3e;r 4KYf2[Z œ;b'P/Su[W܊瘚0Qpq9=`E.QbJAwwh_$=>xގo,$Y+jtlk%ítWf3ly˥ nP؁KLGHGG!PJ9̨iCJw| D( 9mvu=ZVZWts- _e \MP߾LrOo͹0:[eL>B"lԩ ;Rg"$9Mi..IГ+tпk4kW:%⇫gC{iţcNT:?b Ǥ[' -Hu]rD=mOO]X 4776qCS3ڀ | su* R5IN!fȊs]׶rP({AQEmTzv LC% Z6!nkWi^q |Qx78tB</=`nccYݝ4P^T:S5#Ciύ0jCa(;_uvS*{%bF13J,%2e fCի"{?(:r&F?~pts/=51Ļ;%QW.ݴM{:"gN~cp]L5P|Ժ#nTog|t+>+i5g+i \5:';jڱ4i\s `_3o$K"UhG x*W/*}FRxCBq~^Y}(85~à "A~2gt02NԇT\]v z9-{QV՞/ŞMZXa[K$I׃Q8) 靧7Hti?vR ZV gM-5_c"$M<vGɓJ6D~e9 SaFS3Z89&+P/ [nP(&~9 >2Jc2.êG2E$KQ8 j q8oʐ1/ᾦ 䴥? zX Sǁ!{k^3@ځ= ^{zҼJ +pBy/!Xʅqfo(|׉<<,)O23DoynY7s"~9^¦=y;ue<|R$ͻ+ǯI񰥔-T)Z ִ];tظA:UJ$\tgWK 9`VKY]/6 +-e3lQ%r3OE*P;̍~v:5X4 F3=5*i68Ægٺ'Js]DK|O2nXwA<r':q0[=f/nZ (e0{/=N uiaۄ!K`콺:~2@奣h@S^II?KjV*P8>mnDi6paDIuz:?I`Gx ΃|I<ಜ5ݑʄlE颏VL%c22R,ς L>IoAeϐ6:~q{[+T @{QohD"He:O_b7g<'Ȅi햂¸IEd.a+k"vsܙ^b>xÏ:HF^Ohf3l&oF9nU-VYrtl+"bm j ɚu>Fz){1(@h#!$Q]|z'vC1 +F P?j`.mp=4,z)uR>tLJmm+KIVīP=[ 0DJ~5Ո[LOs:weglD;&DR)8t;nۥis* 7~o:oU= ׻_K揷֒+P܍gKb]@B$ӨƂQ.npJ]+r@XHg3qk(-qW#]'HFr 5mg:?*UUdfb`3&2tŒHs<**7$_eH91MN7?=l.WF+y|HËh<,?>@2#TL_>{"#J\zѮu(D3$X8 w7^A:lzKr.BKFTJCz>o?t+NݱU\lާNvp"29><նX-rGX31œ;=%RcҎJW0[ \)<u#?3wcJq=Ǩ-"CPёem]3PB,SN,]oZ{G0x%;@$F}u<37 |lH~,K|sEYU[{ {QZ(rjltKJ+o/PDzـ4Pn5 z\09uj-cFT\8:f %?32F2{XvNa/PEf'en4c_ӗ~]e.Aog)cEİ'<^[8k6sUU)eQ\ ޙd(cyAQ[)$gL`pTΩ' s/k4r{_">qqp{na@Ep5}q EtG=$Ww,@W۶ur҄ 6C($JxvCEOPB 9ʩ6j;3whT?v- Ǚ8^11b\Ku<*Τ) Ξ wFo 2j^}2Lj^usܒ: \! ['B[z\0E0Ϭ_\S߲,ӺHQǩ{7t.z {Ox鎝pj{K, A:ݜ٧ 5pT#;l Nî*!CH;N n^y#H3Sl{ >=WZ J3MW$ROJ˵dre~%uGL_ґ8j8G#W//ЃLe|{[8j yȯkq7a[$MkeNzpjo?R[#@Þ$W*mDYuJ̔M" )g. (JtчbU_3a~wNzGj^c9Hk8H>ـ]K^X ѻ EfEL_A, Q\(\X*9PPxp-BcpjXUJI&~fv Q % IK1P dbJٷk&MSy#BO-׮Dcқ3io̊!_҆>Dž0 =s26yv$ L+8doli ooo=cWü eE;+-'~eOx`Zsq+)I6\m rƄ<$2HX*,T~L՝FKu.'8>y4·0nδX"d˞/ FN S9ZhyE@XDU>`cM2颢:m[-DL[G䳫1X"}5L PBr懲۸g@=íKɩ8@MpѨC璪h_Ԛ}qZ7g`FÝ~P¤n6bT7`ԉѠ3"R )%.9ӽ]mT,o>{ ?m1S.1:xgxW w5UZϋD9̛.װ+MkiyhO"W"O?ѯ# m v5`n [G񇐶L DJp}ێwM~=}m /~cG:>/$Q҉[mES̓^AkGv5xPUt.WYp8 Y8:q~mէ6m`n~xVލH^lobqfq2KLjyD0 Cg4^ރtfM@m+#τ9 &?dƻ%P`OwlR|qטQ,7SZ\>p cЄrf?VYX.0¾ux`V 0.]0*||كf3(%aMM $DRbqxÓpӃN+p opf(B8TZ}(KߺmjMi]Ict'!cx,q-e%i2A4g@aqr 񯅿<;wST~IޏJ`N ,0Nv12ϳu~g=E%G%p B?^: VZyo$ z}Œ}g>A:<ݾ[+ۣMp~jog[Y*2*WDÜ}XY'Оi`3\7-’zc LyXR®fPJMI6>߳)bu:SElyb7Aq@2Tl6[V/벇|摓q Q a.aÚ* &Ϋ4ztz`6ҬvNl/A=EtĻ6fc^09K¤K,-g~'|z;zSW/~W%Ɲ6ӾB7]q_ a}C\ qA Ipɤ6X6Y&ZM?dOUr/?- u3"zp_ ANSI#(&%gvj&kU-V W7g\r2Db u/6ȹ6+(~-D:@[өÜ=}¾vY ă}ro0=klU*_8ʬG\7VTâ(&e/3 arsrr`a$ A{z<\Ϫ˽YЃ R=Ϫ:2w,tLjC¦ȏ\9J=g xvG~ul`S2jBj3Sч/i:84E}"&13[cP*ƈL9ct|8}O8>~Hr\}2-vRyhpvE8tWk\4㹿QWۀ&7Q=2cm% [vSPTgJ0~"Ymk@QBa1#?Ք uiq9MF偑X "eA-(n3;K"}My~VkKK!j`HbȘ(?3?ŒгES/ [T|ΰVHku7)x,|JI/hN=]C0 fBvmWLti/~} \4ҬyM-w!K*>s}]02ul)zcc$ % `WV|` ƏR؟HY36E R֚vX3 6̞ =&W!j>N11Bh6MyAUN*(g#̲t?E L)S)ya<6ɕ`zEk8]k{$+wefNzr=zL "< p ;fo:(Km>Y<|`ׯINXw/S\epTkS <-tWQwm[2Dᔗ'T4v4f"i9_)Jl/ecJxJe6󚵪̊qBPefr!Ox@]נ9uQ_0JkT`P.r[ZCyŬ!Q MCb琳K^0u׶|"h#fn%~?ma6 x*Ж48T58SA9>*̫+ۻR놤F'R,"a)tۇ<,j|efN!VUءuڇ 8A'ʜ&epgo$QMPu/ACX#kpS|+%BQL RԱѭQa$5>VlSX)m'O\ }u9g-786'a.%]/zQ]zy 褤3Cqia[`0lFڱ("2I-t3CrFA\9g[N#J!#Eu.v=exVp3X=\x5ցxxY ŕԈP40Ք*UڠY3=* pz )v Aãƃn'ބO>0(k>\0j[;.!'rܶ?s KWt ҺSi%3b}T[ǙCtsL'>tߘYֳ |U .u`nsOx9d҈7 X촵8ɫm0Zgk*:C(&R.H#PӼ{1ȱ_um*mIܛ ^+9dpHx1֐݂ ӉwԀ d- ǪM̶5>J|Ԋ^vDiʻ"4wr6( o+!_,xeVƄ[gsQߝt /I\ޜZS}A* ]Jѐn50ԭFl{yav]O;d/xJCWaQR*<7yPO)Or,7ȠZϬ-?ȭLc$a*N~(B0'j=>vװ2>2EJQdu"x4v\U,X[p()ADܲETbC6C4SsCxׁ.2ѥ0#]u'KVEV&71X^t>̓*~WE"YTWr<⹆8'Uqguz;%^kbPR׽%&=Nrayd8~(z9 g;GUŮ< Zup(]Яe-$vfoD\ΐyYӻιkx:Gn!a ,_f ]0 3Z&VXB6c')N&sSeiݥ,\ thsfvaf߾7Ø@]I!P87"`򌭥&l£J{8G*WI3+|1AV=k;Ai[1=67G1ᕠ.˕M[{$(S|)|~`MHnDuȋB^yk' i%KĖWXc!?5/wz=6:  B=<Dfr۩륋l00%yAXRʶV.ž?In'^t#`6዗2Loݰ?yWh`}`'!LEp38->}d=gہ)Y2JC,e݁D5LʦűmlxDײp=m0^]E2fŊu#___Dp"-S8i]0lgè@KQ8&b~T6>(jޱdH-?DD=LjcU֏m`?+X?8tss[uu|͕y/?$=*$M1zXޫWG*概' ']sZŽq#uz:%Vx!}!z?R$6ї=mcɎ~l\čwumC *tNo]">hCG#p͔BOs0I)YJΟY`fnE8EӰ6~/ox|| ݬi{4,8,ߔ!]~Wy<І֥tn֭Zkyg̥M9(e 2 =l2[LܨݭNKh|mDxjej"#8G*Z)Hfl+rSer rYd_mb>jQ]5x'ǨμL{l^h($V[?3t9pw?<KM.,5=Dl)VSi,|]Ic<4)yO'#̚(t `r.{#d9TBd.lךj\Ŝc7n ZH;vR'0OExtw?Zg ('Z~t m ܞn8~nhj&@+eͭ&'I70O8Tk.V\#pℬ!AIL1Pdo#D-?=iG$k 0:/՟`BHzܣi d!jRYtD`_> WyDC<0$$o߅qoʆ[ -' a$=AX5' 2Wd -PvvV%a˦ŤVp3%*ڌ1BKaUR:+5jwJu`8 R ybҕ$/~G]n_{'H\I6e[DwBꜹc4,zmrc%ݯtVo$ 1A9l1:n.}ިs_}(닺\( 5s΂&F5_@ݍ-g{{(mT뇁=P"M@k:D#6+bG&Wj~" ŧךmSѝzT嗃b7`> -9,'dM0?ԏ4@TVEo ܯˑl*YFyr^8u8!#4$?vlR1yBTN'07H|l,xkʿnkj1c[k`l0vҗ3"9%K@^X:qUJ59$KVаy>LvDj1/ x)He9^ĻfcƳ66kݪй]1=}Fj%|9 +U^W@ IJXag,(`hy1N)_߯_ Ql=br W'I;$6PstÂ`Gj s<vJzoTwWUhpFt^%Q},|e0DX_gʩwݿBb oB*xu/NC​͝uۆHn޿j~ot\P27 \Q,ǾC\'Gجzc4jZ ! MBě "kPj~[-Tιݎ;YO -1Ib AYyvyUQ\g95d&$Rfl${>Ezg@1Vʩ޶,n 1"-h=<_^߮ݩƌSM2߻xu%7(v2.s.7ÕԒl43x^X1rLF|;"퓷bt"cEvx;Eg"N^١6\%}wqʏ_m:aUGvŪ"R(Q;iġި {e4=q,3+,!hM JеI9`9MRߨb^% qH'r~; 3 Ӥ0I.3 }R586?!ӭo1mz&VoWf# `h}R˒Q]6`1xֿuNgσ(x˾pAW.,O$D(H",)~9 EgINƱ3/X/۵IwtV2"Ć+S_&އמ h[޵ϧdwF隹|%/c]ΩZjӛBS(!*Qo1s^x9*0a)g30T2$H1z/%utZ\~F cՈ'\B選ȷE2bb,9!^,p]-xØ>n  oemÒkfڢ =GU#ܠ+ap1b3 aUgՍY)l OzD$1d27E)&rp4(SiGCI";d(ZҔ O XkvVzH-EVLjSP?)(\Sϖ#ci[0q$XknD0bD3Ӷ C cIe~7+7e^<;>5F0A9+P4-;M5B}Zj'Dg4b떥, 9M>c9,.呣P79) ajbU=b#ly1C ͬuwSUՁ‘Oߗ@G13q?[ |5%ъ}WwH1#฾Ɓ!Ϡ$-q60aH?5PmS2z:2XAn8?8FW~kB+efZ}ܟYM  h763f " >0LhlׅN#QcK)XCz^IfJ|"q$$hd_QW8v( ϥw, mz%cVǶtl۶m۶c۶mkXsv|s<]8L}Gtɕ?ހ &?tЁd![;;ak'*> ~LIX>Ha yc8Ps^gTFj;vx;(┵Iyk &#nd$`Zqڍ.LqL9O};X뙫 8<1VӼWӶe$kRE}- Y-{1:ng9t:N%1 7gDLP{?  & [ $DcBd/gt,Usy7y &:ڙA"vd<,D 3Qx#pHס0V3o'J]%o[tN;/ET9vsÊUp( [,LlcCayYBͺ&[k><-`b9@$ ѧ8N:ݗ,77yYђݍBI4 0(XLN.2(in5^}$|F7{ Q9l?RNg9ӏdeX>gly?^r:ޞ 'nʀ=c[K;2-lxm02F6oK7oh<WtJ_Lu',P F>Fq]9FݞEHUSKhx;'oi{!G"DҀ\L^+ѳ(?H%y5n3:(ZY>|R?#[wz^C >M>ˑ6 Xs(PL[>`-z֊"P$(uoMZS ;rR t3f7QN\%GTdu㺪GN_zWoPx+;9{D7ʅjei_taE]NcE0/Y(1jN5à ҋ_"^IrP@0*T@cCqY NY.1?{2?Q3?%n2CFXX̋_+nqǑO耚6a?q64.ks㐛$U YZyrU{'pc;1Z35+⪻_G`J!-%;f2?˗37}(+L vds&!Bˆ팣-aZϛP/J&Z`?xą4X|ػRֽT]*Ρ="?f7OC*M +.p;B@0N,A$RMi _NV5ٟ=ɭ;uGa,],eug%+*ɒ3> c_|}sIe55B Pvku ?5%VEYJ\~z394te9 YϬԩ9Ȧ`&+J-*4ͽ\~ɣ2m1 \Cd/M-X6Z|j ( 2ZblKIs^Ng{ӬA4j y؞5QAͻ :lPxmN}i3T*`ݾc)$x}T,|NpAxWNȚC9לt5)^~%ٿ[闶! G ymIW/˚"kbC-A0 {5uP*"IC5Ԣg! {(j(O &l(1)N03{XSNk}|"ېM#?#kh|e![^!O:fG|2c.;,/<cI~b,oyxڟRƺY!l]o2璗;ge T wRF?B;k2IZT4%Z karm}/33wD[5h7᜕GO_ >}7!\u'uj9۪Wܦ훅 L'(1ݯ_ȒS#!eӟJ">1I_30]jl ¾k!%z?6mw2L3 /e"-S_Zj_rZSٸ wKBč$đW"t}kM~:n5+88Ь)MG2|e8Ts=_O'u9 ,NUc !ΥL '{.˳zՉA walĢ,d,i\>F"bQUqÚYnlo܇jĚzNk-?-93eiIm,£G)x5z@2%j v#hX5{K.m:X?/SN2ךa.0Q}A"5Xho^a̽UOe>2uiޥb@cxv)>r}뷾9ӡLX*g*=vLrZhQ z(]]Xp} ܚo"s^V#z-#DDhhٱ5/O)$uPjI\-dO*zGX- EJ ;.xX!3O#&.p :}p?4{"p.C./ /0ZF&)3E.ƴ6@i^8+Pd$fxC)e56YrsLps:"}mZL哝ԪNOpբsbl@ 2w=HFg&q˸\69#6yCFo\kY{=)%_+mMtU?MgjoasŦwvm IK7DޫX踃CZ[gK@A2~ʾd3ek$RBF^联P%\;#؂@"*_OaH85|'l"e6]?"1M K/lst\MM#lsv^Mps|jYnw\? D̃nOVJ$ཟ}v)?/Ч);JM ،@~`Jp,yF0r} dڅAk?VxCx]`*e3in+ޝ \i*+yhttilY+ʎ:~dvDS| *{r 1G#ـ]RdAGFl(.2ط M$kTe\v\c eL r04a$0\`vE gC_m([1ˮPJFޝdvC4O6u!25JS ޟhpR@oЩ{Pe4lE]K,1U:Ю͚] k qo'HgNn-_LyB;R-5 ^VYt8ق?{j yS55u־*c`aXn왊vǏkrHE L ݪС2"ÚᧈAFy>GcӓFB57e3R$~nզc$,s7/eASGޱ^+ Tz-a$}M X7L,$|~ynH!wsv ۰gQiH=R8ȳv!4Ĭ!&A<^Q&'a ))*{'"lyz^i6#~opqlܭh}6]nLLɇ7jgI3TwVesX%1-6}+τoo} A)P&K}5{6 i:vmks*Ӭ툕]TR7Skg-(f\?>Mt+OW#[ *S%~凗1J`ϴ:h %[!fާmc78sT JHFڤ<{Sg(X lpW˂>W](؝L .)H?<$J.{WtXz먽Qm);)3L;r{"$d߮J|397?9ɡQM1|.F,94eA/~E#/]g)ͼEVoFwй*a[,COaHA-y7ybh ^ΐKrӳ#yȰ5 U) AIV$IGZҔV#gĭ>N#m\og%YMFvs/@ZF'E!/&TraKC`q)Oٌ\>^)z=?hCo3\}e&l#;8Ԓ@0nHeI{ߺݹG |Z[x~\3+e;Opt#C g 0b˴lFvO"5bl~+3)[Wa$$1E|=!DL9Ig;;Bj=zW)l5'yk2ԃi3TA(*'h҉S1m~V@bD7~RtY=H9Jz+.` owvBA@ ")-%Nϣ\:HmjYCF {DPWf8!5Pzєq 8vzb{)HrNve1'xz >glm_'fLyUv\5k L^;@bK* bɽabYPGuuFL8qyf< GZUZH0 "yף(%!foB jX9RiutV=B8Vr]fTb0dKφ$d"Dfӧ^c-pǕ5-h8hPCA|)zuoZx2b`UD|~ *e6E O4u]hTuZ[(+py2B,A>-I+,fz_j%؋yPGHcEN:j6^̐r]-S9O#A -OR=Ĥ,C6+ӭl>oG&)]驂cC)z7-r2|yH]@ 9 8Szᮨ+idF_l'WmA$'^a-"rwG#: "v;S!1W"NcK#~\̻ Wwc\Fp^+06<_BȈV1 I-iԢN@L$|R?'HUCK~.Gw:%eK\jT=z0 -淈/T3/ַ 9"o:'ez5Of|yGUǽFx:Razy E`JQ. CEFZ^_KR8OۤL|gz'ɧ "rChazNȀ] 6*Ek] >cpڽi\%oˑ @IZ\9՝ov\M#Թ4>(,=.J$V4/bG.ŸJ&GKb vi`% lc6~w($De"-mz9a}bH"иIk_i71,5{]Hp+7ƉtpgETe#-E@R07pp C^>϶pT1E\Q@@1B @ix?0?y`g& ,c_uy[L Q.1 zO%Fꃂd>߶*Itu:Q.ۇ^ >&ijƁ\s+u.e aܐxȄY>vrDǹ*d?$*9bBN(!%d@q6Xт pS ю`E.P&k%3ErFk:OdEj|QSgE>x2D9n#Re*>/fNpڰ=;xHVij~mg|1GP'XZR^<:O͙& ?TݭAdkQ +?QHTKYwM B[N]yR3yHNk ,ܘ;5-Sล7.\*2Uk)5PlUSkx%zLKA 5oco"S,?t{q׋jNKHo*ُ M =.B\ }q¨r[Wt %'5gJKDoxvN8ڪ; ~E縻 F ppm(F/W$b(eoV.)}AOa,+{l1ƈ5:s7OH`Ցrӧ?FR6q)6! O5ח`OR*DE|T[ݒ/4pNY&0$sE ݎ6U Inu$HvE䜋 GlH֋7L߼(oYHl[*([x͢"ܳ-%ORJeic$@ M5VM|NA2yUυĤ#I\l/O<ߦ}ܟPXؾxy;5Ɏo8l&dG!dMG/me^(+xitiΰ-]_.rM{yjMyt@o|m%%mfb+5A Dڭ湿X}H ]){D38/‹J"3=/)#lvW$~ J$k*0/Fv{ϟ}KyǛTv! Vam|gØs u ^q cGBA;W 1nQN_8׆kë endstream endobj 14479 0 obj << /Length1 1732 /Length2 18670 /Length3 0 /Length 19767 /Filter /FlateDecode >> stream xڴeT\ݖ% pw ݃\}ݯoߨQujsϽN QVc17Jڃ\Xy {nUB hbe7v\,J.<) a4x.@? i>B<,,]`c`o(#@ ` 22*0?Vj{hilk7jj)U% e5ƏjNՋ=@\DQ]ԤHiT>(p .,w o3jdoO/; ?[Z9lW'-`\AfpXL g I>л}7@*ciO< L?]]\F>@35:9&.j2=[o_c1c׿amjrrvqWF {{fG (#) A<: F"7AR Gɓ?imwyV 3󿸛:0i]2B :LÕj|ƶ@_+s pqrzK,\3+Sˀl%&FG`nw'LjUH,,&࿉&YL?&r\GdHo"+R|j.N6/VfS\]r-y56tY?ۨvx?9}y*Eh/ jh Xf@ŷN;/,lGe7OƠGHd *JsA,KP !>2 WLt4 FY4ty_ޭ)%Ā]wNVCK55/4N~(Wl纐 JNqJQ.2iOmVлWrӷZtq?8#t`p=^n2] ! Y ;n+0f8<8u4 }H~i|Z%69/r$ZSȽW{y1tv^ٜmhqJ5`LSMӅg.oYO]NcU!Wo؃΁x#D1wꈡwl.$k c=T4- ~,ԀVdR$%UB_9N)Lv߯ ߎUN/cu0w%P&#J3 @[}-Hpgx\wиf}\b@I~9:)> c` ݲF/c/[UsǨXRy@u(e +9Sq^.>";]H)bĎ4vB蕀 WL9Y1pqSސUM+j&2&ë`\t`LZ* (ZYwLPM%"؇ژ3mV,^sK6Ϥ׉spxGy_xq(ϛrU7q ]H:z?{`R~4&2X]EAĶ~WMUk5pev .Oj%Tݰi*7^>=x#Z8Q{3ˀ?Aev}g^H,>ba4d`f,ĕXur[SZp)׋'wG lLA*/I$0f!9V)neB::AqE"efO2"}DM՟ '<-vGy1A:-îXMNt;Q4)t ww3VIPGY[W¿;hԍ,x'b UJl׾S*G!JUT>O%^fb[pxIwW?(J sZ8.,rJC X}2lV$5ίq!e0+'-S UMe/Ua&љ5|^ A>]2#;JP81/~'!څLOP/%d9ȳ9gؑеezP&c痣=2-Y/-+r-=Uni ̜ohy\}-Ћ\8k&1ӧ?PWuP"zl?y-\ן,E`ec[#Z^#Aݤ3|GQea:c(aU۔Ԩ-=Grd~^#~+P.d9kοª ?3ې2olɴ9ķ_v `W=-=e8T87Z~1%l) ZgM#5W 2r:!~K7 _]Vr6V~'%A[$b%K+u'uծ OЁ8eUP63}CT)k06ΑkZ7Ne;$F 4$ izȣ:Yy &:塲b,}MLqa #own1-BwkbN ֥Hd/!K,_\S6윸K`h{,)܊RS"|/ ˔Ru<ޒ)[B5! 0Hn&?^ `Gr1aQ6H}0Fq'x{D=c.;UT37~EIdqF*(Ѭu=:9/\c'[ 'jR[IPڈ8ʇׁEF @X;MΜSK3@W* ^G *L3ӆ PM+qӧ4p {]$br:([P^/a\nj7׋_!Ząz{_VPPU~A.2 a;i;v[<{:./y:qqBTcJYeK4JtӨ-%@zp8mN+ < -)j7lglM.8CwAk3!nӞQXr [ {PdDn5aOcI:AR'q9"\" ʯ0{~'xL&'&D]Q2FjςAkƠedv؝SY OJHGq%#^AJVZc*df{giK& i<1VT 1PTg`l~f7GjoNG\`9l3qU)}_vP" ?d4MInMQpǐ+%NpV{]Nx*GN4=#4vc9Jb>.0- Q#jJ'|hDam}&cd956Ьe -gUrBrAܿ_J[cr鸉3oq4Pmj^{ep-P/.[s9ɝaӎksz?xg0ݪ+41$$ÿ""K-لIfG8_. 'sI69{gm]+!y8mBdv9jqeG j 9(KKo8LN:iHKīTMdՂ]3?^s>\/1JIa(Ɉ. 0c{(-ܰG/ 낆w펥!Y qDh - 3vиk{sIt\i;FPkԎiKG[! :e)ՊDT,Q&n ]8cus66j\Z!H"zfG:ioz b$6|Ao |;>zު{j.Z^gaez2"6Ef1 '*&͐,@ rSYK/)F\Z_Mi52|n3$6T_o3 }4钒O^75NHR6}vkh@DpQ),zioU~ +>I/,r }0?}.*&ȼwgL[i1ujy'PuksHmͬr dߏd"ɞ`LH ܡA+?u=ω>[qtJq}=1/gIŽ+FSs.ۻXÆ$%9U ]30~b#2br{r.j(XxpW)3v@vEwּϕHMvڶK >z!R*BC2e#$I?~L)>41Rz$a1\8G^h͏X [aV_DQLjK(# tAm:A@X'Gӈi7()G\W>A6Y0 4Yǿr-wQ_)CZpο|V-LvqnS5ލoSv_M*>s kNVJϔ\ʤ_[ʾe<,Jz7?:A *Ǫ32tZ.h굎bj4J9G VWn]!%@&/fr &5K/ ^죝]raݨ_-}[gDK/1N6qa"o Te]-z<7!k& *}:lu yv&% Vq0()mQ;󎳌CRom>G/Rj@%%r "fnt*f'~NaXm`ms~/I`>bĝ)b#92<{iua8s0^2)Ylgxux8 +Rn>HRYp+*7K'b.V-G˟ΒpNbjk]H5fc{S;Ty(3+2 zҳi}03>2şu}EVe-y%g:$3}},u߄})rpfP#N爭.^!#\cߙDH;k5;0HY |/bpB7'an^q~v,|n'p5Ҕ3Bv6 vԈr!qO# sꦙ&=$<-O-1w<02y:xC+$ʛ$~н;L݊dxgs1:;?@ Ⱥ,IbIJ#*,P7zthY2t1B>x\kDrlȓsܲOzl4ԃ ЫFa.H2O5|2m0J trbW;ovX\l㼵Ju"_KW$,RWy{o ??ܨld1nD\(TDXz:uۈ?+"WZv14qO6 .}bp8퐘S`*xuSϼ5o*Ik *j1Gч[Rf~8:8O[cI ^u{y͘D z#г)iYQawIn2~[PC+/9 \ncٳC[ c 1슏^xx- dv8b}$0 edL+Ngf'I!hIlS:65LL47W(ɔSMO_\#Q %.#üH4~? ed&\bw=pؽKJ:Bޛv|WaNc0C5~]2[q}f d*~#D~_/71^,Vo>%:O{) Zr6 ~ U ܖ1hU~P՟/TF^ia;CrT1RuRjFC+_% X%}r\]A:9ax>i;y̍XaEn@ l§ˢ(˔*1P$|ddEɟBe@2!=Mf<xϢIQ`#/aIH)Q~DOROBjц 7WTI{q4~=oj@pFBO#N9RudaEsNtgrP:gg +IձGٿhP32GW=%AM"|Mjxt{W+"?uդ~׽}ٺ)Jc :}.:x)o+=ԓSB ms+Ze aU! F`ak3*{Ie"X(ZQ'N*Z,bn0QW茶ˈWcqa'CSLZp˯pfՔ~0< xX9A̙fzzp]k:fB~DxUouʮNi!JeV*P\xtUk KE R@y?~{E9ZBG Tݼзj ZG5t;q{ʹT i%%Y^SEyg8,&*gE#bJlvilgS{;4&ufÉw+nB Qi厂g秞}?*f/4ϩ?ZnmdN|)ѦP|ݻxn$xٹC0QX1pYkhv<֑Hp`ϴ"Er6b1cL{ Om3w?4*}>Qdg 9otu{T0mI^ٰE Y;_o/C7b ˝SC,_Fe_j/ e>87|ehwo>K:y؉.I`؟KR`<)PsIWRl>9mEU4hR?j~m?Sۭ Q?ۋCb@]ޞ҈&(7"U,&$,Sys%r+*by {@Qͳғkl q~IˎUujwkuEٝKtky|aO/C<|\ٺz/gvH֚К>kC~^9w)#!"k5 f{۽TK=eh|hWێ.m ,KEdPԎf::u|d[4N%YY&R&vzW h*bSW$e}*f/.QǏptE&P} 6#-ܨ~Yt+MɛZ:a2jI=ٍ2GOZy8LxE Eo&*uKZ6 "_ιut,tJ Y;X4f^Y"s_UH 90D;' MKQS.rúf}.=0 `K!1@fq:j홡gg'<EQK. g4+ Ĺa;jk^-d~*81n8K0Љu"a~4H~cJom[Tc3iOl};c~#n# <'K)GlYo>)W a;lpB[(A( m4@8As_^rNLLqVDFM*Rs7H1閌[]nwyƋ[sP-HrDF\[vl8_wҬ_i MC ignL](HW%^Ճ2s,‚ nVd5TЙ@lۢ s2aWBy+$O:: v/ (>K ~uwgwl<fLrjyAZwyvF[U Rm^U? LPi~kSe2W?rϢ2>)H2UT+gyH |J4 #erě**WI n _V t1`ԽoxXeF-qmviql1/eMOHCMy l5>_̊!a{|N, xNęouvM/Qf #Tbdw;;Mdž5 q3 :o h iWXcWr4ɽz.8xƹzdvj ,3b(@Ea>+$==5}٩geu &@sM-KB` tgqó[x/2gٜer:eNejN|wהڑ#2e"# r}" =Kv1 IM:sI[y@sf8}uɰnNΰVOF 0BF2^K>*2ӥbѥBn fVO^m3aX}?%D0,.Ibk F;eACrN`1,Wr-|tJ3< z+b[Cb1AܷLDOA)qbyzvŪEx4Hul1S,%,!Fonlx6ѵJgF@o y`EE6>?M:p`_ba)6q=61IR"[F t8\Q:^RLOM}Fl/g}Ɖ| <ы7왡=0`Tg)}ݭҙGAK]dHs냞XByc@,5`PJyj! Y쎲,H+,10vqYe1ib^Bڷrs|x . U^LM4&t(29}* W3C DTH!I#cU׬|W )asS{2ga?v"SR{{ 98KHpFmbw\pu e ±2dյg|̀V3~ NӘwؽyi{E2ror5ɟ Dj 72E}$AӘmȏ ΂~q<\4KK!X<Iw^@žZqgdm'ΞI\p*A{*wHJ|5jbLȉ _dIR$#~N@-Lӓ"/kJŖz$&_.}/jFQ}CK!X`dUjo7_4DνBoGLZ}/֗:%VˤzYt\p'-_KGd2t9җ7wL埝[9o,K^+aj)PB☼]}em0h*]^$\XֆdEy#l.dfiMF鲂QO?`N}D3ᓘ;bKӜ֬!0`3!Y[H:8oW  }N(z @^<)45|#ZSWqm"h(>PsO+eaf۱ȑF-_eU\/2/XnnmIcdd/}ذ ̺faW,/XܟS[%l*KvuFn^R'J`B|!d98n:g47ҩ <|JE2].[0ϣkhRg6.\~-gߓg,G/0 pw4? Zd:~tu~^QL_*LoN-2(ÊGMZzk~VQk | a^dP>KeZILF p_@2|!Sk ƿ@"`z)M9MceMQ^sRy.nNKR'P@"2%]oB5˻Tf' y;UOێj}E#N>"Q؂t5$Z0tZod ' [a+ ~ձz@vͩɋ`ezZ7U5~\0J8c_i\Ǒ/'`eG4gTUԛ/2镫\>s8T|f:L[*l;0Amspgd2K^bFh"/d'bo~h:in֜4_rHymEzp1]'C 9f/D08,GaRW.팭yXrӏ \@~̮ ;َb18 d0TQ lw+]@ShVsK!-}9S-iQRlg%ъ&rL6 jmхE-?+v~EB6F vpRyZ.3Suβ9`7cR3alRZLW=T}HZ }TRdnj$j ``0px`_l¾0pDJϽͤIEhz8TqmqA$+<*6DxT'c87䲠+% ?f?4>77B❤]FcjgLrX" ZjE :؛*(xJ}.׼; LKQFA3h endstream endobj 14481 0 obj << /Length1 1735 /Length2 17440 /Length3 0 /Length 18586 /Filter /FlateDecode >> stream xڴeTݶ )J.])^Cq.}HL\\#+J¦6 #=3@N^lM2wXEA@GKt(8G{01q#$A``9lA*?#1 [A!6ns7Z 4fd 6.JK ` Zlj -*@REQ]I=aUUS +@tIuUj ;~s:ڻowǿjjJ̌`8,l =* GG[FFs'G{s[YX:\lޟ +?q gi;Ihw{oߜVr8@X9%%95&@G'?7Ȕ_AQ'{5d?e<.c@.` /z{f G'/ -!F/N<0{w x',&NEN. 靤`SQkw'f'G{77 6-: $-_*ՙLjb?\f~o- h4?<  WB`Z8}T. 6pKMEƔ}FMmVnS;%deQGG hmi Jh6K KW?=ZN{a}GQ$wʾ;O-=3h rpppc?7/X/q%I`~g)6!['G/=ߝ0%qGbfb0Gdc0ZZ`"3߬6&'pG U;W_?7o.@G{KW]w1_M hWz6vf=+39OɿC-= +ayƄ7krCpxT 97I'-˩SmbY$ <&4<9)}D?py FsB䍩[E\x4SA?M~ɷP&3Gm&{ !@}H!e *De-% u s;T;VL$Gxf('Ө mw'mrQǏa¹M}uM*7-_?ą.[?Vb()ؙ| / PLޏ0׍mzr")vܼ r&}`ne򑗴I}35@'5nFT_oUGT=p0}6}S֮RP]0Φ4#3:!1^4L9{#,'ji;FsJmwV7e?Ä'4"V,dy=zXU^IvwKr2o\<䷋e/Ofl b}_'bQA-%ZL }vI 8c5HuK[2K BfdlJ,p[A\Nh kV=jiؘyM#ݢb'Dh:BYqw5}߳|%},huL'ƋI׾+ǯS2iwjc/rVF~:go6-fd7Wh<=:loJ:S*:A{S׊#^Q|LYME #㭞MJe۠tBػU~Nf4ۇ8Kqz ,BѸKp̻<џrw!x7 `xq!uc m7VqN52$`?lxRť@mc.T`iF,E$fj|p9ʍİN^ȉDlͮ(U965P̋h?V71Jz*n(!\:$Ha SjRi!wXtTCp!et+dO龙+B) l*ӽpi2XVԿkjX8BAVy)*-@dNM昈sk{ժ- ?NtzB4`@>eG> 6jdvɸ遈hƥs#Rl$;bMCsWb$]$Bn:Q񪹔HlYiK< oMY$ =Mdzl*ۀ?69vAcۑ OXqǨ*1X|yܝy~wSk6mwQO`ӲTw!n7С\<,~ LѬ@ۉn 1Z2\e]Rţ&nG^|\ #U%w򙯑kM)g*O q&3tÂZ ,%F[fa~ W)B./<#鎋zp<+Dh %OY[)6ݠ OqOF_pr[GrKLNᒃCm3W}!I Wy*AI ;_Աj<jUGiʭ:ꎥqAU hH L?m8b*@4١$n/'/1(|θKDǣ}KK 0 P2Hso9sP[4PMr2F]MvUA xx5hb _撵{PsT)4\mv~ڌ#|jbq oD:Jq6]0925A3Kued"j#t쐅enӵۗ}o0oYX*{꩏jv;̦mqZ7P\EjJK xXf1 `UX_Ri<"T2mWM% l&~zciMfd$NvN*U:cz,zXګZc(~:xjή˥2 F=[%~+_j9`HXZU ̙dr L~xE -8SWWD3] 껯hǦKPMre1Q{'>eyǑ"t"]꜌ie g=}t|_ dxփloYPɔ^nN7n^nͅ% @Iy?q]n"`ZUÛ Y r:v鴋0A^M,~ktIC[B(pUCakUȒ,v69zT;i1{9zʣx1ja+1Ɉj.\X*Ttq-S50kt06w/?tW0ݒtM}@FE83T60zy8O. Z1a?\$U1mڳDq, wYO1mFXg~:VRQGǙ;CV.n8Iv27Q;?Tɓ|ASn9lq.-w ʠ7h_͝"|cTJ;8j萌(BhZT1M!!\Ǡng̰8آOН؝xPk޽L˦w- n48s+뵦Aޛ33?I$WO9LKՉnBX<1%BT[gs6C‘LRE9J[#Ycұ7+3d Sf[M/ r[SMZ A74O&65>2ѴqtϯU-zw3';[FiWkY V;n]x>,-̴o~Fq&Lr7 E& "6heOZP/:bKC رq/$`Q2!.b32ud2-Pw%!bv/CWv=S*x&bCrݏ}4<_R%[jWC+z] Fõ(Hvȋ„Ǟi8x[쭾;-9&,.{_aP7Tf .# ׉bH|N^TI4c? iY]FGyu- de͊f2YC-> lcERܢ/X5(U]‹M"KP*|zZ_/y?<۲`_Of=: n!5ҍ҇˔Yr0'cP|Чp8=݀l(A8^52Q bJBbݮM9V!`Nb?$G0,Bɚ%mg}o,I {i-{xpފMprDH/oOJSCЅHcʞV?vHnisSFw njL4 ,5\3$_.=dB嬾 u95?V=r<=^^J@P-~*H+r9fr\}n[*B ֥\Tm4S^HOXjGeF=1r#vH˾&_wO BE j8]~mg>> B=",y0ڧU#jQ0ZGhsF+#PH=T/ET Z$G_k8)ؚ!F-)gmd< 861şV,m߉S#bhZ}BAknbUFG7;RyӪ<ɐ& -n!/ glijJv&s@Fh(v?M,C$7BQ. !\:ArUz+l?9:7 S7d +,>;pۚi$,21 U,CD9.{f!念ozʬjN,0i~ ^ waǗRsԯ )rS5/ ds3YMQYH37p_]sNWR{ |c!H$4u .wE/DX7-8G@Vt§f7P_Ǵ C;p2eۆѷ?)[1nxxA~#:929Dhܲ m}#lj?@{o,'1gSdDys^}sZ `4)AG“@{֭N4 #)bI jD֟G"I54:{Z!lyĔ9ǶH_X;OWV=o1/7׫ uXE~Ĕd]fl _/+Z)E!՛2#<.}nle9Q ڹ3! +۷=jc>%7_F Ok6[S9a =}-{[ZSΙ(^^֨}kD28&\.=MGe@՟8+;yA%UQ{)h -5quЍ2^/ ^ `os >{[ }Rs/ ! MxWjRKaNv53xeOAmoXAG 7f1) yꐓǀ<uΘ(\5EBh h2@b~jypo..'֟o̯ msQF'^gar<ێ|v-UBbBf*m}.SS>M"*ZOR,37V|M5i]Wtqk7_} _Q&  aV9Bܣ.J#-(Tf%mW%9ۙGhcT6ġץ-_B3do?'ƶZb,|"ra5R[Bu~inI}Uu('7mրŭ I.SjqH5cNsi/{u/ 6_ծQӅas)3-/m.oIL=uZIfuL2=Rm'R ;Mn>l)pyzz|\ΙbRGϕ$OwGTZBB gg8fnp &|^%)e80.)\1!bڍ`jkwUO/627lp"9j"eh J'"@&d9J#F\Olݸ.,GJ$HU)HDJ)1SE}ݎ* ^'AAӏC/p,//x(1"?=G B *|c@ ȡ:ZHg)TvTujiI3 0&Oc|̇n BZEvuoBΡh taO%J@GE? bFx1yI^˯K|J)'<yS!L~MtG&X`\mcR"Def(`2.db q;}7pEs2{Sǭ\60?ҡ.©2]I tM:VL9-w&.f2Jz!9"=wu~F$9Q7&Z)喓W X9Yٸ4lp\Y4)bDz lQ+l<*sX[0jP0s: o^yCq$:7y7e;fx?yR.z]Hkv1(]K\(1pSSގb,PGCRG J(&kU j8`::ϖ|꽻R0q9(}`o1b- GȆQ'8k"rmCEA 7rnsr)3q*Ӷ;` k,QkL-&fk0-Ў."1Bz63/VK_Tf*[CFVa܇؞DgqX}>%*G{[b\הɈ%O,!X}?gB6n,2: wy.A wH.Uc2c* sŋۆLP4ag[.`I4dUȱ}ϙ8(vegd-s\'X2~A 'վy~p[YXbHBOaS[`jf>"!okLAcpkƢM?t;每Rґlhj/ۭ]!\`,CG H= tU]淢_4a/0l}*@;Uoۋyt/.%1i1/L9_H*L`fDs)kͦ!J/Kb?6mI F&L&{4+8.R/8薷V 5P-B>gʕmJS 1fS1ƩP~< ~ˑǨo"']EП.%v$U2A묝s_|hh!uLKGq]3fZ#=Rq?>ꯍCJz |+J#>6gQ1}eԊw^CuQ7chsg3 Y}өHU33s۷u4oIn+|Ol=6LUC$>}k(!{BmJFeLOՀ˃D7񢎯z:xɊ*wz˧ȷ3rnqZ#OI =}DA[@m2?@jSŇӎEPn?F1F: 4MB7<؀>T XUL$LhTD͙к%(jd?_2DNQC+hӇגmM>3G7$%$XןLdA vl.DRT?/(TʪצL \SʞpDP@lUyOL(%0~|=Dm  υ<,)|B .ne^CV0\ )g+ÊQBF-qe'iGP~5 ?($`)B# sW(BY"Lä'f.oie)xVwk=(g鳃SPL ^ eZWzl9*ѫu&웽vZ[ wB;.!r33CsHI)yTЕZ/b1TiqLtIŭvnǒ]C@47 #ttq~6?kã|Wg|>Ss`ŗ"w[@R8lLqqL o7- bP{.ps=hB)Dkv$b_\'֔OdM?)?+~dgܜvwW}ҧٻg1/i*Cuأ٢V'9=);ۍ/kӅ3CM}-|~~+xb ιqLN7p _.nH $ hiDHG|TUFSt%H6!L/gM!:w8 C,MΘ<׍9#hw?+|PxZh`s E4$s#;x); ;Wά+} PHIUybۈ&Ŏ5- 0#^KpHI3t8oğ:.}gS?fr)}xnrV[]"=K]I ؚE|Fdo;*FZ66c-aC!sJ~ էՅg(k|lRjEp.t&AߪSXFJt@}m}Ly%{HCJCSҫ1؉(ɬq崟_Sy?8W[ ߨV.> dHbY6Fm5>y1S~`@5f-~gSL *UyWZq?`ZU;b{'3'QsZ(X˟&窟vu}?34\.eHl)R=@{Fv ,rqw8MC1^s V|[;N06E幆dՌ[7B-@jHSyC 3#+d$#ѸCz*hbyمPSw z¬JrNU*š'tT4^~;w݊ 쮗t=,`ɎT%쀞N1ߚԍfT=+:;ݩAb3`q#+lb}HК9j ̑ℕb1"q(ܘpt 0 FW>_NFUtNE'eVRcH+0ʕCXD'ړ~OJ 5QpyO=LVRYfu|u~np3u\MS(p iOG򅀪s,*m FCs[ȫ8H+bz kv9Տl&QZHΓOSy+}%I'b=8].?M .}֮QE$ ǯ! chnsBٔ?hRj;΄_7rţQL$u[#EL˧z sbq|nIO } PV Ѭh1Զs`[n%5BG?~ `.iv_I {s)<$d՜k j? _\S8< FuKOZ❶<kqy#P:ohGηBW (}\0D>* pcBWNGH⓵t9g3{2>qhIo#.fcCT?M n~3%G`-:|ꀬ q(.ݯ&uV5.WNBHHRdDȗڌŕ.뚒a`R/KBX~izP@TJM\nehD"l8dJ^x~1&u@C\(T: uMTO(Ltdlk.(O+ ")΀^Pmq9=i 뛻qR(Ka%C홫nUIvZF(%hbkު6^".J\S'HgbB# w="j9YƳϡ ,~Qd3Z@f%^u̜^E*va+sZ<)MI9>>KPl gc.&&%X@f^%r|1րy"mQ x2&",5)]A-l?lπ[ܧd0*i4wwOI2H<B͇DynMZў[⎼ ,؋n&g! R]@l?W* (/HiwOsi VTwJzg?cfY>:Eqܰb zU)$#! 4,-:i: /Q?8eWac7}=P?jv3>:t+Sؠ h>e *fiD̳7ŀ5 t$! [@!p}쭬=S/D9Db#;ȵa/+kYJUb*_K$Je@/Cݬdl~cƳe*k[ҵib f~v :t3[dx y 4l| d: n-Bi?BvJΆ Jwb_Un'.LH.D`:[*Chn%J]-LtJ!k_Z\Gp vk-!XGnk>P}3;눰Q~wOsՍ[Єwi 6FނT%BhkF~a U@22tNdV^٦SC84p*s[&i6)n\0{r󾋫Q(# | h%=X C"L"z'.28\f_CZGYO 9zxE*-]r Jqa187k-`,TQsir[ 0IoUru["6Ҵ?3}ɤr^Dv9 >~慕BCS+#lOnv@-aW+CŵAxD*]}\3 "7}]L/ M"0]YAxF76sTjHq -:AA8h6ݱM.w: T>/oa¸@GiT ۿgfkt4ִ J m/S砅u;LGV5:`.Q*>Ur/֓йIrŲR)al`\̰k"$dz;Z|UO;GV=e4>{AZqP16XP Wf\iXjdA=tZu1Dr]2@٧C8-aNzݍzL6 I!zHU4ݷPg2/7B{DQ5(Xk!B<9*A/V_L#iჺ@xbCOvwKj; m3{AHxL}}4:M܊L̽&ȲeU-IuRX"gbg|"^86>4b٦c«0Nd e+?Qԭ>]#^;yJ9&p,!P?S fQȬ0wXB$mj|r.rFy+s.uFk+I/0Eɥ!)I?4vɶTa]&44@ @ Z!e?Ģݚأ[iBS'Ф}~ r9fZ5m 姷\nstqMY<_O%WU&YRPU,fpf=9wUyl"ƒTd1X Hq_X+N rb% 'saF, aK0kf5^YُpSi}@x#k{:-(QLXebOo|BBlcGNNVW~|A/% rסUj@rJ-nr[# !+!}&|vW~4/]nH< _JŨNZeͮQ$FZV SxKu7Tfb/,BDl kO\We`In  T&FT ?RƜ:Nf.0&Ii~3՛W?1%%eʐ JɛR+H!^/;sZ4eEp' C`4f; ơ^Z5Z:Xۣ fgϪ}a&Qlj ķoҜr*%^U 9&6u ~M f#xlm,GZpL-16z_ҁН%be  U>~ +G%,%GA?v L&PZ #,y!PqVP5mA LdFw jK(N5ui2tSr)4 s0 L >Zε_+h RbnÎo[ h!;+ǐI4Qp6xꫠ'ҵ.n_6muܪnonJ>Y3-$Ce" ʌ/.a.3_BFlc,s@56njQ 4i!:㶅sO D|n 9 3YCI'0S6WX4e+8FRFDl9;6"r~ݕVArq$7̾ׯGDo4ƨF0,sń"̻<>7v%3w/^Dx2ۧ HkGbJ7m/NljN* rHX7 \({)nJjWV" (;\]8&HAE4O귦EpoL^-ZBƆ_,iE>^{f{O#H(E,FbFLw9GvrYOyiPQl*maߠQCg좨OD qM%+vdf(Ϸ/ ~3#o ؖHaE8Ѓbu*:S\vPFL̑Y؀(GZb.A y9-[0Dio| Ԡc}X7{OfZ0̶=ʣ=9nv0uLL*WdF{}?Z8'!*e2495$(}0pj^,J$,Z,~*4,x?Yc3#z0y%h؞ M x}qtۍ<};Tx엧!W{#H[m28/ ^qI.Z6J* endstream endobj 14483 0 obj << /Length1 3061 /Length2 36067 /Length3 0 /Length 37738 /Filter /FlateDecode >> stream xڴuTjJtKtwwtw Cw7JHw7H4JI#ݍ}Gw],~cK7j S rٙ80-LlL,,H@Wk+jP2s-XXx(@3Xi0(]MԽ2ŕ:XZ;i. G/gkK+_1E-31yZLrL LEXh 9LV&v@ PTUH*i(29:4@BTQ]dHktd( +H(K2 p:XJ_ܨ]-A%X:13{xx0Y2-ne9@;_qs0 w_+6:9IVڃ[ v]!n믘v\2qW^YY`ob t0q0ͩ&9;ʡ?iC] LWl3 k;/./:8oΧF|jY7׮hF`.Zos~& v#xH9 MoG? ƿBLMgb/{^ &c?9~I.wQflWR_z'7QjgbGp,~G[XXgZ$`7Op9V7 Xf""VTXwMPb 48&/VVp&{_>:ZRp(,q]/t9/!|ך{Vpyrp[{8XNpk]s3q#05qKur1)zpp9z)+xq`l@pP? 8&޿9#yf#_[˝Ŀ3em~ a`Ȟz,,oJ@Q񇷘Ӈ|2 >_f?z_o% 4CZڤ4KLR2W i,O|&ė$ fPe )CqW[?V_l+Jh2ig(wpLeŷ4Fy?wDz`\&闷-zͰ6c;azΣ t}c+@7m;"ӅK}rQ1D2ˁ.PT#zJXdN\]6uX~yȧTc#բJ* x!AS0‰{@C[v N ծ$^p .95D_]Xrc#? t)?(f%"6sHA-]Q0U@D /5}wsP`|x{ +yęܜZUОwXY'f[|"k6мYghyϟZs&sM_Z4CQ|  LoFߴU_/vBB\tψ- R!Sza-}}h*E0ZKOC{{. uoQh2W_iTޮ*H_=\DĈңq,T.-sŗ<6_j?rA@ފ_t\5x8>擛Xd6 w> zә&*8cꚎnU|[ZXٞonEWm纘',S0]K,[ r_nFM$'qs1$W "}tSLX&(Ƴγ՗OIoebYRBeqw_̧|}⡝keWS TD>UL"ܹ/ˈ݋4aZt!l_S o\M6a&1 D/q_3ë[z:?]QP%cj몼zJEE|Osw^D4II+8,oo]]r!ٶ |qbpUa߱,CEeIp|T啁7GOhhcgjj;w帽@j%n gkw߂NU 05[1 a/uD`5''^Q R|Hgzc]~aC}|H׹#{ɔ62YU7zm\#c78Ř:jF#Mhx T,*AB[i])yq|O)i¥gwqڄ*eݯd-~r|q6[x&JJ͛+:׶N/y7yZ҃0i>)3A[qH"!X`aXa,27RݷKX biu#h;~ _Ep8T9ۅYsYJ`~0}<iw@b0Nأ/I3l<߁t[uփveI/+Bf~5v02Pe3(]22)+w$;,Riy )PSkkcb j,[&}@' Fi YTRJE;@_?mQ+{),/JB|b Z%츝`ެБtxN$rHPGgW8[{ 3PE7!$(,H }#J+I;=t%4%'ݔ⪄I^<7:yvY!E1+W@ӆ {*5$xI]~6Jda䬯_򰆌!=E((z7!4$Cb;u}וE1SF" }WCۚ+m8d)S5 0R犝.W{vf_ʽ.d_%3@6r c_`j=]iȅC<ׅq]wX7!Ȍ2 /؍(T:?{EǔY vYE dE.Z fg?J='mWl 8y&j{A~/ Df-F 0juؽ>鿀3o}[>VKm%L<7o'e~gba:ɏFJG8)y!ݗoq9+-'G_g/O(!Hz^r`Ɏ _ 1n [SUX\XStb-8$` ]LȢ<ujuttmduaUÝ,Z7+[)Dk4%j}~ IʂIKz*6rW ^&LKS NF7 >SsGvwKXၥ;2{v'lѴFmaD|="_OXx,jZ\j,MbtgO;_.#9{o.GfLeq܃CQ,EhtR|"L{G`w B ' RY{2+5(E^fLDG.@)X6ȅҀ(Ef1WF?^7%6Cvyz ӫܾ o`̚Xz-A fk3=u_Afm)~]Xm*R#hH ЕL eޣJI6(Ey?#uۄB:V`NWMxc{@$Ya6\ST7@3&>W͝zQh܎ec3;{Lb:eYR;юPUE:<1k(I.3=}>e|+d԰LkYt7FA0˲ Wrݾf6G;h[q̢qhh3V'%<~.DoT~@}йSS3Q(I\=hFn)J!%e !BPV+W)uʗ~n>V婞 Np DފoRϐrE#rlF;}tx@bjHsSbŤ3_UЌ q$ygG0ke =6lѷ^N1yטD_J'sؒാ=5`:?UYHCL0 JEgbZT0diPgL]hn@kAA6;K{cUMYޏ]%) G`]MG_1#=7'UDh[g_wD x.A X|Mћa,X"@F &<3\>2Xwo-M4Ƌ, v%i,EX_j=1oEB/m$JѨFE|qM0@3c |Zd}P>gMͦ㥐PJw2|wVOoBDo(J^U%2mjd$nV^Mp^M!"w*Rcr4S,. h8hqq4I2_e)h`2nX/U`'SbRlc0/+w6ãbܔh6L  8S%ԈdoHwghbĝiZ`ԶOR;g7/](^WxM)cqj1Z6rOes /җDxӠr fҟN?ل[GMWz?ff0> Yi,RCއ,Kg)x%"ʱHRف%'?WS` !eAE.lg1[5V/Th1) Xk$ | T?؜Ą-Y8ycG,9)q-%!KVOE|=uw8bc|a1Z!:(O5$H-=X`O'Qh.TOPrYl^, EQ=F$kPe'(`y͞Sq1 f?@'tDzeP\2 N'~1Dce}yC[ImR[AsVi(%śګ ؎$1<5ݸ7OzYGϚ.(aڳ141Qp'wվ*y6lC5*Eq 5!H$[_I.F* um'Q5Ad/LiOEZ3Z L}Yd_I VOu &$Ƃ#񬊏 䮆g CZអ9;>-)VcLۙrDn1!ds/, MS=$EGU!js%{缣s ^#hQkT¯ҏHϔNLcǭdibYgUjyGΟG?Ε#d։U$ UW"yXHfiAp (8[B6HN|V! ʂd;jeJWqߏľug0nڤ+VhnhbuoE$ 8S]˨G^4GaNhtxg0֗vLMLi$?W**{+ :޹@ r#Ul߆/U.{ 2J~Z= VF~" ӬiR+*x㿾8% An{m^(׳Ɇb`dm.`ra$e]m8ڱy3t;K|ey["Jodjx#NUFr=lOTa\$WQt;7Ԯp4i0aƢOcN4=VoiUzF0oDlו)ݢڼDΩs,56,2%6&&fIthX|#6?-&:xVB |m o? ZM9cyR"VHp[7~Wzz19 W G0p~v} I)eH +Nh Qm:nL+\؛v:,~pdpYBw:c%||`(]; 5o\6 )|z0P^!0s f^ʔkwbe]GG\. 2=u0]# a`}gwB\2롲Z {ޘ7yʘ-3޷^tc_HgtJPU*WB z⾡+q雉W6Mڥ..L<֧ ^} dz_R<{-H MbZ:o:h3H׼/N,p#~HC1Cj i{J\M|ڳ2slCչ|ErX,aHS>÷/IFJ@ ?dH"B:JdrKKx!R)UY&PM/"u9Mo;<&o# 1]P\.ԹsH2+wEHOFvX+3s~zޔV1p | ]:joC$龈mRR`~F/ޕ%PDv/ 1G͑ꯂJ6,M؉.mQɓ}HuL{AP ǙvcT+|;aKSKxӾ̓:ٱ{$СmIedž߻+*d?|,Uߤ~],R"&$s} *X ,PqvOn!ۛ4\yͰ%r[dzC4\VA2^(Q?m!]2*ց}0"~q ; v/&im&7j?`l`ٚ?d0\5ڡ:Jc埘hN>βYXhv˒n<:3jp7[%pX.odƇ}>DzF:w i ,Ӽ^(9(d`Wp:ke@^ܢ9nwIw?_MdwT]@qg_EȊݟBS$ʡL[ Jg\jXo%:o) TEX[M~7Wꔪp'VrF-}uNƎ#Kq Dz73?ktJ6a<'O|q^a"iBfӮw E2>h׈og_BnTv.aK??~etgn \ŕ }HuҎf;Y uq!" wUXHT/9#kn;^ 7()DRDJ:i@>q6UvD|qַ/WrbJӷb_ ~ iU)>6;)S#)m` +LEh6QHUJQV]A8af_<"D^:m>X>oAVbGa:FuIAEid3?D"}be̅V*|CVM^+"U7 T C+)ŭ Z*)MaF- ūSOwlo/hB0A(4m6ˠBd^1\$\>ȲbOO;ʘɏBYqt4 lc-CMN\Q0t(!xJ^Cy qTmj{wZ  !wZ||a&a ?7VlfXcѻUFO%X(A+s|vZEK-lZN, I~9"o܆0^z6Ahc'ɸٓ1>'eY̟JR7&;)ۙJrwۈw[8'%lWFt4ݛ,;o*B1需G a ULL֏M[(>!m^mZ:A]]^s@l+KGsKqsQ 7mEd:W+w!PId p>Nـ?uꀢh) v\NYQB0xӹHH -\21+#}oꐰ MɽєB*(z|rn< 7SiIHNyv stiRkD^X~P'Bм4t~Y :+ݧ\܉5 _<(5զ$ɤSbOT_ފ U !ӞosխOCqJOp 9Km\L ooъFo! X[1ezL›@4n4?R|HjEfp^ϵ|ys~ H|M幖>1]8֝ӱoM<)9Kf%4s EjrC?oFy oǃ o 2nM5r8t~B*u{:cU6o捞Ӿ-^rno"QH$ɳ>=P1|(I\qߪH,*e9^a<ׅzf&xliJ`̿ImRg6?!!jXcB~fLPSӯ@7K[k[`vb۸da[k&6uzhC`I+1պ(QTwh$KkȕC<&υ$ %}Oj&x1+%ԴC| }۹3szM~p5h4d\SWk / _ ȩxyL䐮^C&~|5{kw(!ÛmToI>?-5q}NJÕWDscj fR)wOWN[CJqڄ+ɽ ko)JrCik@bI-PaW.r4.