Math-Complex-1.59/0000755000175000017500000000000011712346342013303 5ustar zeframzeframMath-Complex-1.59/META.yml0000664000175000017500000000104611712346342014557 0ustar zeframzefram--- abstract: unknown author: - unknown build_requires: ExtUtils::MakeMaker: 0 configure_requires: ExtUtils::MakeMaker: 0 dynamic_config: 1 generated_by: 'ExtUtils::MakeMaker version 6.62, CPAN::Meta::Converter version 2.112621' license: perl meta-spec: url: http://module-build.sourceforge.net/META-spec-v1.4.html version: 1.4 name: Math-Complex no_index: directory: - t - inc requires: Config: 0 Exporter: 0 ExtUtils::MakeMaker: 0 Scalar::Util: 1.11 Test::More: 0 overload: 0 strict: 0 warnings: 0 version: 1.59 Math-Complex-1.59/MANIFEST0000644000175000017500000000045411712346342014437 0ustar zeframzeframChangeLog lib/Math/Complex.pm lib/Math/Trig.pm Makefile.PL MANIFEST t/Complex.t t/Trig.t t/pod.t t/pod-coverage.t t/underbar.t TODO META.yml Module YAML meta-data (added by MakeMaker) META.json Module JSON meta-data (added by MakeMaker) Math-Complex-1.59/TODO0000644000175000017500000000011311712342751013766 0ustar zeframzefram- possible to make Math::Complex and bignum (Math::BigFloat) to play well? Math-Complex-1.59/Makefile.PL0000644000175000017500000000102711712342751015255 0ustar zeframzefram{ use 5.006; } use ExtUtils::MakeMaker; WriteMakefile( NAME => 'Math::Complex', VERSION_FROM => 'lib/Math/Complex.pm', INSTALLDIRS => 'perl', PREREQ_PM => { 'Config' => 0, 'Exporter' => 0, 'ExtUtils::MakeMaker' => 0, 'Scalar::Util' => '1.11', 'Test::More' => 0, 'overload' => 0, 'strict' => 0, 'warnings' => 0, }, ($ExtUtils::MakeMaker::VERSION >= 6.3002 ? ('LICENSE'=> 'perl', ) : ()), ); Math-Complex-1.59/ChangeLog0000644000175000017500000003756611712346245015100 0ustar zeframzefram2012-02-01 Zefram * Don't declare "tan" operator overloading on Math::Complex objects, because there is no such overloading type [rt.cpan.org #74288]. * Remove execute bit from test scripts in CPAN tarball. * Release Math::Complex 1.59 + Math::Trig 1.23. 2011-06-21 Zefram * Declare package variables with "our" rather than "use vars". * Corresponding to "our" usage, check for minimum Perl version 5.006. * Remove $ENV{PERL_CORE} logic from test suite, which is no longer desired in the core. * In test suite, remove obsolete and now-incomplete handling of unavailability of Test::More. * Declare module dependencies. * Release Math::Complex 1.58 + Math::Trig 1.22. 2011-05-03 Zefram * Add copy constructor and arrange for it to be called appropriately, problem found by David Madore and Alexandr Ciornii. * Correctly format polarwise when a numeric format specifier is given, problem found by TomC. * More stable great_circle_direction algorithm, problem found by Daniel Burr. * Release Math::Complex 1.57 + Math::Trig 1.21. 2009-02-08 Jarkko Hietaniemi * Fix qw(abs cos exp log sin sqrt) without argument, problem found by Steffen Mueller, 5.10-aware (lexical $_) fix by Abigail. * Release Math::Complex 1.56 + Math::Trig 1.20. 2008-12-27 Jarkko Hietaniemi * Resolve rt.cpan.org report: "#39045: great_circle_direction gives wrong answer if 5th argument is supplied" by calling great_circle_distance() with an explicit argument list in great_circle_direction(). * Release Math::Complex 1.55 + Math::Trig 1.19. 2008-04-04 Jarkko Hietaniemi * The SIGFPE catcher in Complex.pm and Trig.t was { }, not sub { }. * Shuffle the Inf-guessing guesses a bit to try infinities first, and also 2**99999 before exp(99999), seems to be more reliable for generating the infinity for some odd reason (the ** is implemented via exp() anyway?) * In cosh() and sinh() more robustly produce Inf() when needed, even when exp() seems to "stick" into DBL_MAX and not go to Inf. * Release Math::Complex 1.54 + Math::Trig 1.18. 2008-04-01 Jarkko Hietaniemi * Resolved rt.cpan.org report: "#34605: Math::Trig(3pm) man page feedback" (Trig.pm talked of "arcus hyperbolic sine", which is wrong, it is either "area hyperbolic sine" or "inverse hyperbolic sine") * Tweaked also the code comments a bit to speak consistently of "area/inverse hyperbolic ..." * Resolved rt.cpan.org report: "#34269: Math::Trig::great_circle_destination" (One cannot combine the results great_circle_distance(A, B) and great_circle_direction(A, B) to get great_circle_destination(A, ...) to return B, because the bearing keeps changing in the general case) * Release Math::Complex 1.53 + Math::Trig 1.17. 2008-02-11 Jarkko Hietaniemi * Duh. Forgot 128-bit option from the %DBL_MAX table. * Release Math::Complex 1.52 + Math::Trig 1.16. 2008-02-10 Jarkko Hietaniemi * Make the nv max detection to work also with long doubles, reported by Nicholas Clark [core perl change #33268] * Release Math::Complex 1.51 + Math::Trig 1.15. (1.50 skipped because of "1.5" idiocy.) 2008-04-04 Jarkko Hietaniemi * The debugging output in Complex.pm BEGIN was not nice: remove that, resolving rt.cpan.org #32919. * Make the detecting of Infinity even more relaxed: just be happy with defined() and "big enough". (Switch the '1e999' as last resort, though.) * Release Math::Complex 1.49 + Math::Trig 1.14. 2008-01-29 Jarkko Hietaniemi * In HP-UX the infinity is stringified as "++" and the negative infinity as "--", fix from H. Merijn Brand. * Release Math::Complex 1.48 + Math::Trig 1.13. 2008-01-16 Jarkko Hietaniemi * The great circle tests with small angles didn't work with long doubles in Mac OS X, reported by conrad. Oh, the joy of floating point. Fudged the test hopefully enough. Could special case going from point A to point A, but that would be cheating. (For really small movements could also just do Pythagorean plane distance.) * Release Math::Complex 1.47 + Math::Trig 1.12. 2008-01-16 Jarkko Hietaniemi * Fix a typo in the asin_real/acos_real documentation noticed by Alexej Sveshnikov. * Release Math::Complex 1.46 + Math::Trig 1.11. 2008-01-15 Jarkko Hietaniemi * Address [rt.cpan.org #32291] Wrong (Math::Complex) results in great_circle family of functions Fix gratefully received from the reporter of the bug, Alexej Sveshnikov. * Added the two new interfaces added by the fix for the rt.cpan.org #32291, asin_real() and acos_real(), also to the public interface. * Release Math::Complex 1.45 + Math::Trig 1.10. 2008-01-11 Jarkko Hietaniemi * Address rt.cpan.org #27186: Shadowed By the Core Version by adding INSTALLDIRS => 'perl' to Makefile.PL. * Ignore SIGFPE in Trig.t when doing arithmetics with infinities (avoids a coredump in netbsd-alpha, found by David Cantrell). Document this fun. * Make Math::Complex and Math::Trig documentations to refer to each other. * Release Math::Complex 1.44 + Math::Trig 1.09. 2008-01-09 Jarkko Hietaniemi * sinh(1e4) was not enough to go to infinity in AMD64 with long doubles (sinh(1e5) was), and test.pl:is() didn't work for infinities (subtle overloading issue.) Fix from Nicholas Clark. * Release Math::Complex 1.43 + Math::Trig 1.08. 2008-01-07 Jarkko Hietaniemi * The infinity detection was wrong for Microsoft libc, there infinity is '1.#INF'. Now made the detection hopefully much more robust. * Release Math::Complex 1.42 + Math::Trig 1.07. 2008-01-06 Jarkko Hietaniemi * PAUSE upload had some issues which messed up 1.39 upload, reissue after reviewing (and fixing) the diffs. * Release Math::Complex 1.41 (1.40 skipped because of silly "1.4.tar.gz" feature) + Math::Trig 1.07. [deleted from CPAN because broken in Win32] 2008-01-06 Jarkko Hietaniemi * Add the standard "same terms as Perl itself" license to both Complex.pm and Trig.pm. * Add Inf() as an exportable sub, it returns the infinity (or the best floating double imitation of it). * Make the BEGIN block of Complex.pm croak if it cannot find an infinity. This may be deadly on some platforms but then again, Complex.pm has returned infinities for quite some time now. * tanh(a big enough number) was returning NaN in Unix and 1+NaN in Windows when the right answer is 1 (for IEEE doubles the limit seemed to be 709 vs 710). Added tests for sinh/cosh/tanh/sech/csch for 100/-100, and for sinh/cosh with 1e4 returning Inf(). Reported by Roberto Congiu. * Added sanity check tests to Trig.t for all the trigonometric and hyperbolic functions (staying in real axis, not going to complex plane). * Release Math::Complex 1.39 + Math::Trig 1.06. [deleted from CPAN because of PAUSE upload problems] 2007-12-30 Jarkko Hietaniemi * The example for great_circle_waypoint() had latitude and longitude switched; reported by Chris Heys. * Cosmetic changes in test files. * Release Math::Complex 1.38 + Math::Trig 1.05. 2007-01-21 Jarkko Hietaniemi * great_circle_waypoint() was broken (the latitudes were garbage); report and fix by Uwe Girlich. * local()ize $! in the BEGIN block when looking for Inf. * Release Math::Complex 1.37. 2006-07-04 Jarkko Hietaniemi * Move the pi-constants from Math::Trig to Math::Complex. * Hide some of the internal-use-only functions/methods by prepending an underscore to the names. * Update Dan Lewart's email address. * Introduce pod.t and pod-coverage.t; make the tests to be correctly skipped if Test::More or Test::Pod::Coverage are not available. * Tiny doc tweaks. * Add a TODO file. * Grab the Math::Complex and Math::Trig changes from the Perl 5 Perforce repository (see below). * CPAN release Math::Complex 1.36 + Math::Trig 1.04. Changes below this are changes of the Perl 5 Perforce repository that somehow touched Math::Complex, Math::Trig, and/or their tests. They brought Math::Complex to 1.35 and Math::Trig to 1.03, after which Math::Complex and Math::Trig were CPANized as 1.36 and 1.04. [26219] on 2005/11/28 by stevep@stevep-mccoy Subject: [PATCH] Math::Trig: blead and maint (doc patch only): s/Bay/Gulf/ and do away with bad quotes From: jhi@cc.hut.fi (Jarkko Hietaniemi) Date: Sun, 27 Nov 2005 23:04:31 +0200 (EET) Message-Id: <20051127210431.F1D2C6CF55@ugli.hut.fi> [25414] on 2005/09/14 by rgs@bloom Subject: [PATCH] Math::Complex and Math::Trig updates (Re: [perl #37117] Math::Complex atan2 bug) From: Jarkko Hietaniemi Date: Wed, 14 Sep 2005 09:26:11 +0300 Message-ID: <4327C283.80706@gmail.com> [19376] on 2003/05/02 by jhi@kosh great_circle_direction() was broken, reported by Alexander Becher. [18412] on 2003/01/03 by hv@hv-crypt.org Integrate from maint-5.8 #18348: Make Math::Trig a little bit more better behaved module citizen. [17197] on 2002/06/12 by jhi@alpha Test relying on undefined behaviour of atan2(0, 0) (valiantly debugged by Mark Lutz). [14508] on 2002/01/31 by jhi@alpha Daniel S. Lewart adopts the Math::Complex. [14507] on 2002/01/31 by jhi@alpha More Complex DWIMmery. [12954] on 2001/11/12 by jhi@alpha Subject: [PATCH] a few typo fixes From: Jeffrey Friedl Date: Sun, 11 Nov 2001 21:15:18 -0800 (PST) Message-Id: <200111120515.fAC5FIc74795@ventrue.corp.yahoo.com> Patching README.foo instead of pod/perlfoo.pod, not patching Math::BigInt (Tels will take care of that), dropping broken hv.c and sv.h patches, patching libnetcfg.PL and perldoc.PL instead of libnetcfg and perldoc, patching ext/Digest/MD5/t/files.t since MD5.pm was changed. [12113] on 2001/09/21 by ams@ams-lustre Subject: [PATCH] avoid v-strings with require/use From: Ronald J Kimball Date: Fri, 21 Sep 2001 12:34:40 -0400 Message-Id: <20010921123440.A148500@linguist.thayer.dartmouth.edu> [12041] on 2001/09/16 by jhi@alpha Change use|require 5.005_64 to use|require 5.6.1. [11016] on 2001/06/29 by jhi@alpha Bump up the VERSIONs of modules that have changed since 5.6.0, the modules found using a script written by Larry Schatzer Jr. [10676] on 2001/06/18 by jhi@alpha The Grand Trek: move the *.t files from t/ to lib/ and ext/. No doubt I made some mistakes like missed some files or misnamed some files. The naming rules were more or less: (1) if the module is from CPAN, follows its ways, be it t/*.t or test.pl. (2) otherwise if there are multiple tests for a module put them in a t/ (3) otherwise if there's only one test put it in Module.t (4) helper files go to module/ (locale, strict, warnings) (5) use longer filenames now that we can (but e.g. the compat-0.6.t and the Text::Balanced test files still were renamed to be more civil against the 8.3 people) installperl was updated appropriately not to install the *.t files or the help files from under lib. TODO: some helper files still remain under t/ that could follow their 'masters'. UPDATE: On second thoughts, why should they. They can continue to live under t/lib, and in fact the locale/strict/warnings helpers that were moved could be moved back. This way the amount of non-installable stuff under lib/ stays smaller. [9504] on 2001/04/01 by jhi@alpha Add great_circle_direction(). [9007] on 2001/03/03 by jhi@alpha Integrate change #9006 from maintperl to mainline, more robust quest for the infinite. [8722] on 2001/02/09 by jhi@alpha The Im() function wasn't returning zero for non-Math::Complex arguments. The bug reported by John Gamble. [7561] on 2000/11/05 by jhi@alpha Add =pod to be tidy. [6857] on 2000/08/28 by jhi@alpha display_format used as a class method without arguments was broken, reported in Subject: Math::Complex->display_format() sets style to 'Math::Complex' From: Yasushi Nakajima Date: Mon, 28 Aug 2000 16:38:08 +0900 (JST) Message-Id: <200008280738.QAA00215@san.p.kyoto.jkc.co.jp> [6750] on 2000/08/21 by jhi@alpha Unicos/mk requires elaborate paranoia. [6689] on 2000/08/18 by jhi@alpha Fix the lib/complex failure of From: abigail@foad.org Subject: [ID 20000814.005] Not OK: perl v5.6.0 on i686-linux-64int 2.2.13 Date: 15 Aug 2000 04:06:38 -0000 Message-Id: <20000815040638.8524.qmail@foad.org> Linux long double accuracy issue: something that when printed with %g looks like "2" but int() of it is 1. [6827] on 2000/08/25 by jhi@alpha Support preserving extremely big/small angles. [6076] on 2000/05/06 by gsar@auger integrate