libsoil-1.07~20080707.dfsg/0000755000175000017500000000000011070675512014402 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/img_test.dds0000644000175000017500000025276011034440252016714 0ustar gonerigoneriDDS |  DXT5@I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$TTTTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$?UU I$I$UI$I$I$I${I$I$-I$I$xI$I$~I$I$bWI$I$U^I$I$!UUWI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$?`VI$I$`VUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$ UUI$I$! I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$UUU5I$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$^pI$I$UUU\I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$`I$I$_ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$ApI$I$ I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$UUI$I$? I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$ pI$I$UUWTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$% I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$Xp@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$Օ5%I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$WV\XI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$_ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$Ap`@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$UՕI$I$?TUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$8UUUI$I$UWVTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$?5%I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$ TT\XI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$%%I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$XXPPI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$UUI$I$PPUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUIک@$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$U$I$UI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$%%I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUڟ}I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$%5I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU+}هI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UI$I$_I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU UUUUM۲mI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI UUI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$%5I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU9}ٱ I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ %I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU |UUI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UUI$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI?UUU,ɱ ۶mI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$`I$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUQUUUrt۶mI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$5UUUI$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU7UUڑ ۶mI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$V`I$I$UUV`I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUUUUv°mUI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ UUI$I$UI$I$I$I$I$I$-UUUUzUUUU**UUU?lUUFضmUI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$VVVVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$?UUU5I$I$UI$I$I$I$_-I$I$YxI$I$^I$I$U^I$I$<UUU\I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$?U5 I$I$! I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$`I$I$ UW\pI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$U%I$I$kTUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$mUUUI$I$}UWTXI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$p`I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$߽UՕI$I$I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUI$I$UWVTI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UI$I$UI$I$UI$I$UI$I$UI$I$UI$I$UI$I$UI$I$UI$I$@@@UI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$`UUI$`UUI$`UUI$`UUI$`UUI$`UUI$`UUI$`UUI$`UUI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU]۳ TTTVI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UUUI$I$?UUVTI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU:?B E ۶mVWUUI$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ %I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU˧@`P\I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$UVX`I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUr?|A`X=H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$O@I$I$ 5UI$I$w I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUmA XWIH$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$`I$I$UUI$I$UU @WW m۞UUh$I$ I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$H$H$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$@I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$ I$I$?UU I$I$UU I$I$UUI$I$<UUWpI$I$I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$_U I$I$I$I$UUUUI$I$UUUUI$I$I$I$AUTP`I$I$I$I$I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$JUUI$I$AI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$@I$I$iUUWTI$I$I$I$I$I$I$I$I$I$UUI$I$UUI$I$UUI$I$UUI$I$/jUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU?- TTV@ImUU@ImUU@ImUU@ImUUI$I$I$I$I$I$I$I$I$I$/I$I$ I$I$UUUUI$I$UUUUI$I$UUUUI$I$UUUU?a`H$I$1I$I$I$I$I$I$I$I$I$I$I$I$P@I$I$-I$I$UUUUI$I$UUUU2UUU%ذm]P\WUI$I$I$I$I$I$I$I$I$I$I$I$I$I$UUUI$I$UUUB)۰ ۛWWW:H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$@H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$@H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$@H$H$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$I$@H$H$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$ I$I$ I$I$I$I$I$I$I$I$ I$I$ I$I$ I$I$?_XI$I$!\%I$I$I$I$I$I$I$I$ I$I$ I$I$5%I$I$?I$I$8I$I$W\XPI$I$I$I$I$I$UUUI$I$UUUI$I$/I$I$UUUUI$I$UUUU #include #include #elif defined(__APPLE__) || defined(__APPLE_CC__) /* I can't test this Apple stuff! */ #include #include #define APIENTRY #else #include #include #endif #include "SOIL.h" #include "stb_image_aug.h" #include "image_helper.h" #include "image_DXT.h" #include #include /* error reporting */ char *result_string_pointer = "SOIL initialized"; /* for loading cube maps */ enum{ SOIL_CAPABILITY_UNKNOWN = -1, SOIL_CAPABILITY_NONE = 0, SOIL_CAPABILITY_PRESENT = 1 }; static int has_cubemap_capability = SOIL_CAPABILITY_UNKNOWN; int query_cubemap_capability( void ); #define SOIL_TEXTURE_WRAP_R 0x8072 #define SOIL_CLAMP_TO_EDGE 0x812F #define SOIL_NORMAL_MAP 0x8511 #define SOIL_REFLECTION_MAP 0x8512 #define SOIL_TEXTURE_CUBE_MAP 0x8513 #define SOIL_TEXTURE_BINDING_CUBE_MAP 0x8514 #define SOIL_TEXTURE_CUBE_MAP_POSITIVE_X 0x8515 #define SOIL_TEXTURE_CUBE_MAP_NEGATIVE_X 0x8516 #define SOIL_TEXTURE_CUBE_MAP_POSITIVE_Y 0x8517 #define SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Y 0x8518 #define SOIL_TEXTURE_CUBE_MAP_POSITIVE_Z 0x8519 #define SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Z 0x851A #define SOIL_PROXY_TEXTURE_CUBE_MAP 0x851B #define SOIL_MAX_CUBE_MAP_TEXTURE_SIZE 0x851C /* for non-power-of-two texture */ static int has_NPOT_capability = SOIL_CAPABILITY_UNKNOWN; int query_NPOT_capability( void ); /* for texture rectangles */ static int has_tex_rectangle_capability = SOIL_CAPABILITY_UNKNOWN; int query_tex_rectangle_capability( void ); #define SOIL_TEXTURE_RECTANGLE_ARB 0x84F5 #define SOIL_MAX_RECTANGLE_TEXTURE_SIZE_ARB 0x84F8 /* for using DXT compression */ static int has_DXT_capability = SOIL_CAPABILITY_UNKNOWN; int query_DXT_capability( void ); #define SOIL_RGB_S3TC_DXT1 0x83F0 #define SOIL_RGBA_S3TC_DXT1 0x83F1 #define SOIL_RGBA_S3TC_DXT3 0x83F2 #define SOIL_RGBA_S3TC_DXT5 0x83F3 typedef void (APIENTRY * P_SOIL_GLCOMPRESSEDTEXIMAGE2DPROC) (GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const GLvoid * data); P_SOIL_GLCOMPRESSEDTEXIMAGE2DPROC soilGlCompressedTexImage2D = NULL; unsigned int SOIL_direct_load_DDS( const char *filename, unsigned int reuse_texture_ID, int flags, int loading_as_cubemap ); unsigned int SOIL_direct_load_DDS_from_memory( const unsigned char *const buffer, int buffer_length, unsigned int reuse_texture_ID, int flags, int loading_as_cubemap ); /* other functions */ unsigned int SOIL_internal_create_OGL_texture ( const unsigned char *const data, int width, int height, int channels, unsigned int reuse_texture_ID, unsigned int flags, unsigned int opengl_texture_type, unsigned int opengl_texture_target, unsigned int texture_check_size_enum ); /* and the code magic begins here [8^) */ unsigned int SOIL_load_OGL_texture ( const char *filename, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels; unsigned int tex_id; /* does the user want direct uploading of the image as a DDS file? */ if( flags & SOIL_FLAG_DDS_LOAD_DIRECT ) { /* 1st try direct loading of the image as a DDS file note: direct uploading will only load what is in the DDS file, no MIPmaps will be generated, the image will not be flipped, etc. */ tex_id = SOIL_direct_load_DDS( filename, reuse_texture_ID, flags, 0 ); if( tex_id ) { /* hey, it worked!! */ return tex_id; } } /* try to load the image */ img = SOIL_load_image( filename, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* OK, make it a texture! */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, reuse_texture_ID, flags, GL_TEXTURE_2D, GL_TEXTURE_2D, GL_MAX_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); /* and return the handle, such as it is */ return tex_id; } unsigned int SOIL_load_OGL_HDR_texture ( const char *filename, int fake_HDR_format, int rescale_to_max, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels; unsigned int tex_id; /* no direct uploading of the image as a DDS file */ /* error check */ if( (fake_HDR_format != SOIL_HDR_RGBE) && (fake_HDR_format != SOIL_HDR_RGBdivA) && (fake_HDR_format != SOIL_HDR_RGBdivA2) ) { result_string_pointer = "Invalid fake HDR format specified"; return 0; } /* try to load the image (only the HDR type) */ img = stbi_hdr_load_rgbe( filename, &width, &height, &channels, 4 ); /* channels holds the original number of channels, which may have been forced */ if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* the load worked, do I need to convert it? */ if( fake_HDR_format == SOIL_HDR_RGBdivA ) { RGBE_to_RGBdivA( img, width, height, rescale_to_max ); } else if( fake_HDR_format == SOIL_HDR_RGBdivA2 ) { RGBE_to_RGBdivA2( img, width, height, rescale_to_max ); } /* OK, make it a texture! */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, reuse_texture_ID, flags, GL_TEXTURE_2D, GL_TEXTURE_2D, GL_MAX_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); /* and return the handle, such as it is */ return tex_id; } unsigned int SOIL_load_OGL_texture_from_memory ( const unsigned char *const buffer, int buffer_length, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels; unsigned int tex_id; /* does the user want direct uploading of the image as a DDS file? */ if( flags & SOIL_FLAG_DDS_LOAD_DIRECT ) { /* 1st try direct loading of the image as a DDS file note: direct uploading will only load what is in the DDS file, no MIPmaps will be generated, the image will not be flipped, etc. */ tex_id = SOIL_direct_load_DDS_from_memory( buffer, buffer_length, reuse_texture_ID, flags, 0 ); if( tex_id ) { /* hey, it worked!! */ return tex_id; } } /* try to load the image */ img = SOIL_load_image_from_memory( buffer, buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* OK, make it a texture! */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, reuse_texture_ID, flags, GL_TEXTURE_2D, GL_TEXTURE_2D, GL_MAX_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); /* and return the handle, such as it is */ return tex_id; } unsigned int SOIL_load_OGL_cubemap ( const char *x_pos_file, const char *x_neg_file, const char *y_pos_file, const char *y_neg_file, const char *z_pos_file, const char *z_neg_file, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels; unsigned int tex_id; /* error checking */ if( (x_pos_file == NULL) || (x_neg_file == NULL) || (y_pos_file == NULL) || (y_neg_file == NULL) || (z_pos_file == NULL) || (z_neg_file == NULL) ) { result_string_pointer = "Invalid cube map files list"; return 0; } /* capability checking */ if( query_cubemap_capability() != SOIL_CAPABILITY_PRESENT ) { result_string_pointer = "No cube map capability present"; return 0; } /* 1st face: try to load the image */ img = SOIL_load_image( x_pos_file, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, and create a texture ID if necessary */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, reuse_texture_ID, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_POSITIVE_X, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image( x_neg_file, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_NEGATIVE_X, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image( y_pos_file, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_POSITIVE_Y, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image( y_neg_file, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Y, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image( z_pos_file, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_POSITIVE_Z, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image( z_neg_file, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Z, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* and return the handle, such as it is */ return tex_id; } unsigned int SOIL_load_OGL_cubemap_from_memory ( const unsigned char *const x_pos_buffer, int x_pos_buffer_length, const unsigned char *const x_neg_buffer, int x_neg_buffer_length, const unsigned char *const y_pos_buffer, int y_pos_buffer_length, const unsigned char *const y_neg_buffer, int y_neg_buffer_length, const unsigned char *const z_pos_buffer, int z_pos_buffer_length, const unsigned char *const z_neg_buffer, int z_neg_buffer_length, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels; unsigned int tex_id; /* error checking */ if( (x_pos_buffer == NULL) || (x_neg_buffer == NULL) || (y_pos_buffer == NULL) || (y_neg_buffer == NULL) || (z_pos_buffer == NULL) || (z_neg_buffer == NULL) ) { result_string_pointer = "Invalid cube map buffers list"; return 0; } /* capability checking */ if( query_cubemap_capability() != SOIL_CAPABILITY_PRESENT ) { result_string_pointer = "No cube map capability present"; return 0; } /* 1st face: try to load the image */ img = SOIL_load_image_from_memory( x_pos_buffer, x_pos_buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, and create a texture ID if necessary */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, reuse_texture_ID, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_POSITIVE_X, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image_from_memory( x_neg_buffer, x_neg_buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_NEGATIVE_X, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image_from_memory( y_pos_buffer, y_pos_buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_POSITIVE_Y, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image_from_memory( y_neg_buffer, y_neg_buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Y, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image_from_memory( z_pos_buffer, z_pos_buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_POSITIVE_Z, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* continue? */ if( tex_id != 0 ) { /* 1st face: try to load the image */ img = SOIL_load_image_from_memory( z_neg_buffer, z_neg_buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* upload the texture, but reuse the assigned texture ID */ tex_id = SOIL_internal_create_OGL_texture( img, width, height, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Z, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); /* and nuke the image data */ SOIL_free_image_data( img ); } /* and return the handle, such as it is */ return tex_id; } unsigned int SOIL_load_OGL_single_cubemap ( const char *filename, const char face_order[6], int force_channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels, i; unsigned int tex_id = 0; /* error checking */ if( filename == NULL ) { result_string_pointer = "Invalid single cube map file name"; return 0; } /* does the user want direct uploading of the image as a DDS file? */ if( flags & SOIL_FLAG_DDS_LOAD_DIRECT ) { /* 1st try direct loading of the image as a DDS file note: direct uploading will only load what is in the DDS file, no MIPmaps will be generated, the image will not be flipped, etc. */ tex_id = SOIL_direct_load_DDS( filename, reuse_texture_ID, flags, 1 ); if( tex_id ) { /* hey, it worked!! */ return tex_id; } } /* face order checking */ for( i = 0; i < 6; ++i ) { if( (face_order[i] != 'N') && (face_order[i] != 'S') && (face_order[i] != 'W') && (face_order[i] != 'E') && (face_order[i] != 'U') && (face_order[i] != 'D') ) { result_string_pointer = "Invalid single cube map face order"; return 0; }; } /* capability checking */ if( query_cubemap_capability() != SOIL_CAPABILITY_PRESENT ) { result_string_pointer = "No cube map capability present"; return 0; } /* 1st off, try to load the full image */ img = SOIL_load_image( filename, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* now, does this image have the right dimensions? */ if( (width != 6*height) && (6*width != height) ) { SOIL_free_image_data( img ); result_string_pointer = "Single cubemap image must have a 6:1 ratio"; return 0; } /* try the image split and create */ tex_id = SOIL_create_OGL_single_cubemap( img, width, height, channels, face_order, reuse_texture_ID, flags ); /* nuke the temporary image data and return the texture handle */ SOIL_free_image_data( img ); return tex_id; } unsigned int SOIL_load_OGL_single_cubemap_from_memory ( const unsigned char *const buffer, int buffer_length, const char face_order[6], int force_channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* img; int width, height, channels, i; unsigned int tex_id = 0; /* error checking */ if( buffer == NULL ) { result_string_pointer = "Invalid single cube map buffer"; return 0; } /* does the user want direct uploading of the image as a DDS file? */ if( flags & SOIL_FLAG_DDS_LOAD_DIRECT ) { /* 1st try direct loading of the image as a DDS file note: direct uploading will only load what is in the DDS file, no MIPmaps will be generated, the image will not be flipped, etc. */ tex_id = SOIL_direct_load_DDS_from_memory( buffer, buffer_length, reuse_texture_ID, flags, 1 ); if( tex_id ) { /* hey, it worked!! */ return tex_id; } } /* face order checking */ for( i = 0; i < 6; ++i ) { if( (face_order[i] != 'N') && (face_order[i] != 'S') && (face_order[i] != 'W') && (face_order[i] != 'E') && (face_order[i] != 'U') && (face_order[i] != 'D') ) { result_string_pointer = "Invalid single cube map face order"; return 0; }; } /* capability checking */ if( query_cubemap_capability() != SOIL_CAPABILITY_PRESENT ) { result_string_pointer = "No cube map capability present"; return 0; } /* 1st off, try to load the full image */ img = SOIL_load_image_from_memory( buffer, buffer_length, &width, &height, &channels, force_channels ); /* channels holds the original number of channels, which may have been forced */ if( (force_channels >= 1) && (force_channels <= 4) ) { channels = force_channels; } if( NULL == img ) { /* image loading failed */ result_string_pointer = stbi_failure_reason(); return 0; } /* now, does this image have the right dimensions? */ if( (width != 6*height) && (6*width != height) ) { SOIL_free_image_data( img ); result_string_pointer = "Single cubemap image must have a 6:1 ratio"; return 0; } /* try the image split and create */ tex_id = SOIL_create_OGL_single_cubemap( img, width, height, channels, face_order, reuse_texture_ID, flags ); /* nuke the temporary image data and return the texture handle */ SOIL_free_image_data( img ); return tex_id; } unsigned int SOIL_create_OGL_single_cubemap ( const unsigned char *const data, int width, int height, int channels, const char face_order[6], unsigned int reuse_texture_ID, unsigned int flags ) { /* variables */ unsigned char* sub_img; int dw, dh, sz, i; unsigned int tex_id; /* error checking */ if( data == NULL ) { result_string_pointer = "Invalid single cube map image data"; return 0; } /* face order checking */ for( i = 0; i < 6; ++i ) { if( (face_order[i] != 'N') && (face_order[i] != 'S') && (face_order[i] != 'W') && (face_order[i] != 'E') && (face_order[i] != 'U') && (face_order[i] != 'D') ) { result_string_pointer = "Invalid single cube map face order"; return 0; }; } /* capability checking */ if( query_cubemap_capability() != SOIL_CAPABILITY_PRESENT ) { result_string_pointer = "No cube map capability present"; return 0; } /* now, does this image have the right dimensions? */ if( (width != 6*height) && (6*width != height) ) { result_string_pointer = "Single cubemap image must have a 6:1 ratio"; return 0; } /* which way am I stepping? */ if( width > height ) { dw = height; dh = 0; } else { dw = 0; dh = width; } sz = dw+dh; sub_img = (unsigned char *)malloc( sz*sz*channels ); /* do the splitting and uploading */ tex_id = reuse_texture_ID; for( i = 0; i < 6; ++i ) { int x, y, idx = 0; unsigned int cubemap_target = 0; /* copy in the sub-image */ for( y = i*dh; y < i*dh+sz; ++y ) { for( x = i*dw*channels; x < (i*dw+sz)*channels; ++x ) { sub_img[idx++] = data[y*width*channels+x]; } } /* what is my texture target? remember, this coordinate system is LHS if viewed from inside the cube! */ switch( face_order[i] ) { case 'N': cubemap_target = SOIL_TEXTURE_CUBE_MAP_POSITIVE_Z; break; case 'S': cubemap_target = SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Z; break; case 'W': cubemap_target = SOIL_TEXTURE_CUBE_MAP_NEGATIVE_X; break; case 'E': cubemap_target = SOIL_TEXTURE_CUBE_MAP_POSITIVE_X; break; case 'U': cubemap_target = SOIL_TEXTURE_CUBE_MAP_POSITIVE_Y; break; case 'D': cubemap_target = SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Y; break; } /* upload it as a texture */ tex_id = SOIL_internal_create_OGL_texture( sub_img, sz, sz, channels, tex_id, flags, SOIL_TEXTURE_CUBE_MAP, cubemap_target, SOIL_MAX_CUBE_MAP_TEXTURE_SIZE ); } /* and nuke the image and sub-image data */ SOIL_free_image_data( sub_img ); /* and return the handle, such as it is */ return tex_id; } unsigned int SOIL_create_OGL_texture ( const unsigned char *const data, int width, int height, int channels, unsigned int reuse_texture_ID, unsigned int flags ) { /* wrapper function for 2D textures */ return SOIL_internal_create_OGL_texture( data, width, height, channels, reuse_texture_ID, flags, GL_TEXTURE_2D, GL_TEXTURE_2D, GL_MAX_TEXTURE_SIZE ); } #if SOIL_CHECK_FOR_GL_ERRORS void check_for_GL_errors( const char *calling_location ) { /* check for errors */ GLenum err_code = glGetError(); while( GL_NO_ERROR != err_code ) { printf( "OpenGL Error @ %s: %i", calling_location, err_code ); err_code = glGetError(); } } #else void check_for_GL_errors( const char *calling_location ) { /* no check for errors */ } #endif unsigned int SOIL_internal_create_OGL_texture ( const unsigned char *const data, int width, int height, int channels, unsigned int reuse_texture_ID, unsigned int flags, unsigned int opengl_texture_type, unsigned int opengl_texture_target, unsigned int texture_check_size_enum ) { /* variables */ unsigned char* img; unsigned int tex_id; unsigned int internal_texture_format = 0, original_texture_format = 0; int DXT_mode = SOIL_CAPABILITY_UNKNOWN; int max_supported_size; /* If the user wants to use the texture rectangle I kill a few flags */ if( flags & SOIL_FLAG_TEXTURE_RECTANGLE ) { /* well, the user asked for it, can we do that? */ if( query_tex_rectangle_capability() == SOIL_CAPABILITY_PRESENT ) { /* only allow this if the user in _NOT_ trying to do a cubemap! */ if( opengl_texture_type == GL_TEXTURE_2D ) { /* clean out the flags that cannot be used with texture rectangles */ flags &= ~( SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS ); /* and change my target */ opengl_texture_target = SOIL_TEXTURE_RECTANGLE_ARB; opengl_texture_type = SOIL_TEXTURE_RECTANGLE_ARB; } else { /* not allowed for any other uses (yes, I'm looking at you, cubemaps!) */ flags &= ~SOIL_FLAG_TEXTURE_RECTANGLE; } } else { /* can't do it, and that is a breakable offense (uv coords use pixels instead of [0,1]!) */ result_string_pointer = "Texture Rectangle extension unsupported"; return 0; } } /* create a copy the image data */ img = (unsigned char*)malloc( width*height*channels ); memcpy( img, data, width*height*channels ); /* does the user want me to invert the image? */ if( flags & SOIL_FLAG_INVERT_Y ) { int i, j; for( j = 0; j*2 < height; ++j ) { int index1 = j * width * channels; int index2 = (height - 1 - j) * width * channels; for( i = width * channels; i > 0; --i ) { unsigned char temp = img[index1]; img[index1] = img[index2]; img[index2] = temp; ++index1; ++index2; } } } /* does the user want me to scale the colors into the NTSC safe RGB range? */ if( flags & SOIL_FLAG_NTSC_SAFE_RGB ) { scale_image_RGB_to_NTSC_safe( img, width, height, channels ); } /* does the user want me to convert from straight to pre-multiplied alpha? (and do we even _have_ alpha?) */ if( flags & SOIL_FLAG_MULTIPLY_ALPHA ) { int i; switch( channels ) { case 2: for( i = 0; i < 2*width*height; i += 2 ) { img[i] = (img[i] * img[i+1] + 128) >> 8; } break; case 4: for( i = 0; i < 4*width*height; i += 4 ) { img[i+0] = (img[i+0] * img[i+3] + 128) >> 8; img[i+1] = (img[i+1] * img[i+3] + 128) >> 8; img[i+2] = (img[i+2] * img[i+3] + 128) >> 8; } break; default: /* no other number of channels contains alpha data */ break; } } /* if the user can't support NPOT textures, make sure we force the POT option */ if( (query_NPOT_capability() == SOIL_CAPABILITY_NONE) && !(flags & SOIL_FLAG_TEXTURE_RECTANGLE) ) { /* add in the POT flag */ flags |= SOIL_FLAG_POWER_OF_TWO; } /* how large of a texture can this OpenGL implementation handle? */ /* texture_check_size_enum will be GL_MAX_TEXTURE_SIZE or SOIL_MAX_CUBE_MAP_TEXTURE_SIZE */ glGetIntegerv( texture_check_size_enum, &max_supported_size ); /* do I need to make it a power of 2? */ if( (flags & SOIL_FLAG_POWER_OF_TWO) || /* user asked for it */ (flags & SOIL_FLAG_MIPMAPS) || /* need it for the MIP-maps */ (width > max_supported_size) || /* it's too big, (make sure it's */ (height > max_supported_size) ) /* 2^n for later down-sampling) */ { int new_width = 1; int new_height = 1; while( new_width < width ) { new_width *= 2; } while( new_height < height ) { new_height *= 2; } /* still? */ if( (new_width != width) || (new_height != height) ) { /* yep, resize */ unsigned char *resampled = (unsigned char*)malloc( channels*new_width*new_height ); up_scale_image( img, width, height, channels, resampled, new_width, new_height ); /* OJO this is for debug only! */ /* SOIL_save_image( "\\showme.bmp", SOIL_SAVE_TYPE_BMP, new_width, new_height, channels, resampled ); */ /* nuke the old guy, then point it at the new guy */ SOIL_free_image_data( img ); img = resampled; width = new_width; height = new_height; } } /* now, if it is too large... */ if( (width > max_supported_size) || (height > max_supported_size) ) { /* I've already made it a power of two, so simply use the MIPmapping code to reduce its size to the allowable maximum. */ unsigned char *resampled; int reduce_block_x = 1, reduce_block_y = 1; int new_width, new_height; if( width > max_supported_size ) { reduce_block_x = width / max_supported_size; } if( height > max_supported_size ) { reduce_block_y = height / max_supported_size; } new_width = width / reduce_block_x; new_height = height / reduce_block_y; resampled = (unsigned char*)malloc( channels*new_width*new_height ); /* perform the actual reduction */ mipmap_image( img, width, height, channels, resampled, reduce_block_x, reduce_block_y ); /* nuke the old guy, then point it at the new guy */ SOIL_free_image_data( img ); img = resampled; width = new_width; height = new_height; } /* does the user want us to use YCoCg color space? */ if( flags & SOIL_FLAG_CoCg_Y ) { /* this will only work with RGB and RGBA images */ convert_RGB_to_YCoCg( img, width, height, channels ); /* save_image_as_DDS( "CoCg_Y.dds", width, height, channels, img ); */ } /* create the OpenGL texture ID handle (note: allowing a forced texture ID lets me reload a texture) */ tex_id = reuse_texture_ID; if( tex_id == 0 ) { glGenTextures( 1, &tex_id ); } check_for_GL_errors( "glGenTextures" ); /* Note: sometimes glGenTextures fails (usually no OpenGL context) */ if( tex_id ) { /* and what type am I using as the internal texture format? */ switch( channels ) { case 1: original_texture_format = GL_LUMINANCE; break; case 2: original_texture_format = GL_LUMINANCE_ALPHA; break; case 3: original_texture_format = GL_RGB; break; case 4: original_texture_format = GL_RGBA; break; } internal_texture_format = original_texture_format; /* does the user want me to, and can I, save as DXT? */ if( flags & SOIL_FLAG_COMPRESS_TO_DXT ) { DXT_mode = query_DXT_capability(); if( DXT_mode == SOIL_CAPABILITY_PRESENT ) { /* I can use DXT, whether I compress it or OpenGL does */ if( (channels & 1) == 1 ) { /* 1 or 3 channels = DXT1 */ internal_texture_format = SOIL_RGB_S3TC_DXT1; } else { /* 2 or 4 channels = DXT5 */ internal_texture_format = SOIL_RGBA_S3TC_DXT5; } } } /* bind an OpenGL texture ID */ glBindTexture( opengl_texture_type, tex_id ); check_for_GL_errors( "glBindTexture" ); /* upload the main image */ if( DXT_mode == SOIL_CAPABILITY_PRESENT ) { /* user wants me to do the DXT conversion! */ int DDS_size; unsigned char *DDS_data = NULL; if( (channels & 1) == 1 ) { /* RGB, use DXT1 */ DDS_data = convert_image_to_DXT1( img, width, height, channels, &DDS_size ); } else { /* RGBA, use DXT5 */ DDS_data = convert_image_to_DXT5( img, width, height, channels, &DDS_size ); } if( DDS_data ) { soilGlCompressedTexImage2D( opengl_texture_target, 0, internal_texture_format, width, height, 0, DDS_size, DDS_data ); check_for_GL_errors( "glCompressedTexImage2D" ); SOIL_free_image_data( DDS_data ); /* printf( "Internal DXT compressor\n" ); */ } else { /* my compression failed, try the OpenGL driver's version */ glTexImage2D( opengl_texture_target, 0, internal_texture_format, width, height, 0, original_texture_format, GL_UNSIGNED_BYTE, img ); check_for_GL_errors( "glTexImage2D" ); /* printf( "OpenGL DXT compressor\n" ); */ } } else { /* user want OpenGL to do all the work! */ glTexImage2D( opengl_texture_target, 0, internal_texture_format, width, height, 0, original_texture_format, GL_UNSIGNED_BYTE, img ); check_for_GL_errors( "glTexImage2D" ); /*printf( "OpenGL DXT compressor\n" ); */ } /* are any MIPmaps desired? */ if( flags & SOIL_FLAG_MIPMAPS ) { int MIPlevel = 1; int MIPwidth = (width+1) / 2; int MIPheight = (height+1) / 2; unsigned char *resampled = (unsigned char*)malloc( channels*MIPwidth*MIPheight ); while( ((1< 0; --i ) { unsigned char temp = pixel_data[index1]; pixel_data[index1] = pixel_data[index2]; pixel_data[index2] = temp; ++index1; ++index2; } } /* save the image */ save_result = SOIL_save_image( filename, image_type, width, height, 3, pixel_data); /* And free the memory */ SOIL_free_image_data( pixel_data ); return save_result; } unsigned char* SOIL_load_image ( const char *filename, int *width, int *height, int *channels, int force_channels ) { unsigned char *result = stbi_load( filename, width, height, channels, force_channels ); if( result == NULL ) { result_string_pointer = stbi_failure_reason(); } else { result_string_pointer = "Image loaded"; } return result; } unsigned char* SOIL_load_image_from_memory ( const unsigned char *const buffer, int buffer_length, int *width, int *height, int *channels, int force_channels ) { unsigned char *result = stbi_load_from_memory( buffer, buffer_length, width, height, channels, force_channels ); if( result == NULL ) { result_string_pointer = stbi_failure_reason(); } else { result_string_pointer = "Image loaded from memory"; } return result; } int SOIL_save_image ( const char *filename, int image_type, int width, int height, int channels, const unsigned char *const data ) { int save_result; /* error check */ if( (width < 1) || (height < 1) || (channels < 1) || (channels > 4) || (data == NULL) || (filename == NULL) ) { return 0; } if( image_type == SOIL_SAVE_TYPE_BMP ) { save_result = stbi_write_bmp( filename, width, height, channels, (void*)data ); } else if( image_type == SOIL_SAVE_TYPE_TGA ) { save_result = stbi_write_tga( filename, width, height, channels, (void*)data ); } else if( image_type == SOIL_SAVE_TYPE_DDS ) { save_result = save_image_as_DDS( filename, width, height, channels, (const unsigned char *const)data ); } else { save_result = 0; } if( save_result == 0 ) { result_string_pointer = "Saving the image failed"; } else { result_string_pointer = "Image saved"; } return save_result; } void SOIL_free_image_data ( unsigned char *img_data ) { free( (void*)img_data ); } const char* SOIL_last_result ( void ) { return result_string_pointer; } unsigned int SOIL_direct_load_DDS_from_memory( const unsigned char *const buffer, int buffer_length, unsigned int reuse_texture_ID, int flags, int loading_as_cubemap ) { /* variables */ DDS_header header; unsigned int buffer_index = 0; unsigned int tex_ID = 0; /* file reading variables */ unsigned int S3TC_type = 0; unsigned char *DDS_data; unsigned int DDS_main_size; unsigned int DDS_full_size; unsigned int width, height; int mipmaps, cubemap, uncompressed, block_size = 16; unsigned int flag; unsigned int cf_target, ogl_target_start, ogl_target_end; unsigned int opengl_texture_type; int i; /* 1st off, does the filename even exist? */ if( NULL == buffer ) { /* we can't do it! */ result_string_pointer = "NULL buffer"; return 0; } if( buffer_length < sizeof( DDS_header ) ) { /* we can't do it! */ result_string_pointer = "DDS file was too small to contain the DDS header"; return 0; } /* try reading in the header */ memcpy ( (void*)(&header), (const void *)buffer, sizeof( DDS_header ) ); buffer_index = sizeof( DDS_header ); /* guilty until proven innocent */ result_string_pointer = "Failed to read a known DDS header"; /* validate the header (warning, "goto"'s ahead, shield your eyes!!) */ flag = ('D'<<0)|('D'<<8)|('S'<<16)|(' '<<24); if( header.dwMagic != flag ) {goto quick_exit;} if( header.dwSize != 124 ) {goto quick_exit;} /* I need all of these */ flag = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT; if( (header.dwFlags & flag) != flag ) {goto quick_exit;} /* According to the MSDN spec, the dwFlags should contain DDSD_LINEARSIZE if it's compressed, or DDSD_PITCH if uncompressed. Some DDS writers do not conform to the spec, so I need to make my reader more tolerant */ /* I need one of these */ flag = DDPF_FOURCC | DDPF_RGB; if( (header.sPixelFormat.dwFlags & flag) == 0 ) {goto quick_exit;} if( header.sPixelFormat.dwSize != 32 ) {goto quick_exit;} if( (header.sCaps.dwCaps1 & DDSCAPS_TEXTURE) == 0 ) {goto quick_exit;} /* make sure it is a type we can upload */ if( (header.sPixelFormat.dwFlags & DDPF_FOURCC) && !( (header.sPixelFormat.dwFourCC == (('D'<<0)|('X'<<8)|('T'<<16)|('1'<<24))) || (header.sPixelFormat.dwFourCC == (('D'<<0)|('X'<<8)|('T'<<16)|('3'<<24))) || (header.sPixelFormat.dwFourCC == (('D'<<0)|('X'<<8)|('T'<<16)|('5'<<24))) ) ) { goto quick_exit; } /* OK, validated the header, let's load the image data */ result_string_pointer = "DDS header loaded and validated"; width = header.dwWidth; height = header.dwHeight; uncompressed = 1 - (header.sPixelFormat.dwFlags & DDPF_FOURCC) / DDPF_FOURCC; cubemap = (header.sCaps.dwCaps2 & DDSCAPS2_CUBEMAP) / DDSCAPS2_CUBEMAP; if( uncompressed ) { S3TC_type = GL_RGB; block_size = 3; if( header.sPixelFormat.dwFlags & DDPF_ALPHAPIXELS ) { S3TC_type = GL_RGBA; block_size = 4; } DDS_main_size = width * height * block_size; } else { /* can we even handle direct uploading to OpenGL DXT compressed images? */ if( query_DXT_capability() != SOIL_CAPABILITY_PRESENT ) { /* we can't do it! */ result_string_pointer = "Direct upload of S3TC images not supported by the OpenGL driver"; return 0; } /* well, we know it is DXT1/3/5, because we checked above */ switch( (header.sPixelFormat.dwFourCC >> 24) - '0' ) { case 1: S3TC_type = SOIL_RGBA_S3TC_DXT1; block_size = 8; break; case 3: S3TC_type = SOIL_RGBA_S3TC_DXT3; block_size = 16; break; case 5: S3TC_type = SOIL_RGBA_S3TC_DXT5; block_size = 16; break; } DDS_main_size = ((width+3)>>2)*((height+3)>>2)*block_size; } if( cubemap ) { /* does the user want a cubemap? */ if( !loading_as_cubemap ) { /* we can't do it! */ result_string_pointer = "DDS image was a cubemap"; return 0; } /* can we even handle cubemaps with the OpenGL driver? */ if( query_cubemap_capability() != SOIL_CAPABILITY_PRESENT ) { /* we can't do it! */ result_string_pointer = "Direct upload of cubemap images not supported by the OpenGL driver"; return 0; } ogl_target_start = SOIL_TEXTURE_CUBE_MAP_POSITIVE_X; ogl_target_end = SOIL_TEXTURE_CUBE_MAP_NEGATIVE_Z; opengl_texture_type = SOIL_TEXTURE_CUBE_MAP; } else { /* does the user want a non-cubemap? */ if( loading_as_cubemap ) { /* we can't do it! */ result_string_pointer = "DDS image was not a cubemap"; return 0; } ogl_target_start = GL_TEXTURE_2D; ogl_target_end = GL_TEXTURE_2D; opengl_texture_type = GL_TEXTURE_2D; } if( (header.sCaps.dwCaps1 & DDSCAPS_MIPMAP) && (header.dwMipMapCount > 1) ) { int shift_offset; mipmaps = header.dwMipMapCount - 1; DDS_full_size = DDS_main_size; if( uncompressed ) { /* uncompressed DDS, simple MIPmap size calculation */ shift_offset = 0; } else { /* compressed DDS, MIPmap size calculation is block based */ shift_offset = 2; } for( i = 1; i <= mipmaps; ++ i ) { int w, h; w = width >> (shift_offset + i); h = height >> (shift_offset + i); if( w < 1 ) { w = 1; } if( h < 1 ) { h = 1; } DDS_full_size += w*h*block_size; } } else { mipmaps = 0; DDS_full_size = DDS_main_size; } DDS_data = (unsigned char*)malloc( DDS_full_size ); /* got the image data RAM, create or use an existing OpenGL texture handle */ tex_ID = reuse_texture_ID; if( tex_ID == 0 ) { glGenTextures( 1, &tex_ID ); } /* bind an OpenGL texture ID */ glBindTexture( opengl_texture_type, tex_ID ); /* do this for each face of the cubemap! */ for( cf_target = ogl_target_start; cf_target <= ogl_target_end; ++cf_target ) { if( buffer_index + DDS_full_size <= buffer_length ) { unsigned int byte_offset = DDS_main_size; memcpy( (void*)DDS_data, (const void*)(&buffer[buffer_index]), DDS_full_size ); buffer_index += DDS_full_size; /* upload the main chunk */ if( uncompressed ) { /* and remember, DXT uncompressed uses BGR(A), so swap to RGB(A) for ALL MIPmap levels */ for( i = 0; i < DDS_full_size; i += block_size ) { unsigned char temp = DDS_data[i]; DDS_data[i] = DDS_data[i+2]; DDS_data[i+2] = temp; } glTexImage2D( cf_target, 0, S3TC_type, width, height, 0, S3TC_type, GL_UNSIGNED_BYTE, DDS_data ); } else { soilGlCompressedTexImage2D( cf_target, 0, S3TC_type, width, height, 0, DDS_main_size, DDS_data ); } /* upload the mipmaps, if we have them */ for( i = 1; i <= mipmaps; ++i ) { int w, h, mip_size; w = width >> i; h = height >> i; if( w < 1 ) { w = 1; } if( h < 1 ) { h = 1; } /* upload this mipmap */ if( uncompressed ) { mip_size = w*h*block_size; glTexImage2D( cf_target, i, S3TC_type, w, h, 0, S3TC_type, GL_UNSIGNED_BYTE, &DDS_data[byte_offset] ); } else { mip_size = ((w+3)/4)*((h+3)/4)*block_size; soilGlCompressedTexImage2D( cf_target, i, S3TC_type, w, h, 0, mip_size, &DDS_data[byte_offset] ); } /* and move to the next mipmap */ byte_offset += mip_size; } /* it worked! */ result_string_pointer = "DDS file loaded"; } else { glDeleteTextures( 1, & tex_ID ); tex_ID = 0; cf_target = ogl_target_end + 1; result_string_pointer = "DDS file was too small for expected image data"; } }/* end reading each face */ SOIL_free_image_data( DDS_data ); if( tex_ID ) { /* did I have MIPmaps? */ if( mipmaps > 0 ) { /* instruct OpenGL to use the MIPmaps */ glTexParameteri( opengl_texture_type, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); glTexParameteri( opengl_texture_type, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR ); } else { /* instruct OpenGL _NOT_ to use the MIPmaps */ glTexParameteri( opengl_texture_type, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); glTexParameteri( opengl_texture_type, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); } /* does the user want clamping, or wrapping? */ if( flags & SOIL_FLAG_TEXTURE_REPEATS ) { glTexParameteri( opengl_texture_type, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameteri( opengl_texture_type, GL_TEXTURE_WRAP_T, GL_REPEAT ); glTexParameteri( opengl_texture_type, SOIL_TEXTURE_WRAP_R, GL_REPEAT ); } else { /* unsigned int clamp_mode = SOIL_CLAMP_TO_EDGE; */ unsigned int clamp_mode = GL_CLAMP; glTexParameteri( opengl_texture_type, GL_TEXTURE_WRAP_S, clamp_mode ); glTexParameteri( opengl_texture_type, GL_TEXTURE_WRAP_T, clamp_mode ); glTexParameteri( opengl_texture_type, SOIL_TEXTURE_WRAP_R, clamp_mode ); } } quick_exit: /* report success or failure */ return tex_ID; } unsigned int SOIL_direct_load_DDS( const char *filename, unsigned int reuse_texture_ID, int flags, int loading_as_cubemap ) { FILE *f; unsigned char *buffer; size_t buffer_length, bytes_read; unsigned int tex_ID = 0; /* error checks */ if( NULL == filename ) { result_string_pointer = "NULL filename"; return 0; } f = fopen( filename, "rb" ); if( NULL == f ) { /* the file doesn't seem to exist (or be open-able) */ result_string_pointer = "Can not find DDS file"; return 0; } fseek( f, 0, SEEK_END ); buffer_length = ftell( f ); fseek( f, 0, SEEK_SET ); buffer = (unsigned char *) malloc( buffer_length ); if( NULL == buffer ) { result_string_pointer = "malloc failed"; fclose( f ); return 0; } bytes_read = fread( (void*)buffer, 1, buffer_length, f ); fclose( f ); if( bytes_read < buffer_length ) { /* huh? */ buffer_length = bytes_read; } /* now try to do the loading */ tex_ID = SOIL_direct_load_DDS_from_memory( (const unsigned char *const)buffer, buffer_length, reuse_texture_ID, flags, loading_as_cubemap ); SOIL_free_image_data( buffer ); return tex_ID; } int query_NPOT_capability( void ) { /* check for the capability */ if( has_NPOT_capability == SOIL_CAPABILITY_UNKNOWN ) { /* we haven't yet checked for the capability, do so */ if( (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_ARB_texture_non_power_of_two" ) ) ) { /* not there, flag the failure */ has_NPOT_capability = SOIL_CAPABILITY_NONE; } else { /* it's there! */ has_NPOT_capability = SOIL_CAPABILITY_PRESENT; } } /* let the user know if we can do non-power-of-two textures or not */ return has_NPOT_capability; } int query_tex_rectangle_capability( void ) { /* check for the capability */ if( has_tex_rectangle_capability == SOIL_CAPABILITY_UNKNOWN ) { /* we haven't yet checked for the capability, do so */ if( (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_ARB_texture_rectangle" ) ) && (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_EXT_texture_rectangle" ) ) && (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_NV_texture_rectangle" ) ) ) { /* not there, flag the failure */ has_tex_rectangle_capability = SOIL_CAPABILITY_NONE; } else { /* it's there! */ has_tex_rectangle_capability = SOIL_CAPABILITY_PRESENT; } } /* let the user know if we can do texture rectangles or not */ return has_tex_rectangle_capability; } int query_cubemap_capability( void ) { /* check for the capability */ if( has_cubemap_capability == SOIL_CAPABILITY_UNKNOWN ) { /* we haven't yet checked for the capability, do so */ if( (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_ARB_texture_cube_map" ) ) && (NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_EXT_texture_cube_map" ) ) ) { /* not there, flag the failure */ has_cubemap_capability = SOIL_CAPABILITY_NONE; } else { /* it's there! */ has_cubemap_capability = SOIL_CAPABILITY_PRESENT; } } /* let the user know if we can do cubemaps or not */ return has_cubemap_capability; } int query_DXT_capability( void ) { /* check for the capability */ if( has_DXT_capability == SOIL_CAPABILITY_UNKNOWN ) { /* we haven't yet checked for the capability, do so */ if( NULL == strstr( (char const*)glGetString( GL_EXTENSIONS ), "GL_EXT_texture_compression_s3tc" ) ) { /* not there, flag the failure */ has_DXT_capability = SOIL_CAPABILITY_NONE; } else { /* and find the address of the extension function */ P_SOIL_GLCOMPRESSEDTEXIMAGE2DPROC ext_addr = NULL; #ifdef WIN32 ext_addr = (P_SOIL_GLCOMPRESSEDTEXIMAGE2DPROC) wglGetProcAddress ( "glCompressedTexImage2DARB" ); #elif defined(__APPLE__) || defined(__APPLE_CC__) /* I can't test this Apple stuff! */ CFBundleRef bundle; CFURLRef bundleURL = CFURLCreateWithFileSystemPath( kCFAllocatorDefault, CFSTR("/System/Library/Frameworks/OpenGL.framework"), kCFURLPOSIXPathStyle, true ); CFStringRef extensionName = CFStringCreateWithCString( kCFAllocatorDefault, "glCompressedTexImage2DARB", kCFStringEncodingASCII ); bundle = CFBundleCreate( kCFAllocatorDefault, bundleURL ); assert( bundle != NULL ); ext_addr = (P_SOIL_GLCOMPRESSEDTEXIMAGE2DPROC) CFBundleGetFunctionPointerForName ( bundle, extensionName ); CFRelease( bundleURL ); CFRelease( extensionName ); CFRelease( bundle ); #else ext_addr = (P_SOIL_GLCOMPRESSEDTEXIMAGE2DPROC) glXGetProcAddressARB ( (const GLubyte *)"glCompressedTexImage2DARB" ); #endif /* Flag it so no checks needed later */ if( NULL == ext_addr ) { /* hmm, not good!! This should not happen, but does on my laptop's VIA chipset. The GL_EXT_texture_compression_s3tc spec requires that ARB_texture_compression be present too. this means I can upload and have the OpenGL drive do the conversion, but I can't use my own routines or load DDS files from disk and upload them directly [8^( */ has_DXT_capability = SOIL_CAPABILITY_NONE; } else { /* all's well! */ soilGlCompressedTexImage2D = ext_addr; has_DXT_capability = SOIL_CAPABILITY_PRESENT; } } } /* let the user know if we can do DXT or not */ return has_DXT_capability; } libsoil-1.07~20080707.dfsg/src/image_helper.c0000644000175000017500000002441711034440250017753 0ustar gonerigoneri/* Jonathan Dummer image helper functions MIT license */ #include "image_helper.h" #include #include /* Upscaling the image uses simple bilinear interpolation */ int up_scale_image ( const unsigned char* const orig, int width, int height, int channels, unsigned char* resampled, int resampled_width, int resampled_height ) { float dx, dy; int x, y, c; /* error(s) check */ if ( (width < 1) || (height < 1) || (resampled_width < 2) || (resampled_height < 2) || (channels < 1) || (NULL == orig) || (NULL == resampled) ) { /* signify badness */ return 0; } /* for each given pixel in the new map, find the exact location from the original map which would contribute to this guy */ dx = (width - 1.0f) / (resampled_width - 1.0f); dy = (height - 1.0f) / (resampled_height - 1.0f); for ( y = 0; y < resampled_height; ++y ) { /* find the base y index and fractional offset from that */ float sampley = y * dy; int inty = (int)sampley; /* if( inty < 0 ) { inty = 0; } else */ if( inty > height - 2 ) { inty = height - 2; } sampley -= inty; for ( x = 0; x < resampled_width; ++x ) { float samplex = x * dx; int intx = (int)samplex; int base_index; /* find the base x index and fractional offset from that */ /* if( intx < 0 ) { intx = 0; } else */ if( intx > width - 2 ) { intx = width - 2; } samplex -= intx; /* base index into the original image */ base_index = (inty * width + intx) * channels; for ( c = 0; c < channels; ++c ) { /* do the sampling */ float value = 0.5f; value += orig[base_index] *(1.0f-samplex)*(1.0f-sampley); value += orig[base_index+channels] *(samplex)*(1.0f-sampley); value += orig[base_index+width*channels] *(1.0f-samplex)*(sampley); value += orig[base_index+width*channels+channels] *(samplex)*(sampley); /* move to the next channel */ ++base_index; /* save the new value */ resampled[y*resampled_width*channels+x*channels+c] = (unsigned char)(value); } } } /* done */ return 1; } int mipmap_image ( const unsigned char* const orig, int width, int height, int channels, unsigned char* resampled, int block_size_x, int block_size_y ) { int mip_width, mip_height; int i, j, c; /* error check */ if( (width < 1) || (height < 1) || (channels < 1) || (orig == NULL) || (resampled == NULL) || (block_size_x < 1) || (block_size_y < 1) ) { /* nothing to do */ return 0; } mip_width = width / block_size_x; mip_height = height / block_size_y; if( mip_width < 1 ) { mip_width = 1; } if( mip_height < 1 ) { mip_height = 1; } for( j = 0; j < mip_height; ++j ) { for( i = 0; i < mip_width; ++i ) { for( c = 0; c < channels; ++c ) { const int index = (j*block_size_y)*width*channels + (i*block_size_x)*channels + c; int sum_value; int u,v; int u_block = block_size_x; int v_block = block_size_y; int block_area; /* do a bit of checking so we don't over-run the boundaries (necessary for non-square textures!) */ if( block_size_x * (i+1) > width ) { u_block = width - i*block_size_y; } if( block_size_y * (j+1) > height ) { v_block = height - j*block_size_y; } block_area = u_block*v_block; /* for this pixel, see what the average of all the values in the block are. note: start the sum at the rounding value, not at 0 */ sum_value = block_area >> 1; for( v = 0; v < v_block; ++v ) for( u = 0; u < u_block; ++u ) { sum_value += orig[index + v*width*channels + u*channels]; } resampled[j*mip_width*channels + i*channels + c] = sum_value / block_area; } } } return 1; } int scale_image_RGB_to_NTSC_safe ( unsigned char* orig, int width, int height, int channels ) { const float scale_lo = 16.0f - 0.499f; const float scale_hi = 235.0f + 0.499f; int i, j; int nc = channels; unsigned char scale_LUT[256]; /* error check */ if( (width < 1) || (height < 1) || (channels < 1) || (orig == NULL) ) { /* nothing to do */ return 0; } /* set up the scaling Look Up Table */ for( i = 0; i < 256; ++i ) { scale_LUT[i] = (unsigned char)((scale_hi - scale_lo) * i / 255.0f + scale_lo); } /* for channels = 2 or 4, ignore the alpha component */ nc -= 1 - (channels & 1); /* OK, go through the image and scale any non-alpha components */ for( i = 0; i < width*height*channels; i += channels ) { for( j = 0; j < nc; ++j ) { orig[i+j] = scale_LUT[orig[i+j]]; } } return 1; } unsigned char clamp_byte( int x ) { return ( (x) < 0 ? (0) : ( (x) > 255 ? 255 : (x) ) ); } /* This function takes the RGB components of the image and converts them into YCoCg. 3 components will be re-ordered to CoYCg (for optimum DXT1 compression), while 4 components will be ordered CoCgAY (for DXT5 compression). */ int convert_RGB_to_YCoCg ( unsigned char* orig, int width, int height, int channels ) { int i; /* error check */ if( (width < 1) || (height < 1) || (channels < 3) || (channels > 4) || (orig == NULL) ) { /* nothing to do */ return -1; } /* do the conversion */ if( channels == 3 ) { for( i = 0; i < width*height*3; i += 3 ) { int r = orig[i+0]; int g = (orig[i+1] + 1) >> 1; int b = orig[i+2]; int tmp = (2 + r + b) >> 2; /* Co */ orig[i+0] = clamp_byte( 128 + ((r - b + 1) >> 1) ); /* Y */ orig[i+1] = clamp_byte( g + tmp ); /* Cg */ orig[i+2] = clamp_byte( 128 + g - tmp ); } } else { for( i = 0; i < width*height*4; i += 4 ) { int r = orig[i+0]; int g = (orig[i+1] + 1) >> 1; int b = orig[i+2]; unsigned char a = orig[i+3]; int tmp = (2 + r + b) >> 2; /* Co */ orig[i+0] = clamp_byte( 128 + ((r - b + 1) >> 1) ); /* Cg */ orig[i+1] = clamp_byte( 128 + g - tmp ); /* Alpha */ orig[i+2] = a; /* Y */ orig[i+3] = clamp_byte( g + tmp ); } } /* done */ return 0; } /* This function takes the YCoCg components of the image and converts them into RGB. See above. */ int convert_YCoCg_to_RGB ( unsigned char* orig, int width, int height, int channels ) { int i; /* error check */ if( (width < 1) || (height < 1) || (channels < 3) || (channels > 4) || (orig == NULL) ) { /* nothing to do */ return -1; } /* do the conversion */ if( channels == 3 ) { for( i = 0; i < width*height*3; i += 3 ) { int co = orig[i+0] - 128; int y = orig[i+1]; int cg = orig[i+2] - 128; /* R */ orig[i+0] = clamp_byte( y + co - cg ); /* G */ orig[i+1] = clamp_byte( y + cg ); /* B */ orig[i+2] = clamp_byte( y - co - cg ); } } else { for( i = 0; i < width*height*4; i += 4 ) { int co = orig[i+0] - 128; int cg = orig[i+1] - 128; unsigned char a = orig[i+2]; int y = orig[i+3]; /* R */ orig[i+0] = clamp_byte( y + co - cg ); /* G */ orig[i+1] = clamp_byte( y + cg ); /* B */ orig[i+2] = clamp_byte( y - co - cg ); /* A */ orig[i+3] = a; } } /* done */ return 0; } float find_max_RGBE ( unsigned char *image, int width, int height ) { float max_val = 0.0f; unsigned char *img = image; int i, j; for( i = width * height; i > 0; --i ) { /* float scale = powf( 2.0f, img[3] - 128.0f ) / 255.0f; */ float scale = ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 ); for( j = 0; j < 3; ++j ) { if( img[j] * scale > max_val ) { max_val = img[j] * scale; } } /* next pixel */ img += 4; } return max_val; } int RGBE_to_RGBdivA ( unsigned char *image, int width, int height, int rescale_to_max ) { /* local variables */ int i, iv; unsigned char *img = image; float scale = 1.0f; /* error check */ if( (!image) || (width < 1) || (height < 1) ) { return 0; } /* convert (note: no negative numbers, but 0.0 is possible) */ if( rescale_to_max ) { scale = 255.0f / find_max_RGBE( image, width, height ); } for( i = width * height; i > 0; --i ) { /* decode this pixel, and find the max */ float r,g,b,e, m; /* e = scale * powf( 2.0f, img[3] - 128.0f ) / 255.0f; */ e = scale * ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 ); r = e * img[0]; g = e * img[1]; b = e * img[2]; m = (r > g) ? r : g; m = (b > m) ? b : m; /* and encode it into RGBdivA */ iv = (m != 0.0f) ? (int)(255.0f / m) : 1.0f; iv = (iv < 1) ? 1 : iv; img[3] = (iv > 255) ? 255 : iv; iv = (int)(img[3] * r + 0.5f); img[0] = (iv > 255) ? 255 : iv; iv = (int)(img[3] * g + 0.5f); img[1] = (iv > 255) ? 255 : iv; iv = (int)(img[3] * b + 0.5f); img[2] = (iv > 255) ? 255 : iv; /* and on to the next pixel */ img += 4; } return 1; } int RGBE_to_RGBdivA2 ( unsigned char *image, int width, int height, int rescale_to_max ) { /* local variables */ int i, iv; unsigned char *img = image; float scale = 1.0f; /* error check */ if( (!image) || (width < 1) || (height < 1) ) { return 0; } /* convert (note: no negative numbers, but 0.0 is possible) */ if( rescale_to_max ) { scale = 255.0f * 255.0f / find_max_RGBE( image, width, height ); } for( i = width * height; i > 0; --i ) { /* decode this pixel, and find the max */ float r,g,b,e, m; /* e = scale * powf( 2.0f, img[3] - 128.0f ) / 255.0f; */ e = scale * ldexp( 1.0f / 255.0f, (int)(img[3]) - 128 ); r = e * img[0]; g = e * img[1]; b = e * img[2]; m = (r > g) ? r : g; m = (b > m) ? b : m; /* and encode it into RGBdivA */ iv = (m != 0.0f) ? (int)sqrtf( 255.0f * 255.0f / m ) : 1.0f; iv = (iv < 1) ? 1 : iv; img[3] = (iv > 255) ? 255 : iv; iv = (int)(img[3] * img[3] * r / 255.0f + 0.5f); img[0] = (iv > 255) ? 255 : iv; iv = (int)(img[3] * img[3] * g / 255.0f + 0.5f); img[1] = (iv > 255) ? 255 : iv; iv = (int)(img[3] * img[3] * b / 255.0f + 0.5f); img[2] = (iv > 255) ? 255 : iv; /* and on to the next pixel */ img += 4; } return 1; } libsoil-1.07~20080707.dfsg/src/original/0000755000175000017500000000000011034440326016766 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/src/original/stb_image-1.16.c0000644000175000017500000036635211034440250021462 0ustar gonerigoneri/* stbi-1.16 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c when you control the images you're loading QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline (no JPEG progressive, no oddball channel decimations) PNG non-interlaced BMP non-1bpp, non-RLE TGA (not sure what subset, if a subset) PSD (composited view only, no extra channels) HDR (radiance rgbE format) writes BMP,TGA (define STBI_NO_WRITE to remove code) decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code) supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD) TODO: stbi_info_* history: 1.16 major bugfix - convert_format converted one too many pixels 1.15 initialize some fields for thread safety 1.14 fix threadsafe conversion bug; header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines 1.10 Fixes for 64-bit (don't use "unsigned long") optimized upsampling by Fabian "ryg" Giesen 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant */ #ifndef STBI_INCLUDE_STB_IMAGE_H #define STBI_INCLUDE_STB_IMAGE_H //// begin header file //////////////////////////////////////////////////// // // Limitations: // - no progressive/interlaced support (jpeg, png) // - 8-bit samples only (jpeg, png) // - not threadsafe // - channel subsampling of at most 2 in each dimension (jpeg) // - no delayed line count (jpeg) -- IJG doesn't support either // // Basic usage (see HDR discussion below): // int x,y,n; // unsigned char *data = stbi_load(filename, &x, &y, &n, 0); // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel // stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *comp -- outputs # of image components in image file // int req_comp -- if non-zero, # of image components requested in result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data. The pixel data consists of *y scanlines of *x pixels, // with each pixel consisting of N interleaved 8-bit components; the first // pixel pointed to is top-left-most in the image. There is no padding between // image scanlines or between pixels, regardless of format. The number of // components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. // If req_comp is non-zero, *comp has the number of components that _would_ // have been output otherwise. E.g. if you set req_comp to 4, you will always // get RGBA output, but you can check *comp to easily see if it's opaque. // // An output image with N components has the following components interleaved // in this order in each pixel: // // N=#comp components // 1 grey // 2 grey, alpha // 3 red, green, blue // 4 red, green, blue, alpha // // If image loading fails for any reason, the return value will be NULL, // and *x, *y, *comp will be unchanged. The function stbi_failure_reason() // can be queried for an extremely brief, end-user unfriendly explanation // of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid // compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly // more user-friendly ones. // // Paletted PNG and BMP images are automatically depalettized. // // // =========================================================================== // // HDR image support (disable by defining STBI_NO_HDR) // // stb_image now supports loading HDR images in general, and currently // the Radiance .HDR file format, although the support is provided // generically. You can still load any file through the existing interface; // if you attempt to load an HDR file, it will be automatically remapped to // LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; // both of these constants can be reconfigured through this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); // // (note, do not use _inverse_ constants; stbi_image will invert them // appropriately). // // Additionally, there is a new, parallel interface for loading files as // (linear) floats to preserve the full dynamic range: // // float *data = stbi_loadf(filename, &x, &y, &n, 0); // // If you load LDR images through this interface, those images will // be promoted to floating point values, run through the inverse of // constants corresponding to the above: // // stbi_ldr_to_hdr_scale(1.0f); // stbi_ldr_to_hdr_gamma(2.2f); // // Finally, given a filename (or an open file or memory block--see header // file for details) containing image data, you can query for the "most // appropriate" interface to use (that is, whether the image is HDR or // not), using: // // stbi_is_hdr(char *filename); #ifndef STBI_NO_STDIO #include #endif #define STBI_VERSION 1 enum { STBI_default = 0, // only used for req_comp STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4, }; typedef unsigned char stbi_uc; #ifdef __cplusplus extern "C" { #endif // WRITING API #if !defined(STBI_NO_WRITE) && !defined(STBI_NO_STDIO) // write a BMP/TGA file given tightly packed 'comp' channels (no padding, nor bmp-stride-padding) // (you must include the appropriate extension in the filename). // returns TRUE on success, FALSE if couldn't open file, error writing file extern int stbi_write_bmp (char const *filename, int x, int y, int comp, void *data); extern int stbi_write_tga (char const *filename, int x, int y, int comp, void *data); #endif // PRIMARY API - works on images of any type // load image by filename, open file, or memory buffer #ifndef STBI_NO_STDIO extern stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); // for stbi_load_from_file, file pointer is left pointing immediately after image #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO extern float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp); extern float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif extern float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern void stbi_hdr_to_ldr_gamma(float gamma); extern void stbi_hdr_to_ldr_scale(float scale); extern void stbi_ldr_to_hdr_gamma(float gamma); extern void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_HDR // get a VERY brief reason for failure // NOT THREADSAFE extern char *stbi_failure_reason (void); // free the loaded image -- this is just free() extern void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); extern int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO extern int stbi_info (char const *filename, int *x, int *y, int *comp); extern int stbi_is_hdr (char const *filename); extern int stbi_is_hdr_from_file(FILE *f); #endif // ZLIB client - used by PNG, available for other purposes extern char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); extern char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); extern int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); extern char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); extern int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); // TYPE-SPECIFIC ACCESS // is it a jpeg? extern int stbi_jpeg_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_jpeg_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_test_file (FILE *f); extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a png? extern int stbi_png_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_png_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_png_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info (char const *filename, int *x, int *y, int *comp); extern int stbi_png_test_file (FILE *f); extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a bmp? extern int stbi_bmp_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_bmp_test_file (FILE *f); extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a tga? extern int stbi_tga_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_tga_test_file (FILE *f); extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a psd? extern int stbi_psd_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_psd_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_psd_test_file (FILE *f); extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it an hdr? extern int stbi_hdr_test_memory (stbi_uc const *buffer, int len); extern float * stbi_hdr_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_hdr_test_file (FILE *f); extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // define new loaders typedef struct { int (*test_memory)(stbi_uc const *buffer, int len); stbi_uc * (*load_from_memory)(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO int (*test_file)(FILE *f); stbi_uc * (*load_from_file)(FILE *f, int *x, int *y, int *comp, int req_comp); #endif } stbi_loader; // register a loader by filling out the above structure (you must defined ALL functions) // returns 1 if added or already added, 0 if not added (too many loaders) // NOT THREADSAFE extern int stbi_register_loader(stbi_loader *loader); // define faster low-level operations (typically SIMD support) #if STBI_SIMD typedef void (*stbi_idct_8x8)(uint8 *out, int out_stride, short data[64], unsigned short *dequantize); // compute an integer IDCT on "input" // input[x] = data[x] * dequantize[x] // write results to 'out': 64 samples, each run of 8 spaced by 'out_stride' // CLAMP results to 0..255 typedef void (*stbi_YCbCr_to_RGB_run)(uint8 *output, uint8 const *y, uint8 const *cb, uint8 const *cr, int count, int step); // compute a conversion from YCbCr to RGB // 'count' pixels // write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B // y: Y input channel // cb: Cb input channel; scale/biased to be 0..255 // cr: Cr input channel; scale/biased to be 0..255 extern void stbi_install_idct(stbi_idct_8x8 func); extern void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func); #endif // STBI_SIMD #ifdef __cplusplus } #endif // // //// end header file ///////////////////////////////////////////////////// #endif // STBI_INCLUDE_STB_IMAGE_H #ifndef STBI_HEADER_FILE_ONLY #ifndef STBI_NO_HDR #include // ldexp #include // strcmp #endif #ifndef STBI_NO_STDIO #include #endif #include #include #include #include #ifndef _MSC_VER #ifdef __cplusplus #define __forceinline inline #else #define __forceinline #endif #endif // implementation: typedef unsigned char uint8; typedef unsigned short uint16; typedef signed short int16; typedef unsigned int uint32; typedef signed int int32; typedef unsigned int uint; // should produce compiler error if size is wrong typedef unsigned char validate_uint32[sizeof(uint32)==4]; #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE) #define STBI_NO_WRITE #endif ////////////////////////////////////////////////////////////////////////////// // // Generic API that works on all image types // // this is not threadsafe static char *failure_reason; char *stbi_failure_reason(void) { return failure_reason; } static int e(char *str) { failure_reason = str; return 0; } #ifdef STBI_NO_FAILURE_STRINGS #define e(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) #define e(x,y) e(y) #else #define e(x,y) e(x) #endif #define epf(x,y) ((float *) (e(x,y)?NULL:NULL)) #define epuc(x,y) ((unsigned char *) (e(x,y)?NULL:NULL)) void stbi_image_free(void *retval_from_stbi_load) { free(retval_from_stbi_load); } #define MAX_LOADERS 32 stbi_loader *loaders[MAX_LOADERS]; static int max_loaders = 0; int stbi_register_loader(stbi_loader *loader) { int i; for (i=0; i < MAX_LOADERS; ++i) { // already present? if (loaders[i] == loader) return 1; // end of the list? if (loaders[i] == NULL) { loaders[i] = loader; max_loaders = i+1; return 1; } } // no room for it return 0; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp); static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp); #endif #ifndef STBI_NO_STDIO unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); unsigned char *result; if (!f) return epuc("can't fopen", "Unable to open file"); result = stbi_load_from_file(f,x,y,comp,req_comp); fclose(f); return result; } unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_file(f)) return stbi_jpeg_load_from_file(f,x,y,comp,req_comp); if (stbi_png_test_file(f)) return stbi_png_load_from_file(f,x,y,comp,req_comp); if (stbi_bmp_test_file(f)) return stbi_bmp_load_from_file(f,x,y,comp,req_comp); if (stbi_psd_test_file(f)) return stbi_psd_load_from_file(f,x,y,comp,req_comp); #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) { float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_file(f)) return loaders[i]->load_from_file(f,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_file(f)) return stbi_tga_load_from_file(f,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #endif unsigned char *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_memory(buffer,len)) return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_png_test_memory(buffer,len)) return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_bmp_test_memory(buffer,len)) return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_psd_test_memory(buffer,len)) return stbi_psd_load_from_memory(buffer,len,x,y,comp,req_comp); #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) { float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_memory(buffer,len)) return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_memory(buffer,len)) return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); float *result; if (!f) return epf("can't fopen", "Unable to open file"); result = stbi_loadf_from_file(f,x,y,comp,req_comp); fclose(f); return result; } float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { unsigned char *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) return stbi_hdr_load_from_file(f,x,y,comp,req_comp); #endif data = stbi_load_from_file(f, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); #endif data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is // defined, for API simplicity; if STBI_NO_HDR is defined, it always // reports false! int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) { #ifndef STBI_NO_HDR return stbi_hdr_test_memory(buffer, len); #else return 0; #endif } #ifndef STBI_NO_STDIO extern int stbi_is_hdr (char const *filename) { FILE *f = fopen(filename, "rb"); int result=0; if (f) { result = stbi_is_hdr_from_file(f); fclose(f); } return result; } extern int stbi_is_hdr_from_file(FILE *f) { #ifndef STBI_NO_HDR return stbi_hdr_test_file(f); #else return 0; #endif } #endif // @TODO: get image dimensions & components without fully decoding #ifndef STBI_NO_STDIO extern int stbi_info (char const *filename, int *x, int *y, int *comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_HDR static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f; static float l2h_gamma=2.2f, l2h_scale=1.0f; void stbi_hdr_to_ldr_gamma(float gamma) { h2l_gamma_i = 1/gamma; } void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; } void stbi_ldr_to_hdr_gamma(float gamma) { l2h_gamma = gamma; } void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; } #endif ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // enum { SCAN_load=0, SCAN_type, SCAN_header, }; typedef struct { uint32 img_x, img_y; int img_n, img_out_n; #ifndef STBI_NO_STDIO FILE *img_file; #endif uint8 *img_buffer, *img_buffer_end; } stbi; #ifndef STBI_NO_STDIO static void start_file(stbi *s, FILE *f) { s->img_file = f; } #endif static void start_mem(stbi *s, uint8 const *buffer, int len) { #ifndef STBI_NO_STDIO s->img_file = NULL; #endif s->img_buffer = (uint8 *) buffer; s->img_buffer_end = (uint8 *) buffer+len; } __forceinline static int get8(stbi *s) { #ifndef STBI_NO_STDIO if (s->img_file) { int c = fgetc(s->img_file); return c == EOF ? 0 : c; } #endif if (s->img_buffer < s->img_buffer_end) return *s->img_buffer++; return 0; } __forceinline static int at_eof(stbi *s) { #ifndef STBI_NO_STDIO if (s->img_file) return feof(s->img_file); #endif return s->img_buffer >= s->img_buffer_end; } __forceinline static uint8 get8u(stbi *s) { return (uint8) get8(s); } static void skip(stbi *s, int n) { #ifndef STBI_NO_STDIO if (s->img_file) fseek(s->img_file, n, SEEK_CUR); else #endif s->img_buffer += n; } static int get16(stbi *s) { int z = get8(s); return (z << 8) + get8(s); } static uint32 get32(stbi *s) { uint32 z = get16(s); return (z << 16) + get16(s); } static int get16le(stbi *s) { int z = get8(s); return z + (get8(s) << 8); } static uint32 get32le(stbi *s) { uint32 z = get16le(s); return z + (get16le(s) << 16); } static void getn(stbi *s, stbi_uc *buffer, int n) { #ifndef STBI_NO_STDIO if (s->img_file) { fread(buffer, 1, n, s->img_file); return; } #endif memcpy(buffer, s->img_buffer, n); s->img_buffer += n; } ////////////////////////////////////////////////////////////////////////////// // // generic converter from built-in img_n to req_comp // individual types do this automatically as much as possible (e.g. jpeg // does all cases internally since it needs to colorspace convert anyway, // and it never has alpha, so very few cases ). png can automatically // interleave an alpha=255 channel, but falls back to this for other cases // // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing static uint8 compute_y(int r, int g, int b) { return (uint8) (((r*77) + (g*150) + (29*b)) >> 8); } static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, uint x, uint y) { int i,j; unsigned char *good; if (req_comp == img_n) return data; assert(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) malloc(req_comp * x * y); if (good == NULL) { free(data); return epuc("outofmem", "Out of memory"); } for (j=0; j < (int) y; ++j) { unsigned char *src = data + j * x * img_n ; unsigned char *dest = good + j * x * req_comp; #define COMBO(a,b) ((a)*8+(b)) #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch(COMBO(img_n, req_comp)) { CASE(1,2) dest[0]=src[0], dest[1]=255; break; CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; CASE(2,1) dest[0]=src[0]; break; CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break; CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; default: assert(0); } #undef CASE } free(data); return good; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { int i,k,n; float *output = (float *) malloc(x * y * comp * sizeof(float)); if (output == NULL) { free(data); return epf("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { output[i*comp + k] = (float) pow(data[i*comp+k]/255.0f, l2h_gamma) * l2h_scale; } if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; } free(data); return output; } #define float2int(x) ((int) (x)) static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp) { int i,k,n; stbi_uc *output = (stbi_uc *) malloc(x * y * comp); if (output == NULL) { free(data); return epuc("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } } free(data); return output; } #endif ////////////////////////////////////////////////////////////////////////////// // // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation) // // simple implementation // - channel subsampling of at most 2 in each dimension // - doesn't support delayed output of y-dimension // - simple interface (only one output format: 8-bit interleaved RGB) // - doesn't try to recover corrupt jpegs // - doesn't allow partial loading, loading multiple at once // - still fast on x86 (copying globals into locals doesn't help x86) // - allocates lots of intermediate memory (full size of all components) // - non-interleaved case requires this anyway // - allows good upsampling (see next) // high-quality // - upsampled channels are bilinearly interpolated, even across blocks // - quality integer IDCT derived from IJG's 'slow' // performance // - fast huffman; reasonable integer IDCT // - uses a lot of intermediate memory, could cache poorly // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4 // stb_jpeg: 1.34 seconds (MSVC6, default release build) // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro) // IJL11.dll: 1.08 seconds (compiled by intel) // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG) // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro) // huffman decoding acceleration #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache typedef struct { uint8 fast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win uint16 code[256]; uint8 values[256]; uint8 size[257]; unsigned int maxcode[18]; int delta[17]; // old 'firstsymbol' - old 'firstcode' } huffman; typedef struct { #if STBI_SIMD unsigned short dequant2[4][64]; #endif stbi s; huffman huff_dc[4]; huffman huff_ac[4]; uint8 dequant[4][64]; // sizes for components, interleaved MCUs int img_h_max, img_v_max; int img_mcu_x, img_mcu_y; int img_mcu_w, img_mcu_h; // definition of jpeg image component struct { int id; int h,v; int tq; int hd,ha; int dc_pred; int x,y,w2,h2; uint8 *data; void *raw_data; uint8 *linebuf; } img_comp[4]; uint32 code_buffer; // jpeg entropy-coded buffer int code_bits; // number of valid bits unsigned char marker; // marker seen while filling entropy buffer int nomore; // flag if we saw a marker so must stop int scan_n, order[4]; int restart_interval, todo; } jpeg; static int build_huffman(huffman *h, int *count) { int i,j,k=0,code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i) for (j=0; j < count[i]; ++j) h->size[k++] = (uint8) (i+1); h->size[k] = 0; // compute actual symbols (from jpeg spec) code = 0; k = 0; for(j=1; j <= 16; ++j) { // compute delta to add to code to compute symbol id h->delta[j] = k - code; if (h->size[k] == j) { while (h->size[k] == j) h->code[k++] = (uint16) (code++); if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG"); } // compute largest code + 1 for this size, preshifted as needed later h->maxcode[j] = code << (16-j); code <<= 1; } h->maxcode[j] = 0xffffffff; // build non-spec acceleration table; 255 is flag for not-accelerated memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) { int s = h->size[i]; if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) { h->fast[c+j] = (uint8) i; } } } return 1; } static void grow_buffer_unsafe(jpeg *j) { do { int b = j->nomore ? 