=Yr1|k<^e fL S '>'`]'02;Ơ(FM89Hp&{ϕ#D/fQl^Fwvٖ7V 3f0GWGg#of$]:.[;{5sY̔ E׷O+b oŻEʍ>'m#XY:5 #C[ rFah1pY?<8#V e;*}=!v[͞n~ACVrKG)cbL% <.(F<٣{ @s^EC!z]Y3Y)6"Te칦0nG'*r7EV;eQ@Uo2e 9SX:X?j Vqm |r&9Y8pp=(3tUH={0;Ϭ}+hg$ċ2ǩHk[8Dd7{xHi+~L,q7"y6.N!r+k<-R>Mv!? VM9P/al1ԱT \Їu<\uO%p›A^NC^3wJgѶۦ88%.)9c46~Cf$$;B-OKO-9+(U͞s""#E+jZ\̽J! F8ul>1 0 l5pT$ a=GujDFʗƝ}eadϡ6F,ʳ'\2=7:k!Tq-9 'gsISj6gKLɃOn#\ȇU1UFemu5IoR x";-YHÊP3sBM8$"Б}{AySJ'^.ĉ Sڭ7~/dYWn><%]l օet3$BDu)3-y͹]q{rwhɁ^ߋ?7; 0fr:-xڒvqMO VaZQT5UeDG,X]nQ1^"%w*FηӱXWv<<7HW|3[et"gαmjED`ۨO`OIV(#WG_ԓLpjius3]9؂H)`!W0ɝ.AЅmՀg=SFƪMdXÏ,U?c` {Kn70 zE0o) vsh[dX nYLpɿ9S\6ч1+UUwxe8&kdTngaBDF%@5;4$\7[Wy} H6PXz-JV 3d 1_1bO:ang- FQc?%;A|e{|&^;CL.< a_Sd"Ԯ+:*ZE\Be m^ln&[yɘhtDMd ;?T`{γM@P<%9Q UV>~ꂌ¾H(nI^^rԎye>&jQφ[{c6OJͲ'f -]6U" !+0~WJV}C zj\\uPdZӰiy;VNG-h(ex|BE]L 舘guy 1P 95Ġ.Pom#YyxQ{وBuR="#›vsKYݓte.<.:pvO]L_$7uzc<B\g(9!yĽI= wI.p0ooVj *ϊK-|K9o_,5'PKs_=f'_h⹆:sn!h(HNdYٟz2;~\KBJhae]cFw^/, wJCZYX:q1-*s`[pb-E*/3ܞ۷ЍNYyDŽ1ȷYmU|7DKodH'U"UVCz&qW2]\^,"vF sGrVDYy,\NG%WƢA5G;DySGWcesEک[#InYzoJ>-vo49˴=_DL kV~Na" M(ie,D?P:|\p7)`sxUAe«Uu9BPj$FZ? eә{g]JomZM/u{;yyкw];K"C {W2%?@`zk2PҺ[ k#K CEsj{. P7KxU욉5^9lV8QD`R#]%yfE' b9ILF#rјRv;vRrICb/{^#'p\7-pwwG"[͆v-2E$h;2,Vya,g:ҩMbSеWAlKjD6^ ԓ}$jS{zǼ7l[%Ð _J}Ҫ;h?y!J)ȑ .^:9[)Q Ni ݇1;#Ju8׫wTFFP̞_\ xR3C'#cɳwt*`s 4~ 8S(BU:W+?S ~(iOӑ:[zZ} (t^DL#{9<4 n$;T~`@BM(|qJN4Źnzr],ZT6^lq p)zԅmBZB5ND*}OH~ޤ7guMv>[|0.}?e$euE"6C :`OT>b_O%iRn#+ ==jqFtZ.?k@n d{!<;wWBgB⪭%`DnܖimAsX$>}mq RX:D/6Z6qԴAٌ$x3q!W Wx3I4Ӆ-͆n[/HSn;Y*l 5L-Q2T"R6~| u3舧I7{y #$%QV{R+Lڧ\5:zȰ$ֵ,sP!Fx 2"g\d&}ՏU=Oyոr'ރ{UP(TBfTyoH`;v MU<;lqsM0q&,Y\iFe*AEg[b41!͖M7G 1c%ӌ^:v/ ?q)v̩ fU q3hK<VyEXS?P{ƨX%z?X{4m񥦹urց62p{q@z&9lFXAxI*̵6{U1!Ax!{4M"$Ui2@U ɧ)Tߪ`Jͺe5|x-p5ChWIBnɼgݖ*K63䵺 QG7B?CMF+>R2;}LOuNAvE.8м=Vv n?9%cjO9p'nb(Fs dZɑз=w Qa[94}zМՎ*^z* FRG|`Ju4}8`Tlɸ5ҵ (j۶tQ?&h^EE X~е2Gm vEaW;+\$%ݞFx_#NVd4t/ i.>q'ŒbBke`)87V֑ X j-a1j?ĕF!&F>=526ohϟ[\@*LQתeyq- FMo+t CE[䞂QvJY?R@?|~sXlh8:pSÆR ^ /} b7Pn~,47ey|h"$sh@lBR3%0ofL/_K6)]'Q6@mЈ_c:K1:KM+TG]#/_yQ4:~0 GFa{. aksυN)Y,U<%+K$kkʣ#?XezK=8#=-]n˜"7Bxtd۶ nuaЋԗU>+!}&%!5E!,"ve>5O퀩Gt`` DY7Jif> ULsNYsXfna?c QIInIS$ a2E*N|) &R%gTh$~mYdǡ旵r82 },ɾG3eS*~coUpn|$9npO*3Ukm>,{PWT6f i/<"<*ӕ`&^J:osͧutBMx$ܨlۑ\wZ+]./D($~%%^p.a2{D.oe SO(Ivk)tR~ʞEC 9r{ϽH@3mSXz{`5hE|`c;8MuR\*HKm2|ѶEtp 8'+1<?F5nSo ΂ݟӊF{KgD^v :ǔʾ; OK_NS;huWhf_RkxaZCl>{D~q^PPcL:9_!BnRwPCz`̇[+0HUNߠ+k|k?Fը popˣl&+]pL9H6>;$=q\dкtK?^i9/\6Q(n,G#Qg,Q8Ufް0VrnxS:+{Z:ŰvZ+|5GDvtdk!{2rL/TǖW^*"O~%jN6s]܄0}4pu3\1ypiY_ xIZCg95tmA錜Ueӗb&1C yG?C]̍չʶdv>%鬮睁}vw({E몪oHj<+B_6J$FŽ\Ix!QC Ԋ"(:%&1@1a6_Z _Wv?1v3Tjb=Ix哢0%knWg-ݑϬmUFM&$T 5yB&[ 0mZNW1hXiÌHuK^=J>ޔF;)J$:4 |h4ogʽA&$jx{h; "6F8U[ys% #_.Z6uwl%=F?RQ`V>L4+2== `W㼟Kw ED6aJZ1&V"4:hi[ld]gvu& /O m{ٲeϿ 73{0rċI㿠vZK/A$5{J"6eYӔ/&Wѣ_9kb'Oq2yio)3C pRma=Og.j7zW^x|Zc%UT~{STa@u3w6M~ZLO`;v Wo۰=s&_U E rDΌ\ke iDE9Rij'=P4kl(լZ 9y2*%!˘ɱ5~:A纇G㒏(*08&fҼ+MH)¿,$d٧`[j%hPQlݶ;n ܪ6\k 3gMA-RsQP^U\冼q["ZA_p/H%{`|_gYtq##u ܂n&ڞ n垓I|иL~Abvzm}~o6I53pͯqQi(D;E〪%.,z;R٦j2P;< e-9FTZ6৙(ָĻnd-gJ./ʌwQb 8Su݀[QL2 "+/[r¯d7X;5N(ItB~SyhVrE'`T֠u,+Dc€L9Y፞]e~b{ipށ_U#Gi VZ 7Cz&vkE~~z%*8V <4<;28irN[ա2uI*~RFB|2T0D8 %ց U߯m0I.oh&=6ֳp戥&dh-6JCSQ085 w~/[{RU8n*rg<:L:eȠ+ʨ$*dvai{8vK0`!/_B׉=[Z]q"$4]1. @xsR- l%I1DN)Yip Rє7\rECH{5_䵵KdGd[W:Nr Fv'; Qhsjt㥈9"_Xzad{"(S6eSģ%9;sc]>/geA8FkLh.Q?WC;mFõ\}l)~#54Sr-DC |^o#6`!/(h湈jYc?79ҜE ~GfIoUEG&?`8K6ġ# z؝CS[5*G;e_D-jdH IetuD)W6@MzR "w=W&?·8vcд%M_{ s[u􇃱Ȝ peM0R( 5zOvY.@]#EsvXlI:r\؉b`&Oz(D/&o0-6->!eoWREkO;"kۄF9rru_dẌ́5 :]yZ᢫y6&׬|0R#>R Q]Qr{ɍ'{_B7 *6K-c.gm%22OHrڅSHaFc'R{j#lg _$'Q<0]2G/DW^BںO/PRVfsv[1Wٹ0b%`z m=-v8O3F* :d7|8>)hANo5wh&ƢW%~yɔԂ8$O|s:UЙ Κ,<쪔lTc 8a)H+xu壼{q90W2Xi&24GamA32&U1$5Aw/1(Jm.6 8}PdeTiŘ{p_7^uhZXjThܩ;ڼivx_Ňϣ1 9SNJb.t^ҟ) 7<] e*r_*x *+@L@M#c,Są>(6lJ\1^V1iJ%ϠP ~%7?q]^Cz2.ncF=Lg=Bc؝xAFC-.\#VBSg3*-)!MÉq^Lz/{ kaxOB%3P|< zjlxȋ-OX^qzR6 S3Td{U:nbuo$1V5G~c[`aD⫯wC!ͅ7>V3*5#T+mZϰiGx-JGLyniyr~iUkCJЃ7#Pڜkj£y n`+y߷9ݮ"(0)`UCq\MOHбwE@?t# <"+UU_nuy9--C? l/5aQs zQ4DWt s aFMn3`,4uqgSb$.(06~0g NŅP#?.~q?  :c%w-@[{7cahZ}Ct0#Y``vg`g<165"pn`MAd:/j ):PGzUgm?UmRadn/yR' +2<2Ohq_l:>NK3­-㏝rO9uNkY*DN*-B_4JN0s^jHԞqndEauLc& o\tبD(VFcDjRe .nt$barXɸxb)# F,6E@!֊7ƞU"c)MMVyƸ)}D$wŢ3@mi%_W'}hfǡmLڧgb$&N:"zΤDLnx0$ !J)T4 |.9,~MeV20N+Y?IL\bl!߼;UvZݲX 7y MɋBIWXC9ΘXru Yr4_5*4S1sx:>`+*څpȷK,80<7S~OO~8:ȟS(Mv{nEgJopKIDu#a(ZcGa?֋r k XC<9}9hf/)j&6諡B)/6-tu ЙibIV0D :s~JFg;ٿBn]'5҄DD H!7>Lf 'x\!rpe "Lѐ:R̢ 6fVhE0׃ &14Z0۲w04.xL5]t/iXӊio]Ztq ߚVdc?[s{#Q9U`D Ŋ w: lae6kOYم'QXb78WdjwyemV)7*nT0| 0ZbްR-.P¹!_%WIq7_nmA/fBX&XޙFH,7A @Y/OΛcEro5 =Z]¡Ȁ/]ltCv"|* ;)BO/H|E /h Ij;ʟbX7A)sfs `.tm,}wO"^2&0(ԽjMaH ))jr $UHEWh.U2E7m?wU^_ I;ʷ&5}쪺CpXL >ϵo)t +sw慊 Yq(L+7_D̳W\ 62h+l&0-.!iV#b_/:q#]-<1(>qttjGqՕOɋl(LWs&tE"luK1j #b>嵳j>qN[߹vi] k h!OV/ڻa>5I$yDrK'3^NJ1" #c`O }xt fZHը_Mt: ܀tHa!+3hjXbK|͒RQsXKl~=i1t؇aKk [ƞ heOR1_U5yoP;e#*nxa԰Uj^) :{#*aw1!b!B5OY[Qpg Z!QPLx|a CSB<axIb*JBQ8q-86k/đ,_uUD{PߕNor2ЭWF^JC{*p5}a #1~Bts\P|ݬr_@,0$ME`PV<s9@:HƊN`x/oUjF}łb*0̚,;RP3H odZթ6Mo½1iVevoXRlӾ{id9ǾW>t%] L,[}IF5Yޙ P®*RyʣӏWkϽQ&0=WS]mEBGe,B Ĭid'dyہi*DbZ(Kh\ӸY"~Oj5*y vl SS.oMfi]$#S|+] ,JA?ϲWW"i(aW`y{14ۆѥ#}Dk9:VYa.4![+5{ < Uqp5IELYl@$ ;ICdo,dzƯK,^_s}зb/Z!AOzo RzE`"u<42wnc!IgМ?ɾ Ή)I>1w*[+J,Z6|g>F~֠5w>z!KR7^ (lށPqI| Z-%ȷ8owF@>|YG聸a@⟁IXn\U#fo3sgJ|0~wqoרu}O8ԫv556"IuosifN`AZ [)W7M#0T/-j[YPYiRzH2WVATa=J@YQvm91Ԃ0f=Jb)WY W?(!F[ u(y7`($d?zJWOrg.AϘ5\2TeSX)'ګު9MlցfW-1LM+wGXext5uhC`Rj3 ,7bld"JkH;.[d:"xE3+L%[XR_pm.%Ϻ r@?~E‰>Cx_Le fjpE>@y&`Hz!80XgLO&oh r;`%e;@XZ?՚{\oSW6j۵ mjCC sv:9gЉ_dF. $bl [akи ¨p>}!]niK[Gq70^J]6K :Qm3td =m B/ؿ郠3W+$\R -gyg1bpE7ZOf84-Їg񫫵O1 MQ@}׭WڋDxQ+̐/Ӯ'>C3^G>#b3$lYSde| y-Tv^hճ {D[Ն_No'W`:#,nmr\ͨ)rT7p>9(-\;)ܼ,C-땅r@+ #Z# Cyy5aAc[;;!31Y*JĽ]I>_"4#@JEAb ,G^Dyn E5ŶH8 DX?8E9q_=c {jnMR55kcg)z|2H(MLF^O o^-6X2@}ukk5|A4$vbKLij<g2d֤,JcYl$a? ӖNs%pLW/h[Y'uSГH&WȮ7x߆ޫDRSLjjNVllcZ6RQ@*}2JJ,*)XM)Xz)$y%|d7stqhniAt>NrVB`3MYkGgqO>KNMߦ;^9_&/ħő&E>yO7yP8oyxdmKsS%g Qjk {*|Їh,/DR]vHH:Z\0Go jV`>TsIJ*r/*)@&[6K7/>D kc`Cs"]);%bZN^MbPNӶWj g`DyxO {>g%A9&HNt%ANYbzAlnBn|?gt̽ 1A'h !󚬫4Z&ɵ}j5As$^HG;L yb8E٫ !=93`g5DΗ'MPq9T׏מin#b=wy2"2<\s'ӅY'5炉gZz~&Y9Q00O;gR& Z5̿P} r fv7.FSii&3.*ed>2غu v=e? =5kE,]fl/`UF/f+x]"pX=EKcTC*K61֟_jPjp՛0A/ `eU0SUUV4 aMwM&G N'A,ʺpd_o,`M(^u * zY@RV+̯A~rx*I\$?,tHP=[,q>=~(.(6;sLQQ շۅ<=j=F p/LY&gDʡuQq:g˧y {jSy #u:y~'`=F˱:`j? :'QP*a 7" Vu*)( Bi@[(kUȬcT|7nT%*W< ^rn;og=&enxK릣kBΦf w[Ոa*.*[)!%د2$q `I;:d RY9Z#TbʬG",L>$yYq"3\7!oj =1Ua\)/N4t{lX"7q1XNbފȟ.QIMc|8 .6'PZB@z#F/HlNgaj;8}vebJY1D.47DM0_gdxՖ#JE, } -k>D!6'Oyv53>R` DضNo o}Ae^cб 4Gy3 @c5%f2r-tWMcftef E0|Xb,|;<{v&P&2 :K؂QjPzӒV*|+GzPSN>SZpf)̦ĭV#X1Y5'.n,-=]# H).~SS<ӈֹLnۜPគXz8a;nk۲Cxx|^BmϖkA*(mո8/X"{5Y ,OW>&<%I$MK֝+Zap~dE%8NH e5+[sai| $\0ct <:A~{QqyLu(Σ43yŘ wC1]GVAu!`=r2#˯UN#YLfTR^8WW_O[v im *VH~mfCZz_Preo$PQҚYQ(}A؉=ԧOC6Hx7@$8*\+O|T7wkUv98]uaQ;В;:"?l f&׳E5FCK1VF/ x8#JPF:'OQfr^?Z3| YWۯ;ilGhp6 $I敟8G aߎnⴳT!Ù؞y5MnP,(WRQ#Z@E qd bP"@jQ8"REk%yrUitmԼ>P,zq里yZsacH)N(GaIwjehi"SqW]6_Em$cF*JJwGa7M9zrB6az4%/w럋ݳ i":ݶXIN&4k+BJ栥D](~*oSK 9DO405'8c-ku>$jLlݻޢg" bOvB9C~kSЙlˢ((IUY g٦U ]R/ F] (OJ8,GyhAi5ƹr<7Q~?=FŲBTiwΈ]DP6+B`F 5;0)i)0#sV/;Ƴ;K-^@z7oR Wokƺl[¦ǢO^OsZ;`ϭUK{aJUb!;*-O5wV"3ǛžY!u߲T!j+xfUa {䩇~AȈ.Ap`2 6j2a|4yƵ!rn޳{=@(_ћWVZ3 >}B-E鉈 |jlryHWmAL9˻G&h!=}0R%AsXT(V#ЪB2Rd+X g+"7V@nLa!!jb;RvP֡ƽ{vf(JD5_76'6uʧT?dy 9-@t)J䪹c\/M NvL x={fM$4iI8N,~ ZrmS!mcܖs>(qiS< *bD V k_qn_dV@!S t(fWyIOPhXlpJr:!  +!M+t1Yr0$A>p̥O, Ũ({^wR6ʑ^HX(W`~ za8{{Ec\gEN`xT*I~u"<2'QvΙo0vtrv- F@/Wd!=Lju_1#(!YJTQ)?bw$~fe:~G߇}2:ȼY[۸ԶݥAv;L+t< xJr2/bcDK+ɭ"䯍r݀@JQWaf Y{3v2'ro;kq |d.q[ρڈwT2xqu,ʓ9Z 29IU!"8Pnx9SU$^PܖmQ*}HVNi[<\oFp ]9x{>_pZ9 eXrw{F [V7_F|UFkڗe߿N8SLTw%^|鷕Qj$+6*Cg=olBσ& oMS0|W.CA[It/,3UB[Kc-,rl*vpHTi]LDY1\CY{SQRTz\@xN{%l6b`6; RxE#p + A.³ S[ڇQ,M~rp}w$FSZӃ_I"":GJ0/9|ՆD؞#حeu-j }GNNxߗA=;\W΢C+xO Y!5`.Gw,̎.P %SM8/XJ-}dtD O\E  :ъgAk nXSΉȰ^B)* w+{) VvoCZoӮd=<_ԵZ,(?vWMJ-J` (܉|D㚭aLapqR^!O Am[;|˻o&6ݐnr]rȽ endstream endobj 14402 0 obj << /Type /ObjStm /N 100 /First 1121 /Length 6124 /Filter /FlateDecode >> stream x]isI_w \1`9 lzG<< 7j$K%@E*ɬ<&JV 2jVJX)te26E[Y+-V>q[Aêj b* +=wFUR0㪪L0A꠨jp6 f@";UU*:&Ҙ*q6@,9M#YTRzW)Bµnv G6Q4&jW!ZNPd.мKԒps{en{byhȏ0Ļ|1= -2Q9%Mq5Y'I{+@ϔj%u⺆ӄ&ep?8S$H^XԅU@1*UP´;*d`8c%r4$QdXp,¸XՠHt,PGh"賋[@NY PE`6J; 8tp>¸^QXu:bA:‡hMlE6rSr2x ¸X^ㆄ`(D8D7W_x8L{9}?M~l|'O[E_|^\oB#JķWJV|׿v_ mڈPRqXEsaJ X&754/ݞGɜ&>ŊzM@oh:P /~aQ%^ ?+3jT3廽}&;}_mUkg Ke c װ6}Թt 2Π+c r.G0z`*0Á=dOʫ`&tnR\ss}%X\i1j* y8~ @>zLH4*ߟg`+O{RSÙ TKTDԚoަ[YnYV7.4VČ{+1Կ.)QYw.!tS*h mpX!b|3ƀ\c8>jj "Na*b]E0YJ+'@ V1]&NP=:ר7ڦ]eiAIB4z$舫WkDdJ@)a&FAZy|쇉PZZK&= #-שIVݎEẽIb< pLDvZwh̗eby\W$ߖR Y.W!?u"I0zi EOwЌ !Bm$5]Q[tM X}#mB:$\6$0OЅׂKٓ`L wC>ڌ#m.[T,ѤUuihD- i|,. b~C ZD!+' ݣO+8,gկ^SOSb 6tvIS^%\)y.yn )UbѻA=]p-R r?8Zx7(M:qrFVQ i::% ppH0Qb lq5ËmV7pdž'_wn}Us:zwķ7Mu>hS擡$4dt%^5r=^MAa<2]IRyT2N'YFF¢>昣M#/nX5S>,>(JT-^#W֗c byk=߂]AKrOΡ䇸% V9ZE+`l)0&ȁB_ y8D8,HE0& >9JzPS x H"4Ty`mʲ̒5/|?z"FW\r޹j$DM+Y}r}"\{_$'j6n[ThΌhYv/0f\Kt˲3SoƸ,#lYC}\:83{Ejl g\ t˒.Ψ(wOA+y׎)eP&G%ʭ#e'24&e}d"?-A)WwOԝkvNy/ݜ{J?u˺1ŷote],Unbsw!Wa-m Rhlx+6輡p5pF۶q-ahb%(9\漣+Kgk  11Ɲ.^u$ 7yE};=)=La&L\tDA&U@*Dkl%}˓s5tdڑer5}:*I*5F ki"o?hUjдLgqsdpK-vGoCSrij|>eʬ8N6oCŚH]h7CvHρ9}h:UM Ѥ \t-K׹ʥsAqb=킰Uyd`k)A V*ЩF׭Soö#\F%m>=R(uR;iO,J.RivWy̲]fLo]yv6hisAd3e8A)G!,^yXT$" a茐gl)GG/Kzn1j, ʓ_5442􌒓$z<3M'6cc/|=@J|qt2X>x3%85ko09IO^_@!PrV \ __%AZdJB<-bˎ5 6 U,jE"$mVM7ƠD,~2)p^Qۖ%4ܔq.SxhG(GpUNM&*==~>WU.L2Θ's|eO >~_qB@%|0?|+'^·?`ܷ'~7?1> 88һ#ߋcq"Tx-~?|<088t@\9pr1}_ocA|#A6'էD_X\&C1S(z8^ G f8k1o0lY8\?]b喝zO`08zZO??{qWn@H2nM+N"]œ\^F'u:^S o\e_{ߪmgϏj5w?7:-Se|+ U)}^-E6l[''xp?A)kA:b,3'B~PPg3йZ@_=)I/M-AOuk: ʷLX "oa+8=yqz-W m3wJqj@ F`qԒ7,oe⟝9kWˊX pnY1/z%@3L.`v>o.tKSg59a"Y9߀^t ӫ/|B\Lǀf/\rP e=9zقx LFWYfԮVնx>Sv`7 `|z=\VͣPfk4$#=wk4)OťoC ?ɳp E߯0+Q4̣[EYx6 7󉐢*p|Y+w볚~"wR"Dim~|O`odrs ;b-5m!DԤ k-L/S[Ёx4z{VG޿_u,*l:$%l,K)(Jb5 {X\uZv˒mpw\g`*2G.3\V.৓er}5I 6rw_qئ 9w&Aú]Lv1o&#meo2<;zsrVvF,E/5kbvv#LO̱\N{pmTuOVa'O2FK| k@5YKkЮHΥӃdՁEi{L&hư^c҅q+IX6~@_جc{޺í66=s }bMmZ+ ' $=2pV5])fҪ}PPOs=d |jgjAᬖh /1t$p=Jz\kk Yqjh]BIedSH楛aSn\e2$ZWV1]Gj˝w(7@.'X~4cCB+NjWdP3[9 ߚތ^4yLgkҲMF΅1ܥ _-@4J{3‥K2]"KbZHٽ'}pYTU2RFHtf($|BҞfxD#^ۢII-tMo6I+[P) +v{וֹFp! g:N>7lq4ѵǃIqt14˿6Nkfd/ &֑)>yz<אgwCފE0o/-q25/t=L5}{TP!° ל)ڮ;S>G` !~iz7>:Z.Yէ}{Dj7>[$hV-vCm^}2{+E5zG8p5i7ݶ'oj m>͎,->AP]-B=bOXĮ"w6NJr1;'1X_CX $OeO%dB'nȼ~,ծcԪ[gLS/!SɼoOj LjK(tX uLr^;n\yҷ=Y g`',4 !^t };%7#tq8> stream xڥZ=m9W_jB+D]=9U gWjwYjpϫFulskqM˸ fZ]Zm+̯5] ˺*۲{@t93/ m T me}4 CRωnQ =?ƛ&GGטᗷݶ@=Q׈ր br@l}7 Q޷1Уj^sAwd f@y7<[PCy [`n1 cbBˠa!!<У<@rY?{F# #Ͷ#R8Z}= Yb5|[Pg sBjf(0Ěgw@1; 9ܶacmX5Ox6"zM!<-!<> k]=6B9l P7bYtUmP^-06qi%ּz{3z^ +ׄ`9^{q՚8 vo8P D| =![#A: 6 pnhX̎.-^ot}ݟo~_?gB۷/?_pT~6AP7Oo?.qX%@Rqx W+InF]s; -o`'2!AM_my6ti@ HF`+_"f7wκAޒǡV :ľ5ƙAy"7i"XCο'\\ ;tv;$EjR- qkrY>a&*bF95þPlHuU,W"r+2Wq-Vx>hL؎` iu@"5.ow"B) >Y,W{Z(*an+ͫps)4_K_jYJ+nޟaq>F׹J |p n[8L ]Ok'\4hLJWM\Y g(~Hb0=Qts>+;rјr~$.`}~p,唌Yq7Yl'pqXbUG\,3%b?J\(ˆ]6YqWh@VqenM`qt].4B-yƕ*\wP`% >NUnhyO'.n1\.PKHW#.pȆC6܎La|ɊNYuN?ZLӀ<K<#RQ,/n%Dj]iR=:05@bH;=.7`Ky¥s7 *"+9~璡D)By>4JU"3R*[p%o4`Z2K ?VҎV)Ȓ۔$;O\4p%oQJ;#/u7`XWWJ5m%Ve.ٖ(L|S>qFM>ՒJ #.v353dz4v7U>exb*FW orq5aFJUM"<>rM%hpȆ,6#.O9yÐcNVɒ`qMvNn7ٜE?q-r)K-3d.7_L`K]Ϧ3 HSt#M浧9RS:x[qy`zy|_sɱt`xv+.m[ʳ#U^+bq)>RT~+YoJ%ᜢd}K9AP9^ DzU|^8r UN_hޖ(GXgmTgch|i=FC endstream endobj 14504 0 obj << /Type /ObjStm /N 100 /First 1038 /Length 2306 /Filter /FlateDecode >> stream xڥYM% ݿ_?ڶ,ɂa IH]b 0LBwOH}d*߮W/ܺse[vJ.S)m >*SCRр1]d,eP1i1 B*a4 %1^0f}*0f:Q@a$u*آReY!*BQưZ)A6b#"rU H!auL>K &xPu*JN bQc HS"љ&xOw߽|1}ǟ>~yD/GE[/oj`NR ؐf|*eL:#ܞ9E|PlOЦЦ{==9g߫Un)L8PQ'"d."(GC<ib̄17"-*UdiUlˬ#ڑǢm3lQ%-~3v;c72 P{ͽyL{(Jxk=EՔb_ ͘_r?Q9~-EΞ3qB!7ggK )r0PXr=b={ĭGtJ yf=#أJ$J}R#GEׯbiǹbrE\1GEݑ-Zw @A7-ݫf6ZlQo(ߙ!maM ૡ"> WNiXݓ"HW#Ox+a-RUo+YT{ޞ@6Aeki|>NKX#3m;71R|+gHj XLm,gbVl j^Y/jJb❐EEՌX' dkk-F /ؙbdiS+-1Y%f9nr\| Ÿ쌋G؟=gŽQzRIRq8#8.]{ӳO{qn8=$- m\W/Noղ:jw*G=8_@aE·5'?OaJ$jt>~mφ{|-aw4Xrf_?}5Qq)~Ua ԻyRްc! ~ ß>LexH~C1[x-xm[b|7d,¯8rH[{L38iiC`649e8փiz0MU2!8\ʔf( uN|T~pUCz*AffU䚰P9dNz\^K1,iE<NZAº񣮷SNƭ8~:>&vIVW|F;Y"@v\+WKp3.ܹ%W>r\{2L Yy>_u{cϗ%|{cO%|{cO%t{c%t{c% endstream endobj 14516 0 obj << /Type /ObjStm /N 100 /First 883 /Length 1736 /Filter /FlateDecode >> stream x}͊, fBO00 ccÝkɬR)EYGwt.m_ om߼M6->^`m>M}=vb`g,5ڮ ]U8ҌeGhZ7>f@!AeG124m9ڧcvh8e?"~<0'6c'4 ^Xvc9@s,1+ :V٠cn|,۾.ȱnMMXL9u6/Džbm3fCl6: Glm ӔmCgҶ0fZPyMË%a:3hlGes1re\`>ɠ ;n (6c@ŀ2wlƀ 1f (،Ew(c@9"ŀr,,E,,PϢPϢPϢPϢ?GQ9 >#pPa8&ptm#8`GQE cpG`dǏ?>~ee?r}uE߿-o}_ҟdު^Q}TryVjb_qωݪެŋ҈V#^ׄ|+baeSh }+>}Uz{qvNIvjF: :-I}ebtuHx!ً7g'3"EȪ\~I{: j麓@=EIK]{E2`?O5 w>Rhqj%ʾ8l`lPIɆ߻)llûj\ ޝla-ZɆHmvҔW7)zKVz(UںV`2\#;ꖴ ɬ.LZTij٧*5R[e2\4YeoU#pU[[>WeWՈ_Ֆ}_W#~UZ) c0VihG-ecQ\ӓ!=m>zw7Xoi|;Ylfe]+Pнk%WfJD""Xֈ`v`"X#[) d@VjSbHZ=%TѲOUj䮎jqҪ؏ZђSV+SjŕZߠ\]޴ߠ{:]|g"nqzϲD[ҧwzler9jgke\y'{jY5U>XiirK]N_m'<<=Fο"alxwj\ y? endstream endobj 14517 0 obj << /Type /ObjStm /N 100 /First 883 /Length 1813 /Filter /FlateDecode >> stream x}Y%7?O/Ēeن {²r1e&VT=#E?|Pv07#'t0C x!>Q) V\Oz4Gg97"(j=WsJq\TEQ4ApE65 ΈHr㠣֘jƁ`TX`LNЊFeC{N/j 8ŝ ;X_*uT&pftHX1U-E&_۷T`ݏ|{o?}8'Fd+EXٰ+'եXYX8*[ĺ\{rώq=og}g?pfs6d4}Y,_GvfgÉ",1,aW~*+XVbr2dWc(m<6qI1%M2%5 ZNɠ&-!KMwXʼn(D)%ƺE_B'Չ8{8 d/!U*Ehu &^0$KDDﲳH"I ML;,v)M[,=r=-Gۃ{rO{'㞶ܓ#ɸ-qOdܧ-qOɸO[>Eܛsqqܙ{b9#wfsg;ٹ3G8{6w斷XO9rg6wy5G^\"̈́nW}7Kfr,#Kfd-Β9d6KY2Gf\>peGl%bɷ;$ޒŻ#絊x{V[y%1/洼:rNeN˫.XNiٜWXi9rZ6e޲휖#esZ-i9rZ6er#esZ-i9rZ6er#esZN[rlNˉc3;VN93{>%={칉߽gQժ׶_| _bg+鿥P{RL-fABMφsU c3;דg>ZmmM.US.+R].[__Ivʎ:Q#Z3Uα&OnSӦ,+ ["q٢(h/~- endstream endobj 14518 0 obj << /Type /ObjStm /N 100 /First 1012 /Length 3465 /Filter /FlateDecode >> stream xڅZ۪% }GIUB!$o9qƞ0sVK_Vu=OK%.K[KY4ڏ]f)9-ߩ-,),򨋸jq!;LKm[feKYr5TRzC5[ulKIy͓lVl0|J䫙?:1O,"b(3e]4uZ[Խ˾hL3ܴwL j%-Th0=:vYʊΩ]VeuiicbQW7mrϫ^"rz! yRaW+`Oa{`=~y!xm]`ݶPwt{8ΘkZ6V-=l/ϝ}t|~@ѿ*>aVPśY5]ق|}/Yg0RmJ2vΙVz/@߬3Ovi!H?1_nl<>ʍ]dy&Yreu̐y .=Li.3̋i.)Ictwg6K4>!Ewύ=Ok|g'xxF{+[nYm/?~Y?~{dO~M|`\՟^r />1lVr`}Ǎ?\ViC55ՆTwC Chcmܼ`d1cD7#G6HތTtjXzyrB݂ ?oZaW3QF,NNV>d59(6J:àa[A4xKχAz4vkޱƋ# \grp,8OܚDew܄@eg*r'àY턑n!"rz@z.{6y9muşprCc\bsZ*4x}?YXvcM= )+%%`uԙ;$_d,#B K|]L `i+oPN* *+'k򶾰3o r?O8 _]%ţ΋GLORX U7HAJ:/+ ;oST_Y1ę:/kvt qn[Dm.0مyVԙ >˔D.r(`91`ßԩ,8IFU&DGp#by({GĄPNCOyBpNQф[fq4=&^Vx]Fu},С%:iFA Os,`Zoha ?֠%@KfIz@~ ~FGJxQ֕ 0^qaRsqXu?^ʷOt4De|EJy%Ύs\i/ znczUOrhU)/ЩRީBJs$z].].4xТLhthP)7 ' E^Ns'[}Li1]-:>A/;6E^y# 'l~[0ZWk|(n3-~ͤxO7~p)rapaPЋf^ wԙ^v93 3"/DMX-M d48"GTp 'P@|n7:sWr#p<ĕC,_ԩr5^=n tKg ٪tUym9^sU=|2ل:لj؞8qWVU[UG`h :P +g/gpLI؅/!2HDx˾n!dj opex+2:G!8ҁXy0\vSwQ$^J%+kA:w/Y5 g;s#[UoUxe*> stream xڅ&yϼ6nUIX g{X AX@:g!Ot2Za%#bTLy^smj9WiǸ?>f\{_ju.7k?rtn%۩u5C^cL1<{Ty5ӹi33/{^ms/gq^s_qy^iTk~vTk#D;b͇j^'TܭSN;3y=;uݝnj\ԝn#;SwPNIR[nQ7=FyZ?ԍ ;֢n vQ7~?H.hǩl5'uMXbt]:DߺL=Xゥƨ3NNlUԽϳ{7RFm̨{f֡jwK>+g_Խ{7*uo%Fݻ-F[QާSu:hS.>n~돿o?ǟ?2~uQPpip&[ _ 0:Q~ ţUtׇZh4.FCнhti AӍy%]4r=F5hz֣AZi.5;h5$BPq)ƼЊ v׶1;;C=sj5 SXլjHLȴFMKo+gª*Cd--h.-޺F9kª*C9CI{LF@ +ª*N׶׫F'yyhtGŧ|U[B#׌-m=-ʼn܀t NhqG؊.CKhd #4Tw64r -vFTt[U 64Zza54Z #4Z #4һ~FVXm|%#0{!/zhqD[ FH6Yz=;y 4axvZsU-.jV5hI4J@D# =FubbhI741#C_c$YY[U1t/+4:͉F'iOIOV5kh3BFHށ/EVnqd **BFH`ҋ(hKp&t봸WtMXVh8MG#QFS[dc;- ]VU9%'GS\7jQrZ89U-Z\\XժjQ \h G!}?312= -tw"[r"[r"[#c[On;WEWXծnu$[w %B GئL2깻UڪILBWɓn3!,I'۪[ -Q)tK1BI;2N{ϒU[!}'VBNR!=Nw*FN12>Ż*-Vt '9ҏNFH?M3"lJ>ٔ}zw][!$'_BIN? &F>: x ªNmU#N3|Dt4A\ X-U}}G?r]2lS58ixjkbhA4 #4I/h&#h&SebhEiF L3jhdQC#Kb6Z셺CKh #4f5NnqūWtׇZh4F+aF+aF'aDnqgtPCKht4FG3>ۣEH+$hªFmUgkɤP!z]DH`{^!jV5(yL4ZF}iDR#--~w-th$B#whjh45#S7hUNaUV[Q04JFQbF7Z앺&j24r:%hxkNWtUymUF;4dhtIQbNÏ=S-fVj>W] jF/EH8hqﺋ/8 KXժ*B'!FmZF2i4o3!}>یEVPCKh_X,B/,!}`HʀXi.dUC叠{Dh$N{h$au -Q =wݯy]B|Ioe'=[RWA?twOFK\H}+ !]}+ H^4dog[ >gf"{^diCKhdzahdZ]2J)j"OOJJJĶs킮 ڪskF6!}dhu{f@Z|*.k"ۣ!!MnM3"c[O8+ªVmUtKn-WBO"c۬Vj"ԫn{AH7ӓ&3\m^-%jVEHč閸!!iO2꘱UڪnGkDH(HHuAZGXթҽiu ݄toKb OEUMHa4d^hFzco2[R[3>В.\]MHw׌dlSnUV FhFhFhoK]ݾ[UmB&>lBA4:zciquڽ}%h= 0: K]hkϡGw?tho7 0a #Z,B' -~{ZEKҗ8UU) K^KwS_C+uht$#7No#׼Њ.!]yN'o{]KO+逽CKhIJ&''c%c3[ ҏxFH'YM^+"cWo躰**B ZX]3nGVg'uaUF[ h뽻$tCFPmZэn(Ш =K2BO 0Ճh ڵUEHfzn4nAo{hq-ޭ+VuAĪ"[oШ\Z#V!ݺ>馾Gl5-Tu"c_pTt[yJ:-ӥh- I& :U/(mRN<߭|}/ endstream endobj 14684 0 obj << /Type /ObjStm /N 100 /First 1151 /Length 4344 /Filter /FlateDecode >> stream xڍ\͎ Sd !0lb]l;898G5l%Ju_ej8H/-#&s*2;Uf/8lW-fajo]+UUgŪSVKLZ j{]k o.W/qXKaikp(hZqאcfװKKMk/ipX.Kna2XK_ǥ ʥ:pq;.NuwޗS˵vxB{6>PؾO/7 ĉp pKOi&(iIuA")X6RAd4@ISdlΘE\wƬΘEP;vMJ (5ի;c&1hm\QV%͐1 i h26#b;c˹LcTmsuz[Nb~TL`9gwSiFw15pzaOI3E'@%tmхD}Dyhw ~R&} ~Ӕ.Lw3KKpp՟)}5ѵo ,b]}1ӌ.;Dþy- Ff`C\!3g^4sT*w}n:ѦKPХKPФ#.)U*4xѠK"GNG{.*t&sn71袹i@c. r 'riw+ M!%kDFJgU Mr;5sJpvsT-M(4ɝ&)ݝV_~iWJ@n@M}U@@no.7@9h'SFAm|i<7 ~b__H9}giBx0@ pnz;i*ɮt&p&W9[**Lv'[ (-6Ei4"F%ĖrN\5LݭA/VAܟٖ- z|i<:axLu(z@Ѻ(Ϭ{fFFF:x?:GD 15NY㵀>4X.k}i Ds/fRFjA p{h4T:oLzҙobuyorysi 9 {ձ(K.NtT*yKUJ^ 6 U Ħw Ħ+k9]:QT% H%E*(&& ]הJzǐmZTiDTm1〕x#+\܍obM1KE1:Ae;Q  :>7"&t휝nѩ36XK% pe (AXRŒbArꠃvZsO5&2b ]W&_ٝ78}qz;n9vݑvU~f;f-T5=M& ]=KAt} UngB'gR$3fuW2SA38|xm:S9 ˄7J~m-!A?mNI{.V&uNj٦A;uodB'T UF&tʹAldR3BM׳9G:8"3#EnHJԴhXH_.Anb)]lN:*_ 6'wJBgB )Ztߩ,&tk]NeA*QeAMMLzэudU:ZGv>O]nKn0.Qy؏$~$v,t0@\0ŝ f6%`_\bM8 bJS:5G=g~4~A|rDu/:zx4;_/~-9}r5*kz5WWO.^.^ wWⳫ|~ӄwoxgPz0vk@XR!2R!29sM>ӕSSrj w~: AT9ՈP9$y-2![WvבJT:!ב*υY\GH#F9Nf:SONabN|* ZiB}*^*TW*TW:8SSJy|~ӄETu} 'r 'r 'φu> _4Ml6"^:S9˲򙬞;Y+Q^y[gnFn'$& ]FECW9tNwrtT,YyJ&u0Mz3*{ѷ({Q-ޣj1eT(ςY`iB;aP¨~,n99@ɠzdٮyRoCFΖU#32ϷJL>fW;` @|oOFaKF+*6`ɳP6l>,5H#tQ\l}QTmug|g)mļ!fA]p \`/fEGlĚuQ>2]Fǝ.oba0U}e qIr\>mb֎#Qfi,QfJn|> stream xڍ\% +-Q"% H6p. )b9#i{G<u_e.iռӸz /1?'~U/L̻cDy>|5|;GwK\l\U0¸ڴ}>z|^v5Q'_KK/v8.5 3o|[ˊR.kwGPeﶫ@<z5xVf꣆ٸ 來"fC5G7c|Mr7˽)]F~ߵNY_Yg'Gѩ+|IFҵ:/I=?kEzGjw| W{FzmO2` PF,RUO{<OT ~_`5t6|# |UOEa HBtt,D@r8XL-u؉~4XhX8/]}10l=.gXdžBLbw8/&5>FX}&Ĭ ϡe]8)+M!GEjH2{WGEje5]y^ڀ}4=,e*Rԣ"5h]qCEj ZY5>FEjrrBNBj(]JCrT;te!3T. !2=cʖNWG_:]O]#8Sqjma0VČbAS,|pO'ꃱc)XX&XZx6|4nҸӌDgR;$0L [$%FVd>Kr#]#ƻG1G 3O1IyZDb)r~Ķb~?ͨd~.gנŠ'AO^ۊZ{5TȰk,2İȰs[o ߆{-ˊ!vÊ!N|gWmyb .¹ g"QX"FR='b-V<iz>Ȓd|[0L)&ձĝgz3tmeY<,J#YrF#B m5M H` r03/54˛#lŕK{cEDWH3+/yrLYV])(L:A1R) =͘ER`1 TXqwnDXq(Ym k$-<{Y|v#Y o$-ad%dobz;tC;@._rK*T.<-vb;>T5\?kR~(qb !1bR?0/ҍ$**,V99;.=h'Z(D6xkZv=RYFQM1$C9oKyN IȭӲzL)69߾N =ب++ ĄbPmqGwb'FIm}Li3sP{qunUb J帾;1s\}AKĶ`,4[hcϖ38-U[-U[-s@f{ kBaUhD3 XEMmfNƨ`ƨ`ݦ9 2۷4]>hIg4Sh֭S-5eP,8Űm3\~yzllW-mem^= em:7 $-<<=`X9(+^KPƟFgXv "7rLdT#7mybt~$s.1\Kqcubܢ}mYkq >Y)'V)f:0BW{׷{}/쟭|0DCXhb+!'I=> A endstream endobj 14886 0 obj << /Type /ObjStm /N 100 /First 1149 /Length 4253 /Filter /FlateDecode >> stream xڅ\. SlSzC ?A"m"\SG;$R6mu_m]}4<5/<}y<4Q<q\Mq=_ݒDnW_~kyFvi~>52<5ߞGFu]hlw藄;Kop[n0k.0kia&ֶ֟S;La\ovyL.=e[- p?Hu]; prW/ '=lyͱr=>i'[[ >! gonwOz}DFS9wc8ݡ}<>-|@DgϛeZ7}OoBv y,+7ȎӿExr7F/Mtao=oX=U|xm `;nOϰn+[7ʐvx~_zdӷ5'Em~{p2X{3h[gϝx}{oxy{7o9'!/~\}_>c P̀)"ހ9f`{lo?~{|)AK'fybJl4iX6C&tKPlcbY?AeІC D(1PaȢFX3<> hbf1ȔE^'BSr}iİ9"cYdlCYK AC8wl_A$DHc,ن. oەݾ(8SG8𻿱]m27=!1xjYEb-7H"ƳKjLrE`'"cXT^n 0NE0j+'4iđ""mR oB1)BgK=@!`XӴYtCI'R؝fbќP %K; KGF"SA TgI QΤiX #$FbbCVP!—a,5Y601dI0o!!t19 k3"y73ž1)!tbC褬@iFgB>[c'SdV,jC6ÚE6bƐ)l251dsM!TiX969C|yN'LyR&6\Z](@0,I_ Lm 4r9C.2gc%[l EW4ӰӉ.1Da6%)3b N'+gq͇aM3"ǬؠB`b GHeto4 fttbӀ#A kY]h+g6w=1&GuN+M° ;mV =] k/(ku60iZe#zF}&cF}6YgKS diGo[/O.bL1!!C1{$yTc凘iXӜj/$hjbJ=gvgv)`iXӌ o&Q;XTN,=JT@A 19_Cr$KYwwf`_~Id%9@.MO7(LXKa"ilgL\bY\̘4!4{Fi)$Ō)r2Id9%*߹aM3$EY&Q24dd:V1+Yj51(cLiW5+ faPcƼ~$5)N:NlPl`<5͞TXtGbN1d*VcLjZXURq5X:zXz0c)R-W4cfy5ζl5Τbٙ4Xzez|4;ۗDe5V󮑳3[]iCgs]_υ46 }rw1l5M9;sA4Ds!4-im6h:@j|lÜm0mx|4cBvvTÜݼLgbUf|r4gym̙kc6ژ3Ɯ6Z4|2ƜL0gZwp`Zwp`+ӕae; k;6o9[TXxRT=ۼL55:Xk°ĸ۳])*ع}ހsgR=ە3GaM3++۳])8ϋ~t"]ΚiX~~uN`blPLM-`,t#Y3<> k4l)06(0] uf,G\گf_]&.Xx<0X) G۬|db]q_ (lfI{-c^oؤ:(Łkw6C I܁9Ysi'`]#LeGx؎y͍y}9mZ]C06=MlNLd{NL {NLzC3ոn3Zh6X!nW3*+IL(6)&E1VyÚ&6 Tk\٘R !`{U1Q&Zy>=> kQeSqgcb4ǐndvJ_{Ug\(i%f N1P$3.lQ 4iDaϸ1sr["@C)Z%ˆaMg|6u!@Fl3`bl4I3 kQx1YQ-d,jRgs^Ggf`բ&Bods dsqy: K-LRapy%F'H > kkhD>F%0r9a䖒6=> hbKh2s!nsKo!^1Zy"gCΜ9srJ1n{|X5ͨ~f]MO;B%1qhVvG ьkBrlc|'qht. ӰؤcIsq}h󸩐5/ZFP3ϱS c·NcuFSt6(f&KiLʝŸﵱ7m=~u"sP g>.mԤ(4yΞ0ijt,h w4E)©Q =W&:Nv!:(16&CT_h~[%3T endstream endobj 14987 0 obj << /Type /ObjStm /N 100 /First 1149 /Length 4289 /Filter /FlateDecode >> stream xڅ\ˮ(mW2wq` , H/ dD䪆{NT$%USiw[3x?&`SQrui Gz=Sf;JtO:a1ƞk3?lګƻΘg>m\ôE{\{Fḛ=bt#vGm5o@#R3ғǵǕHDRŹqU= 5sqd܋7侽kqG7ɸ ;f{܎G rM???Oۯ<*?>~m96k|v`>ϿOO1E V`JpݎᅍòKX7=`o2&|,Gë;smP,cb[ P,cZ߆5$/74i=s l끵fiݿ1՝;[q*R,iZIsI+444Kłf,r߆5MM6V4۔bfK8=XIwngdIpA_ tX+ASÚN b`QccsIpX%Myl<6:lx~((Npf}sӿiMroi=S,^VXxnu֨Xke]MMIG /E.3XN(g|4S:l8^:2(#Cc\9ebYҁ FtS,T Lo,G{3f|~ьc S{)\?c.سFp}Ѵİ c|B1y>!Q,0-<ȼރn5M gӅ?PV.Ye>N2`3a)甝>ځ`90e*AX yFe];Úܛ$gˏO,`X~L# ӈϰmXcS&\gbOL r]j1۰> :odNsb1X?R~loÒb1U'Seɤ"׍ʈBq5MlL(`Vi,MSEQ,VFT亗93 kYLyi{MV,L&4=ӅbXM3 hZ|$I6"bQu`lXڋAodb#0 )v⼘_LٜmESb"31hN_LZ E0i>X}06 E3Ŋ`1e2ggs5ūYTXQϰX ^LZċ@˃x0if rATc q,w&`$p$*?Nr·aґL9RHPyɔ#:r$@%P6i"Iߤ1N0LJ348$TKȵ"ƨ ƨ DS)߆5M>鰱Us*O7:MYܚi%[ҴO4sGc6VVv>;^0!k ,O4,YW)e>/ 爢8Xx-Z41۰9#N0(4MfgQs4χI4 f4TȍgeّDl$bcu$]lOf!Z`(E*V!b`52˜I4h2bMLb.@>/FyXX܁rƷaMyI*O ]Xl K5sD,D;#Ad,om%ˑ~"E$40q Bh߆5l&:(.0>p5Y`l<@e 3 kXLyMHjMtFKI.4列;и\hZrAFZ.-4(SNWRZ,׷<4ǽ4ðdv%5v%5v}bS6L,m4f|48Qf(Sl3r)1ڄb&6.}MW3Φh"XBA~ÚՄ әՆA# g< zu$u.4<\+rW&pA 0se3 kLZWXK&pLV[8ZiRV uk5ͬ L:lPa.E2m$)U`ڵɆaRR]*;XT>H6ʪYWKf߆5FMNdT&п܃n2v<2o?e 4 z#Ԕbܠ xmE4cot8P.ݘ₭pLX/4s5Vғj S4Nh00R,ƫ[m4s;5$ 8 lQLc4sf  3 kYa%ydn'yd nvqVArϊ:VIVtSs;[rpˈrmuE5<6ܥ,"zcHk"bcR[Oj+aX̘̓E+ڥG16!cmB"GVyt޽@NQ:p1EʦfK&7yʽ6g|~ь4b*|cF%O@[Jp2T4?naM3[Mt¦Ü!.fL+]̘VFi3 k8y*ŒQ,8ł Ê*8FDUM=h2[ 098VVz[4q358Y%Vq35N4}HSB/עV4,Y͙E+3QV4g sv0g=a^_Ti-eΪh)sVmΪ>\e߆548Z؜UT6gbmj/̼n>e-Ԝ(-7Sgr3u&N-7SgeJԙ }0 ĩ_;ILϙ?QtTZH)߆5)Pt\",L'~eό}_vן߈0C=^EgqÒ8acqB`J&h=+-.]^O0۰UG kp58j6w5ݥ^]bƷaML0f|[3N' î.cַu=yWyW><.S6iB`acQc;le7uprjda#L{ѝ=J֞epg~29~/,R-e5[>_#|LGf |W4:{Kd=A 8Q-%U|?E|J[\z1A( B9B9B9\>[E(68i& #=iQ0"fy}]ICc-FFF#A<.UbƷaIͿDJGQ.#ǭt0rlJ+kiWD1z|yttti~ _$ M!֜ʓdƪj%:l0rZd_̎Ӱix5|qc 2'd_l%;K'bg*?$l&D0IG&9;މ`3 k&D0I @Ge!L- ,#mX\&;Waδpcb3Ic՜4i"ѿ{_=v/;GX4<4f|4\G2"=5-c A+HK/'|$&FKq&V"9bX"S,j)/ /T endstream endobj 15088 0 obj << /Type /ObjStm /N 100 /First 1149 /Length 4253 /Filter /FlateDecode >> stream xڅ\. SlS^G'R \$ qyHC&@H8Q␔DOOmxӵ<:>V< -!O6hO}} c͙>4S|>֧؞%Qў̾Gx7[S?y-:1X xGkG}ˋG{Tي/3> jyL_F4o`QchVq!`f>]TgnLuX1Jg,Us:y- y5>dW!Jky/u/s> C">_, Bvi8^_Ph2bjZ"Va419o7du}o_~3T+sU=}?Fbc0r^M$ӷ˯_C#,6MMx<ɴulÈkKzdKYz:ia])V0XFB3hƻfƐ0ChfA$Frdљ.xd9h#f|P,䘺{J,02xY ǎ+3443NvR:h'2Ѿ'vgy~;Q}ތgX:yKGJ1hj1$k临7C mb Xd#*zd w3ˌ+P,TRŘIK% R L4_ƨQIbǩѥiq;ܗ^YMZa( , ; vftiuaj`4Ѭ,Hy-8UK9f:O99W^ټ,vde93|^ +O-a'Eb ǻfbނ \Xr<1C]LEiic_^(TGjnGmg!x9Gk̓xT캩ǫv|954%,rC)<~bafH8e[lIq94[Gq/,q/,ǟXf`N1vނ|i:,F+X`!,^غsv}أ>"V;ne-(|bp tj h-5B˓|sݬD,H% W\= 8 ~a>v˷@HU"rVHVގS7 BL4R3gDjEdv."b~\.xio,zY^/w97?uBLeUZ J0Q, #6t%oL"?V䛈r{Lwвg|rHjW1Ұ=`t!THz'^ ,̒F,K] st"@@cz+]R.Qq%Fuo4w`&zc[+F _ P9hB&z 7 e _ _> /?m _ _ _ _ _> /~FN+Gm |tDol;W:W:W:W:W00]ν _}! 5V •"xȹN837!aGo+7JT/$l-/>琒g5rb9?Fy4΍TzQdE8l;dvVM kg-Cۅ5rNurn\][F!4c;1MTR҅.\Ǯy _8cohԽC`d̮7Dol#vȘ/2fypE̪^Dt )cC-}Ux ƭ#7lxnZRnb "z7q71X!hjMEOhbb wj_M@L9iA>*ApuA>N|&8W6.xaAV֨ X&`j- :ŠK={s}gTNTbA)ofZx s`=voڭKΡY`zXu<4=iA0^[qgg-۽K9)ޏ~D|?ΦY%bfo&Y&;c4"[)mg׮Z$; 0T SX"Xǿ~kT?1Mp endstream endobj 15189 0 obj << /Type /ObjStm /N 100 /First 1149 /Length 4348 /Filter /FlateDecode >> stream xڅ\͎5mOq[I'0. A;o=ŠՔX$%Qhu^KC]izKH$Vy~?ۯ|?o/~tkbL)`K6(oxˏ?=M*`ՂC*SakbiB]hb _:)8e댖<"xd9$f,51Fb=)CHGډfh iZĞ'4Q 4U(M#Mh i9V-h:ڈ1O06445fS 3fhE1ˑюǎֳ!z2Q,4:])to-rgWe'v/g9*`( ,0Ih i00Z-L0:2ǠZ sp2=|?;n-gkf:slsAxۏiPjK>qtz70A4# XнZMwLho$n .fazXBm"HkXJ@vXV@8:aR|"[ƽWƽWVޫ^ޫ^ B OdQo;>/py. 8~ƻfyyeG^^Q cɳ(j ݑղ&Zwahjhj"&s4vK&M#;7bC NCr!tƙ}MD̛]zI\F@t|3XȨ.Z̕b3H20̧ƻMubiPS5`F1)M g1f4eƘJJ1P! tܾV,%i˕$KIlP, @t޻1@Nx<,PZ+ HZ%AsA.VԝxJ")Zpuz(fbRl#ͱu@|H7Պs BRHi$ԚHzU^3}rB>=.BER F1D cMtt5{ES[YXpnd}aGbb$rkvP zIj iTX&>1P!k^s\bAeP,t9B.x,/ TFb,/ >rd`?B.x‚,L\]%5G{Yb[5ivo#)jOHж쁔Aqj?vSu`rق޶+3藤ub{Li[jݒE$,n-IQ0X֏,B@уV52]g3hgE7د@=/E7Zc ekI5[Bjin{!xiY4S7zÖ N6Am˛*s?Ao)@`%8i_BwǓy|bju J1D Df-^9m{vvz*U(WT:ł qĘ*gq Ab0sRl!5b!g۱uʾR"DW, 苝Q T|]"t.rlg<ӌXZZ69Z-O VjVbq;lh iqg=ܸJ<8l+q\ V⸆q64hl,q~Ālg8J;J{s!iֻ$A"p6kgr$l/Ibs{Ө)McjDl/IbXbɝȯ`%GT?{ӶQSchb ْ܎us;uan'f-5gU)K],YK],ҖruKݼOgQZ0+I:ŢA()& ǝx{L,,YvY+A=(.xY97 vh l",7XF󨹝O3He,q\,WT|>3O4XN21 %މ%qe;{.-{}0G+Fe>fe;aqu*꼱Lԭx<ҠՆJN1^S`bR;{scՍ]ljoc7!5/wyGgh.͟Y07f6"? VقW\(VB=w$ ׳r[*q M6`kP`B] w^jcY%/5N^Sv3Py|" )9q:03Vzn.xR%ndGEFl؊A\ ba}=]'&@D[  -v`+Fq@މ~'rV"_R4z/)ZDPλ"h¼l73cot;Tݱe(7{-^E5Pc!=c_3͑* Zm[MoEj"[fqyӷ 3[v\]N&)& R7J~E>|5w`Le|&yw߾c?J :q}>߭s?w~3ďP}ĻePK߽QgPS]"q3&TՂӸBe!