cfgperl contents into mainline [5974] on 2000/04/27 by gsar@auger change#4197 somehow missed initializing PL_errors, meaning sytax error queueing wasn't working outside eval"" at all; also fixed eval"" to localize PL_error_count, so that compile-time eval's don't clobber the error state of the outer context [5954] on 2000/04/26 by gsar@auger integrate cfgperl contents into mainline [5641] on 2000/03/11 by gsar@auger integrate cfgperl contents into mainline [5611] on 2000/03/08 by gsar@auger integrate cfgperl changes into mainline [5507] on 2000/03/04 by gsar@auger more whitespace removal (from Michael G Schwern) [4874] on 2000/01/24 by gsar@auger fix typos; avoid use constant for lowercase constants (produces warnings now) [4860] on 2000/01/23 by gsar@auger s/use vars/our/g modules that aren't independently maintained on CPAN [4604] on 1999/12/01 by gsar@auger email address changes [4008] on 1999/08/20 by gsar@auger integrate cfgperl contents into mainline [2830] on 1999/02/08 by gsar@sparc26 integrate cfgperl changes into mainline [2620] on 1999/01/17 by gsar@aatma integrate cfgperl changes into mainline, fix conflicts [2219] on 1998/11/08 by gsar@aatma integrate cfgperl changes into mainline [1760] on 1998/08/08 by gsar@aatma integrate maint-5.005 changes into mainline [1357] on 1998/07/07 by gsar@aatma doc tweaks suggested by Abigail, M.J.T. Guy, and Larry Wall [1267] on 1998/06/30 by gsar@aatma add patch to integrate Math::Trig::Radial into Math::Trig From: Jarkko Hietaniemi Date: Mon, 29 Jun 1998 16:28:53 +0300 (EET DST) Message-Id: <199806291328.QAA16916@alpha.hut.fi> Subject: [PATCH] 5.004_68 (or 5.004_04): radial trig [1235] on 1998/06/28 by gsar@aatma Complex.pm update From: Jarkko Hietaniemi Date: Wed, 24 Jun 1998 15:19:05 +0300 (EET DST) Message-Id: <199806241219.PAA04061@alpha.hut.fi> Subject: [PATCH] 5.004_68: Complex.pm, complex.t [476] on 1998/02/06 by mbeattie@localhost From: Jarkko Hietaniemi Subject: [PATCH] almost OK: perl 5.00457 on i386-freebsd-thread 3.0 Date: Wed, 4 Feb 1998 12:59:47 +0200 (EET) Subject: Re: [PATCH] 5.004_04 and 5.004_57: Complex.pm and complex.t Date: Thu, 5 Feb 1998 18:08:20 +0200 (EET) [439] on 1998/01/27 by mbeattie@localhost Integrate ansi branch into mainline (resolve -ay). [296] on 1997/11/25 by mbeattie@localhost Integrate from ansi branch to mainline. [137] on 1997/10/16 by mbeattie@localhost Merge maint-5.004 branch (5.004_04) with mainline. [114] on 1997/10/08 by mbeattie@localhost Merge maint-5.004 branch (5.004_03) with mainline. MANIFEST is out of sync. [77] on 1997/09/29 by mbeattie@localhost Start merge with maint-5.004 branch by creating an ancestral branch point via a fake resolution with the maint-merge branch. See Perforce Tech Note 9 for details. [18] on 1997/05/25 by mbeattie@localhost First stab at 5.003 -> 5.004 integration. [1] on 1997/03/28 by mbeattie@localhost Perl 5.003 check-in Math-Complex-1.59/lib/0000755000175000017500000000000011712346342014051 5ustar zeframzeframMath-Complex-1.59/lib/Math/0000755000175000017500000000000011712346342014742 5ustar zeframzeframMath-Complex-1.59/lib/Math/Complex.pm0000644000175000017500000014043711712346254016722 0ustar zeframzefram# # Complex numbers and associated mathematical functions # -- Raphael Manfredi Since Sep 1996 # -- Jarkko Hietaniemi Since Mar 1997 # -- Daniel S. Lewart Since Sep 1997 # package Math::Complex; { use 5.006; } use strict; our $VERSION = 1.59; use Config; our($Inf, $ExpInf); BEGIN { my %DBL_MAX = ( 4 => '1.70141183460469229e+38', 8 => '1.7976931348623157e+308', # AFAICT the 10, 12, and 16-byte long doubles # all have the same maximum. 10 => '1.1897314953572317650857593266280070162E+4932', 12 => '1.1897314953572317650857593266280070162E+4932', 16 => '1.1897314953572317650857593266280070162E+4932', ); my $nvsize = $Config{nvsize} || ($Config{uselongdouble} && $Config{longdblsize}) || $Config{doublesize}; die "Math::Complex: Could not figure out nvsize\n" unless defined $nvsize; die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n" unless defined $DBL_MAX{$nvsize}; my $DBL_MAX = eval $DBL_MAX{$nvsize}; die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n" unless defined $DBL_MAX; my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this. if ($^O eq 'unicosmk') { $Inf = $DBL_MAX; } else { local $SIG{FPE} = { }; local $!; # We do want an arithmetic overflow, Inf INF inf Infinity. for my $t ( 'exp(99999)', # Enough even with 128-bit long doubles. 'inf', 'Inf', 'INF', 'infinity', 'Infinity', 'INFINITY', '1e99999', ) { local $^W = 0; my $i = eval "$t+1.0"; if (defined $i && $i > $BIGGER_THAN_THIS) { $Inf = $i; last; } } $Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough. die "Math::Complex: Could not get Infinity" unless $Inf > $BIGGER_THAN_THIS; $ExpInf = exp(99999); } # print "# On this machine, Inf = '$Inf'\n"; } use Scalar::Util qw(set_prototype); use warnings; no warnings 'syntax'; # To avoid the (_) warnings. BEGIN { # For certain functions that we override, in 5.10 or better # we can set a smarter prototype that will handle the lexical $_ # (also a 5.10+ feature). if ($] >= 5.010000) { set_prototype \&abs, '_'; set_prototype \&cos, '_'; set_prototype \&exp, '_'; set_prototype \&log, '_'; set_prototype \&sin, '_'; set_prototype \&sqrt, '_'; } } my $i; my %LOGN; # Regular expression for floating point numbers. # These days we could use Scalar::Util::lln(), I guess. my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; require Exporter; our @ISA = qw(Exporter); my @trig = qw( pi tan csc cosec sec cot cotan asin acos atan acsc acosec asec acot acotan sinh cosh tanh csch cosech sech coth cotanh asinh acosh atanh acsch acosech asech acoth acotanh ); our @EXPORT = (qw( i Re Im rho theta arg sqrt log ln log10 logn cbrt root cplx cplxe atan2 ), @trig); my @pi = qw(pi pi2 pi4 pip2 pip4 Inf); our @EXPORT_OK = @pi; our %EXPORT_TAGS = ( 'trig' => [@trig], 'pi' => [@pi], ); use overload '=' => \&_copy, '+=' => \&_plus, '+' => \&_plus, '-=' => \&_minus, '-' => \&_minus, '*=' => \&_multiply, '*' => \&_multiply, '/=' => \&_divide, '/' => \&_divide, '**=' => \&_power, '**' => \&_power, '==' => \&_numeq, '<=>' => \&_spaceship, 'neg' => \&_negate, '~' => \&_conjugate, 'abs' => \&abs, 'sqrt' => \&sqrt, 'exp' => \&exp, 'log' => \&log, 'sin' => \&sin, 'cos' => \&cos, 'atan2' => \&atan2, '""' => \&_stringify; # # Package "privates" # my %DISPLAY_FORMAT = ('style' => 'cartesian', 'polar_pretty_print' => 1); my $eps = 1e-14; # Epsilon # # Object attributes (internal): # cartesian [real, imaginary] -- cartesian form # polar [rho, theta] -- polar form # c_dirty cartesian form not up-to-date # p_dirty polar form not up-to-date # display display format (package's global when not set) # # Die on bad *make() arguments. sub _cannot_make { die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; } sub _make { my $arg = shift; my ($p, $q); if ($arg =~ /^$gre$/) { ($p, $q) = ($1, 0); } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { ($p, $q) = ($1 || 0, $2); } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { ($p, $q) = ($1, $2 || 0); } if (defined $p) { $p =~ s/^\+//; $p =~ s/^(-?)inf$/"${1}9**9**9"/e; $q =~ s/^\+//; $q =~ s/^(-?)inf$/"${1}9**9**9"/e; } return ($p, $q); } sub _emake { my $arg = shift; my ($p, $q); if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { ($p, $q) = ($1, $2 || 0); } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { ($p, $q) = ($1, 0); } elsif ($arg =~ /^\s*$gre\s*$/) { ($p, $q) = ($1, 0); } if (defined $p) { $p =~ s/^\+//; $q =~ s/^\+//; $p =~ s/^(-?)inf$/"${1}9**9**9"/e; $q =~ s/^(-?)inf$/"${1}9**9**9"/e; } return ($p, $q); } sub _copy { my $self = shift; my $clone = {%$self}; if ($self->{'cartesian'}) { $clone->{'cartesian'} = [@{$self->{'cartesian'}}]; } if ($self->{'polar'}) { $clone->{'polar'} = [@{$self->{'polar'}}]; } bless $clone,__PACKAGE__; return $clone; } # # ->make # # Create a new complex number (cartesian form) # sub make { my $self = bless {}, shift; my ($re, $im); if (@_ == 0) { ($re, $im) = (0, 0); } elsif (@_ == 1) { return (ref $self)->emake($_[0]) if ($_[0] =~ /^\s*\[/); ($re, $im) = _make($_[0]); } elsif (@_ == 2) { ($re, $im) = @_; } if (defined $re) { _cannot_make("real part", $re) unless $re =~ /^$gre$/; } $im ||= 0; _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; $self->_set_cartesian([$re, $im ]); $self->display_format('cartesian'); return $self; } # # ->emake # # Create a new complex number (exponential form) # sub emake { my $self = bless {}, shift; my ($rho, $theta); if (@_ == 0) { ($rho, $theta) = (0, 0); } elsif (@_ == 1) { return (ref $self)->make($_[0]) if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); ($rho, $theta) = _emake($_[0]); } elsif (@_ == 2) { ($rho, $theta) = @_; } if (defined $rho && defined $theta) { if ($rho < 0) { $rho = -$rho; $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); } } if (defined $rho) { _cannot_make("rho", $rho) unless $rho =~ /^$gre$/; } $theta ||= 0; _cannot_make("theta", $theta) unless $theta =~ /^$gre$/; $self->_set_polar([$rho, $theta]); $self->display_format('polar'); return $self; } sub new { &make } # For backward compatibility only. # # cplx # # Creates a complex number from a (re, im) tuple. # This avoids the burden of writing Math::Complex->make(re, im). # sub cplx { return __PACKAGE__->make(@_); } # # cplxe # # Creates a complex number from a (rho, theta) tuple. # This avoids the burden of writing Math::Complex->emake(rho, theta). # sub cplxe { return __PACKAGE__->emake(@_); } # # pi # # The number defined as pi = 180 degrees # sub pi () { 4 * CORE::atan2(1, 1) } # # pi2 # # The full circle # sub pi2 () { 2 * pi } # # pi4 # # The full circle twice. # sub pi4 () { 4 * pi } # # pip2 # # The quarter circle # sub pip2 () { pi / 2 } # # pip4 # # The eighth circle. # sub pip4 () { pi / 4 } # # _uplog10 # # Used in log10(). # sub _uplog10 () { 1 / CORE::log(10) } # # i # # The number defined as i*i = -1; # sub i () { return $i if ($i); $i = bless {}; $i->{'cartesian'} = [0, 1]; $i->{'polar'} = [1, pip2]; $i->{c_dirty} = 0; $i->{p_dirty} = 0; return $i; } # # _ip2 # # Half of i. # sub _ip2 () { i / 2 } # # Attribute access/set routines # sub _cartesian {$_[0]->{c_dirty} ? $_[0]->_update_cartesian : $_[0]->{'cartesian'}} sub _polar {$_[0]->{p_dirty} ? $_[0]->_update_polar : $_[0]->{'polar'}} sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; $_[0]->{'cartesian'} = $_[1] } sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; $_[0]->{'polar'} = $_[1] } # # ->_update_cartesian # # Recompute and return the cartesian form, given accurate polar form. # sub _update_cartesian { my $self = shift; my ($r, $t) = @{$self->{'polar'}}; $self->{c_dirty} = 0; return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; } # # # ->_update_polar # # Recompute and return the polar form, given accurate cartesian form. # sub _update_polar { my $self = shift; my ($x, $y) = @{$self->{'cartesian'}}; $self->{p_dirty} = 0; return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)]; } # # (_plus) # # Computes z1+z2. # sub _plus { my ($z1, $z2, $regular) = @_; my ($re1, $im1) = @{$z1->_cartesian}; $z2 = cplx($z2) unless ref $z2; my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); unless (defined $regular) { $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); return $z1; } return (ref $z1)->make($re1 + $re2, $im1 + $im2); } # # (_minus) # # Computes z1-z2. # sub _minus { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = @{$z1->_cartesian}; $z2 = cplx($z2) unless ref $z2; my ($re2, $im2) = @{$z2->_cartesian}; unless (defined $inverted) { $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); return $z1; } return $inverted ? (ref $z1)->make($re2 - $re1, $im2 - $im1) : (ref $z1)->make($re1 - $re2, $im1 - $im2); } # # (_multiply) # # Computes z1*z2. # sub _multiply { my ($z1, $z2, $regular) = @_; if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { # if both polar better use polar to avoid rounding errors my ($r1, $t1) = @{$z1->_polar}; my ($r2, $t2) = @{$z2->_polar}; my $t = $t1 + $t2; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } unless (defined $regular) { $z1->_set_polar([$r1 * $r2, $t]); return $z1; } return (ref $z1)->emake($r1 * $r2, $t); } else { my ($x1, $y1) = @{$z1->_cartesian}; if (ref $z2) { my ($x2, $y2) = @{$z2->_cartesian}; return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); } else { return (ref $z1)->make($x1*$z2, $y1*$z2); } } } # # _divbyzero # # Die on division by zero. # sub _divbyzero { my $mess = "$_[0]: Division by zero.\n"; if (defined $_[1]) { $mess .= "(Because in the definition of $_[0], the divisor "; $mess .= "$_[1] " unless ("$_[1]" eq '0'); $mess .= "is 0)\n"; } my @up = caller(1); $mess .= "Died at $up[1] line $up[2].