0 : get8(&j->s); if (b == 0xff) { int c = get8(&j->s); if (c != 0) { j->marker = (unsigned char) c; j->nomore = 1; return; } } j->code_buffer = (j->code_buffer << 8) | b; j->code_bits += 8; } while (j->code_bits <= 24); } // (1 << n) - 1 static uint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream __forceinline static int decode(jpeg *j, huffman *h) { unsigned int temp; int c,k; if (j->code_bits < 16) grow_buffer_unsafe(j); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (j->code_buffer >> (j->code_bits - FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c]; if (k < 255) { if (h->size[k] > j->code_bits) return -1; j->code_bits -= h->size[k]; return h->values[k]; } // naive test is to shift the code_buffer down so k bits are // valid, then test against maxcode. To speed this up, we've // preshifted maxcode left so that it has (16-k) 0s at the // end; in other words, regardless of the number of bits, it // wants to be compared against something shifted to have 16; // that way we don't need to shift inside the loop. if (j->code_bits < 16) temp = (j->code_buffer << (16 - j->code_bits)) & 0xffff; else temp = (j->code_buffer >> (j->code_bits - 16)) & 0xffff; for (k=FAST_BITS+1 ; ; ++k) if (temp < h->maxcode[k]) break; if (k == 17) { // error! code not found j->code_bits -= 16; return -1; } if (k > j->code_bits) return -1; // convert the huffman code to the symbol id c = ((j->code_buffer >> (j->code_bits - k)) & bmask[k]) + h->delta[k]; assert((((j->code_buffer) >> (j->code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c]); // convert the id to a symbol j->code_bits -= k; return h->values[c]; } // combined JPEG 'receive' and JPEG 'extend', since baseline // always extends everything it receives. __forceinline static int extend_receive(jpeg *j, int n) { unsigned int m = 1 << (n-1); unsigned int k; if (j->code_bits < n) grow_buffer_unsafe(j); k = (j->code_buffer >> (j->code_bits - n)) & bmask[n]; j->code_bits -= n; // the following test is probably a random branch that won't // predict well. I tried to table accelerate it but failed. // maybe it's compiling as a conditional move? if (k < m) return (-1 << n) + k + 1; else return k; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? static uint8 dezigzag[64+15] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, // let corrupt input sample past end 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }; // decode one 64-entry block-- static int decode_block(jpeg *j, short data[64], huffman *hdc, huffman *hac, int b) { int diff,dc,k; int t = decode(j, hdc); if (t < 0) return e("bad huffman code","Corrupt JPEG"); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) dc; // decode AC components, see JPEG spec k = 1; do { int r,s; int rs = decode(j, hac); if (rs < 0) return e("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (rs != 0xf0) break; // end block k += 16; } else { k += r; // decode into unzigzag'd location data[dezigzag[k++]] = (short) extend_receive(j,s); } } while (k < 64); return 1; } // take a -128..127 value and clamp it and convert to 0..255 __forceinline static uint8 clamp(int x) { x += 128; // trick to use a single test to catch both cases if ((unsigned int) x > 255) { if (x < 0) return 0; if (x > 255) return 255; } return (uint8) x; } #define f2f(x) (int) (((x) * 4096 + 0.5)) #define fsh(x) ((x) << 12) // derived from jidctint -- DCT_ISLOW #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ p2 = s2; \ p3 = s6; \ p1 = (p2+p3) * f2f(0.5411961f); \ t2 = p1 + p3*f2f(-1.847759065f); \ t3 = p1 + p2*f2f( 0.765366865f); \ p2 = s0; \ p3 = s4; \ t0 = fsh(p2+p3); \ t1 = fsh(p2-p3); \ x0 = t0+t3; \ x3 = t0-t3; \ x1 = t1+t2; \ x2 = t1-t2; \ t0 = s7; \ t1 = s5; \ t2 = s3; \ t3 = s1; \ p3 = t0+t2; \ p4 = t1+t3; \ p1 = t0+t3; \ p2 = t1+t2; \ p5 = (p3+p4)*f2f( 1.175875602f); \ t0 = t0*f2f( 0.298631336f); \ t1 = t1*f2f( 2.053119869f); \ t2 = t2*f2f( 3.072711026f); \ t3 = t3*f2f( 1.501321110f); \ p1 = p5 + p1*f2f(-0.899976223f); \ p2 = p5 + p2*f2f(-2.562915447f); \ p3 = p3*f2f(-1.961570560f); \ p4 = p4*f2f(-0.390180644f); \ t3 += p1+p4; \ t2 += p2+p3; \ t1 += p2+p4; \ t0 += p1+p3; #if !STBI_SIMD // .344 seconds on 3*anemones.jpg static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize) { int i,val[64],*v=val; uint8 *o,*dq = dequantize; short *d = data; // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } #else static void idct_block(uint8 *out, int out_stride, short data[64], unsigned short *dequantize) { int i,val[64],*v=val; uint8 *o; unsigned short *dq = dequantize; short *d = data; // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } static stbi_idct_8x8 stbi_idct_installed = idct_block; extern void stbi_install_idct(stbi_idct_8x8 func) { stbi_idct_installed = func; } #endif #define MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value static uint8 get_marker(jpeg *j) { uint8 x; if (j->marker != MARKER_none) { x = j->marker; j->marker = MARKER_none; return x; } x = get8u(&j->s); if (x != 0xff) return MARKER_none; while (x == 0xff) x = get8u(&j->s); return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] #define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, reset the entropy decoder and // the dc prediction static void reset(jpeg *j) { j->code_bits = 0; j->code_buffer = 0; j->nomore = 0; j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0; j->marker = MARKER_none; j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, // since we don't even allow 1<<30 pixels } static int parse_entropy_coded_data(jpeg *z) { reset(z); if (z->scan_n == 1) { int i,j; #if STBI_SIMD __declspec(align(16)) #endif short data[64]; int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; #if STBI_SIMD stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); #else idct_block(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); #endif // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(z->marker)) return 1; reset(z); } } } } else { // interleaved! int i,j,k,x,y; short data[64]; for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x)*8; int y2 = (j*z->img_comp[n].v + y)*8; if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; #if STBI_SIMD stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); #else idct_block(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); #endif } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(z->marker)) return 1; reset(z); } } } } return 1; } static int process_marker(jpeg *z, int m) { int L; switch (m) { case MARKER_none: // no marker found return e("expected marker","Corrupt JPEG"); case 0xC2: // SOF - progressive return e("progressive jpeg","JPEG format not supported (progressive)"); case 0xDD: // DRI - specify restart interval if (get16(&z->s) != 4) return e("bad DRI len","Corrupt JPEG"); z->restart_interval = get16(&z->s); return 1; case 0xDB: // DQT - define quantization table L = get16(&z->s)-2; while (L > 0) { int q = get8(&z->s); int p = q >> 4; int t = q & 15,i; if (p != 0) return e("bad DQT type","Corrupt JPEG"); if (t > 3) return e("bad DQT table","Corrupt JPEG"); for (i=0; i < 64; ++i) z->dequant[t][dezigzag[i]] = get8u(&z->s); #if STBI_SIMD for (i=0; i < 64; ++i) z->dequant2[t][i] = dequant[t][i]; #endif L -= 65; } return L==0; case 0xC4: // DHT - define huffman table L = get16(&z->s)-2; while (L > 0) { uint8 *v; int sizes[16],i,m=0; int q = get8(&z->s); int tc = q >> 4; int th = q & 15; if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG"); for (i=0; i < 16; ++i) { sizes[i] = get8(&z->s); m += sizes[i]; } L -= 17; if (tc == 0) { if (!build_huffman(z->huff_dc+th, sizes)) return 0; v = z->huff_dc[th].values; } else { if (!build_huffman(z->huff_ac+th, sizes)) return 0; v = z->huff_ac[th].values; } for (i=0; i < m; ++i) v[i] = get8u(&z->s); L -= m; } return L==0; } // check for comment block or APP blocks if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { skip(&z->s, get16(&z->s)-2); return 1; } return 0; } // after we see SOS static int process_scan_header(jpeg *z) { int i; int Ls = get16(&z->s); z->scan_n = get8(&z->s); if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s.img_n) return e("bad SOS component count","Corrupt JPEG"); if (Ls != 6+2*z->scan_n) return e("bad SOS len","Corrupt JPEG"); for (i=0; i < z->scan_n; ++i) { int id = get8(&z->s), which; int q = get8(&z->s); for (which = 0; which < z->s.img_n; ++which) if (z->img_comp[which].id == id) break; if (which == z->s.img_n) return 0; z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG"); z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG"); z->order[i] = which; } if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG"); get8(&z->s); // should be 63, but might be 0 if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG"); return 1; } static int process_frame_header(jpeg *z, int scan) { stbi *s = &z->s; int Lf,p,i,q, h_max=1,v_max=1,c; Lf = get16(s); if (Lf < 11) return e("bad SOF len","Corrupt JPEG"); // JPEG p = get8(s); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline s->img_y = get16(s); if (s->img_y == 0) return e("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG s->img_x = get16(s); if (s->img_x == 0) return e("0 width","Corrupt JPEG"); // JPEG requires c = get8(s); if (c != 3 && c != 1) return e("bad component count","Corrupt JPEG"); // JFIF requires s->img_n = c; for (i=0; i < c; ++i) { z->img_comp[i].data = NULL; z->img_comp[i].linebuf = NULL; } if (Lf != 8+3*s->img_n) return e("bad SOF len","Corrupt JPEG"); for (i=0; i < s->img_n; ++i) { z->img_comp[i].id = get8(s); if (z->img_comp[i].id != i+1) // JFIF requires if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files! return e("bad component ID","Corrupt JPEG"); q = get8(s); z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return e("bad H","Corrupt JPEG"); z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return e("bad V","Corrupt JPEG"); z->img_comp[i].tq = get8(s); if (z->img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG"); } if (scan != SCAN_load) return 1; if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode"); for (i=0; i < s->img_n; ++i) { if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; } // compute interleaved mcu info z->img_h_max = h_max; z->img_v_max = v_max; z->img_mcu_w = h_max * 8; z->img_mcu_h = v_max * 8; z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; for (i=0; i < s->img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; z->img_comp[i].raw_data = malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15); if (z->img_comp[i].raw_data == NULL) { for(--i; i >= 0; --i) { free(z->img_comp[i].raw_data); z->img_comp[i].data = NULL; } return e("outofmem", "Out of memory"); } // align blocks for installable-idct using mmx/sse z->img_comp[i].data = (uint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); z->img_comp[i].linebuf = NULL; } return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) #define DNL(x) ((x) == 0xdc) #define SOI(x) ((x) == 0xd8) #define EOI(x) ((x) == 0xd9) #define SOF(x) ((x) == 0xc0 || (x) == 0xc1) #define SOS(x) ((x) == 0xda) static int decode_jpeg_header(jpeg *z, int scan) { int m; z->marker = MARKER_none; // initialize cached marker to empty m = get_marker(z); if (!SOI(m)) return e("no SOI","Corrupt JPEG"); if (scan == SCAN_type) return 1; m = get_marker(z); while (!SOF(m)) { if (!process_marker(z,m)) return 0; m = get_marker(z); while (m == MARKER_none) { // some files have extra padding after their blocks, so ok, we'll scan if (at_eof(&z->s)) return e("no SOF", "Corrupt JPEG"); m = get_marker(z); } } if (!process_frame_header(z, scan)) return 0; return 1; } static int decode_jpeg_image(jpeg *j) { int m; j->restart_interval = 0; if (!decode_jpeg_header(j, SCAN_load)) return 0; m = get_marker(j); while (!EOI(m)) { if (SOS(m)) { if (!process_scan_header(j)) return 0; if (!parse_entropy_coded_data(j)) return 0; } else { if (!process_marker(j, m)) return 0; } m = get_marker(j); } return 1; } // static jfif-centered resampling (across block boundaries) typedef uint8 *(*resample_row_func)(uint8 *out, uint8 *in0, uint8 *in1, int w, int hs); #define div4(x) ((uint8) ((x) >> 2)) static uint8 *resample_row_1(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { return in_near; } static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate two samples vertically for every one in input int i; for (i=0; i < w; ++i) out[i] = div4(3*in_near[i] + in_far[i] + 2); return out; } static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate two samples horizontally for every one in input int i; uint8 *input = in_near; if (w == 1) { // if only one sample, can't do any interpolation out[0] = out[1] = input[0]; return out; } out[0] = input[0]; out[1] = div4(input[0]*3 + input[1] + 2); for (i=1; i < w-1; ++i) { int n = 3*input[i]+2; out[i*2+0] = div4(n+input[i-1]); out[i*2+1] = div4(n+input[i+1]); } out[i*2+0] = div4(input[w-2]*3 + input[w-1] + 2); out[i*2+1] = input[w-1]; return out; } #define div16(x) ((uint8) ((x) >> 4)) static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i,t0,t1; if (w == 1) { out[0] = out[1] = div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; out[0] = div4(t1+2); for (i=1; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = div16(3*t0 + t1 + 8); out[i*2 ] = div16(3*t1 + t0 + 8); } out[w*2-1] = div4(t1+2); return out; } static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // resample with nearest-neighbor int i,j; for (i=0; i < w; ++i) for (j=0; j < hs; ++j) out[i*hs+j] = in_near[i]; return out; } #define float2fixed(x) ((int) ((x) * 65536 + 0.5)) // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro) // VC6 without processor=Pro is generating multiple LEAs per multiply! static void YCbCr_to_RGB_row(uint8 *out, uint8 *y, uint8 *pcb, uint8 *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 16) + 32768; // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr*float2fixed(1.40200f); g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f); b = y_fixed + cb*float2fixed(1.77200f); r >>= 16; g >>= 16; b >>= 16; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (uint8)r; out[1] = (uint8)g; out[2] = (uint8)b; out[3] = 255; out += step; } } #if STBI_SIMD static stbi_YCbCr_to_RGB_run stbi_YCbCr_installed = YCbCr_to_RGB_row; void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func) { stbi_YCbCr_installed = func; } #endif // clean up the temporary component buffers static void cleanup_jpeg(jpeg *j) { int i; for (i=0; i < j->s.img_n; ++i) { if (j->img_comp[i].data) { free(j->img_comp[i].raw_data); j->img_comp[i].data = NULL; } if (j->img_comp[i].linebuf) { free(j->img_comp[i].linebuf); j->img_comp[i].linebuf = NULL; } } } typedef struct { resample_row_func resample; uint8 *line0,*line1; int hs,vs; // expansion factor in each axis int w_lores; // horizontal pixels pre-expansion int ystep; // how far through vertical expansion we are int ypos; // which pre-expansion row we're on } stbi_resample; static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) { int n, decode_n; // validate req_comp if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); z->s.img_n = 0; // load a jpeg image from whichever source if (!decode_jpeg_image(z)) { cleanup_jpeg(z); return NULL; } // determine actual number of components to generate n = req_comp ? req_comp : z->s.img_n; if (z->s.img_n == 3 && n < 3) decode_n = 1; else decode_n = z->s.img_n; // resample and color-convert { int k; uint i,j; uint8 *output; uint8 *coutput[4]; stbi_resample res_comp[4]; for (k=0; k < decode_n; ++k) { stbi_resample *r = &res_comp[k]; // allocate line buffer big enough for upsampling off the edges // with upsample factor of 4 z->img_comp[k].linebuf = (uint8 *) malloc(z->s.img_x + 3); if (!z->img_comp[k].linebuf) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); } r->hs = z->img_h_max / z->img_comp[k].h; r->vs = z->img_v_max / z->img_comp[k].v; r->ystep = r->vs >> 1; r->w_lores = (z->s.img_x + r->hs-1) / r->hs; r->ypos = 0; r->line0 = r->line1 = z->img_comp[k].data; if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; else if (r->hs == 1 && r->vs == 2) r->resample = resample_row_v_2; else if (r->hs == 2 && r->vs == 1) r->resample = resample_row_h_2; else if (r->hs == 2 && r->vs == 2) r->resample = resample_row_hv_2; else r->resample = resample_row_generic; } // can't error after this so, this is safe output = (uint8 *) malloc(n * z->s.img_x * z->s.img_y + 1); if (!output) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); } // now go ahead and resample for (j=0; j < z->s.img_y; ++j) { uint8 *out = output + n * z->s.img_x * j; for (k=0; k < decode_n; ++k) { stbi_resample *r = &res_comp[k]; int y_bot = r->ystep >= (r->vs >> 1); coutput[k] = r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, y_bot ? r->line0 : r->line1, r->w_lores, r->hs); if (++r->ystep >= r->vs) { r->ystep = 0; r->line0 = r->line1; if (++r->ypos < z->img_comp[k].y) r->line1 += z->img_comp[k].w2; } } if (n >= 3) { uint8 *y = coutput[0]; if (z->s.img_n == 3) { #if STBI_SIMD stbi_YCbCr_installed(out, y, coutput[1], coutput[2], z->s.img_x, n); #else YCbCr_to_RGB_row(out, y, coutput[1], coutput[2], z->s.img_x, n); #endif } else for (i=0; i < z->s.img_x; ++i) { out[0] = out[1] = out[2] = y[i]; out[3] = 255; // not used if n==3 out += n; } } else { uint8 *y = coutput[0]; if (n == 1) for (i=0; i < z->s.img_x; ++i) out[i] = y[i]; else for (i=0; i < z->s.img_x; ++i) *out++ = y[i], *out++ = 255; } } cleanup_jpeg(z); *out_x = z->s.img_x; *out_y = z->s.img_y; if (comp) *comp = z->s.img_n; // report original components, not output return output; } } #ifndef STBI_NO_STDIO unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { jpeg j; start_file(&j.s, f); return load_jpeg_image(&j, x,y,comp,req_comp); } unsigned char *stbi_jpeg_load(char const *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { jpeg j; start_mem(&j.s, buffer,len); return load_jpeg_image(&j, x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_jpeg_test_file(FILE *f) { int n,r; jpeg j; n = ftell(f); start_file(&j.s, f); r = decode_jpeg_header(&j, SCAN_type); fseek(f,n,SEEK_SET); return r; } #endif int stbi_jpeg_test_memory(stbi_uc const *buffer, int len) { jpeg j; start_mem(&j.s, buffer,len); return decode_jpeg_header(&j, SCAN_type); } // @TODO: #ifndef STBI_NO_STDIO extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); // public domain zlib decode v0.2 Sean Barrett 2006-11-18 // simple implementation // - all input must be provided in an upfront buffer // - all output is written to a single output buffer (can malloc/realloc) // performance // - fast huffman // fast-way is faster to check than jpeg huffman, but slow way is slower #define ZFAST_BITS 9 // accelerate all cases in default tables #define ZFAST_MASK ((1 << ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) typedef struct { uint16 fast[1 << ZFAST_BITS]; uint16 firstcode[16]; int maxcode[17]; uint16 firstsymbol[16]; uint8 size[288]; uint16 value[288]; } zhuffman; __forceinline static int bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } __forceinline static int bit_reverse(int v, int bits) { assert(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return bitreverse16(v) >> (16-bits); } static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; // DEFLATE spec for generating codes memset(sizes, 0, sizeof(sizes)); memset(z->fast, 255, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) assert(sizes[i] <= (1 << i)); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (uint16) code; z->firstsymbol[i] = (uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG"); z->maxcode[i] = code << (16-i); // preshift for inner loop code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; z->size[c] = (uint8)s; z->value[c] = (uint16)i; if (s <= ZFAST_BITS) { int k = bit_reverse(next_code[s],s); while (k < (1 << ZFAST_BITS)) { z->fast[k] = (uint16) c; k += (1 << s); } } ++next_code[s]; } } return 1; } // zlib-from-memory implementation for PNG reading // because PNG allows splitting the zlib stream arbitrarily, // and it's annoying structurally to have PNG call ZLIB call PNG, // we require PNG read all the IDATs and combine them into a single // memory buffer typedef struct { uint8 *zbuffer, *zbuffer_end; int num_bits; uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; zhuffman z_length, z_distance; } zbuf; __forceinline static int zget8(zbuf *z) { if (z->zbuffer >= z->zbuffer_end) return 0; return *z->zbuffer++; } static void fill_bits(zbuf *z) { do { assert(z->code_buffer < (1U << z->num_bits)); z->code_buffer |= zget8(z) << z->num_bits; z->num_bits += 8; } while (z->num_bits <= 24); } __forceinline static unsigned int zreceive(zbuf *z, int n) { unsigned int k; if (z->num_bits < n) fill_bits(z); k = z->code_buffer & ((1 << n) - 1); z->code_buffer >>= n; z->num_bits -= n; return k; } __forceinline static int zhuffman_decode(zbuf *a, zhuffman *z) { int b,s,k; if (a->num_bits < 16) fill_bits(a); b = z->fast[a->code_buffer & ZFAST_MASK]; if (b < 0xffff) { s = z->size[b]; a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } // not resolved by fast table, so compute it the slow way // use jpeg approach, which requires MSbits at top k = bit_reverse(a->code_buffer, 16); for (s=ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s == 16) return -1; // invalid code! // code size is s, so: b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; assert(z->size[b] == s); a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } static int expand(zbuf *z, int n) // need to make room for n bytes { char *q; int cur, limit; if (!z->z_expandable) return e("output buffer limit","Corrupt PNG"); cur = (int) (z->zout - z->zout_start); limit = (int) (z->zout_end - z->zout_start); while (cur + n > limit) limit *= 2; q = (char *) realloc(z->zout_start, limit); if (q == NULL) return e("outofmem", "Out of memory"); z->zout_start = q; z->zout = q + cur; z->zout_end = q + limit; return 1; } static int length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static int length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static int dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static int dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int parse_huffman_block(zbuf *a) { for(;;) { int z = zhuffman_decode(a, &a->z_length); if (z < 256) { if (z < 0) return e("bad huffman code","Corrupt PNG"); // error in huffman codes if (a->zout >= a->zout_end) if (!expand(a, 1)) return 0; *a->zout++ = (char) z; } else { uint8 *p; int len,dist; if (z == 256) return 1; z -= 257; len = length_base[z]; if (length_extra[z]) len += zreceive(a, length_extra[z]); z = zhuffman_decode(a, &a->z_distance); if (z < 0) return e("bad huffman code","Corrupt PNG"); dist = dist_base[z]; if (dist_extra[z]) dist += zreceive(a, dist_extra[z]); if (a->zout - a->zout_start < dist) return e("bad dist","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; p = (uint8 *) (a->zout - dist); while (len--) *a->zout++ = *p++; } } } static int compute_huffman_codes(zbuf *a) { static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; static zhuffman z_codelength; // static just to save stack space uint8 lencodes[286+32+137];//padding for maximum single op uint8 codelength_sizes[19]; int i,n; int hlit = zreceive(a,5) + 257; int hdist = zreceive(a,5) + 1; int hclen = zreceive(a,4) + 4; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = zreceive(a,3); codelength_sizes[length_dezigzag[i]] = (uint8) s; } if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < hlit + hdist) { int c = zhuffman_decode(a, &z_codelength); assert(c >= 0 && c < 19); if (c < 16) lencodes[n++] = (uint8) c; else if (c == 16) { c = zreceive(a,2)+3; memset(lencodes+n, lencodes[n-1], c); n += c; } else if (c == 17) { c = zreceive(a,3)+3; memset(lencodes+n, 0, c); n += c; } else { assert(c == 18); c = zreceive(a,7)+11; memset(lencodes+n, 0, c); n += c; } } if (n != hlit+hdist) return e("bad codelengths","Corrupt PNG"); if (!zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; if (!zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; return 1; } static int parse_uncompressed_block(zbuf *a) { uint8 header[4]; int len,nlen,k; if (a->num_bits & 7) zreceive(a, a->num_bits & 7); // discard // drain the bit-packed data into header k = 0; while (a->num_bits > 0) { header[k++] = (uint8) (a->code_buffer & 255); // wtf this warns? a->code_buffer >>= 8; a->num_bits -= 8; } assert(a->num_bits == 0); // now fill header the normal way while (k < 4) header[k++] = (uint8) zget8(a); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG"); if (a->zbuffer + len > a->zbuffer_end) return e("read past buffer","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; memcpy(a->zout, a->zbuffer, len); a->zbuffer += len; a->zout += len; return 1; } static int parse_zlib_header(zbuf *a) { int cmf = zget8(a); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = zget8(a); if ((cmf*256+flg) % 31 != 0) return e("bad zlib header","Corrupt PNG"); // zlib spec if (flg & 32) return e("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png if (cm != 8) return e("bad compression","Corrupt PNG"); // DEFLATE required for png // window = 1 << (8 + cinfo)... but who cares, we fully buffer output return 1; } // @TODO: should statically initialize these for optimal thread safety static uint8 default_length[288], default_distance[32]; static void init_defaults(void) { int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) default_length[i] = 8; for ( ; i <= 255; ++i) default_length[i] = 9; for ( ; i <= 279; ++i) default_length[i] = 7; for ( ; i <= 287; ++i) default_length[i] = 8; for (i=0; i <= 31; ++i) default_distance[i] = 5; } static int parse_zlib(zbuf *a, int parse_header) { int final, type; if (parse_header) if (!parse_zlib_header(a)) return 0; a->num_bits = 0; a->code_buffer = 0; do { final = zreceive(a,1); type = zreceive(a,2); if (type == 0) { if (!parse_uncompressed_block(a)) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { // use fixed code lengths if (!default_distance[31]) init_defaults(); if (!zbuild_huffman(&a->z_length , default_length , 288)) return 0; if (!zbuild_huffman(&a->z_distance, default_distance, 32)) return 0; } else { if (!compute_huffman_codes(a)) return 0; } if (!parse_huffman_block(a)) return 0; } } while (!final); return 1; } static int do_zlib(zbuf *a, char *obuf, int olen, int exp, int parse_header) { a->zout_start = obuf; a->zout = obuf; a->zout_end = obuf + olen; a->z_expandable = exp; return parse_zlib(a, parse_header); } char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) { zbuf a; char *p = (char *) malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (uint8 *) buffer; a.zbuffer_end = (uint8 *) buffer + len; if (do_zlib(&a, p, initial_size, 1, 1)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { free(a.zout_start); return NULL; } } char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) { return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); } int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) { zbuf a; a.zbuffer = (uint8 *) ibuffer; a.zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(&a, obuffer, olen, 0, 1)) return (int) (a.zout - a.zout_start); else return -1; } char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) { zbuf a; char *p = (char *) malloc(16384); if (p == NULL) return NULL; a.zbuffer = (uint8 *) buffer; a.zbuffer_end = (uint8 *) buffer+len; if (do_zlib(&a, p, 16384, 1, 0)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { free(a.zout_start); return NULL; } } int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) { zbuf a; a.zbuffer = (uint8 *) ibuffer; a.zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(&a, obuffer, olen, 0, 0)) return (int) (a.zout - a.zout_start); else return -1; } // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 // simple implementation // - only 8-bit samples // - no CRC checking // - allocates lots of intermediate memory // - avoids problem of streaming data between subsystems // - avoids explicit window management // performance // - uses stb_zlib, a PD zlib implementation with fast huffman decoding typedef struct { uint32 length; uint32 type; } chunk; #define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static chunk get_chunk_header(stbi *s) { chunk c; c.length = get32(s); c.type = get32(s); return c; } static int check_png_header(stbi *s) { static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (get8(s) != png_sig[i]) return e("bad png sig","Not a PNG"); return 1; } typedef struct { stbi s; uint8 *idata, *expanded, *out; } png; enum { F_none=0, F_sub=1, F_up=2, F_avg=3, F_paeth=4, F_avg_first, F_paeth_first, }; static uint8 first_row_filter[5] = { F_none, F_sub, F_none, F_avg_first, F_paeth_first }; static int paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } // create the png data from post-deflated data static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n) { stbi *s = &a->s; uint32 i,j,stride = s->img_x*out_n; int k; int img_n = s->img_n; // copy it into a local for later assert(out_n == s->img_n || out_n == s->img_n+1); a->out = (uint8 *) malloc(s->img_x * s->img_y * out_n); if (!a->out) return e("outofmem", "Out of memory"); if (raw_len != (img_n * s->img_x + 1) * s->img_y) return e("not enough pixels","Corrupt PNG"); for (j=0; j < s->img_y; ++j) { uint8 *cur = a->out + stride*j; uint8 *prior = cur - stride; int filter = *raw++; if (filter > 4) return e("invalid filter","Corrupt PNG"); // if first row, use special filter that doesn't sample previous row if (j == 0) filter = first_row_filter[filter]; // handle first pixel explicitly for (k=0; k < img_n; ++k) { switch(filter) { case F_none : cur[k] = raw[k]; break; case F_sub : cur[k] = raw[k]; break; case F_up : cur[k] = raw[k] + prior[k]; break; case F_avg : cur[k] = raw[k] + (prior[k]>>1); break; case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break; case F_avg_first : cur[k] = raw[k]; break; case F_paeth_first: cur[k] = raw[k]; break; } } if (img_n != out_n) cur[img_n] = 255; raw += img_n; cur += out_n; prior += out_n; // this is a little gross, so that we don't switch per-pixel or per-component if (img_n == out_n) { #define CASE(f) \ case f: \ for (i=s->img_x-1; i >= 1; --i, raw+=img_n,cur+=img_n,prior+=img_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break; } #undef CASE } else { assert(img_n+1 == out_n); #define CASE(f) \ case f: \ for (i=s->img_x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break; } #undef CASE } } return 1; } static int compute_transparency(png *z, uint8 tc[3], int out_n) { stbi *s = &z->s; uint32 i, pixel_count = s->img_x * s->img_y; uint8 *p = z->out; // compute color-based transparency, assuming we've // already got 255 as the alpha value in the output assert(out_n == 2 || out_n == 4); if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n) { uint32 i, pixel_count = a->s.img_x * a->s.img_y; uint8 *p, *temp_out, *orig = a->out; p = (uint8 *) malloc(pixel_count * pal_img_n); if (p == NULL) return e("outofmem", "Out of memory"); // between here and free(out) below, exitting would leak temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } free(a->out); a->out = temp_out; return 1; } static int parse_png_file(png *z, int scan, int req_comp) { uint8 palette[1024], pal_img_n=0; uint8 has_trans=0, tc[3]; uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k; stbi *s = &z->s; if (!check_png_header(s)) return 0; if (scan == SCAN_type) return 1; for(;;first=0) { chunk c = get_chunk_header(s); if (first && c.type != PNG_TYPE('I','H','D','R')) return e("first not IHDR","Corrupt PNG"); switch (c.type) { case PNG_TYPE('I','H','D','R'): { int depth,color,interlace,comp,filter; if (!first) return e("multiple IHDR","Corrupt PNG"); if (c.length != 13) return e("bad IHDR len","Corrupt PNG"); s->img_x = get32(s); if (s->img_x > (1 << 24)) return e("too large","Very large image (corrupt?)"); s->img_y = get32(s); if (s->img_y > (1 << 24)) return e("too large","Very large image (corrupt?)"); depth = get8(s); if (depth != 8) return e("8bit only","PNG not supported: 8-bit only"); color = get8(s); if (color > 6) return e("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return e("bad ctype","Corrupt PNG"); comp = get8(s); if (comp) return e("bad comp method","Corrupt PNG"); filter= get8(s); if (filter) return e("bad filter method","Corrupt PNG"); interlace = get8(s); if (interlace) return e("interlaced","PNG not supported: interlaced mode"); if (!s->img_x || !s->img_y) return e("0-pixel image","Corrupt PNG"); if (!pal_img_n) { s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode"); if (scan == SCAN_header) return 1; } else { // if paletted, then pal_n is our final components, and // img_n is # components to decompress/filter. s->img_n = 1; if ((1 << 30) / s->img_x / 4 < s->img_y) return e("too large","Corrupt PNG"); // if SCAN_header, have to scan to see if we have a tRNS } break; } case PNG_TYPE('P','L','T','E'): { if (c.length > 256*3) return e("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return e("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = get8u(s); palette[i*4+1] = get8u(s); palette[i*4+2] = get8u(s); palette[i*4+3] = 255; } break; } case PNG_TYPE('t','R','N','S'): { if (z->idata) return e("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == SCAN_header) { s->img_n = 4; return 1; } if (pal_len == 0) return e("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return e("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = get8u(s); } else { if (!(s->img_n & 1)) return e("tRNS with alpha","Corrupt PNG"); if (c.length != (uint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG"); has_trans = 1; for (k=0; k < s->img_n; ++k) tc[k] = (uint8) get16(s); // non 8-bit images will be larger } break; } case PNG_TYPE('I','D','A','T'): { if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG"); if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; } if (ioff + c.length > idata_limit) { uint8 *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; p = (uint8 *) realloc(z->idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory"); z->idata = p; } #ifndef STBI_NO_STDIO if (s->img_file) { if (fread(z->idata+ioff,1,c.length,s->img_file) != c.length) return e("outofdata","Corrupt PNG"); } else #endif { memcpy(z->idata+ioff, s->img_buffer, c.length); s->img_buffer += c.length; } ioff += c.length; break; } case PNG_TYPE('I','E','N','D'): { uint32 raw_len; if (scan != SCAN_load) return 1; if (z->idata == NULL) return e("no IDAT","Corrupt PNG"); z->expanded = (uint8 *) stbi_zlib_decode_malloc((char *) z->idata, ioff, (int *) &raw_len); if (z->expanded == NULL) return 0; // zlib should set error free(z->idata); z->idata = NULL; if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) s->img_out_n = s->img_n+1; else s->img_out_n = s->img_n; if (!create_png_image(z, z->expanded, raw_len, s->img_out_n)) return 0; if (has_trans) if (!compute_transparency(z, tc, s->img_out_n)) return 0; if (pal_img_n) { // pal_img_n == 3 or 4 s->img_n = pal_img_n; // record the actual colors we had s->img_out_n = pal_img_n; if (req_comp >= 3) s->img_out_n = req_comp; if (!expand_palette(z, palette, pal_len, s->img_out_n)) return 0; } free(z->expanded); z->expanded = NULL; return 1; } default: // if critical, fail if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS // not threadsafe static char invalid_chunk[] = "XXXX chunk not known"; invalid_chunk[0] = (uint8) (c.type >> 24); invalid_chunk[1] = (uint8) (c.type >> 16); invalid_chunk[2] = (uint8) (c.type >> 8); invalid_chunk[3] = (uint8) (c.type >> 0); #endif return e(invalid_chunk, "PNG not supported: unknown chunk type"); } skip(s, c.length); break; } // end of chunk, read and skip CRC get32(s); } } static unsigned char *do_png(png *p, int *x, int *y, int *n, int req_comp) { unsigned char *result=NULL; p->expanded = NULL; p->idata = NULL; p->out = NULL; if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); if (parse_png_file(p, SCAN_load, req_comp)) { result = p->out; p->out = NULL; if (req_comp && req_comp != p->s.img_out_n) { result = convert_format(result, p->s.img_out_n, req_comp, p->s.img_x, p->s.img_y); p->s.img_out_n = req_comp; if (result == NULL) return result; } *x = p->s.img_x; *y = p->s.img_y; if (n) *n = p->s.img_n; } free(p->out); p->out = NULL; free(p->expanded); p->expanded = NULL; free(p->idata); p->idata = NULL; return result; } #ifndef STBI_NO_STDIO unsigned char *stbi_png_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { png p; start_file(&p.s, f); return do_png(&p, x,y,comp,req_comp); } unsigned char *stbi_png_load(char const *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_png_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_png_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { png p; start_mem(&p.s, buffer,len); return do_png(&p, x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_png_test_file(FILE *f) { png p; int n,r; n = ftell(f); start_file(&p.s, f); r = parse_png_file(&p, SCAN_type,STBI_default); fseek(f,n,SEEK_SET); return r; } #endif int stbi_png_test_memory(stbi_uc const *buffer, int len) { png p; start_mem(&p.s, buffer, len); return parse_png_file(&p, SCAN_type,STBI_default); } // TODO: load header from png #ifndef STBI_NO_STDIO extern int stbi_png_info (char const *filename, int *x, int *y, int *comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); // Microsoft/Windows BMP image static int bmp_test(stbi *s) { int sz; if (get8(s) != 'B') return 0; if (get8(s) != 'M') return 0; get32le(s); // discard filesize get16le(s); // discard reserved get16le(s); // discard reserved get32le(s); // discard data offset sz = get32le(s); if (sz == 12 || sz == 40 || sz == 56 || sz == 108) return 1; return 0; } #ifndef STBI_NO_STDIO int stbi_bmp_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s,f); r = bmp_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_bmp_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return bmp_test(&s); } // returns 0..31 for the highest set bit static int high_bit(unsigned int z) { int n=0; if (z == 0) return -1; if (z >= 0x10000) n += 16, z >>= 16; if (z >= 0x00100) n += 8, z >>= 8; if (z >= 0x00010) n += 4, z >>= 4; if (z >= 0x00004) n += 2, z >>= 2; if (z >= 0x00002) n += 1, z >>= 1; return n; } static int bitcount(unsigned int a) { a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits a = (a + (a >> 8)); // max 16 per 8 bits a = (a + (a >> 16)); // max 32 per 8 bits return a & 0xff; } static int shiftsigned(int v, int shift, int bits) { int result; int z=0; if (shift < 0) v <<= -shift; else v >>= shift; result = v; z = bits; while (z < 8) { result += v >> z; z += bits; } return result; } static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp) { uint8 *out; unsigned int mr=0,mg=0,mb=0,ma=0; stbi_uc pal[256][4]; int psize=0,i,j,compress=0,width; int bpp, flip_vertically, pad, target, offset, hsz; if (get8(s) != 'B' || get8(s) != 'M') return epuc("not BMP", "Corrupt BMP"); get32le(s); // discard filesize get16le(s); // discard reserved get16le(s); // discard reserved offset = get32le(s); hsz = get32le(s); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108) return epuc("unknown BMP", "BMP type not supported: unknown"); failure_reason = "bad BMP"; if (hsz == 12) { s->img_x = get16le(s); s->img_y = get16le(s); } else { s->img_x = get32le(s); s->img_y = get32le(s); } if (get16le(s) != 1) return 0; bpp = get16le(s); if (bpp == 1) return epuc("monochrome", "BMP type not supported: 1-bit"); flip_vertically = ((int) s->img_y) > 0; s->img_y = abs((int) s->img_y); if (hsz == 12) { if (bpp < 24) psize = (offset - 14 - 24) / 3; } else { compress = get32le(s); if (compress == 1 || compress == 2) return epuc("BMP RLE", "BMP type not supported: RLE"); get32le(s); // discard sizeof get32le(s); // discard hres get32le(s); // discard vres get32le(s); // discard colorsused get32le(s); // discard max important if (hsz == 40 || hsz == 56) { if (hsz == 56) { get32le(s); get32le(s); get32le(s); get32le(s); } if (bpp == 16 || bpp == 32) { mr = mg = mb = 0; if (compress == 0) { if (bpp == 32) { mr = 0xff << 16; mg = 0xff << 8; mb = 0xff << 0; } else { mr = 31 << 10; mg = 31 << 5; mb = 31 << 0; } } else if (compress == 3) { mr = get32le(s); mg = get32le(s); mb = get32le(s); // not documented, but generated by photoshop and handled by mspaint if (mr == mg && mg == mb) { // ?!?!? return NULL; } } else return NULL; } } else { assert(hsz == 108); mr = get32le(s); mg = get32le(s); mb = get32le(s); ma = get32le(s); get32le(s); // discard color space for (i=0; i < 12; ++i) get32le(s); // discard color space parameters } if (bpp < 16) psize = (offset - 14 - hsz) >> 2; } s->img_n = ma ? 4 : 3; if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 target = req_comp; else target = s->img_n; // if they want monochrome, we'll post-convert out = (stbi_uc *) malloc(target * s->img_x * s->img_y); if (!out) return epuc("outofmem", "Out of memory"); if (bpp < 16) { int z=0; if (psize == 0 || psize > 256) { free(out); return epuc("invalid", "Corrupt BMP"); } for (i=0; i < psize; ++i) { pal[i][2] = get8(s); pal[i][1] = get8(s); pal[i][0] = get8(s); if (hsz != 12) get8(s); pal[i][3] = 255; } skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4)); if (bpp == 4) width = (s->img_x + 1) >> 1; else if (bpp == 8) width = s->img_x; else { free(out); return epuc("bad bpp", "Corrupt BMP"); } pad = (-width)&3; for (j=0; j < (int) s->img_y; ++j) { for (i=0; i < (int) s->img_x; i += 2) { int v=get8(s),v2=0; if (bpp == 4) { v2 = v & 15; v >>= 4; } out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) s->img_x) break; v = (bpp == 8) ? get8(s) : v2; out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; } skip(s, pad); } } else { int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; int z = 0; int easy=0; skip(s, offset - 14 - hsz); if (bpp == 24) width = 3 * s->img_x; else if (bpp == 16) width = 2*s->img_x; else /* bpp = 32 and pad = 0 */ width=0; pad = (-width) & 3; if (bpp == 24) { easy = 1; } else if (bpp == 32) { if (mb == 0xff && mg == 0xff00 && mr == 0xff000000 && ma == 0xff000000) easy = 2; } if (!easy) { if (!mr || !mg || !mb) return epuc("bad masks", "Corrupt BMP"); // right shift amt to put high bit in position #7 rshift = high_bit(mr)-7; rcount = bitcount(mr); gshift = high_bit(mg)-7; gcount = bitcount(mr); bshift = high_bit(mb)-7; bcount = bitcount(mr); ashift = high_bit(ma)-7; acount = bitcount(mr); } for (j=0; j < (int) s->img_y; ++j) { if (easy) { for (i=0; i < (int) s->img_x; ++i) { int a; out[z+2] = get8(s); out[z+1] = get8(s); out[z+0] = get8(s); z += 3; a = (easy == 2 ? get8(s) : 255); if (target == 4) out[z++] = a; } } else { for (i=0; i < (int) s->img_x; ++i) { uint32 v = (bpp == 16 ? get16le(s) : get32le(s)); int a; out[z++] = shiftsigned(v & mr, rshift, rcount); out[z++] = shiftsigned(v & mg, gshift, gcount); out[z++] = shiftsigned(v & mb, bshift, bcount); a = (ma ? shiftsigned(v & ma, ashift, acount) : 255); if (target == 4) out[z++] = a; } } skip(s, pad); } } if (flip_vertically) { stbi_uc t; for (j=0; j < (int) s->img_y>>1; ++j) { stbi_uc *p1 = out + j *s->img_x*target; stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; for (i=0; i < (int) s->img_x*target; ++i) { t = p1[i], p1[i] = p2[i], p2[i] = t; } } } if (req_comp && req_comp != target) { out = convert_format(out, target, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // convert_format frees input on failure } *x = s->img_x; *y = s->img_y; if (comp) *comp = target; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_bmp_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return bmp_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return bmp_load(&s, x,y,comp,req_comp); } // Targa Truevision - TGA // by Jonathan Dummer static int tga_test(stbi *s) { int sz; get8u(s); // discard Offset sz = get8u(s); // color type if( sz > 1 ) return 0; // only RGB or indexed allowed sz = get8u(s); // image type if( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE get16(s); // discard palette start get16(s); // discard palette length get8(s); // discard bits per palette color entry get16(s); // discard x origin get16(s); // discard y origin if( get16(s) < 1 ) return 0; // test width if( get16(s) < 1 ) return 0; // test height sz = get8(s); // bits per pixel if( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) ) return 0; // only RGB or RGBA or grey allowed return 1; // seems to have passed everything } #ifndef STBI_NO_STDIO int stbi_tga_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = tga_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_tga_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return tga_test(&s); } static stbi_uc *tga_load(stbi *s, int *x, int *y, int *comp, int req_comp) { // read in the TGA header stuff int tga_offset = get8u(s); int tga_indexed = get8u(s); int tga_image_type = get8u(s); int tga_is_RLE = 0; int tga_palette_start = get16le(s); int tga_palette_len = get16le(s); int tga_palette_bits = get8u(s); int tga_x_origin = get16le(s); int tga_y_origin = get16le(s); int tga_width = get16le(s); int tga_height = get16le(s); int tga_bits_per_pixel = get8u(s); int tga_inverted = get8u(s); // image data unsigned char *tga_data; unsigned char *tga_palette = NULL; int i, j; unsigned char raw_data[4]; unsigned char trans_data[4]; int RLE_count = 0; int RLE_repeating = 0; int read_next_pixel = 1; // do a tiny bit of precessing if( tga_image_type >= 8 ) { tga_image_type -= 8; tga_is_RLE = 1; } /* int tga_alpha_bits = tga_inverted & 15; */ tga_inverted = 1 - ((tga_inverted >> 5) & 1); // error check if( //(tga_indexed) || (tga_width < 1) || (tga_height < 1) || (tga_image_type < 1) || (tga_image_type > 3) || ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) && (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32)) ) { return NULL; } // If I'm paletted, then I'll use the number of bits from the palette if( tga_indexed ) { tga_bits_per_pixel = tga_palette_bits; } // tga info *x = tga_width; *y = tga_height; if( (req_comp < 1) || (req_comp > 4) ) { // just use whatever the file was req_comp = tga_bits_per_pixel / 8; *comp = req_comp; } else { // force a new number of components *comp = tga_bits_per_pixel/8; } tga_data = (unsigned char*)malloc( tga_width * tga_height * req_comp ); // skip to the data's starting position (offset usually = 0) skip(s, tga_offset ); // do I need to load a palette? if( tga_indexed ) { // any data to skip? (offset usually = 0) skip(s, tga_palette_start ); // load the palette tga_palette = (unsigned char*)malloc( tga_palette_len * tga_palette_bits / 8 ); getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 ); } // load the data for( i = 0; i < tga_width * tga_height; ++i ) { // if I'm in RLE mode, do I need to get a RLE chunk? if( tga_is_RLE ) { if( RLE_count == 0 ) { // yep, get the next byte as a RLE command int RLE_cmd = get8u(s); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7; read_next_pixel = 1; } else if( !RLE_repeating ) { read_next_pixel = 1; } } else { read_next_pixel = 1; } // OK, if I need to read a pixel, do it now if( read_next_pixel ) { // load however much data we did have if( tga_indexed ) { // read in 1 byte, then perform the lookup int pal_idx = get8u(s); if( pal_idx >= tga_palette_len ) { // invalid index pal_idx = 0; } pal_idx *= tga_bits_per_pixel / 8; for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = tga_palette[pal_idx+j]; } } else { // read in the data raw for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = get8u(s); } } // convert raw to the intermediate format switch( tga_bits_per_pixel ) { case 8: // Luminous => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 16: // Luminous,Alpha => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[1]; break; case 24: // BGR => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 32: // BGRA => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[3]; break; } // clear the reading flag for the next pixel read_next_pixel = 0; } // end of reading a pixel // convert to final format switch( req_comp ) { case 1: // RGBA => Luminance tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); break; case 2: // RGBA => Luminance,Alpha tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); tga_data[i*req_comp+1] = trans_data[3]; break; case 3: // RGBA => RGB tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; break; case 4: // RGBA => RGBA tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; tga_data[i*req_comp+3] = trans_data[3]; break; } // in case we're in RLE mode, keep counting down --RLE_count; } // do I need to invert the image? if( tga_inverted ) { for( j = 0; j*2 < tga_height; ++j ) { int index1 = j * tga_width * req_comp; int index2 = (tga_height - 1 - j) * tga_width * req_comp; for( i = tga_width * req_comp; i > 0; --i ) { unsigned char temp = tga_data[index1]; tga_data[index1] = tga_data[index2]; tga_data[index2] = temp; ++index1; ++index2; } } } // clear my palette, if I had one if( tga_palette != NULL ) { free( tga_palette ); } // the things I do to get rid of an error message, and yet keep // Microsoft's C compilers happy... [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; // OK, done return tga_data; } #ifndef STBI_NO_STDIO stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_tga_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return tga_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return tga_load(&s, x,y,comp,req_comp); } // ************************************************************************************************* // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicholas Schulz, tweaked by STB static int psd_test(stbi *s) { if (get32(s) != 0x38425053) return 0; // "8BPS" else return 1; } #ifndef STBI_NO_STDIO int stbi_psd_test_file(FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = psd_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_psd_test_memory(stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return psd_test(&s); } static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp) { int pixelCount; int channelCount, compression; int channel, i, count, len; int w,h; uint8 *out; // Check identifier if (get32(s) != 0x38425053) // "8BPS" return epuc("not PSD", "Corrupt PSD image"); // Check file type version. if (get16(s) != 1) return epuc("wrong version", "Unsupported version of PSD image"); // Skip 6 reserved bytes. skip(s, 6 ); // Read the number of channels (R, G, B, A, etc). channelCount = get16(s); if (channelCount < 0 || channelCount > 16) return epuc("wrong channel count", "Unsupported number of channels in PSD image"); // Read the rows and columns of the image. h = get32(s); w = get32(s); // Make sure the depth is 8 bits. if (get16(s) != 8) return epuc("unsupported bit depth", "PSD bit depth is not 8 bit"); // Make sure the color mode is RGB. // Valid options are: // 0: Bitmap // 1: Grayscale // 2: Indexed color // 3: RGB color // 4: CMYK color // 7: Multichannel // 8: Duotone // 9: Lab color if (get16(s) != 3) return epuc("wrong color format", "PSD is not in RGB color format"); // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) skip(s,get32(s) ); // Skip the image resources. (resolution, pen tool paths, etc) skip(s, get32(s) ); // Skip the reserved data. skip(s, get32(s) ); // Find out if the data is compressed. // Known values: // 0: no compression // 1: RLE compressed compression = get16(s); if (compression > 1) return epuc("bad compression", "PSD has an unknown compression format"); // Create the destination image. out = (stbi_uc *) malloc(4 * w*h); if (!out) return epuc("outofmem", "Out of memory"); pixelCount = w*h; // Initialize the data to zero. //memset( out, 0, pixelCount * 4 ); // Finally, the image data. if (compression) { // RLE as used by .PSD and .TIFF // Loop until you get the number of unpacked bytes you are expecting: // Read the next source byte into n. // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. // Else if n is 128, noop. // Endloop // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, // which we're going to just skip. skip(s, h * channelCount * 2 ); // Read the RLE data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out+channel; if (channel >= channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4; } else { // Read the RLE data. count = 0; while (count < pixelCount) { len = get8(s); if (len == 128) { // No-op. } else if (len < 128) { // Copy next len+1 bytes literally. len++; count += len; while (len) { *p = get8(s); p += 4; len--; } } else if (len > 128) { uint32 val; // Next -len+1 bytes in the dest are replicated from next source byte. // (Interpret len as a negative 8-bit int.) len ^= 0x0FF; len += 2; val = get8(s); count += len; while (len) { *p = val; p += 4; len--; } } } } } } else { // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) // where each channel consists of an 8-bit value for each pixel in the image. // Read the data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out + channel; if (channel > channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4; } else { // Read the data. count = 0; for (i = 0; i < pixelCount; i++) *p = get8(s), p += 4; } } } if (req_comp && req_comp != 4) { out = convert_format(out, 4, req_comp, w, h); if (out == NULL) return out; // convert_format frees input on failure } if (comp) *comp = channelCount; *y = h; *x = w; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_psd_load(char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_psd_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_psd_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return psd_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return psd_load(&s, x,y,comp,req_comp); } // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR static int hdr_test(stbi *s) { char *signature = "#?RADIANCE\n"; int i; for (i=0; signature[i]; ++i) if (get8(s) != signature[i]) return 0; return 1; } int stbi_hdr_test_memory(stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return hdr_test(&s); } #ifndef STBI_NO_STDIO int stbi_hdr_test_file(FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = hdr_test(&s); fseek(f,n,SEEK_SET); return r; } #endif #define HDR_BUFLEN 1024 static char *hdr_gettoken(stbi *z, char *buffer) { int len=0; char *s = buffer, c = '\0'; c = get8(z); while (!at_eof(z) && c != '\n') { buffer[len++] = c; if (len == HDR_BUFLEN-1) { // flush to end of line while (!at_eof(z) && get8(z) != '\n') ; break; } c = get8(z); } buffer[len] = 0; return buffer; } static void hdr_convert(float *output, stbi_uc *input, int req_comp) { if( input[3] != 0 ) { float f1; // Exponent f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3; else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1; } if (req_comp == 2) output[1] = 1; if (req_comp == 4) output[3] = 1; } else { switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break; } } } static float *hdr_load(stbi *s, int *x, int *y, int *comp, int req_comp) { char buffer[HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; // Check identifier if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0) return epf("not HDR", "Corrupt HDR image"); // Parse header while(1) { token = hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return epf("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; height = strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; width = strtol(token, NULL, 10); *x = width; *y = height; *comp = 3; if (req_comp == 0) req_comp = 3; // Read data hdr_data = (float *) malloc(height * width * req_comp * sizeof(float)); // Load image data // image data is stored as some number of sca if( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { stbi_uc rgbe[4]; main_decode_loop: getn(s, rgbe, 4); hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); } } } else { // Read RLE-encoded data scanline = NULL; for (j = 0; j < height; ++j) { c1 = get8(s); c2 = get8(s); len = get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) stbi_uc rgbe[4] = { c1,c2,len, get8(s) }; hdr_convert(hdr_data, rgbe, req_comp); i = 1; j = 0; free(scanline); goto main_decode_loop; // yes, this is fucking insane; blame the fucking insane format } len <<= 8; len |= get8(s); if (len != width) { free(hdr_data); free(scanline); return epf("invalid decoded scanline length", "corrupt HDR"); } if (scanline == NULL) scanline = (stbi_uc *) malloc(width * 4); for (k = 0; k < 4; ++k) { i = 0; while (i < width) { count = get8(s); if (count > 128) { // Run value = get8(s); count -= 128; for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = get8(s); } } } for (i=0; i < width; ++i) hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); } free(scanline); } return hdr_data; } #ifndef STBI_NO_STDIO float *stbi_hdr_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s,f); return hdr_load(&s,x,y,comp,req_comp); } #endif float *stbi_hdr_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s,buffer, len); return hdr_load(&s,x,y,comp,req_comp); } #endif // STBI_NO_HDR /////////////////////// write image /////////////////////// #ifndef STBI_NO_WRITE static void write8(FILE *f, int x) { uint8 z = (uint8) x; fwrite(&z,1,1,f); } static void writefv(FILE *f, char *fmt, va_list v) { while (*fmt) { switch (*fmt++) { case ' ': break; case '1': { uint8 x = va_arg(v, int); write8(f,x); break; } case '2': { int16 x = va_arg(v, int); write8(f,x); write8(f,x>>8); break; } case '4': { int32 x = va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; } default: assert(0); va_end(v); return; } } } static void writef(FILE *f, char *fmt, ...) { va_list v; va_start(v, fmt); writefv(f,fmt,v); va_end(v); } static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad) { uint8 bg[3] = { 255, 0, 255}, px[3]; uint32 zero = 0; int i,j,k, j_end; if (vdir < 0) j_end = -1, j = y-1; else j_end = y, j = 0; for (; j != j_end; j += vdir) { for (i=0; i < x; ++i) { uint8 *d = (uint8 *) data + (j*x+i)*comp; if (write_alpha < 0) fwrite(&d[comp-1], 1, 1, f); switch (comp) { case 1: case 2: writef(f, "111", d[0],d[0],d[0]); break; case 4: if (!write_alpha) { for (k=0; k < 3; ++k) px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255; writef(f, "111", px[1-rgb_dir],px[1],px[1+rgb_dir]); break; } /* FALLTHROUGH */ case 3: writef(f, "111", d[1-rgb_dir],d[1],d[1+rgb_dir]); break; } if (write_alpha > 0) fwrite(&d[comp-1], 1, 1, f); } fwrite(&zero,scanline_pad,1,f); } } static int outfile(char const *filename, int rgb_dir, int vdir, int x, int y, int comp, void *data, int alpha, int pad, char *fmt, ...) { FILE *f = fopen(filename, "wb"); if (f) { va_list v; va_start(v, fmt); writefv(f, fmt, v); va_end(v); write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad); fclose(f); } return f != NULL; } int stbi_write_bmp(char const *filename, int x, int y, int comp, void *data) { int pad = (-x*3) & 3; return outfile(filename,-1,-1,x,y,comp,data,0,pad, "11 4 22 4" "4 44 22 444444", 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header } int stbi_write_tga(char const *filename, int x, int y, int comp, void *data) { int has_alpha = !(comp & 1); return outfile(filename, -1,-1, x, y, comp, data, has_alpha, 0, "111 221 2222 11", 0,0,2, 0,0,0, 0,0,x,y, 24+8*has_alpha, 8*has_alpha); } // any other image formats that do interleaved rgb data? // PNG: requires adler32,crc32 -- significant amount of code // PSD: no, channels output separately // TIFF: no, stripwise-interleaved... i think #endif // STBI_NO_WRITE #endif // STBI_HEADER_FILE_ONLY libsoil-1.07~20080707.dfsg/src/original/stb_image-1.09.c0000644000175000017500000034663711034440250021470 0ustar gonerigoneri/* stbi-1.09 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c when you control the images you're loading QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline (no JPEG progressive, no oddball channel decimations) PNG non-interlaced BMP non-1bpp, non-RLE TGA (not sure what subset, if a subset) PSD (composited view only, no extra channels) HDR (radiance rgbE format) writes BMP,TGA (define STBI_NO_WRITE to remove code) decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code) TODO: stbi_info_* history: 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant */ //// begin header file //////////////////////////////////////////////////// // // Limitations: // - no progressive/interlaced support (jpeg, png) // - 8-bit samples only (jpeg, png) // - not threadsafe // - channel subsampling of at most 2 in each dimension (jpeg) // - no delayed line count (jpeg) -- IJG doesn't support either // // Basic usage (see HDR discussion below): // int x,y,n; // unsigned char *data = stbi_load(filename, &x, &y, &n, 0); // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel // stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *comp -- outputs # of image components in image file // int req_comp -- if non-zero, # of image components requested in result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data. The pixel data consists of *y scanlines of *x pixels, // with each pixel consisting of N interleaved 8-bit components; the first // pixel pointed to is top-left-most in the image. There is no padding between // image scanlines or between pixels, regardless of format. The number of // components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. // If req_comp is non-zero, *comp has the number of components that _would_ // have been output otherwise. E.g. if you set req_comp to 4, you will always // get RGBA output, but you can check *comp to easily see if it's opaque. // // An output image with N components has the following components interleaved // in this order in each pixel: // // N=#comp components // 1 grey // 2 grey, alpha // 3 red, green, blue // 4 red, green, blue, alpha // // If image loading fails for any reason, the return value will be NULL, // and *x, *y, *comp will be unchanged. The function stbi_failure_reason() // can be queried for an extremely brief, end-user unfriendly explanation // of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid // compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly // more user-friendly ones. // // Paletted PNG and BMP images are automatically depalettized. // // // =========================================================================== // // HDR image support (disable by defining STBI_NO_HDR) // // stb_image now supports loading HDR images in general, and currently // the Radiance .HDR file format, although the support is provided // generically. You can still load any file through the existing interface; // if you attempt to load an HDR file, it will be automatically remapped to // LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; // both of these constants can be reconfigured through this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); // // (note, do not use _inverse_ constants; stbi_image will invert them // appropriately). // // Additionally, there is a new, parallel interface for loading files as // (linear) floats to preserve the full dynamic range: // // float *data = stbi_loadf(filename, &x, &y, &n, 0); // // If you load LDR images through this interface, those images will // be promoted to floating point values, run through the inverse of // constants corresponding to the above: // // stbi_ldr_to_hdr_scale(1.0f); // stbi_ldr_to_hdr_gamma(2.2f); // // Finally, given a filename (or an open file or memory block--see header // file for details) containing image data, you can query for the "most // appropriate" interface to use (that is, whether the image is HDR or // not), using: // // stbi_is_hdr(char *filename); #ifndef STBI_NO_STDIO #include #endif #ifndef STBI_NO_HDR #include // ldexp #include // strcmp #endif enum { STBI_default = 0, // only used for req_comp STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4, }; typedef unsigned char stbi_uc; #ifdef __cplusplus extern "C" { #endif // WRITING API #if !defined(STBI_NO_WRITE) && !defined(STBI_NO_STDIO) // write a BMP/TGA file given tightly packed 'comp' channels (no padding, nor bmp-stride-padding) // (you must include the appropriate extension in the filename). // returns TRUE on success, FALSE if couldn't open file, error writing file extern int stbi_write_bmp (char *filename, int x, int y, int comp, void *data); extern int stbi_write_tga (char *filename, int x, int y, int comp, void *data); #endif // PRIMARY API - works on images of any type // load image by filename, open file, or memory buffer #ifndef STBI_NO_STDIO extern stbi_uc *stbi_load (char *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern stbi_uc *stbi_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); // for stbi_load_from_file, file pointer is left pointing immediately after image #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO extern float *stbi_loadf (char *filename, int *x, int *y, int *comp, int req_comp); extern float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif extern float *stbi_loadf_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); extern void stbi_hdr_to_ldr_gamma(float gamma); extern void stbi_hdr_to_ldr_scale(float scale); extern void stbi_ldr_to_hdr_gamma(float gamma); extern void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_HDR // get a VERY brief reason for failure extern char *stbi_failure_reason (void); // free the loaded image -- this is just free() extern void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding extern int stbi_info_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp); extern int stbi_is_hdr_from_memory(stbi_uc *buffer, int len); #ifndef STBI_NO_STDIO extern int stbi_info (char *filename, int *x, int *y, int *comp); extern int stbi_is_hdr (char *filename); extern int stbi_is_hdr_from_file(FILE *f); #endif // ZLIB client - used by PNG, available for other purposes extern char *stbi_zlib_decode_malloc_guesssize(int initial_size, int *outlen); extern char *stbi_zlib_decode_malloc(char *buffer, int len, int *outlen); extern int stbi_zlib_decode_buffer(char *obuffer, int olen, char *ibuffer, int ilen); extern char *stbi_zlib_decode_noheader_malloc(char *buffer, int len, int *outlen); extern int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, char *ibuffer, int ilen); // TYPE-SPECIFIC ACCESS // is it a jpeg? extern int stbi_jpeg_test_memory (stbi_uc *buffer, int len); extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_jpeg_load (char *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_test_file (FILE *f); extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info (char *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_jpeg_dc_only; // only decode DC component // is it a png? extern int stbi_png_test_memory (stbi_uc *buffer, int len); extern stbi_uc *stbi_png_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_png_load (char *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info (char *filename, int *x, int *y, int *comp); extern int stbi_png_test_file (FILE *f); extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a bmp? extern int stbi_bmp_test_memory (stbi_uc *buffer, int len); extern stbi_uc *stbi_bmp_load (char *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_bmp_test_file (FILE *f); extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a tga? extern int stbi_tga_test_memory (stbi_uc *buffer, int len); extern stbi_uc *stbi_tga_load (char *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_tga_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_tga_test_file (FILE *f); extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a psd? extern int stbi_psd_test_memory (stbi_uc *buffer, int len); extern stbi_uc *stbi_psd_load (char *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_psd_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_psd_test_file (FILE *f); extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it an hdr? extern int stbi_hdr_test_memory (stbi_uc *buffer, int len); extern float * stbi_hdr_load (char *filename, int *x, int *y, int *comp, int req_comp); extern float * stbi_hdr_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_hdr_test_file (FILE *f); extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // define new loaders typedef struct { int (*test_memory)(stbi_uc *buffer, int len); stbi_uc * (*load_from_memory)(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO int (*test_file)(FILE *f); stbi_uc * (*load_from_file)(FILE *f, int *x, int *y, int *comp, int req_comp); #endif } stbi_loader; // register a loader by filling out the above structure (you must defined ALL functions) // returns 1 if added or already added, 0 if not added (too many loaders) extern int stbi_register_loader(stbi_loader *loader); #ifdef __cplusplus } #endif // // //// end header file ///////////////////////////////////////////////////// #ifndef STBI_NO_STDIO #include #endif #include #include #include #include #ifndef _MSC_VER #define __forceinline #endif // implementation: typedef unsigned char uint8; typedef unsigned short uint16; typedef signed short int16; typedef unsigned int uint32; typedef signed int int32; typedef unsigned int uint; // should produce compiler error if size is wrong typedef unsigned char validate_uint32[sizeof(uint32)==4]; #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE) #define STBI_NO_WRITE #endif ////////////////////////////////////////////////////////////////////////////// // // Generic API that works on all image types // static char *failure_reason; char *stbi_failure_reason(void) { return failure_reason; } static int e(char *str) { failure_reason = str; return 0; } #ifdef STBI_NO_FAILURE_STRINGS #define e(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) #define e(x,y) e(y) #else #define e(x,y) e(x) #endif #define epf(x,y) ((float *) (e(x,y)?NULL:NULL)) #define epuc(x,y) ((unsigned char *) (e(x,y)?NULL:NULL)) void stbi_image_free(void *retval_from_stbi_load) { free(retval_from_stbi_load); } #define MAX_LOADERS 32 stbi_loader *loaders[MAX_LOADERS]; static int max_loaders = 0; int stbi_register_loader(stbi_loader *loader) { int i; for (i=0; i < MAX_LOADERS; ++i) { // already present? if (loaders[i] == loader) return 1; // end of the list? if (loaders[i] == NULL) { loaders[i] = loader; max_loaders = i+1; return 1; } } // no room for it return 0; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp); static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp); #endif #ifndef STBI_NO_STDIO unsigned char *stbi_load(char *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); unsigned char *result; if (!f) return epuc("can't fopen", "Unable to open file"); result = stbi_load_from_file(f,x,y,comp,req_comp); fclose(f); return result; } unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_file(f)) return stbi_jpeg_load_from_file(f,x,y,comp,req_comp); if (stbi_png_test_file(f)) return stbi_png_load_from_file(f,x,y,comp,req_comp); if (stbi_bmp_test_file(f)) return stbi_bmp_load_from_file(f,x,y,comp,req_comp); if (stbi_psd_test_file(f)) return stbi_psd_load_from_file(f,x,y,comp,req_comp); #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) { float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_file(f)) return loaders[i]->load_from_file(f,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_file(f)) return stbi_tga_load_from_file(f,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #endif unsigned char *stbi_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_memory(buffer,len)) return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_png_test_memory(buffer,len)) return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_bmp_test_memory(buffer,len)) return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_psd_test_memory(buffer,len)) return stbi_psd_load_from_memory(buffer,len,x,y,comp,req_comp); #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) { float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_memory(buffer,len)) return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_memory(buffer,len)) return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO float *stbi_loadf(char *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); float *result; if (!f) return epf("can't fopen", "Unable to open file"); result = stbi_loadf_from_file(f,x,y,comp,req_comp); fclose(f); return result; } float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { unsigned char *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) return stbi_hdr_load_from_file(f,x,y,comp,req_comp); #endif data = stbi_load_from_file(f, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif float *stbi_loadf_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); #endif data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is // defined, for API simplicity; if STBI_NO_HDR is defined, it always // reports false! extern int stbi_is_hdr_from_memory(stbi_uc *buffer, int len) { #ifndef STBI_NO_HDR return stbi_hdr_test_memory(buffer, len); #else return 0; #endif } #ifndef STBI_NO_STDIO extern int stbi_is_hdr (char *filename) { FILE *f = fopen(filename, "rb"); int result=0; if (f) { result = stbi_is_hdr_from_file(f); fclose(f); } return result; } extern int stbi_is_hdr_from_file(FILE *f) { #ifndef STBI_NO_HDR return stbi_hdr_test_file(f); #else return 0; #endif } #endif // @TODO: get image dimensions & components without fully decoding #ifndef STBI_NO_STDIO extern int stbi_info (char *filename, int *x, int *y, int *comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_info_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_HDR static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f; static float l2h_gamma=2.2f, l2h_scale=1.0f; void stbi_hdr_to_ldr_gamma(float gamma) { h2l_gamma_i = 1/gamma; } void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; } void stbi_ldr_to_hdr_gamma(float gamma) { l2h_gamma = gamma; } void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; } #endif ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // // image width, height, # components static uint32 img_x, img_y; static int img_n, img_out_n; enum { SCAN_load=0, SCAN_type, SCAN_header, }; // An API for reading either from memory or file. #ifndef STBI_NO_STDIO static FILE *img_file; #endif static uint8 *img_buffer, *img_buffer_end; #ifndef STBI_NO_STDIO static void start_file(FILE *f) { img_file = f; } #endif static void start_mem(uint8 *buffer, int len) { #ifndef STBI_NO_STDIO img_file = NULL; #endif img_buffer = buffer; img_buffer_end = buffer+len; } static int get8(void) { #ifndef STBI_NO_STDIO if (img_file) { int c = fgetc(img_file); return c == EOF ? 0 : c; } #endif if (img_buffer < img_buffer_end) return *img_buffer++; return 0; } static int at_eof(void) { #ifndef STBI_NO_STDIO if (img_file) return feof(img_file); #endif return img_buffer >= img_buffer_end; } static uint8 get8u(void) { return (uint8) get8(); } static void skip(int n) { #ifndef STBI_NO_STDIO if (img_file) fseek(img_file, n, SEEK_CUR); else #endif img_buffer += n; } static int get16(void) { int z = get8(); return (z << 8) + get8(); } static uint32 get32(void) { uint32 z = get16(); return (z << 16) + get16(); } static int get16le(void) { int z = get8(); return z + (get8() << 8); } static uint32 get32le(void) { uint32 z = get16le(); return z + (get16le() << 16); } static void getn(stbi_uc *buffer, int n) { #ifndef STBI_NO_STDIO if (img_file) { fread(buffer, 1, n, img_file); return; } #endif memcpy(buffer, img_buffer, n); img_buffer += n; } ////////////////////////////////////////////////////////////////////////////// // // generic converter from built-in img_n to req_comp // individual types do this automatically as much as possible (e.g. jpeg // does all cases internally since it needs to colorspace convert anyway, // and it never has alpha, so very few cases ). png can automatically // interleave an alpha=255 channel, but falls back to this for other cases // // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing static uint8 compute_y(int r, int g, int b) { return (uint8) (((r*77) + (g*150) + (29*b)) >> 8); } static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp) { uint i,j; unsigned char *good; if (req_comp == img_n) return data; assert(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) malloc(req_comp * img_x * img_y); if (good == NULL) { free(data); return epuc("outofmem", "Out of memory"); } for (j=0; j < img_y; ++j) { unsigned char *src = data + j * img_x * img_n ; unsigned char *dest = good + j * img_x * req_comp; #define COMBO(a,b) ((a)*8+(b)) #define CASE(a,b) case COMBO(a,b): for(i=0; i < img_x; ++i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch(COMBO(img_n, req_comp)) { CASE(1,2) dest[0]=src[0], dest[1]=255; break; CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; CASE(2,1) dest[0]=src[0]; break; CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break; CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; default: assert(0); } #undef CASE } free(data); img_out_n = req_comp; return good; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { int i,k,n; float *output = (float *) malloc(x * y * comp * sizeof(float)); if (output == NULL) { free(data); return epf("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { output[i*comp + k] = (float) pow(data[i*comp+k]/255.0f, l2h_gamma) * l2h_scale; } if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; } free(data); return output; } #define float2int(x) ((int) (x)) static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp) { int i,k,n; stbi_uc *output = (stbi_uc *) malloc(x * y * comp); if (output == NULL) { free(data); return epuc("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } } free(data); return output; } #endif ////////////////////////////////////////////////////////////////////////////// // // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation) // // simple implementation // - channel subsampling of at most 2 in each dimension // - doesn't support delayed output of y-dimension // - simple interface (only one output format: 8-bit interleaved RGB) // - doesn't try to recover corrupt jpegs // - doesn't allow partial loading, loading multiple at once // - still fast on x86 (copying globals into locals doesn't help x86) // - allocates lots of intermediate memory (full size of all components) // - non-interleaved case requires this anyway // - allows good upsampling (see next) // high-quality // - upsampled channels are bilinearly interpolated, even across blocks // - quality integer IDCT derived from IJG's 'slow' // performance // - fast huffman; reasonable integer IDCT // - uses a lot of intermediate memory, could cache poorly // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4 // stb_jpeg: 1.34 seconds (MSVC6, default release build) // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro) // IJL11.dll: 1.08 seconds (compiled by intel) // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG) // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro) int stbi_jpeg_dc_only; // huffman decoding acceleration #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache typedef struct { uint8 fast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win uint16 code[256]; uint8 values[256]; uint8 size[257]; unsigned int maxcode[18]; int delta[17]; // old 'firstsymbol' - old 'firstcode' } huffman; static huffman huff_dc[4]; // baseline is 2 tables, extended is 4 static huffman huff_ac[4]; static uint8 dequant[4][64]; static int build_huffman(huffman *h, int *count) { int i,j,k=0,code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i) for (j=0; j < count[i]; ++j) h->size[k++] = (uint8) (i+1); h->size[k] = 0; // compute actual symbols (from jpeg spec) code = 0; k = 0; for(j=1; j <= 16; ++j) { // compute delta to add to code to compute symbol id h->delta[j] = k - code; if (h->size[k] == j) { while (h->size[k] == j) h->code[k++] = (uint16) (code++); if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG"); } // compute largest code + 1 for this size, preshifted as needed later h->maxcode[j] = code << (16-j); code <<= 1; } h->maxcode[j] = 0xffffffff; // build non-spec acceleration table; 255 is flag for not-accelerated memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) { int s = h->size[i]; if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) { h->fast[c+j] = (uint8) i; } } } return 1; } // sizes for components, interleaved MCUs static int img_h_max, img_v_max; static int img_mcu_x, img_mcu_y; static int img_mcu_w, img_mcu_h; // definition of jpeg image component static struct { int id; int h,v; int tq; int hd,ha; int dc_pred; int x,y,w2,h2; uint8 *data; } img_comp[4]; static unsigned long code_buffer; // jpeg entropy-coded buffer static int code_bits; // number of valid bits static unsigned char marker; // marker seen while filling entropy buffer static int nomore; // flag if we saw a marker so must stop static void grow_buffer_unsafe(void) { do { int b = nomore ? 