/ >|&j{8nDd+vs8~$D/>|%~JD>S|#~8D;a;.ujx&.W۩Ve8-ނ.iUV4o>K[P}Kh*-é-k tmYU/ >|2[hw7SKc. >|2\/73NjpjW\76FqBtFKh27):- wM_=Zu]eqQsi5.ndp>([= mn͘,1s-L{;Hڲ۰mpl Â׭ n$A2A endstream endobj 15290 0 obj << /Type /ObjStm /N 100 /First 1130 /Length 4284 /Filter /FlateDecode >> stream xu$ =ɺ$ _b:v|dPUG*a3a35|ռD_ܽb;\2!&~ t_ɽ@yR95ekj>?kfL˸myɰƽi0%ܲ.咘ZzIFmإ;KeyzMi sU{lv-]ZjVC컢:U?yKljWtԮ{`qW-qWm&'Tk=j 䮉wg&۟dJw`fYaWٜ'nY5ic=s}Gz%xf%&Ϥr3~Low˹^m}kSngb=.Tzwc܀h߼~ ^m}%_m]\5m_s郞O?xc7˨~j g*Ϛvל^Ӆ3G= \]<Ï_]?{ t_͟{}&|Ƭb/?~?~KfڱqsꁘrꉘSlxpF_ ,c=Rnp>e7opsρaVi"ӰKsUI<C{.glT,,ϏM px?8Íb+@B~&28 4΄˲#r%MyàPZ4۟s7Pb-(&>c@iʽQ+i(+ӰK(%v$B9pSػb偹6Y.u p9 Ұ K9VŸH䳌6MdpvifuAib1 ,`]X͐#ӰrEc4 \ \pG.9͝Ⱥ&Mdp6i wWHbˬ}ݮKЃ(˪1@W,)nFs'9|*w&I-l+af1cnnQ{f^x"/Y6Yz% \R^x[>)*֌MMno8-U3n1c):w,,&M`헓ɳ `ꝫ0Z9"|%s*pm:y{ e8QxjDf$$a љ 01_R_'&~O3&&qKxAi/aA P kv4 {M7&Ys 5{dn!,x\. |!Gech Gyoh% ~хG'";Gjj˳$y@vK,G v,)lNc4kkul6Mp[S\Zr-dд~x3m@ 5-kZI'!ZZ?fim@$Ѱ [YqB~.Sжe ɵAVHyfB'Z?_&i ,{k\VXYAiM`h05l+ g3Nō,nfq#j4z*ރ}a3]cr X~Z BǾ7Hk+[cr^18 2{8sp4[fJ-W\64l6Ql6766 ~۩X[Q܂j%^h|e];k+WsШ$׏ DDvrQ s.nN $Wf 'mWB dd)Ԑ)`m R+H!mp)Yc^1}i`$iRHCK ę8Z,M \pH4bN _l *UUR&/Q$ G rQ v358pAX +Wr R p,;K#`mp1#r\*V:]Ώ<;k+V X"-2[@ x)}^J?7Tx?2Ae Kz/oyI}.{IXGO 3 %7"AS/c XKf[5HZA2i\ۨym$>Qr^^ c'ki$iqI-8-x}U~dP>A p;H_<;فC /:?7t?o  +8-qE@F $90iVO?V\ Cd.x&?Cd Jr-|B: Zmihùv0ma՟>hj<4 ?Ad &g_nե"VڃT{V~FmrܭN^iN^Va{!t^Lf# -B., s/{!\mpPxyp:u?kym[N?o+ !WE!T^Ǣ*odQ'{l)x[>(\((JQ9 ?V!T]a|㧈m3s+N -僐bB0 6`m+ tAcəE&gOr?N?n;,]DESu?Die]CzX%÷(iu?Ds}j]Cv1`c4-?dt endstream endobj 15391 0 obj << /Type /ObjStm /N 100 /First 1137 /Length 4427 /Filter /FlateDecode >> stream x}\ˮ,߯ȥ,%Q0Yva4^1bTRQR QɔNb*WoW]'wZh1ZknM1~5T45[m]ze9oDʵJn=5+6.-2ȞVAK8=]z/}m 1].n#[efPoT~0-%[`T絘.r억*^9w3(uXck]͠ؽ69g=n3 ܿJ)0Q7jits=Sx޿K=s^=~Agy.0~gc?R`[nCζh~2v9,ndMw˹U,IHw]tx. Zy-#T3֏?_~Zܔ뿯 pW {z^J_~?ǯe9-$;zmTs&$Jt+܈:^Zވڂ= / -݂BRU H 8Y1W,ly'w$(*&L|SP$/5@u}U@Y 0.$(IS gUuc.dz坰Afal[ֽg((dAj6N\gQ;(<۽B B}HF5YXNXPjS U 0VX1F -S8@I ZL=@e .dz印[c'&(ƚVj0OI 'K0L\0{% ؍FUּ2V 0I[su09,w%s] W!\Y`0/k޵̤*8߈`y((yQ 0iQPXs VAaͫH5s4(1990; N&pk&@a+I~ռ#,(lys,=7X]\ [+yZlwN=5 գr~Z@(y4:H Hv r93WIm2?+xjb'DNa2UE>Ѭ%OH9VD}ZE! K~H_YPrN'$~|B'cU^Z V_]; kIJ %CmvTP2e% Ы}C*U};}zO;{Sx侪dkhT#ͼ{>sgn;>Gqg ;\\jy /W2phAos^6a/?~Emv|^ |HȒ/ ^h\YUp~,YpR:n%9эHZwë-A wC`5&p#IY&p>ը٦pz'HI5>Ii{-[|YqeYxe{}gI+K<;|傥%>4۹Wxe䕟ş[!̒'56 8q류,sKCKy'cI\__.hNsHnX_oZx% uat텝yimNlxi'jv^jNdxjz^~ߤwB7uЯ-|S"+XNdA $,'&5Ιg٤WwsƝt8X9ciYt.'5('j n;FU |ϒ'5 #<7 ^s 'J9;F!8zQ*G8~Q>A8Q*;b(UXfhq<|V6nXD}{gDyJu1}vKV ;ɲASbJ`JZaUf=0%\??ܗ _qPw+qXj80ބtD"9Y87(8;u*I;w8)/'',q&)qч7cBH6I%7H؜G xiƙsOP]tIpyE9^X4;}osOһ*)`UH;<p\h3 2 Nq4RyTd#q}g쓧˳A鏻&{79/I8WU0F 'E''}8>尭L\ea'}wS8 ?)8?`ĩyr*q~R(.qJ~'' <2,r2A?8|*"4b78UN[H8ieuަJqk惒qヒq6Cy ]R!+0+pV /We)+˔撽:.+7'. ,.PKqYqi/$/T.?(q*Ңq> ]vI8ԸS^<=/t&͊U68_arJgA1xcB=>=*q*Fq'×NPyo;u*(v$จbiw @1)TqRi]>vKL zErXzڏ_C{;ee5A!#Mv^s=#tGK~#CsQخA&)yMcsM= )8#1qG. p6Ӟ50R<2NĵwkPpL`{ w'X:LM'LLqh'H}'HگPC1Sqʛ8&1[>/pLգi\ap@c)X <HϹ8F!0_+Yv1QBq9ڊ(.zP~S"M-F=0iK-7ܧpfܓiS2ei2L)eJ ,Ӷa0C dak`+'%"IV[7NaMW nrn!lPO܈rqmPR:J0E#a o_o/?nK+^> n5+  "MIY$ߍD }ȱnLIgA\"i\,띅t* q:w~awe쮵Kܵ-[zuT`ͱh ]f¢. nָ C endstream endobj 15492 0 obj << /Type /ObjStm /N 100 /First 1144 /Length 3927 /Filter /FlateDecode >> stream xڍ\ )fٻI( E"I@~y\WhR_R!)\#y,-)1/ЬmJ:0"iF[noqK1;qUoy:qqwb⦓|'&&o(W#EU81i˫aH^z_.I p@36,'=yRB/VcqrAb[liTwpb|oN,Rvb;isQeBYށ]SqɱΞ\wpr LpxK\oڬk9K"lK IZh%=ȃhGP%{HeK^f\vԊ-1sK}nIn΍;& -gPHuj$.0jY1&PBr!ыDze^E^_r&AlA7/KkDm"^>V|"[Fltpj(y{<^oC/\|C{nL*JO 9ύJXrv9KlZӞ!V* sJXt{Ӆ8Н ĦnO9V*[l53ʹ`O"~u 6q+WKRM+Q/Cߍt*{u^w7t9R8rl@XIDk_tϳD'b~-%J<[r -XOBvq,l7ْc^R~8bmQeJRY-z l/; -(U*k)qWxGa9{hysdͱR2gJX6tk~\A–3K2.%*A9mp$?/g vEϡ[x.2(X6UCzzdJ}Չ;+]@g/iT$A) 3QqvO~i=BP/X'x11x<2'hC)p9/k ^\$};A<˚vVlgP9X*XU+I)da ']i"_̏a+NDUG{S-7D7c C~1J tc}HZǴ{m~bz*-ԉ)L^}xuk6_]l>" =4 󣡊%D(JCBw4 Co::>*DJA-SW!#wTYb",p@VP=c#VcN- ӝP!bӯ=<ֆ.r9#-iI~E}>PX?|́o3dshuZA௿_0ߧxcg'-V[@̀?󇏟>(ޏ80  Ov12mqCs8Dj&yӭ(QD4Z퀳]Rc58V C5KvjQFZAZ`S`?2~d1 H7iF>=4=2zdEve} t^nFfEĶK2ӽ%Y3l( }I2x{%ƌِuC6E1nynl)EcrU{ۘ {Ҫ"k5kmiE̙c6esnCVGc68Mv~Sɵ|S"m?O8qNvSɵ>lG+K`:M6M6GfUYU@`X'; vv]\,xZKZ; 6GfeYY@hX';֩ۼZ}{JkVI`:]mSkVDюvnlS{kVeqÝK{(׬8 +G;Nwj\S;mSkVU@Z;݉mv TAoet', "F~;Ɏߦp0=nY@hOv%*l[oV"4+Zkz#gS7e4ovƷ\;݃loV#4Zje3g/ߏb endstream endobj 15593 0 obj << /Type /ObjStm /N 100 /First 1107 /Length 2759 /Filter /FlateDecode >> stream xڅˎ$E\Z 2"†c0,M20Ig#j*yyI&ORBӕ?'2ܟdrݟyjrUMf%)JħQkiW_C5Ik},׼,#IԒ+Iy&jCM,i9s^vSjR/s:ҒFsOv%"fyA%Yӛjm6˜mN/-5ݏPOdL#圧Z_RR>G0Mٯ2R#X;T^h܏-2S)v?2뚥|/bk>j}r^J܏T܏TDFOH+[_uj5IYjjPլNVJj^RS{oaiy[msk?*w)6ߗsgZr|^ZG.b?!&sv6'ٷ! [8Ԛk>֧-zasޛ^]l}Wo^ŦWWyظڽާyťCu>|x+ŘusjeR+)i>u!_~>ç_.y/G%TJeTyT?}ϟ[j|L%>}?Tʩ]G!upiL$cunىpilEfYCHxF<222If?xWI౰)q:.[łł>Xϧ,K^+o++++Pc=Z5oڽe}ẖZvl}7<6<6<61v>j]kg]k5gS Սzz`.0l@,}KƢ/v~]TBTvVqysPUFT-"OrV Bvo 6MP|m/UN\лO\VwKpw v6 ;\v:bSٷM[pΘ1j{i tS2d۵8-+{Ovi<0u,fV h2LUN]y.w'#:xSOvmA ?w8!x?|ctbV}@qLCNtA;~<mF, Tok#-2}qZ+>w8&*-/@8;`wyluD#Xm{%TJuz#8 UjTNuj{sYkl?{ }***[P12Js___c3dIq2#Jը*b_(ǵ6 +]o=!d! ܮ[s{Pn ܮ\syba+>+cn2?bJlW\=ҖDS%+W>dg<+WbpzCqy +]p=X`m>~+cjVxm_I z1/A2zͽ_z+cl:vA|%+VkZWs uM[Cr%+LVk@pJV0?u*6mnsm PPcb @=> endobj 15694 0 obj << /Type /ObjStm /N 76 /First 824 /Length 2223 /Filter /FlateDecode >> stream xڕMoF}LЈ]݀a`md`e#ٔp}I4"*Za _CGR=IG5h*-i G1L=J(jdrI\J\$/WӤN+_@!MRf(ͽ-iHiol9=N %$ 5$ObHUsSȓ;ȱY-Iȩz?!KM&a[B%,skȥky 2~nAb9! JdE!k,ld=HmǪwܶl=\A,GSPYmVUj"jВs-hn]ߣS5̑9Q!QcwoپOQ߿z\ Q&" e Ԟ33e"‘$AIm$ I+TH ſ#R}4 }ž!׃ɰo7 j8qAMZFd7u M@w;+8qAXdLG///hQ)deO-8㊰>5 *++XQQ}Ԉ>i"D(~ڋRI&JdDNTXO%RD8:T*17wqP"9DrjUks<I% 8&ɷ;"@?IۊVO40(`P26lbb<'ۊYFE ݮd~X(Q| @<9 J ']7q:S.BKbdmMcb")N>pPvݴ6x 'p(Pvٜ=vU @P)&Jٮޱ>z* @*\* ʆ,qREp2Q0R`NӖ䬡rH*hUЪS&"%MI=SE+:w*D$4hjLMb:> k5TȩlI6g:$p|NMSE^ +U <xֱ0x<*UI Fr\sVc4&G0̗ P|֑v.deTЪU/'εkkۆђCf0Va^+ՊB+VfRս[sڤG V+VX̨jo=6:@X+V`ZV/L9W·P[Bmn;]G/u4)W\2jIڇczQߢ\Bsʄhw?.8 +dW_eժ;⋐-_>;5G0W @^1Biu2po{c6wśK A~qb|^}DI0Z0ZcxXjǓMCez0z0hK<ˬs~~-UZKwzmL7`tF7`tPmyfUy|)0z0zc6٫Y&+Fn3  C^2ۋ0@b4F#`4F#` ۦ{6seߨ00n*/+2Atf{VL?`n^2N㧊vhys eVVu~]* ̀107`nef><ʕh Apq5f~i7fzc$7hmǂ|G۝IAfu; w&p=N;?:v yz@;3};u)}݇/&N;CZK_L^rH;vn:n ]J;v(ܞ C׋h@;ö|k#Ѡ8v A3mN֠lAhiվ;/Af x@dzs|hg/nux_v<}KrۏLJW?ܾ;~xx/~Z͛ׯs𶹸sI? endstream endobj 15771 0 obj << /Type /XRef /Index [0 15772] /Size 15772 /W [1 3 1] /Root 15769 0 R /Info 15770 0 R /ID [ ] /Length 36687 /Filter /FlateDecode >> stream x$y|_\s6=iOaEITA&<@"X0d*!`0!`2y~~s9羯s%=uqaAAaA*(SRwOWKPRmfR[YJ5eP^XPzXmfd6Ҭ‚ej+5|Tmf5ՖkfaNe WXP aq%&_ݧVP]ET[?ҊMdgYѴU-jqhщ͜٥6_slT; 6U/}] T.]6WsTݹ vkGثvZ-ӌ8T-b< lT+<í.T AYVy9Zs 1IFX Ԫ]R ¹|3P<\(,Usp%_k_ռ vѼ7 ]ߡZ&׆W4oj/5B~e[ _<\!<*,_=| OrjO5 _=ьȿrnZ|[ynT{FmZ% lXh5Pmc? {TF'I+#&K>e'}RۣvK.K¯'fvS톦Q) dɈSvMhHT{E`T- OՖ]4?TƫO|/~l}uA`V'?}qW4 O=`YZi[5c)?k4?jM[l}2?V~>i%ۢOjwԎk}Ic`tX-8i:}ÚF#X2/?WԌU[sNm~|/m7ؿSPi-᫽ N?d6OmftC-< oE;5C;j._Em׌Q˾H-"3>=RsqjQz`L-yP`J6jިժfys{8j b`,b[jk5KT5eeC՚QViVB_Ԝs樭Ьyjq50_2S;Ts!,RDs1ԨUflXA.w[*"8jqq2b4#֪-SCN\JmبE-NklV <-U-lt6خvةvY-sVV`"bZ<d*b<rAR+<Gd*8BRpR-gs NOb3PN-; *<6v5S Wqcx]P{yn}|ynq+pG_jޅ{j @O5B~|_>>| O\>> ,R5w5ˠ\-fddx[򙯊i[s`ojV<5*|j f@|EG\\ 5j[h.j.k.j%?U*XfXF5z5Sď47F8泚`aZ-UEm]Oɏ5wNj4wnثL>دf8Z!Zj}.|j4@~Ts!,R3=Ds1OucfldžCf-cxjitO)1^>NfskbġE'cZ?>LM?imjqتw%`Z\qFѝ`ZHX`SAGDhj/b<\U`1ȟ¦9~ZjjsBSpZOŚgV,cwΩ5cyH-i2*м 1>WᚚufFMmƇwរ^hއjf k>n%>xO5f 5C|[+5y|x?-xK'=[*ၚ^(Ts'D?l})R5?>8 IO)&K&o&nisbS> fOS;vCӨf@|ф5j*]>\4'}pr`X4 jq||0'6T4'|0& j!iM}bZeM]IM}"?طq` N6qM} GSr⢉ŵdߨj͂j>/z,zq@qq qnqMѱEdEwx9Tm `0p& Cmc6p&bT.'S7q&.~BC BCd`̅jY  a,XKa,VjXka 6:7`8-v;a=~8#pq8'DwZ8 <\p . :܀;p 6\'kcpx1< x 5%%9K3rE0r%.rePJ90ada>,@xp;0,,Ej` ,e)}ı\P^>i 0u6Fa lmvNa}A8cpNI8 Y8\KpU_oSڍ8p n !}x< x 5 4RMh@(D& 4QMh@(D& 4eSoW։M R3$CD&24 M`9 4Q)>N& 4QMh@(D&7IIMo~$&7IIM>wa8(D& 4QMh@(D& 4QMh@(Dk@ &7 IMo|$&7=7IIMo~$&7Iع KXKSq<&y0̃a `<K0?,a ~XÂ?,a ~XÂ?,a ~XÂ?,aKX?,aK#?,aKX?,aKX?,aKX?,aKX?,aKX:HP@4CqJ?X(2( @%T 00@"X 52X+`%հ:;P6@w n-3\YwÎOi}'Q Ὴ Rp 8 4Z8 <\p .wI_K~Su7܆;p}x<'sx/7@3`L0c&1̘ f3f3`L0c&1̘ f3f3`L0c&1̘ f3f3`L0ӛ 8n:h f3`L0c&1̘ f3f3Lop m&1̘ f3f32&^fL 3&3a&Ze[1̘fL3`t0c:1̘fL3G_wStg^ƙ0cb11̘fL 3&SL/ 3sŒ`t0c:1̘fL3`HPEP %P ePʔ~6w.TүllY  aX `9 VX `=l 6 n2qk.pC=6cK[Ɩp̝f:>NhJCq8'3P g p.e <7܆;p}x<'sx/76ߋK}J΋&_/zK^ү*@e^/z˼^2_ |_/z ^|_/z ^|_/z;z}P+zgR>$@=)POz SG!d|_/z˼^2ye^/z˼*^|_/z ^|_/z ^^{'-z~Fsưag ~F3g?#~F3g?#~F3g?#~F3qGTX8\}5.?h`3< fx0Ã`3g?#čE?#~F3g?cHF3ҟg?#HF3W݃]r=?~gD P`3 f(0C P`3g"}3FgzHPEP %P ePJ90ada>,,Ep54K`),V*X k`-6f[alvn{apA|pNi8py~K062\H\pnmw܇cxO<^kx_.U|-nw [݂|?/SѤ@7)Mn tS{,|-nw [݂|-nwowK[~-nwK[~-nwvwtT`)Mn tS@7)MPݗ@~-nwK[~-nwK[~-nwK[~|L}q*;0hA1@)A9T@* \yrb%rX+a5`3l 3ؙ @. {`/p!Q8 Sp@-sp.E \kpnM܅{pCx <,j{ Ϭ~/7@6%(IMmo~ۤ&6IMmo~ۤ&6IMmo~ۤ&6ImE*|(J7J7'I6mmh@(F6 Qmh@b! Qmh@(F6 QѝWSWqnH\5 R`(F)0JQ R`(F)0JQ R``ţ.G?*QJ TX<<(Fy0ʃQ`<(Fy0ʃQ`<(Fy0ʃQ`<(Fy0ʃQu)K(Fy0z"CwR_3"(F0JQ2a d%(F0JQ2a d}= A!A1@)A9T@%T 00@"X If28KS_V*X k`-6& [`+lv. {`/p!8 G(pN)E`@,rYU_;/?'x. :܀ ܆;p}x<'sx/+4_!,r T 00@"X 52X+`%հ:lH?An-v;a=~!8 G(pN)8 g98E%.^RjT%n/v{I_[{q7TѤڍ&n4vIMhRjTǤ=&1vIukA ZxR %P o|["*~["HE-oY G"ũ)j<x 9 שh߉}`h1D"( 0D!2 a Cd"0D!2 a Cd"0D!2 a Cd"0D!2 vh#`C[RѕqF`TtpQ401Ĉ!F 1bCb#1Ĉ!F 1bCb#\7t(0D! Q`C(0D! YVC<TtjmGH!2 a Cz5̚Of'Yɬd|2k>mh83ˬdT2k*5̚JfM%YSɬdT2k*5̚JfM%&ٖͩMZx`*5̶2k}֬YYSɬdT2k*5̚JfM%YSɬd%iIOVB 00@"X 52X+`%հ:X`#lͰ%/8G_v;a=~8#pq8'3P g p.eW\pnAO 7Z|E 7 hRT[p}xOn*SxH_R9Oz Ads;AT{ơ2!So~Fv8y@:{.BX R/C`bT:(AtJq2RkpHVMD RU: U:A]J8Kt098RoQ ai:ÉT{[9up¼ﳺ3N \H3W;q hAelTuOs:n܋ʦuлO%+c+:Ա.SɖMl`S:¦֢Rɱ?f!A1XiG8-*(K%WM\T%,9.jCy܅Ms秒?] 4w xSCzX +Rɷ}O|<͵ |}_5T;oMVa]^#p imI8WT} v9 \H%.eE܀[p]xyi~[bc_^Kx Ʒ7ւTz曆PJOF/ |i(J5X}|v-4_)5Z2͜iLSe*TfӴ4iI3͒iLd%,viԴk47%8]J_1bӒ4-i1MiLS`,vɘ&k‹xo)470Mi2La d322M^BQ*碶JR_xR(r TB́P a`!,Xa,6xU\Du97=x xmvNaOvxWG0/7GpTpN)8 g98"\p57&܂p=!<3x/%6E oSϰ}2('>IO}~'>IO}[J?7}K?$C#Lj> Q}@_< }H c){@(G> Q};2;d;BT՟~'>IO}~'>IO}~'>M?{8R}~'>IO}45s$xM*c|׬_p4Jʠ* Ps`.T<|X9X`1ġ-]4#X+`%հ:X`#lͰ6G}xg.T[80p 8 4Z8 7Jd% W*\pn- w.܃#x O)<^+x oCs@nq]jJRߌ z,F q^;j܁Wwոx5q^;j܁Wwոx5q^;j܁W7ִ=5nq]j|W7ոw5nqh $ݶ=Uϋ៻j9Q[jմIe.F q]MTGb-ܕW6մSٶ%~_GۅTvcEj{X xsjܟWո?y5ϫq^jܟWո?y5ϫq^jܟd:ծc!#ǒm J ʡ2P U0B5̃,̇C , X `5`3l  mw*qhMe7D-{=v.eW\pnm ><x )zE*{ +x oh@#)HF 4Rh@#)HF 4Rh@#)HF 4Rh@#)HF 4ze쯭#kSٟMF42hdD##ȈFF42hÛ ԷѢ1,xdn_T"F7 4jA(A|P2e>(A|P惹Toє?(AJP ]=(Aq{P܃=(Aq{P܃C=(A~а4 AZ d$ ?O<~`4΍ )0HA R` )0HA JPa?A~Pg_yѝSُ8  `<[;@B(b(R(r TB́P a`!,PKRY8ۿfJXa#Ke?'vYaS*h6 `;쀝 v `?p8 8p qg ~==z-? ,/^]xWoMeq8GC7bpTQb8\ob :܀p%U,n]xNXS[9zOAmWeY5)SIz>C^ ,6}@Iv86p3#>W?*`T6J3s>/[zbk7>/JѻK>/I 5|&U@+R_JϢ6U@olWycϱF_T_| SE@vn gn|ޕ*~zklg|ޟ*t_>4?66p3>3>i 瓩#}/ϗBp}>_N9gr}faל }ESovl}\LϏ Ps^R^ D= eRRͿ_U@q,z4KB&eVnl*:e6:X2{bBXaI ~VÊ9V:X2=jka#O:j`lJ+̭ R73oؗ2/56p0e!8GRO|㴎 8SO $ڔ-,\pllW!^un]2 y}Vt=}x1K?"v;|q/I4\O!^9)W^l}y_[UB—@”eRy~DRSy޳؅\ W `RX oSxy6  6 0l`=i\C Ȁ(4@]}(5p3#@" y Pe4M|y`s2p@^#L8@ efH4 @Xœ'@Z b4/*oy$("((+ @%T 00@"X20{WRXaUZXalMVa]^CpQ8SFhƙ]'S g p.e57&܂q.܃#x O)<^+x o+(E. tQ]K(ET^5'e~yO4E.2t ]d"Cеj` P]@(E. tQ]@(T+5eC.2t]|Δx0]Ao.{5t]::24E-ň.Yv]Rfm̍N]E-h?IhEeY|/KE.w=N߈%]F^9[\Ms}Xp@qW2(9P*PcrbjY"X Swb4UrXa=JG.k`-l 7c#섭깨mT'r `cTgbCpQ8 p"U~~4p6U_ \J8j:\M]kpnñ6܃7N!MUVջu9__dp ^}ROҝG&޷{[z5}꽫zG0QabLC:|d$z1!РbE(t2{yNU*uߧSyΛ>GWº\i獊?r>RG7ú/|J 4=ࣘðW>|^>zֽ;GsVc /ú/1H꣢ λqi, 4\3-P.5P .|-zek*F 3q&Cٶ6vufNX;BّvB3T(;8ep+@a88~c8$p‰PvqG p.eW5=-pw.7&.%K|Mʾe|{px| xFY< KxQVR }zMX:Xq6\{'wa+NM#ͻP}^oU,Hz(c׉띚m /컍 wRy%8͡qTfSno(˻4TޕBq@H4.~oGCY@CTN>N/ߎ ])q@M.r1Y*]1ޗwWCҸKy'wzy_IPGyǡ'{ʷJlimK0~2 2XKC7qrX,2vPP5ң8Z Mʯa/q;a{(b04@ Ұ8!KG‘PŇ:-p8 4 >9 mkR.E8*܄+;v܆;P[q<܅{pCx }s^O>[jw :ZJO% J`u] A|QG@5ha$0ZW|d nR(FVP}&-/w`M- dT Ȩ@F2z5zT2QYatw({ʨJFKlY>*]/=ku0*QьfT4Ϫ 44*Q ?wBPS1+ QjiTHP>njUӨAQ % o)gԻP>sUӨF2X W|].r*xs 2X"J(q]TC AU(a3ԇ/`+l ~0n,.u|yO8o m>Ҽmg*i},Ϧ&!8 1һ79ǡN)8 m,$"tĻ m7ƁPqu\'>]7e\> O%}*SIK^'>Y饯4ԧ>SDJ.h'>CŭYiO}A>}Knrӧ>)O}EDӗ į' W ~REB/eV@Őgu&TZ( *PvPalMυPM([`;쀝 ! Bŷ~80da_Fv8Pz .YjpϜ$pN8 !*=y W*\ppM*\pPgxx ϡ&%R׽_T\*‡ˡ2iWNTڥ.v1*~;nVr@/ziWI{[qc˧]/ziK6ڵѮvѴ]MziHhڷTڥ.vK]*RiF>X*ޭ4.~Oh~D~TҮvYˢ]iF{&Ts[.vk]/gCWvRi*i/%G|] Bş}FoʥqҞu kWXCRcOh T֮΍ϥ}>KP'u5=g^9ʙWμr3b%ʭ>2T~K|y]g^>ϼJWø|3O|-hh^C*3/y95Լ4/y! i^H*O߉ռ2/P8'ϋk޻ϼ|%5f^H*/Ļj^MjWӼ4y5 iH߳5\w5ټy]g^>n6߹P?CH΋fPO㨮o|2y̋fn-qۍ3G򯟎ތ%5R/q $R4;hJEKqi)%e VX ePNATB@y,|:hPGa=4\5Fa lP*gd n C3}vD PS! ??nZ:CbmS_Ƹ$P˿Gy-TNuыpu(8z nP:36PU7-44iPӴrς3iMC/4-iIM9NƇд|3iL i (gZ*RtKr7Td|(qM~ϝx~uKBDm\Z BՍ?7yK` UwPPPuPkCxjt]l&X`#l-P^to=oJ m [C_솽+T'qtpBҡoZ: GPߎGָ8KN8/Ł68ɏǁVBu<{.BVM56܁={->}x< U?cq'PP5sJMSK{ C5텁 P*ϔւ¦4)!MzWj jJfSzwai8S-Ll*m/)qMՅ*>Tw>u6CWcCS4%Tou[AuS`gzq@ST*T}oMŧ)MimJRS־r+nMihJkS:&<]$5%SRpv>n)qMaJMS :*Nō7ut5)]M] +Mt5)5MiJMS򙊯P]Ѫ84x7|t5)MƯ@kSz(YfS/C_7CK`9Pkai~)n ʡ* j6@ 'C5fXn#1vv/|GO셝jyzdi쇃=nrp8 !_ ōIh _q H4 Vhsp.e8?1"\p wJx[p~l/GqaǖP6ŁBuuO%<߹2{W{j⺢_+sj+Gͣq֣yT%N}4;1hvyV?_>p:y(̩f9G7}7,Еsu,giYɸœٵ} ,eVfٵ} 5f5[vBTB@yi nW uMPj|1n}fi#lͰP0nvnC8@Rh , 5)np18'P|!ng4$'}3-\yTB\'W:\5_+^kpnq&܂{5?]x)<<Ǟi%9Ǜ/ S _}BP5ԯRC~ 7E/~jx`(ԯ~5ׂC#TxO]_WO|CS_M*o@Mj~*cW(MԯC~+_9τ/|:CH? @>RoRH?7΁/~/T5Tү~Y_ 5<q$՟ ~ 1h^t ԋ#~ǗI*Covō_9JY\jvy\ZKCxsU"|ukX kaC)etPjlR-4BM];G`4ښ/ualxr|f[acx-ݰB~8Yjw}9 C0.ZBq`\w B.Ԟ\\wAk=o6CWqW܀ˡM|u\w܁pCxO CݏcB?ATGT /OTRO:Vh:Dӱ$vX UPB'Q:!Pw%:QMPj~,4:ԱPk&TT:!OMd!POuC>{B)#ڷ:2p ~.8@\P;/C\- Iu!u7Rr: PIG)/|CHjeP:ڟ8ptq A/wB/:աW~+C4ϡͯ8 tr$]C47n)jK8t\-Xk8uRr U7zr˼dzr]뺥\-n)uK[uRr] \-:țBv+\- o)WxK[R[R.r]w`|K[R.r˼\-nC]UR.r뺥\-o)|K[}x![PW*K\-o)~K[ʥR.rsn_\>.r鷔K\-o)~K[eRox79z(eR.r'p|7saKiݏ+"ԝxoX~_ƛSka5,uVX *`Mq2=UAԄgיu MC|wn=lu`+-Łm RC]ݐ}A8`o{d$pNq8V( :8zGOY8-}p.% :܀p n]Q`wcsng3v;sPCO<48b%BO|k\_r4` |~gv >qi,V*Jު,J孚. u?{% 6>r%H|@-m_[ۍC!~\\'ak\4V%ow[q^[U[=4nY-UG[:m[W4[qP>z%I=jzycP+p1ԯ [ս[IxxGMo qc{ Bz{']j譮Px6> Ts& 6,e͕ Pq`5 Xꏇ8PPO۸ &ԟ}B4B'-ԇ[_h;l%_il 7>5.aw7ѽ}p 8B.Y8 /&4$2B\\˯8 <\R/m"n| . B7쎣܄[p@Po!<`3l ?z"5X[BŁvn8fHC/478 GPh7?GqhI8!g,Bp.B_;^Ǘ

:>]t'K]'C㖾N9]zRIJu ZCѸM.oPSJdu=48 .t)Vh<rzKf]Bɗq@]zXZ'q|TU~3SN^QNW> 2X+`%հ:(rJjZzhFh6& [`+lvB3=Ұ8!8 G(' p NCYh68\KpU܄[p@=!< sx/s?9/r^y"E΋9/r^o13<ćZ 4>7/_d~"E/_d~"E/_d~"E/_d~"E/_d~"E/_d~"E/_d~"E/_d~"E/_d~"E/_d~"E/_d?w[`_`_`{=~`_PĂ"8_|8_|8_|8_|8_|8_|8_|8_|8_|H^ y!/N|qOz\b_`_`_`_`_`_`_`_`_`_`d]u˱ X `5ʠ*j`=l 6 `;쀝 a4pBp8 8 H$Ӑ3pZ y\+pu7܆;px1< 烜r> 烜r> 烜r> 烜r> 烜r0y,Yγg9r 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3p> 3$ϐ,糜r>,糜r>,糜r>,糜r>,糜r>,糜r>,糜r>,糜r>,ɳt~MqYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgٟeYgK>K`),V*X k`-2( *:h&X`#lͰ6;`'4.Hn{! `?,p18-p8 4 Vhsp.E \kpnM.܃#x OO<^A8G8|G8|G8|G8|G8|G8|G8|G8|G8!yGH!y$  ppShZ5Ahj:`D#:Ft0`D#:Ft0`D#:Ft0`D#:Ft0`D#:Ft0`D#:Ft0`D#:Ft0:8>` ,eVJXa uPPPPPalMVaf) {`/ap2CpQ8ǡN@' mp2\p 6܁<܅{pCx )<^+(P'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'睜wry'ɝq?oMr44қǑoJS@:%)N tJS@:%)N tJS@:%)N tJS@:%)N tJS@:%)N tJSNRXaUZXePP UP 5P uP M6Fa lmvNh]ݰB~8!Y8cpZ$pNi8 <\p . :܀p n]0Üs>0Üs>0Üs>0Üs>0Üs>0Üs>0Üs>0Üs>0Üs>0Üs>0Üs>0$< M_w9}~0.?pQ{t%rX+a5ACTBTC BC4B 6f[ala`7쁽}A@a8G8 SprpB+98"\p57&܂pp}x<'P x w9s8q$X `9 VX ʡ* j `3l  Ͱ R^H> d 0p C N)8 98g p.eW\pnmy ><(SxWP 8/p^y 8/p^y 8/p^y 8/p^y 8/p^y 8/p^y 8/p^y 8/p^y 8/p^y $~%4G WCӯ.̞7%P@A $P@A $P@A $P@A $P@A $R{$# HG=@z$# HG=@zo-,*4$1G =bCz#1G =bCz#1G =bCz#1G =bCz#1G =bCz#1G =bCz#1G =bC7o=zѣ{a{a{a{a{aWre.?[+;Jk]iuֵZwl-2muVWo5ZkϜ09q9[-jˆ֍[׺L\jڬl}NhluEVSX_wqluVY Ypp{vZC 5s$5.mzB+Gz.^p z\*Քb.Hg[]}{Tí&iuɪVSǶ񕸔 ;{Nǥaw}k\Jw&. KæoM_WĥL#.exCa?KÖˑ/>={ұ+.N~u[¶{q)NN;5l8?:N+gx?bxmxmxmxmxmx~iN3a{r+>䵝䵝䵝u N9h'ym'y,^ |)k7o˘1iycƘ1iycƘ1iycv1`3 <1`3 <1`3&8&1Mcv1tn:f7Mcv1tn:f7Mcv1tn:f7Mcv1tn:f7Mcv1bE|iVEEϋޟ헋vE{㢽qюh\.탋vEߢoh[-~vEߢoh[-~vE.E-oE_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~E_$~EKO<-f=4X `9 VX ʡ* j `3l  Ͱ R^H> d 0p C N)8 98g p.eW\pnmy ><(SxWP'J6xb ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ ' ~ 'J]%dW%rX+a5ACTBTC BC4B 6f[ala`7쁽}A@a8G8 SprpB+98"\p57&܂pp}x<'P x gI?7Wx{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{x{$~xiS'Oo<ěY?1Y~bd'fO\>1~x'&OL,?1Y~bd'&OL?1Y~xs'OL"?1E~b)S'OL?1~b=OL?11~bbL{M?1Y~x'O'?11~x'Oo&L3'fŌ ?1}bĜ{̈́ ?1~b&L3'OL}?11~x'Oo=&OL?1 %`", X `5ʠ*j`=l 6 `;쀝 a4pBp8 8 H$Ӑ3pZ y\+pu7܆;px1<H?)f87o-oտ?\n&=`NF'FjǧgUͦI5gtӫOa]WZ·4o٦):sq_^z|)-2ͮbMy G'0]5mFAAtY͠]9~ya 8>U2ִkm6Gމ{Mf]{@==E=9p=c ]&{6Y5> pf4I>.W :yG~0ү6mR^/?/t*[7NO*Or]*@!( &K:;K6+ZK0w-6FR||e5 4`N;z+u`tԱi|+ht>U4u;8S>`g͏Y],tMHy9:_̃&竢)E}^vPT ҁe\#k\Bc bg_3̓/&,bMt&\,Z|ҩ_r] ^F|ɧp2-&^ p0 MOxD6UxcpvN8|5|a]LEs$&w@h Zd%auț^PH{8˼f0`q[6ެr:y띃tCwzI,ߢX̘vC]3_nw/Xl4dKXi@sEL3n Bv:6Y:="?+~@N5Ģ N+[=َ#r^ϫ*[f6?]<7EseQAגMf GL26j磡bx3{gj&ط. H|Dw 8+zsW^ y?8Xcˆm1<7-W׀Z41!:|pFM |g_| YUeq6;&t&]:8Y̗@ó]D*ū>ƭPR7Yԏi (7 DF: sEf.i\{lc]F"t,ܴ;ՃH;k>@K8>En~Z16n}:<\t 2x4@Wi6rģx[]Xz>0wby5S{`@|Zt6}.}#k짧7WwiE@.I̶؎a0&*X Dwnlӽ,-ܨ ۝W}JUT2-2h ,Gܬ J[$}䪅pHn8x_"jpLoD/Bvh1 [ Z3F0A4Q% mOʯ#κf7>%Pv` ULJYQ1Gi3*(g G~(LX] 0>SRLj3ZlD~jbE~/t;٢B}D_!TŌ7wd n$ 6G] =[\*:.vhs%2C\xacxɦ̟mEs "݂τ&dUp͐w y`A>{}Wúʘ}RRC8.WjK" @ŶPӑtQ4.~ZE~h;˶B-ʬa Q6D *3w6:HUޒfɜٞucCcꜪ5^5p]F`gj=ԻQ\3K;w4Z[K<æ, (7+O#3ɴ?.:]yE~R+Sˑ3_C=UXцOoUӵ =H$}>˂m"_Hg)qohΫ0amW3q )XX(N6U }"o5S/9Q |rW˼oƘ} 8DVgz6LEL7uS.6|_|-`GMfOR5پ1UUmu| aEz,U1v-=;X}UpUi73JɒOGpFnv4:m:w8b}B'V͊^V~ L}OhMZ86Օ]D T{8˜lٱYoH!ܯƇL.Oix[,<0\kEx!L% 8l&Q"Dے@fɸr.z j*[Nڐ%P׏DQHPU>&{cXW:w99j>6#.023T钊OIk]9I{hs^fw ٛ>LNn"Z\y||R3E=_[1O^[>yuכ|I霞!H/7914]KxtaR;{ nBf;@ىTH }Y"u9mZRԣ!pLUe ;/bzM ?p*N03bKP.e|h'm08/%>5";u Um mL/yʚe׊VLI=$7[=?WkN{VlOn:u~t$to 㵄xETwfVk݅Go9gl=BtZܡseA3vv8SDSfQ psa H?f 9:DO!w./m6(od}A#!'(CcQNĿE/zxlݹTrA۰KcqS X#kt<:g\U{ @^GWmCM8g1ûWpVL1@ϋk^eH2&( L!ʿx:c;ڎ 7b BζL1ȝj^U i;ݯFGJ`%xI=m|ƥtI:W.XoQ!Cz!L9N8*,}QMM!U{C &At3@¥u5|Ibjc i̓1q@y*.悂D.qJ!}/Jc}F;O{sƫFG%ژ{ x7Zu>"W̳C}uaw?aR;]lfyTFiD>-VV xtl< o/#ܸti81ˣ{6Oj>q p L3x>1AW6\ֹQ{K+h@L\d#F{40j're+9[q%bT&p#ZN߃0=y Cܰoī\- hx;7ȅ-r0F\~>TΕ:Z[9Ϗ}/_~͗>֎?OӪla4%eQ3l-'#tQ&t.wcSQ ^d,rMU sāh<m7x1&9mpʜQ3E[nI_gU.vh-DZMf|ϋz=N"# $/IKZ_0#Zy 0)8 wutVa'9F]OmwMxl &3{Uq^OUG%l’v ^QCY/ozAy+۝6DiG5y"1/ЎLMl п z841 wmu}j>0|,Q gNJvHl@(Mv, TS~ N'>_|0]>lwp*`4KWY ;y,BgƁaTMd(j1p±XL[}-}F $>F?R{> nmpZFb-s2ĆobT>$*)8sRF؞B#xg I!}^8 1petF9ÂomFlt 쩱嵻]=.bAqQWUξ%5րcb$Sߠ#zoS?/?;^ףYp"[#hNrD4-Y@=0U}!HoBL!,TavbW r;-DqFgJX\:/̂We 2>a' d1MH>0|pt-v4 @,"SxDA-@1Ԥs8xv()Njm[ Ǽ98#{i@ g^& r:֍Hg %^}of%&yq*_CYXEC~t_Lb{,ܾȿsM۝;9i ;<^,=vܾ(]Auf}7p6MZX0y^$Pd3,ڎ3` @fu#|#4E6V 8=[EYG:+'/M_a- m٥b8b~,<êI'}g'λƂktīJipϴ-yY!nmU|su5}b8%eM]8#$xSÝ3q=>[7贔 o,΂nQq΄p.v@'285>.7ڕJB+Uias(L!MY<$ v#m oo7IU$}rk^Mi5M?fc52C`%>Ţ;N+{? $lE\,Cُm'y ݄fƘ*j/q,3?r84ii\bdf zdI'iDCj=k'_%Fwꐇ?)-wK{dMjk BZ-=|?$Ɍ]Ms,O l[PГ8T$*oЉf̐gPNI4,qv ^l". Cb4HSu;d/ t*׃\ }D-(%zϿ3X^v8}ޫbHCX.ae2I`$΢Z!Iw|O|w!yB, 1WuI&w(=Ig\9g/\vZ\e8jjtHn p밄!(߬@~ yd3+R<_BZ!a?=GyuiTO-睎HjEnE=BPM*ry%apM geYKԇKQ(gMYl;`/Ϯ~Kkx6A PJTĵS nZe zVw§ 'G'W)11f1=Kdl fKORK6~mDӯ:S=u! H6NHx@0)^!AlMN'8$r 7+<#BVq07ȎԆWF "9n0͓li5) 1b5eD)$5 |F1eY !NH3zNcbҼ֡00ӆ?D"L*Jr Y &=?O(5/A=|u30A* 13HDlKnoIr laL$la[kYnHbҧL6ߟl(B/ZVǧ|jzl~z}:}y<Ҷ+m"~tA'@K9WX*~ʫo#Qc)y¾?UvwGׇ=VBׄ2S|5|5$Ǽq^Qk~v?2<ů㢜_P*=Xӳ]q;;`AʣG)o~r?U)=K۔yA .dO>+X >U!=ε'G73١;:zGQ:ϳ\@mCL9om [{k:EyڟEfzbU1 (m(@VWU9]X ncUZ2[9f[n*TS z:M $**(~)'(s\$9JRp48Wۧ!K(5-r<E$Nq &or.A|YLE:֚u pZf1yJc2?SWޚeURLp:.̦dt ꥤ?݈R_yzlӿ%b(oã[I >hxy1Ϗpы3PC3D%ݠÅ*tVbnf~Nr- q7]4ղUkj16&œ^ tpMl$f3ѴbD n9:pCCrTjR:',;q3hyRqq`-R%&Kr[kRJLq3(crܢgNg)^^ߦ2MB?ѐMS;:_>mNC=yӄ{枴3u@3pc`zYetIFCQKQ}Tރ2 VrtmJ!"UH/hY0$jP# -lE0ewL,c] olcyJ 8:۽ʳm⺒غ5PSt1H qpŊ ᚭ5~SeFddyC IjSbM:*qëGg#<=;O *t4||~8 f@lrN*68XFOMJ,S5e9+[K.Z(vѤb@PjNgiȽ9SIC΅䥢8X%7J^h:^/} ͳQ,bQ bг0FZ_tKn9GkdL41 1H>-|2y'y "hJd " dzUp@:?Fp^0F|;M\A'0Ն><2l}qY9Wml2P/*&BInQSj9<6~(G&&uVs3e6 J7>p]+J-?u8 xGC16xTsU6 !b53ԹnFzw m?=B#=3 <HVo_vhЌGi~(d]g]t|O'szgϏ[{LHĭoLD'pe/pi8Xy:)?aKpӲA3Wtikztȩ<|;\}?i_){ƂO.;4:"9MsF#3iaK dF&0zqc7T_4!eN.3h&iG_yŮ]dˊbt~x: op:9?^.^TyK<S5 qCP@qdeoQ>|Id>O _)rGpmй.Yt>`VX]樭ġrA ~,Ǵ*x% |`; ] *20Y#1Ǝ5LG 4E- sbK۠Ј^_[^lfSܔ՛s|RgiI#fE*NrX1c ƞ3k2RgN ~bf i,妩wݧ;T#eMᯐ$ipܱ)Ǡ>qiϛ+ " o*-LrГutg+=O=S%:)HUسUfMOof][=Y2z<5oԎG5.s*t5Zd99-H?뢑<Ds)+ =)mz%*ȯNyEG C9{ shiӜ:aecG_ "SJ@ `9R[v Y q GbEK||t45[%jbn+$"[ʜrm7(deaY2C+k>Jr(␁Ol2Ψ HT;"a)^1F(S #zrruA'>4ç HdLz ;YG[ZGW$%Wf h"( Y.ވWj>{l/~|NU>}C+F@㍼Ꝿk8&7|.MC(Pt-`fLi1.;[%6Okz) .*"1'IJ~ 9u zA);v?[Fy-;8s^(4 n gtfqc<[EI)"b$O *2;^iy+DG,qU(KT])WT>׀L4.XEzQeCNnӓ!?\zm_Ym@-ͪ9 ر7 t DNW}fLIAUk=lUc{=M(T[cFCuO93ew=_ ޣqOv! jp876.$(.Q"@oZ g D>C q +!2B3q_ >k„{Ϝ,ԣ<%nuCefN 2i=Z\ @;DBC-ZܧQ8o\zĘ! 8E@#䟦[~m`D[ `>C08wqg]O6;N9mov Lwӗ{$ǜQztΙBUw-'%?8nO! S7~S׹)Q4 ͦ!2lk7功 b+L@% *S[ٝ\U_ '[P" B#ut[{~Yf\;8Æj1چA3?ieoX#(rc }!ɉ5LR!:AKīeYpWɽ”B̾0 /tnh:k]W-SY7+]#: 6+f4tѧ>t|&/iW䂍1V[d[4 =z!>Bgyėӻ{Ђ n<@ۏga$L8HNW|Պr|9tpNA8a1 8ߐ}? Y;'NQ>kX>[UpSJjq6^ 6ݱ3ahQ(Gᙷ sdLVqpQEUhslD5yR 4NOrndAtsrjf ium߹dc nyzUXPǫ&q$xsD09~c]yA>"#ܛ:iĹa1n~Ia3“f]pg rҼ ϔ`iX܂Id9\֘yq)bNxI 4Ko@  Px0TcWbֶֹP eLU{母Ya#۽4VZ\(c.bBdH0mxؓ6^[U­ B; % n1=b&l ̍C %PmiR A'K9`14pueIŇſ9 BHk&'vI{uD->k8BSc ]"qOɹH-'hƏJC-:P1&>r&MO $ m7$\L$vaYu+'f|Ћ$Ey4_/8Y,%*5:װ4 iG n:F&Zs^;T^_%Du"̛Ib6!FH 7kж_5KJt 2̐\ Ç8 ^cB7z_#nġzE*%b[|p >퇟Fdf ^ {84"SEJ&ՒMg߾>QJ"\:|XwrnMd5v̶ k`N8_ɖ>aG+Fwl0~Urkwtb˿L`R/㹑NkZ)k@|O{ >thR{b1Ŝ44pXU<'bSs$ z'CՎ{?ꇷkS;<:hd̾:A@FlrA1ݤ0&;'^̊ ?_y]0>*g+y{Pqދu;"I\!iFe$w.COCjGл?TOp{h"( oUoam["&HŠ87I4l& 'B E'%q 9=zܾ,(o8p2v\G6 Vnᰛ{W7_'kM ~Trԍ^[C3g/1M rnv ?5#U H)sd:GӦ*k6(3~CU hcDNO݀G CO#vyO{bB߂]Ş " |8l|C-*`udWzr ^pېkrBWr^rܟ"NLeqhX zb\&ShE&v#(0ΌQ%Ò۔+=?+ck3upY]YsGUv#StAkPrrD.uƗM8 @/SsJ09 L=s&Qr Bއ2 ΗȦrCSP2T2'(~tYNI-N3_.n&B!~7BoEybBy*XonG q6\spWRIc'66E~A7|1Yɗ? 0L֧Gce)8oJuQH]5;NԨyr {'mS;d`9fEBZB$,e"9irWåyE$ @4p2l\;[Z+0黧2M6;  sStg*oYG+vhQx*TN:<=2 춑 BzL[E"o>1]Qyt$͡}M`BE͸WkLFH6c3])AFttĕ|0fEK"W=oTe!()@EjJ@#jبkB28H)5F86z-H2ЌHgD]%[J襇cJ 0DU![4]e;<Ȕ3o(RFp+~_"cÿjqU+ &7HnrLSi1B29a B 6:oeBGcqw !s% MfTZη>pUlHzF.z|03Et_م04pHv7hvKA=Mc99e(:)#H2͞힌li=HD0ݚ2Ll)!8zyu,t&>Ws]fEoX2I^a8s,Ū'\_'Enu!}0LQ6Pk!6qe/F ^<#'vT~Gwj2v+9"+Y)~B9UԊت:7o^(w| 1ҥlH%pe&UlN7znqڨPK" ;ח_|v/jLxzn2coWB \*DibbC^^{ ESpT D1C#݌+,+^0&>̎)9ԪXU!mVȆ@[14^7+sǽ34rr S.CF9ka%}])Oz>r >)۱kCw{[:SbўV{@ZoHE)|Q~e!A@Ƒ}]T%H&> 1SBZ"QH7& )m5j s!Q+rw" "n<_=AS9]PhiqLt!ֺ}Y-fs]6]18A0XkhfWM_nՌԣ-ɦm  oZ񕍠퀮 *~0| q4~Ln& BSS9U("62qEɿ OB Es^8 [X션q<{Jgm.뒤2HII[I՗uVQy2,I6}9C %X+dHsS}e'uW%ٲX]Sn޹}Rm~&1z/N **Y_N ǰwa>DGkg5Ozg@jM2g; 8{˄X|5Ut7AuzxklmeX̶ٝ2 *;!s2ʭL<*ٸLaˋ9ý=oޑg*.:Q01BT}D }nN85/* UymNy{^ח^exTXDZ]]E1Ѿu:1Q֥¤26渤k[_=Qy1IT0^wai|]K#cTHnHd8VY\P+О~@}NGh#mD̡ -Ы7avN/1o &]Д=€;+\OFvv>>QB]5ͺ%f2ߣ޳*`%&^rΟDhKNc#6}`gXA=0[ w=+]EQ_c ZJ4>=!5>&>Ij/GoΕգG,}tAuM1 cwEDowK=[sE%{Kv/Nj/|0 a[gE(2[ pg! =}V3;5nKvN<>ŽU{d|唅@seSh\3 ͼn3Kr?/ITtS-T)%o ҳ0(Z X(HVo$cvH>)yŸm=0CizAzъ$)2w;At MZ,[P+ʛLX¸箒ȱʣT&6A&ﯜ|,p`Y0՛iO0NFL A:E 4yʕ%';,QϓI>ϒc)dйM(ofė9 ]ɺD^ .r!53Y.3T^w^ej,ԀםwIN1e"L@ba&nE\1FC4#f56KYHfA4/i 5y Y.D~< 8>$(DHrFPҰOvAXǡ9UvÐ;;³oJ[$ѱ[d sJPSezet$9xOD$ /q:3J,_˂Ǚ}bfI2m@'B'zE~$/,w g4pl g^\_b-D\:r0v9X-[@cCMYaf׬XvՋʉ9'w1b,V0ЅS4RO". ,'Ti$&Zi)-&'6ТiR+JÛpbq?&fJs,̠\n+x@+ 14끨L^N eM\arDrdst2J.Hptge/H9)"U;^iO' 25-۠cLe=_OkҾ;'\f~U\/Wx Ppmn!f" 'IP &(Yg =)TT9y&9⌈L\&K%cMp(I;f b)H9:s$_Uy 9!Cx¶>w17 i;`.n ?O U`<&j fDդ֑ ơ9WSuKEocHdŔhQh$lbbn!;bT"|h;r?y u ?a_6UY>jrQn-}vBvIF% ,Kܰ JlnTW1UCo1-.g 匎B@ "Ng켭¢||l/T}BM1(IpuYgJUҭNDeqsm"%vp8$h=NkSo3S`~0wBcTu9ax_c3O3Ɩge0’;ÿs3:OtSX|wE5 ]9گWSLiLV"ٳώ@78յ)_nhx,ϒytNMYo kC7]̮$`RypeUgcgI,4_ "'I9#=M?GSGgڥo>O?x_w2eǮdgÉdw4>v !8hAPԴ{Ӻ{_yD40mlU(YRst@ mZ F[(Zkc>5S) ksJUq$ C d,`;ߢUv;XhГp\L cj\Tgdww:F)!9 ZMzϟq!C'}ZX>4ZR·|}'!zyL_^tg7T +%蛿*׊A!Kb0›;ٵP.:o\eʡ]x4bw]Üɶ)PZÁ!|' }NB3\T tWpW!?5fӳfWveY,]p*Uw- 2 -qQhZX,! ;O)Uj  [BEm2`{z>@a5^Y}R6*kVn6U@VR0!WdR*C clRg4JcE~4`V:)ꫤJoj!f7-+=ALˌ`}d1{0a$:3thi'R#?^eV>qA(rq[x3x>Yztx't ;َYn߾~/*R~]Ǻ*Z G|syڽ_a F2яW{ J DoMMd;$j^WC%pM+fs|nXЛ? GlYϾS"WY]AbszhL;cn$V <-m'|̱M;p0VJ(|)W"jUfM=T6b}NJӜ72x!e`Np6Qͯ~6-7ZW*TkҬU@0=֗2]0(@DtZZaB{>@ w)ĵ ok~`}]%9 $wp 4$Q@$t9r㓎!MjrXXrn+$cQч[*BǬX.SϸkT dB'Nsg4{bϔ\8#s\ 2DdJ(lkũ;L0dєGrwN{-9;J6oX][ړqR)e_eA`#%\AX*֩[KjrHa^-'^tW(EE!ޘsߠ`ַPgCpۤ+ V٢,7ZM]0{ʹ u (@CQ\+ү/ rde&iI\{38׬ 6ϽHT Dyl²ee)mQ nO }/D]bWbWMjbmx~6dLxٱ~|<\Eơׁ< iSUÿ%hT }2"&. J*dszL6%]JTe*xG"|a{ :.mS$ȡȉKӤbW0uWfI نA}/#HO6/ |b?ag 1eahv2CdjojM^/Ėܔp_[n.5壤49|Λh,`;29,H*u`+Bq+4L F"i%'&|IN@Kku'8?ʈ`j N3^,!$ù4p3sg S09\!22lTյGM yM-)=rZk9= lОFge#94E$R FTyAVS%h4DZ5@ h;D{ی nӸ_u+;$#+zhƿ3|B_r8q|iOG@hSmӿ% O&xmp>~eUU\r%?/ (Cvtt˪`5<e+Qx)`RM+Db"  ױz]"]g4ヒLu+İ9,7KYg1yZs-V_um5;.qr7Lb7Y$5&͇*xJYR1*3н&g>[}A2Pa@ WBq B~7#c^/t]Rdް&+hJI3tyqKB -qZCBo& ]`=@ wpGPRrC.L4! ,iPNt|6'!wISOf紂~>9糘jԝ)běf{5qBķ77u~VxA Oj]L0=C3}qc5ZsTa"H"ɤʯl$-Y<ݤ2Hf~"爊 ~8 rfX{iDWUx.H3:4ȭz>Ǔu-,7<'HyF(41 ^(̃Yn|C.a86~qT@^ІX"*; t1(=r$-a|Ir33"A&t(Nqo:}G-twƘ צCm n$8QCƿz7Qj]PcE( ܭȹfUຫ o5S9$lݒJ 6)(cT.