\n"; die $mess; } # # (_divide) # # Computes z1/z2. # sub _divide { my ($z1, $z2, $inverted) = @_; if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { # if both polar better use polar to avoid rounding errors my ($r1, $t1) = @{$z1->_polar}; my ($r2, $t2) = @{$z2->_polar}; my $t; if ($inverted) { _divbyzero "$z2/0" if ($r1 == 0); $t = $t2 - $t1; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } return (ref $z1)->emake($r2 / $r1, $t); } else { _divbyzero "$z1/0" if ($r2 == 0); $t = $t1 - $t2; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } return (ref $z1)->emake($r1 / $r2, $t); } } else { my ($d, $x2, $y2); if ($inverted) { ($x2, $y2) = @{$z1->_cartesian}; $d = $x2*$x2 + $y2*$y2; _divbyzero "$z2/0" if $d == 0; return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); } else { my ($x1, $y1) = @{$z1->_cartesian}; if (ref $z2) { ($x2, $y2) = @{$z2->_cartesian}; $d = $x2*$x2 + $y2*$y2; _divbyzero "$z1/0" if $d == 0; my $u = ($x1*$x2 + $y1*$y2)/$d; my $v = ($y1*$x2 - $x1*$y2)/$d; return (ref $z1)->make($u, $v); } else { _divbyzero "$z1/0" if $z2 == 0; return (ref $z1)->make($x1/$z2, $y1/$z2); } } } } # # (_power) # # Computes z1**z2 = exp(z2 * log z1)). # sub _power { my ($z1, $z2, $inverted) = @_; if ($inverted) { return 1 if $z1 == 0 || $z2 == 1; return 0 if $z2 == 0 && Re($z1) > 0; } else { return 1 if $z2 == 0 || $z1 == 1; return 0 if $z1 == 0 && Re($z2) > 0; } my $w = $inverted ? &exp($z1 * &log($z2)) : &exp($z2 * &log($z1)); # If both arguments cartesian, return cartesian, else polar. return $z1->{c_dirty} == 0 && (not ref $z2 or $z2->{c_dirty} == 0) ? cplx(@{$w->_cartesian}) : $w; } # # (_spaceship) # # Computes z1 <=> z2. # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. # sub _spaceship { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); my $sgn = $inverted ? -1 : 1; return $sgn * ($re1 <=> $re2) if $re1 != $re2; return $sgn * ($im1 <=> $im2); } # # (_numeq) # # Computes z1 == z2. # # (Required in addition to _spaceship() because of NaNs.) sub _numeq { my ($z1, $z2, $inverted) = @_; my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); return $re1 == $re2 && $im1 == $im2 ? 1 : 0; } # # (_negate) # # Computes -z. # sub _negate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->_polar}; $t = ($t <= 0) ? $t + pi : $t - pi; return (ref $z)->emake($r, $t); } my ($re, $im) = @{$z->_cartesian}; return (ref $z)->make(-$re, -$im); } # # (_conjugate) # # Compute complex's _conjugate. # sub _conjugate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->_polar}; return (ref $z)->emake($r, -$t); } my ($re, $im) = @{$z->_cartesian}; return (ref $z)->make($re, -$im); } # # (abs) # # Compute or set complex's norm (rho). # sub abs { my ($z, $rho) = @_ ? @_ : $_; unless (ref $z) { if (@_ == 2) { $_[0] = $_[1]; } else { return CORE::abs($z); } } if (defined $rho) { $z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; $z->{p_dirty} = 0; $z->{c_dirty} = 1; return $rho; } else { return ${$z->_polar}[0]; } } sub _theta { my $theta = $_[0]; if ($$theta > pi()) { $$theta -= pi2 } elsif ($$theta <= -pi()) { $$theta += pi2 } } # # arg # # Compute or set complex's argument (theta). # sub arg { my ($z, $theta) = @_; return $z unless ref $z; if (defined $theta) { _theta(\$theta); $z->{'polar'} = [ ${$z->_polar}[0], $theta ]; $z->{p_dirty} = 0; $z->{c_dirty} = 1; } else { $theta = ${$z->_polar}[1]; _theta(\$theta); } return $theta; } # # (sqrt) # # Compute sqrt(z). # # It is quite tempting to use wantarray here so that in list context # sqrt() would return the two solutions. This, however, would # break things like # # print "sqrt(z) = ", sqrt($z), "\n"; # # The two values would be printed side by side without no intervening # whitespace, quite confusing. # Therefore if you want the two solutions use the root(). # sub sqrt { my ($z) = @_ ? $_[0] : $_; my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0; my ($r, $t) = @{$z->_polar}; return (ref $z)->emake(CORE::sqrt($r), $t/2); } # # cbrt # # Compute cbrt(z) (cubic root). # # Why are we not returning three values? The same answer as for sqrt(). # sub cbrt { my ($z) = @_; return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) unless ref $z; my ($r, $t) = @{$z->_polar}; return 0 if $r == 0; return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); } # # _rootbad # # Die on bad root. # sub _rootbad { my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; my @up = caller(1); $mess .= "Died at $up[1] line $up[2].\n"; die $mess; } # # root # # Computes all nth root for z, returning an array whose size is n. # `n' must be a positive integer. # # The roots are given by (for k = 0..n-1): # # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) # sub root { my ($z, $n, $k) = @_; _rootbad($n) if ($n < 1 or int($n) != $n); my ($r, $t) = ref $z ? @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); my $theta_inc = pi2 / $n; my $rho = $r ** (1/$n); my $cartesian = ref $z && $z->{c_dirty} == 0; if (@_ == 2) { my @root; for (my $i = 0, my $theta = $t / $n; $i < $n; $i++, $theta += $theta_inc) { my $w = cplxe($rho, $theta); # Yes, $cartesian is loop invariant. push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; } return @root; } elsif (@_ == 3) { my $w = cplxe($rho, $t / $n + $k * $theta_inc); return $cartesian ? cplx(@{$w->_cartesian}) : $w; } } # # Re # # Return or set Re(z). # sub Re { my ($z, $Re) = @_; return $z unless ref $z; if (defined $Re) { $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; $z->{c_dirty} = 0; $z->{p_dirty} = 1; } else { return ${$z->_cartesian}[0]; } } # # Im # # Return or set Im(z). # sub Im { my ($z, $Im) = @_; return 0 unless ref $z; if (defined $Im) { $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; $z->{c_dirty} = 0; $z->{p_dirty} = 1; } else { return ${$z->_cartesian}[1]; } } # # rho # # Return or set rho(w). # sub rho { Math::Complex::abs(@_); } # # theta # # Return or set theta(w). # sub theta { Math::Complex::arg(@_); } # # (exp) # # Computes exp(z). # sub exp { my ($z) = @_ ? @_ : $_; return CORE::exp($z) unless ref $z; my ($x, $y) = @{$z->_cartesian}; return (ref $z)->emake(CORE::exp($x), $y); } # # _logofzero # # Die on logarithm of zero. # sub _logofzero { my $mess = "$_[0]: Logarithm of zero.\n"; if (defined $_[1]) { $mess .= "(Because in the definition of $_[0], the argument "; $mess .= "$_[1] " unless ($_[1] eq '0'); $mess .= "is 0)\n"; } my @up = caller(1); $mess .= "Died at $up[1] line $up[2].\n"; die $mess; } # # (log) # # Compute log(z). # sub log { my ($z) = @_ ? @_ : $_; unless (ref $z) { _logofzero("log") if $z == 0; return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); } my ($r, $t) = @{$z->_polar}; _logofzero("log") if $r == 0; if ($t > pi()) { $t -= pi2 } elsif ($t <= -pi()) { $t += pi2 } return (ref $z)->make(CORE::log($r), $t); } # # ln # # Alias for log(). # sub ln { Math::Complex::log(@_) } # # log10 # # Compute log10(z). # sub log10 { return Math::Complex::log($_[0]) * _uplog10; } # # logn # # Compute logn(z,n) = log(z) / log(n) # sub logn { my ($z, $n) = @_; $z = cplx($z, 0) unless ref $z; my $logn = $LOGN{$n}; $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) return &log($z) / $logn; } # # (cos) # # Compute cos(z) = (exp(iz) + exp(-iz))/2. # sub cos { my ($z) = @_ ? @_ : $_; return CORE::cos($z) unless ref $z; my ($x, $y) = @{$z->_cartesian}; my $ey = CORE::exp($y); my $sx = CORE::sin($x); my $cx = CORE::cos($x); my $ey_1 = $ey ? 1 / $ey : Inf(); return (ref $z)->make($cx * ($ey + $ey_1)/2, $sx * ($ey_1 - $ey)/2); } # # (sin) # # Compute sin(z) = (exp(iz) - exp(-iz))/2. # sub sin { my ($z) = @_ ? @_ : $_; return CORE::sin($z) unless ref $z; my ($x, $y) = @{$z->_cartesian}; my $ey = CORE::exp($y); my $sx = CORE::sin($x); my $cx = CORE::cos($x); my $ey_1 = $ey ? 1 / $ey : Inf(); return (ref $z)->make($sx * ($ey + $ey_1)/2, $cx * ($ey - $ey_1)/2); } # # tan # # Compute tan(z) = sin(z) / cos(z). # sub tan { my ($z) = @_; my $cz = &cos($z); _divbyzero "tan($z)", "cos($z)" if $cz == 0; return &sin($z) / $cz; } # # sec # # Computes the secant sec(z) = 1 / cos(z). # sub sec { my ($z) = @_; my $cz = &cos($z); _divbyzero "sec($z)", "cos($z)" if ($cz == 0); return 1 / $cz; } # # csc # # Computes the cosecant csc(z) = 1 / sin(z). # sub csc { my ($z) = @_; my $sz = &sin($z); _divbyzero "csc($z)", "sin($z)" if ($sz == 0); return 1 / $sz; } # # cosec # # Alias for csc(). # sub cosec { Math::Complex::csc(@_) } # # cot # # Computes cot(z) = cos(z) / sin(z). # sub cot { my ($z) = @_; my $sz = &sin($z); _divbyzero "cot($z)", "sin($z)" if ($sz == 0); return &cos($z) / $sz; } # # cotan # # Alias for cot(). # sub cotan { Math::Complex::cot(@_) } # # acos # # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). # sub acos { my $z = $_[0]; return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->_cartesian}; return 0 if $x == 1 && $y == 0; my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); my $alpha = ($t1 + $t2)/2; my $beta = ($t1 - $t2)/2; $alpha = 1 if $alpha < 1; if ($beta > 1) { $beta = 1 } elsif ($beta < -1) { $beta = -1 } my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); $v = -$v if $y > 0 || ($y == 0 && $x < -1); return (ref $z)->make($u, $v); } # # asin # # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). # sub asin { my $z = $_[0]; return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1; $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->_cartesian}; return 0 if $x == 0 && $y == 0; my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); my $alpha = ($t1 + $t2)/2; my $beta = ($t1 - $t2)/2; $alpha = 1 if $alpha < 1; if ($beta > 1) { $beta = 1 } elsif ($beta < -1) { $beta = -1 } my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); $v = -$v if $y > 0 || ($y == 0 && $x < -1); return (ref $z)->make($u, $v); } # # atan # # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). # sub atan { my ($z) = @_; return CORE::atan2($z, 1) unless ref $z; my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); return 0 if $x == 0 && $y == 0; _divbyzero "atan(i)" if ( $z == i); _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... my $log = &log((i + $z) / (i - $z)); return _ip2 * $log; } # # asec # # Computes the arc secant asec(z) = acos(1 / z). # sub asec { my ($z) = @_; _divbyzero "asec($z)", $z if ($z == 0); return acos(1 / $z); } # # acsc # # Computes the arc cosecant acsc(z) = asin(1 / z). # sub acsc { my ($z) = @_; _divbyzero "acsc($z)", $z if ($z == 0); return asin(1 / $z); } # # acosec # # Alias for acsc(). # sub acosec { Math::Complex::acsc(@_) } # # acot # # Computes the arc cotangent acot(z) = atan(1 / z) # sub acot { my ($z) = @_; _divbyzero "acot(0)" if $z == 0; return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z; _divbyzero "acot(i)" if ($z - i == 0); _logofzero "acot(-i)" if ($z + i == 0); return atan(1 / $z); } # # acotan # # Alias for acot(). # sub acotan { Math::Complex::acot(@_) } # # cosh # # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. # sub cosh { my ($z) = @_; my $ex; unless (ref $z) { $ex = CORE::exp($z); return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf(); } my ($x, $y) = @{$z->_cartesian}; $ex = CORE::exp($x); my $ex_1 = $ex ? 1 / $ex : Inf(); return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, CORE::sin($y) * ($ex - $ex_1)/2); } # # sinh # # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. # sub sinh { my ($z) = @_; my $ex; unless (ref $z) { return 0 if $z == 0; $ex = CORE::exp($z); return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf(); } my ($x, $y) = @{$z->_cartesian}; my $cy = CORE::cos($y); my $sy = CORE::sin($y); $ex = CORE::exp($x); my $ex_1 = $ex ? 1 / $ex : Inf(); return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, CORE::sin($y) * ($ex + $ex_1)/2); } # # tanh # # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). # sub tanh { my ($z) = @_; my $cz = cosh($z); _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); my $sz = sinh($z); return 1 if $cz == $sz; return -1 if $cz == -$sz; return $sz / $cz; } # # sech # # Computes the hyperbolic secant sech(z) = 1 / cosh(z). # sub sech { my ($z) = @_; my $cz = cosh($z); _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); return 1 / $cz; } # # csch # # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). # sub csch { my ($z) = @_; my $sz = sinh($z); _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); return 1 / $sz; } # # cosech # # Alias for csch(). # sub cosech { Math::Complex::csch(@_) } # # coth # # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). # sub coth { my ($z) = @_; my $sz = sinh($z); _divbyzero "coth($z)", "sinh($z)" if $sz == 0; my $cz = cosh($z); return 1 if $cz == $sz; return -1 if $cz == -$sz; return $cz / $sz; } # # cotanh # # Alias for coth(). # sub cotanh { Math::Complex::coth(@_) } # # acosh # # Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). # sub acosh { my ($z) = @_; unless (ref $z) { $z = cplx($z, 0); } my ($re, $im) = @{$z->_cartesian}; if ($im == 0) { return CORE::log($re + CORE::sqrt($re*$re - 1)) if $re >= 1; return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) if CORE::abs($re) < 1; } my $t = &sqrt($z * $z - 1) + $z; # Try Taylor if looking bad (this usually means that # $z was large negative, therefore the sqrt is really # close to abs(z), summing that with z...) $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) if $t == 0; my $u = &log($t); $u->Im(-$u->Im) if $re < 0 && $im == 0; return $re < 0 ? -$u : $u; } # # asinh # # Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) # sub asinh { my ($z) = @_; unless (ref $z) { my $t = $z + CORE::sqrt($z*$z + 1); return CORE::log($t) if $t; } my $t = &sqrt($z * $z + 1) + $z; # Try Taylor if looking bad (this usually means that # $z was large negative, therefore the sqrt is really # close to abs(z), summing that with z...) $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) if $t == 0; return &log($t); } # # atanh # # Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). # sub atanh { my ($z) = @_; unless (ref $z) { return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; $z = cplx($z, 0); } _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); _logofzero 'atanh(-1)' if (1 + $z == 0); return 0.5 * &log((1 + $z) / (1 - $z)); } # # asech # # Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z). # sub asech { my ($z) = @_; _divbyzero 'asech(0)', "$z" if ($z == 0); return acosh(1 / $z); } # # acsch # # Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z). # sub acsch { my ($z) = @_; _divbyzero 'acsch(0)', $z if ($z == 0); return asinh(1 / $z); } # # acosech # # Alias for acosh(). # sub acosech { Math::Complex::acsch(@_) } # # acoth # # Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). # sub acoth { my ($z) = @_; _divbyzero 'acoth(0)' if ($z == 0); unless (ref $z) { return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; $z = cplx($z, 