pax_global_header00006660000000000000000000000064135120601770014514gustar00rootroot0000000000000052 comment=7fa69411b8edb436da052aab19678506052e4866 OpenHMD-0.3.0/000077500000000000000000000000001351206017700127465ustar00rootroot00000000000000OpenHMD-0.3.0/.appveyor.yml000066400000000000000000000024161351206017700154170ustar00rootroot00000000000000os: Visual Studio 2017 environment: matrix: - arch: x64 compiler: msvc2015 - arch: x64 compiler: msvc2017 platform: - x64 install: # Download ninja - cmd: mkdir C:\ninja-build - ps: (new-object net.webclient).DownloadFile('https://github.com/mesonbuild/cidata/raw/master/ninja.exe', 'C:\ninja-build\ninja.exe') # Set paths to dependencies (based on architecture) - cmd: if %arch%==x86 (set PYTHON_ROOT=C:\python37) else (set PYTHON_ROOT=C:\python37-x64) # Print out dependency paths - cmd: echo Using Python at %PYTHON_ROOT% # Add neccessary paths to PATH variable - cmd: set PATH=%cd%;C:\ninja-build;%PYTHON_ROOT%;%PYTHON_ROOT%\Scripts;%PATH% # Install meson - cmd: pip install meson # Set up the build environment - cmd: if %compiler%==msvc2015 ( call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" %arch% ) - cmd: if %compiler%==msvc2017 ( call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" %arch% ) build_script: - cmd: echo Building on %arch% with %compiler% - cmd: meson --backend=ninja builddir -Dexamples=simple - cmd: ninja -C builddir install - cmd: 7z a openhmd.zip c:\bin\*.dll c:\bin\*.exe artifacts: - path: openhmd.zip name: OpenHMD OpenHMD-0.3.0/.gitignore000066400000000000000000000004701351206017700147370ustar00rootroot00000000000000tests/simple/hmdtest tests/opengl/hmd-opengl tests/unittests/unittests *.exe *.dll *.o *.lo *.a *.la *.libs *.deps *~ .cproject .project build/ # Files generated by autoconf Makefile.in aclocal.m4 ar-lib autom4te.cache/ compile config.guess config.h.in config.sub configure depcomp install-sh ltmain.sh missing OpenHMD-0.3.0/.travis.yml000066400000000000000000000023311351206017700150560ustar00rootroot00000000000000# This is the project file for the automated build system travis (travis-ci.com). matrix: include: - name: "Linux Meson" os: linux sudo: false dist: trusty env: BUILD=meson - name: "Linux CMake" os: linux sudo: false dist: trusty env: BUILD=cmake - name: "macOS Meson" os: osx env: BUILD=meson - name: "macOS CMake" os: osx env: BUILD=cmake language: c compiler: gcc addons: apt: packages: - libgl1-mesa-dev - libglew-dev - libhidapi-dev - libsdl2-dev - ninja-build homebrew: packages: - glew - hidapi - sdl2 - ninja update: true install: - if [[ "$BUILD" == "meson" && "$TRAVIS_OS_NAME" == "linux" ]]; then curl -L https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip -o ninja.zip; unzip ninja.zip; pyenv global system 3.6; fi - if [[ "$BUILD" == "meson" ]]; then pip3 install meson; fi before_script: - export PATH="$PWD:$PATH" script: - mkdir build && cd build - if [[ "$BUILD" == "meson" ]]; then meson .. . -Dexamples=simple,opengl; else cmake -G Ninja .. -DOPENHMD_EXAMPLE_SDL=1; fi && ninja OpenHMD-0.3.0/CMakeLists.txt000066400000000000000000000141251351206017700155110ustar00rootroot00000000000000cmake_minimum_required(VERSION 3.1) project(openhmd C) set(CMAKE_C_STANDARD 99) set(CMAKE_POSITION_INDEPENDENT_CODE ON) set(LIB_VERSION_MAJOR 0) set(LIB_VERSION_MINOR 1) set(LIB_VERSION_PATCH 0) set(LIB_VERSION_STRING ${LIB_VERSION_MAJOR}.${LIB_VERSION_MINOR}.${LIB_VERSION_PATCH}) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/") option(BUILD_BOTH_STATIC_SHARED_LIBS OFF) #source files set just for Android set(openhmd_source_files ${CMAKE_CURRENT_LIST_DIR}/src/openhmd.c ${CMAKE_CURRENT_LIST_DIR}/src/platform-win32.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_dummy/dummy.c ${CMAKE_CURRENT_LIST_DIR}/src/omath.c ${CMAKE_CURRENT_LIST_DIR}/src/platform-posix.c ${CMAKE_CURRENT_LIST_DIR}/src/fusion.c ${CMAKE_CURRENT_LIST_DIR}/src/shaders.c ) option(OPENHMD_DRIVER_OCULUS_RIFT "Oculus Rift DK1 and DK2" ON) option(OPENHMD_DRIVER_DEEPOON "Deepoon E2" ON) option(OPENHMD_DRIVER_WMR "Windows Mixed Reality" ON) option(OPENHMD_DRIVER_PSVR "Sony PSVR" OFF) option(OPENHMD_DRIVER_HTC_VIVE "HTC Vive" ON) option(OPENHMD_DRIVER_NOLO "NOLO VR CV1" ON) option(OPENHMD_DRIVER_XGVR "3Glasses HMD" ON) option(OPENHMD_DRIVER_EXTERNAL "External sensor driver" ON) option(OPENHMD_DRIVER_ANDROID "General Android driver" OFF) option(OPENHMD_EXAMPLE_SIMPLE "Simple test binary" ON) option(OPENHMD_EXAMPLE_SDL "SDL OpenGL test (outdated)" OFF) if(OPENHMD_DRIVER_OCULUS_RIFT) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_oculus_rift/rift.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_oculus_rift/packet.c ) add_definitions(-DDRIVER_OCULUS_RIFT) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_OCULUS_RIFT) if(OPENHMD_DRIVER_DEEPOON) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_deepoon/deepoon.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_deepoon/packet.c ) add_definitions(-DDRIVER_DEEPOON) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_DEEPOON) if(OPENHMD_DRIVER_WMR) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_wmr/wmr.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_wmr/packet.c ) add_definitions(-DDRIVER_WMR) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_WMR) if(OPENHMD_DRIVER_PSVR) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_psvr/psvr.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_psvr/packet.c ) add_definitions(-DDRIVER_PSVR) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_PSVR) if(OPENHMD_DRIVER_HTC_VIVE) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_htc_vive/vive.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_htc_vive/packet.c #${CMAKE_CURRENT_LIST_DIR}/src/ext_deps/miniz.c ${CMAKE_CURRENT_LIST_DIR}/src/ext_deps/nxjson.c ) add_definitions(-DDRIVER_HTC_VIVE) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_HTC_VIVE) if(OPENHMD_DRIVER_NOLO) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_nolo/nolo.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_nolo/packet.c ) add_definitions(-DDRIVER_NOLO) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_NOLO) if(OPENHMD_DRIVER_XGVR) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_3glasses/xgvr.c ${CMAKE_CURRENT_LIST_DIR}/src/drv_3glasses/packet.c ) add_definitions(-DDRIVER_XGVR) find_package(HIDAPI REQUIRED) include_directories(${HIDAPI_INCLUDE_DIRS}) set(LIBS ${LIBS} ${HIDAPI_LIBRARIES}) endif(OPENHMD_DRIVER_XGVR) if (OPENHMD_DRIVER_EXTERNAL) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_external/external.c ) add_definitions(-DDRIVER_EXTERNAL) endif(OPENHMD_DRIVER_EXTERNAL) if (OPENHMD_DRIVER_ANDROID) set(openhmd_source_files ${openhmd_source_files} ${CMAKE_CURRENT_LIST_DIR}/src/drv_android/android.c ) add_definitions(-DDRIVER_ANDROID) endif(OPENHMD_DRIVER_ANDROID) if (OPENHMD_EXAMPLE_SIMPLE) add_subdirectory(./examples/simple) endif(OPENHMD_EXAMPLE_SIMPLE) if (OPENHMD_EXAMPLE_SDL) find_package(SDL2 REQUIRED) find_package(GLEW REQUIRED) find_package(OpenGL REQUIRED) add_subdirectory(./examples/opengl) endif (OPENHMD_EXAMPLE_SDL) set(TARGETS "") if (BUILD_BOTH_STATIC_SHARED_LIBS) # Shared add_library(openhmd-shared SHARED ${openhmd_source_files}) set_target_properties(openhmd-shared PROPERTIES OUTPUT_NAME openhmd CLEAN_DIRECT_OUTPUT 1) # Static add_library(openhmd-static STATIC ${openhmd_source_files}) set_target_properties(openhmd-static PROPERTIES OUTPUT_NAME openhmd CLEAN_DIRECT_OUTPUT 1) # Alias needed to compile examples add_library(openhmd ALIAS openhmd-shared) set(TARGETS "openhmd-shared" "openhmd-static") else () # Static or Shared add_library(openhmd ${openhmd_source_files}) export(TARGETS openhmd FILE openhmd-config.cmake) set(TARGETS "openhmd") endif () foreach(target ${TARGETS}) set_target_properties(${target} PROPERTIES VERSION ${LIB_VERSION_STRING} SOVERSION ${LIB_VERSION_MAJOR}) target_include_directories(${target} PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include) target_link_libraries(${target} ${LIBS}) if (UNIX AND NOT APPLE) target_link_libraries(${target} rt) endif() if (UNIX) target_link_libraries(${target} pthread) endif (UNIX) get_target_property(target_type ${target} TYPE) if (target_type STREQUAL "STATIC_LIBRARY") target_compile_definitions(${target} PUBLIC -DOHMD_STATIC) endif() endforeach(target) CONFIGURE_FILE( "${CMAKE_CURRENT_SOURCE_DIR}/pkg-config/openhmd.pc.cmakein" "${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}.pc" ) install(TARGETS ${TARGETS} DESTINATION lib) install(FILES include/openhmd.h DESTINATION include) install(FILES "${CMAKE_BINARY_DIR}/${PROJECT_NAME}.pc" DESTINATION lib/pkgconfig) OpenHMD-0.3.0/Doxyfile000066400000000000000000000003321351206017700144520ustar00rootroot00000000000000PROJECT_NAME = "OpenHMD" OPTIMIZE_OUTPUT_FOR_C = YES INPUT = include/ STRIP_CODE_COMMENTS = NO ALPHABETICAL_INDEX = NO IGNORE_PREFIX = ohmd_ OHMD_ ENUM_VALUES_PER_LINE = 1 OpenHMD-0.3.0/LICENSE000066400000000000000000000024721351206017700137600ustar00rootroot00000000000000Boost Software License - Version 1.0 - August 17th, 2003 Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. OpenHMD-0.3.0/Makefile.am000066400000000000000000000002321351206017700147770ustar00rootroot00000000000000AUTOMAKE_OPTIONS = foreign SUBDIRS = src tests examples pkgconfigdir = $(libdir)/$(PKG_CONFIG_EXTRA_PATH)pkgconfig pkgconfig_DATA = pkg-config/openhmd.pc OpenHMD-0.3.0/README.md000066400000000000000000000120061351206017700142240ustar00rootroot00000000000000# OpenHMD This project aims to provide a Free and Open Source API and drivers for immersive technology, such as head mounted displays with built in head tracking. ## License OpenHMD is released under the permissive Boost Software License (see LICENSE for more information), to make sure it can be linked and distributed with both free and non-free software. While it doesn't require contribution from the users, it is still very appreciated. ## Supported Devices For a full list of supported devices please check https://github.com/OpenHMD/OpenHMD/wiki/Support-List ## Supported Platforms * Linux * Windows * OS X * Android * FreeBSD ## Requirements * Option 1: Meson + Ninja * http://mesonbuild.com * https://ninja-build.org * Option 2: GNU Autotools (if you're building from the git repository) * Option 3: CMake * HIDAPI * http://www.signal11.us/oss/hidapi/ * https://github.com/signal11/hidapi/ ## Language Bindings * GO bindings by Marko (Apfel) * https://github.com/Apfel/OpenHMD-GO * Java bindings by Joey Ferwerda and Koen Mertens * https://github.com/OpenHMD/OpenHMD-Java * .NET bindings by Jurrien Fakkeldij * https://github.com/jurrien-fakkeldij/OpenHMD.NET * Perl bindings by CandyAngel * https://github.com/CandyAngel/perl-openhmd * Python bindings by Lubosz Sarnecki * https://github.com/lubosz/python-rift * Rust bindings by The\_HellBox * https://github.com/TheHellBox/openhmd-rs ## Other FOSS HMD Drivers * libvr - http://hg.sitedethib.com/libvr ## Compiling and Installing Using Meson: With Meson, you can enable and disable drivers to compile OpenHMD with. Current available drivers are: rift, deepon, psvr, vive, nolo, wmr, external, and android. These can be enabled or disabled by adding -Ddrivers=... with a comma separated list after the meson command (or using meson configure ./build -Ddrivers=...). By default all drivers except android are enabled. meson ./build [-Dexamples=simple,opengl] ninja -C ./build sudo ninja -C ./build install Using make: ./autogen.sh # (if you're building from the git repository) ./configure [--enable-openglexample] make sudo make install Using CMake: With CMake, you can enable and disable drivers to compile OpenHMD with. Current Available drivers are: OPENHMD_DRIVER_OCULUS_RIFT, OPENHMD_DRIVER_DEEPOON, OPENHMD_DRIVER_WMR, OPENHMD_DRIVER_PSVR, OPENHMD_DRIVER_HTC_VIVE, OPENHMD_DRIVER_NOLO, OPENHMD_DRIVER_EXTERNAL and OPENHMD_DRIVER_ANDROID. These can be enabled or disabled adding -DDRIVER_OF_CHOICE=ON after the cmake command (or using cmake-gui). mkdir build cd build cmake .. make sudo make install ### Configuring udev on Linux To avoid having to run your applications as root to access USB devices you have to add a udev rule (this will be included in .deb packages, etc). A full list of known usb devices and instructions on how to add them can be found on: https://github.com/OpenHMD/OpenHMD/wiki/Udev-rules-list After this you have to unplug your device and plug it back in. You should now be able to access the HMD as a normal user. ### Compiling on Windows CMake has a lot of generators available for IDE's and build systems. The easiest way to find one that fits your system is by checking the supported generators for you CMake version online. Example using VC2013. cmake . -G "Visual Studio 12 2013 Win64" This will generate a project file for Visual Studio 2013 for 64 bit systems. Open the project file and compile as you usually would do. ### Cross compiling for windows using mingw Using Make: export PREFIX=/usr/i686-w64-mingw32/ (or whatever your mingw path is) PKG_CONFIG_LIBDIR=$PREFIX/lib/pkgconfig ./configure --build=`gcc -dumpmachine` --host=i686-w64-mingw32 --prefix=$PREFIX make the library will end up in the .lib directory, you can use microsoft's lib.exe to make a .lib file for it Using CMake: For MinGW cross compiling, toolchain files tend to be the best solution. Please check the CMake documentation on how to do this. A starting point might be the CMake wiki: http://www.vtk.org/Wiki/CmakeMingw ### Static linking on windows If you're linking statically with OpenHMD using windows/mingw you have to make sure the macro OHMD_STATIC is set before including openhmd.h. In GCC this can be done by adding the compiler flag -DOHMD_STATIC, and with msvc it can be done using /DOHMD_STATIC. Note that this is *only* if you're linking statically! If you're using the DLL then you *must not* define OHMD_STATIC. (If you're not sure then you're probably linking dynamically and won't have to worry about this). ## Pre-built packages A list of pre-built backages can be found on http://www.openhmd.net/index.php/download/ ## Using OpenHMD See the examples/ subdirectory for usage examples. The OpenGL example is not built by default, to build it use the --enable-openglexample option for the configure script. It requires SDL2, glew and OpenGL. An API reference can be generated using doxygen and is also available here: http://openhmd.net/doxygen/0.1.0/openhmd_8h.html OpenHMD-0.3.0/autogen.sh000077500000000000000000000000471351206017700147500ustar00rootroot00000000000000#!/bin/sh autoreconf --install --force OpenHMD-0.3.0/cmake/000077500000000000000000000000001351206017700140265ustar00rootroot00000000000000OpenHMD-0.3.0/cmake/FindHIDAPI.cmake000066400000000000000000000022741351206017700165740ustar00rootroot00000000000000# - try to find HIDAPI library # from http://www.signal11.us/oss/hidapi/ # # Cache Variables: (probably not for direct use in your scripts) # HIDAPI_INCLUDE_DIR # HIDAPI_LIBRARY # # Non-cache variables you might use in your CMakeLists.txt: # HIDAPI_FOUND # HIDAPI_INCLUDE_DIRS # HIDAPI_LIBRARIES # # Requires these CMake modules: # FindPackageHandleStandardArgs (known included with CMake >=2.6.2) # # Original Author: # 2009-2010 Ryan Pavlik # http://academic.cleardefinition.com # Iowa State University HCI Graduate Program/VRAC # # Copyright Iowa State University 2009-2010. # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) find_library(HIDAPI_LIBRARY NAMES hidapi hidapi-libusb) find_path(HIDAPI_INCLUDE_DIR NAMES hidapi.h PATH_SUFFIXES hidapi) include(FindPackageHandleStandardArgs) find_package_handle_standard_args(HIDAPI DEFAULT_MSG HIDAPI_LIBRARY HIDAPI_INCLUDE_DIR) if(HIDAPI_FOUND) set(HIDAPI_LIBRARIES "${HIDAPI_LIBRARY}") set(HIDAPI_INCLUDE_DIRS "${HIDAPI_INCLUDE_DIR}") endif() mark_as_advanced(HIDAPI_INCLUDE_DIR HIDAPI_LIBRARY) OpenHMD-0.3.0/cmake/FindSDL2.cmake000066400000000000000000000156541351206017700163500ustar00rootroot00000000000000# Locate SDL2 library # This module defines # SDL2_LIBRARY, the name of the library to link against # SDL2_FOUND, if false, do not try to link to SDL2 # SDL2_INCLUDE_DIR, where to find SDL.h # # This module responds to the flag: # SDL2_BUILDING_LIBRARY # If this is defined, then no SDL2_main will be linked in because # only applications need main(). # Otherwise, it is assumed you are building an application and this # module will attempt to locate and set the proper link flags # as part of the returned SDL2_LIBRARY variable. # # Don't forget to include SDL2main.h and SDL2main.m your project for the # OS X framework based version. (Other versions link to -lSDL2main which # this module will try to find on your behalf.) Also for OS X, this # module will automatically add the -framework Cocoa on your behalf. # # # Additional Note: If you see an empty SDL2_LIBRARY_TEMP in your configuration # and no SDL2_LIBRARY, it means CMake did not find your SDL2 library # (SDL2.dll, libsdl2.so, SDL2.framework, etc). # Set SDL2_LIBRARY_TEMP to point to your SDL2 library, and configure again. # Similarly, if you see an empty SDL2MAIN_LIBRARY, you should set this value # as appropriate. These values are used to generate the final SDL2_LIBRARY # variable, but when these values are unset, SDL2_LIBRARY does not get created. # # # $SDL2DIR is an environment variable that would # correspond to the ./configure --prefix=$SDL2DIR # used in building SDL2. # l.e.galup 9-20-02 # # Modified by Eric Wing. # Added code to assist with automated building by using environmental variables # and providing a more controlled/consistent search behavior. # Added new modifications to recognize OS X frameworks and # additional Unix paths (FreeBSD, etc). # Also corrected the header search path to follow "proper" SDL2 guidelines. # Added a search for SDL2main which is needed by some platforms. # Added a search for threads which is needed by some platforms. # Added needed compile switches for MinGW. # # On OSX, this will prefer the Framework version (if found) over others. # People will have to manually change the cache values of # SDL2_LIBRARY to override this selection or set the CMake environment # CMAKE_INCLUDE_PATH to modify the search paths. # # Note that the header path has changed from SDL2/SDL.h to just SDL.h # This needed to change because "proper" SDL2 convention # is #include "SDL.h", not . This is done for portability # reasons because not all systems place things in SDL2/ (see FreeBSD). # # Ported by Johnny Patterson. This is a literal port for SDL2 of the FindSDL.cmake # module with the minor edit of changing "SDL" to "SDL2" where necessary. This # was not created for redistribution, and exists temporarily pending official # SDL2 CMake modules. #============================================================================= # Copyright 2003-2009 Kitware, Inc. # # Distributed under the OSI-approved BSD License (the "License"); # see accompanying file Copyright.txt for details. # # This software is distributed WITHOUT ANY WARRANTY; without even the # implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the License for more information. #============================================================================= # (To distribute this file outside of CMake, substitute the full # License text for the above reference.) FIND_PATH(SDL2_INCLUDE_DIR SDL.h HINTS $ENV{SDL2DIR} PATH_SUFFIXES include/SDL2 include PATHS ~/Library/Frameworks /Library/Frameworks /usr/local/include/SDL2 /usr/include/SDL2 /sw # Fink /opt/local # DarwinPorts /opt/csw # Blastwave /opt ) #MESSAGE("SDL2_INCLUDE_DIR is ${SDL2_INCLUDE_DIR}") FIND_LIBRARY(SDL2_LIBRARY_TEMP NAMES SDL2 HINTS $ENV{SDL2DIR} PATH_SUFFIXES lib64 lib PATHS /sw /opt/local /opt/csw /opt ) #MESSAGE("SDL2_LIBRARY_TEMP is ${SDL2_LIBRARY_TEMP}") IF(NOT SDL2_BUILDING_LIBRARY) IF(NOT ${SDL2_INCLUDE_DIR} MATCHES ".framework") # Non-OS X framework versions expect you to also dynamically link to # SDL2main. This is mainly for Windows and OS X. Other (Unix) platforms # seem to provide SDL2main for compatibility even though they don't # necessarily need it. FIND_LIBRARY(SDL2MAIN_LIBRARY NAMES SDL2main HINTS $ENV{SDL2DIR} PATH_SUFFIXES lib64 lib PATHS /sw /opt/local /opt/csw /opt ) ENDIF(NOT ${SDL2_INCLUDE_DIR} MATCHES ".framework") ENDIF(NOT SDL2_BUILDING_LIBRARY) # SDL2 may require threads on your system. # The Apple build may not need an explicit flag because one of the # frameworks may already provide it. # But for non-OSX systems, I will use the CMake Threads package. IF(NOT APPLE) FIND_PACKAGE(Threads) ENDIF(NOT APPLE) # MinGW needs an additional library, mwindows # Its total link flags should look like -lmingw32 -lSDL2main -lSDL2 -lmwindows # (Actually on second look, I think it only needs one of the m* libraries.) IF(MINGW) SET(MINGW32_LIBRARY mingw32 CACHE STRING "mwindows for MinGW") ENDIF(MINGW) SET(SDL2_FOUND "NO") IF(SDL2_LIBRARY_TEMP) # For SDL2main IF(NOT SDL2_BUILDING_LIBRARY) IF(SDL2MAIN_LIBRARY) SET(SDL2_LIBRARY_TEMP ${SDL2MAIN_LIBRARY} ${SDL2_LIBRARY_TEMP}) ENDIF(SDL2MAIN_LIBRARY) ENDIF(NOT SDL2_BUILDING_LIBRARY) # For OS X, SDL2 uses Cocoa as a backend so it must link to Cocoa. # CMake doesn't display the -framework Cocoa string in the UI even # though it actually is there if I modify a pre-used variable. # I think it has something to do with the CACHE STRING. # So I use a temporary variable until the end so I can set the # "real" variable in one-shot. IF(APPLE) SET(SDL2_LIBRARY_TEMP ${SDL2_LIBRARY_TEMP} "-framework Cocoa") ENDIF(APPLE) # For threads, as mentioned Apple doesn't need this. # In fact, there seems to be a problem if I used the Threads package # and try using this line, so I'm just skipping it entirely for OS X. IF(NOT APPLE) SET(SDL2_LIBRARY_TEMP ${SDL2_LIBRARY_TEMP} ${CMAKE_THREAD_LIBS_INIT}) ENDIF(NOT APPLE) # For MinGW library IF(MINGW) SET(SDL2_LIBRARY_TEMP ${MINGW32_LIBRARY} ${SDL2_LIBRARY_TEMP}) ENDIF(MINGW) IF(WIN32) SET(SDL2_LIBRARY_TEMP winmm imm32 version msimg32 ${SDL2_LIBRARY_TEMP}) ENDIF(WIN32) # Set the final string here so the GUI reflects the final state. SET(SDL2_LIBRARY ${SDL2_LIBRARY_TEMP} CACHE STRING "Where the SDL2 Library can be found") # Set the temp variable to INTERNAL so it is not seen in the CMake GUI SET(SDL2_LIBRARY_TEMP "${SDL2_LIBRARY_TEMP}" CACHE INTERNAL "") SET(SDL2_FOUND "YES") ENDIF(SDL2_LIBRARY_TEMP) INCLUDE(FindPackageHandleStandardArgs) FIND_PACKAGE_HANDLE_STANDARD_ARGS(SDL2 REQUIRED_VARS SDL2_LIBRARY SDL2_INCLUDE_DIR) IF(SDL2_STATIC) if (UNIX AND NOT APPLE) EXECUTE_PROCESS(COMMAND sdl2-config --static-libs OUTPUT_VARIABLE SDL2_LINK_FLAGS) STRING(REGEX REPLACE "(\r?\n)+$" "" SDL2_LINK_FLAGS "${SDL2_LINK_FLAGS}") SET(SDL2_LIBRARY ${SDL2_LINK_FLAGS}) ENDIF() ENDIF(SDL2_STATIC) OpenHMD-0.3.0/configure.ac000066400000000000000000000150661351206017700152440ustar00rootroot00000000000000name='openhmd' version='0.3.0' email='noname@nurd.se' AC_PREREQ([2.13]) AC_INIT([openhmd], [0.3.0], [noname@nurd.de]) AM_INIT_AUTOMAKE([foreign -Wall]) m4_ifdef([AM_PROG_AR], [AM_PROG_AR]) LT_INIT AC_CANONICAL_HOST # Just before release, the LT_VERSION string should be modified. See # https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html # for details how to increment the current:revision:age fields. AC_SUBST([LT_VERSION], [1:0:1]) # 0.24 automatically calls AC_SUBST() in PKG_CHECK_MODULES() PKG_PROG_PKG_CONFIG([0.24]) m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) hidapi="hidapi" deps_ld_flags="-lhidapi" AC_SUBST(hidapi) AC_SUBST(deps_ld_flags) AC_SUBST(PKG_CONFIG_EXTRA_PATH, "") AC_SUBST(EXTRA_LD_FLAGS, "") AC_MSG_CHECKING([operating system]) AS_CASE(["$host"], [*-androideabi], [hidapi="" deps_ld_flags="-landroid" AC_SUBST(EXTRA_LD_FLAGS, "-lm")], [*-linux*], [AC_MSG_RESULT([$host (Linux)]) hidapi="hidapi-libusb" deps_ld_flags="-lhidapi-libusb" #link with realtime lib on linux for clock_gettime, and libm for math functions such as sincosf AC_SUBST(EXTRA_LD_FLAGS, "-lrt -lpthread -lm")], [*-freebsd*], [AC_SUBST(PKG_CONFIG_EXTRA_PATH, "libdata/") AC_SUBST(EXTRA_LD_FLAGS, "-lthr")], [*-kfreebsd*], [AC_SUBST(EXTRA_LD_FLAGS, "-lpthread")] [*-darwin*], [AC_MSG_RESULT([$host (Mac OS X)])]) # Oculus Rift Driver AC_ARG_ENABLE([driver-oculus-rift], [AS_HELP_STRING([--disable-driver-oculus-rift], [disable building of Oculus Rift driver [default=yes]])], [driver_oculus_rift_enabled=$enableval], [driver_oculus_rift_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_OCULUS_RIFT], [test "x$driver_oculus_rift_enabled" != "xno"]) # HTC Vive driver AC_ARG_ENABLE([driver-htc-vive], [AS_HELP_STRING([--disable-driver-htc-vive], [disable building of HTC Vive driver [default=yes]])], [driver_htc_vive_enabled=$enableval], [driver_htc_vive_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_HTC_VIVE], [test "x$driver_oculus_rift_enabled" != "xno"]) # Deepoon Driver AC_ARG_ENABLE([driver-deepoon], [AS_HELP_STRING([--disable-driver-deepoon], [disable building of Deepoon driver [default=yes]])], [driver_deepoon_enabled=$enableval], [driver_deepoon_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_DEEPOON], [test "x$driver_deepoon_enabled" != "xno"]) # Windows Mixed Reality Driver AC_ARG_ENABLE([driver-wmr], [AS_HELP_STRING([--disable-driver-wmr], [disable building of Windows Mixed Reality driver [default=yes]])], [driver_wmr_enabled=$enableval], [driver_wmr_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_WMR], [test "x$driver_wmr_enabled" != "xno"]) # Sony PSVR Driver, disabled for 0.3 AC_ARG_ENABLE([driver-psvr], [AS_HELP_STRING([--disable-driver-psvr], [disable building of Sony PSVR driver [default=no]])], [driver_psvr_enabled=$enableval], [driver_psvr_enabled='no']) AM_CONDITIONAL([BUILD_DRIVER_PSVR], [test "x$driver_psvr_enabled" != "xno"]) # NOLO AC_ARG_ENABLE([driver-nolo], [AS_HELP_STRING([--disable-driver-nolo], [disable building of NOLO VR driver [default=yes]])], [driver_nolo_enabled=$enableval], [driver_nolo_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_NOLO], [test "x$driver_nolo_enabled" != "xno"]) # 3Glasses HMD driver AC_ARG_ENABLE([driver-xgvr], [AS_HELP_STRING([--disable-driver-xgvr], [disable building of 3glasses driver [default=yes]])], [driver_xgvr_enabled=$enableval], [driver_xgvr_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_XGVR], [test "x$driver_xgvr_enabled" != "xno"]) # External Driver AC_ARG_ENABLE([driver-external], [AS_HELP_STRING([--disable-driver-external], [disable building of External driver [default=yes]])], [driver_external_enabled=$enableval], [driver_external_enabled='yes']) AM_CONDITIONAL([BUILD_DRIVER_EXTERNAL], [test "x$driver_external_enabled" != "xno"]) # Android Driver AC_ARG_ENABLE([driver-android], [AS_HELP_STRING([--enable-driver-android], [enable building of Android driver [default=no]])], [driver_android_enabled=$enableval], [driver_android_enabled='no']) AM_CONDITIONAL([BUILD_DRIVER_ANDROID], [test "x$driver_android_enabled" != "xno"]) # Libs required by Oculus Rift Driver AS_IF([test "x$driver_oculus_rift_enabled" != "xno"], [PKG_CHECK_MODULES([hidapi], [$hidapi] >= 0.0.5)]) # Libs required by HTC Vive Driver AS_IF([test "x$driver_htc_vive_enabled" != "xno"], [PKG_CHECK_MODULES([hidapi], [$hidapi] >= 0.0.5)]) # Libs required by Depoon Driver AS_IF([test "x$driver_deepoon_enabled" != "xno"], [PKG_CHECK_MODULES([hidapi], [$hidapi] >= 0.0.5)]) # Libs required by Sony PSVR Driver AS_IF([test "x$driver_psvr_enabled" != "xno"], [PKG_CHECK_MODULES([hidapi], [$hidapi] >= 0.0.5)]) # Libs required by NOLO VR Driver AS_IF([test "x$driver_nolo_enabled" != "xno"], [PKG_CHECK_MODULES([hidapi], [$hidapi] >= 0.0.5)]) # Libs required by 3Glasses HMD Driver AS_IF([test "x$driver_xgvr_enabled" != "xno"], [PKG_CHECK_MODULES([hidapi], [$hidapi] >= 0.0.5)]) # Do we build OpenGL example? AC_ARG_ENABLE([openglexample], [AS_HELP_STRING([--enable-openglexample], [enable building of OpenGL example [default=no]])], [openglexample_enabled=$enableval], [openglexample_enabled='no']) AM_CONDITIONAL([BUILD_OPENGL_EXAMPLE], [test "x$openglexample_enabled" != "xno"]) # Libs required by OpenGL test AS_IF([test "x$openglexample_enabled" != "xno"], [ PKG_CHECK_MODULES([sdl2], [sdl2]) # Try to find OpenGL with pkg-config PKG_CHECK_MODULES([GL], [gl], [], # and try to find which lib to link to, -lGL first [AC_CHECK_LIB(GL, glBegin, [GL_LIBS=-lGL], # if that fails, try -lopengl32 (win32) [AC_CHECK_LIB(opengl32, main, [GL_LIBS=-lopengl32], [AC_CHECK_HEADERS([OpenGL/gl.h], [GL_LIBS="-framework OpenGL"], AC_MSG_ERROR([GL not found]) )] )] )] ) AC_SUBST(GL_LIBS) # Try to find GLEW with pkg-config PKG_CHECK_MODULES([GLEW], [glew], [], # if that fails, check if there's a glew header [AC_CHECK_HEADER([GL/glew.h], [GLEW_LIBS=-lGLEW; GLEW_CFLAGS=-DGLEW_STATIC], AC_MSG_ERROR([GLEW not found]))] ) AC_SUBST(GLEW_LIBS) AC_SUBST(GLEW_CFLAGS) ]) AC_PROG_CC AC_PROG_CC_C99 AC_CONFIG_HEADERS([config.h]) AC_CONFIG_FILES([Makefile src/Makefile tests/Makefile tests/unittests/Makefile examples/Makefile examples/opengl/Makefile examples/simple/Makefile pkg-config/openhmd.pc]) AC_OUTPUT OpenHMD-0.3.0/examples/000077500000000000000000000000001351206017700145645ustar00rootroot00000000000000OpenHMD-0.3.0/examples/Makefile.am000066400000000000000000000001021351206017700166110ustar00rootroot00000000000000SUBDIRS = simple if BUILD_OPENGL_EXAMPLE SUBDIRS += opengl endif OpenHMD-0.3.0/examples/opengl/000077500000000000000000000000001351206017700160505ustar00rootroot00000000000000OpenHMD-0.3.0/examples/opengl/CMakeLists.txt000066400000000000000000000005071351206017700206120ustar00rootroot00000000000000project (openglexample C) include_directories(${CMAKE_BINARY_DIR}/include ${SDL2_INCLUDE_DIR} ${GLEW_INCLUDE_DIRS} ${OPENGL_INCLUDE_DIR}) link_directories(${CMAKE_BINARY_DIR}) add_executable(openglexample gl.c main.c) target_link_libraries(openglexample PRIVATE openhmd m ${SDL2_LIBRARY} ${GLEW_LIBRARIES} ${OPENGL_LIBRARIES}) OpenHMD-0.3.0/examples/opengl/Makefile.am000066400000000000000000000004571351206017700201120ustar00rootroot00000000000000bin_PROGRAMS = openglexample AM_CPPFLAGS = -Wall -Werror -I$(top_srcdir)/include -DOHMD_STATIC $(sdl2_CFLAGS) $(GLEW_CFLAGS) openglexample_SOURCES = gl.c main.c openglexample_LDADD = $(top_builddir)/src/libopenhmd.la -lm openglexample_LDFLAGS = -static-libtool-libs $(sdl2_LIBS) $(GLEW_LIBS) $(GL_LIBS) OpenHMD-0.3.0/examples/opengl/gl.c000066400000000000000000000154311351206017700166220ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* OpenGL Test - GL Helper Functions Implementation */ #include "gl.h" #include #include #ifdef __unix #include #endif #ifndef M_PI #define M_PI 3.14159265359 #endif void init_gl(gl_ctx* ctx, int w, int h) { memset(ctx, 0, sizeof(gl_ctx)); // == Initialize SDL == int ret = SDL_Init(SDL_INIT_EVERYTHING); if(ret < 0){ printf("SDL_Init failed\n"); exit(-1); } SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1); ctx->window = SDL_CreateWindow("OpenHMD opengl example", SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED, w, h, SDL_WINDOW_OPENGL ); if(ctx->window == NULL) { printf("SDL_CreateWindow failed\n"); exit(-1); } ctx->w = w; ctx->h = h; ctx->is_fullscreen = 0; ctx->glcontext = SDL_GL_CreateContext(ctx->window); if(ctx->glcontext == NULL){ printf("SDL_GL_CreateContext\n"); exit(-1); } SDL_GL_SetSwapInterval(1); // Disable ctrl-c catching on Linux (and OS X?) #ifdef __unix signal(SIGINT, SIG_DFL); #endif // Load extensions. glewInit(); printf("OpenGL Renderer: %s\n", glGetString(GL_RENDERER)); printf("OpenGL Vendor: %s\n", glGetString(GL_VENDOR)); printf("OpenGL Version: %s\n", glGetString(GL_VERSION)); // == Initialize OpenGL == glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_ALPHA_TEST); glLoadIdentity(); glShadeModel(GL_SMOOTH); glDisable(GL_DEPTH_TEST); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glEnable(GL_POLYGON_SMOOTH); glLoadIdentity(); glViewport(0, 0, ctx->w, ctx->h); } void ortho(gl_ctx* ctx) { glMatrixMode(GL_PROJECTION); //glPushMatrix(); glLoadIdentity(); glOrtho(0.0f, ctx->w, ctx->h, 0.0f, -1.0f, 1.0f); glMatrixMode(GL_MODELVIEW); //glPushMatrix(); glLoadIdentity(); glDisable(GL_DEPTH_TEST); glDisable(GL_DEPTH); glDisable(GL_MULTISAMPLE); } void draw_cube() { glBegin(GL_QUADS); glVertex3f( 0.5f, 0.5f, -0.5f); /* Top Right Of The Quad (Top) */ glVertex3f( -0.5f, 0.5f, -0.5f); /* Top Left Of The Quad (Top) */ glVertex3f( -0.5f, 0.5f, 0.5f); /* Bottom Left Of The Quad (Top) */ glVertex3f( 0.5f, 0.5f, 0.5f); /* Bottom Right Of The Quad (Top) */ glVertex3f( 0.5f, -0.5f, 0.5f); /* Top Right Of The Quad (Botm) */ glVertex3f( -0.5f, -0.5f, 0.5f); /* Top Left Of The Quad (Botm) */ glVertex3f( -0.5f, -0.5f, -0.5f); /* Bottom Left Of The Quad (Botm) */ glVertex3f( 0.5f, -0.5f, -0.5f); /* Bottom Right Of The Quad (Botm) */ glVertex3f( 0.5f, 0.5f, 0.5f); /* Top Right Of The Quad (Front) */ glVertex3f( -0.5f, 0.5f, 0.5f); /* Top Left Of The Quad (Front) */ glVertex3f( -0.5f, -0.5f, 0.5f); /* Bottom Left Of The Quad (Front) */ glVertex3f( 0.5f, -0.5f, 0.5f); /* Bottom Right Of The Quad (Front) */ glVertex3f( 0.5f, -0.5f, -0.5f); /* Bottom Left Of The Quad (Back) */ glVertex3f( -0.5f, -0.5f, -0.5f); /* Bottom Right Of The Quad (Back) */ glVertex3f( -0.5f, 0.5f, -0.5f); /* Top Right Of The Quad (Back) */ glVertex3f( 0.5f, 0.5f, -0.5f); /* Top Left Of The Quad (Back) */ glVertex3f( -0.5f, 0.5f, 0.5f); /* Top Right Of The Quad (Left) */ glVertex3f( -0.5f, 0.5f, -0.5f); /* Top Left Of The Quad (Left) */ glVertex3f( -0.5f, -0.5f, -0.5f); /* Bottom Left Of The Quad (Left) */ glVertex3f( -0.5f, -0.5f, 0.5f); /* Bottom Right Of The Quad (Left) */ glVertex3f( 0.5f, 0.5f, -0.5f); /* Top Right Of The Quad (Right) */ glVertex3f( 0.5f, 0.5f, 0.5f); /* Top Left Of The Quad (Right) */ glVertex3f( 0.5f, -0.5f, 0.5f); /* Bottom Left Of The Quad (Right) */ glVertex3f( 0.5f, -0.5f, -0.5f); /* Bottom Right Of The Quad (Right) */ glEnd(); } static void compile_shader_src(GLuint shader, const char* src) { glShaderSource(shader, 1, &src, NULL); glCompileShader(shader); GLint status; GLint length; char log[4096] = {0}; glGetShaderiv(shader, GL_COMPILE_STATUS, &status); glGetShaderInfoLog(shader, 4096, &length, log); if(status == GL_FALSE){ printf("compile failed %s\n", log); } } GLuint compile_shader(const char* vertex, const char* fragment) { // Create the handels GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER); GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); GLuint programShader = glCreateProgram(); // Attach the shaders to a program handel. glAttachShader(programShader, vertexShader); glAttachShader(programShader, fragmentShader); // Load and compile the Vertex Shader compile_shader_src(vertexShader, vertex); // Load and compile the Fragment Shader compile_shader_src(fragmentShader, fragment); // The shader objects are not needed any more, // the programShader is the complete shader to be used. glDeleteShader(vertexShader); glDeleteShader(fragmentShader); glLinkProgram(programShader); GLint status; GLint length; char log[4096] = {0}; glGetProgramiv(programShader, GL_LINK_STATUS, &status); glGetProgramInfoLog(programShader, 4096, &length, log); if(status == GL_FALSE){ printf("link failed %s\n", log); } return programShader; } void create_fbo(int eye_width, int eye_height, GLuint* fbo, GLuint* color_tex, GLuint* depth_tex) { glGenTextures(1, color_tex); glGenTextures(1, depth_tex); glGenFramebuffers(1, fbo); glBindTexture(GL_TEXTURE_2D, *color_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, eye_width, eye_height, 0, GL_RGBA, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glBindTexture(GL_TEXTURE_2D, *depth_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, eye_width, eye_height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, *fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, *color_tex, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, *depth_tex, 0); GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); if(status != GL_FRAMEBUFFER_COMPLETE_EXT){ printf("failed to create fbo %x\n", status); } glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); } OpenHMD-0.3.0/examples/opengl/gl.h000066400000000000000000000015341351206017700166260ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* OpenGL Test - Interface For GL Helper Functions */ #ifndef GL_H #define GL_H #include #ifndef __APPLE__ #include #include #else #include static inline void glewInit(void) {} #endif typedef struct { int w, h; SDL_Window* window; SDL_GLContext glcontext; int is_fullscreen; } gl_ctx; void ortho(gl_ctx* ctx); void perspective(gl_ctx* ctx); void init_gl(gl_ctx* ctx, int w, int h); void draw_cube(); GLuint compile_shader(const char* vertex, const char* fragment); void create_fbo(int eye_width, int eye_height, GLuint* fbo, GLuint* color_tex, GLuint* depth_tex); #endif OpenHMD-0.3.0/examples/opengl/main.c000066400000000000000000000261771351206017700171550ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* OpenGL Test - Main Implementation */ #include #include #include #include #include "gl.h" #define OVERSAMPLE_SCALE 2.0 char* read_file(const char* filename) { FILE* f = fopen(filename, "rb"); fseek(f, 0, SEEK_END); long len = ftell(f); fseek(f, 0, SEEK_SET); char* buffer = calloc(1, len + 1); assert(buffer); size_t ret = fread(buffer, len, 1, f); assert(ret); fclose(f); return buffer; } float randf() { return (float)rand() / (float)RAND_MAX; } GLuint gen_cubes() { GLuint list = glGenLists(1); // Set the random seed. srand(42); glNewList(list, GL_COMPILE); for(float a = 0.0f; a < 360.0f; a += 20.0f){ glPushMatrix(); glRotatef(a, 0, 1, 0); glTranslatef(0, 0, -1); glScalef(0.2, 0.2, 0.2); glRotatef(randf() * 360, randf(), randf(), randf()); glColor4f(randf(), randf(), randf(), randf() * .5f + .5f); draw_cube(); glPopMatrix(); } // draw floor glColor4f(0, 1.0f, .25f, .25f); glTranslatef(0, -2.5f, 0); draw_cube(); glEndList(); return list; } void draw_crosshairs(float len, float cx, float cy) { glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); glBegin(GL_LINES); float l = len/2.0f; glVertex3f(cx - l, cy, 0.0); glVertex3f(cx + l, cy, 0.0); glVertex3f(cx, cy - l, 0.0); glVertex3f(cx, cy + l, 0.0); glEnd(); glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); } void draw_scene(GLuint list) { // draw cubes glCallList(list); } static inline void print_matrix(float m[]) { printf("[[%0.4f, %0.4f, %0.4f, %0.4f],\n" "[%0.4f, %0.4f, %0.4f, %0.4f],\n" "[%0.4f, %0.4f, %0.4f, %0.4f],\n" "[%0.4f, %0.4f, %0.4f, %0.4f]]\n", m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); } int main(int argc, char** argv) { int hmd_w, hmd_h; ohmd_context* ctx = ohmd_ctx_create(); int num_devices = ohmd_ctx_probe(ctx); if(num_devices < 0){ printf("failed to probe devices: %s\n", ohmd_ctx_get_error(ctx)); return 1; } ohmd_device_settings* settings = ohmd_device_settings_create(ctx); // If OHMD_IDS_AUTOMATIC_UPDATE is set to 0, ohmd_ctx_update() must be called at least 10 times per second. // It is enabled by default. int auto_update = 1; ohmd_device_settings_seti(settings, OHMD_IDS_AUTOMATIC_UPDATE, &auto_update); ohmd_device* hmd = ohmd_list_open_device_s(ctx, 0, settings); if(!hmd){ printf("failed to open device: %s\n", ohmd_ctx_get_error(ctx)); return 1; } ohmd_device_geti(hmd, OHMD_SCREEN_HORIZONTAL_RESOLUTION, &hmd_w); ohmd_device_geti(hmd, OHMD_SCREEN_VERTICAL_RESOLUTION, &hmd_h); float ipd; ohmd_device_getf(hmd, OHMD_EYE_IPD, &ipd); float viewport_scale[2]; float distortion_coeffs[4]; float aberr_scale[3]; float sep; float left_lens_center[2]; float right_lens_center[2]; //viewport is half the screen ohmd_device_getf(hmd, OHMD_SCREEN_HORIZONTAL_SIZE, &(viewport_scale[0])); viewport_scale[0] /= 2.0f; ohmd_device_getf(hmd, OHMD_SCREEN_VERTICAL_SIZE, &(viewport_scale[1])); //distortion coefficients ohmd_device_getf(hmd, OHMD_UNIVERSAL_DISTORTION_K, &(distortion_coeffs[0])); ohmd_device_getf(hmd, OHMD_UNIVERSAL_ABERRATION_K, &(aberr_scale[0])); //calculate lens centers (assuming the eye separation is the distance between the lens centers) ohmd_device_getf(hmd, OHMD_LENS_HORIZONTAL_SEPARATION, &sep); ohmd_device_getf(hmd, OHMD_LENS_VERTICAL_POSITION, &(left_lens_center[1])); ohmd_device_getf(hmd, OHMD_LENS_VERTICAL_POSITION, &(right_lens_center[1])); left_lens_center[0] = viewport_scale[0] - sep/2.0f; right_lens_center[0] = sep/2.0f; //assume calibration was for lens view to which ever edge of screen is further away from lens center float warp_scale = (left_lens_center[0] > right_lens_center[0]) ? left_lens_center[0] : right_lens_center[0]; float warp_adj = 1.0f; ohmd_device_settings_destroy(settings); gl_ctx gl; init_gl(&gl, hmd_w, hmd_h); SDL_ShowCursor(SDL_DISABLE); const char* vertex; ohmd_gets(OHMD_GLSL_DISTORTION_VERT_SRC, &vertex); const char* fragment; ohmd_gets(OHMD_GLSL_DISTORTION_FRAG_SRC, &fragment); GLuint shader = compile_shader(vertex, fragment); glUseProgram(shader); glUniform1i(glGetUniformLocation(shader, "warpTexture"), 0); glUniform2fv(glGetUniformLocation(shader, "ViewportScale"), 1, viewport_scale); glUniform3fv(glGetUniformLocation(shader, "aberr"), 1, aberr_scale); glUseProgram(0); GLuint list = gen_cubes(); int eye_w = hmd_w/2*OVERSAMPLE_SCALE; int eye_h = hmd_h*OVERSAMPLE_SCALE; GLuint left_color_tex = 0, left_depth_tex = 0, left_fbo = 0; create_fbo(eye_w, eye_h, &left_fbo, &left_color_tex, &left_depth_tex); GLuint right_color_tex = 0, right_depth_tex = 0, right_fbo = 0; create_fbo(eye_w, eye_h, &right_fbo, &right_color_tex, &right_depth_tex); bool done = false; bool crosshair_overlay = false; while(!done){ ohmd_ctx_update(ctx); SDL_Event event; while(SDL_PollEvent(&event)){ if(event.type == SDL_KEYDOWN){ switch(event.key.keysym.sym){ case SDLK_ESCAPE: done = true; break; case SDLK_F1: { gl.is_fullscreen = !gl.is_fullscreen; SDL_SetWindowFullscreen(gl.window, gl.is_fullscreen ? SDL_WINDOW_FULLSCREEN : 0); } break; case SDLK_F2: { // reset rotation and position float zero[] = {0, 0, 0, 1}; ohmd_device_setf(hmd, OHMD_ROTATION_QUAT, zero); ohmd_device_setf(hmd, OHMD_POSITION_VECTOR, zero); } break; case SDLK_F3: { float mat[16]; ohmd_device_getf(hmd, OHMD_LEFT_EYE_GL_PROJECTION_MATRIX, mat); printf("Projection L: "); print_matrix(mat); printf("\n"); ohmd_device_getf(hmd, OHMD_RIGHT_EYE_GL_PROJECTION_MATRIX, mat); printf("Projection R: "); print_matrix(mat); printf("\n"); ohmd_device_getf(hmd, OHMD_LEFT_EYE_GL_MODELVIEW_MATRIX, mat); printf("View: "); print_matrix(mat); printf("\n"); printf("viewport_scale: [%0.4f, %0.4f]\n", viewport_scale[0], viewport_scale[1]); printf("lens separation: %04f\n", sep); printf("IPD: %0.4f\n", ipd); printf("warp_scale: %0.4f\r\n", warp_scale); printf("distortion coeffs: [%0.4f, %0.4f, %0.4f, %0.4f]\n", distortion_coeffs[0], distortion_coeffs[1], distortion_coeffs[2], distortion_coeffs[3]); printf("aberration coeffs: [%0.4f, %0.4f, %0.4f]\n", aberr_scale[0], aberr_scale[1], aberr_scale[2]); printf("left_lens_center: [%0.4f, %0.4f]\n", left_lens_center[0], left_lens_center[1]); printf("right_lens_center: [%0.4f, %0.4f]\n", right_lens_center[0], right_lens_center[1]); } break; case SDLK_w: sep += 0.001; left_lens_center[0] = viewport_scale[0] - sep/2.0f; right_lens_center[0] = sep/2.0f; break; case SDLK_q: sep -= 0.001; left_lens_center[0] = viewport_scale[0] - sep/2.0f; right_lens_center[0] = sep/2.0f; break; case SDLK_a: warp_adj *= 1.0/0.9; break; case SDLK_z: warp_adj *= 0.9; break; case SDLK_i: ipd -= 0.001; ohmd_device_setf(hmd, OHMD_EYE_IPD, &ipd); break; case SDLK_o: ipd += 0.001; ohmd_device_setf(hmd, OHMD_EYE_IPD, &ipd); break; case SDLK_d: /* toggle between distorted and undistorted views */ if ((distortion_coeffs[0] != 0.0) || (distortion_coeffs[1] != 0.0) || (distortion_coeffs[2] != 0.0) || (distortion_coeffs[3] != 1.0)) { distortion_coeffs[0] = 0.0; distortion_coeffs[1] = 0.0; distortion_coeffs[2] = 0.0; distortion_coeffs[3] = 1.0; } else { ohmd_device_getf(hmd, OHMD_UNIVERSAL_DISTORTION_K, &(distortion_coeffs[0])); } break; case SDLK_x: crosshair_overlay = ! crosshair_overlay; break; default: break; } } } // Common scene state glEnable(GL_BLEND); glEnable(GL_DEPTH_TEST); float matrix[16]; // set hmd rotation, for left eye. glMatrixMode(GL_PROJECTION); ohmd_device_getf(hmd, OHMD_LEFT_EYE_GL_PROJECTION_MATRIX, matrix); glLoadMatrixf(matrix); glMatrixMode(GL_MODELVIEW); ohmd_device_getf(hmd, OHMD_LEFT_EYE_GL_MODELVIEW_MATRIX, matrix); glLoadMatrixf(matrix); // Draw scene into framebuffer. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, left_fbo); glViewport(0, 0, eye_w, eye_h); glClearColor(0.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); draw_scene(list); if (crosshair_overlay) { glClear(GL_DEPTH_BUFFER_BIT); glLineWidth(2.0*OVERSAMPLE_SCALE); glColor4f(1.0, 0.5, 0.0, 1.0); draw_crosshairs(0.1, 2*left_lens_center[0]/viewport_scale[0] - 1.0f, 2*left_lens_center[1]/viewport_scale[1] - 1.0f); } // set hmd rotation, for right eye. glMatrixMode(GL_PROJECTION); ohmd_device_getf(hmd, OHMD_RIGHT_EYE_GL_PROJECTION_MATRIX, matrix); glLoadMatrixf(matrix); glMatrixMode(GL_MODELVIEW); ohmd_device_getf(hmd, OHMD_RIGHT_EYE_GL_MODELVIEW_MATRIX, matrix); glLoadMatrixf(matrix); // Draw scene into framebuffer. glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, right_fbo); glViewport(0, 0, eye_w, eye_h); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); draw_scene(list); if (crosshair_overlay) { glClear(GL_DEPTH_BUFFER_BIT); glLineWidth(5.0); glColor4f(1.0, 0.5, 0.0, 1.0); draw_crosshairs(0.1, 2*right_lens_center[0]/viewport_scale[0] - 1.0f, 2*right_lens_center[1]/viewport_scale[1] - 1.0f); } // Clean up common draw state glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); glDisable(GL_BLEND); glDisable(GL_DEPTH_TEST); // Setup ortho state. glUseProgram(shader); glUniform1f(glGetUniformLocation(shader, "WarpScale"), warp_scale*warp_adj); glUniform4fv(glGetUniformLocation(shader, "HmdWarpParam"), 1, distortion_coeffs); glViewport(0, 0, hmd_w, hmd_h); glEnable(GL_TEXTURE_2D); glColor4d(1, 1, 1, 1); // Setup simple render state glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // Draw left eye glUniform2fv(glGetUniformLocation(shader, "LensCenter"), 1, left_lens_center); glBindTexture(GL_TEXTURE_2D, left_color_tex); glBegin(GL_QUADS); glTexCoord2d( 0, 0); glVertex3d( -1, -1, 0); glTexCoord2d( 1, 0); glVertex3d( 0, -1, 0); glTexCoord2d( 1, 1); glVertex3d( 0, 1, 0); glTexCoord2d( 0, 1); glVertex3d( -1, 1, 0); glEnd(); // Draw right eye glUniform2fv(glGetUniformLocation(shader, "LensCenter"), 1, right_lens_center); glBindTexture(GL_TEXTURE_2D, right_color_tex); glBegin(GL_QUADS); glTexCoord2d( 0, 0); glVertex3d( 0, -1, 0); glTexCoord2d( 1, 0); glVertex3d( 1, -1, 0); glTexCoord2d( 1, 1); glVertex3d( 1, 1, 0); glTexCoord2d( 0, 1); glVertex3d( 0, 1, 0); glEnd(); // Clean up state. glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); glUseProgram(0); // Da swap-dawup! SDL_GL_SwapWindow(gl.window); SDL_Delay(10); } ohmd_ctx_destroy(ctx); return 0; } OpenHMD-0.3.0/examples/simple/000077500000000000000000000000001351206017700160555ustar00rootroot00000000000000OpenHMD-0.3.0/examples/simple/CMakeLists.txt000066400000000000000000000003661351206017700206220ustar00rootroot00000000000000project (simple C) include_directories(${CMAKE_BINARY_DIR}/include) link_directories(${CMAKE_BINARY_DIR}) add_executable(simple simple.c) target_link_libraries(simple PRIVATE openhmd) if (UNIX) target_link_libraries(simple PRIVATE m) endif() OpenHMD-0.3.0/examples/simple/Makefile.am000066400000000000000000000003051351206017700201070ustar00rootroot00000000000000bin_PROGRAMS = simple AM_CPPFLAGS = -Wall -I$(top_srcdir)/include -DOHMD_STATIC simple_SOURCES = simple.c simple_LDADD = $(top_builddir)/src/libopenhmd.la -lm simple_LDFLAGS = -static-libtool-libs OpenHMD-0.3.0/examples/simple/simple.c000066400000000000000000000127241351206017700175200ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* Simple Test */ #include #include #include #include void ohmd_sleep(double); // gets float values from the device and prints them void print_infof(ohmd_device* hmd, const char* name, int len, ohmd_float_value val) { float f[16]; assert(len <= 16); ohmd_device_getf(hmd, val, f); printf("%-25s", name); for(int i = 0; i < len; i++) printf("%f ", f[i]); printf("\n"); } // gets int values from the device and prints them void print_infoi(ohmd_device* hmd, const char* name, int len, ohmd_int_value val) { int iv[16]; assert(len <= 16); ohmd_device_geti(hmd, val, iv); printf("%-25s", name); for(int i = 0; i < len; i++) printf("%d ", iv[i]); printf("\n"); } int main(int argc, char** argv) { int device_idx = 0; if(argc > 1) device_idx = atoi(argv[1]); ohmd_require_version(0, 3, 0); int major, minor, patch; ohmd_get_version(&major, &minor, &patch); printf("OpenHMD version: %d.%d.%d\n", major, minor, patch); ohmd_context* ctx = ohmd_ctx_create(); // Probe for devices int num_devices = ohmd_ctx_probe(ctx); if(num_devices < 0){ printf("failed to probe devices: %s\n", ohmd_ctx_get_error(ctx)); return -1; } printf("num devices: %d\n\n", num_devices); // Print device information for(int i = 0; i < num_devices; i++){ int device_class = 0, device_flags = 0; const char* device_class_s[] = {"HMD", "Controller", "Generic Tracker", "Unknown"}; ohmd_list_geti(ctx, i, OHMD_DEVICE_CLASS, &device_class); ohmd_list_geti(ctx, i, OHMD_DEVICE_FLAGS, &device_flags); printf("device %d\n", i); printf(" vendor: %s\n", ohmd_list_gets(ctx, i, OHMD_VENDOR)); printf(" product: %s\n", ohmd_list_gets(ctx, i, OHMD_PRODUCT)); printf(" path: %s\n", ohmd_list_gets(ctx, i, OHMD_PATH)); printf(" class: %s\n", device_class_s[device_class > OHMD_DEVICE_CLASS_GENERIC_TRACKER ? 4 : device_class]); printf(" flags: %02x\n", device_flags); printf(" null device: %s\n", device_flags & OHMD_DEVICE_FLAGS_NULL_DEVICE ? "yes" : "no"); printf(" rotational tracking: %s\n", device_flags & OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING ? "yes" : "no"); printf(" positional tracking: %s\n", device_flags & OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING ? "yes" : "no"); printf(" left controller: %s\n", device_flags & OHMD_DEVICE_FLAGS_LEFT_CONTROLLER ? "yes" : "no"); printf(" right controller: %s\n\n", device_flags & OHMD_DEVICE_FLAGS_RIGHT_CONTROLLER ? "yes" : "no"); } // Open specified device idx or 0 (default) if nothing specified printf("opening device: %d\n", device_idx); ohmd_device* hmd = ohmd_list_open_device(ctx, device_idx); if(!hmd){ printf("failed to open device: %s\n", ohmd_ctx_get_error(ctx)); return -1; } // Print hardware information for the opened device int ivals[2]; ohmd_device_geti(hmd, OHMD_SCREEN_HORIZONTAL_RESOLUTION, ivals); ohmd_device_geti(hmd, OHMD_SCREEN_VERTICAL_RESOLUTION, ivals + 1); printf("resolution: %i x %i\n", ivals[0], ivals[1]); print_infof(hmd, "hsize:", 1, OHMD_SCREEN_HORIZONTAL_SIZE); print_infof(hmd, "vsize:", 1, OHMD_SCREEN_VERTICAL_SIZE); print_infof(hmd, "lens separation:", 1, OHMD_LENS_HORIZONTAL_SEPARATION); print_infof(hmd, "lens vcenter:", 1, OHMD_LENS_VERTICAL_POSITION); print_infof(hmd, "left eye fov:", 1, OHMD_LEFT_EYE_FOV); print_infof(hmd, "right eye fov:", 1, OHMD_RIGHT_EYE_FOV); print_infof(hmd, "left eye aspect:", 1, OHMD_LEFT_EYE_ASPECT_RATIO); print_infof(hmd, "right eye aspect:", 1, OHMD_RIGHT_EYE_ASPECT_RATIO); print_infof(hmd, "distortion k:", 6, OHMD_DISTORTION_K); print_infoi(hmd, "control count: ", 1, OHMD_CONTROL_COUNT); int control_count; ohmd_device_geti(hmd, OHMD_CONTROL_COUNT, &control_count); const char* controls_fn_str[] = { "generic", "trigger", "trigger_click", "squeeze", "menu", "home", "analog-x", "analog-y", "anlog_press", "button-a", "button-b", "button-x", "button-y", "volume-up", "volume-down", "mic-mute"}; const char* controls_type_str[] = {"digital", "analog"}; int controls_fn[64]; int controls_types[64]; ohmd_device_geti(hmd, OHMD_CONTROLS_HINTS, controls_fn); ohmd_device_geti(hmd, OHMD_CONTROLS_TYPES, controls_types); printf("%-25s", "controls:"); for(int i = 0; i < control_count; i++){ printf("%s (%s)%s", controls_fn_str[controls_fn[i]], controls_type_str[controls_types[i]], i == control_count - 1 ? "" : ", "); } printf("\n\n"); // Ask for n rotation quaternions and position vectors for(int i = 0; i < 10000; i++){ ohmd_ctx_update(ctx); // this can be used to set a different zero point // for rotation and position, but is not required. //float zero[] = {.0, .0, .0, 1}; //ohmd_device_setf(hmd, OHMD_ROTATION_QUAT, zero); //ohmd_device_setf(hmd, OHMD_POSITION_VECTOR, zero); // get rotation and postition print_infof(hmd, "rotation quat:", 4, OHMD_ROTATION_QUAT); print_infof(hmd, "position vec: ", 3, OHMD_POSITION_VECTOR); // read controls if (control_count) { float control_state[256]; ohmd_device_getf(hmd, OHMD_CONTROLS_STATE, control_state); printf("%-25s", "controls state:"); for(int i = 0; i < control_count; i++) { printf("%f ", control_state[i]); } } puts(""); ohmd_sleep(.01); } ohmd_ctx_destroy(ctx); return 0; } OpenHMD-0.3.0/include/000077500000000000000000000000001351206017700143715ustar00rootroot00000000000000OpenHMD-0.3.0/include/openhmd.h000066400000000000000000000433561351206017700162070ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /** * \file openhmd.h * Main header for OpenHMD public API. **/ #ifndef OPENHMD_H #define OPENHMD_H #ifdef __cplusplus extern "C" { #endif #ifdef _WIN32 #ifdef DLL_EXPORT #define OHMD_APIENTRY __cdecl #define OHMD_APIENTRYDLL __declspec( dllexport ) #else #ifdef OHMD_STATIC #define OHMD_APIENTRY __cdecl #define OHMD_APIENTRYDLL #else #define OHMD_APIENTRY __cdecl #define OHMD_APIENTRYDLL __declspec( dllimport ) #endif #endif #else #define OHMD_APIENTRY #define OHMD_APIENTRYDLL __attribute__((visibility("default"))) #endif /** Maximum length of a string, including termination, in OpenHMD. */ #define OHMD_STR_SIZE 256 /** Return status codes, used for all functions that can return an error. */ typedef enum { OHMD_S_OK = 0, OHMD_S_UNKNOWN_ERROR = -1, OHMD_S_INVALID_PARAMETER = -2, OHMD_S_UNSUPPORTED = -3, OHMD_S_INVALID_OPERATION = -4, /** OHMD_S_USER_RESERVED and below can be used for user purposes, such as errors within ohmd wrappers, etc. */ OHMD_S_USER_RESERVED = -16384, } ohmd_status; /** A collection of string value information types, used for getting information with ohmd_list_gets(). */ typedef enum { OHMD_VENDOR = 0, OHMD_PRODUCT = 1, OHMD_PATH = 2, } ohmd_string_value; /** A collection of string descriptions, used for getting strings with ohmd_gets(). */ typedef enum { OHMD_GLSL_DISTORTION_VERT_SRC = 0, OHMD_GLSL_DISTORTION_FRAG_SRC = 1, OHMD_GLSL_330_DISTORTION_VERT_SRC = 2, OHMD_GLSL_330_DISTORTION_FRAG_SRC = 3, OHMD_GLSL_ES_DISTORTION_VERT_SRC = 4, OHMD_GLSL_ES_DISTORTION_FRAG_SRC = 5, } ohmd_string_description; /** Standard controls. Note that this is not an index into the control state. Use OHMD_CONTROL_TYPES to determine what function a control serves at a given index. */ typedef enum { OHMD_GENERIC = 0, OHMD_TRIGGER = 1, OHMD_TRIGGER_CLICK = 2, OHMD_SQUEEZE = 3, OHMD_MENU = 4, OHMD_HOME = 5, OHMD_ANALOG_X = 6, OHMD_ANALOG_Y = 7, OHMD_ANALOG_PRESS = 8, OHMD_BUTTON_A = 9, OHMD_BUTTON_B = 10, OHMD_BUTTON_X = 11, OHMD_BUTTON_Y = 12, OHMD_VOLUME_PLUS = 13, OHMD_VOLUME_MINUS = 14, OHMD_MIC_MUTE = 15, } ohmd_control_hint; /** Control type. Indicates whether controls are digital or analog. */ typedef enum { OHMD_DIGITAL = 0, OHMD_ANALOG = 1 } ohmd_control_type; /** A collection of float value information types, used for getting and setting information with ohmd_device_getf() and ohmd_device_setf(). */ typedef enum { /** float[4] (get): Absolute rotation of the device, in space, as a quaternion (x, y, z, w). */ OHMD_ROTATION_QUAT = 1, /** float[16] (get): A "ready to use" OpenGL style 4x4 matrix with a modelview matrix for the left eye of the HMD. */ OHMD_LEFT_EYE_GL_MODELVIEW_MATRIX = 2, /** float[16] (get): A "ready to use" OpenGL style 4x4 matrix with a modelview matrix for the right eye of the HMD. */ OHMD_RIGHT_EYE_GL_MODELVIEW_MATRIX = 3, /** float[16] (get): A "ready to use" OpenGL style 4x4 matrix with a projection matrix for the left eye of the HMD. */ OHMD_LEFT_EYE_GL_PROJECTION_MATRIX = 4, /** float[16] (get): A "ready to use" OpenGL style 4x4 matrix with a projection matrix for the right eye of the HMD. */ OHMD_RIGHT_EYE_GL_PROJECTION_MATRIX = 5, /** float[3] (get): A 3-D vector representing the absolute position of the device, in space. */ OHMD_POSITION_VECTOR = 6, /** float[1] (get): Physical width of the device screen in metres. */ OHMD_SCREEN_HORIZONTAL_SIZE = 7, /** float[1] (get): Physical height of the device screen in metres. */ OHMD_SCREEN_VERTICAL_SIZE = 8, /** float[1] (get): Physical separation of the device lenses in metres. */ OHMD_LENS_HORIZONTAL_SEPARATION = 9, /** float[1] (get): Physical vertical position of the lenses in metres. */ OHMD_LENS_VERTICAL_POSITION = 10, /** float[1] (get): Physical field of view for the left eye in degrees. */ OHMD_LEFT_EYE_FOV = 11, /** float[1] (get): Physical display aspect ratio for the left eye screen. */ OHMD_LEFT_EYE_ASPECT_RATIO = 12, /** float[1] (get): Physical field of view for the left right in degrees. */ OHMD_RIGHT_EYE_FOV = 13, /** float[1] (get): Physical display aspect ratio for the right eye screen. */ OHMD_RIGHT_EYE_ASPECT_RATIO = 14, /** float[1] (get, set): Physical interpupillary distance of the user in metres. */ OHMD_EYE_IPD = 15, /** float[1] (get, set): Z-far value for the projection matrix calculations (i.e. drawing distance). */ OHMD_PROJECTION_ZFAR = 16, /** float[1] (get, set): Z-near value for the projection matrix calculations (i.e. close clipping distance). */ OHMD_PROJECTION_ZNEAR = 17, /** float[6] (get): Device specific distortion value. */ OHMD_DISTORTION_K = 18, /** * float[10] (set): Perform sensor fusion on values from external sensors. * * Values are: dt (time since last update in seconds) X, Y, Z gyro, X, Y, Z accelerometer and X, Y, Z magnetometer. **/ OHMD_EXTERNAL_SENSOR_FUSION = 19, /** float[4] (get): Universal shader distortion coefficients (PanoTools model . */ OHMD_UNIVERSAL_DISTORTION_K = 20, /** float[3] (get): Universal shader aberration coefficients (post warp scaling . */ OHMD_UNIVERSAL_ABERRATION_K = 21, /** float[OHMD_CONTROL_COUNT] (get): Get the state of the device's controls. */ OHMD_CONTROLS_STATE = 22, } ohmd_float_value; /** A collection of int value information types used for getting information with ohmd_device_geti(). */ typedef enum { /** int[1] (get, ohmd_geti()): Physical horizontal resolution of the device screen. */ OHMD_SCREEN_HORIZONTAL_RESOLUTION = 0, /** int[1] (get, ohmd_geti()): Physical vertical resolution of the device screen. */ OHMD_SCREEN_VERTICAL_RESOLUTION = 1, /** int[1] (get, ohmd_geti()/ohmd_list_geti()): Gets the class of the device. See: ohmd_device_class. */ OHMD_DEVICE_CLASS = 2, /** int[1] (get, ohmd_geti()/ohmd_list_geti()): Gets the flags of the device. See: ohmd_device_flags. */ OHMD_DEVICE_FLAGS = 3, /** int[1] (get, ohmd_geti()): Get the number of analog and digital controls of the device. */ OHMD_CONTROL_COUNT = 4, /** int[OHMD_CONTROL_COUNT] (get, ohmd_geti()): Get what function controls serve. */ OHMD_CONTROLS_HINTS = 5, /** int[OHMD_CONTROL_COUNT] (get, ohmd_geti()): Get whether controls are digital or analog. */ OHMD_CONTROLS_TYPES = 6, } ohmd_int_value; /** A collection of data information types used for setting information with ohmd_set_data(). */ typedef enum { /** void* (set): Set void* data for use in the internal drivers. */ OHMD_DRIVER_DATA = 0, /** * ohmd_device_properties* (set): * Set the device properties based on the ohmd_device_properties struct for use in the internal drivers. * * This can be used to fill in information about the device internally, such as Android, or for setting profiles. **/ OHMD_DRIVER_PROPERTIES = 1, } ohmd_data_value; typedef enum { /** int[1] (set, default: 1): Set this to 0 to prevent OpenHMD from creating background threads to do automatic device ticking. Call ohmd_update(); must be called frequently, at least 10 times per second, if the background threads are disabled. */ OHMD_IDS_AUTOMATIC_UPDATE = 0, } ohmd_int_settings; /** Device classes. */ typedef enum { /** HMD device. */ OHMD_DEVICE_CLASS_HMD = 0, /** Controller device. */ OHMD_DEVICE_CLASS_CONTROLLER = 1, /** Generic tracker device. */ OHMD_DEVICE_CLASS_GENERIC_TRACKER = 2, } ohmd_device_class; /** Device flags. */ typedef enum { /** Device is a null (dummy) device. */ OHMD_DEVICE_FLAGS_NULL_DEVICE = 1, OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING = 2, OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING = 4, OHMD_DEVICE_FLAGS_LEFT_CONTROLLER = 8, OHMD_DEVICE_FLAGS_RIGHT_CONTROLLER = 16, } ohmd_device_flags; /** An opaque pointer to a context structure. */ typedef struct ohmd_context ohmd_context; /** An opaque pointer to a structure representing a device, such as an HMD. */ typedef struct ohmd_device ohmd_device; /** An opaque pointer to a structure representing arguments for a device. */ typedef struct ohmd_device_settings ohmd_device_settings; /** * Create an OpenHMD context. * * @return a pointer to an allocated ohmd_context on success or NULL if it fails. **/ OHMD_APIENTRYDLL ohmd_context* OHMD_APIENTRY ohmd_ctx_create(void); /** * Destroy an OpenHMD context. * * ohmd_ctx_destroy de-initializes and de-allocates an OpenHMD context allocated with ohmd_ctx_create. * All devices associated with the context are automatically closed. * * @param ctx The context to destroy. **/ OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_ctx_destroy(ohmd_context* ctx); /** * Get the last error as a human readable string. * * If a function taking a context as an argument (ohmd_context "methods") returns non-successfully, * a human readable error message describing what went wrong can be retrieved with this function. * * @param ctx The context to retrieve the error message from. * @return a pointer to the error message. **/ OHMD_APIENTRYDLL const char* OHMD_APIENTRY ohmd_ctx_get_error(ohmd_context* ctx); /** * Update a context. * * Update the values for the devices handled by a context. * * If background threads are disabled, this performs tasks like pumping events from the device. The exact details * are up to the driver but try to call it quite frequently. * Once per frame in a "game loop" should be sufficient. * If OpenHMD is handled in a background thread in your program, calling ohmd_ctx_update and then sleeping for 10-20 ms * is recommended. * * @param ctx The context that needs updating. **/ OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_ctx_update(ohmd_context* ctx); /** * Probe for devices. * * Probes for and enumerates supported devices attached to the system. * * @param ctx A context with no currently open devices. * @return the number of devices found on the system. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_ctx_probe(ohmd_context* ctx); /** * Get string from openhmd. * * Gets a string from OpenHMD. This is where non-device specific strings reside. * This is where the distortion shader sources can be retrieved. * * @param type The name of the string to fetch. One of OHMD_GLSL_DISTORTION_FRAG_SRC, and OHMD_GLSL_DISTORTION_FRAG_SRC. * @param out The location to return a const char* * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int ohmd_gets(ohmd_string_description type, const char** out); /** * Get device description from enumeration list index. * * Gets a human readable device description string from a zero indexed enumeration index * between 0 and (max - 1), where max is the number ohmd_ctx_probe returned * (i.e. if ohmd_ctx_probe returns 3, valid indices are 0, 1 and 2). * The function can return three types of data. The vendor name, the product name and * a driver specific path where the device is attached. * * ohmd_ctx_probe must be called before calling ohmd_list_gets. * * @param ctx A (probed) context. * @param index An index, between 0 and the value returned from ohmd_ctx_probe. * @param type The type of data to fetch. One of OHMD_VENDOR, OHMD_PRODUCT and OHMD_PATH. * @return a string with a human readable device name. **/ OHMD_APIENTRYDLL const char* OHMD_APIENTRY ohmd_list_gets(ohmd_context* ctx, int index, ohmd_string_value type); /** * Get integer value from enumeration list index. * * * * ohmd_ctx_probe must be called before calling ohmd_list_gets. * * @param ctx A (probed) context. * @param index An index, between 0 and the value returned from ohmd_ctx_probe. * @param type What type of value to retrieve, ohmd_int_value section for more information. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_list_geti(ohmd_context* ctx, int index, ohmd_int_value type, int* out); /** * Open a device. * * Opens a device from a zero indexed enumeration index between 0 and (max - 1) * where max is the number ohmd_ctx_probe returned (i.e. if ohmd_ctx_probe returns 3, * valid indices are 0, 1 and 2). * * ohmd_ctx_probe must be called before calling ohmd_list_open_device. * * @param ctx A (probed) context. * @param index An index, between 0 and the value returned from ohmd_ctx_probe. * @return a pointer to an ohmd_device, which represents a hardware device, such as an HMD. **/ OHMD_APIENTRYDLL ohmd_device* OHMD_APIENTRY ohmd_list_open_device(ohmd_context* ctx, int index); /** * Open a device with additional settings provided. * * Opens a device from a zero indexed enumeration index between 0 and (max - 1) * where max is the number ohmd_ctx_probe returned (i.e. if ohmd_ctx_probe returns 3, * valid indices are 0, 1 and 2). * * ohmd_ctx_probe must be called before calling ohmd_list_open_device. * * @param ctx A (probed) context. * @param index An index, between 0 and the value returned from ohmd_ctx_probe. * @param settings A pointer to a device settings struct. * @return a pointer to an ohmd_device, which represents a hardware device, such as an HMD. **/ OHMD_APIENTRYDLL ohmd_device* OHMD_APIENTRY ohmd_list_open_device_s(ohmd_context* ctx, int index, ohmd_device_settings* settings); /** * Specify int settings in a device settings struct. * * @param settings The device settings struct to set values to. * @param key The specefic setting you wish to set. * @param value A pointer to an int or int array (containing the expected number of elements) with the value(s) you wish to set. **/ OHMD_APIENTRYDLL ohmd_status OHMD_APIENTRY ohmd_device_settings_seti(ohmd_device_settings* settings, ohmd_int_settings key, const int* val); /** * Create a device settings instance. * * @param ctx A pointer to a valid ohmd_context. * @return a pointer to an allocated ohmd_context on success or NULL if it fails. **/ OHMD_APIENTRYDLL ohmd_device_settings* OHMD_APIENTRY ohmd_device_settings_create(ohmd_context* ctx); /** * Destroy a device settings instance. * * @param ctx The device settings instance to destroy. **/ OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_device_settings_destroy(ohmd_device_settings* settings); /** * Close a device. * * Closes a device opened by ohmd_list_open_device. Note that ohmd_ctx_destroy automatically closes any open devices * associated with the context being destroyed. * * @param device The open device. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_close_device(ohmd_device* device); /** * Get a floating point value from a device. * * * @param device An open device to retrieve the value from. * @param type What type of value to retrieve, see ohmd_float_value section for more information. * @param[out] out A pointer to a float, or float array where the retrieved value should be written. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_getf(ohmd_device* device, ohmd_float_value type, float* out); /** * Set a floating point value for a device. * * @param device An open device to set the value in. * @param type What type of value to set, see ohmd_float_value section for more information. * @param in A pointer to a float, or float array where the new value is stored. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_setf(ohmd_device* device, ohmd_float_value type, const float* in); /** * Get an integer value from a device. * * @param device An open device to retrieve the value from. * @param type What type of value to retrieve, ohmd_int_value section for more information. * @param[out] out A pointer to an integer, or integer array where the retrieved value should be written. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_geti(ohmd_device* device, ohmd_int_value type, int* out); /** * Set an integer value for a device. * * @param device An open device to set the value in. * @param type What type of value to set, see ohmd_float_value section for more information. * @param in A pointer to a int, or int array where the new value is stored. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_seti(ohmd_device* device, ohmd_int_value type, const int* in); /** * Set an void* data value for a device. * * @param device An open device to set the value in. * @param type What type of value to set, see ohmd_float_value section for more information. * @param in A pointer to the void* casted object. * @return 0 on success, <0 on failure. **/ OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_set_data(ohmd_device* device, ohmd_data_value type, const void* in); /** * Get the library version. * * @param major Major version. * @param minor Minor version. * @param patch Patch version. **/ OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_get_version(int* out_major, int* out_minor, int* out_patch); /** * Check that the library is compatible with the required version. * * @param major Required major version. * @param minor Required minor version. * @param patch Required patch version. * @return OMHD_S_OK if the version is compatible or OHMD_S_UNSUPPORTED if it's not. **/ OHMD_APIENTRYDLL ohmd_status OHMD_APIENTRY ohmd_require_version(int major, int minor, int patch); /** * Sleep for the given amount of seconds. * * @param time Time to sleep in seconds. **/ OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_sleep(double time); #ifdef __cplusplus } #endif #endif OpenHMD-0.3.0/meson.build000066400000000000000000000076371351206017700151250ustar00rootroot00000000000000project( 'openhmd', 'c', default_options: 'c_std=c99', version: '0.3.0', meson_version: '>= 0.44', ) library_version = '0.1.0' # # Dependencies # hidapi = 'hidapi' _hidapi = get_option('hidapi') if host_machine.system() == 'linux' if _hidapi == 'hidraw' hidapi = 'hidapi-hidraw' else hidapi = 'hidapi-libusb' endif else if _hidapi != 'auto' warning('hidapi option ignored on non-Linux systems') endif endif dep_libm = meson.get_compiler('c').find_library('m', required: false) dep_hidapi = dependency(hidapi, required : false) if not dep_hidapi.found() proj_hidapi = subproject('hidapi') dep_hidapi = proj_hidapi.get_variable('hidapi_dep') endif dep_threads = dependency('threads') deps = [ dep_libm, dep_threads, ] # # Main lib # sources = [ 'src/openhmd.c', 'src/drv_dummy/dummy.c', 'src/omath.c', 'src/fusion.c', 'src/shaders.c', ] if host_machine.system() == 'windows' sources += 'src/platform-win32.c' else sources += 'src/platform-posix.c' endif c_args = [] if get_option('default_library') == 'shared' if host_machine.system() == 'windows' c_args += '-DDLL_EXPORT' else c_args += '-fvisibility=hidden' endif endif _drivers = get_option('drivers') if _drivers.contains('rift') sources += [ 'src/drv_oculus_rift/rift.c', 'src/drv_oculus_rift/packet.c', ] c_args += '-DDRIVER_OCULUS_RIFT' deps += dep_hidapi endif if _drivers.contains('deepoon') sources += [ 'src/drv_deepoon/deepoon.c', 'src/drv_deepoon/packet.c', ] c_args += '-DDRIVER_DEEPOON' endif if _drivers.contains('psvr') sources += [ 'src/drv_psvr/psvr.c', 'src/drv_psvr/packet.c', ] c_args += '-DDRIVER_PSVR' deps += dep_hidapi endif if _drivers.contains('vive') sources += [ 'src/drv_htc_vive/vive.c', 'src/drv_htc_vive/packet.c', 'src/ext_deps/nxjson.c', ] c_args += '-DDRIVER_HTC_VIVE' deps += dep_hidapi endif if _drivers.contains('nolo') sources += [ 'src/drv_nolo/nolo.c', 'src/drv_nolo/packet.c', ] c_args += '-DDRIVER_NOLO' deps += dep_hidapi endif if _drivers.contains('wmr') sources += [ 'src/drv_wmr/wmr.c', 'src/drv_wmr/packet.c', 'src/ext_deps/nxjson.c' ] c_args += '-DDRIVER_WMR' deps += dep_hidapi endif if _drivers.contains('xgvr') sources += [ 'src/drv_3glasses/xgvr.c', 'src/drv_3glasses/packet.c', ] c_args += '-DDRIVER_XGVR' deps += dep_hidapi endif if _drivers.contains('external') sources += [ 'src/drv_external/external.c', ] c_args += '-DDRIVER_EXTERNAL' endif if _drivers.contains('android') sources += [ 'src/drv_android/android.c', ] c_args += '-DDRIVER_ANDROID' endif openhmd_lib = library( 'openhmd', sources, include_directories: include_directories('./include'), c_args: c_args, dependencies: deps, install: true, version: library_version, ) # # Examples # _examples = get_option('examples') # Simple if _examples.contains('simple') deps = [dep_threads] simple_sources = [ 'examples/simple/simple.c', ] executable( 'openhmd_simple_example', simple_sources, include_directories: include_directories('./include'), link_with: [openhmd_lib], dependencies: deps, install: true, ) endif # OpenGL if _examples.contains('opengl') dep_sdl2 = dependency('sdl2') dep_gl = dependency('gl') dep_glew = dependency('glew') deps = [dep_sdl2, dep_gl, dep_glew, dep_threads] opengl_sources = [ 'examples/opengl/main.c', 'examples/opengl/gl.c', ] executable( 'openhmd_opengl_example', opengl_sources, include_directories: include_directories([ './include', 'examples/opengl' ]), link_with: [openhmd_lib], dependencies: deps, install: true, ) endif # # Install and pkg-config export file # desc = 'API and drivers for immersive technology devices such as HMDs' pkg = import('pkgconfig') pkg.generate( name: 'openhmd', description: desc, version: meson.project_version(), subdirs: 'openhmd', requires: hidapi, libraries: openhmd_lib, url: 'http://www.openhmd.net/', ) install_headers('include/openhmd.h', subdir: 'openhmd') OpenHMD-0.3.0/meson_options.txt000066400000000000000000000007701351206017700164070ustar00rootroot00000000000000option( 'examples', type: 'array', choices: [ 'simple', 'opengl', '', ], value: [ 'simple', ], ) option( 'drivers', type: 'array', choices: [ 'rift', 'deepoon', #'psvr', disabled for 0.3 'vive', 'nolo', 'wmr', 'xgvr', 'external', 'android', ], value: [ 'rift', 'deepoon', #'psvr', disabled for 0.3 'vive', 'nolo', 'wmr', 'xgvr', 'external', ], ) option( 'hidapi', type: 'combo', choices: [ 'auto', 'libusb', 'hidraw' ], value: 'auto', ) OpenHMD-0.3.0/pkg-config/000077500000000000000000000000001351206017700147725ustar00rootroot00000000000000OpenHMD-0.3.0/pkg-config/openhmd.pc.cmakein000066400000000000000000000004531351206017700203600ustar00rootroot00000000000000prefix=${CMAKE_INSTALL_PREFIX} libdir=$${PKG_CONFIG_INCLUDEDIR} includedir=${PKG_CONFIG_LIBDIR} Name: openhmd Description: API and drivers for immersive technology devices such as HMDs Version: 0.3.0 Requires: @hidapi@ Conflicts: Libs: -L${libdir} -lopenhmd @deps_ld_flags@ Cflags: -I${includedir} OpenHMD-0.3.0/pkg-config/openhmd.pc.in000066400000000000000000000004371351206017700173610ustar00rootroot00000000000000prefix=${pcfiledir}/../.. libdir=${prefix}/lib includedir=${prefix}/include/openhmd Name: openhmd Description: API and drivers for immersive technology devices such as HMDs Version: 0.3.0 Requires: @hidapi@ Conflicts: Libs: -L${libdir} -lopenhmd @deps_ld_flags@ Cflags: -I${includedir} OpenHMD-0.3.0/src/000077500000000000000000000000001351206017700135355ustar00rootroot00000000000000OpenHMD-0.3.0/src/Makefile.am000066400000000000000000000042251351206017700155740ustar00rootroot00000000000000AUTOMAKE_OPTIONS = subdir-objects library_includedir=$(includedir)/openhmd library_include_HEADERS = $(top_srcdir)/include/openhmd.h lib_LTLIBRARIES = libopenhmd.la libopenhmd_la_SOURCES = \ openhmd.c \ platform-win32.c \ drv_dummy/dummy.c \ omath.c \ platform-posix.c \ fusion.c \ shaders.c libopenhmd_la_LDFLAGS = -no-undefined -version-info $(LT_VERSION) libopenhmd_la_CPPFLAGS = -fPIC -I$(top_srcdir)/include -Wall if BUILD_DRIVER_OCULUS_RIFT libopenhmd_la_SOURCES += \ drv_oculus_rift/rift.c \ drv_oculus_rift/packet.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_OCULUS_RIFT libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_HTC_VIVE libopenhmd_la_SOURCES += \ drv_htc_vive/vive.c \ drv_htc_vive/packet.c \ ext_deps/nxjson.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_HTC_VIVE libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_DEEPOON libopenhmd_la_SOURCES += \ drv_deepoon/deepoon.c \ drv_deepoon/packet.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_DEEPOON libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_WMR libopenhmd_la_SOURCES += \ drv_wmr/wmr.c \ drv_wmr/packet.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_WMR libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_PSVR libopenhmd_la_SOURCES += \ drv_psvr/psvr.c \ drv_psvr/packet.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_PSVR libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_NOLO libopenhmd_la_SOURCES += \ drv_nolo/nolo.c \ drv_nolo/packet.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_NOLO libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_XGVR libopenhmd_la_SOURCES += \ drv_3glasses/xgvr.c \ drv_3glasses/packet.c libopenhmd_la_CPPFLAGS += $(hidapi_CFLAGS) -DDRIVER_XGVR libopenhmd_la_LDFLAGS += $(hidapi_LIBS) endif if BUILD_DRIVER_EXTERNAL libopenhmd_la_SOURCES += \ drv_external/external.c libopenhmd_la_CPPFLAGS += -DDRIVER_EXTERNAL endif if BUILD_DRIVER_ANDROID libopenhmd_la_SOURCES += \ drv_android/android.c libopenhmd_la_CPPFLAGS += -DDRIVER_ANDROID libopenhmd_la_LDFLAGS += -landroid endif libopenhmd_la_LDFLAGS += $(EXTRA_LD_FLAGS) OpenHMD-0.3.0/src/drv_3glasses/000077500000000000000000000000001351206017700161345ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_3glasses/packet.c000066400000000000000000000122251351206017700175510ustar00rootroot00000000000000/* *************************************************************************************************** * 3Glasses HMD Driver - Packet Decoding and Utilities * * File : packet.h * Author : Duncan Li (duncan.li@3glasses.com) * Douglas Xie (dongyang.xie@3glasses.com ) * Version: V1.0 * Date : 10-June-2018 *************************************************************************************************** * Copyright (C) 2018 VR Technology Holdings Limited. All rights reserved. * Website: www.3glasses.com www.vrshow.com *************************************************************************************************** */ #include #include #include "xgvr.h" #ifdef _MSC_VER #define inline __inline #endif typedef union { float fdata; unsigned long ldata; } float_long_t; inline static void float_to_byte(const float f, unsigned char *byte) { float_long_t fl; fl.fdata = f; byte[0] = (unsigned char)fl.ldata; byte[1] = (unsigned char)(fl.ldata >> 8); byte[2] = (unsigned char)(fl.ldata >> 16); byte[3] = (unsigned char)(fl.ldata >> 24); } inline static void byte_to_float(float *f, const unsigned char *byte) { float_long_t fl; fl.ldata = 0; fl.ldata = byte[3]; fl.ldata = (fl.ldata << 8) | byte[2]; fl.ldata = (fl.ldata << 8) | byte[1]; fl.ldata = (fl.ldata << 8) | byte[0]; *f = fl.fdata; } inline static uint8_t read_uint8(const unsigned char** buffer) { uint8_t ret = **buffer; *buffer += 1; return ret; } inline static uint16_t read_uint16(const unsigned char** buffer) { uint16_t ret = **buffer | (*(*buffer + 1) << 8); *buffer += 2; return ret; } inline static int16_t read_int16(const unsigned char** buffer) { int16_t ret = **buffer | (*(*buffer + 1) << 8); *buffer += 2; return ret; } inline static uint32_t read_uint32(const unsigned char** buffer) { uint32_t ret = **buffer | (*(*buffer + 1) << 8) | (*(*buffer + 2) << 16) | (*(*buffer + 3) << 24); *buffer += 4; return ret; } inline static int32_t read_int32(const unsigned char** buffer) { int32_t ret = **buffer | (*(*buffer + 1) << 8) | (*(*buffer + 2) << 16) | (*(*buffer + 3) << 24); *buffer += 4; return ret; } inline static float read_float(const unsigned char** buffer) { float ret = 0; byte_to_float(&ret, *buffer); *buffer += 4; return ret; } static inline void _quat_norm(float *in, float *out) { double m = sqrt(in[0] * in[0] + in[1] * in[1] + in[2] * in[2] + in[3] * in[3]); out[0] = in[0] / m; out[1] = in[1] / m; out[2] = in[2] / m; out[3] = in[3] / m; } static inline void _quat_mul(float *in1, float *in2, float *out) { out[0] = in1[0] * in2[3] + in1[1] * in2[2] - in1[2] * in2[1] + in1[3] * in2[0]; out[1] = -in1[0] * in2[2] + in1[1] * in2[3] + in1[2] * in2[0] + in1[3] * in2[1]; out[2] = in1[0] * in2[1] - in1[1] * in2[0] + in1[2] * in2[3] + in1[3] * in2[2]; out[3] = -in1[0] * in2[0] - in1[1] * in2[1] - in1[2] * in2[2] + in1[3] * in2[3]; _quat_norm(out, out); } static inline void _quat_inv(float *in, float *out) { float _buf[4]; _quat_norm(in, _buf); out[0] = -_buf[0]; out[1] = -_buf[1]; out[2] = -_buf[2]; out[3] = _buf[3]; } static void _hmd_v2_quat_rotate(float *in, float *out) { float _buf[4] = {0, 0.70710678118, 0, 0.70710678118}; float _buf2[4]; _quat_mul(in, _buf, _buf2); out[0] = -_buf2[1]; // x out[1] = _buf2[2]; // y out[2] = -_buf2[0]; // z out[3] = _buf2[3]; // w } int xgvr_decode_version_packet(const unsigned char* buffer, int size, uint8_t *bootloader_version_major, uint8_t *bootloader_version_minor, uint8_t *runtime_version_major, uint8_t *runtime_version_minor) { if (size != 8) { LOGE("invalid 3glasses version packet size (expected 8 but got %d)", size); return -1; } // skip report_id read_uint8(&buffer); *bootloader_version_major = read_uint8(&buffer); *bootloader_version_minor = read_uint8(&buffer); *runtime_version_major = read_uint8(&buffer); *runtime_version_minor = read_uint8(&buffer); return 0; } int xgvr_decode_hmd_data_packet(const unsigned char* buffer, int size, xgvr_hmd_data_t *data) { uint8_t i = 0; float quat[4]; if (size != 64) { LOGE("invalid 3glasses message revd packet size (expected 64 but got %d)", size); return -1; } // skip Report ID, 1Byte buffer += 1; data->panel_status = read_uint8(&buffer); data->timestamp = read_uint16(&buffer); data->temperature = read_uint8(&buffer); // skip IPD, 1Byte buffer += 1; // skip pad, 4Byte align buffer += 2; for (i = 0; i < 4; i++) { quat[i] = read_float(&buffer); } _hmd_v2_quat_rotate(quat, data->quat); for (i = 0; i < 3; i++) { data->acc[i] = read_float(&buffer); } for (i = 0; i < 3; i++) { data->gyr[i] = read_float(&buffer); } for (i = 0; i < 3; i++) { data->mag[i] = read_float(&buffer); } data->touch[0] = read_uint8(&buffer); data->touch[1] = read_uint8(&buffer); data->als = read_uint8(&buffer); data->button = read_uint8(&buffer); return 0; } OpenHMD-0.3.0/src/drv_3glasses/xgvr.c000066400000000000000000000225521351206017700172740ustar00rootroot00000000000000/* *************************************************************************************************** * 3Glasses HMD Driver - HID/USB Driver Implementation * * File : xgvr.c * Author : Duncan Li (duncan.li@3glasses.com) * Douglas Xie (dongyang.xie@3glasses.com ) * Version: V1.0 * Date : 10-June-2018 *************************************************************************************************** * Copyright (C) 2018 VR Technology Holdings Limited. All rights reserved. * Website: www.3glasses.com www.vrshow.com *************************************************************************************************** */ #include #include #include #include #include #include #include "xgvr.h" #include "../hid.h" /* 3Glasses SKU id */ #define PLATFORM_SKU_D3V1_M41V2 0 #define PLATFORM_SKU_D3V2_M42V3 1 #define PLATFORM_SKU_D3C_M3V3 2 #define PLATFORM_SKU_D2C_M3V3 3 #define PLATFORM_SKU_S1_V5 4 #define PLATFORM_SKU_S1_V8 5 /* 3Glasses feature report id */ #define FEATURE_BUFFER_SIZE 256 #define FEATURE_SENSOR_ID 0x83 #define FEATURE_COMMAND_REPORT_ID 0x06 typedef struct { uint16_t usb_vid; uint16_t usb_pid; char *desc; int sku; } xgvr_platform_sku_t; xgvr_platform_sku_t platform_sku[] = { { 0x2b1c, 0x0200, "3Glasses-D3V1", PLATFORM_SKU_D3V1_M41V2, }, { 0x2b1c, 0x0201, "3Glasses-D3V2", PLATFORM_SKU_D3V2_M42V3, }, { 0x2b1c, 0x0202, "3Glasses-D3C", PLATFORM_SKU_D3C_M3V3, }, { 0x2b1c, 0x0203, "3Glasses-D2C", PLATFORM_SKU_D2C_M3V3, }, { 0x2b1c, 0x0100, "3Glasses-S1V5", PLATFORM_SKU_S1_V5, }, { 0x2b1c, 0x0101, "3Glasses-S1V8", PLATFORM_SKU_S1_V8, }, }; typedef struct { ohmd_device device; hid_device* hid_handle; int sku; xgvr_hmd_data_t hmd_data; struct { uint8_t bootloader_version_major; uint8_t bootloader_version_minor; uint8_t runtime_version_major; uint8_t runtime_version_minor; } version; } xgvr_priv; static xgvr_priv* _xgvr_priv_get(ohmd_device* device) { return (xgvr_priv*)device; } static int _get_feature_report(xgvr_priv* priv, unsigned char report_id, unsigned char* buf) { memset(buf, 0, FEATURE_BUFFER_SIZE); buf[0] = report_id; return hid_get_feature_report(priv->hid_handle, buf, FEATURE_BUFFER_SIZE); } static int _send_feature_report(xgvr_priv* priv, const unsigned char *data, size_t length) { return hid_send_feature_report(priv->hid_handle, data, length); } static void _priv_update_firmware_version(xgvr_priv* priv) { unsigned char buf[FEATURE_BUFFER_SIZE]; int size; size = _get_feature_report(priv, FEATURE_COMMAND_REPORT_ID, buf); if (size <= 0) { LOGE("error reading firmware version"); } else { xgvr_decode_version_packet(buf, size, &priv->version.bootloader_version_major, &priv->version.bootloader_version_minor, &priv->version.runtime_version_major, &priv->version.runtime_version_minor); LOGD("Version Report: 3Glasses HMD"); LOGD(" bootloader version: %d.%02d", priv->version.bootloader_version_major, priv->version.bootloader_version_minor); LOGD(" runtime version : %d.%02d", priv->version.runtime_version_major, priv->version.runtime_version_minor); } } static void _priv_update_properties(xgvr_priv* priv) { // TODO: update the device properties for d3 series priv->device.properties.hsize = 0.120960f; priv->device.properties.vsize = 0.068040f; priv->device.properties.hres = 2560; priv->device.properties.vres = 1440; priv->device.properties.lens_sep = 0.063000f; priv->device.properties.lens_vpos = priv->device.properties.vsize / 2; priv->device.properties.fov = DEG_TO_RAD(111.435f); priv->device.properties.ratio = (priv->device.properties.hres / 2.0f) / priv->device.properties.vres; // Some buttons and axes priv->device.properties.control_count = 3; priv->device.properties.controls_hints[0] = OHMD_MENU; // button bit 0 priv->device.properties.controls_hints[1] = OHMD_HOME; // button bit 1 priv->device.properties.controls_hints[2] = OHMD_TRIGGER; // proxmity priv->device.properties.controls_types[0] = OHMD_DIGITAL; priv->device.properties.controls_types[1] = OHMD_DIGITAL; priv->device.properties.controls_types[2] = OHMD_DIGITAL; //setup generic distortion coeffs, from hand-calibration ohmd_set_universal_distortion_k(&(priv->device.properties), 0.75239515, -0.84751135, 0.42455423, 0.66200626); ohmd_set_universal_aberration_k(&(priv->device.properties), 1.0, 1.0, 1.0); } static void _update_device(ohmd_device* device) { int size = 0; unsigned char buffer[FEATURE_BUFFER_SIZE]; xgvr_priv* priv = _xgvr_priv_get(device); while ((size = hid_read(priv->hid_handle, buffer, FEATURE_BUFFER_SIZE)) > 0) { if (buffer[0] == FEATURE_SENSOR_ID) { xgvr_decode_hmd_data_packet(buffer, size, &priv->hmd_data); } else { LOGE("unknown message type: %u", buffer[0]); } } if (size < 0) { LOGE("error reading from device"); } } static int _getf(ohmd_device* device, ohmd_float_value type, float* out) { xgvr_priv* priv = _xgvr_priv_get(device); switch (type) { case OHMD_ROTATION_QUAT: *(quatf*)out = *(quatf*)&priv->hmd_data.quat; break; case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; case OHMD_DISTORTION_K: // TODO this should be set to the equivalent of no distortion memset(out, 0, sizeof(float) * 6); break; case OHMD_CONTROLS_STATE: out[0] = priv->hmd_data.button & 0x01; out[1] = priv->hmd_data.button & 0x02; out[2] = priv->hmd_data.als; break; default: ohmd_set_error(priv->device.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void _close_device(ohmd_device* device) { LOGD("closing device"); xgvr_priv* priv = _xgvr_priv_get(device); hid_close(priv->hid_handle); free(priv); } #define UDEV_WIKI_URL "https://github.com/OpenHMD/OpenHMD/wiki/Udev-rules-list" static ohmd_device* _open_device(ohmd_driver* driver, ohmd_device_desc* desc) { xgvr_priv* priv = ohmd_alloc(driver->ctx, sizeof(xgvr_priv)); if (!priv) goto cleanup; priv->device.ctx = driver->ctx; // Open the HID device priv->hid_handle = hid_open_path(desc->path); if (!priv->hid_handle) { char* path = _hid_to_unix_path(desc->path); ohmd_set_error(driver->ctx, "Could not open %s.\n" "Check your permissions: " UDEV_WIKI_URL, path); free(path); goto cleanup; } if (hid_set_nonblocking(priv->hid_handle, 1) == -1) { ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } // Set default device properties ohmd_set_default_device_properties(&priv->device.properties); if ((priv->sku == PLATFORM_SKU_D3V1_M41V2) || (priv->sku == PLATFORM_SKU_D3V2_M42V3) || (priv->sku == PLATFORM_SKU_D3C_M3V3) || (priv->sku == PLATFORM_SKU_D2C_M3V3)) { _priv_update_firmware_version(priv); _priv_update_properties(priv); priv->device.update = _update_device; priv->device.close = _close_device; priv->device.getf = _getf; priv->device.settings.automatic_update = 0; } else if ((priv->sku == PLATFORM_SKU_S1_V5) || (priv->sku == PLATFORM_SKU_S1_V8)) { // TODO } else { LOGE("unknown sku id: %04x", priv->sku); } // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->device.properties); return &priv->device; cleanup: if (priv) free(priv); return NULL; } static void _get_device_list(ohmd_driver* driver, ohmd_device_list* list) { int i; // enumerate HID devices and add any 3Glasses HMD found to the device list for (i = 0; i < sizeof(platform_sku) / sizeof(xgvr_platform_sku_t); i++) { struct hid_device_info* devs = hid_enumerate(platform_sku[i].usb_vid, platform_sku[i].usb_pid); struct hid_device_info* cur_dev = devs; if (devs == NULL) continue; while (cur_dev) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD 3Glasses Driver"); strcpy(desc->vendor, "3Glasses"); strcpy(desc->product, platform_sku[i].desc); desc->id = platform_sku[i].sku; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; strcpy(desc->path, cur_dev->path); desc->driver_ptr = driver; cur_dev = cur_dev->next; } hid_free_enumeration(devs); } } static void _destroy_driver(ohmd_driver* drv) { LOGD("shutting down 3Glasses driver"); hid_exit(); free(drv); } ohmd_driver* ohmd_create_xgvr_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if (drv == NULL) return NULL; drv->get_device_list = _get_device_list; drv->open_device = _open_device; drv->destroy = _destroy_driver; drv->ctx = ctx; return drv; } OpenHMD-0.3.0/src/drv_3glasses/xgvr.h000066400000000000000000000026311351206017700172750ustar00rootroot00000000000000/* *************************************************************************************************** * 3Glasses HMD Driver - Internal Interface * * File : xgvr.h * Author : Duncan Li (duncan.li@3glasses.com) * Douglas Xie (dongyang.xie@3glasses.com ) * Version: V1.0 * Date : 10-June-2018 *************************************************************************************************** * Copyright (C) 2018 VR Technology Holdings Limited. All rights reserved. * Website: www.3glasses.com www.vrshow.com *************************************************************************************************** */ #ifndef XGVR_H #define XGVR_H #include #include "../openhmdi.h" typedef struct { float acc[3]; float gyr[3]; float mag[3]; float quat[4]; uint16_t timestamp; uint8_t temperature; uint8_t panel_status; // 0 for init, 1 for suspend, 2 for run. uint8_t als; // 0 for open, 1 for close uint8_t button; // 0 for open, 1 for pressed uint8_t touch[2]; // not support. } xgvr_hmd_data_t; int xgvr_decode_version_packet(const unsigned char* buffer, int size, uint8_t *bootloader_version_major, uint8_t *bootloader_version_minor, uint8_t *runtime_version_major, uint8_t *runtime_version_minor); int xgvr_decode_hmd_data_packet(const unsigned char* buffer, int size, xgvr_hmd_data_t *data); #endif OpenHMD-0.3.0/src/drv_android/000077500000000000000000000000001351206017700160305ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_android/android.c000066400000000000000000000236421351206017700176230ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2015, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Android Driver */ #include "android.h" #ifdef __ANDROID__ #include #endif // __ANDROID__ typedef struct { ohmd_device base; fusion sensor_fusion; //Android specific #ifdef __ANDROID__ ASensorManager* sensorManager; const ASensor* accelerometerSensor; const ASensor* gyroscopeSensor; ASensorEventQueue* sensorEventQueue; AAssetManager* assetMgr; short firstRun; #endif } android_priv; //Forward decelerations static void set_android_properties(ohmd_device* device, ohmd_device_properties* props); static void nofusion_init(fusion* me); static void nofusion_update(fusion* me, float dt, const vec3f* accel); //Static variable for timeDelta; static float timestamp; //Android callback for the sensor event queue static int android_sensor_callback(int fd, int events, void* data) { android_priv* priv = (android_priv*)data; if (priv->accelerometerSensor != NULL) { ASensorEvent event; vec3f gyro; vec3f accel; vec3f mag; float lastevent_timestamp; while (ASensorEventQueue_getEvents(priv->sensorEventQueue, &event, 1) > 0) { if (event.type == ASENSOR_TYPE_ACCELEROMETER) { accel.x = event.acceleration.y; accel.y = -event.acceleration.x; accel.z = event.acceleration.z; } if (event.type == ASENSOR_TYPE_GYROSCOPE) { gyro.x = -event.data[1]; gyro.y = event.data[0]; gyro.z = event.data[2]; } ///TODO: Implement mag when available mag.x = 0.0f; mag.y = 0.0f; mag.z = 0.0f; lastevent_timestamp = event.timestamp; } //apply data to the fusion float dT = 0.0f; if (timestamp != 0) dT= (lastevent_timestamp - timestamp) * (1.0f / 1000000000.0f); //Check if accelerometer only fallback is required if (!priv->gyroscopeSensor) nofusion_update(&priv->sensor_fusion, dT, &accel); else ofusion_update(&priv->sensor_fusion, dT, &gyro, &accel, &mag); //default timestamp = lastevent_timestamp; } return 1; } static void update_device(ohmd_device* device) { android_priv* priv = (android_priv*)device; ALooper* looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS); //We need this since during init the android_app state is not set yet if (priv->firstRun == 1) { priv->sensorEventQueue = ASensorManager_createEventQueue(priv->sensorManager, looper, ALOOPER_POLL_CALLBACK, android_sensor_callback, (void*)priv); // Start sensors in case this was not done already. if (priv->accelerometerSensor != NULL) { ASensorEventQueue_enableSensor(priv->sensorEventQueue, priv->accelerometerSensor); // We'd like to get 60 events per second (in us). ASensorEventQueue_setEventRate(priv->sensorEventQueue, priv->accelerometerSensor, (1000L/60)*1000); } if (priv->gyroscopeSensor != NULL) { ASensorEventQueue_enableSensor(priv->sensorEventQueue, priv->gyroscopeSensor); // We'd like to get 60 events per second (in us). ASensorEventQueue_setEventRate(priv->sensorEventQueue, priv->gyroscopeSensor, (1000L/60)*1000); } priv->firstRun = 0; } ALooper_pollAll(0, NULL, NULL, NULL); } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { android_priv* priv = (android_priv*)device; switch(type){ case OHMD_ROTATION_QUAT: { if (!priv->gyroscopeSensor) *(quatf*)out = priv->sensor_fusion.orient; else { // 90° rotation to restore the standard frame quatf rotated = {-M_SQRT2 / 2, 0, 0, M_SQRT2 / 2}; oquatf_mult_me(&rotated, &priv->sensor_fusion.orient); *(quatf*)out = rotated; } break; } case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; case OHMD_DISTORTION_K: // TODO this should be set to the equivalent of no distortion memset(out, 0, sizeof(float) * 6); break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%d)", type); return -1; break; } return 0; } static int set_data(ohmd_device* device, ohmd_data_value type, void* in) { android_priv* priv = (android_priv*)device; switch(type){ case OHMD_DRIVER_PROPERTIES: { set_android_properties(device, (ohmd_device_properties*)in); break; } default: ohmd_set_error(priv->base.ctx, "invalid type given to set_data (%i)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { LOGD("closing Android device"); free(device); } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { android_priv* priv = ohmd_alloc(driver->ctx, sizeof(android_priv)); if(!priv) return NULL; // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties //TODO: Get information from android about device //TODO: Use profile string to set default for a particular device (Durovis, VR One etc) priv->base.properties.hsize = 0.149760f; priv->base.properties.vsize = 0.093600f; priv->base.properties.hres = 1280; priv->base.properties.vres = 800; priv->base.properties.lens_sep = 0.063500f; priv->base.properties.lens_vpos = 0.046800f; priv->base.properties.fov = DEG_TO_RAD(125.5144f); priv->base.properties.ratio = (1280.0f / 800.0f) / 2.0f; // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; priv->base.set_data = set_data; //init Android sensors priv->sensorManager = ASensorManager_getInstance(); priv->accelerometerSensor = ASensorManager_getDefaultSensor(priv->sensorManager, ASENSOR_TYPE_ACCELEROMETER); priv->gyroscopeSensor = ASensorManager_getDefaultSensor(priv->sensorManager, ASENSOR_TYPE_GYROSCOPE); priv->firstRun = 1; //need this since ASensorManager_createEventQueue requires a set android_app* //Check if accelerometer only fallback is required if (!priv->gyroscopeSensor) nofusion_init(&priv->sensor_fusion); else { ofusion_init(&priv->sensor_fusion); //Default when all sensors are available priv->sensor_fusion.flags = 0; // Disable the gravity } return (ohmd_device*)priv; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Generic Android Driver"); strcpy(desc->vendor, "OpenHMD"); strcpy(desc->product, "Android Device"); strcpy(desc->path, "(none)"); desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; desc->driver_ptr = driver; } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down Android driver"); free(drv); } ohmd_driver* ohmd_create_android_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(!drv) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } /* Android specific functions */ static void nofusion_update(fusion* me, float dt, const vec3f* accel) { //avg raw accel data to smooth jitter, and normalise ofq_add(&me->accel_fq, accel); vec3f accel_mean; ofq_get_mean(&me->accel_fq, &accel_mean); vec3f acc_n = accel_mean; ovec3f_normalize_me(&acc_n); //reference vectors for axis-angle vec3f xyzv[3] = { {1,0,0}, {0,1,0}, {0,0,1} }; quatf roll, pitch; //pitch is rot around x, based on gravity in z and y axes oquatf_init_axis(&pitch, xyzv+0, atan2f(-acc_n.z, -acc_n.y)); //roll is rot around z, based on gravity in x and y axes //note we need to invert the values when the device is upside down (y < 0) for proper results oquatf_init_axis(&roll, xyzv+2, acc_n.y < 0 ? atan2f(-acc_n.x, -acc_n.y) : atan2f(acc_n.x, acc_n.y)); quatf or = {0,0,0,1}; //order of applying is yaw-pitch-roll //yaw is not possible using only accel oquatf_mult_me(&or, &pitch); oquatf_mult_me(&or, &roll); me->orient = or; } //shorter buffers for frame smoothing static void nofusion_init(fusion* me) { memset(me, 0, sizeof(fusion)); me->orient.w = 1.0f; ofq_init(&me->mag_fq, 10); ofq_init(&me->accel_fq, 10); ofq_init(&me->ang_vel_fq, 10); me->flags = FF_USE_GRAVITY; me->grav_gain = 0.05f; } static void set_android_properties(ohmd_device* device, ohmd_device_properties* props) { android_priv* priv = (android_priv*)device; priv->base.properties.hsize = props->hsize; priv->base.properties.vsize = props->vsize; priv->base.properties.hres = props->hres; priv->base.properties.vres = props->vres; priv->base.properties.lens_sep = props->lens_sep; priv->base.properties.lens_vpos = props->lens_vpos; priv->base.properties.fov = DEG_TO_RAD(props->fov); priv->base.properties.ratio = props->ratio; } static void set_android_profile(ohmd_driver* driver, android_hmd_profile profile) { switch(profile){ case DROID_DUROVIS_OPEN_DIVE: break; case DROID_DUROVIS_DIVE_5: break; case DROID_DUROVIS_DIVE_7: break; case DROID_CARL_ZEISS_VRONE: break; case DROID_GOOGLE_CARDBOARD: break; case DROID_NONE: default: break; } } OpenHMD-0.3.0/src/drv_android/android.h000066400000000000000000000015311351206017700176210ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2015, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Android Driver */ #ifndef ANDROID_H #define ANDROID_H #include "../openhmdi.h" typedef enum { DROID_DUROVIS_OPEN_DIVE = 1, DROID_DUROVIS_DIVE_5 = 2, DROID_DUROVIS_DIVE_7 = 3, DROID_CARL_ZEISS_VRONE = 4, DROID_GOOGLE_CARDBOARD = 5, DROID_NONE = 0, } android_hmd_profile; //Android copy-paste from android_native_app_glue to be able to cast data to something useful #include #include #include #include #include #include struct android_app; #endif // ANDROID_H OpenHMD-0.3.0/src/drv_deepoon/000077500000000000000000000000001351206017700160415ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_deepoon/deepoon.c000066400000000000000000000215211351206017700176370ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Deepoon Driver - HID/USB Driver Implementation */ #include #include #include #include #include #include #include "deepoon.h" #include "../hid.h" #define TICK_LEN (1.0f / 1000000.0f) // 1000 Hz ticks #define KEEP_ALIVE_VALUE (10 * 1000) #define SETFLAG(_s, _flag, _val) (_s) = ((_s) & ~(_flag)) | ((_val) ? (_flag) : 0) #define DEEPOON_ID 0x0483 #define DEEPOON_HMD 0x5750 typedef struct { ohmd_device base; hid_device* handle; pkt_sensor_range sensor_range; pkt_sensor_display_info display_info; rift_coordinate_frame coordinate_frame, hw_coordinate_frame; pkt_sensor_config sensor_config; pkt_tracker_sensor sensor; double last_keep_alive; fusion sensor_fusion; vec3f raw_mag, raw_accel, raw_gyro; } rift_priv; static rift_priv* rift_priv_get(ohmd_device* device) { return (rift_priv*)device; } static int get_feature_report(rift_priv* priv, rift_sensor_feature_cmd cmd, unsigned char* buf) { memset(buf, 0, FEATURE_BUFFER_SIZE); buf[0] = (unsigned char)cmd; return hid_get_feature_report(priv->handle, buf, FEATURE_BUFFER_SIZE); } static int send_feature_report(rift_priv* priv, const unsigned char *data, size_t length) { return hid_send_feature_report(priv->handle, data, length); } static void set_coordinate_frame(rift_priv* priv, rift_coordinate_frame coordframe) { priv->coordinate_frame = coordframe; // set the RIFT_SCF_SENSOR_COORDINATES in the sensor config to match whether coordframe is hmd or sensor SETFLAG(priv->sensor_config.flags, RIFT_SCF_SENSOR_COORDINATES, coordframe == RIFT_CF_SENSOR); // encode send the new config to the Rift unsigned char buf[FEATURE_BUFFER_SIZE]; int size = dp_encode_sensor_config(buf, &priv->sensor_config); if(send_feature_report(priv, buf, size) == -1){ ohmd_set_error(priv->base.ctx, "send_feature_report failed in set_coordinate frame"); return; } // read the state again, set the hw_coordinate_frame to match what // the hardware actually is set to just incase it doesn't stick. size = get_feature_report(priv, RIFT_CMD_SENSOR_CONFIG, buf); if(size <= 0){ LOGW("could not set coordinate frame"); priv->hw_coordinate_frame = RIFT_CF_HMD; return; } priv->hw_coordinate_frame = (priv->sensor_config.flags & RIFT_SCF_SENSOR_COORDINATES) ? RIFT_CF_SENSOR : RIFT_CF_HMD; if(priv->hw_coordinate_frame != coordframe) { LOGW("coordinate frame didn't stick"); } } static void handle_tracker_sensor_msg(rift_priv* priv, unsigned char* buffer, int size) { uint32_t last_sample_tick = priv->sensor.tick; if(!dp_decode_tracker_sensor_msg(&priv->sensor, buffer, size)){ LOGE("couldn't decode tracker sensor message"); } pkt_tracker_sensor* s = &priv->sensor; dp_dump_packet_tracker_sensor(s); uint32_t tick_delta = 1000; if(last_sample_tick > 0) //startup correction tick_delta = s->tick - last_sample_tick; float dt = tick_delta * TICK_LEN; vec3f mag = {{0.0f, 0.0f, 0.0f}}; for(int i = 0; i < 1; i++){ //just use 1 sample since we don't have sample order for this frame vec3f_from_dp_vec(s->samples[i].accel, &priv->raw_accel); vec3f_from_dp_vec(s->samples[i].gyro, &priv->raw_gyro); ofusion_update(&priv->sensor_fusion, dt, &priv->raw_gyro, &priv->raw_accel, &mag); // reset dt to tick_len for the last samples if there were more than one sample dt = TICK_LEN; } } static void update_device(ohmd_device* device) { rift_priv* priv = rift_priv_get(device); unsigned char buffer[FEATURE_BUFFER_SIZE]; // Handle keep alive messages double t = ohmd_get_tick(); if(t - priv->last_keep_alive >= (double)priv->sensor_config.keep_alive_interval / 1000.0 - .2){ // send keep alive message pkt_keep_alive keep_alive = { 0, priv->sensor_config.keep_alive_interval }; int ka_size = dp_encode_keep_alive(buffer, &keep_alive); send_feature_report(priv, buffer, ka_size); // Update the time of the last keep alive we have sent. priv->last_keep_alive = t; } // Read all the messages from the device. while(true){ int size = hid_read(priv->handle, buffer, FEATURE_BUFFER_SIZE); if(size < 0){ LOGE("error reading from device"); return; } else if(size == 0) { return; // No more messages, return. } // currently the only message type the hardware supports (I think) if(buffer[0] == RIFT_IRQ_SENSORS || buffer[0] == 11){ handle_tracker_sensor_msg(priv, buffer, size); }else{ LOGE("unknown message type: %u", buffer[0]); } } } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { rift_priv* priv = rift_priv_get(device); switch(type){ case OHMD_DISTORTION_K: { for (int i = 0; i < 6; i++) { out[i] = priv->display_info.distortion_k[i]; } break; } case OHMD_ROTATION_QUAT: { *(quatf*)out = priv->sensor_fusion.orient; break; } case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { LOGD("closing device"); rift_priv* priv = rift_priv_get(device); hid_close(priv->handle); free(priv); } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { rift_priv* priv = ohmd_alloc(driver->ctx, sizeof(rift_priv)); if(!priv) goto cleanup; priv->base.ctx = driver->ctx; // Open the HID device priv->handle = hid_open_path(desc->path); if(!priv->handle) { char* path = _hid_to_unix_path(desc->path); ohmd_set_error(driver->ctx, "Could not open %s. " "Check your rights.", path); free(path); goto cleanup; } if(hid_set_nonblocking(priv->handle, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } unsigned char buf[FEATURE_BUFFER_SIZE]; int size; // if the sensor has display info data, use HMD coordinate frame priv->coordinate_frame = priv->display_info.distortion_type != RIFT_DT_NONE ? RIFT_CF_HMD : RIFT_CF_SENSOR; // enable calibration SETFLAG(priv->sensor_config.flags, RIFT_SCF_USE_CALIBRATION, 1); SETFLAG(priv->sensor_config.flags, RIFT_SCF_AUTO_CALIBRATION, 1); // apply sensor config set_coordinate_frame(priv, priv->coordinate_frame); // set keep alive interval to n seconds pkt_keep_alive keep_alive = { 0, KEEP_ALIVE_VALUE }; size = dp_encode_keep_alive(buf, &keep_alive); send_feature_report(priv, buf, size); // Update the time of the last keep alive we have sent. priv->last_keep_alive = ohmd_get_tick(); // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties //NOTE: These values are estimations, no one has taken one apart to check priv->base.properties.hsize = 0.1698f; priv->base.properties.vsize = 0.0936f; priv->base.properties.hres = 1920; priv->base.properties.vres = 1080; priv->base.properties.lens_sep = 0.0849f; priv->base.properties.lens_vpos = 0.0468f; priv->base.properties.fov = DEG_TO_RAD(110.0); // TODO calculate. priv->base.properties.ratio = ((float)1920 / (float)1080) / 2.0f; // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; // initialize sensor fusion ofusion_init(&priv->sensor_fusion); return &priv->base; cleanup: if(priv) free(priv); return NULL; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { struct hid_device_info* devs = hid_enumerate(DEEPOON_ID, DEEPOON_HMD); struct hid_device_info* cur_dev = devs; while (cur_dev) { // This is needed because DeePoon share USB IDs with the Nolo. if (wcscmp(cur_dev->manufacturer_string, L"DeePoon VR, Inc.")==0 && wcscmp(cur_dev->product_string, L"DeePoon Tracker Device")==0) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "Deepoon Driver"); strcpy(desc->vendor, "Deepoon"); strcpy(desc->product, "Deepoon E2"); desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; desc->revision = 0; strcpy(desc->path, cur_dev->path); desc->driver_ptr = driver; } cur_dev = cur_dev->next; } hid_free_enumeration(devs); } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down driver"); hid_exit(); free(drv); } ohmd_driver* ohmd_create_deepoon_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(drv == NULL) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->ctx = ctx; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; return drv; } OpenHMD-0.3.0/src/drv_deepoon/deepoon.h000066400000000000000000000054531351206017700176520ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Deepoon Driver Internal Interface */ #ifndef DEEPOON_H #define DEEPOON_H #include "../openhmdi.h" #define FEATURE_BUFFER_SIZE 256 typedef enum { RIFT_CMD_SENSOR_CONFIG = 2, RIFT_CMD_RANGE = 4, RIFT_CMD_KEEP_ALIVE = 8, RIFT_CMD_DISPLAY_INFO = 9 } rift_sensor_feature_cmd; typedef enum { RIFT_CF_SENSOR, RIFT_CF_HMD } rift_coordinate_frame; typedef enum { RIFT_IRQ_SENSORS = 1 } rift_irq_cmd; typedef enum { RIFT_DT_NONE, RIFT_DT_SCREEN_ONLY, RIFT_DT_DISTORTION } rift_distortion_type; // Sensor config flags #define RIFT_SCF_RAW_MODE 0x01 #define RIFT_SCF_CALIBRATION_TEST 0x02 #define RIFT_SCF_USE_CALIBRATION 0x04 #define RIFT_SCF_AUTO_CALIBRATION 0x08 #define RIFT_SCF_MOTION_KEEP_ALIVE 0x10 #define RIFT_SCF_COMMAND_KEEP_ALIVE 0x20 #define RIFT_SCF_SENSOR_COORDINATES 0x40 typedef struct { uint16_t command_id; uint16_t accel_scale; uint16_t gyro_scale; uint16_t mag_scale; } pkt_sensor_range; typedef struct { int32_t accel[3]; int32_t gyro[3]; } pkt_tracker_sample; typedef struct { uint8_t report_id; uint8_t sample_delta; uint16_t sample_number; uint32_t tick; pkt_tracker_sample samples[2]; int16_t mag[3]; } pkt_tracker_sensor; typedef struct { uint16_t command_id; uint8_t flags; uint16_t packet_interval; uint16_t keep_alive_interval; // in ms } pkt_sensor_config; typedef struct { uint16_t command_id; rift_distortion_type distortion_type; uint8_t distortion_type_opts; uint16_t h_resolution, v_resolution; float h_screen_size, v_screen_size; float v_center; float lens_separation; float eye_to_screen_distance[2]; float distortion_k[6]; } pkt_sensor_display_info; typedef struct { uint16_t command_id; uint16_t keep_alive_interval; } pkt_keep_alive; bool dp_decode_sensor_range(pkt_sensor_range* range, const unsigned char* buffer, int size); bool dp_decode_sensor_display_info(pkt_sensor_display_info* info, const unsigned char* buffer, int size); bool dp_decode_sensor_config(pkt_sensor_config* config, const unsigned char* buffer, int size); bool dp_decode_tracker_sensor_msg(pkt_tracker_sensor* msg, const unsigned char* buffer, int size); void vec3f_from_dp_vec(const int32_t* smp, vec3f* out_vec); int dp_encode_sensor_config(unsigned char* buffer, const pkt_sensor_config* config); int dp_encode_keep_alive(unsigned char* buffer, const pkt_keep_alive* keep_alive); void dp_dump_packet_sensor_range(const pkt_sensor_range* range); void dp_dump_packet_sensor_config(const pkt_sensor_config* config); void dp_dump_packet_sensor_display_info(const pkt_sensor_display_info* info); void dp_dump_packet_tracker_sensor(const pkt_tracker_sensor* sensor); #endif OpenHMD-0.3.0/src/drv_deepoon/packet.c000066400000000000000000000132531351206017700174600ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Deepoon Driver - Packet Decoding and Utilities */ #include #include "deepoon.h" #define SKIP_CMD (buffer++) #define READ8 *(buffer++); #define READ16 *buffer | (*(buffer + 1) << 8); buffer += 2; #define READ32 *buffer | (*(buffer + 1) << 8) | (*(buffer + 2) << 16) | (*(buffer + 3) << 24); buffer += 4; #define READFLOAT ((float)(*buffer)); buffer += 4; #define READFIXED (float)(*buffer | (*(buffer + 1) << 8) | (*(buffer + 2) << 16) | (*(buffer + 3) << 24)) / 1000000.0f; buffer += 4; #define WRITE8(_val) *(buffer++) = (_val); #define WRITE16(_val) WRITE8((_val) & 0xff); WRITE8(((_val) >> 8) & 0xff); #define WRITE32(_val) WRITE16((_val) & 0xffff) *buffer; WRITE16(((_val) >> 16) & 0xffff); bool dp_decodesensor_range(pkt_sensor_range* range, const unsigned char* buffer, int size) { if(!(size == 8 || size == 9)){ LOGE("invalid packet size (expected 8 or 9 but got %d)", size); return false; } SKIP_CMD; range->command_id = READ16; range->accel_scale = READ8; range->gyro_scale = READ16; range->mag_scale = READ16; return true; } bool dp_decodesensor_display_info(pkt_sensor_display_info* info, const unsigned char* buffer, int size) { if(!(size == 56 || size == 57)){ LOGE("invalid packet size (expected 56 or 57 but got %d)", size); //return false; } SKIP_CMD; info->command_id = READ16; info->distortion_type = READ8; info->h_resolution = READ16; info->v_resolution = READ16; info->h_screen_size = READFIXED; info->v_screen_size = READFIXED; info->v_center = READFIXED; info->lens_separation = READFIXED; info->eye_to_screen_distance[0] = READFIXED; info->eye_to_screen_distance[1] = READFIXED; info->distortion_type_opts = 0; for(int i = 0; i < 6; i++){ info->distortion_k[i] = READFLOAT; } return true; } bool dp_decodesensor_config(pkt_sensor_config* config, const unsigned char* buffer, int size) { if(!(size == 7 || size == 8)){ LOGE("invalid packet size (expected 7 or 8 but got %d)", size); return false; } SKIP_CMD; config->command_id = READ16; config->flags = READ8; config->packet_interval = READ8; config->keep_alive_interval = READ16; return true; } static void dp_decodesample(const unsigned char* buffer, int32_t* smp) { /* * Decode 3 tightly packed 21 bit values from 4 bytes. * We unpack them in the higher 21 bit values first and then shift * them down to the lower in order to get the sign bits correct. */ int x = (buffer[0] << 24) | (buffer[1] << 16) | ((buffer[2] & 0xF8) << 8); int y = ((buffer[2] & 0x07) << 29) | (buffer[3] << 21) | (buffer[4] << 13) | ((buffer[5] & 0xC0) << 5); int z = ((buffer[5] & 0x3F) << 26) | (buffer[6] << 18) | (buffer[7] << 10); smp[0] = x >> 11; smp[1] = y >> 11; smp[2] = z >> 11; } bool dp_decode_tracker_sensor_msg(pkt_tracker_sensor* msg, const unsigned char* buffer, int size) { if(!(size == 62 || size == 64)){ LOGE("invalid packet size (expected 62 or 64 but got %d)", size); return false; } msg->report_id = READ8; buffer += 2; msg->sample_delta = READ8; msg->sample_number = READ16; buffer += 2; msg->tick = READ32; for(int i = 0; i < 2; i++){ dp_decodesample(buffer, msg->samples[i].accel); buffer += 8; dp_decodesample(buffer, msg->samples[i].gyro); buffer += 8; } return true; } // TODO do we need to consider HMD vs sensor "centric" values void vec3f_from_dp_vec(const int32_t* smp, vec3f* out_vec) { out_vec->x = (float)smp[0] * 0.0001f; out_vec->y = ((float)smp[2] * 0.0001f) * -1; out_vec->z = (float)smp[1] * 0.0001f; } int dp_encode_sensor_config(unsigned char* buffer, const pkt_sensor_config* config) { WRITE8(RIFT_CMD_SENSOR_CONFIG); WRITE16(config->command_id); WRITE8(config->flags); WRITE8(config->packet_interval); WRITE16(config->keep_alive_interval); return 7; // sensor config packet size } int dp_encode_keep_alive(unsigned char* buffer, const pkt_keep_alive* keep_alive) { WRITE8(RIFT_CMD_KEEP_ALIVE); WRITE16(keep_alive->command_id); WRITE16(keep_alive->keep_alive_interval); return 5; // keep alive packet size } void dp_dump_packet_sensor_config(const pkt_sensor_config* config) { (void)config; LOGD("sensor config"); LOGD(" command id: %u", config->command_id); LOGD(" flags: %02x", config->flags); LOGD(" raw mode: %d", !!(config->flags & RIFT_SCF_RAW_MODE)); LOGD(" calibration test: %d", !!(config->flags & RIFT_SCF_CALIBRATION_TEST)); LOGD(" use calibration: %d", !!