=j= }|X Bp]p̴raxL鑘x-*s4ਁ=aV$1T! ,\R6߅F~5@wv~=n{M{]F}?OjV@ b6RD\Sb2N.IDo v!tIMMٟ6u+%q:{R#ewFg4}aF7 I͆MՊr*a9 ` =7=%`fa0}%uHFWVoJG^C_^ćDkS!ڨiL Q}:rD<:ybopͱ+&XsChD-** ͉!a5v֝8C< !!sEX^*W%:sY9D|}7k *]ww2wS4?/]$8Fn'`GVkH2nFt:= aGhDjE0>L"X̔\} 4J9UdUw% '^+/(W?0MPTBZD"y+}db$R^cf@?K*>h5.v3k䌃* b6:h./s3,w!2"֪x՟ŧ׬^`>hՐGd)%⢓vS[n *Bu%v0,鲞^pVnr#C jTD~]JT{n+ƣ15*q(5wFU1jt)]kI IH<~ N8z<"A|DǮ#> M9S~1@pabCLt28E7c]G<[u[%p20ZOb/o;,J^i7h3GND.DE[+qQFn|x'wQs^Sbժt_Lx3k3{82!#W<_ y(̡8F ƂT:ͦƗ%8DOS~QMbC (0NPYTnGEWd4j ɶAFTb% ႉ̄fŴda=Arma3ZU`ghKu,$ō.6_%vZ-tl9&jfnjx]bHuE*ǤXNtɺ\w%ׁtD/)YFKbGXaV*Ϯ~_V0)Sf}Px_*" Yulh m䦆K2 #S+ ꭎ+Ng|}ŷ+bgN#"y| FxwRBHUAÎ<&1gl #%%ìnL"8v/VD0UI9ߊ;VXp^2^, _ PNjG1gߕn&' {]WoMt玾Bw (8:V{y L ftq땜HIwIte'!vq/ӧ6*q.҅_,U PMd}̈́عH#v˽tt@R~9Y1!0"oY ROmd,uDd ER(~$ 5ܭNLRӜi,P7TH_;w*E[3Zl[> NMMRnF.<)-(\4470ot6b;:9v(Y~]zG+g]t}G{bR?f?e)u [];= 2,E`{ތe{K &N#xD,RWp}#+C?a?)'9Q _zȪwx5rH{f~6Ċ礱7~ 6j2к%gfugakIuZ;oa Koy{39]5J$@8Ĺ+Hl ׾&]*115qy_m6q`95i:;Ucj"=:s&eZBR.vؾ{_f-ᖰ0ոߍR-wjoh)I~K,²p)H FV'LLF<+5q2 _L8x'K*8ΠлUWg)W <*كyG4ga g;b˼ Ը@g./`Z޽C^Ւ䔌M%Fss&vYVkIGq4^7ۅD*P3_*'&OkęꢘFU.Ue*eY< )wBv(~UhoAk˨')u,BWВۗ5eiT22<U6cf61p[o4ۭ ]eR'D}Ny;`QnL,c!b! [rjyL9+^3ԔRRW W-U;и#<_ ~F|/~".G\DZO@+1W*,R0rkz/8[cLT)h-9F8_,cɁ 8Bizm- pc`MZYp) 3.UisNI gC\cPt[ĘtÙwgAYgZmE5]PrLM04d6xSfFDkV: j0+$L1@cY>˕*LXiGEqD{e_s!- BO8 Ž0#ѝ`ID#'p '8bb[,m &emS!/+ŔXldun$FZܔMiC͊e;'pTD_k%.IQzpoMbP:p zB F%Hyu5 zQ\^!w'/{Wq`&gPcy}ዸglAyƒ7_:kmdk6!;Y֭z |\[~Z< aT1ZRWn[2`dB1`R #)0I78=Vs|ÐK]wp?w~10gi~rB\ܷWX+lJgXVEe+ق+_Qϝ6ސNR Y (+^s>"@4f|I 6%|Dt1;`Dz 1S삹zB%#)]y]UW5bR̡#{jY55-gQo\tKz0#W8pr-yM0"Rf4]BUsTIx?7id6-{$d0~wkH_c6}oᓣ%WqZYҦ2©#F, 9LFT&rW'ktr m$)4+ 4 º ɳP.ژ-Aj$"&# I'|,)j07Z>KUeW#Z٣GJUV|PSb!_ !A6> ݝ_7,WEYwD<14gKj͔Y|Mfp3P?(59b6"wq:tq@m ;gN^,)z]KϷW[gOyغԿ0"2O62#3o̜xFoaCH{@j3\9\K3ҜրۜJ ͱVP&^!C'*f ̈{sFIlM߬}d'Ց&)"re`ZzYU~X%URDQo$pc% ˥)\K]4t\*?BdNR:+XmbqOGwX}&@a 3s!8KU 5̉l,唷=u~$w>=,6Q?S JF Z&yoLԦ\ 0DySK8OA_cW䫟aD|{>'*BOq-Er]%F\Ѽtԥ,OE8D Z1@V-)eWeY7Zjp%SX({3䇃I .'s1lLRCkV dƞCMBs*K:ŭU|g aT5__d[l#d z)#OԳn=[1N'QB;Ec8*~cUj}Gw•+㜧z3Wus}\T,W†a%){G@Vț#fe71gl̕ tBѷY;ݳ\ -Or W[epR75ҫ +R_0A"OWq%:)IpY[R1i1q(0efruN3FY/۪`܄C.roYK|i7ΊED9kDD qT۞*L#"D&.;:!Mv\Djh%^X $Sbg+/\l ѕuJnw /^J_C{P&;BPmibf!)̣lnxPx6PJЎ{{o|8SR$ Il5ƭT̮*̌Fb S_g2<)^6 y|\]l?$ sM'hLے6FnI_  SYp3t."'K ,뷛Oy@3Ow j|w&OW][;ښYl%$8?oÉq!sNjG("PPހ6y.x.0=UT$_D23FzXD:_+ c+g7`%G`87>긌Q2W.;#bDP〦4ai]$<" 7^%[횫4z,"τ1%i߸v=Q\>*"Wu*k;J q{ѐVTL$0ĽaVߌ2Àr$X YAbo;:ȝaaDc:T-4MUڎXNsе3{gI6XmW2 L\ S*.H#yȠӫ\bS.x$qmYi0(StL Xha6$csSpXb/DMS+75l0t B sr?[ovJ?RAzj1KBּ (̆PyGex6vo+ $ C㉢6ЁZĔXSXe0CΒ!eYSk7Jl!@ AΚ)$|ekgQI%)Gܫq3ͬ+8mu+G:ͬtQ5̤Y= ,a(y/υx^^RǑn*S.EZp1#:3kjxEJULa0~$h1yl_B0ODt*k(8rOa"_$<F'Y} :~ݑwp*k\dH.\0>Gma~­)1t]zbiR-;M)p#Ő/2̂oZ]0 p_-=A ]p0.[i[ҡe/}9]E `d0%^{Im[)6cahqgR~jug@cfS]gn=RYX[H:xS|mDL | Re@D7I4O L`~'$2zSk* !Frq̏ Dla`&ȹsuTuM.N4CB/O)J<f߰n(lmX]QUNϛ}9ßf~|wњ bkڐ0!IjhEL¡W4ojotPT}32(V P)8H# &u&vM9"囍:I6Dwg-a*wF9x&6ght.9Ub &j-͍Jh4@J#l] 2ɪ[VS6[c+6E#ᖫ?|OjR`]6Nl"h8 0/__[J*˨9;y֒` $ Z^v8 pu.,/IGgAa^Rq\0l܊Nɂ]IE?f| 5ͽT21u`F$Xt m-/"ðX o"#;N/1HQTZ.=1;0֒GS-K\-)I"a`1TPq= [,qTu$1vXG @ߔ&G /ŜgnEm-nԐ1&"#[8ଷƂ+~E`n.t4 &w§#W0\L }t"u#DK}5D.feT"-T+Bo) &Q"Fz?qxS43:#,4,EHl u**tZJ`%+g@v_naJyew-7  2ϴ䎃jø0z*\&ɦ/:VxZ,5i o64[$Y^-OK`j{3N& s??q;Ltȱ1zN$[iv^lʍ 5N6˵T,6U%.3He^YO~$_o+k)u#+-pAy˳IgĂΈDe׹OsMbeȧ5Mv_%{SM0 O&5"~GV^ȺiouLɹnZfNv\I*޸0]aT ڇ`SxpIc7؛b5+oshM12=zT>` Y]/P`Me]Q/ˢWI!Gi3__ Fٮ>S܂KaiӠjqĦlt:w:[1!eI:ņ[3Z* 9k*GyG(z%)^HFzވ3 E;vUp*>ip)2STb94+̛ar֙ԧ~] !Ub:3bTa .L8N,>iĹÔ.55D=z%ƋSLT};&`Zb|EXptӼ>d1G& s rr@6/kTݜq\cNB0`G7,K4zExD 0i1AmCYe(L<}5C:OYr ?l%[%/$bY/}ftziNT%W#HȾgt%(k4`/>I3Vq'8.Hپ*Arr1X/TK *%;wՍy:cp~U\u,H\#gwېStS״% {Gzf~]ϼu>pLp7l:lCx$w ̉:dgᙑybo4%K/,NgՉN-EPKnؚiJ.>MuST!aHy nu_U9Fr C>֨/}7y6 X=?>{:M>~; eo@(Nx @se i˵ΦgtA+%)ʋ.'@N-%m6PN 1*N0/L@e@ )@g%03`xig̪401{!>j@2 2cST&DLLP\u˘[𦷆F+* <@~iﴯ&4*e%c C`Kvc%='bttCҔyy=[W(HDYf%5# +h72/|s!pA*Y;d)J Zr?Ӡ'?Ôi,htd#Vs^ĉQh*eP@Ąu241J!~h ./&MHq{RD;$[C* W d3G Az;lrM>1wz*'ggdF.?l}已 fMF"w `/`V-gk 4 w'K7ϱ$K!HS 0"ac(8=|g~Qj#}f=,$Dt"b'Lfķ1:e ZI Z.0Fz!%ʽrB 9hLJuX9*KxmL4 ;١Kf3"U0:"{W)ܗQ>>Z $iGJ.z9oz(;+W?)RaLi*Ll "`&4ؒnT?tߴM] ZFIE>Kv$aŴ5'bpiIcKfgyhAj%fQgz-*&T4Srul)Wc"֤c吹 %fI>K.`u.JO\8]lo{usiOwEmWyU9Nli.bjAP{VJӉ֖6Qd #G_Q[ CrM|KG"8/@vLL4t(;+0Vd(L/fÊ(,P,G؜cʹЙ%Nܡ{Xf6B<4Ԋ({!@1I~/={;A}+E|N[`տ5h$'߇x>riz!;`{x+)")'gOj Vc}Vxl"0O0–}%0KHfl0;IY܉vY+}r;ȧ]#2 g:bxs=PY OoIDod!fM& :lʰ3Y`*-E8 oPTህkD[5|,F <3O(+Wk'ӥ$S7(1bcc>Cm-H?rm ߔortjo8,8?<:ޑn"O^fJ)'Q6oٌIoE{]6d+@ljYpS]d &/w/F=F{Q:`706#%8Btw ?QP, Ļb_VU/ TJ<@%^뢙`Z= n5L&-ħ/MYLṡFۨy_'S5Y;Kv,PE!h ,e]p\ZfU~w>Z҂C%򈰍KG[QFf{n%V·[NWj-Tx`RDo4 g\'&|SP0!֐a$G[,`7e& dL/_Xˤ9R:&&i0dn8 U cWqIP㠎4Ry؀Mjq <ļ|,ͳ %q*J)w yARj+K-= 0=]ؕP N( j *ȚAz5EqͶamZԁF*fsӸbWv^fTޜ[h&ΉrjC8ʖ^n9ZuU ޘFTVZ5rɚrX>ǤrދPBEB$65bj}712;G.b}:%19Z+T;9R L\IB<5 v$I%0#,,smܢD, vv&,J~M8slJNPV r][N}b509ؔ j6ly )S>j5`t]:Ws.gpW5TxhBEG 浄yIRZTt7X'7Oo[5 <eF,95!^Z$b  ]9ss+Ye )QFV|vHVkF3*1!,`!To.QIԖpbT3tdI}x&q;: ^e+kZTu XcF &M /𝊫 \!UG+fP~ZEp._Ґ.#oua̳f+f?AD)q~ذH3[T[-#nQMqMP!<8Z2]9 B9ƵjYW2QTt8&m7KsB o64LKm9 bÚ k8.KGPIy-찆KNSW>m8+'ʣ߲˙Q&6aBVBŚrVh?0e/uDI+.l$kI=8,C?Wŭz(,o)l' VMR=%eԻ&?t"MI;C4"L.OdoS1잞6XGx.ɢЌu5G\86qqn[4٣]8&4'/K̤NyNKv)_{3zvؤZ* \Vhǭђ& }擌?-md/썱:qQp 7G&pUQL;B~%d1Y%\a?Eq "tH`'8A;B1oI(7;ג^RD?<ƌ|@\z@b(QP$ aj#={asJYz Ǐ|]2ߵ [89a2լ6ZȰ# 94-( ӏR0?_$9A_"yΪ(I-IIBVd o2f?j @{#vGX4v*E#c*1=l)2M,\ 04f<衈&i,HPgm14րv:| `b;`IɦeMp"E2jYPTbxp<U*67%]**L_ck˗QfZ!"m|}ħȲN= v~i"yŪpALT%ð7l|i p![@^Fœ /댧+Hdeee̯&ᣥtg#VTe3oX@ڀ_-߁ҵ1^(DO5L &&ʬkH$8AȦ(yj$?Y6["Hؾ遂"\:;%"K}нΪQ7q!0$C >؜tIQVQb@AK;ٻySoǐCg"$lKDCf4!<6-6$ o fZj>=_}HCM;vPg 0ZJ\Ps} ;X`~\ p0X~8*I8[ꐃ&Auv~gwSo) Y->[|f<ś/1i`؁-i_=/vOxS>:9|c #g%22d{!9"S,}dDo\ /O0qa lmUR'f-rr, uH fX^2I5IE} HOM$,i` 8(E'MʯuCiO,'_5jc6`3beIbHiRg){5[e%TM e*+@ZݾR'x2Jx+ϑm GWPrZd}R_!ԐLmw_ ڀ[=;1&g,3X/јҿ3\@/ R0)2FH Rv.Kg0!|/ᔎ59NH^ 5xQ' $e&[cW+ҥ+>_?_9)}=o'@Ev iF|ʴSFՕz9AaXM._h 1-2uiRl,Zv٧5^a_*M"$yӣ33)Q疹GTOqJ%6C5O3Iqkt\*21yE^*&-P8 i[Jd-L14 թBzïs~@.xl K?=}C;F5QG7-֣ {,cc.9&@?u^0>9 ⢛}6IjgoESVC(FrN??3t*yeL@#x濑 (hM.6}cΠqt/Fc3=o{~Gl G(6}z*.6`̭7&JA3Q۴̫)s &bxbp4q*!ZnlV0f6No/VTcpܸAט;9jvQ/6Tnp C99a )2FtWxt"*nVMk?~#BXUYA SI`FP\c%ҡcq6 b! ӄ#.8bw18 _}ND&cc=#ވe~/j Tz->6D #l*5s3-Wê`jIRŘ-qAp+׋bV cZ,z.F0=UqS NېY5e^^,b>m}mau*fC^*ƃIn){mg<'˿l틁5R):N7eX>ȊQF@YLxbj1d^C#|**=a6ahAʉjOPfT'txoi/SgW爒[zè[nSo~hP[B/8nO)غ{G_}0a{K.0yfť-sF/+Lu@eyUGG\z#ޔTjSښӲRNoW|Dh$W8ߔ3AQ"-r:8e54ϋ) I>6mii\j[r;]߫rfNL1&Ϯ ݗw2騘Ra~7qS.1G$VL7@Eb;5~QdȍWI77eU6 6TOaOXHܳJ:78i?6 EfSUd E$2 iXZ5N#6!у3g<x<8GhvHiܪFw r1S2Ռң$ZiQbTVhi7UIqMQW`ʌJdJB#wNCYNmUs|F΋G 1G +oboOI 6d[~e%eTZbZ13MÜ8,O1MdjYd6:hP+g\׺)DE%6䲲a`@I)Hn օBǹV IH "m*" ::A6 }?4daЙ)yӳ{R sk·*[qNϹvT]xF;ؐXSo2F׶D*!N'7ݍ,;> >("N/^RpuX%[k- : ^t؉d68طP /<igԖ7Hݞ[Ֆj&I>t2Ī*~+)GXDM%F,~+|w>Oo.K}6O|&p٨].$Q~Btr3`nzN8nL)nR; ~y'3fM/#-8 ߉Piɋ{\.)Jťh* \Ezfr<%TՕLHULdq?]έ_{c1GE?hfM{WN䶐 .B6p ߙ4 T 9s/*9lsj?d+X`fZ mD@7Ɩ|<␖hV;,XtZhǔ:B -36Sru͙M' m1G? .c;:)X5jRyQ/)Cs)bt0lC3Ag`=('oU>bݯCSY`H;-륗֣&vS8p&&Cї)cSk$767墜88`Ć0Mf;5`9rIhps,hԚfףɜ0D&⇋!aD6_7D.t91ًYO|`[.v"}Gqjȯ(^fj(H; jM{T6@mƴ5\>a`4Z G9߄KTܬhv%1"u$.bF)5U* '1-sgɈ;7V+ǧ 6j?lb"D8eLr 7 M[9,W3iQM7ktE0USFX7j gq4wc#|+#xc汋`ҹ; b|1:ݴ3A0 Z-8 +fehG &=ȒD/%惄?2t  6B1CS8nQc N~.NwWW?7h&!QWȟj'*8'+9[_bmn>T\3#|;bfdu6-{{SgGQYW'1P,ȼm }AU>% 9|+٪Xo H&;CVdXd,ïC`ZX/{B gi(٭eP% I7>7UʱyH$t3 IxՍ3UE>GƷ`'jr0?*Rf¸MhOZTK2"3~|H Ŝsvz;^<W{JCWcgWn79%(7Ro@pm"40 !r +v`(Y> .f: /ǢW4@z83c{AOBЭ`O|d3WMmszG_pG#l&lE&~(*[|sp3h)o@+Ð?`M'r6|#߻CZk1qsH_'.oŒWx{"5n[n1:m&}Q, )M.8z>l83ian л^dEHOH[*a!ZmvԂj"xrZbS1 ;{ (uy<${En5e\S;lS\x kݪDs :-nbcPqB];\oNWcv0\. vU;^y9(혏\~BHc g+uK^Nf0APIbjU߉xc7!V; W9D(~p`K]B󅈽+ 9h8Aw  ƙKX8HVdWDvC d3uQ8z #m351p|7egw*Zۆ "',xZ*1p#0u2z6|JCA\12,AoR 7bSbf&|eMtKvw!tJ=ς$q&xWuWɫk+Yʶ GdY_{),9u֜_vU8a-3 ڴaRlƾwsq$Vi, \f%&݄$דts.<i+r)6T?2GHBO{x]󈾋=~ғCnXA'9"^4^z)u䦘),@ׄ/QMJ9X~IqJL׉ɸy1XuT1M? : tx'Kq x*fSpAKs k9ODLw|#o\$gL`g^dv1r *+EFrKu$$Wy]Whm Qx#s`Os5@4*җ[Ժq%VfI}H~L, SZ Z]Pp8`IѴSX=vlaG>zB.NX:*Dhb SNG7Vp`;:fB\`x糕b6t#V!'c_tvS;^F3~YXC3+rnbnpw%k=p"#j(ӁIP tB@VۈSxc 8 ^b-' oS<<tHc^ˆۤy( G*I^* s $H*[cY' >"9wধeO("_>5Prǽ!Dhe^0.LG<$)PS(GǨDPrJNf'?x=oX_i{`bF􋪐oASɮL;WJ%.,} hR4&:b#E:ԬWhA{ɫ$Vl.TRjJѕ?JNÆ܌m&sSsQ& ,a+j`fH|V;y"ɿ1PLeo/EQPV$2P\7\vIagbbU0v4Dg|];1uSEH_4Y7zF49H9sG3Omɡ';-fpV8t2MlG:@qv#DFL)6]Ug쀴zu}JW3aQO?|/뾣,KA8AӮ̂Ld'H\^ ш)EetV\>f"G0*R93dg~DGcǧd10~?N2#7: 9 LOG/%)nﱁw|:le|/ p gH2AgjNL{8d %m!~)r*igɱT< z!U v4w7Y{LWMv>Ox́tޭ4 $ ۾;Ni*&eGzzrE_'P0aıX"3q޷~M9*2 koxp/iiFG-XJд̙cU{&~a'Ó^ W? .MKa\0tM.r4"V*U %!;V/t,33=EI(A'emd tb\-bK%I;Q0bs,@PCEɷKIƼdi$"n\qjTސeXዝ{Sp1SćQoQ=?ހpȿP{T|Ŝ)ْ˲5.d"Wfݺ/#qgD-J=?w$znw@QF]"@Y*%J RdgBǩQN1))m¹+2K*) %UVG1dOPgz,tW}o; -ZMTU\O":;>;e*r )fblT#q6x榺+.Ӄ@VtD#7=<Q ⵿̌zC_~Ap tWZ)6@⳯НrBfAQ W&#z(eRgi@X\g} Dq(NB灘mc&tِGt V_Llf ʒMkReAH1@/x:BOv01NmʢMߧ4$-4%f˙ˌx|̺n#.fy0JE7p:]Exa т"im% |Q~>p?^LYq$fQ3ޓ]FnG jt@D$b bl*`Mj7bճj1&%oQ^=^CyEcLd`;|\m+۔l˩u{'䤟ITUb1];/4ݼE-/a/MYjc3/9*0#Ź#FqlfUTRv!@@!'=x>=:kA$*1gkQյ$=H-#}7Y,O]9/b79gFZ4e6F:"6; nYc[2p!CYV,0Uz;9I'!c|#85L䠘wл*^ ϣ ;g ? -x&*gE 3.@}xN? glYKKxj&Tj0x]UY"G:j2Xqz*LJI)QsX̟_r&B'mr 4r#Cder e%bBkV>Yqh C*vIXQ@S*ؿQsKnFVh<5y@\ZoKFV6b|#e6ty3bgʾ)i422,ηBű[ճ2%=\ CE CCs./ lK ~P]jT wYoVD`8>)~(\PƁD߯ca{}%Pe!4t?pIoV*%]Y |W&a! sDz楰 g1aj׮+;f7|Y)NBO *$d:,BCuoXs qXNVW}Rv˦Cj]8CR#!; &rJv<ɦX4R1SKݵo`f ř܏8F5SYuMi:8voA~F\dE w^TqealȨ8;cN%l-7Hx>{:\.Ln 7D2,xId/Q:/)!!p)f=o.~_M#oFWC姭oWJq4v l+$:WrɅS{dCGk'YϾ,a' 0X @yEzbT[t;FXs0`/VJ?IZ4.DB#j١?雹D7K!YX~GgEغHfk E$ mãBHp}ȉb"35dv]9`;\a 6qe n'T~~EB]Yi&6$XHkuL.ba g\jږll 6&*ˋ@3)5SPCSP\HBɳ0F2M%ŭۼʩ͚ +t8PP 6*~(>Ϡh1X1в/cJ.X%ϟ_ Le6x^*R^fIf4"3\3҇Y-ڐ4}3+ԭ\M3$ g$>Z矦S (QmUy^CզX?nc>~780ߙY)k%w" zyxv8GDq&wx.[W ;s8ʐ7f{9ʋhTKd $39HҜHNW~u_̲VÊTԨf:|TtLMܗPY)5F,WW|M?aONuxË&cayuxL ɦ%sW^^.4nJv@2 wT[[ϴU5nĔ@Giar>vqk= ,+ܸ`)7 |4nvbb%mK4DyJ~MRyB+&AR[T<-8Q`-IHit >iEkGu~ώs4H0"څ" ?4я+J*> kje-e'`I,yPJSSisb[7f#dU>mk4ȶ bc#֏fI +ߧ)(|XlR2S%3 s ՞"O\5:گ/{(R2wÉ(Kf.-ĺ-SSQ!SN-+Y$y 0VHJ`B Qyzȿ Y՛Ҙ%eKcWZٗÿӗƗFKG5%6+dE}5w'eXKCx;;Ҁ_8`BXH;|g R빬ry dOEѢ: jZgoӫSA2t3ʨ53ҩ96FlOA/O͛hNuE pmlEFv@3 ʬ@ B`;c] RhXC[e[}LjRo= o떙& `WuN؝yEћ{"Q ї_tz:kJ 'DuS9ŭmx L;FXΛ|oK!`(wέ=E.O1e6p^IU|MQ%M)d+ jgC"C]+hm QNcoĤ'SCdoaU McDƏezu_Fxm׸K`XQ]@ _P hQ†i}5۽'Oo''AKDZGum҆4l(;\I4N5n?P](Tc@4^[89&:NyAl@.3@(iNFԩ-r]5@|Î+ǵ]2b ߦ_ÜC;w' E9 =<"vd#>_BA085W+FiF5"9W715)Oӓ!ry-r@)OП ܙdK, %2u?`,DPޜ@;?MF?Mџ+/:J;1T2)zL_M7eTJa=H1 rwsAV -QZ){x@焽W7x<38^@$!5%ɐfl Lv x}6Eo8 wEamiL Q4866'WQ( ѪYF-$;ewo\J1NJLa%-rj-E>1Q͂bIh:5 B`bN2$hP"X}1@Ѣe^-1't_NEl9F&>`?\7A ޢ&NGAmsɫpZ Mdß_CMY,m"*_dO9+J{:KZ#ۥ)bF@9׻f4]rtF v,"Y=/%> jS#]$=FaԊo 5 :r1{HC}t fW i.dCcӏBR-4R,{ DYQen OT;3;] $\3RڴX.POݭsә.|j]3g%44H韝OROFFY?44[f>k{F *g_vmi 4Y{kh2Z௲6#pn] `L'40+. d~.[S ~3u[n8Uxz]yYq=g㌉@d W]/YbϟK%eޑ )AVбF ]ahI0udidF,:*F}C_6}|6Y~jVon.ad:㷝 N>?Ou_uS&;BW;`?&~:9mWJ2Ay E8 N (uˁ%2wAZNl]  *Iy2o1|0_RS62$N5-p|C3'@o,݄+q+ .CX RfF+WggrjPgg}+m.nJhإCwϟI-NzMm2dB.zŒ7]6ZؽsQ7HBcoN6εw+i֏bר=.^?`uot aO8P|$#YTs$= =a"57ҫz{kx:u@=12J EN,Y%lǨ ϸza0QI"tI(*[Ob[7mb|npT+p۵w9>n't#GFdx_بhS!!FI١XbXƬxؗ++c)aYza9ڹ BR 2KjkiH 6UAC]z߀= Q6#_x6+ # `2"KU6]싍V0D.)J@]˦M  VikjEyݦ8&54 E ܫ#p83$x 3:X kjZ Y15N G4Ams ՈA7]rg/|b>~30짗|6~sm?{3iMH*>!*sc(1,@d3*=q+us~ &Cg+tZ95UE8~ YEwkE$؏R*Oq)()m;)=r} Q3=B|bJHD 5mlS厬PPBrv!8S8H8qΑbdf7 R͒VU#ﶺIo!VloM!ou gވWL.[?W?[wkk8"՛st7p֡C%sy??O? \o癓:ǥ{!w79r{%)`!1Lsw/@&?g?5og@9|yS: JpE|9 G" gơ"Gde ]}nj H0YF9ldnxT~lwp-{{;}6;ܤb/CXuUJ\)AGP_æ>'*/'$ h~Ǡܵ7S_߳ڵ7Sͪ]s"_O # MHGw@cjvպї$FPw܂:_dw RU"e\Cʿz't&* q= /\=q_:8l# N/'r boC\r/><1 ׿O_|:_ӿ0kp=bPLͣ)ɗ\H_@h\h RrH;?([q#~9sϑ_| `;}3EP[_Df9CybOX<8-9`,̪=l>0X/mYm#f= P ?fo8Llw7)#"(Φ%m`t5lms |` ]浪+g,ƾyz}ĢoYBURR#l\a 0М0~:VE}au_g9=/j<`XV]ޠj Sp b43#3@q!N)Faֶ(}k2|ޯ?GGzf^ܫ%}Z9ը]kXߏ>" !sÕ4TaX }G@zk|}̻flg\cE9$tJ'jxg%t>aڇ5j#T/I|YFӻOkQEq7_㌺)}JÑ {9?[5 cnHDI4ɍvqHjgEP-abzGi|<@v9M> >ԇswԑcl7"\|DE‰~0^ :CG yu\P= ~߾ϯ ﹱ=_3o>xp/C{$f'xo'6:W;&6VŞMmd/ aVs|Ps9mj_;lCF6m+ߎe$Tu57j\݄ai`VJQ7j2o\ɢI!\<{0y_eY!c634a퇠XnEp$p+F:U _p|mtzU&7M|H^0(jZe:Zyh*  AT :p۵.4>N< P#]qiʧjaE]j%Ƌ|VpL>ULwޟ06j3~8S^wάm^_ ==f{G=*_nϗՑ($WsTf r]i #ӵ(zYQc>;$+mo( Ѐ2`*&Cbu2L0ܗl9O;aP=4T-*=G1 NNO/Ns=c3WXت:x;g{{yTB NT:"WR'7$*#Y>dUibܦs`4z"x=x9/'t*p ;XSLG7agV^`d#y=enrюќ0B*aU%{n}6ā-=1pCfǣ=EsB7ۈ,o(%H$J 7|Cs`y4AD:Ü{WE҂uwj (cԐRⳊ(cOAqGgGŚWHc7 p8wi{#Mϖ1P M`ܤp}-Q[~?7 ,(jc8ra?{T0k X52;xّ}MkG_iOrAFSD|ˉ_l8a^A/8z [ i|m5~w?7_=˭_n>~_iUBp1OtЌ;uUrfX 2_\DbJ[/ 8%#^)>Pe#gKxZh_@> *oGY7ؽά,._˼|)kJ߽O#^˵&IfbEҦ&M0LmGjKAg-Yv?cM P7Rb`GЎw*ٍgP`$*D`]?GQ N!,'v4 1;sAM'zCqP} Ҿ1{ 'F&lg):0~4HaekyG8;{>c6o?}C1]S7 }r믛O.+7ooa[з?MҧokK`6GH_'WzCkVS79D>^za(Z@?89Otʒ\ RwQ/t : CRy4pFx;†^"Jf%R^1. 34TG>>ޓAS$"TYpC V)uPEeXh$ 8!舛.$ N?C(>{ueղf̆ +^:Aۆ/V$_;x 76o[FpA;z/VnN@QS+CG;`)a FMYH~9=GJ6GGnjԏtγ2|j3Ah( E"gI['i+i@= 1Yc'PIhC?"Y~zFҗA'hIj=7joGo캽70ߑYӟp/{=sN̂iy`C%6`(@S(_jO$\$J-˂=RRxxe Lti]=x DPyymԄSu֚SD$B'f3p:AWQ&ވEjmKAӆGiC(kdtCV It!ِj _A5x[vBSDŽXvhYtw.VA%T%ʩ|3'jY}VI UN%et|m_p 5KK̎cА1P7\Nf].10kvEsVP,3@y ךh9z/$MtSCi,|Xof|9\\/l_0m(3qFM xΖl =p& I|] ˮvf{`uGF`.ߘ^}HIl-ezU1ǸFb.&3hjX>}a 4ƈ|L:%ף= |/u|wF(9 ovۄ+}~o~ޤJ}fo"d ߌjogKTu{Sz^KfoRL-نo^_7Me6 ,"P_EK;PZsavE>u2k Ş:P ,|(Pɵ­AY`)҂;ɉYbt`Tl WiMV+I\Lci^_*@rhiAW}Os]IK77y D 1xӛLN926yD mt\_oލSFuhxxOEܶa. p IqsBڟ&LRQrh9jdD;V't@lqxMqD blwm" M守7d'D8 d}Dz"mͷH:슷Gdk}c"~{¨3oEx?-|tQBbJoFQ۫L>j.+5_T yI+Y`6V1]̲n8ܐ۬ %Wa1~#!YŴT1EFqRb]W3RquFRrFk̐y,,X&v}ƭX&5 5~-a]2~C.'C#/cy̕$+w 蔴̮tnQ5*%Nw 3#^oT#~-c:+Y8mh\ O|q\΁-XNaBίZja%:`X}2E^:Pw /_8Txs!86JNU*؍6;6Z._\.hQ6WTDK=ދ MtIL]gqiIz yjvэ,# ҷMdEIv# %A 9fKFߐGOuP$J=&Jtf, U'QtY#6N%Ecs(Gn/ I{77Gg( vgZ,&-`(q;̧|^P0\׵2n+h?h=dgArf̀G?;22Jf.2F͈A}ziP&wG f/ bb׍9F3ЉRjbsYIDQj0 ! Ε#t>9JHlF $׷d=ߟăH,"FˮX5o.,7k7> HudI|\T(;_.F)ZYN ƵyU,~Kմ9"k2z-$rUXr4KZwxԝ8ZMK_jGf}}mٹC B6W uan:;N.}l_v*eڨ |D1;w2ZU)gTq6ʹH+MIV‡~%@3]1`d#̓#Wޭunv9DQMDZLNa,RjhT‚Q5&sG#uaAR4=u&S{x{pӒ Hs)'~Zf@vHx SOБTxja$ȁKv٣^j$q~Z;JRpi맥`8(LL`&~N;Bf ?'[M1XPhiғ{W(VQah И\;Qf? omnWiuSę.ao3H=V*ʞ@`c}")`)OnI_P_ xOd;xB?fXpi;x[o FzM(hvk\(]ˇ0іKܖ3" |1MN&Ǡ $O7,5@~¿ z&(d h(᱔(&; .ȉؤ>/tTV<@wG>wHHOoK$(9'(Xho>ݭve#VJs jU_1zQya7_o^B1,eG7Qu3lЀ%D8C@d2 K;=yM1ߩKe}P&={LЙyh5Σ2!AP;"Lc3RzFpDBhYf#S 3\ ڒ1BPWIJaZ9>s@驇 16Vnq]0G# KEx7F4q4:Z,1@Ws<&Lgj J,(%ɜ}u VΆ}ΘBK(T1b'5Ċd*ʔTQN A—)}0OrvX߇.(IqQ㚨B7-%}}iRUI)ݒ泡WjE[%Njf]  IL$Bp7ehiI:aȍ,t›}tu\:=`| #qz1/  /1urϺ:]2>Gify)BTT3B6h(?j7eo¡/-8>#\͎DRH?<GHOƵ!1ц7E掃F5}(xGL“u4偶,#b8j@RDn,C p>s6UvHDCǷ!;.w1瑽FpF4\sD skt5: xVuZS2@I~Jo)i`AʆՕdW- k# %7* f.8ڒn7I4M+",.rdFWAYZGFvjރ}|W9~|J٧:2Yw|@vo ]zmFИ_C[ц;ڹAQޯQQr=߄g Vo%( sx͝ =ՊaM'Sۯ):.zorw4ƻAG'k/??l-%5msJso 'ޛmzo=zo:.Ɓpn#0icU+K''ireW `*ݕzZNM&e:^0N QV~$eXZdRҳU>/s,tg` `!&JfXZ_X=&!0b&uc{\̚]-'F`sTU5,pZֱ[ΪySSܼ>{--l"P7".8$LWeTef*5P4v;ISB"Vlc(Z6IKq()L/J`U)A]s(-]=|~{ۚ(>.Xע.k]y sVIsB038P/%$k7x-I x0X~YmN䪟Mz 9c*rE컑YwskMoy@R@2؞&ک\I Ve\Z V8s%M r;RtǂdDudt4h.ZI>foRuRzXRDMSDr͋EwIbKVOۄZmOE9ŃĽ a odbtNȟt9#(E1mj6x&F };nj"~Bpe}clqeK=O8V"X\#E"O-C\A$wSы?]}&J0[TyF-CTS]4G9V_-hXbZ4ܴn=d9]!@ f;{= Ot\bM 0r~r80%|xխ+Mw+wC宙;x6fN NԠD)ZRJRr62RPhӝ YmT+ocaDDr}y[hy,R xQ/պ={-&U ;M=byp㲜eilIadκL4g`1;ç=^| BXXBPk6?6ICl Gos{] _'FD f̊BFx;=ntiщn7%ӼDѺ&k-{qǕãY{F@q„pEMJe͐#;hӐ'+fQ-|' WKf*w%'Dsu 䶏u,YK'@’ Rqu<¥N>)*)$}{|\%|y{]|e~)cuuWoR/IO͹(V+j6e6R߁t6l_/mn- ]Qm־„ Rb+KfUr NJvښC?aS 8axad*>y:ˆ{<+ap N#rS[[U҃ JChA{ԧh+pK6E;tF+Uw!_/nX`w{J6/[-\>h<p]@vDHNVE L0cⰝJ\h :ఘY "GPiyT TP?9P xZk<a=oVtOfPm=01ZJ~'_de N٩B2-{hnTTD[UC<p|ۧZUiOl"ɔy:kAVҥK#Ř`{䑧ȖLh_*"XDpbOֿ7vT Khϋ"8d,e*`-ԠJSARӚ"V^Τ$Е]ىqM:I`5 m+S[*~mŲOY |eψvvEnOF>AGO>DQ`LЉݺ$"~ ?9Jxͣ'H_iGuN,vR=t^XQ0Gѣ?tarFInxb-?mumO$j#wTT$ñ ,ݓi{C%(dF/ᦾG{_<{͘bW5WqnӃm7WNbvK/5|]MKnunn e#Y߆n  eiܐiӐbXU5 !T>Iީ {>`Y9,FO;C8Tgh]G]o;WHup :z]wĽ֏Lcfoo85&6ScIN 13ɤ-f&dR efxs`!⠬[sR{ݷkcBH[^T]UQ-ms{!!ԮMb ?k{GC4pl6P~c(%k F"!Ny9{wi,1N. aW\/]f#5z-vgU},EO\3 v128umN&-G9aP炯!?k;,kPDKc P Sg.0#tas2'i#A(aZ9v钬XW&do=Փ2t*PIIjWxwޣzf۩Ǜnz|>㍀+-~HV-ެ J7iͪՕZkΎy#p,-jVȔ5/g.4*Yx>H/p l+~ wy:a 8%{=56ۧҢK*35E6+:3iLrb[6'=w]ϷӬ tR8,B4,Pi:מ O7{ |\8S3)yۜ\ygn[F2 ruSz-%.:jz^%(QCb 'A־m|(Flo3Ru+hjݤЗN})9 zb|!fzZϊ J^ѱ_>a +&pʹ}aBKb\m(~Gp&Qx·/%GF 4LB vH+wYÔ˼CR=̊qbtFڝw:ܙ<U^.*H6-2lǓU{ܸ_BNiNpn?bȭˬk+D+t텖,\B ')hI# >mcB0 ;e<Őntc_e?"hעa>f'(,b !% RH>_(oC̠g6nmlz \IE>J!O ¹LR ֲdQGUȨK8H 1Sa_o(EdN3W`f|Z )뚥dr˥w/%;h

9Q7W-N+R^I l%%p4JTC!D̄'¢F t 4M/zZ# žQ%*i.Qw,Y |F 'ilT@: cL䢵~ ?K V!t` )k0^Q^9o/xt,]iC\r {wE+֤Wy=JjM~NBkZ5Q}M}1襴j<5{E/-W% 72x"WM 7K_ E'zI5Q-5V& 5QdFTk|/M/fu@o:Ug.||[v6Ѥxyl^AN6uhb-/Nm (Us@^}I^CЙNbLYR9UwRvLEDFE9D *b@6*lsETһ*SѠ:˧u̍\AMd잊FG` g =O^>+SH">` %(q-!q-<"c /; ebiI/s Q- Ƴh=Ϣ&6V55F$FA:+]njA0q}OID[d (kȂĬZQidpq&BS3lӬ߹U&E`R1n樭~A,tGh^hh7g f ͥD ́4x>G 7KZ6ѠX#=VDM)&[B75Itqkɿb͉z "Z?pMLj&n|`+G6ec5WEtf!*caM |qؽ])H0Erw?(ayѦ$yܦdy !O=Nr ʩ 5l1W-v>(f8d-=JD^a*a[&(Aj˩wUJ>fY5Ow*~j!lӰ<}ȴl<;Z} Y\ҸqHlưz.L&<)C.e}Ux&LdA&p;u鏰lI"$Yi6GؗxA-aYr(#/,K1{6g)DPc%xVR#sKԣb=Q̂m #!׬p Ti+ZON@Z/,I[$kJgC{wn,x{,k,׉ԍr!\"P=,hAVG]vMV(k+Z }BϠ1PbAxQ+ݴ.NP 17)Vt^A<GT,ܪsNiQ86B_v9niŨwx\al5b5/*R )Ta~5)dG*6AZb~ R@oЫi6w?Ւn)y}~-Wέ/ u8;&ʃ,,7ue56T2k([NeQ׮rvMKI}~6*r̺@[|̈́yXԗg}Z;pV@ONT 톁^]fka/oW0HP*0xCy%}'%aDNsZq*τ\ʹ,d.n44ޓ]Y-Zѩ^UZZPDKNe@XQ9(:ҫ|q@]9 ωWcPV+̅Ȣ@?'%P42 %x펒QO60/ɧDž"qA[K/)dC4;zvD"qGw5u!Kdb]HotZN8& \CEkI r1//Svy95i "8fߓ3.' >. *8'c;DIPՎQ.JM+tp'L`2>El9{y kc@D-t(aI uu$/ݛ43/aNa;PB=)O(`O"㊲P]ו[Sl08lΠ Jʭ@W35|FrPئ_;P!{ 9㱬 K D1l).}\ n2 $Y+|G'e4)HףQ)SFՈ.g\+I`{2qF WLFff"c:`R:w䰘0yvfl16eI/NOJ2#|Yz=6dXp4K/Vy aCq`n.\l}rķ,^з0Uf1MrX9'9b)C; r4|lYB7 6'k6_xLN&{7S 42.6:#-pـrM3l":XD\gVn2&<2M5e&+gGe]zQ-f &~QKn{Na/h ,S+Lک]jFl"ҽ󪵮8pk!wGs1u#]Bu tȓEwYK(#9ެG}]WѤ2jI,k'M@hGpheդ~QGjъT[&nXwb0igxGBGH_GP uB%Us?#-%A"&dİl]ø<7KƑ mȭ%FWhsHEhTdB6GjU_UvT ]Ig|s=nP7l,~ >D#fh$| LOA'=\K9D}0r;͏fD@W0FrѶHmG}|5?߄lûn/zXƃ#?D~:pIonyc je sć ŗɛm n,[<XolyuT>x)H,[wΛ?H76'qE;};~ὠ@&鷽d V1%w.[|?qqr[X禝kYlg='߀!#ק6AoX:L8nN~n9rǼ&O8wN~nܹZ$^9?HA F=RB qUvE-؂ٲܡ =Tp`SWHut>//Fɀ+֢ՉfEЮMթ/Q + "1fdl:ƈDF idC.(]*O%AoerJFq"nltU.u];@g:Z̠ܐaeƣj31GMͩ0sebglPA3Eit6.QSI!@Q&/,hgI(a]yboHab#(#YMBsY@nRCQL(])9ZegNPIt6ʾh%>{Mר}.*CE4H)aqFUˀ/94YݹTt/=Cptu@3{U#r3BL,1+6D]9Z3a=͠^]2 vteUF 5C:+< ߀6FP:P*'~vMՋb3^ mBoï\3vBXWp5U=ܤV gFWKigCx04.b@\ Aʄ4$-jva@?d!|V\*1tquN!J$8BUTpFp. o7[ l"ɼ<䥽J,}qRnn5POx6nf_9}]PC>s R9!>=iHS!⵵:X c R)S8EjԽW+wcH :9x@ZW9IV(S96P 1(WA1j{M1%I7ԡH>#oD]0HɨhzEv\LܠWLp#)*5#? |jvx`Es_p= Wm(S@QE WB%EG*@{A#ъgyW)t䰽@lN a#\!.$肖'KnT.@vYS]#ykg @%G~c` a4pFk׊UjzNqph!x9FW#XӉ[Qhx~œ×È|: ä`HpNCEVh )7>;acSo|Agy3z0~55Y~CÒt'?"̡xϖcjO|-V=U;" WBgR~|-7 U 隰2 cQwAwosedIZ=QٲH\.֭9y d@v17ҵ0&L"S4`Xs;w+"x| "E ,'Q= c:<#TS]"O[Ҽ3E6"J}o`'y4# R00PH**F! P;DA̮ * KZWZ1IX+2AXV'yUKcBI|G\jYhE_1`8$('Zc4Q)7I)dga|6b7'R9 ˊs@W2` y(SAo SжLi)g\WBC!morp-`w6`}p:@Hp5lzǗ(vGtp"ft_~)6]hhjx99!%LD aǍdᡊo#&>vܙersO1C3nwjȴH9hGA7U_rU;꘡sYeՃȨ%ywˠEe^Fp-;&ʇNqT= )nuV% 7U'Rq^?W8ԕLT]{9Q"yHaU|tQŎ*1Y\\T #w3iM׮W7z+ juF)+}64FK8 BDi`fd }k C4;f{7B^WI sאc^$j)YS畯 Ö8i SSsլ :xsJЗIwM ,=/\709G͍s?\s'Hyd1"s16mϚRtE"C(p$ ~D$$g"'-AI;'P L^ИvN^ ll.;pmIK`?I^X1컋J`TiJ[̄z>#$HVt<>|=&8NUMN8}'bלEHte*yh*Ú,NӥJY,u`B+r逆YzTUag ̖VeV 8Dh8 }I$qBbR q9xȎYE6-#~0 _D~hj:`s^J{5!'V:J&zun@M ֈGjEXub+ <*ʽ&ţ q*.EiLqJYŘt jAʀpRSW2 MT&ZzRۆ2ۢb R^"gZUYyvR1 0P=G;: bܮ+Zg'Йy&M+aWvoHprsA0p-׵y\(_ e7VC.Ylo/ ,=,eFEqYέp":09Jg3y(l0Ns*Ac&8+5EB獖m;6|h_ZV^If℅9 ~o@uA¬ _b2( YGf@s{i^\/W^G" 2++I*Q_w$\":Y>3},sD3-aaBR&4M@hlvq) vӐ)a 3E[z1/O)pC Uma/T|gڑ{jppijB fI:,l),$i k n1fSdrZS4RCy\`Kx Rt.XbbfkձHDbJ+`o8.PP<e3W-.!ہk%VʈShJiD!Eh_`NbCġ\yWe&[+iLhKJ_BϧQi)J +/[ l;*D,q/%APR]qD-Rt.1x+KfE϶L;xmD`@YbenFk xM-4tA]!;C"rk+ nFL*ϡT{x_-17$t+$'g^?L"!"ìw\p Ob::FԎ(BǏ<Ms s u|p^hд:keDafyxK,F2dӬ cBNS1cA6!xI]V/Iw rڼyd\U1 xU$0T{j9+ڭ`d48 '̾ꋞo{s@C9@c Q Q@HشjH%%49zT䛀K5JÅ)}]xuy{¯2U 9ߴ 0ʗ?Xr­`i& *KƐK:fjR"JznAe6J+X H%:Hz{}(71aR{85 *~׍Am5o0#)Q<%Q}yA:i!3~(E~},8ow~EEd-%XaGaR1m r?OjVDU\I > m_q pףa#t`^?J;tGDk펒'oQI:9㐊`jx 0[Ѳ"|^GW@&RzC2,蚂Wa4MTcXh wFa28,޲#408L>AbTzۨthDkQgz]OBrSq@cFs=(J)dƟ213}WffHVuܧڻrNŸRVc8 -|I 11# ჾ6<ŏi|e;cPTA2#j/expz$ :9rlkHa\|4Qf2U+FpBo}{/}UI-jUqҋ>f=Hz- ew)H\ܖm GǝϾEsXȂֱd20FȊBhSW!:Ýf?@=:AR$U ^MPxě(I`ϭ8!XYXMX~B6M6_12XT%|DlĀm(@ 4dl#zi6ȦAH Z^kX´P'ͩ|ݜռ(3U`.9-pt[HOJ1mzƺ_oїAhrŗ M94d~4D S0f>4j;t83!saWvp!֜ \&8޹yZ{FB4⨻b) u=@"  J)0 /l[Fs6!)`sf!3;SІ bRƗ7$X/vB@(k5_p(I@OnSG<ݢGՀ>6WS: !G/ppᅅň gCR[8aw{spؠ,5 *C^\>|ToOCzKr{ܡ59,Ǩ op9n.BB= UQra !D{t Zh\}1  >T;^l8R:Mu9*ܻN{'m?ÇEЬd5s氘6Ť.ZS_Me?୴e +C,2t'cd=ax4X?Qf۵wQOtS>RO^۴R]Пa 2~`׫;ƧIZ3A6:rȨ?ԟ`;nJޖ hxj?5۴wׂۮ7mhv}(vڎ{{9lra]3Ѱh||eNo`~ܢtls6oI EB^e8GJ ʑ%nTl$򴊪(T w(Vi>`sZ9Ȣb fX?G/iecn0@u4g`r5a",6LZ`"c"vAd'.享5iǦRݗ8tL_HlfߦfM4hu3_K.n \8ѻʋb%W(AL؊"l  XvvN짠S]!$X IlޥEtƁ^3M0xV&J\5j$Sn>b4B.(iyCY{*$-=9cA>~+:9K/`A+wI[5g膚t4 0~+ s"qiP06:_yg nx+]u|j5*k]da9~EB]1V.;Zn uoQȐt2^I:Fz-*JQ!MFze[!rOLtXQQ̼IkPJv%dBOp&^6q%S[%U5l'{FڢWt6u r ü 0K)j6U.[Hm#ѕ˶" WRQ+h܇9lQ6uBHחYVDPf 3U}ELuQ\8l8 FJ}Z⌶=qK >vA qaRkA%a+^SXH<z C Բ cheQ^&aQ9޻ZQፆ7/l{iY/m;( &HV+I*s02n i ץ.˝UV~!e9S.߭,se(J / F) #E J KծH)^sFN{qg?ȩxG{ tPUiNy`XP:*R* ͷb<-o{+s^r[Gܡ6RV5y>@Xc-W16c^t804M^&Wn6l9C#շ[QlrGMA'ڠݩߥpAf o%ʫǹtl'64] 6=r󜕈9zp|@igG@/ VJTڅLnӺB.xo.+{E:KQ7( kdKmD^[ 0yK5g6p|Ƭȧv}T9koU:BshiL7]ĝI@Dn l{E7i0cu{]lbup6ZV|EVLkrdGod׋U($ 1&dET)yR= swS sTWp^*J2$t9D~pUТ]u>^AdĬ./f]VL3 <$yb슁806f[:" Oc 1}"~X儮OJ b, &"4qj) rUDxOrv> Uw݅hkx2gqH5U#9W*iZF2b JQ;1k4ai.M+mr DD/F u {vh]+P L,5X ewՓi8'r7 ڳ$B)pSε%$R,jE {/a9d?\mhyp!n[]Cy,ļS{C>jtD8"#аUU<= m\KhQ_@eqH%T_B)x(kqi 'lj|&.""ZJn7pjZ  ]9ˠmrags_#Y$iAs.@I? \Tj}I8/B85<#^xq|@6@fKm:ƱQ{&L2@`c.XbgFw)$hQ`Ɠ;F gsȆJzw?REsE -Ca|ʠ4<Ù! M2"Fdn4AQ}Q7Ө@u?=+>TC槚 vCZó LNB@ ܲcc ^X(AQ2C§eV.ohw:3B첏GJnt)4`|N3hgv \9⫫Q'_nvw/Fy6Ik6f՜).Kcd ^|#nءE+ՕK9{ (|2dzbLvQhh+v#oqDX[ņ>hĆ f\j L^?7\4ajqO|=Kz=h10;?6ZH$z[8&Z]3w5v786IǗ Oߪtv'Nˮ>e4! edEDT<}T[kcrs&]h r 50:+uV @^wp8P9')r+Qpnh[ĭB !f,$R& lI|hX Bg|.F s<0mĪQ0Pj bY.Ғ}`!=c;?beLjG-O? SKW Ґۼޤ37#5磫M:G@nw1ƕIh$9{huh$_9w*yM k!^>-ġË"ićzv|gӲ#焄ҵn6Q.68ׁ".QeF gGnW8]@ŌjU>xGyc>lw36)\#Tێt(L G f&vS0Y6`GbdF!'|&a < ƘFCu~V(~&ȧ ]Mvw}G7AmcetexONuȒ[\CҊ5 QG-J6֞b K0^@CXCGJJ1gnchC}gpݴ)# i%J@<3Ј'G[վOP}D(!xeIJWcD >fK; PWf~L̒SZ8/5 zl\E]fo~2u̳Sr$oY{Lb5CHtPAń˙ #{RW{dE+Tའ fEDn3XpcK't9Ctˑ5 ؁m5,8]Z| $o3Ac끛Itg:(Is{,0(l;=@Rb}1Jm{@S/>|so͏S51Umab{e(F# _8obc @|uc~ o}(WNR(â)47oPoʀ'u8,AFyI]&Հ$AF>[K˩4e1ĥb'$v_Yfڃ%5y^2'Pq[wpp@bJڠœw_P 2Lۢ.3]u.gg겑z$Sۂ#l+ ژ )NDQop"=BfjC(igH`Yg8CA9m<ˋ䡒mT SAӥf#yVL2Xg` LKqO?d3]w8ȱL,K>Uo";`M<&C2-ry Nݢ\@h uҿ/eOvbJ;gTM'k`cwXr?ōH˶9T>ۓp_i cUܖ{zlo"u{驸N={x͏rL "j1гᦸUbk !H'+eJ;E)G4TxM7,2~|U4hc.4;N)|mm7i n=n&Hf߫I[!=Z=l/Oz^Ofx$ V{ro쩯cn6/HŞP# <3fgˬ<_jjրq/\IBHws6ahn !"$Dɥ%LK#ݞ XYx6^ײ昊_D/B:, A i&=jt(ՁuĂ<^FX IQVgWw< ׸S4XlDs Y4nwg˹ن|Z5ίF˕́_+t"fR=ky$<C gg)Lƻ.,w<dwv_C6!TY9܃ˈɯ=WWeMj pĪ/NgYcj0 ON!&ă$fAWQ`2*1T~NiԈAzVjXJRw`̻[R<{/0Qoeƈ|bŚ ]Yg3ۀK 'NŇk` -FD4\ vbDB@[|3h\kaFKX`L0}'X;ʹSOG+h k$s"xvͦyaLHbmBД~f7΋9ܯVHGa#J3FgmEbɿ;}_L #@+ŲL:$0cMF_EAU1t0ԹTak.:J%2~BX ]X`1:O/9;)҄aN+ [(1;>b:,8xbg*#[-d(\!WZ&-|,1SrKZq^mt͏|`5FKneeEY:gݚ\|Q+ R-Kb_'A/ʾ"kK (hS!*Y|:@dhKJ^q s6fJ8ϫ)|\r AVS~rB@hB0 U``ZeT9r]&'m $w#{Nyg\r"T@pw2Ro&JR z*Bʝ5V}b%EaNgٕWi9,vvp2g˺,7B'U"m{];MS7LiV_%=X8A|J?lrN%RXFd,+@GO#triX_=Jſs\Hm٨ .KB8~8԰O a+gi!k-NV{Ԕ~ NPv5ȼ2\tlLP #tm_ä԰ U XF.J.,L(Ӏ)BCHX=əI8L"ʻFyـ4s%.`CEddQPRTY 2\D_97 +.ߠ a ZSlY6n)#pդPuLnPČ>͉i bдiE_A@Iy@IeIao1X ,aBHF)a̼ 9UGoi6Vd"̒,:Ӡd#wcC|1zHĠ]΃rUq^}'m8=R uͦע:XAfȕX &}0BQ*)G*#E~hC5EU^-2q sR. د+wqw E-&ey)߱iDUZ_7-3(AB"6FWϏ/TVbO̅d;!MQ!]`Q\f25dy+槜nUE8)udZU@==&ajnvkHpX7{tI*\'SY*F(X֚R%vE*kmK2Xa+ZOeK9E`$\YS_1i Dȫ)z(1n vζ!=ס1K>NMI@a3PL0{h|1BE@-32,IKj A k7Gv)G4.3pv穝t ߿",|y Z)$VVN ОPrKEgr }J{|[Uiv&$7Jk.2cU?hU!fv)~v##mצbvJ6>/Qk}!wqd9cX#WƋ{`/cLsuAkg5Y..Vy6o;!s*L<|{ =ΣE],T;+]>yNF {BNM@5M&xojwj5p7HHXt";S72EŅUcr:1` U=g1{ATIށrJ2?Җu%]vӟ\Fr~\4 +!";"5b B#N)"/ ʳKJf^Z[Q+uPuS:6z%X*qt26Apw 8wu^t}Ǿt -Ha/ơqU|4o-qZQI+Uе.q(mvO^1GE1F3ezt̘BDjE?r쫲>F夦o캨#{;,(ZK~QGqG70|=lf؟<4(뙺PϷ1v1LV 'upa/57=ɝ.1O!=bekIAY'ahʾNkm*fBv $%L Owr<'1+DnC?זV[y8yd$2q ,$>\ \!iORB$I#JGVBIG݊$1/P[&3?T.iܶ#OV{B^5Z;:B+qnB+^!h\OCz*?W!wrqzJ.ky"^Ht$@ׄFCŰ8CQ`PUT8NM+_G}Tuf-Q^T!P5˱4Ǜ:upZyD UU>BӒ!+SZ~Pl+fa"Ht)InLdPehf(v:S-(NV97:\g ((2I-1 ' * QEʂ7:B%hqZg%3yL2!\~$_TrV D\10f9q E3q&^u 9u | :A$ta'+bl "|琱Efɪ5y!p5VO تA +BܭUQ[ar~ F<{z¬:! =0G6VG p@u(ow/]x|?'rC"wI7id2c4#-MIѷC͸H1ox60pm-p>lf=qIA|l<JF I4{%ڣ *\u4cvdYxcmzdY*IԳ\(@5h&(u־{u6?T0t:#5ݽ3^c\ʵmDo{H :o zD78n+˩ ?V/Y]T Hw-Խ LG%nhZTzV10OxЮ.L*݃Ŧ\[xuSNMFXi%h@PאOIT4UΞ7SD>lj܆bG_MfF{Õs}3IC}"81k8Gɏ?]Oouvosî?V\@#!fD˰+VuWMUˠ Sq.TtZ3H4uPXo\WQRaX: sGr.TWk7 vJޱe uu8XCb>v1`?Fp&5~yL|w+|/ݧjO;xQ$Υצ"BW+B>m;#w) 0Sv\گ_'*'gS'e[3Fv& >v! ѳRtr_Ňķ72dr;PNTygS=-2VK<7B%"4Ak_2T`\ɃZނ Ժ\{#hƪOz_훾g< `Z/o->x?j)qCh--.J\`ڼӘV!ƣCh9Orۧ{I ÖNgi2,!1dH*!O] iƔɫ28%J9q=\U~ivYi(~R|ۇE{h㢯b}; Q5*JDM gw4f!J/`b(T. [\Z6?Y4)ymVĝU7`rR^gzq}$h\DfQ~X­JwQԠ6n?Zѹf"A7(DPG`0,]QGoc֎NO[]7o Ea IuNh|U ~RSvg\sTR>x]ū\y> cA '5( P<=LQ`Uj%8{Uȉdy:*JUtR| 8{6Z+vKl_%GP>H}>iՎwv\|oҎY;hWa@&]TXosqBj/KCiAg !:U(Rg\jS Z-:Hf .ovD6@AL F\|aYJH*d SJqZ\WXS *a]x Kh.SAYɿ;aetpprb3,y],_;ԘFNEBҲR{ ɒwphpZPcx "pQO-qag9e<-cjC%Z+ p5s`B2!uhQ9+'B!