0 : get8(); if (b == 0xff) { int c = get8(); if (c != 0) { marker = (unsigned char) c; nomore = 1; return; } } code_buffer = (code_buffer << 8) | b; code_bits += 8; } while (code_bits <= 24); } // (1 << n) - 1 static unsigned long bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream __forceinline static int decode(huffman *h) { unsigned int temp; int c,k; if (code_bits < 16) grow_buffer_unsafe(); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (code_buffer >> (code_bits - FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c]; if (k < 255) { if (h->size[k] > code_bits) return -1; code_bits -= h->size[k]; return h->values[k]; } // naive test is to shift the code_buffer down so k bits are // valid, then test against maxcode. To speed this up, we've // preshifted maxcode left so that it has (16-k) 0s at the // end; in other words, regardless of the number of bits, it // wants to be compared against something shifted to have 16; // that way we don't need to shift inside the loop. if (code_bits < 16) temp = (code_buffer << (16 - code_bits)) & 0xffff; else temp = (code_buffer >> (code_bits - 16)) & 0xffff; for (k=FAST_BITS+1 ; ; ++k) if (temp < h->maxcode[k]) break; if (k == 17) { // error! code not found code_bits -= 16; return -1; } if (k > code_bits) return -1; // convert the huffman code to the symbol id c = ((code_buffer >> (code_bits - k)) & bmask[k]) + h->delta[k]; assert((((code_buffer) >> (code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c]); // convert the id to a symbol code_bits -= k; return h->values[c]; } // combined JPEG 'receive' and JPEG 'extend', since baseline // always extends everything it receives. __forceinline static int extend_receive(int n) { unsigned int m = 1 << (n-1); unsigned int k; if (code_bits < n) grow_buffer_unsafe(); k = (code_buffer >> (code_bits - n)) & bmask[n]; code_bits -= n; // the following test is probably a random branch that won't // predict well. I tried to table accelerate it but failed. // maybe it's compiling as a conditional move? if (k < m) return (-1 << n) + k + 1; else return k; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? static uint8 dezigzag[64+15] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, // let corrupt input sample past end 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }; // decode one 64-entry block-- static int decode_block(short data[64], huffman *hdc, huffman *hac, int b) { int diff,dc,k; int t = decode(hdc); if (t < 0) return e("bad huffman code","Corrupt JPEG"); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? extend_receive(t) : 0; dc = img_comp[b].dc_pred + diff; img_comp[b].dc_pred = dc; data[0] = (short) dc; // decode AC components, see JPEG spec k = 1; do { int r,s; int rs = decode(hac); if (rs < 0) return e("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (rs != 0xf0) break; // end block k += 16; } else { k += r; // decode into unzigzag'd location data[dezigzag[k++]] = (short) extend_receive(s); } } while (k < 64); return 1; } // take a -128..127 value and clamp it and convert to 0..255 __forceinline static uint8 clamp(int x) { x += 128; // trick to use a single test to catch both cases if ((unsigned int) x > 255) { if (x < 0) return 0; if (x > 255) return 255; } return (uint8) x; } #define f2f(x) (int) (((x) * 4096 + 0.5)) #define fsh(x) ((x) << 12) // derived from jidctint -- DCT_ISLOW #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ p2 = s2; \ p3 = s6; \ p1 = (p2+p3) * f2f(0.5411961f); \ t2 = p1 + p3*f2f(-1.847759065f); \ t3 = p1 + p2*f2f( 0.765366865f); \ p2 = s0; \ p3 = s4; \ t0 = fsh(p2+p3); \ t1 = fsh(p2-p3); \ x0 = t0+t3; \ x3 = t0-t3; \ x1 = t1+t2; \ x2 = t1-t2; \ t0 = s7; \ t1 = s5; \ t2 = s3; \ t3 = s1; \ p3 = t0+t2; \ p4 = t1+t3; \ p1 = t0+t3; \ p2 = t1+t2; \ p5 = (p3+p4)*f2f( 1.175875602f); \ t0 = t0*f2f( 0.298631336f); \ t1 = t1*f2f( 2.053119869f); \ t2 = t2*f2f( 3.072711026f); \ t3 = t3*f2f( 1.501321110f); \ p1 = p5 + p1*f2f(-0.899976223f); \ p2 = p5 + p2*f2f(-2.562915447f); \ p3 = p3*f2f(-1.961570560f); \ p4 = p4*f2f(-0.390180644f); \ t3 += p1+p4; \ t2 += p2+p3; \ t1 += p2+p4; \ t0 += p1+p3; // .344 seconds on 3*anemones.jpg static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize) { int i,val[64],*v=val; uint8 *o,*dq = dequantize; short *d = data; if (stbi_jpeg_dc_only) { // ok, I don't really know why this is right, but it seems to be: int z = 128 + ((d[0] * dq[0]) >> 3); for (i=0; i < 8; ++i) { out[0] = out[1] = out[2] = out[3] = out[4] = out[5] = out[6] = out[7] = z; out += out_stride; } return; } // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } #define MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value static uint8 get_marker(void) { uint8 x; if (marker != MARKER_none) { x = marker; marker = MARKER_none; return x; } x = get8u(); if (x != 0xff) return MARKER_none; while (x == 0xff) x = get8u(); return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] static int scan_n, order[4]; static int restart_interval, todo; #define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, reset the entropy decoder and // the dc prediction static void reset(void) { code_bits = 0; code_buffer = 0; nomore = 0; img_comp[0].dc_pred = img_comp[1].dc_pred = img_comp[2].dc_pred = 0; marker = MARKER_none; todo = restart_interval ? restart_interval : 0x7fffffff; // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, // since we don't even allow 1<<30 pixels } static int parse_entropy_coded_data(void) { reset(); if (scan_n == 1) { int i,j; short data[64]; int n = order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (img_comp[n].x+7) >> 3; int h = (img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { if (!decode_block(data, huff_dc+img_comp[n].hd, huff_ac+img_comp[n].ha, n)) return 0; idct_block(img_comp[n].data+img_comp[n].w2*j*8+i*8, img_comp[n].w2, data, dequant[img_comp[n].tq]); // every data block is an MCU, so countdown the restart interval if (--todo <= 0) { if (code_bits < 24) grow_buffer_unsafe(); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(marker)) return 1; reset(); } } } } else { // interleaved! int i,j,k,x,y; short data[64]; for (j=0; j < img_mcu_y; ++j) { for (i=0; i < img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < scan_n; ++k) { int n = order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < img_comp[n].v; ++y) { for (x=0; x < img_comp[n].h; ++x) { int x2 = (i*img_comp[n].h + x)*8; int y2 = (j*img_comp[n].v + y)*8; if (!decode_block(data, huff_dc+img_comp[n].hd, huff_ac+img_comp[n].ha, n)) return 0; idct_block(img_comp[n].data+img_comp[n].w2*y2+x2, img_comp[n].w2, data, dequant[img_comp[n].tq]); } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--todo <= 0) { if (code_bits < 24) grow_buffer_unsafe(); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(marker)) return 1; reset(); } } } } return 1; } static int process_marker(int m) { int L; switch (m) { case MARKER_none: // no marker found return e("expected marker","Corrupt JPEG"); case 0xC2: // SOF - progressive return e("progressive jpeg","JPEG format not supported (progressive)"); case 0xDD: // DRI - specify restart interval if (get16() != 4) return e("bad DRI len","Corrupt JPEG"); restart_interval = get16(); return 1; case 0xDB: // DQT - define quantization table L = get16()-2; while (L > 0) { int z = get8(); int p = z >> 4; int t = z & 15,i; if (p != 0) return e("bad DQT type","Corrupt JPEG"); if (t > 3) return e("bad DQT table","Corrupt JPEG"); for (i=0; i < 64; ++i) dequant[t][dezigzag[i]] = get8u(); L -= 65; } return L==0; case 0xC4: // DHT - define huffman table L = get16()-2; while (L > 0) { uint8 *v; int sizes[16],i,m=0; int z = get8(); int tc = z >> 4; int th = z & 15; if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG"); for (i=0; i < 16; ++i) { sizes[i] = get8(); m += sizes[i]; } L -= 17; if (tc == 0) { if (!build_huffman(huff_dc+th, sizes)) return 0; v = huff_dc[th].values; } else { if (!build_huffman(huff_ac+th, sizes)) return 0; v = huff_ac[th].values; } for (i=0; i < m; ++i) v[i] = get8u(); L -= m; } return L==0; } // check for comment block or APP blocks if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { skip(get16()-2); return 1; } return 0; } // after we see SOS static int process_scan_header(void) { int i; int Ls = get16(); scan_n = get8(); if (scan_n < 1 || scan_n > 4 || scan_n > (int) img_n) return e("bad SOS component count","Corrupt JPEG"); if (Ls != 6+2*scan_n) return e("bad SOS len","Corrupt JPEG"); for (i=0; i < scan_n; ++i) { int id = get8(), which; int z = get8(); for (which = 0; which < img_n; ++which) if (img_comp[which].id == id) break; if (which == img_n) return 0; img_comp[which].hd = z >> 4; if (img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG"); img_comp[which].ha = z & 15; if (img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG"); order[i] = which; } if (get8() != 0) return e("bad SOS","Corrupt JPEG"); get8(); // should be 63, but might be 0 if (get8() != 0) return e("bad SOS","Corrupt JPEG"); return 1; } static int process_frame_header(int scan) { int Lf,p,i,z, h_max=1,v_max=1; Lf = get16(); if (Lf < 11) return e("bad SOF len","Corrupt JPEG"); // JPEG p = get8(); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline img_y = get16(); if (img_y == 0) return e("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG img_x = get16(); if (img_x == 0) return e("0 width","Corrupt JPEG"); // JPEG requires img_n = get8(); if (img_n != 3 && img_n != 1) return e("bad component count","Corrupt JPEG"); // JFIF requires if (Lf != 8+3*img_n) return e("bad SOF len","Corrupt JPEG"); for (i=0; i < img_n; ++i) { img_comp[i].id = get8(); if (img_comp[i].id != i+1) // JFIF requires if (img_comp[i].id != i) // jpegtran outputs non-JFIF-compliant files! return e("bad component ID","Corrupt JPEG"); z = get8(); img_comp[i].h = (z >> 4); if (!img_comp[i].h || img_comp[i].h > 4) return e("bad H","Corrupt JPEG"); img_comp[i].v = z & 15; if (!img_comp[i].v || img_comp[i].v > 4) return e("bad V","Corrupt JPEG"); img_comp[i].tq = get8(); if (img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG"); } if (scan != SCAN_load) return 1; if ((1 << 30) / img_x / img_n < img_y) return e("too large", "Image too large to decode"); for (i=0; i < img_n; ++i) { if (img_comp[i].h > h_max) h_max = img_comp[i].h; if (img_comp[i].v > v_max) v_max = img_comp[i].v; } // compute interleaved mcu info img_h_max = h_max; img_v_max = v_max; img_mcu_w = h_max * 8; img_mcu_h = v_max * 8; img_mcu_x = (img_x + img_mcu_w-1) / img_mcu_w; img_mcu_y = (img_y + img_mcu_h-1) / img_mcu_h; for (i=0; i < img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) img_comp[i].x = (img_x * img_comp[i].h + h_max-1) / h_max; img_comp[i].y = (img_y * img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion img_comp[i].w2 = img_mcu_x * img_comp[i].h * 8; img_comp[i].h2 = img_mcu_y * img_comp[i].v * 8; img_comp[i].data = (uint8 *) malloc(img_comp[i].w2 * img_comp[i].h2); if (img_comp[i].data == NULL) { for(--i; i >= 0; --i) free(img_comp[i].data); return e("outofmem", "Out of memory"); } } return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) #define DNL(x) ((x) == 0xdc) #define SOI(x) ((x) == 0xd8) #define EOI(x) ((x) == 0xd9) #define SOF(x) ((x) == 0xc0 || (x) == 0xc1) #define SOS(x) ((x) == 0xda) static int decode_jpeg_header(int scan) { int m; marker = MARKER_none; // initialize cached marker to empty m = get_marker(); if (!SOI(m)) return e("no SOI","Corrupt JPEG"); if (scan == SCAN_type) return 1; m = get_marker(); while (!SOF(m)) { if (!process_marker(m)) return 0; m = get_marker(); while (m == MARKER_none) { // some files have extra padding after their blocks, so ok, we'll scan if (at_eof()) return e("no SOF", "Corrupt JPEG"); m = get_marker(); } } if (!process_frame_header(scan)) return 0; return 1; } static int decode_jpeg_image(void) { int m; restart_interval = 0; if (!decode_jpeg_header(SCAN_load)) return 0; m = get_marker(); while (!EOI(m)) { if (SOS(m)) { if (!process_scan_header()) return 0; if (!parse_entropy_coded_data()) return 0; } else { if (!process_marker(m)) return 0; } m = get_marker(); } return 1; } // static jfif-centered resampling with cross-block smoothing // here by cross-block smoothing what I mean is that the resampling // is bilerp and crosses blocks; I dunno what IJG means #define div4(x) ((uint8) ((x) >> 2)) static void resample_v_2(uint8 *out1, uint8 *input, int w, int h, int s) { // need to generate two samples vertically for every one in input uint8 *above; uint8 *below; uint8 *source; uint8 *out2; int i,j; source = input; out2 = out1+w; for (j=0; j < h; ++j) { above = source; source = input + j*s; below = source + s; if (j == h-1) below = source; for (i=0; i < w; ++i) { int n = source[i]*3; out1[i] = div4(above[i] + n); out2[i] = div4(below[i] + n); } out1 += w*2; out2 += w*2; } } static void resample_h_2(uint8 *out, uint8 *input, int w, int h, int s) { // need to generate two samples horizontally for every one in input int i,j; if (w == 1) { for (j=0; j < h; ++j) out[j*2+0] = out[j*2+1] = input[j*s]; return; } for (j=0; j < h; ++j) { out[0] = input[0]; out[1] = div4(input[0]*3 + input[1]); for (i=1; i < w-1; ++i) { int n = input[i]*3; out[i*2-2] = div4(input[i-1] + n); out[i*2-1] = div4(input[i+1] + n); } out[w*2-2] = div4(input[w-2]*3 + input[w-1]); out[w*2-1] = input[w-1]; out += w*2; input += s; } } // .172 seconds on 3*anemones.jpg static void resample_hv_2(uint8 *out, uint8 *input, int w, int h, int s) { // need to generate 2x2 samples for every one in input int i,j; int os = w*2; // generate edge samples... @TODO lerp them! for (i=0; i < w; ++i) { out[i*2+0] = out[i*2+1] = input[i]; out[i*2+(2*h-1)*os+0] = out[i*2+(2*h-1)*os+1] = input[i+(h-1)*w]; } for (j=0; j < h; ++j) { out[j*os*2+0] = out[j*os*2+os+0] = input[j*w]; out[j*os*2+os-1] = out[j*os*2+os+os-1] = input[j*w+i-1]; } // now generate interior samples; i & j point to top left of input for (j=0; j < h-1; ++j) { uint8 *in1 = input+j*s; uint8 *in2 = in1 + s; uint8 *out1 = out + (j*2+1)*os + 1; uint8 *out2 = out1 + os; for (i=0; i < w-1; ++i) { int p00 = in1[0], p01=in1[1], p10=in2[0], p11=in2[1]; int p00_3 = p00*3, p01_3 = p01*3, p10_3 = p10*3, p11_3 = p11*3; #define div16(x) ((uint8) ((x) >> 4)) out1[0] = div16(p00*9 + p01_3 + p10_3 + p11); out1[1] = div16(p01*9 + p00_3 + p01_3 + p10); out2[0] = div16(p10*9 + p11_3 + p00_3 + p01); out2[1] = div16(p11*9 + p10_3 + p01_3 + p00); out1 += 2; out2 += 2; ++in1; ++in2; } } } #define float2fixed(x) ((int) ((x) * 65536 + 0.5)) // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro) // VC6 without processor=Pro is generating multiple LEAs per multiply! static void YCbCr_to_RGB_row(uint8 *out, uint8 *y, uint8 *pcb, uint8 *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 16) + 32768; // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr*float2fixed(1.40200f); g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f); b = y_fixed + cb*float2fixed(1.77200f); r >>= 16; g >>= 16; b >>= 16; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (uint8)r; out[1] = (uint8)g; out[2] = (uint8)b; if (step == 4) out[3] = 255; out += step; } } // clean up the temporary component buffers static void cleanup_jpeg(void) { int i; for (i=0; i < img_n; ++i) { if (img_comp[i].data) { free(img_comp[i].data); img_comp[i].data = NULL; } } } static uint8 *load_jpeg_image(int *out_x, int *out_y, int *comp, int req_comp) { int i, n; // validate req_comp if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); // load a jpeg image from whichever source if (!decode_jpeg_image()) { cleanup_jpeg(); return NULL; } // determine actual number of components to generate n = req_comp ? req_comp : img_n; // resample components to full size... memory wasteful, but this // lets us bilerp across blocks while upsampling for (i=0; i < img_n; ++i) { // if we're outputting fewer than 3 components, we're grey not RGB; // in that case, don't bother upsampling Cb or Cr if (n < 3 && i) continue; // check if the component scale is less than max; if so it needs upsampling if (img_comp[i].h != img_h_max || img_comp[i].v != img_v_max) { int stride = img_x; // allocate final size; make sure it's big enough for upsampling off // the edges with upsample up to 4x4 (although we only support 2x2 // currently) uint8 *new_data = (uint8 *) malloc((img_x+3)*(img_y+3)); if (new_data == NULL) { cleanup_jpeg(); return epuc("outofmem", "Out of memory (image too large?)"); } if (img_comp[i].h*2 == img_h_max && img_comp[i].v*2 == img_v_max) { int tx = (img_x+1)>>1; resample_hv_2(new_data, img_comp[i].data, tx,(img_y+1)>>1, img_comp[i].w2); stride = tx*2; } else if (img_comp[i].h == img_h_max && img_comp[i].v*2 == img_v_max) { resample_v_2(new_data, img_comp[i].data, img_x,(img_y+1)>>1, img_comp[i].w2); } else if (img_comp[i].h*2 == img_h_max && img_comp[i].v == img_v_max) { int tx = (img_x+1)>>1; resample_h_2(new_data, img_comp[i].data, tx,img_y, img_comp[i].w2); stride = tx*2; } else { // @TODO resample uncommon sampling pattern with nearest neighbor free(new_data); cleanup_jpeg(); return epuc("uncommon H or V", "JPEG not supported: atypical downsampling mode"); } img_comp[i].w2 = stride; free(img_comp[i].data); img_comp[i].data = new_data; } } // now convert components to output image { uint32 i,j; uint8 *output = (uint8 *) malloc(n * img_x * img_y + 1); if (n >= 3) { // output STBI_rgb_* for (j=0; j < img_y; ++j) { uint8 *y = img_comp[0].data + j*img_comp[0].w2; uint8 *out = output + n * img_x * j; if (img_n == 3) { uint8 *cb = img_comp[1].data + j*img_comp[1].w2; uint8 *cr = img_comp[2].data + j*img_comp[2].w2; YCbCr_to_RGB_row(out, y, cb, cr, img_x, n); } else { for (i=0; i < img_x; ++i) { out[0] = out[1] = out[2] = y[i]; out[3] = 255; // not used if n == 3 out += n; } } } } else { // output STBI_grey_* for (j=0; j < img_y; ++j) { uint8 *y = img_comp[0].data + j*img_comp[0].w2; uint8 *out = output + n * img_x * j; if (n == 1) for (i=0; i < img_x; ++i) *out++ = *y++; else for (i=0; i < img_x; ++i) *out++ = *y++, *out++ = 255; } } cleanup_jpeg(); *out_x = img_x; *out_y = img_y; if (comp) *comp = img_n; // report original components, not output return output; } } #ifndef STBI_NO_STDIO unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { start_file(f); return load_jpeg_image(x,y,comp,req_comp); } unsigned char *stbi_jpeg_load(char *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_jpeg_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { start_mem(buffer,len); return load_jpeg_image(x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_jpeg_test_file(FILE *f) { int n,r; n = ftell(f); start_file(f); r = decode_jpeg_header(SCAN_type); fseek(f,n,SEEK_SET); return r; } #endif int stbi_jpeg_test_memory(unsigned char *buffer, int len) { start_mem(buffer,len); return decode_jpeg_header(SCAN_type); } // @TODO: #ifndef STBI_NO_STDIO extern int stbi_jpeg_info (char *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_jpeg_info_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp); // public domain zlib decode v0.2 Sean Barrett 2006-11-18 // simple implementation // - all input must be provided in an upfront buffer // - all output is written to a single output buffer (can malloc/realloc) // performance // - fast huffman // fast-way is faster to check than jpeg huffman, but slow way is slower #define ZFAST_BITS 9 // accelerate all cases in default tables #define ZFAST_MASK ((1 << ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) typedef struct { uint16 fast[1 << ZFAST_BITS]; uint16 firstcode[16]; int maxcode[17]; uint16 firstsymbol[16]; uint8 size[288]; uint16 value[288]; } zhuffman; __forceinline static int bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } __forceinline static int bit_reverse(int v, int bits) { assert(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return bitreverse16(v) >> (16-bits); } static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; // DEFLATE spec for generating codes memset(sizes, 0, sizeof(sizes)); memset(z->fast, 255, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) assert(sizes[i] <= (1 << i)); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (uint16) code; z->firstsymbol[i] = (uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG"); z->maxcode[i] = code << (16-i); // preshift for inner loop code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; z->size[c] = (uint8)s; z->value[c] = (uint16)i; if (s <= ZFAST_BITS) { int k = bit_reverse(next_code[s],s); while (k < (1 << ZFAST_BITS)) { z->fast[k] = (uint16) c; k += (1 << s); } } ++next_code[s]; } } return 1; } // zlib-from-memory implementation for PNG reading // because PNG allows splitting the zlib stream arbitrarily, // and it's annoying structurally to have PNG call ZLIB call PNG, // we require PNG read all the IDATs and combine them into a single // memory buffer static uint8 *zbuffer, *zbuffer_end; __forceinline static int zget8(void) { if (zbuffer >= zbuffer_end) return 0; return *zbuffer++; } //static unsigned long code_buffer; static int num_bits; static void fill_bits(void) { do { assert(code_buffer < (1U << num_bits)); code_buffer |= zget8() << num_bits; num_bits += 8; } while (num_bits <= 24); } __forceinline static unsigned int zreceive(int n) { unsigned int k; if (num_bits < n) fill_bits(); k = code_buffer & ((1 << n) - 1); code_buffer >>= n; num_bits -= n; return k; } __forceinline static int zhuffman_decode(zhuffman *z) { int b,s,k; if (num_bits < 16) fill_bits(); b = z->fast[code_buffer & ZFAST_MASK]; if (b < 0xffff) { s = z->size[b]; code_buffer >>= s; num_bits -= s; return z->value[b]; } // not resolved by fast table, so compute it the slow way // use jpeg approach, which requires MSbits at top k = bit_reverse(code_buffer, 16); for (s=ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s == 16) return -1; // invalid code! // code size is s, so: b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; assert(z->size[b] == s); code_buffer >>= s; num_bits -= s; return z->value[b]; } static char *zout; static char *zout_start; static char *zout_end; static int z_expandable; static int expand(int n) // need to make room for n bytes { char *q; int cur, limit; if (!z_expandable) return e("output buffer limit","Corrupt PNG"); cur = (int) (zout - zout_start); limit = (int) (zout_end - zout_start); while (cur + n > limit) limit *= 2; q = (char *) realloc(zout_start, limit); if (q == NULL) return e("outofmem", "Out of memory"); zout_start = q; zout = q + cur; zout_end = q + limit; return 1; } static zhuffman z_length, z_distance; static int length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static int length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static int dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static int dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int parse_huffman_block(void) { for(;;) { int z = zhuffman_decode(&z_length); if (z < 256) { if (z < 0) return e("bad huffman code","Corrupt PNG"); // error in huffman codes if (zout >= zout_end) if (!expand(1)) return 0; *zout++ = (char) z; } else { uint8 *p; int len,dist; if (z == 256) return 1; z -= 257; len = length_base[z]; if (length_extra[z]) len += zreceive(length_extra[z]); z = zhuffman_decode(&z_distance); if (z < 0) return e("bad huffman code","Corrupt PNG"); dist = dist_base[z]; if (dist_extra[z]) dist += zreceive(dist_extra[z]); if (zout - zout_start < dist) return e("bad dist","Corrupt PNG"); if (zout + len > zout_end) if (!expand(len)) return 0; p = (uint8 *) (zout - dist); while (len--) *zout++ = *p++; } } } static int compute_huffman_codes(void) { static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; static zhuffman z_codelength; // static just to save stack space uint8 lencodes[286+32+137];//padding for maximum single op uint8 codelength_sizes[19]; int i,n; int hlit = zreceive(5) + 257; int hdist = zreceive(5) + 1; int hclen = zreceive(4) + 4; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = zreceive(3); codelength_sizes[length_dezigzag[i]] = (uint8) s; } if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < hlit + hdist) { int c = zhuffman_decode(&z_codelength); assert(c >= 0 && c < 19); if (c < 16) lencodes[n++] = (uint8) c; else if (c == 16) { c = zreceive(2)+3; memset(lencodes+n, lencodes[n-1], c); n += c; } else if (c == 17) { c = zreceive(3)+3; memset(lencodes+n, 0, c); n += c; } else { assert(c == 18); c = zreceive(7)+11; memset(lencodes+n, 0, c); n += c; } } if (n != hlit+hdist) return e("bad codelengths","Corrupt PNG"); if (!zbuild_huffman(&z_length, lencodes, hlit)) return 0; if (!zbuild_huffman(&z_distance, lencodes+hlit, hdist)) return 0; return 1; } static int parse_uncompressed_block(void) { uint8 header[4]; int len,nlen,k; if (num_bits & 7) zreceive(num_bits & 7); // discard // drain the bit-packed data into header k = 0; while (num_bits > 0) { header[k++] = (uint8) (code_buffer & 255); // wtf this warns? code_buffer >>= 8; num_bits -= 8; } assert(num_bits == 0); // now fill header the normal way while (k < 4) header[k++] = (uint8) zget8(); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG"); if (zbuffer + len > zbuffer_end) return e("read past buffer","Corrupt PNG"); if (zout + len > zout_end) if (!expand(len)) return 0; memcpy(zout, zbuffer, len); zbuffer += len; zout += len; return 1; } static int parse_zlib_header(void) { int cmf = zget8(); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = zget8(); if ((cmf*256+flg) % 31 != 0) return e("bad zlib header","Corrupt PNG"); // zlib spec if (flg & 32) return e("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png if (cm != 8) return e("bad compression","Corrupt PNG"); // DEFLATE required for png // window = 1 << (8 + cinfo)... but who cares, we fully buffer output return 1; } static uint8 default_length[288], default_distance[32]; static void init_defaults(void) { int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) default_length[i] = 8; for ( ; i <= 255; ++i) default_length[i] = 9; for ( ; i <= 279; ++i) default_length[i] = 7; for ( ; i <= 287; ++i) default_length[i] = 8; for (i=0; i <= 31; ++i) default_distance[i] = 5; } static int parse_zlib(int parse_header) { int final, type; if (parse_header) if (!parse_zlib_header()) return 0; num_bits = 0; code_buffer = 0; do { final = zreceive(1); type = zreceive(2); if (type == 0) { if (!parse_uncompressed_block()) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { // use fixed code lengths if (!default_length[0]) init_defaults(); if (!zbuild_huffman(&z_length , default_length , 288)) return 0; if (!zbuild_huffman(&z_distance, default_distance, 32)) return 0; } else { if (!compute_huffman_codes()) return 0; } if (!parse_huffman_block()) return 0; } } while (!final); return 1; } static int do_zlib(char *obuf, int olen, int exp, int parse_header) { zout_start = obuf; zout = obuf; zout_end = obuf + olen; z_expandable = exp; return parse_zlib(parse_header); } char *stbi_zlib_decode_malloc_guesssize(int initial_size, int *outlen) { char *p = (char *) malloc(initial_size); if (p == NULL) return NULL; if (do_zlib(p, initial_size, 1, 1)) { *outlen = (int) (zout - zout_start); return zout_start; } else { free(zout_start); return NULL; } } char *stbi_zlib_decode_malloc(char *buffer, int len, int *outlen) { zbuffer = (uint8 *) buffer; zbuffer_end = (uint8 *) buffer+len; return stbi_zlib_decode_malloc_guesssize(16384, outlen); } int stbi_zlib_decode_buffer(char *obuffer, int olen, char *ibuffer, int ilen) { zbuffer = (uint8 *) ibuffer; zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(obuffer, olen, 0, 1)) return (int) (zout - zout_start); else return -1; } char *stbi_zlib_decode_noheader_malloc(char *buffer, int len, int *outlen) { char *p = (char *) malloc(16384); if (p == NULL) return NULL; zbuffer = (uint8 *) buffer; zbuffer_end = (uint8 *) buffer+len; if (do_zlib(p, 16384, 1, 0)) { *outlen = (int) (zout - zout_start); return zout_start; } else { free(zout_start); return NULL; } } int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, char *ibuffer, int ilen) { zbuffer = (uint8 *) ibuffer; zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(obuffer, olen, 0, 0)) return (int) (zout - zout_start); else return -1; } // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 // simple implementation // - only 8-bit samples // - no CRC checking // - allocates lots of intermediate memory // - avoids problem of streaming data between subsystems // - avoids explicit window management // performance // - uses stb_zlib, a PD zlib implementation with fast huffman decoding typedef struct { unsigned long length; unsigned long type; } chunk; #define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static chunk get_chunk_header(void) { chunk c; c.length = get32(); c.type = get32(); return c; } static int check_png_header(void) { static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (get8() != png_sig[i]) return e("bad png sig","Not a PNG"); return 1; } static uint8 *idata, *expanded, *out; enum { F_none=0, F_sub=1, F_up=2, F_avg=3, F_paeth=4, F_avg_first, F_paeth_first, }; static uint8 first_row_filter[5] = { F_none, F_sub, F_none, F_avg_first, F_paeth_first }; static int paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } // create the png data from post-deflated data static int create_png_image(uint8 *raw, uint32 raw_len, int out_n) { uint32 i,j,stride = img_x*out_n; int k; assert(out_n == img_n || out_n == img_n+1); out = (uint8 *) malloc(img_x * img_y * out_n); if (!out) return e("outofmem", "Out of memory"); if (raw_len != (img_n * img_x + 1) * img_y) return e("not enough pixels","Corrupt PNG"); for (j=0; j < img_y; ++j) { uint8 *cur = out + stride*j; uint8 *prior = cur - stride; int filter = *raw++; if (filter > 4) return e("invalid filter","Corrupt PNG"); // if first row, use special filter that doesn't sample previous row if (j == 0) filter = first_row_filter[filter]; // handle first pixel explicitly for (k=0; k < img_n; ++k) { switch(filter) { case F_none : cur[k] = raw[k]; break; case F_sub : cur[k] = raw[k]; break; case F_up : cur[k] = raw[k] + prior[k]; break; case F_avg : cur[k] = raw[k] + (prior[k]>>1); break; case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break; case F_avg_first : cur[k] = raw[k]; break; case F_paeth_first: cur[k] = raw[k]; break; } } if (img_n != out_n) cur[img_n] = 255; raw += img_n; cur += out_n; prior += out_n; // this is a little gross, so that we don't switch per-pixel or per-component if (img_n == out_n) { #define CASE(f) \ case f: \ for (i=1; i < img_x; ++i, raw+=img_n,cur+=img_n,prior+=img_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break; } #undef CASE } else { assert(img_n+1 == out_n); #define CASE(f) \ case f: \ for (i=1; i < img_x; ++i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break; } #undef CASE } } return 1; } static int compute_transparency(uint8 tc[3], int out_n) { uint32 i, pixel_count = img_x * img_y; uint8 *p = out; // compute color-based transparency, assuming we've // already got 255 as the alpha value in the output assert(out_n == 2 || out_n == 4); p = out; if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int expand_palette(uint8 *palette, int len, int pal_img_n) { uint32 i, pixel_count = img_x * img_y; uint8 *p, *temp_out, *orig = out; p = (uint8 *) malloc(pixel_count * pal_img_n); if (p == NULL) return e("outofmem", "Out of memory"); // between here and free(out) below, exitting would leak temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } free(out); out = temp_out; return 1; } static int parse_png_file(int scan, int req_comp) { uint8 palette[1024], pal_img_n=0; uint8 has_trans=0, tc[3]; uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k; if (!check_png_header()) return 0; if (scan == SCAN_type) return 1; for(;;first=0) { chunk c = get_chunk_header(); if (first && c.type != PNG_TYPE('I','H','D','R')) return e("first not IHDR","Corrupt PNG"); switch (c.type) { case PNG_TYPE('I','H','D','R'): { int depth,color,interlace,comp,filter; if (!first) return e("multiple IHDR","Corrupt PNG"); if (c.length != 13) return e("bad IHDR len","Corrupt PNG"); img_x = get32(); if (img_x > (1 << 24)) return e("too large","Very large image (corrupt?)"); img_y = get32(); if (img_y > (1 << 24)) return e("too large","Very large image (corrupt?)"); depth = get8(); if (depth != 8) return e("8bit only","PNG not supported: 8-bit only"); color = get8(); if (color > 6) return e("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return e("bad ctype","Corrupt PNG"); comp = get8(); if (comp) return e("bad comp method","Corrupt PNG"); filter= get8(); if (filter) return e("bad filter method","Corrupt PNG"); interlace = get8(); if (interlace) return e("interlaced","PNG not supported: interlaced mode"); if (!img_x || !img_y) return e("0-pixel image","Corrupt PNG"); if (!pal_img_n) { img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / img_x / img_n < img_y) return e("too large", "Image too large to decode"); if (scan == SCAN_header) return 1; } else { // if paletted, then pal_n is our final components, and // img_n is # components to decompress/filter. img_n = 1; if ((1 << 30) / img_x / 4 < img_y) return e("too large","Corrupt PNG"); // if SCAN_header, have to scan to see if we have a tRNS } break; } case PNG_TYPE('P','L','T','E'): { if (c.length > 256*3) return e("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return e("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = get8u(); palette[i*4+1] = get8u(); palette[i*4+2] = get8u(); palette[i*4+3] = 255; } break; } case PNG_TYPE('t','R','N','S'): { if (idata) return e("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == SCAN_header) { img_n = 4; return 1; } if (pal_len == 0) return e("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return e("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = get8u(); } else { if (!(img_n & 1)) return e("tRNS with alpha","Corrupt PNG"); if (c.length != (uint32) img_n*2) return e("bad tRNS len","Corrupt PNG"); has_trans = 1; for (k=0; k < img_n; ++k) tc[k] = (uint8) get16(); // non 8-bit images will be larger } break; } case PNG_TYPE('I','D','A','T'): { if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG"); if (scan == SCAN_header) { img_n = pal_img_n; return 1; } if (ioff + c.length > idata_limit) { uint8 *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; p = (uint8 *) realloc(idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory"); idata = p; } #ifndef STBI_NO_STDIO if (img_file) { if (fread(idata+ioff,1,c.length,img_file) != c.length) return e("outofdata","Corrupt PNG"); } else #endif { memcpy(idata+ioff, img_buffer, c.length); img_buffer += c.length; } ioff += c.length; break; } case PNG_TYPE('I','E','N','D'): { uint32 raw_len; if (scan != SCAN_load) return 1; if (idata == NULL) return e("no IDAT","Corrupt PNG"); expanded = (uint8 *) stbi_zlib_decode_malloc((char *) idata, ioff, (int *) &raw_len); if (expanded == NULL) return 0; // zlib should set error free(idata); idata = NULL; if ((req_comp == img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) img_out_n = img_n+1; else img_out_n = img_n; if (!create_png_image(expanded, raw_len, img_out_n)) return 0; if (has_trans) if (!compute_transparency(tc, img_out_n)) return 0; if (pal_img_n) { // pal_img_n == 3 or 4 img_n = pal_img_n; // record the actual colors we had img_out_n = pal_img_n; if (req_comp >= 3) img_out_n = req_comp; if (!expand_palette(palette, pal_len, img_out_n)) return 0; } free(expanded); expanded = NULL; return 1; } default: // if critical, fail if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS static char invalid_chunk[] = "XXXX chunk not known"; invalid_chunk[0] = (uint8) (c.type >> 24); invalid_chunk[1] = (uint8) (c.type >> 16); invalid_chunk[2] = (uint8) (c.type >> 8); invalid_chunk[3] = (uint8) (c.type >> 0); #endif return e(invalid_chunk, "PNG not supported: unknown chunk type"); } skip(c.length); break; } // end of chunk, read and skip CRC get8(); get8(); get8(); get8(); } } static unsigned char *do_png(int *x, int *y, int *n, int req_comp) { unsigned char *result=NULL; if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); if (parse_png_file(SCAN_load, req_comp)) { result = out; out = NULL; if (req_comp && req_comp != img_out_n) { result = convert_format(result, img_out_n, req_comp); if (result == NULL) return result; } *x = img_x; *y = img_y; if (n) *n = img_n; } free(out); out = NULL; free(expanded); expanded = NULL; free(idata); idata = NULL; return result; } #ifndef STBI_NO_STDIO unsigned char *stbi_png_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { start_file(f); return do_png(x,y,comp,req_comp); } unsigned char *stbi_png_load(char *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_png_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_png_load_from_memory(unsigned char *buffer, int len, int *x, int *y, int *comp, int req_comp) { start_mem(buffer,len); return do_png(x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_png_test_file(FILE *f) { int n,r; n = ftell(f); start_file(f); r = parse_png_file(SCAN_type,STBI_default); fseek(f,n,SEEK_SET); return r; } #endif int stbi_png_test_memory(unsigned char *buffer, int len) { start_mem(buffer, len); return parse_png_file(SCAN_type,STBI_default); } // TODO: load header from png #ifndef STBI_NO_STDIO extern int stbi_png_info (char *filename, int *x, int *y, int *comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_png_info_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp); // Microsoft/Windows BMP image static int bmp_test(void) { int sz; if (get8() != 'B') return 0; if (get8() != 'M') return 0; get32le(); // discard filesize get16le(); // discard reserved get16le(); // discard reserved get32le(); // discard data offset sz = get32le(); if (sz == 12 || sz == 40 || sz == 56 || sz == 108) return 1; return 0; } #ifndef STBI_NO_STDIO int stbi_bmp_test_file (FILE *f) { int r,n = ftell(f); start_file(f); r = bmp_test(); fseek(f,n,SEEK_SET); return r; } #endif int stbi_bmp_test_memory (stbi_uc *buffer, int len) { start_mem(buffer, len); return bmp_test(); } // returns 0..31 for the highest set bit static int high_bit(unsigned int z) { int n=0; if (z == 0) return -1; if (z >= 0x10000) n += 16, z >>= 16; if (z >= 0x00100) n += 8, z >>= 8; if (z >= 0x00010) n += 4, z >>= 4; if (z >= 0x00004) n += 2, z >>= 2; if (z >= 0x00002) n += 1, z >>= 1; return n; } static int bitcount(unsigned int a) { a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits a = (a + (a >> 8)); // max 16 per 8 bits a = (a + (a >> 16)); // max 32 per 8 bits return a & 0xff; } static int shiftsigned(int v, int shift, int bits) { int result; int z=0; if (shift < 0) v <<= -shift; else v >>= shift; result = v; z = bits; while (z < 8) { result += v >> z; z += bits; } return result; } static stbi_uc *bmp_load(int *x, int *y, int *comp, int req_comp) { unsigned int mr=0,mg=0,mb=0,ma=0; stbi_uc pal[256][4]; int psize=0,i,j,compress=0,width; int bpp, flip_vertically, pad, target, offset, hsz; if (get8() != 'B' || get8() != 'M') return epuc("not BMP", "Corrupt BMP"); get32le(); // discard filesize get16le(); // discard reserved get16le(); // discard reserved offset = get32le(); hsz = get32le(); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108) return epuc("unknown BMP", "BMP type not supported: unknown"); failure_reason = "bad BMP"; if (hsz == 12) { img_x = get16le(); img_y = get16le(); } else { img_x = get32le(); img_y = get32le(); } if (get16le() != 1) return 0; bpp = get16le(); if (bpp == 1) return epuc("monochrome", "BMP type not supported: 1-bit"); flip_vertically = ((int) img_y) > 0; img_y = abs((int) img_y); if (hsz == 12) { if (bpp < 24) psize = (offset - 14 - 24) / 3; } else { compress = get32le(); if (compress == 1 || compress == 2) return epuc("BMP RLE", "BMP type not supported: RLE"); get32le(); // discard sizeof get32le(); // discard hres get32le(); // discard vres get32le(); // discard colorsused get32le(); // discard max important if (hsz == 40 || hsz == 56) { if (hsz == 56) { get32le(); get32le(); get32le(); get32le(); } if (bpp == 16 || bpp == 32) { mr = mg = mb = 0; if (compress == 0) { if (bpp == 32) { mr = 0xff << 16; mg = 0xff << 8; mb = 0xff << 0; } else { mr = 31 << 10; mg = 31 << 5; mb = 31 << 0; } } else if (compress == 3) { mr = get32le(); mg = get32le(); mb = get32le(); // not documented, but generated by photoshop and handled by mspaint if (mr == mg && mg == mb) { // ?!?!? return NULL; } } else return NULL; } } else { assert(hsz == 108); mr = get32le(); mg = get32le(); mb = get32le(); ma = get32le(); get32le(); // discard color space for (i=0; i < 12; ++i) get32le(); // discard color space parameters } if (bpp < 16) psize = (offset - 14 - hsz) >> 2; } img_n = ma ? 4 : 3; if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 target = req_comp; else target = img_n; // if they want monochrome, we'll post-convert out = (stbi_uc *) malloc(target * img_x * img_y); if (!out) return epuc("outofmem", "Out of memory"); if (bpp < 16) { int z=0; if (psize == 0 || psize > 256) return epuc("invalid", "Corrupt BMP"); for (i=0; i < psize; ++i) { pal[i][2] = get8(); pal[i][1] = get8(); pal[i][0] = get8(); if (hsz != 12) get8(); pal[i][3] = 255; } skip(offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4)); if (bpp == 4) width = (img_x + 1) >> 1; else if (bpp == 8) width = img_x; else return epuc("bad bpp", "Corrupt BMP"); pad = (-width)&3; for (j=0; j < (int) img_y; ++j) { for (i=0; i < (int) img_x; i += 2) { int v=get8(),v2=0; if (bpp == 4) { v2 = v & 15; v >>= 4; } out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) img_x) break; v = (bpp == 8) ? get8() : v2; out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; } skip(pad); } } else { int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; int z = 0; int easy=0; skip(offset - 14 - hsz); if (bpp == 24) width = 3 * img_x; else if (bpp == 16) width = 2*img_x; else /* bpp = 32 and pad = 0 */ width=0; pad = (-width) & 3; if (bpp == 24) { easy = 1; } else if (bpp == 32) { if (mb == 0xff && mg == 0xff00 && mr == 0xff000000 && ma == 0xff000000) easy = 2; } if (!easy) { if (!mr || !mg || !mb) return epuc("bad masks", "Corrupt BMP"); // right shift amt to put high bit in position #7 rshift = high_bit(mr)-7; rcount = bitcount(mr); gshift = high_bit(mg)-7; gcount = bitcount(mr); bshift = high_bit(mb)-7; bcount = bitcount(mr); ashift = high_bit(ma)-7; acount = bitcount(mr); } for (j=0; j < (int) img_y; ++j) { if (easy) { for (i=0; i < (int) img_x; ++i) { int a; out[z+2] = get8(); out[z+1] = get8(); out[z+0] = get8(); z += 3; a = (easy == 2 ? get8() : 255); if (target == 4) out[z++] = a; } } else { for (i=0; i < (int) img_x; ++i) { unsigned long v = (bpp == 16 ? get16le() : get32le()); int a; out[z++] = shiftsigned(v & mr, rshift, rcount); out[z++] = shiftsigned(v & mg, gshift, gcount); out[z++] = shiftsigned(v & mb, bshift, bcount); a = (ma ? shiftsigned(v & ma, ashift, acount) : 255); if (target == 4) out[z++] = a; } } skip(pad); } } if (flip_vertically) { stbi_uc t; for (j=0; j < (int) img_y>>1; ++j) { stbi_uc *p1 = out + j *img_x*target; stbi_uc *p2 = out + (img_y-1-j)*img_x*target; for (i=0; i < (int) img_x*target; ++i) { t = p1[i], p1[i] = p2[i], p2[i] = t; } } } if (req_comp && req_comp != target) { out = convert_format(out, target, req_comp); if (out == NULL) return out; // convert_format frees input on failure } *x = img_x; *y = img_y; if (comp) *comp = target; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_bmp_load (char *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_bmp_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { start_file(f); return bmp_load(x,y,comp,req_comp); } #endif stbi_uc *stbi_bmp_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { start_mem(buffer, len); return bmp_load(x,y,comp,req_comp); } // Targa Truevision - TGA // by Jonathan Dummer static int tga_test(void) { int sz; get8u(); // discard Offset sz = get8u(); // color type if( sz > 1 ) return 0; // only RGB or indexed allowed sz = get8u(); // image type if( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE get16(); // discard palette start get16(); // discard palette length get8(); // discard bits per palette color entry get16(); // discard x origin get16(); // discard y origin if( get16() < 1 ) return 0; // test width if( get16() < 1 ) return 0; // test height sz = get8(); // bits per pixel if( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) ) return 0; // only RGB or RGBA or grey allowed return 1; // seems to have passed everything } #ifndef STBI_NO_STDIO int stbi_tga_test_file (FILE *f) { int r,n = ftell(f); start_file(f); r = tga_test(); fseek(f,n,SEEK_SET); return r; } #endif int stbi_tga_test_memory (stbi_uc *buffer, int len) { start_mem(buffer, len); return tga_test(); } static stbi_uc *tga_load(int *x, int *y, int *comp, int req_comp) { // read in the TGA header stuff int tga_offset = get8u(); int tga_indexed = get8u(); int tga_image_type = get8u(); int tga_is_RLE = 0; int tga_palette_start = get16le(); int tga_palette_len = get16le(); int tga_palette_bits = get8u(); int tga_x_origin = get16le(); int tga_y_origin = get16le(); int tga_width = get16le(); int tga_height = get16le(); int tga_bits_per_pixel = get8u(); int tga_inverted = get8u(); // image data unsigned char *tga_data; unsigned char *tga_palette = NULL; int i, j; unsigned char raw_data[4]; unsigned char trans_data[4]; int RLE_count = 0; int RLE_repeating = 0; int read_next_pixel = 1; // do a tiny bit of precessing if( tga_image_type >= 8 ) { tga_image_type -= 8; tga_is_RLE = 1; } /* int tga_alpha_bits = tga_inverted & 15; */ tga_inverted = 1 - ((tga_inverted >> 5) & 1); // error check if( //(tga_indexed) || (tga_width < 1) || (tga_height < 1) || (tga_image_type < 1) || (tga_image_type > 3) || ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) && (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32)) ) { return NULL; } // If I'm paletted, then I'll use the number of bits from the palette if( tga_indexed ) { tga_bits_per_pixel = tga_palette_bits; } // tga info *x = tga_width; *y = tga_height; if( (req_comp < 1) || (req_comp > 4) ) { // just use whatever the file was req_comp = tga_bits_per_pixel / 8; *comp = req_comp; } else { // force a new number of components *comp = tga_bits_per_pixel/8; } tga_data = (unsigned char*)malloc( tga_width * tga_height * req_comp ); // skip to the data's starting position (offset usually = 0) skip( tga_offset ); // do I need to load a palette? if( tga_indexed ) { // any data to skip? (offset usually = 0) skip( tga_palette_start ); // load the palette tga_palette = (unsigned char*)malloc( tga_palette_len * tga_palette_bits / 8 ); getn( tga_palette, tga_palette_len * tga_palette_bits / 8 ); } // load the data for( i = 0; i < tga_width * tga_height; ++i ) { // if I'm in RLE mode, do I need to get a RLE chunk? if( tga_is_RLE ) { if( RLE_count == 0 ) { // yep, get the next byte as a RLE command int RLE_cmd = get8u(); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7; read_next_pixel = 1; } else if( !RLE_repeating ) { read_next_pixel = 1; } } else { read_next_pixel = 1; } // OK, if I need to read a pixel, do it now if( read_next_pixel ) { // load however much data we did have if( tga_indexed ) { // read in 1 byte, then perform the lookup int pal_idx = get8u(); if( pal_idx >= tga_palette_len ) { // invalid index pal_idx = 0; } pal_idx *= tga_bits_per_pixel / 8; for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = tga_palette[pal_idx+j]; } } else { // read in the data raw for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = get8u(); } } // convert raw to the intermediate format switch( tga_bits_per_pixel ) { case 8: // Luminous => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 16: // Luminous,Alpha => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[1]; break; case 24: // BGR => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 32: // BGRA => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[3]; break; } // clear the reading flag for the next pixel read_next_pixel = 0; } // end of reading a pixel // convert to final format switch( req_comp ) { case 1: // RGBA => Luminance tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); break; case 2: // RGBA => Luminance,Alpha tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); tga_data[i*req_comp+1] = trans_data[3]; break; case 3: // RGBA => RGB tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; break; case 4: // RGBA => RGBA tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; tga_data[i*req_comp+3] = trans_data[3]; break; } // in case we're in RLE mode, keep counting down --RLE_count; } // do I need to invert the image? if( tga_inverted ) { for( j = 0; j*2 < tga_height; ++j ) { int index1 = j * tga_width * req_comp; int index2 = (tga_height - 1 - j) * tga_width * req_comp; for( i = tga_width * req_comp; i > 0; --i ) { unsigned char temp = tga_data[index1]; tga_data[index1] = tga_data[index2]; tga_data[index2] = temp; ++index1; ++index2; } } } // clear my palette, if I had one if( tga_palette != NULL ) { free( tga_palette ); } // the things I do to get rid of an error message, and yet keep // Microsoft's C compilers happy... [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; // OK, done return tga_data; } #ifndef STBI_NO_STDIO stbi_uc *stbi_tga_load (char *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_tga_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { start_file(f); return tga_load(x,y,comp,req_comp); } #endif stbi_uc *stbi_tga_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { start_mem(buffer, len); return tga_load(x,y,comp,req_comp); } // ************************************************************************************************* // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicholas Schulz, tweaked by STB static int psd_test(void) { if (get32() != 0x38425053) return 0; // "8BPS" else return 1; } #ifndef STBI_NO_STDIO int stbi_psd_test_file(FILE *f) { int r,n = ftell(f); start_file(f); r = psd_test(); fseek(f,n,SEEK_SET); return r; } #endif int stbi_psd_test_memory(stbi_uc *buffer, int len) { start_mem(buffer, len); return psd_test(); } static stbi_uc *psd_load(int *x, int *y, int *comp, int req_comp) { int pixelCount; int channelCount, compression; int channel, i, count, len; int w,h; // Check identifier if (get32() != 0x38425053) // "8BPS" return epuc("not PSD", "Corrupt PSD image"); // Check file type version. if (get16() != 1) return epuc("wrong version", "Unsupported version of PSD image"); // Skip 6 reserved bytes. skip( 6 ); // Read the number of channels (R, G, B, A, etc). channelCount = get16(); if (channelCount < 0 || channelCount > 16) return epuc("wrong channel count", "Unsupported number of channels in PSD image"); // Read the rows and columns of the image. h = get32(); w = get32(); // Make sure the depth is 8 bits. if (get16() != 8) return epuc("unsupported bit depth", "PSD bit depth is not 8 bit"); // Make sure the color mode is RGB. // Valid options are: // 0: Bitmap // 1: Grayscale // 2: Indexed color // 3: RGB color // 4: CMYK color // 7: Multichannel // 8: Duotone // 9: Lab color if (get16() != 3) return epuc("wrong color format", "PSD is not in RGB color format"); // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) skip(get32() ); // Skip the image resources. (resolution, pen tool paths, etc) skip( get32() ); // Skip the reserved data. skip( get32() ); // Find out if the data is compressed. // Known values: // 0: no compression // 1: RLE compressed compression = get16(); if (compression > 1) return epuc("unknown compression type", "PSD has an unknown compression format"); // Create the destination image. out = (stbi_uc *) malloc(4 * w*h); if (!out) return epuc("outofmem", "Out of memory"); pixelCount = w*h; // Initialize the data to zero. //memset( out, 0, pixelCount * 4 ); // Finally, the image data. if (compression) { // RLE as used by .PSD and .TIFF // Loop until you get the number of unpacked bytes you are expecting: // Read the next source byte into n. // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. // Else if n is 128, noop. // Endloop // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, // which we're going to just skip. skip( h * channelCount * 2 ); // Read the RLE data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out+channel; if (channel >= channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4; } else { // Read the RLE data. count = 0; while (count < pixelCount) { len = get8(); if (len == 128) { // No-op. } else if (len < 128) { // Copy next len+1 bytes literally. len++; count += len; while (len) { *p = get8(); p += 4; len--; } } else if (len > 128) { uint32 val; // Next -len+1 bytes in the dest are replicated from next source byte. // (Interpret len as a negative 8-bit int.) len ^= 0x0FF; len += 2; val = get8(); count += len; while (len) { *p = val; p += 4; len--; } } } } } } else { // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) // where each channel consists of an 8-bit value for each pixel in the image. // Read the data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out + channel; if (channel > channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4; } else { // Read the data. count = 0; for (i = 0; i < pixelCount; i++) *p = get8(), p += 4; } } } if (req_comp && req_comp != 4) { img_x = w; img_y = h; out = convert_format(out, 4, req_comp); if (out == NULL) return out; // convert_format frees input on failure } if (comp) *comp = channelCount; *y = h; *x = w; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_psd_load(char *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_psd_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_psd_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { start_file(f); return psd_load(x,y,comp,req_comp); } #endif stbi_uc *stbi_psd_load_from_memory (stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { start_mem(buffer, len); return psd_load(x,y,comp,req_comp); } // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR static int hdr_test(void) { char *signature = "#?RADIANCE\n"; int i; for (i=0; signature[i]; ++i) if (get8() != signature[i]) return 0; return 1; } int stbi_hdr_test_memory(stbi_uc *buffer, int len) { start_mem(buffer, len); return hdr_test(); } #ifndef STBI_NO_STDIO int stbi_hdr_test_file(FILE *f) { int r,n = ftell(f); start_file(f); r = hdr_test(); fseek(f,n,SEEK_SET); return r; } #endif #define HDR_BUFLEN 1024 static char *hdr_gettoken(char *buffer) { int len=0; char *s = buffer, c = '\0'; c = get8(); while (!at_eof() && c != '\n') { buffer[len++] = c; if (len == HDR_BUFLEN-1) { // flush to end of line while (!at_eof() && get8() != '\n') ; break; } c = get8(); } buffer[len] = 0; return buffer; } static void hdr_convert(float *output, stbi_uc *input, int req_comp) { if( input[3] != 0 ) { float f1; // Exponent f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3; else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1; } if (req_comp == 2) output[1] = 1; if (req_comp == 4) output[3] = 1; } else { switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break; } } } static float *hdr_load(int *x, int *y, int *comp, int req_comp) { char buffer[HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; // Check identifier if (strcmp(hdr_gettoken(buffer), "#?RADIANCE") != 0) return epf("not HDR", "Corrupt HDR image"); // Parse header while(1) { token = hdr_gettoken(buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return epf("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = hdr_gettoken(buffer); if (strncmp(token, "-Y ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; height = strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; width = strtol(token, NULL, 10); *x = width; *y = height; *comp = 3; if (req_comp == 0) req_comp = 3; // Read data hdr_data = (float *) malloc(height * width * req_comp * sizeof(float)); // Load image data // image data is stored as some number of sca if( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { stbi_uc rgbe[4]; main_decode_loop: getn(rgbe, 4); hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); } } } else { // Read RLE-encoded data scanline = NULL; for (j = 0; j < height; ++j) { c1 = get8(); c2 = get8(); len = get8(); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) stbi_uc rgbe[4] = { c1,c2,len, get8() }; hdr_convert(hdr_data, rgbe, req_comp); i = 1; j = 0; free(scanline); goto main_decode_loop; // yes, this is fucking insane; blame the fucking insane format } len <<= 8; len |= get8(); if (len != width) { free(hdr_data); free(scanline); return epf("invalid decoded scanline length", "corrupt HDR"); } if (scanline == NULL) scanline = (stbi_uc *) malloc(width * 4); for (k = 0; k < 4; ++k) { i = 0; while (i < width) { count = get8(); if (count > 128) { // Run value = get8(); count -= 128; for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = get8(); } } } for (i=0; i < width; ++i) hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); } free(scanline); } return hdr_data; } #ifndef STBI_NO_STDIO float *stbi_hdr_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { start_file(f); return hdr_load(x,y,comp,req_comp); } #endif float *stbi_hdr_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { start_mem(buffer, len); return hdr_load(x,y,comp,req_comp); } #endif // STBI_NO_HDR /////////////////////// write image /////////////////////// #ifndef STBI_NO_WRITE static void write8(FILE *f, int x) { uint8 z = (uint8) x; fwrite(&z,1,1,f); } static void writefv(FILE *f, char *fmt, va_list v) { while (*fmt) { switch (*fmt++) { case ' ': break; case '1': { uint8 x = va_arg(v, int); write8(f,x); break; } case '2': { int16 x = va_arg(v, int); write8(f,x); write8(f,x>>8); break; } case '4': { int32 x = va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; } default: assert(0); va_end(v); return; } } } static void writef(FILE *f, char *fmt, ...) { va_list v; va_start(v, fmt); writefv(f,fmt,v); va_end(v); } static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad) { uint8 bg[3] = { 255, 0, 255}, px[3]; uint32 zero = 0; int i,j,k, j_end; if (vdir < 0) j_end = -1, j = y-1; else j_end = y, j = 0; for (; j != j_end; j += vdir) { for (i=0; i < x; ++i) { uint8 *d = (uint8 *) data + (j*x+i)*comp; if (write_alpha < 0) fwrite(&d[comp-1], 1, 1, f); switch (comp) { case 1: case 2: writef(f, "111", d[0],d[0],d[0]); break; case 4: if (!write_alpha) { for (k=0; k < 3; ++k) px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255; writef(f, "111", px[1-rgb_dir],px[1],px[1+rgb_dir]); break; } /* FALLTHROUGH */ case 3: writef(f, "111", d[1-rgb_dir],d[1],d[1+rgb_dir]); break; } if (write_alpha > 0) fwrite(&d[comp-1], 1, 1, f); } fwrite(&zero,scanline_pad,1,f); } } static int outfile(char *filename, int rgb_dir, int vdir, int x, int y, int comp, void *data, int alpha, int pad, char *fmt, ...) { FILE *f = fopen(filename, "wb"); if (f) { va_list v; va_start(v, fmt); writefv(f, fmt, v); va_end(v); write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad); fclose(f); } return f != NULL; } int stbi_write_bmp(char *filename, int x, int y, int comp, void *data) { int pad = (-x*3) & 3; return outfile(filename,-1,-1,x,y,comp,data,0,pad, "11 4 22 4" "4 44 22 444444", 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header } int stbi_write_tga(char *filename, int x, int y, int comp, void *data) { int has_alpha = !(comp & 1); return outfile(filename, -1,-1, x, y, comp, data, has_alpha, 0, "111 221 2222 11", 0,0,2, 0,0,0, 0,0,x,y, 24+8*has_alpha, 8*has_alpha); } // any other image formats that do interleaved rgb data? // PNG: requires adler32,crc32 -- significant amount of code // PSD: no, channels output separately // TIFF: no, stripwise-interleaved... i think #endif // STBI_NO_WRITE libsoil-1.07~20080707.dfsg/src/image_DXT.h0000644000175000017500000000621411034440250017133 0ustar gonerigoneri/* Jonathan Dummer 2007-07-31-10.32 simple DXT compression / decompression code public domain */ #ifndef HEADER_IMAGE_DXT #define HEADER_IMAGE_DXT /** Converts an image from an array of unsigned chars (RGB or RGBA) to DXT1 or DXT5, then saves the converted image to disk. \return 0 if failed, otherwise returns 1 **/ int save_image_as_DDS ( const char *filename, int width, int height, int channels, const unsigned char *const data ); /** take an image and convert it to DXT1 (no alpha) **/ unsigned char* convert_image_to_DXT1 ( const unsigned char *const uncompressed, int width, int height, int channels, int *out_size ); /** take an image and convert it to DXT5 (with alpha) **/ unsigned char* convert_image_to_DXT5 ( const unsigned char *const uncompressed, int width, int height, int channels, int *out_size ); /** A bunch of DirectDraw Surface structures and flags **/ typedef struct { unsigned int dwMagic; unsigned int dwSize; unsigned int dwFlags; unsigned int dwHeight; unsigned int dwWidth; unsigned int dwPitchOrLinearSize; unsigned int dwDepth; unsigned int dwMipMapCount; unsigned int dwReserved1[ 11 ]; /* DDPIXELFORMAT */ struct { unsigned int dwSize; unsigned int dwFlags; unsigned int dwFourCC; unsigned int dwRGBBitCount; unsigned int dwRBitMask; unsigned int dwGBitMask; unsigned int dwBBitMask; unsigned int dwAlphaBitMask; } sPixelFormat; /* DDCAPS2 */ struct { unsigned int dwCaps1; unsigned int dwCaps2; unsigned int dwDDSX; unsigned int dwReserved; } sCaps; unsigned int dwReserved2; } DDS_header ; /* the following constants were copied directly off the MSDN website */ /* The dwFlags member of the original DDSURFACEDESC2 structure can be set to one or more of the following values. */ #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 /* DirectDraw Pixel Format */ #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_FOURCC 0x00000004 #define DDPF_RGB 0x00000040 /* The dwCaps1 member of the DDSCAPS2 structure can be set to one or more of the following values. */ #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 /* The dwCaps2 member of the DDSCAPS2 structure can be set to one or more of the following values. */ #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000 #define DDSCAPS2_VOLUME 0x00200000 #endif /* HEADER_IMAGE_DXT */ libsoil-1.07~20080707.dfsg/src/SOIL.h0000644000175000017500000003627111034440250016106 0ustar gonerigoneri/** @mainpage SOIL Jonathan Dummer 2007-07-26-10.36 Simple OpenGL Image Library A tiny c library for uploading images as textures into OpenGL. Also saving and loading of images is supported. I'm using Sean's Tool Box image loader as a base: http://www.nothings.org/ I'm upgrading it to load TGA and DDS files, and a direct path for loading DDS files straight into OpenGL textures, when applicable. Image Formats: - BMP load & save - TGA load & save - DDS load & save - PNG load - JPG load OpenGL Texture Features: - resample to power-of-two sizes - MIPmap generation - compressed texture S3TC formats (if supported) - can pre-multiply alpha for you, for better compositing - can flip image about the y-axis (except pre-compressed DDS files) Thanks to: * Sean Barret - for the awesome stb_image * Dan Venkitachalam - for finding some non-compliant DDS files, and patching some explicit casts * everybody at gamedev.net **/ #ifndef HEADER_SIMPLE_OPENGL_IMAGE_LIBRARY #define HEADER_SIMPLE_OPENGL_IMAGE_LIBRARY #ifdef __cplusplus extern "C" { #endif /** The format of images that may be loaded (force_channels). SOIL_LOAD_AUTO leaves the image in whatever format it was found. SOIL_LOAD_L forces the image to load as Luminous (greyscale) SOIL_LOAD_LA forces the image to load as Luminous with Alpha SOIL_LOAD_RGB forces the image to load as Red Green Blue SOIL_LOAD_RGBA forces the image to load as Red Green Blue Alpha **/ enum { SOIL_LOAD_AUTO = 0, SOIL_LOAD_L = 1, SOIL_LOAD_LA = 2, SOIL_LOAD_RGB = 3, SOIL_LOAD_RGBA = 4 }; /** Passed in as reuse_texture_ID, will cause SOIL to register a new texture ID using glGenTextures(). If the value passed into reuse_texture_ID > 0 then SOIL will just re-use that texture ID (great for reloading image assets in-game!) **/ enum { SOIL_CREATE_NEW_ID = 0 }; /** flags you can pass into SOIL_load_OGL_texture() and SOIL_create_OGL_texture(). (note that if SOIL_FLAG_DDS_LOAD_DIRECT is used the rest of the flags with the exception of SOIL_FLAG_TEXTURE_REPEATS will be ignored while loading already-compressed DDS files.) SOIL_FLAG_POWER_OF_TWO: force the image to be POT SOIL_FLAG_MIPMAPS: generate mipmaps for the texture SOIL_FLAG_TEXTURE_REPEATS: otherwise will clamp SOIL_FLAG_MULTIPLY_ALPHA: for using (GL_ONE,GL_ONE_MINUS_SRC_ALPHA) blending SOIL_FLAG_INVERT_Y: flip the image vertically SOIL_FLAG_COMPRESS_TO_DXT: if the card can display them, will convert RGB to DXT1, RGBA to DXT5 SOIL_FLAG_DDS_LOAD_DIRECT: will load DDS files directly without _ANY_ additional processing SOIL_FLAG_NTSC_SAFE_RGB: clamps RGB components to the range [16,235] SOIL_FLAG_CoCg_Y: Google YCoCg; RGB=>CoYCg, RGBA=>CoCgAY SOIL_FLAG_TEXTURE_RECTANGE: uses ARB_texture_rectangle ; pixel indexed & no repeat or MIPmaps or cubemaps **/ enum { SOIL_FLAG_POWER_OF_TWO = 1, SOIL_FLAG_MIPMAPS = 2, SOIL_FLAG_TEXTURE_REPEATS = 4, SOIL_FLAG_MULTIPLY_ALPHA = 8, SOIL_FLAG_INVERT_Y = 16, SOIL_FLAG_COMPRESS_TO_DXT = 32, SOIL_FLAG_DDS_LOAD_DIRECT = 64, SOIL_FLAG_NTSC_SAFE_RGB = 128, SOIL_FLAG_CoCg_Y = 256, SOIL_FLAG_TEXTURE_RECTANGLE = 512 }; /** The types of images that may be saved. (TGA supports uncompressed RGB / RGBA) (BMP supports uncompressed RGB) (DDS supports DXT1 and DXT5) **/ enum { SOIL_SAVE_TYPE_TGA = 0, SOIL_SAVE_TYPE_BMP = 1, SOIL_SAVE_TYPE_DDS = 2 }; /** Defines the order of faces in a DDS cubemap. I recommend that you use the same order in single image cubemap files, so they will be interchangeable with DDS cubemaps when using SOIL. **/ #define SOIL_DDS_CUBEMAP_FACE_ORDER "EWUDNS" /** The types of internal fake HDR representations SOIL_HDR_RGBE: RGB * pow( 2.0, A - 128.0 ) SOIL_HDR_RGBdivA: RGB / A SOIL_HDR_RGBdivA2: RGB / (A*A) **/ enum { SOIL_HDR_RGBE = 0, SOIL_HDR_RGBdivA = 1, SOIL_HDR_RGBdivA2 = 2 }; /** Loads an image from disk into an OpenGL texture. \param filename the name of the file to upload as a texture \param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_texture ( const char *filename, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Loads 6 images from disk into an OpenGL cubemap texture. \param x_pos_file the name of the file to upload as the +x cube face \param x_neg_file the name of the file to upload as the -x cube face \param y_pos_file the name of the file to upload as the +y cube face \param y_neg_file the name of the file to upload as the -y cube face \param z_pos_file the name of the file to upload as the +z cube face \param z_neg_file the name of the file to upload as the -z cube face \param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_cubemap ( const char *x_pos_file, const char *x_neg_file, const char *y_pos_file, const char *y_neg_file, const char *z_pos_file, const char *z_neg_file, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Loads 1 image from disk and splits it into an OpenGL cubemap texture. \param filename the name of the file to upload as a texture \param face_order the order of the faces in the file, any combination of NSWEUD, for North, South, Up, etc. \param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_single_cubemap ( const char *filename, const char face_order[6], int force_channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Loads an HDR image from disk into an OpenGL texture. \param filename the name of the file to upload as a texture \param fake_HDR_format SOIL_HDR_RGBE, SOIL_HDR_RGBdivA, SOIL_HDR_RGBdivA2 \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_HDR_texture ( const char *filename, int fake_HDR_format, int rescale_to_max, unsigned int reuse_texture_ID, unsigned int flags ); /** Loads an image from RAM into an OpenGL texture. \param buffer the image data in RAM just as if it were still in a file \param buffer_length the size of the buffer in bytes \param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_texture_from_memory ( const unsigned char *const buffer, int buffer_length, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Loads 6 images from memory into an OpenGL cubemap texture. \param x_pos_buffer the image data in RAM to upload as the +x cube face \param x_pos_buffer_length the size of the above buffer \param x_neg_buffer the image data in RAM to upload as the +x cube face \param x_neg_buffer_length the size of the above buffer \param y_pos_buffer the image data in RAM to upload as the +x cube face \param y_pos_buffer_length the size of the above buffer \param y_neg_buffer the image data in RAM to upload as the +x cube face \param y_neg_buffer_length the size of the above buffer \param z_pos_buffer the image data in RAM to upload as the +x cube face \param z_pos_buffer_length the size of the above buffer \param z_neg_buffer the image data in RAM to upload as the +x cube face \param z_neg_buffer_length the size of the above buffer \param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_cubemap_from_memory ( const unsigned char *const x_pos_buffer, int x_pos_buffer_length, const unsigned char *const x_neg_buffer, int x_neg_buffer_length, const unsigned char *const y_pos_buffer, int y_pos_buffer_length, const unsigned char *const y_neg_buffer, int y_neg_buffer_length, const unsigned char *const z_pos_buffer, int z_pos_buffer_length, const unsigned char *const z_neg_buffer, int z_neg_buffer_length, int force_channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Loads 1 image from RAM and splits it into an OpenGL cubemap texture. \param buffer the image data in RAM just as if it were still in a file \param buffer_length the size of the buffer in bytes \param face_order the order of the faces in the file, any combination of NSWEUD, for North, South, Up, etc. \param force_channels 0-image format, 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_load_OGL_single_cubemap_from_memory ( const unsigned char *const buffer, int buffer_length, const char face_order[6], int force_channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Creates a 2D OpenGL texture from raw image data. Note that the raw data is _NOT_ freed after the upload (so the user can load various versions). \param data the raw data to be uploaded as an OpenGL texture \param width the width of the image in pixels \param height the height of the image in pixels \param channels the number of channels: 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_create_OGL_texture ( const unsigned char *const data, int width, int height, int channels, unsigned int reuse_texture_ID, unsigned int flags ); /** Creates an OpenGL cubemap texture by splitting up 1 image into 6 parts. \param data the raw data to be uploaded as an OpenGL texture \param width the width of the image in pixels \param height the height of the image in pixels \param channels the number of channels: 1-luminous, 2-luminous/alpha, 3-RGB, 4-RGBA \param face_order the order of the faces in the file, and combination of NSWEUD, for North, South, Up, etc. \param reuse_texture_ID 0-generate a new texture ID, otherwise reuse the texture ID (overwriting the old texture) \param flags can be any of SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS | SOIL_FLAG_TEXTURE_REPEATS | SOIL_FLAG_MULTIPLY_ALPHA | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT \return 0-failed, otherwise returns the OpenGL texture handle **/ unsigned int SOIL_create_OGL_single_cubemap ( const unsigned char *const data, int width, int height, int channels, const char face_order[6], unsigned int reuse_texture_ID, unsigned int flags ); /** Captures the OpenGL window (RGB) and saves it to disk \return 0 if it failed, otherwise returns 1 **/ int SOIL_save_screenshot ( const char *filename, int image_type, int x, int y, int width, int height ); /** Loads an image from disk into an array of unsigned chars. Note that *channels return the original channel count of the image. If force_channels was other than SOIL_LOAD_AUTO, the resulting image has force_channels, but *channels may be different (if the original image had a different channel count). \return 0 if failed, otherwise returns 1 **/ unsigned char* SOIL_load_image ( const char *filename, int *width, int *height, int *channels, int force_channels ); /** Loads an image from memory into an array of unsigned chars. Note that *channels return the original channel count of the image. If force_channels was other than SOIL_LOAD_AUTO, the resulting image has force_channels, but *channels may be different (if the original image had a different channel count). \return 0 if failed, otherwise returns 1 **/ unsigned char* SOIL_load_image_from_memory ( const unsigned char *const buffer, int buffer_length, int *width, int *height, int *channels, int force_channels ); /** Saves an image from an array of unsigned chars (RGBA) to disk \return 0 if failed, otherwise returns 1 **/ int SOIL_save_image ( const char *filename, int image_type, int width, int height, int channels, const unsigned char *const data ); /** Frees the image data (note, this is just C's "free()"...this function is present mostly so C++ programmers don't forget to use "free()" and call "delete []" instead [8^) **/ void SOIL_free_image_data ( unsigned char *img_data ); /** This function resturn a pointer to a string describing the last thing that happened inside SOIL. It can be used to determine why an image failed to load. **/ const char* SOIL_last_result ( void ); #ifdef __cplusplus } #endif #endif /* HEADER_SIMPLE_OPENGL_IMAGE_LIBRARY */ libsoil-1.07~20080707.dfsg/src/image_DXT.c0000644000175000017500000004143511034440250017132 0ustar gonerigoneri/* Jonathan Dummer 2007-07-31-10.32 simple DXT compression / decompression code public domain */ #include "image_DXT.h" #include #include #include #include /* set this =1 if you want to use the covarince matrix method... which is better than my method of using standard deviations overall, except on the infintesimal chance that the power method fails for finding the largest eigenvector */ #define USE_COV_MAT 1 /********* Function Prototypes *********/ /* Takes a 4x4 block of pixels and compresses it into 8 bytes in DXT1 format (color only, no alpha). Speed is valued over prettyness, at least for now. */ void compress_DDS_color_block( int channels, const unsigned char *const uncompressed, unsigned char compressed[8] ); /* Takes a 4x4 block of pixels and compresses the alpha component it into 8 bytes for use in DXT5 DDS files. Speed is valued over prettyness, at least for now. */ void compress_DDS_alpha_block( const unsigned char *const uncompressed, unsigned char compressed[8] ); /********* Actual Exposed Functions *********/ int save_image_as_DDS ( const char *filename, int width, int height, int channels, const unsigned char *const data ) { /* variables */ FILE *fout; unsigned char *DDS_data; DDS_header header; int DDS_size; /* error check */ if( (NULL == filename) || (width < 1) || (height < 1) || (channels < 1) || (channels > 4) || (data == NULL ) ) { return 0; } /* Convert the image */ if( (channels & 1) == 1 ) { /* no alpha, just use DXT1 */ DDS_data = convert_image_to_DXT1( data, width, height, channels, &DDS_size ); } else { /* has alpha, so use DXT5 */ DDS_data = convert_image_to_DXT5( data, width, height, channels, &DDS_size ); } /* save it */ memset( &header, 0, sizeof( DDS_header ) ); header.dwMagic = ('D' << 0) | ('D' << 8) | ('S' << 16) | (' ' << 24); header.dwSize = 124; header.