(config->flags & RIFT_SCF_USE_CALIBRATION)); LOGD(" auto calibration: %d", !!(config->flags & RIFT_SCF_AUTO_CALIBRATION)); LOGD(" motion keep alive: %d", !!(config->flags & RIFT_SCF_MOTION_KEEP_ALIVE)); LOGD(" motion command keep alive: %d", !!(config->flags & RIFT_SCF_COMMAND_KEEP_ALIVE)); LOGD(" sensor coordinates: %d", !!(config->flags & RIFT_SCF_SENSOR_COORDINATES)); LOGD(" packet interval: %u", config->packet_interval); LOGD(" keep alive interval: %u", config->keep_alive_interval); } void dp_dump_packet_tracker_sensor(const pkt_tracker_sensor* sensor) { (void)sensor; LOGD("TEST: deepoon sensor data"); LOGD(" report id: %u", sensor->report_id); LOGD(" sample delta: %u", sensor->sample_delta); LOGD(" sample number: %d", sensor->sample_number); LOGD(" tick: %u", sensor->tick); for(int i = 0; i < 2; i++){ LOGD(" accel: %d %d %d", sensor->samples[i].accel[0], sensor->samples[i].accel[1], sensor->samples[i].accel[2]); LOGD(" gyro: %d %d %d", sensor->samples[i].gyro[0], sensor->samples[i].gyro[1], sensor->samples[i].gyro[2]); } } OpenHMD-0.3.0/src/drv_dummy/000077500000000000000000000000001351206017700155435ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_dummy/dummy.c000066400000000000000000000110351351206017700170420ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2015, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Dummy Driver */ #include #include "../openhmdi.h" typedef struct { ohmd_device base; int id; } dummy_priv; static void update_device(ohmd_device* device) { } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { dummy_priv* priv = (dummy_priv*)device; switch(type){ case OHMD_ROTATION_QUAT: out[0] = out[1] = out[2] = 0; out[3] = 1.0f; break; case OHMD_POSITION_VECTOR: if(priv->id == 0){ // HMD out[0] = out[1] = out[2] = 0; } else if(priv->id == 1) { // Left Controller out[0] = -.5f; out[1] = out[2] = 0; } else { // Right Controller out[0] = .5f; out[1] = out[2] = 0; } break; case OHMD_DISTORTION_K: // TODO this should be set to the equivalent of no distortion memset(out, 0, sizeof(float) * 6); break; case OHMD_CONTROLS_STATE: out[0] = .1f; out[1] = 1.0f; break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return OHMD_S_INVALID_PARAMETER; break; } return OHMD_S_OK; } static void close_device(ohmd_device* device) { LOGD("closing dummy device"); free(device); } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { dummy_priv* priv = ohmd_alloc(driver->ctx, sizeof(dummy_priv)); if(!priv) return NULL; priv->id = desc->id; // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties (imitates the rift values) priv->base.properties.hsize = 0.149760f; priv->base.properties.vsize = 0.093600f; priv->base.properties.hres = 1280; priv->base.properties.vres = 800; priv->base.properties.lens_sep = 0.063500f; priv->base.properties.lens_vpos = 0.046800f; priv->base.properties.fov = DEG_TO_RAD(125.5144f); priv->base.properties.ratio = (1280.0f / 800.0f) / 2.0f; // Some buttons and axes priv->base.properties.control_count = 2; priv->base.properties.controls_hints[0] = OHMD_BUTTON_A; priv->base.properties.controls_hints[1] = OHMD_MENU; priv->base.properties.controls_types[0] = OHMD_ANALOG; priv->base.properties.controls_types[1] = OHMD_DIGITAL; // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; return (ohmd_device*)priv; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { int id = 0; ohmd_device_desc* desc; // HMD desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Null Driver"); strcpy(desc->vendor, "OpenHMD"); strcpy(desc->product, "HMD Null Device"); strcpy(desc->path, "(none)"); desc->driver_ptr = driver; desc->device_flags = OHMD_DEVICE_FLAGS_NULL_DEVICE | OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->id = id++; // Left Controller desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Null Driver"); strcpy(desc->vendor, "OpenHMD"); strcpy(desc->product, "Left Controller Null Device"); strcpy(desc->path, "(none)"); desc->driver_ptr = driver; desc->device_flags = OHMD_DEVICE_FLAGS_NULL_DEVICE | OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING | OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING | OHMD_DEVICE_FLAGS_LEFT_CONTROLLER; desc->device_class = OHMD_DEVICE_CLASS_CONTROLLER; desc->id = id++; // Right Controller desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Null Driver"); strcpy(desc->vendor, "OpenHMD"); strcpy(desc->product, "Right Controller Null Device"); strcpy(desc->path, "(none)"); desc->driver_ptr = driver; desc->device_flags = OHMD_DEVICE_FLAGS_NULL_DEVICE | OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING | OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING | OHMD_DEVICE_FLAGS_RIGHT_CONTROLLER; desc->device_class = OHMD_DEVICE_CLASS_CONTROLLER; desc->id = id++; } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down dummy driver"); free(drv); } ohmd_driver* ohmd_create_dummy_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(!drv) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; return drv; } OpenHMD-0.3.0/src/drv_external/000077500000000000000000000000001351206017700162325ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_external/external.c000066400000000000000000000075351351206017700202320ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2015, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* External Driver */ #include "../openhmdi.h" #include "string.h" typedef struct { ohmd_device base; fusion sensor_fusion; } external_priv; static void update_device(ohmd_device* device) { } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { external_priv* priv = (external_priv*)device; switch(type){ case OHMD_ROTATION_QUAT: { *(quatf*)out = priv->sensor_fusion.orient; break; } case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%d)", type); return -1; break; } return 0; } static int setf(ohmd_device* device, ohmd_float_value type, const float* in) { external_priv* priv = (external_priv*)device; switch(type){ case OHMD_EXTERNAL_SENSOR_FUSION: { ofusion_update(&priv->sensor_fusion, *in, (vec3f*)(in + 1), (vec3f*)(in + 4), (vec3f*)(in + 7)); } break; default: ohmd_set_error(priv->base.ctx, "invalid type given to setf (%d)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { LOGD("closing external device"); free(device); } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { external_priv* priv = ohmd_alloc(driver->ctx, sizeof(external_priv)); if(!priv) return NULL; // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties //TODO: Get information from external device using set_external_properties? //Using 'dummy' settings for now priv->base.properties.hsize = 0.149760f; priv->base.properties.vsize = 0.093600f; priv->base.properties.hres = 1280; priv->base.properties.vres = 800; priv->base.properties.lens_sep = 0.063500f; priv->base.properties.lens_vpos = 0.046800f; priv->base.properties.fov = DEG_TO_RAD(125.5144f); priv->base.properties.ratio = (1280.0f / 800.0f) / 2.0f; // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; priv->base.setf = setf; ofusion_init(&priv->sensor_fusion); return (ohmd_device*)priv; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Generic External Driver"); strcpy(desc->vendor, "OpenHMD"); strcpy(desc->product, "External Device"); strcpy(desc->path, "(none)"); desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING | OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING; desc->driver_ptr = driver; } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down external driver"); free(drv); } ohmd_driver* ohmd_create_external_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(!drv) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } /* external specific functions */ /*static void set_external_properties(ohmd_device* device, ohmd_device_properties* props) { external_priv* priv = (external_priv*)device; priv->base.properties.hsize = props->hsize; priv->base.properties.vsize = props->vsize; priv->base.properties.hres = props->hres; priv->base.properties.vres = props->vres; priv->base.properties.lens_sep = props->lens_sep; priv->base.properties.lens_vpos = props->lens_vpos; priv->base.properties.fov = DEG_TO_RAD(props->fov); priv->base.properties.ratio = props->ratio; }*/ OpenHMD-0.3.0/src/drv_htc_vive/000077500000000000000000000000001351206017700162175ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_htc_vive/magic.h000066400000000000000000000057301351206017700174550ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2013, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* HTC Vive Driver */ static const unsigned char vive_magic_power_on[64] = { 0x04, 0x78, 0x29, 0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0xa8, 0x0d, 0x76, 0x00, 0x40, 0xfc, 0x01, 0x05, 0xfa, 0xec, 0xd1, 0x6d, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa8, 0x0d, 0x76, 0x00, 0x68, 0xfc, 0x01, 0x05, 0x2c, 0xb0, 0x2e, 0x65, 0x7a, 0x0d, 0x76, 0x00, 0x68, 0x54, 0x72, 0x00, 0x18, 0x54, 0x72, 0x00, 0x00, 0x6a, 0x72, 0x00, 0x00, 0x00, 0x00, }; static const unsigned char vive_magic_power_off1[64] = { 0x04, 0x78, 0x29, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x30, 0x05, 0x77, 0x00, 0x30, 0x05, 0x77, 0x00, 0x6c, 0x4d, 0x37, 0x65, 0x40, 0xf9, 0x33, 0x00, 0x04, 0xf8, 0xa3, 0x04, 0x04, 0x00, 0x00, 0x00, 0x70, 0xb0, 0x72, 0x00, 0xf4, 0xf7, 0xa3, 0x04, 0x7c, 0xf8, 0x33, 0x00, 0x0c, 0xf8, 0xa3, 0x04, 0x0a, 0x6e, 0x29, 0x65, 0x24, 0xf9, 0x33, 0x00, 0x00, 0x00, 0x00, }; static const unsigned char vive_magic_power_off2[64] = { 0x04, 0x78, 0x29, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x30, 0x05, 0x77, 0x00, 0xe4, 0xf7, 0x33, 0x00, 0xe4, 0xf7, 0x33, 0x00, 0x60, 0x6e, 0x72, 0x00, 0xb4, 0xf7, 0x33, 0x00, 0x04, 0x00, 0x00, 0x00, 0x70, 0xb0, 0x72, 0x00, 0x90, 0xf7, 0x33, 0x00, 0x7c, 0xf8, 0x33, 0x00, 0xd0, 0xf7, 0x33, 0x00, 0x3c, 0x68, 0x29, 0x65, 0x24, 0xf9, 0x33, 0x00, 0x00, 0x00, 0x00, }; static const unsigned char vive_magic_enable_lighthouse[5] = { 0x04 }; static const unsigned char vive_pro_magic_power_on[64] = { 0x04, 0x78, 0x29, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static const unsigned char vive_pro_magic_power_off[64] = { 0x04, 0x78, 0x29, 0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static const unsigned char vive_pro_enable_imu[64] = { 0x83, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xe3, 0x38, 0x3e, 0x75, 0x7f, 0x00, 0x00, 0x90, 0x08, 0x04, 0x2c, 0x75, 0x7f, 0x00, 0x00, 0x10, 0x0e, 0x8c, 0x36, 0x75, 0x7f, 0x00, 0x00, 0x48, 0x6b, 0x00, 0x2c, 0x75, 0x7f, 0x00, 0x00, 0xf2, 0x49, 0x12, 0x3e, 0x75, 0x7f, 0x00, 0x00, 0x98, 0xe3, 0x38, 0x3e, 0x75, 0x7f, 0x00, 0x00, 0x08, 0x0e, 0x8c, 0x36, 0x75, 0x7f, 0x00, 0x00 }; OpenHMD-0.3.0/src/drv_htc_vive/packet.c000066400000000000000000000073771351206017700176500ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2013, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* HTC Vive Driver */ #include "vive.h" #include "../ext_deps/miniz.h" #include "../ext_deps/nxjson.h" #ifdef _MSC_VER #define inline __inline #endif inline static uint8_t read8(const unsigned char** buffer) { uint8_t ret = **buffer; *buffer += 1; return ret; } inline static int16_t read16(const unsigned char** buffer) { int16_t ret = **buffer | (*(*buffer + 1) << 8); *buffer += 2; return ret; } inline static uint32_t read32(const unsigned char** buffer) { uint32_t ret = **buffer | (*(*buffer + 1) << 8) | (*(*buffer + 2) << 16) | (*(*buffer + 3) << 24); *buffer += 4; return ret; } bool vive_decode_sensor_packet(vive_headset_imu_packet* pkt, const unsigned char* buffer, int size) { if(size != 52){ LOGE("invalid vive sensor packet size (expected 52 but got %d)", size); return false; } pkt->report_id = read8(&buffer); for(int j = 0; j < 3; j++){ // acceleration for(int i = 0; i < 3; i++){ pkt->samples[j].acc[i] = read16(&buffer); } // rotation for(int i = 0; i < 3; i++){ pkt->samples[j].rot[i] = read16(&buffer); } pkt->samples[j].time_ticks = read32(&buffer); pkt->samples[j].seq = read8(&buffer); } return true; } //Trim function for removing tabs and spaces from string buffers void trim(const char* src, char* buff, const unsigned int sizeBuff) { if(sizeBuff < 1) return; const char* current = src; unsigned int i = 0; while(*current != '\0' && i < sizeBuff-1) { if(*current != ' ' && *current != '\t' && *current != '\n') buff[i++] = *current; ++current; } buff[i] = '\0'; } void get_vec3f_from_json(const nx_json* json, const char* name, vec3f* result) { const nx_json* acc_bias_arr = nx_json_get(json, name); for (int i = 0; i < acc_bias_arr->length; i++) { const nx_json* item = nx_json_item(acc_bias_arr, i); result->arr[i] = (float) item->dbl_value; } } void print_vec3f(const char* title, vec3f *vec) { LOGI("%s = %f %f %f\n", title, vec->x, vec->y, vec->z); } bool vive_decode_config_packet(vive_imu_config* result, const unsigned char* buffer, uint16_t size) { /* if(size != 4069){ LOGE("invalid vive sensor packet size (expected 4069 but got %d)", size); return false; }*/ vive_config_packet pkt; pkt.report_id = VIVE_CONFIG_READ_PACKET_ID; pkt.length = size; unsigned char output[32768]; mz_ulong output_size = 32768; //int cmp_status = uncompress(pUncomp, &uncomp_len, pCmp, cmp_len); int cmp_status = uncompress(output, &output_size, buffer, (mz_ulong)pkt.length); if (cmp_status != Z_OK){ LOGE("invalid vive config, could not uncompress"); return false; } LOGD("Decompressed from %u to %u bytes\n", (mz_uint32)pkt.length, (mz_uint32)output_size); trim((char*)output, (char*)output, (unsigned int)output_size); const nx_json* json = nx_json_parse((char*)output, 0); if (json) { get_vec3f_from_json(json, "acc_bias", &result->acc_bias); get_vec3f_from_json(json, "acc_scale", &result->acc_scale); get_vec3f_from_json(json, "gyro_bias", &result->gyro_bias); get_vec3f_from_json(json, "gyro_scale", &result->gyro_scale); nx_json_free(json); LOGI("\n--- Converted Vive JSON Data ---\n\n"); print_vec3f("acc_bias", &result->acc_bias); print_vec3f("acc_scale", &result->acc_scale); print_vec3f("gyro_bias", &result->gyro_bias); print_vec3f("gyro_scale", &result->gyro_scale); LOGI("\n--- End of Vive JSON Data ---\n\n"); } else { LOGE("Could not parse JSON data.\n"); return false; } return true; } OpenHMD-0.3.0/src/drv_htc_vive/vive.c000066400000000000000000000370321351206017700173410ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2013, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* HTC Vive Driver */ #define FEATURE_BUFFER_SIZE 256 #define HTC_ID 0x0bb4 #define VIVE_HMD 0x2c87 #define VIVE_PRO_HMD 0x0309 #define VALVE_ID 0x28de #define VIVE_WATCHMAN_DONGLE 0x2101 #define VIVE_LIGHTHOUSE_FPGA_RX 0x2000 #define VIVE_LHR 0x2300 // VIVE PRO #define VIVE_CLOCK_FREQ 48000000.0f // Hz = 48 MHz #include #include #include #include #include #include #include #include "vive.h" typedef enum { REV_VIVE, REV_VIVE_PRO } vive_revision; typedef struct { ohmd_device base; hid_device* hmd_handle; hid_device* imu_handle; fusion sensor_fusion; vec3f raw_accel, raw_gyro; uint32_t last_ticks; uint8_t last_seq; vec3f gyro_error; filter_queue gyro_q; vive_revision revision; vive_imu_config imu_config; } vive_priv; void vec3f_from_vive_vec_accel(const vive_imu_config* config, const int16_t* smp, vec3f* out) { float range = config->acc_range / 32768.0f; out->x = range * config->acc_scale.x * (float) smp[0] - config->acc_bias.x; out->y = range * config->acc_scale.y * (float) smp[1] - config->acc_bias.y; out->z = range * config->acc_scale.z * (float) smp[2] - config->acc_bias.z; } void vec3f_from_vive_vec_gyro(const vive_imu_config* config, const int16_t* smp, vec3f* out) { float range = config->gyro_range / 32768.0f; out->x = range * config->gyro_scale.x * (float)smp[0] - config->gyro_bias.x; out->y = range * config->gyro_scale.y * (float)smp[1] - config->gyro_bias.x; out->z = range * config->gyro_scale.z * (float)smp[2] - config->gyro_bias.x; } static bool process_error(vive_priv* priv) { if(priv->gyro_q.at >= priv->gyro_q.size - 1) return true; ofq_add(&priv->gyro_q, &priv->raw_gyro); if(priv->gyro_q.at >= priv->gyro_q.size - 1){ ofq_get_mean(&priv->gyro_q, &priv->gyro_error); LOGE("gyro error: %f, %f, %f\n", priv->gyro_error.x, priv->gyro_error.y, priv->gyro_error.z); } return false; } vive_headset_imu_sample* get_next_sample(vive_headset_imu_packet* pkt, int last_seq) { int diff[3]; for(int i = 0; i < 3; i++) { diff[i] = (int)pkt->samples[i].seq - last_seq; if(diff[i] < -128){ diff[i] += 256; } } int closest_diff = INT_MAX; int closest_idx = -1; for(int i = 0; i < 3; i++) { if(diff[i] < closest_diff && diff[i] > 0 && diff[i] < 128){ closest_diff = diff[i]; closest_idx = i; } } if(closest_idx != -1) return pkt->samples + closest_idx; return NULL; } static void update_device(ohmd_device* device) { vive_priv* priv = (vive_priv*)device; int size = 0; unsigned char buffer[FEATURE_BUFFER_SIZE]; while((size = hid_read(priv->imu_handle, buffer, FEATURE_BUFFER_SIZE)) > 0){ if(buffer[0] == VIVE_HMD_IMU_PACKET_ID){ vive_headset_imu_packet pkt; vive_decode_sensor_packet(&pkt, buffer, size); vive_headset_imu_sample* smp = NULL; while((smp = get_next_sample(&pkt, priv->last_seq)) != NULL) { if(priv->last_ticks == 0) priv->last_ticks = smp->time_ticks; uint32_t t1, t2; t1 = smp->time_ticks; t2 = priv->last_ticks; float dt = (t1 - t2) / VIVE_CLOCK_FREQ; priv->last_ticks = smp->time_ticks; vec3f_from_vive_vec_accel(&priv->imu_config, smp->acc, &priv->raw_accel); vec3f_from_vive_vec_gyro(&priv->imu_config, smp->rot, &priv->raw_gyro); // Fix imu orientation switch (priv->revision) { case REV_VIVE: priv->raw_accel.y *= -1; priv->raw_accel.z *= -1; priv->raw_gyro.y *= -1; priv->raw_gyro.z *= -1; break; case REV_VIVE_PRO: priv->raw_accel.x *= -1; priv->raw_accel.z *= -1; priv->raw_gyro.x *= -1; priv->raw_gyro.z *= -1; break; default: LOGE("Unknown VIVE revision.\n"); } if(process_error(priv)){ vec3f mag = {{0.0f, 0.0f, 0.0f}}; vec3f gyro; ovec3f_subtract(&priv->raw_gyro, &priv->gyro_error, &gyro); ofusion_update(&priv->sensor_fusion, dt, &gyro, &priv->raw_accel, &mag); } priv->last_seq = smp->seq; } }else{ LOGE("unknown message type: %u", buffer[0]); } } if(size < 0){ LOGE("error reading from device"); } } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { vive_priv* priv = (vive_priv*)device; switch(type){ case OHMD_ROTATION_QUAT: *(quatf*)out = priv->sensor_fusion.orient; break; case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; case OHMD_DISTORTION_K: // TODO this should be set to the equivalent of no distortion memset(out, 0, sizeof(float) * 6); break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { int hret = 0; vive_priv* priv = (vive_priv*)device; LOGD("closing HTC Vive device"); // turn the display off switch (priv->revision) { case REV_VIVE: hret = hid_send_feature_report(priv->hmd_handle, vive_magic_power_off1, sizeof(vive_magic_power_off1)); LOGI("power off magic 1: %d\n", hret); hret = hid_send_feature_report(priv->hmd_handle, vive_magic_power_off2, sizeof(vive_magic_power_off2)); LOGI("power off magic 2: %d\n", hret); break; case REV_VIVE_PRO: hret = hid_send_feature_report(priv->hmd_handle, vive_pro_magic_power_off, sizeof(vive_pro_magic_power_off)); LOGI("vive pro power off magic: %d\n", hret); break; default: LOGE("Unknown VIVE revision.\n"); } hid_close(priv->hmd_handle); hid_close(priv->imu_handle); free(device); } #if 0 static void dump_indexed_string(hid_device* device, int index) { wchar_t wbuffer[512] = {0}; char buffer[1024] = {0}; int hret = hid_get_indexed_string(device, index, wbuffer, 511); if(hret == 0){ wcstombs(buffer, wbuffer, sizeof(buffer)); LOGD("indexed string 0x%02x: '%s'\n", index, buffer); } } #endif static void dump_info_string(int (*fun)(hid_device*, wchar_t*, size_t), const char* what, hid_device* device) { wchar_t wbuffer[512] = {0}; char buffer[1024] = {0}; int hret = fun(device, wbuffer, 511); if(hret == 0){ wcstombs(buffer, wbuffer, sizeof(buffer)); LOGI("%s: '%s'\n", what, buffer); } } #if 0 static void dumpbin(const char* label, const unsigned char* data, int length) { printf("%s:\n", label); for(int i = 0; i < length; i++){ printf("%02x ", data[i]); if((i % 16) == 15) printf("\n"); } printf("\n"); } #endif static hid_device* open_device_idx(int manufacturer, int product, int iface, int iface_tot, int device_index) { struct hid_device_info* devs = hid_enumerate(manufacturer, product); struct hid_device_info* cur_dev = devs; int idx = 0; int iface_cur = 0; hid_device* ret = NULL; while (cur_dev) { LOGI("%04x:%04x %s\n", manufacturer, product, cur_dev->path); if(idx == device_index && iface == iface_cur){ ret = hid_open_path(cur_dev->path); LOGI("opening\n"); } cur_dev = cur_dev->next; iface_cur++; if(iface_cur >= iface_tot){ idx++; iface_cur = 0; } } hid_free_enumeration(devs); return ret; } int vive_read_config(vive_priv* priv) { unsigned char buffer[128]; int bytes; LOGI("Getting feature report 16 to 39\n"); buffer[0] = VIVE_CONFIG_START_PACKET_ID; bytes = hid_get_feature_report(priv->imu_handle, buffer, sizeof(buffer)); printf("got %i bytes\n", bytes); if (bytes < 0) return bytes; for (int i = 0; i < bytes; i++) { printf("%02x ", buffer[i]); } printf("\n\n"); unsigned char* packet_buffer = malloc(4096); int offset = 0; while (buffer[1] != 0) { buffer[0] = VIVE_CONFIG_READ_PACKET_ID; bytes = hid_get_feature_report(priv->imu_handle, buffer, sizeof(buffer)); memcpy((uint8_t*)packet_buffer + offset, buffer+2, buffer[1]); offset += buffer[1]; } packet_buffer[offset] = '\0'; //LOGD("Result: %s\n", packet_buffer); vive_decode_config_packet(&priv->imu_config, packet_buffer, offset); free(packet_buffer); return 0; } #define OHMD_GRAVITY_EARTH 9.80665 // m/s² int vive_get_range_packet(vive_priv* priv) { unsigned char buffer[64]; int ret; int i; buffer[0] = VIVE_IMU_RANGE_MODES_PACKET_ID; ret = hid_get_feature_report(priv->imu_handle, buffer, sizeof(buffer)); if (ret < 0) return ret; if (!buffer[1] || !buffer[2]) { ret = hid_get_feature_report(priv->imu_handle, buffer, sizeof(buffer)); if (ret < 0) return ret; if (!buffer[1] || !buffer[2]) { LOGE("unexpected range mode report: %02x %02x %02x", buffer[0], buffer[1], buffer[2]); for (i = 0; i < 61; i++) LOGE(" %02x", buffer[3+i]); LOGE("\n"); } } if (buffer[1] > 4 || buffer[2] > 4) return -1; /* * Convert MPU-6500 gyro full scale range (+/-250°/s, +/-500°/s, * +/-1000°/s, or +/-2000°/s) into rad/s, accel full scale range * (+/-2g, +/-4g, +/-8g, or +/-16g) into m/s². */ double gyro_range = M_PI / 180.0 * (250 << buffer[0]); priv->imu_config.gyro_range = (float) gyro_range; LOGI("gyro_range %f\n", gyro_range); double acc_range = OHMD_GRAVITY_EARTH * (2 << buffer[1]); priv->imu_config.acc_range = (float) acc_range; LOGI("acc_range %f\n", acc_range); return 0; } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { vive_priv* priv = ohmd_alloc(driver->ctx, sizeof(vive_priv)); if(!priv) return NULL; int hret = 0; priv->revision = desc->revision; priv->base.ctx = driver->ctx; int idx = atoi(desc->path); // Open the HMD device switch (desc->revision) { case REV_VIVE: priv->hmd_handle = open_device_idx(HTC_ID, VIVE_HMD, 0, 1, idx); break; case REV_VIVE_PRO: priv->hmd_handle = open_device_idx(HTC_ID, VIVE_PRO_HMD, 0, 1, idx); break; default: LOGE("Unknown VIVE revision.\n"); } if(!priv->hmd_handle) goto cleanup; if(hid_set_nonblocking(priv->hmd_handle, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } switch (desc->revision) { case REV_VIVE: priv->imu_handle = open_device_idx(VALVE_ID, VIVE_LIGHTHOUSE_FPGA_RX, 0, 2, idx); break; case REV_VIVE_PRO: priv->imu_handle = open_device_idx(VALVE_ID, VIVE_LHR, 0, 1, idx); break; default: LOGE("Unknown VIVE revision.\n"); } if(!priv->imu_handle) goto cleanup; if(hid_set_nonblocking(priv->imu_handle, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } dump_info_string(hid_get_manufacturer_string, "manufacturer", priv->hmd_handle); dump_info_string(hid_get_product_string , "product", priv->hmd_handle); dump_info_string(hid_get_serial_number_string, "serial number", priv->hmd_handle); switch (desc->revision) { case REV_VIVE: // turn the display on hret = hid_send_feature_report(priv->hmd_handle, vive_magic_power_on, sizeof(vive_magic_power_on)); LOGI("power on magic: %d\n", hret); break; case REV_VIVE_PRO: // turn the display on hret = hid_send_feature_report(priv->hmd_handle, vive_pro_magic_power_on, sizeof(vive_pro_magic_power_on)); LOGI("power on magic: %d\n", hret); // Enable VIVE Pro IMU hret = hid_send_feature_report(priv->imu_handle, vive_pro_enable_imu, sizeof(vive_pro_enable_imu)); LOGI("Enable Pro IMU magic: %d\n", hret); break; default: LOGE("Unknown VIVE revision.\n"); } // enable lighthouse //hret = hid_send_feature_report(priv->hmd_handle, vive_magic_enable_lighthouse, sizeof(vive_magic_enable_lighthouse)); //LOGD("enable lighthouse magic: %d\n", hret); if (vive_read_config(priv) != 0) { LOGW("Could not read config. Using defaults.\n"); priv->imu_config.acc_bias.x = 0.157200f; priv->imu_config.acc_bias.y = -0.011150f; priv->imu_config.acc_bias.z = -0.144900f; priv->imu_config.acc_scale.x = 0.999700f; priv->imu_config.acc_scale.y = 0.998900f; priv->imu_config.acc_scale.z = 0.998000f; priv->imu_config.gyro_bias.x = -0.027770f; priv->imu_config.gyro_bias.y = -0.011410f; priv->imu_config.gyro_bias.z = -0.014760f; priv->imu_config.gyro_scale.x = 1.0f; priv->imu_config.gyro_scale.y = 1.0f; priv->imu_config.gyro_scale.z = 1.0f; } if (vive_get_range_packet(priv) != 0) { LOGW("Could not get range packet.\n"); priv->imu_config.gyro_range = 8.726646f; priv->imu_config.acc_range = 39.226600f; } // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties TODO: Get from device switch (desc->revision) { case REV_VIVE: priv->base.properties.hres = 2160; priv->base.properties.vres = 1200; priv->base.properties.ratio = (2160.0f / 1200.0f) / 2.0f; break; case REV_VIVE_PRO: priv->base.properties.hres = 2880; priv->base.properties.vres = 1600; priv->base.properties.ratio = (2880.0f / 1600.0f) / 2.0f; break; default: LOGE("Unknown VIVE revision.\n"); } //TODO: Confirm exact mesurements. Get for VIVE Pro. priv->base.properties.hsize = 0.122822f; priv->base.properties.vsize = 0.068234f; /* * calculated from here: * https://www.gamedev.net/topic/683698-projection-matrix-model-of-the-htc-vive/ */ priv->base.properties.lens_sep = 0.057863; priv->base.properties.lens_vpos = 0.033896; float eye_to_screen_distance = 0.023226876441867737; priv->base.properties.fov = 2 * atan2f( priv->base.properties.hsize / 2 - priv->base.properties.lens_sep / 2, eye_to_screen_distance); /* calculate projection eye projection matrices from the device properties */ ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; ofusion_init(&priv->sensor_fusion); ofq_init(&priv->gyro_q, 128); return (ohmd_device*)priv; cleanup: if(priv) free(priv); return NULL; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { vive_revision rev; struct hid_device_info* devs = hid_enumerate(HTC_ID, VIVE_HMD); if (devs != NULL) { rev = REV_VIVE; } else { devs = hid_enumerate(HTC_ID, VIVE_PRO_HMD); if (devs != NULL) rev = REV_VIVE_PRO; } struct hid_device_info* cur_dev = devs; int idx = 0; while (cur_dev) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD HTC Vive Driver"); strcpy(desc->vendor, "HTC/Valve"); strcpy(desc->product, "HTC Vive"); desc->revision = rev; snprintf(desc->path, OHMD_STR_SIZE, "%d", idx); desc->driver_ptr = driver; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; cur_dev = cur_dev->next; idx++; } hid_free_enumeration(devs); } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down HTC Vive driver"); free(drv); } ohmd_driver* ohmd_create_htc_vive_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(!drv) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } OpenHMD-0.3.0/src/drv_htc_vive/vive.h000066400000000000000000000027621351206017700173500ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2013, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* HTC Vive Driver */ #ifndef VIVE_H #define VIVE_H #include #include #include "../openhmdi.h" #include "magic.h" typedef enum { VIVE_IMU_RANGE_MODES_PACKET_ID = 1, VIVE_CONFIG_START_PACKET_ID = 16, VIVE_CONFIG_READ_PACKET_ID = 17, VIVE_HMD_IMU_PACKET_ID = 32, } vive_irq_cmd; typedef struct { int16_t acc[3]; int16_t rot[3]; uint32_t time_ticks; uint8_t seq; } vive_headset_imu_sample; typedef struct { uint8_t report_id; vive_headset_imu_sample samples[3]; } vive_headset_imu_packet; typedef struct { uint8_t report_id; uint16_t length; unsigned char config_data[99999]; } vive_config_packet; typedef struct { uint8_t id; uint8_t gyro_range; uint8_t accel_range; uint8_t unknown[61]; } vive_imu_range_modes_packet; typedef struct { vec3f acc_bias, acc_scale; float acc_range; vec3f gyro_bias, gyro_scale; float gyro_range; } vive_imu_config; void vec3f_from_vive_vec(const int16_t* smp, vec3f* out_vec); bool vive_decode_sensor_packet(vive_headset_imu_packet* pkt, const unsigned char* buffer, int size); bool vive_decode_config_packet(vive_imu_config* result, const unsigned char* buffer, uint16_t size); #endif OpenHMD-0.3.0/src/drv_nolo/000077500000000000000000000000001351206017700153575ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_nolo/nolo.c000066400000000000000000000270401351206017700164750ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2013, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Original implementation by: Yann Vernier. */ /* NOLO VR- HID/USB Driver Implementation */ #include #include #include #include #include "nolo.h" #include "../hid.h" #define TICK_LEN (1.0f / 120000.0f) // 120 Hz ticks static const int controllerLength = 3 + (3+4)*2 + 2 + 2 + 1; static devices_t* nolo_devices; static drv_priv* drv_priv_get(ohmd_device* device) { return (drv_priv*)device; } void accel_from_nolo_vec(const int16_t* smp, vec3f* out_vec) { out_vec->x = (float)smp[0]; out_vec->y = (float)smp[1]; out_vec->z = -(float)smp[2]; } void gyro_from_nolo_vec(const int16_t* smp, vec3f* out_vec) { out_vec->x = (float)smp[0]; out_vec->y = (float)smp[1]; out_vec->z = -(float)smp[2]; } static void handle_tracker_sensor_msg(drv_priv* priv, unsigned char* buffer, int size, int type) { uint64_t last_sample_tick = priv->sample.tick; //Type 0 is Head Tracker, type 1 is Controller switch(type) { case 0: nolo_decode_hmd_marker(priv, buffer); break; case 1: nolo_decode_controller(priv, buffer); break; } priv->sample.tick = ohmd_monotonic_get(priv->base.ctx); // Startup correction, ignore last_sample_tick if zero. uint64_t tick_delta = 0; if(last_sample_tick > 0) //startup correction tick_delta = priv->sample.tick - last_sample_tick; float dt = (tick_delta/(float)priv->base.ctx->monotonic_ticks_per_sec)/1000.0f; vec3f mag = {{0.0f, 0.0f, 0.0f}}; accel_from_nolo_vec(priv->sample.accel, &priv->raw_gyro); gyro_from_nolo_vec(priv->sample.gyro, &priv->raw_accel); ofusion_update(&priv->sensor_fusion, dt, &priv->raw_gyro, &priv->raw_accel, &mag); } static void update_device(ohmd_device* device) { drv_priv* priv = drv_priv_get(device); unsigned char buffer[FEATURE_BUFFER_SIZE]; // Only update when physical device if (priv->id != 0) return; devices_t* current = nolo_devices; drv_priv* controller0 = NULL; drv_priv* controller1 = NULL; //Check if controllers exist while (current != NULL) { if (current->drv->hmd_tracker == priv) { if (current->drv->controller0) controller0 = current->drv->controller0; if (current->drv->controller1) controller1 = current->drv->controller1; break; } current = current->next; } // Read all the messages from the device. while(true){ int size = hid_read(priv->handle, buffer, FEATURE_BUFFER_SIZE); if(size < 0){ LOGE("error reading from device"); return; } else if(size == 0) { return; // No more messages, return. } nolo_decrypt_data(buffer); // currently the only message type the hardware supports switch (buffer[0]) { case NOLO_LEGACY_CONTROLLER_TRACKER: // Controllers packet { if (controller0) nolo_decode_controller(controller0, buffer+1); if (controller1) nolo_decode_controller(controller1, buffer+64-controllerLength); break; } case NOLO_LEGACY_HMD_TRACKER: // HMD packet nolo_decode_hmd_marker(priv, buffer+0x15); nolo_decode_base_station(priv, buffer+0x36); break; case NOLO_CONTROLLER_0_HMD_SMP1: { if (controller0) handle_tracker_sensor_msg(controller0, buffer, size, 1); handle_tracker_sensor_msg(priv, buffer, size, 0); break; } case NOLO_CONTROLLER_1_HMD_SMP2: { if (controller1) handle_tracker_sensor_msg(controller1, buffer, size, 1); handle_tracker_sensor_msg(priv, buffer, size, 0); break; } default: LOGE("unknown message type: %u", buffer[0]); } } return; } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { drv_priv* priv = drv_priv_get(device); switch(type){ case OHMD_ROTATION_QUAT: { if (priv->rev == 1) //old firmware *(quatf*)out = priv->base.rotation; else //new firmware *(quatf*)out = priv->sensor_fusion.orient; break; } case OHMD_POSITION_VECTOR: if(priv->id == 0) { // HMD *(vec3f*)out = priv->base.position; } else if(priv->id == 1) { // Controller 0 *(vec3f*)out = priv->base.position; } else if(priv->id == 2) { // Controller 1 *(vec3f*)out = priv->base.position; } break; case OHMD_CONTROLS_STATE: if(priv->id > 0) { for (int i = 0; i < 8; i++){ out[i] = priv->controller_values[i]; } } break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { LOGD("closing device"); drv_priv* priv = drv_priv_get(device); hid_close(priv->handle); free(priv); } void push_device(devices_t * head, drv_nolo* val) { devices_t* current = head; if (!nolo_devices) { nolo_devices = calloc(1, sizeof(devices_t)); nolo_devices->drv = val; nolo_devices->next = NULL; return; } while (current->next != NULL) { current = current->next; } /* now we can add a new variable */ current->next = calloc(1, sizeof(devices_t)); current->next->drv = val; current->next->next = NULL; } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { drv_priv* priv = ohmd_alloc(driver->ctx, sizeof(drv_priv)); if(!priv) goto cleanup; priv->id = desc->id; priv->rev = desc->revision; priv->base.ctx = driver->ctx; // Open the HID device when physical device if (priv->id == 0) { priv->handle = hid_open_path(desc->path); if(!priv->handle) { char* path = _hid_to_unix_path(desc->path); ohmd_set_error(driver->ctx, "Could not open %s. " "Check your rights.", path); free(path); goto cleanup; } if(hid_set_nonblocking(priv->handle, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } } devices_t* current = nolo_devices; drv_nolo* mNOLO = NULL; //Check if the opened device is part of a group while (current != NULL) { if (strcmp(current->drv->path, desc->path)==0) mNOLO = current->drv; current = current->next; } if (!mNOLO) { //Create new group mNOLO = calloc(1, sizeof(drv_nolo)); mNOLO->hmd_tracker = NULL; mNOLO->controller0 = NULL; mNOLO->controller1 = NULL; strcpy(mNOLO->path, desc->path); push_device(nolo_devices, mNOLO); } if (priv->id == 0) { mNOLO->hmd_tracker = priv; } else if (priv->id == 1) { mNOLO->controller0 = priv; priv->base.properties.control_count = 8; priv->base.properties.controls_hints[0] = OHMD_ANALOG_PRESS; priv->base.properties.controls_hints[1] = OHMD_TRIGGER_CLICK; priv->base.properties.controls_hints[2] = OHMD_MENU; priv->base.properties.controls_hints[3] = OHMD_HOME; priv->base.properties.controls_hints[4] = OHMD_SQUEEZE; priv->base.properties.controls_hints[5] = OHMD_GENERIC; //touching the XY pad priv->base.properties.controls_hints[6] = OHMD_ANALOG_X; priv->base.properties.controls_hints[7] = OHMD_ANALOG_Y; priv->base.properties.controls_types[0] = OHMD_DIGITAL; priv->base.properties.controls_types[1] = OHMD_DIGITAL; priv->base.properties.controls_types[2] = OHMD_DIGITAL; priv->base.properties.controls_types[3] = OHMD_DIGITAL; priv->base.properties.controls_types[4] = OHMD_DIGITAL; priv->base.properties.controls_types[5] = OHMD_DIGITAL; priv->base.properties.controls_types[6] = OHMD_ANALOG; priv->base.properties.controls_types[7] = OHMD_ANALOG; } else if (priv->id == 2) { mNOLO->controller1 = priv; priv->base.properties.control_count = 8; priv->base.properties.controls_hints[0] = OHMD_ANALOG_PRESS; priv->base.properties.controls_hints[1] = OHMD_TRIGGER_CLICK; priv->base.properties.controls_hints[2] = OHMD_MENU; priv->base.properties.controls_hints[3] = OHMD_HOME; priv->base.properties.controls_hints[4] = OHMD_SQUEEZE; priv->base.properties.controls_hints[5] = OHMD_GENERIC; //touching the XY pad priv->base.properties.controls_hints[6] = OHMD_ANALOG_X; priv->base.properties.controls_hints[7] = OHMD_ANALOG_Y; priv->base.properties.controls_types[0] = OHMD_DIGITAL; priv->base.properties.controls_types[1] = OHMD_DIGITAL; priv->base.properties.controls_types[2] = OHMD_DIGITAL; priv->base.properties.controls_types[3] = OHMD_DIGITAL; priv->base.properties.controls_types[4] = OHMD_DIGITAL; priv->base.properties.controls_types[5] = OHMD_DIGITAL; priv->base.properties.controls_types[6] = OHMD_ANALOG; priv->base.properties.controls_types[7] = OHMD_ANALOG; } // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; ofusion_init(&priv->sensor_fusion); return &priv->base; cleanup: if(priv) free(priv); return NULL; } typedef struct { const char* name; int vendor; int product; } nolo_verions; int is_nolo_device(struct hid_device_info* device) { if (wcscmp(device->manufacturer_string, L"LYRobotix") != 0) { return 0; } if (wcscmp(device->product_string, L"NOLO") == 0) { //Old Firmware LOGE("Detected firmware <2.0, for the best result please upgrade your NOLO firmware above 2.0"); return 1; } if (wcscmp(device->product_string, L"NOLO HMD") == 0) { //New Firmware return 2; } return 0; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { // enumerate HID devices and add any NOLO's found to the device list nolo_verions rd[2] = { { "NOLO CV1 (Kickstarter)", 0x0483, 0x5750}, { "NOLO CV1 (Production)", 0x28e9, 0x028a} }; for(int i = 0; i < 2; i++) { struct hid_device_info* devs = hid_enumerate(rd[i].vendor, rd[i].product); struct hid_device_info* cur_dev = devs; int id = 0; while (cur_dev && is_nolo_device(cur_dev)) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD NOLO VR CV1 driver"); strcpy(desc->vendor, "LYRobotix"); strcpy(desc->product, rd[i].name); desc->revision = is_nolo_device(cur_dev); strcpy(desc->path, cur_dev->path); desc->device_flags = OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING | OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->driver_ptr = driver; desc->id = id++; //Controller 0 desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD NOLO VR CV1 driver"); strcpy(desc->vendor, "LYRobotix"); strcpy(desc->product, "NOLO CV1: Controller 0"); strcpy(desc->path, cur_dev->path); desc->device_flags = OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING | OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING | OHMD_DEVICE_FLAGS_RIGHT_CONTROLLER; desc->device_class = OHMD_DEVICE_CLASS_CONTROLLER; desc->driver_ptr = driver; desc->id = id++; // Controller 1 desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD NOLO VR CV1 driver"); strcpy(desc->vendor, "LYRobotix"); strcpy(desc->product, "NOLO CV1: Controller 1"); strcpy(desc->path, cur_dev->path); desc->device_flags = OHMD_DEVICE_FLAGS_POSITIONAL_TRACKING | OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING | OHMD_DEVICE_FLAGS_LEFT_CONTROLLER; desc->device_class = OHMD_DEVICE_CLASS_CONTROLLER; desc->driver_ptr = driver; desc->id = id++; cur_dev = cur_dev->next; } hid_free_enumeration(devs); } } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down NOLO CV1 driver"); hid_exit(); free(drv); } ohmd_driver* ohmd_create_nolo_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(drv == NULL) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } OpenHMD-0.3.0/src/drv_nolo/nolo.h000066400000000000000000000031261351206017700165010ustar00rootroot00000000000000// Copyright 2017, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Original implementation by: Yann Vernier. */ /* NOLO VR - Internal Interface */ #ifndef NOLODRIVER_H #define NOLODRIVER_H #include "../openhmdi.h" #include #define FEATURE_BUFFER_SIZE 64 typedef struct { int16_t accel[3]; int16_t gyro[3]; uint64_t tick; } nolo_sample; typedef struct { ohmd_device base; hid_device* handle; int id; int rev; float controller_values[8]; nolo_sample sample; fusion sensor_fusion; vec3f raw_accel, raw_gyro; } drv_priv; typedef enum { //LEGACY firmware < 2.0 NOLO_LEGACY_CONTROLLER_TRACKER = 165, NOLO_LEGACY_HMD_TRACKER = 166, //firmware > 2.0 NOLO_CONTROLLER_0_HMD_SMP1 = 16, NOLO_CONTROLLER_1_HMD_SMP2 = 17, } nolo_irq_cmd; typedef struct{ char path[OHMD_STR_SIZE]; drv_priv* hmd_tracker; drv_priv* controller0; drv_priv* controller1; } drv_nolo; typedef struct devices{ drv_nolo* drv; struct devices * next; } devices_t; void btea_decrypt(uint32_t *v, int n, int base_rounds, uint32_t const key[4]); void nolo_decrypt_data(unsigned char* buf); void nolo_decode_base_station(drv_priv* priv, const unsigned char* data); void nolo_decode_hmd_marker(drv_priv* priv, const unsigned char* data); void nolo_decode_controller(drv_priv* priv, const unsigned char* data); void nolo_decode_quat_orientation(const unsigned char* data, quatf* quat); void nolo_decode_orientation(const unsigned char* data, nolo_sample* smp); void nolo_decode_position(const unsigned char* data, vec3f* pos); #endif OpenHMD-0.3.0/src/drv_nolo/packet.c000066400000000000000000000121421351206017700167720ustar00rootroot00000000000000// Copyright 2017, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Original implementation by: Yann Vernier. */ /* NOLO VR - Packet Decoding and Utilities */ #include #include "nolo.h" #define DELTA 0x9e3779b9 #define MX (((z>>5^y<<2) + (y>>3^z<<4)) ^ ((sum^y) + (key[(p&3)^e] ^ z))) #define CRYPT_WORDS (64-4)/4 #define CRYPT_OFFSET 1 inline static uint8_t read8(const unsigned char** buffer) { uint8_t ret = **buffer; *buffer += 1; return ret; } inline static int16_t read16(const unsigned char** buffer) { int16_t ret = **buffer | (*(*buffer + 1) << 8); *buffer += 2; return ret; } inline static uint32_t read32(const unsigned char** buffer) { uint32_t ret = **buffer | (*(*buffer + 1) << 8) | (*(*buffer + 2) << 16) | (*(*buffer + 3) << 24); *buffer += 4; return ret; } void btea_decrypt(uint32_t *v, int n, int base_rounds, uint32_t const key[4]) { uint32_t y, z, sum; unsigned p, rounds, e; /* Decoding Part */ rounds = base_rounds + 52/n; sum = rounds*DELTA; y = v[0]; do { e = (sum >> 2) & 3; for (p=n-1; p>0; p--) { z = v[p-1]; y = v[p] -= MX; } z = v[n-1]; y = v[0] -= MX; sum -= DELTA; } while (--rounds); } void nolo_decrypt_data(unsigned char* buf) { static const uint32_t key[4] = {0x875bcc51, 0xa7637a66, 0x50960967, 0xf8536c51}; uint32_t cryptpart[CRYPT_WORDS]; // Decrypt encrypted portion for (int i = 0; i < CRYPT_WORDS; i++) { cryptpart[i] = ((uint32_t)buf[CRYPT_OFFSET+4*i ]) << 0 | ((uint32_t)buf[CRYPT_OFFSET+4*i+1]) << 8 | ((uint32_t)buf[CRYPT_OFFSET+4*i+2]) << 16 | ((uint32_t)buf[CRYPT_OFFSET+4*i+3]) << 24; } btea_decrypt(cryptpart, CRYPT_WORDS, 1, key); for (int i = 0; i < CRYPT_WORDS; i++) { buf[CRYPT_OFFSET+4*i ] = cryptpart[i] >> 0; buf[CRYPT_OFFSET+4*i+1] = cryptpart[i] >> 8; buf[CRYPT_OFFSET+4*i+2] = cryptpart[i] >> 16; buf[CRYPT_OFFSET+4*i+3] = cryptpart[i] >> 24; } } void nolo_decode_position(const unsigned char* data, vec3f* pos) { const double scale = 0.0001f; pos->x = scale*read16(&data); pos->y = scale*read16(&data); pos->z = scale*read16(&data); } void nolo_decode_orientation(const unsigned char* data, nolo_sample* smp) { // acceleration for(int i = 0; i < 3; i++){ smp->accel[i] = read16(&data); } data += 6; // gyro for(int i = 0; i < 3; i++){ smp->gyro[i] = read16(&data); } } void nolo_decode_controller_orientation(const unsigned char* data, nolo_sample* smp) { // gyro for(int i = 0; i < 3; i++){ smp->gyro[i] = read16(&data); } // acceleration for(int i = 0; i < 3; i++){ smp->accel[i] = read16(&data); } } // Orientation for Firmware <2,0 void nolo_decode_quat_orientation(const unsigned char* data, quatf* quat) { double w,i,j,k, scale; // CV1 order w = (int16_t)(data[0]<<8 | data[1]); i = (int16_t)(data[2]<<8 | data[3]); j = (int16_t)(data[4]<<8 | data[5]); k = (int16_t)(data[6]<<8 | data[7]); // Normalize (unknown if scale is constant) //scale = 1.0/sqrt(i*i+j*j+k*k+w*w); // Turns out it is fixed point. But the android driver author // either didn't know, or didn't trust it. // Unknown if normalizing it helps scale = 1.0 / 16384; //std::cout << "Scale: " << scale << std::endl; w *= scale; i *= scale; j *= scale; k *= scale; // Reorder quat->w = w; quat->x = i; quat->y = k; quat->z = -j; } void nolo_decode_controller(drv_priv* priv, const unsigned char* data) { uint8_t bit, buttonstate; vec3f position; quatf orientation; nolo_sample smp; if (priv->rev == 1) //old firmware { nolo_decode_position(data+3, &position); nolo_decode_quat_orientation(data+9, &orientation); //Change button state buttonstate = data[17]; for (bit=0; bit<6; bit++) priv->controller_values[bit] = (buttonstate & 1<controller_values[6] = data[19]; //X Pad priv->controller_values[7] = data[20]; //Y Pad priv->base.rotation = orientation; } else // Firmware >2.0 { data += 1; //skip header nolo_decode_position(data, &position); data += 6; nolo_decode_controller_orientation(data, &smp); //Change button state data += 12; buttonstate = read8(&data); for (bit=0; bit<6; bit++) priv->controller_values[bit] = (buttonstate & 1<controller_values[6] = read8(&data); //X Pad priv->controller_values[7] = read8(&data); //Y Pad priv->sample = smp; //Set sample for fusion } priv->base.position = position; } void nolo_decode_hmd_marker(drv_priv* priv, const unsigned char* data) { vec3f homepos; vec3f position; quatf orientation; nolo_sample smp; if (priv->rev == 1) { nolo_decode_position(data+3, &position); nolo_decode_position(data+9, &homepos); nolo_decode_quat_orientation(data+16, &orientation); priv->base.rotation = orientation; } else { data += 25; //Skip controller data nolo_decode_position(data, &position); data += 6; data += 6; nolo_decode_orientation(data, &smp); priv->sample = smp; //Set sample for fusion } priv->base.position = position; } void nolo_decode_base_station(drv_priv* priv, const unsigned char* data) { // Unknown version if (data[0] != 2 || data[1] != 1) return; } OpenHMD-0.3.0/src/drv_oculus_rift/000077500000000000000000000000001351206017700167465ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_oculus_rift/packet.c000066400000000000000000000216171351206017700203700ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Oculus Rift Driver - Packet Decoding and Utilities */ #include #include "rift.h" #define SKIP8 (buffer++) #define SKIP_CMD (buffer++) #define READ8 *(buffer++); #define READ16 *buffer | (*(buffer + 1) << 8); buffer += 2; #define READ32 *buffer | (*(buffer + 1) << 8) | (*(buffer + 2) << 16) | (*(buffer + 3) << 24); buffer += 4; #define READFLOAT ((float)(*buffer)); buffer += 4; #define READFIXED (float)(*buffer | (*(buffer + 1) << 8) | (*(buffer + 2) << 16) | (*(buffer + 3) << 24)) / 1000000.0f; buffer += 4; #define WRITE8(_val) *(buffer++) = (_val); #define WRITE16(_val) WRITE8((_val) & 0xff); WRITE8(((_val) >> 8) & 0xff); #define WRITE32(_val) WRITE16((_val) & 0xffff) *buffer; WRITE16(((_val) >> 16) & 0xffff); bool decode_position_info(pkt_position_info* p, const unsigned char* buffer, int size) { if(size != 30) { LOGE("invalid packet size (expected 30 but got %d)", size); return false; } SKIP_CMD; SKIP8; SKIP8; p->flags = READ8; p->pos_x = READ32; p->pos_y = READ32; p->pos_z = READ32; p->dir_x = READ16; p->dir_y = READ16; p->dir_z = READ16; SKIP8; SKIP8; p->index = READ8; SKIP8; p->num = READ8; SKIP8; p->type = READ8; return true; } bool decode_sensor_range(pkt_sensor_range* range, const unsigned char* buffer, int size) { if(!(size == 8 || size == 9)){ LOGE("invalid packet size (expected 8 or 9 but got %d)", size); return false; } SKIP_CMD; range->command_id = READ16; range->accel_scale = READ8; range->gyro_scale = READ16; range->mag_scale = READ16; return true; } bool decode_sensor_display_info(pkt_sensor_display_info* info, const unsigned char* buffer, int size) { if(!(size == 56 || size == 57)){ LOGE("invalid packet size (expected 56 or 57 but got %d)", size); return false; } SKIP_CMD; info->command_id = READ16; info->distortion_type = READ8; info->h_resolution = READ16; info->v_resolution = READ16; info->h_screen_size = READFIXED; info->v_screen_size = READFIXED; info->v_center = READFIXED; info->lens_separation = READFIXED; info->eye_to_screen_distance[0] = READFIXED; info->eye_to_screen_distance[1] = READFIXED; info->distortion_type_opts = 0; for(int i = 0; i < 6; i++){ info->distortion_k[i] = READFLOAT; } return true; } bool decode_sensor_config(pkt_sensor_config* config, const unsigned char* buffer, int size) { if(!(size == 7 || size == 8)){ LOGE("invalid packet size (expected 7 or 8 but got %d)", size); return false; } SKIP_CMD; config->command_id = READ16; config->flags = READ8; config->packet_interval = READ8; config->keep_alive_interval = READ16; return true; } static void decode_sample(const unsigned char* buffer, int32_t* smp) { /* * Decode 3 tightly packed 21 bit values from 4 bytes. * We unpack them in the higher 21 bit values first and then shift * them down to the lower in order to get the sign bits correct. */ int x = (buffer[0] << 24) | (buffer[1] << 16) | ((buffer[2] & 0xF8) << 8); int y = ((buffer[2] & 0x07) << 29) | (buffer[3] << 21) | (buffer[4] << 13) | ((buffer[5] & 0xC0) << 5); int z = ((buffer[5] & 0x3F) << 26) | (buffer[6] << 18) | (buffer[7] << 10); smp[0] = x >> 11; smp[1] = y >> 11; smp[2] = z >> 11; } bool decode_tracker_sensor_msg(pkt_tracker_sensor* msg, const unsigned char* buffer, int size) { if(!(size == 62 || size == 64)){ LOGE("invalid packet size (expected 62 or 64 but got %d)", size); return false; } SKIP_CMD; msg->num_samples = READ8; msg->timestamp = READ16; msg->timestamp *= 1000; // DK1 timestamps are in milliseconds msg->last_command_id = READ16; msg->temperature = READ16; msg->num_samples = OHMD_MIN(msg->num_samples, 3); for(int i = 0; i < msg->num_samples; i++){ decode_sample(buffer, msg->samples[i].accel); buffer += 8; decode_sample(buffer, msg->samples[i].gyro); buffer += 8; } // Skip empty samples buffer += (3 - msg->num_samples) * 16; for(int i = 0; i < 3; i++){ msg->mag[i] = READ16; } return true; } bool decode_tracker_sensor_msg_dk2(pkt_tracker_sensor* msg, const unsigned char* buffer, int size) { if(!(size == 64)){ LOGE("invalid packet size (expected 62 or 64 but got %d)", size); return false; } SKIP_CMD; msg->last_command_id = READ16; msg->num_samples = READ8; /* Next is the number of samples since start, excluding the samples contained in this packet */ buffer += 2; // unused: nb_samples_since_start msg->temperature = READ16; msg->timestamp = READ32; /* Second sample value is junk (outdated/uninitialized) value if num_samples < 2. */ msg->num_samples = OHMD_MIN(msg->num_samples, 2); for(int i = 0; i < msg->num_samples; i++){ decode_sample(buffer, msg->samples[i].accel); buffer += 8; decode_sample(buffer, msg->samples[i].gyro); buffer += 8; } // Skip empty samples buffer += (2 - msg->num_samples) * 16; for(int i = 0; i < 3; i++){ msg->mag[i] = READ16; } // TODO: positional tracking data and frame data return true; } // TODO do we need to consider HMD vs sensor "centric" values void vec3f_from_rift_vec(const int32_t* smp, vec3f* out_vec) { out_vec->x = (float)smp[0] * 0.0001f; out_vec->y = (float)smp[1] * 0.0001f; out_vec->z = (float)smp[2] * 0.0001f; } int encode_sensor_config(unsigned char* buffer, const pkt_sensor_config* config) { WRITE8(RIFT_CMD_SENSOR_CONFIG); WRITE16(config->command_id); WRITE8(config->flags); WRITE8(config->packet_interval); WRITE16(config->keep_alive_interval); return 7; // sensor config packet size } int encode_keep_alive(unsigned char* buffer, const pkt_keep_alive* keep_alive) { WRITE8(RIFT_CMD_KEEP_ALIVE); WRITE16(keep_alive->command_id); WRITE16(keep_alive->keep_alive_interval); return 5; // keep alive packet size } int encode_enable_components(unsigned char* buffer, bool display, bool audio, bool leds) { uint8_t flags = 0; WRITE8(RIFT_CMD_ENABLE_COMPONENTS); WRITE16(0); // last command ID if (display) flags |= RIFT_COMPONENT_DISPLAY; if (audio) flags |= RIFT_COMPONENT_AUDIO; if (leds) flags |= RIFT_COMPONENT_LEDS; WRITE8(flags); return 4; // component flags packet size } void dump_packet_sensor_range(const pkt_sensor_range* range) { (void)range; LOGD("sensor range\n"); LOGD(" command id: %d", range->command_id); LOGD(" accel scale: %d", range->accel_scale); LOGD(" gyro scale: %d", range->gyro_scale); LOGD(" mag scale: %d", range->mag_scale); } void dump_packet_sensor_display_info(const pkt_sensor_display_info* info) { (void)info; LOGD("display info"); LOGD(" command id: %d", info->command_id); LOGD(" distortion_type: %d", info->distortion_type); LOGD(" resolution: %d x %d", info->h_resolution, info->v_resolution); LOGD(" screen size: %f x %f", info->h_screen_size, info->v_screen_size); LOGD(" vertical center: %f", info->v_center); LOGD(" lens_separation: %f", info->lens_separation); LOGD(" eye_to_screen_distance: %f, %f", info->eye_to_screen_distance[0], info->eye_to_screen_distance[1]); LOGD(" distortion_k: %f, %f, %f, %f, %f, %f", info->distortion_k[0], info->distortion_k[1], info->distortion_k[2], info->distortion_k[3], info->distortion_k[4], info->distortion_k[5]); } void dump_packet_sensor_config(const pkt_sensor_config* config) { (void)config; LOGD("sensor config"); LOGD(" command id: %u", config->command_id); LOGD(" flags: %02x", config->flags); LOGD(" raw mode: %d", !!(config->flags & RIFT_SCF_RAW_MODE)); LOGD(" calibration test: %d", !!(config->flags & RIFT_SCF_CALIBRATION_TEST)); LOGD(" use calibration: %d", !!(config->flags & RIFT_SCF_USE_CALIBRATION)); LOGD(" auto calibration: %d", !!(config->flags & RIFT_SCF_AUTO_CALIBRATION)); LOGD(" motion keep alive: %d", !!(config->flags & RIFT_SCF_MOTION_KEEP_ALIVE)); LOGD(" motion command keep alive: %d", !!(config->flags & RIFT_SCF_COMMAND_KEEP_ALIVE)); LOGD(" sensor coordinates: %d", !!(config->flags & RIFT_SCF_SENSOR_COORDINATES)); LOGD(" packet interval: %u", config->packet_interval); LOGD(" keep alive interval: %u", config->keep_alive_interval); } void dump_packet_tracker_sensor(const pkt_tracker_sensor* sensor) { (void)sensor; LOGD("tracker sensor:"); LOGD(" last command id: %u", sensor->last_command_id); LOGD(" timestamp: %u", sensor->timestamp); LOGD(" temperature: %d", sensor->temperature); LOGD(" num samples: %u", sensor->num_samples); LOGD(" magnetic field: %i %i %i", sensor->mag[0], sensor->mag[1], sensor->mag[2]); for(int i = 0; i < sensor->num_samples; i++){ LOGD(" accel: %d %d %d", sensor->samples[i].accel[0], sensor->samples[i].accel[1], sensor->samples[i].accel[2]); LOGD(" gyro: %d %d %d", sensor->samples[i].gyro[0], sensor->samples[i].gyro[1], sensor->samples[i].gyro[2]); } } OpenHMD-0.3.0/src/drv_oculus_rift/rift.c000066400000000000000000000350131351206017700200600ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Oculus Rift Driver - HID/USB Driver Implementation */ #include #include #include #include #include #include #include "rift.h" #include "../hid.h" #define TICK_LEN (1.0f / 1000.0f) // 1000 Hz ticks #define KEEP_ALIVE_VALUE (10 * 1000) #define SETFLAG(_s, _flag, _val) (_s) = ((_s) & ~(_flag)) | ((_val) ? (_flag) : 0) typedef struct { ohmd_device base; hid_device* handle; pkt_sensor_range sensor_range; pkt_sensor_display_info display_info; rift_coordinate_frame coordinate_frame, hw_coordinate_frame; pkt_sensor_config sensor_config; pkt_tracker_sensor sensor; uint32_t last_imu_timestamp; double last_keep_alive; fusion sensor_fusion; vec3f raw_mag, raw_accel, raw_gyro; struct { vec3f pos; } imu; rift_led *leds; } rift_priv; typedef enum { REV_DK1, REV_DK2, REV_CV1, REV_GEARVR_GEN1 } rift_revision; typedef struct { const char* name; int company; int id; int iface; rift_revision rev; } rift_devices; static rift_priv* rift_priv_get(ohmd_device* device) { return (rift_priv*)device; } static int get_feature_report(rift_priv* priv, rift_sensor_feature_cmd cmd, unsigned char* buf) { memset(buf, 0, FEATURE_BUFFER_SIZE); buf[0] = (unsigned char)cmd; return hid_get_feature_report(priv->handle, buf, FEATURE_BUFFER_SIZE); } static int send_feature_report(rift_priv* priv, const unsigned char *data, size_t length) { return hid_send_feature_report(priv->handle, data, length); } static void set_coordinate_frame(rift_priv* priv, rift_coordinate_frame coordframe) { priv->coordinate_frame = coordframe; // set the RIFT_SCF_SENSOR_COORDINATES in the sensor config to match whether coordframe is hmd or sensor SETFLAG(priv->sensor_config.flags, RIFT_SCF_SENSOR_COORDINATES, coordframe == RIFT_CF_SENSOR); // encode send the new config to the Rift unsigned char buf[FEATURE_BUFFER_SIZE]; int size = encode_sensor_config(buf, &priv->sensor_config); if(send_feature_report(priv, buf, size) == -1){ ohmd_set_error(priv->base.ctx, "send_feature_report failed in set_coordinate frame"); return; } // read the state again, set the hw_coordinate_frame to match what // the hardware actually is set to just in case it doesn't stick. size = get_feature_report(priv, RIFT_CMD_SENSOR_CONFIG, buf); if(size <= 0){ LOGW("could not set coordinate frame"); priv->hw_coordinate_frame = RIFT_CF_HMD; return; } decode_sensor_config(&priv->sensor_config, buf, size); priv->hw_coordinate_frame = (priv->sensor_config.flags & RIFT_SCF_SENSOR_COORDINATES) ? RIFT_CF_SENSOR : RIFT_CF_HMD; if(priv->hw_coordinate_frame != coordframe) { LOGW("coordinate frame didn't stick"); } } static void handle_tracker_sensor_msg(rift_priv* priv, unsigned char* buffer, int size) { if (buffer[0] == RIFT_IRQ_SENSORS && !decode_tracker_sensor_msg(&priv->sensor, buffer, size)){ LOGE("couldn't decode tracker sensor message"); } if (buffer[0] == RIFT_IRQ_SENSORS_DK2 && !decode_tracker_sensor_msg_dk2(&priv->sensor, buffer, size)){ LOGE("couldn't decode tracker sensor message"); } pkt_tracker_sensor* s = &priv->sensor; dump_packet_tracker_sensor(s); int32_t mag32[] = { s->mag[0], s->mag[1], s->mag[2] }; vec3f_from_rift_vec(mag32, &priv->raw_mag); // TODO: handle overflows in a nicer way float dt = TICK_LEN; // TODO: query the Rift for the sample rate if (s->timestamp > priv->last_imu_timestamp) { dt = (s->timestamp - priv->last_imu_timestamp) / 1000000.0f; dt -= (s->num_samples - 1) * TICK_LEN; // TODO: query the Rift for the sample rate } for(int i = 0; i < s->num_samples; i++){ vec3f_from_rift_vec(s->samples[i].accel, &priv->raw_accel); vec3f_from_rift_vec(s->samples[i].gyro, &priv->raw_gyro); ofusion_update(&priv->sensor_fusion, dt, &priv->raw_gyro, &priv->raw_accel, &priv->raw_mag); dt = TICK_LEN; // TODO: query the Rift for the sample rate } priv->last_imu_timestamp = s->timestamp; } static void update_device(ohmd_device* device) { rift_priv* priv = rift_priv_get(device); unsigned char buffer[FEATURE_BUFFER_SIZE]; // Handle keep alive messages double t = ohmd_get_tick(); if(t - priv->last_keep_alive >= (double)priv->sensor_config.keep_alive_interval / 1000.0 - .2){ // send keep alive message pkt_keep_alive keep_alive = { 0, priv->sensor_config.keep_alive_interval }; int ka_size = encode_keep_alive(buffer, &keep_alive); if (send_feature_report(priv, buffer, ka_size) == -1) LOGE("error sending keepalive"); // Update the time of the last keep alive we have sent. priv->last_keep_alive = t; } // Read all the messages from the device. while(true){ int size = hid_read(priv->handle, buffer, FEATURE_BUFFER_SIZE); if(size < 0){ LOGE("error reading from device"); return; } else if(size == 0) { return; // No more messages, return. } // currently the only message type the hardware supports (I think) if(buffer[0] == RIFT_IRQ_SENSORS || buffer[0] == RIFT_IRQ_SENSORS_DK2) { handle_tracker_sensor_msg(priv, buffer, size); }else{ LOGE("unknown message type: %u", buffer[0]); } } } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { rift_priv* priv = rift_priv_get(device); switch(type){ case OHMD_DISTORTION_K: { for (int i = 0; i < 6; i++) { out[i] = priv->display_info.distortion_k[i]; } break; } case OHMD_ROTATION_QUAT: { *(quatf*)out = priv->sensor_fusion.orient; break; } case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { LOGD("closing device"); rift_priv* priv = rift_priv_get(device); hid_close(priv->handle); free(priv); } #define UDEV_WIKI_URL "https://github.com/OpenHMD/OpenHMD/wiki/Udev-rules-list" static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { rift_priv* priv = ohmd_alloc(driver->ctx, sizeof(rift_priv)); if(!priv) goto cleanup; priv->last_imu_timestamp = -1; priv->base.ctx = driver->ctx; // Open the HID device priv->handle = hid_open_path(desc->path); if(!priv->handle) { char* path = _hid_to_unix_path(desc->path); ohmd_set_error(driver->ctx, "Could not open %s.