0); } _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); return &log((1 + $z) / ($z - 1)) / 2; } # # acotanh # # Alias for acot(). # sub acotanh { Math::Complex::acoth(@_) } # # (atan2) # # Compute atan(z1/z2), minding the right quadrant. # sub atan2 { my ($z1, $z2, $inverted) = @_; my ($re1, $im1, $re2, $im2); if ($inverted) { ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); } else { ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); } if ($im1 || $im2) { # In MATLAB the imaginary parts are ignored. # warn "atan2: Imaginary parts ignored"; # http://documents.wolfram.com/mathematica/functions/ArcTan # NOTE: Mathematica ArcTan[x,y] while atan2(y,x) my $s = $z1 * $z1 + $z2 * $z2; _divbyzero("atan2") if $s == 0; my $i = &i; my $r = $z2 + $z1 * $i; return -$i * &log($r / &sqrt( $s )); } return CORE::atan2($re1, $re2); } # # display_format # ->display_format # # Set (get if no argument) the display format for all complex numbers that # don't happen to have overridden it via ->display_format # # When called as an object method, this actually sets the display format for # the current object. # # Valid object formats are 'c' and 'p' for cartesian and polar. The first # letter is used actually, so the type can be fully spelled out for clarity. # sub display_format { my $self = shift; my %display_format = %DISPLAY_FORMAT; if (ref $self) { # Called as an object method if (exists $self->{display_format}) { my %obj = %{$self->{display_format}}; @display_format{keys %obj} = values %obj; } } if (@_ == 1) { $display_format{style} = shift; } else { my %new = @_; @display_format{keys %new} = values %new; } if (ref $self) { # Called as an object method $self->{display_format} = { %display_format }; return wantarray ? %{$self->{display_format}} : $self->{display_format}->{style}; } # Called as a class method %DISPLAY_FORMAT = %display_format; return wantarray ? %DISPLAY_FORMAT : $DISPLAY_FORMAT{style}; } # # (_stringify) # # Show nicely formatted complex number under its cartesian or polar form, # depending on the current display format: # # . If a specific display format has been recorded for this object, use it. # . Otherwise, use the generic current default for all complex numbers, # which is a package global variable. # sub _stringify { my ($z) = shift; my $style = $z->display_format; $style = $DISPLAY_FORMAT{style} unless defined $style; return $z->_stringify_polar if $style =~ /^p/i; return $z->_stringify_cartesian; } # # ->_stringify_cartesian # # Stringify as a cartesian representation 'a+bi'. # sub _stringify_cartesian { my $z = shift; my ($x, $y) = @{$z->_cartesian}; my ($re, $im); my %format = $z->display_format; my $format = $format{format}; if ($x) { if ($x =~ /^NaN[QS]?$/i) { $re = $x; } else { if ($x =~ /^-?\Q$Inf\E$/oi) { $re = $x; } else { $re = defined $format ? sprintf($format, $x) : $x; } } } else { undef $re; } if ($y) { if ($y =~ /^(NaN[QS]?)$/i) { $im = $y; } else { if ($y =~ /^-?\Q$Inf\E$/oi) { $im = $y; } else { $im = defined $format ? sprintf($format, $y) : ($y == 1 ? "" : ($y == -1 ? "-" : $y)); } } $im .= "i"; } else { undef $im; } my $str = $re; if (defined $im) { if ($y < 0) { $str .= $im; } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { $str .= "+" if defined $re; $str .= $im; } } elsif (!defined $re) { $str = "0"; } return $str; } # # ->_stringify_polar # # Stringify as a polar representation '[r,t]'. # sub _stringify_polar { my $z = shift; my ($r, $t) = @{$z->_polar}; my $theta; my %format = $z->display_format; my $format = $format{format}; if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) { $theta = $t; } elsif ($t == pi) { $theta = "pi"; } elsif ($r == 0 || $t == 0) { $theta = defined $format ? sprintf($format, $t) : $t; } return "[$r,$theta]" if defined $theta; # # Try to identify pi/n and friends. # $t -= int(CORE::abs($t) / pi2) * pi2; if ($format{polar_pretty_print} && $t) { my ($a, $b); for $a (2..9) { $b = $t * $a / pi; if ($b =~ /^-?\d+$/) { $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; $theta = "${b}pi/$a"; last; } } } if (defined $format) { $r = sprintf($format, $r); $theta = sprintf($format, $t) unless defined $theta; } else { $theta = $t unless defined $theta; } return "[$r,$theta]"; } sub Inf { return $Inf; } 1; __END__ =pod =head1 NAME Math::Complex - complex numbers and associated mathematical functions =head1 SYNOPSIS use Math::Complex; $z = Math::Complex->make(5, 6); $t = 4 - 3*i + $z; $j = cplxe(1, 2*pi/3); =head1 DESCRIPTION This package lets you create and manipulate complex numbers. By default, I limits itself to real numbers, but an extra C statement brings full complex support, along with a full set of mathematical functions typically associated with and/or extended to complex numbers. If you wonder what complex numbers are, they were invented to be able to solve the following equation: x*x = -1 and by definition, the solution is noted I (engineers use I instead since I usually denotes an intensity, but the name does not matter). The number I is a pure I number. The arithmetics with pure imaginary numbers works just like you would expect it with real numbers... you just have to remember that i*i = -1 so you have: 5i + 7i = i * (5 + 7) = 12i 4i - 3i = i * (4 - 3) = i 4i * 2i = -8 6i / 2i = 3 1 / i = -i Complex numbers are numbers that have both a real part and an imaginary part, and are usually noted: a + bi where C is the I part and C is the I part. The arithmetic with complex numbers is straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules used for real numbers just apply: (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i A graphical representation of complex numbers is possible in a plane (also called the I, but it's really a 2D plane). The number z = a + bi is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a, b). It follows that the addition of two complex numbers is a vectorial addition. Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is unique and reciprocal), a complex number can also be uniquely identified with polar coordinates: [rho, theta] where C is the distance to the origin, and C the angle between the vector and the I axis. There is a notation for this using the exponential form, which is: rho * exp(i * theta) where I is the famous imaginary number introduced above. Conversion between this form and the cartesian form C is immediate: a = rho * cos(theta) b = rho * sin(theta) which is also expressed by this formula: z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) In other words, it's the projection of the vector onto the I and I axes. Mathematicians call I the I or I and I the I of the complex number. The I of C is marked here as C. The polar notation (also known as the trigonometric representation) is much more handy for performing multiplications and divisions of complex numbers, whilst the cartesian notation is better suited for additions and subtractions. Real numbers are on the I axis, and therefore I or I is zero or I. All the common operations that can be performed on a real number have been defined to work on complex numbers as well, and are merely I of the operations defined on real numbers. This means they keep their natural meaning when there is no imaginary part, provided the number is within their definition set. For instance, the C routine which computes the square root of its argument is only defined for non-negative real numbers and yields a non-negative real number (it is an application from B to B). If we allow it to return a complex number, then it can be extended to negative real numbers to become an application from B to B (the set of complex numbers): sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i It can also be extended to be an application from B to B, whilst its restriction to B behaves as defined above by using the following definition: sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) Indeed, a negative real number can be noted C<[x,pi]> (the modulus I is always non-negative, so C<[x,pi]> is really C<-x>, a negative number) and the above definition states that sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i which is exactly what we had defined for negative real numbers above. The C returns only one of the solutions: if you want the both, use the C function. All the common mathematical functions defined on real numbers that are extended to complex numbers share that same property of working I when the imaginary part is zero (otherwise, it would not be called an extension, would it?). A I operation possible on a complex number that is the identity for real numbers is called the I, and is noted with a horizontal bar above the number, or C<~z> here. z = a + bi ~z = a - bi Simple... Now look: z * ~z = (a + bi) * (a - bi) = a*a + b*b We saw that the norm of C was noted C and was defined as the distance to the origin, also known as: rho = abs(z) = sqrt(a*a + b*b) so z * ~z = abs(z) ** 2 If z is a pure real number (i.e. C), then the above yields: a * a = abs(a) ** 2 which is true (C has the regular meaning for real number, i.e. stands for the absolute value). This example explains why the norm of C is noted C: it extends the C function to complex numbers, yet is the regular C we know when the complex number actually has no imaginary part... This justifies I our use of the C notation for the norm. =head1 OPERATIONS Given the following notations: z1 = a + bi = r1 * exp(i * t1) z2 = c + di = r2 * exp(i * t2) z = the following (overloaded) operations are supported on complex numbers: z1 + z2 = (a + c) + i(b + d) z1 - z2 = (a - c) + i(b - d) z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) z1 ** z2 = exp(z2 * log z1) ~z = a - bi abs(z) = r1 = sqrt(a*a + b*b) sqrt(z) = sqrt(r1) * exp(i * t/2) exp(z) = exp(a) * exp(i * b) log(z) = log(r1) + i*t sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. The definition used for complex arguments of atan2() is -i log((x + iy)/sqrt(x*x+y*y)) Note that atan2(0, 0) is not well-defined. The following extra operations are supported on both real and complex numbers: Re(z) = a Im(z) = b arg(z) = t abs(z) = r cbrt(z) = z ** (1/3) log10(z) = log(z) / log(10) logn(z, n) = log(z) / log(n) tan(z) = sin(z) / cos(z) csc(z) = 1 / sin(z) sec(z) = 1 / cos(z) cot(z) = 1 / tan(z) asin(z) = -i * log(i*z + sqrt(1-z*z)) acos(z) = -i * log(z + i*sqrt(1-z*z)) atan(z) = i/2 * log((i+z) / (i-z)) acsc(z) = asin(1 / z) asec(z) = acos(1 / z) acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) sinh(z) = 1/2 (exp(z) - exp(-z)) cosh(z) = 1/2 (exp(z) + exp(-z)) tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) csch(z) = 1 / sinh(z) sech(z) = 1 / cosh(z) coth(z) = 1 / tanh(z) asinh(z) = log(z + sqrt(z*z+1)) acosh(z) = log(z + sqrt(z*z-1)) atanh(z) = 1/2 * log((1+z) / (1-z)) acsch(z) = asinh(1 / z) asech(z) = acosh(1 / z) acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) I, I, I, I, I, I, I, I, I, I, I, have aliases I, I, I, I, I, I, I, I, I, I, I, respectively. C, C, C, C, C, and C can be used also as mutators. The C returns only one of the solutions: if you want all three, use the C function. The I function is available to compute all the I roots of some complex, where I is a strictly positive integer. There are exactly I such roots, returned as a list. Getting the number mathematicians call C such that: 1 + j + j*j = 0; is a simple matter of writing: $j = ((root(1, 3))[1]; The Ith root for C is given by: (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) You can return the Ith root directly by C, indexing starting from I and ending at I. The I numeric comparison operator, E=E, is also defined. In order to ensure its restriction to real numbers is conform to what you would expect, the comparison is run on the real part of the complex number first, and imaginary parts are compared only when the real parts match. =head1 CREATION To create a complex number, use either: $z = Math::Complex->make(3, 4); $z = cplx(3, 4); if you know the cartesian form of the number, or $z = 3 + 4*i; if you like. To create a number using the polar form, use either: $z = Math::Complex->emake(5, pi/3); $x = cplxe(5, pi/3); instead. The first argument is the modulus, the second is the angle (in radians, the full circle is 2*pi). (Mnemonic: C is used as a notation for complex numbers in the polar form). It is possible to write: $x = cplxe(-3, pi/4); but that will be silently converted into C<[3,-3pi/4]>, since the modulus must be non-negative (it represents the distance to the origin in the complex plane). It is also possible to have a complex number as either argument of the C, C, C, and C: the appropriate component of the argument will be used. $z1 = cplx(-2, 1); $z2 = cplx($z1, 4); The C, C, C, C, and C will also understand a single (string) argument of the forms 2-3i -3i [2,3] [2,-3pi/4] [2] in which case the appropriate cartesian and exponential components will be parsed from the string and used to create new complex numbers. The imaginary component and the theta, respectively, will default to zero. The C, C, C, C, and C will also understand the case of no arguments: this means plain zero or (0, 0). =head1 DISPLAYING When printed, a complex number is usually shown under its cartesian style I, but there are legitimate cases where the polar style I<[r,t]> is more appropriate. The process of converting the complex number into a string that can be displayed is known as I. By calling the class method C and supplying either C<"polar"> or C<"cartesian"> as an argument, you override the default display style, which is C<"cartesian">. Not supplying any argument returns the current settings. This default can be overridden on a per-number basis by calling the C method instead. As before, not supplying any argument returns the current display style for this number. Otherwise whatever you specify will be