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT | DDSD_LINEARSIZE; header.dwWidth = width; header.dwHeight = height; header.dwPitchOrLinearSize = DDS_size; header.sPixelFormat.dwSize = 32; header.sPixelFormat.dwFlags = DDPF_FOURCC; if( (channels & 1) == 1 ) { header.sPixelFormat.dwFourCC = ('D' << 0) | ('X' << 8) | ('T' << 16) | ('1' << 24); } else { header.sPixelFormat.dwFourCC = ('D' << 0) | ('X' << 8) | ('T' << 16) | ('5' << 24); } header.sCaps.dwCaps1 = DDSCAPS_TEXTURE; /* write it out */ fout = fopen( filename, "wb"); fwrite( &header, sizeof( DDS_header ), 1, fout ); fwrite( DDS_data, 1, DDS_size, fout ); fclose( fout ); /* done */ free( DDS_data ); return 1; } unsigned char* convert_image_to_DXT1( const unsigned char *const uncompressed, int width, int height, int channels, int *out_size ) { unsigned char *compressed; int i, j, x, y; unsigned char ublock[16*3]; unsigned char cblock[8]; int index = 0, chan_step = 1; int block_count = 0; /* error check */ *out_size = 0; if( (width < 1) || (height < 1) || (NULL == uncompressed) || (channels < 1) || (channels > 4) ) { return NULL; } /* for channels == 1 or 2, I do not step forward for R,G,B values */ if( channels < 3 ) { chan_step = 0; } /* get the RAM for the compressed image (8 bytes per 4x4 pixel block) */ *out_size = ((width+3) >> 2) * ((height+3) >> 2) * 8; compressed = (unsigned char*)malloc( *out_size ); /* go through each block */ for( j = 0; j < height; j += 4 ) { for( i = 0; i < width; i += 4 ) { /* copy this block into a new one */ int idx = 0; int mx = 4, my = 4; if( j+4 >= height ) { my = height - j; } if( i+4 >= width ) { mx = width - i; } for( y = 0; y < my; ++y ) { for( x = 0; x < mx; ++x ) { ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels]; ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step]; ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step+chan_step]; } for( x = mx; x < 4; ++x ) { ublock[idx++] = ublock[0]; ublock[idx++] = ublock[1]; ublock[idx++] = ublock[2]; } } for( y = my; y < 4; ++y ) { for( x = 0; x < 4; ++x ) { ublock[idx++] = ublock[0]; ublock[idx++] = ublock[1]; ublock[idx++] = ublock[2]; } } /* compress the block */ ++block_count; compress_DDS_color_block( 3, ublock, cblock ); /* copy the data from the block into the main block */ for( x = 0; x < 8; ++x ) { compressed[index++] = cblock[x]; } } } return compressed; } unsigned char* convert_image_to_DXT5( const unsigned char *const uncompressed, int width, int height, int channels, int *out_size ) { unsigned char *compressed; int i, j, x, y; unsigned char ublock[16*4]; unsigned char cblock[8]; int index = 0, chan_step = 1; int block_count = 0, has_alpha; /* error check */ *out_size = 0; if( (width < 1) || (height < 1) || (NULL == uncompressed) || (channels < 1) || ( channels > 4) ) { return NULL; } /* for channels == 1 or 2, I do not step forward for R,G,B vales */ if( channels < 3 ) { chan_step = 0; } /* # channels = 1 or 3 have no alpha, 2 & 4 do have alpha */ has_alpha = 1 - (channels & 1); /* get the RAM for the compressed image (16 bytes per 4x4 pixel block) */ *out_size = ((width+3) >> 2) * ((height+3) >> 2) * 16; compressed = (unsigned char*)malloc( *out_size ); /* go through each block */ for( j = 0; j < height; j += 4 ) { for( i = 0; i < width; i += 4 ) { /* local variables, and my block counter */ int idx = 0; int mx = 4, my = 4; if( j+4 >= height ) { my = height - j; } if( i+4 >= width ) { mx = width - i; } for( y = 0; y < my; ++y ) { for( x = 0; x < mx; ++x ) { ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels]; ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step]; ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step+chan_step]; ublock[idx++] = has_alpha * uncompressed[(j+y)*width*channels+(i+x)*channels+channels-1] + (1-has_alpha)*255; } for( x = mx; x < 4; ++x ) { ublock[idx++] = ublock[0]; ublock[idx++] = ublock[1]; ublock[idx++] = ublock[2]; ublock[idx++] = ublock[3]; } } for( y = my; y < 4; ++y ) { for( x = 0; x < 4; ++x ) { ublock[idx++] = ublock[0]; ublock[idx++] = ublock[1]; ublock[idx++] = ublock[2]; ublock[idx++] = ublock[3]; } } /* now compress the alpha block */ compress_DDS_alpha_block( ublock, cblock ); /* copy the data from the compressed alpha block into the main buffer */ for( x = 0; x < 8; ++x ) { compressed[index++] = cblock[x]; } /* then compress the color block */ ++block_count; compress_DDS_color_block( 4, ublock, cblock ); /* copy the data from the compressed color block into the main buffer */ for( x = 0; x < 8; ++x ) { compressed[index++] = cblock[x]; } } } return compressed; } /********* Helper Functions *********/ int convert_bit_range( int c, int from_bits, int to_bits ) { int b = (1 << (from_bits - 1)) + c * ((1 << to_bits) - 1); return (b + (b >> from_bits)) >> from_bits; } int rgb_to_565( int r, int g, int b ) { return (convert_bit_range( r, 8, 5 ) << 11) | (convert_bit_range( g, 8, 6 ) << 05) | (convert_bit_range( b, 8, 5 ) << 00); } void rgb_888_from_565( unsigned int c, int *r, int *g, int *b ) { *r = convert_bit_range( (c >> 11) & 31, 5, 8 ); *g = convert_bit_range( (c >> 05) & 63, 6, 8 ); *b = convert_bit_range( (c >> 00) & 31, 5, 8 ); } void compute_color_line_STDEV( const unsigned char *const uncompressed, int channels, float point[3], float direction[3] ) { const float inv_16 = 1.0f / 16.0f; int i; float sum_r = 0.0f, sum_g = 0.0f, sum_b = 0.0f; float sum_rr = 0.0f, sum_gg = 0.0f, sum_bb = 0.0f; float sum_rg = 0.0f, sum_rb = 0.0f, sum_gb = 0.0f; /* calculate all data needed for the covariance matrix ( to compare with _rygdxt code) */ for( i = 0; i < 16*channels; i += channels ) { sum_r += uncompressed[i+0]; sum_rr += uncompressed[i+0] * uncompressed[i+0]; sum_g += uncompressed[i+1]; sum_gg += uncompressed[i+1] * uncompressed[i+1]; sum_b += uncompressed[i+2]; sum_bb += uncompressed[i+2] * uncompressed[i+2]; sum_rg += uncompressed[i+0] * uncompressed[i+1]; sum_rb += uncompressed[i+0] * uncompressed[i+2]; sum_gb += uncompressed[i+1] * uncompressed[i+2]; } /* convert the sums to averages */ sum_r *= inv_16; sum_g *= inv_16; sum_b *= inv_16; /* and convert the squares to the squares of the value - avg_value */ sum_rr -= 16.0f * sum_r * sum_r; sum_gg -= 16.0f * sum_g * sum_g; sum_bb -= 16.0f * sum_b * sum_b; sum_rg -= 16.0f * sum_r * sum_g; sum_rb -= 16.0f * sum_r * sum_b; sum_gb -= 16.0f * sum_g * sum_b; /* the point on the color line is the average */ point[0] = sum_r; point[1] = sum_g; point[2] = sum_b; #if USE_COV_MAT /* The following idea was from ryg. (https://mollyrocket.com/forums/viewtopic.php?t=392) The method worked great (less RMSE than mine) most of the time, but had some issues handling some simple boundary cases, like full green next to full red, which would generate a covariance matrix like this: | 1 -1 0 | | -1 1 0 | | 0 0 0 | For a given starting vector, the power method can generate all zeros! So no starting with {1,1,1} as I was doing! This kind of error is still a slight posibillity, but will be very rare. */ /* use the covariance matrix directly (1st iteration, don't use all 1.0 values!) */ sum_r = 1.0f; sum_g = 2.718281828f; sum_b = 3.141592654f; direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb; direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb; direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb; /* 2nd iteration, use results from the 1st guy */ sum_r = direction[0]; sum_g = direction[1]; sum_b = direction[2]; direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb; direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb; direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb; /* 3rd iteration, use results from the 2nd guy */ sum_r = direction[0]; sum_g = direction[1]; sum_b = direction[2]; direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb; direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb; direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb; #else /* use my standard deviation method (very robust, a tiny bit slower and less accurate) */ direction[0] = sqrt( sum_rr ); direction[1] = sqrt( sum_gg ); direction[2] = sqrt( sum_bb ); /* which has a greater component */ if( sum_gg > sum_rr ) { /* green has greater component, so base the other signs off of green */ if( sum_rg < 0.0f ) { direction[0] = -direction[0]; } if( sum_gb < 0.0f ) { direction[2] = -direction[2]; } } else { /* red has a greater component */ if( sum_rg < 0.0f ) { direction[1] = -direction[1]; } if( sum_rb < 0.0f ) { direction[2] = -direction[2]; } } #endif } void LSE_master_colors_max_min( int *cmax, int *cmin, int channels, const unsigned char *const uncompressed ) { int i, j; /* the master colors */ int c0[3], c1[3]; /* used for fitting the line */ float sum_x[] = { 0.0f, 0.0f, 0.0f }; float sum_x2[] = { 0.0f, 0.0f, 0.0f }; float dot_max = 1.0f, dot_min = -1.0f; float vec_len2 = 0.0f; float dot; /* error check */ if( (channels < 3) || (channels > 4) ) { return; } compute_color_line_STDEV( uncompressed, channels, sum_x, sum_x2 ); vec_len2 = 1.0f / ( 0.00001f + sum_x2[0]*sum_x2[0] + sum_x2[1]*sum_x2[1] + sum_x2[2]*sum_x2[2] ); /* finding the max and min vector values */ dot_max = ( sum_x2[0] * uncompressed[0] + sum_x2[1] * uncompressed[1] + sum_x2[2] * uncompressed[2] ); dot_min = dot_max; for( i = 1; i < 16; ++i ) { dot = ( sum_x2[0] * uncompressed[i*channels+0] + sum_x2[1] * uncompressed[i*channels+1] + sum_x2[2] * uncompressed[i*channels+2] ); if( dot < dot_min ) { dot_min = dot; } else if( dot > dot_max ) { dot_max = dot; } } /* and the offset (from the average location) */ dot = sum_x2[0]*sum_x[0] + sum_x2[1]*sum_x[1] + sum_x2[2]*sum_x[2]; dot_min -= dot; dot_max -= dot; /* post multiply by the scaling factor */ dot_min *= vec_len2; dot_max *= vec_len2; /* OK, build the master colors */ for( i = 0; i < 3; ++i ) { /* color 0 */ c0[i] = (int)(0.5f + sum_x[i] + dot_max * sum_x2[i]); if( c0[i] < 0 ) { c0[i] = 0; } else if( c0[i] > 255 ) { c0[i] = 255; } /* color 1 */ c1[i] = (int)(0.5f + sum_x[i] + dot_min * sum_x2[i]); if( c1[i] < 0 ) { c1[i] = 0; } else if( c1[i] > 255 ) { c1[i] = 255; } } /* down_sample (with rounding?) */ i = rgb_to_565( c0[0], c0[1], c0[2] ); j = rgb_to_565( c1[0], c1[1], c1[2] ); if( i > j ) { *cmax = i; *cmin = j; } else { *cmax = j; *cmin = i; } } void compress_DDS_color_block ( int channels, const unsigned char *const uncompressed, unsigned char compressed[8] ) { /* variables */ int i; int next_bit; int enc_c0, enc_c1; int c0[4], c1[4]; float color_line[] = { 0.0f, 0.0f, 0.0f, 0.0f }; float vec_len2 = 0.0f, dot_offset = 0.0f; /* stupid order */ int swizzle4[] = { 0, 2, 3, 1 }; /* get the master colors */ LSE_master_colors_max_min( &enc_c0, &enc_c1, channels, uncompressed ); /* store the 565 color 0 and color 1 */ compressed[0] = (enc_c0 >> 0) & 255; compressed[1] = (enc_c0 >> 8) & 255; compressed[2] = (enc_c1 >> 0) & 255; compressed[3] = (enc_c1 >> 8) & 255; /* zero out the compressed data */ compressed[4] = 0; compressed[5] = 0; compressed[6] = 0; compressed[7] = 0; /* reconstitute the master color vectors */ rgb_888_from_565( enc_c0, &c0[0], &c0[1], &c0[2] ); rgb_888_from_565( enc_c1, &c1[0], &c1[1], &c1[2] ); /* the new vector */ vec_len2 = 0.0f; for( i = 0; i < 3; ++i ) { color_line[i] = (float)(c1[i] - c0[i]); vec_len2 += color_line[i] * color_line[i]; } if( vec_len2 > 0.0f ) { vec_len2 = 1.0f / vec_len2; } /* pre-proform the scaling */ color_line[0] *= vec_len2; color_line[1] *= vec_len2; color_line[2] *= vec_len2; /* compute the offset (constant) portion of the dot product */ dot_offset = color_line[0]*c0[0] + color_line[1]*c0[1] + color_line[2]*c0[2]; /* store the rest of the bits */ next_bit = 8*4; for( i = 0; i < 16; ++i ) { /* find the dot product of this color, to place it on the line (should be [-1,1]) */ int next_value = 0; float dot_product = color_line[0] * uncompressed[i*channels+0] + color_line[1] * uncompressed[i*channels+1] + color_line[2] * uncompressed[i*channels+2] - dot_offset; /* map to [0,3] */ next_value = (int)( dot_product * 3.0f + 0.5f ); if( next_value > 3 ) { next_value = 3; } else if( next_value < 0 ) { next_value = 0; } /* OK, store this value */ compressed[next_bit >> 3] |= swizzle4[ next_value ] << (next_bit & 7); next_bit += 2; } /* done compressing to DXT1 */ } void compress_DDS_alpha_block ( const unsigned char *const uncompressed, unsigned char compressed[8] ) { /* variables */ int i; int next_bit; int a0, a1; float scale_me; /* stupid order */ int swizzle8[] = { 1, 7, 6, 5, 4, 3, 2, 0 }; /* get the alpha limits (a0 > a1) */ a0 = a1 = uncompressed[3]; for( i = 4+3; i < 16*4; i += 4 ) { if( uncompressed[i] > a0 ) { a0 = uncompressed[i]; } else if( uncompressed[i] < a1 ) { a1 = uncompressed[i]; } } /* store those limits, and zero the rest of the compressed dataset */ compressed[0] = a0; compressed[1] = a1; /* zero out the compressed data */ compressed[2] = 0; compressed[3] = 0; compressed[4] = 0; compressed[5] = 0; compressed[6] = 0; compressed[7] = 0; /* store the all of the alpha values */ next_bit = 8*2; scale_me = 7.9999f / (a0 - a1); for( i = 3; i < 16*4; i += 4 ) { /* convert this alpha value to a 3 bit number */ int svalue; int value = (int)((uncompressed[i] - a1) * scale_me); svalue = swizzle8[ value&7 ]; /* OK, store this value, start with the 1st byte */ compressed[next_bit >> 3] |= svalue << (next_bit & 7); if( (next_bit & 7) > 5 ) { /* spans 2 bytes, fill in the start of the 2nd byte */ compressed[1 + (next_bit >> 3)] |= svalue >> (8 - (next_bit & 7) ); } next_bit += 3; } /* done compressing to DXT1 */ } libsoil-1.07~20080707.dfsg/src/image_helper.h0000644000175000017500000000435711034440250017761 0ustar gonerigoneri/* Jonathan Dummer Image helper functions MIT license */ #ifndef HEADER_IMAGE_HELPER #define HEADER_IMAGE_HELPER #ifdef __cplusplus extern "C" { #endif /** This function upscales an image. Not to be used to create MIPmaps, but to make it square, or to make it a power-of-two sized. **/ int up_scale_image ( const unsigned char* const orig, int width, int height, int channels, unsigned char* resampled, int resampled_width, int resampled_height ); /** This function downscales an image. Used for creating MIPmaps, the incoming image should be a power-of-two sized. **/ int mipmap_image ( const unsigned char* const orig, int width, int height, int channels, unsigned char* resampled, int block_size_x, int block_size_y ); /** This function takes the RGB components of the image and scales each channel from [0,255] to [16,235]. This makes the colors "Safe" for display on NTSC displays. Note that this is _NOT_ a good idea for loading images like normal- or height-maps! **/ int scale_image_RGB_to_NTSC_safe ( unsigned char* orig, int width, int height, int channels ); /** This function takes the RGB components of the image and converts them into YCoCg. 3 components will be re-ordered to CoYCg (for optimum DXT1 compression), while 4 components will be ordered CoCgAY (for DXT5 compression). **/ int convert_RGB_to_YCoCg ( unsigned char* orig, int width, int height, int channels ); /** This function takes the YCoCg components of the image and converts them into RGB. See above. **/ int convert_YCoCg_to_RGB ( unsigned char* orig, int width, int height, int channels ); /** Converts an HDR image from an array of unsigned chars (RGBE) to RGBdivA \return 0 if failed, otherwise returns 1 **/ int RGBE_to_RGBdivA ( unsigned char *image, int width, int height, int rescale_to_max ); /** Converts an HDR image from an array of unsigned chars (RGBE) to RGBdivA2 \return 0 if failed, otherwise returns 1 **/ int RGBE_to_RGBdivA2 ( unsigned char *image, int width, int height, int rescale_to_max ); #ifdef __cplusplus } #endif #endif /* HEADER_IMAGE_HELPER */ libsoil-1.07~20080707.dfsg/src/stb_image_aug.h0000644000175000017500000004106111034440250020117 0ustar gonerigoneri/* stbi-1.16 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c when you control the images you're loading QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline (no JPEG progressive, no oddball channel decimations) PNG non-interlaced BMP non-1bpp, non-RLE TGA (not sure what subset, if a subset) PSD (composited view only, no extra channels) HDR (radiance rgbE format) writes BMP,TGA (define STBI_NO_WRITE to remove code) decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code) supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD) TODO: stbi_info_* history: 1.16 major bugfix - convert_format converted one too many pixels 1.15 initialize some fields for thread safety 1.14 fix threadsafe conversion bug; header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines 1.10 Fixes for 64-bit (don't use "unsigned long") optimized upsampling by Fabian "ryg" Giesen 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant */ #ifndef HEADER_STB_IMAGE_AUGMENTED #define HEADER_STB_IMAGE_AUGMENTED //// begin header file //////////////////////////////////////////////////// // // Limitations: // - no progressive/interlaced support (jpeg, png) // - 8-bit samples only (jpeg, png) // - not threadsafe // - channel subsampling of at most 2 in each dimension (jpeg) // - no delayed line count (jpeg) -- IJG doesn't support either // // Basic usage (see HDR discussion below): // int x,y,n; // unsigned char *data = stbi_load(filename, &x, &y, &n, 0); // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel // stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *comp -- outputs # of image components in image file // int req_comp -- if non-zero, # of image components requested in result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data. The pixel data consists of *y scanlines of *x pixels, // with each pixel consisting of N interleaved 8-bit components; the first // pixel pointed to is top-left-most in the image. There is no padding between // image scanlines or between pixels, regardless of format. The number of // components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. // If req_comp is non-zero, *comp has the number of components that _would_ // have been output otherwise. E.g. if you set req_comp to 4, you will always // get RGBA output, but you can check *comp to easily see if it's opaque. // // An output image with N components has the following components interleaved // in this order in each pixel: // // N=#comp components // 1 grey // 2 grey, alpha // 3 red, green, blue // 4 red, green, blue, alpha // // If image loading fails for any reason, the return value will be NULL, // and *x, *y, *comp will be unchanged. The function stbi_failure_reason() // can be queried for an extremely brief, end-user unfriendly explanation // of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid // compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly // more user-friendly ones. // // Paletted PNG and BMP images are automatically depalettized. // // // =========================================================================== // // HDR image support (disable by defining STBI_NO_HDR) // // stb_image now supports loading HDR images in general, and currently // the Radiance .HDR file format, although the support is provided // generically. You can still load any file through the existing interface; // if you attempt to load an HDR file, it will be automatically remapped to // LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; // both of these constants can be reconfigured through this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); // // (note, do not use _inverse_ constants; stbi_image will invert them // appropriately). // // Additionally, there is a new, parallel interface for loading files as // (linear) floats to preserve the full dynamic range: // // float *data = stbi_loadf(filename, &x, &y, &n, 0); // // If you load LDR images through this interface, those images will // be promoted to floating point values, run through the inverse of // constants corresponding to the above: // // stbi_ldr_to_hdr_scale(1.0f); // stbi_ldr_to_hdr_gamma(2.2f); // // Finally, given a filename (or an open file or memory block--see header // file for details) containing image data, you can query for the "most // appropriate" interface to use (that is, whether the image is HDR or // not), using: // // stbi_is_hdr(char *filename); #ifndef STBI_NO_STDIO #include #endif #define STBI_VERSION 1 enum { STBI_default = 0, // only used for req_comp STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4, }; typedef unsigned char stbi_uc; #ifdef __cplusplus extern "C" { #endif // WRITING API #if !defined(STBI_NO_WRITE) && !defined(STBI_NO_STDIO) // write a BMP/TGA file given tightly packed 'comp' channels (no padding, nor bmp-stride-padding) // (you must include the appropriate extension in the filename). // returns TRUE on success, FALSE if couldn't open file, error writing file extern int stbi_write_bmp (char const *filename, int x, int y, int comp, void *data); extern int stbi_write_tga (char const *filename, int x, int y, int comp, void *data); #endif // PRIMARY API - works on images of any type // load image by filename, open file, or memory buffer #ifndef STBI_NO_STDIO extern stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); // for stbi_load_from_file, file pointer is left pointing immediately after image #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO extern float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp); extern float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif extern float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern void stbi_hdr_to_ldr_gamma(float gamma); extern void stbi_hdr_to_ldr_scale(float scale); extern void stbi_ldr_to_hdr_gamma(float gamma); extern void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_HDR // get a VERY brief reason for failure // NOT THREADSAFE extern char *stbi_failure_reason (void); // free the loaded image -- this is just free() extern void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); extern int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO extern int stbi_info (char const *filename, int *x, int *y, int *comp); extern int stbi_is_hdr (char const *filename); extern int stbi_is_hdr_from_file(FILE *f); #endif // ZLIB client - used by PNG, available for other purposes extern char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); extern char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); extern int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); extern char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); extern int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); // TYPE-SPECIFIC ACCESS // is it a jpeg? extern int stbi_jpeg_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_jpeg_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_test_file (FILE *f); extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a png? extern int stbi_png_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_png_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_png_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info (char const *filename, int *x, int *y, int *comp); extern int stbi_png_test_file (FILE *f); extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a bmp? extern int stbi_bmp_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_bmp_test_file (FILE *f); extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a tga? extern int stbi_tga_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_tga_test_file (FILE *f); extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a psd? extern int stbi_psd_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_psd_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_psd_test_file (FILE *f); extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it an hdr? extern int stbi_hdr_test_memory (stbi_uc const *buffer, int len); extern float * stbi_hdr_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_hdr_load_rgbe (char const *filename, int *x, int *y, int *comp, int req_comp); extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_hdr_test_file (FILE *f); extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_hdr_load_rgbe_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // define new loaders typedef struct { int (*test_memory)(stbi_uc const *buffer, int len); stbi_uc * (*load_from_memory)(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO int (*test_file)(FILE *f); stbi_uc * (*load_from_file)(FILE *f, int *x, int *y, int *comp, int req_comp); #endif } stbi_loader; // register a loader by filling out the above structure (you must defined ALL functions) // returns 1 if added or already added, 0 if not added (too many loaders) // NOT THREADSAFE extern int stbi_register_loader(stbi_loader *loader); // define faster low-level operations (typically SIMD support) #if STBI_SIMD typedef void (*stbi_idct_8x8)(uint8 *out, int out_stride, short data[64], unsigned short *dequantize); // compute an integer IDCT on "input" // input[x] = data[x] * dequantize[x] // write results to 'out': 64 samples, each run of 8 spaced by 'out_stride' // CLAMP results to 0..255 typedef void (*stbi_YCbCr_to_RGB_run)(uint8 *output, uint8 const *y, uint8 const *cb, uint8 const *cr, int count, int step); // compute a conversion from YCbCr to RGB // 'count' pixels // write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B // y: Y input channel // cb: Cb input channel; scale/biased to be 0..255 // cr: Cr input channel; scale/biased to be 0..255 extern void stbi_install_idct(stbi_idct_8x8 func); extern void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func); #endif // STBI_SIMD #ifdef __cplusplus } #endif // // //// end header file ///////////////////////////////////////////////////// #endif // STBI_INCLUDE_STB_IMAGE_H libsoil-1.07~20080707.dfsg/src/stbi_DDS_aug_c.h0000644000175000017500000003612711034440250020131 0ustar gonerigoneri /// DDS file support, does decoding, _not_ direct uploading /// (use SOIL for that ;-) /// A bunch of DirectDraw Surface structures and flags typedef struct { unsigned int dwMagic; unsigned int dwSize; unsigned int dwFlags; unsigned int dwHeight; unsigned int dwWidth; unsigned int dwPitchOrLinearSize; unsigned int dwDepth; unsigned int dwMipMapCount; unsigned int dwReserved1[ 11 ]; // DDPIXELFORMAT struct { unsigned int dwSize; unsigned int dwFlags; unsigned int dwFourCC; unsigned int dwRGBBitCount; unsigned int dwRBitMask; unsigned int dwGBitMask; unsigned int dwBBitMask; unsigned int dwAlphaBitMask; } sPixelFormat; // DDCAPS2 struct { unsigned int dwCaps1; unsigned int dwCaps2; unsigned int dwDDSX; unsigned int dwReserved; } sCaps; unsigned int dwReserved2; } DDS_header ; // the following constants were copied directly off the MSDN website // The dwFlags member of the original DDSURFACEDESC2 structure // can be set to one or more of the following values. #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 // DirectDraw Pixel Format #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_FOURCC 0x00000004 #define DDPF_RGB 0x00000040 // The dwCaps1 member of the DDSCAPS2 structure can be // set to one or more of the following values. #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 // The dwCaps2 member of the DDSCAPS2 structure can be // set to one or more of the following values. #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000 #define DDSCAPS2_VOLUME 0x00200000 static int dds_test(stbi *s) { // check the magic number if (get8(s) != 'D') return 0; if (get8(s) != 'D') return 0; if (get8(s) != 'S') return 0; if (get8(s) != ' ') return 0; // check header size if (get32le(s) != 124) return 0; return 1; } #ifndef STBI_NO_STDIO int stbi_dds_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s,f); r = dds_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_dds_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s,buffer, len); return dds_test(&s); } // helper functions int stbi_convert_bit_range( int c, int from_bits, int to_bits ) { int b = (1 << (from_bits - 1)) + c * ((1 << to_bits) - 1); return (b + (b >> from_bits)) >> from_bits; } void stbi_rgb_888_from_565( unsigned int c, int *r, int *g, int *b ) { *r = stbi_convert_bit_range( (c >> 11) & 31, 5, 8 ); *g = stbi_convert_bit_range( (c >> 05) & 63, 6, 8 ); *b = stbi_convert_bit_range( (c >> 00) & 31, 5, 8 ); } void stbi_decode_DXT1_block( unsigned char uncompressed[16*4], unsigned char compressed[8] ) { int next_bit = 4*8; int i, r, g, b; int c0, c1; unsigned char decode_colors[4*4]; // find the 2 primary colors c0 = compressed[0] + (compressed[1] << 8); c1 = compressed[2] + (compressed[3] << 8); stbi_rgb_888_from_565( c0, &r, &g, &b ); decode_colors[0] = r; decode_colors[1] = g; decode_colors[2] = b; decode_colors[3] = 255; stbi_rgb_888_from_565( c1, &r, &g, &b ); decode_colors[4] = r; decode_colors[5] = g; decode_colors[6] = b; decode_colors[7] = 255; if( c0 > c1 ) { // no alpha, 2 interpolated colors decode_colors[8] = (2*decode_colors[0] + decode_colors[4]) / 3; decode_colors[9] = (2*decode_colors[1] + decode_colors[5]) / 3; decode_colors[10] = (2*decode_colors[2] + decode_colors[6]) / 3; decode_colors[11] = 255; decode_colors[12] = (decode_colors[0] + 2*decode_colors[4]) / 3; decode_colors[13] = (decode_colors[1] + 2*decode_colors[5]) / 3; decode_colors[14] = (decode_colors[2] + 2*decode_colors[6]) / 3; decode_colors[15] = 255; } else { // 1 interpolated color, alpha decode_colors[8] = (decode_colors[0] + decode_colors[4]) / 2; decode_colors[9] = (decode_colors[1] + decode_colors[5]) / 2; decode_colors[10] = (decode_colors[2] + decode_colors[6]) / 2; decode_colors[11] = 255; decode_colors[12] = 0; decode_colors[13] = 0; decode_colors[14] = 0; decode_colors[15] = 0; } // decode the block for( i = 0; i < 16*4; i += 4 ) { int idx = ((compressed[next_bit>>3] >> (next_bit & 7)) & 3) * 4; next_bit += 2; uncompressed[i+0] = decode_colors[idx+0]; uncompressed[i+1] = decode_colors[idx+1]; uncompressed[i+2] = decode_colors[idx+2]; uncompressed[i+3] = decode_colors[idx+3]; } // done } void stbi_decode_DXT23_alpha_block( unsigned char uncompressed[16*4], unsigned char compressed[8] ) { int i, next_bit = 0; // each alpha value gets 4 bits for( i = 3; i < 16*4; i += 4 ) { uncompressed[i] = stbi_convert_bit_range( (compressed[next_bit>>3] >> (next_bit&7)) & 15, 4, 8 ); next_bit += 4; } } void stbi_decode_DXT45_alpha_block( unsigned char uncompressed[16*4], unsigned char compressed[8] ) { int i, next_bit = 8*2; unsigned char decode_alpha[8]; // each alpha value gets 3 bits, and the 1st 2 bytes are the range decode_alpha[0] = compressed[0]; decode_alpha[1] = compressed[1]; if( decode_alpha[0] > decode_alpha[1] ) { // 6 step intermediate decode_alpha[2] = (6*decode_alpha[0] + 1*decode_alpha[1]) / 7; decode_alpha[3] = (5*decode_alpha[0] + 2*decode_alpha[1]) / 7; decode_alpha[4] = (4*decode_alpha[0] + 3*decode_alpha[1]) / 7; decode_alpha[5] = (3*decode_alpha[0] + 4*decode_alpha[1]) / 7; decode_alpha[6] = (2*decode_alpha[0] + 5*decode_alpha[1]) / 7; decode_alpha[7] = (1*decode_alpha[0] + 6*decode_alpha[1]) / 7; } else { // 4 step intermediate, pluss full and none decode_alpha[2] = (4*decode_alpha[0] + 1*decode_alpha[1]) / 5; decode_alpha[3] = (3*decode_alpha[0] + 2*decode_alpha[1]) / 5; decode_alpha[4] = (2*decode_alpha[0] + 3*decode_alpha[1]) / 5; decode_alpha[5] = (1*decode_alpha[0] + 4*decode_alpha[1]) / 5; decode_alpha[6] = 0; decode_alpha[7] = 255; } for( i = 3; i < 16*4; i += 4 ) { int idx = 0, bit; bit = (compressed[next_bit>>3] >> (next_bit&7)) & 1; idx += bit << 0; ++next_bit; bit = (compressed[next_bit>>3] >> (next_bit&7)) & 1; idx += bit << 1; ++next_bit; bit = (compressed[next_bit>>3] >> (next_bit&7)) & 1; idx += bit << 2; ++next_bit; uncompressed[i] = decode_alpha[idx & 7]; } // done } void stbi_decode_DXT_color_block( unsigned char uncompressed[16*4], unsigned char compressed[8] ) { int next_bit = 4*8; int i, r, g, b; int c0, c1; unsigned char decode_colors[4*3]; // find the 2 primary colors c0 = compressed[0] + (compressed[1] << 8); c1 = compressed[2] + (compressed[3] << 8); stbi_rgb_888_from_565( c0, &r, &g, &b ); decode_colors[0] = r; decode_colors[1] = g; decode_colors[2] = b; stbi_rgb_888_from_565( c1, &r, &g, &b ); decode_colors[3] = r; decode_colors[4] = g; decode_colors[5] = b; // Like DXT1, but no choicees: // no alpha, 2 interpolated colors decode_colors[6] = (2*decode_colors[0] + decode_colors[3]) / 3; decode_colors[7] = (2*decode_colors[1] + decode_colors[4]) / 3; decode_colors[8] = (2*decode_colors[2] + decode_colors[5]) / 3; decode_colors[9] = (decode_colors[0] + 2*decode_colors[3]) / 3; decode_colors[10] = (decode_colors[1] + 2*decode_colors[4]) / 3; decode_colors[11] = (decode_colors[2] + 2*decode_colors[5]) / 3; // decode the block for( i = 0; i < 16*4; i += 4 ) { int idx = ((compressed[next_bit>>3] >> (next_bit & 7)) & 3) * 3; next_bit += 2; uncompressed[i+0] = decode_colors[idx+0]; uncompressed[i+1] = decode_colors[idx+1]; uncompressed[i+2] = decode_colors[idx+2]; } // done } static stbi_uc *dds_load(stbi *s, int *x, int *y, int *comp, int req_comp) { // all variables go up front stbi_uc *dds_data = NULL; stbi_uc block[16*4]; stbi_uc compressed[8]; int flags, DXT_family; int has_alpha, has_mipmap; int is_compressed, cubemap_faces; int block_pitch, num_blocks; DDS_header header; int i, sz, cf; // load the header if( sizeof( DDS_header ) != 128 ) { return NULL; } getn( s, (stbi_uc*)(&header), 128 ); // and do some checking if( header.dwMagic != (('D' << 0) | ('D' << 8) | ('S' << 16) | (' ' << 24)) ) return NULL; if( header.dwSize != 124 ) return NULL; flags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT; if( (header.dwFlags & flags) != flags ) return NULL; /* According to the MSDN spec, the dwFlags should contain DDSD_LINEARSIZE if it's compressed, or DDSD_PITCH if uncompressed. Some DDS writers do not conform to the spec, so I need to make my reader more tolerant */ if( header.sPixelFormat.dwSize != 32 ) return NULL; flags = DDPF_FOURCC | DDPF_RGB; if( (header.sPixelFormat.dwFlags & flags) == 0 ) return NULL; if( (header.sCaps.dwCaps1 & DDSCAPS_TEXTURE) == 0 ) return NULL; // get the image data s->img_x = header.dwWidth; s->img_y = header.dwHeight; s->img_n = 4; is_compressed = (header.sPixelFormat.dwFlags & DDPF_FOURCC) / DDPF_FOURCC; has_alpha = (header.sPixelFormat.dwFlags & DDPF_ALPHAPIXELS) / DDPF_ALPHAPIXELS; has_mipmap = (header.sCaps.dwCaps1 & DDSCAPS_MIPMAP) && (header.dwMipMapCount > 1); cubemap_faces = (header.sCaps.dwCaps2 & DDSCAPS2_CUBEMAP) / DDSCAPS2_CUBEMAP; /* I need cubemaps to have square faces */ cubemap_faces &= (s->img_x == s->img_y); cubemap_faces *= 5; cubemap_faces += 1; block_pitch = (s->img_x+3) >> 2; num_blocks = block_pitch * ((s->img_y+3) >> 2); /* let the user know what's going on */ *x = s->img_x; *y = s->img_y; *comp = s->img_n; /* is this uncompressed? */ if( is_compressed ) { /* compressed */ // note: header.sPixelFormat.dwFourCC is something like (('D'<<0)|('X'<<8)|('T'<<16)|('1'<<24)) DXT_family = 1 + (header.sPixelFormat.dwFourCC >> 24) - '1'; if( (DXT_family < 1) || (DXT_family > 5) ) return NULL; /* check the expected size...oops, nevermind... those non-compliant writers leave dwPitchOrLinearSize == 0 */ // passed all the tests, get the RAM for decoding sz = (s->img_x)*(s->img_y)*4*cubemap_faces; dds_data = (unsigned char*)malloc( sz ); /* do this once for each face */ for( cf = 0; cf < cubemap_faces; ++ cf ) { // now read and decode all the blocks for( i = 0; i < num_blocks; ++i ) { // where are we? int bx, by, bw=4, bh=4; int ref_x = 4 * (i % block_pitch); int ref_y = 4 * (i / block_pitch); // get the next block's worth of compressed data, and decompress it if( DXT_family == 1 ) { // DXT1 getn( s, compressed, 8 ); stbi_decode_DXT1_block( block, compressed ); } else if( DXT_family < 4 ) { // DXT2/3 getn( s, compressed, 8 ); stbi_decode_DXT23_alpha_block ( block, compressed ); getn( s, compressed, 8 ); stbi_decode_DXT_color_block ( block, compressed ); } else { // DXT4/5 getn( s, compressed, 8 ); stbi_decode_DXT45_alpha_block ( block, compressed ); getn( s, compressed, 8 ); stbi_decode_DXT_color_block ( block, compressed ); } // is this a partial block? if( ref_x + 4 > s->img_x ) { bw = s->img_x - ref_x; } if( ref_y + 4 > s->img_y ) { bh = s->img_y - ref_y; } // now drop our decompressed data into the buffer for( by = 0; by < bh; ++by ) { int idx = 4*((ref_y+by+cf*s->img_x)*s->img_x + ref_x); for( bx = 0; bx < bw*4; ++bx ) { dds_data[idx+bx] = block[by*16+bx]; } } } /* done reading and decoding the main image... skip MIPmaps if present */ if( has_mipmap ) { int block_size = 16; if( DXT_family == 1 ) { block_size = 8; } for( i = 1; i < header.dwMipMapCount; ++i ) { int mx = s->img_x >> (i + 2); int my = s->img_y >> (i + 2); if( mx < 1 ) { mx = 1; } if( my < 1 ) { my = 1; } skip( s, mx*my*block_size ); } } }/* per cubemap face */ } else { /* uncompressed */ DXT_family = 0; s->img_n = 3; if( has_alpha ) { s->img_n = 4; } *comp = s->img_n; sz = s->img_x*s->img_y*s->img_n*cubemap_faces; dds_data = (unsigned char*)malloc( sz ); /* do this once for each face */ for( cf = 0; cf < cubemap_faces; ++ cf ) { /* read the main image for this face */ getn( s, &dds_data[cf*s->img_x*s->img_y*s->img_n], s->img_x*s->img_y*s->img_n ); /* done reading and decoding the main image... skip MIPmaps if present */ if( has_mipmap ) { for( i = 1; i < header.dwMipMapCount; ++i ) { int mx = s->img_x >> i; int my = s->img_y >> i; if( mx < 1 ) { mx = 1; } if( my < 1 ) { my = 1; } skip( s, mx*my*s->img_n ); } } } /* data was BGR, I need it RGB */ for( i = 0; i < sz; i += s->img_n ) { unsigned char temp = dds_data[i]; dds_data[i] = dds_data[i+2]; dds_data[i+2] = temp; } } /* finished decompressing into RGBA, adjust the y size if we have a cubemap note: sz is already up to date */ s->img_y *= cubemap_faces; *y = s->img_y; // did the user want something else, or // see if all the alpha values are 255 (i.e. no transparency) has_alpha = 0; if( s->img_n == 4) { for( i = 3; (i < sz) && (has_alpha == 0); i += 4 ) { has_alpha |= (dds_data[i] < 255); } } if( (req_comp <= 4) && (req_comp >= 1) ) { // user has some requirements, meet them if( req_comp != s->img_n ) { dds_data = convert_format( dds_data, s->img_n, req_comp, s->img_x, s->img_y ); *comp = s->img_n; } } else { // user had no requirements, only drop to RGB is no alpha if( (has_alpha == 0) && (s->img_n == 4) ) { dds_data = convert_format( dds_data, 4, 3, s->img_x, s->img_y ); *comp = 3; } } // OK, done return dds_data; } #ifndef STBI_NO_STDIO stbi_uc *stbi_dds_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s,f); return dds_load(&s,x,y,comp,req_comp); } stbi_uc *stbi_dds_load (char *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_dds_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif stbi_uc *stbi_dds_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s,buffer, len); return dds_load(&s,x,y,comp,req_comp); } libsoil-1.07~20080707.dfsg/src/stbi_DDS_aug.h0000644000175000017500000000143511034440250017621 0ustar gonerigoneri/* adding DDS loading support to stbi */ #ifndef HEADER_STB_IMAGE_DDS_AUGMENTATION #define HEADER_STB_IMAGE_DDS_AUGMENTATION // is it a DDS file? extern int stbi_dds_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_dds_load (char *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_dds_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_dds_test_file (FILE *f); extern stbi_uc *stbi_dds_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // // //// end header file ///////////////////////////////////////////////////// #endif // HEADER_STB_IMAGE_DDS_AUGMENTATION libsoil-1.07~20080707.dfsg/src/stb_image_aug.c0000644000175000017500000034525411034440250020125 0ustar gonerigoneri/* stbi-1.16 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c when you control the images you're loading QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline (no JPEG progressive, no oddball channel decimations) PNG non-interlaced BMP non-1bpp, non-RLE TGA (not sure what subset, if a subset) PSD (composited view only, no extra channels) HDR (radiance rgbE format) writes BMP,TGA (define STBI_NO_WRITE to remove code) decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code) supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD) TODO: stbi_info_* history: 1.16 major bugfix - convert_format converted one too many pixels 1.15 initialize some fields for thread safety 1.14 fix threadsafe conversion bug; header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines 1.10 Fixes for 64-bit (don't use "unsigned long") optimized upsampling by Fabian "ryg" Giesen 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant */ #include "stb_image_aug.h" #ifndef STBI_NO_HDR #include // ldexp #include // strcmp #endif #ifndef STBI_NO_STDIO #include #endif #include #include #include #include #ifndef _MSC_VER #ifdef __cplusplus #define __forceinline inline #else #define __forceinline #endif #endif // implementation: typedef unsigned char uint8; typedef unsigned short uint16; typedef signed short int16; typedef unsigned int uint32; typedef signed int int32; typedef unsigned int uint; // should produce compiler error if size is wrong typedef unsigned char validate_uint32[sizeof(uint32)==4]; #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE) #define STBI_NO_WRITE #endif #ifndef STBI_NO_DDS #include "stbi_DDS_aug.h" #endif // I (JLD) want full messages for SOIL #define STBI_FAILURE_USERMSG 1 ////////////////////////////////////////////////////////////////////////////// // // Generic API that works on all image types // // this is not threadsafe static char *failure_reason; char *stbi_failure_reason(void) { return failure_reason; } static int e(char *str) { failure_reason = str; return 0; } #ifdef STBI_NO_FAILURE_STRINGS #define e(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) #define e(x,y) e(y) #else #define e(x,y) e(x) #endif #define epf(x,y) ((float *) (e(x,y)?NULL:NULL)) #define epuc(x,y) ((unsigned char *) (e(x,y)?NULL:NULL)) void stbi_image_free(void *retval_from_stbi_load) { free(retval_from_stbi_load); } #define MAX_LOADERS 32 stbi_loader *loaders[MAX_LOADERS]; static int max_loaders = 0; int stbi_register_loader(stbi_loader *loader) { int i; for (i=0; i < MAX_LOADERS; ++i) { // already present? if (loaders[i] == loader) return 1; // end of the list? if (loaders[i] == NULL) { loaders[i] = loader; max_loaders = i+1; return 1; } } // no room for it return 0; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp); static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp); #endif #ifndef STBI_NO_STDIO unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); unsigned char *result; if (!f) return epuc("can't fopen", "Unable to open file"); result = stbi_load_from_file(f,x,y,comp,req_comp); fclose(f); return result; } unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_file(f)) return stbi_jpeg_load_from_file(f,x,y,comp,req_comp); if (stbi_png_test_file(f)) return stbi_png_load_from_file(f,x,y,comp,req_comp); if (stbi_bmp_test_file(f)) return stbi_bmp_load_from_file(f,x,y,comp,req_comp); if (stbi_psd_test_file(f)) return stbi_psd_load_from_file(f,x,y,comp,req_comp); #ifndef STBI_NO_DDS if (stbi_dds_test_file(f)) return stbi_dds_load_from_file(f,x,y,comp,req_comp); #endif #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) { float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_file(f)) return loaders[i]->load_from_file(f,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_file(f)) return stbi_tga_load_from_file(f,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #endif unsigned char *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_memory(buffer,len)) return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_png_test_memory(buffer,len)) return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_bmp_test_memory(buffer,len)) return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_psd_test_memory(buffer,len)) return stbi_psd_load_from_memory(buffer,len,x,y,comp,req_comp); #ifndef STBI_NO_DDS if (stbi_dds_test_memory(buffer,len)) return stbi_dds_load_from_memory(buffer,len,x,y,comp,req_comp); #endif #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) { float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_memory(buffer,len)) return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_memory(buffer,len)) return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); float *result; if (!f) return epf("can't fopen", "Unable to open file"); result = stbi_loadf_from_file(f,x,y,comp,req_comp); fclose(f); return result; } float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { unsigned char *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) return stbi_hdr_load_from_file(f,x,y,comp,req_comp); #endif data = stbi_load_from_file(f, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); #endif data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is // defined, for API simplicity; if STBI_NO_HDR is defined, it always // reports false! int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) { #ifndef STBI_NO_HDR return stbi_hdr_test_memory(buffer, len); #else return 0; #endif } #ifndef STBI_NO_STDIO extern int stbi_is_hdr (char const *filename) { FILE *f = fopen(filename, "rb"); int result=0; if (f) { result = stbi_is_hdr_from_file(f); fclose(f); } return result; } extern int stbi_is_hdr_from_file(FILE *f) { #ifndef STBI_NO_HDR return stbi_hdr_test_file(f); #else return 0; #endif } #endif // @TODO: get image dimensions & components without fully decoding #ifndef STBI_NO_STDIO extern int stbi_info (char const *filename, int *x, int *y, int *comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_HDR static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f; static float l2h_gamma=2.2f, l2h_scale=1.0f; void stbi_hdr_to_ldr_gamma(float gamma) { h2l_gamma_i = 1/gamma; } void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; } void stbi_ldr_to_hdr_gamma(float gamma) { l2h_gamma = gamma; } void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; } #endif ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // enum { SCAN_load=0, SCAN_type, SCAN_header, }; typedef struct { uint32 img_x, img_y; int img_n, img_out_n; #ifndef STBI_NO_STDIO FILE *img_file; #endif uint8 *img_buffer, *img_buffer_end; } stbi; #ifndef STBI_NO_STDIO static void start_file(stbi *s, FILE *f) { s->img_file = f; } #endif static void start_mem(stbi *s, uint8 const *buffer, int len) { #ifndef STBI_NO_STDIO s->img_file = NULL; #endif s->img_buffer = (uint8 *) buffer; s->img_buffer_end = (uint8 *) buffer+len; } __forceinline static int get8(stbi *s) { #ifndef STBI_NO_STDIO if (s->img_file) { int c = fgetc(s->img_file); return c == EOF ? 0 : c; } #endif if (s->img_buffer < s->img_buffer_end) return *s->img_buffer++; return 0; } __forceinline static int at_eof(stbi *s) { #ifndef STBI_NO_STDIO if (s->img_file) return feof(s->img_file); #endif return s->img_buffer >= s->img_buffer_end; } __forceinline static uint8 get8u(stbi *s) { return (uint8) get8(s); } static void skip(stbi *s, int n) { #ifndef STBI_NO_STDIO if (s->img_file) fseek(s->img_file, n, SEEK_CUR); else #endif s->img_buffer += n; } static int get16(stbi *s) { int z = get8(s); return (z << 8) + get8(s); } static uint32 get32(stbi *s) { uint32 z = get16(s); return (z << 16) + get16(s); } static int get16le(stbi *s) { int z = get8(s); return z + (get8(s) << 8); } static uint32 get32le(stbi *s) { uint32 z = get16le(s); return z + (get16le(s) << 16); } static void getn(stbi *s, stbi_uc *buffer, int n) { #ifndef STBI_NO_STDIO if (s->img_file) { fread(buffer, 1, n, s->img_file); return; } #endif memcpy(buffer, s->img_buffer, n); s->img_buffer += n; } ////////////////////////////////////////////////////////////////////////////// // // generic converter from built-in img_n to req_comp // individual types do this automatically as much as possible (e.g. jpeg // does all cases internally since it needs to colorspace convert anyway, // and it never has alpha, so very few cases ). png can automatically // interleave an alpha=255 channel, but falls back to this for other cases // // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing static uint8 compute_y(int r, int g, int b) { return (uint8) (((r*77) + (g*150) + (29*b)) >> 8); } static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, uint x, uint y) { int i,j; unsigned char *good; if (req_comp == img_n) return data; assert(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) malloc(req_comp * x * y); if (good == NULL) { free(data); return epuc("outofmem", "Out of memory"); } for (j=0; j < (int) y; ++j) { unsigned char *src = data + j * x * img_n ; unsigned char *dest = good + j * x * req_comp; #define COMBO(a,b) ((a)*8+(b)) #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch(COMBO(img_n, req_comp)) { CASE(1,2) dest[0]=src[0], dest[1]=255; break; CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; CASE(2,1) dest[0]=src[0]; break; CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break; CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; default: assert(0); } #undef CASE } free(data); return good; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { int i,k,n; float *output = (float *) malloc(x * y * comp * sizeof(float)); if (output == NULL) { free(data); return epf("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { output[i*comp + k] = (float) pow(data[i*comp+k]/255.0f, l2h_gamma) * l2h_scale; } if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; } free(data); return output; } #define float2int(x) ((int) (x)) static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp) { int i,k,n; stbi_uc *output = (stbi_uc *) malloc(x * y * comp); if (output == NULL) { free(data); return epuc("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } } free(data); return output; } #endif ////////////////////////////////////////////////////////////////////////////// // // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation) // // simple implementation // - channel subsampling of at most 2 in each dimension // - doesn't support delayed output of y-dimension // - simple interface (only one output format: 8-bit interleaved RGB) // - doesn't try to recover corrupt jpegs // - doesn't allow partial loading, loading multiple at once // - still fast on x86 (copying globals into locals doesn't help x86) // - allocates lots of intermediate memory (full size of all components) // - non-interleaved case requires this anyway // - allows good upsampling (see next) // high-quality // - upsampled channels are bilinearly interpolated, even across blocks // - quality integer IDCT derived from IJG's 'slow' // performance // - fast huffman; reasonable integer IDCT // - uses a lot of intermediate memory, could cache poorly // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4 // stb_jpeg: 1.34 seconds (MSVC6, default release build) // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro) // IJL11.dll: 1.08 seconds (compiled by intel) // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG) // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro) // huffman decoding acceleration #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache typedef struct { uint8 fast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win uint16 code[256]; uint8 values[256]; uint8 size[257]; unsigned int maxcode[18]; int delta[17]; // old 'firstsymbol' - old 'firstcode' } huffman; typedef struct { #if STBI_SIMD unsigned short dequant2[4][64]; #endif stbi s; huffman huff_dc[4]; huffman huff_ac[4]; uint8 dequant[4][64]; // sizes for components, interleaved MCUs int img_h_max, img_v_max; int img_mcu_x, img_mcu_y; int img_mcu_w, img_mcu_h; // definition of jpeg image component struct { int id; int h,v; int tq; int hd,ha; int dc_pred; int x,y,w2,h2; uint8 *data; void *raw_data; uint8 *linebuf; } img_comp[4]; uint32 code_buffer; // jpeg entropy-coded buffer int code_bits; // number of valid bits unsigned char marker; // marker seen while filling entropy buffer int nomore; // flag if we saw a marker so must stop int scan_n, order[4]; int restart_interval, todo; } jpeg; static int build_huffman(huffman *h, int *count) { int i,j,k=0,code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i) for (j=0; j < count[i]; ++j) h->size[k++] = (uint8) (i+1); h->size[k] = 0; // compute actual symbols (from jpeg spec) code = 0; k = 0; for(j=1; j <= 16; ++j) { // compute delta to add to code to compute symbol id h->delta[j] = k - code; if (h->size[k] == j) { while (h->size[k] == j) h->code[k++] = (uint16) (code++); if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG"); } // compute largest code + 1 for this size, preshifted as needed later h->maxcode[j] = code << (16-j); code <<= 1; } h->maxcode[j] = 0xffffffff; // build non-spec acceleration table; 255 is flag for not-accelerated memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) { int s = h->size[i]; if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) { h->fast[c+j] = (uint8) i; } } } return 1; } static void grow_buffer_unsafe(jpeg *j) { do { int b = j->nomore ? 0 : get8(&j->s); if (b == 0xff) { int c = get8(&j->s); if (c != 0) { j->marker = (unsigned char) c; j->nomore = 1; return; } } j->code_buffer = (j->code_buffer << 8) | b; j->code_bits += 8; } while (j->code_bits <= 24); } // (1 << n) - 1 static uint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream __forceinline static int decode(jpeg *j, huffman *h) { unsigned int temp; int c,k; if (j->code_bits < 16) grow_buffer_unsafe(j); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (j->code_buffer >> (j->code_bits - FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c]; if (k < 255) { if (h->size[k] > j->code_bits) return -1; j->code_bits -= h->size[k]; return h->values[k]; } // naive test is to shift the code_buffer down so k bits are // valid, then test against maxcode. To speed this up, we've // preshifted maxcode left so that it has (16-k) 0s at the // end; in other words, regardless of the number of bits, it // wants to be compared against something shifted to have 16; // that way we don't need to shift inside the loop. if (j->code_bits < 16) temp = (j->code_buffer << (16 - j->code_bits)) & 0xffff; else temp = (j->code_buffer >> (j->code_bits - 16)) & 0xffff; for (k=FAST_BITS+1 ; ; ++k) if (temp < h->maxcode[k]) break; if (k == 17) { // error! code not found j->code_bits -= 16; return -1; } if (k > j->code_bits) return -1; // convert the huffman code to the symbol id c = ((j->code_buffer >> (j->code_bits - k)) & bmask[k]) + h->delta[k]; assert((((j->code_buffer) >> (j->code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c]); // convert the id to a symbol j->code_bits -= k; return h->values[c]; } // combined JPEG 'receive' and JPEG 'extend', since baseline // always extends everything it receives. __forceinline static int extend_receive(jpeg *j, int n) { unsigned int m = 1 << (n-1); unsigned int k; if (j->code_bits < n) grow_buffer_unsafe(j); k = (j->code_buffer >> (j->code_bits - n)) & bmask[n]; j->code_bits -= n; // the following test is probably a random branch that won't // predict well. I tried to table accelerate it but failed. // maybe it's compiling as a conditional move? if (k < m) return (-1 << n) + k + 1; else return k; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? static uint8 dezigzag[64+15] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, // let corrupt input sample past end 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }; // decode one 64-entry block-- static int decode_block(jpeg *j, short data[64], huffman *hdc, huffman *hac, int b) { int diff,dc,k; int t = decode(j, hdc); if (t < 0) return e("bad huffman code","Corrupt JPEG"); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) dc; // decode AC components, see JPEG spec k = 1; do { int r,s; int rs = decode(j, hac); if (rs < 0) return e("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (rs != 0xf0) break; // end block k += 16; } else { k += r; // decode into unzigzag'd location data[dezigzag[k++]] = (short) extend_receive(j,s); } } while (k < 64); return 1; } // take a -128..127 value and clamp it and convert to 0..255 __forceinline static uint8 clamp(int x) { x += 128; // trick to use a single test to catch both cases if ((unsigned int) x > 255) { if (x < 0) return 0; if (x > 255) return 255; } return (uint8) x; } #define f2f(x) (int) (((x) * 4096 + 0.5)) #define fsh(x) ((x) << 12) // derived from jidctint -- DCT_ISLOW #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ p2 = s2; \ p3 = s6; \ p1 = (p2+p3) * f2f(0.5411961f); \ t2 = p1 + p3*f2f(-1.847759065f); \ t3 = p1 + p2*f2f( 0.765366865f); \ p2 = s0; \ p3 = s4; \ t0 = fsh(p2+p3); \ t1 = fsh(p2-p3); \ x0 = t0+t3; \ x3 = t0-t3; \ x1 = t1+t2; \ x2 = t1-t2; \ t0 = s7; \ t1 = s5; \ t2 = s3; \ t3 = s1; \ p3 = t0+t2; \ p4 = t1+t3; \ p1 = t0+t3; \ p2 = t1+t2; \ p5 = (p3+p4)*f2f( 1.175875602f); \ t0 = t0*f2f( 0.298631336f); \ t1 = t1*f2f( 2.053119869f); \ t2 = t2*f2f( 3.072711026f); \ t3 = t3*f2f( 1.501321110f); \ p1 = p5 + p1*f2f(-0.899976223f); \ p2 = p5 + p2*f2f(-2.562915447f); \ p3 = p3*f2f(-1.961570560f); \ p4 = p4*f2f(-0.390180644f); \ t3 += p1+p4; \ t2 += p2+p3; \ t1 += p2+p4; \ t0 += p1+p3; #if !STBI_SIMD // .344 seconds on 3*anemones.jpg static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize) { int i,val[64],*v=val; uint8 *o,*dq = dequantize; short *d = data; // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } #else static void idct_block(uint8 *out, int out_stride, short data[64], unsigned short *dequantize) { int i,val[64],*v=val; uint8 *o; unsigned short *dq = dequantize; short *d = data; // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } static stbi_idct_8x8 stbi_idct_installed = idct_block; extern void stbi_install_idct(stbi_idct_8x8 func) { stbi_idct_installed = func; } #endif #define MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value static uint8 get_marker(jpeg *j) { uint8 x; if (j->marker != MARKER_none) { x = j->marker; j->marker = MARKER_none; return x; } x = get8u(&j->s); if (x != 0xff) return MARKER_none; while (x == 0xff) x = get8u(&j->s); return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] #define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, reset the entropy decoder and // the dc prediction static void reset(jpeg *j) { j->code_bits = 0; j->code_buffer = 0; j->nomore = 0; j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0; j->marker = MARKER_none; j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, // since we don't even allow 1<<30 pixels } static int parse_entropy_coded_data(jpeg *z) { reset(z); if (z->scan_n == 1) { int i,j; #if STBI_SIMD __declspec(align(16)) #endif short data[64]; int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; #if STBI_SIMD stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); #else idct_block(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); #endif // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(z->marker)) return 1; reset(z); } } } } else { // interleaved! int i,j,k,x,y; short data[64]; for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x)*8; int y2 = (j*z->img_comp[n].v + y)*8; if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; #if STBI_SIMD stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); #else idct_block(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); #endif } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(z->marker)) return 1; reset(z); } } } } return 1; } static int process_marker(jpeg *z, int m) { int L; switch (m) { case MARKER_none: // no marker found return e("expected marker","Corrupt JPEG"); case 0xC2: // SOF - progressive return e("progressive jpeg","JPEG format not supported (progressive)"); case 0xDD: // DRI - specify restart interval if (get16(&z->s) != 4) return e("bad DRI len","Corrupt JPEG"); z->restart_interval = get16(&z->s); return 1; case 0xDB: // DQT - define quantization table L = get16(&z->s)-2; while (L > 0) { int q = get8(&z->s); int p = q >> 4; int t = q & 15,i; if (p != 0) return e("bad DQT type","Corrupt JPEG"); if (t > 3) return e("bad DQT table","Corrupt JPEG"); for (i=0; i < 64; ++i) z->dequant[t][dezigzag[i]] = get8u(&z->s); #if STBI_SIMD for (i=0; i < 64; ++i) z->dequant2[t][i] = dequant[t][i]; #endif L -= 65; } return L==0; case 0xC4: // DHT - define huffman table L = get16(&z->s)-2; while (L > 0) { uint8 *v; int sizes[16],i,m=0; int q = get8(&z->s); int tc = q >> 4; int th = q & 15; if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG"); for (i=0; i < 16; ++i) { sizes[i] = get8(&z->s); m += sizes[i]; } L -= 17; if (tc == 0) { if (!build_huffman(z->huff_dc+th, sizes)) return 0; v = z->huff_dc[th].values; } else { if (!build_huffman(z->huff_ac+th, sizes)) return 0; v = z->huff_ac[th].values; } for (i=0; i < m; ++i) v[i] = get8u(&z->s); L -= m; } return L==0; } // check for comment block or APP blocks if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { skip(&z->s, get16(&z->s)-2); return 1; } return 0; } // after we see SOS static int process_scan_header(jpeg *z) { int i; int Ls = get16(&z->s); z->scan_n = get8(&z->s); if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s.img_n) return e("bad SOS component count","Corrupt JPEG"); if (Ls != 6+2*z->scan_n) return e("bad SOS len","Corrupt JPEG"); for (i=0; i < z->scan_n; ++i) { int id = get8(&z->s), which; int q = get8(&z->s); for (which = 0; which < z->s.img_n; ++which) if (z->img_comp[which].id == id) break; if (which == z->s.img_n) return 0; z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG"); z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG"); z->order[i] = which; } if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG"); get8(&z->s); // should be 63, but might be 0 if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG"); return 1; } static int process_frame_header(jpeg *z, int scan) { stbi *s = &z->s; int Lf,p,i,q, h_max=1,v_max=1,c; Lf = get16(s); if (Lf < 11) return e("bad SOF len","Corrupt JPEG"); // JPEG p = get8(s); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline s->img_y = get16(s); if (s->img_y == 0) return e("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG s->img_x = get16(s); if (s->img_x == 0) return e("0 width","Corrupt JPEG"); // JPEG requires c = get8(s); if (c != 3 && c != 1) return e("bad component count","Corrupt JPEG"); // JFIF requires s->img_n = c; for (i=0; i < c; ++i) { z->img_comp[i].data = NULL; z->img_comp[i].linebuf = NULL; } if (Lf != 8+3*s->img_n) return e("bad SOF len","Corrupt JPEG"); for (i=0; i < s->img_n; ++i) { z->img_comp[i].id = get8(s); if (z->img_comp[i].id != i+1) // JFIF requires if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files! return e("bad component ID","Corrupt JPEG"); q = get8(s); z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return e("bad H","Corrupt JPEG"); z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return e("bad V","Corrupt JPEG"); z->img_comp[i].tq = get8(s); if (z->img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG"); } if (scan != SCAN_load) return 1; if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode"); for (i=0; i < s->img_n; ++i) { if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; } // compute interleaved mcu info z->img_h_max = h_max; z->img_v_max = v_max; z->img_mcu_w = h_max * 8; z->img_mcu_h = v_max * 8; z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; for (i=0; i < s->img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; z->img_comp[i].raw_data = malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15); if (z->img_comp[i].raw_data == NULL) { for(--i; i >= 0; --i) { free(z->img_comp[i].raw_data); z->img_comp[i].data = NULL; } return e("outofmem", "Out of memory"); } // align blocks for installable-idct using mmx/sse z->img_comp[i].data = (uint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); z->img_comp[i].linebuf = NULL; } return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) #define DNL(x) ((x) == 0xdc) #define SOI(x) ((x) == 0xd8) #define EOI(x) ((x) == 0xd9) #define SOF(x) ((x) == 0xc0 || (x) == 0xc1) #define SOS(x) ((x) == 0xda) static int decode_jpeg_header(jpeg *z, int scan) { int m; z->marker = MARKER_none; // initialize cached marker to empty m = get_marker(z); if (!SOI(m)) return e("no SOI","Corrupt JPEG"); if (scan == SCAN_type) return 1; m = get_marker(z); while (!SOF(m)) { if (!process_marker(z,m)) return 0; m = get_marker(z); while (m == MARKER_none) { // some files have extra padding after their blocks, so ok, we'll scan if (at_eof(&z->s)) return e("no SOF", "Corrupt JPEG"); m = get_marker(z); } } if (!process_frame_header(z, scan)) return 0; return 1; } static int decode_jpeg_image(jpeg *j) { int m; j->restart_interval = 0; if (!decode_jpeg_header(j, SCAN_load)) return 0; m = get_marker(j); while (!EOI(m)) { if (SOS(m)) { if (!process_scan_header(j)) return 0; if (!parse_entropy_coded_data(j)) return 0; } else { if (!process_marker(j, m)) return 0; } m = get_marker(j); } return 1; } // static jfif-centered resampling (across block boundaries) typedef uint8 *(*resample_row_func)(uint8 *out, uint8 *in0, uint8 *in1, int w, int hs); #define div4(x) ((uint8) ((x) >> 2)) static uint8 *resample_row_1(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { return in_near; } static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate two samples vertically for every one in input int i; for (i=0; i < w; ++i) out[i] = div4(3*in_near[i] + in_far[i] + 2); return out; } static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate two samples horizontally for every one in input int i; uint8 *input = in_near; if (w == 1) { // if only one sample, can't do any interpolation out[0] = out[1] = input[0]; return out; } out[0] = input[0]; out[1] = div4(input[0]*3 + input[1] + 2); for (i=1; i < w-1; ++i) { int n = 3*input[i]+2; out[i*2+0] = div4(n+input[i-1]); out[i*2+1] = div4(n+input[i+1]); } out[i*2+0] = div4(input[w-2]*3 + input[w-1] + 2); out[i*2+1] = input[w-1]; return out; } #define div16(x) ((uint8) ((x) >> 4)) static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i,t0,t1; if (w == 1) { out[0] = out[1] = div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; out[0] = div4(t1+2); for (i=1; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = div16(3*t0 + t1 + 8); out[i*2 ] = div16(3*t1 + t0 + 8); } out[w*2-1] = div4(t1+2); return out; } static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // resample with nearest-neighbor int i,j; for (i=0; i < w; ++i) for (j=0; j < hs; ++j) out[i*hs+j] = in_near[i]; return out; } #define float2fixed(x) ((int) ((x) * 65536 + 0.5)) // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro) // VC6 without processor=Pro is generating multiple LEAs per multiply! static void YCbCr_to_RGB_row(uint8 *out, uint8 *y, uint8 *pcb, uint8 *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 16) + 32768; // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr*float2fixed(1.40200f); g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f); b = y_fixed + cb*float2fixed(1.77200f); r >>= 16; g >>= 16; b >>= 16; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (uint8)r; out[1] = (uint8)g; out[2] = (uint8)b; out[3] = 255; out += step; } } #if STBI_SIMD static stbi_YCbCr_to_RGB_run stbi_YCbCr_installed = YCbCr_to_RGB_row; void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func) { stbi_YCbCr_installed = func; } #endif // clean up the temporary component buffers static void cleanup_jpeg(jpeg *j) { int i; for (i=0; i < j->s.img_n; ++i) { if (j->img_comp[i].data) { free(j->img_comp[i].raw_data); j->img_comp[i].data = NULL; } if (j->img_comp[i].linebuf) { free(j->img_comp[i].linebuf); j->img_comp[i].linebuf = NULL; } } } typedef struct { resample_row_func resample; uint8 *line0,*line1; int hs,vs; // expansion factor in each axis int w_lores; // horizontal pixels pre-expansion int ystep; // how far through vertical expansion we are int ypos; // which pre-expansion row we're on } stbi_resample; static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) { int n, decode_n; // validate req_comp if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); z->s.img_n = 0; // load a jpeg image from whichever source if (!decode_jpeg_image(z)) { cleanup_jpeg(z); return NULL; } // determine actual number of components to generate n = req_comp ? req_comp : z->s.img_n; if (z->s.img_n == 3 && n < 3) decode_n = 1; else decode_n = z->s.img_n; // resample and color-convert { int k; uint i,j; uint8 *output; uint8 *coutput[4]; stbi_resample res_comp[4]; for (k=0; k < decode_n; ++k) { stbi_resample *r = &res_comp[k]; // allocate line buffer big enough for upsampling off the edges // with upsample factor of 4 z->img_comp[k].linebuf = (uint8 *) malloc(z->s.img_x + 3); if (!z->img_comp[k].linebuf) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); } r->hs = z->img_h_max / z->img_comp[k].h; r->vs = z->img_v_max / z->img_comp[k].v; r->ystep = r->vs >> 1; r->w_lores = (z->s.img_x + r->hs-1) / r->hs; r->ypos = 0; r->line0 = r->line1 = z->img_comp[k].data; if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; else if (r->hs == 1 && r->vs == 2) r->resample = resample_row_v_2; else if (r->hs == 2 && r->vs == 1) r->resample = resample_row_h_2; else if (r->hs == 2 && r->vs == 2) r->resample = resample_row_hv_2; else r->resample = resample_row_generic; } // can't error after this so, this is safe output = (uint8 *) malloc(n * z->s.img_x * z->s.img_y + 1); if (!output) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); } // now go ahead and resample for (j=0; j < z->s.img_y; ++j) { uint8 *out = output + n * z->s.img_x * j; for (k=0; k < decode_n; ++k) { stbi_resample *r = &res_comp[k]; int y_bot = r->ystep >= (r->vs >> 1); coutput[k] = r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, y_bot ? r->line0 : r->line1, r->w_lores, r->hs); if (++r->ystep >= r->vs) { r->ystep = 0; r->line0 = r->line1; if (++r->ypos < z->img_comp[k].y) r->line1 += z->img_comp[k].w2; } } if (n >= 3) { uint8 *y = coutput[0]; if (z->s.img_n == 3) { #if STBI_SIMD stbi_YCbCr_installed(out, y, coutput[1], coutput[2], z->s.img_x, n); #else YCbCr_to_RGB_row(out, y, coutput[1], coutput[2], z->s.img_x, n); #endif } else for (i=0; i < z->s.img_x; ++i) { out[0] = out[1] = out[2] = y[i]; out[3] = 255; // not used if n==3 out += n; } } else { uint8 *y = coutput[0]; if (n == 1) for (i=0; i < z->s.img_x; ++i) out[i] = y[i]; else for (i=0; i < z->s.img_x; ++i) *out++ = y[i], *out++ = 255; } } cleanup_jpeg(z); *out_x = z->s.img_x; *out_y = z->s.img_y; if (comp) *comp = z->s.img_n; // report original components, not output return output; } } #ifndef STBI_NO_STDIO unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { jpeg j; start_file(&j.s, f); return load_jpeg_image(&j, x,y,comp,req_comp); } unsigned char *stbi_jpeg_load(char const *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { jpeg j; start_mem(&j.s, buffer,len); return load_jpeg_image(&j, x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_jpeg_test_file(FILE *f) { int n,r; jpeg j; n = ftell(f); start_file(&j.s, f); r = decode_jpeg_header(&j, SCAN_type); fseek(f,n,SEEK_SET); return r; } #endif int stbi_jpeg_test_memory(stbi_uc const *buffer, int len) { jpeg j; start_mem(&j.s, buffer,len); return decode_jpeg_header(&j, SCAN_type); } // @TODO: #ifndef STBI_NO_STDIO extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); // public domain zlib decode v0.2 Sean Barrett 2006-11-18 // simple implementation // - all input must be provided in an upfront buffer // - all output is written to a single output buffer (can malloc/realloc) // performance // - fast huffman // fast-way is faster to check than jpeg huffman, but slow way is slower #define ZFAST_BITS 9 // accelerate all cases in default tables #define ZFAST_MASK ((1 << ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) typedef struct { uint16 fast[1 << ZFAST_BITS]; uint16 firstcode[16]; int maxcode[17]; uint16 firstsymbol[16]; uint8 size[288]; uint16 value[288]; } zhuffman; __forceinline static int bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } __forceinline static int bit_reverse(int v, int bits) { assert(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return bitreverse16(v) >> (16-bits); } static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; // DEFLATE spec for generating codes memset(sizes, 0, sizeof(sizes)); memset(z->fast, 255, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) assert(sizes[i] <= (1 << i)); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (uint16) code; z->firstsymbol[i] = (uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG"); z->maxcode[i] = code << (16-i); // preshift for inner loop code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; z->size[c] = (uint8)s; z->value[c] = (uint16)i; if (s <= ZFAST_BITS) { int k = bit_reverse(next_code[s],s); while (k < (1 << ZFAST_BITS)) { z->fast[k] = (uint16) c; k += (1 << s); } } ++next_code[s]; } } return 1; } // zlib-from-memory implementation for PNG reading // because PNG allows splitting the zlib stream arbitrarily, // and it's annoying structurally to have PNG call ZLIB call PNG, // we require PNG read all the IDATs and combine them into a single // memory buffer typedef struct { uint8 *zbuffer, *zbuffer_end; int num_bits; uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; zhuffman z_length, z_distance; } zbuf; __forceinline static int zget8(zbuf *z) { if (z->zbuffer >= z->zbuffer_end) return 0; return *z->zbuffer++; } static void fill_bits(zbuf *z) { do { assert(z->code_buffer < (1U << z->num_bits)); z->code_buffer |= zget8(z) << z->num_bits; z->num_bits += 8; } while (z->num_bits <= 24); } __forceinline static unsigned int zreceive(zbuf *z, int n) { unsigned int k; if (z->num_bits < n) fill_bits(z); k = z->code_buffer & ((1 << n) - 1); z->code_buffer >>= n; z->num_bits -= n; return k; } __forceinline static int zhuffman_decode(zbuf *a, zhuffman *z) { int b,s,k; if (a->num_bits < 16) fill_bits(a); b = z->fast[a->code_buffer & ZFAST_MASK]; if (b < 0xffff) { s = z->size[b]; a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } // not resolved by fast table, so compute it the slow way // use jpeg approach, which requires MSbits at top k = bit_reverse(a->code_buffer, 16); for (s=ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s == 16) return -1; // invalid code! // code size is s, so: b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; assert(z->size[b] == s); a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } static int expand(zbuf *z, int n) // need to make room for n bytes { char *q; int cur, limit; if (!z->z_expandable) return e("output buffer limit","Corrupt PNG"); cur = (int) (z->zout - z->zout_start); limit = (int) (z->zout_end - z->zout_start); while (cur + n > limit) limit *= 2; q = (char *) realloc(z->zout_start, limit); if (q == NULL) return e("outofmem", "Out of memory"); z->zout_start = q; z->zout = q + cur; z->zout_end = q + limit; return 1; } static int length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static int length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static int dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static int dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int parse_huffman_block(zbuf *a) { for(;;) { int z = zhuffman_decode(a, &a->z_length); if (z < 256) { if (z < 0) return e("bad huffman code","Corrupt PNG"); // error in huffman codes if (a->zout >= a->zout_end) if (!expand(a, 1)) return 0; *a->zout++ = (char) z; } else { uint8 *p; int len,dist; if (z == 256) return 1; z -= 257; len = length_base[z]; if (length_extra[z]) len += zreceive(a, length_extra[z]); z = zhuffman_decode(a, &a->z_distance); if (z < 0) return e("bad huffman code","Corrupt PNG"); dist = dist_base[z]; if (dist_extra[z]) dist += zreceive(a, dist_extra[z]); if (a->zout - a->zout_start < dist) return e("bad dist","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; p = (uint8 *) (a->zout - dist); while (len--) *a->zout++ = *p++; } } } static int compute_huffman_codes(zbuf *a) { static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; static zhuffman z_codelength; // static just to save stack space uint8 lencodes[286+32+137];//padding for maximum single op uint8 codelength_sizes[19]; int i,n; int hlit = zreceive(a,5) + 257; int hdist = zreceive(a,5) + 1; int hclen = zreceive(a,4) + 4; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = zreceive(a,3); codelength_sizes[length_dezigzag[i]] = (uint8) s; } if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < hlit + hdist) { int c = zhuffman_decode(a, &z_codelength); assert(c >= 0 && c < 19); if (c < 16) lencodes[n++] = (uint8) c; else if (c == 16) { c = zreceive(a,2)+3; memset(lencodes+n, lencodes[n-1], c); n += c; } else if (c == 17) { c = zreceive(a,3)+3; memset(lencodes+n, 0, c); n += c; } else { assert(c == 18); c = zreceive(a,7)+11; memset(lencodes+n, 0, c); n += c; } } if (n != hlit+hdist) return e("bad codelengths","Corrupt PNG"); if (!zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; if (!zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; return 1; } static int parse_uncompressed_block(zbuf *a) { uint8 header[4]; int len,nlen,k; if (a->num_bits & 7) zreceive(a, a->num_bits & 7); // discard // drain the bit-packed data into header k = 0; while (a->num_bits > 0) { header[k++] = (uint8) (a->code_buffer & 255); // wtf this warns? a->code_buffer >>= 8; a->num_bits -= 8; } assert(a->num_bits == 0); // now fill header the normal way while (k < 4) header[k++] = (uint8) zget8(a); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG"); if (a->zbuffer + len > a->zbuffer_end) return e("read past buffer","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; memcpy(a->zout, a->zbuffer, len); a->zbuffer += len; a->zout += len; return 1; } static int parse_zlib_header(zbuf *a) { int cmf = zget8(a); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = zget8(a); if ((cmf*256+flg) % 31 != 0) return e("bad zlib header","Corrupt PNG"); // zlib spec if (flg & 32) return e("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png if (cm != 8) return e("bad compression","Corrupt PNG"); // DEFLATE required for png // window = 1 << (8 + cinfo)... but who cares, we fully buffer output return 1; } // @TODO: should statically initialize these for optimal thread safety static uint8 default_length[288], default_distance[32]; static void init_defaults(void) { int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) default_length[i] = 8; for ( ; i <= 255; ++i) default_length[i] = 9; for ( ; i <= 279; ++i) default_length[i] = 7; for ( ; i <= 287; ++i) default_length[i] = 8; for (i=0; i <= 31; ++i) default_distance[i] = 5; } static int parse_zlib(zbuf *a, int parse_header) { int final, type; if (parse_header) if (!parse_zlib_header(a)) return 0; a->num_bits = 0; a->code_buffer = 0; do { final = zreceive(a,1); type = zreceive(a,2); if (type == 0) { if (!parse_uncompressed_block(a)) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { // use fixed code lengths if (!default_distance[31]) init_defaults(); if (!zbuild_huffman(&a->z_length , default_length , 288)) return 0; if (!zbuild_huffman(&a->z_distance, default_distance, 32)) return 0; } else { if (!compute_huffman_codes(a)) return 0; } if (!parse_huffman_block(a)) return 0; } } while (!final); return 1; } static int do_zlib(zbuf *a, char *obuf, int olen, int exp, int parse_header) { a->zout_start = obuf; a->zout = obuf; a->zout_end = obuf + olen; a->z_expandable = exp; return parse_zlib(a, parse_header); } char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) { zbuf a; char *p = (char *) malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (uint8 *) buffer; a.zbuffer_end = (uint8 *) buffer + len; if (do_zlib(&a, p, initial_size, 1, 1)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { free(a.zout_start); return NULL; } } char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) { return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); } int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) { zbuf a; a.zbuffer = (uint8 *) ibuffer; a.zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(&a, obuffer, olen, 0, 1)) return (int) (a.zout - a.zout_start); else return -1; } char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) { zbuf a; char *p = (char *) malloc(16384); if (p == NULL) return NULL; a.zbuffer = (uint8 *) buffer; a.zbuffer_end = (uint8 *) buffer+len; if (do_zlib(&a, p, 16384, 1, 0)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { free(a.zout_start); return NULL; } } int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) { zbuf a; a.zbuffer = (uint8 *) ibuffer; a.zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(&a, obuffer, olen, 0, 0)) return (int) (a.zout - a.zout_start); else return -1; } // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 // simple implementation // - only 8-bit samples // - no CRC checking // - allocates lots of intermediate memory // - avoids problem of streaming data between subsystems // - avoids explicit window management // performance // - uses stb_zlib, a PD zlib implementation with fast huffman decoding typedef struct { uint32 length; uint32 type; } chunk; #define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static chunk get_chunk_header(stbi *s) { chunk c; c.length = get32(s); c.type = get32(s); return c; } static int check_png_header(stbi *s) { static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (get8(s) != png_sig[i]) return e("bad png sig","Not a PNG"); return 1; } typedef struct { stbi s; uint8 *idata, *expanded, *out; } png; enum { F_none=0, F_sub=1, F_up=2, F_avg=3, F_paeth=4, F_avg_first, F_paeth_first, }; static uint8 first_row_filter[5] = { F_none, F_sub, F_none, F_avg_first, F_paeth_first }; static int paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } // create the png data from post-deflated data static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n) { stbi *s = &a->s; uint32 i,j,stride = s->img_x*out_n; int k; int img_n = s->img_n; // copy it into a local for later assert(out_n == s->img_n || out_n == s->img_n+1); a->out = (uint8 *) malloc(s->img_x * s->img_y * out_n); if (!a->out) return e("outofmem", "Out of memory"); if (raw_len != (img_n * s->img_x + 1) * s->img_y) return e("not enough pixels","Corrupt PNG"); for (j=0; j < s->img_y; ++j) { uint8 *cur = a->out + stride*j; uint8 *prior = cur - stride; int filter = *raw++; if (filter > 4) return e("invalid filter","Corrupt PNG"); // if first row, use special filter that doesn't sample previous row if (j == 0) filter = first_row_filter[filter]; // handle first pixel explicitly for (k=0; k < img_n; ++k) { switch(filter) { case F_none : cur[k] = raw[k]; break; case F_sub : cur[k] = raw[k]; break; case F_up : cur[k] = raw[k] + prior[k]; break; case F_avg : cur[k] = raw[k] + (prior[k]>>1); break; case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break; case F_avg_first : cur[k] = raw[k]; break; case F_paeth_first: cur[k] = raw[k]; break; } } if (img_n != out_n) cur[img_n] = 255; raw += img_n; cur += out_n; prior += out_n; // this is a little gross, so that we don't switch per-pixel or per-component if (img_n == out_n) { #define CASE(f) \ case f: \ for (i=s->img_x-1; i >= 1; --i, raw+=img_n,cur+=img_n,prior+=img_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break; } #undef CASE } else { assert(img_n+1 == out_n); #define CASE(f) \ case f: \ for (i=s->img_x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break; } #undef CASE } } return 1; } static int compute_transparency(png *z, uint8 tc[3], int out_n) { stbi *s = &z->s; uint32 i, pixel_count = s->img_x * s->img_y; uint8 *p = z->out; // compute color-based transparency, assuming we've // already got 255 as the alpha value in the output assert(out_n == 2 || out_n == 4); if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n) { uint32 i, pixel_count = a->s.img_x * a->s.img_y; uint8 *p, *temp_out, *orig = a->out; p = (uint8 *) malloc(pixel_count * pal_img_n); if (p == NULL) return e("outofmem", "Out of memory"); // between here and free(out) below, exitting would leak temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } free(a->out); a->out = temp_out; return 1; } static int parse_png_file(png *z, int scan, int req_comp) { uint8 palette[1024], pal_img_n=0; uint8 has_trans=0, tc[3]; uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k; stbi *s = &z->s; if (!check_png_header(s)) return 0; if (scan == SCAN_type) return 1; for(;;first=0) { chunk c = get_chunk_header(s); if (first && c.type != PNG_TYPE('I','H','D','R')) return e("first not IHDR","Corrupt PNG"); switch (c.type) { case PNG_TYPE('I','H','D','R'): { int depth,color,interlace,comp,filter; if (!first) return e("multiple IHDR","Corrupt PNG"); if (c.length != 13) return e("bad IHDR len","Corrupt PNG"); s->img_x = get32(s); if (s->img_x > (1 << 24)) return e("too large","Very large image (corrupt?)"); s->img_y = get32(s); if (s->img_y > (1 << 24)) return e("too large","Very large image (corrupt?)"); depth = get8(s); if (depth != 8) return e("8bit only","PNG not supported: 8-bit only"); color = get8(s); if (color > 6) return e("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return e("bad ctype","Corrupt PNG"); comp = get8(s); if (comp) return e("bad comp method","Corrupt PNG"); filter= get8(s); if (filter) return e("bad filter method","Corrupt PNG"); interlace = get8(s); if (interlace) return e("interlaced","PNG not supported: interlaced mode"); if (!s->img_x || !s->img_y) return e("0-pixel image","Corrupt PNG"); if (!pal_img_n) { s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode"); if (scan == SCAN_header) return 1; } else { // if paletted, then pal_n is our final components, and // img_n is # components to decompress/filter. s->img_n = 1; if ((1 << 30) / s->img_x / 4 < s->img_y) return e("too large","Corrupt PNG"); // if SCAN_header, have to scan to see if we have a tRNS } break; } case PNG_TYPE('P','L','T','E'): { if (c.length > 256*3) return e("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return e("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = get8u(s); palette[i*4+1] = get8u(s); palette[i*4+2] = get8u(s); palette[i*4+3] = 255; } break; } case PNG_TYPE('t','R','N','S'): { if (z->idata) return e("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == SCAN_header) { s->img_n = 4; return 1; } if (pal_len == 0) return e("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return e("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = get8u(s); } else { if (!