ڑ(ihB&ktUBKtƋ<9{{?>LC)=&5.-A]pK ZiiG1%bQ:T^lin"2)OO} nAnDcTZZ չasbòI#A:tP3Pw \AVE} K"iC6951"zN⸘%ϡa si(L.]T\ e &͕mሢ(0|y4֣2@?u3\x`s9V=" T :6覀q~hv/( ?'C@  )8_Up)Hc%'>kӹp ha"}?uX䏸yK!cP6"[QIja%`HRŧTh\k켴xl iB3>iBP2q^D Dn8zZĽVfR"v?s޹GF ]( \ T' hq.wIÖ򕾹 v'W숶ƯZ"=u_j.b&N~1l+!&:|Qz>Lꞗ烅ʞpX]qAÀid %H`$ eP?:;FTB$l p9w G^^UG59d@E8ϯdb-O.?ܡz%n 6fsre] Xv8:0WXz 3Q&u9}݀i>pd/PӉTu‘'.Z(+("}L*Cݜ\!k:hR( @3C  b+;I~A0%Grqzpȳމ lzeJݨ2b4F6[c0 PkmI$f #AO8IC..v5l̷t$+B2[c?V\5FH-tyhR[Yڒff11xа-KCU -!Qt䋤5ZQmϘy_:]dTP0G;`@6+Gɐڻ28%;帄k]o jWli '떂[O9'Np0EAU6F1 >sw`aTڸ>xJZ*Bho\6 _\wkMK=„18DBO8G"#j%6kEȟߑxP%=+JnXKrcj~RP|*iQX9;G0*Y11kL{@jkeAdH8|_xI<+a-iGEL`_Q9はV ~t`ɢGxq_ނאE!N0.qds?ganSYqޣY%` >.-1I 5Yf8UОlU$7=/ L7*GdQLR9vyaL@nM9`*5 a<mZ$&%Y|C"&fb.0>/0uy,$GI-w;RjukL1D}gZ}q+q;1MPa%{W{j߮ 5E5EտcIGH\a&>4HnS(0p6CZ@eJzs7KgK Vt@ \&(饃1Ϙo ,Dyոsoh4/]:i+K|,ʙL:"(_ɬidV[i2ǻ1]Ip瘃sJd.}"sk@KrO FGo0&']ⷙLj7-cox d-3P['z7K7H g9n@^b'$SgA=抡L[vE.u |LZ16l۽ߏF͂(v~׍a_Y/hOUz~6rڼ%.i.7Kg @C(ъ Un`H˔DeEׅ˃l+q dF3:s'% = _޹Uΰzn&?eٱ]WF sA,3?%A)fOdž]Ov`Yg`w]s]FT?7&XMa9#[-Znf-f<©J6o?GUE!mcm" ljtp9wӅe`x / T$JxLzYvcy:H߅9EP$;H{xWiMEM1#C ~ee8ztL8{,0]ڻfӕ+8Jl`c9/qÿg ޴'WٹQ\HV HzC'T54Gt)d[{^igJO|%!.}XZR@a*#Rllx L Adi7v'sqb7sJg _=bls Q} ܦlt[ƞ8؆3'l> ܳ=F׼R( Ndu\9?SډL'9ZcUrը(}!qydˈҨ%]le`(FmKl샌~:-W8 QCՈ1yb/I`OSKM\{)m 2'gۜFs-M^u2Hq7l0Ts^qm৽F?`ݕA}`kMEX\Jy1`E%5aw_š4+8$i o칶bp?=ou [AǐZ>v44ΰ㚪-ݷKj2u!(Ze¿{Ӭ]ADȎvsmQmAʊM2RɕAބ- 2ʕd/["2܈`4ȸ)7&ia'VYACN*TӉk;>ڜ BZȨnK/Շ??#UL 2`,"yb5nn(p  !ֺ_QEk456i_VNw[mo~;m~]m'e15;C[6_c4[wW oXZ]9/lt/uzJ0"yat@VZGp>`6.f3iHʰϚA^p,*DQg?l%An¦]NKYh:oYX2tN.Ǥ2^bVW*QL[lw; = ӔZֺ|Ór)6/k֛` |nez't՗ʄ"݅ʢن6'/+F}ͅ>ZÆJ{sv~tv^L$޸;7 #*+.^$=W }%`=};znyр$nJ^xS/!:>W!>3@ppr p&=+M1Qb<×б$W0ā/(9h:+Sh/}B+xeI !-ܮ ~Zپ;)(pg Q=̗ H.Jls8@Q0Z V#Hr, ʕGL0߁ץԖ-v@$3I'ohN[ c,_9W%41AϤ[ÛcXWAeSYu,G(WƇ8˞@*N*V %]q"p^%/sg$djqE45{"ȞOALO$, õkB2͆IC8|4hLg~9ʈPa׽ psҳWHcz^΀-M:A?H> }Hj3qhݾ1^ }E;W6/&a,מ(J %Rף@?<qv8h1'Fu%2~kQV$FHŞT׻=ḧV7Sf3 ?h.5B\1B%I{>Qi=IVUF ̋ Qu:Gk`MvC$ٹդo@OB\hy}Ɏ-3 #`;y WTk(pII}B&.I^^bl+sI *٭ (U,dۯ a}awȸ:l8.c1RM\0H;(yg>sH2*̂j=kjցS-k#E6C9 ͞%-l0s( | bbc NӁrtΪvq%t6Ƣ>u%Ba "v@"< $2 %uaGX ӟUC6┫*ZU̅ uXE(A@% )62=,N>?wU%Ƭj{~BpT¹Хgpc9#(J iI>4}ɫ:P݈%\`]l|3 j(xzڻg[`mL(L+U.p1ޔz,3gP T]Htbj7z$89 ݥކRԘV<,rlnAЇ+ZCeb),|aVK2dWU-/D"伂_()}!˾!Br\? |a jz ]`ho# jHn8تJ>5]}H?TDjNT˘㋫ع~|%:VUӨ_SLTQ6 q4ԜΖWG J%^e(}w9YU\\4Ͼh L2pu@'8L ?:QiFhL\ŁsLm+ͭU1YJ*/.ʊVrPC/ eW~ħ65PĔx&f׊pх ,V *tKg LJyH&0u,ϙ:PTvɆsrNꃘO`y( ]`,97<ౚ86f\Nd$DW*WH`S-uH4&^"T0i\=I#+ n$`T=Gduk_JȘnXF$=f2VһJ=#^!ď$O! x8=K1^x/' NGDיnv٨#LpW'.+}Cz=,Woz_MlqLaU+7" _K|eȈc{~zbd]kPbkiMAN_%O4Lw樃~(DlCQ҃˭vAbC RyQ,Cly߈,k.]B |˛k1A)& 1U~Is9KSݫN>P=? m:rOXiloho :O9'dB ujSAzXH:\W뵟Xl2׿`]ĔRc(ă$4ÎO]v[0!n$e{_W,~0J`L.`r-^`yW:1 ,`]99^-SR +txqqeZJ#,UgKJ h1mYO8%oKSlڟw >#пS8^?q $FDamluJ^50c{G𹴈湃!ʍm=]MlҰ L mMlN&i @gww 7BF]eWi>C)(Y'QZ{G/3tx0]W?,(_L˲-bK.u}Qd[W_ԍo]=L}~DiUxpDF r[zo|gI e uݠewQP]0x}Q )Ó 1] C9+05="SQrP(v(G*y}mtF|La״~UX&;=*<=u(sH{ptUI|BݭCt m K/8g |gܵ%hdnׇ--5&߸ז5P޹e@>7/͘) Kjo% _ ӌ\ciMxYvpI&`-6yy1tM:(B3&}9?j8R1B%/ѯ}czTp`NĻ[eC+QhUi59s;Ev5m*HӉ\eڜo"mY=ceaL_cA!8~EvJ9  yMVns:;2#'u?oF|$ZǘHZx*gNDmѓdhh'تZW~ B/lLu=*_@gOQя@%.Rs<Ϥ ~8]Q~BNN]FË9%G1u~2WkF<<5Nj8K;ݶcs Y_i'ѱ3B$[a"w"4N~n_҃)W QZ?Ol#.MGkGwh b&i VJ+20E7RػdZˢ,6~1_Q\D| c76~\N<4w~{'`Sĸm TyQ*󎢶}Uّ [ 1ggW'~a!6 ٸ\dHR[wYIp'ZEA Ki,飼g:~ b>yA6J;[X/YǗe%4MC9P襛6|h3b^R &axDBX ^($)a54:H{wl&=sġ՜IB!fpZ!jI vbJ@$A&64IrH hݿ->8alKF=uH`EIѬEy= +ਢFbP?%Ahu7M92;.LBor~ȩ 'PaSV R`czIӌHV&zQ\'/)gapt5ט|)EVUn^:u[g91E xH}Se ற`h9C8Ä#f0`#t5~Ba% h[ Wif)de3Fn'{k|4^ʼ6dP-8, /# u_v&aA bm4Bsfn>SwW#Ն| Ϲ. {k!w=P'i]6d5S')þ!=)¹I"!,a,zp9rff_Gz9biդð|`$hEJӏܺga};2^FGa/N>'_'#}?[J~GCNcN|~?SE _\'[YFX!y/_: |ngWrrӝ~Ki5ccg2cDz'c){ Fmы)‚ pNUB ,u)^8Μo5X\TbR3L90 f."5 "ĨIYݤi'Df c&{G ǾM }/I}v Czu@ROH_x17J-BPި,lmxW p%hl%+jZd1}sh v NG4~1c;_6:UpmcK4 ;dMWxs \W/X>\&._'˓4MX|)#h|`_pJ5&$Nx\E]-*XRw̙>`|M*Șl@@0s㇩<<ÄJ C53#+r],k]X"*')E8$q ,ڀ"g,OB6Ղ cDWdTD"کFإ=ưx/9++ޅkg`=@vV2>pׯP\͂sKp΃N`ճ'?0LM9BuHʪxr+NӝTXM*xn%\g1tI?{XS`B &>jNfTg70=&윽bc%8H>DhgOZ.uNE6[Kr  -Zjtn`qU#w! 3,IIW=d@^©N؈EE\O A/n0 -_@dl'Xj97śiٽxt"s Z-b 3\TtY]b?'j?:R:g.j2f]Xilh[SYlٗ|&h끿|Zl[|_oP@1NҗT~L!7H͚'µȒfysDm3t(lmm7YpuHvI{橺L[ aa@//(B#>L<u/7:$7dMT[ 艆%;R{A;9JyUAD/jUGhoS.Sv;1vS`$B XxL~S(`h ُY]3QaF: ?tvNnAGs8/?CO6c[_?c?) _H%Z/R{Jz)=;8g^oy.Ӻ+ Ƶ{nR 4/#5=m޶m Uw}%M^kG#Е %NPcpG!Vv`+c:_Q;/,O=TAѓzP?j;'gIzM/O!iyWY1L$xk~1p1Lcư:L"y6eWt\5FpkY5Ӥu`eR$t[I1k0# }5un 5}jғQ\vN\HE7\ E<؉eL!eq P$!aT_&"~ NhE5[;@p҉f{2@3·}߮H8,*f4XLEczt8D 6ŕn$Y}i@E5$JOttu/M n5͖E3+!}viEQC)&3:Kqg"㸱, ӷeA0W~ֶ r4 L`ܫ#Q mVLl>^U .T=b5L&tmD D ٍ'j&YBPiM?qt5j@'.׼MfMl&LÆj D~Z*gGEDB$bgP) ZmZH]L<,S+{}.T^p 0#KOysd3RWky(b.:8Q|gyīQD# !BY*V1\Z=4h]u6qawyVec8+UBh1},SĂw+hv;byHAr[|)ce7D0v",12q-`נ j])r"rr=I˒7A'6jo#K88Ū+F:7hj(yKDo,hzq%Mq1}q\ qk /̄-f;  ,816Y>~4/HK~R4wP:3DctUGÏ?+,X$SrU5d3/y+OW|Q1_!9v଒VaŊUݞ@3u}\A:Ku 3FivHp$ m͎z zkĻyt|mup]y~ރu~[ڷ0 N&ּn4;{-n*c .BÖp<̞m}Nh: @vkfWb#4wR.Rű-ܴ:ԗA,a$Y~_=,màc2.DC#oEYފ|E OI>3_:77*%zWL6%$i2ny۳DEj?'^flC"$'6ZگP\e1E؏wq n3p:&~Q|a~w~oFe_7#߮Y8m \w"~z}/~JLObl|D*Q}_>yd!_A#2mǎE,psSÇ/q͍[b]!۔BfRih%νBvE4綣 ysC>-GIu4ߺHTD)Ed)q?3"x }|pO ht.ڰxg F1Ei<,.I*g E>[+MGiyn[^׈6pܦGߘfet^$_|&ߓe"rf§gCqè"&<1ncUo'b+zTb/ :ˊ_4Ht#Pv0,>/Ep)n$s+KkJZmta } ~*ʳKC_bDNs $\(B2FxLB3: `!ڂ@<7+X285g{Š S qQHZ M&@+6"0ĶZǏ;tj/]Gc_t}n5C<Y|8HKZę8(NSFdBX+`p0T:;q7s+񖤸0<=<*}bG*`5y6 `)V)w $ҊI%"/RJYi)2?`q)Ԙ rR 8>4O"dpxXM$K=!/಑ǫu*m,+k T)V$B 1ny/ҞL|YDSigdnǙF0vYm)U{Jbұb8vO*:kDec֧"K4^^#=>W %]44[KaŚS>SwVgHsѣRW3qzԟ0s~D|b60'vWst:KO:Z,yq2JVr9F*7~^B*%t0-B6ddlVu&Vr:"!~f/a~OԁYtH53?urxTt* iUB!ìB,3$Z"jY!&9_zh@_@^θ&BZņf̍mgQ_,\J٠wl.9jQ=(c%voY*A^rr:cU\D hYڷG~``# .H r%qB*lmaRbY =s(7=\xg1lOjf̯ \:`w=?$ -C{FZϗg?4dv,"w1T2EV$#8ƥXYÆ3c?ezh3VׯM60x%47vpp*ky1H+2F"g Sқb0ډ󲩰j_DJgQ~VSk63:ͳ \2 M *d0;%'DX5]P Ƣ#t1a6No?Z^,UPWʞ P|MfComIID,owU#n{uO!-!)B ;:-*E$'X0ʩO=;.D=Y?'m3l $O P~gh *zn(\9MN <ؚZGGbkƔwc^1yHz1pd JjCJn_dTA"Fck$&gvh,hOE $&_qaWy ۋns6:,qU 2u`[A-eD J~doopB"Y&*ADַĜay]@ %C,dA[#iP6(Yd\Um00KmUoa! `Q{tn z`^ G ng/pgϼiC -$n#[y`OyA6<*pF{N>Z+bD'."x >K퍩gY[. VA 4|LM 2^ /1āSkʕ+X\yDJ&HY=v/V Q$'𯬏K]Օ-,$ɝLBp,M;̛IX8i~ls1zhmgW_:?b^lG[x ^QqW7c԰S9Aĝzʧ3⛟{o.? Fxhj瑖3Uig볂F Y\ ?S9 ?ؒu*lI?H<8,leb<AA3hss\կrvg_ QԔT[/匘r3":13[̓=LHTI6M!S Chp#%MWBٷ,ayY`1 Oc.0FE&5\[2ێ-v𽪞ع./?˯M81jMepߢ㠜f3.]kG+bpws$o6\,ê^ ɾk9BuP6+jKs{㒢j|km.?ˮ@26ǼtVU:T)iPle1~sn/妞ٗXD$[? lTx XtrfV&8 $]u~xɑӬ畝'D]t@4uԞ+:;Ֆ^IWBT]!eh!2Ó Td$^E6VU 8zNxWrD6aw뒅=$sl2юޣ1$S߃mt S&m3)TL` Vyvx!4k0h=ܒGR c* :lIHD#Ⴣɑr%(n=1nmPux8H /9M62FOnLߐo>?1Q{lmxNڐIJd2yOPոΟ[xmqޡFjCYf" |G)Jn8[bC.A;<ݝUKt ԁ%5l2;JVZ7eX:Uף^l1/2ݸL< 6Si{AbVηqX6P $7SsɆJIr~Kw|MT!`5-`mPH#7|nx^U=VaJ۬MшȦSPLzU7y(oK.DmK*PRٺw, nu-(3@Q(>U$ޒYr|ڞKk-XgiH} Uq;= "p K Ml.:a_V;B;[-^RpY\:܁ܱ- VsbecYn5Bؠ*FiJE^iĉ>$q؉"QW+C+ǜC  {Ҫu \-߇o$&`ցީ {)pJc8#o.-zZ]Xysa1uc+f]oU$eS͏U8Q~O6$ c}KDK"2{zqM KQ^KE^5RfoRX&ŽB{vc .b&uh.QD V]**edI;v3*&:{b}e1 B,ź7EࢅhrLb9pDCw؝cgo:m٦nUzH"x?o5U"6 cbQ',.Q[`٤} ;< an*P8*0ى3ÔEBA<thېCnb6s7HN⧇4ya&M;HZ!kC[ԁ"ZنfNuW; T:PvUKRLiLiĘֶOGQmu+x}]1"ڜYE@d =D8Jԛ5Œ 6rba 1+4Z6znH@C*ld9Z4Ui7RZѩ8Ppv_tv%8.EhGUIK'38uF\LN,΁-W[[JtjGȢ׍ x"o2A LQ7= arm-&RQ806b;Y]NIH?wVwa+:YI ǒW+.μCc6ij{4摸P:/6d9eH{P|͑WOܝ܎%)č-1& Dt7:zًFM,29d6M=Q䏉{4UEHc.h\ϊ~'.ZuȒ\p[o^D"Β %x6NF;6"HMm9>pB qʕkhoP$ yye8q0JV0*۶eCGrC e=4e'1Q$*h%)@M n/mBn0u|JM9T aO]`)A0LF6[8mo O.4x0ʿ`sU&I`{z43ƽРɟOB'_aO#/9U_w`tcWJK$)7'p"ƴΓO-̡J8]<@$Nir]d4 x'L Bѳ<=a.5(S85;MdIk3:;9%\DK(6N[UkghֱZG6ل@ &l6屝B >.$e]/.f7'A5g 2Н߮SGC.8u5`łrvoϗҬ(v1\qw)4SwS)Voۮ)oE.VidY])r<%Zy50B4Y8L-Gr m`G4,/oW+ZO07hrtJt \4R!؈5B]|t[Xk89FbR~2ǸK8p~q!!"I/0vo3zIfcA#z>W0ZSOEd.W?4)wz- K͘J& "fLr%6~]1ˢ ѴNGUCH͊j}֔8P&iUcFwv#ۏ90d1:c^lP(''wّh`'7nk<9{~+%ˠ=tv]aͨi[r.2˕)`dմ~Sr6yeLY[S ,}|krChtP`+̋{MB?DuK?ĹL+Q<Ip `l%)AMqɡhBCf דA5L~FʼToҴnhClYqƌ >&!!JJu\ޑJ]EG$ecȀy~!4ޕf"ؚ(C J2nDgu3A%^;Įҁem2J!Mj{vŻ0)6EհlHZ<^N6]1B;#NJ6 |V35’ge`1OI@zuf'g>R ;!\\^bNg@Mz|3#F,͢P9Us8yS;4:n35w{S͔].&8]# E*ҌYD~];_Ւu`{‡-s rvkf7sw68Ms=(RAha7B1<h|#Y.<-`CYwSyPK9jDksk L9q8iyA(M gm\EVs~CƙjG=eo+ŷO0U6jOڕKvlnEE":qztvF̕|sZ5J8dkb]ft[Aȅu'5vcP?/&G*G`A8< 'uH bp%;{{ԉ$} fiÊ딽}޾^Q'<&na囼,.y=pы6$/:`mQMJs~UٝA[`1tښza*adS57qOcu禥и5s`ēi4k;:f]ͪz׌u-,d[8:ˇoQv˥kanO u+ 883tI}}Yj%! Z}0K{4'QIբ1[?D,E 'FbY%إ`VK^l =%ABϠ v`S-#L^3N\E~> JSAf]hyI 1\X⨱PrT쁩.uk>nf,+PC yhAQ,vV8*}dWӗ}MI;8B*tX#HgU~ ͢hk驈RحJOm. ! b2lC AajfyhTL26܂BW@fy"fV*HoJ-d";wi׮z;t.j1(f@Zg88Xs$QxH.fs#Gaŝu-"Qv G>n$HxU!oeZ6'm瀳ϛasOP4NW"\9"j[ƞnC\opyF߱D kEu=a=>b7xZTnxxUxlgrZE AKń@wխ#4˜1o_\9r"/+69&;nuLӵ̏zl {.M5eHKB2aɟŕ \XzLn "&Hl0uD v?'@O(3Z4l eI!NӯpEu}(>ܞ#kD&en-F"eĻ}8P߸`kda% 鋷/sٯLnH%$8t-iiհJD nw$  s,Xaid?[7䆠W-Rt}FGC6C92jS8o"=o @2UՃG/;G|^V%M' 6NhG-}s}AJp=w$o:7ĝ)WobԖyCkb(|QF}DNUA$}o/ޖZ;:{/?wßOß䅧}ݑޕ*mCmEÃ;?aat5|6!-B0343US{y/B"6>;>l|t8:ߺ5u{|;7‚nZס]P)U(|YK cvznv1-:-FM00hK:z׼9UֿhqE3Dd`mKԜ%)b\ U/`Z?M͑XtSDZjy%JFuE>vEUGL"lq9aJ>s.&]NV,x, <L^"{nJ})? DXhFyzm86rJY c{4.> >XFfKnv V{2H4_/MЖ?HDzߣXwphg]ºA~"ޓ.* EzQXߌNFqsHrc0>ˁ¤L/+qab{켙NuZJ`*FHU^9m{'^CIu@10 rg7+\ (GͶb3qĊ[q it1r_gԔ~qFEf -\TK.-Yku͑*HTJ|XL>M (rb@Ϋ*e2A2*MQQ9uI,'(.'Ѹ&,*u$gW<\BId@xT`$LX}"*_g~bW̮)p Дi-mEYG v)삗1K8|3B-&m-/ÉUIހ^=I1ߐ\wdd 3XNJ[>eѡuT@81:λA5xОBdj}#bS)6țn<ɫ׸8ٽZY8 0u\eaeOfכ6=\șݰ!ջ,E.Te]6|Oڀ֎%&{XԬx J5UV; _F_2^5_W ٻ|q0DE,+Љn-LAXQ%aŊ_=ig +U`7 LwY{+)Op{+#~ggr$ô20Nn*.|셍̤FVKcK8u4X,אfN~Iɲ/TX [@(U%ȉ+oaLs'W\z%)ӛ T+maè%Ri)ٛ2XY=JN-x!Nɧ0V(e\)uxG%OEmGd~SsHkKIW:#S79`2:8'%A9IN_6bR ؚoP0|\iIX R}) Ј{NAdIԶY%}c*eL؛<`etoBR{ f՝t'1#} FCpUfHX%e\@#H~ΩwR$E?6Tռƒݢ_2#B|HRtѾe)qzfZSZd#Uv^ftVoJnJ+zaI=9پanA"VX 1ŧ(`b4asX^d.a|KH /> >Apħ۬ZڻäwfnEag-tOK]ƵTZjr5FM{؆Dn,I F /ԡɋSv%:T5p@)^]Ł\&yvt>ES[d0JF~%3Bb r9N`XcLD#?r02DVp^qg\ FIgh uSͤ3-B܎\ڤn-X][sb@(#Uh̀Myo*>=1!, YQb퍴oQ&Ժ=֏xKGqtF GPkQ SlCWcO:Z1zIeYe>a] Z^NCAYz٤k..G2[o ;gzx9- * EDqO`3i*@jR\Dנ{ZZQz@/ל*tik؃,M`F!1*{tP7 ۍt~]+>5:.%L4S0P-@M`3SW}ͅmA\HMw{&rmȚJSS+ߪӸs4%xYhlY=?ǽprfyZuHFj˙"8A/(6rh `*6j:b)H\k])pL\A%(OY|2>hNKXi&&d n.+W,iebaLj- wmQ@r4U>0p6ߑcXj='PK MZ<9  Ba9-.ѭao-J&6խ$bVu9MuNKi㕚J&&1T^BIWRS*Z eY7?tA@V2P6ҿ&'.?<?[8et땴BzA`ZE]٥T^fʛ^~QZEr'j੿n=ܼbV('bb;s }Q^*Y]:C'J@(%u|@Pq ͘vj XOd,B4C\Fz͉(Yײ0 QuD^IIl[aRZL'">@ ٓxϨ Cv@tP D)ޅ[.Y @y`zLA@#2J.I@*)誙olO6Zm.0+|ļI5wI*!TqP3B+!U24=1ԡ/^'u5+鷡l xpsahZ389PbFe FNw[S/M٦/SUXBɝ4n$v˖ yӁd7x;A73 D$#u=~Hp_[ )6 -lU'[tz #VEsyV6 Q_}gM X@XkBgŚ91>m,egs|gbw]9;j"ʋ9KmBw 'yl' g?8gdzE?fm2)H`$͈Fd7!P5'rq"bر>zD~ zwxo$Ɍh_<%<#<قsEidp:'͡s2 nJP$H<+HkHN Ï^gd"B y_5|d`U 3[ma8_x`y1Ƽ`ʺH - f 7OFn8CpJ赎 Yi0i**ѣ@/AȼO3VU#+ןkjMV1nraw}(lja !Ɯaa!%YFpO2GIs6jE̽2 gV bffJTkJZL*t(|@z s~*4o\b馽Lj&B҂},r8 [p4Y`iBJlc1-Ʉl1=`V=څ1w~(>uRioSήx/[=cw/aˏM/74a}*dYkԃuWF=$WC<9Nf;j:p^^"[ۈ\wHأ)x+CΌ|(7#(pQ %h~|}ٓ&,]Хj6ܢR0]Ppuw1K<T:ɰ|`cZCY ewAѹ {麯Y_BH2,#ݾL~7$CE˲W>V6K#,Й(|psr(F߭V pXpُ\ =KYx1E6wDž{JٴΪ74}a5u2ebCd&9'&;ުm$8^: bZJ ^%hJFnsC 9loyiU*؟*{~7S@4p6̋pEͭ%DJrB$+ru;iӭLF#fC1ԇK3xJ23qBNnyT>M(R)fdB ,#<[u%pj"xx;Oq 6Qw[¤́"*P87+EN~O:7@Tx2 CQG3TGx.$zWs a{ |f[#Wz]V\]o}GU ec '*zsa >v /M}2m.я!H6/ȡiU-@ 1M8>aI~|>@ZN:A<칙u~受iI!f&e&@Z:+( ~KVcZ%|G{L\51gh9/ax@Spcn㇄;JtRعt[U[g&8m _(Ϊ> 7 yz5^`OJ41 .#z>g= 7H9g-5s=Ff [5fk,&6~ Z:͗W$FqhEen5g&<.L|F&qi7x=UŔV]ZL#l@fR?9_%Q9Ix8N\bˇk67yxq#7l ^2L7LEHR8?@[.+bo?Y1H ΋E  8UYFŧ[zjǚzs4qqNMbm`) cw0t@FI-q!7r>`9l8 Dk\L 8f!`P s+5UqC߂dr:ƠPr & &?>V~h"7]2_9ihd(,|AWK$w'.D-8Qec".x)9^jx4̉ +ע1ϧƉ%nVlq |*jM6riq3K߰D0yA)^T8Z'xӭD})(uqg cd\/Øk 5tӨɒH PIWMoUHA2j"O'`LS5M&Zx[lf[k2l]JgcVjwQ@^eI$t*a%|_u¯"<f7TIu0giTJxN 붠k}"ׄ6|E7v[pp5<%pB]+ Or_G$R  /ޫ:;9AQk!"A’[}S`P0Paz '+&0v&1i*yO8h= .F.- _ R*'0tУrd*Ҡ5+TX>#ᒑH03#<_2\dxDy HJR-\9qoz- B E H(#n!Sn!E8=+)L=VtVHXΩbNj@Fy dahHL-_+ hVJY7<Ɲ'+`c5A!zJǙ?.x<w@S]X1p#zS`- *K_qy#Øe2>DrK S>~e Ғ86oDf$4? Gu ᐜdH0;gCO"r;vR[ & 5 Q ^&)ٜ Zm$ pXL>Qvc3,9b;2r|hڱiDޞߊ )fco'F ۵Z|!'p.t4Ҍ.PBqH!,h$ N&dZ&x(#L:/)tG9Ԍ!2_Ӝ nf}Ct{&sv#P*ML.vA(ـ\ /!#BzEbL ƶi&ąo%e܊97f( DE2\ڇ<זoJ|SnÉ:'6Ә^>d1(7Y`_^Y'C͔<9]RbWF>t3 t;3aI[[ׯ0j- tZӑ.\3#ӠZ󵵒/+Hw|'T*Mx<9wHaZ{ 01~TBfW:͝^~fMJ" S`%9N2. CfT4MMq:_ȌLis`z]L~o%a l)R7ʺooUnNR5>Ӓ7rd9}/Ls[Ɲ=d>lżYa:eovk4Wdn:ܺUɣ(>^м]ꀵE{6)ͩV&?o ;Q4?cƥvR5^SjU”fgdae9"wXEYg9uX&sY:gA5jFcgt,a%{'?"%ai.ur4p-)!xioŴm@ JİAE}"kIIHJ*1st~dys³BOj2b{Jy0,<'(#s8ZgPYeSO<S1JuVbVR1ˆE(e-gIb=0YJO*-~1YG}jH@_#P6lSs@*}njTsSgU~ qo͂ޖͬXKO-`X (nfK! 253յa HTl^RH8imf-h;~&yQXKEMjbVNqxmPmK8}|iaA_Q6qX E1Ǟ1t>$Xxgؽh\mOݧjxJ&rzbS dOy38;wi׮zi3t.}J9XYИr9\mj>M%&)aQPF&baWH<ܔ>%NV&vFW)65C;_GGV3ۧ=Zכ1o{ 2 "wHw>#X5x-#UҀ)p3J F7)V@C-u {_Ke_ [G xIј i'Zy$`cӑ5Y-:w&ZQXǚϟWݍ\DYe’?QprQGM KɭL((#2@ }6 KN 0,Y=I%@:?_]!Cb0mB-~D~:5b;Dg _[ f_XwFhخj x5Wg(} ?P~miii-uc߾'h"Vid?g7ו7d+GSH&nf#!KPi6/J :o @ >vG>{xW>{l޷}}n;)tٿF|F|F|F|F|ӇafhWN}zwN)[؎/OgûGɭ[[Ƿ>߾9sS<5S-2 ?61[zr>bZ D2UK(l\&d]GM/^[N.jm}r7ZTKpETI6yIW @,VCʗ,]kVZ'Fqn:hK{ux"j,f/W%_4k&KE9WH>oL ٤ׅ\N[, ItB/v; U4vC/{hh)s\+IpWƙE9ǣENBNo7.h\|D-$6_hMvEZ++F4=㧊1)pKH1IU _e2cF/=|>pbz-qF;]oF>ε;t?%aNyӗp:\>FĥT&غpƄWʌ'tR _i~sD27Gٔ3Qy_<-cbE k$/$+F=1H:F^z76WAhNy#k>.pv}=6&Oowv~gCe9gtƏ9.v e>=ne46:wu@2eے2PvNHvNzFȿstף-~ .Ĵ V XR]hMejDpSB5/EUBpx?ę\N[d쌦;bfQny.*s .SxQm~i5*R1'IТ[0ĉ0)%0n0eݯb.Y*j/_R۾+aOzE F|ĨvcZjH*[W[lbԹSskM%<=`% QHi*.JQt6`{[ZM=@}[y&q'*-fW)!: JRJpzQWE3xU+ B`du?2=ߔd&',mDc&:"g7am%INT} @hXup [LaZDGN9ZevYuQ\lTg{!%!HO{y^F|6$!FB| KЄ B4s%#(Vcg*&eV8љߣ{Cޱd%!.Mq4N[ fo<3>@HI'SQ:ggms43n~[(ֆU?IxFG &$FBR tL-3rP:MgkƊRxxUTռPp2saxf2Ld.G8~B4'SMAx-41EPeZ:s7^18asiZ\RzpP7)% >KLNɍdK5rZDC^F,5ԁ;QS>[--&L vXR6ݻo 2-\ytYmYqvUUSJVpgt6:C;CDXR F&~c eqEa0E8ϨYro4.-OI[+\U$a ]JK Fp]cwe|\ z%Gn&P3LoT Քg v֕t'E;g>`~v=W1. Gf%)9kUxpm̨ &WF[ q)ҶPjydO4|D}(C\uEfirMȯ ~-}OA ?kkF,_N;)@?$kfXͨm*Hm+TCrNZ̓١)n!F@6S8َmJAŞT2+j_q8C71(y_Rs+ARL}&g,ۤ>XEht(e;|UF|ȍlag8gќ#+Ԧ= RMz1mYq6ip{M3nf.0 ,547~'C\ P .Zċ͋`,"UdsHjҴ^M}V f wvdMo3 p\k4wmo'l{cz?L_d 0 m'av@Ԍg⎲Lpr1o2m*\ȔVo~= ykb̈q2f9s- LlGTF8ۖywM\Vt5/$y @d 0 'M,@^R/C@e 136YSXj.m>ſ Rff[jjU`,+|63{Xnze{ Ԯլ;zq }6m=#|` Z0ނ&_fН)LXDdrcTe& vpon[T@:8ZFȌ u/UOtǪt2[9)r!3Bp Qr_ פbKpρy7G| ` \*/{:mF@w237{]D$ZE[Pϊʹ8+Y`Q$tE8R1ܐG I3n Xe A^H#سϛX>%nl8DO0* dl4C=K@Ԋ0+Fy )N mvSuoEA+T`-HXV&j?,]n4{yLpOú˂~tYJ]Q~U㗥'M,nWy]Fba)aj $q@pI1ҿQɕt%Hc{Uu|]o+Ea\z4U˞4Dis#J@nw r+R3$ ;Vߚ+RbƑT1(9%>[s G[i *)BT`f ؛h(M6`A2g'̊v>2R? [NhZ"iџ"Tfʀ ~_#%#Nx eK ڶSjQbH3d-WcMtvGe){yAGk!q[0 JgO}?UuHL9 ? I =Br~v7ӥ(g$M1Y%OϜ6{{3.jւU[.5S#UlocNBHrYD$UqWx&xݩ6V/_|#?6U18zdڷlFεr[wwׇ)vi&R4N>˻v79d]М#~KE9<9U0Bx*j&b0Sb>h7ͬN&0ܯXDbvhqR?UAY}69g"WٝE\D!.15:WUt쁟AblqTlA )Ӎ$Bf(,Ry*Lܱ)p\9,1p֓ Vo7 -F+:BH -Q6vn6AGy` r;FVg jʲm8)[O>;>uWW.ZٍXJsb 8) ] &tgl+wzS)FՈ:*o mˮNO$#$J>~Y(-JKIxw3B|׋b., t䌸3z1{?t(N @@q}ZUfF'm֐(+unxnB6~B5kq @LʽS춦.W2y*PHAiæx ^{POqTo8W״@h_uL XHXXxf{c?ĹF! _8=iIMÃ}/HlͶqf Y$P"b1Ê|E|Q޸FS/CzHG^Q}Bf46^]%⅝;#M%p6Aosk\$& HլQn2z<9lS؜ADSة3ttrxa6"QzM+Hf6gV/guAwn ".|L괽{n75w^^S|$K>f^F:8yj!LGأ\oKXvI\x<6T5ŹNdO!N uoi~dnPt\<8щ^4%Yҵ(?+XǞW{xmyNTHGKg@EO@zЈstMtHvh͍dϦZ}/ZY(Րx–5WI)٠$UXitWgCHEh·#b)sf~8ަ寿>\|pN3; yr"SJ@ 3C]Wۼׄ :g,fr4$V {##HDAH +Rp27ۄZ7Qo"77>jDq-c_At|j&D+ ,0BZ2 Q|2h2Ʀ-fo4Ozc>՛dғeLjCouS~v t7&iQbQX=$i_&[)OV+/ ⵡߢnK<3 鈠4,p]"Gf:'[9.3uD^Da^#K1$Au%n ||?0NWQ  %$"?Jc`Whcdy#&sMp6.{EgEGūzʪ H4q4&{qg)]4eKw"?- {9tP ^6ןxVjl^nڠCQL|:2j &LiQb6t Pc@#6"%+\6,S)MzYVԛIȝoD _D՝"S{(vAe :!IywF\S Qꃎ ]- '5QI(lhpzqJVPAM4%SЇloNהYIRɨ U\P&5 ~9Į.Q7H~,y+MW]jK="+Gmec%FsKUD|0Pz$[D!s"^dF)A|S*y۞*:*1:7 DmMk8J2uh Ϥb,tRܘ16hN7|SokԌ 5.X%$*VDH̅Ji^DS;> *Tn]4XcHȮjo֊)!թ"UJN[i~G!J1lp@9ֵJlِYɡ ZeG#4bꆡ}j:qJR'pZ&F#Vm1}#"ƣ%J+NW-Ne=F1rH=W\=qx+5IL^hnRѲFN>+Y RH&]|ثmvLD)L hN.H8jRO.Os^ѣ ϙ8ES/C@>qDſZb[aҾ@ĉԎ=K#7/Ra%""jK"(U y,[E.P`ť C + ";BX/9B\}`6ew^+ ƼGDQbK@-_EbM%ה\={X#c}[lL.{dZ ex0I,'d*_tҌO IT ('s1exi%=8iJr=)S;ٷ*/hf`m_x#L2:k߼!n3'1qV2?n6=42Q9fcZg?={V iKS#Om͌D9OC_TCTYmX&_!LW3ǒ F5+cYX~l4cOBͯ*!`KfISI#V#p\"jxZu^YYK rx ^gag%M}-.I\c>CS tT|F89:GHH6/4"冝f f~݋0o>ޥŒ5 okj,T9~JP/qfSweCn Q/rui^22d1K7Fȼ, @\di+%?/Q~[xᬥ:OƚޓFY}jdDe/tz vӯ -; f#eSgC^S3+M5!nnjNֹC< _p(z7OCVfrG J7|<6>BF~'YC8 6yd#>t{mbn3sԻcRk X-՘!{@|vHNث4bΝU^A+p;||{<}ܳ~ 7E:θn/cRBvxt)͢:;'fI$lsh: ޡ=rn}&?Rh(ǁyiW \WȒrHÔqX#ZQXD6E՘}(rL%^KQ[Ph]/妞ف%>eo~:"$ G|<ɠYPhHR@Nkk%ܔ{tk^]~^2,_1CUok6Ͽ];>Ql,[pU.!n: 5$bU2uyAoDfimhyGٙob#*&,~$f- o?Jo%w.WPq0uQJ$n#BԈ`7<g $HJE8Se:!&jM]c6>I(*u0 M/c3p(cJBD΢3I*&Y>_zﰍ16=rH ,d6}DʳȢ'ğ]]&bcb \#edFQx"G=8@_5kj+jVm[A@Vm(ez#Rݷ_-6`:缮 Pn~2^^j8S_ ք,<4챳}sFYo% ړ=L sZObxte2Klb*9U%P%pyُWu`zhL'NΆMP$qosIOvd;<-ƽ3=DLM*~)i*~rC,R8[J1WMȐ=i%' 3 #Hw |.`I$$kfL?]|q6i=.i =t`aQ&@5DY4,c=/~d?@2fD)OY _3[#oX^ؕTB2˫-M;a)Yv2揾A7Aω93ljA{XnzXR!" =}홐Eۙ*Oʵ4nvrF]-8 Ė*q+[J>9jOֱY YCC9 E Zz3WLA#"h>ZOo7IԫV"51<CKVSjATs%5Qmɂf!5l D^3HGAaigPKC7廭߳]j`\q=ʏnk:cs|M0ܠ2lZ,>-uÇjUT,9eR]n&lRx^ hs |S4jHE$F@UhEBیU–"'PV\dv>xC4٠|: ()\SfvGG" p?^&2muU0Q4s".(&x}-5g$0LyY4Ar]@F w2ɫz\,!uEG!SR0|AG~:T]E'z=Ǝ!s(мdFLӭy ݍ]J0oHHOѪ0 <\j /]]gZt/\E%qY&ZIUWUOz9+ }v~v$Ξ4zϨv'&UQ(J6HSv^m׮ͧD%U׹U^ΪUOe"0.cWh̎bޅEOwmQc'b<[$`i0NODMŻ~_"ogGU4]5C%hf=n˻"] .$KpI[IH5Fpr][BDTtXpYr;ctYalȕʿx)> 3 7 9uR%>{/AX]rn󷸓w nnrʠ/M7 .OѢHsd1e5}*+RHya1)ꕛ8_mZџ?+дX5qZ&PbY,!\xoz%2o?q?Dž-!s –hG(=;A[;d1^BEAqO`<x3Icx.Ds^W2Q6z+D!@Umg)^boL3č%NGqDWᙆO-> ?=V:L{<㽻꿩No*Oξ\hGD{f y{3@S7ym6y %nkoL|4"ؔrWݫݠ1s)q%5 t4@!%9Hm_{AǛ8!@Y`\Wkh@Yݙ ƌS^)lOD7= w'it-Qd$}7Ag+bqVoEYܜTȸ2T0PTIT{(6Π^2A )9 Ƨ;2y|nGxJ*mp4*:F2@>+椏 "mstxQ --UWО tF?P_S]MZxpptޙJn3LA&d X(dA:P(}I¸g`3OCP!j(Qrjg;H(!̒ͱ%.NF|1LE"bH:dSVZa]O?6=\~<zAw^OUlnrUW-P@i=kKN&xS E[.CA1s^&ی9JZGNU5Qu 9JWגnUY':mӳ%F@)ս4|e}\j673Op"6X1w6(j:z .կ܌滭hF<əzpl٢5 ڨt;>ִXV4D28FCr^آs8|M-ʳbQ]e_ wx%X;p11 u3.Ү`jZcc.ܠ|; o0jZ)cZO9|5 dPb;f=dmIA:-0L9ʅ)@IrL3# =h;XߎؔTC!eZy ,~OOK#Y2TUz2zqx}KQ.M̝n[6uU*tLj-IXH.cw[R]hkcL7 Hu4v@֠S 9U (ܮI[n"nqQlQLyD`gFXQ^1t0< 'S1:^19;LYe"غȈqD'7ݨ Ljȑ~3O8shdjdKc\k(CNSdsBi/І9K~*`Xx{/Yc$.I>NHҮE`bs+ZIh!K'Ο+˕| PmOLb a JP4.Řtjq$O<2IV1x? C~GQꑠ,- BG8L߇X276N[]=|"YH>nɇaW_z(;l~/}&9[Nu }qi]TmMZ0cEcF[{*4qX֓h4V6ŽŮYW3/Zؖp S:rmaS( PZSB>)ml)*΁6(H `K&H4Y]|`{/'WQ"T+zhlmB ڈg4I)h6 J2KTCjLeKHV^/ȥs˕wlHvˆѧ[Ʊf54v >BR]R^A UmQzWr쁉zRh`91))ujHنVq&E7Lf[(hU*Ω/ړvqPU9ɂ4 4 J\6b-=B'Q)BYs'Mŵ3;rq`jfnyh9T@ޟ篫 c-vׁ)Z-}6K1RAQq@&i?MIP#4);@AJ>vvШ#SyU2 Ldr=4M}vᎧlB// jCZЭwx!x@4za;ܥ]gw ФGr/k)H-"gЧ,bZg88Xs$GxHmoYc jJ̴k8txS- *ԲPj;<=A9dKRN<1~QBY'O-{[O !7Ƽ|s"ʩݵ":ƸbY0b`&瘺rKƫCgf+=_h֗ `}--^}-Z&n9TQl-Wʑ!дᯈసLӯ~׹3N׊2?tg{.M5eLK jOESIv.,=&x\g$PN: T wN4P<  [BwQҽZpAT|NqI-Clr{r8ll LXa <8,q57n7}a0@aD[" mJnH%ԯ5#4-V8 GC\7K#p6eEʏhrZ+g).Ƞ}FGC6C92j_d`7ىFRM&!0쒋9$_4&8D9PL󛜒q*dݩQ@@5$lIe@Pȟ$ 1SװG>_7qxްP(7i``F]\NvB"L/-k-pHC5~h#SE /TIKOwn>l;;ܷI{sݹ5&%O3p[.ryg5n=az'jx8UoӝaTd7355I뜌"4g7Kf֯jC ^VgJ1 {gb) ( -+벛\<*NxH}Q3dN#L`c`R&*tR>>f<寿⋫;%_;_RIzSMg%$𡶀#Giށ[ɝ^7Jy5(*`3>xH3P˫JB]|Wdn =׉KX<J~.]YǺ.*zH l;/Eځ7%uܿok8 7T&eYn H?PsKn(^0Kd9"Dt/сvDhk-aR Bq|bm%f@3|??}?ߧn],H;M}hݷ=]܌Z2T;vA]oIֈtiA}] v-ԭ5g<$-əw+Ͽݭ$NEmߓ52^I f|ĂƘm&*lHvw("hf YK4 ɀn1f,10ohe(i&NZ+85cb(g&^O2 /@Bg8XX|p ݎyA"oNN8 P$|r겈0A*d*-% t&B{tY ʱΝی+rv¿Ax9Y&TjFFj*?xVI8sXklcg6dwxuHSXkIt ݲڊv 6+-@XzĈе/$,;ar*2Tkjyri1ubK4"|Zl+chY}a±?\$UGA qN)0rLz F-$A)(Sa.U0@$ntxVɒ᪵:x Zυ^nوg6~٠cpk-* 1|z Stt!K3( k0%Nc%;G{:0IV,LYrn:tAQL(I#Wzf[IUOdhYNrr'g|f)pj$0_.t^F6 m˶Rd/vwI'6m&'AzGMdNXzy T_z,zAH]$د&x`>\DA{̴ U8]AX(ڋ6wʤ?+cX ԘrYHbìFVhu*upMa/Ms;Qje3a@[K2B"R6J/ޚ@NOIxdZHJ\: ¨erK jDp @x|LxԊ3 3eSR[ 1 ܨJa_ M"<|Eri :My߈$ d/=$WBk4pČDimBut dDIuYf!̣)0 ~+rǮ`wG8,| %QLFoSͦ<#Z\QPaehQ U`iSJZ]mRm!-8 @b u'E=,K&@v6%{țP2Yna` +úKF`^L$feg#\/ EC_ɧUiћ@֕CTɴ pHzEKz .O8~U8Ĺ8_U2ʾփzD+Y~GLX2dr[cɪpZYvk*.Қ6Fza0\98@R+0$bExo rBgVx5E޶XUߠ?jN$+d@ŷ`M1k1I L{uy%ƣjw>b: \0us C*dkg1YK$lmH0PJ7T5R5OmEɕX(sq}૗_^&4 V+p*MSӘfmAy1$!!Qg, Ag9^ÞJ1+GTn ŧvߣX ߌnM ?WYNw-b:} D*/'PVuzmߗM Mb\dN)\:"3̰9p}QG?H~BұQ]}dϟMEvR͏}[t@{jvI}^pS;m@i%BqA&wt6uu{Fv.u 99a k.!DsݼI1b#SM gp#ؒFߞ04>FԕS-2Y"srh@5*% LH|UƠ^ }ȅJjLC bJ$0m(1@cidϹ[k`mF|f(D6]]&$݋"=o}@O 0upA1^{Sz{0 彏5$|};nQz GFv=#96ŷ]ꠊSzͽT7ĩFثF"c?*FSVA3:QXzP CQ:ԥx۬{^{:J6:kQI&D4x2mUm>g\gn]جN۹%*^e*|YrZ]e `}O/a8(6F&<`oY~kمI>K+ i.zf |@o fb!URX:>Fr4q ^Gmё(15TxԜ\]mt6vL+d=mS]Q sq:YV?H\JC[̓U%NB1Yl9\$B0[2w'ˋE %oˁO`GH8jI[>ux+oѤnO`HȄK}$ Pk1eGIDŽm&YXg*UBC/+و{QX,o9ng$}sל,F9Gd9a^Iթo^ի6We9WHH>{ 9&ac0օCkwg7CZi$f1Ufs|U](Gp[8@ׅqo?:f[6g,ǂ/Kn+O+6/4zO꫚y DlKôJ>@ wÔ&is9#zК ;uNf3HkmeU<4Gz @ecba b-Isұ5I5-6]wB|ǭyGF.NHbF0]q,x&iczkUO>[MeBhZibeֽobٗ2(TL"NR'`XJZmOBNc$ܺ)y$\{ W-I}[H m)Y2," P;8&cfR*WK_ݕ.4oĆǸ=Qܢ ГHӤ.i&ŝhf]w[\&ѯW` n:;<@֙h)ZMk_EN!{ *ߚ)p?(t Q{_Rz-Zng]M~{QWjN*dY `qԬ'd 91xZ]Yȁe֠XUg~2[H.5G@"Vb4"޻J+E f䷡]Oܼ.ZS=L4ToӛxNY!HxHI`q1~1I:zwRU_Y2 XC*6xGæxu>jd- W^U J3dԴWK͞z$B`( .XK0yzg8./j(n 9nf!$7q豃RNh}hTU2'ŵ IqM{D@ͤo{gb1%R_Gu:]=.je(T[W? SL@9/ @9\pCR.$UZq;"?]vlHO0IL%H0ʮVk+E- V#dA&4@O֓16Sm,]6RG^[DsaqEK dC% Y7;$y(qo~H9*X1$Gs sBs݂R`y"0B{aְO4c23oՏAIBq!I".$ȴЎK g[$FZa+ixl4)A_ v%#Ytpg[sY6)ԝo ("}nF̊!0}/%$$8bar4C&怜D/n[wP~[k^ fEPnTrGr[l}X a;,1c>hSqJs.ʟ =_ +J.7kB+'Ͻ#8R={ug_䏞Seyu->~S%ԌYҁ&MG$t@imv#F[EX'M]ks [^~~gw$]tR>_fVҏ7p3u3}9- |dvܲ'1=fU^U<Oi6U<\WCncqM^Ԉ%t Z&߅cDĘ ߳G.Iv=>>3{"sپ{t,nrI&*IF)V tT;d]fT][F?:{. o\R8e8}B [ )яb)Kr0C'hLX):(\,Ŕ8_mdp R}iРp.j@> '"|dOƇFܼTrf,G…?G _\.c iCjO=\Y5GDxUa"%,r$2G )DV#o`r8N'Յl лhcYA Wu?U;]LFxNͤ"RyuAjUD6T,yw1A{ DqoQ##"";e.tHٚ=ɍu="+m&r,%9dEIrIq+%T[h'0JO q^ TUCfr!W %":=4mrag Ѩ ^C?xkXuvUNp Om$(;]k&[}@cob êuM,s?Ru_@jpcQ4m*8ӂ FqW&;ig(B$7uC`xk'_p| ơEϿH:jmA+*iE\*>e gěX=H`];5-5LY-GL8Hy{Prt. D6UE+WVRXhř#x-j'1>ך]ۣSXqA]HKм%&h G-H.zd\U\#ЈX!hth 8i׼ugbHE4TKXB%M5cզh1M0",@31^*C8CUb6R Hd. ^1>]{qYpoqzN"+./đ*CmtzU-qND Bv,.7º1DiɿWrLb vȳj%3e\u|*٪}bzj)F8 +•z6K]mp[[oҨCqy ӜBTX6IN,uhQV)?.F(:[#X_GƘm$pFj3]Q+㴯t^baeD J8`z C=SMyn}Ջ0zjҗ,A,y?t[ŕ/I8PYke%Lv GU8&!aGmk[TP|upT(3U`Cx8A|a :$[Pl ;/T wCEݚ[: ? 2 6 p-Cpְ0X94e/|Ϗ_C@{Cpwfdz~goUTѻF-WV:3k TDU4\(kOɠ٫EXJռO"dK 8蓢Θc VK 83H ɑɅL꞉"W%Pɗh6(elcr n*>-+͢hq(üYpG [75(4p/h6;na _ʁɞ_oK͍:q5awt@ݮw FVxt"p^'6&*N#e?/7f$#A1~d2,W$Ns;~gBkb3P!>1|܄5K/=QDң8k&SuVr^o5psJFR32VֺXe"E:# }ں*rd.,YW 9;M q:m8C8{0I.T>2,Ϳ3~wGZqa)!yZ?H/}UA;[_T@* FںC6H`;~Jϟ^|`(WaY^WEpԓ[<8 1 ?y][HF`wfk+y~(12~$rیϷ>Ltv,؆+`(Q m7~CH, ,e=UxGaQb,t"4-QLS(Y;pB-4%a:sMeQ%9AQK`(㒄f [ebmivze\JmoY&QAFmhqGYE$r 7!\f20JF ~-rd$sMBa(۫`e[$LhjJ5 d"6u7ϥO }y Ko_۷z}M_A/dmmΉ ڞ Yڗ/7KǷTuU%1b3 '>gi?^nի)'u?~ ANK2<[ڤAEi-+\vbw$ɲ,BCܞܲ,vINgh ۜعU:3{R -i^Kvz_P[}T&-mPnͶcsag9A d@#Qx~Cג# rBݶW ܚ?p) 9e!o-mkb8 /oW*nxP=ȗY.չ8RL-ptTEAUS1䫟҉R4Gd Gq^7hGTn5{)eZw7#~%ȇ эȬM51>?rӾa=4El[9|M<@s9g,OL$,+ v qAwpv$̲" e2VlUo$,y oM,9>$w;L}bGro]CeM7Lh5CT2.{#JyZ' uV̭_[)I 1#54A:HJ=ǟ~z,ojJ@'C5]07?`>Ati(!+AtEKxh#~|Cdlno-c9V8YajKL7*{1gJ$մZdEWȖe3J :Ҥ%pAa248l&A? = T5g[UQ賄Q L>ְVa{ uR2pV]Eoj4Q+VuۿU;O{P0F6iwCK]"BF{3#m˥ۺ$|g$#u5gv:e2M4c dݿ;eOVKa( v\oo6=9<'[ͩf9b*|aI`{ يTU*^gZ2e/~=5> }QGd?qtu]2烃hh68̨E}MRks'#O4ꎐ/뚐qmMbzcJzY?sn~}E=%&MAQL9}j`&I 9k },o(Ec}[Zn>[^yA&b1b!G!pd]'҆ =WјD^OX/0|&1p:f塄n$O(ѷ `RsrXyt]<PxGhA}ihGA>&ԃb^v8\:YkJZs|eete&?tneBqXD3mZg'W9#qs"X,u*|p]}y. Um/3UPcu>/JgL")eMk٩:7>=p||WK`h+fU.⻬V$,KwX6Dza13gN` "YO{q~g Ǥ56 ;*s7dƾ$`8 +)> Yz A)qFoѴ*N&QQEc an2WV3}Zo2`J,'ڞ|W-ؘcu{*p4}"9Lȝ` GwbD"/O7'qxtVy: AlH/WZYg1vݹh*;㑛kVXoIF[tqT΁QoUh--*^T{M(3=X:NS{%ׯd٭aIk=.v6y|߆l7b ߴ[7Л=k֣=ޯSp] 9hMuvUg޴?<(v۫y8kZE_Jt|=%t2^QW+'ʙeޯҸJO}ZD>Ճg bam>gf} j[]3TN~2q2 dbEܔsN,{0U3~+A$i_&/_}{AEӎGojXQms|<#B_ÿזSy=\|IM#C{o=ei/&9-1TkUy[]So^Ӳe>8Uyz5wW߆w&=+7Vk1jy5ۙI{N[g}smC^P${kjjztR7f8YhlQΉq^qMd0D{ ǚp7#j.#eoܡ;۰{Eo|Hƭk-yvEJLΝ{*JZG qD";=-%V6`eyNcBMziiqitѯY9 wԘuvUf[-#(`ʷ@*1YU\JI&pt w`JȽUFSb/$sd%QY1;m9=,zaBbLja:^sƀfY764TYZJB, A7T 4dl>giE9/֜}GQq* U@)*΁ lƯA5_l=KiJ"Rc31&lrTjQlܕmsqUOw?|36LcY{dtX? ;m(ڞWy3AM|@@ӘeeB6!VÙoޓ2ʟOr$99>?DZկ]eSF @?Ͼ7q f) /'<#]UL?>z.tZOf yk!@;zѽCO@U+a=ޏZiBx|~JjOӊ)Tr[,. QAwJ~z֏X ޡ|b,%= `1'ջTM:o$_Pxob%OVɢ< .oVɦ:;[T[p Z8%;JkV bK8*J~4-y(zKOSE#sžOl{>^þJ P㊤tpɏ+{o{P5/wip^k_=Di`]V+힞lY+;D(0K |Y^i`prkoȚ vHQ8?ƙ#JO#c8, p s"HF_Y~vs=գ{~J40Ku8$Q=klKl`Domxh4HdtzFQ2%9ӻAX-7,L|%'VW!=֍9n46)„hOC?";~]I(YIz~Iߡ'ڛPɿR200K=?R|U^HL0!<[bab󷗓GDn?yo.S_],/ !¹'Fbc 3 gTr ۜ|<63O"Ȋ.dj**][n8 B;9w[cHx)5OGg: 5 \7(8eo٥-<*JI<y\tLB̫ͣ<nJ oe/ d?!)hrbXNM6_^5A\*q~"c;&J;Y+r*ʴ':V;3Dyrj8[Il %5~Vl110o7hy umZpUIRrO+^6±%nWCyL~by@q\jEgfeů"~V[oyu^4c}ͮS'GlxQĉhIcV@^ܔ3XƘ0h >$[ɽ!%_]7x\8x{˿Gt WdYmOS0&yZAx|_DCKRuFMYS dx8W~&йP\~FݛpwF{bΎKv$ \}mEbv;@Hv^<]A:Pv+# bDJN(*^61KbK JGbRw:O0\޼+ns̥GPL~?NTD7~>3ܨTKgjH?e؎Z*^G$|:p#c]!q$8ClnZ^HSZK&1s%_Գ0oȶt=U bОU-=ֵ<`f0<+#SzM򇝄OĴ ykJ-EM9f٪fv$[Bp+nw7#~ÇE*[sg_?ɂK-Pm\ ~QLμšz]$Ʉd»o3`S7)&x$Q ~xym"iN;zHHkcE܉_-! :G0v'sO3BS*r~fe V }P(hsOKmni~zL` mGqQQɅBvQSwl_ Σޔ."ShS~}9aX"u %=I&'0ڢ }rf+=vK# ᷵3Yx1f /awgL {sJQ#?=Tכz)I%ɼoPybÞkʙ9n{~޷~_')pG<OA]V%ޖ0^L"yט˧# Y̟tnm?7%j'Iw.t*Sꉄs|_M-AV{o@]K4$bkOZQby9 7-Eyp<-sm.4MN,wVd8 $qZY^UP``sAgU 5hL/!?A&njCn6³KEȨ[$5oEU,:;}>f&:67#F8wȜ:/ns TAŴ}@,h$dq~|Xp3˦2ՃûBfL+B}0:bS}Dž@-Mx$L{3-2!~- &L w8i40k%PTdپ#ױ:tPwbFYz0s nZTSJ; /򡘵 v(b^V 﫭pR0}XXѝ:ԣe1oRL?p(p=vaߙ߭Y]3)$#HFت5Ƕ0c`k/aҞQ#quGh2(Z1(4^(j:eP7+INh0SGa;'gs2W195r>d7;/֤&ES {.!V9;4AԸuSIGbV[YVskn=]?X*qJ ÅF-#iU:}-{H.z`#1UhkD*,NfZԍ-{C}GMBq<[e.)