the new display style for I particular number. For instance: use Math::Complex; Math::Complex::display_format('polar'); $j = (root(1, 3))[1]; print "j = $j\n"; # Prints "j = [1,2pi/3]" $j->display_format('cartesian'); print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" The polar style attempts to emphasize arguments like I (where I is a positive integer and I an integer within [-9, +9]), this is called I. For the reverse of stringifying, see the C and C. =head2 CHANGED IN PERL 5.6 The C class method and the corresponding C object method can now be called using a parameter hash instead of just a one parameter. The old display format style, which can have values C<"cartesian"> or C<"polar">, can be changed using the C<"style"> parameter. $j->display_format(style => "polar"); The one parameter calling convention also still works. $j->display_format("polar"); There are two new display parameters. The first one is C<"format">, which is a sprintf()-style format string to be used for both numeric parts of the complex number(s). The is somewhat system-dependent but most often it corresponds to C<"%.15g">. You can revert to the default by setting the C to C. # the $j from the above example $j->display_format('format' => '%.5f'); print "j = $j\n"; # Prints "j = -0.50000+0.86603i" $j->display_format('format' => undef); print "j = $j\n"; # Prints "j = -0.5+0.86603i" Notice that this affects also the return values of the C methods: in list context the whole parameter hash will be returned, as opposed to only the style parameter value. This is a potential incompatibility with earlier versions if you have been calling the C method in list context. The second new display parameter is C<"polar_pretty_print">, which can be set to true or false, the default being true. See the previous section for what this means. =head1 USAGE Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost transparent. Here are some examples: use Math::Complex; $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 print "j = $j, j**3 = ", $j ** 3, "\n"; print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; $z = -16 + 0*i; # Force it to be a complex print "sqrt($z) = ", sqrt($z), "\n"; $k = exp(i * 2*pi/3); print "$j - $k = ", $j - $k, "\n"; $z->Re(3); # Re, Im, arg, abs, $j->arg(2); # (the last two aka rho, theta) # can be used also as mutators. =head1 CONSTANTS =head2 PI The constant C and some handy multiples of it (pi2, pi4, and pip2 (pi/2) and pip4 (pi/4)) are also available if separately exported: use Math::Complex ':pi'; $third_of_circle = pi2 / 3; =head2 Inf The floating point infinity can be exported as a subroutine Inf(): use Math::Complex qw(Inf sinh); my $AlsoInf = Inf() + 42; my $AnotherInf = sinh(1e42); print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf; Note that the stringified form of infinity varies between platforms: it can be for example any of inf infinity INF 1.#INF or it can be something else. Also note that in some platforms trying to use the infinity in arithmetic operations may result in Perl crashing because using an infinity causes SIGFPE or its moral equivalent to be sent. The way to ignore this is local $SIG{FPE} = sub { }; =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO The division (/) and the following functions log ln log10 logn tan sec csc cot atan asec acsc acot tanh sech csch coth atanh asech acsch acoth cannot be computed for all arguments because that would mean dividing by zero or taking logarithm of zero. These situations cause fatal runtime errors looking like this cot(0): Division by zero. (Because in the definition of cot(0), the divisor sin(0) is 0) Died at ... or atanh(-1): Logarithm of zero. Died at... For the C, C, C, C, C, C, C, C, C, the argument cannot be C<0> (zero). For the logarithmic functions and the C, C, the argument cannot be C<1> (one). For the C, C, the argument cannot be C<-1> (minus one). For the C, C, the argument cannot be C (the imaginary unit). For the C, C, the argument cannot be C<-i> (the negative imaginary unit). For the C, C, C, the argument cannot be I, where I is any integer. atan2(0, 0) is undefined, and if the complex arguments are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0. Note that because we are operating on approximations of real numbers, these errors can happen when merely `too close' to the singularities listed above. =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS The C and C accept both real and complex arguments. When they cannot recognize the arguments they will die with error messages like the following Math::Complex::make: Cannot take real part of ... Math::Complex::make: Cannot take real part of ... Math::Complex::emake: Cannot take rho of ... Math::Complex::emake: Cannot take theta of ... =head1 BUGS Saying C exports many mathematical routines in the caller environment and even overrides some (C, C, C). This is construed as a feature by the Authors, actually... ;-) All routines expect to be given real or complex numbers. Don't attempt to use BigFloat, since Perl has currently no rule to disambiguate a '+' operation (for instance) between two overloaded entities. In Cray UNICOS there is some strange numerical instability that results in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. Whatever it is, it does not manifest itself anywhere else where Perl runs. =head1 SEE ALSO L =head1 AUTHORS Daniel S. Lewart >, Jarkko Hietaniemi >, Raphael Manfredi >, Zefram =head1 LICENSE This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =cut 1; # eof Math-Complex-1.59/lib/Math/Trig.pm0000644000175000017500000005157611712346273016226 0ustar zeframzefram# # Trigonometric functions, mostly inherited from Math::Complex. # -- Jarkko Hietaniemi, since April 1997 # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex) # package Math::Trig; { use 5.006; } use strict; use Math::Complex 1.59; use Math::Complex qw(:trig :pi); require Exporter; our @ISA = qw(Exporter); our $VERSION = 1.23; my @angcnv = qw(rad2deg rad2grad deg2rad deg2grad grad2rad grad2deg); my @areal = qw(asin_real acos_real); our @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}}, @angcnv, @areal); my @rdlcnv = qw(cartesian_to_cylindrical cartesian_to_spherical cylindrical_to_cartesian cylindrical_to_spherical spherical_to_cartesian spherical_to_cylindrical); my @greatcircle = qw( great_circle_distance great_circle_direction great_circle_bearing great_circle_waypoint great_circle_midpoint great_circle_destination ); my @pi = qw(pi pi2 pi4 pip2 pip4); our @EXPORT_OK = (@rdlcnv, @greatcircle, @pi, 'Inf'); # See e.g. the following pages: # http://www.movable-type.co.uk/scripts/LatLong.html # http://williams.best.vwh.net/avform.htm our %EXPORT_TAGS = ('radial' => [ @rdlcnv ], 'great_circle' => [ @greatcircle ], 'pi' => [ @pi ]); sub _DR () { pi2/360 } sub _RD () { 360/pi2 } sub _DG () { 400/360 } sub _GD () { 360/400 } sub _RG () { 400/pi2 } sub _GR () { pi2/400 } # # Truncating remainder. # sub _remt ($$) { # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available. $_[0] - $_[1] * int($_[0] / $_[1]); } # # Angle conversions. # sub rad2rad($) { _remt($_[0], pi2) } sub deg2deg($) { _remt($_[0], 360) } sub grad2grad($) { _remt($_[0], 400) } sub rad2deg ($;$) { my $d = _RD * $_[0]; $_[1] ? $d : deg2deg($d) } sub deg2rad ($;$) { my $d = _DR * $_[0]; $_[1] ? $d : rad2rad($d) } sub grad2deg ($;$) { my $d = _GD * $_[0]; $_[1] ? $d : deg2deg($d) } sub deg2grad ($;$) { my $d = _DG * $_[0]; $_[1] ? $d : grad2grad($d) } sub rad2grad ($;$) { my $d = _RG * $_[0]; $_[1] ? $d : grad2grad($d) } sub grad2rad ($;$) { my $d = _GR * $_[0]; $_[1] ? $d : rad2rad($d) } # # acos and asin functions which always return a real number # sub acos_real { return 0 if $_[0] >= 1; return pi if $_[0] <= -1; return acos($_[0]); } sub asin_real { return &pip2 if $_[0] >= 1; return -&pip2 if $_[0] <= -1; return asin($_[0]); } sub cartesian_to_spherical { my ( $x, $y, $z ) = @_; my $rho = sqrt( $x * $x + $y * $y + $z * $z ); return ( $rho, atan2( $y, $x ), $rho ? acos_real( $z / $rho ) : 0 ); } sub spherical_to_cartesian { my ( $rho, $theta, $phi ) = @_; return ( $rho * cos( $theta ) * sin( $phi ), $rho * sin( $theta ) * sin( $phi ), $rho * cos( $phi ) ); } sub spherical_to_cylindrical { my ( $x, $y, $z ) = spherical_to_cartesian( @_ ); return ( sqrt( $x * $x + $y * $y ), $_[1], $z ); } sub cartesian_to_cylindrical { my ( $x, $y, $z ) = @_; return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z ); } sub cylindrical_to_cartesian { my ( $rho, $theta, $z ) = @_; return ( $rho * cos( $theta ), $rho * sin( $theta ), $z ); } sub cylindrical_to_spherical { return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) ); } sub great_circle_distance { my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_; $rho = 1 unless defined $rho; # Default to the unit sphere. my $lat0 = pip2 - $phi0; my $lat1 = pip2 - $phi1; return $rho * acos_real( cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) + sin( $lat0 ) * sin( $lat1 ) ); } sub great_circle_direction { my ( $theta0, $phi0, $theta1, $phi1 ) = @_; my $lat0 = pip2 - $phi0; my $lat1 = pip2 - $phi1; return rad2rad(pi2 - atan2(sin($theta0-$theta1) * cos($lat1), cos($lat0) * sin($lat1) - sin($lat0) * cos($lat1) * cos($theta0-$theta1))); } *great_circle_bearing = \&great_circle_direction; sub great_circle_waypoint { my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_; $point = 0.5 unless defined $point; my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 ); return undef if $d == pi; my $sd = sin($d); return ($theta0, $phi0) if $sd == 0; my $A = sin((1 - $point) * $d) / $sd; my $B = sin( $point * $d) / $sd; my $lat0 = pip2 - $phi0; my $lat1 = pip2 - $phi1; my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1); my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1); my $z = $A * sin($lat0) + $B * sin($lat1); my $theta = atan2($y, $x); my $phi = acos_real($z); return ($theta, $phi); } sub great_circle_midpoint { great_circle_waypoint(@_[0..3], 0.5); } sub great_circle_destination { my ( $theta0, $phi0, $dir0, $dst ) = @_; my $lat0 = pip2 - $phi0; my $phi1 = asin_real(sin($lat0)*cos($dst) + cos($lat0)*sin($dst)*cos($dir0)); my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0), cos($dst)-sin($lat0)*sin($phi1)); my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi; $dir1 -= pi2 if $dir1 > pi2; return ($theta1, $phi1, $dir1); } 1; __END__ =pod =head1 NAME Math::Trig - trigonometric functions =head1 SYNOPSIS use Math::Trig; $x = tan(0.9); $y = acos(3.7); $z = asin(2.4); $halfpi = pi/2; $rad = deg2rad(120); # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4). use Math::Trig ':pi'; # Import the conversions between cartesian/spherical/cylindrical. use Math::Trig ':radial'; # Import the great circle formulas. use Math::Trig ':great_circle'; =head1 DESCRIPTION C defines many trigonometric functions not defined by the core Perl which defines only the C and C. The constant B is also defined as are a few convenience functions for angle conversions, and I for spherical movement. =head1 TRIGONOMETRIC FUNCTIONS The tangent =over 4 =item B =back The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot are aliases) B, B, B, B, B, B The arcus (also known as the inverse) functions of the sine, cosine, and tangent B, B, B The principal value of the arc tangent of y/x B(y, x) The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc and acotan/acot are aliases). Note that atan2(0, 0) is not well-defined. B, B, B, B, B The hyperbolic sine, cosine, and tangent B, B, B The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch and cotanh/coth are aliases) B, B, B, B, B The area (also known as the inverse) functions of the hyperbolic sine, cosine, and tangent B, B, B The area cofunctions of the hyperbolic sine, cosine, and tangent (acsch/acosech and acoth/acotanh are aliases) B, B, B, B, B The trigonometric constant B and some of handy multiples of it are also defined. B =head2 ERRORS DUE TO DIVISION BY ZERO The following functions acoth acsc acsch asec asech atanh cot coth csc csch sec sech tan tanh cannot be computed for all arguments because that would mean dividing by zero or taking logarithm of zero. These situations cause fatal runtime errors looking like this cot(0): Division by zero. (Because in the definition of cot(0), the divisor sin(0) is 0) Died at ... or atanh(-1): Logarithm of zero. Died at... For the C, C, C, C, C, C, C, C, C, the argument cannot be C<0> (zero). For the C, C, the argument cannot be C<1> (one). For the C, C, the argument cannot be C<-1> (minus one). For the C, C, C, C, the argument cannot be I, where I is any integer. Note that atan2(0, 0) is not well-defined. =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS Please note that some of the trigonometric functions can break out from the B into the B. For example C has no definition for plain real numbers but it has definition for complex numbers. In Perl terms this means that supplying the usual Perl numbers (also known as scalars, please see L) as input for the trigonometric functions might produce as output results that no more are simple real numbers: instead they are complex numbers. The C handles this by using the C package which knows how to handle complex numbers, please see L for more information. In practice you need not to worry about getting complex numbers as results because the C takes care of details like for example how to display complex numbers. For example: print asin(2), "\n"; should produce something like this (take or leave few last decimals): 1.5707963267949-1.31695789692482i That is, a complex number with the real part of approximately C<1.571> and the imaginary part of approximately C<-1.317>. =head1 PLANE ANGLE CONVERSIONS (Plane, 2-dimensional) angles may be converted with the following functions. =over =item deg2rad $radians = deg2rad($degrees); =item grad2rad $radians = grad2rad($gradians); =item rad2deg $degrees = rad2deg($radians); =item grad2deg $degrees = grad2deg($gradians); =item deg2grad $gradians = deg2grad($degrees); =item rad2grad $gradians = rad2grad($radians); =back The full circle is 2 I radians or I<360> degrees or I<400> gradians. The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle. If you don't want this, supply a true second argument: $zillions_of_radians = deg2rad($zillions_of_degrees, 1); $negative_degrees = rad2deg($negative_radians, 1); You can also do the wrapping explicitly by rad2rad(), deg2deg(), and grad2grad(). =over 4 =item rad2rad $radians_wrapped_by_2pi = rad2rad($radians); =item deg2deg $degrees_wrapped_by_360 = deg2deg($degrees); =item grad2grad $gradians_wrapped_by_400 = grad2grad($gradians); =back =head1 RADIAL COORDINATE CONVERSIONS B are the B and the B systems, explained shortly in more detail. You can import radial coordinate conversion functions by using the C<:radial> tag: use Math::Trig ':radial'; ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); B. =head2 COORDINATE SYSTEMS B coordinates are the usual rectangular I<(x, y, z)>-coordinates. Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional coordinates which define a point in three-dimensional space. They are based on a sphere surface. The radius of the sphere is B, also known as the I coordinate. The angle in the I-plane (around the I-axis) is B, also known as the I coordinate. The angle from the I-axis is B, also known as the I coordinate. The North Pole is therefore I<0, 0, rho>, and the Gulf of Guinea (think of the missing big chunk of Africa) I<0, pi/2, rho>. In geographical terms I is latitude (northward positive, southward negative) and I is longitude (eastward positive, westward negative). B: some texts define I and I the other way round, some texts define the I to start from the horizontal plane, some texts use I in place of I. Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional coordinates which define a point in three-dimensional space. They are based on a cylinder surface. The radius of the cylinder is B, also known as the I coordinate. The angle in the I-plane (around the I-axis) is B, also known as the I coordinate. The third coordinate is the I, pointing up from the B-plane. =head2 3-D ANGLE CONVERSIONS Conversions to and from spherical and cylindrical coordinates are available. Please notice that the conversions are not necessarily reversible because of the equalities like I angles being equal to I<-pi> angles. =over 4 =item cartesian_to_cylindrical ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z); =item cartesian_to_spherical ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z); =item cylindrical_to_cartesian ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z); =item cylindrical_to_spherical ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z); Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>. =item spherical_to_cartesian ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi); =item spherical_to_cylindrical ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi); Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>. =back =head1 GREAT CIRCLE DISTANCES AND DIRECTIONS A great circle is section of a circle that contains the circle diameter: the shortest distance between two (non-antipodal) points on the spherical surface goes along the great circle connecting those two points. =head2 great_circle_distance You can compute spherical distances, called B, by importing the great_circle_distance() function: use Math::Trig 'great_circle_distance'; $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]); The I is the shortest distance between two points on a sphere. The distance is in C<$rho> units. The C<$rho> is optional, it defaults to 1 (the unit sphere), therefore the distance defaults to radians. If you think geographically the I are longitudes: zero at the Greenwhich meridian, eastward positive, westward negative -- and the I are latitudes: zero at the North Pole, northward positive, southward negative. B: this formula thinks in mathematics, not geographically: the I zero is at the North Pole, not at the Equator on the west coast of Africa (Bay of Guinea). You need to subtract your geographical coordinates from I (also known as 90 degrees). $distance = great_circle_distance($lon0, pi/2 - $lat0, $lon1, pi/2 - $lat1, $rho); =head2 great_circle_direction The direction you must follow the great circle (also known as I) can be computed by the great_circle_direction() function: use Math::Trig 'great_circle_direction'; $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1); =head2 great_circle_bearing Alias 'great_circle_bearing' for 'great_circle_direction' is also available. use Math::Trig 'great_circle_bearing'; $direction = great_circle_bearing($theta0, $phi0, $theta1, $phi1); The result of great_circle_direction is in radians, zero indicating straight north, pi or -pi straight south, pi/2 straight west, and -pi/2 straight east. =head2 great_circle_destination You can inversely compute the destination if you know the starting point, direction, and distance: use Math::Trig 'great_circle_destination'; # $diro is the original direction, # for example from great_circle_bearing(). # $distance is the angular distance in radians, # for example from great_circle_distance(). # $thetad and $phid are the destination coordinates, # $dird is the final direction at the destination. ($thetad, $phid, $dird) = great_circle_destination($theta, $phi, $diro, $distance); or the midpoint if you know the end points: =head2 great_circle_midpoint use Math::Trig 'great_circle_midpoint'; ($thetam, $phim) = great_circle_midpoint($theta0, $phi0, $theta1, $phi1); The great_circle_midpoint() is just a special case of =head2 great_circle_waypoint use Math::Trig 'great_circle_waypoint'; ($thetai, $phii) = great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way); Where the $way is a value from zero ($theta0, $phi0) to one ($theta1, $phi1). Note that antipodal points (where their distance is I radians) do not have waypoints between them (they would have an an "equator" between them), and therefore C is returned for antipodal points. If the points are the same and the distance therefore zero and all waypoints therefore identical, the first point (either point) is returned. The thetas, phis, direction, and distance in the above are all in radians. You can import all the great circle formulas by use Math::Trig ':great_circle'; Notice that the resulting directions might be somewhat surprising if you are looking at a flat worldmap: in such map projections the great circles quite often do not look like the shortest routes -- but for example the shortest possible routes from Europe or North America to Asia do often cross the polar regions. (The common Mercator projection does B show great circles as straight lines: straight lines in the Mercator projection are lines of constant bearing.) =head1 EXAMPLES To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N 139.8E) in kilometers: use Math::Trig qw(great_circle_distance deg2rad); # Notice the 90 - latitude: phi zero is at the North Pole. sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) } my @L = NESW( -0.5, 51.3); my @T = NESW(139.8, 35.7); my $km = great_circle_distance(@L, @T, 6378); # About 9600 km. The direction you would have to go from London to Tokyo (in radians, straight north being zero, straight east being pi/2). use Math::Trig qw(great_circle_direction); my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi. The midpoint between London and Tokyo being use Math::Trig qw(great_circle_midpoint); my @M = great_circle_midpoint(@L, @T); or about 69 N 89 E, in the frozen wastes of Siberia. B: you B get from A to B like this: Dist = great_circle_distance(A, B) Dir = great_circle_direction(A, B) C = great_circle_destination(A, Dist, Dir) and expect C to be B, because the bearing constantly changes when going from A to B (except in some special case like the meridians or the circles of latitudes) and in great_circle_destination() one gives a B bearing to follow. =head2 CAVEAT FOR GREAT CIRCLE FORMULAS The answers may be off by few percentages because of the irregular (slightly aspherical) form of the Earth. The errors are at worst about 0.55%, but generally below 0.3%. =head2 Real-valued asin and acos For small inputs asin() and acos() may return complex numbers even when real numbers would be enough and correct, this happens because of floating-point inaccuracies. You can see these inaccuracies for example by trying theses: print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n"; printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n"; which will print something like this -1.11022302462516e-16 0.99999999999999988898 even though the expected results are of course exactly zero and one. The formulas used to compute asin() and acos() are quite sensitive to this, and therefore they might accidentally slip into the complex plane even when they should not. To counter this there are two interfaces that are guaranteed to return a real-valued output. =over 4 =item asin_real use Math::Trig qw(asin_real); $real_angle = asin_real($input_sin); Return a real-valued arcus sine if the input is between [-1, 1], B the endpoints. For inputs greater than one, pi/2 is returned. For inputs less than minus one, -pi/2 is returned. =item acos_real use Math::Trig qw(acos_real); $real_angle = acos_real($input_cos); Return a real-valued arcus cosine if the input is between [-1, 1], B the endpoints. For inputs greater than one, zero is returned. For inputs less than minus one, pi is returned. =back =head1 BUGS Saying C exports many mathematical routines in the caller environment and even overrides some (C, C). This is construed as a feature by the Authors, actually... ;-) The code is not optimized for speed, especially because we use C and thus go quite near complex numbers while doing the computations even when the arguments are not. This, however, cannot be completely avoided if we want things like C to give an answer instead of giving a fatal runtime error. Do not attempt navigation using these formulas. L =head1 AUTHORS Jarkko Hietaniemi >, Raphael Manfredi >, Zefram =head1 LICENSE This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =cut # eof Math-Complex-1.59/META.json0000664000175000017500000000201411712346342014723 0ustar zeframzefram{ "abstract" : "unknown", "author" : [ "unknown" ], "dynamic_config" : 1, "generated_by" : "ExtUtils::MakeMaker version 6.62, CPAN::Meta::Converter version 2.112621", "license" : [ "perl_5" ], "meta-spec" : { "url" : "http://search.cpan.org/perldoc?CPAN::Meta::Spec", "version" : "2" }, "name" : "Math-Complex", "no_index" : { "directory" : [ "t", "inc" ] }, "prereqs" : { "build" : { "requires" : { "ExtUtils::MakeMaker" : 0 } }, "configure" : { "requires" : { "ExtUtils::MakeMaker" : 0 } }, "runtime" : { "requires" : { "Config" : 0, "Exporter" : 0, "ExtUtils::MakeMaker" : 0, "Scalar::Util" : "1.11", "Test::More" : 0, "overload" : 0, "strict" : 0, "warnings" : 0 } } }, "release_status" : "stable", "version" : "1.59" } Math-Complex-1.59/t/0000755000175000017500000000000011712346342013546 5ustar zeframzeframMath-Complex-1.59/t/pod-coverage.t0000644000175000017500000000106111712342751016304 0ustar zeframzeframuse Test::More; eval "use Test::Pod::Coverage 1.00"; plan(skip_all => "Test::Pod::Coverage 1.00 required for testing POD coverage") if $@; plan(tests => 2); pod_coverage_ok("Math::Complex", { trustme => [qr/^(abs|sqrt|cbrt|exp|log|sin|cos|tan|atan|atan2|Re|Im|arg|log10|logn|ln|csc|sec|cot|asin|acos|atan|acsc|asec|acot|sinh|cosh|tanh|csch|sech|coth|asinh|acosh|atanh|acsch|asech|acoth|acosec|acosech|acotan|acotanh|cosec|cosech|cotan|cotanh|cplx|cplxe|make|emake|i|root|theta|rho|new|display_format|pi|pi2|pi4|pip2|pip4)$/] }); pod_coverage_ok("Math::Trig"); Math-Complex-1.59/t/pod.t0000644000175000017500000000020211712342751014507 0ustar zeframzeframuse Test::More; eval "use Test::Pod 1.00"; plan(skip_all => "Test::Pod 1.00 required for testing POD") if $@; all_pod_files_ok(); Math-Complex-1.59/t/Complex.t0000644000175000017500000007137111712342751015353 0ustar zeframzefram#!./perl # # Regression tests for the Math::Complex pacakge # -- Raphael Manfredi since Sep 1996 # -- Jarkko Hietaniemi since Mar 1997 # -- Daniel S. Lewart since Sep 1997 use Math::Complex 1.54; my ($args, $op, $target, $test, $test_set, $try, $val, $zvalue, @set, @val); $test = 0; $| = 1; my @script = ( 'my ($res, $s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$z0,$z1,$z2);' . "\n\n" ); my $eps = 1e-13; if ($^O eq 'unicos') { # For some reason root() produces very inaccurate $eps = 1e-10; # results in Cray UNICOS, and occasionally also } # cos(), sin(), cosh(), sinh(). The division # of doubles is the current suspect. $test++; push @script, "{ my \$t=$test; ".q{ my $a = Math::Complex->new(1); my $b = $a; $a += 2; print "not " unless "$a" eq "3" && "$b" eq "1"; print "ok $t\n"; }."}"; while () { s/^\s+//; next if $_ eq '' || /^\#/; chomp; $test_set = 0; # Assume not a test over a set of values if (/^&(.+)/) { $op = $1; next; } elsif (/^\{(.