(s->img_n & 1)) return e("tRNS with alpha","Corrupt PNG"); if (c.length != (uint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG"); has_trans = 1; for (k=0; k < s->img_n; ++k) tc[k] = (uint8) get16(s); // non 8-bit images will be larger } break; } case PNG_TYPE('I','D','A','T'): { if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG"); if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; } if (ioff + c.length > idata_limit) { uint8 *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; p = (uint8 *) realloc(z->idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory"); z->idata = p; } #ifndef STBI_NO_STDIO if (s->img_file) { if (fread(z->idata+ioff,1,c.length,s->img_file) != c.length) return e("outofdata","Corrupt PNG"); } else #endif { memcpy(z->idata+ioff, s->img_buffer, c.length); s->img_buffer += c.length; } ioff += c.length; break; } case PNG_TYPE('I','E','N','D'): { uint32 raw_len; if (scan != SCAN_load) return 1; if (z->idata == NULL) return e("no IDAT","Corrupt PNG"); z->expanded = (uint8 *) stbi_zlib_decode_malloc((char *) z->idata, ioff, (int *) &raw_len); if (z->expanded == NULL) return 0; // zlib should set error free(z->idata); z->idata = NULL; if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) s->img_out_n = s->img_n+1; else s->img_out_n = s->img_n; if (!create_png_image(z, z->expanded, raw_len, s->img_out_n)) return 0; if (has_trans) if (!compute_transparency(z, tc, s->img_out_n)) return 0; if (pal_img_n) { // pal_img_n == 3 or 4 s->img_n = pal_img_n; // record the actual colors we had s->img_out_n = pal_img_n; if (req_comp >= 3) s->img_out_n = req_comp; if (!expand_palette(z, palette, pal_len, s->img_out_n)) return 0; } free(z->expanded); z->expanded = NULL; return 1; } default: // if critical, fail if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS // not threadsafe static char invalid_chunk[] = "XXXX chunk not known"; invalid_chunk[0] = (uint8) (c.type >> 24); invalid_chunk[1] = (uint8) (c.type >> 16); invalid_chunk[2] = (uint8) (c.type >> 8); invalid_chunk[3] = (uint8) (c.type >> 0); #endif return e(invalid_chunk, "PNG not supported: unknown chunk type"); } skip(s, c.length); break; } // end of chunk, read and skip CRC get32(s); } } static unsigned char *do_png(png *p, int *x, int *y, int *n, int req_comp) { unsigned char *result=NULL; p->expanded = NULL; p->idata = NULL; p->out = NULL; if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); if (parse_png_file(p, SCAN_load, req_comp)) { result = p->out; p->out = NULL; if (req_comp && req_comp != p->s.img_out_n) { result = convert_format(result, p->s.img_out_n, req_comp, p->s.img_x, p->s.img_y); p->s.img_out_n = req_comp; if (result == NULL) return result; } *x = p->s.img_x; *y = p->s.img_y; if (n) *n = p->s.img_n; } free(p->out); p->out = NULL; free(p->expanded); p->expanded = NULL; free(p->idata); p->idata = NULL; return result; } #ifndef STBI_NO_STDIO unsigned char *stbi_png_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { png p; start_file(&p.s, f); return do_png(&p, x,y,comp,req_comp); } unsigned char *stbi_png_load(char const *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_png_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_png_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { png p; start_mem(&p.s, buffer,len); return do_png(&p, x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_png_test_file(FILE *f) { png p; int n,r; n = ftell(f); start_file(&p.s, f); r = parse_png_file(&p, SCAN_type,STBI_default); fseek(f,n,SEEK_SET); return r; } #endif int stbi_png_test_memory(stbi_uc const *buffer, int len) { png p; start_mem(&p.s, buffer, len); return parse_png_file(&p, SCAN_type,STBI_default); } // TODO: load header from png #ifndef STBI_NO_STDIO extern int stbi_png_info (char const *filename, int *x, int *y, int *comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); // Microsoft/Windows BMP image static int bmp_test(stbi *s) { int sz; if (get8(s) != 'B') return 0; if (get8(s) != 'M') return 0; get32le(s); // discard filesize get16le(s); // discard reserved get16le(s); // discard reserved get32le(s); // discard data offset sz = get32le(s); if (sz == 12 || sz == 40 || sz == 56 || sz == 108) return 1; return 0; } #ifndef STBI_NO_STDIO int stbi_bmp_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s,f); r = bmp_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_bmp_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return bmp_test(&s); } // returns 0..31 for the highest set bit static int high_bit(unsigned int z) { int n=0; if (z == 0) return -1; if (z >= 0x10000) n += 16, z >>= 16; if (z >= 0x00100) n += 8, z >>= 8; if (z >= 0x00010) n += 4, z >>= 4; if (z >= 0x00004) n += 2, z >>= 2; if (z >= 0x00002) n += 1, z >>= 1; return n; } static int bitcount(unsigned int a) { a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits a = (a + (a >> 8)); // max 16 per 8 bits a = (a + (a >> 16)); // max 32 per 8 bits return a & 0xff; } static int shiftsigned(int v, int shift, int bits) { int result; int z=0; if (shift < 0) v <<= -shift; else v >>= shift; result = v; z = bits; while (z < 8) { result += v >> z; z += bits; } return result; } static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp) { uint8 *out; unsigned int mr=0,mg=0,mb=0,ma=0; stbi_uc pal[256][4]; int psize=0,i,j,compress=0,width; int bpp, flip_vertically, pad, target, offset, hsz; if (get8(s) != 'B' || get8(s) != 'M') return epuc("not BMP", "Corrupt BMP"); get32le(s); // discard filesize get16le(s); // discard reserved get16le(s); // discard reserved offset = get32le(s); hsz = get32le(s); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108) return epuc("unknown BMP", "BMP type not supported: unknown"); failure_reason = "bad BMP"; if (hsz == 12) { s->img_x = get16le(s); s->img_y = get16le(s); } else { s->img_x = get32le(s); s->img_y = get32le(s); } if (get16le(s) != 1) return 0; bpp = get16le(s); if (bpp == 1) return epuc("monochrome", "BMP type not supported: 1-bit"); flip_vertically = ((int) s->img_y) > 0; s->img_y = abs((int) s->img_y); if (hsz == 12) { if (bpp < 24) psize = (offset - 14 - 24) / 3; } else { compress = get32le(s); if (compress == 1 || compress == 2) return epuc("BMP RLE", "BMP type not supported: RLE"); get32le(s); // discard sizeof get32le(s); // discard hres get32le(s); // discard vres get32le(s); // discard colorsused get32le(s); // discard max important if (hsz == 40 || hsz == 56) { if (hsz == 56) { get32le(s); get32le(s); get32le(s); get32le(s); } if (bpp == 16 || bpp == 32) { mr = mg = mb = 0; if (compress == 0) { if (bpp == 32) { mr = 0xff << 16; mg = 0xff << 8; mb = 0xff << 0; } else { mr = 31 << 10; mg = 31 << 5; mb = 31 << 0; } } else if (compress == 3) { mr = get32le(s); mg = get32le(s); mb = get32le(s); // not documented, but generated by photoshop and handled by mspaint if (mr == mg && mg == mb) { // ?!?!? return NULL; } } else return NULL; } } else { assert(hsz == 108); mr = get32le(s); mg = get32le(s); mb = get32le(s); ma = get32le(s); get32le(s); // discard color space for (i=0; i < 12; ++i) get32le(s); // discard color space parameters } if (bpp < 16) psize = (offset - 14 - hsz) >> 2; } s->img_n = ma ? 4 : 3; if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 target = req_comp; else target = s->img_n; // if they want monochrome, we'll post-convert out = (stbi_uc *) malloc(target * s->img_x * s->img_y); if (!out) return epuc("outofmem", "Out of memory"); if (bpp < 16) { int z=0; if (psize == 0 || psize > 256) { free(out); return epuc("invalid", "Corrupt BMP"); } for (i=0; i < psize; ++i) { pal[i][2] = get8(s); pal[i][1] = get8(s); pal[i][0] = get8(s); if (hsz != 12) get8(s); pal[i][3] = 255; } skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4)); if (bpp == 4) width = (s->img_x + 1) >> 1; else if (bpp == 8) width = s->img_x; else { free(out); return epuc("bad bpp", "Corrupt BMP"); } pad = (-width)&3; for (j=0; j < (int) s->img_y; ++j) { for (i=0; i < (int) s->img_x; i += 2) { int v=get8(s),v2=0; if (bpp == 4) { v2 = v & 15; v >>= 4; } out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) s->img_x) break; v = (bpp == 8) ? get8(s) : v2; out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; } skip(s, pad); } } else { int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; int z = 0; int easy=0; skip(s, offset - 14 - hsz); if (bpp == 24) width = 3 * s->img_x; else if (bpp == 16) width = 2*s->img_x; else /* bpp = 32 and pad = 0 */ width=0; pad = (-width) & 3; if (bpp == 24) { easy = 1; } else if (bpp == 32) { if (mb == 0xff && mg == 0xff00 && mr == 0xff000000 && ma == 0xff000000) easy = 2; } if (!easy) { if (!mr || !mg || !mb) return epuc("bad masks", "Corrupt BMP"); // right shift amt to put high bit in position #7 rshift = high_bit(mr)-7; rcount = bitcount(mr); gshift = high_bit(mg)-7; gcount = bitcount(mr); bshift = high_bit(mb)-7; bcount = bitcount(mr); ashift = high_bit(ma)-7; acount = bitcount(mr); } for (j=0; j < (int) s->img_y; ++j) { if (easy) { for (i=0; i < (int) s->img_x; ++i) { int a; out[z+2] = get8(s); out[z+1] = get8(s); out[z+0] = get8(s); z += 3; a = (easy == 2 ? get8(s) : 255); if (target == 4) out[z++] = a; } } else { for (i=0; i < (int) s->img_x; ++i) { uint32 v = (bpp == 16 ? get16le(s) : get32le(s)); int a; out[z++] = shiftsigned(v & mr, rshift, rcount); out[z++] = shiftsigned(v & mg, gshift, gcount); out[z++] = shiftsigned(v & mb, bshift, bcount); a = (ma ? shiftsigned(v & ma, ashift, acount) : 255); if (target == 4) out[z++] = a; } } skip(s, pad); } } if (flip_vertically) { stbi_uc t; for (j=0; j < (int) s->img_y>>1; ++j) { stbi_uc *p1 = out + j *s->img_x*target; stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; for (i=0; i < (int) s->img_x*target; ++i) { t = p1[i], p1[i] = p2[i], p2[i] = t; } } } if (req_comp && req_comp != target) { out = convert_format(out, target, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // convert_format frees input on failure } *x = s->img_x; *y = s->img_y; if (comp) *comp = target; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_bmp_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return bmp_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return bmp_load(&s, x,y,comp,req_comp); } // Targa Truevision - TGA // by Jonathan Dummer static int tga_test(stbi *s) { int sz; get8u(s); // discard Offset sz = get8u(s); // color type if( sz > 1 ) return 0; // only RGB or indexed allowed sz = get8u(s); // image type if( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE get16(s); // discard palette start get16(s); // discard palette length get8(s); // discard bits per palette color entry get16(s); // discard x origin get16(s); // discard y origin if( get16(s) < 1 ) return 0; // test width if( get16(s) < 1 ) return 0; // test height sz = get8(s); // bits per pixel if( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) ) return 0; // only RGB or RGBA or grey allowed return 1; // seems to have passed everything } #ifndef STBI_NO_STDIO int stbi_tga_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = tga_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_tga_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return tga_test(&s); } static stbi_uc *tga_load(stbi *s, int *x, int *y, int *comp, int req_comp) { // read in the TGA header stuff int tga_offset = get8u(s); int tga_indexed = get8u(s); int tga_image_type = get8u(s); int tga_is_RLE = 0; int tga_palette_start = get16le(s); int tga_palette_len = get16le(s); int tga_palette_bits = get8u(s); int tga_x_origin = get16le(s); int tga_y_origin = get16le(s); int tga_width = get16le(s); int tga_height = get16le(s); int tga_bits_per_pixel = get8u(s); int tga_inverted = get8u(s); // image data unsigned char *tga_data; unsigned char *tga_palette = NULL; int i, j; unsigned char raw_data[4]; unsigned char trans_data[] = { 0,0,0,0 }; int RLE_count = 0; int RLE_repeating = 0; int read_next_pixel = 1; // do a tiny bit of precessing if( tga_image_type >= 8 ) { tga_image_type -= 8; tga_is_RLE = 1; } /* int tga_alpha_bits = tga_inverted & 15; */ tga_inverted = 1 - ((tga_inverted >> 5) & 1); // error check if( //(tga_indexed) || (tga_width < 1) || (tga_height < 1) || (tga_image_type < 1) || (tga_image_type > 3) || ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) && (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32)) ) { return NULL; } // If I'm paletted, then I'll use the number of bits from the palette if( tga_indexed ) { tga_bits_per_pixel = tga_palette_bits; } // tga info *x = tga_width; *y = tga_height; if( (req_comp < 1) || (req_comp > 4) ) { // just use whatever the file was req_comp = tga_bits_per_pixel / 8; *comp = req_comp; } else { // force a new number of components *comp = tga_bits_per_pixel/8; } tga_data = (unsigned char*)malloc( tga_width * tga_height * req_comp ); // skip to the data's starting position (offset usually = 0) skip(s, tga_offset ); // do I need to load a palette? if( tga_indexed ) { // any data to skip? (offset usually = 0) skip(s, tga_palette_start ); // load the palette tga_palette = (unsigned char*)malloc( tga_palette_len * tga_palette_bits / 8 ); getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 ); } // load the data for( i = 0; i < tga_width * tga_height; ++i ) { // if I'm in RLE mode, do I need to get a RLE chunk? if( tga_is_RLE ) { if( RLE_count == 0 ) { // yep, get the next byte as a RLE command int RLE_cmd = get8u(s); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7; read_next_pixel = 1; } else if( !RLE_repeating ) { read_next_pixel = 1; } } else { read_next_pixel = 1; } // OK, if I need to read a pixel, do it now if( read_next_pixel ) { // load however much data we did have if( tga_indexed ) { // read in 1 byte, then perform the lookup int pal_idx = get8u(s); if( pal_idx >= tga_palette_len ) { // invalid index pal_idx = 0; } pal_idx *= tga_bits_per_pixel / 8; for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = tga_palette[pal_idx+j]; } } else { // read in the data raw for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = get8u(s); } } // convert raw to the intermediate format switch( tga_bits_per_pixel ) { case 8: // Luminous => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 16: // Luminous,Alpha => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[1]; break; case 24: // BGR => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 32: // BGRA => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[3]; break; } // clear the reading flag for the next pixel read_next_pixel = 0; } // end of reading a pixel // convert to final format switch( req_comp ) { case 1: // RGBA => Luminance tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); break; case 2: // RGBA => Luminance,Alpha tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); tga_data[i*req_comp+1] = trans_data[3]; break; case 3: // RGBA => RGB tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; break; case 4: // RGBA => RGBA tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; tga_data[i*req_comp+3] = trans_data[3]; break; } // in case we're in RLE mode, keep counting down --RLE_count; } // do I need to invert the image? if( tga_inverted ) { for( j = 0; j*2 < tga_height; ++j ) { int index1 = j * tga_width * req_comp; int index2 = (tga_height - 1 - j) * tga_width * req_comp; for( i = tga_width * req_comp; i > 0; --i ) { unsigned char temp = tga_data[index1]; tga_data[index1] = tga_data[index2]; tga_data[index2] = temp; ++index1; ++index2; } } } // clear my palette, if I had one if( tga_palette != NULL ) { free( tga_palette ); } // the things I do to get rid of an error message, and yet keep // Microsoft's C compilers happy... [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; // OK, done return tga_data; } #ifndef STBI_NO_STDIO stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_tga_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return tga_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return tga_load(&s, x,y,comp,req_comp); } // ************************************************************************************************* // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicholas Schulz, tweaked by STB static int psd_test(stbi *s) { if (get32(s) != 0x38425053) return 0; // "8BPS" else return 1; } #ifndef STBI_NO_STDIO int stbi_psd_test_file(FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = psd_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_psd_test_memory(stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return psd_test(&s); } static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp) { int pixelCount; int channelCount, compression; int channel, i, count, len; int w,h; uint8 *out; // Check identifier if (get32(s) != 0x38425053) // "8BPS" return epuc("not PSD", "Corrupt PSD image"); // Check file type version. if (get16(s) != 1) return epuc("wrong version", "Unsupported version of PSD image"); // Skip 6 reserved bytes. skip(s, 6 ); // Read the number of channels (R, G, B, A, etc). channelCount = get16(s); if (channelCount < 0 || channelCount > 16) return epuc("wrong channel count", "Unsupported number of channels in PSD image"); // Read the rows and columns of the image. h = get32(s); w = get32(s); // Make sure the depth is 8 bits. if (get16(s) != 8) return epuc("unsupported bit depth", "PSD bit depth is not 8 bit"); // Make sure the color mode is RGB. // Valid options are: // 0: Bitmap // 1: Grayscale // 2: Indexed color // 3: RGB color // 4: CMYK color // 7: Multichannel // 8: Duotone // 9: Lab color if (get16(s) != 3) return epuc("wrong color format", "PSD is not in RGB color format"); // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) skip(s,get32(s) ); // Skip the image resources. (resolution, pen tool paths, etc) skip(s, get32(s) ); // Skip the reserved data. skip(s, get32(s) ); // Find out if the data is compressed. // Known values: // 0: no compression // 1: RLE compressed compression = get16(s); if (compression > 1) return epuc("bad compression", "PSD has an unknown compression format"); // Create the destination image. out = (stbi_uc *) malloc(4 * w*h); if (!out) return epuc("outofmem", "Out of memory"); pixelCount = w*h; // Initialize the data to zero. //memset( out, 0, pixelCount * 4 ); // Finally, the image data. if (compression) { // RLE as used by .PSD and .TIFF // Loop until you get the number of unpacked bytes you are expecting: // Read the next source byte into n. // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. // Else if n is 128, noop. // Endloop // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, // which we're going to just skip. skip(s, h * channelCount * 2 ); // Read the RLE data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out+channel; if (channel >= channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4; } else { // Read the RLE data. count = 0; while (count < pixelCount) { len = get8(s); if (len == 128) { // No-op. } else if (len < 128) { // Copy next len+1 bytes literally. len++; count += len; while (len) { *p = get8(s); p += 4; len--; } } else if (len > 128) { uint32 val; // Next -len+1 bytes in the dest are replicated from next source byte. // (Interpret len as a negative 8-bit int.) len ^= 0x0FF; len += 2; val = get8(s); count += len; while (len) { *p = val; p += 4; len--; } } } } } } else { // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) // where each channel consists of an 8-bit value for each pixel in the image. // Read the data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out + channel; if (channel > channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4; } else { // Read the data. count = 0; for (i = 0; i < pixelCount; i++) *p = get8(s), p += 4; } } } if (req_comp && req_comp != 4) { out = convert_format(out, 4, req_comp, w, h); if (out == NULL) return out; // convert_format frees input on failure } if (comp) *comp = channelCount; *y = h; *x = w; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_psd_load(char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_psd_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_psd_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return psd_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return psd_load(&s, x,y,comp,req_comp); } // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR static int hdr_test(stbi *s) { char *signature = "#?RADIANCE\n"; int i; for (i=0; signature[i]; ++i) if (get8(s) != signature[i]) return 0; return 1; } int stbi_hdr_test_memory(stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return hdr_test(&s); } #ifndef STBI_NO_STDIO int stbi_hdr_test_file(FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = hdr_test(&s); fseek(f,n,SEEK_SET); return r; } #endif #define HDR_BUFLEN 1024 static char *hdr_gettoken(stbi *z, char *buffer) { int len=0; //char *s = buffer, char c = '\0'; c = get8(z); while (!at_eof(z) && c != '\n') { buffer[len++] = c; if (len == HDR_BUFLEN-1) { // flush to end of line while (!at_eof(z) && get8(z) != '\n') ; break; } c = get8(z); } buffer[len] = 0; return buffer; } static void hdr_convert(float *output, stbi_uc *input, int req_comp) { if( input[3] != 0 ) { float f1; // Exponent f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3; else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1; } if (req_comp == 2) output[1] = 1; if (req_comp == 4) output[3] = 1; } else { switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break; } } } static float *hdr_load(stbi *s, int *x, int *y, int *comp, int req_comp) { char buffer[HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; // Check identifier if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0) return epf("not HDR", "Corrupt HDR image"); // Parse header while(1) { token = hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return epf("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; height = strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; width = strtol(token, NULL, 10); *x = width; *y = height; *comp = 3; if (req_comp == 0) req_comp = 3; // Read data hdr_data = (float *) malloc(height * width * req_comp * sizeof(float)); // Load image data // image data is stored as some number of sca if( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { stbi_uc rgbe[4]; main_decode_loop: getn(s, rgbe, 4); hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); } } } else { // Read RLE-encoded data scanline = NULL; for (j = 0; j < height; ++j) { c1 = get8(s); c2 = get8(s); len = get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) stbi_uc rgbe[4] = { c1,c2,len, get8(s) }; hdr_convert(hdr_data, rgbe, req_comp); i = 1; j = 0; free(scanline); goto main_decode_loop; // yes, this is fucking insane; blame the fucking insane format } len <<= 8; len |= get8(s); if (len != width) { free(hdr_data); free(scanline); return epf("invalid decoded scanline length", "corrupt HDR"); } if (scanline == NULL) scanline = (stbi_uc *) malloc(width * 4); for (k = 0; k < 4; ++k) { i = 0; while (i < width) { count = get8(s); if (count > 128) { // Run value = get8(s); count -= 128; for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = get8(s); } } } for (i=0; i < width; ++i) hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); } free(scanline); } return hdr_data; } static stbi_uc *hdr_load_rgbe(stbi *s, int *x, int *y, int *comp, int req_comp) { char buffer[HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; stbi_uc *rgbe_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; // Check identifier if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0) return epuc("not HDR", "Corrupt HDR image"); // Parse header while(1) { token = hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return epuc("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) return epuc("unsupported data layout", "Unsupported HDR format"); token += 3; height = strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return epuc("unsupported data layout", "Unsupported HDR format"); token += 3; width = strtol(token, NULL, 10); *x = width; *y = height; // RGBE _MUST_ come out as 4 components *comp = 4; req_comp = 4; // Read data rgbe_data = (stbi_uc *) malloc(height * width * req_comp * sizeof(stbi_uc)); // point to the beginning scanline = rgbe_data; // Load image data // image data is stored as some number of scan lines if( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { main_decode_loop: //getn(rgbe, 4); getn(s,scanline, 4); scanline += 4; } } } else { // Read RLE-encoded data for (j = 0; j < height; ++j) { c1 = get8(s); c2 = get8(s); len = get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) scanline[0] = c1; scanline[1] = c2; scanline[2] = len; scanline[3] = get8(s); scanline += 4; i = 1; j = 0; goto main_decode_loop; // yes, this is insane; blame the insane format } len <<= 8; len |= get8(s); if (len != width) { free(rgbe_data); return epuc("invalid decoded scanline length", "corrupt HDR"); } for (k = 0; k < 4; ++k) { i = 0; while (i < width) { count = get8(s); if (count > 128) { // Run value = get8(s); count -= 128; for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = get8(s); } } } // move the scanline on scanline += 4 * width; } } return rgbe_data; } #ifndef STBI_NO_STDIO float *stbi_hdr_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s,f); return hdr_load(&s,x,y,comp,req_comp); } stbi_uc *stbi_hdr_load_rgbe_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s,f); return hdr_load_rgbe(&s,x,y,comp,req_comp); } stbi_uc *stbi_hdr_load_rgbe (char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); unsigned char *result; if (!f) return epuc("can't fopen", "Unable to open file"); result = stbi_hdr_load_rgbe_file(f,x,y,comp,req_comp); fclose(f); return result; } #endif float *stbi_hdr_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s,buffer, len); return hdr_load(&s,x,y,comp,req_comp); } stbi_uc *stbi_hdr_load_rgbe_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s,buffer, len); return hdr_load_rgbe(&s,x,y,comp,req_comp); } #endif // STBI_NO_HDR /////////////////////// write image /////////////////////// #ifndef STBI_NO_WRITE static void write8(FILE *f, int x) { uint8 z = (uint8) x; fwrite(&z,1,1,f); } static void writefv(FILE *f, char *fmt, va_list v) { while (*fmt) { switch (*fmt++) { case ' ': break; case '1': { uint8 x = va_arg(v, int); write8(f,x); break; } case '2': { int16 x = va_arg(v, int); write8(f,x); write8(f,x>>8); break; } case '4': { int32 x = va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; } default: assert(0); va_end(v); return; } } } static void writef(FILE *f, char *fmt, ...) { va_list v; va_start(v, fmt); writefv(f,fmt,v); va_end(v); } static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad) { uint8 bg[3] = { 255, 0, 255}, px[3]; uint32 zero = 0; int i,j,k, j_end; if (vdir < 0) j_end = -1, j = y-1; else j_end = y, j = 0; for (; j != j_end; j += vdir) { for (i=0; i < x; ++i) { uint8 *d = (uint8 *) data + (j*x+i)*comp; if (write_alpha < 0) fwrite(&d[comp-1], 1, 1, f); switch (comp) { case 1: case 2: writef(f, "111", d[0],d[0],d[0]); break; case 4: if (!write_alpha) { for (k=0; k < 3; ++k) px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255; writef(f, "111", px[1-rgb_dir],px[1],px[1+rgb_dir]); break; } /* FALLTHROUGH */ case 3: writef(f, "111", d[1-rgb_dir],d[1],d[1+rgb_dir]); break; } if (write_alpha > 0) fwrite(&d[comp-1], 1, 1, f); } fwrite(&zero,scanline_pad,1,f); } } static int outfile(char const *filename, int rgb_dir, int vdir, int x, int y, int comp, void *data, int alpha, int pad, char *fmt, ...) { FILE *f = fopen(filename, "wb"); if (f) { va_list v; va_start(v, fmt); writefv(f, fmt, v); va_end(v); write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad); fclose(f); } return f != NULL; } int stbi_write_bmp(char const *filename, int x, int y, int comp, void *data) { int pad = (-x*3) & 3; return outfile(filename,-1,-1,x,y,comp,data,0,pad, "11 4 22 4" "4 44 22 444444", 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header } int stbi_write_tga(char const *filename, int x, int y, int comp, void *data) { int has_alpha = !(comp & 1); return outfile(filename, -1,-1, x, y, comp, data, has_alpha, 0, "111 221 2222 11", 0,0,2, 0,0,0, 0,0,x,y, 24+8*has_alpha, 8*has_alpha); } // any other image formats that do interleaved rgb data? // PNG: requires adler32,crc32 -- significant amount of code // PSD: no, channels output separately // TIFF: no, stripwise-interleaved... i think #endif // STBI_NO_WRITE // add in my DDS loading support #ifndef STBI_NO_DDS #include "stbi_DDS_aug_c.h" #endif libsoil-1.07~20080707.dfsg/src/test_SOIL.cpp0000644000175000017500000002600611034440250017473 0ustar gonerigoneri#include #include #include #include #include #include #include "SOIL.h" LRESULT CALLBACK WindowProc(HWND, UINT, WPARAM, LPARAM); void EnableOpenGL(HWND hwnd, HDC*, HGLRC*); void DisableOpenGL(HWND, HDC, HGLRC); int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) { WNDCLASSEX wcex; HWND hwnd; HDC hDC; HGLRC hRC; MSG msg; BOOL bQuit = FALSE; float theta = 0.0f; // register window class wcex.cbSize = sizeof(WNDCLASSEX); wcex.style = CS_OWNDC; wcex.lpfnWndProc = WindowProc; wcex.cbClsExtra = 0; wcex.cbWndExtra = 0; wcex.hInstance = hInstance; wcex.hIcon = LoadIcon(NULL, IDI_APPLICATION); wcex.hCursor = LoadCursor(NULL, IDC_ARROW); wcex.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); wcex.lpszMenuName = NULL; wcex.lpszClassName = "GLSample"; wcex.hIconSm = LoadIcon(NULL, IDI_APPLICATION); if (!RegisterClassEx(&wcex)) return 0; // create main window hwnd = CreateWindowEx(0, "GLSample", "SOIL Sample", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, 512, 512, NULL, NULL, hInstance, NULL); ShowWindow(hwnd, nCmdShow); // check my error handling /* SOIL_load_OGL_texture( "img_test.png", SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, 0 ); std::cout << "'" << SOIL_last_result() << "'" << std::endl; */ // enable OpenGL for the window EnableOpenGL(hwnd, &hDC, &hRC); glEnable( GL_BLEND ); //glDisable( GL_BLEND ); // straight alpha glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); // premultiplied alpha (remember to do the same in glColor!!) //glBlendFunc( GL_ONE, GL_ONE_MINUS_SRC_ALPHA ); // do I want alpha thresholding? glEnable( GL_ALPHA_TEST ); glAlphaFunc( GL_GREATER, 0.5f ); // log what the use is asking us to load std::string load_me = lpCmdLine; if( load_me.length() > 2 ) { //load_me = load_me.substr( 1, load_me.length() - 2 ); load_me = load_me.substr( 0, load_me.length() - 0 ); } else { //load_me = "img_test_uncompressed.dds"; //load_me = "img_test_indexed.tga"; //load_me = "img_test.dds"; load_me = "img_test.png"; //load_me = "odd_size.jpg"; //load_me = "img_cheryl.jpg"; //load_me = "oak_odd.png"; //load_me = "field_128_cube.dds"; //load_me = "field_128_cube_nomip.dds"; //load_me = "field_128_cube_uc.dds"; //load_me = "field_128_cube_uc_nomip.dds"; //load_me = "Goblin.dds"; //load_me = "parquet.dds"; //load_me = "stpeters_probe.hdr"; //load_me = "VeraMoBI_sdf.png"; // for testing the texture rectangle code //load_me = "test_rect.png"; } std::cout << "'" << load_me << "'" << std::endl; // 1st try to load it as a single-image-cubemap // (note, need DDS ordered faces: "EWUDNS") GLuint tex_ID; int time_me; std::cout << "Attempting to load as a cubemap" << std::endl; time_me = clock(); tex_ID = SOIL_load_OGL_single_cubemap( load_me.c_str(), SOIL_DDS_CUBEMAP_FACE_ORDER, SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS //| SOIL_FLAG_COMPRESS_TO_DXT //| SOIL_FLAG_TEXTURE_REPEATS //| SOIL_FLAG_INVERT_Y | SOIL_FLAG_DDS_LOAD_DIRECT ); time_me = clock() - time_me; std::cout << "the load time was " << 0.001f * time_me << " seconds (warning: low resolution timer)" << std::endl; if( tex_ID > 0 ) { glEnable( GL_TEXTURE_CUBE_MAP ); glEnable( GL_TEXTURE_GEN_S ); glEnable( GL_TEXTURE_GEN_T ); glEnable( GL_TEXTURE_GEN_R ); glTexGeni( GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP ); glTexGeni( GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP ); glTexGeni( GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP ); glBindTexture( GL_TEXTURE_CUBE_MAP, tex_ID ); // report std::cout << "the loaded single cube map ID was " << tex_ID << std::endl; //std::cout << "the load time was " << 0.001f * time_me << " seconds (warning: low resolution timer)" << std::endl; } else { std::cout << "Attempting to load as a HDR texture" << std::endl; time_me = clock(); tex_ID = SOIL_load_OGL_HDR_texture( load_me.c_str(), //SOIL_HDR_RGBE, //SOIL_HDR_RGBdivA, SOIL_HDR_RGBdivA2, 0, SOIL_CREATE_NEW_ID, SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS //| SOIL_FLAG_COMPRESS_TO_DXT ); time_me = clock() - time_me; std::cout << "the load time was " << 0.001f * time_me << " seconds (warning: low resolution timer)" << std::endl; // did I fail? if( tex_ID < 1 ) { // loading of the single-image-cubemap failed, try it as a simple texture std::cout << "Attempting to load as a simple 2D texture" << std::endl; // load the texture, if specified time_me = clock(); tex_ID = SOIL_load_OGL_texture( load_me.c_str(), SOIL_LOAD_AUTO, SOIL_CREATE_NEW_ID, SOIL_FLAG_POWER_OF_TWO | SOIL_FLAG_MIPMAPS //| SOIL_FLAG_MULTIPLY_ALPHA //| SOIL_FLAG_COMPRESS_TO_DXT | SOIL_FLAG_DDS_LOAD_DIRECT //| SOIL_FLAG_NTSC_SAFE_RGB //| SOIL_FLAG_CoCg_Y //| SOIL_FLAG_TEXTURE_RECTANGLE ); time_me = clock() - time_me; std::cout << "the load time was " << 0.001f * time_me << " seconds (warning: low resolution timer)" << std::endl; } if( tex_ID > 0 ) { // enable texturing glEnable( GL_TEXTURE_2D ); //glEnable( 0x84F5 );// enables texture rectangle // bind an OpenGL texture ID glBindTexture( GL_TEXTURE_2D, tex_ID ); // report std::cout << "the loaded texture ID was " << tex_ID << std::endl; //std::cout << "the load time was " << 0.001f * time_me << " seconds (warning: low resolution timer)" << std::endl; } else { // loading of the texture failed...why? glDisable( GL_TEXTURE_2D ); std::cout << "Texture loading failed: '" << SOIL_last_result() << "'" << std::endl; } } // program main loop const float ref_mag = 0.1f; while (!bQuit) { // check for messages if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { // handle or dispatch messages if (msg.message == WM_QUIT) { bQuit = TRUE; } else { TranslateMessage(&msg); DispatchMessage(&msg); } } else { // OpenGL animation code goes here theta = clock() * 0.1; float tex_u_max = 1.0f;//0.2f; float tex_v_max = 1.0f;//0.2f; glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glPushMatrix(); glScalef( 0.8f, 0.8f, 0.8f ); //glRotatef(-0.314159f*theta, 0.0f, 0.0f, 1.0f); glColor4f( 1.0f, 1.0f, 1.0f, 1.0f ); glNormal3f( 0.0f, 0.0f, 1.0f ); glBegin(GL_QUADS); glNormal3f( -ref_mag, -ref_mag, 1.0f ); glTexCoord2f( 0.0f, tex_v_max ); glVertex3f( -1.0f, -1.0f, -0.1f ); glNormal3f( ref_mag, -ref_mag, 1.0f ); glTexCoord2f( tex_u_max, tex_v_max ); glVertex3f( 1.0f, -1.0f, -0.1f ); glNormal3f( ref_mag, ref_mag, 1.0f ); glTexCoord2f( tex_u_max, 0.0f ); glVertex3f( 1.0f, 1.0f, -0.1f ); glNormal3f( -ref_mag, ref_mag, 1.0f ); glTexCoord2f( 0.0f, 0.0f ); glVertex3f( -1.0f, 1.0f, -0.1f ); glEnd(); glPopMatrix(); tex_u_max = 1.0f; tex_v_max = 1.0f; glPushMatrix(); glScalef( 0.8f, 0.8f, 0.8f ); glRotatef(theta, 0.0f, 0.0f, 1.0f); glColor4f( 1.0f, 1.0f, 1.0f, 1.0f ); glNormal3f( 0.0f, 0.0f, 1.0f ); glBegin(GL_QUADS); glTexCoord2f( 0.0f, tex_v_max ); glVertex3f( 0.0f, 0.0f, 0.1f ); glTexCoord2f( tex_u_max, tex_v_max ); glVertex3f( 1.0f, 0.0f, 0.1f ); glTexCoord2f( tex_u_max, 0.0f ); glVertex3f( 1.0f, 1.0f, 0.1f ); glTexCoord2f( 0.0f, 0.0f ); glVertex3f( 0.0f, 1.0f, 0.1f ); glEnd(); glPopMatrix(); { /* check for errors */ GLenum err_code = glGetError(); while( GL_NO_ERROR != err_code ) { printf( "OpenGL Error @ %s: %i", "drawing loop", err_code ); err_code = glGetError(); } } SwapBuffers(hDC); Sleep (1); } } // and show off the screenshot capability /* load_me += "-screenshot.tga"; SOIL_save_screenshot( load_me.c_str(), SOIL_SAVE_TYPE_TGA, 0, 0, 512, 512 ); //*/ //* load_me += "-screenshot.bmp"; SOIL_save_screenshot( load_me.c_str(), SOIL_SAVE_TYPE_BMP, 0, 0, 512, 512 ); //*/ /* load_me += "-screenshot.dds"; SOIL_save_screenshot( load_me.c_str(), SOIL_SAVE_TYPE_DDS, 0, 0, 512, 512 ); //*/ // shutdown OpenGL DisableOpenGL(hwnd, hDC, hRC); // destroy the window explicitly DestroyWindow(hwnd); return msg.wParam; } LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CLOSE: PostQuitMessage(0); break; case WM_DESTROY: return 0; case WM_KEYDOWN: { switch (wParam) { case VK_ESCAPE: PostQuitMessage(0); break; } } break; default: return DefWindowProc(hwnd, uMsg, wParam, lParam); } return 0; } void EnableOpenGL(HWND hwnd, HDC* hDC, HGLRC* hRC) { PIXELFORMATDESCRIPTOR pfd; int iFormat; /* get the device context (DC) */ *hDC = GetDC(hwnd); /* set the pixel format for the DC */ ZeroMemory(&pfd, sizeof(pfd)); pfd.nSize = sizeof(pfd); pfd.nVersion = 1; pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER; pfd.iPixelType = PFD_TYPE_RGBA; pfd.cColorBits = 24; pfd.cDepthBits = 16; pfd.iLayerType = PFD_MAIN_PLANE; iFormat = ChoosePixelFormat(*hDC, &pfd); SetPixelFormat(*hDC, iFormat, &pfd); /* create and enable the render context (RC) */ *hRC = wglCreateContext(*hDC); wglMakeCurrent(*hDC, *hRC); } void DisableOpenGL (HWND hwnd, HDC hDC, HGLRC hRC) { wglMakeCurrent(NULL, NULL); wglDeleteContext(hRC); ReleaseDC(hwnd, hDC); } libsoil-1.07~20080707.dfsg/field_128_cube.dds0000644000175000017500000020032011034440252017535 0ustar gonerigoneriDDS |  DXT1@}~ p/X\^^\W^xh޺zzxxxzyƨzYꪪ"z~zحxV|ۘ9 9W7- ٭7{٭7%+99٭'սzƸz٥%- ޺ν*  <<ꪪ߻<- *=ߠ՝}]ܽ}*+ս{y4`\8<^xxxz~zUW_^zz]{z\zإW~7x z9UZo٭Z\X%--ZZ z z:67Zƫֺ* ֿ֫<ׯ];+}_ ]x`ߜ} +-}_ꫝ}﫭ս}zzxz9Z8X]߷֚_Κzꊪzƕ֚~Ιzx zZ\ZƘUZxY+ :``zVׯ+{ƙ7.(ޛ <]\絭}}~]=|\j< } ս]窪}￿|\9ƪU9UUvإ Yƞ着~ֵ_׵>׷U@p*\P ڍU<;- ]zU]{W]ߛƀ*-^ _s8~ߪ^/߿-__``6يB$!v)[iB ;d)XZ^V81%-UU //=ߚΉW~zƮu 7-WzƮ׀VyΪ}sX@S | ԵరX޴?*]:#Tc---Մ1kK}1C!__xUJC!k Q%Ξ|//W;•|\ \bh;ݾ_^h?jjjjMVVVV]睮]= ~޾]߷~ʮ `@C*c, [ח7_N|C~k>.<ת.t@:p{{R%55>Jh]<8cJb)rCJ1: cR)+dR9`, dR5-U+cRUUd{CRp܀g{9/5/ǃb~~&JTT9՗לc)>.&>{eeMM"! ?ׂ9 AV\^W:u#!"!#!U5%%gJY;99U9U^\\Z9= [)zx~~R!!= BJ1>bJ9-͆R9⿟z"Bb1&#Bb)*դZ9/ZB Ds9 A*ƃZKM{CJ_U{b!W`!WsB!UU(kAKʀkA!UUdR]_ڠTT<.ﯫ"57[: 6PUUƆD"UU7΃X_]U{J}xpCk1ca1 cs9.C{#B;" jC!ظc!!r`R"!RAlsdRU_zbBsJWJemyab1{UUQUUq{UU/{U(.UP%kUӽkUUbUUր)UUa1U!UA)UA1Ua1UOANgUWpD77FUUD{UUfUU#s]_kUUTC{UU4kU2aRUнBRU"Z7%sUńU_o#kUWW-$RUUAyY!UU &t |_stw&tժ琉&tUȔ&t(njtׯnj|۪ȔgInj(UUUnjUUUnj*UUU(UUUe|Uc"Wc ͠KltUUKtWUUtUUF|*UUogUUpgUU͈*UUև(UUktևUUևUUvިUUvU'tt]tjWG|k'tlz_&tkF|kF|cg|l &t]Ft /էFt(uEt龍%tՇ|%tU|%tf|%l]WFtclc lc lc)lc. Ftl}|%l+U%lՇ$lEtUdEtWEtU$lu|%t.UgtlNGtdu~Gtc~l[dcߣl[_Wl[c[&tcU&tc&tl)_FtlPWF|cWF|cF|lwUU&tc ߮F|c%tc *_tkuZkck[(k[&t[U"%t[f|c UF|lUUF|dF|c*Et[WEt[Etcf|k _GtcU&lcU&lc%&lcmc]kckcWtc_Uc[ll[鯿&lcUl[l[*l[Ȫl[lclc9[gk[k[k[c[(/c[|ccS k[-/t["t[kct %|cE|c_"fcW Fl߀~F|c ^&tc&l[ Ftc*FtcWl[hl[k[kc[k["k[ [lccSccSccS*ccSccS뿤cS"[cS+jccS{_[[1ccSUcBKccSU^cBK_kbS} k[}tcUtc%|kc_ok[pk[tc׫tcu8l[/~*Wl[lcS('tc_*FtkiWk[bbkcSlCS/k[+.l[.l[`rccS }UlcS?c[]Wc[.EtcUUsc[kU+cbSukcS[CS<8,cc[_Uf+t[孯tctc.tk*tck[n~cBSv c[?{cBS^VcAK_cAKk[`\[c[^mhkbS?}kBS~k[e[BS(cBSs[k[ˊt[]*lc]£k[TX\cbS*7cbSgwlbS lb[{l[ tbS^k[ k[ߺ>cc[ RkC[sc.~%|kscXsc.tc^kb[W*k[*k[U骨cbSո(c[w*tc* tcުt^cc[o k[ʻkcS\kCS2kCS|wwcCS 9 kc1%t[tcS"lcS|cBK (cCKޮ?cCS(0;l['k[ *4tcPok[KߤcBScB[kccӗ|cc) &sK|s 7mgk_fkfk^臌kUUU&|k}|c &|ccB[ kc[mt[lB[/ZkB[𺥋kCS[R܃cCSnrcCS: kCS}_sCSld[?/cCS|W[#SCcCS,.7cc[^tc/itc`_k"S jkb[%tB[c"[kB[ tc[ +Fs%|k WgsU|k!gk*߈t݇tGs˧Wg|kulcUkc[p٤c"K">kK%~$t"SUUcJ*sc#S8kcYcK`kC[-/&|[_c"Kꯛc"K^*c"KccS/߻=c"SncCS׽kCS`s[U?kc[ hcCSzk"S{kcmW&cscc]zkcc ]scc,7sctC[ ",%|c+U|cwvh|ck"SRίc"Shc#S9cCS\\XcJXd[Kͭ*cBkb[ncJOikCS/cKjcBS.ncBSmcJk}[B.+)["KϪ ?cK%cJkc[-&|[[tc[W_c"S߼k#SWcc[uCcC[t7c"S5c"S+/cCS{cK߃[J( cBS:k"SWcCSkcB![B*vcBzC[C {j[KlcKPZܻcCS])Ik#SռcJcBHcK&jcK<(j[Bbc:*cKYNjkc['c#SkK,'5tcSzs[_cBS*Yc#SgcJ_cK:c#Sƭ c#S%"¤cC[TGc#KkJ_zcScC[]+cCSlB^d[KCyd[Bd[B'5CSBDd[:㫽1cJ.cBS jk[J޲cS" cS3[#SrY[J)cS*kc[%t[k[cDSk#K%kB[r{kBS]c#S⼥cJ[JcC[- 9kc[:c#SkCSkC[󚅥c#S cd[꺀Uk#S_u[BzDSb:ɣDSBϮx[B-DSb:zKd[Bs0kJ~[JkB^ s"S_kJޘ kC[YkCS}tCSu-ld[Bg|c[-{l[~ k&tc Ftd[6&tc^nyl[*ld[l_c$SZ[JcS.޶cD[) OkdSlr_cK.Jc#S5cScDS_`jCSB b$S:77KB cCSB)CSA2p*[BkJcBZ0:) :^>= ]U+U.]*ׂ'/(: 'kc:Z : ߚΠUzWƗ`@|7<;%]Uꀵ W緉.l)޾d!c{__֦1 %%Q\-*_z\__zkjjBϷ++ݪ* )"O؝s %jk :@U)>U1sy]d)U{1U:&7]5&\Xk8jn]|bb]fJ 6R`z[ֵDJZ]EJUR/-5+pZZf{ / c)WVb)ZYYR1c1bBjGB/UU"!uΤ1UB(8z%BrSYҔ9&uUBSY]]dJ9}e#B9~Y#DR5Uk^]Up!R h{WWj__ZY[ $J{W\ #!ŀ@@HI`#c1k{(Ck9]#k9}k`R!DkDJuDs#J %{Jz^UKg U_&|~UJ UbJUbJ0URժN{_{UUp{UUNCkUR#cU2$kժ{WZUŢ9W&l_wG|c_&t[ _&t[*Uf|c lUlUlUFtk_tclc*f|c*Շl ul}|kU|k&lclc~VkcWUk[ꪪl[*l[WccSl[cS~kS_ccS*UkbS *lcxՊ%|c fcUWtc_c[l[.U&t[_]kc[5k[" k[\{`cbSk[ul[__zc[]_kc[/+|k^tkk[_c[_cbSUtcxUUcc5[kc[|IcCS?'kc[kCSrccS{;t[տ7k[hkc[Z/kc[?|c Fs/FsUbUfkUFkW kc[w_cCSkcJcCS kCS7kCSPcCS[cCSc#S/k[=Jcc[gtsCS kC[8kc[]s#SsBS }cKzd[C꿺d[B[J.=cBS:r^cCS[CS`זפcK" k[zkCSڻkc[\Thc#S{_c#S=9'cC[c#Sy΀(cc[[B#SBCSBq+cSGikJ/kSk#S(cC[kcB-tcNt[cd[|Fhc#SccScCScCS梠 %ppY~Θ_Zi:zέ*U}+j:ד|߻^`h޺-. ~§B)UUX^b UG|BShcUU΅cUUkT{N}\瀀}^xx޻ε.ޚ:zYzZzzp⢀XƗ-/8+8zx8-ޙΪ- ֭ [翨`|/ | М;_zz`;..7[ |x\|x|;ޮ;|; ﭯ W߿.}u~}|﨨 }Z蠠<W_~\ޕ?ְ;pZWxzzy7*/?ޙ -)߹;ֽ//| | /-;`pz\W UU/穫J]TX~ֱ%]֪ -]{<**^<ߨ <<֞p`;繭`*;WUW5 [׫ |;U[ ;zk;__X^x ߹xx^^zX7y7ޙ΋ޙ_ޙ/לւUU*U|ޠ~U||- }( ΨZ覶4YKWp)}S ]^뫪}=<|X<| էB1v\bB1?c1uEBSR`Z^Zz~Ws*---/%ꪨ xUꨠz @OU{WW{t{([PxVWUTs_U9A!]bJ1&c1TUBB!-Bb)UTAb)A1mU;Ic9)1jc JkBTwUZ+'-り pzhJpPPRUR|URUJ|U{A|RUUUOZ.Uަ)OmkU|mkz3sUU{/sz\wOLc~|^9 B͢R)RbRa)zZ1WWu9!/A1-k$B%]UB !j1+Sb%]ԽgsRxƀ UΪ*Uֿu ս1PXX\R _RUJD!UiJd!U [e)UJ Z1UL[BULciJUmkRU{b**wPU-]V{U|W+[zxUc)Ee gR!!MAI9B!_U"J.CJ!UW9")91B9YUU9C!WJ1%- bB U9 +ZUUWZ"UUgJUUSgJ]UUFJ/UU9\^_UB#)_[[HB#)UU1#!':e)UJNF[1UB1;J:UHB9=5HJ'B.*ZiJ+7?mkZsZWWZRWLcRbcs!*&|1i|"BW*{9 {!VԨ$cb)zCBb)cJ1 +cJ1r" c9*Z$BsDJ +sZXZU _ˋRUBW k9U k%BpUUFJ1GR9WU%:)_ R)UUS2/u'[d:+fchB "k':}z"sGBUU/{RUU{ZUUsRW_tRUUkR}Uk!:x[s)sAB եkBB Us": Dc")^^V1B!]U1"!BB!*ecJ1 EceJ7 ft$Bտ gtZ_h|F[W*lSU)|SUcSU[Jzf[eBE[BUh ec2_U~S)UUS) SE:U][%2*&cfB*Uk2 B/UUsBUhcBUhcg:+}U/hcg:UUR)__1!VT+1UJV:zUB2V)!V:"!UU $Sc)/*lDS 'tc*ݽ(|cH|lܪhtU*tU*kV'|k;^|k UskUsEcskb%|k(Fc_gRW [gUUUgk*hcgIkkcF| *k2Ul:&tBUBUUg:UUF|B2U猃:U&tBիFtE[U&t[ g|kU/'tUꈄG|%F|* g(ը'|t(G|tp(_'|ctkz|k+|kFkGkgkG|k *ht+Uit *UthF|jg*jG|u%l(^lȌ&tWUg|k_F|cG|kU&tk"uU&tc*tc'tk|Utk{5tk+'|k_'|k ^(|k-G|kWG|kUtc*݀tc~sc Wsc_tctkmtckkc|cUtkժ '|kUv(|k*]}(|c }(|kikUUG|l~_G|kG|kWF|c^c[tVU&t[wt[(Ul[,u&tb[ Utc[Utco&tku&tcUF|cF|cutctckc[k[c[kc[' kc]kcVkc}&tc.&tc~"cտG|l-G|l&tlKG|lWktk)uGtkU&lk&tc_lcU"lb[ުl[l[u"l[םkS"&tc F|lU%tc"V%tBS ~%t[*"&|cUkcetc[Ut[]lc[Uc#Scd[kDScc[k[+kcx+ukc'*tc UlcUl[lc@ukcXk[Gtc*UtBSkc["&tc[{]lCS}kCSUlCSUUUcK"׫ݤcCS}gc"Se cBSmk"KmcBS kc[뿂kc[k~cSٿc"SvcBS/"cBSJcBSm݄[BSOwcK*cBScBSXcBS?7kcSj cSXc"S s[Ukc[/5tczOkcwk#SgkCS/k#SWʊkKꢤc#SW|cCS]7cBS_cCS+#kC[ kc[8kc[lcU}|\kD[>&lcuV&%tc[f|c[G|[W}cc[]`ccSbc[W]S]cK)cBSzc"Kcc[VuJcB"*cK.kCSrkCS_c#S_k"S ]kC[M9k#S"G|[&t[jl[8kS ld[-t[ukc[>tDSݾ&tCS t[k[Ytc[w&tc[tCS~V%tBkK%tC[k#S^ބc"Sic[Kc[K=hc[Kc"KmyﲦkKUk#S]c#S lkD[k#SZc"Sva[D[[ cS>]c!S.lc[(x}U&t"K]kBS UcCSzYפcK_c[B*cKzg[J oc"K.cBS.c"S-kCScc#ScK`c"K}c#S6zcBSkc[~ރc"SȘփ["S\`c[K>^cK_cKkBSȪ}tKUcBS.?k"Sjk"S_[J~kc[Jp9C[BgVXcBaUc"Kz[BSזɃ[Kk߃[KBSa:([JcB"kc[_Uc"S;CcJ./kC[޾c#S/k#S*tc[­%tKpkBS-tb[ohqc"ScKzx[K25cBKcKWbSBu@[B*[JWWD[J [B{kB_b[Bc[B?Uϣc"SYccJ^^cJ[By[J_c[K0cKc"K c"KcBS/!kbS+&t[W7tCS 2%tcכ(%t[lcS.')dSSuEt#KVkCS؍cBS+l"K{>cBSPkBS=c"S\c[BڏxB[B'BSB`b[:&cBw*b[Jub[Kha[b:(j[B(UcA2kcS_cbSPcbS=uc"K ccSUWhccS&lCSw?c"S}*lBcCSFtc[B+l#S f|d[ֻG|[Uzc[_kBjkBcS-cJ[C۬[K+c[: *[BՂ[:b[Bc[Bvgf"SA2lcB5BSB0 "[K*ub[J8BB[BcCSz_lCK5cdS([CS#Uwc#KlCS&lDS+l[\kCSa."tcclc[R&tc[ 5f|D[_k[@₶%tc[&tJ:kS>cS:cSKtd[_FtcS[lS+gtJ*Ft[p֗7;֭ |;5 ; ~\|%uXƨ~^x+/;־;-*ޠpX߿ q )}~ <|\n*x([֯;o x_~蠽}}\XW_Xƥ;U |WW|([+ ќA  b :מƀbB}Ƙ }Xޭ-[ /ހhj|{;Xƨ * ;+|/BU.CJUUZޫsVUsپƽ]$|j|W 7y./[`R1?"B1(9-UU{:XZw}M ==+i\\}| **pU ZUOVUB "Bb)9A)+')c95b1'k=79@@`3)U3)U1U(B U{RU2b/%ssWWNVssb)UU$cB)#B1 Rc!*fsDJ=''cUUUДfRU_rBcUU&B#)W.Bd)׏J1U+Fc(:Us(BsZ_UkRuU#[)^Wkb!uuD[B!`bU2B!UW/$S#!=kdJ]- h|fcH|cUtS_sBs)Wt$:UGBUgJU*hJ~UJUU f|"g|KUF|:UJժ&tcg|kUkUs]G|k_sc( |kWu'|kUWG|kUhk}hk*UikG|lU&tc_lcWk[l[tctcՠtc軪~k[kc[_kc[k[tc }&tc UG|cU&tc(W]&t[Utc[ UkCS_cCSU(kc[ծk"S߻k[%tc[_݋kc[_cbScCSUcBS뮫cCS +kc[tkCS"Wkc[kcS_cCS"uc"SWkCS UkBS&tC[ukc[uocCS WhkC[}c["S|x`c[K cKcBSkC[b_cK׃cB w[#SVc[K [K(c"S+'c"S*lC[ު k[=:Ȉ|[]k[WT_y["SԢc"KBSB:$SK*B[B ~BSJۯXb[Bc#K*ccS[ccS=c[] kCS/ t[/7tcRnԆ|d[\W}c#S[K[D["K{iCSBot"S:"S:6+"S:B[BU[K  kK ld[ ld[ # }kc |ekcSkdcHB!sc[J~c#SvzwcBSXvcK/?c[B^^Bb:{Jb:/čRB[UJa:b}XhW:;X;x-/ ΀|X.׽% 6eR *}ΪX<}ڪ ޯ- (,|X ֵ_ /-Ik9]W79՝{ /g z""T rWDc!!]dJB)=?$B5|(c_UB\WUs)usgJ*cUU)f|Ul)VU*t:-k&|SWG|JUhJW&tcUkcS~F|c[Ukc[{k[zU~cc[+t[ ]&t[lCSUUc"Skc[ u/k[^WʤcBSx|[K+Pc"SUUcJ_ץccS*c[=k[2kcHzmd[BShpc[BzzK: +"SB}U<- |8..| _[8޿5 М9UUDJ c)WZUk)G|J td[^(UtcUcCSտ+k[cKj~zc[BU$J \gJ&t#S5kJ_d[UUY΄c닏}](~窪}U(} +((*婢}箮ր@`}ƪ-/}ߪ}<=4,ֿ : ._<{`zZ/=߻ Z]=z\z(>(=*=\ߨ]<ߪ]zz^=U]]<ߪ<x](]`z]^׷ ~*/}}PXu}]}WW]߭=<]^]*zXڝ&:Wzڥ>>כU퉉{W^z`u //}zzjj<[=߫_W<֪]=΀Wؠ] + }]/+}￯ * /}jj]){] .}^}<\߯p6~_ /y /xδV׽ԌWՖtz~TtԌ׷׵5z׵Ռxx{[_տd*V 8J6%% jꗭ`z6Tt>׷Ռ /v-׵Uկ+׵] حUح7//Xv{b׵v|X zv{z 5U82t\\\2|--+ [vZ׵x\l** uTtտ Uݿ׵3thc_U v`T|W^xS|-Ֆ ׵v---׵ U/-U/9տ/Y}z`z^*VhhSt vs|׵5{-c.2|+/%u ~u孩 ֽ^S|-*US| xvԌuqS(~zԔqK`WU3|S5c v* U3|x2t..'U +׵VUV(v׵6 *z*z+)`j8U Xv``׵t||;%'5oUֵ ֵ2|Zֵ4hyT iku|_r=5XUԔ ˴S|\xsSR|cyñcPS]^R|[-_cU{pS/t k*}5cUVt|U63l__6tt 55YƸ -Y7z^X-'[z+[׵ַZz׵%0XU׽znԔt777ƳU -7ƓTz`4txzkU | )))4Uzl{޸ӔR|so~^kU/ rc(Ԕk{뫪p[U_s[U/qS}zSյ/ vUvUw) _ut^ح ح7|_-/;8$6* [^~տxUxc8ƕb\ֵ U%-Wxꢂƕjjbu1|xxxzӔt5'741| UӔ*.UޖxUӔRz``pt -+0r644US|t/*js|-pv /--vX 6]6thut *ح +U[Vܸ޷.[X[x@`x^׵ X]zU *xֵXXZp0֕XΕxu1|XkVTR uT(* T\XXTӔ 4rxX]1|*/''U-)u5_ꪊ5s|xxS|* +5xU-+?-׵v) 6Zzwtz~WTl5% |77%|_V`zxVxWV`޶-S|(,׵}7x*ֵ WxΕxxӔxB"st1| /ֽT"\WTUTrxTRit.''-u4:/ u{z~j_**Wx5z>+v-}U׵z..{zحք- |W߾*`;wyΖנ׵|\׵z)cܸ(5S|%x 7u`ZX4| ە/R_Tr‚uӔ sxR+xֵ}-x--- ``U2t*ޖT7Ԍ׵v-׵vzzhV%-+ xx~^w| t׽;z|x訮8UzΖ_뀀xvU 75UxԌե ֶ7xζzzUu(Tඵ %uO[zx4o[- TӔ8Ӕ~kUrUտUUԌx~WԌs| p׵ --Vxv ؞7J`ߨ_|ޠ~;8,;XW%xWXƵZX;xW 8ƭ X΢pxƠU**'غxֽZx Ӕp TruӔ UUxxx4rUs.('2|*'hk_5t--vԌ_€Ԍ%v_ ح66'/\;WU;x;;^;XzyΗ|ު\֪~^7~1|xxֵR ֵr#77u 7ƶZƕzbT-tӜ`ӔrUӔ Ut^5t՟+u2|~V^psc_Uk- ׵U--/U-/(^z9=* 9ح֠\-*|;U`;罫|^z``\/[X^[8Ƶ;^7x`7T`Ӕrzֽo[.7u]ֵz}ts o3`\W1|ު4Ӕ)/Ӕt\(-/U 52|pԔS|vԌ- ׵V/./-9YY9zzY9/ -zY;\U{r|^\+ |zz[|zzzֽxWuꀋ |``rB/ s# 4s@1|/S 鵵| )z1|W||^^sUӔR5 ӔU-+Uު5?VԌ_ /9V**/Zz9 *z9*zYƿmW^; ;zx|*Zx՝ހ_[x[VTx7ƕ-pt|x t|)T/'-O[``3c* սҔTpx|uUQc7r|ݢ]Q-+*5Ӕ/55Ԍjzmt|կ *+* Yص --)zzUzz_;z^; X^\ {{x^X5~^޹7'Rp4wQxzս|TtXT) 3q``Q-//սTU3XhQs||nc|s{j rs%Ws-%R|>(5Ԕ U5׵6W/ 9vzص-/*z- ֚޺|W޹֠޹zjnx8ƠX\y7Wxֵ(׹ޕ _WQp^1|pp4|U-31߿+*TT_TҔxT3xpQN[`zxQ-S %Qkj`Qc; Ӕ1|r_*(v +5*9v+ 9Ƶ- ޚտ+֪ xX|޹֪zZX΀X7Xjzp7ƕ% "XΕ*X`4s\s q=T/%t3*4*ս~tz^xҔk^qkW׾0|nc8|+) 󜒌U*4=+UկU^v/9v-/-/ ֚- (߻֭*=Uյ]*<*z^޹X~ x~xΕ5xֽX^ƕ^ֽx *Q xxxt1|3//3jTҔ+tUU txSાtP```Q|ն0|q0|elಔQ󜲌*+T/ՕT =UUU+*9Ʒ559+.7߻ί+ #*}߿+}罭\WW*;;x^zx_zƕzֵu^\ht\x(T|սU3u3+*WΔ Ʊ`pҔ3|QwxxzҔQU )Ҕqc󜒌յ󜲌 4Ӕ_U 5׶U--%V*XV+55Y :.*ֻ֛/ }<+ ;窪[篫|x;U^x޹V^xX{uv@4r(WWt-ֵt_{tÉ7Δյ9S\(*ƴxx0|z~zҔQ=4ҔU Ҕ4 u4U%%'8v* 9Ʒ-*"Y--- W߻^]Ϋ+ }=+}Y= [着`~VWިޙ`xx^XWֵ\`xU1|>8*+=7ƒ _Wγ7Δz tz_t3T_TҔU_zt=/յt UUU{ֵնu=8/y* ޙ--/ޫ߻z=-]( \߯;~^|;UUժ;zzxޙ~XW~8ƕ7Ɩzz`ֵUxU--Tzࠂֵur ^t-T+3.tTU_յ4/ յ~zֵU/XƶUyYƽz+-5֥ߚƨ^]׵? ]}}oΠ+}諭]jzT]]{]zx:,~}_]:: <; ]ߵw] =Ψ=Ϊ߻΀_]{/\*\0\ \x<`xx[*Z^xZ%/ ^ؠZ +*ߛ`hx: ֛^-<ֽ:-/\yU\ ߪ|\*++\9xh +Zz'ߚ΂U((wָ^՚* Z*>ޚ θXxYص ՚ Y <*\pWWZƖt.%ZWkح (?-/~YƗ Yص >ָ W׵5zy* -ypwUt`׵l wY׵tڸ ׵෭-hU׵wuկwW+* yη^ԌXԌ?7k`s U|'S|5SW5[/-S|6ؖԌ+++׵w]V ;XUy/^~Ԍ- .2|+8R*zxӔk(%+UԔ`S֬(rPSZӔc-u[( վ[ >6StV|?zY7k}[8*X[} m8ၘu^X rzzzxk '-+ u1| Ur/ UR|ߺ@ɏ׵Ԍ뭭-Մ~xx`t/~vxX .~xl xU&--xp~zu1|XP -1| uU1| **sxuԌ~z׵--V`.ح<~Xx/޶Wտ(XΕ^ xΕU~4YXkuӔ 5t'sc5R||/7v.WW *\z~|U{;\z`[y΀`huc+87Ӕrt`X.*U2|^UR|s`Vt7/*v )YƷ}zح \u|x|zuxֵncXܮ3sBսc5 t0|x\Qk R U+5 ި z* 9x^_U7`xz~xΒ`71VTQChTҔc몪 khxQN[k+? UU)zvխ+ /<߻Uxz8xZxζ~ֽ`|* 35TUս~xhjҔkXs%.+4//]55-/+9-  <տ-|W;xzֵ~x*7ƒzX TW3bbҔQ(/6(z߻7%ص \Y/| 9\7 ޚθ ' /]Y5hyΓo_Ut|_c耺շ*ZzYƗݿ+ Vzx{ƳkbCuR|)-c 5k_vl**VzpูԌ+_Uky71|򩥼uԌ..VݛW|z7o[`1ߟ4s (5rG +2t *:ժ|Xh~~~XThzƒxw?js\׿U| z- ]Y zxzXβ` xյU>(ֵ󜵫(׵-/+} Z ՝zƨr{Θwص(Ԕ~x׵ژص2tUYS|*\ﶭ\ӔT418&9 [zxxҔ˪ֵQյ ]v)++\~֔*;T|P^\|-/ӔYƖB2xB):R2_J1K*~#S"2+S)7J"2JrxDSb:{xJcB:[b::[2 cJ#t H#SmokSnkBjcB2[B^kJ/-kJq^tB%Uc#S4kBR+ cB2zc[R%C[B#[JB[B.*mkJbDSB>?d[K[#SB(J!2^^*S"2-+J2plzbS)=-)#S)+_d[B2:#SA20 cSB:In~Ʉ":5G|c:~zSB2`z[B: sBՅc:(kJJɥkJcJl%kJOcb::n\jkb:zzD[!:~.cJouGtK}'tbBU/cJ _d["2[B:*SB3#2kC[b2:$Sb:u* #Kb:#K:r/J:K*ʌKB::ŵ#S)߾ J!>cSB:5ԥK)/&cBgh|J+NcB:cb:_`cBod[B:WD[BkJ`kBkJjcJIۅcB68 d[B.xXcB˩ tBwd[JccB[cB[A: cb:~$S2 CSB:3yd[B+wD[B.dcB^aJ)ªnJB2u}!JB:_Md[a:}kK"2 $SB2z#KB:盃[!*d[C:4UcB.u["2zd[:c:Ȋ |B kBxkJkBZ[sSolSRcJ=ޥca:訢cB&jd[B iDSa:[#SB5#SB:PʼJB: 4#SB:koJb:Br@Jb:Z7JB2=;sBWJb:E/J1_$S2}SB:J!2㛅c)?CS"2֚K!23$S*9 cA2wJ) cBkKD[!2&0kB-kJkBV kJ! ~kB:[BkBߕd[BuD[b:5$S!2 #S* Sb:`wmJB:!O#SB:CSb:JCS:+ cJUd[:#SA:boJB:)Jb:W#B2#S!2"S"2K)ظJ2"[!2#CS":V#S2{EcBcB&tCSՕkJ*'|C[}u>kJXhkB# cB*kK$k28cBc!2JD[b:Xbu]#SB:Yc1K"2کJA2jOJA2ǢKB2*2c[:%[B`H[@2#SA:.Bb:S^Ja:/K)J2-AJ)#S* K!2*J!2#+vD[:]$SB2Kߤc)c"2 c:>/G|d[͏&tS {kJ*kBlJjkJaakBnkB?.k$S~be[b:V##S":`J"2 D[A2#S: >#cA2ԼcSa:6𠫃[B*Xc"CSb:#! Jb:iJ!2ȣSb: #Sa2K"2{PJ!=- B*8R!*[B2?{$SB) cB%'t$SlRHl#[|tcU'D[UcBJ t: kJ_mft$S^kCS\l#SNskBlBd[Jl`$tBwMՄ[2j#KB YcSB&cKc"Kͪ_kKKB*Ԙd[B&d[Jv^~*CS:,b[BKB:_CuB"2Ek$SB2NDS"2?e[b:ζ9cB;g|$S˗l$[e &tD[G|c=&tDSoz_sBG+#kd[ͿlS{zf|DS6{j`kB&tKUm/BcZH[B#[J[:_Sb::UtX[!2[: cJ*-*cB["$%lB[jv(dSJWbS:^j?c[B%cJ{q"Sb:7d[a:+CS1.x^K"2$S27 ;'lJ.lJ֍7$Sk#S*&tJF|S#*tJ3kJJ3k#S+ kJ0*ptK]%tB}"lK?"kKVlBcJ~~cSC:~{DS!2<7d[b:??-cJ%:c 2*lCSlS!cB^D[: cBɂdB[OkCS!2 9cS:cS"2w_ DS"25$SB:7cb:n^cb:*-.g|d[W[BtK>t#S$vsJ}kJ'&tJz lR.*f|[\vf|[Uk:hc#S]kB"[BYz8(DSb:k[B:#SbBg&cJNcJݞl"SE|C[תcJww[JtB|ZuBA2|Xcb:?[K׾SCK2Nx"C"2x\hC[b2DS"2d[Bϝ*kBtvkJݾ&tcuRuG|KkkcB≣kJ:kJ}cJ x`f|c%Ɉc&td[X࿣lSk#K~[K^ޙkJi+tJOң&tJ]ZpkB飭c#S'kJꂯ&t[CSa:bkB d[Bl8c[:_)k"K>Zd!CS) cSb2PdS:d[:1$S*$:. 'tK}/&td[9ekJf|D[g$Sw'|J} cSer[[cS*td['t[ }G|dSZk$Ssooc:n(DSB kScK>cJz¿cb:毨kB>kJy *t#S,cJ}GPcB/ *lJTcB.#tJ=CS!:*_[B: [K4d[::CSBֶ˥cc:΅[Bn?tJkSmwsS=s$S}L|SkHZsJ5=tKߠtDSK9G|cyMl$Sc}lJcB,c#KEcB B`cJ~ !kKgcJ{okSEk"S%.;&td[kDS!cJϐ֧kBncJ93 k"Kx[cS:/Sb:S֮[Cg[BS^kBU][B5cBikJe[c:KSUtSkJ*sSzkK>G|D[/m~tDSXcSl$Swk[0cCS[(%|C[{]kKOcB! cC[_kJ*jkS>kKkJrSlJ/'|#Sc[{~kS[b:bK*/ 9l#Kյ^cS:\dKc:;*1dS:!*>DS:̎[BUcb:xe[cBCkBcB:HtS=WsKjszyG|S='tSަc$Sɼcc:"*-kDSo+lD[~~kd[a,tC[}Xx¤c"S7'wc"[vtC[[]kJ닮k#Skc[|ikC[K_sc[~\lJkcBykcBն[2DSBP_lBcCK:ʅ[:;#SB:G<m[:}e[b:cB,ܺc[J3qsDSv-)kS|WtJWlJ*kBrXc"2*[J)cJ+kKkK"%tJj[K7?kC[%c#Sc#S~?SkCS-l[K͋6t#[v%|CSwu|g[B cB%kJg~^[bBx>/[BUcb:CK2,DK: `#KB2z'[Byk-[B}Kjx[B5kJv-$Si'|D[tSszok$Sm}c:$'礪[BȎe[B BcKե;[K:D[BR؄cJ%-fd[Jk#ScJ k#SZ*kCS==kc[tc[[kBWcKzcJ\cB:kBRz#Sb:Xo*dSb:[BDS:_d[B}[:?W$SB2~˥cJ%yYcJuں|D[XkShގG|S{xkJMwVcBodSC:(cB?cCS c$Kz.kC[}貄cK(cK-&=cBbrkK)ׄ[J#$ kSkc[ 񘳥kBSc`d[B:7?kJzcSLacJ@5c:ÂF"KA2ܯ$KB27cB#dSBlf#S: CSBSDSB=cSB%')tJ%tJ|H|StK.cJT[JcKw[: cKycDS>-mk#Sz+Jc[J7[Jd[Bd[B&#c#S/)&tCSct#SˤcKcA:ЅcJecCS ѾkR΄[B@cbB '/[:BdCSigS:z[:~$SB{#S!2(cB:mk#S&tSl'tD['NrcR [JXcK5&[KK줤DSBeSKj[KϮ/cKvD[Kp¾d[BZd[B޺d[Jʌ؁sK+kd["~&&|c=kbS &tK_ycJ)񰳥cK;bXkKX[Jk^cJ/յkBSꬪNcCpl[[b:͉Kb25 d[B[үkDSb:8" [BltKkI}kS?t$Sn cB5~DSBDSB [Bd[BroeSBrha[:.DSBC[C*[J__[XDSB'}kBcK[/ s#S=s[?tc[yc#SB{|}[J=[BcBT~߄c:cJ cBc"Ckx#Cb2XVDS2cS:VSc:jcB:ꫦcJǧcSPۅcS$e[c:$S":DSB?1d[K^-[BeSB}VZDSB*d[B[Bd[Begd[B$cKWk#S6]c#SؚsCStbS7kK֤kCSUc#Kqsod[B7Ȃc[J,[:r|c:/ kCobrBb2rDS:K:$SBcKƱkKɁ:[BkBd[B^\dcB2޺cJW5cBH[$SYiE}e[BDSB$[:j e[Byd[BD[Jvd[J&5cBcCSuy>cK>>cb[먂c:nCSB=NcB8c:?cBBj[b:)kcS[#KdoK#Kb2jS:[#Kb2{5[b:+zd[B lSc:x$SB;!e[BzkK뻩-cJcKh[BChe[BDSJ["e[Be[J۝D[BD[B:D[B D[J TcJ嫺c#K?'tCS[B8SB0r[J ƩDŽ["K7 ;[J{k:k#SCkCo{bcBy;cK[Z#K:-30cJ_o[:* cKr؇cBr+dc:57e[Kο/k$S5.cDSެkDSͦcKicBc$S%7[B~~xze[BDSJK$SBˉ~s#SB#)#S::d[K2d[BlcS+E}["KcK^bc[BUUcSysGcBhh踣[B+ [B pokKcBIKl#ScKfXc:zBA2Bccb:kJcBV\|ecB쭭/sD[sd[}kK*c#Kzy[$KcK>cJxrR[J}D[Jwo_pD[B+^C[B>d[J cK'cCS[JXRdcBd[B鳄[Bˮ`kJٿc[JcBl[b2?cB  cDS.kKޟ/[B޼K!*[KA:=[B![J7cK>,8kDS+fkJ6c#ScK;cDSmGc#KxzZrcBkʩ[K~D[J+DSBcS:zSBWD[Jnd["S/cCSBcK|Sb:9.CSBd[Bx-c[B:cJ.ocJJr{d[B"ݥ[KGt[uoS d[uUcBˆcB.DSB贸cCS kB-( sCSn_rc:brDSB,l#S-[K .0*lDSucBںc#Kz[J"k#SU[Jt$SBhJ:j#SB )cJ+c[~}[J:s@C[b:{[^CSA2zcSB"hdcBkmσcRBcR̮ccB^lB/.l[йcCSkHJl"K{cB#S:;:,kCS-kC[,G[PfokJ]T]]d[Bk#KҩcCc#ScKk.cDS})ae[K;hCkDSed[JXzdD[:ͿDSBx~}#SB.-c[K/[CS|c[B#S: CSb:2xd[2d[J]#Sa:$(kC[uSׄ[KAcK BbXl[Ƙ0c#S<(lCS:[_Ȅ: lKv|kd[NhcU]5tcUcB̊tJ_cJ [Bl[K'c#K7cCS=cDS )c#K(cBCSB +$SBrCSBd[KccS~ꢤ[BzzCSJ#SBղc[a:#SBod[Jn)NcBcB!cKv['tDSFtDS6'%t[^kK ;$/k#Skd[qd[K kSf˄cJc#S狋;cB۪"cJ[B*c$K zcKjzc#S! cdSzcJF'7[KD[Ky{{[$SB d[#SJ!2*J1>KB:JB:mbcb:d[:;(5sK_cS[ecJ^i,cBn[BcSr>d[S^]^\SB*C[B^#S:ۢBB2.Jb:Z9-J"2>#SB2- ;olBrc:/cb:cJcB"kJ~cJSD[BrD[B#Sb:XJ:/D[: JB:{s(J"2+Jb:7B"2S:Y[B:%-[B"cSkJ',cB"[Bd[b:XJb:J:#S:=c[BJb:roJ"2 J"2BA2?$S:&cBU? cJtd[{^+sB+c$S|ik#K[JX#SB}(0#SBPc[Bw) cK^*BCSR%jC[B)BSb:^;J"2e[b: t$S-k#S#ںtd[zrkS&t[VWcCSZ"cKXc:~DS:=cK=ݫk[d[J+߃[:ˠ|zCS:KB2jd[:okJ }ukKkSt$S}7]l$S/&tCSxªcK_ d[Bv cBjȄcS_-%t[]-cJ4c[B^*cb:BzpCS"*CSBYkB-kSrtD[ߣkSvpkd[ 'td[jZkK~ܽcK5c#S{dcK+>*kC[)c$Sp>kKc:׃Sc:d[C ^DSB!;۽[JbkkS[}c$[CftDS?ocJ쪚ke[kc[jˤc#Sk#S*Zcc[ˊ+kc[ZolJ^ޗc[Bjc vޥc#KW]s[CSBrDSB'=kS͇bkD[Fm8;D[K[B=:cDS4cC[_X^Z[K~cK-kd[cKnjc#SFcJkztcB+ [Br~CS:ͩD[Bc#SkSXd[B>(DSBʢ[B*d[KW#SB&ۦ$SJc#S=ퟄcCS 4cBKP[B='d["K ʫr[: c:zz[:W^d[K9?JcJrlDSB: c$S"cDSVv_cKU:$SBDSBj$SB"d[#S?t6cCSP[{[BXc#SgkV[JscB0?-c#SjrcSb2xxcB)c[B8(kd[3+]c#K[#K„[Kt$SJ@#SB_c#S[K#Sb:CSJ6dc"Si}cK>'t[V_cBcB//-/sCSj d[B67[J@cB鋮d[K#SDS|U;_UW_xxζzXuUxΕ7szӔ\\rXn T4 Tׯ(ƵUյU~Ƶ7ֵUz~^_U*Xƶ/+ X+x zzƵ-/߶`.<9zƭ}筭먽\\\x誯|zxx;U xηU(ޖzx`XՌ -7rxrֵ4 󜯯.*x+(xΕpxΕj ֵxn7ֵUW xֵUUX Xս+ޚ+`ַ֖֫@4 Ʃ]׫^W] ՝|V_|ߠ}[/+* \_};{*\ޞ;yxpXW}ֶ4^ Uxֵ)xuxx5`j/-ζ P|xxXƶ +7xU+xW߹ν*"8ƠP< ׭[/%%ߜ] z;z|yκ\XxyΪ |;׭Z[-[zÁXzxx\uz 5נ p7Մpz>կָ zp6ߛ U]z*}{^]|U\ xX|= U]|W j^ ;x*|U{[)+~;-|yh*|*5|/{ `[7^ޖ  vpx|W_8-)}*j׵!\u {\\眾ο//}_ƀz_|Xz\|6@J*j}.X\8ZmzƠ`p}? . XZW-\^ \%|xֵxxXuս ;xW׷-yU|׽  |ߪ\X]{^]眾U]]I틀=]ל~W|x^_U|c`<':~RtB/%5 |(X窪WbzW.zU/ |:W//.5﫻]:^/WU7U- X|x^;ΠWU\ UU\֪+}ߪ&]=߽'.7]_WzΜWx蛾}|1`x\\m[9HB%|**^j\ ;W^;絨 |ֽ([zذοr`'([窠X^x΀U8U;%[U;ε+\~z(\ο-\߽\瀠^\Lc,LkpPRp9\\^V:1Uc1U[` Vx` -x7Ɗ?^x8 X΀^Z7 U; ֠/^xրU[^_Xֵ^y_W-|85%-+;x_\z^_;ʃ ޵*4|Ҕ@8HBU9P[Z1RZ_99VUUUB)ίJ1ՅW~XU^-Ux_5*xp^^p ׵/U^ 5U[X*(:5^[xΠW֯_;7_蠨%^VXY+=| U PXHsۺ<}s- -U;B<'BOBܼۗP)^X_^Jc)WU&Bc)\W91=-B1wx Uќ[|Zp;򜪠 xU z *c ^WΨR*|7W|xε| |x`;7_;ε(;xzY/VXߙ*?9-95$BbzZEEMs+[" OKcըUs+[ [lc -չ [^thJo|:_^\B)UWJ!UUNK)U-[)U.[) 3 |Uz |瀫WϜ`pV%B{[_%B5Fk $k"B~x[b9VWZ)bzzx)Jڢ1)}9B!|V)~~C)cJ)DJB!sr&Rϥ5+cRx+ [hB_TVR(:BR2ZR1Z9 uulc:x]Z1zWⱔ1]}s1UUkc)[17*lB::ϔ߽*(yόx/U[XWoa!xpz{%Bb)տdsR cR9vHZA!/BJ)x\|)_9/1"!JoB)z!+9''dJ"!x^UUbtJUk(BWhc2__R)Y]gc:uVrjc1 kDB?/|1_Us1UU|)U|!_U K) U]l[: jk":|Ec1WVR;uUU[}uUʌB\^c1{(Dcc)dJs9u1))UU UU{!uuUU/ǃ*U!կk2U(|2WU'|'2UUG|2U&|&: &|hk'|s^sc^s[+tcW(sctc'scⶭtc/tc8 kclb[pkc -kcztc +k[xc[Vnt[ %t[z%t[5Htc Gtc~x&l[/zht[/Uhtcꨭ&l[ vgt[Gtcz*Gtcx k[Uc[ׂ3c[k[X^[!K`|[K_U][B+.caS5?l[Uk["l[N]_tcKtctcmkchZZla[ k[pWk[/sckc[:\cBS&tc-U&tk*t[zCplS _&t[U&tcR%t[Gtc+_GtcVGt[|j&l[ gt[_kc]fTcb[WcK_UBSB&b[B٘[!K cbSrlS?cAS~cBS6.t[tc)kCS k[kK~k[[c[_ucb[{kb[c"Sh߿cBS#˲cJ(*l[ kcV_ҺcbS6xcbSUl[-tcw~(t[lcUcc+kb[k"S__b[J||a[JYb[K~)[!Ks [BSW-BxcBKcbSnz[B[跢[B/lB**kc k[BcB[6[S?cBSTgUcK.-/c"S;cBS[c"S+xsCS~ޤc!Kz["K/cbSc[HΞ"c[~jkbSݿlc F|k g|c*t[Vc"SkcBb[Jʥc!S\c!SÂ[Cނ[B- [Jڂ[KV'ԤcJ[J`7*kc[}tc[~kC[`{A.c"SM}cJk|c[Jb[J'c"SݮՃc"Si럃cR.퉃cSc#S\zcJ::~cBSW=cBS?kBS+kc[Hc[0t[e|k?ef|kBSB [J?Ыc[Jx"cK{Wb[B#SB*C[JW/[Jg^cBUU]cJ cCSCX cK k#Sic7'^U|C[XpۣcJ`cJ⯗cBxgc[B*c"SLTcJ JkRZk#SmcScJmc#SunkJwcB*}cJcJ)cSc#S.ASa:__c[A:+c:|ׄcKqKUb[:zbKB:b-cA25C[* c"SuD[Bk:w~kBꃪkK;'kJXkJH|Jʻc!2z0[b:j'tB:΋c[B 8bkBkJJkB+VpkJCkJcJ۫cJk:ުcJɭc[B"cJkKRB:J)*S** #8BSB|BS!2蘯}$S!2)K"2 cA:~d[b:*cK~cB!*(|BhK?cJTcJ&'|D[uweD[b:lE[":Ѯc!2-ȅc: zD[BkJޭkSV׮|"SkJpcBkcJ..ccJ@D[B7c:lJ]k#K UBA:̾JBuS2 z_BSB:#K!2R-Kb:CS)ڟ"SB2{kcBse[b:2/)kB?tJUtSh߹kB: k$[t{D[]TgscBVycc":ňڅkBفcBYcB:6ƤZ^\VUZ9nwk)cKzcK*)k[ʂc"SڣcBSգcb[ZWcBSkBS =c[\`k[ _tc 5lccJZb[S .[J`_Ղ[J{cJ?cCS'|d[{?|C[UUT^c[J{ocKccS `?c[BScK._kBS-k[?tb[B[B?b[Bo#SB c[B_[J)=cK/*td[/]kKJO҄cBd[S_`cSdc"SŠc#SocBScBS)kc[ڻ"Sa:( (#[BC[:KB:h=d[BcB/cCS.*åc#SzZ[B7cBcSU.cJc#SVcS?_}c#SZYcCS#JB:Я"S!:+Kb:Ka:: gdSJkK%){cJ*cS-E[B׼6d[B!d[J+kC[5ukJ~C[RUC[J9hzcB*;z|ֵ~z~xζ8ֵ/ޛƾ\(k.?9~]UKc)UkgB_uJ`bUU{H:-UJUdJXW"B\VWDR"!uuUR!ugJsc^uk["'tkg|k -Ɍl*UɔFl"UftUkBSz^c!KcBS *kc[xkb[ue|c[U&l[,]&lcb[Jb[B(z[J/ +kC[ZBoc[Sidc"S뫭c"S+7tc["SB/UC[B\Ud[K6;c#Sj:<*$SJ4 'cS=c[S,ScKWx\tե:UU%gBU߉J%RU 1\UUUsbS^Wt[ec UɌ["SB]c#SɍC[J+/c#S /_|lc*պ9xVkJ C[UC[jUc]ת]<]=*]ߪ=\*]<]=֪_=תU<ւ] ]֭*]<]z[-*(<.<7. ] }]}ޮ}续-+ }ת~窿~窪~(=߼ ^] -}]]]^z ^=]=zz\֜ ֻkk]{ +% ]<׾}߂x<ת=<*z{֛*-] }]}U}=ߪ}翯}*  (> U}j^翯]罾^= :}=/^j]=߀=ߜx<\ ל]\<ߜ?8]U꠪<߉  ]X}؀<ΪX{[pp*;}]Ư]-)+*]׀xZ}=+]}j"}絽 ﵯwW_?Wᄒh]{z} /z=]j`=. |p`x`]|- ] +=^x`׋=߬].*]V^x֜~X]|]/++]=ߨ]֪ھ}տ]竪*}++ 着 ソ着_U~ X^׀>׸pj\~π+ꠂ~])]= =U=`u] ]]=߼_׼zל/ ]/+ =ߜ^]眾* ]]]] +~翿*8(着_W߾~ zz?->x ~߶X~޶+/^z ~ƿ}=Ψ=;)W]@¯ݾ=| ]x}=ߜ ]߼Ƶ/=ߜp=b{|=//])+++]]߀]߫}窿)) J[pXK[ US=U~󜠀``pW߿VpU_ ^xz}^Z>{ カָU }7._}}=ׯ_]` =z]= %}u }% }߯p{^>U~lc@`uRxZUU0|Jsqgu%9`pUUVTZXzw_Up~?/~ ~> ^xU /ǶX`^ ]p^z]V ~=U"}ׯ׼]]}׷*}+[p\1-~ǠU=׮kQtBǭc %cp@xJUVWTk9R#8p !A`ppԽ`X&z ~?\\>U޶>*O~׶0}?^>π~ߛ@]߭kpF:,k[=G:\x^T: %%@1lJTB])?H:~UUt'B~iQ|GJ5m%J^UZ*=}eRpX_Uﳽ)=~R|~}R*?%k8TA_x_UW_/&߂4@֨J&6%R*/t`xc }k`p\<&:r{J1/U t1?|R/|1\\WW[15555>J``cBVB_2l(:ccՉB1eWR: ɄR1x@P[{B}_9JkJ/sfRuNԕkk9J{~ꋨCrRx{[WDJ555YRT|ZZkk )5xߠψ*~߯/<פ)``155~ ~珋~] c\\^\Z -]9s1TV|}P:uuEuR1%[R%])WVUW15~1tI:uW71}^J);W=Lc1 mUR1OoBR9YUfJ9/ZB7ZAXRW}kbzVeR^R55 1\\ֆJ=}fJ~ߌsHn~W~תW(1ppp|Pb)550 }O `@eJ|V_fJ?/}3&:|\{{ [)WUfBb)Vk1=T:jJxl1"!Uֵ15UBp\^^ ["!ʯWRc)#mkC! )B!(~~ cc)U]_lk9w|pZ%J9>ՙ{9%U&J1ؖDs]UŋZ Ң{#s7Uŋ9Xx|sB5-1ZffWe]sX1XZVWZ1Ya[1z{9+sR`5W5ևWU͇UU-%tU̴%tU t_WUfl UUƃ\s[ws[ U%t["%t[f|lU>ȌF|)U gu/ gUȄg|UȄg|Ug|_zU&tWg|c_(|ckk=gccCSkD[Akd[%zc#S@kd[qke[Ĭy_k#Sc*'t[g&l[?cCSpc[ճcBSv[ c["S(0ڤcCS%tC[ %t[xFtctSk[kc[p{VΤcKעk[-kd[(bkC[⏩cKoc$ScJ篾kd[Y՝cDSOoc#K82)cDSͅcDS+lS~c#S> kCSrk#Sz:kD[;ukDSڃ l%S" ) kd[ (Ft[GtCSc#S+BcBSc[J;[SӃ[J k"S*"*&tculc[ ct[<lc[즾kc[Vcd[:]cD[Ac#Sd[B0cK;2cJ kDS?kdS{Xc#Sc#S%l$So;cK&k#SHϼ7sCS6CkJkK⯶tch|c^\G|c|vGtcۯ&t[C{ft"KcJ2cJc"Sc[J"%cB"tBSFtcukcS먺tc[jcCS{cD[ ]Uc#Sbd[J미DSBxd[K,# cK c[cDStc#KHDcK rc#Ks$Sg%[BJkJctCS)td[UlD['t[ܓ;g|c6Ftc}%ldSbblcSxcBKk"SxscKCSB9D[J7%cJ/tBSccS FtCSZ˫cCSpc#SzD[K.'ބ[J[KƥcJcDS1cdSwcdSx55k$K;'tKfcJ(:cJ7^k$SHk#SD$6sKc#S/_td[;t[^ӻtDS |^Ft["Ft[p8XGt#S~YzJtBl#SnocB"bc[B-;C[J BSBM"SBˏ[KcCS c[Vr‹]Ϊ +7]֪`=]b{<ߜ<ߜƠ *] =ܸ߼*\] /--}]]W}筯/* * U^}|]=*k]}X^=ߜU6}'..=l]_^|={V *]) }=޷ }/ 頻ﰸuuWp^Ϫؠ߾`~睶 ]*}*}θZU=ߝ]߼=߼%+]眾(>%-}]ߪ}翿s@/|j}_蠟7>+Ə&8ݾ(罶}/~]|"*]߼ƫ]lc(~q|P~[ R]=kkKK{bzZ Y?Ƿƿ@ [ @~琄a%]絵>l~Ƥ *_}罾=߼#}UOM[`j}JisVWs-}J ]ߋkT&B,:9u1l")JkAuwbh+S9/UW9U9WWW9!!+n~}B"!AB!յR!jj+#['sc~UUFtZ* bWg|#BUȄR g|Zux f|CBUkcSx kcS*'tc. Gtc?&tcZz&t[(&tc &tcztckdSk[k[?k[%tc[%7_%tc^lc[ ^zcKz[D['-[D[|cd[s tcc"SxxkS/WcK-_~j^++/ڞqףZ/UBUb)"UU [1 u[~g|c f|ec(&tJ^tDScd[ kc[zbjk"S(૵=ZU]9_U'|[nHNLO>89|8g ՕZX,[֢/Сo\1 u뒵k+}Q;o;$`8Mlؐ_LT/7LouxP͚lx񷥾dǎy)^&$[&6uڹ3ٶ-r W^Iصk/'4gN}{dI?#G)^~z{ow?i<ȓ'Wuvݍo?DM8pի P/>Vr5ܹgc<)VNMFky3yd~[@g۸1ٷϋߟlh \/ei׮H47'fe˖O"ݻp[zz={ m0$?P@|a*Ls#T8I!O?Di˥ >'F1 p8Pc-@+|+ B.xu{ @Kq J2-o{J)~?+ֹKy7J؝Fh#9Yl[)e\T4B3@ʡ,RCR@l6#4cfh9oR-@eL6$_'2əR ,(F'?         @@@@@@@@@j럨*`IENDB`libsoil-1.07~20080707.dfsg/img_cheryl.jpg0000644000175000017500000012365211034440252017226 0ustar gonerigoneriJFIFHHExifMM*Created with The GIMPCC"  <!1"A2Q#aBRq3 $b%rCSs 9!1"AQ2aq#BRb3$4 ?/|ewy'瞾.#.R*Ak12mN V gTBV>?tj t 3A MjhXmxo,HM lʬx$r7 $㢥q tG⫖z` 1g9DG6ࢢ-< "$ɍs0p/'WR݋+V;G,lo(]cutA$~77 P<}ϒ4[NUX*8,ߎOjR[,I+LA񃨅tzP֒1'^4&SJCen |x<\fdR'S<TiO uP'Z0,->8냨l`Byb Zp"MFUVUIA*2=*2 R*`"#eg19;VnUJ !GȀ%'Ih)'~$op<4hF:C}sLYcI2! !bNfQ eesb`wPS# d (*5ib2}4=Zn_passtP% N?['/lc@yNlYP4NF]ڊnѽ/`D rUhnydY_WobE Rh!3ddJ\yƘj½Z~3`ixYs4nʤ7mO<C~R@vE_v7 3j߫Ru2 χK`pQJThQrT*"}ojLnL-&P 6ڂ7*m]ʨ|1RڄA&1?ͽkV}oQDCn'[ :3{4h3kIAu9zpmWxlF%0T jL` P<7Ǐ⏎OҨi(Ձdj=T~Si}Z^F^ \d,nAx1cLP1ꞗ;vdu#@n0a`Hr@(n(/[nIvc돶#R`.Zgs,Tȑj_](lCSs_4HŚht F7 } 'M8ểDXhj{IԂJQ$|OAPx0is ?Q SH@UW]u)+8IHQ,Łc闪L*PAs0>ƥ`.\q{@ciFjlKP$n #ԙL#T\)W?BBP!-N# ;QLtUr7>mmbA `U :J[aVVan ɜL]Ԯ 6 AR}m_Y7X#IY|TiP iV%@;T%DݙZC9!$`/9;@^IzmEv,%,v]5QgrK 0& (q?pֆ%I&8+e?IKy,zq| "!Tr8Vrl+2@~#y",@bbRq'Fyct+ 4J <`Ԣ%ʄ"7Th$gR_-(3ZY5]zR !m1PpP=2DEIeFn՘+k7͙Ф`*-U m28&1yyI$W);9_DeHyX9Ś;'%>ONɹJpȢ>&ŀ>z#|jB( 47$|=!k*&`RTtdl>d1b Gs ShZH% AH!xGx[E֪| @ P̊Iok@(RHPQqg xZײVM8p>?23e dP@%d_A[m KY,eN$0K  y@GGikOMt4c-N/&4.؟4'$l&"B® IH#mR@^*(iLjk)-PUNAv)&48!!ȍwXk cNJ?7{mGUˑ耮х)UM*>9idkcoI້$XbGy> wכLwrj@LFyeAV!2x$_?m;/M$n}.+,Q?$  Am:z:6lC+0TgwU(ya&"ZT=Ly6 _ 0 ˯ȆkA~MwlFm]OS %@7`&xUE E{b"DO0%r1`ew  t܏3s7HELWۏ"h|+y<<z4y( hR5bPwă"pGC;+T)$8AI?q1%9 177@|qm_+'+fywDRݗhz=;TLh$uV@Mh/4U_QF攲鋹%F}9$uE=) "g`Zw0͍4.{ePd|k#h ]GH}KF$ce ATfDx4K4ؔbMD2C+JV* wtfNhqe]PKLIw~k*;K>ײ@nޓՆjITBTv@-](nIf-Pٹ ȝK1c6 FpC[ۦx~yXU;]ڵ 6scceIXt?)vom u$LdȢ0:\PGCILzӐD #ƔT=GD-ƘlNb|w%Ц[ qtiUx!AC\Rb8-PLW0>O'j&?F($-5yxD+;S- [`5H2L*RSe6vdHr` >Eq@ *<TPG"O`j EG_NA=bғʂjltbF[p YcRҠ~4~/P#%0HG Ij=5U {*i "IHFXXRSLvuBl,{AA*8& G46scTy#' ! d xG_?jҸ fdSiX&0~uѴ`Ww<|K6R% ݤ>o Hm rM$]z [hnSU=|{h!Z_$ <^:KTZZⰬ33:0ԐR/)W#νu:DY `ws p99nZQ[OƎ#-CwthB}I?Pm@IQo}v"k[ IHyh7FPFWq})X+0%sbZ?lI0yTPf 2 L زG(0bԥ@ww| ]ĥo6HS_d>W"t 2DUz ܷ"E`A ձEg&԰y $ תwԩ܁EP%A Ųi ]% +tv$F}+Z49 Vol;wC)`TDbPǬ/g5.w<>n8UOq ]8'N}wQ˝vb{YDSP1e܄ȠI6nIRGg{$Hy'[ SŨ겧R# 8LץNdGy18g'ۑLܖM!A9*l|M_莥!7MJ0lKFȻSw},:~N ~l$r,~i!p4n volɺVNҭv\dqΆVᔫ^2  18:Fǚ=RP#,~ء UmەW?g tW >};q\6xu'i>MQ@2Q`S|mz r7X7@@ْO$Խ'+@AÕ fۀ tN 6d\ϞQI Cuojxzb'%xP BQj"]#k4r<%6Rf9+O]Y1VfXI 5zhaM9h!x>̦\ bv49Ւd#>l:;+L6[ TX,4Ɓ@\}Pͣcu9!FذY+'U QmdH9&9գmw{zN%ZeRZ"Twg*Li>~G^M5(/ #|XGEF,.B! xx0}|OˇPuA#%ӧFj>loFQ=4mBֻ35VLr#1xAIȲ1O(5F,c3i>-"dL1~^Sp{K-;YH* dbɦOh$#XWo#unG-gA{W \2cAz82!drHU+CWSdqdaʏ\uw .#Ƌ!e*mKbWNNixb>Ԣv6 Z@)- a}tM%ULTzqtd@#3ɰ㝘D NRBve!XFRK6vV_?׌Oi:`\ɘZVbR̫~[C;WZaV$ycG,aD $C)ov6,ilmh L߾J{v̮Q$ Sd~$6~GwWO|twW!m,*ȶ~hFa-+ٌ̦ɣJP_"]磘8"<#W!5ЪRas 3tu Ȼo9&-|^~L<ދ)DXu4ĞlީCdwGhA%F>z$!\#P,qu 2/fǙ@H* K E|L+Io Wp`pռX5cҌ!" +`և٢>AcAqTR< GG=P YتgY]\8Y)bU[Y4}R e6^ d87"H]$#;LvMH]Xp *YH6y<_k'NVqTv~+DM5 UdvӨ N7 園K+s#čWkR(Vzނ$ZD }xv<@5J1>wBZ= *F*̃#i *5u-伲©-^,Kw6@cA!,IbiI2ώuvGU$J 22:ʖR<{@5㎋0b2ZgvDQ8WTF`AۏYuî^;oi#xvM ET=$DV0`A83Fςf]g g2<뢻IF/@G]"T}o+E<@MquXݢ) Lp‚ )T!6⠚? #QUot$lC:N]e -1ϾecL`- ? O .( s|/.=N$,F>Q:9`\4<밵ڝFTM̘0yg mDPe`sg@"##wOy.L:v8*Zf#&T$6ݷ{J ^1)3 I#L `epTA,6b>گ6N\$ӳK)mŷFktJ %WJD5GIӲG ێ8?f^!eȑoIXUoZހU!L+6 &x/c,*tg-|S:VN 9E] ''S^GEʹM.Ó{ k)zvݛ y~.$J1V z!omYRw[*qcsfנթIkӽ%ƹlK,1' #ƢMӖԠxYW" Pp)TmH`xZ;共Pc{:l_;z;Hs"\}#3bI$]B$HviNz+OԱEeFQcbj/ aEV6zFEY".A\ %DMJ TkVxΚʥ'Ӣ<%.>TxI@Rە]H$SW{ ܺ0P8"8t3+JCC#x$BKy 307r R]W8TN@,$vq9LjQJt,YVrx+krk#I XdW ~y^P ҆4QAdɃںF#O3.RJJdےꡣ+Fw4"«J&Vn8,2 -x zѿI;h`b~vR\yb(OĵRBm @>DϑH? =Oqjӫ3"RPH*DXؕgvw3XbT_ܱĂNX5y2^hټu?Fձ34ŐdcI4Jr*T5X-Nӫ59K{-> |H݀U1pU#7 {w Rf='$\  1fgr +*(|y5]j@f)6 [#cIP0Ճ !/1NIowWRnQ~0K%i( [V(Q6I$kT@  H wQwͭonW*?MT!5E**K0%@Q0>jQjuH1g"tZ% #o6ۉZqEL3dC&7"wđ![]6C9'卛崴EW4AMI$ӭ7SP SɎ'AY&0\ q}4GQ -5E6ydM  *"k#$Q(0VݼD(UP2v> F#:A PZtY"JLLg^F P ?rO#^C㵝Ɖ[y] nP ݊Ǐđ=}{C X>(Xǟ dP a$"v Pmc,$1'MQ- +Lc$hԲ󠥇u#S`vJ64|xvU4j_p<nEI hiA _l椚tڢ*'q`ƞjó*H* cp3w3;`ԏIt@p-T Y|E_M[%=G*YKd31je' _:_;+R|ȱ'm;S͟X1I$,c 7Y-K2Ifr,awtoǛJJUbs΂F&5ق8Lc:Z 75}:9Ha}}@, ?k-"i/Rođ( jy-bfa+3IBLઅEvg$FIf5F0*i'X '0Oi}#`ws*OrσcƖ}0P\u?h=Uk4G˅։(5>zr)!czT LxC hπ5L>mȵF0,0 MMjSnϱ8E;<5qR*d1> 9iQAw;VX**`I=ӝ8rʯj0V@y5^OFEȅ" 1&,I* { ~G+QX"D>w/LF6aQT7\aUUu&}B<]|t b?hjAIE&I`V@f ?"96Jrz-ebݴpe;G$@z? IPCX$3F4nرbI.^JV Tp 3!^JP'(*dAUbyHƛĸF68(%UH 65 j6E_>۾V!V@Wy6Ewڝ6i!? yzМ 6UC{ZP NcC\ҵ.kB@+=qy|1B~,B~O>VU%.elXF,}S$)qBN7#rQIZfR?n u礎sPXA*Asx$b1Bֶ@J,AHSc``jj砜Iڭ!] ohVAIwȶ/p6T?pN~1UWߥ,H XcqxmTIpY@< d0CdwHm DUf6 uTʖ̢]lu-;)eea+6Cc"7`CD)n5Ci*j 䟍ՓߥoLsWI]V)$A"ue4i9 Y1֪z{Wi&I>9Vvj b/j &IQ1Əq $B%h0ƻ_+c"6ى( :ocP4O_ՅB+Aѻk48P u7Xb+[6t x"ɷXU`TA鐠NjO>=Reb-TDX~xԳbζx%CPh(4OQ&DY~$=L:.Vآmǖd)7 ziTRZࠁ!fHG1gTcDFH!n0~rg4,|iVշ&5EgC D֯+ş.N4k))i+pQ~Y<KSQ$lŐj⏟T@T'ΚۓN\X +~:f\ʫew)V*h(AQ XO'$ԟn;b7 QxuA>Tjq<n<#zʩjT-nDcD[cdEZ( & 'guU*[#(.]n%qf$Lx^PΡjr,MHk3Pi[nKHbJ ݏ55 LH  S%$ur4.0$j|0,7{J=?P1 ) VɷƍWJT7ʾR9>:u#, bE|P6kMl_&jZ6WאI5 ly Ϗo~Jep,||?± 9=y5fT[32[X<$ %T6QLtsfټ&ت7 A5P9?,sl`@u Z/6}+TVMh ~ -Vܯā\WE=SDӅ _ E$ #<VwT3Ǹ@z6.c n 04|se !Z|M"دUɱ%A A #<ޚJ5G4$e ݆'?q!q ,T>{[s چ". v l7cn*8cC. kj5e,D(^zEvLjq?pRBTaItLzUn.@XrI<gׯ>w_p:Jw~6JΌ#,^=V8 / /E_Qx[O#٢e1y"+4e`oEPGᙛ>:N_qPdUؠ>sa_WޥZSx@B@E_SK h 4z^Wǟpjf6/f\14KlyF+]{kgeɍ:?꽻4X8զD{$*&~kz6$+k*ez&;FUӯ 2diܰB&>FN *rwdf8}SܸlkPAf"9ۨmgpYE &>5y;OH|(Y%H'u-? JWUN3S7c+d #_5,Z?} i!;ق'OoA*1Coq7 "[ɏd*+݁l@c hsU>.?,H%|_?}Fiqi)jUo4,~'|ˮc&ٲZ+$dN0F)uI'4HL^69c)sYA1$9&4稳Xf*Ѡ6EY~5L߇ݏ$]ucp"*]Iս|[lS]Nd98o4)$"yZ4e(TC7$ I{X:EPRWñ!=Ruٵo&H98ϒ.)T3j$/$l &7x(e}. gśېƕK+ڪnD=[NLCВ^@j@Lsn qg˹Jf VH*ÙADW񴞢(<6IP7h! B =,oVkZǵE(|Vl:'F ;3 R-o?#W@t}E;J*88_!CGB*Z`@%ըkiQC+F 'c*w1dr`(  ZUj)J~ ~vOx/F&w,ww4my?"96ҋFU|œ6ls8F_XQ&IohYt6.R  '0en`EӅPݫW[q2·|{CYY+V_aQF՚1V`l P;ؖ(ş K'lkn99$pMvOM( C)"<#zu76Kc7`[۱Go6X-[pS #en@Вo%Yd wQsQDlTb,+EiU{ei$a0ڋkV`n" +n,r7O}PF&lkҏwI9Fa[a $`X<\/-d1~qmGph p͟7=;Ysa uCB7+k tլBlAxg9Mo`$(H:+Ae~=SH,V}W&wԍtǪ~gi}ю3aJ( )[2NLJX1L= RR˜Ҳe>j]dRLR;#{ApqN~09pJ \S@i"a{VmA>,Vd\T`&DރzfpEZGHP~l@G5ea-:4dt4Ij~R|py%Vcj5=.X؝ "Bo|XoFWZZ]HwH 1[65n eآ :=ޣqV? x4TkwPd$\gG3:t>FkM1`*'{<`V/P|CCՄ^;JxgIZH wI 5O5W~MSHMHj2R%=(eFK,4޿N9 P9D,X8ޙI-7GIT$~uޫ3 !u$hJ#U ]Zpi}TZvZ&F I>կKzU]}*YM6~t=лr= Wn {^gDRMi3KgfK3{K[6DZ-CYHjd `fA6>q=ȝȕa1,H y}/-t3tZI0' 8ݵmsD1׶w'T #eh2]cdV}́@iu 'A\Q6{iPȄ":5wZ^QUd¢盰O ~?ò1HJ6H!mqV<^G7tIr%a@䃷m"~9z gRgp۝cᙽ@I~Bځv[eq`kfftqEh pY uV5;8RbyH5H=Z7u~ӥ|mcθNLmC hZBt~f>y=OTǗXΞ#Ĺ"}WZI< ֦ba&_gc;zMRΝ2%u >n8)Hb56暵'qiٝ]ڿlB&h9f A9zeQ(86~GiV\J.T# Yd$jmmYjRǤj3lص >Oj~}(yNl4pa4Yn(0;T-ֳz_Q<7YQdIM[p#@Adp%,{mMe^wzjzFBåcǫs<~`ÕL))bXa;XD?L_o[wu&UJH HUv1U$EЇX|?R}¥攱2RLO͂4/OuJ>z X$YP~S툍i>éjRkY L }Z}{qm-l4wF>$*uQ efn&"$/&^n0"[PEٿmn a236F0o6%rn6:"):#a C0g['=N ='h&OkrgȺJư+M5-PɸsU/&P'qF$[Yuzq[%Wex A㪭F̊<]ⷾR @q竷D^olQW ,MdV ?un}G x`Bx!6KokԢld &kB`'cVZ1cʩFf-E(Huk4g%IaFcToN4yVk2|XWB,06epjVR Q+损YY}Ʀ|yw7թr%@dZ#$ 'fq@Sk*!"$''9$"6dM4`!fhG6`: •Y(l> rqn5gV+f Z˒5B @P~`Trhd*5X y 8Dj-nL}LΣ=`HR Ae<ቺ iQ8$>-l!|/Fܮ+@,aկoE{*ĩ#v'"R((O/s)O""~"(A\^P|xgL͸.f?@B PCGA]$dwemmw_E : ;+a,shS "ΜqTP[c"cA&oPֲb9 Ȁ p(6KC+vFUJ񴍛vPW :D*,sn 5pJ"* ,J8\b`x\ǓSTRZqt174b )W$ۤ ߔ(Jb{ %VV4oߙ7(.A-CC_o5kCb ?- 7@xjE;]d?ǟ]!JL (ҥn$xn'2{K( ?R?%<)A'k0S)z^Vy,SZNՌ0 O4m2@ + 4IƢr–$]IAB*?+V6CН%<[IoEbb0, K;>Ai-|F]-^BȌ SRσdչ [{xSʐE T_,WurP~: 2O2o$w !En`x8}^N5x 4_bE,v(WuTս7 <ʖ^ D`>t;j5@ \n<Y2//@=9e]@:z,OGm,_DdqlIi$\|yI0E|OVfʼn`V%!O?AJȨ J-2GCncH h (qAR wgj.{ONDd`)B\aj=kuXLaDlPA`-,PLg2cӣߎ2"d 7(GeZː.2EȌ4yTT)Rrf(1xJ~hM+|HڨJ8LPA%WռOFp3>?p*lFH7NI3eܥ ,#p\躜SEcHfB;xo;?|{Wll~*'<@>L6`ꀓdv 0ߝ ي`gώͨdžPɺI]H&V2) 2)`|KIvf2-[,Yr65"H bx0{Z9"Zl E\0I7IW~EJfH&2϶dj>յMON_iO-3UU-ɖ}ϛ !6RH߸)`[c[H3@"Wk Z(KCqoMm}m14:jӨ!TE}ă7k&dd?!PX9;S隢X`rX,Ό:6֘UX" 4I;+!"ldW>9XYb )EU`?"H =8y4#lҕZ#zO_2;mw7ΏHIYBɛ,OE"0"~LCmj0$=O0|}**3Bqj: ichH )͍Wug48m$PcT wA!_Q 1ڴ6ɚe)*ۖŏ<1&~9O KJ.U_{$;{ :D/iR.l1tbq"?FC/z`,0f`4+M!1IN -%iMŒzt1̊A AlU׺uTnشr\u,i5"aEа≺u N" Ŋ`"x΀ ZC0J!gOP Ϸ+ bwn؂6<*?c|6 l|{smB(rz'B(sxҭ\Cj*P,s7ЦZ R[Y*"Ql?4AEk $1:c`+.l X1,nG_'B])^n.t¯9`fD;+'S*,J)U e5'A"7<<k#Tb;W@0m "#Μjef .ё}TH8+h :-,l}1R@$5@<@9oz>[vMYXک#-Z68':!zUR@_S#GAEڙDPd '>tVJpdEr|aXrXP)O? $CȨ"Y`^O$7!;#;2R+rTy*]&ڵGɥV:h N4r (d)sSϢ֊rbpqiʂ84wUm9 YlW zsiɕ ͙1DfHu~#tCgI=KWa+-KB7w! K_`ukɩ1cFC+(lam NDvhbb& x:TM8YE#`h쐛ۤ i7 E)n*UgcG,2ep#`i nOkN0R FU{;YHaPohzXc4 @mmQ 7 REf2Hg!@ '0>CUO͖T d>'V{,ݔ['&QAMxOUu|yI+oP 5d4G/Ovjv i>c=@}ݰxDnIS[$穭Mo B6 N  +QX#mF8!9$%~J(p)uUMtV5llvGmԈBv W?  9Rx*8뛒 j k%-CKԉ`Oni)(m nY UG:~MH_j?thHxL+vڅ$X8LIb@ڎ~Dp S1,wn=7 nd W >N5"[Mh2Eb2<(,%A.Br7{^+j~9CXjh kzhY> jƀH#bY\[w `ȾkJl#K ^PpV[3{c(]qe*Θ!خKfA[H,T:u$sR,9KcE~fk#+ {w,aOƇ(QqR+=EV_T V?R-)e`GX`aT5@ 5 I/}yk`@ }U[jӑ#YUUrA"`l8`X.ȰR_nKI's*j'۫o~:޲+"VᬏQH4 rgxr\‹eT`Hӳr,y2D6_><$L#9 'MBDžt!ܛ^I"Ev,Y:6\X!q'$1` kn4ABC]9ʆ%i e5lQ*{VRlNV ^m[sKk?CmS3ۗ(iV/*w](zG3L' #ei|Z8C,=pT$E}@a]! QɐIq$3K3F".zݖ, zqw^G:yz^&VXԴk7l앐 bȞBFz碻f`3IBBAo:SD]Er: +8A~ =k7Ǎ*O s!F,z&1 BWGZz\Qj] zTھ"~>DK䌥Lb? .ͻs^}+OյlS"Yƒ X$UH4 ̖?*@;?P\L Esj3Y 16?Kl>‘ؒKho$;08c{DTGpqĭPL1 kt5T$\?-k]瓴\ j%Ì"m9YbաBH4H\#"R#bcG,ȦÁI=I!ܪ <0 dI _R}7N˚m;S9$L̦&hSC$E$+d{/KرXَi96JI7AMBoJ)*+`d|5|iKmI=Ck]Ug m` :ȫ,k0Ξh8 ̘ .D %-ZR[!@ oI?lR/xnNݬOK;gOO){.ge@Q,}gbA'!v,ɷ>*&R;E m?\BʨaH[0I<0ne Tݸ*TYQnDchP~Dm*F9GӟBA&D *X+{nGj Qc]DT-JAݟxywyݹmֈj\ԩݤR ~Cqւ+(C[D Hf+MjV֨2B1g [dܦ 8bΒ|Úv8x%nԀq6&-?l3RNݒ1}|QdTV!VUЦZy r &B ʆۑ3 s59Icw,XmaWgs}Vypu_g?1o@! wt*S㎋Mk6)QfڵV ۺ-TJX(nd*x,l$7qRRm0$S1ƃAo6[v,y<@]`:&oq5FпE?#$r <`A<߆j>= LY X3# b?Px\5d6A?)'5ʊbΩ)i?>GAqCj~4Gr:%6!@ 9P}( y,@f0OxFޯiO.wQF* ]ԍWL%2c$r$U°OLyHJ\XNiDqbFQK!gmA,yUfcj,niwRۀ4"VU=vղ%ČZ`Zڪ rF4#NHX5mLLD(z|.,d!r&|tmwՎ=iݽ}.8N{ñ6Sr!]ɤi1d4O_ӦH"ld{sv[Ð _i`l&mRoq}еY#?BTvv gIKi`ng&@fĭjk-jkdeE?+S ש. ˶VP(*ⓘDjnx_P_tUesKp2'||ȎG6\ɪ0+13'w?sewdF9eǞfIg .9y#0+.'Pef94Rl,nLŅҲ&~@_`ȝ~:&#ܚis&(`Q#p%BE,.-@f;,OYnNӵ^Ix%42mZ^&FRlm'{_uljpΙ}Ǔދی$BG{o&ىVH2bA5kvai#j)NHy?N8<RjN}C"gziffBon*qKO;-m+eV(hQx4ɎlܴI6ڿ#߲;+:mrmGV#T+rEMa2K1Ȟ@:wȫRVŬ h* tb#V_dх>%]#7 ?-Uxn A$qudhvbcMQ϶:zeP(Ƹd2IB/q2)*HXӛi[((ܰ\Zfm?5YXYPA}T{dZ'm|{i5D٠zDk+iO0J>f4(!F w0r}:pmFa{{Yܿ-s~Xug|a6k| ItA*e hZ "#i/hʈ.RK'$ נRZ-@09bx&6ZX 0HX? , 'TG"Jtn^<'Nޛ2W٭J}tS(!37g9(A?EF߉<b`iB6b Xa#ۀ[إB)`_ۘ8@W o20t~Zezw-|7><$M- \UC,a9<0t,<3@+<-q՞6ü_,F6{O9vzNFH-C _