\n" "Check your permissions: " UDEV_WIKI_URL, path); free(path); goto cleanup; } if(hid_set_nonblocking(priv->handle, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } unsigned char buf[FEATURE_BUFFER_SIZE]; int size; // Read and decode the sensor range size = get_feature_report(priv, RIFT_CMD_RANGE, buf); decode_sensor_range(&priv->sensor_range, buf, size); dump_packet_sensor_range(&priv->sensor_range); // Read and decode display information size = get_feature_report(priv, RIFT_CMD_DISPLAY_INFO, buf); decode_sensor_display_info(&priv->display_info, buf, size); dump_packet_sensor_display_info(&priv->display_info); // Read and decode the sensor config size = get_feature_report(priv, RIFT_CMD_SENSOR_CONFIG, buf); decode_sensor_config(&priv->sensor_config, buf, size); dump_packet_sensor_config(&priv->sensor_config); // if the sensor has display info data, use HMD coordinate frame priv->coordinate_frame = priv->display_info.distortion_type != RIFT_DT_NONE ? RIFT_CF_HMD : RIFT_CF_SENSOR; // enable calibration SETFLAG(priv->sensor_config.flags, RIFT_SCF_USE_CALIBRATION, 1); SETFLAG(priv->sensor_config.flags, RIFT_SCF_AUTO_CALIBRATION, 1); // apply sensor config set_coordinate_frame(priv, priv->coordinate_frame); // Turn the screens on if (desc->revision == REV_CV1) { size = encode_enable_components(buf, true, true, true); if (send_feature_report(priv, buf, size) == -1) LOGE("error turning the screens on"); hid_write(priv->handle, rift_enable_leds_cv1, sizeof(rift_enable_leds_cv1)); } else if (desc->revision == REV_DK2) { hid_write(priv->handle, rift_enable_leds_dk2, sizeof(rift_enable_leds_dk2)); } pkt_position_info pos; int first_index = -1; //Get LED positions while (true) { size = get_feature_report(priv, RIFT_CMD_POSITION_INFO, buf); if (size <= 0 || !decode_position_info(&pos, buf, size) || first_index == pos.index) { break; } if (first_index < 0) { first_index = pos.index; priv->leds = calloc(pos.num, sizeof(rift_led)); } if (pos.flags == 1) { //reports 0's priv->imu.pos.x = (float)pos.pos_x; priv->imu.pos.y = (float)pos.pos_y; priv->imu.pos.z = (float)pos.pos_z; } else if (pos.flags == 2) { rift_led *led = &priv->leds[pos.index]; led->pos.x = (float)pos.pos_x; led->pos.y = (float)pos.pos_y; led->pos.z = (float)pos.pos_z; led->dir.x = (float)pos.dir_x; led->dir.y = (float)pos.dir_y; led->dir.z = (float)pos.dir_z; ovec3f_normalize_me(&led->dir); } } // set keep alive interval to n seconds pkt_keep_alive keep_alive = { 0, KEEP_ALIVE_VALUE }; size = encode_keep_alive(buf, &keep_alive); if (send_feature_report(priv, buf, size) == -1) LOGE("error setting up keepalive"); // Update the time of the last keep alive we have sent. priv->last_keep_alive = ohmd_get_tick(); // update sensor settings with new keep alive value // (which will have been ignored in favor of the default 1000 ms one) size = get_feature_report(priv, RIFT_CMD_SENSOR_CONFIG, buf); decode_sensor_config(&priv->sensor_config, buf, size); dump_packet_sensor_config(&priv->sensor_config); // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties priv->base.properties.hsize = priv->display_info.h_screen_size; priv->base.properties.vsize = priv->display_info.v_screen_size; priv->base.properties.hres = priv->display_info.h_resolution; priv->base.properties.vres = priv->display_info.v_resolution; priv->base.properties.lens_sep = priv->display_info.lens_separation; priv->base.properties.lens_vpos = priv->display_info.v_center; priv->base.properties.ratio = ((float)priv->display_info.h_resolution / (float)priv->display_info.v_resolution) / 2.0f; //setup generic distortion coeffs, from hand-calibration switch (desc->revision) { case REV_DK2: ohmd_set_universal_distortion_k(&(priv->base.properties), 0.247, -0.145, 0.103, 0.795); ohmd_set_universal_aberration_k(&(priv->base.properties), 0.985, 1.000, 1.015); break; case REV_DK1: ohmd_set_universal_distortion_k(&(priv->base.properties), 1.003, -1.005, 0.403, 0.599); ohmd_set_universal_aberration_k(&(priv->base.properties), 0.985, 1.000, 1.015); break; case REV_CV1: ohmd_set_universal_distortion_k(&(priv->base.properties), 0.098, .324, -0.241, 0.819); ohmd_set_universal_aberration_k(&(priv->base.properties), 0.9952420, 1.0, 1.0008074); /* CV1 reports IPD, but not lens center, at least not anywhere I could find, so use the manually measured value of 0.054 */ priv->display_info.lens_separation = 0.054; priv->base.properties.lens_sep = priv->display_info.lens_separation; default: break; } // calculate projection eye projection matrices from the device properties //ohmd_calc_default_proj_matrices(&priv->base.properties); float l,r,t,b,n,f; // left eye screen bounds l = -1.0f * (priv->display_info.h_screen_size/2 - priv->display_info.lens_separation/2); r = priv->display_info.lens_separation/2; t = priv->display_info.v_screen_size - priv->display_info.v_center; b = -1.0f * priv->display_info.v_center; n = priv->display_info.eye_to_screen_distance[0]; f = n*10e6; //LOGD("l: %0.3f, r: %0.3f, b: %0.3f, t: %0.3f, n: %0.3f, f: %0.3f", l,r,b,t,n,f); /* eye separation is handled by IPD in the Modelview matrix */ omat4x4f_init_frustum(&priv->base.properties.proj_left, l, r, b, t, n, f); //right eye screen bounds l = -1.0f * priv->display_info.lens_separation/2; r = priv->display_info.h_screen_size/2 - priv->display_info.lens_separation/2; n = priv->display_info.eye_to_screen_distance[1]; f = n*10e6; //LOGD("l: %0.3f, r: %0.3f, b: %0.3f, t: %0.3f, n: %0.3f, f: %0.3f", l,r,b,t,n,f); /* eye separation is handled by IPD in the Modelview matrix */ omat4x4f_init_frustum(&priv->base.properties.proj_right, l, r, b, t, n, f); priv->base.properties.fov = 2 * atan2f( priv->display_info.h_screen_size/2 - priv->display_info.lens_separation/2, priv->display_info.eye_to_screen_distance[0]); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; // initialize sensor fusion ofusion_init(&priv->sensor_fusion); return &priv->base; cleanup: if(priv) free(priv); return NULL; } #define OCULUS_VR_INC_ID 0x2833 #define SAMSUNG_ELECTRONICS_CO_ID 0x04e8 #define RIFT_ID_COUNT 5 static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { // enumerate HID devices and add any Rifts found to the device list rift_devices rd[RIFT_ID_COUNT] = { { "Rift (DK1)", OCULUS_VR_INC_ID, 0x0001, -1, REV_DK1 }, { "Rift (DK2)", OCULUS_VR_INC_ID, 0x0021, -1, REV_DK2 }, { "Rift (DK2)", OCULUS_VR_INC_ID, 0x2021, -1, REV_DK2 }, { "Rift (CV1)", OCULUS_VR_INC_ID, 0x0031, 0, REV_CV1 }, { "GearVR (Gen1)", SAMSUNG_ELECTRONICS_CO_ID, 0xa500, 0, REV_GEARVR_GEN1 }, }; for(int i = 0; i < RIFT_ID_COUNT; i++){ struct hid_device_info* devs = hid_enumerate(rd[i].company, rd[i].id); struct hid_device_info* cur_dev = devs; if(devs == NULL) continue; while (cur_dev) { if(rd[i].iface == -1 || cur_dev->interface_number == rd[i].iface){ ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Rift Driver"); strcpy(desc->vendor, "Oculus VR, Inc."); strcpy(desc->product, rd[i].name); desc->revision = rd[i].rev; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; strcpy(desc->path, cur_dev->path); desc->driver_ptr = driver; } cur_dev = cur_dev->next; } hid_free_enumeration(devs); } } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down driver"); hid_exit(); free(drv); ohmd_toggle_ovr_service(1); //re-enable OVRService if previously running } ohmd_driver* ohmd_create_oculus_rift_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(drv == NULL) return NULL; ohmd_toggle_ovr_service(0); //disable OVRService if running drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } OpenHMD-0.3.0/src/drv_oculus_rift/rift.h000066400000000000000000000074771351206017700201020ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Oculus Rift Driver Internal Interface */ #ifndef RIFT_H #define RIFT_H #include "../openhmdi.h" #define FEATURE_BUFFER_SIZE 256 typedef enum { RIFT_CMD_SENSOR_CONFIG = 2, RIFT_CMD_RANGE = 4, RIFT_CMD_KEEP_ALIVE = 8, RIFT_CMD_DISPLAY_INFO = 9, RIFT_CMD_ENABLE_COMPONENTS = 0x1d, RIFT_CMD_POSITION_INFO = 15, } rift_sensor_feature_cmd; typedef enum { RIFT_CF_SENSOR, RIFT_CF_HMD } rift_coordinate_frame; typedef enum { RIFT_IRQ_SENSORS = 1, RIFT_IRQ_SENSORS_DK2 = 11 } rift_irq_cmd; typedef enum { RIFT_DT_NONE, RIFT_DT_SCREEN_ONLY, RIFT_DT_DISTORTION } rift_distortion_type; typedef enum { RIFT_COMPONENT_DISPLAY = 1, RIFT_COMPONENT_AUDIO = 2, RIFT_COMPONENT_LEDS = 4 } rift_component_type; // Sensor config flags #define RIFT_SCF_RAW_MODE 0x01 #define RIFT_SCF_CALIBRATION_TEST 0x02 #define RIFT_SCF_USE_CALIBRATION 0x04 #define RIFT_SCF_AUTO_CALIBRATION 0x08 #define RIFT_SCF_MOTION_KEEP_ALIVE 0x10 #define RIFT_SCF_COMMAND_KEEP_ALIVE 0x20 #define RIFT_SCF_SENSOR_COORDINATES 0x40 static const unsigned char rift_enable_leds_dk2[17] = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x5E, 0x01, 0x1A, 0x41, 0x00, 0x00, 0x7F, }; static const unsigned char rift_enable_leds_cv1[17] = { 0x0c, 0x00, 0x00, 0xFF, 0x05, 0x00, 0x8F, 0x01, 0x00, 0x4B, 0x00, 0x00, 0x7F, }; typedef struct { uint16_t command_id; uint16_t accel_scale; uint16_t gyro_scale; uint16_t mag_scale; } pkt_sensor_range; typedef struct { int32_t accel[3]; int32_t gyro[3]; } pkt_tracker_sample; typedef struct { uint8_t num_samples; uint32_t timestamp; uint16_t last_command_id; int16_t temperature; pkt_tracker_sample samples[3]; int16_t mag[3]; } pkt_tracker_sensor; typedef struct { uint16_t command_id; uint8_t flags; uint16_t packet_interval; uint16_t keep_alive_interval; // in ms } pkt_sensor_config; typedef struct { uint16_t command_id; rift_distortion_type distortion_type; uint8_t distortion_type_opts; uint16_t h_resolution, v_resolution; float h_screen_size, v_screen_size; float v_center; float lens_separation; float eye_to_screen_distance[2]; float distortion_k[6]; } pkt_sensor_display_info; typedef struct { uint16_t command_id; uint16_t keep_alive_interval; } pkt_keep_alive; typedef struct { uint8_t flags; int32_t pos_x; int32_t pos_y; int32_t pos_z; int16_t dir_x; int16_t dir_y; int16_t dir_z; uint8_t index; uint8_t num; uint8_t type; } pkt_position_info; typedef struct { // Relative position in micrometers vec3f pos; // Normal vec3f dir; } rift_led; bool decode_sensor_range(pkt_sensor_range* range, const unsigned char* buffer, int size); bool decode_sensor_display_info(pkt_sensor_display_info* info, const unsigned char* buffer, int size); bool decode_sensor_config(pkt_sensor_config* config, const unsigned char* buffer, int size); bool decode_tracker_sensor_msg(pkt_tracker_sensor* msg, const unsigned char* buffer, int size); bool decode_tracker_sensor_msg_dk2(pkt_tracker_sensor* msg, const unsigned char* buffer, int size); bool decode_position_info(pkt_position_info* p, const unsigned char* buffer, int size); void vec3f_from_rift_vec(const int32_t* smp, vec3f* out_vec); int encode_sensor_config(unsigned char* buffer, const pkt_sensor_config* config); int encode_keep_alive(unsigned char* buffer, const pkt_keep_alive* keep_alive); int encode_enable_components(unsigned char* buffer, bool display, bool audio, bool leds); void dump_packet_sensor_range(const pkt_sensor_range* range); void dump_packet_sensor_config(const pkt_sensor_config* config); void dump_packet_sensor_display_info(const pkt_sensor_display_info* info); void dump_packet_tracker_sensor(const pkt_tracker_sensor* sensor); #endif OpenHMD-0.3.0/src/drv_psvr/000077500000000000000000000000001351206017700154025ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_psvr/packet.c000066400000000000000000000033631351206017700170220ustar00rootroot00000000000000// Copyright 2016, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Sony PSVR Driver - Packet reading code. */ #include "psvr.h" #ifdef _MSC_VER #define inline __inline #endif inline static uint8_t read8(const unsigned char** buffer) { uint8_t ret = **buffer; *buffer += 1; return ret; } inline static int16_t read16(const unsigned char** buffer) { int16_t ret = **buffer | (*(*buffer + 1) << 8); *buffer += 2; return ret; } inline static uint32_t read32(const unsigned char** buffer) { uint32_t ret = **buffer | (*(*buffer + 1) << 8) | (*(*buffer + 2) << 16) | (*(*buffer + 3) << 24); *buffer += 4; return ret; } bool psvr_decode_sensor_packet(psvr_sensor_packet* pkt, const unsigned char* buffer, int size) { if(size != 64){ LOGE("invalid psvr sensor packet size (expected 64 but got %d)", size); return false; } pkt->buttons = read8(&buffer); buffer += 1; //skip 1 pkt->volume = read16(&buffer); //volume buffer += 1; //unknown, skip 1 pkt->state = read8(&buffer); buffer += 10; //unknown, skip 10 pkt->samples[0].tick = read32(&buffer); //TICK // acceleration for(int i = 0; i < 3; i++){ pkt->samples[0].gyro[i] = read16(&buffer); } // rotation for(int i = 0; i < 3; i++){ pkt->samples[0].accel[i] = read16(&buffer); }//34 pkt->samples[1].tick = read32(&buffer); for(int i = 0; i < 3; i++){ pkt->samples[1].gyro[i] = read16(&buffer); } for(int i = 0; i < 3; i++){ pkt->samples[1].accel[i] = read16(&buffer); }//50 buffer += 5; //unknown, skip 5 pkt->button_raw = read16(&buffer); pkt->proximity = read16(&buffer); // ~150 (nothing) to 1023 (headset is on) buffer += 6; //unknown, skip 6 pkt->seq = read8(&buffer); return true; } OpenHMD-0.3.0/src/drv_psvr/psvr.c000066400000000000000000000220451351206017700165430ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // Copyright 2016, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Sony PSVR Driver */ #define FEATURE_BUFFER_SIZE 256 #define TICK_LEN (1.0f / 1000000.0f) // 1 MHz ticks #define SONY_ID 0x054c #define PSVR_HMD 0x09af #include #include #include #include #include #include #include #include "psvr.h" typedef struct { ohmd_device base; hid_device* hmd_handle; hid_device* hmd_control; fusion sensor_fusion; vec3f raw_accel, raw_gyro; uint8_t last_seq; uint8_t buttons; psvr_sensor_packet sensor; } psvr_priv; void accel_from_psvr_vec(const int16_t* smp, vec3f* out_vec) { out_vec->x = (float)smp[1] * (9.81 / 16384); out_vec->y = (float)smp[0] * (9.81 / 16384); out_vec->z = (float)smp[2] * -(9.81 / 16384); } void gyro_from_psvr_vec(const int16_t* smp, vec3f* out_vec) { out_vec->x = (float)smp[1] * 0.00105f; out_vec->y = (float)smp[0] * 0.00105f; out_vec->z = (float)smp[2] * 0.00105f * -1.0f; } static uint32_t calc_delta_and_handle_rollover(uint32_t next, uint32_t last) { uint32_t tick_delta = next - last; // The 24-bit tick counter has rolled over, // adjust the "negative" value to be positive. if (tick_delta > 0xffffff) { tick_delta += 0x1000000; } return tick_delta; } static void handle_tracker_sensor_msg(psvr_priv* priv, unsigned char* buffer, int size) { uint32_t last_sample_tick = priv->sensor.samples[1].tick; if(!psvr_decode_sensor_packet(&priv->sensor, buffer, size)){ LOGE("couldn't decode tracker sensor message"); } psvr_sensor_packet* s = &priv->sensor; uint32_t tick_delta = 500; // Startup correction, ignore last_sample_tick if zero. if (last_sample_tick > 0) { tick_delta = calc_delta_and_handle_rollover( s->samples[0].tick, last_sample_tick); // The PSVR device can buffer sensor data from previous // sessions which we can get at the start of new sessions. // @todo Maybe just skip the first 10 sensor packets? // @todo Maybe reset sensor fusion? if (tick_delta < 475 || tick_delta > 525) { LOGD("tick_delta = %u", tick_delta); tick_delta = 500; } } vec3f mag = {{0.0f, 0.0f, 0.0f}}; for (int i = 0; i < 2; i++) { float dt = tick_delta * TICK_LEN; accel_from_psvr_vec(s->samples[i].accel, &priv->raw_accel); gyro_from_psvr_vec(s->samples[i].gyro, &priv->raw_gyro); ofusion_update(&priv->sensor_fusion, dt, &priv->raw_gyro, &priv->raw_accel, &mag); if (i == 0) { tick_delta = calc_delta_and_handle_rollover( s->samples[1].tick, s->samples[0].tick); } } priv->buttons = s->buttons; } static void teardown(psvr_priv* priv) { if (priv->hmd_handle != NULL) { hid_close(priv->hmd_handle); priv->hmd_handle = NULL; } if (priv->hmd_control != NULL) { hid_close(priv->hmd_control); priv->hmd_control = NULL; } } static void update_device(ohmd_device* device) { psvr_priv* priv = (psvr_priv*)device; int size = 0; unsigned char buffer[FEATURE_BUFFER_SIZE]; while(true){ int size = hid_read(priv->hmd_handle, buffer, FEATURE_BUFFER_SIZE); if(size < 0){ LOGE("error reading from device"); return; } else if(size == 0) { return; // No more messages, return. } handle_tracker_sensor_msg(priv, buffer, size); } if(size < 0){ LOGE("error reading from device"); } } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { psvr_priv* priv = (psvr_priv*)device; switch(type){ case OHMD_ROTATION_QUAT: *(quatf*)out = priv->sensor_fusion.orient; break; case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; case OHMD_DISTORTION_K: // TODO this should be set to the equivalent of no distortion memset(out, 0, sizeof(float) * 6); break; case OHMD_CONTROLS_STATE: out[0] = (priv->buttons & PSVR_BUTTON_VOLUME_PLUS) != 0; out[1] = (priv->buttons & PSVR_BUTTON_VOLUME_MINUS) != 0; out[2] = (priv->buttons & PSVR_BUTTON_MIC_MUTE) != 0; break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { psvr_priv* priv = (psvr_priv*)device; // set cinematic mode for the hmd hid_write(priv->hmd_control, psvr_cinematicmode_on, sizeof(psvr_cinematicmode_on)); LOGD("Closing Sony PSVR device."); teardown(priv); free(device); } static hid_device* open_device_idx(int manufacturer, int product, int iface, int device_index) { struct hid_device_info* devs = hid_enumerate(manufacturer, product); struct hid_device_info* cur_dev = devs; int idx = 0; hid_device* ret = NULL; while (cur_dev) { LOGI("%04x:%04x %s", manufacturer, product, cur_dev->path); if (cur_dev->interface_number == iface) { if(idx == device_index){ LOGI("\topening '%s'", cur_dev->path); ret = hid_open_path(cur_dev->path); break; } idx++; } cur_dev = cur_dev->next; } hid_free_enumeration(devs); return ret; } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { psvr_priv* priv = ohmd_alloc(driver->ctx, sizeof(psvr_priv)); if(!priv) return NULL; priv->base.ctx = driver->ctx; int idx = atoi(desc->path); // Open the HMD device priv->hmd_handle = open_device_idx(SONY_ID, PSVR_HMD, 4, idx); if(!priv->hmd_handle) goto cleanup; if(hid_set_nonblocking(priv->hmd_handle, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } // Open the HMD Control device priv->hmd_control = open_device_idx(SONY_ID, PSVR_HMD, 5, idx); if(!priv->hmd_control) goto cleanup; if(hid_set_nonblocking(priv->hmd_control, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } // turn the display on if (hid_write(priv->hmd_control, psvr_power_on, sizeof(psvr_power_on)) == -1) { ohmd_set_error(driver->ctx, "failed to write to device (power on)"); goto cleanup; } // set VR mode for the hmd if (hid_write(priv->hmd_control, psvr_vrmode_on, sizeof(psvr_vrmode_on)) == -1) { ohmd_set_error(driver->ctx, "failed to write to device (set VR mode)"); goto cleanup; } // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties TODO: Get from device priv->base.properties.hsize = 0.126; //from calculated specs priv->base.properties.vsize = 0.071; //from calculated specs priv->base.properties.hres = 1920; priv->base.properties.vres = 1080; // Measurements taken from // https://github.com/gusmanb/PSVRFramework/wiki/Optical-characteristics priv->base.properties.lens_sep = 0.0630999878f; priv->base.properties.lens_vpos = 0.0394899882f; priv->base.properties.fov = DEG_TO_RAD(103.57f); //TODO: Confirm exact mesurements priv->base.properties.ratio = (1920.0f / 1080.0f) / 2.0f; priv->base.properties.control_count = 3; priv->base.properties.controls_hints[0] = OHMD_VOLUME_PLUS; priv->base.properties.controls_hints[1] = OHMD_VOLUME_MINUS; priv->base.properties.controls_hints[2] = OHMD_MIC_MUTE; priv->base.properties.controls_types[0] = OHMD_DIGITAL; priv->base.properties.controls_types[1] = OHMD_DIGITAL; priv->base.properties.controls_types[2] = OHMD_DIGITAL; // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; ofusion_init(&priv->sensor_fusion); return (ohmd_device*)priv; cleanup: if (priv) { teardown(priv); free(priv); } return NULL; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { struct hid_device_info* devs = hid_enumerate(SONY_ID, PSVR_HMD); struct hid_device_info* cur_dev = devs; int idx = 0; while (cur_dev) { ohmd_device_desc* desc; // Warn if hidapi does not provide interface numbers if (cur_dev->interface_number == -1) { LOGE("hidapi does not provide PSVR interface numbers\n"); #ifdef __APPLE__ LOGE("see https://github.com/signal11/hidapi/pull/380\n"); #endif break; } // Register one device for each IMU sensor interface if (cur_dev->interface_number == 4) { desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Sony PSVR Driver"); strcpy(desc->vendor, "Sony"); strcpy(desc->product, "PSVR"); desc->revision = 0; snprintf(desc->path, OHMD_STR_SIZE, "%d", idx); desc->driver_ptr = driver; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; idx++; } cur_dev = cur_dev->next; } hid_free_enumeration(devs); } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down Sony PSVR driver"); free(drv); } ohmd_driver* ohmd_create_psvr_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(!drv) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } OpenHMD-0.3.0/src/drv_psvr/psvr.h000066400000000000000000000023771351206017700165560ustar00rootroot00000000000000// Copyright 2016, Joey Ferwerda. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Sony PSVR Driver */ #ifndef PSVR_H #define PSVR_H #include #include #include "../openhmdi.h" typedef enum { PSVR_BUTTON_VOLUME_PLUS = 2, PSVR_BUTTON_VOLUME_MINUS = 4, PSVR_BUTTON_MIC_MUTE = 8 } psvr_button; typedef struct { int16_t accel[3]; int16_t gyro[3]; uint32_t tick; } psvr_sensor_sample; typedef struct { uint8_t buttons; uint8_t state; uint16_t volume; psvr_sensor_sample samples[2]; uint16_t button_raw; uint16_t proximity; uint8_t seq; } psvr_sensor_packet; static const unsigned char psvr_cinematicmode_on[8] = { 0x23, 0x00, 0xaa, 0x04, 0x00, 0x00, 0x00, 0x00 }; static const unsigned char psvr_vrmode_on[8] = { 0x23, 0x00, 0xaa, 0x04, 0x01, 0x00, 0x00, 0x00 }; static const unsigned char psvr_tracking_on[12] = { 0x11, 0x00, 0xaa, 0x08, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 }; static const unsigned char psvr_power_on[8] = { 0x17, 0x76, 0xaa, 0x04, 0x01, 0x00, 0x00, 0x00 }; void vec3f_from_psvr_vec(const int16_t* smp, vec3f* out_vec); bool psvr_decode_sensor_packet(psvr_sensor_packet* pkt, const unsigned char* buffer, int size); #endif OpenHMD-0.3.0/src/drv_wmr/000077500000000000000000000000001351206017700152155ustar00rootroot00000000000000OpenHMD-0.3.0/src/drv_wmr/config_key.h000066400000000000000000000141511351206017700175050ustar00rootroot00000000000000const uint8_t wmr_config_key[0x400] = { 0x2F, 0xC8, 0x0F, 0x38, 0xDD, 0x00, 0xF6, 0x5C, 0xA1, 0x31, 0xEF, 0xF1, 0xEA, 0x6F, 0xA0, 0xF8, 0x26, 0xB5, 0x9B, 0x39, 0xCF, 0x3A, 0x88, 0xC8, 0x2E, 0x17, 0xC0, 0x63, 0x5B, 0x46, 0x27, 0xBB, 0x98, 0x2F, 0x0E, 0x2A, 0x90, 0x4B, 0x28, 0x2D, 0x82, 0x76, 0xE5, 0x28, 0x72, 0x50, 0x8A, 0xF0, 0xBF, 0x84, 0x54, 0x3B, 0xA8, 0x77, 0x91, 0xCE, 0x87, 0x80, 0x53, 0x2F, 0x07, 0xAD, 0x1B, 0x3F, 0x8C, 0x67, 0x33, 0x2E, 0xEB, 0x6A, 0x2A, 0x52, 0x77, 0x7C, 0x1F, 0x02, 0x11, 0x9E, 0x2A, 0x59, 0x5C, 0x94, 0x0E, 0x4F, 0xF5, 0x44, 0x54, 0x01, 0xE7, 0x8F, 0x66, 0xF0, 0xAD, 0x68, 0x71, 0x3C, 0x6D, 0x2E, 0x1C, 0xE3, 0x11, 0x46, 0xF7, 0x7F, 0x02, 0x6C, 0x15, 0xA0, 0x10, 0xEE, 0x3B, 0x14, 0xAE, 0x6C, 0xA7, 0x3F, 0xAF, 0x83, 0x6A, 0xD7, 0x12, 0x88, 0x53, 0xFE, 0xEB, 0x5C, 0x78, 0x85, 0xAF, 0x1F, 0x80, 0x7F, 0xB6, 0xDA, 0x7C, 0x0E, 0x84, 0xB5, 0x02, 0x8E, 0x92, 0xA3, 0x5B, 0x83, 0x56, 0x11, 0x7B, 0xDF, 0x80, 0xB3, 0x4C, 0x13, 0x8E, 0x61, 0x61, 0xE6, 0x82, 0x8C, 0xDA, 0x08, 0x76, 0x88, 0xBF, 0x85, 0x7F, 0xE4, 0x28, 0x26, 0x1F, 0xB5, 0x67, 0x80, 0x63, 0xD9, 0x26, 0xD4, 0x91, 0xD1, 0xC1, 0x51, 0xCE, 0x61, 0x64, 0x2B, 0x56, 0xAE, 0x3D, 0x06, 0x5D, 0xCD, 0xF7, 0x05, 0x9A, 0x6F, 0xEB, 0x2E, 0xC2, 0x69, 0x42, 0x86, 0xBE, 0x78, 0x32, 0xC3, 0xA8, 0x94, 0xA3, 0x97, 0x84, 0x07, 0xF1, 0x6E, 0x3F, 0x10, 0xDE, 0x2B, 0xB1, 0x41, 0x1A, 0x59, 0xE3, 0x7F, 0x23, 0xDE, 0xF3, 0x13, 0x23, 0xD1, 0x60, 0x1C, 0xBB, 0xC5, 0x4A, 0xB1, 0xC6, 0x02, 0x38, 0x7B, 0xFE, 0xEF, 0xB6, 0x50, 0x16, 0x23, 0x4B, 0xD4, 0xEF, 0xEA, 0x67, 0xEC, 0x44, 0x2C, 0xC0, 0xA6, 0x2F, 0x0D, 0x6E, 0x17, 0x52, 0xC8, 0x26, 0xCB, 0x63, 0x85, 0x72, 0x8D, 0xBA, 0xD8, 0x09, 0xA3, 0x89, 0x64, 0x70, 0x12, 0xC6, 0xDF, 0x4C, 0x28, 0xD4, 0xB8, 0x49, 0x18, 0x69, 0x22, 0x36, 0xF1, 0x00, 0xC3, 0x91, 0xB3, 0x7C, 0xA0, 0xAA, 0x7D, 0x9E, 0x27, 0x65, 0xCD, 0x16, 0x3C, 0x71, 0x3C, 0xCC, 0xF5, 0x02, 0xD1, 0xA5, 0x06, 0x95, 0xB2, 0x1E, 0x71, 0x92, 0x6F, 0xC2, 0xD2, 0xEF, 0x58, 0x7B, 0xD0, 0x53, 0x5E, 0xE9, 0xB6, 0xCA, 0x1C, 0x13, 0x96, 0xAC, 0xF1, 0xF5, 0x19, 0xD9, 0x8A, 0x1D, 0xA9, 0x0D, 0xAE, 0xD0, 0xF4, 0xB3, 0xDD, 0x2D, 0x43, 0x6E, 0x41, 0x22, 0xDC, 0x09, 0xA4, 0x92, 0x42, 0xC5, 0x32, 0x7D, 0xD7, 0xA2, 0x57, 0xA5, 0xA5, 0x11, 0xD2, 0x22, 0xD0, 0xD7, 0x75, 0xFF, 0xFC, 0x2F, 0x66, 0xB5, 0xA9, 0xA3, 0x2B, 0xB4, 0x2B, 0x14, 0xEF, 0xC4, 0xB4, 0x18, 0xF0, 0x56, 0x55, 0x93, 0x6A, 0x30, 0xF6, 0xDF, 0x14, 0x23, 0xF7, 0x2A, 0xDC, 0x4C, 0xE7, 0x78, 0x2B, 0x66, 0x22, 0xB4, 0xAC, 0x2E, 0x03, 0xF2, 0xEF, 0xEC, 0x35, 0xAF, 0x22, 0x6D, 0x05, 0x12, 0x6D, 0xC5, 0x2C, 0x12, 0x9B, 0x7D, 0x66, 0x47, 0x8F, 0xC0, 0x81, 0xCD, 0xFE, 0x97, 0x4C, 0x01, 0xC1, 0xD7, 0x24, 0xD8, 0x46, 0xFD, 0x29, 0xF7, 0xE1, 0x61, 0xF3, 0xA0, 0x69, 0xBD, 0x23, 0x35, 0x7E, 0x66, 0xB1, 0xF6, 0x3A, 0xD9, 0xF8, 0x29, 0xA2, 0x99, 0x8E, 0xF7, 0xBC, 0xCC, 0xD6, 0x37, 0x11, 0x09, 0xC8, 0x07, 0x68, 0x5D, 0xF6, 0xC2, 0x73, 0xE8, 0xE5, 0x2D, 0xA4, 0x62, 0x0E, 0x9D, 0xC2, 0x76, 0xA9, 0x94, 0x06, 0x19, 0x39, 0x9F, 0x8F, 0x83, 0x62, 0xE9, 0xDE, 0xED, 0x76, 0xFD, 0xBC, 0x42, 0x77, 0x1E, 0x49, 0x18, 0xD8, 0x15, 0x22, 0x55, 0x5C, 0xD3, 0xF2, 0x7F, 0xD0, 0x8A, 0x27, 0x82, 0x05, 0xD3, 0xBD, 0x27, 0x0C, 0x2F, 0xB9, 0x72, 0xE9, 0x9D, 0x6B, 0xD3, 0xD6, 0xD6, 0x84, 0xA4, 0x1F, 0x6C, 0x26, 0x7C, 0x61, 0xE0, 0x7E, 0x58, 0x05, 0xAD, 0xC5, 0xE1, 0x14, 0x3A, 0xD7, 0x40, 0x6A, 0x52, 0x57, 0x82, 0xAA, 0x9B, 0xF0, 0xCA, 0x60, 0x5D, 0x6C, 0xC0, 0xA4, 0x6B, 0xF3, 0x87, 0x6D, 0x04, 0x80, 0x2C, 0x7B, 0xEB, 0x9F, 0xD4, 0x03, 0x81, 0x91, 0xD0, 0xB9, 0x74, 0xAE, 0x19, 0xBF, 0x48, 0x63, 0x8F, 0x8C, 0xEE, 0xBC, 0xB4, 0xC0, 0x16, 0x4A, 0xF5, 0x5E, 0x1C, 0x7A, 0xDB, 0xD5, 0xA4, 0x16, 0x92, 0xCB, 0x52, 0x86, 0xCB, 0xD1, 0x1E, 0x1D, 0xEE, 0x90, 0x01, 0x90, 0x52, 0x52, 0x52, 0x8C, 0x25, 0x0A, 0xB7, 0xDE, 0x10, 0x51, 0xB8, 0x23, 0x5C, 0xCB, 0x32, 0x6A, 0xB0, 0xB9, 0xA4, 0x58, 0xB6, 0x14, 0x28, 0xF0, 0xFB, 0xC2, 0xCD, 0x6F, 0x5E, 0x10, 0x48, 0xAD, 0x1F, 0xC8, 0xCE, 0x4F, 0x09, 0xDA, 0xF8, 0xD0, 0x84, 0x44, 0x8C, 0x57, 0x4B, 0xE1, 0x87, 0x5B, 0x79, 0xD0, 0x93, 0x38, 0x57, 0x65, 0x31, 0x55, 0xF2, 0xD6, 0x1F, 0x6C, 0xC9, 0xD1, 0x3A, 0x17, 0x3C, 0x4F, 0x97, 0x23, 0x07, 0xB9, 0xB6, 0xB5, 0x32, 0x28, 0x24, 0x0E, 0xCC, 0x1A, 0xA1, 0x74, 0x39, 0x06, 0xD9, 0x52, 0xD6, 0x38, 0xFC, 0x95, 0xBF, 0x84, 0x3A, 0x76, 0xA3, 0xC3, 0x54, 0xF2, 0x71, 0x4D, 0x2D, 0xE8, 0x9F, 0x58, 0x19, 0xE9, 0xD3, 0x5A, 0xCE, 0x30, 0x1E, 0xB5, 0xEE, 0xB5, 0x83, 0xF4, 0xB9, 0x23, 0xF3, 0xA1, 0xFC, 0xEA, 0x68, 0x2F, 0xAF, 0x22, 0x73, 0xF2, 0x21, 0x66, 0x8C, 0x29, 0xF2, 0x34, 0x7A, 0x39, 0xB9, 0x3C, 0x2C, 0x96, 0x54, 0x7A, 0x7E, 0xA5, 0x24, 0x98, 0xF7, 0x06, 0x78, 0x28, 0x70, 0x7A, 0x3C, 0x73, 0x8D, 0x82, 0xB1, 0x9C, 0x1E, 0xD9, 0xDB, 0xBB, 0xEF, 0x3F, 0xC2, 0x0F, 0xAF, 0x73, 0x0E, 0xC0, 0x01, 0x2E, 0x5B, 0x8A, 0xC4, 0x39, 0x5A, 0x71, 0xA9, 0x2B, 0xD9, 0xD3, 0x9A, 0x0D, 0x28, 0x95, 0xFE, 0x7E, 0xD8, 0xC7, 0x73, 0xDD, 0x77, 0x52, 0x56, 0x94, 0x80, 0x93, 0xD1, 0xFF, 0x02, 0x28, 0xE0, 0x18, 0xA1, 0xF2, 0x7E, 0x9A, 0x1C, 0xF2, 0x7B, 0x76, 0x2C, 0xF0, 0xB7, 0x39, 0xF3, 0x10, 0x08, 0x90, 0x8F, 0xA6, 0xEB, 0x5F, 0xF5, 0x1A, 0xB1, 0x72, 0xF0, 0x1B, 0x7A, 0xF4, 0xF7, 0x4D, 0x5C, 0xC0, 0x82, 0x1F, 0x27, 0xCE, 0xA4, 0x52, 0xB2, 0xE8, 0x24, 0xC7, 0xCA, 0x8C, 0xB9, 0xCB, 0x6C, 0xC5, 0xA0, 0x42, 0x18, 0x7F, 0xE5, 0xFA, 0xA9, 0x8E, 0xA0, 0xF4, 0x58, 0x78, 0xB9, 0x30, 0x86, 0x49, 0x01, 0x15, 0x8E, 0xB0, 0x22, 0x8C, 0xF5, 0x12, 0x64, 0xE6, 0x69, 0x90, 0xD6, 0x86, 0x92, 0x9B, 0x83, 0xD4, 0xF7, 0x01, 0x15, 0x9A, 0x7C, 0xF8, 0xB3, 0xCD, 0x0A, 0xA1, 0x3D, 0x49, 0x90, 0x21, 0x69, 0xD7, 0x25, 0xFC, 0x1A, 0x64, 0x22, 0x77, 0x7A, 0xBF, 0x3C, 0x1C, 0x4B, 0x06, 0x6E, 0x83, 0x03, 0x5D, 0x5C, 0x76, 0xEA, 0x84, 0x29, 0xB5, 0x7C, 0xC0, 0x74, 0xBC, 0x4A, 0x21, 0x7B, 0xDC, 0xFE, 0x1B, 0x1F, 0x77, 0x64, 0x20, 0x59, 0x6A, 0x0B, 0x48, 0xC2, 0x0E, 0x2D, 0xFF, 0xCE, 0x4C, 0x06, 0xED, 0x0E, 0x1C, 0xB6, 0x1A, 0x62, 0x79, 0xEC, 0x25, 0xD6, 0x89, 0xBF, 0x4F, 0x16, 0x75, 0x82, 0xD7, 0x98, 0x5C, 0xBA, 0x75, 0xBA, 0xD3, 0x2D, 0xC7, 0x47, 0xF3, 0xB6, 0x31, 0x54, 0xE0, 0x86, 0xFE, 0x29, 0x8E, 0xE2, 0x92, 0x79, 0x89, 0xE4, 0x43, 0xB4, 0x9C, 0xF7, 0xED, 0x1B, 0xA6, 0x0B, 0x0C, 0x69, 0x23, 0xF4, 0x7D, 0x0A, 0xA2, 0x8C, 0xEC, 0xD5, 0x2C, 0x8E, 0xB6, 0x20, 0x8F, 0xA6, 0xB9, 0x86, 0xB8, 0xBA, 0x59, 0xA3, 0xA7 };OpenHMD-0.3.0/src/drv_wmr/packet.c000066400000000000000000000035751351206017700166420ustar00rootroot00000000000000// Copyright 2018, Philipp Zabel. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Windows Mixed Reality Driver */ #include "wmr.h" #ifdef _MSC_VER #define inline __inline #endif inline static uint8_t read8(const unsigned char** buffer) { uint8_t ret = **buffer; *buffer += 1; return ret; } inline static int16_t read16(const unsigned char** buffer) { int16_t ret = **buffer | (*(*buffer + 1) << 8); *buffer += 2; return ret; } inline static int32_t read32(const unsigned char** buffer) { int32_t ret = **buffer | (*(*buffer + 1) << 8) | (*(*buffer + 2) << 16) | (*(*buffer + 3) << 24); *buffer += 4; return ret; } inline static uint64_t read64(const unsigned char** buffer) { uint64_t ret = (uint64_t)**buffer | ((uint64_t)*(*buffer + 1) << 8) | ((uint64_t)*(*buffer + 2) << 16) | ((uint64_t)*(*buffer + 3) << 24) | ((uint64_t)*(*buffer + 4) << 32) | ((uint64_t)*(*buffer + 5) << 40) | ((uint64_t)*(*buffer + 6) << 48) | ((uint64_t)*(*buffer + 7) << 56); *buffer += 8; return ret; } bool hololens_sensors_decode_packet(hololens_sensors_packet* pkt, const unsigned char* buffer, int size) { if(size != 497 && size != 381){ LOGE("invalid hololens sensor packet size (expected 497 but got %d)", size); return false; } pkt->id = read8(&buffer); for(int i = 0; i < 4; i++) pkt->temperature[i] = read16(&buffer); for(int i = 0; i < 4; i++) pkt->gyro_timestamp[i] = read64(&buffer); for(int i = 0; i < 3; i++){ for (int j = 0; j < 32; j++) pkt->gyro[i][j] = read16(&buffer); } for(int i = 0; i < 4; i++) pkt->accel_timestamp[i] = read64(&buffer); for(int i = 0; i < 3; i++){ for (int j = 0; j < 4; j++) pkt->accel[i][j] = read32(&buffer); } for(int i = 0; i < 4; i++) pkt->video_timestamp[i] = read64(&buffer); return true; } OpenHMD-0.3.0/src/drv_wmr/wmr.c000066400000000000000000000305071351206017700161730ustar00rootroot00000000000000// Copyright 2018, Philipp Zabel. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Windows Mixed Reality Driver */ #define FEATURE_BUFFER_SIZE 497 #define TICK_LEN (1.0f / 10000000.0f) // 1000 Hz ticks #define MICROSOFT_VID 0x045e #define HOLOLENS_SENSORS_PID 0x0659 #include #include #include #include #include #include #include #include "wmr.h" #include "config_key.h" #include "../ext_deps/nxjson.h" typedef struct { ohmd_device base; hid_device* hmd_imu; fusion sensor_fusion; vec3f raw_accel, raw_gyro; uint32_t last_ticks; uint8_t last_seq; hololens_sensors_packet sensor; } wmr_priv; static void vec3f_from_hololens_gyro(int16_t smp[3][32], int i, vec3f* out_vec) { out_vec->x = (float)(smp[1][8*i+0] + smp[1][8*i+1] + smp[1][8*i+2] + smp[1][8*i+3] + smp[1][8*i+4] + smp[1][8*i+5] + smp[1][8*i+6] + smp[1][8*i+7]) * 0.001f * -0.125f; out_vec->y = (float)(smp[0][8*i+0] + smp[0][8*i+1] + smp[0][8*i+2] + smp[0][8*i+3] + smp[0][8*i+4] + smp[0][8*i+5] + smp[0][8*i+6] + smp[0][8*i+7]) * 0.001f * -0.125f; out_vec->z = (float)(smp[2][8*i+0] + smp[2][8*i+1] + smp[2][8*i+2] + smp[2][8*i+3] + smp[2][8*i+4] + smp[2][8*i+5] + smp[2][8*i+6] + smp[2][8*i+7]) * 0.001f * -0.125f; } static void vec3f_from_hololens_accel(int32_t smp[3][4], int i, vec3f* out_vec) { out_vec->x = (float)smp[1][i] * 0.001f * -1.0f; out_vec->y = (float)smp[0][i] * 0.001f * -1.0f; out_vec->z = (float)smp[2][i] * 0.001f * -1.0f; } static void handle_tracker_sensor_msg(wmr_priv* priv, unsigned char* buffer, int size) { uint64_t last_sample_tick = priv->sensor.gyro_timestamp[3]; if(!hololens_sensors_decode_packet(&priv->sensor, buffer, size)){ LOGE("couldn't decode tracker sensor message"); } hololens_sensors_packet* s = &priv->sensor; vec3f mag = {{0.0f, 0.0f, 0.0f}}; for(int i = 0; i < 4; i++){ uint64_t tick_delta = 1000; if(last_sample_tick > 0) //startup correction tick_delta = s->gyro_timestamp[i] - last_sample_tick; float dt = tick_delta * TICK_LEN; vec3f_from_hololens_gyro(s->gyro, i, &priv->raw_gyro); vec3f_from_hololens_accel(s->accel, i, &priv->raw_accel); ofusion_update(&priv->sensor_fusion, dt, &priv->raw_gyro, &priv->raw_accel, &mag); last_sample_tick = s->gyro_timestamp[i]; } } static void update_device(ohmd_device* device) { wmr_priv* priv = (wmr_priv*)device; int size = 0; unsigned char buffer[FEATURE_BUFFER_SIZE]; while(true){ int size = hid_read(priv->hmd_imu, buffer, FEATURE_BUFFER_SIZE); if(size < 0){ LOGE("error reading from device"); return; } else if(size == 0) { return; // No more messages, return. } // currently the only message type the hardware supports (I think) if(buffer[0] == HOLOLENS_IRQ_SENSORS){ handle_tracker_sensor_msg(priv, buffer, size); }else if(buffer[0] != HOLOLENS_IRQ_DEBUG){ LOGE("unknown message type: %u", buffer[0]); } } if(size < 0){ LOGE("error reading from device"); } } static int getf(ohmd_device* device, ohmd_float_value type, float* out) { wmr_priv* priv = (wmr_priv*)device; switch(type){ case OHMD_ROTATION_QUAT: *(quatf*)out = priv->sensor_fusion.orient; break; case OHMD_POSITION_VECTOR: out[0] = out[1] = out[2] = 0; break; case OHMD_DISTORTION_K: // TODO this should be set to the equivalent of no distortion memset(out, 0, sizeof(float) * 6); break; default: ohmd_set_error(priv->base.ctx, "invalid type given to getf (%ud)", type); return -1; break; } return 0; } static void close_device(ohmd_device* device) { wmr_priv* priv = (wmr_priv*)device; LOGD("closing Microsoft HoloLens Sensors device"); hid_close(priv->hmd_imu); free(device); } static hid_device* open_device_idx(int manufacturer, int product, int iface, int iface_tot, int device_index) { struct hid_device_info* devs = hid_enumerate(manufacturer, product); struct hid_device_info* cur_dev = devs; int idx = 0; int iface_cur = 0; hid_device* ret = NULL; while (cur_dev) { LOGI("%04x:%04x %s\n", manufacturer, product, cur_dev->path); if(idx == device_index && iface == iface_cur){ ret = hid_open_path(cur_dev->path); LOGI("opening\n"); } cur_dev = cur_dev->next; iface_cur++; if(iface_cur >= iface_tot){ idx++; iface_cur = 0; } } hid_free_enumeration(devs); return ret; } static int config_command_sync(hid_device* hmd_imu, unsigned char type, unsigned char* buf, int len) { unsigned char cmd[64] = { 0x02, type }; hid_write(hmd_imu, cmd, sizeof(cmd)); do { int size = hid_read(hmd_imu, buf, len); if (size == -1) return -1; if (buf[0] == HOLOLENS_IRQ_CONTROL) return size; } while (buf[0] == HOLOLENS_IRQ_SENSORS || buf[0] == HOLOLENS_IRQ_DEBUG); return -1; } int read_config_part(wmr_priv *priv, unsigned char type, unsigned char *data, int len) { unsigned char buf[33]; int offset = 0; int size; size = config_command_sync(priv->hmd_imu, 0x0b, buf, sizeof(buf)); if (size != 33 || buf[0] != 0x02) { LOGE("Failed to issue command 0b: %02x %02x %02x\n", buf[0], buf[1], buf[2]); return -1; } size = config_command_sync(priv->hmd_imu, type, buf, sizeof(buf)); if (size != 33 || buf[0] != 0x02) { LOGE("Failed to issue command %02x: %02x %02x %02x\n", type, buf[0], buf[1], buf[2]); return -1; } for (;;) { size = config_command_sync(priv->hmd_imu, 0x08, buf, sizeof(buf)); if (size != 33 || (buf[1] != 0x01 && buf[1] != 0x02)) { LOGE("Failed to issue command 08: %02x %02x %02x\n", buf[0], buf[1], buf[2]); return -1; } if (buf[1] != 0x01) break; if (buf[2] > len || offset + buf[2] > len) { LOGE("Getting more information then requested\n"); return -1; } memcpy(data + offset, buf + 3, buf[2]); offset += buf[2]; } return offset; } void decrypt_config(unsigned char* config) { wmr_config_header* hdr = (wmr_config_header*)config; for (int i = 0; i < hdr->json_size - sizeof(uint16_t); i++) { config[hdr->json_start + sizeof(uint16_t) + i] ^= wmr_config_key[i % sizeof(wmr_config_key)]; } } unsigned char *read_config(wmr_priv *priv) { unsigned char meta[84]; unsigned char *data; int size, data_size; size = read_config_part(priv, 0x06, meta, sizeof(meta)); if (size == -1) return NULL; /* * No idea what the other 64 bytes of metadata are, but the first two * seem to be little endian size of the data store. */ data_size = meta[0] | (meta[1] << 8); data = calloc(1, data_size); if (!data) return NULL; size = read_config_part(priv, 0x04, data, data_size); if (size == -1) { free(data); return NULL; } decrypt_config(data); LOGI("Read %d-byte config data\n", data_size); return data; } void process_nxjson_obj(const nx_json* node, const nx_json* (*list)[32], char* match) { if (!node) return; if (node->key) if (strcmp(match,node->key) == 0) { //LOGE("Found key %s\n", node->key); for (int i = 0; i < 32; i++) { if (!list[0][i]) { list[0][i] = node; break; } } } process_nxjson_obj(node->next, list, match); process_nxjson_obj(node->child, list, match); } void resetList(const nx_json* (*list)[32]) { memset(list, 0, sizeof(*list)); } static ohmd_device* open_device(ohmd_driver* driver, ohmd_device_desc* desc) { wmr_priv* priv = ohmd_alloc(driver->ctx, sizeof(wmr_priv)); unsigned char *config; bool samsung = false; if(!priv) return NULL; priv->base.ctx = driver->ctx; int idx = atoi(desc->path); // Open the HMD device priv->hmd_imu = open_device_idx(MICROSOFT_VID, HOLOLENS_SENSORS_PID, 0, 1, idx); if(!priv->hmd_imu) goto cleanup; //Bunch of temp variables to set to the display configs int resolution_h, resolution_v; config = read_config(priv); if (config) { wmr_config_header* hdr = (wmr_config_header*)config; LOGI("Model name: %.64s\n", hdr->name); if (strncmp(hdr->name, "Samsung Windows Mixed Reality 800ZAA", 64) == 0) { samsung = true; } char *json_data = (char*)config + hdr->json_start + sizeof(uint16_t); const nx_json* json = nx_json_parse(json_data, 0); if (json->type != NX_JSON_NULL) { //list to save found nodes with matching name const nx_json* returnlist[32] = {0}; resetList(&returnlist); process_nxjson_obj(json, &returnlist, "DisplayHeight"); LOGE("Found display height %lli\n", returnlist[0]->int_value); //taking the first element since it does not matter if you take display 0 or 1 resolution_v = returnlist[0]->int_value; resetList(&returnlist); process_nxjson_obj(json, &returnlist, "DisplayWidth"); LOGE("Found display width %lli\n", returnlist[0]->int_value); //taking the first element since it does not matter if you take display 0 or 1 resolution_h = returnlist[0]->int_value; //Left in for debugging until we confirmed most variables working /* for (int i = 0; i < 32; i++) { if (returnlist[i] != 0) { if (returnlist[i]->type == NX_JSON_STRING) printf("Found %s\n", returnlist[i]->text_value); if (returnlist[i]->type == NX_JSON_INTEGER) printf("Found %lli\n", returnlist[i]->int_value); if (returnlist[i]->type == NX_JSON_DOUBLE) printf("Found %f\n", returnlist[i]->dbl_value); if (returnlist[i]->type == NX_JSON_ARRAY) printf("Found array, TODO\n"); } }*/ } else { LOGE("Could not parse json\n"); } //TODO: use new config data nx_json_free(json); free(config); } else { LOGE("Could not read config from the firmware\n"); } if(hid_set_nonblocking(priv->hmd_imu, 1) == -1){ ohmd_set_error(driver->ctx, "failed to set non-blocking on device"); goto cleanup; } // turn the IMU on hid_write(priv->hmd_imu, hololens_sensors_imu_on, sizeof(hololens_sensors_imu_on)); // Set default device properties ohmd_set_default_device_properties(&priv->base.properties); // Set device properties if (samsung) { // Samsung Odyssey has two 3.5" 1440x1600 OLED displays. priv->base.properties.hsize = 0.118942f; priv->base.properties.vsize = 0.066079f; priv->base.properties.hres = resolution_h; priv->base.properties.vres = resolution_v; priv->base.properties.lens_sep = 0.063f; /* FIXME */ priv->base.properties.lens_vpos = 0.03304f; /* FIXME */ priv->base.properties.fov = DEG_TO_RAD(110.0f); priv->base.properties.ratio = 0.9f; } else { // Most Windows Mixed Reality Headsets have two 2.89" 1440x1440 LCDs priv->base.properties.hsize = 0.103812f; priv->base.properties.vsize = 0.051905f; priv->base.properties.hres = resolution_h; priv->base.properties.vres = resolution_v; priv->base.properties.lens_sep = 0.063f; /* FIXME */ priv->base.properties.lens_vpos = 0.025953f; /* FIXME */ priv->base.properties.fov = DEG_TO_RAD(95.0f); priv->base.properties.ratio = 1.0f; } // calculate projection eye projection matrices from the device properties ohmd_calc_default_proj_matrices(&priv->base.properties); // set up device callbacks priv->base.update = update_device; priv->base.close = close_device; priv->base.getf = getf; ofusion_init(&priv->sensor_fusion); return (ohmd_device*)priv; cleanup: if(priv) free(priv); return NULL; } static void get_device_list(ohmd_driver* driver, ohmd_device_list* list) { struct hid_device_info* devs = hid_enumerate(MICROSOFT_VID, HOLOLENS_SENSORS_PID); struct hid_device_info* cur_dev = devs; int idx = 0; while (cur_dev) { ohmd_device_desc* desc = &list->devices[list->num_devices++]; strcpy(desc->driver, "OpenHMD Windows Mixed Reality Driver"); strcpy(desc->vendor, "Microsoft"); strcpy(desc->product, "HoloLens Sensors"); desc->revision = 0; snprintf(desc->path, OHMD_STR_SIZE, "%d", idx); desc->driver_ptr = driver; desc->device_class = OHMD_DEVICE_CLASS_HMD; desc->device_flags = OHMD_DEVICE_FLAGS_ROTATIONAL_TRACKING; cur_dev = cur_dev->next; idx++; } hid_free_enumeration(devs); } static void destroy_driver(ohmd_driver* drv) { LOGD("shutting down Windows Mixed Reality driver"); free(drv); } ohmd_driver* ohmd_create_wmr_drv(ohmd_context* ctx) { ohmd_driver* drv = ohmd_alloc(ctx, sizeof(ohmd_driver)); if(!drv) return NULL; drv->get_device_list = get_device_list; drv->open_device = open_device; drv->destroy = destroy_driver; drv->ctx = ctx; return drv; } OpenHMD-0.3.0/src/drv_wmr/wmr.h000066400000000000000000000022411351206017700161720ustar00rootroot00000000000000// Copyright 2018, Philipp Zabel. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Windows Mixed Reality Driver */ #ifndef WMR_H #define WMR_H #include #include #include "../openhmdi.h" typedef enum { HOLOLENS_IRQ_SENSORS = 1, HOLOLENS_IRQ_CONTROL = 2, HOLOLENS_IRQ_DEBUG = 3, } hololens_sensors_irq_cmd; typedef struct { uint8_t id; uint16_t temperature[4]; uint64_t gyro_timestamp[4]; int16_t gyro[3][32]; uint64_t accel_timestamp[4]; int32_t accel[3][4]; uint64_t video_timestamp[4]; } hololens_sensors_packet; static const unsigned char hololens_sensors_imu_on[64] = { 0x02, 0x07 }; typedef struct { uint32_t json_start; uint32_t json_size; char manufacturer[0x40]; char device[0x40]; char serial[0x40]; char uid[0x26]; char unk[0xd5]; char name[0x40]; char revision[0x20]; char revision_date[0x20]; } wmr_config_header; bool hololens_sensors_decode_packet(hololens_sensors_packet* pkt, const unsigned char* buffer, int size); #endif OpenHMD-0.3.0/src/ext_deps/000077500000000000000000000000001351206017700153505ustar00rootroot00000000000000OpenHMD-0.3.0/src/ext_deps/miniz.c000066400000000000000000007026301351206017700166520ustar00rootroot00000000000000/* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP reading/writing/appending, PNG writing See "unlicense" statement at the end of this file. Rich Geldreich , last updated Oct. 13, 2013 Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt Most API's defined in miniz.c are optional. For example, to disable the archive related functions just define MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO (see the list below for more macros). * Change History 10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major release with Zip64 support (almost there!): - Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug (thanks kahmyong.moon@hp.com) which could cause locate files to not find files. This bug would only have occured in earlier versions if you explicitly used this flag, OR if you used mz_zip_extract_archive_file_to_heap() or mz_zip_add_mem_to_archive_file_in_place() (which used this flag). If you can't switch to v1.15 but want to fix this bug, just remove the uses of this flag from both helper funcs (and of course don't use the flag). - Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when pUser_read_buf is not NULL and compressed size is > uncompressed size - Fixing mz_zip_reader_extract_*() funcs so they don't try to extract compressed data from directory entries, to account for weird zipfiles which contain zero-size compressed data on dir entries. Hopefully this fix won't cause any issues on weird zip archives, because it assumes the low 16-bits of zip external attributes are DOS attributes (which I believe they always are in practice). - Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the internal attributes, just the filename and external attributes - mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed - Added cmake support for Linux builds which builds all the examples, tested with clang v3.3 and gcc v4.6. - Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti - Merged MZ_FORCEINLINE fix from hdeanclark - Fix include before config #ifdef, thanks emil.brink - Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping (super useful for OpenGL apps), and explicit control over the compression level (so you can set it to 1 for real-time compression). - Merged in some compiler fixes from paulharris's github repro. - Retested this build under Windows (VS 2010, including static analysis), tcc 0.9.26, gcc v4.6 and clang v3.3. - Added example6.c, which dumps an image of the mandelbrot set to a PNG file. - Modified example2 to help test the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more. - In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix possible src file fclose() leak if alignment bytes+local header file write faiiled - In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader(): Was pushing the wrong central dir header offset, appears harmless in this release, but it became a problem in the zip64 branch 5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE, #include (thanks fermtect). 5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit. - Temporarily/locally slammed in "typedef unsigned long mz_ulong" and re-ran a randomized regression test on ~500k files. - Eliminated a bunch of warnings when compiling with GCC 32-bit/64. - Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze (static analysis) option and fixed all warnings (except for the silly "Use of the comma-operator in a tested expression.." analysis warning, which I purposely use to work around a MSVC compiler warning). - Created 32-bit and 64-bit Codeblocks projects/workspace. Built and tested Linux executables. The codeblocks workspace is compatible with Linux+Win32/x64. - Added miniz_tester solution/project, which is a useful little app derived from LZHAM's tester app that I use as part of the regression test. - Ran miniz.c and tinfl.c through another series of regression testing on ~500,000 files and archives. - Modified example5.c so it purposely disables a bunch of high-level functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the MINIZ_NO_STDIO bug report.) - Fix ftell() usage in examples so they exit with an error on files which are too large (a limitation of the examples, not miniz itself). 4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple minor level_and_flags issues in the archive API's. level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce Dawson for the feedback/bug report. 5/28/11 v1.11 - Added statement from unlicense.org 5/27/11 v1.10 - Substantial compressor optimizations: - Level 1 is now ~4x faster than before. The L1 compressor's throughput now varies between 70-110MB/sec. on a - Core i7 (actual throughput varies depending on the type of data, and x64 vs. x86). - Improved baseline L2-L9 compression perf. Also, greatly improved compression perf. issues on some file types. - Refactored the compression code for better readability and maintainability. - Added level 10 compression level (L10 has slightly better ratio than level 9, but could have a potentially large drop in throughput on some files). 5/15/11 v1.09 - Initial stable release. * Low-level Deflate/Inflate implementation notes: Compression: Use the "tdefl" API's. The compressor supports raw, static, and dynamic blocks, lazy or greedy parsing, match length filtering, RLE-only, and Huffman-only streams. It performs and compresses approximately as well as zlib. Decompression: Use the "tinfl" API's. The entire decompressor is implemented as a single function coroutine: see tinfl_decompress(). It supports decompression into a 32KB (or larger power of 2) wrapping buffer, or into a memory block large enough to hold the entire file. The low-level tdefl/tinfl API's do not make any use of dynamic memory allocation. * zlib-style API notes: miniz.c implements a fairly large subset of zlib. There's enough functionality present for it to be a drop-in zlib replacement in many apps: The z_stream struct, optional memory allocation callbacks deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound inflateInit/inflateInit2/inflate/inflateEnd compress, compress2, compressBound, uncompress CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly routines. Supports raw deflate streams or standard zlib streams with adler-32 checking. Limitations: The callback API's are not implemented yet. No support for gzip headers or zlib static dictionaries. I've tried to closely emulate zlib's various flavors of stream flushing and return status codes, but there are no guarantees that miniz.c pulls this off perfectly. * PNG writing: See the tdefl_write_image_to_png_file_in_memory() function, originally written by Alex Evans. Supports 1-4 bytes/pixel images. * ZIP archive API notes: The ZIP archive API's where designed with simplicity and efficiency in mind, with just enough abstraction to get the job done with minimal fuss. There are simple API's to retrieve file information, read files from existing archives, create new archives, append new files to existing archives, or clone archive data from one archive to another. It supports archives located in memory or the heap, on disk (using stdio.h), or you can specify custom file read/write callbacks. - Archive reading: Just call this function to read a single file from a disk archive: void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint zip_flags); For more complex cases, use the "mz_zip_reader" functions. Upon opening an archive, the entire central directory is located and read as-is into memory, and subsequent file access only occurs when reading individual files. - Archives file scanning: The simple way is to use this function to scan a loaded archive for a specific file: int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags); The locate operation can optionally check file comments too, which (as one example) can be used to identify multiple versions of the same file in an archive. This function uses a simple linear search through the central directory, so it's not very fast. Alternately, you can iterate through all the files in an archive (using mz_zip_reader_get_num_files()) and retrieve detailed info on each file by calling mz_zip_reader_file_stat(). - Archive creation: Use the "mz_zip_writer" functions. The ZIP writer immediately writes compressed file data to disk and builds an exact image of the central directory in memory. The central directory image is written all at once at the end of the archive file when the archive is finalized. The archive writer can optionally align each file's local header and file data to any power of 2 alignment, which can be useful when the archive will be read from optical media. Also, the writer supports placing arbitrary data blobs at the very beginning of ZIP archives. Archives written using either feature are still readable by any ZIP tool. - Archive appending: The simple way to add a single file to an archive is to call this function: mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags); The archive will be created if it doesn't already exist, otherwise it'll be appended to. Note the appending is done in-place and is not an atomic operation, so if something goes wrong during the operation it's possible the archive could be left without a central directory (although the local file headers and file data will be fine, so the archive will be recoverable). For more complex archive modification scenarios: 1. The safest way is to use a mz_zip_reader to read the existing archive, cloning only those bits you want to preserve into a new archive using using the mz_zip_writer_add_from_zip_reader() function (which compiles the compressed file data as-is). When you're done, delete the old archive and rename the newly written archive, and you're done. This is safe but requires a bunch of temporary disk space or heap memory. 