+)\}/) { set($1, \@set, \@val); next; } elsif (s/^\|//) { $test_set = 1; # Requests we loop over the set... } my @args = split(/:/); if ($test_set == 1) { my $i; for ($i = 0; $i < @set; $i++) { # complex number $target = $set[$i]; # textual value as found in set definition $zvalue = $val[$i]; test($zvalue, $target, @args); } } else { test($op, undef, @args); } } # sub test_mutators { my $op; $test++; push(@script, <<'EOT'); { my $z = cplx( 1, 1); $z->Re(2); $z->Im(3); print "# $test Re(z) = ",$z->Re(), " Im(z) = ", $z->Im(), " z = $z\n"; print 'not ' unless Re($z) == 2 and Im($z) == 3; EOT push(@script, qq(print "ok $test\\n"}\n)); $test++; push(@script, <<'EOT'); { my $z = cplx( 1, 1); $z->abs(3 * sqrt(2)); print "# $test Re(z) = ",$z->Re(), " Im(z) = ", $z->Im(), " z = $z\n"; print 'not ' unless (abs($z) - 3 * sqrt(2)) < $eps and (arg($z) - pi / 4 ) < $eps and (Re($z) - 3 ) < $eps and (Im($z) - 3 ) < $eps; EOT push(@script, qq(print "ok $test\\n"}\n)); $test++; push(@script, <<'EOT'); { my $z = cplx( 1, 1); $z->arg(-3 / 4 * pi); print "# $test Re(z) = ",$z->Re(), " Im(z) = ", $z->Im(), " z = $z\n"; print 'not ' unless (arg($z) + 3 / 4 * pi) < $eps and (abs($z) - sqrt(2) ) < $eps and (Re($z) + 1 ) < $eps and (Im($z) + 1 ) < $eps; EOT push(@script, qq(print "ok $test\\n"}\n)); } test_mutators(); my $constants = ' my $i = cplx(0, 1); my $pi = cplx(pi, 0); my $pii = cplx(0, pi); my $pip2 = cplx(pi/2, 0); my $pip4 = cplx(pi/4, 0); my $zero = cplx(0, 0); my $inf = 9**9**9; '; push(@script, $constants); # test the divbyzeros sub test_dbz { for my $op (@_) { $test++; push(@script, <display_format eq 'cartesian'; print "ok $test\n"; EOS push @script, <display_format('polar'); EOS $test++; push @script, <display_format eq 'polar'; print "ok $test\n"; EOS $test++; push @script, <display_format; EOS $test++; push @script, <display_format('style' => 'cartesian', 'format' => '%.5f'); EOS $test++; push @script, <display_format; EOS $test++; push @script, <display_format('format' => undef); EOS $test++; push @script, <display_format('style' => 'polar', 'polar_pretty_print' => 0); EOS $test++; push @script, <display_format('style' => 'polar', 'format' => "%.4g"); EOS $test++; push @script, <display_format('style' => 'cartesian', 'format' => '(%.5g)'); EOS $test++; push @script, <display_format eq 'cartesian'; print "ok $test\n"; EOS } test_display_format(); sub test_remake { $test++; push @script, <make(2,3); print "ok $test\n"; EOS $test++; push @script, <make('3i'); print "not " unless \$z == cplx(0,3); print "ok $test\n"; EOS $test++; push @script, <emake('[2,3]'); print "not " unless \$z == cplxe(2,3); print "ok $test\n"; EOS $test++; push @script, <make('(2,3)'); print "not " unless \$z == cplx(2,3); print "ok $test\n"; EOS $test++; push @script, <emake('[2,3pi/8]'); print "not " unless \$z == cplxe(2,3*\$pi/8); print "ok $test\n"; EOS $test++; push @script, <emake('[2]'); print "not " unless \$z == cplxe(2); print "ok $test\n"; EOS } sub test_no_args { push @script, <<'EOS'; { print "# cplx, cplxe, make, emake without arguments\n"; EOS $test++; push @script, <Re() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <Im() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <rho() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <theta() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <make(); print ((\$z2->Re() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <Im() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <emake(); print ((\$z3->rho() == 0) ? "ok $test\n" : "not ok $test\n"); EOS $test++; push @script, <theta() == 0) ? "ok $test\n" : "not ok $test\n"); } EOS } sub test_atan2 { push @script, <<'EOS'; print "# atan2() with some real arguments\n"; EOS my @real = (-1, 0, 1); for my $x (@real) { for my $y (@real) { next if $x == 0 && $y == 0; $test++; push @script, < 2 and $baop) { # binary assignment ops $test++; # check the op= works push @script, <_cartesian} : (\$z0, 0)); my (\$z1r, \$z1i) = ref \$z1 ? \@{\$z1->_cartesian} : (\$z1, 0); my \$zb = cplx(\$z1r, \$z1i); \$za $op= \$zb; my (\$zbr, \$zbi) = \@{\$zb->_cartesian}; check($test, '\$z0 $op= \$z1', \$za, \$z$#args, $args); EOB $test++; # check that the rhs has not changed push @script, qq(print "not " unless (\$zbr == \$z1r and \$zbi == \$z1i);); push @script, qq(print "ok $test\\n";\n); push @script, "}\n"; } } } sub set { my ($set, $setref, $valref) = @_; @{$setref} = (); @{$valref} = (); my @set = split(/;\s*/, $set); my @res; my $i; for ($i = 0; $i < @set; $i++) { push(@{$valref}, $set[$i]); my $val = value($set[$i]); push @script, "\$s$i = $val;\n"; push @{$setref}, "\$s$i"; } } sub value { local ($_) = @_; if (/^\s*\((.*),(.*)\)/) { return "cplx($1,$2)"; } elsif (/^\s*([\-\+]?(?:\d+(\.\d+)?|\.\d+)(?:[e[\-\+]\d+])?)/) { return "cplx($1,0)"; } elsif (/^\s*\[(.*),(.*)\]/) { return "cplxe($1,$2)"; } elsif (/^\s*'(.*)'/) { my $ex = $1; $ex =~ s/\bz\b/$target/g; $ex =~ s/\br\b/abs($target)/g; $ex =~ s/\bt\b/arg($target)/g; $ex =~ s/\ba\b/Re($target)/g; $ex =~ s/\bb\b/Im($target)/g; return $ex; } elsif (/^\s*"(.*)"/) { return "\"$1\""; } return $_; } sub check { my ($test, $try, $got, $expected, @z) = @_; print "# @_\n"; if ("$got" eq "$expected" || ($expected =~ /^-?\d/ && $got == $expected) || (abs(Math::Complex->make($got) - Math::Complex->make($expected)) < $eps) || (abs($got - $expected) < $eps) ) { print "ok $test\n"; } else { print "not ok $test\n"; my $args = (@z == 1) ? "z = $z[0]" : "z0 = $z[0], z1 = $z[1]"; print "# '$try' expected: '$expected' got: '$got' for $args\n"; } } sub addsq { my ($z1, $z2) = @_; return ($z1 + i*$z2) * ($z1 - i*$z2); } sub subsq { my ($z1, $z2) = @_; return ($z1 + $z2) * ($z1 - $z2); } __END__ &+;= (3,4):(3,4):(6,8) (-3,4):(3,-4):(0,0) (3,4):-3:(0,4) 1:(4,2):(5,2) [2,0]:[2,pi]:(0,0) &++ (2,1):(3,1) &-;= (2,3):(-2,-3) [2,pi/2]:[2,-(pi)/2] 2:[2,0]:(0,0) [3,0]:2:(1,0) 3:(4,5):(-1,-5) (4,5):3:(1,5) (2,1):(3,5):(-1,-4) &-- (1,2):(0,2) [2,pi]:[3,pi] &*;= (0,1):(0,1):(-1,0) (4,5):(1,0):(4,5) [2,2*pi/3]:(1,0):[2,2*pi/3] 2:(0,1):(0,2) (0,1):3:(0,3) (0,1):(4,1):(-1,4) (2,1):(4,-1):(9,2) &/;= (3,4):(3,4):(1,0) (4,-5):1:(4,-5) 1:(0,1):(0,-1) (0,6):(0,2):(3,0) (9,2):(4,-1):(2,1) [4,pi]:[2,pi/2]:[2,pi/2] [2,pi/2]:[4,pi]:[0.5,-(pi)/2] &**;= (2,0):(3,0):(8,0) (3,0):(2,0):(9,0) (2,3):(4,0):(-119,-120) (0,0):(1,0):(0,0) (0,0):(2,3):(0,0) (1,0):(0,0):(1,0) (1,0):(1,0):(1,0) (1,0):(2,3):(1,0) (2,3):(0,0):(1,0) (2,3):(1,0):(2,3) (0,0):(0,0):(1,0) &Re (3,4):3 (-3,4):-3 [1,pi/2]:0 &Im (3,4):4 (3,-4):-4 [1,pi/2]:1 &abs (3,4):5 (-3,4):5 &arg [2,0]:0 [-2,0]:pi &~ (4,5):(4,-5) (-3,4):(-3,-4) [2,pi/2]:[2,-(pi)/2] &< (3,4):(1,2):0 (3,4):(3,2):0 (3,4):(3,8):1 (4,4):(5,129):1 &== (3,4):(4,5):0 (3,4):(3,5):0 (3,4):(2,4):0 (3,4):(3,4):1 &sqrt -9:(0,3) (-100,0):(0,10) (16,-30):(5,-3) &_stringify_cartesian (-100,0):"-100" (0,1):"i" (4,-3):"4-3i" (4,0):"4" (-4,0):"-4" (-2,4):"-2+4i" (-2,-1):"-2-i" &_stringify_polar [-1, 0]:"[1,pi]" [1, pi/3]:"[1,pi/3]" [6, -2*pi/3]:"[6,-2pi/3]" [0.5, -9*pi/11]:"[0.5,-9pi/11]" [1, 0.5]:"[1, 0.5]" { (4,3); [3,2]; (-3,4); (0,2); [2,1] } |'z + ~z':'2*Re(z)' |'z - ~z':'2*i*Im(z)' |'z * ~z':'abs(z) * abs(z)' { (0.5, 0); (-0.5, 0); (2,3); [3,2]; (-3,2); (0,2); 3; 1.2; (-3, 0); (-2, -1); [2,1] } |'(root(z, 4))[1] ** 4':'z' |'(root(z, 5))[3] ** 5':'z' |'(root(z, 8))[7] ** 8':'z' |'(root(z, 8, 0)) ** 8':'z' |'(root(z, 8, 7)) ** 8':'z' |'abs(z)':'r' |'acot(z)':'acotan(z)' |'acsc(z)':'acosec(z)' |'acsc(z)':'asin(1 / z)' |'asec(z)':'acos(1 / z)' |'cbrt(z)':'cbrt(r) * exp(i * t/3)' |'cos(acos(z))':'z' |'addsq(cos(z), sin(z))':1 |'cos(z)':'cosh(i*z)' |'subsq(cosh(z), sinh(z))':1 |'cot(acot(z))':'z' |'cot(z)':'1 / tan(z)' |'cot(z)':'cotan(z)' |'csc(acsc(z))':'z' |'csc(z)':'1 / sin(z)' |'csc(z)':'cosec(z)' |'exp(log(z))':'z' |'exp(z)':'exp(a) * exp(i * b)' |'ln(z)':'log(z)' |'log(exp(z))':'z' |'log(z)':'log(r) + i*t' |'log10(z)':'log(z) / log(10)' |'logn(z, 2)':'log(z) / log(2)' |'logn(z, 3)':'log(z) / log(3)' |'sec(asec(z))':'z' |'sec(z)':'1 / cos(z)' |'sin(asin(z))':'z' |'sin(i * z)':'i * sinh(z)' |'sqrt(z) * sqrt(z)':'z' |'sqrt(z)':'sqrt(r) * exp(i * t/2)' |'tan(atan(z))':'z' |'z**z':'exp(z * log(z))' { (1,1); [1,0.5]; (-2, -1); 2; -3; (-1,0.5); (0,0.5); 0.5; (2, 0); (-1, -2) } |'cosh(acosh(z))':'z' |'coth(acoth(z))':'z' |'coth(z)':'1 / tanh(z)' |'coth(z)':'cotanh(z)' |'csch(acsch(z))':'z' |'csch(z)':'1 / sinh(z)' |'csch(z)':'cosech(z)' |'sech(asech(z))':'z' |'sech(z)':'1 / cosh(z)' |'sinh(asinh(z))':'z' |'tanh(atanh(z))':'z' { (0.2,-0.4); [1,0.5]; -1.2; (-1,0.5); 0.5; (1.1, 0) } |'acos(cos(z)) ** 2':'z * z' |'acosh(cosh(z)) ** 2':'z * z' |'acoth(z)':'acotanh(z)' |'acoth(z)':'atanh(1 / z)' |'acsch(z)':'acosech(z)' |'acsch(z)':'asinh(1 / z)' |'asech(z)':'acosh(1 / z)' |'asin(sin(z))':'z' |'asinh(sinh(z))':'z' |'atan(tan(z))':'z' |'atanh(tanh(z))':'z' &log (-2.0,0):( 0.69314718055995, 3.14159265358979) (-1.0,0):( 0 , 3.14159265358979) (-0.5,0):( -0.69314718055995, 3.14159265358979) ( 0.5,0):( -0.69314718055995, 0 ) ( 1.0,0):( 0 , 0 ) ( 2.0,0):( 0.69314718055995, 0 ) &log ( 2, 3):( 1.28247467873077, 0.98279372324733) (-2, 3):( 1.28247467873077, 2.15879893034246) (-2,-3):( 1.28247467873077, -2.15879893034246) ( 2,-3):( 1.28247467873077, -0.98279372324733) &sin (-2.0,0):( -0.90929742682568, 0 ) (-1.0,0):( -0.84147098480790, 0 ) (-0.5,0):( -0.47942553860420, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.47942553860420, 0 ) ( 1.0,0):( 0.84147098480790, 0 ) ( 2.0,0):( 0.90929742682568, 0 ) &sin ( 2, 3):( 9.15449914691143, -4.16890695996656) (-2, 3):( -9.15449914691143, -4.16890695996656) (-2,-3):( -9.15449914691143, 4.16890695996656) ( 2,-3):( 9.15449914691143, 4.16890695996656) &cos (-2.0,0):( -0.41614683654714, 0 ) (-1.0,0):( 0.54030230586814, 0 ) (-0.5,0):( 0.87758256189037, 0 ) ( 0.0,0):( 1 , 0 ) ( 0.5,0):( 0.87758256189037, 0 ) ( 1.0,0):( 0.54030230586814, 0 ) ( 2.0,0):( -0.41614683654714, 0 ) &cos ( 2, 3):( -4.18962569096881, -9.10922789375534) (-2, 3):( -4.18962569096881, 9.10922789375534) (-2,-3):( -4.18962569096881, -9.10922789375534) ( 2,-3):( -4.18962569096881, 9.10922789375534) &tan (-2.0,0):( 2.18503986326152, 0 ) (-1.0,0):( -1.55740772465490, 0 ) (-0.5,0):( -0.54630248984379, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.54630248984379, 0 ) ( 1.0,0):( 1.55740772465490, 0 ) ( 2.0,0):( -2.18503986326152, 0 ) &tan ( 2, 3):( -0.00376402564150, 1.00323862735361) (-2, 3):( 0.00376402564150, 1.00323862735361) (-2,-3):( 0.00376402564150, -1.00323862735361) ( 2,-3):( -0.00376402564150, -1.00323862735361) &sec (-2.0,0):( -2.40299796172238, 0 ) (-1.0,0):( 1.85081571768093, 0 ) (-0.5,0):( 1.13949392732455, 0 ) ( 0.0,0):( 1 , 0 ) ( 0.5,0):( 1.13949392732455, 0 ) ( 1.0,0):( 1.85081571768093, 0 ) ( 2.0,0):( -2.40299796172238, 0 ) &sec ( 2, 3):( -0.04167496441114, 0.09061113719624) (-2, 3):( -0.04167496441114, -0.09061113719624) (-2,-3):( -0.04167496441114, 0.09061113719624) ( 2,-3):( -0.04167496441114, -0.09061113719624) &csc (-2.0,0):( -1.09975017029462, 0 ) (-1.0,0):( -1.18839510577812, 0 ) (-0.5,0):( -2.08582964293349, 0 ) ( 0.5,0):( 2.08582964293349, 0 ) ( 1.0,0):( 1.18839510577812, 0 ) ( 2.0,0):( 1.09975017029462, 0 ) &csc ( 2, 3):( 0.09047320975321, 0.04120098628857) (-2, 3):( -0.09047320975321, 0.04120098628857) (-2,-3):( -0.09047320975321, -0.04120098628857) ( 2,-3):( 0.09047320975321, -0.04120098628857) &cot (-2.0,0):( 0.45765755436029, 0 ) (-1.0,0):( -0.64209261593433, 0 ) (-0.5,0):( -1.83048772171245, 0 ) ( 0.5,0):( 1.83048772171245, 0 ) ( 1.0,0):( 0.64209261593433, 0 ) ( 2.0,0):( -0.45765755436029, 0 ) &cot ( 2, 3):( -0.00373971037634, -0.99675779656936) (-2, 3):( 0.00373971037634, -0.99675779656936) (-2,-3):( 0.00373971037634, 0.99675779656936) ( 2,-3):( -0.00373971037634, 0.99675779656936) &asin (-2.0,0):( -1.57079632679490, 1.31695789692482) (-1.0,0):( -1.57079632679490, 0 ) (-0.5,0):( -0.52359877559830, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.52359877559830, 0 ) ( 1.0,0):( 1.57079632679490, 0 ) ( 2.0,0):( 1.57079632679490, -1.31695789692482) &asin ( 2, 3):( 0.57065278432110, 1.98338702991654) (-2, 3):( -0.57065278432110, 1.98338702991654) (-2,-3):( -0.57065278432110, -1.98338702991654) ( 2,-3):( 0.57065278432110, -1.98338702991654) &acos (-2.0,0):( 3.14159265358979, -1.31695789692482) (-1.0,0):( 3.14159265358979, 0 ) (-0.5,0):( 2.09439510239320, 0 ) ( 0.0,0):( 1.57079632679490, 0 ) ( 0.5,0):( 1.04719755119660, 0 ) ( 1.0,0):( 0 , 0 ) ( 2.0,0):( 0 , 1.31695789692482) &acos ( 2, 3):( 1.00014354247380, -1.98338702991654) (-2, 3):( 2.14144911111600, -1.98338702991654) (-2,-3):( 2.14144911111600, 1.98338702991654) ( 2,-3):( 1.00014354247380, 1.98338702991654) &atan (-2.0,0):( -1.10714871779409, 0 ) (-1.0,0):( -0.78539816339745, 0 ) (-0.5,0):( -0.46364760900081, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.46364760900081, 0 ) ( 1.0,0):( 0.78539816339745, 0 ) ( 2.0,0):( 1.10714871779409, 0 ) &atan ( 2, 3):( 1.40992104959658, 0.22907268296854) (-2, 3):( -1.40992104959658, 0.22907268296854) (-2,-3):( -1.40992104959658, -0.22907268296854) ( 2,-3):( 1.40992104959658, -0.22907268296854) &asec (-2.0,0):( 2.09439510239320, 0 ) (-1.0,0):( 3.14159265358979, 0 ) (-0.5,0):( 3.14159265358979, -1.31695789692482) ( 0.5,0):( 0 , 1.31695789692482) ( 1.0,0):( 0 , 0 ) ( 2.0,0):( 1.04719755119660, 0 ) &asec ( 2, 3):( 1.42041072246703, 0.23133469857397) (-2, 3):( 1.72118193112276, 0.23133469857397) (-2,-3):( 1.72118193112276, -0.23133469857397) ( 2,-3):( 1.42041072246703, -0.23133469857397) &acsc (-2.0,0):( -0.52359877559830, 0 ) (-1.0,0):( -1.57079632679490, 0 ) (-0.5,0):( -1.57079632679490, 1.31695789692482) ( 0.5,0):( 1.57079632679490, -1.31695789692482) ( 1.0,0):( 1.57079632679490, 0 ) ( 2.0,0):( 0.52359877559830, 0 ) &acsc ( 2, 3):( 0.15038560432786, -0.23133469857397) (-2, 3):( -0.15038560432786, -0.23133469857397) (-2,-3):( -0.15038560432786, 0.23133469857397) ( 2,-3):( 0.15038560432786, 0.23133469857397) &acot (-2.0,0):( -0.46364760900081, 0 ) (-1.0,0):( -0.78539816339745, 0 ) (-0.5,0):( -1.10714871779409, 0 ) ( 0.5,0):( 1.10714871779409, 0 ) ( 1.0,0):( 0.78539816339745, 0 ) ( 2.0,0):( 0.46364760900081, 0 ) &acot ( 2, 3):( 0.16087527719832, -0.22907268296854) (-2, 3):( -0.16087527719832, -0.22907268296854) (-2,-3):( -0.16087527719832, 0.22907268296854) ( 2,-3):( 0.16087527719832, 0.22907268296854) &sinh (-2.0,0):( -3.62686040784702, 0 ) (-1.0,0):( -1.17520119364380, 