k KQa21'h!<)<7'zYu!A&)bw&<)x_ChzfxTU g>cZccjtkqʌYn:E)_43 s2|xE%'oi2cH6jkhQ AP=Xm[Pc9³ r{/*1AcW>jvQP⠌ f<::s(akh\7I#:ѭ#Y1qrh̨}@% pʲ_]d2bE߶ILfU>?2lO[DFN1c'-x S+d?SZdФS4hLѕ4%AQ<I8w}"@H 5|nDg%'X}n2R+YPc$ըl}$eeE\q6 |u[r?PLGNE_x`=$.J *X7S˦7hk4|ZfDXG<C 匳 [g;[C0FOVTUEu($f^`tV14XZ,|ܔ0bfhakTe$+JkEdUhBQm^iWNZ\[&'ݖ 񂏓 _cWnlh~3qz)4lIemu2gP1 LJp=snܝLsq1!X*T"KK(ͭTNi!HTI9 ĜI9JOyCeT8PiSlՉ5 yezip麾}"$UY&(=YK-vV+.sr7HoumVYMrnT+e8meX5.Hw-|ZEd4핕)=Ij;`J[zܚnҙ?k*˙ɟ/S[7' Y֑cs{Q:P0rb@ D|3q7I]ېS;bdέ/d 31- *7_ܱjVG8q6MI UcziË>F:~,lw9,P IrIOgoV7Teܥ6 6JF9&͉jkR]%NРX-<1|cvs+Zjlӹ782#:}V+,#7-D¿u@P }FP)[WbE[9W%\-Gͪ$ܨR%kt`QAyab@?C2`&m7!ERN=:έ%AX$ b@2 C)6|*"E{Hdɒ7~@0;wA_M>P`?͕~$7?7\mnO $420[w;;&4H+Q6I~:Yj6PA!BʜY|L1 ptST` r "'$Ǒ}',`~H j MuP`RhmsN/dwxǴT p aBX#o.Fȧ, Uq[φ:5G ȨAUET͠afI$QR|莝"! Xc`pxÄv-!7cN]B=5dRDKp81}u)U?a0 }fG7[t_Y;3?R إk*o݀:˟Gl2G>]lvV~J ?[Ou[ oݶdd;cN1,sg`2隌Yѳ?࠱ =5' LɋLdH2?zVT߅zu3n@$N5#>, IJS]]-`U]ZQcO'gqm5n^jwoiRhAx*_dQ톐WQZ(ԴE\~jGU;AO"x"J'H2I ܰD1<J* 4)UhRNjܴl`=&wlv^T{ht1 [69'q-$f)TU6/,<ϖ"@mG?v CjS*Rm .bc;KY&0~F-Ȋ%cIǍݚzSq3`EtYrp\Pɋ{WlhrMu,րJ;U|E}>&P>uVd"G0Fdh'Ƶ?+oTSnZD`TT#ЦFWꗱ$'}K{OO*X (2fO ;F/QR-J.EjZGm\I7:}Iʪէ\2sDT@UQ?>)JzU߬܌B^#Pg7, *8B@krB7;[~E珻iv;ӍnF9ɍ[eMLN6O);",Ss%?V9 ecq`QpI=tmښضlqkdIG : L[kZK:R3̂G|TXEʴC. }AIG@g$y7<i7XPv#mTpߕmx6N؅N4Yi2-K ޡ\0X ZN) S $&1hq -!ADmO5 &`#k̠9 M_KKE )[yej@P>~@8"?=lqLb?.֤Up2W!b Ã_h RKVe=0 bbqF+VHZ Y`@n dF N\ RI 6\pӵVVu[rx;OȻ;IPJ@,|͏@w<\( zx`ȫ<ӎĻNv+^-Ȝ'cJGZqAy$_l ߝo6Eex+ Q5ԐGWwh(+JnEߋ5mTKɹMvHT(_u۰:Tefdn @!|by_H@KQߑ^H}dIan%@&Tڀk<] gPa|]:r]MdU7 "9`g8J%d) H$GHggji"P.A㮶bAJBo~ 輌IT)ΙT|Ic_;.b;zi.>1j9Xm+Cy&Ք/ǃ]R,C" )RRcc\)EzgNz;}汨tAVHU9ă.>/*5\EpA=8I&ɓ8GiVnČ3XE*z}=B[KHθr "Vʉ˫8x(a؋Ll8L55uL?NӺLt^N_O]M0p'TRzIͥˎu)mPVLJ3UN-A֑? USFRUrIɝVNJ靫OWդ`3TDӋUQ|܂+Nd1"wޥwReAjf:'oDVV)#tUbyIyG&h=Wm>4\m_Dҵ!u`b$H6F4Zv30DvkgeIfIeGb~,1[Uڐ]뗧Q)(`}E Huā'_BσzoNGu nLz0{ 3, G>lr傖 l3!ƍ5L̕YLQFeZ.ZFUo_)wζّiTqgewJ; ЫLS}x=SU;ci;_9}M7iGehXz>G\hc?vi̸#fdy28W{]54HZoY٬(rsljPuպ|}ڻtD:)o(SF*]jML݇glCdn/RNVkݗ;@,ICƓumSxzwxƯv> 6> i83hztx. \m31`,߯?fiV>+xFŗ; \~.?FP. & 'M'.}O?ݢϪwni:~T:Hr5,q̄OyUk-zkQ X(&[-hY/7]]'gR7j)M5jǷ C 4rqN_7M0Y`I`䬐S!惨6.h߫BW.)R({'ЁY sW%Ijf.^.FDa\xow,`0 *Ƚ$=20J*38tڻגXm6>V PR잕=XT4 c_7O?.IӪ&ؚ+@0@'3mons髨XrFiq4Dރ*(ƒ/D1rr:;Rw(YF7aϑ{ @=CC̏QsWEXͧfON;ޘ;׵+4L^UG0OH`VWHdIɘ+kA* Ӫ( >R5o{njȣ1V-JAkQau=x:, JRSd1-|*Wha| ޭܳ A9>Z؃BL%};"JʎIF" JzrdZݴp:aTƕ\>1hu*V*iDN |ΰC1U73yE֢Z˴̘ɞ[}dƅm2i}?ӺBR8V=#pWnk c2, 8[99"[I 9i"Qgh~ú5Veɤ|,U2urcBWq ,^B>s׻u=F1+6&2&=7Ň8 s:߂{WڎZ`q&`Ω;v6֮.T0 pDF83T{l2H6 oo\l}%ƄX9jf_^#;n?[ ny~$UsC(q',ELQA O fW4vޭJ$ Y@%"O#>t[gmݔ6 ;P`d {Z o%[Cx':V$P)s56W>ǂ<}z:""d~!X{qZoٮ,22tuS)W rXYAS3:~1ץS5hЩ6֊QS_'3}ϝ$~FCmDSQDc PSY<>~z_/=<0ii&.jtfő&Oich:7nos;wݽˡfaM>y]>/;FȎlmГ*I2 \A7`=lW߀[ȻAiQp 5j)ϩt=;+lL_fӓ&,);E#oG0pV"b,lQ4OMtǝ\fCsuUԠ)ye 5nluju*U/c$"}OJ.Cki(;>kn?)=mҢiT@Y2U`|۞Gy=w=ϦaJ##++WH Q^tQHZ8|@.ZGw&M.Tx<&M*?Q=K`1`̭ݫPrbzgގ=M6~vF>~Iv,V%K.f4_7+^?:|*aŔ"1={Qv%fmWx%EOVr}SE@{UfRKMc`B_|1]Mo$mމ!/Z*jME4Z`Y7~wdZjvnjdai=,rbi0chƏ%Ut99U y?ݝߟZ{C'N{k{t9!9 5}1ď+Vg!uOyi}~Nޕ~ tM#Nę}Q]?N4+0 J;FB㗩>w˝^wss绶N:vQ. \ɥ\lh#KK=S.>Իò;@:f's1p4ǟ|\:,Iqq ]OXϖIs9$HY?jJ CI5 y6FF)FR+kNJh?HʅX9S49smvQwk(3ADI4#_u-QUz7_poߠ~{C л_R}^\Z~&"eH<<(qRWc(ؕGMsKGbI!h!$ү4 Җ7nuE>,9#+Bh6Y fg|+Sj;ɪԩJBlFO>CCuy5~<:P4][\հ4mLO&Lt[igbA[A@"$zU؃J=b0˾s2C2x}xD=߸έΔo56 d$$guoGBF}7?ՅNk{(i=-JL*)Xb){DNwtޡԷ3۞Bgi0TzV `bg-=Axw&.@ǐj8+;>^-"*xTcK <, @BA30IKJ LOM:<;>RTSUXVAFVYW[^\IQNI& ced'#TQgihhkiYViljV`--jmk\[51psqqtrrusdcsvt6;<;D>igx{ykjnk}~LHrpurryMOTQy~VX{][fbghhjik rrss{y}))6 aq Զ 1N \q Ϝ 4 (I 6R C^ B^ BցӼρX (ǼN ϼ= kсԷօ Cҁӳ^ Ӱ֔7 ;ǁӁӪX OѪԂn \́Ԩq+ GfЂԂԗӁh* .~̂ςϔόP 6rԉԇԄX* #O~҂ӁւӁĕhE (Garw`J+                                                                                        TRUEVISION-XFILE.libsoil-1.07~20080707.dfsg/img_test.tga0000644000175000017500000001214411034440252016703 0ustar gonerigoneri  (**TTzzzzTT** KKKK llll]]]]$$$$mmmm3333uuuu::::XXXXkkkkttttrrrreeeeNNNN,,,,YYYY====NNNNBBBBssss""""iiii$$$$TTTTTTT$$$iii"""sssBBBNNN===YYY,,,NNNeeerrrtttkkkXXX:::uuu333mmm$$$]]]lll KKK **TTzzzT*TRUEVISION-XFILE.libsoil-1.07~20080707.dfsg/soil.html0000644000175000017500000004365511034440252016242 0ustar gonerigoneri lonesock.net: SOIL