2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using mz_zip_writer_init_from_reader(), append new files as needed, then finalize the archive which will write an updated central directory to the original archive. (This is basically what mz_zip_add_mem_to_archive_file_in_place() does.) There's a possibility that the archive's central directory could be lost with this method if anything goes wrong, though. - ZIP archive support limitations: No zip64 or spanning support. Extraction functions can only handle unencrypted, stored or deflated files. Requires streams capable of seeking. * This is a header file library, like stb_image.c. To get only a header file, either cut and paste the below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then include miniz.c from it. * Important: For best perf. be sure to customize the below macros for your target platform: #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 #define MINIZ_LITTLE_ENDIAN 1 #define MINIZ_HAS_64BIT_REGISTERS 1 * On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before including miniz.c to ensure miniz uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be able to process large files (i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes). */ #ifndef MINIZ_HEADER_INCLUDED #define MINIZ_HEADER_INCLUDED #include // Defines to completely disable specific portions of miniz.c: // If all macros here are defined the only functionality remaining will be CRC-32, adler-32, tinfl, and tdefl. // Define MINIZ_NO_STDIO to disable all usage and any functions which rely on stdio for file I/O. //#define MINIZ_NO_STDIO // If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able to get the current time, or // get/set file times, and the C run-time funcs that get/set times won't be called. // The current downside is the times written to your archives will be from 1979. //#define MINIZ_NO_TIME // Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's. //#define MINIZ_NO_ARCHIVE_APIS // Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive API's. //#define MINIZ_NO_ARCHIVE_WRITING_APIS // Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression API's. //#define MINIZ_NO_ZLIB_APIS // Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent conflicts against stock zlib. //#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES // Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc. // Note if MINIZ_NO_MALLOC is defined then the user must always provide custom user alloc/free/realloc // callbacks to the zlib and archive API's, and a few stand-alone helper API's which don't provide custom user // functions (such as tdefl_compress_mem_to_heap() and tinfl_decompress_mem_to_heap()) won't work. //#define MINIZ_NO_MALLOC #if defined(__TINYC__) && (defined(__linux) || defined(__linux__)) // TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc on Linux #define MINIZ_NO_TIME #endif #if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS) #include #endif #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || defined(__i386) || defined(__i486__) || defined(__i486) || defined(i386) || defined(__ia64__) || defined(__x86_64__) // MINIZ_X86_OR_X64_CPU is only used to help set the below macros. #define MINIZ_X86_OR_X64_CPU 1 #endif #if (__BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU // Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian. #define MINIZ_LITTLE_ENDIAN 1 #endif #if MINIZ_X86_OR_X64_CPU // Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient integer loads and stores from unaligned addresses. #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 #endif #if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__) || defined(__ia64__) || defined(__x86_64__) // Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are reasonably fast (and don't involve compiler generated calls to helper functions). #define MINIZ_HAS_64BIT_REGISTERS 1 #endif #ifdef __cplusplus extern "C" { #endif // ------------------- zlib-style API Definitions. // For more compatibility with zlib, miniz.c uses unsigned long for some parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits! typedef unsigned long mz_ulong; // mz_free() internally uses the MZ_FREE() macro (which by default calls free() unless you've modified the MZ_MALLOC macro) to release a block allocated from the heap. void mz_free(void *p); #define MZ_ADLER32_INIT (1) // mz_adler32() returns the initial adler-32 value to use when called with ptr==NULL. mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len); #define MZ_CRC32_INIT (0) // mz_crc32() returns the initial CRC-32 value to use when called with ptr==NULL. mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len); // Compression strategies. enum { MZ_DEFAULT_STRATEGY = 0, MZ_FILTERED = 1, MZ_HUFFMAN_ONLY = 2, MZ_RLE = 3, MZ_FIXED = 4 }; // Method #define MZ_DEFLATED 8 #ifndef MINIZ_NO_ZLIB_APIS // Heap allocation callbacks. // Note that mz_alloc_func parameter types purpsosely differ from zlib's: items/size is size_t, not unsigned long. typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size); typedef void (*mz_free_func)(void *opaque, void *address); typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items, size_t size); #define MZ_VERSION "9.1.15" #define MZ_VERNUM 0x91F0 #define MZ_VER_MAJOR 9 #define MZ_VER_MINOR 1 #define MZ_VER_REVISION 15 #define MZ_VER_SUBREVISION 0 // Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The other values are for advanced use (refer to the zlib docs). enum { MZ_NO_FLUSH = 0, MZ_PARTIAL_FLUSH = 1, MZ_SYNC_FLUSH = 2, MZ_FULL_FLUSH = 3, MZ_FINISH = 4, MZ_BLOCK = 5 }; // Return status codes. MZ_PARAM_ERROR is non-standard. enum { MZ_OK = 0, MZ_STREAM_END = 1, MZ_NEED_DICT = 2, MZ_ERRNO = -1, MZ_STREAM_ERROR = -2, MZ_DATA_ERROR = -3, MZ_MEM_ERROR = -4, MZ_BUF_ERROR = -5, MZ_VERSION_ERROR = -6, MZ_PARAM_ERROR = -10000 }; // Compression levels: 0-9 are the standard zlib-style levels, 10 is best possible compression (not zlib compatible, and may be very slow), MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL. enum { MZ_NO_COMPRESSION = 0, MZ_BEST_SPEED = 1, MZ_BEST_COMPRESSION = 9, MZ_UBER_COMPRESSION = 10, MZ_DEFAULT_LEVEL = 6, MZ_DEFAULT_COMPRESSION = -1 }; // Window bits #define MZ_DEFAULT_WINDOW_BITS 15 struct mz_internal_state; // Compression/decompression stream struct. typedef struct mz_stream_s { const unsigned char *next_in; // pointer to next byte to read unsigned int avail_in; // number of bytes available at next_in mz_ulong total_in; // total number of bytes consumed so far unsigned char *next_out; // pointer to next byte to write unsigned int avail_out; // number of bytes that can be written to next_out mz_ulong total_out; // total number of bytes produced so far char *msg; // error msg (unused) struct mz_internal_state *state; // internal state, allocated by zalloc/zfree mz_alloc_func zalloc; // optional heap allocation function (defaults to malloc) mz_free_func zfree; // optional heap free function (defaults to free) void *opaque; // heap alloc function user pointer int data_type; // data_type (unused) mz_ulong adler; // adler32 of the source or uncompressed data mz_ulong reserved; // not used } mz_stream; typedef mz_stream *mz_streamp; // Returns the version string of miniz.c. const char *mz_version(void); // mz_deflateInit() initializes a compressor with default options: // Parameters: // pStream must point to an initialized mz_stream struct. // level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION]. // level 1 enables a specially optimized compression function that's been optimized purely for performance, not ratio. // (This special func. is currently only enabled when MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.) // Return values: // MZ_OK on success. // MZ_STREAM_ERROR if the stream is bogus. // MZ_PARAM_ERROR if the input parameters are bogus. // MZ_MEM_ERROR on out of memory. int mz_deflateInit(mz_streamp pStream, int level); // mz_deflateInit2() is like mz_deflate(), except with more control: // Additional parameters: // method must be MZ_DEFLATED // window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no header or footer) // mem_level must be between [1, 9] (it's checked but ignored by miniz.c) int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy); // Quickly resets a compressor without having to reallocate anything. Same as calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2(). int mz_deflateReset(mz_streamp pStream); // mz_deflate() compresses the input to output, consuming as much of the input and producing as much output as possible. // Parameters: // pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members. // flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or MZ_FINISH. // Return values: // MZ_OK on success (when flushing, or if more input is needed but not available, and/or there's more output to be written but the output buffer is full). // MZ_STREAM_END if all input has been consumed and all output bytes have been written. Don't call mz_deflate() on the stream anymore. // MZ_STREAM_ERROR if the stream is bogus. // MZ_PARAM_ERROR if one of the parameters is invalid. // MZ_BUF_ERROR if no forward progress is possible because the input and/or output buffers are empty. (Fill up the input buffer or free up some output space and try again.) int mz_deflate(mz_streamp pStream, int flush); // mz_deflateEnd() deinitializes a compressor: // Return values: // MZ_OK on success. // MZ_STREAM_ERROR if the stream is bogus. int mz_deflateEnd(mz_streamp pStream); // mz_deflateBound() returns a (very) conservative upper bound on the amount of data that could be generated by deflate(), assuming flush is set to only MZ_NO_FLUSH or MZ_FINISH. mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len); // Single-call compression functions mz_compress() and mz_compress2(): // Returns MZ_OK on success, or one of the error codes from mz_deflate() on failure. int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len); int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level); // mz_compressBound() returns a (very) conservative upper bound on the amount of data that could be generated by calling mz_compress(). mz_ulong mz_compressBound(mz_ulong source_len); // Initializes a decompressor. int mz_inflateInit(mz_streamp pStream); // mz_inflateInit2() is like mz_inflateInit() with an additional option that controls the window size and whether or not the stream has been wrapped with a zlib header/footer: // window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate). int mz_inflateInit2(mz_streamp pStream, int window_bits); // Decompresses the input stream to the output, consuming only as much of the input as needed, and writing as much to the output as possible. // Parameters: // pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members. // flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH. // On the first call, if flush is MZ_FINISH it's assumed the input and output buffers are both sized large enough to decompress the entire stream in a single call (this is slightly faster). // MZ_FINISH implies that there are no more source bytes available beside what's already in the input buffer, and that the output buffer is large enough to hold the rest of the decompressed data. // Return values: // MZ_OK on success. Either more input is needed but not available, and/or there's more output to be written but the output buffer is full. // MZ_STREAM_END if all needed input has been consumed and all output bytes have been written. For zlib streams, the adler-32 of the decompressed data has also been verified. // MZ_STREAM_ERROR if the stream is bogus. // MZ_DATA_ERROR if the deflate stream is invalid. // MZ_PARAM_ERROR if one of the parameters is invalid. // MZ_BUF_ERROR if no forward progress is possible because the input buffer is empty but the inflater needs more input to continue, or if the output buffer is not large enough. Call mz_inflate() again // with more input data, or with more room in the output buffer (except when using single call decompression, described above). int mz_inflate(mz_streamp pStream, int flush); // Deinitializes a decompressor. int mz_inflateEnd(mz_streamp pStream); // Single-call decompression. // Returns MZ_OK on success, or one of the error codes from mz_inflate() on failure. int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len); // Returns a string description of the specified error code, or NULL if the error code is invalid. const char *mz_error(int err); // Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used as a drop-in replacement for the subset of zlib that miniz.c supports. // Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you use zlib in the same project. #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES typedef unsigned char Byte; typedef unsigned int uInt; typedef mz_ulong uLong; typedef Byte Bytef; typedef uInt uIntf; typedef char charf; typedef int intf; typedef void *voidpf; typedef uLong uLongf; typedef void *voidp; typedef void *const voidpc; #define Z_NULL 0 #define Z_NO_FLUSH MZ_NO_FLUSH #define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH #define Z_SYNC_FLUSH MZ_SYNC_FLUSH #define Z_FULL_FLUSH MZ_FULL_FLUSH #define Z_FINISH MZ_FINISH #define Z_BLOCK MZ_BLOCK #define Z_OK MZ_OK #define Z_STREAM_END MZ_STREAM_END #define Z_NEED_DICT MZ_NEED_DICT #define Z_ERRNO MZ_ERRNO #define Z_STREAM_ERROR MZ_STREAM_ERROR #define Z_DATA_ERROR MZ_DATA_ERROR #define Z_MEM_ERROR MZ_MEM_ERROR #define Z_BUF_ERROR MZ_BUF_ERROR #define Z_VERSION_ERROR MZ_VERSION_ERROR #define Z_PARAM_ERROR MZ_PARAM_ERROR #define Z_NO_COMPRESSION MZ_NO_COMPRESSION #define Z_BEST_SPEED MZ_BEST_SPEED #define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION #define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION #define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY #define Z_FILTERED MZ_FILTERED #define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY #define Z_RLE MZ_RLE #define Z_FIXED MZ_FIXED #define Z_DEFLATED MZ_DEFLATED #define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS #define alloc_func mz_alloc_func #define free_func mz_free_func #define internal_state mz_internal_state #define z_stream mz_stream #define deflateInit mz_deflateInit #define deflateInit2 mz_deflateInit2 #define deflateReset mz_deflateReset #define deflate mz_deflate #define deflateEnd mz_deflateEnd #define deflateBound mz_deflateBound #define compress mz_compress #define compress2 mz_compress2 #define compressBound mz_compressBound #define inflateInit mz_inflateInit #define inflateInit2 mz_inflateInit2 #define inflate mz_inflate #define inflateEnd mz_inflateEnd #define uncompress mz_uncompress #define crc32 mz_crc32 #define adler32 mz_adler32 #define MAX_WBITS 15 #define MAX_MEM_LEVEL 9 #define zError mz_error #define ZLIB_VERSION MZ_VERSION #define ZLIB_VERNUM MZ_VERNUM #define ZLIB_VER_MAJOR MZ_VER_MAJOR #define ZLIB_VER_MINOR MZ_VER_MINOR #define ZLIB_VER_REVISION MZ_VER_REVISION #define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION #define zlibVersion mz_version #define zlib_version mz_version() #endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES #endif // MINIZ_NO_ZLIB_APIS // ------------------- Types and macros typedef unsigned char mz_uint8; typedef signed short mz_int16; typedef unsigned short mz_uint16; typedef unsigned int mz_uint32; typedef unsigned int mz_uint; typedef long long mz_int64; typedef unsigned long long mz_uint64; typedef int mz_bool; #define MZ_FALSE (0) #define MZ_TRUE (1) // An attempt to work around MSVC's spammy "warning C4127: conditional expression is constant" message. #ifdef _MSC_VER #define MZ_MACRO_END while (0, 0) #else #define MZ_MACRO_END while (0) #endif // ------------------- ZIP archive reading/writing #ifndef MINIZ_NO_ARCHIVE_APIS enum { MZ_ZIP_MAX_IO_BUF_SIZE = 64*1024, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256 }; typedef struct { mz_uint32 m_file_index; mz_uint32 m_central_dir_ofs; mz_uint16 m_version_made_by; mz_uint16 m_version_needed; mz_uint16 m_bit_flag; mz_uint16 m_method; #ifndef MINIZ_NO_TIME time_t m_time; #endif mz_uint32 m_crc32; mz_uint64 m_comp_size; mz_uint64 m_uncomp_size; mz_uint16 m_internal_attr; mz_uint32 m_external_attr; mz_uint64 m_local_header_ofs; mz_uint32 m_comment_size; char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE]; char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE]; } mz_zip_archive_file_stat; typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n); typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n); struct mz_zip_internal_state_tag; typedef struct mz_zip_internal_state_tag mz_zip_internal_state; typedef enum { MZ_ZIP_MODE_INVALID = 0, MZ_ZIP_MODE_READING = 1, MZ_ZIP_MODE_WRITING = 2, MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3 } mz_zip_mode; typedef struct mz_zip_archive_tag { mz_uint64 m_archive_size; mz_uint64 m_central_directory_file_ofs; mz_uint m_total_files; mz_zip_mode m_zip_mode; mz_uint m_file_offset_alignment; mz_alloc_func m_pAlloc; mz_free_func m_pFree; mz_realloc_func m_pRealloc; void *m_pAlloc_opaque; mz_file_read_func m_pRead; mz_file_write_func m_pWrite; void *m_pIO_opaque; mz_zip_internal_state *m_pState; } mz_zip_archive; typedef enum { MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100, MZ_ZIP_FLAG_IGNORE_PATH = 0x0200, MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400, MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800 } mz_zip_flags; // ZIP archive reading // Inits a ZIP archive reader. // These functions read and validate the archive's central directory. mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, mz_uint32 flags); mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, size_t size, mz_uint32 flags); #ifndef MINIZ_NO_STDIO mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint32 flags); #endif // Returns the total number of files in the archive. mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip); // Returns detailed information about an archive file entry. mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, mz_zip_archive_file_stat *pStat); // Determines if an archive file entry is a directory entry. mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, mz_uint file_index); mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, mz_uint file_index); // Retrieves the filename of an archive file entry. // Returns the number of bytes written to pFilename, or if filename_buf_size is 0 this function returns the number of bytes needed to fully store the filename. mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, char *pFilename, mz_uint filename_buf_size); // Attempts to locates a file in the archive's central directory. // Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH // Returns -1 if the file cannot be found. int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags); // Extracts a archive file to a memory buffer using no memory allocation. mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size); mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size); // Extracts a archive file to a memory buffer. mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags); mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags); // Extracts a archive file to a dynamically allocated heap buffer. void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, size_t *pSize, mz_uint flags); void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, const char *pFilename, size_t *pSize, mz_uint flags); // Extracts a archive file using a callback function to output the file's data. mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, mz_uint file_index, mz_file_write_func pCallback, void *pOpaque, mz_uint flags); mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, const char *pFilename, mz_file_write_func pCallback, void *pOpaque, mz_uint flags); #ifndef MINIZ_NO_STDIO // Extracts a archive file to a disk file and sets its last accessed and modified times. // This function only extracts files, not archive directory records. mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, const char *pDst_filename, mz_uint flags); mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, const char *pArchive_filename, const char *pDst_filename, mz_uint flags); #endif // Ends archive reading, freeing all allocations, and closing the input archive file if mz_zip_reader_init_file() was used. mz_bool mz_zip_reader_end(mz_zip_archive *pZip); // ZIP archive writing #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS // Inits a ZIP archive writer. mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size); mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size); #ifndef MINIZ_NO_STDIO mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning); #endif // Converts a ZIP archive reader object into a writer object, to allow efficient in-place file appends to occur on an existing archive. // For archives opened using mz_zip_reader_init_file, pFilename must be the archive's filename so it can be reopened for writing. If the file can't be reopened, mz_zip_reader_end() will be called. // For archives opened using mz_zip_reader_init_mem, the memory block must be growable using the realloc callback (which defaults to realloc unless you've overridden it). // Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's user provided m_pWrite function cannot be NULL. // Note: In-place archive modification is not recommended unless you know what you're doing, because if execution stops or something goes wrong before // the archive is finalized the file's central directory will be hosed. mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, const char *pFilename); // Adds the contents of a memory buffer to an archive. These functions record the current local time into the archive. // To add a directory entry, call this method with an archive name ending in a forwardslash with empty buffer. // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION. mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, mz_uint level_and_flags); mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, mz_uint64 uncomp_size, mz_uint32 uncomp_crc32); #ifndef MINIZ_NO_STDIO // Adds the contents of a disk file to an archive. This function also records the disk file's modified time into the archive. // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION. mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, const char *pSrc_filename, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags); #endif // Adds a file to an archive by fully cloning the data from another archive. // This function fully clones the source file's compressed data (no recompression), along with its full filename, extra data, and comment fields. mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, mz_zip_archive *pSource_zip, mz_uint file_index); // Finalizes the archive by writing the central directory records followed by the end of central directory record. // After an archive is finalized, the only valid call on the mz_zip_archive struct is mz_zip_writer_end(). // An archive must be manually finalized by calling this function for it to be valid. mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip); mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, size_t *pSize); // Ends archive writing, freeing all allocations, and closing the output file if mz_zip_writer_init_file() was used. // Note for the archive to be valid, it must have been finalized before ending. mz_bool mz_zip_writer_end(mz_zip_archive *pZip); // Misc. high-level helper functions: // mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically) appends a memory blob to a ZIP archive. // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION. mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags); // Reads a single file from an archive into a heap block. // Returns NULL on failure. void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint zip_flags); #endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS #endif // #ifndef MINIZ_NO_ARCHIVE_APIS // ------------------- Low-level Decompression API Definitions // Decompression flags used by tinfl_decompress(). // TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream. // TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input. // TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB). // TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes. enum { TINFL_FLAG_PARSE_ZLIB_HEADER = 1, TINFL_FLAG_HAS_MORE_INPUT = 2, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4, TINFL_FLAG_COMPUTE_ADLER32 = 8 }; // High level decompression functions: // tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc(). // On entry: // pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress. // On return: // Function returns a pointer to the decompressed data, or NULL on failure. // *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data. // The caller must call mz_free() on the returned block when it's no longer needed. void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags); // tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory. // Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success. #define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1)) size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags); // tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer. // Returns 1 on success or 0 on failure. typedef int (*tinfl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser); int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags); struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor; // Max size of LZ dictionary. #define TINFL_LZ_DICT_SIZE 32768 // Return status. typedef enum { TINFL_STATUS_BAD_PARAM = -3, TINFL_STATUS_ADLER32_MISMATCH = -2, TINFL_STATUS_FAILED = -1, TINFL_STATUS_DONE = 0, TINFL_STATUS_NEEDS_MORE_INPUT = 1, TINFL_STATUS_HAS_MORE_OUTPUT = 2 } tinfl_status; // Initializes the decompressor to its initial state. #define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END #define tinfl_get_adler32(r) (r)->m_check_adler32 // Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability. // This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output. tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags); // Internal/private bits follow. enum { TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19, TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS }; typedef struct { mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0]; mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2]; } tinfl_huff_table; #if MINIZ_HAS_64BIT_REGISTERS #define TINFL_USE_64BIT_BITBUF 1 #endif #if TINFL_USE_64BIT_BITBUF typedef mz_uint64 tinfl_bit_buf_t; #define TINFL_BITBUF_SIZE (64) #else typedef mz_uint32 tinfl_bit_buf_t; #define TINFL_BITBUF_SIZE (32) #endif struct tinfl_decompressor_tag { mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES]; tinfl_bit_buf_t m_bit_buf; size_t m_dist_from_out_buf_start; tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES]; mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137]; }; // ------------------- Low-level Compression API Definitions // Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly slower, and raw/dynamic blocks will be output more frequently). #define TDEFL_LESS_MEMORY 0 // tdefl_init() compression flags logically OR'd together (low 12 bits contain the max. number of probes per dictionary search): // TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ (slowest/best compression). enum { TDEFL_HUFFMAN_ONLY = 0, TDEFL_DEFAULT_MAX_PROBES = 128, TDEFL_MAX_PROBES_MASK = 0xFFF }; // TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before the deflate data, and the Adler-32 of the source data at the end. Otherwise, you'll get raw deflate data. // TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even when not writing zlib headers). // TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more efficient lazy parsing. // TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's initialization time to the minimum, but the output may vary from run to run given the same input (depending on the contents of memory). // TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1) // TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled. // TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables. // TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks. // The low 12 bits are reserved to control the max # of hash probes per dictionary lookup (see TDEFL_MAX_PROBES_MASK). enum { TDEFL_WRITE_ZLIB_HEADER = 0x01000, TDEFL_COMPUTE_ADLER32 = 0x02000, TDEFL_GREEDY_PARSING_FLAG = 0x04000, TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000, TDEFL_RLE_MATCHES = 0x10000, TDEFL_FILTER_MATCHES = 0x20000, TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000, TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000 }; // High level compression functions: // tdefl_compress_mem_to_heap() compresses a block in memory to a heap block allocated via malloc(). // On entry: // pSrc_buf, src_buf_len: Pointer and size of source block to compress. // flags: The max match finder probes (default is 128) logically OR'd against the above flags. Higher probes are slower but improve compression. // On return: // Function returns a pointer to the compressed data, or NULL on failure. // *pOut_len will be set to the compressed data's size, which could be larger than src_buf_len on uncompressible data. // The caller must free() the returned block when it's no longer needed. void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags); // tdefl_compress_mem_to_mem() compresses a block in memory to another block in memory. // Returns 0 on failure. size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags); // Compresses an image to a compressed PNG file in memory. // On entry: // pImage, w, h, and num_chans describe the image to compress. num_chans may be 1, 2, 3, or 4. // The image pitch in bytes per scanline will be w*num_chans. The leftmost pixel on the top scanline is stored first in memory. // level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL // If flip is true, the image will be flipped on the Y axis (useful for OpenGL apps). // On return: // Function returns a pointer to the compressed data, or NULL on failure. // *pLen_out will be set to the size of the PNG image file. // The caller must mz_free() the returned heap block (which will typically be larger than *pLen_out) when it's no longer needed. void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip); void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out); // Output stream interface. The compressor uses this interface to write compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time. typedef mz_bool (*tdefl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser); // tdefl_compress_mem_to_output() compresses a block to an output stream. The above helpers use this function internally. mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags); enum { TDEFL_MAX_HUFF_TABLES = 3, TDEFL_MAX_HUFF_SYMBOLS_0 = 288, TDEFL_MAX_HUFF_SYMBOLS_1 = 32, TDEFL_MAX_HUFF_SYMBOLS_2 = 19, TDEFL_LZ_DICT_SIZE = 32768, TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, TDEFL_MIN_MATCH_LEN = 3, TDEFL_MAX_MATCH_LEN = 258 }; // TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed output block (using static/fixed Huffman codes). #if TDEFL_LESS_MEMORY enum { TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 12, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS }; #else enum { TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 15, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS }; #endif // The low-level tdefl functions below may be used directly if the above helper functions aren't flexible enough. The low-level functions don't make any heap allocations, unlike the above helper functions. typedef enum { TDEFL_STATUS_BAD_PARAM = -2, TDEFL_STATUS_PUT_BUF_FAILED = -1, TDEFL_STATUS_OKAY = 0, TDEFL_STATUS_DONE = 1, } tdefl_status; // Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums typedef enum { TDEFL_NO_FLUSH = 0, TDEFL_SYNC_FLUSH = 2, TDEFL_FULL_FLUSH = 3, TDEFL_FINISH = 4 } tdefl_flush; // tdefl's compression state structure. typedef struct { tdefl_put_buf_func_ptr m_pPut_buf_func; void *m_pPut_buf_user; mz_uint m_flags, m_max_probes[2]; int m_greedy_parsing; mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size; mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end; mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, m_bit_buffer; mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, m_wants_to_finish; tdefl_status m_prev_return_status; const void *m_pIn_buf; void *m_pOut_buf; size_t *m_pIn_buf_size, *m_pOut_buf_size; tdefl_flush m_flush; const mz_uint8 *m_pSrc; size_t m_src_buf_left, m_out_buf_ofs; mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1]; mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE]; mz_uint16 m_next[TDEFL_LZ_DICT_SIZE]; mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE]; mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE]; } tdefl_compressor; // Initializes the compressor. // There is no corresponding deinit() function because the tdefl API's do not dynamically allocate memory. // pBut_buf_func: If NULL, output data will be supplied to the specified callback. In this case, the user should call the tdefl_compress_buffer() API for compression. // If pBut_buf_func is NULL the user should always call the tdefl_compress() API. // flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, etc.) tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags); // Compresses a block of data, consuming as much of the specified input buffer as possible, and writing as much compressed data to the specified output buffer as possible. tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush); // tdefl_compress_buffer() is only usable when the tdefl_init() is called with a non-NULL tdefl_put_buf_func_ptr. // tdefl_compress_buffer() always consumes the entire input buffer. tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush); tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d); mz_uint32 tdefl_get_adler32(tdefl_compressor *d); // Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't defined, because it uses some of its macros. #ifndef MINIZ_NO_ZLIB_APIS // Create tdefl_compress() flags given zlib-style compression parameters. // level may range from [0,10] (where 10 is absolute max compression, but may be much slower on some files) // window_bits may be -15 (raw deflate) or 15 (zlib) // strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, MZ_RLE, or MZ_FIXED mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy); #endif // #ifndef MINIZ_NO_ZLIB_APIS #ifdef __cplusplus } #endif #endif // MINIZ_HEADER_INCLUDED // ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.) #ifndef MINIZ_HEADER_FILE_ONLY typedef unsigned char mz_validate_uint16[sizeof(mz_uint16)==2 ? 1 : -1]; typedef unsigned char mz_validate_uint32[sizeof(mz_uint32)==4 ? 1 : -1]; typedef unsigned char mz_validate_uint64[sizeof(mz_uint64)==8 ? 1 : -1]; #include #include #define MZ_ASSERT(x) assert(x) #ifdef MINIZ_NO_MALLOC #define MZ_MALLOC(x) NULL #define MZ_FREE(x) (void)x, ((void)0) #define MZ_REALLOC(p, x) NULL #else #define MZ_MALLOC(x) malloc(x) #define MZ_FREE(x) free(x) #define MZ_REALLOC(p, x) realloc(p, x) #endif #define MZ_MAX(a,b) (((a)>(b))?(a):(b)) #define MZ_MIN(a,b) (((a)<(b))?(a):(b)) #define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj)) #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN #define MZ_READ_LE16(p) *((const mz_uint16 *)(p)) #define MZ_READ_LE32(p) *((const mz_uint32 *)(p)) #else #define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U)) #define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U)) #endif #ifdef _MSC_VER #define MZ_FORCEINLINE __forceinline #elif defined(__GNUC__) #define MZ_FORCEINLINE inline __attribute__((__always_inline__)) #else #define MZ_FORCEINLINE inline #endif #ifdef __cplusplus extern "C" { #endif // ------------------- zlib-style API's mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) { mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16); size_t block_len = buf_len % 5552; if (!ptr) return MZ_ADLER32_INIT; while (buf_len) { for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1; s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1; } for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1; s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552; } return (s2 << 16) + s1; } // Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C implementation that balances processor cache usage against speed": http://www.geocities.com/malbrain/ mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) { static const mz_uint32 s_crc32[16] = { 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; mz_uint32 crcu32 = (mz_uint32)crc; if (!ptr) return MZ_CRC32_INIT; crcu32 = ~crcu32; while (buf_len--) { mz_uint8 b = *ptr++; crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)]; crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)]; } return ~crcu32; } void mz_free(void *p) { MZ_FREE(p); } #ifndef MINIZ_NO_ZLIB_APIS static void *def_alloc_func(void *opaque, size_t items, size_t size) { (void)opaque, (void)items, (void)size; return MZ_MALLOC(items * size); } static void def_free_func(void *opaque, void *address) { (void)opaque, (void)address; MZ_FREE(address); } static void *def_realloc_func(void *opaque, void *address, size_t items, size_t size) { (void)opaque, (void)address, (void)items, (void)size; return MZ_REALLOC(address, items * size); } const char *mz_version(void) { return MZ_VERSION; } int mz_deflateInit(mz_streamp pStream, int level) { return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY); } int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy) { tdefl_compressor *pComp; mz_uint comp_flags = TDEFL_COMPUTE_ADLER32 | tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy); if (!pStream) return MZ_STREAM_ERROR; if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) || ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS))) return MZ_PARAM_ERROR; pStream->data_type = 0; pStream->adler = MZ_ADLER32_INIT; pStream->msg = NULL; pStream->reserved = 0; pStream->total_in = 0; pStream->total_out = 0; if (!pStream->zalloc) pStream->zalloc = def_alloc_func; if (!pStream->zfree) pStream->zfree = def_free_func; pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1, sizeof(tdefl_compressor)); if (!pComp) return MZ_MEM_ERROR; pStream->state = (struct mz_internal_state *)pComp; if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) { mz_deflateEnd(pStream); return MZ_PARAM_ERROR; } return MZ_OK; } int mz_deflateReset(mz_streamp pStream) { if ((!pStream) || (!pStream->state) || (!pStream->zalloc) || (!pStream->zfree)) return MZ_STREAM_ERROR; pStream->total_in = pStream->total_out = 0; tdefl_init((tdefl_compressor*)pStream->state, NULL, NULL, ((tdefl_compressor*)pStream->state)->m_flags); return MZ_OK; } int mz_deflate(mz_streamp pStream, int flush) { size_t in_bytes, out_bytes; mz_ulong orig_total_in, orig_total_out; int mz_status = MZ_OK; if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) || (!pStream->next_out)) return MZ_STREAM_ERROR; if (!pStream->avail_out) return MZ_BUF_ERROR; if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH; if (((tdefl_compressor*)pStream->state)->m_prev_return_status == TDEFL_STATUS_DONE) return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR; orig_total_in = pStream->total_in; orig_total_out = pStream->total_out; for ( ; ; ) { tdefl_status defl_status; in_bytes = pStream->avail_in; out_bytes = pStream->avail_out; defl_status = tdefl_compress((tdefl_compressor*)pStream->state, pStream->next_in, &in_bytes, pStream->next_out, &out_bytes, (tdefl_flush)flush); pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes; pStream->total_in += (mz_uint)in_bytes; pStream->adler = tdefl_get_adler32((tdefl_compressor*)pStream->state); pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes; pStream->total_out += (mz_uint)out_bytes; if (defl_status < 0) { mz_status = MZ_STREAM_ERROR; break; } else if (defl_status == TDEFL_STATUS_DONE) { mz_status = MZ_STREAM_END; break; } else if (!pStream->avail_out) break; else if ((!pStream->avail_in) && (flush != MZ_FINISH)) { if ((flush) || (pStream->total_in != orig_total_in) || (pStream->total_out != orig_total_out)) break; return MZ_BUF_ERROR; // Can't make forward progress without some input. } } return mz_status; } int mz_deflateEnd(mz_streamp pStream) { if (!pStream) return MZ_STREAM_ERROR; if (pStream->state) { pStream->zfree(pStream->opaque, pStream->state); pStream->state = NULL; } return MZ_OK; } mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) { (void)pStream; // This is really over conservative. (And lame, but it's actually pretty tricky to compute a true upper bound given the way tdefl's blocking works.) return MZ_MAX(128 + (source_len * 110) / 100, 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5); } int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level) { int status; mz_stream stream; memset(&stream, 0, sizeof(stream)); // In case mz_ulong is 64-bits (argh I hate longs). if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR; stream.next_in = pSource; stream.avail_in = (mz_uint32)source_len; stream.next_out = pDest; stream.avail_out = (mz_uint32)*pDest_len; status = mz_deflateInit(&stream, level); if (status != MZ_OK) return status; status = mz_deflate(&stream, MZ_FINISH); if (status != MZ_STREAM_END) { mz_deflateEnd(&stream); return (status == MZ_OK) ? MZ_BUF_ERROR : status; } *pDest_len = stream.total_out; return mz_deflateEnd(&stream); } int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len) { return mz_compress2(pDest, pDest_len, pSource, source_len, MZ_DEFAULT_COMPRESSION); } mz_ulong mz_compressBound(mz_ulong source_len) { return mz_deflateBound(NULL, source_len); } typedef struct { tinfl_decompressor m_decomp; mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed; int m_window_bits; mz_uint8 m_dict[TINFL_LZ_DICT_SIZE]; tinfl_status m_last_status; } inflate_state; int mz_inflateInit2(mz_streamp pStream, int window_bits) { inflate_state *pDecomp; if (!pStream) return MZ_STREAM_ERROR; if ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS)) return MZ_PARAM_ERROR; pStream->data_type = 0; pStream->adler = 0; pStream->msg = NULL; pStream->total_in = 0; pStream->total_out = 0; pStream->reserved = 0; if (!pStream->zalloc) pStream->zalloc = def_alloc_func; if (!pStream->zfree) pStream->zfree = def_free_func; pDecomp = (inflate_state*)pStream->zalloc(pStream->opaque, 1, sizeof(inflate_state)); if (!pDecomp) return MZ_MEM_ERROR; pStream->state = (struct mz_internal_state *)pDecomp; tinfl_init(&pDecomp->m_decomp); pDecomp->m_dict_ofs = 0; pDecomp->m_dict_avail = 0; pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT; pDecomp->m_first_call = 1; pDecomp->m_has_flushed = 0; pDecomp->m_window_bits = window_bits; return MZ_OK; } int mz_inflateInit(mz_streamp pStream) { return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS); } int mz_inflate(mz_streamp pStream, int flush) { inflate_state* pState; mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32; size_t in_bytes, out_bytes, orig_avail_in; tinfl_status status; if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR; if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH; if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH)) return MZ_STREAM_ERROR; pState = (inflate_state*)pStream->state; if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER; orig_avail_in = pStream->avail_in; first_call = pState->m_first_call; pState->m_first_call = 0; if (pState->m_last_status < 0) return MZ_DATA_ERROR; if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR; pState->m_has_flushed |= (flush == MZ_FINISH); if ((flush == MZ_FINISH) && (first_call)) { // MZ_FINISH on the first call implies that the input and output buffers are large enough to hold the entire compressed/decompressed file. decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; in_bytes = pStream->avail_in; out_bytes = pStream->avail_out; status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pStream->next_out, pStream->next_out, &out_bytes, decomp_flags); pState->m_last_status = status; pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes; pStream->total_in += (mz_uint)in_bytes; pStream->adler = tinfl_get_adler32(&pState->m_decomp); pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes; pStream->total_out += (mz_uint)out_bytes; if (status < 0) return MZ_DATA_ERROR; else if (status != TINFL_STATUS_DONE) { pState->m_last_status = TINFL_STATUS_FAILED; return MZ_BUF_ERROR; } return MZ_STREAM_END; } // flush != MZ_FINISH then we must assume there's more input. if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT; if (pState->m_dict_avail) { n = MZ_MIN(pState->m_dict_avail, pStream->avail_out); memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n); pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n; pState->m_dict_avail -= n; pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1); return ((pState->m_last_status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK; } for ( ; ; ) { in_bytes = pStream->avail_in; out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs; status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags); pState->m_last_status = status; pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes; pStream->total_in += (mz_uint)in_bytes; pStream->adler = tinfl_get_adler32(&pState->m_decomp); pState->m_dict_avail = (mz_uint)out_bytes; n = MZ_MIN(pState->m_dict_avail, pStream->avail_out); memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n); pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n; pState->m_dict_avail -= n; pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1); if (status < 0) return MZ_DATA_ERROR; // Stream is corrupted (there could be some uncompressed data left in the output dictionary - oh well). else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in)) return MZ_BUF_ERROR; // Signal caller that we can't make forward progress without supplying more input or by setting flush to MZ_FINISH. else if (flush == MZ_FINISH) { // The output buffer MUST be large to hold the remaining uncompressed data when flush==MZ_FINISH. if (status == TINFL_STATUS_DONE) return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END; // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's at least 1 more byte on the way. If there's no more room left in the output buffer then something is wrong. else if (!pStream->avail_out) return MZ_BUF_ERROR; } else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) || (!pStream->avail_out) || (pState->m_dict_avail)) break; } return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK; } int mz_inflateEnd(mz_streamp pStream) { if (!pStream) return MZ_STREAM_ERROR; if (pStream->state) { pStream->zfree(pStream->opaque, pStream->state); pStream->state = NULL; } return MZ_OK; } int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len) { mz_stream stream; int status; memset(&stream, 0, sizeof(stream)); // In case mz_ulong is 64-bits (argh I hate longs). if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR; stream.next_in = pSource; stream.avail_in = (mz_uint32)source_len; stream.next_out = pDest; stream.avail_out = (mz_uint32)*pDest_len; status = mz_inflateInit(&stream); if (status != MZ_OK) return status; status = mz_inflate(&stream, MZ_FINISH); if (status != MZ_STREAM_END) { mz_inflateEnd(&stream); return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR : status; } *pDest_len = stream.total_out; return mz_inflateEnd(&stream); } const char *mz_error(int err) { static struct { int m_err; const char *m_pDesc; } s_error_descs[] = { { MZ_OK, "" }, { MZ_STREAM_END, "stream end" }, { MZ_NEED_DICT, "need dictionary" }, { MZ_ERRNO, "file error" }, { MZ_STREAM_ERROR, "stream error" }, { MZ_DATA_ERROR, "data error" }, { MZ_MEM_ERROR, "out of memory" }, { MZ_BUF_ERROR, "buf error" }, { MZ_VERSION_ERROR, "version error" }, { MZ_PARAM_ERROR, "parameter error" } }; mz_uint i; for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i) if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc; return NULL; } #endif //MINIZ_NO_ZLIB_APIS // ------------------- Low-level Decompression (completely independent from all compression API's) #define TINFL_MEMCPY(d, s, l) memcpy(d, s, l) #define TINFL_MEMSET(p, c, l) memset(p, c, l) #define TINFL_CR_BEGIN switch(r->m_state) { case 0: #define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END #define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END #define TINFL_CR_FINISH } // TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario. #define TINFL_GET_BYTE(state_index, c) do { \ if (pIn_buf_cur >= pIn_buf_end) { \ for ( ; ; ) { \ if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \ TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \ if (pIn_buf_cur < pIn_buf_end) { \ c = *pIn_buf_cur++; \ break; \ } \ } else { \ c = 0; \ break; \ } \ } \ } else c = *pIn_buf_cur++; } MZ_MACRO_END #define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n)) #define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END #define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2. // It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a // Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the // bit buffer contains >=15 bits (deflate's max. Huffman code size). #define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \ do { \ temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \ if (temp >= 0) { \ code_len = temp >> 9; \ if ((code_len) && (num_bits >= code_len)) \ break; \ } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \ code_len = TINFL_FAST_LOOKUP_BITS; \ do { \ temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ } while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \ } TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \ } while (num_bits < 15); // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read // beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully // decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32. // The slow path is only executed at the very end of the input buffer. #define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \ int temp; mz_uint code_len, c; \ if (num_bits < 15) { \ if ((pIn_buf_end - pIn_buf_cur) < 2) { \ TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \ } else { \ bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \ } \ } \ if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \ code_len = temp >> 9, temp &= 511; \ else { \ code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \ } sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags) { static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; static const int s_min_table_sizes[3] = { 257, 1, 4 }; tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf; const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size; mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size; size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start; // Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter). if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; } num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start; TINFL_CR_BEGIN bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1; if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1); counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8)); if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4))))); if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); } } do { TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1; if (r->m_type == 0) { TINFL_SKIP_BITS(5, num_bits & 7); for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); } if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); } while ((counter) && (num_bits)) { TINFL_GET_BITS(51, dist, 8); while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (mz_uint8)dist; counter--; } while (counter) { size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); } while (pIn_buf_cur >= pIn_buf_end) { if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT); } else { TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED); } } n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter); TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n; } } else if (r->m_type == 3) { TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED); } else { if (r->m_type == 1) { mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i; r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32); for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8; } else { for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; } MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; } r->m_table_sizes[2] = 19; } for ( ; (int)r->m_type >= 0; r->m_type--) { int tree_next, tree_cur; tinfl_huff_table *pTable; mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree); for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++; used_syms = 0, total = 0; next_code[0] = next_code[1] = 0; for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); } if ((65536 != total) && (used_syms > 1)) { TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED); } for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index) { mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue; cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1); if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; } if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1); for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) { tree_cur -= ((rev_code >>= 1) & 1); if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1]; } tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index; } if (r->m_type == 2) { for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); ) { mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; } if ((dist == 16) && (!counter)) { TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED); } num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16]; TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s; } if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) { TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED); } TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]); } } for ( ; ; ) { mz_uint8 *pSrc; for ( ; ; ) { if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2)) { TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]); if (counter >= 256) break; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (mz_uint8)counter; } else { int sym2; mz_uint code_len; #if TINFL_USE_64BIT_BITBUF if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; } #else if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } #endif if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } counter = sym2; bit_buf >>= code_len; num_bits -= code_len; if (counter & 256) break; #if !TINFL_USE_64BIT_BITBUF if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } #endif if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } bit_buf >>= code_len; num_bits -= code_len; pOut_buf_cur[0] = (mz_uint8)counter; if (sym2 & 256) { pOut_buf_cur++; counter = sym2; break; } pOut_buf_cur[1] = (mz_uint8)sym2; pOut_buf_cur += 2; } } if ((counter &= 511) == 256) break; num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; } TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]); num_extra = s_dist_extra[dist]; dist = s_dist_base[dist]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; } dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start; if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) { TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED); } pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask); if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) { while (counter--) { while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask]; } continue; } #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES else if ((counter >= 9) && (counter <= dist)) { const mz_uint8 *pSrc_end = pSrc + (counter & ~7); do { ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0]; ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1]; pOut_buf_cur += 8; } while ((pSrc += 8) < pSrc_end); if ((counter &= 7) < 3) { if (counter) { pOut_buf_cur[0] = pSrc[0]; if (counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } continue; } } #endif do { pOut_buf_cur[0] = pSrc[0]; pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur[2] = pSrc[2]; pOut_buf_cur += 3; pSrc += 3; } while ((int)(counter -= 3) > 2); if ((int)counter > 0) { pOut_buf_cur[0] = pSrc[0]; if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } } } } while (!