0 ) (-0.5,0):( -0.52109530549375, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.52109530549375, 0 ) ( 1.0,0):( 1.17520119364380, 0 ) ( 2.0,0):( 3.62686040784702, 0 ) &sinh ( 2, 3):( -3.59056458998578, 0.53092108624852) (-2, 3):( 3.59056458998578, 0.53092108624852) (-2,-3):( 3.59056458998578, -0.53092108624852) ( 2,-3):( -3.59056458998578, -0.53092108624852) &cosh (-2.0,0):( 3.76219569108363, 0 ) (-1.0,0):( 1.54308063481524, 0 ) (-0.5,0):( 1.12762596520638, 0 ) ( 0.0,0):( 1 , 0 ) ( 0.5,0):( 1.12762596520638, 0 ) ( 1.0,0):( 1.54308063481524, 0 ) ( 2.0,0):( 3.76219569108363, 0 ) &cosh ( 2, 3):( -3.72454550491532, 0.51182256998738) (-2, 3):( -3.72454550491532, -0.51182256998738) (-2,-3):( -3.72454550491532, 0.51182256998738) ( 2,-3):( -3.72454550491532, -0.51182256998738) &tanh (-2.0,0):( -0.96402758007582, 0 ) (-1.0,0):( -0.76159415595576, 0 ) (-0.5,0):( -0.46211715726001, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.46211715726001, 0 ) ( 1.0,0):( 0.76159415595576, 0 ) ( 2.0,0):( 0.96402758007582, 0 ) &tanh ( 2, 3):( 0.96538587902213, -0.00988437503832) (-2, 3):( -0.96538587902213, -0.00988437503832) (-2,-3):( -0.96538587902213, 0.00988437503832) ( 2,-3):( 0.96538587902213, 0.00988437503832) &sech (-2.0,0):( 0.26580222883408, 0 ) (-1.0,0):( 0.64805427366389, 0 ) (-0.5,0):( 0.88681888397007, 0 ) ( 0.0,0):( 1 , 0 ) ( 0.5,0):( 0.88681888397007, 0 ) ( 1.0,0):( 0.64805427366389, 0 ) ( 2.0,0):( 0.26580222883408, 0 ) &sech ( 2, 3):( -0.26351297515839, -0.03621163655877) (-2, 3):( -0.26351297515839, 0.03621163655877) (-2,-3):( -0.26351297515839, -0.03621163655877) ( 2,-3):( -0.26351297515839, 0.03621163655877) &csch (-2.0,0):( -0.27572056477178, 0 ) (-1.0,0):( -0.85091812823932, 0 ) (-0.5,0):( -1.91903475133494, 0 ) ( 0.5,0):( 1.91903475133494, 0 ) ( 1.0,0):( 0.85091812823932, 0 ) ( 2.0,0):( 0.27572056477178, 0 ) &csch ( 2, 3):( -0.27254866146294, -0.04030057885689) (-2, 3):( 0.27254866146294, -0.04030057885689) (-2,-3):( 0.27254866146294, 0.04030057885689) ( 2,-3):( -0.27254866146294, 0.04030057885689) &coth (-2.0,0):( -1.03731472072755, 0 ) (-1.0,0):( -1.31303528549933, 0 ) (-0.5,0):( -2.16395341373865, 0 ) ( 0.5,0):( 2.16395341373865, 0 ) ( 1.0,0):( 1.31303528549933, 0 ) ( 2.0,0):( 1.03731472072755, 0 ) &coth ( 2, 3):( 1.03574663776500, 0.01060478347034) (-2, 3):( -1.03574663776500, 0.01060478347034) (-2,-3):( -1.03574663776500, -0.01060478347034) ( 2,-3):( 1.03574663776500, -0.01060478347034) &asinh (-2.0,0):( -1.44363547517881, 0 ) (-1.0,0):( -0.88137358701954, 0 ) (-0.5,0):( -0.48121182505960, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.48121182505960, 0 ) ( 1.0,0):( 0.88137358701954, 0 ) ( 2.0,0):( 1.44363547517881, 0 ) &asinh ( 2, 3):( 1.96863792579310, 0.96465850440760) (-2, 3):( -1.96863792579310, 0.96465850440761) (-2,-3):( -1.96863792579310, -0.96465850440761) ( 2,-3):( 1.96863792579310, -0.96465850440760) &acosh (-2.0,0):( 1.31695789692482, 3.14159265358979) (-1.0,0):( 0, 3.14159265358979) (-0.5,0):( 0, 2.09439510239320) ( 0.0,0):( 0, 1.57079632679490) ( 0.5,0):( 0, 1.04719755119660) ( 1.0,0):( 0 , 0 ) ( 2.0,0):( 1.31695789692482, 0 ) &acosh ( 2, 3):( 1.98338702991654, 1.00014354247380) (-2, 3):( 1.98338702991653, 2.14144911111600) (-2,-3):( 1.98338702991653, -2.14144911111600) ( 2,-3):( 1.98338702991654, -1.00014354247380) &atanh (-2.0,0):( -0.54930614433405, 1.57079632679490) (-0.5,0):( -0.54930614433405, 0 ) ( 0.0,0):( 0 , 0 ) ( 0.5,0):( 0.54930614433405, 0 ) ( 2.0,0):( 0.54930614433405, 1.57079632679490) &atanh ( 2, 3):( 0.14694666622553, 1.33897252229449) (-2, 3):( -0.14694666622553, 1.33897252229449) (-2,-3):( -0.14694666622553, -1.33897252229449) ( 2,-3):( 0.14694666622553, -1.33897252229449) &asech (-2.0,0):( 0 , 2.09439510239320) (-1.0,0):( 0 , 3.14159265358979) (-0.5,0):( 1.31695789692482, 3.14159265358979) ( 0.5,0):( 1.31695789692482, 0 ) ( 1.0,0):( 0 , 0 ) ( 2.0,0):( 0 , 1.04719755119660) &asech ( 2, 3):( 0.23133469857397, -1.42041072246703) (-2, 3):( 0.23133469857397, -1.72118193112276) (-2,-3):( 0.23133469857397, 1.72118193112276) ( 2,-3):( 0.23133469857397, 1.42041072246703) &acsch (-2.0,0):( -0.48121182505960, 0 ) (-1.0,0):( -0.88137358701954, 0 ) (-0.5,0):( -1.44363547517881, 0 ) ( 0.5,0):( 1.44363547517881, 0 ) ( 1.0,0):( 0.88137358701954, 0 ) ( 2.0,0):( 0.48121182505960, 0 ) &acsch ( 2, 3):( 0.15735549884499, -0.22996290237721) (-2, 3):( -0.15735549884499, -0.22996290237721) (-2,-3):( -0.15735549884499, 0.22996290237721) ( 2,-3):( 0.15735549884499, 0.22996290237721) &acoth (-2.0,0):( -0.54930614433405, 0 ) (-0.5,0):( -0.54930614433405, 1.57079632679490) ( 0.5,0):( 0.54930614433405, 1.57079632679490) ( 2.0,0):( 0.54930614433405, 0 ) &acoth ( 2, 3):( 0.14694666622553, -0.23182380450040) (-2, 3):( -0.14694666622553, -0.23182380450040) (-2,-3):( -0.14694666622553, 0.23182380450040) ( 2,-3):( 0.14694666622553, 0.23182380450040) # eof Math-Complex-1.59/t/underbar.t0000644000175000017500000000063411712342751015540 0ustar zeframzefram# # Tests that the standard Perl 5 functions that we override # that operate on the $_ will work correctly [perl #62412] # use Test::More; my @f = qw(abs cos exp log sin sqrt); plan tests => scalar @f; use strict; use Math::Complex; my %CORE; for my $f (@f) { local $_ = 0.5; $CORE{$f} = eval "CORE::$f"; } for my $f (@f) { local $_ = 0.5; is(eval "Math::Complex::$f", $CORE{$f}, $f); } Math-Complex-1.59/t/Trig.t0000644000175000017500000002205711712342751014646 0ustar zeframzefram#!./perl # # Regression tests for the Math::Trig package # # The tests here are quite modest as the Math::Complex tests exercise # these interfaces quite vigorously. # # -- Jarkko Hietaniemi, April 1997 use Test::More tests => 153; use Math::Trig 1.18; use Math::Trig 1.18 qw(:pi Inf); my $pip2 = pi / 2; use strict; our($x, $y, $z); my $eps = 1e-11; if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t. $eps = 1e-10; } sub near ($$;$) { my $e = defined $_[2] ? $_[2] : $eps; my $d = $_[1] ? abs($_[0]/$_[1] - 1) : abs($_[0]); print "# near? $_[0] $_[1] : $d : $e\n"; $_[1] ? ($d < $e) : abs($_[0]) < $e; } print "# Sanity checks\n"; ok(near(sin(1), 0.841470984807897)); ok(near(cos(1), 0.54030230586814)); ok(near(tan(1), 1.5574077246549)); ok(near(sec(1), 1.85081571768093)); ok(near(csc(1), 1.18839510577812)); ok(near(cot(1), 0.642092615934331)); ok(near(asin(1), 1.5707963267949)); ok(near(acos(1), 0)); ok(near(atan(1), 0.785398163397448)); ok(near(asec(1), 0)); ok(near(acsc(1), 1.5707963267949)); ok(near(acot(1), 0.785398163397448)); ok(near(sinh(1), 1.1752011936438)); ok(near(cosh(1), 1.54308063481524)); ok(near(tanh(1), 0.761594155955765)); ok(near(sech(1), 0.648054273663885)); ok(near(csch(1), 0.850918128239322)); ok(near(coth(1), 1.31303528549933)); ok(near(asinh(1), 0.881373587019543)); ok(near(acosh(1), 0)); ok(near(atanh(0.9), 1.47221948958322)); # atanh(1.0) would be an error. ok(near(asech(0.9), 0.467145308103262)); ok(near(acsch(2), 0.481211825059603)); ok(near(acoth(2), 0.549306144334055)); print "# Basics\n"; $x = 0.9; ok(near(tan($x), sin($x) / cos($x))); ok(near(sinh(2), 3.62686040784702)); ok(near(acsch(0.1), 2.99822295029797)); $x = asin(2); is(ref $x, 'Math::Complex'); # avoid using Math::Complex here $x =~ /^([^-]+)(-[^i]+)i$/; ($y, $z) = ($1, $2); ok(near($y, 1.5707963267949)); ok(near($z, -1.31695789692482)); ok(near(deg2rad(90), pi/2)); ok(near(rad2deg(pi), 180)); use Math::Trig ':radial'; { my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($z, 1)); ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 1)); ($r,$t,$z) = cartesian_to_cylindrical(1,1,0); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($z, 0)); ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 0)); } { my ($r,$t,$f) = cartesian_to_spherical(1,1,1); ok(near($r, sqrt(3))); ok(near($t, deg2rad(45))); ok(near($f, atan2(sqrt(2), 1))); ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 1)); ($r,$t,$f) = cartesian_to_spherical(1,1,0); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($f, deg2rad(90))); ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 0)); } { my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1)); ok(near($r, 1)); ok(near($t, 1)); ok(near($z, 1)); ($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1)); ok(near($r, 1)); ok(near($t, 1)); ok(near($z, 1)); } { use Math::Trig 'great_circle_distance'; ok(near(great_circle_distance(0, 0, 0, pi/2), pi/2)); ok(near(great_circle_distance(0, 0, pi, pi), pi)); # London to Tokyo. my @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); my @T = (deg2rad(139.8), deg2rad(90 - 35.7)); my $km = great_circle_distance(@L, @T, 6378); ok(near($km, 9605.26637021388)); } { my $R2D = 57.295779513082320876798154814169; sub frac { $_[0] - int($_[0]) } my $lotta_radians = deg2rad(1E+20, 1); ok(near($lotta_radians, 1E+20/$R2D)); my $negat_degrees = rad2deg(-1E20, 1); ok(near($negat_degrees, -1E+20*$R2D)); my $posit_degrees = rad2deg(-10000, 1); ok(near($posit_degrees, -10000*$R2D)); } { use Math::Trig 'great_circle_direction'; ok(near(great_circle_direction(0, 0, 0, pi/2), pi)); # Retired test: Relies on atan2(0, 0), which is not portable. # ok(near(great_circle_direction(0, 0, pi, pi), -pi()/2)); my @London = (deg2rad( -0.167), deg2rad(90 - 51.3)); my @Tokyo = (deg2rad( 139.5), deg2rad(90 - 35.7)); my @Berlin = (deg2rad ( 13.417), deg2rad(90 - 52.533)); my @Paris = (deg2rad ( 2.333), deg2rad(90 - 48.867)); ok(near(rad2deg(great_circle_direction(@London, @Tokyo)), 31.791945393073)); ok(near(rad2deg(great_circle_direction(@Tokyo, @London)), 336.069766430326)); ok(near(rad2deg(great_circle_direction(@Berlin, @Paris)), 246.800348034667)); ok(near(rad2deg(great_circle_direction(@Paris, @Berlin)), 58.2079877553156)); use Math::Trig 'great_circle_bearing'; ok(near(rad2deg(great_circle_bearing(@Paris, @Berlin)), 58.2079877553156)); use Math::Trig 'great_circle_waypoint'; use Math::Trig 'great_circle_midpoint'; my ($lon, $lat); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.0); ok(near($lon, $London[0])); ok(near($lat, $London[1])); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 1.0); ok(near($lon, $Tokyo[0])); ok(near($lat, $Tokyo[1])); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.5); ok(near($lon, 1.55609593577679)); # 89.16 E ok(near($lat, 0.36783532946162)); # 68.93 N ($lon, $lat) = great_circle_midpoint(@London, @Tokyo); ok(near($lon, 1.55609593577679)); # 89.16 E ok(near($lat, 0.367835329461615)); # 68.93 N ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.25); ok(near($lon, 0.516073562850837)); # 29.57 E ok(near($lat, 0.400231313403387)); # 67.07 N ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.75); ok(near($lon, 2.17494903805952)); # 124.62 E ok(near($lat, 0.617809294053591)); # 54.60 N use Math::Trig 'great_circle_destination'; my $dir1 = great_circle_direction(@London, @Tokyo); my $dst1 = great_circle_distance(@London, @Tokyo); ($lon, $lat) = great_circle_destination(@London, $dir1, $dst1); ok(near($lon, $Tokyo[0])); ok(near($lat, $pip2 - $Tokyo[1])); my $dir2 = great_circle_direction(@Tokyo, @London); my $dst2 = great_circle_distance(@Tokyo, @London); ($lon, $lat) = great_circle_destination(@Tokyo, $dir2, $dst2); ok(near($lon, $London[0])); ok(near($lat, $pip2 - $London[1])); my $dir3 = (great_circle_destination(@London, $dir1, $dst1))[2]; ok(near($dir3, 2.69379263839118)); # about 154.343 deg my $dir4 = (great_circle_destination(@Tokyo, $dir2, $dst2))[2]; ok(near($dir4, 3.6993902625701)); # about 211.959 deg ok(near($dst1, $dst2)); } print "# Infinity\n"; my $BigDouble = 1e40; # E.g. netbsd-alpha core dumps on Inf arith without this. local $SIG{FPE} = sub { }; ok(Inf() > $BigDouble); # This passes in netbsd-alpha. ok(Inf() + $BigDouble > $BigDouble); # This coredumps in netbsd-alpha. ok(Inf() + $BigDouble == Inf()); ok(Inf() - $BigDouble > $BigDouble); ok(Inf() - $BigDouble == Inf()); ok(Inf() * $BigDouble > $BigDouble); ok(Inf() * $BigDouble == Inf()); ok(Inf() / $BigDouble > $BigDouble); ok(Inf() / $BigDouble == Inf()); ok(-Inf() < -$BigDouble); ok(-Inf() + $BigDouble < $BigDouble); ok(-Inf() + $BigDouble == -Inf()); ok(-Inf() - $BigDouble < -$BigDouble); ok(-Inf() - $BigDouble == -Inf()); ok(-Inf() * $BigDouble < -$BigDouble); ok(-Inf() * $BigDouble == -Inf()); ok(-Inf() / $BigDouble < -$BigDouble); ok(-Inf() / $BigDouble == -Inf()); print "# sinh/sech/cosh/csch/tanh/coth unto infinity\n"; ok(near(sinh(100), 1.3441e+43, 1e-3)); ok(near(sech(100), 7.4402e-44, 1e-3)); ok(near(cosh(100), 1.3441e+43, 1e-3)); ok(near(csch(100), 7.4402e-44, 1e-3)); ok(near(tanh(100), 1)); ok(near(coth(100), 1)); ok(near(sinh(-100), -1.3441e+43, 1e-3)); ok(near(sech(-100), 7.4402e-44, 1e-3)); ok(near(cosh(-100), 1.3441e+43, 1e-3)); ok(near(csch(-100), -7.4402e-44, 1e-3)); ok(near(tanh(-100), -1)); ok(near(coth(-100), -1)); cmp_ok(sinh(1e5), '==', Inf()); cmp_ok(sech(1e5), '==', 0); cmp_ok(cosh(1e5), '==', Inf()); cmp_ok(csch(1e5), '==', 0); cmp_ok(tanh(1e5), '==', 1); cmp_ok(coth(1e5), '==', 1); cmp_ok(sinh(-1e5), '==', -Inf()); cmp_ok(sech(-1e5), '==', 0); cmp_ok(cosh(-1e5), '==', Inf()); cmp_ok(csch(-1e5), '==', 0); cmp_ok(tanh(-1e5), '==', -1); cmp_ok(coth(-1e5), '==', -1); print "# great_circle_distance with small angles\n"; for my $e (qw(1e-2 1e-3 1e-4 1e-5)) { # Can't assume == 0 because of floating point fuzz, # but let's hope for at least < $e. cmp_ok(great_circle_distance(0, $e, 0, $e), '<', $e); } print "# asin_real, acos_real\n"; is(acos_real(-2.0), pi); is(acos_real(-1.0), pi); is(acos_real(-0.5), acos(-0.5)); is(acos_real( 0.0), acos( 0.0)); is(acos_real( 0.5), acos( 0.5)); is(acos_real( 1.0), 0); is(acos_real( 2.0), 0); is(asin_real(-2.0), -&pip2); is(asin_real(-1.0), -&pip2); is(asin_real(-0.5), asin(-0.5)); is(asin_real( 0.0), asin( 0.0)); is(asin_real( 0.5), asin( 0.5)); is(asin_real( 1.0), pip2); is(asin_real( 2.0), pip2); # eof