Simple OpenGL Image Library

Introduction:

SOIL is a tiny C library used primarily for uploading textures into OpenGL. It is based on stb_image version 1.16, the public domain code from Sean Barrett (found here). I have extended it to load TGA and DDS files, and to perform common functions needed in loading OpenGL textures. SOIL can also be used to save and load images in a variety of formats (useful for loading height maps, non-OpenGL applications, etc.)

Download:

You can grab the latest version of SOIL here. (July 7, 2008: see the change log at the bottom of this page.)
You can also checkout the latest code from the new SVN repository, login as guest/guest:
svn://www.twisted-works.com/jdummer/public/SOIL
(thanks for the SVN hosting, Sherief!)

License:

Public Domain

Features:

  • Readable Image Formats:
    • BMP - non-1bpp, non-RLE (from stb_image documentation)
    • PNG - non-interlaced (from stb_image documentation)
    • JPG - JPEG baseline (from stb_image documentation)
    • TGA - greyscale or RGB or RGBA or indexed, uncompressed or RLE
    • DDS - DXT1/2/3/4/5, uncompressed, cubemaps (can't read 3D DDS files yet)
    • PSD - (from stb_image documentation)
    • HDR - converted to LDR, unless loaded with *HDR* functions (RGBE or RGBdivA or RGBdivA2)
  • Writeable Image Formats:
    • TGA - Greyscale or RGB or RGBA, uncompressed
    • BMP - RGB, uncompressed
    • DDS - RGB as DXT1, or RGBA as DXT5
  • Can load an image file directly into a 2D OpenGL texture, optionally performing the following functions:
    • Can generate a new texture handle, or reuse one specified
    • Can automatically rescale the image to the next largest power-of-two size
    • Can automatically create MIPmaps
    • Can scale (not simply clamp) the RGB values into the "safe range" for NTSC displays (16 to 235, as recommended here)
    • Can multiply alpha on load (for more correct blending / compositing)
    • Can flip the image vertically
    • Can compress and upload any image as DXT1 or DXT5 (if EXT_texture_compression_s3tc is available), using an internal (very fast!) compressor
    • Can convert the RGB to YCoCg color space (useful with DXT5 compression: see this link from NVIDIA)
    • Will automatically downsize a texture if it is larger than GL_MAX_TEXTURE_SIZE
    • Can directly upload DDS files (DXT1/3/5/uncompressed/cubemap, with or without MIPmaps). Note: directly uploading the compressed DDS image will disable the other options (no flipping, no pre-multiplying alpha, no rescaling, no creation of MIPmaps, no auto-downsizing)
    • Can load rectangluar textures for GUI elements or splash screens (requires GL_ARB/EXT/NV_texture_rectangle)
  • Can decompress images from RAM (e.g. via PhysicsFS or similar) into an OpenGL texture (same features as regular 2D textures, above)
  • Can load cube maps directly into an OpenGL texture (same features as regular 2D textures, above)
    • Can take six image files directly into an OpenGL cube map texture
    • Can take a single image file where width = 6*height (or vice versa), split it into an OpenGL cube map texture
  • No external dependencies
  • Tiny
  • Cross platform (Windows, *nix, Mac OS X)
  • Public Domain
ToDo:
  • More testing
  • add HDR functions to load from memory and load to RGBE unsigned char*


Usage:

SOIL is meant to be used as a static library (as it's tiny and in the public domain). You can use the static library file included in the zip (libSOIL.a works for MinGW and Microsoft compilers...feel free to rename it to SOIL.lib if that makes you happy), or compile the library yourself. The code is cross-platform and has been tested on Windows, Linux, and Mac. (The heaviest testing has been on the Windows platform, so feel free to email me if you find any issues with other platforms.)