(r->m_final & 1)); if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; } } TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE); TINFL_CR_FINISH common_exit: r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start; *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next; if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0)) { const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size; mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552; while (buf_len) { for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1; s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1; } for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1; s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552; } r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH; } return status; } // Higher level helper functions. void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags) { tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0; *pOut_len = 0; tinfl_init(&decomp); for ( ; ; ) { size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity; tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) { MZ_FREE(pBuf); *pOut_len = 0; return NULL; } src_buf_ofs += src_buf_size; *pOut_len += dst_buf_size; if (status == TINFL_STATUS_DONE) break; new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128; pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity); if (!pNew_buf) { MZ_FREE(pBuf); *pOut_len = 0; return NULL; } pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity; } return pBuf; } size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags) { tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp); status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len; } int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { int result = 0; tinfl_decompressor decomp; mz_uint8 *pDict = (mz_uint8*)MZ_MALLOC(TINFL_LZ_DICT_SIZE); size_t in_buf_ofs = 0, dict_ofs = 0; if (!pDict) return TINFL_STATUS_FAILED; tinfl_init(&decomp); for ( ; ; ) { size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs; tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size, (flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))); in_buf_ofs += in_buf_size; if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user))) break; if (status != TINFL_STATUS_HAS_MORE_OUTPUT) { result = (status == TINFL_STATUS_DONE); break; } dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1); } MZ_FREE(pDict); *pIn_buf_size = in_buf_ofs; return result; } // ------------------- Low-level Compression (independent from all decompression API's) // Purposely making these tables static for faster init and thread safety. static const mz_uint16 s_tdefl_len_sym[256] = { 257,258,259,260,261,262,263,264,265,265,266,266,267,267,268,268,269,269,269,269,270,270,270,270,271,271,271,271,272,272,272,272, 273,273,273,273,273,273,273,273,274,274,274,274,274,274,274,274,275,275,275,275,275,275,275,275,276,276,276,276,276,276,276,276, 277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278, 279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280, 281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281, 282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282, 283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283, 284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,285 }; static const mz_uint8 s_tdefl_len_extra[256] = { 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,0 }; static const mz_uint8 s_tdefl_small_dist_sym[512] = { 0,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15, 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17 }; static const mz_uint8 s_tdefl_small_dist_extra[512] = { 0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7 }; static const mz_uint8 s_tdefl_large_dist_sym[128] = { 0,0,18,19,20,20,21,21,22,22,22,22,23,23,23,23,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26, 26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28, 28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29 }; static const mz_uint8 s_tdefl_large_dist_extra[128] = { 0,0,8,8,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 }; // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values. typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq; static tdefl_sym_freq* tdefl_radix_sort_syms(mz_uint num_syms, tdefl_sym_freq* pSyms0, tdefl_sym_freq* pSyms1) { mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_OBJ(hist); for (i = 0; i < num_syms; i++) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; } while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { const mz_uint32* pHist = &hist[pass << 8]; mz_uint offsets[256], cur_ofs = 0; for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; { tdefl_sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; } } return pCur_syms; } // tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) { int root, leaf, next, avbl, used, dpth; if (n==0) return; else if (n==1) { A[0].m_key = 1; return; } A[0].m_key += A[1].m_key; root = 0; leaf = 2; for (next=1; next < n-1; next++) { if (leaf>=n || A[root].m_key=n || (root=0; next--) A[next].m_key = A[A[next].m_key].m_key+1; avbl = 1; used = dpth = 0; root = n-2; next = n-1; while (avbl>0) { while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; } while (avbl>used) { A[next--].m_key = (mz_uint16)(dpth); avbl--; } avbl = 2*used; dpth++; used = 0; } } // Limits canonical Huffman code table's max code size. enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 }; static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) { int i; mz_uint32 total = 0; if (code_list_len <= 1) return; for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; for (i = max_code_size; i > 0; i--) total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i)); while (total != (1UL << max_code_size)) { pNum_codes[max_code_size]--; for (i = max_code_size - 1; i > 0; i--) if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } total--; } } static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table) { int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_OBJ(num_codes); if (static_table) { for (i = 0; i < table_len; i++) num_codes[d->m_huff_code_sizes[table_num][i]]++; } else { tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms; int num_used_syms = 0; const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0]; for (i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (mz_uint16)i; } pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); tdefl_calculate_minimum_redundancy(pSyms, num_used_syms); for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++; tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, code_size_limit); MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); MZ_CLEAR_OBJ(d->m_huff_codes[table_num]); for (i = 1, j = num_used_syms; i <= code_size_limit; i++) for (l = num_codes[i]; l > 0; l--) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i); } next_code[1] = 0; for (j = 0, i = 2; i <= code_size_limit; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1); for (i = 0; i < table_len; i++) { mz_uint rev_code = 0, code, code_size; if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue; code = next_code[code_size]++; for (l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1); d->m_huff_codes[table_num][i] = (mz_uint16)rev_code; } } #define TDEFL_PUT_BITS(b, l) do { \ mz_uint bits = b; mz_uint len = l; MZ_ASSERT(bits <= ((1U << len) - 1U)); \ d->m_bit_buffer |= (bits << d->m_bits_in); d->m_bits_in += len; \ while (d->m_bits_in >= 8) { \ if (d->m_pOutput_buf < d->m_pOutput_buf_end) \ *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \ d->m_bit_buffer >>= 8; \ d->m_bits_in -= 8; \ } \ } MZ_MACRO_END #define TDEFL_RLE_PREV_CODE_SIZE() { if (rle_repeat_count) { \ if (rle_repeat_count < 3) { \ d->m_huff_count[2][prev_code_size] = (mz_uint16)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \ while (rle_repeat_count--) packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \ } else { \ d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); packed_code_sizes[num_packed_code_sizes++] = 16; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_repeat_count - 3); \ } rle_repeat_count = 0; } } #define TDEFL_RLE_ZERO_CODE_SIZE() { if (rle_z_count) { \ if (rle_z_count < 3) { \ d->m_huff_count[2][0] = (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \ } else if (rle_z_count <= 10) { \ d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); packed_code_sizes[num_packed_code_sizes++] = 17; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 3); \ } else { \ d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); packed_code_sizes[num_packed_code_sizes++] = 18; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 11); \ } rle_z_count = 0; } } static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; static void tdefl_start_dynamic_block(tdefl_compressor *d) { int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index; mz_uint8 code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF; d->m_huff_count[0][256] = 1; tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE); tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE); for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break; for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break; memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes); memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes); total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0; memset(&d->m_huff_count[2][0], 0, sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2); for (i = 0; i < total_code_sizes_to_pack; i++) { mz_uint8 code_size = code_sizes_to_pack[i]; if (!code_size) { TDEFL_RLE_PREV_CODE_SIZE(); if (++rle_z_count == 138) { TDEFL_RLE_ZERO_CODE_SIZE(); } } else { TDEFL_RLE_ZERO_CODE_SIZE(); if (code_size != prev_code_size) { TDEFL_RLE_PREV_CODE_SIZE(); d->m_huff_count[2][code_size] = (mz_uint16)(d->m_huff_count[2][code_size] + 1); packed_code_sizes[num_packed_code_sizes++] = code_size; } else if (++rle_repeat_count == 6) { TDEFL_RLE_PREV_CODE_SIZE(); } } prev_code_size = code_size; } if (rle_repeat_count) { TDEFL_RLE_PREV_CODE_SIZE(); } else { TDEFL_RLE_ZERO_CODE_SIZE(); } tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE); TDEFL_PUT_BITS(2, 2); TDEFL_PUT_BITS(num_lit_codes - 257, 5); TDEFL_PUT_BITS(num_dist_codes - 1, 5); for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) if (d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) break; num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); TDEFL_PUT_BITS(num_bit_lengths - 4, 4); for (i = 0; (int)i < num_bit_lengths; i++) TDEFL_PUT_BITS(d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3); for (packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes; ) { mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2); TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]); if (code >= 16) TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16]); } } static void tdefl_start_static_block(tdefl_compressor *d) { mz_uint i; mz_uint8 *p = &d->m_huff_code_sizes[0][0]; for (i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8; memset(d->m_huff_code_sizes[1], 5, 32); tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE); tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE); TDEFL_PUT_BITS(1, 2); } static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { mz_uint flags; mz_uint8 *pLZ_codes; mz_uint8 *pOutput_buf = d->m_pOutput_buf; mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf; mz_uint64 bit_buffer = d->m_bit_buffer; mz_uint bits_in = d->m_bits_in; #define TDEFL_PUT_BITS_FAST(b, l) { bit_buffer |= (((mz_uint64)(b)) << bits_in); bits_in += (l); } flags = 1; for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1) { if (flags == 1) flags = *pLZ_codes++ | 0x100; if (flags & 1) { mz_uint s0, s1, n0, n1, sym, num_extra_bits; mz_uint match_len = pLZ_codes[0], match_dist = *(const mz_uint16 *)(pLZ_codes + 1); pLZ_codes += 3; MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]); // This sequence coaxes MSVC into using cmov's vs. jmp's. s0 = s_tdefl_small_dist_sym[match_dist & 511]; n0 = s_tdefl_small_dist_extra[match_dist & 511]; s1 = s_tdefl_large_dist_sym[match_dist >> 8]; n1 = s_tdefl_large_dist_extra[match_dist >> 8]; sym = (match_dist < 512) ? s0 : s1; num_extra_bits = (match_dist < 512) ? n0 : n1; MZ_ASSERT(d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); } else { mz_uint lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { flags >>= 1; lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { flags >>= 1; lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); } } } if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE; *(mz_uint64*)pOutput_buf = bit_buffer; pOutput_buf += (bits_in >> 3); bit_buffer >>= (bits_in & ~7); bits_in &= 7; } #undef TDEFL_PUT_BITS_FAST d->m_pOutput_buf = pOutput_buf; d->m_bits_in = 0; d->m_bit_buffer = 0; while (bits_in) { mz_uint32 n = MZ_MIN(bits_in, 16); TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n); bit_buffer >>= n; bits_in -= n; } TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); return (d->m_pOutput_buf < d->m_pOutput_buf_end); } #else static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { mz_uint flags; mz_uint8 *pLZ_codes; flags = 1; for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1) { if (flags == 1) flags = *pLZ_codes++ | 0x100; if (flags & 1) { mz_uint sym, num_extra_bits; mz_uint match_len = pLZ_codes[0], match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3; MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]); if (match_dist < 512) { sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist]; } else { sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8]; } MZ_ASSERT(d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); } else { mz_uint lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); } } TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); return (d->m_pOutput_buf < d->m_pOutput_buf_end); } #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) { if (static_block) tdefl_start_static_block(d); else tdefl_start_dynamic_block(d); return tdefl_compress_lz_codes(d); } static int tdefl_flush_block(tdefl_compressor *d, int flush) { mz_uint saved_bit_buf, saved_bits_in; mz_uint8 *pSaved_output_buf; mz_bool comp_block_succeeded = MZ_FALSE; int n, use_raw_block = ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size; mz_uint8 *pOutput_buf_start = ((d->m_pPut_buf_func == NULL) && ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) : d->m_output_buf; d->m_pOutput_buf = pOutput_buf_start; d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16; MZ_ASSERT(!d->m_output_flush_remaining); d->m_output_flush_ofs = 0; d->m_output_flush_remaining = 0; *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left); d->m_pLZ_code_buf -= (d->m_num_flags_left == 8); if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) { TDEFL_PUT_BITS(0x78, 8); TDEFL_PUT_BITS(0x01, 8); } TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1); pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in; if (!use_raw_block) comp_block_succeeded = tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || (d->m_total_lz_bytes < 48)); // If the block gets expanded, forget the current contents of the output buffer and send a raw block instead. if ( ((use_raw_block) || ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= d->m_total_lz_bytes))) && ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size) ) { mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; TDEFL_PUT_BITS(0, 2); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) { TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16); } for (i = 0; i < d->m_total_lz_bytes; ++i) { TDEFL_PUT_BITS(d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], 8); } } // Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes. else if (!comp_block_succeeded) { d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; tdefl_compress_block(d, MZ_TRUE); } if (flush) { if (flush == TDEFL_FINISH) { if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { mz_uint i, a = d->m_adler32; for (i = 0; i < 4; i++) { TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); a <<= 8; } } } else { mz_uint i, z = 0; TDEFL_PUT_BITS(0, 3); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, z ^= 0xFFFF) { TDEFL_PUT_BITS(z & 0xFFFF, 16); } } } MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end); memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++; if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) { if (d->m_pPut_buf_func) { *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user)) return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED); } else if (pOutput_buf_start == d->m_output_buf) { int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs)); memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy); d->m_out_buf_ofs += bytes_to_copy; if ((n -= bytes_to_copy) != 0) { d->m_output_flush_ofs = bytes_to_copy; d->m_output_flush_remaining = n; } } else { d->m_out_buf_ofs += n; } } return d->m_output_flush_remaining; } #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES #define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16*)(p) static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len; mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; const mz_uint16 *s = (const mz_uint16*)(d->m_dict + pos), *p, *q; mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), s01 = TDEFL_READ_UNALIGNED_WORD(s); MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return; for ( ; ; ) { for ( ; ; ) { if (--num_probes_left == 0) return; #define TDEFL_PROBE \ next_probe_pos = d->m_next[probe_pos]; \ if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \ probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) break; TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE; } if (!dist) break; q = (const mz_uint16*)(d->m_dict + probe_pos); if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; p = s; probe_len = 32; do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) ); if (!probe_len) { *pMatch_dist = dist; *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN); break; } else if ((probe_len = ((mz_uint)(p - s) * 2) + (mz_uint)(*(const mz_uint8*)p == *(const mz_uint8*)q)) > match_len) { *pMatch_dist = dist; if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == max_match_len) break; c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]); } } } #else static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len; mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; const mz_uint8 *s = d->m_dict + pos, *p, *q; mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1]; MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return; for ( ; ; ) { for ( ; ; ) { if (--num_probes_left == 0) return; #define TDEFL_PROBE \ next_probe_pos = d->m_next[probe_pos]; \ if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \ probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) break; TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE; } if (!dist) break; p = s; q = d->m_dict + probe_pos; for (probe_len = 0; probe_len < max_match_len; probe_len++) if (*p++ != *q++) break; if (probe_len > match_len) { *pMatch_dist = dist; if ((*pMatch_len = match_len = probe_len) == max_match_len) return; c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1]; } } } #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN static mz_bool tdefl_compress_fast(tdefl_compressor *d) { // Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio. mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left; mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags; mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) { const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096; mz_uint dst_pos = (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size); d->m_src_buf_left -= num_bytes_to_process; lookahead_size += num_bytes_to_process; while (num_bytes_to_process) { mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process); memcpy(d->m_dict + dst_pos, d->m_pSrc, n); if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos)); d->m_pSrc += n; dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK; num_bytes_to_process -= n; } dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size); if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) break; while (lookahead_size >= 4) { mz_uint cur_match_dist, cur_match_len = 1; mz_uint8 *pCur_dict = d->m_dict + cur_pos; mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF; mz_uint hash = (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & TDEFL_LEVEL1_HASH_SIZE_MASK; mz_uint probe_pos = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)lookahead_pos; if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= dict_size) && ((*(const mz_uint32 *)(d->m_dict + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & 0xFFFFFF) == first_trigram)) { const mz_uint16 *p = (const mz_uint16 *)pCur_dict; const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos); mz_uint32 probe_len = 32; do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) ); cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q); if (!probe_len) cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0; if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || ((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U))) { cur_match_len = 1; *pLZ_code_buf++ = (mz_uint8)first_trigram; *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); d->m_huff_count[0][(mz_uint8)first_trigram]++; } else { mz_uint32 s0, s1; cur_match_len = MZ_MIN(cur_match_len, lookahead_size); MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 1) && (cur_match_dist <= TDEFL_LZ_DICT_SIZE)); cur_match_dist--; pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN); *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist; pLZ_code_buf += 3; *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80); s0 = s_tdefl_small_dist_sym[cur_match_dist & 511]; s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8]; d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++; d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++; } } else { *pLZ_code_buf++ = (mz_uint8)first_trigram; *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); d->m_huff_count[0][(mz_uint8)first_trigram]++; } if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; } total_lz_bytes += cur_match_len; lookahead_pos += cur_match_len; dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE); cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK; MZ_ASSERT(lookahead_size >= cur_match_len); lookahead_size -= cur_match_len; if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { int n; d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left; } } while (lookahead_size) { mz_uint8 lit = d->m_dict[cur_pos]; total_lz_bytes++; *pLZ_code_buf++ = lit; *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; } d->m_huff_count[0][lit]++; lookahead_pos++; dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE); cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; lookahead_size--; if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { int n; d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left; } } } d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; return MZ_TRUE; } #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, mz_uint8 lit) { d->m_total_lz_bytes++; *d->m_pLZ_code_buf++ = lit; *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; } d->m_huff_count[0][lit]++; } static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist) { mz_uint32 s0, s1; MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && (match_dist <= TDEFL_LZ_DICT_SIZE)); d->m_total_lz_bytes += match_len; d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN); match_dist -= 1; d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF); d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); d->m_pLZ_code_buf += 3; *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; } s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127]; d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++; if (match_len >= TDEFL_MIN_MATCH_LEN) d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++; } static mz_bool tdefl_compress_normal(tdefl_compressor *d) { const mz_uint8 *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left; tdefl_flush flush = d->m_flush; while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) { mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos; // Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN. if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) { mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2; mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]; mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size); const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process; src_buf_left -= num_bytes_to_process; d->m_lookahead_size += num_bytes_to_process; while (pSrc != pSrc_end) { mz_uint8 c = *pSrc++; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos); dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++; } } else { while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) { mz_uint8 c = *pSrc++; mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; src_buf_left--; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) { mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2; mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << (TDEFL_LZ_HASH_SHIFT * 2)) ^ (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos); } } } d->m_dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size); if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break; // Simple lazy/greedy parsing state machine. len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) { if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) { mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK]; cur_match_len = 0; while (cur_match_len < d->m_lookahead_size) { if (d->m_dict[cur_pos + cur_match_len] != c) break; cur_match_len++; } if (cur_match_len < TDEFL_MIN_MATCH_LEN) cur_match_len = 0; else cur_match_dist = 1; } } else { tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len); } if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)) || (cur_pos == cur_match_dist) || ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) { cur_match_dist = cur_match_len = 0; } if (d->m_saved_match_len) { if (cur_match_len > d->m_saved_match_len) { tdefl_record_literal(d, (mz_uint8)d->m_saved_lit); if (cur_match_len >= 128) { tdefl_record_match(d, cur_match_len, cur_match_dist); d->m_saved_match_len = 0; len_to_move = cur_match_len; } else { d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len; } } else { tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist); len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0; } } else if (!cur_match_dist) tdefl_record_literal(d, d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]); else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || (cur_match_len >= 128)) { tdefl_record_match(d, cur_match_len, cur_match_dist); len_to_move = cur_match_len; } else { d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len; } // Move the lookahead forward by len_to_move bytes. d->m_lookahead_pos += len_to_move; MZ_ASSERT(d->m_lookahead_size >= len_to_move); d->m_lookahead_size -= len_to_move; d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, TDEFL_LZ_DICT_SIZE); // Check if it's time to flush the current LZ codes to the internal output buffer. if ( (d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) || ( (d->m_total_lz_bytes > 31*1024) && (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= d->m_total_lz_bytes) || (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) ) { int n; d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; } } d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left; return MZ_TRUE; } static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) { if (d->m_pIn_buf_size) { *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; } if (d->m_pOut_buf_size) { size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining); memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n); d->m_output_flush_ofs += (mz_uint)n; d->m_output_flush_remaining -= (mz_uint)n; d->m_out_buf_ofs += n; *d->m_pOut_buf_size = d->m_out_buf_ofs; } return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY; } tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush) { if (!d) { if (pIn_buf_size) *pIn_buf_size = 0; if (pOut_buf_size) *pOut_buf_size = 0; return TDEFL_STATUS_BAD_PARAM; } d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size; d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size; d->m_pSrc = (const mz_uint8 *)(pIn_buf); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0; d->m_out_buf_ofs = 0; d->m_flush = flush; if ( ((d->m_pPut_buf_func != NULL) == ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || (d->m_prev_return_status != TDEFL_STATUS_OKAY) || (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || (pIn_buf_size && *pIn_buf_size && !pIn_buf) || (pOut_buf_size && *pOut_buf_size && !pOut_buf) ) { if (pIn_buf_size) *pIn_buf_size = 0; if (pOut_buf_size) *pOut_buf_size = 0; return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM); } d->m_wants_to_finish |= (flush == TDEFL_FINISH); if ((d->m_output_flush_remaining) || (d->m_finished)) return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) && ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) && ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)) == 0)) { if (!tdefl_compress_fast(d)) return d->m_prev_return_status; } else #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN { if (!tdefl_compress_normal(d)) return d->m_prev_return_status; } if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && (pIn_buf)) d->m_adler32 = (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, d->m_pSrc - (const mz_uint8 *)pIn_buf); if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && (!d->m_output_flush_remaining)) { if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status; d->m_finished = (flush == TDEFL_FINISH); if (flush == TDEFL_FULL_FLUSH) { MZ_CLEAR_OBJ(d->m_hash); MZ_CLEAR_OBJ(d->m_next); d->m_dict_size = 0; } } return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); } tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush) { MZ_ASSERT(d->m_pPut_buf_func); return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush); } tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { d->m_pPut_buf_func = pPut_buf_func; d->m_pPut_buf_user = pPut_buf_user; d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0; d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3; if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash); d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0; d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0; d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY; d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1; d->m_pIn_buf = NULL; d->m_pOut_buf = NULL; d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL; d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0; memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); return TDEFL_STATUS_OKAY; } tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) { return d->m_prev_return_status; } mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; } mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { tdefl_compressor *pComp; mz_bool succeeded; if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE; pComp = (tdefl_compressor*)MZ_MALLOC(sizeof(tdefl_compressor)); if (!pComp) return MZ_FALSE; succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == TDEFL_STATUS_OKAY); succeeded = succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == TDEFL_STATUS_DONE); MZ_FREE(pComp); return succeeded; } typedef struct { size_t m_size, m_capacity; mz_uint8 *m_pBuf; mz_bool m_expandable; } tdefl_output_buffer; static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, void *pUser) { tdefl_output_buffer *p = (tdefl_output_buffer *)pUser; size_t new_size = p->m_size + len; if (new_size > p->m_capacity) { size_t new_capacity = p->m_capacity; mz_uint8 *pNew_buf; if (!p->m_expandable) return MZ_FALSE; do { new_capacity = MZ_MAX(128U, new_capacity << 1U); } while (new_size > new_capacity); pNew_buf = (mz_uint8*)MZ_REALLOC(p->m_pBuf, new_capacity); if (!pNew_buf) return MZ_FALSE; p->m_pBuf = pNew_buf; p->m_capacity = new_capacity; } memcpy((mz_uint8*)p->m_pBuf + p->m_size, pBuf, len); p->m_size = new_size; return MZ_TRUE; } void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags) { tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf); if (!pOut_len) return MZ_FALSE; else *pOut_len = 0; out_buf.m_expandable = MZ_TRUE; if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return NULL; *pOut_len = out_buf.m_size; return out_buf.m_pBuf; } size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags) { tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf); if (!pOut_buf) return 0; out_buf.m_pBuf = (mz_uint8*)pOut_buf; out_buf.m_capacity = out_buf_len; if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return 0; return out_buf.m_size; } #ifndef MINIZ_NO_ZLIB_APIS static const mz_uint s_tdefl_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 }; // level may actually range from [0,10] (10 is a "hidden" max level, where we want a bit more compression and it's fine if throughput to fall off a cliff on some files). mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy) { mz_uint comp_flags = s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0); if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER; if (!level) comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS; else if (strategy == MZ_FILTERED) comp_flags |= TDEFL_FILTER_MATCHES; else if (strategy == MZ_HUFFMAN_ONLY) comp_flags &= ~TDEFL_MAX_PROBES_MASK; else if (strategy == MZ_FIXED) comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS; else if (strategy == MZ_RLE) comp_flags |= TDEFL_RLE_MATCHES; return comp_flags; } #endif //MINIZ_NO_ZLIB_APIS #ifdef _MSC_VER #pragma warning (push) #pragma warning (disable:4204) // nonstandard extension used : non-constant aggregate initializer (also supported by GNU C and C99, so no big deal) #endif // Simple PNG writer function by Alex Evans, 2011. Released into the public domain: https://gist.github.com/908299, more context at // http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/. // This is actually a modification of Alex's original code so PNG files generated by this function pass pngcheck. void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip) { // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was defined. static const mz_uint s_tdefl_png_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 }; tdefl_compressor *pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); tdefl_output_buffer out_buf; int i, bpl = w * num_chans, y, z; mz_uint32 c; *pLen_out = 0; if (!pComp) return NULL; MZ_CLEAR_OBJ(out_buf); out_buf.m_expandable = MZ_TRUE; out_buf.m_capacity = 57+MZ_MAX(64, (1+bpl)*h); if (NULL == (out_buf.m_pBuf = (mz_uint8*)MZ_MALLOC(out_buf.m_capacity))) { MZ_FREE(pComp); return NULL; } // write dummy header for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf); // compress image data tdefl_init(pComp, tdefl_output_buffer_putter, &out_buf, s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER); for (y = 0; y < h; ++y) { tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); tdefl_compress_buffer(pComp, (mz_uint8*)pImage + (flip ? (h - 1 - y) : y) * bpl, bpl, TDEFL_NO_FLUSH); } if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != TDEFL_STATUS_DONE) { MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; } // write real header *pLen_out = out_buf.m_size-41; { static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06}; mz_uint8 pnghdr[41]={0x89,0x50,0x4e,0x47,0x0d,0x0a,0x1a,0x0a,0x00,0x00,0x00,0x0d,0x49,0x48,0x44,0x52, 0,0,(mz_uint8)(w>>8),(mz_uint8)w,0,0,(mz_uint8)(h>>8),(mz_uint8)h,8,chans[num_chans],0,0,0,0,0,0,0, (mz_uint8)(*pLen_out>>24),(mz_uint8)(*pLen_out>>16),(mz_uint8)(*pLen_out>>8),(mz_uint8)*pLen_out,0x49,0x44,0x41,0x54}; c=(mz_uint32)mz_crc32(MZ_CRC32_INIT,pnghdr+12,17); for (i=0; i<4; ++i, c<<=8) ((mz_uint8*)(pnghdr+29))[i]=(mz_uint8)(c>>24); memcpy(out_buf.m_pBuf, pnghdr, 41); } // write footer (IDAT CRC-32, followed by IEND chunk) if (!tdefl_output_buffer_putter("\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) { *pLen_out = 0; MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; } c = (mz_uint32)mz_crc32(MZ_CRC32_INIT,out_buf.m_pBuf+41-4, *pLen_out+4); for (i=0; i<4; ++i, c<<=8) (out_buf.m_pBuf+out_buf.m_size-16)[i] = (mz_uint8)(c >> 24); // compute final size of file, grab compressed data buffer and return *pLen_out += 57; MZ_FREE(pComp); return out_buf.m_pBuf; } void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out) { // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's where #defined out) return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, pLen_out, 6, MZ_FALSE); } #ifdef _MSC_VER #pragma warning (pop) #endif // ------------------- .ZIP archive reading #ifndef MINIZ_NO_ARCHIVE_APIS #ifdef MINIZ_NO_STDIO #define MZ_FILE void * #else #include #include #if defined(_MSC_VER) || defined(__MINGW64__) static FILE *mz_fopen(const char *pFilename, const char *pMode) { FILE* pFile = NULL; fopen_s(&pFile, pFilename, pMode); return pFile; } static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) { FILE* pFile = NULL; if (freopen_s(&pFile, pPath, pMode, pStream)) return NULL; return pFile; } #ifndef MINIZ_NO_TIME #include #endif #define MZ_FILE FILE #define MZ_FOPEN mz_fopen #define MZ_FCLOSE fclose #define MZ_FREAD fread #define MZ_FWRITE fwrite #define MZ_FTELL64 _ftelli64 #define MZ_FSEEK64 _fseeki64 #define MZ_FILE_STAT_STRUCT _stat #define MZ_FILE_STAT _stat #define MZ_FFLUSH fflush #define MZ_FREOPEN mz_freopen #define MZ_DELETE_FILE remove #elif defined(__MINGW32__) #ifndef MINIZ_NO_TIME #include #endif #define MZ_FILE FILE #define MZ_FOPEN(f, m) fopen(f, m) #define MZ_FCLOSE fclose #define MZ_FREAD fread #define MZ_FWRITE fwrite #define MZ_FTELL64 ftello64 #define MZ_FSEEK64 fseeko64 #define MZ_FILE_STAT_STRUCT _stat #define MZ_FILE_STAT _stat #define MZ_FFLUSH fflush #define MZ_FREOPEN(f, m, s) freopen(f, m, s) #define MZ_DELETE_FILE remove #elif defined(__TINYC__) #ifndef MINIZ_NO_TIME #include #endif #define MZ_FILE FILE #define MZ_FOPEN(f, m) fopen(f, m) #define MZ_FCLOSE fclose #define MZ_FREAD fread #define MZ_FWRITE fwrite #define MZ_FTELL64 ftell #define MZ_FSEEK64 fseek #define MZ_FILE_STAT_STRUCT stat #define MZ_FILE_STAT stat #define MZ_FFLUSH fflush #define MZ_FREOPEN(f, m, s) freopen(f, m, s) #define MZ_DELETE_FILE remove #elif defined(__GNUC__) && _LARGEFILE64_SOURCE #ifndef MINIZ_NO_TIME #include #endif #define MZ_FILE FILE #define MZ_FOPEN(f, m) fopen64(f, m) #define MZ_FCLOSE fclose #define MZ_FREAD fread #define MZ_FWRITE fwrite #define MZ_FTELL64 ftello64 #define MZ_FSEEK64 fseeko64 #define MZ_FILE_STAT_STRUCT stat64 #define MZ_FILE_STAT stat64 #define MZ_FFLUSH fflush #define MZ_FREOPEN(p, m, s) freopen64(p, m, s) #define MZ_DELETE_FILE remove #else #ifndef MINIZ_NO_TIME #include #endif #define MZ_FILE FILE #define MZ_FOPEN(f, m) fopen(f, m) #define MZ_FCLOSE fclose #define MZ_FREAD fread #define MZ_FWRITE fwrite #define MZ_FTELL64 ftello #define MZ_FSEEK64 fseeko #define MZ_FILE_STAT_STRUCT stat #define MZ_FILE_STAT stat #define MZ_FFLUSH fflush #define MZ_FREOPEN(f, m, s) freopen(f, m, s) #define MZ_DELETE_FILE remove #endif // #ifdef _MSC_VER #endif // #ifdef MINIZ_NO_STDIO #define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c)) // Various ZIP archive enums. To completely avoid cross platform compiler alignment and platform endian issues, miniz.c doesn't use structs for any of this stuff. enum { // ZIP archive identifiers and record sizes MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50, MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50, MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50, MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22, // Central directory header record offsets MZ_ZIP_CDH_SIG_OFS = 0, MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4, MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6, MZ_ZIP_CDH_BIT_FLAG_OFS = 8, MZ_ZIP_CDH_METHOD_OFS = 10, MZ_ZIP_CDH_FILE_TIME_OFS = 12, MZ_ZIP_CDH_FILE_DATE_OFS = 14, MZ_ZIP_CDH_CRC32_OFS = 16, MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20, MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24, MZ_ZIP_CDH_FILENAME_LEN_OFS = 28, MZ_ZIP_CDH_EXTRA_LEN_OFS = 30, MZ_ZIP_CDH_COMMENT_LEN_OFS = 32, MZ_ZIP_CDH_DISK_START_OFS = 34, MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36, MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38, MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42, // Local directory header offsets MZ_ZIP_LDH_SIG_OFS = 0, MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4, MZ_ZIP_LDH_BIT_FLAG_OFS = 6, MZ_ZIP_LDH_METHOD_OFS = 8, MZ_ZIP_LDH_FILE_TIME_OFS = 10, MZ_ZIP_LDH_FILE_DATE_OFS = 12, MZ_ZIP_LDH_CRC32_OFS = 14, MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18, MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22, MZ_ZIP_LDH_FILENAME_LEN_OFS = 26, MZ_ZIP_LDH_EXTRA_LEN_OFS = 28, // End of central directory offsets MZ_ZIP_ECDH_SIG_OFS = 0, MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4, MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6, MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8, MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10, MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12, MZ_ZIP_ECDH_CDIR_OFS_OFS = 16, MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20, }; typedef struct { void *m_p; size_t m_size, m_capacity; mz_uint m_element_size; } mz_zip_array; struct mz_zip_internal_state_tag { mz_zip_array m_central_dir; mz_zip_array m_central_dir_offsets; mz_zip_array m_sorted_central_dir_offsets; MZ_FILE *m_pFile; void *m_pMem; size_t m_mem_size; size_t m_mem_capacity; }; #define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) (array_ptr)->m_element_size = element_size #define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) ((element_type *)((array_ptr)->m_p))[index] static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip, mz_zip_array *pArray) { pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p); memset(pArray, 0, sizeof(mz_zip_array)); } static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip, mz_zip_array *pArray, size_t min_new_capacity, mz_uint growing) { void *pNew_p; size_t new_capacity = min_new_capacity; MZ_ASSERT(pArray->m_element_size); if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE; if (growing) { new_capacity = MZ_MAX(1, pArray->m_capacity); while (new_capacity < min_new_capacity) new_capacity *= 2; } if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p, pArray->m_element_size, new_capacity))) return MZ_FALSE; pArray->m_p = pNew_p; pArray->m_capacity = new_capacity; return MZ_TRUE; } static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip, mz_zip_array *pArray, size_t new_capacity, mz_uint growing) { if (new_capacity > pArray->m_capacity) { if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing)) return MZ_FALSE; } return MZ_TRUE; } static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip, mz_zip_array *pArray, size_t new_size, mz_uint growing) { if (new_size > pArray->m_capacity) { if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing)) return MZ_FALSE; } pArray->m_size = new_size; return MZ_TRUE; } static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip, mz_zip_array *pArray, size_t n) { return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE); } static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip, mz_zip_array *pArray, const void *pElements, size_t n) { size_t orig_size = pArray->m_size; if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE)) return MZ_FALSE; memcpy((mz_uint8*)pArray->m_p + orig_size * pArray->m_element_size, pElements, n * pArray->m_element_size); return MZ_TRUE; } #ifndef MINIZ_NO_TIME static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) { struct tm tm; memset(&tm, 0, sizeof(tm)); tm.tm_isdst = -1; tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900; tm.tm_mon = ((dos_date >> 5) & 15) - 1; tm.tm_mday = dos_date & 31; tm.tm_hour = (dos_time >> 11) & 31; tm.tm_min = (dos_time >> 5) & 63; tm.tm_sec = (dos_time << 1) & 62; return mktime(&tm); } static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time, mz_uint16 *pDOS_date) { #ifdef _MSC_VER struct tm tm_struct; struct tm *tm = &tm_struct; errno_t err = localtime_s(tm, &time); if (err) { *pDOS_date = 0; *pDOS_time = 0; return; } #else struct tm *tm = localtime(&time); #endif *pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) + ((tm->tm_sec) >> 1)); *pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) + ((tm->tm_mon + 1) << 5) + tm->tm_mday); } #endif #ifndef MINIZ_NO_STDIO static mz_bool mz_zip_get_file_modified_time(const char *pFilename, mz_uint16 *pDOS_time, mz_uint16 *pDOS_date) { #ifdef MINIZ_NO_TIME (void)pFilename; *pDOS_date = *pDOS_time = 0; #else struct MZ_FILE_STAT_STRUCT file_stat; // On Linux with x86 glibc, this call will fail on large files (>= 0x80000000 bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh. if (MZ_FILE_STAT(pFilename, &file_stat) != 0) return MZ_FALSE; mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date); #endif // #ifdef MINIZ_NO_TIME return MZ_TRUE; } #ifndef MINIZ_NO_TIME static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time, time_t modified_time) { struct utimbuf t; t.actime = access_time; t.modtime = modified_time; return !utime(pFilename, &t); } #endif // #ifndef MINIZ_NO_TIME #endif // #ifndef MINIZ_NO_STDIO static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip, mz_uint32 flags) { (void)flags; if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID)) return MZ_FALSE; if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func; if (!pZip->m_pFree) pZip->m_pFree = def_free_func; if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func; pZip->m_zip_mode = MZ_ZIP_MODE_READING; pZip->m_archive_size = 0; pZip->m_central_directory_file_ofs = 0; pZip->m_total_files = 0; if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state)))) return MZ_FALSE; memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state)); MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, sizeof(mz_uint8)); MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, sizeof(mz_uint32)); MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, sizeof(mz_uint32)); return MZ_TRUE; } static MZ_FORCEINLINE mz_bool mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array, const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, mz_uint r_index) { const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_array, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, l_index)), *pE; const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_array, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index)); mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS), r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS); mz_uint8 l = 0, r = 0; pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; pE = pL + MZ_MIN(l_len, r_len); while (pL < pE) { if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break; pL++; pR++; } return (pL == pE) ? (l_len < r_len) : (l < r); } #define MZ_SWAP_UINT32(a, b) do { mz_uint32 t = a; a = b; b = t; } MZ_MACRO_END // Heap sort of lowercased filenames, used to help accelerate plain central directory searches by mz_zip_reader_locate_file(). (Could also use qsort(), but it could allocate memory.) static void mz_zip_reader_sort_central_dir_offsets_by_filename(mz_zip_archive *pZip) { mz_zip_internal_state *pState = pZip->m_pState; const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets; const mz_zip_array *pCentral_dir = &pState->m_central_dir; mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(&pState->m_sorted_central_dir_offsets, mz_uint32, 0); const int size = pZip->m_total_files; int start = (size - 2) >> 1, end; while (start >= 0) { int child, root = start; for ( ; ; ) { if ((child = (root << 1) + 1) >= size) break; child += (((child + 1) < size) && (mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[child], pIndices[child + 1]))); if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[root], pIndices[child])) break; MZ_SWAP_UINT32(pIndices[root], pIndices[child]); root = child; } start--; } end = size - 1; while (end > 0) { int child, root = 0; MZ_SWAP_UINT32(pIndices[end], pIndices[0]); for ( ; ; ) { if ((child = (root << 1) + 1) >= end) break; child += (((child + 1) < end) && mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[child], pIndices[child + 1])); if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[root], pIndices[child])) break; MZ_SWAP_UINT32(pIndices[root], pIndices[child]); root = child; } end--; } } static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip, mz_uint32 flags) { mz_uint cdir_size, num_this_disk, cdir_disk_index; mz_uint64 cdir_ofs; mz_int64 cur_file_ofs; const mz_uint8 *p; mz_uint32 buf_u32[4096 / sizeof(mz_uint32)]; mz_uint8 *pBuf = (mz_uint8 *)buf_u32; mz_bool sort_central_dir = ((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0); // Basic sanity checks - reject files which are too small, and check the first 4 bytes of the file to make sure a local header is there. if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) return MZ_FALSE; // Find the end of central directory record by scanning the file from the end towards the beginning. cur_file_ofs = MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0); for ( ; ; ) { int i, n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs); if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n) return MZ_FALSE; for (i = n - 4; i >= 0; --i) if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) break; if (i >= 0) { cur_file_ofs += i; break; } if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >= (0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE))) return MZ_FALSE; cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0); } // Read and verify the end of central directory record. if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) != MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) return MZ_FALSE; if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) != MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) || ((pZip->m_total_files = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) != MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS))) return MZ_FALSE; num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS); cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS); if (((num_this_disk | cdir_disk_index) != 0) && ((num_this_disk != 1) || (cdir_disk_index != 1))) return MZ_FALSE; if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) < pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) return MZ_FALSE; cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS); if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size) return MZ_FALSE; pZip->m_central_directory_file_ofs = cdir_ofs; if (pZip->m_total_files) { mz_uint i, n; // Read the entire central directory into a heap block, and allocate another heap block to hold the unsorted central dir file record offsets, and another to hold the sorted indices. if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size, MZ_FALSE)) || (!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets, pZip->m_total_files, MZ_FALSE))) return MZ_FALSE; if (sort_central_dir) { if (!mz_zip_array_resize(pZip, &pZip->m_pState->m_sorted_central_dir_offsets, pZip->m_total_files, MZ_FALSE)) return MZ_FALSE; } if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs, pZip->m_pState->m_central_dir.m_p, cdir_size) != cdir_size) return MZ_FALSE; // Now create an index into the central directory file records, do some basic sanity checking on each record, and check for zip64 entries (which are not yet supported). p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p; for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) { mz_uint total_header_size, comp_size, decomp_size, disk_index; if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) || (MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG)) return MZ_FALSE; MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, i) = (mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p); if (sort_central_dir) MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets, mz_uint32, i) = i; comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) && (decomp_size != comp_size)) || (decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) || (comp_size == 0xFFFFFFFF)) return MZ_FALSE; disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS); if ((disk_index != num_this_disk) && (disk_index != 1)) return MZ_FALSE; if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size) return MZ_FALSE; if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) > n) return MZ_FALSE; n -= total_header_size; p += total_header_size; } } if (sort_central_dir) mz_zip_reader_sort_central_dir_offsets_by_filename(pZip); return MZ_TRUE; } mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, mz_uint32 flags) { if ((!pZip) || (!pZip->m_pRead)) return MZ_FALSE; if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE; pZip->m_archive_size = size; if (!mz_zip_reader_read_central_dir(pZip, flags)) { mz_zip_reader_end(pZip); return MZ_FALSE; } return MZ_TRUE; } static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n) { mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; size_t s = (file_ofs >= pZip->m_archive_size) ? 0 : (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n); memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s); return s; } mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, size_t size, mz_uint32 flags) { if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE; pZip->m_archive_size = size; pZip->m_pRead = mz_zip_mem_read_func; pZip->m_pIO_opaque = pZip; #ifdef __cplusplus pZip->m_pState->m_pMem = const_cast(pMem); #else pZip->m_pState->m_pMem = (void *)pMem; #endif pZip->m_pState->m_mem_size = size; if (!mz_zip_reader_read_central_dir(pZip, flags)) { mz_zip_reader_end(pZip); return MZ_FALSE; } return MZ_TRUE; } #ifndef MINIZ_NO_STDIO static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n) { mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile); if (((mz_int64)file_ofs < 0) || (((cur_ofs != (mz_int64)file_ofs)) && (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET)))) return 0; return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile); } mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint32 flags) { mz_uint64 file_size; MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb"); if (!pFile) return MZ_FALSE; if (MZ_FSEEK64(pFile, 0, SEEK_END)) { MZ_FCLOSE(pFile); return MZ_FALSE; } file_size = MZ_FTELL64(pFile); if (!mz_zip_reader_init_internal(pZip, flags)) { MZ_FCLOSE(pFile); return MZ_FALSE; } pZip->m_pRead = mz_zip_file_read_func; pZip->m_pIO_opaque = pZip; pZip->m_pState->m_pFile = pFile; pZip->m_archive_size = file_size; if (!mz_zip_reader_read_central_dir(pZip, flags)) { mz_zip_reader_end(pZip); return MZ_FALSE; } return MZ_TRUE; } #endif // #ifndef MINIZ_NO_STDIO mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) { return pZip ? pZip->m_total_files : 0; } static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh(mz_zip_archive *pZip, mz_uint file_index) { if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) return NULL; return &MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index)); } mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, mz_uint file_index) { mz_uint m_bit_flag; const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); if (!p) return MZ_FALSE; m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS); return (m_bit_flag & 1); } mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, mz_uint file_index) { mz_uint filename_len, external_attr; const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); if (!p) return MZ_FALSE; // First see if the filename ends with a '/' character. filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); if (filename_len) { if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/') return MZ_TRUE; } // Bugfix: This code was also checking if the internal attribute was non-zero, which wasn't correct. // Most/all zip writers (hopefully) set DOS file/directory attributes in the low 16-bits, so check for the DOS directory flag and ignore the source OS ID in the created by field. // FIXME: Remove this check? Is it necessary - we already check the filename. external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS); if ((external_attr & 0x10) != 0) return MZ_TRUE; return MZ_FALSE; } mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, mz_zip_archive_file_stat *pStat) { mz_uint n; const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); if ((!p) || (!pStat)) return MZ_FALSE; // Unpack the central directory record. pStat->m_file_index = file_index; pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index); pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS); pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS); pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS); pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS); #ifndef MINIZ_NO_TIME pStat->m_time = mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS), MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS)); #endif pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS); pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS); pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS); pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS); // Copy as much of the filename and comment as possible. n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1); memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); pStat->m_filename[n] = '\0'; n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS); n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1); pStat->m_comment_size = n; memcpy(pStat->m_comment, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS), n); pStat->m_comment[n] = '\0'; return MZ_TRUE; } mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, char *pFilename, mz_uint filename_buf_size) { mz_uint n; const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); if (!p) { if (filename_buf_size) pFilename[0] = '\0'; return 0; } n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); if (filename_buf_size) { n = MZ_MIN(n, filename_buf_size - 1); memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); pFilename[n] = '\0'; } return n + 1; } static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA, const char *pB, mz_uint len, mz_uint flags) { mz_uint i; if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE) return 0 == memcmp(pA, pB, len); for (i = 0; i < len; ++i) if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i])) return MZ_FALSE; return MZ_TRUE; } static MZ_FORCEINLINE int mz_zip_reader_filename_compare(const mz_zip_array *pCentral_dir_array, const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR, mz_uint r_len) { const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_array, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, l_index)), *pE; mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS); mz_uint8 l = 0, r = 0; pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; pE = pL + MZ_MIN(l_len, r_len); while (pL < pE) { if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break; pL++; pR++; } return (pL == pE) ? (int)(l_len - r_len) : (l - r); } static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip, const char *pFilename) { mz_zip_internal_state *pState = pZip->m_pState; const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets; const mz_zip_array *pCentral_dir = &pState->m_central_dir; mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(&pState->m_sorted_central_dir_offsets, mz_uint32, 0); const int size = pZip->m_total_files; const mz_uint filename_len = (mz_uint)strlen(pFilename); int l = 0, h = size - 1; while (l <= h) { int m = (l + h) >> 1, file_index = pIndices[m], comp = mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets, file_index, pFilename, filename_len); if (!comp) return file_index; else if (comp < 0) l = m + 1; else h = m - 1; } return -1; } int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags) { mz_uint file_index; size_t name_len, comment_len; if ((!pZip) || (!pZip->m_pState) || (!pName) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) return -1; if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) && (!