-q{lS3YǙNLfe̝hy r̆po Ɍ2>#;EWb)ӌ=6Zt '[8Kk afM*t~~RG{ZB*v{{:x#rwۃJHC INRK $̼ШR HEMخR6cli粇_e3I-SRSj`8 }0 e0K״p&mDhK1q!+1f7wnp"&[VƹPMS}a)Gt~է'(B>V?ԇk,*_;?4n>~@]0Sz%J#[;9/PSTqBpۙw0g2EAVM%6{E-lU(]G:d<0 #<\$}iLaQ^~J3#F- B='o!A4 $[3d*T&OL#r34XtSFF AZnETϤ#<7||$% )ư:;9!nΉm!6g]"(qX{; T6yb0%]AI,s ^2tf.ot!lhC.T7'ǮW`oIAMW?C-*Պ T("}(fzb2ꦝڑ*6_KC+ZyKUb\htvHT~y5C!rj.֩.~wDX Y`ƍp%=]8=eCeĹD$ŒdŌDH\zEtp7f;#Dkfe< &gSLĵrTߪ@!^hLd{+"ZEgL+f+m^ݚs2&MPifAE5TmB,iϚXEdj+[\˴D=$(Kao 5Nq"Pw6 -H:S(/7rT /Ū8y9{v@9owz MwvQogCj(+؞OGE,f !a:n9n!1:!PЛp<Q3n#q? ~<-"/ pl=FtdLg#NJ#& >ԕԌ==Yϣ}*t~:tD k̅ysݘƾSJˆMiJ5Y}~1T5` yr|2; Z)=wV͊ZwQiB#sS&pB2mI< t9Pͼ#>qN|":Ja=b&|q/_R/)>DQN:w(| ??&ep@:\>fWPlYṁ2zC^9N(#~ )xRᰘYʱ:^R̕xX]?, qVGYENaY4}"0,CgfHbjΪF?f 0ȩ͛ CU['}Sfup 3|eҰPG-f/ۇ^{>7º6J2 0XK5&0IĦ.+/hqQaϊlE 6冝8L)$% |E(oǩb1ے:PsTiJPF^vugv#巏_3!NV7=q_HKχrjAW8a,|iO  Qpω_:܅1_q-:H"VPF{ Ik6WZʴt Q4ڑ+؉O_')S8_aŽ MCy|/B Qθ3.eBc'cُ+7`N{ v9SJ)BSk;Һi]17ݷR'ΙW'Dfǯ{ yHگ'n_.uegd178S`,iQ oȓ5ٔXrLnMtF,{2Ֆ$:X( M˗bTC]Uo9Z)j*v@ Co+/4ݏؕ; UmJb&QAt3d/]xs0G^!d7h}nF3;)\S@&jTXG$?2x#k*-іtn_L6]f% _p-߬YHP*}=|I!oW[J'&j 4qV43b TBP !2ac<ځtځcAJ: /|^5/$)\wpyd ةYv<ׂMݫJTʺHhLڅ;rgmxpǁߕ0>DGqd̕}!mYTDpԜ:)Pj$_+:͹Q2(m{?enUfՍa8Z EDx=GHUf=ХF,)sP2#'< W6[ +ps ;EoRP(>u. J<`ƣ~9 U"Ed$ĞXa`z.?ޜﻰVka o;? wKdf+{ppnµoLTfxɵhݥ,pl`).ik?u_W[f$ Q2mLCAL3!V [ Oޢ~6-}h`&:3[xC荏ڠJ $YhvSJY-Lu0Da㕢~2@.t 81n ;߶w<ΫxS EBOBþ} bPRnEˆE]Yw9wy׼oDYa+ `cA7%,$;VbB܈ DmY@ {ERdۑdހ0>`d$R@I*m&!SJM|xv$l G#1j*!;tjo\젚 UT$ӷ riJCF"-s;ebHض^i҉:0 ̤ U_v4C@yѻ#L-k½ z+PH-R==|n=>ϿgwX]@?ڲa[WVK@[u@ߥY-6==>uK}F{_]|httSg#}=?U?TCFk8;7KP@brɉqؤdg8d๓uGh&.7+M}_Mw$Ie[!RVQigG(ȋZupUο˚+"ԮcgL b]k^u;0-oYJ8?N2+ck/`JeHxt2ȢDqryXCjGB"^raWGR@RՠM.$+zKrrDSvwʒ{s"6 !Yx-ӊP|BFjB#eוaj5sqȭCBxib[kĶ`d!i5!sf]g*Aq2y?CMu1 :@j:6ۋLniNV h=6s%[g6_4ή袳,~]uy=p8|z W瓍!1h"zVyuM5$6 ط59Xw8\BrR @O L:+_ ѵ(D. ѐTw>z-%H_<+g)|AwG/XIԤ]*/\tNً,=]fmc$O)(uyْ*~CN̗ _Wr)d]%HH~p+HӤZ3~FJh%pR Y!s ְ% f0f/ }}V<72ƈ ρn.ilΝـڌE5)Q`I FZ2`2Pk`xXfKޚ|jd׺P/b87&Sr/AnnL^)ԃ@\ "?~f )4tm͌f6ƔYET bb쀙 IJQ.o b(0_|$7ܗD L.i ĦBVt!y|,Up 21t %;SpHe^J)bwZjPXO3^\ EF l"kҔZt0fD럊k̳* 4i^0y)mY2GmыѵeïsZ[r-Gd>lW_5d(ߝAEd9.5Tlf fWw lm B?k]mpL(*%$LO8+ۣR95C)1)靕Lc,7+VqaPΑ3_k%ئ{bw-[q,N4I 4!28 BB $?K]ooK 34Ny 6ePiBX˨o1KZmv@ ,!䮏)E[+~QuQ45K0yW]2x.XG"qt&L@- ے\P֡q`4LP~xE JZ-ŎAucSG1]^TbW1_ť9|B}@E: ~,ZvHF J Ɠ,fLX\h%qUxr[V7YSR @PˁdLL@bŁQދ>f5=M}=AKٌ9=VdѺ7яޱFn$g}ADwAG^shl}ܕP`U隳s@]+HE"]xth'Aǟ cp:z\(]c USQ,}Y?yy J NS2IgiB Xt8BbUTL<ׅ vd>Yy IU ~(To –3 gmCc8?$1cQ{wUNvBZ,s3pP$@3mA)b#ϡ-  ^`eH&g֖*́Tk7μozg=q)e_v]3ɹ{Hyy"߈- RAA];=>A'yӦn™Ka2Rnq,*8`W?!EYQ`} e(;s.}Al#BakL\w LŘ{Nb1Ӝt«j sTua W/$fZ@`rqn.Kx`4bB4g42(A7@.RZ/ vgӣ CB YnۃU";v^o湁N# ,ގMn(̷\3,5:t7*Qh պV;)? FبJI;*? \k\7(gwq:b1c/va~ K6|{X [mS)2~Vp&+oK#駷CF _6.ͯMu#|Cω 2yyE↬EœዺiNfköx-iKEGB_htC  ŤB諄z78 噡\kvr租÷<}y&/7U*֥q7T|SNgIh4RIJ:+9Jэ)!%'@Un:2x W[#3)ɛ -4hl01@N+%cCOʢHJ@5s5b F xHijF,QAuÄaVb^14bqO\TVuXn>Gf/E$nu=ef' e7J :B:m;d:\Rʌ`L(\m$wҦp;/Ԩ\)X[ W>8~&8::,J&eqzE9r#z`,Nڎx vJFC0 bצYD%0֙N{s_.NpuU*YM.au8Vl1SN& */%3kk@3jDƵB=/p,7Iokߛ\Ppfq4T[N{,V(A8n0`Z,I6ŭ_;)ë(5thbK%hl(VF56WMBc f +nC6y"ǭSF$ -uc+p P[u-Hq{ %mq'.5;pCnHܵkf-p jeq"m8O)%K7;:Iz8?s}>K•}/U'E}4H.IM< !q9(КiĮ(K;Tb$}/ɿKy{y̢W\36[&kHIuߌ_m{zhIFua2U5FBt j֩D1,I6G~NtlS $BPoTmZH bL$W.iD {+S^tIx%M'\DVYNQxU1l9ax>4I+҂X'&I ŮYq;J$kBG $aOlSoy:e]IG}=A H3R]d"}@FbU-ܺ٥[@AٕҸ hT9lOh2S PXΡҲWlci $0 gU pvN@%iB\UWweW͟+~5g9{kn`87_`R=i{aOF<V,GeNIw"ΑzۼxYC:u.?Yޱ-4# 3Htu4хjb B~HS" h`t{UK)(ԽҲ!sF9N MJ>!α. r\Hw]B)SIրvA?7 sSfyxȒRDT{Peke,&zD4f9zːF"յ!.RqxK217cg 'RdtEhG1 LA!a$nRlAy)LSCAt=Ok==>"jǾ0JukJ}>]mJ^khN)5UtAK;u:pdN,EjפHĠ%d(WέT6Ny:[0! |⡃-g4cT\ׅLξmĚGU#D=6lY*;1$ZkcF>H6W*iYVuboMsJYm;`j -cʣic\f$ڱj+^z=v\,^˚WEMlʫzn^ Cߓ tiS%$ʵbsR;e/Zg i6@ǻщ QC<)Jz" CqϒkLJLyᣇ&8Z(ƀp|nb Uh,e 1i#^†p{5g_X,@IN+(rVa6 48H?fl.ߥ$ŜT؀o7\ ]@b7*{uC.P21eA۴,xZ˂)w8MZh\J{#2%/ɕNj9mM LGaWxk15;>}CYwAϱ\P@s7ynϳ=%;8K 1k4dR㧓heaw9lp$;6-{[\k[ݾD'Ҕӄ]:ƈ51(_5 ڑXɢ?̉÷ɢڌ8j]v7zХ^dnۙƌ]O*IaY蛰>`NzuN__RJz-3SK|z_|-#,<0>ũ7sO(o3ks!01*IȠwN9eJQB?EMv]͞x*Y.opV˲i՟"om "{V7Q.a(UU6_UZ-9_+wLR0ox,$Tm~j!F4ߛ D8CBI'LUB"MQ*6lGy:~Io0_biPZHeQGώLǣCafF#wEl,ӟo~lUp ʕl v\ B: Md[xB0dPVI:5¥ M= $]mN)kS/q)odY86'm. ne5_cp-_\~[@}iWNןF;-)*/1%MCo0o~KL2GOiBрbq#;0-K9sEj)gKߎ)Z:4/fo)%7-WŹ\4L6# LchA|WU Re0Ǔ[]{r7A6+au2Rv:I7u̕[rc3^ fO|G׀Nade|1A8iE4gg%_6)HD7a>H鸢Bxl d_L4FhtYdbUVH^gvHB(̓s{z072!]~zdĿ W7%_ :8t?W0pRIOh2pnhǑ9xڷhd<d>$]*XL@lj} N Èل#.:X3 h m%@/ B4.ȮG99ŵ{Arȹ:Ks\X1;Ts80+۠*K.(;H0krWFkw& Co⍆O^H^#U<úwWgjhZ\@I[\0WyJuu^Ll 8tuך`G],'b.{E`}KMcz+AxLMEjGuw*d.ei8H&%տx36IG a']fohjYs脮\N55:/[ԅXM9[7&pG:Cc>UdS;r@?@@n!o'2 ?2h#1pl A'? f ;x@'6ymd?_t?/ܠ땨?9oZ1Y7(gH f@D SBǚ!`% uLw% 6ErGMÁİ)'s䕬M% l㎏tp-E ݺ6hH<ʝ.{T0wKO͇ﵜn]Fp f=Dkd 2߼((hKC"p.{EYܫEɽX E{Ap -Fw-*!˝` P"|}eS8A` U5xAZY4C!Z-(1IJLfmS(g| xf\GSi^ok;1ѮkMp/t;ĎJђ_h),[ ,0sE>J$7cDMˋR֋1CJ>]EL2$i1)*+YS$1bB\ B*bb+2d3sykG'.#m$G. [Jl,^HX"aTj%m2;%ä3zpv,Wi2Og+2n'%Q3$JZW٫wVqtλ;V$,]J;JAZB+dڥ{`©RQ:(ǁ1ģĨ"/- Լi!P:AT jmE\$[7:C=4]Trrd$Z \4ENsSV_;U~\{Rl&{`&RΑݔNM'yx`u Ѹn*Ui)'?% SēxrksJ'QO'>aR6$ "^T*7ŰW1OvH2Zm@F:(B_X2 tOiDj-ԎbȄkj15Hu(p¢J,Bq|dend ]65-h8C*폂Vq%*D!9q+alqh<Q#r"&?DzkY%/4K`Ȭ`V"wuXBZ"@q\@9 ZF\~TE ^bzLlx2./ޙ]|, UK{w] 5E%O QfI 6E, t).#N c͞xaJDFqo ڲ,ד Kyԅ<yW_[_* j/֌&1FmaE%,&(58z6V)l2&5|J8B~ޑ'CZ*8ٽa1!#LĄOg$淊a77V˾̛̫ 3WT%sws{J|+B %DTz2>q >_Z7djq\yzVMrBvu.^d h8ǂޕY-!0DwM;SO2=Q.2)s3AQF *$(bB@5U[BSJi[LBt,a[L:+Q= +z{r[ω,Nlv1/EvJOՉ'";HRayNH7 vj?oQQMl?W CRkB+39lObW\gϧ U 쌐 Qj sRZwH'ΔXQzՃ([ZjmA @P))1tsN)ٱv#p MsN{̿UȌdE%Ձc@Vk][?1Q‹pjkݢM qS atOϷs4ahB m)ƋEHd f1̚w oh"Rk5QDOϰYԃ##KZGIUfqv<'~]V[3F(% ^Sݼ ˙N_iYrj-Ue)( BYKQv8b,_0q #j(KGWxx.s B:e\.['fQEeӲd5vZD; Q (0oI6Q2"C/]DCmK!:Wa/$B╥р7%6 B8lG" ]ʄ5ßo8>q+.睡uEG>L+BBMu܎bv  CP2,j404nFw:<ѵ1!$"@﹙eÃvIb5w {l"l$I*4!'5 𥑆BQą<Ϻc`YR0]mr<]6wnA-<PC Lx|OIHb3ANg6m_%В~NrԋV@U7N!Bڱӥas(6i!($ W3 )@=ӇIac#I;B`p$[o˓G!|'#|:~~` tސ8Y~c5!Գ1Whh؝}}: s ٍvB!jEE_V_q6ՏfWF&#P3Mo x<$8sbԼn$Re,&P#^8e}Ja־P})T27҉{].›jű,s.Lѡ<n̿D>8fF׶JH?,i@pH^pV7A#؆IyHBrń4̩HpMWۖ~bq̵;u+*YHH2M{c8L8O>=IO:Er)cx!O~8)R])!Yh Yh!`됊,9N 'A6cQOQl-V?Β7ݯ@40Eߡ$ ܷU rQ4l8- 0S rm[ ~_Ra i0#EDZFbt^vtWPILDӰF:&ag up 1E D3fGG\B0DIq9(s*iQ,:燳Ǐaz T/7Aִ^N1#TMhZgS0gU5Uk\a?bC\oŶٯ ЏƆf%Ω oRР~ԌYmiݳ+m#o=O8?E6(OpzmĐGO^: $A~8? Ty!A.DŽYBpT^ nH)a ] z*w G*jf&_!ßJ E~BAfE:pCk?z Sk)*J6K zR4hm6hFCS2ƏowAy*O#ȽT4[e_`_MMK{~m '^Aihÿ#D60ڃ D{7&qG=9 !9#G+rLn+}7vY`@TFX:CSw[d*|-ʝ8WY5r8ݐ$P&I_7ex 1}2`%}jALk#iڔ!nhonFp'dw޶4bMb2O7 Kc[24 ?:p'!pg/l,uXk05  t0*Aܺ>9!o/[ހolO_umMYYvqsT+ l2HNe'Τ^,.[@LSyj=&G<ã{"U!X#A[jV17rH9AZ#YcsqKpD ÉSTlÖp3J7HVGY=3mƥsh*/OyBM~8\Dt3EЕRhhԚf֥96cAUӖPTym8ԂG zEѬϝU~\?0$JJ@(Bsխ,0!XLLTLoe [8T5/L /#5yM7},^yo35'/wio;XQJJ NO YvpbikRMY ōsKz3nolο٘ؿ>A QH\Bc쥏pT.X4 .JO%p%$xpT` vIL׿ DQ1p;^fS8i#~/xTpWV7<^%{+Y&Sܡju!Rpɟ˗ <; m/=^mx _#O/l@Ͻ,ba>z՟M$"PlXI> Ţ=o8(nCZb4HN_+a<Ȭ{2J&j "Mo{)S`}g0H܊Dj{?KcYQԭ/4ؓ^3u{hG~h"n2alGPR'vjuÊ_Z}6 x jI~V /w嫛݇;ƚuVe|Y4焾AJ?tdsW_  km| wP !U벽jEΥq3 G!A!Ed :Fc ׿"ȡ>p 27 @LǒKEblޓWg=4hZ~ ba ʫ9"H޷@8L(mګn ^q(f3s^ꩼ:Q۹&~7K뤿l? Źgw5tO2)zA ,tz} g=3nӆlPHWL?̏XfJ1Ŏt@! 2ߪl<̐ P\1a}A#Vvm}([? L",QwuH&tdoAGXъjsG,c]~/96M (Er? L=ؗdTF~BBA7g[᫆0@|UCG8Z\2#5%O6gW"\ڡ~҅؊lo @K'B&Ze=<Ų3/՝R;"!udoJѓ[vV_Ls91ZCh;{ =a'R`om1!4#F.56u::t]Mgwh%a`-R1|1H1ty0^ QJ ETKy῜qMj䋗Ng2}Jm&d 3+ =[Y(OfMM+zNOaioaSt;ԗW!ej 6?Wx%ik!~sPM 3zps{D/c~$ɽК^:0СO8QùXV{BSNռ6AL9H'Ҟd(4j~ytBa J- ]Z^bщB "kR[ּK3ؽ pmaӖ=Y4]յKI֎;LHg!`y=KXytŻGE46b9;IH"?$C)m]((3kسQs@2δix껰od׆}qDNXzUΜ|դ8ҵѳv@v>zƟy-6íۤ5^صJlk;,Hv@?ӵYE{hP@Ix2- Ъi1t'MOG p%.T38p%✝8YF.uSPc@ KE= 2k_VT/^@屗PDgKq»%OXc_6욊a4)ZǵPKR@v$8v[i 5=GH2K8-M2.r88jNS{ *rgbɑ {6 ^t dH5|Y I3z'@yE*P"^Ҹ@R_ f?I~w>m1%֩\f1rReT,4/ W{Of"*&$r_W+٠JvFF)Y"!a}6>peCbh69U"7ǑVejo?ܝĤdCCՙ穚R>wr[M VAz"k",`b:Sub#W/q2e/ }^_MW}`g]BΊ`Lwb!Ĺ7(T`>9MS?T=BZŀd I1f̘Ps_ק7>+Xh_9ЈGzv"U@\o792&Tn(J {r ȁSV4sWu& oVcTSi{khM+Gylw\w(LI= ;zpoMW%0SS Q[/ڏGkUΥcWʤ#nsſirAgB 3[bV΁P^e/v~%|#d!p^ݓpݿjRI[A _Ap/v%(e0i ~xjNd5v^ 7Ep(U?BD]>7WunŇL(+~9Tf="f{hTqF$N50,UYh\TRěM}_0@_r UdqT-Id\p2/ŗԈ&XŒRH]@R :Hs|"m ƸW*WyN"O'AFR0pS7%:7`}N?A e\~;m*F )Ù.ܐ.dٺĉ̩$|y6ّW.4cZu7P[Ew=Ӓ7U ɨ۩;, BG=c,khAzTHI n.$-Raa,q KېX i"No%~1 AQڗ;9s4IHdg/jx|~H2쌍$& EoHOื>TG3CK20{~8哰򄎔<^H=%0myJ~r WXxsV IXJ&] ^;0/hJclPz/rE(1F8PU(?J ksh8zbzkyVʞ /BMk{g_-:( C|m`$={Ob^ߜ^__gEˆ=ZLc23U4;\uHpjxd_]xf @?OŞ`ٔ]|_deLDeb#GO'vh& UJ"tQkhbh\̨0Hn])yDa8p- ؁v~P,'fk7t,~,Z(y)5%O(mtv w|w>׀4Kq¶CpfW C[} [BCU+^]Ҷ%%RX >fb`?gV(6sF 3rO,\αy%%>\re:#rK=˿^M[\RB >K.S5uJۡyF/]MIDv6Æe݁?#vJef MM6xBcc"FN*Q¤&pwm$ 0w ܊5S$EssHsZMD_ 4P`ܶtPum^T*8$;&:{U^k>.vq٭;%AC`V0,M#-0aȨxU䈒XF55I;+ktEQBh+㿩.]d "bbNE-=TRϘJĸ/kCy2mFq8V'Rō(^nPOARGq_ۅ=9[vg, B" ēߚMg6P5(F_MpnyfTee G,@l7|''wT~3u `rp.8|V d'}W k H[:"@ndm]B IS92c;nۅ04g6)dxHRc@SmkcV^FسY<4igl'i\*۰]ײPsaLDU! uؿV-\Ol2O5j8.6aq]m.`1Cb05S+:D#D"0Tɬ4?U%97WF\t!;3q 0In7+u1̓v,}Q )}V@8l{E}Mj'uQsb7Oq. po*0s$K14S-_MMcw&¸rh2q zv8j[9|_n^Jc~/v#̴m1auC49~m,"tu1Y;$:&<9JQkQ-O$]QPA:/.K)k'E9ڮL`r-Ԏ40k>,‘!':\c7Ŝ&A|ffxo8ܡrpF91*!vn]{5_)2A`CP35U^Ot 'Ԟں~C/N$/EL:A%Z%DEf~Ą>!i餛{iq}o/k]vN„j .k3p85Y&Um? @LDSҁ-?spOjNG\kl1eGz'9[UM3̼avМ1:iev]8& a2h`OLQנ$w͚iI'.yPSJ*yC>8{LN&v4 &;R!B"kNAť-: Zݶz|}BUq3뻞v@.tQ_m4Euˉr7znߑG}d(F""P}Vjl+ \o.{5rä^4[^S]% a(+B̹Q o2y;uK4m4/{⟃Է24pԊSb8ogS&g/XtƝS[+J1923r:Nw{W"iH#pA#yzh pz"pK` j#ٽaY6zB5'eu/꽈]BKJRZ c9O.f %;FoUɮʸGuBȕ#;WpdoVX.loj 0 L!\6܅'klj5{Iаʓxo[ǵ7wM%q<0SB}Ky_`hPyz߮O}@^TהKUu0KٺXwFYHE$cFoH8p:Y`8<0Lf/::PW|:Mqq^Vm>/ ~DP'պPy n[`3=OhcMyI^ەE=y(yJ>̟ |5hIo&<bG֗W^~^owv ǂw &mәֺ[[CUJA&{a;\'?55>ϧsw䘛ZPM;tJ1 !pXMx5U$QVDD9ٜu귍T S}.5ng Xk|Sq`%AŸWu/O_}|2}= |žoʸmbBK\ {_}%4bwmx2Y9\CuD1CMO[,wj|<<$cy*ɗ? ReuEye8/r!pܿ]Dº\h0~Յ䄸 H[2 bxpgyQMq`3+m62?c$ziMat,eکKJ1|g}kQ>7hdXowRynQnwR_y>N/{m(}C`1@yuHZҤ۠Ʋd!$L}L8"'QOʪHv.銃k ouWGQŶ@"#ca\~lFli#f`]ɜ\s# 0 h/+n\._^f$fu]/r>\RE6Kw^Vb&"Uj6LfcO:K ? A@ӖOV]V fͪ,ES~Qm޲dSKNSh4t^B%NΦyPZ?jékE@"a7Db{9`@]0cSH=mkO6ͻ?u/zU*`>I׈$HmDA ˡ^=O-pUSF"|H<o䠨PSĦq Gΐut&5N;33#hMiKXH},nW܅wcI `)_j BG8ؗPO$?o%KfYHEKYp=4r:=S{/ve>A #Fw'xc6^͊WiuhrQMN(6zp/3_ly|Y3#6<s *x$ 8͂(*5oa3"XarK&UxB22u71̢wZv-0%NO=sSGp,]*\UE07m 37\a]=bxh(Ή)>R24?6T rِ^ % P`kB+눫@NpX!nq1!BE!y뿢o^9d>6+:g]t0|ǔ~SlRVywc#z }٥ Wˁ iEFwz.F3z#z"&1$eI@j%!GYlLvT.#^O'SQ)aPşoUQCh ddӃ/'8R"[-I1Y¡YID~VmO9 \M)TRZ/U|?k/:Эԁ+U;ӀzjvE?x!QѥGAQcuroJUi%,^ر(#RmT BoΊƗWe*bDE&=LxDp{htD胂eq?Qeu"fs*S^ҍJ0oA i4 [$:GMcIsMS1$Ij nS5-2orqn}FiGG*5Xra IG`WC8kZ4S@]+t̿y\A9x7K,dg:lC{G . ^vG!W1"3 }Be Xd` &^z^#?(&H#9j4՛IDۆAMT[*X4f%aU \>X @ )r/DI% #Ve$ i__t;QJS+E G uwu6nީU)zYۮT3 7Լ;9 n՘vwro/<lchY0Xek͇WZ0&kD[䭬h.@O#z Taբ;VZbex/)n?b&\-t jZx(\#=?W ! mjJ$#N[XۼZEz@(^Ϳ`eԡ+#\]*s6m@nIWKɩG=mQxc5o>Dج&ڠa#ꔻJPȳهlalG&JY K':s/eU<^IUus~Y⦆:Ϩ3Ѿ.ri"H\YS8G' wl6. BTssl3hH_Yglx{D@T;\9 zeG juld3(P ]DQ?6_bUg;W E-BΝi5DLjv&05fH# ;ݔC 3QIhg}@lx[+f+cPt1&Oc~~~^y H"Еw(8D;+C3]Sc|41?_43LK U. nEgg8LGo5*OG hSC" §.B2VI?߸m1f䆚CUQIHh%[hij$9 H# &E2S hDrVGTaue!540^ 9pf(:نm]m.]{QʔLƀ]8zH ^x9mܰQTao] P"ZVҀT JL]9aՀxs mW|Ti!8 -Z^bx37T& ŒCRB/,!ZWuY(2 2#an-Q8Ւub(bnTBF >g! %~Ώr1IZA]yJ¨GZf+68 + _w!@W.z bpb/PJnQܟ Ci>F'@mzM/Grp;p x1S g!}ݷsgBad Ɏ{<0ɷnNkU ),L͞TIվ2;'Ş 7Q=z"%SPn( }&( wo8w'y,]m1$ 5WxyֻħpTzbVVe_ ˋk շ[AZܒs0)T+ycK8x9̢ H.SVAu e&`_[F2j)_ LXi[m]__Χ+'1̒v։^wLo<^@FOLr *c\9tF^bҷMc2Ŀ 7#Ͳ:kmEqwZI,]bB,dA|ur}~׳hړ;;:Q~~(x*0ghG_|/Wy f\t7P{h!B*=56Vs WXgRnJ fE%Y f[Qd9F e5Phۘ"E״Ta1f\4"V}< (zDi(C9 +!g B?=$2yĺ0NE2ӑlSEKdf^qjcFP? @[ m, 5S)2t$;\b ( AfeEgUoqT\[CM_iї{Xaٲb9M򍨯+~", jh,&=o\~YqJgѦ\I!!|6:~ A]&rD?ņ]-D$Ji9x)u2EfO&2bxlVI\>L+FYЕ/)ᧁ^O \ϐY=q0+{DX%ls:Ac2@-5r*esk$rW|=4{*j$pjo$jJ6Dyjň:8P݊ j`"^ۺL|LolުA.6%@u^-(Wfn> j:q?,I]TD [. B- >FjWRI$;|ue\а;qrx'Q Oc5Xά/kQL$K0X(1dvF !38}x]֊+ g&&.?\]ʤWwILѱcN!B ̳ R4MVH]C03IGk. 0q2ukAN 2̊d[K[ f7AoZB YNxn6~\:mG6Kj6 .g Dee~?m .kHs.A9'a0=atb ']p#du&)l2B6QdjvQ]#xFD .IφaQt%"JhFܩƌJLӸ~m İ&(HPܤP|8̦9[í_/na~/"Gh'(Ox=7`aү^u-ơ'}>YV˻4#b1w}OM& D|8ojPWkX$J=Yzꧯ[OA8LXzj7p$qZ?*lN~h(Qx+%=!3a Ns4,Tʼag:jw/ $W8 [07K%7H="X$&%k .Y~Xꩋ{+J^aM.+.[$ĺd`\,`ƜD5FkBg,oԁjdLUӕ BMk|r)w\n7bw0-0 pr,ѢVJ0[k8P,5qCԂ%'~֊yzEdbA3̀8UswNf&9dw!|ħ^,]=ЀH(,w0JO`9EFX؇Z5NJ'wu~Q7ތ@Tl`^1X`x6IV]9Lz0GkxJՃ~һ*G,%P~sV_Dx < S[BI8.Q`$KE'1LԜR{tNKH$l1;:>ԮS4p:L_x]dE"9lU% N:I8A#9g"-8xv6(8l')D 5zhF|/$0?#ӧO}L(e;U551Hf/Y[gEmi3q$B KB+V Dc @%){[T#!X\h')r7qh 4euZ:rVʃͨ>AͱJVU *OE2|l N V4< )2ڟP+cE7թ)"-dzFŻ4%3k<|3²> l8 CGc?ԛ\)QOZ`I}wh'~o7CǞ|Ѵrݷ{C%cL_aw@sfz'nOR,<5zHSD.;x!pߛl8R_睨W`ٕԥ,:TNWou]K%'aQgI+IX =ՙn`Kqc]D+dy'/<4"f xsghT53Bʘhh/meVrWf@D4!)Q b/9[$R''c0Y(K*ӄ^M)&dԖ/.8 0$SXUhCy:G)%򦅾Di[S []wVciKWVK]JOr?7: VzWS;rY]G DʢjBoHF,*+ԭDu$_89; ݆7~r`8z7@'U-jŒ zp~gH m,}HX (tʅl$O'灓6r[j Ⱂ#* WiD)$l<WB{&r 6Q3UC`#U#hV-"hv7]<]wR.bIb.c^"چ35er*2bx< m ` ao}4QHx; %EDiR2jϤp@`]̹IQՇ)$cmtVD7=_EGSXJu`RoY~B4deԐ\m"ZSk(<6PB;qT^u/|{R@-I?~L^&6`q.LôeS &H!g>'H;IƑ;C_g{fCxOg= dzx]g>z|wzMǶ|rY߅M{?gqǹ?8/?gx >wGGzk@TQ(=~4'\櫲`-dՎ{=7ݜ_JzXew-tZMYWglPvt•^J,eFbg?Qv0Ń2Zqhg]О^ `/Bao1 ̛evF&'PBzKq,񟤱_ HɛL2f,gTcr)9 7PK_j0O.j.j6á ]l)8,||!eS)-gCTKW/]m(\52TsJNTbQ3y KMƦElIȲsUSon?Ŗ5,52n+M?E =9*-o,Uҕ♧/Ქrw/0hwR,l]n)+o<]G5Xo5'?u:?ŴioV8,\0m+bi9k5Oȭ5wW58Ύ j$G⣜,/q aI "$eZ42JOg{O(ERcCi>?Uy?}bg1A_Jv0A$#BHe?3Qh~^\&qN8z mGU[44DPdǓXɥ`녦[ƀ^`UٳB[I;mD1 cu,!-iBG!C7)eD{!9 A"BE<k |B Nf&L$lJ psOrϊ r&RtO hD`U8#ѻ6E؟xסt< ;=3rKI"%Ye-0󤰃^9=+NgbjOl-(}qK }H@X 7!ӈ5?>?|DX!ςik몹mVI6#A_3?{0Z̀Nuvk@ג-j/<2wv?]TS:3F##iCS5 WL@cW_~z[2!O.(\ӁΪF1w$CCvTu5t=KϮWh( ǧ}6l4靆16fp4?%|Dn8oMX;6՗o>>ob.Mjo͘pCFs>:903Lhv=F>ŝzfohFs4{w6̗o^%5DB3j%e-5506'-#1q3V_Uma nޑ{Cmڠ~4:ӵIeD%Y`.-[(ROڧwmH!R(u4nRSX$MM?J%_ -@x3іI1B,, /v:նZMSDu,F]WE@ I7ο1`{ v+[Oİ-;/_u:ddշo (LW߼K;ůtet6ge`U R8-92iеsD{۶15szYų,T^ rEvkPQ2B5ĸwѬJ_,oY;ԏXظ?|yh*,F9AO_8k V׃"<,_cWJ?wyjr%/_GmOܥ/#3 hSFQԬprBdVFLd㇦,Э8x^p,ma>a>(~t4HA%A?%U\E'޳r'+; Yb+`U|^FR)Ƞƹg^eZ%'<0&=4hy*BuPv_ ^}yԟrbYVsUij\lcun9&ψbT>A&:scz6g+_pak, q mtϓ3(:CRk\q,kjǠ1:h'PۖJ-ʰbCcHᄅFPrEߓ%r(0IFu.sab vfﺿ|B ,Sv ;* W#KҤ]Pop Fo djL[E&O_Mf6oI?x`(Ur?ÄԪ0yZM0%4,_"2]sbv5fʤpƙ+Y<=T@]쉐Zu-b {>Z=B;,(W7vU* *Ebze 8#"A*Llt|#i6;|J6S@8WuiY4L2쪵CKo,M3\23BH-O(ÈB,&<YD i(L3/`NLvB ]sͭEۆasrQXdov ߶ ٕ@6^ENe}iu#]oVFkN2~ GYm\Zarݠ;SOrw~^bOBwBajį}^Q%~+̒@)4NA'cisQ 1XUiq)x"JGKY/wCz< ML&xDZ0JH%wip=2tg%U|(XT%$@.*:p~v/Rou7{Awr$WF? ۲ܲxT_ljaXj$q )](q%8 vRnA@N0 f,(T +#*";Ω~hA1"q3BIzBdT򖝩97AXm-f>hXTN{. q240_ SxMfDW 5J/XV.h3jiq w75׳b,pZ?KSTf] ہd:gƞ RZ{kYZJUZ=,|EF6$Q}/EpkZfߪٸq; GuK'Pc]P$`%3Lf(GmeB_q8"1TΜ *x}]MDYA9_Һ T'*m!X wedj3nIr텄HiI1 Tp=t35!?:AH|hM\x1ɋX&5:#'dF®yps k(λ*RdD rx/``o. %9h`(D#p s3~,މEuV_cͫQ^qTuQ)t# j.FY#!#Y<:$k6 $cY;'# e4fhmR\1YBwK)5âf |68BXp>>\ ×֭ ߇/sd̕)!'ycOxBb+rLwRkwDžY" :y 焳DW%j3iaFgeX<zUF!$ހ̉*њ KQp4B 㪻RO ER pgB.ժ.B.CBn)vJR} Ȕ dv<Ι]`,4 il/ @rWJ`*FF=.&]wK8ԘqMן̙7qف +7uoӄs(tqnKl`ز$La٦;XxC&Td(m[e=FC so˂s>?~JX34%1/nSzD 5w#L nȇEicf <Ξ#q e@噫.juJdEV=II6LSHӖz?to kݾ?q g18m#5EWl{#eLqA&o8!,麙1=M MCs7cWR)UHh{t[7PJr q k/i)W/lln,L: 2<0cncع=&YþdYY1+x!/i2-ACGao#}N}*MZ-ayKRj=zbe +b؟dNZC/8% P1uȰR,8x5E9昩Y)X$^q_E'#3D}D!!= ~Gz7rH 6"e7Ë;aߩ ވsAFP/+X|B6[|5!6S+G]lp٣cjtEux@ITt8Ld,vAȱŪ*:<}ZgkäsBulmPmh#2HIsh^9cBF`*$R<ꪐj$}ڷkF ( c:սjJSPP}ɝ$81G645 s²,ZNJ2S% 5ȘƍNx 4S呯goz{Ov 0NN(.s/3RTAl^FbE:"FT?LPB6rq7hb`Xh(,DrQ#tݷLW>Z7@:51(zi&M7],PVwU;2@%2qz"Tť4H}SVdNϤG6[;\ c^rn.y\l^;1?WW<yZ ty&UP #&S-Mo2r -?|墒2_sxwnSJU&sG%Uy$Coy݈zӹT4f0<>]ido[}neG4wuMS[/sEۚ:ʼK1|"DXaJ4;G*E>5+)m“u$e%A \"{XN`xH(ۍx !&mHe;eAO{%j"@N,W(*=YTK`N\IYԒURG;bH^d]7.e$9{,w:V~y_~7/|hRH+n,=yfYT/LJjŪ:O^ڏ4Ūid_v=P DcOBG}_ muw ROD!6Sq-Ung dQ@n@uڡRnǸ|.1ڎ!EȄ7=6]|CB ?@{)6Ż^xMTxsڑ+1܊7#=vT(h^pSEQB֬$zT⻽%z5 mۑuK<735s9id'1PR LD^$]:98&{>G r0e Îī2/ϟ3FM")uؐ i@>/篾/H Gj ,^N/_]%&4fk޼p#f2j;/.Gwb w4ĵ\8M vx" }{яI+C@a'N#c%{-H'%̕UώU9GhI%֦#C.潩y8Bu1BU>֧7Z*`qg$[pS 䏁uVm:@bN7qL|ZȐ0mt`iF?:H?|¦43:ܹt1廹'>0ķs8G 4^fmkvuMV_,PN<:-Ц߽?k߳;U&4%k]8XCGYb=$#U_r7&b˙5%ْZ‹rHr[W=P6u[:gC ctrq{sU2= p<7z?mRT GĴD Y$J $0I cɐ c1),JMF!EVޭsT1SiQytP(F_^9\0pvH~0i\dh9|Gkn&v$)`)q`I*|.TL2iakbī{/(DZ,!~Wryq|ҞJ!.rح'#cAvĵC:ʴ귋xS @}mٔWBPYXyFXНF;ךpq6?Y9U#ۮAhP6B,T!6z+UoKveON཭i ,9o Q˙Ȁ,:.F;i!em6~0Q2RRTfqx.9 2+A&%Vb&1NY>dbQn'B;v(?gThBT%~@Uы;sv R 3fMORŭ/cNCNlv./՞A=xY53*RJElW%jnr< 10ǣ!)Ư9xp6+JU$^{qeéo,xhզޝeWSƏ'!RWa-ֲCU,D]n?>&*SKB\jّ$B%Sʡ oXa<↬&sB ^+qI֫W?b~W_}mY&iKZ Yꡅ}^5ԈV0˖.-l.ZH[GPNJlA LǙ!WZr@b'Ŗ\UZ8WlQd#>WaUDMf*q}'u4k4]vv74ML v_`bkTlpEVx8 eо:.F.VIJ> M赩^=_w]̒Jm|KMrbYrB3Ηc%x8<(JLoE@bmY1+#9$`8YFJڙe-A`aĘ #} 0es1"`ۦq$svM(n=QGFIxl" _yCQ%Ud-Q^#30a^NHaӴ* ^岙n $FfnquQ6Ssf0]1gyV, p.vtSLp )40#.$˻Pu{` .L= B'"0M-w]rӰʹ^ SրAq fi4Җ]Ix}"25bJY)'EdY)&c ]SkL5D&v_cFd`7*"Ɔy{ko.pD BldbQ|AXgeh#&)xzֳL@1;EJ]UTP P*oj5u0 މuZYYǪn%wo1vi-L"-k|Qoy`^{,IR%zO«).TiJ㗬(? ^(jq)$m"VEa-qU6 j/i XŦ/06>ڑD.v,K3,95ä`y9rʄC rД.]5Sax&6pe3_#ud@ BlZv)lXvVVf,r$un'Y+p@m$Aw3 ԀTlQ./x;RB}f a阽޺VA 3B=%Y!YW & &7'1aA?dMo;gg}~~2~ȓUQEMJ;NcEN&Qy`pכE]=="n9 ΆRٗEKz 9ogW$$@ v)rZG)) jÐ .#C,ނ%ݠg@e|FjsQYmW/H`-8bv&"}>^$q/͇5k*|2JOpm-C klі\0x?{\nq췿s.9v-u%J_~ u]SE`)5EQAb|É NB?#FȄz'^8o‟9g6g<` A .#b S H]Fb˱kVFD`d{zD<`~WC/a5`j AVsӝTj?W'GDeDnV-x /Q2(ħ0-FM7v;vL=[ Ihn".i*Jqe^:b+^} uEa9ZN=@qXQ2 Q/#OYM7+8*=a ҋWr/1+BKa a_7 u8T.Z[mL'lf +AšN@W4UK&ZYI!.w(2V1j-R? 6ATZ `L5Huy.(c5Ը&n4u&PGt }gWv޽K1obaO$r$x$/;vS |yZ>I<e})ZV'bto*Xz=t@W-:Qa# WS],' a(aW5[& s8R=AE;pؙI#eY4|,y"Dl'+Yg^_+TW*~vS52=<8ޖܪS5 +r܄cc*y7V\tנ%.JfcUx|3R`5Mjٺ%%wO3!=^qjFI8 w/uP&Te,S8Mu- f<=F ._JI\6sRNǮEl,̅!NQQM܌o~咩&|^TYW}0SmRtslYTAo)Eݓb&qLyu39#?+=1YCx+/Ep! oL1(\Ǚ? %UYHL9vLLdJXD!EQ6.}1:!ms9#'$aK0D%[CJ $`o֢hM4bj#k7< II9&m/x_{-LZ̃-Ktl D^HSѲ'+Yyy-`ʵUQH&K}V$F>)De Q}.jC>Lw*eHRR@ t 8ir݈0+U[r\g\xLwwΤ,c\[8^/G~("詜;e Wx`I8|Ŋ (.ATf (RKޞxIҖW8* a4srУz%۴RP>-[ƬޝK0wYd/~0%jm-ԆSVm P<(P *EEm|&`vf;aNPyN!\㿉Zfa@Nת\-ܲ+pEm OCLȅ6>'"⪦r"r[S33ٖ5P@GPUF&({Caײh|[o}+4PO)w1v\qA;#A~U,,:kVEb~} W2gP{c~I>˥wI_ {F}ZջMfJZ/I^/nfrQ.fܛшbGt7Ȏ45@e%q"){&fbX%@L#LbuyU.ьAɊJRRbE.!@kyL7U j &dﻬc+|<+~PkrDaۋ :FX}Vw`'2Vlőx^ +)b4~0UGDdČh"61*)=^ţg d(D 2df^1̐ߌg+ 65X6=ΗcC >ڃ&mJY6B.jEEJChnSXmп7[_iF=EEC\,^)]QyNT^zNmY(_9" iyHQaɮҰņ~Jb43 ӽA* w5d/IY <$j滯HY~6bAXb؞Kǘ#"@qEI[sUR[SCTv";df+{Y,lJ.*J1e~YCn`r֘!ߟY'_ }X|2WLdޗT@1 v.MO-Y+DzYo4jQL¡/xx\yL7ñ C\Pe͋=b;y"ˠkWD0ÖCzADzzR$[: 𠳁\T N$Mabrv9Rg*S Ar*gG8a<˿"#$e^s@Rq4hȲ%Iۘ.U a_Ey)$4R aPPE65SlY lGRIL,䥖TXύMF}(*9fGhroij#IWފ+f?.,A~_rna$uK:LY<-x'߭ߙ74dBÞV jkk 8ct!t 6Nq(>{P;YD 䔃""( agr(}i8nTı:Ѷ̘J̼ުBeH4֜Q-:p ׍`_pmˬH$m!0ux\֫z eŅebiC |fp){2[ƻd_͝H'-'~T%fɠɃ0wy$ lmmS̲D$b.!d>OOnrb=qMt=˝Op &c2Q@ͱH`_T=Ä(ʲYPc[H99nZ5DazAї[l:qOe4Vk A(٩\UIjY:A d k0N|%vpõO?壱y? iDD~B~ZF fFYAܴ$֪=?);GզTͯ]r~_7jEcc#JKЙ,"|BFP6%![csZZe@` v_2j䇄g:+}ڙdor&J.xLEl1n8i),&b "l$f4;LI/PSqrGIW [*%Ld2?{A0/s,$dB-{&м* ݹqMNk09"AFL] wɅ9f"Y]0!Ս:^XUǝvR!M tw f7i@2VRFъ<z9mݦq=ͫ40uQ ,xZؤx M;Ag{yIq( 9hb[)l u&aN}*69zmmtױF8Lp&bɼ$~{4ˡxvt_>G}=?}x^zv?OGO?׋??ztH} w8w'݋ȅbJP;]jj<8U}=0)M)uYìiko. 1u{oe(,p'x?{ v׻\zW{n_rw|.{׻<W=~{׻I;_\? eOq(}sD»GR! 8/?aWϺ[ᇽcovgw|.?|׻_?>=N6#Bؚ^m»ïgٹ1X+m9oy ­*k,P⾵"T#3"E'(j'$*bBƼ:wbrҒɠHc a6Q@ǪZ̼NNG:_=lr{'b$7W3E0;dwK|3㊅G*Ώۖ1[ɰq.% TS-عYs#1f*Dq*ݣY>zwDZ Rs*,$ Ϛj/5*f:Zi Иw*^/ٷ~oq}+N-*1t{DcPȌb\5K#y:Zg3*1e[.H^+ U@~:$5D=AyTC'\*Yh]?|cϟ9>cjwCC A}nPSUe H4ta_94r`{ӔxwP18P!X t.L2lb9_P|n>c!) r l lq 9ȨtiSLƬ*y> ¾l&.(qfs{ضpdoٔ~Ayƒ)tȼXz a ~@$"wSu-,9"vnJTKo&J,r)%lq~wju>y|,0.h,^`)fOZ?2#Xd_Wd+=f}=zh`&s6k+Cz d2O\5^_]c aRZIn^x, ef!ܸ~}"Q1Lپuq>z$5G6$a,L K ڜxSz[,o%7N@B#;l#̈́TmqNU'2JYhՌ% nb+[l3I 'ˡjKeD+:7ZʑNJ%QPM.,Xn: DGvDrwA6@>*I"E»%p ~M JN'gb$8w>Z{m;ߛ{ IU,[3q@Ø)Kܳk$K@}VR48fhEpYotjaAӸuN%e@uªju t*X kM,Я> V# .: `> [1S*p4P:SbLkMɈ: E vX5Nd.ErHD9_lVXdVY*3柳Q4V?s×U,M)gZ +i"ciFzj#'C$4cuE9g5%\S 1CE֐&kj'>֊HӦ-yϞ֑zm7yf5:qN ?tj$ע(Zc.PؕŸ pZ.]jh_p$?7e@:ra@*nz K'(f8\\bțĴd@aM.6(8ͥtJLl^o7 r@mxf;zw)9zUƊ|SKd>`ي投?^Ϟꦔ/%&`^UpQBu\=| $8Va(–V!<9Z3haP$͕-ԁ .`4r(ad9HR1,ܕ{,Bu(Luխo$M0X-jRcbľZ̀L5~4+9lP+,JhW٢SmL`l!cG8\;n8"b\78{ j*0 fd ?pryt>ה!/n?X?mp~Ws~i9L =Q$IraocNGf1`iڊ V07sk2qsgRY,?2;,ĆGOmR-pWͯ?m_TZ֗3~2G SvNCxɑYwIQA h@Pt}NzS ;o9`O}_0bBs{qK#ӳ'qыɋ1Z+x:4E#ULzq/+[ q'۞&,cz*#?k~þoUq,9!(P$0_/ BB6݊ub:` .TuPK RkFea[g?U^B *HfpaՊK(f٭ .^PMۺ GP˽HӾK1,N2^J0@֢xR =/w  [ (k2En%.IJB^M(œ@c)Fԋ#$WJӐ6G.) # Tbc:tlSD;2J48/'諜IpyإpSo/qAhbgŏ/XoW]Deo|tSYSo/(S",D* yMA5,~ ?v%ӣw cC˓~4}}?63c>I0+-Лd;2T1&~#Kge-UѺ>G ;ql|? M>V]sQl)ᅏ0~fħ=`\4 ?@$d}Fg‰bIGhYĕc_GaxI4ྡ+XqRfQl,1eR6 >\ֻU;Cy5|Yttgզ^䠸 0ilZJ9KPxC&E=Y)ݢԡyI[۞#xp$a>h)`R B.ڊEz,>uޖ R z ;!uEz:D'u1rP-YDŽ;d)딇>xxS#%fQ5",/FpjTu:œlnPD7o#)Vo rC&vuzu'zT(:/(}kVbe>Cz18pڷ($f6Y$Bl0aXʋ| P(+N.uO|z6x+_lGM(LUHWH"KjH&A+ >JZuvRt R :U1e6 >60AO1$JTrj .9-mQΉ?M/㔬A -HKvܚ{ֶ2C, WYRHےM+0Bqeo$@@6mAY@ 8 f@ N/H?.U(7 Bᦡ$\ʶ.B6ޛ/W=,ż4uc4sloEb 8"1zi'Q1d8t s*II$?sq IZd$g Wz7S\, V@#: ⼴H*w3B]ҋd(ExmhNTy/,_r1$g̽%QG oTl(7YIybEC akmcOD;r[EH>c Tdֻ<<9gX1jev^@CE#7*g3]!I#2FolCk91sÈ[%'J݋:ZYk"QJZŭ!q*^ag>6𸫤u1ۡD9%ACBk5R0feQ4BTAumNμ1dz@kD¦Ef;!H!sYN CK,A91yh&dKMj/;H HCcNtzƔ\ {_WAckӼziG1%؋]5,-+a_!Q=IX s0N.42b˜O)0G{j. a-mHJ5$kRᏯνۍq2~tHDd聁d) qouUN*^+r|XkznBx1eZ3z h^?;6!#(χ \.%4pj'>/s-=GlQ`3AҬd`^RG;lkAJDڋ@ȌU^p$ g @qq Oj{Vؗx!⓸f:S(8LTM[ߘS1䠜\Qj*5*I i|[Yt䄭Cˏ"b&0fGxB SEj*D&Z4@0pv&gDl˽)!-uO2º^P:2GF̖=W:%ƴԫ +Vuxb }K 1&l#r0,-YХifĄ@ _t5r+whȇbijo8(aϫ9 #umg0ƕ D4LH\ e[oIwm*ɀTr'[ط?lOoDX0FghrbWIH$A6?AAf$Ft?IEYn#,!"Y]MJ=IS%hQ$5އy!ksN…;o]&CA{1 5/(n/g5Ii|%$ 5媋q#bN#IѰZǕեr Kɪ3!o\6da B8ClJ ^Y.C(?HcGpuCaeϞ]ƕ:LMR$;6Hޤ픹 2e JB=BD cdm%kJ2d%+Z2]0x#z 9!af??BKd;|MeDoӪEmK(3Vsu;+~ s)l'ԈV#:v\'VGj T;t$nw/*JLPB v'P2N|INᮔT"TjO", Xy7O_V#[ xL`h<\P>6.@ vyt4aqD+4x eЂK-Ç/{>K_`6Cb$Rg\qX3F3Q" TEj\ &I:ѡ6Is'q><ÂH8?pzvLw"'CE5J WL:Y(:΄tvώ"vF?jj&[खYj~UE`іF'N C"r!(_{WIZT6 DAF$ d8?hr#h70O>w7㱨CGl]yim9[ʃޔ2r.zu͖YAER ѵ>LsQ5 0&ځlQ/L[<.BE #%< i|aNt.d_Ƙ\e L)qnqד#!rD!.H%)9ۄo#4h ^bXkt94mvv^L,az+57>6k2l )>ګ p61-uW0pciLjO*fK;N c%Mݠ`ro],1{K^lc0H]^/Ɇb6l9('TSDR$"lͰl(/A*?) ~WVuk>=|{xB eU^u~ݡ=Ipsa eΫP]%mRO5#KLۮKQ3,60yd[T|M& MT4l.(EH8>zЍ)+%yt.۠{D-'_7\+}xeRWpn+$1;lI,Nh; #L&Q[KX[̖.&2w"uqsPDӁ Hu- t)BT$c9myaPC[e.( I&kV9ZH)0e.YY%S^͸p\)mIx{OdؕAYlu!t@N ށ~ߋFᖓu|t+֯UDs-$GGl 0p2իx =eQez" =eD<}9UW_<}囗c8Tq38 !&5 sI׫|l%(uPgIrbzNͤ:iM,acɒ^Cݤ WEt傃sX>f®Ù"=% ֯&IFN>s |l~UTA6HeZ^Wp6!b(!c " qHlVd3'n등@ᓲ9a, DGHiN B+2@?*L()fY\z)8vrW]4ɠ|[tՀj؅0-G_WoN?}qW,|床Wݥ}[QpGWA;qb"e%In,?QQ [օ>*/>qiiTA2璱 쥠GVɕvA H[hlq,$S6Q!')p[Ase;Cb3vFEqk$q$W!d'Fjo#bWq&OGJ!v+uF/qϒGq4_L/<sRl/X'ɪQ=$^ŪEmKN+qʑtѨeJDwȒrd v0\b/Ɛ m)3vӳbRMlW\EnpJ:!H1Lumh?𷪔:U ~;X@M\tRS9|Gb.4c-w#oQ!-ИT/*ZreѦ^Ɣ)nzFμbbEsA-gbâ8zdQxJ{QjDۀ-COK^t&.! $PYVsE#|;N|[ D |u6|cbADJaI n Bi}Ŏa+-QSg }%1p|>DX:W~0h`asD-a48>{$hR()ac \vUq[]G0vil~(Hϓ<$'c31Ć-X?fftP|fGcj&١1BΪqA`"Â%  &@&LwZ38 X[ٜPyy$ʄUU!8,NADBF'<^\B#!$+mx؎͂ )" s\ SL#g sLe &e8GOrDA:+_'@nL^ SQ_'E4 ̏?Ⱦ깄-&Frd wZm = :[4+]3OΩc}A3ϖ5gr嗢Za+/Z)L!|7P܊K%>踻p?;{kU{jH4[Znd*$F-0DQ#Ėwy|Z۟ _Jع=[r`›Z,GDQt~×( OUr(c w5 /MD+->Z~~Ad 0 #N&ҡ*y:Vwb/TET6a!3}l6 L$6K$ԃ J- $5:S22Yy|mx'firCXU>z*oNQ 1yXBP2WeP¿7 XJرi^.Y>O~v.c*on$67B2Xě- ea XHQ .pat(J]39$ȸaS =NL i*Llㄔj7Q7g%f;H*]H__ЍK{yVMeүKQ !qrrEDͬޝ?Gh,D+.4dg6|Ǚ"/4 YA]*{"S_Ij/I$}Q-s׿b-֔Yѓ|n6壊ɇkdh:-)fou 3Up=AhʿYG|r^!<j(d%l㛠0i~4Nf鉣Ǐ~iܧ0IcнFa}Eg5Ucg9GiP2V+Ĉ'uA ̅<#"fGql;ɰr$ ĕ_XWz4hhIcMVEп6DEPooZv{K 4N jbTFH6 a ZְsE֐uHګ$P7I! 51jW z ^v"g A]th |1kUBdڈv  DKe򨲎vu} 4E17djIQN%C C 3 !xgOg?gCvs&Sp]Бt߸/jQrfQROENr\q|>10} `3HV|?-nh(U)-tL|$kE?q~c" 84[k3>Urَ3ZrKB{\ +Y;臁tR8Ľ|`ɍ_T|x^=$aE3Lc0.+ANܜi6-IY;mvbfQ"hedmKpm݌=5+{hHSڱehca85:b1I,%EQ毛W&Gz&Znoc&<{h<WP[,ӉdGOE.}F xuWC֕BϜ9z uTNHA__fz2>#iYE\1ר!+1C"Jo^~fC<¾p$bת=Y2a+ɣv}r:wֵim:B,I)!gI_ijԄy2Pbo ~csxV8ڦ7p!!cj%W6L;@=jTQ,.#.oo[nI(ך7aO;Rtԣ+'?A^˥c3hL^q^eKрd\~[|7 tFnmYpAO!ߑI?N_ݿ~|{_>oG#ʟ֎_>ܔN)̓GG^@~$Ld%Vy;aL%Z8z!|nBCSp=&e 4g'nvruGZjQnHX ŦfUK)IWoѝ擌x78Sb2ueA#U"7u?,9U,'o3LbNAoN/LjXyzAgb*"@I,aBJ3 x0+MsЄ&6f +)fEAg=ѡ0|Ñ[5vrVwNwTг]YcGlCcc:bDx Z{Ws/Gqr$Knh48=!k9$ylʼ}WGE:ꂴzjL1Ŭ$8ʖp"vc+o@(aK[S̉},. Bje .@$ΗIҁ$6 *GPb8t K?ɚaSЪ:}bCojPb# vήMlAx?NMRgs1ɲQDӓ@4 4'0b~|lNN5 Qh b>Vq "{p|0+="@/]V=V8I[3 G6t(S@5rqRRꔓPha@xgڅ4—L4#`<;(D\#!8bPMBwRީ[_(Ј$ @uxÇ|4;wń2L6#CB7S 2*FZ?on/ŀ9\)Vh dHipDr)QМ} de&Bb9qb7Q1дu3R\/RۻLq]*VK仚Ѕp"0uZ!毘&q7sJ%g>R=WD̄=# H\K/Lf/TO$ LӁVT0qeɧ͢ԭHu@J2iSskn[&l,u*42k/²$~lt(GUN|9\XI:Hv>6T"m#HuwPRK)O즠zSS18A-/b0G<&94Kf'h@D+Q~H2<^:`= (fJ'oNe('3CؘV&oM)oNr^ŌS y#PILk%%V jy ~d?GG8! RdKR_A^'c,o]V ٚN4?ȉi;ϗS<:t g/hECלyi\~sl]ƁS'$̄T@NǍ3Z o( Ϧ35r%)_{HJNb#\e6^TΩ7nx(><¶=$uyູwGROvGbwonx$_ziest=IB` !jgg9?bi}JS!S}mp53aOS&c?^?NQI~CС# ;S#c M:2.Lct2#Y:V1QߩJAꆝUӫ^`rmtNtM;wEZ5O ^<=d*@ց>&R~z W_d ru'Xs<h׍Q6rtz} C4V>JXD S]iAf7~Jl>}BRt@Dz \'Ew gvt: W5<ۭ|'l(5*k'& x OYHӂrCEtZ.@]}\nX&̈HZhE1Š\fFB`H&l%;I[]%[I9Q&ٯ n%Y۲Eٜ$|+/(ag}#oiJ(F=B}E%0HSJ^nyf[8Mm䍃2A6X*-H0:VE$0K;0\cR:RḼ>JnKFʛ-J X/fhTC+s'Iaa4&$)PKbҝ2Lv+2(,ǯ?;5/ejTF1Ngo>}m´鰲=N~Ҧ1$e1M ^uFTςhI7A<č 4/;K6/ >݄O?!o i,D&8"r΅)R9D@(UEsCЛP87]ƥC~- [=XC i=ۀ|,^s)zp8>LIrx2? ~;+c)aLq;( ?P<@WXZ1f3~:iYb}E\n̪iMiA ״eA+ Vgxsv%|szןwgok&úRs'%G/5 >hpӉqA[C+LJ?`Irsuy)w* 3_wH $O|\nw7g9o { Zi' nU^c$홹@wߢs7#/?12[ħo9#z:z]rŚOs1v:'zljG+`D)Wt}Q'P7; i$¼L3댋4_r&wkXbZ̤eI~1N2^Β?