Simply include SOIL.h in your C or C++ file, link in the static library, and then use any of SOIL's functions. The file SOIL.h contains simple doxygen style documentation. (If you use the static library, no other header files are needed besides SOIL.h) Below are some simple usage examples:

/* load an image file directly as a new OpenGL texture */
GLuint tex_2d = SOIL_load_OGL_texture
	(
		"img.png",
		SOIL_LOAD_AUTO,
		SOIL_CREATE_NEW_ID,
		SOIL_FLAG_MIPMAPS | SOIL_FLAG_INVERT_Y | SOIL_FLAG_NTSC_SAFE_RGB | SOIL_FLAG_COMPRESS_TO_DXT
	);
	
/* check for an error during the load process */
if( 0 == tex_2d )
{
	printf( "SOIL loading error: '%s'\n", SOIL_last_result() );
}

/* load another image, but into the same texture ID, overwriting the last one */
tex_2d = SOIL_load_OGL_texture
	(
		"some_other_img.dds",
		SOIL_LOAD_AUTO,
		tex_2d,
		SOIL_FLAG_DDS_LOAD_DIRECT
	);
	
/* load 6 images into a new OpenGL cube map, forcing RGB */
GLuint tex_cube = SOIL_load_OGL_cubemap
	(
		"xp.jpg",
		"xn.jpg",
		"yp.jpg",
		"yn.jpg",
		"zp.jpg",
		"zn.jpg",
		SOIL_LOAD_RGB,
		SOIL_CREATE_NEW_ID,
		SOIL_FLAG_MIPMAPS
	);
	
/* load and split a single image into a new OpenGL cube map, default format */
/* face order = East South West North Up Down => "ESWNUD", case sensitive! */
GLuint single_tex_cube = SOIL_load_OGL_single_cubemap
	(
		"split_cubemap.png",
		"EWUDNS",
		SOIL_LOAD_AUTO,
		SOIL_CREATE_NEW_ID,
		SOIL_FLAG_MIPMAPS
	);
	
/* actually, load a DDS cubemap over the last OpenGL cube map, default format */
/* try to load it directly, but give the order of the faces in case that fails */
/* the DDS cubemap face order is pre-defined as SOIL_DDS_CUBEMAP_FACE_ORDER */
single_tex_cube = SOIL_load_OGL_single_cubemap
	(
		"overwrite_cubemap.dds",
		SOIL_DDS_CUBEMAP_FACE_ORDER,
		SOIL_LOAD_AUTO,
		single_tex_cube,
		SOIL_FLAG_MIPMAPS | SOIL_FLAG_DDS_LOAD_DIRECT
	);
	
/* load an image as a heightmap, forcing greyscale (so channels should be 1) */
int width, height, channels;
unsigned char *ht_map = SOIL_load_image
	(
		"terrain.tga",
		&width, &height, &channels,
		SOIL_LOAD_L
	);
	
/* save that image as another type */
int save_result = SOIL_save_image
	(
		"new_terrain.dds",
		SOIL_SAVE_TYPE_DDS,
		width, height, channels,
		ht_map
	);
	
/* save a screenshot of your awesome OpenGL game engine, running at 1024x768 */
save_result = SOIL_save_screenshot
	(
		"awesomenessity.bmp",
		SOIL_SAVE_TYPE_BMP,
		0, 0, 1024, 768
	);

/* loaded a file via PhysicsFS, need to decompress the image from RAM, */
/* where it's in a buffer: unsigned char *image_in_RAM */
GLuint tex_2d_from_RAM = SOIL_load_OGL_texture_from_memory
	(
		image_in_RAM,
		image_in_RAM_bytes,
		SOIL_LOAD_AUTO,
		SOIL_CREATE_NEW_ID,
		SOIL_FLAG_MIPMAPS | SOIL_FLAG_INVERT_Y | SOIL_FLAG_COMPRESS_TO_DXT
	);
	
/* done with the heightmap, free up the RAM */
SOIL_free_image_data( ht_map );


Change Log:
  • July 7, 2008
    • upgraded to stb_image 1.16 (threadsafe! loads PSD and HDR formats)
    • removed inline keyword from native SOIL functions (thanks Sherief, Boder, Amnesiac5!)
    • added SOIL_load_OGL_HDR_texture (loads a Radience HDR file into RGBE, RGB/a, RGB/A^2)
    • fixed a potential bug loading DDS files with a filename
    • added a VC9 project file (thanks Sherief!)
  • November 10, 2007: added SOIL_FLAG_TEXTURE_RECTANGLE (pixel addressed non POT, useful for GUI, splash screens, etc.). Not useful with cubemaps, and disables repeating and MIPmaps.
  • November 8, 2007
    • upgraded to stb_image 1.07
    • fixed some includes and defines for compiling on OS X (thanks Mogui and swiftcoder!)
  • October 30, 2007
    • upgraded to stb_image 1.04, some tiny bug fixes
    • there is now a makefile (under projects) for ease of building under Linux (thanks D J Peters!)
    • Visual Studio 6/2003/2005 projects are working again
    • patched SOIL for better pointer handling of the glCompressedTexImage2D extension (thanks Peter Sperl!)
    • fixed DDS loading when force_channels=4 but there was no alpha; it was returning 3 channels. (Thanks LaurentGom!)
    • fixed a bunch of channel issues in general. (Thanks Sean Barrett!)
  • October 27, 2007
    • correctly reports when there is no OpenGL context (thanks Merick Zero!)
    • upgraded to stb_image 1.03 with support for loading the HDR image format
    • fixed loading JPEG images while forcing the number of channels (e.g. to RGBA)
    • changed SOIL_DDS_CUBEMAP_FACE_ORDER to a #define (thanks Dancho!)
    • reorganized my additions to stb_image (you can define STBI_NO_DDS to compile SOIL without DDS support)
    • added SOIL_FLAG_CoCg_Y, will convert RGB or RGBA to YCoCg color space (link)
  • October 5, 2007
    • added SOIL_FLAG_NTSC_SAFE_RGB
    • bugfixed & optimized up_scale_image (used with SOIL_FLAG_POWER_OF_TWO and SOIL_FLAG_MIPMAPS)
  • September 20, 2007
    • upgraded to stb_image 1.0
    • added the DXT source files to the MSVS projects
    • removed sqrtf() calls (VS2k3 could not handle them)
    • distributing only 1 library file (libSOIL.a, compiled with MinGW 4.2.1 tech preview!) for all windows compilers
    • added an example of the *_from_memory() functions to the Usage section
  • September 6, 2007
    • added a slew of SOIL_load_*_from_memory() functions for people using PhysicsFS or similar
    • more robust loading of non-compliant DDS files (thanks Dan!)
  • September 1, 2007 - fixed bugs from the last update [8^)
  • August 31, 2007
    • can load uncompressed and cubemap DDS files
    • can create a cubemap texture from a single (stitched) image file of any type
    • sped up the image resizing code
  • August 24, 2007 - updated the documentation examples (at the bottom of this page)
  • August 22, 2007
    • can load cube maps (needs serious testing)
    • can compress 1- or 2-channel images to DXT1/5
    • fixed some malloc() casts
    • fixed C++ style comments
    • fixed includes to compile under *nix or Mac (hopefully, needs testing...any volunteers?)
  • August 16, 2007
    • Will now downsize the image if necessary to fit GL_MAX_TEXTURE_SIZE
    • added SOIL_create_OGL_texture() to upload raw image data that isn't from an image file
  • August 14, 2007 (PM) - Can now load indexed TGA
  • August 14, 2007 (AM)
    • Updated to stb_image 0.97
    • added result messages
    • can now decompress DDS files (DXT1/2/3/4/5)
  • August 11, 2007 - MIPmaps can now handle non-square textures
  • August 7, 2007
    • Can directly upload DXT1/3/5 DDS files (with or w/o MIPmaps)
    • can compress any image to DXT1/5 (using a new & fast & simple compression scheme) and upload
    • can save as DDS
  • July 31, 2007 - added compressing to DXT and flipping about Y
  • July 30, 2007 - initial release


back to 
www.lonesock.net
libsoil-1.07~20080707.dfsg/projects/0000755000175000017500000000000011034440326016224 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/codeblocks/0000755000175000017500000000000011034440326020334 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/codeblocks/SOIL.cbp0000644000175000017500000000470011034440250021565 0ustar gonerigoneri libsoil-1.07~20080707.dfsg/projects/VC7.1/0000755000175000017500000000000011034440326016762 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/VC7.1/SOIL.vcproj0000644000175000017500000000705311034440250020756 0ustar gonerigoneri libsoil-1.07~20080707.dfsg/projects/VC7.1/SOIL.sln0000644000175000017500000000160111034440250020240 0ustar gonerigoneriMicrosoft Visual Studio Solution File, Format Version 8.00 Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "SOIL", "SOIL.vcproj", "{35D9B7E3-EE73-4C06-9B98-FCB7F7644C99}" ProjectSection(ProjectDependencies) = postProject EndProjectSection EndProject Global GlobalSection(SolutionConfiguration) = preSolution Debug = Debug Release = Release EndGlobalSection GlobalSection(ProjectConfiguration) = postSolution {35D9B7E3-EE73-4C06-9B98-FCB7F7644C99}.Debug.ActiveCfg = Debug|Win32 {35D9B7E3-EE73-4C06-9B98-FCB7F7644C99}.Debug.Build.0 = Debug|Win32 {35D9B7E3-EE73-4C06-9B98-FCB7F7644C99}.Release.ActiveCfg = Release|Win32 {35D9B7E3-EE73-4C06-9B98-FCB7F7644C99}.Release.Build.0 = Release|Win32 EndGlobalSection GlobalSection(ExtensibilityGlobals) = postSolution EndGlobalSection GlobalSection(ExtensibilityAddIns) = postSolution EndGlobalSection EndGlobal libsoil-1.07~20080707.dfsg/projects/VC9/0000755000175000017500000000000011034440326016625 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/VC9/SOIL.vcproj0000644000175000017500000001510511034440250020616 0ustar gonerigoneri libsoil-1.07~20080707.dfsg/projects/VC9/SOIL.sln0000644000175000017500000000231311034440250020104 0ustar gonerigoneri Microsoft Visual Studio Solution File, Format Version 10.00 # Visual Studio 2008 Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "SOIL", "SOIL.vcproj", "{C32FB2B4-500C-43CD-A099-EECCE079D3F1}" EndProject Global GlobalSection(SolutionConfigurationPlatforms) = preSolution Debug|Win32 = Debug|Win32 Debug|x64 = Debug|x64 Release|Win32 = Release|Win32 Release|x64 = Release|x64 EndGlobalSection GlobalSection(ProjectConfigurationPlatforms) = postSolution {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Debug|Win32.ActiveCfg = Debug|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Debug|Win32.Build.0 = Debug|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Debug|x64.ActiveCfg = Debug|x64 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Debug|x64.Build.0 = Debug|x64 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Release|Win32.ActiveCfg = Release|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Release|Win32.Build.0 = Release|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Release|x64.ActiveCfg = Release|x64 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Release|x64.Build.0 = Release|x64 EndGlobalSection GlobalSection(SolutionProperties) = preSolution HideSolutionNode = FALSE EndGlobalSection EndGlobal libsoil-1.07~20080707.dfsg/projects/VC8/0000755000175000017500000000000011034440326016624 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/VC8/SOIL.vcproj0000644000175000017500000001007711034440250020620 0ustar gonerigoneri libsoil-1.07~20080707.dfsg/projects/VC8/SOIL.sln0000644000175000017500000000155011034440250020105 0ustar gonerigoneri Microsoft Visual Studio Solution File, Format Version 9.00 # Visual Studio 2005 Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "SOIL", "SOIL.vcproj", "{C32FB2B4-500C-43CD-A099-EECCE079D3F1}" EndProject Global GlobalSection(SolutionConfigurationPlatforms) = preSolution Debug|Win32 = Debug|Win32 Release|Win32 = Release|Win32 EndGlobalSection GlobalSection(ProjectConfigurationPlatforms) = postSolution {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Debug|Win32.ActiveCfg = Debug|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Debug|Win32.Build.0 = Debug|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Release|Win32.ActiveCfg = Release|Win32 {C32FB2B4-500C-43CD-A099-EECCE079D3F1}.Release|Win32.Build.0 = Release|Win32 EndGlobalSection GlobalSection(SolutionProperties) = preSolution HideSolutionNode = FALSE EndGlobalSection EndGlobal libsoil-1.07~20080707.dfsg/projects/makefile/0000755000175000017500000000000011034440326020001 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/makefile/alternate Makefile.txt0000644000175000017500000000224211034440250024213 0ustar gonerigoneriMAKE = make CC = gcc INSTALL_FILE = install -p -o root -g root -m 644 INSTALL_DIR = install -p -o root -g root -d LN = ln -s RM = rm -fv CFLAGS += -c -O2 -Wall LDFLAGS += CFILES = image_DXT.c image_helper.c SOIL.c stb_image_aug.c OFILES = $(CFILES:.c=.o) LIBNAME = libSOIL VERSION = 1.07-20071110 MAJOR = 1 HFILES = SOIL.h image_DXT.h image_helper.h \ stbi_DDS_aug.h stbi_DDS_aug_c.h stb_image_aug.h AFILE = libSOIL.a SOFILE = libSOIL.so.$(VERSION) INCLUDEDIR = /usr/include/SOIL LIBDIR = /usr/lib all: $(OFILES) lib %.o: %.c $(CC) $(CFLAGS) $< -o $@ lib: $(OFILES) # create static library ar -cvq $(LIBNAME).a $(OFILES) # create shared library gcc -shared -Wl,-soname,$(LIBNAME).so.$(MAJOR) -o $(LIBNAME).so.$(VERSION) $(OFILES) install: $(INSTALL_DIR) $(DESTDIR)/$(INCLUDEDIR) $(INSTALL_FILE) $(HFILES) $(DESTDIR)/$(INCLUDEDIR) $(INSTALL_DIR) $(DESTDIR)/$(LIBDIR) $(INSTALL_FILE) $(AFILE) $(DESTDIR)/$(LIBDIR) $(INSTALL_FILE) $(SOFILE) $(DESTDIR)/$(LIBDIR) ( cd $(DESTDIR)/$(LIBDIR) && $(LN) $(SOFILE) $(LIBNAME).so.$(MAJOR) \ && $(LN) $(SOFILE) $(LIBNAME).so ) clean: $(RM) *.o $(RM) *~ distclean: $(RM) $(AFILE) $(SOFILE) .PHONY: all lib clean distclean libsoil-1.07~20080707.dfsg/projects/makefile/makefile0000644000175000017500000000264611034440250021505 0ustar gonerigoneri# SOIL makefile for linux (based on the AngelScript makefile) # Type 'make' then 'make install' to complete the installation of the library # For 'make install' to work, set LOCAL according to your system configuration LOCAL = /usr/local LIB = libSOIL.a INC = SOIL.h SRCDIR = ../../src LIBDIR = ../../lib INCDIR = ../../src OBJDIR = obj CXX = gcc CXXFLAGS = -O2 -s -Wall DELETER = rm -f COPIER = cp SRCNAMES = \ image_helper.c \ stb_image_aug.c \ image_DXT.c \ SOIL.c \ OBJ = $(addprefix $(OBJDIR)/, $(notdir $(SRCNAMES:.c=.o))) BIN = $(LIBDIR)/$(LIB) all: $(BIN) $(BIN): $(OBJ) ar r $(BIN) $(OBJ) ranlib $(BIN) @echo ------------------------------------------------------------------- @echo Done. As root, type 'make install' to install the library. $(OBJDIR)/%.o: $(SRCDIR)/%.c $(CXX) $(CXXFLAGS) -o $@ -c $< clean: $(DELETER) $(OBJ) $(BIN) install: $(BIN) @echo Installing to: $(LOCAL)/lib and $(LOCAL)/include... @echo ------------------------------------------------------------------- $(COPIER) $(BIN) $(LOCAL)/lib $(COPIER) $(INCDIR)/$(INC) $(LOCAL)/include @echo ------------------------------------------------------------------- @echo SOIL library installed. Enjoy! uninstall: $(DELETER) $(LOCAL)/include/$(INC) $(LOCAL)/lib/$(LIB) @echo ------------------------------------------------------------------- @echo SOIL library uninstalled. .PHONY: all clean install uninstall libsoil-1.07~20080707.dfsg/projects/VC6/0000755000175000017500000000000011034440326016622 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/projects/VC6/SOIL.dsp0000644000175000017500000000662311034440250020103 0ustar gonerigoneri# Microsoft Developer Studio Project File - Name="SOIL" - Package Owner=<4> # Microsoft Developer Studio Generated Build File, Format Version 6.00 # ** DO NOT EDIT ** # TARGTYPE "Win32 (x86) Static Library" 0x0104 CFG=SOIL - Win32 Debug !MESSAGE This is not a valid makefile. To build this project using NMAKE, !MESSAGE use the Export Makefile command and run !MESSAGE !MESSAGE NMAKE /f "SOIL.mak". !MESSAGE !MESSAGE You can specify a configuration when running NMAKE !MESSAGE by defining the macro CFG on the command line. For example: !MESSAGE !MESSAGE NMAKE /f "SOIL.mak" CFG="SOIL - Win32 Debug" !MESSAGE !MESSAGE Possible choices for configuration are: !MESSAGE !MESSAGE "SOIL - Win32 Release" (based on "Win32 (x86) Static Library") !MESSAGE "SOIL - Win32 Debug" (based on "Win32 (x86) Static Library") !MESSAGE # Begin Project # PROP AllowPerConfigDependencies 0 # PROP Scc_ProjName "" # PROP Scc_LocalPath "" CPP=cl.exe RSC=rc.exe !IF "$(CFG)" == "SOIL - Win32 Release" # PROP BASE Use_MFC 0 # PROP BASE Use_Debug_Libraries 0 # PROP BASE Output_Dir "Release" # PROP BASE Intermediate_Dir "Release" # PROP BASE Target_Dir "" # PROP Use_MFC 0 # PROP Use_Debug_Libraries 0 # PROP Output_Dir "Release" # PROP Intermediate_Dir "Release" # PROP Target_Dir "" # ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c # ADD CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c # ADD BASE RSC /l 0x409 /d "NDEBUG" # ADD RSC /l 0x409 /d "NDEBUG" BSC32=bscmake.exe # ADD BASE BSC32 /nologo # ADD BSC32 /nologo LIB32=link.exe -lib # ADD BASE LIB32 /nologo # ADD LIB32 /nologo !ELSEIF "$(CFG)" == "SOIL - Win32 Debug" # PROP BASE Use_MFC 0 # PROP BASE Use_Debug_Libraries 1 # PROP BASE Output_Dir "Debug" # PROP BASE Intermediate_Dir "Debug" # PROP BASE Target_Dir "" # PROP Use_MFC 0 # PROP Use_Debug_Libraries 1 # PROP Output_Dir "Debug" # PROP Intermediate_Dir "Debug" # PROP Target_Dir "" # ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c # ADD CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c # ADD BASE RSC /l 0x409 /d "_DEBUG" # ADD RSC /l 0x409 /d "_DEBUG" BSC32=bscmake.exe # ADD BASE BSC32 /nologo # ADD BSC32 /nologo LIB32=link.exe -lib # ADD BASE LIB32 /nologo # ADD LIB32 /nologo !ENDIF # Begin Target # Name "SOIL - Win32 Release" # Name "SOIL - Win32 Debug" # Begin Group "Source Files" # PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat" # Begin Source File SOURCE=..\..\src\image_DXT.c # End Source File # Begin Source File SOURCE=..\..\src\image_helper.c # End Source File # Begin Source File SOURCE=..\..\src\SOIL.c # End Source File # Begin Source File SOURCE=..\..\src\stb_image_aug.c # End Source File # End Group # Begin Group "Header Files" # PROP Default_Filter "h;hpp;hxx;hm;inl" # Begin Source File SOURCE=..\..\src\image_DXT.h # End Source File # Begin Source File SOURCE=..\..\src\image_helper.h # End Source File # Begin Source File SOURCE=..\..\src\SOIL.h # End Source File # Begin Source File SOURCE=..\..\src\stb_image_aug.h # End Source File # Begin Source File SOURCE=..\..\src\stbi_DDS_aug.h # End Source File # Begin Source File SOURCE=..\..\src\stbi_DDS_aug_c.h # End Source File # End Group # End Target # End Project libsoil-1.07~20080707.dfsg/projects/VC6/SOIL.dsw0000644000175000017500000000102511034440250020101 0ustar gonerigoneriMicrosoft Developer Studio Workspace File, Format Version 6.00 # WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE! ############################################################################### Project: "SOIL"=".\SOIL.dsp" - Package Owner=<4> Package=<5> {{{ }}} Package=<4> {{{ }}} ############################################################################### Global: Package=<5> {{{ }}} Package=<3> {{{ }}} ############################################################################### libsoil-1.07~20080707.dfsg/lib/0000755000175000017500000000000011034440326015141 5ustar gonerigonerilibsoil-1.07~20080707.dfsg/lib/libSOIL.a0000644000175000017500000023447411034440250016552 0ustar gonerigoneri! / 1215477090 0 0 0 3002 ` o "\"\"\"\"\"\"\"\"\3333333333333333333333333333333333333333333333333333333333333333333_convert_bit_range_rgb_to_565_rgb_888_from_565_compute_color_line_STDEV_LSE_master_colors_max_min_compress_DDS_color_block_compress_DDS_alpha_block_convert_image_to_DXT5_convert_image_to_DXT1_save_image_as_DDS_up_scale_image_mipmap_image_scale_image_RGB_to_NTSC_safe_clamp_byte_convert_RGB_to_YCoCg_convert_YCoCg_to_RGB_find_max_RGBE_RGBE_to_RGBdivA_RGBE_to_RGBdivA2_stbi_failure_reason_stbi_register_loader_stbi_hdr_to_ldr_gamma_stbi_hdr_to_ldr_scale_stbi_ldr_to_hdr_gamma_stbi_ldr_to_hdr_scale_stbi_convert_bit_range_stbi_rgb_888_from_565_stbi_decode_DXT1_block_stbi_decode_DXT23_alpha_block_stbi_decode_DXT45_alpha_block_stbi_decode_DXT_color_block_stbi_dds_load_from_memory_stbi_dds_load_from_file_stbi_image_free_stbi_dds_load_stbi_hdr_test_memory_stbi_is_hdr_from_memory_stbi_dds_test_memory_stbi_bmp_load_from_memory_stbi_bmp_load_from_file_stbi_bmp_load_stbi_bmp_test_memory_stbi_psd_load_from_memory_stbi_psd_load_from_file_stbi_psd_load_stbi_psd_test_memory_stbi_tga_load_from_memory_stbi_tga_load_from_file_stbi_tga_load_stbi_tga_test_memory_stbi_dds_test_file_stbi_hdr_test_file_stbi_is_hdr_from_file_stbi_is_hdr_stbi_psd_test_file_stbi_tga_test_file_stbi_bmp_test_file_stbi_write_tga_stbi_write_bmp_stbi_hdr_load_rgbe_memory_stbi_hdr_load_rgbe_file_stbi_hdr_load_rgbe_stbi_hdr_load_from_memory_stbi_hdr_load_from_file_stbi_zlib_decode_noheader_buffer_stbi_zlib_decode_noheader_malloc_stbi_zlib_decode_buffer_stbi_zlib_decode_malloc_guesssize_stbi_zlib_decode_malloc_stbi_png_test_memory_stbi_png_test_file_stbi_png_load_from_memory_stbi_png_load_from_file_stbi_png_load_stbi_jpeg_test_memory_stbi_jpeg_test_file_stbi_jpeg_load_from_memory_stbi_jpeg_load_from_file_stbi_jpeg_load_stbi_load_from_memory_stbi_load_from_file_stbi_load_stbi_loadf_from_memory_stbi_loadf_from_file_stbi_loadf_loaders_check_for_GL_errors_SOIL_last_result_query_cubemap_capability_query_tex_rectangle_capability_query_NPOT_capability_query_DXT_capability_SOIL_free_image_data_SOIL_direct_load_DDS_from_memory_SOIL_direct_load_DDS_SOIL_save_image_SOIL_load_image_from_memory_SOIL_load_image_SOIL_save_screenshot_SOIL_internal_create_OGL_texture_SOIL_create_OGL_texture_SOIL_create_OGL_single_cubemap_SOIL_load_OGL_single_cubemap_from_memory_SOIL_load_OGL_single_cubemap_SOIL_load_OGL_cubemap_from_memory_SOIL_load_OGL_cubemap_SOIL_load_OGL_texture_from_memory_SOIL_load_OGL_texture_SOIL_load_OGL_HDR_texture_result_string_pointer_soilGlCompressedTexImage2Dimage_DXT.o/ 1215477087 0 0 100666 5665 ` L\.text `.data@.bss.rdata0d@@UMЉ$] t$puCً$t$]Í&'US ED$D$$D$D$ËE $nD$D$ ËE$N É[]Ít&US ]D$D$ $U ؃?D$D$$U$D$D$U []ÍUWVS,E }E1UU >Q$Ɖ$\>$ʼnÉ$$$T>u $‰‰$$ĉ$$Ӊ$$Ẻ $]$lj$$E9u]{U]E]EE]]EE]E EEEEME]M]EEEXXEEEEEEE]E]EEEXMMX,[^_]UUUUUUU]?UWVSH]CvH[^_]1E̍uĉEȍ}ЉEĉE؉EԉEЋEt$ |$\$$UEEEPB$̉$B$̉$$PB$Ή$B$Ή$$wvɃڃ$؃ڃuEк}]MEMԴ fEMDDm]m‹ED=~Dm]m‹EDxb=~Du؋ED$ED$E$ËED$ED$E܉$9~&UU %DDoUE t&UWVSlE} uE]ED$ED$E$|$ EEEEEEyUMAEAAAAAEAD$ E$D$t$EԉD$ EЉD$E\$$fE̺+E܍MP$UD+DP$Tȃuٞv=E}E EEʴ fEEEEEMPG$ˉ$G$ˉ$E4$ m]mU!Ӄ~MDE}}@u؃l[^_]fU1҉WVS8]EEEEEEEECE tD9|;E}EuU  EȉUċU BBBBBBB+M}҉]Q$$EҴ fE MA+EȃP$m]mҋẼ\ԉu 2~uĸ)ȉE=u؃8[^_]Ð&UWVSME ~}~ut ]~}~Dž``ļ[^_]ËU }E}EЉp$U MDžlEU`}} EUEPLEEE ME`lEUDždET}9}Dž|T)|dd9U DžxM )щx|tEEEU}EEEE}DžtEEHDžh‰\XxM1t1ۍUHX؉DA}\߉DGA}pdEA];xuttPxUtEEBEBEBuڋt+xTtLh|HMM9haEUtEBEBEBEEBEBEBuڃtuEUD$$tEMD*}D: uEUD$T$$XEGD*MD  u싕PdlEU9M O}EE}9E[|Džtt&UWVSM] ~U~Et E~}~Dž||Ĝ[^_]ËU }EEЉ$} UU E}|EEE}lhE MMMEU|EUEEp}9}E p)EEU9U E M )щMEEEE}udEuEExtE~TM1M1ҋEt:Ad:xxAU;]u[E>MUU&EEBEBu+ED@EEhUhd9UEMEUUEBEBEEBEBuE uM}L$|$$BUED*MD  u싽lEEE}9E UMEU9MI]E0'UE]Uu] }u*" }ED$ET$ t$\$$wD$D$Ǎp$EDžpDDS Džt|Džx]|EE EEDXT5EED$$D$D$ÉD$ p$E\$ D$<$D$$<$t&1]u}]ÐED$ET$ t$\$$rD$D$Ǎp$EDžpDDS Džt|Džx]|EE EEDXT1wb=T-@I@'7??@@.@Zg (7 ( UZ.filegimage_DXT.c P # 5@ Op j p     .text.data.bss.rdata(_memset _fopen _fwrite _fclose _free _malloc _convert_bit_range_rgb_to_565_rgb_888_from_565_compute_color_line_STDEV_LSE_master_colors_max_min_compress_DDS_color_block_compress_DDS_alpha_block_convert_image_to_DXT5_convert_image_to_DXT1_save_image_as_DDS image_helper.o/ 1215477087 0 0 100666 4352 ` L.text` 4 `.data@.bss.rdata @@UWVS8U E}~ ~} 81[^_]Ã} ~~ut]tE EPM $]E }]mUEԋE }uElju܉UUEEE fEEMmUmE;E~EPU$E u EEE܃u؉EEmUmE;E~EPU$u 1ɍP$$uɍ2$̉$uʍ2$ˉ$u$m]mE29u؃EE}9E3؃EUu U9u؃8[^_]fUWVS\U ]MEEEE U }UE} EEEEEEE UUMEE UċU ]EEȋEډU؋U EЋEEUԉEU EEUUEEUEMEEUEEUU9U u|uE9EUЉU֋}U~.U1U1ɅU~U9uẼE;}|ډډ}UEEE9EUxEUUUUUUUEU9E/EăEEUȋEUEЋU EU9EU E ։EU:1\[^_]Ít&'UWVS u }]Mٽƅ fR$ 5 ٭ߝ٭ uE]u)É}E~31Ʌۉ~9uu}+E9́ [^_]Á 1[^_]É'U1Ux  ]Ðt&UE ]u}}}}uf}1EE~xUMtTL\)耉$M6U)$MDED$UD9}1 t&]u}]Í@E~ۍP}RTUW_t)Ѓ耉$뀉$)G$tG;}u1wfU,E ]u}M}}Uf}1EE~sUEU܃€UTtU\Eƀ)$U$UD+])$UDED9}1]u}]Í@E~ߋUUPERTU؋UEZr؃ƀ)$*U$UB+])$UBE؃U9u1i'UVS uu ~c]C]$ D$p?D$1]EEP$vv؃uكt [^]ÐUWVS,}] uE]؉vvܞ}E fEʈSm]mE=~CP$m]mE=~ʈCm]mE=~CC$ D$p?D$M]EPC$ɉ$C$ʉ$$t&}E fEm]mEP$m]mE~4=~P$Ƀ؃,[^_]øŃ,1[^_]Ét$\$<$q=UWVSl}] u E]Љvvܞ}E fEʈSm]mE=~CP$m]mE=˸ɈCm]mE=~CC$ D$p?D$M]EPC$ɉ$C$ʉ$$g=ztz$]]]EEE}E fEm]mEP$m]mE܅~E=~P$Ƀs؃l[^_]Ãl1[^_]ø봉t$\$<$=?|[CCxA~Gbyq  R    :   M .filegimage_helper.c  " @0 L` b xP    .textV .data.bss.rdata_ldexp _sqrtf _up_scale_image_mipmap_image_scale_image_RGB_to_NTSC_safe_clamp_byte_convert_RGB_to_YCoCg_convert_YCoCg_to_RGB_find_max_RGBE_RGBE_to_RGBdivA_RGBE_to_RGBdivA2stb_image_aug.o/1215477090 0 0 100666 49697 ` L`.text? `.data0D@.bssP .rdatat/@@U]ÍU]1Ít&U1Mt t(9u]É ]0Ð&Uu]$Uu] UE]ÍvUE]ÍvU]PÐ&U]P@PÍU‹@t@ ]ËB;B]Í&'kMiҖkU]Ð&U=v1҅x =]Í'UWVStUxhB fR0ff/y@Y`qpIPffGG0؍iiqi? ׋B B8ƉB(Blj~z9i‹iii42i iilji*1`ЉЋi+  4)Ë` :) G+` G + G< ++ G\W|h9tYff~_B J@z0Z`rpfJPfzx}􉍀dZBiʩi? iqp@ Zrz l ʉ‹li iiɛi ii*1 ii40Ήilȋp p)  ++,)AA)GG)GG)gGt ωd9Ĕ[^_]fI@fft_`wpOPJPft Z`rp_`fuQrpfG|G\G&'6Uǀ6ǀ6ǀ6ǀ<6ǀ6ǀ5ƀ6t]6]6Ít&'UE ]Ð&UW} VuS]~!191@TE9uE[^_]Ít&UWVS}u] FES@DWFUCEDTD@TNDN9uԋU҉UE DD@ЋUM[^_]F[^_]ÍKME믍&UWVSu}M }RCƒ}FE &ӋU }9@[DDNDRN;MuȍBEMA[^_]ËU M@DF[^_]Í~}UEWMV} S1ۋu~ 1҅~f; 9u;]uE[^_]U‹1ɉ;Bs]ÍU}lj)ȉU)Mu1։+U)+E]1Ӊ)1)99]u}]Ð9Ë}~}t&Ut,1=w3=vvw]Ít&=vƍv'%UUUUUUUU‰с33333333щ%UЉ]%Ð&U҉VSx(Ƀ~[^]ډÉԍvUMЉ$] t$puCً$t$]Í&'US ]D$D$ $U ؃?D$D$$^U$D$D$AU []ÍUWVS61҅uωX=uHu뭈6ǃ6[]Í&UVS;6@66)#@6N9Љv L[^]*빐&UWVSӃ6EUN6%<N;, ;s9)#@LM)Ɖ#<@S9EM쉈6[^_]ù)e/E6UF6[^_]Ã[^_]9M)։6눸 $D$D$$ U$Ét$<Ɖ3$t$]ÍvU$Ét$Ɖ$t$]ÍvUSÃDt 1[]Ðt&DuSuۉ uω|뿍v'US$M U]$[]ÍUWVS|xABu5Mft%bDžĜ[^_]É t%(t 8tltpLDž떃 t.vmG3t$DžUGЉJ G1ЉG)W DžVUUU&)ʉDžDžDžDžDž} G~ U G$ ,$bDž Í@: (8l| ~qj` u񃽰Dž)Džw^1ۅ~pt& t񈄝Ƅ;u1 +)‰7t1ۃWDžT1f D D F9h D D tF97~[DžhMh: g 뱐t&9i9Gi9GutGhDžt4h+…ҍ~?t&T1DD1T9܋_hth;nE t?9U t4GtD$ $M tt|xG}]t+CL  DžxdPDžG1Džplty1ۅQ9FGp7l'2tu띉Dž'9Ë!!D!rDJ#9,Vډ؃ꉝt|8 t1u-DžDžDžDž<Ɂ|<ہ<$ DžDž RكtDžDžDžDžDžDžDžDžI9)DžDžRtۃ$bDž8DžgDžt4~q9tDDžDž;D$ D$$9uUS4M U]YEMUD$E$4[]É'US4U] EMU D$E$b4[]ÍUV1S ED$$t.E$D$ED$ ED$E D$y$ [^]ÍUSÃBBt 1[]Ðt&)Mu t(t8l 맸렍t&'US$M U]b$[]ÍU$Ét$Ɖ$Ɖt$]ÐU$Ét$Ɖ$Ɖt$]ÐUWVSE_EEЉE$EU1ۉU]9}E1҅f;UuuNjE t*} t$UЉT$MԺ $M EhEt}tUEMċEЋUȉMԉ E<[^_]ËE1~Ẽ;uuBvEE<[^_]ø@EE<[^_]ËUEUEM܋EM9EMSE1҅M}M;UuE}ufEE<[^_]ËEE~ǍE=t3I@Et$uẼuEDEE9EE}.OƋÉAUN׃ú9uM|}LM렸|EE<[^_]ø\vE(`EJE&'US4M U]EMUD$E$/4[]É'US4U]|EMU D$E$4[]ÍUV1S ED$$t.E$D$ED$ ED$E D$y$ [^]ÍUE=SPB8Ð&US$M U]$[]ÍUeUWVSlUMEE؉EEEEE|ƉsEE~ EE~E~ ~~vEEl[^_]Éuttt t&u΀}]t]UME UE CUMUEEEE E$UE}EucUEEEUEEEE]tMUttXv}GE1۾t=D.9]}g}uMEMňMLjMƃ} V} uMUEŰMD EE9Em1E?MEMM } } uMNjE̋ULMƈLMňLMĈL듃}} RMEU} MMEƈUňM6MUEŰMDQEĈDQ119E~UЋ]U1ɍvD+9M}EUELjUĈEňEUNjMЈEƈAUňQMEUEMLjEƈUcGƒUEE uiM~bU UE}EUڃEEU؉EԋU܅~u܉MuEM؋EM}9ENjE{U$kUEÉ$ىE‰@t&'US4M U]EMUD$E$?4[]É'US4U]EMU D$E$4[]ÍUV1S ED$$t.E$D$ED$ ED$E D$y$ [^]ÍUSÃrk~1[]ÉTЍBv t t u׉~~jtt !Ѓtjt&'US$M U]Y"$[]ÍUSÃ6"N1Ҹ6F;FƅDžDžDž Ƌ=RDHI=TADI=DNEIk m뙉؃t1҉p@31;C%L[^_]øؠ1L[^_]=ETLPt~=SNRt[Q@ 9 1ۅtUD9uƅPR9 61ۅlDDD; u+t 9sbusDž t&ѥ;wT$A$vBAD$ t$D$A$9IQED$$\$3F F$~FG;B u[ @ 9ttG9A$LB$Q9  t0 LtDž)ڃ_`puw$P_9Tһ~D+؃9Bƅ`ƅpLDD ;m9L;9pL`lPd$`pD LDD ap`DLD D=`1T1脦pLDD y uRR@lP+Dž00PX~901t&311åX 9uڋX0ul‰l9Yl3Q$+pЉL+`rP+lDž,P,~!1, 29u7,ulǍ‰l ldP++|Dž((dP(Dh~V(1( h3莣|D 9uʋD|(Yl‰l6P+lDž$P$H~@$1dЋH19uՋH$tdt ΃Pl1҅~ P9u싅ЃP붋ރgPl1҅~"t&d P9u㋅ЃPd뢋6P+lDžP~1 29u7ulǍ‰lJpL`l@ $@l)54 $59~\5i5LD$i5\$JB 959666 95`95#Et&Dž6ʉ)x55tt 1+x8;ti5L|$i5\$5545 $~66Q6T60<Ѓ;t%9Dž[ƋNNjX~'1ɉ;5u&589t9uw&j1k8055696F衛^莛胛N;ɜ{DžU ] A&tDž/G0 8 9$555G55G1G G5GGDt/?G@:t!%G` G0GC$|6sDž>|ۉ|Dž|SCT$|$L$ D$5$D;C|&CCCC;5} 5C 89t'C{K9{hSCc;~yux1҅t72GGG9wɋ9JW:M1҅t WDW9w릋UM艕~DžىL3D\3ifiҶÀ)iXiۢ)ƉЍ =vӁvҁvЋQAA971҅ 9wMɉC'CUva褋 wDžGDž>6~$60<^g~{Ӊ'U6SM UUM wnٞvBظMԈ EEUE9UM̉ $E<[^_]1}E fEm]mE1뤋Ẻ$sE뭐U8E]Uu] uEE}}UE\$4$Jt,UE}}] ]UUuuEU]\$4$t,EU}}] ]EEuuUE]^\$4$Ҥu>\$4$tZEU}}] ]EEuuUE]¨fUE}}] ]UUuuEU]\$4$蘖\$4$4E&EE9~yU\$4$tڋUU}}] ]uuUUUUUH]UE}}] ]UUuuEU]x\$4$,txUE}}] ]UUuuEU]\|$ED$UT$ E\$4$D$uU:]}u} ]]]|fq]1u}]Í&U8]E U]uu}}EU$t&EUuu}}]]EU ]$t&EUuu}}]]EU ]($pu4$褯ftLEUuu}}]]EU ]阦EUuu}}]]EU ]$*uy$~E}t&EE9~jU$Pt݋UUuu}}]]UUU H ]EUuu}}]]EU ]w$thUEuu}}]]UE ]et$|$ ED$U$T$'u7]u}u ]]]|9o]1u}]Ív'UVS ED$$t7E$D$ED$ ED$E D$$ [^]ø01nv'UWVS,щE؋EU$E}uE܋UEEU1~SM1ۋE4t&\$3P$5$UM9]E u9E~UM PE$5EUMU9MmE؉$E,[^_]ËE؉$mE׍&'U8]E]uU}u }]]EUt$<$ڍt,]E]Uu u}}]]EU]隽\$ED$UT$ Et$<$D$t'uU]]u} ]]]|l]1u}]ÐU(uE Uu]]}}EU4$贪t&]E]}}uuE ]]]\$|$ UT$E4$D$t$u]U]u} ]]d| l]1u}]Ít&'UVS ED$$t7E$D$ED$ ED$E D$$ [^]ø01k鐐XXXX chunk not known? @?.>D:\Source\SOIL\src\stb_image_aug.cz->code_buffer < (1U << z->num_bits)bits <= 16z->size[b] == sreq_comp >= 1 && req_comp <= 4Out of memory0b5p@rb#?RADIANCE (((j->code_buffer) >> (j->code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c]Corrupt BMPBMP type not supported: unknownbad BMPBMP type not supported: 1-bitBMP type not supported: RLEhsz == 108Corrupt PSD imageUnsupported version of PSD imageUnsupported number of channels in PSD imagePSD bit depth is not 8 bitPSD is not in RGB color formatPSD has an unknown compression formatwb111111 221 2222 1111 4 22 44 44 22 444444#?RADIANCECorrupt HDR imageFORMAT=32-bit_rle_rgbeUnsupported HDR format-Y +X corrupt HDRUnable to open fileCorrupt PNGsizes[i] <= (1 << i)Corrupt JPEGa->num_bits == 0c >= 0 && c < 19c == 18Not a PNGVery large image (corrupt?)PNG not supported: 8-bit onlyPNG not supported: interlaced modeImage too large to decodeout_n == s->img_n || out_n == s->img_n+1img_n+1 == out_nout_n == 2 || out_n == 4PNG not supported: unknown chunk type c cccc c c1h3ihfgFfeRdZmmlZl:kj$jInternal errorJPEG format not supported (progressive)JPEG format not supported: 8-bit onlyJPEG format not supported: delayed heightImage not of any known type, or corruptPNG        #+3;CScs !1Aa  0@`      !(0)" #*1892+$%,3:;4-&'.5<=6/7>??????????????????@@C??QY{ /]G(/419mX ^ !J"i"#&#+#S$$$$%-&2&H/M///070>0C0001&3 4%44u5555q6y66Q8c;;A<I<}<=!>Y>>>>>?A?y???@D@@@@`AhA,BZBACCCDDEEIF{FFFG=G3IXIwI|I/J7JkJyJJKKLKLLLL#MNOP!P7PVPdPiPNQzQQQQT6T=TBTbUUUUUrCrHryrrrrssss ttttQuuuvwxy^yyzz{{H}w}}}}}~@~FńTnzzʉ!)]'-@؋uˏ ΐ;Iґ 1UkpG/7ky.filegstb_image_aug.c _e )  ?Lp c$p      _at_eof  _clamp0 ` _reset 0 @ ( :`  M0  _zget8p  _paeth  c  m`  w    @        _getn _skip@ &p 1 ;  H Y g w@      _get8  P        0`! _bmask@_decode! _get16le0# _get32le`# @# J# ` $ jP0 0 0 01 1 _get161 _get322 @2 5  6  `6 6 $6 _get8u7 : 7 D; _; x0< < P= = = @> > > ? `? '? _write8 @ _writefvP@ _writef0A _outfilePA ;0D KD [E jI I  J J K P P _expandQ Q _do_zlibPT  0 /`=J`VawpZ Z [ [  \ #\ 3ASgr }r _do_png s 0t pt t u v w  y } 6} K`~ \p x  p 0   `   `   .text?.data(.bssP .rdata/_loaders__alloca_fgetc _pow _memset _realloc _fread _memcpy _ldexp _strtol _free __assert _fwrite _ftell _fseek _malloc _fopen _fclose + _stbi_failure_reason_failure_reason_stbi_register_loader_max_loaders_stbi_hdr_to_ldr_gamma_h2l_gamma_i_stbi_hdr_to_ldr_scale_h2l_scale_i_stbi_ldr_to_hdr_gamma_l2h_gamma_stbi_ldr_to_hdr_scale_l2h_scale_start_file_start_mem_compute_y_idct_block_resample_row_1_resample_row_v_2_resample_row_h_2_resample_row_hv_2_resample_row_generic_high_bit_bitcount_shiftsigned_stbi_convert_bit_range_stbi_rgb_888_from_565_stbi_decode_DXT1_block_stbi_decode_DXT23_alpha_block_stbi_decode_DXT45_alpha_block_stbi_decode_DXT_color_block_fill_bits_zreceive_bit_reverse_zhuffman_decode_cleanup_jpeg_convert_format_dds_load_stbi_dds_load_from_memory_stbi_dds_load_from_file_stbi_image_free_stbi_dds_load_hdr_gettoken_hdr_test_stbi_hdr_test_memory_stbi_is_hdr_from_memory_grow_buffer_unsafe_extend_receive_dds_test_stbi_dds_test_memory_bmp_load_stbi_bmp_load_from_memory_stbi_bmp_load_from_file_stbi_bmp_load_bmp_test_stbi_bmp_test_memory_psd_load_stbi_psd_load_from_memory_stbi_psd_load_from_file_stbi_psd_load_psd_test_stbi_psd_test_memory_tga_load_stbi_tga_load_from_memory_stbi_tga_load_from_file_stbi_tga_load_tga_test_stbi_tga_test_memory_get_marker_stbi_dds_test_file_stbi_hdr_test_file_stbi_is_hdr_from_file_stbi_is_hdr_stbi_psd_test_file_stbi_tga_test_file_stbi_bmp_test_file_stbi_write_tga_stbi_write_bmp_hdr_load_rgbe_stbi_hdr_load_rgbe_memory_stbi_hdr_load_rgbe_file_stbi_hdr_load_rgbe_hdr_convert_hdr_load_stbi_hdr_load_from_memory_stbi_hdr_load_from_file_zbuild_huffman_default_distance_default_length_length_extra_length_base_dist_extra_dist_base_length_dezigzag.5711_z_codelength.5712_stbi_zlib_decode_noheader_buffer_stbi_zlib_decode_noheader_malloc_stbi_zlib_decode_buffer_stbi_zlib_decode_malloc_guesssize_stbi_zlib_decode_malloc_parse_png_file_png_sig.5979_first_row_filter_invalid_chunk.6373_stbi_png_test_memory_stbi_png_test_file_stbi_png_load_from_memory_stbi_png_load_from_file_stbi_png_load_decode_block_dezigzag_build_huffman_process_marker_decode_jpeg_header_stbi_jpeg_test_memory_stbi_jpeg_test_file_load_jpeg_image_stbi_jpeg_load_from_memory_stbi_jpeg_load_from_file_stbi_jpeg_load_hdr_to_ldr_stbi_load_from_memory_stbi_load_from_file_stbi_load_ldr_to_hdr_stbi_loadf_from_memory_stbi_loadf_from_file_stbi_loadf SOIL.o/ 1215477090 0 0 100666 17161 ` L,9I.text)/ `.data 4*Z8@.bss.rdataPT*d8@@U]Ít&'U]ÍU=t$D$$t$D$$u떍&U= t $D$0$t  $D$I$u$D$b$u pU=t$D$|$Í&U=t$D$$t)$tÍ'U]&Uuu]}S} w1]u}]Ít&pED$t$$pDDS tE볃t|ux%=uUDt؃} uEt̉уE=DXT1t=DXT3t=DXT5u|E<<]8 )ȉ(Ѓҁ,8<ȉD‰0tlEA1t&1]E|< 8<Dž(TEDžL DžP DžT E@E@0(4@ۃ~E8 <D49@}4 $]ۉ]$QED$T$P9LL H49E `94$D$T$ $(D4tV$1D\׋$\D;4rË$,<8\$ HD$D$D$T$L$ D$D$$$@0ۉX~,vD$XT$HڋD$ ,D$D$T$ D$D$|$ $$;@X8<ۉ~y(XBHT$,D$DT$|$ $؋$XD$\$D$  NDžm`HH9P$$U@TD$&D$($T D$'D$($ ECTD$)D$($T $D$)D$(T D$)D$r $ ZvED$$ E$H$0<8T$,L$HD$\$D$ T$D$ $ 0Dž@41RED$$TD$)D$($ D$)D$($ D$)D$r$ #TD$&D$( $T D$&D$($ `t,1yt41\^DžLDžPDžTEǃ0tLt}t]Dž,DžD<8Љ0Dž,DžD뼺Dž,DžD롺Dž,DžD농vU(E]u}D$a$D$D$$4$D$D$4$$t$ \$D$$4$EED$ED$ E D$E9wAD$<$<${ d1ۉ؋u]}]1Sz1ۉ4$ɍUMU~AE~:~6f/Et(Et!} tPE t1} td1ËET$ D$EL$D$E$tËET$ D$EL$D$E$͋ET$ D$EL$D$E$몍t&US$ED$ED$ED$ ED$E D$E$t؃$[]썴&USED$ED$ ED$E D$E$t؃[]썴&'UWVSE@D$ D$D$D$E<4$D$ED$ ED$ED$k4$VE8D$ED$ED$ ED$ED$E$wE8EE@\$D$ D$D$ED$4$D$ ED$ED$4$E8D$ED$ED$ ED$ED$E$fwE8EE@\$D$ D$D$ED$4$D$ ED$ED$A4$g,E8D$ED$ED$ ED$E$D$E $wE8E|E@\$D$ D$D$ED$4$D$ ED$ED$4$E8D$ED$ED$ ED$E,D$E($<wE8EE@\$D$ D$D$ED$4$D$ ED$ED$4$=E8D$ED$ED$ ED$E4D$E0$wE8EtVE@\$D$ D$D$ED$4$D$ ED$ED$4$t&1ۣ\ UH]]u}t;} t4ut-Mt&UtEtRt)1 1ۉ؋u]}]ËE $D$ED$ ED$ED$} wE EE(D$ D$D$D$E$4$D$ED$ ED$ED$b4$]E D$ED$ ED$ED$E $YwE EE(\$D$ D$D$ED$4$D$ ED$ED$4$E D$ED$ ED$ED$E$wE EE(\$D$ D$D$ED$4$D$ ED$ED$F4$lAE D$ED$ ED$ED$E$=wE EhE(\$D$ D$D$ED$4$D$ ED$ED$4$E D$ED$ ED$ED$E$wE EE(\$D$ D$D$ED$4$D$ ED$ED$*4$P%E D$ED$ ED$ED$E$!wE EtPE(\$D$ D$D$ED$4$D$ ED$ED$4$1ۣ UHE@uu }}]t/ED$t$D$ ED$E$pED$ED$ ED$Et$|$$ƍGvdtgED$ 3 D$ D$ D$E4$D$ED$ ED$ED$4$؋u]}]Ít&}u1ۣ؍t&'UHE@uu}} ]t$ED$ 4$D$ED$u|ED$ ED$E4$|$D$@ƍGvftiED$ 3 D$ D$ D$E4$D$ED$ ED$ED$4$؋u]}]Í}u1ۣ֍t&'UH]] uv1ۉ؋u]]Ít&ED$ ED$ED$D$E$t}tYD$ 3 D$ D$ ED$ED$ED$ ED$E4$D$4$؋u]]ËED$ ED$E4$D$눋ED$ ED$E4$D$f1ۣ :GL_ARB_texture_cube_mapGL_EXT_texture_cube_mapGL_ARB_texture_rectangleGL_EXT_texture_rectangleGL_NV_texture_rectangleGL_ARB_texture_non_power_of_twoGL_EXT_texture_compression_s3tcglCompressedTexImage2DARBNULL bufferDDS file was too small to contain the DDS headerFailed to read a known DDS headerDDS header loaded and validatedDirect upload of S3TC images not supported by the OpenGL driverDDS image was a cubemapDirect upload of cubemap images not supported by the OpenGL driverDDS image was not a cubemapDDS file loadedDDS file was too small for expected image dataNULL filenamerbCan not find DDS filemalloc failedSaving the image failedImage savedImage loaded from memoryImage loadedInvalid screenshot dimensionsInvalid screenshot locationInvalid screenshot filenameTexture Rectangle extension unsupportedImage loaded as an OpenGL textureFailed to generate an OpenGL texture name; missing OpenGL context?Invalid single cube map image dataInvalid single cube map face orderNo cube map capability presentSingle cubemap image must have a 6:1 ratio9/||||||||%||||| |Invalid single cube map bufferInvalid single cube map file nameInvalid cube map buffers listInvalid cube map files listInvalid fake HDR format specifiedSOIL initialized ( 0 >(I$QH[ d r(}$H   ($H  ($H( $(H2 H P ^(i$qH~    ($H$)"    E I$}A $ $~ $ $ $E*"A+j+"A E$,,,,1,O-b f$" $ .2 ,M ,h , , ,  $  $ $ B D C* D2 ET F_ G  $  $  $ G' + $R >\ ` $ = ? ;  $ < : :F J $W <\  E / $ $ $ $3ELA 0_E5E)7*9+"[,y,,, $)4*'+kE8"_7+9+H,f,,,,.   $26s**8',+D H$ $E$Q U$c g$ $# '$ $ $< \ `$ $  $T X$b<i  $ $q"<x" " "$" "$Q&<X& X'<_' H(<O( v( z($(1>)3])2g)<n) @$LPTX\`dhlptx|.filegSOIL.c  +  E] } @     )  ?  P  m  ~p       7 Z" qp& p' `( .textw).data.bss.rdataK.?Sgx       # : Q \ s    _free _memcpy _fopen _ftell _fseek _malloc _fread _fclose _strstr _check_for_GL_errors_SOIL_last_result_query_cubemap_capability_has_cubemap_capability_query_tex_rectangle_capability_has_tex_rectangle_capability_query_NPOT_capability_has_NPOT_capability_query_DXT_capability_has_DXT_capability_SOIL_free_image_data_SOIL_direct_load_DDS_from_memory_SOIL_direct_load_DDS_SOIL_save_image_SOIL_load_image_from_memory_SOIL_load_image_SOIL_save_screenshot_SOIL_internal_create_OGL_texture_SOIL_create_OGL_texture_SOIL_create_OGL_single_cubemap_SOIL_load_OGL_single_cubemap_from_memory_SOIL_load_OGL_single_cubemap_SOIL_load_OGL_cubemap_from_memory_SOIL_load_OGL_cubemap_SOIL_load_OGL_texture_from_memory_SOIL_load_OGL_texture_SOIL_load_OGL_HDR_texture_result_string_pointer_soilGlCompressedTexImage2D_glGetString@4_wglGetProcAddress@4_glBindTexture@8_glTexImage2D@36_glTexParameteri@12_glDeleteTextures@8_glGenTextures@8_glReadPixels@28_glGetIntegerv@8_stbi_hdr_load_rgbe_RGBE_to_RGBdivA_RGBE_to_RGBdivA2_scale_image_RGB_to_NTSC_safe_up_scale_image_convert_RGB_to_YCoCg_mipmap_image_convert_image_to_DXT1_convert_image_to_DXT5_stbi_load_stbi_load_from_memory_stbi_failure_reason_stbi_write_bmp_stbi_write_tga_save_image_as_DDS libsoil-1.07~20080707.dfsg/img_test.bmp0000644000175000017500000060006611034440252016714 0ustar gonerigoneriBM66(  **TTzzηzzzTTT*** KKKKK lllll]]]]]ꆆ$$$$$mmmmm33333uuuuu:::::XXXXXkkkkktttttrrrrreeeeeNNNNN,,,,,YYYYY=====NNNNNBBBBBsssss"""""iiiii$$$$$TTTTTTTTT$$$$iiii""""ssssBBBBNNNN====YYYY,,,,NNNNeeeerrrrttttkkkkXXXX::::uuuu3333mmmm$$$$]]]]llll KKKK **TTzzzzTT**libsoil-1.07~20080707.dfsg/test_rect.png0000644000175000017500000002254011034440252017076 0ustar gonerigoneriPNG  IHDR Xݬ pHYs   IDATx흽k$W/Ȼf1*'W`6i8Wg;@P5pV KA 3+0j0r7(if$w|]W4tOsSu {A>=C|4,iˣG>bQ BQ4E EP BQ BQ4E EP BQ4E EP BQ4EQ4E EP BQ4E EP BQ4E E EP BQ4E EP BQ4Em7p "k"ѐ1@>yDC"R|6 @W7ѐ-HhUQU L4d<.h,zso۴?Zq־g1 4d&Y^-H\3lw F^[GWZL/sغ6h$U|[h=ܰ?~O gn|Ii2oY >H 9gfR*` b>k*)Xmt͑Xq?B(VsK*sϔAtcEQPG"*}Xd#Uf,|.2ȹzC|Nb=kHyZ'"|A6 ۗ$gA4}C9 C_tѧh}Eٔl߹LY2uDȀ6@> G4"Dǂ|bu9"|ƶT˙. -M?F> 4fm==t`-EN>W nV,Yɉ^ZjRϕ-g e 5K J-o%06FD>WG쉣i~tۛu/KuK6`Z\3i!!v.n5f XmB>G=ĝ.WvӠk >|O> "gI)=Y^oP_t"믥2] A d;KlZ(> S Iuu `( |.) >˩E\Td >r+ޒhfgC8@rdoOh9a+q ||hA((hA((?C(j3@ؽPoSM(6G ;tAMBn_(7u:XBPDC*LЏrDwH&ZuJ#Tѐ YGs)'; Eyo Dֺ*dJP!DK%˅+P?A Zeqk$#M9؋h4A4jO;F*Wk8!g4pD 3GbQ?i*$WBh* n-wZ#MT@R,]2TH@CBQb"m/Wh'P C*)V]dO%Ai,B4pPA :CLXׅm챈85s"),0G xY +| `8\ͣ},X kNtB>FغoN[o `k^DPz[ߨɢU\-ზ'|tmZ*r+՟|䛩mX_ ,ҝOhN#U,{}}Ϫo>~o!|BrxP&&|~ &&|>Du6v|mWF& |> EK wѣESX,|ayk-UkaW"&|lAT | Z,O X*k,R>|oA<^aH#_8S,>ZePM3/h"#_8S:#_PEzA>}yj-q'+|^\Rmwc ađ!>/y2U7^9V@w2}/v2@AdQ9÷um]bwBäЅWOe\GhL3惿PգJM}D9K/TM H*w"n'|^źUd7# 2/#*bQA((hA(~{F8 Ӣ.@)S2#@XA4dj /NR;jձ7h;ѐPDg˧ʢV$GU%t\Zvyԋ$oHQ|9.$}'oσd__i1A|/Oop__;Ln\ x(ݧ`^N0t/;vɾƳr>? _;8菟u'E|/W?7Lǿ|I~s90-ARǧ' c|v?|Ll! L$$L|LVi9Y*t{Ux|q?;k :<>~v "ts \=!ď)?QP|OjwB, ,Y)k: ̲Nf* 4Ⱥ};[Y8*9~>aG˽Q c_j$?c k{Oˍ;  M?cOH]-29An cKl. v,4hS`]7F{AT|J`Jc-5,S|%Z8K ?(~P|f.4a)n$Ϻ:0aOv1!&ٴ`ll SU  CʮKqe]]N]D0ͫH逜t|H0Ҷ:'-(hA((hA(kOƓ +6oAֹx@Ǩ|0Ɍ_ݨ ЏrxY@S_ d/ThH Q^ӬU)sh Ey9z{sʺSPѐJd9/)$GUɔ)fB2Jdg _Wna ATˤ6I=FsRkI_Mʙ`/hzu|ɁaAj?=fv#3ԭlQW,J< hI;U.ZfL0AJU;f*S )ί.h/$ [2fOuab"m/7O![./FgO%ieB4p A &CXׅmر8A`5s),0G xY0l +ms|1>ly,x[g@4[JM/?FغoN[[g͋`/z>~ W^=Y і2|Rck?|v߯/_/L1~]ojjfBKu0Y`{Fo_p ?`}oz>V((gX ݰ~o|~ w6AoVjMw8~9 p7 #d!mD/Ma|!>o j-C8Mm߳%#p1mop~OZǵmo`sX6*Z'KT[ĵmKhy.N I>/XR}ʠgtC$+D@rQ>/Xq7t I>Ot.Kyj-4!w-~ *M;MXGCBe1g.o|fDL{Mm{a߭ڪS|X1^6ȷkS>L*WS>Gy}Nos|f) U= Gp8~9ŸY0O*w8 ~!up1~ɷZ)_8|l=JQ4E EP BQ4E/˼7g"|DfL! Z*|]:Ɛ|~n-U 9*Ҳ|~nwq־B1Ac] ι" j`{yOAvg/HS?~';ǿ|!Nt'4zB>9Lto> dpaq`7߲2+ΐ|~^He3D s`EQb0kYgG>)E i r^[gA^9,S,r o> "Ta!|.Lݑ!|A(]I*I-o>X]CC>ݼB9U\=>G>78KYѻg0zOÛJ>l7@zx2Fo>G쉣S~4T m0vw.1RM] VoG0G߿@+/PYRe 2~>g#_,cCLi\?&B5R@eY}Dg^#L:4Tj7#HW̉/G> EP BQ4E EP BQ4E CS)&ہN6a~ic7z4 Khȸ]? d]N}IP !&G9;"$UF:L7DhH,ʣۯTUqa Ru9%ʺ="oHRr 8ksa~C2j1ɰ;U^I*k˿h4A4*` $=ώ HJ8㯎 g[1Qjs lX #pF3^eF0DTiڢP~,S ).c~C2%#Z1!MRצ booSz=?YA9hxA!,7\@@ 8Ҙ[9'XocZd~9Ś4_ #z.'Y Xh{l6pޗ/&U;MbE#f|/u[>؋fo^oN[[E&|Ǐz[/_zd*'=.çі|/^~}Oy#ѺZMl{}}dW;wkN4US5F|ǏE ֡?k^C>|~A=2>Bz)w6c~ 62 JͶǏm65>u8~oD}hrF#e_.b_ Ǐmf-Uka:1 :["0q0~o3ho#)[?淙ATٗ'X2ǜd9?\RYdɗ{?淑A<^aHCc~NhA5 63X) ;?kŃ܁]RE: YiBr62HJ`9NŏmVGCBe1g.ŏmh2#Ui64߭ڪS|$X1^߆@*ۇI^e]U8*߇(O1 (dT(wMVHYEn3<Ӑdv "| rI^[GWZL/sغ6hރs蓪jwP-F4l 翥oY!GwO|99*,AS+x^_OP?)w nXq?q'\37ޏS $GUG4zbyM~7W,<| Ù< 0.泖|bi9\ сF'ۋiح()T \!uE>' M5$<-I> K !/:US4LپAXlJ\&,"d@ETvo #HNcA>W Naz>c[MszL #{Ag3hpur:"'|7+p oD^-c5Ӂ\3g^p2F[^#"#ѴI?ͺr% 0E}]|4z|gѐw;_`|c?^HSo!#H PNco+siP~T'd,/A7/n:Rٮs %v `Iv6-[n)d$Ϻ:0K> GYE".@2@n]oARCr4!U 9'40H]8U}>>BQ4E EP BQ4E EP BQIΟgdm]wPoSf>l~lwu +h;;d\@^fg7`~)LЏrDwHSN)Sc1{0DC*dQ=|Ωަ>. |N؃xyU{HD#=oS"_!G-Ȧ?#8ko"c; Zen! {|ZwWRv>63Xio7{V|o$xv1MNنSl;b~ SN1(+UÍ1g;b~ ig6v1 "Vzp IBFEz $|*pm~a~DْFN@!m4D^n͜b;a~bo9BS?wdUO'^v>淉Apߟ|!o@ % D93*o>6(l#Edrc;:۰h{l6l۬/Vv1l^MQ G[^Ozq58 k'mp`@/vGk~Ԏ|K wom ޗoS iOzg?tok_,ZER~h>h)_}1go֣o\k{|~--V/D3-铂Afg͟<~A~L*WS>Gy}4HcHH@UϲFPWj#As Onn$T;YV {  B͵ exhA((h_yov [#D׶0l?9&J wժcagJ>6 Il, >nmE~o)~}}E>Wоb=8<0Jum0o'~&|KK߲BCяlrrTitsϫ~ Q/so9}{aG'ot)~O$9:jɷ.f90 ì5_nE6 FT`YvK⼑Ϟ::0gts{gUxS,~Ɣ|>ca|Hpd"epG"y M>l BQNTA(ttC9WN lֱ 3B>Ԓkz\0fm{RG3S%|) hXPeSݓhY$9{$|M>kc; N|aj"Se]ɷ1syiCg3hospӁ6ܬXv5^ې?d&u18>hh^e 5K Jc&ߦq[ L鿭l쉣i~tۛu/ۗo2w&4h!%PC\|j [Fxw$ц۷AR %4p"|˔Ӡ}h>|o qx@\[JklT Βq;0$;,2RHcCaIOqe]]N-0ߺ* Gnth G֩E6ۡ|?Ǘ`^X%qyA((hA((hA(A((hA((hA(((hA((hA(((hA((hA((V ˣG>AA>ֵ倻#9jYKIENDB`