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size)) return mz_zip_reader_locate_file_binary_search(pZip, pName); name_len = strlen(pName); if (name_len > 0xFFFF) return -1; comment_len = pComment ? strlen(pComment) : 0; if (comment_len > 0xFFFF) return -1; for (file_index = 0; file_index < pZip->m_total_files; file_index++) { const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index)); mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS); const char *pFilename = (const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; if (filename_len < name_len) continue; if (comment_len) { mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS), file_comment_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS); const char *pFile_comment = pFilename + filename_len + file_extra_len; if ((file_comment_len != comment_len) || (!mz_zip_reader_string_equal(pComment, pFile_comment, file_comment_len, flags))) continue; } if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) { int ofs = filename_len - 1; do { if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') || (pFilename[ofs] == ':')) break; } while (--ofs >= 0); ofs++; pFilename += ofs; filename_len -= ofs; } if ((filename_len == name_len) && (mz_zip_reader_string_equal(pName, pFilename, filename_len, flags))) return file_index; } return -1; } mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) { int status = TINFL_STATUS_DONE; mz_uint64 needed_size, cur_file_ofs, comp_remaining, out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail; mz_zip_archive_file_stat file_stat; void *pRead_buf; mz_uint32 local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / sizeof(mz_uint32)]; mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; tinfl_decompressor inflator; if ((buf_size) && (!pBuf)) return MZ_FALSE; if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; // Empty file, or a directory (but not always a directory - I've seen odd zips with directories that have compressed data which inflates to 0 bytes) if (!file_stat.m_comp_size) return MZ_TRUE; // Entry is a subdirectory (I've seen old zips with dir entries which have compressed deflate data which inflates to 0 bytes, but these entries claim to uncompress to 512 bytes in the headers). // I'm torn how to handle this case - should it fail instead? if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE; // Encryption and patch files are not supported. if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE; // This function only supports stored and deflate. if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && (file_stat.m_method != MZ_DEFLATED)) return MZ_FALSE; // Ensure supplied output buffer is large enough. needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size : file_stat.m_uncomp_size; if (buf_size < needed_size) return MZ_FALSE; // Read and parse the local directory entry. cur_file_ofs = file_stat.m_local_header_ofs; if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE) return MZ_FALSE; if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) return MZ_FALSE; cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size) return MZ_FALSE; if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) { // The file is stored or the caller has requested the compressed data. if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, (size_t)needed_size) != needed_size) return MZ_FALSE; return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) || (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, (size_t)file_stat.m_uncomp_size) == file_stat.m_crc32); } // Decompress the file either directly from memory or from a file input buffer. tinfl_init(&inflator); if (pZip->m_pState->m_pMem) { // Read directly from the archive in memory. pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs; read_buf_size = read_buf_avail = file_stat.m_comp_size; comp_remaining = 0; } else if (pUser_read_buf) { // Use a user provided read buffer. if (!user_read_buf_size) return MZ_FALSE; pRead_buf = (mz_uint8 *)pUser_read_buf; read_buf_size = user_read_buf_size; read_buf_avail = 0; comp_remaining = file_stat.m_comp_size; } else { // Temporarily allocate a read buffer. read_buf_size = MZ_MIN(file_stat.m_comp_size, MZ_ZIP_MAX_IO_BUF_SIZE); #ifdef _MSC_VER if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF)) #else if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF)) #endif return MZ_FALSE; if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)read_buf_size))) return MZ_FALSE; read_buf_avail = 0; comp_remaining = file_stat.m_comp_size; } do { size_t in_buf_size, out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs); if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) { read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail) { status = TINFL_STATUS_FAILED; break; } cur_file_ofs += read_buf_avail; comp_remaining -= read_buf_avail; read_buf_ofs = 0; } in_buf_size = (size_t)read_buf_avail; status = tinfl_decompress(&inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, (mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | (comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0)); read_buf_avail -= in_buf_size; read_buf_ofs += in_buf_size; out_buf_ofs += out_buf_size; } while (status == TINFL_STATUS_NEEDS_MORE_INPUT); if (status == TINFL_STATUS_DONE) { // Make sure the entire file was decompressed, and check its CRC. if ((out_buf_ofs != file_stat.m_uncomp_size) || (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, (size_t)file_stat.m_uncomp_size) != file_stat.m_crc32)) status = TINFL_STATUS_FAILED; } if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf)) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); return status == TINFL_STATUS_DONE; } mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) { int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); if (file_index < 0) return MZ_FALSE; return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, flags, pUser_read_buf, user_read_buf_size); } mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags) { return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, flags, NULL, 0); } mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags) { return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf, buf_size, flags, NULL, 0); } void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, size_t *pSize, mz_uint flags) { mz_uint64 comp_size, uncomp_size, alloc_size; const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); void *pBuf; if (pSize) *pSize = 0; if (!p) return NULL; comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size; #ifdef _MSC_VER if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF)) #else if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF)) #endif return NULL; if (NULL == (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size))) return NULL; if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size, flags)) { pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); return NULL; } if (pSize) *pSize = (size_t)alloc_size; return pBuf; } void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, const char *pFilename, size_t *pSize, mz_uint flags) { int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); if (file_index < 0) { if (pSize) *pSize = 0; return MZ_FALSE; } return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags); } mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, mz_uint file_index, mz_file_write_func pCallback, void *pOpaque, mz_uint flags) { int status = TINFL_STATUS_DONE; mz_uint file_crc32 = MZ_CRC32_INIT; mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining, out_buf_ofs = 0, cur_file_ofs; mz_zip_archive_file_stat file_stat; void *pRead_buf = NULL; void *pWrite_buf = NULL; mz_uint32 local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / sizeof(mz_uint32)]; mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; // Empty file, or a directory (but not always a directory - I've seen odd zips with directories that have compressed data which inflates to 0 bytes) if (!file_stat.m_comp_size) return MZ_TRUE; // Entry is a subdirectory (I've seen old zips with dir entries which have compressed deflate data which inflates to 0 bytes, but these entries claim to uncompress to 512 bytes in the headers). // I'm torn how to handle this case - should it fail instead? if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE; // Encryption and patch files are not supported. if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE; // This function only supports stored and deflate. if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && (file_stat.m_method != MZ_DEFLATED)) return MZ_FALSE; // Read and parse the local directory entry. cur_file_ofs = file_stat.m_local_header_ofs; if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE) return MZ_FALSE; if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) return MZ_FALSE; cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size) return MZ_FALSE; // Decompress the file either directly from memory or from a file input buffer. if (pZip->m_pState->m_pMem) { pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs; read_buf_size = read_buf_avail = file_stat.m_comp_size; comp_remaining = 0; } else { read_buf_size = MZ_MIN(file_stat.m_comp_size, MZ_ZIP_MAX_IO_BUF_SIZE); if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)read_buf_size))) return MZ_FALSE; read_buf_avail = 0; comp_remaining = file_stat.m_comp_size; } if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) { // The file is stored or the caller has requested the compressed data. if (pZip->m_pState->m_pMem) { #ifdef _MSC_VER if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (file_stat.m_comp_size > 0xFFFFFFFF)) #else if (((sizeof(size_t) == sizeof(mz_uint32))) && (file_stat.m_comp_size > 0xFFFFFFFF)) #endif return MZ_FALSE; if (pCallback(pOpaque, out_buf_ofs, pRead_buf, (size_t)file_stat.m_comp_size) != file_stat.m_comp_size) status = TINFL_STATUS_FAILED; else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) file_crc32 = (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf, (size_t)file_stat.m_comp_size); cur_file_ofs += file_stat.m_comp_size; out_buf_ofs += file_stat.m_comp_size; comp_remaining = 0; } else { while (comp_remaining) { read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail) { status = TINFL_STATUS_FAILED; break; } if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) file_crc32 = (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail); if (pCallback(pOpaque, out_buf_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail) { status = TINFL_STATUS_FAILED; break; } cur_file_ofs += read_buf_avail; out_buf_ofs += read_buf_avail; comp_remaining -= read_buf_avail; } } } else { tinfl_decompressor inflator; tinfl_init(&inflator); if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, TINFL_LZ_DICT_SIZE))) status = TINFL_STATUS_FAILED; else { do { mz_uint8 *pWrite_buf_cur = (mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1)); size_t in_buf_size, out_buf_size = TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1)); if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) { read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail) { status = TINFL_STATUS_FAILED; break; } cur_file_ofs += read_buf_avail; comp_remaining -= read_buf_avail; read_buf_ofs = 0; } in_buf_size = (size_t)read_buf_avail; status = tinfl_decompress(&inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, (mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size, comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0); read_buf_avail -= in_buf_size; read_buf_ofs += in_buf_size; if (out_buf_size) { if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) != out_buf_size) { status = TINFL_STATUS_FAILED; break; } file_crc32 = (mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size); if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) { status = TINFL_STATUS_FAILED; break; } } } while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) || (status == TINFL_STATUS_HAS_MORE_OUTPUT)); } } if ((status == TINFL_STATUS_DONE) && (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) { // Make sure the entire file was decompressed, and check its CRC. if ((out_buf_ofs != file_stat.m_uncomp_size) || (file_crc32 != file_stat.m_crc32)) status = TINFL_STATUS_FAILED; } if (!pZip->m_pState->m_pMem) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); if (pWrite_buf) pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf); return status == TINFL_STATUS_DONE; } mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, const char *pFilename, mz_file_write_func pCallback, void *pOpaque, mz_uint flags) { int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); if (file_index < 0) return MZ_FALSE; return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque, flags); } #ifndef MINIZ_NO_STDIO static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs, const void *pBuf, size_t n) { (void)ofs; return MZ_FWRITE(pBuf, 1, n, (MZ_FILE*)pOpaque); } mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, const char *pDst_filename, mz_uint flags) { mz_bool status; mz_zip_archive_file_stat file_stat; MZ_FILE *pFile; if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; pFile = MZ_FOPEN(pDst_filename, "wb"); if (!pFile) return MZ_FALSE; status = mz_zip_reader_extract_to_callback(pZip, file_index, mz_zip_file_write_callback, pFile, flags); if (MZ_FCLOSE(pFile) == EOF) return MZ_FALSE; #ifndef MINIZ_NO_TIME if (status) mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time); #endif return status; } #endif // #ifndef MINIZ_NO_STDIO mz_bool mz_zip_reader_end(mz_zip_archive *pZip) { if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) return MZ_FALSE; if (pZip->m_pState) { mz_zip_internal_state *pState = pZip->m_pState; pZip->m_pState = NULL; mz_zip_array_clear(pZip, &pState->m_central_dir); mz_zip_array_clear(pZip, &pState->m_central_dir_offsets); mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets); #ifndef MINIZ_NO_STDIO if (pState->m_pFile) { MZ_FCLOSE(pState->m_pFile); pState->m_pFile = NULL; } #endif // #ifndef MINIZ_NO_STDIO pZip->m_pFree(pZip->m_pAlloc_opaque, pState); } pZip->m_zip_mode = MZ_ZIP_MODE_INVALID; return MZ_TRUE; } #ifndef MINIZ_NO_STDIO mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, const char *pArchive_filename, const char *pDst_filename, mz_uint flags) { int file_index = mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags); if (file_index < 0) return MZ_FALSE; return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags); } #endif // ------------------- .ZIP archive writing #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS static void mz_write_le16(mz_uint8 *p, mz_uint16 v) { p[0] = (mz_uint8)v; p[1] = (mz_uint8)(v >> 8); } static void mz_write_le32(mz_uint8 *p, mz_uint32 v) { p[0] = (mz_uint8)v; p[1] = (mz_uint8)(v >> 8); p[2] = (mz_uint8)(v >> 16); p[3] = (mz_uint8)(v >> 24); } #define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v)) #define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v)) mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) { if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID)) return MZ_FALSE; if (pZip->m_file_offset_alignment) { // Ensure user specified file offset alignment is a power of 2. if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1)) return MZ_FALSE; } if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func; if (!pZip->m_pFree) pZip->m_pFree = def_free_func; if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func; pZip->m_zip_mode = MZ_ZIP_MODE_WRITING; pZip->m_archive_size = existing_size; pZip->m_central_directory_file_ofs = 0; pZip->m_total_files = 0; if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state)))) return MZ_FALSE; memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state)); MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, sizeof(mz_uint8)); MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, sizeof(mz_uint32)); MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, sizeof(mz_uint32)); return MZ_TRUE; } static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n) { mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; mz_zip_internal_state *pState = pZip->m_pState; mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size); #ifdef _MSC_VER if ((!n) || ((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF))) #else if ((!n) || ((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF))) #endif return 0; if (new_size > pState->m_mem_capacity) { void *pNew_block; size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity); while (new_capacity < new_size) new_capacity *= 2; if (NULL == (pNew_block = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity))) return 0; pState->m_pMem = pNew_block; pState->m_mem_capacity = new_capacity; } memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n); pState->m_mem_size = (size_t)new_size; return n; } mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size) { pZip->m_pWrite = mz_zip_heap_write_func; pZip->m_pIO_opaque = pZip; if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE; if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size, size_to_reserve_at_beginning))) { if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, initial_allocation_size))) { mz_zip_writer_end(pZip); return MZ_FALSE; } pZip->m_pState->m_mem_capacity = initial_allocation_size; } return MZ_TRUE; } #ifndef MINIZ_NO_STDIO static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n) { mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile); if (((mz_int64)file_ofs < 0) || (((cur_ofs != (mz_int64)file_ofs)) && (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET)))) return 0; return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile); } mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning) { MZ_FILE *pFile; pZip->m_pWrite = mz_zip_file_write_func; pZip->m_pIO_opaque = pZip; if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE; if (NULL == (pFile = MZ_FOPEN(pFilename, "wb"))) { mz_zip_writer_end(pZip); return MZ_FALSE; } pZip->m_pState->m_pFile = pFile; if (size_to_reserve_at_beginning) { mz_uint64 cur_ofs = 0; char buf[4096]; MZ_CLEAR_OBJ(buf); do { size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning); if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) { mz_zip_writer_end(pZip); return MZ_FALSE; } cur_ofs += n; size_to_reserve_at_beginning -= n; } while (size_to_reserve_at_beginning); } return MZ_TRUE; } #endif // #ifndef MINIZ_NO_STDIO mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, const char *pFilename) { mz_zip_internal_state *pState; if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) return MZ_FALSE; // No sense in trying to write to an archive that's already at the support max size if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) return MZ_FALSE; pState = pZip->m_pState; if (pState->m_pFile) { #ifdef MINIZ_NO_STDIO pFilename; return MZ_FALSE; #else // Archive is being read from stdio - try to reopen as writable. if (pZip->m_pIO_opaque != pZip) return MZ_FALSE; if (!pFilename) return MZ_FALSE; pZip->m_pWrite = mz_zip_file_write_func; if (NULL == (pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile))) { // The mz_zip_archive is now in a bogus state because pState->m_pFile is NULL, so just close it. mz_zip_reader_end(pZip); return MZ_FALSE; } #endif // #ifdef MINIZ_NO_STDIO } else if (pState->m_pMem) { // Archive lives in a memory block. Assume it's from the heap that we can resize using the realloc callback. if (pZip->m_pIO_opaque != pZip) return MZ_FALSE; pState->m_mem_capacity = pState->m_mem_size; pZip->m_pWrite = mz_zip_heap_write_func; } // Archive is being read via a user provided read function - make sure the user has specified a write function too. else if (!pZip->m_pWrite) return MZ_FALSE; // Start writing new files at the archive's current central directory location. pZip->m_archive_size = pZip->m_central_directory_file_ofs; pZip->m_zip_mode = MZ_ZIP_MODE_WRITING; pZip->m_central_directory_file_ofs = 0; return MZ_TRUE; } mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, mz_uint level_and_flags) { return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0, level_and_flags, 0, 0); } typedef struct { mz_zip_archive *m_pZip; mz_uint64 m_cur_archive_file_ofs; mz_uint64 m_comp_size; } mz_zip_writer_add_state; static mz_bool mz_zip_writer_add_put_buf_callback(const void* pBuf, int len, void *pUser) { mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser; if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque, pState->m_cur_archive_file_ofs, pBuf, len) != len) return MZ_FALSE; pState->m_cur_archive_file_ofs += len; pState->m_comp_size += len; return MZ_TRUE; } static mz_bool mz_zip_writer_create_local_dir_header(mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date) { (void)pZip; memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE); MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date); MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32); MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size); MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size); MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size); return MZ_TRUE; } static mz_bool mz_zip_writer_create_central_dir_header(mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs, mz_uint32 ext_attributes) { (void)pZip; memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE); MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date); MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32); MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size); MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size); MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size); MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes); MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs); return MZ_TRUE; } static mz_bool mz_zip_writer_add_to_central_dir(mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size, const void *pExtra, mz_uint16 extra_size, const void *pComment, mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs, mz_uint32 ext_attributes) { mz_zip_internal_state *pState = pZip->m_pState; mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size; size_t orig_central_dir_size = pState->m_central_dir.m_size; mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE]; // No zip64 support yet if ((local_header_ofs > 0xFFFFFFFF) || (((mz_uint64)pState->m_central_dir.m_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size + comment_size) > 0xFFFFFFFF)) return MZ_FALSE; if (!mz_zip_writer_create_central_dir_header(pZip, central_dir_header, filename_size, extra_size, comment_size, uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time, dos_date, local_header_ofs, ext_attributes)) return MZ_FALSE; if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) || (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename, filename_size)) || (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra, extra_size)) || (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment, comment_size)) || (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, ¢ral_dir_ofs, 1))) { // Try to push the central directory array back into its original state. mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, MZ_FALSE); return MZ_FALSE; } return MZ_TRUE; } static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) { // Basic ZIP archive filename validity checks: Valid filenames cannot start with a forward slash, cannot contain a drive letter, and cannot use DOS-style backward slashes. if (*pArchive_name == '/') return MZ_FALSE; while (*pArchive_name) { if ((*pArchive_name == '\\') || (*pArchive_name == ':')) return MZ_FALSE; pArchive_name++; } return MZ_TRUE; } static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment(mz_zip_archive *pZip) { mz_uint32 n; if (!pZip->m_file_offset_alignment) return 0; n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1)); return (pZip->m_file_offset_alignment - n) & (pZip->m_file_offset_alignment - 1); } static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip, mz_uint64 cur_file_ofs, mz_uint32 n) { char buf[4096]; memset(buf, 0, MZ_MIN(sizeof(buf), n)); while (n) { mz_uint32 s = MZ_MIN(sizeof(buf), n); if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s) return MZ_FALSE; cur_file_ofs += s; n -= s; } return MZ_TRUE; } mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, mz_uint64 uncomp_size, mz_uint32 uncomp_crc32) { mz_uint16 method = 0, dos_time = 0, dos_date = 0; mz_uint level, ext_attributes = 0, num_alignment_padding_bytes; mz_uint64 local_dir_header_ofs = pZip->m_archive_size, cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0; size_t archive_name_size; mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE]; tdefl_compressor *pComp = NULL; mz_bool store_data_uncompressed; mz_zip_internal_state *pState; if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; level = level_and_flags & 0xF; store_data_uncompressed = ((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)); if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) || (!pArchive_name) || ((comment_size) && (!pComment)) || (pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION)) return MZ_FALSE; pState = pZip->m_pState; if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size)) return MZ_FALSE; // No zip64 support yet if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF)) return MZ_FALSE; if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; #ifndef MINIZ_NO_TIME { time_t cur_time; time(&cur_time); mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date); } #endif // #ifndef MINIZ_NO_TIME archive_name_size = strlen(pArchive_name); if (archive_name_size > 0xFFFF) return MZ_FALSE; num_alignment_padding_bytes = mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); // no zip64 support yet if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + num_alignment_padding_bytes + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + comment_size + archive_name_size) > 0xFFFFFFFF)) return MZ_FALSE; if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) { // Set DOS Subdirectory attribute bit. ext_attributes |= 0x10; // Subdirectories cannot contain data. if ((buf_size) || (uncomp_size)) return MZ_FALSE; } // Try to do any allocations before writing to the archive, so if an allocation fails the file remains unmodified. (A good idea if we're doing an in-place modification.) if ((!mz_zip_array_ensure_room(pZip, &pState->m_central_dir, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) || (!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1))) return MZ_FALSE; if ((!store_data_uncompressed) && (buf_size)) { if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor)))) return MZ_FALSE; } if (!mz_zip_writer_write_zeros(pZip, cur_archive_file_ofs, num_alignment_padding_bytes + sizeof(local_dir_header))) { pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); return MZ_FALSE; } local_dir_header_ofs += num_alignment_padding_bytes; if (pZip->m_file_offset_alignment) { MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == 0); } cur_archive_file_ofs += num_alignment_padding_bytes + sizeof(local_dir_header); MZ_CLEAR_OBJ(local_dir_header); if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, archive_name_size) != archive_name_size) { pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); return MZ_FALSE; } cur_archive_file_ofs += archive_name_size; if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) { uncomp_crc32 = (mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8*)pBuf, buf_size); uncomp_size = buf_size; if (uncomp_size <= 3) { level = 0; store_data_uncompressed = MZ_TRUE; } } if (store_data_uncompressed) { if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf, buf_size) != buf_size) { pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); return MZ_FALSE; } cur_archive_file_ofs += buf_size; comp_size = buf_size; if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) method = MZ_DEFLATED; } else if (buf_size) { mz_zip_writer_add_state state; state.m_pZip = pZip; state.m_cur_archive_file_ofs = cur_archive_file_ofs; state.m_comp_size = 0; if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, tdefl_create_comp_flags_from_zip_params(level, -15, MZ_DEFAULT_STRATEGY)) != TDEFL_STATUS_OKAY) || (tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) != TDEFL_STATUS_DONE)) { pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); return MZ_FALSE; } comp_size = state.m_comp_size; cur_archive_file_ofs = state.m_cur_archive_file_ofs; method = MZ_DEFLATED; } pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); pComp = NULL; // no zip64 support yet if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF)) return MZ_FALSE; if (!mz_zip_writer_create_local_dir_header(pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date)) return MZ_FALSE; if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, sizeof(local_dir_header)) != sizeof(local_dir_header)) return MZ_FALSE; if (!mz_zip_writer_add_to_central_dir(pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date, local_dir_header_ofs, ext_attributes)) return MZ_FALSE; pZip->m_total_files++; pZip->m_archive_size = cur_archive_file_ofs; return MZ_TRUE; } #ifndef MINIZ_NO_STDIO mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, const char *pSrc_filename, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags) { mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes; mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0; mz_uint64 local_dir_header_ofs = pZip->m_archive_size, cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0, comp_size = 0; size_t archive_name_size; mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE]; MZ_FILE *pSrc_file = NULL; if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; level = level_and_flags & 0xF; if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) || ((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION)) return MZ_FALSE; if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) return MZ_FALSE; if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; archive_name_size = strlen(pArchive_name); if (archive_name_size > 0xFFFF) return MZ_FALSE; num_alignment_padding_bytes = mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); // no zip64 support yet if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + num_alignment_padding_bytes + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + comment_size + archive_name_size) > 0xFFFFFFFF)) return MZ_FALSE; if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date)) return MZ_FALSE; pSrc_file = MZ_FOPEN(pSrc_filename, "rb"); if (!pSrc_file) return MZ_FALSE; MZ_FSEEK64(pSrc_file, 0, SEEK_END); uncomp_size = MZ_FTELL64(pSrc_file); MZ_FSEEK64(pSrc_file, 0, SEEK_SET); if (uncomp_size > 0xFFFFFFFF) { // No zip64 support yet MZ_FCLOSE(pSrc_file); return MZ_FALSE; } if (uncomp_size <= 3) level = 0; if (!mz_zip_writer_write_zeros(pZip, cur_archive_file_ofs, num_alignment_padding_bytes + sizeof(local_dir_header))) { MZ_FCLOSE(pSrc_file); return MZ_FALSE; } local_dir_header_ofs += num_alignment_padding_bytes; if (pZip->m_file_offset_alignment) { MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == 0); } cur_archive_file_ofs += num_alignment_padding_bytes + sizeof(local_dir_header); MZ_CLEAR_OBJ(local_dir_header); if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, archive_name_size) != archive_name_size) { MZ_FCLOSE(pSrc_file); return MZ_FALSE; } cur_archive_file_ofs += archive_name_size; if (uncomp_size) { mz_uint64 uncomp_remaining = uncomp_size; void *pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE); if (!pRead_buf) { MZ_FCLOSE(pSrc_file); return MZ_FALSE; } if (!level) { while (uncomp_remaining) { mz_uint n = (mz_uint)MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining); if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) || (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf, n) != n)) { pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); MZ_FCLOSE(pSrc_file); return MZ_FALSE; } uncomp_crc32 = (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n); uncomp_remaining -= n; cur_archive_file_ofs += n; } comp_size = uncomp_size; } else { mz_bool result = MZ_FALSE; mz_zip_writer_add_state state; tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor)); if (!pComp) { pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); MZ_FCLOSE(pSrc_file); return MZ_FALSE; } state.m_pZip = pZip; state.m_cur_archive_file_ofs = cur_archive_file_ofs; state.m_comp_size = 0; if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, tdefl_create_comp_flags_from_zip_params(level, -15, MZ_DEFAULT_STRATEGY)) != TDEFL_STATUS_OKAY) { pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); MZ_FCLOSE(pSrc_file); return MZ_FALSE; } for ( ; ; ) { size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining, MZ_ZIP_MAX_IO_BUF_SIZE); tdefl_status status; if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size) break; uncomp_crc32 = (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size); uncomp_remaining -= in_buf_size; status = tdefl_compress_buffer(pComp, pRead_buf, in_buf_size, uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH); if (status == TDEFL_STATUS_DONE) { result = MZ_TRUE; break; } else if (status != TDEFL_STATUS_OKAY) break; } pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); if (!result) { pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); MZ_FCLOSE(pSrc_file); return MZ_FALSE; } comp_size = state.m_comp_size; cur_archive_file_ofs = state.m_cur_archive_file_ofs; method = MZ_DEFLATED; } pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); } MZ_FCLOSE(pSrc_file); pSrc_file = NULL; // no zip64 support yet if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF)) return MZ_FALSE; if (!mz_zip_writer_create_local_dir_header(pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date)) return MZ_FALSE; if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, sizeof(local_dir_header)) != sizeof(local_dir_header)) return MZ_FALSE; if (!mz_zip_writer_add_to_central_dir(pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date, local_dir_header_ofs, ext_attributes)) return MZ_FALSE; pZip->m_total_files++; pZip->m_archive_size = cur_archive_file_ofs; return MZ_TRUE; } #endif // #ifndef MINIZ_NO_STDIO mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, mz_zip_archive *pSource_zip, mz_uint file_index) { mz_uint n, bit_flags, num_alignment_padding_bytes; mz_uint64 comp_bytes_remaining, local_dir_header_ofs; mz_uint64 cur_src_file_ofs, cur_dst_file_ofs; mz_uint32 local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / sizeof(mz_uint32)]; mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE]; size_t orig_central_dir_size; mz_zip_internal_state *pState; void *pBuf; const mz_uint8 *pSrc_central_header; if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING)) return MZ_FALSE; if (NULL == (pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index))) return MZ_FALSE; pState = pZip->m_pState; num_alignment_padding_bytes = mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); // no zip64 support yet if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + num_alignment_padding_bytes + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) return MZ_FALSE; cur_src_file_ofs = MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS); cur_dst_file_ofs = pZip->m_archive_size; if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE) return MZ_FALSE; if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) return MZ_FALSE; cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE; if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs, num_alignment_padding_bytes)) return MZ_FALSE; cur_dst_file_ofs += num_alignment_padding_bytes; local_dir_header_ofs = cur_dst_file_ofs; if (pZip->m_file_offset_alignment) { MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == 0); } if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE) return MZ_FALSE; cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE; n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); comp_bytes_remaining = n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); if (NULL == (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)MZ_MAX(sizeof(mz_uint32) * 4, MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining))))) return MZ_FALSE; while (comp_bytes_remaining) { n = (mz_uint)MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining); if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, n) != n) { pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); return MZ_FALSE; } cur_src_file_ofs += n; if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) { pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); return MZ_FALSE; } cur_dst_file_ofs += n; comp_bytes_remaining -= n; } bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS); if (bit_flags & 8) { // Copy data descriptor if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) { pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); return MZ_FALSE; } n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3); if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) { pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); return MZ_FALSE; } cur_src_file_ofs += n; cur_dst_file_ofs += n; } pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); // no zip64 support yet if (cur_dst_file_ofs > 0xFFFFFFFF) return MZ_FALSE; orig_central_dir_size = pState->m_central_dir.m_size; memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE); MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_dir_header_ofs); if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) return MZ_FALSE; n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) + MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS); if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) { mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, MZ_FALSE); return MZ_FALSE; } if (pState->m_central_dir.m_size > 0xFFFFFFFF) return MZ_FALSE; n = (mz_uint32)orig_central_dir_size; if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) { mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, MZ_FALSE); return MZ_FALSE; } pZip->m_total_files++; pZip->m_archive_size = cur_dst_file_ofs; return MZ_TRUE; } mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) { mz_zip_internal_state *pState; mz_uint64 central_dir_ofs, central_dir_size; mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE]; if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING)) return MZ_FALSE; pState = pZip->m_pState; // no zip64 support yet if ((pZip->m_total_files > 0xFFFF) || ((pZip->m_archive_size + pState->m_central_dir.m_size + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) return MZ_FALSE; central_dir_ofs = 0; central_dir_size = 0; if (pZip->m_total_files) { // Write central directory central_dir_ofs = pZip->m_archive_size; central_dir_size = pState->m_central_dir.m_size; pZip->m_central_directory_file_ofs = central_dir_ofs; if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs, pState->m_central_dir.m_p, (size_t)central_dir_size) != central_dir_size) return MZ_FALSE; pZip->m_archive_size += central_dir_size; } // Write end of central directory record MZ_CLEAR_OBJ(hdr); MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG); MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS, pZip->m_total_files); MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files); MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size); MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs); if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr, sizeof(hdr)) != sizeof(hdr)) return MZ_FALSE; #ifndef MINIZ_NO_STDIO if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF)) return MZ_FALSE; #endif // #ifndef MINIZ_NO_STDIO pZip->m_archive_size += sizeof(hdr); pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED; return MZ_TRUE; } mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, size_t *pSize) { if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize)) return MZ_FALSE; if (pZip->m_pWrite != mz_zip_heap_write_func) return MZ_FALSE; if (!mz_zip_writer_finalize_archive(pZip)) return MZ_FALSE; *pBuf = pZip->m_pState->m_pMem; *pSize = pZip->m_pState->m_mem_size; pZip->m_pState->m_pMem = NULL; pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0; return MZ_TRUE; } mz_bool mz_zip_writer_end(mz_zip_archive *pZip) { mz_zip_internal_state *pState; mz_bool status = MZ_TRUE; if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || ((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) && (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED))) return MZ_FALSE; pState = pZip->m_pState; pZip->m_pState = NULL; mz_zip_array_clear(pZip, &pState->m_central_dir); mz_zip_array_clear(pZip, &pState->m_central_dir_offsets); mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets); #ifndef MINIZ_NO_STDIO if (pState->m_pFile) { MZ_FCLOSE(pState->m_pFile); pState->m_pFile = NULL; } #endif // #ifndef MINIZ_NO_STDIO if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) { pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem); pState->m_pMem = NULL; } pZip->m_pFree(pZip->m_pAlloc_opaque, pState); pZip->m_zip_mode = MZ_ZIP_MODE_INVALID; return status; } #ifndef MINIZ_NO_STDIO mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags) { mz_bool status, created_new_archive = MZ_FALSE; mz_zip_archive zip_archive; struct MZ_FILE_STAT_STRUCT file_stat; MZ_CLEAR_OBJ(zip_archive); if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) || ((comment_size) && (!pComment)) || ((level_and_flags & 0xF) > MZ_UBER_COMPRESSION)) return MZ_FALSE; if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) { // Create a new archive. if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0)) return MZ_FALSE; created_new_archive = MZ_TRUE; } else { // Append to an existing archive. if (!mz_zip_reader_init_file(&zip_archive, pZip_filename, level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY)) return MZ_FALSE; if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) { mz_zip_reader_end(&zip_archive); return MZ_FALSE; } } status = mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size, pComment, comment_size, level_and_flags, 0, 0); // Always finalize, even if adding failed for some reason, so we have a valid central directory. (This may not always succeed, but we can try.) if (!mz_zip_writer_finalize_archive(&zip_archive)) status = MZ_FALSE; if (!mz_zip_writer_end(&zip_archive)) status = MZ_FALSE; if ((!status) && (created_new_archive)) { // It's a new archive and something went wrong, so just delete it. int ignoredStatus = MZ_DELETE_FILE(pZip_filename); (void)ignoredStatus; } return status; } void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint flags) { int file_index; mz_zip_archive zip_archive; void *p = NULL; if (pSize) *pSize = 0; if ((!pZip_filename) || (!pArchive_name)) return NULL; MZ_CLEAR_OBJ(zip_archive); if (!mz_zip_reader_init_file(&zip_archive, pZip_filename, flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY)) return NULL; if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL, flags)) >= 0) p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags); mz_zip_reader_end(&zip_archive); return p; } #endif // #ifndef MINIZ_NO_STDIO #endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS #endif // #ifndef MINIZ_NO_ARCHIVE_APIS #ifdef __cplusplus } #endif #endif // MINIZ_HEADER_FILE_ONLY /* This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to */ OpenHMD-0.3.0/src/ext_deps/miniz.h000066400000000000000000000006741351206017700166560ustar00rootroot00000000000000/* Suppress the warnings for this include, since we don't care about them for external dependencies * Requires at least GCC 4.6 or higher */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" #pragma GCC diagnostic ignored "-Wswitch" #pragma GCC diagnostic ignored "-Wimplicit-function-declaration" #pragma GCC diagnostic ignored "-Wmisleading-indentation" #include "../ext_deps/miniz.c" #pragma GCC diagnostic pop OpenHMD-0.3.0/src/ext_deps/nxjson.c000066400000000000000000000240671351206017700170440ustar00rootroot00000000000000/* * nxjson * Copyright 2018 Yaroslav Stavnichiy * SPDX-License-Identifier: MIT * Explicit permission to use this project * under the MIT license has been given by Yaroslav Stavnichiy * on Sun, May 20, 2018 at 1:29 PM (CET). Original license is LGPL v3 */ // this file can be #included in your code #ifndef NXJSON_C #define NXJSON_C #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include "nxjson.h" // redefine NX_JSON_CALLOC & NX_JSON_FREE to use custom allocator #ifndef NX_JSON_CALLOC #define NX_JSON_CALLOC() calloc(1, sizeof(nx_json)) #define NX_JSON_FREE(json) free((void*)(json)) #endif // redefine NX_JSON_REPORT_ERROR to use custom error reporting #ifndef NX_JSON_REPORT_ERROR #define NX_JSON_REPORT_ERROR(msg, p) fprintf(stderr, "NXJSON PARSE ERROR (%d): " msg " at %s\n", __LINE__, p) #endif #define IS_WHITESPACE(c) ((unsigned char)(c)<=(unsigned char)' ') static const nx_json dummy={ NX_JSON_NULL }; static nx_json* create_json(nx_json_type type, const char* key, nx_json* parent) { nx_json* js=NX_JSON_CALLOC(); assert(js); js->type=type; js->key=key; js->parent=parent; if (!parent->last_child) { parent->child=parent->last_child=js; } else { parent->last_child->next=js; parent->last_child=js; } parent->length++; return js; } void nx_json_free(const nx_json* js) { nx_json* p=js->child; nx_json* p1; while (p) { p1=p->next; nx_json_free(p); p=p1; } NX_JSON_FREE(js); } static int unicode_to_utf8(unsigned int codepoint, char* p, char** endp) { // code from http://stackoverflow.com/a/4609989/697313 if (codepoint<0x80) *p++=codepoint; else if (codepoint<0x800) *p++=192+codepoint/64, *p++=128+codepoint%64; else if (codepoint-0xd800u<0x800) return 0; // surrogate must have been treated earlier else if (codepoint<0x10000) *p++=224+codepoint/4096, *p++=128+codepoint/64%64, *p++=128+codepoint%64; else if (codepoint<0x110000) *p++=240+codepoint/262144, *p++=128+codepoint/4096%64, *p++=128+codepoint/64%64, *p++=128+codepoint%64; else return 0; // error *endp=p; return 1; } nx_json_unicode_encoder nx_json_unicode_to_utf8=unicode_to_utf8; static inline int hex_val(char c) { if (c>='0' && c<='9') return c-'0'; if (c>='a' && c<='f') return c-'a'+10; if (c>='A' && c<='F') return c-'A'+10; return -1; } static char* unescape_string(char* s, char** end, nx_json_unicode_encoder encoder) { char* p=s; char* d=s; char c; while ((c=*p++)) { if (c=='"') { *d='\0'; *end=p; return s; } else if (c=='\\') { switch (*p) { case '\\': case '/': case '"': *d++=*p++; break; case 'b': *d++='\b'; p++; break; case 'f': *d++='\f'; p++; break; case 'n': *d++='\n'; p++; break; case 'r': *d++='\r'; p++; break; case 't': *d++='\t'; p++; break; case 'u': // unicode if (!encoder) { // leave untouched *d++=c; break; } char* ps=p-1; int h1, h2, h3, h4; if ((h1=hex_val(p[1]))<0 || (h2=hex_val(p[2]))<0 || (h3=hex_val(p[3]))<0 || (h4=hex_val(p[4]))<0) { NX_JSON_REPORT_ERROR("invalid unicode escape", p-1); return 0; } unsigned int codepoint=h1<<12|h2<<8|h3<<4|h4; if ((codepoint & 0xfc00)==0xd800) { // high surrogate; need one more unicode to succeed p+=6; if (p[-1]!='\\' || *p!='u' || (h1=hex_val(p[1]))<0 || (h2=hex_val(p[2]))<0 || (h3=hex_val(p[3]))<0 || (h4=hex_val(p[4]))<0) { NX_JSON_REPORT_ERROR("invalid unicode surrogate", ps); return 0; } unsigned int codepoint2=h1<<12|h2<<8|h3<<4|h4; if ((codepoint2 & 0xfc00)!=0xdc00) { NX_JSON_REPORT_ERROR("invalid unicode surrogate", ps); return 0; } codepoint=0x10000+((codepoint-0xd800)<<10)+(codepoint2-0xdc00); } if (!encoder(codepoint, d, &d)) { NX_JSON_REPORT_ERROR("invalid codepoint", ps); return 0; } p+=5; break; default: // leave untouched *d++=c; break; } } else { *d++=c; } } NX_JSON_REPORT_ERROR("no closing quote for string", s); return 0; } static char* skip_block_comment(char* p) { // assume p[-2]=='/' && p[-1]=='*' char* ps=p-2; if (!*p) { NX_JSON_REPORT_ERROR("endless comment", ps); return 0; } REPEAT: p=strchr(p+1, '/'); if (!p) { NX_JSON_REPORT_ERROR("endless comment", ps); return 0; } if (p[-1]!='*') goto REPEAT; return p+1; } static char* parse_key(const char** key, char* p, nx_json_unicode_encoder encoder) { // on '}' return with *p=='}' char c; while ((c=*p++)) { if (c=='"') { *key=unescape_string(p, &p, encoder); if (!*key) return 0; // propagate error while (*p && IS_WHITESPACE(*p)) p++; if (*p==':') return p+1; NX_JSON_REPORT_ERROR("unexpected chars", p); return 0; } else if (IS_WHITESPACE(c) || c==',') { // continue } else if (c=='}') { return p-1; } else if (c=='/') { if (*p=='/') { // line comment char* ps=p-1; p=strchr(p+1, '\n'); if (!p) { NX_JSON_REPORT_ERROR("endless comment", ps); return 0; // error } p++; } else if (*p=='*') { // block comment p=skip_block_comment(p+1); if (!p) return 0; } else { NX_JSON_REPORT_ERROR("unexpected chars", p-1); return 0; // error } } else { NX_JSON_REPORT_ERROR("unexpected chars", p-1); return 0; // error } } NX_JSON_REPORT_ERROR("unexpected chars", p-1); return 0; // error } static char* parse_value(nx_json* parent, const char* key, char* p, nx_json_unicode_encoder encoder) { nx_json* js; while (1) { switch (*p) { case '\0': NX_JSON_REPORT_ERROR("unexpected end of text", p); return 0; // error case ' ': case '\t': case '\n': case '\r': case ',': // skip p++; break; case '{': js=create_json(NX_JSON_OBJECT, key, parent); p++; while (1) { const char* new_key; p=parse_key(&new_key, p, encoder); if (!p) return 0; // error if (*p=='}') return p+1; // end of object p=parse_value(js, new_key, p, encoder); if (!p) return 0; // error } case '[': js=create_json(NX_JSON_ARRAY, key, parent); p++; while (1) { p=parse_value(js, 0, p, encoder); if (!p) return 0; // error if (*p==']') return p+1; // end of array } case ']': return p; case '"': p++; js=create_json(NX_JSON_STRING, key, parent); js->text_value=unescape_string(p, &p, encoder); if (!js->text_value) return 0; // propagate error return p; case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { js=create_json(NX_JSON_INTEGER, key, parent); char* pe; js->int_value=strtoll(p, &pe, 0); if (pe==p || errno==ERANGE) { NX_JSON_REPORT_ERROR("invalid number", p); return 0; // error } if (*pe=='.' || *pe=='e' || *pe=='E') { // double value js->type=NX_JSON_DOUBLE; js->dbl_value=strtod(p, &pe); if (pe==p || errno==ERANGE) { NX_JSON_REPORT_ERROR("invalid number", p); return 0; // error } } else { js->dbl_value=js->int_value; } return pe; } case 't': if (!strncmp(p, "true", 4)) { js=create_json(NX_JSON_BOOL, key, parent); js->int_value=1; return p+4; } NX_JSON_REPORT_ERROR("unexpected chars", p); return 0; // error case 'f': if (!strncmp(p, "false", 5)) { js=create_json(NX_JSON_BOOL, key, parent); js->int_value=0; return p+5; } NX_JSON_REPORT_ERROR("unexpected chars", p); return 0; // error case 'n': if (!strncmp(p, "null", 4)) { create_json(NX_JSON_NULL, key, parent); return p+4; } NX_JSON_REPORT_ERROR("unexpected chars", p); return 0; // error case '/': // comment if (p[1]=='/') { // line comment char* ps=p; p=strchr(p+2, '\n'); if (!p) { NX_JSON_REPORT_ERROR("endless comment", ps); return 0; // error } p++; } else if (p[1]=='*') { // block comment p=skip_block_comment(p+2); if (!p) return 0; } else { NX_JSON_REPORT_ERROR("unexpected chars", p); return 0; // error } break; default: NX_JSON_REPORT_ERROR("unexpected chars", p); return 0; // error } } } const nx_json* nx_json_parse_utf8(char* text) { return nx_json_parse(text, unicode_to_utf8); } const nx_json* nx_json_parse(char* text, nx_json_unicode_encoder encoder) { nx_json js={0}; if (!parse_value(&js, 0, text, encoder)) { if (js.child) nx_json_free(js.child); return 0; } return js.child; } const nx_json* nx_json_get(const nx_json* json, const char* key) { if (!json || !key) return &dummy; // never return null nx_json* js; for (js=json->child; js; js=js->next) { if (js->key && !strcmp(js->key, key)) return js; } return &dummy; // never return null } const nx_json* nx_json_item(const nx_json* json, int idx) { if (!json) return &dummy; // never return null nx_json* js; for (js=json->child; js; js=js->next) { if (!idx--) return js; } return &dummy; // never return null } #ifdef __cplusplus } #endif #endif /* NXJSON_C */ OpenHMD-0.3.0/src/ext_deps/nxjson.h000066400000000000000000000040201351206017700170340ustar00rootroot00000000000000/* * nxjson * Copyright 2018 Yaroslav Stavnichiy * SPDX-License-Identifier: MIT * Explicit permission to use this project * under the MIT license has been given by Yaroslav Stavnichiy * on Sun, May 20, 2018 at 1:29 PM (CET). Original license is LGPL v3 */ #ifndef NXJSON_H #define NXJSON_H #ifdef __cplusplus extern "C" { #endif typedef enum nx_json_type { NX_JSON_NULL, // this is null value NX_JSON_OBJECT, // this is an object; properties can be found in child nodes NX_JSON_ARRAY, // this is an array; items can be found in child nodes NX_JSON_STRING, // this is a string; value can be found in text_value field NX_JSON_INTEGER, // this is an integer; value can be found in int_value field NX_JSON_DOUBLE, // this is a double; value can be found in dbl_value field NX_JSON_BOOL // this is a boolean; value can be found in int_value field } nx_json_type; typedef struct nx_json { nx_json_type type; // type of json node, see above const char* key; // key of the property; for object's children only const char* text_value; // text value of STRING node long long int_value; // the value of INTEGER or BOOL node double dbl_value; // the value of DOUBLE node int length; // number of children of OBJECT or ARRAY struct nx_json* child; // points to first child struct nx_json* next; // points to next child struct nx_json* last_child; struct nx_json* parent; // parent of the object } nx_json; typedef int (*nx_json_unicode_encoder)(unsigned int codepoint, char* p, char** endp); extern nx_json_unicode_encoder nx_json_unicode_to_utf8; const nx_json* nx_json_parse(char* text, nx_json_unicode_encoder encoder); const nx_json* nx_json_parse_utf8(char* text); void nx_json_free(const nx_json* js); const nx_json* nx_json_get(const nx_json* json, const char* key); // get object's property by key const nx_json* nx_json_item(const nx_json* json, int idx); // get array element by index #ifdef __cplusplus } #endif #endif /* NXJSON_H */ OpenHMD-0.3.0/src/fusion.c000066400000000000000000000066621351206017700152160ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Sensor Fusion Implementation */ #include #include "openhmdi.h" void ofusion_init(fusion* me) { memset(me, 0, sizeof(fusion)); me->orient.w = 1.0f; ofq_init(&me->mag_fq, 20); ofq_init(&me->accel_fq, 20); ofq_init(&me->ang_vel_fq, 20); me->flags = FF_USE_GRAVITY; me->grav_gain = 0.05f; } void ofusion_update(fusion* me, float dt, const vec3f* ang_vel, const vec3f* accel, const vec3f* mag) { me->ang_vel = *ang_vel; me->accel = *accel; me->raw_mag = *mag; me->mag = *mag; vec3f world_accel; oquatf_get_rotated(&me->orient, accel, &world_accel); me->iterations += 1; me->time += dt; ofq_add(&me->mag_fq, mag); ofq_add(&me->accel_fq, &world_accel); ofq_add(&me->ang_vel_fq, ang_vel); float ang_vel_length = ovec3f_get_length(ang_vel); if(ang_vel_length > 0.0001f){ vec3f rot_axis = {{ ang_vel->x / ang_vel_length, ang_vel->y / ang_vel_length, ang_vel->z / ang_vel_length }}; float rot_angle = ang_vel_length * dt; quatf delta_orient; oquatf_init_axis(&delta_orient, &rot_axis, rot_angle); oquatf_mult_me(&me->orient, &delta_orient); } // gravity correction if(me->flags & FF_USE_GRAVITY){ const float gravity_tolerance = .4f, ang_vel_tolerance = .1f; const float min_tilt_error = 0.05f, max_tilt_error = 0.01f; // if the device is within tolerance levels, count this as the device is level and add to the counter // otherwise reset the counter and start over me->device_level_count = fabsf(ovec3f_get_length(accel) - 9.82f) < gravity_tolerance * 2.0f && ang_vel_length < ang_vel_tolerance ? me->device_level_count + 1 : 0; // device has been level for long enough, grab mean from the accelerometer filter queue (last n values) // and use for correction if(me->device_level_count > 50){ me->device_level_count = 0; vec3f accel_mean; ofq_get_mean(&me->accel_fq, &accel_mean); if (ovec3f_get_length(&accel_mean) - 9.82f < gravity_tolerance) { // Calculate a cross product between what the device // thinks is up and what gravity indicates is down. // The values are optimized of what we would get out // from the cross product. vec3f tilt = {{accel_mean.z, 0, -accel_mean.x}}; ovec3f_normalize_me(&tilt); ovec3f_normalize_me(&accel_mean); vec3f up = {{0, 1.0f, 0}}; float tilt_angle = ovec3f_get_angle(&up, &accel_mean); if(tilt_angle > max_tilt_error){ me->grav_error_angle = tilt_angle; me->grav_error_axis = tilt; } } } // perform gravity tilt correction if(me->grav_error_angle > min_tilt_error){ float use_angle; // if less than 2000 iterations have passed, set the up axis to the correction value outright if(me->iterations < 2000){ use_angle = -me->grav_error_angle; me->grav_error_angle = 0; } // otherwise try to correct else { use_angle = -me->grav_gain * me->grav_error_angle * 0.005f * (5.0f * ang_vel_length + 1.0f); me->grav_error_angle += use_angle; } // perform the correction quatf corr_quat, old_orient; oquatf_init_axis(&corr_quat, &me->grav_error_axis, use_angle); old_orient = me->orient; oquatf_mult(&corr_quat, &old_orient, &me->orient); } } // mitigate drift due to floating point // inprecision with quat multiplication. oquatf_normalize_me(&me->orient); } OpenHMD-0.3.0/src/fusion.h000066400000000000000000000017051351206017700152140ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Sensor Fusion */ #ifndef FUSION_H #define FUSION_H #include "omath.h" #define FF_USE_GRAVITY 1 typedef struct { int state; quatf orient; // orientation vec3f accel; // acceleration vec3f ang_vel; // angular velocity vec3f mag; // magnetometer vec3f raw_mag; // raw magnetometer values int iterations; float time; int flags; // filter queues for magnetometer, accelerometers and angular velocity filter_queue mag_fq, accel_fq, ang_vel_fq; // gravity correction int device_level_count; float grav_error_angle; vec3f grav_error_axis; float grav_gain; // amount of correction } fusion; void ofusion_init(fusion* me); void ofusion_update(fusion* me, float dt, const vec3f* ang_vel, const vec3f* accel, const vec3f* mag_field); #endif OpenHMD-0.3.0/src/hid.h000066400000000000000000000007701351206017700144560ustar00rootroot00000000000000// Copyright 2018, Philipp Zabel. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Hid helper. */ static inline char* _hid_to_unix_path(char* path) { char bus [5]; char dev [5]; char *result = malloc( sizeof(char) * ( 20 + 1 ) ); sprintf (bus, "%.