_W݁\N X`5pEVIԡaϛ!WWVe&Q.MR[)VW+qu@bZZ$x\ c!Nɗ'w]Ȳ:$בIߟeeЄ8XfA&Ogpi5+ʣ_/di7{l(ZJ6( 97Xd2 Hҿ2{?]ZGO4DP BxystbȾBcVD+NTbQ>\4*) =Y5ᨪ 5+P@6`IBg Mt,liOG ~Dw~zS~4LJӟUYgTߛdℎTDEh Þ g0&SE?#gۛ`kx+Gjmxk d8nVQhEtm:7z@nȶBd߻Ed[ Y젣~3 4:U}}\ǟT.!bT|3_q"\vן5y]5P&|<{_ CݦQ}q\ѽFqC=[l)Luf 82!N$,Nqy |K X+iD(ؽ {c=)v?-J|I9jzRXo!-Kmgv7|;WGi;@KwN3_T-@aHS gMaо^cUŃJ㉏") w1 䩽U`qEA+]wwܑs-l $EaJbSA)tv[K  u6%ɇ]`E?߮:/ϐۺqx7- 斋c<[apC`CTRRȆՁse䒒`_"LNg5 fU5 /ɂ*i5PܚCÁC3C#ػ}2?8|&;i@F)+KCgQf1RGwҬ3=E|-)1y_H)o0)tR6xTńy(+Dv)%,@<%1qa~YLAQ;<!Fqli|6@@~2H.'c#Q3e_ސ#30J*e:3隈]CZ]/jHD2 o&q,\$b=,C ?O>}"~ST#u #?k+ Kkosb FAݔY/VE;$3O/-XN%˗6_v82w?8IA沛Q{^'*ScD]vg/?}*JP5)Upf.AT;UKZC??[,/Lo_U+Sqy9I%qʹ9w͸?QO+b>MHAFn78۫V0&"NL 9#2NYe D͏)SxX<ͳfzQ䂪t cz7*{磉8mLg̺ *ewx KON6 S*ZsA7(W^؊583XUyp6a\;|NJI8C9{$QO[57["9A==Gƙv[֚DQaYo .sHEJՈu̔_]Ln4s v!C+/&UerXP<08ۂq1d`Ҷn$;͋'vLK%佻$qxw` lZkHBlbc p!`4c}OY xI&}&*[f=( dP{ۍ0,ל6YoM:3{TI'r-]ZVFۮ)᤹I-VNᝉ<1؄5&ە9k_QL#9={T, 7ۆj:C'Nt:Mw@% L;8Ev0鎡W? 9?'ߐd = |bt2>,u)/llC2WGӆ$$K~OҴ}/-QDwm>\=5Ilݭ+4=$C]âH t"%Hx\T.~lVE'&F9l7wOA{DVeoȠMۘb[\YTQ y4Zf!HM q.m\DI-S()\}c N&(M v4Tr6p{jsI.텓 W'P̆xx'<&$GǦhˋMF#R$NjH[ ۩A *6%=%/H )e$)K%rkωX3@%@ܮ%-|3\\õT.N(njv *sZ5Ն)>a]`*Z<˪%iMCEa D E W:cu!ՂevI ̾mo.).ކV 8:@Nb3GKAoi%d =o7Vv&i葴c94х4y@4BD<&tdIEٚ)cͨI7W<ࠬKeBl]m뙌&St ǝGF=%yTA}#xlnjUt:KI ٘DEVќsklpmҤy ЪwVjR# Uq?YO1 I"@.׍ - :~ipӋ~^R 1-:A&}$hl7e7+LlDj.l!td22s `(ct"Ff)TgY8Ϗ*? D >2 nY,R Wi;l͉JY& 87~ ڳ[CTY%8S&_5jfENLL޺"#{8UgW'Vnp77O<:HvtYXA*o?/iN:]\]hz!4xݔӎxs5q"&;Gu2[rc\F %9kl88 $B&0};d%:uBn29alЍyN%T3ק1:~ْӏיWTb3OEzG9|/PѻœFw{[J rajg:m0bP]78ԝQ,BS[&E閏ջ U]>yj}&yQ<:A[K;USm&;b(6py@7gva$ n{"}?z8tb&K2#&M 夆p)ĚgKatc3޽?vPl< а&1W`괞6 50G4CX-Y}RzNŏݪ=Egy ?E~v6]cԳ{iZ8F`Qp)Za|2ƙrnL/NEY]X=SFY}5qwLYteGcSmq7 Od3Dw@z^RW e{}! h4[H6j%T(EIOL׀ۜ^PӒ0ƥKkTJoKg . H:= {z>eٛ\1=-1J~>}mnl@|UL`d,oJኒb6DOٴLN')G6W`oUI~[hn3923UpR^Oh]cP;:SQK rAݲt^? DfXz"sGRJmi7bbgmc/r et\ +()W!(5 `+9SG:ER{ZIs,\FxnnKB r`!T~7:xzaNEMU&2=%\J/IT.C#W<ȘAmUiEߴ oMq 0XNiS֐p%oˏ /˒e,`NRe'&3VӕWonU 4[ N [=nelbAxjV頎}Qnn lS 2M;QGwgw1k={AƜF~?5-oβ-.},ivktql[%0F>9<v8 f8ǭ-j&oVc$Q9Sh5rJQ- dᕪMlϨWz䩺͡>ZG_k^:b-WBѺTNlbr0T/ᕦi閹ӂט0y,(xowgi4V0 14b\Q?Ǥ2m%+cw4$M*${t|M % ]ds*opNDA c 8ۺ1^lɴF-2qysJް<]KweXdxQ`?[GU1+hbElL+C%fړAdo'$j&_!;cmؽyfx6#Zz}"_ [mߥ$uE8Rn$RW'% SnT,)fAGͷޝ#4dE_hge:¬Fdc /vdeIV׶$Xw}l*|5>]t`m4zx p:K48NHPޯVEA~bE0 ehc.jEߑyUnFky&|i6[[,Q2OD;=od̯i$Ǎy3[u;6ϵX=f6ƦmʛV(PDO{f~gݏ] \ؿMn_Z nة-o_ W]:JoK7"lY@>\sR9k[g$]eqBfbB`~o>rV^%6T! -b,h;$K3{{ߗCSp8~& ^9{>) δlQ =']8ZU@9\--Lku 7g#T`5ge>)GW;-f6M1<A*Q|gxIY=b 5RC7!Av~pXRB4Rțg.OR 13&|\$ ِk&늳L\A^eK[఩fBX$`OrϜv ;,~;Y?1'̐c\)ZwU y|Z7U%֤; x$B\3(mّ$@ ??F,үp@ nD-?=čp<;ߕ5'U`|%2(Yv-%h'K.ejt  (>`ǯvrs-[D^a8'(y1M4E_hD D I^1%yEC/.#c%6؇%E0l !4L5`rzsz}7|5">;KJ)*_ @ M}jJ^II>QFB} kSS\]͗kSW :DP42 %|SM˥d LyΕ2"¦)VqpˊV!RrR@ 2<|wg24O !z˳ _ӭ>7" ^O4 m4mB$_mԛ'|5փ"ߐm#|ᏼfTLişxγE.n;spZg~Cɡe[Q-ʞ }7xX׿v-'^ߥy5v|5{0_ï M= ~=~.o KfnQw} H.ͲE~c2_y[W?7՚ͼF&x>x=HNo"ۈ>ᶡ&ٟٟ+`U:Hxr~*AdZuà)( ~6 6i~wNˀ>,sY ԣm+? @GK&_(_t#&r/䓸 m44ϗo=cTs`PІE >J~;( ۰ã 27=JЛWLc4YѕTi3h9莣e(듇td$y1Ƈ"|MuV^>sN]A45XOfW$z.&b1ꥤLF7HKtgz(7}v_vUaTfv1Fp8Y' b~F#4؛xY,Ϩb 7JTWB.j\7!5oaNaD2i^R^s=4J8pdlMq2Iw!Ir/7L~7v"B,ȴ{AZgMN<-7isaq ]`rxV1[XWènfm!)E/h%75jiȋPڷ8w:Gۜh'< Jt#,witض˅V OS*H 2$'٣; v*rzqgg}@Kmu4S@$drljhշcÿDHH0iˈ$D+]>ϯV)mfïӭˋYp5[*ѵD%;c`{Xg@XAm&fw ́%M%NiFp1tk38_"Z\0Dէ-f$6zPt >M(MbLϲEyoSt6md'}2 T BjwLЭDPb={#ldrilmogK CD|EsYÈO|`zhkk_CPNߊ Y ֜ qG L5k"zϨoN`jҝk9DhJEL/%:" a/֤[Mn_y40"? %1ĕ  XTYg n.Ibh;GGa7@Le ;Y+.w[^50~+޸xɫ\nR_[/d7ć }E^#2"oA>i|'Y9W^K"b%%2 ɥO6G/#:D7;p~w1y)C "'ga%=ew ݏ%p%өaHw6@\)>d\lWjPcI~|z;Y΍PCcmdt>kR󪓔6MɉLt0Gώl܍i|[HK0?-<'w;13z+k(18Nx93  SE[ĊK:әn-lϦ]%yUlgcho%gu4њo(1Lƹ$Q,=A%<""J/I.+RB U4P½৮+w)^"!Mו 6O;̧P;'z(%!ʦ&pč`3SQ#E}+sd'Kߋ⸁<ô/x/#$ܳǻ6'1AOM{ XBȝvp;&+gĶ#xa:ڊt7㸤kCݱkʶ 4毄w.`l# ZȎu;K'chϧgO?= p]WۆM6uБ>@̆M. CS| TuśUN\t-F: ͖LY];R>YkKEOq%bU.Rpu}q rNq~e1S 6|1 G*2 {Vp  b\dyڹ>G{/,LڮlU9r:8tZ>mz1NT̜[6ݮ*w.{ U"h3Pe2n8%o$;fA޸Vm"0䷈qI^|-E{,(_ 6ոE7X5-V"1M>'u2f$ud[׵P]VҨwb>:rgb^ -<)QқYr'} op)\i 졷Էom?s^Ʈ1>{ʝ!I? d)x,9/JnLN^c/EKzL3s.XF'^M"ڐFuS\{C_ 'ڛ A1}CuK/Ldl=м1ә] ٫-~=iyTI f7\hmU6d6կl*ItL?(=4v%LoDQ,4+sֲFc{jo?ހhakٴf>GGeI$9U‹/ҭϔ&n}`Ô{EF.lP%&};it0=Q6BtMFR4D5ҊzڛޟM$!^F;vp E1F %.k@倒gC_J:oNAO&+CU!;a?fJʐ]kI5s751lB:>.,(|&Ȯ ~QGC;?trkͨ]Q1(&r%{I (T.#`S.?b[R }3Ўȧǒ`E b^9ՊZIYQ[)(Nww )0d{ɜ$<$OXJ6m=' 'fC 0mw˝-|i|N]HEwn=@/D>xo5KvH[Pܢ8F9L=2h#44IJR{'V#eDMƜt? 9~'wySLΖgmX/m(E?A{vp3J:OdFc=P92Ú~pSReU!)ĬQQ?vdҵU͈Y/C@Py\sv.5Wbzx$M)j2sݪ2(p#H&9ؘKz;7LuH+3lMD \ @wq'̳4R)1y/~4O\Eu.5?eg#4XFK0qkir%j!IK텡X$pj2"QjkC_m/tSLWO[H`?>536k+pWGEdGN|;u_ę;0̄YĘShĮ?c{22oljqb 75 ug]nh.3^D+Yn|H~G~|?㛅~|,wڱ}һ4U:Utʜ^vC?>w>x'3 e+Q+Pɍl^ m'ĝDE*vG|uVH#6xt7ITg UNUVKĉa 5sv,V'o=9ICݏY |sWWl/vh J>(i:ֽ?#j/~/*r[bu[o<#oh#*L{nĻK`Ja`m񥓄t}|"/>3ɛdU̷1W ::%FX&'䣧U!e1KȆwo/"灔zOѿLpr@o^ Iwpad"EHbR|_M|5[eYbxr>0堁c߾<6O9_.tS.Ga: r7ϖH>3fe>8v/!y@vVҺH{Gh1uZ>t<8"&bZDG8o,9ml# dE rvʚK6u Ȯm7o5g]fT0G"*ȥ xЛfy&_":P kE0K˨*փ`yJ)LWzٴSD>jb$K4ը䁊slԍjP*h$הCh|2[CS)ub&AD$H\0&`D[ 2wz f 81R(^M&Τ3ŀ,5\PH4և<gbdgMNY RNVKTepIپ%%t3@p)8ru #_$/\%H(K28  $DFv] _ܕzz|DoNخ90eu Z%v٨{5l4XꀼCmrhkw> Kӕg=uL`xa8x =1k?&CGʟz˽g=[$Ef37EHYx!~xxxߒ\.v%zei@Bt}7uwwjsEk.U]g:ZelCx-=Uhu*w:..漈C~$Z =i|PPNyGp1>A%^iv*++j76C[B\訡JDd?>kbM ǵQ@k)>{+H,q_lGkCR>;l$okarȿsPOQgEzИ9.f/XL/Xv2;FSΙ6b 9˃E .ʉ:n1PZP—5@lSl)8$GUφQINAW}hLwtBk:KM!v7OI1,EVv kރV⒩]0SQ YditY+#ee ZVƂ!Y+gнTBF?3ڎay@~`\T~pӣi (]Jl#{DY*HcL`3ܰl-.򉞥>y\  `MMU#0$|c1X! VFM^Vȣ*L:b yʋs'*߃`u?\L|nLtY4lL6cNDb--Ao ^UDC Q.cH2\\(;JgϨm1;>^n693}sX(?Og->;0аVbؼ) *0d-D %$׬zVWzt)EPmn}H)#wgPHsBm =ow)nE.Qt+6}dGy1r+Ɔ0v0s2;v T}q9R\b. 3 5M]k& W5cC~xx 04 h԰M׮G]; ,# E?F=#;'>`"%l,%$@(Ub8(Żo9&%[h( 08 ^؁7xkmkQg'{|޲)w,1iR0ij9~و~,tf^TΩOs&I-5#*W0 &KyJMMu@#@ɉM󡂋Kv'ݝ>هnbE 8kɰm莈AZl*uڻFЯ]p[ٝ##8mؽoOw\8rs 8W8G95\_#/p'O@F_RRc'mp4`pϋ{e }K .vL}IP8ѹ0X09K;"4zt3e͗|#.wKVVK[ !3pB[ wnVObl-w4tdgHk2nlΔ,ɿx'x,PN 眞Hokql_y|_Vj`kGG)k$mвaW+MG&- uAi͆0 ,Q ?I=_%?c}> 7e";ΨJ.u 3>yY1e Ɋ6쾃(dZdEUvW5Ap_ɡp$ȵUv;&v̟s˖~F}$sp߃R5g#B~k][p_1/a[o]Џh4E~t`uVΞgv@6cWXvw_г'zՏsmL)E;BTTm/"qvt~)uYR`YڜMY[59]M0QD@mblZ\Y;dM~m¯=/FY՜FWb%VYUvXcO\&fmlI c޲&k@un+d &L&vHBFQU+UwP:q%>pw_\r4 mͧ=Ssk}oy@>MdG?gt?|o "-v]lf_b@EFR:Wms,wB%h,$5- &r!JWv%žtgO2{196UxL˓տv0l4;Yy} Gfɗյ'=,u,@FyGZ8H,ˮX];v}%6JUڮ˾ 8ցԺ?7[=tyyvwr> T39yR.. |.}JDK"&\Otϕ֘ Ab}@I>)s_l#C^lbu>95NРlާ7<k?,rmayʄ"+&u"g-6YնH4#}dsVH(]KxV>^E,SX\1@ /Q6kh$ {l)巻©|xހ!fKۏ3?8HX ed/Iuv9D1bP >PBW?Z_J9M)k\uYq0s-?FO|Y>>ۧizp{Iw?W%o -B@-oZ< ?a\5>Jݝcru2ӭS*D" ۡ܍|{ y.ƜoCl1m7vX>;P[1Tx5Y!IdpIǹM X|6mC]&,g ,PDN?f!5)JPҵYc d0{wq2Bm9Էw2tH$Pm6eA.eGw"^]2-Ie77̟ZAG"^YM}n(*_:lvnLe9FXdzWağayXw)4;Ԍ+:;뽼f!vGVrMEAMØABfUp6vI/.*!dm%]=)C]kB- jՓֶz8j˭Kc_ ^by2/aA*"q6켙q ?݂[ܡ66eI,t^4CYi0B?-br ,m)L&KhK m N)gҔR`>@8 J-D˧DͰ׵Q7݆]##4?o72T; #nA[hXPOX' J7 rW^Zr|'֒ O?dq:n1iNGb+_Z׸_~ bs_m [SԱڠm1vAs};@\X@06gaHfcc&ڢ=(jʵ g,G] J=Z,I?o[x5ؠ"I S,71V"}N*"cw|cD ]Kjr}nYclm)nc~B`~ Kt Z'W>rsr;^+%iMŒQ&w1{w7P(Z+7;6îkg||3suM׳"ܫ[k>Z{[kdX'x{1 僻Ppo}AzfDs 5WP'fڎvb .[fN {Z8p@I.LޚTobR}LvZU'hUM/'ִ&Gmge&ߣ~Y ;Z -] :^W=rUj}LREVp ;6 Od}{p'we==˳/j*R 89K5``0\m[pո1Fͣ3/2OY׸_:?sq޵n%awssN?=ۺw-K-QuSjDتZ}/:MI&<7~lsכzHnoY{i'[?^΍jnW[xM@;Ayk#!LWL;iTG1oSuŊ5r.ʯꒉ-Mb1ԫi;ml_rtofg r!WC E/ 09:zx[$GM2> tR.qBҗ+H$a6J%FPa _g%}.hc=qe3;^ǬWՖ/{ \)jo45I;dɀ/f}7ɿrc(S;\5iu#㛳xI#9. A4$!j?Q<XwjmơO6יD\ҦKz$>) ?Y*hn=5 h06}ҹ!;h r҇fչG<$ XHJ$MS'I:m(OS.ټH]{87!F1F탠s; #=tKCݣQHث 6gcۅ_ a,q+ 3tS N'~atY6L6͜O./&D;,=PR%z"u iMhSu(V lt򆋶 GΌ 8A^XQ=/6s,ZiލQf4KP ],yۮQ12@lI_ح!ѩͦZm2#_Z 2L]Lllٶ -;Eaڴ،QaLfy=Bx3Gpם2p— =.+a8lyVװ#CyH#GR Yp '\M4ee.-0]3! k#Р_~",CFknv*"De8Q5Foє[x]r=ATvV[#-ĀΞ#$b6 VFR؆~\CLul>2!Emd\܍`RЖP*EBݥ썫ɀ/ [fmCcˁvNIqjv[e_8x($߾ΫjU~Z@9ʳj6*gWPn=Xb*A7 $ͳ p2Gxk>ǿudm}>kgs>1Z# 4N膥ήGC>iQ lM!=ތp\0)J4R[PG[t&$e7-q{AI^МHe]ieZ0d߱ q F1(e]<3$?!,$K'KD=n#ٔEɻ eb>yPW3Y]:_,i0H2/DAVNRTٹp.&*wÒN\(1 8C;z?jnE)ъdlauBhI3CI &;o }{\$y8PTT](mJ;HSpyKWPOg(^s…$΃vt'Dp p1N m FXQ2>e./~-&\c>lnq l%[)oۛD36O4)klffϗStRhG E!!KC{9:WxRc)-9ZwO5o=hZY4-1>e]ݥm~blV@< VLzCf@bڍΒ_屆 zz`8LI]/ُyԌ)]pC&\^?8O2S@1^frHD\|NL#4x:wY'.H`80>XtuӸ`>LyƊ(T47E%@yn11 bkݏϦS?m`>hl7]~d"CKy $`e',pe g |Bɓ/dPC>R|W<;^9p> 'ڜqujL{hM%_V":~ xGw5K~.>rBbr9Ǘ;4CRLtAk6|w߉= 8$bEԃcգ?]s-L zb7A53f)?CѣFO44Q=I( _z|,mG.~벰 A 0KXB}Z&xć5o2:Nr7NS=p۸75"&~Jؼ1;ܜh>ySu[}(_A-qk(t{an|/d-۵y_,n[˿g>&o8buƇ~mdB(([ѳJTdI!KIS dUX^Iem] ylC>Cur-~Q57?9 GPdPh.23.j32LB v%.S4^f슁>1h=~E[6=V6/Nh4F q2ߔ0*\4E'n"CP_e%Hm1BK4L-ZS EWMh|3_,"BYy*' &ɜ^^)/`w ̔]$}{'guCoqJR/z/wҊ~z Kd3Syc-fFֹ50N)zy2y}Jir}@LqU?Jg/f ^6 J͉&8F)Ntyʤtvùd* #C =r@(@'?{\`'De531ɰ%Ο}N¥vyR&tThHE;3A|>tGmfrb09MIB(Oc'b {:Am>_1LYme SC>ۗ[oosEGkO$?ˆw:9 e1㭅OIpz3Фgnn5DhGK\ 4pKIIz?Ӆa}Hz f0.l[>R雨!|7e`He.aŜ+W&E{]sz벤(.O`^/ pou w^*A'>'$CڛԮ$jXFYn5Rss8n?ݗnqɴUcpC܉5:*{$⡜|ob]p$HNei-?6c Mج'>I\x4RNE3U_h\]zV0{/V_IaZ5)e6=ls7K]ٻCs{gh&ƀvV(|6 :/oʘ w>J*w3*dD̗^5oƵ#I]D)uef=!)]79-1b:鳙pr`IҗK>tGnRLt3d䨫w2[n5qg4Ԍqd&uyu E-(:$7!y(#ɶ\jl:N99O(:c Ȟ!;Z^T;49oEHkyIK]4s/ZX7wѤ*a: {G#YgJonqG'Un I{MWg,{]+jYLc 4ȩ@v__ockOCcǪ_=X͵)XD) Wdk #c@aM)[ՏPp2-X蛳LHɠ :`6*60o) 3 5LGjdt!^ZqDH?7xb]|}X~iıHԸ'_uCc^glJUy7<84;;&W$onv37.ݷ/ n԰iX j'>(5nk ;!<-0wO% qf WO)Gx#t{ ,MiCkbO6>%1WihT]i?FSWn~o_+s(4 [H$jW6οD)XzNS[־DT;<മv\' SDmp[}h/޴%bƛf%g- ^ xωn2 fXJLY{S1+wNE싴Ԇp32T&v".؅7kM(buBK171h򍸸\Ce^-Oi>R--yU??t\C؆:cCʞ[mb+.1=LB<ˌL`p%Z+kU#˫LjК.JL%/D.f(RQ~7V"7 |)LyCk7zfe С9Q2X bȮBc9A=-VH59:a1kJs?ceyӂg77=&\_}8 CdgdIk4IydX31( frBsBh>hЖ^J*h 2&j7Ph,3rI2:+&)bFx٢?4,ooCe|tju!6*? Fx@sL2o&pWD;%_C@= lQ  WTL6s/_bW$0!.RJg3:q{(٫`ӝAԄ :Af%^m5LJ1_M 嘱ξ,ayݢ _fic#76kʹ#rJo2ݮ'`R'0vA"W2,5RAsbE:P@Ij<sY:S C#^+@tx@N,7ȽXV֖&oBsS1T k@F>_V\|4sI1d; 6]4#:2>G+gyqϑrMۆF1IS~SlSSA[>6(F2Q)Jvm(@ƛ3^ZE' kbV1 Z$;ݬ7nZgZyO:5'(睿Cg8H^Smy gc}ެ0]>RLS1MЮu0:1,֚8 cL!64VjdWmZ(2sϑZ ck.Effi@,jR VAJZnDYnt$j(Vm &E(q`za0J 袜ͪXs޹ʎI {KLt|D$=ُaq.bSL@sXٺXSa+fm4Vb?wrsjm\EFn\DtH؆~ *M>\{eJ+e/Z 0?F{g ^vE͎,#ou {i *O1"jb W%VLT1|h= O>AQLAvNi Y`i؛NAh} *GJp8^oqxY+w'&ϲ$r)`ܕoQ6t.9N|k/bl.*nJˮԱi RݲYAt'-Z^r ,{b9&sٻSs%߹;14ayQsdF|pCӦlX  93ew ǘkZFv95#=zflX ckZFZwr{.Ž%rKSf8G~߯)ÐU$;QqBO츻!ߴRxd64"󦓳 q=LMgjڝ;F#z_st${"AЭRTVj ݅}nv co rlwo;@UjC `-͒w쇻Y4ہp S|_l~Ya.ezz{LBu(\g_$V'!O,1U5o[ ZѾ^qb"ii?a23yz$m;LXq&T~PmB  xPmB &T~PmBeo*M6ۄo*$ $T1GJۄy*`*͠6 o3h͠6 udfѷ4fxAm4fxAmT|Ah͠6 o3h͠6 ȠAt>:-'ﳳ(HjQ3/<&k,ܱȮQ)ÆQC}h-! +ŸؗcUp-G5acHɀ^k]Md ]ܤ~?.d:-ag#*x)v)qʈ?ES_.:7jm.N%eg'<F^ " R1V\1$;LP-XA?FXﲢ$񇸛efdѡ=uBHʵQ֙Hwv#L~"&ܜeN8`GbA՟6EeS oJtmId3f&e="J9 XFf"5}<рad!EdT]9Ose|MQI$0n_ُ͍+WO:SRu4!gQQ:5kg}ͥᩛzUk.d][8~ٿ] gS'MCt\`5 AӟMd_#/ X{'B\w8'4{7̗| ?seJ.z~i)cJ|r.>/¶~7des.>bKR`௵E4% Wt3๳Gn色 ҩw: 0>l!Έ3ZDƟ⽀;i]`3s `Є\%T>Xz@YuKGJfbfp˲X/c:x_0)D}Cx mx\"owG3g5CyC&P%T lUVߡ܎V I)SMmf"Q}>W+0[{3bR%W wfU ݹ_ar]6IrrAGCMQ"զʒc~+'LcshT^3TN$Zeޮ*,h:DAz-l5|SN @:sqe' L׌X ț_TWf$|@{>Rݜ (7"/7R3 y"Uz8ga"JELrqG(OU5lS t<A*4XhKbr@&Dh$\s.Kӕ*J_KPljGaQ=F;tHFTcXQ~p+蹡oƑ OPED@VzC֘vm-gBqדBkd77t/كZK ^p ;_ܙ21 'N0 $E)$I +K<_N0>h͖Ӄbv7rs0*ko4мɕ1h}L vNŒr,{I9\wy^C M>'q?ݚYs@ $f AN$Z6҆3(8='{JS\B ])\I z bہ{ 0m3$LM4;k̃c9.c]>_39eAnm\ Uk:\n\P.eŒ/N|b[d a-=Rs AҨlq6o&loJz`djr'olE|sa?V/K[@$hV]%2Yw@j<U$mo='$1dZB<&kR0W_g)F˕Sp!0܊ŕ$VUh, dK"yl\R6<p]=wax7ٖ+IdV)i+D:?Qop9HTBŚ` b@8)YN8&x 9i 4^bѥC7⥹V;m:vAi xtsH4l Xo%=/5hӞĩSiL&PKEg宺,PX^$ ڡ9*9K|{]Ƶ5G X4%1SΞDߎ?(!gSX2Cg:f57pd6c ^C`EȱLcz8BIcڳ3mq%ɮkvN-a}g>XCszJܮ´(IdK9y#]*[ȸ)7d G,!4`(9EcZc8cgbv<Dt;F9-4EBf^(8-0/Y>]AILOfCK3FΔE~dMX 0p,uyby`e=qĬ /ֶ%KMo^ QD~M᠒&ty-.ӭrI.-ZPL_eOem^._g,$ʌɘ2ydHaͺXsR(j)ge$Y/"sdܷC 01 Ɠ%W)Æp9K@`:rEQQH#ĝ.+(jX4uˊ_\&/Qx}P+HǀZrGdG˰RF3}& xҤBɼx"-=9$:Co%UP_.2ڒϺ#3ٔ@ SeՉUN(wC#HZ:!s C@EPH}A6Ćt(>0w5ϑ WKDM0P+h̞Y&gFP~rMDJJ;b],ԍ"~O!'?~b'9~2a3|-o+d"w+߱l^],99R3E M>1I֥)AiҬ)ԁ$U7Vӊ9SCc$L9x D>Q<dίッg099uȴ@.긗 &1SS6;Ot[ʥ|$&#c.[e&y=Q-ci77{nA̔Z);Sķ fB\MYx$Q{Di>,s] \st.Mږ41_\ ,U Kvl +T-PV0 keJJD'ف\V{'d$!!r"6h'g3jHBOڴ2G RI+Nn -XS rD:k{kKFe=8΁`U/6>딃yF1'^-oJٞhHOTƌĸb# 1i6p 0~(}̯´&鍇dj hD`$$p2[5nA yi'n嶼2p/RT'cdLp L<]gsNT !͎E ',n\sGC:qNWyuKKS..&!W2lb CsX&?eaK "-7Y~հ>D 9z3SNDiz 1$a+ Jgs=̗@%'׋DHiqȱl+J%-KuiAАrA5jɺAz$ȌBvN%=j#gijc$uTDIbcsOK ٌ!z`A0'X2Sf_q .i*(6}x"O)RȀq6u0Yei;">}mrT SG6mlx^`JW Z!0!ғEv:f

bq$M0jM%>_&Zy\{1 o7U9edcLY8JN~9b/F D rNبT4"3#knhGDEfN"|y cv)1[{L=I6rLL5n a81c2l(pAJ,8܄%'5R +_gsA%)YEN`A"I ǿGdWKl 607Ij־&VIY Og !O <ZKv;DBUT4xm[LY2(q´<"YQ*y}:::8>(~aut E .7lɹ3a"-)'{iVLFN+ dLLee]Β\R)fI)hIHhaN}Kz>#"/Kw:%#=^}g/~OvE.HW-bu&L~ SՇz=1FM+p (69eӥk$8Q rf4|,\;oD [}mg̿DldoFXJxw[moFGVGAʭEY*bUL/7X!W'7Y8>?k4NJ\5B f|IK6/R $$-|6T/e5͗'HFu,A(ٲ>>y#wzT'ꐶY|/zVq1!IЌ/BdsSD(i6jc05/dgN6S` 2r l\T\lVg^n2|USyG4UsAuiN_SS̩o:fP\*+aɯ?xhXg=[a2Ϋr`;8-ۭZ ·!TKZ`)!ӫ %kh@Tv$5:}f(m$(K6w~K9Q>9Q:45fF36r`Q\ٔ$Zg#nQ+`lWfqTʜ$Ca0\KhEܔ{<:JqSu(V+q=p-0C s׀J]"m]SV*y~/~/c| fp*.I'>4''zsXX΀`6Ķ83 vUp3`‰oI.51.v,0_Ey96brB_DO@+$u;giNW: E2j5g4k}d;JCH*(@EIyH¹7^!Bx&O-gI:?;*A?5(pllý3ZfW)%0ωZtzI1miڤq>'l0dad~k5v|U _i†87RHYylYgmR.iFPȕ\^^uA+ml#._$q"yFDY'P$ Sm>p>zydv Ͽ7̳elU"!D'2(FTlԵVgL֜u`!yVW6oGᦖi"#ݸ/!fEPQ etF!MXaBOe3B~InA#]r0C06sME*Fo+֊s1L}z4;,ƏN-}Bf)/ XyݼDkDaOo3l󎙎LbIJTiykjE $O$·n5"]aC~nJ-T j0[wt4w@%*Nٔ!~c19>.:_|t~~RD080)A8p͔KMkyu}-g3Q8(.Ŧ$c1ErbS^-LSR["SN@8ΩZe)N$%JvN3}g c&,b1[Kg뎳yqI %@q T*۲)2rhkAQlO^s4򓉟Y]! dx*na^WJ?o\Me;-=k5k!|NШ8jM:׃JT `@ẁuOzYh5|GQr5HːfEwsbS 4^GrN4t;]gPU+!U7hi>[c +W%cFnѰ")X#[> =s-ό `%Ey,)> LA'6F$ B)f*sld5 /@d(ҟ34Hef6KRv}Ŀ5Nkw ڇU᷃&W/L?`q9c8e-eծ'7n7rM}Gk$U:}00()V$ x&XBBzQ3 GC!l0Ѝ|a|Ɩ~AI5}ᔨ N6Xh#CX]Y`]b#|T N:Sqc/2u!ɦ#+v:wUbƆu^4.{ o+0CψYecHi17aiui۫M -|g]&  n+]&'!}0W؊t;x3w|E 3'W؅@o'Ovz`S>:5j37 뭝7-Elk߈0}P)7dMCޤgRM#ߴ^؆[<9?Gpb~"ۙ]cp~ DNȹ +Lk?B/@aǺ19yf|>[q)ti]#z8g)& {^SaN,s>UL9ci_jj{D M(~eFUzPstE$+wSo]37 f61zG&wd&-HiM$ F.|>x)I~_b>kqs ܁Z'za:JI{?QtϒhNI`$˯H뾭 6Ahwg@Tk#c}HpҞҐi=8QMoL1MA2E՟D)IS]|icP"8վ.8z8Ԩұ.kgPj$-){L棄r1 xL#2DHeְv"J*bdpDJ:Q#w\K(,ɧEZ|"(v*c;gjpjEWx.% #ۼFJiuq\STLT6Y.`"80QY-8ќ{M9[p ,ӵ6bjxφ'!@8*DjĘ)M%+LΞc2Oo/NaDad׸dk}X@694eN۷*67T*rSIFN_Atw꼝:(E sY>~ǍJ:qIs7\eUժܰVZg! > HҹP* *rd2oK#ɬL^~OChVp . 1ѐ?=)QlqYl_\04sf 3OW]:KT9q8UqJ|Rw=~R_\mzɪ$Y7lbڱ؁6q۹;,?k4Q^Tq-{>?)s?Y XNq2艊ac,1p?F#'xatK?6wM*v6>ou+/fF-ٕ*9a-=DM^{IoCMV9ojZ5cDC+*:i8:N@HFű<ΗhV̧pBgK c!-:"Dw e p Ϡ/ zO(EӚ8g aܙ8B?'23pFלJAQ/\~|XrLs4vO\,Eel`x@y̵2=\ݙIf36KhU1}[l<6=_vmY>MI!SʅoHdA tR匳:]+|Sm>WI կc ~%eҦlӔnt[G٪u??:qq|~*).(qn`0ҝ'k pS)9d{WENES:ͳ,8-;|C'3HZq6@63=r/ Rzxb]9&;%F]ЄJoV1[.ߺ5EBMQ 1u[@Ny*.aã=uqv`x/Mm@1}#姎y*kΉkRE0J@X(."<#;GlIFiac3B*S|C8lμU:y_9΢Aa4C踑9|CvF/dU|$_s8E QWCwUD$~D74Dψ9,X%Ч]f_m7"_Q'ɡbMYo胊Q LNKºcik6>)$Z%)&$ĞPL Er4`|j̋NxX#BUbؚ鰙kBz7;ӛlU+:X 44`v=l_f̞6,'P<\˿Ӥr&MwIU͈ۭaEb@]6>+t,/dƨimWƉ6f*8q-0f /?"saF`]%'& ;.N71],04~XRsRܾ udxWu[p(@TL\˄g0MMWo`SKqﮧMӏ#,{ Z /v9-&$—&%r2S:Nw4tϑ%RΝ)HMB–NnSLء$l{vN|;¾ 5kWI\4׮q7>B7r=9zS촬Np~;jAbN:=Oz}{ Ph|tm3_ğԆNnwTcx@.u 6X#tki(WFE50[!cfF҇jjGK>Rב&l+08)M[vfJ:U\y6<]c|73N1&;0?[@I% :KH~A$!KNڒj[Hk=.~)#||JXh;'L/+.F?-9*C2z'4={xJiՠB=)vHoyr,ӊBK)2zn:4J D =.Nzju@+IS(T] $F=rIpiu )Bk7`^&ZwIUٔTI^`)g7=qpmp2J>ܠ%3LH-|Hy%yUN.| <߇3G>~<+d-Gb]cKO-[FFu2ִLlFw*he!a!9(V\.1cFIyzT^DR 2#~\ t9 [lrZωy(0I8q'&Z&ljѽ9IK1DZͫ@ 9=g$dBH,irIlYm1D>zIbʬgmРcY#?dPvd*c8>f<5?㽫=@.s1W?`CbHVن&A"O咑iwʏw_<%#[i-l{y= Zb̥R㲮ł^[oLIy1kjɊ4 a8@tdN`~z Yk:z!0PD]ÉPU 93y6*}81C6R1顏ՠ5ң2qw&[x,QP)I`!Ǜ\=I\)3Ĝ@= Äjf(Jp@FrSEU©J&J[OlJ(y؅ĐCmbSڬZ1WH9~eɊ%Љ`F.Zb=P*/AuYm8tli/__{ PRGdږ Xw3g͕dt8Chչ%Yyep`\y+= /u5KFATAid%)<~N/%L8PKgRd<Ȓ) XRMl8OONxwiq5^$~| ǐVȯI[UB7X/ixpzp_5ljHױx&gc󘸧q/rcͱ@PpILYឪJ:5‰(HOsWj5K(9;n qJ^Bg $w?"^Ƅe0 qZe؏6|b3w?}k $pWXO Dnkѱ<9W#rt<U%3K-g998\1uGQ¿t~VVȿ Lp=Kq^\^tqV d링$f[&1P{3Q£vCY;zҰ᯵4yq"_dȦ|:Q9qBTAVYzKSt]g}؈C2i?G1y1xaQ l[*fGxqKn R ԻC<E<}m#-\4<]۩~f㼍kIoGt4Y ƅgJHK[[X!}֎t1}'8_n5{\rXyG$?YZ\r t&uN.]؉f z#uX-C*] Xpn$l3@Iٰm vA"/#^KN ݘ8,\bq>ɦ"(}\{|<#ؘD!j\ٵ)j<@=R뉄R^'99+b@+.3 @j|c? 9d.xzx efS2"$}::b3 kݖ3f Mv7#O"a7GJXGsP,3'/=wR Y~HXa䰉ojPq݄vuA4M48"9֌b҅`6qbx;-iKr,Bψ4uM(#bOvcklJ;"K}= *MV`eרv36Ï4R<bۏ_>& =!uiXMJ}C#y}KY<Z[8F#lK_(4UG}sI~f\x0lZ%W]\Wb1ZŎ^OY;BLXN1=S|ZVCyFȥgGJppSeBGOUe_-qEh򙿓٥S)bs3t4=I0Ir&iB,9'8# LUL"hJ`|>NƏk$CByAQ:80 U_9'7)TM:ZC '#'cil~O-Q| -IRʺ}t>&O17;_{:l?bܻ7Č9c0lIfÞP,Xf4vJ8)=1_5A|P,E֠M@|~W@7K>+觀 =.^Eƥ`7pҴzފL5S+IU;{vljmu#ͮÚ7ɩ xGjkNkE,Ꭴ4>f lS9̯Z2(@+^8;OMD|p(gqrpsOcPHDG6C0%,0{\/y  m"gH2棞%p&טDŽ&K1.1skjo>}GPnest-Dð 66z|_3A|h "I2$8Yl&`YS'M*쒄nRkqWOKQ9з֩'ttLԞNCe0rn9'0RZ0iRtRL ȜPLɶN6E7S=7LYDHb|+#bש2Mҍt$H@6[;c LȀݰQ)?弄Lg^^:]P}^E^- ?fzubX| ^(lfT27jΥ#U(¥ňZW.k;5_m`ΒL\]J]](由ޯ¬=c0JUQpMa}\Skq۞J.E&}V҅G h6a?7tǮ-f랢z+KCA 0JD<ݧO>8|fyv Ꝙ

2sN.`ys.}*k,`x29g୍ KL^3fLgG>ÝPqop㐈Ϲx0 xi܄̪|L,*DU1f@Ee6E1ri2(-I -}_tӋ"5J{ M9B'Ǘ܆Hڟy6=jev/*"t+$pHP}̄_\%8X?d ttP@ikOKO h9rKwt2*GĄPF bauI8Ew$mkN&y @)*I4vvz_;V:%[?鹗4_'N]T|E ~3>+6|+L{<ֹNӫn7y%Ij>[=M?kQsӛՂǃHOɾmVA$9J>rHpi9&58%8 C\<̀WN?ʪGeI"@棆v#Z~Rc1܌9U\iā }RUc:'$pmS#ɜZn-Df5Ҹ1֟M;)F>ذ' @S"zqjʲlvt3P&u%NyEmaF5 uQtz)&"]ÑY`5Kщi-f3݅NPoxӵ8ztcrU۞ 8^4t,*JEb"y1}NH<_T Xl/E%{X6 ]b#5bϛ!FzvsSauu=~aLi{%MnD߸sQ3]N\ԑb!u)Z{愺]#y2-*\tI=jf "RaW\nyu<[AO<+a, QӜ3PE2!lLe孲و@zR7 F=N}؛& @ڀ&op¸pF 5LI\2RI GC|W 3m냈YEAiE_򉠦Xbq^aR)N)`3=!^#xSM-\Ba*eV $K#s0^]+fj|^A?/)TtAQB9skKo?q)Ѳ4\;%4#xi G >^cjI6 o+sX=I2XÊzj fv!뽷zȍj۬& g1ۧ- l#k y9Wwi仵>`In?4Et@hdǮTgysLyTѷ$Q[md<ڡ!mR×YHqwS}u3[zC}t!:`-c i9;<ڇy1`q-޶_u4pkD_'e" \0dkgoKKcTkUG5 NJs4[GCn6}f?-`}FCT$̫5qMɀe.5Alf^I{<8l,Β'hP6}lc9?9/Ѵ, NFpԚWqΖLN $"2T3؛1ft )9W.s!r"$kAL< B^}xSh$+'E9KQ,bu2fmL J.\WЛnz8Y`eɱFbhY_2cVlP*ymj1Wžpr2)Lxԣd`z&-ӏ{C\+ 3:[ZMѱwT;܈NG95Ū|Ǚ{YYEiEIL0S%#=LA,gzc80kAb555a[CY3K bM f|+`lB@%<6W%e(Lؔ󑴊MdZ`QkmJț]rz3Vn&p?a7KΈ.ijg#rsS%Ⱥg@jjkIe4ef߿L~-Q}"Σ.f {L3jxVzpBbrm&SA$#ꆁޜNstqL'YJ qƌP/lQʵ hЂO}utѹK7r˝`m_kE5FH86BvlAQ2 B%?89QdŴcdH\lMe152s)*kcyE!i>Yu1H1#.dوYߍÖSUG WE/dFy Y9ݏ7L33aC־EUV.QԱl?9y,`Q[2:5Bo6U|&GbYx&\[Pۗy9GؼCr_1S c9% I]콏n{w×. +_pm+k1ذט$*Ҏ-#={AkjxQWHwM X. /쀈BՄؚ +Y;\5"I~H^RS"ԞU/K[8^vC*A Cv3d\&AOli6M7-s/YqEv{B۶mǺ~Enuma;yȻQ@P_Zq((_Eژ2V:4u,0=o%D$.܂MhԠKʭlV3[uVk@ďhJ@P}QNLrY ڜ &P{ tjfĄ3sr$?(.23'J"4aR+ؾO* RI9ѢXϻ ݄;v;G`NW/۪-p0;3ջK*@ k:a`{E_rtNc7I!O!Õ4|&N|,GJ$u<'@NX9q>ϴzm-F&p.8V| >\d4ddzA]B]\;Պ+I.?x峾A*fsy[sJ+7@v诀9(A=Rу Wm Q٪|JՄ G6KnrOHW3'z~/yd22N68J[w |i;x'm+Kgn\ҙ_KtF+FH&_X&eivlQUhjYvw,UEj$8smRȬt!)4PaYDXhld{$ُ1\/Sm$l/ƹC"1`$^(V2l[$ZòAx8z% 5FvGCFLY$4!79װf.i GZUxeN[)y;N u'E?AK! Ulz3m]]5\AR2Pݼk*s)y쭒3MZ݋ '=t^~F}vAl1YSAq`SV{RK#EdG<'"9&pZh0zH ̪NވPoxmu3364LQob4fF,hMJq tl1꩞oqT:z>+C"_jٖV7&sg5cZVe´42^ ,Zv &hM4 '{m;Śr "RKFO ~?X=Xx(A#G3íqe+Q<6( Kc(2uϖ8bb=i߃X_`Wߢi6~j摲ow5M!ƲJ'ԋͅ$X5?LhBj|'vE>7\.5 Yد'LWٸ,WH7n^w@.L)$b<mv!=h^aણK\8IHCko'PۗC~\;<0_JM'SV|uv$$p叴{yYo`ʜS od)L, ݆bҼE>ۉ)چ\4 W,g=w1Y : Z8o; \-&wӤJOAo1"'-˜c|0hQ-Ѓ~#;ABO/H:k0>Toځ$5KDLXJgeFEyZ_>5S<`oL3'C9eU%Bl!q2]s~HRi"_"R{ Ir4Ap8 fn h2\vֲXfdVIBBXr8K ӿ@pD]9(C}a3ItJLI YfY}~:FJ2ic&#}kdU 3oS ~~;Q봦r\8| 3N=7t*Ϩ~eU՗^w,' bSUtw/$dK)0y0m8։nl'&%w;χ >KK9wq?~Ӓ9Ee1š Iog)gG?|%]54]zW炶hz;Eq!~#=`ezQfb@k]SB$6a:D|bC"29c(u{\+kqwl3eR}Sg+{ΙVH}N=VO3J Y6mN9$82(W`e JGS!v+4eү;%OSU(K>cbc:/.oq~aH'K?ï#R*۷Ƿ դm}/j+FfsPv{yA 'Rݥ&Ȁs1N8{ yxrT*&u?x֋1racJ"(94"r0_qװ2WFKGOfͩWzOla\4H_qBhF4';tOt+)'?'Ƴ8f?q" KVngne!(RB\9QqCiݙZƄ)~T&hTKaH>: qK^!\A5%_`~|zd*#BZy%ɳX@`>;=L5',`ҙs"Y‹!]+-x>⫫-zܛ[?c]ۦDh׼%$x6t|n$X-9kT(]KI&R7r}\>: L"`_}$'Z>*|uenvSɌr!yԆa}Ib$c]?ŞF*k:s̕#M%[.֑ւ)nb~bn nyd! 9TlS:ۅSggSLj4M5W,aLtڮ^h&[3듚_ ĸuqr][G}, 'k:%u݇iV".Up_?nlc`riajߦ٠:Y4B㊏ lT>-K!wln:ٽ4'6yHF\",vlwbNL_uE.h3y"Jiťbq յB尜ԅHOW Det,IWRo( Ь[?b6 C'1iAEۑ6P#HEege  k)o4XxN{IeDZ5ͥwFW:1ǜv1kNhgʶ\v`tt/iEl(#/7aƐ!,4plqWB9̙E6h](vAb؃иK8gS'A@L:z"ݬ I))tj/)ڎO)\'|~!3te+;y{-Nw~I}g>虈L 7Dݨ=Fn:=y _gjo6FhKI<22N}vߜ VVѲs(cBKULX$]wwvŸˆnt=+hIotP/vRhyrSߘvm5w9`?S~B 㓝16 qQOj6X>ߊ_I?Xwpgr3.7 mξIf=|`^ՒU&45XOuRt^)~ޞHSK蕿o߄ 8^sت˝wV١V=kanQ)Qs#U$Q_ZI5ѣ5|9wCB,(:e>s.S@ı8通xr]f{E=IszkіL%q+]gz=֏sLL9EWRty{IzhՔ]|VӅXew m!7b̧RP'v.)h4!v.A)z*~cG&y/mY#D@p}7`tXybkd3 =4Kg˥$LS zz<uӼ"Sv6b' 2;ümk,0֪;H. gyJCNvfr*4'*Ur55.P4]ğv[VXGmDt4Rl@oknG(/M1EI6ih' @L *tyu57ϱ/v)32+ &%EvUql{okg2|򢸳#!dyc𮑱Y:оd@WB4w9(.D@9І[?7'YG`Sx8K,>fE)P%S 6U qUl-!(pEH ӛ"ۮ(}[OvL0_hlUV;AIgF 2#/-VuU lTpC]=B+~"(`97]U SmWըlGF!p&[Tm@b U7N1к CK39$!Ҳ˭(f*?OՊx?TVdL+/}қ ؈n Nn[SaP?~* c-fAOfeـZXhMm]oVȫ M< t "[ެaFgRdgUd8``k8NX|A䣶A3;bq`K#gQ@} FCnzE=|5ZOGHKb@61-!P|K,)(sP1UcN,D)דK.Ǵw-i(<Ϥ֪F-2vUB6c̆`(ޮTSזm#+xK1 w)ۦ[}u]I~'_R@NFˆ#({x1f1}#5{(kcōMIsGFUwgP*"aںE2&Dby*6@n‚ہ]ζgg`'d:H [MG+0*~f o3ss8 ܇,c_D|t9G9<=/.dR.Dm5,Qo\3H%ɶٌ)B2V`pqvq֚C?|RP#:0Y),FfY)f2KMx/[0 -g 2V)^YttH( m:[ ,mNAzCiXPge8/8'}~ɣrܗJԕN`y-WIj]ķO8>K^DŽ!#q` H_hh|!<r 8-bЋwPR>2/8T4F>HY[AvO?!+ Y RX i|n!\uKk^-hB  ]QMlG)yεB1/o&:q< 2lb* a%{]=|UCl0>87t/dr5!#10|=A~wL*yI~"Yͨ\C'^Ck)[nNX[shLw.iYD VP`s</['?ۧ+y !um*^} cTƞ^2pDNADe=艭(dme ~6MV473X=fϴMsaD DA_ژ3Ӎ72~A8%;8  RӺ3".&i(ܔ(A(}Owru].6SXi3!ClGhPQI+X"̑G\!B/kۮNyQI2/LP>l4gH.Q>z@6gOO4*MnTd4{5zperq a睴Ӥ~kU#7|0~HXw ;"L)gsq l\'7\'Q.Η3ʒ#UBqeUpGҀv,}'1J>X <*H!R"[E[*,р8bt 3E<2!6BwN VySv=J½U-[aOf=upܸK+Re_ξHnB^#Dp36sX,' 0O XU8%Bf@6|îZ_Ai]+i(P=5 CHpv?1j1J+5.w9a#!w@>ٮc;<>c<⩄躠웅dzhn|SGAVtԏV h:6mh呅^03p")l¶w[  +O7]P=WSPdI$>$q5h0)A; ۖj6v7۵6f-Cd3 ߀)RͽTI<:" jȃ}e5ztIBWIB ՔKst|eRdj`v-v.3\(qQxTxC5%*3nZP`#݀ҋ7NZ'3{a@3Y vg`t%Pr E3 LlP5]cp:pÖR{eXkH8l+3ep@Rt=wO|Xz׺D<(2s=u3;"5u)#iV[ 2)Z0b:]-#6_qUTkN 0Oqe6tq,¹ qC϶Z _uoY&R;ƥk% 3gsָe`yS|d5JtS b k &243qOh. 2uL kgzCAmJq ;n`F +5d;pcaCҗ uUOR ='qh>nv69mU@0YbH qB6>8X~ѯUęc* @V[E|BF!-XT?߮3"u}@ !#DcB{0%4MIVI8Yr}:T^1(vevp/˫={VTX\/lVإJlQO5}lN5LyQ|p@De㼈H1d;|}?쫧|٧@(ׯށEb-]bHl0M5obF&+eR~-GeM˥][AŇHimu}'} Ehu7G'8n%uτR&f*PVŗ9M-ό>W [ߍ4Y ޳̓}Yۻ<-!H X9y`@P.VbV5KTa#}՘@ @HawodtII3qNױ:\־QW[$FJbVڰXC$US!m{fQQl}TKٷޚ$OQxn(>ۏ ;Wf"yQ)TNσE6i7^Y=kTc *>Mq8sX6!A rR%  ʮܧ)Tq̠)=/ :…#Uާxh.84Mwڮ XD!(DsADv'~௰nA)?2M>z ](?b _o͘Rn/VNQȟcs|&(v Dd\oMBcj9 Jy(}pȡ"ȇjh<=bH* l^zܝm]%%n$R_tGdי+6rPQ'쀁ivusȎՐy _ڜYmGBF]ʈd*h'& {Ў@=yǢ<}lT0ڈ@V\X JZ^ɢΠ=Qm &b^v&ڽ] ȩwLz1O,5AX20g2p#& G^ Y2* R8Y`\ް/i OCPH: ,ܺ)"F]6i"^:qF'9[g)@f 2uZc.y= }R@fMM=@P ϰo[N)Q[&F@4Xe\CA62>$Y 7a:]cY"?zCEGdg2HfJh9dq9ϐKo|kNibي>)ȯ<<#1N.#-#`tüHTxӗ,A,#|\ԃBXzN.g;Lcčb%\@*@KЍԮ+{䕩ml-4J X|FL$!Ljk8|NM(х+gUh4 LiR<8.J6Ͼ}g_|PLe_ĪksB8 T׮iV,asOj>3p k4'Ѝ^ri(<c@(7z1.Xu :Tg Ae|d0bY߆I`(UIHXNhN{ؐtipIӶ11oaq@KGKC R9e7B yM=߯A74=ׇ^%lu|a  ph~!wD {9?*+R V pK1r( >*Y`<™&_~ i8).=2/ {{P̀n܋yt%#x=}ik6r>Sv DLٔzh=Lu#e:ي Go^3%" FM2g2-w\2fyo^߃ȨV6ky_.0Z;5ֹ7,b_ S,gE/AK=~—F}o+Sl83nkyӒ:$_`Ghd:Ia=[2֏eVkE-K<L @y'9VP{C Qc kDO.](ZWf(WW9% 6(?DODҿ?L3mf gf9LKOE[ Ҏ`CCR4Jd9~Mixx; |Q3b%|j9cdVa`4s3,=yVpqG(|q&-d2sPkj:Fg9|TXddQX {?1W8fiֿV΍vag01ϰ](nrh5Q BT:'eSm62_H"!hx']YIi}L '.+9 xt"y+L=oi4 '߳`( do iNn{fIǩXA߿Ti]B1ZFr@66G7'OupPIƆ .H B і$ =b5!L6#'UI{evv$ uM FTbPY: F#huQHfO?TѳJ_bi]ZBE$M(rc$9tVfv)oa؁~.V'/<+~fR,\vŜ]8,YE.hxTXE]}\m `&u H/5SAлDtjF^~ܮ\HT<ͭ+YҙG:F$YTk9E%D3P ˣB\ܦ E$b)?hcN b~#C ?3ܪӜ3ֺC7o.+z|,[SedL잿熳C>hiH[ÓQgvo5mMֈ*ۚdn){?hgS(JʠGnH4g%kUܳƍj#OLLfYmWTy@ŕrDINjjY!C,P3s1n;Ւ:bHw\^OԐXTqN0a uKA9aqL,!X|akd Bg]W8<w`PhQ ib9{_.7Xiuft;]4J@0gٞؔM?|`sPs ~DTr ~7ԭёObV= 쇾u9j6a(oPU$6݌bCnAjRKHLuܭjmPl.h\pjWPY=TT0L2 "9y`dEy, 6X^_@>%4ɟ'n}4/!b.I9՞\O,M~i>3/HAHD"wϨÑy %ThA=!9mڃむF#U&E33zFބClrh0#Ez w˜K5`0 <` 1Wsf9:ꝣtx ;G ^ًnh͏-14} ~ἼdKA3Ej+ʒ%0goLq9C#6dPws( uyq@\l?g3%Z`yTzMww"~}5),6;g9fiڞDt,R2,nW0҅*nrrU`Ua[^q+}_{r)i} xmφ@/&{KUa|)DJ`<ɣ?{%jiOr`vTL&tY"U |C ZcHuwz-F0Xv끗;'nMY‡|#j pN=A>"0qQaaaR@ A 8w xˋËBykӕ8?dP</F2* _z*pd*m z+w}ϔ ӡ侚0BrPN{/@lUL,&K!ni˵6ȸĥo?HL5NnaDz,/l,?/uxr!d8DIsTFh;spb?Aal2gWx#&ZF:R$Ҕh[Nևp5[`cp?2Ã|tus2ԎpYI&Aml͉b7f=*m2ee_HFoA~'Y<|N~w{S %<;ݕo(dގsDRG:*oz]Vd 7Y'se$D/rv/X-)Oi8?ϰ=#/MIW(>u* i1k}F^N .B,ch|:Za\d5R/wBA=o'O)J;ELvbBp bd&T=G=-~,6KnuarHu#j -bWUzdiŊ0б u&u==`<\3'\8q-QS*t}@hlě((0`~,9C*J Z?Sm|^!_F~ z/lba a̠:%4wu1|grR;- Տ;k*W= .F/m?@Ň xf١NfԗF5_RTkS*LZ2omTDťɵE!T:YH(cTt1ƳryaƙdnRne-%I'>χKFK$g[7tyO9 DPxG"qঽ>[y-O'^fl~9+L+_!Q|K.,ޥe5NyPl=̖.Al!Zm@\XԪ-.,lhK&.8s 1hsb2Ui{0@q +ഠo`ְ&+_|f+Ӆ֝^^HG&vp[k(9y+<1 7oC8:T Pq+\^ ڛH?s՛ Pk]` e/uD/t6۬wtdGN>w{Xt49Sg0=Hyc;R^67X\`èfAn ^O O8%OIr4:n5ٯmFSY_k=~jHl+]"7u8v( /=C=E=JSQL+K&* }rcYVTM?з[QbSi2M_ |(&/X6a{]rx. bO^a$lnvmxkauȪh+I![ԙʼn fDnn%:>ط`^ŷcNJ潿>:HY;%NYL·34;I|3gV#X#K\O6nfL`#;>6";L!@cOڶNʪ4q20mA -~& mjîLUD%}pEnjػف4+Znh4fSa> -̷=|]btZRg\9/jǀSbj)2M >|XMjC7W8_*3/_yW+ i|m!S~ G\}X8uG@r%9]rEU׾XAY;PەQX q)⭕6EA!X*_0$hCRSrY&CbPp-BV!8xS:i#VJHw%kl%hR p=yZgs4d[^Y*-Ӡ 672kGE:l?}BtYol{BƒTU~`)M_q:b^)U>A@ s+`_ ձNH+U!gGɖp<bkl ev/7<&FM9cv"]@ڙ#3 nn?3 Ywf8Y,>QX_xV'`x7j2y}})*ۑ/SxXwߗuN_Y#1Q,r_8ʗuЗ$SLQ7=a'c]G>ob{o%9zNeŗe^_Q|YЗ}Yj;NGe|Yg]d=_#|?eu}Y#X_Vo×,_Vx/+>ݾTx/d`|Y';Ηu,|YZ'c9}Y~dʗu}Y{NE?/+Jėx_V "3vHYt-vH} RQGPfN>$R$L7H7jฐEǖz:H{[)V9U{4wl VйrܩC(`rD2 {0q,yڏ1G~.,뤓.0#XH~} Zr7 Y& *tpb^py:Vׇx'p};=w'p7y[>ܓgstÇwv~.w~pF.viyvޚ缍ޞ6rd]:oiK~i7r~hu~W?YS* Dc=^U̱zAAqJ71=G&8PpckHp͐7J",2Q#'Nt:6wl) uϑ}mv&غؼA'җs9% &>/2{u5c M+%4&ofT"#痗N@^c?XriFYd#,TA28P7dzɰ0)\a|0n {d0ݧ[*; ?4 c@1@R_Wo7]y޺J/Cjl*cc{oƸ?pZ[s!( (eǶ<";%CqLZ?AaP;N%UfJ!iɸSQeq.`%ac~x{n}9Nr{ eP(d(bSG |.