*s", 4, path); sprintf (dev, "%.*s", 4, path + 5); sprintf (result, "/dev/bus/usb/%03d/%03d", (int)strtol(bus, NULL, 16), (int)strtol(dev, NULL, 16)); return result; } OpenHMD-0.3.0/src/log.h000066400000000000000000000021151351206017700144660ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Logging and Error Handling */ #ifndef LOG_H #define LOG_H void* ohmd_allocfn(ohmd_context* ctx, const char* e_msg, size_t size); #define ohmd_alloc(_ctx, _size) ohmd_allocfn(_ctx, "could not allocate " #_size " bytes of RAM @ " __FILE__ ":" OHMD_STRINGIFY(__LINE__), _size) #ifndef LOGLEVEL #define LOGLEVEL 2 #endif #define LOG(_level, _levelstr, ...) do{ if(_level >= LOGLEVEL){ printf("[%s] ", (_levelstr)); printf(__VA_ARGS__); puts(""); } } while(0) #if LOGLEVEL == 0 #define LOGD(...) LOG(0, "DD", __VA_ARGS__) #else #define LOGD(...) #endif #define LOGV(...) LOG(1, "VV", __VA_ARGS__) #define LOGI(...) LOG(2, "II", __VA_ARGS__) #define LOGW(...) LOG(3, "WW", __VA_ARGS__) #define LOGE(...) LOG(4, "EE", __VA_ARGS__) #ifdef _MSC_VER #define snprintf _snprintf #endif #define ohmd_set_error(_ctx, ...) { snprintf((_ctx)->error_msg, OHMD_STR_SIZE, __VA_ARGS__); LOGE(__VA_ARGS__); } #endif OpenHMD-0.3.0/src/omath.c000066400000000000000000000227671351206017700150270ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Math Code Implementation */ #include #include "openhmdi.h" // vector float ovec3f_get_length(const vec3f* me) { return sqrtf(POW2(me->x) + POW2(me->y) + POW2(me->z)); } void ovec3f_normalize_me(vec3f* me) { if(me->x == 0 && me->y == 0 && me->z == 0) return; float len = ovec3f_get_length(me); me->x /= len; me->y /= len; me->z /= len; } void ovec3f_subtract(const vec3f* a, const vec3f* b, vec3f* out) { for(int i = 0; i < 3; i++) out->arr[i] = a->arr[i] - b->arr[i]; } float ovec3f_get_dot(const vec3f* me, const vec3f* vec) { return me->x * vec->x + me->y * vec->y + me->z * vec->z; } float ovec3f_get_angle(const vec3f* me, const vec3f* vec) { float dot = ovec3f_get_dot(me, vec); float lengths = ovec3f_get_length(me) * ovec3f_get_length(vec); if(lengths == 0) return 0; return acosf(dot / lengths); } // quaternion void oquatf_init_axis(quatf* me, const vec3f* vec, float angle) { vec3f norm = *vec; ovec3f_normalize_me(&norm); me->x = norm.x * sinf(angle / 2.0f); me->y = norm.y * sinf(angle / 2.0f); me->z = norm.z * sinf(angle / 2.0f); me->w = cosf(angle / 2.0f); } void oquatf_get_rotated(const quatf* me, const vec3f* vec, vec3f* out_vec) { quatf q = {{vec->x * me->w + vec->z * me->y - vec->y * me->z, vec->y * me->w + vec->x * me->z - vec->z * me->x, vec->z * me->w + vec->y * me->x - vec->x * me->y, vec->x * me->x + vec->y * me->y + vec->z * me->z}}; out_vec->x = me->w * q.x + me->x * q.w + me->y * q.z - me->z * q.y; out_vec->y = me->w * q.y + me->y * q.w + me->z * q.x - me->x * q.z; out_vec->z = me->w * q.z + me->z * q.w + me->x * q.y - me->y * q.x; } void oquatf_mult(const quatf* me, const quatf* q, quatf* out_q) { out_q->x = me->w * q->x + me->x * q->w + me->y * q->z - me->z * q->y; out_q->y = me->w * q->y - me->x * q->z + me->y * q->w + me->z * q->x; out_q->z = me->w * q->z + me->x * q->y - me->y * q->x + me->z * q->w; out_q->w = me->w * q->w - me->x * q->x - me->y * q->y - me->z * q->z; } void oquatf_mult_me(quatf* me, const quatf* q) { quatf tmp = *me; oquatf_mult(&tmp, q, me); } void oquatf_normalize_me(quatf* me) { float len = oquatf_get_length(me); me->x /= len; me->y /= len; me->z /= len; me->w /= len; } float oquatf_get_length(const quatf* me) { return sqrtf(me->x * me->x + me->y * me->y + me->z * me->z + me->w * me->w); } float oquatf_get_dot(const quatf* me, const quatf* q) { return me->x * q->x + me->y * q->y + me->z * q->z + me->w * q->w; } void oquatf_inverse(quatf* me) { float dot = oquatf_get_dot(me, me); // conjugate for(int i = 0; i < 3; i++) me->arr[i] = -me->arr[i]; for(int i = 0; i < 4; i++) me->arr[i] /= dot; } void oquatf_diff(const quatf* me, const quatf* q, quatf* out_q) { quatf inv = *me; oquatf_inverse(&inv); oquatf_mult(&inv, q, out_q); } void oquatf_slerp (float fT, const quatf* rkP, const quatf* rkQ, bool shortestPath, quatf* out_q) { float fCos = oquatf_get_dot(rkP, rkQ); quatf rkT; // Do we need to invert rotation? if (fCos < 0.0f && shortestPath) { fCos = -fCos; rkT = *rkQ; oquatf_inverse(&rkT); } else { rkT = *rkQ; } if (fabsf(fCos) < 1 - 0.001f) { // Standard case (slerp) float fSin = sqrtf(1 - (fCos*fCos)); float fAngle = atan2f(fSin, fCos); float fInvSin = 1.0f / fSin; float fCoeff0 = sin((1.0f - fT) * fAngle) * fInvSin; float fCoeff1 = sin(fT * fAngle) * fInvSin; out_q->x = fCoeff0 * rkP->x + fCoeff1 * rkT.x; out_q->y = fCoeff0 * rkP->y + fCoeff1 * rkT.y; out_q->z = fCoeff0 * rkP->z + fCoeff1 * rkT.z; out_q->w = fCoeff0 * rkP->w + fCoeff1 * rkT.w; //return fCoeff0 * rkP + fCoeff1 * rkT; } else { // There are two situations: // 1. "rkP" and "rkQ" are very close (fCos ~= +1), so we can do a linear // interpolation safely. // 2. "rkP" and "rkQ" are almost inverse of each other (fCos ~= -1), there // are an infinite number of possibilities interpolation. but we haven't // have method to fix this case, so just use linear interpolation here. //Quaternion t = (1.0f - fT) * rkP + fT * rkT; out_q->x = (1.0f - fT) * rkP->x + fT * rkT.x; out_q->y = (1.0f - fT) * rkP->y + fT * rkT.y; out_q->z = (1.0f - fT) * rkP->z + fT * rkT.z; out_q->w = (1.0f - fT) * rkP->w + fT * rkT.w; oquatf_normalize_me(out_q); // taking the complement requires renormalisation //t.normalise(); //return t; } } void oquatf_get_mat4x4(const quatf* me, const vec3f* point, float mat[4][4]) { mat[0][0] = 1 - 2 * me->y * me->y - 2 * me->z * me->z; mat[0][1] = 2 * me->x * me->y - 2 * me->w * me->z; mat[0][2] = 2 * me->x * me->z + 2 * me->w * me->y; mat[0][3] = point->x; mat[1][0] = 2 * me->x * me->y + 2 * me->w * me->z; mat[1][1] = 1 - 2 * me->x * me->x - 2 * me->z * me->z; mat[1][2] = 2 * me->y * me->z - 2 * me->w * me->x; mat[1][3] = point->y; mat[2][0] = 2 * me->x * me->z - 2 * me->w * me->y; mat[2][1] = 2 * me->y * me->z + 2 * me->w * me->x; mat[2][2] = 1 - 2 * me->x * me->x - 2 * me->y * me->y; mat[2][3] = point->z; mat[3][0] = 0; mat[3][1] = 0; mat[3][2] = 0; mat[3][3] = 1; } // matrix void omat4x4f_init_ident(mat4x4f* me) { memset(me, 0, sizeof(*me)); me->m[0][0] = 1.0f; me->m[1][1] = 1.0f; me->m[2][2] = 1.0f; me->m[3][3] = 1.0f; } void omat4x4f_init_perspective(mat4x4f* me, float fovy_rad, float aspect, float znear, float zfar) { float sine, cotangent, delta, half_fov; half_fov = fovy_rad / 2.0f; delta = zfar - znear; sine = sinf(half_fov); if ((delta == 0.0f) || (sine == 0.0f) || (aspect == 0.0f)) { omat4x4f_init_ident(me); return; } cotangent = cosf(half_fov) / sine; me->m[0][0] = cotangent / aspect; me->m[0][1] = 0; me->m[0][2] = 0; me->m[0][3] = 0; me->m[1][0] = 0; me->m[1][1] = cotangent; me->m[1][2] = 0; me->m[1][3] = 0; me->m[2][0] = 0; me->m[2][1] = 0; me->m[2][2] = -(zfar + znear) / delta; me->m[2][3] = -2.0f * znear * zfar / delta; me->m[3][0] = 0; me->m[3][1] = 0; me->m[3][2] = -1.0f; me->m[3][3] = 0; } void omat4x4f_init_frustum(mat4x4f* me, float left, float right, float bottom, float top, float znear, float zfar) { omat4x4f_init_ident(me); float delta_x = right - left; float delta_y = top - bottom; float delta_z = zfar - znear; if ((delta_x == 0.0f) || (delta_y == 0.0f) || (delta_z == 0.0f)) { /* can't divide by zero, so just give back identity */ return; } me->m[0][0] = 2.0f * znear / delta_x; me->m[0][1] = 0; me->m[0][2] = (right + left) / delta_x; me->m[0][3] = 0; me->m[1][0] = 0; me->m[1][1] = 2.0f * znear / delta_y; me->m[1][2] = (top + bottom) / delta_y; me->m[1][3] = 0; me->m[2][0] = 0; me->m[2][1] = 0; me->m[2][2] = -(zfar + znear) / delta_z; me->m[2][3] = -2.0f * zfar * znear / delta_z; me->m[3][0] = 0; me->m[3][1] = 0; me->m[3][2] = -1.0f; me->m[3][3] = 0; } void omat4x4f_init_look_at(mat4x4f* me, const quatf* rot, const vec3f* eye) { quatf q; vec3f p; q.x = -rot->x; q.y = -rot->y; q.z = -rot->z; q.w = rot->w; p.x = -eye->x; p.y = -eye->y; p.z = -eye->z; me->m[0][0] = 1 - 2 * q.y * q.y - 2 * q.z * q.z; me->m[0][1] = 2 * q.x * q.y - 2 * q.w * q.z; me->m[0][2] = 2 * q.x * q.z + 2 * q.w * q.y; me->m[0][3] = p.x * me->m[0][0] + p.y * me->m[0][1] + p.z * me->m[0][2]; me->m[1][0] = 2 * q.x * q.y + 2 * q.w * q.z; me->m[1][1] = 1 - 2 * q.x * q.x - 2 * q.z * q.z; me->m[1][2] = 2 * q.y * q.z - 2 * q.w * q.x; me->m[1][3] = p.x * me->m[1][0] + p.y * me->m[1][1] + p.z * me->m[1][2]; me->m[2][0] = 2 * q.x * q.z - 2 * q.w * q.y; me->m[2][1] = 2 * q.y * q.z + 2 * q.w * q.x; me->m[2][2] = 1 - 2 * q.x * q.x - 2 * q.y * q.y; me->m[2][3] = p.x * me->m[2][0] + p.y * me->m[2][1] + p.z * me->m[2][2]; me->m[3][0] = 0; me->m[3][1] = 0; me->m[3][2] = 0; me->m[3][3] = 1; } void omat4x4f_init_translate(mat4x4f* me, float x, float y, float z) { omat4x4f_init_ident(me); me->m[0][3] = x; me->m[1][3] = y; me->m[2][3] = z; } void omat4x4f_transpose(const mat4x4f* m, mat4x4f* o) { o->m[0][0] = m->m[0][0]; o->m[1][0] = m->m[0][1]; o->m[2][0] = m->m[0][2]; o->m[3][0] = m->m[0][3]; o->m[0][1] = m->m[1][0]; o->m[1][1] = m->m[1][1]; o->m[2][1] = m->m[1][2]; o->m[3][1] = m->m[1][3]; o->m[0][2] = m->m[2][0]; o->m[1][2] = m->m[2][1]; o->m[2][2] = m->m[2][2]; o->m[3][2] = m->m[2][3]; o->m[0][3] = m->m[3][0]; o->m[1][3] = m->m[3][1]; o->m[2][3] = m->m[3][2]; o->m[3][3] = m->m[3][3]; } void omat4x4f_mult(const mat4x4f* l, const mat4x4f* r, mat4x4f *o) { for(int i = 0; i < 4; i++){ float a0 = l->m[i][0], a1 = l->m[i][1], a2 = l->m[i][2], a3 = l->m[i][3]; o->m[i][0] = a0 * r->m[0][0] + a1 * r->m[1][0] + a2 * r->m[2][0] + a3 * r->m[3][0]; o->m[i][1] = a0 * r->m[0][1] + a1 * r->m[1][1] + a2 * r->m[2][1] + a3 * r->m[3][1]; o->m[i][2] = a0 * r->m[0][2] + a1 * r->m[1][2] + a2 * r->m[2][2] + a3 * r->m[3][2]; o->m[i][3] = a0 * r->m[0][3] + a1 * r->m[1][3] + a2 * r->m[2][3] + a3 * r->m[3][3]; } } // filter queue void ofq_init(filter_queue* me, int size) { memset(me, 0, sizeof(filter_queue)); me->size = size; } void ofq_add(filter_queue* me, const vec3f* vec) { me->elems[me->at] = *vec; me->at = ((me->at + 1) % me->size); } void ofq_get_mean(const filter_queue* me, vec3f* vec) { vec->x = vec->y = vec->z = 0; for(int i = 0; i < me->size; i++){ vec->x += me->elems[i].x; vec->y += me->elems[i].y; vec->z += me->elems[i].z; } vec->x /= (float)me->size; vec->y /= (float)me->size; vec->z /= (float)me->size; } OpenHMD-0.3.0/src/omath.h000066400000000000000000000045331351206017700150230ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Math */ #ifndef OMATH_H #define OMATH_H #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #define POW2(_x) ((_x) * (_x)) #define RAD_TO_DEG(_r) ((_r) * 360.0f / (2.0f * (float)M_PI)) #define DEG_TO_RAD(_d) ((_d) * (2.0f * (float)M_PI) / 360.0f) // vector typedef union { struct { float x, y, z; }; float arr[3]; } vec3f; void ovec3f_normalize_me(vec3f* me); float ovec3f_get_length(const vec3f* me); float ovec3f_get_angle(const vec3f* me, const vec3f* vec); float ovec3f_get_dot(const vec3f* me, const vec3f* vec); void ovec3f_subtract(const vec3f* a, const vec3f* b, vec3f* out); // quaternion typedef union { struct { float x, y, z, w; }; float arr[4]; } quatf; void oquatf_init_axis(quatf* me, const vec3f* vec, float angle); void oquatf_get_rotated(const quatf* me, const vec3f* vec, vec3f* out_vec); void oquatf_mult_me(quatf* me, const quatf* q); void oquatf_mult(const quatf* me, const quatf* q, quatf* out_q); void oquatf_diff(const quatf* me, const quatf* q, quatf* out_q); void oquatf_normalize_me(quatf* me); float oquatf_get_length(const quatf* me); float oquatf_get_dot(const quatf* me, const quatf* q); void oquatf_inverse(quatf* me); void oquatf_get_mat4x4(const quatf* me, const vec3f* point, float mat[4][4]); // matrix typedef union { float m[4][4]; float arr[16]; } mat4x4f; void omat4x4f_init_ident(mat4x4f* me); void omat4x4f_init_perspective(mat4x4f* me, float fov_rad, float aspect, float znear, float zfar); void omat4x4f_init_frustum(mat4x4f* me, float left, float right, float bottom, float top, float znear, float zfar); void omat4x4f_init_look_at(mat4x4f* me, const quatf* ret, const vec3f* eye); void omat4x4f_init_translate(mat4x4f* me, float x, float y, float z); void omat4x4f_mult(const mat4x4f* left, const mat4x4f* right, mat4x4f* out_mat); void omat4x4f_transpose(const mat4x4f* me, mat4x4f* out_mat); // filter queue #define FILTER_QUEUE_MAX_SIZE 256 typedef struct { int at, size; vec3f elems[FILTER_QUEUE_MAX_SIZE]; } filter_queue; void ofq_init(filter_queue* me, int size); void ofq_add(filter_queue* me, const vec3f* vec); void ofq_get_mean(const filter_queue* me, vec3f* vec); #endif OpenHMD-0.3.0/src/openhmd.c000066400000000000000000000414001351206017700153320ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Main Lib Implementation */ #include "openhmdi.h" #include "shaders.h" #include #include #include // Running automatic updates at 1000 Hz #define AUTOMATIC_UPDATE_SLEEP (1.0 / 1000.0) OHMD_APIENTRYDLL ohmd_context* OHMD_APIENTRY ohmd_ctx_create(void) { ohmd_context* ctx = calloc(1, sizeof(ohmd_context)); if(!ctx){ LOGE("could not allocate RAM for context"); return NULL; } ohmd_monotonic_init(ctx); #if DRIVER_OCULUS_RIFT ctx->drivers[ctx->num_drivers++] = ohmd_create_oculus_rift_drv(ctx); #endif #if DRIVER_DEEPOON ctx->drivers[ctx->num_drivers++] = ohmd_create_deepoon_drv(ctx); #endif #if DRIVER_HTC_VIVE ctx->drivers[ctx->num_drivers++] = ohmd_create_htc_vive_drv(ctx); #endif #if DRIVER_WMR ctx->drivers[ctx->num_drivers++] = ohmd_create_wmr_drv(ctx); #endif #if DRIVER_PSVR ctx->drivers[ctx->num_drivers++] = ohmd_create_psvr_drv(ctx); #endif #if DRIVER_NOLO ctx->drivers[ctx->num_drivers++] = ohmd_create_nolo_drv(ctx); #endif #if DRIVER_XGVR ctx->drivers[ctx->num_drivers++] = ohmd_create_xgvr_drv(ctx); #endif #if DRIVER_ANDROID ctx->drivers[ctx->num_drivers++] = ohmd_create_android_drv(ctx); #endif #if DRIVER_EXTERNAL ctx->drivers[ctx->num_drivers++] = ohmd_create_external_drv(ctx); #endif // add dummy driver last to make it the lowest priority ctx->drivers[ctx->num_drivers++] = ohmd_create_dummy_drv(ctx); ctx->update_request_quit = false; return ctx; } OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_ctx_destroy(ohmd_context* ctx) { ctx->update_request_quit = true; for(int i = 0; i < ctx->num_active_devices; i++){ ctx->active_devices[i]->close(ctx->active_devices[i]); } for(int i = 0; i < ctx->num_drivers; i++){ ctx->drivers[i]->destroy(ctx->drivers[i]); } if(ctx->update_thread){ ohmd_destroy_thread(ctx->update_thread); ohmd_destroy_mutex(ctx->update_mutex); } free(ctx); } OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_ctx_update(ohmd_context* ctx) { for(int i = 0; i < ctx->num_active_devices; i++){ ohmd_device* dev = ctx->active_devices[i]; if(!dev->settings.automatic_update && dev->update) dev->update(dev); ohmd_lock_mutex(ctx->update_mutex); dev->getf(dev, OHMD_POSITION_VECTOR, (float*)&dev->position); dev->getf(dev, OHMD_ROTATION_QUAT, (float*)&dev->rotation); ohmd_unlock_mutex(ctx->update_mutex); } } OHMD_APIENTRYDLL const char* OHMD_APIENTRY ohmd_ctx_get_error(ohmd_context* ctx) { return ctx->error_msg; } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_ctx_probe(ohmd_context* ctx) { memset(&ctx->list, 0, sizeof(ohmd_device_list)); for(int i = 0; i < ctx->num_drivers; i++){ ctx->drivers[i]->get_device_list(ctx->drivers[i], &ctx->list); } return ctx->list.num_devices; } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_gets(ohmd_string_description type, const char ** out) { switch(type){ case OHMD_GLSL_DISTORTION_VERT_SRC: *out = distortion_vert; return OHMD_S_OK; case OHMD_GLSL_DISTORTION_FRAG_SRC: *out = distortion_frag; return OHMD_S_OK; case OHMD_GLSL_330_DISTORTION_VERT_SRC: *out = distortion_vert_330; return OHMD_S_OK; case OHMD_GLSL_330_DISTORTION_FRAG_SRC: *out = distortion_frag_330; return OHMD_S_OK; case OHMD_GLSL_ES_DISTORTION_VERT_SRC: *out = distortion_vert_es; return OHMD_S_OK; case OHMD_GLSL_ES_DISTORTION_FRAG_SRC: *out = distortion_frag_es; return OHMD_S_OK; default: return OHMD_S_UNSUPPORTED; } } OHMD_APIENTRYDLL const char* OHMD_APIENTRY ohmd_list_gets(ohmd_context* ctx, int index, ohmd_string_value type) { if(index >= ctx->list.num_devices) return NULL; switch(type){ case OHMD_VENDOR: return ctx->list.devices[index].vendor; case OHMD_PRODUCT: return ctx->list.devices[index].product; case OHMD_PATH: return ctx->list.devices[index].path; default: return NULL; } } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_list_geti(ohmd_context* ctx, int index, ohmd_int_value type, int* out) { if(index >= ctx->list.num_devices) return OHMD_S_INVALID_PARAMETER; switch(type){ case OHMD_DEVICE_CLASS: *out = ctx->list.devices[index].device_class; return OHMD_S_OK; case OHMD_DEVICE_FLAGS: *out = ctx->list.devices[index].device_flags; return OHMD_S_OK; default: return OHMD_S_INVALID_PARAMETER; } } static unsigned int ohmd_update_thread(void* arg) { ohmd_context* ctx = (ohmd_context*)arg; while(!ctx->update_request_quit) { ohmd_lock_mutex(ctx->update_mutex); for(int i = 0; i < ctx->num_active_devices; i++){ if(ctx->active_devices[i]->settings.automatic_update && ctx->active_devices[i]->update) ctx->active_devices[i]->update(ctx->active_devices[i]); } ohmd_unlock_mutex(ctx->update_mutex); ohmd_sleep(AUTOMATIC_UPDATE_SLEEP); } return 0; } static void ohmd_set_up_update_thread(ohmd_context* ctx) { if(!ctx->update_thread){ ctx->update_mutex = ohmd_create_mutex(ctx); ctx->update_thread = ohmd_create_thread(ctx, ohmd_update_thread, ctx); } } OHMD_APIENTRYDLL ohmd_device* OHMD_APIENTRY ohmd_list_open_device_s(ohmd_context* ctx, int index, ohmd_device_settings* settings) { ohmd_lock_mutex(ctx->update_mutex); if(index >= 0 && index < ctx->list.num_devices){ ohmd_device_desc* desc = &ctx->list.devices[index]; ohmd_driver* driver = (ohmd_driver*)desc->driver_ptr; ohmd_device* device = driver->open_device(driver, desc); if (device == NULL) { ohmd_set_error(ctx, "Could not open device with index: %d, check device permissions?", index); ohmd_unlock_mutex(ctx->update_mutex); return NULL; } device->rotation_correction.w = 1; device->settings = *settings; device->ctx = ctx; device->active_device_idx = ctx->num_active_devices; ctx->active_devices[ctx->num_active_devices++] = device; ohmd_unlock_mutex(ctx->update_mutex); if(device->settings.automatic_update) ohmd_set_up_update_thread(ctx); return device; } ohmd_unlock_mutex(ctx->update_mutex); ohmd_set_error(ctx, "no device with index: %d", index); return NULL; } OHMD_APIENTRYDLL ohmd_device* OHMD_APIENTRY ohmd_list_open_device(ohmd_context* ctx, int index) { ohmd_device_settings settings; settings.automatic_update = true; return ohmd_list_open_device_s(ctx, index, &settings); } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_close_device(ohmd_device* device) { ohmd_lock_mutex(device->ctx->update_mutex); ohmd_context* ctx = device->ctx; int idx = device->active_device_idx; memmove(ctx->active_devices + idx, ctx->active_devices + idx + 1, sizeof(ohmd_device*) * (ctx->num_active_devices - idx - 1)); device->close(device); ctx->num_active_devices--; for(int i = idx; i < ctx->num_active_devices; i++) ctx->active_devices[i]->active_device_idx--; ohmd_unlock_mutex(ctx->update_mutex); return OHMD_S_OK; } static int ohmd_device_getf_unp(ohmd_device* device, ohmd_float_value type, float* out) { switch(type){ case OHMD_LEFT_EYE_GL_MODELVIEW_MATRIX: { quatf rot = device->rotation; oquatf_mult_me(&rot, &device->rotation_correction); mat4x4f central_view, eye_shift, result; omat4x4f_init_look_at(¢ral_view, &rot, &device->position); omat4x4f_init_translate(&eye_shift, +(device->properties.ipd / 2.0f), 0.0f, 0.0f); omat4x4f_mult(&eye_shift, ¢ral_view, &result); omat4x4f_transpose(&result, (mat4x4f*)out); return OHMD_S_OK; } case OHMD_RIGHT_EYE_GL_MODELVIEW_MATRIX: { quatf rot = device->rotation; oquatf_mult_me(&rot, &device->rotation_correction); mat4x4f central_view, eye_shift, result; omat4x4f_init_look_at(¢ral_view, &rot, &device->position); omat4x4f_init_translate(&eye_shift, -(device->properties.ipd / 2.0f), 0.0f, 0.0f); omat4x4f_mult(&eye_shift, ¢ral_view, &result); omat4x4f_transpose(&result, (mat4x4f*)out); return OHMD_S_OK; } case OHMD_LEFT_EYE_GL_PROJECTION_MATRIX: omat4x4f_transpose(&device->properties.proj_left, (mat4x4f*)out); return OHMD_S_OK; case OHMD_RIGHT_EYE_GL_PROJECTION_MATRIX: omat4x4f_transpose(&device->properties.proj_right, (mat4x4f*)out); return OHMD_S_OK; case OHMD_SCREEN_HORIZONTAL_SIZE: *out = device->properties.hsize; return OHMD_S_OK; case OHMD_SCREEN_VERTICAL_SIZE: *out = device->properties.vsize; return OHMD_S_OK; case OHMD_LENS_HORIZONTAL_SEPARATION: *out = device->properties.lens_sep; return OHMD_S_OK; case OHMD_LENS_VERTICAL_POSITION: *out = device->properties.lens_vpos; return OHMD_S_OK; case OHMD_RIGHT_EYE_FOV: case OHMD_LEFT_EYE_FOV: *out = device->properties.fov; return OHMD_S_OK; case OHMD_RIGHT_EYE_ASPECT_RATIO: case OHMD_LEFT_EYE_ASPECT_RATIO: *out = device->properties.ratio; return OHMD_S_OK; case OHMD_EYE_IPD: *out = device->properties.ipd; return OHMD_S_OK; case OHMD_PROJECTION_ZFAR: *out = device->properties.zfar; return OHMD_S_OK; case OHMD_PROJECTION_ZNEAR: *out = device->properties.znear; return OHMD_S_OK; case OHMD_ROTATION_QUAT: { *(quatf*)out = device->rotation; oquatf_mult_me((quatf*)out, &device->rotation_correction); return OHMD_S_OK; } case OHMD_POSITION_VECTOR: { *(vec3f*)out = device->position; for(int i = 0; i < 3; i++) out[i] += device->position_correction.arr[i]; return OHMD_S_OK; } case OHMD_UNIVERSAL_DISTORTION_K: { for (int i = 0; i < 4; i++) { out[i] = device->properties.universal_distortion_k[i]; } return OHMD_S_OK; } case OHMD_UNIVERSAL_ABERRATION_K: { for (int i = 0; i < 3; i++) { out[i] = device->properties.universal_aberration_k[i]; } return OHMD_S_OK; } default: return device->getf(device, type, out); } } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_getf(ohmd_device* device, ohmd_float_value type, float* out) { ohmd_lock_mutex(device->ctx->update_mutex); int ret = ohmd_device_getf_unp(device, type, out); ohmd_unlock_mutex(device->ctx->update_mutex); return ret; } int ohmd_device_setf_unp(ohmd_device* device, ohmd_float_value type, const float* in) { switch(type){ case OHMD_EYE_IPD: device->properties.ipd = *in; return OHMD_S_OK; case OHMD_PROJECTION_ZFAR: device->properties.zfar = *in; return OHMD_S_OK; case OHMD_PROJECTION_ZNEAR: device->properties.znear = *in; return OHMD_S_OK; case OHMD_ROTATION_QUAT: { // adjust rotation correction quatf q; int ret = device->getf(device, OHMD_ROTATION_QUAT, (float*)&q); if(ret != 0){ return ret; } oquatf_diff(&q, (quatf*)in, &device->rotation_correction); return OHMD_S_OK; } case OHMD_POSITION_VECTOR: { // adjust position correction vec3f v; int ret = device->getf(device, OHMD_POSITION_VECTOR, (float*)&v); if(ret != 0){ return ret; } for(int i = 0; i < 3; i++) device->position_correction.arr[i] = in[i] - v.arr[i]; return OHMD_S_OK; } case OHMD_EXTERNAL_SENSOR_FUSION: { if(device->setf == NULL) return OHMD_S_UNSUPPORTED; return device->setf(device, type, in); } default: return OHMD_S_INVALID_PARAMETER; } } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_setf(ohmd_device* device, ohmd_float_value type, const float* in) { ohmd_lock_mutex(device->ctx->update_mutex); int ret = ohmd_device_setf_unp(device, type, in); ohmd_unlock_mutex(device->ctx->update_mutex); return ret; } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_geti(ohmd_device* device, ohmd_int_value type, int* out) { switch(type){ case OHMD_SCREEN_HORIZONTAL_RESOLUTION: *out = device->properties.hres; return OHMD_S_OK; case OHMD_SCREEN_VERTICAL_RESOLUTION: *out = device->properties.vres; return OHMD_S_OK; case OHMD_CONTROL_COUNT: *out = device->properties.control_count; return OHMD_S_OK; case OHMD_CONTROLS_TYPES: memcpy(out, device->properties.controls_types, device->properties.control_count * sizeof(int)); return OHMD_S_OK; case OHMD_CONTROLS_HINTS: memcpy(out, device->properties.controls_hints, device->properties.control_count * sizeof(int)); return OHMD_S_OK; default: return OHMD_S_INVALID_PARAMETER; } } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_seti(ohmd_device* device, ohmd_int_value type, const int* in) { switch(type){ default: return OHMD_S_INVALID_PARAMETER; } } int ohmd_device_set_data_unp(ohmd_device* device, ohmd_data_value type, const void* in) { switch(type){ case OHMD_DRIVER_DATA: device->set_data(device, OHMD_DRIVER_DATA, in); return OHMD_S_OK; case OHMD_DRIVER_PROPERTIES: device->set_data(device, OHMD_DRIVER_PROPERTIES, in); return OHMD_S_OK; default: return OHMD_S_INVALID_PARAMETER; } } OHMD_APIENTRYDLL int OHMD_APIENTRY ohmd_device_set_data(ohmd_device* device, ohmd_data_value type, const void* in) { ohmd_lock_mutex(device->ctx->update_mutex); int ret = ohmd_device_set_data_unp(device, type, in); ohmd_unlock_mutex(device->ctx->update_mutex); return ret; } OHMD_APIENTRYDLL ohmd_status OHMD_APIENTRY ohmd_device_settings_seti(ohmd_device_settings* settings, ohmd_int_settings key, const int* val) { switch(key){ case OHMD_IDS_AUTOMATIC_UPDATE: settings->automatic_update = val[0] == 0 ? false : true; return OHMD_S_OK; default: return OHMD_S_INVALID_PARAMETER; } } OHMD_APIENTRYDLL ohmd_device_settings* OHMD_APIENTRY ohmd_device_settings_create(ohmd_context* ctx) { return ohmd_alloc(ctx, sizeof(ohmd_device_settings)); } OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_device_settings_destroy(ohmd_device_settings* settings) { free(settings); } void* ohmd_allocfn(ohmd_context* ctx, const char* e_msg, size_t size) { void* ret = calloc(1, size); if(!ret) ohmd_set_error(ctx, "%s", e_msg); return ret; } void ohmd_set_default_device_properties(ohmd_device_properties* props) { props->ipd = 0.061f; props->znear = 0.1f; props->zfar = 1000.0f; ohmd_set_universal_distortion_k(props, 0, 0, 0, 1); ohmd_set_universal_aberration_k(props, 1.0, 1.0, 1.0); } void ohmd_calc_default_proj_matrices(ohmd_device_properties* props) { mat4x4f proj_base; // base projection matrix // Calculate where the lens is on each screen, // and with the given value offset the projection matrix. float screen_center = props->hsize / 4.0f; float lens_shift = screen_center - props->lens_sep / 2.0f; // XXX: on CV1, props->hsize > props->lens_sep / 2.0, // I am not sure about the implications, but just taking the absolute // value of the offset seems to work. float proj_offset = fabs(4.0f * lens_shift / props->hsize); // Setup the base projection matrix. Each eye mostly have the // same projection matrix with the exception of the offset. omat4x4f_init_perspective(&proj_base, props->fov, props->ratio, props->znear, props->zfar); // Setup the two adjusted projection matrices. Each is setup to deal // with the fact that the lens is not in the center of the screen. // These matrices only change of the hardware changes, so static. mat4x4f translate; omat4x4f_init_translate(&translate, proj_offset, 0, 0); omat4x4f_mult(&translate, &proj_base, &props->proj_left); omat4x4f_init_translate(&translate, -proj_offset, 0, 0); omat4x4f_mult(&translate, &proj_base, &props->proj_right); } void ohmd_set_universal_distortion_k(ohmd_device_properties* props, float a, float b, float c, float d) { props->universal_distortion_k[0] = a; props->universal_distortion_k[1] = b; props->universal_distortion_k[2] = c; props->universal_distortion_k[3] = d; } void ohmd_set_universal_aberration_k(ohmd_device_properties* props, float r, float g, float b) { props->universal_aberration_k[0] = r; props->universal_aberration_k[1] = g; props->universal_aberration_k[2] = b; } uint64_t ohmd_monotonic_per_sec(ohmd_context* ctx) { return ctx->monotonic_ticks_per_sec; } /* * Grabbed from druntime, good thing it's BOOST v1.0 as well. */ uint64_t ohmd_monotonic_conv(uint64_t ticks, uint64_t srcTicksPerSecond, uint64_t dstTicksPerSecond) { // This would be more straightforward with floating point arithmetic, // but we avoid it here in order to avoid the rounding errors that that // introduces. Also, by splitting out the units in this way, we're able // to deal with much larger values before running into problems with // integer overflow. return ticks / srcTicksPerSecond * dstTicksPerSecond + ticks % srcTicksPerSecond * dstTicksPerSecond / srcTicksPerSecond; } void ohmd_get_version(int* out_major, int* out_minor, int* out_patch) { *out_major = OHMD_VERSION_MAJOR; *out_minor = OHMD_VERSION_MINOR; *out_patch = OHMD_VERSION_PATCH; } ohmd_status ohmd_require_version(int major, int minor, int patch) { int curr_major, curr_minor, curr_patch; ohmd_get_version(&curr_major, &curr_minor, &curr_patch); if(curr_major != major){ // require same major version return OHMD_S_UNSUPPORTED; } if(curr_minor == minor){ // check patch version if the required minor version matches current if(curr_patch < patch){ // fail is patch is too low return OHMD_S_UNSUPPORTED; } } else if(curr_minor < minor) { // fail if minor is too low return OHMD_S_UNSUPPORTED; } return OHMD_S_OK; } OpenHMD-0.3.0/src/openhmdi.h000066400000000000000000000102051351206017700155070ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Internal interface */ #ifndef OPENHMDI_H #define OPENHMDI_H #include #include #include #include #include "openhmd.h" #include "omath.h" #include "platform.h" #define OHMD_MAX_DEVICES 16 #define OHMD_MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b)) #define OHMD_MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b)) #define OHMD_STRINGIFY(_what) #_what #define OHMD_VERSION_MAJOR 0 #define OHMD_VERSION_MINOR 3 #define OHMD_VERSION_PATCH 0 typedef struct ohmd_driver ohmd_driver; typedef struct { char driver[OHMD_STR_SIZE]; char vendor[OHMD_STR_SIZE]; char product[OHMD_STR_SIZE]; char path[OHMD_STR_SIZE]; int revision; int id; ohmd_device_flags device_flags; ohmd_device_class device_class; ohmd_driver* driver_ptr; } ohmd_device_desc; typedef struct { int num_devices; ohmd_device_desc devices[OHMD_MAX_DEVICES]; } ohmd_device_list; struct ohmd_driver { void (*get_device_list)(ohmd_driver* driver, ohmd_device_list* list); ohmd_device* (*open_device)(ohmd_driver* driver, ohmd_device_desc* desc); void (*destroy)(ohmd_driver* driver); ohmd_context* ctx; }; typedef struct { int hres; int vres; int control_count; int controls_hints[64]; int controls_types[64]; float hsize; float vsize; float lens_sep; float lens_vpos; float fov; float ratio; float ipd; float zfar; float znear; int accel_only; //bool-like for setting acceleration only fallback (android driver) mat4x4f proj_left; // adjusted projection matrix for left screen mat4x4f proj_right; // adjusted projection matrix for right screen float universal_distortion_k[4]; //PanoTools lens distiorion model [a,b,c,d] float universal_aberration_k[3]; //post-warp per channel scaling [r,g,b] } ohmd_device_properties; struct ohmd_device_settings { bool automatic_update; }; struct ohmd_device { ohmd_device_properties properties; quatf rotation_correction; vec3f position_correction; int (*getf)(ohmd_device* device, ohmd_float_value type, float* out); int (*setf)(ohmd_device* device, ohmd_float_value type, const float* in); int (*seti)(ohmd_device* device, ohmd_int_value type, const int* in); int (*set_data)(ohmd_device* device, ohmd_data_value type, const void* in); void (*update)(ohmd_device* device); void (*close)(ohmd_device* device); ohmd_context* ctx; ohmd_device_settings settings; int active_device_idx; // index into ohmd_device->active_devices[] quatf rotation; vec3f position; }; struct ohmd_context { ohmd_driver* drivers[16]; int num_drivers; ohmd_device_list list; ohmd_device* active_devices[256]; int num_active_devices; ohmd_thread* update_thread; ohmd_mutex* update_mutex; bool update_request_quit; uint64_t monotonic_ticks_per_sec; char error_msg[OHMD_STR_SIZE]; }; // helper functions void ohmd_monotonic_init(ohmd_context* ctx); uint64_t ohmd_monotonic_get(ohmd_context* ctx); uint64_t ohmd_monotonic_per_sec(ohmd_context* ctx); uint64_t ohmd_monotonic_conv(uint64_t ticks, uint64_t srcTicksPerSecond, uint64_t dstTicksPerSecond); void ohmd_set_default_device_properties(ohmd_device_properties* props); void ohmd_calc_default_proj_matrices(ohmd_device_properties* props); void ohmd_set_universal_distortion_k(ohmd_device_properties* props, float a, float b, float c, float d); void ohmd_set_universal_aberration_k(ohmd_device_properties* props, float r, float g, float b); // drivers ohmd_driver* ohmd_create_dummy_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_oculus_rift_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_deepoon_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_htc_vive_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_wmr_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_psvr_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_nolo_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_xgvr_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_external_drv(ohmd_context* ctx); ohmd_driver* ohmd_create_android_drv(ohmd_context* ctx); #include "log.h" #include "omath.h" #include "fusion.h" #endif OpenHMD-0.3.0/src/platform-posix.c000066400000000000000000000073311351206017700166710ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Platform Specific Functions, Unix/Posix Implementation */ #if defined(__unix__) || defined(__unix) || defined(__APPLE__) || defined(__MACH__) #ifdef __CYGWIN__ #define CLOCK_MONOTONIC (clockid_t)4 #endif #define _POSIX_C_SOURCE 199309L #include #include #include #include #include #include "platform.h" #include "openhmdi.h" // Use clock_gettime if the system implements posix realtime timers #ifndef CLOCK_MONOTONIC double ohmd_get_tick() { struct timeval now; gettimeofday(&now, NULL); return (double)now.tv_sec * 1.0 + (double)now.tv_usec / 1000000.0; } #else double ohmd_get_tick() { struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return (double)now.tv_sec * 1.0 + (double)now.tv_nsec / 1000000000.0; } #endif #ifndef CLOCK_MONOTONIC static const uint64_t NUM_1_000_000 = 1000000; void ohmd_monotonic_init(ohmd_context* ctx) { ctx->monotonic_ticks_per_sec = NUM_1_000_000; } uint64_t ohmd_monotonic_get(ohmd_context* ctx) { struct timeval now; gettimeofday(&now, NULL); return now.tv_sec * NUM_1_000_000 + now.tv_usec; } #else static const uint64_t NUM_1_000_000_000 = 1000000000; void ohmd_monotonic_init(ohmd_context* ctx) { struct timespec ts; if (clock_getres(CLOCK_MONOTONIC, &ts) != 0) { ctx->monotonic_ticks_per_sec = NUM_1_000_000_000; return; } ctx->monotonic_ticks_per_sec = ts.tv_nsec >= 1000 ? NUM_1_000_000_000 : NUM_1_000_000_000 / ts.tv_nsec; } uint64_t ohmd_monotonic_get(ohmd_context* ctx) { struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return ohmd_monotonic_conv( now.tv_sec * NUM_1_000_000_000 + now.tv_nsec, NUM_1_000_000_000, ctx->monotonic_ticks_per_sec); } #endif OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_sleep(double seconds) { struct timespec sleepfor; sleepfor.tv_sec = (time_t)seconds; sleepfor.tv_nsec = (long)((seconds - sleepfor.tv_sec) * 1000000000.0); nanosleep(&sleepfor, NULL); } // threads struct ohmd_thread { pthread_t thread; unsigned int (*routine)(void* arg); void* arg; }; static void* pthread_wrapper(void* arg) { ohmd_thread* my_thread = (ohmd_thread*)arg; my_thread->routine(my_thread->arg); return NULL; } ohmd_thread* ohmd_create_thread(ohmd_context* ctx, unsigned int (*routine)(void* arg), void* arg) { ohmd_thread* thread = ohmd_alloc(ctx, sizeof(ohmd_thread)); if(thread == NULL) return NULL; thread->arg = arg; thread->routine = routine; int ret = pthread_create(&thread->thread, NULL, pthread_wrapper, thread); if(ret != 0){ free(thread); thread = NULL; } return thread; } ohmd_mutex* ohmd_create_mutex(ohmd_context* ctx) { pthread_mutex_t* mutex = ohmd_alloc(ctx, sizeof(pthread_mutex_t)); if(mutex == NULL) return NULL; int ret = pthread_mutex_init(mutex, NULL); if(ret != 0){ free(mutex); mutex = NULL; } return (ohmd_mutex*)mutex; } void ohmd_destroy_thread(ohmd_thread* thread) { pthread_join(thread->thread, NULL); free(thread); } void ohmd_destroy_mutex(ohmd_mutex* mutex) { pthread_mutex_destroy((pthread_mutex_t*)mutex); free(mutex); } void ohmd_lock_mutex(ohmd_mutex* mutex) { if(mutex) pthread_mutex_lock((pthread_mutex_t*)mutex); } void ohmd_unlock_mutex(ohmd_mutex* mutex) { if(mutex) pthread_mutex_unlock((pthread_mutex_t*)mutex); } /// Handling ovr service void ohmd_toggle_ovr_service(int state) //State is 0 for Disable, 1 for Enable { //Empty implementation } int findEndPoint(char* path, int endpoint) { char comp[6]; sprintf(comp,":0%d",endpoint); if (strstr(path, comp) != NULL) { return 1; } return 0; } #endif OpenHMD-0.3.0/src/platform-win32.c000066400000000000000000000071411351206017700164700ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Platform Specific Functions, Win32 Implementation */ #ifdef _WIN32 #define WIN32_LEAN_AND_MEAN #define WIN32_EXTRA_LEAN #include #include "platform.h" #include "openhmdi.h" double ohmd_get_tick() { double high, low; FILETIME filetime; GetSystemTimeAsFileTime(&filetime); high = filetime.dwHighDateTime; low = filetime.dwLowDateTime; return (high * 4294967296.0 + low) / 10000000; } static const uint64_t NUM_10_000_000 = 10000000; void ohmd_monotonic_init(ohmd_context* ctx) { ctx->monotonic_ticks_per_sec = NUM_10_000_000; } uint64_t ohmd_monotonic_get(ohmd_context* ctx) { FILETIME filetime; GetSystemTimeAsFileTime(&filetime); return ((uint64_t)filetime.dwHighDateTime << 32) | filetime.dwLowDateTime; } // TODO higher resolution OHMD_APIENTRYDLL void OHMD_APIENTRY ohmd_sleep(double seconds) { Sleep((DWORD)(seconds * 1000)); } // threads struct ohmd_thread { HANDLE handle; void* arg; unsigned int (*routine)(void* arg); }; struct ohmd_mutex { HANDLE handle; }; DWORD __stdcall ohmd_thread_wrapper(void* t) { ohmd_thread* thread = (ohmd_thread*)t; return thread->routine(thread->arg); } ohmd_thread* ohmd_create_thread(ohmd_context* ctx, unsigned int (*routine)(void* arg), void* arg) { ohmd_thread* thread = ohmd_alloc(ctx, sizeof(ohmd_thread)); if(!thread) return NULL; thread->routine = routine; thread->arg = arg; thread->handle = CreateThread(NULL, 0, ohmd_thread_wrapper, thread, 0, NULL); return thread; } void ohmd_destroy_thread(ohmd_thread* thread) { ohmd_sleep(3); WaitForSingleObject(thread->handle, INFINITE); CloseHandle(thread->handle); free(thread); } ohmd_mutex* ohmd_create_mutex(ohmd_context* ctx) { ohmd_mutex* mutex = ohmd_alloc(ctx, sizeof(ohmd_mutex)); if(!mutex) return NULL; mutex->handle = CreateMutex(NULL, FALSE, NULL); return mutex; } void ohmd_destroy_mutex(ohmd_mutex* mutex) { CloseHandle(mutex->handle); free(mutex); } void ohmd_lock_mutex(ohmd_mutex* mutex) { if(mutex) WaitForSingleObject(mutex->handle, INFINITE); } void ohmd_unlock_mutex(ohmd_mutex* mutex) { if(mutex) ReleaseMutex(mutex->handle); } int findEndPoint(char* path, int endpoint) { char comp[8]; sprintf(comp,"mi_0%d",endpoint); if (strstr(path, comp) != NULL) { return 1; } return 0; } /// Handling ovr service static int _enable_ovr_service = 0; void ohmd_toggle_ovr_service(int state) //State is 0 for Disable, 1 for Enable { SC_HANDLE serviceDbHandle = OpenSCManager(NULL,NULL,SC_MANAGER_ALL_ACCESS); SC_HANDLE serviceHandle = OpenService(serviceDbHandle, "OVRService", SC_MANAGER_ALL_ACCESS); SERVICE_STATUS_PROCESS status; DWORD bytesNeeded; QueryServiceStatusEx(serviceHandle, SC_STATUS_PROCESS_INFO,(LPBYTE) &status,sizeof(SERVICE_STATUS_PROCESS), &bytesNeeded); if (state == 0 || status.dwCurrentState == SERVICE_RUNNING) { // Stop it BOOL b = ControlService(serviceHandle, SERVICE_CONTROL_STOP, (LPSERVICE_STATUS) &status); if (b) { printf("OVRService stopped\n"); _enable_ovr_service = 1; } else printf("Error: OVRService failed to stop, please try running with Administrator rights\n"); } else if (state == 1 && _enable_ovr_service) { // Start it BOOL b = StartService(serviceHandle, 0, NULL); if (b) printf("OVRService started\n"); else printf("Error: OVRService failed to start, please try running with Administrator rights\n"); } CloseServiceHandle(serviceHandle); CloseServiceHandle(serviceDbHandle); } #endif OpenHMD-0.3.0/src/platform.h000066400000000000000000000015761351206017700155430ustar00rootroot00000000000000// Copyright 2013, Fredrik Hultin. // Copyright 2013, Jakob Bornecrantz. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Internal Interface for Platform Specific Functions */ #ifndef PLATFORM_H #define PLATFORM_H #include "openhmd.h" double ohmd_get_tick(); void ohmd_sleep(double seconds); void ohmd_toggle_ovr_service(int state); typedef struct ohmd_thread ohmd_thread; typedef struct ohmd_mutex ohmd_mutex; ohmd_mutex* ohmd_create_mutex(ohmd_context* ctx); void ohmd_destroy_mutex(ohmd_mutex* mutex); void ohmd_lock_mutex(ohmd_mutex* mutex); void ohmd_unlock_mutex(ohmd_mutex* mutex); ohmd_thread* ohmd_create_thread(ohmd_context* ctx, unsigned int (*routine)(void* arg), void* arg); void ohmd_destroy_thread(ohmd_thread* thread); /* String functions */ int findEndPoint(char* path, int endpoint); #endif OpenHMD-0.3.0/src/shaders.c000066400000000000000000000151661351206017700153430ustar00rootroot00000000000000// Copyright 2017, James Sarrett. // Copyright 2017, Bastiaan Olij. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Shaders */ #include "shaders.h" const char * const distortion_vert = "#version 120\n" "void main(void)\n" "{\n" "gl_TexCoord[0] = gl_MultiTexCoord0;\n" "gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;\n" "}"; const char * const distortion_frag = "#version 120\n" "\n" "//per eye texture to warp for lens distortion\n" "uniform sampler2D warpTexture;\n" "\n" "//Position of lens center in m (usually eye_w/2, eye_h/2)\n" "uniform vec2 LensCenter;\n" "//Scale from texture co-ords to m (usually eye_w, eye_h)\n" "uniform vec2 ViewportScale;\n" "//Distortion overall scale in m (usually ~eye_w/2)\n" "uniform float WarpScale;\n" "//Distoriton coefficients (PanoTools model) [a,b,c,d]\n" "uniform vec4 HmdWarpParam;\n" "\n" "//chromatic distortion post scaling\n" "uniform vec3 aberr;\n" "\n" "void main()\n" "{\n" "//output_loc is the fragment location on screen from [0,1]x[0,1]\n" "vec2 output_loc = vec2(gl_TexCoord[0].s, gl_TexCoord[0].t);\n" "//Compute fragment location in lens-centered co-ordinates at world scale\n" "vec2 r = output_loc * ViewportScale - LensCenter;\n" "//scale for distortion model\n" "//distortion model has r=1 being the largest circle inscribed (e.g. eye_w/2)\n" "r /= WarpScale;\n" "\n" "//|r|**2\n" "float r_mag = length(r);\n" "//offset for which fragment is sourced\n" "vec2 r_displaced = r * (HmdWarpParam.w + HmdWarpParam.z * r_mag +\n" "HmdWarpParam.y * r_mag * r_mag +\n" "HmdWarpParam.x * r_mag * r_mag * r_mag);\n" "//back to world scale\n" "r_displaced *= WarpScale;\n" "//back to viewport co-ord\n" "vec2 tc_r = (LensCenter + aberr.r * r_displaced) / ViewportScale;\n" "vec2 tc_g = (LensCenter + aberr.g * r_displaced) / ViewportScale;\n" "vec2 tc_b = (LensCenter + aberr.b * r_displaced) / ViewportScale;\n" "\n" "float red = texture2D(warpTexture, tc_r).r;\n" "float green = texture2D(warpTexture, tc_g).g;\n" "float blue = texture2D(warpTexture, tc_b).b;\n" "//Black edges off the texture\n" "gl_FragColor = ((tc_g.x < 0.0) || (tc_g.x > 1.0) || (tc_g.y < 0.0) || (tc_g.y > 1.0)) ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(red, green, blue, 1.0);\n" "}"; const char *const distortion_vert_330 = "#version 330\n" "\n" "layout (location=0) in vec2 coords;" "uniform mat4 mvp;" "out vec2 T;" "\n" "void main(void)\n" "{\n" "T = coords;\n" "gl_Position = mvp * vec4(coords, 0.0, 1.0);\n" "}"; const char *const distortion_frag_330 = "#version 330\n" "\n" "//per eye texture to warp for lens distortion\n" "uniform sampler2D warpTexture;\n" "\n" "//Position of lens center in m (usually eye_w/2, eye_h/2)\n" "uniform vec2 LensCenter;\n" "//Scale from texture co-ords to m (usually eye_w, eye_h)\n" "uniform vec2 ViewportScale;\n" "//Distortion overall scale in m (usually ~eye_w/2)\n" "uniform float WarpScale;\n" "//Distoriton coefficients (PanoTools model) [a,b,c,d]\n" "uniform vec4 HmdWarpParam;\n" "\n" "//chromatic distortion post scaling\n" "uniform vec3 aberr;\n" "\n" "in vec2 T;\n" "out vec4 color;\n" "\n" "void main()\n" "{\n" "//output_loc is the fragment location on screen from [0,1]x[0,1]\n" "vec2 output_loc = vec2(T.s, T.t);\n" "//Compute fragment location in lens-centered co-ordinates at world scale\n" "vec2 r = output_loc * ViewportScale - LensCenter;\n" "//scale for distortion model\n" "//distortion model has r=1 being the largest circle inscribed (e.g. eye_w/2)\n" "r /= WarpScale;\n" "\n" "//|r|**2\n" "float r_mag = length(r);\n" "//offset for which fragment is sourced\n" "vec2 r_displaced = r * (HmdWarpParam.w + HmdWarpParam.z * r_mag +\n" "HmdWarpParam.y * r_mag * r_mag +\n" "HmdWarpParam.x * r_mag * r_mag * r_mag);\n" "//back to world scale\n" "r_displaced *= WarpScale;\n" "//back to viewport co-ord\n" "vec2 tc_r = (LensCenter + aberr.r * r_displaced) / ViewportScale;\n" "vec2 tc_g = (LensCenter + aberr.g * r_displaced) / ViewportScale;\n" "vec2 tc_b = (LensCenter + aberr.b * r_displaced) / ViewportScale;\n" "\n" "float red = texture(warpTexture, tc_r).r;\n" "float green = texture(warpTexture, tc_g).g;\n" "float blue = texture(warpTexture, tc_b).b;\n" "//Black edges off the texture\n" "color = ((tc_g.x < 0.0) || (tc_g.x > 1.0) || (tc_g.y < 0.0) || (tc_g.y > 1.0)) ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(red, green, blue, 1.0);\n" "}"; const char * const distortion_vert_es = "#version 100\n" "\n" "attribute vec2 coords;" "uniform mat4 mvp;" "varying vec2 T;" "void main(void)\n" "{\n" "T = coords;\n" "gl_Position = mvp * vec4(coords, 0.0, 1.0);\n" "}"; const char * const distortion_frag_es = "#version 100\n" "precision mediump float;" "\n" "varying vec2 T;" "//per eye texture to warp for lens distortion\n" "uniform sampler2D warpTexture;\n" "\n" "//Position of lens center in m (usually eye_w/2, eye_h/2)\n" "uniform vec2 LensCenter;\n" "//Scale from texture co-ords to m (usually eye_w, eye_h)\n" "uniform vec2 ViewportScale;\n" "//Distortion overall scale in m (usually ~eye_w/2)\n" "uniform float WarpScale;\n" "//Distoriton coefficients (PanoTools model) [a,b,c,d]\n" "uniform vec4 HmdWarpParam;\n" "\n" "//chromatic distortion post scaling\n" "uniform vec3 aberr;\n" "\n" "void main()\n" "{\n" "//output_loc is the fragment location on screen from [0,1]x[0,1]\n" "vec2 output_loc = vec2(T.s, T.t);\n" "//Compute fragment location in lens-centered co-ordinates at world scale\n" "vec2 r = output_loc * ViewportScale - LensCenter;\n" "//scale for distortion model\n" "//distortion model has r=1 being the largest circle inscribed (e.g. eye_w/2)\n" "r /= WarpScale;\n" "\n" "//|r|**2\n" "float r_mag = length(r);\n" "//offset for which fragment is sourced\n" "vec2 r_displaced = r * (HmdWarpParam.w + HmdWarpParam.z * r_mag +\n" "HmdWarpParam.y * r_mag * r_mag +\n" "HmdWarpParam.x * r_mag * r_mag * r_mag);\n" "//back to world scale\n" "r_displaced *= WarpScale;\n" "//back to viewport co-ord\n" "vec2 tc_r = (LensCenter + aberr.r * r_displaced) / ViewportScale;\n" "vec2 tc_g = (LensCenter + aberr.g * r_displaced) / ViewportScale;\n" "vec2 tc_b = (LensCenter + aberr.b * r_displaced) / ViewportScale;\n" "\n" "float red = texture2D(warpTexture, tc_r).r;\n" "float green = texture2D(warpTexture, tc_g).g;\n" "float blue = texture2D(warpTexture, tc_b).b;\n" "//Black edges off the texture\n" "gl_FragColor = ((tc_g.x < 0.0) || (tc_g.x > 1.0) || (tc_g.y < 0.0) || (tc_g.y > 1.0)) ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(red, green, blue, 1.0);\n" "}"; OpenHMD-0.3.0/src/shaders.h000066400000000000000000000010331351206017700153340ustar00rootroot00000000000000// Copyright 2017, James Sarrett. // Copyright 2017, Bastiaan Olij. // SPDX-License-Identifier: BSL-1.0 /* * OpenHMD - Free and Open Source API and drivers for immersive technology. */ /* Shaders */ #ifndef SHADERS_H #define SHADERS_H extern const char * const distortion_vert; extern const char * const distortion_frag; extern const char * const distortion_vert_330; extern const char * const distortion_frag_330; extern const char * const distortion_vert_es; extern const char * const distortion_frag_es; #endif /* SHADERS_H */ OpenHMD-0.3.0/subprojects/000077500000000000000000000000001351206017700153115ustar00rootroot00000000000000OpenHMD-0.3.0/subprojects/hidapi.wrap000066400000000000000000000001721351206017700174420ustar00rootroot00000000000000[wrap-git] directory = hidapi url = https://github.com/OpenHMD/hidapi revision = b245d332914021c420001292ddea1769eff17f6d OpenHMD-0.3.0/tests/000077500000000000000000000000001351206017700141105ustar00rootroot00000000000000OpenHMD-0.3.0/tests/Makefile.am000066400000000000000000000000241351206017700161400ustar00rootroot00000000000000SUBDIRS = unittests OpenHMD-0.3.0/tests/unittests/000077500000000000000000000000001351206017700161525ustar00rootroot00000000000000OpenHMD-0.3.0/tests/unittests/Makefile.am000066400000000000000000000004041351206017700202040ustar00rootroot00000000000000bin_PROGRAMS = unittests AM_CPPFLAGS = -Wall -Werror -I$(top_srcdir)/include -I$(top_srcdir)/src -DOHMD_STATIC unittests_SOURCES = main.c quat.c vec.c highlevel.c unittests_LDADD = $(top_builddir)/src/libopenhmd.la -lm unittests_LDFLAGS = -static-libtool-libs OpenHMD-0.3.0/tests/unittests/highlevel.c000066400000000000000000000027531351206017700202740ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* Unit Tests - High-level functions */ #include "tests.h" #include "openhmd.h" void test_highlevel_open_close_device() { ohmd_context* ctx = ohmd_ctx_create(); TAssert(ctx); // Probe for devices int num_devices = ohmd_ctx_probe(ctx); TAssert(num_devices > 0); // Open dummy device (num_devices - 1) ohmd_device* hmd = ohmd_list_open_device(ctx, num_devices - 1); TAssert(hmd); // Close the device int ret = ohmd_close_device(hmd); TAssert(ret == 0); ohmd_ctx_destroy(ctx); } void test_highlevel_open_close_many_devices() { ohmd_context* ctx = ohmd_ctx_create(); TAssert(ctx); // Probe for devices int num_devices = ohmd_ctx_probe(ctx); TAssert(num_devices > 0); ohmd_device* hmds[16]; for(int i = 0; i < 8; i++){ // Open dummy device (num_devices - 1) hmds[i] = ohmd_list_open_device(ctx, num_devices - 1); TAssert(hmds[i]); } for(int i = 4; i < 8; i++){ // Close the device int ret = ohmd_close_device(hmds[i]); TAssert(ret == 0); } for(int i = 4; i < 16; i++){ // Open dummy device (num_devices - 1) hmds[i] = ohmd_list_open_device(ctx, num_devices - 1); TAssert(hmds[i]); } for(int i = 0; i < 16; i++){ // Close the device int ret = ohmd_close_device(hmds[i]); TAssert(ret == 0); } ohmd_ctx_destroy(ctx); } OpenHMD-0.3.0/tests/unittests/main.c000066400000000000000000000017411351206017700172450ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* Unit Tests - Main */ #include #include "tests.h" bool float_eq(float a, float b, float t) { return fabsf(a - b) < t; } #define Test(_t) printf(" "#_t); _t(); printf("%*sok\n", 50 - (int)strlen(#_t), ""); int main() { printf("vec3f tests\n"); Test(test_ovec3f_normalize_me); Test(test_ovec3f_get_length); Test(test_ovec3f_get_angle); Test(test_ovec3f_get_dot); printf("\n"); printf("quatf tests\n"); Test(test_oquatf_init_axis); Test(test_oquatf_get_rotated); Test(test_oquatf_get_dot); Test(test_oquatf_inverse); Test(test_oquatf_diff); printf("\n"); printf("high level tests\n"); Test(test_highlevel_open_close_device); Test(test_highlevel_open_close_many_devices); printf("\n"); printf("all a-ok\n"); return 0; } OpenHMD-0.3.0/tests/unittests/quat.c000066400000000000000000000064441351206017700173000ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* Unit Tests - Quaternion Tests */ #include "tests.h" static const float t = 0.001; bool quatf_eq(quatf q1, quatf q2, float t) { for(int i = 0; i < 4; i++) if(!float_eq(q1.arr[i], q2.arr[i], t)){ printf("\nquat.arr[%d] == %f, expected %f\n", i, q1.arr[i], q2.arr[i]); return false; } return true; } typedef struct { vec3f v; float f; quatf q; } vec_float_quat; void test_oquatf_init_axis() { //void oquatf_init_axis(quatf* me, const vec3f* vec, float angle); vec_float_quat list[] = { { {{0, 0, 0}}, 0, {{0, 0, 0, 1}}}, { {{5, 12, 3}}, 1, {{0.1796723168488794, 0.43121356043731063, 0.10780339010932766, 0.8775825618903728}}}, { {{-2, -3, 3}}, 1, {{-0.2044277365391809, -0.30664160480877134, 0.30664160480877134, 0.8775825618903728}} }, { {{100, -3, 3}}, -300, {{0.7142339081165469, -0.021427017243496407, 0.021427017243496407, 0.6992508064783751}} }, }; int sz = sizeof(vec_float_quat); for(int i = 0; i < sizeof(list) / sz; i++){ quatf q; oquatf_init_axis(&q, &list[i].v, list[i].f); //printf("%f %f %f %f\n", q.x, q.y, q.z, q.w); TAssert(quatf_eq(q, list[i].q, t)); } } typedef struct { quatf q; vec3f v1, v2; } quat_vec2; void test_oquatf_get_rotated() { // void oquatf_get_rotated(const quatf* me, const vec3f* vec, vec3f* out_vec); quat_vec2 list[] = { { {{0, 0, 0, 0}}, {{0, 0, 0}}, {{0, 0, 0}} }, { {{0, 0, 0, 0}}, {{1, 2, 3}}, {{0, 0, 0}} }, { {{0, 0, 0, 1}}, {{1, 2, 3}}, {{1, 2, 3}} }, { {{.4, .2, .1, 1}}, {{2, 1, 0}}, {{2.18, 1.59, 0.2}} }, { {{.4, .2, .1, -1}}, {{2, 1, 0}}, {{2.58, 0.79, 0.2}} }, }; int sz = sizeof(quat_vec2); for(int i = 0; i < sizeof(list) / sz; i++){ vec3f vec; oquatf_get_rotated(&list[i].q, &list[i].v1, &vec); TAssert(vec3f_eq(vec, list[i].v2, t)); } } // TODO test_oquatf_mult void test_oquatf_mult() { } // TODO test_oquatf_normalize void test_oquatf_normalize() { } // TODO test_oquatf_get_length void test_oquatf_get_length() { } // TODO test_oquatf_get_mat4x4 void test_oquatf_get_mat4x4() { } typedef struct { quatf q1, q2; float f; } quat2_float; void test_oquatf_get_dot() { // TODO add more test cases quat2_float list[] = { { {{1, 2, 3, 1}}, {{4, 3, 2, .5}}, 16.5 }, }; int sz = sizeof(quat2_float); for(int i = 0; i < sizeof(list) / sz; i++){ TAssert(float_eq(oquatf_get_dot(&list[i].q1, &list[i].q2), list[i].f, t)); } } typedef struct { quatf q1, q2; } quat2; void test_oquatf_inverse() { // TODO add more test cases quat2 list[] = { { {{1, 2, 3, 1}}, {{-0.06666666666666667, -0.13333333333333333, -0.2, 0.06666666666666667}} }, }; int sz = sizeof(quat2); for(int i = 0; i < sizeof(list) / sz; i++){ oquatf_inverse(&list[i].q1); TAssert(quatf_eq(list[i].q1, list[i].q2, t)); } } typedef struct { quatf q1, q2, q3; } quat3; void test_oquatf_diff() { // TODO add more test cases quat3 list[] = { { {{1, 2, 3, 1}}, {{5, 3, 2, .1}}, {{0.660000, -0.680000, 0.580000, 1.140000}} }, }; int sz = sizeof(quat3); for(int i = 0; i < sizeof(list) / sz; i++){ quatf q; oquatf_diff(&list[i].q1, &list[i].q2, &q); TAssert(quatf_eq(q, list[i].q3, t)); } } OpenHMD-0.3.0/tests/unittests/tests.h000066400000000000000000000021721351206017700174670ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* Unit Tests - Internal Interface */ #ifndef TESTS_H #define TESTS_H #include #include #include #include "openhmdi.h" #define TAssert(_v) if(!(_v)){ printf("\ntest failed: %s @ %s:%d\n", __func__, __FILE__, __LINE__); exit(1); } bool float_eq(float a, float b, float t); bool vec3f_eq(vec3f v1, vec3f v2, float t); // vec3f tests void test_ovec3f_normalize_me(); void test_ovec3f_get_length(); void test_ovec3f_get_angle(); void test_ovec3f_get_dot(); // quatf tests void test_oquatf_init_axis(); void test_oquatf_get_rotated(); void test_oquatf_mult(); void test_oquatf_mult_me(); void test_oquatf_normalize(); void test_oquatf_get_length(); void test_oquatf_get_dot(); void test_oquatf_inverse(); void test_oquatf_diff(); void test_oquatf_get_mat4x4(); // high-level tests void test_highlevel_open_close_device(); void test_highlevel_open_close_many_devices(); #endif OpenHMD-0.3.0/tests/unittests/vec.c000066400000000000000000000045561351206017700171050ustar00rootroot00000000000000/* * OpenHMD - Free and Open Source API and drivers for immersive technology. * Copyright (C) 2013 Fredrik Hultin. * Copyright (C) 2013 Jakob Bornecrantz. * Distributed under the Boost 1.0 licence, see LICENSE for full text. */ /* Unit Tests - Vector3f Tests */ #include "tests.h" bool vec3f_eq(vec3f v1, vec3f v2, float t) { for(int i = 0; i < 3; i++) if(!float_eq(v1.arr[i], v2.arr[i], t)){ printf("\nvec.arr[%d] == %f, expected %f\n", i, v1.arr[i], v2.arr[i]); return false; } return true; } void test_ovec3f_normalize_me() { vec3f v[][2] = { { {{1, 0, 0}}, {{1, 0, 0}} }, { {{1, 2, 3}}, {{0.267261241912424, 0.534522483824849, 0.801783725737273}} }, { {{-7, 13, 22}}, {{-0.264197974633739, 0.490653381462658, 0.830336491706037}} }, { {{.1, .1, .1}}, {{0.577350269189626, 0.577350269189626, 0.577350269189626}} }, { {{0, 0, 0}}, {{0, 0, 0}} }, }; int sz = sizeof(vec3f) * 2; float t = 0.001; for(int i = 0; i < sizeof(v) / sz; i++){ vec3f norm = v[i][0]; ovec3f_normalize_me(&norm); TAssert(vec3f_eq(norm, v[i][1], t)); } } typedef struct { vec3f vec; float f; } vec_float; void test_ovec3f_get_length() { vec_float vf[] = { { {{0, 0, 0}}, 0}, { {{1, 0, 0}}, 1}, { {{1, 2, 0}}, 2.23606797749979}, { {{1, -2, 0}}, 2.23606797749979}, { {{1, 2, 3}}, 3.7416573867739413}, { {{-1, -2, -3}}, 3.7416573867739413}, }; int sz = sizeof(vec_float); float t = 0.001; for(int i = 0; i < sizeof(vf) / sz; i++){ TAssert(float_eq(ovec3f_get_length(&vf[i].vec), vf[i].f, t)); } } typedef struct { vec3f v1, v2; float f; } vec2_float; void test_ovec3f_get_angle() { vec2_float vf[] = { { {{0, 0, 0}}, {{0, 0, 0}}, 0}, { {{1, 0, 0}}, {{0, 0, 0}}, 0}, { {{2, 4, 3}}, {{1, 2, 3}}, 0.33940126397005316}, { {{2, 4, 3}}, {{-1, 2, 3}}, 0.7311043352203973}, }; int sz = sizeof(vec2_float); float t = 0.001; for(int i = 0; i < sizeof(vf) / sz; i++){ TAssert(float_eq(ovec3f_get_angle(&vf[i].v1, &vf[i].v2), vf[i].f, t)); } } //float ovec3f_get_dot(const vec3f* me, const vec3f* vec); void test_ovec3f_get_dot() { vec2_float vf[] = { { {{0, 0, 0}}, {{0, 0, 0}}, 0}, { {{1, 2, 3}}, {{-.30, 2, 25}}, 78.7}, { {{-1, -10000000, 3}}, {{-.30, 2, 25}}, -19999924.7}, }; int sz = sizeof(vec2_float); float t = 0.001; for(int i = 0; i < sizeof(vf) / sz; i++){ TAssert(float_eq(ovec3f_get_dot(&vf[i].v1, &vf[i].v2), vf[i].f, t)); } }