Ǚ753,6נt͌B]l P03 xܧv5K!h= pKV+1q8sHfʵ{V˨([iYcXm46 j||a-ºrJ%O2Ą&]xLtk{})SL5+"ҍBzsTU&f 9-voc6ibHlj$~`R(Bڎ>1Ȳe[!8逿wB5oƠgTz`:SDz-^KuO-DLR&_(W拓T:7X+k{k~8Oɢa7ŲHaB\>^aճ*FvrZC=r"fIn+v]X@Gxھݷ UA`[%= tqЃY]s9}44vdѱcqQ*Cc铰e^Fݬ F>I֛ꦩ#n3kG:/g 'dC}w uy+(`a,+riJ #&[lfM̗呣xJ 7ޘs,( SK3 r/)#jR:/'4yrAeVx[?NkP1W'i>5`ŤD~he˭UsE3ѲxclS1P KMw8K:nr:&~y0' 'йC/t[4cv{ An33aYTCkϭʹ{l)ٽqp.QI"j &Ynq7v;i >TGSg刦Sҗns*凶Y)!´gEmUNϹ25sC^D82:S4myAVsdIzSsV[Lj95.WRN(zZ7A<(.YKnfzeRYxFhc7!ޖkOTouVJl5 ̭ elh =aA|YR @Զ$̜5]d 8֜Re}"E@ 'hl#D4fA*T`A)rorapnUnQHDJygm(?~#Xp/ޱU@釭7K $d'̘:7\̇̏$6M Bb8 9!b7Qtd\0Q1}I޶{V:M\$rQR$yԃp$g#dTLU\sdwY@V ʱ!1 `J)CXʹ`)AUF?PqH `1-W=EG(l Cʯ3i,Uθ otsn'Y]Yç ] (Li3 ȜaLӲ{=?{INfߊt~Zjt %s|w웎@ HO+5M7+.mV)X0R4uHkab Oq)#y]TF뿀.CfAhU62 b/,gWSHS՘? 6C]4hk\*z(beHViX 9vZ5 SC'7;⌝р`S$:|-\qUvy" 4XWg ',*0܅cZoҡYDB AX)x]6:Z *N2V^Vx9?̏z~64Q̀X{ٸ A&O$Z&&͞Y2_lo^RPaE("ˈC, s]XFj՝fhzj}P_3BPHC܋Q -#Kd;@U6ԅW +xeb2P 0k=Y `)  ETc!t"u>vxϒzEY^zf ,!v 2Ј[sy=3"TZd>ܲlzBt/?D/p#=|p=͢lj̶9A8)[BLEs5q]tK 2[4rdbmUmXi𺆈5o;x=[=0Z MU >,V5YQ(w؁_S1³x QLۨ-@j46< 4ZL^uL []pzP\4 !?S}Qd,lSo $JrSѺYm0WgOQD+BtqW%|ZNStO oVC,@ +ΐaLxH$LQq}|}>Xc| B0Erx802y> >c0oB] c8^T<+f@v$JȞ%\c'_cێȜmal.݆^ԉϮ愑 l_03ofG$mOd3_STcw _D*]n$X `s"{o_,Yt&b::DfoQ3A3z3!C3,Saw6 mЄd Յ-}Ynz>ܶ!<CҼp\+gcRkKwưVۺǭWs[;0gu]$AX{? 3\j(E4,\ \,EXzФ$吟Z<^I?lW&.Z*~GqxaQΙqŝ, BKx/y0㩯)2H!6:%/S})]I\n6ۀAFUn`JI7λV^Qbڛ T>0&(8|L/!oPRПP"(!_Ҍs̅XhNy-FF/oEuA_ "Ekq>D5OЦ^]Li@{,EF7vިoԺZ+w&؁c|hO녯~yKX{yB1s:Y^v2;\DX3mhTp1BDPZ=MM!Hf~i `H 8-*!Z)D`+IZV߆J26 7c d 5DQ있M ?O\Z)w$ٛE+6ǘ--"4$K{p(-)\:b/ll`mZjaӔ-dG.EEP ŷTRPj9@ZKׇ\p7^/Br҉Z#xԐJͥu)^_j* #熪U1TGmP^'9t2 KH-{CX^X'KO~FJe10 `򨸄 GI^Bbb~ [](V*TnY{ykQP'L ͻÖFqZ n<x}lVqp#;&J| &g㶼hy!rraQꦕ>(ėobMzotᢙHmృמ"Bߖ!+opaw8 }:U|Hg{2S}BZY ]l^bL<>)H*:1ޞ}xMCyxӀs 6ukpR3@~:P}<ς>5j%i@8*"p,şY1|ع;07EJ^y DC`!}{M<e{N/x9/Pm%,ޒzO3Df*U ^ۋ{Yi-Ňdnx]$yXIl+jX~3G[-#Cr)N5uH$KVSJoU҇Pjfh#Mgw2- yT 9U60:"H鵚V+XPu([& ? ֜ߍ2~yE]ǠD[X,к %3W yߗYu!a萙\ݚ)Ѝ:y4ɺU56&K#c3G~ɬG|-lx*/-qM?F M\J* /X0?cqѓ;BE΅{rtfF[kfCrOwcgba.V;[i~dO,I٤=B(XAnege%>0j8񧙮=qkr\fM ]M[/LG\ֵ  ;2}}Neݙv3$,%w)sS^(vgX2b1^{̉5l*4PTCn'P~D'w0`>r^lCoVa%v. C̅*á '*}⯋˾`auI w[$s[h|_!w ~3Oq s)ͯ+0ɯ+OkRP5ٛ!16;8T-oH}_r`_b^x3#B116%cg%h 25v&z{sL1aXl囶2<7f=@+q#!…GIwJ4,uZZ ee2ҷhp2t_bw.2{eVD5ꡑ&M sGguJr[\}nc|?/oP""_b~$R ;{l8B=|rt,lϒ?g@dw>f U`X'@/ Fzִ2>ՃoAJgC{rY޳ݖr~o@8叉V4PDQ"ቶAj&Px Y4g[K/e4KJq#.n tH.b&V1UaFlR\ c6HafL]EH$COYU8]fz<ndx%9`&mvA@(2$V8LY cs'GVOrV){N"m Ljp"9o(%}=^KY`3m#?H'r}BePpF*|tv^O4kk,kJ{Iw @xX {ã[Aa헊8S&hۡ*ۼ">'Mvj2^%P?k95jī=ܡMnSB@ ]  -mXq;ඹJk0o#9+QY t^IkP|j79nV$e̡zm$5̟OHu#eTR YQC;نhmۈ/rH7XK39"#׀xI[^pbouUXׅ-y'ϑgjSpԇwLk_9%/퍶~[ங37-AsU~"?fS1:s+&v[`XD}Q=VIv>ԧ0"5hvDnpi/Hök!(>< ^Ìb#AGk_p[!(WrqY*A%Ov,ЁtQZt,4R_1} fVOs* uKm^QqVɾP+>|]Ž)4`>MɀR@*/&¡]{%Y)N8@/DMD4Kw7 ooka:g8g1E~n:k=[vȱ 2>\+1KnJ96x;[=lf%>L82|:%wsA>|D 2J#|+Jeh(h'ӦFڋyM98S:Pz wk>I8+LF9_,`ac -w@c RV't=#X.,,#ғW"clAg9ί07Cۢ# .xz32j#gF88kX8k(ʀsD04$kaܪ -6VFBmGt'3|58ƟeCs(q:E p!͝^wOb$]vzJPW“F  F\f$#$J>ZQT&hmD_ M R}zyS~Hfg:s5t>g 8x:+ Ni\N|&tM=OZFnEMF;wfvr^c: 닄ٲ>A .:("LӮ+08gJJkO|`Q<K8W)&+f Ӽ $ԣ1ıp%<S认]kèǷUuT-r*Ojo0yzEܖk]fj"cnb%NWAeJ]Z-3焲&tVar[u՜K;8~hiRyn/@% "!PǨN<'Rw90䖯a'FGJмGNWEg# nl Aɶ FbYհs}2a=LSTp 3*fN:/d1˝9x6wlӃY 4 .z8֐r$VPZ}]n 3x1J aq1`'A{Şs;[GIC g)`<-v &Y0jSUz93sܵTțfDEȯXRW!lk5MZ}C9H@TR J6S;0~yc&*Fll(G %f_pS H q熕 eyEE4FrAq JШ-klØ叓jsJ%@PyO?0^~FRm/@#vق1FD]̏FKܨ֫':HuGI͉Ee9FeaPXq`lK?=y̴Pf;YZM̤z TA# clR8DBrq ޅ&?.OcпW@ d\X/f9t%w7_l,8vaҟY;duBj\b'R(إ -{B-$sJhpP㇞6Ӈ "y_ bX S ʃ*ұ `@׈" 2x" e]Iꐏ}[+./pSkgT멖܅F_ *b]ݛE-޿tz&ZˮŃi޶J_70mЯX=$QZ-0+ىF>k>ʲ=@!C PsHyL>6Ujj~Di.GdM: # pdqћ)lgO=ظ`¼qRQ)R\R:=[gU;<>G"$\0u5V쐗OU냗Ơ@U9&&M29%?*qA,@CX |Nws+rkq؛lǍND^P8#az{ߒa@igxمTm/`,{b[@xn{u;)=Qhm9r~`Tj++s]e4ķyms+` wNBT]76Is8xnȽ 'mno_`lzmק^W~{+\f|WS 5^6dߔ[4HS>~nWU-Quƹ +|Q.ړ_6>]*䒃'Ξ/"r GdCxGBַ\XHx9> }%4N4 *NEơ+\:8΃_KSs۸}#ȥdnUQήzTTOvQ+2]'<>5w]rz96A#Jv`+=ftʹfB~"ښtg4ф֜j2,Q5˜^ʾ:/ev9rR?Ct}P#CUwsn69ž25۶ _BiH҆ d+&;j]Urs.zʰs@) )Gxx+S[oȷDm ?A<8̾~G|DH;wvUZ!m(ϴUg\eoEGj#G], .Ʒj=5E|<uL|7U4 G̖G(% d .%~;9yw9$Uwxo._=yAtk>aw-xӻN1=m)_&b08NchZA[KOpRuw% i, nZۄv@ &قinu ի=I=5ygp541Lk@Y$[5k$?,J@j *-OGLw$[t[_ =%y`c^ \]{*JAUrrG*o&s EPv@ƢnMu#;x@ ˜]s! ٪&5,'^q~ *A}No8̾C6~k/adU:hnoӎ7y|AU#KC'n:wh~*dnLyܘߘ' QT:4M*kpZnosNr& AsevihHSjT7A-6C By2Jλ1=yqpQ3Mo;ɛ[a`jjݾ -7X"62Gj\֪E3YfԽw㯵K{FKn234w U_8GPz_] Bl|5TQT%ĹBv Pʎ\3/Lru(we"N"R0deÃAk؃ľ93ϽxVFCmTѝ_TZ}}Ъpn1 8QK"f{ટA.!u]6zlPcAs["-Wm\wXhƒQ 9J-Ͳ Ă/̎$e #2+pl42ɕw6΁D,;h4ƣa4vS]@;oHdoZe,=O#{_#n<v "zcpZLf|Qh(]OP-^|r wd ԲGNDF $6R}AY)h\怠+_AQgϟmm^6K`Y"{`lY `ΦҖ!m@[[IOl;[.}.k_au@U='S},b͇'3Qr2pԤv &R /RNWۗ[ zTl@yX;H]rwux\1JpQ]gGbD*+iTCuX%mF6_Tٹ ŭ+'TY鹼RF6a})5_B\Of 8z%2EuQi@NFu "]~X0Vb 눶 p4y>/kp|NpI5~oz㣥*yN,Sn0Zh +ky-a>@ϧ*<50PZ&_Hb!v6mTiUH[WT=da.Da |ia{Ġ4*t2sfR\oX'ҨEO;Uʤ)(08;ՑޚflrX*uiU  ݭ:z_s@#]B޻#!dN W,ִt\J=={zMb%S5'+2E¡R;'TIjB uz 2'U2K,{cҌQl7 n n\Jc@#_I%O]@lb/ҦQx"Z/K]'{zC  ޱ^$Zo|jnW- ǤY,` {*/{X+"A$T;Lu͇C~&V=|vls!+IE8ũ! 0lN'5ԡJ<+rV48<%@ُIygԏ.0.L/L;s&-z?7g Rb{:hZep_m.l,jWo\״ KTD00!-@"3DZNjZ!lV#ï_gШô 8 ԜU)pj/GikP񨕎"ed;K̉#Q#+n}c$4RѲ*=4C95YZ9KW]:i.Իմ\NgBg{ Y1G=" ; YQ ieǖ;.!dєLQ:Gx!@xi,|)vy%_eK8L!27!&mU8A vϾ@`+p>꺶++T^B:)`+mR!a?\!d ٻj1tff9Něqn5V l$3hc6 _ v(5&'VEWItC-08]{ESwy8 o_}O֍('ƺ3Pg͊g3H386`'D)ɡ>θL[ UZ@BvT\l) p:kNW'FZ>jpβ XmUTSYץޙzK`x񊢆l^ $ZY%5,aU0vPG{f]pԲf~kg#5nM7WWz"d[|DS bYde2v754^S1 fr&H}p5Q QC ƠOQ73"(9O9G&0b,2 ^yN nfa;"x lL=/67={3q(7fKn:3ٷ"đ&Td;|ɶ{< vSHm#=)vR:dj3R6ڱS8j6CjN!*"~_{ b% zgQ$[J~VkERk+C V;7{HWY{/r=SjzeT$/y/4f5`qSd#ӗX&# gܼhqpI'igݾ, E4+)\GHnT=vR} Wbyg*lrd i 7H1\Z9N>sw5)xam(7@ƘV6@ _1 \1]42w K+ X&_ss RɃ﹏DD4z" TP ؼ<"żfI-18)z[#pp:R\bbo˦@Aپdn-6 FXψWF-e Zeʑy"կnIZ5|28[;n?ż`z/: JEWN+(iÒsI;_ U)Pп5XUzoުcc/i h܎`*#z Ivyn(0l fAWh6}1pU_ck^%38rpng'?ux!+)@nU l$c6xYbK;Ah@=I=4}|i&=,[1~>e7VUS"&lTp%K|Em \TAE51hwzw j+ӦfV3d춴 l'KkK!j>y{'"VӍC %riLe5f+Z702^H'ٰ ?̇[BjH* އ"n- \@31:WW&o}*G)fDyVϪ|O:$J^LN<0&|jD|˓We]ܬ$K\XC:o&)b֞L!Al`k1H6s"F}wšΏ@93D9?~ [LpHIlm},ϓj 8H[ d1 X%)yL#r@V0qIfSg?=+p8ψ VLR,7X .!;ءes%FP)mI@5,K ,qaGԵtAn !]\Q.w*±/,IUߨt)L JuoUJ{(hӿ1obsOMzNW$0^eha1J>Czuݠ Cp4Nv[p "$Ԉ;Lќ(nAHct$;JAL5kVz#[2,C"_!U7d- *Qr@,4I(Bu*q ;i40@YqхY'\`jv: ޥhcS^%+7O袟%2hD;n''7G3s&KMB}N3I} 1-ﵓ1 9VFJKMrjR PyXO灔BJֱ"7I:ڼ1ISLeP9] 5dh5ɦ9j=|en%\US Z#3#Y+-95Skf@H@7skF*K(νh^cQjWlh| ٬4_¹vj${¼6B̎cj«p#O-G Qqok-9P6`!UfoME|:>YQ̎gKkt$4^ !To0gF`B>%5k2ZD_CO=X4;Bfg IɶB* ެ5 Yp6Bp&E"!ٍD~٘KDŽ5~].[lЅxA _kFPh aQ2;H-: 3{:*:b;Ftb@dLaRB\KhU80gFmj7Tӑ KM#ɞG (U2вK]a,.P%l7T&2+K2p9d=#v2N|= IݧBfF?K>}ᩂ]p +{4CҶE;l'ѱT3us-HK#S+0cZPJ]FweMAĵmR@{SIe~cE~G/UZx: ICps_YBWM/ZoX }RIqRi`NqwEO6ގoxbxjG>(t- p2Z$cC z:"`&Ɂњ;qANL! . V8ɞκVTuRVЕn9׹wmO Cju$R(@:4tco5g=ntXpC)KGk |ۚZ PX-)>s c=t'JޥF4rw+φ`Y4yϐ;z>v|烵Cٝ;<^}ɕ]szf>QY܀?2aOSձ'ck{P{ 8(Ǫ얲sg 9 ?3#Cdx ds.ف'Oѥ+&u%z1?{34āK]T)n׆EC g77_c~вaY!QFRK`Dp2ÑIY.1UXpGBYP[6)-Ԓ-a8]4ʬ0i􋲃C}Φ,@WԘ~K џIKlXiR*k! Ka%ӽ .aN$-Iȭh.M]nfk1އ64l>;fWwodL# 3~3LSZy6j/̈_0#~aFŒEk>zKådKKf7gI~ xڢi 铢&utF4Ĵ0u+IT cx BhSyR盙Ò 뎈z%lX \6)Y>6x9/*+6!ǭʍb$cJZIRqy~ط. :h+>jp<p+sٷ2FyXLkdKmd%mxQz p8EY0싿;/hX5*,ߕr =jF5X)?MP$_jW+3=Ci}vI%b*L1w3B:e_6 QIR$]yePe>5 ɴFK,m m%!aѢxpe_yR3JrAXk}P(s}n0\e^RfJ[Kqt35i7 mڬP #hie769;޷cp;~pu^򑖂i(7 HǦ=gH }Tp^dcɿSێ`A0;6JL a| B@*Cj͈Dʌq^WidP19(H U8l˷ &W 0y ~*hwRcpChlX񝅖Cw=r[LA=cO62n_>x=i4W?XDfMqhpI|*hO;ITtj~tU$n̉D{KC,5mʜz"jjqAFY-Mf'{]ņe2(tW=zS>Ċ\c832c~7m3_vv_~_Z&DiyI}K}u,v+Ȩ8&ÖÞ;0;DH|9c~6kI͋zu몪FFI#ռ$8.fLE>zł/UYo]M6kĖovOgfYrd18 6Ku`L|R7=hҙ8P"]< @(e,:6L:^ˇib)97 `WVg;BreR8 mUxZ#90px6`8#h/`:8>sqV{f̨A H0U]Z0odhwC0m|y!@Nۭ^ml.hDA3s )8/[sv GIlxq`NGm}M Z@$䄍km\8XK:RX 쐣c)v%iftPULrMŤT/hTaCe0R5=t7|٥&mnPꊆB.YS*C0WY6 }IՒt&r GQeT\2ؐ7Ȏ/3!\Jdaǐ]n?WmQA%4UZԋ H4ϓ/8fgϽ t}́*%4#hM !H}c{Lo݋ye~)_ i _ 9k"iwL!܅a9fͨ)1qqSN˨.Q(t>Os-R\Bl)`/ڰ$-d6#CbU 5y26rT̑,$#6W%+0fIZ3g¦Llm|$ UBףݜWa*jtW'<[U'( ̯F\NDCl6>~e=̄zث /geQmP.Wt08Zkg7 H˸@lɚ7o4n&5&P4Wޙf(c,Sz V۾,lm-&†8<4 d<"HCEv꫞|BN>U?UY-X%|7%c=mu,Q+-jW业f-T8BAE7z)1fpl'Wȁd%_2?= Z ]9KL=4sOօ_]&8iklͻNѻw<r]r t4؁i TD鉎!|ixuk@FdGYbo9p恳`XzOe^">Vȳ r|4YKUWiRnUF:ȭ"Q&]Ozx wǸc(]ɜQC.V3uz o@ \H+9 1ө9uۺK4d: @F?7ad:5]E'4mVczػAdDotG@ȉM16|;΀f}voRn`V!(  T4at MڇjA/r1a`(b؋G0 o83l#%513I"^pN8s5hUw:F7>H$\t$,lc[$60 T);d,v;u–HV^ojoV7AVtő;$Snw|Zw5%ybvKP!lO;V,_+&W3`-zn+QE Z(12>诏CHh֓)@oI>'9^Ai56'g}P4]RC4W5p*k@#~b"Tys`Lw_Yp~x,>Vy/[Ęd'%C^PH7L"hUGgVx5$5yekBs%7Vqys e-^^ga+pů_Q` (ҋtat׾7Ot@I1_Lh/GJt%#{ F۴H7[ W`DH*N ~f`L&gsc+o00dSb=5|̰Bֽ}Х \Ia9A1SG..fH^2Osť=fnDy2QT7&@яUtֈs iul)tlVS)%؞ O8,i^*1>c -,Y^9-FfTsacI =skѡ(jPn߻?"5#Ǩِ:2q`h" lHST@ "n]d+[Ks$c3G&O'C~"z$Q #Q/@)8?C)wdt=(U)ùapW\^gii\^FztA2C("R{]\;GW4SUtg260X0"* k,6K,-l@(QK"zӴ'af"mg]ם3 3)02VT%ER0KȪ[&51B{M@!W:9moZ]O( U a4~` V {/{ĽYcuܙ[_cGO(d84oڑ'2mj_EMԗ|@SQR B;Fl]@F ⻘1be}f [w]NCg\g"y3M⒯S~Thm_8blUBa Das&Z(fTtw^ p`p`D(y`Qz3*2OIތL7( OF(9V`iK*Ͻkw߃z-Mۢn-!r9e$z/$n3vё(=ε& D8jΪ2{JO~3j墁@\>}P¤RWJ-uzmNYeSۀV\ U\#U7\ tZvkQo[x ljmwZ-̀Jή7kg[2Yֽ^ndDggPfcy 9%Z8T3tOoF/Ff0COl0nPk-<.5I(,OuSJ 9$zGi 4y_evh{v\& ڎ_ђ':,o +b1b>*#XQDv^: 2;7Tˤ/qe0iص`o~K $VѾ{_ce,Uu#pm#`V∹[L}0oi+˰:6r}i\y:Sю5y(?NKٸҦ Btol 32B( ,jqkG>|7¥؎w^P,h{qJ.3YIa§{}x]4-pNLP%(Wv cʯҘѨna1X^xiv/۪j6Q"]#xVS,|sr>%Ţy=H/?iiOUZ`0b Tx{{md>n*33uhKΟ`Z ;mvvXY><ҽ`b- `jcAdq+=5vI Gb0 `[9Q} H"]UTh;Daڜ6hR^_>.i)㶈^`^2Asz|dBN 5d'E3hq!ԬNSSfj#^^wX Kw2ƪ]_GSTRn@,Zu5 E؟" 0vz]1)Lfx%tc/ۿP!}óD%.B>0$pO{{ks) O-J=Or KxZ*WZFUπHG4@_Q:1oT`0w*WE73:\+k'{~lVTW.,i3WG7A7@u;(A4xf;9C +3t1>iQb==⩸8 _Q my1 ;?HgϟSՇ[RҊ +wD֙F=OScSZEV_nNdQXmqw˄Gq_Mjn |sVVU^W2hb=Lr฻=_ʰ ҉Өsxx]<4@ri.15ʕ:M{T J5zk.*fh1T$;!ԦzX\Tq;O0>|rwm~7tn(ȏjFՠ}6# @ONunh&4?̢.PN.OU 럍~>A=w6Ɔ'@6ll8-^97W(63Ï)XA|snjcIMYb6j1aHY<= z(cӂWjJwF5y̿P0ɗ"B.xTD-q>rɦ";NDȂ*/w~'r}4SZvQ"0AX~T­.AaW}9{/l+iu!9GЂvZv%i3oWS*R5_F:j60Yf[׍a9g e.!fe&Yl _p.2b4eb٘"fcJFC<2t TW\Hn%^ 01<{aҎm3m{$~ pA jDh!hG Z`j9l+E҅J;ze+}`@:{} VT5(4๾ ]Flz3;%R{=a9OWDY-iw5KKlK( 5ǰtUQdVA~}^X3çGE{4 m:4 UCkFD/e8Ь ӭ;Zdf(d^5&EYsv>]R+u \GuF-l\]UF-\Zla(?<h\Ek k75,`i_TP.8hrrf> #&q9F>]5%-0@*5>EbTëWV/MJeAvq\]Hߧa~ {IZ*( WMs"8!\VT[^7Ѷc&a ~>xe  JG~6\)?/h{r?h厡L媂W*ƪCu=3ɝ_'7w/fۭ͌qŴR=㮹 LGbT !U,F֊w+g_܊.%IG߽}7מJ~HcEh7Aȧp?C"}C5 Q(VO?dWm)ӀoE7J JGomNA&ѹm A`bu9 hƂ-:]:U(~s@iĨd H׿F6'>4z(= mβ,/UVvL;pPaW̞ap E͘%rc/ߵOdO+_ΒMd5U`Sdy8E]f-ؤSGz|cЅ4O rewr"iA6!z)_mr4<vlf!}0:OӲ0[yR'VpJ\op(>ZD٧ Xww_{.G&UB:uCT%{؛KqP-zW6Ogd3[J\u7?X#X0Da~ '>DD`2 1VȻG#/CS/lۧ6Gq-D<)c(AN(w56 NT+咼5R=sWDhPv"FV|f0%yl).,¡4^YBly. 7(F딚*Y A] vum-GjАr~VMOK:?Xǂk}`p2݁ ZUw2G¯G4be+#8*=3qm/O]-Þq/4}/iܐ~L\H5>S۬XA@<]@y]@#ts{K,fB4 n-yp,zU^Ar \f3ۭ;,b}ʕ 8HG%/q{OHBUnUC碀ƲҨ8GILEZ -~a _<- w7X'27Ft,|jl]Jd8Ta[xړ+Ͻ);DOi3֝s0@!4#6XhN:Ehţb{`d?L qE %1$[$㇯r0, a`ZKt5ޤoUy }86tMƴCJI@j|t]lE1_0EjZ#xB3ؙgGOq%w 0O 0ekiǜr9Bex e"GEyH.o&lxkŅzy/5HA 7:|ꅋe :IcS~9.MÚ_#3loeT4/U}ݣ,tbX}jY|a.ű (e4kxRݣ:H6DtȀ cc? PonipLL'վ42$ח:A\ Y2IҷK:Å𽀲 hy l0Kt <2hivͬAYJ h|=9Bhq95Xb7?>Ug|C01lgl!N _BtI9͹2tEzM0pm)B61X*jh*Ķ0*\CuUZg= NR4k0T$lK5 .E"3!CIiqݓz`K>x۴y|U?a!=ToEw=|X|O,ٞ۾K3=;KvIfX0}nb|< qX<$Ϗ9[,K޿>_>~~9?? POa<C۱fIME׋4jk^QBr+8J:l#`) N$~ʪ2b d,S*ܫW)t,4ǚo+݉2`,j$@Q5/=;'ѭ6yĖoKe c4vi{7$$cAF,f%֬ -}5܋c)-[!EpXbgٚJmOh"BS[yˌf W>U bhsҝ8pxn\VFrWڦAcAL7{ru&h/kq8j=H7$@jRȈi;uW(B 1Ĩ>{9>;VuFrS<4=҉~;DZbu{̬]t%S'}T_ɅҿΧYs %f'(Us]۾]yI38 ?!g'k㵵$ W֠@h9H=3﨑)=f!sv ] @G;A$}$OD@9:R )]eIAD?e=g/3wdLM̊Hҳʡ.5klߥ_ōr=laP-,uP⊅󏓾y j2ٰ4.%g=1heS&zm7n:+,v ?]߆ 5|OlR4alc="jɭ0 yk_czp.-WP}kO1)d'N_ @s$ RdYωN;Fgn[Pk%e-z ddr(,=Ob3M1GmpݏΉxP-r%t~K=#)&0AL.`gEɯ%iuaK]\:]deʕ1 9kҷ(1@ĉRd8R1$kŶt(~bt^\{z:+k\XJ2(.ۼ?Wv"@u/Hߒ˭xi>6wka q( ?Y*Uc_C3 jmQKnˋ ,aa/V7cυ“Z]=UL"gn.1t}bҦ/@R|> 8 &Ao7b͕pwM`"#Ω7aͮKP߈hd:Lrk~&c̗F2@bSZp_Y%u^K4׸M<`iMyez;/F#nBӜ n_ok| ˡä2z{En-vW’-">N@Q/ 珀| [ŧC[+RQ;b-n' _Q1~ᨤZ6Y綁 3=@՞ZhArg>62n[C$s3v~u LWT _v?k1ώ:z›шpK"bHuip#@8Ƣy 0\£$䍃DHtt S_WJծRTF c<>p{PU)_f-C9E0e*`Ɇnל̻y. .Otr` MSB\̾}v[Ag7T//\(?w UTלMao#`*CwI;] $(էnRG۴dͤ$M^^e /^>^~>'_$3(Ҁ,#;ҳ;"<*S @:9x=0 u`hӁ`Su~v;bz̗6bK+` '9GޚF t$t*\%Q.W)) @ˌ~O9O*_ܫm{Ԛ!i 9,~翽r&"V)3F Us^ҵɋ f)[/*tsHAAcUN>7<M':u}ݫ!F&>D(m ,=56,mՁ2M[w_SʭC=+2ۃSpio 0A`-CPwuE%Kn7?3NIV韩*y|m8} DmmXsR<;UIXV־7&?k? @+م̚Wkk*'/OɕL".0 p26Yq䑦Nuyq"{5KsIţ$>%W]CBk>͡] OR6#a2ϾNr}/Ywv.Jh-QyS+P4GsqkgiI&y<pTYv5Êa(D&#zS_ʙH|O6a5Ѭ2  $> aˀf :NPCes>cgD`G0I|u /H57AMهĦ dB\k5G"Q;zr1 H-e7%M;[{}6Z-"R@Me ĖV(QeJ#Tn 9ê~Hˬj8&h|g &ʯU'V81;e<\44Xn==B (s!*e[_/u4}0 ʔbT,"sB?ߞe*b`H Ůb\^WD'oL= 缁z֑5Ú@9bsnZ:ߩ}u)9 O&SҤx|f"F>7=x1QRhS\wh܇ B?u#yx~A/|-_2|(E]$HSBל<^¦195׆x$j5/wJ%{v!-bv^XݓWHd4G~/Fvj:0!]E7^VS7j@d' L cVj.FT.}3h_wj`S)s-VUsI]*F)1G7Hg:FK$kʎsV%'u+J#+0b<u[[bv~<8{<8[4^MT}-ѻt8zAj$Wu2p7xdDwHNNx3s@]C[л`C5Z#Nҿo<kw~Kq53lThEtt\'POWbE0vjy-<pCz(a("}ʢiQle*<;iZ2jzZkwx=/p(wPʲt^ 5MF[cbھJiS1_ԓG\STGC;7~B  + RȔOUC2 [m^_0ѭDDa '$@p'ޓ*}J,GWn+EgcmhMX47: :ӞmoZ^юV{8  I96]`'nm^!lox<^_P8[n jqMȚ;l#e,UNM x:'f/uSة2=+~ #`x:Z_ bֹeWbG(Ub7Sy R^ Q@O @zMV3{:YZImj#F_wUuֈ>4tۏuÊzVSPi F:zyMeU8")3ܣ/&{FUCY5M>HD]-t$n}*7d {P̶v-b(K:Ԍڭ  j=ؐVέ(kvZۗkU51 MfWXIP҅w:Y㌤\~@@zCJ1LkYp;a|4*CeC/q6U3Xw' зL<B ̑#(B#R 1 ,ߌYv"ɮCT"bG ҇P#]ywpL' MbXIb8pe[ }" MD|('}ϛ-kݛ`Hl@Hϳ"[Q_libZ"w=ݓ`at]wP\IdA23{{C 1P5DLظΊZLr)E)R۹un{ַi67Ypmk?^Q} 0KE v"t|s Ѽ/r =r*Db2r 8#L,,g]2K+OIZh(2"I!Ol)hZVۖ7.zBh|:e,fi9MnZ e'f9r(5Yg1WTd"M[Pt[n4*g6턩Mʦ>0MLt^3wH%*`L}:ˍyl+oZiMJ1% حyoI/e.l+-\Qp.\yAM P 0lVk1)Щ $݄CGlDVjS_S9W+M3]\n ]A̽w] 23׹yvTG%zܐ}yASȝQI=}"$]`af$f(:uvp62Oj#C"e|j88JtRA5Cg4oO8K˔ d`2-7dH?d/9" ~=: 㶮=v?z@ oгwA#XQ+ߵWT&$Nzo=>Iwnw/FdjN Luvl!wZ#·nQǭx#ޡ go8lƂ=`9 Exo0+֏vaZ$suսdd|I=u*ig)nj%޲m ٱq 52 bG b}e6p Z%'uE2c>ht!S(FLU4Musio~đ_X~DQÉΔGIj\Q0?.6yUH`x4Imf ,&_B~^ ֗!{ nK1bڿL~v|a}]cLPxht cmtAXܻݷ՛Gu䆼}.z7wѻwEヒ}.z]wѻwEv_~O)z7?VwwC" w).]oG"x#x"xwlNEGJg7YS4Փ {אq,Ye5VuE7*P찚8@`QqժkaRYalvv)O*>:Es{E L/5 )_gZU3˗:>с9!86Px[ڵVZS2  i5`w j.&NKHt+F7sxkjX:y%dgeyNc 7VX6ɶyFhkFVd@YWOܕܰ.K1sH~T>,&sho[o8>?ƒɘ60Qqm}1 s#:N0\.B[>SZ~d.=ojׇ#$(,6p6g("P8rx݅q~6̓>rQ:5!*CZV !qkh ]㺏MD;rM >5ԩw]ca9H̊V!*;(TؒtRIT=܇~lXfoơHp$hVȔETBwRZ⥜ȋ_b^$кà?߭bZl#51 %gejD;8]r}aޏ0 Qtd@3x_#XKk-,SoOcz7L3nNF 74Hɖ3MQ@Ta7jcү UPսlO틼lq_ɿ ޓ #fCPſ>{}4o=8vWFg>=<HsPi׈ф'/Xh~5Kk<֢7A02܎Uʧ49UY@C!d GiI <'>P5bW<>XwLwqT |:'OYLƦcn5L44+!k#ϯF`H6ه/mڬ$YReYI;9 o'x<̇Vp[(\|{Y,1(4: !z340 IGLsGD&b_m*Ρ:P&v WN"P ic=SY˺dx0x&Sε&;ZVb 6ԴaU %M ȉ|~[Cjȵ $->"aޑ3T.jL9UX&3hDF*/Ϟ~ŷ}o~zİ_ xo^à`6LLf2nosh3Eay^%#j $MIDDy7(2IFt8hҶ'yYKngoCeVs3ʩe~V<wgҹ 0zdV{T#;5۱.k;s%r-t4T/XM@rwByۛb#:4wXҐ Bž^h66Sn'$tZ5+r֫jya[%ӋuL|Z^nv#|zßXc$t! *`0b>ۑYE OϕvYCsS-G!it8P.ZPyTkl q}3tvw!ovdy76uu˦hFt W88 EbvG@# "ۂ6H28*fg k80y+6&%*2PsUJ I̖%(ɷ͉A̜# : NhZvcU7Ɔn.Y $6 B}IU@YN/InK75e1rc <}9w:? |/ b |f}?nۏ)/g}9I8hØB^+ I}Qގe+a@;T]&FǗ_HkdVtUZM+ UPLLF顢.8;(Ad nP pCOZ\[tSm `Gͧ8ǹ9, d 5L&V ><f<5,懈\b\r >PKŐ9Lm\{#0r9Pm4">ڟOQ(BQ߻O[F|սǑ(OQ,!BRjCm6%GS eUPU[p͓Q$7cˌ\4s8cuw.Q䠍#C[u`W WVJ#p#;^PRf ˡy@9Q5lfe_~Β}1 $X7^ԝ$V .ֺթ+'= %gt7%TE N ;BSѤ-|h&@ &2'FA~Uq`lˑ 91VԜ&I>U1{SMl֍{Ԣcj}I 1bD ->>q-b l1XƳݝbX4%M)jqEH@‚֦fFO%fI3Fys9'S4L y8is i`ph8D999b!f!k7<ÇQ*XFdL6'GgOvDbF ҈v1[W2y%w/oG.銯ǎhU`ʳ-)^Lѭf1,M-dj)|J}#ZUjyK)ʬNF܄Z&\|`͍d=o-7MTr/v+&p \cOL`b<3lH !PxbxT`$K]\?f^]`֡o2 cd<{z8A@_V\yo,ZPxFZC<vp 9ss(.^Q6A `v_abnK!e[5xwMp Li|WZI1ƗEqڼs^_egl@#C?Q {]֘ؠ]E"K_w(62k}NeKv5_9F~-Y%n.%FEe0:>d {ϲg>agF)ETudp#:jf v^@)'dUdJ$ya؇!a#e?o Cĺ߯; `@`UN6 e$UoG85ؿrL;m7Ym.oY7 E4|C}/bΚ){-`CG>rV+LxEc3* 0C‚}jO *ͥ=I͋./-ǭ%Ոatx ;l#R w۱[1-;ɵox`Ѝk"Awʱ1X3 Nv^M={i1$4E9*CE⢔Kw7i2#rsqY <$ ׀GJYpĎI ϙ?5.p@͸KR֤֦x ~/nB݃?g->Q=rz5oJ_KX/ncy6秇e@MkcY`g_r̵p?j'4:9b\"x@Dh:,|9K2:?=$$,qc#h4S??ESh`@ɳP[yI9E6WKKpє=h,gx!Uf,)~fnA@݈ NK?H)A_9AL)X~}ӡ mZo6\r i)tAQ )V)`ѱ RmQZab^uJ/aShQ [ΔR.U0-bW􈿒hD-r&D;>> }MwDuTCpT\nOzW+.|`/C„O y{.6Dr ,nZ5>4u -z+"`a{U5b$) Q3nZvr3ư.a[p-B|:>T,$$ -C$0CAXCNPPH#ZI`7TCGw'[bOjml(\(JTSPߑ}S/@)&0hwxC4mk9Ky+ /~PJ *Fir@v w%&#Y#, Jl~[I?G)']+{'iAd<ЗMQgx;7z0G`Yc>xY KN}r߭r lg'XaHxfsUKZHSם}^y_%݌.l-$7?pZ?h1!/*țŜ]5ueZz l`gKT:P8WT7ضx5 s7 Dts >HY[oYq.uċNmuM#7tF CNYAbՀY(s+8"ʊM'N2I`n |.C[)ޖo8-~Vs2t;T&qE5w)9g1Mg?s;K1Yt ;ufW`E_pD[{ظA[<\@8} |kr}oݞJߢO^DB H? :(e$PYlAGv5[ujȒiOˏ~gECivM Q8 7Ky$`NNLM$1 799>wҴ,`{'mDQ7+73#4ύ``2 ado1A!PT @+Rbb̵ ֚Mg7*[+ߎV^-d FN& "͍ҳ k$=sgd혿!]&-H2o^Jun;M'GA"La牲,IݧGWNy.E>feE=7̠ܥWm)70%S&0`2jSkJ}݋>zwW~|}(C|S[ l?Ăcu-UP#4 tMEٺOY鹿0|'qc}PjTDKB}C<9 i( &ψmT~³=ޮnd?,{/%8&8o, rR[D/EWãɔU,R LPpeIыó[N]tbr(BB9tN:u\F}f;KՓ姄v L=؄Hψa)m4Km?^H]yYdo=CLb-}![(<̗Y}`'IJAsf}]ϋl_NL C#pom ?`x2<*N=jC@>ᛠ45wTj |[RlasϵYwN;x^ #j"m5:{_,R@9:$y69̗HUKlsQ(l /-E<vٮ!ғ}%6/' u X>_dih Ӱq u]?D)Fs;1'u^!BJ/s\6Z54|횢9z6h֜`qml ž@Ge*ܝ K_N^_{pfn|G2؃́Uc|p_H#oTdB^%ik@d&<.ڋISG{aRhK*j9l5UtĭH,QΰY1/H9؏Kg?pM3Lΐy xՃ>Ӆx@mEx;6s=ʩL7 TVmdjmcѥRMLw-ۘ!/1c݄^{ABx[ gO-/×s7W76`y@b;pf;~V?t3(#oֆjoh~,Z#vV\.E͙"%.фpPqT7`hŻڂҟsU_{xy4(c(g 1bњ=h?dY'r2&L~˖rpU`DwogGhW Kapp2kgo<ݮk;.,G/4w]\)P6K~uA(3TȶP,]?9' Q6e(5ӯ!25)nI lt컄 >h>J0972ʢ3:$n}0 L؇w틚b>L3ѶQKiߣ68U\T-v>pCE ȬfZ/h2x)&⿚TWůL% ʼԤ(l\q()B`2JuKfxy}!yo4ܒq4X ˀ پZ"@-S]-RZȉ&:(XM4?q?aGvncύσg|ӓn`C.ˊ |m2ٗ< M|ׄ߹AHa&4y49r[,;4sw.af 4k?KW 2؟=/@9[.D;w_K C s!Q>&F$Z+D ApaSyViBp#B3y'DEnӲHj-cu0.JM}g^%񄊂OSpXAjSß!E8"'PD'G&(0ذ)`r G(V!x?zEPڗvxx. ( rGs~~kKhׄr>Sp=9N@"zj~nr4 t 0 tHnCM41!^pT5cMi[ \SP17%_^1j@w@=ೈ?[nS=I՗ );HǬ@벣;6݅j<2(1?:>L f^Q+=@=>PD;ʱ sImEh{֋7id;V$:f [9==o!jԔ ,՗y$i6i!G;x>t:P+b YD b7j`d2UsgVHn?e>?_C#mN1Q~HH 9rvE@CjPRW=wOm}WACW׋y"ƿfWq%k]$ٻTז/l `oys:z!O\J?$V/邆|C < ꢴ!E92K@y%s5ў\lIf.dZKΦ3Xw϶/pjMLA"+ʋ~Y`(^8k %*T<ݻ ^sD҄ap i{=Ɖy7ЁQݿmg0C_>}f P_5im=5 'Od5́FMS?y]d}hDQ8ٍ,dJoߙmgO'F_z;vG0=e!ohbq,MEPc WlTR&/\L9Cuߤn DžV{[N_uF[YUk7[>[cAc@3C84N?3q4t~h#50mS.?MƤS _zF#iSRFɣ.TE^-{Zñ ՃC_[yD3](( _D~^A.MPf[>r ҋpW SM62ꠀ $޶=uxlP{Roo{ maMoY!п3,"ps +j4PtAh\Իږ{){7 KX"<=aC!4Qn֨_tͰ<-6Ukx0XQc6Y^ lsO*MJ 4&*LW/WnovzM ؆ \{0+ocb+e `ݺ)Wɮ3a#a+v 6(0*%8ݡ793w7Dow~EUAImWyU. 4n ^doHx]d\zPWI-j\KLruFFR/pҵzd.2h<#5kvfSP;XVlXct&ebyD>nj|/V]=%3P<5B9㚥&yqh ޺4`r!V? r~ S٪=C2(@D5'8|Ip.ScLݝ})f" ZS/? 8Z/w|CΎVE ;ك7 LlSGVr ԋ8P𨨱"E0whO{d1oYLXW : ~nӟ|r{|; E_rΞwiAT].3!PȥyME(Yl ?e^,G M1U-O{B):/] 칶QսxRc׽f祐wW0:^w_u<`yX (NwEQ 5BPC@=cgԹ硓ش5.dcn IbGax|4 El gb$NL ?FU D 7ˢ[N*@q9Xy\2fa*g &ez m-up4"O ƏNC`ڻ rw~ќE @86bAq[08v;M^~@q&ENe_0$ pjĤQkY̮In7o*Cs0vIUp@t kqC"6٬vݢ\ LFDi;l :lse߀x7^x4^0UuX;Is0Y 2oVL* +W롛Xiz3߅tzI4X(ab _ƀ@a_.b&k9Kv沩7>4`N~zيޚfkj _Tsi펛#27P~Be7u7YFJF\6Cz&R`^}9yo2 \ޥ'޿e ܛ7fM.roN Ʊ|͋8TP)l&m\ tݮe6uS twUiz?TlVNkiC6E.z†M] Qh5GvFGbHg/:s4'z> Hy҃1tAKdݲ[N?תvxeW]n/>tLdzz!>43Ceoqg@RU'F'ddaEAY).vM(jVojK+5͋eyN Ǵ#ţAf<0Kh=b#!TpNʽc1XHDfWFvi阮#\\)ʙV_CGHRݩ'W23G1v=fnEy{hRbbVHSGAu`/>o5C`~7M >h1"8p0;/L/QGE@}~cȼͮ mt#~#a:SY3xMjnJb4 qa@~#IUH eYUT.Dw` 03*fJnf4]B;~Jd 1]k٫f$ ZD-I9lBc lup+6sTy -ᇃ/`08S;3p?j!,mPC:GrAh5uȵF==H?BXx0H%ȝW,59g ׎?}=4ϧuq(9dg3";ɢT%9lK}3x.%qH:3\.i~६M5I`=H!65X-WQ/bcsOKo{7ɱh0'CSˤne l Faf`a͋DOƳPC˅GpO8;l$b6E7*' 淌jUǧ_J!ɨ ˿B,G1%Eb;zMcrE_);!+KM" gF懲& x]\G~*HZ@gM˄-A@27,n$h,G(3 D Owlpa@L CY/]1sWÀPH]#Q@bi OƏL[PsJm5x'YIk7mg@;\%_[JrH8 ,ޚxR{*ޅW63݋Yfax+.ArI*j%:—gc<%%7$xLL2h_ف9WpSj/+ҙ;EbH<@ `& RI\SSoI`mwد<'&f8AԸ@r𜐪kG_|3xIrwA#vVĊ`P6Alm:r MΦz Ny[7vHKJPF5,$uBn|v 9 r#w 1q,?nbqTv21MGp=yذ.K}>ɝ).;~tC*(e5xcq0P#XzM{/~ yS:!zE/d}#_.}"\x9C/ެ='V찢NQt£wR S 2аNN83m Jf %[ӬnBk :Z1\?<Tܛz"P _<^yEWwE a-Q9KA8]SE8ev&PR nhBdW>/@&4̓xQpEK>@Xh(&7D|B5=ɞ +zv g01A n6 YI˯q5OJ$d}/!9PytSOh :TJ#=cToC84 `]kyv6(r@}C˼zwpB3hXSfC'@Th;adpZ򲪛p yʬa}r5/P,\q`VE"2Eaۻ8&ҾI&=:~DCiviS_"Hx–2CP|:3`83s| H:Zd+KCǷt2=%=u#^nv%2X4p&?UHWo8J;L#WƤq>՟NZMX,Kq;0FF7Vg8`ذ fT/ΜfX!?C UXH ![?ӿ(">pD!Z+|"]wgAk<ݾrq+̝;' EH%p6LxUlݜ59ȒNi_*Y_5r %?=7~'жqG8zϫp딿E^YXA\kC8R}E S0R[I/@(Ñ9?hBO%Q1Naj2,+GxPBf)瞎U]x|u!"xy6/ #/PENzyV1T#A52;@/d!m0r_:U1j"/}jVVSpѪ6e*$#CTf]ܽMM7V/R]/l\W# fȳeۇ aUq @RYRA>G|~S"mss[Xb|o)Ȏ+p77 і5*[oŃM,oK 6"#Ocf83(UnqI7{<QR]L5ya(hiiɑh諴.$qۅ񼡘 RB-2l1W/W/_ѣ iJI$.@,uFНld/\736Mײ Z%X=kD a QN&1;cE5$jH=Ou.h ֲ>͛,07l#qR68(X]lQw".uOпVh\ \hm&  TL[[o@k`tk܉r#V 㳌A??gvShl4ˢ3ÇށGM|)bA_ z*X Fs M1ȩ.d7W;ditǧECtSM?z-zYso SĖ]9\ hOysG(U3Щ2F3|"_RXI ~XVL?`[4MЅ0#f|=5*yl;җ:߻t󲝙 E! PUr0VQ90f!2#"^~ZgẺ( |N5#+0iZ qS;@zს#9V g͜X&&ͬE`* 'Fn+ ̃I -xUFl!JF~ӊ$5/bY!Q 86ۼل^L}𥓌ye9j R|X}˪}X ^uc>8&/n)XC8#1Δ>$9ׅc슲pM&{7(c`^‘Ф0 y>0K5z0/4<;fѲ;4V/x}K_Fy!$9ziUVBm6:'rq|dpUo(u A- =aʁ >~† nRң,Yw>4sXoȱbaDF77u]5mKܫreָ4z4D2G\F!q?Wd'mz[хa]ѾjXHF'vXWn*W1{ 4 \{cdhkKߊMƺM[ߗi3pe'^( sfwYV8/̎aPpbeH@H_v7_?"舜@B ÀVOzR(` 1Rt>w9<8wlklغ[\z/c4?u1L3] xX;&XrGbPCIO#ڬ[c\bu9~ѪeKd_@C&vF 3G7_wɔe ;7]qKVXmPɋdz_†؂`!ND .ˆ7di@Ȇc@P ',R,.uwk>u5`l%+DF޶m$|>}~(b\WϤaY0:! j>>m*E/x޳:AM@ #{(yg/AM!t7Q6SmI:zz;0 aV?QhߜUդMCIZ<ߊ wDO?=#8Oل & ' +orX|=S7i x.heG4L} UK>0lg hMg*13ˤ>3[=wI{5jjsDy-5P#@r >N[Ve 'ļMs'De,_KK!imȧ tEJp%ʐfɱR9YF(i3!0ڐ|?VܵRs;đc7LVcDP#rp^F6nxh/2 g%u ) | IZg>b:y" |Dhi~"5^,bXIGm-]J[x8x GCf)ҙ l281DD1ipLFɮ.=|™Mg}v|FT_v-n";?kN] jǔ5ZTd{qoaotWRr5GR3z*;ਰkE+,1Z5QqM-1tNձj*>51}M ؋_ ׹f00l eANO_5L0jXm`"v1*>kj-*|?B B%\e޵ڎbZ.YM*o/ήPm{|!p|L >4FgQ;˸"zfnoX`'ms^LrB thyxU-ڈ"9Ln^\/뎊ʖƶv'pk=&Oa:[T}sbvC>. GKdb׎1OhO.V] <3G)Ebɤ+rjx&|l?8H]zv&646,CH-[q^KX\T$[ے'0'όcU4 ׹7osƾvKl ?^؜l7вt !=>]ۜ<'v3ht}nJ9Bn()^B6J5Ǿcf]튿Jl4 ꛺:O* . ~chG@nu3;_ɨ)қ ;"ذoc#y,++AnJ.cp@B3'?+8g @h<ғ Ξ,+ Ϫh. =A0# [̝Qdq;ظpB6P2~L*WAdnzIϬqGr{KLF޼-Rz]|;E},~D&}=nB-&-r ͠< Zi9׺i_(犖9`/ =jEnlzem·=g9ñǁV}?$փ_{TXL87/߽9Ml EUgt{ |w' 15 PabrAb zqi ѳ #y&49ḆD+{3^3[/* #qW}Ƴz-':,{=3N@Ľ; E>s ͞1c c )xRT9߆pxn^}2znrL "}bU{I(}VĐ^ߗa/0C,o; YS7=&mc"3~*sY_=%k'Ic\[!h'z0[S~YG/Wp,1xorI  =0"^+ μg'ZAQ/G,0SzvQRZXc 0U&96m38_ёE+ ' E~>}qD(# -U'gB A]KtέJ@XO,27erp$2ΑuƳUMe )#Jp<7.3gz,!Ǯ$g6 IzXB3MCTR1YuA5DQ@_lLpUNʒd =\|8D+fVd[v_ ,%h z18`U>.;٬+[=|:N 0Xl0`>PNtzy[k3]܁=AH=K7pBWKɗ*F}P-@ErQa!fͭ_[򢩒%f1pA/6o8 c]* \e3ЮK}S";O4b[5=jA7:ډhUˍNO9#]ϔ+~+p#b1kEL&Y#8z؋NO'Cv8TpC{kMr:z+{A.oLIa 2 R=zH.ɂvt#$ӑFA#Ú;-z>zkP#d).+ڴgQt4u=zr-\?T7\@`E"]9oþ7ebNrYץ<- |J^ aV/0 !JzVNHksj)XB4a#c S,l9 .֟eWݰ@"n0Y75شb72,i`ﹼo4ɉS4&UymyeK/*vh0{R0ИH.Òm=ǭ?f6ݨo|f/*!!WXwġi'5^Vk'x$Q6p_s08䧪J#rERw^ cDeb6? )l< 3N`2R ^NI_>+Û;|f!(cK90Dg| d;z70c"1F1dxA3 IL):3`&|M~V"{qMfف2 NO]Ihc>? KXO ;,ÿC5A?DAB@ #D+}&odiUXTGeTC2(Mh2W_L&^2.Y,뗟ܫexbl 3;G>}:>6ͥ[j*ntI\tE_wQo]E!!z:~:[9d Xu-QOi^ى2A{oX^BSs]y' 夨?+ޣrfGԏO?Y.ǝVR 9%&RuX2 \2gt%0>o. ǶDξ]hR/&s;dt-ТvcP?zk&58{+{uH0x›)?MW.˓sCiGsD-,4)(}T5i+3Y>ՑT# YhI0Ii 'J׶,Imi7 *d-6- Xz#_QNBy9{g^,yןH+k6/[)T ]d4% IeE|OԢ$lL$>)f5z?tw`IOit=-sF$[1UStu.rP[4\KI'vWl<$|x%3s6VT{_h3:-;h m "]ՉpthgPe7zmR"2T5,wИM/MڦgBf|FEȉgE9=LHH_C.!e2%: {4} ]&&n|juY@?. )1w姩s^ qZi܉ ÔqU'x.o@Ra?*?a4‰zH)kQL{gnY/;MaVբnNBu. mT"Gx Ir X7yWӽ\i J F[nz<휷(S0'iYqvՄPp@'6U 珂IUMs"(a㝣8('=*p΋=ΌwGP{0atk'hE-Ø,ƈi9a7>>vmos[:)]y4ѾW n5Rӷ ' `Я̫'̰[5S9էejy$>Of&Xث0n&6T+d%/n#F7NyO!`"UYĤo&CY&z*BN5Kxf;<~oT{t=> [$Θr_7o'|>蚢 fc{‚6(0"\e.&.,qu}Lbe 9^$\mG9k)%1A4߬VwuͧcپX;o辩?,O|*Vfyd!/ySj+bXVVE.-rR  \r;e^&b&ZY J *|tHo9b૞Na]uPTv}Q < 4^AKwh>l h+,:TZs)׮OHt1Y$>QPo摆WalQoMOJ/[5b NTuCg-SپT>ue~imaZm79 >S/})}[c? F|wr氬Cүd+ .vaۑ\2#}~2n6+ =#y ʞu+OJd!j HwoݯC+8;6ԇ|8pxG?vܱ>tPXi+{4iua s|,LsA[᫷mgيcnPb}H'Rmkش/aO=0>_`pr TDz0c_$w ɲX|D)w8n :߮:nqZ;n$Ms.TRAE`յqثAհ6p=lN<׼y(]a?;&_RA7PmRͽvڇ.Pl{F]W5s&}} I^ΟeiuX{〮FbsT*tͥ3kE]xK 3N EL`^.1 ū8c#YFAL/mʾ.oPvS25!Fcdt,N٤\Z >NY3]Lm>6_1(49]v<^Y]+Is˚7NH5A: ۲6Ƃep w~- {Iw"z9\] T;!΅$YI;dG=U[ȸI'Rϯ:MtX%.zuee9q<=6yO1[_+|6`] ?AX{[zeml͖='M`Mdʊ:UfocL8wsvOҵMYO-|u\Z<_߈ٿUXn \Œ\pWn `m/2o]5]Af&}e.nKiV\FOjWw:R Is详--4W|}QNO]œs]qf+Y)-R4ZR[ 55/ݠ|ƻA8^#ZR(XղamFTŏ]]׼էms>60|Vclo[M҉[wʀc i덷Nu .R!ʻH[y\iY|Z=;aUu[a=F# 9m\BBm)١U(1NE ŌWLrSK8yOTm*7Uo?Jd޸Q Mni疾 .=h`N9SD@A(&:@m[n]SHC5eډ3+Iӎ1ܕ\`GpC3*(̉=*/3=N,}4<'&qS>>v~N TuBZJ!]JɃ\5#\NV'5vCЃ224 *}\c &vq2Wŭ=lpJ\WGٖrqC.S -,%-k]\U[MZyW16Jq<4y{[>$=nY=zڲr+*B1eA; ".5%&ïz'RT/Ol)[9$ S޽` gCW*'"WH<lj*03hSH[}).eVѦaź vdžWS[wS431vqNt_m)c3#B0񱿷뢘] CǞw_zU8_Fx{:mx5qm|^ "Cf@:rģ"MZ#xaŻ؁o *OX܈?彎;X ϪTZ4>@,0Srg؋`tv$ 䟪5_OzӾҴra:BQb_ъb/$5Tj)|zdD*FooVTCJ8Xr0$QjuoaV TC 6;QJ~ PNBLRqm:TŅXM-\!jk~z3mz魬TEL=mH (A0:nmTi'əmNR{ּꨬ'tDUt*W]ظ:c =@h|ۀΫ&Våp^@S$U}4lo̥LA ^-_*`bo(zұ*oCi2Wި3}&CO:^pcͺ=)G.(S{ `[)\}~JN"#x'Ilj'/E6lkUP2wE xTrG^BvgaXN/kMڶ~EOׯ%1=YvsUQc%=iI1da)ǚyu]ʕimZ,J᪾)O*6,xd!}#HB_75$8:CXG4|yW-_$R2(D~c҂;k-bɓ&Pm"2iԨQelr 1)I];X54红#sMGPEs(yEMFčWJ޺l|}m2!C5k4=w!,"VK-j﷔q@jXѕγc}Ԏ\/.26ma)cX,X1b^{T;jZ1Fa֍?,|=2hkb.jjRLeS[䕐j&DM{(peʘUmmڔU;W٣ד$@ck2JRdhҟ8wL5"*8Dզ/o&^6qTF̾rѻWAR^aVJUBev-:ww+|W3$ mrV.F\.'l9=3?l[A~vSdEb̲)Z0]f'XH⢚G&Tkϩ6Q~ ڀo:# {\^:M4 U.rW}Ɲ!) vm$)XFl眣:aIwby~ܔ?BZνxh'3ߢyVv[#1v{K&`wTQB:aG[i`j4@zAi{Y]hp VwS(ؔVA᣸4803Qqhɚ<^yN퀆]vQs7ɫ?ԲYg ,3ФM*k6kT;mzQF{u,e8NArHp1W=/X;wU;kSq:M~I4.M=+ ) <( &,f?uq韏m:`WA"j'CT}/- >j51Q{U.:xPAU][{%(cwꅒ}Bo76hKօMͮ}SLfI,]*o縡TBV~d44nO=ek./ jvH@\jlP}Jnк,pliy4TD" #/W#>W|bZ,0Dc\qxܐTyF ?UrDsD{|NAvĹU%4&0.8It2ĉf1| Zľ8ҝQ6SQ]Dg RxM~{$Xu7=g](a;E5ޗФ7W}+*ov_3JE>>OM)9~mQ?5OfۚF(dѵ`*0<4M?Oy<́m)UEХMqR7I9uL& %C|ٞP1#\O2R\i@eO:/}_xBg5ɂ"1er9w ^=ިroT[zeq;([33U> S4x;|7=W/zݷwgSuw"Ys3y3}38݉#)sZvRPPHQhYM}%=\הXWw? F YZa?-7vk#V?CQ.ڶ 90xA=7 RP(/kww{8}X8[~]eH6*-6fiu=GىmRj:KC+ȋ\>FiJ%߹`j#T鸱g力eSkV0"wv_h>'Rvx=V}o=4*x޳z wv;mXA|z7mx %4?uj7,PȠT_!mE9Oa{>ʧ)(@e~<u@?VYSj|j;5PpF1POca۴h e.r,vzq:I<؟'_ˎREŕCM:ҶE\!cZԍ鞪~TJŲ.Bh<, &|LPu0ݺ@8`"M"ǁ5]ԍMۺT7sp& Z;3otgvt"rEgK0мaOl)-B-KUҒvYbzpOݶAS8폏{}Yo߮vCn5c~~'6e]KȪގn4X[ErG0rA9l($Q"ꪁOgR64snɒ~mm(#!ԮZ$~%Hg N/4B?n)'N]U}Frǁ(VZ#s9!XVlCpb 4e&dBoa5| j4gO D׿7Wek3RlKzs/9*S[6~Wk<;89:L~xU\̝ah>DUZdlF